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Preface

Cuts and metrics are well-known and central objects in graph theory, com-
binatorial optimization and, more generally, discrete mathematics. They also
occur in other areas of mathematics and its applications such as distance geome-
try, the geometry of numbers, combinatorial matrix theory, the theory of designs,
quantum mechanics, statistical physics, analysis and probability theory. Indeed,
cuts are many faceted objects, and they can be interpreted as graph theoretic
objects, as metrics, or as probabilistic pairwise correlations. This accounts for
their fecund versatility.

Due to the wealth of results, in writing this book we had to make a selection.
We focus on polyhedral and other geometric aspects of cuts and metrics. Our
aim is to collect different results, established within diverse mathematical fields,
and to present them in a unified framework. We try to show how these various
results are tied together via the notions of cuts and metrics and, more specifically,
the cut cone and the cut polytope. One of our guidelines for selecting topics
was to concentrate on those aspects that are less well-known and are not yet
covered in a unified way elsewhere. The book has, moreover, been written with
a special attention to interdisciplinarity. For this reason, while some topics are
treated in full detail with complete proofs, some other topics are only touched,
by mentioning results and pointers to further information and references.

The book is intended as a source and reference work for researchers and
graduate students interested in discrete mathematics and its interactions with
other areas of mathematics and its applications. In particular, it is of interest for
those specializing in algebraic and geometric combinatorics and in combinatorial
optimization.

The book is subdivided into five parts, in which we consider the following
topics: ℓ1-metrics and hypercube embeddable metrics, hypermetrics and Delau-
nay polytopes in lattices, the metric structure of graphs, designs in connection
with hypercube embeddings, and further geometric questions linked with cut
polyhedra.

We do not cover extensively the topic of optimization. Indeed, research on
cuts and metrics in this direction is already well-documented. Some survey
papers are available; for instance, by Frank [1990] on multicommodity flows and
by Poljak and Tuza [1995] on the max-cut problem. Nevertheless, we do present
some of the recent breakthroughs. For instance, we discuss the new semidefinite
programming approximative algorithm of Goemans and Williamson, as well as



the result of Bourgain on Lipschitz ℓ1-embeddings with small distortion, and
its application to approximating multicommodity flows by Linial, London and
Rabinovich. Moreover, we mention en route a number of further results relevant
to the max-cut problem and binary matroids.

We made each of the five parts of the book as self-contained as possible; in
principle, each of them can be read independently of the other. Moreover, we
have chosen a common labeling system for all items such as theorems, examples,
figures, etc., in order to simplify the search throughout the text. Some portions
of text that contain side information or lengthy proofs are in small print and can
be avoided at first reading.

The part of the book treating links with the geometry of numbers, is based on
a survey paper coauthored by the authors with V.P. Grishukhin of the Academy
of Sciences of Russia in Moscow (cf. Deza, Grishukhin and Laurent [1995]). We
are grateful to Slava Grishukhin for kindly permitting us to include the material
in this book.

There are several institutions that we wish to thank for their support while
we were working on the book. We would particularly like to thank our home
institute LIENS at the Department of Mathematics and Computer Science of
Ecole Normale Supérieure in Paris, for offering us a helpful environment and
stimulating working conditions. The help of Jacques Beigbeder in solving vari-
ous LaTEX puzzles in the presentation of the book was greatly appreciated. The
second author is also very grateful to CWI (Center for Mathematics and Com-
puter Science) in Amsterdam for the hospitality and fruitful interactions on the
occasion of several long-term visits.

We wish to express special thanks to the University of Augsburg and the
Konrad-Zuse-Zentrum in Berlin; in particular, to Martin Grötschel for the many
stimulating discussions during our visits and for sharing with us his time and
enthusiasm on the topic. We also thank the Institute of Discrete Mathematics
in Bonn, the Tokyo Institute of Technology, and the Institute of Mathematics of
the Academia Sinica in Taipei.

We are grateful to several further people for useful discussions and cooper-
ation on the topic of this book. In particular, the first author thanks warmly
Jin Akiyama, Peter Cameron, Walter Deuber, Antoine Deza, Komei Fukuda,
Marie Grindel, Zeev Jabotinsky, Ko-Wei Lih, Sergey Shpectorov, Navin Singhi,
Ivo Rosenberg, Pierre Rosenstiehl, and Maximillian Voloshin. The second au-
thor is very grateful to Laci Lovász for insightful advice and for offering her the
opportunity to present parts of the material at the Department of Computer
Science of Yale University. She also thanks David Avis, Hans-Jürgen Bandelt,
Victor Chepoi, Michele Conforti, Caterina De Simone, Cid De Souza, Bert Ger-
ards, François Laburthe, Franz Rendl, Lex Schrijver, András Sebö, and Bruce
Shepherd.

We have a special memory to our dear friend and colleague Svata Poljak,
who was always enthusiatic, generous and eager to share interest and questions
on this topic.
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Chapter 1. Outline of the Book

This chapter gives an overview of the topics treated in this book. The cen-
tral objects in the book are polytopes and cones related to cuts and metrics.
Interesting problems concerning these polyhedra arise in many different areas
of mathematics and its applications. Surprisingly, these polyhedra have been
considered independently by a number of authors with various mathematical
backgrounds and motivations. One of our objectives is to show on the one hand,
the richness and diversity of the results in connection with these polyhedra, and
on the other hand, how they can be treated in a unified way as various aspects
of a common set of objects. Research on cuts and metrics profits greatly from
the variety of subjects where the problems arise. Observations made in different
areas by independent authors turn out to be equivalent, facts are not isolated,
and views from different perspectives provide new interpretations, connections
and insights.

This book is subdivided into five parts, each treating seemingly diverse topics.
Namely, Parts I to V contain results relevant to the following areas:

1. the theory of metrics; more precisely, isometric embeddings into the Banach
ℓ1-space,

2. the geometry of numbers; more precisely, lattices and Delaunay polytopes,

3. graph theory; more precisely, the hypercube and its isometric subgraphs,

4. design theory; more precisely, the designs arising in connection with the
various hypercube embeddings of the equidistant metric, together with
complexity aspects of the hypercube embeddability problem,

5. geometry of polyhedra; more precisely, geometric questions on the cut and
metric polyhedra (e.g., description of their facets, adjacencies, symme-
tries, etc.); applications to the solution of some problems such as Borsuk’s
problem, or completion problems for positive semidefinite matrices and
Euclidean distance matrices.

We have made each of the five parts as self-contained as possible. For this reason,
some notions and definitions may be repeated in different parts if they are central
there. In principle, a reader who is interested, for instance, only in the aspects
of geometry of numbers of cuts may consult Part II without any prior reading of

1



2 Chapter 1. Outline of the Book

Part I. Chapter 2, however, contains some basic notation on graphs, polyhedra,
matrices and algorithms that will be used throughout the book.

In what follows we give a brief overview of the material covered in Parts I to
V. This introductory treatment is meant to provide an orientation map through
the book for the reader. We already define here several notions, but all of them
will be redefined later in the text as they are needed.

1.1 Outline of Part I. Measure Aspects: ℓ 1-Embed-
dability and Probability

In Part I we study the distance spaces that can be isometrically embedded into
the ℓ1-space (Rm , dℓ1) for some integer m ≥ 1. Here, dℓ1 denotes the ℓ1-distance
defined by

dℓ1(x, y) :=
∑

1≤i≤m
|xi − yi| for x, y ∈ R

m .

One of the basic results is a characterization in terms of cut semimetrics. Given
a subset S of the set Vn := {1, . . . , n}, the cut semimetric δ(S) is the distance
on Vn where two elements i ∈ S, j ∈ Vn \S are at distance 1, while two elements
i, j ∈ S, or i, j ∈ Vn \ S, are at distance 0. Every cut semimetric is obviously
isometrically ℓ1-embeddable. In fact, a distance d is isometrically ℓ1-embeddable
if and only if it can be decomposed as a nonnegative linear combination of cut
semimetrics. In other words, if CUTn denotes the cone generated by the cut
semimetrics on Vn, then

d is isometrically ℓ1-embeddable ⇐⇒ d ∈ CUTn.

The cone CUTn is called the cut cone. We also consider isometric embeddings
into the hypercube. Call a distance d on Vn hypercube embeddable if the distance
space (Vn, d) can be isometrically embedded into the space ({0, 1}m, dℓ1) (for
some m ≥ 1), i.e., if we can find n binary vectors v1, . . . , vn ∈ {0, 1}m such that

d(i, j) = dℓ1(vi, vj) for all i, j ∈ Vn.

In fact, the hypercube embeddable distances on Vn are the members of the cut
cone CUTn that can be written as a nonnegative integer combination of cut
semimetrics.

Let CUT2
n denote the cut polytope, which is defined as the convex hull of the

cut semimetrics δ(S) for S ⊆ Vn. That is, CUT2
n consists of the distances that

can be decomposed as convex combinations of cut semimetrics. The cut cone and
polytope also admit the following characterization in terms of measure spaces:
A distance d belongs to the cut cone CUTn (resp. the cut polytope CUT2

n ) if
and only if there exist a measure space (resp. a probability space) (Ω,A, µ) and
n events A1, . . . , An ∈ A such that

d(i, j) = µ(Ai△Aj) for all i, j ∈ Vn.
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(See Section 4.2 for the above results.)

There is another set of polyhedra that are closely related to cut polyhedra
and for which the above interpretation in terms of measure spaces takes a nice
form. Given a subset S of Vn, its correlation vector π(S) is defined by π(S)ij = 1
if both i, j belong to S and π(S)ij = 0 otherwise, for i, j ∈ Vn. The cone
generated by the correlation vectors π(S) for S ⊆ Vn is called the correlation
cone and is denoted by CORn. Similarly, COR2

n denotes the correlation polytope,
defined as the convex hull of the correlation vectors. These polyhedra admit the
following characterization (see Section 5.3): A vector p belongs to the correlation
cone CORn (resp. the correlation polytope COR2

n ) if and only if there exist a
measure space (resp. a probability space) (Ω,A, µ) and n events A1, . . . , An ∈ A
such that

pij = µ(Ai ∩Aj) for all i, j ∈ Vn.
Hence, the members of the correlation polytope are nothing but the pairwise joint
correlations of a set of n events; this explains the name “correlation” polyhedra.

In fact, this result is an analogue of the similar result mentioned above for
the cut polyhedra. The point is that the correlation polyhedron CORn (or
COR2

n ) is the image of the cut polyhedron CUTn+1 (or CUT2
n+1) under a linear

bijective mapping (the covariance mapping; see Section 5.2). This is a simple
but interesting correspondence as it permits to translate results between cut
polyhedra and correlation polyhedra. One of our objectives in this book will
be to bring together and give a unified presentation for results that have been
obtained by different authors in these two contexts (cut/correlation).

The correlation polytope provides the right setting for a classical question
in probability theory, often referred to as the Boole problem and which can be
stated as follows: Given n events A1, . . . , An in a probability space (Ω,A, µ) find
a good estimate of the probability µ(A1 ∪ . . . ∪ An) that at least one of these
events occurs using the fact that the pairwise correlations µ(Ai∩Aj) are known.
Tight lower bounds for µ(A1∪ . . .∪An) can be derived from the valid inequalities
for COR2

n (see Section 5.4).

We have now seen that the ℓ1-embeddable distances on Vn are the members
of the cut cone CUTn. Hence, testing ℓ1-embeddability amounts to testing mem-
bership in the cut cone. This problem turns out to be NP-complete. Moreover,
characterizing ℓ1-embeddability amounts to finding a description of the cone
CUTn by a set of linear inequalities. As CUTn is a polyhedral cone (since it is
generated by the finite set of cut semimetrics), we know that it can be described
by a finite list of inequalities. However, finding the full list for arbitrary n is an
‘impossible’ task if NP 6= co-NP. Nevertheless, large classes of valid inequalities
for CUTn (or CUT2

n ) are known. We give an up-to-date survey of what is known
about the linear description of the cut polyhedra in Part V. Among the known
inequalities, the most important ones are the hypermetric inequalities and the
negative type inequalities, which are introduced in Section 6.1. They are the
inequalities of the form: ∑

1≤i<j≤n
bibjxij ≤ 0
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where b1, . . . , bn are integers with sum
∑n
i=1 bi = 1 (hypermetric case) or

∑n
i=1 bi =

0 (negative type case). Part II will be entirely devoted to hypermetric inequalities
and, more specifically, to their link with Delaunay polytopes in lattices. The hy-
permetric inequalities provide necessary conditions for ℓ1-embedability. In fact,
hypermetricity turns out to be a sufficient condition for ℓ1-embeddability for sev-
eral classes of metrics. Several such classes are presented in Chapter 8; they con-
sist of metrics arising from valuated poset lattices, semigroups and normed vector
spaces. The negative type inequalities are implied by the hypermetric inequali-
ties. Hence, they provide a weaker necessary condition for ℓ1-embeddability.

Negative type inequalities are classical inequalities in analysis. They were
already used by Schoenberg in the thirties for characterizing the distance spaces
that are isometrically ℓ2-embeddable; namely, Schoenberg proved that a distance
d is isometrically ℓ2-embeddable if and only if the squared distance d2 satisfies
the negative type inequalities. Moreover, the negative type inequalities define a
cone which is nothing but the image of the cone of positive semidefinite sym-
metric matrices (of order n− 1 if the inequalities are on n points) under a linear
bijective mapping (in fact, the same mapping that made the link between cut
and correlation polyhedra). These results are presented in Sections 6.2 and 6.3,
together with further basic facts on ℓ2-spaces.

Several additional aspects are treated in Part I, including: operations and
functional transforms of distance spaces preserving some metric properties such
as ℓ1-embeddability, hypermetricity, etc. (see Chapters 7 and 9); for given n,
the minimum dimension of an ℓ1-space permitting to embed any ℓ1-embeddable
distance on n points; for given m, the minimum number of points to check in a
distance space in order to ensure embeddability in the m-dimensional ℓ1-space
(see Chapter 11).

We consider in Chapter 10 the question of finding Lipschitz embeddings where
a small distortion of the distances is allowed. Bourgain [1985] shows that every
semimetric on n points can be embedded into some ℓ1-space with a distortion in
O(log2 n). We present this result together with an application by Linial, London
and Rabinovich [1994] to approximations of multicommodity flows.

1.2 Outline of Part II. Hypermetric Spaces: an Ap-
proach via Geometry of Numbers

Part II is entirely devoted to the study of hypermetric inequalities and of their
link with some objects of the geometry of numbers, namely, lattices and Delaunay
polytopes.

Hypermetric inequalities are the inequalities of the form:
∑

1≤i<j≤n
bibjxij ≤ 0

where b1, . . . , bn are integers with sum
∑n
i=1 bi = 1. They define a cone, called

the hypermetric cone and denoted by HYPn. Note that triangle inequalities are
a special case of hypermetric inequalities (obtained by taking all components of
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b equal to 0 except two equal to 1 and one equal to −1). Hence, hypermetricity
is a strengthening of the notion of semimetric. As every cut semimetric satisfies
the hypermetric inequalities, we have

CUTn ⊆ HYPn.

This inclusion holds at equality if n ≤ 6 and is strict for n ≥ 7. For instance, the
path metric of the graph K7\P3 is hypermetric but not ℓ1-embeddable. Actually,
the graphs whose path metric is hypermetric are characterized in Chapter 17.

A typical example of a hypermetric space arises from point lattices. Let L be
a point lattice in Rk , that is, a discrete subgroup of Rk . Take a sphere S ⊆ Rk in
one of the interstices of L, i.e., such that no point from L lies in the closed ball
with boundary S. Blow up S until it is ‘held rigidly’ by lattice points. Then,
the set of lattice points lying on S endowed with the square of the Euclidean
distance forms a distance space which is semimetric and, moreover, hypermetric.
The convex hull of the set S ∩ L of lattice points lying on S forms a polytope,
called a Delaunay polytope. Hence, Delaunay polytopes have the interesting
property that their set of vertices can be endowed with a metric structure which
is hypermetric. In other words, for any Delaunay polytope P with set of vertices
V (P ), the distance space (V (P ), (dℓ2)

2) is a hypermetric space. Even more
striking is the fact that, conversely, every hypermetric distance space on n points
can be isometrically embedded into the space (V (P ), (dℓ2)

2) for some Delaunay
polytope P of dimension k ≤ n− 1. These results are presented in Section 14.1.

The hypermetric cone HYPn is defined by infinitely many inequalities. How-
ever, it can be shown that a finite number of them suffices to describe HYPn. In
other words, HYPn is a polyhedral cone. See Section 14.2 where several proofs
are given for this result. One of them relies essentially on the above link between
hypermetrics and Delaunay polytopes and on Voronoi’s finiteness result for the
number of types of lattices in fixed dimension.

The correspondence between hypermetrics and Delaunay polytopes permits
the translation of several notions from the hypermetric cone to Delaunay poly-
topes. For instance, one can define the rank of a Delaunay polytope as the
dimension of the smallest face of the hypermetric cone containing the corre-
sponding hypermetric distance. One can then define, in particular, extreme
Delaunay polytopes which correspond to extreme rays of the hypermetric cone.
This notion of rank and the correspondence between Delaunay polytopes and
faces of the hypermetric cone are investigated in Chapter 15.

The various types of Delaunay polytopes that may arise in root lattices are
described in Section 14.3. The extreme Delaunay polytopes among them are
classified; there are three of them, namely, the 1-dimensional simplex, the Schläfli
polytope 221 (of dimension 6) and the Gosset polytope 321 (of dimension 7) (see
Section 16.2). Further examples of extreme Delaunay polytopes are described in
Sections 16.3 and 16.4; they arise from other lattices such as the Leech lattice and
the Barnes-Wall lattice. Some connections between extreme Delaunay polytopes
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and equiangular sets of lines or perfect lattices are also mentioned in Sections 16.1
and 16.5.

Chapter 17 studies hypermetric graphs in detail, i.e., the graphs whose path
metric is hypermetric. These graphs are characterized as the isometric sub-
graphs of Cartesian products of three types of graphs, namely, half-cube graphs,
cocktail-party graphs and the Gosset graph G56. Moreover, ℓ1-graphs are those
for which no Gosset graph occurs in the Cartesian product. Several refined re-
sults are presented; in particular, for suspension graphs and for graphs having
some regularity properties. Further characterizations are discussed for bipartite
graphs equipped with the truncated distance (taking value 1 on edges and value
2 on non-edges).

We encounter in this context the class consisting of the connected regular
graphs whose adjacency matrix has minimum eigenvalue greater than or equal to
−2. This class is well studied in the literature. Beside line graphs and cocktail-
party graphs, it contains a list of 187 graphs, which is subdivided into three
groups. Each of these three groups is characterized by some parameter. In-
terestingly, this parameter has an interpretation in terms of some associated
Delaunay polytope using hypermetricity (see Section 17.2). Hence this is an ex-
ample of a situation where a new approach: hypermetricity, sheds new light on
a classical notion.

1.3 Outline of Part III. Embeddings of Graphs

In Part III we study various metric and embeddability properties of graphs. For a
connected graph G = (V,E) we consider the associated path metric dG defined on
the node set V of G, where the distance between two nodes i, j ∈ V is defined as
the length of a shortest path connecting i and j in G. Our objective in Part III is
to investigate the structure of the graphs whose path metric enjoys some metric
properties such as ℓ1-embeddability, hypercube embeddability, hypermetricity,
etc.

The graphs which are isometric subgraphs of hypercubes are well under-
stood. Several characterizations are presented in Chapter 19. One of them
states that the isometric subgraphs of the hypercube are precisely the bipartite
graphs whose path metric satisfies a restricted class of hypermetric inequalities,
namely, the pentagonal inequalities (hypermetric inequalities on five points). Be-
ing an isometric subgraph of a hypercube means being an isometric subgraph of
a Cartesian product of copies of K2. In Chapter 20 we consider isometric em-
beddings into arbitrary Cartesian products. The following is a well-known result
in the metric theory of graphs: Every graph can be isometrically embedded in
a canonical way into a (smallest) Cartesian product, called the canonical metric
representation of the graph. For bipartite graphs, this representation permits to
obtain a decomposition of the path metric as a linear combination of primitive
semimetrics. One of the main tools underlying these various results is an equiv-
alence relation defined on the edge set of the graph. The number of equivalence
classes is an invariant of the graph, called its isometric dimension. The number
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of factors in the canonical representation is precisely the isometric dimension.
Moreover, for a bipartite graph G the isometric dimension of G is equal to the
(linear) dimension of the smallest face of the semimetric cone that contains dG.

In Chapter 21 we study ℓ1-graphs in detail, i.e., the graphs whose path metric
is ℓ1-embeddable. This constitutes a relaxation of hypercube embeddability.
Indeed a graph G is an ℓ1-graph if and only if its path metric dG is hypercube
embeddable up to scale, i.e., if ηdG is hypercube embeddable for some integer η.
The smallest such η is called the minimum scale of the graph. It is shown that
the minimumscale of an ℓ1-graph is equal to 1 or to an even number and that it is
less than or equal to n−2 (n is the number of nodes of the graph). For ℓ1-graphs
the factors in the canonical representation are of a very special type; indeed, they
are either half-cube graphs or cocktail-party graphs. This result is already proved
in Section 14.3, using the connection with Delaunay polytopes. Another proof is
given in Chapter 21 which is elementary and has several important applications.
In particular, it yields a polynomial time algorithm for recognizing ℓ1-graphs as
well as as a characterization for ℓ1-rigid graphs (the graphs having an essentially
unique ℓ1-embeding).

The ℓ1-graphs with minimum scale 1 or 2 are precisely those that can be
isometrically embedded into some half-cube graph. They can, moreover, be
characterized in terms of some forbidden isometric subspaces (see Section 21.4).

1.4 Outline of Part IV. Hypercube Embeddings and
Designs

In Part IV we investigate in detail the hypercube embeddability problem. Given
a distance d on Vn, one may ask the following questions: Is d hypercube em-
beddable ? If yes, does d admit a unique hypercube embedding ? If this is the
case we say that d is h-rigid. (Here, “unique” means unique up to certain trivial
operations.) If d is not h-rigid, then what are the possible hypercube embeddings
of d ?

There are some classes of metrics for which the first question has trivially a
positive answer. This is the case, for instance, for the equidistant metric 2t11n
where t ≥ 1 is an integer; 2t11n denotes the metric on Vn taking value 2t for every
pair of distinct points. Then, only the last two questions about the number of
hypercube embeddings are of interest.

On the other hand, there are some classes of metrics for which deciding
hypercube embeddability is a hard task. In fact, testing hypercube embeddability
for general metrics is an NP-hard problem. Nevertheless, for some classes of
metrics, one is able to characterize their hypercube embeddability by a set of
conditions which can be tested in polynomial time. Several such classes are
presented in Chapter 24. Among them, we examine the classes of metrics taking
two distinct values of the form: a, 2a (a ≥ 1 integer), or three distinct values
of the form: a, b, a + b (a, b ≥ 1 integers not both even). For instance, testing
hypercube embeddability for the class of distances on n points with values in
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the set {2, 4}, or {1, 2, 3}, or {3, 5, 8} can be done in time polynomial in n. On
the other hand, this same problem is NP-complete for the class of distances
with values in the set {2, 3, 4, 6}. We also examine the class of metrics having a
“bipartite structure”; by this we mean the metrics on Vn for which there exists
a subset S of points such that any two points of S (or of its complement) are at
distance 2. One of the main tools used for recognizing hypercube embeddability
for the above classes of metrics is that they contain large equidistant submetrics
that are h-rigid; this fact allows us to infer information on the structure of the
metrics from the local structure of some of their submetrics.

Chapters 22 and 23 deal essentially with the equidistant metric 2t11n. In
Chapter 22 we give some conditions on n and t under which the metric 2t11n is
h-rigid. For instance, if n ≥ t2 + t + 3, then 2t11n is h-rigid. Moreover, for n =
t2 + t+2 with t ≥ 3, the metric 2t11n is h-rigid if and only if there does not exist
a projective plane of order t. In Chapter 23 we examine the possible hypercube
embeddings of the metric 2t11n when it is not h-rigid. An easy observation is that
the possible hypercube embeddings of 2t11n correspond to the (2t, t, n−1)-designs
(a (2t, t, n − 1)-design being a collection B of subsets of Vn−1 such that every
point of Vn−1 belongs to 2t members of B and every two points of Vn−1 belong
to t common members of B). This leads to the question of finding such designs
with specified parameters. This topic is treated in detail in Chapter 23. For
instance, a well-known result by Ryser asserts that any design corresponding to
a hypercube embedding of 2t11n has at least n−1 blocks, with equality if and only
if n = 4t and there exists a Hadamard matrix of order 4t. Hence, two important
classes of designs: projective planes and Hadamard designs, play an important
role in the study of the variety of embeddings of the equidistant metric. An
explicit description of all the possible hypercube embeddings of 2t11n is given in
Section 23.4 for the following restricted parameters: t ≤ 2 and (t = 3, n = 5).

In Chapter 25 we group results related to cut lattices. The cut lattice consists
of the vectors that can be written as an integer combination of cut semimetrics.
Note that belonging to both the cut cone and to the cut lattice is a necessary
condition for a distance d to be hypercube embeddable. In Section 25.3 we study
the graphs whose family of cuts forms a Hilbert basis; this amounts to studying
(in the context of arbitrary graphs) the case when the above necessary condition
is also sufficient. In Section 25.1 we give a description of the cut lattice and of
several related lattices. Constructions are presented in Section 25.2 for distances
that belong to the cut cone and to the cut lattice but that are not hypercube
embeddable.

1.5 Outline of Part V. Facets of the Cut Cone and
Polytope

In Part V we survey known results about the facial structure and the geometry
of the cut cone and of the cut polytope.

A fundamental property is that all the facets of the cut polytope CUT2n can
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be obtained from the facets of CUT2
n that contain a given vertex; this is derived

by the so-called switching operation. In particular, all the facets of CUT2n can
be derived from the facets of the cut cone CUTn. Therefore, for the purpose of
investigating the facial structure, it suffices to consider the cut cone. As we have
already mentioned, finding a complete linear description of the cut polyhedra is
probably a hopeless task. Nevertheless, large classes of inequalities are known.
Two classes have already been introduced; they are the hypermetric inequalities
and the negative type inequalities. The negative type inequalities never define
facets of the cut cone as they are implied by the hypermetric inequalities. On
the other hand, the hypermetric inequalities contain large subclasses of facets;
they are investigated in Chapter 28.

Triangle inequalities, a very special case of hypermetric inequalities, are con-
sidered in detail in Chapter 27. Despite their simplicity, the triangle facets
already contain a considerable amount of information about the cut polyhedra.
For instance, they provide an integer programming formulation for cuts. More-
over, the triangle inequalities provide the complete linear description of the cut
cone CUTn for n ≤ 4. Their projections suffice to describe the cut polyhedron
of an arbitrary graph G if G does not have K5 as a graph minor (and, hence, if
G is planar).

We make in Section 27.4 a detour to cycle polyhedra of binary matroids.
Cycle spaces of binary matroids are nothing but set families that are closed
under taking symmetric differences. Hence, the family of cuts in a graph is an
instance of cycle space. The switching operation applies in the general framework
of binary matroids and there are analogues of the triangle inequalities (in fact,
of their projections) for the cycle polyhedra. Hence, several questions that are
raised for cut polyhedra can be posed in the general setting of binary matroids;
for instance, about linear relaxations by the triangle inequalities or about Hilbert
bases. We review in Section 27.4 the main results in this area.

Hypermetric and negative type inequalities belong to the larger class of gap
inequalities, described in Section 28.4. Although gap inequalities themselves are
not well understood, a weakening of them (obtained by loosening their right-
hand sides) serves as a basis for obtaining very good approximations for the
max-cut problem (see Section 28.4.1).

In Chapter 29 we study the clique-web inequalities, that constitute a general-
ization of hypermetric inequalities. In Chapter 30 we present several other classes
of inequalities: suspended tree inequalities, path-block-cycle inequalities, circu-
lant inequalities, parachute inequalities, etc.. Section 30.6 contains the complete
linear description of the cone CUTn for n ≤ 7.

Chapter 31 contains several geometric properties of the cut polytope CUT2n
and of its relaxation by the semimetric polytope MET2

n (defined by the triangle
inequalities). In Section 31.6 we study adjacency properties of these polytopes.
For instance, any two cuts are adjacent on both the cut polytope and the semi-
metric polytope. Hence, the 1-skeleton graph of the cut polytope is the complete
graph. Moreover, CUT2

n has many simplex faces in common with MET2
n of di-
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mension up to ⌊log2 n⌋. This indicates that MET2
n is wrapped quite tightly

around CUT2
n . In Section 31.7, the Euclidean distance from the hyperplane

supporting a facet of CUT2
n to the barycentrum of CUT2

n is considered. It is
conjectured that this distance is minimized by triangle facets. The conjecture
is verified for all facets defined by an inequality with coefficients in {0, 1,−1}
and asymptotically for some other cases. Simplex facets are considered in Sec-
tion 31.8. It turns out that for n ≤ 7 the great majority of facets of CUT2n are
simplices. In fact about 97% of the facets of CUT27 are simplices ! This may
well be a general phenomenon for any n.

Further geometric results are presented in Sections 31.1-31.4. Borsuk [1933]
asked whether it is possible to partition every set X of points in Rd into d + 1
subsets, each having a smaller diameter than X. This question was answered
in the negative by Kahn and Kalai [1993] by a construction using cuts, that we
present in Section 31.1. The result in Section 31.2 indicates how to obtain valid
inequalities for pairwise angles among a set of vectors from the valid inequalities
for the cut polytope. This permits in particular to answer an old question of Fejes
Tóth [1959] concerning the maximum value for the sum of the pairwise angles
among a set of n vectors. Section 31.3 deals with the completion problem for
partial positive semidefinite matrices. It turns out that necessary conditions for
this completion problem can be obtained from the valid inequalities for the cut
polytope, as a reformulation of the result in Section 31.2. Finally, Section 31.4
deals with the completion problem for partial Euclidean matrices; that is, with
the study of the projections of the negative type cone. These two completion
problems are closely related and have intimate links with the polyhedra under
investigation in this book.



Chapter 2. Basic Definitions

In this chapter we introduce some basic definitions about graphs, polyhedra, ma-
trices, and algorithmic complexity. We present here only the very basic notions;
further definitions will be introduced later in the text as they are needed. The
reader may consult, for instance, the following textbooks for more detailed infor-
mation: Bondy and Murty [1976] for graphs, Grünbaum [1967], Schrijver [1986],
Ziegler [1995] for polyhedra, Lancaster and Tismenetsky [1985] for matrices, and
Garey and Johnson [1979] for algorithms and complexity.

2.1 Graphs

A graph G = (V,E) consists of a finite set V of nodes and a finite set E of edges.
Every edge e ∈ E consists of a pair of nodes u and v, called its endnodes; we
then denote the edge e alternatively as (u, v) or as uv. Two nodes are said to
be adjacent if they are joined by an edge. Two edges are said to be parallel if
they have the same endnodes. Here, we will only consider simple graphs, i.e.,
graphs in which every edge has distinct endnodes and no two edges are parallel.
The degree of a node v ∈ V is the number of edges to which v is incident. When
every two nodes in G are adjacent, then the graph G is said to be a complete
graph. It is customary to denote the complete graph on n nodes by Kn; we can
suppose that the node set of Kn is the set Vn := {1, . . . , n} and that its edge set
is the set En := {ij | i 6= j ∈ Vn} (where the symbol ij denotes the unordered
pair of the integers i, j, i.e., ij and ji are considered identical).

A graph G is said to be bipartite if its node set can be partitioned into
V = V1 ∪ V2 in such a way that no two nodes in V1 and no two nodes in V2 are
adjacent. The sets V1, V2 are said to form a bipartition of G. If G is bipartite
with bipartition (V1, V2) and if every node in V1 is adjacent to every node in V2,
then G is called a complete bipartite graph. We let Kn1,n2 denote the complete
bipartite graph with bipartition (V1, V2) where |V1| = n1 and |V2| = n2. The
complete bipartite graph K1,n (n ≥ 1) is sometimes called a star.

Given a node subset S ⊆ V in a graph G, let δG(S) denote the set of edges
in G having one endnode in S and the other endnode in V \ S; δG(S) is called
the cut 1 determined by S.

1Thus, the symbol δG(S) denotes here an edge set. In fact, the symbol δ(S) will be mostly
used in the book for denoting a 0-1 vector, namely, the cut semimetric determined by S (see
Section 3.1). When G is the complete graph Kn, then the incidence vector of the cut δG(S)

11
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Let G = (V,E) be a graph. A graph H = (W,F ) is said to be a subgraph
of G if W ⊆ V and F ⊆ E. Given a node subset W ⊆ V , G[W ] denotes the
subgraph of G induced by W ; its node set is W and its edge set consists of the
edges of G that are contained in W . The set W is said to induce a clique in G if
any two nodes in W are adjacent, i.e., if G[W ] is a complete graph. A matching
in G is an edge subset F ⊆ E such that no two edges in F share a common
node; a matching F is a perfect matching if every node of G belongs to exactly
one edge in F .

Given an edge subset F ⊆ E in G, G\F := (V,E \ F ) is called the graph
obtained from G by deleting F . When F = {e} we also denote G\{e} by G\e.
Contracting an edge e := uv in G means identifying the endnodes u and v of e
and deleting the parallel edges that may be created while identifying u and v;
G/e denotes the graph obtained from G by contracting the edge e. For an edge
set F ⊆ E, G/F denotes the graph obtained from G by contracting all edges of
F (in any order). A graph H is said to be a minor of G if it can be obtained
from G by a sequence of deletions and/or contractions of edges, and deletions of
nodes.

The following graphs will be frequently used in the book:

• The path Pn, with node set V = {v1, . . . , vn} and whose edges are the pairs
vivi+1 for i = 1, 2, . . . , n− 1.

• The circuit Cn, with node set V = {v1, . . . , vn} and whose edges are the
pairs vivi+1 for i = 1, 2, . . . , n− 1 together with the pair v1vn.

• The hypercube graph H(n, 2), with node set V = {0, 1}n and whose edges
are the pairs of vectors x, y ∈ {0, 1}n such that |{i ∈ [1, n] | xi 6= yi}| = 1.

• The half-cube graph 1
2H(n, 2), with node set V = {x ∈ {0, 1}n | ∑n

i=1 xi is
even} and whose edges are the pairs x, y ∈ {0, 1}n such that |{i ∈ [1, n] |
xi 6= yi}| = 2.

• The cocktail-party graphKn×2, with node set V = {v1, . . . , vn, vn+1, . . . , v2n}
and whose edges are all pairs of nodes in V except the n pairs v1vn+1, . . . ,
vnv2n; in other words, Kn×2 is the complete graph K2n in which a perfect
matching has been deleted.

Two graphs G = (V,E) and G′ = (V ′, E′) are said to be isomorphic if there
exists a bijection f : V −→ V ′ such that

uv ∈ E ⇐⇒ f(u)f(v) ∈ E′;

we write G ≃ G′ if G and G′ are isomorphic. There are some isomorphisms
among the above graphs; for instance,

H(2, 2) ≃ C4, K2×2 ≃ C4,
1

2
H(2, 2) ≃ K2,

1

2
H(3, 2) ≃ K4,

1

2
H(4, 2) ≃ K3×2.

coincides with the cut semimetric δ(S) defined by S. However, the graph notation δG(S) will
be used only locally in the book and the reader will then be reminded that δG(S) stands for an
edge set. So no confusion should arise between the two symbols δG(S) and δ(S).
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The graphs C5, H(3, 2) and K3×2 are depicted in Figure 2.1.1. The Petersen
graph P10, which will also be used on several occasions, is shown in Figure 2.1.2.

circuit hypercube graph  H(3,2) cocktail-party graph  K5 3x2C

Figure 2.1.1

Figure 2.1.2: The Petersen graph P10

A graph G is said to be connected if, for every two nodes u, v in G, there
exists a path in G joining u and v; a graph which is not connected is said to be
disconnected. A forest is a graph which contains no circuit; a tree is a connected
forest. A cycle or Eulerian graph is a graph which can be decomposed as an edge
disjoint union of circuits (equivalently, it is a graph in which every node has an
even degree).

Let us now consider two operations on graphs: the Cartesian product and
the clique sum operation. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs.
Their Cartesian product G1 ×G2 is the graph G := (V1 × V2, E) with node set

V1 × V2 = {(v1, v2) | v1 ∈ V1 and v2 ∈ V2}

and whose edges are the pairs ((u1, u2), (v1, v2)) (with u1, v1 ∈ V1 and u2, v2 ∈ V2)
such that, either (u1, v1) ∈ E1 and u2 = v2, or u1 = v1 and (u2, v2) ∈ E2.

Let G = (V,E) be a graph. Let V1 and V2 be subsets of V such that V =
V1 ∪ V2 and such that the set W := V1 ∩ V2 induces a clique in G. Suppose
moreover that there is no edge joining a node in V1 \W to a node in V2 \W .
Then, G is called the clique k-sum of the graphs G1 := G[V1] and G2 := G[V2],
where k := |W |. One may say simply that G is the clique sum of G1 and G2 if
one does not wish to specify the size of the common clique.
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For a graph G, its suspension graph ∇G denotes the graph obtained from G
by adding a new node (called the apex of ∇G) and making it adjacent to all the
nodes in G. Moreover, the line graph of G is the graph L(G) whose nodes are
the edges of G with two edges adjacent in L(G) if they share a common node.

2.2 Polyhedra

We assume familiarity with basic linear algebra. By R (resp. Q , Z, N) we mean
the set of real (resp. rational, integer, natural) numbers. Given a set E and a
subset S ⊆ E, the incidence vector of S is the vector χS ∈ RE defined by

χSe :=

{
1 if e ∈ S,
0 if e ∈ E \ S.

If A and B are subsets of E, then A△B denotes their symmetric difference
defined by

A△B = (A ∪B) \ (A ∩B).

For a matrix M , we let MT denote its transpose matrix; similarly, xT denotes
the transpose of a vector x. Hence,

xT y =
n∑

i=1

xiyi for x, y ∈ R
n .

We remind that the dimension of a set X ⊆ Rn is defined as the cardinality of a
largest affinely independent subset of X minus one; it is denoted as dim(X). The
set X ⊆ Rn is said to be full-dimensional if dim(X) = n. The rank of X, denoted
as rank(X), is defined as the cardinality of a largest linearly independent subset
of X. Let us introduce some notation for linear hulls. Given a set X ⊆ Rn and
K ⊆ R, set

K (X) := {
∑

x∈X
λxx | λx ∈ K for all x ∈ X}.

(In this definition we suppose that only finitely many λx’s are nonzero.) When
K = Z, the set Z(X) is called the integer hull of X; when K = R+ , the set
R+(X) is called the conic hull of X; when K = Z+, the set Z+(X) is known as
the integer cone generated by X. We will also consider the affine integer hull of
X, defined as

Z af(X) := {
∑

x∈X
λxx | λx ∈ Z for all x ∈ X and

∑

x∈X
λx = 1}

and the convex hull of X, defined as

Conv(X) := {
∑

x∈X
λxx | λx ≥ 0 for all x ∈ X and

∑

x∈X
λx = 1}.

A set X ⊆ Rn is said to be convex if Conv(X) = X. A convex body in Rn is
a convex subset of Rn which is compact and full-dimensional. The polar X◦ of
X ⊆ Rn is defined as

X◦ := {x ∈ Rn | xT y ≤ 1 ∀y ∈ X}.
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The set X is said to be centrally symmetric if −x ∈ X for all x ∈ X. We now
consider in detail conic and convex hulls.

Cones and Polytopes. We recall here several basic definitions concerning
cones and polytopes. Given a subset X ⊆ Rn , the set X is said to be a cone2 if
R+(X) = X. If C is a cone of the form C = R+(X), one says that C is generated
by X and the members of X are called its generators. The cone C is said to be
finitely generated if it admits a finite set of generators, i.e., if C = R+(X) for
some finite set X. The polar of a cone C ⊆ Rn can alternatively be described as

C◦ = {x ∈ R
n | xT y ≤ 0 ∀y ∈ C.}

Every convex set of the form Conv(X), where X is finite, is called a polytope.
Let A be an m× n matrix and let b ∈ Rm be a vector. Then, the set

{x ∈ Rn | Ax ≤ b}

is called a polyhedron. Every polyhedron is obviously a convex set and it is a
cone when b is the zero vector. Every cone of the form {x ∈ Rn | Ax ≤ 0} is
called a polyhedral cone.

A classical result, generally attributed to Minkowski and Weyl, asserts that
polytopes and bounded polyhedra are, in fact, the same notions. (A set P ∈ Rn

is said to be bounded if there exists a constant R such that max1≤i≤n |xi| ≤ R
for all x = (xi)

n
i=1 ∈ P .) In other words, every polytope P , which is given as

the convex hull of a finite set X, can be expressed as the solution set of a finite
system Ax ≤ b of linear inequalities; such a system is called a linear description
of P . The converse statement holds as well. There is a similar result for cones:
A cone C is finitely generated if and only if it can be expressed as the solution
set of a system Ax ≤ 0 of linear inequalities; such a system is called a linear
description of C. In other words, a cone is finitely generated if and only if it is
polyhedral.

In practice, finding a linear description of a polytope P or of a cone C (as-
suming that they are given by their generators) may be a hard task. One of our
main objectives in this book will be, in fact, to give information about the linear
description of a specific polytope and cone, namely, the cut polytope and the cut
cone:

CUT2
n := Conv(χδKn (S) | S ⊆ Vn), CUTn := R+(χδKn (S) | S ⊆ Vn).

Another well-known result that we will sometimes apply is Carathéodory’s
theorem, which can be stated as follows: Let X ⊆ Rn . If x ∈ R+(X) then
x ∈ R+(X′), where X′ is a linearly independent subset of X. If x ∈ Conv(X)
then x ∈ Conv(X′), where X′ is an affinely independent subset of X.

The following polytopes will be frequently used in the book:
2Hence in this definition a cone is always assumed to be convex.
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• The n-dimensional simplex αn; this is the polytope

Conv(0, e1, . . . , en) = {x ∈ R
n | 0 ≤ xi ≤ 1 (1 ≤ i ≤ n),

n∑

i=1

xi ≤ 1}.

• The n-dimensional cross-polytope βn; this is the polytope

Conv(±e1, . . . ,±en) = {x ∈ Rn |
n∑

i=1

aixi ≤ 1 for all a ∈ {±1}n}.

• The n-dimensional hypercube γn; this is the polytope

Conv({0, 1}n) = [0, 1]n.

(Here, e1, . . . , en denote the coordinate vectors in Rn .) Two polytopes P,P ′ in
Rn are said to be affinely equivalent if P′ = f(P ), where f is an affine bijection of
Rn . A simplex is any polytope of the form Conv(X), where the set X is affinely
independent. Similarly, a simplex cone is a cone of the form R+(X), where the
set X is linearly independent. We use, in fact, the symbol αn for denoting any
n-dimensional simplex. Similarly, βn and γn denote the above cross-polytope
and hypercube, up to affine bijection. Note that α1, β1 and γ1 coincide, and
that β2 = γ2 (up to affine bijection). Figure 2.2.1 shows α3 (the tetrahedron),
β3 (the octahedron), and γ3 (the usual cube).

The tetrahedron The octahedron The cube

Figure 2.2.1

Faces. Let P be a polytope in Rn . A set F ⊆ P is called a face of P if, for
every x ∈ F , every decomposition: x = αy + (1 − α)z where 0 ≤ α ≤ 1 and
y, z ∈ P implies that y, z ∈ F . The only face of dimension dim(P ) is P itself.
Every face of dimension dim(P ) − 1 is called a facet of P . A face of dimension
0 is of the form {x}; then, x is said to be a vertex of P . A face of dimension 1
is called an edge of P . Two vertices x, y of P are said to be adjacent on P if the
set {αx + (1 − α)y | 0 ≤ α ≤ 1} is an edge of P . A graph is attached to every
polytope P , called its 1-skeleton graph, and defined as follows: Its node set is
the set of vertices of P with an edge between two vertices if they are adjacent
on P . For instance, the 1-skeleton graphs of the polytopes αn, βn and γn are,
respectively, the complete graph Kn+1, the cocktail-party graph Kn×2 and the
hypercube graph H(n, 2).
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A face F of P is called a simplex face if F is a simplex, i.e., if the vertices of
P lying on F are affinely independent.

Given a vector v ∈ Rn and v0 ∈ R, the inequality vTx ≤ v0 is said to be valid
for P if vTx ≤ v0 holds for all x ∈ P . Then, the set

F := {x ∈ P | vTx = v0}
is clearly a face of P ; it is called the face induced by the inequality vTx ≤ v0. In
fact, every face of P is induced by some valid inequality.

The above definitions extend to cones in the following way. Let C be a cone
in Rn . A face of C is any subset F ⊆ C such that, for every x ∈ F , every
decomposition: x = y + z where y, z ∈ C implies that y, z ∈ F . A face of
dimension dim(C) − 1 is called a facet of C; a face of dimension 1 is called an
extreme ray of C. Given v ∈ Rn , the inequality vTx ≤ 0 is said to be valid for C
if vTx ≤ 0 holds for all x ∈ C. Then, the set

{x ∈ C | vTx = 0}
is called the face of C induced by the valid inequality vTx ≤ 0. When C is a
polyhedral cone, every face of C arises in this manner. A face F of a cone C is
called a simplex face if F is a simplex cone.

Linear Programming Duality. A linear programming problem consists of
maximizing (or minimizing) a linear function over a polyhedron. A typical ex-
ample of such a problem is:

(P) max(cTx | Ax ≤ b),

also written as
max cTx
s.t. Ax ≤ b

where A is an m × n matrix, b ∈ Rm and c ∈ Rn . The linear function cTx is
often called the objective function of the program (P). To the linear program (P)
is associated another linear program (D), called its dual and defined as

(D) min(bT y | yTA = cT , y ≥ 0).

One refers to (P) as to the primal program. The following result, known as
the linear programming duality theorem, establishes a fundamental connection
between the linear programs (P) and (D).

Theorem 2.2.2. Given an m× n matrix A and vectors b ∈ Rm , c ∈ Rn , then

max(cTx | Ax ≤ b) = min(bT y | yTA = cT , y ≥ 0)

provided both sets {x | Ax ≤ b} and {y | yTA = cT , y ≥ 0} are nonempty.

This theorem admits several other equivalent formulations. For example,

max(cTx | Ax ≤ b, x ≥ 0) = min(bT y | yTA ≥ cT , y ≥ 0),

max(cTx | Ax = b, x ≥ 0) = min(bT y | yTA ≥ cT ).
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2.3 Algorithms and Complexity

Although complexity is not a central topic in this book, we will encounter a
number of problems for which one is interested in their complexity status. We
will not define in a precise mathematical way the notions of algorithms and
complexity. We only give here some ‘naive’ definitions, which should be sufficient
for our purpose. Precise definitions can be found, e.g., in the textbooks by Garey
and Johnson [1979], or Papadimitriou and Steiglitz [1982].

Let (P) be a problem and suppose, for convenience, that (P) is a decision
problem (that is, a problem which asks for a ‘yes’ or ‘no’ answer). We may take,
for instance, for (P) any of the following problems:

(P1) The ℓ1-embeddability problem.
Instance: A rational valued distance d on a set Vn = {1, . . . , n}.
Question: Is d isometrically ℓ1-embeddable ? That is, do there exist vectors
v1, . . . , vn ∈ Qm (for some m ≥ 1) such that d(i, j) = dℓ1(vi, vj) for all i, j ∈ Vn ?

(P2) The hypercube embeddability problem for graphs.
Instance: A graph G = (V,E).
Question: Can G be isometrically embedded into some hypercube ?

An instance of a problem is specified by providing a certain input. (For (P1),
the input consists of the

(n
2

)
numbers d(i, j) while, for (P2), the input consists

of a graph G which can, for instance, be described by its adjacency matrix.)
The size of an instance is the number of bits needed to represent the input
data in binary encoding. (For instance, the size of an integer p is size(p) =
⌈log2(|p|+ 1)⌉; the size of a rational number pq is size(p) + size(q) + 1; the size of
an m × n rational matrix A is mn +

∑
i,j size(aij), etc.) Suppose that we have

an algorithm for solving (P). Its complexity is measured by counting the total
number of elementary steps needed to be performed throughout the execution
of the algorithm (elementary steps such as arithmetic operations, comparisons,
branching instructions, etc., are supposed to take a unit time). The algorithm is
said to have a polynomial running time if the total number of elementary steps
can be expressed as p(l), where p(.) is a polynomial function and l is the size of
the instance.

Problems are classified into several complexity classes. The class P consists
of the decision problems which can be solved in polynomial time. The class NP
consists of the decision problems for which every ‘yes’ answer admits a certificate
that can be checked in polynomial time (but one does not need to know how to
find such a certificate in polynomial time). Similarly, a problem is in co-NP if
every ‘no’ answer admits a certificate that can be checked in polynomial time.
Hence, P ⊆ NP ∩ co-NP.

For example, the problem (P1) belongs to NP (because it can be shown

that, if d is ℓ1-embeddable, then there exists a set of vectors v1, . . . , vn ∈ R(n
2)

providing an ℓ1-embedding of d and such that the size of the vi’s is polynomially
bounded by that of d; see Section 4.4). On the other hand, as we will see in
Chapter 19, the problem (P2) belongs to P.
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Among the problems in NP, some can be shown to be hardest. A problem
is said to be NP-complete if it belongs to NP and if a polynomial algorithm
for solving it could be used once as a subroutine to obtain a polynomial algo-
rithm for any problem in NP. A problem is NP-hard if any polynomially bounded
algorithm for solving it would imply a polynomial algorithm for solving an ar-
bitrary NP-problem; note that the problem itself is not required to be in NP
and that one permits more than one call to the subroutine. A typical way to
show that a problem (P) is NP-hard is to show that some known NP-complete
problem polynomially reduces to it. Given two problems (P) and (Q) one says
that (Q) reduces polynomially to (P) if a polynomial algorithm solving (Q) can
be constructed from a polynomial algorithm solving (P). For example, the hy-
percube embeddability problem for arbitrary distances is NP-hard. Typically,
the optimization versions of NP-complete decision problems are also NP-hard.
For instance, the max-cut problem:

Given w ∈ QEn , find a set S ⊆ Vn for which wT δ(S) is maximum

is NP-hard, because the following problem is NP-complete:

Given w ∈ QEn and K ∈ Q, does there exist S ⊆ Vn such that
wT δ(S) ≥ K ?

(See Section 4.4.)

We remind that, for two functions f(n) and g(n) (n ∈ N), the notation:
f(n) = O(g(n)) means that there exists a constant C > 0 such that f(n) ≤ Cg(n)
for all n ∈ N. Similarly, the notation: f(n) = Ω(g(n)) means that f(n) ≥ Cg(n)
for all n ∈ N, for some constant C > 0.

2.4 Matrices

We group here some preliminaries about matrices. A square matrix A is said to
be orthogonal if ATA = I, i.e., if its inverse matrix A−1 is equal to its transpose
matrix AT . We let OA(n) denote the set of orthogonal n × n matrices. The
orthogonal matrices are the isometries of the Euclidean space; that is, the linear
transformations of Rn preserving the Euclidean distance. A well-known basic
fact is that any two congruent sets of points can be matched by some orthogonal
transformation. We formulate below this fact for further reference. Recall that
‖ x ‖2=

√
xTx for x ∈ Rn .

Lemma 2.4.1. Let u1, . . . , up ∈ Rn and v1, . . . , vp ∈ Rn be two sets of vectors
such that ‖ ui − uj ‖2=‖ vi − vj ‖2 for all i, j = 1, . . . , p. Then, there exists
A ∈ OA(n) such that Aui = vi for i = 1, . . . , p. Moreover, such a matrix A is
unique if the set {u1, . . . , up} has affine rank n+ 1.

Let A = (aij)
n
i,j=1 be an n × n symmetric matrix. Then, A is said to be

positive semidefinite if xTAx ≥ 0 holds for all x ∈ Rn (or, equivalently, for all
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x ∈ Zn); then, we write: A � 0. Equivalently, A is positive semidefinite if and
only if all its eigenvalues are nonnegative, or if det(AI) ≥ 0 for every principal
submatrix AI of A (setting AI := (aij)i,j∈I for a subset I ⊆ {1, . . . , n} and
letting det(AI) denote the determinant of AI).

A symmetric n× n matrix A = (aij) can be encoded by its upper triangular
part (including the diagonal), i.e., by the vector (aij)1≤i≤j≤n. We let PSDn
denote the set of vectors (aij)1≤i≤j≤n for which the symmetric n×n matrix (aij)
(setting aji = aij) is positive semidefinite. The set PSDn is a cone in REn , called
the positive semidefinite cone.

A quadratic form is a function of the form:

x ∈ Rn 7→ xTAx =
∑

1≤i,j≤n
aijxixj

where A = (aij) is an n×n symmetric matrix; it is said to be positive semidefinite
when the matrix A is positive semidefinite.

The Gram matrix Gram(v1, . . . , vn) of a set of vectors v1, . . . , vn ∈ Rk (k ≥ 1)
is the n×nmatrix whose (i, j)-th entry is vTi vj . It is easy to check that the rank of
the matrix Gram(v1, . . . , vn) is equal to the rank of the system (v1, . . . , vn). Every
Gram matrix is obviously positive semidefinite. It is well-known that, conversely,
every positive semidefinite matrix can be expressed as a Gram matrix. We recall
this result below, as it will be often used in our treatment.

Lemma 2.4.2. Let A = (aij)1≤i,j≤n be a symmetric matrix which is positive
semidefinite and let k ≤ n be its rank. Then, A is a Gram matrix, i.e., there
exist vectors v1, . . . , vn ∈ Rk such that aij = vTi vj for 1 ≤ i, j ≤ n. The system
(v1, . . . , vn) has rank k. Moreover, if v′1, . . . , v

′
n are other vectors of Rk such that

aij = v′Ti v
′
j for 1 ≤ i, j ≤ n, then v′i = Uvi (1 ≤ i ≤ n) for some orthogonal

matrix U .

Proof. By assumption, A has k nonzero eigenvalues which are positive. Hence,
there exists an n × n matrix Q0 such that A = Q0DQ

T
0 , where D is an n × n

matrix whose entries are all zero except k diagonal entries, say with indices
(1, 1), . . . , (k, k), equal to 1. Denote by Q the n× k submatrix of Q0 consisting
of its first k columns. Then, A = QQT holds, i.e., aij = vTi vj for 1 ≤ i, j ≤ n,
where vT1 , . . . , v

T
n denote the rows of Q. It is easy to see that (v1, . . . , vn) has the

same rank k as A. The unicity (up to orthogonal transformation) of v1, . . . , vn
follows from Lemma 2.4.1.

Checking whether a given symmetric matrix A is positive semidefinite can
be done in polynomial time. The next result is given in (Grötschel, Lovász and
Schrijver [1988], page 295). For completeness, we recall the proof here.

Proposition 2.4.3. Let A = (aij) be a symmetric n × n matrix with ratio-
nal entries. There exists an algorithm permitting to check whether A is positive
semidefinite and, if not, to construct a vector x ∈ Qn such that xTAx < 0. This
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algorithm runs in time polynomial in n and in the size of A.

Proof. The algorithm is based on Gaussian elimination and proceeds in the
following way. Check first whether a11 ≥ 0. If not, then A is not positive
semidefinite and xTAx = a11 < 0 for x := (1, 0, . . . , 0)T . Suppose that a11 = 0.
Then, A is not positive semidefinite if a1i 6= 0 for some i ∈ {2, . . . , n}. Indeed,
xTAx < 0 if we set xi := −1, xj := 0 for j 6= 1, i and if we choose x1 ∈ Q such
that 2x1a1i − aii > 0. If a11 = a12 = . . . = a1n = 0 then A � 0 if and only if its
(n − 1) × (n − 1) submatrix A′ := (aij)

n
i,j=2 is positive semidefinite. Moreover,

if we can find y ∈ Qn−1 such that yTA′y < 0, then xTAx < 0 for the vector
x := (0, y) ∈ Qn .

Suppose now that a11 > 0. Consider the (n−1)×(n−1) matrixA′ = (a′ij)
n
i,j=2

(obtained by pivoting A with respect to the entry a11) defined by

a′ij := aij −
ai1
a11

a1j for i, j = 2, . . . , n.

Then, A � 0 if and only if A′ � 0. Moreover, suppose that we can find a vector
y ∈ Qn−1 such that yTA′y < 0. We indicate how to construct a vector x ∈ Qn

such that xTAx < 0. We set x := (α, y) where α has to be determined. Write

A :=

(
a11 bT

b B

)
. Then, xTAx = α2a11 + 2αyT b+ yTBy, where

yTBy =
n∑

i,j=2

yiyjaij =
n∑

i,j=2

yiyj(a
′
ij +

ai1
a11

a1j) = yTA′y +
1

a11
(yT b)2.

Therefore, xTAx = α2a11+2αyT b+yTA′y+ 1
a11

(yT b)2. Let D denote the discrim-

inant of this quadratic expression (in the variable α); then, D = −a11yTA′y > 0.

Hence, if we choose α ∈ Q such that −yT b−
√
D

a11
< α < −yT b+

√
D

a11
, then x :=

(α, y) ∈ Qn satisfies xTAx < 0.
In all cases we have reduced our task to a problem of order n− 1. Moreover,

one can verify that the entries of the smaller matrices to be considered do not
grow too large, i.e., that their sizes remain polynomially bounded by the size of
the initial matrix A (see Grötschel, Lovász and Schrijver [1988] for details).

Let M be a symmetric n × n matrix. The inertia In(M) of M is defined
as the triple (p, q, s), where p (resp. q, s) denotes the number of positive (resp.
negative, zero) eigenvalues of M ; hence, n = p + q + s. If P is a nonsingular
matrix, then it is well-known that the two matrices M and PMPT have the
same inertia; this result is known as Sylvester’s law of inertia. The following
result is useful for computing the inertia of a matrix.

Lemma 2.4.4. Let M be a symmetric matrix with the following block decompo-
sition:

M =

(
A B
BT C

)
,
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where C is nonsingular. Then,

In(M) = In(C) + In(A−BC−1BT ), detM = detC · det(A−BC−1BT ).

(The matrix A−BC−1BT is known as the Schur complement of C in M .)

Proof. The following identity holds:

(
I BC−1

0T I

)(
A−BC−1BT 0

0T C

)(
I 0

C−1BT I

)
=

(
A B
BT C

)
= M.

By Sylvester’s law of inertia, the two matricesM and

(
A−BC−1BT 0

0T C

)
have

the same inertia. Therefore, In(M) = In(C) + In(A−BC−1BT ).

We conclude with a lemma that will be needed later.

Lemma 2.4.5. Let M be a symmetric n× n matrix and let U be a subspace of
Rn such that xTMx ≤ 0 holds for all x ∈ U . If U has dimension n− 1, then M
has at most one positive eigenvalue.

Proof. Suppose, for contradiction, that M has two positive eigenvalues λ1 and
λ2. Let u1 and u2 be eigenvectors for λ1 and λ2, respectively, with uT1 u2 = 0
and ‖ u1 ‖2=‖ u2 ‖2= 1. Let V denote the subspace of Rn spanned by u1 and
u2. Then, xTMx > 0 holds for all x ∈ V , x 6= 0; indeed, if x = a1u1 + a2u2,
then xTMx = a2

1λ1 + a2
2λ2 > 0 if (a1, a2) 6= (0, 0). As U and V have respective

dimensions n − 1 and 2, there exists x ∈ U ∩ V with x 6= 0. Then, xTMx ≤ 0
since x ∈ U and xTMx > 0 since x ∈ V , yielding a contradiction.
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Introduction

A classical problem in analysis is the isometric embedding problem, which
consists of asking whether a given distance space (X,d) can be isometrically
embedded into some prescribed important “host” space. The case which has been
most extensively studied in the literature is when the host space is the Hilbert
space. Work in this area was initiated by some results of Cayley [1841] and
later continued, in particular, by Menger [1928, 1931, 1954], Schoenberg [1935,
1937, 1938a, 1938b] and Blumenthal [1953]. One of Schoenberg’s well-known
results asserts that a distance space (X,d) is isometrically L2-embeddable if and
only if the squared distance d2 satisfies a list of linear inequalities (the so-called
negative type inequalities). These results were later extended in the context of
Lp-spaces. Of particular importance for our purpose is a result by Bretagnolle,
Dacunha Castelle and Krivine [1966], which states that (X,d) is isometrically
Lp-embeddable if and only if the same holds for every finite subspace of (X,d).

Our objective here is to study the isometric embedding problem in the case
when the host space is the Banach L1-space. Our approach is mainly combi-
natorial. The case p = 1 turns out to be specific among the various Lp-spaces.
Indeed, by the above mentioned finiteness result, we may restrict ourselves to
finite distance spaces. Now, one of the basic facts about L1 is that a finite
distance space (X,d) is isometrically L1-embeddable if and only if d belongs to
the so-called cut cone, the cone generated by all cut semimetrics. This cone is
finitely generated. Therefore, L1-embeddability of (X,d) can be characterized
by a finite list of linear inequalities.

However, in contrast with the L2-case, not all inequalities of this list are
known, in general. In fact, in view of the complexity status of the related max-
cut problem, it is quite unlikely that this list can be completely described. It is
one of the objective of this book to survey what is known about this list.

Therefore, the problem of characterizing L1-embeddability reduces to the
purely combinatorial problem of describing the linear structure of the cut cone.
Interest in this cone is also motivated by its relevance to several hard combina-
torial optimization problems.

Part I is organized as follows. Chapter 3 contains some preliminaries about
distance spaces. We present the basic connection existing between the cut
cone and L1-metrics in Chapter 4 and, in an equivalent form in the context
of covariances, in Chapter 5. Two of the main known necessary conditions for
L1-embeddability, namely, the hypermetric and negative type conditions, are
presented in Chapter 6. Several characterizations for L2-metrics are discussed
there, including Schoenberg’s result in terms of the negative type condition and
Menger’s compactness result. Chapters 7 and 9 describe several operations on
L1-metrics. In Chapter 8 we investigate the metric spaces arising from normed
vector spaces, poset lattices, and semigroups; in all cases, a characterization of
L1-embeddability is given in terms of the hypermetric and negative type con-
ditions. Lipschitz embeddings with some distortion are treated in Chapter 10,
together with an application to the approximation of multicommodity flows in
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graphs. Finally, we group in Chapter 11 several additional results related to ℓ1-
embeddings in a space of fixed dimension and to the minimum ℓp-dimension and,
in Chapter 12, we attempt to illustrate the wide range of use of the L1-metric.



Chapter 3. Preliminaries on
Distances

We introduce here all the notions and definitions that we need in Part I, in
particular, about distance spaces, isometric embeddings, measure spaces, and
our main host spaces: the Banach ℓp- and Lp-spaces for 1 ≤ p ≤ ∞. The book
will deal, in fact, essentially with the case p = 1, also with the Euclidean case
p = 2 and the semimetric case p = ∞. We will consider the general case p ≥ 1
only episodically. However, we now introduce the definitions for p arbitrary, as
this permits us to have a unified setting for the various parameters and, moreover,
to emphasize the specificity of the case p = 1.

3.1 Distance Spaces and ℓ p-Spaces

Distances and Semimetrics: Definitions and Examples. Let X be a set.
A function d : X × X → R+ is called a distance on X if d is symmetric, i.e.,
satisfies d(i, j) = d(j, i) for all i, j ∈ X, and if d(i, i) = 0 holds for all i ∈ X.
Then, (X,d) is called a distance space. If d satisfies, in addition, the following
inequalities:

(3.1.1) d(i, j) ≤ d(i, k) + d(j, k)

for all i, j, k ∈ X, then d is called a semimetric on X. Moreover, if d(i, j) = 0
holds only for i = j, then d is called a metric on X. The inequality (3.1.1) is
called a triangle inequality.

Set Vn := {1, . . . , n} and En := {ij | i, j ∈ Vn, i 6= j}, where the symbol
ij denotes the unordered pair of the integers i, j, i.e., ij and ji are considered
identical. Let d be a distance on the set Vn. Because of symmetry and since
d(i, i) = 0 for i ∈ Vn, we can view the distance d as a vector (dij)1≤i<j≤n ∈ REn .
Conversely, every vector d ∈ REn yields a distance d on Vn by symmetry and by
taking distance 0 on the diagonal pairs. Hence, a distance on Vn can be viewed
alternatively as a (symmetric with zero on the diagonal) function on Vn × Vn or
as a vector in REn . We will use freely these two representations for a distance
on Vn; the distinction should be clear from the context. Moreover, we will use
both symbols d(i, j) and dij for denoting the distance between two points i and
j.

Let d be a distance on the set Vn. Its distance matrix is defined as the n× n
symmetric matrix D whose (i, j)-th entry is d(i, j) for all i, j ∈ Vn. Hence, all
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diagonal entries of D are equal to zero.

The triangle inequalities (3.1.1) (for i, j, k ∈ Vn) define a cone in the space
REn , called the semimetric cone and denoted by METn; its elements are precisely
the semimetrics on Vn.

Very simple examples of semimetrics can be constructed in the following way.
Given an integer t ≥ 1, let t11n denote1 the equidistant metric on Vn, that takes
value t on every pair in En; t11n is obviously a metric on Vn.

Given a subset S ⊆ Vn, let δ(S) denote the distance on Vn that takes value
1 on the pairs (i, j) with i ∈ S, j ∈ Vn \ S, and value 0 on the remaining pairs.
Clearly, δ(S) is a semimetric (not a metric if n ≥ 3); it is called a cut semimetric2.

Given a normed3 space (E, ‖ . ‖), a metric d‖.‖ can be defined on E by setting

d‖.‖(x, y) :=‖ x− y ‖

for all x, y ∈ E; the metric d‖.‖ is called a norm metric or Minkowski metric.

For any p ≥ 1, the vector space Rm can be endowed with the ℓp-norm ‖ . ‖p
defined by

‖ x ‖p= (
∑

1≤k≤m
|xk|p)

1
p

for x ∈ Rm . Then, the associated norm metric is denoted by dℓp and is called the
ℓp-metric. Thus, dℓp(x, y) =‖ x− y ‖p for x, y ∈ Rm . The metric space (Rm , dℓp)
is abbreviated as ℓmp . Similarly, ℓm∞ denotes the metric space (Rm , dℓ∞), where
dℓ∞ denotes the norm metric associated with the norm ‖ . ‖∞ which is defined
by

‖ x ‖∞= max(|xk| : 1 ≤ k ≤ m),

for x ∈ Rm .

For 1 ≤ p < ∞, the metric space ℓ∞p consists of the set of infinite sequences

x = (xi)i≥0 ∈ RN for which the sum
∑
i≥0 |xi|p is finite, endowed with the

distance d(x, y) =
(∑

i≥0 |xi − yi|p
) 1

p . In the same way ℓ∞∞ is the set of bounded

infinite sequences x ∈ RN , endowed with the distance

d(x, y) = max(|xi − yi| : i ≥ 0).

Another classical distance on the set Rm is the Hamming distance dH defined
by

dH(x, y) := |{i ∈ [1,m] : xi 6= yi}|
1Thus, in notation t11n, the letter n refers to the number of points on which the metric is

defined and not to the dimensionality of the space containing t11n.
2The cut semimetrics are also called in the literature split metrics, or dissimilarities, or

binary metrics (e.g., in Bandelt and Dress [1992], Fichet [1987a], Le Calve [1987]).
3We remind that a norm on a vector space E is a function x ∈ E 7→‖ x ‖∈ R+ such that

‖ x ‖= 0 if and only if x = 0, ‖ λx ‖= |λ| ‖ x ‖ for λ ∈ R, x ∈ E, and ‖ x + y ‖≤‖ x ‖ + ‖ y ‖
for x, y ∈ E.
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for all x, y ∈ Rm . Hence, when computed on binary vectors x, y ∈ {0, 1}m, the
Hamming distance dH(x, y) and the ℓ1-distance dℓ1(x, y) coincide.

Other examples of metric spaces are the graphic metric spaces, that arise
from connected graphs. Let G = (V,E) be a connected graph and let dG (or
d(G)) denote the path metric of G where, for two nodes i, j ∈ V , dG(i, j) denotes
the shortest length of a path from i to j in G. Then, (V, dG) is called the graphic
metric space associated with G. The graphic metric space associated with a
hypercube graph H(m, 2) is called a hypercube metric space. Observe that the
graphic metric space of H(m, 2) coincides with the distance space ({0, 1}m, dℓ1).

If G = (V,E) is a graph and w = (we)e∈E are nonnegative weights assigned
to its edges, one can define similarly the path metric4 dG,w of the weighted graph
(G,w). Namely, for two nodes i, j ∈ V , dG,w(i, j) denotes the smallest value of∑
e∈P we where P is a path from i to j in G.

Isometric Embeddings. Let (X,d) and (X′, d′) be two distance spaces. Then,
(X,d) is said to be isometrically embeddable into (X′, d′) if there exists a mapping
φ (the isometric embedding) from X to X′ such that

d(x, y) = d′(φ(x), φ(y))

for all x, y ∈ X. One also says that (X,d) is an isometric subspace of (X′, d′). All
the embeddings considered here are isometric, so we will often omit to mention
the word “isometric”.

For two graphs G and H, one writes G →֒ H and says that G is an isometric
subgraph of H when (V (G), dG) is an isometric subspace of (V (H), dH ).

Clearly, if (X,d) is embeddable into (X′, d′) then the same holds for ev-
ery subspace (Y, d), where Y ⊆ X. It may sometimes be sufficient to check
all subspaces (Y, d) of (X,d) on a limited number of points in order to ensure
embeddability of the whole space (X,d) into (X′, d′). The smallest number of
points that are enough to check is called (following Blumenthal [1953]) the or-
der of congruence of (X′, d′). More precisely, (X′, d′) is said to have order of
congruence p if, for every distance space (X,d),

(Y, d) embeds into (X′, d′) for every Y ⊆ X with |Y | ≤ p
⇓

(X,d) embeds into (X′, d′)

and p is the smallest such integer (possibly infinite).

A distance space (X,d) is said to be ℓp-embeddable if (X,d) is isometrically
embeddable into the space ℓmp for some integer m ≥ 1. The smallest such integer
m is called the ℓp-dimension of (X,d) and is denoted by mℓp(X,d). Then, we
define the minimum ℓp-dimension mℓp(n) by

4It would be more correct to speak of ‘path semimetric’ rather than ‘path metric’, as some
distinct points might be at distance zero if some of the edge weights are equal to zero. We will
however keep the terminology of ‘path metric’ for simplicity.
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(3.1.2) mℓp(n) := max(mℓp(X,d) : |X| = n and (X,d) is ℓp-embeddable);

that is, mℓp(n) is the smallest integer m such that every ℓp-embeddable distance
on n points can be embedded in ℓmp . (It is known that mℓp(n) is finite; in fact,
mℓp(n) ≤ (n

2

)
for all n and p. Cf. Section 11.2.) The distance space (X,d) is

said to be ℓ∞p -embeddable if it is an isometric subspace of ℓ∞p .

A distance space (X,d) is said to be hypercube embeddable if it can be isomet-
rically embedded in some hypercube metric space ({0, 1}m, dℓ1) for some integer
m ≥ 1. As the hypercube metric space ({0, 1}m, dℓ1) is an isometric subspace of
ℓm1 , every hypercube embeddable distance space is ℓ1-embeddable. (In fact, if d
is rational valued, then the space (X,d) is ℓ1-embeddable if and only if (X,λd)
is hypercube embeddable for some integer λ; see Proposition 4.3.8.)

Basic Observations on ℓp-Metrics. Obviously, if a distance d is ℓp-embeddable
then d is a semimetric and, moreover, αd is ℓp-embeddable for any α > 0. On
the other hand, the sum d1 + d2 of two ℓp-embeddable distances d1 and d2 is, in
general, not ℓp-embeddable. In other words, the set of ℓp-embeddable distances
on Vn is not a cone in general. However, the two extreme cases p = 1 and p = ∞
are exceptional. In each of these two cases the set of ℓp-embeddable distances
on Vn forms a cone that, in addition, is polyhedral.

The case p = 1 is directly relevant to the central topic of this book. Indeed,
the distances on n points that are ℓ1-embeddable are precisely the distances
that can be decomposed as a nonnegative linear combination of cut semimetrics.
Hence, they form a cone, the cut cone CUTn, which is a polyhedral cone as it is
generated by the 2n−1 cut semimetrics. (Details are given in Section 4.1.)

Consider now the case p = ∞. Clearly every ℓ∞-embeddable distance is a
semimetric. Conversely, every semimetric on Vn is ℓn−1

∞ -embeddable. Indeed, the
following n vectors v1, . . . , vn ∈ Rn−1 , where

vi := (d(1, i), d(2, i), . . . , d(n− 1, i)) for i = 1, . . . , n,

provide an isometric embedding of (Vn, d) into (Rn−1 , dℓ∞). Therefore,

METn = {d ∈ R
En | d is ℓ∞-embeddable}.

Hence, the ℓ∞-embeddable distances on Vn form a cone, the semimetric cone
METn. This cone is a polyhedral cone as METn is defined by finitely many linear
inequalities (namely, the 3

(n
2

)
triangle inequalities). Moreover, the minimum ℓ∞-

dimension satisfies:

(3.1.3) mℓ∞(n) ≤ n− 1.

Although the ℓp-embeddable distances on Vn do not form a cone if 1 < p <∞,
the p-th powers of these distances do form a cone. For 1 ≤ p <∞, set
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(3.1.4) NORn(p) := {d ∈ R
En | p

√
d is ℓp-embeddable},

where p
√
d denotes the vector

(
p
√
dij
)
ij∈En

. Then, the set NORn(p) is a cone

which is not polyhedral if 1 < p < ∞; moreover, every cut semimetric lies on
an extreme ray of NORn(p) (see Lemma 11.2.2). Note that the cones NORn(1)
and CUTn coincide. The cone NORn(2) (which corresponds to the Euclidean
distance) has also been extensively investigated; results are grouped in Section
6.2. We want to point out that, although NORn(1) = CUTn appears to be much
nicer than NORn(2) since it is a polyhedral cone with very simple extreme rays,
we do not know an inequality description of NORn(1). In fact, the investigation
of the facial structure of the cone NORn(1) = CUTn will form an important part
of this book, taken up especially in Part V.

B

B

B

1

2

oo

.

Figure 3.1.5: The unit balls for the ℓ1, ℓ2 and ℓ∞-norms

To conclude let us compare the unit balls of the various ℓp-spaces. Let Bp
denote the unit ball in ℓnp , defined by

Bp := {x ∈ Rn :‖ x ‖p≤ 1}.

Then, B∞ = [−1, 1]n is the n-dimensional hypercube γn (with side length 2),
B1 coincides with the n-dimensional cross-polytope βn, and B2 is the usual
Euclidean unit ball. The following inclusions hold:

B1 ⊆ Bp ⊆ B∞ for 1 ≤ p ≤ ∞,

which follow from the well-known Jensen’s inequality (see, e.g., Section 2.10 in
Hardy, Littlewood and Pólya [1934]):

‖ x ‖q ≤ ‖ x ‖p for all x ∈ Rn , 1 ≤ p < q ≤ ∞.

Figure 3.1.5 shows the three balls B1, B2, and B∞ in dimension n = 2. Note
that the balls B1 and B∞ are in bijection via the mapping f : R2 −→ R2 defined
by

(3.1.6) x = (x1, x2) 7→ f(x) :=

(
x1 − x2

2
,
x1 + x2

2

)

(which rotates the plane by 45 degrees and then shrinks it by a factor 1√
2
). In-

deed, one can verify that ‖ x ‖∞=‖ f(x) ‖1 for all x ∈ R2 . Therefore, the map-
ping f provides an isometry between the distance spaces (R2 , dℓ∞) and (R2 , dℓ1).
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3.2 Measure Spaces and L p-Spaces

We now define the distance space Lp(Ω,A, µ), which is attached to any measure
space (Ω,A, µ). For this, we recall some definitions5 on measure spaces. Let Ω
be a set and let A be a σ-algebra of subsets of Ω, i.e., A is a collection of subsets
of Ω satisfying the following properties:





Ω ∈ A,
if A ∈ A then Ω \ A ∈ A,
if A =

∞⋃

k=1

Ak with Ak ∈ A for all k, then A ∈ A.

A function µ : A −→ R+ is a measure on A if it is additive, i.e.,

µ(
⋃

k≥1

Ak) =
∑

k≥1

µ(Ak)

for all pairwise disjoint sets Ak ∈ A, and satisfies µ(∅) = 0. Note that measures
are always assumed here to be nonnegative. A measure space is a triple (Ω,A, µ)
consisting of a set Ω, a σ-algebra A of subsets of Ω, and a measure µ on A. A
probability space is a measure space with total measure µ(Ω) = 1.

Given a function f : Ω −→ R, its Lp-norm is defined by

‖ f ‖p:=
(∫

Ω
|f(ω)|pµ(dω)

) 1
p

.

Then, Lp(Ω,A, µ) denotes the set of functions f : Ω −→ R which satisfy ‖ f ‖p<
∞. The Lp-norm defines a metric structure on Lp(Ω,A, µ), namely, by taking
‖ f − g ‖p as distance between two functions f, g ∈ Lp(Ω,A, µ). A distance
space (X,d) is said to be Lp-embeddable if it is a subspace of Lp(Ω,A, µ) for
some measure space (Ω,A, µ).

The most classical example of an Lp-space is the space Lp(Ω,A, µ), where Ω
is the open interval (0, 1), A is the family of Borel subsets of (0, 1), and µ is the
Lebesgue measure; it is simply denoted by Lp(0, 1). We now make precise the
connections existing between Lp-spaces and ℓp-spaces:

(i) If Ω = N, A = 2Ω is the collection of all subsets of Ω, and µ is the cardinality
measure, i.e., µ(A) = |A| if A is a finite subset of Ω and µ(A) = ∞
otherwise, then Lp(N, 2

N , |.|) coincides with the space ℓ∞p .

(ii) If Ω = Vm is a set of cardinality m, A = 2Ω, and µ is the cardinality
measure, then Lp(Vm, 2

Vm , |.|) coincides with ℓmp .

In other words, ℓmp is an isometric subspace of ℓ∞p which, in turn, is Lp-embeddable.

We consider in detail L1-embeddable distance spaces in Chapter 4. It turns
out that, for a finite distance space, the properties of being ℓ1-, ℓ

∞
1 , or L1-

embeddable are all equivalent to the property of belonging to the cut cone (see
Theorem 4.2.6).

5For more information concerning measure spaces and integrability of functions, the reader
may consult the textbook by Rudin [1966].
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Similar results are known for the case p ≥ 1 (see, e.g., Fichet [1994]).
Namely, for a finite distance space (X,d), the properties of being ℓp-, ℓ

∞
p -, or

Lp-embeddable are all equivalent.

Though we are mainly concerned with finite distance spaces, i.e., with dis-
tance spaces (X,d) where X is finite, we also present a number of results involv-
ing infinite distance spaces. For instance, we consider in Section 8.3 the normed
vector spaces whose norm metric is L1-embeddable. However, the following fun-
damental result of Bretagnolle, Dacunha Castelle and Krivine [1966] shows that
the study of Lp-embeddable spaces can be reduced to the finite case.

Theorem 3.2.1. Let p ≥ 1 and let (X,d) be a distance space. Then, (X,d)
is Lp-embeddable if and only if every finite subspace of (X,d) is Lp-embeddable.

Similarly, the study of ℓmp -embeddable spaces can be reduced to the finite
case. The next result follows from the compactness theorem of logic (as observed
by Malitz and Malitz [1992] in the case p = 1).

Theorem 3.2.2. Let p,m ≥ 1 be integers and let (X,d) be a distance space.
Then, (X,d) is ℓmp -embeddable if and only if every finite subspace of (X,d) is
ℓmp -embeddable.

Proof. Necessity is obvious. Conversely, suppose that every finite subspace of
(X,d) is ℓmp -embeddable. Fixing x0 ∈ X we can restrict ourselves to finding
an embedding of (X,d) in which x0 is mapped to the zero vector. Hence, we
search for an element (ux)x∈X of the set K :=

∏

x∈X
[−d(x0, x), d(x0, x)]

m such that

‖ ux−uy ‖p= d(x, y) for all x, y ∈ X. For x, y ∈ X, let Kx,y denote the subset of
K consisting of the elements that satisfy the condition ‖ ux−uy ‖p= d(x, y). By
assumption, any intersection of a finite number of Kx,y’s is nonempty. Therefore,
since K is compact (by Tychonoff’s theorem, as it is a Cartesian product of
compact sets) and since the Kx,y’s are closed sets, the intersection

⋂

x,y∈X
Kx,y is

nonempty, which shows that (X,d) is ℓmp -embeddable.

Finally, we introduce one more semimetric space. Let (Ω,A, µ) be a measure
space. Set

Aµ := {A ∈ A | µ(A) <∞}.

One can define a distance dµ on Aµ by setting

dµ(A,B) = µ(A△B)

for all A,B ∈ Aµ. Then, dµ is a semimetric on Aµ. We call dµ a measure
semimetric and the space (Aµ, dµ) a measure semimetric space. The semimetric
dµ is also called the Fréchet-Nikodym-Aronszajn distance in the literature. We
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will consider in Section 9.2 the related Steinhaus distance, which is defined by

µ(A△B)

µ(A ∩B)

for A,B ∈ Aµ. Note that the measure semimetric space (Aµ, dµ) is the subspace
of L1(Ω,A, µ) consisting of its 0-1 valued functions. Moreover, if Ω = Vm is a
finite set of cardinality m, A = 2Ω, and µ is the cardinality measure, then the
space (Aµ, dµ) coincides with the hypercube metric space ({0, 1}m, dℓ1).

We close the section with two remarks grouping a number of results about
the isometric embeddings existing among the various Lp-spaces. Figure 3.2.3
summarizes some of the connections existing among ℓp-spaces and mentioned in
Remark 3.2.4 below.

d is ℓp-embeddable =⇒ d is ℓ∞-embeddable
2 < p <∞~w

d is ℓ2-embeddable

~wwwww�
d is ℓp-embeddable =⇒ d is ℓ1-embeddable =⇒ p

√
d is ℓp-embeddable

1 < p < 2 1 ≤ p <∞~w
d is ℓ2p-embeddable

1 ≤ p ≤ ∞

Figure 3.2.3: Links between various ℓp-spaces

Remark 3.2.4. Isometric embeddings among the Lp-spaces. There is a vast
literature on the topic of isometric embeddings among the various Lp-spaces; see, e.g.,
Wells and Williams [1975], Dor [1976], Ball [1987] , Lyubich and Vaserstein [1993]. We
summarize here some of the main results. The following is shown in Dor [1976]. Let
1 ≤ p < ∞, 1 ≤ r ≤ ∞ and m ∈ N, m ≥ 2. Then, ℓmr is an isometric subspace of
Lp(0, 1) if and only if, either (i) p ≤ r < 2, or (ii) r = 2, or (iii) m = 2 and p = 1.
Hence, for instance, ℓ3r does not embed isometrically in Lp(0, 1) if r > 2. It was already
shown by Bretagnolle, Dacunha Castelle and Krivine [1966] that Lp(0, 1) embeds iso-
metrically in L1(0, 1) for all 1 ≤ p ≤ 2. As a reformulation of the above result, we have
the following implications for a distance space (X, d):
• If (X, d) is ℓ2p-embeddable for some 1 ≤ p ≤ ∞, then (X, d) is L1-embeddable.
• If (X, d) is ℓp-embeddable for some 1 ≤ p ≤ 2, then (X, d) is L1-embeddable.
• If (X, d) is ℓ2-embeddable, then (X, d) is Lp-embeddable for all 1 ≤ p ≤ ∞.

Let r 6= p such that 1 ≤ r, p < ∞ and let m ≥ 1 be an integer. Then, ℓmr embeds
isometrically in ℓnp for some integer n ≥ 1 if and only if r = 2 and p is an even integer
(Lyubich and Vaserstein [1993]). Given an even integer p, define N(m, p) as the smallest
integer n ≥ 1 for which ℓm2 embeds isometrically into ℓnp . It is shown in Lyubich and
Vaserstein [1993] that N(2, p) = p

2 + 1 and that, for any p ≥ 2 and m ≥ 1, max(N(m−
1, p), N(m, p− 2)) ≤ N(m, p) ≤

(
m+p−1

m−1

)
. An exact evaluation of N(m, p) is known for
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small values of p,m; for instance, N(3, 4) = 6, N(3, 6) = 11, N(3, 8) = 16, N(7, 4) =
28, N(8, 6) = 120, N(23, 4) = 276, N(23, 6) = 2300, N(24, 10) = 98280.

Therefore, given r and m ∈ N such that 1 < r ≤ 2 < m, we have that ℓmr does

not embed isometrically into ℓn1 (n positive integer), but ℓmr embeds into L1(0, 1) and,

moreover, every finite subspace of ℓmr on s points embeds into ℓ
(s
2)

1 .

Remark 3.2.5. We mention here some observations made by Fichet [1994]. First, it
can be easily verified that every semimetric on 3 points embeds isometrically in ℓ2p for
any 1 ≤ p ≤ ∞. Moreover, every semimetric on 4 points embeds isometrically in ℓ21. On
the other hand, there exist semimetrics on 4 points that are not ℓp-embeddable for any
1 < p < ∞. For such an example consider the distance d on X := {1, 2, 3, 4} taking
value 2 on the pairs (1, 3) and (2, 4) and value 1 on all other pairs.

One can verify that d is not ℓp-embeddable for 1 < p < ∞. For, suppose that

there exist vectors u1, u2, u3, u4 ∈ RN providing an ℓp-embedding of d. For each coor-

dinate m ∈ [1, N ] consider the distance dm on X defined by dm
ij := |ui(m) − uj(m)| for

i, j ∈ X . We now exploit the fact that d satisfies several triangle inequalities at equal-

ity. It can be easily observed (using Minkowski’s inequality) that every dm satisfies the

same triangle equalities as d. From this follows that, for each coordinate m, either (i)

u1(m) = u2(m) ≤ u3(m) = u4(m), or (ii) u2(m) = u3(m) ≤ u1(m) = u4(m). Denoting

by N1 (resp. N2) the set of coordinates m for which (i) (resp. (ii)) occurs and setting

a :=
∑

m∈N1
|u1(m)−u3(m)|p, b :=

∑
m∈N2

|u1(m)−u2(m)|p, we obtain that a = b = 1

and 2p = a+ b, a contradiction if p > 1.





Chapter 4. The Cut Cone and
ℓ1-Metrics

In this chapter, we establish the basic connections existing between the cut
cone and metrics. We show how the members of the cut cone can be inter-
preted in terms of ℓ1-metrics and measure semimetric spaces; see in particular
Theorem 4.2.6, where several equivalent characterizations are stated. We also
introduce in Section 4.3 several basic notions which will be used throughout the
book, namely, the notions of rigidity, size, scale and realizations. In Section 4.4,
we present a number of basic problems about cut polyhedra and indicate their
complexity status.

4.1 The Cut Cone and Polytope

We give here the exact definitions for the cut cone and polytope. We start with
recalling the notion of cut semimetric. Given a subset S of Vn = {1, . . . , n}, let
δ(S) denote the vector of REn defined by

(4.1.1) δ(S)ij = 1 if |S ∩ {i, j}| = 1, and δ(S)ij = 0 otherwise,

for 1 ≤ i < j ≤ n. Obviously, δ(S) defines a distance on Vn which is a semimetric;
for this reason, δ(S) is called a cut semimetric. Note that, in later chapters, we
may drop the word “semimetric” and simply speak of “the cut δ(S)” or of “the
cut vector δ(S)”. We use here the word “semimetric” in order to stress the fact
that we are working with distance spaces.

The cone in REn , which is generated by the cut semimetrics δ(S) for S ⊆ Vn,
is called the cut cone1 and is denoted by CUTn. The polytope in REn , which is
defined as the convex hull of the cut semimetrics δ(S) for S ⊆ Vn, is called the
cut polytope and is denoted by CUT2

n . Hence,

(4.1.2) CUTn = {
∑

S⊆Vn

λSδ(S) | λS ≥ 0 for all S ⊆ Vn},

(4.1.3) CUT2
n = {

∑

S⊆Vn

λSδ(S) |
∑

S⊆Vn

λS = 1 and λS ≥ 0 for all S ⊆ Vn}.

It may sometimes be convenient to consider an arbitrary finite set X instead on

1The cone CUTn is also known in the literature under the name of Hamming cone; see, e.g.,
Avis [1977, 1981], Assouad and Deza [1982], etc.

37
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Vn. One defines in the same way2 the cut cone CUT(X) and the cut polytope
CUT2(X) on X. Hence,

CUT(Vn) = CUTn and CUT2(Vn) = CUT2
n .

Note that CUTn and CUT2
n are trivial for n = 2, as there is only one nonzero

cut semimetric on V2. From now on, we will suppose that n ≥ 3.

There is a vast literature on the cut polyhedra; references will be given
throughout the text when appropriate. Let us mention a few areas where these
polyhedra arise. The cut polytope comes up in connection with the following
basic geometric question: What are the linear inequalities that are satisfied by
the pairwise angles of a set of vectors ? In fact, the inequalities valid for the
cut polytope CUT2

n yield valid relations for the pairwise angles among a set of n
unit vectors (see Sections 6.4 and 31.2). As will be explained in the next section,
the cut cone arises naturally in the context of ℓ1-metrics. On the other hand,
the cut polytope also plays an important role in combinatorial optimization, as
it permits to formulate the max-cut problem. Given weights w = (wij) ∈ REn

associated with the pairs ij ∈ En, the max-cut problem consists of finding a cut
δ(S) whose weight wT δ(S) is as large as possible. Hence, it is the problem:

(4.1.4)
max wT δ(S)
s.t. S ⊆ Vn,

which can be reformulated as an optimization problem over the cut polytope:

max wTx
s.t. x ∈ CUT2

n .

This is a hard problem, for which no algorithm is known that runs in a polynomial
number of steps (polynomial in n and the size of w); see Section 4.4. The max-
cut problem has many applications in various fields. For instance, the problem of
determining ground states of spin glasses in statistical physics, or the problem of
minimizing the number of vias subject to pin assignment and layer preferences in
VLSI circuit design, can both be formulated as instances of the max-cut problem.
These two applications are treated in detail in Barahona, Grötschel, Jünger and
Reinelt [1988]. We expose the application to spin glasses in Section 4.5. Other
applications and connections are mentioned in Section 5.1, within the framework
of unconstrained boolean quadratic programming. The reader may consult the
survey paper by Poljak and Tuza [1995] for more information about max-cut and
the annotated bibliography by Laurent [1997a] for detailed references.

2We will use later (in Sections 25.3 and 27.3) the notation CUT(G) and CUT2(G) for
denoting the projections of CUTn and CUT2

n on the subspace indexed by the edge set of a
graph G. It should not be confused with the notation CUT(X) and CUT2(X) which stands
for the cut polyhedra of the complete graph with node set X.
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4.2 ℓ1-Spaces

Every member d of the cut cone CUTn defines a semimetric on n points, as
it satisfies all the triangle inequalities (3.1.1). Hence a natural question is the
characterization of the semimetrics that belong to the cut cone. The main result
is that a semimetric belongs to the cut cone if and only if it is isometrically
ℓ1-embeddable, a result first found in Assouad [1980b]. Several other equivalent
characterizations are stated in Theorem 4.2.6. The results3 in this section are
essentially taken from Assouad [1980b] and from Assouad and Deza [1982]. We
start with several intermediate results.

Proposition 4.2.1. Let d = (dij)1≤i<j≤n ∈ REn . The following assertions are
equivalent.

(i) d ∈ CUTn (resp. d ∈ CUT2
n).

(ii) There exist a measure space (resp. a probability space) (Ω,A, µ) and events
A1, . . . , An ∈ A such that dij = µ(Ai△Aj) for all 1 ≤ i < j ≤ n.

Proof. (i) =⇒ (ii) Suppose that d ∈ CUTn. Then,

d =
∑

S⊆{1,...,n}
λSδ(S),

where λS ≥ 0 for all S. We define a measure space (Ω,A, µ) in the following
way: Let Ω denote the family of subsets of {1, . . . , n}, let A denote the family
of subsets of Ω, and let µ denote the measure on A defined by

µ(A) :=
∑

S∈A
λS

for each A ∈ A (i.e., A is a collection of subsets of {1, . . . , n}). Set

Ai := {S ∈ Ω | i ∈ S}.

Then,

µ(Ai△Aj) = µ({S ∈ Ω : |S ∩ {i, j}| = 1}) =
∑

S∈Ω:|S∩{i,j}|=1

λS = dij ,

for all 1 ≤ i < j ≤ n. Moreover, if d ∈ CUT2
n , then

∑
S λS = 1, i.e., µ(Ω) = 1,

which shows that (Ω,A, µ) is a probability space.
(ii) =⇒ (i) Conversely, suppose that dij = µ(Ai△Aj) for 1 ≤ i < j ≤ n, where
(Ω,A, µ) is a measure space and A1, . . . , An ∈ A. Set

AS :=
⋂

i∈S
Ai ∩

⋂

i6∈S
(Ω \ Ai)

3The result from Proposition 4.2.1 was already established by Avis [1977].
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for each S ⊆ {1, . . . , n}. Then,

Ai =
⋃

S|i∈S
AS , Ai△Aj =

⋃

S| |S∩{i,j}|=1

AS and Ω =
⋃

S

AS .

Therefore,
d =

∑

S⊆{1,...,n}
µ(AS)δ(S),

which shows that d belongs to the cut cone CUTn. Moreover, if (Ω,A, µ) is a
probability space, i.e., if µ(Ω) = 1, then

∑
S µ(AS) = 1, implying that d belongs

to the cut polytope CUT2
n .

Proposition 4.2.2. Let d ∈ REn and (Vn, d) be the associated distance space.
The following assertions are equivalent.

(i) d ∈ CUTn.

(ii) (Vn, d) is ℓ1-embeddable, i.e., there exist n vectors u1, . . . , un ∈ Rm (for
some m) such that dij =‖ ui − uj ‖1 for all 1 ≤ i < j ≤ n.

Proof. (i) =⇒ (ii) Suppose that d ∈ CUTn. Then,

d =
∑

1≤k≤m
λkδ(Sk),

where λ1, . . . , λm ≥ 0 and S1, . . . , Sm ⊆ Vn. For 1 ≤ i ≤ n, define the vector
ui ∈ Rm with components (ui)k = λk if i ∈ Sk and (ui)k = 0 otherwise, for
1 ≤ k ≤ m. Then, dij =‖ ui − uj ‖1 for 1 ≤ i < j ≤ n. This shows that (Vn, d)
is ℓ1-embeddable.
(ii) =⇒ (i) Suppose that (Vn, d) is ℓ1-embeddable, i.e., that there exist n vectors
u1, . . . , un ∈ Rm (for some m ≥ 1) such that dij =‖ ui−uj ‖1, for 1 ≤ i < j ≤ n.
We show that d ∈ CUTn. By additivity of the ℓ1-norm, it suffices to show
the result for the case m = 1. Hence, we can suppose that dij = |ui − uj|
where u1, . . . , un ∈ R. Without loss of generality, we can also suppose that
u1 ≤ u2 ≤ . . . ≤ un. Then, it is easy to check that

d =
∑

1≤k≤n−1

(uk+1 − uk)δ({1, 2, . . . , k − 1, k}).

This shows that d ∈ CUTn.

Remark 4.2.3. The proof of Proposition 4.2.2 shows, in fact, the following
result: If a distance d on Vn can be decomposed as a nonnegative linear combi-
nation of m cut semimetrics, i.e., if d =

∑m
k=1 λkδ(Sk) where λk ≥ 0 for all k,

then d is ℓm1 -embeddable.

There is a characterization for hypercube embeddable semimetrics, analogous
to that of Proposition 4.2.2.

Proposition 4.2.4. Let d ∈ REn and (Vn, d) be the associated distance space.
The following assertions are equivalent.
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(i) d =
∑

S⊆Vn

λSδ(S) for some nonnegative integers λS.

(ii) (Vn, d) is hypercube embeddable, i.e., there exist n vectors u1, . . . , un ∈
{0, 1}m (for some m) such that dij =‖ ui − uj ‖1 for all 1 ≤ i < j ≤ n.

(iii) There exist a finite set Ω and n subsets A1, . . . , An of Ω such that dij =
|Ai△Aj| for all 1 ≤ i < j ≤ n.

(iv) (Vn, d) is an isometric subspace of (Zm, dℓ1) for some integer m ≥ 1.

Proof. The proof of (i) ⇐⇒ (ii) is analogous to that of Proposition 4.2.2.
Namely, for (i) =⇒ (ii), assume d =

∑m
k=1 δ(Sk) (allowing repetitions). Con-

sider the binary n × m matrix M whose columns are the incidence vectors of
the sets S1, . . . , Sm. If u1, . . . , un denote the rows of M , then dij =‖ ui − uj ‖1

holds, providing an embedding of (Vn, d) in the hypercube of dimensionm. Con-
versely, for (ii) =⇒ (i), consider the matrixM whose rows are the n given vectors
u1, . . . , un. Let S1, . . . , Sm be the subsets of {1, . . . , n} whose incidence vectors
are the columns of M . Then, d =

∑m
k=1 δ(Sk) holds, giving a decomposition of

d as a nonnegative integer combination of cut semimetrics.
The assertion (iii) is a reformulation of (ii), the implication (iii) =⇒ (iv) is ob-
vious, and (iv) =⇒ (i) follows from the proof of the implication (ii) =⇒ (i) in
Proposition 4.2.2.

We now make the link with L1-spaces.

Lemma 4.2.5. Let (X,d) be a distance space. The following assertions are
equivalent

(i) (X,d) is L1-embeddable.

(ii) (X,d) is a subspace of a measure semimetric space (Aµ, dµ) for some mea-
sure space (Ω,A, µ).

Proof. The implication (ii) ⇒ (i) is clear, since (Aµ, dµ) is a subspace of
L1(Ω,A, µ). We check (i) ⇒ (ii). It suffices to show that each space L1(Ω,A, µ) is
a subspace of (Bν , dν) for some measure space (T,B, ν). For this, set T := Ω×R,
B := A×R where R is the family of Borel subsets of R, and ν := µ⊗λ where λ is
the Lebesgue measure on R. For f ∈ L1(Ω,A, µ), let E(f) = {(ω, s) ∈ Ω×R | s >
f(ω)} denote its epigraph. Then, the mapping f 7−→ E(f)△E(0) provides an iso-
metric embedding from L1(Ω,A, µ) to (Bν , dν), since ‖ f −g ‖1= ν(E(f)△E(g))
holds.

The next result summarizes the equivalent characterizations that have been
obtained for the members of the cut cone CUTn.

Theorem 4.2.6. Let d ∈ REn and (Vn, d) be the associated distance space. The
following assertions are equivalent.

(i) d ∈ CUTn.
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(ii) (Vn, d) is ℓ1-embeddable.

(iii) (Vn, d) is L1-embeddable.

(iv) There exist a measure space (Ω,A, µ) and A1, . . . , An ∈ A such that dij =
µ(Ai△Ai) for all 1 ≤ i < j ≤ n.

(v) (Vn, d) is an isometric subspace of ℓ∞1 .

At this point let us observe a convexity property of the cut semimetrics
entering any decomposition of an ℓ1-embeddable distance. We need a definition.

Definition 4.2.7. Let (X,d) be a distance space. A subset U ⊆ X is said to be
d-convex if d(x, y) = d(x, z) + d(z, y) and x, y ∈ U imply that z ∈ U .

Convex sets arise naturally in the context of ℓ1-metrics. Namely,

Lemma 4.2.8. Let (X,d) be an ℓ1-embeddable distance space and suppose that
d =

∑
A⊆X λAδ(A) where λA ≥ 0 for all A ⊆ X. Then, both sets A and X \ A

are d-convex for every cut semimetric δ(A) entering the decomposition with a
positive coefficient λA > 0.

Proof. The result follows from the fact that every triangle equality satisfied by
d is also satisfied by a cut semimetric δ(A) entering the decomposition of d.

We conclude this section with a remark on how the equivalence (i) ⇐⇒ (ii)
from Proposition 4.2.4 can be generalized in the context of Hamming spaces and
multicuts. Let q ≥ 2 be an integer and let S1, . . . , Sq be q pairwise disjoint
subsets of Vn forming a partition of Vn, i.e., such that S1 ∪ . . . ∪ Sq = Vn. Then,
the multicut semimetric δ(S1, . . . , Sq) is the vector of REn defined by

δ(S1, . . . , Sq)ij = 0 if i, j ∈ Sh for some h, 1 ≤ h ≤ q,
δ(S1, . . . , Sq)ij = 1 otherwise

for 1 ≤ i < j ≤ n. The following can be easily checked.

Proposition 4.2.9. Let d ∈ REn , let (Vn, d) be the associated distance space
and let q1, . . . , qk ≥ 1 be integers. The following assertions are equivalent.

(i) d =
∑k
h=1 δ(S

(h)
1 , . . . , S

(h)
qh ), where (S

(h)
1 , . . . , S

(h)
qh ) is a partition of Vn, for

each h = 1, . . . , k.

(ii) (Vn, d) is an isometric subspace of the Hamming space
(
∏k
h=1{0, 1, . . . , qh − 1}, dH ).

Hence, we obtain again the equivalence (i) ⇐⇒ (ii) from Proposition 4.2.4
in the case when q1 = . . . = qk = 2. Observe that the Hamming space
(
∏k
h=1{0, 1, . . . , qh−1}, dH) coincides with the graphic metric space of the graph
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∏k
h=1Kqh (the graph obtained by taking the Cartesian product of the complete

graphs Kq1, . . . ,Kqk). Note also that

δ(S1, . . . , Sq) =
1

2

q∑

i=1

δ(Si)

for every partition (S1, . . . , Sq) of Vn. Therefore, every Hamming space is ℓ1-
embeddable with scale 2 (see the definition below).

As an example, consider the distance d := (1, 1, 1, 2; 1, 2, 2; 2, 1; 1) ∈ RE5 .
Then the distance space (V5, d) is an isometric subspace of the Hamming space
({0, 1, 2} × {0, 1}, dH ). To see it, consider the isometric embedding

i ∈ {1, 2, 3, 4, 5} 7→ vi ∈ {0, 1, 2} × {0, 1}

where v1 = (0, 0), v2 = (1, 0), v3 = (2, 0), v4 = (0, 1), and v5 = (2, 1). Equiva-
lently, d can be decomposed as the following sum of multicut semimetrics:

d = δ({1, 4}, {2}, {3, 5}) + δ({1, 2, 3}, {4, 5}).

4.3 Realizations, Rigidity, Size and Scale

We group here several definitions related to ℓ1- and hypercube embeddability.
Namely, for an ℓ1-metric, we define the notions of realizations, rigidity, size and
scale.

Realizations. We define here the notions of R+ - and Z+-realizations for an
ℓ1-metric; they will be used especially in Part IV.

Definition 4.3.1. Let d be a distance on Vn. Any decomposition:

d =
∑

S⊆Vn

λSδ(S),

where λS ≥ 0 (resp. λS ∈ Z+) for all S, is called an R+ -realization (resp. Z+-
realization) of d.

Hence, for an ℓ1-embeddable distance d on Vn, we can speak alternatively
of an ℓ1-embedding of d (which consists of a set of n vectors v1, . . . , vn ∈ Rm

(m ≥ 1) such that dij =‖ vi − vj ‖1 for all i, j ∈ Vn), or of an R+ -realization
of d (which is a decomposition of d as a nonnegative linear combination of cut
semimetrics).

In the same way, if d is hypercube embeddable, we can speak alternatively
of a hypercube embedding of d (which consists of a set of n vectors v1, . . . , vn ∈
{0, 1}m (m ≥ 1) such that dij =‖ vi − vj ‖1 for all i, j ∈ Vn), or of a Z+-
realization of d (which is a decomposition of d as a nonnegative integer linear
combination of cut semimetrics). The binary n ×m matrix M whose rows are
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the vectors v1, . . . , vn (providing a hypercube embedding of d) is called an h-
realization matrix (or, simply, realization matrix) of d. If S1, . . . , Sm denote the
subsets of Vn whose incidence vectors are the columns of M , then d =

∑m
j=1 δ(Sj)

is a Z+-realization of d. This simple fact is the basic idea for the proof of the
equivalence (i) ⇐⇒ (ii) in Proposition 4.2.4.

If v1, . . . , vn is an ℓ1-embedding of d, then the n×m matrix M whose rows
are the vectors v1, . . . , vn is also called a realization matrix of d. Note, however,
that the associated R+ -realization of d cannot be read immediately from M as
in the hypercube case (we have seen in the proof of Proposition 4.2.2 how to
construct an R+ -realization).

As an example, consider the distance on V4 defined by d := (3, 1, 3; 4, 4; 2) ∈
RE4 . The vectors v1 = (1, 1, 1, 0, 0), v2 = (1, 0, 0, 0, 1), v3 = (0, 1, 1, 0, 0), v4 =
(0, 1, 1, 1, 1) provide a hypercube embedding of d, corresponding to the following
Z+-realization of d:

d = δ({1, 2}) + 2δ({2}) + δ({4}) + δ({2, 4}),

with associated realization matrix




1 1 1 0 0
1 0 0 0 1
0 1 1 0 0
0 1 1 1 1


 .

Rigidity. Let (Vn, d) be a distance space. Then, (Vn, d) is said to be ℓ1-rigid if d
admits a unique R+ -realization. Similarly, (Vn, d) is said to be h-rigid if d admits
a unique Z+-realization. The notion of ℓ1-rigidity is, in fact, directly relevant to
the existence of simplex faces for the cut cone, as the next result shows.

Lemma 4.3.2. Let C := R+(v1, . . . , vp) ⊆ Rm be a cone, where each vector
vi lies on an extreme ray of C. Suppose, moreover, that the cone C is not a
simplex cone. Then, each point that lies in the relative interior of C admits at
least two (in fact, an infinity of) distinct decompositions as a nonnegative linear
combination of the generators v1, . . . , vp.

Proof. We can suppose without loss of generality that C is full-dimensional.
Let x ∈ C lying in the interior of C. By Carathéodory’s theorem, we have
x =

∑k
h=1 λhvih where λ1, . . . , λk > 0 and {vi1 , . . . , vik} is a linearly independent

subset of {v1, . . . , vp}. If k ≤ m − 1, then one can easily construct another
decomposition of x. (Indeed, let H be a hyperplane containing vi1, . . . , vik , x.
As x is an interior point of C, H cuts C into two nonempty parts and, thus,
x = y + z where y belongs to one part and z to the other one.) Suppose now
that k = m. As C is not a simplex cone, we have p ≥ k + 1, i.e., there exists
vk+1 ∈ {v1, . . . , vp} \ {vi1 , . . . , vik}. As the set {vi1 , . . . , vik , vk+1} is linearly
dependent, there exist α1, . . . , αk ∈ R such that

∑k
h=1 αhvih + vk+1 = 0. Then,

x =
∑k
h=1(λh + λαh)vih + λvk+1 is another decomposition of x, setting λ := 1 if

all αh’s are nonnegative and λ := min(−λh
αh

| αh < 0) otherwise.
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Corollary 4.3.3. The following assertions are equivalent for a distance space
(Vn, d).

(i) (Vn, d) is ℓ1-rigid, i.e., there is a unique way of decomposing d as a non-
negative linear combination of nonzero cut semimetrics.

(ii) d lies on a simplex face of CUTn.

Proof. The implication (ii) =⇒ (i) is obvious, while (i) =⇒ (ii) follows from
Lemma 4.3.2 applied to the smallest face of CUTn that contains d.

The notion of h-rigidity can be reformulated in the following way, in terms of
h-realization matrices. Let (Vn, d) be a hypercube embeddable distance space.
Let M be an h-realization matrix of (Vn, d). The following operations (a), (b),
(c) on M yield a new h-realization matrix for (Vn, d):

(a) Permute the columns of M .

(b) Add modulo 2 a binary vector to every row of M .

(c) Add to M , or delete from M , a column which is the zero vector or the
all-ones vector.

Two hypercube embeddings of (Vn, d) are said to be equivalent if their associated
realization matrices can be obtained from one another via the above operations
(a),(b),(c). Then, (Vn, d) is h-rigid if and only if it has a unique hypercube
embedding, up to equivalence.

ℓ1- and h-Size. We now turn to the notions of ℓ1-size and h-size. Suppose d
is a distance on Vn. If d =

∑
∅6=S⊂Vn

λSδ(S) is a decomposition of d as a linear
combination of nonzero cut semimetrics, then the quantity

∑
∅6=S⊂Vn

λS is called
its size. Moreover, if d is ℓ1-embeddable then the quantity

(4.3.4) sℓ1(d) := min(
∑

∅6=S⊂Vn

λS | d =
∑

∅6=S⊂Vn

λSδ(S) with λS ≥ 0 for all S)

is called the minimum ℓ1-size of d. Similarly, if d is hypercube embeddable, then

(4.3.5) sh(d) := min(
∑

∅6=S⊂Vn

λS | d =
∑

∅6=S⊂Vn

λSδ(S) with λS ∈ Z+ for all S)

is called the minimum h-size of d. This parameter has the following interpreta-
tion: The minimumh-size of d is equal to the minimumdimension of a hypercube
in which d can be isometrically embedded.

One can easily obtain some bounds on the minimum ℓ1-size. Suppose that
d =

∑
∅6=S⊂Vn

λSδ(S) with λS ≥ 0 for all S. As n − 1 ≤ ∑
1≤i<j≤n δ(S)(i, j) ≤

⌊n2 ⌋⌈n2 ⌉ for each subset S 6= ∅, Vn, we obtain

(4.3.6)

∑
1≤i<j≤n d(i, j)

⌊n2 ⌋⌈n2 ⌉
≤

∑

∅6=S⊂Vn

λS ≤
∑

1≤i<j≤n d(i, j)

n− 1
.
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Moreover, equality holds in the lower bound of (4.3.6) if and only if the decom-
position of d uses only equicuts (i.e., λS 6= 0 only if |S| = ⌊n2 ⌋, ⌈n2 ⌉) and equality
holds in the upper bound if and only if the decomposition uses only star cuts
(i.e., λS 6= 0 only if |S| = 1).

Example 4.3.7. Let 211n denote the equidistant metric on Vn taking the value
2 on all pairs. Then, 211n is ℓ1-rigid if and only if n = 3. Indeed, 2113 is ℓ1-rigid
because the cut cone CUT3 is a simplex cone, and 211n is not ℓ1-rigid for n ≥ 4
as

211n =
∑

1≤i≤n
δ({i}) =

1

n− 2

∑

1≤i<j≤n
δ({i, j})

has two distinct R+ -realizations.
On the other hand, 211n is h-rigid if and only if n 6= 4, its unique Z+-

realization being given by: 211n =
∑n
i=1 δ({i}); see Theorem 22.0.6. The metric

2114 has one additional Z+-realization, namely, 2114 = δ({1, 2}) + δ({1, 3}) +
δ({1, 4}).

Hence, sh(211n) = n for n 6= 4 and sh(2114) = 3. On the other hand,

sℓ1(211n) = 4(n−1)
n if n is even and sℓ1(211n) = 4n

n+1 if n is odd.

Using the linear programming duality theorem, the minimum ℓ1-size of d can
also be expressed as

sℓ1(d) = max(vTd | v ∈ R
En , vT δ(S) ≤ 1 for all S ⊆ Vn).

Clearly, in this maximization problem, it suffices to consider the vectors v ∈ REn

for which the inequality vTx ≤ 1 defines a facet of the cut polytope CUT2n .
As an illustration, let us mention an exact formulation for sℓ1(d) in the case

n ≤ 5. All the facets of CUTn are known for n ≤ 5. Namely, they are defined
by the triangle inequalities (3.1.1) if n ≤ 4, and they are defined by the triangle
inequalities (3.1.1) together with the pentagonal inequalities (6.1.9) if n = 5.
This permits to obtain that, for d ∈ CUT4,

sℓ1(d) = max

(
d(i, j) + d(i, k) + d(j, k)

2
| 1 ≤ i < j < k ≤ 4

)

and, for d ∈ CUT5,

sℓ1(d) = max

(
d(i,j)+d(i,k)+d(j,k)

2 | 1 ≤ i < j < k ≤ 5;

∑
1≤i<j≤5

d(i,j)

6 ;
∑

1≤i<j≤5
d(i,j)−2

∑
1≤j≤5,j 6=i

d(i,j)

2 | 1 ≤ i ≤ 5

)
.

Scale. The following result is an immediate consequence of Propositions 4.2.2
and 4.2.4.

Proposition 4.3.8. Let (Vn, d) be a distance space where d is rational valued.
Then, (Vn, d) is ℓ1-embeddable if and only if (Vn, ηd) is hypercube embeddable for
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some scalar η.

Let d be a distance on Vn that is ℓ1-embeddable and takes rational values.
Every integer η for which (Vn, ηd) is hypercube embeddable is called a scale of
(Vn, d); then, we also say that d is hypercube embeddable with the scale η. The
smallest such integer η is called the minimum scale of (Vn, d) and is denoted by
η(d).

It is easy to see that all integer valued ℓ1-embeddable distances on Vn admit
a common scale.

Lemma 4.3.9. There exists an integer α such that αd is hypercube embeddable
for every ℓ1-embeddable distance d on Vn that is integer valued.

Proof. Let X be a set of linearly independent cut semimetrics on Vn, let MX

denote the matrix whose columns are the members of X, and let αX denote the
smallest absolute value of the determinant of a |X|×|X| nonsingular submatrix of
MX . Then, we define α as the lowest common multiple of the integers αX (for X
arbitrary set of linearly independent cut semimetrics). This integer α satisfies the
lemma. Indeed, let d be an integer valued distance on Vn that is ℓ1-embeddable.
By Carathéodory’s theorem, d can be decomposed as d =

∑
δ(S)∈X λSδ(S), where

X is a set of linearly independent cut semimetrics and λS > 0 for all S. Let A
be a |X| × |X| nonsingular submatrix of MX with |detA| = αX , let E denote
the index set for the rows of A and set dE := (dij)ij∈E . Then, Aλ = dE , i.e.,
λ = A−1dE . Applying Cramer’s rule, we obtain that (detA)λ is integer valued.
This shows that αd is hypercube embeddable.

We deduce from the above proof the following (very rough) upper bound

η(d) ≤
(
n

2

)
!

for the minimum scale of an integral ℓ1-distance d on Vn (as the determinant of
a k × k binary matrix is less than or equal to k! in absolute value).

Let us define ηn as the smallest integer η such that ηd is hypercube em-
beddable for every ℓ1-embeddable distance d on Vn that is integer valued and
satisfies:

d(i, j) + d(i, k) + d(j, k) ∈ 2Z for all i, j, k ∈ Vn.

(This condition ensures that d can be decomposed as an integer sum of cut
semimetrics, an obvious necessary condition for hypercube embeddability; see

Proposition 25.1.1.) Hence, by the above, ηn ≤
(n
2)∏

k=1

k!. In fact, as we will see in

Section 25.2, ηn = 1 for n ≤ 5, and η6 = 2.
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4.4 Complexity Questions

We formulate here several basic problems related to cut semimetrics and we
indicate their complexity status. A typical way to show that a given problem
(P) is NP-hard is to show that some known NP-complete problem (P0) reduces
polynomially to it. We use as starting point the following well-known problem:

(P0) The partition problem.
Instance: A nonnegative integer vector b = (b1, . . . , bn).
Question: Can b be partitioned ? That is, does there exist S ⊆ Vn such that∑
i∈S bi =

∑
i∈Vn\S bi ?

Complexity: NP-complete (Karp [1972]).

(P1) The max-cut problem (decision version).
Instance: A vector w ∈ Z

En
+ and K ∈ Z+.

Question: Does there exist S ⊆ Vn such that wT δ(S) ≥ K ?
Complexity: NP-complete (Karp [1972]).

Proof. It is clear that (P1) is in NP. To see that (P1) is NP-complete, one can
observe (following Karp [1972]) that (P0) polynomially reduces to it. Indeed,
given integers b1, . . . , bn ∈ N, define w ∈ ZEn and K ∈ Z+ by wij := bibj (for ij ∈
En) andK := 1

4(
∑n
i=1 bi)

2. Then, for S ⊆ Vn, w
T δ(S) = (

∑
i∈S bi)(

∑
i∈Vn\S bi) ≥

K if and only if
∑
i∈S bi = 1

2

∑n
i=1 bi, i.e., if b can be partitioned.

(P2) The max-cut problem (optimization version).
Instance: A vector w ∈ Z

En
+ .

Question: Find S ⊆ Vn for which wT δ(S) is maximum.
Complexity: NP-hard.

While NP-hard in general, the max-cut problem may become easy for certain
classes of weight functions. It is convenient to represent a weight function by its
supporting graph (with edges the pairs with nonzero weights). Note first that the
max-cut problem remains NP-hard when restricted to 0, 1-valued weight func-
tions and to each of the following classes of graphs: cubic graphs (Yannakakis
[1978]), graphs having a node whose deletion results in a planar graph (Bara-
hona [1982]), chordal graphs, tripartite graphs, complements of bipartite graphs
(Bodlaender and Jansen [1994]). On the other hand, the max-cut problem can
be solved in polynomial time for several classes of graphs; for instance, for planar
graphs (Orlova and Dorfman [1972], Hadlock [1975]), more generally for graphs
with no K5-minor (Barahona [1983]), also for graphs of fixed genus with weights
±1 (Barahona [1981]). (See also Section 27.3.2.)

Next, we look at the complexity of the separation problem over the cut
cone CUTn, as this will then enable us to derive the complexity of the ℓ1-
embeddability problem.

(P3) The separation problem for the cut cone.
Instance: A rational distance d on Vn.
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Question: Does d belong to the cut cone CUTn ? If not, find a ∈ QEn such that
aTd > 0 and aT δ(S) ≤ 0 for all S ⊆ Vn.
Complexity: NP-hard (Karzanov [1985]).

Proof. Set Pn := CUTn ∩ {x |∑ij∈En
xij ≤ 1}. We first show that the problem

(P1) can be polynomially reduced to an optimization problem over Pn. For this,
let w ∈ Z

En
+ and K ∈ Z+ be given. For s 6= t ∈ Vn, define a new weight function

wst ∈ ZEn by

wstij :=





−wij if i, j ∈ Vn \ {s, t},
−wij +M if i ∈ {s, t}, j ∈ Vn \ {s, t},
−wij +K − 1 −M(n− 2) if ij = st,

for ij ∈ En, where M :=
∑
ij∈En

wij . Note that (wst)T δ(S) = −wT δ(S) +K − 1

if δ(S)st = 1 and that (wst)T δ(S) ≥ 0 if δ(S)st = 0. Hence, if δ(S)st = 1, then
wT δ(S) ≥ K if and only if (wst)T δ(S) < 0. Therefore, in order to solve (P1), it
suffices to solve the problem:

min (wst)Tx
s.t. x ∈ Pn

for each of the
(n
2

)
pairs st ∈ En and to verify whether the minimum is negative.

As (P1) is NP-complete, we obtain that the optimization problem over Pn is
NP-hard. Using results from Grötschel, Lovász and Schrijver [1988] (namely,
the polynomial equivalence between optimization and separation problems over
polyhedra), we deduce that the separation problem for Pn is NP-hard. As the
separation problem over Pn is clearly equivalent to the separation problem over
CUTn, we obtain that (P3) is NP-hard.

(P5) The ℓ1-embeddability problem.
Instance: A rational distance d on Vn.
Question: Does d belong to the cut cone CUTn (i.e., is d ℓ1-embeddable) ?
Complexity: NP-complete (Avis and Deza [1991]).

Proof. We first check that (P5) is in NP. Indeed, if d ∈ CUTn, then d can
be decomposed as d =

∑m
i=1 αiδ(Si) for some nonnegative scalars αi’s, where

m ≤ (n
2

)
(by Carathéodory’s theorem). Thus, the polyhedron {α ∈ Rm+ | d =∑m

i=1 αiδ(Si)} is nonempty. Therefore, it contains a rational vector α whose size
is polynomially bounded by n and the size of d (use Theorem 10.1 in Schrijver
[1986]). Hence, this α provides a certificate that can be checked in time poly-
nomial in the size of d. This shows that (P5) is in NP. We can now conclude
that (P5) is NP-complete, since the separation problem (P3) is NP-hard. In-
deed, consider again the polytope Pn = CUTn ∩ {x | ∑ij∈En

xij ≤ 1} instead
of CUTn. As Pn is a full-dimensional bounded polytope for which we know an
interior point (e.g., 1

(n
2)+1

11n), it follows from general results in Grötschel, Lovász

and Schrijver [1988] that the separation problem for Pn reduces polynomially to
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the membership problem for Pn (use, in particular, (4.3.11) and Theorems 6.3.2
and 6.4.9 there).

(P6) The hypercube embeddability problem.
Instance: An integer distance d on Vn.
Question: Is d hypercube embeddable ?
Complexity: NP-hard; NP-complete when d is a distance on Vn having a point
at distance 3 from all other points and all other distances belong to {0, 2, 4, 6}
(Chvátal [1980]; see Theorem 24.1.8).

Many other problems related to cut semimetrics are hard problems. This is
the case, for instance, for the problem of computing the minimum ℓ1-size sℓ1(d)
for an ℓ1-embeddable distance d, or that of computing the minimum h-size sh(d)
for a hypercube embeddable distance. As an example, consider the equidistant
metric d = 2t11t2+t+1 (on t2 + t + 1 points). Then, computing the minimum
h-size of d would yield an answer to the question of existence of finite projective
planes. Indeed, it can be shown that sh(d) ≥ t2 + t + 1, with equality if and
only if there exists a projective plane of order t (see Section 23.3). In the same
vein, computing the minimum scale of d ∈ CUTn is also hard. If dn denotes the
distance on Vn that takes value 1 for every pair except value 2 for a single pair,
then

η(dn) = 2 min(t | 4t ≥ sh(2t11n))

(see (7.4.5)). Hence, we meet again the question of computing the minimum h-
size of the equidistant metric. More details about these examples can be found
in Section 7.4.

Finding a complete linear description of the cut cone CUTn (or of the cut
polytope CUT2

n ) is also a hard task. Due to the NP-completeness of the max-cut
problem, it follows from a result of Karp and Papadimitriou [1982] that there
exists no polynomially concise linear description of CUTn (or CUT2

n ) unless NP
= co-NP.

Hence, many questions about the cut polyhedra turn out to be hard. Never-
theless, we will present in this book a number of results dealing with instances
where these questions become tractable. For instance, even though the hyper-
cube embeddability problem is NP-hard for general distances, it can be solved in
polynomial time for some classes of metrics; several such classes are described in
Chapter 24. A complete linear description of the cut cone CUTn is not known
for general n; yet, large classes of valid inequalities and facets are known (yield-
ing a complete description for n ≤ 7); see Part V. Moreover, for some classes
of metrics, the known classes of inequalities already suffice for characterizing ℓ1-
embeddability; see Remark 6.3.5. For some restricted instances of weight func-
tions, the max-cut problem becomes polynomial-time solvable as noted above.
We will also mention several classes of valid inequalities for the cut cone for which
the separation problem can be solved in polynomial time (e.g., in Section 29.5);
hence, these systems of inequalities define tractable linear relaxations of the cut
polytope that could be used for approximating the max-cut problem.
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4.5 An Application to Statistical Physics

We describe here an application of the max-cut problem to a problem arising
in statistical physics; namely, the problem of determining ground states of spin
glasses.

We start with reformulating the max-cut problem (4.1.4) as the following
quadratic ±1-optimization problem:

(4.5.1)
max 1

2

∑
1≤i<j≤nwij(1 − xixj)

s.t. x ∈ {±1}n.

(Indeed, setting S := {i ∈ [1, n] | xi = 1} for x ∈ {±1}n, the weight function
does compute the weight wT δ(S) of the corresponding cut.) The applied problem
that we discuss below will be of the form (4.5.1).

A central topic in physics is the investigation of properties of spin glasses. A
number of theories have been developed over the years in order to model spin
glasses and try to explain their behaviour. One of the most commonly used
models is the Ising model both for its simplicity and its accuracy in representing
real world situations. Some aspects in this model yield to optimization problems
of the form (4.5.1) as we see below4.

A spin glass is an alloy of magnetic impurities diluted in a nonmagnetic metal.
Alloys that show spin glass behaviour are, for instance, CuMn, the metallic
crystal AuFe, or the insulator EuSrS. At very low temperature the spin glass
system attains a minimum energy configuration, referred to as a ground state.
This state can be found by minimizing the hamiltonian representing the total
energy of the system; this problem turns out to be a max-cut problem in a certain
graph.

Let us assume that the given spin glass system consists of n magnetic impu-
rities (atoms). Each magnetic atom i has a magnetic orientation (spin) which, in
the Ising model, is represented by a variable si ∈ {±1} (meaning magnetic north
pole ‘up’ or ‘down’). Between any pair i, j of atoms there is an interaction Jij ,
which depends on the nonmagnetic material and the distance rij between the
atoms. The orientation of the exterior magnetic fiel is represented by s0 ∈ {±1}
and its strength by a constant h. Then the energy of the system is given by the
hamiltonian:

H := −
∑

1≤i<j≤n
Jijsisj − h

n∑

i=1

s0si.

Finding a state of minimum energy is the problem:

min −∑1≤i<j≤n Jijsisj − h
∑n
i=1 s0sn

s.t. s ∈ {±1}n+1,

4The reader may consult Barahona, Grötschel, Jünger and Reinelt [1988], or Godsil,
Grötschel and Welsh [1995] for more details on this topic and Mezard, Parisi and Virasoro
[1987] for an introduction to the general theory of spin glasses.
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which can be easily brought in the form (4.5.1). Thus, we find an instance of
the max-cut problem.

As the interaction Jij decreases rapidly as the distance rij increases, it is
common to set Jij := 0 if the atoms are far apart. Moreover, there are two
ways of generating the interactions Jij that have been intensively studied: the
Gaussian model where the Jij ’s are chosen from a Gaussian distribution, and
the ±J -model where interactions take only two values ±J (according to some
distribution). One also assumes that the atoms are regularly located on a 2- or
3-dimensional grid; then interactions between atoms are nonzero only along the
edges of the grid. In this model, the problem of determining ground states of
the spin glass system is formulated as a max-cut problem on a graph which is a
2-dimensional or 3-dimensional grid plus a universal node (corresponding to the
exterior magnetic field) joined to all nodes in the grid.

This instance of the max-cut problem is NP-hard, as mentioned earlier in
Section 4.4. In fact, if one neglects the exterior magnetic field, the problem
remains NP-hard in the 3-dimensional case (Barahona [1982]), but it becomes
polynomial in the 2-dimensional case (since a 2-dimensional grid is a planar
graph). Interestingly, the classical technique used for solving max-cut on a planar
graph (reduction to a Chinese postman problem in the dual graph) by Orlova
and Dorfman [1972] and Hadlock [1975]) was independently discovered in the
field of physics by Toulouse [1977].

Toulouse’s paper together with the papers by Bieche, Maynard, Rammal
and Uhry [1980] and by Barahona, Maynard, Rammal and Uhry [1982] have
pioneered the study of spin glasses from an optimization point of view. Since
then, lots of efforts have been made for designing algorithms permitting to com-
pute exact ground states of spin glass systems, in the various cases mentioned
above. These algorithms are essentially of the type ‘branch-and-cut’ and use
knowledge of the cut polytope (in particular, the cycle inequalities presented
in Section 27.3.1). Computational results can be found in Grötschel, Jünger
and Reinelt [1987], Barahona, Grötschel, Jünger and Reinelt [1988], Barahona,
Jünger and Reinelt [1989], Barahona [1994], De Simone, Diehl, Jünger, Mutzel,
Reinelt and Rinaldi [1995, 1996] and in references therein.



Chapter 5. The Correlation Cone
and f0, 1g-Covariances

We introduce here another set of polyhedra: the correlation cone and the corre-
lation polytope, that have been considered in the literature in connection with
several different problems (relevant, among others, to probability theory, quan-
tum logic, or optimization). The correlation polyhedra turn out to be equivalent
- via a linear bijection - to the cut polyhedra. As a consequence, any result about
the cut polyhedra has a direct counterpart for the correlation polyhedra and vice
versa. These connections are explained in detail in Section 5.2 and 5.3, and an
application to the Boole problem in probabilities is described in Section 5.4.

5.1 The Correlation Cone and Polytope

As before, we set Vn = {1, . . . , n} and En = {ij | i, j ∈ Vn, i 6= j} denotes the set
of unordered pairs of elements of Vn. In the following, we often identify Vn with
the set of diagonal pairs ii for i = 1, . . . , n. In other words, a vector p ∈ RVn∪En

can be supposed to be indexed by the pairs ij for 1 ≤ i ≤ j ≤ n.

The main objects considered in this section are the correlation cone and
polytope, that we now introduce. Let S be a subset of Vn. Let us define the
vector π(S) = (π(S)ij)1≤i≤j≤n ∈ RVn∪En by

(5.1.1) π(S)ij = 1 if i, j ∈ S and π(S)ij = 0 otherwise

for 1 ≤ i ≤ j ≤ n; π(S) is called a correlation vector. The cone in RVn∪En ,
generated by the correlation vectors π(S) for S ⊆ Vn, is called the correlation
cone and is denoted by CORn. The polytope in RVn∪En , defined as the convex
hull of the correlation vectors π(S) for S ⊆ Vn, is called the correlation polytope
and is denoted by COR2

n . Hence,

(5.1.2) CORn = {
∑

S⊆Vn

λSπ(S) | λS ≥ 0 for all S ⊆ Vn},

(5.1.3) COR2
n = {

∑

S⊆Vn

λSπ(S) |
∑

S⊆Vn

λS = 1 and λS ≥ 0 for all S ⊆ Vn}.

It is sometimes convenient to consider an arbitrary finite subset X instead of Vn.
Then, the correlation cone is denoted by COR(X) and the correlation polytope

53



54 Chapter 5. The Correlation Cone and {0, 1}-Covariances

by COR2(X). Hence,

COR(Vn) = CORn and COR2(Vn) = COR2
n .

Note that π(S) coincides with the upper triangular part (including the diag-
onal) on the matrix (χS)(χS)T , where χS ∈ {0, 1}n denotes the incidence vector
of the set S. Hence, the valid inequalities for the correlation cone CORn can
be interpreted as the symmetric n× n matrices that are nonnegative on binary
arguments; this point of view is taken in Deza [1973a].

The correlation polytope has been considered in the literature in connection
with many different problems, arising in various fields. We mention some of them
below.

The correlation polytope plays, for instance, an important role in combina-
torial optimization. Indeed, it permits to formulate a well-known NP-hard op-
timization problem, namely, the unconstrained quadratic 0-1 programming prob-
lem:

(5.1.4)
max

∑

1≤i≤j≤n
cijxixj

s.t. x ∈ {0, 1}n

(where cij ∈ R for all i, j). Clearly, this problem can be reformulated as:

max cT p
s.t. p ∈ COR2

n .

There are many papers studying the unconstrained quadratic 0-1 programming
problem; we just cite a few of them, e.g., De Simone [1989], Isachenko [1989],
Padberg [1989], Boros and Hammer [1991, 1993], Boissin [1994]. There, the
polytope COR2

n is mostly known under the name of boolean quadric polytope.
As will be explained in Section 5.3, the members of COR2

n can be interpreted
as joint correlations of events in some probability space. This fact explains the
name “correlation polytope”, which was introduced by Pitowsky [1986]. For
n = 3, the correlation polytope COR2

3 is called there the Bell-Wigner polytope.
In this context, the correlation polytope occurs in connection with the Boole
problem, which will be discussed in Section 5.4. This interpretation was inde-
pendently discovered by several authors, in particular, by McRae and Davidson
[1972], Assouad [1979, 1980b], Pitowsky [1986, 1989, 1991], etc. Interestingly,
these authors came to it from different mathematical backgrounds, ranging from
mathematical physics, quantum logic to analysis.

The correlation polytope also arises in the field of quantum mechanics, in
connection with the so-called representability problem for density matrices of
order 2. These matrices were introduced as a tool for representing physical
properties of a system of particles (see Löwdin [1955]). It turns out that the
study of some of their properties (in particular, of their diagonal elements) leads
to considering the correlation polytope. See, e.g., Yoseloff and Kuhn [1969],
McRae and Davidson [1972]. There is a large literature on this topic; we refer,
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e.g., to Deza and Laurent [1994b, 1994c] where this connection has been surveyed
in detail with an extended bibliography. One more example where the correlation
polytope (in fact, its polar) occurs, is in connection with the study of two-body
operators (see Erdahl [1987]).

It turns out that the correlation cone (or polytope) is very closely related to
the cut cone (or polytope). In fact, it is nothing but its image under a linear
bijective mapping. We describe this mapping in Section 5.2. As a consequence,
we obtain several characterizations for the members of the correlation cone and
polytope, which are counterparts of the characterizations given in the preceding
section for the cut polyhedra; see Section 5.3. We present an application to the
Boole problem in Section 5.4. The Boole problem can be stated as follows: Given
n events A1, . . . , An in a probability space, find good bounds for the probability
µ(A1 ∪ . . . ∪ An) of their union in terms of the joined probabilities µ(Ai ∩ Aj)
(or in terms of higher order joined probabilities).

Another consequence of this correspondence between cut and correlation
polyhedra is the equivalence of the max-cut problem (4.1.4) and of the uncon-
strained quadratic 0-1 programming problem (5.1.4). In particular, the latter
problem is also NP-hard.

5.2 The Covariance Mapping

A simple but fundamental property is that the cut cone CUTn+1 (resp. the
cut polytope CUT2

n+1) is in one-to-one correspondence with the correlation cone
CORn (resp. the correlation polytope COR2

n ) via the covariance mapping, de-
fined below.

Consider the mapping

ξ : REn+1 −→ R
Vn∪En

from the space REn+1 (indexed by the
(n+1

2

)
pairs of elements of Vn+1) to the

space RVn∪En (indexed by the n diagonal pairs of elements of Vn and the
(n
2

)

pairs of elements of Vn) defined as follows:

p = ξ(d)

for d = (dij)1≤i<j≤n+1 and p = (pij)1≤i≤j≤n with

(5.2.1)

{
pii = di,n+1 for 1 ≤ i ≤ n,
pij = 1

2(di,n+1 + dj,n+1 − dij) for 1 ≤ i < j ≤ n

or, equivalently,

(5.2.2)

{
di,n+1 = pii for 1 ≤ i ≤ n,
dij = pii + pjj − 2pij for 1 ≤ i < j ≤ n.
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The mapping ξ is called the covariance mapping. Note that the element n + 1
plays a special role in the definition of ξ; if we want to stress this fact, we denote
ξ by ξn+1 and we say that ξn+1 is the covariance mapping pointed at the position
n+1. The mapping ξ is obviously a linear bijection from REn+1 to RVn∪En . One
can easily check that, for any subset S of Vn,

ξ(δ(S)) = π(S).

Therefore,

(5.2.3) ξ(CUTn+1) = CORn and ξ(CUT2
n+1) = COR2

n ,

i.e., CORn (resp. COR2
n ) is nothing but the image of CUTn+1 (resp. CUT2

n+1)
under the covariance mapping ξ.

In the same way, given a finite subset X and an element x0 ∈ X, the cut
cone CUT(X) and the correlation cone COR(X \ {x0}) (resp. the cut polytope
CUT2(X) and the correlation polytope COR2(X\{x0})) are in one-to-one linear
correspondence via the covariance mapping ξ pointed at the position x0 (also
denoted as ξx0 if one wants to stress the choice of the point x0). For the sake of
clarity, we rewrite the definition.

Let X be a set (not necessarily finite) and x0 ∈ X, let d be a distance on X,
and let p be a symmetric function on X \ {x0}. Then, p = ξ(d) = ξx0(d) if

(5.2.4) p(x, y) =
1

2
(d(x, x0) + d(y, x0) − d(x, y)) for all x, y ∈ X \ {x0}

or, equivalently,

(5.2.5)

{
d(x, x0) = p(x, x) for all x ∈ X \ {x0},
d(x, y) = p(x, x) + p(y, y) − 2p(x, y) for all x, y ∈ X \ {x0}.

Therefore, for X finite,

ξx0(CUT(X)) = COR(X \ {x0}) and ξx0(CUT2(X)) = COR2(X \ {x0}).

Note that, if one uses relation (5.2.4) for computing p(x, x0), then one obtains
that p(x, x0) = 0 for all x ∈ X. This explains why we consider p as being defined
only on the pairs of elements from X \ {x0}.

The covariance mapping has appeared in many different areas of mathe-
matics. See, for instance, Bandelt and Dress [1992], Fichet [1987a] (where ξ
is named Farris transform or linear generalized similarity function), Critchley
[1988], Coornaert and Papadopoulos [1993] (where, for a metric space (X,d)
and its image p = ξ(d), the quantity p(x, y) is known as the Gromov product of
x, y ∈ X \ {x0}).

The connection between cut and correlation polyhedra, which is formulated
in (5.2.3), was discovered independently by several authors (e.g., by Hammer
[1965], Deza [1973a], Barahona, Jünger and Reinelt [1989], De Simone [1989]).
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As a consequence of (5.2.3), every inequality valid for the cut polytope
CUT2

n+1 can be transformed into an inequality which is valid for the correla-
tion polytope COR2

n and vice versa, via the covariance mapping. We formulate
this fact in a precise way in Proposition 5.2.7 below.

“cut side” “correlation side”

d ∈ REn+1 p ∈ RVn∪En

δ(S) ( for S ⊆ Vn) π(S)
CUTn+1 CORn

CUT2
n+1 COR2

n

Triangle inequalities:

d(i, j) − d(i, n+ 1) − d(j, n+ 1) ≤ 0 0 ≤ pij

d(i, n+ 1) − d(j, n+ 1) − d(i, j) ≤ 0 pij ≤ pii

d(j, n+ 1) − d(i, n+ 1) − d(i, j) ≤ 0 pij ≤ pjj

d(i, n+ 1) + d(j, n+ 1) + d(i, j) ≤ 2 pii + pjj − pij ≤ 1

d(i, j) − d(i, k) − d(j, k) ≤ 0 −pkk − pij + pik + pjk ≤ 0
d(i, j) + d(i, k) + d(j, k) ≤ 2 pii + pjj + pkk − pij − pik − pjk ≤ 1

Hypermetric inequalities:

∑

1≤i<j≤n+1

bibjd(i, j) ≤ 0
∑

1≤i,j≤n

bibjpij −
∑

1≤i≤n

bipii ≥ 0

with b ∈ Z n+1,
∑

1≤i≤n+1

bi = 1 with b ∈ Z n

( i.e., (
∑

1≤i≤n

bipi)(
∑

1≤i≤n

bipi − 1) ≥ 0,

setting pii := pi, pij := pipj)

Negative type inequalities:

∑

1≤i<j≤n+1

bibjd(i, j) ≤ 0
∑

1≤i,j≤n

bibjpij ≥ 0

with b ∈ Z n+1,
∑

1≤i≤n+1

bi = 0 with b ∈ Z n

∑

1≤i<j≤n+1

bibjd(i, j) ≤ k(k + 1) (
∑

1≤i≤n

bipi − k)(
∑

1≤i≤n

bipi − k − 1) ≥ 0

with b ∈ Z n+1,
∑

1≤i≤n+1

bi = 2k + 1 with b ∈ Z n, k ∈ Z

Figure 5.2.6: Corresponding inequalities for cut and correlation polyhedra
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We show in Figure 5.2.6 how this correspondence applies to several classes of in-
equalities, namely, to the triangle inequalities, the hypermetric inequalities, and
to the negative type inequalities (these inequalities will be treated in Section 6.1
and, in full detail, in Chapter 28).

Proposition 5.2.7. Let a ∈ RVn , b ∈ REn , c ∈ REn+1 be linked by



ci,n+1 = ai +

1
2

∑

1≤j≤n, j 6=i
bij for 1 ≤ i ≤ n,

cij = −1
2bij for 1 ≤ i < j ≤ n.

Given α ∈ R, the inequality
∑

1≤i<j≤n+1

cijd(i, j) ≤ α

is valid (resp. facet defining) for the cut polytope CUT2
n+1 if and only if the

inequality ∑

1≤i≤n
aipii +

∑

1≤i<j≤n
bijpij ≤ α

is valid (resp. facet defining) for the correlation polytope COR2n .

5.3 Covariances

We present here several characterizations for the members of the correlation
cone and polytope; they are counterparts to the results of Section 4.2, via the
covariance mapping. We first introduce the notion of M -covariance. This notion
is studied in Assouad [1979, 1980b] for M being a subset of a Hilbert space. We
consider here only the cases when M = R or M = {0, 1}.

Definition 5.3.1. Let M be a subset of R. A symmetric function p : X×X −→
R is called an M -covariance if there exist a measure space (Ω,A, µ) and functions
fx ∈ L2(Ω,A, µ) (for x ∈ X) taking values in M , and such that

p(x, y) =

∫

Ω
fx(ω)fy(ω)µ(dω) for all x, y ∈ X.

In particular, p is a {0, 1}-covariance if and only if there exist a measure space
(Ω,A, µ) and sets Ax ∈ Aµ (for x ∈ X) such that

p(x, y) = µ(Ax ∩Ay) for all x, y ∈ X.

The next lemma shows how R-covariances and {0, 1}-covariances are related
to L2- and L1-embeddable distance spaces, respectively (via the covariance map-
ping).

Lemma 5.3.2. Let X be a set and x0 ∈ X. Let d be a distance on X and let
p = ξx0(d) be the corresponding symmetric function on X \ {x0}. Then,
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(i) (X,
√
d) is L2-embeddable if and only if p is an R-covariance on X \ {x0}.

(ii) (X,d) is L1-embeddable if and only if p is a {0, 1}-covariance on X \ {x0}.

Proof. (i) is an immediate verification; (ii) too, using Lemma 4.2.5.

Therefore, for X finite, p is a {0, 1}-covariance on X if and only if p belongs to
the correlation cone COR(X). The following finitude result is a consequence of
Lemma 5.3.2 and Theorem 3.2.1.

Proposition 5.3.3. Let p be a symmetric function on X. Then, p is a {0, 1}-
covariance on X if and only if, for each finite subset Y of X, the restriction of
p to Y is a {0, 1}-covariance on Y .

We now give an interpretation of the members of the correlation cone and
polytope in terms of correlations of events in a measure space; it is the analogue of
Proposition 4.2.1 (via the covariance mapping). It was rediscovered in Pitowsky
[1986].

Proposition 5.3.4. Let p = (pij)1≤i≤j≤n ∈ RVn∪En . The following assertions
are equivalent.

(i) p ∈ CORn (resp. p ∈ COR2
n ).

(ii) There exist a measure space (resp. a probability space) (Ω,A, µ) and events
A1, . . . , An ∈ A such that pij = µ(Ai ∩Aj) for all 1 ≤ i ≤ j ≤ n.

As a consequence of Proposition 5.3.4, every inequality valid for the correla-
tion polytope COR2

n can be interpreted as an inequality that is satisfied by the
joined probabilities of a set of n events. Consider, for instance, the inequalities
(on the “correlation side”) corresponding to the first four triangle inequalities in
Figure 5.2.6. They express some very simple properties of joined probabilities.
The first three express the fact that the probability µ(Ai∩Aj) of the intersection
of two events Ai, Aj is nonnegative and less than or equal to each of the proba-
bilities µ(Ai), µ(Aj). The fourth one simply says that the probability µ(Ai∪Aj)
of the union of two events is less than or equal to one.

For the members of the correlation cone which can be written as a nonneg-
ative integer linear combination of correlation vectors, we can assume that the
measure space in Proposition 5.3.4 (ii) is endowed with the cardinality measure.
Namely, we have the following result, which is an analogue of Proposition 4.2.4
(i) ⇐⇒ (iii) (via the covariance mapping).

Proposition 5.3.5. Let p = (pij)1≤i≤j≤n ∈ RVn∪En . The following assertions
are equivalent.

(i) p =
∑

S⊆Vn

λSπ(S) for some nonnegative integers λS.
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(ii) There exist a finite set Ω and n subsets A1, . . . , An of Ω such that pij =
|Ai ∩Aj | for all 1 ≤ i ≤ j ≤ n.

“cut side” “correlation side”

d ∈ CUTn+1 p ∈ CORn

(resp. d ∈ CUT2
n+1) (resp. p ∈ COR2

n )
if and only if
there exist a

measure space
(resp. a probability

space) (Ω,A, µ)
and A1, . . . , An ∈ A

of finite measure
such that

dij = µ(Ai△Aj) pij = µ(Ai ∩Aj)
for 1 ≤ i < j ≤ n+ 1 for 1 ≤ i ≤ j ≤ n
(setting An+1 = ∅)

d =
∑

S λSδ(S) p =
∑

S λSπ(S)
for some λS ∈ Z+ for all S for some λS ∈ Z+ for all S

if and only if
there exist a set Ω
and finite subsets
A1, . . . , An of Ω

such that

dij = |Ai△Aj| pij = |Ai ∩Aj |
for 1 ≤ i < j ≤ n+ 1 for 1 ≤ i ≤ j ≤ n
(setting An+1 = ∅)

Figure 5.3.6: Corresponding interpretations for members of cut and correlation
polyhedra

A vector p satisfying the condition (ii) from Proposition 5.3.5 is called an in-
tersection pattern. Hence, the intersection patterns of order n and the hypercube
embeddable distances on n+ 1 points are equivalent notions (via the covariance
mapping). Testing whether a given vector p is an intersection pattern is a hard
problem; Chvátal [1980] shows that this problem is NP-complete when restricted
to the vectors p with pii = 3 for all i ∈ Vn. On the other hand, the problem
becomes polynomial when restricted to the vectors p with pii = 2 for all i ∈ Vn.
We refer to Chapter 24 for further results related to this problem.

Figure 5.3.6 shows in parallel the results from Propositions 5.3.4 and 5.3.5 for
covariances, and the corresponding results for distances from Propositions 4.2.1
and 4.2.4.
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5.4 The Boole Problem

We describe here an application of the interpretation of the correlation polytope
given in Proposition 5.3.4 to the following problem, known as the Boole problem.
Let (Ω,A, µ) be a probability space and let A1, . . . , An be n events of A. Classical
questions, which go back to Boole [1854], are the following:

Suppose we are given the values pi := µ(Ai) for 1 ≤ i ≤ n, what is
the best estimation of µ(A1 ∪ . . . ∪An) in terms of the pi’s ?

Suppose we are given the values pi := µ(Ai) for 1 ≤ i ≤ n and the
values of the joint probabilities pij := µ(Ai ∩ Aj) for 1 ≤ i < j ≤ n.
What is the best estimation of µ(A1 ∪ . . . ∪ An) in terms of the pi’s
and the pij’s ?

It is easy to see that the first question can be answered in the following manner:

max(p1, . . . , pn) ≤ µ(A1 ∪ . . . ∪An) ≤ min(1,
∑

1≤i≤n
pi).

As we see below, the answer to the second question involves, in fact, the inequal-
ities that define facets of the correlation polytope COR2n and of another related
polytope. Namely, we have the following lower bound:

µ(A1 ∪ . . . ∪An) ≥ max(wT p | wTx ≤ 1 is facet defining for COR2
n )

(see Proposition 5.4.3 and relation (5.4.4)) and an upper bound is given by the
quantity zmax defined in (5.4.5). These estimations for µ(A1 ∪ . . . ∪ An) can be
obtained using linear programming techniques. This approach, that we describe
below, was considered, in particular, by Kounias and Marin [1976] and Pitowsky
[1991].

Let p denote the vector of RVn∪En defined by pi := µ(Ai) for 1 ≤ i ≤ n and
pij := µ(Ai ∩ Aj) for 1 ≤ i < j ≤ n. By Proposition 5.3.4, p belongs to the
polytope COR2

n . Thus, we can define the following quantities1 zmin and zmax:

(5.4.1)
zmin := min (

∑

∅6=S⊆Vn

λS |
∑

∅6=S⊆Vn

λSπ(S) = p

λS ≥ 0 for ∅ 6= S ⊆ Vn),

(5.4.2)
zmax := max (

∑

∅6=S⊆Vn

λS |
∑

∅6=S⊆Vn

λSπ(S) = p

λS ≥ 0 for ∅ 6= S ⊆ Vn).

The quantities zmin and zmax provide bounds for µ(A1 ∪ . . . ∪ An), as the next
result shows.

Proposition 5.4.3. zmin ≤ µ(A1 ∪ . . . ∪An) ≤ zmax.

1Note that the parameter zmin is the analogue for the correlation cone of the notion of
minimum ℓ1-size, defined in (4.3.4).
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Proof. For S ⊆ Vn, set

AS :=
⋂

i∈S
Ai ∩

⋂

i6∈S
(Ω \Ai).

Then,

Ai ∩Aj =
⋃

S⊆Vn|i,j∈S
AS , Ω =

⋃

S⊆Vn

AS , and A1 ∪ . . . ∪An =
⋃

S⊆Vn|S 6=∅
AS .

Therefore,

p =
∑

S⊆Vn|S 6=∅
µ(AS)π(S),

with µ(AS) ≥ 0 for all S. Hence, (µ(AS) | ∅ 6= S ⊆ Vn) is a feasible solution
to the programs (5.4.1) and (5.4.2), with objective value µ(A1 ∪ . . . ∪An). This
shows the result.

Using linear programming duality, we can reformulate zmin and zmax. Namely,

(5.4.4) zmin = max(wT p | wTπ(S) ≤ 1 for all S, ∅ 6= S ⊆ Vn)

and, as can be easily verified, it suffices to consider in (5.4.4) the vectors w for
which the inequality wTx ≤ 1 defines a facet of COR2

n . Similarly,

(5.4.5) zmax = min(wT p | wTπ(S) ≥ 1 for all S, ∅ 6= S ⊆ Vn),

where it suffices to consider the vectors w for which the inequality wTx ≥ 1
defines a facet of the polytope Conv({π(S) | ∅ 6= S ⊆ Vn}) (which is distinct
from COR2

n since it does not contain the origin).

Therefore, every valid inequality for COR2
n yields a lower bound for µ(A1 ∪

. . .∪An) in terms of the joint probabilities pij = µ(Ai∩Aj). Many such inequal-
ities are known; cf. Part V for a presentation of large classes of such inequalities.
As an illustration, we now mention a few examples of such inequalities together
with the corresponding lower bounds.

A first observation is that

n
∑

1≤i≤n
pi − 2

∑

1≤i<j≤n
pij

⌊n+1
2 ⌋⌈n+1

2 ⌉ ≤
∑

∅6=S⊆Vn

λS ≤
n
∑

1≤i≤n
pi − 2

∑

1≤i<j≤n
pij

n

for any decomposition p =
∑

∅6=S⊆Vn

λSπ(S) with λS ≥ 0 for all S. (This follows

from (4.3.6), via the covariance mapping.) From the definition of zmin, zmax and
from Proposition 5.4.3, we obtain:
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(5.4.6)

n
∑

1≤i≤n
pi − 2

∑

1≤i<j≤n
pij

⌊n+1
2

⌋⌈n+1
2

⌉ ≤ µ(A1 ∪ . . . ∪An)

µ(A1 ∪ . . . ∪An) ≤
n
∑

1≤i≤n
pi − 2

∑

1≤i<j≤n
pij

n .

Consider now the inequality:

(5.4.7) 2k
∑

1≤i≤n
pi − 2

∑

1≤i<j≤n
pij ≤ k(k + 1).

It is valid for the correlation polytope COR2
n if 1 ≤ k ≤ n − 1. (Moreover, it is

facet defining if 1 ≤ k ≤ n − 2 and n ≥ 4. Indeed, it corresponds (via the covariance
mapping) to the inequality:

∑

1≤i<j≤n

xij + (2k + 1 − n)
∑

1≤i≤n

xi,n+1 ≤ k(k + 1)

which defines a facet of CUT2
n+1 if 1 ≤ k ≤ n−2 and n ≥ 4; see Theorem 28.2.4.) This

yields the following lower bound for µ(A1 ∪ . . . ∪An):

(5.4.8)
2

k + 1

∑

1≤i≤n
pi −

2

k(k + 1)

∑

1≤i<j≤n
pij ≤ µ(A1 ∪ . . . ∪An)

for each k, 1 ≤ k ≤ n−1. The bound (5.4.8) was found independently by several
authors, including Chung [1941], Dawson and Sankoff [1967], Galambos [1977].
Note that (5.4.8) coincides with the lower bound of (5.4.6) in the case n = 2k.
The case k = 1 of (5.4.8) gives the bound

∑

1≤i≤n
pi −

∑

1≤i<j≤n
pij ≤ µ(A1 ∪ . . . ∪An)

which is a special case of the Bonferroni bound (5.4.14) mentioned below. More
generally, given integers b1, . . . , bn and k ≥ 0, the inequality:

(5.4.9)
∑

1≤i≤n
bi(2k + 1 − bi)pi − 2

∑

1≤i<j≤n
bibjpij ≤ k(k + 1)

is valid for COR2
n , which yields the bound:

1

k(k + 1)


 ∑

1≤i≤n
pibi(2k + 1 − bi) − 2

∑

1≤i<j≤n
bibjpij


 ≤ µ(A1 ∪ . . . ∪An).

To see the validity of inequality (5.4.9), note that it can alternatively be written as

(5.4.10)


 ∑

1≤i≤n

bipi − k




 ∑

1≤i≤n

bipi − k − 1


 ≥ 0

with the convention that, when developing the product, the expression pipj is replaced

by the variable pij (setting pii = pi).
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Remark 5.4.11. The inequality (5.4.9) (or (5.4.10)) (or special cases of it)
was considered independently by many authors; among others, by Kelly [1968],
Davidson [1969], Yoseloff [1970], McRae and Davidson [1972], Kounias and
Marin [1976], Erdahl [1987], Mestechkin [1987], Pitowsky [1991]. The inequal-
ity (5.4.10) appears in Figure 5.2.6; it corresponds (via the covariance mapping
and after setting bn+1 := 2k + 1 −∑n

i=1 bi) to the inequality:

(5.4.12)
∑

1≤i<j≤n+1

bibjxij ≤ k(k + 1),

which is valid for the cut polytope CUT2
n+1. In order to help the reader under-

stand how this inequality relates with further inequalities to be introduced later, let

us mention that the class of inequalities of the form (5.4.12) contains the hypermetric

inequalities (to be defined in Section 6.1) as special instances. More precisely, (5.4.12)

is a hypermetric inequality if k = 0. Moreover, (5.4.12) is a switching of a hypermetric

inequality if the sequence b1, . . . , bn+1 has gap 1. (The notions of switching and gap will

be defined later in Sections 26.3 and 28.4.)

Generalization to Higher Order Correlations. Clearly, much of the above
treatment can be generalized to higher order correlations. Namely, let I be a family of
subsets of Vn. Given a subset S of Vn, its I-correlation vector πI(S) ∈ RI is defined by
πI(S)I = 1 if I ⊆ S and πI(S)I = 0 otherwise, for all I ∈ I. Then, the cone CORn(I)
(resp. the polytope COR2

n (I)) is defined as the conic hull (resp. the convex hull) of all
I-correlation vectors πI(S) for S ⊆ Vn.

Given an integer 1 ≤ m ≤ n, let I≤m denote the collection of all subsets of Vn of
cardinality less than or equal to m. Hence, I≤2 consists of all singletons and pairs of
elements of Vn and, therefore, CORn(I≤2) and COR2

n (I≤2) coincide, respectively, with
CORn and COR2

n .

For I = 2Vn , which consists of all subsets of Vn, COR2
n (2Vn) is a simplex and

CORn(2Vn) is a simplex cone, both of dimension 2n−1. This implies, in particular, that
every correlation polytope COR2

n (I) arises as a projection of the simplex COR2
n (2Vn)

(namely, on the subspace RI ).

The result from Proposition 5.3.4 extends easily to the case of arbitrary I-correlations.

Proposition 5.4.13. Let I be a nonempty collection of subsets of {1, . . . , n} and let
p = (pI)I∈I ∈ RI . The following assertions are equivalent.

(i) p ∈ CORn(I) (resp. p ∈ COR2
n (I)).

(ii) There exist a measure space (resp. a probability space) (Ω,A, µ) and events
A1, . . . , An ∈ A such that pI = µ(

⋂
i∈I Ai) for all I ∈ I.

A more general version of the Boole problem consists of finding estimates for the
quantity µ(A1∪ . . .∪An) in terms of the joined correlations µ(

⋂
i∈I Ai) for I ∈ I. There

is an obvious analogue of Proposition 5.4.3, where the bounds zmin and zmax are now in
terms of the polytopes COR2

n (I) and Conv({πI(S) | ∅ 6= S ⊆ Vn}) (instead of COR2
n

and Conv({π(S) | ∅ 6= S ⊆ Vn})).
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In the case when I = I≤m, several bounds for µ(A1 ∪ . . .∪An) have been proposed
in the literature in terms of the quantities:

Sk :=
∑

1≤i1<...<ik≤n

µ(Ai1 ∩ . . . ∩Aik
)

for 1 ≤ k ≤ n. For instance, the following bounds hold:

(5.4.14)





µ(A1 ∪ . . . ∪An) ≥
∑

1≤i≤m

(−1)i−1Si for m even,

µ(A1 ∪ . . . ∪An) ≤
∑

1≤i≤m

(−1)i−1Si for m odd,

which were first discovered by Bonferroni [1936]. Several improvements of these bounds
have been later proposed; see, e.g., Boros and Prekopa [1989], Grable [1993].

Clearly, if all the quantities Sk (1 ≤ k ≤ n) are known, then the exact value of
µ(A1 ∪ . . . ∪An) is given by the inclusion-exclusion formula:

µ(A1 ∪ . . . ∪An) =
∑

1≤k≤n

(−1)k−1Sk.

The error with which µ(A1 ∪ . . . ∪An) can be approximated when knowing Sj only for
j ≤ k (where k ≤ n is given) has been studied by Linial and Nisan [1990] and Kahn,
Linial and Samorodnitsky [1996]. Let A1, . . . , An, B1, . . . , Bn be events in a probability
space (Ω,A, µ) satisfying

µ(
⋂

i∈I

Ai) = µ(
⋂

i∈I

Bi)

for all I ⊆ {1, . . . , n} with |I| ≤ k. Then, Linial and Nisan [1990] show that

µ(A1 ∪ . . . ∪An)

µ(B1 ∪ . . . ∪Bn)
≤
(
λk + 1

λk − 1

)2

, where λ :=

√
n+ 1√
n− 1

.

In particular, the ratio µ(A1∪...∪An)
µ(B1∪...∪Bn) is bounded by 1 +O(exp(− 2k√

n
)) if k = Ω(

√
n) and

by O( n
k2 ) if k = O(

√
n). Recently, Kahn, Linial and Samorodnitsky [1996] show that

|µ(A1 ∪ . . . ∪An) − µ(B1 ∪ . . . ∪Bn)| = exp(−Ω(
k2

n log2 n
)).

Moreover, there exist coefficients λj (1 ≤ j ≤ k) which can be found in time polynomial
in n and satisfying

|µ(A1 ∪ . . . ∪An) −
∑

1≤j≤k

λjSj | ≤ exp(−Ω(
k2

n log2 n
)).

The problem of evaluating the probability µ(A1 ∪ . . . ∪An) has many applications;
see, e.g., Kahn, Linial and Samorodnitsky [1996]. An example of application is to the
problem of enumerating the satisfying assignments of an n-variable DNF expression F =
C1∨ . . .∨Cm, where each clause Cj is in conjonctive form. This is a hard problem; much
effort has been done for approximating this number (see Luby and Velic̆ković [1991] and
references therein). If we let Aj (j = 1, . . . ,m) denote the set of satisfying assignments
for the clause Cj , then the number of satisfying assignments for F is |A1 ∪ . . . ∪ Am|.
It is shown in Kahn, Linial and Samorodnitsky [1996] that |A1 ∪ . . . ∪ Am| is uniquely
determined once one knows the number of satisfying assignments for ∧i∈ICi for every
I ⊆ {1, . . . ,m} such that |I| ≤ log2 n+ 1.





Chapter 6. Conditions for
L1-Embeddability

We present in this chapter two necessary conditions for L1-embeddability, namely,
the hypermetric and the negative type conditions. There are many other known
necessary conditions, arising from the known valid inequalities for the cut cone;
they will be described in Part V. We focus here on the hypermetric and negative
type conditions. These conditions seem indeed to be among the most essential
ones. For instance, there are several classes of distance spaces for which these
conditions are also sufficient for ensuring L1-embeddability; see, in particular,
Chapters 8, 19, 24, and Remark 6.3.5 for a summary. Hypermetric inequalities
will be treated in detail for their own sake in Part II and, as facets of the cut
cone, in Chapter 28.

The present chapter is organized as follows. The hypermetric and negative
type conditions are introduced in Section 6.1. Several characterizations for ℓ2-
embeddable spaces are presented in Section 6.2. We present, in particular, a
characterization in terms of the negative type condition and Menger’s result
concerning the isometric subspaces of the m-dimensional Euclidean space. Sec-
tion 6.3 contains a summary of the implications that exist between the properties
of being L1-, L2-embeddable, of negative type, or hypermetric, for a distance
space. We treat in some detail in Section 6.4 an example: the spherical distance
space, which consists of the sphere equipped with the usual great circle distance.
This example is, in a sense, intermediate between ℓ1 and ℓ2. Indeed, every
spherical distance space is ℓ1-embeddable and, on the other hand, the Euclidean
distance can be realized asymptotically as a limit of spherical distances. The
spherical distance space will be useful in Section 31.3 for the positive semidefi-
nite completion problem.

6.1 Hypermetric and Negative Type Conditions

6.1.1 Hypermetric and Negative Type Inequalities

Let n ≥ 2 and let b1, . . . , bn be integers. We consider the inequality:

(6.1.1)
∑

1≤i<j≤n
bibjdij ≤ 0

(in the variable dij). For convenience, we introduce the following notation. Given

67



68 Chapter 6. Conditions for L1-Embeddability

b ∈ Rn , Qn(b) denotes the vector of REn defined by

Qn(b)ij := bibj for 1 ≤ i < j ≤ n.

Hence, the inequality (6.1.1) can be rewritten as Qn(b)
T d ≤ 0. When the param-

eter n is clear from the context we also denote Qn(b) by Q(b). We can suppose
that at least two of the bi’s are nonzero; else, Qn(b) = 0 and the inequality (6.1.1)
is void.

When
∑n
i=1 bi = 1, the inequality (6.1.1) is called a hypermetric inequality

and, when
∑n
i=1 bi = 0, it is called a negative type inequality. The inequality

(6.1.1) is said to be pure if |bi| = 0, 1 for all i ∈ Vn. The inequality (6.1.8) is said
to be a k-gonal inequality if

∑n
i=1 |bi| = k holds. Note that k and

∑n
i=1 bi have

the same parity.

In particular, the 2-gonal inequality is the inequality of negative type (6.1.1),
where bi = 1, bj = −1 and bh = 0 for h ∈ Vn\{i, j}, for some distinct i, j ∈ Vn; it
is nothing but the nonnegativity constraint dij ≥ 0. The pure 3-gonal inequality
is the hypermetric inequality (6.1.1), where bi = bj = 1, bk = −1 and bh = 0
for h ∈ Vn \ {i, j, k}, for some distinct i, j, k ∈ Vn; it coincides with the triangle
inequality (3.1.1). For ǫ = 0, 1, the pure (2k + ǫ)-gonal inequality reads :

∑

1≤r<s≤k+ǫ
diris +

∑

1≤r<s≤k
djrjs −

∑

1≤r≤k+ǫ
1≤s≤k

dirjs ≤ 0,

where i1, . . . , ik, ik+ǫ, j1, . . . , jk are distinct indices of Vn.

As an example, the 5-gonal inequalities are the inequalities Qn(b)
T d ≤ 0,

where b is (up to permutation of its components) one of the following vectors:

b = (1, 1, 1,−1,−1, 0, . . . , 0), b = (1, 1, 1,−2, 0, . . . , 0),
b = (2, 1,−1,−1, 0, . . . , 0), b = (3,−1,−1, 0, . . . , 0),

b = (2, 1,−2, 0, . . . , 0), b = (3,−2, 0, . . . , 0).

Figure 6.1.2 shows the pure 4-gonal and 5-gonal inequalities or, rather, their
left hand sides. It should be understood as follows: a plain edge between two
nodes i and j indicates a coefficient +1 for the variable dij and a dotted edge
indicates a coefficient -1. The pure 5-gonal inequality is also called the pentagonal
inequality.

i

i j
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i

i

i

j

j

1

2

1

2
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pure 4-gonal inequality pentagonal inequality

Figure 6.1.2
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The negative type inequalities are classical inequalities in analysis; they were
used, in particular, by Schoenberg [1937, 1938a, 1938b]. The hypermetric in-
equalities were considered by several authors, including Deza [1960, 1962], Kelly
[1970a], Baranovskii [1971, 1973] and, in the context of correlations or boolean
quadratic programming (i.e., under the form indicated in Lemma 6.1.14; see
also Figure 5.2.6), by Kelly [1968], Davidson [1969], Yoseloff [1970], McRae and
Davidson [1972], Kounias and Marin [1976], Erdahl [1987], Mestechkin [1987],
Pitowsky [1991]. (Recall Remark 5.4.11.)

The hypermetric inequalities: Qn(b)
T d ≤ 0 for b ∈ Zn with

∑n
i=1 bi =

1, define a cone in REn , called the hypermetric cone and denoted by HYPn.
Similarly, the negative type cone1 NEGn is the cone in REn , which is defined
by the negative type inequalities: Qn(b)

T d ≤ 0 for b ∈ Zn with
∑n
i=1 bi = 0.

If we consider an arbitrary finite set X instead of Vn, then we also denote the
hypermetric cone by HYP(X).

In fact, the negative type inequalities are implied by the hypermetric inequal-
ities. In other words,

HYPn ⊆ NEGn for all n ≥ 3.

This result can be read immediately from Figure 5.2.6 (by looking at the corre-
sponding inequalities on the “correlation side”). It can also be derived from the
following result of Deza [1962] which shows, more precisely, how (2k + 1)- and
(2k + 2)-gonal inequalities relate.

Proposition 6.1.3. Let k ≥ 1 be an integer. The (2k + 2)-gonal inequalities
are implied by the (2k + 1)-gonal inequalities.

Proof. Let b ∈ Zn with
∑n
i=1 bi = 0 and

∑n
i=1 |bi| = 2k + 2. We show that the

inequality Qn(b)
Td ≤ 0 can be expressed as a nonnegative linear combination

of (2k + 1)-gonal inequalities. We can suppose without loss of generality that
b1, . . . , bp > 0 > bp+1, . . . , bn, for some p, 1 ≤ p ≤ n− 1. For 1 ≤ i ≤ p, set

c(i) := (−b1, . . . ,−bi−1, 1 − bi,−bi+1, . . . ,−bp,−bp+1, . . . ,−bn)

and, for p+ 1 ≤ i ≤ n, set

c(i) := (b1, . . . , bp, bp+1, . . . , bi−1, bi + 1, bi+1, . . . , bn).

Then, each vector c(i) belongs to Zn, has sum of entries 1, and sum of absolute
values of its entries 2k + 1. Therefore, each inequality Qn(c

(i))T d ≤ 0 is a
(2k + 1)-gonal inequality. Observe now that

∑

1≤i≤n
|bi|Qn(c(i)) = 2kQn(b).

1We will consider in Section 31.4 another cone related to NEGn. Namely, given a graph
G = (Vn, E), the cone NEG(G) is defined as the projection of NEGn on the edge set on the
subspace RE indexed by the edge set of G.



70 Chapter 6. Conditions for L1-Embeddability

This shows that the (2k + 2)-gonal inequality Qn(b)
T d ≤ 0 is implied by the

(2k + 1)-gonal inequalities Qn(c
(i))Td ≤ 0 (1 ≤ i ≤ n).

As an example, the 4-gonal inequality: Q4(1, 1,−1,−1)T d ≤ 0 follows by sum-
mation of the following 3-gonal inequalities:

Q4(1, 1,−1, 0)T d ≤ 0,
Q4(1, 1, 0,−1)T d ≤ 0,
Q4(−1, 0, 1, 1)T d ≤ 0,
Q4(0,−1, 1, 1)T d ≤ 0.

Corollary 6.1.4. The negative type inequalities are implied by the hypermetric
inequalities.

Remark 6.1.5. Note that the negative type inequalities do not imply the
triangle inequalities. In other words, a distance may be of negative type without
being a semimetric; that is, the negative type cone NEGn is not contained in
the semimetric cone METn. To see it, consider for instance the distance d on
Vn defined by d1i = 1 for i = 2, . . . , n and dij = 2n

n−1 for 2 ≤ i < j ≤ n.

Then, d violates some triangle inequalities, as dij − d1j − d1i = 2
n−1 > 0 for

any i 6= j ∈ {2, . . . , n}. On the other hand, it is easy to verify that d ∈ NEGn
(e.g., because its image ξ1(d) - under the covariance mapping pointed at position
1 - defines a positive semidefinite matrix). See also Remark 6.1.11, where it
is observed that the k-gonal inequalities do not follow from the (k + 2)-gonal
inequalities.

On the other hand, for d ∈ NEGn, the condition d1n = 0 implies that
d1i = din for all i = 2, . . . , n− 1. (Hence, the metric condition is partially satis-
fied.) Moreover, letting d′ denote the distance on the set Vn−1 = Vn \{n} defined
as the projection of d (i.e., d′ij := dij for all i, j ∈ Vn−1), then d ∈ NEGn if and
only if d′ ∈ NEGn−1. In other words, for testing membership in the negative
type cone, we can restrict ourselves to distances taking only positive values. The
same holds clearly for the hypermetric cone.

One of the main motivations for introducing hypermetric inequalities lies in
the fact that they are valid for the cut cone, i.e.,

(6.1.6) CUTn ⊆ HYPn.

In other words,

Lemma 6.1.7. Every distance space that is isometrically ℓ1-embeddable satisfies
all the hypermetric inequalities.

Proof. It suffices to verify that every cut semimetric satisfies all the hypermetric
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inequalities. For this, let S ⊆ Vn and b ∈ Zn with
∑n
i=1 bi = 1. Then,

∑

1≤i<j≤n
bibjδ(S)ij =

∑

i∈S,j 6∈S
bibj =

(∑

i∈S
bi

)
∑

j 6∈S
bj


 =

(∑

i∈S
bi

)(
1 −

∑

i∈S
bi

)

is nonpositive since
∑
i∈S bi is an integer.

6.1.2 Hypermetric and Negative Type Distance Spaces

Let (X,d) be a distance space. Then, (X,d) is said to be hypermetric (resp. of
negative type) if d satisfies all the hypermetric inequalities (resp. all the negative
type inequalities), i.e., if d satisfies

(6.1.8)
∑

1≤i<j≤n
bibjd(xi, xj) ≤ 0

for all b ∈ Zn with
∑n
i=1 bi = 1 (resp. with

∑n
i=1 bi = 0) and for all distinct

elements x1, . . . , xn ∈ X (n ≥ 2).
Observe that in the above definition we can drop the condition that the

elements x1, . . . , xn be distinct. Indeed, suppose for instance that x1 = x2.
Then, d(x1, x2) = 0 and d(x1, xi) = d(x2, xi) for all i. Therefore, the quantity∑

1≤i<j≤n
bibjd(xi, xj) can be rewritten as

∑

2≤i<j≤n
b′ib

′
jd(xi, xj), after setting b′2 =

b1 + b2, b
′
3 = b3, . . . , b

′
n = bn.

In other words, (X,d) is hypermetric (resp. of negative type) if and only if
d satisfies the inequalities (6.1.8) for all b ∈ {0,−1, 1}n with

∑n
i=1 bi = 1 (resp.

= 0) and all (not necessarily distinct) elements x1, . . . , xn ∈ X (n ≥ 2).

Given an integer k ≥ 1 and ǫ ∈ {0, 1}, a distance space (X,d) is said to be
(2k+ǫ)-gonal if d satisfies the inequalities (6.1.8) for all b ∈ Zn with

∑n
i=1 bi = ǫ

and
∑n
i=1 |bi| = 2k + ǫ and for all x1, . . . , xn ∈ X (n ≥ 2). Again we obtain the

same definition if we require that d satisfies all these inequalities only for b pure,
i.e., with entries in {0, 1,−1}. For instance, (X,d) is 5-gonal if and only if, for
all x1, x2, x3, y1, y2 ∈ X, the following inequality holds:

(6.1.9)
∑

1≤i<j≤3

d(xi, xj) + d(y1, y2) −
∑

i=1,2,3
j=1,2

d(xi, yj) ≤ 0.

This is the pentagonal inequality, that we rewrite here for further reference.

Observe that the notion of k-gonal distance spaces is monotone in k, in the
sense that (k + 2)-gonality implies k-gonality. Namely,

Lemma 6.1.10. Let (X,d) be a distance space.

(i) If (X,d) is (k + 2)-gonal, then (X,d) is k-gonal, for any integer k ≥ 2.

(ii) If (X,d) is (2k + 1)-gonal, then (X,d) is (2k + 2)-gonal, for any integer
k ≥ 1.
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Proof. (i) Suppose that (X,d) is (k + 2)-gonal. Let b ∈ Zn with
∑n
i=1 |bi| = k

and
∑n
i=1 bi = ǫ, where ǫ = 1 if k is odd and ǫ = 0 if k is even. Let x1, . . . , xn ∈

X. We show that
∑

1≤i<j≤n
bidjd(xi, xj) ≤ 0. For this, set b′ := (b, 1,−1) ∈

Zn+2 and xn+1 = xn+2 := x, where x ∈ X. Then,
∑

1≤i<j≤n
bidjd(xi, xj) =

∑

1≤i<j≤n+2

b′ib
′
jd(xi, xj), which is nonpositive by the assumption that (X,d) is

(k + 2)-gonal. The assertion (ii) follows from Proposition 6.1.3.

Remark 6.1.11. Note that the k-gonal inequalities do not follow from the
(k + 2)-gonal inequalities (k ≥ 2). (The proof of Lemma 6.1.10 (i) works indeed
at the level of distance spaces since we make the assumption that the two points
xn+1 and xn+2 of X coincide.). For instance, the 5-gonal inequalities do not
imply the triangle inequalities. To see it, consider the distance d on V5 defined
by dij = 1 for all pairs except d12 = 9

4 and d34 = 3
2 . Then, d violates some

triangle inequality as d12 − d13 − d23 = 1
4 > 0; on the other hand, one can verify

that d satisfies all 5-gonal inequalities.

Remark 6.1.12. Equality case in the hypermetric and negative type inequal-
ities. The following question is considered by Kelly [1970a], Assouad [1984], Ball [1990].
What are the distance spaces, within a given class, that satisfy a given hypermetric or
negative type inequality at equality ?

For instance, Kelly [1970a] characterizes the finite subspaces of (R, dℓ1 ) that satisfy
the (2k+1)-gonal inequality at equality. Namely, given x1, . . . , xk+1, y1, . . . , yk ∈ R, the
equality

∑

1≤i<j≤k+1

|xi − xj | +
∑

1≤i<j≤k

|yi − yj | −
∑

1≤i≤k+1

1≤j≤k

|xi − yj | = 0

holds if and only if y1, . . . , yk separate x1, . . . , xk+1, i.e., if there exist a permutation α
of {1, . . . , k + 1} and a permutation β of {1, . . . , k} such that

xα(1) ≤ yβ(1) ≤ xα(2) ≤ yβ(2) ≤ . . . ≤ yβ(k) ≤ xα(k+1).

This can be easily verified by looking at the explicit decomposition of the distance space
({x1, . . . , xk+1, y1, . . . , yk}, dℓ1) as a nonnegative sum of cuts (and using the construction
from the proof of Proposition 4.2.2 (ii) =⇒ (i)). Generalizations and related results can
be found in Kelly [1970a] and Assouad [1984].

Along the same lines, Ball [1990] characterizes the scalars x1, . . . , xn ∈ R for which

the distance space ({x1, . . . , xn}, dℓ1) satisfies the negative type inequality (6.1.1) at

equality when b = (−(n − 4), 1, . . . , 1,−2). This result will be used in the proof of

Proposition 11.2.4 (i), for deriving a lower bound on the minimum ℓ1-dimension of a

distance space.

6.1.3 Analogues for Covariances

We indicate here how the hypermetric inequalities and the negative type inequal-
ities translate, when transported to the context of correlations (via the covari-



6.2 Characterization of L2-Embeddability 73

ance mapping). This information has already been mentioned in Figure 5.2.6;
Lemma 6.1.14 below validates it. We first introduce a definition.

Definition 6.1.13. A symmetric function p : X × X −→ R is said to be of
positive type on X if, for all n ≥ 2, x1, . . . , xn ∈ X, the matrix (p(xi, xj))

n
i,j=1

is positive semidefinite.

Lemma 6.1.14. Let X be a set and x0 ∈ X. Let d be a distance on X and
p = ξx0(d) be the corresponding symmetric function on X \ {x0}.

(i) (X,d) is of negative type if and only if p is of positive type on X \ {x0}.
(ii) (X,d) is hypermetric if and only if p satisfies:

∑

1≤i,j≤n
bibjp(xi, xj) −

∑

1≤i≤n
bip(xi, xi) ≥ 0,

for all b ∈ Zn and all x1, . . . , xn ∈ X \ {x0} (n ≥ 2).

Proof. Let x1, . . . , xn ∈ X \ {x0}, b0, b1, . . . , bn ∈ Z, and set ǫ :=
∑n
i=0 bi. The

proof is based on the following observation:

∑

0≤i<j≤n
bibjd(xi, xj)

=
∑

1≤i≤n
b0bip(xi, xi) +

∑

1≤i<j≤n
bibj(p(xi, xi) + p(xj, xj) − 2p(xi, xj))

= ǫ
∑

1≤i≤n
bip(xi, xi) −

∑

1≤i,j≤n
bibjp(xi, xj).

As an immediate application, we have:

(6.1.15) ξ(NEGn+1) = PSDn.

In other words, the negative type cone NEGn+1 is in one-to-one linear corre-
spondence with the positive semidefinite cone PSDn.

6.2 Characterization of L 2-Embeddability

In this section, we study the distance spaces that can be isometrically embedded
into some ℓ2-space. In other words, we consider the distances that can be realized
as the pairwise Euclidean distances of some configuration of points in a space Rm

(m ≥ 1). Such distance spaces form, in fact, the topic of a long established and
active area of research, known as distance geometry. Investigations in this area
go back to Cayley [1841] who made several observations that were later system-
atized by Menger [1928], leading, in particular, to the theory of Cayley-Menger
determinants. Research in this area was pursued, in particular, by Schoenberg
[1935] who discovered a new characterization of ℓ2-embeddable distances in terms
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of the negative type inequalities. The monograph by Blumenthal [1953] remains
a classic reference on the subject. Interest in the area of distance geometry was
stimulated in the recent years by its many applications, e.g., to the theory of
multidimensional scaling (cf. the survey paper by de Leeuw and Heiser [1982])
and to the molecular conformation problem (cf. the monograph by Crippen and
Havel [1988]).

This section contains several characterizations for ℓ2-embeddable distance
spaces. First, we present Schoenberg’s result, which gives a characterization for
ℓ2-embeddability in terms of the negative type inequalities (see Theorem 6.2.2).
As an application, checking ℓ2-embeddability for a finite distance space can be
done in polynomial time; this contrasts with the ℓ1-case where the correspond-
ing ℓ1-embeddability problem is known to be NP-complete. We then mention
an equivalent characterization in terms of Cayley-Menger matrices. Another
fundamental result is a result by Menger, concerning the isometric subspaces
of the m-dimensional Euclidean space. More precisely, Menger showed that a
distance space (X,d) can be isometrically embedded into the m-dimensional Eu-
clidean space (Rm , dℓ2) if and only if the same property holds for every subspace
of (X,d) on m + 3 points (see Theorem 6.2.13). Further characterizations for
ℓ2-embeddability can be found in Theorem 6.2.16.

6.2.1 Schoenberg’s Result and Cayley-Menger Determinants

In a first step, we make the link between the notions of functions of positive type
and of R-covariances. The characterization of L2-embeddable spaces in terms of
the negative type inequalities given in Theorem 6.2.2 below will then follow as
an immediate consequence, using Lemmas 5.3.2 and 6.1.14; this result is due to
Schoenberg [1935, 1938b]. Figure 6.2.3 summarizes these connections2.

Lemma 6.2.1. Let p be a symmetric function on X. Then, p is of positive type
on X if and only if p is an R-covariance on X.

Proof. Suppose first that p is an R-covariance on X. Then,

p(x, y) =

∫

Ω
fx(ω)fy(ω)µ(dω)

for all x, y ∈ X, where fx are real valued functions of L2(Ω,A, µ). Let b ∈ ZX

with finite support. Then,

∑

x,y∈X
bxbyp(x, y) =

∫

Ω
(
∑

x∈X
bxfx(ω))2µ(dω) ≥ 0.

This shows that p is of positive type on X. Conversely, suppose that p is of
positive type on X. We show that p is an R-covariance on X. In view of the

2The equivalence:
√

d is ℓ2-embeddable ⇐⇒ p := ξ(d) is a positive semidefinite matrix (for
a distance d on a finite set) was, in fact, known to several other authors. It is, for instance,
explicited in a paper by Young and Householder [1938].
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finitude result from Theorem 3.2.1 and Lemma 5.3.2, we can suppose that X is
finite. By assumption, the matrix (p(x, y))x,y∈X is positive semidefinite. Hence,
by Lemma 2.4.2, it is a Gram matrix. This shows that p is an R-covariance on
X.

Theorem 6.2.2. Let (X,d) be a distance space. Then, (X,d) is of negative type
if and only if (X,

√
d) is L2-embeddable.

We remind that the cone NORn(2) has been defined in (3.1.4) precisely as the
set of distances d on Vn for which

√
d is ℓ2-embeddable. Therefore,

NEGn = NORn(2).

The distance matrix associated with a distance space (Vn, d) where d ∈ NORn(2)
(i.e.,

√
d is ℓ2-embeddable) is also known in the literature as a Euclidean dis-

tance matrix (see, e.g., Gower [1985], Hayden, Wells, Wei-Min Liu and Tarazaga
[1991]). Hence, the set of Euclidean distance matrices identifies with the negative
type cone. More information on this cone and on its projections will be given in
Section 31.4.

d distance on Vn+1 p := ξn+1(d)

√
d is ℓ2-embeddable ⇐⇒ (pij) is a Gram matrix
i.e., d ∈ NORn(2) (setting pji = pij)

m m
d ∈ NEGn+1 ⇐⇒ (pij) ∈ PSDn

Figure 6.2.3

As an immediate application, the problem of deciding whether a finite dis-
tance space (X,d) is ℓ2-embeddable can be solved in polynomial time. Indeed,
this amounts to checking whether the symmetric matrix (pij) associated with
p := ξ(d2) is positive semidefinite (which can be done in polynomial time; recall
Proposition 2.4.3). In contrast, checking whether (X,d) is ℓ1-embeddable is an
NP-complete problem (recall problem (P5) in Section 4.4).

We address now the following question: Given an ℓ2-embeddable distance
space (X,d), what is the minimum dimension m of a Euclidean space ℓm2 =
(Rm , dℓ2) in which (X,d) can be embedded ? This parameter is the ℓ2-dimension
of (X,d), denoted as mℓ2(X,d). It turns out that this question can be very easily
answered, as mℓ2(X,d) can be expressed as the rank of a related matrix.
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We introduce some notation. Let (X,d) be a finite distance space with, say,
X = {1, . . . , n}. Let x0 ∈ X and let p = ξx0(d) denote the image of d under the
covariance mapping ξx0 (recall relation (5.2.5)). Then, we let Px0(X,d) denote
the (n − 1) × (n − 1) matrix whose (i, j)-th entry is p(i, j) for i, j ∈ X \ {x0}.
The next result indicates a way to compute the ℓ2-dimension. For convenience,
we formulate it for a distance space whose square root is ℓ2-embeddable.

Proposition 6.2.4. Let (X,d) be a finite distance space of negative type,
i.e., such that (X,

√
d) is ℓ2-embeddable. Then, the ℓ2-dimension mℓ2(X,

√
d)

of (X,
√
d) is given by

mℓ2(X,
√
d) = rank Px0(X,d).

Proof. Apply Lemma 2.4.2.

Corollary 6.2.5. Let (X,d) be a finite distance space. Then, (X,
√
d) embeds

isometrically into ℓr2 if and only if the matrix Px0(X,d) is positive semidefinite
and has rank ≤ r. Moreover, if mℓ2(X,

√
d) = r, then there exists a subset

Y ⊆ X such that |Y | = r + 1 and mℓ2(Y,
√
d) = r. (There exists such a set Y

containing any given element x0 ∈ X.)

Therefore,

(6.2.6) mℓ2(n) = n− 1,

where mℓ2(n) is the minimum ℓ2-dimension, defined as the minimum integer
m such that every ℓ2-embeddable distance on n points embeds in ℓm2 . Some
other formulations for the ℓ2-dimension of a distance space can be derived using
Lemma 6.2.7 and relation (6.2.10) below.

Lemma 6.2.7. Let (X,d) be a distance space with associated distance matrix
D and let x0 ∈ X. Then,

rank Px0(X,d) = rank (I − 1

n
J)D(I − 1

n
J).

(Here, J denotes the all-ones matrix and I the identity matrix.)

Proof. One can bring the matrix (I − 1
nJ)D(I − 1

nJ) to Px0(X,d) by performing
some row/column manipulations.

Conditions about the matrix Px0(X,d) can be reformulated in terms of the
Cayley-Menger determinants. These determinants are a classical notion in the
theory of distance geometry (see Blumenthal [1953]). They are defined in the
following manner. Let (X,d) be a finite distance space with, say, X = {1, . . . , n}
and let D be its associated distance matrix. Then, the (n+1)×(n+1) symmetric
matrix:
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(6.2.8) CM(X,d) :=

(
D e
eT 0

)

(where e denotes the all-ones vector) is called the Cayley-Menger matrix of the
distance space (X,d) and det CM(X,d) is its Cayley-Menger determinant. The
matrices CM(X,d) and Px0(X,d) are, in fact, closely related. To see it, consider

the 2 × 2 submatrix

(
0 1
1 0

)
of CM(X,d), whose first row/column is indexed

by the element x0 of X and whose second row/column corresponds to the new
(n+ 1)-th entry in CM(X,d). One can easily verify that its Schur complement
in the matrix CM(X,d) coincides with the matrix −2Px0(X,d). Therefore,

(6.2.9) det CM(X,d) = (−1)|X|2|X|−1 detPx0(X,d),

(6.2.10) rank CM(X,d) = rank Px0(X,d) + 2.

Positive semidefiniteness for Px0(X,d) can also be expressed in terms of the
Cayley-Menger determinants. Indeed, Px0(X,d) is positive semidefinite if and
only if every principal submatrix has a nonnegative determinant. But, a principal
submatrix of Px0(X,d) is of the form Px0(Y, d) for some Y ⊆ X with x0 ∈ Y .
Hence, we have the following result, which was formulated under this form in
Menger [1954].

Proposition 6.2.11. Let (X,d) be a finite distance space. Then,

(i) (X,
√
d) is ℓ2-embeddable if and only if (−1)|Y | det CM(Y, d) ≥ 0 for all

Y ⊆ X (or for all Y ⊆ X containing a given point x0 ∈ X).

(ii) Suppose |X| = r+1; X = {x0, x1, . . . , xr}. Then, (X,
√
d) is ℓ2-embeddable

with ℓ2-dimension r if and only if (−1)k+1 det CM({x0, x1, . . . , xk}, d) > 0
for all k = 1, . . . , r.

(iii) Suppose |X| = r + 2. Then, (X,
√
d) is ℓ2-embeddable with ℓ2-dimension

r if and only if the elements of X can be ordered as x0, x1, . . . , xr, xr+1 in
such a way that (−1)k+1 det CM({x0, x1, . . . , xk}, d) > 0 for all k = 1, . . . , r
and det CM(X,d) = 0.

(iv) Suppose |X| = r + 3. Then, (X,
√
d) is ℓ2-embeddable with ℓ2-dimension r

if and only if the elements of X can be ordered as x0, x1, . . . , xr, xr+1, xr+2

in such a way that (−1)k+1 det CM({x0, x1, . . . , xk}, d) > 0 for all k =
1, . . . , r, det CM(X \ {xr+1}, d) = 0, and det CM(X \ {xr+2}, d) = 0.

Remark 6.2.12. Note that det CM(X,d) = 2d(x0, x1) ≥ 0 if |X| = 2, X =
{x0, x1}. Moreover, if |X| = 3, X = {x0, x1, x2} and if we set a := d(x0, x1),
b := d(x0, x2) and c := d(x1, x2), then one can check that

det CM(X,d) = (
√
a+

√
b+

√
c)(

√
a−

√
b−√

c)(−√a+
√
b−√

c)(−√a−
√
b+

√
c).

Hence, det CM(X,d) ≤ 0 if
√
d satisfies the triangle inequalities. That is, every

semimetric space on 3 points is ℓ2-embeddable. Moreover, if (X,d) is a distance
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space on |X| = 4 points, then (X,
√
d) is ℓ2-embeddable if and only if

√
d is a

semimetric and det CM(X,d) ≥ 0.

6.2.2 Menger’s Result

For an infinite distance space (X,d), we know from Theorem 3.2.1 that (X,d)
is L2-embeddable if and only if this property holds for every finite subspace of
(X,d). Menger [1928] shows3 that, in order to ensure embeddability in the m-
dimensional space ℓm2 , it suffices to consider the subspaces of (X,d) on m + 3
points.

Theorem 6.2.13. Given m ≥ 1, a distance space (X,d) can be isometrically
embedded in ℓm2 if and only if, for every4 Y ⊆ X with |Y | = m+ 3, (Y, d) can be
isometrically embedded in ℓm2 .

This result will follow from the following sharper statement.

Theorem 6.2.14. Given m ≥ 1, a distance space (X,d) can be isometrically
embedded in ℓm2 if and only if there exist an integer r (0 ≤ r ≤ m) and a subset
Y := {x0, x1, . . . , xr} of X such that

(i) the distance space (Y, d) can be isometrically embedded in ℓr2 but not in
ℓr−1
2 ,

(ii) for every x, y ∈ X, the distance space (Y ∪ {x, y}, d) can be isometrically
embedded in ℓr2.

Then, mℓ2(X,d) = r.

Before giving the proof, we introduce some notation. Let (X,d) and (X′, d′)
be two distance spaces and let x1, . . . , xk ∈ X, x′1, . . . , x

′
k ∈ X ′. We write:

x1, . . . , xk ∼ x′1, . . . , x
′
k

if the corresponding subspaces are isometric, i.e., if d(xi, xj) = d′(x′i, x
′
j) for all

i, j = 1, . . . , k. When x1, . . . , xk are vectors in Rn (n ≥ 1) then the distance is
implicitely supposed to be the Euclidean distance. In other words, the notation:
x1, . . . , xk ∼ x′1, . . . , x

′
k means then that ‖ xi − xj ‖2= d′(x′i, x

′
j) for all i, j.

Proof of Theorems 6.2.13 and 6.2.14. Suppose first that every subspace of (X,d)
on m + 3 points embeds in ℓm2 ; we show the existence of r and x0, . . . , xr ∈ X

3Details about this topic can also be found in Menger [1931] and in the monographs by
Menger [1954] and Blumenthal [1953]. The analogue question in the case of the L1-space will
be addressed in Section 11.1.

4In fact, the result remains valid if we only assume that (Y, d) can be isometrically embedded
into ℓm

2 for every Y ⊆ X with |Y | = m + 3 and containing a given element x0 ∈ X. This fact
will be used in Section 6.4 for the proof of Theorem 6.4.8.
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satisfying the conditions (i),(ii) from Theorem 6.2.14. For this, define r as the
smallest integer such that every subspace of (X,d) on r + 3 points embeds in
ℓr2. Then, there exists Y ⊆ X with |Y | = r + 2 and such that (Y, d) does not
embed in ℓr−1

2 . Hence, mℓ2(Y, d) = r. By Corollary 6.2.5, we can find points
x0, . . . , xr ∈ Y ⊆ X for which mℓ2({x0, . . . , xr}, d) = r. Hence, these r+1 points
satisfy the conditions (i),(ii).
Conversely, let us now suppose that there exist an integer r and some points
x0, x1, . . . , xr ∈ X satisfying the conditions (i),(ii) from Theorem 6.2.14. We
show that (X,d) embeds in ℓr2. By (i), there exist a set of vectors x′0, . . . , x

′
r ∈ Rr

(of affine rank r + 1) such that

x0, x1, . . . , xr ∼ x′0, x
′
1, . . . , x

′
r.

Given x ∈ X, the distance space ({x0, . . . , xr, x}, d) embeds in ℓr2 by (ii). Hence,
there exist vectors x0, . . . , xr, x ∈ Rr such that

x0, x1, . . . , xr, x ∼ x0, x1, . . . , xr, x.

As x′0, . . . , x
′
r ∼ x0, . . . , xr, we can find (by Lemma 2.4.1) an orthogonal transfor-

mation g of Rr mapping every xi onto x′i (for i = 0, 1, . . . , r). Setting x′ := g(x),
we obtain a vector x′ ∈ Rr such that

x0, x1, . . . , xr, x ∼ x′0, x
′
1, . . . , x

′
r, x

′.

Such a vector x′ is unique (as x′0, x
′
1, . . . , x

′
r have full affine rank r+1). Hence, this

defines a mapping x ∈ X 7→ x′ ∈ Rr . We now show that d(x, y) =‖ x′ − y′ ‖2 for
all x, y ∈ X. Let x, y ∈ X. By (ii), there exist vectors x′′0 , x

′′
1, . . . , x

′
r, x

′′, y′′ ∈ Rr

such that
x0, x1, . . . , xr, x, y ∼ x′′0, x

′′
1 , . . . , x

′′
r , x

′′, y′′.

Therefore,

x′0, x
′
1, . . . , x

′
r, x

′ ∼ x′′0, x
′′
1 , . . . , x

′′
r , x

′′ and x′0, x
′
1, . . . , x

′
r, y

′ ∼ x′′0, x
′′
1 , . . . , x

′′
r , y

′′.

Using Lemma 2.4.1, we can find an orthogonal transformation f′ (resp. f ′′) of Rr

mapping x′i to x′′i (for i = 0, 1, . . . , r) and x′ to x′′ (resp. y′ to y′′). Therefore, the
two mappings f ′ and f ′′ coincide (as they coincide on a set of full affine rank).
This implies that x′, y′ ∼ x′′, y′′. As x, y ∼ x′′, y′′, we deduce that x, y ∼ x′, y′.
This concludes the proof.

Let us observe that Theorem 6.2.13 is best possible. Indeed, there exist
distance spaces that do not embed in ℓm2 while any subspace on m+2 points does.
In other words, the order of congruence of the distance space ℓm2 = (Rm , dℓ2) is
equal to m+ 3.

Such an example can be constructed as follows. Let x0, x1, . . . , xm ∈ Rm be
the vertices of an equilateral simplex ∆ in Rm with, say, side length a. Denote
by xm+1 the center of this simplex and let b denote the Euclidean distance from
xm+1 to any vertex xi of ∆. Finally, let c denote the Euclidean distance from
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xm+1 to the hyperplane supporting any facet of ∆. We now define a distance d
on the set X := {0, 1, . . . ,m+ 1,m+ 2} by setting

d(i, j) := a for i 6= j ∈ {0, 1, . . . ,m},
d(i,m + 1) = d(i,m+ 2) := b for i = 0, 1, . . . ,m,
d(m+ 1,m+ 2) := 2c.

Now, (X,d) is not ℓm2 -embeddable (in fact, not ℓ2-embeddable). On the other
hand, every subspace of (X,d) on m + 2 points embeds in ℓm2 . (Indeed, this is
obvious for the subspaces (X \ {m + 2}, d) and (X \ {m + 1}, d). This is also
true for the subspace (X \ {i}, d) where i = 0, . . . ,m. For this, let x′i denote the
symmetric of xm+1 around the hyperplane spanned by x0, . . . , xi−1, xi+1, . . . , xm;
then,

0, . . . , i− 1, i+ 1, . . . ,m,m+ 1,m+ 2 ∼ x0, . . . , xi−1, xi+1, . . . , xm, xm+1, x
′
i.)

For instance, for dimension m = 1, the distance matrix




0 2 1 1
2 0 1 1
1 1 0 2
1 1 2 0




provides an example of a non ℓ2-embeddable metric for which every 3-point
subspace embeds on the line ℓ12.

On the other hand, Menger showed that, for a distance space (X,d) on more
than m+ 3 points, checking ℓm2 -embeddability of its subspaces on m+ 2 points
suffices for ensuring ℓm2 -embeddability of the whole space (X,d) (cf. Menger
[1931] or Blumenthal [1953]).

Theorem 6.2.15. Let (X,d) be a distance space with |X| ≥ m + 4. Then,
(X,d) is isometrically ℓm2 -embeddable if and only if (Y, d) is isometrically ℓm2 -
embeddable for every Y ⊆ X with |Y | ≤ m+ 2.

The proof of this result is based on a careful analysis of the properties of the
‘obstructions’ to Theorem 6.2.13; that is, of the distance spaces on m+ 3 points
which do not embed in ℓm2 while all their subspaces on m+ 2 points do.

6.2.3 Further Characterizations

We present here several additional equivalent characterizations for distance spaces
of negative type. The equivalence (i) ⇐⇒ (ii) in Theorem 6.2.16 below is given
in Gower [1982], (i) ⇐⇒ (iii) in Hayden and Wells [1988] and (i) =⇒ (iv) is
mentioned in Graham and Winkler [1985].

Theorem 6.2.16. Let (X,d) be a finite distance space with X = {1, . . . , n}. Let
D be the associated n×n distance matrix and let CM(X,d) be the Cayley-Menger
matrix defined by (6.2.8). Consider the following assertions.
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(i) (X,d) is of negative type.

(ii) The matrix (I − esT )(−D)(I − seT ) is positive semidefinite for any s ∈ Rn

with sT e = 1 (e denoting the all-ones vector).

(iii) The matrix CM(X,d) has exactly one positive eigenvalue.

(iv) The matrix D has exactly one positive eigenvalue (if D is not the zero
matrix).

Then, (i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv).

Proof. (i) ⇐⇒ (ii) Let s ∈ Rn with sT e = 1 and set K := I − seT and A :=
KT (−D)K. Then, for x ∈ Rn , we have that xTAx = yT (−D)y, setting y = Kx.
One checks easily that the range of K consists of the vectors y ∈ Rn such that∑n
i=1 yi = 0. Therefore, we obtain that A is positive semidefinite if and only if

yT (−D)y ≥ 0 for all y ∈ Rn such that
∑n
i=1 yi = 0, i.e., if (X,d) is of negative

type.

(i) ⇐⇒ (iii) Let x0 ∈ X. Consider the 2 × 2 submatrix C :=

(
0 1
1 0

)
of

CM(X,d) with row/column indices the two elements x0 and n+ 1. We use the
fact, already mentioned earlier, that the Schur complement of C in CM(X,d)
is equal to the matrix −2Px0(X,d). Hence, applying Lemma 2.4.4 and the fact
that C has one positive eigenvalue, we obtain that Px0(X,d) � 0 if and only if
the matrix CM(X,d) has exactly one positive eigenvalue. The result now follows
as Px0(X,d) � 0 is equivalent to (X,d) being of negative type.
(i) =⇒ (iv) The matrix D has at least one positive eigenvalue since D has all its
diagonal entries equal to 0. If (X,d) is of negative type then, by Lemma 2.4.5, D
has at most one positive eigenvalue since xTDx ≤ 0 holds for all x in an (n− 1)-
dimensional subspace of Rn . Therefore, D has exactly one positive eigenvalue.

Remark 6.2.17. Let (X,d) be a distance space with X = {1, . . . , n} and let
s ∈ Rn with sT e = 1. Set d(i, .) :=

∑
j∈X sjd(i, j) for i ∈ X and d(., .) :=∑

i,j∈X sisjd(i, j). Then the matrix A := (I − esT )(−D)(I − seT ) considered in
Theorem 6.2.16 (ii) has its entries of the form:

aij := d(i, .) + d(j, .) − d(., .) − d(i, j) for i, j ∈ X.

In the case when s := 1
ne, this matrix A was already considered by Torgerson

[1952] who showed that (X,
√
d) is ℓ2-embeddable if and only if A is positive

semidefinite.

Observe that, when (X,d) is of negative type, one can choose the vectors u1,
. . . , un providing an ℓ2-embedding of (X,

√
d) in such a way that

∑
i∈X siui = 0

and, then, the matrix 1
2A coincides with the Gram matrix of u1, . . . , un (which

shows again the equivalence of (i) and (ii) in Theorem 6.2.16). In particular, if
x0 is a given element of X and s is the corresponding coordinate vector, then
1
2A coincides with the matrix Px0(X,d) augmented by a zero row and column in
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position x0.

The next result considers the case when the distance matrixD has a constant
row sum (necessarily equal to eTDe

eT e
); that is, when the all-ones vector e is an

eigenvector of D. It can be found in Hayden and Tarazaga [1993]; see also
Alexander [1977].

Theorem 6.2.18. Let (X,d) be a distance space with X = {1, . . . , n} and with
nonzero distance matrix D. The following assertions are equivalent.

(i) (X,d) is of negative type and D has a constant row sum.

(ii) D has exactly one positive eigenvalue and D has a constant row sum.

(iii) There exist vectors u1, . . . , un providing an ℓ2-embedding of (X,
√
d) that

lie on a sphere whose center coincides with the barycentrum of the ui’s.

Moreover, under these conditions, mℓ2(X,
√
d) = rank D − 1 and the radius r

of the sphere containing the vectors ui providing an ℓ2-embedding of (X,
√
d) is

given by: r2 = 1
2n

∑
j∈X dij .

Proof. The implication (i) =⇒ (ii) is contained in Theorem 6.2.16.
(ii) =⇒ (iii) By assumption,De = λe where λ := 1

ne
TDe and the matrix λ

nee
T−D

is positive semidefinite. Hence, there exist vectors u1, . . . , un such that λ
n −dij =

vTi vj for all i, j ∈ X. Therefore, dij = (‖ ui − uj ‖2)
2 for i, j ∈ X, after setting

ui := 1√
2
vi (i ∈ X). By construction, the ui’s lie on the sphere centered at the

origin with squared radius λ
2n and their barycentrum is the origin since

(‖
∑

i∈X
vi ‖2)

2 =
∑

i,j∈X
vTi vj =

∑

i,j∈X
(
λ

n
− dij) = nλ− eTDe = 0.

Moreover, mℓ2(X,
√
d) is equal to the rank of the system (u1, . . . , un), i.e., to the

rank of matrix λ
nee

T −D which can be easily verified to be equal to rank D− 1.

(iii) =⇒ (i) Assume that u1, . . . , un provide an ℓ2-embedding of (X,
√
d) and that∑

i∈X ui = 0 and ‖ ui ‖2= r for all i ∈ X, for some r > 0. Then,

∑

j∈X
dij =

∑

j∈X
((‖ ui ‖2)

2 + (‖ uj ‖2)
2 − 2uTi uj) = 2nr2

does not depend on i ∈ X. This also shows the desired value for the radius r.

6.3 A Chain of Implications

We summarize in this section the implications existing between the properties
of being L1-, L2-embeddable, of negative type, and hypermetric.

Theorem 6.3.1. Let (X,d) be a finite distance space with associated distance
matrix D. Consider the following assertions.
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(i) (X,d) is L2-embeddable.

(ii) (X,d) is L1-embeddable.

(iii) (X,d) is hypermetric.

(iv) (X,d) is of negative type.

(v) (X,
√
d) is L2-embeddable.

(vi) D has exactly one positive eigenvalue.

We have the chain of implications: (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) ⇐⇒ (v) =⇒
(vi).

Proof. The implication (i) =⇒ (ii) is a classical result in analysis; see Propo-
sition 6.4.12 below for a proof. The implication (ii) =⇒ (iii) follows from
Lemma 6.1.7, and (iii) =⇒ (iv) from Corollary 6.1.4. Finally, (iv) ⇐⇒ (v)
holds by Theorem 6.2.2 and (iv) =⇒ (vi) by Theorem 6.2.16.

Example 6.3.2. Let K2,3 denote the complete bipartite graph with node set
{x1, x2, x3}∪{y1, y2} and let d(K2,3) denote its path metric. Then, d(K2,3)(xi, xj)
= d(K2,3)(y1, y2) = 2 and d(K2,3)(xi, yj) = 1. Hence, d(K2,3) violates the pen-
tagonal inequality (6.1.9). See Figure 6.3.3 where the numbers into parentheses
indicate how to choose b1, . . . , b5 so as to obtain Q(b)Td(K2,3) > 0. Therefore,
d(K2,3) is not hypermetric. Hence, d(K2,3) is not ℓ1-embeddable. In fact, d(K2,3)
is not even of negative type since the distance matrix of K2,3 has two positive
eigenvalues.

(1)

(1)
(-1)

(-1)

(1)

x

x

x

y

y

1

2

3

1

2

distance 1

distance 2

Figure 6.3.3: The path metric of K2,3 is not 5-gonal

Remark 6.3.4. Singular ℓ1-distance matrices. Let (X, d) be a finite distance

space. If (X, d) is ℓp-embeddable for some 1 ≤ p ≤ 2, then (X, d) is ℓ1-embeddable

(recall Remark 3.2.4) and, therefore, its distance matrix has exactly one positive eigen-

value. Let v1, . . . , vn be distinct points of Rm (m ≥ 2). It can be observed from

results of Schoenberg [1937, 1938a, 1938b] that, for 1 < p ≤ 2, the ℓp-distance matrix

(‖ vi − vj ‖p)
n
i,j=1 has n − 1 negative eigenvalues, i.e., is nonsingular. This is not true

for p = 1. For instance, the ℓ1-distance matrix of the vectors v1 = (0, 0), v2 = (1, 0),
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v3 = (0, 1) and v4 = (1, 1), is singular. Several characterizations have been given for

the configurations of distinct points v1, . . . , vn ∈ Rm (m ≥ 2) whose ℓ1-distance matrix

(‖ vi − vj ‖1) is nonsingular (see Reid and Sun [1993]; see also Lin and Pinkus [1993]

for applications to ridge functions interpolation). In particular, let A = (aij) denote the

n×n matrix whose entry aij is defined as the number of positions where the coordinates

of the vectors vi and vj coincide (i.e., m−aij is equal to the Hamming distance between

vi and vj). The matrix A is positive semidefinite. Moreover, A is positive definite if and

only if the matrix (‖ vi − vj ‖1)
n
i,j=1 is nonsingular.

The implication (ii) =⇒ (iii) of Theorem 6.3.1 is, in general, strict (as was
first observed by Assouad [1977] and Avis [1981]). It is strict5, in particular, if
7 ≤ |X| < ∞. In other words, the inclusion CUTn ⊆ HYPn is strict for n ≥ 7.
To see it, it suffices to exhibit an inequality which defines a facet for CUTn and
is not hypermetric. Many such inequalities are described in Part V.

However, there are many examples of classes of distance spaces (X,d) for
which the properties of being hypermetric and L1-embeddable are equivalent.
Such examples with X infinite will be presented in Chapter 8. We summarize
below what is known about this question.

Remark 6.3.5. We give here a list of distance spaces (X,d) for which L1-
embeddability can be characterized by a set I of inequalities that are all hyper-
metric or of negative type.

(i) (Vn, d) with n ≤ 6; I consists of the hypermetric inequalities, i.e., CUTn =
HYPn for n ≤ 6 (see Section 30.6). More precisely, I consists of the p-gonal
inequalities with p = 3, 5 in the case n = 5, and p = 3, 5, 7 in the case n = 6.

(ii) A normed space (Rm , d‖.‖); I consists of the negative type inequalities (see
Theorem 8.3.1).

(iii) A normed space (Rm , d‖.‖) whose unit ball is a polytope; I consists of the
7-gonal inequalities (see Theorem 8.3.2).

(iv) (L, dv) where (L,�) is a poset lattice, v is a positive valuation on L, and
dv(x, y) := v(x ∨ y) − v(x ∧ y) for x, y ∈ L; I consists of the 5-gonal inequalities
or, equivalently, I consists of the negative type inequalities (see Theorem 8.1.3
and Example 8.2.6).

(v) (A, d) where A is a family of subsets of a set Ω which is stable under the
symmetric difference, v is a nonnegative function on A such that v(∅) = 0, and
d(A,B) := v(A△B) for A,B ∈ A; I consists of the inequalities of negative type
(see Corollary 8.2.8).

5This implication remains strict in the case X = N . For this, consider for instance the
distance d on N obtained by taking iterative spherical t-extensions (see Section 7.3) of the path
metric of the Schläfli graph G27. Hence, dij is the shortest length of a path joining i and j
in G27 if i and j are both nodes of G27 and dij = t otherwise. For t ≥ 4

3
, d is hypermetric

(by Proposition 14.4.6), but d is not L1-embeddable (since the path metric of G27 lies on an
extreme ray of the hypermetric cone on 27 points; see Section 16.2).
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(vi) The graphic space (V, d(G)) where G is a connected bipartite graph with
node set V ; I consists of the 5-gonal inequalities (see Theorem 19.2.1).

(vii) The graphic space (V, d(G)) where G is a connected graph on at least 37
nodes and having a node adjacent to all other nodes; I consists of the negative
type inequalities and the 5-gonal inequalities (see Corollary 17.1.10 (i)).

(viii) The graphic space (V, d(G)) where G is a connected graph on at least 28
nodes and having a node adjacent to all other nodes; I consists of the hyperme-
tric inequalities (see Corollary 17.1.10 (ii)).

We conclude with mentioning two examples of application of negative type
inequalities to geometric questions, taken from Deza and Maehara [1994]. The
first one concerns the following theorem of Rankin [1955] (related to the problem
of determining the maximum number of disjoint balls that can be packed in a
given ball).

Theorem 6.3.6. Let R < 1√
2

and let NR denote the maximum number N

of points x1, . . . , xN that can be placed in a closed (Euclidean) ball of radius R
in such a way that ‖ xi−xj ‖2≥ 1 for all i 6= j = 1, . . . ,N . Then, NR = ⌊ 1

1−2R2 ⌋.

Proof. A short proof can be given using negative type inequalities. Suppose
x1, . . . , xN lie in the ball of center x0 and radius R and that ‖ xi−xj ‖2≥ 1 for all
i 6= j = 1, . . . ,N . Applying the negative type inequality Q(−n, 1, . . . , 1)Tx ≤ 0
to the distance d on {x0, x1, . . . , xN} defined by d(xi, xj) := (‖ xi − xj ‖2)

2 for
all i, j, we obtain the inequality:

N
N∑

i=1

d(x0, xi) ≥
∑

1≤i<j≤N
d(xi, xj).

As d(x0, xi) ≤ R2 and d(xi, xj) ≥ 1 for i 6= j ≤ n this implies that N2R2 ≥ (N
2

)
;

that is, N ≤ NR := ⌊ 1
1−2R2 ⌋. Equality is attained by considering for x1, . . . , xN

the N := NR vertices of a regular (N − 1)-dimensional simplex with side length
1 and x0 := 1

N

∑
i xi.

The next result concerns a generalization of the well-known parallelogram
theorem to higher dimensions. This theorem asserts that, given four distinct
points x1, x2, y1, y2, the following inequality holds:

(‖ x1 − y1 ‖2)
2 + (‖ x1 − y2 ‖2)

2 + (‖ x2 − y1 ‖2)
2 + (‖ x2 − y2 ‖2)

2

≥ (‖ x1 − x2 ‖2)
2 + (‖ y1 − y2 ‖2)

2

with equality if and only if x1y1x2y2 is a parallelogram.
Given a polytope P , a line segment joining two vertices of P is called a

diagonal of P if it is not contained in any proper face of P . An n-parallelotope
is the vector sum of n segments with a common endpoint such that no segment
is contained in the affine hull of the others (thus, a parallelogram if n = 2).
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Theorem 6.3.7. Let P be a polytope in Rn that is combinatorially equivalent to
an n-dimensional hypercube, let G(P ) := (VP , EP ) denote its 1-skeleton graph,
and let DP denote the set of diagonals of P . Then,

∑

xy∈EP

(‖ x− y ‖2)
2 ≥

∑

xy∈DP

(‖ x− y ‖2)
2,

with equality if and only if P is an n-parallelotope.

Proof. The proof is by induction on n. It relies essentially on the following
identity:

n∑

i,j=1

(‖ xi − yj ‖2)
2 −

∑

1≤i<i′≤n
(‖ xi − xi′ ‖2)

2 + (‖ yi − yi′ ‖2)
2 = n2(‖ p− q ‖2)

2

for any points x1, . . . , xn, y1, . . . , yn and setting p := 1
n

∑n
i=1 xi, q := 1

n

∑n
i=1 yi.

See Deza and Maehara [1994] for details.

6.4 An Example: The Spherical Distance Space

We describe here a classical example of ℓ1-embeddable distance space, namely,
the spherical distance space. This is the distance space defined on a sphere S,
taking as distance between two points x, y ∈ S the quantity

(6.4.1) r · arccos

(
(x− c)T (x− y)

r2

)
,

where c denotes the center of S and r its radius. The quantity (6.4.1) is known
as the spherical distance (or great circle metric) between x and y. (This is the
geodesic distance on the sphere S between the points x and y, which coincides
with the angle between the two vectors from c to x and from c to y.) We may
clearly suppose that the sphere S is centered at the origin and, up to scaling
of the distances, that it has radius 1. Let Sm denote the m-dimensional unit
sphere, i.e.,

Sm := {x ∈ R
m+1 |

m+1∑

i=1

x2
i = 1}.

We let Sm denote the distance space (Sm, dS), where dS is the distance defined
by (6.4.1), i.e.,

(6.4.2) dS(x, y) := arccos(xT y) for all x, y ∈ Sm.

Similarly, we let Sm,r denote the distance space (Sm,r, dS), where Sm,r is the
m-dimensional sphere centered at the origin with radius r and dS is defined by
(6.4.1). So, Sm = Sm,1. The distance space Sm,r is called a spherical distance
space. We refer to Blumenthal [1953] for a detailed study of the metric properties
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of these distance spaces. We mention here some properties that are most relevant
to our treatment.

x
y

Figure 6.4.3: H(x)△H(y) is the shaded region

A first basic property of spherical distance spaces is that they are ℓ1-embedda-
ble. For this, let us consider for a point x ∈ Sm the hemisphere H(x) contain-
ing x; that is, H(x) consists of the points y ∈ Sm such that dS(x, y) ≤ π

2 or,
equivalently, xT y ≥ 0. We also consider the measure µ on Sm defined by

µ(A) :=
vol(A)

vol(Sm)
for A ⊆ Sm.

(Here, vol(A) denotes the m-dimensional volume of A.) Hence, Sm equipped
with the measure µ is a probability space. Then,

(6.4.4) µ(H(x)△H(y)) =
1

π
arccos(xT y) (=

1

π
dS(x, y)) for x, y ∈ Sm.

This relation can be easily verified; it was first observed by Kelly [1970b]. For an
illustration in the case m = 2, see Figure 6.4.3. The result from Theorem 6.4.56 7

below follows as an immediate consequence, using Proposition 4.2.1.

Theorem 6.4.5. Given u1, . . . , un ∈ Sm, the vector (1
π arccos(uTi uj))1≤i<j≤n

belongs to the cut polytope CUT2
n . Therefore, the spherical distance space Sm,r

6In other words, Theorem 6.4.5 indicates how to derive inequalities valid for the pairwise
angles among a set of n unit vectors; namely, by considering valid inequalities for the cut
polytope CUT2

n . This fact will be reminded in Section 31.2.
7There is no analogue of Theorem 6.4.5 for the closely related elliptic distance spaces. The

elliptic distance space Eℓm is obtained from the spherical distance space Sm by identifying
antipodal points; thus taking min(dS(x, y), π − dS(x, y)) as distance between x, y ∈ Sm. The
elliptic distance space Eℓm is a semimetric space (Blumenthal [1953]) but it is not hypermetric
(in fact, not 5-gonal (Kelly [1970b])). One more divergence between spherical and elliptic
distance spaces lies in the determination of their congruence orders. As we see in Theorem 6.4.8
the order of congruence of the spherical distance space Sm can be easily determined; on the
other hand the order of congruence of the elliptic distance space Eℓm is known only in dimension
m ≤ 2 (see Seidel [1975] and precise references therein).
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is isometrically ℓ1-embeddable for every r > 0, m ≥ 1.

In fact, isometric subspaces of spherical distance spaces and of Euclidean
distance spaces are very closely related notions, as the results below indicate.

Let d be a distance on the set Vn := {1, . . . , n}. Consider the symmetric
matrix8 A = (aij)

n
i,j=1 defined by

aij := cos(dij) for i, j = 1, . . . , n.

Hence, the diagonal entries of A are all equal to 1. Moreover, let d̃ denote the
distance on the set Vn ∪ {x0} (x0 is a new element not belonging to Vn) defined
by

d̃(x0, i) = 1 for i ∈ Vn,

d̃(i, j) = 2 − 2 cos(d(i, j)) = 4 sin2(d(i,j)2 ) for i, j ∈ Vn.

Proposition 6.4.6. Let m ≥ 1 be an integer and d, d̃, and A be defined as
above. The following assertions are equivalent.

(i) The distance space (Vn, d) is an isometric subspace of the m-dimensional
spherical distance space Sm.

(ii) dij ∈ [0, π] for all i, j ∈ Vn and the matrix A is positive semidefinite with
rank A ≤ m+ 1.

(iii) dij ∈ [0, π] for all i, j ∈ Vn and the distance space (Vn ∪ {x0}, d̃) can be
isometrically embedded into ℓm+1

2 .

Proof. The equivalence (i) ⇐⇒ (ii) is clear. Indeed, (Vn, d) is an isometric
subspace of Sm if and only if there exist u1, . . . , un ∈ Sm such that cos(d(i, j)) =
uTi uj for all i, j ∈ Vn; that is, if the matrix A is positive semidefinite with rank
≤ m+1. The equivalence (ii) ⇐⇒ (iii) follows from Corollary 6.2.5 and the fact
that A coincides with the matrix Px0(Vn ∪ {x0}, d̃).

Corollary 6.4.7. A distance space (Vn, d) embeds isometrically in Sm,r (for
some m ≥ 1) if and only if dij ∈ [0, πr] for all i, j ∈ Vn and the matrix

A := (cos(
dij

r ))ni,j=1 is positive semidefinite. Then, the smallest m such that
(Vn, d) embeds into Sm,r is m = rank A− 1.

Using Proposition 6.4.6, one can derive a compactness result for spherical
distance spaces analogue to the compactness result for Euclidean spaces from
Theorem 6.2.13; this result can be found in Blumenthal [1953].

Theorem 6.4.8. Given m ≥ 1, a distance space (X,d) can be isometrically
embedded into the m-dimensional spherical distance space Sm if and only if the

8We will study in detail in Section 31.3 the set of positive semidefinite matrices with all
diagonal entries equal to 1. We will use, in particular, Theorem 6.4.5.
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same holds for every subspace (Y, d) where Y ⊆ X with |Y | = m+ 3.

In particular, the order of congruence of the spherical distance space Sm is equal
to m+ 3. To see it, consider the distance space (X,d), where |X| ≥ m+ 3 and
dij := arccos(− 1

m+1 ) for all i 6= j ∈ X. Then, (X,d) does not embed in Sm
(because the matrix (cos(dij))i,j∈X is not positive semidefinite). On the other
hand, every subspace (Y, d) with |Y | = m + 2 embeds in Sm (as (cos(dij))i,j∈Y
is positive semidefinite with rank m+ 1).

There are further intimate links between the spherical and Euclidean dis-
tances. In fact, as Schoenberg [1935] observed, every set of affinely independent
vectors equipped with the Euclidean distance can be isometrically embedded
into some spherical distance space. And, if the vectors are not independent,
their Euclidean distances can be realized asymptotically as limits of spherical
distances. This permits to derive the well-known implication: “ℓ2-embeddable
=⇒ ℓ1-embeddable”.

Proposition 6.4.9. Let u0, u1, . . . , un ∈ Rn be affinely independent. Then, the
distance space ({u0, u1, . . . , un}, dℓ2) is an isometric subspace of Sn,r for some r
large enough.

Proof. We can suppose without loss of generality that u0 := 0. By assumption,
the matrix P = (pij := uTi uj)

n
i,j=1 is positive definite. Let A(r) be the (n+ 1) ×

(n + 1) symmetric matrix with entries aij := cos(
dij

r ) for i, j = 0, 1, . . . , n. In
view of Corollary 6.4.7, it suffices to show that A(r) ≻ 0 for r large enough. In
what follows, we write A ∼ B for two matrices A and B if A ≻ 0 ⇐⇒ B ≻ 0.
Clearly, A(r) ∼ B(r), where the 00-th entry of B(r) is b00 := 1, its 0i-th entry is
b0i := a0i− 1 (for i = 1, . . . , n) and its ij-th entry is bij := aij − a0i− a0j +1 (for
i, j = 1, . . . , n) (to see it, subtract the row indexed by 0 in A(r) to every other
row and, then, the column indexed by 0 to every other column). We now use
the fact that cos x = 1 − 1

2x
2 + o(x4) when x −→ 0. Hence, each entry of B(r)

can be expressed as b0i = − 1
2r2pii + o( 1

r4 ), bij = 1
r2 pij + o( 1

r4 ). Therefore, after
suitably scaling B(r), we obtain that A(r) ∼ B(r) ∼ C(r), where the 0-th entry
of C(r) is 4r2, its 0i-th entry is pii+o( 1

r2
), and its ij-th entry is pij +o( 1

r2
). One

can now easily verify that C(r) ≻ 0 for any r large enough. (Note here that it
suffices to check that the n+1 principal subdeterminants of C(r) disposed along
the diagonal are positive, which holds for r large enough by the assumption that
P ≻ 0.)

Remark 6.4.10. Proposition 6.4.9 extends to an arbitrary set of vectors in the
case when they all lie on a common line. But, it does not extend to an arbitrary
set of vectors in dimension ≥ 2. As counterexample, take for u1, . . . , un+1 the
vertices of an equilateral simplex and for u0 the barycentrum of the simplex.
Then, the distance space ({u0, u1, . . . , un+1}, dℓ2) does not embed in any spheri-
cal distance space.
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Let us now indicate how the Euclidean distance can be approximated by spherical
distances9. For this, let u1, . . . , un ∈ Rm . We are interested in evaluating their
mutual Euclidean distances. So, set dij :=‖ ui − uj ‖2 for i, j = 1, . . . , n. We
show how to express d as a limit of distances d(r) (when r −→ ∞) where each
d(r) can be isometrically embedded in Sm,r. The idea for this is intuitively very
simple. Namely, for r > 0 consider the sphere S(r) in the space Rm+1 with center
c := (0, . . . , 0, r) and radius r. One can visualize S(r) as a sphere lying on top of
Rm , being viewed as the hyperplane xm+1 = 0 in Rm+1 . Every vector u ∈ Rm

with ‖ u ‖2≤ r can be ‘lifted’ to a point u(r) ∈ S(r), by setting

u(r) :=

(
u, r −

√
r2 − (‖ u ‖2)2

)
.

Let r ≥ maxni=1 ‖ ui ‖2. For i = 1, . . . , n, let u
(r)
i ∈ S(r) be the ‘lifting’ of ui as

defined above. Set

d(r)(i, j) := r · arccos

(
(ui − c)T (uj − c)

r2

)
for i, j = 1, . . . , n.

So, d(r)(i, j) represents the spherical distance between u
(r)
i and u

(r)
j on the sphere

S(r). Clearly, this length converges to the Euclidean distance ‖ ui − uj ‖2 as r
tends to infinity, i.e.,

(6.4.11) lim
r−→∞ d(r)(i, j) =‖ ui − uj ‖2 .

In a precise way, one can estimate d(r)(i, j) for large r as follows:

d(r)(i, j) = r · arccos

(√
r2−(‖ui‖2)2

√
r2−(‖uj‖2)2+uT

i uj

r2

)

= r · arccos

(√
1 − (‖ui‖2)2

r2

√
1 − (‖uj‖2)2

r2
+

uT
i uj

r2

)

≈ r · arccos
(
1 − (‖ui−uj‖2)2

2r2

)
≈‖ ui − uj ‖2 .

(Here, we use the fact that
√

1 − x ≈ 1 − 1
2x and arccos(1 − x2) ≈

√
2x as

x −→ 0.)

Proposition 6.4.12. For a distance space (X,d),

d is isometrically ℓ2-embeddable =⇒ d is isometrically ℓ1-embeddable.

Proof. This follows from the above observations, (6.4.11) and Theorem 6.4.5.

9This fact was already observed in Kelly [1975].
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6.5 An Example: Kalmanson Distances

We mention here another class of ℓ1-embeddable semimetrics arising from the
so-called Kalmanson distances. These distances present moreover the interest-
ing feature that they yield polynomial-time solvable instances of the traveling
salesman problem.

Let d be a distance on the set Vn = {1, . . . , n}. We say that d is a Kalmanson
distance if it satisfies the condition:

max(dij + drs, dis + djr) ≤ dir + djs

for all 1 ≤ i ≤ j ≤ r ≤ s ≤ n. In this definition, the ordering of the elements
is important; so we also say that d is a Kalmanson distance with respect to the
ordering 1, . . . , n. Moreover, it is convenient to visualize the elements 1, . . . , n as
being ordered along a circuit in that circular order. For 1 ≤ i < j ≤ n, set

αij(d) := dij + di+1,j+1 − di,j+1 − di+1,j

(the indices being taken modulo n) and [i, j] := {i, i + 1, . . . , j − 1, j}. Chepoi
and Fichet [1996] observed the following fact.

Lemma 6.5.1. Every distance d on Vn can be decomposed as

2d =
∑

1≤i<j≤n
αij(d) δ([i + 1, j]).

Proof. It is a simple verification.

We introduce one more definition. A distance d on Vn is said to be circular
decomposable if d can be decomposed as

d =
∑

1≤i<j≤n
αijδ([i + 1, j])

for some nonnegative scalars αij (1 ≤ i < j ≤ n); hence, it is ℓ1-embeddable. As
all αij(d)’s are nonnegative if d is a Kalmanson distance, we deduce from Lemma
6.5.1 that every Kalmanson distance is circular decomposable. It can be easily
verified that, conversely, every circular decomposable distance is a Kalmanson
distance. Therefore, we have the following result10.

Proposition 6.5.2. A distance d is a Kalmanson distance if and only if it is
circular decomposable (with respect to the same ordering).

Example 6.5.3. Here are some examples of Kalmanson distances. First, the
path metric of a weighted tree is a Kalmanson distance for some ordering of

10The equivalence between Kalmanson distances and circular decomposable distances was
proved earlier by Christopher, Farach and Trick [1996]; their proof is, however, more compli-
cated than the one presented here, due to Chepoi and Fichet [1996].
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the nodes of the tree (Bandelt and Dress [1992]). As another example, consider
a set of points X := {x1, . . . , xn} in the plane R2 such that the xi’s lie on
the boundary of their convex hull and occur in that circular order along the
boundary. Then, the set X equipped with the Euclidean distance11 dℓ2 provides
a Kalmanson distance with respect to the given ordering (Kalmanson [1975]).
To see it, consider four points xi, xj , xr, xs occurring in that order along the
boundary. Then, the segments [xi, xr] and [xj , xs] intersect in a point y. We
obtain that

dℓ2(xi, xj) + dℓ2(xr, xs) ≤ dℓ2(xi, y) + dℓ2(y, xj) + dℓ2(xr, y) + dℓ2(y, xs)
= dℓ2(xi, xr) + dℓ2(xj, xs).

From a computational point of view, Deineko, Rudolf and Woeginger [1995]
show that one can test whether a distance on n points is a Kalmanson distance
with respect to some ordering of the elements and find such an ordering in
time O(n2 log n). We conclude with mentioning an application to the traveling
salesman problem.

Remark 6.5.4. An application to the traveling salesman problem. The
traveling salesman problem12 can be formulated as follows. Given a distance d
on Vn, find a Hamiltonian circuit (i1, . . . , in) whose weight:

n−1∑

h=1

d(ih, ih+1) + d(in, i1)

is minimum. This is an NP-hard problem. The problem remains NP-hard for
Euclidean distances (that is, if d represents Euclidean distances among a set of
points in some space Rm) and, thus, for ℓ1-distances. However, as was already
observed by Kalmanson [1975], the traveling salesman problem can be solved
very easily for Kalmanson distances. Indeed, suppose that d is a Kalmanson
distance on Vn with respect to the ordering 1, . . . , n. Then, the Hamiltonian
circuit (1, . . . , n) has minimum weight. Indeed, from Lemma 6.5.1, we obtain
that the weight of the circuit (1, . . . , n) is equal to

∑
1≤i<j≤n αij(d). On the

other hand, the quantity:
∑

1≤i<j≤n αij(d) is a lower bound for the weight of
any Hamiltonian circuit (since a circuit and a cut meet in at least two edges).

11The same holds if we consider an arbitrary norm metric on R 2 instead of the Euclidean
distance or, more generally, a projective metric (to be defined later).

12The reader may consult Lawler, Lenstra, Rinnoy Kan and Shmoys [1985] for detailed in-
formation on this problem.
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We describe here several operations which permit to extend a given distance
on Vn to a distance on Vn+1. Examples of such operations include the gate
extension operation, the antipodal extension operation, the spherical extension
operation, which are described, respectively, in Sections 7.1, 7.2 and 7.3. We
also consider the direct product, the tensor product, and the 1-sum operations
in Sections 7.5 and 7.6. We discuss, in particular, conditions under which these
operations preserve metric properties such as ℓ1- or hypercube embeddability,
the hypermetric and negative type conditions, or membership in the cut lattice.
The cut lattice Ln is defined by

Ln := {
∑

S

λSδ(S) | λS ∈ Z for all S}.

More information on Ln will be given in Section 25.1. In Section 7.4, we treat in
detail the example of the cocktail-party graph. This graph plays, in fact, a cen-
tral role in the theory of ℓ1-embeddings. Indeed, it is one of the possible factors
(besides the half-cube graph and the Gosset graph) that may enter the canoni-
cal metric representation of a hypermetric or ℓ1-graph (see Theorems 14.3.6 and
14.3.7). The specificity of the cocktail-party graph is also demonstrated by the
following result of Cameron, Goethals, Seidel and Shult [1976]: The only con-
nected regular graphs on n > 28 nodes whose adjacency matrix has minimum
eigenvalue ≥ −2 are line graphs and cocktail-party graphs.

7.1 The Gate Extension Operation

Let d be a distance on Vn = {1, . . . , n} and let α ∈ R+ . We define a distance d′

on Vn+1 = Vn ∪ {n+ 1} by setting

(7.1.1)





d′(1, n+ 1) = α,
d′(i, n+ 1) = α+ d(1, i) for 2 ≤ i ≤ n,
d′(i, j) = d(i, j) for 1 ≤ i < j ≤ n.

The distance d′ is called a gate extension of d and is denoted by gatα(d). This
operation will be used especially in the case α = 0; then, gat0(d) is also called the
gate 0-extension (or, simply, 0-extension) of d. By construction, gatα(d) satisfies
the following triangle equalities:

d′(i, n+ 1) = d′(1, n+ 1) + d′(1, i)
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for all i = 2, . . . , n. From this follows immediately that any R+ -realization of
gatα(d) is necessarily of the form

gatα(d) =
∑

S⊆Vn,16∈S
λSδ(S) + αδ({n + 1}),

where d =
∑
S⊆Vn,16∈S λSδ(S). The next result can be easily checked.

Proposition 7.1.2. Let d be a distance on Vn and let α ∈ R.

(i) gatα(d) is ℓ1-embeddable (resp. ℓ1-rigid) if and only if α ≥ 0 and d is
ℓ1-embeddable (resp. ℓ1-rigid).

(ii) gatα(d) is hypercube embeddable (resp. h-rigid) if and only if α ∈ Z+ and
d is hypercube embeddable (resp. h-rigid).

(iii) gatα(d) ∈ Ln+1 if and only if α ∈ Z and d ∈ Ln.

(iv) gatα(d) is hypermetric (resp. of negative type) if and only if α ≥ 0 and d
is hypermetric (resp. of negative type).

7.2 The Antipodal Extension Operation

Let d be a distance on the set Vn = {1, . . . , n} and let α ∈ R+ . We define a
distance d′ on the set Vn+1 = Vn ∪ {n+ 1} by setting

(7.2.1)





d′(1, n+ 1) = α,
d′(i, n+ 1) = α− d(1, i) for 2 ≤ i ≤ n,
d′(i, j) = d(i, j) for 1 ≤ i < j ≤ n.

The distance d′ is called an antipodal extension of d and is denoted by antα(d).
(Compare with the definition of the gate extension gatα(d) from (7.1.1).) Note
that antα(d) satisfies the triangle equalities:

(7.2.2) d′(1, n+ 1) = d′(1, i) + d′(i, n+ 1)

for all i = 2, . . . , n (so, the new point “n + 1” is “antipodal” to the point “1”).
If we apply the antipodal extension operation iteratively n times, starting from
d, we obtain a distance on 2n points, denoted by Antα(d), and called the full
antipodal extension of d. So, Antα(d) is defined by

(7.2.3)





Antα(d)(i, n + i) = α for 1 ≤ i ≤ n,
Antα(d)(i, n + j) = α− d(i, j) for 1 ≤ i 6= j ≤ n,
Antα(d)(i, j) = d(i, j) for 1 ≤ i 6= j ≤ n,
Antα(n+ i, n+ j) = d(i, j) for 1 ≤ i 6= j ≤ n.

These two operations are treated in detail in Deza and Laurent [1992e].
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Observe that, if d =
∑
S∈S λSδ(S), where S is a collection of nonempty proper

subsets of Vn, then

(7.2.4)

antα(d) =
∑

S∈S|16∈S
λSδ(S ∪ {n+ 1}) +

∑

S∈S|1∈S
λSδ(S)

+(α−
∑

S∈S
λS)δ({n+ 1}).

Conversely, every decomposition of antα(d) as a nonnegative combination of
nonzero cut semimetrics is of the form (7.2.4), since antα(d) satisfies the triangle
equalities (7.2.2) for i = 2, . . . , n. In particular, if antα(d) is ℓ1-embeddable, then
the size of any of its R+ -realizations is equal to α. Similarly, any R+ -realization
of Antα(d) is of the form

(7.2.5) Antα(d) =
∑

S∈S
λSδ(S ∪ S∗) + (α−

∑

S∈S
λS)δ({n + 1, . . . , 2n}),

where we set S∗ := {n + i | i ∈ Vn and i 6∈ S}. These observations permit to
establish the next result.

Proposition 7.2.6. Let d be a distance on Vn and α ∈ R.

(i) antα(d) (resp. Antα(d)) is ℓ1-embeddable if and only if α ≥ sℓ1(d) and d is
ℓ1-embeddable. Moreover, antα(d) (resp. Antα(d)) is ℓ1-rigid if and only
if d is ℓ1-rigid.

(ii) antα(d) (resp. Antα(d)) is hypercube embeddable if and only if d is hy-
percube embeddable, α ∈ Z+, and α ≥ sh(d). Moreover, antα(d) (resp.
Antα(d)) is h-rigid if and only if d is h-rigid.

(iii) antα(d) (resp. Antα(d)) belongs to Ln+1 if and only if d ∈ Ln and α ∈ Z.

Proposition 7.2.6 is a useful tool; it permits, for instance, to construct exam-
ples of semimetrics that are ℓ1-embeddable and belong to the cut lattice, but are
not hypercube embeddable. Indeed, let d be a hypercube embeddable distance
and suppose that we can find an integer α such that

sℓ1(d) ≤ α < sh(d).

Then, antα(d) is ℓ1-embeddable and belongs to the cut lattice, but is not hyper-
cube embeddable.

Example 7.2.7. Let 211n denote the distance on Vn that takes the value 2 on
all pairs. Then, for n ≥ 5, sh(211n) = n and sℓ1(211n) < 4 (see Example 4.3.7
and Section 7.4). Therefore, for n ≥ 5, the metric ant4(211n) (which takes value
2 on all pairs except value 4 on one pair) is ℓ1-embeddable, belongs to the cut
lattice, but is not hypercube embeddable. (The metric Ant4(211n) has the same
properties.) Moreover, the metric ant4(211n) is ℓ1-rigid if and only if 211n is ℓ1-
rigid, i.e., n = 3.
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1        2        3        4        5
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1                                 5  

10                                6

9                   7
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  {2,3,4}

{1,2,3,4,5} {5}

Figure 7.2.8: Hypercube embeddings of the path P5 and the circuit C10

Example 7.2.9. There are many examples of graphs G whose path metric
dG can be constructed as the antipodal extension of the path metric of another
graph. For instance, let Kn+1\e denote the complete graph on n+ 1 nodes with
one deleted edge. Then,

d(Kn+1\e) = ant2(d(Kn)).

This example will be treated in detail in Section 7.4, together with the case
of the cocktail-party graph. The path metric dI of the 1-skeleton graph of the
icosahedron (see, e.g., Brouwer, Cohen and Neumaier [1989] for a description of
this graph) can be expressed as

dI = Ant3 (d(∇C5))

where ∇C5 is the graph obtained by adding a new node adjacent to all nodes of
the 5-circuit C5. In fact, dI is ℓ1-rigid; see Deza and Laurent [1994a]. Also,

d(H(n, 2)) = Antn (d(H(n− 1, 2))) = Antn

(
2d

(
1

2
H(n, 2)

))

where 1
2H(n, 2) is the half-cube graph. Let Pn = (1, 2, . . . , n) and Cn = (1, 2, . . . , n)

denote the path and the circuit on n nodes. Then,

d(C2n) = Antn(d(Pn)) = Antn(2d(Cn)).

One can easily verify (see also Example 19.1.4) that

d(Pn) =
∑

1≤i≤n−1

δ({1, 2, . . . , i− 1, i}),

which, by (7.2.5), implies

d(C2n) =
∑

1≤i≤n−1

δ({1, 2, . . . , i−1, i, n+i+1, n+i+2, . . . , 2n−1, 2n})+δ({1, . . . , n}).

Figure 7.2.8 shows the path P5 and the circuit C10 together with a labeling of
their nodes (by sets) providing the ℓ1-embeddings shown above.
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7.3 The Spherical Extension Operation

Let d be a distance on Vn and let t ∈ R+ . We define a distance d′ on Vn+1 =
Vn ∪ {n+ 1} by setting

(7.3.1)

{
d′(i, n+ 1) = t for 1 ≤ i ≤ n,
d′(i, j) = d(i, j) for 1 ≤ i < j ≤ n.

The distance d′ is called the spherical t-extension of d and is denoted by spht(d).
This operation is considered in Deza and Grishukhin [1994].

Proposition 7.3.2. Let d be a distance on Vn and let t ∈ R+ .

(i) spht(d) is a semimetric if and only if 2t ≥ max(d(i, j) | 1 ≤ i < j ≤ n)
and d is a semimetric.

(ii) spht(d) ∈ Ln+1 if and only if t ∈ Z and d(i, j) is an even integer for all
1 ≤ i < j ≤ n.

(iii) If d is ℓ1-embeddable and 2t ≥ sℓ1(d), then spht(d) is ℓ1-embeddable.

(iv) If d is hypercube embeddable and 2t ≥ sh(d), then 2 · spht(d) is hypercube
embeddable.

Proof. (i), (ii) are immediate. For (iii), note that spht(d) = 1
2 (ant2t(d)+gat0(d)).

Hence, if d is ℓ1-embeddable and 2t ≥ sℓ1(d), then ant2t(d) is ℓ1-embeddable by
Proposition 7.2.6 and gat0(d) is ℓ1-embeddable by Proposition 7.1.2. This implies
that spht(d) is ℓ1-embeddable. The proof is identical for (iv).

For an integer m ≥ 2, define recursively sphmt (d) as spht(sphm−1
t (d)), after

setting sph1
t (d) := spht(d).

Lemma 7.3.3. Let d be a distance on Vn and t ∈ R+ . If d is ℓ1-embeddable and
2t ≥ sℓ1(d), then sphmt (d) is ℓ1-embeddable for each integer m ≥ 1. Moreover,

2t− t

⌈m2 ⌉
≤ sℓ1(sphmt (d)) ≤ 2t− 2t− sℓ1(d)

2m
.

Proof. As spht(d) = 1
2(ant2t(d)+gat0(d)), we can find a R+ -realization of spht(d)

of size 1
2(2t+ sℓ1(d)), i.e.,

sℓ1(spht(d)) ≤ t+
1

2
sℓ1(d).

Hence, sℓ1(spht(d)) ≤ 2t, implying that sph2
t (d) is ℓ1-embeddable. Therefore,

sphmt (d) is ℓ1-embeddable for all m ≥ 1. The upper bound from Lemma 7.3.3
follows easily by induction. For the lower bound, note that sphmt (d) contains
as a subdistance the equidistant metric t11m (taking the same value t on m
points). Therefore, sℓ1(sphmt (d)) ≥ sℓ1(t11m), where sℓ1(t11m) = 2t − t

⌈m
2
⌉ (see,

e.g., Section 7.4).
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In particular, if d is ℓ1-embeddable and 2t ≥ sℓ1(d), then

lim
m−→∞ sℓ1(sphmt (d)) = 2t.

Fichet [1992] defines the ℓ1-radius r(d) of an ℓ1-embeddable distance d as the
smallest scalar t > 0 such that spht(d) is ℓ1-embeddable. Thus,

1

2
max
i,j

dij ≤ r(d) ≤ 1

2
sℓ1(d).

For some examples of metrics (e.g., ultrametrics, path metrics of paths, etc.)
equality holds with the lower bound.

We refer to Section 14.4 for the study of conditions under which the spherical
extension operation preserves other metric properties, such as hypermetricity or
the negative type property.

7.4 An Example: The Cocktail-Party Graph

We present here some examples which apply, in particular, the properties of the
antipodal extension operation. Namely, we show how to obtain ℓ1-embeddings
for the path metrics of the graph Kn+1\e and of the cocktail-party graph Kn×2

in terms of ℓ1-embeddings of the complete graph Kn.

Let us consider the equidistant metric 11n, that takes the value 1 for all pairs.
Hence, 11n coincides with the path metric of the complete graph Kn. Let

dn := ant2(11n)

denote the distance on Vn+1 = Vn ∪ {n + 1} obtained by taking the antipodal
extension antα(11n) of 11n with parameter α = 2. So, dn takes the value 1 on all
pairs except value 2 on the pair (1, n + 1). Hence, dn coincides with the path
metric of the graph Kn+1\e, obtained by deleting the edge e := (1, n + 1) from
the complete graph on Vn+1. Let

d′n := Ant2(11n)

denote the distance on V2n = Vn ∪ {n + 1, . . . , 2n} obtained by taking the full
antipodal extension Antα(11n) of 11n with α = 2 (recall (7.2.3)). So, d′n takes
value 1 on all pairs except value 2 on the n pairs: (1, n+ 1), . . . , (n, 2n). Hence,
d′n coincides with the path metric of the cocktail-party graph Kn×2.

We now see how to construct ℓ1-embeddings of the metrics dn and d′n. In
order to be able to apply Proposition 7.2.6 and relation (7.2.4), we need to find
an ℓ1-decomposition of 11n whose size is less than or equal to 2. Clearly, the
distance 11n can always be decomposed as

(7.4.1) 11n =
1

2

∑

1≤i≤n
δ(i),
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whose size is equal to n
2 . For n = 3, 4, n

2 ≤ 2; hence, we can apply (7.2.4) and
(7.2.5), which yield:

d3 =
1

2
(δ({1}) + δ({2, 4}) + δ({3, 4}) + δ({4})) ,

d′3 =
1

2
(δ({1, 5, 6}) + δ({2, 4, 6}) + δ({3, 4, 5}) + δ({4, 5, 6})) ,

d4 =
1

2
(δ({1}) + δ({2, 5}) + δ({3, 5}) + δ({4, 5})) ,

d′4 =
1

2
(δ({1, 6, 7, 8}) + δ({2, 5, 7, 8}) + δ({3, 5, 6, 8}) + δ({4, 5, 6, 7})) .

If n ≥ 5, no ℓ1-embedding of dn can be constructed from (7.4.1) since its size
is greater than 2. Let En denote the collection of all subsets S ⊆ Vn such that
|S| ∈ {⌊n2 ⌋, ⌈n2 ⌉} and 1 6∈ S. Setting

αn :=

(
n− 2
n
2 − 1

)
for n even, αn := 2

(
n− 2
n−3

2

)
for n odd,

one can easily check that

(7.4.2) 11n =
1

αn

∑

S∈En

δ(S).

As |En| =
(n−1

n
2

)
for n even and |En| =

( n
n+1

2

)
for n odd, the decomposition from

(7.4.2) has size |En|
αn

which is equal to 2(n−1)
n for n even and to 2n

n+1 for n odd.
Observe that (7.4.2) provides the ℓ1-embedding of 11n of minimum size, i.e.,

sℓ1(11n) = 2 − 1

⌈n2 ⌉
=

{
2(n−1)
n if n is even,

2n
n+1 if n is odd.

(Recall (4.3.6).) Applying (7.2.4) and (7.2.5), we obtain

dn =
1

αn

∑

S∈En

δ(S ∪ {n+ 1}) + (2 − sℓ1(11n))δ({n + 1}),

d′n =
1

αn

∑

S∈En

δ(S ∪ S∗) + (2 − sℓ1(11n))δ({1, 2, . . . , n}).

(We remind that S∗ := {n+i | i ∈ Vn and i 6∈ S}.) This shows that dn and d′n are
ℓ1-embeddable. Moreover, by Proposition 7.2.6, dn, d

′
n are ℓ1-rigid if and only if

11n is ℓ1-rigid, i.e., if n = 3. (We refer to Part IV for the study of the variety
of embeddings of 11n for n ≥ 4.) Furthermore, αndn and αnd

′
n are hypercube

embeddable (since αn(2 − sℓ1(11n)) = 2αn − |En| ∈ Z) and they embed in the
hypercube of dimension 2αn. So we have shown:

Proposition 7.4.3. The path metrics of the graphs Kn+1\e and Kn×2 are ℓ1-
embeddable; they are ℓ1-rigid if and only if n = 3. They embed in the hypercube
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of dimension 2αn with the scale αn.

For instance, for n = 5, the above decompositions for d5, d
′
5 read:

d5 = 1
6 [δ({2, 3, 6}) + δ({2, 4, 6}) + δ({2, 5, 6}) + δ({3, 4, 6}) + δ({3, 5, 6})]
+ 1

6 [δ({4, 5, 6}) + δ({2, 3, 4, 6}) + δ({2, 4, 5, 6}) + δ({2, 3, 5, 6})]
+ 1

6δ({3, 4, 5, 6}) + 1
3δ(6),

d′5 = 1
6 [δ({2, 3, 6, 9, 10}) + δ({2, 4, 6, 8, 10}) + δ({2, 5, 6, 8, 9}) + δ({3, 4, 6, 7, 10})]
+ 1

6 [δ({3, 5, 6, 7, 9}) + δ({4, 5, 6, 7, 8}) + δ({2, 3, 4, 6, 10})+ δ({2, 3, 5, 6, 9})]
+ 1

6 [δ({2, 4, 5, 6, 8}) + δ({3, 4, 5, 6, 7})] + 1
3δ({1, 2, 3, 4, 5}).

Another ℓ1-embedding of d5 is given, for instance, by

d5 =
1

4


δ({1}) + δ({6}) +

∑

2≤i<j≤5

δ({1, i, j})

 .

Therefore, the minimum scale of d5 is equal to 4. Indeed, the minimum scale
η(dn) of dn is clearly an even integer. Moreover, η(d5) 6= 2 since 2d5 is not
hypercube embeddable (because 2d5 = ant4(2115) and 4 < sh(2115), as sh(2115) =
5 by Theorem 22.0.6). In fact, one can check (Deza and Grishukhin [1994]) that
4d5 has three distinct (up to permutation) Z+-realizations. Besides the above
one, they are

4d5 =
∑

2≤i≤5

δ({1, i}) + δ({i, 6}), and

4d5 = δ({1}) + δ({1, j}) +
∑

i∈{2,3,4,5}\{j}
δ({i, j, 6}) + δ({i, 6}),

for any j ∈ {2, 3, 4, 5}.
So we know the minimum scale η(dn) of dn for n = 3, 4, 5:

η(d3) = η(d4) = 2, η(d5) = 4.

(These facts were already observed by Blake and Gilchrist [1973].) We also have
the following (very loose) upper bound: η(dn) ≤ αn, from Proposition 7.4.3. A
better bound: η(dn) < n is provided by the next result from Shpectorov [1993].

Lemma 7.4.4. For an integer k ≥ 2, the path metric of the cocktail-party graph
K2k×2 embeds isometrically into the hypercube of dimension 2k with the scale
2k−1. Hence, if 2k−1 < n ≤ 2k, then 2k−1d(Kn×2) is hypercube embeddable.
Therefore, η(dn), η(d

′
n) < n.

Proof. Consider the vector space GF (2)k over the two-element field GF (2) =
{0, 1}. Every hyperplane in GF (2)k consists of 2k−1 points and the symmetric
difference of two hyperplanes also contains 2k−1 points. We obtain a hypercube
embedding of d(K2k×2) with the scale 2k−1 in the hypercube {0, 1}2k

by labeling
the nodes by the 2k − 1 hyperplanes, together with their complements, the full
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set GF (2)k, and ∅.

Given an integer t ∈ Z+, note that

2tdn = 2t ant2(11n) = ant4t(2t11n)

is hypercube embeddable if and only if 4t ≥ sh(2t11n). Hence, the minimum scale
of dn can be expressed as

(7.4.5) η(dn) = 2 min(t ∈ Z+ | 4t ≥ sh(2t11n)).

Therefore, in order to determine the minimum scale η(dn), we need to know
the minimum h-size sh(2t11n) of the equidistant metric 2t11n, for t ∈ Z+. This
question is considered in detail in Chapter 23; see, in particular, Section 23.3.
The quantity sh(2t11n) is not known in general. Its exact computation is a
hard problem. Indeed, for some choices of the parameters n and t, it relies on
the question of existence of some classes of designs such as projective planes or
Hadamard designs. For instance, sh(2t11t2+t+1) = t2 + t+ 1 if and only if there
exists a projective plane of order t, and sh(2t114t) = 4t − 1 if and only if there
exists a Hadamard matrix of order 4t (see Proposition 23.3.2). Nevertheless,
some results are known. We quote here some of them, more can be found in
Part IV.

(i) sh(2t11n) ≥ n − 1 with equality if and only if n = 4t and there exists a
Hadamard matrix of order 4t.

(ii) sh(2t11n) = ⌈4t− 2t
⌈n

2
⌉⌉ if n ≤ 4t ≤ 80.

(See Theorem 23.3.1 and Corollary 23.3.6.) This implies:

Lemma 7.4.6. We have: 2⌈n4 ⌉ ≤ η(dn) < n. Moreover, η(dn) = 2⌈n4 ⌉ if n ≤ 80;
and η(d4t) = 2t if and only if there exists a Hadamard matrix of order 4t.

7.5 The Direct Product and Tensor Product Oper-
ations

We present two operations: the direct product and the tensor product, which
preserve, respectively, ℓ1-embeddability and {0, 1}-covariances or, equivalently,
the cut cone and the correlation cone.

Definition 7.5.1.

(i) Let (X1, d1) and (X2, d2) be two distance spaces. Their direct product is
the distance space (X1 ×X2, d1 ⊕ d2) where, for x1, y1 ∈ X1, x2, y2 ∈ X2,

d1 ⊕ d2((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2).
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(ii) Let p1 : X1×X1 −→ R and p2 : X2×X2 −→ R be two symmetric functions.
Their tensor product is the symmetric function

p1 ⊗ p2 : (X1 ×X2) × (X1 ×X2) −→ R

which is defined, for x1, y1 ∈ X1, x2, y2 ∈ X2, by

p1 ⊗ p2((x1, x2), (y1, y2)) = p1(x1, y1)p2(x2, y2).

For path metrics, the direct product operation corresponds to the Cartesian
product of graphs. Namely, if G and H are two connected graphs, then the direct
product of their path metrics coincides with the path metric of the Cartesian
product of G and H.

Proposition 7.5.2. Let di be a distance on the set Xi, for i = 1, 2.

(i) (X1 ×X2, d1 ⊕ d2) is ℓ1-embeddable (resp. ℓ1-rigid, hypercube embeddable,
h-rigid) if and only if (X1, d1) and (X2, d2) are ℓ1-embeddable (resp. ℓ1-
rigid, hypercube embeddable, h-rigid).

(ii) (X1 × X2, d1 ⊕ d2) is hypermetric (resp. of negative type) if and only if
(X1, d1) and (X2, d2) are hypermetric (resp. of negative type).

Proof. The proof of (i) is based on the following two observations:

• If d1 =
∑
S⊆X1

αSδ(S) and d2 =
∑
T⊆X2

βT δ(T ), then

d1 ⊕ d2 =
∑

S⊆X1

αSδ(S ×X2) +
∑

T⊆X2

βT δ(X1 × T ).

• Let ρi denote the projection from X1 × X2 to Xi, for i = 1, 2. Suppose
that

d1 ⊕ d2 =
∑

A∈A
λAδ(A)

with λA > 0 for A ∈ A, where A is a collection of proper subsets ofX1×X2.
Then, for each A ∈ A, A = ρ1(A)×ρ2(A) with ρ1(A) = X1 or ρ2(A) = X2.
This can be seen from the fact that d1 ⊕ d2 satisfies the triangle equalities:

d((x1, x2), (y1, y2)) = d((x1, x2), (y1, x2)) + d((y1, x2), (y1, y2)),

d((x1, x2), (y1, y2)) = d((x1, x2), (x1, y2)) + d((x1, y2), (y1, y2))

for all x1, y1 ∈ X1, x2, y2 ∈ X2. Hence, di =
∑
A∈A λAδ(ρi(A)) for i = 1, 2.

We prove (ii) in the hypermetric case (the negative type case is similar). If (X1×
X2, d1⊕d2) is hypermetric, then so is (X1, d1), as it is isomorphic to the subspace
(X1 × {x2}, d1 ⊕ d2) (where x2 ∈ X2). Conversely suppose that both (X1, d1)
and (X2, d2) are hypermetric. Let b ∈ ZX1×X2 with

∑
(x1,x2)∈X1×X2

b(x1, x2) = 1.

Define a ∈ ZX1 and c ∈ ZX2 by setting

ax1 :=
∑

x2∈X2

b(x1, x2) for x1 ∈ X1, cx2 :=
∑

x1∈X1

b(x1, x2) for x2 ∈ X2.



7.6 The 1-Sum Operation 103

Then,
∑
x1∈X1

ax1 =
∑
x2∈X2

cx2 = 1 and

∑

x1,y1∈X1
x2,y2∈X2

b(x1, x2)b(y1, y2)d1 ⊕ d2((x1, x2), (y1, y2)) =

∑

x1,y1∈X1

ax1ay1d1(x1, y1) +
∑

x2,y2∈X2

cx2cy2d2(x2, y2) ≤ 0.

This shows that (X1 ×X2, d1 ⊕ d2) is hypermetric.

Proposition 7.5.3.

(i) If p1 ∈ COR(X1) and p2 ∈ COR(X2), then p1 ⊗ p2 ∈ COR(X1 ×X2).

(ii) If p1 ∈ COR(X) and p2 ∈ COR(X), then p1 ◦p2 ∈ COR(X). (Here, p1 ◦p2

stands for the componentwise product.)

Proof. The proof of (i) is based on the following observation:

p1 =
∑

S⊆X1

αSπ(S) and p2 =
∑

T⊆X2

βTπ(T ) =⇒ p1⊗p2 =
∑

S⊆X1,T⊆X2

αSβTπ(S×T ).

Assertion (ii) follows from the fact that π(S) ◦ π(T ) = π(S ∩ T ) for all subsets
S, T of X.

7.6 The 1-Sum Operation

Let d1 be a distance onX1, d2 be a distance onX2 and suppose that |X1∩X2| = 1,
X1 ∩X2 = {x0}. The 1-sum of d1 and d2 is the distance d on X1 ∪X2 defined
by 




d(x, y) = d1(x, y) if x, y ∈ X1,
d(x, y) = d2(x, y) if x, y ∈ X2,
d(x, y) = d(x, x0) + d(x0, y) if x ∈ X1, y ∈ X2.

Proposition 7.6.1.

(i) Let d be the 1-sum of d1 and d2. Then, d is ℓ1-embeddable (resp. ℓ1-rigid,
hypercube embeddable, h-rigid) if and only if d1 and d2 are ℓ1-embeddable
(resp. ℓ1-rigid, hypercube embeddable, h-rigid).

(ii) d is hypermetric (resp. of negative type) if and only if d1 and d2 are
hypermetric (resp. of negative type).

Proof. The proof of (i) is based on the following two observations:

• If d1 =
∑
S⊆X1\{x0} αSδ(S) and d2 =

∑
T⊆X2\{x0} βT δ(T ), then

d =
∑

S⊆X1\{x0}
αSδ(S) +

∑

T⊆X2\{x0}
βT δ(T ).
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• If d =
∑
A∈A λAδ(A) with λA > 0 for A ∈ A, where A is a collection of

nonempty subsets of X1 ∪ X2 \ {x0}, then A ⊆ X1 or A ⊆ X2 for each
A ∈ A. This follows from the fact that d satisfies the triangle equalities:
d(x1, x2) = d(x1, x0) + d(x0, x2) for all x1 ∈ X1, x2 ∈ X2. Hence, di =∑
A∈A|A⊆Xi

λAδ(A) for i = 1, 2.

We prove (ii) in the hypermetric case (the negative type case is similar). The
space (X1, d1) is a subspace of (X1 ∪X2, d) and, hence, it is hypermetric when-
ever (X1 ∪ X2, d) is hypermetric. Suppose now that (X1, d1) and (X2, d2) are
hypermetric. Let b ∈ ZX1∪X2 with

∑
x∈X1∪X2

bx = 1. Define a ∈ ZX1, c ∈ ZX2

by setting ax := bx for x ∈ X1\{x0}, ax0 :=
∑
x∈X2

bx, cx := bx for x ∈ X2\{x0},
and cx0 :=

∑
x∈X1

bx. Then,

∑

x,y∈X1∪X2

bxbyd(x, y) =
∑

x,y∈X1

axayd1(x, y) +
∑

x,y∈X2

cxcyd2(x, y) ≤ 0.

This shows that (X1 ∪X2, d) is hypermetric.

For path metrics of graphs, the 1-sum operation corresponds to the clique
1-sum operation for graphs. Namely, if G1 and G2 are two connected graphs
and if G denotes their clique 1-sum (obtained by identifying a node in G1 with
a node in G2 and denoting it as x0), then the path metric of G coincides with
the 1-sum of the path metrics of G1 and G2.



Chapter 8. L 1-Metrics from
Lattices, Semigroups and Normed
Spaces

We present in this chapter several classes of distance spaces for which L1-
embeddability can be fully characterized using only hypermetric or negative
type inequalities. These distance spaces arise from poset lattices, semigroups
and normed vector spaces. Several of the results mentioned here are given with
a sketch of proof only or, at times, with no proof at all. They indeed rely on
analytical methods whose exposition is beyond the scope of this book. We do,
however, provide references that the interested reader may consult for further
information.

8.1 L1-Metrics from Lattices

In this section, we consider a class of metric spaces arising from (poset) lattices1.
We start with recalling some definitions. A poset (partially ordered set) consists
of a set L equipped with a binary relation � satisfying the conditions: x � x,
x � y and y � x imply that x = y, x � y and y � z imply that x � z, for
x, y, z ∈ L. The meet x ∧ y (if it exists) of two elements x and y is the (unique)
element satisfying x∧y � x, y and z � x∧y if z � x, y; similarly, the join x∨y (if
it exists) is the (unique) element such that x, y � x∨ y and x∨ y � z if x, y � z.
Then, the poset (L,�) is said to be a lattice if every two elements x, y ∈ L have
a join x ∨ y and a meet x ∧ y.

Given a lattice L, a function v : L −→ R+ satisfying

(8.1.1) v(x ∨ y) + v(x ∧ y) = v(x) + v(y) for all x, y ∈ L.

is called a valuation on L. The valuation v is said to be isotone if v(x) ≤ v(y)
whenever x � y and positive if v(x) < v(y) whenever x � y, x 6= y. Set

(8.1.2) dv(x, y) := v(x ∨ y) − v(x ∧ y) for all x, y ∈ L.

One can easily check that (L, dv) is a semimetric space if v is an isotone valuation
on L and that (L, dv) is a metric space if v is a positive valuation on L; in the
latter case, L is called a metric lattice (see Birkhoff [1967]). Clearly, every metric

1The word “lattice” is used here in the context of partially ordered sets. Another notion of
lattice, referring to discrete subgroups of Rn , will be considered in Part II. A good reference
on poset lattices is the textbook by Birkhoff [1967].
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lattice is modular, i.e., satisfies

x ∧ (y ∨ z) = (x ∧ y) ∨ z

for all x, y, z with z � x. A lattice is said to be distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

for all x, y, z. The following result of Kelly [1970a] gives a characterization of the
L1-embeddable metric lattices. Another characterization in terms of the negative
type condition will be given in Example 8.2.6.

Theorem 8.1.3. Let L be a lattice, let v be a positive valuation on L, and let dv
be the distance on L defined by (8.1.2). The following assertions are equivalent.

(i) L is a distributive lattice.

(ii) (L, dv) is 5-gonal.

(iii) (L, dv) is hypermetric.

(iv) (L, dv) is L1-embeddable.

Proof. It suffices to show the implications (ii) ⇒ (i) and (i) ⇒ (iv).
(ii) ⇒ (i) Using the definition of the valuation v and applying the pentagonal
inequality (6.1.9) to the points x1 := x∨y, x2 := x∧y, x3 := z, y1 := x, y2 := y,
we obtain the inequality:

2(v(x∨y∨z)−v(x∧y∧z)) ≤ v(x∨y)+v(x∨z)+v(y∨z)−v(x∧y)−v(x∧z)−v(y∧z).

By applying again the pentagonal inequality to the points x1 := x, x2 := y,
x3 := z, y1 := x ∨ y, y2 := x ∧ y, we obtain the reverse inequality. Therefore,
equality holds in the above inequality. In fact, this condition of equality is
equivalent to L being distributive (see Birkhoff [1967]).
(i) ⇒ (iv) Let L0 be a finite subset of L; we show that (L0, dv) is L1-embeddable.
Let K be the sublattice of L generated by L0. Suppose K has length n. Then,
K is isomorphic to a family N of subsets of a set X of cardinality |X| = n with
the property that N is closed under taking unions and intersections (see Birkhoff
[1967] p. 58). Via this isomorphism, we have a valuation defined on N , again
denoted by v. We can assume without loss of generality that v(∅) = 0. Then,
v can be extended to a valuation v∗ on 2X satisfying v∗(S) =

∑

x∈S
v∗({x}) for

S ⊆ X. Now, if x 7−→ Sx is the isomorphism from K to N , then we have the
embedding x 7−→ Sx from (L0, dv) to (2X , v∗) which is isometric. Indeed,

dv(x, y) = v(x ∨ y) − v(x ∧ y) = v(Sx ∪ Sy) − v(Sx ∩ Sy)
= v∗(Sx ∪ Sy) − v∗(Sx ∩ Sy) = v∗(Sx△Sy).

This shows that every finite subset of (L, dv) is L1-embeddable. Therefore, by
Theorem 3.2.1, (L, dv) is L1-embeddable.
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Example 8.1.4. (Assouad, [1979]) Let (N∗ ,�) denote the lattice consisting of
the set N∗ of positive integers with order relation x � y if x divides y. Then,
for x, y ∈ N∗ , x ∧ y is the g.c.d. (greatest common divisor) of x and y and
x ∨ y is their l.c.m. (lowest common multiple). One checks easily that (N∗ ,�)
is a distributive lattice. Therefore, (N∗ , dv) is L1-embeddable for every positive
valuation v on N∗ . For instance,

x ∈ N
∗ 7−→ v(x) := log x

is a positive valuation on N∗ . Hence, the metric dv, defined by

dv(x, y) = log(
l.c.m.(x, y)

g.c.d.(x, y)
)

for all integers x, y ≥ 1, is L1-embeddable.

8.2 L1-Metrics from Semigroups

We consider now some distance spaces arising in the context of semigroups.
We recall that a commutative semigroup (S,+) consists of a set S equipped
with a composition rule “+” which is commutative and associative. We assume
the existence of a neutral element denoted by 0. Let (S,+) be a commutative
semigroup and let v : S −→ R+ be a mapping such that v(0) = 0. We define a
symmetric function2 Dv on S by setting

(8.2.1) Dv(x, y) := 2v(x+ y) − v(2x) − v(2y) for all x, y ∈ S.

Theorem 8.2.5 below gives some conditions on S and Dv sufficient for ensuring
that the distance space (S,Dv) be L1-embeddable. It is essentially based on
a result by Berg, Christensen and Ressel [1976] concerning a certain class of
functions of positive type on S. More precisely, given v : S −→ R+ , let pv
denote the symmetric function on S2 defined by

(8.2.2) pv(x, y) := v(x) + v(y) − v(x+ y) for all x, y ∈ S.

Define N as the set of functions v : S −→ R+ with v(0) = 0 and for which pv is
of positive type on S (that is, the matrix (pv(xi, xj))

n
i,j=1 is positive semidefinite

for all x1, . . . , xn ∈ S, n ≥ 2). The members of N are completely described in
Theorem 8.2.3 below, that we state without proof; this result was proved by Berg,
Christensen and Ressel [1976]. A character on S is a mapping ρ : S −→ [−1, 1]
satisfying ρ(x + y) = ρ(x)ρ(y) for all x, y ∈ S, and ρ(0) = 1. Denote by 1̂ the
unit character, taking value 1 for every element x ∈ S, and let Ŝ denote the set
of characters on S.

2At this point, Dv is not necessarily a distance, as it may take negative values. However,
Dv is nonnegative if we assume, e.g., that Dv is of negative type.



108 Chapter 8. L1-Metrics from Lattices, Semigroups and Normed Spaces

Theorem 8.2.3. Let v ∈ N . Then, there exist (i) a function h : S −→ R+

satisfying h(x+ y) = h(x) + h(y) for all x, y ∈ S, and (ii) a nonnegative Radon

measure µ on Ŝ \ {1̂} satisfying

∫

Ŝ−{1̂}
(1 − ρ(x))µ(dρ) < ∞ for all x ∈ S, such

that

(8.2.4) v(x) = h(x) +

∫

Ŝ−{1̂}
(1 − ρ(x))µ(dρ) for all x ∈ S.

This allows us to derive conditions for the distance space (S,Dv) to be L1-
embeddable, as was observed by Assouad [1979, 1980b].

Theorem 8.2.5. Let (S,+) be a commutative semigroup with neutral element
0, let v : S 7−→ R+ be a mapping such that v(0) = 0, and let Dv be defined by
(8.2.1). Assume that one of the following assertions (i) or (ii) holds.

(i) (S,+) is a group.

(ii) For each x ∈ S, there exists an integer n ≥ 1 such that 2nx = x.

Then, (S,Dv) is L1-embeddable if and only if (S,Dv) is of negative type.

Proof. Suppose that (S,Dv) is of negative type. Let pv : S2 −→ R denote
the symmetric function obtained by applying the covariance transformation ξ
(pointed at 0) to Dv. Then,

pv(x, y) =
1

2
(Dv(x, 0) +Dv(y, 0) −Dv(x, y)) = v(x) + v(y) − v(x+ y)

for x, y ∈ S. In other words, pv coincides with the function defined in (8.2.2).
By assumption, (S,Dv) is of negative type or, equivalently (by Lemma 6.1.14),
pv is of positive type. That is, the function v belongs to the set N . Applying
Theorem 8.2.3, we can suppose that v is of the form (8.2.4). In case (i), (S,+)
is a group and, thus, every character on S takes only values ±1. Setting

Ax := {ρ ∈ Ŝ | ρ(x) = −1} for x ∈ S,

we obtain that pv(x, y) = 4µ(Ax∩Ay) for all x, y ∈ S. In case (ii), every character
on S takes only values 0, 1. Setting

Ax := {ρ ∈ Ŝ | ρ(x) = 0} for x ∈ S,

we obtain that pv(x, y) = µ(Ax ∩ Ay) for all x, y ∈ S. Therefore, pv is a {0, 1}-
covariance in both cases (i) and (ii). This shows (by Lemma 5.3.2) that (S,Dv)
is L1-embeddable.

Example 8.2.6. Let (L,�) be a lattice and let S be a subset of L which is stable
under the join operation ∨ of L and contains the least element 0 of L. Then,
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(S,∨) is a commutative semigroup satisfying Theorem 8.2.5 (ii). Therefore, given
a mapping v : S −→ R+ such that v(0) = 0,

(S,Dv) is L1-embeddable ⇐⇒ (S,Dv) is of negative type,

where
Dv(x, y) = 2v(x ∨ y) − v(x) − v(y) for x, y ∈ S.

We formulate in Corollary 8.2.7 the result obtained in the special case when v is
a valuation on L.

Corollary 8.2.7. Let L be a lattice, let v : L −→ R+ be a valuation on L (that
is, v satisfies (8.1.1)) and let dv be defined by (8.1.2). Then,

(L, dv) is L1-embeddable ⇐⇒ (L, dv) is of negative type.

Proof. Observe that, since v satisfies (8.1.1), the two distances dv and Dv coin-
cide, where dv is defined by (8.1.2) and Dv by (8.2.1). Hence, the result follows
by applying Theorem 8.2.5 to the semigroup (L,∨) (condition (ii) applies as
x ∨ x = x for all x ∈ L).

Another example of application of Theorem 8.2.5 is obtained by taking as
semigroup a set family closed under the symmetric difference.

Corollary 8.2.8. Let A be a family of subsets of a set Ω which is closed under
the symmetric difference (that is, A△B ∈ A for all A,B ∈ A). Let v : A −→ R+

be a mapping such that v(∅) = 0, and let dv,△ be the distance on A defined by

(8.2.9) dv,△(A,B) := v(A△B) for all A,B ∈ A.

Then,

(A, dv,△) is L1-embeddable ⇐⇒ (A, dv,△) is of negative type.

Proof. Observe that dv,△ = 1
2Dv and apply Theorem 8.2.5 to the commutative

group (A,△).

The distance spaces of the form (A, dv,△) are of particular interest. They are
indeed very closely related to the measure semimetric spaces (defined in Sec-
tion 3.2), which play a central role in the theory of L1-metrics. We will apply
Corollary 8.2.8 in the next chapter for finding metric transforms preserving L1-
embeddability; see Theorem 9.0.3 and its proof.

8.3 L1-Metrics from Normed Spaces

Let (E, ‖ . ‖) be a normed space. We consider the associated metric space
(E, d‖.‖), where d‖.‖ is the norm metric defined by

d‖.‖(x, y) =‖ x− y ‖
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for all x, y ∈ E. In this section, we mention without proof several results char-
acterizing the norms on E = Rm for which the metric space (Rm , d‖.‖) is L1-
embeddable.

We first recall some definitions. If ‖ . ‖ is a norm on Rm , its unit ball B is
defined as

B := {x ∈ Rm :‖ x ‖≤ 1}

and B◦ denotes the polar of B.

A polytope is called a zonotope if it is the vector sum of some line segments.
(Hence, parallelotopes, that were mentioned in Theorem 6.3.7, are special in-
stances of zonotopes.) A zonoid is a convex body that can be approximated by
zonotopes with respect to the Blaschke-Hausdorff metric. Zonotopes and zonoids
are central objects in convex geometry and they are also relevant to many other
fields, in particular, to the topic of L1-metrics as the results below show. We
refer to Bolker [1969] and Schneider and Weil [1983] for detailed exposition on
zonoids.

We now present several equivalent characterizations3 for the L1-embeddable
normed metric spaces (Rm , d‖.‖).

Theorem 8.3.1. Let ‖ . ‖ be a norm on Rm and let B be its unit ball. The
following assertions are equivalent.

(i) d‖.‖ is of negative type.

(ii) d‖.‖ is hypermetric.

(iii) (Rm , d‖.‖) is L1-embeddable.

(iv) The polar of B is a zonoid.

Precise reference for the equivalence (i) ⇐⇒ (ii) ⇐⇒ (iv) from Theorem 8.3.1
can be found in Schneider and Weil [1983] and (iii) ⇐⇒ (iv) is proved in Bolker
[1969]. L1-embeddability of norm metrics can be characterized by much simpler
inequalities when the unit ball of the normed space is a polytope; we refer to
Assouad [1980a, 1984] and Witsenhausen [1978] for the next result.

Theorem 8.3.2. Let ‖ . ‖ be a norm on Rm for which the unit ball B is a
polytope. The following assertions are equivalent.

(i) ‖ . ‖ satisfies Hlawka’s inequality:

‖ x ‖ + ‖ y ‖ + ‖ z ‖ + ‖ x+ y + z ‖≥‖ x+ y ‖ + ‖ x+ z ‖ + ‖ y + z ‖

for all x, y, z ∈ Rm .

3More generally, it is shown in Bretagnolle, Dacunha Castelle and Krivine [1966] that, for
1 ≤ p ≤ 2, a norm metric d‖.‖ is Lp-embeddable if and only if its p-th power (d‖.‖)

p is of
negative type.
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(ii) ‖ . ‖ satisfies the 7-gonal inequality:

∑

1≤i<j≤4

‖ xi − xj ‖ +
∑

1≤h<k≤3

‖ yh − yk ‖≤
∑

1≤i≤4
1≤k≤3

‖ xi − yk ‖

for all x1, x2, x3, x4, y1, y2, y3 ∈ Rm .

(iii) (Rm , d‖.‖) is L1-embeddable.

(iv) The polar of B is a zonotope.

In fact, the implication (ii) =⇒ (i) of Theorem 8.3.2 remains valid for general
norms. Namely, if an arbitrary norm on Rm satisfies the 7-gonal inequality, then
it also satisfies Hlawka’s inequality (Assouad [1984]).

The above results can be partially extended to the more general concept of
projective metrics. A continuous metric d on Rm is called a projective metric if
it satisfies

d(x, z) = d(x, y) + d(y, z)

for any collinear points x, y, z lying in that order on a common line. Clearly, every
norm metric is projective. The cone of projective metrics is the object considered
by Hilbert’s fourth problem (cf. Alexander [1988], Ambartzumian [1982]; see also
Szabó [1986] for an account of recent progress on this problem). Alexander [1988]
gave the following characterization for the L1-embeddable projective metrics.

Theorem 8.3.3. Let d be a projective metric on Rm . The following assertions
are equivalent.

(i) (Rm , d) is L1-embeddable.

(ii) d is hypermetric.

(iii) There exists a positive Borel measure µ on the hyperplanesets of Rm satis-
fying {

µ([[x]]) = 0 for all x ∈ Rm ,
0 < µ([[x, y]]) <∞ for all x 6= y ∈ Rm ,

and such that d is given by the following formula (called Crofton formula):

2d(x, y) = µ([[x, y]]) for x, y ∈ Rm ,

where [[x, y]] denotes the set of hyperplanes meeting the segment [x, y].

In dimensionm = 2, Theorem 8.3.3 (iii) always holds; that is, every projective
metric on R2 is L1-embeddable (Alexander [1978]). On the other hand, the
norm metric dℓ∞ arising from the norm ‖ x ‖∞= max(|x1|, |x2|, |x3|) in R3 is
not L1-embeddable since it is not hypermetric. Indeed, the points x1 = (1, 1, 0),
x2 = (1,−1, 0), x3 = (−1, 1, 0), y1 = (0, 0, 0) and y2 = (0, 0, 1) violate the
pentagonal inequality (6.1.9) (Kelly [1970a]).





Chapter 9. Metric Transforms of
L1-Spaces

Let (X,d) be a distance space and let F : R+ −→ R+ be a function such that
F (0) = 0. We define the distance space (X,F (d)) by setting

(9.0.1) F (d)ij = F (dij) for all i, j ∈ X.

Following Blumenthal [1953], (X,F (d)) is called a metric transform of (X,d). A
general question is to find nontrivial functions F which preserve certain proper-
ties, such as metricity, L1- or L2-embeddability, of the original distance space.

Metric transforms of L2-spaces have been intensively studied in the litera-
ture, in particular, by Schoenberg [1937, 1938a], von Neumann and Schoenberg
[1941] (see also Wells and Williams [1975] where the general case of Lp spaces is
considered). One of Schoenberg’s results, most relevant to our treatment, con-
cerns the characterization of the continuous functions F for which the metric
transform of L2(Ω,A, µ) is L2-embeddable; it is formulated in Theorem 9.1.4.

Questions of the same type have been studied for positive semidefinite matri-
ces. Namely, one may ask what are the functions F for which the matrix (F (aij))
is positive semidefinite whenever (aij) is positive semidefinite. Results in this
direction can be found in (Horn and Johnson [1991], Section 6.3). For instance,
the exponential function F (t) = exp(t) and the power function F (t) = tk (k ∈ N)
preserve positive semidefiniteness. In other words, for any matrix (aij),

(aij) � 0 =⇒ (exp(aij)) � 0, (akij) � 0.

We present in this section several results about metric transforms of ℓ1-spaces.
To start with, let us give some conditions sufficient for ensuring that a function
F preserves semimetric spaces.

Lemma 9.0.2. Let F : R+ −→ R+ be a monotone nondecreasing concave func-
tion, such that F (0) = 0. If (X,d) is a semimetric space, then (X,F (d)) is also
a semimetric space.

Proof. It suffices to show that, if a, b, c are nonnegative scalars such that a ≤ b+c,
then F (a) ≤ F (b)+F (c) holds. We have F (a) ≤ F (b+ c) as F is nondecreasing.
We now verify that F (b + c) ≤ F (b) + F (c). Indeed, F (b) ≥ b

b+cF (b + c) and
F (c) ≥ c

b+cF (b+c) as F is concave and F (0) = 0. The result follows by summing
these two relations.
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We are interested in determining some functions F preserving L1-embeddabi-
lity. For this purpose, it is convenient to introduce the class F consisting of the
functions F : R+ −→ R+ such that F (0) = 0 and F preserves the property of
being of negative type; that is, F satisfies:

(X,d) is of negative type =⇒ (X,F (d)) is of negative type

for any distance space (X,d). Using Corollary 8.2.8, we can prove the following
result from Assouad [1979, 1980b]:

Theorem 9.0.3. Let (X,d) be a distance space and let F be a function from
the family F . Then,

(X,d) is L1-embeddable =⇒ (X,F (d)) is L1-embeddable.

Proof. Let (X,d) be a distance space which is L1-embeddable. Then, by Proposi-
tion 4.2.1, (X,d) is an isometric subspace of a measure semimetric space (Aµ, dµ)
for some measure space (Ω,A, µ). That is, there is a mapping

x ∈ X 7→ Ax ∈ Aµ

such that d(x, y) = µ(Ax△Ay) for all x, y ∈ X. Let v : Aµ −→ R+ be defined by

v(A) := F (µ(A)) for A ∈ Aµ.

We apply Corollary 8.2.8 to the pair (Aµ, v). So, let dv,△ be defined by (8.2.9);
that is,

dv,△(A,B) = F (µ(A△B)) for A,B ∈ Aµ.
Then, the distance space (Aµ, dv,△) is the metric transform of (Aµ, dµ) under F
and (X,F (d)) is an isometric subspace of (Aµ, dv,△).

As (Aµ, dµ) is of negative type (because it is L1-embeddable) and as F ∈ F ,
we deduce that (Aµ, dv,△) is of negative type. Therefore, by Corollary 8.2.8,
(Aµ, dv,△) is L1-embeddable and, thus, its isometric subspace (X,F (d)) is L1-
embeddable too.

It is therefore of crucial importance to determine which functions belong to
F . Such functions have been completely characterized by Schoenberg [1938a]; we
will mention the result in Theorem 9.1.4. For instance, the functions F (t) = t

1+t ,
log(1 + t), 1 − exp(−λt) (for λ > 0) (called the Schoenberg transform), tα (for
0 < α ≤ 1) (called the power transform), all belong to F . It turns out that the
Schoenberg transform plays a central role in the description of the family F .

We consider the Schoenberg transform in detail in Section 9.1. We show
that it preserves the negative type property and, thus, L1-embeddability. More-
over, we describe all the functions preserving the negative type property and,
as a consequence, several examples of functions preserving L1-embeddability.
In Section 9.2, we consider the biotope transform, which is yet another way of
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deforming distances while retaining the property of being L1-embeddable. In
Section 9.3, we consider the following question concerning the power transform:
Given an arbitrary semimetric space (X,d), determine the largest exponent α
for which the power transform (X,dα) enjoys some metric properties such that
L1- or L2-embeddability, the hypermetric property, etc.

9.1 The Schoenberg Transform

We consider here the Schoenberg transform:

F (t) = 1 − exp(−λt) for t ∈ R+ ,

where λ is a positive scalar. The results presented here are based essentially on
the work of Schoenberg. In a first step, we show that the Schoenberg transform
preserves the negative type property; this fact was proved in Schoenberg [1938b].

Theorem 9.1.1. Let (X,d) be a distance space. The following assertions are
equivalent.

(i) (X,d) is of negative type.

(ii) The symmetric function p : X ×X −→ R, defined by

p(x, y) = exp(−λd(x, y)) for x, y ∈ X,

is of positive type for all λ > 0.

(iii) (X, 1 − exp(−λd)) is of negative type for all λ > 0.

Proof. Note that the properties involved in Theorem 9.1.1 are all of finite type,
i.e., they hold if and only if they hold for any finite subset of X. Hence, we can
assume that X is finite, say X = {1, . . . , n}.
(i) =⇒ (ii) Since (X,d) is of negative type then, by Theorem 6.2.2, (X,

√
d) is

ℓ2-embeddable, i.e., there exist x(1), . . . , x(n) ∈ Rm (m ≥ 1) such that djk = (‖
x(j) − x(k) ‖2)

2 for all j, k ∈ X. Let b1, . . . , bn ∈ R. We show

∑

1≤j,k≤n
bjbk exp

(
−λ(‖ x(j) − x(k) ‖2)

2
)
≥ 0.

For this, we use the following classical identity:

exp(−x2) = 2−1π−
1
2

∫ ∞

−∞
exp(ixu) exp(−u

2

4
)du.
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(Here, i denotes the complex square root of unity.) Then,

∑

j,k∈X

bjbk exp
(
−λ(‖ x(j) − x(k) ‖2)

2
)

=
∑

j,k∈X

bjbk

m∏

h=1

exp(−λ(x(j)
h − x

(k)
h )2)

=
∑

i,j∈X

bjbk2−mπ− m
2

m∏

h=1

∫ ∞

−∞
exp(i

√
λ(x

(j)
h − x

(k)
h )uh) exp(−u

2
h

4
)duh

=
∑

j,k∈X

bjbk2−mπ−m
2

∫ ∞

−∞
. . .

∫ ∞

−∞
exp(i

√
λ(x(j) − x(k))Tu) exp(−1

4

m∑

h=1

u2
h)du1 . . . dum

= 2−mπ−m
2

∫ ∞

−∞
. . .

∫ ∞

−∞

∣∣∣∣∣∣
∑

j∈X

bj exp(i
√
λx(j)T

u)

∣∣∣∣∣∣

2

exp(−1

4
(

m∑

h=1

u2
h))du1 . . . dum

is nonnegative.

(ii) =⇒ (iii) Set

d′ij := exp(−λdii) + exp(−λdjj) − 2 exp(−λdij)) = 2(1 − exp(−λdij))

for i, j ∈ X. That is, d′ arises from p = exp(−λd) by applying the inverse of
the covariance mapping (defined in (5.2.5)). Applying Lemma 6.1.14, we obtain
that (X,d′) is of negative type, i.e., that (X, 1 − exp(−λd)) is of negative type.

(iii) =⇒ (i) Let b1, . . . , bn ∈ R with
∑n
i=1 bi = 0. Then,

∑

1≤i<j≤n
bibj(1 − exp(−λdij)) ≤ 0,

since 1 − exp(−λd) is of negative type. By expanding in series the exponential
function, we obtain

∑

1≤i<j≤n
bibj(1 − exp(−λdij))

= λ


 ∑

1≤i<j≤n
bibjdij −

λ

2

∑

1≤i<j≤n
bibjd

2
ij +

λ2

3!

∑

1≤i<j≤n
bibjd

3
ij − . . .


 ≤ 0

for all λ > 0. By dividing by λ and, then, taking the limit when λ → 0, we
deduce that

∑
1≤i<j≤n bibjdij ≤ 0. This shows that (X,d) is of negative type.

Remark 9.1.2. The equivalence (i) ⇐⇒ (ii) from Theorem 9.1.1 is a classical
result in linear algebra (see, e.g., Theorems 6.3.6 and 6.3.13 in Horn and Johnson
[1991]). The proof given above for the implication (i) =⇒ (ii) is the original proof
of Schoenberg. Another proof can be given, which uses only the fact that

(aij) � 0 =⇒ (exp(aij)) � 0 for any matrix (aij)

It goes as follows. Suppose that the distance space (X,d) is of negative type
and let x0, x1, . . . , xn ∈ X. Set aij := d(x0, xi) + d(x0, xj) − d(xi, xj) for
i, j = 0, 1, . . . , n. Then, the matrix A := (aij) is positive semidefinite (as it
coincides with the image of d under the covariance mapping pointed at x0, up
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to a factor 2). Therefore, the matrix B := (exp(aij)) is positive semidefinite.
Let D denote the diagonal matrix with ith diagonal entry exp(−d(x0, xi)) for
i = 0, 1, . . . , n. Then, the matrix DBD is positive semidefinite and its ijth en-
try is equal to exp(−d(xi, xj)) for all i, j = 0, 1, . . . , n. Therefore, the matrix
(exp(−d(xi, xj))ni,j=0 is positive semidefinite for all x0, x1, . . . , xn ∈ X and n ≥ 1,
as required.

Corollary 9.1.3. Let (X,d) be a distance space. Then,

(X,d) is L1-embeddable ⇐⇒ (X, 1 − exp(−λd)) is L1-embeddable for all λ > 0.

Proof. The “only if” part follows from Theorems 9.0.3 and 9.1.1. The proof
for the converse implication is analogous to that of Theorem 9.1.1 (iii) =⇒ (i),
replacing the negative type inequality by an arbitrary inequality valid for the
cut cone CUT(Y ) where Y is a finite subset of X.

Remark that Theorem 9.1.1 remains valid if we assume only that (ii) and
(iii) hold for a set of positive λ’s admitting 0 as accumulation point. The same
remark also applies to Corollary 9.1.3.

By Theorem 9.1.1, we know that the function F (t) = 1−exp(−λt) (for λ > 0)
belongs to F . Schoenberg1 [1938a] has described all functions in F (assuming
that all their derivatives exist). Namely,

Theorem 9.1.4. Let F : R+ −→ R+ be a function such that F (0) = 0 and its
n-th derivative F (n) exists on R+ \ {0} for each n ≥ 1. The following assertions
are equivalent.

(i) F ∈ F (that is, F preserves the negative type property).

(ii) F is of the form:

(9.1.5) F (t) =

∫ ∞

0

1 − exp(−tu)
u

dγ(u) for t ≥ 0,

where γ is a positive measure on R+ satisfying

∫ ∞

1

dγ(u)

u
<∞.

(iii) (−1)n−1F (n)(t) ≥ 0 for all t > 0 and n ≥ 1.

Example 9.1.6. We mention here some examples of functions in the family F .
1Schoenberg characterizes, in fact, the metric transforms preserving L2-embeddability.

Clearly, G preserves L2-embeddability if and only if F preserves the negative type property,
where F and G are linked by F (t) = (G(

√
t))2 for t ≥ 0. Further results concerning metric

transforms in relation with embeddability in various L2 and Lp spaces have been established,
in particular, by Schoenberg [1937, 1938a, 1938b], von Neumann and Schoenberg [1941]. See
also the exposition by Wells and Williams [1975].
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(i) It can be easily verified that every function of the form (9.1.5) belongs to F .
For instance, the power transform: F (t) = tα belongs to F for 0 < α ≤ 1.
This follows from the integral formula:

tα = e−1
α

∫ ∞

0
(1 − exp(−λ2t))λ−1−2αdλ for t ≥ 0,

where

eα :=

∫ ∞

0
(1 − exp(−u2))u−1−2αdu

(which can be checked by setting: u = λ
√
t in the first integral). Alter-

natively, this follows from the fact that (−1)n−1F (n) ≥ 0 for all n ≥ 1.

(ii) Each of the functions F (t) = tα (0 < α ≤ 1), t
1+t , log(1 + t) belongs to F .

Therefore, they all preserve L1-embeddability.

We conclude with a result of Kelly [1972] on metric transforms of the 1-
dimensional ℓ1-space.

Proposition 9.1.7. Let F : R+ −→ R+ be a monotone nondecreasing concave
function such that F (0) = 0. Then the metric transform of the distance space
ℓ11 = (R, dℓ1 ) under F is hypermetric.

9.2 The Biotope Transform

We mention here another transformation which preserves L1-embeddability. It
does not belong to the category of metric transforms, as defined by (9.0.1).

Let d be a distance on a set X and let s be a point of X. We define a new
distance d(s) on X by setting

d(s)(i, j) :=
d(i, j)

d(i, s) + d(j, s) + d(i, j)

for all i, j ∈ X. In particular, if (Ω,A, µ) is a measure space and if (X,d) is the

measure semimetric space (Aµ, dµ), then its transform d
(∅)
µ takes the form

d(∅)
µ (A,B) =

µ(A△B)

µ(A) + µ(B) + µ(A△B)
=

µ(A△B)

2µ(A ∪B)

for A,B ∈ Aµ. The distance

(A,B) ∈ Aµ ×Aµ 7→ µ(A△B)

µ(A ∪B)

is called the Steinhaus distance. The distance

(A,B) 7→ |A△B|
|A ∪B| ,
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which is obtained in the special case when µ is the cardinality measure, is also
known under the name of biotope distance. This terminology comes from the fact
that this distance is used in some biological problems for the study of biotopes
(see Marczewski and Steinhaus [1958]). As a consequence of the next Proposi-
tion 9.2.1, the Steinhaus and biotope distances are L1-embeddable; (i) is given
in Marczewski and Steinhaus [1958] and (ii) in Assouad [1980b].

Proposition 9.2.1.

(i) If d is a semimetric on X, then d(s) is a semimetric on X.

(ii) If (X,d) is L1-embeddable, then (X,d(s)) is L1-embeddable.

Proof. (i) follows from (ii) and the fact that a distance space on at most 4 points
is L1-embeddable if and only if it is a semimetric space (see Remark 6.3.5 (i)).
(ii) By Lemma 4.2.5, we can suppose that (X,d) is an isometric subspace of some
measure semimetric space (Aµ, dµ), i.e., d(i, j) = µ(Ai△Aj) where Ai ∈ Aµ for
all i, j ∈ X, and we can suppose without loss of generality that As = ∅. Hence,
as was already observed,

d(s)(i, j) =
µ(Ai△Aj)

2µ(Ai ∪Aj)

for all i, j ∈ X. By Lemma 5.3.2, showing that (X,d(s)) is L1-embeddable
amounts to showing that p := ξs(d

(s)) is a {0, 1}-covariance. From (5.2.4), p is
defined by

p(i, j) =
1

2
(d(s)(i, s) + d(s)(j, s) − d(s)(i, j))

for i, j ∈ X \ {s}. Hence,

p(i, j) =
1

4
+

1

4

µ(Ai ∩Aj)
µ(Ai ∪Aj)

for i, j ∈ X \ {s}. Therefore, it suffices to show that the symmetric function

q : (i, j) ∈ (X \ {s})2 7−→ µ(Ai ∩Aj)
µ(Ai ∪Aj)

is a {0, 1}-covariance. For this, we use the identity

µ(A ∩B)

µ(A ∪B)
=
µ(A ∩B)

µ(Ω)


∑

i≥0

(
µ(Ā ∩ B̄)

µ(Ω)

)i


(which follows from the identity
∑
i≥0(1− u)i = 1

u for all 0 < u ≤ 1). Therefore,
q is a {0, 1}-covariance, i.e., belongs to the correlation cone COR(X \ {s}). This
follows from the fact that {0, 1}-covariances are preserved under taking sums,
products and limits (for the product operation, recall Proposition 7.5.3).
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9.3 The Power Transform

We return here to the study of metric transforms and, more specifically, to that
of the power transform:

F (t) = tα for t ≥ 0,

where 0 < α ≤ 1. We address the following question: What is the largest expo-
nent α ∈ [0, 1] for which the metric transform (X,dα) of an arbitrary semimetric
space (X,d) can be embedded in a certain host space, say, ℓ1 or ℓ2 ? As α
lies within [0, 1], we are at least assured that (X,dα) is a semimetric space (by
Lemma 9.0.2).

For instance, (X,dα) is ℓ2-embeddable for every α ≤ 1, if |X| = 3 (recall
Remark 6.2.12). Blumenthal [1953] shows that (X,dα) is ℓ2-embeddable for
every α ≤ 1

2 , if |X| = 4; moreover, 1
2 is the largest such exponent. Deza and

Maehara [1990] consider the general case of a semimetric space on n ≥ 3 points.
They give some range of values for α (depending on n) for which (X,dα) enjoys
some metric properties such as hypermetricity, ℓ1 or ℓ2-embeddability for any
semimetric space (X,d) with |X| = n. The following function:

γ(s) := log2(1 +
1

s
) for s > 0

will be useful for formulating the results. Deza and Maehara [1990] show the
following result.

Theorem 9.3.1. Let (X,d) be a semimetric space with |X| = n. Then, (X,dα)
is hypermetric for every 0 < α ≤ γ(n− 1).

Corollary 9.3.2. Let (X,d) be a semimetric space with |X| = n. Then, (X,dα)
is ℓ2-embeddable for every 0 < α ≤ 1

2γ(n− 1).

Proof of Corollary 9.3.2. If α ≤ 1
2γ(n − 1) then, by Theorem 9.3.1, (X,d2α) is

hypermetric and, thus, of negative type. Therefore, (X,dα) is ℓ2-embeddable.

For the proof of Theorem 9.3.1, we need some preliminary lemmas.

Lemma 9.3.3. Let 0 < α ≤ γ(s) where s ≥ 1 and let (X,d) be a semimetric
space. Then,

d(x, y) ≤ d(y, z) =⇒ d(x, z)α ≤ 1

s
d(x, y)α + d(y, z)α.

Proof. As d(x, z)α ≤ (d(x, y) + d(y, z))α, it suffices to show that (d(x, y) +
d(y, z))α ≤ 1

sd(x, y)
α + d(y, z)α or, equivalently,

(
1 +

d(y, z)

d(x, y)

)α
≤ 1

s
+

(
d(y, z)

d(x, y)

)α
.



9.3 The Power Transform 121

Let f(t) := 1
s + tα−(1+ t)α for t ≥ 1. It remains to check that f(t) ≥ 0 for t ≥ 1.

Indeed, f(t) ≥ f(1) (as f is monotone nondecreasing) and f(1) = 1
s +1− 2α ≥ 0

as α ≤ γ(s).

The next lemmas deal with proving that (X,dα) is hypermetric; that is, that
(X,dα) satisfies the (2m+ 1)-gonal inequality:

(9.3.4)
∑

1≤i<j≤m
d(xi, xj)

α +
∑

1≤i<j≤m+1

d(yi, yj)
α ≤

∑

1≤i≤m
1≤j≤m+1

d(xi, yj)
α

for every sequence:

(9.3.5) x1, . . . , xm, y1, . . . , ym+1 ∈ X

(with possible repetitions) and every m ≥ 1. To simplify notation, let us denote
d(x, y)α by the symbol xy, for any x, y ∈ X. We can suppose (after possibly
reordering the indices) that the sequence (9.3.5) satisfies:

(9.3.6) xkyk ≤ xiyj for all i, j ≥ k, k = 1, . . . ,m.

Then, using Lemma 9.3.3, we obtain that, for 0 < α ≤ γ(s) and k ≤ m, i < k < j,

(9.3.7)
xixk ≤ 1

sxkyk + xkyi, xjxk ≤ 1
sxkyk + xjyk,

yiyk ≤ 1
sxkyk + xiyk, yjyk ≤ 1

sxkyk + xkyj.

Therefore, for any i, k ≤ m,

(9.3.8) xixk + yiyk ≤
2

s
xkyk + xkyi + xiyk.

Lemma 9.3.9. Let 0 < α ≤ γ(m) and let (X,d) be a semimetric space. Then,
(X,dα) is (2m + 1)-gonal. Moreover, for α > γ(m), there exists a semimetric
space (X,d) with |X| = 2m + 2 (resp. |X| = 2m + 1) for which (X,dα) is not
(2m+ 2)-gonal (resp. not (2m+ 1)-gonal.

Proof. Consider a sequence of points as (9.3.5) and suppose that it satis-
fies (9.3.6). Given k ≤ m, summing (9.3.8) (applied with s := m) over i =
1, . . . ,m, i 6= k, yields:

m∑

i=1

xixk + yiyk ≤ − 2

m
xkyk +

m∑

i=1

xkyi + xiyk.

Summing now over k = 1, . . . ,m, we obtain:

m∑

i,k=1

xixk + yiyk ≤ − 2

m

m∑

k=1

xkyk +
m∑

i,k=1

xkyi + xiyk.
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Dividing by 2 and adding the inequality:

m∑

k=1

ykym+1 ≤ 1

m

m∑

k=1

xkyk +
m∑

k=1

xkym+1

(which follows using Lemma 9.3.3), we obtain the desired inequality (9.3.4).
Suppose now that α > γ(m). Consider as distance space (X,d) the graphic
metric space of the complete bipartite graphs Km+1,m+1 and Km+1,m. Then, dα

is not (2m+ 2)-gonal in both cases. (This is immediate, chosing for the xi’s the
points in one colour class and for the yi’s the points in the other colour class.)

Lemma 9.3.10. Let 0 < α ≤ s and let (X,d) be a semimetric space such that
(X,dα) is (2m− 1)-gonal. Consider a sequence as in (9.3.5) with maximum rep-
etition number greater than or equal to 2m

s+1 (that is, at least one member of the

sequence is repeated at least 2m
s+1 times). Then, (X,dα) satisfies the correspond-

ing (2m+ 1)-gonal inequality (9.3.4).

Proof. Let r denote the maximum repetition number in the sequence (9.3.5). By
assumption, r ≥ 2m

s+1 . We can assume that (9.3.6) holds. If some xi coincides
with some yj, say, xm = ym+1, then the (2m + 1)-gonal inequality follows from
the fact (X,dα) is (2m − 1)-gonal (and, thus, satisfies the inequality associated
with the sequence x1, . . . , xm−1, y1, . . . , ym). Hence, we can suppose that the
two sets {x1, . . . , xm} and {y1, . . . , ym+1} are disjoint. Let k denote the smallest
index i such that one of xi or yi is repeated r times in the sequence (9.3.5). Let
us suppose that this is the case for xk (the case with yk is similar and omitted).
By assumption, (X,dα) satisfies the (2m− 1)-gonal inequality associated to the
sequence (9.3.5) with xk and yk omitted; that is,

∑

1≤i<j≤m
i,j 6=k

xixj +
∑

1≤i<j≤m+1
i,j 6=k

yiyk ≤
∑

1≤i≤m, 1≤j≤m+1
i,j 6=k

xiyj.

Therefore, we are done if we can show:

(a)
∑

i∈I∪J
xixk +

∑

1≤i≤m+1, i6=k
yiyk ≤

∑

1≤i≤m+1, i6=k
xkyi +

∑

1≤i≤m
xiyk,

where I := {i | 1 ≤ i < k, xi 6= xk} and J := {i | k < i ≤ m, xi 6= xk}. Note
that |I|+ |J |+ r = m and I = {1, . . . , k − 1} by the choice of k. Let us evaluate
the left-hand side of (a). Using (9.3.7), we have:

∑

i∈I∪J
xixk +

∑

i6=k
yiyk ≤

∑

i∈I
(
1

s
xkyk + xkyi) +

∑

i∈J
(
1

s
xkyk + xiyk)

+
k−1∑

i=1

(
1

s
xkyk + xiyk) +

m∑

i=k+1

(
1

s
xkyk + xkyi)

=
1

s
xkyk(|I| + |J | +m) +

∑

1≤i≤m+1, i6=k
xkyi +

m∑

i=1

xiyk − rxkyk.
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But, 1
s (|I|+ |J |+m)− r = 2m−r

s − r ≤ 0, because r ≥ 2m
s+1 . Therefore, (a) holds,

which concludes the proof.

Proof of Theorem 9.3.1. Let 0 < α ≤ γ(n−1). We show that dα is (2m+1)-gonal
for all m ≥ 1, by induction on m. If m = 1, this is clear as dα is a semimetric.
Suppose that m ≥ 2 and that dα is (2m−1)-gonal. Clearly, a sequence of 2m+1
points in X must contain an element which is repeated at least 2m+1

n times (as
|X| = n). Applying Lemma 9.3.10 (with s := n − 1), we deduce that dα is
(2m+ 1)-gonal.

Corollary 9.3.11. Let (X,d) be a semimetric space with |X| = 5, or 6. Then,
(X,dα) is ℓ1-embeddable for all 0 < α ≤ γ(2). Moreover, γ(2) is the largest such
value of α; that is, for α > γ(2), there are distance spaces on 5 and 6 points for
which dα is not ℓ1-embeddable.

Proof. In the case |X| = 5, the result follows from the fact that a distance on
5 points is ℓ1-embeddable if and only if it is 5-gonal (recall Remark 6.3.5 (i)).
Consider now the case |X| = 6. If α ≤ γ(2) then dα is 5-gonal by Lemma 9.3.9
and, thus, 7-gonal by Lemma 9.3.10. (We use the fact that a distance on 6 points
is ℓ1-embeddable if and only if it is 7-gonal.)

For n ≥ 3, let us consider the parameters g(n), h(n), c1(n), and c2(n) which
are defined as follows: g(n) denotes the maximum α ∈ [0, 1] for which (X,dα) is
n-gonal for every semimetric space (X,d) with |X| = n. Similarly, h(n) (resp.
c1(n), c2(n)) denotes the maximum α for which (X,dα) is hypermetric (resp.
ℓ1-embeddable, ℓ2-embeddable) for every semimetric space (X,d) with |X| = n.
Clearly,

c2(n) ≤ c1(n) ≤ h(n) ≤ g(n) and c2(n) ≥ 1

2
h(n).

We have shown in Theorem 9.3.1 that

h(n) ≥ γ(n− 1); implying c2(n) ≥ 1

2
γ(n− 1).

Using Lemma 9.3.9 (together with Lemma 6.1.10 in the case when n is even),
one can give the exact value of the parameter g(n).

Lemma 9.3.12. g(2m) = γ(m − 1) for m ≥ 2, and g(2m + 1) = γ(m) for
m ≥ 1.

This implies that h(5) = h(6) = γ(2). The exact value of the parameter
c1(n) is known in the cases n ≤ 6, by Corollary 9.3.11. On the other hand, we
have: c2(5) ≥ 1

2h(5) = 1
2γ(2), but the exact value of c2(5) is not known. The

value of c2(n) is known, however, in the case n = 6.

Lemma 9.3.13. c2(6) = 1
2γ(2).
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Proof. First, c2(6) ≥ 1
2h(6) = 1

2γ(2). Equality is proved, by considering the path
metric d of K3,3. Indeed, if α > 1

2γ(2), then d2α is not 6-gonal and, thus, not of
negative type. That is, dα is not ℓ2-embeddable.

We summarize in Figure 9.3.14 the information known about the parameters
g(n), h(n), c1(n), c2(n) for small values of n, n ≤ 6. Note that γ(2) = 0.5849...,
γ(2)/2 = 0.2924....

n 3 4 5 6

c2(n) 1 1/2 ? γ(2)/2

c1(n) 1 1 γ(2) γ(2)

h(n) 1 1 γ(2) γ(2)

g(n) 1 1 γ(2) γ(2)

Figure 9.3.14

To conclude, let us mention the following upper bounds from Deza and Mae-
hara [1990] for c2(n), obtained by considering the path metric of the complete
bipartite graph Km,n for suitable m,n.

c2(2m) ≤ 1

2
γ(m− 1), c2(2m+ 1) ≤ 1

2
γ

(
2m(m+ 1)

2m+ 1
− 1

)
.

Deza and Maehara [1990] conjecture that equality holds in the above inequalities.
This conjecture is confirmed for c2(n) with n = 4, 6. (More information about
metric transforms of graphs can be found in Maehara [1986].)
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Let (X,d) be a finite semimetric space on n := |X| points. In general, (X,d)
cannot be isometrically embedded into some ℓ1-space. However, (X,d) admits
always an embedding into some ℓ1-space, where the distances are preserved up
to a multiplicative factor whose size is of the order log n. This result is due to
Bourgain [1985]. We present this result, together with an interesting application
due to Linial, London and Rabinovich [1994] for approximating multicommod-
ity flows. We also present a generalization of the negative type condition for
Lipschitz ℓ2-embeddings.

10.1 Embeddings with Distortion

Definition 10.1.1. Let (X,d) and (X′, d′) be two distance spaces and let C ≥ 1.
A mapping ϕ : X −→ X′ is called a Lipschitz embedding of (X,d) into (X′, d′)
with distortion C if

1

C
d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ d(x, y)

holds for all x, y ∈ X.

Hence, a Lipschitz embedding with distortion C = 1 is just an isometric embed-
ding. Bourgain [1985] shows that every semimetric space on n points admits a
Lipschitz embedding into ℓ1 with distortion1 O(log2(n)).

Theorem 10.1.2. Let (X,d) be a finite semimetric space with |X| = n. There
exist vectors ux ∈ RN (x ∈ X) satisfying:

‖ ux − uy ‖1 ≤ d(x, y) ≤ c0 log2(n) ‖ ux − uy ‖1

for all x, y ∈ X. Here, N =
∑⌊log2 n⌋
p=1

( n
2p

)
(< 2n), and c0 > 0 is a constant.

1The Lipschitz embedding described in Theorem 10.1.2 has distortion c0 log2 n, where c0 <
92. Garg [1995b] presents a slight variation of it, for which he can show a better constant
for the distortion. Namely, set H(n) := 1 + 1

2
+ . . . + 1

n
and, for x ∈ X, let u′

x be the

vector indexed by all proper subsets A of X with components u′
x(A) := d(x,A)

H(n)|A|( n
|A|)

. Then,

‖ u′
x − u′

y ‖1≤ d(x, y) ≤ 2H(n) ‖ u′
x − u′

y ‖1 for all x, y ∈ X.

125
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Proof. For each integer s (1 ≤ s ≤ n) let Ps denote the family of subsets A ⊆ X

with |A| = s. Set P :=
⋃⌊log2 n⌋
p=1 P2p ; so |P| = N . For each x ∈ X, we define the

vector ux ∈ RN indexed by the sets A ∈ P and defined by

ux(A) :=
1

⌊log2 n⌋
( n
|A|
)d(x,A), for all A ∈ P.

We remind that d(x,A) := miny∈A d(x, y). We show that the vectors ux (x ∈ X)
satisfy the conditions of Theorem 10.1.2. We first check that

d(x, y) ≥‖ ux − uy ‖1 for all x, y ∈ X.

Indeed, using the fact that |d(x,A) − d(y,A)| ≤ d(x, y), we obtain

‖ ux − uy ‖1 =
∑

A∈P
|ux(A) − uy(A)| =

1

⌊log2 n⌋
∑

A∈P

|d(x,A) − d(y,A)|( n
|A|
)

≤ 1
⌊log2 n⌋

∑

A∈P

d(x, y)( n
|A|
) = d(x, y).

Let x, y ∈ X be fixed. We now show that

(10.1.3) d(x, y) ≤ c0⌊log2 n⌋ ‖ ux − uy ‖1

for some constant c0. For z0 ∈ X and ρ > 0, let B(z0, ρ) := {z ∈ X | d(z0, z) < ρ}
denote the open ball with center z0 and radius ρ. We define a sequence of radii
ρt in the following way: ρ0 := 0 and, for t ≥ 1, ρt denotes the smallest scalar ρ
for which |B(x, ρ)| ≥ 2t and |B(y, ρ)| ≥ 2t. We define ρt as long as ρt <

1
2d(x, y).

Let t∗ denote the largest such index. We let ρt∗+1 := 1
2d(x, y). Observe that, for

t = 1, 2, . . . , t∗, t∗ + 1, the balls B(x, ρt) and B(y, ρt) are disjoint.
Let t ∈ {1, . . . , t∗ + 1} and let ρ be such that ρt−1 < ρ < ρt. Note that

|d(x,A) − d(y,A)| ≥ ρ− ρt−1

holds for any subset A ⊆ X such that A ∩ B(x, ρ) = ∅ and A ∩ B(y, ρt−1) 6= ∅.
Hence, for any integer s (1 ≤ s ≤ n),

(10.1.4)

1
|Ps|

∑

A∈Ps

|d(x,A) − d(y,A)|

≥ (ρ− ρt−1)
|{A∈Ps|A∩B(x,ρ)=∅,A∩B(y,ρt−1)6=∅}|

|Ps| = (ρ− ρt−1)µt,

after setting

µt :=
|{A ∈ Ps | A ∩B(x, ρ) = ∅, A ∩B(y, ρt−1) 6= ∅}|

|Ps|
.

The key argument is now to observe that, if we choose s in such a way that
s ≈ n

10·2t , then the quantity µt is bounded below by an absolute constant µ0 (not
depending on t, x or y). More precisely, let us choose s = st = 2p, where p is
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the smallest integer such that n
10·2t ≤ 2p, i.e., p = ⌈log2(

n
10·2t )⌉. Let us assume

for a moment that the relation µt ≥ µ0 holds for all t, for some constant µ0. We
show how to conclude the proof of (10.1.3).

As the values of st corresponding to t = 1, . . . , t∗ + 1 are all distinct, by
applying (10.1.4) with s = st, we deduce that

1

|Pst |
∑

A∈Pst

|d(x,A) − d(y,A)| ≥ (ρ− ρt−1)µ0.

Letting ρ −→ ρt, the same relation holds with ρ = ρt, i.e.,

1

|Pst |
∑

A∈Pst

|d(x,A) − d(y,A)| ≥ (ρt − ρt−1)µ0.

Summing the above relation over t = 1, . . . , t∗ + 1, we obtain:

⌊log2 n⌋ ‖ ux − uy ‖1 ≥
∑

1≤t≤t∗+1

(ρt − ρt−1)µ0 = ρt∗+1µ0 =
µ0

2
d(x, y).

This shows that (10.1.3) holds with c0 := 2
µ0

. (Note that c0 < 91.26.)
Let us return to the evaluation of the quantity µt. Recall that s = st = 2p,

where p = ⌈log2(
n

10·2t )⌉; hence, n
10·2t ≤ s < 2n

10·2t . As ρt−1 < ρ < ρt, we have
|B(x, ρ)| < 2t or |B(y, ρ)| < 2t. We can suppose without loss of generality that
|B(x, ρ)| < 2t. Set βx := |B(x, ρ)| and βy := |B(y, ρt−1)|; then, βx < 2t and
βy ≥ 2t−1. We have:

µt =
(n−βx

s )−(n−βx−βy
s )

(n
s)

=
βx−1∏

i=0

(1 − s

n− i
) −

βx+βy−1∏

i=0

(1 − s

n− i
)

=
βx−1∏

i=0

(1 − s

n− i
)


1 −

βx+βy−1∏

i=βx

(1 − s

n− i
)


 .

We show that

βx−1∏

i=0

(1 − s

n− i
) ≥ e−

8
10 and

βx+βy−1∏

i=βx

(1 − s

n− i
) ≤ e−

1
20 ,

which implies that µt ≥ e−
8
10 (1 − e−

1
20 ) =: µ0. Indeed,

βx−1∏

i=0

(1 − s

n− i
) ≥ (1 − s

n− 2t + 1
)βx = exp(βx log(1 − s

n−2t+1))

≥ exp(−βx 2s
n−2t+1)

(we have used the fact that log(1 − u) ≥ −2u for 0 ≤ u ≤ 1
2). Now, the

latter quantity is greater than or equal to exp(−8
10), as s < 2n

10·2t , βx < 2t, and
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n
n−2t+1 ≤ 2. On the other hand,

βx+βy−1∏

i=βx

(1− s

n− i
) ≤ (1− s

n− βx
)βy = exp(βy log(1− s

n− βx
)) ≤ exp(−βy

s

n− βx
)

(we have used the fact that log(1 − u) ≤ −u for 0 ≤ u ≤ 1). The latter quantity
is less than or equal to exp(− 1

20), as βy ≥ 2t−1, s ≥ n
10·2t , and n

n−βx
≥ 1.

Theorem 10.1.2 extends, in fact, easily to the case of ℓp-spaces for p ≥ 1, as
observed in Linial, London and Rabinovich [1994].

Theorem 10.1.5. Let 1 ≤ p < ∞. Let (X,d) be a semimetric space with
|X| = n. There exist vectors vx ∈ RN (x ∈ X) such that

‖ vx − vy ‖p ≤ d(x, y) ≤ c0 log2 n ‖ vx − vy ‖p

for all x, y ∈ X. Here, N =
∑⌊log2 n⌋
p=1

( n
2p

)
(< 2n), and c0 > 0 is a constant.

Proof. The vectors can be constructed by slightly modifying the vectors ux from
the proof of Theorem 10.1.2. We remind that

ux(A) = λAd(x,A)

where λA := 1
⌊log2 n⌋( n

|A|)
for A ∈ P. Define vx ∈ RN by setting

vx(A) := (λA)
1
pd(x,A) for A ∈ P.

Observe that
∑

A∈P
λA = 1. From this follows that ‖ vx − vy ‖p≤ d(x, y). By

convexity of the function x 7−→ xp (x ≥ 0) we obtain that

∑

A∈P
λA|d(x,A) − d(y,A)| ≤

(∑

A∈P
λA|d(x,A) − d(y,A)|p

) 1
p

.

This implies that ‖ ux−uy ‖1≤‖ vx−vy ‖p. Thus, d(x, y) ≤ c0 log2 n ‖ vx−vy ‖p.

We have just seen that, for each p ≥ 1, every semimetric on n points can
be embedded with distortion O(log n) into ℓNp , where N < 2n. In fact, Linial,
London and Rabinovich [1994] show that the above proofs can be modified so

as to yield an embedding into ℓ
O((logn)2)
p with distortion O(logn). Hence, the

embedding takes place in a space of dimension O((log n)2) instead of the di-
mension N =

∑
p

( n
2p

)
(exponential in n) demonstrated in Theorems 10.1.2 and

10.1.5. For this, instead of the vectors ux, vx (x ∈ X) (constructed in the above
two theorems) which are indexed by all subsets A ⊆ X whose cardinality is a
power of 2, one considers their projections in a O((log n)2)-dimensional subspace.
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Namely, for each cardinality s ≤ |X| = n which is a power of 2 one randomly
chooses O(log n) subsets A ⊆ X of cardinality s; then, one restricts the coor-
dinates of ux, vx to be indexed by these O((log n)2) subsets of X. Moreover, if

1 ≤ p ≤ 2, every semimetric on n points can be embedded into ℓ
O(logn)
p with

distortion O(logn); this is shown in Linial, London and Rabinovich [1994], using
earlier results by Johnson and Lindenstrauss [1984] and Bourgain [1985]. Such
embeddings can be constructed in random polynomial time. For a semimetric
d on n points, let C(d) denote the smallest distortion with which d can be em-
bedded into some ℓ2-space. We will see below (see Proposition 10.2.1 and the
remarks thereafter) that, for every ǫ > 0, one can find in polynomial time an
embedding of d into ℓn2 with distortion C(d) + ǫ.

The following result is a variant of Theorem 10.1.2 due to Linial, London
and Rabinovich [1994], that we will use later in this section for approximating
multicommodity flows.

Theorem 10.1.6. Let (X,d) be a finite semimetric space and let Y ⊆ X with
k := |Y |. There exist vectors wx ∈ RK (x ∈ X) satisfying

‖ wx − wy ‖1≤ d(x, y) for all x, y ∈ X,
d(x, y) ≤ c0 log2(k) ‖ wx − wy ‖1 for all x, y ∈ Y.

Here, K =
∑⌊log2 k⌋
p=1

( k
2p

)
(< 2k) and c0 > 0 is a constant.

Proof. The proof is analogous to that of Theorem 10.1.2 but, now, we construct
a Lipschitz ℓ1-embedding using only subsets of Y . Namely, we define wx ∈ RK

by setting

wx(A) :=
1

⌊log2 k⌋
( k
|A|
)d(x,A) for A ⊆ Y, |A| = 2p, p ≤ log2 k.

Then, ‖ wx − wy ‖1≤ d(x, y) holds for all x, y ∈ X. Moreover, by the proof
of Theorem 10.1.2, the relation: d(x, y) ≤ c0 log2 k ‖ wx − wy ‖1 holds for all
x, y ∈ Y .

In fact, for the purpose of finding good approximations in polynomial time
for multicommodity flows, we will need the following strengthening of Theo-
rem 10.1.6, whose proof can be found in Linial, London and Rabinovich [1994].

Theorem 10.1.7. Let (X,d) be a finite semimetric space and let Y ⊆ X with
k := |Y |. There exist vectors wx ∈ RO(n2 ) (x ∈ X) satisfying

‖ wx − wy ‖1≤ d(x, y) for all x, y ∈ X,
d(x, y) ≤ c0 log2(k) ‖ wx − wy ‖1 for all x, y ∈ Y

(where c0 > 0 is a constant). Moreover, the vectors wx (x ∈ X) can be found in
polynomial time.
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10.2 The Negative Type Condition for Lipschitz Em-
beddings

Recall from Theorem 6.2.2 that isometric ℓ2-embeddability can be characterized
in terms of the negative type inequalities. In fact, this characterization extends
to Lipschitz ℓ2-embeddings, as observed in Linial, London and Rabinovich [1994].

Proposition 10.2.1. Let C ≥ 1 and let (X,d) be a finite semimetric space with
X = {0, 1, . . . , n}. The following assertions are equivalent.

(i) (X,
√
d) has an ℓ2-embedding with distortion C, i.e., there exist ui ∈ RN

(i ∈ X) such that

(10.2.2)
1

C2
dij ≤ (‖ ui − uj ‖2)

2 ≤ dij for i, j ∈ X.

(ii) There exists a positive semidefinite n× n matrix A = (aij) satisfying:

(10.2.3)





1
C2 dij ≤ aii + ajj − 2aij ≤ dij for 1 ≤ i 6= j ≤ n,

1
C2 d0i ≤ aii ≤ d0i for 1 ≤ i ≤ n.

(iii) For every b ∈ ZX with
∑

i∈X
bi = 0, d satisfies:

(10.2.4)
1

C2

∑

i,j∈X|bibj>0

bibjdij +
∑

i,j∈X|bibj<0

bibjdij ≤ 0.

Before giving the proof, let us make some observations. First, note that
(10.2.4) in the case C = 1 is nothing but the usual negative type condition.
Hence, (10.2.4) is a generalization of the negative type condition for Lipschitz
embeddings. Proposition 10.2.1 has some algorithmic consequences. In par-
ticular, one can evaluate in polynomial time (with an arbitrary precision) the
smallest distortion C∗ with which (X,

√
d) can be embedded into an ℓ2-space.

Indeed, C∗ = 1√
λ∗

, where

λ∗ = max λ
λdij ≤ aii + ajj − 2aij ≤ dij (1 ≤ i 6= j ≤ n)
λd0i ≤ aii ≤ d0i (i = 1, . . . , n)
A � 0
λ ≥ 0.

This optimization program can be solved using, for instance, the ellipsoid algo-
rithm (cf. Grötschel, Lovász and Schrijver [1988]). By the results mentioned
earlier, C∗ = O(log n).
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Proof of Proposition 10.2.1. We set Vn = X \ {0} = {1, . . . , n}.
(i) =⇒ (ii) We can suppose without loss of generality that u0 = 0. Set aij := uTi uj
for all i, j ∈ Vn. Then, the matrix (aij) satisfies (ii).
(ii) =⇒ (i) As A is positive semidefinite, it is the Gram matrix of some vectors
u1, . . . , un. Then, the vectors u0 := 0, u1, . . . , un satisfy (10.2.2).
(ii) =⇒ (iii) Let A be a matrix satisfying (ii). We construct a distance D on
X by setting D0i := aii for i ∈ Vn and Dij := aii + ajj − 2aij for i 6= j ∈ Vn.
Then, D is of negative type as A is positive semidefinite. Hence, given b ∈ ZX

with
∑
i∈X bi = 0, we have:

∑
i,j∈X bibjDij ≤ 0. By assumption (ii), bibjDij ≥

1
C2 bibjdij if bibj > 0, and bibjDij ≥ bibjdij if bibj < 0. This shows that (10.2.4)
holds.
(iii) =⇒ (ii) We suppose that (iii) holds. This implies that, for every positive
semidefinite matrix B = (bij)i,j∈X such that Be = 0 (e denoting the all-ones
vector),

(10.2.5)
1

C2

∑

i,j∈X|bij>0

bijdij +
∑

i,j∈X|bij<0

bijdij ≤ 0.

Let us suppose that (ii) does not hold. Then, the two cones PSDn (the cone of
positive semidefinite n× n matrices) and K := {A = (aij) | A satisfies (10.2.3)}
are disjoint. Therefore, there exists a hyperplane separating PSDn and K.
In other words, there exists a symmetric matrix Z and a scalar α satisfying:
〈Z,A〉 > α for all A ∈ PSDn and 〈A,Z〉 ≤ α for all A ∈ K, where

〈Z,A〉 :=
∑

1≤i,j≤n
zijaij .

Hence, α < 0, which implies that Z is positive semidefinite. Moreover, as the
inequality 〈Z,A〉 ≤ α is valid for the cone K, it can be expressed as a nonnegative
linear combination of the inequalities defining K. Therefore, there exist two
symmetric matrices (λij) and (µij) with nonnegative entries such that

〈Z,A〉 =
∑

i6=j∈Vn

(λij − µij)(aii + ajj − 2aij) +
∑

i∈Vn

(λii − µii)aii

for all A, and

(10.2.6)
∑

i6=j∈Vn

λijdij − µij
dij
C2

+
∑

i∈Vn

λiid0i − µii
d0i

C2
≤ α.

We define the symmetric matrix B indexed by X by

b00 :=
∑

j∈Vn

λjj − µjj, bii :=
∑

j∈Vn

λij − µij for i ∈ Vn,

b0i := −λii + µii for i ∈ Vn,
bij := −λij + µij for i 6= j ∈ Vn.
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By construction, Be = 0 andB is positive semidefinite (as
∑

i,j∈Vn

bijaij = 〈Z,A〉 ≥

0 for all A ∈ PSDn). Observe now that, as C ≥ 1,

min(bij ,
bij
C2

) ≥ µij
C2

− λij (i 6= j ∈ Vn), min(b0i,
b0i
C2

) ≥ µii
C2

− λii (i ∈ Vn).

These relations together with (10.2.6) yield:

∑

i,j∈X|bij>0

bij
dij
C2

+
∑

i,j∈X|bij<0

bijdij ≥ −α > 0,

which contradicts the assumption (10.2.5).

10.3 An Application for Approximating Multicom-

modity Flows

We present here an application of the above results on Lipschitz ℓ1-embeddings
with distortion to the approximation of multicommodity flows.

We start with recalling several definitions. Let G = (V,E) be a connected
graph and let (s1, t1), . . . , (sk, tk) be k distinct pairs of nodes in V , called terminal
pairs (or commodity pairs). We are given for each edge e ∈ E a number Ce ∈ R+ ,
called the capacity of the edge e and, for each terminal pair (sh, th), a number
Dh ≥ 0 called its demand. For h = 1, . . . , k, let Ph denote the set of paths joining
the terminals sh and th in G; set

P :=
⋃

1≤h≤k
Ph.

A multicommodity flow is a function f : P −→ R+ . The multicommodity flow f
is said to be feasible for the instance (G,C,D) if it satisfies the following capacity
and demand constraints:

∑

P∈P|e∈P
fP ≤ Ce for all e ∈ E,

∑

P∈Ph

fP ≥ Dh for h = 1, . . . , k.

A classical problem in the theory of networks is to find a feasible multicommodity
flow (possibly satisfying some further cost constraints). We are interested here
in the following variant of the problem, known as the concurrent flow problem:

Determine the largest scalar λ∗ for which there exists a feasible mul-
ticommodity flow for the instance (G,C, λ∗D).

So, in this problem, one tries to satisfy the largest possible fraction λDh of
demand for each terminal pair (sh, th), while respecting the capacity constraints.
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Let us call the maximum such λ∗ the max-flow. The max-flow can be computed
by solving the following linear programming problem:

(10.3.1)

λ∗ = max λ ∑

P∈P|e∈P
fP ≤ Ce (e ∈ E)

∑

P∈Ph

fP ≥ λDh (h = 1, . . . , k)

fP ≥ 0 (P ∈ P).

An upper bound for the max-flow λ∗ can be easily formulated in terms of cuts.
Given a subset S ⊆ V , recall that δG(S) denotes the cut in G determined by
S, which consists of the edges e ∈ E having one endnode in S and the other
endnode in V \ S. Then, the quantity

cap(S) :=
∑

e∈δG(S)

Ce

denotes the capacity of the cut δG(S). Furthermore, let

dem(S) :=
∑

h∈HS

Dh

denote its demand, where HS consists of the indices h for which the terminal
pair (sh, th) is separated by the partition (S, V \ S) (i.e., such that sh ∈ S and
th ∈ V \ S, or vice versa).

Lemma 10.3.2. We have: λ∗ ≤ min
S⊆V

cap(S)

dem(S)
.

Proof. We use the formulation of λ∗ from (10.3.1). Let S be a subset of V .
Then,

cap(S) =
∑

e∈δG(S)

Ce ≥
∑

e∈δG(S)

∑

P∈P|e∈P
fP =

∑

P∈P

∑

e∈δG(S)∩P
fP

=
∑

P∈P
|δG(S) ∩ P |fP =

∑

1≤h≤k

∑

P∈Ph

|δG(S) ∩ P |fP

≥
∑

h∈HS

∑

P∈Ph

fP ≥
∑

h∈HS

λ∗Dh = λ∗dem(S).

The quantity: min
S⊆V

cap(S)

dem(S)
is called the min-cut. The inequality from Lemma

10.3.2 says that
max-flow ≤ min-cut.

This inequality is, in general, strict. However, it is an equality in some special
cases. In particular, it is an equality for the cases k = 1, 2 of one or two commod-
ity pairs. In the case k = 1, this follows from the well-known max-flow min-cut
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theorem by Ford and Fulkerson [1962]. In the case k = 2 this is the max-flow
min-cut theorem for two commodities, proved by Hu [1963]. These two results
can also be derived from some properties of ℓ1-embeddings; see Corollary 10.3.7
below.

For an arbitrary number k of commodity pairs, the max-flow is in general
less than the min-cut. However, the gap between the max-flow and the min-cut
cannot be too big. The first result in this direction is due to Leighton and Rao
[1988], who proved that the ratio

ρ :=

min
S⊆V

cap(S)

dem(S)

λ∗

is O(log n) in the case when all demands are one and there is a commodity
between any pair of vertices, i.e., k =

(n
2

)
. Several improvements of this result

have been proposed thereafter, in particular, by Klein, Agrawal, Ravi and Rao
[1990], Plotkin and Tardos [1993], Garg, Vazirani and Yannakakis [1993]. The
best result is due to Linial, London and Rabinovich [1994], who proved that
ρ = O(log k) for arbitrary demands and capacities and an arbitrary number k of
commodity pairs; see Theorem 10.3.32 below. This result is based on the results
from Theorems 10.1.2, 10.1.6 and 10.1.7.

Theorem 10.3.3. We have: min
S⊆V

cap(S)

dem(S)
≤ (c0 log k)λ∗, where c0 > 0 is a

constant. Moreover, a subset S for which cap(S)
dem(S) ≤ (c0 log k)λ∗ can be found in

polynomial time.

Proof. We remind that λ∗ is the optimum value of the linear program (10.3.1).
Applying the linear programming duality theorem, we obtain:

(10.3.4)

λ∗ = min
∑

e∈E
Ceze

∑

e∈P
ze ≥ yh (P ∈ Ph, h = 1, . . . , k)

∑

1≤h≤k
Dhyh ≥ 1

yh ≥ 0 (h = 1, . . . , k)
ze ≥ 0 (e ∈ E).

Let (y, z) be an optimum solution to the program (10.3.4). We can suppose
that ze ≤ ∑

f∈P zf for every edge e = ij of G and every path P from i to
j in G. (For, if not, replace z by z′ where, for an edge e = ij of G, z′e :=
min(ze,

∑
f∈P zf for P path from i to j in G).) Let dz denote the shortest path

2A randomized version of Theorem 10.3.3 appeared in the earliest version of Linial, London
and Rabinovich [1994]. This randomized version was independently obtained by Aumann and
Rabani [1996]. Garg [1995a] has also derandomized the randomized version from Linial, London
and Rabinovich [1994] and, thus, obtained Theorem 10.3.3.
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metric of the weighted graph (G, z) (where, for i, j ∈ V , dz(i, j) is defined as the
smallest value of

∑

e∈P
ze taken over all paths P from i to j in G). Then,

λ∗ =
∑

e∈E
Ceze ≥

∑
ij∈E Cijdz(i, j)∑k
h=1Dhdz(sh, th)

because
∑k
h=1Dhdz(sh, th) ≥ ∑k

h=1Dhyh ≥ 1. On the other hand, given a

semimetric d on V , set ze := d(i,j)∑k

h=1
Dhd(sh,th)

for an edge e = ij in G and yh :=

d(sh,th)∑k

h=1
Dhd(sh,th)

for h = 1, . . . , k. Then, (y, z) is feasible for the program (10.3.4),

which implies that

∑
ij∈E Cijd(i, j)∑k
h=1Dhd(sh, th)

=
∑

e∈E
Ceze ≥ λ∗.

This shows, therefore, that λ∗ can be reformulated as

(10.3.5) λ∗ = min
d semimetric on V

∑
ij∈E Cijd(i, j)∑k
h=1Dhd(sh, th)

.

Let d be a semimetric on V . If d happens to be a cut semimetric δ(S), then

∑
ij∈E Cijd(i, j)∑k
h=1Dhd(sh, th)

=
cap(S)

dem(S)
.

More generally, if d is isometrically ℓ1-embeddable, then d =
∑
S λSδ(S) for some

λS ≥ 0, which implies that

∑
ij∈E Cijd(i, j)∑k
h=1Dhd(sh, th)

=

∑
S λScap(S)∑
S λSdem(S)

≥ min
S

cap(S)

dem(S)
.

In general, d is not isometrically ℓ1-embeddable. However, by Theorem 10.1.6,
there exist a constant c0 and vectors wi ∈ RK (i ∈ V ) such that

(10.3.6)

{
‖ wi −wj ‖1 ≤ d(i, j) for all i, j ∈ V,
d(sh, th) ≤ (c0 log k) ‖ wsh

− wth ‖1 for h = 1, . . . , k.

(We apply Theorem 10.1.6 with X = V and Y = {sh, th | h = 1, . . . , k}.)
Therefore,

∑
ij∈E Cijd(i, j)∑k
h=1Dhd(sh, th)

≥
∑
ij∈E Cij ‖ wi − wj ‖1

(c0 log k)
∑k
h=1Dh ‖ wsh

− wth ‖1

≥ 1

(c0 log k)
min
S

cap(S)

dem(S)

(using the argument above). This shows that λ∗ ≥ 1
c0 log k minS

cap(S)
dem(S) .

A subset S realizing cap(S)
dem(S) ≤ (c0 log k)λ∗ can be constructed in the following

way. In view of (10.3.5), the max-flow λ∗ can be found by solving the linear



136 Chapter 10. Lipschitz Embeddings

program:

λ∗ = min
∑

ij∈E
Cijd(i, j)

k∑

h=1

Dhd(sh, th) = 1

d semimetric on V,

which can be clearly done in polynomial time. Let d be an optimum solution.
By Theorem 10.1.7, we can find vectors wi = (wi(r))

K
r=1 ∈ RK (i ∈ V ) satisfying

(10.3.6) and with K = O(n2). Determine the coordinate index r ∈ K for which
the quantity ∑

ij∈E Cij |wi(r) − wj(r)|
∑k
h=1Dh|wsh

(r) − wth(r)|
is minimum. The semimetric d (r) on V defined by

d(r)(i, j) := |wi(r) − wj(r)| for i, j ∈ V,

is ℓ1-embeddable by construction. Hence, d(r) =
∑

A∈A
λAδ(A) where λA > 0 for

A ∈ A. Such a decomposition can be easily found; recall, e.g., Proposition 4.2.2

and its proof. Then, a set A0 ∈ A realizing min
A∈A

cap(A)

dem(A)
satisfies the inequality:

cap(A0)
dem(A0) ≤ (c0 log k)λ∗. Indeed, we have:

λ∗ =

∑
ij∈E

Cijd(i,j)∑k

h=1
Dhd(sh,th)

≥
∑

ij∈E
Cij‖wi−wj‖1

(c0 log k)
∑k

h=1
‖wsh

−wth
‖1

≥
∑

ij∈E
Cij |wi(r)−wj(r)|

(c0 log k)
∑k

h=1
Dh|wsh

(r)−wth
(r)|

=

∑
A∈A

λAcap(A)

(c0 log k)
∑

A∈A
λAdem(A)

≥ 1
c0 log k

cap(A0)
dem(A0) .

Corollary 10.3.7. For the case of k ≤ 2 commodity pairs, max-flow = min-cut,
i.e.,

λ∗ = min
S⊆V

cap(S)

dem(S)
.

Proof. We use the proof of Theorem 10.3.3. Let d be a semimetric on V which is
an optimum solution for the program (10.3.5). Suppose first that k = 1. Define
the semimetric d′ on V by setting

d′(i, j) := |d(i, s1) − d(j, s1)| for i, j ∈ V.

Then, d(i, j) ≥ d′(i, j) for all i, j ∈ V and d′(s1, t1) = d(s1, t1). Hence,

λ∗ =

∑
ij∈E Cijd(i, j)∑k
h=1Dhd(sh, th)

≥
∑
ij∈E Cijd

′(i, j)
∑k
h=1Dhd′(sh, th)

.
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As d′ is isometrically ℓ1-embeddable (by construction), the latter quantity is

greater than or equal to minS
cap(S)
dem(S) . This shows that λ∗ = minS

cap(S)
dem(S) . Sup-

pose now that k = 2. We define a semimetric d′ on V by setting

d′(i, j) := max(|d(i, s1) − d(j, s1)|, |d(i, s2) − d(j, s2)|) for i, j ∈ V.

Then, d′ is isometrically ℓ2∞-embeddable (by construction), d′(i, j) ≤ d(i, j) for
all i, j ∈ V , and d′(sh, th) = d(sh, th) for h = 1, 2. We can now conclude the
proof as in the previous case, because the semimetric d′ is again ℓ1-embeddable
(since ℓ2∞ is an isometric subspace of ℓ21 by relation (3.1.6)).





Chapter 11. Dimensionality
Questions for ℓ 1-Embeddings

Given a distance space (X,d) which is ℓ1-embeddable, a natural question is to
determine the smallest dimensionm of an ℓ1-space ℓm1 = (Rm , dℓ1) in which (X,d)
can be embedded. A next question is whether there exists a finite point criterion
for ℓm1 -embeddability, analogue to Menger’s result for the Euclidean space; this is
the question of finding the order of congruence of ℓm1 . We present in this chapter
several results related to these questions. Unfortunately fairly little is known. For
instance, the order of congruence of ℓm1 is known only for m ≤ 2 and it is not even
known whether ℓm1 has a finite order of congruence for m ≥ 3. More precisely, a
distance space (X,d) is ℓ11- (resp. ℓ21-embeddable) if and only if the same holds
for every subspace of (X,d) on 4 (resp. on 6) points. As a consequence, one can
recognize in polynomial time whether a distance is ℓm1 -embeddable for m ≤ 2.
On the other hand, the complexity of checking ℓm1 -embeddability is not known
for m ≥ 3. These results are presented in Section 11.1. A crucial tool for the
proofs is the notion of ‘totally decomposable distance’ studied by Bandelt and
Dress [1992]; Section 11.1.2 contains the facts about total decomposability that
are needed for our treatment. Then we consider in Section 11.2 some bounds
for the minimum ℓp-dimension of an arbitrary ℓp-embeddable distance space on
n points.

11.1 ℓ1-Embeddings in Fixed Dimension

Let us begin with several observations concerning the structure of ℓm1 -embeddable
distances, where m ≥ 1 is an integer. Let (Vn, d) be a distance space which is
ℓ1-embeddable. Then, d admits a decomposition as

(11.1.1) d =
∑

δ(S)∈C
λSδ(S),

where λS > 0 for all δ(S) ∈ C and C is a family of cut semimetrics on Vn. When d
is ℓm1 -embeddable then d has such a decomposition which has a special structure.
We need some definitions in order to formulate it.

Given a family C of cut semimetrics on Vn, set

(11.1.2) C̃ := {S, S := Vn \ S | δ(S) ∈ C};

the members of C̃ are called the shores of the cut semimetrics in C. The family C

139
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is said to be nested if the elements of C̃ can be ordered as S1, . . . , Sm, S1, . . . , Sm
in such a way that S1 ⊂ S2 ⊂ . . . ⊂ Sm (and, thus, Sm ⊂ . . . ⊂ S2 ⊂ S1). Given
an integer m ≥ 1, C is said to be m-nested if C can be partitioned into m nested
subfamilies. (Hence, 1-nested means nested.)

We have the following (easy) characterization for ℓm1 -embeddability; it was
in fact already contained in Proposition 4.2.2 but we recall it here for clarity.

Lemma 11.1.3. Let (Vn, d) be a distance space. The following assertions are
equivalent.

(i) (Vn, d) can be embedded into ℓm1 .

(ii) d admits a decomposition (11.1.1) where C is m-nested.

(iii) (Vn, d) can be isometrically embedded into the Cartesian product of m
weighted paths.

Proof. We first consider the case when m = 1.
(i) =⇒ (ii), (iii). Suppose that d is ℓ11-embeddable. Then, there exist scalars
u1, . . . , un such that dij = |ui − uj | for all i, j ∈ Vn. Up to a reordering of the
elements of Vn, we can suppose that u1 ≤ u2 ≤ . . . ≤ un. Then,

d =
n−1∑

i=1

(ui+1 − ui)δ({1, . . . , i}).

Then, (ii) holds as the family {δ({1, . . . , i}) | i = 1, . . . , n − 1} is obviously
nested. Consider the path P = (1, . . . , n) with weight wi,i+1 := ui+1−ui on edge
(i, i+ 1) (i = 1, . . . , n− 1). Then, the shortest path metric of the weighted path
P coincides with d, which shows (iii).
(iii) =⇒ (ii). Let P = (1, . . . , n) be a path with nonnegative weight wi on edge
(i, i + 1) for i = 1, . . . , n− 1. Then, its path metric dP,w can be decomposed as∑n−1
i=1 wiδ({1, . . . , i}).

(ii) =⇒ (i). Suppose now that d =
∑p
i=1 αiδ(Si), where αi > 0 for all i and

S1 ⊂ S2 . . . ⊂ Sp. Define u1, . . . , un ∈ R by setting

ui := 0 for i ∈ S1,

ui :=
∑k
h=1 αh for i ∈ Sk+1 \ Sk, k = 1, . . . ,m− 1,

ui :=
∑p
h=1 αh for i ∈ Vn \ Sp.

Then, one can verify that dij = uj − ui for all i, j ∈ Vn, which shows that d is
ℓ11-embeddable.
The result form ≥ 2 follows now easily using additivity, since d is ℓm1 -embeddable
if and only if d can be decomposed as a sum d = d1 + . . .+ dm, where all di’s are
ℓ11-embeddable.

It is not clear how to use this result for devising a polynomial algorithm
permitting to recognize ℓm1 -embeddable distances. The difficulty is that a dis-
tance in the cut cone CUTn has many decompositions as (11.1.1) (in fact, an
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infinity, if it is not ℓ1-rigid). However, as we will see in Section 11.1.3 below, in
the cases m = 1, 2, it is enough to check one special decomposition (namely, the
one corresponding to a ‘total decomposition’ of d). In particular, one can check
embeddability in the space ℓm1 for m ∈ {1, 2} in polynomial time. Moreover, one
can determine the order of congruence of ℓ21.

These results need the notion of total decomposability for their proofs. So we
organize the rest of the section in the following manner. We summarize in Section
11.1.1 what is known about the order of congruence of the space ℓm1 as well as
some results on the ℓ1-dimension of some specific distance spaces. Then, after
introducing in Section 11.1.2 the definitions and facts about totally decomposable
distances that we need for our treatment, we present in Section 11.1.3 the proofs
for the results concerning embeddability in the ℓ1-space of dimension m ≤ 2.

11.1.1 The Order of Congruence of the ℓ1-Space

Let fp(m) denote the order of congruence of ℓmp ; that is, fp(m) is the smallest
integer such that an arbitrary distance space (X,d) is ℓmp -embeddable if and only
if every subspace of (X,d) on fp(m) points is ℓmp -embeddable. By convention,
we set fp(m) = ∞ if fp(m) does not exist. We remind from Theorem 3.2.2 that
we may restrict our attention to finite distance spaces (X,d).

The study of the parameter fp(m) is motivated by the result of Menger in
the case p = 2, quoted in Theorem 6.2.13. Namely, Menger [1928] showed that
a distance space (X,d) embeds isometrically in the Euclidean space (Rm , dℓ2)
if and only if each subspace of (X,d) on m + 3 points embeds isometrically in
(Rm , dℓ2). In other words,

f2(m) = m+ 3 for each m ≥ 1.

Hence, we have the natural question of looking for analogues of Menger’s theorem
for the case of arbitrary ℓp-metrics and, in particular, in the case p = 1. This
turns out to be a difficult question. Only the following partial results are known.

Since the spaces (R, dℓp ) and (R, dℓ2 ) are identical, we deduce from Menger’s
theorem that fp(1) = 4 for all p. (See also Theorem 11.1.21 for a direct proof of
the fact that f1(1) = 4.) Malitz and Malitz [1992] show that

6 ≤ f1(2) ≤ 11 and f1(m) ≥ 2m+ 1 for all m ≥ 1.

These results are improved by Bandelt and Chepoi [1996a] who show that

f1(2) = 6

and by Bandelt, Chepoi and Laurent [1996] who show that

f1(m) ≥ m2 for m ≥ 3 odd, f1(m) ≥ m2 − 1 for m ≥ 4 even.

The equality: f1(2) = 6 will be proved in Theorem 11.1.24 and the inequalities:
f1(m) ≥ m2 for m odd, f1(m) ≥ m2−1 for m even, are given in Corollary 11.1.6
below. Malitz and Malitz [1992] conjecture that f1(m) is finite for all m.
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In view of the above mentioned results, one can test in polynomial time
whether a given finite distance space (X,d) embeds in (Rm , dℓ1), when m = 1
or 2. (The case m = 1 is anyway easy, as dℓ1 and dℓ2 coincide when restricted
to R.) It would be very interesting if one could show that f1(m) is finite for
all m. Indeed, this would imply the existence of a polynomial time algorithm
for checking embeddability of a finite distance space in the space (Rm , dℓ1), for
any given m. The complexity of the embedding problem into (Rm , dℓ1) for some
fixed m ≥ 3 is not known. We recall that, on the other hand, checking ℓ1-
embeddability of a finite distance space (i.e., embeddability into some (Rm , dℓ1)
for unrestricted m) is NP-complete (cf. Section 4.4).

We conclude this section with some remarks on the ℓ1-dimension of some
concrete examples of distance spaces. We remind that mℓ1(X,d) denotes the
smallest m such that (X,d) can be embedded into ℓm1 . This parameter can be
easily formulated in the case of ℓ1-rigid metrics. Indeed, if (X,d) is an ℓ1-rigid
distance space, then it has a unique decomposition as (11.1.1) and, therefore,
mℓ1(X,d) is equal to the smallest number of nested families needed to cover the
set C of cut semimetrics entering in this decomposition. For instance, hypercube
embeddable graphs have their path metric which is ℓ1-rigid. In particular, trees
are hypercube embeddable and, thus, ℓ1-rigid. (See Proposition 19.1.2.) We now
give some more details about trees as they will play some role here; justification
for the facts quoted below can be found in Section 19.1.

Let T = (V,E) be a tree. Every edge e ∈ E determines a partition of the
node set V into two sets Se and V \ Se. Then, the path metric of T can be
decomposed as

dT =
∑

e∈E
δ(Se)

and this is its only R+ -realization. More generally, if w ∈ RE+ are weights as-
signed to the edges of T , then the path metric dT,w of the weighted tree can be
decomposed in a unique way as

dT,w =
∑

e∈E
weδ(Se).

One can easily determine the ℓ1-dimension of a tree in terms of its number of
leaves1. The next result was already formulated by Hadlock and Hoffman [1978].

Proposition 11.1.4. The following assertions are equivalent for a tree T .

(i) The path metric of T can be embedded into ℓm1 .

(ii) T can be covered by m paths.

(iii) T has at most 2m leaves.

Therefore, if T has p leaves, then the ℓ1-dimension of its path metric is equal to
⌈p2⌉.

1A node v of T is a leaf if its degree is equal to 1.
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Proof. Let T = (V,E) be a tree and, with the above notation, let CT := {δ(Se) |
e ∈ E} denote the family of cuts entering the decomposition of dT . Then, (i)
can be equivalently formulated as: (iv) The family CT is m-nested.
We show the equivalence of (ii)-(iv). The implications (ii) =⇒ (iii), (iv) are clear.
For (iv) =⇒ (iii), suppose that T has at least 2m + 1 leaves. Then, there are
at least 2m + 1 minimal sets in C̃ (as each leaf v yields the minimal set {v}).
Hence, C cannot be covered with m nested families.
The implication (iii) =⇒ (ii) can be shown by induction on m ≥ 1. We leave the
details to the reader.

In order to give lower bounds for the order of congruence f1(m), we need as
a tool the following result about the ℓ1-dimension of a direct product of distance
spaces.

Lemma 11.1.5. Let (X1, d1), (X2, d2) be two distance spaces and let (X,d) :=
(X1 × X2, d1 ⊕ d2) be their direct product. Then the following relation holds:
mℓ1(X,d) = mℓ1(X1, d1) +mℓ1(X2, d2).

Proof. The inequality: mℓ1(X,d) ≤ mℓ1(X1, d1)+mℓ1(X2, d2) follows by additiv-
ity of the ℓ1-distance. Conversely, suppose that (X,d) embeds in ℓm1 . Then, d can
be decomposed as d =

∑
δ(S)∈C λSδ(S), where C is a family of cut semimetrics on

X that is m-nested. By the proof of Proposition 7.5.2, we know that every cut
semimetric in C is of the form δ(A×X2) or δ(X1×B) for some A ⊂ X1, B ⊂ X2.
Say, d =

∑
A∈A λAδ(A ×X2) +

∑
B∈B λBδ(X1 × B). Then, d1 =

∑
A∈A λAδ(A)

and d2 =
∑
B∈B λBδ(B). Note that no two cut semimetrics δ(A × X2) and

δ(X1 ×B) can be put together in a nested family. Hence, the m nested families
partitioning C yield a partition of the cut semimetrics δ(A) (A ∈ A) in p nested
families and a partition of the cut semimetrics δ(B) (B ∈ B) in q nested families
with p+ q = m. Therefore, p ≥ mℓ1(X1, d1) and q ≥ mℓ1(X2, d2), which implies
the converse inequality: mℓ1(X,d) ≥ mℓ1(X1, d1) +mℓ1(X2, d2).

Corollary 11.1.6. f1(m) ≥ m2 for m odd; f1(m) ≥ m2 − 1 for m even.

Proof. We start with an observation. Let (X,d) denote the graphic metric
space of the graph G := K1,s ×K1,t (the Cartesian product of the two complete
bipartite graphs K1,s and K1,t) where s, t ≥ 3. Its ℓ1-dimension is mℓ1(X,d) =
⌈ s2⌉+⌈ t2⌉ (applying Proposition 11.1.4 and Lemma 11.1.5, as K1,s, K1,t are trees
with s and t leaves, respectively). Say, G has node set X := V1 × V2, where
V1 := {u0, u1, . . . , us} and V2 := {v0, v1, . . . , vt} (u0, v0 denoting the respective
‘centers’ of the stars K1,s and K1,t). Then, d can be decomposed as

d =
s∑

i=1

δ(Si) +
t∑

j=1

δ(Tj),

setting Si := {ui}×V2 (i = 1, . . . , s) and Tj := V1×{vj} (j = 1, . . . , t). Clearly, no
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two cut semimetrics δ(Si), δ(Tj) form a nested pair, while any two δ(Si), δ(Sj) (or
δ(Ti), δ(Tj)) do form a nested pair. This shows again that mℓ1(X,d) = ⌈s2⌉+⌈ t2⌉.
On the other hand, if we delete the element x := (ui0 , vj0) from X (where
i0 ∈ {1, . . . , s} and j0 ∈ {1, . . . , t} correspond to leaves in the two trees), then
the two cut semimetrics δ(Si0 \ {x}) and δ(Tj0 \ {x}) become a nested pair.
Hence, one can now partition the cut semimetrics δ(Si \ {x}), δ(Tj \ {x}) into
⌈ s2⌉ + ⌈ t2⌉ − 1 nested subfamilies, which shows that

(a) mℓ1(X \ {x}, d) ≤
⌈
s

2

⌉
+

⌈
t

2

⌉
− 1

for such x.

We can now proceed with the proof. We first show that f1(m) ≥ m2 for m
odd. For this, it suffices to construct a distance space (Y, d) such that |Y | ≥ m2,
mℓ1(Y, d) ≥ m + 1 and mℓ1(Y \ {y}, d) ≤ m for all y ∈ Y . Namely, let (X,d)
be the graphic metric space of the graph K1,m ×K1,m, with mℓ1(X,d) = m+ 1.
Let Y ⊂ X be a minimal subset of X such that mℓ1(Y, d) = m + 1; then,
mℓ1(Y \ {y}, d) ≤ m for all y ∈ Y . This distance space (Y, d) does the job
as |Y | ≥ m2 in view of relation (a) above. One proceeds in the same way for
showing the inequality: f1(m) ≥ m2 − 1 for m even. Namely, one considers now
for (X,d) the graphic metric space of K1,m−1 ×K1,m+1 with mℓ1(X,d) = m+ 1
and (Y, d) is a subspace such that mℓ1(Y, d) = m + 1, mℓ1(Y \ {y}, d) ≤ m for
all y ∈ Y .

To conclude let us mention that the exact value of the ℓ1-dimension of the
equidistant metric is not known. This amounts to determining the maximum
number of equidistant points (with respect to the ℓ1-distance) that can be placed
in the m-dimensional space for given m. This maximum is at least 2m, as the
coordinate vectors ±ei (i = 1, . . . ,m) form obviously an equidistant set of 2m
points. Is it the best one can do ? So we have the following problem:

Problem 11.1.7. Show that there are at most 2m equidistant points in the
m-dimensional ℓ1-space (Rm , dℓ1).

Bandelt, Chepoi and Laurent [1996] have settled Problem 11.1.7 in dimension
m ≤ 3, but the problem remains open in dimension m ≥ 4. In other words,
mℓ1(11m) ≤ ⌈m2 ⌉ with equality if m ≤ 8, but it is not known whether equality
holds for m ≥ 9.

11.1.2 A Canonical Decomposition for Distances

An ℓ1-embeddable distance d on the set Vn can be decomposed as a nonnegative
sum of cut semimetrics. In general, there is not unicity of such a decomposition.
Bandelt and Dress [1992] develop a theory that permits to decompose d in a
unique way. They achieve this by requiring some very specific properties for the
cuts entering the decomposition. Moreover, the theory applies to an arbitrary
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distance d; for this, one has to allow a residual ‘split-prime’ term in the decom-
position. We present here the main ideas and results from Bandelt and Dress
[1992] that we need for our treatment. We do not give proofs as this would take
too much space.

Let d be a distance on Vn. Given two subsets A,B ⊆ Vn, set

αd(A,B) := 1
2 min
a,a′∈A, b,b′∈B

max(0, d(a, b) + d(a′, b′) − d(a, a′) − d(b, b′),

d(a, b′) + d(a′, b) − d(a, a′) − d(b, b′)).

(Here, the elements a, a′ (or b, b′) may coincide.) When B = Vn \ A, we also set

αd(A) := αd(A,Vn \ A).

The quantity αd(A) is called the isolation index of the cut semimetric δ(A) (with
respect to the distance d). Then, δ(A) is said to be a d-split if αd(A) > 0. Clearly,
if δ(A) is a d-split then both sets A and Vn \ A are d-convex. (Recall Definition
4.2.7.) A distance d is said to be split-prime if d has no d-split. In general, we let
Σd denote the set of d-splits of d. We illustrate the definitions on some examples.

Example 11.1.8.

(i) Let d = δ(A) be a cut semimetric. Then, d has only one d-split, namely,
δ(A) itself with isolation index 1.

(ii) Let d be a semimetric on 4 points. Then, d is ℓ1-embeddable. Moreover,
one can verify that d =

∑
δ(S)∈Σd

αd(S)δ(S).

(iii) Let d := dT,w be the path metric of a weighted tree T = (V,E) with
nonnegative edge weights w. Recall that d can be decomposed as d =∑
e∈E weδ(Se) where Se, V \ Se denote the two components of the graph

T\e. Clearly, every cut semimetric δ(Se) is a d-split with isolation index
we and the cut semimetrics δ(Se) (e ∈ E) constitute all the d-splits.

(iv) Let d be the path metric of the complete bipartite graph K2,3. Then, d is
split-prime (as, for every set A, either A or its complement is not d-convex).
In fact, d(K2,3) is the only (up to multiple) split-prime semimetric on 5
points (Lemma 1 in Bandelt and Dress [1992]). There are examples of split-
prime distances that are ℓ1-embeddable. This is the case, for instance, for
the path metric of the 3-dimensional hypercube H(3, 2), or for the metric
on 5 points d := 1

2(δ({1, 4})+δ({1, 5})+δ({2, 4})+δ({2, 5})) (taking value
2 on the pairs (1, 2) and (4, 5) and value 1 elsewhere).

Bandelt and Dress [1992] (Theorem 2) show that every distance d on Vn can
be decomposed as

(11.1.9) d = d0 +
∑

δ(S)∈Σd

αd(S)δ(S),

where d0 is a split-prime distance on Vn (that is, there is no d0-split) and the
sum is taken over the set Σd of d-splits; d0 is called the split-prime residue of
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d. Moreover, d0 is a semimetric whenever d is a semimetric. The decomposition
(11.1.9) is clearly unique. It can be found in time O(n6).

The collection of d-splits has some specific property. We need one more
definition in order to formulate it. Call a collection C of cut semimetrics on
Vn weakly compatible if there does not exist four points x1, x2, x3, x4 ∈ Vn and
three cut semimetrics δ(A1), δ(A2), δ(A3) ∈ C whose restrictions on the set
X := {x1, x2, x3, x4} would induce the three distinct cut semimetrics where X is
partitioned into two pairs. In other words, the family C is weakly compatible if
and only if, for all A,B,C ∈ C̃, A ∩ B ∩ C 6= ∅ =⇒ A ⊆ B ∪ C, or B ⊆ A ∪ C,
or C ⊆ A ∪B (recall the definition of C̃ from (11.1.2)). One can verify that the
set of d-splits of a distance d is weakly compatible. Conversely, we have (from
Theorem 3 in Bandelt and Dress [1992]):

Fact 11.1.10. Let C be a weakly compatible family of cut semimetrics on Vn
and let λS > 0 be given scalars for δ(S) ∈ C. Then, C is the set of d-splits of the
distance d :=

∑
δ(S)∈C λSδ(S) and αd(S) = λS for all δ(S) ∈ C.

As a consequence, every weakly compatible set of cut semimetrics on Vn is
linearly independent and, thus, has cardinality ≤ (n

2

)
. In fact, for a distance d

having a nonzero split-prime residue d0 in (11.1.9), the set Σd ∪ {d0} is linearly
independent.

A distance d on Vn is said to be totally decomposable if d =
∑
δ(S)∈Σd

αd(S)δ(S)
holds. That is, if in the decomposition (11.1.9) there is no split-prime residue,
i.e., d0 = 0. Then, d is ℓ1-embeddable. As mentioned in Example 11.1.8 (ii),
every semimetric on 4 points is totally decomposable. In general, totally decom-
posable distances are characterized by the following 5-point criterion (Theorem
6 in Bandelt and Dress [1992]):

Fact 11.1.11. A distance d on Vn is totally decomposable if and only if, for all
a, b, c, d, x ∈ Vn, αd({a, b}, {c, d}) = αd({a, b, x}, {c, d}) + αd({a, b}, {c, d, x}).

As an application, one can check total decomposability in time O(n5).

Finally we introduce a notion of minor for distances. Let d be a distance on
Vn, let d0 be its split-prime residue, and let Σd be its set of d-splits. Given a
subset X ⊆ Vn, a distance d′ on X is said to be a minor of d if d′ is of the form:

(11.1.12) d′ = λ0d
′
0 +

∑

δ(S)∈C
λSδ(S ∩X),

where C ⊆ Σd, λS > 0 for all δ(S) ∈ C, λ0 ≥ 0, and d′0 denotes the restriction
of d0 to X. Then, the d′-splits are the nonzero cut semimetrics δ(S ∩ X) for
δ(S) ∈ C. (Here, δ(S ∩X) denotes the cut semimetric on X determined by the
partition of X into S∩X and S∩X.) In other words, a minor d′ of d is obtained
by applying the following two operations: take a nonnegative combination of the
d-splits and of the residue of d, and/or take the restriction to a subset X of the
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groundset of d. Total decomposability is obviously preserved by taking minors;
the following is shown in Bandelt and Dress [1992]:

Fact 11.1.13. A distance d is totally decomposable if and only if it does not
have the path metric of the complete bipartite graph K2,3 as a minor.

Examples of totally decomposable distances include path metrics of weighted
trees and their isometric subspaces, known as tree metrics. In other words, a
distance space (X,d) is called a tree metric if there exists a tree T = (V,E)
with edge weights w ∈ RE+ and a mapping f : X −→ V such that d(x, y) =
dT,w(f(x), f(y)) for x, y ∈ X.

Call two cut semimetrics δ(A) and δ(B) crossing if the four sets A∩B, A∩B,
A ∩ B, A ∩ B are nonempty and cross-free otherwise. That is, δ(A) and δ(B)
are cross-free if two of the sets A, Ā, B, B̄ are comparable (for inclusion). Then,
tree metrics admit the following characterization2:

Fact 11.1.14. A distance d is a tree metric if and only if d is totally decompos-
able and any two d-splits are cross-free.

From this follows:

Fact 11.1.15. Let d1 and d2 be two tree metrics. Then, their sum d := d1 + d2

is totally decomposable with set of d-splits Σd = Σd1 ∪ Σd2 .

An important class of totally decomposable semimetrics is provided by the
semimetrics that can be embedded into the space ℓm1 of dimensionm ≤ 2. Indeed,
a semimetric that can be embedded into ℓ11 is a tree metric (by Lemma 11.1.3).
Hence, a distance that can be embedded into ℓ21 is the sum of two tree metrics
and, thus, is totally decomposable. This fact will play a central role for the
recognition of ℓ21-embeddable metrics, as we see in the next subsection.

11.1.3 Embedding Distances in the ℓ1-Plane

We return here to the question of determining the order of congruence f1(m) of
ℓm1 , the m-dimensional ℓ1-space. It is known that f1(1) = 4 (by Theorem 6.2.13;
see also Theorem 11.1.21). It is not known whether f1(m) < ∞ when m ≥ 3.
Bandelt and Chepoi [1996a] have computed the exact value of f1(2); namely,
they show that f1(2) = 6 (see Theorem 11.1.24 below).

The main results presented here are Theorems 11.1.21 and 11.1.24 which give
several equivalent characterizations for ℓ11- and ℓ21-embeddability of a finite dis-
tance space; in particular, in terms of a list of forbidden minimal configurations.
We follow essentially Bandelt and Chepoi [1996a] for the proofs.

2This is essentially a result of Buneman [1971] or, independently, Edmonds and Giles [1977],
which shows how to represent cross-free families of cut semimetrics by trees.
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An essential tool for these results is the theory of totally decomposable
distance spaces, exposed in the previous subsection. We will use in particu-
lar the properties of totally decomposable distance spaces, mentioned above in
Facts 11.1.10-11.1.15.

We start with several easy but crucial observations. As was observed in
Lemma 11.1.3, a distance d can be embedded in the m-dimensional ℓ1-space
(Rm , dℓ1) if and only if d has a decomposition d =

∑
δ(S)∈C λSδ(S) (with λS > 0

for all S), where C can be partitioned into m nested subfamilies. In the case
m = 1, 2, it suffices, in fact, to check this property for the collection of d-splits.

Lemma 11.1.16. A distance d on Vn is ℓ11-embeddable if and only if d is totally
decomposable and its set Σd of d-splits is nested. Then, d is the shortest path
metric of a weighted path.

Proof. This follows from Lemma 11.1.3 and the fact that a nested family of cut
semimetrics is weakly compatible.

Lemma 11.1.17. A distance d on Vn is ℓ21-embeddable if and only if d is totally
decomposable and its set Σd of d-splits can be partitioned into two nested fam-
ilies. Then, d can be isometrically embedded into the Cartesian product of two
weighted paths.

Proof. The result follows using Fact 11.1.15 and Lemma 11.1.16.

Lemma 11.1.18. For m ∈ {1, 2}, if d is ℓm1 -embeddable, then so is every minor
of d.

Proof. Suppose that d is ℓ11- or ℓ21-embeddable and let d′ be a minor of d, say,
of the form (11.1.12). Then, d is totally decomposable, that is, its split-prime
residue is equal to zero. Hence, d′ too is totally decomposable. The result now
follows using Lemmas 11.1.16 and 11.1.17.

We group in Theorem 11.1.21 several equivalent characterizations for ℓ11-
embeddability. One of them is in terms of some distances that are forbidden
as minors; they are the path metrics of the graphs K2,3, K3, and C4. See
Figure 11.1.19 where are displayed the embeddings in the ℓ1-plane for the latter
two distances.

Figure 11.1.19: Embedding K3 and C4 in the ℓ1-plane (up to scale)
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We start with a characterization of nested families.

Lemma 11.1.20. A family C of cut semimetrics is nested if and only if every
subfamily C0 ⊆ C with cardinality |C0| ≤ 3 is nested.

Proof. We show the ‘if’ part by induction on the cardinality of C. We suppose
that |C| ≥ 4 and that every proper subset of C is nested; we show that C is
nested. Let δ(S) ∈ C; then, the elements of C \ {δ(S)} can be arranged as δ(A1),
. . . , δ(Am) in such a way that A1 ⊂ A2 ⊂ . . . ⊂ Am. If S ⊂ A1 or S ⊂ A1 then
C is nested. If S, S 6⊂ Ai for every i = 1, . . . ,m, then Am ⊂ S (or Am ⊂ S)
(because the three cut semimetrics δ(Am−1), δ(Am), δ(S) form a nested family)
and C is again nested. Else, let i be an index such that S, S 6⊂ Ai and S ⊂ Ai+1.
As δ(Ai), δ(Ai+1) and δ(S) form a nested family, we obtain that Ai ⊂ S ⊂ Ai+1.
This shows that C is nested.

Theorem 11.1.21. Let d be a distance on Vn. The following assertions are
equivalent.

(i) (Vn, d) is ℓ11-embeddable.

(ii) d is totally decomposable and its set Σd of d-splits is nested.

(iii) (X,d) is ℓ11-embeddable for every subset X ⊆ Vn such that |X| ≤ 4.

(iv) d does not have as a minor the path metrics of the graphs K2,3, K3 and
C4.

Proof. The equivalence (i) ⇐⇒ (ii) holds by Lemma 11.1.16. The implication
(i) =⇒ (iii) is obvious and (i) =⇒ (iv) follows from Lemma 11.1.18 and the fact
that the path metrics of K2,3, K3 and H(2, 2) are not ℓ11-embeddable.
We now show the implications (iv) =⇒ (ii) and (iii) =⇒ (ii). For this, we suppose
that d does not satisfy (ii); we show that neither (iii) nor (iv) holds. If d is not
totally decomposable, then d has d(K2,3) as a minor (by Fact 11.1.15) and Σd is
not weakly compatible. Hence, there exist three d-splits δ(A), δ(B), δ(C) such
that A∩B∩C 6= ∅, A 6⊂ B ∪C, B 6⊂ A∪C and C 6⊂ A∪B. Let x1 ∈ A∩B∩C,
x2 ∈ A\B∪C, x3 ∈ B \A∪C, and set X := {x1, x2, x3}. Then, (X,d) is not ℓ11-
embeddable because it has the distance δ(A∩X)+δ(B∩X)+δ(C∩X) = 2d(K3)
as a minor.

We can now suppose that d is totally decomposable and that Σd is not nested.
If there are two crossing d-splits δ(A) and δ(B), then we can choose four elements
x1 ∈ A∩B, x2 ∈ A∩B, x3 ∈ A∩B and x4 ∈ A∩B. Setting X := {x1, . . . , x4},
the distance δ(A ∩X) + δ(B ∩X) is a minor of d that coincides with the path
metric of H(2, 2); hence, (X,d) is not ℓ11-embeddable. Suppose now that any
two d-splits are cross-free. By Lemma 11.1.20, we can find three d-splits δ(A),
δ(B) and δ(C) which do not form a nested family. We can suppose without loss
of generality that A ⊂ B (as δ(A) and δ(B) are cross-free). As δ(C) is cross-free
with δ(A), we have A ⊂ C (or A ⊂ C) (as C,C 6⊂ A, else δ(A), δ(B), δ(C)
would form a nested family). Let x1 ∈ A, x2 ∈ B \ C and x3 ∈ C \ B, and
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X := {x1, x2, x3}. Then, the metric 1
2(δ(A ∩ X) + δ(B ∩ X) + δ(C ∩ X)) on

X coincides with the path metric of K3 and is a minor of d, and (X,d) is not
ℓ11-embeddable.

We now turn to the characterization of ℓ21-embeddability. We start with
establishing an analogue of Lemma 11.1.20 for 2-nested families of cut semimet-
rics. The result3 from Proposition 11.1.22 will play a central role in the proof of
Theorem 11.1.24 below, which contains several equivalent characterizations for
ℓ21-embeddable distances.

Proposition 11.1.22. Let C be a family of cut semimetrics. Then, C can be
partitioned into two nested families if only if the same holds for every subset C0
of C with cardinality |C0| ≤ 5.

Proof. Let C be a family of cut semimetrics. An element δ(S) ∈ C is said to be
extremal in C if one of S or S is minimal in C̃ (i.e., if S is minimal or maximal
in C̃). Hence, δ(A) is not extremal if B ⊂ A ⊂ C for some B,C ∈ C̃. Then, we
say that δ(A) separates δ(B) from δ(C).
We show the ‘if’ part in Proposition 11.1.22 by induction on the cardinality of
C. So we can suppose that |C| ≥ 6 and that every proper subset of C is 2-nested.
Suppose, for a contradiction, that C is not 2-nested. We first show:

(a) There are at most four extremal elements in C.

For, suppose that there are five extremal elements in C. By the assumption, they
can be partitioned into two nested families. Hence, at least three of them form
a nested family, which contradicts the extremality assumption. Next, we show:

(b)
For every extremal element δ(S) ∈ C, the family C \ {δ(S)}
has no new extremal element.

Indeed, suppose that δ(S) is an extremal element in C and that δ(T ) is an ex-
tremal element in C \ {δ(S)} but not in C. Consider a partition of C \ {δ(S)}
into two nested families. Then, δ(S) can be added to the nested family con-
taining δ(T ), so that the new family remains nested. Hence, C is 2-nested, in
contradiction with our assumption. This shows (b). From this we derive:

(c)
For every nonextremal element δ(A) ∈ C, there exist four extremal
elements such that δ(A) separates two of them from the other two.

This follows from the fact that A contains at least two minimal sets and is
contained in at least two maximal sets from C̃. Indeed, if S is a minimal set from

3Proposition 11.1.22 is an analogue of Lemma 11.1.20 for 2-nested families of cut semimetrics;
it was proved by Schrijver [1995]. We prefer to use this combinatorial result rather than
the corresponding result given in Theorem B from Bandelt and Chepoi [1996a], in particular,
because it is self-contained while Bandelt and Chepoi need the notion of median graphs. We
thank Lex Schrijver for his proof of Proposition 11.1.22.
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C̃ contained in A, then there exists a minimal set T in C̃ \ {S, S} which is also
contained in A. Now, T is also minimal in C̃ because δ(T ) is extremal in C by
(b). This shows (c).

Therefore, there are exactly four extremal elements in C (by (a) and (c)).
Say, they are δ(Si) for i = 1, 2, 3, 4, where S1, S2, S3, S4 are minimal in C̃. By
(c), every nonextremal cut semimetric δ(A) separates two of them from the
other two. This makes three possibilities for such a separation. We first observe
that not all three possibilities can occur simultaneously. For this, note that
if δ(A) and δ(B) separate the extremal cut semimetrics in two distinct ways,
then they are crossing. (Indeed, say δ(A) separates δ(S1), δ(S2) from δ(S3),
δ(S4) and δ(B) separates δ(S1), δ(S3) from δ(S2), δ(S4). We can suppose that
S1, S2 ⊂ A ⊂ S3, S4, S1, S3 ⊂ B ⊂ S2, S4. From this follows that A 6⊂ B,B
and B,B 6⊂ A, i.e., δ(A) and δ(B) are crossing.) Now, there cannot be three
pairwise crossing elements in C as they would form a family that is not 2-nested.
Hence, at most two possibilities can occur for the separation of the extremal cut
semimetrics. We distinguish two cases.
Case 1: Every nonextremal cut semimetric δ(A) separates the extremal ones in
the same way; say, it separates δ(S1), δ(S2) from δ(S3), δ(S4). Consider a par-
tition of the nonextremal cut semimetrics into two nested families: {δ(A1), . . . ,
δ(Am)} and {δ(B1), . . . , δ(Bp)}, where A1 ⊂ . . . ⊂ Am and B1 ⊂ . . . ⊂ Bp. We
can always add the δ(Si)’s to either of these two nested families so as to retain
the property of being nested. Indeed, say Am ⊂ S3, S4; then, S1, S2 ⊂ A1.
Either, Bp ⊂ S3, S4 and S1, S2 ⊂ B1; then, S2 ⊂ B1 ⊂ . . . ⊂ Bp ⊂ S4 and
S1 ⊂ A1 ⊂ . . . ⊂ Am ⊂ S3. Or, Bp ⊂ S1, S2 and S3, S4 ⊂ B1; then, we can add
S2, S4 to the chain B1 ⊂ . . . ⊂ Bp and S1, S3 to the chain A1 ⊂ . . . ⊂ Am.
Case 2: Every nonextremal cut semimetric separates, either δ(S1), δ(S2) from
δ(S3), δ(S4), or δ(S1), δ(S3) from δ(S2), δ(S4). Let δ(A) satisfy the first possibil-
ity and δ(B) the second one. Then, δ(A) and δ(B) are crossing. Consider again
a partition of the nonextremal cut semimetrics into two nested families C1 and
C2. Say, δ(A) ∈ C1 and δ(B) ∈ C2. Then, all elements of C1 (resp. C2) separate
the same two pairs of extremal cut semimetrics as δ(A) (resp. δ(B)). From this
follows that both C1 ∪ {δ(S2), δ(S3)} and C2 ∪ {δ(S1), δ(S4)} are nested. Hence,
C is 2-nested. This concludes the proof.

The following distances are not ℓ21-embeddable: the path metrics of the graphs
K2,3, K5, C5, C6 (the circuits on 5 and 6 nodes), K2×K3 (the Cartesian product
of K2 and K3) (see Figure 11.1.23), as well as the four distances d1, d2, d3, and
d4 displayed in Figures 11.1.25-11.1.28. (We display there an embedding in the
3-dimensional space for each of the distances.) (One can verify that, for each
of these distances, their set of d-splits cannot be partitioned into two nested
families.) It turns out that these nine distances are the only minimal obstructions
to ℓ21-embeddability; this result is the contents of Theorem 11.1.24 below which
was proved by Bandelt and Chepoi [1996a].
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K   x K3 2

K 5

C 5 C 6

Figure 11.1.23: Embedding C5, C6, K2 ×K3, K5 in the 3-dimensional ℓ1-space

Theorem 11.1.24. Let d be a distance on Vn. The following assertions are
equivalent.

(i) (Vn, d) is ℓ21-embeddable.

(ii) d is totally decomposable and its set Σd of d-splits can be partitioned into
two nested subfamilies.

(iii) (X,d) is ℓ21-embeddable for every subset X ⊆ Vn with |X| ≤ 6.

(iv) d does not have as a minor the path metrics of the graphs K2,3, C5, C6,
K5, K2×K3, nor any of the metrics d1, d2, d3, d4 shown in Figures 11.1.25-
11.1.28.

Proof. Clearly, (i) ⇐⇒ (ii) (by Lemma 11.1.17) and (i) =⇒ (iii), (iv). We
show below the implications: (iii) =⇒ (ii) and (iv) =⇒ (ii). We start with two
preliminary observations concerning an arbitrary distance d. We first show:

(a)
If there exist three pairwise crossing d-splits,
then the path metric of C6 is a minor of d.

Indeed, suppose that δ(A), δ(B), δ(C) ∈ Σd are pairwise crossing. We can sup-
pose without loss of generality that A∩B ∩C 6= ∅. As Σd is weakly compatible,
we deduce that, either A∩B∩C = ∅, or A∩B∩C = ∅, or A∩B∩C = ∅. We can
suppose, for instance, that A∩B ∩C = ∅. Then, A∩B ∩C 6= ∅ (as A∩B 6= ∅),
A∩B∩C 6= ∅, and A∩B∩C 6= ∅. Using again the weak compatibility of Σd, we
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obtain that A∩B∩C = ∅ and, then, that A∩B∩C 6= ∅, A∩B∩C 6= ∅. Pick an
element in each of these six sets: x1 ∈ A∩B∩C, x2 ∈ A∩B∩C, x3 ∈ A∩B∩C,
x4 ∈ A∩B ∩C, x5 ∈ A∩B ∩C, and x6 ∈ A∩B ∩C and set X := {x1, . . . , x6}.
Then, the distance δ(A ∩X) + δ(B ∩X) + δ(C ∩X) is a minor of d which co-
incides with the path metric of the 6-circuit C6 = (x1, x3, x6, x4, x5, x2). Hence,
(a) holds. Next, we show:

(b)

If there exist four d-splits δ(Ai)(i = 0, 1, 2, 3) such that δ(A0) and
δ(Ai) are crossing for i = 1, 2, 3 and A1, A2, A3 are all minimal in
{Ai, Ai | i = 1, 2, 3}, then the path metric of C6 or of K2 ×K3 is
a minor of d.

Indeed, suppose that such d-splits exist. Then, δ(A1), δ(A2) and δ(A3) are
pairwise cross-free (else, we are done in view of (a)). Hence, A1∩A2 = A1∩A3 =
A2∩A3 = ∅ (by minimality of A1, A2, A3). Let xi ∈ A0∩Ai and yi ∈ A0∩Ai, for
i = 1, 2, 3 (such points exist by assumption) and set X := {xi, yi | i = 1, 2, 3}.
Then, the distance δ(A0∩X)+ 1

2(
∑3
i=1 δ(Ai∩X)) is a minor of d which coincides

with the path metric of K2 ×K3. This shows (b).

We can now proceed with the proof. We suppose that d does not satisfy (ii)
and we show that both (iii) and (iv) are violated. If d is not totally decomposable,
then we are done. Indeed, d has d(K2,3) as a minor, which violates both (iii) and
(iv). Suppose now that d is totally decomposable and that Σd is not 2-nested.
By Proposition 11.1.22, there exists a subset C ⊆ Σd such that |C| ≤ 5 and C is
not 2-nested. Choose such C with minimum cardinality. We distinguish three
cases.
Case 1: |C| = 3. Then, any two members of C are crossing. By (a), we obtain
that d(C6) is a minor of d; hence, (iii) and (iv) are violated.
Case 2: |C| = 4. Suppose first that every member of C is cross-free with at
least another member of C. Let G denote the graph on C, where two elements
of C are joined by an edge if they are cross-free. Then, G contains no matching
of size 2 (else, C would be 2-nested). Moreover, the complement of G contains
no triangle (by the minimality of C). From this follows that G consists of a
triangle. Hence, C = {δ(Ai) | i = 0, 1, 2, 3}, where δ(A0) is crossing with δ(Ai)
(i = 1, 2, 3) and the δ(Ai)’s (i = 1, 2, 3) are pairwise cross-free. We claim that
the set A := {Ai, Ai | i = 1, 2, 3} has three minimal elements at least. (For,
suppose that A1 and A2 are the only minimal elements of A. Then, A1 ⊂ A2,
A2 ⊂ A1 and, for instance, A1 ⊂ A3, A2 ⊂ A3. This implies that A1 ⊂ A3 ⊂ A2.
Hence, C could be covered by two nested families, a contradiction.) Hence, we
can suppose that A1, A2 and A3 are minimal elements of A. Applying (b), we
obtain that d(K2 ×K3) is a minor of d and, thus, (iii) and (iv) are violated.
Case 3: |C| = 5. Let H denote now the graph on C, where two elements are
joined by an edge if thay are crossing. We claim that the maximum degree of
a node in H is ≤ 2. Suppose first that there is a node of degree 4 in H; say,
δ(A5) ∈ C is crossing with the four other elements δ(Ai) (i = 1, 2, 3, 4) of C. The
δ(Ai)’s (i = 1, 2, 3, 4) are pairwise noncrosssing and, for every i = 1, 2, 3, 4, the set
C\{δ(Ai)} is 2-nested (by the minimality of C). From this follows that the family
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C\{δ(A5), δ(Ai)} is nested for every i = 1, 2, 3, 4. By Lemma 11.1.20, this implies
that C \ {δ(A5)} is nested. Therefore, C can be covered by two nested families, a
contradiction. Suppose now that H has a node of degree 3. Say, δ(A5) is crossing
with δ(Ai) (i = 1, 2, 3) and cross-free with δ(A4). The family C \ {δ(A4)} can be
covered by two nested families. Therefore, {δ(A1), δ(A2), δ(A3)} is nested and,
thus, C can be covered by two nested families, a contradiction. So, we have shown
that the maximum degree in H is ≤ 2. Therefore, H is either a circuit on 4 or 5
nodes, or a disjoint union of paths. For every δ(Ai) of degree at most 1 in H, we
can select a point from Ai that does not belong to the other Aj’s. Moreover, we
can select a point in every nonempty intersection Aj ∩Ak, where at least one of
δ(Aj) and δ(Ak) has degree 2 in H. Altogether we have selected a set X of five
or six points such that the family {Ai ∩X,Ai ∩X | i = 1, 2, 3, 4, 5} has at least
five minimal members. Hence, the family {δ(Ai ∩ X) | i = 1, 2, 3, 4, 5} cannot
be covered with two nested families and, thus, (X,d) is not ℓ21-embeddable.
We list below the possible configurations for the graph H together with the
corresponding distance dH :=

∑5
i=1 δ(Bi) on X, setting Bi := Ai ∩X. In each

case, we find one of the forbidden distances as a minor.

(i) When H = C5, then B1 = {1, 2}, B2 = {2, 3}, B3 = {3, 4}, B4 = {4, 5}, and
B5 = {5, 1}. Hence, dH is (up to a factor 2) the shortest path metric of C5.

(ii) When H is the disjoint union of P1 and two paths P2, then Bi = {i} for
i = 1, . . . , 5. Hence, dH is (up to a factor 2) the path metric of the complete
graph K5.

The remaining cases are displayed in Figures 11.1.25-11.1.28. (We show an em-
bedding of the distance in the 3-dimensional grid, as well as the sets Bi.)
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Figure 11.1.25: H = C4, distance d1
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Figure 11.1.26: H = P5, distance d2
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Figure 11.1.27: H is the disjoint union of P1 and P4, distance d3
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Figure 11.1.28: H is the disjoint union of P2 and P3, distance d4

Finally, we mention without proof a result of Bandelt and Chepoi [1996b]
concerning the characterization of the distance spaces that can be embedded
into (Z 2, dℓ1), the rectilinear 2-dimensional grid (or digital plane). Interestingly,
this result is very similar in its formulation to the result for the ℓ1-plane from
Theorem 11.1.24. Namely,

Theorem 11.1.29. Let (X,d) be a distance space where d is integer valued (and
X arbitrary). The following assertions are equivalent.

(i) (X,d) is an isometric subspace of (Z2, dℓ1).

(ii) Every subspace (Y, d) of (X,d) with |Y | ≤ 6 can be embedded into (Z2, dℓ1).
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(iii) (X,d) satisfies the following parity condition4: d(x, y) + d(x, z) + d(y, z) ∈
2Z for all x, y, z ∈ X, and every subspace (Y, d) of (X,d) with |Y | ≤ 6
embeds in the rectilinear plane (R2 , dℓ1).

(iv) Every finite subspace of (X,d) satisfies the parity condition, is totally de-
composable and its collection of d-splits is 2-nested.

In particular, a distance space (X,d) embeds in the grid (Z2, dℓ1) if and only
if it embeds in the plane (R2 , dℓ1) and it satisfies the parity condition.

According to Malitz and Malitz [1992], one can test in O(n3) time whether a
distance space on n points embeds in the ℓ1-plane and construct such an embed-
ding if one exists. Therefore, one can test embeddability in the 2-dimensional
grid with the same time complexity. Moreover, Bandelt and Chepoi [1996b]
show how to construct in time O(n log n) an embedding in the grid Z2 from an
embedding in the plane R2 (if one exists).

11.2 On the Minimum ℓ p-Dimension

We consider here the problem of evaluating the minimum ℓp-dimensionmℓp(n) of
an arbitrary ℓp-embeddable space on n points. We recall the definition of mℓp(n)
from relation (3.1.2). That is, mℓp(n) is the smallest integer m such that any
ℓp-embeddable space on n points can embedded in ℓmp . The main results can be
stated as follows.

As was already observed in relations (3.1.3) and (6.2.6),

mℓ∞(n) ≤ n− 1 and mℓ2(n) = n− 1

but, for general p, it is not immediate that mℓp(n) is finite. Wolfe [1967] showed
that

mℓ∞(n) ≤ n− 2

and Holsztysnki [1978] that

mℓ∞(n) ≥
⌊
2

3
n

⌋
for n ≥ 4.

Ball [1990] showed the existence of a constant c such that

mℓ∞(n) ≥ n− cn3/4.

Witsenhausen proved that

mℓ1(n) ≤
(
n

2

)
.

Fichet [1988] and Ball [1990] extended (independently) the result for any p ≥ 1
(see Proposition 11.2.3 below). In other words, every ℓp-embeddable distance

4The parity condition is an obvious necessary condition for embeddability in the hypercube
or the ℓ1-grid Z

m (for some m ≥ 1); see relation (24.1.1).
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on n points can embedded in ℓmp , where m =
(n
2

)
. The bound can be slightly

improved to

mℓ1(n) ≤
(
n

2

)
− 1

as observed by Fichet [1994]. Ball [1990] proposes the following lower bounds
for the minimum ℓp-dimension:

mℓp(n) ≥
(
n− 1

2

)
for 1 < p < 2, n ≥ 3, and

mℓ1(n) ≥
(
n− 2

2

)
for n ≥ 4.

(See Proposition 11.2.4 below.) In fact,

mℓ1(4) = mℓ∞(4) = 2, mℓ1(5) = 3, and mℓ1(6) = 6

(see Ball [1990] and Fichet [1994]). Ball [1990] made the following conjecture
concerning the minimum ℓ1-dimension:

Conjecture 11.2.1. mℓ1(n) =
(n−2

2

)
for all n ≥ 5.

The upper bound: mℓp(n) ≤ (n
2

)
is based on Carathéodory’s theorem applied

to the cut cone (if p = 1) or to the cone NORn(p) (for p ≥ 1). Let us recall
the definition of NORn(p). Given an integer p ≥ 1, NORn(p) consists of the

distances d on Vn for which d
1
p is ℓp-embeddable, i.e., for which there exist n

vectors v1, . . . , vn ∈ Rm (m ≥ 1) such that

dij = (‖ vi − vj ‖p)p

for all 1 ≤ i < j ≤ n. In the case p = 1, NORn(1) coincides with the cut cone

CUTn (by Proposition 4.2.2). An element d ∈ NORn(p) is said to be linear if d
1
p

is ℓ1p-embeddable, i.e., if there exist x1, . . . , xn ∈ R such that dij = |xi − xj|p for
all 1 ≤ i < j ≤ n. For example, each cut semimetric belongs to NORn(p) and is
linear, i.e.,

CUTn ⊆ NORn(p).

We collect in the next result a few (easy to verify) properties of the set NORn(p).

Lemma 11.2.2.

(i) NORn(p) is a cone.

(ii) Let d ∈ NORn(p). Then, d
1
p is ℓmp -embeddable if and only if d is the sum

of m linear members of NORn(p). In particular, if d lies on an extreme
ray of NORn(p), then d is linear.
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Proposition 11.2.3. mℓ1(n) ≤ (n
2

)− 1 and mℓp(n) ≤ (n
2

)
for all p ≥ 1.

Proof. Consider first the case p = 1. We show that every semimetric d ∈ CUTn
can be written as a nonnegative combination of

(n
2

)−1 linear members of CUTn.
This follows from Carathéodory’s theorem if d lies on the boundary of CUTn.
Else, suppose that d lies in the interior of CUTn. Let α > 0 such that d−αδ(1)
lies on the boundary of CUTn. Then, d−αδ(1) can be written as a nonnegative
combination of

(n
2

) − 1 cut semimetrics. This implies that d can be written as
a nonnegative combination of

(n
2

) − 1 linear semimetrics (as δ(1) together with
any other cut semimetric δ(S) form a nested family). We consider now the case
p ≥ 1. Let H denote the hyperplane in REn , which is defined by the equation∑

1≤i<j≤n xij = 1. Set

L := {d ∈ NORn(p) | d ∈ H and d is linear}.

One can show that L is a compact set and that NORn(p) ∩ H is a (
(n
2

) − 1)-
dimensional convex set which coincides with the convex hull of L. Hence,
Carathéodory’s theorem implies that every member of NORn(p) can be writ-
ten as the sum of

(n
2

)
linear members of NORn(p). This yields the result.

Proposition 11.2.4.

(i) mℓ1(n) ≥ (n−2
2

)
for n ≥ 4.

(ii) mℓp(n) ≥ (n−1
2

)
for 1 < p < 2 and n ≥ 3.

Proof. (i) Set m :=
(n−2

2

)
. We exhibit a semimetric d on Vn which embeds in ℓm1

but not in ℓk1 if k < m. Set d :=
∑

2≤r<s≤n−1

δ({1, r, s}); hence,





d1n =
(n−2

2

)
,

d1i =
(n−3

2

)
for 2 ≤ i ≤ n− 1,

dij = 2(n− 4) for 2 ≤ i < j ≤ n− 1,
din = n− 3 for 2 ≤ i ≤ n− 1.

By construction, d embeds isometrically in ℓm1 . We show that d cannot be embed-
ded in ℓk1 if k < m. For this, we consider the inequality of negative type (6.1.1)
with b := (−2, 1, . . . , 1,−(n− 4)), i.e., the inequality

(11.2.5) 2(n− 4)x1n − 2
∑

2≤i≤n−1

x1i − (n− 4)
∑

2≤i≤n−1

xin +
∑

2≤i<j≤n−1

xij ≤ 0.

Let F denote the face of the cone NORn(1) (=CUTn) which is defined by the
inequality (11.2.5). Clearly, the cut semimetrics δ({1, r, s}) (2 ≤ r < s ≤ n− 1)
are the only cut semimetrics that lie on F . Moreover, they are linearly inde-
pendent. Hence, F is a simplex face of NORn(1). Therefore, d is ℓ1-rigid; that
is, d :=

∑

2≤r<s≤n−1

δ({1, r, s}) is its only R+ -realization. No two cut semimetrics

δ({1, r, s}) and δ({1, r′, s′}) form a nested pair. Hence, the family {δ({1, r, s}) |
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2 ≤ r < s ≤ n− 1} cannot be covered with less than m nested subfamilies. This
shows that d is not ℓk1-embeddable if k < m.
(ii) We only sketch the proof, which is along the same lines as for (i). Set
m :=

(n−1
2

)
. Consider the vectors v1, . . . , vn ∈ Rm defined by

(vi)rs =





1 if r = i
−1 if s = i
0 otherwise

for 1 ≤ r < s ≤ n. Define a distance d on Vn by setting dij :=‖ vi − vj ‖p for
1 ≤ i < j ≤ n. So d embeds in ℓmp by construction. One can show that d does

not embed in ℓkp if k < m by using, as in case (i), a special inequality which is
valid for the cone NORn(p) and is satisfied at equality by dp. Namely, one uses
the inequality:

∑

1≤i<j≤n
(‖ ui − uj ‖p)p − (n+ 2p−1 − 2)(‖ ui ‖p)p ≤ 0,

which holds for any set of n vectors u1, . . . , un ∈ Rh (h ≥ 1) if 1 ≤ p ≤ 2 (Ball
[1987]).

Remark 11.2.6. Linial, London and Rabinovich [1994] define the metric dimension
dim(G) of a connected graph G as the smallest integer m for which there exists a norm
‖ . ‖ on Rm such that the graphic space (V, dG) of the graph G can be isometrically
embedded into the space (Rm , d‖.‖). The definition extends clearly to an arbitrary
semimetric space. Hence, rather than looking only at embeddings in a fixed Banach
ℓp-space, Linial, London and Rabinovich [1994] consider embeddings in an arbitrary
normed space.

Actually, this notion of metric dimension is linked with ℓ∞-embeddings in the fol-
lowing way. Let (Vn, d) be a semimetric space. Then, its metric dimension is equal
to the minimum rank of a system of vectors v1, . . . , vn ∈ Rk (k ≥ 1) providing an
ℓ∞-embedding of (Vn, d), i.e., such that dij =‖ vi − vj ‖∞ for all 1 ≤ i < j ≤ n.

The metric dimension of several graphs is computed in Linial, London and Rabi-
novich [1994]. In particular, dim(Kn) = ⌈log2(n)⌉, dim(T ) = O(log2(n)) for a tree on
n nodes (both being realized by an ℓ∞-embedding), dim(C2n) = n for a circuit on 2n
nodes (realized by an ℓ1-embedding), dim(Kn×2) ≥ n−1 for the cocktail party graph. It
is also shown there that, if G is a graph on n nodes with metric dimension d, then each
vertex has degree ≤ 3d − 1, G has diameter ≥ 1

2 (n
1
d − 1), and there exists a subset S of

O(dn1− 1
d ) nodes whose deletion disconnects G and so that each connected component

of G\S has no more than (1 − 1
d

+ o(1))n nodes.

Dewdney [1980] considers the question of embedding graphs isometrically into the ℓp-

space (Fm, dℓp
), where F is a field. He shows, in particular, that every connected graph

G on n nodes can be isometrically embedded into the space ({0, 1, 2}n−2, dℓ∞). More-

over, computing the smallest m such that G embeds isometrically into ({0, 1, 2}m, dℓ∞)

is an NP-hard problem.





Chapter 12. Examples of the Use of
the L1-Metric

The L1-metric is widely used in many areas, for instance, for the analysis of data
structures, for the recognition of computer pictures, or for comparing random
variables in probabilities. We provide here some (superficial) information on
some areas of application of the L1-metric. The importance of the L1-metric is
illustrated, in particular, by the great variety of names under which it is known.
For example, the Manhattan metric, the taxi-cab metric, or the 4-metric are
different names for the same notion, namely, the ℓ1 distance in the plane; more
terminology is given in Section 12.3.

12.1 The L 1-Metric in Probability Theory

Let (Ω,A, µ) be a probability space and let X : Ω −→ R be a random variable
belonging to L1(Ω,A, µ); that is, such that

∫
Ω |X(ω)|µ(dω) <∞. Let FX denote

the distribution function of X, i.e., FX(x) = µ({ω ∈ Ω | X(ω) ≤ x}) for x ∈ R;
when it exists, its derivative F ′

X is called the density of X. A great variety of
metrics on random variables are studied in the monograph by Rachev [1991];
among them, the following are based on the L1-metric:

• The usual L1-metric between the random variables:

L1(X,Y ) = E(|X − Y |) =

∫

Ω
|X(ω) − Y (ω)|µ(dω).

• The Monge-Kantorovich-Wasserstein metric (i.e., the L1-metric between
the distribution functions):

k(X,Y ) =

∫

R
|FX(x) − FY (x)|dx

• The total valuation metric (i.e., the L1-metric between the densities when
they exist):

σ(X,Y ) =
1

2

∫

R
|F ′
X(x) − F ′

Y (x)|dx.

• The engineer metric (i.e., the L1-metric between the expected values):

EN(X,Y ) = |E(X) −E(Y )|.

161



162 Chapter 12. Examples of the Use of the L1-Metric

• The indicator metric:

i(X,Y ) = E(1X 6=Y ) = µ({ω ∈ Ω | X(ω) 6= Y (ω)}).

In fact, the Lp-analogues (1 ≤ p ≤ ∞) of the above metrics, especially of the
first two, are also used in probability theory.

Several results are known, establishing links among the above metrics. One
of the main such results is the Monge-Kantorovich mass-transportation theorem
which shows that the second metric k(X,Y ) can be viewed as a minimum of the
first metric L1(X,Y ) over all joint distributions of X and Y with fixed marginal.
A relationship between the L1(X,Y ) and the engineer metric EN(X,Y ) is given
in Rachev [1991] as a solution of a moment problem. Similarly, a connection
between the total valuation metric σ(X,Y ) and the indicator metric i(X,Y ) is
given in Dobrushin’s theorem on the existence and uniqueness of Gibbs fields in
statistical physics. See Rachev [1991] for a detailed account on the above topics.

We mention another example of the use of the L1-metric in probability theory,
namely for Gaussian random fields. We refer to Noda [1987, 1989] for a detailed
account. Let B = (B(x) | x ∈M) be a centered Gaussian system with parameter
space M , 0 ∈M . The variance of the increment is denoted by

d(x, y) := E((B(x) −B(y))2) for x, y ∈M.

When (M,d) is a metric space which is L1-embeddable, the Gaussian system is
called a Lévy’s Brownian motion with parameter space (M,d). The case M = Rn

and d(x, y) =
‖ x − y ‖2 gives the usual Brownian motion with n-dimensional parameter. By
Lemma 4.2.5, (M,d) is L1-embeddable if and only if there exist a non negative
measure space (H, ν) and a mapping x 7→ Ax ⊆ H with ν(Ax) <∞ for x ∈M ,
such that d(x, y) = ν(Ax△Ay) for x, y ∈ M . Hence, a Gaussian system admits
a representation called of Chentsov type

B(x) =

∫

Ax

W (dh) for x ∈M

in terms of a Gaussian random measure based on the measure space (H, ν) with
d(x, y) = ν(Ax△Ay) if and only if d is L1-embeddable.

This Chentsov type representation can be compared with the Crofton for-
mula for projective metrics from Theorem 8.3.3. Actually both come naturally
together in Ambartzumian [1982] (see parts A.8-A.9 of Appendix A there).

12.2 The ℓ 1-Metric in Statistical Data Analysis

A data structure is a pair (I, d), where I is a finite set, called population, and
d : I × I −→ R+ is a symmetric mapping with dii = 0 for i ∈ I, called dissimi-
larity index. A typical problem in statistical data analysis is to choose a “good
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representation” of a data structure; usually, “good” means a representation al-
lowing to represent the data structure visually by a graphic display. Each sort of
visual display corresponds, in fact, to a special choice of the dissimilarity index
as a distance and the problem turns out to be the classical isometric embedding
problem in special classes of metrics.

For instance, in hierarchical classification, the case when d is ultrametric
corresponds to the possibility of having a representation of the data structure
by a so-called indexed hierarchy (see Johnson [1967]). A natural extension is the
case when d is the path metric of a weighted tree, i.e., when d satisfies the four
point condition (cf. Section 20.4); then the data structure is called an additive
tree. Data structures (I, d) for which d is ℓ2-embeddable are considered in factor
analysis and multidimensional scaling. These two cases together with cluster
analysis are the main three techniques for studying data structures. The case
when d is ℓ1-embeddable is a natural extension of the ultrametric and ℓ2 cases
which has received considerable attention in the recent years.

An ℓp-approximation consists of minimizing the estimator ‖ e ‖p, where e
is a vector or a random variable (representing an error, deviation, etc). The
following criteria are used in statistical data analysis:

• the ℓ2-norm, in the least square method; or its square,

• the ℓ∞-norm, in the minimax method,

• the ℓ1-norm, in the least absolute values (LAV) method.

In fact, the ℓ1 criterion has also been increasingly used in the recent years.

The importance of the role played by the ℓ1-metric in statistical data analysis
can be seen, for instance, from the volumes by Dodge [1987b, 1992] and by
van Cutsem [1994] of proceedings of conferences on the topic of statistical data
analysis. We refer, in particular, to the papers by Crichtley and Fichet [1994],
Dodge [1987a], Fichet [1987a, 1987b, 1992, 1994], Le Calve [1987], Vajda [1987]
in those volumes.

12.3 The ℓ 1-Metric in Computer Vision and Pattern
Recognition

The ℓp-metrics are also used in the new area called pattern recognition, or robot
vision, or digital topology; see, e.g., Rosenfeld and Kak [1976], Horn [1986].

A computer picture is a subset of Zn (or of a scaling 1
mZ

n of Zn) which is
called a digital n-D-space (or an n-D m-quantized space). Usually, pictures are
represented in the digital plane Z2 or in the digital 3-D-space Z3. The points of
Zn are called the pixels.

Given a picture in Zn, i.e., a subset A of Zn, one way to define its volume
vol(A) is by vol(A) := |A|, i.e., as the number of pixels contained in A. Then,
the distance

d(A,B) := vol(A△B)
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is used in digital topology for evaluating the distance between pictures. It is
a digital analogue of the symmetric difference metric used in convex geometry,
where the distance between two convex bodies A and B in Rn is defined as the
n-dimensional volume of their symmetric difference.

The above metric and other metrics on Zn are used for studying analogues
of classical geometric notions as volume, perimeter, shape complexity, etc., for
computer pictures. The metrics on Zn that are mainly used are the ℓ1-, ℓ∞-
metrics, as well as the ℓ2-metric after rounding to the nearest upper (or lower)
integer.

When considered on Zn, the ℓ1-metric is also called the grid metric and the
ℓ∞-metric is called the lattice metric (or Chebyshev metric, or uniform metric).
More specific names are used in the case n = 2. Then, the ℓ1-metric is also
known as the city-block metric (or Manhattan metric, or taxi-cab metric, or
rectilinear metric), or as the 4-metric since each point of Z2 has exactly 4 closest
neighbors in Z 2 for the ℓ1-metric. The reader may consult Krause [1986] for a
leisurely account on the taxi-cab metric. Similarly, the ℓ∞-metric on Z 2 is called
the chessboard metric, or the 8-metric since each pixel has exactly 8 closest
neighbors in Z 2. Note indeed that the unit sphere S1

ℓ1
(centered at the origin)

for the ℓ1-norm in R2 contains exactly 4 integral points while the unit sphere
S1
ℓ∞

for the ℓ∞-norm contains 8 integral points.
Observe also that the ℓ1-metric, when considered on Zn, can be seen as the

path metric of an (infinite) graph on Zn. Namely, consider the graph on Zn

where two lattice points are adjacent if their ℓ1-distance is equal to 1; this graph
is nothing but the usual grid. Then, the shortest path distance of two lattice
points in the grid is equal to their ℓ1-distance. Similarly, the ℓ∞-metric on Zn

is the path metric of the graph on Zn where adjacency is defined by the pairs
at ℓ∞-distance one. For n = 2, adjacency corresponds to the king move in
chessboard terms; moreover, (Z2, dℓ∞) is an isometric subspace of (1

2Z
2, dℓ1) via

the embedding given in relation (3.1.6).

There are some other useful metrics on Z2 which are obtained by combining
the ℓ1- and ℓ∞-metrics. The following two examples, the octogonal and the
hexagonal distances, are path metrics; hence, in order to define them, it suffices
to describe the pairs of lattice points at distance 1, i.e., to describe their unit
balls.

The Octogonal Distance doct. For each (x, y) ∈ Z2, its unit sphere S1
oct(x, y),

centered at (x, y), is defined by

S1
oct(x, y) = S3

ℓ1(x, y) ∩ S2
ℓ∞(x, y),

where S3
ℓ1

(x, y) denotes the ℓ1-sphere of radius 3 and S2
ℓ∞

(x, y) the ℓ∞-sphere of
radius 2, centered at (x, y). Hence, S1

oct(x, y) contains exactly 8 integral points;
note that moving from (x, y) to its eight neighbors at distance 1 corresponds to
the knight move in chessboard terms. Figure 12.3.1 shows the spheres S3ℓ1 , S

2
ℓ∞

,
and S1

oct.
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Figure 12.3.1

The Hexagonal Distance or 6-Metric dhex. Its unit sphere S1
hex(x, y), cen-

tered at (x, y) ∈ Z2, is defined by

S1
hex(x, y) = S1

ℓ1(x, y) ∪ {(x− 1, y − 1), (x − 1, y + 1)} for x even,

S1
hex(x, y) = S1

ℓ1(x, y) ∪ {(x+ 1, y − 1), (x + 1, y + 1)} for x odd.

The unit sphere S1
hex(x, y) contains exactly 6 integral points. Figure 12.3.2 shows

the unit spheres S1
hex(0, 0) and S1

hex(1,−3). (In fact, the distance space (Z2, dhex)
embeds with scale 2 in the hexagonal grid A2 (consisting of the vectors in Z3

with sum 0); see Luczak and Rosenfeld [1976] for details.)

y=0

y=-3

x=0 x=1

Figure 12.3.2

Several other modifications of the ℓ1-metric on the plane have been consid-
ered; see, e.g., De Berg [1991] and references therein.

In practice, the subset (Zk)
n := {0, 1, . . . , k−1}n is considered instead of the

full space Zn. Note that (Z2)
n is nothing but the vertex set of the n-dimensional

hypercube and ((Z2)
n, dℓ1) is the n-dimensional hypercube metric space. Note

also that (Z3)
2 is the unit ball (centered at (1, 1)) of the space (Zn, dℓ∞). (Z 4)

n
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is known as the tic-tac-toe board (or Rubik’s n-cube) and (Zk)
2, (Z k)

3 are called,
respectively, the k-grill and the k-framework.

Other distances are used on (Zk)
n, in particular in coding theory, namely,

the Hamming distance dH and the Lee distance dLee defined by

dLee(x, y) =
∑

1≤i≤n
min(|xi − yi|, k − |xi − yi|) for all x, y ∈ (Zk)

n.

The metric space (Zk, dLee) can be seen as a discrete analogue of the elliptic
metric space (which consists of the set of all the lines in R2 going through the
origin and where the distance between two such lines is their angle).

The ℓ1-distance and the Hamming distance coincide when restricted to (Z2)
n,

i.e., the spaces ((Z2)
n, dℓ1) and ((Z2)

n, dH) are identical. Also, (Zk, dℓ1) coincides
with the graphic metric space of the path Pk on k nodes, (Zk, dH) coincides with
the graphic space of the complete graph Kk on k nodes, and (Zk, dLee) coincides
with the graphic space of the circuit Ck on k nodes. Therefore, the spaces
((Zk)

n, dℓ1), ((Zk)
n, dH) and ((Zk)

n, dLee) coincide with the graphic space of the
Cartesian product Gn, where G is Pk, Kk and Ck, respectively. The following
can be easily checked.

(i) Pk embeds isometrically in the (k − 1)-dimensional hypercube (see Exam-
ple 7.2.9), i.e., (Zk, dℓ1) is an isometric subspace of ((Z2)

k−1, dℓ1) (simply,
label each x ∈ Zk by the binary string 1 . . . 10 . . . 0 of length k − 1 whose
first x letters are equal to 1). Hence, ((Zk)

n, dℓ1) is an isometric subspace
of ((Z2)

n(k−1), dℓ1).

(ii) ((Zk)
n, dH) is an isometric subspace of ((Z2)

kn, 1
2dℓ1) (label each x ∈ Zk

by the binary string of length k whose letters are all equal to 0 except the
(x+ 1)th one equal to 1).

(iii) The even circuit C2k embeds isometrically into the k-dimensional hyper-
cube (see Example 7.2.9). Therefore, ((Z2k)

n, dLee) is an isometric sub-
space of ((Z2)

nk, dℓ1). Also, ((Z2k+1)
n, dLee) is an isometric subspace of

((Z 2)
(2k+1)n, 1

2dℓ1) (since the odd circuit C2k+1 embeds isometrically into
the (2k + 1)-dimensional halfcube).

More details about the ℓ1-embeddings of the graphs Pk, Ck and Kk can be found
in Parts III and IV.
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Introduction

The central concept studied in Part II is hypermetricity. This is a nat-
ural strengthening of the notion of semimetric, which has many applications
and connections. The main topics to which hypermetrics relate include ℓ1- and
ℓ2-metrics in analysis, the cut cone and the cut polytope in combinatorial op-
timization, graphs with high regularity and, what will be our focus of interest
here, quadratic forms, Delaunay polytopes and holes in lattices.

The notion of hypermetrics sheds a new light and gives a more ordered view
on some well studied questions; for example, on equiangular sets of lines, on
the graphs whose adjacency matrix has minimum eigenvalue −2, on the metric
properties of regular graphs. For instance, the parameter characterizing the three
layers composing the famous list from Bussemaker, Cvetković and Seidel [1976]
of the 187 graphs with minimum eigenvalue −2 has now a more clear meaning:
it comes from the radius of the Delaunay polytope associated with the graph
metrics in each layer (see Section 17.2).

The links between hypermetrics and ℓ1-,ℓ2-metrics have been discussed in
Section 6.3. Hypermetric inequalities, as valid inequalities for the cut cone and
polytope, will be studied in Part V. In this second part, we focus on the con-
nections existing between hypermetrics and geometry of numbers and, more
precisely, with Delaunay polytopes and holes in lattices.

Our central objects here are hypermetric inequalities and hypermetric spaces;
they have already been introduced in Section 6.1, but we recall the main defini-
tions here. Given an integer vector b ∈ Zn with

∑n
i=1 bi = 1, the inequality

(a)
∑

1≤i<j≤n
bibjxij ≤ 0

is called a hypermetric inequality. When bi = bj = 1 = −bk and bh = 0 for
h 6= i, j, k (for some distinct i, j, k), the inequality (a) is simply the triangle
inequality:

xij − xik − xjk ≤ 0.

A distance space (X,d) is said to be hypermetric if d satisfies all hypermetric
inequalities. As the hypermetric inequalities include the triangle inequalities,
every hypermetric distance space is a semimetric space. The hypermetric cone
HYPn is the cone in REn defined by the inequalities (a) for all b ∈ Zn with∑n
i=1 bi = 1.
When b ∈ Zn with

∑n
i=1 bi = 0, the inequality (a) is called an inequality of

negative type. The negative type cone NEGn is the cone in REn defined by the
inequalities (a) for all b ∈ Zn with

∑n
i=1 bi = 0, and a distance space (X,d) is

said to be of negative type if d satisfies all the negative type inequalities.

Many important semimetrics are hypermetric. In particular, all ℓ1-semimetrics
are hypermetric. More precisely, given a distance d, we have the following chain
of implications (recall Theorem 6.3.1):
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d is isometrically ℓ2-embeddable
=⇒ d is isometrically ℓ1-embeddable

=⇒ d is hypermetric

=⇒
√
d is isometrically ℓ2-embeddable

Moreover, if d is hypermetric then
√
d has an ℓ2-embedding on a sphere and,

as we see below, this sphere corresponds to a hole in some lattice. The last
property in the above chain of implications is well characterized. Namely,

√
d is

isometrically ℓ2-embeddable if and only if d is of negative type or, equivalently,
if and only if the image ξ(d) of d under the covariance mapping ξ is a positive
semidefinite matrix. Therefore, our central object: the hypermetric cone, is
closely related to the positive semidefinite cone. (See Section 13.1 for details.)

A distance that we will use constantly here is the square of the Euclidean
distance, namely the distance d(2) defined by

d(2)(x, y) := (‖ x− y ‖2)
2 = (x− y)T (x− y)

for x, y ∈ Rn . For convenience, we also denote xTx = (‖ x ‖2)
2 =

∑n
i=1(xi)

2 as
x2, for x ∈ Rn . In this part we will use exclusively the ℓ2-norm ‖ . ‖2. So, for
simplicity, we sometimes omit the subscript and write ‖ x ‖ instead of ‖ x ‖2.

In fact, the study of hypermetric distance spaces amouts to the study of holes
in lattices, as we now briefly explain. Let L be a lattice. Blow up a sphere S
in one of the interstices of L until it is held rigidly by lattices points. Then,
there are no lattice points in the interior of the ball delimited by the sphere S
and sufficiently many lattice points lie on S so that their convex hull is a full-
dimensional polytope P . The sphere S is then called an empty sphere in L, its
center is called a hole of L and the polytope P is called a Delaunay polytope.
So the vertices of P are the lattice points lying on the boundary of the empty
sphere S. Let V (P ) denote the set of vertices of P . Then, the distance space
(V (P ), d(2)) (endowed with the square of the Euclidean distance) is called a
Delaunay polytope space; such spaces are fundamental in our treatment.

Empty spheres in lattices have been intensively studied in the literature from
the point of view of their centers (i.e., the holes of L). Hypermetricity provides a
new way of studying empty spheres, namely from the point of view of the lattice
points lying on their boundary, i.e., from the point of view of Delaunay polytope
spaces. Indeed, Delaunay polytopes have the remarkable property (discovered
by Assouad [1984]) that their Delaunay polytope spaces are hypermetric and,
conversely, every hypermetric space can be realized as a subspace of a Delaunay
polytope space (see Theorem 14.1.3). To each hypermetric space (X,d) corre-
sponds an (essentially unique) Delaunay polytope Pd whose dimension is less
than or equal to |X| − 1.

Hence, there is a connection between the members of the hypermetric cone
HYPn and the Delaunay polytopes of dimension k ≤ n− 1.

An interesting application of this connection is for proving that the hyper-
metric cone is a polyhedral cone (see Theorem 14.2.1).
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These two objects: hypermetric cone and Delaunay polytopes, have been
studied for their own sake. For instance, the hypermetric cone HYPn arises in
connection with ℓ1-metrics (recall Lemma 6.1.7); it forms a linear relaxation for
the cut cone and, as such, its facial structure has been intensively investigated;
results in this direction will be given in Chapter 28. On the other hand, Delaunay
polytopes have been mostly studied in the literature from the classical point of
view of geometry of numbers: holes, L-decomposition of the space, dual tiling
by Voronoi polytopes, etc. The approach taken here is to study the metric
structure of their sets of vertices. Moreover, taking advantage of the interplay
with hypermetrics, we can transport and exploit some of the notions defined for
the hypermetric cone to Delaunay polytopes and vice versa.

For instance, there is a natural notion of rank for hypermetrics (namely, the
dimension of the smallest face of the hypermetric cone that contains a given
hypermetric distance). We introduce the corresponding notion of rank for De-
launay polytopes. This notion of rank permits, for instance, to shed a new light
on a classical notion studied by Voronoi; namely, the repartitioning polytopes
which correspond to the facets of the hypermetric cone. The other extreme case
for the rank, namely the case of rank 1 for the extreme rays of the hypermetric
cone, corresponds to the class of extreme Delaunay polytopes. A Delaunay poly-
tope P is extreme if and only if the only affine transformations T for which T (P )
is still a Delaunay polytope are the homotheties (see Corollary 15.2.4). Several
examples of extreme Delaunay polytopes are presented in Chapter 16 arising,
in particular, in root lattices or in sections of the Leech lattice Λ24 and of the
Barnes-Wall lattice Λ16.

Historically, Delaunay polytopes and the corresponding L-partitions of the
space were introduced by G.F. Voronoi at the beginning of this century. The
so-called empty sphere method was developed later by B.N. Delaunay1, who
showed that it yields the same partition of the space as Voronoi’s L-partition.
The topic has been studied extensively mainly by the Russian school, especially
by B.N. Delaunay, E.P. Baranovskii, S.S. Ryshkov, and also by R.M. Erdahl
from Canada. In dimensions 2 and 3, L-decompositions are used in computa-
tional geometry2 under the name of Delaunay triangulations; actually, nonlattice
triangulations are also studied there. Delaunay polytopes are also used for the
study of coverings in lattices (see Conway and Sloane [1988], Rogers [1964]); for
instance, the covering radius of a lattice L is the maximum radius of an empty
sphere in L, i.e., the radius of a deep hole in L. There is the following connection
between Voronoi polytopes and Delaunay polytopes: The vertices of the Voronoi
polytope at a lattice point u are the centers of the Delaunay polytopes that
contain u as a vertex. Moreover, the two partitions of the space by Delaunay
polytopes and by Voronoi polytopes are in combinatorial duality.

Within the list of references on this topic, the more relevant and fundamental

1We refer to the preface of the volume edited by Novikov et al. [1992] for a detailed historical
account on the work of B.N. Delaunay.

2For information see, e.g., Chapter 13 in Edelsbrunner [1987], or the survey by Fortune
[1995].
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ones include Voronoi’s Deuxième mémoire [1908, 1909], the survey by Ryshkov
and Baranovskii [1979], the papers by Erdahl and Ryshkov [1987, 1988] and the
collection by Conway and Sloane [1988] of surveys on lattices and applications.
The present treatment on hypermetric spaces is based, essentially, on the papers
by Assouad [1984], Deza, Grishukhin and Laurent [1992, 1993], Deza and Gr-
ishukhin [1993]. Further relevant references will be given throughout the text.
An earlier version of the material presented in Part II appeared in the survey by
Deza, Grishukhin and Laurent [1995].

We now briefly describe the main results presented in Part II. Chapter 13
contains preliminaries on distance spaces, lattices and Delaunay polytopes. In
Section 13.3, we give a short proof of Voronoi’s result, which states that the num-
ber of distinct (up to affine equivalence) Delaunay polytopes in fixed dimension
is finite.

We consider in Chapter 14 the connection existing between hypermetric
spaces and Delaunay polytopes. In Section 14.1, this connection is described
together with some first results showing how the polytope Pd inherits some of
the properties of the hypermetric space (X,d), in particular, about subspaces
(see Corollary 14.1.9) and ℓ1-embeddability (see Proposition 14.1.10). In Sec-
tion 14.2, the hypermetric cone is shown to be polyhedral. Several proofs are
given; one of them is based on the above connection and Voronoi’s finiteness
result for the number of Delaunay polytopes in fixed dimension.

Section 14.3 describes all the Delaunay polytopes that can arise in root lat-
tices; see, in particular, Figure 14.3.1 which lists the Delaunay polytopes in the
irreducible root lattices together with their 1-skeleton graphs and radii. If P is
a Delaunay polytope in a root lattice, then its edges are the pairs of vertices at
squared distance 2, i.e., its 1-skeleton graph is determined by the metric struc-
ture of its Delaunay polytope space (see Proposition 14.3.3). As an application,
we give a characterization of the connected strongly even distance spaces that
are hypermetric or ℓ1-embeddable (see Theorems 14.3.6 and 14.3.7).

In Section 14.4, we group several results dealing with the radius of the sphere
circumscribing Delaunay polytopes. We consider, in particular, the spherical t-
extension operation which consists of adding a new point to a distance space at
distance t from all the other points.

The notion of rank for Delaunay polytopes is considered in detail in Chap-
ter 15. If (X,d) is a hypermetric space with |X| = n, then d ∈ HYPn and the
rank of (X,d) is defined as the dimension of the smallest (by inclusion) face of
HYPn that contains d. If P is a Delaunay polytope, then the Delaunay polytope
space (V (P ), d(2)) is hypermetric and the rank of P is defined as the rank of the
space (V (P ), d(2)). Then, P is said to be extreme if its rank is equal to 1. In
Section 15.1, we consider several properties for this notion of rank, in particular,
its invariance (see Theorem 15.1.8) and its additivity (see Proposition 15.1.10).
We describe in Section 15.2 how the faces of the hypermetric cone relate to De-
launay polytopes; see, in particular, Figure 15.2.9. In particular, hypermetrics
lying on the interior of the same face of the hypermetric cone correspond to
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affinely equivalent Delaunay polytopes (see Corollary 15.2.2), a geometric inter-
pretation for the rank of a Delaunay polytope is given in Theorem 15.2.5, and
Delaunay polytopes associated with facets of the hypermetric cone are described
in Proposition 15.2.7.

We present in Section 15.3 some bounds on the number of vertices of a basic
Delaunay polytope, i.e., whose set of vertices contains a base of the lattice it
spans (see Proposition 15.3.1).

Chapter 16 is devoted to the study of the extreme Delaunay polytopes, which
correspond to the extreme rays of the hypermetric cone. The extreme Delaunay
polytopes in root lattices are characterized in Theorem 16.0.1; they are the seg-
ment α1, the Schläfli polytope 221 and the Gosset polytope 321. In Section 16.1,
we derive bounds on the number of vertices of an extreme basic Delaunay poly-
tope, which turn out to be closely related with known bounds on the cardinality
of equiangular sets of lines. We also present a general construction for equiangu-
lar sets of lines from integral lattices (see Proposition 16.1.9). In Sections 16.2,
16.3 and 16.4, we describe examples of extreme Delaunay polytopes arising in
sections of the root lattice E8, of the Leech lattice Λ24 and of the Barnes-Wall
lattice Λ16. Section 16.5 contains results on the construction of perfect lattices
from extreme Delaunay polytopes.

Chapter 17 applies the notion of hypermetricity to graphs. Given a graph G,
two distances can be defined: its shortest path metric dG or its truncated distance
d∗G (with distance 1 on an edge and distance 2 on a non-edge). The graph G
is said to be hypermetric if its path metric is hypermetric. A characterization
of the hypermetric graphs and of the ℓ1-graphs is given in Theorem 17.1.1; see
also Theorems 17.1.8 and 17.1.9 for a refined result for the class of suspension
graphs.

The connected regular graphs whose truncated distance is hypermetric are
considered in Section 17.2; see Proposition 17.2.1 for several equivalent char-
acterizations, one of them is that the minimum eigenvalue of their adjacency
matrix is greater than or equal to -2. The graphs with minimum eigenvalue -2
are well studied. Those that are not line graphs nor cocktail-party graphs be-
long to the well-known list of 187 graphs from Bussemaker, Cvetković and Seidel
[1976]. This list is partitioned into three layers, each of them being characterized
by a parameter which is directly related to the radius of the Delaunay polytopes
associated with the graphs in the layer.

We consider in Section 17.3 extreme hypermetric graphs, i.e., the graphs
whose path metric lies on an extreme ray of the hypermetric cone. In fact, all of
them are isometric subgraphs of the Gosset graph or of the Schläfli graph. See
Proposition 17.3.4 for their characterization.





Chapter 13. Preliminaries on
Lattices

We group in this chapter definitions and preliminary results about lattices and
Delaunay polytopes. One of the results of Voronoi that will play a central role in
our study concerns the finiteness of the number of types of Delaunay polytopes
in given dimension. We give a proof of this result in Section 13.3.

13.1 Distance Spaces

Distance spaces have been introduced in Chapter 3. We give here some additional
definitions that are needed in this chapter. Let (X,d) be a distance space. Then,
dmin denotes the minimum nonzero value taken by d. The distance space (X,d)
is said to be connected if the graph with vertex set X and whose edges are the
pairs (i, j) with d(i, j) = dmin, is connected. The distance space (X,d) is said to
be strongly even if d(i, j) ∈ 2Z for all i, j ∈ X and dmin = 2.

A representation of the distance space (X,d) is a mapping

i ∈ X 7→ vi ∈ Rn

(where n ≥ 1) such that

(13.1.1) d(i, j) = (vi − vj)
2 for i, j ∈ X.

In other words, it is an isometric embedding of (X,d) into the space (Rn , d(2)),
endowed with d(2), the square of the Euclidean distance. Hence, (X,d) has a
representation if and only if (X,

√
d) is isometrically ℓ2-embeddable. Clearly,

every translation of a representation of (X,d) is again a representation of (X,d).
Hence, we can always assume that a given element i0 ∈ X is represented by the
zero vector. The representation (vi | i ∈ X) is said to be spherical if all vi’s lie on
a sphere. The next result summarizes how the property of having a spherical rep-
resentation relates to the hypermetric and negative type conditions. Two partial
converses to the implications (ii) =⇒ (iv) and (i) =⇒ (ii) in Proposition 13.1.2
will be given in Propositions 14.4.1 and 14.4.4, respectively.

Proposition 13.1.2. Let (X,d) be a distance space. Consider the assertions:

(i) (X,d) is hypermetric.

(ii) (X,d) has a spherical representation.
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(iii) (X,d) has a representation.

(iv) (X,d) is of negative type.

Then, (i) =⇒ (ii) =⇒ (iii) ⇐⇒ (iv) holds.

Proof. (i) =⇒ (ii) will be shown in Proposition 14.1.2, (iii) ⇐⇒ (iv) follows from
Theorem 6.2.2, and (ii) =⇒ (iii) is trivial.

We remind from Section 2.4 that PSDn denotes the positive semidefinite cone,

which consists of the vectors p = (pij)1≤i≤j≤n ∈ R(n+1
2 ) for which the symmetric

matrix (pij)
n
i,j=1 (setting pji = pij) is positive semidefinite. As mentioned in

Lemma 2.4.2, positive semidefinite matrices can be characterized in terms of
Gram matrices.

The covariance mapping, which has been introduced in Section 5.2, will play
a crucial role here; so, we now recall its definition1. The covariance mapping is

the mapping ξ : R(n+1
2 ) −→ R(n+1

2 ) defined by p = ξ(d), for d = (dij)0≤i<j≤n,
p = (pij)1≤i≤j≤n, with

(13.1.3)

{
pii = d0i for 1 ≤ i ≤ n,
pij = 1

2(d0i + d0j − dij) for 1 ≤ i < j ≤ n.

It is easy to verify that

(13.1.4) d ∈ HYPn+1 ⇐⇒
∑

1≤i,j≤n
bibjpij −

∑

1≤i≤n
bipii ≥ 0 for all b ∈ Zn,

(13.1.5) d ∈ NEGn+1 ⇐⇒
∑

1≤i,j≤n
bibjpij ≥ 0 for all b ∈ Zn.

where p = ξ(d) is considered as a symmetric n × n matrix by setting pji = pij
for all i, j. Therefore,

(13.1.6) ξ(NEGn+1) = PSDn,

(13.1.7) HYPn+1 ⊆ NEGn+1, i.e., ξ(HYPn+1) ⊆ PSDn.

(These facts were already mentioned in Corollary 6.1.4 and in (6.1.15).) We also
remind from (5.2.3) and (6.1.6) that

ξ(CUTn+1) = CORn and CUTn+1 ⊆ HYPn+1.

As the correlation cone CORn is generated by the vectors (xixj)1≤i≤j≤n (for x ∈
{0, 1}n), its polar (CORn)

◦ consists of the quadratic forms that are nonpositive

1We find it more convenient to now denote the distinguished point by 0 rather than by n+1
as was done earlier.
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on binary variables. A well-known (easy) fact is that the polar (PSDn)
◦ of PSDn

consists of the negative semidefinite quadratic forms, i.e.,

(PSDn)
◦ = −PSDn.

Hence, we have the following chain of inclusions:

(13.1.8) CORn ⊆ ξ(HYPn+1) ⊆ PSDn, (CORn)
◦ ⊇ (ξ(HYPn+1))

◦ ⊇ −PSDn.

This shows that our central object, namely the hypermetric cone (or, to be more
precise, the polar of its image under the covariance mapping) is a subcone of the
cone of quadratic forms that are nonpositive on binary variables and contains
the cone −PSDn of the quadratic forms that are nonpostive on integer (or real)
variables.

We will frequently use in this chapter the graphic metric spaces attached to
the following graphs:

• the complete graph Kn, the circuit Cn, the path Pn (on n nodes),

• the cocktail-party graph Kn×2 (i.e., K2n with a perfect matching deleted),

• the hypercube graph H(n, 2) (i.e., the graph whose nodes are the vectors
x ∈ {0, 1}n with two nodes x, y adjacent if dℓ1(x, y) = 1),

• the half-cube graph 1
2H(n, 2) (i.e., the graph whose nodes are the vec-

tors x ∈ {0, 1}n with
∑

1≤i≤n xi even and two nodes x, y are adjacent if
dℓ1(x, y) = 2).

13.2 Lattices and Delaunay Polytopes

We give here several definitions related to lattices and Delaunay polytopes. More
information can be found, e.g., in Cassels [1959], Conway and Sloane [1988],
Lagarias [1995].

13.2.1 Lattices

A subset L of Rk is called a lattice (or point lattice) if L is a discrete subgroup
of Rk , i.e., if there exists a ball of radius β > 0 centered at each lattice point
which contains no other lattice point. A subset V := {v1, . . . , vm} of L is said to
be generating (resp. a basis) for L if, for every v ∈ L, there exist some integers
(resp. a unique system of integers) b1, . . . , bm such that

v =
∑

1≤i≤m
bivi.

Every lattice has a basis; all bases have the same cardinality, called the dimension
of L. Let L ⊆ Rk be a lattice of dimension k. Given a basis B of L, let MB
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denote the k × k matrix whose rows are the members of B. If B1 and B2 are
two bases of L, then

MB1 = AMB2

where A is an integer matrix with determinant det(A) = ±1 (such a matrix is
called a unimodular matrix). Therefore, the quantity |det(B)| does not depend
on the choice of the basis in L; it is called the determinant of L and is denoted
by det(L).

Given a finite set V ⊆ Rk , its integer hull Z(V ) is clearly a lattice whenever
all vectors in V are rational valued.

Given a vector a ∈ Rk , the translate

L′ := L+ a = {v + a | v ∈ L}

of a lattice L is called an affine lattice. A subset V ′ := {v0, v1, . . . , vm} of L′ is
called an affine generating set for L′ (resp. an affine basis of L′) if, for every
v ∈ L′, there exist some integers (resp. a unique system of integers) b0, b1, . . . , bm
such that ∑

0≤i≤m
bi = 1 and v =

∑

0≤i≤m
bivi.

Clearly, V ′ is an affine generating set (resp. an affine basis) of L′ if and only if
the set V := {v1 − v0, . . . , vm − v0} is a (linear) generating set (resp. basis) of
the lattice L.

For simplicity, we will use the same word “lattice” for denoting both a usual
lattice (i.e., containing the zero vector) and an affine lattice (i.e., the translate
of a lattice). We also often omit to precise whether we consider linear or affine
bases (or generating sets).

Let L be a lattice. The quantity:

t := min((u− v)2 | u, v ∈ L, u 6= v)

is called the minimal norm of L. This terminology of minimal “norm” is classical
in the theory of lattices, although it actually denotes the square of the Euclidean
norm. In particular, if 0 ∈ L, then

t = min(u2 | u ∈ L, u 6= 0).

The minimal vectors of L are then the vectors v ∈ L with v2 = t. Their set is
denoted as Lmin and the polytope Conv(Lmin) is known as the contact polytope

of L. Note that
√
t

2 coincides with the packing radius of L.

Let L be a lattice. Then, L is said to be integral if uT v ∈ Z for all u, v ∈ L.
L is said to be an even lattice if L is integral and u2 ∈ 2Z for each u ∈ L. L is
called a root lattice if L is integral and L is generated by a set of vectors v with
v2 = 2; then, each v ∈ L with v2 = 2 is called a root of L. Observe that, in a
root lattice L,
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(13.2.1) uT v ∈ {0,−1, 1} for all roots u, v of L such that u 6= ±v.

(This follows from the fact that (u−v)2 = 4−2uT v > 0 and (u+v)2 = 4+2uT v >
0.) The dual L∗ of a lattice L ⊆ Rk is defined as

L∗ := {x ∈ Rk | xTu ∈ Z for all u ∈ L}.

If L is an integral lattice, then L ⊆ L∗ holds. L is said to be self-dual if L = L∗

holds. L is said to be unimodular if det(L) = ±1. Hence, an integral unimodular
lattice is self-dual. For example, the root lattice E8 and the Leech lattice Λ24

(introduced later in the text) are even and unimodular and, therefore, self-dual.
For every k-dimensional lattice L ⊆ Rk ,

(L∗)∗ = L.

Let L1 and L2 be two orthogonal lattices, i.e., such that uT1 u2 = 0 for all
u1 ∈ L1, u2 ∈ L2. Their direct sum L1 ⊕ L2 is defined by

L1 ⊕ L2 := {u1 + u2 | u1 ∈ L1, u2 ∈ L2}.

L is called irreducible if L = L1⊕L2 implies L1 = {0} or L2 = {0}, and reducible
otherwise. A well-known result by Witt gives the classification of the irreducible
root lattices; cf. Section 14.3.

13.2.2 Delaunay Polytopes

Let L ⊆ Rk be a k-dimensional lattice and let S = S(c, r) be a sphere with center
c and radius r in Rk . Then, S is said to be an empty sphere in L if the following
two conditions hold:

(i) (v − c)2 ≥ r2 for all v ∈ L, and

(ii) the set S ∩ L has affine rank k + 1.

Then, the center of S is called a hole2. The polytope P , which is defined as the
convex hull of the set S ∩L, is called a Delaunay polytope, or an L-polytope. See
Figure 13.2.2 for an illustration.

Equivalently, a k-dimensional polytope P in Rk with set of vertices V (P ) is
a Delaunay polytope if the following conditions hold:

(i) The set L(P ) := Zaf(V (P )) = {
∑

v∈V (P )

bvv | b ∈ Z V (P ),
∑

v∈V (P )

bv = 1} is a

lattice,

(ii) P is inscribed on a sphere S(c, r) (i.e., (v− c)2 = r2 for all v ∈ V (P )), and

(iii) (v − c)2 ≥ r2 for all v ∈ L(P ), with equality if and only if v ∈ V (P ).

2The terminology of ‘empty sphere’ is used mainly in the Russian literature and that of
‘hole’ in the English literature.
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Another equivalent definition will be given in Proposition 14.1.4. Given a De-
launay polytope P , the distance space (V (P ), d(2)) is called a Delaunay polytope
space.

Figure 13.2.2: An empty sphere in a lattice and its Delaunay polytope

Let P be a Delaunay polytope and let L be a lattice such that V (P ) ⊆ L.
Then, P is said to be generating in L if V (P ) generates L, i.e., if L = L(P ).
There are examples of lattices for which none of their Delaunay polytopes is
generating; this is the case for the root lattice E8, the Leech lattice Λ24 and,
more generally, for all even unimodular lattices (see Lemma 13.2.6). However,
when we say that P is an Delaunay polytope in L, we will always mean that P
is generating in L, i.e., we suppose that L = L(P ).

A subset B ⊆ V (P ) is said to be basic if it is an affine basis of the lattice
L(P ). Then, P is said to be basic if V (P ) contains a basic set, i.e., if V (P )
contains an affine basis of L(P ). Actually, we do not know an example of a
nonbasic Delaunay polytope. We formulate this as an open problem for further
reference.

Problem 13.2.3. Is every Delaunay polytope basic ?

The answer is positive for Delaunay polytopes having a small corank (cf. Propo-
sition 15.2.12) and for concrete examples mentioned later in Part II. Some further
information about this problem will be given in Section 27.4.3 for Delaunay poly-
topes arising in the context of binary matroids. The property of being basic will
be useful on several occasions; for instance, for formulating upper bounds on the
number of vertices of extreme Delaunay polytopes (cf. Section 15.3) or for the
study of perfect lattices (cf. Section 16.5).

For instance, the n-dimensional cube γn = [0, 1]n is a Delaunay polytope
in the integer lattice Zn. As other example, we have the central object of the
book, namely, the cut polytope CUT2

n , which is a Delaunay polytope in the
cut lattice Ln (cf. Example 13.2.5 below). Note that both γn and CUT2

n are
basic, γn is centrally symmetric, while CUT2

n is asymmetric (see the definition
in Lemma 13.2.7).
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Two Delaunay polytopes have the same type if they are affinely equivalent,
i.e., if P ′ = T (P ) for some affine bijection T .

Given a lattice point v ∈ L, the set of all the Delaunay polytopes in L that
admit v as a vertex is called the star of L at v. Clearly, the stars at distinct
lattice points are all identical (up to translation). The lattice L is called general
if all the Delaunay polytopes of its star are simplices (which, in general, cannot
be obtained from one another by translation or orthogonal transformation), and
L is called special otherwise.

Two k-dimensional lattices L, L′ are said to be z-equivalent if there exists
an affine bijection T such that L′ = T (L) and such that T brings the star of L
on the star of L′; one also says that L and L′ have the same type. For example,
in dimension 2, there are two distinct types of lattices: the triangular lattice
which is general, and the square lattice which is special. (See Figure 13.2.4 for
an illustration.)

The triangular lattice The square lattice

  

Figure 13.2.4: The star of Delaunay polytopes and the Voronoi polytope
(The Delaunay polytopes are shaded and the Voronoi polytope is drawn with thick

lines)

Example 13.2.5. Delaunay polytopes in the cut lattice. Let Ln denote

the cut lattice, which is the sublattice of Z(n
2) generated by all cut semimetrics on

n points. One can easily verify that CUT2
n is a (asymmetric) Delaunay polytope

in Ln. Other examples of Delaunay polytopes in the cut lattice Ln are described
by Deza and Grishukhin [1995b]. In particular, using a result of Baranovskii
[1992], they describe all symmetric Delaunay polytopes in Ln. Moreover, they
analyze in detail the Delaunay polytopes in Ln for small n.

If n = 2, then L2 = Z and CUT2
2 = γ1. In the case n = 3, then L3 = D3

(≃ A3) is the unique 3-dimensional root lattice (the face-centered cubic lattice)
(see Section 14.3) and CUT2

3 = α3 is a regular 3-dimensional simplex. In the
case n = 4, L4 =

√
2D+

6 = Λ6{3}, where D+
6 is a union of the root lattice D6

with a translated copy of it and Λ6{3} is an integral laminated lattice of minimal



182 Chapter 13. Preliminaries on Lattices

norm 3 (cf. Chap. 4, p.119 and Chap. 6, p.179 in Brouwer, Cohen and Neumaier
[1989]). Moreover, Deza and Grishukhin [1995b] give a detailed description of
the star of Delaunay polytopes in L4; it contains 588 distinct Delaunay polytopes
which are grouped into four types: the cut polytope CUT24 , the simplex α6, the
cross-polytope β6, and a ‘twisted’ cross-polytope.

We conclude with recalling the connection existing between Delaunay poly-
topes and Voronoi polytopes. If L is a lattice in Rk and u0 ∈ L, the Voronoi
polytope at u0 is the set Pv(u0) consisting of all the points x ∈ Rk that are at
least as close to u0 than to any other lattice point, i.e.,

Pv(u0) := {x ∈ R
k :‖ x− u0 ‖ ≤ ‖ x− u ‖ for all u ∈ L}.

The vertices of the Voronoi polytope Pv(u0) are precisely the centers of the De-
launay polytopes in L that contain u0 as a vertex, i.e. of the Delaunay polytopes
of the star of L at u0. (Cf. Figure 13.2.4.)

The Voronoi polytopes Pv(u) (u ∈ L) form a normal (i.e., face-to-face) tiling
of the space Rk ; this tiling is sometimes called the Voronoi-Dirichlet tiling. An-
other normal tiling is provided by the elementary cells {u+

∑k
i=1 bivi | 0 ≤ bi ≤

1 for 1 ≤ i ≤ k} for u ∈ L, where (v1, . . . , vk) is a basis of L. Hence, the Voronoi
polytopes and the elementary cells have the same volume, equal to det(L). An-
other normal partition of the space, called L-decomposition, is provided by the
Delaunay polytopes in L. However, different types of Delaunay polytopes may
occur in this partition; in particular, if L is special, then some of them are not
simplices. For instance, if L is a general lattice of dimension 2, then the normal
partition of R2 by the Delaunay polytopes in L is a Delaunay triangulation of
the plane.

Given a k-dimensional lattice L, the two normal partitions of the space by
the Voronoi polytopes and by the Delaunay polytopes in L are in combinatorial
duality. Namely, there is a one-to-one correspondence F 7→ F∗ between the faces
F of one partition and the faces F∗ of the other partition in such a way that:

(i) F and F∗ are orthogonal,

(ii) if F has dimension h, then F∗ has dimension k − h, and

(iii) if F1 ⊆ F2, then F∗
2 ⊆ F ∗

1 .

13.2.3 Basic Facts on Delaunay Polytopes

We group here several basic properties on the symmetry, the number of vertices,
and the volume of Delaunay polytopes. We start with an observation from Erdahl
[1992] on generating Delaunay polytopes in even lattices.

Lemma 13.2.6. Let P be a generating Delaunay polytope in an even lattice L.
Then, the center of the sphere circumscribing P belongs to the dual lattice L∗.
Therefore, an even unimodular lattice contains no generating Delaunay polytope.
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Proof. We can suppose that the origin is a vertex of P . Let c denote the center
of the sphere S circumscribing P . Since L is generated by V (P ), it suffices to
check that cT v ∈ Z for each v ∈ V (P ), for showing that c ∈ L∗. For v ∈ V (P ),
(c−v)2 = c2, i.e., 2cT v = v2, implying that cT v ∈ Z since v 2 is even. If L is even
unimodular, then c ∈ L∗ = L, contradicting the fact that S is an empty sphere
in L.

Let S be a sphere with center c. For x ∈ S, its antipode on S is the point
x∗ := 2c − x. It is immediate to see that:

Lemma 13.2.7. For a Delaunay polytope P , one of the following assertions (i)
or (ii) holds.

(i) v∗ ∈ V (P ) for all v ∈ V (P ).

(ii) v∗ 6∈ V (P ) for all v ∈ V (P ).

In case (i), we say that P is centrally symmetric3 and, in case (ii), that P is
asymmetric.

Proposition 13.2.8. Every Delaunay polytope P in Rk has at most 2k vertices.

Proof. Without loss of generality, we can suppose that the origin is a vertex of
P . Let {v1, . . . , vk} be a basis of the lattice L = L(P ). We consider the following
equivalence relation on L: For u, v ∈ L, set u ∼ v if u + v ∈ 2L. Clearly, every
vertex of P is in relation by ∼ with one of the elements

∑
i∈I vi for I ⊆ {1, . . . , k}.

On the other hand, no two vertices of P are in relation by ∼. Indeed, if u ∼ v for
u, v ∈ V (P ), then u+v

2 ∈ L, contradicting the fact that the sphere circumscribing
P is empty in L. This shows that P has at most 2k vertices.

Let u, v,w be vertices of a Delaunay polytope P . One can check that

(13.2.9) (u− w)2 ≤ (u− v)2 + (v − w)2.

This is the triangle inequality, expressing the fact that the Delaunay polytope
space (V (P ), d(2)) is a semimetric space. Actually, we will see in Proposi-
tion 14.1.2 that every Delaunay polytope space is hypermetric, which is a much
stronger property. The inequality (13.2.9) means that the points u, v,w form a
triangle with no obtuse angles. The problem of determining the maximum car-
dinality of a set points in Rk , any three of which form a triangle with no obtuse
angle, was first posed by Erdös [1948, 1957], who conjectured that this maxi-
mum cardinality is 2k. This conjecture was proved by Danzer and Grünbaum
[1962]. Therefore, the inequality (13.2.9) is already sufficient for proving the
upper bound 2k on the number of vertices of a Delaunay polytope in Rk .

3This coincides with the definition given earlier for centrally symmetric sets, up to a trans-
lation of the center of the sphere circumscribing P to the origin.
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The following upper bound on the volume of a Delaunay polytope was ob-
served by Lovász [1994].

Proposition 13.2.10. Let P be a Delaunay polytope in a lattice L with volume
vol(P ). Then, vol(P ) ≤ det(L).

Proof. The bound vol(P ) ≤ det(L) follows from the fact that the polytopes P+u
(u ∈ L) form a packing, i.e., that their interiors are pairwise disjoint.

13.2.4 Construction of Delaunay Polytopes

Clearly, every face of a Delaunay polytope is again a Delaunay polytope (in
the space affinely spanned by that face). We present here some further meth-
ods for constructing Delaunay polytopes; namely, by taking suitable sections of
the sphere of minimal vectors in a lattice, by direct product and by pyramid
or bipyramid extension. We then give the complete classification of Delaunay
polytopes in dimension k ≤ 4.

Construction by Sectioning the Sphere of Minimal Vectors in a Lattice.
Let L be a lattice in Rk with 0 ∈ L and let Lmin be the set of minimal vectors
of L. Given noncollinear vectors a, b ∈ Rk and some nonzero scalars α, β, set

Va := {v ∈ Lmin | vT a = α} and Vb := {v ∈ Lmin | vT b = β}.

The following construction, taken from Deza, Grishukhin and Laurent [1992],
can be easily checked; it will be applied on several occasions in Sections 16.2,
16.3 and 16.4.

Lemma 13.2.11. If the sets Va and Va ∩ Vb are not empty, then the polytopes
Conv(Va) and Conv(Va ∩ Vb) are Delaunay polytopes.

Direct Product. Let Li be a lattice in Rki and let Pi be a Delaunay polytope
in Li centered at the origin whose circumscribed sphere has radius ri, for i = 1, 2.
Then,

L := L1 × L2 = {(v1, v2) | v1 ∈ L1, v2 ∈ L2}

is a lattice in Rk (k = k1 + k2) and

P := P1 × P2 = {(v1, v2) | v1 ∈ P1, v2 ∈ P2}

is a Delaunay polytope in L whose circumscribed sphere is centered in the origin

and has radius r =
√
r21 + r22. Therefore, the direct product of two Delaunay

polytopes is again a Delaunay polytope. The direct product of P and a segment
α1 is called the prism with base P .
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Call a Delaunay polytope reducible if it is the direct product of two other
nontrivial (i.e., not reduced to a point) Delaunay polytopes and irreducible oth-
erwise. Note that irreducible Delaunay polytopes arise in irreducible lattices.

Pyramid and Bipyramid. Let P be a polytope and let v be a point that does
not lie in the affine space spanned by P , then

Pyrv(P ) := Conv(P ∪ {v})

is called the pyramid with base P and apex v. Under some conditions, the
pyramid of a Delaunay polytope is still a Delaunay polytope.

Namely, let P be a Delaunay polytope with radius r, suppose that v is at
squared distance t from all the vertices of P and that t > 2r2. Then, the pyramid
Pyrv(P ) is a Delaunay polytope with radiusR = t

2
√
t−r2 (see Proposition 14.4.6).

Moreover, if P is centrally symmetric and if t = 2r2, then the bipyramid

Bipyrv(P ) := Conv(P ∪ {v, v∗})

is a Delaunay polytope with radius r, where v∗ is the antipode of v on the sphere
circumscribing Pyrv(P ) (see Proposition 14.4.6).

The Layerwise Construction. The following layerwise construction for Delaunay
polytopes is described in Ryshkov and Erdahl [1989]. In fact, rather than a construction,
it is a way of visualizing a given k-dimensional Delaunay polytope in a lattice L as the
convex hull of its sections by the (k − 1)-dimensional layers composing L.

Let L be a k-dimensional lattice and let (v1, . . . , vk) be a basis of L. Then, L0 :=
Z(v 1, . . . , vk−1) is a (k − 1)-dimensional sublattice of L and L =

⋃
a∈Z(L0 + avk). The

layers L0 + avk (a ∈ Z) are affine translates of L 0 lying in parallel hyperplanes.
Let P be a k-dimensional Delaunay polytope, let L denote the lattice generated by

V (P ), and let S be the sphere circumscribing P . Let F be a facet of P and let H denote
the hyperplane spanned by F . Then, L0 := L ∩ H is a (k − 1)-dimensional sublattice
of L and L is composed by the layers L0 + av (a ∈ Z) for some v ∈ L− L 0. Therefore,
P = Conv(

⋃
a∈Z(S ∩ (L0 + av))), where S ∩L0 is the set of vertices of F and, for a ∈ Z,

S ∩ (L0 + av) is empty or is the set of vertices of a face of a Delaunay polytope in L0.
So, we have the following result:

Proposition 13.2.12. For each k-dimensional Delaunay polytope P , there exists a
(k − 1)-dimensional lattice L0, an integer p ≥ 1, and a sequence F0, F1, . . . , Fp of poly-
topes that are faces of Delaunay polytopes in L0 (where dim(F0) = k− 1, but F1, . . . , Fp

may be empty) such that P = Conv(
⋃

0≤a≤p(Fa + av)), where v is a vector not lying in

the space spanned by L0.

For instance, the pyramid construction can be viewed as the above layerwise con-
struction with p = 1, with a facet on the layer L0 and a single point on the layer L0 + v.

Let p(k) denote the smallest number p of polytopes F1, . . . , Fp in Proposition 13.2.12
needed for constructing any k-dimensional Delaunay polytope.

Given a lattice L, if P is a Delaunay polytope in L which is a simplex, then its volume

is an integer multiple of det(L)
k! (this can be checked by induction on the dimension). This

integer is called the relative volume of the simplex P . The maximum relative volume
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of all simplices that are Delaunay polytopes in any k-dimensional lattice is denoted by
p0(k).

It is shown in Ryshkov and Erdahl [1989] that p(k) = p0(k) holds. In particular,
p(2) = p(3) = p(4) = 1, p(5) = 2 and ⌊k−1

2 ⌋ ≤ p(k) ≤ k!.

There is a Delaunay polytope of dimension 6, namely the Schläfli polytope 221, for

which the integer p (from Proposition 13.2.12) satisfies p > 1. In fact, for 221, p = 2, i.e.,

three layers are needed to obtain 221 from its 5-dimensional sections. We mention two

ways of visualizing 221 via the layerwise construction. In the first construction, L0 is the

root lattice D5 and the layers L0, L0 + v, L0 + 2v carry, respectively, F0 = β5, F1 = hγ5

(the 5-dimensional half-cube) and F2 which is a single point. In the second construction,

L0 is the root lattice A5 and the layers carry, respectively, F0 = α5, F1 = J(6, 2) and

F2 = α5. We refer to Coxeter [1973] for a description of all faces of 221.

The tetrahedron The octahedron The cube

The pyramid (with square base)The prism (with triangular base)

Figure 13.2.13: The five types of Delaunay polytopes in dimension 3

Delaunay Polytopes in Dimension k ≤ 4. Examples of Delaunay polytopes
include the simplex αk, the cross-polytope βk, and the hypercube γk in every
dimension k ≥ 1. Indeed, αk = Pyr(αk−1), βk = Bipyr(βk−1) and γk = γk−1×γ1

for k ≥ 2 and α1 = β1 = γ1 is trivially a Delaunay polytope. We remind
that every k-dimensional simplex with no obtuse angles is a Delaunay polytope
which is affinely equivalent to αk; similarly, every k-dimensional parallepiped
(with square angles) is a Delaunay polytope which is affinely equivalent to γk.

In fact, all the types of Delaunay polytopes of dimension k ≤ 4 are known.
They have been classified by Erdahl and Ryshkov [1987]; we summarize this
classification below.

(i) There is only one type of Delaunay polytope of dimension k = 1, namely,
the segment α1 = β1 = γ1.
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(ii) There are two types of Delaunay polytopes of dimension k = 2, namely,
the triangle (with no obtuse angles) α2 and the rectangle β2 = γ2. (Recall
Figure 13.2.4.)

(iii) There are five types of Delaunay polytopes of dimension k = 3. They
are the tetrahedron α3, the octahedron β3, the cube γ3, the prism with
triangular base (i.e., α2 × α1) and the pyramid with square base (i.e.,
Pyr(γ2)). (See Figure 13.2.13.)

(iv) There are 19 types of Delaunay polytopes of dimension k = 4. They are
described in Tables V and VII from Erdahl and Ryshkov [1987]. Among
them, 13 can be obtained from the Delaunay polytopes of dimension 1, 2
or 3 by applying the direct product, pyramid and bipyramid constructions,
as indicated below.
- Using the pyramid construction, we obtain the pyramids with base α3

(this gives α4), with base β3, with base γ3, with base the triangular prism,
and with base the squared base pyramid.
- Using the bipyramid construction, we obtain the bipyramids with base
β3 (this gives β4) and with base γ3.
- By taking the direct product of the 3-dimensional Delaunay polytopes
with α1, we obtain the prisms with base α3, with base β3, with base γ3

(this gives γ4), with base the triangular prism, and with base the squared
base pyramid.
- By taking the direct product of two 2-dimensional Delaunay polytopes, we
obtain α2×α2. (Indeed, α2×γ2 and γ2×γ2 have already been mentioned.)
In addition, we have the repartitioning polytope P0

2,2 (associated with the
pentagonal facet; see Section 15.2) which is one more Delaunay polytope of
dimension 4; it is the polytope A in the Table VI from Erdahl and Ryshkov
[1987]. The remaining five Delaunay polytopes are those numbered 4, 5,
6, 9 and 13 in Table V from Erdahl and Ryshkov [1987].

The number of combinatorial types of Voronoi polytopes is also known in
small dimension k ≤ 4; for k = 2, this number is 2 (rectangles and hexagons
being the two possibilities; recall Figure 13.2.4), it is 5 for k = 3 and 52 for k = 4.
It is conjectured to be about 75000 for k = 5. (See Waldschmidt, Moussa, Luck
and Itzykson [1992], p.479.)

13.2.5 Additional Notes

Lattices and Positive Semidefinite Matrices. Let p ∈ PSDn and (pij)
n
i,j=1

be the corresponding positive semidefinite matrix (setting pji = pij). By Lemma
2.4.2, there exist n vectors v1, . . . , vn ∈ Rk (1 ≤ k ≤ n) such that pij = vTi vj
for all i, j = 1, . . . , n, where k is the rank of the system (v1, . . . , vn) and of the
matrix (pij)

n
i,j=1. So, k = n if p is positive definite (i.e., if p lies in the interior of

PSDn) and k < n otherwise. Set L := Z(v1, . . . , vn). Sometimes, L is a lattice.
This is the case, in particular, if p is positive definite.

There is a many-to-one correspondence between the positive definite matrices
p ∈ PSDn and the lattices in Rn . Indeed, the action on p of the groupGL(n,Z) of
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integral unimodular transformations produces distinct bases of the same lattice
L. The following was proved by Voronoi [1908, 1909] (we follow Erdahl and
Ryshkov [1988] for the exposition): The action of GL(n,Z) induces a partition
of the cone PSDn into disjoint relatively open convex subcones, called the L-type
domains, of dimension 1, 2, . . . ,

(n+1
2

)
, and having the following properties:

(i) On each of these subcones the affine structure of the L-decompositions of
corresponding lattices is constant, i.e., the lattices corresponding to the
points of a given subcone are all z-equivalent.

(ii) Subcones of dimension
(n+1

2

)
correspond to general lattices, i.e. having

simplicial L-decompositions. These L-type domains are polyhedral.

(iii) A subcone of dimension less than
(n+1

2

)
is a relatively open face of two or

more L-type domains. If such a cone makes contact with the boundary
of an L-type domain, then it is necessarily a face of that domain. The
lattice corresponding to a quadratic form on such a face is special, i.e., it
has among its Delaunay polytopes some that are not simplices.

Voronoi [1908, 1909] showed that, in any given dimension k, the number of
distinct (up to z-equivalence) k-dimensional lattices is finite. Therefore, many
of the L-type domains correspond to z-equivalent lattices.

Delaunay Polytopes and Empty Ellipsoids. As we will see in Section 14.1, the
study of the hypermetric spaces on n points amounts to the study of the Delaunay
polytopes of dimension k ≤ n − 1. It is also closely related to that of empty ellipsoids.
Indeed, empty ellipsoids, which arise as the solution sets of the quadratic functions that
are nonnegative on integer variables, are nothing but affine images of empty spheres in
lattices.

There is a sequence of papers by Erdahl [1974, 1987, 1992] and by Erdahl and
Ryshkov [1987, 1988] studying the set of integer solutions of equations of the form:

(13.2.14) f(x) := a0 +
∑

1≤i≤n

aixi +
∑

1≤i,j≤n

aijxixj = 0,

where a0, a1, . . . , an ∈ R, aij = aji ∈ R, and f satisfies the condition:

(13.2.15) f(x) ≥ 0 for all x ∈ Z n.

The set of integer solutions of f(x) = 0 is called the root figure of f and is denoted by
Rf . From relation (13.2.15), the matrix Af := (aij)1≤i,j≤n is positive semidefinite and
the region {x ∈ Rn | f(x) < 0} is free of integral points. Set

Ef := {x ∈ Rn | f(x) = 0}.

Suppose first that Af is positive definite. Then, the set Ef is an ellipsoid whose
interior is free of integral points; the ellipsoid Ef is said to be empty in Z n. Hence, the
root figure Rf consists of the integral points lying on Ef and, thus, is finite. In fact,
the root figure Rf is affinely equivalent to the set of vertices V of a Delaunay polytope,
with dim(V ) = dim(Rf ) ≤ n. Moreover, every finite root figure arises in this way. (See
Erdahl [1992].)
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Suppose now that Af has a nonzero kernel4 V . Erdahl [1992] shows that V contains
a basis composed only of integral vectors. Then, the set Ef contains infinite directions,
as f(x + v) = f(x) holds for all x ∈ Rn , v ∈ V . If W is a subspace complement of V
in Rn , then Ef = V + E′ where E′ := Ef ∩W is an ellipsoid in W . Hence, Ef can be
seen as a “cylinder” with axis V and ellipsoidal section; we say that Ef is a degenerate
ellipsoid with axis V . In this case, the root figure Rf is also infinite. In fact, every
infinite root figure arises from the finite ones by a simple construction; essentially, every
infinite root figure is of the form R+Γ where R is a finite root figure and Γ is a sublattice
of Z n (see Theorem 2.1 in Erdahl [1992]).

Therefore, the study of the root figures amounts to the classification of the Delaunay
polytopes of dimension k ≤ n.

Finally, consider the cone:

Q+(Z n) := {a = (a0, a1, . . . , an, aij , 1 ≤ i ≤ j ≤ n) |
a0 +

∑

1≤i≤n

aixi +
∑

1≤i,j≤n

aijxixj ≥ 0 for all x ∈ Z n},

i.e., each member a ∈ Q+(Z n) corresponds to a function fa satisfying (13.2.14) and
(13.2.15). Erdahl [1992] shows that every a ∈ Q+(Z n) lying on an extreme ray of
Q+(Z n) satisfies one of the following:

(i) fa is constant (i.e., a1 = . . . = an = aij = 0),

(ii) fa(x) = (
∑

1≤i≤n αixi + η)2 where (α1, . . . , αn) is not proportional to an integer
vector,

(iii) fa is perfect which, in the terminology of Erdahl [1992], means that the dimension
of the set {b ∈ Q+(Z n) | Rfa

⊆ Rfb
} is equal to 1.

Clearly, the hypermetric cone HYPn+1 is (via the covariance mapping) a section of the
cone Q+(Z n), as

ξ(HYPn+1) = {a ∈ Q+(Z n) | a0 = 0 and ai = −aii for i = 1, . . . , n}.

Note that the notion of root figure corresponds to that of annullator, used in Sections 14.2

and 15.1. Moreover, there is the following link between the perfect elements of Q+(Z n)

and the extreme rays of HYPn+1: For d ∈ HYPn+1, d lies on an extreme ray of HYPn+1

if and only if ξ(d) is a perfect element of Q+(Z n).

13.3 Finiteness of the Number of Types of Delaunay
Polytopes

Recall that two lattices L, L′ are z-equivalent if there exists an affine bijection T
such that L′ = T (L) and T brings the star of L on the star of L′. (Note that any
k-dimensional lattice is affinely equivalent to Zk!) Voronoi [1908, 1909] proved
that the number of distinct, up to z-equivalence, k-dimensional lattices is finite.
This implies obviously that the number of distinct, up to affine equivalence, k-
dimensional Delaunay polytopes is finite. In other words, the number of types of
k-dimensional Delaunay polytopes is finite. (Recall that two Delaunay polytopes
have the same type if they are affinely equivalent.)

4The kernel of a matrix A is the set Ker A consisting of all vectors x such that Ax = 0.
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We give here a direct proof of the finiteness of the number of types of Delau-
nay polytopes in Rk since Voronoi’s original proof is very involved; it is taken
from Deza, Grishukhin and Laurent [1993].

Let γ be a type of Delaunay polytopes of dimension k. A subset B ⊆ Rk is
called a representative basis of γ if there exist a Delaunay polytope P of type γ
and a lattice L ⊆ Rk which contains the set V (P ) of vertices of P and admits B
as a basis. (Note that L may be larger than the lattice L(P ) generated by the
set of vertices of P .)

Suppose that P has N vertices and let QP denote the N × k matrix whose
rows are the vectors v ∈ V (P ). Let MB denote the k× k matrix whose rows are
the members of B. Then, there exists an integer N × k matrix Yγ such that

(13.3.1) QP = YγMB .

If P ′ is another Delaunay polytope of type γ, i.e., if P′ = T (P ) for some affine
bijection T , then the relation

QT (P ) = YγMT (B)

holds. Hence, the matrix Yγ characterizes the type γ (once a representative basis
B has been chosen). The next result shows that, for each type γ, one can choose
a representative basis B in such a way that the matrix Yγ has a very special
form, which will imply that there are only finitely many possibilities for Yγ .

Proposition 13.3.2. Let γ be a type of Delaunay polytopes of dimension k.
One can choose a representative basis B of γ in such a way that the matrix Yγ
satisfies the following relations:

(i) There exists a k × k submatrix D = (αij)1≤i,j≤k of Yγ which is lower
triangular and satisfies: 0 ≤ αij < αii for all 1 ≤ j < i ≤ k.

(ii) p = |det(D)| is the maximum possible value of the absolute value of the
determinant of any k × k submatrix of Yγ .

(iii) p ≤ k!.

For the proof, we need the following classical result about lattices from Cas-
sels [1959].

Proposition 13.3.3. Let L,L′ be two k-dimensional lattices in Rk such that
L′ ⊆ L. For every basis {a1, . . . , ak} of L′, there exists a basis {b1, . . . , bk} of L
such that

ai = αi1b1 + . . .+ αiibi,

for i = 1, . . . , k, where (αij)1≤i,j≤k are integers satisfying

0 ≤ αij < αii
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for all 1 ≤ j < i ≤ k.

Proof of Proposition 13.3.2. Let P be a Delaunay polytope of type γ with N
vertices and let L be a lattice in Rk containing the set of vertices V (P ) of P . Let
V0 be a subset of V (P ) of size k and let Q0 denote the k × k submatrix of QP
whose rows are the members of V0. We choose V0 in such a way that |det(Q0)|
is largest possible. We can suppose that Q0 is the submatrix of QP formed by
its first k rows. The lattice L′ := Z(V 0) is a sublattice of L and admits V0 as a
basis. Applying Proposition 13.3.3, we deduce the existence of a basis B of L
such that

Q0 = DMB ,

whereD is a lower triangular integer matrix satisfying Proposition 13.3.3 (ii). Let
us choose B as representative basis for the type γ. Then, as QP = (QPM

−1
B )MB ,

by comparing with relation (13.3.1), we obtain that QP (MB)−1 coincides with
the integer matrix Yγ . Note that the matrix QP (MB)−1 is an N × k matrix
whose first k rows form the matrix D with

p = |det(D)| =
|det(Q0)|
|det(MB)| =

|det(Q0)|
det(L)

.

Hence, by the choice of Q0, the absolute value of the determinant of any k × k
submatrix of Yγ = QP (MB)−1 is less than or equal to p. Therefore, Yγ satisfies
the conditions (i),(ii) of Proposition 13.3.2.

Finally, we check (iii). Let ∆ denote the simplex whose vertices are the
members of V0, i.e., the rows of Q0. Then, ∆ is contained in P and, thus,
vol(∆) ≤ vol(P ). But,

vol(∆) =
|det(Q0)|

k!
=
p det(L)

k!
and vol(P ) ≤ det(L)

from Proposition 13.2.10. This implies that p ≤ k!.

We can now show the finiteness of the number of types of Delaunay polytopes
in Rk .

Theorem 13.3.4. The number of types of Delaunay polytopes in Rk is finite.

Proof. Every type γ of Delaunay polytopes in Rk with N vertices is characterized
by an N × k integer matrix Yγ satisfying Proposition 13.3.2 (i)-(iii). It suffices
to show that there is only a finite number of such matrices. For this, we show
that, for fixed p, there is only a finite number of matrices satisfying Proposition
13.3.2 (i)-(ii).

Let Y be an N × k integer matrix satisfying Proposition 13.3.2 (i),(ii). Sup-
pose that D is the upper k×k submatrix of Y . Then, the upper k×k submatrix
of Y D−1 is the identity matrix. Let rih be a nonzero entry of Y D−1, where
k + 1 ≤ i ≤ N and 1 ≤ h ≤ k. Let C denote the matrix obtained from
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D by replacing its h-th row by the i-th row of Y . By Proposition 13.3.2 (ii),
|det(C)| ≤ p. On the other hand, |det(CD−1)| = |rih|, implying that

|rih| =
|det(C)|

p
∈
{

0,
1

p
, . . . ,

p− 1

p
, 1

}
.

Since Y D−1 is an N × k matrix with N ≤ 2k (from Proposition 13.2.8), we
deduce that, for fixed p and k, there is only a finite number of such matrices
Y D−1. Now, D is a k × k integer matrix with p = α11 . . . αkk and satisfying
Proposition 13.3.2 (i); therefore, there is only a finite number of such matrices
D. Consequently, there is a finite number of possibilities for Y .



Chapter 14. Hypermetrics and
Delaunay Polytopes

In this chapter we establish the fundamental connection existing between hyper-
metric spaces and Delaunay polytopes. Hence, for a hypermetric distance space
(X,d), one may speak of its associated Delaunay polytope Pd; the case when
(X,d) is ℓ1-embeddable corresponding to the case when Pd can be embedded in
a parallepiped. As an application of this connection, one can show polyhedrality
of the hypermetric cone; several proofs for this fact are given in Section 14.2. As
another application (and using the classification of the irreducible root lattices),
one can characterize the graphs whose shortest path metric is hypermetric or ℓ1-
embeddable. Such graphs arise essentially from cocktail-party graphs, half-cube
graphs, and a single graph on 56 nodes (the Gosset graph) by taking Cartesian
products and isometric subgraphs (see Section 14.3). We group in Section 14.4
several results concerning spherical representations of distance spaces and the
radius of Delaunay polytopes.

14.1 Connection between Hypermetrics and Delau-

nay Polytopes

In this section, we establish the fundamental connection existing between hy-
permetric spaces and Delaunay polytopes. This connection was discovered by
Assouad [1982, 1984]; it is stated in Theorem 14.1.3, whose proof is based on the
next two propositions.

Proposition 14.1.1. Let c, v0 := 0, v1, . . . , vn ∈ Rk be vectors satisfying

(i) ‖ vi − c ‖=‖ c ‖ for 1 ≤ i ≤ n,

(ii) ‖∑1≤i≤n bivi − c ‖≥‖ c ‖ for all b ∈ Zn.

Then, the set L := Z(v1, . . . , vn) is a lattice.

Proof. For b ∈ Zn, set v(b) :=
∑

1≤i≤n bivi; then, v(b)± vi ∈ L. Hence, (ii) yields

(vi ± v(b) − c)2 ≥ c2, i.e., (vi − c)2 + (v(b))2 ± 2(vi − c)T v(b) ≥ c2

which, together with (i), implies

(a) (v(b))2 ≥ 2|(vi − c)T v(b)| for 1 ≤ i ≤ n.

193
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Consider the units vectors

ei :=
vi − c

‖ c ‖ for i = 0, 1, . . . , n, and e(b) :=
v(b)

‖ v(b) ‖.

Set

β := min{max(eTi u | 1 ≤ i ≤ n) | u ∈ R
k , ‖ u ‖= 1}.

We show that β > 0. Then, (a) will imply that ‖ v(b) ‖≥ 2β ‖ c ‖ for all
b ∈ Zn such that v(b) 6= 0; in other words, the open ball centered at the origin
with radius 2β ‖ c ‖ contains no other lattice point besides the origin, which
shows that L is a lattice. Suppose that β = 0. Then, we can find a sequence
(up)p≥1 of unit vectors of Rk such that |eTi up| ≤ 1

p for any 1 ≤ i ≤ n, p ≥ 1. By
the compactness of the unit sphere, we can suppose that the sequence (up)p≥1

admits a limit u when p goes to infinity (replacing, if necessary, (up)p≥1 by a
subsequence). Therefore, ‖ u ‖= 1, while eTi u = 0 for i = 1, . . . , n, implying that
u = 0 since the vectors v1, . . . , vn span Rk . We have a contradiction. This shows
that β > 0.

Proposition 14.1.2. Let (X,d) be a distance space, X = {0, 1, . . . , n}. The
following assertions are equivalent.

(i) (X,d) is hypermetric.

(ii) (X,d) has a representation i ∈ X 7→ vi ∈ Rk (where k ≤ n) on a sphere S
which is empty in the set

Laf (X,d) := {
∑

i∈X
bivi | b ∈ Z

X and
∑

i∈X
bi = 1}.

Proof. (i) =⇒ (ii) Since (X,d) is of negative type, we know from Proposi-
tion 13.1.2 that (X,d) has a representation v0, v1, . . . , vn ∈ Rk for some 1 ≤ k ≤
n. Moreover, the system (v0, . . . , vn) has rank k and we can suppose without
loss of generality that v0 = 0. We first show that the vectors v0, v1, . . . , vn lie on
a sphere, i.e., that there exists c ∈ Rk such that

(a) 2cT vi = v2
i for 1 ≤ i ≤ n.

If k = n, then the vectors v1, . . . , vn are linearly independent and, therefore, the
system (a) admits a unique solution c. Suppose that k ≤ n− 1. Let M denote
the n×k matrix whose rows are the vectors v1, . . . , vn, let U denote the subspace
of Rn spanned by the columns of M and set f := (v21 , . . . , v

2
n)
T . The system (a)

has a solution if and only if f ∈ U or, equivalently, if fT g = 0 for each g ∈ U⊥

(U⊥ is the orthogonal complement of U in Rk ). Take g ∈ U⊥, let b ∈ Zn such
that |gi − bi| < 1 for i = 1, . . . , n and set δ := g − b; so δ belongs to the unit
cube. Set p := ξ(d). Then, pij = vTi vj for 1 ≤ i < j ≤ n. Using relation (13.1.4),
we deduce that ∑

1≤i,j≤n
bibjpij −

∑

1≤i≤n
bipii ≥ 0, i.e.,
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(b) (
∑

1≤i≤n
bivi)

2 −
∑

1≤i≤n
biv

2
i ≥ 0.

Therefore,

fT b =
∑

1≤i≤n
biv

2
i ≤ (

∑

1≤i≤n
bivi)

2 = (bTM)2 = (gTM − δTM)2 = (δTM)2,

since g ∈ U⊥. Hence, fT b ≤ (δTM)2, implying that fTg ≤ fT δ + (δTM)2. This
implies that fTg = 0; otherwise, the left hand side of the latter inequality could
be made arbitrarily large while its right hand side is bounded. Note that the
solution c to the system (a) is unique since (v1, . . . , vn) has full rank k.

From (a) and (b), we deduce that

(
∑

i∈X
bivi − c)2 ≥ c2

for all b ∈ ZX with
∑
i∈X bi = 1. This shows that the sphere S with center c and

radius ‖ c ‖ is empty in Laf (X,d).

(ii) =⇒ (i) Let b ∈ ZX with
∑
i∈X bi = 1. Then,

∑

i,j∈X
bibjd(i, j) =

∑

i,j∈X
bibj(vi − vj)

2

=
∑

i,j∈X
bibj(vi − c + c− vj)

2 =
∑

i,j∈X
bibj(2r

2 − 2(vi − c)T (vj − c))

= 2r2 − 2(
∑

i∈X
bi(vi − c))2 = 2(r2 − (

∑

i∈X
bivi − c)2) ≤ 0

since the sphere S is empty in Laf (X,d). This shows that (X,d) is hypermetric.

As a consequence of Propositions 14.1.1 and 14.1.2, we have the next theorem
which summarizes the connection existing between hypermetrics and Delaunay
polytopes.

Theorem 14.1.3. Let (X,d) be a hypermetric space, |X| = n+1. There exist a
k-dimensional Delaunay polytope Pd in Rk , for some 1 ≤ k ≤ n, and a mapping

fd : i ∈ X 7→ vi ∈ V (Pd)

which is generating, which means that the set {vi | i ∈ X} generates the set of
vertices V (Pd) of Pd, and such that

d(i, j) = (vi − vj)
2 for i, j ∈ X.

Moreover, the pair (Pd, fd) is unique, up to translation and orthogonal transfor-
mation.
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We refer to Pd as the Delaunay polytope associated with the hypermetric space
(X,d), the lattice

Z af(V (Pd)) = {
∑

v∈V (Pd)

bvv | b ∈ Z
V (Pd) and

∑

v∈V (Pd)

bv = 1}

is denoted as Ld and the sphere circumscribing Pd as Sd.

As another application of Propositions 14.1.1 and 14.1.2, we obtain the fol-
lowing characterization for Delaunay polytopes.

Proposition 14.1.4. Let P be a polytope of dimension k in Rk . Then, P is a
Delaunay polytope if and only if the following assertions hold.

(i) The distance space (V (P ), d(2)) is hypermetric.

(ii) If Q is a polytope of dimension k in Rk such that

(iia) V (P ) ⊆ V (Q),

(iib) Z af(V (P )) = Zaf(V (Q)), and

(iic) the distance space (V (Q), d(2)) is hypermetric,

then P and Q coincide.

For instance, take for Q a square (2-dimensional hypercube) and for P the
triangle having as vertices three of the vertices of Q. Then, P satisfies (i), but
not (ii). Indeed, the triangle P is not a Delaunay polytope as it has a right
angle. Recall that a triangle is a Delaunay polytope if and only if it has no
obtuse angle. On the other hand, there exist pairs of Delaunay polytopes (P,Q)
of the same dimension in Rk and satisfying (iia), (iic), but not (iib). Such an
example is given in Section 16.4 for the Barnes-Wall lattice (see the pair (Q,P )
there).

Note that we may assume to be dealing with hypermetric distances taking
nonzero distances between distinct points (i.e., with metrics). Indeed, let (X,d)
be a hypermetric space with d(i0, j0) = 0 for two distinct points i0, j0 ∈ X, and
let (X′ := X \ {j0}, d) denote its subspace on X \ {j0}. Then, both (X,d) and
(X′, d) have the same associated Delaunay polytope P (simply representing j0
by the same vertex of P as i0).

We would like to emphasize the following fact, since it will be often used in
the sequel.

Proposition 14.1.5. Let (X,d) be a hypermetric space with representation
(vi | i ∈ X) in the set of vertices of its associated Delaunay polytope Pd. Given
b ∈ ZX with

∑
i∈X bi = 1,

∑

i,j∈X
bibjd(i, j) = 0 ⇐⇒

∑

i∈X
bivi is a vertex of Pd.
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Proof. This follows from the equality
∑

i,j∈X
bibjd(i, j) = 2(r2 − (

∑

i∈X
bivi − c)2),

stated in the proof of Proposition 14.1.2 (ii) =⇒ (i).

Example 14.1.6. Consider the cut semimetric δ(S) for some subset S ⊆ X.
It is obviously hypermetric. Its associated Delaunay polytope is the segment
α1 = [0, 1] and a representation of the hypermetric space (X, δ(S)) is

i ∈ S 7→ vi := 1, i ∈ X \ S 7→ vi := 0.

Example 14.1.7. Let (X,d) be a semimetric space. Then, d lies in the interior
of the hypermetric cone HYP(X) if and only if its associated Delaunay polytope
is the simplex α|X|−1 of dimension |X| − 1 (since, by Proposition 14.1.5, d satis-
fies no nontrivial hypermetric equality if and only if |V (Pd)| = dim(Pd) + 1).

We conclude this section with two additional properties concerning the con-
nection between hypermetrics and Delaunay polytopes. A first observation is
that, if (Y, d) is a subspace of the hypermetric space (X,d), then its associated
Delaunay polytope is embedded in the Delaunay polytope associated to (X,d).

Lemma 14.1.8. Let P be a Delaunay polytope with set of vertices V (P ) and
let X be a subset of V (P ). Let PX denote the Delaunay polytope associated with
the hypermetric space (X,d(2)). Then, V (PX) ⊆ V (P ) with equality if and only
if X is a generating subset of V (P ).

Proof. Let LX denote the sublattice of L generated by X and let AX denote
the affine space generated by X. Let S be the circumscribed sphere to P, so S
is an empty sphere in L. The sphere SX = S ∩ AX is empty in LX . Hence,
PX = Conv(SX ∩ LX) is a Delaunay polytope and it is the Delaunay polytope
associated with the hypermetric space (X,d(2)). Therefore, V (PX) = SX ∩LX is
indeed contained in V (P ) = S ∩ L. It is easy to see that V (PX) = V (P ) if and
only if X generates the lattice L.

In particular, every face of a Delaunay polytope is a Delaunay polytope. For
instance, every 2-dimensional face of a Delaunay polytope is a rectangle or a
triangle with no obtuse angles.

Corollary 14.1.9. Let (X,d) be a hypermetric space and (Y, d) be a subspace of
(X,d), i.e., Y ⊆ X. Let PX and PY denote the Delaunay polytopes associated,
respectively, with (X,d) and (Y, d). Then, V (PY ) ⊆ V (PX) holds.

There are some properties of the hypermetric space (X,d) which are inher-
ited by its associated Delaunay polytope. This is the case for hypercube or
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ℓ1-embeddability as shown in Proposition 14.1.10 below; (i) is proved in As-
souad [1982] and (ii) in Deza and Grishukhin [1993]. Another such property is
the notion of rank and extremality as will be seen in Section 15.1.

Proposition 14.1.10. Let (X,d) be a hypermetric space and let Pd be its asso-
ciated Delaunay polytope with set of vertices V (Pd).

(i) Then, (X,d) is isometrically ℓ1-embeddable if and only if Pd can be embed-
ded in a parallepiped, i.e., if (V (Pd), d

(2)) is isometrically ℓ1-embeddable.

(ii) Moreover, if d is rational valued, then (X,d) is ℓ1-embeddable if and only
if Pd can be embedded in a hypercube with side length λ for some λ >
0; the smallest such λ is the minimum scale of both spaces (X,d) and
(V (Pd), d

(2)).

Proof. (i) The set of vertices of a parallepiped endowed with the distance d(2) is
clearly ℓ1-embeddable. Conversely, suppose that (X,d) is ℓ1-embeddable. Then,

d =
∑

1≤h≤m
λhδ(Sh)

where λ1, . . . , λm > 0 and S1, . . . , Sm ⊂ X. Set e′h :=
√
λheh, where eh is the h-

th unit vector in Rm , for 1 ≤ h ≤ m. Let L denote the lattice in Rm generated by
(e′1, . . . , e

′
m). It is easy to check that the sphere S with center c := 1

2

∑
1≤h≤m e

′
h

and radius ‖ c ‖ is empty in L. For i = 1, . . . , n, set

Ii := {h ∈ {1, . . . ,m} | i ∈ Sh}.

So, h ∈ Ii if and only if i ∈ Sh. Therefore,

d(i, j) =
∑

1≤h≤m, |Sh∩{i,j}|=1

λh =
∑

1≤h≤m, h∈Ii△Ij
λh.

From this, we deduce that the mapping

i ∈ X 7→ vi =
∑

h∈Ii
e′h ∈ Rm

is a representation of (X,d); indeed,

d(2)(vi, vj) = (
∑

h∈Ii△Ij
e′h)

2 =
∑

h∈Ii△Ij
λh = d(i, j).

This shows that the Delaunay polytope Pd associated with (X,d) is embedded
in the parallepiped spanned by e′h, 1 ≤ h ≤ m. The assertion (ii) can be derived
in the same way.
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14.2 Polyhedrality of the Hypermetric Cone

The hypermetric cone HYPn+1 is defined by infinitely many inequalities. Hence,
a natural question is whether a finite subset of them suffices for describing
HYPn+1 or, in other words, whether the cone HYPn+1 is polyhedral. The answer
is yes, as stated in the next theorem proved by Deza, Grishukhin and Laurent
[1993].

Theorem 14.2.1. For any n ≥ 2, the hypermetric cone HYPn+1 is polyhedral.

We present three different proofs for this result. In each of them, the image
ξ(HYPn) of the hypermetric cone HYPn+1 under the covariance mapping ξ is
considered instead of the cone HYPn+1 itself. The cone ξ(HYPn+1) is shown to
be polyhedral in the following three ways: either by showing that it has a finite
number of faces, or by showing that is can be decomposed as a finite union of
polyhedral cones, or by showing that it coincides with a larger cone defined by a
finite subset of its inequalities. Recall from (13.1.4) that ξ(HYPn+1) is the cone
defined by the inequalities

(14.2.2)
∑

1≤i,j≤n
bibjpij −

∑

1≤i≤n
bipii ≥ 0

for all b ∈ Zn.

The first proof was given by Deza, Grishukhin and Laurent [1993]. It is based
on the connection existing between faces of the hypermetric cone and types of
Delaunay polytopes and it uses as essential tool the fact that the number of
types of Delaunay polytopes in any given dimension is finite.

The second proof relies on the fact that the cone ξ(HYPn+1) can be decom-
posed as a finite union of L-type domains. It uses two results of Voronoi; the
first one concerns the finiteness of the number of types of lattices in any given
dimension and the second one concerns properties of the partition of the cone
PSDn into L-type domains (in particular, the fact that each L-type domain is a
polyhedral cone).

The third proof is due to Lovász [1994]. It consists of proving directly that,
among all the inequalities (14.2.2) defining ξ(HYPn+1), only a finite subset
of them is necessary; namely, one shows that the inequalities (14.2.2) with b
bounded in terms of n are sufficient for the description of ξ(HYPn+1). For each
p ∈ ξ(HYPn+1), the set

Ep := {x ∈ R
n |

∑

1≤i,j≤n
xixjpij −

∑

1≤i≤n
xipii = 0}

is an ellipsoid (possibly degenerate with infinite directions) whose interior is free
of integral points. The key argument consists of showing that if p lies on the
boundary of the cone ξ(HYPn+1), then Ep contains an integral point b which
is distinct from 0 and the unit vectors and is “short”, which means that all its
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components are bounded by a constant depending only on n, e.g., max
1≤i≤n

|bi| ≤ n!.

A better upper bound than n! is given in Proposition 14.2.4.

First proof. Let d ∈ HYPn+1 and let p := ξ(d). The annullator Ann(p) of p
is defined as

Ann(p) = {b ∈ Z
n | b 6= 0, e1, . . . , en and

∑

1≤i,j≤n
bibjpij −

∑

1≤i≤n
bipii = 0},

where e1, . . . , en denote the unit vectors in Rn . Let F (p) denote the smallest
face of ξ(HYPn+1) containing p, i.e.,

F (p) = ξ(HYPn+1) ∩
⋂

b∈Ann(p)

Hb,

where Hb denotes the hyperplane in R(n+1
2 ) defined by the equation

∑

1≤i,j≤n
bibjpij −

∑

1≤i≤n
bipii = 0.

Clearly, showing that ξ(HYPn+1) is polyhedral amounts to showing that the
number of its distinct faces is finite or, equivalently, that the number of distinct
annullators Ann(p) (for p ∈ ξ(HYPn+1)) is finite.

Let Pd denote the Delaunay polytope associated with d, let Ld be the asso-
ciated lattice and let i ∈ X 7→ vi ∈ V (Pd) be the representation of (X,d) on the
sphere Sd with center c circumscribing Pd. We can assume that v0 = 0; then,
Ld = Z(v 1, . . . , vn). For v ∈ Ld, set

Z(v) := {b ∈ Z
n | v =

∑

1≤i≤n
bivi}.

Then, from Proposition 14.1.5,

(a) Ann(p) ∪ {0, e1, . . . , en} =
⋃

v∈V (Pd)

Z(v).

Suppose that the polytope Pd has type γ. Let B be a representative basis of the
type γ and let Yγ be the integer matrix characterizing the type γ, as defined in
Proposition 13.3.2. Then,

QPd
= YγMB ,

where QPd
denotes the matrix whose rows are the vectors v ∈ V (Pd) and MB

denotes the matrix whose rows are the vectors of B. Let Q denote the n × k
matrix whose rows are the vectors vi for 1 ≤ i ≤ n. So, Q may have repeated
rows and every row of Q is a row of QPd

. Then,

Q = YMB ,

for some integer matrix Y . Let yv (v ∈ V (Pd)) denote the rows of Yγ . Then the
rows of Y are the vectors yvi for 1 ≤ i ≤ n. Note that

v =
∑

1≤i≤n
bivi ⇐⇒ yv =

∑

1≤i≤n
biyvi .
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Therefore, for each v ∈ V (Pd),

Z(v) = {b ∈ Zn | yv =
∑

1≤i≤n
biyvi}.

Hence, for v ∈ V (Pd), Z(v) depends only on (yv, yv1 , . . . , yvn). Using (a), we
deduce that Ann(p) is entirely determined by the matrix Yγ and the subsystem
(yv1 , . . . , yvn) of its rows. In other words, for each d ∈ HYPn+1, the annullator
Ann(ξ(d)) is completely determined by a pair (γ, θ), where γ is a type of Delaunay
polytopes in Rk with k ≤ n, and θ is a mapping from {1, . . . , n} to the set of
rows of Yγ . As Yγ has |V (Pd)| ≤ 2k rows (by Proposition 13.2.8), the number of
such mappings θ is finite. Moreover, the number of types of Delaunay polytopes
in given dimension is finite (from Theorem 13.3.4). Therefore, we deduce that
the number of distinct annullators Ann(ξ(d)) (for d ∈ HYPn+1) is finite. This
shows that ξ(HYPn+1) is a polyhedral cone.

Second proof. We use the results from Section 13.2.5 concerning the parti-
tion of the cone PSDn into L-type domains. Recall from relation (13.1.7) that
ξ(HYPn+1) is a subcone of the cone PSDn. More precisely, the following holds.
Let v1, . . . , vn ∈ Rk with rank k (where 1 ≤ k ≤ n), set L := Z(v1, . . . , vn), and
define p ∈ PSDn by setting pij = vTi vj for 1 ≤ i, j ≤ n. Then, by the results of
Section 14.1,

(b)
p ∈ ξ(HYPn+1) if and only if L is a lattice and v1, . . . , vn are all
vertices of the same Delaunay polytope in the star of L at the origin.

Moreover, if p ∈ ξ(HYPn+1) then the whole L-type domain containing p is en-
tirely contained in ξ(HYPn+1). Hence, ξ(HYPn+1) is a union of L-type domains.
In fact, this union is finite. Indeed, ξ(HYPn+1) contains only finitely many L-
type domains whose associated lattices are all z-equivalent (by (b) and since, in
a given lattice L, there are only finitely many ways of choosing a set of n vectors
v1, . . . , vn that are all vertices of the same Delaunay polytope in the star of L).
Finally, the number of distinct (up to z-equivalence) lattices of given dimension
is finite. Therefore, ξ(HYPn+1) is a finite union of L-type domains. But, a
fundamental property is that each L-type domain is a polyhedral cone. Hence,
ξ(HYPn+1) is a polyhedral cone.

Third proof. For p ∈ ξ(HYPn+1), set

Ep := {x ∈ Rn |
∑

1≤i,j≤n
xixjpij −

∑

1≤i≤n
xipii = 0}

and let Vp denote the kernel of the matrix (pij)
n
i,j=1. If p is rational valued then

Vp admits a basis composed of integral vectors and, therefore, x+ v ∈ Ep for all
x ∈ Ep and v ∈ Vp. Hence, if the matrix (pij) has a nonzero kernel, then Ep is a
degenerate ellipsoid with axis Vp. As in the first proof, set

Ann(p) := Ep ∩ (Zn \ {0, e1, . . . , en}),
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where e1, . . . , en are the unit vectors. By definition of ξ(HYPn+1), there are
no integral points lying in the interior of the region delimited by the ellipsoid
Ep. Note moreover that the vectors 0, e1, . . . , en lie on Ep. The key idea of the
proof consists of showing that, for each rational valued p lying on the boundary
of ξ(HYPn+1), there exists b ∈ Ann(p) which is “short”, which means here that
max
1≤i≤n

|bi| ≤ n!. If we can show this fact, then we obtain that ξ(HYPn+1) coincides

with the cone defined by the inequalities (14.2.2) for all b such that max
1≤i≤n

|bi| ≤ n!

(indeed, the latter is a cone containing ξ(HYPn+1) and whose boundary fully
contains the boundary of ξ(HYPn+1), which means that the two cones coincide).
Assume that p is rational valued and lies on the boundary of ξ(HYPn+1) and let
k′ := dim(Vp). We show that

(c) there exists b ∈ Ann(p) such that max
1≤i≤n

|bi| ≤ (n− k′)!.

Suppose first that k′ = 0, i.e., that the matrix (pij) is positive definite. Then, Ep
is a (nondegenerate) ellipsoid in Rn and Ann(p) 6= ∅ as p lies on the boundary of
ξ(HYPn+1). Let b ∈ Ann(p) and suppose, e.g., that |b1|, . . . , |bn−1| ≤ |bn|. Let ∆
denote the n-dimensional simplex spanned by the n+ 1 vectors 0, e1, . . . , en−1, b
(which all lie on Ep) and let vol(∆) denote its volume. Then,

vol(∆) =
|bn|
n!

and vol(∆) ≤ 1;

the latter inequality holds since Ep is an ellipsoid whose interior is free of integral
points, which implies that

vol(∆) ≤ vol(Conv(Zn ∩Ep)) ≤ 1

(the last inequality is the analogue of the inequality vol(P ) ≤ det(L) from Propo-
sition 13.2.10, if P is a Delaunay polytope in a lattice L). Therefore, |bn| ≤ n!,
i.e., (c) holds.

Suppose now that dim(Vp) = k′ ≥ 1. Then, Ep is a degenerate ellipsoid with
axis Vp. We show that Vp contains an integral vector whose components are all
less than or equal to (n− k′)!. For this, let a1, . . . , ak

′
be k′ linearly independent

vectors of Vp ∩ Zn. For i = 1, . . . , n, let Mi denote the k′ × k′ matrix whose
rows are the vectors (ah1 , . . . , a

h
k′−1, a

h
i ) for h = 1, . . . , k′, and let Di denote the

determinant ofMi. Then, D1 = . . . = Dk′−1 = 0 and we can suppose without loss
of generality that Dk′ 6= 0. We can also suppose that |Dk′+1|, . . . , |Dn| ≤ |Dk′ |.
Set

b := (D1, . . . ,Dn)
T .

For h ∈ {1, . . . , k′}, let M ′
h denote the (k′−1)×(k′−1) matrix whose rows are the

vectors (ar1, . . . , a
r
k′−1) for r ∈ {1, . . . , k′} \ {h} and set γh := (−1)h+k′ det(M ′

h).
By developing the determinant Di with respect to its last column, we obtain
that Di =

∑
1≤h≤k′ γha

h
i , i.e.,

b =
∑

1≤h≤k′
γha

h.
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This shows that b ∈ Vp. Let g denote the g.c.d. of D1, . . . ,Dn. Then, 1
g b

is an integral vector belonging to Vp. We show that 1
g b satisfies (c), i.e., that

|Dk′ |
g ≤ (n− k′)!.

Set W := {x ∈ Rn | x1 = . . . = xk′ = 0}. Then, Rn = Vp + W . Let π
denote the projection from Rn on W along Vp. So, if x = y + z is the unique
decomposition of x ∈ Rn with y ∈ Vp, z ∈W , then π(x) = z. Then, L := π(Zn)
is a lattice in Rn−k

′
which contains Zn−k

′
as a sublattice. Moreover, π(Ep) is a

(nondegenerate) ellipsoid in Rn−k
′
which is empty in L, i.e., no lattice point of L

is lying in the interior of π(Ep). Let ∆ denote the (n− k′)-dimensional simplex
spanned by the n− k′ +1 vectors 0, ek′+1, . . . , en, which all belong to π(Ep)∩L.
Then, vol(∆) = 1

(n−k′)! and vol(∆) ≤ det(L) since the ellipsoid π(Ep) is empty
in L. Hence,

1

det(L)
≤ (n− k′)!.

Consider the quotient set L/Zn−k
′
. Its cardinality is equal to the index of Zn−k

′

in L, i.e., to 1
det(L) . Therefore,

|L/Zn−k′| =
1

det(L)
≤ (n− k′)!.

On the other hand, as shown below, |L/Zn−k′| ≥ |Dn|
g , which implies that the

vector 1
g b is “short”. We show

|L/Zn−k′| ≥ |Dn|
g

.

For this, consider the vectors (0k′−1, α, 0n−k′), whose components are all equal
to 0 except the k′-th one equal to α, where α is an integer such that 0 ≤ α <
|Dk′ |
g . We show that the projections of these

|Dk′ |
g vectors belong to distinct

residue classes in the quotient set L/Zn−k
′
. For suppose not. Let α,α′ be

integers with 0 ≤ α < α′ < |Dk′ |
g and such that the two vectors (0k′−1, α, 0n−k′),

(0k′−1, α
′, 0n−k′) belong to the same class. Then, there exist z ∈ Zn−k

′
and

scalars β1, . . . , βk′ ∈ R such that

(0k′−1, α
′ − α, 0n−k′) =

∑

1≤h≤k′
βha

h + (0k′ , z), i.e.,





∑
1≤h≤k′ βha

h
i = 0 for i = 1, . . . , k′ − 1,∑

1≤h≤k′ βha
h
k′ = α0 := α′ − α,∑

1≤h≤k′ βha
h
i = −zi for i = k′ + 1, . . . , n.

The first k′ equations of the above system imply that βh = γhα0

Dk′
for h = 1, . . . , k′.

Using the last n − k′ equations and the fact that
∑

1≤h≤k′ γha
h
i = bi = Di, we

obtain that α0Di = −ziDk′ , i.e.,

α0
Di

g
= −zi

Dk′

g
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for each i = k′ + 1, . . . , n. As the integers
Dk′+1

g , . . . , Dn
g are relatively prime, we

deduce that
Dk′

g divides α0. This yields a contradiction as 0 < α0 <
|Dk′ |
g .

Remark 14.2.3. Let us make more precise the connections existing between
the notions used in the first proof (empty sphere Sd, lattice Ld, etc) and in
the third proof (ellipsoid Ep, etc). We use the notation from both proofs. Let
d ∈ HYPn+1 and p := ξ(d) with rank k and such that pij = vTi vj, where
v1, . . . , vn ∈ Rk . The vectors v1, . . . , vn lie on the sphere Sd which is empty in
the lattice Ld = Z(v 1, . . . , vn), and Pd = Conv(Sd∩Ld) is the Delaunay polytope
associated to d. Let Vp denote the kernel of (pij) with dimension k′ = n− k and
let W denote its complement in Rn considered in the third proof. Clearly,

b ∈ Ann(p) ⇐⇒
∑

1≤i≤n
bivi ∈ V (Pd),

b ∈ Vp ⇐⇒
∑

1≤i≤n
bivi = 0.

Let ϕ : Rn 7→ Rk denote the linear mapping defined by

ϕ(b) =
∑

1≤i≤n
bivi, for b ∈ R

n .

Hence, the kernel of ϕ is Vp and, thus, the spaces W and Rk are in bijection via
ϕ. In particular, the ellipsoid π(Ep) is in one-to-one correspondence with the
sphere Sd via ϕ. Also, ϕ maps the integral lattice Zn onto the lattice Ld.

An immediate consequence of Lovász’s proof (presented above as the third
proof) is that the inequalities (14.2.2) for b ∈ Zn with

max
1≤i≤n

|bi| ≤ n!

are sufficient for describing the cone ξ(HYPn+1).
Avis and Grishukhin [1993] show that the inequalities (14.2.2) for b ∈ Zn

with
max
1≤i≤n

|bi| ≤ (n− 1)!

are sufficient for describing ξ(HYPn+1). (They give, in fact, the bound 2n−2(n−1)!
n+1 ,

but their bound can be improved to (n− 1)! using the upper bound on the vol-
ume of a Delaunay polytope from Proposition 13.2.10.) More precisely, they
show that, if the inequality (14.2.2) defines a facet of the cone ξ(HYPn+1), then
max1≤i≤n |bi| ≤ (n− 1)!. Their proof uses the fact that the facets of the hyper-
metric cone correspond to a very special class of Delaunay polytopes, namely,
the repartitioning polytopes (described in Section 15.2).

The following tighter bound is due to Lovász [1994]; its proof is based on
Lemma 14.2.5.
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Proposition 14.2.4. The cone ξ(HYPn+1) is defined by the inequalities (14.2.2)
for b ∈ Zn with

max
1≤i≤n

|bi| ≤
2n
(2n
n

)n!.

Lemma 14.2.5. Let E be an ellipsoid in Rn and let L be an n-dimensional
lattice in Rn . Suppose that E is empty in L, i.e., that there are no lattice points
lying in the interior of the region delimited by E. Let x0 = 0, x1, . . . , xn be
affinely independent points of E ∩ L and let ∆ denote the simplex they span.
Then,

vol(∆) ≤ 2n(2n
n

) det(L).

Proof. Consider the difference body ∆−∆ := {x−y | x, y ∈ ∆}. It is a centrally
symmetric convex body around the origin and one can check that the only lattice
point lying in the interior of ∆−∆ is the origin. Hence, by Minkowski’s theorem
(see, e.g., Siegel [1989]),

vol(∆ − ∆) ≤ 2n det(L).

On the other hand, it is shown in Rogers and Shephard [1957] that

vol(∆ − ∆) =

(
2n

n

)
vol(∆).

This yields the result.

Proof of Proposition 14.2.4. Let us now call a vector b “short” if

|bi| ≤
2n(2n
n

)n!

holds for all 1 ≤ i ≤ n. Using the bound on the volume of a simplex from
Lemma 14.2.5, the third proof of Theorem 14.2.1 can be adapted so as to show
the existence of a short vector in Ann(p) for each p lying on the boundary of
ξ(HYPn+1). (One also uses the fact that

2k
(2k
k

)k! ≤ 2n(2n
n

)n!

for all 1 ≤ k ≤ n.)

Remark 14.2.6. From Proposition 14.2.4, a (rough) upper bound on the num-
ber of facets of the cone ξ(HYPn+1) (or of the hypermetric cone HYPn+1) is
given by (2Bn + 1)n, where

Bn :=
2nn!(2n
n

) .

Therefore, the problem of testing whether a given distance d is hypermetric is
in co-NP. It is not known whether testing hypermetricity is NP-hard. But the
following complexity results are proved by Avis and Grishukhin [1993]; they will
be treated in detail in Section 28.3.
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(i) Given an integral distance d and an integer m, does d satisfy all (2m+ 1)-
gonal hypermetric inequalities ? This problem is co-NP-complete.

(ii) Given an integral distance d. Is d hypermetric ? If not, give the smallest k
such that d violates a (2k+1)-gonal inequality. This problem is NP-hard.

14.3 Delaunay Polytopes in Root Lattices

In this section, we group several results on Delaunay polytopes in root lattices.
First, we recall the description of the irreducible root lattices and of their Delau-
nay polytopes. We show that, if P is a Delaunay polytope in a root lattice, then
its 1-skeleton graph is completely determined by the metric structure of P (see
Proposition 14.3.3). Then, we see that Delaunay polytopes in root lattices arise
in a natural way from hypermetric spaces that are connected and strongly even
(see Proposition 14.3.5). As a consequence, we obtain a characterization of the
connected strongly even distance spaces that are hypermetric, or isometrically
ℓ1-embeddable (see Theorems 14.3.6 and 14.3.7).

Let P be a Delaunay polytope which is generating in a root lattice L. If L is
reducible, then L = L1⊕L2 where L1 and L2 are root lattices. Hence, P = P1×P2

where Pi is a Delaunay polytope in Li, for i = 1, 2. Therefore, it suffices to
describe the Delaunay polytopes that are generating in some irreducible root
lattice.

The irreducible root lattices have been classified by Witt (see, for instance,
Brouwer, Cohen and Neumaier [1989]). They are An (n ≥ 0), Dn (n ≥ 4), and
En (n = 6, 7, 8). We recall their description below; we will consider in more
detail the lattices E6, E7 and E8 in Section 16.2.

For each of the lattices An, Dn and En, we recall some information about
its roots (i.e., its minimal vectors) and about its empty spheres (i.e., its holes).
For more details we refer, for instance, to Brouwer, Cohen and Neumaier [1989],
Conway and Sloane [1988, 1991].

Case of An, n ≥ 0.

• An = {x ∈ Zn+1 |∑0≤i≤n xi = 0}.
• The roots of An are the n(n+1) vectors ei−ej, 0 ≤ i 6= j ≤ n, where ei denote
the i-th unit vector in Rn+1 .

• There are ⌊n+1
2 ⌋ types of empty spheres in An. Their centers are

ca = (
a

n+ 1
, . . . ,

a

n+ 1
;−n+ 1 − a

n+ 1
, . . . ,−n+ 1 − a

n+ 1
),

where a
n+1 is repeated n + 1 − a times and −n+1−a

n+1 is repeated a times, with

corresponding radius ra =
√

a(n+1−a)
n+1 , for 1 ≤ a ≤ ⌊n+1

2 ⌋. The case a = ⌊n+1
2 ⌋

corresponds to a deep hole, i.e., a hole with maximum radius.
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• The Delaunay polytope circumscribed by the empty sphere with center ca and
radius ra has for vertices the following

∑
b

(n+1−a
b

)·(ab
)
vectors (1b, 0n+1−a−b; (−1)b,

0a−b) for 0 ≤ b ≤ a, n+1−a, where the first b ones are chosen among the n+1−a
positions of the entries a

n+1 of ca and the last b minus ones are chosen among

the a positions of the entries −n+1−a
n+1 of ca. Its 1-skeleton graph is the Johnson

graph1 J(n+ 1, a).

Case of Dn, n ≥ 4.

• Dn = {x ∈ Zn |∑1≤i≤n xi ∈ 2Z}.
• The roots of Dn are the 2n(n− 1) vectors ±ei ± ej for 1 ≤ i 6= j ≤ n.

• There are two types of empty spheres in Dn, namely, an empty sphere S1 with
center c1 = (0, . . . , 0, 1) and radius r1 = 1, and an empty sphere S2 with center

c2 = (1
2 , . . . ,

1
2) and radius r2 =

√
n

2 .

• The Delaunay polytope circumscribed by the sphere S1 has for vertices the 2n
vectors (0, . . . , 0), (0, . . . , 0, 2) and (0, . . . , 0,±1, 0, . . . , 0, 1) where the component
±1 is in one of the first n − 1 positions. This is the cross-polytope βn whose
1-skeleton graph is the cocktail-party graph Kn×2.

• The Delaunay polytope circumscribed by the second sphere S2 has for vertices
the 2n−1 vectors x ∈ {0, 1}n with

∑
1≤i≤n xi ∈ 2Z. This is the half-cube hγn

whose 1-skeleton graph is the half-cube graph 1
2H(n, 2). It corresponds to a deep

hole in Dn.
Note that, for n = 4, β4 and hγ4 are congruent (i.e., coincide up to orthogonal
transformation and translation).

Case of E8.

• E8 = {x ∈ R8 | x ∈ Z 8 ∪ (1
2 + Z) 8 and

∑
1≤i≤8 xi ∈ 2Z}, i.e., E 8 is the lattice

generated by D8 and 1
2

∑
1≤i≤8 ei. The lattice E8 is even and unimodular; hence,

E∗
8 = E8.

• The roots of E8 are the 240 vectors ±ei±ej and 1
2(±e1± . . .±en), where there

is an even number of minus signs in a root of the second kind.

• There are two types of empty spheres in E8, namely, the sphere S1 with center
c1 = (1, 07) and radius r1 = 1, and the sphere S2 with center c2 = (5

6 ,
1
6
7
) and

radius r2 =
√

8
9 .

• The Delaunay polytope circumscribed by the sphere S1 has for vertices the
following 16 vectors (08), (2, 07), (1, 0, . . . , 0,±1, 0, . . . , 0), where ±1 is in one of
the last seven positions. This is the cross-polytope β8 whose 1-skeleton graph is
K8×2. It corresponds to a deep hole in E8.

• The Delaunay polytope circumscribed by the sphere S2 has for vertices the
following 9 vectors (08), (1

2 , . . . ,
1
2) and (1, 0, . . . , 0, 1, 0, . . . , 0), where the second

1For 1 ≤ t ≤ n, the Johnson graph J(n, t) is defined as the graph with node set {A ⊆
{1, . . . , n} : |A| = t} and with edges the pairs (A,B) with |A ∩ B| = t − 1.
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1 is in one of the last seven positions. This is the simplex α8 with 1-skeleton
graph K9.
We point out that, as E8 is an even unimodular lattice, none of its Delaunay
polytopes is generating (by Lemma 13.2.6).

Case of E7.

• The root lattice E7 consists of the vectors of E8 that are orthogonal to a given
minimal vector v0 of E8. If we choose v0 = (1

2 , . . . ,
1
2), then E7 = {x ∈ E8 |∑

1≤i≤8 xi = 0}. Another choice for v0 could be v0 = (1, 1, 06); we will work with
this second definition of E7 in Section 16.2 (in fact, we shall use there for E7 the
following affine translate {x ∈ E8 | xT v0 = x1 + x2 = 1}).
• There are two types of empty spheres in E7, namely, the sphere S1 with center

c1 = (3
4

2
,−1

4

6
) and radius r1 =

√
3
2 , and the sphere S2 with center c2 = (7

8 ,−1
8

7
)

and radius r2 =
√

7
8 .

• The Delaunay polytope circumscribed by the sphere S1 has for vertices the 56
vectors c1 ± (3

4
2
,−1

4
6
). This is the Gosset polytope 321 whose 1-skeleton graph

is the Gosset graph G56. It corresponds to a deep hole in E7.

• The Delaunay polytope circumscribed by the sphere S2 has for vertices the 8
following vectors (08) and (1, 0, . . . , 0,−1, 0, . . . , 0), where -1 is in one of the last
seven positions. This is the 7-dimensional simplex α7 with 1-skeleton graph K8.

Case of E6.

• The root lattice E6 consists of the vectors of E8 that are orthogonal to two
nonorthogonal given minimal vectors v0 and w0 of E8. If we choose v0 = (1, 1, 06)

and w0 = (−1
2

8
), then E6 = {x ∈ E8 | x1 + x2 = x3 + . . .+ x8 = 0}. (In Section

16.2, we select differently v0 and w0 and we consider an affine translate as E6.)

• There is only one type of empty sphere in E6. Its radius is
√

4
3 and it cir-

cumscribes the Delaunay polytope whose vertices are the following 27 vectors
(1
2 ,−1

2 ,
5
6 ,−1

6

5
), (−1

2 ,
1
2 ,

5
6 ,−1

6

5
) where 5

6 is in one of the last six positions, and

(0, 0,−2
3

2
, 1

3

4
) where the two −2

3 ’s are in the last six positions. This is the Schläfli
polytope 221 whose 1-skeleton graph is the Schläfli graph G27. So the star of E6

contains only copies of 221 and of its image under central symmetry.

We summarize in Figure 14.3.1 some information about the Delaunay poly-
topes P arising in the irreducible root lattices. For each irreducible root lattice
L, we list all the Delaunay polytopes P arising in the star of L. Note that P is
always generating in L (i.e., V (P ) generates L) with the exception of the poly-
topes α8 and β8 that are not generating in E8. For each Delaunay polytope P ,
we present its 1-skeleton graph, denoted by H(P ) and called a Delaunay poly-
tope graph. The last column gives the square r2 of the radius r of the sphere
circumscribing P . As dH(P )(u, v) = 1

2(u − v)2 for all u, v ∈ V (P ) (by the next
Proposition 14.3.3), the graphic metric space (V (P ), dH(P )) of the graph H(P )
is hypermetric and its associated L-polytope has radius r√

2
.
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lattice Delaunay polytope Delaunay polytope squared radius
L P graph H(P ) r2

An (n ≥ 0) see description J(n+ 1, t) t(n+1−t)
n+1

above for 1 ≤ t ≤ ⌊n+1
2 ⌋

Dn (n ≥ 4) βn Kn×2 1
hγn

1
2H(n, 2) n/4

E8 α8 K9 8/9
β8 K8×2 1

E7 α7 K8 7/8
321 G56 3/2

E6 221 G27 4/3

Figure 14.3.1: Delaunay polytopes in the irreducible root lattices

Remark 14.3.2. We group here several observations about the graphs J(n, t),
1
2H(n, 2), Kn×2, Kn, the Schläfli graph G27, and the Gosset graph G56 occurring
in Figure 14.3.1.

(i) There are some isomorphisms among them, namely, J(n, 1) = Kn,
1
2H(2, 2)

= K2,
1
2H(3, 2) = K4, K3×2 = J(4, 2), K4×2 = 1

2H(4, 2). Note that
J(n, 2) coincides with the line graph L(Kn) of Kn, which is also called the
triangular graph and denoted by T (n). The half-cube graph 1

2H(5, 2) is
also known as the Clebsch graph.

(ii) J(n, t) is an isometric subgraph of 1
2H(n, 2) and of J(n + 1, t); 1

2H(n, 2)
is an isometric subgraph of 1

2H(n + 1, 2); Kn×2 is an isometric subgraph
of K(n+1)×2. Also, ∇1

2H(5, 2) is an isometric subgraph of G27;
1
2H(6, 2),

K6×2, J(8, 2) and ∇G27 are isometric subgraphs of G56. Hence, G27 is an
isometric subgraph of G56 (as G27 has diameter 2). In fact, J(5, 2) (resp.
1
2H(5, 2), G27) is the subgraph of 1

2H(5, 2) (resp. of G27, G56) induced by
the neighborhood of one of its nodes.

(iii) J(n, t), Kn×2 (n ≥ 2), 1
2H(n, 2) are ℓ1-graphs, but G27, G56 are not ℓ1-

graphs.

We consider in the next result an interesting property for a Delaunay polytope
P in a root lattice. Namely, a geometric feature of P is entirely determined by
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the metric structure of P : its 1-skeleton graph consists of the pairs of vertices
at squared distance 2. This was proved in Deza and Grishukhin [1993].

Proposition 14.3.3. Let P be a generating Delaunay polytope in a root lattice.
Let G(P ) denote the graph with set of vertices V (P ) and with edges the pairs
(u, v) for which d(2)(u, v) = 2, for u, v ∈ V (P ), and let dG(P ) denote its path
metric. Then,

d(2)(u, v) = 2dG(P )(u, v)

holds for all u, v ∈ V (P ), i.e., the Delaunay polytope space (V (P ), d(2)) co-
incides with the space (V (P ), 2dG(P )). Moreover, G(P ) coincides with the 1-
skeleton graph H(P ) of P , i.e., two vertices u, v form an edge of P if and only
if d(2)(u, v) = 2.

Proof. Let u, v ∈ V (P ) such that dG(P )(u, v) = 2. Let (u, u1, v) be a path in
G(P ) from u to v, i.e., (u−u1)

2 = (u1 − v)2 = 2 and (u− v)2 > 2. Observe that

(14.3.4) (u1 − u)T (u1 − v) = 0.

Indeed, (u1 − u)T (u1 − v) ≥ 0 since any three vertices of P form a triangle with
no obtuse angles. Using relation (13.2.1), we obtain that (u1−u)T (u1−v) = 0, 1.
Moreover, (u−v)2 = 4−2(u1−u)T (u1−v) > 2, implying that (u1−u)T (u1−v) = 0
and, thus, (u− v)2 = 4 = 2dG(P )(u, v).

Consider now u, v ∈ V (P ) such that dG(P )(u, v) = k ≥ 2. Let (u0 =
u, u1, . . . , uk = v) be a shortest path from u to v in G(P ). Then, u − v =∑

1≤i≤k ri, where ri := ui − ui−1 is a root (i.e., r2i = 2) for 1 ≤ i ≤ k. So this
path corresponds to the sequence of roots (r1, . . . , rk). Consider the subpath
(ui−1, ui, ui+1). Applying (14.3.4), we deduce that rTi ri+1 = 0 holds. So, any
two consecutive roots in the sequence (r1, . . . , rk) are orthogonal.
Note that w := ui−1 + ui+1 − ui is also a vertex of P since w ∈ L and w also
lies on the sphere circumscribing P . Hence, (u0, u1, . . . , ui−1, w, ui+1, . . . , uk)
is another shortest path from u to v; it corresponds to the sequence of roots
(r1, . . . , ri−1, ri+1, ri, ri+2, . . . , rk). By the above argument, rTi ri+2 = (ri−1)

T ri+1 =
0. After iteration, we obtain that any two roots ri, rj , i 6= j, are orthogonal.
Therefore,

(u− v)2 =
∑

1≤i≤k
r2i = 2k = 2dG(P )(u, v)

holds. Moreover, u−v is the diagonal of the k-cube spanned by r1, . . . , rk, whose
vertices all are vertices of P . Therefore, u, v do not form an edge of P .

It is easy to see that, conversely, any two vertices u, v of P with (u− v)2 = 2
form an edge of P .

We now see that Delaunay polytopes in root lattices arise in a natural way
from connected strongly even hypermetric spaces. Recall that a distance space
(X,d) is strongly even if d(i, j) is an even integer for all i, j ∈ X and d(i, j) = 2
for some i, j ∈ X.
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Proposition 14.3.5. Let (X,d) be a connected strongly even distance space. If
(X,d) is hypermetric with associated Delaunay polytope Pd generating the lattice
Ld, then Ld is a root lattice.

Proof. Let i ∈ X 7→ vi ∈ V (Pd) denote a representation of (X,d) in Ld. As the
distance space (X,d) is connected and strongly even, the lattice Ld is generated
by the set {vi − vj | i, j ∈ X and d(i, j) = 2}. Hence, Ld is a root lattice.

As an application, we can characterize the connected strongly even distance
spaces which are hypermetric, or ℓ1-embeddable. The following Theorems 14.3.6
and 14.3.7 are due, respectively, to Terwiliger and Deza [1987] and Deza and
Grishukhin [1993]. An application to graphs will be formulated in Section 17.1.

Theorem 14.3.6. Let (X,d) be a connected strongly even distance space. The
following assertions are equivalent.

(i) (X,d) is hypermetric.

(ii) (X, 1
2d) is an isometric subspace of a direct product of half-cube graphs

1
2H(n, 2) (n ≥ 7), cocktail-party graphs Kn×2 (n ≥ 7), and copies of the
Gosset graph G56.

Proof. (i) =⇒ (ii) From Proposition 14.3.5, the Delaunay polytope Pd associ-
ated with (X,d) is generating in a root lattice. Therefore, from Proposition

14.3.3, The Delaunay polytope space (V (Pd),
d(2)

2 ) coincides with the graphic
space (V (Pd), dH(Pd)) which, using Figure 14.3.1, is a direct product of Johnson
graphs, cocktail-party graphs, half-cube graphs, copies of G27 and G56. The
result now follows using Remark 14.3.2. The implication (ii) =⇒ (i) is obvious.

Theorem 14.3.7. Let (X,d) be a connected strongly even distance space. The
following assertions are equivalent.

(i) (X,d) is isometrically ℓ1-embeddable.

(ii) (X, 1
2d) is an isometric subspace of a product of half-cube graphs and

cocktail-party graphs.

Theorem 14.3.7 can be proved in the same way as Theorem 14.3.6, using
Proposition 14.1.10 and the fact that the graphs G27 and G56 are not ℓ1-graphs.
In the (main) subcase of graphic metric spaces, another proof was given by
Shpectorov [1993]; it is elementary (it does not use Delaunay polytopes) but
longer. We will present the latter proof in Chapter 21.

14.4 On the Radius of Delaunay Polytopes

We present here several results which give, in some cases, a more precise informa-
tion on the radius of Delaunay polytopes. The first result is a partial converse to
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the implication (ii) =⇒ (iv) from Proposition 13.1.2; it gives explicitly the value
of the radius of the spherical representation of a distance space (X,d) of nega-
tive type when

∑
i∈X d(i, j) is a constant. This result was already formulated in

Theorem 6.2.18; we repeat it here for convenience.

Proposition 14.4.1. Suppose that (X,d) is of negative type and that the sum∑
i∈X d(i, j) does not depend on j ∈ X. Then, (X,d) has a spherical represen-

tation, on a sphere whose center is the center of mass of the representation and
whose radius r is given by

(14.4.2) r2 =
1

2|X|
∑

j∈X
d(i, j).

An example of distance space with constant sum
∑
i∈X d(i, j) is the graphic

metric space (V (G), dG), where G is a distance regular graph or a regular graph
of diameter 2; see Section 17.2. Proposition 14.4.3 below is a specification of
Proposition 14.4.1 to hypermetric spaces, and Proposition 14.4.4 is a partial
converse to the implication (i) =⇒ (ii) from Proposition 13.1.2. Both results are
given in Deza and Grishukhin [1993].

Proposition 14.4.3. Let (X,d) be a hypermetric space, let Pd be its associated
Delaunay polytope and let r denote the radius of its circumscribed sphere Sd.
If
∑
i∈X d(i, j) does not depend on j ∈ X, then the radius r is given by rela-

tion (14.4.2).

Proof. From Proposition 14.4.1, we can suppose that X lies on a sphere S with
center the center of mass of X and with radius r given by (14.4.2). On the other
hand, Sd is a minimal dimension sphere containing X. Hence, Sd ⊆ S holds.
The affine space spanned by Sd contains X and thus its center of mass, i.e., the
center of S. Therefore, S and Sd have the same radius.

Proposition 14.4.4. Let (X,d) be a connected strongly even distance space.
Suppose that (X,d) has a representation on a sphere with radius r such that
r2 < 2. Then, (X,d) is hypermetric.

Proof. Let (vi | i ∈ X) be a representation of (X,d) on a sphere S. Up to
translation, we can suppose that vi = 0 for some index i ∈ X. From Proposition
14.3.5, L(X,d) := Z(vi | i ∈ X) is a root lattice. We show that the sphere S is
empty in L(X,d) which, by Proposition 14.1.2, implies that (X,d) is hypermetric.
Let H be the affine space spanned by {vi | i ∈ X}. We can suppose that S lies
in H (else replace S by S ∩H). Let ℓ be the line in Rn+1 orthogonal to H going
through the center of S, and let q be a point on ℓ such that (q − vi)

2 = 2 for all
i ∈ X. Note that (q − v)2 < 2 for each point v lying in the interior of the ball
delimited by S. Note also that (q − vi)

T (q − vj) ∈ {0,−1, 1} for all i 6= j ∈ X.
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Indeed, (vi − vj)
2 is even since (X,d) is strongly even and

(vi − vj)
2 = 4 − 2(q − vi)

T (q − vj) ≤ 4r2 < 8,

implying that (vi − vj)
2 ∈ {2, 4, 6}. Therefore, L′ := Z(q− v i | i ∈ X) is a root

lattice and, in particular, a2 ≥ 2 for each a ∈ L′, a 6= 0. Suppose now that
some point v ∈ L(X,d) lies in the interior of the ball delimited by S. Then,
(v − q)2 < 2, yielding a contradiction with the fact that v − q ∈ L′.

We now present some results on spherical t-extensions of hypermetric spaces.
Given a distance space (X,d), we remind that its spherical t-extension (X′ :=
X ∪ {i0}, spht(d)) is defined by

spht(d)(i, j) = d(i, j) for i, j ∈ X,
spht(d)(i, i0) = t for i ∈ X.

The next lemma characterizes the parameters2 t for which spht(d) belongs to the
negative type cone and Proposition 14.4.6 below specifies values of t for which
the spherical t-extension operation preserves hypermetricity. Both results are
taken from Grishukhin [1992b].

Lemma 14.4.5. Let (X,d) be a distance space. Then, spht(d) ∈ NEGn+1 if and
only if (X,d) has a spherical representation with radius r and r2 ≤ t. Moreover,

(i) If r2 < t, then spht(d) has a spherical representation with radius R :=
t

2
√
t−r2 .

(ii) If t = r2, then spht(d) has no spherical representation.

Proof. If spht(d) ∈ NEGn+1, then spht(d) has a representation i ∈ X′ 7→ vi with
(vi − vi0)

2 = t. Hence, the vi’s (i ∈ X) lie on the sphere S0 with center vi0 and
radius

√
t. Let H denote the affine space spanned by (vi | i ∈ X). Therefore, the

vi’s (i ∈ X) lie on the sphere Sd = S0 ∩H whose radius r is less than or equal
to

√
t.

Conversely, consider a representation (vi | i ∈ X) of (X,d) on a sphere Sd with
radius r such that r2 ≤ t. Consider the line orthogonal to the affine space H
spanned by (vi | i ∈ X) and going through the center of Sd. Choose a point vi0
on this line which is at squared distance t− r2 from H. Then, (vi | i ∈ X ′) is a
representation of spht(d), which shows that spht(d) ∈ NEGn+1.
Suppose r2 < t. Let S denote the sphere of dimension one higher than that of Sd,
which contains Sd and vi0 . So, Sd = S ∩H and the radius of S is R := t

2
√
t−r2 .

On the other hand, if r2 = t, then vi0 is the center of S0 = Sd and the represen-
tation of spht(d) is not spherical.

Proposition 14.4.6. Let (X,d) be a hypermetric space and let r denote the
radius of the sphere Sd circumscribing Pd.

2Note that the quantity min(
√

t | spht(d) ∈ NEGn+1) is considered in approximation theory
where it is called the Chebyshev radius of (X, d) (Chebyshev [1947]).
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(i) Suppose that t ≥ 2r2. Then spht(d) is hypermetric, its radius is R :=
t

2
√
t−r2 , with t ≥ 2R2 (and R ≥ r, with equality if and only if t = 2r2).

Therefore, sphmt (d) is hypermetric for any integer m ≥ 1. Let P be the
Delaunay polytope associated with spht(d). If t > 2r2, or if t = 2r2 and
Pd is asymmetric, then P is a pyramid with base Pd. If Pd is centrally
symmetric, then P is a bipyramid with base Pd.

(ii) If r2 < t < 2r2 and if Pd is centrally symmetric, then spht(d) is not
hypermetric.

Proof. We use the same notation as in the proof of Lemma 14.4.5.
(i) Let Ld be the lattice spanned by V (Pd) and let L denote the lattice generated
by Ld and vi0 . So, L consists of layers which are translates of Ld, the distance
between consecutive layers being h =

√
t− r2. By assumption, t ≥ 2r2, implying

that h ≥ R = t
2
√
t−r2 . This shows that the sphere S is empty in L. Therefore,

spht(d) is hypermetric and its associated Delaunay polytope P has radius R. If
t > 2r2, then P is the pyramid with base Pd and apex vi0 . If t = 2r2, then one
checks easily that the antipode v∗i0 of vi0 on the sphere S belongs to L if and
only if Pd is centrally symmetric. Therefore, if Pd is centrally symmetric, then P
is the bipyramid with base Pd and apex vi0 and, if Pd is asymmetric, then P is
the pyramid with base Pd and apex vi0 . Note that t > 2R2 follows from R = t

2h
and h > R.
(ii) Let v ∈ V (Pd) and let v∗ be its antipode on the sphere Sd. Then, w =
v + v∗ − vi0 belongs to L. We show that w lies inside S, which implies that
spht(d) is not hypermetric. Indeed,

(v−v∗)2 = 4r2, (v−vi0)2 = (v∗−vi0)2 = t, (v−c)2 = (v∗−c)2 = (vi0−c)2 = R2,

from which we deduce that (w − c)2 = R2 + 2t− 4r2 < R2.

We finally mention (without proof) a result from Deza and Grishukhin
[1996b] relating the covering radius of a lattice to the radius of its symmetric
Delaunay polytopes.

Proposition 14.4.7. Let L be a k-dimensional lattice in Rk with covering ra-
dius ρ(L); that is, ρ(L) is the maximum radius of (the sphere circumscribing)
a Delaunay polytope in L. Let R denote the maximum radius of a symmetric
Delaunay polytope in L (setting R := 0 if none exists) and let r denote the
maximum radius of a proper symmetric face of a Delaunay polytope in L. If
4
3r

2 ≤ R2, then ρ(L) = R. Otherwise, R2 ≤ (ρ(L))2 ≤ 4
3r

2.

We now present some examples of applications (taken, in particular, from
Avis and Maehara [1994] and Grishukhin [1992b]).

Example 14.4.8. Consider the complete bipartite graph K1,n and its suspen-
sion graph ∇K1,n. Then, their path metrics can be expressed as d(K1,n) =
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sph1(d), d(∇K1,n) = sph1(sph1(d)), where d := 2d(Kn) takes value 2 on all

pairs of {1, . . . , n}. The distance d is hypermetric with radius r =
√

n−1
n (by

Proposition 14.4.3). Hence, using Lemma 14.4.5, we obtain that d(Kn,1) has a

spherical representation with radius R = 1
2
√

1−r2 =
√

n
4 . Therefore, d(∇K1,n)

is of negative type if and only if n ≤ 4. Moreover, d(∇Kn,1) has no spherical
representation if n = 4 and, for n = 2, 3, d(∇K1,n) has a spherical representation
with radius 1

2
√

1−R2
= 1√

4−n .

Example 14.4.9. Consider the graph Kn \ P3 for n ≥ 4 (where P3 denotes the
path on 3 nodes). Let d denote the distance on 3 points with two values equal to
2 and one equal to 1. Clearly, d(K4 \P3) = sph1(d) and d(Kn \P3) = sphn−3

1 (d)
for n ≥ 4. One can easily verify that d is hypermetric with radius r23 = 4

7 and
with associated Delaunay polytope α2. Set

(rn+1)
2 =

1

4(1 − r2n)

for n ≥ 3. Then,

r24 =
7

12
, r25 =

3

5
, r26 =

5

8
, r27 =

2

3
, r28 =

3

4
, r29 = 1.

From Lemma 14.4.5, we obtain that d(Kn \ P3) has a spherical representation
with radius rn if n ≤ 9 and that d(K10 \P3) is of negative type but has no spher-
ical representation. Fom Proposition 14.4.4 applied to 2d(Kn \ P3), we obtain
that d(Kn \P3) is hypermetric if n ≤ 8. It is known that the Delaunay polytope
associated with 2d(K7 \ P3) is the Schläfli polytope 221 and that the Delaunay
polytope associated with 2d(K8 \ P3) is the Gosset polytope 321 (see Section
16.2). Hence, Proposition 14.4.6 yields that d(K9 \P3) is not hypermetric (since
321 is centrally symmetric). Finally, note that d(Kn \ P3) is ℓ1-embeddable if
n ≤ 6 but not for n = 7. This latter statement will be justified later in Remark
19.2.9.

At this point let us observe as a curiosity an analogy between the minimum ℓ1-size
and the radius of the Delaunay polytope associated to an ℓ1-embeddable distance. Let
(X, d) be a distance space with |X | = n and consider the iterated spherical t-extension
sphm

t (d) of d. Part of Proposition 14.4.6 can be rephrased as follows:

(a) Suppose d ∈ HYPn. Then, sphm
t (d) ∈ HYPn+m for all m ≥ 1 if t ≥ 1

2 (diam(Pd))2,
where diam(Pd) denotes the diameter of the sphere circumscribing the Delaunay poly-
tope Pd associated with d.

Compare (a) with Lemma 7.3.3, which states:

(b) Suppose d ∈ CUTn. Then, sphm
t (d) ∈ CUTn+m for all m ≥ 1 if t ≥ 1

2sℓ1(d), where
sℓ1(d) denotes the minimum ℓ1-size of d.

Observe, moreover, that the limit value of (diam(Psphm
t (d)))

2 in (a) and of sℓ1(sphm
t (d))

in (b) is equal to 2t when m goes to infinity.
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Example 14.4.10. Set d := d(Kn). Then, d is hypermetric with radius
√

n−1
2n

(by Proposition 14.4.3). Then,

spht(d) ∈ NEGn+1 ⇐⇒ t ≥ n− 1

2n

(by Lemma 14.4.5 (i)) and it is easy to check that

spht(d) ∈ METn+1 (or CUTn+1, or HYPn+1) ⇐⇒ t ≥ 1

2
.

Example 14.4.11. Set d := d(Kn×2). Then, d is hypermetric with radius 1√
2

(by Proposition 14.4.3). One can check that, for each m ≥ 1,

sphmt (d) ∈ METn+m (or CUTn+m, or HYPn+m) ⇐⇒ t ≥ 1.

(Apply Proposition 14.4.6 (i) and relations (a),(b) above, after noting that
sℓ1(d) = 2.)



Chapter 15. Delaunay Polytopes:
Rank and Hypermetric Faces

There is a natural notion of rank for hypermetric spaces. Namely, if (X,d) is
a hypermetric space, then its rank rk(X,d) is defined as the dimension of the
smallest face of the cone HYP(X) that contains d. The extremal cases when
the rank of (X,d) or its corank is equal to 1 correspond, respectively, to the
cases when d lies on an extreme ray or on a facet of HYP(X). Correspondingly,
the rank rk(P ) of a Delaunay polytope P is defined as the rank of its Delaunay
polytope space (V (P ), d(2)). Delaunay polytopes of rank 1 are called extreme;
they are associated to hypermetrics lying on an extreme ray of the hypermetric
cone. This notion of rank for a Delaunay polytope P has the following geometric
interpretation: It coincides with the number of degrees of freedom one has when
deforming P in such a way that the deformed polytope remains a Delaunay
polytope; a precise formulation can be found in Theorem 15.2.5.

Extreme Delaunay polytopes have a highly rigid geometric structure; indeed,
their only affine transforms which are still Delaunay polytopes are their homoth-
etic transforms (see Corollary 15.2.4). The first example of an extreme Delaunay
polytope is the segment α1, associated with the cut semimetrics. Other examples
are known, such as the Schläfli polytope 221, the Gosset polytope 321 constructed
from the root lattice E8 and some others constructed from the Leech lattice Λ24

and the Barnes-Wall lattice Λ16; they will be described in the next Chapter 16.

Delaunay polytopes of corank 1, which correspond to facets of the hyperme-
tric cone, are well understood; they are the repartitioning polytopes considered
by Voronoi (see Section 15.2).

In Section 15.1, we study several properties for the notion of rank of a De-
launay polytope; in particular, its invariance under taking generating subspaces
(see Theorem 15.1.8) and its additivity with respect to the direct product of
polytopes (see Proposition 15.1.10). We present in Section 15.3 some bounds for
the rank of a Delaunay polytope in terms of its number of vertices (see Proposi-
tion 15.3.1). We also investigate in detail in Section 15.2 the links between faces
of the hypermetric cone and their associated Delaunay polytopes.

15.1 Rank of a Delaunay Polytope

We consider here the notion of rank for a Delaunay polytope; we follow essentially
Deza, Grishukhin and Laurent [1992], where this notion was introduced and
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studied. Let (X,d) be a hypermetric space. We define its annullator1 Ann(X,d)
by

Ann(X,d) = {b ∈ Z
X | b 6= ei for i ∈ X,

∑

i∈X
bi = 1,

∑

i,j∈X
bibjd(i, j) = 0}.

Let S(X,d) denote the system which consists of the equations:

∑

i,j∈X
bibjx(i, j) = 0 for b ∈ Ann(X,d);

that is, S(X,d) consists of the hypermetric inequalities that are satisfied at
equality by d. Let F (X,d) (or F (d)) denote the smallest (by inclusion) face of
the hypermetric cone HYP(X) that contains d. Hence,

F (X,d) = HYP(X) ∩
⋂

b∈Ann(X,d)

Hb,

where Hb denotes the hyperplane in R(|X|
2 ) defined by the equation:

∑

i,j∈X
bibjx(i, j) = 0.

The dimension of F (X,d) is equal to the rank of the solution set to the system
S(X,d).

Definition 15.1.1.

(i) The rank rk(X,d) of a hypermetric space (X,d) is defined as the dimension
of the smallest face F (X,d) of HYP(X) that contains d. Its corank is
defined as

(|X|
2

)− rk(X,d).

(ii) The rank rk(P ) of a Delaunay polytope P is defined as the rank of the
Delaunay polytope space (V (P ), d(2)), i.e., rk(P ) := rk(V (P ), d(2)). A De-
launay polytope of rank 1 is called extreme.

Hence, rk(X,d) = 1 if d lies on an extreme ray of the hypermetric cone;
rk(X,d) =

(|X|
2

)
if d lies in the interior of HYP(X), i.e., F (X,d) = HYP(X); and

rk(X,d) =
(|X|

2

)− 1 if F (X,d) is a facet of HYP(X).

In fact, the rank of a hypermetric space is an invariant of its associated
Delaunay polytope; namely, rk(X,d) = rk(Pd) holds (see Corollary 15.1.9). In
order to prove this invariance result, we need to investigate some properties of
the system S(X,d) of hypermetric equalities satisfied by d.

We first observe that a hypermetric space and any gate 0-extension of it
have the same rank. This means that we may consider only metrics rather than
semimetrics. Let (X,d) be a distance space and i0 ∈ X, j0 6∈ X. Let (X′ :=

1This notion was already used in the proof of Theorem 14.2.1.
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X ∪ {j0}, d′) be its gate 0-extension, defined by d′(i0, j0) = 0, d′(i, j0) = d(i0, i)
for i ∈ X, and d′(i, j) = d(i, j) for i, j ∈ X.

Lemma 15.1.2. Let (X′, d′) be a gate 0-extension of the hypermetric space
(X,d). Then,

rk(X′, d′) = rk(X,d).

Proof. Suppose that (X′, d′) is defined as above. We show that the solution
sets of the systems S(X,d) and S(X′, d′) have the same rank. Since S(X,d)
is a subsystem of the system S(X′, d′), it suffices to check that each additional
variable x(i, j0) (i ∈ X) in the system S(X′, d′) can be expressed in terms of
the variables x(i, j) (i, j ∈ X). As d(i0, j0) = 0, the triangle equalities x(i0, i) −
x(j0, i) − x(i0, j0) = 0 and x(j0, i) − x(i0, i) − x(i0, j0) = 0 belong to the system
S(X′, d′). This implies that the equality x(j0, i) = x(i0, i) (i ∈ X) follows from
S(X′, d′).

Let P ⊆ Rk be a k-dimensional Delaunay polytope with set of vertices V (P )
and let V ⊆ V (P ) be a generating subset of V (P ). For w ∈ V (P ), every a ∈ ZV

such that w =
∑

v∈V
avv and

∑

v∈V
av = 1 is called an affine realization of w in the

set V . Proposition 14.1.5 implies that, for b ∈ ZV with
∑
v∈V bv = 1,

b ∈ Ann(V, d(2)) ⇐⇒
∑

v∈V
bvv ∈ V (P ).

In other words, there is a one-to-one correspondence between

(i) the equations of S(V, d(2)), and

(ii) the affine realizations of the vertices of P in the set V .

In particular, if B is a basic set in V (P ), then each vertex has a unique affine
realization in the set B and, therefore, S(B, d(2)) is a system of |V (P ) \ B| =
|V (P )| − k − 1 equations in

(k+1
2

)
variables. Therefore,

(15.1.3)

(
k + 2

2

)
− |V (P )| ≤ rk(B, d(2)) ≤

(
k + 1

2

)
.

Lemma 15.1.4. Let V be a generating subset of V (P ) and let c ∈ ZV such that∑
v∈V cv = 0 and

∑
v∈V cvv = 0. The following equations:

(15.1.5)
∑

v∈V
cvx(u, v) = 0 for u ∈ V,

(15.1.6)
∑

u,v∈V
cucvx(u, v) = 0

are implied by the system S(V, d(2)).
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Proof. Let u ∈ V and c′ ∈ Z V be defined by c′u := cu+1, c′v := cv for v ∈ V \{u}.
Hence, c′ is an affine realization of u in V . Therefore, the equation:

∑

v,w∈V
c′vc

′
wx(v,w) = 0

belongs to the system S(V, d(2)). It can be rewritten as

∑

v,w∈V
cvcwx(v,w) + 2

∑

v∈V
cvx(u, v) = 0.

By multiplying the above equality by cu and summing over u ∈ V , we obtain
(15.1.6). Hence, the equation (15.1.6) follows from S(V, d(2)) and, thus, the
equations (15.1.5) as well.

For each w ∈ V (P ), let aw ∈ Z V be a given affine realization of w in the
set V . Let S′(V, d(2)) denote the system consisting of the equations (15.1.5) and
(15.1.6) together with the hypermetric equations:

∑

u,v∈V
awu a

w
v x(u, v) = 0 for w ∈ V (P ).

Lemma 15.1.7. The systems S(V, d(2)) and S′(V, d(2)) have the same solutions.

Proof. It remains only to show that each equation of S(V, d(2)) follows from the
system S ′(V, d(2)). Let w ∈ V (P ) and let b be another affine realization of w in
V . Then, we can apply (15.1.6) with c := aw − b, which yields

∑

u,v∈V
(awu − bu)(a

w
v − bv)x(u, v) = 0, i.e.,

∑

u,v∈V
awu a

w
v x(u, v) − 2

∑

u,v∈V
awu bvx(u, v) +

∑

u,v∈V
bubvx(u, v) = 0.

We check that the first two terms in the above equality are equal to zero, which
will imply that the equation:

∑

u,v∈V
bubvx(u, v) = 0

follows from the system S′(V, d(2)). Indeed, the first term is equal to 0, since
it corresponds to an equation of S′(V, d(2)). On the other hand, for u ∈ V , the
equation: ∑

v∈V
awv x(u, v) =

∑

v∈V
bvx(u, v)

follows from (15.1.5). Hence, the second term is equal to

−2
∑

u,v∈V
awu a

w
v x(u, v) = 0.



15.1 Rank of a Delaunay Polytope 221

Theorem 15.1.8. Let P be a Delaunay polytope and let V be a generating
subset of V (P ). Then,

rk(V, d(2)) = rk(V (P ), d(2)).

Proof. We show that the solution sets to the systems S(V, d(2)) and S(V (P ), d(2))
have the same rank. Since S(V, d(2)) is a subsystem of the system S(V (P ), d(2)),
it suffices to check that each variable x(w,w′) ((w,w′) ∈ (V × (V (P ) \ V )) ∪
(V (P ) \ V )2) can be expressed in terms of the variables x(u, v) (u, v ∈ V ).

Let w,w′ ∈ V (P ) \ V and let a, a′ denote affine realizations of w,w′ in V ,
respectively. We show that the following equations (a) and (b) are implied by
S(V (P ), d(2)):

(a) x(w,u) =
∑

v∈V
avx(u, v) for u ∈ V,

(b) x(w,w′) =
∑

u,v∈V
aua

′
vx(u, v).

For this, let b, b′ ∈ Z V (P ) be defined by bw := −1, bv := av for v ∈ V and
bv := 0 for v ∈ V (P ) \ (V ∪ {w}), b′w′ := −1, b′v := a′v for v ∈ V and b′v := 0 for
v ∈ V (P ) \ (V ∪ {w′}). We can apply Lemma 15.1.4. From (15.1.5), we obtain:

∑

v∈V (P )

bvx(u, v) = 0 for all u ∈ V,

which implies (a). Applying (15.1.6) for b, b′ and b+ b′, we obtain:

∑

u,v∈V (P )

bubvx(u, v) = 0,
∑

u,v∈V (P )

b′ub
′
vx(u, v) = 0,

∑

u,v∈V (P )

(bu + b′u)(bv + b′v)x(u, v) = 0.

This implies: ∑

u,v∈V (P )

bub
′
vx(u, v) = 0.

Expressing b′ in terms of a′ and b in terms of a in the latter equality, we obtain:

x(w,w′) −
∑

u∈V
aux(u,w

′) −
∑

v∈V
a′vx(w, v) +

∑

u,v∈V
aua

′
vx(u, v) = 0.

The second and third terms in the above equality are equal to x(w,w′) by (a).
This shows that (b) holds.

Corollary 15.1.9. Let (X,d) be a hypermetric space with associated Delaunay
polytope Pd. Then,

rk(X,d) = rk(Pd).
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Proof. Let V ⊆ V (Pd) representing (X,d). Then, rk(X,d) = rk(V, d(2)) by
Lemma 15.1.2 and rk(V, d(2)) = rk(Pd) by Theorem 15.1.8 as V generates V (Pd).

We conclude this section with an additivity property of the rank of a Delaunay
polytope.

Proposition 15.1.10. Let P1 and P2 be Delaunay polytopes. Their direct
product P1 × P2 is a Delaunay polytope with rank

rk(P1 × P2) = rk(P1) + rk(P2).

For instance, rk(γk) = k for the hypercube γk, since γk is the direct product
(γ1)

k and rk(γ1) = 1.

15.2 Delaunay Polytopes Related to Faces

15.2.1 Hypermetric Faces

We show that hypermetrics that lie in the interior of the same face of the hyper-
metric cone are associated with affinely equivalent Delaunay polytopes; therefore,
one can speak of the Delaunay polytope associated with a face of the hypermetric
cone. This result is presented in Theorem 15.2.1 below; it was proved by Deza,
Grishukhin and Laurent [1992].

Let T be an affine bijection of Rk . For u, v ∈ Rk , set

dT (u, v) := (T (u) − T (v))2.

Theorem 15.2.1. Let P ⊆ Rk be a Delaunay polytope and let V be a generating
subset of V (P ). Let T be an affine bijection of Rk . Let F denote the smallest
face of the hypermetric cone HYP(V ) that contains (V, d(2)).

(i) If T (P ) is a Delaunay polytope, then dT lies in the interior of F , i.e.,
F (dT ) = F .

(ii) Let d ∈ HYP(V ). If d lies in the interior of F , then the Delaunay polytope
Pd associated with d is affinely equivalent to P .

Proof. (i) Let b ∈ ZV with
∑
v∈V bv = 1. We show that

∑

u,v∈V
bubv(T (u) − T (v))2 = 0 ⇐⇒

∑

u,v∈V
bubv(u− v)2 = 0.

For this, let c, r (resp. cT , rT ) denote the center and radius of the sphere circum-
scribing P (resp. T (P )). Then,

∑

u,v∈V
bubv(T (u) − T (v))2 = 2(rT )2 − 2(

∑

u∈V
buT (u) − cT )2,
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which is equal to 0 if and only if
∑
u∈V buT (u) is a vertex of T (P ). On the other

hand, ∑

u,v∈V
bubv(u− v)2 = 2r2 − 2(

∑

u∈V
buu− c)2

is equal to 0 if and only if
∑
u∈V buu is a vertex of P . The result now follows as

∑

u∈V
buT (u) = T (

∑

u∈V
buu)

is a vertex of T (P ) if and only if
∑
u∈V buu is a vertex of P , since T is an affine

bijection. This shows that dT lies in the interior of the face F .
(ii) Let Pd be the Delaunay polytope associated with d and let T : V −→ V (Pd)
be a generating mapping such that d(u, v) = (T (u) − T (v))2 for u, v ∈ V . The
mapping T is one-to-one since d(u, v) 6= 0 for u 6= v ∈ V . We show that T can
be extended to an affine bijective mapping of the space spanned by V , mapping
V (P ) to V (Pd).

First, we verify that T preserves the affine dependencies on V , i.e., that if
c ∈ ZV with

∑
v∈V cv = 0, then

∑

v∈V
cvv = 0 ⇐⇒

∑

v∈V
cvT (v) = 0.

Since all the vectors v ∈ V lie on a sphere and the same holds for their images
T (v), we have:

(a)
∑

u,v∈V
cucvd

(2)(u, v) =
∑

u,v∈V
cucv(u− v)2 = −2

(∑

v∈V
cvv

)2

,

(b)
∑

u,v∈V
cucvd(u, v) =

∑

u,v∈V
cucv(T (u) − T (v))2 = −2

(∑

v∈V
cvT (v)

)2

.

By assumption, F (d) = F , i.e., the systems S′(V, d) and S′(V, d(2)) have the
same sets of solutions (using Lemma 15.1.7). This implies that the quantities in
(a) and (b) are simultaneously equal to zero.

We now check that, for b ∈ ZV with
∑
v∈V bv = 1,

∑

v∈V
bvv is a vertex of P ⇐⇒

∑

v∈V
bvT (v) is a vertex of Pd.

But, by Proposition 14.1.5,
∑
v∈V bvv ∈ V (P ) if and only if d(2) satisfies the

equation
∑
u,v∈V bubvx(u, v) = 0 and

∑
v∈V bvT (v) ∈ V (Pd) if and only if d

satisfies the same equation. Therefore, we can extend T to the space spanned
by V by setting

T (
∑

v∈V
bvv) :=

∑

v∈V
bvT (v);

T is affine bijective and maps P on Pd.
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Corollary 15.2.2. Let (X,d) and (X,d′) be two hypermetric spaces with asso-
ciated Delaunay polytopes Pd and Pd′ . Let F (d) and F (d′) denote the smallest
faces of HYP(X) that contain d and d′, respectively. If F (d) = F (d′), then Pd
and Pd′ are affinely equivalent.

Proof. If d(i, j) 6= 0 for all i 6= j ∈ X, then (X,d) is isomorphic to a subspace
(V, d(2)) of (V (Pd), d

(2)), where V is a generating subset of V (Pd). As d′ lies in
the interior of F (d), Theorem 15.2.1 (ii) implies that Pd′ is affinely equivalent to
Pd. Otherwise, note that d(i, j) = 0 if and only if d′(i, j) = 0 as d, d′ satisfy the
same triangle equalities since F (d) = F (d′). Hence, X can be partitioned into
X1∪ . . .∪Xm for m < |X| in such a way that, for i 6= j ∈ X, d(i, j) = d′(i, j) = 0
if and only if i, j ∈ Xh for some h ∈ {1, . . . ,m}. Let x1 ∈ X1, . . . , xm ∈ Xm and
denote by d0 (resp. d′0) the projection of d (resp. d′) on X0 := {x1, . . . , xm}.
One can easily see that d0,d

′
0 lie in the interior of the same face of HYP(X0)

which, by the above argument, implies that Pd and Pd′ are affinely equivalent
(as d0 is associated to the same Delaunay polytope Pd as d and d′0 is associated
to Pd′).

Remark 15.2.3. The implication from Corollary 15.2.2 is strict, in general.
Indeed, it is easy to construct examples of hypermetrics d, d′ ∈ HYP(X) whose
associated Delaunay polytopes are affinely equivalent, but lying on distinct faces
of HYP(X), i.e., such that F (d) 6= F (d′). For instance, any two distinct cut
semimetrics δ(S), δ(T ) are associated to the same Delaunay polytope, namely
α1, but they lie on distinct faces as each cut semimetric lies on an extreme ray
of HYP(X). Another example can be easily obtained by taking a generating
subset V := {v1, . . . , vn} of a Delaunay polytope P and considering the hyper-
metrics d, d′ ∈ HYPn defined by d(i, j) = (vi − vj)

2, d′(i, j) = (vσ(i) − vσ(j))
2 for

i, j ∈ {1, . . . , n}, where σ is a permutation of {1, . . . , n}.

Corollary 15.2.4. Let P be a Delaunay polytope in Rk . Then, P is extreme
if and only if the only (up to orthogonal transformation and translation) affine
bijective transformations T of Rk for which T (P ) is a Delaunay polytope are the
homotheties2.

Proof. Suppose first that rk(P ) = 1, i.e., that (V (P ), d(2)) lies on an extreme
ray of HYP(V (P )). Assume that T (P ) is a Delaunay polytope. By Theo-
rem 15.2.1 (i), dT = λ2d(2) for some scalar λ. Hence, (T (u)−T (v))2 = λ2(u−v)2
for all u, v ∈ V (P ). It is not difficult to see that, up to translation, λ−1T is an
orthogonal transformation.
Suppose now that the only affine bijective transformations T for which T (P ) is
a Delaunay polytope are the homotheties. Let d ∈ HYP(V (P )) with F (d) =
F (d(2)). By Theorem 15.2.1 (ii), the Delaunay polytope Pd associated to d is
of the form λP , where λ > 0, implying that d = λ2d(2). This shows that

2A homothety is a mapping T : Rk −→ Rk such that T (x) = λx for all x ∈ Rk , for some
λ 6= 0.
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(V (P ), d(2)) lies on an extreme ray of HYP(V (P )), i.e., rk(P ) = 1.

Let P be a k-dimensional Delaunay polytope in Rk . Let T (P ) denote the set
of affine bijections T of Rk (taken up to translations and orthogonal transforma-
tions) for which T (P ) is again a Delaunay polytope. If P has rank 1 then, by
Corollary 15.2.4, T (P ) consists only of homotheties and, hence, its dimension
is also equal to 1. This fact can be generalized for arbitrary ranks, as the next
result from Laurent [1996a] shows.

Theorem 15.2.5. For a Delaunay polytope P , the dimension of the set T (P )
(in the topological sense) is equal to the rank of P .

Proof. We can suppose without loss of generality that P is a k-dimensional
Delaunay polytope in Rk which contains the origin as a vertex. Let V denote
the set of vertices of P , let dP denote the associated distance on V defined by

dP (u, v) := (u− v)2 for all u, v ∈ V,

and let FP denote the smallest face of the hypermetric cone HYP(V ) that con-
tains dP . Denote by T0(P ) the set of nonsingular k×k matrices A for which the
polytope A(P ) := {Ax | x ∈ P} is again a Delaunay polytope. Clearly, the sets
T (P ) and T0(P )/OA(k) coincide. (Here, T0(P )/OA(k) denotes the quotient set
of T0(P ) by the set OA(k) of orthogonal matrices of order k.) We show that the
dimension of the set T0(P )/OA(k) is equal to the rank of P . For this we need
to introduce an intermediary cone CP .

As the hypermetric cone HYP(V ) is polyhedral, we can suppose that it is
defined by the hypermetric inequalities

∑
u,v∈V,u<v bubvxuv ≤ 0 for b ∈ B, where

B is a finite subset of {b ∈ ZV | ∑u∈V bu = 1}. Let A denote the subset of B
corresponding to the hypermetric equalities defining the face FP ; that is, b ∈ A
if
∑
u,v∈V bubv(u− v)2 = 0. Let us now introduce the cone CP which consists of

the symmetric k × k positive semidefinite matrices M satisfying:

(a)
∑

u,v∈V
bubv(u− v)TM(u− v) ≤ 0 for b ∈ B \ A,

(b)
∑

u,v∈V
bubv(u− v)TM(u− v) = 0 for b ∈ A.

Then the relative interior of the cone CP consists of the positive definite matrices
M satisfying (b), and (a) with strict inequality. We claim that

(c) The dimension of the cone CP is equal to the rank of P.

Indeed, set s := rk(P ) and t := dim(CP ). Let d1, . . . , ds be linearly independent
points lying in the relative interior of the face FP . Applying Theorem 15.2.1 (ii)
we obtain A1, . . . , As ∈ T0(P ) such that di(u, v) = (u − v)TATi Ai(u − v) for
all u, v ∈ V and i = 1, . . . , s. Then, AT1A1, . . . , A

T
s As are linearly independent
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members of the cone CP , which shows s ≤ t. Conversely, let M1, . . . ,Mt be
linearly independent and lying in the relative interior of CP . As each Mh is
positive definite, it is of the form AThAh for some k × k nonsingular matrix
Ah. Set dh(u, v) := (u − v)TMh(u − v) = (Ahu − Ahv)

2 for u, v ∈ V and
h = 1, . . . , t. Then, the points d1, . . . , dt lie in the relative interior of the face
FP . Moreover, they are linearly independent, which shows that t ≤ s. Hence,
s = t and (c) holds. (Indeed, suppose

∑t
h=1 λhdh = 0 for some scalars λh. Then,

(u− v)T (
∑t
h=1 λhMh)(u− v) = 0 for all u, v ∈ V . As V is full-dimensional and

contains the origin, this implies easily that
∑t
h=1 λhMh = 0 and, thus, λh = 0

for all h.)
We can now formulate a homeomorphism (=bicontinuous bijection) between

the set T0(P )/OA(k) and the relative interior of the cone CP . Namely, consider
the mapping

θ : A 7→ ATA.

Then, θ establishes clearly a one-to-one correspondence between T0(P )/OA(k)
and the relative interior of CP . The result now follows as θ is a homeomorphism
between, on the one hand, the quotient set of the set of k × k matrices by the
equivalence relation: A ∼ B if ATA = BTB and, on the other hand, the set of
k × k positive semidefinite matrices.

15.2.2 Hypermetric Facets

Following Avis and Grishukhin [1993], we now describe the Delaunay polytopes
which are associated with the facets of the hypermetric cone.

Let ∆1, ∆2 be two simplices lying in affine spaces that intersect in one point
which belongs to ∆1∩∆2. Then, their convex hull P := Conv(∆1∪∆2) is called
a repartitioning polytope. This polytope was studied by Voronoi [1908, 1909].
There is only one affine dependency among the vertices of ∆1 and ∆2; namely,

∑

v∈V1

bvv =
∑

v∈V2

bvv,

where
∑
v∈V1

bv =
∑
v∈V2

bv = 1, bv ≥ 0 for v ∈ V1 ∪ V2, and Vi denotes the set
of vertices of ∆i, i = 1, 2. Set

V0 := {v ∈ V1 ∪ V2 | bv = 0}.

Then,
P1 := Conv(V1 ∪ V2 \ V0)

is also a repartitioning polytope, with the same affine dependency between its
vertices as P and

P =
∏

v∈V0

Pyrv(P1).

We denote the repartitioning polytope P by Pmp,q, where m = |V0|, p+1 = |V1\V0|
and q + 1 = |V2 \ V0|. Hence, Pmp,q has m+ p+ q + 2 vertices (if p, q ≥ 1) and its
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dimension is m+ p+ q. Note that Pmp,q does not denote a concrete polytope, but
a class of affinely equivalent repartitioning polytopes.

We now show that the Delaunay polytope associated with a facet of the
hypermetric cone is a repartitioning polytope. Let b ∈ ZX with

∑
i∈X bi = 1 and

suppose that the hypermetric equation:

(15.2.6)
∑

i,j∈X
bibjx(i, j) = 0

defines a facet of HYP(X). Let d ∈ HYP(X) and suppose that d lies in the
interior of this facet, i.e., that (15.2.6) is the only hypermetric equality satisfied
by d. In particular, d(i, j) > 0 for distinct i, j (else, d would satisfy 2(|X| − 2)
triangle equalities).

Proposition 15.2.7. Let Pd be the Delaunay polytope associated with d lying in
the interior of the facet defined by (15.2.6). Then, Pd is a repartitioning polytope
Pmp,q where m = |{i | bi = 0}|, p + 1 = |{i | bi > 0}| and q = |{i | bi < 0}|.
Moreover, Pd is basic.

Proof. Let (vi | i ∈ X) denote the representation of d on V (Pd). From Proposi-
tion 14.1.5, the equality (15.2.6) is equivalent to the point

(15.2.8) v0 :=
∑

i∈X
bivi

being a vertex of Pd. From Proposition 14.1.5 again and the fact that (15.2.6) is
the only hypermetric equality satisfied by d, we deduce that v0 6∈ {vi | i ∈ X},
V (Pd) = {vi | i ∈ X} ∪ {v0} and the set {vi | i ∈ X} is affinely independent.
Hence, Pd has |X|+1 vertices and

∑
v∈V (Pd) bvv = 0 is the only affine dependency

between the vertices of Pd, after setting bvi := bi for i ∈ X and bv0 := −1. Set

V0 := {v ∈ V (Pd) | bv = 0}, V+ := {v ∈ V (Pd) | bv > 0},

V− := {v ∈ V (Pd) | bv < 0}, m := |V0|, p+ 1 := |V+| and q + 1 := |V−|.
Then, P1 := Conv(V+ ∪ V−) is a repartitioning polytope P0

p,q and the polytope
Pd :=

∏
v∈V0

Pyrv(P1) is a repartitioning polytope Pmp,q.

As we see in Example 15.2.10 (iii) below, there exist distinct hypermetric
facets for which the bi’s have the same numbers of positive and negative com-
ponents; hence, they correspond to repartitioning polytopes with the same pa-
rameters p and q. For this reason, we also denote the repartitioning polytope
associated with the hypermetric facet (15.2.6) by Pmp,q(b). Note that the matrix
Yγ characterizing the type of the repartitioning polytope Pmp,q(b) is of the form[

In
b1...bn

]
(recall Section 13.3).

We summarize in Figure 15.2.9 the main facts we know about the connections
between faces of the hypermetric cone and their associated Delaunay polytopes.
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For the first two equivalences, see Examples 14.1.6 and 14.1.7 and, for the last
four equivalences, see, respectively, Propositions 14.1.10, 15.2.7, Theorem 15.1.8
and Corollary 15.2.2.

hypermetric d Delaunay polytope Pd

d is a cut semimetric ⇐⇒ Pd = α1

F (d) = HYPn+1 ⇐⇒ Pd = αn

d ∈ CUTn+1 ⇐⇒ V (P ) is contained in the set of
vertices of a parallepiped

F (d) is a facet ⇐⇒ Pd is a repartitioning polytope

F (d) is an extreme ray ⇐⇒ Pd is extreme

F (d) = F (d′) =⇒ Pd, Pd′ are affinely equivalent

Figure 15.2.9: Hypermetric faces and Delaunay polytopes

Example 15.2.10.

(i) Let (15.2.6) be the triangle equality x(1, 2) − x(1, 3) − x(2, 3) ≤ 0, i.e.,
b1 = b2 = 1, b3 = −1 and bi = 0 otherwise. Then, (15.2.8) reads v0 = v1 +
v2−v3 and V+ = {v1, v2}, V− = {v3, v0}. Therefore, the Delaunay polytope
associated with a triangle facet is P0

1,1 or, more precisely, P0
1,1(1, 1,−1), a

rectangle whose diagonals are the segments [v1, v2] and [v0, v3].

(ii) Let (15.2.6) be a pentagonal facet, i.e., b1 = b2 = b3 = 1, b4 = b5 = −1.
Then, (15.2.8) reads v0 = v1 + v2 + v3 − v4 − v5. Therefore, the Delaunay
polytope associated with the pentagonal facet is P0

2,2 or, more precisely,
P 0

2,2(1, 1, 1,−1,−1), the convex hull of two intersecting triangles.

(iii) Set b1 := (2, 2, 2, 1, 1, 1,−2,−2,−2,−1,−1), b2 := (1, 1, 1, 1, 1, 1,−1,−1,
−1,−1,−1). Then, (15.2.6) defines a facet for both b1 and b2. Hence,
these two facets are associated with repartitioning polytopes with the same
parameters p = q = 5 (with, of course, distinct affine dependencies (15.2.8)
between their vertices).

Remark 15.2.11. We group here several observations on hypermetric facets.

(i) For n ≤ 6, HYPn = CUTn and all the facets of HYPn are known (see
Section 30.6). Namely, for n = 3, 4, the facets of HYPn are defined by the
triangle inequalities. For n = 5, they are defined by the triangle inequalities
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and the pentagonal inequalities (6.1.9). For n = 6, they are defined by
the triangle inequalities, the pentagonal inequalities, and the inequalities∑

1≤i<j≤6 bibjxij ≤ 0 for b = (2, 1, 1,−1,−1,−1) and (−2,−1, 1, 1, 1, 1) (up
to permutation of the components). (The description in the case n = 6
was obtained independently by Baranovskii [1971] and Avis [1989].)

(ii) When n = 7, the hypermetric inequality
∑

1≤i<j≤7 bibjxij ≤ 0 for b =
(3, 1, 1, 1, −1, −2, −2) defines a facet of HYP7, but not of CUT7. Indeed,
there are precisely 19 linearly independent cut semimetrics satisfying this
hypermetric inequality at equality. An additional hypermetric distance
d satisfying equality can be obtained in the following manner: Consider
the graph G9 shown in Figure 16.2.4 (labeling its nodes as 1, 2, 3, 4, 5, 6, 7
corresponding to degrees 3, 2, 2, 2, 5, 1, 1) and set dij := 2 if ij is an edge
of G9, dij := 1 if ij is not an edge in G9. This distance d together with
19 cut semimetrics form a set of 20 linearly independent vectors satisfying
the hypermetric equality; this shows that it defines a facet of HYP7.

In fact, Baranovskii [1995] describes all the facets of the cone HYP7. They
are the hypermetric facets for CUT7 (see their list in Section 30.6) to-
gether with the facets defined by the inequalities

∑
1≤i<j≤7 bibjxij ≤ 0, for

b = (3, 1, 1, 1,−1,−2, −2), (−3, 1, 1, 1, 1,−2, 2), (3,−1,−1,−1, 1,−2, 2),
and (−3, 1, 1, −1, −1, 2, 2) (up to permutation).

(iii) There is an easy way of constructing new hypermetric facets from given
ones, namely, using the so-called ‘switching’ operation. This operation
will be described in detail in Section 26.3; we indicate here how it acts on
hypermetric inequalities. Given b ∈ Zn and a subset A ⊂ Vn := {1, . . . , n},
define the vector bA ∈ Zn by bAi := −bi if i ∈ A and bAi := bi if i ∈ Vn \ A.
If
∑n
i=1 bi = 1 and b(A) = 0, then the inequality

∑
1≤i<j≤n b

A
i b

A
j xij ≤ 0 is

again a hypermetric inequality. In fact,

(a)

The hypermetric inequality
∑

1≤i<j≤n bibjxij ≤ 0 defines a facet
of HYPn ⇐⇒ its switching

∑
1≤i<j≤n b

A
i b

A
j xij ≤ 0 defines

a facet of HYPn.

See for an example the facets cited in (ii) above. We briefly sketch the
proof for assertion (a).

Consider the mapping rδ(A) : R(n
2) −→ R(n

2) where y = rδ(A)(x) is defined
by yij := 1 − xij if δ(A)ij = 1 and yij := xij if δ(A)ij = 0. As HYPn

is a polyhedral cone, we can suppose that HYPn is defined by the hypermet-
ric inequalities

∑
1≤i<j≤n bibjxij ≤ 0 for b ∈ B, where B is a finite subset of

{b ∈ Z n |∑n
i=1 bi = 1}. Set

B′ := {bA | b ∈ B, A ⊆ Vn}.
For d ∈ HYPn, set

αd := min
(
∑n

i=1 bi)
2 − 1

4
∑

1≤i<j≤n bibjdij

where the minimum is taken over all b ∈ B′ for which
∑

1≤i<j≤n bibjdij > 0,

setting αd := 1 if there is no such b. One can easily verify that rδ(A)(αdd) ∈
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HYPn for all d ∈ HYPn. We can now show (a). If
∑

1≤i<j≤n bibjxij ≤ 0 de-

fines a facet of HYPn, then we can find
(
n
2

)
affinely independent vectors d1 :=

0, d2, . . . , d(n
2)

∈ HYPn satisfying the equality
∑

1≤i<j≤n bibjxij = 0. Then, the

vectors rδ(A)(αdi
di) (i = 1, . . . ,

(
n
2

)
) are affinely independent and satisfy the equal-

ity
∑

1≤i<j≤n b
A
i b

A
j xij = 0. This shows that (a) holds.

We conclude this section with an observation on Delaunay polytopes with
small corank. We recall Problem 13.2.3, which asks whether every Delaunay
polytope is basic. This is indeed the case for simplices and repartitioning poly-
topes, i.e., for Delaunay polytopes associated with hypermetrics with corank 0
and 1. We extend this fact to the case of hypermetrics with corank 2 and 3.

Proposition 15.2.12. Let P be a k-dimensional Delaunay polytope and let V
be a generating subset of V (P ). If

(
|V |
2

)
− rk(V, d(2)) ≤ 3,

then P is basic.

Proof. We show that V is affinely independent, which implies that P is basic.
Suppose, for contradiction, that

∑
v∈C bvv = 0 is an affine dependency with C ⊆

V and bv 6= 0 for v ∈ C. By Lemma 15.1.4, the equations
∑
v∈C bvx(u, v) = 0

(for u ∈ V ) follow from the system S(V, d(2)). One can check that the matrix of
the subsystem

∑
v∈C bvx(u, v) = 0 (for u ∈ C) has full rank |C|. Since the corank

of (V, d(2)) is equal to the rank of the matrix of the system S(V, d(2)), we deduce
that corank(V, d(2)) ≥ |C|, implying that |C| ≤ 3. Hence, C = {v1, v2, v3} and,
for instance, v3 belongs to the segment [v1, v2]. So we have a triangle with an
obtuse angle, yielding a contradiction.

15.3 Bounds on the Rank of Basic Delaunay Poly-
topes

In this section, we present some bounds for the rank of a basic Delaunay polytope;
they are taken from Deza, Grishukhin and Laurent [1992]. Recall that a Delaunay
polytope P is basic if its set of vertices V (P ) contains a basis of the lattice
generated by V (P ).

Proposition 15.3.1. Let P be a basic k-dimensional Delaunay polytope. Then,

(15.3.2)

(
k + 2

2

)
− |V (P )| ≤ rk(P ) ≤

(
k + 1

2

)
,
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(15.3.3) rk(P ) ≥
(
k + 1

2

)
− |V (P )|

2
+ 1 if P is centrally symmetric.

Proof. (15.3.2) follows immediately from relation (15.1.3) and Theorem 15.1.8.
We show (15.3.3). Let B be a basic set in V (P ). For each w ∈ V (P ), let aw

denote the affine realization of w in B and let h(w) denote the corresponding
hypermetric equality of the system S(B, d(2)),

h(w) :=
∑

u,v∈B
awu a

w
v x(u, v).

Let v ∈ B. Since w∗ = v + v∗ −w, the affine realization aw
∗

of w∗ in B is given
by aw

∗
= ev + av

∗ − aw, where ev is the v-th unit vector in RB . Hence,

h(w∗) = h(v∗) + h(w) + 2
∑

u′∈B
av

∗

u′ x(v, u
′) − 2

∑

u′∈B
awu′x(v, u

′)

−2
∑

u,u′∈B
av

∗

u′ a
w
u x(u, u

′)

= h(w) +
∑

u∈B
awu


h(v∗) − 2x(v, u) + 2

∑

u′∈B
av

∗

u′ (x(v, u
′) − x(u, u′))


 .

If w ∈ B, then h(w) is zero and, thus, the above relation implies:

(15.3.4) h(w∗) = h(v∗) − 2x(v,w) + 2
∑

u′∈B
av

∗

u′ (x(v, u
′) − x(w,u′)).

We deduce from (15.3.4) that, for each w ∈ V (P ),

(15.3.5) h(w∗) = h(w) +
∑

u∈B
awuh(u∗).

Relation (15.3.5) applied to w = v∗ yields

(15.3.6) 0 = h(v∗) +
∑

u∈B
av

∗

u h(u∗).

We show that the system S(B, d(2)) can be reduced to a system of |V (P )|
2 − 1

equations, which implies that the rank of its solution set is greater than or
equal to

(k+1
2

) − |V (P )|
2 + 1. Clearly, the basis B contains at most one pair of

antipodal points. For a set A, we set A∗ := {a∗ | a ∈ A}. Suppose first that
B contains no pair of antipodal points. Then, V (P ) = B ∪ B∗ ∪ A ∪ A∗, for
some A ⊆ V (P ) \ B. By (15.3.5), each equation h(a∗) = 0 (a ∈ A) follows
from the equations h(u) = 0 for u ∈ A ∪ B∗. In view of (15.3.6), one of the
equations h(b∗) = 0 (b ∈ B) follows from the others. Therefore, the system

S(B, d(2)) reduces to |A| + |B∗| − 1 = |V (P )|
2 − 1 equations. Suppose now that

B contains one antipodal pair, i.e., B = B′ ∪ {v, v∗} with |B′| = k − 1. Then,
V (P ) = B ∪ (B′)∗ ∪A∪A∗ for some A ⊆ V (P ) \B. Hence, S(B) reduces again

to |A| + |(B′)∗| = |V (P )
2 − 1 equations.
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For example, the k-dimensional simplex αk has k + 1 vertices; hence both
inequalities in (15.3.2) hold at equality for αk. It is easy to check that the rank
of the k-dimensional cross-polytope βk is

rk(βk) =

(
k + 1

2

)
− k + 1.

Hence, βk realizes equality in the bound (15.3.3).

The next lemma will be useful for computing the rank of Delaunay polytopes.

Lemma 15.3.7. Let P be a basic k-dimensional centrally symmetric Delaunay
polytope and let B := {v0, v1, . . . , vk} be a basic set in V (P ). Let H denote
the affine space spanned by B1 := {v1, . . . , vk} and set P1 := P ∩ H. If P1 is
an asymmetric Delaunay polytope and if there exists w ∈ V (P ) \ H such that
w 6∈ {v∗1 , . . . , v∗k} and w − v0 6∈ H, then rk(P1) = rk(P ) holds.

Proof. The set B1 is basic in V (P1) = V (P ) ∩ H. Hence, rk(P1) is equal to
the rank of the solution set to the system S(B1, d

(2)). In order to show that
rk(P ) = rk(P1), it suffices to check that each variable x(v0, vi) (1 ≤ i ≤ k) can
be expressed in terms of the variables x(vi, vj) (1 ≤ i, j ≤ k) in the system
S(B, d(2)). Let a, b ∈ Zk+1 denote the affine realizations of w, v∗0 in B. We have

a0 6= 0, 1 since w 6∈ H and w− v0 6∈ H. Moreover, b0 6= −1, else the center
v0+v∗0

2
of P would lie in H contradicting the fact that P1 is asymmetric. Using relation
(15.3.4) (applied to v = v0 and w = vi), we deduce that

h(v∗i ) = h(v∗0) − 2x(v0, vi) + 2
∑

0≤j≤k
bj(x(v0, vj) − x(vi, vj)).

Set

hi := −2
∑

1≤j≤k
bjx(vi, vj)

for 1 ≤ i ≤ k. Then,

h(v∗i ) = h(v∗0) − 2x(v0, vi)(b0 + 1) + hi + 2
∑

0≤j≤k
bjx(v0, vj).

By subtracting the above relations with indices i and 1, we obtain that the
equation:

(a) x(v0, vi) = x(v0, v1) +
hi − h1

2(b0 + 1)

follows from S(B, d(2)). Consider now the equation h(w) = 0, i.e.,

0 =
∑

1≤i<j≤k
aiajx(vi, vj) +

∑

1≤i≤k
aia0x(v0, vi).
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Using (a), it can be rewritten as

0 =
∑

1≤i<j≤k
aiajx(vi, vj) + a0(1 − a0)x(v0, v1) +

a0

2(b0 + 1)

∑

1≤i≤k
ai(hi − h1).

Therefore, x(v0, v1) and, thus, each x(vi, v0) can be expressed in terms of x(vi, vj)
(for 1 ≤ i < j ≤ k).





Chapter 16. Extreme Delaunay
Polytopes

In this chapter, we consider extreme Delaunay polytopes, i.e., Delaunay poly-
topes with rank 1. A geometric characterization of extreme Delaunay polytopes
has been given in Corollary 15.2.4. Extreme Delaunay polytopes are of particu-
lar interest since they correspond to the extreme rays of the hypermetric cone.
More precisely, if d ∈ HYPn lies on an extreme ray of HYPn, then its associated
Delaunay polytope Pd is an extreme Delaunay polytope of dimension k ≤ n− 1.
Conversely, if P is a k-dimensional extreme Delaunay polytope then, for each
generating subset V of its set of vertices, the hypermetric space (V, d(2)) lies on
an extreme ray of the hypermetric cone HYP(V ). Moreover, by taking gate 0-
extensions of (V, d(2)), we obtain extreme rays of the cone HYPn for any n ≥ |V |.
In particular, if P is basic, then each basic subset of V (P ) yields an extreme ray
of the hypermetric cone HYPk+1 and, thus, of HYPn for n ≥ k + 1. Therefore,
finding all extreme rays of the hypermetric cone HYPn yields the question of
finding all extreme Delaunay polytopes of dimension k ≤ n− 1.

The only basic extreme Delaunay polytope of dimension k ≤ 5 is the segment
α1, of dimension 1. Indeed, it is known that the only extreme rays of the hyper-
metric cone HYPn (for n ≤ 6) are the cut semimetrics with associated Delaunay
polytope α1 (see Deza [1960] for n ≤ 5 and Avis [1989] for n = 6; this result is
also implicit in Baranovskii [1971, 1973]). Actually, it is announced in Erdahl
[1992] that α1 is the only extreme Delaunay polytope of dimension k ≤ 5, i.e.,
the assumption about “basic” can be dropped.

For n ≥ 7, the hypermetric cone has extreme rays which are not generated
by cut semimetrics. Indeed, there exists a basic extreme Delaunay polytope of
dimension 6, namely, the Schläfli polytope 221. Further examples of extreme De-
launay polytopes are presented in Sections 16.2, 16.3 and 16.4. The extreme De-
launay polytopes occurring in root lattices can be easily characterized. Namely,

Theorem 16.0.1. Let P be a generating Delaunay polytope in a root lattice.
Then, P is extreme if and only if P is the segment α1, the Schläfli polytope 221
or the Gosset polytope 321.

Proof. Let L denote the lattice generated by V (P ). By assumption, L is a
root lattice and L is irreducible by Proposition 15.1.10. Hence, P is one of the
Delaunay polytopes from Figure 14.3.1. Therefore, P is equal to α1, 221 or 321

since the other polytopes are not extreme as their Delaunay polytopes spaces
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are ℓ1-spaces.

We start the chapter with formulating in Section 16.1 lower bounds for the
number of vertices of an extreme basic Delaunay polytope. It turns out that
they relate with some known upper bounds for sets of equiangular lines. We
refer to Deza, Grishukhin and Laurent [1992] for details on the topics treated in
this chapter.

16.1 Extreme Delaunay Polytopes and Equiangular

Sets of Lines

In this section, we present bounds on the number of vertices of a basic ex-
treme Delaunay polytope and we compare them with some known bounds for
the cardinality of equiangular sets of lines. We also present some constructions
of equiangular sets of lines by taking sections of the sphere of minimal vectors
in a lattice. The next result follows immediately from Proposition 15.3.1.

Theorem 16.1.1. Let P be a k-dimensional basic Delaunay polytope. If P is
extreme, then

(16.1.2) |V (P )| ≥ k(k + 3)

2
if P is asymmetric,

(16.1.3) |V (P )| ≥ k(k + 1) if P is centrally symmetric.

Let Np(k) denote the maximum number of points in a spherical two-distance
set of dimension k and let Nℓ(k) denote the maximum number of lines in an
equiangular set of lines of dimension k. There is a striking analogy between the
lower bounds (16.1.2), (16.1.3) and the following known upper bounds (16.1.4),
(16.1.5) for Np(k) and Nℓ(k) (see Lemmens and Seidel [1973]):

(16.1.4) Np(k) ≤
k(k + 3)

2
,

(16.1.5) Nℓ(k) ≤
k(k + 1)

2
.

Recall that equiangular sets of lines and spherical two-distance sets are in one-
to-one correspondence. In particular, each the two bounds (16.1.4), (16.1.5) can
be deduced from the other.

The bound (16.1.5) was given by Gerzon who proved, furthermore, that if
equality holds in (16.1.5), then k + 2 = 4, 5 or k + 2 = q2 for some odd integer
q ≥ 3 (see Lemmens and Seidel [1973]). The first case of equality in (16.1.5) is
Nℓ = 28 for q = 3, k = 7; it is well-known that an equiangular set of 28 lines can
be constructed from the Gosset polytope 321 (see Section 16.2). Also, the set of
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vertices of the Schläfli polytope 221 is a spherical two-distance set in R6 , realizing
equality in (16.1.4). The next case of equality is Nℓ = 276 for q = 5, k = 23.
Neumaier [1987] has shown how to construct a set of 276 equiangular lines using
the Leech lattice Λ24. In Section 16.3, we shall see that an extreme centrally
symmetric Delaunay polytope of dimension 23 and with 552 vertices can be
constructed from this set of lines, also that a suitable section of it is an extreme
asymmetric Delaunay polytope of dimension 22 and with 275 vertices. The next
cases of equality in (16.1.5) are Nℓ = 1128 for q = 7, k = 47, and Nℓ = 3160 for
q = 9, k = 79; but it is not known whether such sets of equiangular lines exist in
these two cases.

On the other hand, we shall see in Section 16.4 some examples of extreme
Delaunay polytopes realizing equality in the bound (16.1.2) or (16.1.3), but not
arising from some spherical two-distance set or from some equiangular set of
lines. Also, we shall have examples of extreme Delaunay polytopes that do not
realize equality in the bound (16.1.2) or (16.1.3).

Let Nℓ(k, α) denote the maximum number of lines in an equiangular set of
lines of dimension k and with common angle arccosα; so, Nℓ(k) = maxαNℓ(k, α).
The following results can be found in Lemmens and Seidel [1973]: If Nℓ(k, α) >
2k then 1

α is an odd integer. Moreover, if k < 1
α2 , then

(16.1.6) Nℓ(k, α) ≤ k(1 − α2)

1 − kα2
.

When k =
(n
2

)
and α = 1

n−1 , the upper bound in (16.1.6) is equal to n2. For n
even, Deza and Grishukhin [1996a] propose a method for constructing a set of
equiangular lines meeting almost the bound. More precisely,

Proposition 16.1.7. If n ≡ 0 (resp. n ≡ 2) (modulo 4) and if there exists a
Hadamard matrix1 of order n (resp. order n − 2), then one can construct n2

lines (resp. n(n− 2) lines) in dimension
(n
2

)
with common angle arccos( 1

n−1 ).

Proof. In order to constructN lines with common angle arccos( 1
n−1), it suffices to

findN vectors with norms n−1 and mutual inner products ±1. The construction
goes as follows. Consider first the case when n ≡ 0 (mod 4). Let A be a
Hadamard matrix of order n. Rescale A so that its first column is the all-ones
vector. Deleting the first column, we obtain a matrix whose rows are n vectors
u1, . . . , un in {±1}n−1 with norms n − 1 and pairwise inner products −1. For
each i = 1, . . . , n, consider the cut semimetric δ(i), which is a 0,1-vector of length(n
2

)
with n−1 units. What we now do is to place copies of the vectors u1, . . . , un

on every δ(i) (for i = 1, . . . , n). In this way, we obtain N = n2 vectors in R(n
2)

with norms n − 1 and pairwise inner products ±1. The reasoning is similar in
the case n ≡ 2 (mod 4). Namely, we add the all-ones vector as a new column to

1A Hadamard matrix of order m is an m × m ±1 matrix A such that AT A = mI . Then,
m ≡ 0 (mod 4) if m > 2.
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a Hadamard matrix A of order n− 2; the rows of this extended matrix provide
n − 2 vectors of norm n − 1 and pairwise inner products 1. Placing copies of

them on every δ(i) yields n(n − 2) vectors in R(
n
2) with norms n− 1 and inner

products ±1.

We now present a general construction for equiangular sets of lines by taking a
suitable section of the sphere of minimal vectors in an integral lattice.

Let L be a lattice with minimal norm t and let Lmin be its set of minimal vectors.
Given a ∈ L, a 6= 0, set V := {u ∈ Lmin | 2uTa = a2}. Hence, all u ∈ V lie on a
sphere with center a

2 . By Lemma 13.2.11, if V 6= ∅, then the polytope P := Conv(V ) is
a Delaunay polytope. Moreover, P is centrally symmetric.

The following properties can be easily checked: V 6= ∅ if and only if a = a1 + a2 for
some a1, a2 ∈ Lmin and, then, a1, a2 ∈ V . If V 6= ∅, then |V | = 1 if and only if a2 = 4t.
If |V | ≥ 2 then, for all u, v ∈ V such that v 6= u, a− u, we have

(16.1.8)
a2 − t

2
≤ uT v ≤ t

2
.

(This follows from the fact that (u − v)2 ≥ t and (u + v − a)2 ≥ t.) This implies that
t ≤ a2 ≤ 2t if |V | ≥ 3.

Since P is centrally symmetric, we can arrange its vertices into pairs of antipodal
vertices. Each such pair determines a line going through a

2 and with direction 2u−a, for

u ∈ V . Let L denote this set of lines and let V ′ := {
√

2(u− a
2 ) | u ∈ V } denote the set of

their directions. Note that u′2 = 2t− a2

2 for u′ ∈ V ′, and u′T v′ = 2uTv− a2

2 for u′, v′ ∈ V ′.
Therefore, if L is an integral lattice, then u′2, u′T v′ are integers with the same parity as
a2

2 . Note also that, from relation (16.1.8), we have that −(t− a2

2 ) ≤ u′T v′ ≤ (t− a2

2 ) for
u′, v′ ∈ V ′, v′ 6= u′,−u′. Using the above observations, we obtain the following result
from Deza and Grishukhin [1995a].

Proposition 16.1.9. Let L denote the set lines determined by the diagonals of the
polytope P = Conv(V ) (defined as above). The following assertions hold.

(i) If a2 = 2t, then the lines in L are pairwise orthogonal.

(ii) Suppose a2 = 2t− 2, t ≥ 2 and L is an integral lattice. Then, L is an equiangular
set of lines with common angle arccos( 1

t+1 ) (resp. arccos(0) = π
2 ) if t is even

(resp. odd).

(iii) Suppose a2 = 2t − 4, t ≥ 4 and L is an integral lattice. If t is odd, then L is
equiangular with common angle arccos( 1

t+2 ) and, if t is even, then there are two

possible angles between the lines of L, namely arccos( 2
t+2 ) and arccos(0) = π

2 .

We give an illustration of the above construction in the case (ii) when a2 = 2t− 2,

t = 2 and L is a root lattice (see Deza and Grishukhin [1995a] for details). If L is

an irreducible root lattice, we indicate what is the Delaunay polytope P produced by

the construction, the number of lines in the equiangular set L of its diagonals and the

dimension in which L occurs.

- for L = An−1, P = βn−1, |L| = n− 1, in dimension n− 1,

- for L = Dn, P = α1 × βn−2, |L| = 2(n− 2), in dimension n− 1,

- for L = E6, the 1-skeleton graph of P is J(6, 3), |L| = 10, in dimension 5,

- for L = E7, P = 1
2H(6, 2), |L| = 16, in dimension 6,
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- for L = E8, P = 321, |L| = 28, in dimension 7.

Note that, in dimensions 5 and 6, the maximum cardinality of an equiangular set of

lines is equal to 10 and 16, respectively; so the two examples above from E6 and E7 are

optimum.

16.2 The Schläfli and Gosset Polytopes are Extreme

In this section, we show that the Schläfli polytope 221 and the Gosset polytope
321 are extreme. The proof uses the treatment for the notion of rank developed
in Section 15.1. The main steps of the proof are:

(i) Find an affine basis B; so |B| = 7 for 221 and |B| = 8 for 321 (thus, showing
that both 221, 321 are basic Delaunay polytopes).

(ii) Using the affine decomposition of each nonbasic vertex in B, find the ex-
plicit description of the system S(B, d(2)) (it consists of 27 − 7 = 20 equa-
tions for 221 and of 56

2 − 1 = 27 equations for 321).

(iii) Show that the solution set to the system S(B, d(2)) has rank 1.

For this, we need an explicit description of the polytopes 221, 321. We refer,
for instance, to Brouwer, Cohen and Neumaier [1989], Conway and Sloane [1988,
1991] for a detailed account of the facts about E6, E7, E8 mentioned below.
The lattice E8 is defined by

E8 = {x ∈ R
8 | x ∈ Z

8 ∪ (
1

2
+ Z) 8 and

∑

1≤i≤8

xi ∈ 2Z}.

Let V8 denote the set of minimal vectors of E8. Then V8 consists of
• the 112 vectors

(±12, 06
)

and

• the 128 vectors
(
±1

2

8
)

that have an even number of minus signs.

So, |V8| = 240 and vT v = 2 for v ∈ V8. The set V8 lies on the sphere S8 with
center 0 and radius

√
2.

Let v0 = (1, 1, 06) be a given minimal vector. One can check that vT v0 =
0,±1 for all v ∈ V8, v 6= ±v0. The lattice E7 is defined by

E7 = {x ∈ E8 | xT v0 = 1}.

Let H7 denote the hyperplane defined by the equation xT v0 = 1; then, S7 =

S8 ∩H7 is the 7-dimensional sphere with center v0
2 and radius

√
3
2 . Set

V7 := {x ∈ V8 | xT v0 = 1}.

Then, V7 consists of
• the 12 vectors

(
1, 0,±1, 05

)
,

• the 12 vectors
(
0, 1,±1, 05

)
and

• the 32 vectors
(

1
2 ,

1
2 ,±1

2

6
)

with an even number of minus signs.
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So, |V7| = 56 and V7 lies on the sphere S7. By Lemma 13.2.11, the polytope
Conv(V7) is a Delaunay polytope; it is known as the Gosset polytope and is
denoted by 321. Observe that the 56 points of V7 are partitioned into 28 pairs
of antipodal points (with respect to the sphere S7, i.e., the antipode of v is
v∗ = v0 − v). So, the polytope 321 is centrally symmetric.

Let w0 =
(

1
2

)8
∈ V7, so w∗

0 =
(

1
2 ,

1
2 ,−1

2

6
)
. One can check that vTw0 = 0, 1

for all v ∈ V7, v 6= w0 and v 6= w∗
0. Then, the lattice E6 is defined by

E6 = {x ∈ E7 | xTw0 = 1}.
Note that, if v∗ is the antipode of v ∈ V7, then vTw0 + (v∗)Tw0 = vT0 w0 = 1
and, thus, vTw0 = 1 if and only if (v∗)Tw0 = 0. Let H6 denote the hyperplane
defined by the equation xTw0 = 1; then, S6 = S7 ∩ H6 = S8 ∩ H7 ∩ H6 is the

6-dimensional sphere with center v0+w0
3 and radius

√
4
3 . Set

V6 := {x ∈ V7 | xTw0 = 1}
and V ∗

6 = {v∗ | v ∈ V6}. Hence, V7 = V6 ∪ V ∗
6 ∪ {w0, w

∗
0}. The set V6 consists of

• the 6 vectors
(
1, 0, 1, 05

)
,

• the 6 vectors
(
0, 1, 1, 05

)
and

• the 15 vectors
(

1
2 ,

1
2 ,−1

2

2
, 1

2

4
)
.

Hence, |V6| = 27 and V6 lies on the sphere S6. The polytope Conv(V6) is a
Delaunay polytope (by Lemma 13.2.11). It is known as the Schläfli polytope and
is denoted by 221; it is asymmetric.

Remark 16.2.1.

(i) The 28 lines determined by the diagonals of 321 form a 7-dimensional set of
equiangular lines with common angle arccos(1

3); this can be seen directly
or as an application of Proposition 16.1.9 (ii).

(ii) For u, v ∈ V6, v 6= u, uT v ∈ {0, 1} and thus d(2)(u, v) = (u − v)2 = 4
(if uT v = 0) or 2 (if uT v = 1). Therefore, the 27 vertices of 221 form a
6-dimensional spherical two-distance set of points.

(iii) The graph whose nodes are the vertices of 221 and with edges the pairs
(u, v) of vertices at the smallest distance d(2)(u, v) = 2, is called the Schläfli
graph and is denoted by G27. The graph whose nodes are the vertices of 321
and with edges the pairs (u, v) of vertices with d(2)(u, v) = 2 is called the
Gosset graph and is denoted by G56. From Proposition 14.3.3, G27 (resp.
G56) is the 1-skeleton graph of 221 (resp. of 321).

We now show that the polytopes 221 and 321 are extreme. This result was
proved in Deza, Grishukhin and Laurent [1992] and, independently, in Erdahl
[1992].

Theorem 16.2.2. The Schläfli polytope 221 and the Gosset polytope 321 are
basic extreme Delaunay polytopes.
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Proof. We denote the vectors of V6 by ui :=
(
1, 0, 1i, 0

5
)
, vi :=

(
0, 1, 1i, 0

5
)

(where the first two coordinates are fixed and the second 1 stays in the (2+i)−th

position) for 1 ≤ i ≤ 6, and uij :=

(
1
2 ,

1
2 ,
(
−1

2

)
i
,
(
−1

2

)
j
, 1

2
4
)

(where the two

−1
2 ’s stay in the (2 + i)−th and (2 + j)−th positions) for 1 ≤ i < j ≤ 6. Setting

t := 2, we have

(16.2.3)





d(ui, uj) = d(vi, vj) = t for i 6= j,

d(ui, vj) =

{
t if i = j,
2t if i 6= j,

d(ui, ukl) = d(vi, ukl) =

{
t if i 6∈ {k, l},
2t if i ∈ {k, l},

d(uij , ukl) =

{
t if |{i, j} ∩ {k, l}| = 1,
2t if |{i, j} ∩ {k, l}| = 0.

One can check that the set

B6 := {u12, u24, u34, u35, u15, u6, v6} =: {1, 2, 3, 4, 5, 6, 7}
is an affine basis of E6. The affine decompositions of the points of V6 \B6 in B6

give the following system of 20 equations in the 21 variables d(i, j) (1 ≤ i < j ≤ 7)
(the indices are taken modulo 5):




d(i, 6) + d(i+ 1, 6) − d(i, i+ 1) = 0 for 1 ≤ i ≤ 5,
d(i, 7) + d(i+ 1, 7) − d(i, i+ 1) = 0 for 1 ≤ i ≤ 5,
d(i, i+ 2) + d(i, i+ 3) − d(i+ 2, i+ 3) = 0 for 1 ≤ i ≤ 5,

d(6, 7) +
∑

i<j

i,j∈{k,k+1,k+2}

d(i, j) −
∑

i∈{k,k+1,k+2}
(d(i, 6) + d(i, 7)) = 0 for 1 ≤ k ≤ 5.

The equalities of the first, second and fourth lines correspond to the repre-
sentations of vi, ui and uk6 in B6, respectively. The equalities of the third line
correspond to the representations of u45, u25, u23, u13 and u14 in B6. (For exam-
ple, the equality d(1, 6)+d(2, 6)−d(1, 2) = 0 comes from the affine decomposition
v5 = u12 + u34 − u6 of v5 in B6. ) One can verify that the solution set to the
system S(B6, d

(2)) described above is precisely given by (16.2.3) and thus has
rank 1. Therefore, rk(221) = rk(B6, d

(2)) = 1, showing that 221 is extreme.

We now turn to the case of 321. The set B7 := B6 ∪ {w0} is clearly an affine
basis of E7. Indeed, V7 = V6 ∪ V ∗

6 ∪ {w0, w
∗
0}, v0 = u12 + u34 + u56 −w0 and, for

v ∈ V6, v
∗ = v0 − v = u12 + u34 + u56 − w0 − v is thus affinely decomposable in

B7. Since wT0 v = 1 for all v ∈ B6, we have that d(2)(w0, v) = 2 for v ∈ B6. From
Lemma 15.3.7 (applied to P = 321, P1 = 221, H = H6 and w = u∗13), we deduce
that rk(221) = rk(321), implying that 321 is extreme.

Note that the system S(B7, d
(2)) consists of the system S(B6, d

(2)) together
with the following seven equations:




d(i, 8) + d(i+ 1, 8) − d(i, i+ 1) = 0 for 1 ≤ i ≤ 5,

d(1, 2) + d(1, 3) + d(2, 3) + d(k, 8) −
∑

i=1,2,3

(d(i, k) + d(i, 8)) = 0 for k = 6, 7.
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These equations correspond to the decomposition of v∗ in B7 (for v ∈ B6).

G G

G
  3

9 10

G G
11 12

Figure 16.2.4: Class q = 8

Since 221 is extreme and basic, each basic set B ⊆ V (221) yields an extreme
ray of the hypermetric cone HYP7. We have constructed in the proof of Theorem
16.2.2 the basic set B6. It is interesting to know how many distinct (up to
permutation) extreme rays of HYP7 arise in this way from 221. Actually, we
believe that all the extreme rays of HYP7, other than those generated by the cut
semimetrics, arise from 221.

For each basic subset B ⊆ V (221) = V6, let G27[B] denote the subgraph of
the Schläfli graph G27 induced by B; its set of nodes is B and its edges are the
pairs of points at the smallest distance 2. G27[B] is called a basic subgraph of
G27. For instance, for the basic set B6 defined above, G27[B6] is K7 \C5 (where
C5 is the circuit on the nodes (u12, u34, u15, u24, u35)).

By a direct inspection of the 7-vertices subgraphs of the Schläfli graph, we
found that there are in total 26 distinct basic subsets in 221. Eight of them are
connected with Theorem 17.1.9; namely, they are the graphs Gi (1 ≤ i ≤ 8)
where G1 = ∇B9 (so, G1 = G27[B6]), G2 = ∇H2, G3 = ∇H1, G4 = ∇B8,
G5 = ∇B7, G6 = ∇H4, G7 = ∇H3 and G8 = ∇B5. The graphs Bi (1 ≤ i ≤ 8)
and Hi (1 ≤ i ≤ 4) will be shown in Figures 17.1.3 and 17.1.6, respectively.

We show in Figures 16.2.4, 16.2.5, 16.2.6 and 16.2.7 the 26 basic subgraphs of
G27. Actually, we depict there the complements Gi of the graphs Gi since they
appear to be simpler to draw. Hence, in Figures 16.2.4-16.2.7, an edge means
a pair of points at the largest distance 4. The 26 basic graphs Gi (1 ≤ i ≤ 26)
are partitioned into five classes indexed by some integer q ∈ {8, 11, 12, 14, 15}. In
fact, all basic graphs of the same class are switching equivalent and the invariant2

2The graph G18 was incorrectly assigned to the class q = 12 in Deza, Grishukhin and Laurent
[1992]. It belongs, in fact, to the class q = 11 as indicated here.



16.2 The Schläfli and Gosset Polytopes 243

q of each switching class is the number of odd triples, i.e., the triples of nodes
carrying an odd number of edges. (See Deza, Grishukhin and Laurent [1992]
for more details about the occurrence of switching here.) Finally, note that one
obtains at least 26 distinct extreme rays for HYP8 from the Gosset polytope 321.
Indeed, each basic set of 221 can be augmented to a basic set of 321. We do not
know about the classification of all other basic sets of 321.

G
6

G G13  14 G 15

G G16 17 G
18

G 2

Figure 16.2.5: Class q = 11

G
19

G
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G
 20

G G
 7  8

Figure 16.2.6: Class q = 12
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G

G

G G

G G

 4

23 24

1

25 26

G 5

Figure 16.2.7: Class q = 14 (for the first three graphs G4, G23, G24)
and q = 15 (for the remaining four graphs)

16.3 Extreme Delaunay Polytopes in the Leech Lat-

tice Λ24

In this section, we describe two extreme Delaunay polytopes coming from the
Leech lattice Λ24; they are taken from Deza, Grishukhin and Laurent [1992].
These polytopes have dimension 22, 23 and they are constructed by taking two
consecutive suitable sections of the sphere of minimal vectors of Λ24, precisely
in the same way as the Gosset polytopes 321, 221 were constructed from the
lattice E8 in Section 16.2. We refer to Conway and Sloane [1988] for a precise
description of the Leech lattice Λ24; we only recall some facts that we need for
our treatment.

The Leech lattice Λ24 is a 24-dimensional lattice in R24 . For convenience,
the coordinates of the vectors x ∈ R24 are indexed by the elements of the set
I := {∞, 0, 1, . . . , 22}. For i ∈ I, let ei denote the i-th unit vector in R24 . For a
subset S of I, set eS :=

∑
i∈S ei.

Let B24 denote the family of blocks of the Steiner system S(5, 8, 24) defined
on the set I; hence, |B24| = 759. Set

B23 := {B \ {∞} | B ∈ B24 with ∞ ∈ B};

so B23 is the family of blocks of the Steiner system S(4, 7, 23) defined on the set
{0, 1, . . . , 22} and |B23| = 253. In B23, there are exactly 176 blocks that do not
contain a given point and there are exactly 77 blocks that do contain a given
point.
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The Leech lattice Λ24 is generated by the vectors eI − 4e∞ and 2eB for all
blocks B ∈ B24. Let V denote the set of minimal vectors of Λ24; so, xTx = 32
for x ∈ V . (Note that, in the usual definition, all vectors are scaled by a factor
of 1√

8
and the minimal norm is 4; we choose to omit this factor in order to make

the notation easier.) The set V consists of the following vectors:

(I) (±42, 022) (1104 = 2 × 24 × 23 such vectors),

(II) (±28, 016), where the positions of the nonzero components form a block of
B24 and there is an even number of minus signs (27 × 759 such vectors),

(III) (∓3,±123), where the ∓3 may be in any position, but the upper signs are
taken on the coordinates of a codeword of the Golay code C24. (Recall
that the codewords of C24 which have exactly 8 nonzero coordinates are
precisely the blocks of B24.)

Set c := (5, 123) and a0 := (4, 4, 022); so c, a0 ∈ Λ24, c
T c = 48 and a0 ∈ V .

Set

V23 := {v ∈ V | vT c = 24} and V22 := {v ∈ V | vT c = 24 and vT a0 = 16}.

By Lemma 13.2.11, the polytopes

P23 := Conv(V23), P22 := Conv(V22)

are Delaunay polytopes. The polytope P23 is centrally symmetric and P22 is
asymmetric. In fact, the set V22 is a spherical two-distance set (indeed, the
distances between the points of V22 take the two values 32 or 48). Moreover, the
276 lines defined by the 276 pairs of antipodal vertices of the polytope P23 are
equiangular (with common angle arccos(15 )).

Theorem 16.3.1.

(i) The polytope P23 is a basic centrally symmetric extreme Delaunay polytope
of dimension 23 with 552 vertices, hence realizing equality in the bound
(16.1.3).

(ii) The polytope P22 is a basic asymmetric extreme Delaunay polytope of di-
mension 22 with 275 vertices, hence realizing equality in the bound (16.1.2).

16.4 Extreme Delaunay Polytopes in the Barnes-
Wall Lattice Λ 16

In this section, we describe some examples of extreme Delaunay polytopes con-
structed from the Barnes-Wall lattice Λ16; they are taken from Deza, Grishukhin
and Laurent [1992]. (See Conway and Sloane [1988] for a precise description of
Λ16.) The Barnes-Wall lattice Λ16 is a 16-dimensional lattice in R16 . Its set V
of minimal vectors consists of:
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(I) 480 vectors of the form (±22, 014), where there are two nonzero components
equal to 2 or −2,

(II) 3840 vectors of the form (±18, 08), where the positions of the ±1’s form
one of the 30 codewords of weight 8 of the first order Reed-Muller code
and there are an even number of minus signs.

Hence, |V | = 4320 and vT v = 8 for v ∈ V . (Note that in the usual definition,
the minimal norm is 4 and all vectors should be scaled by a factor 1√

2
; we omit

this factor in order to make the notation easier.)

c12 001111 1111 0000 00
c13 010111 0010 1010 01
c14 011011 0100 0011 10
c15 011101 0001 0100 11
c16 011110 1000 1101 00

c23 100111 0010 0101 10
c24 101011 0100 1100 01
c25 101101 0001 1011 00
c26 101110 1000 0010 11

c34 110011 1001 0110 00
c35 110101 1100 0001 01
c36 110110 0101 1000 10

c45 111001 1010 1000 10
c46 111010 0011 0001 01
c56 111100 0110 0110 00

Figure 16.4.1: Codewords of weight 8 in the Reed-Muller code

We show in Figure 16.4.1 a list of 15 codewords of weight 8 of the first order
Reed-Muller code; the other 15 codewords of weight 8 are obtained by taking
their complements.

Set a := (26, 010) ∈ Λ16 (the six 2’s are in the first six positions which are
precisely the first six positions distinguished in Figure 16.4.1). Let S denote
the sphere with center a

2 and radius
√

6. Then, S is an empty sphere in Λ16

corresponding to a deep hole (i.e., with maximum radius). Hence, the polytope

P := {v ∈ Λ16 | (v − a

2
)2 = 6}

is a Delaunay polytope. P is centrally symmetric, has dimension 16 and has
512 vertices. One can check that the vertices of P lie in the parallel layers:
xTa ∈ {0, 8, 12, 16, 24}. For α ∈ R, let Hα denote the hyperplane with equation
xTa = α and set V α := V (P ) ∩Hα. Then,

V (P ) = V 0 ∪ V 8 ∪ V 12 ∪ V 16 ∪ V 24,
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with V 0 = {0}, V 24 = (V 0)∗ = {a}, V 16 = (V 8)∗, |V 8| = |V 16| = 135, and
|V 12| = 240.

Moreover, for α = 8, 12, 16, the section

Pα := P ∩Hα = Conv(V α)

by the hyperplane Hα is a Delaunay polytope of dimension 15 in the lattice
Λ16 ∩ Hα. The polytopes P8 and P 16 are asymmetric with 135 vertices, but
their sets of vertices are not spherical two-distance sets (indeed, there are three
possible distances: 8,12,16 between the vertices). The polytope P12 is centrally
symmetric with 240 vertices, but the 120 lines defined by its 120 pairs of antipodal
vertices are not equiangular (there are two possible angles: arccos(0),arccos(13)).

Note that P16 has radius 4√
3

and that P12 has radius
√

6 (> 4√
3
). This shows

that P16 does not correspond to a deep hole of the lattice Λ16∩H16. Finally, set

Q := Conv(V 0 ∪ V 8 ∪ V 16 ∪ V 24).

So, Q has 2 × 135 + 2 = 272 vertices and its dimension is 16. Q is a Delaunay
polytope in the lattice Λ16 ∩ {x | xTa = 0 (mod 8)}. The polytopes P , P8, P 16

and Q can be verified to be basic.

Theorem 16.4.2.

(i) P is a centrally symmetric extreme Delaunay polytope of dimension 16 with
512 vertices.

(ii) P 8 and P16 are asymmetric extreme Delaunay polytopes of dimension 15,
each having 135 vertices.

(iii) P 12 is not extreme.

(iv) Q is a centrally symmetric extreme Delaunay polytope of dimension 16 with
272 vertices, hence realizing equality in the bound (16.1.3).

Finally, let us consider the section of the sphere of minimal vectors by the
hyperplane H4. In this way, one obtains the Delaunay polytope

Q′ := Conv(x ∈ Λ16 | xTx = 8 and xTa = 4).

Q′ is a 15-dimensional polytope with 1080 vertices. Consider the vertex c :=
(2, 0, .., 0, 2) of Q′. Then, the distances d(2)(c, v) from the other vertices v to c
take the values 8, 12, 16, 20, 24; in fact, value 8 (respectively, 12,16,20,24) is taken
for 119 (respectively, 336, 427,176,21) vertices of Q′. Therefore, the set of the
119 vertices that are at distance 8 from c forms a 14-dimensional asymmetric
Delaunay polytope which realizes equality in the bound (16.1.2). However, this
polytope is not extreme. On the other hand, the polytope Q′ is extreme.

We summarize in Figure 16.4.3 the results from this section about the De-
launay polytopes constructed from the Barnes-Wall lattice Λ16. (The second
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column indicates the dimension, the fourth column indicates whether the poly-
tope is asymmetric (A) or centrally symmetric (CS), and the fifth column in-
dicates whether equality holds in the bounds (16.1.2) or (16.1.3).) Recall that
a = (26, 010), c = (2, 014, 2), S denotes the sphere with center a2 and radius

√
6,

and Hα denotes the hyperplane xTa = α.

Delaunay polytope dim. number sym. equality extreme
of ? in ?

vertices bound
?

P = Conv(S ∩ Λ16) 16 512 CS No Yes
P 8 = Conv(S ∩ Λ16 ∩H8) 15 135 A Yes Yes
P 16 = Conv(S ∩ Λ16 ∩H16) 15 135 A Yes Yes
P 12 = Conv(S ∩ Λ16 ∩H12) 15 240 CS Yes No

Q = Conv(S ∩ Λ16 16 272 CS Yes Yes
∩{x | xT a = 0, 8, 16, 24})
Conv(x ∈ Λ16 | xTx = 8, 14 119 A Yes No

aTx = 4, cTx = 8)
Q′ = Conv(x ∈ Λ16 | 15 1080 A No Yes
xTx = 8, aTx = 4)

Figure 16.4.3: Delaunay polytopes in the Barnes-Wall lattice

16.5 Extreme Delaunay Polytopes and Perfect Lat-

tices

Let L be a k-dimensional lattice (containing the origin) with minimal norm t
and set Lmin := {v ∈ L | v2 = t}. Let (v1, . . . , vk) be a basis of L and, for each
v ∈ Lmin, let v =

∑k
i=1 b

v
i vi denote its decomposition in the basis, with bv ∈ Z k.

Let SL denote the system composed by the equations

∑

1≤i≤j≤k
bvi b

v
jxij = t for v ∈ Lmin

in
(k+1

2

)
variables. The lattice L is said to be perfect if the system SL has full

rank
(k+1

2

)
; that is, if it has a unique solution which is then given by

xij = 2vTi vj( for 1 ≤ i < j ≤ k), xii = v2
i ( for 1 ≤ i ≤ k).

Perfect lattices are important since they include the lattices with the locally
most dense packings (see, for instance, Ryshkov and Baranovskii [1979]). If L is
an affine lattice, i.e., if L is the translate of a lattice L0, we say that L is perfect
if L0 is perfect.

The notion of perfect lattice is closely related to the notion of extreme De-
launay polytope as the following Propositions 16.5.1, 16.5.2 and 16.5.3 show; all
three results are taken from Grishukhin [1993].
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Proposition 16.5.1. Let P be a Delaunay polytope with radius r, let L0 denote
the lattice generated by the set of vertices V (P ) of P and let t denote its mini-
mal norm. Suppose that P is a basic extreme Delaunay polytope, that there exist
u, v ∈ V (P ) with (u − v)2 = t and that t ≥ 4

3r
2. Then, there exists w not lying

on the affine space spanned by P such that (w − v)2 = t for all v ∈ V (P ) and
such that the lattice L generated by L0 ∪ {w} is perfect.

Proof. We can suppose without loss of generality that the origin is a vertex of
P . By Lemma 14.4.5, the spherical t-extension of the space (V (P ), d(2)) has a
spherical representation. Let w denote the vector representating the extension
point. So, (w−v)2 ≥ t for all v ∈ L0 with equality if v ∈ V (P ). Let L denote the
lattice generated by L0∪{w}. Then, L =

⋃
a∈ZLa, where La := (L0+aw) are the

layers composing L. The distance between two consecutive layers is h =
√
t− r2.

We check that the minimal norm of L is equal to t, i.e., that v2 ≥ t for all
v ∈ L, v 6= 0. This is obvious if v lies in L0. If v lies in a layer La which is not
consecutive to the layer L0, then ‖ v ‖≥ 2h, i.e., v2 ≥ 4h2 = 4(t − r2) ≥ t since
t ≥ 4

3r
2. If v lies in a layer consecutive to L0, say v = u−w where u ∈ L0, then

v2 ≥ t.
Since P is basic, we can find a basis (v1, . . . , vk) of L0 composed of vertices

of P . Then, (w, v1, . . . , vk) is a basis of L. So, the system SL is composed by the
equations:

∑

0≤i≤j≤k
bibjxij = t, where (b0w +

∑

1≤i≤k
bivi)

2 = t with b ∈ Z
k+1.

We show that SL has full rank. Let x denote a solution of SL.
Since w,w − v1, . . . , w − vk ∈ Lmin, we deduce that the equations:

x00 = t, x00 + xii − x0i = t (1 ≤ i ≤ k)

belong to SL. Therefore, x00 = t and xii = x0i for i = 1, . . . , k. Let v ∈ V (P ),
v =

∑
1≤i≤k b

v
i vi with bv ∈ Z k. Then, v − w ∈ Lmin, implying the equation:

x00 −
∑

1≤i≤k
bvi x0i +

∑

1≤i≤j≤k
bvi b

v
jxij = t

of SL. Hence, x satisfies

(a)
∑

1≤i≤k
((bvi )

2 − bvi )xii +
∑

1≤i<j≤k
bvi b

v
jxij = 0

for each v ∈ V (P ).
By assumption, P is an extreme Delaunay polytope; that is, the system

S(V (P ), d(2)), composed by the equations:

(b)
∑

1≤i≤k
(1 −

∑

1≤j≤k
bvj )b

v
i d0i +

∑

1≤i<j≤k
bvi b

v
jdij = 0

for all v ∈ V (P ), has rank
(k+1

2

)− 1.
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Set d0i := xii for 1 ≤ i ≤ k and dij := xii + xjj − 2xij for 1 ≤ i < j ≤ k.
Then, since x satisfies (a), we deduce that d satisfies (b). Therefore, d is uniquely
determined up to multiple. This implies that x too is uniquely determined up to
multiple. The fact that there exist u, v ∈ V (P ) with u− v ∈ Lmin permits to fix
the multiple. Hence, SL has a unique solution x. This shows that L is perfect.

Note that Proposition 16.5.1 still holds if we replace the assumption: t ≥ 4
3r

2

by the assumption: t ≥ r2 and t is the minimal norm of L.
As we saw in Lemma 13.2.11, every section of the contact polytope by a

hyperplane not containing the origin is a Delaunay polytope. Hence, Proposition
16.5.1 can be reformulated as follows.

Proposition 16.5.2. Let L be a k-dimensional lattice with minimal norm t and
let P be a Delaunay polytope obtained by taking a section of the contact polytope
of L by a hyperplane not containing the origin. If P is basic and extreme and if
P contains two vertices u, v with (u− v)2 = t, then L is perfect.

For example, the root lattice E8 and the Leech lattice Λ24 are perfect. This
can be seen by applying Proposition 16.5.2; for E8, take t = 2 and P = 321

whose squared radius is 3
2 , and for Λ24, take t = 32 and P = P23 whose squared

radius is 24 (see Sections 16.2 and 16.3). Another example of perfect lattice is
the lattice Λ16 ∩ {x | xTa = 0 mod (8)}, where Λ16 is the Barnes-Wall lattice
and a is a minimal vector of it; apply Proposition 16.5.2 with the polytope P16

(see Section 16.4).
The following result can also be checked.

Proposition 16.5.3. Let P be an extreme basic Delaunay polytope with radius
r and let L′ denote the lattice generated by the set of vertices of P and the center
of P (L′ is known as the centered lattice). If L′ has minimal norm r2, then L′

is perfect.

For instance, the Schläfli polytope 221 is an extreme basic Delaunay polytope
in E6. The lattice generated by V (221) and its center is the dual lattice E∗

6 which
is indeed perfect.



Chapter 17. Hypermetric Graphs

We group in this chapter several results concerning hypermetricity of distance
spaces arising from graphs.

There are essentially two ways of constructing a distance space from a graph.
The most classical construction of a distance space from a connected graph G is
by considering the graphic metric space (V (G), dG) where dG is the path metric
of G, with dG(u, v) denoting the smallest length of a path connecting the nodes
u, v ∈ V (G). If (V (G), dG) is hypermetric (resp. isometrically ℓ1-embeddable, of
negative type), we say that G is a hypermetric graph (resp. an ℓ1-graph, a graph
of negative type).

Another distance space which can be constructed from a graph G is the space
(V (G), d∗G), where d∗G is the truncated distance of G defined by





d∗G(i, j) = 1 if ij ∈ E(G), i 6= j,
d∗G(i, j) = 2 if ij 6∈ E(G), i 6= j,
d∗G(i, i) = 0 for all i ∈ V (G).

If G has diameter1 ≤ 2, then these two notions of path metric and truncated
distance coincide. This is the case, for instance, for suspension graphs. In fact,
the graphs whose suspension is of negative type form a class of graphs which has
received a lot of attention in the literature; indeed, they are the graphs whose
adjacency matrix has minimum eigenvalue greater than or equal to −2.

For a graph G = (V,E) on n nodes we remind that its adjacency matrix AG
is the n×n symmetric matrix with zero diagonal entries and whose (i, j)-th entry
is equal to 1 if i, j are adjacent in G and to 0 otherwise, for distinct i, j ∈ V . We
let λmin(AG) denote the smallest eigenvalue of matrix AG.

We consider here questions related to hypermetricity and ℓ1-embeddability
for either of the two distances dG and d∗G attached to a graph G. In Sections
17.1 and 17.2 we present a number of results dealing with the problem of char-
acterizing the graphs whose path metric or truncated distance is hypermetric
or ℓ1-embeddable. We are interested, in particular, in finding ‘good’ character-
izations; that is, characterizations leading to polynomial time recognition algo-
rithms. Such results are known for several classes of graphs. We focus in Section
17.1 on suspension graphs and on bipartite graphs equipped with the truncated

1The diameter of a graph G is defined as the largest distance (with respect to the shortest
path metric) between two nodes of G.
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distance. Section 17.2 deals with graphs having some regularity properties. Fi-
nally, Section 17.3 studies the graphs G for which either of the two distances dG
and d∗G lies on an extreme ray of the hypermetric cone.

17.1 Characterizing Hypermetric and ℓ 1-Graphs

Characterizing Hypermetricity and ℓ1-Embeddability for Path Met-
rics. We start with a characterization of the graphs whose path metric is
hypermetric or isometrically ℓ1-embeddable, which follows directly from The-
orems 14.3.6 and 14.3.7. (In fact, the characterization of ℓ1-graphs will also
follow from the results of Shpectorov [1993] exposed in Chapter 21.)

Theorem 17.1.1. Let G be a connected graph. Then,

(i) G is hypermetric if and only if G is an isometric subgraph of a Cartesian
product of half-cube graphs, cocktail-party graphs and copies of the Gosset
graph G56.

(ii) G is an ℓ1-graph if and only if G is an isometric subgraph of a Cartesian
product of half-cube graphs and cocktail-party graphs.

Several characterizations of the hypercube embeddable graphs will be given
in Chapter 19; they are good characterizations, in the sense that they permit to
recognize whether a graph is an isometric subgraph of a hypercube in polynomial
time. The result from Theorem 17.1.1 (ii) does not yield, a priori, a good char-
acterization for ℓ1-graphs. However, the proof method developed by Shpectorov
[1993] permits to recognize ℓ1-graphs in polynomial time (see Corollary 21.1.9).
No good characterization is known yet for hypermetric graphs (recall Remark
14.2.6). We state this as an open problem.

Problem 17.1.2. What is the complexity of the problem of testing whether (the
path metric of) a graph is hypermetric ?

Problem 17.1.2 is solved for the class of suspension graphs. Indeed, for these
graphs, some refined characterizations for hypermetricity and ℓ1-embeddability
are known that lead, in particular, to polynomial-time recognition algorithms
(cf. Theorems 17.1.8 and 17.1.9). A suspension graph has diameter ≤ 2 and
thus its path metric coincides with its truncated distance. The graphs whose
truncated distance is hypermetric or ℓ1-embeddable are not well understood in
general. Good characterizations are, however, available for some subclasses;
for instance, for bipartite graphs (cf. Theorem 17.1.13) and for graphs with
regularity properties (cf. Section 17.2).

A Good Characterization of Hypermetricity and ℓ1-Embeddability for
Suspension Graphs. We consider here in detail suspension graphs. A first
observation is that, for a graph G, its suspension ∇G is hypermetric (resp. an
ℓ1-graph) if and only if ∇H is hypermetric (resp. an ℓ1-graph) for each connected
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component H of G. Indeed, the path metric of ∇G arises as the 1-sum of the
path metrics of ∇H1, . . . , ∇Hm, if H1, . . . ,Hm are the connected components of
G. (Recall Section 7.6.) Hence, we can restrict our attention to the case when
G is a connected graph.

1

4 5

7 8

=

9

466

 3 5 21,3 2B   = K   B B   = K   - P

B B B   K   - C

B B B   = K   - C
6 5

Figure 17.1.3: The excluded configurations for line graphs

We start with a characterization of the suspension graphs that are of negative
type, which was obtained by Assouad and Delorme [1980]. (Compare the results
from Propositions 17.1.4 and 17.2.1.)

Proposition 17.1.4. Let G be a graph. Then, its suspension ∇G is of negative
type if and only if λmin(AG) ≥ −2 holds.

Proof. We use Proposition 13.1.2, so we show that λmin(AG) ≥ −2 if and only
if the space (V (∇G), d∇G) has a representation. Let i0 denote the apex node
of ∇G and suppose that G has n nodes. If λmin(AG) ≥ −2, then the matrix
AG + 2I is positive semidefinite. Hence, there exist n vectors u1, . . . , un ∈ Rm

(for some m) such that




(ui)
2 = 2 for i = 1, . . . , n,

uTi uj = 1 if ij ∈ E(G),
uTi uj = 0 otherwise.

Then, the mapping
i ∈ V (G) 7→ ui, i0 7→ u0 := 0,
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provides a representation of (V (∇G), 2d∇G). Indeed, (ui − uj)
2 = 2 if ij ∈

E(∇G) and (ui − uj)
2 = 4 otherwise. All the above arguments can be reversed,

stating the converse implication: If ∇G is of negative type, then λmin(AG) ≥ −2.

We recall that L(H) denotes the line graph of a graph H. It is easy to see
that the suspension ∇L(H) of any line graph is an ℓ1-graph. Indeed, if we label
the apex node by the zero vector and each edge e := ij ∈ E(H) by the vector
ei+ej

2 (ei denoting the i-th unit vector in the space RV (H)), then we obtain an
ℓ1-embedding of ∇L(H). This shows, moreover, that 2d(∇L(H)) is hypercube
embeddable. Line graphs have been characterized by Beineke [1970] by means
of excluded subgraphs. Namely,

Theorem 17.1.5. A graph G is a line graph if and only if G does not contain
as an induced subgraph any of the nine graphs Bi (1 ≤ i ≤ 9) shown in Figure
17.1.3.

= K   - P

H H
3 4

 H   = K   - PH
1  6 3  462

Figure 17.1.6: Four graphs whose suspensions are not ℓ1-graphs

Remark 17.1.7. The following can be checked.

(i) ∇Bi is not an ℓ1-graph for all 1 ≤ i ≤ 9 except i = 3; in fact, ∇B1, B2 are
not 5-gonal and ∇B4, ∇B6 are not 7-gonal.

(ii) For each of the graphs Hi (1 ≤ i ≤ 4) shown in Figure 17.1.6, ∇Hi is not
an ℓ1-graph.
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In other words, if d denotes the path metric of any of the graphs ∇Bi (1 ≤ i ≤
9, i 6= 3) or of ∇Hi (1 ≤ i ≤ 4), there exists an inequality vTx ≤ 0 defining a
facet of CUT7 which is violated by d, i.e., such that vTd > 0. See Deza and
Laurent [1992a] for an explicit description of such inequalities.

Let G be a connected graph and suppose that its suspension ∇G is hyper-
metric. Let H denote the 1-skeleton graph of the Delaunay polytope associated
with the space (V (∇G), 2d∇G). Then, ∇G is an induced subgraph of H and H
is one of the Delaunay polytope graphs shown in Figure 14.3.1. Therefore, if ∇G
is an ℓ1-graph then, by Proposition 14.1.10, H 6= G27, G56 and, thus, H is one
of J(m, t), 1

2H(m, 2) and Km×2. More precisely, we have the following results,
due to Assouad and Delorme [1980, 1982].

Theorem 17.1.8. Let G be a connected graph. Then, the following assertions
are equivalent.

(i) ∇G is an ℓ1-graph.

(ii) G does not contain as an induced subgraph any of the graphs from the
family

F := {B1, B2, B4, B5, B6, B7, B8, B9,H1,H2,H3,H4}.

(iii) G is a line graph or G is an induced subgraph of a cocktail-party graph.

Proof. The implication (i) =⇒ (ii) follows from the fact that the suspensions of
the graphs from F are not ℓ1-graphs. The implication (iii) =⇒ (i) is clear. We
now show that (ii) =⇒ (iii) holds. Let G be a connected graph that does not
contain any member of F as an induced subgraph. If G does not contain B3 as
an induced subgraph, then G is a line graph by Theorem 17.1.5. Hence, we can
suppose that B3 is an induced subgraph of G; say, B3 = G[Y ] is the subgraph
of G induced by the subset of nodes Y , |Y | = 5. We show that G is an induced
subgraph of a cocktail-party graph. For this consider the following property (P):

(P) For each subset Z ⊆ V (G) such that Y ⊆ Z and for each i ∈ V (G) \ Z, if
G[Z] is an induced subgraph of a cocktail-party graph and if G[Z ∪ {i}] is
connected, then G[Z ∪ {i}] is also an induced subgraph of a cocktail-party
graph.

We show that (P) holds by induction on |Z|.
Case 1. We show that (P) holds for Z = Y . Let i ∈ V (G) \ Y such that the
graph G[Y ∪ {i}] is connected. So, G[Y ∪ {i}] is a connected graph on six nodes
containing B3 = K5 \ P2 as an induced subgraph. By direct inspection, one can
check that there are eleven connected graphs on six nodes containing B3 as an
induced subgraph. Among them, we findH1,H2,H3,H4; we also find two graphs
containing B2 and three graphs containing B1; these cases are excluded since G
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does not contain any member of F . The remaining two graphs are K6 \ P2 and
∇∇K2×2 which are, respectively, induced subgraphs of K5×2 and K4×2. Hence,
the property (P) holds for Z = Y .

Consider now Z such that Y ⊆ Z ⊆ V (G), |Z| ≥ 6 and G[Z] is an induced
subgraph of a cocktail-party graph, and let i ∈ V (G) \ Z such that G[Z ∪ {i}]
is connected. Set Y := {y1, y2, y3, y4, y5} where, for instance, y1 and y2 are not
adjacent in G and, thus, every other pair of nodes of Y is adjacent in G.

Case 2. Let s, t ∈ Z such that s and t are not adjacent in G. We show that i
is adjacent to both s and t. Since G[Z] is contained in a cocktail-party graph,
every other node of Z is adjacent to both s and t. Let u ∈ Z be a node which
is adjacent to i. Then, i is adjacent to at least one of s or t (else, G[{u, s, t, i}]
would be a induced subgraph B1 of G). Hence, for U := {s, t, y3, y4, y5}, G[U ]
is B3 and G[U ∪ {i}] is connected. By Case 1, we deduce that G[U ∪ {i}] is an
induced subgraph of a cocktail-party graph, which implies that i is adjacent to
both s and t.

Case 3. Let s, t ∈ Z such that s and t are adjacent in G. We show that i is
adjacent to at least one of s or t. If there exists r ∈ Z which is not adjacent to
s then, by Case 2, i is adjacent to both r and s. Similarly, if there exists r ∈ Z
which is not adjacent to t, then i is adjacent to t. Else, each r ∈ Z is adjacent
to both s and t. Let r ∈ Z which is adjacent to i. We can find a set U such
that |U | = 5, r, s, t ∈ U and G[U ] = B3. Therefore, G[U ∪ {i}] is an induced
subgraph of a cocktail-party graph, which implies that i is adjacent to at least
one of s or t.

We deduce from Cases 2 and 3 that G[Z ∪ {i}] is an induced subgraph of a
cocktail-party graph. So, we have shown that (P) holds.

Theorem 17.1.9. Let G be a connected graph. The following assertions are
equivalent.

(i) ∇G is a hypermetric graph, but not an ℓ1-graph.

(ii) G is an induced subgraph of the Schläfli graph G27 and G contains as an
induced subgraph one of the graphs of the family

F0 := F \ {B1, B2, B4, B6} = {B5, B7, B8, B9,H1,H2,H3,H4}.

Proof. (i) =⇒ (ii) By Theorem 17.1.8, if ∇G is not an ℓ1-graph, then G contains
as an induced subgraph one of the members of F and, in fact, of F0 since ∇B1,
∇B2, ∇B4, ∇B6 are not hypermetric (recall Remark 17.1.7). Let P denote the
Delaunay polytope associated with the hypermetric space (V (∇G), 2d∇G) and
let H denote its 1-skeleton graph. By Proposition 14.3.5, P is a generating
Delaunay polytope in a root lattice. Thus, P is a direct product of Delaunay
polytopes from Figure 14.3.1 and H is a direct product of Delaunay polytopes
graphs from Figure 14.3.1. In fact, since the graph G is connected, H is not
a direct product, i.e., H is one of the Delaunay polytope graphs from Figure
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14.3.1. Now, H is G27 or G56 since all the other Delaunay polytope graphs are
ℓ1-graphs. Therefore, ∇G is an isometric subgraph of G56 and, thus, G is an
isometric subgraph of G27. The implication (ii) =⇒ (i) is clear.

Corollary 17.1.10. Let G be a connected graph on n nodes.

(i) If n ≥ 37, then ∇G is an ℓ1-graph if and only if ∇G is 5-gonal and of
negative type.

(ii) If n ≥ 28, then ∇G is an ℓ1-graph if and only if ∇G is hypermetric.

A Good Characterization of Hypermetricity and ℓ1-Embeddability for
Truncated Distances of Bipartite Graphs. We consider now, more gener-
ally, ℓ1-embeddability and hypermetricity for truncated distances of graphs. For
bipartite graphs, Assouad and Delorme [1982] have obtained several equivalent
characterizations, leading to a polynomial-time recognition algorithm; they are
formulated in Theorem 17.1.13 below.

E8

Dn

 1 2  3 7 8 9

6

54

8 1 2 3 4 5 7

6

1 2 3 4 5

6

7

E6

. . . . . . 

1

2 3 4 n-2 n-1  n

n+1

E7

Figure 17.1.11: The graphs2 D̃n, Ẽ8, Ẽ7, Ẽ6

2The graphs D̃n, Ẽ8, Ẽ7, Ẽ6 and Ãn := Cn+1 arise, in fact, as the Dynkin diagrams of the
root lattices (cf. Brouwer, Cohen and Neumaier [1989]).
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Figure 17.1.12: The family F1

Theorem 17.1.13. Let G be a bipartite graph and let d∗G denote its truncated
distance. The following assertions are equivalent.

(i) d∗G is ℓ1-embeddable.

(ii) d∗G is hypermetric.

(iii) d∗G is 31-gonal.



17.1 A Characterization of Hypermetric and ℓ1-Graphs 259

(iv) G does not contain as an induced subgraph any of the thirteen graphs from
the family F1 shown in Figure 17.1.12.

(v) G is a star (i.e., G = K1,n for some n ≥ 1), or every connected component
of G is an induced subgraph of an even circuit C2n (n ≥ 2) or of one of
the graphs D̃n (n ≥ 4), Ẽ8, Ẽ7, Ẽ6 shown in Figure 17.1.11.

The proof of Theorem 17.1.13 relies on several lemmas.

Lemma 17.1.14. Let G1(V1, E1) and G2(V2, E2) be two graphs with disjoint
node sets and let G denote their clique 0-sum, with node set V1 ∪V2 and edge set
E1 ∪E2. If the truncated distance d∗Gi

of Gi admits an ℓ1-embedding of size ≤ 4
for i = 1, 2, then the truncated distance d∗G of G also admits an ℓ1-embedding of
size ≤ 4.

Proof. Say, d∗G1
=
∑
S⊆V1

αSδ(S) where αS ≥ 0 for all S and
∑
S αS = 4 (if∑

S αS ≤ 4 one can make this sum equal to 4 by introducing the empty cut with
coefficient 4 −∑S αS in the decomposition). Similarly, d∗G2

=
∑
T⊆V2

βT δ(T )
where βT ≥ 0 for all T and

∑
T βT = 4. Then, one can verify that d admits the

following decomposition:

d∗G =
1

8

∑

S⊆V1

∑

T⊆V2

αSβT [δ(S ∪ T ) + δ(S ∪ (V2 \ T ))]

with size 1
4

∑
S,T αSβT = 4.

We need a result concerning generalized line graphs. These graphs are defined
in the following manner. Let H be a graph with, say, node set {v1, . . . , vn} and
let a1, . . . , an be nonnegative integers. For every node vi of H consider a cocktail-
party graphKai×2 (all being defined on disjoint node sets). Then, the generalized
line graph L(H; a1, . . . , an) is obtained by juxtaposing the line graph L(H) of H,
the n cocktail-party graphs Kai×2, and adding for every node e := vivj of L(H)
(corresponding to an edge e in H) edges between e and all nodes of Kai×2 and
Kaj×2. Hence we obtain usual line graphs when a1 = . . . = an = 0. Line graphs
and cocktail-party graphs have an ℓ1-embeddable truncated distance; Assouad
and Delorme observed that this extends to generalized line graphs of bipartite
graphs.

Lemma 17.1.15. If H is a bipartite graph, then the truncated distance of any
generalized line graph of H admits an ℓ1-embedding of size ≤ 4.

Proof. Let V = {v1, . . . , vn} = S∪T denote the bipartition of H. Given integers
a1, . . . , an ≥ 0, we consider the generalized line graph L(H; a1, . . . , an) and we
let Yvi ∪ Y ′

vi
denote the node set on which the cocktail-party graph Kai×2 is

defined. Let V (α), Y
(α)
vi (α = 1, 2, 3, 4) be four disjoint copies of the sets V

and Yvi (i = 1, . . . , n). We now consider two cocktail-party graphs G1 and G2,



260 Chapter 17. Hypermetric Graphs

G1 being defined on the node set
⋃

α=1,2

(V (α) ∪
n⋃

i=1

Y (α)
vi

) and G2 being defined

on
⋃

α=3,4

(V (α) ∪
n⋃

i=1

Y (α)
vi

) (with the obvious pairing for opposite nodes). We

now construct an isometric embedding of L(H; a) equipped with the truncated
distance into the Cartesian product of G1 and G2. Namely, to a node vivj of

L(H) (where vi ∈ S and vj ∈ T ), assign the pair (v
(1)
i , v

(3)
j ); to a node y ∈ Yvi

(resp. y ∈ Y ′
vi

) with vi ∈ S, associate the pair (v
(1)
i , y(3)) (resp. (v

(1)
i , y(4))); to

a node y ∈ Yvi (resp. y ∈ Y ′
vi

) with vi ∈ T , associate the pair (y(1), v
(3)
i ) (resp.

(y(2), v
(3)
i )). The result now follows since a cocktail-party graph is ℓ1-embeddable

with size 2, which implies that the Cartesian product of two cocktail-party graphs
has an ℓ1-embedding of size 4.

Lemma 17.1.16. For each of the graphs C2n (n ≥ 2), D̃n (n ≥ 4), Ẽ6, Ẽ7, Ẽ8,
the truncated distance admits an ℓ1-embedding of size ≤ 4.

Proof. For C2n and D̃n, the result follows by applying Lemma 17.1.15. This is
obvious for C2n as C2n = L(C2n). On the other hand, D̃n can be obtained as
an induced subgraph of the line graph L(C2m; a) of some even circuit choosing
a with all zero components except two equal to 1. We now indicate explicit ℓ1-
embeddings for the truncated distances of Ẽ6, Ẽ7, Ẽ8 (using the node labelings
shown in Figure 17.1.11), of respective sizes 3,4,4:

2d∗
Ẽ6

= δ({1, 2, 5}) + δ({1, 4, 5}) + δ({1, 2, 7}) + δ({4, 5, 7}) + δ({1, 6, 7})
+δ({5, 6, 7});

2d∗
Ẽ7

= δ({1, 2, 5, 7, 8}) + δ({1, 2, 3, 4, 8}) + δ({1, 6, 8}) + δ({2, 3, 6})
+δ({1, 2}) + δ({4, 5}) + δ({7}) + δ({8});

2d∗
Ẽ8

= δ({1, 2, 5, 7}) + δ({1, 2, 3, 4}) + δ({1, 6}) + δ({2, 3, 6})
+δ({1, 2, 8, 9}) + δ({4, 5}) + δ({9}) + δ({7, 8}).

Proof of Theorem 17.1.13. The implications (i) =⇒ (ii) =⇒ (iii) are obvious.
The implication (iii) =⇒ (iv) relies on the fact that each of the graphs G ∈ F1

has a nonhypermetric truncated distance. That is, there exists an integer vector
b with

∑
i bi = 1 such that Q(b)Td∗G > 0. Explicit values for b are indicated

for each graph of F1 in Figure 17.1.12. Note that
∑
i |bi| ≤ 31 with equality for

graph T8.
The implication (v) =⇒ (i) is immediate. Indeed, d∗G is obviously ℓ1-embeddable
if G is a star and otherwise the assertion follows from Lemmas 17.1.14 and
17.1.16.
We now show the last implication (iv) =⇒ (v). Let G be a bipartite graph
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not containing any of the thirteen graphs from Figure 17.1.12 as an induced
subgraph. We first claim that

(a) every connected component of G is a tree or an even circuit.

Indeed suppose that H is a connected component of G which is not a tree nor a
circuit. Let C be an induced circuit in H of minimum length; thus, |C| ≥ 4 and
is even. There exists a node x outside C adjacent to some node of C. In fact,
if |C| ≥ 6, then x is adjacent to exactly one node of C (by minimality of |C|);
then we find R6, R8 or T7 as an induced subgraph of H if |C| = 6, 8 or ≥ 10,
respectively. If |C| = 4 and x is adjacent to only one node of C, then we find R4

and, if |C| = 4 and x is adjacent to 2 nodes of C, then we find K2,3. Thus, (a)
holds.

If G has a node of degree ≥ 5, then G is connected (else, we find K1,5 +K1

as an induced subgraph of G) and, moreover, G is a star (else, we find S4).
We can now suppose that G has maximum degree ≤ 4. Let H be a connected

component of G with maximum degree ∆, which is a tree; we show that H
is an induced subgraph of D̃n, Ẽ6, Ẽ7, or Ẽ8. If ∆ ≤ 2 then H is a path
and, thus, is contained in D̃n. If ∆ = 4 then H = K1,4 = D̃4 (else we find
S4 as induced subgraph). We now suppose that ∆ = 3. Let x be a node of
degree 3 in H, let L1, L2, L3 denote the connected components of H\x and, for
i = 1, 2, 3, let mi denote the longest geodesic distance from x to a node in Li.
Say, 1 ≤ m1 ≤ m2 ≤ m3. Observe that m3 ≥ 3 =⇒ m1 = 1 (because of T6),
m2 ≥ 3 =⇒ m3 = 3 (because of T7), m1 = 1 and m3 ≥ 6 =⇒ m2 = 1 (because
of T8). We distinguish two cases.
Case 1: There exists a node x of degree 3 in H for which m2 ≥ 2. Then, in
view of the above observations, the only possibilities for (m1,m2,m3) are the
following sequences: (1,2,2), (2,2,2), (1,3,3), (1,2,3), (1,2,4) and (1,2,5). Now
H has no node outside L1 ∪ L2 ∪ L3 (else one would find one of the forbidden
induced subgraphs) and, thus, H is an induced subgraph of Ẽ6, Ẽ7 or Ẽ8.
Case 2: Every node of degree 3 in H has m2 = 1. Then, we obtain that H is
an induced subgraph of some D̃n.

On the other hand, there is no finite point criterion, analogue to Theorem
17.1.13, for truncated distances of general graphs. Indeed, for every n ≥ 2,
there exists a graph G on 2n + 1 nodes whose truncated distance is not hy-
permetric while the truncated distance of any proper induced subgraph of G
is ℓ1-embeddable. We present in Example 17.1.17 below an example of such
graph, taken from Assouad and Delorme [1982]. We state a preliminary result
for generalized line graphs.

Example 17.1.17. Let Gn denote the generalized line graph L(C2n−1, a), where
C2n−1 is the circuit on 2n− 1 nodes and a := (1, 0, . . . , 0). Figure 17.1.18 shows
the graph G4 on 9 nodes. The truncated distance of Gn is not hypermetric (as it
violates the pure hypermetric inequality where the ±1 coefficients are assigned
as indicated in Figure 17.1.18). On the other hand, the truncated distance of
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any proper induced subgraph of Gn is ℓ1-embeddable. Indeed, if we delete a
node of degree 2 on the circuit, we find the generalized line graph of a path and,
if we delete a node of degree 4, we find a tree which is a subtree of some Dn. In
both cases, we find a graph whose truncated distance is ℓ1-embeddable (recall
Lemmas 17.1.15 and 17.1.16). Finally if we delete one of the two remaining
nodes of degree 2, an ℓ1-embedding can be very easily constructed.

1 1

-1

11

-1-1

1

-1

Figure 17.1.18: A minimal graph whose truncated distance is not hypermetric

Finally, let us mention that Assouad and Delorme [1980, 1982] have char-
acterized the graphs whose truncated distance is hypercube embeddable at any
given scale λ; they show the existence of an integer n(λ) such that λd∗G is hy-
percube embeddable whenever this holds for any induced subgraph of G on at
most n(λ) nodes. This result will be discussed in detail in Section 24.4.

17.2 Hypermetric Regular Graphs

In this section we consider regular graphs and some subclasses such as distance-
regular graphs and strongly regular graphs (defined later). Recall that a graph G
is said to be regular if all its nodes have the same degree, called the valency of G.
We aim again at understanding which such graphs enjoy metric properties such
as hypermetricity, ℓ1-embeddability, being of negative type, etc. We address this
question for both the path metric and the truncated distance.

Properties of the Truncated Distance of a Regular Graph. We group
here several results on the hypermetricity of the truncated distance space of a
regular graph. They will apply, in particular, to the usual path metric of strongly
regular graphs, i.e., distance-regular graphs of diameter 2.

Given a graph G on n nodes, we denote by D∗
G the symmetric n× n matrix

whose (i, j)-th entry is equal to d∗G(i, j), for all i, j ∈ V (G). We recall that AG
denotes the adjacency matrix of G.

The first result is from Deza and Grishukhin [1993] and gives several equiva-
lent characterizations for the regular graphs whose truncated distance is hyper-
metric.
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Proposition 17.2.1. Let G be a connected regular graph on n nodes with valency
k. The following assertions are equivalent.

(i) d∗G is of negative type.

(ii) the distance space (V (G), 2d∗G) has a spherical representation with radius
r satisfying r2 < 2.

(iii) d∗G is hypermetric.

(iv) ∇G is of negative type.

(v) λmin(AG) ≥ −2.

(vi) D∗
G has exactly one positive eigenvalue.

Moreover, if d∗G is hypermetric, then the radius r of the Delaunay polytope asso-
ciated with the space (V (G), 2d∗G) is given by

(17.2.2) r2 = 2 − k + 2

n
.

Proof. (i) =⇒ (ii) Note that
∑

i∈V (G)

2d∗G(i, j) = 2(2n−2−k) is a constant. Hence,

by Proposition 14.4.1, (V (G), 2d∗G) has a spherical representation whose radius
r is given by relation (14.4.2). Therefore, r2 = 2 − k+2

n and, thus, r2 < 2.
The implication (ii) =⇒ (iii) follows from Proposition 14.4.4.
(iii) =⇒ (iv) By Proposition 14.4.3, the radius of the Delaunay polytope as-
sociated with (V (G), 2d∗G) is given by (17.2.2). Since (V (∇G), 2d∇G) is the
spherical 2-extension of the space (V (G), 2d∗G), we deduce from Lemma 14.4.5
that (V (∇G), d∇G) is of negative type.
The equivalence (iv) ⇐⇒ (v) follows from Proposition 17.1.4.
(v) =⇒ (vi) Let λ1 = k, λ2, . . . , λn ≥ −2 denote the eigenvalues of the adjacency
matrix AG of G. Note that

D∗
G = 2J − (AG + 2I),

where J is the n × n matrix of all ones. The vector of all ones is a common
eigenvector of AG and D∗

G for the eigenvalues k and 2n−2−k, respectively. One
checks easily that the other eigenvalues of D∗

G are −λ2 − 2, . . . ,−λn − 2 which
are all nonpositive. Hence, 2n− 2 − k is the only positive eigenvalue of D∗

G.
The implication (vi) =⇒ (v) follows by reversing the arguments used above for
the implication (v) =⇒ (vi). Using the obvious implication (iv) =⇒ (i), we
obtain the equivalence of (i)-(vi).

Proposition 17.2.1 applies, in particular, to the regular graphs of diameter
2; then, the two distances dG and d∗G coincide. However, without the regularity
assumption, the equivalence of (i)-(vi) does not hold. For instance, K9 \ P3 has
diameter 2, is not regular, satisfies (v) but not (iii) (recall Example 14.4.9).
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Let G be a connected regular graph with λmin(AG) ≥ −2. Hence, its trun-
cated distance d∗G is hypermetric. Let P∗

G denote the Delaunay polytope asso-
ciated with the space (V (G), 2d∗G) and let H∗

G denote its 1-skeleton graph. By
Proposition 14.3.3, (V (G), d∗G) is an isometric subspace of the graphic metric
space (V (H∗

G), dH∗
G
). By Proposition 14.3.5, P∗

G is a Delaunay polytope in a
root lattice and, thus, H∗

G is a direct product of some of the Delaunay polytope
graphs shown in Figure 14.3.1. The next result from Deza and Grishukhin [1993]
shows that, if H∗

G is a nontrivial direct product, then it can only be the direct
product of two complete graphs.

A bipartite graph B with bipartition V1 ∪ V2 of its set of nodes is said to be
semiregular if all nodes in V1 (resp. all nodes in V2) have the same degree.

Lemma 17.2.3. Let G be a connected regular graph on n nodes with valency
k. Suppose that λmin(AG) ≥ −2 and let H∗

G denote the 1-skeleton graph of the
Delaunay polytope P∗

G associated with (V (G), 2d∗G). If H∗
G is a nontrivial direct

product, then H∗
G = Kn1 × Kn2 for some n1, n2 ≥ 1, G is the line graph of a

bipartite semiregular graph and

n =
n1 + n2

n1n2
(k + 2).

Proof. Suppose that H is the nontrivial direct product H1×H2. By the assump-
tion, (V (G), d∗G) is an isometric subspace of the graphic metric space (V (H), dH ).
Let

f : i ∈ V (G) 7→ f(i) = (f1(i), f2(i)) = (i1, i2) ∈ V (H1) × V (H2)

denote this isometric embedding. For i ∈ V (G), set

V1(i) := {j ∈ V (G) | f1(i) = f1(j)}, V2(i) := {j ∈ V (G) | f2(i) = f2(j)}.

If i, j are adjacent in G, then j ∈ V1(i) ∪ V2(i). Conversely, we check that, if
|V1(i)|, |V2(i)| > 1, then both V1(i) and V2(i) induce a complete graph in G.

For this, let j ∈ V1(i) and h ∈ V2(i) with j 6= i, h 6= i. Then,

2 ≥ d∗G(j, h) = dH1(j1, h1) + dH2(j2, h2) = dH1(i1, h1) + dH2(j2, i2)

(since i1 = j1 and i2 = h2) which is equal to d∗G(i, h)+d∗G(i, j) ≥ 2. This implies
that d∗G(i, h) = d∗G(i, j) = 1, i.e., both h and j are adjacent to i. One deduces
easily that any two nodes in V1, or in V2, are adjacent.

Therefore, if |V1(i)|, |V2(i)| > 1, then |V1(i)| + |V2(i)| = k + 2. For j ∈ V1(i),

V1(i) = V1(j), k + 2 ≤ |V1(j)| + |V2(j)|,

implying that |V2(i)| ≤ |V2(j)| and, thus, |V1(j)|, |V2(j)| > 1, yielding

k + 2 = |V1(j)| + |V2(j)| and, thus, |V2(j)| = |V2(i)|.

Therefore, sinceG is connected, there exist integers p, q ≥ 1 such that |V1(i)| = p,
|V2(i)| = q for all i ∈ V (G).
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Let B denote the bipartite graph with node bipartition V1 ∪ V2, where

V1 := f1(V (G)) ⊆ V (H1) and V2 := f2(V (G)) ⊆ V (H2),

and two nodes i1 ∈ V1, i2 ∈ V2 are adjacent in B if (i1, i2) = f(i) for some node
i ∈ V (G). So each node of V1 (resp. of V2) has valency p (resp. q), i.e., B is
semiregular. It is immediate to see that G is the line graph of B.

We now show that H1 and H2 are complete graphs. Set n1 := |V1|, n2 := |V2|
and n := |V (G)|. Let r denote the radius of the Delaunay polytope P∗G; r is
given by relation (17.2.2). So,

r2 = 2 − k + 2

n
=
n1 − 1

n1
+
n2 − 1

n2
.

Let rm denote the radius of the Delaunay polytope whose 1-skeleton graph is
the graph Hm, for m = 1, 2. Then, r2 = r21 + r22 holds. We use the following
observation: For each Delaunay polytope P in a root lattice, its radius r satisfies

r2 ≥ |V (P )| − 1

|V (P )|

with equality if and only if P is a simplex. Therefore,

r2m ≥ |V (Hm)| − 1

|V (Hm)| ≥ nm − 1

nm
,

since |V (Hm)| ≥ nm, for m = 1, 2. But,

r2 = r21 + r22 =
n1 − 1

n1
+
n2 − 1

n2
,

from which we deduce that

r2m =
nm − 1

nm
, |V (Hm)| = nm

and, thus, Hm is the complete graph Knm for m = 1, 2.

Corollary 17.2.4. Let G be a connected regular graph on n nodes with valency
k and such that λmin(AG) ≥ −2. Then, one of the following assertions holds.

(i) G is the line graph of a bipartite semiregular graph and n = n1n2
n1+n2

(k + 2),
for some n1, n2 ≥ 1.

(ii) G is the line graph of a regular graph and n = m
4 (k + 2) for some m ≥ 3.

(iii) G = Km×2 and n = k + 2.

(iv) G is an induced subgraph of the Gosset graph G56 and n = 2(k + 2).

(v) G is an induced subgraph of the Schläfli graph G27 and n = 3
2 (k + 2).

(vi) G is an induced subgraph of the Clebsch graph 1
2H(5, 2) and n = 3

2 (k + 2).



266 Chapter 17. Hypermetric Graphs

Proof. Let H∗
G denote the 1-skeleton graph of the Delaunay polytope P∗G associ-

ated with the hypermetric space (V (G), 2d∗G). If H∗
G is a direct product, then we

have (i) by Lemma 17.2.3. So we now suppose that H∗
G is one of the Delaunay

polytope graphs from Figure 14.3.1. We know that the radius r of P∗G satisfies
r2 = 2 − k+2

n < 2.

• If H∗
G = J(m, t) for some t ≥ 1, n ≥ 2t, then r2 = t(m−t)

m < 2 implying
that t = 1, 2, 3. If H∗

G = J(m, 1) = Km, then G = H∗
G = Km is the line

graph of the bipartite semiregular graph K1,m; hence, m = n and we have (i).
If H∗

G = J(m, 2) = L(Km), then G is a line graph. Since G is regular, one
can check that G is the line graph of a regular graph or a bipartite semiregular
graph. Since r2 = 2(m−2)

m , we deduce that n = m
4 (k + 2). So, we have (i) or

(ii). If H∗
G = J(m, 3), then m = 6, 7, 8. If H∗

G = J(6, 3), then G is an induced
subgraph of G56 and r2 = 3

2 = 2 − k+2
n , yielding n = 2(k + 2), i.e., we have (iv).

The cases m = 7, 8 are excluded. Indeed, one can check that every subgraph K
of J(m, 3) (m = 7, 8) such that K is not contained in J(6, 3) nor in J(n, 2) and
such that no pair of nodes of K is at distance 3 in J(m, 3) has strictly less than
m(k+2)
9−m nodes.

• If H∗
G = Km×2, then we have (iii).

• If H∗
G = 1

2H(m, 2) for some m ≥ 4, then r2 = m
4 < 2, implying that m =

4, 5, 6, 7. If m = 4, then H∗
G = K4×2 and, thus, we have (iii). If m = 5, then

r2 = 5
4 yielding n = 4

3(k + 2) and, thus, we have (vi). If m = 6, then r2 = 3
2

yielding n = 2(k + 2) and, thus, we have (iv) since 1
2H(6, 2) is an isometric

subgraph of G56. The case m = 7 is excluded (similarly to the exclusion above
of the cases J(7, 3) and J(8, 3); indeed, there is no k-regular subgraph of12H(7, 2)
on n = 4(k+2) nodes which is not contained in 1

2H(6, 2) or J(7, 2) and does not
contain a pair of vertices at distance 3).

• If H∗
G = G56, then we have (iv) and, if H∗

G = G27, then we have (v).

Remark 17.2.5. Under the assumptions of Corollary 17.2.4, the only possibili-
ties for the 1-skeleton graph H∗

G of the Delaunay polytope P∗
G associated with the

hypermetric space (V (G), 2d∗G) are H∗
G = Kn1 ×Kn2 , J(m, 1), J(m, 2), J(6, 3),

Km×2,
1
2H(5, 2), 1

2H(6, 2), G27 and G56. In particular, if G is not a line graph
nor a cocktail-party graph, then H∗

G is one of J(6, 3), 1
2H(5, 2), 1

2H(6, 2), G27

or G56. Note that the radius r of the Delaunay polytope P∗G satisfies r2 = 5
4 for

1
2H(5, 2), r2 = 4

3 for G27 and r2 = 3
2 for 1

2H(6, 2), J(6, 3) and G56.

The graphs for which λmin(AG) ≥ −2 have been intensively studied in the
literature.

Clearly, λmin(AG) ≥ −2 for every line graph G (indeed, if G = L(H), then
2I + AG = NTN is positive semidefinite, where N is the node-edge incidence
matrix of H). Moreover, λmin(AG) = −2 if G is a cocktail-party graph. More
generally, λmin(AG) ≥ −2 for all generalized line graphs.

In fact, generalized line graphs constitute (up to a finite number of excep-
tions) the only connected graphs with λmin(AG) ≥ −2. More precisely, Cameron,
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Goethals, Seidel and Shult [1976] show the following results: If G is a con-
nected graph on n > 36 nodes satisfying λmin(AG) ≥ −2, then G is a gener-
alized line graph. Moreover, if G is connected regular with n > 28 nodes and
λmin(AG) ≥ −2, then G is a line graph or a cocktail-party graph.

This leads us to consider the class LBCS , consisting of the connected regular
graphs with λmin(AG) ≥ −2 and which are not line graphs nor cocktail-party
graphs. Bussemaker, Cvetković and Seidel [1976] have completely described the
graphs in LBCS . The class LBCS consists of 187 graphs, each of them has n ≤ 28
nodes and valency k ≤ 16. The graphs in LBCS are partitioned into three layers
L1, L2, L3 depending on the value of the quantity n

k+2 , where n is the number
of nodes and k the valency of a graph in LBCS . The layer L1 (resp. L2, L3)
consists of the graphs G ∈ LBCS for which n

k+2 = 2 (resp. n
k+2 = 3

2 , n
k+2 = 4

3).

Our approach permits to shed a new light on the parameter k+2
n characteriz-

ing each layer of LBCS . Namely, the parameter k+2
n is nothing but the quantity

2 − r2, where r is the radius of the Delaunay polytope associated with the hy-
permetric space (V (G), 2d∗G) for any graph G ∈ LBCS . Therefore, each layer in
LBCS is characterized by a quantity directly derived from the hypermetricity of
its graphs.

We summarize below several facts about the class LBCS and its three layers.

• The first layer L1 consists of 163 graphs (the graphs NN1-163 in Bussemaker,
Cvetković and Seidel [1976]); it is characterized by n

k+2 = 2. For each graph
G ∈ LBCS , the Delaunay polytope P∗

G associated with the hypermetric space
(V (G), 2d∗G) has radius 3

2 and its 1-skeleton graph is 1
2H(6, 2), J(6, 3), or G56.

Hence, each graph G ∈ L1 is an induced subgraph of G56 and thus has diameter 2
or 3. Therefore, the graphs of L1 with diameter 2 are hypermetric with Delaunay
polytope graph 1

2H(6, 2), J(6, 3), or G56.

• The second layer L2 consists of 21 graphs (the graphs NN164-184 in Busse-
maker, Cvetković and Seidel [1976]) including the Schläfli graph G27 (which is
N184). It is characterized by the value n

k+2 = 3
2 . For each G ∈ L2, the Delaunay

polytope P∗
G is 221 with radius r, r2 = 4

3 . Hence, each G ∈ L2 is an isometric
subgraph of G27 and thus has diameter 2 and is hypermetric.

• The third layer L3 consists of 3 graphs; they are the Clebsch graph 1
2H(5, 2)

(N187 in Bussemaker, Cvetković and Seidel [1976]) and two of its regular sub-
graphs (the graphs NN185,186). L2 is characterized by the value n

k+2 = 4
3 . For

each graph G ∈ L3, P
∗
G = hγ5 with radius r, r2 = 5

4 , with 1-skeleton graph
1
2H(5, 2). Therefore, each graph of L3 is an isometric subgraph of 1

2H(5, 2) and
thus has diameter 2 and is an ℓ1-graph with Delaunay polytope graph 1

2H(5, 2).

Properties of the Path Metric of a Distance-Regular Graph. We con-
clude this section with some results on hypermetric distance-regular graphs. A
graph G is said to be distance-regular if there exist integers bm, cm (m > 0) such
that for any two nodes i, j ∈ V (G) at distance dG(i, j) = m there are exactly
cm nodes at distance 1 from i and distance m − 1 from j, and there are bm
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nodes at distance 1 from i and distance m+ 1 from j. Hence, G is regular with
valency b0 and there are km nodes at distance m from any node i ∈ V (G), where
k0 = 1, k1 = 1, km+1 = kmbm

cm+1
, m ≥ 0. Let µ denote the number of common

neighbors of two nodes at distance 2, i.e., µ = c2. A strongly regular graph is a
distance-regular graph of diameter 2.

Note that the quantity
∑
i∈V (G) dG(i, j) =

∑
m≥0mkm does not depend on

j ∈ X for a distance-regular graph. Hence, we can derive the following result
(e.g., from Theorem 6.2.18).

Proposition 17.2.6. For a distance-regular graph G, the following are equiva-
lent.

(i) G is of negative type.

(ii) The graphic metric space (V (G), dG) has a spherical representation.

(iii) The distance matrix DG has exactly one positive eigenvalue.

Koolen and Shpectorov [1994] have completely classified the distance-regular
graphs of negative type. We present below their classification; we refer, e.g.,
to Brouwer, Cohen and Neumaier [1989] for the description of the graphs not
defined here.

Theorem 17.2.7. Let G be a distance-regular graph. Then, G is of negative
type if and only if one of the following holds.

(i) µ = 2n− 2 and G is a cocktail-party graph Kn×2.

(ii) µ = 10 and G is the Gosset graph G56.

(iii) µ = 8 and G is the Schläfli graph G27.

(iv) µ = 6 and G is a half-cube graph 1
2H(n, 2) (n ≥ 4).

(v) µ = 4 and G is one of the three Chang graphs.

(vi) µ = 4 and G is a Johnson graph J(n, d) (d ≥ 2).

(vii) µ = 2 and G is a Hamming graph H(n, d) (= (Kd)
n) (n, d ≥ 2).

(viii) µ = 2 and G is a Doob graph (including the Shrikhande graph).

(ix) µ = 2 and G is the icosahedron graph.

(x) µ = 1 and G is the dodecahedron graph.

(xi) µ = 1 and G is the Petersen graph.

(xii) µ = 1 and G is a circuit Cn.

(xiii) µ = 1 and G is a double-odd graph DO2n+1.

(xiv) µ = 0 and G is a complete graph Kn.
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In fact, all the graphs listed in Theorem 17.2.7 are hypermetric. Therefore,

Corollary 17.2.8. A distance-regular graph is hypermetric if and only if it is
of negative type, i.e., if it is one of the graphs (i)-(xiv).

Therefore, the metric hierarchy from Theorem 6.3.1 partially collapses for
distance-regular graphs; we will see in Theorem 19.2.8 that it also does for con-
nected bipartite graphs.

Note that all the graphs listed in Theorem 17.2.7, with the exception of G27,
G56 and the three Chang graphs, are ℓ1-graphs and, if we exclude moreover Kn×2

for n ≥ 5, all of them are isometric subgraphs of a half-cube graph. Hence,

Corollary 17.2.9. Let G be a distance-regular graph.

(i) G is an ℓ1-graph if and only if G is one of the graphs from (i), (iv), or
(vi)-(xiii).

(ii) G is an isometric subgraph of a half-cube graph if and only if G is one of
the graphs from (iv), (vi)-(xiv).

(iii) G is an isometric subgraph of a hypercube graph if and only if G is a
double-odd graph DO2n+1, a hypercube H(n, 2), or an even circuit C2n.

(iv) Suppose that G be a strongly regular graph. Then, G is hypermetric if and
only if G is Kn ×Kn, J(n, 2), Kn×2,

1
2H(5, 2), G27, the 5-circuit C5, the

Petersen graph, the Shrikhande graph, or one of the three Chang graphs.

The assertion (ii) was obtained by Shpectorov [1996]; (iii) can be found in Koolen
[1990] and in Weichsel [1992]; and (iv) in Koolen [1990] and in Deza and Gr-
ishukhin [1993]. Further results concerning the distance-regular graphs satisfying
some subclass of hypermetric inequalities (such as, for instance, the pentagonal
inequalities, or the 6-gonal inequalities) can be found in Koolen [1990, 1994].

17.3 Extreme Hypermetric Graphs

In this section, we consider extreme hypermetrics arising graphs, i.e., the graphs
G whose path metric dG (or whose truncated distance d∗G) lies on an extreme ray
of the hypermetric cone. We remind that G is said to be hypermetric when its
path metric is hypermetric. All the results presented here are taken from Deza
and Grishukhin [1993].

Let G be a hypermetric graph. Let PG denote the Delaunay polytope asso-
ciated with the hypermetric space (V (G), 2dG) and let HG denote its 1-skeleton
graph. Hence, PG is a Delaunay polytope in a root lattice and G is an iso-
metric subgraph of HG. Moreover, G is an extreme hypermetric if and only if
P is an extreme Delaunay polytope (by Theorem 15.1.8). By Theorem 16.0.1,
the only extreme Delaunay polytopes in a root lattice are the segment α1, the
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Schläfli polytope 221 and the Gosset polytope 321. Therefore, if G is an extreme
hypermetric graph distinct from K2, then we are in one of the following two
situations:

(i) Either HG = G56, i.e., G is an isometric subgraph of G56 which is gen-
erating (i.e., V (G) viewed as subset of the set of vertices V (321) of 321

generates V (321)); we then say that G is an extreme hypermetric graph of
Type I.

(ii) Or HG = G27, i.e., G is an isometric subgraph of G27 which is generating
(i.e., V (G) generates V (221)); we then say that G is an extreme hypermetric
graph of Type II.

A generating subset in G27 has at least 7 elements. We found that there
are 26 distinct (up to permutation) generating subsets in G27 with 7 elements
(i.e., basic subsets of 221; see Section 16.2). For B ⊆ V (G27), recall that G27[B]
denotes the subgraph of G27 induced by B. Note that G27[B] is an isometric
subgraph of G27 if and only if G27[B] has diameter 2 and, in this case, G27[B]
is a hypermetric graph. Among the 26 basic subsets B of G27 (whose graphs
G27[B] are shown in Figures 16.2.4, 16.2.5, 16.2.6 and 16.2.7), the graph G27[B]
has diameter 2 for twelve of them, namely for the graphs Gi for 1 ≤ i ≤ 8,
G16, G18, G24, and G26. Hence, these twelve graphs are extreme hypermetric
graphs on 7 nodes with Delaunay polytope graph G27. For each of these twelve
graphs Gi, their suspension ∇Gi (for 1 ≤ i ≤ 8, i = 16, 18, 24, 26) is an extreme
hypermetric graph on 8 nodes with Delaunay polytope graph G56.

G G G G16 18 24  26

Figure 17.3.1

We recall that G1 = ∇B9, G2 = ∇H2, G3 = ∇H1, G4 = ∇B8, G5 = ∇B7,
G6 = ∇H4, G7 = ∇H3 and G8 = ∇B5, where the graphs Bi (1 ≤ i ≤ 8) and Hi
(1 ≤ i ≤ 4) are shown in Figures 17.1.3 and 17.1.6. We show in Figure 17.3.1 the
graphs G16, G18, G24 and G26 (their complements are shown in Figures 16.2.5,
16.2.6 and 16.2.7).

Lemma 17.3.2. Let H be a maximal (by inclusion) Delaunay polytope graph
which is a proper isometric subgraph of G56. Then, H is one of the following
graphs:
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(i) H = J(8, 2).

(ii) H = K6×2 ×K2.

(iii) H = 1
2H(6, 2).

(iv) H = G27.

Proof. We know that H is a direct product of the Delaunay polytope graphs from
Figure 14.3.1. Let r denote the radius of the Delaunay polytope whose 1-skeleton
graph is H. Then, r2 ≤ 3

2 , since H is contained in G56. (We remind that, for
two graphs H1 and H2, H1 →֒ H2 means that H1 is an isometric subgraph of
H2.)

• If H = J(n, t), then r2 = t(n−t)
n ≤ 3

2 , implying that t = 1, 2, 3. Then, H is not
maximal except for J(8, 2). Indeed, if t = 1, then n ≤ 7 and Kn →֒ J(8, 2); if
t = 2, then n ≤ 8 and J(n, 2) →֒ J(8, 2); if t = 3, then n = 6 and J(6, 3) →֒
1
2H(6, 2).

• If H = Kn×2, then n ≤ 6 and Kn×2 →֒ K6×2 ×K2.

• If H = 1
2H(n, 2), then r2 = n

4 ≤ 3
2 , implying that n ≤ 6 and thus H →֒

1
2H(6, 2).

Else H = G27 or H is a direct product. Suppose that H = H1 × H2. Denote
by r1, r2 the radius of the Delaunay polytope whose 1-skeleton graph is H1, H2,
respectively. Then, r2 = r21 + r22 ≤ 3

2 . Looking at the radii of the Delaunay
polytopes from Figure 14.3.1, it is easy to see that the only possibility is H1 =
K6×2, H2 = K2 (r21 = 1, r22 = 1

2 ) (for instance, for H1 = H2 = K4, r
2
1 = r22 = 3

4
but K4 ×K4 →֒ J(8, 2)).

Lemma 17.3.3. Let H be a maximal (by inclusion) Delaunay polytope graph
which is a proper isometric subgraph of G27. Then, one of the following holds.

(i) H = J(6, 2).

(ii) H = K5×2.

(iii) H = 1
2H(5, 2).

(iv) H = K6.

Proof. The proof is similar to that of Lemma 17.3.2. We use the fact that the
radius r of the Delaunay polytope whose 1-skeleton graph is H satisfies r2 ≤ 4

3 .
It is easily seen that H cannot be a direct product.

• If H = J(n, t), then r2 = t(n−t)
n ≤ 4

3 , implying that t = 1, 2 and n ≤ 6. Hence,
we have (i) or (iv).

• If H = Kn×2, then n ≤ 5 (because K6×2 is not contained in G27) and thus
H →֒ K5×2.

• If H = 1
2H(n, 2), then r2 = n

4 ≤ 4
3 , implying that n ≤ 5 and thus H →֒

1
2H(5, 2).
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We deduce the following characterization for extreme hypermetric graphs.

Proposition 17.3.4. Let G be a connected graph distinct from K2. Then, G is
an extreme hypermetric graph if and only if one of the following assertions hold.

(I) G is an isometric subgraph of G56 and G is not an isometric subgraph of
J(8, 2), K6×2 ×K2,

1
2H(6, 2) or G27.

(II) G is an isometric subgraph of G27 and G is not an isometric subgraph of
K5×2, J(6, 2), K6 or 1

2H(5, 2).

Observe that all the excluded graphs in Proposition 17.3.4 are ℓ1-graphs. In
other words, every isometric subgraph of G56 is either an extreme hypermetric
graph or an ℓ1-graph.

As an application of Proposition 17.3.4, we obtain that:

• Every isometric subgraph of G27 on n ≥ 17 nodes is extreme.

• Every induced subgraph of G27 on n ≥ 20 nodes is extreme (since deleting
7 nodes from G27 preserves the diameter 2 because µ(G27) = 8).

• Every isometric subgraph of G56 on n ≥ 33 nodes is extreme.

• Every induced subgraph of G56 on n ≥ 47 nodes is extreme (since µ(G56) =
10).

• If G is a connected graph of diameter 2, then its suspension ∇G is an
extreme hypermetric graph of Type I if and only if G is an extreme hyper-
metric graph of Type II.

Let us finally collect some properties for the extreme hypermetric spaces
arising from the graphs G ∈ LBCS.

As we saw in Section 17.2, if G is a connected regular graph with λmin(AG) ≥
−2, then its truncated distance d∗G is hypermetric. Let P∗

G denote the Delaunay
polytope associated with (V (G), 2d∗G) and let H∗

G denote its 1-skeleton graph.
Suppose thatG belongs to the class LBCS ; that is,G is connected regular with

λmin(AG) ≥ −2 and G is not a line graph nor a cocktail-party graph. By Remark
17.2.5, H∗

G is one of J(6, 3), 1
2H(5, 2), 1

2H(6, 2), G27 or G56. Since (V (G), d∗G) is
an isometric subspace of (V (H∗

G), dH∗
G
) which, in turn, is an isometric subspace of

(V (G56), dG56), we deduce that G does not contain any pair of nodes at distance
3 in G56; in particular, if G is an induced subgraph of 1

2H(6, 2), then G has at
most n ≤ 16 nodes. Hence,

Proposition 17.3.5. Let G be a graph of LBCS. If G is not an induced sub-
graph of 1

2H(6, 2), then d∗G is extreme hypermetric. In particular, if G has n ≥ 17
nodes, then d∗G is extreme hypermetric.
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Proposition 17.3.6.

(i) A graph G ∈ LBCS is extreme hypermetric if and only if it has diameter 2
and it is not an induced subgraph of 1

2H(6, 2).

(ii) Every extreme hypermetric graph which is regular and has diameter 2 be-
longs to LBCS.

(iii) Let G be an extreme hypermetric graph from LBCS; then, G is of Type I
(resp. of Type II) if and only if G belongs to the layer L1 (resp. L2).

(iv) Every graph from LBCS on n ≥ 17 and with valency k ≥ 9 is an extreme
hypermetric graph. They are the 29 graphs in layer L1 numbered NN135−
163 and the 8 graphs in layer L2 numbered NN177 − 184.

(v) All the nine maximal (by inclusion) graphs of LBCS are extreme hyper-
metric graphs; they are the Schläfli graph G27 (numbered N184), the three
Chang graphs NN161− 163, and the five graphs NN148− 152 on 22 nodes.
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Introduction

In Part III, we study various embeddability properties of graphs. A metric
space can be attached to any connected graph in the following way. Let G =
(V,E) be a connected graph. Its path metric dG is the metric defined on V by
letting dG(a, b) denote the length of a shortest path joining a to b in G, for all
nodes a, b ∈ V . Then, (V, dG) is a metric space, called the graphic metric space
associated with G. The distance matrix of G is the matrixDG := (dG(a, b))a,b∈V .

We have seen in Part I a hierarchy of metric properties that a given distance
space may enjoy; in particular, isometric embeddability into the hypercube and
into the Banach ℓ1-, ℓ2-spaces, hypermetricity, and the negative type condition.
We study here the graphs whose path metric enjoys some of these properties.
Accordingly, a graph G is called an ℓ1-graph, a hypercube embeddable graph, a
hypermetric graph, a graph of negative type, if its path metric dG is isometrically
ℓ1-embeddable, hypercube embeddable, hypermetric, of negative type, respec-
tively.

Given two connected graphs G and H, we write

G →֒ H

and say that G is an isometric subgraph (or, distance-preserving subgraph) of H
if there exists a mapping

σ : V (G) −→ V (H)

such that
dH(σ(a), σ(b)) = dG(a, b)

for all nodes a, b ∈ V (G). We will consider in Part III in particular the cases
when the host graph H is a hypercube (see Chapter 19), a Hamming graph or,
more generally, a Cartesian product of irreducible graphs (see Chapter 20).

Several other weaker types of embeddings of graphs have been considered in
the literature. For instance, one may consider the graphs G that can be em-
bedded into H as an induced subgraph; such embeddings are called topological
embeddings and will not be considered here. An even weaker notion of embed-
ding consists of asking which graphs G can be embedded into H as a (partial)
subgraph, i.e., requiring only that the edges be preserved; see Section 19.3 where
the case of the hypercube as host graph H is briefly discussed.

The theory of isometric embeddings of graphs is a rich theory, with many
applications. The main goal is to try to embed graphs isometrically into some
other simpler graphs. Research in this area was probably motivated by a problem
in communication theory posed by Pierce [1972]. In a telephone network one
wishes to be able to establish a connection between two terminals A and B
without B knowing that a message is on its way. The idea is to let the message
be preceded by some “address” of B, permitting to decide at each node of the
network in which direction the message should proceed. Namely, the message
will proceed to the next node if its Hamming distance to the destination node
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B is shorter. The most natural way of devising such a scheme is by labeling
the nodes by binary strings, which amounts to try to embed the graph in a
hypercube. Unfortunately, not all graphs can be embedded into hypercubes. We
study in detail in Chapter 19 the hypercube embeddable graphs. We present
their basic structural characterization, due to Djokovic (Theorem 19.1.1), and
some other equivalent characterizations (Theorems 19.2.1, 19.2.5 and 19.2.8).

The notion of isometric embedding into hypercubes can be relaxed in several
ways.

First, one may consider isometric embeddings into squashed hypercubes as
in Graham and Pollack [1971]. Namely, one tries to label the nodes by sequences
using the symbols “0, 1, ∗”, with the distance between x, y ∈ {0, 1, ∗} being equal
to 1 if {x, y} = {0, 1} and to 0 otherwise. It turns out that every connected
graph on n nodes can be isometrically embedded into the squashed hypercube
of dimension n− 1 (Winkler [1983]). (Note that the squashed hypercube is not
a semimetric space.)

One may also consider isometric embeddings into arbitrary Cartesian prod-
ucts. In fact, every connected graph admits a unique canonical isometric em-
bedding into a Cartesian product whose factors are irreducible (Graham and
Winkler [1985]). This result together with some applications is presented in
Chapter 20.

Another way of relaxing isometric embeddings into hypercubes is to look for
isometric embeddings into hypercubes up to scale, i.e., to consider ℓ1-graphs;
such embeddings were first considered in Blake and Gilchrist [1973]. Chapter
21 contains results on ℓ1-graphs; among them, a polynomial time algorithm for
recognizing ℓ1-graphs and a structural characterization for isometric subgraphs
of half-cube graphs.



Chapter 18. Preliminaries on
Graphs

We introduce here several notions about graphs and embeddings, that we will
need in Part III. We start with defining a certain relation θ on the edge set of a
graph, which leads to the notion of isometric dimension of the graph.

Let G = (V,E) be a graph. Each edge (a, b) of G induces a partition of the
node set V of G into

V = G(a, b) ∪G(b, a) ∪G=(a, b),

where

(18.0.1)





G(a, b) := {x ∈ V | dG(x, a) < dG(x, b)},
G(b, a) := {x ∈ V | dG(x, b) < dG(x, a)},
G=(a, b) := {x ∈ V | dG(x, a) = dG(x, b)}.

Clearly, if G is a bipartite graph, then G=(a, b) = ∅ for each edge (a, b) of G.
The following relation θ, defined on the edge set of a graph, was first in-

troduced by Djokovic [1973]. It plays a crucial role in the theory of isometric
embeddings of graphs. Given two edges e = (a, b) and e′ = (a′, b′) of G, let

(18.0.2) e θ e′ if dG(a′, a) − dG(a′, b) 6= dG(b′, a) − dG(b′, b).

In other words, e′ is in relation by θ with e if the edge e′ “cuts” the partition
V = G(a, b) ∪ G(b, a) ∪ G=(a, b) induced by the edge e, i.e., if the endpoints
of e′ belong to distinct sets in this partition. The relation θ is clearly reflexive
and symmetric, but not transitive in general. For instance, θ is not transitive
if G is the complete bipartite graph K2,3. Actually, the relation θ is transitive
precisely when the graph G can be isometrically embedded into (K3)

m for some
m ≥ 1 (see Corollary 20.1.3). The transitive closure of θ is denoted by θ∗. The
number of equivalence classes of θ∗ is called the isometric dimension of G and is
denoted by dimI(G). As will be seen in Chapter 20, every connected graph G can
be embedded in a canonical way in a Cartesian product of dimI(G) irreducible
graphs.

We now recall further definitions needed in Part III. Given two sequences
x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm , their Hamming distance dH(x, y) is
defined by

dH(x, y) = |{i ∈ {1, . . . ,m} | xi 6= yi}|.

279
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Given two graphs G andH, their Cartesian product is the graph G×H with node
set V (G)× V (H) and whose edges are the pairs ((a, x), (b, y)) with a, b ∈ V (G),
x, y ∈ V (H) and, either (a, b) ∈ E(G) and x = y, or a = b and (x, y) ∈ E(H).
The Cartesian product H1 × . . . × Hk of k graphs H1, . . . ,Hk is also denoted

as
k∏

h=1

Hh. A Hamming graph is a Cartesian product of complete graphs, i.e.,

of the form
m∏

j=1

Kqj for some integers q1, . . . , qm,m ≥ 1. Note that the graphic

metric space of the Hamming graph
m∏

j=1

Kqj coincides with the Hamming distance

space (
m∏

j=1

{0, 1, . . . , qj − 1}, dH ). The m-hypercube graph is the graph H(m, 2)

with node set {0, 1}m and whose edges are the pairs (x, y) ∈ {0, 1}m × {0, 1}m
with dH(x, y) = 1; H(m, 2) has 2m nodes and m2m−1 edges. Hence, H(m, 2) is
isomorphic to the Hamming graph (K2)

m and its graphic metric space coincides
with the space ({0, 1}m, dH). Equivalently, given a finite set Ω, the |Ω|-hypercube
graph, also denoted as H(Ω), can be defined as the graph whose node set is the
set of all subsets of Ω and whose edges are the pairs (A,B) of subsets of Ω such
that |A△B| = 1. The half-cube graph 1

2H(m, 2) is the graph whose node set is
the set of all subsets of even cardinality of {1, . . . ,m} and with edges the pairs
(A,B) such that |A△B| = 2. The cocktail-party graph Km×2 is the complete
multipartite graph with m parts, each of size 2. Hence, Km×2 is the graph
on 2m nodes v1, . . . , v2m whose edges are all pairs of nodes except the m pairs
(vi, vi+m) for i = 1, . . . ,m.

A connected graph G is said to be hypercube embeddable if its nodes can be
labeled by binary vectors in such a way that the distance between two nodes
coincides with the Hamming distance between their labels (or, equivalently, if its
path metric dG can be decomposed as a nonnegative integer combination of cut
semimetrics). In other words, G is hypercube embeddable if G is an isometric
subgraph of (K2)

m for some m ≥ 1. Then, the smallest integer m such that G
can be isometrically embedded into H(m, 2) is denoted by mh(G). Note that
mh(G) coincides with the notion of minimum h-size sh(dG) for the path metric
of G (introduced in Section 4.3). The graph G is said to be an ℓ1-graph if its
path metric dG is ℓ1-embeddable. Equivalently, by Proposition 4.3.8, G is an
ℓ1-graph if G is hypercube embeddable, up to scale; then the smallest integer η
such that ηdG is hypercube embeddable is called the minimum scale of G. G is
an ℓ1-rigid graph if its path metric dG is ℓ1-rigid (see Section 4.3 for the definition
of ℓ1-rigidity). Observe that the Cartesian product G×H is an ℓ1-rigid graph if
and only if both graphs G and H are ℓ1-rigid (see Section 7.5).

More generally, a graph G is an isometric subgraph of a Hamming graph
if and only if its path metric dG can be decomposed as a nonnegative integer
combination of multicut semimetrics (recall Proposition 4.2.9). If (S1, . . . , St) is
a partition of Vn, then the multicut semimetric δ(S1, . . . , St) can be decomposed
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in the following way:

δ(S1, . . . , St) =
1

2

∑

1≤i≤t
δ(Si).

This implies that, for every isometric subgraph G of a Hamming graph, 2dG
is a nonnegative integer combination of cut semimetrics, i.e., 2dG is hypercube
embeddable. In other words, every isometric subgraph of a Hamming graph is an
ℓ1-graph with scale ≤ 2 or, equivalently, is an isometric subgraph of a half-cube
graph. We summarize in the figure below the links existing between the various
embeddings just discussed. In fact, as we will see here, each of the following
graph properties can be checked in polynomial time.

G is hypercube embeddable
=⇒ G is an isometric subgraph of a Hamming graph
=⇒ G is an isometric subgraph of a half-cube graph
=⇒ G is an ℓ1-graph





Chapter 19. Isometric Embeddings
of Graphs into Hypercubes

We study in this chapter the graphs that can be isometrically embedded into
hypercubes. We give several equivalent characterizations for these graphs in
Theorems 19.1.1, 19.2.1, 19.2.5 and 19.2.8. As an application, one can recog-
nize in polynomial time whether a graph can be isometrically embedded in a
hypercube. Hypercube embeddable graphs admit, in fact, an essentially unique
embedding in a hypercube; two formulations for the dimension of this hypercube
are given in Propositions 19.1.2 and 19.2.12.

19.1 Djokovic’s Characterization

We recall that, given a graph G = (V,E), a subset U ⊆ V is said to be dG-convex
or, simply, convex if it is closed under taking shortest paths.

We now state the main result of this section, which is a structural character-
ization of the hypercube embeddable graphs, due to Djokovic [1973]. Recall the
definition of the set G(a, b) from relation (18.0.1).

Theorem 19.1.1. Let G be a connected graph. The following assertions are
equivalent.

(i) G can be isometrically embedded into a hypercube.

(ii) G is bipartite and G(a, b) is convex for each edge (a, b) of G.

Proof. (i) =⇒ (ii) If G is hypercube embeddable, then its path metric dG satisfies

dG(a, b) + dG(a, c) + dG(b, c) ≡ 0 (mod 2)

for all nodes a, b, c of G, which means that G is bipartite. Let us now check
the convexity of G(a, b) for all adjacent nodes a, b. Let (a, b) be an edge of G,
let x, y ∈ G(a, b) and z ∈ V lying on a shortest path from x to y. Consider a
hypercube embedding of G in which node a is labeled by ∅, node b is labeled
by a singleton {1}, and nodes x, y, z are labeled by the sets X,Y,Z. Then,
1 6∈ X,Y since x, y ∈ G(a, b), and |X△Y | = |X△Z| + |Y△Z| since dG(x, y) =
dG(x, z) + dG(z, y). This implies that 1 6∈ Z, i.e., that z ∈ G(a, b). This shows
that the set G(a, b) is convex.
(ii) =⇒ (i) We first show that, given two edges e = (a, b), e′ = (a′, b′) of G, eθe′ if
and only if the two bipartitions of V into G(a, b)∪G(b, a) and G(a′, b′)∪G(b′, a′)

283
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are identical. Suppose, for instance, that a′ ∈ G(a, b) and b′ ∈ G(b, a). We show
that G(a, b) = G(a′, b′). For this, it suffices to check that G(a, b) ⊆ G(a′, b′). Let
x ∈ G(a, b). If x ∈ G(b′, a′), then b′ lies on a shortest path from x to a′. By
the convexity of G(a, b), this implies that b′ ∈ G(a, b), yielding a contradiction.
Therefore, the relation θ is transitive. Let E := E/θ denote the set of equivalence
classes of the relation θ. For e ∈ E, let e denote the equivalence class of e in
E. So, all edges (a, b) of a common equivalence class correspond to the same
bipartition G(a, b) ∪ G(b, a) of V . Fix a node x0 of G. For each node x ∈ V ,
let A(x) denote the set of all e ∈ E for which x and x0 belong to distinct sets
of the bipartition V = G(a, b) ∪ G(b, a), if (a, b) is an edge of e. In particular,
A(x0) = ∅. We show that this labeling provides a hypercube embedding of G,
i.e., that

|A(x)△A(y)| = dG(x, y)

holds for all nodes x, y ∈ V . Let x, y ∈ V and m := dG(x, y). Let P := (x0 =
x, x1, . . . , xm = y) be a shortest path in G from x to y, with edges ei = (xi−1, xi)
for i = 1, . . . ,m. We claim that

A(x)△A(y) = {e1, . . . , em}.
Clearly, each ei belongs to A(x)△A(y). Indeed if, for instance, x0 ∈ G(xi−1, xi),
then ei ∈ A(y) \ A(x) since x ∈ G(xi−1, xi) and y ∈ G(xi, xi−1). Conversely, let
e = (a, b) ∈ E such that e ∈ A(x)△A(y). We can suppose, for instance, that
e ∈ A(y) \ A(x) with x0, x ∈ G(a, b) and y ∈ G(b, a). Let i be the largest index
from {1, . . . , p} for which xi−1 ∈ G(a, b). Then, eiθe, which shows that e = ei.
Therefore, we have shown that |A(x)△A(y)| = dG(x, y) holds for all nodes x, y ∈
V. This shows that G can be isometrically embedded into the hypercube of
dimension dimI(G) := |E|.

The following result from Deza and Laurent [1994a] will also be a consequence
of Theorem 20.3.1.

Proposition 19.1.2. If G is hypercube embeddable, then G is ℓ1-rigid; in par-
ticular, G has a unique (up to equivalence) isometric embedding into a hypercube
whose dimension is mh(G) = dimI(G).

Proof. Suppose that G is hypercube embeddable. We show that G is ℓ1-rigid.
Then, this will imply that G has a unique hypercube embedding and, therefore,
that mh(G) = dimI(G). We keep the notation from the proof of Theorem 19.1.1.
For each e ∈ E with e = (a, b), let Se denote the one of the two sets G(a, b) and
G(b, a) that does not contain the fixed node x0. From the fact that dG(x, y) =
|A(x)△A(y)| for all nodes x, y ∈ V , we deduce that dG can be decomposed as

dG =
∑

e∈E
δ(Se).

Let FG denote the smallest face of the cut cone CUTn (n is the number of nodes
of G) that contains dG. We claim that FG is a simplex face of CUTn of dimension
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dimI(G). Clearly, all the cut semimetrics δ(Se) (e ∈ E) belong to FG and they
are linearly independent. We show that every cut semimetric δ(S) lying on FG is
of the form δ(Se) for some e ∈ E. If this is the case, then we have indeed shown
that FG is a simplex face of CUTn of dimension |E| = dimI(G). Let S be a subset
of V such that δ(S) ∈ FG. Then, δ(S) satisfies the same triangle equalities as
dG. As the graph G is connected, we can find an edge e = (a, b) such that a ∈ S
and b ∈ V \ S. Suppose, for instance, that x0 ∈ G(b, a), i.e., Se = G(a, b). As
dG satisfies the triangle equality dG(x0, a) = dG(x0, b)+dG(a, b), we deduce that
δ(S) satisfies the equality δ(S)(x0, a) = δ(S)(x0, b) + δ(S)(a, b), which implies
that x0 ∈ V \S. We claim that S = G(a, b) holds. If x ∈ G(a, b), then dG(x, b) =
dG(x, a)+dG(a, b) from which we deduce that δ(S)(x, b) = δ(S)(x, a)+δ(S)(a, b),
implying that x ∈ S. In the same way, G(b, a) is contained in V \S, which implies
that S = G(a, b).
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Figure 19.1.3: Embedding a tree in the hypercube

Example 19.1.4. Case of trees.
Let T be a tree on n nodes and with edge set E. Then, T embeds isometrically
into the (n−1)-hypercube, i.e., dimI(T ) = n−1. The hypercube embedding of T
can be easily constructed, as follows from the proof of Theorem 19.1.1. Namely,
choose a node x0 in T and label each node x of T by the set A(x) consisting
of the edges of T lying on the path from x0 to x. We give in Figure 19.1.3 an
example of a tree together with its hypercube embedding. Alternatively, the
path metric dT of the tree T can be decomposed as dT =

∑
e∈E δ(Se) where, for

an edge e ∈ E, Se is the connected component in T\e that does not contain the
specified node x0.

The distance matrix of a tree has some remarkable properties. In particular, its

determinant depends only on the number of nodes of the tree. Namely, let T be a tree

on n nodes with distance matrix DT . Then, det(DT ) = (−1)n−1(n − 1)2n−2 (Graham

and Pollack [1971]). (To see it, label the nodes of T as a1, . . . , an in such a way that

an is adjacent only to an−1. In the matrix DT , subtract the (n− 1)-column to the n-th

one and the (n− 1)-row to the n-th one. Iterating this process brings DT into the form
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of an n × n symmetric matrix having all entries equal to 0 except the (1, i)- and (i, 1)

entries equal to 1 and the (i, i)-entries equal to -2, for i = 2, . . . , n.) Graham and Lovász

[1978] show, more generally, how the coefficients of the characteristic polynomial of DT

can be expressed in terms of the number of occurrences of certain forests in T .

Remark 19.1.5. As an immediate consequence of Theorem 19.1.1, one can
test in polynomial time whether a graph G is hypercube embeddable. Moreover,
the minimum dimension mh(G) of a hypercube containing G as an isometric
subgraph can also be computed in polynomial time, since it coincides with the
isometric dimension dimI(G) of G (by Proposition 19.1.2).

Suppose G is a graph on n nodes with m edges. Aurenhammer and Hagauer
[1991] present an algorithm for testing whether G is hypercube embeddable that
runs in time O(n2 log n) using O(n2) space. Their algorithm is based on the char-
acterization from Corollary 20.1.3 (iv); that is, it consists of checking whether
G is bipartite and whether the relation θ is transitive. Feder [1992] proposes
another algorithm running in time O(mn) and using O(m) space; its space com-
plexity is better than in the previous algorithm as one can easily check that
m ≤ 1

2n log2 n if G is hypercube embeddable. Feder’s algorithm is based on the
results of Section 20.1; that is, it consists of checking whether all the factors in
the canonical metric representation of G are isomorphic to K2.

19.2 Further Characterizations

We start with presenting two further characterizations for hypercube embeddable
graphs, due respectively to Avis [1981] and to Roth and Winkler [1986].

Theorem 19.2.1. Let G be a connected graph. Then, G is hypercube embeddable
if and only if G is bipartite and dG satisfies the following 5-gonal inequality:

(19.2.2) d(i1, i2) + d(i1, i3) + d(i2, i3) + d(i4, i5) −
∑

h=1,2,3
k=4,5

d(ih, ik) ≤ 0

for all nodes i1, . . . , i5 ∈ V .

Proof. If G is hypercube embeddable, then its path metric dG is ℓ1-embeddable
and, therefore, satisfies the 5-gonal inequality by Theorem 6.3.1. Suppose now
that G is bipartite and not hypercube embeddable. Then, by Theorem 19.1.1,
there exists an edge (a, b) of G for which the set G(a, b) is not convex. Hence,
there exist x, y ∈ G(a, b) and z ∈ G(b, a) such that dG(x, z)+dG(z, y) = dG(x, y).
Consider the inequality (19.2.2) for the nodes i1 = x, i2 = y, i3 = b, i4 = a, and
i5 = z. One computes easily that the left hand side of (19.2.2) takes the value
2, which shows that dG violates some 5-gonal inequality.
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x y a b s

x 0 1 n+ 1 n 1

y 1 0 n n+ 1 2

a n+ 1 n 0 1 n

b n n+ 1 1 0 n+ 1

s 1 2 n n+ 1 0

Figure 19.2.3: The distance space A(n) on the 5 points of {x, y, a, b, s}

x y a b r s

x 0 1 m+ 1 m p p+ 1

y 1 0 m m+ 1 p+ 1 p+ 2

a m+ 1 m 0 1 n+ 1 n

b m m+ 1 1 0 n n+ 1

r p p+ 1 n+ 1 n 0 1

s p+ 1 p+ 2 n n+ 1 1 0

Figure 19.2.4: The distance space B(m,n, p) on the 6 points of {x, y, a, b, r, s}

Theorem 19.2.5. Let G be a connected bipartite graph. Then, G is hypercube
embeddable if and only if the space (V, dG) does not contain as an isometric sub-
space any of the spaces A(n) or B(m,n, p), whose distance matrices are shown
in Figures 19.2.3 and 19.2.4, respectively.

Proof. Suppose that G is not hypercube embeddable. Then, by Theorem 19.1.1,
there exists an edge (a, b) ofG for whichG(a, b) is not closed. Let P be an isomet-
ric path inG connecting two nodes of G(a, b) such that P meetsG(b, a) and P has
minimal length with respect to these properties. Say, P = (y, x, z1, . . . , zk, r, s),
where y, s ∈ G(a, b) and x, r ∈ G(b, a). Set m = dG(x, b), n = dG(r, b) and
p = dG(x, r) (hence, p = k + 1). One can check that the distances between the
points a, b, x, y, r, s are entirely determined by the parameters m,n, p. Namely,
if both points x and r coincide, then p = 0, m = n, and the 5-point subspace
({x, y, a, b, s}, dG) of (V, dG) coincides with the space A(n), whose distance ma-
trix is shown in Figure 19.2.3. If the points x and r are distinct, then the 6-point
subspace ({x, y, a, b, r, s}, dG) coincides with the space B(m,n, p), whose distance
matrix is shown in Figure 19.2.4.
Conversely, if (V, dG) contains A(n) or B(m,n, p) as an isometric subspace,
then G is not hypercube embeddable, by Theorem 19.2.1. Indeed, both A(n)
and B(m,n, p) violate the 5-gonal inequality; namely, they violate the inequal-
ity (19.2.2) for {i1, i2, i3} = {b, y, s} and {i4, i5} = {x, a}.

Recall that, for a finite distance space (X,d), the following chain of implica-
tions holds (see Proposition 4.3.8, Theorems 6.2.16 and 6.3.1).
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(X,d) is hypercube embeddable
=⇒ (X,d) is ℓ1-embeddable
=⇒ (X,d) is hypermetric
=⇒ (X,d) is of negative type
=⇒ the distance matrix of (X,d) has exactly one positive eigenvalue.

Figure 19.2.6: The metric hierarchy

In addition, We recall (from Lemma 6.1.14 and Theorem 6.2.2) the following
equivalences.

(X,d) is of negative type

⇐⇒ (X,
√
d) is ℓ2-embeddable

⇐⇒ the matrix (d(x, x0) + d(y, x0) − d(x, y))x,y∈X\{x0} is positive
semidefinite, where x0 is a given element of X.

Figure 19.2.7: Characterizing ℓ2-embeddability

Roth and Winkler [1986] show that, for the graphic metric spaces of bipartite
graphs, the metric hierarchy from Figure 19.2.6 collapses. (Blake and Gilchrist
[1973] had earlier observed that connected bipartite ℓ1-graphs are hypercube
embeddable.)

Theorem 19.2.8. Let G be a connected bipartite graph. The following assertions
are equivalent.

(i) G is hypercube embeddable.

(ii) G is an ℓ1-graph.

(iii) G is hypermetric.

(iv) G is of negative type.

(v) The distance matrix of G has exactly one positive eigenvalue.

Proof. It suffices to show that, if G is not hypercube embeddable, then its dis-
tance matrix DG has at least two positive eigenvalues. Suppose that G is not
hypercube embedable. By Theorem 19.2.5, (V, dG) contains as an isometric sub-
space a space C which is one of the forbidden subspaces A(n) or B(m,n, p).
In other words, the distance matrix DC of C is a principal submatrix of DG.
Clearly, DC has at least one positive eigenvalue since its trace is equal to 0.
If we can show that DC has at least two positive eigenvalues then, by applying
Lemma 2.4.4, we deduce that the number of positive eigenvalues of DG is greater
than or equal to the number of positive eigenvalues of DC and, therefore, that
DG has at least two positive eigenvalues.
Consider first the case when C is of the form A(n). One can check that the
determinant of DC is equal to −8n(n + 1). Hence, DC is nonsingular and has
at least two positive eigenvalues (indeed, if DC would have only one positive
eigenvalue, then its determinant would be positive).
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Suppose now that C is of the form B(m,n, p). One can check that the determi-
nant of DC is equal to

4(4mnp+ 2mp+ 2np+ 2mn−m2 − n2 − p2),

which can be rewritten as

16mnp+4(n+p−m)(p+m−n)+4(p+m−n)(m+n−p)+4(m+n−p)(n+p−m).

As m,n, p are the distances between pairs of nodes of G, we deduce from the
triangle inequality that each of the quantities into parentheses in the above ex-
pression is nonnegative. Hence, the determinant of DC is positive. This implies
that DC is nonsingular and has at least two positive eigenvalues (else, its deter-
minant would be negative).

Remark 19.2.9. All the implications in the metric hierarchy from Figure 19.2.6
are strict for general (nonbipartite) graphs. We present here a unified set of
counterexamples for the converse implications, proposed by Avis and Maehara
[1994], which is based on the graph Kn\P3 (with P3 denoting the path on 3
nodes). This remark is, therefore, a continuation of Example 14.4.9. The metric
d(Kn\P3) was considered in Example 14.4.9 for disproving some implications
between the properties of being hypermetric or of negative type or of having a
spherical representation. The treatment there was based on features of Delaunay
polytopes, while we use here conditions involving linear inequalities.

• The path metrics of K4\P3, K5\P3, and K6\P3 are ℓ1-embeddable (since 2dG
is hypercube embeddable), but not hypercube embeddable (since they contain
three points at pairwise distances one).

• The path metrics of K7\P3, K8\P3 are hypermetric, but not ℓ1-embeddable.
(Hint: The inequality:

5x12 + 5x13 + 3x23 − 3
∑

j=4,5,6,7

x1j − 2
∑

j=4,5,6,7

(x2j + x3j) +
∑

4≤i<j≤7

xij ≤ 0

is valid for the cut cone CUT7 (this is the clique-web inequality:

CW1
7(3, 2, 2,−1,−1,−1,−1)T x ≤ 0

which defines a facet of CUT7; see Chapter 29). But, the path metric of K7\P3

violates this inequality if P3 is the path (2, 1, 3) in the complete graph K7 on the
nodes 1,2,3,4,5,6,7. Hence, K7\P3 is not an ℓ1-graph.)

• The path metrics of K9\P3, K10\P3 are of negative type, but not hypermetric.
(Hint: The path metric of K9\P3 violates the hypermetric inequality:

Q9(3, 2, 2,−1,−1,−1,−1,−1,−1)T x ≤ 0

if P3 is the path (2, 1, 3). To see that the path metric of K10\P3 is of negative
type, one can use Theorem 6.2.16. Namely, it suffices to check that the bordered
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matrix M =

(
D 1
1 0

)
has exactly one positive eigenvalue, where D denotes the

distance matrix of K10\P3. One can indeed check that the eigenvalues of M are
4 +

√
41, 0, 4 −

√
41 and −1 (with multiplicity 8). )

• The distance matrix of K11\P3 has exactly one positive eigenvalue, but K11\P3

is not of negative type; the distance matrix of Kn\P3 has two positive eigenvalues
for all n ≥ 12. (Hint: K11\P3 is not of negative type since it violates the negative
type inequality:

Q11

(
24

7
,
16

7
,
16

7
,−1,−1,−1,−1,−1,−1,−1,−1

)T
x ≤ 0

if P3 is the path (2, 1, 3).) Another example of a graph which is not of negative
type but whose distance matrix has one positive eigenvalue is given in Exam-
ple 19.2.11 below.

We saw in Figure 19.2.7 two characterizations for the distance spaces of neg-
ative type. Winkler [1985] proposes yet another characterization for the graphs
of negative type, exposed in Theorem 19.2.10 below. Let G be a graph. Consider
an orientation G′ of G which has, for each edge (a, b) of G, exactly one of the
arcs (a, b) or (b, a). Given two arcs e = (a, b) and e′ = (a′, b′) of G′, set

〈e, e′〉 :=
1

2
(dG(a, b′) − dG(a, a′) − dG(b, b′) + dG(b, a′)).

(This is the same definition as the one considered later in (21.2.13) up to a factor
2.) Observe that, if dG is of negative type and ua ∈ Rm (a ∈ V ) are vectors
satisfying dG(a, b) = (‖ ua − ub ‖2)

2 for all a, b ∈ V , then 〈e, e′〉 coincides with
the scalar product (ub − ua)

T (ub′ − ua′).

Theorem 19.2.10. Let G be a connected graph on n+1 nodes and let G′ be an
arbitrary orientation of G. Let T be a spanning tree in G, with corresponding
arcs e1, . . . , en in G′. The following assertions are equivalent.

(i) dG is of negative type.

(ii) The n× n matrix (〈ei, ej〉)i,j=1,...,n is positive semidefinite.

Proof. Let V = {a0, a1, . . . , an} denote the set of nodes of G. By definition, dG
is of negative type if and only if

∑

0≤r<s≤n
dG(ar, as)xrxs ≤ 0 for all x ∈ U := {x ∈ R

n+1 |
∑

0≤r≤n
xr = 0}.

For each node ar ∈ V , set

A(ar) := {i ∈ {1, . . . , n} | the arc ei ends in ar},

B(ar) := {i ∈ {1, . . . , n} | the arc ei begins in ar}.
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For y ∈ Rn , define x ∈ Rn+1 by setting

xr =
∑

i∈A(vr)

yi −
∑

i∈B(vr)

yi

for r = 0, 1, . . . , n. One can check that
∑

0≤r≤n
xr = 0, i.e., x ∈ U , and x =

(0, . . . , 0) implies that y = (0, . . . , 0). Hence, we have found a 1-1 linear corre-
spondence between the spaces Rn and U . We check that, under this correspon-
dence, ∑

1≤i,j≤n
〈ei, ej〉yiyj = −

∑

0≤r<s≤n
dG(ar, as)xrxs.

Indeed, dG(ar, as) appears in
∑

1≤i,j≤n
〈ei, ej〉yiyj with the coefficient

∑

(i,j)∈A(vr)×B(vs)

yiyj +
∑

(i,j)∈B(vr)×A(vs)

yiyj

−
∑

(i,j)∈A(vr)×A(vs)

yiyj −
∑

(i,j)∈B(vr)×B(vs)

yiyj,

which is equal to −xrxs. This shows the equivalence of (i) and (ii).

Example 19.2.11. Consider the graph Gn := Kn+1\Kn−1 with node set
{a0, . . . , an} and with edges the pairs (a0, a1), (a0, ai) and (a1, ai) for i =
2, 3, . . . , n. Then, the path metric of Gn is of negative type if and only if n ≤ 5.
(To see it, consider the oriented spanning tree T with arcs e1 = (a0, a1), . . . , en =
(a0, an). The matrix (〈ei, ej〉)i,j=1,...,n has all its entries equal to 0 except the diag-
onal entries equal to 1 and the (1, i)- and (i, 1)-entries equal to 1

2 for i = 2, . . . , n.
Its determinant is equal to 5−n

4 .) Note that, for n ≥ 6, Gn provides a counterex-
ample to the converse of the last implication from Figure 19.2.6, since the dis-
tance matrix of Gn has exactly one positive eigenvalue, but Gn is not of negative
type. (Indeed, the eigenvalues of the distance matrix of Gn are 2n − 1,−1,−2
with respective multiplicities 1, 1, n − 1.)

Finally, let us mention another formulation for the isometric dimension of a
hypercube embeddable graph in terms of the number of negative eigenvalues of
its distance matrix, due to Graham and Winkler [1985].

Proposition 19.2.12. Let G be a graph with distance matrix DG and let
n+(DG), n−(DG) denote the number of positive and negative eigenvalues of DG.
If G is hypercube embeddable, then dimI(G) = n−(DG) and n+(DG) = 1 hold.

Proof. Suppose that dimI(G) = k. Let σ be an isometric embedding of G into
the k-hypercube H(k, 2); denote by σ(a) = (a1, . . . , ak) ∈ {0, 1}k the image of
each node a ∈ V under this embedding. For h = 1, . . . , k, set

Xh := {a ∈ V | ah = 0}, Yh := {a ∈ V | ah = 1} = V \Xh.
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Then,∑

a,b∈V
dG(a, b)xaxb =

∑

a,b∈V
(
∑

1≤h≤k
|ah − bh|)xaxb =

∑

1≤h≤k
(
∑

a∈Xh

xa)(
∑

b∈Yh

xa)

= k
4 (
∑

a∈V
xa)

2 − 1

4

∑

1≤h≤k
(
∑

a∈Xh

xa −
∑

b∈Yh

xb)
2

(where the last equality is obtained using the identity xy = 1
4((x+y)2−(x−y)2))).

Hence, the quadratic form ∑

a,b∈V
dG(a, b)xaxb

can be written as the sum of one “positive” square and k “negative” squares. By
Sylvester’s law of inertia, this implies that n+(DG) ≤ 1 and n−(DG) ≤ k. On
the other hand, n+(DG) ≥ 1 since DG has trace zero. Hence, n+(DG) = 1 and
the rank of DG satisfies rank(DG) = n+(DG) + n−(DG) ≤ k + 1. We show that
rank(DG) = k + 1. This will imply that n−(DG) = k, thus stating the result.
We can suppose without loss of generality that a given node a(0) of G receives
the label σ(a(0)) := (0, . . . , 0) in the hypercube embedding. We claim that there
exist k nodes a(1), . . . , a(k) of G whose labels σ(a(1)), . . . , σ(a(k)) are linearly in-
dependent. For this, it suffices to check that the system {σ(a) | a ∈ V } ⊆ {0, 1}k
has full dimension k. Suppose for contradiction that, say, the k-th coordinate
can be expressed in terms of the others, i.e., there exist scalars λ1, . . . , λk−1 such
that ak =

∑
1≤j≤k−1 λjaj for all a ∈ V . Then, ak = bk holds for any two adja-

cent nodes a, b in G. This implies that ak = 0 holds for each node a ∈ V , by
considering a shortest path from a(0) to a. So, one could have embedded G into
the (k − 1)-hypercube, contradicting the fact that dimI(G) = k. We now claim
that the submatrix

M := (dG(a(i), a(j)))i,j=0,...,k

is nonsingular. This will imply that rank(DG) ≥ k+1 and, therefore, rank(DG) =
k + 1. For i = 0, 1, . . . , k, set

u(i) := 2σ(a(i)) − e,

where e = (1, . . . , 1)T . As the vectors u(i) are ±1-valued, we have

dG(a(i), a(j)) =
∑

1≤h≤k
|a(i)
h − a

(j)
h | =

1

2

∑

1≤h≤k
|u(i)
h − u

(j)
h |

= 1
2

∑

1≤h≤k
(1 − u

(i)
h u

(j)
h ) =

k

2
− 1

2
(u(i))Tu(j).

Therefore,

M =
k

2
J − 1

2
Gram(u(0), u(1), . . . , u(k)),

where J denotes the all-ones matrix and Gram(u(0), u(1), . . . , u(k)) denotes the
Gram matrix of the vectors u(0), u(1), . . . , u(k). One can easily check that

det(M) = (−2)−(k+1)
(
det(Gram(u(0), u(1), . . . , u(k)))

−k det(Gram(u(1) − u(0), u(2) − u(0), . . . , u(k) − u(0)))
)
.
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But, det(Gram(u(0), u(1), . . . , u(k))) = 0 since the vectors u(0), u(1), . . . , u(k) are
linearly dependent, and det(Gram(u(1) − u(0), u(2) − u(0), . . . , u(k) − u(0))) 6= 0
since the vectors u(1) − u(0), u(2) − u(0), . . . , u(k) − u(0) are linearly independent.
Therefore, det(M) 6= 0.

19.3 Additional Notes

We mention here some remarks on possible relaxations of the notion of isometric
embeddability into the hypercube. First, one may consider isometric embed-
dings into the squashed hypercube; second, one may consider embeddings as a
subgraph (not necessarily isometric) into the hypercube; finally, the notion may
be extended to hypergraphs.

Isometric Embedding into Squashed Hypercubes. As we just saw, not
every graph can be isometrically embedded into a hypercube. For this reason,
Graham and Pollak [1971] considered isometric embeddings into squashed hy-
percubes. Let d∗ denote the distance defined on the set B∗ = {0, 1, ∗} by setting

d∗(x, y) =

{
1 if {x, y} = {0, 1}
0 otherwise

for x, y ∈ B∗. Hence, the symbol ∗ is at distance 0 from the other symbols; it is
also called the “don’t care” symbol. The distance d∗ can be extended to Bm∗ by
setting

d∗((x1, . . . , xm), (y1, . . . , ym)) =
∑

1≤i≤m
d∗(xi, yi).

The distance space (Bm∗ , d∗) is called the squashed m-hypercube. It contains
the usual m-hypercube as a subspace. Each element (x1, . . . , xm) ∈ Bm

∗ can
be thought of as representing a face of the m-dimensional hypercube, namely,
the face consisting of all y ∈ {0, 1}m such that yi = xi for all i such that
xi ∈ {0, 1}. A nice property of squashed hypercubes is that every connected
graph can be isometrically embedded in some squashed hypercube. Indeed, let
G be a connected graph with node set {1, . . . , n}. Set

m :=
∑

1≤i<j≤n
dG(i, j).

For 1 ≤ i < j ≤ n, let Dij be pairwise disjoint subsets of {1, . . . ,m} with
|Dij | = dG(i, j). Label each node i by the m-tuple (i1, . . . , im) ∈ Bm

∗ by setting

ik =





0 if k ∈ ⋃nh=i+1Dih

1 if k ∈ ⋃i−1
h=1Dih

otherwise.

Then, d∗((i1, . . . , im), (j1, . . . , jm)) = |Dij | = dG(i, j). This shows that G can
be isometrically embedded into the squashed m-hypercube. Let r(G) denote
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the smallest dimension of a squashed hypercube in which G can be embedded.
Winkler [1983] showed that r(G) ≤ n − 1 for each graph on n nodes. On the
other hand, r(G) ≥ max(n+(DG), n−(DG)), where n+(DG), n−(DG) denote the
number of positive and negative eigenvalues of the distance matrix DG of G
(Graham and Pollack [1972]). For instance, r(Kn) = n − 1 since n−(DKn) =
n− 1. The following provides an isometric embedding of K3 into the squashed
2-hypercube:

1 7→ (0, 0), 2 7→ (0, 1), 3 7→ (1, ∗).

Nonisometric Embedding of Graphs into Hypercubes. Another relax-
ation of the notion of hypercube embeddable graphs is that of cubical graphs.
A graph G is said to be cubical if G is a subgraph of some hypercube H(m, 2),
i.e., there exists an injective mapping from the node set of G to the node set
of H(m, 2) which maps edges of G to edges of H(m, 2). Clearly, every cubical
graph is bipartite and every hypercube embeddable graph is cubical. We show
below an example of a graph which is cubical but not hypercube embeddable.

  0000  0001

   1000      1001

0010     0011

0100     0101

The structure of the minimal noncubical graphs has been studied in Garey and
Graham [1975], where some constructions of such graphs are presented. For
instance, K2,3 and odd circuits are minimal noncubical graphs. Recall from
Remark 19.1.5 that one can check in polynomial time whether a graph G is
hypercube embeddable and, moreover, the minimum dimension mh(G) of a hy-
percube containing G as an isometric subgraph can be computed in polynomial
time. On the other hand, it has been proved that deciding whether a graph G
is cubical is an NP-complete problem (Afrati, Papadimitriou and Papageorgiou
[1985, 1989]; Krumme, Venkataraman and Cybenko [1986]). Moreover, for G
cubical, computing the minimum dimension of a hypercube containing G as a
subgraph is also a difficult problem. For instance, each tree is cubical (in fact,
a tree on n nodes can be isometrically embeded into an (n − 1)-hypercube).
But, given a tree T and an integer m, it is NP-complete to decide whether T
is a subgraph of the m-hypercube (Wagner and Corneil [1990]). The problem
of determining the minimum dimension of a hypercube containing a tree has
been long studied (see, e.g., Havel and Liebl [1972, 1973]). Along the same lines,
given a graph G and integers m,k, it is NP-complete to decide whether G is a
subgraph of (Km)k (Wagner and Corneil [1993]).

Isometric Embeddings into Cube-Hypergraphs. The characterization of
the graphs that can be isometrically embedded into the hypercube has been ex-
tended in the context of uniform hypergraphs by Burosch and Ceccherini [1995].
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A t-uniform hypergraph H = (V, E) consists of a set V of vertices and a set E of
(hyper)edges each having the same cardinality t ≥ 2. A semimetric dH can be
defined on V in the following way: Construct the graph GH with vertex set V
and with two nodes x, y ∈ V being adjacent if they are contained in a common
edge of H. Then, we take for dH the path metric of the graph GH . A hyper-
graph H = (V, E) is said to be isometrically embeddable into another hypergraph
H ′ = (V ′, E ′) if the graph GH can be isometrically embedded into GH′ . As hy-
pergraph analogue of the hypercube, Burosch and Ceccherini [1995] considers the
following t-uniform hypergraph Q(n, t): its vertex set is {0, 1, . . . , t− 1}n and an
edge consists of all the vectors x ∈ {0, 1, . . . , t− 1}n whose coordinates are fixed
on n− 1 positions with the last coordinate being free in {0, 1, . . . , t− 1}. Hence,
two vectors x, y belong to a common edge of Q(n, t) if and only if their Hamming
distance is 1. In other words, the graph structure GQ(n,t) underlying the hyper-
graph Q(n, t) is the Hamming graph H(n, t). Burosch and Ceccherini charac-
terize the t-uniform hypergraphs that can be embeded into the cube-hypergraph
Q(n, t); their characterization is a direct extension of the corresponding results
in the graph case, namely, of the results by Djokovic (Theorem 19.1.1) and by
Graham and Winkler (Corollary 20.1.3 (iv)).





Chapter 20. Isometric Embeddings
of Graphs into Cartesian Products

We have characterized in the previous chapter the graphs that can be isometri-
cally embedded into a hypercube. The hypercube is the simplest example of a
Cartesian product of graphs; indeed, the m-hypercube is nothing but (K2)

m. We
consider here isometric embeddings of graphs into arbitrary Cartesian products.
It turns out that every graph can be isometrically embedded in a canonical way
into a Cartesian product whose factors are “irreducible”, i.e., cannot be further
embedded into Cartesian products. We present two applications of this result,
for finding the prime factorization of a graph, and for showing that the path met-
ric of every bipartite graph can decomposed in a unique way as a nonnegative
combination of primitive semimetrics.

20.1 Canonical Metric Representation of a Graph

Let G, H1, . . . ,Hk be graphs. An isometric embedding of G into the Cartesian
product

∏
1≤i≤kHi is said to be irredundant if each factor Hh is a connected

graph on at least two nodes, and if each vertex of every factor Hh appears as
a coordinate in the image of at least one node of G. Clearly, any isometric
embedding into a Cartesian product can be made irredundant by discarding the
factors consisting of an isolated node and the unused nodes in each factor. An
irredundant isometric embedding of G into a Cartesian product is also called
a metric representation of G. Two isometric embeddings of G into Cartesian
products are said to be equivalent if there is a bijection between the factors
of one and the factors of the other, together with isomorphisms between the
corresponding factors for which the obvious diagram commutes. A graph G is
said to be irreducible if all its metric representations are equivalent to the trivial
embedding of G into itself.

Examples of irreducible graphs include: the complete graph Kn (n ≥ 2),
odd circuits C2n+1 (n ≥ 1), the half-cube 1

2H(n, 2) (n ≥ 2), the cocktail-party
graph Kn×2 (n ≥ 3), the Petersen graph P10, the Gosset graph G56, the Schläfli
graph G27, etc. Actually, it is observed in Graham and Winkler [1985] that
the probability that a random graph (with edge probability 1/2) on n nodes is
irreducible goes to 1 as n −→ ∞.

The following theorem is the main result of this section; it is due to Graham
and Winkler [1985]; see also Winkler [1987b] and Graham [1988].

297
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Theorem 20.1.1. Every connected graph G has a unique metric representation

G →֒
∏

1≤h≤k
Gh

in which each factor Gh is irreducible; it is called the canonical metric represen-
tation of G. Moreover, k = dimI(G) and, if

G →֒
∏

1≤i≤m
Hi

is another metric representation of G, then there exist a partition (S1, . . . , Sm)
of {1, . . . , k} and metric representations

Hi →֒
∏

h∈Si

Gh,

for i ∈ {1, . . . ,m}, for which the obvious diagram commutes.

Theorem 20.1.1 is an essential result in the metric theory of graphs, which
has many applications; we will present a number of them, in particular, in Sec-
tions 20.2, 20.3 and in Chapter 21. The crucial tool for constructing the canonical
metric representation of a graph G is Djokovic’s relation θ, introduced earlier in
(18.0.2). The factors in the canonical metric representation correspond, in fact,
to the equivalence classes of the transitive closure θ∗ of θ. Let us mention some
useful rules for computing them:
- Any two edges on an odd isometric circuit are in relation by θ.
- Let C = (a1, . . . , a2m) be an isometric even circuit in G. Call the two edges
ei := (ai, ai+1) and em+i := (am+i, am+i+1) (where the indices are taken modulo
m) opposite on C if dG(ai, am+i) = dG(ai+1, am+i+1) = m. Clearly, if ei and
em+i are opposite on C, then ei and em+i are in relation by θ.
It is observed in Lomonosov and Sebö [1993] that, if G is a bipartite graph, then
two edges are in relation by θ if and only if they are opposite on some even circuit
of G.

The following lemma is crucial for the proof of Theorem 20.1.1.

Lemma 20.1.2. Let E1, . . . , Ek denote the equivalence classes of the transitive
closure θ∗ of the relation θ, defined in relation (18.0.2). Given two nodes a, b of
G, let P be a shortest path from a to b, and let Q be another path joining a to b
in G. Then, for all h = 1, . . . , k,

|E(P ) ∩Eh| ≤ |E(Q) ∩Eh|.

Proof. Set P = (x0 = a, x1, . . . , xp = b). For any index h ∈ {1, . . . , k} and any
node x of G, set

fh(x) :=
∑

i∈{1,...,p}|(xi−1,xi)∈Eh

(dG(x, xi) − dG(x, xi−1)).
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Hence, fh(a) = |E(P ) ∩Eh| and fh(b) = −|E(P ) ∩Eh|. Let (x, y) be an edge of
G. We claim

fh(x) = fh(y) if (x, y) 6∈ Eh.

Indeed,

fh(x) − fh(y) =
∑

i|(xi−1,xi)∈Eh

(dG(x, xi) − dG(y, xi)) − (dG(x, xi−1) − dG(y, xi−1))

is equal to 0, since the edge (x, y) is not in relation by θ with any of the edges
of Eh. On the other hand,

|fh(x) − fh(y)| ≤ 2 if (x, y) ∈ Eh.

Indeed, by the above argument,

|fh(x) − fh(y)| = |
∑

1≤j≤k
(fj(x) − fj(y))|

= |(dG(x, b) − dG(x, a)) − (dG(y, b) − dG(y, a))|
≤ |dG(x, b) − dG(x, a)| + |dG(y, b) − dG(y, a)| ≤ 2.

As fh(a) = |E(P )∩Eh| and fh(b) = −|E(P )∩Eh|, when moving along the nodes
of the path Q, the function fh(.) changes in absolute value by 2|E(P )∩Eh|. But,
on an edge of E \ Eh, the function fh(.) remains unchanged and, on an edge of
Eh, fh(.) increases by at most 2. This implies that the path Q must contain at
least |E(P ) ∩Eh| edges from Eh.

Proof of Theorem 20.1.1. As in Lemma 20.1.2, let E1, . . . , Ek denote the
equivalence classes of the transitive closure θ∗ of the relation θ. For each h =
1, . . . , k, let Gh denote the graph obtained from G by contracting the edges of
E \ Eh. In other words, for constructing Gh, one identifies any two nodes of G
that are joined by a path containing no edge from Eh. This defines a surjective
mapping σh from V (G) to V (Gh) and a mapping

σ : V (G) −→
∏

1≤h≤k
V (Gh)

by setting σ(v) := (σ1(v), . . . , σk(v)) for each node v of G. We show that the
mapping σ provides the required metric representation of G. For this, we have
to check that σ is an irredundant isometric embedding and that each factor Gh
is irreducible. Take two nodes a, b of G and a shortest path P from a to b in G.
We show

dG(a, b) =
∑

1≤h≤k
dGh

(σh(a), σh(b)).

Indeed, for each h, dGh
(σh(a), σh(b)) is the minimum value of |E(Q)∩Eh| taken

over all paths Q joining a and b; hence, by Lemma 20.1.2, dGh
(σh(a), σh(b)) =

|E(P ) ∩Eh|. Therefore,
∑

1≤h≤k
dGh

(σh(a), σh(b)) =
∑

1≤h≤k
|E(P ) ∩Eh| = |E(P )| = dG(a, b).
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This shows that σ is an isometric embedding of G into
∏k
h=1Gh. Moreover,

using again Lemma 20.1.2, the endpoints of an edge of Eh are not identified
when constructing Gh. Hence, each factor Gh has at least two nodes. Therefore,
the embedding σ is irredundant since the mappings σh are surjective. Consider
now another metric representation

G →֒
∏

1≤j≤m
Hj

of G and denote by (x1, . . . , xm) the image of a node x of G. If e = (x, y) is an
edge of G corresponding to an edge in the j-th factor Hj, i.e., (xj , yj) ∈ E(Hj)
and xi = yi for all i ∈ {1, . . . ,m} \ {j}, then each edge f in relation by θ with
e is also an edge in Hj. Therefore, each factor Hj “contains” exactly the edges
of
⋃
i∈J Ei for some nonempty set J of indices. In particular, m ≤ k holds.

This implies that each factor Gh is irreducible (else, one would have a metric
representation of G with more than k factors). Therefore, G →֒ G1 × . . .×Gk is
the canonical metric representation of G. This concludes the proof.

Corollary 20.1.3. Let G be a connected graph.

(i) G is irreducible if and only if dimI(G) = 1.

(ii) If G has n nodes, then dimI(G) ≤ n− 1, with equality if and only if G is
a tree.

(iii) G embeds isometrically into (K3)
m for some m ≥ 1 if and only if the

relation θ is transitive.

(iv) G embeds isometrically into (K2)
m for some m ≥ 1 if and only if G is

bipartite and θ is transitive.

Proof. (i) follows immediately from Theorem 20.1.1.
(ii) Set k := dimI(G) and let T be a spanning tree in G. We claim that T
contains at least one edge from each equivalence class Eh. Indeed, if e is an edge
from E \E(T ) belonging to the class Eh then, by Lemma 20.1.2, T must contain
at least one edge from Eh. Therefore, n− 1 = |E(T )| ≥ k holds. If there are two
edges e, f ∈ E in relation by θ, let T be a spanning tree containing both e and
f ; then, k ≤ n− 2 holds. This shows that equality k = n− 1 holds only if G is
a tree.
(iii) Note that G embeds isometrically into (K3)

m if and only if each factor Gh
in the canonical representation of G is K2 or K3 (see Remark 20.1.10). On the
other hand, Gh is K2 or K3 if and only if Eh consists of all the edges that are
cut by the partition of V into G(a, b) ∪G(b, a) ∪G=(a, b), where (a, b) ∈ Eh, in
which case θ is transitive.
The assertion (iv) follows from (iii) since G=(a, b) = ∅ for each edge (a, b) when
G is bipartite.

One can easily check that, for G bipartite, the relation θ is transitive if
and only if G(a, b) is convex for all adjacent nodes a, b of G. Hence, Corol-
lary 20.1.3 (iv) implies the characterization of hypercube embeddable graphs
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stated in Theorem 19.1.1. In particular, if G is hypercube embeddable with
isometric dimension dimI(G) = k, then G →֒ (K2)

k is the canonical metric
representation of G. Lomonosov and Sebö [1993] give the following additional
information.

Proposition 20.1.4. If G is a bipartite graph, then all the factors G1, . . . , Gk
of its canonical metric representation are bipartite graphs.

Proof. Suppose, for contradiction, that a factor Gh of the canonical metric
representation of G is not bipartite. Then, there exists a circuit C of G such that
|E(C)∩Eh| is odd. Choose such a circuit C of minimal length. As G is bipartite,
C has even length, say C = (a1, a1, . . . , a2m). Consider the pairs (ai, am+i)
(where the indices are taken modulo m) of diametrally opposed nodes of C. If
dG(ai, am+i) = dG(ai+1, am+i+1) = m, then dG(am+i, ai+1) − dG(am+i, ai) = −1
and dG(am+i+1, ai+1)−dG(am+i+1, ai) = 1, which implies that the edges (ai, ai+1)
and (am+i, am+i+1) are in relation by θ. Hence, there exists a pair (ai, am+i) for
which dG(ai, am+i) < m (otherwise, any two oposite edges of C are in relation
by θ, implying that |E(C) ∩ Eh| is even). Let P be a shortest path from ai to
am+i in G. Suppose that only the endnodes of P are on C. The endnodes of P
partition C into two paths which, together with P , form two circuits C1 and C2.
As C1 and C2 have smaller length than C, we deduce that both |E(C1) ∩ Eh|
and |E(C2) ∩ Eh| are even. This implies that |E(C) ∩ Eh| is even, yielding a
contradiction. The reasoning is the same if P meets C in other nodes than its
endnodes.

Remark 20.1.5. Let G be a graph on n nodes with m edges. Its canonical
metric representation G →֒ G1× . . .×Gk can be found in polynomial time; more
precisely, in time O(mn) using O(m) space. Indeed, it can be obtained in the
following way:

(i) Compute the relation θ and determine the equivalence classes E1, . . . , Ek
of its transitive closure θ∗.

(ii) For each h = 1, . . . , k, construct the graph Gh from G by contracting the
edges of E \ Eh.

Step (ii) can be easily executed in time O(nm) using O(m) space. (Indeed, given
an equivalence class Eh, the graph Gh can be constructed as follows: Delete the
edges from Eh in G and compute the connected components in the resulting
graph; they are precisely the vertices ofGh. There is an edge between two vertices
of Gh if there is an edge between the two corresponding components. Finally,
we know from Corollary 20.1.3 (ii) that there are at most n − 1 equivalence
classes.) Step (i) can obviously be executed in O(m2) time. Feder [1992] shows
how to execute Step (i) in O(mn) time. For this, he considers another relation
θ1 contained in θ and such that θ and θ1 have the same transitive closure, i.e.,
θ∗ = θ∗1. Namely, given a spanning tree T in G, let

e θ1 e
′ ⇐⇒ e θ e′ and T ∩ {e, e′} 6= ∅.
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The relation θ1 can be computed in time O(mn) as it suffices to compare every
edge of T with the edges of G.

That the relations θ and θ1 have the same transitive closure follows from
Lemma 20.1.6 below, which shows that the statement from Lemma 20.1.2 re-
mains valid for the relation θ1. Indeed, suppose that θ∗1 has k1 equivalence
classes: F1, . . . , Fk1 . Then, k ≤ k1 as each class of θ∗ is a union of classes of θ∗1.
On the other hand, the arguments used in the proof of Theorem 20.1.1 show that
G →֒ ∏k1

h=1Hh is a metric representation of G, where Hh is obtained from G by
contracting the edges of E \Fh. This shows that k1 ≤ k. Therefore, k = k1; that
is, θ∗ and θ∗1 coincide.

The following lemma was proved by Feder [1992].

Lemma 20.1.6. Let F1, . . . , Fk1 denote the equivalence classes of the transitive
closure θ∗1 of the relation θ1. Given two nodes a, b of G, let P be a shortest
path from a to b, and let Q be another path joining a to b in G. Then, for all
h = 1, . . . , k1,

|E(P ) ∩ Fh| ≤ |E(Q) ∩ Fh|.

Proof. Let PT := (a := z0, z1, . . . , zt := b) denote the path joining a and b
in the tree T and set Q := (y0 := a, y1, . . . , yq := b). For i ∈ {1, . . . , q} and
j ∈ {1, . . . , t}, set

µij := dG(zj−1, yi) − dG(zj−1, yi−1) − dG(zj , yi) + dG(zj , yi−1).

Observe that µij = 0 if the edges (zj−1, zj) and (yi−1, yi) are not in relation by
θ. Then,

∑

i|(yi−1,yi)∈E(Q)∩Fh

dG(a, yi) − dG(a, yi−1) − dG(b, yi) + dG(b, yi−1)

=
∑

j|(zj−1,zj)∈E(PT )

∑

i|(yi−1,yi)∈E(Q)∩Fh

µij

=
∑

j|(zj−1,zj)∈E(PT )∩Fh

∑

i|(yi−1,yi)∈E(Q)∩Fh

µij

=
∑

j|(zj−1,zj)∈E(PT )∩Fh

∑

i|(yi−1,yi)∈E(Q)

µij

=
∑

j|(zj−1,zj)∈E(PT )∩Fh

dG(zj−1, b) − dG(zj−1, a) − dG(zj , b) + dG(zj , a).

Setting P := (x0 := a, x1, . . . , xp := b), we deduce that
∑

i|(xi−1,xi)∈E(P )∩Fh

dG(a, xi) − dG(a, xi−1) − dG(b, xi) + dG(b, xi−1)

=
∑

i|(yi−1,yi)∈E(Q)∩Fh

dG(a, yi) − dG(a, yi−1) − dG(b, yi) + dG(b, yi−1).

The result now follows as the first term is equal to 2|E(P )∩Fh| while the second
term is less than or equal to 2|E(Q) ∩ Fh|.
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Figure 20.1.8: Factors in the canonical metric representation of G

Example 20.1.9. Let G be the graph from Figure 20.1.7. The relation θ∗ has
four equivalence classes:

E1 = {12, 13, 23, 45, 46, 56}, E2 = {17, 48},

E3 = {39, 5 10}, E4 = {14, 35, 78, 9 10}
(where we denote an edge (i, j) by the string ij). The edges of E1,E2,E3, E4 are
represented by plain, dotted, dark, and dark dotted edges, respectively. Hence,
G →֒ G1 × G2 × G3 × G4 is the canonical metric representation of G, where
G1, G2, G3, G4 are the graphs indicated in Figure 20.1.8. (The set associated to
each node in the factor Gh is the set of nodes of G that have been identified
during the construction of Gh.)

Remark 20.1.10. Isometric embedding into Hamming graphs.
We recall that a graph can be isometrically embedded into a Hamming graph (i.e.,
a Cartesian product of complete graphs) if its nodes can be labeled by sequences
of nonnegative integers in such a way that the shortest path distance between
two nodes coincides with the Hamming distance between the corresponding se-
quences. It follows from Theorem 20.1.1 that a graph G embeds isometrically
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into a Hamming graph if and only if each factor Gh in the canonical metric
representation of G is a complete graph. (Indeed, let

α : G →֒
∏

1≤i≤m
Kqi

be an isometric embedding of G into a Hamming graph. We may assume that
α is irredundant since deleting a node from a complete graph yields another
complete graph. Therefore, as complete graphs are irreducible, α is the canonical
metric representation of G.) Therefore, the embedding into a Hamming graph is
unique (Winkler [1984]). Moreover, one can recognize whether a graph G is an
isometric subgraph of a Hamming graph in polynomial time. For this, it suffices
to determine the canonical metric representation of G and to check whether all
its factors are complete graphs. This can be done in time O(mn) using O(m)
space (using Feder’s algorithm mentioned in Remark 20.1.5). Wilkeit [1990] has
proposed earlier an algorithm with running time O(n3), which yields moreover
a structural characterization for isometric subgraphs of Hamming graphs.

As an example, consider the graphH from Figure 20.1.11 (taken from Wilkeit
[1990]). The relation θ∗ has three equivalences classes:

E1 = {12, 34, 35, 45},

E2 = {28, 37, 56}, and E3 = {14, 23, 78}.

Hence, H →֒ K3 ×K2 ×K2 is the canonical metric representation of H. We also
indicate for the graph H in Figure 20.1.11 the sequences from {0, 1, 2} × {0, 1}2
providing the correct labeling of the nodes of H. Equivalently, the path metric
of H can be decomposed as an integer sum of multicut semimetrics, namely,

dH = δ({1, 4}, {2, 3, 7, 8}, {5, 6}) + δ({1, 2, 3, 4, 5}, {6, 7, 8})
+δ({1, 2, 8}, {3, 4, 5, 6, 7}).

(Recall Proposition 4.2.9.)
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Figure 20.1.11: Embedding graph H in a Hamming graph
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20.2 The Prime Factorization of a Graph

Let G be a connected graph. A factorization of G is a metric representation
which is an isomorphism. G is said to be prime if G cannot be decomposed
as the Cartesian product of two other graphs (each having at least two nodes).
Sabidussi [1960] proved that every connected graph admits a unique prime fac-
torization. Unicity is lost for disconnected graphs (see Zaretskii [1965]). The
graph factoring problem can be stated as follows:

Given a connected graph G, decide whether G is prime. If not, find
the prime factorization of G.

This problem can be solved in time polynomial in the number of nodes (Feigen-
baum, Hershberger and Schäffer [1985], Winkler [1987a]). We restrict ourselves
to connected graphs since the graph factoring problem for disconnected graphs is
at least as hard as the graph isomorphism problem. (Indeed, one can determine
whether two graphs G and H are isomorphic by checking whether the graph con-
sisting of two isolated nodes is a factor of the disjoint union of G and H.) The
algorithm proposed by Feigenbaum, Hershberger and Schäffer [1985] is based on
Sabidussi’s original proof and is rather difficult; it runs in time O(n4.5) where
n is the number of nodes of the graph. Winkler [1987a] proposes an algorithm
which is based on the canonical metric representation of graphs presented in
Section 20.1, with running time O(n4). We describe briefly the main ideas of his
algorithm.

Let G be the connected graph whose prime factorization is to be found. Let

σ : V (G) −→
∏

1≤h≤k
V (Gh)

denote the canonical metric representation of G and set

σ(a) = (σ1(a), . . . , σk(a))

for each node a ∈ V . Set S := {1, . . . , k}. For a subset T of S, let σT denote the
mapping from V to

∏
h∈T V (Gh) defined by

σT (a) = (σh(a) | h ∈ T )

for a ∈ V . A partition (S1, . . . , Sm) of S is said to be “good” if

σ(V ) =
∏

1≤i≤m
σSi(V ).

If this is the case, then
G =

∏

1≤i≤m
σSi(G)

gives a factoring of G. In particular, the prime factorization of G corresponds
to a good partition of S. A subset T of S is said to be complete if

σT (V ) =
∏

h∈T
V (Gh).
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A subset T ⊆ S can be checked for completeness in polynomial time. If S itself is
complete, then G = G1× . . .×Gk is the prime factorization of G. Otherwise, S is
not complete. One can find a minimum incomplete subset T of S in polynomial
time. (Indeed, check whether all (k−1)-subsets of S are complete. If yes, then S
is minimal incomplete. Else, let T be an incomplete (k − 1)-subset of S. Check
all (k − 2)-subsets of T , and so on.) The crucial fact is that, if T is minimal
incomplete and if (S1, . . . , Sm) is a good partition of S, then T ⊆ Si for some
i ∈ {1, . . . ,m}. (If not, then T ∩ S1, . . . , T ∩ Sm are complete, from which one
deduces that T itself is complete.) Now, σT (G) cannot be split in a factorization
of G. Hence, we may consider the metric representation

G →֒ σT (G) ×
∏

h∈S\T
Gh

instead of the initial representation G →֒ ∏
1≤h≤kGh. The new representation

has at most k − 1 factors (since |T | ≥ 2, as singletons are complete). We repeat
the process with this new representation until we find a representation whose
index set is complete. This final representation is the prime factorization of G.

Feder [1992] shows how this algorithm can be performed inO(mn) steps using
O(m) space; a faster algorithm running in O(m log n) time and using O(m) space
is proposed by Aurenhammer, Hagauer and Imrich [1990].

20.3 Metric Decomposition of Bipartite Graphs

We recall that the semimetric cone METn is defined by

METn = {x ∈ R(n
2) | xij − xik − xjk ≤ 0 for all i, j, k ∈ {1, . . . , n}}.

In other words, METn consists of all semimetrics on n points. A semimetric
d ∈ METn is said to be primitive if d lies on an extreme ray of METn, i.e., if d =
d1 +d2 with d1, d2 ∈ METn implies that d1 = α1d, d2 = α2d for some α1, α2 ≥ 0.
Given d ∈ METn, let F (d) denote the smallest face of METn that contains d.
Hence, F (d) consists of all the vectors y ∈ METn that satisfy the same triangle
equalities as d, i.e., such that yij − yik − yjk = 0 whenever dij − dik − djk = 0.
Then, F (d) is a simplex face (i.e., the primitive semimetrics lying on F (d) are
linearly independent) if and only if d admits a unique decomposition as a sum
of primitive semimetrics (recall Lemma 4.3.2).

Let G be a connected graph on n nodes. Its path metric dG belongs to
the semimetric cone METn. Hence, a natural question to ask is what are the
possible decompositions of dG as a sum of primitive semimetrics. Lomonosov and
Sebö [1993] show that, if G is a bipartite graph, then dG admits a unique such
decomposition, i.e., dG lies on a simplex face of METn. In fact, the primitive
semimetrics entering the decomposition of dG are gate 0-extensions of the path
metrics of the factors in the canonical metric representation of G.
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Theorem 20.3.1. Let G be a connected bipartite graph on n nodes with iso-
metric dimension dimI(G) = k. Let F (dG) denote the smallest face of the semi-
metric cone METn that contains dG. Then, F (dG) is a simplex face of METn
of dimension k.

Proof. Let E1, . . . , Ek denote the equivalence classes of the relation θ∗ and let

G →֒
∏

1≤h≤k
Gh

denote the associated canonical metric representation of G. For a node a ∈ V ,
denote by (a1, . . . , ak) its image under the canonical embedding. For h = 1, . . . , k,
let dh denote the semimetric on V defined by

dh(a, b) := dGh
(ah, bh)

for a, b ∈ V . Then, d can be decomposed as

d =
∑

1≤h≤k
dh.

The semimetrics d1, . . . , dk are clearly linearly independent and they belong to
the face FG. We show that F (dG) is generated by {d1, . . . , dk}. For this, we show
that each x ∈ FG is of the form x =

∑
1≤h≤k αhdh for some scalars αh ≥ 0. Let

x ∈ FG. By definition, this means that every triangle inequality which is satisfied
at equality by dG is also satisfied at equality by x. We claim that, if e = (a, b)
and e′ = (a′, b′) are edges of G, then

eθe′ =⇒ x(a, b) = x(a′, b′).

Indeed, as G is bipartite, we can suppose that a′ ∈ G(a, b) and b′ ∈ G(b, a). One
can easily check that dG satisfies the following four triangle equalities:

dG(a′, b) = dG(a′, a) + dG(a, b), dG(a, b′) = dG(a, b) + dG(b, b′),

dG(a′, b) = dG(a′, b′) + dG(b, b′), and dG(a, b′) = dG(a, a′) + dG(a′, b′).

Hence, x satisfies these four triangle equalities too. From the first two equalities,
we obtain

x(a′, b) − x(a, b′) = x(a′, a) − x(b, b′),

and the last two imply

x(a′, b) − x(a, b′) = x(b, b′) − x(a, a′).

Therefore, x(a, a′) = x(b, b′) and x(a, b′) = x(a′, b) which imply that x(a, b) =
x(a′, b′). Hence, there exist scalars α1, . . . , αk ≥ 0 such that x(a, b) = αh for each
edge (a, b) in the class Eh. We show

x =
∑

1≤h≤k
αhdh.
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Let a, b ∈ V and let P := (a0 = a, a1, . . . , ap = b) be a shortest path from a to b
in G. Set Nh := |E(P )∩Eh| for h = 1, . . . , k. Using the triangle equalities along
P , one obtains

x(a, b) =
∑

1≤i≤p
x(ai−1, ai) =

∑

1≤h≤k
αhNh.

As P contains Nh edges from Eh, by contracting the other edges of P , we obtain
in the graph Gh a path from ah to bh of length Nh. This shows that dGh

(ah, bh) ≤
Nh. Let Q′ be a shortest path from ah to bh in Gh. So, Q′ arises from a path
Q joining a to b in G. By Lemma 20.1.2, Q contains at least Nh edges from Eh.
Therefore, |Q′| ≥ Nh, implying that dGh

(ah, bh) = Nh. Hence,

∑

1≤h≤k
αhdh(a, b) =

∑

1≤h≤k
αhNh = x(a, b).

So, we have shown that F (dG) is generated by {d1, . . . , dk}. Therefore, F (dG) is
a simplex face of dimension k of METn.

Corollary 20.3.2. Let G be a connected bipartite graph. Then, its path met-
ric dG lies on an extreme ray of the semimetric cone METn if and only if
dimI(G) = 1, i.e., if G is irreducible.

Corollary 20.3.2 is not valid for nonbipartite graphs. For instance, K3 is irre-
ducible, but its path metric lies in the interior of the semimetric cone MET3.

20.4 Additional Notes

Several further aspects of the metric structure of graphs have received a consid-
erable attention in the literature, leading to rich theories. For instance, distance-
regular graphs, or strongly regular graphs, are defined by some invariance prop-
erty of their path metric. The study of these graphs leads to a large and rich area
of research, connected to algebraic graph theory. The monograph by Brouwer,
Cohen and Neumaier [1989] is an excellent source of information on this topic.
Let us only remind that some results along this line have been presented in Part
II, especially in Chapter 17, where hypermetric graphs are considered. The pa-
pers by Koolen [1990, 1993, 1994], Koolen and Shpectorov [1994], Weichsel [1992]
deal with the study of graphs with high regularity that have some specified met-
ric properties such as hypermetricity, or some special cases of it (e.g., satisfying
the pentagonal inequality, or the hexagonal inequality), etc. For instance, the
distance-regular graphs that are hypercube embeddable are completely classified:
they are the hypercubes, the even circuits, and the double-odd graphs (Koolen
[1990], Weichsel [1992]). The distance-regular graphs that are of negative type
(or, equivalently, hypermetric) are classified in Koolen and Shpectorov [1994];
see Theorem 17.2.7.

In this section we mention some further topics related to the metric structure
of graphs. Among them, the study of graphs having specified metric properties
(e.g., interval-regular graphs, geodetic graphs) and the question of embedding
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an arbitrary distance space into a (weighted) graph. There is a vast literature
on these topics. So, we shall not attempt to give a detailed treatment; we only
mention without proof some facts, results and references.

Interval-Regular Graphs and Geodetic Graphs. Let G = (V,E) be a
connected graph. For two nodes x, y ∈ V , let γ(x, y) denote the number of
shortest paths joining x to y in G. Set

I(x, y) := {z ∈ V | dG(x, y) = dG(x, z) + dG(z, y)}.

Moreover, for i = 0, 1, . . . , dG(x, y), set

Ni(x, y) := {z ∈ I(x, y) | dG(x, z) = i}

and

N−1(x, y) := {z ∈ V | dG(x, z) = 1 and dG(z, y) = dG(x, z) + 1}.

Then, G is distance-regular if the numbers |N1(x, y)| and |N−1(x, y)| depend only
on dG(x, y). The graph G is said to be interval-regular if |N1(x, y)| = dG(x, y)
for all nodes x, y ∈ V (see Mulder [1980, 1982]); G is said to be uniformely geode-
tic (in Cook and Pryce [1983]) (or F -geodetic in Ceccherini and Sappa [1986])
if γ(x, y) depends only on dG(x, y). Every distance-regular graph is uniformely
geodetic (Cook and Pryce [1983]), and every Hamming graph is interval-regular
(since the subgraph induced by the interval I(x, y) is isomorphic to the dG(x, y)-
hypercube). See, e.g., Scapellato [1990] and Koolen [1993] for more information
on uniformely geodetic graphs; Koolen [1993] characterizes the uniformely geode-
tic bipartite graphs.

Several characterizations of the hypercube are known. Foldes [1977] shows
that the hypercube is the only connected bipartite graph for which γ(x, y) =
dG(x, y)! holds for any pair of nodes. Ceccherini and Sappa [1986] show that
a connected bipartite graph G is isomorphic to a hypercube if and only if the
Cartesian product G×K2 is uniformely geodetic.

Interval-regular graphs are linked to hypercubes in the following way: Mul-
der [1982] shows that a connected graph G is interval-regular if and only if, for
any two nodes x, y, the subgraph of G consisting of the edges connecting two
consecutive levels Ni(x, y) and Ni+1(x, y) (i = 0, 1, . . . , dG(x, y) − 1) is isomor-
phic to the dG(x, y)-hypercube. Equivalently, G is interval-regular if and only if
γ(x, y) = dG(x, y)! for all nodes x, y ∈ V .

Hamming graphs can be characterized in terms of interval-regular graphs
in the following way (Bandelt and Mulder [1991]): A connected graph G is
a Hamming graph if and only if G is an interval-graph, G does not contain
K1,1,2 as an induced subgraph, and the only isometric odd circuits in G are
triangles. More generally, Bandelt and Mulder [1991] characterize the connected
graphs that can be decomposed as a Cartesian product where each factor is the
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suspension of a geodetic graph of diameter at most 2. (A geodetic graph is a
graph in which there is exactly one shortest path joining any pair of nodes.)

Embedding Metrics into Graphs. We now consider the question of embed-
ding metrics into graphs or, more generally, into weighted graphs. This topic
has many applications in various areas, such as psychology (Cunningham [1978])
and biology (Penny, Foulds and Hendy [1982]).

Let G = (V,E) be a graph and let we ∈ R+ (e ∈ E) be nonnegative weights
assigned to its edges. The path metric dG,w of the weighted graph (G,w) is
defined by letting dG,w(x, y) denote the smallest value of

∑
e∈E(P )we, taken over

all paths P joining x and y in G.
Given a finite metric space (X,d), one says that the weighted graph (G,w)

realizes (X,d) if there exists a mapping i ∈ X 7→ xi ∈ V such that

d(i, j) = dG,w(xi, xj)

for all i, j ∈ X. The graph G may have more nodes than those corresponding to
points of X. Every metric space can clearly be realized by some graph, namely,
by the complete graph on |X| nodes with weights d(i, j) on its edges. Consider,
for instance, the metric d on X = {1, 2, 3} defined by d(1, 2) = 4, d(1, 3) =
8, d(2, 3) = 6. Then, d can be realized by the following two weighted graphs:
K3 and a tree with one auxiliary node.

  1  2

 3

5

  3            1

   3

 8                6

 

  4
 1  2

The objective is, therefore, to find a graph (G,w) realizing (X,d) whose total
weight

∑
e∈E we is as small as possible. The existence of an optimal realization,

i.e., with minimum total weight among all possible realizations, was shown in
Imrich, Simões-Pereira and Zamfirescu [1984]. But finding an optimal realiza-
tion is an NP-hard problem even if the metric is assumed to be integer valued
(Althöfer [1988], Winkler [1988]).

On the other hand, the metric spaces that can be realized by weighted trees
are well characterized; such graphs have been introduced earlier under the name
of tree metrics. Namely, (X,d) is realizable by a weighted tree, if and only if d
satisfies the following condition, known as the four-point condition:

d(i, j) + d(r, s) ≤ max(d(i, r) + d(j, s), d(i, s) + d(j, r)),

i.e., the two largest of the three sums d(i, j)+d(r, s), d(i, r)+d(j, s), d(i, s)+d(j, r)
are equal, for all i, j, r, s ∈ X (Buneman [1974]). Note that the four point
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condition implies the metric condition (by taking r = s). Moreover, if (X,d) is
realizable by a tree, then there is only one such realization; it is optimal among
all graph realizations, and it can be found in polynomial time (Hakimi and Yau
[1964]).

The four point condition is closely related to another metric condition, namely,
ultrametricity. Recall that a distance space (X,d) is said to be ultrametric if it
satisfies

d(i, j) ≤ max(d(i, k), d(j, k))

for all i, j, k ∈ X. In other words, any three points form an isosceles triangle
with the third side shorter than or equal to the other two. See Aschbacher,
Baldi, Baum and Wilson [1987] for applications and references on ultrametrics.
Clearly, every ultrametric space satisfies the four point condition. Actually, each
tree metric can be characterized in terms of an associated ultrametric in the
following way (Bandelt [1990]). Let (X,d) be a distance space, let r ∈ X, and
let c be a constant such that c ≥ max(d(i, j) | i, j ∈ X). Define the distance d(c)

on X \ {r} by setting

d(c)(i, j) := c +
1

2
(d(i, r) + d(j, r) − d(i, j))

for i 6= j ∈ X. Then, d is a tree metric if and only if d(c) is ultrametric.
Ultrametrics have also a tree-like representation, which is used in classification
theory, in particular, in taxonomy (see Gordon [1987] and references therein for
details). Let T = (V,E) be a tree and we ∈ R+ (e ∈ E) be nonnegative weights
on its edges. Let r ∈ V be a specified node (a root) of T and let X = {x1, . . . , xk}
denote the set of leaves (nodes of degree 1) of T other than r. We assume that
dT,w(r, x) = h for all x ∈ X, for some constant h, called the height of T . Then,
T is also called a dendrogram, or indexed hierarchy. The height h(v) of a node v
of T is defined as the length of a shortest path joining v to some leaf of X. Then,
one can define a metric space (X,dX ) on X by letting dX(x, y) denote the height
of the first predecessor of x and y. The metric space (X,dX ) is ultrametric and
every ultrametric arises in this way. Moreover, the distance spaces (X,dX) and
(X, 1

2dT,w) coincide.





Chapter 21. ℓ 1-Graphs

We study in this chapter ℓ1-graphs, i.e., the graphs whose path metric can be
isometrically embedded into an ℓ1-space. Such graphs can be characterized as
the isometric subgraphs of Cartesian products of two types of elementary graphs,
namely, half-cube graphs and cocktail-party graphs. This result has already been
established in Part II, using the theory of Delaunay polytopes. We present here
another proof due to Shpectorov [1993] which is elementary and, moreover, yields
a polynomial time recognition algorithm. Section 21.4 contains additional results
on ℓ1-graphs; in particular, a characterization in terms of forbidden isometric
subspaces for isometric subgraphs of half-cube graphs.

21.1 Results on ℓ 1-Graphs

As was recalled in Chapter 18, a graph G is an ℓ1-graph if and only if it is
hypercube embeddable, up to scale. A λ-embedding of G into the hypercube
H(Ω) is any mapping

x ∈ V 7→ X ⊆ Ω

such that

λdG(x, y) = |X△Y |

for all nodes x, y of G. If G has a λ-embedding into a hypercube, we also say
that G is hypercube embeddable with scale λ. A 1-embedding in a hypercube is
nothing but an isometric embedding in a hypercube.

Three classes of graphs play a crucial role in the theory of ℓ1-graphs: complete
graphs, cocktail-party graphs, and half-cube graphs. All of them are ℓ1-graphs,
so is any Cartesian product of them. Actually, we show below that any ℓ1-graph
arises as an isometric subgraph of such a Cartesian product. Complete graphs
Km (m ≥ 3) and half-cube graphs 1

2H(m, 2) (m ≥ 3) have minimum scale 2.
Note that

1

2
H(2, 2) = K2,

1

2
H(3, 2) = K4×2,

and Km is an isometric subgraph of both Km×2 and 1
2H(m, 2). The following

holds clearly.

Lemma 21.1.1. A graph G is hypercube embeddable with scale 2 (that is, 2dG
is hypercube embeddable) if and only if G is an isometric subgraph of some half-

313
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cube graph.

On the other hand, determining the minimum scale of cocktail-party graphs
is a hard problem. This problem is considered in detail in Chapter 23; see
also Section 7.4. We already know from Theorem 19.2.8 that every connected
bipartite ℓ1-graph is hypercube embeddable. For nonbipartite graphs we have
the following observation (Blake and Gilchrist [1973]).

Lemma 21.1.2. Let G be an ℓ1-graph and suppose that G has a λ-embedding in
a hypercube. If G is not a bipartite graph, then λ is an even integer. Therefore,
the minimum scale of an ℓ1-graph is equal to 1 or is even.

Proof. Suppose that G is not bipartite. Let C be an odd circuit in G of minimal
length. Then, C is an isometric subgraph of G. Say, C = (a1, . . . , a2k+1). We can
suppose that, in the λ-embedding of G in a hypercube, the nodes a1, ak+1, ak+2

are labeled by the sets ∅,A,B, respectively. Then, as dG(a1, ak+1) = dG(a1, ak+2) =
k and dG(ak+1, ak+2) = 1, we have λ = |A△B| and |A| = |B| = λk. Hence,
λ = 2λk − 2|A ∩B|. Therefore, λ is an even integer.

We now present the main results of this chapter; they are due to Shpectorov
[1993].

Theorem 21.1.3. Let G be an ℓ1-graph. Then, there exist a graph Ĝ and an
isometric embedding σ̂ from G into Ĝ such that

(i) Ĝ = Ĝ1 × . . . × Ĝk, where each Ĝh is isomorphic to a complete graph, a
cocktail-party graph Km×2 (m ≥ 3), or a half-cube graph, and

(ii) if ψ is a λ-embedding of G into the hypercube, then there is a λ-embedding
ψ̂ of Ĝ into the same hypercube such that ψ = ψ̂σ̂.

Corollary 21.1.4. A connected graph G is an ℓ1-graph if and only if all the
factors in its canonical metric representation are ℓ1-graphs.

Corollary 21.1.5. A connected graph G is an ℓ1-graph if and only if G is an
isometric subgraph of a Cartesian product of cocktail-party graphs and half-cube
graphs.

Corollary 21.1.6. Let G be an ℓ1-graph. Then, G is ℓ1-rigid if and only if Ĝ
is ℓ1-rigid.

Corollary 21.1.7. Every ℓ1-rigid graph is an isometric subgraph of a half-cube
graph and, therefore, its minimum scale η is equal to 1 or 2.

Corollary 21.1.8. Let G be an ℓ1-graph on n ≥ 4 nodes. Then its minimum
scale η satisfies η ≤ n− 2.
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Corollary 21.1.9. Let G be a graph with n nodes and m edges. There exists an
algorithm permitting to decide whether G is an ℓ1-graph which runs in O(mn)
time using O(n2) space.

We present in Section 21.2 a concrete construction of the graph Ĝ from
Theorem 21.1.3, using a specific λ-embedding of G. We group in Section 21.3
the proofs for Theorem 21.1.3 and Corollaries 21.1.4-21.1.9.

The result from Corollary 21.1.5 was already established in Part II (in The-
orem 17.1.1 (ii)), as an application of the correspondence existing between De-
launay polytopes and hypermetrics. However, the proof method developed there
did not permit to obtain further results such as the characterization of ℓ1-rigidity
and the fact that ℓ1-graphs can be recognized in polynomial time. In contrast,
the proof method presented here uses only elementary notions. It is, in a way, a
continuation of the theory of canonical metric representations of graphs. Indeed,
the essential step of the proof will be to show that each factor in the canonical
metric representation of an ℓ1-graph can be further embedded into a complete
graph, a cocktail-party graph, or a half-cube graph.

In view of Corollaries 21.1.4 and 21.1.5, one can check whether a graph G is
an ℓ1-graph in the following way:

(i) Construct the canonical metric representation of G.

(ii) For each factor Gh in the canonical metric representation, check whether
Gh is an isometric subgraph of a cocktail-party graph or of a half-cube
graph.

Then, G is an ℓ1-graph if and only if the answer is always positive in Step (ii).
As was seen in Remark 20.1.5, Step (i) can be performed in O(mn) time using
O(m) space. The main difficulty in Step (ii) consists of recognizing the isometric
subgraphs of the half-cube graphs. The following result was already implicit in
Shpectorov [1993]; full details about the algorithm are provided in Deza and
Shpectorov [1996]. We will give the proof in Section 21.3.

Proposition 21.1.10. Let G be a graph on n nodes with m edges. There exists
an algorithm permitting to decide whether G is an isometric subgraph of some
half-cube graph which runs in O(mn) time using O(n2) space. The algorithm
constructs an embedding if one exists.

Suppose that each factor Gh in the canonical metric representation of G has
nh nodes and mh edges, where mh ≥ nh − 1 as Gh is connected. Then, m ≥
m1 + . . . + mk and nh ≤ n for all h. Therefore, n1m1 + . . . + nkmk ≤ nm.
Checking whether Gh is a subgraph of a cocktail-party graph can be done in
O(n2

h) time and space (simply check that every node is adjacent to all other
nodes except at most one). Therefore, the overall time complexity for checking
whether G is an ℓ1-graph is in O(mn) and the space complexity in O(n2), as
claimed in Corollary 21.1.9.
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21.2 Construction of Ĝ via the Atom Graph

In this section, we show how to construct the graph Ĝ from Theorem 21.1.3,
using a specific scale embedding of G. It will turn out that, in fact, Ĝ does not
depend on the choice of the scale embedding and thatĜ is an isometric extension
of the canonical metric representation of G. The main tool for the construction
of Ĝ is the atom graph of G, as we explain below.

Let G = (V,E) be an ℓ1-graph. Let

ψ : x ∈ V 7→ X ⊆ Ω

be a λ-embedding of G into the hypercube H(Ω). We can suppose without loss
of generality that Ω =

⋃
x∈V X and that a given node x0 ∈ V is assigned to ∅.

Set

(21.2.1) E0 := {e = (x, y) ∈ E | dG(x0, x) 6= dG(x0, y)}.

For an edge e = (x, y) ∈ E0, we can suppose, e.g., that x0 ∈ G(x, y). One can
easily check the following statements:

(21.2.2) |X| = λdG(x0, x) for all x ∈ V,

(21.2.3) |X ∩ Y | =
λ

2
(dG(x0, x) + dG(x0, y) − dG(x, y)) for all x, y ∈ V.

For an edge e = (x, y),

(21.2.4)

{
|X \ Y | = |Y \X| = λ

2 if e 6∈ E0,
X ⊆ Y if e ∈ E0.

Call atom every set of the form X△Y corresponding to an edge e = (x, y)
of G, and proper atom every set of the form Y \ X corresponding to an edge
e = (x, y) ∈ E0 (with x0 ∈ G(x, y)). Atoms have cardinality λ and

(21.2.5) if A,B are distinct proper atoms, then |A ∩B| = 0,
λ

2
.

We define the atom graph Λ(G) as the graph with node set the set of proper
atoms of G and with two proper atoms A,B being adjacent if |A ∩ B| = λ

2 .
Let Λ1, . . . ,Λk denote the connected components of Λ(G). For h = 1, . . . , k, let
Ωh denote the union of the proper atoms that are nodes of Λh. Hence, each
proper atom is either contained in Ωh, or is disjoint from Ωh. Actually, the same
property holds for all atoms, as we show in the next result.

Claim 21.2.6. Let A be an atom of G. Then, for each h = 1, . . . , k, either
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A ⊆ Ωh, or A ∩ Ωh = ∅.

Proof. Let (x, y) be an edge of G corresponding to the atom A, i.e., A = X△Y .
We can suppose that the edge (x, y) does not belong to E0. Hence, the node
x0 is at the same distance s from x and y. Let (x0, x1, . . . , xs = x) and (y0 =
x0, y1, . . . , ys = y) be shortest paths from x0 to x and y in G. Hence,

X =
⋃

1≤i≤s
Bi, Y =

⋃

1≤i≤s
Ci,

where Bi is the proper atom Xi \ Xi−1, Ci is the proper atom Yi \ Yi−1, for
i = 1, . . . , s. We claim that

X \ Y ⊆ Bi0

for some i0 ∈ {1, . . . , s}. Indeed, take α ∈ X \ Y and suppose, for instance, that
α ∈ B1. Then, B1 ∩ Y 6= B1. On the other hand, B1 ∩ Y 6= ∅, else B1 ⊆ X \ Y
implying that |X \Y | ≥ λ, contradicting (21.2.4). As the cardinality of B1∩Y is
a multiple of λ2 by (21.2.5), we obtain that |B1∩Y | = λ

2 , |B1 \Y | = λ
2 . Therefore,

X \ Y = B1 \ Y ⊆ B1. Similarly,

Y \X ⊆ Cj0

for some j0 ∈ {1, . . . , s}. Furthermore, as the Cj’s are pairwise disjoint, each Bi
either coincides with some Cj, or meets exactly two of them, unless Bi = Bi0
in which case Bi meets exactly one Cj. The symmetric statement holds for
each Ci. This means that the subgraph of the atom graph Λ(G) induced by the
set {B1, . . . , Bs, C1, . . . , Cs} consists of isolated nodes, cycles, and exactly one
path whose endpoints are Bi0 and Cj0. Let Λh0 be the connected component
of Λ(G) that contains this path. Then, Bi0 , Cj0 ⊆ Ωh0, which implies that
A = X△Y ⊆ Ωh0. Moreover, for h 6= h0, Bi0 , Cj0 are disjoint from Ωh, implying
that A is disjoint from Ωh.

Let Gh denote the graph with node set {X := X ∩ Ωh | x ∈ V } and with
(X,Y ) being an edge if |X△Y | = λ. Set G :=

∏

1≤h≤k
Gh.

Claim 21.2.7.

(i) Each Gh is λ-embedded into the hypercube H(Ωh) and its atom graph Λ(Gh)
coincides with Λh.

(ii) G is λ-embedded into the hypercube H(Ω).

(iii) The mapping x ∈ V 7→ (X ∩Ω1, . . . ,X ∩Ωk) is an isometric embedding of
G into G.

Proof. Let x, y be two nodes of G, giving the two nodes X = X∩Ωh, Y = Y ∩Ωh

of Gh. We show
|X△Y | = λdGh

(X,Y ).
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Set s := dG(x, y) and t := dGh
(X,Y ). Let (y0 = x, y1, . . . , ys = y) be a shortest

path from x to y in G. Then,

X△Y =
∑

1≤i≤s
Yi \ Yi−1

is a disjoint union of atoms. Let th denote the number of atoms Yi \ Yi−1 that
are contained in Ωh. By Claim 21.2.6, we obtain

|X△Y | = |(X△Y ) ∩ Ωh| = thλ.

Moreover, we have found a path of length th joining X to Y in Gh, which implies
that th ≥ t. Let (Z0 = X,Z1, . . . , Zt = Y ) be a shortest path joining X to Y in
Gh. So,

|X△Y | = |(X△Z1)△(Z1△Z2)△ . . .△(Zt−1△Y )| ≤
∑

1≤i≤t
|Zi−1△Zi| = tλ.

This implies that th ≤ t and, therefore, th = t. Hence, the graph Gh is λ-
embedded into the hypercube H(Ωh). One checks easily that its atom graph is
Λh. Hence, (i) holds. Moreover,

(X ∩ Ω1, . . . ,X ∩ Ωk) 7→
⋃

h

(X ∩ Ωh) = X

provides a λ-embedding of G1 × . . .×Gk into the hypercube H(Ω), showing (ii).
It also follows that

dG(x, y) =
∑

1≤h≤k
dGh

(X ∩ Ωh, Y ∩ Ωh)

for all nodes x, y ∈ V . This shows (iii).

We now show that each factor Gh can be further embedded into some graph
Ĝh which is isomorphic to a complete graph, a cocktail-party graph, or a half-
cube graph. We first deal with the case when the atom graph Λ(G) is connected,
i.e., when k = 1. Then, the graph G is nothing but the graph G embedded into
the hypercube H(Ω).

Claim 21.2.8. If Λ(G) is connected, then there exists a unique minimal graph
Ĝ containing G as an isometric subgraph and such that Ĝ is isomorphic to a
complete graph, a cocktail-party graph Km×2 (m ≥ 3), or a half-cube graph.
Moreover, Ĝ is λ-embedded into the hypercube H(Ω).

Proof. We distinguish three cases.
Case 1: Λ(G) is a complete graph. Then, G itself is a complete graph and
Ĝ = G. Indeed, each node x is adjacent to x0 (else, X would be a disjoint union
of the proper atoms corresponding to the edges of a shortest path from x0 to
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x). For two nodes x, y ∈ V , X and Y are adjacent proper atoms, implying that
|X△Y | = λ and, therefore, x and y are adjacent in G. (In fact, Λ(Kn) = Kn−1.)

Case 2: Λ(G) is not a complete graph, but is an induced subgraph of a cocktail-
party graph. Let A,B be two proper atoms at distance 2 in Λ(G). Each other
proper atom C is adjacent to both A and B, which implies that C ⊆ A ∪ B.
Hence, for each node x ∈ V , X is contained in the 2λ-element set A ∪ B. We
claim that G is an induced subgraph of a cocktail-party graph. Indeed, any two
nonadjacent nodes in G are necessarily at distance 2 since |X△Y | ≤ 2λ for all
x, y ∈ V . Moreover, each node x is adjacent to all other nodes except maybe
one, which is then labeled by the complement of X. Then, we take for Ĝ the
cocktail-party graph Km×2, obtained by adding an “opposite” node labeled by
the complement of X for each node x which is adjacent to all other nodes in
G. Hence, Ĝ is λ-embedded into the same hypercube H(Ω). Moreover, m ≥ 3.
Otherwise, G would be a subgraph of K2×2, which implies that G is P3 or C4 in
which cases Λ(G) consists of two isolated nodes.

Case 3: Λ(G) is not an induced subgraph of a cocktail-party graph. We show
that G can isometrically embedded into a half-cube graph. First, we claim the
existence of distinct proper atoms A,B,C,D satisfying





A ∩ C = ∅,
A ∩D = ∅,
C is adjacent to D in Λ(G),
B is adjacent to A and C in Λ(G).

Indeed, let A,C be two proper atoms at distance 2 in Λ(G) and let B be a proper
atom adjacent to A and C. Suppose for contradiction that, for each proper atom
D, D is adjacent to A if and only if D is adjacent to C. If D is adjacent to A and
C, then D ⊆ A∪C. If D′ is adjacent to A and C and D is adjacent to D′, then
D meets A or C and, thus, D is adjacent to both A and C, implyingD ⊆ A∪C.
By connectivity of the atom graph Λ(G), we deduce that each proper atom D
is contained in A ∪ C. Therefore, if D,D′ are disjoint proper atoms, then D′ is
the complement of D. This shows that each proper atom is adjacent to all other
proper atoms except at most one, contradicting the assumption that Λ(G) is not
a subgraph of a cocktail-party graph.
Let us call a half each set of the form A ∩ B or A \ B, where A,B are adjacent
proper atoms. Each half has cardinality λ

2 and each proper atom is the disjoint
union of two halves. We claim that

(21.2.9) distinct halves are disjoint.

If (21.2.9) holds then, for each node x ∈ V , X can be uniquely expressed as a
disjoint union of halves. Indeed, if (x0, x1, . . . , xs = x) is a shortest path from
x0 to x in G, then X = ∪1≤i≤sXi \ Xi−1 where each proper atom Xi \ Xi−1

is the union of two halves; this set of halves does not depend on the choice of
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the shortest path. This gives an isometric embedding of G into the half-cube
graph Ĝ defined on the set of halves. By construction, Ĝ is λ-embedded into the
hypercube H(Ω).
We now show that (21.2.9) holds. As Λ(G) is connected, we can order the proper
atoms A1, A2, . . . , Ap in such a way that each Aj (j ≥ 2) is adjacent to at least
one As, s < j. We suppose that A1 = A,A2 = B,A3 = C,A4 = D. We show by
induction on j ≥ 4 that the distinct halves that are created by the first j proper
atoms A1, . . . , Aj are pairwise disjoint.
Consider first the case j = 4. By construction, the halves H1 = A \ B, H2 =
A ∩ B, H3 = B ∩ C, H4 = C \ B are disjoint. Consider the half C ∩D. Since
B∩D = B∩C ∩D = (C ∩D)∩H3 has cardinality 0 or λ

2 , we obtain that C ∩D
is equal to H3 or H4. The half H5 = D \ C is disjoint from H1,H2,H3,H4.
We suppose now that all halves in the set H of the halves created by the first
j − 1 (j ≥ 5) proper atoms are pairwise disjoint. Call two halves H,H′ ∈ H
neighboring if H ∪H ′ is a proper atom As for some s < j. This defines a graph
structure on H, for which H is connected. Suppose that Aj is adjacent to As,
for s < j, and let As = X1 ∪X2 with X1,X2 ∈ H. Suppose that Aj ∩As is not
equal to X1, nor to X2. Set α = |Aj ∩ X1| and β = |Aj ∩X2, where α, β > 0
and α + β = λ

2 . If Y1, Y2 are two neighboring halves and |Aj ∩ Y1| = α or β,
then |Aj ∩ Y2| = β or α, respectively. By connectivity of H, we deduce that
Aj ∩ Y1| = α, |Aj ∩ Y2| = β, or vice versa, for every pair (Y1, Y2) of neighboring
halves. Now, |Aj ∩ (H1 ∪H2 ∪H3 ∪H4 ∪H5)| = 2(α + β) + α or 2(α + β) + β,
which is greater than λ, yielding a contradiction. Therefore, Aj ∩As is equal to
X1 or X2. Hence, Aj \As is either a half from H or a new half disjoint from all
halves in H. This concludes the induction, and the proof of Claim 21.2.8.

Claim 21.2.10. If Λ(G) has k connected components Λ1, . . . ,Λk, then there
exists a unique minimal graph Ĝ containing G as an isometric subgraph and
such that

Ĝ =
∏

1≤h≤k
Ĝh,

where each factor Ĝh is isomorphic to a complete graph, a cocktail-party graph
Km×2 (m ≥ 3), or a half-cube graph. Moreover, Ĝ is λ-embedded into the hy-
percube H(Ω).

Proof. As the atom graph Λ(Gh) = Λh is connected, we can apply Claim 21.2.8.
Hence, for each h = 1, . . . , k, there exists a unique minimal graph Ĝh which
contains Gh as an isometric subgraph and is isometric to a complete graph, a
cocktail-party graph Km×2 (m ≥ 3), or a half-cube graph. Therefore,

G →֒ Ĝ =
∏

1≤h≤k
Ĝh,

providing a minimal graph Ĝ satisfying Claim 21.2.10. Moreover, Ĝ is λ-
embedded into H(Ω) as each factor Ĝh is λ-embedded into H(Ωh) and the sets
Ωh are disjoint subsets of Ω.
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Remark 21.2.11. Each of the graphs Gh is irreducible since it is an isometric
subgraph of a complete graph, a cocktail-party graph on at least 6 nodes, or a
half-cube graph, which are all irreducible graphs. As the embedding G →֒ G is
clearly irredundant, we deduce from Theorem 20.1.1 that the metric representa-
tion

G →֒ G =
∏

1≤h≤k
Gh

is, in fact, the canonical metric representation of G (which explains why we de-
noted the number of connected components of the atom graph by k, the letter
used in Chapter 20 for denoting the isometric dimension of G). In particular,
the graph G whose construction depends, a priori, on the choice of the scale
embedding of G into a hypercube does not, in fact, depend on the specific em-
bedding. Hence, the graph Ĝ too does not depend on the specific embedding.

Remark 21.2.12. One can also verify directly that the graph G does not
depend on the specific scale embedding of G. Indeed, the atom graph can be
defined in an abstract way, not using the specific embedding. Given two edges
e = (x, y), e′ = (x′, y′) of G, set

(21.2.13) 〈e, e′〉 := dG(y′, x) − dG(y′, y) − dG(x′, x) + dG(x′, y).

The quantity 〈e, e′〉 takes the values 0,±1,±2, depending to which sets of the
partition V = G(x, y) ∪ G(y, x) ∪G=(x, y) (defined in (18.0.1)) the nodes x′, y′

belong. Observe that 〈e, e′〉 6= 0 if and only if e, e′ are in relation by θ (defined in
(18.0.2)). In the case when both e, e′ belong to the set E0 (recall (21.2.1)) with,
say, x0 ∈ G(x, y) ∩G(x′, y′), then

〈e, e′〉 =
1

λ
|(Y \X) ∩ (Y ′ \X′)| ∈ {0, 1, 2},

if x 7→ X is a λ-embedding of G into a hypercube. In particular, 〈e, e′〉 = 2 if
and only if the edges e, e′ correspond to the same proper atom Y \X = Y ′ \X′.
For e, e′ ∈ E0, set

e ∼ e′ if 〈e, e′〉 = 2.

The relation ∼ is an equivalence relation on E0. Clearly, the set of equivalence
classes of E0 under ∼ is in bijection with the set of proper atoms. One can define
a graph E on the set of equivalence classes by letting two classes e, e′ be adjacent
if 〈e, e′〉 = 1 (the value of 〈e, e′〉 does not depend on the choice of e in the class
e and of e′ in the class e′). The graph E clearly coincides with the atom graph
Λ(G). Let E1, . . . , Ek denote the connected components of E . Hence, each edge
e ∈ E0 is assigned to a node in one of the Eh’s. We now see how to assign the
other edges of G to some component Eh. Let e = (x, y) be an edge that does not
belong to E0, i.e., such that dG(x0, x) = dG(x0, y) =: s. Let (x0, x1, . . . , xs = x)
and (y0 = x0, y1, . . . , ys = y) be shortest paths joining x0 to x and y in G and
set ei := (xi−1, xi), fi := (yi−1, yi) for i = 1, . . . , s. Consider the subgraph of E
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induced by the set {ei, f i : i = 1, . . . , s}. An analogue of Claim 21.2.6 shows that
this graph consists of isolated nodes, cycles, and exactly one path. Moreover, the
component Eh containing this path depends only on the edge (x, y) (not on the
choice of the shortest paths from x0 to x and y). This permits us to partition
the edge set E of G into E1 ∪ . . . ∪ Ek, where Eh consists of the edges that are
assigned to Eh by the above procedure. Then, let Gh denote the graph obtained
by contracting the edges from E \ Eh. The graph Gh coincides with the graph
Gh (up to renumbering of the factors).
So we have shown how to construct the graph G in an abstract way, not depend-
ing on the specific scale embedding of G.

21.3 Proofs

Proof of Theorem 21.1.3. The existence of a graphĜ satisfying Theorem 21.1.3 (i)
follows from Claim 21.2.10. We prove the second part of Theorem 21.1.3. Let
ψ : x 7→ X be a λ-embedding of G into a hypercube H(Ω). Suppose first that
ψ assigns the given node x0 to ∅. Using ψ, by the construction of Section 21.2,
we obtain a graph Ĝψ which is λ-embedded into H(Ω) and is isomorphic to Ĝ

(by Remark 21.2.11). This gives the λ-embedding ψ̂ such that ψ = ψ̂σ̂. Sup-
pose now that ψ assigns the set X0 to the node x0. Consider the λ-embedding
x 7→ X△X0, denoted by ψ△X0, of G into H(Ω). As ψ△X0 maps x0 to ∅, we

obtain ̂(ψ△X0)△X0 for the embedding ψ̂.

Proof of Corollaries 21.1.4 and 21.1.5. IfG is an ℓ1-graph, then the graphG is an
ℓ1-graph (by Claim 21.2.7) and G coincides with the canonical metric represen-
tation of G (by Remark 21.2.11). This shows Corollary 21.1.4. Corollary 21.1.5
is an immediate consequence of Corollary 21.1.4.

Proof of Corollaries 21.1.6 and 21.1.7. The implication: Ĝ is ℓ1-rigid =⇒ G is
ℓ1-rigid follows from Theorem 21.1.3 (ii). Conversely, suppose that G is ℓ1-rigid.
We show that Ĝ is ℓ1-rigid. Consider a scale embedding ψ̂i of Ĝ in the hypercube
Ωi, for i = 1, 2. We can suppose that Ω1 and Ω2 have the same cardinality (if
not, add some redundant elements). We can also suppose that ψ̂1 and ψ̂2 have
the same scale λ. (If, for i = 1, 2, ψ̂i has scale λi, then replace ψ̂i by ψ̂′

i, where
ψ̂′

1 is the λ1λ2-embedding constructed from ψ̂1 by replacing the elements of Ω1

by disjoint sets each of cardinality λ2 and ψ̂′
2 is the λ1λ2-embedding constructed

from ψ̂2 in the same way.) Then, ψi := ψ̂iσ̂ : x 7→ Xi is a λ-embedding of
G into the hypercube H(Ωi), for i = 1, 2. As G is ℓ1-rigid, any two isometric
ℓ1-embeddings of G are equivalent (recall the definition from Chapter 18). It is
not difficult to see that this implies the existence of a bijection α : Ω1 −→ Ω2

and of a set A ⊆ Ω2 such that X2 = ϕ(X1) for each node x of G where, for a
subset Z ⊆ Ω1, we set

ϕ(Z) = σ(Z)△A.
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Using ψi, by the construction of Section 21.2, we obtain the graphĜψi
, which is

λ-embedded into the hypercube H(Ωi) via ψ̂i. By the minimality of the graphs
Ĝψ1,Ĝψ2 (see Claim 21.2.10), we deduce that ϕ establishes the equivalence of

the embeddings ψ̂1 and ψ̂2. Hence, Ĝ is ℓ1-rigid. This shows Corollary 21.1.6.
Corollary 21.1.7 now follows easily. Indeed, if G is ℓ1-rigid, then Ĝ is ℓ1-rigid,
which implies that each factor Ĝh is ℓ1-rigid (as a product of graphs is ℓ1-rigid
if and only if each factor is ℓ1-rigid; see Proposition 7.5.2). Therefore, each Ĝh
is one of the following graphs: K2, K3, K3×2, or 1

2H(m, 2) for m ≥ 5, which are
all hypercube embeddable with scale 2. Therefore, G is hypercube embeddable
with scale 2, i.e., G is an isometric subgraph of a half-cube graph.

Proof of Corollary 21.1.8. SupposeG has n nodes. If some factorĜh is a cocktail-
party graph Km×2, then m < n. Hence, by Lemma 7.4.4, Ĝh is hypercube
embeddable with scale 2k−1, if 2k−1 < n − 1 ≤ 2k. All other factors are also
hypercube embeddable with scale 2k−1 since k ≥ 2 as n ≥ 4. Hence, G is
hypercube embeddable with scale 2k−1, which implies that its minimum scale η
satisfies: η ≤ 2k−1 < n− 1.

Proof of Proposition 21.1.10. Let G = (V,E) be a connected graph on n nodes
and m edges. All the ingredients for constructing an algorithm permitting to
recognize whether G is an isometric subgraph of a half-cube have been essentially
given earlier, especially in Remark 21.2.12 (taking λ = 2). We describe the main
steps of the proof.

Let x0 be a given node of G. Given two edges e, e′ in G, we remind the defini-
tion of the quantity 〈e, e′〉 from relation (21.2.13); recall that 〈e, e′〉 ∈ {0,±1,±2}.
Moreover, if e := (x, y) and e′ := (x′, y′) are such that

dG(x0, y) = dG(x0, x) + 1, dG(x0, y
′) = dG(x0, x

′) + 1

(i.e., if e, e′ belong to the set E0 defined in (21.2.1)), then 〈e, e′〉 ≥ 0 in the case
when G is an isometric subgraph of a half-cube graph. A “trick” used in Deza
and Shpectorov [1996] in order to reduce the complexity is to consider a spanning
tree rather than the entire set E0. The algorithm consists of the following steps
(i)-(v).

(i) Let T = (V,ET ) be a spanning tree in G such that

dT (x0, x) = dG(x0, x) for all nodes x in G.

(Such a tree can be constructed in O(m) time using a breadth first search algo-
rithm.)

(ii) For any two edges e = (x, y), e′ = (x′, y′) ∈ ET (such that x0 ∈ G(x, y) ∩
G(x′, y′)) check whether 〈e, e′〉 ∈ {0, 1, 2}. If not, then G cannot be isometrically
embedded in a half-cube graph.

(iii) Define a relation ∼ on ET by letting

e ∼ e′ if 〈e, e′〉 = 2.
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Verify that this relation is an equivalence relation on ET . If not, then G cannot
be isometrically embedded in a half-cube graph.

(iv) Define a graph Σ on the set of equivalence classes of (ET ,∼), where there
is an edge between two classes e and e′ if 〈e, e′〉 = 1. Check that this graph is
well defined, i.e., that the value of 〈e, e′〉 does not depend on the choice of the
elements e, e′ in the classes. If not, then G cannot be isometrically embedded in
a half-cube graph.

(v) Check whether Σ is a line graph. (This can be done in O(m′) time if Σ has m′

edges (Lehot [1975]); note that m′ < n2.) If not, then G cannot be isometrically
embedded in a half-cube graph.

Let HΣ be a graph whose line graph is Σ. One can then construct an isometric
embedding of G into a half-cube graph in the following way.

We label each node x of G by a set X in a recursive manner. First, label x0
by X0 := ∅. Let e := (x, y) be an edge of G such that x0 ∈ G(x, y) and suppose
that x has been already labeled by X. The equivalence class e (in (ET ,∼)) is a
node of Σ and, thus, corresponds to an edge p(e) in HΣ, p(e) being a two-element
set. We label the node y by the set Y := X∪p(e). Let us check that this labeling
x 7→ X provides an isometric embedding of G into a half-cube graph.

Observe that
|p(e) ∩ p(e′)| = 〈e, e′〉

for all edges e, e′ ∈ ET . In particular, p(e) ∩ p(e′) = ∅ if and only if the edges e
and e′ are not in relation by θ. We first show that

|X| = 2dG(x0, x) for all x ∈ V.

For this, let (x0, x1, . . . , xp := x) be the path from x0 to x in T , where p :=
dG(x0, x). Let ei denote the edge (xi−1, xi) for i = 1, . . . , p. By the construction,
x is labeled by the set

X := p(e1) ∪ . . . ∪ p(ep).
Hence, |X| = 2p = 2dG(x0, x), as the p(ei)’s are pairwise disjoint since the edges
e1, . . . , ep are not in relation by θ. We now show that

|Y△Y ′| = 2dG(y, y′) for all y, y′ ∈ V.

We prove it by induction on the quantity s := dG(x0, y) + dG(x0, y
′). We can

suppose that y and y′ are distinct from x0. Let x be the predecessor of y on the
path from x0 to y in T , and let x′ be the predecessor of y′ on the path from x0

to y′ in T . Set e := (x, y) and e′ := (x′, y′). By the induction assumption, we
have

|X△X′| = 2dG(x, x′), |X△Y ′| = 2dG(x, y′), |X′△Y | = 2dG(y, x′)

or, equivalently,

(a)





|X ∩X′| = dG(x0, x) + dG(x0, x
′) − dG(x, x′),

|X ∩ Y ′| = dG(x0, x) + dG(x0, y
′) − dG(x, y′),

|X ′ ∩ Y | = dG(x0, y) + dG(x0, x
′) − dG(y, x′).
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By the construction, Y = X ∪ p(e), Y ′ = X ′ ∪ p(e′) and, thus,

(b) |Y ∩ Y ′| = |X ∩ Y ′| + |X ′ ∩ Y | − |X ∩X′| + |p(e) ∩ p(e′)|.

On the other hand,

|Y△Y ′| = |Y | + |Y ′| − 2|Y ∩ Y ′| = 2dG(x0, y) + 2dG(x0, y
′) − 2|Y ∩ Y ′|.

Therefore, using (a), (b) and (21.2.13), we obtain

|Y△Y ′| = 2(dG(x, y′) + dG(y, x′) − dG(x, x′) − |p(e) ∩ p(e′)|) = 2dG(y, y′),

which concludes the proof.

21.4 More about ℓ 1-Graphs

We group here several additional facts and results on structural properties of
ℓ1-graphs.

We saw in Proposition 19.1.2 that every hypercube embeddable graph is
ℓ1-rigid. Hence, we have the following chain of implications:

G is an isometric subgraph of a hypercube
=⇒ G is ℓ1-rigid
=⇒ G is an isometric subgraph of a half-cube graph

Several classes of graphs were shown to be ℓ1-rigid in Deza and Laurent
[1994a]; among them, the half-cube graph 1

2H(n, 2) for n 6= 3, 4, the Johnson
graph J(n, d) for d 6= 1, the Petersen graph, the Shrikhande graph, the dodeca-
hedron, the icosahedron, any weighted circuit. The method of proof is analogue
to that of Proposition 19.1.2; namely, one shows that the path metric of the graph
in question lies on a simplex face of the corresponding cut cone. This question
of ℓ1-rigidity is further investigated for other classes of graphs in Chepoi, Deza
and Grishukhin [1996], Deza and Grishukhin [1996c], Deza, Deza and Grishukhin
[1996].

An interesting fact is that, if an ℓ1-graph G is not ℓ1-rigid, then this is
essentially due to the fact that complete graphs on at least four nodes are not
ℓ1-rigid. Indeed, it follows from Theorem 21.1.3 that any ℓ1-embedding of G
arises from an ℓ1-embedding of its extension Ĝ. As Ĝ is a Cartesian product
of complete graphs, cocktail-party graphs and half-cube graphs, the variety of
ℓ1-embeddings of Ĝ follows from the variety of ℓ1-embeddings of its factors. But
the half-cube graph is ℓ1-rigid unless it coincides with K4 or K4×2. Moreover,
any ℓ1-embedding of Kn×2 arises from some ℓ1-embedding of Kn, since the path
metric of Kn×2 can be constructed from the path metric of Kn via the antipodal
operation (recall Section 7.4). Therefore, the variety of ℓ1-embeddings of Ĝ and,
hence, that of G, arises from the variety of ℓ1-embeddings of the complete graph;
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we will study in detail in Chapter 23 the variety of embeddings of the complete
graph. In fact, we will see in Proposition 21.4.4 below that, if an ℓ1-graph is not
ℓ1-rigid, then it must contain a clique on at least 4 nodes.

We have seen in Chapter 19 several structural characterizations for isometric
subgraphs of hypercubes. We present below in Theorem 21.4.2 a structural
characterization for isometric subgraphs of half-cube graphs. This result is due
to Chepoi, Deza and Grishukhin [1996] and it can be seen as an analogue of
Theorem 19.2.5 for isometric subgraphs of hypercubes. On the other hand, no
result of this type is known for ℓ1-graphs in general. Thus, the following problem
is open.

Problem 21.4.1. Find a structural characterization for ℓ1-graphs (e.g., in
terms of forbidden isometric subspaces).

Such a characterization exists for some classes of graphs. For instance, we gave
in Theorem 17.1.8 a structural characterization for the graphs with a universal
node that are ℓ1-graphs. We presented this result in Part II since its proof relies
on the techniques of hypermetrics and Delaunay polytopes. In particular, we
saw in Corollary 17.1.10 that, if G is a graph on n ≥ 28 (resp. n ≥ 37) nodes,
then its suspension ∇G is an ℓ1-graph if and only if ∇G is hypermetric (resp.
∇G satisfies the 5-gonal inequalities and is of negative type).

Let us now turn to the study of isometric subgraphs of half-cube graphs (that
is, ℓ1-graphs with scale 2). We need a definition. Given an integer k ≥ 0, let
Tk = (X,dk) denote the distance space onX := {a0, a1, a2, a3, a4, b0, b1, b2, b3, b4}
defined by

dk(ai, aj) = dk(bi, bj) := 1 for all 0 ≤ i < j ≤ 4,
dk(a0, b0) := k + 2,
dk(ai, bi) := k for i = 1, 2, 3, 4,
dk(x, y) := k + 1 elsewhere, i.e., on the pairs (a0, bi), (b0, ai) (i = 1, 2, 3, 4)

and (ai, bj) (i 6= j ∈ {1, 2, 3, 4}).

In the case k = 0, the distance space T0 coincides (up to gate 0-extension)
with the graphic metric space of the graph K6 \ e, which has minimum scale 4
(recall Section 7.4). As dk = d0 + kδ({a0, a1, a2, a3, a4}), every Tk is hypercube
embeddable with scale 4. In fact, no Tk is hypercube embeddable with scale 2
and the distance spaces Tk turn out to be the only obstructions for isometric
embeddability in half-cube graphs.

Theorem 21.4.2. Let G = (V,E) be an ℓ1-graph. Then, G is an isometric
subgraph of some half-cube graph if and only if its graphic metric space (V, dG)
does not contain Tk (k ≥ 0) as an isometric subspace.

Proof. We start with verifying that the distance space Tk = (X,dk) (k ≥ 0) is
not hypercube embeddable with scale 2. This is known for T0. Suppose that Tk
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admits a hypercube embedding with scale 2 and let k ≥ 1 be the smallest index
for which this is true. Consider a decomposition

2dk =
∑

δ(S)∈Ck

δ(S)

where Ck is a collection of (not necessarily distinct) cut semimetrics on X. All
cut semimetrics in Ck are dk-convex by Lemma 4.2.8. Note that the only dk-
convex cut semimetric δ(S) with the property that a1 ∈ S and b1 6∈ S is δ(S0) :=
δ({a0, a1, a2, a3, a4}). Hence this cut semimetric occurs 2k times in Ck. Now,
2dk − 2δ(S0) coincides with 2dk−1 and admits a decomposition as a sum of cut
semimetrics (as k ≥ 1). This shows that Tk−1 too admits a scale 2 hypercube
embedding, yielding a contradiction.

Conversely, let G = (V,E) be an ℓ1-graph that is not an isometric subgraph
of a half-cube graph. We show that (V, dG) contains some Tk as an isometric
subspace. By Corollary 21.1.5, G is an isometric subgraph of a Cartesian product
of half-cube graphs and cocktail-party graphs. This product contains someKm×2

with m ≥ 5 (else, G would have scale 2). Say, G is an isometric subgraph of
the graph Γ := Km×2 × H, where m ≥ 5 and H is a product of half-cube and
cocktail-party graphs. Moreover, we can suppose that Km×2 contains a subgraph
Km+1 \ e such that, for every node v of Km+1 \ e, the set {v} × V (H) contains
at least one node of G (for, if not, one could have replaced Km×2 by a smaller
cocktail-party graph or by a complete graph). Denote by K the set of nodes of
Km+1 \ e forming a clique of size m. For every node v of Km×2 we call the set
{v} × V (H) a fiber in the product Γ. The following can be easily observed:

(a)
Every union of fibers of the form:

⋃
v∈K0

{v} × V (H) where K0 ⊆ K,
is convex (with respect to the path metric of Γ).

We claim:

(b)
The set V (G) ∩ (

⋃
v∈K{v} × V (H)) contains a clique of size m

meeting each fiber {v} × V (H)(v ∈ K) in exactly one node.

For this, let C ⊆ V (G)∩(
⋃
v∈K{v} × V (H)) be a clique of maximum size (whose

elements all have the same H-coordinate). Suppose that C ∩ ({w} × V (H)) = ∅
for some w ∈ K. Note that every node x ∈ V (G)∩ ({w}×V (H)) is at the same
distance from all nodes in C; choose such x for which this distance is minimum.
For every node y ∈ C consider a shortest path in G from x to y; this path is
entirely contained in the union of the two fibers containing x and y (by (a)). Say,
this path is of the form (x, ỹ, . . . , y). The node ỹ does not belong to the same
fiber as x (by the minimality assumption on x). Thus, ỹ belongs to the fiber of
y. Now, the nodes x and ỹ (for y ∈ C) form a clique of larger size than C. This
shows that (b) holds.

Let C ⊆ V (G) be a clique of size m meeting each fiber {v}×V (H) for v ∈ K.
Denote by w,w′ the two nonadjacent nodes in Km+1 \ e with w ∈ K, w′ 6∈ K.
Let s denote the node of C lying in the fiber {w} × V (H). By assumption, the
fiber {w′}×V (H) also contains some node of G. Every such node is at the same
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distance k ≥ 1 from all nodes in C \ {s}; choose such a node t for which the
distance k is minimum. Thus, dG(s, t) = k+1 and dG(t, y) = k for all y ∈ C\{s}.
Consider a shortest path in G from t to y ∈ C \{s}; it is of the form (t, y′, . . . , y)
where y′ belongs to the same fiber as y by the minimality assumption on k.
Therefore, the nodes t, y′ (for y ∈ C \{s}) form a clique and dG(y, y′) = k−1 for
y ∈ C \ {s}. As |C \ {s}| ≥ 4 we have found within {s, t} ∪ {y, y′ | y ∈ C \ {s}}
an isometric subspace of (V, dG) of the form Tk−1. This concludes the proof.

Corollary 21.4.3. Let G be an ℓ1-graph and suppose that G does not have a
clique of cardinality 5. Then, G is an isometric subgraph of a half-cube graph.

Combining facts about ℓ1-graphs established earlier in this chapter and in
the proof of Theorem 21.4.2, one can show the following refinement of the result
from Corollary 21.4.3.

Proposition 21.4.4. Let G be an ℓ1-graph that does not contain a clique of size
4, then G is ℓ1-rigid (and, thus, is an isometric subgraph of a half-cube graph).

Proof. Suppose that G is an ℓ1-graph which is not ℓ1-rigid. Following the nota-
tion from Section 21.2, let

G →֒ G =
k∏

h=1

Gh →֒ Ĝ =
k∏

h=1

Ĝh,

where
∏k
h=1Gh is the canonical metric representation of G and each factorĜh is

a complete graph Km (m ≥ 2), a cocktail-party graph Km×2 (m ≥ 2), or a half-
cube graph 1

2H(m, 2) (m ≥ 5). By Corollary 21.1.6, Ĝ is not ℓ1-rigid. Therefore,

some factor Ĝh is not ℓ1-rigid and, thus, isKm orKm×2 withm ≥ 4. This implies
that Gh contains a clique of size m ≥ 4 (see the proof of Claim 21.2.8). Now, we
have that G is an isometric subgraph of Gh ×H, where H :=

∏
h′ 6=hGh′ . One

can easily verify that the statement from relation (b) in the proof of Theorem
21.4.2 remains valid in the present situation. Thus, we have found a clique of
size m ≥ 4 in G.

In particular, we find again that bipartite ℓ1-graphs are ℓ1-rigid but we also find,
for instance, that tripartite ℓ1-graphs are ℓ1-rigid.

Let us now return to general ℓ1-graphs. A question of interest is to classify
ℓ1-graphs within some restricted classes of graphs. Such a classification is known,
for instance, for distance-regular graphs (recall Corollary 17.2.9). This question
is studied in several papers for other classes of graphs, that we now mention
briefly.

The graphs G for which both G and its complement G are ℓ1-graphs are
studied in Deza and Huang [1996a] and ℓ1-embeddability of graphs related with
some designs is considered in Deza and Huang [1996b].
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Recently, Deza and Grishukhin [1996c] classify ℓ1-graphs within polytopal
graphs (that is, 1-skeleton graphs of polytopes) of a variety of well-known poly-
topes, such as semiregular, regular-faced polytopes, zonotopes, Delaunay poly-
topes of dimension ≤ 4, and several generalizations of prisms and antiprisms.

Deza, Deza and Grishukhin [1996] study the class of polytopal graphs arising
from fullerenes. Fullerenes and their duals have many applications in chemistry,
computer graphics, microbiology, architecture, etc. For instance, they occur as
carbon molecules, spherical wavelets, virus capsids and geodesic domes. They
can be defined in the following way. A fullerene Fn is a simple 3-dimensional
polytope with n vertices that are arranged in 12 pentagons andn2 −10 hexagons.
Such polytopes can be constructed for every even n ≥ 20, except n = 22. Among
other results, Deza, Deza and Grishukhin [1996] show that any hypermetric
fullerene graph is ℓ1-embeddable (and thus has scale 2, by Proposition 21.4.5
below) and give an infinite family of fullerenes F20a2 (a integer) which are ℓ1-
embeddable with an icosahedral group of symmetries.

Related work is made by Deza and Stogrin [1996] who study ℓ1-embeddability
of the (infinite) graphs arising as skeletons of plane tilings. In particular, they
classify such ℓ1-graphs for all semiregular and 2-uniform partitions of the plane,
their duals and regular partitions of the hyperbolic plane.

Several authors study ℓ1-graphs within the class of planar graphs. First, as
an application of Corollary 21.4.3, we obtain:

Proposition 21.4.5. Every planar ℓ1-graph has scale 2 (that is, is an isometric
subgraph of a half-cube graph).

Prisăkar, Soltan and Chepoi [1990] show that every planar graph satisfying
the following conditions (i)-(iv) is an ℓ1-graph. Suppose a plane drawing of G
is given; then the conditions on G are: (i) every edge belongs to at most two
faces; (ii) each interior face of G has at least five nodes; (iii) any two interior
faces intersect in at most one edge; (iv) each interior node has degree ≥ 4.

Deza and Tuma [1996] characterize ℓ1-graphs within the class of subdivided
wheels. A wheel is the graph obtained from a circuit C by adding a new node
adjacent to all nodes on C. For instance, K4 is a wheel; Figure 31.3.12 (a) shows
a wheel where C has length 6. Let us call subdivided wheel the graph which is
obtained from a wheel by replacing some edges of the circuit C by paths. See
Figure 21.4.7; there, the dotted lines indicate paths and the indication ‘even’ or
‘odd’ on a face means that the circuit bounding it has an even or odd length.
The following result is proved in Deza and Tuma [1996].

Theorem 21.4.6. A subdivided wheel is an ℓ1-graph if and only if it is not one
of the graphs shown in Figure 21.4.7 (a),(b),(c). Moreover, it is ℓ1-rigid if and
only if it is distinct from K4.
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Figure 21.4.7: Subdivided wheels that are not ℓ1-graphs

Chepoi, Deza and Grishukhin [1996] further study ℓ1-graphs within the class
of planar graphs satisfying the following two conditions: (i) each face of G is
bounded by an isometric cycle; (ii) two interior faces meet in at most one edge
(assuming a plane embedding is given). In particular, they show that every
outerplanar1 graph is an ℓ1-graph. Another example of graphs satisfying (i), (ii)
consists of triangulations; that is, planar graphs admitting a plane embedding in
which every interior face is bounded by a cycle of length 3. Bandelt and Chepoi
[1996c] show that every triangulation with the property that all interior vertices
have degree larger than 5 is an ℓ1-graph and, moreover, is ℓ1-rigid. Moreover, by
Proposition 21.4.4, every triangulation which is an ℓ1-graph and does not have
K4 as an induced subgraph is ℓ1-rigid.

1An outerplanar graph is a planar graph admitting a plane embedding in which all nodes lie
on one face.
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Introduction

In Part IV, we study the question of embedding semimetrics isometrically in
the hypercube and, in particular, its link with the theory of designs.

Let t ≥ 1 be an integer. A very simple metric is the equidistant metric on n
points, denoted by 2t11n, which takes the same value 2t on each pair of points.
The metric 2t11n is obviously hypercube embeddable. Indeed, a hypercube em-
bedding of 2t11n can be obtained by labeling the points by pairwise disjoint sets,
each of cardinality t. A basic result established in Chapter 22 is that, for n
large enough (e.g., for n ≥ t2 + t + 3), this embedding is essentially the unique
hypercube embedding of 2t11n. Moreover, for n ≥ t2, the existence of another
hypercube embedding of 2t11n depends solely on the existence of a projective
plane of order t. In Chapter 23, we further investigate how various hypercube
embeddings of 2t11n arise from designs. We then consider in Chapter 24 some
other classes of metrics for which we are able to characterize hypercube embed-
dability. Typically, these metrics have a small range of values so that one can still
take advantage of the knowledge available for their equidistant submetrics. For
instance, one can characterize the hypercube embeddable metrics with values in
the set {a, 2a}, or {a, b, a+ b} (if two of a, b, a+ b are odd), where a, b are given
integers. Moreover, this characterization yields a polynomial time algorithm for
checking hypercube embeddability of such metrics. We recall that, for general
semimetrics, it is an NP-hard problem to check whether a given semimetric is
hypercube embeddable. Several additional results related to the notion of hy-
percube embeddability are grouped in Chapter 25, namely, on cut lattices, quasi
h-points and Hilbert bases of cuts.

We now recall some definitions and terminology that we use in this part. Let
d be a distance on the set Vn := {1, . . . , n}. Then, d is said to be hypercube
embeddable if there exist vectors ui ∈ {0, 1}m (for some m ≥ 1) (i ∈ Vn) such
that

(a) d(i, j) =‖ ui − uj ‖1

for all i, j ∈ Vn. Let M denote the n × m matrix whose rows are the vectors
u1, . . . , un; M is the realization matrix of the embedding u1, . . . , un of d. Any
matrix arising as the realization matrix of some hypercube embedding of d is
called an h-realization matrix of d. Each vector ui can be seen as the incidence
vector of a subset Ai of {1, . . . ,m}. Hence,

(b) d(i, j) = |Ai△Aj|

for all i, j ∈ Vn. We also say that the sets A1, . . . , An form an h-labeling of d.

Clearly, if M is an h-realization matrix of d, we can assume without loss of
generality that a row of M is the zero vector. This amounts to assuming that
one of the points is labeled by the empty set in the corresponding h-labeling of
d.
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Let B denote the collection of subsets of Vn whose incidence vectors are the
columns ofM ; B is a multiset, i.e., it may contain several times the same member.
Then, (a) is equivalent to

(c) d =
∑

B∈B
δ(B).

This shows again (recall Proposition 4.2.4) that hypercube embeddable semi-
metrics are exactly the semimetrics that can be decomposed as a nonnegative
integer combination of cut semimetrics. If (c) holds, we also say that

∑
B∈B δ(B)

is a Z+-realization of d. It will be convenient to use both representations (a) (or
(b)) and (c) for a hypercube embeddable semimetric d. So, we shall speak of
a hypercube embedding (or of an h-labeling of d), and of a Z+-realization of d.
This amounts basically to looking either to the rows, or to the columns of the
matrix M .

Recall that d is said to be h-rigid if d has a unique Z+-realization or, equiv-
alently, if d has a unique (up to a certain equivalence) hypercube embedding.
Equivalent embeddings were defined in Section 4.3; we remind the definition
below. Let B be a collection of subsets of Vn satisfying (c). If we apply the
following operations to B:

(i) delete or add to B the empty set or the full set Vn,

(ii) replace some B ∈ B by its complement Vn \B,

then we obtain a new set family B′ satisfying again (c). We then say that B and
B′ are equivalent (or define equivalent hypercube embeddings), as they yield the
same Z+-realization of d.



Chapter 22. Rigidity of the
Equidistant Metric

In this chapter we study h-rigidity of the equidistant metric 2t11n for n, t integers,
n ≥ 3, t ≥ 1. As was already mentioned, 2t11n is hypercube embeddable. Indeed,
a hypercube embedding of 2t11n is obtained by labeling the n points by pairwise
disjoint sets, each of cardinality t. This embedding is called the star embedding
of 2t11n; it corresponds to the following Z+-realization:

(22.0.1) 2t11n =
∑

1≤i≤n
tδ({i}),

called the star realization of 2t11n. The word “star” is used since each cut semi-
metric δ({i}) takes nonzero values on the pairs (i, j) for j ∈ {1, . . . , n} \ {i}, i.e.,
on the edges of a star. Let us call a hypercube embedding of 2t11n nontrivial if
it is not equivalent to the star embedding, i.e., if it provides a Z+-realization of
2t11n distinct from the star realization (22.0.1). Hence, the metric 2t11n is h-rigid
if it has no nontrivial hypercube embedding.

For n = 3, the equidistant metric 2t113 is h-rigid. It is, in fact, ℓ1-rigid since
the cut cone CUT3 is a simplex cone (indeed, CUT3 is generated by the three
linearly independent vectors δ({i}) for i = 1, 2, 3). For n = 4, the metric 2t114 is
not h-rigid. Indeed, besides the star realization from (22.0.1), 2t114 admits the
following Z+-realization:

(22.0.2) 2t114 = t(δ({1, 2}) + δ({1, 3}) + δ({1, 4}));

2114 has no other Z+-realization. In fact, 2t11n is not ℓ1-rigid for any n ≥ 4 as,
for instance,

2t11n =
t

n− 2

∑

1≤i<j≤n
δ({i, j})

is a decomposition of 2t11n as a nonnegative sum of cut semimetrics which is
distinct from the decomposition in relation (22.0.1). On the other hand, as we
see below, if n is large with respect to t, then 2t11n is h-rigid.

There is an easy way of constructing nontrivial hypercube embeddings for the
metric 2t11n, using (partial) projective planes. Let us first recall their definition.

A (finite) projective plane of order t, commonly denoted by PG(2, t), consists
of a pair (X,L), where X is the set of points and L is a collection of subsets of
X, called lines, satisfying:

335
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(i) each line L ∈ L has cardinality t+ 1,

(ii) each point of X belongs to t+ 1 lines, and

(iii) any two distinct points of X belong to exactly one common line.

Hence, there is the same number t2 + t + 1 of lines and points in PG(2, t).
Moreover,

(iv) any two distinct lines in L intersect in exactly one point.

In the case t = 1 there are three points and three lines which are the possible
pairs of points. We shall consider projective planes of order t ≥ 2. It is well-
known that projective planes exist of any order t that is a prime power. It is
one of the major open problems in combinatorics to determine what are the
possible values for the order of a projective plane. It is known that no projective
plane exists with order 6 or 10; the case t = 10 was settled using computer by
Lam, Thiel and Swierzc [1989]. (See, e.g., Hall [1967] for more information on
projective planes.)

A partial projective plane of order t is a pair P = (X,L) satisfying (i) and
(iv) above. We assume that every point lies on at least one line and P is said to
be trivial if there exists a point lying on every line. It is easy to see that, if P
is nontrivial, then |L| ≤ t2 + t+ 1 with equality if and only if P is a projective
plane (of order t); moreover, every point is on at most t + 1 lines. Clearly, a
nontrivial partial projective plane of order t = 1 has |L| ≤ 3 lines.

Hall [1977] shows that every nontrivial partial projective plane with suffi-
ciently many lines can be extended to a projective plane. Namely,

Theorem 22.0.3. Let P = (X,L) be a nontrivial partial projective plane of
order t ≥ 2 with |L| ≥ t2−1 lines. Then, P can be extended to a projective plane
P1 = (X1,L1) of order t; that is, X ⊆ X1 and L ⊆ L1.

Let P = (X,L) be a partial projective plane of order t with n := |L| lines.
Then, P yields a hypercube embedding of 2t11n; namely, by labeling the elements
of Vn by the lines in L. Note that this embedding is nontrivial precisely if P
is nontrivial. Therefore, the existence of a nontrivial partial projective plane of
order t ensures that the metric 2t11n is not h-rigid. (Recall that n ≤ t2 + t+1 in
this case.) It ensures, moreover, that the metric 2t11n+1 is not h-rigid. Indeed,
let Z be a set of cardinality t − 1 disjoint from X. If we label the elements of
Vn by the sets L ∪ Z for L ∈ L and the remaining element of Vn+1 \ Vn by the
empty set, then we obtain a nontrivial hypercube embedding of 2t11n+1.

In fact, for n large enough, the existence of a nontrivial hypercube embedding
of 2t11n depends only on the existence of a (partial) projective plane of order t
with a suitable number of lines. The following two theorems were proved by Hall
[1977].

Theorem 22.0.4. Let n ≥ t2 ≥ 4. The metric 2t11n is not h-rigid if and only if
n ≤ t2 + t+ 2 and there exists a projective plane of order t.
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Theorem 22.0.5. Let n ≥ 1
2 (t + 2)2 with t ≥ 2. If 2t11n is not h-rigid then

there exists a nontrivial partial projective plane of order t with n− 1 lines.

In fact, Theorem 22.0.4 can be derived easily from Theorems 22.0.3 and 22.0.5,
as we indicate below. As an application of Theorem 22.0.5 we have the following
Theorems 22.0.6 and 22.0.7 which were obtained earlier, respectively, by Deza
[1973b] and van Lint [1973]. (The case t = 1 in Theorem 22.0.6 is not covered
by Theorem 22.0.5 but can be very easily checked directly.) Another case of
h-rigidity for the metric 2t11n will be given later in Corollary 23.2.5.

Theorem 22.0.6. If n ≥ t2 + t + 3 and t ≥ 1, then 2t11n is h-rigid, i.e., the
only Z+-realization of 2t11n is the star realization from (22.0.1).

Theorem 22.0.7. Let n = t2 + t + 2 with t ≥ 3. If the metric 2t11n is not
h-rigid, then there exists a projective plane of order t.

Proof of Theorem 22.0.4. Let n ≥ t2 ≥ 4 and suppose that 2t11n is not h-rigid.
We show that there exists a projective plane of order t. If t ≥ 5, this follows
immediately from Theorems 22.0.3 and 22.0.5, as t2 ≥ 1

2(t + 2)2; on the other
hand, projective planes are known to exist for any order t ∈ {2, 3, 4}. We now
verify that n ≤ t2 + t+2. For this, note that n ≥ t2 + t+3 implies n ≥ 1

2(t+2)2;
then a nontrivial partial projective plane of order t with n − 1 lines exists (by
Theorem 22.0.5), which implies that n− 1 ≤ t2 + t+ 1, yielding a contradiction.
Conversely, it is immediate to verify that a projective plane of order t yields a
nontrivial hypercube embedding of 2t11n when n ≥ t2.

We now turn to the proof of Theorem 22.0.5. We will use the following
notation. Let M be a binary n × m matrix which is an h-realization matrix
of 2t11n. Without loss of generality, we can suppose that the first row of M is
the zero vector. Then, every other row of M has 2t units and any two rows
(other than the first one) have t units in common. Given a nonzero row u0 of M ,
M ⊕ u0 denotes the matrix obtained from M by replacing each row by its sum
modulo 2 with u0. Clearly, M ⊕u0 is again an h-realization matrix of 2t11n with
one zero row. Moreover, M ⊕ u0 provides a nontrivial hypercube embedding of
2t11n if and only if the same holds for M . We start with a preliminary result
on the number r of units in the columns of M ; the inequality r(n− r) ≤ nt in
Lemma 22.0.8 was proved by Deza [1973b] and the equality case was analyzed
by Hall [1977].

Lemma 22.0.8. Let r denote the number of units in a column of M . Then,
r(n− r) ≤ nt, implying that

min(r, n− r) ≤ 1

2
(n−

√
n2 − 4nt).

Moreover, r = n
2 = 2t if r(n− r) = nt.
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Proof. Let w be a column of M , let r denote the number of 1’s in w, and
let ρ denote the number of columns of M identical to w. Let M′ denote the
n× (m−ρ) denote the submatrix obtained from M by deleting these ρ columns,
and let d′ denote the distance on n points defined by letting d′ij denote the
Hamming distance between the i-th and j-th rows of M′. We can suppose that
the first n − r entries of w are equal to 0 and its last r entries are equal to 1.
Then,

{
d′ij = 2t if 1 ≤ i < j ≤ n− r, or n− r + 1 ≤ i < j ≤ n,

d′ij = 2t− ρ if 1 ≤ i ≤ n− r < j ≤ n.

Consider the inequality of negative type:

(a)
Qn(−r, . . . ,−r, n− r, . . . , n− r)Tx :=∑

1≤i<j≤n−r
r2xij +

∑

n−r+1≤i<j≤n
(n− r)2xij −

∑

1≤i≤n−r<j≤n
r(n− r)xij ≤ 0.

As d′ is hypercube embeddable by construction, d′ satisfies the above inequality
(recall Section 6.1). We deduce from it that ρr(n− r) ≤ nt, which implies

r(n− r) ≤ nt.

From the latter relation follows immediately that

min(r, n− r) ≤ 1

2
(n−

√
n2 − 4nt).

Suppose now that r(n− r) = nt. Then, ρ = 1. For each column v of M distinct
from w, let av (resp. bv) denote its number of units in the first n− r rows (resp.
in the last r rows). From the fact that d′ satisfies the inequality (a) at equality,
we deduce that

rav = (n− r)bv.

Note that
∑

v

av(n− r − av) =
∑

1≤i<j≤n−r
d′ij = 2t

(
n− r

2

)
,

∑

v

bv(r − bv) =
∑

n−r+1≤i<j≤n
d′ij = 2t

(
r

2

)
,

where the sums are taken over all columns v of M distinct from w. As

∑

v

av
n− r

(1 − av
n− r

) =
∑

v

bv
r

(1 − bv
r

),

we obtain that 2t
(n−r)2

(n−r
2

)
= 2t

r2

(r
2

)
, which yields r = n

2 . Finally, r(n−r) = n2

4 =

nt, implying n = 4t.

Proof of Theorem 22.0.5. Note first that we can clearly assume that n >1
2(t+2)2

when t = 2 (as a projective plane of order 2 does exist). LetM be an h-realization
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matrix of 2t11n providing a nontrivial hypercube embedding of 2t11n. We assume
that the first row of M is the zero vector. Let τ denote the maximum value
taken by min(r, n− r), where r is the number of units in a column of M . Hence,
each column of M has either ≤ τ units, or ≥ n− τ units. Call a column heavy
if it has ≥ n − τ units and light otherwise. We know from Lemma 22.0.8 that
τ(n− τ) ≤ nt, i.e., τ ≤ 1

2(n−
√
n2 − 4nt). Note that

(a)
1

2
(n−

√
n2 − 4nt) < t+ 2 ⇐⇒ n >

1

2
(t+ 2)2

and equality holds simultaneously in both inequalities. We will use this fact later
in the proof.

Let us suppose for a contradiction that there does not exist a nontrivial
partial projective plane of order t with n− 1 lines. We claim:

(22.0.9) If τ ≤ t+ 1, then n ≤ 1

2
(t2 + 3t+ 4),

(22.0.10) n ≤ 1

2
(t+ 2)2.

We first show that (22.0.9) holds. For this, suppose that τ ≤ t + 1 and n >
1
2(t2 + 3t+ 4). Then,

(c) there are at most t+ 1 heavy columns.

For, suppose that there are at least t + 2 heavy columns in M . Consider the
submatrix Y of M consisting of t + 2 heavy columns. Then, the total number
f of units in Y satisfies: f ≥ (t + 2)(n − τ) ≥ (t + 2)(n − t − 1) (by counting
units per columns). We now count the units in Y per rows. If Y has an all-
ones row then every other nonzero row has at most t units and, thus, f ≤
t+ 2 + t(n− 2) = (t+ 2)(t+ 1) + t(n− t− 4). Else, at most t+ 2 rows in Y have
t+ 1 units and, thus, f ≤ (t+ 2)(t+ 1) + t(n− t− 3). In both cases, we obtain:
(t+ 2)(n− t− 1) ≤ (t+ 2)(t+ 1) + t(n− t− 3), which contradicts the fact that
n > 1

2(t2 + 3t+ 4). This shows (c). Next, we claim:

(d) Every nonzero row in M has at least t− 1 units in the heavy columns.

Indeed, suppose that a nonzero row u0 of M has at most t−2 units in the heavy
columns. Then, the matrix M ⊕ u0 (defined as mentioned above by replacing
each row in M by its sum modulo 2 with u0) is an h-realization matrix of 2t11n
having t+ 2 heavy columns, thus contradicting (c).

Hence, M has t − 1, t, or t + 1 heavy columns. Suppose first that M has
t − 1 heavy columns. Then, by (d), each nonzero row of M has units in all
heavy columns. Therefore, the submatrix of M restricted to the light columns
(and deleting the first zero row) is the incidence matrix of a nontrivial partial
projective plane of order t with n−1 lines, in contradiction with our assumption.
Suppose now that M has t heavy columns. Then, there is a row u0 of M having
exactly t− 1 units in the heavy columns (else, M would correspond to the star
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embedding of 2t11n). But, in this case, the matrix M ⊕ u0 has t + 2 heavy
columns, contradicting (c). Finally, suppose that there are t+ 1 heavy columns.
If some row u0 of M has t + 1 units (resp. t − 1 units) in the heavy columns,
then M ⊕ u0 has t− 1 (resp. t+ 3) heavy columns; the first case has just been
excluded above and the second one is forbidden by (c). Hence, every nonzero row
of M has t units in the heavy columns. Let x denote the binary vector indexed
by the columns of M and having ones precisely in the positions of the heavy
columns. Then, M ⊕ x is the incidence matrix of a nontrivial partial projective
plane of order t with n lines. We have again a contradiction with our assumption.
Therefore, relation (22.0.9) holds.

We now verify (22.0.10). Indeed, if n > 1
2(t+ 2)2, then τ ≤ t+ 1 by (a) and

thus, using (22.0.9), n ≤ 1
2(t2 + 3t+ 4) < 1

2(t+ 2)2, a contradiction.

Therefore, we have obtained that n = 1
2(t+ 2)2 and t ≥ 3. By (22.0.9), this

implies that τ ≥ t+ 2. On the other hand, τ ≤ t+ 2 by (a). Hence, τ = t + 2.
Thus, τ(n− τ) = nt which, by Lemma 22.0.8, implies that τ = n

2 = 2t. That is,
t = 2, while we had assumed that t ≥ 3. This concludes the proof.

Consider, for instance, the case t = 6. By Theorem 22.0.4, the metric 1211n is
h-rigid if n ≥ 36 (as PG(2, 6) does not exist). It is, in fact, h-rigid for all n ≥ 33
as stated in the next result, proved by Hall, Jansen, Kolen and van Lint [1977].

Proposition 22.0.11. The equidistant metric 1211n is h-rigid for all n ≥ 33.

The h-rigidity result from Theorem 22.0.6 was extended by Deza, Erdös and
Frankl [1978] to the class of metrics of the form

∑
1≤i≤n tiδ({i}) for t1, . . . , tn ∈

Z+; the case t1 = . . . = tn = t corresponding to the case of the equidistant metric
2t11n.

Theorem 22.0.12. Let t1, . . . , tn be positive integers. If n is large with respect
to max(t1, . . . , tn), then the metric

∑
1≤i≤n tiδ({i}) is h-rigid.



Chapter 23. Hypercube
Embeddings of the Equidistant
Metric

We study in this chapter how to construct various hypercube embeddings for
the equidistant metric 2t11n from designs. A Z+-realization of 2t11n consists of a
family B of (not necessarily distinct) subsets of Vn such that

∑

B∈B
δ(B) = 2t11n.

Given i0 ∈ Vn, we can suppose without loss of generality that i0 6∈ B for all
B ∈ B (replacing if necessary B by Vn \B). Then, B is a collection of subsets of
Vn−1 satisfying:

(i) each point of Vn−1 belongs to 2t members of B, and

(ii) any two distinct points of Vn−1 belong to t common members of B.

Such a set family B is known as a (2t, t, n− 1)-design. Therefore, the hypercube
embeddings of 2t11n are nothing but special classes of designs. We review in
Section 23.1 some known results on designs and we state precisely the link with
hypercube embeddings of the equidistant metric in Section 23.2. Results on
the minimum h-size of the equidistant metric are grouped in Section 23.3. We
describe all the hypercube embeddings of 2t11n for small n or t in Section 23.4.
Much of the exposition in this chapter follows Deza and Laurent [1993c].

23.1 Preliminaries on Designs

23.1.1 (r, λ, n)-Designs and BIBD’s

Let B be a collection of (not necessarily distinct) subsets of Vn. The sets B ∈ B
are called blocks. Let r, k, λ be positive integers. Consider the following proper-
ties:

(i) Each point of Vn belongs to r blocks.

(ii) Any two distinct points of Vn belong to λ common blocks.

(iii) Each block has cardinality k.

Clearly, if (ii),(iii) hold, then (i) holds with

(23.1.1) r = λ
n− 1

k − 1

341
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and the total number b of blocks in B (counting multiplicities) is given by

(23.1.2) b =
rn

k
= λ

n(n− 1)

k(k − 1)
.

The multiset B is called a (r, λ, n)-design if (i),(ii) hold with 0 < λ < r. B is
said to be trivial if B consists of the following blocks: Vn repeated λ times and,
for each i ∈ Vn, the block {i} repeated r − λ times. In fact, if n is large with
respect to r and λ, then every (r, λ, n)-design is trivial (this follows, e.g., from
the rigidity results of Chapter 22).

The multiset B is called a (n, k, λ)-BIBD if (i),(ii),(iii) hold with λ > 0,
1 < k < n− 1. (BIBD stands for balanced incomplete block design.) A (n, k, λ)-
BIBD is said to be symmetric if r = k holds or, equivalently, the number of
blocks b is equal to the number n of points.

Let B be a (n, k, λ)-BIBD. Then, the collection

B∗ := {Vn \ B | B ∈ B}

is a (n, k′ := n − k, λ′ := b − 2r + λ)-BIBD, called the dual of B. (Note that
1 < k′ < n − 1 and (n − 1)(b − 2r + λ) = (b − r)(n − k − 1), which permits to
check that λ′ > 0.) If B is symmetric, then B∗ too is symmetric. For instance,
the dual of PG(2, t) is a symmetric (t2 + t+ 1, t2, t2 − t)-BIBD.

The following result is due to Ryser [1963].

Theorem 23.1.3. Let B be a (r, λ, n)-design with b blocks. Then, b ≥ n holds,
with equality if and only if B is a symmetric (n, r, λ)-BIBD.

Proof. Let A denote the incidence matrix of B, i.e., A is the n × b matrix with
entries ai,B = 1 if i ∈ B and ai,B = 0 if i 6∈ B, for i ∈ Vn, B ∈ B. Suppose that
b < n. Let M denote the n× n matrix obtained by adding n − b zero columns
to A. Then,

MMT = λJ + (r − λ)I,

where J is the all-ones matrix and I the identity matrix. One can check that
the eigenvalues of MMT are r + (n − 1)λ and r − λ (with multiplicity n − 1),
which shows that M is nonsingular. This contradicts the fact that M has a zero
column. Hence, we have shown that b ≥ n. Suppose now that b = n. We show
that each block of B has cardinality r. From the above argument, the matrix A
is an n× n matrix satisfying

(a) AAT = λJ + (r − λ)I, and AJ = rJ.

Hence,
A−1J = r−1J and AATJ = (λn+ r − λ)J,

implying

(b) ATJ = (λn+ r − λ)r−1J, i.e., JA = (λn+ r − λ)r−1J.
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Therefore,

JAJ = (λn+ r − λ)r−1nJ.

But, JAJ = rnJ from (a), which implies

(c) r − λ = r2 − λn.

Substituting (c) in (b), we obtain JA = rJ. This shows that each block of B has
size r. Hence, B is a symmetric (n, r, λ)-BIBD.

Clearly, from (23.1.2), a necessary condition for the existence of a (n, k, λ)-
BIBD is the following divisibility condition:

(23.1.4) k−1 is a divisor of λ(n−1) and k(k−1) is a divisor of λn(n−1).

This condition is, in some cases, already sufficient for the existence of a (n, k, λ)-
BIBD. A few such cases are described in Theorem 23.1.5 below; assertion (i) is
proved in Wilson [1975], (ii) in Hanani [1975], and (iii) in Mills [1990].

Theorem 23.1.5.

(i) Suppose that (23.1.4) holds and that n is large with respect to k and λ.
Then, there exists a (n, k, λ)-BIBD.

(ii) For k ≤ 5, a (n, k, λ)-BIBD exists whenever (23.1.4) holds with the single
exception: n = 15, k = 5, λ = 2. For k = 6, λ ≥ 2, a (n, 6, λ)-BIBD exists
whenever (23.1.4) holds with the single exception: n = 21, λ = 2.

(iii) For k = 6, λ = 1, a (n, 6, 1)-BIBD exists whenever (23.1.4) holds with the
possible exception of 95 undecided cases (including n = 46, 51, 61, 81, 141,
. . . , 5391, 5901).

Two important cases of parameters for a symmetric BIBD are:

(i) The (t2 + t + 1, t + 1, 1)-BIBD, which is nothing but the projective plane
of order t, denoted by PG(2, t).

(ii) The (4t−1, 2t, t)-BIBD, also known as the Hadamard design of order 4t−1.

Recall that Hadamard designs are in one-to-one correspondence with Hadamard
matrices. Namely, a Hadamard matrix is an n×n ±1-matrix A such that AAT =
nI. Its order n is equal to 1, 2 or 4t for some t ≥ 1. We can suppose without
loss of generality that all entries in the first row and in the first column of A are
equal to 1. Replace each −1 entry of A by 0 and delete its first row and column.
We obtain a (4t − 1) × (4t − 1) binary matrix whose columns are the incidence
vectors of the blocks of a Hadamard design of order 4t− 1.
It is conjectured that Hadamard matrices of order 4t exist for all t ≥ 1. This
was proved for t ≤ 106. (For more information on Hadamard matrices see, e.g.,
Geramita and Seberry [1979] and Wallis [1988].)
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Remark 23.1.6. The parameters (k, λ) with 3 ≤ k ≤ 15 for which there ex-

ists a symmetric (n, k, λ)-BIBD (then, n = 1 + k(k−1)
λ , by (23.1.1)) have been

completely classified (with the exception of k = 13, λ = 1 corresponding to the
question of existence of PG(2, 12)) (see Biggs and Ito [1981]). Besides the pa-
rameters corresponding to a projective plane, or to a Hadamard design, or to a
dual of them, a symmetric (n, k, λ)-BIBD exists if and only if (n, k, λ) is one of
the following list: (16, 6, 2), (37, 9, 2), (25, 9, 3), (16, 10, 6) (which is dual to the
case (16, 6, 2)), (56, 11, 2), (31, 10, 3), (45, 12, 3), (79, 13, 2), (40, 13, 4), (71, 15, 3)
and (36, 15, 6).

A useful notion is that of extension of a design. Let B be a collection of
subsets of Vn and let i0 6∈ Vn. Given an integer s, the s-extension of B is
the collection B′ whose blocks are the blocks of B together with the block {i0}
repeated s times.

23.1.2 Intersecting Systems

Let A be a collection of subsets of a finite set and let r, λ be positive integers.
Then, A is called a (r, λ)-intersecting system if |A| = r for all A ∈ A and
|A ∩ B| = λ for all distinct A,B ∈ A. The maximum cardinality of a (r, λ)-
intersecting system consisting of subsets of Vb is denoted by f(r, λ; b).

A is called a ∆-system with center K and parameters (r, λ) if |K| = λ,
|A| = r for all A ∈ A, and A ∩ B = K for all distinct A,B ∈ A. Clearly, if A
consists of subsets of Vb, then |A| ≤ b−λ

r−λ .

Remark 23.1.7. (r, λ, n)-designs and (r, λ)-intersecting systems are basically
the same objects. Namely, let M be a n × b binary matrix, let B denote the
family of subsets of Vn whose incidence vectors are the columns of M , and let
A denote the family of subsets of Vb whose incidence vectors are the rows of
M . Then, B is a (r, λ, n)-design if and only if A is a (r, λ)-intersecting system
of cardinality n. Moreover, B is trivial if and only if A is a ∆-system. As a
reformulation of Theorem 23.1.3, f(r, λ; b) ≤ b holds. These two terminologies
of (r, λ, n)-designs and intersecting systems are commonly used in the literature;
this is why we present them both here. Moreover, we will need intersecting
systems in Section 24.3.

Note also that partial projective planes of order t (with n lines) and (t+1, 1)-
intersecting systems (with n members) are exactly the same notions and they
correspond to (t + 1, 1, n)-designs (trivial partial projective planes or designs
corresponding to ∆-systems).

By the above remark, intersecting systems arise as the h-labelings of the
equidistant metric. Namely,

Proposition 23.1.8. There is a one-to-one correspondence between the h-
labelings of the equidistant metric 2t11n and the (2t, t)-intersecting systems of
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cardinality n− 1.

Proof. Indeed, in any h-labeling of 2t11n, we may assume that one of the points
is labeled by ∅ and then the sets labeling the remaining n − 1 points are the
members of a (2t, t)-intersecting system.

Hence, Theorem 23.1.9 below from Deza [1973b] follows as a reformulation
of Theorem 22.0.6.

Theorem 23.1.9. Let t ≥ 1 be an integer and let A be a (2t, t)-intersecting
system. If |A| ≥ t2 + t+ 2, then A is a ∆-system.

As an application of Theorem 23.1.9, Deza [1974] proved the following result, solving
a conjecture of Erdös and Lovász.

Theorem 23.1.10. Let t ≥ 1 be an integer and let A be a collection of subsets of a

finite set such that |A ∩ B| = t for all A 6= B ∈ A. Set k := max(|A| : A ∈ A). If

|A| ≥ k2 − k + 2, then A is a ∆-system.

We conclude with an easy application, that will be needed later.

Lemma 23.1.11. Let k, t ≥ 1 be integers such that t < k2 + k + 1 and let A be
a (k + t, t)-intersecting system. If |A| ≥ k2 + k + 3, then A is a ∆-system.

Proof. Let A1 ∈ A and set A′ := {A△A1 | A ∈ A\{A1}}. One checks easily that
A′ is a (2k, k)-intersecting system with |A′| ≥ k2 + k + 2. By Theorem 23.1.9,
A′ is a ∆-system. Let K denote its center, |K| = k. Let A ∈ A, A 6= A1. Set
α := |A1 ∩K|, then |A1 ∩ ((A△A1) \K)| = k − α since A1 ∩ (A△A1) = A1 \ A
has cardinality k. If α ≤ k − 1, then

k + t = |A1| ≥ α+ |A′|(k − α) ≥ α+ (k2 + k + 2)(k − α),

implying t ≥ (k − α)(k2 + k + 1), contradicting the assumption on t. Hence,
α = k, i.e., A1 \ A = K and, thus, A1 ∩ A = A1 \ K. This shows that A is a
∆-system.

23.2 Embeddings of 2t11 n and Designs

Let t, n ≥ 1 be integers. Every Z+-realization of 2t11n is of the form

(23.2.1) 2t11n =
∑

B∈B
δ(B),

where B is a collection of (not necessarily distinct) subsets of Vn. Let k ≥ 1 be
an integer. The realization (23.2.1) is said to be k-uniform if |B| = k, n− k for
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all B ∈ B. It is very easy to construct Z+-realizations of the equidistant metric
from designs.

For instance, let B be a (r, λ, n)-design. Then,
∑

B∈B
δ(B) = 2(r − λ)11n.

Moreover, if r ≥ 2λ, then the (r − 2λ)-extension of B yields a Z+-realization of
2(r − λ)11n, namely,

∑

B∈B
δ(B) + (r − 2λ)δ({i0}) = 2(r − λ)11n+1,

where Vn+1 \ Vn = {i0}. In particular, each (t + 1, 1, n)-design yields a Z+-
realization of 2t11n and its (t− 1)-extension yields a realization of 2t11n+1. Also,
the 0-extension of a (2t, t, n− 1)-design gives a Z+-realization of 2t11n.

If B is a (n, k, λ)-BIBD, then (23.2.1) is a Z+-realization of the equidistant
metric 2λn−kk−111n. In particular, if B is a Hadamard design of order 4t − 1,
then (23.2.1) is a Z+-realization of 2t114t−1 and the 0-extension of B yields a
Z+-realization of 2t114t. If B is PG(2, t), then (23.2.1) is a Z+-realization of
2t11t2+t+1 and the (t− 1)-extension of B yields a Z+-realization of 2t11t2+t+2.

The next result makes precise the correspondence between Z+-realizations
of the equidistant metric and designs. The first assertion (i) is nothing but a
reformulation of Proposition 23.1.8 (using the link between intersecting systems
and designs, explained in Remark 23.1.7).

Proposition 23.2.2.

(i) There is a one-to-one correspondence between the Z+-realizations of 2t11n
and the (2t, t, n− 1)-designs.

(ii) For k 6= n
2 , there is a one-to-one correspondence between the k-uniform

Z+-realizations of 2t11n and the (n, k, t(k−1)
n−k )-BIBD’s.

Proof. (i) follows by assuming that all blocks B ∈ B do not contain a given point
i0 of Vn (replacing, if necessary, B by Vn \B).

(ii) It is immediate to check that (23.2.1) holds if B is a (n, k, t(k−1)
n−k )-BIBD.

Suppose now that (23.2.1) holds, with |B| = k for all B ∈ B, and k 6= n
2 . By

taking the scalar product of both sides of (23.2.1) with the all-ones vector, we
obtain that the number b of blocks satisfies

b =
tn(n− 1)

k(n− k)
.

We show that each point belongs to the same number of blocks. For this, let r
denote the number of blocks that contain the point 1 and denote by ai the number
of blocks containing both points 1 and i, for i = 2, . . . , n. Then,

∑
2≤i≤n ai =

r(k−1). Counting in two ways the total number of units in the incidence matrix
of B (summing over the columns or over the rows), we obtain

bk = r +
∑

2≤i≤n
(2t− r + 2ai),
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implying r = t n−1
n−k . Hence, any two points of Vn belong to r− t = tk−1

n−k common

blocks. Therefore, B is a (n, k, t(k−1)
n−k )-BIBD.

It is convenient for further reference to reformulate Theorem 22.0.5 in terms
of designs. As can be easily verified, the above proof of Theorem 22.0.5 permits
to formulate the following sharper statement.

Theorem 23.2.3. Suppose that n ≥ 1
2(t+ 2)2 with t ≥ 3, or that n > 1

2(t+ 2)2

with t = 2. Let B be a family of subsets of Vn for which (23.2.1) holds and
defines a nontrivial hypercube embedding of 2t11n. Then B is equivalent, either
to a nontrivial (t + 1, 1, n)-design, or to the (t − 1)-extension of a nontrivial
(t+ 1, 1, n − 1)-design.

Take, for instance, t = 3 and n = 12 (< 1
2(t + 2)2). Then, 61112 has a

Z+-realization which is not of the form indicated in Theorem 23.2.3; such a real-
ization can be obtained from the 1-extension of a (5,2,11)-design. The following
result of McCarthy and Vanstone [1977] will yield a new case of h-rigidity for
the equidistant metric.

Theorem 23.2.4. Let α, t be positive integers such that t > 2α2 + 3α+ 2 (i.e.,

α <
√

8t−7−3
4 ). Suppose that PG(2, t) does not exist. Then, for n ≥ t2 − α, each

(t+ 1, 1, n)-design is trivial.

Corollary 23.2.5. Suppose that PG(2, t) does not exist. If n > t2+1−
√

8t−7−3
4 ,

then the metric 2t11n is h-rigid.

Proof. Let B be a family of subsets of Vn for which (23.2.1) holds and defines a
nontrivial hypercube embedding of 2t11n. By Theorem 23.2.3, B is equivalent to
a (t + 1, 1, n)-design or to the (t − 1)-extension of a (t + 1, 1, n − 1)-design (as
n ≥ 1

2(t+ 2)2). By Theorem 23.2.4, such designs are trivial. Hence, B yields the
star realization of 2t11n, a contradiction.

23.3 The Minimum h-Size of 2t11 n

Recall that the minimum h-size of 2t11n is defined as the smallest cardinality of
a multiset B ⊆ 2Vn satisfying (23.2.1); it is denoted by sh(2t11n). (The notion
of minimum h-size was introduced in Section 4.3.) The following result is a
reformulation of Ryser’s result on the number of blocks of a (2t, t, n− 1)-design.

Theorem 23.3.1.

(i) sh(2t11n) ≥ n − 1, with equality if and only if n = 4t and there exists a
Hadamard matrix of order 4t.
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(ii) Suppose n 6= 4t. If n = 2t+ λ+ t(t−1)
λ for some integer λ ≥ 1 and if there

exists a symmetric (n, λ+ t, λ)-BIBD, then sh(2t11n) = n.

Proof. (i) By Proposition 23.2.2, the minimum h-size of 2t11n is equal to the
minimum number of blocks in a (2t, t, n − 1)-design, which is greater than or
equal to n − 1, by Theorem 23.1.3. If sh(2t11n) = n − 1, then there exists a
(2t, t, n − 1)-design B with n − 1 blocks. Applying again Theorem 23.1.3, we
deduce that B is a symmetric (4t − 1, 2t, t)-design, i.e., a Hadamard design of
order 4t− 1. The assertion (ii) can be easily checked.

As an application of Theorem 23.3.1 and Remark 23.1.6, we deduce that
sh(2t11n) = n for the following parameters (t, n): (7,37), (6,25), (9,56), (7,31),
(9,45), (11,79), (9,40), (12,71). Note also that sh(2t11n) = n − 1 for (t, n) =
(9, 36), (4, 16).

The implication from Theorem 23.3.1 (ii) is, in fact, an equivalence in the
cases λ = 1 (i.e., n = t2 + t+ 1) and λ = t (i.e., n = 4t− 1).

Proposition 23.3.2.

(i) sh(2t11t2+t+1) = t2 + t + 1 if and only if there exists a projective plane of
order t.

(ii) sh(2t114t−1) = 4t−1 or, equivalently, sh(2t114t) = 4t−1 if and only if there
exists a Hadamard design of order 4t− 1.

(iii) Suppose PG(2, t) exists. Then, sh(2t11t2+t+2) = t2 + 2t if t ≥ 3 and
sh(2t11t2+t+2) = t2 + t+ 1 if t = 1, 2.

(iv) Suppose PG(2, t) does not exist. If n > t2 + 1 −
√

8t−7−3
4 , then sh(2t11n) =

nt.

Proof. (i) follows from Theorems 22.0.4 and 23.3.1.
(ii) Suppose B is a block family yielding a Z+-realization of 2t114t−1 with |B| =

4t− 1. Then, |B| = n(n−1)t
⌈n

2
⌉⌊n

2
⌋ (n = 4t− 1), which implies that all blocks of B have

size 2t. Hence, B is a Hadamard design of order 4t − 1. The remaining of (ii)
follows from Theorem 23.3.1.
(iii) For the case t = 1, 2, use Theorem 23.3.1. Suppose t ≥ 3 and set n :=
t2 + t + 2. The (t − 1)-extension of PG(2, t) yields a Z+-realization of 2t11n of
size t2 + t, implying sh(2t11n) ≤ t2 + 2t. Let B be a block family yielding a Z+-
realization of 2t11n. We show that |B| ≥ t2 +2t. This is obvious if B corresponds
to the star realization. Otherwise, we can use Theorem 23.2.3. Either, B is
equivalent to a nontrivial (t+1, 1, n)-design; then, its (t−1)-extension yields a Z+-
realization of 2t11t2+t+3 distinct from the star realization, in contradiction with
Theorem 22.0.6. Or, B is equivalent to the (t− 1)-extension of a (t+1, 1, n− 1)-
design and, then, |B| ≥ n−1+t−1 = t2+2t. This shows that sh(2t11n) = t2+2t.
Finally, (iv) is a reformulation of Corollary 23.2.5.
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Set

atn :=

⌈
n(n− 1)t

⌊n2 ⌋⌈n2 ⌉

⌉
=

⌈
4t− 2t

⌈n2 ⌉

⌉
.

By taking the scalar product of both sides of (23.2.1) with the all-ones vector,
we obtain the following bounds:

atn ≤ sh(2t11n) ≤ nt.

The equality

sh(2t11n) = nt

holds if and only if the star realization (22.0.1) is the only Z+-realization of
2t11n, i.e., if 2t11n is h-rigid. This is the case, for instance, if n ≥ t2 + t + 3 (by
Theorem 22.0.6). Several other results about classes of parameters n, t for which
2t11n is h-rigid have been given in Chapter 22. A natural question is what are
the parameters n, t for which the equality

sh(2t11n) = atn

holds. If 2t11n admits a Z+-realization
∑
S λSδ(S) where λS > 0 only if δ(S) is

an equicut (i.e., satisfies |S| = ⌊n2 ⌋, ⌈n2 ⌉), then the equality sh(2t11n) = atn holds.
For instance, sh(4117) = a2

7 = 7 and sh(4118) = a2
8 = 7, as each of 4117 and 4118

has a Z+-realization using only equicuts (see Proposition 23.4.4).

Clearly (from Theorem 23.3.1), the equality sh(2t11n) = atn can occur only if
n ≤ 4t. The case n = 4t is well understood: equality holds if and only if there
exists a Hadamard matrix of order 4t. The following conjectures are posed by
Deza and Laurent [1993c].

Conjecture 23.3.3. Suppose that n ≤ 4t and that there exists a Hadamard
matrix of order 4t. Then, sh(2t11n) = atn.

Conjecture 23.3.4. Suppose that n ≤ 4t and that there exist Hadamard matri-
ces of suitable orders. Then, sh(2t11n) = atn.

Conjecture 23.3.4 is obviously weaker than Conjecture 23.3.3 (the word “suit-
able” remains to be defined in an appropriate way). We refer to Deza and
Laurent [1993c] for partial results related to these conjectures. In particular, the
following results are proved there.

Proposition 23.3.5.

(i) Conjecture 23.3.3 holds for all n, t such that n ≤ 4t, and 2t
3 < ⌈n2 ⌉ or

min(n, t) ≤ 20.

(ii) Conjecture 23.3.4 holds for all n, t such that n is even and satisfies 2
√

2t ≤
n ≤ 4t. (It suffices to assume the existence of Hadamard matrices of orders
2n, 4n, and n (if n

2 is even) and n+ 2 (if n
2 is odd).)
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Corollary 23.3.6. If n ≤ 4t ≤ 80 then sh(2t11n) = atn.

Example 23.3.7. As an example, let us consider the minimum h-size of the
metric 2t11n for t = 6 and n ≥ 31. We have:

(i) sh(1211n) = 6n for all n ≥ 33 (by Proposition 22.0.11),

(ii) sh(121132) = 67 and sh(121131) ≤ 62.

Indeed, let B be a block design on V32 for which (23.2.1) holds and defines a non-
trivial hypercube embedding of 121132. By Theorem 23.2.3, B is equivalent to a
(7,1,32)-design, or to the 5-extension of a (7,1,31)-design. Each (7,1,32)-design is
trivial (as its 5-extension yields a Z+-realization of the h-rigid metric 121133). It
is shown in McCarthy, Mullin, Schellenberg, Stanton and Vanstone [1976, 1977]
that the unique nontrivial (7,1,31)-design is the block family obtained by taking
the blocks of PG(2, 5) together with the 31 singletons; it yields a Z+-realization
of 121131 of size 31 + 31 = 62. Its 5-extension yields a Z+-realization of 121132 of
size 62 + 5 = 67. This shows that sh(121132) = 67.

23.4 All Hypercube Embeddings of 2t11 n for Small
n, t

We list all the Z+-realizations of the equidistant metric 2t11n in the following
cases: t = 1, t = 2, n = 4, and we give partial information in the case n = 5.
The results are taken from Deza and Laurent [1993c].

Let t, n be positive integers. For each integer s such that t− ⌊ t
n−3⌋ ≤ s ≤ t,

we have the following Z+-realization of 2t11n:

(23.4.1) 2t11n = (t−(n−3)(t−s))δ({n})+
∑

1≤i≤n−1

(t−s)δ({i, n})+sδ({i}).

Its size is equal to (n− 3)s+ 3t and (23.4.1) coincides with the star realization
(22.0.1) for s = t.

Proposition 23.4.2. (Case n = 4) The metric 2t114 has t+ 1 Z+-realizations,
given by (23.4.1) for 0 ≤ s ≤ t.

Proof. This follows from the fact that the restriction to V3 of any Z+-realization
of 2t114 coincides with the star realization of 2t113.

Proposition 23.4.3. (Case t = 1) For n 6= 4, (22.0.1) is the only Z+-
realization of the metric 211n and, for n = 4, 2114 has two Z+-realizations: the
star realization (22.0.1) and (23.4.1) for s = 0, namely,

2114 =
∑

1≤i≤4 δ({i}) = δ({1, 4}) + δ({2, 4}) + δ({3, 4}).
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Proposition 23.4.4. (Case t = 2)

(i) For n ≥ 9, (22.0.1) is the only Z+-realization of 411n.

(ii) For n = 4, 4114 has three Z+-realizations: (22.0.1) and (23.4.1) for s = 0, 1,
namely,

4114 = 2(
∑

1≤i≤4

δ({i})) = 2(
∑

1≤i≤3

δ({i, 4})) =
∑

1≤i≤4

δ({i}) +
∑

1≤i≤3

δ({i, 4}).

(iii) For n = 5, 4115 has (up to permutation) three Z+-realizations: the star
realization (22.0.1), (23.4.1) for s = 1, i.e.,

4115 =
∑

1≤i≤4

δ({i, 5}) + δ({i}), and

4115 = δ({5}) +
∑

1≤i<j≤4

δ({i, j}).

(iv) For n = 6, 4116 has (up to permutation) three Z+-realizations: the star
realization (22.0.1),

4116 = δ({2}) + δ({3}) + δ({4, 6}) + δ({5, 6}) + δ({1, 4})
+δ({1, 5}) + δ({1, 2, 6}) + δ({1, 3, 6}), and

4116 = δ({1, 2}) + δ({3, 4}) + δ({5, 6}) + δ({1, 3, 6})
+δ({2, 4, 6}) + δ({1, 4, 5}) + δ({2, 3, 5}) + δ({1, 3, 6}).

(v) For n = 7, 4117 has (up to permutation) three Z+-realizations: the star
realization (22.0.1),

4117 = δ({7}) + δ({1, 2}) + δ({3, 4}) + δ({5, 6})
+δ({1, 3, 6}) + δ({2, 4, 6}) + δ({1, 4, 5}) + δ({2, 3, 5}), and

4117 = δ({1, 2, 7}) + δ({3, 4, 7}) + δ({5, 6, 7}) + δ({1, 3, 6})
+δ({2, 4, 6}) + δ({1, 4, 5}) + δ({2, 3, 5}).

(vi) For n = 8, 4118 has (up to permutation) three Z+-realizations: the star
realization (22.0.1),

4118 = δ({8}) + δ({1, 2, 7}) + δ({3, 4, 7}) + δ({5, 6, 7})
+δ({1, 3, 6}) + δ({2, 4, 6}) + δ({1, 4, 5}) + δ({2, 3, 5}), and

4118 = δ({1, 2, 7, 8}) + δ({3, 4, 7, 8}) + δ({5, 6, 7, 8}) + δ({1, 3, 6, 8})
+δ({2, 4, 6, 8}) + δ({1, 4, 5, 8}) + δ({2, 3, 5, 8})

(corresponding to a Hadamard design).
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It seems a rather difficult task to list all the Z+-realizations of the metric
2t11n in the case n = 5. Note that we already have the realizations (23.4.1) for
t− ⌊ t2⌋ ≤ s ≤ t. For t odd and t ≥ 3, we also have

(23.4.5)
2t115 = t−1

2 (δ({5}) + δ({1, 2}) + δ({1, 3}) + δ({2, 4}) + δ({3, 4}))
+δ({1, 5}) + δ({2}) + δ({3}) + δ({4, 5})
+ t+1

2 δ({1, 4}) + t−3
2 δ({2, 3}).

The following is also a Z+-realizations of 2t115:

(23.4.6)

2t115 = pδ({5}) + qδ({1}) + (s− q)δ({1, 5}) + α
∑

2≤i≤4

δ({i, 5})

+(s− α)
∑

2≤i≤4

δ({i}) + β
∑

2≤i≤4

δ({1, i})

+(t− s− β)
∑

2≤i≤4 δ({1, i, 5}),
where α, β, p, q, s are integers satisfying





0 ≤ s ≤ t,
0 ≤ α ≤ min(s, t2 ),
max(0, s− 2α, t−3α

2 ) ≤ p ≤ min(t− 2α, t−3α+s
2 ),

β = t− 2α− p,
q = 3α+ 2p− t.

Let λ(s, t, α, p) denote the realization from (23.4.6).

For t = 3, the feasible parameters for (23.4.6) are (s, α, p) =(1,0,2), (1,1,0),
(2,0,2), (2,1,0), (2,1,1), (3,0,3), (3,1,1), (3,0,3), and (3,1,1). Note, however, that
λ(3, 3, 0, 3) coincides with the star realization (22.0.1); λ(3, 3, 1, 1) reads

(23.4.7) 6115 = δ({5}) +
∑

1≤i≤4

δ({i, 5}) + 2δ({i})

(this is (23.4.1) in the case t = 3, n = 5, s = 2); λ(2, 3, 0, 2) is a permutation of
(23.4.7); and λ(2, 3, 1, 1) coincides with λ(1, 3, 0, 2) (up to permutation).

Proposition 23.4.8. (Case t = 3, n = 5) The metric 6115 has five distinct (up
to permutation) Z+-realizations: the star realization (22.0.1), (23.4.7), (23.4.5)
(with t = 3), and (23.4.6) for the parameters (s, α, p) =(2, 1, 1), (2, 1, 0), (1, 1, 0)
which read, respectively,

6115 = δ({5}) + 2δ({1}) +
∑

2≤i≤4

δ({i, 5}) + δ({i}) + δ({1, i, 5}),

6115 = 2δ({1, 5}) +
∑

2≤i≤4

δ({i, 5}) + δ({i}) + δ({1, i}),

6115 = δ({1, 5}) +
∑

2≤i≤4 δ({i, 5}) + δ({1, i}) + δ({1, i, 5}).



Chapter 24. Recognition of
Hypercube Embeddable Metrics

In this chapter we consider the following problem, called the hypercube embed-
dability problem:

Given a distance d on Vn, test whether d is hypercube embeddable.

When restricted to the class of path metrics of connected graphs, this is
the problem of testing whether a graph can be isometrically embedded into a
hypercube. Such graphs have a good characterization and can be recognized in
polynomial time. This topic has been discussed in detail in Chapter 19.

The hypercube embeddability problem is NP-hard for general distances; it is,
in fact, NP-complete for the class of distances with values in the set {2, 3, 4, 6}
(see Theorem 24.1.8).

However, the hypercube embeddability problem can be shown to be solvable
in polynomial time for several classes of metrics. This is the case, typically, for
metrics having a restricted range of values. For instance, the hypercube em-
beddability problem is polynomial-time solvable for the class of distances with
range of values {1, 2, 3}, or {3, 5, 8} or, more generally, {x, y, x+y} where x, y are
two positive integers not both even. This class is discussed in Section 24.3. We
consider in Section 24.4 the distances taking two values of the form a, 2a where
a ≥ 1 is an integer. Note that such distances can be seen as scale multiples
of truncated distances of graphs. For this class of distances, hypercube embed-
dability can be characterized by a finite point criterion and, thus, recognized in
polynomial time.

We also consider generalized bipartite metrics, which are the metrics d on Vn
for which there exists a subset S ⊆ Vn such that d(i, j) = 2 for all i 6= j ∈ S and
for all i 6= j ∈ Vn \ S. The hypercube embeddable generalized bipartite metrics
can also be recognized in polynomial time; see Section 24.2.

The basic idea which is used for characterizing the hypercube embeddable
metrics within the above classes is the existence of equidistant submetrics, which
are h-rigid if they are defined on sufficiently many points (by the results of
Chapter 22).

We present in Section 24.5 the following result of Karzanov [1985]: Let d be
a metric whose extremal graph is K4, C5, or a union of two stars; then, d is
hypercube embeddable if and only if d satisfies the parity condition (24.1.1).

Let us point out that, in contrast with the results from Section 24.3, no char-
acterization is known for the hypercube embeddable metrics taking three values,

353
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all of them even. For instance, the complexity of the hypercube embeddability
problem for the class of distances with range of values {2, 4, 6} is not known.
The case of distances taking two even values a, b is also unsettled; Section 24.4
solves only the case when b = 2a.

We start in Section 24.1 with some preliminary results.

24.1 Preliminary Results

Let d be a distance on the set Vn. A first easy observation is that we may assume
that no pair of distinct points is at distance 0. Indeed, if d(i, j) = 0 for some
distinct i, j ∈ Vn, then d is hypercube embeddable if and only if its restriction
to the set Vn \ {j} is hypercube embeddable (as the points i and j should be
labeled by the same set in any hypercube embedding of d).

If d is hypercube embeddable, then

(24.1.1) d(i, j) + d(i, k) + d(j, k) ∈ 2Z for all i, j, k ∈ Vn.

(Indeed, if A1, . . . , An are sets forming an h-labeling of d, then d(i, j) + d(i, k) +
d(j, k) = 2(|Ai| + |Aj | + |Ak| − |Ai ∩ Aj | − |Ai ∩ Ak| − |Aj ∩ Ak|) ∈ 2Z.) The
condition (24.1.1) is known as the parity condition; it was first introduced in
Deza [1960]. This condition expresses the fact that each hypercube embeddable
distance d on Vn can be decomposed as an integer combination of cut semimetrics,
i.e., belongs to the cut lattice Ln (indeed, (24.1.1) characterizes membership in
Ln; see Proposition 25.1.1). As an application, we deduce that each hypercube
embeddable distance has some bipartite structure, namely, the set of pairs at an
odd distance forms a complete bipartite graph.

Lemma 24.1.2. Let d be a distance on Vn. If d satisfies the parity condition
(24.1.1), then Vn can be partitioned into Vn = S ∪ T in such a way that d(i, j) is
even if i, j ∈ S or if i, j ∈ T , and d(i, j) is odd if i ∈ S, j ∈ T .

This simple fact will be central in our treatment. For instance, the generalized
bipartite metrics, considered in Section 24.2, have only one even distance equal
to 2, i.e., they satisfy d(i, j) = 2 for i 6= j ∈ S, i 6= j ∈ T , for some bipartition
(S, T ) of Vn.

Obviously, every hypercube embeddable distance d on Vn is ℓ1-embeddable,
i.e., belongs to the cut cone CUTn. In other words, d can be decomposed as a
nonnegative combination of cut semimetrics. Hence, we have the implication:

d is hypercube embeddable =⇒ d ∈ CUTn and d satisfies (24.1.1)

In general, this implication is strict. But, for some classes of distances, this
implication turns out to be an equivalence; this is the case, for instance, for the
distances with range of values {1, 2}, or {1, 2α, 2α + 1} (α ≥ 2) (see Proposi-
tions 24.1.9 and 24.1.10), or for the distances considered in Proposition 24.3.27
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or in Theorem 24.5.1. This is also the case for the distances on n ≤ 5 points, as
the next result by Deza [1960, 1982] shows.

Theorem 24.1.3. Let d be a distance on n ≤ 5 points. Then, d is hypercube
embeddable if and only if d ∈ CUTn and d satisfies the parity condition (24.1.1).

The parity condition (24.1.1) also suffices to characterize hypercube embeddabil-
ity for the distances that lie on specified facets of CUTn, in particular, on several
classes of simplex facets; see relation (31.8.3). We will consider in Chapter 25
the quasi h-points, which are the distances d that belong to CUTn and satisfy
(24.1.1) but are not hypercube embeddable.

Each valid inequality for the cut cone yields therefore a necessary condi-
tion for hypercube embeddability. It turns out that the hypermetric inequalities
will play a crucial role for the characterization of certain classes of hypercube
embeddable distances; see Propositions 24.1.9, 24.3.10, 24.3.11, 24.3.27. Hy-
permetric inequalities have been introduced in Section 6.1 and studied in de-
tail in Part II; we recall here the main definitions in order to make the chap-
ter self-contained. Let d be a distance on Vn and let k ≥ 1 be an integer.
Then, d is said to be (2k + 1)-gonal if, for all (not necessarily distinct) points
i1, . . . , ik, ik+1, j1, . . . , jk ∈ Vn, the following inequality holds:

(24.1.4)
∑

1≤r<s≤k+1

d(ir, is) +
∑

1≤r<s≤k
d(jr, js) −

∑

1≤r≤k+1
1≤s≤k

d(ir, js) ≤ 0.

Equivalently, d is (2k + 1)-gonal if, for all b ∈ Zn with
∑

1≤i≤n bi = 1 and∑
1≤i≤n |bi| = 2k + 1,

(24.1.5)
∑

1≤i<j≤n
bibjd(i, j) ≤ 0.

Moreover, d is said to be hypermetric if d is (2k + 1)-gonal for all k ≥ 1. The
inequality (24.1.4) is called the (2k + 1)-gonal inequality.

We now recall the link existing between hypercube embeddable distances and
intersection patterns. A vector p ∈ RVn∪En is called an intersection pattern if
there exist a set Ω and n subsets A1, . . . , An of Ω such that

(24.1.6) pij = |Ai ∩Aj | for all 1 ≤ i ≤ j ≤ n.

Hypercube embeddable distances are in one-to-one correspondence with inter-
section patterns, via the covariance mapping (see Sections 5.2 and 5.3 and, in
particular, Proposition 5.3.5). Namely, for a distance d on Vn+1, d is hypercube
embeddable if and only if its image p = ξ(d) under the covariance mapping is an
intersection pattern (indeed, the sets A1, . . . , An, An+1 = ∅ form an h-labeling of
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d if and only if A1, . . . , An satisfy (24.1.6)). Recall that p = ξ(d) is defined by
{
pii = d(i, n+ 1) for 1 ≤ i ≤ n,
pij = 1

2(d(i, n + 1) + d(j, n+ 1) − d(i, j)) for 1 ≤ i < j ≤ n.

An early reference on intersection patterns is Kelly [1968]; in particular, Kelly
characterizes there the intersection patterns of order n ≤ 4, thus, providing an-
other proof for Theorem 24.1.3. The above correspondence permits, for instance,
to obtain the following result of Chvátal [1980] (which will also follow from the
treatment in Section 24.4).

Proposition 24.1.7. The hypercube embeddability problem is polynomial for
the class of distances with range of values {2, 4} and having a point at distance
2 from all other points.

Proof. Let d be a distance on Vn+1 such that d(i, n + 1) = 2 for all i ∈ Vn and
d(i, j) ∈ {2, 4} for all i 6= j ∈ Vn. Its image p = ξ(d) satisfies pii = 2 for all
i ∈ Vn and pij ∈ {0, 1} for all i 6= j ∈ Vn. Let H denote the graph on Vn with
edges the pairs (i, j) such that pij = 1. Then, d is hypercube embeddable if and
only if p is an intersection pattern which, in turn, is equivalent to H being a line
graph. The result now follows from the fact that line graphs can be recognized
in polynomial time (Beineke [1970]).

The hypercube embeddability problem is hard for general metrics; this was
shown by Chvátal [1980] in the context of intersection patterns.

Theorem 24.1.8. The hypercube embeddability problem is NP-complete for the
class of distances having a point at distance 3 from all other points and with
distances between those points belonging to {2, 4, 6}.

Proof. We sketch the proof. Let d be a distance as in the theorem. Hence, its
image p = ξ(d) satisfies pii = 3 for all i ∈ Vn and pij ∈ {0, 1, 2} for all i 6= j ∈ Vn.
Let H denote the multigraph with node set Vn and having pij parallel edges
between nodes i and j. It is easy to see that d is hypercube embeddable, i.e., p
is an intersection pattern, if and only if the edge set of H can be partitioned into
cliques in such a way that each node belongs to at most three of these cliques.
Chvátal [1980] shows that the problem of testing whether a 4-regular graph is
3-colourable (which is NP-complete) can be polynomially reduced to the above
edge partitioning problem for H.

There are some classes of distances for which hypercube embeddability is
very easy to characterize. Here are two examples taken, respectively, from As-
souad and Deza [1980] and Deza and Laurent [1995a]. The first example will be
contained in Proposition 24.3.10.

Proposition 24.1.9. Let d be a distance on Vn with values in {1, 2}. The
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following assertions are equivalent.

(i) d is hypercube embeddable.

(ii) d is 5-gonal and satisfies the parity condition (24.1.1).

(iii) d is the path metric of the complete bipartite graphs K1,n−1 or K2,2, or
d = 2d(Kn).

Proposition 24.1.10. Let d be a metric on Vn with range of values {1, 2α, 2α+
1}, for some integer α ≥ 2. Then, d is hypercube embeddable if and only if d
satisfies the parity condition (24.1.1).

Proof. Suppose that d satisfies (24.1.1). Hence, the set of pairs at odd distance
forms a complete bipartite graph KS,T for some bipartition (S, T ) of Vn. As
α ≥ 2, the pairs at distance 1 form a matching, say, d(i1, j1) = . . . = d(ik, jk) = 1
for i1, . . . , ik ∈ S and j1, . . . , jk ∈ T . Then,

d = δ(S) +
∑

1≤h≤k
αδ({ih, jh}) +

∑

i∈S\{i1,...,ik}

j∈T\{j1,...,jk}

αδ({i}),

showing that d is hypercube embeddable.

The case α = 1, i.e., the case of the distances with range of values {1, 2, 3}, is
significantly more complicated and will be treated in Section 24.3.

We close this section with a result on the number of distinct hypercube
embeddings of a given distance. Given a hypercube embedable distance d on Vn
and an integer s ≥ 0, let Nn(d, s) denote the number of distinct Z+-realizations
d =

∑
S λSδ(S) (with λS ∈ Z+) of d with size

∑
S λS = s. Set

Mn(x) :=
∑

N(d, s)

where the sum is taken over all s ∈ Z+ and over all distances d on Vn satisfying∑
1≤i<j≤n d(i, j) = x. It is shown in Deza, Ray-Chaudhuri and Singhi [1990]

that the function x ∈ Z+ 7→ Mn(x) is quasipolynomial. In other words, there
exist an integer t ≥ 1 and polynomials f0, f1, . . . , ft−1 such that

Mn(x) = fi(x) if x ≡ i (mod t), for 0 ≤ i ≤ t− 1.

In particular, Mn(x) is bounded by a polynomial in x. Therefore, the number of
distinct Z+-realizations of d is bounded by a polynomial in x =

∑
1≤i<j≤n d(i, j).

24.2 Generalized Bipartite Metrics

Let d be a metric on Vn such that d(i, j) = 2 for all i 6= j ∈ S and i 6= j ∈ T ,
for some bipartition (S, T ) of Vn. Such a metric is called a generalized bipartite
metric. The |S| × |T | matrix D with entries d(i, j) for i ∈ S, j ∈ T is called the
(S, T )-distance matrix of d. For instance, the path metric of a complete bipartite
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graph is a generalized bipartite metric. In this section, we prove the following
result, which is due to Deza and Laurent [1995a].

Theorem 24.2.1. The hypercube embeddability problem is polynomial-time solv-
able for the class of generalized bipartite metrics.

We start with an easy observation.

Lemma 24.2.2. Let d be a generalized bipartite metric with bipartition (S, T ).
If d is hypercube embeddable, then there exists an integer α such that d(i, j) ∈
{α,α + 2, α + 4} for all i ∈ S, j ∈ T .

Proof. Let α, β denote the smallest and largest value taken by d(i, j) for i ∈
S, j ∈ T ; say α = d(i, j), β = d(i′, j′) for i, i′ ∈ S, j, j′ ∈ T . Using the triangle
inequality, we obtain β = d(i′, j′) ≤ d(i′, i) + d(i, j) + d(j, j′) ≤ 4 +α. Moreover,
α, β have the same parity by (24.1.1).

We will see below what are the possible configurations for the pairs at distance
α,α + 2, α+ 4.

Set s := |S| and t := |T |. Let dS (resp. dT ) denote the restriction of d to
the set S (resp. T ). Then, dS = 211s and dT = 211t are equidistant metrics.
Recall (from Proposition 23.4.3) that the equidistant metric 211n is h-rigid if
n 6= 4 and that 2114 has exactly two Z+-realizations, namely, its star realization:
2114 =

∑
1≤i≤4 δ({i}), and an additional realization:

2114 = δ({1, 2}) + δ({1, 3}) + δ({1, 4}),
called here the special realization.

The proof of Theorem 24.2.1 is based on the following simple observation.
Let

d =
∑

A⊆Vn

λAδ(A)

be a Z+-realization of d. Then, its projection on S:
∑

A⊆Vn

λAδ(A ∩ S),

is a Z+-realization of dS . Hence, if s 6= 4, then it must coincide with the star
realization of 211s and, if s = 4, it must coincide with the star realization or with
the special realization of 2114. The same holds for dT .

The following definitions will be useful in the sequel. A Z+-realization of d
is called a star-star realization if both its projections on S and on T are the star
realizations of 211s and 211t, respectively. A realization of d is called a star-special
realization if its projection on S is the star realization of 211s, but t = 4 and its
projection on T is the special realization of 2114. Finally, a realization of d is
called a special-special realization if s = t = 4 and both its projections on S and
T are the special realization of 2114.
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A′ C ′ B′ D′

A (f + 2)Ja f + 2 f f
−2Ia

C f + 2 f + 2 f f

B f f (f − 2)Jb f − 2
+2Ib

D f f f − 2 f − 2

Figure 24.2.3

We now analyze the structure of the hypercube embeddable generalized bi-
partite metrics admitting a star-star realization.

Proposition 24.2.4. Let d be a generalized bipartite metric with bipartition
(S, T ). Then, d admits a star-star realization if and only if there exist a parti-
tion {A,B,C,D} of S and a partition {A′, B′, C ′,D′} of T (with possibly empty
members) with |A| = |A′| and |B| = |B′| and there exist one-to-one mappings
σ : A −→ A′ and τ : B −→ B′ and an integer f ≥ |B|+ |D|+ |D′| such that the
values d(i, j) are given by

(24.2.5)





f if (i, j) ∈ ((A ∪ C) × (B′ ∪D′)) ∪ ((B ∪D) × (A′ ∪ C ′))
∪{(k, σ(k)) | k ∈ A} ∪ {(k, τ(k)) | k ∈ B},

f + 2 if (i, j) ∈ ((A ∪ C) × (A′ ∪ C ′)) \ {(k, σ(k)) | k ∈ A},
f − 2 if (i, j) ∈ ((B ∪D) × (B′ ×D′)) \ {(k, τ(k)) | k ∈ B}.

Proof. Let d be a generalized bipartite metric admitting a star-star realization:
d =

∑

U∈U
δ(U), where U is a collection (allowing repetition) of nonempty subsets

of V . Hence, |U ∩ S| ∈ {0, s, 1, s− 1} and |U ∩ T | ∈ {0, t, 1, t− 1} for all U ∈ U .
We can suppose without loss of generality that |U ∩S| ∈ {0, 1} for all U ∈ U . Let
M denote the matrix whose columns are the incidence vectors of the members
of U . Combining the above mentioned two possibilities for U ∩ S with the four
possibilities for U ∩ T , we obtain that M has the form shown in Figure 24.2.6.
Hence the sets A,B,C,D and A′, B′, C ′,D′ form the desired partitions of S and
T . We can now compute d(i, j) for (i, j) ∈ S × T and verify that they satisfy
relation (24.2.5), after setting f := |B| + |D| + |D′| +m.
Conversely, suppose that d is defined by (24.2.5). Set A = {x1, . . . , xn} and
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B = {y1, . . . , yn}. One can easily check that d satisfies:

d =
∑

1≤i≤|A|
δ({xi, σ(xi)}) +

∑

1≤i≤|B|
δ(T \ {τ(yi)} ∪ {yi}) +

∑

x∈C∪C′

δ({x})

+
∑

x∈D
δ(T ∪ {x}) +

∑

x∈D′

δ(T \ {x}) + (f − |B| − |D| − |D′|)δ(T ).

This realization is clearly a star-star realization.

Figure 24.2.3 shows the (S, T )-distance matrix of the metric d defined by
(24.2.5). We use the following notation in Figures 24.2.3 and 24.2.6: Ia denotes
the a× a identity matrix, Ja the a× a all-ones matrix, and a block marked, say,
with f , has all its entries equal to f . As a rule, we denote the cardinality of a
set by the same lower case letter; e.g., a = |A|, a′ = |A′|, etc.

a b c d c′ d′ m

A Ia 0 0 0 0 0 0

B 0 Ib 0 0 0 0 0

C 0 0 Ic 0 0 0 0

D 0 0 0 Id 0 0 0

A′ Ia 1 0 1 0 1 1

B′ 0 Jb − Ib 0 1 0 1 1

C ′ 0 1 0 1 Ic′ 1 1

D′ 0 1 0 1 0 Jd′ − Id′ 1

Figure 24.2.6

It is fairly clear that the description from Proposition 24.2.4 permits to test in
polynomial time whether a generalized bipartite metric has a star-star realization
and to find it (if one exists) (see Deza and Laurent [1995a] for details). Actually,
this can be done in O(n2) if the metric is on n points.

One can check whether a generalized bipartite metric has a star-special re-
alization in the following way. Suppose |T | = 4. Let z′ ∈ T and let d′ denote
the restriction of d to the set V \ {z′}. If d has a star-special realization then d′

has a star-star realization. We see easily that there are O(1) possible star-star
realizations for d′ and all of them can be found in polynomial time. One then
checks whether one of them can be extended to a star-special realization of d.
(If a star-star realization of d′ is as in Figure 24.2.6, there is a unique way to
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complete it to a star-special realization of d, namely, by adjoining the following
row as a last row to Figure 24.2.6.)

a b c d c′ d′ m
z′ 1 0 0 1 1 0 1

Finally, a generalized bipartite metric d has a special-special realization if
and only if, for some m ∈ Z+, the (S, T )-distance matrix of the semimetric
d−mδ(T ) is one of the nine matrices from Figure 24.2.7 (up to permutation on
S and T ). (This fact can be checked, using a characterization of the general-
ized bipartite metrics admitting a special-special realization analogous to that
of Proposition 24.2.4, see Deza and Laurent [1995a].)

3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3

0 2 2 2
2 0 2 2
2 2 0 2
2 2 2 0

1 1 1 3
1 3 3 3
1 3 3 3
3 3 3 5

4 4 4 2
4 2 2 2
4 2 2 2
2 2 2 0

3 1 1 1
1 3 1 1
3 3 3 1
3 3 1 3

0 2 2 2
2 0 2 2
2 2 2 4
2 2 4 2

2 2 2 4
2 2 2 4
2 2 2 4
4 4 4 6

4 4 4 2
4 4 4 2
4 4 4 2
2 2 2 0

3 3 3 1
3 3 3 1
3 3 3 1
5 5 5 3

Figure 24.2.7

Example 24.2.8. Given an integer k ≥ 5, let d2k denote the metric defined on
2k points by: d2k(i, i+k) = 4 for any 1 ≤ i ≤ k and d2k(i, j) = 2 for all other pairs
(i, j), 1 ≤ i 6= j ≤ 2k. Hence, d2k is a generalized bipartite metric with biparti-
tion ({1, 2 . . . , k}, {k+1, k+2, . . . , 2k}). Note that 1

2d2k is the path metric of the
cocktail-party graph Kk×2. The metric d2k can be obtained from the equidistant
metric using the full antipodal extension operation, as d2k = Ant4(211k). It is an
easy exercise to verify, for instance using the above procedure, that d2k is not
hypercube embeddable (another proof of this fact has been given in Section 7.2,
see Example 7.2.7). On the other hand, one verifies easily that d2k belongs to
the cut cone CUT2k and to the cut lattice L2k (see also Example 7.2.7).

The same technique could be used for testing hypercube embeddability for other
metrics than generalized bipartite metrics. Let d be a semimetric on Vn. Suppose that
there exists a bipartition (S, T ) of V such that the projections dS and dT of d on S and
T are of the form:
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(24.2.9) dS =
∑

x∈S

αxδ({x}), dT =
∑

x∈T

βxδ({x})

for some positive integers αx, βx. From Theorem 22.0.12, we know that dS and dT

are h-rigid if |S| is big enough with respect to maxx∈S αx and if |T | is big enough with
respect to maxx∈T βx. So, theoretically, one could use the same technique as the one used
in Proposition 24.2.4 for studying hypercube embeddability of these metrics. However,
a precise analysis of the structure of the distance matrix of such metrics seems to be
technically much more involved than in the case considered above where all αx, βx are
equal to 1.

The next simplest case to consider after the case of generalized bipartite metrics
would be the class of metrics d for which d(x, y) = 4 for x 6= y ∈ S and d(x, y) = 2
for x 6= y ∈ T (i.e., all αx’s are equal to 2 and all βx’s to 1). One can characterize
h-embeddability of these metrics by a similar reasoning as was applied to generalized
bipartite metrics and, as a consequence, recognize them in polynomial time. Indeed, the
metric 411n is rigid for n = 3 and n ≥ 9 and 411n has exactly three Z+-realizations: its
star realization and two special ones, for each n ∈ {4, 5, 6, 7, 8} (cf. Proposition 23.4.4).

Another relatively simple case is when one of the sets S or T is small. Deza and

Laurent [1995a] give a complete characterization of the hypercube embeddable metrics

satisfying (24.2.9) in the case |T | ≤ 2.

24.3 Metrics with Few Values

In this section, we consider the distances taking two values with distinct parities,
and the distances taking three values, not all even and one of them being the
sum of the other two. Namely, given a, b ∈ Z+, we consider the following classes
of distances d:

(a) d takes the values 2a, b, with b odd,

(b) d takes the values a, b, a+ b, with a, b odd,

(c) d takes the values 2a, b, 2a + b, with b odd and b < 2a, and

(d) d takes the values 2a, b, 2a + b, with b odd and 2a < b.

Laurent [1994] shows that the hypercube embeddability problem can be solved
in polynomial time within each of these classes.

Theorem 24.3.1. For fixed a, b, the hypercube embeddability problem within
each of the classes (a), (b), (c), (d) can be solved in polynomial time.

We sketch the proof of Theorem 24.3.1 in the rest of the section. It turns
out that each of the classes (a), (b), (c), (d) has to be treated separately. The
instance a = b = 1 of the class (c) was considered by Avis [1990], who showed
that the hypercube embeddable distances with range of values {1, 2, 3} can be
recognized in polynomial time. The proof for the class (c) is essentially the same
as in the subcase a = b = 1.

The basic steps of the proof are as follows. Let d be a distance on Vn from one
of the classes (a), (b), (c), or (d). One first checks whether d satisfies the parity
condition (24.1.1). If not, then d is not hypercube embeddable. Otherwise, let
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(S, T ) be the partition of Vn provided by Lemma 24.1.2 with, say, |S| ≥ |T |. Set
n(a, b) := a2 + a + 3 if d belongs to the classes (a), (c), or (d), and n(a, b) :=
(a+b2 )2 + a+b

2 + 4 if d belongs to the class (b).
If n < 2n(a, b)−1, then one can test directly whether d is hypercube embeddable,
for instance, by brute force enumeration (the number of operations in this step
depends only on a, b, but may be exponential in a, b).
If n ≥ 2n(a, b) − 1, then |S| ≥ n(a, b). Hence, the restriction of d to the set S
is an h-rigid equidistant metric. Therefore, the points of S should be labeled
by the star embedding (or an equivalent of it) in any h-labeling of d. For the
classes (a), (b), (c), (d), this information enables us to completely characterize
the hypercube embeddable distances on n ≥ 2n(a, b) − 1 points by a set of
conditions that can be checked in polynomial time.

We present below these characterizations for the classes (a), (b) and (c); see
Propositions 24.3.8, 24.3.16, 24.3.18, and 24.3.27. We do not present here the
results on the characterization of hypercube embeddability for the class (d), as
they involve too many technical details.

We also have some partial results for the characterization of the hypercube
embeddable distances on n points, for n arbitrary. See Propositions 24.3.9,
24.3.10, 24.3.11, and 24.3.17.

As mentioned above, we refer to Laurent [1994] for the study of the class
(d). Characterization of hypercube embeddability within the class (d) needs
many technical conditions. In some subcases, one needs conditions involving
the existence of some designs, namely, of intersecting systems with prescribed
parameters. Consider, for instance, the distance d from Figure 24.3.2. One can
check that, if |S| ≥ a2 + a + 3, then d is hypercube embeddable if and only if
|U | ≤ f(2a, a; a+ b), i.e., if there exists a (2a, a)-intersecting system on Va+b of
cardinality |U |.

 distance

 b+2a

   b

            S

   U

. . . . 

. . . . .
  2a

Figure 24.3.2

24.3.1 Distances with Values 2a, b (b odd)

Let a, b be positive integers with b odd. Let d be a distance on Vn with range of values
{2a, b}. Suppose that d is a semimetric and satisfies the parity condition (24.1.1). Then,
b ≥ a and let (S, T ) be the partition of Vn provided by Lemma 24.1.2. Then an h-labeling
of d consists of two set families A and B such that
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(24.3.3)





A is a (b, b− a)-intersecting system,
B is a (2a, a)-intersecting system,
|A ∩B| = a for all A ∈ A, B ∈ B,
|A| = |S|, |B| = |T | − 1.

Indeed, label a point j0 ∈ T by ∅, the remaining points of T by the members of B, and
the points of S by the members of A.

Lemma 24.3.4.

(i) If |T | = 1, then d is hypercube embeddable.

(ii) If b ≥ 2a, then d is hypercube embeddable.

(iii) If b < 2a and 2 ≤ |T | ≤ |S| ≤ a
2a−b

+ 1, then d is hypercube embeddable.

(iv) If b < 2a and d is hypercube embeddable, then min(|T |, |S| − 1) ≤ ⌊ b
2a−b

⌋.

Proof. For (i), (ii), and (iii), we construct two families A, B satisfying (24.3.3). In
the three cases, we take for A a ∆-system with parameters (b, b − a) and center A0,
|A0| = b− a.
In case (i), take simply B = ∅. In case (ii), as b ≥ 2a, we can find a subset B0 of A0

with |B0| = a. Then, we take for B a ∆-system with parameters (2a, a) and center B0

such that (A \A0) ∩ (B \B0) = ∅ for all A ∈ A, B ∈ B.
In case (iii), we have a ≥ (s− 1)(2a− b) (setting s := |S|), i.e., for each A ∈ A, we can
find s − 1 disjoint subsets A(1), . . . , A(s−1), of A \ A0, each of cardinality 2a − b. Note
that x := b − a + s(2a − b) ≤ 2a. Let X(1), . . . , X(s−1) be disjoint sets of cardinality
2a− x, disjoint from

⋃
A∈AA. Given A1 ∈ A, we set B := {B(1), . . . , B(s−1)} where, for

1 ≤ j ≤ s− 1,

B(j) = A0 ∪A(1)
1 ∪

⋃

A∈A\{A1}
A(j) ∪X(j).

Then, A, B satisfy (24.3.3).
(iv) Suppose that min(|T |, |S| − 1) ≥ ⌊ b

2a−b
⌋ + 1. Let k be an integer such that

min(|T |, |S| − 1) ≥ k ≥
⌊

b

2a− b

⌋
+ 1.

Set bi = 1 for k + 1 points of S, bi = −1 for k points of T , and bi = 0 for the remaining
points of Vn. Then,

∑

i,j∈Vn

bibjd(i, j) = 2k(k(2a− b) − b) > 0.

Hence, d violates a (2k + 1)-gonal inequality and, thus, is not hypercube embeddable.

. . . . 

Figure 24.3.5 Figure 24.3.6 Figure 24.3.7

 2a

 b

distance
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Proposition 24.3.8. Let a ≤ b be positive integers with b odd. Let d be a distance on n
points with range of values {2a, b}. If n ≥ 2a2+2a+5, then d is hypercube embeddable if
and only if (i) d satisfies (24.1.1) and b ≥ 2a or (ii) d is the distance from Figure 24.3.5.

Proof. Remains to show the “only if” part. Suppose that d is hypercube embeddable
and b < 2a. Let A and B satisfying (24.3.3). By assumption, we have |S| ≥ a2 + a+ 3.
Hence, A is a (b, b − a)-intersecting system with |A| ≥ a2 + a + 3. By Lemma 23.1.11,
A is a ∆-system; let A0 be its center, |A0| = b− a. If |T | ≥ 2, then |B| ≥ 1. Let B ∈ B
and set α := |B ∩A0|. Then, |B ∩ (A \A0)| = a− α for all A ∈ A. Therefore,

2a = |B| ≥ α+|A|(a−α) = a|A|−α(|A|−1) ≥ a|A|−(b−a)(|A|−1) = (2a−b)|A|+b−a,

which implies

|A| ≤ 3a− b

2a− b
=

a

2a− b
+ 1.

This contradicts the fact that |A| = |S| ≥ a2 + a + 3. Therefore, |T | = 1, i.e., d is the
distance from Figure 24.3.5.

Proposition 24.3.9. Let a ≤ b be positive integers with b odd and b ≥ 2a. Let d be
a distance on n points with range of values {2a, b}. Then d is hypercube embeddable if
and only if d satisfies (24.1.1).

Proposition 24.3.10. Let a ≤ b be positive integers with b odd and b < 4
3a. Let d be a

distance with range of values {2a, b}. The following assertions are equivalent.

(i) d is hypercube embeddable.

(ii) d satisfies the parity condition (24.1.1) and the 5-gonal inequality (i.e., d does not
contain as substructure the distance from Figure 24.3.7).

(iii) d is one of the distances from Figures 24.3.5 and 24.3.6.

Proof. The implication (ii) =⇒ (iii) follows from Lemma 24.3.4 (iv), after noting that
⌊ b

2a−b
⌋ = 1 if b < 4

3a. The distance from Figure 24.3.6 (i.e., the case |S| = |T | = 2)
is indeed hypercube embeddable; label the two nodes of T by ∅ and A ∪ A′, and the
two nodes of S by A0 ∪ A and A0 ∪ A′, where A0, A,A

′ are disjoint sets of respective
cardinalities b− a, a, a.

Note that Proposition 24.1.9 is the case a = b = 1 of Proposition 24.3.10. So, we
have a complete characterization of the hypercube embeddable distances with values in
{2a, b} (b odd) except when a, b satisfy: 4

3a ≤ b < 2a.

24.3.2 Distances with Values a, b, a + b (a,b odd)

Let a, b be positive odd integers with a < b. Let d be a distance on Vn with range of values
{a, b, a+ b}. Suppose that d is a semimetric and satisfies the parity condition (24.1.1).
Let (S, T ) be the bipartition of Vn provided by Lemma 24.1.2. Hence, d(i, j) = a+ b for
i 6= j ∈ S, i 6= j ∈ T , and d(i, j) ∈ {a, b} for i ∈ S, j ∈ T . Moreover, the pairs ij with
d(i, j) = a form a matching.

Proposition 24.3.11. If there are at least two pairs at distance a, then the following
assertions are equivalent.

(i) d is hypercube embeddable.

(ii) d satisfies (24.1.1) and the 5-gonal inequality.
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(iii) d is the distance from Figure 24.3.12.

Proof. Let i, i′ ∈ S, j, j′ ∈ T such that d(i, j) = d(i′, j′) = a. If there exists k ∈
Vn \ {i, i′, j, j′}, then set bi = bi′ = bk = 1, bj = bj′ = −1, and bh = 0 for the remaining
points. Then, ∑

i,j∈Vn

bibjd(i, j) = 4a > 0,

i.e., d violates a 5-gonal inequality. This shows (ii) =⇒ (iii). If Vn = {i, i′, j, j′} then d
is indeed hypercube embeddable; let A and B be disjoint sets with |A| = a and |B| = b
and label i by A, i′ by B, j by ∅, and j′ by A ∪B. This shows (iii) =⇒ (i).

Figure 24.3.12 Figure 24.3.13

.......

Figure 24.3.14

distance

a+b

 a

 b

From now on, we can suppose that there is exactly one pair (i0, j0) at distance a,
where i0 ∈ S, j0 ∈ T . In an h-labeling of d, we can suppose that j0 is labeled by ∅ and,
then, i0 should be labeled by a set A0 of cardinality a. Therefore, an h-labeling of d
exists if and only if there exist two set families A and B such that

(24.3.15)





A,B are (b, b−a
2 ) − intersecting systems,

|A ∩B| = a+b
2 for all A ∈ A, B ∈ B,

A ∩A0 = B ∩A0 = ∅ for all A ∈ A, B ∈ B,
|A| = |S| − 1, |B| = |T | − 1.

Indeed, label the points of S \ {i0} by the members of A and the points of T \ {j0} by
A0 ∪B where B ∈ B.

Proposition 24.3.16. Let a < b be odd integers and let d be a distance on n ≥
2(a+b

2 )2 + a + b + 7 points with range of values {a, b, a + b} which is not the distance
from Figure 24.3.12. Then, d is hypercube embeddable if and only if d is the distance
from Figure 24.3.14.

Proof. The distance from Figure 24.3.14 is hypercube embeddable; indeed choose for A
a ∆-system. Conversely, suppose that d is hypercube embeddable. By assumption,

|S| ≥ (
a+ b

2
)2 + (

a+ b

2
) + 4.

Hence, A is a (b, b−a
2 )-intersecting system with

|A| ≥ (
a+ b

2
)2 +

a+ b

2
+ 3.

By Lemma 23.1.11, A is a ∆-system; let A1 be its center, |A1| = b−a
2 . Suppose that

|T | ≥ 2 and let B ∈ B. Then, |B ∩ (A \A1)| ≥ a for all A ∈ A, implying b = |B| ≥ a|A|,
in contradiction with the above assumption on |A|. Therefore, |T | = 1, i.e., d is the
distance from Figure 24.3.14.
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Proposition 24.3.17. Let a, b be odd integers such that a < b < 2a. Let d be a distance
with range of values {a, b, a + b}. Then, d is hypercube embeddable if and only if d is
one of the distances from Figures 24.3.12, 24.3.13, and 24.3.14.

Proof. Suppose that d is hypercube embeddable and that d is not the distance from
Figure 24.3.12. Set k := min(|T |, |S| − 1). If k ≥ 2, then k ≤ ⌊ b

a
⌋ (else, d violates

a (2k + 1)-gonal inequality). Hence, k = 1, which implies that d is the distance from
Figures 24.3.14 or 24.3.13.

24.3.3 Distances with Values b, 2a, b + 2a (b odd, b < 2a)

Proposition 24.3.18. Let a, b be positive integers with b odd and b < 2a. Let d be a
distance on n ≥ 2a2 + 2a+ 5 points with range of values {2a, b, 2a+ b}. The following
assertions are equivalent.

(i) d is hypercube embeddable.

(ii) d is a semimetric, d satisfies (24.1.1) and d does not contain as substructure any
of the distances from Figures 24.3.19-24.3.26.

In particular, if b < a, then d is hypercube embeddable if and only if d is a semimetric
and satisfies (24.1.1).

. . . .
   

-2a

        4a

   1     1            1     1-2a

Figure 24.3.19

  2

 -1   -1    -1     1     1

Figure 24.3.20

    3   -1

 -2    -2     1     1     1

Figure 24.3.21

    1       -1

 -1            1             1

Figure 24.3.22

  1    1

    -1          -1            1

Figure 24.3.23

  1    -2

           1     1    1     -1

Figure 24.3.24
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  -3    1     1

         2     2    -1    -1

Figure 24.3.25

2

. . . . .

     a   + a + 3

Figure 24.3.26

In Figures 24.3.19-24.3.26, a plain edge represents distance 2a+b, a dotted edge distance
b and no edge means distance 2a.

Proof. For the implication (i) =⇒ (ii), we check that none of the distances from
Figures 24.3.19-24.3.26 is hypercube embeddable. Indeed, the distances from Fig-
ures 24.3.19-24.3.25 violate some hypermetric inequality. The numbers assigned to the
nodes in Figures 24.3.19-24.3.25 indicate a choice of integers bi’s for which the hyperme-
tric inequality (24.1.5) is violated. For instance, for the distance from Figure 24.3.19,

∑

i,j∈Vn

bibjd(i, j) = 4a(2a(2a− b) − b) ≥ 4a > 0

since 2a − b ≥ 1. The distance from Figure 24.3.26 is not hypercube embeddable by
Proposition 24.3.8 (and its proof).

We show the implication (ii) =⇒ (i). As d satisfies the parity condition, Vn is
partitioned into S∪T with |S| ≥ |T |, d(i, j) = 2a for (i, j) ∈ S2∪T 2, d(i, j) ∈ {b, b+2a}
for (i, j) ∈ S × T . Set s := |S|. For j ∈ T , set

Nb(j) := {i ∈ S | d(i, j) = b}.

For v ∈ {0, 1, 2, . . . , s− 1, s}, set

Tv := {j ∈ T | |Nb(j)| = v}.

We group below several observations on the sets Tv.

(i) Ts−1 = ∅ (since d does not contain the configuration from Figure 24.3.19).
(ii) |Ts| ≤ 1 (since d does not contain the configuration from Figure 24.3.26).
(iii) All Tv are empty except maybe T0, T1, T2, Ts (indeed, |Nb(j)| ≤ 2 or |Nb(j)| ≥ s− 1
for all j ∈ T , since d does not contain the substructure from Figure 24.3.20).
(iv) At least one of T0 and T2 is empty (since d does not contain the substructure from
Figure 24.3.21).
(v) If |T1| ≥ 2, then
(v1) either all Nb(j) (j ∈ T1) are equal,
(v2) or all Nb(j) (j ∈ T1) are distinct
(since d does not contain the substructure from Figure 24.3.22).
(vi) If j 6= j′ ∈ T2, then |Nb(j) ∩Nb(j

′)| = 1 (use Figures 24.3.22 and 24.3.23).
(vii) If j ∈ T1 and j′ ∈ T2, then Nb(j) ∩Nb(j

′) 6= ∅ (by Figure 24.3.22).
(viii) If b < a, then T2 = Ts = ∅ (by the triangle inequality).

We show how to construct an h-labeling of d. Let Ai (i ∈ S) be disjoint sets of
cardinality a. Set A := ∪i∈SAi. Label the elements of S by the Ai’s.
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Suppose first that b < a. Then, by (viii), d(i1, j1) = . . . = d(ir, jr) = b for some
i1, . . . , ir ∈ S, j1, . . . , jr ∈ T , 1 ≤ r ≤ |T |. Let X , Bj (j ∈ T \ {j1, . . . , jr}) be pairwise
disjoints sets that are disjoint from A and satisfy |X | = b, |Bj | = a. Label j1, . . . , jr by
Ai1 ∪ X, . . . , Air

∪X , respectively, and j ∈ T \ {j1, . . . , jr} by X ∪ Bj. This gives an
h-labeling of d.

We now suppose that b ≥ a. Let X be a set disjoint from A with |X | = b− a.
- If Ts 6= ∅ then Ts = {x} (by (i)); label x by X .
- Label each element j ∈ T2 by

⋃
i∈Nb(j)

Ai ∪X (this gives already an h-labeling of the

projection of d on S ∪ Ts ∪ T2 (by (vi))).
- Suppose that all Nb(j) (j ∈ T1) are equal to, say, {i0}, as in (v1). Let Yj (j ∈ T1)
be pairwise disjoint sets that are disjoint from A and X and have cardinality a. Label
j ∈ T1 by Ai0 ∪X ∪ Yj .
If all Nb(j) (j ∈ T1) are distinct as in (v2), then label j ∈ T1 by

⋃
i∈Nb(j)

Ai ∪X ∪ Y ,

where Y is a set disjoint from A and X with |Y | = a.
(In both cases, we have obtained an h-labeling of the projection of d on S ∪ Ts ∪T2 ∪ T1

(by (vii)).)
- Suppose that T0 6= ∅. Then, T2 = ∅ by (iv). Let Zk (k ∈ T0) be pairwise disjoint sets
that are disjoint from all the sets constructed so far and have cardinality a.
If we are in case (v1), then |T1| ≤ 1 or (|T1| ≤ 2 and |T0| = 1). (Indeed, if |T1|, |T2| ≥ 2,
then d contains the substructure from Figure 24.3.25 and, if |T1| ≥ 3, |T0| = 1, then
we have the substructure from Figure 24.3.24.) If |T1| = 1, T1 = {j}, label k ∈ T0

by X ∪ Yj ∪ Zk. If |T1| = 2, T1 = {j, j′}, then label the unique element k ∈ T0 by
X ∪ Yj ∪ Yj′ .
Else, we are in case (v2). Then, label k ∈ T0 by X ∪ Y ∪ Zk.
In both cases, we have constructed an h-labeling of d.

Observe that the exclusion of the distance from Figure 24.3.26 is used only for show-
ing that |Ts| ≤ 1, i.e., that at most one point is at distance b from all points of S.
Consider the distance ds on s + 2 points which has the same configuration as in Fig-
ure 24.3.26 but with s nodes on the top level instead of a2 +a+3. Let s(a, b) denote the
largest integer s such that ds is hypercube embeddable. Then, Proposition 24.3.18 re-
mains valid if we exclude the distance ds(a,b)+1 instead of excluding the distance da2+a+3

from Figure 24.3.26. Note that

2 ≤ a

2a− b
+ 1 ≤ s(a, b) ≤ a2 + a+ 2,

with s(a, b) = 2 if b < 4
3a (use Proposition 24.3.10). This implies the following result.

Proposition 24.3.27. Let a, b be positive integers with b odd and b < 4
3a. Let d be a

distance on n ≥ 2a2 + 2a+ 5 points with range of values {2a, b, 2a+ b}. The following
assertions are equivalent.

(i) d is hypercube embeddable.

(ii) d is ℓ1-embeddable and satisfies (24.1.1).

(iii) d is hypermetric and satisfies (24.1.1).

(iv) d satisfies (24.1.1) and the (2k+ 1)-gonal inequalities for 2k+ 1 = 5, 7, 11, 8a− 1.

(v) d is a semimetric, d satisfies (24.1.1), and d does not contain as substructure any
of the distances from Figures 24.3.7 and 24.3.19-24.3.25.

Note that Proposition 24.3.27 is a direct extension of the result given in Avis [1990]
for the subcase a = b = 1.
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24.4 Truncated Distances of Graphs

We consider here the hypercube embeddability problem for the distances taking
two values of the form a, 2a, where a ≥ 1 is an integer. Such distances can
be interpreted as scale multiples of truncated distances of graphs. Indeed, for a
distance d on V with values a, 2a, let G = (V,E) denote the graph with edges
the pairs at distance a. Then, d coincides with ad∗G, where d∗G is the truncated
distance of G (taking value 1 on an edge and value 2 on a non edge). (The
truncated distance has already been considered earlier in Chapter 17.)

As we see here, the hypercube embeddability problem can be solved in poly-
nomial time for the class of distances with values a, 2a. The case when a is
odd has already been settled in the previous section (cf. Proposition 24.3.10).
Namely, such distances are hypercube embeddable if and only if they satisfy the
parity condition (24.1.1) and the pentagonal inequalities. Hence, it suffices to
verify that all subspaces on at most five points are hypercube embeddable in or-
der to ensure that the whole distance space is hypercube embeddable. A similar
finite point criterion has been discovered by Assouad and Delorme [1980, 1982]
in the case when a is even. The proof uses again as a basic tool the fact that
some equidistant submetrics are h-rigid, but the details are more involved in this
case.

Theorem 24.4.1. Let (X,d) be a finite distance space with range of values
{2k, 4k} where k ≥ 1 is an integer. Set Nk := (3M2R+R+2M2)(M+1)+8k+4,
where M := 4k2 + 4k + 3 and R denotes the Ramsey number1 r(M,M). Then,
(X,d) is hypercube embeddable if and only if (Y, d) is hypercube embeddable for
every subset Y ⊆ X with |Y | ≤ Nk.

The value of Nk given in this theorem could certainly be improved (at the cost
of a more detailed analysis). For instance, Assouad and Delorme [1980] show
that, in the case k = 1, N2 can be replaced by 120. The value given here suffices,
however, for the purpose of demonstrating polynomial-time solvability.

The rest of the section is devoted to the proof of Theorem 24.4.1. We intro-
duce some notation. For convenience, we visualize a distance d on V with values
2k, 4k as d = 2kd∗G, where G = (V,E) is the graph with edges the pairs at dis-
tance 2k. Then, isometric subspaces of (V, d) correspond to induced subgraphs
of G. Then we introduce the class of graphs Fk which consists of the graphs G
for which 2kd∗G is hypercube embeddable. Our aim is to show that a graph G
belongs to Fk whenever all its induced subgraphs on at most Nk nodes belong
to Fk. It is convenient to formalize this notion. A class C of graphs is said to
have order of congruence2 p if C is closed under taking induced subgraphs and

1We remind that, given integers s, t ≥ 1, the Ramsey number r(s, t) denotes the smallest
integer n such that every graph on n nodes contains either a clique of size s or a stable set of
size t. Some estimations for r(s, s) are known; for instance, 2

s
2 ≤ r(s, s) ≤

(
2s−2
s−1

)
. (Cf., e.g.,

Bondy and Murty [1976].)
2The notion of order of congruence has already been introduced earlier; it is, however, used
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if a graph belongs to C whenever all its induced subgraphs on at most p nodes
belong to C, and p is the smallest such integer. Thus, we have to show that Fk
has order of congruence ≤ Nk. For this, we decompose Fk into two subfamilies
Gk and Fk \ Gk whose orders of congruence are easier to determine. Namely, let
Gk denote the class of graphs G satisfying, either (i) ∇G ∈ Fk, or (ii) G ∈ Fk
and G is a suspension graph (i.e., has a node adjacent to all other nodes). We
will also consider a class Hk (to be described later) such that Fk \Gk ⊆ Hk ⊆ Fk.
Then, the main steps of the proof consist of showing that

(i) Gk has order of congruence ≤ 8k + 4,

(ii) Hk has order of congruence ≤ (3M2R+R+ 2M2)(M + 1).

The result from Theorem 24.4.1 follows in view of the following (easy) lemma.

Lemma 24.4.2. Let A and B be families of graphs having respective orders of
congruence a and b. Then, A ∪ B has order of congruence ≤ a+ b.

We now determine the order of congruence of Gk and the next subsection will
study the order of congruence of Hk.

Proposition 24.4.3. The family Gk has order of congruence ≤ 8k + 4.

Proof. Define Ik as the subfamily of Gk consisting of the graphs G whose sus-
pension ∇G belongs to Fk. In a first step, we show that

(a) Ik has order of congruence ≤ 4k + 2.

For this, let G = (V,E) be a graph such that G[X] ∈ Ik for all X ⊆ V with
|X| ≤ 4k + 2; we show that G ∈ Ik, i.e., that ∇G is hypercube embeddable
with scale 2k. We can assume without loss of generality that G is connected.
By the assumption, we know that ∇G is ℓ1-embeddable (as 4k + 2 ≥ 6 and the
family of graphs whose suspension is ℓ1-embeddable has order of congruence 6 by
Theorem 17.1.8). Therefore, G is a line graph or a subgraph of a cocktail-party
graph (again by Theorem 17.1.8). If G is a line graph we are done, since 2d∗∇G is
hypercube embeddable. Hence, G is contained in a cocktail-party graph Kn×2.
We can assume without loss of generality that G has exactly one pair of opposite
nodes. In other words, G = Kn+1\e and 2kd∗∇G = ant4k(2k11n+1). Let c(k)
denote the largest integer such that ant4k(2k11c(k)) is hypercube embeddable.
Then, c(k) ≤ 4k + 1 by Theorem 23.3.1 (i). Hence, G ∈ Ik if n + 1 ≤ c(k).
On the other hand, if n ≥ c(k) then we can choose a subset X of V of size
c(k) + 1 containing both end nodes of the deleted edge e. Now G[X] ∈ Ik since
|X| ≤ 4k + 2. This implies that ant4k(2k11c(k)+1) is hypercube embeddable,
contradicting the definition of c(k). Hence, (a) holds.

We can now proceed with the proof. Let G = (V,E) be a graph such that
G[X] ∈ Gk for all |X| ≤ 8k + 4; we show that G ∈ Gk. We can suppose that
G 6∈ Ik, else we are done. By (a), there exists Y ⊆ V with |Y | ≤ 4k + 2 such

here in a more restrictive sense.
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that G[Y ] 6∈ Ik, i.e., ∇G[Y ] 6∈ Fk. For any Z ⊆ V with |Z| ≤ 4k + 2, we have
that G[Y ∪Z] ∈ Gk, which implies that G[Y ∪Z] is a suspension graph with apex
node z ∈ Y . Then, G is a suspension graph with apex y ∈ Y . (For, suppose that
for every y ∈ Y there exists zy ∈ Z not adjacent to y; then a contradiction is
reached by considering Z := {zy | y ∈ Y }.) One can now verify that G[V \ {y}]
belongs to Ik with the help of (a). This shows that G ∈ Fk and, thus, G ∈ Gk.

Next, we consider the class Fk \Gk. Some further definitions are needed. We
remind that M := 4k2 + 4k + 3 and R = r(M,M) is the Ramsey number. Let
G = (V,E) be a graph. We call M -clique (resp. M -stable set) any maximal
clique (resp. stable set) of size ≥ M . Then, V0 denotes the union of all M -
cliques and V1 denotes the union of their pairwise intersections. A subset L ⊆ V0
is called transversal if G[L] is connected and L meets every M -clique in at most
one point. Finally, V2 denotes the union of the transversals that have a node
adjacent to a node of V \ V0.

We now introduce the class Hk which consists of the graphs G ∈ Fk satisfying
the following conditions (i)-(vi):

(i) G has no M -stable set.

(ii) G has at most M distinct M -cliques.

(iii) Any two distinct M -cliques meet in at most two points.

(iv) A node adjacent to 4 nodes of an M -clique K belongs to K.

(v) G[L] is a complete graph for every transversal L.

(vi) Maximal transversals are pairwise disjoint.

Note that, for a graph satisfying (i)-(vi), |V \ V0| ≤ R (by the definition of V0

and R), |V1| ≤M2, and |V2| ≤ 3M2R.

We show in the next subsection that Fk \Gk is contained in Hk and we study
the order of congruence of Hk.

24.4.1 The Class of Graphs Hk

Our aim here is to show that Fk \ Gk ⊆ Hk and to determine the order of
congruence of Hk. In what follows, G = (V,E) is a graph in Fk \ Gk. Hence,
2kd∗G can be isometrically embedded into some hypercube H(Ω). That is, there
is a mapping:

x ∈ V 7→ X ⊆ Ω

such that |X△Y | = 2k if xy is an edge and |X△Y | = 4k otherwise. (We will use
below the same letters x and X for denoting a node of G and the subset labeling
it in the hypercube; we may sometimes identify both notions and speak of node
X.)

We will use the following fact (cf. Theorem 22.0.6 or 23.1.9): The sets Y
labeling the nodes y of an M -clique K form a ∆-system (because M = 4k2 +
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4k+ 3). That is, there exists a set C such that C ⊆ Y , |Y \C| = k for all y ∈ K
and the sets Y \ C are pairwise disjoint; the set C is called the center of the
M -clique K. A similar result holds for M -stable sets (as M ≥ k2 + k + 3).

Lemma 24.4.4. G has no M -stable set.

Proof. Suppose, for contradiction, that S is an M -stable set. We can assume
without loss of generality that the nodes y ∈ S are labeled by pairwise disjoint
sets Y , each of cardinality 2k. We claim:

(a) Every node x ∈ V \ S is nonadjacent to some node of S.

For, suppose that x ∈ V \ S is adjacent to all nodes of S. Then, x is labeled
by X = ∅ (by the pentagonal inequality applied to the nodes Y1, Y2, Y3 ∈ S, X
and ∅). This implies that x is adjacent to all nodes of G, contradicting the fact
that G 6∈ Gk. Indeed, let x′ ∈ V \ S (x′ 6= x) be labeled by X′; if |X ′| = 4k then
|S| ≤ 4 (since |X′△Y | ≤ 4k implies that |X′∩Y | ≥ k for each y ∈ S). Therefore,
(a) holds.

Let x ∈ V \ S be labeled by X and let y ∈ S which is not adjacent to x;
thus, |X△Y | = 4k. Then, 2k ≤ |X| ≤ 6k (by the triangle inequality applied
to ∅,X,Y ). If |X| > 2k then |X ∩ Y | = 1

2(|X| − 2k) > 0 for every node y ∈ S
nonadjacent to x; hence, |X| ≥ |S| − 2 > 6k since x can be adjacent to at most
two nodes of S (by the pentagonal inequality). Therefore, |X| = 2k. So, we have
found a hypercube embedding of 2kd∗∇G (labeling the apex node by ∅). This
contradicts the assumption that G 6∈ Gk.

Lemma 24.4.5. Let K be an M -clique with center C and let x ∈ V \ K be
labeled by X. Then, |X△C| = 3k.

Proof. By the maximality of K, there exists y ∈ K which is not adjacent to x;
so |X△Y | = 4k. Thus, 3k ≤ |X△C| ≤ 5k (by the triangle inequality applied
to X,Y,C). Clearly, |X△C| = 3k if x is adjacent to some y ∈ K. Suppose
now that x is not adjacent to any y ∈ K. Then, for y ∈ K, 4k = |X△Y | =
|(X△C)△(C△Y )| and, thus, |X△C| − 3k = 2|(X \ C) ∩ (Y \ C)|. This implies
that |X△C| = 3k (else |X \ C| ≥M).

Lemma 24.4.6. Two distinct M -cliques meet in at most two points.

Proof. Suppose that y1, y2, y3 are distinct elements in two distinct cliques K, K′

with respective centers C, C′. The pentagonal inequality Q(1, 1, 1,−1,−1)T x ≤
0 applied to the distance on the points Y1, Y2, Y3, C,C

′ (assigning 1 to Y1, Y2, Y3

and −1 to C,C′) implies that C = C ′. This contradicts the triangle inequality
applied to C = C′, Y ∈ K \K′ and Y ′ ∈ K ′ \K.

Lemma 24.4.7. Let K and K′ be distinct cliques with respective centers C and
C ′. Then, |C△C′| = 2k.
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Proof. Let y′ ∈ K ′\K be labeled by Y ′. Then, by Lemma 24.4.5 and the triangle
inequality applied to C,C′, Y ′, we obtain that 2k ≤ |C△C′| ≤ 4k. Moreover,
3k = |C△Y ′| = |(C△C′)△(C′△Y ′)| implying that 2|(Y ′ \ C′) ∩ (C \ C′)| =
|C△C ′| − 2k. Therefore, |C△C′| = 2k for, otherwise, |C \ C′| ≥ |K ′ \K| which
yields: M ≤ |K ′| = |K ∩K′| + |K ′ \K| ≤ 4k + 2.

Lemma 24.4.8. There are at most M distinct M -cliques.

Proof. Let K1, . . . ,KN be the distinct M -cliques with respective centers C1, . . . ,
CN and suppose that N > M . Then, there exists a set C such that |C△Ci| = k
for all i = 1, . . . ,N (since, by Lemma 24.4.7, we have a 2k-valued equidistant
metric on C1, . . . , CN ). We claim that |C△X| = 2k for all x ∈ V ; this implies
that 2kd∗∇G is hypercube embeddable, contradicting our assumption that G 6∈ Gk.
First, suppose that x belongs to some M -clique Ki. Then, |C△X| ≤ |C△Ci| +
|Ci△X| = 2k and 3k = |X△Cj | ≤ |X△C| + |C△Cj| = |X△C| + k, which
shows that |C△X| = 2k. Suppose now that x 6∈ ⋃Ni=1Ki. Then, |X△C| ≤
|X△Ci|+ |Ci△C| = 4k. On the other hand, 3k = |X△Ci| = |(X△C)△(C△Ci)|
yielding 2|(X \ C) ∩ (Ci \ C)| = |X△C| − 2k. Henceforth, |X△C| = 2k for,
otherwise, |X \ C| ≥M .

Lemma 24.4.9. Let K be an M -clique and let x ∈ V \K. Then, x is adjacent
to at most three points of K.

Proof. If x is adjacent to 4 points of K then their labeling sets together with the
center C of K provide a hypercube embedding for the metric ant3k(2k115). This
cannot be, since 3k < sh(2k115) (indeed, sh(2k115)) ≥ 2k

6

(5
2

)
= 10

3 k > 3; recall
Proposition 7.2.6).

Lemma 24.4.10. Every transversal is a clique and maximal transversals are
pairwise disjoint.

Proof. Suppose that x, y, z are distinct points of a transversal L such that y
is adjacent to x and z and x, z are not adjacent. Let K 6= K′ be M -cliques
containing respectively x and y and let C, C′ be their centers. We obtain a
contradiction by applying the pentagonal inequality to X,Z,C′, Y,C (assigning
1 to X,Z,C′ and −1 to Y,C).

Suppose now that L1 and L2 are nondisjoint maximal transversals. Let x ∈
L1∩L2, y ∈ L1\L2 and z ∈ L2\L1, letK,K′ beM -cliques containing respectively
x and y, with centers C and C′. We have a contradiction by applying the
pentagonal inequality to Y,Z,C,X,C′ (assigning 1 to Y,Z,C and −1 to X,C′).

Proposition 24.4.11. The order of congruence of the class Hk is less than or
equal to (3M2R+R+ 2M2)(M + 1).
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Proof. Let G = (V,E) be a graph such that G[U ] ∈ Hk for all U ⊆ V with
|U | ≤ N(M +1) where N := 3M2R+R+2M2; we show that G ∈ Hk. The only
thing to verify is that G ∈ Fk, as G satisfies obviously (i)-(vi) (since N(M + 1)
is large enough). In particular, we have that |V \ V0| ≤ R, |V1| ≤ M2 and
|V2| ≤ 3M2R.

Let L1, . . . , Lp denote the maximal transversals that are disjoint from V2
(i.e., having no node adjacent to a node of V \ V0); we have that p ≥ 1 (else
we are done since |V | ≤ N(M + 1) as V0 ⊆ V2). Let V ∗ be a subset of V
containing (V \ V0) ∪ V1 ∪ V2 and meeting every M -clique of G in M points.
Then, |V ∗| ≤ N . Finally, set V ∗∗ := V ∗∪⋃i∈I Li, where I consists of the indices
i ∈ [1, p] for which Li∩V ∗ 6= ∅ and Li 6⊆ V ∗. Obviously, |I| ≤ |V ∗| which implies
that |V ∗∗| ≤ N(M + 1).

Therefore, G[V ∗∗] ∈ Hk and, thus, we have an embedding x ∈ V ∗∗ 7→ X ⊆ Ω∗

in some hypercube H(Ω∗) for the distance 2kd∗G[V ∗∗]. We now indicate how to
extend this embedding to the whole graph G.

Let Ωi (i ∈ [1, p] \ I) be disjoint sets, disjoint from Ω∗, and each having
cardinality k. For each M -clique K ∩V ∗∗ of G[V ∗∗], we let CK denote its center.
It remains to label the nodes of V \V ∗∗. A node x ∈ V \V ∗∗ belongs to a unique
M -clique K and the (unique) maximal transversal containing x is Li for some
i ∈ [1, p] \ I. We then label x by the set X := CK ∪ Ωi. We have to verify that
this gives a correct labeling, i.e., that, for y ∈ V labeled by Y , |X△Y | = 2k if
x, y are adjacent and |X△Y | = 4k otherwise.

Suppose first that x, y are not adjacent. If y ∈ V∗∗, then |CK△Y | = 3k
(by Lemma 24.4.5) which gives |X△Y | = 4k. If y ∈ V \ V ∗∗, then y is labeled
by CK ′ ∪ Ωj where K′ 6= K and i 6= j, which gives again |X△Y | = 4k since
|CK△CK ′| = 2k (by Lemma 24.4.7).

Suppose now that x, y are adjacent. If y ∈ K ∩ V∗∗ then |Y△CK | = k
and, thus, |X△Y | = 2k. If y ∈ K \ V ∗∗ then Y = CK ∪ Ωj with i 6= j (else
x, y ∈ Li ∩K), which yields again that |X△Y | = 2k. Now, if y 6∈ K then y ∈ Li
since {x, y} is transversal. This implies that y 6∈ V ∗∗ (as i 6∈ [1, p]). Let K′ be the
M -clique containing y. Then, Y = CK ′ ∪ Ωi and, thus, |X△Y | = |CK△CK ′| =
2k.

24.5 Metrics with Restricted Extremal Graph

let d be a metric on Vn. Given distinct i, j ∈ Vn, the pair ij is said to be extremal
for d if there does not exist k ∈ Vn \ {i, j} such that

d(i, k) = d(i, j) + d(j, k) or d(j, k) = d(i, j) + d(i, k).

Then, the extremal graph of d is defined as the subgraph of Kn formed by the set
of extremal edges of d. The notion of extremal graph turns out to be useful when
studying the metrics that can be decomposed as a nonnegative (integer) sum of
cut semimetrics. Assertion (i) in Theorem 24.5.1 was proved by Papernov [1976]
and (ii) by Karzanov [1985].



376 Chapter 24. Recognition of Hypercube Embeddable Metrics

Theorem 24.5.1. Let d be a metric on Vn whose extremal graph is either K4,
or C5, or a union of two stars3. Then,

(i) d is ℓ1-embeddable, i.e., d ∈ CUTn.

(ii) d is hypercube embeddable if and only if d satisfies the parity condition
(24.1.1).

Note that it suffices to show Theorem 24.5.1 (ii), as it implies (i). The
proof that we present below was given by Schrijver [1991]. It is shorter than
Karzanov’s original proof, but it is nonconstructive. Karzanov’s proof yields an
algorithm permitting to construct a Z+-realization of d in O(n3) time (if one
exists). Schrijver shows the following result, from which Theorem 24.5.1 will
then follow easily.

Theorem 24.5.2. Let G = (V,E) be a connected bipartite graph and, for
W ⊆ V , let H = (W,F ) be a graph which is either K4, C5, or a union of two
stars. Then, there exist pairwise edge disjoint cuts δG(S1), . . . , δG(St) in G such
that, for each (r, s) ∈ F , the number of cuts δG(Sh) (1 ≤ h ≤ t) separating r
and s is equal to the distance dG(r, s) from r to s in G. (Here, the symbol δG(S)
denotes the cut in G which consists of the edges of G having one endnode in S
and the other endnode in V \ S.)

Proof. Suppose that the theorem does not hold. Let G be a counterexample
with smallest value of |E|. Then,

(24.5.3)
for each ∅ 6= S ⊂ V, there exist (r, s) ∈ F and a path P
connecting r and s in G such that |P \ δG(S)| ≤ dG(r, s) − 2

(where P denotes the edge set of the path). Suppose S is a subset of V for which
(24.5.3) does not hold. Then, for each (r, s) ∈ F , |P ∩ δG(S)| = 1 (resp. 0)
for each shortest rs-path P if δG(S) separates (resp. does not separate) r and
s. Let G′ denote the connected bipartite graph obtained from G by contracting
the edges of δG(S). Hence, for (r, s) ∈ F , dG′(r, s) = dG(r, s) − 1 if δG(S)
separates r, s and dG′(r, s) = dG(r, s) otherwise. As G′ has fewer edges than G,
by Theorem 24.5.2, we can find paiwise edge disjoint cuts δG′(S′

1), . . . , δG′(S′
t) in

G′ such that dG′(r, s) is equal to the number of cuts δG′(S′
h) separating r and

s. These t cuts yield t cuts δG(Sh) in G which, together with the cut δG(S), are
pairwise disjoint and satisfy: for (r, s) ∈ F , the number of cuts separating r and s
is equal to dG(r, s). This contradicts our assumption that G is a counterexample
to Theorem 24.5.2.

Claim 24.5.4. For all i 6= j ∈ V , there exists (r, s) ∈ F such that {i, j}∩{r, s} =
∅ and

dG(i, j) + dG(r, s) ≥ max(dG(i, r) + dG(j, s), dG(i, s) + dG(j, r)).

3A graph is said to be a union of two stars if it has two nodes such that every edge contains
one of them.
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Proof of Claim 24.5.4. Let i 6= j ∈ V . Set X := {k ∈ V | dG(i, j) = dG(i, k) +
dG(j, k)}. Hence, i, j ∈ X.

Suppose first that X = V . By (24.5.3) applied to {i}, we find (r, s) ∈ F and
an rs-path P such that |P \δG({i})| ≤ dG(r, s)−2. Hence, P is a shortest rs-path
and i is an internal node of P and, thus, i 6∈ {r, s}. Using the fact that X = V ,
one obtains that j 6∈ {r, s} and dG(i, j)+dG(r, s) = dG(i, r)+dG(j, r)+dG(r, s) ≥
dG(r, i) + dG(s, j); the other inequality of Claim 24.5.4 follows in the same way.

Suppose now that X 6= V . Let G′ denote the graph obtained from G by
contracting the edges of δG(X). By (24.5.3) applied to X, there exists (r, s) ∈ F
such that

dG′(r, s) ≤ dG(r, s) − 2.

Moreover, we claim

(24.5.5)

{
dG′(i, s) ≥ dG(i, s) − 1, dG′(r, j) ≥ dG(r, j) − 1,
dG′(j, s) ≥ dG(j, s) − 1, dG′(r, i) ≥ dG(r, i) − 1.

We show that dG′(i, s) ≥ dG(i, s) − 1; the other inequalities of (24.5.5) can be
proved in the same way. Let P be a path connecting i and s in G such that
|P \ δG(X)| = dG′(i, s) and with smallest value of |P ∩ δG(X)|. Suppose that
|P ∩ δG(X)| ≥ 2. Let P ′ denote the smallest subpath of P starting at i and such
that |P ′ ∩ δG(X)| = 2. Let k denote the other endnode of P′, so k ∈ X, and set
P ′′ := P \ P ′. As P ′ is not contained in X, we have dG(i, k) ≤ |P ′| − 1 and, as
G is bipartite, dG(i, k) ≤ |P ′| − 2. Let Q′ be a shortest path from i to k in G.
Then,

|P ′| − 2 = dG′(i, k) ≤ |Q′ \ δG(X)| ≤ |P ′| − 2 − |Q′ ∩ δG(X)|,

which implies

Q′ ∩ δG(X) = ∅ and |Q′| = dG(i, k) = |P ′| − 2.

Consider the path Q from i to s obtained by juxtaposing Q′ and P ′′. Then,

|Q \ δG(X)| = |P \ δG(X)| and |Q ∩ δG(X)| = |P ∩ δG(X)| − 2,

contradicting our choice of P . Therefore, |P ∩ δG(X)| ≤ 1. This shows that

dG′(i, s) = |P \ δG(X)| ≥ |P | − 1 ≥ dG(i, s) − 1.

Hence, (24.5.5) holds.
From dG′(r, s) ≤ dG(r, s) − 2 and (24.5.5), we deduce that {i, j} ∩ {r, s} = ∅.

Moreover, there exists a rs-path P in G such that |P \ δG(X)| = dG′(r, s) and P
contains a node k ∈ X. Hence,

dG(r, s) + dG(i, j) ≥ dG′(r, s) + 2 + dG(i, j)
= dG′(r, k) + dG′(s, k) + 2 + dG(i, k) + dG(j, k)
≥ dG′(r, i) + dG′(s, j) + 2 ≥ dG(r, i) + dG(s, j)
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(using (24.5.5) for the last inequality). The other inequality from Claim 24.5.4
follows in the same way.

From Claim 24.5.4, we deduce, in particular, that H is not a union of two
stars. Hence, H is either K4 or C5.

Suppose first that H = K4. From Claim 24.5.4, we obtain

(24.5.6) dG(i, j) + dG(h, k) = dG(i, h) + dG(j, k) for all distinct i, j, h, k ∈
W.

For i ∈W , set

f(i) :=
1

2
(dG(i, h) + dG(i, k) − dG(h, k))

where h 6= k ∈ W \ {i}; the definition does not depend on the choice of h, k by
(24.5.6). Then, dG(i, j) = f(i) + f(j) for i 6= j ∈ W . Suppose f(i) 6= 0. By
(24.5.3) applied to {i}, there exists (r, s) ∈ F and a rs-path P such that |P \
δG({i})| ≤ dG(r, s) − 2. Hence, P is a shortest rs-path passing through i. Thus,
|P | = dG(r, s) = f(r) + f(s), and |P | = dG(i, r) + dG(i, s) = f(r) + f(s) + 2f(i),
implying f(i) = 0. We obtain a contradiction.

Suppose now that H = C5. Say, W := {r1, r2, r3, r4, r5} and F := {(ri, ri+1) |
1 ≤ i ≤ 5}, where the indices are taken modulo 5. Applying Claim 24.5.4 to
ri, ri+2, we obtain that

dG(ri, ri+2) + dG(ri+3, ri+4) ≥ dG(ri, ri+3) + dG(ri+2, ri+4),

dG(ri, ri+2) + dG(ri+3, ri+4) ≥ dG(ri, ri+4) + dG(ri+2, ri+3)

for 1 ≤ i ≤ 5 (as (ri+3, ri+4) is the only edge of C5 disjoint from ri and ri+2).
Adding up these ten inequalities, we obtain the same sum on both sides of the
inequality sign. Hence, each of the above inequalities is, in fact, an equality.
Hence, (24.5.6) holds again, yielding a contradiction as above.

Proof of Theorem 24.5.1. Let d be an integral metric on Vn satisfying the parity
condition (24.1.1) and whose extremal graph H := (W,F ) is either K4, or C5, or
a union of two stars. We show that d can decomposed as a nonnegative integer
sum of cut semimetrics. Consider the complete graph Kn on Vn. We construct
a connected bipartite graph G by subdividing the edges of Kn in the following
way: For all distinct i, j ∈ Vn, replace the edge ij by a path Pij consisting of
d(i, j) edges. The fact that G is bipartite follows from the parity condition. By
Theorem 24.5.2, there exist edge disjoint cuts δG(Sh) (1 ≤ h ≤ t) in G such that,
for each (r, s) ∈ F , dG(r, s) is equal to the number of cuts δG(Sh) separating r
and s. Setting Th := Sh ∩ Vn, we obtain that, for each (r, s) ∈ F ,

(24.5.7) d(r, s) = dG(r, s) =
∑

1≤h≤k
δ(Th)(r, s).

Moreover, for all i 6= j ∈ Vn, we have
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(24.5.8) d(i, j) ≥
∑

1≤h≤t
δ(Th)(i, j).

Indeed, the number of cuts δG(Sh) separating r and s is less than or equal to the
number of cuts δG(Sh) intersecting the path Pij which, in turn, is less than or
equal to the length d(i, j) of Pij since the cuts δG(Sh) are pairwise edge disjoint.
In fact, equality holds in (24.5.8). To see it, let i 6= j ∈ Vn and let P := (i0, . . . , ik)
be a path in Kn which contains the edge (i, j) and is a geodesic for d (i.e., P is a
shortest path (with respect to the length function d) between its extremities i0
and ik; that is, d(i0, ik) =

∑
0≤m≤k−1 d(im, im+1)). Choose such a path P having

maximum number of edges. Then, the pair (i0, ik) is extremal for d. For, if not,
there exists x ∈ Vn \ {i0, ik} such that, e.g., d(i0, x) = d(i0, ik) + d(x, ik) and,
then, (i0, . . . , ik, x) is a geodesic containing (i, j) and longer than P . Then, using
(24.5.8), we have

d(i0, ik) =
k−1∑

m=0

d(im, im+1) ≥
k−1∑

m=0

t∑

h=1

δ(Th)(im, im+1).

But,

k−1∑

m=0

t∑

h=1

δ(Th)(im, im+1) =
t∑

h=1

k−1∑

m=0

δ(Th)(im, im+1) ≥
t∑

h=1

δ(Th)(i0, ik) = d(i0, ik),

where the last equality follows from (24.5.7) as the edge (i0, ik) belongs to F .
Therefore, equality holds in (24.5.8) for each of the edges (im, im+1) of P and, in
particular, for the edge (i, j). This shows that equality holds in (24.5.8) for all
i 6= j ∈ Vn. Therefore, d =

∑t
h=1 δ(Th), showing that d is hypercube embeddable.

           (a)                               (b)

Figure 24.5.9

Remark 24.5.10. One can check that a graph H with no isolated node is K4,
C5, or a union of two stars if and only if H does not contain as a subgraph the
two graphs from Figure 24.5.9. The exclusion of these two graphs is necessary
for the validity of Theorem 24.5.1. Indeed, let d1 be the path metric of the com-
plete bipartite graph K2,3; then, d is not hypercube embeddable (as d does not
satisfy the pentagonal inequality) and its extremal graph is the graph (a) from
Figure 24.5.9. Let d2 be the path metric of the graph K3,3 \ e; then its extremal
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graph is the graph (b) from Figure 24.5.9 and d2 is not hypercube embeddable
(as it contains d1 as a subdistance). (In fact, both d1 and d2 lie on extreme rays
of the semimetric cone.)



Chapter 25. Cut Lattices, Quasi
h-Distances and Hilbert Bases

We consider in this chapter several additional questions related to the notion of
hypercube embedding. A possible way of relaxing this notion is to look for integer
combinations rather than nonnegative integer combinations of cut semimetrics.
In other words, one considers the lattice Ln generated by all cut semimetrics
on Vn. We recall in Section 25.1 the characterization of Ln. This is an easy
result; namely, Ln consists of the integer distances satisfying the parity condition.
We also present the characterization of some sublattices of Ln, namely, of the
sublattice generated by all even T -cut semimetrics and of the sublattice generated
by all k-uniform cut semimetrics.

Clearly, for a distance d on Vn,

(25.0.1) d is hypercube embeddable =⇒ d ∈ CUTn ∩ Ln.

We consider in Section 25.2 quasi h-distances, which are the distances d that
belong to CUTn ∩ Ln but are not hypercube embeddable. As was mentioned
in Theorem 24.1.3, the implication (25.0.1) is an equivalence for any distance d
on n ≤ 5 points. This fact can be reformulated as saying that, for n ≤ 5, the
family of cut semimetrics on Vn is a Hilbert basis. We consider in Section 25.3
the more general question of characterizing the graphs whose family of cuts is a
Hilbert basis.

25.1 Cut Lattices

The set

Ln := {
∑

S⊆Vn

λSδ(S) | λS ∈ Z for all S ⊆ Vn}

is trivially a lattice contained in Z(n
2), called the cut lattice. The next result from

Assouad [1982] gives a characterization of Ln.

Proposition 25.1.1. Let d ∈ ZEn. Then, d ∈ Ln if and only if d satisfies the
parity condition (24.1.1).

Proof. The parity condition is clearly a necessary condition for membership in
Ln. Conversely, suppose d is integral and satisfies the parity condition. Then, Vn
can be partitioned into Vn = S∪T in such a way that d(i, j) is odd if i ∈ S, j ∈ T

381
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and d(i, j) is even otherwise. Set d′ := d + δ(S). Then, all components of d′ are
even. As

d′ =
∑

1≤i<j≤n

d′(i, j)
2

(δ({i}) + δ({j}) − δ({i, j})),

we deduce that d′ ∈ Ln and, thus, d = d′ − δ(S) belongs to Ln too.

A basis of the cut lattice Ln is provided by the set

{δ(i) | 1 ≤ i ≤ n− 1} ∪ {δ({i, j}) | 1 ≤ i < j ≤ n− 1}.

(Indeed, every vector d ∈ Ln can be decomposed as

d =
∑

1≤i≤n−1

αiδ(i) +
∑

1≤i<j≤n−1

βijδ({i, j}),

setting αi := din−
∑

1≤h≤n−1,h 6=i βih (1 ≤ i ≤ n−1) and βij := 1
2(din+djn−dij)

(1 ≤ i < j ≤ n − 1).) Note also that the image of the cut lattice Ln under the

covariance mapping ξ is nothing but the integer lattice Z(
n
2). For small values

of n, Ln coincides with classical lattices; for instance, L3 = A3 = D3 (recall
Example 13.2.5).

Complete characterizations are also known for several sublattices of Ln. We
consider below the sublattices generated by the k-uniform cut semimetrics, the
even cut semimetrics (more generally, the even T -cut semimetrics), and the odd
cut semimetrics on six points. Given S ⊆ Vn, the cut semimetric δ(S) is said to
be k-uniform if |S| ∈ {k, n − k}. We let Kkn denote the set of all k-uniform cut
semimetrics on Vn. The following characterization of the k-uniform cut lattice
Z(K k

n) is given in Deza and Laurent [1992e], based on a result of Wilson [1973].

Proposition 25.1.2. Let k be an integer such that 2 ≤ k ≤ n and k 6= n
2 and

let d ∈ ZEn. Then, d ∈ Z(Kk
n) if and only if d satisfies the following conditions:

(i)
∑

1≤i<j≤n
d(i, j) ≡ 0 (mod k(n− k)),

(ii) Di := 1
n−2k


 ∑

1≤j≤n,j 6=i
d(i, j) − 1

n− k

∑

1≤r<s≤n
d(r, s)


 ∈ Z for all i ∈ Vn,

(iii) Di +Dj + d(i, j) ≡ 0 (mod 2) for all i, j ∈ Vn.

In the case k = ⌊n2 ⌋, we have the following result.

Proposition 25.1.3. Let d ∈ ZEn.

(i) If n = 2k + 1, then d ∈ Z(Kk
n) if and only if d satisfies the congruence

relation:
∑

1≤i<j≤n
d(i, j) ≡ 0 (mod k(n− k)).

(ii) If n = 2k, then d ∈ Z(Kk
n) if and only if (iia),(iib) hold:
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(iia)
∑

1≤j≤n,j 6=i
d(i, j) =

1

k

∑

1≤r<s≤n
d(r, s) for each 1 ≤ i ≤ n,

(iib)
∑

1≤i<j≤n
d(i, j) ≡ 0 (mod k2).

Proof. (i) Observe that the conditions (ii),(iii) from Proposition 25.1.2 are im-
plied by the condition (i) of Proposition 25.1.2.
(ii) The conditions (iia),(iib) are clearly necessary for membership in Z(Kk

n).
Conversely, suppose that d satisfies (iia),(iib) and let d′ denote its projection on
the set {1, . . . , n− 1}. From (iia), we obtain

(25.1.4)
∑

1≤r<s≤n−1

d′(r, s) = (k − 1)
∑

1≤i≤n−1

d(i, n).

Hence,
∑

1≤r<s≤n−1 d
′(r, s) ≡ 0 (mod k(k−1)), as

∑
1≤i≤n−1 d(i, n) ≡ 0 (mod k)

by (iia,)(iib). Using (i), we deduce that d′ ∈ Z(K k
n−1). Hence,

d′ =
∑

S⊆{1,...,n−1},|S|=k
λSδ(S)

with λS ∈ Z for all S. We show that d =
∑
S λSδ(S). As

∑

1≤r<s≤n−1

d′(r, s) = k(k − 1)(
∑

S

λS),

(25.1.4) yields: ∑

1≤i≤n−1

d(i, n) = k(
∑

S

λS).

Then, by (iia),

∑

1≤r<s≤n
d(r, s) = k2(

∑

S

λS) and
∑

1≤j≤n,j 6=i
d(i, j) = k(

∑

S

λS)

for each i = 1, . . . , n. We compute, for instance, d(1, n). The above relations
yield:

d(1, n) = k(
∑

S

λS) −
∑

2≤j≤n−1

d(1, j).

Using the value of d(1, j) = d′(1, j) given by the decomposition of d′, we obtain
that d(1, n) =

∑
S|1∈S λS . This shows that d =

∑
S λSδ(S), i.e., that d ∈ Z(Kk

n).

Suppose that n is even. A cut semimetric δ(S) on Vn is said to be even if
|S| is even. Similarly, δ(S) is called odd if |S| is odd. More generally, let T ⊆ Vn
such that |T | is even; then, δ(S) is said to be an even T -cut semimetric if |S∩T |
is even. We let KTn denote the set of even T -cut semimetrics on Vn. Hence,
KVn
n is the set of even cut semimetrics. We let also Koddn denote the set of odd

cut semimetrics. We first give a characterization of the even cut lattice Z(KVn
n ),

whose proof can be found in Deza, Laurent and Poljak [1992].
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Proposition 25.1.5. Let n ≥ 6 be an even integer and let d ∈ ZEn. Then, d
belongs to the even cut lattice Z(KVn

n ) if and only if d satisfies the parity condition
(24.1.1) and the following conditions:

(i)
∑

1≤i<j≤n
d(i, j) ≡ 0 (mod 4).

(ii)
∑

i<j,i,j∈Vn\{k}
d(i, j) −

∑

i∈Vn\{k}
d(i, k) ≡ 0 (mod 8) for all k ∈ Vn in the case

when n ≡ 0 (mod 4).

(iii) d(h, k) +
∑

i<j,i,j∈Vn\{h,k}
d(i, j) −

∑

i∈Vn\{h,k}
(d(i, h) + d(i, k)) ≡ 0 (mod 8)

for all h 6= k ∈ Vn in the case when n ≡ 2 (mod 4).

It is not difficult to extend the result for even T -cuts. Namely,

Proposition 25.1.6. Let T ⊆ Vn with |T | even, 2 ≤ |T | ≤ n− 1. let d ∈ ZEn.
Suppose first that |T | = 2, T := {s, t}. Then, d ∈ Z(KT

n) if and only if d
satisfies the parity condition (24.1.1) and the conditions: drs = 0, dri = dsi for
all i ∈ Vn \ T . Suppose now that |T | ≥ 4. Then, d ∈ Z(KT

n) if and only if d
satisfies (24.1.1) and the following conditions:

(i)
∑

i<j, i,j∈T
dij ≡ 0 (mod 4).

(ii) Qn(1, . . . , 1,−1, . . . ,−1︸ ︷︷ ︸
T

, 2, . . . , 2, 0, . . . , 0︸ ︷︷ ︸
Vn\T

)Td ≡ 0 (mod 8), where there are

exactly α coefficients 1, and β coefficients 2, for the following values of α,
β:

(iia) (α = 1, β = 0) and (α = 2, β = 1) if |T | ≡ 0 (mod 4),
(iib) (α = 2, β = 0) and (α = 1, β = 1) if |T | ≡ 2 (mod 4).

A characterization of the odd cut lattice Z(Koddn ) is known only in the case
n = 6. So, Z(K odd

6 ) is the lattice in R15 generated by the 16 cut semimetrics
δ({i}) (1 ≤ i ≤ 6) and δ({1, i, j}) (2 ≤ i < j ≤ 6). We need the following
notation. Given distinct a, b, c ∈ V6, let va,bc ∈ RE6 be the vector defined by





va,bcab = va,bcac = 1, va,bcbc = 2,

va,bcij = 2 for i 6= j ∈ V6 \ {a, b, c},
va,bcai = −2, va,bcbi = va,bcci = −1 for i ∈ V6 \ {a, b, c}.

Consider the conditions:

(25.1.7) (va,bc)Tx ≤ 0 for all distinct a, b, c ∈ V6,

(25.1.8) (va,bc)Tx ≡ 0 (mod 4) for all distinct a, b, c ∈ V6,
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(25.1.9) (v1,bc)Tx−(v1,b′c′)Tx ≡ 0 (mod 12) for 2 ≤ b < c ≤ 6, 2 ≤ b′ < c′ ≤ 6.

The next result from Deza and Laurent [1993a] gives the characterization of
the odd cut lattice Z(Kodd

6 ), also of the cone R+(Kodd6 ) and of the integer cone
Z+(Kodd6 ).

Proposition 25.1.10.

(i) Let d ∈ R
E6
+ . Then, d ∈ R+(Kodd6 ) if and only if d satisfies (25.1.7).

(ii) Let d ∈ ZE6. Then, d ∈ Z(K odd
6 ) if and only if d satisfies (25.1.8) and

(25.1.9).

(iii) Let d ∈ Z
E6
+ . Then, d ∈ Z+(Kodd6 ) if and only if d satisfies (25.1.7), (25.1.8),

and (25.1.9).

An immediate consequence of Proposition 25.1.10 is that the family of odd
cut semimetrics on V6 forms a Hilbert basis; see Section 25.3.

Further information on sublattices of the cut lattice Ln can be found in Deza
and Grishukhin [1996a].

25.2 Quasi h-Distances

Let d be a distance on Vn. Then, d is called a quasi h-distance if d ∈ CUTn ∩Ln
and d is not hypercube embeddable. In other words, d can be decomposed both
as a nonnegative combination of cut semimetrics and as an integer combina-
tion of cut semimetrics, but not as a nonnegative integer combination of cut
semimetrics. We remind that the smallest integer η such that ηd is hypercube
embeddable is called the minimum scale of d and is denoted by η(d).

As stated in Theorem 24.1.3, there are no quasi h-distances on n ≤ 5 points.
We have seen already several ways of constructing quasi h-distances. Quasi
h-distances can be constructed, for instance, using the antipodal extension op-
eration (described in Section 7.2). Indeed, let d be a distance on Vn which is
hypercube embeddable and let α ∈ Z+ such that sℓ1(d) ≤ α < sh(d). Then,
antα(d) is a quasi h-distance. Recall that antα(d) is the distance on Vn+1 de-
fined by antα(d)(1, n + 1) = α, antα(d)(i, n+ 1) = α− d(1, i) for 1 ≤ i ≤ n, and
antα(d)(i, j) = d(i, j) for 1 ≤ i < j ≤ n. As an example, for n ≥ 6, the distance

d∗n := 2d(Kn\e)

(taking value 2 on all pairs except value 4 on the pair corresponding to the edge
e) is a quasi h-distance (as d∗n = ant4(211n−1); see Example 7.2.7).

The gate extension operation (described in Section 7.1) permits also to con-
struct quasi h-distances. If d is a distance on Vn and α ∈ R+ , its gate extension
gatα(d) is the distance on Vn+1 defined by gatα(d)(1, n + 1) = α, gatα(d)(i, n +
1) = α+d(1, i) for 1 ≤ i ≤ n, and gatα(d)(i, j) = d(i, j) for 1 ≤ i < j ≤ n. Then,
for α ∈ Z+, gatα(d) is a quasi h-distance if and only if d is a quasi h-distance.
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This implies, in particular, that there is an infinity of quasi h-distances on n
points for all n ≥ 7. Indeed, all gate extensions of d∗6 = 2d(K6\e) are quasi
h-distances.

As the following result by Laburthe [1994] indicates, other examples of quasi
h-distances on 6 points can be constructed. It implies, moreover, that there is
also an infinity of quasi h-distances on 6 points.

Lemma 25.2.1. Let e be an edge of K6 and let v be a node of K6 which is not
adjacent to e. Then, the distance 2d(K6\e) +mδ({v}) is a quasi h-distance for
each integer m ≥ 0.

Proof. Suppose K6 is the complete graph on V6 = {1, . . . , 6}, e is the edge (1, 6)
and v is the node 2. Set d := 2d(K6\e)+mδ({v}). Let d =

∑
S αSδ(S) be a Z+-

realization of d, with αS ∈ Z+. As d satisfies the triangle equality: d16 = d1i+di6
for i = 3, 4, 5, we deduce that αS = 0 if S is one of the sets: 3, 4, 5, 16, 23, 24,
25, 34, 35, 45, 126, 136, 146, and 156. Hence, d =

∑
S∈S αSδ(S), where S may

contain the sets: 1, 2, 6, 12, 13, 14, 15, 26, 36, 46, 56, 123, 124, 125, 134, 135,
145. By computing d12, d26, and d16, we obtain, respectively,

m+ 2 = α1 + α2 + α13 + α14 + α15 + α26 + α134 + α135 + α145,

m+ 2 = α2 + α6 + α12 + α36 + α46 + α56 + α123 + α124 + α125,

4 =
∑

S∈S
αS − α2.

Adding the first two relations and subtracting the third one, we obtain that
α2 = m. Therefore, if d is hypercube embeddable, then so is d −mδ({2}). This
contradicts the fact that 2d(K6\e) is a quasi h-distance.

In fact, as a consequence of Theorem 25.2.2 below, there are no other quasi
h-distances on 6 points besides those described in Lemma 25.2.1. Theorem 25.2.2
and Corollary 25.2.3 were proved by Laburthe [1994, 1995]. The proof of The-
orem 25.2.2 involves many technical details, so we do not give it here. (Details
about the full proof can also be found in Laburthe, Deza and Laurent [1995].)

Theorem 25.2.2. Every quasi h-distance on V6 is a nonnegative integer sum
of cuts and of the distances 2d(K6\e), for e edge of K6.

Corollary 25.2.3. The only quasi h-distances on V6 are of those of the form
2d(K6\e) +mδ({v}), where e is an edge of K6, v is a node of K6 not adjacent
to e, and m ∈ Z+.

The proof of Corollary 25.2.3 uses the identities (a)-(i) below, which show that
all the perturbations of 2d(K6\e) (obtained by adding a cut semimetric), other
than the one considered in Lemma 25.2.1, are hypercube embeddable. For 1 ≤
i < j ≤ n, let eij denote the edge ij of K6. Then,
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(a) 2d(K6\e12) + δ({1}) = δ({2}) + δ({1, 3}) + δ({1, 4}) + δ({1, 5}) + δ({1, 6}),
(b) 2d(K6\e12) + δ({1, 2}) = 2δ({1}) + 2δ({2}) + δ({3}) + δ({4}) + δ({5}) + δ({6}),

(c)
2d(K6\e12) + δ({1, 3}) = δ({2}) + δ({1, 3}) + δ({3, 4, 5}) + δ({3, 4, 6})

+δ({4, 5, 6}),

(d)
2d(K6\e12) + δ({3, 4}) = δ({1}) + δ({3}) + δ({4}) + δ({2, 5})

+δ({2, 6}) + δ({2, 3, 4}),

(e)
2d(K6\e12) + δ({1, 2, 3}) = δ({1}) + δ({2}) + δ({4}) + δ({5}) + δ({6})

+δ({1, 3}) + δ({2, 3}),

(f)
2d(K6\e12) + δ({1, 3, 4}) = δ({1, 3}) + δ({1, 4}) + δ({2, 5}) + δ({2, 6})

+δ({1, 5, 6}),

(g)
2d(K6\e12) + 2d(K6\e23) = δ({1}) + δ({2, 3}) + δ({2, 4}) + δ({2, 5}) + δ({3, 6})

+δ({1, 2, 6}) + δ({1, 3, 4}) + δ({1, 3, 5}),

(h)
2d(K6\e12) + 2d(K6\e34) = δ({1}) + δ({2, 3}) + δ({2, 4}) + δ({3, 5}) + δ({4, 6})

+δ({1, 3, 4}) + δ({1, 3, 6}) + δ({1, 4, 5}),

(i)
2d(K6\e12) + δ({3}) + δ({4}) = δ({1, 3}) + δ({2, 4}) + δ({3, 4}) + δ({1, 4, 5})

+δ({1, 4, 6}).

Proof of Corollary 25.2.3. Let d be a quasi h-distance on V6. Then, by Theo-
rem 25.2.2, d can be written as

d =
∑

S

αSδ(S) +
∑

1≤i<j≤6

βij2d(K6\eij)

with αS , βij ∈ Z+. We can suppose that βij ∈ {0, 1} for all i, j, because
4d(K6\eij) is hypercube embeddable. Using (g) and (h), we can rewrite d as

d =
∑

S

α′
Sδ(S) + 2d(K6\e),

where α′S ∈ Z+ and, for instance, e is the edge (1, 2). From relations (a)-(f),
we deduce that αS = 0 if S = {1}, or {2}, or if |S| = 2, or 3. Therefore, using
relation (i), we obtain that d = 2d(K6\e12) +mδ({i}), where i ∈ {3, 4, 5, 6} and
m ∈ Z+.

As we just saw, there is an infinity of quasi h-distances on Vn, for any n ≥ 6.
However, it follows from Lemma 4.3.9 that there exists an integer ηn which is a
common scale for all quasi h-distances d on Vn, i.e., such that ηnd is hypercube
embeddable for all quasi h-distances d. As an application of Corollary 25.2.3, we
have:

Corollary 25.2.4. We have: η6 = 2. In other words, 2d is hypercube embed-
dable for every integer valued distance d on 6 points which is ℓ1-embeddable and
satisfies the parity condition (24.1.1).
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For the class of graphic distances, the following results have been shown in
Chapter 21: The minimum scale of the path metric of a connected graph on n
nodes is equal to 1, or is an even integer less than or equal to n− 2. Moreover,
for an ℓ1-rigid graph, the minimum scale is equal to 1 or 2.

Much of the treatment of Chapter 23 can be reformulated in terms of mini-
mum scales. Indeed, consider the metric dn := ant2(11n) (this is the path metric
of the graph Kn+1\e)). Then,

2tdn = 2t ant2(11n) = ant4t(2t11n)

is hypercube embeddable if and only if 4t ≥ sh(2t11n). Therefore, the minimum
scale η(dn) can be expressed as

η(dn) = 2 min(t ∈ Z+ | 4t ≥ sh(2t11n)).

In particular, Theorem 23.3.1 (i) implies:

(i) η(d4t) ≥ 2t with equality if and only if there exists a Hadamard matrix of
order 4t.

Compare (i) with the next statement (ii), which follows from Theorems 22.0.6
and 22.0.7.

(ii) η1(11t2+t+2) ≥ 2t with equality if and only if there exists a projective plane
of order t (where, for a hypercube embeddable distance d, η1(d) denotes
the smallest integer λ (if any) such that λd is not h-rigid, i.e., has at least
two distinct Z+-realizations.)

Some quasi h-distances can also be constructed using the spherical extension
operation (described in Section 7.3). The examples from Lemmas 25.2.5 and
25.2.6 below are taken from Deza and Grishukhin [1994]. Recall that, if d is a
distance on Vn and t ∈ R+ , its spherical t-extension is the distance spht(d) on
Vn+1 defined by spht(d)(i, n+ 1) = t for all 1 ≤ i ≤ n, and spht(d)(i, j) = d(i, j)
for all 1 ≤ i < j ≤ n. If d ∈ CUTn and 2t ≥ sℓ1(d), then spht(d) ∈ CUTn+1. As
a first example, consider the distance

θtn := ant2t(spht(211n−2)),

where n, t are positive integers, i.e., θtn is the distance on Vn defined by





θtn(n− 1, n) = 2t,
θtn(i, n− 1) = θtn(i, n) = t for 1 ≤ i ≤ n− 2,
θtn(i, j) = 2 for 1 ≤ i < j ≤ n− 2.

Clearly, θtn admits the following decompositions:

θtn =
∑

1≤i≤n−2

δ({i, n}) + (t− 1)δ({n − 1}) + (t− n+ 3)δ({n}),
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θtn =
1

2


 ∑

1≤i≤n−2

(δ({i, n − 1}) + δ({i, n})

+(2t−n+2) (δ({n− 1}) + δ({n})) .

This shows that θtn is hypercube embeddable if t ≥ n−3 and that 2θtn is hypercube
embeddable if t ≥ n−2

2 .

Lemma 25.2.5. Let t ≥ 1 be an integer.

(i) If n 6= 6, then θtn is hypercube embeddable if and only if t ≥ n− 3.

(ii) For n ≥ 6, if ⌈n−2
2 ⌉ ≤ t ≤ n− 4, then θtn is a quasi h-distance.

Proof. (i) Suppose that θtn is hypercube embeddable. Then, in any hypercube
embedding of θtn, we can suppose that each point i ∈ {1, . . . , n − 2} is labeled
by the singleton {i} (as the metric 211n−2 is h-rigid if n 6= 6). This implies that
one of the points n− 1, n should be labeled by a set A containing {1, . . . , n− 2}
and, thus, |A| − 1 = t ≥ n− 3.
(ii) If t ≥ ⌈n−2

2 ⌉, then θtn is ℓ1-embeddable. Hence, if n 6= 6 and ⌈n−2
2 ⌉ ≤ t ≤ n−4,

then θtn is a quasi h-distance. If n = 6 and t = 2, then θn coincides with the
distance d∗6, which is known to be a quasi h-distance.

Given n ≥ 6, let µn denote the distance on Vn defined by

µn := δ({1}) + δ({2}) +
∑

3≤i<j≤n−1

δ({1, 2, i, j}), i.e.,





µn(1, 2) = 2,

µn(1, n) = µn(2, n) = 1 +
(n−3

2

)
,

µn(1, i) = µn(2, i) = 1 +
(n−4

2

)
for 3 ≤ i ≤ n− 1,

µn(i, n) = n− 4 for 3 ≤ i ≤ n− 1,
µn(i, j) = 2(n− 5) for 3 ≤ i < j ≤ n.

For instance, for n = 6, µ6 coincides with the path metric of the graph K6\P ,
where P := (1, 6, 2) is a path on three nodes.

Lemma 25.2.6. Let t, n be integers such that n ≥ 6, n ≡ 2 (mod 4), and
2t ≥ 2 +

(n−3
2

)
. Then, spht(µn) is a quasi h-distance.

Proof. It is easy to see that the condition n ≡ 2 (mod 4) ensures that all
components of µn are even integers, which implies that spht(µn) ∈ Ln+1. Let
F denote the face of the cone CUTn defined by the hypermetric inequality
Q(b)Tx :=

∑
1≤i<j≤n bibjxij ≤ 0, where b := (1, 1,−1, . . . ,−1, n − 4) ∈ Rn

(with n− 3 components −1). Set

S := {1, 2, 1i, 2i, 12i(3 ≤ i ≤ n− 1), 12ij(3 ≤ i < j ≤ n− 1)},

(where we denote the sets {1}, {1, i} by the strings 1, 1i, etc.). The nonzero
cut semimetrics satisfying the equation Q(b)Tx = 0 are δ(S) for S ∈ S, which
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are linearly independent. Hence, the face F is a simplex face of CUTn. As the
distance µn lies on F , we deduce that µn is ℓ1-rigid and sℓ1(µn) = 2 +

(n−3
2

)
.

Let G denote the face of the cone CUTn+1 defined by the hypermetric inequality
Q(b, 0)T x ≤ 0; the nonzero cut semimetrics lying on G are δ(S), δ(S ∪ {n+ 1})
for S ∈ S and δ({n + 1}). As 2t ≥ sℓ1(µn), spht(µn) is ℓ1-embeddable and, in
fact, spht(µn) lies on the face G. Suppose that spht(d) is hypercube embeddable.
Then, there exist nonnegative integers γ, αS , βS (S ∈ S) such that

spht(µn) = γδ({n+ 1}) +
∑

S∈S
αSδ(S) + βSδ(S ∪ {n+ 1}).

Then,
∑
S∈S(αS + βS)δ(S) = d, which implies that αS = βS = 0 if S is not one

of the sets {1}, {2}, {1, 2, i, j}, and

{
αi + βi = 1 for i = 1, 2,
αij + βij = 1 for 3 ≤ i < j ≤ n− 1.

(setting αij = α12ij , βij = β12ij). Looking at the component of spht(µn) indexed
by the pairs (1, n+ 1) and (2, n+ 1), we obtain:

α1 + β2 +
∑

i,j

αij + γ = t, α2 + β1 +
∑

i,j

αij + γ = t,

which implies

α1 = α2, β1 = β2, γ = t−
∑

i,j

αij − 1.

Looking at the component indexed by (i, n+ 1) (3 ≤ i ≤ n− 1), we obtain:

∑

j

αij + β1 + β2 +
∑

i,j

βij −
∑

j

βij + γ = t.

Therefore,

2
∑

j

αij + 2β1 − 2
∑

i,j

αij +

(
n− 3

2

)
− n+ 3 = 0.

Summing over i = 3, . . . , n− 1 yields

4(n− 5)
∑

i,j

αij = (n− 3)(4β1 + (n− 3)(n− 6)).

Looking finally at the component indexed by the pair (n, n+ 1) yields:

β1 + β2 +
∑

i,j

βij + γ = t

and, thus,

2
∑

i,j

αij − 2β1 −
(
n− 3

2

)
+ 1 = 0.
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Using the fact that

2
∑

i,j

αij =
n− 3

2(n− 5)
(4β1 + (n− 3)(n− 6)),

we deduce that 2β1 = 1, contradicting the fact that β1 is integer. This shows
that spht(µn) is not hypercube embeddable and, therefore, is a quasi h-distance.

25.3 Hilbert Bases of Cuts

Let X be a finite set of vectors in Zk. We remind that Z(X), R+(X) and Z+(X)
denote, respectively, the lattice, the cone and the integer cone generated by X.
Clearly, the following inclusion holds:

Z+(X) ⊆ R+ (X) ∩ Z(X).

The set X is said to be a Hilbert basis if equality holds, i.e., if

Z+(X) = R+ (X) ∩ Z(X).

Clearly, if X is linearly independent, then X is a Hilbert basis. We consider here
the question of determining the graphs whose family of cuts is a Hilbert basis.

Given a graph G and S ⊆ V , the cut δG(S) consists of the edges e ∈ E with
one endnode in S and the other endnode in V \ S. Let KG ⊆ {0, 1}E denote the
family of the incidence vectors of the cuts of G. Then, R+(KG) is called the cut
cone of G and it is also denoted by CUT(G). Hence, if G is the complete graph
Kn on n nodes, then R+(KKn) = CUT(Kn) coincides with the cone CUTn.
Moreover, the integer cone Z+(KKn) consists precisely of the distances on Vn
that are hypercube embeddable (recall Proposition 4.2.4).

We are interested in the following problem:

Problem 25.3.1. Let H denote the class of graphs G whose family of cuts KG
is a Hilbert basis. Identify the graphs G belonging to the family H.

We review here what is known about the class H. This problem will be revisited
in Section 27.4.3 in the more general setting of binary matroids.

By Theorem 24.1.3, the graphs K3,K4,K5 belong to H. On the other
hand, the graph K6 does not belong to H (as the distance 2d(K6\e) belongs
to R+(KK6) ∩ Z(KK6) but not to Z+(KK6)). Moreover,

Proposition 25.3.2.

(i) Every graph with no K5 minor belongs to H.

(ii) Every graph on at most six nodes and distinct from K6 belongs to H.
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(iii) If G belongs to H, then G does not have K6 as a minor.

Assertion (i) in Proposition 25.3.2 is proved in Fu and Goddyn [1995] and as-
sertions (ii), (iii) in Laurent [1996d]. The proof of the above results uses, in
particular, the fact that the class H is closed under certain operations. Namely,

(i) H is closed under the clique k-sum operation for graphs (k = 0, 1, 2, 3).

(ii) If G ∈ H and if e is an edge of G, then the graph G/e (obtained by
contracting the edge e) belongs to H.

(iii) If G ∈ H and if e is an edge of G for which each inequality vTx ≤ 0 defining
a facet of the cut cone CUT(G) satisfies:

ve ∈ {0, 1,−1},
∑

f∈δG(S)

vf ∈ 2Z for all cuts δG(S),

then the graph G\e (obtained by deleting the edge e) belongs to H.

For instance, Proposition 25.3.2 (iii) can be checked in the following way.
Suppose that G is a graph that contains K6 as a subgraph. Let x ∈ RE be
defined by xe = 2 for all edges of G except xe = 4 for one edge belonging to the
subgraph K6. Then, x ∈ R+(KG) ∩ Z(KG) (as x can be extended to a point of
CUTn∩Ln) and x 6∈ Z+(KG) (because the projection of x on K6 does not belong
to Z+(KK6)). Hence, every graph G ∈ H does not contain K6 as a subgraph.
Proposition 25.3.2 (iii) follows, using the fact that H is closed under contracting
edges.

The complete characterization of the class H seems a hard problem. This is
partly due to the fact that the linear description of the cut cone is not known
for general graphs. Many questions are yet unsolved.

For instance, is the class H closed under the ∆Y -operation1 ? A first example
to check is whether the graph from Figure 25.3.3 belongs to H (this is the graph
obtained by applying once the ∆Y -operation to K6, i.e., replacing a triangle by
a claw K1,3).

Figure 25.3.3: ∆Y -transform of K6

Is the class H closed under the deletion of edges ? (As mentioned above, this
could be proved only if a technical assumption is made on the facets of the cut
cone.)

1Let G be a graph having a clique on the nodes u, v, and w. The ∆Y -operation applied to
this clique consists of removing the three edges uv, uw, vw and adding a new node to G adjacent
to each of the three nodes u, v, and w.
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As we will see in Section 27.4.3, the question of characterizing the graphs
whose family of cuts is a Hilbert basis can be posed in the more general framework
of binary matroids.

Another question of interest is to determine a Hilbert basis for the cut cone
on 6 points; this is the smallest case when the cuts do not form a Hilbert basis.
In fact, the following result holds, which is equivalent to Theorem 25.2.2.

Theorem 25.3.4. The 31 nonzero cut semimetrics on V6 together with the 15
metrics 2d(K6\e) (for e ∈ E(K6)) form a Hilbert basis.

Finally, recall Proposition 25.1.10 which implies that the 16 odd cuts of K6

form a Hilbert basis.





Part V

Facets of the Cut Cone and
Polytope
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Introduction

In this last part, we survey the results which are known about the facial
structure of the cut cone and of the cut polytope. Actually, all the facets of
the cut polytope can be derived from those of the cut cone, via the switching
operation (see Section 26.3). Therefore, we will almost exclusively concentrate
our attention to the facets of the cut cone. On the other hand, (almost) any
result about the facial structure of the cut polyhedra has a direct counterpart
for the correlation polyhedra, as both sets of polyhedra are in one-to-one linear
correspondence (see Section 26.1).

As was explained in Part I, the members of the cut cone CUTn are the
semimetrics on Vn = {1, . . . , n} that can be isometrically embedded into some
ℓ1-space. Hence, the facets of CUTn correspond to the linear inequalities char-
acterizing ℓ1-spaces. On the other hand, the cut polytope plays an important
role in combinatorial optimization, as it permits to model the max-cut problem:
max(cT δ(S) | S ⊆ Vn) (where c ∈ REn ) by

max cTx
s.t. x ∈ CUT2

n .

(Recall Sections 4.1 and 5.1 where connections and applications are mentioned.)
We will see in Section 31.2 that the facets of the cut polytope CUT2n have
moreover the following interesting application: They yield valid inequalities for
the pairwise angles among a set of n unit vectors.

The complete description of all the facets of the cut cone CUTn (or of the
cut polytope CUT2

n ) is probably hopeless. Indeed, as the max-cut problem is
NP-hard, it follows from a result of Karp and Papadimitriou [1982] that there is
no polynomially concise way of describing a list of inequalities sufficient to define
CUT2

n if NP 6= co-NP.

Still a limited knowledge of some classes of facets remains interesting, from
many points of view. For instance, when a separation routine is available, these
classes of facets may be used in cutting plane algorithms for solving practical
instances of the max-cut problem. (The reader may consult the survey by Jünger,
Reinelt and Thienel [1995] for more information on solving optimization problems
using cutting plane procedures.) Also, some subclasses of facets are sometimes
already sufficient for handling some special classes of ℓ1-metrics (for a list of
several such cases, see Remark 6.3.5), or for the complete description of the cut
polyhedra for restricted classes of graphs (see Section 27.3).

The complete description of all the facets of the cut polyhedra CUTn and
CUT2

n is known for n ≤ 8; we list the facets of the cut polyhedra on n ≤ 7 nodes
in Section 30.6. For instance, CUT7 has 38780 facets, while CUT2

7 has 116764
facets. For n = 8, the number of facets is enormous: more than 217 millions,
subdivided into 147 orbits !

Part V is organized as follows. We present in Chapter 26 some tools and
operations for constructing facets and in Chapters 27-30 the known classes of
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valid inequalities and facets for the cut cone and polytope. We then group in
Chapter 31 several geometric properties of the cut polytope and related objects.

Most of Part V deals with the facial structure of the cut polyhedra. However,
we also visit en route some adjacent topics where cut and semimetric polyhedra
are directly relevant; namely, cycle polyhedra of general binary matroids in Sec-
tion 27.4, a positive semidefinite approximation of the cut polytope in Section
28.4.1, and completion problems for positive semidefinite matrices and Euclidean
distance matrices in Sections 31.3 and 31.4.

Many of the inequalities that we investigate are of the form:
∑

1≤i<j≤n
bibjxij −

∑

ij∈E(G)

xij ≤ 0,

where b1, . . . , bn are integers and G is a subgraph (possibly edge weighted) of
Kn. When

∑
1≤i≤n bi = 1 and G is the empty graph, we find the hypermetric

inequalities. When
∑

1≤i≤n bi is odd and G is an antiweb (resp. a suspended
tree), we have the clique-web inequalities (resp. the suspended-tree inequalities),
considered in Chapter 29 and Section 30.1. However, three classes of facets are
presented in Sections 30.2-30.4, which do not fit into this scheme.

Hypermetric inequalities constitute perhaps the most interesting known class
of valid inequalities for the cut cone. They have already been considered in Part I
in connection with the study of ℓ1-metrics; we saw in Remark 6.3.5 several classes
of metrics for which the hypermetric inequalities already suffice for character-
izing ℓ1-embeddability. They have also been extensively studied in Part II, in
connection with Delaunay polytopes in lattices. We focus in Chapter 28 on the
study of hypermetric inequalities as facets of the cut polyhedra. Note that all
the facets of the cut cone on n ≤ 6 points are, in fact, hypermetric.

Triangle inequalities, which are a very special case of hypermetric inequalities,
are treated in detail in Chapter 27. In Chapter 29, we consider the clique-web
inequalities, which are a generalization of hypermetric inequalities. Other classes
of facets not covered by this vast class are given in Chapter 30.

We describe in Chapter 31 several properties of geometric type for the cut
polytope CUT2

n and related objects. We study in Sections 31.6-31.8 questions
dealing with adjacency properties and small dimensional faces of the cut polytope
and of the semimetric polytope, or with the ‘shape’ of CUT2

n in terms of distances
of its facets to the barycentrum, or with its simplex facets. We describe in
Section 31.2 an interesting application of the linear description of the cut cone
CUTn for finding valid inequalities for the pairwise angles among any set of n
vectors in Rn . Section 31.1 indicates how cuts can be used for disproving a
long standing conjecture by Borsuk. Finally, Sections 31.3 and 31.4 consider
the completion problems for partial positive semidefinite matrices and partial
Euclidean distance matrices. It turns out that several of the polyhedra studied in
this book, including the cut polytope, the semimetric polytope and the negative
type cone, play an important role in these two problems.

The symbol δ(S), which was called “a cut semimetric” so far in the book,
will be most often called “a cut vector” in Part V. This reflects the fact that we
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are not any more concerned here with the study of semimetrics but rather with
the cut polyhedra CUTn and CUT2

n as geometrical objects. We remind that the
symbol δKn(S) denotes the cut in Kn determined by S, that is, the set of edges
in Kn having exactly one endnode in S. Hence, the incidence vector of the edge
set δKn(S) is the cut vector δ(S). We may sometimes use interchangeably the
notation δ(S) and δKn(S) and, e.g., speak of the “cut δ(S)”.

We will occasionally consider some other cones and polytopes, generated by
restricted cut families, such as equicuts, even cuts, etc. The notions of even
T -cut, k-uniform cut and odd cut semimetrics have already been introduced in
Section 25.1, where we have studied the lattices they span. For convenience,
we recall the definitions here. Let S be a subset of Vn. Then, δ(S) is called
an even cut vector (or even cut semimetric) if |S| and |Vn \ S| are both even;
δ(S) is called an equicut vector (resp. an inequicut vector) if |S| =

⌊n
2

⌋
,
⌈n

2

⌉

(resp. |S| 6= ⌊n
2

⌋
,
⌈n

2

⌉
). Given an integer k ≤ n, δ(S) is a k-uniform cut vector if

|S| = k, n− k. We let ECUTn (resp. ICUTn, UCUTk
n) denote the cone in REn

generated by all even cut (resp. inequicut, k-uniform cut) vectors; EQCUT2n
denotes the polytope in REn defined as the convex hull of all equicut vectors in
Kn. These polyhedra are called in the obvious manner, i.e., EQCUT2

n is the
equicut polytope, ECUTn is the even cut cone, ICUTn is the inequicut cone, and
UCUTk

n is the k-uniform cut cone. Note that EQCUT2
n coincides with the face

of CUT2
n defined by the inequality:

(a)
∑

1≤i<j≤n
xij ≤

⌊
n

2

⌋ ⌈
n

2

⌉
.

When n is odd, n = 2p + 1, then EQCUT2
2p+1 is a facet of CUT2

2p+1 (as the
inequality (a) is a switching of the pure hypermetric inequality, which is facet
defining by Corollary 28.2.5 (i)). When n is even, n = 2p, then EQCUT22p is a

face of dimension
(2p

2

)− p of CUT2
2p.

We also consider the multicut polytope MC2
n , which is defined as the convex

hull of all multicut vectors δ(S1, . . . , Sp) (for any partition of Vn into an arbitrary
number of parts). (Note that the cone generated by all multicut vectors coincides
with the cut cone CUTn, as δ(S1, . . . , Sp) = 1

2

∑p
i=1 δ(Si) for any partition of Vn

into S1 ∪ . . . ∪ Sp.)
We will only give very occasional information on the above polyhedra. For

more details concerning the equicut polytope, see Conforti, Rao and Sassano
[1990a, 1990b], Deza, Fukuda and Laurent [1993], De Souza [1993], De Souza
and Laurent [1995]; see Deza, Grötschel and Laurent [1991, 1992], Chopra and
Rao [1995] and further references therein for the multicut polytope; the inequicut,
even cut and k-uniform cut cones are considered, respectively, in Deza, Fukuda
and Laurent [1993], and Deza and Laurent [1993b, 1992e].

We will use the definitions about polyhedra (faces, facets, valid inequalities,
etc.) from Section 2.2. We also use the following additional definitions for roots,
pure inequalities and edgeweight vectors. Given an inequality vTx ≤ v0 which
is valid for the cut polytope CUT2

n , where v ∈ REn and v0 ∈ R, a cut vector
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δ(S) is called a root of the inequality vTx ≤ v0 if it satisfies it at equality, i.e., if
vT δ(S) = v0. Similarly, the cut vectors that belong to a face F of CUTn or of
CUT2

n are called its roots. We let R(F ) denote the set of roots of the face F .
Given v ∈ REn and v0 ∈ R, the inequality vTx ≤ v0 is said to be pure if

vij ∈ {0, 1,−1} for all ij ∈ En. For any cut vector δ(S), we use the notation:

v(δ(S)) := vT δ(S) =
∑

ij∈δ(S)

vij .

Given v ∈ REn , we can define an associated weighted graph Gv with node set
{1, . . . , n}, whose edges are the pairs ij for which vij 6= 0; to the edge ij we
assign the weight vij . The graph Gv is called the support graph of v. Conversely,
if G = (V,E) is an edge weighted graph, that is a graph G together with some
weights vij (ij ∈ E) on its edges, then we define its edgeweight vector as the
vector v ∈ REn whose components are the weights vij for the edges ij ∈ E and
setting vij := 0 if ij is not an edge of G.

Let vTx ≤ 0 be a valid inequality for the cut cone CUTn. As CUTn is a

full-dimensional cone in the space R(n
2), the inequality vTx ≤ 0 defines a facet

of CUTn if it has
(n
2

) − 1 linearly independent roots, i.e., if there exist
(n
2

) − 1
linearly independent cut vectors δ(S) such that vT δ(S) = 0. Hence, one way to
show that vTx ≤ 0 is facet defining for CUTn is by exhibiting such a set of cut
vectors. This direct method can be applied, for instance, for the small values of
n where linear independence can be tested by hand or by computer.

Equivalently, one may show that the inequality vTx ≤ 0 is facet inducing for
CUTn in the following way. Let a ∈ REn be a vector such that

{x ∈ CUTn | vTx = 0} ⊆ {x ∈ CUTn | aTx = 0}

or, equivalently, such that a(δ(S)) = 0 whenever v(δ(S)) = 0 for S ⊆ Vn. If for
every such vector a there exists a scalar α such that a = αv, then the inequality
vTx ≤ 0 is facet inducing for CUTn. (Note that we may restrict ourselves to
showing this property for all a ∈ REn for which the inequality aTx ≤ 0 is valid
for CUTn.) We will see in Section 26.5 some lifting techniques permitting to
construct facets in an iterative manner.



Chapter 26. Operations on Valid
Inequalities and Facets

In this chapter we present several operations on valid inequalities and facets
of the cut polytope. One of the basic properties of the cut polytope CUT2n is
that all its facets can be deduced from the facets of the cut cone CUTn using
the so-called switching operation (cf. Section 26.3.2). In fact, switchings and
permutations constitute the whole group of symmetries of the cut polytope (cf.
Section 26.3.3). A general technique for constructing new facets of CUTn+1 from
given facets of CUTn is by applying the so-called lifting operation; we describe
conditions of application of this technique in Section 26.5 and the converse oper-
ation: collapsing, in Section 26.4. Another technique for constructing facets (by
looking at projections) is mentioned in Section 26.6.

26.1 Cut and Correlation Vectors

As was already explained in Section 5.2, cut vectors are in one-to-one linear
correspondence with correlation vectors, via the correlation mapping. This fact
will be very often used here, so we recall the details.

Let Vn = {1, . . . , n}, Vn+1 = Vn∪{n+1}, and let En, En+1 denote the set of
unordered pairs of elements of Vn, Vn+1, respectively. The covariance mapping

ξ : REn+1 −→ RVn∪En

is defined as follows. For x = (xij)1≤i<j≤n+1 ∈ REn+1 and p = (pij)1≤i≤j≤n ∈
RVn∪En , let p = ξ(x) be defined by

pii = xi,n+1 for 1 ≤ i ≤ n,
pij = 1

2(xi,n+1 + xj,n+1 − xij) for 1 ≤ i < j ≤ n.

Given a subset S ⊆ Vn, the vector π(S) := ξ(δ(S)) is called the correlation vector
of S pointed at position n+1; so, π(S)ij = 1 if i, j ∈ S and π(S)ij = 0 otherwise
for 1 ≤ i ≤ j ≤ n. In the above definition, we have distinguished the position
n+ 1; we also denote the covariance mapping ξ by ξn+1 if we want to stress this
fact. Of course, any other position i ∈ Vn+1 could be distinguished as well with
the covariance mapping ξi being analogously defined.

The covariance mapping ξ is clearly linear and bijective. Therefore, given
subsets S1, . . . , Sk ⊆ Vn, the set of cut vectors {δ(S1), . . . , δ(Sk)} is linearly in-
dependent if and only if the corresponding set {π(S1), . . . , π(Sk)} of correlation

401



402 Chapter 26. Operations on Valid Inequalities and Facets

vectors is linearly independent. Often, when we have to check the linear inde-
pendence of a set of cut vectors, we will work with the associated correlation
vectors whose manipulation is generally easier.

Recall that the correlation cone CORn and the correlation polytope COR2
n

are defined, respectively, as the conic hull and the convex hull of the set of
correlation vectors π(S) for S ⊆ Vn. Hence,

CORn = ξ(CUTn+1) and COR2
n = ξ(CUT2

n+1).

As a consequence, any result on the facial structure of the cut polytope can
be translated into a result on the facial structure of the correlation polytope
and vice versa. We recall the following result, which was already formulated in
Proposition 5.2.7.

Proposition 26.1.1. Let c ∈ REn+1 and a ∈ RVn∪En be related by

aii =
∑

1≤j≤n+1,j 6=i cij for 1 ≤ i ≤ n,

aij = −2cij for 1 ≤ i < j ≤ n.

Then, the inequality: ∑

1≤i<j≤n+1

cijxij ≤ α

defines a valid inequality (resp. a facet) of the cut polytope CUT2n+1 if and only
if the inequality: ∑

1≤i≤n
aiixi +

∑

1≤i<j≤n
aijxij ≤ α

defines a valid inequality (resp. a facet) of the correlation polytope COR2n .

We have chosen to present most of our results in the context of cuts. The
corresponding results for the correlation polyhedra can be easily deduced using
Proposition 26.1.1. The two forms taken by several classes of inequalities (trian-
gle, hypermetric, negative type inequalities) in both the “cut” and “correlation”
contexts have been shown in Figure 5.2.6. One reason for our choice of present-
ing inequalities for cut polyhedra rather than for correlation polyhedra is that
they have often a much simpler form. For instance, we find it easier to handle
the triangle inequality:

x12 + x13 + x23 ≤ 2

rather than the corresponding inequality:

p11 + p22 + p33 − p12 − p13 − p23 ≤ 1.

There are, however, some exceptions to this rule. There exist indeed some results
whose formulation is easier in the context of correlation polyhedra than in the
context of cuts; we will see one such result in Section 26.6.
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26.2 The Permutation Operation

Since we are working with the complete graph Kn, all the faces of CUTn or of
CUT2

n are clearly preserved under any permutation of the nodes. Let Sym(n)
denote the group of permutations of the set {1, 2, . . . , n}, called the symmetric
group of {1, . . . , n}. Given a permutation σ ∈ Sym(n) and a vector v ∈ REn ,
define the vector σ(v) ∈ REn by

σ(v)ij := vσ(i)σ(j) for ij ∈ En.

The following result is trivial.

Lemma 26.2.1. Given v ∈ REn , v0 ∈ R and σ ∈ Sym(n), the following
statements are equivalent.

(i) The inequality vTx ≤ v0 is valid (resp. facet inducing) for CUT2
n .

(ii) The inequality σ(v)T x ≤ v0 is valid (resp. facet inducing) for CUT2
n .

We have a similar statement about the cut cone CUTn when applying Lemma
26.2.1 to homogeneous inequalities, i.e., to inequalities of the form vTx ≤ 0. Let
F be the face of CUT2

n induced by the valid inequality vTx ≤ v0, then

σ(F ) := {σ(x) | x ∈ F}

is the face of CUT2
n induced by the inequality σ(v)Tx ≤ v0. We say that F and

σ(F ) are permutation equivalent. The two faces F and σ(F ) have obviously the
same dimension.

26.3 The Switching Operation

The cut polytope has the remarkable property that if, for some vertex, all the
facets containing this vertex are known, then all the facets of the whole poly-
tope can be easily derived, using the so-called switching operation. This is a
consequence of the simple fact that the symmetric difference of two cuts is again
a cut. This property applies more generally to the set families that are closed
under taking the symmetric difference. We first present the switching operation
in the general setting of set families, which will enable us to apply it to several
instances of polyhedra, and then specialize it to cut polyhedra. We describe in
Section 26.3.3 the full symmetry group of the cut polytope.

26.3.1 Switching: A General Definition

Let A be a family of subsets of a given finite set E, let B ⊆ E, and set

AB := {A△B | A ∈ A}.

Let P (A) (resp. P (AB)) denote the polytope in RE , which is defined as the
convex hull of the incidence vectors of the members of A (resp. of AB). A linear
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description of the polytope P (AB) can be easily deduced if one knows a linear
description of the polytope P (A); see Corollaries 26.3.4 and 26.3.5.

For a vector v ∈ RE , let vB ∈ RE be defined by

(26.3.1) vBe :=

{
−ve if e ∈ B,
ve if e ∈ E \ B.

Consider the mapping rB : RE −→ RE defined by rB(x) := xB +χB for x ∈ RE ,
i.e.,

(26.3.2) (rB(x))e =

{
1 − xe if e ∈ B,
xe if e ∈ E \B.

The mapping rB is an affine bijection of the space RE , called switching mapping.
The following can be easily checked:

Lemma 26.3.3. Let A,B,A1, . . . , Ak be subsets of E and let v ∈ RE . Then,

(i) rB(χA) = χA△B.

(ii) vB(A) = v(A△B) − v(B).

(iii) {χA1 , . . . , χAk} is affinely independent if and only if {χA1△B , . . . , χAk△B}
is affinely independent.

Corollary 26.3.4. P (AB) = rB(P (A)).

Corollary 26.3.5. Given v ∈ RE , v0 ∈ R and B ⊆ E, the following assertions
are equivalent.

(i) The inequality vTx ≤ v0 is valid or facet inducing for the polytope P (A),
respectively.

(ii) The inequality (vB)Tx ≤ v0−v(B) is valid or facet inducing for the polytope
P (AB), respectively.

We say that the inequality:

(vB)Tx ≤ v0 − v(B)

is obtained by switching the inequality vTx ≤ v0 by the set B. Hence, the list
of inequalities defining P (AB) is obtained from the list of inequalities defining
P (A) by switching each of them by the set B.

If v0 = 0 and if the set B defines a root of the inequality vTx ≤ v0, i.e., if
v(B) = 0, then the switched inequality reads: (vB)Tx ≤ 0. In other words, the
“switching by roots” operation preserves homogeneous inequalities.

Let F denote the face of P (A) induced by the valid inequality vTx ≤ v0,
then

rB(F ) := {rB(x) | x ∈ F}
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is the face of P (AB) induced by the switched inequality (vB)Tx ≤ v0 − v(B).
By Lemma 26.3.3, both faces F, rB(F ) have the same dimension and the roots
of rB(F ) (i.e., the members C ∈ AB for which χC ∈ rB(F )) are exactly the
vectors χA△B, for χA ∈ F . Hence, the switching mapping establishes a 1-1
correspondence between the face lattices of the polytopes P (A) and P (AB).

Let us now suppose that the family A is closed under taking the symmetric
difference, i.e., that A△B ∈ A for all A,B ∈ A; hence, ∅ ∈ A. Then, the class
of valid inequalities for P (A) is closed under switching. Moreover, the full list
of facets of P (A) can be derived from the list of facets containing any given
point χA (where A ∈ A). In particular, the full facial structure of the polytope
P (A) can be deduced from that of the cone C(A), which is defined as the cone
generated by the vectors χA for A ∈ A. The next proposition summarizes these
facts.

Proposition 26.3.6. Let A be a collection of subsets of E that is closed under
the symmetric difference. Suppose that

C(A) = {x ∈ R
E | vTi x ≤ 0 for i = 1, . . . ,m}.

Then,

P (A) = {x ∈ R
E | (vBi )Tx ≤ −vi(B) for i = 1, . . . ,m, and B ∈ A}.

A typical example of a set family that is closed under taking the symmetric
difference is the set of cuts in a graph, or the set of cycles in a graph. In fact, the
set families that are closed under taking the symmetric difference are precisely
the cycle spaces of binary matroids. The switching operation was defined in this
general framework by Barahona and Grötschel [1986]. We will return to cycle
spaces of binary matroids in Section 27.4.

The switching operation has been discovered independently by several other
authors. In particular, by McRae and Davidson [1972] and Pitowsky [1989, 1991]
in the context of the correlation polytope COR2n , by Deza [1973a] in the context
of the cut cone CUTn, by Barahona and Mahjoub [1986] in the context of the
cut polytope of an arbitrary graph.

26.3.2 Switching: Cut Polytope versus Cut Cone

All the features of the switching operation described above apply to the special
case of the cut polytope CUT2

n and of the cut cone CUTn, as the set of cuts
is closed under taking the symmetric difference; Corollary 26.3.5 and Proposi-
tion 26.3.6 can be reformulated as follows1.

1Given v ∈ REn and a cut vector δ(A) in Kn, the vector vδ(A) is defined as in (26.3.1) by

v
δ(A)
ij = −vij if δ(A)ij = 1 and v

δ(A)
ij = vij if δ(A)ij = 0. In other words, vδ(A) stands for

vδKn (A).
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Corollary 26.3.7. Given v ∈ REn , v0 ∈ R and a cut vector δ(A), the following
assertions are equivalent.

(i) The inequality vTx ≤ v0 is valid or facet inducing for CUT2
n , respectively.

(ii) The inequality (vδ(A))Tx ≤ v0−vT δ(A) is valid or facet inducing for CUT2
n ,

respectively.

Corollary 26.3.8. Suppose that

CUTn = {x ∈ REn | vTi x ≤ 0 for i = 1, . . . ,m}.

Then,

CUT2
n = {x ∈ R

En | (v
δ(A)
i )Tx ≤ −vTi δ(A) for i = 1, . . . ,m, and A ⊆ Vn}.

There is clearly an analogue of switching for the correlation polytope COR2n ,
as this polytope is in linear bijection with the cut polytope CUT2

n+1. We indicate
explicitly in the next remark how switching applies to the correlation polytope.

Remark 26.3.9. Analogue of switching for the correlation polytope.
Given a subset A of Vn, consider the mapping:

(26.3.10) δ̺(A) := ξrδ(A)ξ
−1.

This mapping acts as follows:

COR2
n

ξ−1

−→ CUT2
n+1

rδ(A)−→ CUT2
n+1

ξ−→ COR2
n .

Here, δ(A) is considered as a cut vector in Kn+1, rδ(A) is the corresponding

switching mapping of the space REn+1 , and ξ is the covariance mapping. There-
fore, the mapping ̺δ(A) preserves the polytope COR2

n , i.e.,

̺δ(A)(COR2
n ) = COR2

n .

One can easily verify that
p′ := ̺δ(A)(p)

is defined by

p′ii =

{
1 − pii if i ∈ A,
pii if i 6∈ A,

for i ∈ Vn and

p′ij =





1 − pii − pjj + pij if i, j ∈ A,
pii − pij if i 6∈ A, j ∈ A,
pjj − pij if i ∈ A, j 6∈ A,
pij if i, j 6∈ A
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for i 6= j ∈ Vn. Note, therefore, that switching has a much simpler form when
applied in the context of the cut polyhedra rather than in the context of the
correlation polyhedra.

Both the switching and the permutation operations map faces of CUT2n to
faces of CUT2

n ; in more technical terms, they are both symmetries of CUT2
n ,

i.e., orthogonal linear transformations of REn that map CUT2
n to itself. In

Section 26.3.3, we will see that the group of symmetries of CUT2n (n 6= 4) is
generated by these two operations.

Clearly, if the complete description of CUTn we start with in Corollary 26.3.8
is nonredundant, then all of the inequalities describing CUT2

n are facet defining.
But many of these inequalities may appear repeatedly. However, as observed by
Grötschel [1994], there is a (theoretically) easy way to compute the number of
facets of CUT2

n from the number of facets of CUTn and vice versa, as indicated
in Lemma 26.3.11 below.

Let us call, for a given face F of CUT2
n , the set of all the faces of CUT2

n that
can be obtained from F by applying the permutation and switching operations
the orbit Ω2(F ) of F . We similarly define the orbit Ω(F ) of a face F of CUTn
where, instead of general switching, we only allow switching by roots of F . Recall
that R(F ) denotes the set of roots of the face F .

Lemma 26.3.11. Let vTx ≤ 0 be a valid inequality for CUTn, it defines a face
F of CUTn and a face F2 of CUT2

n . Then,

|Ω2(F2)||R(F2)| = |Ω(F )|2n−1.

Proof. Let us define a |Ω2(F2)| × |2Vn−1 | matrix B = (bHS) by setting bHS = 1
if the cut vector δ(S) is a root of the face H of Ω2(F2) and bHS = 0 else. Then,
counting row- and columnwise, we obtain

∑

H∈Ω2(F2)

∑

S⊆Vn−1

bHS =
∑

H∈Ω2(F2)


 ∑

S⊆Vn−1

bHS


 = |Ω2(F2)||R(F2)|,

∑

H∈Ω2(F2)

∑

S⊆Vn−1

bHS =
∑

S⊆Vn−1


 ∑

H∈Ω2(F2)

bHS


 = 2n−1|Ω(F )|.

Hence, |Ω2(F2)| can be deduced once we know |Ω(F )| and the number of
roots of F2. Of course, it is neither trivial to compute the cardinality of an orbit
nor to determine the number of roots of a face. We shall as often as possible
explicitly describe the roots of the valid inequalities treated in this part. (See, for
instance, Section 30.4 where we present the parachute inequality whose number
of roots is related to the Fibonacci sequence.) We now state an upper bound on
the number of roots, given in Deza and Deza [1994a].
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Proposition 26.3.12. For any facet F of the cut polytope CUT2n we have

|R(F )| ≤ 3 · 2n−3,

with equality if and only if F is defined by a triangle inequality.

Proof. Let F be a facet of CUT2n induced by, say, the inequality vTx ≤ α. Ap-
plying switching, we can assume that α = 0. Suppose vij is a nonzero component
of v. If S is any subset of Vn \ {i, j} then

vT δ(S ∪ {i}) + vT δ(S ∪ {j}) − vT δ(S) − vT δ(S ∪ {i, j}) = 2vij .

This implies that at most three of these four cut vectors are roots of F . Therefore,
F has no more than 3

42n−1 = 3 · 2n−3 roots. Suppose now that F has exactly
3·2n−3 roots. We show that F is defined by a triangle inequality. It is not difficult
to check that v has at least three nonzero coordinates, say, vij, vhk, vst 6= 0. We
have:

(a) vT δ(A ∪ {i}) + vT δ(A ∪ {j}) − vT δ(A) − vT δ(A ∪ {i, j}) = 2vij ,

(b) vT δ(B ∪ {h}) + vT δ(B ∪ {k}) − vT δ(B) − vT δ(B ∪ {h, k}) = 2vhk,

(c) vT δ(C ∪ {s}) + vT δ(C ∪ {t}) − vT δ(C) − vT δ(C ∪ {s, t}) = 2vst

where A ⊆ Vn \ {i, j}, B ⊆ Vn \ {h, k}, and C ⊆ Vn \ {s, t}. Since F contains 3/4
of the total number of cuts, exactly three terms of the left hand side of each of
the equations (a),(b),(c) are equal to 0. We can suppose that vij and vhk have
the same sign. Suppose first that |{i, j, h, k, s, t}| = 6. We have that vT δ({i}) =
0 (for, if not, considering the equation (a) with A = ∅ and the equation (b)
with B = {i} yields vT δ({i}) = 2vij and −vT δ({i}) = 2vhk, contradicting the
fact that vij and vhk have the same sign). In the same way, vT δ({i, s}) = 0,
vT δ({i, t}) = 0, vT δ({i, s, t}) = 0. Hence, equation (c) with C = {i} yields vst =
0, a contradiction. Similar arguments lead to a contradiction if |{i, j, h, k, s, t}| =
5 or 4. Hence, v has exactly three nonzero coordinates vij , vik, and vjk. Using (a)
for A = ∅ and (b) (replacing h by i) for B = {j}, we deduce that vT δ({j}) = 0,
i.e., vij = −vjk. In the same way, vT δ({k}) = 0, i.e., vik = −vjk. Therefore,
vTx ≤ 0 is a multiple of the triangle inequality xjk − xik − xij ≤ 0.

Counting the number of elements in the orbit Ω(F ) of a face F of CUTn can
be done in the following way (see Deza, Grishukhin and Laurent [1991] and Deza
and Laurent [1992c]). Let

Ωp(F ) := {σ(F ) | σ ∈ Sym(n)}

denote the set of faces that are permutation equivalent to F and set

Aut(F ) := {σ ∈ Sym(n) | σ(F ) = F};

the members of Aut(F ) are called the automorphisms of F . Then, it is easy to
check that

|Ωp(F )| =
n!

|Aut(F )|.
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Let k denote the number of distinct switchings (by roots) of F that are pair-
wise not permutation equivalent and let F0 := F,F1, . . . , Fk−1 denote these k
switchings. Then,

|Ω(F )| =
∑

0≤i≤k−1

n!

|Aut(Fi)|
.

Hence, determining the number of elements in the orbit Ω(F ) of F amounts to
counting the number of automorphisms of any switching of F . This has been
done in Deza and Laurent [1992c] for several classes of facets and, in particular,
for all the facets of the cut cone CUTn for n ≤ 7. As an application, one can
count the exact number of facets of CUTn and CUT2

n for n ≤ 7; see Section 30.6.

Although we have introduced orbits here only as a tool for enumerating faces
we would like to remark that this concept deserves more attention. For instance,
if we prove that some inequality defines a facet we automatically obtain that all
the faces in its orbit are, in fact, facets. The corresponding defining inequalities
are obtained from the original one by switching and permuting. Proving that
an inequality defines a facet is (often) laborious work that heavily uses apparent
structures and symmetries of a given inequality and it is of great importance to
choose, among all possible inequalities defining the facets of the orbit, one that
has an “exploitable” shape or some “nice and easily understandable form”. Of
course, this is a matter of taste, but nevertheless, as we have seen in our own
work it is helpful to find a convenient representative inequality of an orbit, not
only for proof technical purposes but also for further generalizations and the
investigation of other issues.

26.3.3 The Symmetry Group of the Cut Polytope

We describe here the symmetry group of the cut polytope CUT2n . The results
are taken from Deza, Grishukhin and Laurent [1991].

A mapping f : REn −→ REn is called a symmetry of CUT2
n if it is an isometry

satisfying: f(CUT2
n ) = CUT2

n ; an isometry of REn being a linear mapping
preserving the Euclidean distance. Let Is(CUT2

n ) denote the set of symmetries
of CUT2

n . Let

Gn := {σrδ(A) | σ ∈ Sym(n), A ⊆ Vn}
denote the group generated by all permutation and switching mappings. The
commutation rules in Gn are:

rδ(A)rδ(B) = rδ(A△B), rδ(A)σ = σrδ(σ(A)).

(In fact, Gn is nothing but the quotient of the symmetry group of the n-
dimensional hypercube by a subgroup of order 2.) Therefore, |Gn| = 2n−1n!.
As we have seen earlier,

Gn ⊆ Is(CUT2
n ).

Let H(n) denote the graph whose nodes are the cut vectors δ(A) for A ⊆ Vn,
with two cut vectors δ(A), δ(B) being adjacent if (‖ δ(A)−δ(B) ‖2)2 = n−1, i.e.,
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if (‖ δ(A△B) ‖2)
2 = n−1 or, equivalently, if |A△B| = 1, n−1. Obviously, every

symmetry of CUT2
n induces an automorphism of the graph H(n). Therefore,

Is(CUT2
n ) ⊆ Aut(H(n)).

The graph H(n) is known as the folded n-cube graph. Its automorphism group
is Gn for n > 4, (Sym(4)× Sym(4))Sym(2) for n = 4, and Sym(4) for n = 3 (see
Brouwer, Cohen and Neumaier [1989] or Deza, Grishukhin and Laurent [1991]).
We have the following result (only (ii) needs a proof):

Theorem 26.3.13.

(i) For n 6= 4, Is(CUT2
n ) = Gn, with order 2n−1n!.

(ii) For n = 4, Is(CUT2
4 ) ≈ (Sym(4) × Sym(4))Sym(2), with order 2(4!)2.

Hence, Is(CUT2
n ) ≈ Aut(H(n)) for n ≥ 3.

In other words, for n 6= 4, switchings and permutations are the only sym-
metries of CUT2

n . For n = 4, there are are some additional symmetries. Note
that H(4) is the complete bipartite graph K4,4 with bipartition of its node set
(X1,X2), where X1 := {δ(i) | i = 1, 2, 3, 4} and X2 := {δ(∅), δ({1, i}) | i =
2, 3, 4}. Every automorphism of H(4) acts in the following way: Permute the el-
ements withinX1, permute the elements withinX2, and exchange elements from
X1 to X2. In fact, one can show that every such operation yields a symmetry of
CUT2

4 .

In the same way, one may ask what are the symmetries of the correlation
polytope COR2

n . In fact, the only symmetries of COR2
n are permutations, i.e.,

Is(COR2
n ) ≈ Sym(n) for all n.

Indeed, even though the mapping δ̺(A)(= ξrδ(A)ξ
−1) (the analogue of switching)

preserves the polytope COR2
n , it is not a symmetry of it because the mapping

̺δ(A) is not an isometry. It is shown in Laurent [1996e] that the semimetric
polytope MET2

n has the same group of symmetries as CUT2
n . The description

of the symmetry groups of other cut polyhedra (such as the equicut polytope,
the multicut polytope) can be found in Deza, Grishukhin and Laurent [1991].

26.4 The Collapsing Operation

We describe in this section the collapsing operation, which permits to construct
valid inequalities for CUT2

m (or CUTm) from valid inequalities for CUT2
n (or

CUTn), where m < n. The collapsing operation was introduced in De Simone,
Deza and Laurent [1994] and Deza and Laurent [1992b].

Let π = (I1, . . . , Ip) be a partition of Vn = {1, . . . , n} into p parts, i.e.,
I1, . . . , Ip are nonempty disjoint subsets such that I1∪. . .∪Ip = Vn. For v ∈ REn ,
we define its π-collapse vπ ∈ REp by

(vπ)hk :=
∑

i∈Ih,j∈Ik
vij for hk ∈ Ep.
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When the partition π consists only of singletons except one pair {i, j} (where
i 6= j), i.e., when π = {{i, j}, {k} for 1 ≤ k ≤ n, i 6= k 6= j 6= i}, then vπ ∈ REn−1

and we say that vπ is obtained from v by collapsing the two nodes i, j into a single
node.

If G is an edge weighted graph on Vn with edgeweight vector v, then the
π-collapse of G is the graph Gπ on Vp whose edgeweight vector is vπ. In other
words, we obtain Gπ from G by contracting all nodes from a common partition
class into a single node and adding the edgeweights correspondingly.

If S is a subset of Vp = {1, 2, . . . , p}, define the subset Sπ :=
⋃
h∈S Ih of Vn.

The relation

vTπ δ(S) = vT δ(Sπ) for S ⊆ {1, . . . , p}

can be easily checked, implying immediately the following lemma.

Lemma 26.4.1. Given v ∈ REn , v0 ∈ R and a partition π = (I1, . . . , Ip) of Vn
into p parts, the following statements hold.

(i) If the inequality vTx ≤ v0 is valid for CUT2
n , then the inequality vTπ x ≤ v0

is valid for CUT2
p .

(ii) The roots of the inequality vTπ x ≤ v0 are the cut vectors δ(S) such that
S ⊆ {1, . . . , p} and δ(Sπ) is a root of the inequality vTx ≤ v0.

We present in the next result a case when the collapsing and the switching
operations commute.

Lemma 26.4.2. Let π = (I1, . . . , Ip) be a partition of {1, . . . , n}, S be a subset
of Vp, and v ∈ REn . Then,

(vπ)
δ(S) =

(
vδ(S

π)
)
π
.

Observe that the collapsing operation preserves validity, but it may not al-
ways preserve facets. Also, it may be that the collapse of a nonfacet inducing
valid inequality is facet inducing. For example, for n ≥ 3, the (triangle) inequal-
ity x23 −x12 −x13 ≤ 0 is facet inducing for CUTn but the inequality −2x12 ≤ 0,
obtained by collapsing the two nodes 2,3 into a single node 2, is valid but not
facet inducing. For n ≥ 5, the inequality (x23−x12−x13)+(x45 −x14−x15) ≤ 0
is valid but not facet inducing, while the inequality x23−x12−x13 ≤ 0, obtained
by collapsing the two nodes 1,5 into a single node 1, is facet inducing for CUTn.

Nevertheless, collapsing may be a useful tool for the construction of facets;
Theorems 26.4.3 and 26.4.4 below state results of the form: “Take a valid in-
equality, assume that some collapsings of it are facet inducing and ..., then the
inequality is facet inducing”. The next result is shown in De Simone, Deza and
Laurent [1994].
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Theorem 26.4.3. Let v ∈ REn and i1, i2, i3 be distinct nodes in {1, 2, . . . , n}.
Assume that the following conditions hold.

(i) The inequality vTx ≤ 0 is valid for CUTn.

(ii) vT δ({i1}) = 0.

(iii) The two inequalities obtained from vTx ≤ 0 by collapsing the nodes {i1, i2},
and the nodes {i1, i3}, respectively, are facet inducing for CUTn−1.

(iv) For some distinct r, s ∈ {1, . . . , n} \ {i1, i2, i3}, vrs 6= 0.

Then, the inequality vTx ≤ 0 is facet inducing for CUTn.

Proof. For ease of notation, we may assume that i1 = 1, i2 = 2, i3 = 3. Denote
by v1,2 and v1,3 the vector obtained from v by collapsing the nodes {1, 2} and
the nodes {1, 3}, respectively. Take a valid inequality aTx ≤ 0 for CUTn such
that

{x ∈ CUTn | vTx = 0} ⊆ {x ∈ CUTn | aTx = 0}.
In order to prove that vTx ≤ 0 is facet defining, we show that v = αa for some
scalar α > 0. Denote analogously by a1,2 and a1,3 the vector obtained from a by
collapsing the nodes {1, 2} and {1, 3}, respectively. It is easy to see that

{x ∈ CUTn | (v1,i)Tx = 0} ⊆ {x ∈ CUTn | (a1,i)Tx = 0}

for i = 2, 3. Since (v1,i)Tx ≤ 0 is facet inducing by assumption (iii), there exists
a scalar αi > 0 such that v1,i = αia

1,i for i = 2, 3. We deduce that α1 = α2 := α
from assumption (iv). Hence, we already have that vrs = αars for 3 ≤ r < s ≤ n,
or r = 2 and 4 ≤ s ≤ n and, also,

(a) v1i + v2i = α(a1i + a2i) for i ≥ 3,

(b) v1i + v3i = α(a1i + a3i) for i = 2, i ≥ 4.

Hence, v1i = a1i for i ≥ 4. It remains to check that v12 = αa12, v13 = αa13

and v23 = αa23 in order to deduce that v = αa. By assumption (ii), we have
vT δ({1}) = 0, implying that

v12 + v13 = −
∑

4≤i≤n
v1i = −

∑

4≤i≤n
αa1i = α(a12 + a13).

This relation, together with (a), (b) for i = 3, yields that v23 = αa23 and, then,
v13 = αa13, v12 = αa12.

The following result was proved in Deza, Grötschel and Laurent [1992] in the
more general context of multicuts.

Theorem 26.4.4. Let v ∈ REn , v0 ∈ R, and i1, i2, i3, i4 be distinct elements in
{1, . . . , n}. Assume that the following conditions hold.

(i) The inequality vTx ≤ v0 is valid for CUT2
n .
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(ii) v0 6= 0, or there exist distinct r, s ∈ {1, . . . , n} \ {i1, i2, i3, i4} such that
vrs 6= 0.

(iii) The three inequalities obtained from the inequality vTx ≤ v0 by collapsing
the nodes {i1, i2}, the nodes {i1, i3}, and the nodes {i1, i4}, respectively,
are facet inducing for CUT2

n−1.

Then, the inequality vTx ≤ v0 is facet inducing for CUT2
n .

Proof. Let us assume that i1 = 1, i2 = 2, i3 = 3, i4 = 4. Let aTx ≤ a0 be a
valid inequality for CUT2

n such that

{x ∈ CUT2
n | vTx = v0} ⊆ {x ∈ CUT2

n | aTx = a0}.

We show the existence of a scalar α > 0 such that v = αa, v0 = αa0. For
i = 2, 3, 4, denote by v1,i (resp. a1,i) the vector obtained from v (resp. from a)
by collapsing the nodes {1, i}. Clearly, every root of the inequality (v1,i)Tx ≤ v0
is a root of the inequality (a1,i)Tx ≤ a0. Hence, there exists a scalar αi > 0 such
that v1,i = αia

1,i and v0 = αia0, for i = 2, 3, 4. By assumption (ii), we deduce
that α1 = α2 = α3 =: α. We already have that vrs = αars for 3 ≤ r < s ≤ n, or
r = 2 and 4 ≤ s ≤ n, or {r, s} = {2, 3}. Also, v1i+v2i = α(a1i+a2i) for i ≥ 3, from
which we deduce that v1i = αa1i for 3 ≤ i ≤ n. Finally, v1i + v4i = α(a1i + a4i)
for i = 2, 3, 5, . . . , n, implying that v12 = αa12. Therefore, v = αa holds and,
thus, the inequality vTx ≤ v0 is facet inducing.

26.5 The Lifting Operation

The collapsing operation, which is described in the preceding section, permits to
construct certain valid inequalities of CUTn−1 from a given valid inequality of
CUTn. Conversely, by lifting, we mean any general procedure for constructing
a valid inequality of CUTn+1 (preferably, facet inducing) from a given valid
inequality (or facet) for CUTn.

The simplest case of lifting is that of 0-lifting. Namely, for v ∈ REn , define
its 0-lifting v′ ∈ REn+1 by

v′ij = vij for ij ∈ En,

v′i,n+1 = 0 for 1 ≤ i ≤ n.

In the same way, we say that the inequality (v′)Tx ≤ v0 is obtained by 0-lifting
the inequality vTx ≤ v0. It is immediate to see that 0-lifting preserves validity;
a nice feature of 0-lifting is that it also preserves facets.

Theorem 26.5.1. Given v0 ∈ R, v ∈ REn and its 0-lifting v′ ∈ REn+1 , the
following assertions are equivalent.

(i) The inequality vTx ≤ v0 is facet inducing for CUT2
n .

(ii) The inequality (v′)Tx ≤ v0 is facet inducing for CUT2
n+1.
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The proof of Theorem 26.5.1 is based on the following Lemma 26.5.2. Both
results were given in Deza [1973a] (see also Deza and Laurent [1992a] for the full
proofs). Given a subset F of En, set F := En \ F . If x ∈ REn , let

xF := (xe)e∈F

denote the projection of x on the subspace RF indexed by F and, if X is a subset
of REn , set

XF := {xF | x ∈ X}, XF := {x ∈ X | xF = 0}.

Lemma 26.5.2. Let vTx ≤ 0 be a valid inequality for CUTn and let R(v) denote
its set of roots. Let F be a subset of En.

(i) If rank(R(v)F ) = |F | and rank(R(v)F ) = |F | − 1, then the inequality
vTx ≤ 0 is facet inducing.

(ii) If the inequality vTx ≤ 0 is facet inducing and vF 6= 0 (resp. vF = 0), then
rank(R(v)F ) = |F | (resp. rank(R(v)F ) = |F | − 1).

Proof. (i) By the assumption, we can find a set A ⊆ R(v) of |F | vectors whose
projections on F are linearly independent and a set B ⊆ R(v) of |F | − 1 linearly
independent vectors whose projections on F are zero. It is immediate to see
that the set A ∪ B is linearly independent. This implies that vTx ≤ 0 is facet
inducing.

(ii) Since vTx ≤ 0 is facet inducing, we can find a set A ⊆ R(v) of
(n
2

)−1 linearly
independent roots. Let M denote the (

(n
2

)− 1) × (n2
)

matrix whose rows are the
vectors of A. Hence, all the columns of M but one are linearly independent. We
distinguish two cases:

(a) either, all the columns of M that are indexed by F are linearly independent
and, then, rank(AF ) = |F |,

(b) or, rank(AF ) = |F | − 1, implying that rank(R(v)F ) = |F | − 1.

Suppose first that we are in the case (b). Let T1 ⊆ A be a subset of |F | − 1
vectors whose projections on F are linearly independent, set T2 := AF and
T3 := A \ (T1 ∪ T2). Hence, |T2 ∪ T3| = |F |. For x ∈ T3, its projection xF on F
can be written as a linear combination of the projections on F of the vectors in
T1, say

xF =
∑

a∈T1

λxaaF .

Set
x′ := x−

∑

a∈T1

λxaa

and T ′
3 := {x′ | x ∈ T3}. It is easy to check that the set T2 ∪ T ′

3 is linearly
independent. Note that, for any x ∈ T2 ∪ T ′

3, xF = 0 and vTx = 0; this implies
that vF = 0. Suppose now that we are in the case (a). Then, rank(R(v)F) =
|F | − 1 and, by the above reasoning, vF = 0, which implies that vF 6= 0.
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Proof of Theorem 26.5.1. We can assume, without loss of generality, that v0 = 0;
else, switch the inequality by a root and apply the result for the switched in-
equality.
Suppose first that the inequality (v′)Tx ≤ 0 is facet inducing for CUTn+1. Con-
sider the set F := {(i, n + 1) | 1 ≤ i ≤ n} and let F := En denote its com-
plement in the set En+1. By construction, v′F = 0. Hence, we deduce from
Lemma 26.5.2 (ii) that rank(R(v′)F ) = |F |−1 =

(n
2

)−1. Therefore, the inequal-
ity vTx ≤ 0 is facet inducing for CUTn.
Suppose now that the inequality vTx ≤ 0 is facet inducing for CUTn. Since
v 6= 0, we can suppose without loss of generality that vF 6= 0, where F :=
{12, 13, . . . , 1n} and F := En \ F. By Lemma 26.5.2 (ii), rank(R(v)F ) = |F |.
Therefore, we can find n− 1 roots δ(Tk) (1 ≤ k ≤ n− 1) of vTx ≤ 0 whose pro-
jections on F are linearly independent. Since vTx ≤ 0 is facet inducing, we can
also find

(n
2

)− 1 linearly independent roots δ(Sj) (1 ≤ j ≤ (n
2

)− 1) of vTx ≤ 0.
Without loss of generality, we can suppose that the element 1 does not belong
to any of the sets Tk and Sj. So, we have a set

C :=

{
δ(Sj) | 1 ≤ j ≤

(
n

2

)
− 1

}
∪{δ(Tk∪{n+1}) | 1 ≤ k ≤ n−1}∪{δ({n+1})}

of
(n+1

2

) − 1 cut vectors (in Kn+1), which are roots of the inequality (v′)Tx ≤
0. We show that the set C is linearly independent. For this, we verify that
the correlation vectors (pointed at position 1) associated with the cut vectors
in C are linearly independent. Let us consider the square matrix M of order(n+1

2

) − 1, whose rows are: first, the
(n
2

) − 1 vectors π(Sj); then, the n − 1
vectors π(Tk ∪ {n + 1}) and, finally, the vector π({n + 1}). The columns of
M are indexed by the set I ∪ J ∪ K, where I := {(i, j) | 2 ≤ i ≤ j ≤ n},
J := {(i, n+ 1) | 2 ≤ i ≤ n}, and K := {(n+ 1, n+ 1)}. The matrix M is of the
form:

M =




I J K

X 0 0
Z Y eT

0 0 1




(where e denotes the all-ones vector). The matrix X has full row rank, since the
vectors π(Sj) are linearly independent. The matrix Y has full rank, since its rows
are the vectors π(Tk∪{n+1})J = δ(Tk)F , which are linearly independent. Hence,
the matrix M has full row rank, which implies that the inequality (v′)Tx ≤ 0 is
facet inducing.

Lifting is a very general methodology for constructing facets of polyhedra,
which can be described as follows. Suppose we are given a vector v ∈ REn for
which the inequality vTx ≤ 0 is valid for CUTn. Then, lifting the inequality
vTx ≤ 0 means finding a vector v′ ∈ REn+1 (obtained by adding n new coordi-
nates to v, after possibly altering some of its coordinates) such that the inequality
(v′)Tx ≤ 0 is valid for CUTn+1. Of course, a desirable objective is to produce in
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this way some new facet of CUTn+1 starting from a given facet of CUTn. The
next lemma contains a set of conditions that are sufficient for achieving this goal.

Lemma 26.5.3. (Lifting Lemma) Let v ∈ REn and v′ ∈ REn+1 . Suppose that
the following assertions hold.

(i) The inequality vTx ≤ 0 is facet inducing for CUTn and the inequality
(v′)Tx ≤ 0 is valid for CUTn+1.

(ii) There exist
(n
2

)−1 subsets Sj of {2, 3, . . . , n} such that the cut vectors δ(Sj)
(in Kn) are linearly independent roots of vTx ≤ 0 and the cut vectors
δ(Sj) (in Kn+1) are roots of (v′)Tx ≤ 0.

(iii) There exist n subsets Tk of {2, 3, . . . , n, n + 1} with n + 1 ∈ Tk such that
the cut vectors δ(Tk) (in Kn+1) are roots of (v′)Tx ≤ 0 and the incidence
vectors of the sets Tk are linearly independent.

Then, the inequality (v′)Tx ≤ 0 is facet inducing for CUTn+1.

Proof. It suffices to check that the
(n+1

2

) − 1 cut vectors δ(Sj) and δ(Tk) are
linearly independent. This can be done in the same way as in the proof of
Theorem 26.5.1.

In the sequel, we only consider a special case of lifting, known as node split-
ting. The node splitting operation is, in fact, converse to the collapsing operation
from Section 26.4; it is defined as follows. Let v ∈ REn and v′ ∈ REn+1 satisfy
the conditions:

vij = v′ij for 2 ≤ i < j ≤ n,

v1i = v′1i + v′i n+1 for 2 ≤ i ≤ n.

So, v′ is obtained from v by splitting node 1 into two nodes 1, n+ 1 and corre-
spondingly splitting the edgeweight v1i into v′1i and v′i n+1, the other components
remaining unchanged. In other words, v comes from v′ by collapsing the nodes 1
and n+1 into a single node 1. In this case, if vTx ≤ 0 is facet inducing, then the
condition (ii) of Lemma 26.5.3 automatically holds. In our concrete applications
of the Lifting Lemma 26.5.3, the condition (i) will hold by construction of v′

and, therefore, the crucial point will be to check condition (iii), i.e., to find n
additional “good” roots.

We will see in the next sections many applications of the Lifting Lemma 26.5.3
and of Theorems 26.4.3 and 26.4.4 on collapsing.

26.6 Facets by Projection

We present here another tool for showing that a given valid inequality is facet
defining. This method works when some projections of the given inequality have
some prescribed properties; it is described by Boissin [1994]. The result turns
out to have a simpler formulation in the context of correlation polyhedra. So,
we first state it for correlation polyhedra and, then, we reformulate it for cut
polyhedra.
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Observe first that, if an inequality

∑

1≤i≤j≤n
aijpij ≤ α

is valid for COR2
n , then its projection

∑

1≤i≤j≤n−1

aijpij ≤ α

on the set (of pairs including diagonal pairs from) Vn \ {n} is obviously valid
for COR2

n−1. However, it may be that the projected inequality defines a facet of
COR2

n−1 without the initial inequality to be facet defining. This is the case, for
instance, for the (nonfacet defining) inequality p11 + p22 ≥ 0 whose projection
p11 ≥ 0 is facet defining. The next result shows, however, that if we suppose that
several projections are facet defining together with some additional conditions,
then we can conclude that the initial inequality is facet defining.

Proposition 26.6.1. Let W1, . . . ,Wk ⊆ Vn such that Vn = W1 ∪ . . . ∪Wk and
each pair of elements of Vn belongs to some Wr (1 ≤ r ≤ k). Let a ∈ RVn∪En

and α ∈ R. Suppose that the following conditions hold.

(i) The inequality aT p :=
∑

1≤i≤j≤n aijpij ≤ α is valid for the correlation
polytope COR2

n .

(ii) The graph with node set {1, . . . , k} and whose edges are the pairs rs for
which there exist i, j ∈Wr ∩Ws such that aij 6= 0 is connected.

(iii) For each r = 1, . . . , k, the inequality
∑
i≤j|i,j∈Wr

aijpij ≤ α (obtained as

the projection of aT p ≤ α on Wr) defines a facet of COR2(Wr).

Then, the inequality aT p ≤ α defines a facet of COR2
n .

Proof. Let b ∈ RVn∪En , β ∈ R such that

{p ∈ COR2
n | aT p = α} ⊆ {p ∈ COR2

n | bT p = β}.

We show that b = λa and β = λα for some λ ∈ R. As each vector q ∈ COR2(Wr)
can be extended to the vector p := (q, 0, . . . , 0) of COR2n , we deduce that

{q ∈ COR2(Wr) |
∑

i≤j|i,j∈Wr

aijqij = α} ⊆ {q ∈ COR2(Wr) |
∑

i≤j|i,j∈Wr

bijqij = β}.

From (iii), we obtain that there exists λr ∈ R such that bij = λraij for i, j ∈Wr

and β = λrα. We deduce easily from (ii) that all λr’s are equal.

The following is a reformulation in the context of cut polyhedra.

Corollary 26.6.2. Let W1, . . . ,Wk ⊆ Vn such that Vn = W1 ∪ . . . ∪Wk and
each pair of elements of Vn belongs to some Wr (1 ≤ r ≤ k). Let c ∈ REn+1 and
α ∈ R. Suppose that the following conditions hold.
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(i) The inequality cTx :=
∑

1≤i<j≤n+1 cijxij ≤ α is valid for the cut polytope
CUT2

n+1.

(ii) The graph with node set {1, . . . , k} and whose edges are the pairs rs for
which, either there exist i 6= j ∈Wr ∩Ws such that cij 6= 0, or there exists
i ∈Wr ∩Ws such that cT δ({i}) 6= 0, is connected.

(iii) The inequality
∑
i∈Wr

(ci,n+1 +
∑
j∈Vn\Wr

cij)xi,n+1 +
∑
i<j|i,j∈Wr

cijxij ≤ α
defines a facet of CUT2

|Wr|+1, for each r = 1, . . . , k.

Then, the inequality cTx ≤ α defines a facet of CUT2
n+1.

For example, Corollary 26.6.2 permits to derive that the pentagonal inequal-
ity:

Q(1, 1, 1,−1,−1)T x ≤ 0

defines a facet of CUT5, from the fact that the triangle inequalities define facets
of CUT4. Indeed, consider the subsets W1 := {1, 2, 4}, W2 := {1, 3, 4} and
W3 := {2, 3, 4} of {1, 2, 3, 4}. Then, the inequalities from Corollary 26.6.2 (iii)
are, respectively, the triangle inequalities: x12−x14−x24 ≤ 0, x13−x14−x34 ≤ 0
and x23 − x24 − x34 ≤ 0. More generally, Corollary 26.6.2 permits to derive that
any pure hypermetric inequality: Q(1, . . . , 1,−1, . . . ,−1)Tx ≤ 0 is facet defining
from the fact that triangle inequalities are facet defining.

A slight modification of Proposition 26.6.1 yields the following construction
for facets of the correlation polytope. Given a ∈ RVn∪En and α ∈ R, suppose that
the inequality aT p :=

∑
1≤i≤j≤n aijpij ≤ α defines a facet of COR2

n . Consider
β ∈ R and two elements i∗ ∈ Vn and j∗ 6∈ Vn; set Vn+1 = Vn ∪ {j∗} and define
the vector b ∈ RVn+1∪En+1 by

(26.6.3)





bij = aij if i, j ∈ Vn,
bi,j∗ = ai,i∗ if i ∈ Vn \ {i∗},
bi∗,j∗ = β,
bj∗,j∗ = ai∗,i∗ .

We say that the inequality bT p ≤ α is obtained from the inequality aT p ≤ α by
duplicating the node i∗ as the node j∗. Note that this operation can be seen as a
special case of lifting. The next result indicates what value of β should be taken
in order to ensure that bT p ≤ α defines a facet of COR2

n+1.

Proposition 26.6.4. Suppose that the inequality aT p ≤ α defines a facet of
COR2

n and let b ∈ RVn+1∪En+1 be defined by (26.6.3). Then the inequality bT p ≤ α
defines a facet of COR2

n+1 if and only if

β = α− max
S⊆Vn\{i∗}


aTπ(S ∪ {i∗}) +

∑

i∈S∪{i∗}
ai,i∗


 .

Proof. Let β0 denote the right hand side in the relation defining β. We first
check that bT p ≤ α is valid for COR2

n+1 if and only if β ≤ β0. Indeed, let T be a
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subset of Vn+1. If j∗ 6∈ T , or if j∗ ∈ T and i∗ 6∈ T , then bTπ(T ) = aTπ(T ) ≤ α,
by construction of b. If i∗, j∗ ∈ T then, setting S := T \ {i∗, j∗}, we have

bTπ(T ) = aTπ(S ∪ {i∗}) +
∑

i∈S∪{i∗}
ai,i∗ + β.

Hence, bTπ(T ) ≤ α holds for all T ⊆ Vn+1 if and only if β ≤ β0. If β < β0,
then every root of bT p = α satisfies the equation pi∗,j∗ = 0; this shows that
bT p ≤ α does not define a facet of COR2

n+1. Suppose now that β = β0. We show
that bT p ≤ α defines a facet of COR2

n+1. For this, let (b′)T p ≤ α′ be another
inequality such that

{p ∈ COR2
n+1 | bT p = α} ⊆ {p ∈ COR2

n+1 | (b′)T p = α′}.

By the argument of Proposition 26.6.1, there exists a scalar λ such that α′ = λα,
b′ij = λbij for all i, j ∈ Vn+1 except maybe for the pair i∗, j∗. As β = β0, we can

find a root π(T ) of bT p = α such that i∗, j∗ ∈ T . As (b′)Tπ(T ) = α′, we deduce
that (b′)i∗,j∗ = λbi∗,j∗ . This shows b′ = λb.

For instance, the inequality:

pi∗,i∗ + pii − pi,i∗ ≤ 1

defines a facet of COR2
3 . Applying Proposition 26.6.4, we obtain that the in-

equality:
pi∗,i∗ + pii + pj,j∗ − pi,i∗ − pi,j∗ − pi∗,j∗ ≤ 1

defines a facet of COR2
4 . (Note that these two inequalities correspond to triangle

inequalities for the cut polytope; recall Figure 5.2.6.) We leave it to the reader
to reformulate Proposition 26.6.4 for the cut polytope. See Section 30.4 for an
application of Proposition 26.6.4 to the parachute facet.
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As we will see throughout Part V, the cut polytope CUT2n has many different
types of facets, most of them having a rather complicated structure. Among
them, the most simple ones are the triangle facets, i.e., those defined by the
following triangle inequalities:

(27.0.1) xij − xik − xjk ≤ 0,

(27.0.2) xij + xik + xjk ≤ 2,

for distinct i, j, k ∈ Vn. The inequality (27.0.1) is a homogeneous triangle in-
equality, while (27.0.2) is nonhomogeneous. The homogeneous triangle inequali-
ties have already been considered in previous chapters. Note that (27.0.2) arises
from (27.0.1) by switching, e.g., by the cut δ({i}); hence, the class of triangle
inequalities is closed under switching. The cone in REn defined by the homo-
geneous triangle inequalities is the semimetric cone METn, already considered
earlier. The polytope in REn defined by all triangle inequalities (27.0.1) and
(27.0.2) is the semimetric polytope and is denoted by MET2n . Hence,

CUTn ⊆ METn ⊆ R
En
+ and CUT2

n ⊆ MET2
n ⊆ [0, 1]En .

The terminology used for the polyhedra METn and MET2
n comes, of course,

from the fact that the distances on Vn that satisfy the homogeneous triangle
inequalities are precisely the semimetrics.

Clearly, the semimetric polytope MET2
n is preserved by permutation and

switching (as the class of triangle inequalities is closed under switching), a prop-
erty also enjoyed by the cut polytope CUT2n . In fact, as shown in Laurent [1996e],
both polytopes MET2

n and CUT2
n have the same group of symmetries; that is,

Is(MET2
n ) = Is(CUT2

n ).

The group Is(CUT2
n ) has been described in Section 26.3.3.

Every triangle inequality defines a facet of the cut polytope. To see it, it
suffices (in view of the results of the preceding section on permutation, switching
and 0-lifting) to show that the inequality:

x12 − x13 − x23 ≤ 0

421
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defines a facet of CUT3. This is indeed the case as the cut vectors δ({1}) and
δ({2}) are two (=

(3
2

) − 1) linearly independent roots of this inequality. Hence,
there are 3

(n
3

)
triangle facets for CUTn and 4

(n
3

)
triangle facets for CUT2

n .

The triangle inequalities are sufficient for describing the cut polyhedra for
n ≤ 4, i.e.,

CUTn = METn and CUT2
n = MET2

n for n = 3, 4,

but CUTn ⊂ METn, CUT2
n ⊂ MET2

n for n ≥ 5. To see it, observe that the vector
(2
3 , . . . ,

2
3) ∈ REn belongs to MET2

n but not to CUT2
n if n ≥ 5. Alternatively, the

pentagonal inequality (6.1.9) defines a (nontriangle) facet of the cut polytope on
≥ 5 elements. In some sense, K5 is the unique “minimal obstruction” for the
following property: The triangle inequalities form a linear description of the cut
polytope. Indeed, the triangle inequalities (in fact, their projections) form the
whole linear description of the cut polytope of a graph G if and only if G has no
K5-minor; see Theorem 27.3.6.

Every cut vector is a vertex of the semimetric polytope; moreover, the cut
vectors are the only integral vectors of MET2n (see Proposition 27.2.1). However,
for n ≥ 5, MET2

n has lots of additional vertices, all of them having some fractional
component. Hence, a linear description of CUT2

n arises from that of MET2
n by

adding constraints that cut off these fractional vertices. The vertices of MET2n
are studied, in particular, in Laurent [1996e] and Laurent and Poljak [1992].

On the other hand, the semimetric cone METn contains integral points that
are not cut vectors. Indeed, given any partition (S1, . . . , Sk) of Vn, the multicut
vector δ(S1, . . . , Sk) is a (0, 1)-valued member of METn. On the other hand, it is
easy to check that the only integral points of METn are the multicut semimetrics.
Note that

δ(S1, . . . , Sk) =
1

2

∑

1≤h≤k
δ(Sh).

Therefore, the only integral points of METn that lie on an extreme ray of METn
are the usual cut vectors δ(S) for S ⊆ Vn. The extreme rays of METn have been
studied, in particular, in Avis [1977, 1980a, 1980b], Lomonosov [1978, 1985],
Howe, Johnson and Lawrence [1986], Grishukhin [1992a]. The order of magnitude
of the number of extreme rays of METn is known; Avis [1980b] gives a lower

bound in 2n
2/2−O(n3/2) and Graham, Yao and Yao [1980] prove the upper bound

22.72n2
. One of the important motivations for the study of the semimetric cone

comes from its role in the feasibility problem for multicommodity flows (Iri [1971];
see also Lomonosov [1985], Avis and Deza [1991]).

Although the triangle facets represent, in general, only a tiny fraction of all
the facets of the cut polytope, they seem to play nevertheless an important role.
This is indicated by their many geometric properties. We now discuss several
properties and features of the triangle inequalities. Further geometric properties
will be described in Chapter 31.
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27.1 Triangle Inequalities for the Correlation Poly-
tope

Let us recall how the triangle inequalities look like, when formulated in the
context of the correlation polyhedra. Let us call these reformulated inequalities
the correlation triangle inequalities. This information has already been given in
Figure 5.2.6; we reproduce part of it here, for convenience. (We remind that the
inequalities on the “cut side” are defined in the space REn+1 while the inequalities
on the “correlation side” live in the space RVn∪En .)

“cut side” “correlation side”

d ∈ REn+1 p ∈ RVn∪En

δ(S) ( for S ⊆ Vn) π(S)
CUTn+1 CORn

CUT2
n+1 COR2

n

(Rooted) triangle (Rooted) correlation triangle
inequalities: inequalities:

d(i, j) − d(i, n+ 1) − d(j, n + 1) ≤ 0 0 ≤ pij
d(i, n+ 1) − d(j, n+ 1) − d(i, j) ≤ 0 pij ≤ pii
d(j, n+ 1) − d(i, n+ 1) − d(i, j) ≤ 0 pij ≤ pjj
d(i, n+ 1) + d(j, n+ 1) + d(i, j) ≤ 2 pii + pjj − pij ≤ 1

(i, j ∈ Vn)

(Unrooted) triangle (Unrooted) correlation triangle
inequalities: inequalities:

d(i, j) − d(i, k) − d(j, k) ≤ 0 −pkk − pij + pik + pjk ≤ 0
d(i, j) + d(i, k) + d(j, k) ≤ 2 pii + pjj + pkk − pij − pik − pjk ≤ 1

(i, j, k ∈ Vn)

Figure 27.1.1: Triangle inequalities for cut and correlation polyhedra

The rooted triangle inequalities are those that use the element n+ 1; they will
be considered in detail in the next subsection.

The correlation triangle inequalities have a nice interpretation in terms of
probabilities. Indeed, recall from Proposition 5.3.4 that every vector p ∈ COR2n
represents the joint correlations µ(Ai∩Aj) (1 ≤ i ≤ j ≤ n) of n events A1, . . . , An
in some probability space. Then, the rooted correlation triangle inequalities
simply express the following basic properties:
• The joint probability µ(Ai ∩Aj) of two events is nonnegative and less than or
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equal to the probability of each of the two events, and
• the probability µ(Ai ∪ Aj) (= µ(Ai) + µ(Aj) − µ(Ai ∩ Aj)) of their union is
less than or equal to 1.
The unrooted inequalities can be expressed as follows:
• −µ(Ak) − µ(Ai ∩ Aj) + µ(Ai ∩ Ak) + µ(Aj ∩ Ak) = −µ(Ak) − µ(Ai ∩ Aj) +
µ(Ak ∩ (Ai ∪Aj)) + µ(Ak ∩Ai ∩Aj), which is clearly ≤ 0, and
• µ(Ai) + µ(Aj) + µ(Ak)− µ(Ai ∩Aj)− µ(Ai ∩Ak)− µ(Aj ∩Ak) = µ(Ai ∪Aj ∪
Ak) − µ(Ai ∩Aj ∩Ak), which is clearly ≤ 1.
This shows again the validity of the correlation triangle inequalities for COR2

n .

There is another natural way of generating the rooted correlation triangle
inequalities. Remember that the polytope COR2

n can be expressed as

COR2
n = Conv{(xixj)1≤i≤j≤n | x ∈ {0, 1}n}.

Hence, valid inequalities for COR2
n can be generated in the following way. Sup-

pose that
aTx ≥ α and bTx ≥ β

hold for each x ∈ {0, 1}n. Then, the inequality

(aTx− α)(bTx− β) ≥ 0

also holds for each x ∈ {0, 1}n. If we develop the quantity (aTx − α)(bTx − β)
and linearize, i.e., if we replace each xixj (i 6= j) by the variable pij and each
xixi by the variable pii, then we obtain an inequality which is clearly valid for
COR2

n .
We illustrate the method, starting from the inequalities:

xi ≥ 0, 1 − xi ≥ 0, xj ≥ 0, 1 − xj ≥ 0

which hold trivially for x ∈ {0, 1}n. By multiplying them pairwise, we obtain
the inequalities:

xixj ≥ 0, i.e., pij ≥ 0,
xi(1 − xj) ≥ 0, i.e., pii ≥ pij,
xj(1 − xi) ≥ 0, i.e., pjj ≥ pij,
(1 − xi)(1 − xj) ≥ 0, i.e., pii + pjj − pij ≤ 1.

So, we have generated the rooted correlation triangle inequalities. This method
is, in fact, described in Lovász and Schrijver [1991] and Balas, Ceria and Cor-
nuejols [1993] as a way of generating a tighter relaxation from a given linear
relaxation of a 01-polytope.

27.2 Rooted Triangle Inequalities

In this section, we consider the triangle inequalities for the polytope CUT2n+1;
hence, they are defined on the n+1 elements of the set Vn+1 = {1, . . . , n, n+1}.
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Then, a triangle inequality is called a rooted triangle inequality if it uses the
element n+ 1, i.e., if it is of the form: xij − xik − xjk ≤ 0 or xij + xik + xjk ≤ 2,
for some i, j, k ∈ Vn+1 such that n+ 1 ∈ {i, j, k}.

The rooted triangle inequalities define a polytope, called the rooted semimet-
ric polytope, and denoted by RMET2

n+1. Therefore,

CUT2
n+1 ⊆ MET2

n+1 ⊆ RMET2
n+1.

Although the rooted polytope RMET2
n+1 is a weaker relaxation of CUT2

n+1 than
MET2

n+1, it contains already a lot of information. In particular, as stated in
Proposition 27.2.1 below, it constitutes an integer programming formulation for
the cut polytope.

In fact, the rooted semimetric polytope has some nice properties, that the
usual semimetric polytope does not have. For instance, Padberg [1989] shows
that every vertex of RMET2

n+1 is half-integral, i.e., has components 0, 1, 12 . In
contrast, MET2

n+1 has very complicated vertices, with arbitrarily large denomi-
nator. In fact, the unrooted triangle inequalities are already sufficient for cutting
off the fractional vertices of RMET2

n+1, as no vertex of MET2
n+1 is half-integral.

We present below several properties of the rooted semimetric polytope. Some
of them will be given for convenience in the context of correlations; that is, for
ξ(RMET2

n+1), the polytope defined by the rooted correlation triangle inequalities
(see Figure 27.1.1).

27.2.1 An Integer Programming Formulation for Max-Cut

Proposition 27.2.1. The only integral vectors of RMET2n are the cut vectors
δ(S) for S ⊆ Vn. Moreover, every cut vector is a vertex of RMET2

n .

Proof. Let x ∈ RMET2
n ∩ {0, 1}En . Set I := {i ∈ Vn | xi,n+1 = 0} and

J := {i ∈ Vn | xi,n+1 = 1}. As x satisfies the rooted triangle inequalities, we
obtain that xij = 0 for all i 6= j such that i, j ∈ I or i, j ∈ J , and xij = 1 for all
i ∈ I, j ∈ J . This shows that x is equal to the cut vector δ(J). We now show
that every cut vector is a vertex of RMET2n . In view of the symmetry properties
of RMET2

n , it suffices to show that the origin is a vertex of RMET2n . This
follows from the fact that the homogeneous rooted triangle inequalities (which
all contain the origin) have full rank

(n
2

)
.

Hence, the system which consists of the rooted triangle inequalities together with
the integrality constraint:

xij = 0, 1 for all ij

forms an integer programming formulation for the max-cut problem. In other
words, given a weight function c ∈ REn+1 , the max-cut problem:

max(cT δ(S) | S ⊆ Vn+1)
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can be reformulated as the problem:

max cTx
x ∈ RMET2

n+1

x ∈ {0, 1}En+1 .

Hence, if one wishes to solve the max-cut problem using linear programming
techniques, one faces the problem of finding what are the additional constraints
needed to be added to the above formulation in order to eliminate the integrality
condition. This is the question of finding the facet defining inequalities for the
cut polytope, which forms the main topic of Part V.

27.2.2 Volume of the Rooted Semimetric Polytope

Computing the exact volume of a polytope is, in general, a difficult problem.
A nice property of the rooted triangle inequalities is that one can compute ex-
actly the volume of the rooted semimetric polytope. This was done by Ko, Lee
and Steingrimsson [1996] who showed, using the switching symmetries, how the
problem can be reduced to that of computing the volume of an order polytope.

Theorem 27.2.2. Set d :=
(n+1

2

)
. Then, the d-dimensional volume of the rooted

semimetric polytope RMET2
n+1 is equal to

vol RMET2
n+1 =

n!

(2n)!
2n.

The d-dimensional volume of its image under the covariance mapping is

vol ξ(RMET2
n+1) =

n!

(2n)!
22n−d.

Proof. To simplify the notation, set Qn := ξ(RMET2
n+1). In a first step, let us

compute the d-dimensional volume of Qn. The polytope Qn is defined by the
rooted triangle inequalities, namely,

(i) pij ≥ 0, pij ≤ pii, pij ≤ pjj,

(ii) pii + pjj ≤ 1 + pij

for all 1 ≤ i < j ≤ n. For a ∈ {0, 1}n, set

Ca := {p ∈ Qn | ai ≤ pii ≤ ai +
1

2
(i = 1, . . . , n)}.

Then, for distinct a, b ∈ {0, 1}n, the d-dimensional volume of Ca ∩Cb is equal to
0 (as Ca ∩ Cb has dimension < d). Clearly, Qn is the union of the polytopes Ca
(for a ∈ {0, 1}n). Hence,

vol Qn =
∑

a∈{0,1}n

vol Ca.
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On the other hand, all Ca’s have the same volume. Indeed, if A denotes the set
of positions in which the coordinates of a and b differ, then Cb is the image of
Ca under the mapping ̺δ(A) (the analogue of switching, defined in (26.3.10)).
This implies that vol Ca = vol Cb, as the mapping ̺δ(A) is unimodular (i.e., its
matrix has determinant ±1). Therefore,

vol Qn = 2nvol C0.

We show below that

vol C0 =
n!

(2n)!
2n−d.

This implies immediately the value of the volume of Qn. Finally, as MET2
n+1 =

ξ−1(Qn) and as the determinant of the matrix of the linear mapping ξ−1 is equal

to 2(
n
2) (in absolute value), we have

vol MET2
n+1 =

n!

(2n)!
2n.

We now proceed to computing the volume of C0. Let C′
0 := 2C0 denote the

polytope C0 scaled by a factor 2. Then, as the inequality (ii) becomes redundant
in the description of C0, the polytope C′

0 is defined by the inequalities (i) and
0 ≤ pii ≤ 1 (for all i). Let (Sn,≺) denote the partially ordered set on

Sn := {pij | 1 ≤ i ≤ j ≤ n}

with pij ≺ pii and pij ≺ pjj as partial order. Then, C′
0 is the order polytope1

of the poset (Sn,≺). Let e(Sn,≺) denote the number of linear extensions2 of
(Sn,≺). Then,

vol C ′
0 =

e(Sn,≺)

d!
.

Define an ordered extension to be a linear extension of (Sn,≺) in which p11, . . . ,
pnn occur in that order. Hence, an ordered extension is a permutation of the
pij’s in which p11, . . . , pnn appear in that order and pij appears at the right of
both pii and pjj. Their number can be computed as follows. Suppose that pi,k+1

(i ≤ k), . . . , pin (i ≤ n− 1) have already been positioned. We now try to place
p1k, . . . , pk−1,k. The first element p1k should be placed at the right of pkk. As
there are already

fk := (n− k + 1) + k + (k + 1) + . . . + (n− 1) = n− k + 1 +

(
n

2

)
−
(
k

2

)

elements of Sn placed at the right of pkk (including pkk), there are fk possibilities
for chosing the position of p1k. Then, there are fk + 1 possibilities for placing

1The order polytope P of a partially ordered set (E,≺) is the polytope in the space RE ,
which is defined by the inequalities: 0 ≤ xe ≤ 1 (e ∈ E) and xe ≤ xf whenever e ≺ f (e, f ∈ E).

2A linear extension of a poset (E,≺) is any total order on E extending the partial order

≺. Stanley [1986] proves that vol P = e(E,≺)
|E|!

, if e(E,≺) is the number of linear extensions of

(E,≺) and P is the order polytope of (E,≺).
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p2k, up to fk + k − 2 possibilities for placing pk−1,k. In total, the number of
ordered extensions is

n∏

k=2

k−2∏

i=0

(fk + i) =
n∏

k=2

(fk + k − 2)!

(fk − 1)!
=

n∏

k=2

(
(n+1

2

)− (k2
)− 1)!

(
(n+1

2

)− (k+1
2

)
)!

which can be easily checked to be equal to d!
(2n)!2

n. Therefore, e(Sn,≺) = n!d!
(2n)!2

n,
as the number of linear extensions is equal to n! times the number of ordered
extensions. Hence, vol C′

0 = n!
(2n)!2

n and vol C0 = 2−dvol C ′
0 = n!

(2n)!2
n−d.

27.2.3 Additional Notes

Chvátal Cuts of Rooted Triangle Inequalities. Boros, Crama and Hammer
[1992] show that the Chvátal closure of the polytope ξ(RMET2n+1) is precisely the
polytope ξ(MET2

n+1); we mention their result (without proof) in Theorem 27.2.3
below. We recall the definition for the notion of Chvátal closure.

Let P be a polytope in Rk and let PI denote the convex hull of the integral
points of P ; so, PI ⊆ P . Given a ∈ Zk and α ∈ Z, if the inequality

aTx < α+ 1

is valid for P , then the inequality

aTx ≤ α

is valid for PI . This second inequality is called a Chvátal cut of P . Then, P′

denotes the polytope which is defined by all the possible Chvátal cuts; it is called
the Chvátal closure of P . Setting P(0) := P and P (k+1) = (P (k))′ for k ≥ 0, we
obtain a decreasing sequence of polytopes:

P (0) ⊇ P (1) ⊇ . . . ⊇ PI .

Chvátal [1973] (see, e.g., Schrijver [1986]) showed that there exists a finite index
k such that P(k) = PI . The smallest such k is called the Chvátal rank of P .

Theorem 27.2.3. The Chvátal closure of the rooted correlation semimetric
polytope ξ(RMET2

n+1) is the correlation semimetric polytope ξ(MET2n+1); that
is, (ξ(RMET2

n+1))
′ = ξ(MET2

n+1).

As an example, we indicate how to obtain the unrooted correlation triangle
inequality:

p11 + p22 + p33 − p12 − p13 − p23 ≤ 1
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as a Chvátal cut. Consider the following rooted correlation triangle inequalities:

p11 + p22 − p12 ≤ 1,
p11 + p33 − p13 ≤ 1,
p22 + p33 − p23 ≤ 1,

−p12 ≤ 0,
−p13 ≤ 0,
−p23 ≤ 0.

Summing them up and dividing by 2, we obtain:

p11 + p22 + p33 − p12 − p13 − p23 ≤ 3

2
< 2

which yields the Chvátal cut:

p11 + p22 + p33 − p12 − p13 − p23 ≤ 1.

Similarly, the inequality: −p11 + p12 + p13 − p23 ≤ 0 arises as Chvátal cut from
the following inequalities:

−p11 + p12 ≤ 0,
−p22 + p12 ≤ 0,
−p11 + p13 ≤ 0,
−p33 + p13 ≤ 0,

p22 + p33 − p23 ≤ 1,
−p23 ≤ 0.

Observe that Theorem 27.2.3 does not hold on the “cut side”, i.e., the Chvátal
closure of the rooted semimetric polytope RMET2

n+1 is not equal to the semi-
metric polytope MET2

n+1. For instance, the inequality

x12 + x13 + x23 ≤ 2

is not a Chvátal cut of RMET2
n+1. Indeed, the inequality

x12 + x13 + x23 < 3

is not valid for RMET2
n+1 as it is violated by the point x ∈ RMET2

n+1 defined
by xi,n+1 = 1

2 (1 ≤ i ≤ n) and xij = 1 (1 ≤ i < j ≤ n).

The following lower bound on the Chvátal rank of the semimetric polytope
was given by Chvátal, Cook and Hartman [1989].

Theorem 27.2.4. The Chvátal rank of the semimetric polytope MET2n is greater
than or equal to 1

4 (n− 4).

The Roof Duality Bound. Given weights c ∈ RVn∪En , consider the uncon-
strained quadratic 0-1 programming problem:
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(27.2.5)
Cn := max

∑
1≤i≤j≤n cijxixj =

s.t. x ∈ {0, 1}n
max cT p
s.t. p ∈ COR2

n .

As COR2
n ⊆ ξ(RMET2

n+1), the program

C2 := max(cT p | p ∈ ξ(RMET2
n+1))

gives an upper bound for the optimum value Cn of (27.2.5). The bound C2

is known as the roof duality bound. Several equivalent formulations of C2 are
given in Hammer, Hansen and Simeone [1984]. In fact, a sequence of bounds Ck
(k = 2, . . . , n− 1) has been formulated, verifying:

Cn ≤ Cn−1 ≤ . . . ≤ C3 ≤ C2

and having also several equivalent formulations; see Boros, Crama and Hammer
[1990], also Adams and Dearing [1994]. In particular, C3 is the optimum value
obtained when optimizing over the polytope ξ(MET2

n+1). Hence, C2 and C3 can
be computed in time polynomial in n. More generally, Ck can be computed
by solving a linear programming problem whose size is polynomial in n but
exponential in k. For more details we refer, e.g., to Boros and Hammer [1991],
Boros, Crama and Hammer [1992] and references therein.

27.3 Projecting the Triangle Inequalities

Let G = (Vn, E) be a graph on n nodes. Let MET(G) denote the projection of
the semimetric cone METn on the subspace RE indexed by the edge set of G;
MET(G) is called the semimetric cone of G. Similarly, let MET2(G) denote the
projection of MET2

n on RE ; it is called the semimetric polytope of G. In the same
way, CUT(G) (resp. CUT2(G)) denotes the projection of CUTn (resp. CUT2

n )
on RE . By the definitions,

(27.3.1) CUT(G) ⊆ MET(G) and CUT2(G) ⊆ MET2(G).

We recall that, for S ⊆ Vn, δG(S) denotes the cut in G which is the subset of
E consisting of the edges e ∈ E having exactly one endnode in S. Hence, the
cut cone CUT(G) of G coincides with the cone in RE generated by the vectors
χδG(S) (for S ⊆ Vn) and the cut polytope CUT2(G) coincides with the convex
hull of the vectors χδG(S) (for S ⊆ Vn).

As the collection of cuts in G is closed under the symmetric difference then,
by the results of Section 26.3, the switching operation applies to the cut polytope
CUT2(G) of an arbitrary graph G; it also applies to the semimetric polytope
MET2(G). Namely, for any S ⊆ Vn,

rδG(S)(CUT2(G)) = CUT2(G) and rδG(S)(MET2(G)) = MET2(G).

Note that MET2(G) contains no other integral vectors besides the incidence
vectors of the cuts δG(S) (S ⊆ Vn) (this follows easily from Proposition 27.2.1).
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The graphs G for which MET2(G) has only integral vertices, i.e., for which
equality holds in (27.3.1), will be characterized in Theorem 27.3.6. In general,
MET2(G) has lots of nonintegral vertices. It is easy to see that no vertex of
MET2(G) can have denominator 2. Hence, denominator 3 is the next case
after integrality. Laurent and Poljak [1995a] study3 the graphs G for which all
the vertices of MET2(G) have denominator ≤ 3; such graphs are completely
characterized up to 7 nodes.

27.3.1 The Semimetric Polytope of a Graph

We present here a linear description for the semimetric cone MET(G) and poly-
tope MET2(G). As we know a linear description of the polytope MET2n , a linear
description of MET2(G) can be deduced from that of MET2

n by applying, e.g.,
the Fourier-Motzkin elimination method. This method consists of combining the
linear inequalities defining MET2

n so as to eliminate the variables xe (e ∈ En\E)
that do not occur in CUT2(G); see, e.g., Schrijver [1986], Ziegler [1995].

Computing explicitly the projection of a polyhedron is, in general, a difficult
task as the Fourier-Motzkin elimination method becomes very often intractable
in practice. For instance, the correlation polytope4 COR2

n can be obtained as the
projection of a simplex lying in the space of dimension 2n (namely, of the simplex
COR2

n (2Vn); recall Section 5.4). Even though finding the facial structure of a
simplex is trivial, finding all the facets of COR2

n is a hard task ! However, in the
case of the semimetric polyhedra MET(G) and MET2(G), explicit descriptions
can be found fairly easily, as the results below indicate.

We recall that a cycle is any graph which can be decomposed as the edge
disjoint union of circuits. Let C be a circuit and let e be an edge that does not
belong to C; then, e is said to be a chord of C if it joins two nodes of C. The
circuit C is said to be chordless if it has no chord.

Let C be a cycle in G and let F ⊆ C be a subset of C such that |F | is odd.
The inequality:

(27.3.2)
∑

e∈F
xe −

∑

e∈C\F
xe ≤ |F | − 1

is called a cycle inequality. Note that the triangle inequalities are special cases
of cycle inequalities (obtained for |C| = 3). Note also that the class of cycle
inequalities is closed under the operation of switching by a cut. (This follows
from the fact that a cut and a cycle intersect in an even number of edges.)
Theorem 27.3.3 below shows that the cycle inequalities form a linear description
of the semimetric polyhedra; (i) is proved in Barahona [1993] and (ii), (iii) in
Barahona and Mahjoub [1986].

3An extension in the context of binary matroids is considered in Gerards and Laurent [1995].
4Therefore, up to a linear transformation, the cut polytope CUT2

n can also be obtained as
the projection of a simplex. We will see in Example 27.4.4 another construction permitting to
realize any cut polytope CUT2(G) as projection of a simplex.
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Theorem 27.3.3. Let G = (Vn, E) be a graph.

(i) MET(G) = {x ∈ RE+ | xe − x(C \ {e}) ≤ 0 for C cycle of G, e ∈ C},

MET2(G) = {x ∈ RE+ | xe ≤ 1 for e ∈ E, x(F ) − x(C \ F ) ≤ |F | − 1
for C cycle of G,F ⊆ C, |F | odd}.

(ii) Let C be a cycle in G, e ∈ C, and F ⊆ C with |F | odd. The inequality
xe − x(C \ {e}) ≤ 0 (resp. x(F ) − x(C \ F ) ≤ |F | − 1) defines a facet of
MET(G) (resp. MET2(G)) if and only if C is a chordless circuit.

(iii) Let e ∈ E. The inequality xe ≥ 0 (resp. xe ≤ 1) defines a facet of MET(G)
(resp. MET2(G)) if and only if e does not belong to any triangle of G.

Proof. A first observation is that, due to switching, it is sufficient to prove the
statements relevant to the cone MET(G). In a first step, we show that, if C is a
cycle in G which is not a chordless circuit, then the inequality: xe−x(C \{e}) ≤
0 (where e ∈ C) follows from other cycle inequalities and the nonnegativity
condition x ≥ 0. Indeed, suppose that C = C1 ∪ . . . ∪ Cp, where the Ci’s
are edge disjoint circuits. We can suppose that e ∈ C1. Then, the inequality:
xe−x(C \ {e}) ≤ 0 follows by summing up the inequalities: xe−x(C1 \ {e}) ≤ 0
and −x(Ci) ≤ 0 (i = 2, . . . , p). Suppose now that C is a circuit having a chord
f . Then, this chord determines a partition of C into two paths P1, P2 such that
Ci := Pi∪{f} is a circuit for i = 1, 2. Then, assuming that e ∈ P1, the inequality:
xe−x(C \ {e}) ≤ 0 follows by summing up the inequalities: xe−x(C1 \ {e}) ≤ 0
and xf − x(C2 \ {f}) ≤ 0.

Proof of (i). Set Q(G) := {x ∈ RE+ | xe−x(C \{e}) ≤ 0 for C cycle of G, e ∈ C}.
We first check that MET(G) ⊆ Q(G). Let x ∈ MET(G), let C be a cycle of G
and let e ∈ C. We show that xe − x(C \ {e}) ≤ 0. By the above observation,
we can suppose that C is a circuit, say, C = (1, 2, . . . , p) and that e := 12. By
the definition of MET(G), there exists y ∈ METn whose projection on RE is x.
Then,

xe − x(C \ {e}) = x12 − x23 − . . .− xp−1,p =
∑

2≤i≤p−1

y1i − y1,i+1 − yi,i+1 ≤ 0.

We show the converse inclusion: Q(G) ⊆ MET(G) by induction on |E|. This
inclusion holds trivially if G = Kn. Suppose now that G 6= Kn. Let e := uv
be an edge of Kn that does not belong to E and let x ∈ Q(G). Then, x can be
extended to a vector y ∈ RE∪{e} which belongs to Q(G+ e) (G+ e denoting the
graph obtained by adding the edge e to G). For this, it suffices to take ye := α,
where

max
P |f∈P

(xf − x(P \ {f})) ≤ α ≤ min
Q

x(Q),

where P,Q run over all paths joining u and v in G. (Such an α exists as x ∈
Q(G).) By the induction assumption, Q(G+ e) = MET(G+ e). Therefore, y is
the projection on RE∪{e} of some z ∈ METn. Hence, x is the projection of z on
RE, which shows that x ∈ MET(G).
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The proofs of (ii),(iii) can be found in Barahona and Mahjoub [1986]; in fact,
it is shown there that, under the same assumptions, the inequality in question
defines a facet of the cut polytope CUT2(G).

The list of inequalities that define the semimetric polytope MET2(G) can be
exponentially long (in terms of n). Nevertheless, Barahona and Mahjoub [1986]
showed that the separation problem for the system:

(27.3.4)

{
0 ≤ xe ≤ 1 for e ∈ E,
x(F ) − x(C \ F ) ≤ |F | − 1 for C cycle of G,F ⊆ C, |F | odd

can be solved in polynomial time (in terms of n and the size of x). This problem
can be formulated as follows:

Given a vector x ∈ QE , decide whether x satisfies all the inequalities
from the system (27.3.4). If not, find an inequality from (27.3.4) that
is violated by x.

This problem can be solved in the following way. First, check whether 0 ≤ xe ≤ 1
holds for all edges e ∈ E. If not, then we have found a violated inequality.
Otherwise, we can suppose that 0 ≤ xe ≤ 1 for all e ∈ E. Note that the cycle
inequality (27.3.2) can be rewritten as

∑

e∈C\F
xe +

∑

e∈F
(1 − xe) ≥ 1.

We form a new graph G′ with two nodes i′ and i′′ for each node i of G. For each
edge ij ∈ E, we introduce in G′ the edges i′j′, i′′j′′ with weight xij , and the edges
i′j′′, i′′j′ with weight 1−xij . So, we have defined a weight function on the edges
of G′. Now, for each node i of G, we compute a shortest (with respect to this
weight function) path in G′ from i′ to i′′. Then, the minimum over all nodes i of
G of these shortest paths gives the minimum value of

∑
e∈C\F xe+

∑
e∈F (1−xe)

over all cycles C, F ⊆ C, |F | odd. If this minimum is less than one, then we
have found a violated inequality; else, x satisfies all the cycle inequalities. As the
computation of a shortest path can be done in O(n2), the separation problem
for the system (27.3.4) can be solved in O(n3).

As an application (using the ellipsoid method, as exposed in Grötschel,
Lovász and Schrijver [1988]), we deduce that one can optimize a linear objective
function over the system (27.3.4) in polynomial time.

Proposition 27.3.5. Given c ∈ QE , the optimization problem:

max(cTx | x satisfies the system (27.3.4))

can be solved in polynomial time (polynomial in n and in the size of c).
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In fact, there is a much simpler argument for proving Proposition 27.3.5,
based on Theorem 27.3.3. Indeed, as MET2(G) is the projection on RE of
MET2

n , the two problems:

max(cTx | x ∈ MET2(G)) and max(cTx | x ∈ MET2
n ),

where we extend c to REn by setting ce := 0 if e ∈ En \ E, have the same
optimum value. Now, the latter problem is a linear programming problem with(n
2

)
variables and 4

(n
3

)
constraints. Hence, it can clearly be solved in polynomial

time.

27.3.2 The Cut Polytope for Graphs with no K5-Minor

We now return to the question of characterizing the graphs G for which equality
holds in (27.3.1). Due to switching,

CUT(G) = MET(G) ⇐⇒ CUT2(G) = MET2(G).

As was already mentioned earlier, equality does not hold for the graph G = K5.
The next result shows that K5 is the unique minimal (in the sense of graph
minors) exception.

Theorem 27.3.6. CUT(G) = MET(G) or, equivalently, CUT2(G) = MET2(G)
for a graph G if and only if G does not have any K5-minor.

Seymour [1981] proved the result concerning the cones and Barahona and
Mahjoub [1986] derived the result for the polytopes using switching. Another
proof for Theorem 27.3.6 is given by Barahona [1983]; it is based on a decom-
position result due to Wagner [1937] for the graphs with no K5-minor, together
with a result showing how to derive a linear description of the cut polytope of a
graph which is a clique k-sum of two smaller graphs (k ≤ 3). As an application
of Proposition 27.3.5 and Theorem 27.3.6, we obtain:

Theorem 27.3.7. The max-cut problem:

max(cTx | x ∈ CUT2(G))

(where c ∈ QE ) can be solved in polynomial time for the class of graphs with no
K5-minor.

In particular, the max-cut problem can be solved in polynomial time for the class
of planar graphs.

As correlation polyhedra and cut polyhedra are in one-to-one linear corre-
spondence, the above results have immediate counterparts for the correlation
polyhedra of arbitrary graphs.

Given a graph G = (Vn, E), its correlation cone COR(G) and its correlation
polytope COR2(G) are defined in the following way: COR(G) (resp. COR2(G))
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is the projection of the correlation cone CORn (resp. of the correlation polytope
COR2

n ) on the subspace RE∪Vn , where Vn is identified with the set of diagonal
pairs ii for i ∈ Vn.

Let ∇G denote the suspension graph of G obtained by adding a new node,
say n+ 1, to G and making it adjacent to all nodes in Vn. Hence, the edge set
E(∇G) of ∇G is E ∪ {(i, n + 1) | i ∈ Vn}. We can define a one-to-one mapping
ξ between the space indexed by E(∇G) and the space indexed by E ∪ Vn in the
following manner: For x ∈ RE(∇G) , y ∈ RE∪Vn , y = ξ(x) if

(27.3.8)
yii = xi,n+1 for i ∈ Vn,
yij = 1

2(xi,n+1 + xj,n+1 − xij) for ij ∈ E.

Hence, when G is the complete graph Kn, then ξ is the usual covariance mapping
(pointed at position n+1), as defined in Section 26.1. Clearly, the cut polyhedra
for ∇G and the correlation polyhedra for G are in one-to-one correspondence.
Namely,

COR(G) = ξ(CUT(∇G)) and COR2(G) = ξ(CUT2(∇G)).

In particular, Theorem 27.3.6 implies the following result for the correlation
polyhedra, established in Padberg [1989].

Theorem 27.3.9. For a graph G, COR(G) = ξ(MET(∇G)) or, equivalently,
COR2(G) = ξ(MET2(∇G)) if and only if G has no K4-minor.

The inequalities defining the polytope ξ(MET2(∇G)) arise as projections of
the correlation triangle inequalities. A linear system defining the polytope
ξ(MET2(∇G)) can be easily deduced from the linear description of MET2(∇G)
presented in Theorem 27.3.3 (i) by applying the transformation ξ (an explicit
description can be found, e.g., in Padberg [1989]).

As a direct application of Theorem 27.3.7, the unconstrained quadratic 0-1
programming problem (5.1.4) can be solved in polynomial time when the graph
supporting the linear objective function has no K4-minor.

27.4 An Excursion to Cycle Polytopes of Binary

Matroids

As we remarked earlier, some properties of the cut polyhedra are valid for more
general set families than cuts. Indeed, we saw in Section 26.3.1 that the switching
operation applies to general set families under the only assumption that they are
closed under taking symmetric differences. Such set families are known in the
literature as cycle spaces of binary matroids. Cut polyhedra are, thus, special
instances of cycle polyhedra of binary matroids. Cycles in graphs yield other
interesting instances of binary matroids. Therefore, binary matroids constitute
a unified framework for a variety of combinatorial objects. We cannot go here too
much in detail into matroid theory as a detailed treatment falls out of the scope
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of the present book. We will therefore restrict ourselves to presenting without
proof some of the main known results relevant to cycle polyhedra.

We recall in the first subsection some necessary definitions5 about binary
matroids. Section 27.4.2 reviews results about the cycle cone and polytope of
a binary matroid. We then group in Section 27.4.3 several additional questions
and results related, in particular, to the lattice and the integer cone generated
by cycles of binary matroids.

27.4.1 Preliminaries on Binary Matroids

Cycles, Cocycles and Representation Matrix. A binary matroid M con-
sists of a pair (E, C), where E is a finite set (the groundset of M) and C is a
collection of subsets of E that is closed under taking symmetric differences, i.e.,
such that

C△C ′ ∈ C for all C,C ′ ∈ C.
The members of C are called the cycles of M and C is the cycle space of M.
Note that ∅ is always a cycle.

Two examples of binary matroids can be constructed from graphs. Let G =
(V,E) be a graph. As the symmetric difference of two Eulerian subgraphs (cycles)
of G remains a Eulerian subgraph of G, we have a first matroid on E, denoted
as M(G) and called the graphic matroid of G, whose cycle space is the set of
Eulerian subgraphs of G. The symmetric difference of two cuts in G is again a
cut; therefore, we have a second binary matroid on E, denoted as M∗(G) and
called the cographic matroid of G, with cycle space the set of cuts of G.

Let M = (E, C) be a binary matroid. Set

C∗ := {D ⊆ E : |C ∩D| is even for all C ∈ C}.

Then, C∗ is obviously closed under the symmetric difference. Hence, M∗ :=
(E, C∗) is again a binary matroid, called the dual matroid of M. The members
of C∗ (the cycles of M∗) are also called the cocycles of M. One can check that
the dual of M∗ coincides with M, i.e., (M∗)∗ = M. As an example, the dual of
the graphic matroid M(G) of a graph G is its cographic matroid M∗(G) (since
a cut and a cycle have an even intersection).

The minimal nonempty cycles of M are called the circuits of M and the
minimal nonempty cocycles are called its cocircuits. Every nonempty cycle can
be decomposed as a disjoint union of circuits. The matroid M is said to be
cosimple if no cocircuit has cardinality 1 or 2.

Binary matroids can alternatively be viewed as linear spaces over the field
with two elements GF (2) := {0, 1}. Indeed, for any subsets C,C′ ⊆ E, χC△C ′

=
χC + χC

′
(modulo 2). Hence, the set family C is closed under the symmetric

difference if and only if the set {χC | C ∈ C} is a linear subspace of the binary

5The reader may consult Welsh [1976] or Oxley [1992] for general information about ma-
troids. We do not consider here matroids in full generality but only binary matroids.
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space GF (2)E . Hence, identifying a set and its incidence vector, the cycle spaces
of binary matroids are nothing but the linear subspaces over GF (2). In this
terminology, the cocycle space C∗ of M is the orthogonal complement of the
cycle space C in GF (2)E .

Hence, the cycle space of a binary matroid M on E can be realized as the
set of solutions x ∈ {0, 1}E of a linear equation:

Mx = 0 (modulo 2)

where M is a zero-one matrix whose columns are indexed by E. Such matrix M
is called a representation matrix of M. The maximum number of columns of M
that are linearly independent over GF (2) is called the rank of M. If M has rank
r, then a representation matrix can be found for M having the form (Ir | A),
where Ir is the r× r identity matrix. Moreover, the matrix (AT | I|E|−r) is then
a representation matrix for the dual M∗ of M.

Minors. Let M = (E, C) be a binary matroid and let e ∈ E. Set

C\e := {C ⊆ E \ {e} | C ∈ C}, C/e := {C \ {e} | C ∈ C}.

In the language of binary spaces, C\e arises from C by taking its intersection
with the hyperplane xe = 0, while C/e arises from C by taking its projection on
RE\{e} . Both C\e and C/e are again binary spaces. Hence, M\e := (E\{e}, C\e)
and M/e := (E \ {e}, C/e) are both binary matroids. One says that M\e is
obtained from M by deleting the element e and that M/e is obtained from M
by contracting the element e. The deletion and contraction operations commute
with respect to taking duals, namely,

(M\e)∗ = M∗/e, (M/e)∗ = M∗\e.

If N is a binary matroid that can be obtained from M by a series of deletions
and contractions, one says that N is a minor of M. Every minor of M is of
the form: M\X/Y , where X,Y are two disjoint subsets of E (as the deletion
and contraction operations commute, i.e., M\e/f = M/f\e). Observe that the
deletion and contraction operations, when applied to the graphic matroid M(G)
of a graph G, correspond to the usual operations of deleting and contracting an
edge in G. Hence, the class of graphic matroids is closed under taking minors;
the same holds for the class of cographic matroids.

We now present several concrete examples of binary matroids that we will
need.

The Fano Matroid. The Fano matroid F7 is the binary matroid on the set
E := {1, 2, 3, 4, 5, 6, 7} whose cycles are ∅, E, and the sets

124, 135, 167, 236, 257, 347, 456

together with their complements. (Here we denote a set {1, 2, 4} by the string
124.) Note that the cycles of size 3 of F7 can be viewed as the lines of the
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Fano plane, shown in Figure 27.4.1. A representation matrix for F7 is also
shown there. The dual Fano matroid F∗7 is the dual of the Fano matroid F7; its
nonempty cycles are the complements of the lines in the Fano plane.




1 2 3 4 5 6 7

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1




Representation matrix for F7

6

 3

75

1  4 2
The Fano plane

Figure 27.4.1

The Matroid R10. Let E := {eij | 1 ≤ i < j ≤ 5} denote the edge set of the
complete graph K5. Then, R10 denotes the binary matroid on E whose cycles
are the sets C ⊆ E forming a cycle of even length in K5. The cocycles are the
cuts of K5 together with their complements. Note that R10 is self-dual; that is,
R10 is isomorphic to its dual R∗

10.

The Binary Projective Space Pr. Let Pr denote the binary matroid which
is represented by the r× (2r − 1) matrix whose columns are all possible nonzero
binary vectors of length r. Hence, P3 coincides with the Fano matroid F7. One
can verify that Pr has 2r − 1 nonempty cocycles, each having size 2r−1, and
that their incidence vectors are linearly independent. The dual matroid P∗

r is
represented, for instance, by the matrix (I2r−r−1 | Ar), where I2r−r−1 is the
identity matrix of order 2r−r−1 and Ar is the matrix whose rows are all binary
vectors of length r having at least two nonzero components.

27.4.2 The Cycle Cone and the Cycle Polytope

Let M = (E, C) be a binary matroid. The cycle polytope of M is the polytope
CYC2(M), which is defined as the convex hull of the incidence vectors of the
cycles of M, i.e.,

CYC2(M) := Conv({χC | C ∈ C}).

The cycle cone of M is the cone CYC(M), which is defined as the conic hull of
the incidence vectors of the cycles of M, i.e.,

CYC(M) := {
∑

C∈C
λCχ

C | λC ≥ 0 for all C ∈ C}.
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Therefore, if M = M∗(G) is the cographic matroid of a graph G, then its cycle
cone and polytope coincide, respectively, with the cut cone CUT(G) and the cut
polytope CUT2(G) of G.

For the study of cycle polyhedra, we may clearly assume to deal with cosimple
matroids. Indeed, if {e} is a cocircuit of M, then no cycle of M contains e
and, thus, the cycle cone and polytope are contained in the hyperplane xe =
0. Similarly, if {e, f} is a cocircuit of M, then the cycle polyhedra lie in the
hyperplane xe − xf = 0. Moreover, the cycle polyhedra of a cosimple binary
matroid are full-dimensional (cf. Barahona and Grötschel [1986]).

By the results of Section 26.3.1, the switching operation preserves the cy-
cle polytope CYC2(M) of any binary matroid M; that is, rC(CYC2(M)) =
CYC2(M) for any cycle C of M. Moreover, a linear description of the cycle
polytope CYC2(M) can be derived from a linear description of the cycle cone
CYC(M). (Recall Proposition 26.3.6.)

Some valid inequalities for the cycle polytope CYC2(M) can be easily defined
as follows. First, the inequalities: 0 ≤ xe ≤ 1 (for e ∈ E) are trivially valid for
CYC2(M). Let D be a cocycle of M and let F ⊆ D with |F | odd; then, the
cocycle inequality:

(27.4.2) x(F ) − x(D \ F ) ≤ |F | − 1

is valid for CYC2(M). (This follows from the fact that every cycle has an even
intersection with the cocycle D). Let MET2(M) denote the polytope in RE ,
which is defined by the inequalities: 0 ≤ xe ≤ 1 (e ∈ E) together with the
cocycle inequalities (27.4.2) for D ∈ C∗, F ⊆ D with |F | odd. Similarly, define
the cone:

MET(M) := {x ∈ RE+ | xe − x(D \ {e}) ≤ 0 for all D ∈ C∗, e ∈ D}.

In the case when M is the cographic matroid M∗(G) of a graph G, then
MET2(M∗(G)) = MET2(G) and MET(M∗(G)) = MET(G) are the usual semi-
metric polyhedra of the graph G (which explains our notation).

We have the inclusions:

CYC2(M) ⊆ MET2(M), CYC(M) ⊆ MET(M).

Hence arises the question of characterizing the binary matroids for which equality
holds. Due to switching,

CYC2(M) = MET2(M) ⇐⇒ CYC(M) = MET(M).

Following Seymour [1981], the binary matroidsM for which equality: CYC(M) =
MET(M) holds are said to have the ‘sums of circuits property’.

Observe that none of the binary matroids F∗
7 , R10, or M∗(K5) has the sums

of circuits property. Indeed, the vector (23 , . . . ,
2
3) is a fractional vertex of the

polytope MET2(M) for M = M∗(K5) or F∗
7 and the vector (3

4 , . . . ,
3
4) is a
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fractional vertex of the polytope MET2(R10). In fact, the exclusion of these
three matroids F∗

7 , R10, and M∗(K5) as minors characterizes the sums of circuits
property.

Theorem 27.4.3. A binary matroid M has the sums of circuits property, that
is, CYC(M) = MET(M) or, equivalently, CYC2(M) = MET2(M), if and only
if M does not have F∗

7 , M∗(K5), or R10 as a minor.

In particular, the cographic matroid of a graph with no K5 minor has the
sums of circuits property, a result already mentioned in Theorem 27.3.6, and any
graphic matroid has the sums of circuits property, a result established earlier by
Seymour [1979].

Theorem 27.4.3 was proved by Seymour [1981], who considered the sums of
circuits property along with several other properties related to multicommodity
flows; the result follows there from more general considerations. A more direct
proof was given by Grötschel and Truemper [1989a].

The proof of Theorem 27.4.3 relies essentially on some decomposition results
for binary matroids, involving an operation on matroids which can be seen as an
analogue of the clique sum operation for graphs. Roughly speaking, a matroid
with no F ∗

7 , M∗(K5), or R10 minor can be decomposed into pieces that are either
cographic matroids with no M∗(K5) minor, or graphic matroids, or copies of F7.
Thus the proof can be sketched as follows: show that the sums of circuits property
is preserved under taking minors and under the ‘clique sum operation’.

Further results about the facial structure of cycle polytopes can be found
in Barahona and Grötschel [1986] and Grötschel and Truemper [1989b]. For
instance, Barahona and Grötschel give conditions under which the cocycle in-
equality (27.4.2) defines a facet of the cycle polytope. Clearly, if the inequality
(27.4.2) is facet defining, then D must be a cocircuit without a chord (a chord
of D being an element e ∈ E for which there exist two cocircuits D1 and D2

such that D1 ∩D2 = {e} and D = D1△D2). Conversely, if M has no F∗
7 minor

and if D is chordless cocircuit, then the inequality (27.4.2) defines a facet of
CYC2(M).

Example 27.4.4. The cycle polytope of the dual projective space P∗
r .

The dual projective space P∗
r is defined on a groundset of cardinality 2r−1; it has

2r − 1 nonempty cycles, each of cardinality 2r−1, and whose incidence vectors
are linearly independent. Therefore, its cycle polytope CYC2(P∗

r ) is a full-
dimensional simplex with 2r vertices, whose facets are defined by the inequality:

∑

e∈E
xe ≤ 2r−1

together with its switchings by the 2r − 1 nonempty cycles. These switched
inequalities all have a right hand side zero and they constitute the full linear
description of the cone CYC(P∗

r ). As an example, we obtain that the cycle
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polytope of the dual Fano matroid F∗
7 = P∗

3 is defined by the inequality:

∑

e∈E
xe ≤ 4

together with its switchings by the seven circuits of F∗
7 (complements of the Fano

lines). We note, therefore, that the cocycle inequalities (27.4.2) do not define
facets of the cycle polytope of F∗

7 .
Hence, the cycle polytope of a dual projective space, being a simplex, has a

very simple facial structure. In fact, as we see below, any cycle polytope can be
realized as the projection of such a simplex. But finding the facial structure of a
cycle polytope is a task which, in general, is far from being easy ! (It is already
difficult in the special case when the binary matroid in question is the cographic
matroid of the complete graph; then we have the problem of describing the facial
structure of the cut polytope CUT2

n which forms, in fact, the main objective of
this Part V.)

Following Grötschel and Truemper [1989b], we now indicate how any cycle
polytope can be realized as projection of a simplex. Let M be a cosimple binary
matroid. Consider a representation matrix of M of the form (I | A) where A is
a 0, 1-matrix having two units at least per row. Say, A has r columns. Recall
that P∗

r is represented by the matrix (I2r−r−1 | Ar), where the rows of Ar are all
binary vectors of length r with two units at least. Now, A is a row submatrix of
Ar. Let Y denote the index set for the rows of Ar not present in A. Then, M
coincides with the contraction minor P∗

r /Y of P∗
r . Therefore, its cycle polytope

CYC2(M) can be obtained from the cycle polytope CYC2(P∗
r ) of P∗

r by pro-
jecting out the variables xe (e ∈ Y ).

27.4.3 More about Cycle Spaces

We mention here some questions and results dealing with other relevant aspects
of binary matroids. In particular, we mention results concerning optimization
over cycle spaces. We also consider the lattice Z(M) and the integer cone Z+(M)
generated by the cycle space of a binary matroid M. In this setting, we find
again two problems raised earlier concerning the existence of nonbasic Delaunay
polytopes and the study of Hilbert bases.

Indeed, as every cycle polytope CYC2(M) is a Delaunay polytope in the
lattice Z(M), Problem 13.2.3 raises the question of existence of a basis of Z(M)
consisting only of cycles. This question remains open for general binary matroids
but several classes of binary matroids are known for which it has a positive
answer. Goddyn [1993] raised the question of characterizing the binary matroids
whose cycle space is a Hilbert basis, which contains the question posed in Section
25.3 about Hilbert bases of cuts. We review what is known about this problem.

The Maximum Weight Cycle Problem. Let M = (E, C) be a binary ma-
troid and w ∈ QE . The maximum weight cycle problem consists of finding a
cycle C ∈ C whose weight

∑
e∈C we is maximum. This problem is NP-hard as
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it contains the max-cut problem as a special instance. However, this problem
becomes polynomial-time solvable for several classes of binary matroids. This is
the case, for instance, for cographic matroids of graphs with no K5-minor (recall
Theorem 27.3.7). This is also the case for graphic matroids, by the results of
Edmonds and Johnson [1973]. Grötschel and Truemper [1989a] show that the
maximum weight cycle problem can be solved in polynomial time for the larger
class of binary matroids having the sums of circuits property.

The latter result is based on showing that the separation problem for the
polytope MET2(M) can be solved in polynomial time if M has the sums of
circuits property. Using decomposition results, Grötschel and Truemper reduce
this question to the special cases when M is graphic or cographic. A separation
algorithm was given by Padberg and Rao [1982] in the graphic case and by
Barahona and Mahjoub [1986] in the cographic case (the latter algorithm has
been described in Section 27.3.1).

The Cycle Lattice. For a binary matroid M = (E, C), let

Z(M) := {
∑

C∈C
λCχ

C | λC ∈ Z ∀C ∈ C}

denote the lattice generated by its cycle space, called the cycle lattice of M.
If M is the cographic matroid of the complete graph Kn, then Z(M) coincides
with the cut lattice Ln introduced earlier. As we saw in Proposition 25.1.1, the
cut lattice Ln has a very easy description; namely, an integer vector x belongs
to Ln if and only if xij + xik + xjk ∈ 2Z for all i, j, k ∈ {1, . . . , n}. One may
wonder whether a similar result holds for any cycle lattice.

As cycles and cocycles have an even intersection, the following parity condi-
tion:

(27.4.5) x(D) ∈ 2Z for every cocycle D of M

is obviously necessary for a vector x ∈ ZE to belong to Z(M). However, this
condition does not suffice in general for characterizing Z(M). For instance, if
M is the dual Fano matroid F∗

7 , then every vector x ∈ Z(F ∗
7 ) should, in fact,

satisfy the congruence relation:
∑

e∈E
xe = 0 (modulo 4). The next result follows

from the work of Cunningham [1977].

Theorem 27.4.6. The following assertions are equivalent for a cosimple binary
matroid M.

(i) Z(M) is completely characterized by the parity condition (27.4.5) and the
same holds for every minor of M.

(ii) M does not have F∗
7 as a minor.

This leaves unanswered the question of characterizing the binary matroids
M whose cycle space is described by the parity condition (while not requiring
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this property for minors of M). Lovász and Seress [1993] give a complete answer
to this question. They give in fact several equivalent characterizations for such
matroids; we mention in Theorem 27.4.7 below one of them. Further results on
cycle lattices can be found in Lovász and Seress [1993, 1995].

We need a definition. Given a matrix B with rows b1, . . . , br, let B′ denote
the matrix with rows b1, . . . , br and bi ◦ bj (1 ≤ i < j ≤ r) where, for two vectors
a, b ∈ Rn , a ◦ b stands for the vector with components aibi (1 ≤ i ≤ n).

Theorem 27.4.7. Let M be a cosimple binary matroid with representation ma-
trix B. Then, the cycle lattice Z(M) is completely characterized by the parity
condition (27.4.5) if and only if the matrix B′ has full column rank over GF (2).

Delaunay Polytopes in Cycle Lattices. We saw in Example 13.2.5 that the
cut polytope CUT2

n is a Delaunay Polytope in the cut lattice Ln. More generally,
as noted in Hochstättler, Laurent and Loebl [1996], the following holds.

Lemma 27.4.8. Let M be a cosimple binary matroid. Then, its cycle polytope
CYC2(M) is a Delaunay polytope in the cycle lattice Z(M).

Proof. We verify that the polytope CYC2(M) is inscribed on a sphere S which
is empty in Z(M). Indeed, CYC2(M) is inscribed on the sphere S with center
c := (1

2 , . . . ,
1
2 ) and radius r := 1

2

√
|E|. Let x ∈ Z(M). Then,

(‖ x− c ‖2)
2 − r2 =

∑

e∈E
(xe −

1

2
)2 − 1

4
|E| =

∑

e∈E
xe(xe − 1) ≥ 0

with equality if and only if x is 0, 1-valued. Now the only binary vectors in Z(M)
are the incidence vectors of cycles. This shows that the sphere S is empty in
Z(M).

We asked in Problem 13.2.3 whether every Delaunay polytope is basic. This
question remains already unsettled for Delaunay polytopes arising from cycle
lattices. That is, we have the following question:

Problem 27.4.9. Given a binary matroid M, can one find a basis B for the
cycle lattice Z(M) consisting only of cycles ?

The following information is known. Gallucio and Loebl [1995] show that Prob-
lem 27.4.9 has a positive answer for graphic matroids. Gallucio and Loebl [1996]
show that the same holds for matroids with no F∗

7 minor (using decomposition
results). A short elementary proof for this result is given by Hochstättler, Lau-
rent and Loebl [1996]; moreover, these authors extend the result to one-element
extensions of binary matroids with no F∗

7 minor. Problem 27.4.9 is further stud-
ied in Hochstättler and Loebl [1995].
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The Integer Cycle Cone. For a binary matroid M = (E, C), let

Z+(M) := {
∑

C∈C
λCχ

C | λC ∈ Z+ ∀C ∈ C}

denote the integer cone generated by its cycle space, called the integer cycle cone
of M. If M is the cographic matroid of the complete graph Kn, then Z+(M)
consists, in fact, of the distances on n points that are isometrically hypercube
embeddable (recall Proposition 4.2.4). Clearly,

Z+(M) ⊆ Z(M)∩ CYC(M).

As in Section 25.3, we say that C is a Hilbert basis if equality holds in the above
inclusion. Characterizing the binary matroids whose cycle space C is a Hilbert
basis is an open problem, already within cographic matroids. We summarize
below what is known about this question.

Alspach, Goddyn and Zhang [1994] answer this question for graphic matroids.
Namely, they show that the family of cycles of a graph G is a Hilbert basis if
and only if G does not have the Petersen graph as a minor. (Indeed, let x denote
the vector indexed by the edge set of the Petersen graph taking value 2 on a
perfect matching and value 1 on the remaining edges. Then, x ∈ Z(M(P10)) ∩
CYC(M(P10)) but x 6∈ Z+(M(P10)), which shows that the cycles of P10 do not
form a Hilbert basis.)

Note that CYC(M) = MET(M) for graphic matroids. More generally, this
equality holds for matroids with the sums of circuits property. Fu and Goddyn
[1995] have characterized the Hilbert basis property within this class. Namely,
they show that

Z+(M) = Z(M)∩ MET(M)

if and only if M is a binary matroid with no F ∗
7 , R10, M∗(K5), or M(P10) minor.

At this point let us recall the result of Laurent [1996d] for cographic matroids,
already mentioned in Section 25.3: The cocycle space of M(G) is a Hilbert basis
for any graph G 6= K6 on at most 6 nodes and it is not a Hilbert basis if G has
a K6 minor.



Chapter 28. Hypermetric
Inequalities

In this chapter we study in detail the class of hypermetric inequalities. In partic-
ular, we present several subclasses of hypermetric inequalities that define facets
of the cut cone. We also address the separation problem for hypermetric in-
equalities. Although its exact complexity status is not known, there are several
results that indicate that it is very likely to be a hard problem. In particular,
the problem of finding the smallest violated hypermetric inequality is NP-hard.

Hypermetric inequalities belong, in fact, to the larger class of gap inequali-
ties. Unfortunately, very little is known about these more general inequalities.
In particular, it is not known whether they contain new facets (besides the hy-
permetric ones). Moreover, computing their exact right hand sides turns out to
be an NP-complete problem ! One way to avoid this difficulty is by relaxing the
right hand sides by a larger number (which is easy to compute). In this manner,
one obtains a class of valid inequalities which defines a weaker relaxation of the
cut polytope. This relaxation forms a (nonpolyhedral) convex body which has
the property that one can optimize over it in polynomial time. Moreover, opti-
mizing over this convex body yields a very tight approximation for the max-cut
problem (see Section 28.4.1).

28.1 Hypermetric Inequalities: Validity

Hypermetric inequalities constitute the first nontrivial class of valid inequali-
ties for the cut cone. As was already mentioned earlier in Section 6.1 (and
Remark 5.4.11) they were discovered independently by several authors with dif-
ferent mathematical backgrounds and motivation. Hypermetric inequalities have
already been introduced in Chapter 6 in the context of ℓ1- and ℓ2-metrics. We
refer to Part II for a detailed study of some of their properties, in particular, in
connection with geometry of numbers. We concentrate here on the question of
identifying hypermetric facets. In order to make this chapter self-contained, we
recall below the definitions and basic properties of hypermetric inequalities.

To define hypermetric and further types of inequalities, it is convenient to
use the following notation. For b ∈ Rn , we remind that Q(b) denotes the vector
in REn whose ij-th component is equal to the product bibj . Hence, for x ∈ REn ,

Q(b)Tx =
∑

ij∈En

bibjxij.

445
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This notation gives us a convenient way of defining left hand sides of inequalities
with

(n
2

)
coefficients based on a given vector b of length n. In case we want to

highlight the fact that the vector b is in Rn , we will write Qn(b) or Qn(b1, . . . , bn)
instead of Q(b).

Definition 28.1.1. Let b = (b1, . . . , bn) be an integral vector satisfying
∑n
i=1 bi =

1. Then, the inequality:

(28.1.2) Q(b)Tx =
∑

1≤i<j≤n
bibjxij ≤ 0.

is called the hypermetric inequality defined by b. A hypermetric inequality
(28.1.2) is said to be (2k+1)-gonal if

∑
i|bi<0 |bi| = k or, equivalently, if

∑n
i=1 |bi| =

2k + 1.

Lemma 28.1.3. Every hypermetric inequality (28.1.2) is valid for the cut cone
CUTn. Moreover, the roots of a hypermetric inequality are the cut vectors δ(S)
(S ⊆ Vn) for which b(S) :=

∑
i∈S bi is equal to 0 or 1.

Proof. Given S ⊆ Vn,
∑
ij∈En

bibjδ(S)ij = b(S)(1 − b(S)) ≤ 0, since b(S) is an
integer.

We remind that hypermetric inequalities contain as a special case the triangle
inequality:

xij − xik − xjk ≤ 0

(which is obtained by taking bi = bj := 1, bk = −1 and bh := 0 for h ∈
Vn \ {i, j, k}).

Since the 0-lifting operation produces facets from facets, we obtain that the
inequalityQ(b)Tx ≤ 0 is facet inducing if and only if the inequalityQ(b′)Tx ≤ 0 is
facet inducing, where b′ is any vector obtained from b by adding zero components.
If we apply the permutation operation to a hypermetric inequality or if we switch
it by one of its roots, then we obtain again a hypermetric inequality. More
precisely, a permutation of Q(b)Tx ≤ 0 amounts to permuting the bi’s. Switching
the inequality Q(b)Tx ≤ 0 by the cut δ(S) with b(S) = 0 yields the inequality
Q(b′)Tx ≤ 0, where b′i = −bi if i ∈ S and b′i = bi otherwise. In other words,
switching a hypermetric inequality by a root amounts to changing the signs of
some coefficients of b.

If we switch the inequality Q(b)Tx ≤ 0 by a cut vector δ(S) which is not a
root of it, we obtain an inequality which is valid for the cut polytope CUT2n (but
not for the cut cone CUTn). For example, the inequality:

∑

1≤i<j≤2k+1

xij ≤ k(k + 1)

is a switching of the inequality Q2k+1(1, . . . , 1,−1, . . . ,−1)Tx ≤ 0.
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Hypermetric inequalities are, by definition, the inequalities of the form:

Q(b)Tx ≤ 0,

where b ∈ Zn and the sum σ(b) :=
∑n
i=1 bi of its components is equal to 1. One

may wonder what happens if we relax the condition on the sum σ(b) or if we
allow a nonzero right-hand side. Can the hypermetric inequality be modified so
as to yield another valid inequality ? This question can be answered positively
in several ways.

Maybe we should start with reminding that the inequality Q(b)Tx ≤ 0 in the
case σ(b) = 0 is nothing but the negative type inequality, which is valid but not
facet defining for CUTn (recall Corollary 6.1.4).

If b ∈ Zn has an arbitrary sum σ(b) then one can always construct an in-
equality:

Q(b)Tx ≤ v0

which is valid for CUT2
n ; it suffices to define the right-hand side v0 in a suitable

manner. We have, then, the class of gap inequalities which will be discussed in
Section 28.4.

On the other hand, if σ(b) ≥ 2 but, yet, one wants to construct a homogeneous
inequality, then one has to modify the quantity Q(b)Tx in order to preserve
validity. Clique-web inequalities and suspended-tree inequalities are inequalities
that fall into this category.

There is yet another way of generalizing hypermetric inequalities, which con-
sists of asking validity not for all cut vectors but only for a restricted subset of
them. For instance, if we allow σ(b) ≥ 2 then the inequality Q(b)Tx ≤ 0 is no
longer valid for all cut vectors but it remains valid for all the cut vectors δ(S)
such that |S| 6∈ {1, . . . , σ(b) − 1}. When σ(b) = 2, the inequality Q(b)Tx ≤ 0 is
valid (and, sometimes, facet defining) for the even cut cone ECUTn. Other such
examples will be given in Section 28.5.

28.2 Hypermetric Facets

There are several known classes of hypermetric inequalities that define facets of
CUTn. Here are some examples that can be derived from results presented later:

• Q3(1, 1,−1)T x ≤ 0 (triangle facet),

• Q5(1, 1, 1,−1,−1)T x ≤ 0 (pentagonal facet),

• Q2k+1(1, . . . , 1,−1, . . . ,−1)Tx ≤ 0 for k ≥ 1 (pure hypermetric facet),

• Qn(b1, . . . , bp,−1, . . . ,−1)Tx ≤ 0 for 3 ≤ p ≤ n− 3, b1, . . . , bp > 0,

• Q11(2, 2, 2,−2,−2,−2, 1, 1, 1,−1,−1)T x ≤ 0,

• Q15(3, 3,−3,−3,−3, 1, 1, 1, 1, 1, 1, 1,−1,−1,−1)T x ≤ 0,

• Q19(4, 4,−4,−4, 3, 3,−3,−3,−3, 1, 1, 1, 1, 1, 1, 1,−1,−1,−1)T x ≤ 0.
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Of course, by permuting, switching, and 0-lifting we can produce whole classes
of hypermetric facets from these examples. For instance, for all cut polytopes
CUT2

n , all triangle facets can be obtained from Q(1, 1,−1)T x ≤ 0 using these
operations.

In this section we will provide a number of sufficient and/or necessary condi-
tions for a hypermetric inequality to define a facet of CUTn. At present there is
no complete characterization of all hypermetric facets, i.e., of all integer vectors
b = (b1, . . . , bn) with

∑n
i=1 bi = 1 and for which Q(b)Tx ≤ 0 is facet inducing.

However, a complete characterization of the hypermetric facets is known for the
following classes of parameters b = (b1, . . . , bn):

• b1 ≥ . . . ≥ bp > 0 > bp+1 ≥ . . . ≥ bn with bn = −1 or with bn−1 = −1 (see
Theorem 28.2.4)(i.e., all negative bi’s except at most one are equal to −1),

• bi ∈ {w,−w, 1,−1} for all i ∈ {1, . . . , n}, for some integer w ≥ 2 (see
Theorem 28.2.9).

There are infinitely many hypermetric inequalities. All of them are sup-
porting and, thus, define nonempty faces of CUTn. However, since CUTn is a
polyhedral cone, it has only finitely many faces, i.e., there are some faces that are
induced by infinitely many different hypermetric inequalities. Moreover, since
CUTn is full-dimensional, each of its facets is defined by an inequality that is
unique up to positive scaling. Because of the condition

∑
1≤i≤n bi = 1, no hyper-

metric inequality is a positive multiple of another. Thus, among all hypermetric
inequalities Qn(b)

Tx ≤ 0, there are only finitely many ones that define facets of
the cut cone CUTn. We recall the following stronger result from Section 14.2:
The hypermetric cone is polyhedral, i.e., among the hypermetric inequalities only
a finite subset of them is not redundant.

The next result states a necessary condition for a hypermetric inequality to
define a facet of the cut cone.

Proposition 28.2.1. Let b ∈ Zn with
∑n
i=1 bi = 1. Suppose that bi, bj are

positive coefficients and that bk is a negative coefficient of b. Set P := {r | br >
0} \ {i, j}. If ∑

r∈P
br + bk < 0

then the face F of CUTn defined by Q(b)Tx ≤ 0 is not a facet and F is contained
in the facet defined by the triangle inequality: xij − xik − xjk ≤ 0.

Proof. Let δ(S) be any cut vector. We may assume that k 6∈ S. If i, j ∈ S, then

b(S) ≥ bi + bj − bk +
∑
r|br<0 br = bi + bj − bk + 1 −∑r|br>0 br

= 1 − bk −
∑
r∈P br > 1.

Hence, δ(S) is not a root of F since b(S) 6∈ {0, 1}. Therefore, |S ∩ {i, j}| ≤ 1 for
every root δ(S) of F . This shows that every root of F is a root of the triangle
inequality: xij − xik − xjk ≤ 0.
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This observation yields that, if Q(b)Tx ≤ 0 is facet defining, then the sum of
the two largest coefficients of b and the absolute value of the smallest coefficient
cannot be larger than the sum of all positive coefficients of b. In fact, using
general polyhedral theory (see Grötschel, Lovász and Schrijver [1988]), one can
prove that the coefficients bi cannot be larger than 2n

4
. Using the fact that

b(S) ∈ {0, 1} for all roots δ(S) of a hypermetric inequality, one can improve this
bound to n2n

2
. Let us recall the bound:

max
1≤i≤n

|bi| ≤
2n−1

(2n−2
n−1

)(n− 1)!

if the inequality Q(b)Tx ≤ 0 defines a facet of CUTn; it was obtained in Part II
(see Proposition 14.2.4) as a byproduct of the interpretation of hypermetrics in
terms of geometry of numbers. This latter bound is better than n2n

2
. Note, how-

ever, that for all the known hypermetric facets, max1≤i≤n |bi| is only quadratic
in n (see Example 28.2.6).

The main tool for constructing hypermetric facets is the lifting procedure
described in Section 26.5 and, more precisely, the Lifting Lemma 26.5.3. Assume
that the inequality:

vTx := Qn(b1, . . . , bn)
Tx ≤ 0

is facet inducing for CUTn and, given an integer c, consider the inequality:

(v′)Tx := Qn+1(b1 − c, b2, . . . , bn, c)
Tx ≤ 0.

Hence, the inequality (v′)Tx ≤ 0 is obtained from the inequality vTx ≤ 0 by
splitting the node 1 into nodes 1, n + 1. As mentioned in Section 26.5, in order
to show that (v′)Tx ≤ 0 is facet inducing for CUTn+1, it suffices to verify that the
condition (iii) from Lemma 26.5.3 holds. Hence, it suffices to exhibit n subsets
Tk (1 ≤ k ≤ n) of {2, . . . , n, n+ 1} containing the element n+ 1, such that the
cut vectors δ(Tk) are roots of (v′)Tx ≤ 0 and such that the incidence vectors of
the sets Tk are linearly independent.

We mention below several lifting theorems for hypermetric facets which are
based on this procedure (see Lemma 28.2.3 and Theorem 28.2.4). As an appli-
cation, we can construct several classes of hypermetric facets. First, as a direct
application of Theorem 26.4.3, we have the following result.

Proposition 28.2.2. Let b1, . . . , bn be integers with
∑n
i=1 bi = 1 and b2 = b1−1.

If the inequality:
Qn(b1, b1 − 1, b3, . . . , bn)

Tx ≤ 0

defines a facet of CUTn, then the inequality:

Qn+1(b1 − 1, b1 − 1, b3, . . . , bn, 1)Tx ≤ 0

defines a facet of CUTn+1. In particular, if
∑n
i=2 bi = 2 and if the inequality:

Qn(−1, b2, . . . , bn)
Tx ≤ 0
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defines a facet of CUTn, then the inequality:

Qn+2(−1, b2, . . . , bn, 1,−1)T x ≤ 0

defines a facet of CUTn+2.

We use thereafter the notation [p, q] to denote the set of all integers i with
p ≤ i ≤ q, where 1 ≤ p ≤ q are some integers. Lemma 28.2.3 and Theorem 28.2.4
below are due to Deza [1973a](see also Deza and Laurent [1992a] for full proofs).

Lemma 28.2.3. Let b1, . . . , bn be integers with
∑n
i=1 bi = 1. Suppose that

b2 ≥ b3 ≥ . . . ≥ bp > 0 and bp+1 = . . . = bn = −1 where p ≥ 2, n ≥ 4. Suppose
furthermore that Qn(b1, . . . , bn)

Tx ≤ 0 is facet inducing. Then,

(i) Qn+1(b1 + 1, b2, . . . , bn,−1)Tx ≤ 0 is facet inducing.

(ii) Qn+1(b1 − c, b2, . . . , bn, c)
Tx ≤ 0 is facet inducing, for any integer c ∈

[1, n− p− b2].

Proof. Let us give the proof of (ii) in order to illustrate the proof technique.
Consider the n cut vectors δ(S), where the sets S are as follows:

S = {i, n+ 1} ∪ [p+ 1, p+ bi + c − 1] for 2 ≤ i ≤ p,
S = {2, n+ 1} ∪ [p+ 1, p+ b2 + c] − {i} for p+ 1 ≤ i ≤ p+ b2 + c − 1,
S = {2, n+ 1} ∪ [p+ 1, p+ b2 + c− 1] ∪ {i} for p+ b2 + c ≤ i ≤ n,
S = {2, 3, n + 1} ∪ [p+ 1, p+ b2 + b3 + c].

These n cut vectors δ(S) are roots of Qn+1(b1−c, b2, . . . , bn, c)Tx ≤ 0 and one can
check that the incidence vectors of the sets S are linearly independent. Therefore,
by the Lifting Lemma 26.5.3, Qn+1(b1 − c, b2, . . . , bn, c)

Tx ≤ 0 is facet inducing.
The proof of (i) is similar but with more technical details, as one must distinguish
the cases when b2 = 1 and when b2 ≥ 2.

Theorem 28.2.4. Let b1, . . . , bn be nonzero integers such that
∑n
i=1 bi = 1

and b1 ≥ b2 ≥ . . . ≥ bp > 0 > bp+1 ≥ . . . ≥ bn, where p is some integer with
2 ≤ p ≤ n− 1.

(i) If p = 2, then Q(b)Tx ≤ 0 defines a facet if and only if n = 3 and b1 =
b2 = 1, b3 = −1.

(ii) If 2 6= p = n− 1, then Q(b)Tx ≤ 0 does not define a facet.

(iii) Suppose p = n− 2.

(iiia) If Q(b)Tx ≤ 0 defines a facet, then b1 = 1.
(iiib) If bn−1 = −1, then Q(b)Tx ≤ 0 defines a facet if and only if bn =

−n+ 4 and b1 = . . . = bn−2 = 1.

(iv) Suppose 3 ≤ p ≤ n− 3 and bn−1 = −1. Then, Q(b)Tx ≤ 0 defines a facet
if and only if b1 + b2 ≤ n− p− 1 + sign(|b1 − bp|).
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(Here, sign(|b1 − bp|) = 1 if b1 > bp and sign(|b1 − bp|) = 0 if b1 = bp.)

Proof. Let R denote the set of roots of the inequality Q(b)Tx ≤ 0.
(i) We suppose p = 2. Assume that the inequality Q(b)Tx ≤ 0 is facet defining.
We show that it coincides with a triangle inequality. We may assume that 1 6∈ S
and 2 ∈ S for every root δ(S) of Q(b)Tx ≤ 0. Set F := {(1, 2), (1, 3), (2, 3)}.
The set RF of the projections on F of the roots in R consists of the two vectors
(1, 0, 1) and (1, 1, 0). Hence, the set RF has rank 2 which, by Lemma 26.5.2,
implies that the projection of Qn(b)

Tx ≤ 0 on F is zero. Therefore, Qn(b)
Tx ≤ 0

is the triangle inequality x12 − x13 − x23 ≤ 0.
(ii) If 2 6= p = n−1, then R consists of the cut vectors δ({i}) with bi = 1. Hence
the rank of R is less than or equal to n − 1, implying that Q(b)Tx ≤ 0 is not
facet defining.
(iii) Suppose p = n − 2. We can suppose that n 6∈ S for each root δ(S) in
R. If b1 > 1 then, for every root δ(S), n − 1 ∈ S whenever 1 ∈ S. Set
F := {(1, n − 1), (1, n), (n, n − 1)}. The set RF consists of the vectors (0, 0, 0),
(0, 1, 1) and (1, 0, 1). By Lemma 26.5.2, if Q(b)Tx ≤ 0 is facet defining, then
the projection of Qn(b)

Tx ≤ 0 on F is zero, which yields a contradiction. This
shows (iiia). If bn−1 = −1 then one shows that Q(b)Tx ≤ 0 is facet defining by
applying iteratively the lifting procedure from Lemma 28.2.3 (i), starting, e.g.,
from the triangle facet Q3(1, 1,−1)T x ≤ 0.
We leave the details of the proof of (iv) to the reader.

Corollary 28.2.5.

(i) All pure hypermetric inequalities are facet defining.

(ii) Let b ∈ Zn such that
∑n
i=1 bi = 1. If b has at least 3 and at most n−3 pos-

itive entries and if all negative entries are equal to −1 then the associated
hypermetric inequality Q(b)Tx ≤ 0 is facet defining.

Example 28.2.6. (Avis and Deza [1991]) Given n ≥ 7, set m := ⌊n+1
4 ⌋ and let

b ∈ Zn be defined by

bi := m for i = 1, . . . , n− 2m− 1,
bi := m− 1 for i = n− 2m,
bi := −1 for i = n− 2m+ 1, . . . , n− 1,
bi := m(2 + 2m− n) + 1 for i = n.

Hence,
∑n
i=1 bi = 1 and

∑n
i=1 |bi| = 2m(n − 2m) − 3 ≥ n2

4 − 4. The hyper-
metric inequality Q(b)Tx ≤ 0 is facet defining as it satisfies the conditions of
Theorem 28.2.4 (iv). Therefore, this gives an example of a hypermetric facet
of CUTn which is k-gonal with k quadratic in n. We do not know examples
yielding larger values for k.

We now give a lifting result permitting to identify all hypermetric facets
Qn(b)

Tx ≤ 0 where bi ∈ {w,−w, 1,−1} for 1 ≤ i ≤ n, for some integer w ≥ 2.
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Let α,α′, β, β′, w be nonnegative integers such that (α − α′)w + β − β′ = 1. We
want to characterize hypermetric facets of the form

(28.2.7) Qn(w, . . . , w,−w, . . . ,−w, 1, . . . , 1,−1, . . . ,−1)Tx ≤ 0,

where there are α coefficients w, α′ coefficients −w, β coefficients 1, and β′

coefficients −1. For short, we denote the above hypermetric inequality by

Qn(w
(α),−w(α′), 1(β),−1(β′))Tx ≤ 0;

so, n = α+ α′ + β + β′.

We first formulate a “double lifting” lemma. Namely, we prove that under
certain conditions two coefficients of b can be “doubled” in such a way that,
if a hypermetric inequality Q(b)Tx ≤ 0 of type (28.2.7) is facet defining, then
the inequality associated with the new vector also is. As an application, one
can characterize the hypermetric inequalities of type (28.2.7) that define facets.
Lemma 28.2.8, Theorem 28.2.9 and Lemma 28.2.10 below can be found in Deza
and Laurent [1992b].

Lemma 28.2.8. Let b = (w(α),−w(α′), 1(β),−1(β′)) be an integral vector with
α,α′ ≥ 1, β, β′ satisfying (α − α′)w + β − β′ = 1. Suppose that Qn(b)

Tx ≤ 0 is
facet defining and that
- either, α > α′,
- or, α = α′ and β ≥ w
holds. Then, for b′ := (w(α+1),−w(α′+1), 1(β),−1(β′)), the inequality
Qn+2(b

′)Tx ≤ 0 is facet defining.

Theorem 28.2.9. Let α,α′, β, β′, w ≥ 2 be integers satisfying min(α,α′) ≥ 1
and (α − α′)w + β − β′ = 1. Set b := (w(α),−w(α′), 1(β),−1(β′)) and n = α +
α′ + β + β′.

(i) If α = α′ (i.e., β′ = β− 1), then Qn(b)
Tx ≤ 0 is facet inducing if and only

if min(β, β′) ≥ w.

(ii) If |α − α′| is a nonzero even number, then Qn(b)
Tx ≤ 0 is facet inducing

if and only if min(β, β′) ≥ 1 or (min(β, β′) = 0 and |α− α′| ≥ 4).

(iii) If |α − α′| is an odd number, then Qn(b)
Tx ≤ 0 is facet inducing if and

only if |α− α′| ≥ 3 or (|α− α′| = 1 and min(β, β′) ≥ w).

Lemma 28.2.10. If the inequality:

Qn(w
(α),−w(α′), 1(β),−1(β′))Tx ≤ 0

defines a facet of CUTn, then the inequality:

Qn+2γ((w + 1)(γ), (−w − 1)(γ), w(α),−w(α′), 1(β),−1(β′))Tx ≤ 0
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defines a facet of CUTn+2γ, for any integer γ ≥ 1.

Remark 28.2.11. Some facets introduced by Padberg [1989] for the correlation
polytope correspond (up to switching and via the covariance mapping) to some
subclasses of the hypermetric facets obtained in Theorem 28.2.4 (iii); this is also
the case for some classes of facets given by Barahona and Mahjoub [1986] for
the cut polytope (see Deza and Laurent [1992a] for a precise description of the
connection).

For various reasons, it is interesting to identify faces that are simplexes.
For instance, for b = (1, 1,−1), b = (1, 1,−1, 0), and b = (1, 1, 1,−1,−1), the
inequality Q(b)Tx ≤ 0 defines a simplex facet of CUT3, CUT4, and CUT5,
respectively. These three examples belong to the class of inequalities: Q(n −
4, 1, 1,−1, . . . ,−1)Tx ≤ 0 (n ≥ 3). Any such inequality defines a simplex facet
of CUTn, as the next result from Deza and Laurent [1992a] shows.

Corollary 28.2.12. Let b = (b1, b2, 1, 1,−1, . . . − 1) ∈ Zn where b1, b2 are
integers such that b1 ≥ b2, b1 + b2 = n− 5 and assume that n ≥ 6.

(i) Qn(b)
Tx ≤ 0 is facet inducing if and only if b1 ≤ n− 4.

(ii) The face defined by Qn(b)
Tx ≤ 0 is a simplex if and only if b1 ≥ n− 4.

Proof. (i) follows by applying Theorem 28.2.4 and (ii) by checking that all
nonzero roots are linearly independent.

28.3 Separation of Hypermetric Inequalities

We consider in this section the separation problem for the class of hypermetric
inequalities. This problem can be formulated as follows:

(P0) Separation of hypermetric inequalities.
Instance: An integral distance d on n points.
Question: Does d satisfy all hypermetric inequalities ? If not, find a hypermetric
inequality violated by d.

We do not know what is the exact complexity of the problem (P0). However,
the complexity of several related problems, described below, is known. This
indicates that (P0) is very likely to be a hard problem. The complexity results
for the problems (P1), (P2), (P3) have been established by Avis and Grishukhin
[1993].

(P1) Testing all hypermetric inequalities.
Instance: An integral distance d on n points.
Question: Does d satisfy all hypermetric inequalities ?
Complexity: co-NP. There exists an algorithm solving (P1) whose running time
is in O(h(n)

(
n4(log2(n))2 + 2n3 log2(n) log2(‖ d ‖∞)

)
), where h(n) denotes the
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number of hypermetric inequalities that define facets of the hypermetric cone
HYPn.

We recall (from Proposition 14.2.4) that, if Qn(b)
Tx ≤ 0 defines a facet of the

hypermetric cone HYPn, then

max
1≤i≤n

|bi| ≤ Bn :=
2n−1

(2n−2
n−1

)(n− 1)!.

Hence, a rough estimate of h(n) is

h(n) ≤ (2Bn + 1)n−1.

Proof for (P1). Let d be an integral distance on n points. In order to check that
d satisfies all hypermetric inequalities, i.e., that d ∈ HYPn, it suffices to check
whether Qn(b)

T d ≤ 0 holds for all b ∈ Zn with sum 1 and such that |bi| ≤ Bn for
all i. Note that Bn can be represented by O(n log2 n) bits. Hence, computing
Qn(b)

T d can be done in O(h(n)
(
n4(log2(n))2 + 2n3 log2(n) log2(‖ d ‖∞)

)
) ele-

mentary operations, which is polynomial in the size of the input. This shows
that (P1) is in co-NP and the announced running time for solving (P1).

The separation problem1 for hypermetric inequalities is very likely to be a
hard problem, in view of the complexity status of the next problems (P2) and
(P3).

(P2) Testing all (2m+ 1)-gonal inequalities.
Instance: An integral distance d on n points and an integer m.
Question: Does d satisfy all (2m+ 1)-gonal hypermetric inequalities ?
Complexity: co-NP-complete. Also co-NP-complete if one tests only the pure
(2m+ 1)-gonal inequalities.

(P3) Finding the smallest violated hypermetric inequality.
Instance: An integral distance d on n points.
Question: Does d satisfy all hypermetric inequalities ? If not, find the smallest
integer k such that d violates a (2k + 1)-gonal inequality.
Complexity: NP-hard.

In what follows, we prove the complexity of the problems (P2) and (P3). For
this, we use the known complexity of the next problems.

(P4) Finding an induced complete bipartite subgraph.
Instance: A graph G on n vertices and an integer m such that 2m+ 1 ≤ n.

1A heuristic for separating hypermetric inequalities is proposed in De Simone [1992], De
Simone and Rinaldi [1994]. (The main idea is to reformulate the separation problem for hy-
permetric inequalities as a max-cut problem over a larger complete graph, to which can then
be applied any good heuristic for the max-cut problem.) Hypermetric inequalities are reported
there to be effective from a computational point of view for solving max-cut problems on com-
plete graphs of about 20-25 nodes.
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Question: Does G contain the complete bipartite graph Km,m+1 as an induced
subgraph ?
Complexity: NP-complete (Garey and Johnson [1979]).

(P5) Finding the largest induced complete bipartite subgraph.
Instance: A graph G on n nodes.
Question: Find the largest integer m such that G contains Km,m+1 as an induced
subgraph.
Complexity: NP-hard (Garey and Johnson [1979]).

We show that (P4) reduces to (P2) and that (P5) reduces to at most n−1
2

questions of type (P3). We introduce some notation. Let G = (Vn, E) be a graph
and let t ∈ R+ . We construct the distance dt(G) on Vn by setting

dt(G)ij = 1 if ij ∈ E,
dt(G)ij = 1 + t if ij ∈ En \ E.

Given b ∈ Zn, set

V+(b) := {i ∈ Vn | bi > 0}, V− = {i ∈ Vn | bi < 0}, V (b) := V+(b) ∪ V−(b).

Let E(G, b) denote the edge set of the subgraph of G induced by V (b) and set

E△(G, b) := E(G, b)△E(KV+(b),V−(b)),

where E(KV+(b),V−(b)) denotes the edge set of the complete bipartite graph with
node bipartition (V+(b), V−(b)). We state an intermediate result.

Lemma 28.3.1. Let b ∈ Zn with
∑n
i=1 bi = 1 and

∑n
i=1 |bi| = 2k + 1. Then,

(28.3.2) Q(b)T dt(G) = k2t− k − (t+ 1)
∑

1≤i≤n

|bi|(|bi| − 1)

2
− t

∑

ij∈E△(G,b)

|bibj |.

Proof. Suppose first that E△(G, b) = ∅. Then,

Q(b)Tdt(G) =
∑

i∈V−(b),j∈V+(b)

bibj + (1 + t)


 ∑

i,j∈V−(b),i<j

bibj +
∑

i,j∈V+(b),i<j

bibj


 .

Using the identity:

∑

i,j∈X,i<j
bibj =

1

2
(

(∑

i∈X
bi

)2

−
∑

i∈X
(bi)

2),

and the fact that
∑
i∈V+(b) bi = k + 1,

∑
i∈V−(b) bi = −k, we obtain:

Q(b)T dt(G) = −k(k + 1) +
t+ 1

2
(k2 + (k + 1)2 −

∑

i∈V (b)

(bi)
2),
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which coincides with the sum of the first three terms of (28.3.2). If E△(G, b) 6= ∅,
then one easily checks that one more term should be added, which is equal to
−t∑ij∈E△(G,b) |bibj |.

Corollary 28.3.3. Let G = (Vn, E) be a graph and let m be an integer such
that n ≥ 2m+ 1. Set dm(G) := m3dt(G), where t := 1

m + 1
m3 . Then,

(i) dm(G) satisfies all (2k + 1)-gonal inequalities, for 1 ≤ k ≤ m− 1.

(ii) dm(G) satisfies all (2m + 1)-gonal inequalities except when G contains
Km,m+1 as an induced subgraph in which case dm(G) violates a pure (2m+
1)-gonal inequality.

Proof. Suppose
∑n
i=1 |bi| = 2k + 1 with k ≤ m − 1. Then, by Lemma 28.3.1,

Q(b)T dt(G) ≤ k2t− k ≤ 0. Suppose now that k = m. By Lemma 28.3.1,

Q(b)T dt(G) ≤ 1

m
− (t+ 1)

∑

1≤i≤n

|bi|(|bi| − 1)

2
− t

∑

ij∈E△(G,b)

|bibj |.

If |bi| ≥ 2 for some i or if E△(G, b) 6= ∅, then Q(b)Tdt(G) ≤ 1
m−t < 0. Otherwise,

b is pure, G contains an induced Km,m+1 subgraph, and Q(b)T dt(G) = 1
m > 0.

Proof for (P2). Let G be a graph on n nodes and let m be an integer such that
n ≥ 2m + 1. Consider the distance dm(G). By Corollary 28.3.3, G contains
an induced Km,m+1 subgraph if and only if dm(G) violates a (2m + 1)-gonal
inequality (or, equivalently, a pure (2m + 1)-gonal inequality). This shows that
(P2) is co-NP complete.

Proof for (P3). Let G be a graph on n nodes. Set k := ⌊n−1
2 ⌋. Let m denote the

largest integer such that G contains an induced Km,m+1 subgraph. For s ≤ k,
set t := 1

s + 1
s3 and consider the distance ds(G). If s > m, then G contains

no induced Ks,s+1 subgraph. Hence, by Corollary 28.3.3, the answer to (P3)
is, either that ds satisfies all hypermetric inequalities, or that ds(G) violates a
(2p+1)-gonal inequality for some p > s. If s = m, then G contains Km,m+1 and
the answer to (P3) is that the smallest inequality violated by ds(G) is (2s+ 1)-
gonal. Therefore, the answers of (P3) applied successively to s = k, k − 1, . . . , 1,
give us the value of m. This shows that (P3) is NP-hard.

Remark 28.3.4. In contrast with the hypermetric case, the separation problem
for the class of negative type inequalities can be solved in polynomial time. An
easy way to see it is by using relation (6.1.15), which states that the negative
type cone NEGn+1 and the positive semidefinite cone PSDn are in one-to-one
correspondence via the covariance mapping ξ. In other words, let d be a distance
on n+ 1 points. Define the n× n symmetric matrix (pij) by setting

pii := di,n+1 for i = 1, . . . , n,
pij := 1

2(di,n+1 + dj,n+1 − dij) for i 6= j = 1, . . . , n.
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Then, d satisfies all the negative type inequalities if and only if the matrix (pij)
is positive semidefinite. Moreover, a negative type inequality violated by d (if
some exists) can be found in polynomial time (by Proposition 2.4.3).

28.4 Gap Inequalities

We describe here a large class of valid inequalities for CUT2
n , which generalizes

the hypermetric and negative type inequalities. It was introduced by Laurent
and Poljak [1996b]. For b ∈ Zn, the quantity

γ(b) := min
S⊆Vn

|b(S) − b(S)|

is called the gap of b. (Here, S := Vn \ S.) We also set

σ(b) :=
∑

1≤i≤n
bi.

Then, the inequality:

(28.4.1) Q(b)Tx ≤ 1

4
(σ(b)2 − γ(b)2)

is called a gap inequality. The next two lemmas show validity of the gap inequal-
ities and invariance of the gap under switching.

Lemma 28.4.2. Every gap inequality (28.4.1) is valid for CUT2n .

Proof. Let S ⊆ Vn and suppose, e.g., that b(S) ≤ σ(b)
2 . Then, by the definition

of the gap γ(b), we have that b(S) ≤ σ(b)−γ(b)
2 , which implies that Q(b)T δ(S) =

b(S)(σ(b) − b(S)) ≤ σ(b)2−γ(b)2
4 .

Lemma 28.4.3. Let b ∈ Zn, let A ⊆ Vn and let b′ be obtained from b by chang-
ing the signs of its components indexed by A, i.e., b′i := −bi if i ∈ A and b′i := bi
if i ∈ Vn \ A. Then, γ(b′) = γ(b).

Proof. For S ⊆ Vn, we have b′(S△A) = b(S \ A) − b(A \ S) = b(S) − b(A) and
b′(S△A) = b(S ∩A)− b(S ∩A) = b(S)− b(A). This implies that γ(b′) = γ(b).

Clearly, the class of inequalities (28.4.1) is closed under permutation. Lemma
28.4.3 implies that it is also closed under switching, since

1

4
(σ(b′)2 − γ(b′)2) =

1

4
(σ(b)2 − γ(b)2) −Q(b)T δ(A)

if b′ is obtained from b by changing the signs of its components indexed by the
set A ⊆ Vn. Therefore, the class of gap inequalities is closed under permutation
and switching.



458 Chapter 28. Hypermetric Inequalities

Observe that γ(b) and σ(b) have the same parity. Trivially, γ(b) ≤ σ(b). One
can check that

γ(b) ≤ max
i

|bi|.

In particular, γ(b) = 1 if σ(b) = 1, and γ(b) = 0 if σ(b) = 0. Therefore, the
gap inequalities (28.4.1) with σ(b) = 1 are precisely the hypermetric inequalities,
while those with σ(b) = 0 are the negative type inequalities. Using Lemma 28.4.3
we can identify which gap inequalities arise as switchings of hypermetric or neg-
ative type inequalities.

Lemma 28.4.4. Let b ∈ Zn. Then, the inequality (28.4.1) can be obtained by
switching from a hypermetric inequality (resp. from a negative type inequality)
if and only if γ(b) = 1 (resp. γ(b) = 0) or, equivalently, if there exists a subset
S ⊆ Vn such that b(S) = 1

2 (σ(b) − 1) (resp. b(S) = 1
2σ(b)).

Hence, the orbits of faces of CUT2
n defined by hypermetric inequalities consist

of those faces of CUT2
n defined by inequalities of type (28.4.1) for which γ(b) = 1

holds. In other words, Chapter 28 is devoted to the class of the gap inequalities
(28.4.1) with γ(b) = 1.

We remind that no inequality (28.4.1) with gap γ(b) = 0 is facet defining
(by Corollary 6.1.4). In the case of a gap γ(b) = 1, large classes of inequalities
(28.4.1) defining facets have been presented in Section 28.2. The gap inequalities
(28.4.1) seem difficult to study, in the case of a gap γ(b) ≥ 2. In particular, we
do not know any example of an integer sequence b ∈ Zn with γ(b) ≥ 2 and for
which the gap inequality (28.4.1) defines a facet of CUT2n . Thus, the following
problem is open.

Problem 28.4.5. Does there exist an integer sequence b with gap γ(b) ≥ 2 for
which the gap inequality: Q(b)Tx ≤ 1

4 (σ2(b) − γ2(b)) defines a facet of the cut
polytope ?

Only the following is known. Laurent and Poljak [1996b] show2 that, if the
components of b take only two distinct values (in absolute value) and if γ(b) ≥ 2,
then the gap inequality (28.4.1) is not facet inducing.

In addition, the gap inequalities present the following difficulty: It is an NP-
hard problem to compute the gap of a sequence b ∈ Zn and, thus, to compute the
exact right-hand side of the inequality (28.4.1). Indeed, given b ∈ Zn, deciding
whether γ(b) = 0 amounts to deciding whether b can be partitioned into two
subsequences of equal sums; this is the partition problem, which is known to be
NP-complete (Garey and Johnson [1979]).

In order to avoid this difficulty, one may consider the following weaker in-
equality:

2Laurent and Poljak [1996b] also present a characterization of the sequences b for which
(28.4.1) is facet defining that involves only conditions expressed in the n-dimensional space
instead of the dimension

(
n
2

)
in which the cut polytope CUT2

n lives.
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(28.4.6) Q(b)Tx ≤ 1

4
σ(b)2

instead of (28.4.1). The inequality (28.4.6) is trivially valid for CUT2n . However,
no inequality (28.4.6) defines a facet of CUT2n . (Indeed, if γ(b) 6= 0 then (28.4.6)
contains no root at all and, if γ(b) = 0, then (28.4.6) is a switching of a negative
type inequality.)

The inequalities (28.4.6) have nevertheless a number of interesting properties.
As we see below they present, in particular, the big advantage of being much
more tractable than the gap inequalities (28.4.1).

28.4.1 A Positive Semidefinite Relaxation for Max-Cut

Let Jn denote the set in REn which is defined by the inequalities (28.4.6) for all
b ∈ Zn, i.e.,

Jn := {x ∈ REn | Q(b)Tx ≤ 1

4
σ(b)2 for all b ∈ Zn}.

Then, Jn is a convex body in REn . A first interesting property is that the sepa-
ration problem over Jn can be solved in polynomial time. This is the following
problem:

Given a vector x ∈ QEn , determine whether x belongs to Jn. If not,
find b ∈ Zn such that Q(b)Tx > 1

4σ(b)2.

This problem can solved in the following way: For x ∈ REn define the n × n
symmetric matrix X with zero diagonal and with ij-th off-diagonal entry xij.
Then,

x ∈ Jn ⇐⇒ the matrix J − 2X is positive semidefinite,

where J denotes the all-ones matrix. (This follows from the fact that bT (J −
2X)b = σ(b)2 − 4Q(b)T x for all b ∈ Rn .) The result now follows in view of
Proposition 2.4.3.

Therefore, one can optimize any linear objective function over Jn in polyno-
mial time. That is, given c ∈ QEn , one can compute the quantity:

B(c) := max(cTx | x ∈ Jn)

in polynomial time (with an arbitrary precision); see Goemans and Williamson
[1994] for more details. As the inequalities (28.4.6) are valid for the cut polytope
CUT2

n , the convex body Jn provides a relaxation of CUT2
n , i.e.,

CUT2
n ⊆ Jn.
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Therefore, the quantity B(c) is an upper bound3 for the value of the max-cut
problem:

mc(Kn, c) := max(cTx | x ∈ CUT2
n ).

That is,
mc(Kn, c) ≤ B(c)

for all c ∈ QEn . Goemans and Williamson [1994] show that the quantity B(c)
provides a very good approximation for the max-cut mc(Kn, c), when the weight
function c is nonnegative. Namely,

Theorem 28.4.7. Given c ∈ Q
En
+ , we have

mc(Kn, c)

B(c)
≥ α

where α := min
0≤θ≤π

2

π

θ

1 − cos θ
. The quantity α can be estimated as follows:

.87856 < α < .87857.

Proof. As above, for a vector x ∈ REn we let X denote the n × n symmetric
matrix with zero diagonal and with off-diagonal entries xij. Set Y := J − 2X.
Then,

x ∈ Jn ⇐⇒ Y � 0.

Hence, the quantity B(c) can be reformulated as

B(c) = max 1
2

∑

1≤i<j≤n
cij(1 − yij)

s.t. Y = (yij) � 0
yii = 1 (i = 1, . . . , n).

Using the representation of positive semidefinite matrices as Gram matrices, we
can further rewrite B(c) as

(28.4.8)
B(c) = max 1

2

∑

1≤i<j≤n
cij(1 − vTi vj)

s.t. v1, . . . , vn ∈ S,

where S := {x ∈ Rn :‖ x ‖2= 1}. Let v1, . . . , vn ∈ Rn be unit vectors realizing
the optimum in the above program, i.e., B(c) = 1

2

∑

1≤i<j≤n
cij(1 − vTi vj). The

crucial step in the proof consists now of constructing a ‘good’ random cut, i.e.,
whose weight is not too far from the value of the max-cut. For this, one proceeds
as follows:

3In fact, this upper bound coincides with another upper bound φ(c) introduced earlier by
Delorme and Poljak [1993a] and defined in terms of a minimization problem involving the
maximum eigenvalue of the associated Laplacian matrix L(c). Namely, L(c) is the symmetric
n × n matrix with diagonal entries cT δ(i) (for i = 1, . . . , n) and with off-diagonal entries −cij

(for i 6= j). That the two bounds φ(c) and B(c) coincide has been shown by Poljak and Rendl
[1995] using duality of semidefinite programming.
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• Select a random unit vector r ∈ Rn .

• Set S := {i ∈ Vn | vTi r ≥ 0}.
Let E(cT δ(S)) denote the expected weight of the cut vector δ(S). Then,

E(cT δ(S)) ≤ mc(Kn, c).

We now evaluate a lower bound for E(cT δ(S)). We have

E(cT δ(S)) =
∑

1≤i<j≤n
cijpij,

where pij is the probability that an edge ij ofKn is cut by the partition (S, Vn\S).
This probability is equal to the probability4 that a random hyperplane separates
the two vectors vi and vj. Hence,

pij =
1

π
arccos(vTi vj).

Therefore,

E(cT δ(S)) =
∑

1≤i<j≤n
cij

arccos(vTi vj)

π
≥ α

∑

1≤i<j≤n
cij

1 − vTi vj
2

= αB(c),

where the last inequality follows by the definition of α. This shows the desired
inequality: αB(c) ≤ mc(Kn, c).

The above proof shows the existence of a random cut whose weight is at least
α times the optimum mc(Kn, c). Goemans and Williamson [1994] show that the
above procedure can be derandomized so as to yield a polynomial deterministic
(α− ǫ)-approximation algorithm for the max-cut problem (for any ǫ > 0). Note
that the best previous result in this direction was a 1

2 -approximation algorithm,
due to Sahni and Gonzales [1976].

Goemans and Williamson’s result came as a breakthrough in the area of
combinatorial optimization. It shows, indeed, how semidefinite programming can
be applied successfully for designing approximation algorithms for combinatorial
problems. The method has been since then applied to several other problems;
see, in particular, Goemans and Williamson [1994], Karger, Motwani and Sudan
[1994], Frieze and Jerrum [1995].

Consider the following instance of the max-cut problem: n = 5 and the
weight function c takes value 1 on the edges of the 5-circuit C5 and value 0

elsewhere. Then, mc(K5, c) = 4 and B(c) = 5
2(1 + cos(π5 )) = 25+5

√
5

8 (obtained
by taking in (28.4.8) the vectors vi = (cos(4iπ

5 ), sin(4iπ
5 )) for i = 1, . . . , 5; see

Delorme and Poljak [1993b]). Hence, mc(K5,c)
B(c) = 32

25+5
√

5
(= .88445). Delorme

and Poljak [1993b] conjecture that this is the worst case ratio, i.e., that

mc(Kn, c)

B(c)
≥ 32

25 + 5
√

5
(= .88445)

4This probability has been, in fact, computed in Section 6.4; by relation(6.4.4), it is equal
to arccos(vT

i vj)/π.
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for all c ≥ 0. Hence, the result from Theorem 28.4.7 shows a lower bound, which
is very close to this conjectured value.

Karloff [1996] has made recently a detailed analysis of the performance of the
Goemans-Williamson algorithm. We remind the inequalities:

(28.4.9) α ≤ E(cT δ(S))

B(c)
≤ mc(Kn, c)

B(c)
≤ 1,

where E(cT δ(S)) is the expected weight of a cut constructed by the random
procedure described in the proof of Theorem 28.4.7. Karloff constructs a class
of instances (Kn, c) for which equality is attained in the right most inequality of
(28.4.9) and also (asymptotically) in the left most inequality of (28.4.9). (Namely,
given an even integer m and b ≤ m

12 , consider the graph J(m,m/2, b) whose node
set is the family A of subsets of [1,m] of cardinality m/2, with an edge between
A,B ∈ A if |A ∩ B| = b. Now, define a weight function c on the edges of Kn
(n := |A|) by taking value 1 on the edges of J(m,m/2, b) and value 0 elsewhere.)

The convex set underlying the computation of the bound B(c) is the set Jn
or, rather, its image En under the linear bijection: x 7→ 1 − 2x. That is,

En := {Y n× n symmetric | Y � 0, yii = 1 for i = 1, . . . , n}.

The set En is called an elliptope (standing for ellipsoid and polytope) in Laurent
and Poljak [1995b]. Hence, En can be seen as the intersection of the positive
semidefinite cone PSDn by the hyperplanes yii = 1 (i = 1, . . . , n). The elliptope
E3 (or rather its 3-dimensional projection consisting of the upper triangular parts
of the matrices) is shown in Figure 31.3.6.

The elliptope En has been studied in detail by Laurent and Poljak [1995b,
1996a]. For instance, all the possible dimensions for the faces of En are known
as well as for its polyhedral faces (see Section 31.5); it is shown in Laurent and
Poljak [1995b] that En has vertices (that is, extreme points with full-dimensional
normal cone) that are precisely the ‘cut matrices’ xxT for x ∈ {−1, 1}n. More-
over, the link with the well-known theta function introduced by Lovász [1979]
for approximating the Shannon capacity and the stability number of a graph is
described in Laurent, Poljak and Rendl [1996].

The elliptope En is also relevant to the following problem, known in linear
algebra as the positive semidefinite completion problem5:

Given a partial real symmetric matrix X whose entries are only spec-
ified on a subset F of the positions (including all diagonal positions),
determine whether the missing entries can be completed so as to make
X positive semidefinite.

An easy observation is that it suffices to consider the positive semidefinite com-
pletion problem for matrices whose diagonal entries are all equal to 1. (Indeed,

5We refer to Johnson [1990] for a comprehensive survey on completion problems.
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if a partial symmetric matrixX is completable to a positive semidefinite matrix,
then its diagonal entries are nonnegative. Moreover, we can suppose that all di-
agonal entries are positive as, otherwise, the problem reduces to considering the
submatrix of X with positive diagonal entries. Finally, if D denotes the diagonal
matrix whose ith-diagonal entry is 1√

xii
, then the partial matrix X′ := DXD

(with entries
xij√
xiixjj

for ij ∈ F ) is completable to a positive semidefinite matrix

if and only if the same holds for X. Now X′ is a partial symmetric matrix with
an all-ones diagonal.)

In the case of partial symmetric matrices with an all-ones diagonal, the pos-
itive semidefinite completion problem amounts to the problem of deciding mem-
bership in the projection E(G) of the elliptope En on the subspace RE , where
G = (Vn, E) denotes the graph corresponding to the specified off-diagonal posi-
tions (that is, E := F \ {ii | i = 1, . . . , n}). A description (in closed form) of
the projected elliptope E(G) is known for several classes of graphs G, e.g., for
chordal graphs and for series-parallel graphs. Details are given in Section 31.3.

28.5 Additional Notes

Improving Faces by Subtracting Inequalities. We mention here a general
technique, introduced in De Simone, Deza and Laurent [1994], for constructing
from a given face F another face G containing F and of higher dimension. As
an example, we apply it to some hypermetric inequalities.

Suppose that we have a valid inequality vTx ≤ 0 for CUTn. Suppose also
that we can find another valid inequality wTx ≤ 0 such that the inequality
(v−w)Tx ≤ 0 remains valid for CUTn. Let Fv (resp. Fw, Fv−w) denote the face
of CUTn defined by the inequality vTx ≤ 0 (resp. wTx ≤ 0, (v − w)Tx ≤ 0).
Then,

Fv = Fw ∩ Fv−w.
Hence, the dimension of Fw ( or of Fv−w) is greater than or equal to the dimension
of Fv . We give in Theorem 28.5.2 below an example where the face Fv−w is, in
fact, a facet of CUTn. We start with an easy remark.

Lemma 28.5.1. Let vTx ≤ 0 and wTx ≤ 0 be two valid inequalities for
CUTn and let Fv, Fw denote the faces of CUTn that they define, respectively.
If Fv ⊆ Fw, then the inequality (Mwv −mvw)Tx ≤ 0 is valid for CUTn, where
mv denotes the minimum nonzero value of |vT δ(S)| and Mw denotes the maxi-
mum value of |wT δ(S)| for all subsets S of {1, . . . n}.

Observe that, with the notation of Lemma 28.5.1, the face defined by the
inequality (Mwv−mvw)Tx ≤ 0 contains the face Fv . Moreover, if mv ≥Mw = 2,
then the inequality (v − w)Tx ≤ 0 is also valid for CUTn; for example, mv =
Mv = 2 for any triangle facet.

Let us look at an example. Consider Q7(1, 3, 2,−1,−1,−1,−2)T x ≤ 0 as
vTx ≤ 0 and the inequality Q7(0, 1, 1, 0, 0, 0,−1)T x ≤ 0 as wTx ≤ 0. By Propo-
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sition 28.2.1, we know that Fv ⊆ Fw. Therefore, as mv = Mw = 2 and setting
b := (1, 3, 2,−1,−1,−1,−2) and d := (0, 1, 1, 0, 0, 0,−1), the inequality:

(v − w)Tx =
∑

1≤i<j≤7

(bibj − didj)xij ≤ 0

is valid for CUT7. In fact, it defines a facet of CUT7 (indeed, Q7(b)
Tx ≤ 0

has 19 linearly independent roots which, together with the cut δ({1, 7}), form a
set of 20 linearly independent roots of the above inequality). (Observe that the
above inequality (v−w)Tx ≤ 0 is, in fact, switching equivalent to the clique-web
inequality CW1

7(3, 2, 2,−1,−1,−1,−1)T x ≤ 0, which will be defined in the next
section.) More generally, we have the following result.

Theorem 28.5.2. For n ≥ 7, let b = (2n− 13, 3, 2,−1,−1,−1,−2, . . . ,−2) and
let d = (n− 7, 1, 1, 0, 0, 0,−1, . . . ,−1) be two vectors in Zn. The inequality:

∑

1≤i<j≤7

(bibj − didj)xij ≤ 0

defines a facet of CUTn.

Generalization to Other Cut Families. We now indicate how hypermet-
ric inequalities can be modified so as to yield valid inequalities for other cut
polyhedra.

Inequalities for Even T -Cuts. Let T ⊆ Vn be a set of even cardinality. Recall
that δ(S) is an even T -cut vector if S ∩ T is even. Let b ∈ Zn such that bi is
odd for all i ∈ T and bi is even for all i ∈ Vn \ T and

∑n
i=1 bi = 2. Then, the

inequality:

Q(b)Tx ≤ 0

is valid for all even T -cut vectors. (Indeed, let δ(S) be a cut vector such that
|S ∩ T | is even. Then, Q(b)T δ(S) = b(S)(2 − b(S)) ≤ 0, since b(S) = b(S ∩ T ) +
b(S − T ) 6= 1 as b(S) is an even number.)

In the special case when T = Vn and when |bi| = 1 for all i ∈ Vn, then the
above inequality defines a facet of the even cut cone ECUTn (Deza and Laurent
[1993b]).

Inequalities for t-Ary Cuts. Let t ≥ 2 be an integer and suppose that n ≡ 0
(mod t). Then, the cut vector δ(S) is said to be t-ary if |S| ≡ 0 (mod t). Hence,
the notions of 2-ary and even cut vectors are the same. Let b ∈ Zn such that∑n
i=1 bi = t and bi ≡ β (mod t) for all i ∈ Vn, for some β ∈ {1, 2, . . . t−1}. Then,

the inequality:

Q(b)Tx ≤ 0

is valid for all t-ary cut vectors. (Indeed, let δ(S) be a cut vector such that
|S| ≡ 0 ( mod t). Then, Q(b)T δ(S) = b(S)(t − b(S)) ≤ 0, since b(S) ≡ β|S| ≡
0 ( mod t).)
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Inequalities for Multicuts. Let b ∈ Zn with σ :=
∑n
i=1 bi ≥ 1. Then, the

inequality:

Q(b)Tx ≤ σ(σ − 1)

2

is valid for the multicut polytope MC2
n . Moreover, Grötschel and Wakabayashi

[1990] show that this inequality defines a facet of MC2n in the special case when
|bi| = 1 for all i ∈ Vn. Other classes of such facets can be found in Grötschel
and Wakabayashi [1990] and Deza, Grötschel and Laurent [1992]. Another gen-
eralization of hypermetric inequalities for the multicut polytope is presented in
Chopra and Rao [1995].

Observe that, if we suppose that σ ≥ 2, then the inequality:

Q(b)Tx ≤ σ(σ − 2)

2

becomes valid for all even multicut vectors, i.e., the vectors δ(S1, . . . , Sp) corre-
sponding to a partition of Vn where all the Si’s have an even cardinality (Deza
and Laurent [1993b]).





Chapter 29. Clique-Web
Inequalities

We have seen in Chapter 28 that a valid inequality for CUTn, namely the hyper-
metric inequality Q(b)Tx ≤ 0, can be constructed for any integer vector b ∈ Zn

with
∑n
i=1 bi = 1. More generally, how can we construct a valid inequality if we

have an arbitrary integer vector b ∈ Zn ?

When
∑n
i=1 bi = 3, we can construct a valid inequality for CUTn in the

following way. Let {1, 2, . . . , p} denote the set of indices i for which bi is positive
and suppose that 3 ≤ p ≤ n−1. Let C denote a circuit with node set {1, . . . , p}.
Then, the inequality:

(29.0.1)
∑

1≤i<j≤n
bibjxij −

∑

ij∈E(C)

xij ≤ 0

is valid for CUTn. (Indeed, the value of the left hand side of (29.0.1) at a cut
vector δ(S) is b(S)(3− b(S))− |δ(S)∩E(C)|, which is nonpositive if b(S) ≤ 0 or
if b(S) ≥ 3; if b(S) = 1, 2, then b(S)(3−b(S)) = 2 and 1 ≤ |S∩{1, . . . , p}| ≤ p−1
which implies that |δ(S) ∩ E(C)| ≥ 2.) In fact, the inequality (29.0.1) remains
valid if we replace the circuit C by an arbitrary 2-edge connected graph with
node set {1, . . . , p}. However, we will consider here only the case of a circuit. It is
an open problem to characterize the 2-edge connected graphs for which (29.0.1)
is facet inducing for CUTn.

We describe in this chapter how to construct, more generally, a valid inequal-
ity for CUTn for any b ∈ Zn with

∑n
i=1 bi = 2r+1 (r ≥ 1). We present the class

of clique-web inequalities (CWr
n)
Tx ≤ 0. They are of the form (29.0.1), with

the circuit C being replaced by a more complicated graph, namely, a weighted
antiweb. We will see later in Section 30.1 the class of suspended-tree inequalities,
where the circuit C is replaced by a suspended-tree.

29.1 Pure Clique-Web Inequalities

We first introduce the clique-web inequality CWr
n(b)

Tx ≤ 0 in its pure form, i.e.,
in the case when |bi| = 1 for all i.

Definition 29.1.1. Given integers p and r with p ≥ 2r + 3, the antiweb AWr
p,

with parameters p and r, is the graph with node set Vp = {1, 2, . . . p} whose edges
are the pairs (i, i + 1), (i, i + 2), . . . (i, i + r) for i ∈ Vp (the indices being taken
modulo p). The web Wr

p is the complement in the complete graph Kp of the

467
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antiweb AWr
p.

The web W2
7 and the antiweb AW2

8 are shown below.

W2
7 AW2

8

In the following we shall use the same notation AWr
p (or Wr

p) for denoting the
antiweb (or the web) graph or its edge set.

Definition 29.1.2. Let n, p, q, r be integers satisfying

(i) n = p+ q, p− q = 2r + 1, q ≥ 2 or, equivalently,

(ii) p = n+1
2 + r, q = n−1

2 − r, 0 ≤ r ≤ n−5
2 .

The pure clique-web inequality (CWr
n)
Tx ≤ 0 with parameters satisfying (i) is

the inequality:

(29.1.3)
∑

1≤i<j≤n
bibjxij −

∑

ij∈AWr
p

xij ≤ 0,

where b := (1, . . . 1,−1, . . . ,−1) with first p coefficients equal to +1 and last
q = n− p coefficients equal to −1.

The inequality (29.1.3) can also be written as
∑

ij∈W r
p

xij +
∑

p+1≤i<j≤n
xij −

∑

1≤i≤p
p+1≤j≤n

xij ≤ 0.

Hence, there is a web on the first p nodes (those for which bi = +1) and a clique
on the last q nodes (those for which bi = −1), thus justifying the terminology
“clique-web” inequality. We restrict our attention to the case q ≥ 2, because
inequality (29.1.3) in the case q = 1 takes the form:

−
∑

1≤i≤n−1

xin +
∑

1≤i≤r+1

xi,r+i+1 =
∑

1≤i≤r+1

(xi,r+i+1 − xin − xr+i+1,n) ≤ 0;

hence, it is a sum of r + 1 triangle inequalities, i.e., except when r = 0, it is not
facet defining.

As an example, Figure 29.1.4 shows the support graph of (CW2
11)

Tx ≤ 0
(edges with weight 1 are indicated by a plain line and edges with weight −1 by
a dotted line, each node of the triangle being joined to each node of the web).
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Figure 29.1.4: (CW2
11)

Tx ≤ 0

Note that switching the inequality (CWr
n)
Tx ≤ 0 by the cut δ({1, 2, . . . p})

yields the following inequality:

(29.1.5) ((CWr
n)
δ({1,...,p}))Tx :=

∑

ij∈W r
p

xij+
∑

p+1≤i<j≤n
xij+

∑

1≤i≤p
p+1≤j≤n

xij ≤ pq.

In the case when q = 2 (i.e., r = n−5
2 , p = 2r+ 3), the inequality (29.1.5) is also

called a bicycle odd wheel inequality; it was introduced by Barahona, Grötschel
and Mahjoub [1985] and Barahona and Mahjoub [1986]. Note that the web
Wr

2r+3 is a circuit. Figure 29.1.6 shows the graph supporting the bicycle odd
wheel inequality on 7 points, i.e., the inequality (29.1.5) for n = 2r+5 and r = 1.

Figure 29.1.6: The bicycle odd wheel inequality on 7 points

Let us examine some special cases of the clique-web inequality (CWr
n)
Tx ≤ 0.

• For r = 0, the antiweb AW0
p is the empty graph. Therefore, the clique-web

inequality (CW0
n)
Tx ≤ 0 coincides with the pure hypermetric inequality.

• For r = 1, the antiweb AW1
p is a circuit. The clique-web inequality

(CW1
n)
Tx ≤ 0 is the inequality (29.0.1), which was introduced in Deza

and Laurent [1992a] under the name of “cycle inequality ”.

• For r = n−5
2 (the largest possible value of r), i.e., p = 2r + 3, or q = 2,

the web Wr
2r+3 is a circuit. The clique-web inequality (CWr

2r+5)
Tx ≤ 0

coincides (up to switching) with the bicycle odd wheel inequality.

Actually, it is the inspection of the above three cases that led us in Deza and
Laurent [1992a] to the general definition of the clique-web inequalities.
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29.2 General Clique-Web Inequalities

In order to define the clique-web inequality CWr
n(b)

Tx ≤ 0 for an arbitrary vector
b ∈ Zn, we have to use the collapsing operation (described in Section 26.4).

Let b = (b1, . . . bn) be integers such that
∑n
i=1 bi = 2r + 1 and suppose that

b1, b2, . . . , bp > 0 > bp+1, bp+2, . . . , bn

for some 2 ≤ p ≤ n − 1. Set N :=
∑n
i=1 |bi| and P :=

∑p
i=1 bi =

∑
i|bi>0 bi.

Let π(b) denote the partition of VN = {1, 2, . . . ,N} into the following n classes:
the p intervals I0 = [1, b1] and Ii = [b1 + . . . + bi + 1, b1 + . . . + bi + bi+1] for
i = 1, . . . , p − 1 (which partition [1, P ]) together with n − p arbitrary subsets
forming a partition of the set [P + 1,N ] = VN \ [1, P ] and with respective sizes
|bp+1|, . . . |bn|.

Definition 29.2.1. Given integers b = (b1, . . . bn), r ≥ 0, such that
∑n
i=1 bi =

2r + 1 and setting N :=
∑

1≤i≤n |bi|, the clique-web inequality CWr
n(b)

Tx ≤ 0
is defined as the π(b)-collapse of the (pure) clique-web inequality (CWr

N )Tx ≤ 0.

The clique-web inequality CWr
n(b)

Tx ≤ 0 can be described in a more ex-
plicit way using the notion of weighted antiweb. A weighted antiweb is an edge
weighted graph obtained by collapsing of a (usual) antiweb. Let b1, . . . bp be
positive integers such that

∑p
i=1 bi ≥ 2r + 1. Set P :=

∑p
i=1 bi and consider

the partition π0(b1, . . . , bp) of VP = {1, . . . , P} into the p intervals I0, I1, . . . , Ip
described above.

Definition 29.2.2. With the above notation, the antiweb AWr
p(b1, . . . bp) is the

weighted graph obtained by π0(b1, . . . bp)-collapsing the antiweb AWr
P .

Then the clique-web inequality CWr
n(b)

Tx ≤ 0 can be alternatively described
as follows:

(29.2.3) CWr
n(b)

Tx :=
∑

1≤i<j≤n
bibjxij −

∑

ij∈AWr
p(b1,...bp)

xij ≤ 0.

In relation (29.2.3), the quantity
∑
ij∈AWr

p(b1,...,bp) xij should be understood as the

sum
∑

1≤i<j≤p vijxij, where v denotes the edgeweight vector of AWr
p(b1, . . . bp).

In the pure case, i.e., when |bi| = 1 for all i, then the inequalities (29.1.3)
and (29.2.3) coincide, i.e., CWr

n(1, . . . 1,−1, . . . − 1)Tx ≤ 0 and (CWr
n)
Tx ≤ 0

coincide.

Let us give some examples of weighted antiwebs.

Lemma29.2.4. Assume bi ≥ r for i = 1, . . . , p. Then, the antiweb AWr
p(b1, . . . bp)

is r(r+1)
2 AW1

p, i.e., it is the circuit C(1, 2, . . . p) with weight r(r+1)
2 on its edges.
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Lemma 29.2.5. The antiweb AWr
p(2, 1, . . . , 1) is the weighted graph obtained

from AWr
p by

(i) deleting the edges (p− i, r − i) for i = 0, 1, . . . , r − 2, and

(ii) assigning weight 2 to the edges (1, i) and (1, p− r + i) for i = 2, . . . , r.

Figures 29.2.6, 29.2.7, and 29.2.8 show the antiwebs AW2
8, AW2

4(2, 2, 2, 2),
and AW3

10(2, 1, 1, 1, 1, 1, 1, 1, 1, 1). We picture in Figure 4.5 the support graph of
the inequality CW2

7(2, 2, 2, 2,−1,−1,−1)T x ≤ 0.

Figure 29.2.6: AW2
8

Figure 29.2.7:
AW2

4(2, 2, 2, 2)
     edge weights

1

3

     edge weights

 1

2

3

4

5

 6

 7

 8

 9

 10

2

1

Figure 29.2.8: AW3
10(2, 1, 1, 1, 1, 1, 1, 1, 1, 1)

   edge weights

 -2

1

 4

Figure 29.2.9: CW2
7(2, 2, 2, 2,−1,−1,−1)T x ≤ 0



472 Chapter 29. Clique-Web Inequalities

29.3 Clique-Web Inequalities: Validity and Roots

In this section, we show that the clique-web inequality CWr
n(b)

Tx ≤ 0 is valid
for the cut cone CUTn. Since the clique-web inequality CWr

n(b)
Tx ≤ 0 is defined

as collapsing of a pure clique-web inequality (CWr
N )Tx ≤ 0 (N =

∑ |bi|), it
is sufficient to prove validity in the pure case (recall Lemma 26.4.1). We also
describe the roots of the pure clique-web inequality. Validity of the pure clique-
web inequality was established by Alon [1990] and the roots were described by
Deza and Laurent [1992b].

Proposition 29.3.1. Let p, r be integers such that p ≥ 2r + 3, r ≥ 1 and let S
be a subset of {1, . . . , p} of cardinality s.

(i) If s ≤ r, then |δKp(S) ∩ AWr
p| ≥ s(2r + 1 − s), with equality if and only if

S induces a clique in AWr
p, i.e., if any two nodes of S are adjacent in the

graph AWr
p.

(ii) If r+ 1 ≤ s ≤ p
2 , then |δKp(S) ∩AWr

p| ≥ r(r+ 1), with equality if and only
if S is an interval of [1, p], i.e., if S = {i, i+1, i+2, . . . , i+s−1} for some
i ∈ {1, . . . , p} (the indices being taken modulo p).

Proof. The proof is by induction on p ≥ 2r + 3. Let us first prove the result for
p = 2r+ 3. Then, AWr

p = Kp \C, where C is the circuit with node set [1, p] and
with edges the pairs (i, i + r + 1) for i = 1, . . . , p, where the indices are taken
modulo p; so, C = (1, r+ 2, p, r+ 1, p− 1, r, p− 2, r− 1, . . . , 2, r+ 3). Let S be a
subset of {1, . . . , p}. Then,

|δKp(S) ∩ AWr
p| = s(2r + 3 − s) − |δKp(S) ∩C| ≥ s(2r + 1 − s),

since |δKp(S) ∩C| ≤ 2s. Moreover, the equality: |δKp(S) ∩AWr
p| = s(2r+ 1− s)

holds if and only if |δKp(S) ∩ C| = 2s, i.e., if no two nodes of S are adjacent on
C; this means that any two nodes of S are adjacent on AWr

p, i.e., that S induces
a clique in AWr

p. When r + 1 ≤ s ≤ p
2 , i.e., s = r + 1, it is easy to see that S

induces a clique of AWr
p if and only if S is an interval. Hence, Proposition 29.3.1

holds in the case p = 2r + 3.
Let us now suppose that Proposition 29.3.1 holds for some given p ≥ 2r + 3.
We show that it also holds for p + 1. We first establish a connection between
the graphs AWr

p and AWr
p+1. We suppose that AWr

p and AWr
p+1 are defined,

respectively, on the node sets {1, 2, . . . , p} and {1, 2, . . . , p, p+1} (with the nodes
being arranged in that cyclic order; so, the new node p + 1 is inserted between
the two nodes p and 1 on the circuit (1, 2, . . . , p)). Then,

• The edges belonging to AWr
p, but not to AWr

p+1, are the pairs (i, p− r+ i)
for i = 1, 2, . . . , r .

• The edges belonging to AWr
p+1, but not to AWr

p, are the pairs (i, p + 1)
and (p+ 1, p− r + i) for i = 1, 2, . . . , r .
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Take a subset S of {1, . . . , p, p + 1} and set T := S \ {p + 1}. Suppose that
s := |S| ≤ p+1

2 . In order to make the notation easier let us denote by v the
incidence vector of the cut δKp+1(S). Then,

|δKp+1(S) ∩ AWr
p+1| = |δKp(T ) ∩ AWr

p| +
∑

ij∈AWr
p+1\AWr

p

vij −
∑

ij∈AWr
p\AWr

p+1

vij

= |δKp(T ) ∩ AWr
p| +

∑

1≤i≤r
(vi,p+1 + vp+1,p−r+i − vi,p−r+i)

= |δKp(T ) ∩ AWr
p| +

r∑

i=1

∆i ≥ |δKp(T ) ∩ AWr
p|,

after setting
∆i := vi,p+1 + vp+1,p−r+i − vi,p−r+i

for all i = 1, . . . , r. (Note that ∆i ≥ 0 for all i, by the validity of the triangle
inequalities.) We distinguish two cases depending whether the node p+1 belongs
to the set S or not.

Case 1: p + 1 6∈ S, i.e., S = T . Then, by the induction assumption, the
inequalities from Proposition 29.3.1 hold. We now consider the equality case.

Suppose first that s ≤ r and |δKp+1(S) ∩ AWr
p+1| = s(2r + 1 − s). Then,

|δKp(S) ∩AWr
p| = s(2r+ 1 − s) and ∆i = 0 for all i = 1, . . . , r. By the induction

assumption, the set S induces a clique in AWr
p. Then, S also induces a clique in

AWr
p+1. Indeed, suppose that there exist i, j ∈ S such that ij 6∈ AWr

p+1. Then,
ij ∈ AWr

p\AWr
p+1 and, thus, ij is of the form (i, p−r+i) for some i ∈ {1, . . . , r}.

This implies that ∆i = 2 (since p+ 1 6∈ S), yielding a contradiction.
Suppose now that r + 1 ≤ s ≤ p+1

2 and that |δKp+1(S) ∩ AWr
p+1| = r(r + 1).

Then, |δKp(S)∩AWr
p| = r(r+1) and ∆i = 0 for all i = 1, . . . , r. By the induction

assumption, the set S is an interval in [1, p]. If the pair {1, p} is not contained in
S, then S is still an interval in [1, p+ 1]. Suppose that both nodes 1, p belong to
S. Then, S = [p− x+ 1, p] ∪ [1, y] for some integers x, y ≥ 1 with x+ y ≥ r+ 1.
If x ≥ r, then p − r + 1, 1 ∈ S, implying that ∆1 = 2. If y ≥ r, then p, r ∈ S,
implying that ∆r = 2. If x ≤ y ≤ r − 1, then p − x + 1, x ∈ S, implying that
∆x = 2 and, finally, if y ≤ x ≤ r− 1, then p− y+1, y ∈ S implying that ∆y = 2.
In all cases, we obtain a contradiction. Therefore, the pair {1, p} is not contained
in S and, thus, S is an interval in [1, p+ 1].

Case 2: p+ 1 ∈ S; so, |T | = s− 1. Suppose first that s ≤ r. Denote by K the
set of indices i ∈ [1, r] for which ∆i = 0; set k := |K|. Then, |δKp(T ) ∩ AWr

p| ≥
(s− 1)(2r + 1 − (s− 1)) by the induction assumption. Moreover, ∆i = 2 for all
i ∈ [1, r] \K. As S ∩ {i, p − r + i} 6= ∅ for all i ∈ K, we obtain that s ≥ 1 + k.
Therefore,

|δKp+1(S) ∩ AWr
p+1| ≥ (s− 1)(2r + 1 − (s− 1)) + 2(r − k)

≥ (s− 1)(2r + 1 − (s− 1)) + 2(r − s+ 1) = s(2r + 1 − s).

This shows that the inequality from Proposition 29.3.1 (i) holds. Suppose now
that equality: |δKp+1(S)∩AWr

p+1| = s(2r+1−s) holds. Then, |δKp(T )∩AWr
p| =
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(s − 1)(2r + 1 − (s − 1)) and, thus, by the induction assumption, T induces a
clique in AWr

p. Moreover, s = 1 + k. This implies that |S ∩{i, p− r+ i}| = 1 for
all i ∈ K. Therefore, S∩{i, p−r+i} = ∅ for i ∈ [1, r]\K and S∩[r+1, p−r] = ∅.
We show that S induces a clique in AWr

p+1. Note first that the node p + 1 is
adjacent to all other nodes from S in AWr

p+1. Suppose that i 6= j ∈ S are not
adjacent in AWr

p+1. Then, i, j ∈ T and, thus, ij is an edge from AWr
p+1\AWr

p.
Hence, j = p − r + i and, thus, the set S contains both nodes i and p − r + i,
yielding a contradiction.

Suppose now that s ≥ r+2. Then, |δKp(T )∩AWr
p| ≥ r(r+1) (by the induction

assumption, as |T | ≥ r + 1). Hence, the inequality from Proposition 29.3.1 (ii)
holds. Moreover, if |δKp+1(S)∩AWr

p+1| = r(r+1), then |δKp(T )∩AWr
p| = r(r+1)

and ∆i = 0 for all i ∈ [1, r]. By the induction assumption, the set T is an interval
in [1, p]. If 1 ∈ S or if p ∈ S, then the set S remains an interval in [1, p + 1].
Suppose that 1, p 6∈ S. Then, T := [x, y] for some 2 ≤ x < y ≤ p− 1. For each
i ∈ [1, r], we have |S ∩ {i, p − r + i}| ≥ 1 as ∆i = 0. Hence, r ∈ S since p 6∈ S,
which implies that x ≤ r. Moreover, p − r + x − 1 ∈ S since x − 1 6∈ S, which
yields p− r + x− 1 ≤ y, i.e., |T | = y − x+ 1 ≥ p− r. Therefore, s ≥ p− r + 1,
which contradicts the fact that s ≤ p+1

2 .
Let us finally suppose that s = r + 1. Then, |δKp(T ) ∩ AWr

p| ≥ r(r + 1) (by
the induction assumption), implying that |δKp+1(S) ∩ AWr

p+1| ≥ r(r + 1), i.e.,
the inequality from Proposition 29.3.1 (ii) holds. Suppose now that |δKp+1(S) ∩
AWr

p+1| = r(r+1). Then, |δKp(T )∩AWr
p| = r(r+1) and ∆i = 0 for all i ∈ [1, r].

Therefore, the set T induces a clique in AWr
p. Moreover, |S∩{i, p−r+i}| = 1 for

all i ∈ [1, r] and S ∩ [r+ 1, p− r] = ∅. We show that S is an interval in [1, p+1].
If i, j ∈ [1, r] are such that i ∈ S and j 6∈ S, then p − r + j ∈ S, implying that
j ≥ i (as p − r + j should be adjacent to i in AWr

p). Hence, S ∩ [1, r] is of the
form [1, x] for some 0 ≤ x ≤ r. Therefore, S = {p+ 1} ∪ [1, x]∪ [p− r+ x+ 1, p]
is indeed an interval in [1, p+ 1].

The next results establish validity of the inequality (CWr
n)
Tx ≤ 0 and de-

scribe its roots. Given n = p+ q with p− q = 2r + 1 and q ≥ 2, the clique-web
inequality (CWr

n)
Tx ≤ 0 is as defined in Definition 29.1.2.

Proposition 29.3.2. The clique-web inequality (CWr
n)
Tx ≤ 0 is valid for

CUTn.

Proposition 29.3.3. Assume r ≥ 1. The roots of (CWr
n)
Tx ≤ 0 are the cut

vectors δ(S) where S = S+ ∪S− with S+ ⊆ {1, 2, . . . , p} and S− ⊆ {p+1, . . . , n}
and S is of one of the following two types:

(i) (type 1) S− = ∅ and S+ induces a clique in AWr
p.

(ii) (type 2) S+ is an interval of [1, p] with r+1 ≤ |S+| ≤ p−r and |S+|−|S−| =
r, r + 1.

Remark 29.3.4. Recall that, when we say that S+ is an interval of [1, p], we
mean that S+ = {i, i + 1, . . . , i + |S+| − 1} (for some i ∈ {1, . . . , p}) where the
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indices are taken modulo p. There are some redundancies in the presentation
of the roots given in Proposition 29.3.3. It is easy to see that a nonredundant
description of the roots (i.e., in which each root occurs exactly once) can be
obtained by replacing in Proposition 29.3.3 the family of sets of type 2 by the
family of sets of type 2′ where

(type 2′) S+ is an interval of [1, p] with r+1 ≤ |S+| ≤ p−r−2 and |S+|−|S−| = r.

Note also that, if S ⊆ {1, . . . , p} induces a clique in AWr
p, then |S| ≤ r + 1

holds. For example, the interval [1, r+1] = {1, 2 . . . , r, r+1} induces a clique in
AWr

p; therefore, any subset S of the following type 1∗ induces a clique in AWr
p:

(type 1∗) S is contained in an interval of size r + 1 of [1, p].

In general, there may exist other sets than those of type 1∗ inducing a clique
in AWr

p. For instance, for r = 3 and p = 9, the set {1, 4, 7} induces a clique in

AW3
9. However, for p > 3k, the only sets inducing cliques in AWr

p are those of
type 1∗. Actually, in all our proofs for clique-web facets, we shall only use roots
δ(S) in which S is of type 1∗ or of type 2.

Proof of Propositions 29.3.2 and 29.3.3. Take a subset S of {1, . . . , n}. Then,
S = S+∪S−, where S+ ⊆ {1, . . . , p} and S− ⊆ {p+1, . . . , n}. Set s := |S|, s+ :=
|S+|, s− := |S−|; so, s = s+ + s−. Then,

(CWr
n)
T δ(S) = b(S)(2r + 1 − b(S)) − |δKp(S) ∩ AWr

p|
= (s+ − s−)(2r + 1 − (s+ − s−)) − |δKp(S) ∩ AWr

p|.

Suppose that s+ ≤ r. Then,

(CWr
n)
T δ(S) ≤ (s+ − s−)(2r + 1 − (s+ − s−)) − s+(2r + 1 − s+) ≤ 0.

The first inequality follows from Proposition 29.3.1 (i) and the second one from
the fact that the mapping x 7→ x(2r + 1 − x) is monotone nondecreasing for
x ≤ r. Therefore, if δ(S) is a root of (CWr

n)
Tx ≤ 0, then s− = 0 and, by

Proposition 29.3.1 (i), S+ induces a clique in AWr
p. Suppose now that r + 1 ≤

s+ ≤ p
2 . Then,

(CWr
n)
T δ(S) ≤ (s+ − s−)(2r + 1 − (s+ − s−)) − r(r + 1) ≤ 0.

The first inequality follows from Proposition 29.3.1 (ii) and the second one from
the fact that x(2r + 1 − x) ≤ r(r + 1) for any integer x. Therefore, if δ(S) is a
root of (CWr

n)
Tx ≤ 0, then s+ − s− = r, r + 1 and, by Proposition 29.3.1 (ii),

S+ is an interval. This concludes the proof.

How to find the roots of a general clique-web inequality CWr
n(b)

Tx ≤ 0 ?
They can be deduced from the roots in the pure case, in the manner described
in Lemma 26.4.1 (ii). Let us, as an example, describe the roots of two clique-
web inequalities, namely, of CWr

n(b)
Tx ≤ 0 where bi ≥ r if bi > 0, and of

CWr
n(2, 1, . . . , 1,−1, . . . ,−1)Tx ≤ 0.
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Proposition 29.3.5. Suppose that bi ≥ r for i ∈ {1, . . . , p} and bi < 0 for
i ∈ {p+1, . . . , n}. Then, the roots of CWr

n(b)
Tx ≤ 0 are the cut vectors δ(S) for

which S ∩ [1, p] is an interval of [1, p] and b(S) = r, r + 1.

Proposition 29.3.6. The roots of CWr
n(2, 1, . . . , 1,−1, . . . ,−1)Tx ≤ 0 (where

there are p−1 coefficients +1 and n−p coefficients −1) are the cut vectors δ(S)
where S = S+ ∪ S− with S+ ⊆ {1, 2, . . . , p} and S− ⊆ {p + 1, . . . , n} satisfying
(i) or (ii).

(i) S− = ∅, 1 6∈ S (resp. 1 ∈ S) and S (resp. S ∪ {p + 1}) induces a
clique in AWr

p+1, where AWr
p+1 is the antiweb defined on the p + 1 nodes

1, 2, . . . , p, p+ 1, taken in that circular order.

(ii) S+ is an interval of [1, p] and
- either, 1 6∈ S+, r + 1 ≤ |S+| ≤ p+ 1 − r and |S+| − |S−| = r, r + 1,
- or, 1 ∈ S+, r ≤ |S+| ≤ p− r and |S+| − |S−| = r, r − 1.

In the case r = 1, AW1
p is just a circuit of length p and any interval collapsing

(i.e., we collapse only consecutive nodes on the circuit) of a circuit is again a
circuit. Therefore, for r = 1, the clique-web inequality CW1

n(b)
Tx ≤ 0 takes a

particularly easy form; namely, if b1, . . . , bp > 0, bp+1, . . . , bn < 0, then

CW1
n(b)

Tx :=
∑

1≤i<j≤n
bibjxij −


 ∑

1≤i≤p−1

xi,i+1 + x1p


 ≤ 0.

In particular, for all roots δ(S) of CW1
n(b)

Tx ≤ 0, S ∩ [1, p] must be an interval.
Observe also that, for any integers r ≥ 1, b1, . . . , bp > 0 > bp+1, . . . , bn, the
inequality

(29.3.7)
∑

1≤i<j≤n
bibjxij −

r(r + 1)

2


 ∑

1≤i≤p−1

xi,i+1 + x1p


 ≤ 0

is valid for CUTn. When b1, . . . , bp ≥ r, as we noted in Lemma 29.2.4, the clique-
web inequality CWr

n(b)
Tx ≤ 0 is indeed of the form (29.3.7). However, if bi < r

for some i ∈ {1, . . . , p}, then the inequality (29.3.7) is not facet inducing, since
it is dominated by CWr

n(b)
Tx ≤ 0. (Indeed, one can easily check that

|δKp(S) ∩ AWr
p(b1, . . . , bp)| ≤

r(r + 1)

2
|δKp(S) ∩ C|

holds for any subset S of {1, . . . , p}, where C denotes the circuit (1, 2, . . . , p)
(using the definition of collapsing and decomposing S as a union of intervals of
[1, p]; see Lemma 2.8 in Deza, Grötschel and Laurent [1992]).)

As an easy consequence of the description of the roots of (CWr
n)
Tx ≤ 0, we

have the following result.

Proposition 29.3.8. Assume that r ≥ 1. Then, b(S) ∈ {1, 2, . . . , r + 1} for
every nonzero root δ(S) of CWr

n(b)
Tx ≤ 0.
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29.4 Clique-Web Facets

In this section, we describe several classes of clique-web facets, i.e., several classes
of parameters b for which the inequality CWr

n(b)
Tx ≤ 0 is facet inducing. The

full characterization of all clique-web facets seems a very hard problem; actually,
this problem is already not solved for the special case r = 0 of the hypermetric
inequalities. We can restrict ourselves here to the case r ≥ 1, since the case
r = 0 has been considered in the preceding chapter. The following classes of
clique-web facets are known:

• (CWr
n)
Tx ≤ 0, i.e., CWr

n(1, . . . , 1,−1, . . . ,−1)Tx ≤ 0 (pure case),

• CWr
n(r, . . . , r,−1, . . . ,−1)Tx ≤ 0 for r ≥ 1, p ≥ 5,

• CWr
n(b1, . . . , bp,−1, . . . ,−1)Tx ≤ 0 with b1, . . . , bp ≥ r and some additional

conditions (see Theorem 29.4.4),

• CWr
n(2, 1, . . . , 1,−1, . . . ,−1)Tx ≤ 0 for r ≥ 1, p ≥ 2r + 3,

• CWr
n(b1, . . . , bp,−1, . . . ,−1,−2 . . . ,−2)Tx ≤ 0 for b1, . . . , bp ≥ r and some

additional conditions (see Theorem 29.4.6).

Here are three examples of clique-web facets1 CWr
n(b)

Tx ≤ 0 with r = 1:

• CW1
7(3, 2, 2,−1,−1,−1,−1)T x ≤ 0,

• CW1
7(2, 2, 1, 1,−1,−1,−1)T x ≤ 0,

• CW1
7(1, 1, 1, 1, 1,−1,−1)T x ≤ 0.

For n ≤ 6, all the facets of CUTn are hypermetric and, for n = 7, the only clique-
web facets of CUT7 are either hypermetric or one of the above three facets. See
Section 30.6 for a full description of the cut cone CUTn for n ≤ 7.

Let us start with mentioning a necessary condition for a clique-web inequal-
ity CWr

n(b)
Tx ≤ 0 to be facet defining. The next result generalizes Proposi-

tion 28.2.1, which corresponds to the case r = 0 of hypermetric inequalities.

Proposition 29.4.1. Let b ∈ Zn with
∑n
i=1 bi = 2r + 1, r ≥ 1, and b1 ≥ b2 ≥

. . . ≥ bp > 0 > bp+1 ≥ . . . ≥ bn. If

b1 + b2 − bn >
p∑

i=1

bi − r

then the face F of CUTn defined by the clique-web inequality CWr
n(b)

Tx ≤ 0 is
contained in the facet defined by the triangle inequality: x12 − x1n − x2n ≤ 0;

1These three clique-web facets were discovered by Assouad and Delorme [1982] (cf. Assouad
[1984]). In fact, the first one had also been found earlier by Avis [1977] and (in the context
of the correlation polytope) by McRae and Davidson [1972]. These facets demonstrate that
the cut cone does have some facets that are not induced by hypermetric inequalities. It had,
indeed, been speculated by several authors at various moments (e.g., by Davidson [1969], Deza
[1973a], Pitowsky [1991]) that all facets of the cut cone are hypermetric.
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hence, F is not a facet of CUTn.

Proof. Let δ(S) be a nonzero root of CWr
n(b)

Tx ≤ 0. We can suppose without
loss of generality that n 6∈ S; then, b(S) ∈ {1, 2, . . . , r+1} by Proposition 29.3.8.
Then, the set {1, 2} is not contained in S (else, b(S) ≥ b1+b2+

∑n−1
i=p+1 bi ≥ r+2).

This implies that δ(S) is also a root of the triangle inequality: x12−x1n−x2n ≤ 0.

The inequality from Proposition 29.4.1 is best possible. For instance, the in-
equalities:

CW1
n(n− 5, 2, 1, 1,−1, . . . ,−1)Tx ≤ 0, CW1

n(b1, n− 2− b1, 2,−1, . . . ,−1)Tx ≤ 0

(where 2 ≤ b1 ≤ n− 4) are facet defining; equality b1 + b2 − bn =
∑

1≤i≤p bi − r
holds for both of them (with r = 1).

We now present several classes of clique-web facets. When considering a
clique-web inequality CWr

n(b)
Tx ≤ 0, we shall always assume that b is an integer

vector such that
∑n
i=1 bi = 2r + 1, even if this condition is not stated explicitly.

Theorem 29.4.2.

(i) (CWr
n)
Tx ≤ 0, i.e., the pure clique-web inequality (29.1.3), defines a facet

of CUTn for any r ≥ 0.

(ii) CWr
n(r, . . . , r,−1, . . . ,−1)Tx ≤ 0 is facet inducing for all r ≥ 1, p ≥ 5.

(iii) CWr
n(2, 1, . . . , 1,−1, . . . ,−1)Tx ≤ 0 is facet inducing for all r ≥ 1, p ≥

2r + 3.

(iv) CWr
n(r+ 2, r+1, r+ 1,−1, . . . ,−1)Tx ≤ 0 is facet inducing for all r ≥ 1.

(v) CWr
n(r + 1, r + 1, r, r,−1, . . . ,−1)Tx ≤ 0 is facet inducing for all r ≥ 1.

Theorem 29.4.2 (i)-(iii) is given in Deza and Laurent [1992b] and (iv)-(v) in
Deza and Laurent [1992c]. We shall prove only the assertion (i). The proofs
for (ii)-(v) are, indeed, along the same lines and with somewhat lengthy details.
In order not to interrupt the text, we delay the proof of Theorem 29.4.2 (i) till
Section 29.6.

Further classes of clique-web facets can be obtained by applying the lifting
result from Theorem 29.4.3 below. This result follows as a direct application of
Theorem 26.4.4, after noting that the two weighted antiwebs AWr

p(b1, b2, . . . , bp)
and AWr

p(b
′
1, b2, . . . , bp) coincide if b1, b

′
1 ≥ r. The class of facets from Theo-

rem 29.4.4 is given in Deza and Laurent [1992c].

Theorem 29.4.3. Let r ≥ 1, b1, . . . , bp > 0 > bp+1, . . . , bn with
∑n
i=1 bi = 2r+1.

Suppose that, for some distinct j, k ∈ {p+ 1, . . . , n}, bj = bk := d < 0 and that,
for some i ∈ {1, . . . , n} \ {j, k}, either bi ≤ d or bi ≥ r. If the inequality:

CWr
n(b1, . . . , bn)

Tx ≤ 0
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defines a facet of CUTn, then the inequality:

CWr
n+1(b1, . . . , bi−1, bi − d, bi+1, . . . , bn, d)

Tx ≤ 0

defines a facet of CUTn+1.

Theorem 29.4.4. Given integers p ≥ 3, r ≥ 1, b1, . . . , bp ≥ r, the following
assertions are equivalent.

(i) CWr
n(b1, . . . , bp,−1, . . . ,−1)Tx ≤ 0 is facet inducing.

(ii) p ≥ 5, or p = 4 and b1, b2 ≥ r + 1 (up to a cyclic shift on [1, 4]), or p = 3
and b1 ≥ r + 2, b2, b3 ≥ r + 1 (up to a cyclic shift on [1, 3]).

Proof. The implication (ii) ⇒ (i) is proved by iteratively using the lifting re-
sult from Theorem 29.4.3 starting from the known facets from Theorem 29.4.2
(ii),(iv),(v). We now check the implication (i) ⇒ (ii). Suppose that the in-
equality CWr

n(b1, . . . , bp,−1 . . . ,−1)Tx ≤ 0 is facet inducing with p = 3 or 4.
Consider first the case p = 3. We can suppose, for instance, that b1 ≥ b2 ≥ b3
(up to a cyclic shift on [1, 3]). From Proposition 29.4.1 below, we must have that
b3 ≥ r + 1. Suppose, for contradiction, that b1 = r + 1; so, b1 = b2 = b3 = r + 1.
Then, every root of CWr

n(r + 1, r + 1, r + 1,−1, . . . ,−1)Tx ≤ 0 is a root of
CW0

n(1, 1, 1,−1,−1, 0, . . . , 0)Tx ≤ 0, contradicting the fact that the former in-
equality is facet defining. This shows that b1 ≥ r+2. Consider now the case p =
4. One can check that the roots of the inequality CWr

n(x, r, r, r,−1, . . . ,−1)Tx ≤
0 (where x ≥ r) and of the inequality CWr

n(x, r, y, r,−1, . . . ,−1)Tx ≤ 0 (where
x, y ≥ r + 1) are also roots of the inequality CW0

n(1, 0, 1, 0,−1, 0, . . . , 0)T x ≤ 0;
hence, these two inequalities are not facet inducing. Therefore, up to a cyclic
shift on [1, 4], we must have that b1, b2 ≥ r + 1.

The following two further examples of lifting theorems for clique-web facets
can be found in Deza and Laurent [1992c].

Theorem 29.4.5. Given integers b1, b2, . . . , bp ≥ r ≥ 1, bp+1, . . . , bn < 0, we
assume that (i) and (ii) hold.

(i) CWr
n(b1, . . . , bn)

Tx ≤ 0 is facet inducing for CUTn.

(ii) There exist n subsets T1, . . . , Tn of {1, . . . , n} such that (iia)-(iic) hold:

(iia) Tj ∩ {1, . . . , p} is an interval of {1, . . . , p} for all 1 ≤ j ≤ n,
(iib) b(Tj) = r + 2 for all 1 ≤ j ≤ n,
(iic) the incidence vectors of the sets T1, . . . , Tn are linearly independent.

Then, CWr−1
n+1(b1, . . . , bn,−2)Tx ≤ 0 defines a facet of CUTn+1.

Theorem 29.4.6. Given integers b1, . . . , bp ≥ r ≥ s ≥ 0, p ≥ 5, the inequality:

CWr−s
n (b1, . . . , bp,−1, . . . ,−1,−2, . . . ,−2)Tx ≤ 0
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defines a facet of CUTn. (Here, there are q− s components equal to −1, s com-
ponents equal to −2, with q = n− p and

∑p
i=1 bi − (q − s) = 2r + 1.)

The proof of Theorem 29.4.6 is based on iterated applications of the lifting pro-
cedure from Theorem 29.4.5 starting from the known clique-web facet
CWr(b1, . . . , bp,−1, . . . ,−1)Tx ≤ 0. The next result follows by applying Theo-
rem 26.4.3.

Theorem 29.4.7. Given integers b1, . . . , bp > 0 > bp+1, . . . , bn with p ≥ 3,
suppose that there exist two indices i, j ∈ {1, . . . , p} such that bj = bi − 1 and
j = i + 1(mod p), e.g., i = 1, j = 2, for simplicity in the notation. If the two
inequalities:

CWr
n(b1, b1 − 1, b3, . . . , bn)

Tx ≤ 0 and CWr
n(b1 − 1, b1, b3, . . . , bn)

Tx ≤ 0

are facet inducing for CUTn, then the inequality:

CWr
n+1(b1 − 1, 1, b1 − 1, b3, b4, . . . , bn)

Tx ≤ 0

is facet inducing for CUTn+1.

This is about all the information we have about clique-web facets. Probably,
some other classes of clique-web facets can be obtained by further applications
of our various lifting theorems. However, it would be interesting to have some
new proof techniques for constructing new classes of clique-web facets. We con-
clude this section with a few more remarks. The class of clique-web faces from
Proposition 29.4.8 below is described in De Simone, Deza and Laurent [1994].

Proposition 29.4.8. The inequality CW2
n(n − 6, 2, 2, 1, 1,−1, . . . ,−1)Tx ≤ 0

defines a face of CUTn of dimension
(n
2

)− (n− 4) for all n ≥ 8.

Consider the clique-web inequality CWr
n(n−4, r+1, r+1,−1, . . . ,−1)Tx ≤ 0.

It is facet inducing for (r = 0, n ≥ 3) and for (r ≥ 1, n ≥ r + 6). Its number
of roots is equal to

(n−2
r+2

)
+ 2n − 4. Therefore, it is a simplex facet only for

(r = 0, n ≥ 3) and (r ≥ 1, n = r + 6); actually, for r = 0, it is the only class of
simplex hypermetric facets that we know. Note also that the number of roots is
in O(nr), i.e., polynomial in n of arbitrary degree r.

Observe that the three clique-web facets defined by the inequalities:

CW1
n(n− 4, 2, 2,−1, . . . ,−1)Tx ≤ 0, CW1

n(n− 5, 2, 1, 1,−1, . . . ,−1)Tx ≤ 0,

CW1
n(n− 6, 1, 1, 1, 1,−1, . . . ,−1)Tx ≤ 0

(for n ≥ 7) all have the same number of roots, namely,
(n−2

3

)
+2n−4. Therefore,

these three facets are simplex facets for n = 7 (recall that they are precisely the
nonhypermetric clique-web facets of CUT7).
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Finally, let us mention a generalization of the clique-web inequalities for
the multicut polytope. Let r and b = (b1, . . . , bn) be integers such that σ :=∑n
i=1 bi ≥ 2r + 1 and b1, . . . , bp > 0 > bp+1, . . . , bn. Then, the inequality:

(29.4.9)
∑

1≤i<j≤n
bibjxij −

∑

ij∈AWr
p(b1,...,bp)

xij ≤
σ(σ − 2r − 1)

2

is valid for the multicut polytope MC2
n . It defines a facet of MC2

n for several
classes of parameters b; this is the case, for instance, if |bi| = 1 for all 1 ≤ i ≤ n.
We refer to Deza, Grötschel and Laurent [1992] for a detailed exposition.

29.5 Separation of Clique-Web Inequalities

We address here the separation problem for clique-web inequalities. It is not
known how to separate the whole class, but a polynomial algorithm is known for
separating a small subclass.

Recall (see Definition 29.1.2) that the pure clique-web inequality (CWr
n)
Tx ≤

0 is specified by two parameters which can be n and r or, equivalently, q and
r, with n being then given by n = 2q + 2r + 1. Gerards [1985] shows that
the subclass consisting of the pure clique-web inequalities with q = 2 can be
separated in polynomial time. Note that these inequalities can be rewritten as

(29.5.1) xuv +
∑

ij∈E(C)

xij −
∑

i∈V (C)

(xiu + xiv) ≤ 0,

where C is an odd circuit and u, v are two nodes that do not belong to C.

More precisely, given an integer N , let S(2)
N denote the system consisting

of the inequalities (29.5.1) (for C odd circuit with V (C) ⊆ VN = {1, . . . ,N}
and u, v ∈ VN \ V (C)) and the triangle inequalities: xij − xik − xjk ≤ 0 (for

i, j, k ∈ VN ). The separation problem for the system S(2)
N is the following:

Given a vector x ∈ RN , decide whether x satisfies all the inequalities

from the system S(2)
N . If not, find an inequality in S(2)

N which is
violated by x.

This problem can be solved in polynomial time (Gerards [1985]).

Proof. Pick two distinct elements u, v ∈ VN . For i, j ∈ VN \ {u, v}, set

(29.5.2) yij := −xij +
1

2
(xiu + xiv + xju + xjv).

If C is a circuit with V (C) ⊆ VN \ {u, v}, then

∑

ij∈E(C)

yij = −
∑

ij∈E(C)

xij +
∑

i∈V (C)

(xiu + xiv).
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Hence, x satisfies the inequality (29.5.1) if and only if
∑
ij∈E(C) yij ≥ xuv holds.

So, one can solve the separation problem over S(2)
N in the following way. First,

check whether x satisfies all the triangle inequalities. If not, then a violated
triangle inequality has been found. Otherwise, this shows that y is nonnegative.
Then, one uses the polynomial algorithm from Grötschel and Pulleyblank [1981]
for finding an odd cycle on VN \ {u, v} of minimum weight, with respect to the
weights y (such a cycle will be, in fact, a circuit). Then, one verifies whether this
minimum weight is greater than or equal to the constant xuv. If not, then one
has found a violated inequality. This computation is repeated for every choice
of u, v ∈ VN .

In the same way, the class of bicycle odd wheel inequalities:

xuv +
∑

ij∈E(C)

xij +
∑

i∈V (C)

(xiu + xiv) ≤ 2|V (C)|

(where C is an odd circuit and u, v ∈ VN \ V (C)) together with the triangle
inequalities: xij + xik + xjk ≤ 2 (i, j, k ∈ VN ) can be separated in polynomial
time. (The proof is identical; it suffices to replace (29.5.2) by yij := 2 − xij −
1
2(xiu + xiv + xju + xjv).)

The web W3
10

More generally, given an integer q ≥ 2, let S(q)
N denote the system consisting

of the homogeneous triangle inequalities and of the inequalities:

∑

ij∈E(W)

xij +
∑

ij∈E(KQ)

xij −
∑

i∈V (W),j∈Q
xij ≤ 0,

where W is a web Wr
q+2r+1 on VN andKQ is a complete graph on Q ⊆ VN \V (W)

with |Q| = q. In order to separate the system S(q)
N , we can proceed in the same

way as in the case q = 2 treated above. Namely, let Q be a subset of cardinality
q of VN and, for i, j ∈ VN \Q, set

yij := −xij +
1

q

∑

u∈Q
(xiu + xju).
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Then, y is nonnegative whenever x satisfies all the triangle inequalities. If W is
a web on q + 2r + 1 nodes of VN \Q with parameter r, then

∑

ij∈E(W)

yij = −
∑

ij∈E(W)

xij +
∑

i∈V (W),u∈Q
xiu.

Hence, if we can compute in polynomial time the minimum weight web (with
respect to the weights y) on q+2r+1 nodes with parameter r, then we can solve

the separation problem over S(q)
N in polynomial time. Unfortunately, nothing

is known about the minimum weight web problem if q 6= 2. For instance, for
q = 3, the web Wr

2r+4 is the circular graph on 2r + 4 nodes where each node i
is adjacent to nodes r + 1 + i, r + 2 + i and r + 3 + i, and we have the problem
of finding such a graph structure of minimum weight. We show below the web
W3

10.

29.6 An Example of Proof for Clique-Web Facets

We give here the proof of Theorem 29.4.2 (i), i.e., we show that the pure clique-
web inequality (CWr

n)
Tx ≤ 0 is facet inducing for CUTn, if r ≥ 1. (The case

r = 0 was already treated; see, e.g., the observation after Corollary 26.6.2 for
a proof.) We use the following two lemmas taken, respectively, from Barahona
and Mahjoub [1986] and Barahona, Grötschel and Mahjoub [1985].

Lemma 29.6.1. Let a ∈ REn , i 6= j ∈ {1, . . . , n}, S ⊆ {1, . . . , n} \ {i, j} such
that the cut vectors δ(S), δ(S ∪ {i}), δ(S ∪ {j}), δ(S ∪ {i, j}) satisfy the equality
aTx = 0. Then, aij = 0 holds.

Lemma 29.6.2. Let a ∈ REn , I, J,H and S be disjoint subsets of {1, . . . , n}
such that the cut vectors δ(S ∪J), δ(S ∪H), δ(S ∪ I ∪J), δ(S ∪ I ∪H) satisfy the
equality aTx = 0. Then, ∑

i∈I,j∈J
aij =

∑

i∈I,h∈H
aih

holds. In particular, if I = {i}, J = {j},H = {h}, then aij = aih holds.

In order to prove that (CWr
n)
Tx ≤ 0 is facet inducing for CUTn, we consider

a valid inequality aTx ≤ 0 for CUTn such that a(δ(S)) = 0 for all roots δ(S) of
(CWr

n)
Tx ≤ 0. We show the existence of a scalar α such that aTx = α(CWr

n)
Tx.

For this, it suffices to prove the following statements:

(a) aij = 0 for all ij ∈ AWr
p.

(b) aij = α for all ij ∈ Kp \ AWr
p.

(c) ai′j′ = α for all i′j′ ∈ Kq.

(d) aij′ = α for all i ∈ {1, . . . , p}, j′ ∈ [1′, q′].
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We have chosen to denote the n nodes on which CWr
n is defined by [1, n] =

[1, p]∪ [1′, q′] (q = n−p). We prove the statements (a)-(d) through the following
Claims 29.6.3-29.6.8. We use the description of the roots of (CWr

n)
Tx ≤ 0 given

in Proposition 29.3.3.

Claim 29.6.3. Assertion (a) holds, i.e., aij = 0 for ij ∈ AWr
p.

Proof. Let u be an integer such that 2 ≤ u ≤ r + 1 and set S := [2, u − 1]; so,
S = ∅ for u = 2. The sets S, S ∪ {1}, S ∪ {u} and S ∪ {1, u} define roots (of type
1) of (CWr

n)
Tx ≤ 0 and, hence, of aTx ≤ 0. Therefore, Lemma 29.6.1 implies

that a1u = 0 and the general result follows by symmetry.

Claim 29.6.4. For some scalar γ, aij′ = γ for all i ∈ {1, . . . , p}, j′ ∈ [1′, q′].

Proof. Take two distinct nodes i′, j′ in [1′, q′] and set S := [2, r + 2]. Then, the
sets S∪{i′}, S∪{j′}, S∪{1, i′}, S∪{1, j′} all define roots (of type 2). Therefore,
Lemma 29.6.2 implies that a1i′ = a1j′ , i.e., a11′ = . . . = a1q′ =: γ1, for some
scalar γ1. Similarly, ai1′ = . . . = aiq′ =: γi, for some scalar γi, for all i. Let i be
an integer such that r+2 ≤ i ≤ p−r, and set T := [2, i−1]∪ [2′, (i−r−1)′] (with
T = [2, r + 1] if i = r + 2). The sets T ∪ {1}, T ∪ {i}, T ∪ {1, 1′} and T ∪ {i, 1′}
all define roots. Therefore, Lemma 29.6.2 implies that a11′ = ai1′ , i.e., γ1 = γi.
So, γ1 = γr+2 = γr+3 = . . . = γp−r; similarly, γ2 = γr+3 = . . . = γp−r+1 and,
therefore, γ1 = γ2. By symmetry, γ1 = γ2 = . . . = γp =: γ.

Claim 29.6.5. For some scalar α, ai′j′ = α for all 1′ ≤ i′ < j′ ≤ q′.

Proof. Take distinct nodes i′, j′, h′ in [1′, q′] and set S := [1, r+2]. Then, the sets
S ∪ {j′}, S ∪ {h′}, S ∪ {i′, j′} and S ∪ {i′h′} all define roots. Hence, we deduce
from Lemma 29.6.2 that ai′j′ = ai′h′ , henceforth stating the result.

From the fact that δ({i}) is a root for all 1 ≤ i ≤ p, we have that aT δ({i}) = 0.
Using the above claims, we deduce that

(Si)
∑

1≤j≤p
aij = −qγ

where we set, by convention, aii := 0.

Claim 29.6.6. γ = −α.

Proof. Since the set [1, r+1]∪{1′} defines a root, equality aT δ([1, r+1]∪{1′}) = 0,
together with the above claims, yields:
∑

1≤j≤p
(a1j + a2j + . . .+ ar+1,j) + (r + 1)(q − 1)γ + (p− r − 1)γ + (q − 1)α = 0.

Using relations (S1), . . . , (Sr+1), we deduce from the above identity that

−q(r + 1)γ + (r + 1)(q − 1)γ + (p− r − 1)γ + (q − 1)α = 0,
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i.e., γ(p− 2r− 2) + α(q − 1) = 0. Thus, γ = −α since p = q+ 2r + 1 and q ≥ 2.

Claim 29.6.7. a1,r+2 = α.

Proof. Since the set [1, r + 2] ∪ {1′} defines a root, we deduce the relation:

∑

1≤j≤p
(a1j + . . .+ ar+2,j)− 2a1,r+2 −α(r+ 2)(q− 1)−α(p− r− 2) +α(q− 1) = 0

which, using relations (S1), . . . , (Sr+2), yields: a1,r+2 = α.

In order to finish the proof, we must show that condition (b) holds. For this,

it suffices to show, for instance, that aij = α for all 1 ≤ i < j ≤ (p+1)
2 such that

ij 6∈ AWr
p, i.e., j ≥ i+r+1. We prove the following statement (Hu) by induction

on u, r + 2 ≤ u ≤ (p+1)
2 :

(Hu) aij = α for all 1 ≤ i < j ≤ u such that ij 6∈ AWr
p.

Assertion (Hr+2) holds from Claim 29.6.7. Take u ≥ r+3 and assume that (Hi)
holds for i ≤ u−1; we show that (Hu) holds, i.e., that aiu = α for 1 ≤ i ≤ u−r−1.

Claim 29.6.8. aiu = α for all 1 ≤ i ≤ u− r − 1.

Proof. Set S := [i + 1, u] ∪ [1′, (u − i − r)′]. Then, both S and S ∪ {i} define
roots, yielding:

0 = a(δ(S ∪ {i})) − a(δ(S))

and, hence, the following relation:

0 =
∑

j 6∈S∪{i}
aij−

∑

j∈S
aij =

∑

1≤j≤p
aij−2(ai,i+1+. . .+aiu)−α(q−u+i+r)+α(u−i−r).

Now, ai,i+1 + . . . + aiu = ai,i+r+1 + . . . + ai,u−1 + aiu = α(u − i − r − 1) + aiu,
the latter equality following from the induction assumption (Hi) for i ≤ u − 1.
Therefore, the above relation yields:

0 = qα− 2α(u − i− r − 1) − 2aiu − α(q − u+ i+ r) + α(u− i− r),

i.e., aiu = α.





Chapter 30. Other Valid
Inequalities and Facets

We describe in this chapter the other main known classes of valid inequalities
defining facets of the cut polytope. The complete linear description of the cut
polytope CUT2

n is known only for n ≤ 7; it is presented in Section 30.6.

30.1 Suspended-Tree Inequalities

As a generalization of the subclass of clique-web inequalities CW1
n(b)

Tx ≤ 0 (the
case r = 1 of CWr

n(b)
Tx ≤ 0), Boros and Hammer [1993] have introduced the

following class of inequalities (30.1.1).

Let r ≥ 1 and b = (b1, . . . , bn) be integers such that
∑n
i=1 bi = 2r + 1 and

suppose that b2, . . . , bp > 0 > bp+1, . . . , bn for some 2 ≤ p ≤ n − 1. (Note that
the sign of b1 is free.) Let T be a spanning tree on the p − 1 nodes of the set
{2, . . . , p} and, for each node i ∈ {2, . . . , p}, let di denote the degree of node i in
T. Consider the inequality:

(30.1.1)
∑

1≤i<j≤n
bibjxij −

r(r + 1)

2




p∑

i=2

(2 − di)x1i +
∑

ij∈E(T )

xij


 ≤ 0.

We call it a suspended-tree inequality and we denote it by STrn(T, b)
Tx ≤ 0, since

the quantity

(30.1.2)
p∑

i=2

(2 − di)x1i +
∑

ij∈E(T )

xij

is supported by a suspended-tree (a tree plus a node joined to some nodes of
the tree). See below an example of a tree T and of the corresponding quantity
(30.1.2) (weight 1 is indicated by a plain edge, weight -1 by a dotted edge and
no edge means weight 0).

487
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In the special case when T is the path (2, . . . , p), then d2 = dp = 1 while
di = 2 for 3 ≤ i ≤ p− 1. Hence, the quantity (30.1.2) takes the form:

∑

1≤i≤p−1

xi,i+1 + x1p,

i.e., its support graph is a circuit of length p. Therefore, the inequality (30.1.1)
coincides with the inequality (29.3.7). This implies that, if b1, . . . , bp ≥ r, then
STrn(T, b)

Tx ≤ 0 coincides with CWr
n(b)

Tx ≤ 0; otherwise, STrn(T, b)
Tx ≤ 0 is

dominated by CWr
n(b)

Tx ≤ 0 and, therefore, it is not facet inducing (recall the
observations after Proposition 29.3.6).

We conjecture that, for an arbitrary tree T , if bi < r for some i ∈ {1, . . . , p},
then the suspended-tree inequality STrn(T, b)

Tx ≤ 0 is not facet inducing. We
saw above that this is indeed the case if T is a path. In fact, the class of
suspended-tree inequalities STrn(T, b)

Tx ≤ 0 with bi ≥ r for all positive b′is
generalizes the class of clique-web inequalities CWr

n(b)
Tx ≤ 0 with bi ≥ r for all

positive b′is. On the other hand, recall that the class of clique-web inequalities has
been defined as collapsing of some pure clique-web inequalities. We conjecture
the existence of some large class I of valid inequalities, generalizing the (pure)
clique-web inequalities, such that the suspended-tree inequality STrn(T, b)

Tx ≤ 0
with bi ≥ r for all positive b′is would occur as collapsing of some pure member of
I, while STr

n(T, b)
Tx ≤ 0 with bi < r for some positive bi would be dominated

by some member of I.

Proposition 30.1.3. The inequality (30.1.1) is valid for CUTn. Moreover, the
roots of (30.1.1) are the cut vectors δ(S) for which S ⊆ {2, . . . , n}, b(S) = r, r+1
and such that the subgraph of T induced by S ∩ {2, . . . , p} is connected.

Proof. Let S be a subset of Vn \ {1}. It is easy to check that

STrn(T, b)
T δ(S) = b(S)(2r + 1 − b(S)) − r(r + 1)c(S),

where c(S) denotes the number of connected components of the subgraph of T
induced by S ∩ {2, . . . , p}. Hence, STrn(T, b)

T δ(S) ≤ 0 if c(S) ≥ 1, with equality
if and only if c(S) = 1 and b(S) = r, r + 1. Moreover, STrn(T, b)

T δ(S) < 0 if
c(S) = 0 since, then, S ∩ {1, 2, . . . , p} = ∅, implying that b(S) < 0.

Theorem 30.1.4. Let r ≥ 1, b1, . . . , bn be integers such that
∑n
i=1 bi = 2r + 1,

b2, . . . , bp ≥ r, bp+1 = . . . = bn = −1 for some p with 3 ≤ p ≤ n − 1. Let T be
a spanning tree on {2, . . . , p}. Suppose that one of the two conditions (i), (ii)
holds.

(i)
∑p
i=2 bi ≤ n−p+r+1 (or, equivalently, b1 ≥ r) and there exist two disjoint

sets S1, S2 ⊆ {2, . . . , p} such that b(Sl) =
∑
i∈Sl

bi ≥ r+1 and the subgraph
of T induced by Sl is connected, for l = 1, 2.

(ii) T is not a star and b(S) ≤ n − p + r + 1 for every subset S ⊆ {2, . . . , p}
for which the subgraph of T induced by S is a path.
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Then, the inequality (30.1.1) defines a facet of CUTn.

Proposition 30.1.3 and Theorem 30.1.4 with the condition (i) are given in Boros
and Hammer [1993]; the alternative condition (ii) of Theorem 30.1.4 is proposed
in Boissin [1994]. The results are presented there in the context of the correlation
polyhedra. The proof below is taken from Boros and Hammer [1993].

Proof. We show that the inequality:

(30.1.5)
∑

2≤i,j≤n
bibjpij− (2r+1)

n∑

i=2

bipii+r(r+1)




p∑

i=2

pii −
∑

ij∈E(T )

pij


 ≥ 0,

which corresponds to the inequality (30.1.1) via the covariance mapping pointed
at position 1, defines a facet of CORn−1. Here, b2, . . . , bn are integers such
that b2, . . . , bp ≥ r, bp+1, . . . , bn = −1, T is a spanning tree on {2, . . . , p} and
one of the conditions (i),(ii) of Theorem 30.1.4 holds. Denote the inequality
(30.1.5) by vT p ≥ 0. Let wT p ≥ 0 be a valid inequality for CORn−1 such that
{p ∈ CORn−1 | vT p = 0} ⊆ {p ∈ CORn−1 | wT p = 0}. We show that w = λv for
some λ > 0.
Let S denote the family consisting of the sets S ⊆ {2, . . . , p} for which the
subgraph T [S] of T induced by S is connected and such that r + 1 ≤ b(S) ≤
n− p+ r+ 1. For i0 ∈ {p+ 1, . . . , n}, let Si0 denote the family consisting of the
sets S ∪ S′, where S ∈ S and S′ ⊆ {p+ 1, . . . , n} \ {i0} with |S′| = b(S) − r− 1.
Set S∗

i0 := {A ∪ {i0} | A ∈ Si0}. We prove an intermediary result.

Claim 30.1.6. For each i0 ∈ {p+ 1, . . . , n}, the incidence vectors of the mem-
bers of S∗

i0
have rank n− 2.

Proof of Claim 30.1.6. We show that the space consisting of the vectors that are
orthogonal to all incidence vectors of members of S∗i0 has dimension 1. Consider
the vector y ∈ Rn−1 defined by yi := bi (i = 2, . . . , p), yi0 := −r − 1, and
yi := −1 (i ∈ {p + 1, . . . , n} \ {i0}). Clearly, y is orthogonal to all incidence
vectors of members of S∗

i0
. Let x ∈ Rn−1 such that xi0 = 0 and x is orthogonal

to all incidence vectors of members of S∗
i0

. We show that x = 0. Let S ∈ S.
Then, x(S) + x(S′) = 0 for every subset S′ of {p+ 1, . . . , n} \ {i0} of cardinality
b(S) − r − 1. Hence, xi = α for i ∈ {p+ 1, . . . , n} \ {i0}, where

α := − x(S)

b(S) − r − 1
.

Therefore,

(a) (x+ αb)(S) = α(r + 1) for all S ∈ S.

Suppose, first, that the condition (i) from Theorem 30.1.4 holds. If S ∈ S and if
a node i ∈ {2, . . . , p}\S is adjacent to a node of S in the tree T , then S∪{i} still
belongs to S. Hence, xi + αbi = 0 by (a) and, therefore, this relation holds for



490 Chapter 30. Other Valid Inequalities and Facets

all i ∈ {2, . . . , p} \ S. Now, taking for S the two sets S1 and S2 from condition
(i), we deduce that xi + αbi = 0 for all i ∈ {2, . . . , p}. This implies that x = 0.
Suppose now that the condition (ii) from Theorem 30.1.4 holds. Let S be the
node set of a path (i1, . . . , is) in T . If |S| ≥ 4, then all the sets S, S \{is}, . . . , S \
{is, is−1, . . . , i3}, and S\{i1}, . . . , S\{i1, . . . , is−2} belong to S. Hence, we deduce
from (a) that xi + αbi = 0 for all i ∈ S. Therefore, xi = 0 for all i ∈ S. As T is
not a star, every node of T lies on a path of length at least 4. This shows that
x = 0.

Clearly, for i0 ∈ {p + 1, . . . , n} and S ∪ S′ ∈ Si0 , the correlation vectors
π(S ∪ S′) and π(S ∪ S′ ∪ {i0}) are both roots of the inequality (30.1.5). Hence,
the relations

vi0 +
∑

i∈S∪S′

vi,i0 = 0, wi0 +
∑

i∈S∪S′

wi,i0 = 0

hold for all S ∪S′ ∈ Si0 . We deduce from Claim 30.1.6 that there exists a scalar
λi0 such that wi0 = λi0vi0 and wi,i0 = λi0vi,i0 for all i ∈ {2, . . . , n} \ {i0}. As
vij 6= 0 for i, j ∈ {p + 1, . . . , n}, we obtain that all λi0 ’s are equal to, say, λ.
Hence, wi = λvi for i = p+ 1, . . . , n and wij = λvij if at least one of i, j belongs
to {p+ 1, . . . , n}.

Set u := w − λv. We show that u = 0. For i0 ∈ {2, . . . , p}, let Ti0 denote
the family consisting of the nonempty sets S ⊆ {2, . . . , p} \ {i0} such that the
subgraphs T [S] and T [S∪{i0}] are both connected and b(S)+bi0 ≤ n−p+r+1.
Clearly, if S ∈ Ti0 and S′, S′′ ⊆ {p+1, . . . , n} with |S′| = b(S)−r, |S′′| = bi0 −1,
then the correlation vectors π(S ∪ S′) and π(S ∪ {i0} ∪ S′ ∪ S′′) are roots of the
inequality (30.1.5). This implies that

(b) ui0 +
∑

i∈S
ui,i0 = 0 for all S ∈ Ti0.

If i is a node of T adjacent to i0, then {i} belongs to Ti0 and, thus, ui0 +ui,i0 = 0.
If (i0, i1, . . . , is) is a path in T , then all sets {i1}, {i1, i2},. . . , {i1, . . . , is} belong
to Ti0 . From (b), we deduce that ui0,i2 = ui0,i3 = . . . = ui0,is = 0. This shows
that ui0,i = 0 if i is not adjacent to i0 and ui0,i = −ui0 if i is adjacent to i0.
Hence, we obtain that, for some α ∈ R, u2 = . . . = up = α, uij = −α if ij is an
edge of T and uij = 0 otherwise. Finally, α = 0, which shows that u = 0, i.e.,
w = λv.

We now present some other classes of facets, which are obtained by modifying
the definition of the suspended-tree inequalities. Let b = (b1, . . . , b2p+1) with

bi = 1 if i ∈ {1, . . . , p+2} and bi = −1 if i ∈ {p+3, . . . , 2p+1}; so,
∑2p+1
i=1 bi = 3.

Let T be a spanning tree defined on the p + 1 nodes of the set {2, . . . , p + 2}.
Hence, the inequality:

∑

1≤i<j≤2p+1

bibjxij −


p+2∑

i=2

(2 − di)x1i +
∑

ij∈E(T )

xij


 ≤ 0
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is the case b = (1, . . . , 1,−1, . . . ,−1) and r = 1 of the inequality (30.1.1). Con-
sider the following switching of it:

(30.1.7)

∑

ij∈K2p+1

xij −


p+2∑

i=2

(2 − di)x1i +
∑

ij∈E(T )

xij


 ≤ (p− 1)(p+ 2)

= p(p+ 1) − 2.

Therefore, from Theorem 30.1.4, the inequality (30.1.7) defines a facet of the cut
polytope CUT2

2p+1 if T is not a star. The following two generalizations of the
inequality (30.1.7) were proposed by De Souza and Laurent [1995]. They allow,
respectively, the tree T to be defined on p or on p − 1 nodes but, in order to
preserve validity, an additional term (whose support graph is K3 or K5) must
be added to (30.1.7); also the right hand side has to be modified.

Consider the complete graph K2p+1 defined on the nodes of {1, . . . , 2p+ 1}.
Let T be a spanning tree defined on the p nodes of {2, . . . , p+1} and let ∆ denote
the complete graph K3 defined on {p+ 2, p+ 3, p+ 4}. Consider the inequality:

(30.1.8)
∑

ij∈K2p+1

xij −


p+1∑

i=2

(2 − di)x1i +
∑

ij∈E(T )

xij −
∑

ij∈∆

xij


 ≤ p(p+ 1).

(We remind that di denotes the degree of node i in the tree T .) For instance, let
p = 5 and let T be the tree from Figure 30.1.9. Then, the quantity
p+1∑

i=2

(2 − di)x1i +
∑

ij∈E(T )

xij −
∑

ij∈∆

xij is depicted in Figure 30.1.10.

Figure 30.1.9 Figure 30.1.10

Suppose now that T is a spanning tree defined on the p−1 nodes of {2, . . . , p}.
Let C denote the 5-circuit (p+ 1, p+ 2, p+ 3, p+ 4, p+ 5) and let C′ denote the
5-circuit (p+ 1, p+ 3, p+ 5, p+ 2, p+ 4). Consider the inequality:

(30.1.11)

∑

ij∈K2p+1

xij −



p∑

i=2

(2 − di)x1i +
∑

ij∈E(T )

xij +
∑

ij∈C
xij −

∑

ij∈C′

xij




≤ p(p+ 1).
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If p = 7 and T is the tree from Figure 30.1.12, then the quantity:
p∑

i=2

(2−di)x1i+

∑

ij∈E(T )

xij +
∑

ij∈C
xij −

∑

ij∈C′

xij is depicted in Figure 30.1.13.

Figure 30.1.12 Figure 30.1.13

The following result can be found in De Souza and Laurent [1995].

Theorem 30.1.14.

(i) The inequality (30.1.8) defines a facet of the cut polytope CUT22p+1 if p ≥ 5
and if T is not a star.

(ii) The inequality (30.1.11) defines a facet of CUT2
2p+1 if p ≥ 6 and if, for

each node u of T , some connected component of T \ u has at least three
nodes.

The next case to consider would be when the tree T is defined on p−2 nodes.
It is natural to conjecture the existence of a valid inequality for CUT22p+1 which,
by analogy with (30.1.8) and (30.1.11), would involve, besides the suspended
tree, a graph K7 with suitable edge weights. We refer to De Souza [1993] for a
discussion on this; some examples of such inequalities are proposed there.

30.2 Path-Block-Cycle Inequalities

Given an integer p ≥ 1, let C denote the circuit (1, 2, . . . , p + 2). Then, the
inequality:

(30.2.1)
∑

1≤i<j≤2p+1

xij −
∑

ij∈E(C)

xij ≤ p(p+ 1) − 2

defines a facet of CUT2
2p+1. Indeed, the inequality (30.2.1) coincides with a

switching of the (pure) clique-web inequality (CW1
2p+1)

Tx ≤ 0, namely, with its
switching by the cut δ({1, 2, . . . , p+ 2}) (expressed in (29.1.5)). In this section,
we describe a class of inequalities which generalizes (30.2.1). Instead of using
only one circuit, we consider a graph structure, called path-block-cycle, which is
constructed from several circuits.
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More precisely, a path-block-cycle is a graph defined as follows. Let Ch =
(Vh, E(Ch)) (1 ≤ h ≤ r) be r circuits such that Vh ∩ Vh′ =

⋂
1≤h≤r Vh for all

distinct h, h′ ∈ {1, . . . , r}. We suppose, moreover, that the common nodes are
visited in the same order along each of the circuits Ch. Then, the graph with
node set

⋃
1≤h≤r Vh and with edge set

⋃
1≤h≤r E(Ch) (allowing repetition of the

edges) is called a path-block-cycle and is abbreviated as PBC. It may contain
multiple edges, if some edge is used by several of the circuits Ch. Figure 30.2.2
shows an example of a PBC graph composed of three circuits. The black nodes
are those common to all three circuits; the three circuits are drawn, respectively,
by a plain line, a thick line and a dotted line.

Figure 30.2.2: A path-block-cycle graph

Set
⋂

1≤h≤r Vh =: {x1, . . . , xt}, where t ≥ 1. Hence, each circuit Ch decom-
poses into t subpaths Pih (1 ≤ i ≤ t), where Pih starts at xi and ends at xi+1

(the indices i are taken modulo t). Set

qih := |V (Pih)| − 2,

i.e., qih is the number of internal nodes of Pih, qih ≥ 0. Let π1, . . . , πr−1 denote
the r − 1 largest values taken by qih, for 1 ≤ i ≤ t, 1 ≤ h ≤ r. For each integer
k such that k(k + 1) ≤ 2(r − 1), set

Qk :=
∑

1≤h≤r−1− k(k+1)
2

πh.

Finally, set
n0 := 2p+ 1 − |

⋃

1≤h≤r
Vh|.

Given a PBC graph composed of r circuits C1, . . . , Cr and which is a subgraph
of K2p+1, we define the following inequality:

(30.2.3)
∑

1≤i<j≤2p+1

xij −
∑

1≤h≤r

∑

ij∈E(Ch)

xij ≤ p(p+ 1) − 2r.

It is called a path-block-cycle inequality. These inequalities are introduced in
their full generality in De Souza [1993]; a more restricted subclass (see below) is
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considered in De Souza and Laurent [1995]. Actually, they have been introduced
in the context of the equicut polytope EQCUT22p+1.
We give first the characterization of the PBC inequalities that are valid for the
cut polytope, established by De Souza [1993].

Proposition 30.2.4. Given a PBC graph that is a subgraph of K2p+1, the in-
equality (30.2.3) is valid for CUT2

2p+1 if and only if Qk + n0 ≤ p− 1 − k for all
k ∈ Z+ such that k(k + 1) ≤ 2(r − 1).

Proof. Denote the inequality (30.2.3) by vTx ≤ p(p+ 1) − 2r.
Necessity. Suppose that k is an integer such that Qk+n0 ≥ p−k and k(k+1) ≤
2(r − 1). Then, we can construct a node set S of cardinality p− k whose nodes

are, either internal nodes of the paths Pih corresponding to the r − 1 − k(k+1)
2

largest πh values, or do not belong to the PBC graph. Moreover, this set S can
be chosen in such a way that

vT δ(S) ≥ p(p+1)−k(k+1)−2(r−1−k(k + 1)

2
), i.e., vT δ(S) ≥ p(p+1)−2r+2.

Hence, the cut vector δ(S) violates the inequality (30.2.3).
Sufficiency. Suppose that Qk + n0 ≤ p − k − 1 for all k ∈ Z+ such that
k(k + 1) ≤ 2(r − 1). Suppose also that there exists a cut vector δ(S) violating
(30.2.3). Set |S| := p− k for some 1 ≤ k ≤ p− 1. Then,

vT δ(S) = p(p+ 1) − k(k + 1) −
∑

1≤h≤r
|δK2p+1(S) ∩E(Ch)| > p(p+ 1) − 2r.

Hence, the cut δK2p+1(S) cannot meet all the r circuits Ch. Therefore, the set⋂
1≤h≤r Vh of common nodes is entirely contained in S or in its complement.

This implies that δK2p+1(S) can only intersect r − λ paths Pih for some integer
λ, 1 ≤ λ ≤ r. Then,

∑
1≤h≤r |δK2p+1(S) ∩ E(Ch)| = 2(r − λ), i.e., vT δ(S) =

p(p+1)−2r+2λ−k(k+1). This implies that 2λ > k(k+1), i.e., λ ≥ k(k+1)
2 +1.

Set α := |S \⋃1≤h≤r Vh| and β := |S| −α. These β nodes are distributed among

r−λ ≤ r− k(k+1)
2 − 1 paths Pih, which implies that β ≤ Qk. On the other hand,

α ≤ n0. Therefore, p−k = α+β ≤ n0 +Qk ≤ p−k−1, yielding a contradiction.
This shows that (30.2.3) is valid for CUT2

2p+1.

Recall that the equicut polytope EQCUT2
2p+1 is the facet of CUT2

2p+1 defined
by the inequality: ∑

1≤i<j≤2p+1

xij ≤ p(p+ 1).

Therefore, for any facet defining inequality for EQCUT22p+1, there exists a suit-
able linear combination of it with the equation

∑
1≤i<j≤2p+1 xij = p(p+1) which

produces a facet defining inequality for CUT2
2p+1. In fact, the inequality (30.2.3)

arises in this way from the inequality:

(30.2.5)
∑

1≤h≤r

∑

ij∈E(Ch)

xij ≥ 2r.
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De Souza [1993] shows that (30.2.5) is valid for EQCUT22p+1 if and only if n0 +
Q0 ≤ p−1; moreover, he shows that (30.2.3) defines a facet of CUT22p+1 whenever
it is valid for CUT2

2p+1 and whenever (30.2.5) defines a facet of EQCUT22p+1. A
class of PBC graphs is given in De Souza and Laurent [1995] for which (30.2.5)
is facet defining for EQCUT2

2p+1; we describe it below in Theorem 30.2.7.

Consider a PBC graph formed by r circuits satisfying the following condi-
tions:

(i) All the r circuits have the same length, i.e., |V1| = . . . = |Vr|.
(ii) The number of nodes common to all circuits is even, say, t = 2s.

(iii) For each odd i ∈ {1, 2, . . . , 2s}, the path Pih consists of the edge (xi, xi+1),
i.e., qih = 0.

(iv) For each even i ∈ {1, 2, . . . , 2s}, any two paths Pih, Pih′ have only their
endnodes xi, xi+1 in common and they have the same length q + 1, i.e.,
qih = q.

Hence, a PBC graph satisfying (i)-(iv) is fully determined by the parameters
(s, q, r).

Set Er := {xixi+1 | 1 ≤ i ≤ 2s − 1, i is odd} and E1 :=
⋃

1≤h≤r E(Ch) \ Er.
Then, the edges of Er belong to all r circuits while the edges of E1 belong to
exactly one circuit. Hence,

∑

1≤h≤r

∑

ij∈E(Ch)

xij =
∑

ij∈E1

xij + r
∑

ij∈Er

xij.

Figure 30.2.6: PBC graphs

Figure 30.2.6 shows two PBC graphs satisfying the conditions (i)-(iv) with
the parameters s = 4, q = 1, r = 2, and s = 3, q = 2, r = 3, respectively; the
thick edges are the edges of Er.

Theorem 30.2.7. Consider a PBC graph with parameters (s, q, r) satisfying
the conditions (i)-(iv) above. Suppose that this PBC is a subgraph of K2p+1 and
that n0 = p− (r − 1)q − 1 (or, equivalently, p = (s− 1)(qr + 2) + q). Then, the
inequality (30.2.3) defines a facet of CUT2

2p+1.
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Remark 30.2.8. (i) De Souza [1993] proposes some inequalities that are ob-
tained as a common generalization of suspended-tree inequalities and path-block-
cycle inequalities. Observe that the graph structure used in suspended-treee in-
equalities is a suspended tree while the graph structure used in path-block-cycle
inequalities is a collection of circuits. Note also that a circuit is a special case of
suspended tree. Hence, a natural idea would be to consider inequalities involv-
ing a collection of suspended-trees. We refer to De Souza [1993] where several
inequalities of this type are investigated in the context of the equicut polytope.
(ii) The separation problem for suspended-tree inequalities and for path-block-
cycle inequalities is probably hard. Some separation routines for path-block-cycle
inequalities (or, more precisely, for the inequalities (30.2.5) which occur for the
equicut polytope) are proposed by De Souza [1993].

30.3 Circulant Inequalities

In this section, we present a class of facets, whose support graphs are circulant
graphs. The circulant graph C(n, r) is the graph on the n nodes {1, 2, . . . , n}
whose edges consist of the pairs (i, i + 1), (i, i + r) for i = 1, . . . , n, where the
indices are taken modulo n. Figure 30.3.1 shows the graph C(8, 3).

Figure 30.3.1: C(8, 3)

Poljak and Turzik [1987, 1992] have computed the maximum cardinality of
a cut in any circulant graph C(n, r) and presented new classes of facets for the
cut polytope and the bipartite subgraph polytope which are supported by some
circulant graphs. Theorems 30.3.2 and 30.3.3 can be found in Poljak and Turzik
[1992] and Theorem 30.3.4 in Poljak and Turzik [1987, 1992].

The bipartite subgraph polytope BIP2n is the polytope in REn defined as the
convex hull of the incidence vectors of the edge sets F ⊆ En for which (Vn, F ) is
a bipartite subgraph of the complete graph Kn.

Theorem 30.3.2. Let n, r be integers with n ≥ 2r+1 ≥ 4. Then, the maximum
cardinality of a bipartite subgraph in C(n, r) is equal to max(2n− ut − vt | t =
0, 1, . . . , r), where ut := |nt − vtr| and vt is the unique integer having the same
parity as n and satisfying nt− r ≤ vtr < nt+ r.

Theorem 30.3.3. Let n = kr + s where 0 < s < r < n
2 , r and k are even, s

is odd and g.c.d.(n, r) = 1. Denote by EO (resp. EI) the set of edges (i, i + 1)
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(resp. (i, i + r)) for i = 1, . . . , n of C(n, r) (the indices being taken modulo n).
Then, the inequality:

∑

ij∈EI

xij + s
∑

ij∈EO

xij ≤ (s+ 1)n− sk − r

defines a facet of the bipartite subgraph polytope BIP2n .

Theorem 30.3.4. Let n = kr + 1, where k, r ≥ 2 are even integers. Then, the
inequality: ∑

ij∈C(n,r)

xij ≤ 2n− k − r

defines a facet of the cut polytope CUT2
n .

Observe that, in the case r = 2, the circulant C(n, 2) coincides with the
antiweb AW2

n. Poljak and Turzik [1992] observed that the problem: “Does a
graph G contain a circulant C(n, 2) for some n ?” is NP-complete. Hence, the
separation problem for the class of inequalities :

∑

ij∈C(n,2)

xij ≤
3

2
(n− 1), n odd

is NP-hard.

30.4 The Parachute Inequality

We describe in this section the class of parachute inequalities. They have been
introduced1 in Deza and Laurent [1992a] and further studied in Deza and Laurent
[1992c, 1992d].

The parachute inequality is defined on an odd number of points, say, on
2k + 1 points. It is convenient to denote the elements of the set V2k+1 as
{0, 1, 2, . . . , k, 1′, 2′, . . . , k′}. We define the following paths P and Q:

P := (k, k−1, . . . , 2, 1, 1′, 2′, . . . , (k−1)′, k′), Q := (k−1, . . . , 2, 1, 1′, 2′, . . . , (k−1)′).

Then, the inequality:

(30.4.1) (Par2k+1)
Tx :=

∑

ij∈P
xij−

∑

1≤i≤k−1

(x0i+x0i′ +xki′ +xk′i)−xkk′ ≤ 0

is called the parachute inequality and is denoted as (Par2k+1)
Tx ≤ 0. Fig-

ure 30.4.3 shows the support graph of the parachute inequality on 7 points.

For k even, the parachute inequality is not valid for the cut cone; for example,
it is violated by the cut vector δ({1, 3, . . . , k − 1} ∪ {2′, 4′, . . . , k′}). But, for k
odd, the parachute inequality is facet inducing.

1The parachute inequality on seven points (in fact, a switching of it) has been introduced
earlier by Assouad and Delorme [1982] (cf. Assouad [1984]).
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Theorem 30.4.2. For k odd, k ≥ 3, the parachute inequality (30.4.1) defines a
facet of CUT2k+1.

0

1

2

3 3’

2’

1’

Figure 30.4.3: (Par7)
Tx ≤ 0

0

1

2

3

2’

1’

2

1

Figure 30.4.4: The analogue of
(Par7)

Tx ≤ 0 for COR6

30.4.1 Roots and Fibonacci Numbers

As we now see, the parachute inequality presents two interesting features. First,
its number of roots can be expressed in terms of the Fibonacci numbers; second,
there is a close connection between the parachute inequality (Par2k+1)

Tx ≤ 0 and
the following clique-web inequality: (CWk−2

2k+1(1, . . . , 1,−1,−1))T x ≤ 0. Recall
that the Fibonacci sequence is the sequence (fi)i≥1 defined recursively by

f1 = f2 = 1,
fi+2 = fi + fi+1 for i ≥ 1.

We introduce some definitions that we need for the description of the roots of
the parachute inequality. Given a subset S of V2k+1 = {0, 1, . . . , k, 1′, . . . , k′}, the
set S is called symmetric if, for all i ∈ {1, . . . , k}, i ∈ S if and only if i′ ∈ S. Let
A = (1, 2, . . . , n) be a path. A subset S of {1, . . . , n} is called alternated along
the path A if |S ∩{i, i+1}| ≤ 1 for all i = 1, 2, . . . , n− 1, and S is called pseudo-
alternated along the path A if |S ∩ {i, i+ 1}| = 1 for all i ∈ {1, . . . , n− 1} − {j}
and |S ∩{j, j +1}| = 0, 2 for some j ∈ {1, . . . , n− 1}. One can easily check that,
for n even, there are exactly n− 1 pseudo-alternated subsets S along the path A
for which 1, n ∈ S. Also, an easy induction shows that the number of alternated
subsets along the path A = (1, . . . , n) is equal to the Fibonacci number fn+2.

Proposition 30.4.5. If k is odd, then the parachute inequality (30.4.1) is valid
for CUT2k+1. For any k, the roots of the parachute inequality are the cut vectors
δ(S) for which S is a subset of {1, 2, . . . , k, 1′, 2′, . . . , k′} of one of the following
four types:
Type 1: k, k′ ∈ S and S is pseudo-alternated along the path P .
Type 2: k, k′ 6∈ S and S is alternated along the path Q.
Type 3: For k odd, k ∈ S, k′ 6∈ S and (a) or (b) holds:
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(a) S = {2′, 4′, . . . , (k − 1)′, k} ∪ T, where T is a subset of {1, 2, . . . , k − 2}
alternated along the path (1, 2, . . . , k − 2).

(b) S = {k, 1′, (k − 1)′} ∪ T ∪ T ′, where T is a subset of {2, 3, . . . , k − 2}
which is alternated along the path (2, 3, . . . , k − 2), and T′ is a subset of
{2′, 3′, . . . , (k − 2)′} for which T ′ ∪ {1′, (k − 1)′} is pseudo-alternated along
the path (1′, 2′, . . . , (k − 1)′).

Type 3′: similar to Type 3, exchanging nodes i, i′ for all i = 1, . . . , k.

Therefore, the total number of roots of (Par2k+1)
Tx ≤ 0 is equal to f2k+2kfk−1+

2fk−2 + 2k − 1 for k odd and to f2k + 2k − 1 for k even, while the number of
nonzero symmetric roots of (Par2k+1)

Tx ≤ 0 is equal to the Fibonacci number fk.

Proof. Let S be a subset of {1, . . . , k, 1′, . . . , k′} and set s := |S ∩{1, . . . , k− 1}|,
s′ := |S ∩ {1′, . . . , (k − 1)′}|. One checks easily that

(Par2k+1)
T δ(S) = |δ(S) ∩ P | − 2(s+ s′), if k, k′ 6∈ S

= |δ(S) ∩ P | − 2s− k, if k ∈ S, k′ 6∈ S
= |δ(S) ∩ P | − 2(k − 1), if k, k′ ∈ S

Then, it is easy to see that, for k odd, the parachute inequality is valid and that,
for any k, the roots of (Par2k+1)

Tx ≤ 0 are indeed of Types 1,2,3, or 3′. There are
2k− 1 roots of Type 1, f2k roots of Type 2 and fk +(k− 1)fk−1 roots of Type 3.
Hence, altogether, there are 2k−1+f2k+2fk+2(k−1)fk−1 roots for k odd, and
2k−1+f2k roots for k even. There is only one symmetric root of Type 1, namely,
δ({k, . . . , 3, 1, 1′, 3′, . . . , k′}) for k odd and δ({k, . . . , 4, 2, 2′, 4′, . . . , k′}) for k even.
The number of symmetric roots of Type 2 is equal to the number of alternated
subsets along the path (2, 3, . . . , k− 1), i.e., to fk. There are no symmetric roots
of Type 3 or 3′. Therefore, in total, there are fk nonzero symmetric roots.

We now show a connection between the parachute inequality (Par2k+1)
Tx ≤ 0

and the clique-web inequality CWk−2
2k+1(1, . . . , 1,−1,−1)T x ≤ 0. For this, let us

first define the following inequality:

(30.4.6)
∑

ij∈Q
xij −

∑

1≤i≤k−1

(x0i + x0i′) −
∑

1≤i≤k−2

(x0′i + x0′i′) ≤ 0,

which is defined on the 2k nodes of the set {0, 1, 2, . . . , k − 1, 0′, 1′, . . . , (k −
1)′}. The inequality (30.4.6) is called the Fibonacci inequality and is denoted as
(Fib2k)

Tx ≤ 0.
Consider now the clique-web inequality CWk−2

2k+1(1, . . . , 1,−1,−1)T x ≤ 0.
Then, the inequality obtained from it by collapsing a positive node (i.e., a node i
for which bi = 1) and a negative node (i.e., a node j for which bj = −1) coincides
with the Fibonacci inequality (Fib2k)

Tx ≤ 0 (if one labels in a suitable way the
points on which the clique-web inequality is defined). This shows, in particular,
that the Fibonacci inequality is valid for CUT2k.

Observe that the Fibonacci inequality (Fib2k)
Tx ≤ 0 can also be obtained

from the parachute inequality (Par2k+1)
Tx ≤ 0 by collapsing the two nodes k, k′
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into a single node denoted as 0′. Therefore, the roots of (Fib2k)
Tx ≤ 0 are the

cut vectors δ(S \ {k, k′} ∪ {0′}) for S of Type 1 and the cut vectors δ(S) for S
of Type 2. Hence, (Fib2k)

Tx ≤ 0 has f2k + 2k − 1 roots. It can be checked that
it defines a face of CUT2k of rank

(2k−1
2

)
+ 2 =

(2k
2

)− (2k − 3).

Therefore, for any k ≥ 3, the parachute inequality (Par2k+1)
Tx ≤ 0 and the

clique-web inequality CWk−2
2k+1(1, . . . , 1,−1,−1)T x ≤ 0 admit a common collaps-

ing.

Figures 30.4.7 and 30.4.8 show, respectively, the support graphs of the Fi-
bonacci inequality (Fib6)

Tx ≤ 0 and of the clique-web inequality (CW1
7)
Tx ≤ 0.

(Collapse the nodes 0′ and 0′′ in (CW1
7)
Tx ≤ 0 to obtain (Fib6)

Tx ≤ 0.)

0

0’

2’        1’               1         2

Figure 30.4.7: (Fib6)
Tx ≤ 0

 0’

2’

1’  1

  2

  0         0"

Figure 30.4.8: (CW1
7)
Tx ≤ 0

30.4.2 Generalizing the Parachute Inequality

Finally, we present a class of inequalities from Boissin [1994] generalizing the
parachute inequality. These new inequalities can be obtained by applying the
operation of “duplicating a node”, described in Section 26.6. As this operation
is easier to apply to facets of the correlation polytope, we first reformulate the
parachute inequality for the correlation polytope.

We start with the parachute inequality (Par2k+1)
Tx ≤ 0, which is defined on

the set V2k+1 = {0, 1, 2, . . . , k, 1′, 2′, . . . , k′}. If we apply the covariance mapping
ξk′ (pointed at position k′), then we obtain the following inequality aT p ≥ 0,
which is defined on all pairs of (nonnecessarly distinct) elements of V2k+1 \ {k′}:

(30.4.9)

aT p := (k − 1)p00 + k−1
2 pkk +

∑

ij∈E(P ′)

pij

−
k−1∑

h=1

(p0h + p0,h′ + pk,h′) ≥ 0,

where P ′ denotes the path (k, k − 1, . . . , 2, 1, 1′, 2′, . . . , (k − 1)′). Figure 30.4.4
shows the quantity aT p for k = 3 (the loops at nodes 0 and 3 indicate the values
of a00 and a33).
Let h ∈ {1, . . . , k − 1} and let bT p ≥ 0 denote the inequality obtained from
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aT p ≥ 0 by duplicating node h; recall the definition of b from relation (26.6.3).
Hence, if we denote the new node by h∗, then bij = aij for i, j ∈ V2k+1 \ {k′},
bh∗,h∗ = 0, b0,h∗ = −1 and, for i ∈ V2k+1 \ {0, k′}, bi,h∗ = 1 if i is adjacent to
h on the path P ′ and bi,h∗ = 0 otherwise. It is easy to check that one should
set bh,h∗ = 1 in order to ensure that the inequality bT p ≥ 0 defines a facet of
COR2k+1 (see Proposition 26.6.4).
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Figure 30.4.10: BT p ≥ 0
(facet of COR14)
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Figure 30.4.11: CTx ≤ 0
(facet of CUT15)

Of course, one can repeat this operation, i.e., introduce more nodes as dupli-
cates of the nodes h ∈ {1, . . . , k − 1}. Namely, let Q1, . . . ,Qk−1 denote pairwise
disjoint sets that are disjoint from V2k+1. We build the inequality BTp ≥ 0, ob-
tained by adding all nodes of Qh successively as duplicates of node h and of the
nodes of Qh already introduced, for h = 1, . . . , k−1. For instance, Figure 30.4.10
shows the quantity BT p, where k = 5 and we have introduced one duplicate of
node 1 and of node 4, and two duplicates of node 2.

As an exercise, let us formulate the inequality for the cut polytope corre-
sponding to the inequality BT p ≥ 0. It is the inequality CTx ≤ 0, defined on
the pairs of distinct elements of the set V2k+1 ∪

⋃
1≤h≤k−1Qh, where

C0k = 0,
C0,k′ =

∑
1≤h≤k−1 |Qh|,

C0i = −1 for i ∈ Qh ∪ {h, h′}(1 ≤ h ≤ k − 1),
Cij = 1 if ij is an edge of the path P,
Ci,1′ = 1 for i ∈ Q1,
Cij = 1 for i ∈ Qh ∪ {h}, j ∈ Qh+1 ∪ {h + 1}

(1 ≤ h ≤ k − 1),
Cij = 1 for i 6= j ∈ Qh,
Ck,i′ = −1 for i′ = 1′, 2′, . . . , k′,
Ck′,i = −(|Qh−1| + |Qh| + |Qh+1|) for i ∈ Qh(1 ≤ h ≤ k − 1),
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setting Q0 = Qk = ∅. For instance, the inequality BTp ≥ 0 from Figure 30.4.10
corresponds to the inequality CTx ≤ 0, which is shown in Figure 30.4.11 (with
weight 4 on edge (5′, 0), weight −4 on edges (5′, 1), (5′, 2), (5′, 3) and weight −2
on edge (5′, 4)). The next result is a direct application of Proposition 26.6.4.

Theorem 30.4.12. The inequality BTp ≥ 0 defines a facet of the correla-
tion polytope. Equivalently, the inequality CTx ≤ 0 defines a facet of the cut
polytope.

30.5 Some Sporadic Examples

Grishukhin [1990] introduced the following inequality:

(30.5.1)
∑

1≤i<j≤4

xij + x56 + x57 − x67 − x16 − x36 − x27 − x47 − 2
∑

1≤i≤4

x5i ≤ 0

and proved that it defines a facet of CUT7. We also denote the inequality (30.5.1)
as (Gr7)

Tx ≤ 0. Note that, if we collapse both nodes 6,7 in (Gr7)
Tx ≤ 0, then we

obtain the hypermetric inequality Q6(1, 1, 1, 1,−2,−1)T x ≤ 0. In other words,
GrT7 x ≤ 0 can be seen as a lifting of the inequality Q6(1, 1, 1, 1,−2,−1)T x ≤
0. On the other hand, consider the following inequality (30.5.2), denoted as
(Gr8)

Tx ≤ 0; it is introduced in De Simone, Deza and Laurent [1994] and shown
to be a facet of CUT8:

(30.5.2)
∑

1≤i<j≤4

xij+x68+x78−x67−x16−x36−x27−x47−
∑

1≤i≤4

(x5i+x8i) ≤ 0.

Observe that, if we collapse both nodes 5,8 in (Gr8)
Tx ≤ 0, we obtain (Gr7)

Tx ≤
0. Hence, (Gr7)

Tx ≤ 0 is a nonpure inequality that comes as collapsing of the pure
inequality (Gr8)

Tx ≤ 0. Figures 30.5.3, 30.5.4 show, respectively, the support
graphs of the inequalities (Gr7)

Tx ≤ 0, (Gr8)
Tx ≤ 0. (In Figure 30.5.3, the

thick dotted edge between node 5 and the circle enclosing nodes 1,2,3,4 indicates
that node 5 is joined to all four nodes 1,2,3,4 by an edge with weight -2.)
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Figure 30.5.3: (Gr7)
Tx ≤ 0
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Figure 30.5.4: (Gr8)
Tx ≤ 0
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Kelly (unpublished manuscript) introduced the following class of valid in-
equalities. Consider a partition of the set {1, . . . , n} into P ∪ Q ∪ {n}, where
|P | = p, |Q| = q with p,q ≥ 2 and p + q + 1 = n. Let Kp (resp. Kq) denote
the complete graph on the set P (resp. Q). Set t := pq − p2 + 1. Consider the
following inequality, denoted as (Keln(p))

Tx ≤ 0 :

(p− 1)
∑

ij∈Kq

xij + (p+ 1)
∑

ij∈Kp

xij − p
∑

i∈Q
j∈P

xij + (q − p− t)
∑

i∈Q
xin + t

∑

i∈P
xin ≤ 0.

The following can be found in Deza and Laurent [1992a].

Proposition 30.5.5. For n ≥ 5, the inequality (Keln(p))
Tx ≤ 0 is valid for

CUTn.

It is an open question to determine what are the parameters p and n for
which the inequality (Keln(p))

Tx ≤ 0 is facet inducing. Here is some partial
information.

Proposition 30.5.6. Assume n ≥ 7. Then,

(i) The inequality (Keln(2))Tx ≤ 0 coincides (up to permutation) with the
clique-web inequality CW1

n(n− 4, 2, 2,−1, . . . ,−1)Tx ≤ 0; hence, it is facet
inducing for CUTn.

(ii) The inequality (Keln(n − 3))Tx ≤ 0 defines a simplex face of CUTn of
dimension

(n
2

)− 3.

30.6 Complete Description of CUT n and CUT2

n for
n ≤ 7.

We present here the complete linear description2 of the cut cone CUTn and the
cut polytope CUT2

n for n ≤ 7.

For n = 3, 4, the only facet defining inequalities for CUTn are the triangle
inequalities, i.e.,

xij − xik − xjk ≤ 0

for distinct i, j, k in {1, . . . , n}. Hence, CUT3 (resp. CUT2
3 ) has 3 (resp. 4)

facets, while CUT4 (resp. CUT2
4 ) has 12 (resp. 16) facets.

For n = 5, the facets of CUT5 are, up to permutation and switching, induced
by one of the following inequalities:

2This linear description was obtained independently by several authors. In particular, the
linear description of CUT5 was obtained by Deza [1960, 1973a], Davidson [1969]; that of CUT6

by Baranovskii [1971], McRae and Davidson [1972], Avis [1989]; and that of CUT7 by Gr-
ishukhin [1990]. In fact, McRae and Davidson [1972] had already found the list of facets for
CUT7 and conjectured that it was complete.
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1. Q5(1, 1,−1, 0, 0)T x ≤ 0 (triangle inequality),

2. Q5(1, 1, 1,−1,−1)T x ≤ 0 (pentagonal inequality).

In total, CUT5 (resp. CUT2
5 ) has 30+10=40 facets (resp. 40+16=56 facets).

For n = 6, the facets of CUT6 are, up to permutation and switching, induced
by one of the following inequalities:

1. Q6(1, 1,−1, 0, 0, 0)T x ≤ 0,

2. Q6(1, 1, 1,−1,−1, 0)T x ≤ 0,

3. Q6(2, 1, 1,−1,−1,−1)T x ≤ 0.

In total, CUT6 has 60+60+90=210 facets and CUT26 has 80+96+192=368
facets.

For n = 7, the facets of CUT7 are, up to permutation and switching, induced
by one of the following eleven inequalities:

1. Q7(1, 1,−1, 0, 0, 0, 0)T x ≤ 0,

2. Q7(1, 1, 1,−1,−1, 0, 0)T x ≤ 0,

3. Q7(2, 1, 1,−1,−1,−1, 0)T x ≤ 0,

4. Q7(1, 1, 1, 1,−1,−1,−1)T x ≤ 0,

5. Q7(2, 2, 1,−1,−1,−1,−1)T x ≤ 0,

6. Q7(3, 1, 1,−1,−1,−1,−1)T x ≤ 0,

7. CW1
7(1, 1, 1, 1, 1,−1,−1)T x ≤ 0,

8. CW1
7(2, 2, 1, 1,−1,−1,−1)T x ≤ 0,

9. CW1
7(3, 2, 2,−1,−1,−1,−1)T x ≤ 0,

10. (Par7)
Tx ≤ 0,

11. (Gr7)
Tx ≤ 0.

Among the 11 types of facets of CUT7, the first five are not simplices, the last
five are not hypermetric, and five of them are pure (i.e., have all their coefficients
equal to 0, 1,−1) (namely, the 1st, 2nd, 4th, 7th and 10th ones).

Let Fi denote the facet of CUT7 defined by the i-th inequality, for i =
1, . . . , 11. It has been computed in Deza and Laurent [1992c] that the orbit
Ω(Fi) (which consists of all the facets of CUT7 that can be obtained from Fi
by (root) switching and/or permutation) contains, respectively, 105, 210, 630,
35, 546, 147, 5292, 8820, 2205, 7560, and 13230 elements, for i = 1, . . . , 11.
Hence, among the 11 types of facets of CUT7, the facet defined by the inequality
(Gr7)

Tx ≤ 0 is the one that has the largest number of distinct permutations and
switchings, namely it has 13230 ones !
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Therefore, CUT7 has
∑11
i=1 |Ω(Fi)| = 105 + 210 + . . .+ 13230 = 38780 facets.

Using Lemma 26.3.11, one can compute that CUT2
7 has 116764 facets.

The number of distinct (up to permutation) facets of CUT7 has been com-
puted in De Simone, Deza and Laurent [1994]; it is equal to 36. More pre-
cisely, let ν(Fi) denote the number of (root) switchings of Fi that are pair-
wise not permutation equivalent. For instance, ν(F1) = 1 as any two (root)
switchings of the triangle inequality is again a triangle inequality. In fact,
ν(Fi) = 1, 1, 2, 1, 3, 2, 4, 7, 5, 3, 7, respectively, for i = 1, . . . , 11. The distinct
switchings of each Fi are described in detail in De Simone, Deza and Laurent
[1994].

We summarize in Figure 30.6.1 some information on the facets of CUT7.
Namely, for each facet Fi (i = 1, . . . , 11), we give:
- its number (S) of distinct (up to permutation) switchings by roots,
- its number (R) of roots,
- the size (o) |Ω(Fi)| of its orbit in CUT7 (i.e., the number of distinct facets of
CUT7 that can be obtained from Fi by permutation and/or root switching),
- the size (O) |Ω2(Fi)| of its orbit in CUT2

7 (i.e., the number of distinct facets
of CUT2

7 that can be obtained from Fi by permutation and/or switching).

F F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 total

S 1 1 2 1 3 2 4 7 5 3 7 36

R 48 40 30 35 26 21 21 21 21 21 21

o 105 210 630 35 546 147 5292 8820 2205 7560 13230 38780

O 140 336 1344 64 1344 448 16128 26880 6720 23040 40320 116764

Figure 30.6.1: Data on the facets of CUT7

Christof and Reinelt3 [1996] have recently computed the facial description of
the cut polytope on n ≤ 8 points. For n = 8, they obtain 217, 093, 472 facets for
the cut polytope CUT2

8 and 49, 604, 520 facets for the cut cone CUT8, that are
subdivided into 147 orbits. The structure of these facets has not been analyzed
and we cannot list them here as there are too many. So, the number of facets

3Christof and Reinelt [1996] provide a list of the distinct facets (up to permutation and
switching) and compute for each facet its number of roots and the cardinality of its orbit in
the cut cone and in the cut polytope. Therefore, the data from Figure 30.6.1 are reconfirmed.
These informations are available on the following WWW site, which the reader may consult for
the description of CUT8 and CUT2

8 :
http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/SMAPO/SMAPO.html.



506 Chapter 30. Other Valid Inequalities and Facets

grows dramatically fast from n = 7 to n = 8; CUT2
8 has more than thousand

times more facets than CUT2
7 ! This is an indication that the structure of the

facets of CUTn is becoming more and more complicated with increasing values of
n. Inequalities have no apparent symmetries and are seemingly very difficult to
generalize. In fact, the facet (Gr7)

Tx ≤ 0 (from (5.9)) is the smallest (and unique
for n ≤ 7) example of a facet for which we could not find a proper generalization.
This phenomenon of increasing complexity of the facial structure for large n is
general for polytopes arising from hard optimization problems. For instance, the
facial structure of the symmetric traveling salesman polytope is known for n = 8
(Boyd and Cunningham [1991], Christof, Jünger and Reinelt [1991]); it has been
recently computed for n = 9, 10 by Padberg [1995] and by Christof and Reinelt
[1996]. (There are 42,104,442 facets for n = 9 and more than 51,043,900,866
facets for n = 10.)

30.7 Additional Notes

We mention here some other interesting questions related to the study of the
facets of the cut cone. First, we consider some subcones of CUTn generated
by subfamilies of cuts; we show that they inherit, in a sense, all the facets of
CUTn. Then, we consider the following three questions related to the collapsing
operation in the cut cone: Does every facet collapse to some triangle facet ?
Does every (nonpure) facet arise as collapsing of some pure facet ? Does every
facet have the parity property ?

Transport of Facets to Other Subcones. Let K be a subset of the set of
all cut vectors in Kn. One may also be interested in finding the facial structure
of the cone R+(K) or of the polytope Conv(K) for some specific cut families
K. A general problem is as follows: Which facets of the cut cone CUTn do the
polyhedra R+(K) and Conv(K) inherit ? Clearly, any inequality which is facet
inducing for CUTn is valid for R+(K) and Conv(K), but when does it induce a
facet of the latter polyhedra ? Such a question has been looked at in the case
when K consists of the even cut vectors, or of the inequicut vectors, or of the
equicut vectors. A surprising feature of the even cut and inequicut cones ECUTn,
ICUTn, and of the equicut polytope EQCUTn is that they already “contain” all
the facets of the cut cone. More precisely, every inequality defining a facet of the
cut cone CUTn can be zero-lifted to some facet of ECUTm, ICUTm, EQCUT2

m,
for any m large enough. The assertion (i) in Theorem 30.7.1 below is proved in
Deza and Laurent [1993b] and (ii), (iii) in Deza, Fukuda and Laurent [1993].

Theorem 30.7.1. Given v ∈ REn , integers m ≥ n, define v′ ∈ R(m
2 ) by setting

v′ij = vij for 1 ≤ i < j ≤ n and v′ij = 0 for 1 ≤ i ≤ n < j ≤ m and

n + 1 ≤ i < j ≤ m. Assume that the inequality vTx ≤ 0 defines a facet of the
cut cone CUTn. Then,

(i) The inequality (v′)Tx ≤ 0 defines a facet of the even cut cone ECUTm for
any m even, m ≥ n+ 5.



30.7 Additional Notes 507

(ii) The inequality (v′)Tx ≤ 0 defines a facet of the inequicut cone ICUTm for
any m such that n < ⌊m2 ⌋.

(iii) The inequality (v′)Tx ≤ 0 defines a facet of the equicut polytope EQCUT2
m

for any m odd, m ≥ 2n+ 1.

The valid inequalities of the cut cone CUTn can also be transported to the
k-uniform cut cone UCUTkn in the following way. Suppose that 1 ≤ k ≤ n− 1,
k 6= n

2 . Given v ∈ REn+1 , define v∗ ∈ REn by setting

v∗ij := vij +
vi,n+1 + vj,n+1

n− 2k
− vT δ({n + 1})

(n− k)(n− 2k)

for 1 ≤ i < j ≤ n. If the inequality vTx ≤ 0 is valid for the cut cone CUTn+1,
then the inequality (v∗)Tx ≤ 0 is valid for the k-uniform cut cone UCUTkn (Deza
and Laurent [1992e]). For example, for 1 ≤ i < j ≤ n, if vTx := xi,n+1−xj,n+1−
xij ≤ 0 is a triangle inequality, then (v∗)Tx ≤ 0 is

∑

1≤h≤n,h 6=i,j
(xih − xjh) − (n− 2k)xij ≤ 0.

If vTx := xij − xi,n+1 − xj,n+1, then (v∗)Tx ≤ 0 is

2
∑

1≤h≤l≤n
xhl − (n− k)

∑

1≤h≤n,h 6=i,j
(xih + xjh) + (n− k)(n− 2k − 2)xij ≤ 0.

In fact, the 2-uniform cut cone UCUT2
n is a simplex cone, which is completely

described by the latter
(n
2

)
inequalities (Deza, Fukuda and Laurent [1993]).

Questions Related to the Collapsing Operation. We address now the fol-
lowing three questions about the facets of CUTn:
Question 1: Does every facet of the cut cone collapse to some triangle facet ?
Question 2: Does every (nonpure) facet arise as collapsing of some pure facet ?
Question 3: If the inequality vTx ≤ 0 defines a facet of CUTn, is it the case
that vT δ(S) is an even number for every cut vector δ(S) ?

Recall that the collapsing operation preserves valid inequalities but not nec-
essarly facets. Call a facet tight if none of its collapsings is facet inducing. Hence,
the answer to Question 1 is “yes” precisely if the only tight facet of the cut cone
CUTn (for any n) is the triangle facet. A probably more reasonable conjecture
is the following: The number of tight facets of the cut cone is finite.

We have checked that most of the known classes of facets of CUTn do indeed
collapse to some triangle facet. (As an example, let us consider the pure clique-
web inequality: (CWr

n)
Tx ≤ 0; the inequality obtained from it by collapsing all

the nodes from the set {1, . . . , n}\{1, r+2} into a single node, say u, is precisely
the triangle inequality x1,r+2 −x1u−xu,r+2 ≤ 0.) In fact, there are often several
ways of collapsing a given facet to some triangle facet. Collapsings to some
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triangle facet are given explicitly for all the facets of CUT7 in De Simone, Deza
and Laurent [1994].

Given a facet inducing inequality vTx ≤ 0, a purification of it is any pure
inequality valid for a larger cut cone and admitting a collapsing which is precisely
vTx ≤ 0. As observed in De Simone [1992], such a purification always exists.
But, Question 2 asks whether every facet admits a purification which is facet
inducing. The answer is “yes”, by construction, for the class of clique-web facets.
Also, in Section 30.5, we mentioned explicitly the inequality (30.5.2), which is
a purification of the nonpure inequality (30.5.1). However, we do not know the
answer to Question 2 for the classes of suspended-tree inequalities, or of path-
block-cycle inequalities. It is a challenging problem to find some large class of
pure facets from which the facets (30.1.1),(30.1.7),(30.1.8), or (30.1.11) could be
deduced by collapsing (recall the remark preceding Proposition 30.1.3).

If the answer to Question 3 is “yes”, we say that the inequality vTx ≤ 0
has the parity property. We also say that the vector v has the parity property
if vT δ(S) is even for all cut vectors δ(S). Let eij (1 ≤ i < j ≤ n) denote the
coordinate vectors in REn . It can be easily checked that v ∈ REn has the parity
property if and only if v can be written as an integer combination of the triangle
vectors eij + eik + ejk (for 1 ≤ i < j < k ≤ n) and of the double edge vectors
2eij (for 1 ≤ i < j ≤ n), i.e., if

v ∈ Z(e ij + eik + ejk (1 ≤ i < j < k ≤ n), 2eij (1 ≤ i < j ≤ n)).

Observe that the parity property is preserved under switching and collapsing.
We have checked that every known class of facets of the cut cone enjoys the
parity property.

It is an interesting problem to look for a facet of CUT2
n that does not have

the parity property; a good candidate would be some inequality of the form

vTx :=
∑

ij∈E
xij ≤ v0,

where E is the edge set of a regular graph of odd degree and v0 is the maximum
size of a cut in the graph. (Note that both assumptions of validity and full rank
are necessary for the parity property. Indeed, it is easy to construct some valid
inequality which is not facet inducing and does not have the parity property, or
some nonvalid inequality whose set of roots has full rank and which does not
have the parity property.)

As an illustration, we describe below the explicit decomposition of some facet
defining inequalities in the lattice Z(eij+eik+ejk (1 ≤ i < j < k ≤ n), 2eij (1 ≤
i < j ≤ n)). We set

T (i, j; k) := xij − xik − xjk.

• For the facet defined by the parachute inequality: (Par2k+1)
Tx ≤ 0 (k odd),

(Par2k+1)
Tx =

∑

1≤i≤k−1

(T (i, i+1; ai′ )+T (i′, (i+1)′; ai))+T (1, 1′; 0)−T (k, k′; 0),
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where ai := k, ai′ := k′ for i odd, and ai = ai′ := 0 for i even.

• For the facet defined by the inequality: (Gr7)
Tx ≤ 0,

(Gr7)
Tx = T (1, 2; 5) + T (1, 3; 5) + T (1, 4; 6) + T (2, 3; 7)

+T (2, 4; 5) + T (3, 4; 5) − T (6, 7; 5).

• For the hypermetric facet: Qn(−(n− 4),−1, 1, . . . , 1)T x ≤ 0,

Qn(−(n− 4),−1, 1, . . . , 1)Tx = −(

⌊
n

2

⌋
− 2)2x12 +

∑

3≤i<j≤n
T (i, j; aij) − T0,

where aij := 2 if ij = (2t+ 1, 2t+ 2) for 1 ≤ t ≤ ⌊n2 ⌋− 1, and aij := 1 otherwise,
and T0 := T (2, n; 1) if n is odd and T0 := 0 if n is even.

• For the facet defined by the clique-web inequality: (CWr
2r+5)

Tx ≤ 0,

(CWr
2r+5)

Tx =
∑r+1
i=1 (T (i, i + r + 1; 2r + 4) + T (i, i + r + 2; 2r + 5))

+T (r + 2, 2r + 3; 2r + 4) − T (r + 2, 2r + 5; 2r + 4).
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This chapter contains several results of geometric type for the cut polytope
CUT2

n . One of our objectives here is to study the geometric shape of CUT2n , in
particular, in connection with its linear relaxation by the semimetric polytope
MET2

n and with its convex (nonpolyhedral) relaxation by the elliptope En.
We have already seen (in Section 26.3.3) that the polytope CUT2n has a lot of

symmetries. We are interested, for instance, in the following further questions:
What are the edges of the polytope CUT2n ? More generally, what is the structure
of its faces of small dimension ? We can, in some sense, give an answer to this
question up to dimension log2 n. Indeed, it turns out that CUT2

n has a lot of
faces of dimension up to log2 n in common with its relaxations MET2

n and En
that arise by taking sets of cuts in general position (see Theorems 31.5.9 and
31.6.4).

As we have seen in the rest of Part V, CUT2
n has a great variety of facets,

most of them having a very complicated structure. A legitimate question to ask
is which ones are the most important among them ? Giving a precise definition
of the word “important” in this question is not an easy task. However, it is
intuitively clear that some facets are more essential than others; some facets
have indeed a “big area” while some others contribute only to rounding off some
little corners of the polytope. One way of measuring the importance of a facet
is by computing the Euclidean distance of the hyperplane containing the facet
to the barycentrum of CUT2

n . It seems intuitively clear that facets that are
close to the barycentrum are more important than facets that are far apart. It is
conjectured that the triangle facets are the closest facets to the barycentrum; see
Section 31.7 for results related to this conjecture. We remind from Chapter 27
that triangle inequalities share several other interesting properties.

The cut polytope is not a simplicial polytope (if n ≥ 5) as some of its facets
are not simplices. However, it seems that the great majority of its facets are
simplices. This has been verified for n ≤ 7, where it has been computed that
about 97% of the facets are simplices. We group in Section 31.8 results on the
simplex facets of CUT2

n .

Section 31.5 presents several geometric properties of the elliptope En, which
was defined in Section 28.4.1 as the set of n× n symmetric positive semidefinite
matrices with an all-ones diagonal. Up to a simple transformation, En is a
(nonpolyhedral) relaxation of the cut polytope CUT2n .

One more interesting interpretation of the cut polytope is mentioned in Sec-
tion 31.2; namely, the fact that the valid inequalities for CUT2

n yield inequalities

511
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for the pairwise angles among a set of n unit vectors in Rn . (This is essentially a
reformulation of the fact, stated in Section 6.4, that spherical distance spaces are
ℓ1-embeddable.) We describe in Section 31.3 some further implications of this
result in connection with the completion problem for partial positive semidefinite
matrices. In fact, this problem amounts to the description of projections of the
elliptope En. In general, the projected elliptope E(G) is contained in the image
of CUT2(G) under the mapping x 7→ cos(πx). It turns out that both bodies co-
incide when the graph G has no K4-minor (see Theorem 31.3.7). Further results
are given for larger classes of graphs in Section 31.3.

In Section 31.4 we consider the analogue completion problem for Euclidean
distance matrices. In fact, this problem is nothing but the problem of describing
projections of the negative type cone NEGn. It turns out that there are several
results for this problem, which are in perfect analogy with the known results
for the positive semidefinite completion problem. We mention in Section 31.4.2
how the two completion problems can be linked (using, in particular, one of
the metric transforms which was exposed in Chapter 9, namely, the Schoenberg
transform).

In Section 31.1 we describe how cuts have been used for disproving a long
standing conjecture of Borsuk.

31.1 Disproval of a Conjecture of Borsuk Using Cuts

The following question was asked by Borsuk [1933] more than sixty years ago:

Given a set X of points in Rd , is it always possible to partition X
into d+ 1 subsets, each having a smaller diameter than X ?

We recall that the diameter1 of a set X ⊆ Rd is defined as

diam(X) := max
x,y∈X

‖ x− y ‖2,

the maximum Euclidean distance between any two points of X. Borsuk’s ques-
tion has been answered in the negative by Kahn and Kalai [1993], who con-
structed a counterexample using cut vectors. We present here a variation of
their counterexample, which is due to Nilli [1994].

Let n = 4p where p is an odd prime integer, and d :=
(n
2

)
. As set of points

X ⊆ Rd , we take the set

X := {δ(S) | S ⊆ Vn, |S| is even and 1 ∈ S}

of all even cut vectors in Kn; hence, |X| = 2n−2. Then, X provides a counterex-
ample to Borsuk’s question in the case when

1For a polytope P , there is another notion of diameter besides the geometric notion con-
sidered here. Namely, the diameter of P is also sometimes defined as the diameter of its
1-skeleton graph; for instance, the diameter (of the 1-skeleton graph of) the cut polytope is 1
(see Section 31.6).
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(31.1.1)
2n−2

∑p−1
i=0

(n−1
i

) >
(
n

2

)
+ 1.

The smallest counterexample occurs in dimension d =
(44

2

)
= 946 for n = 44,

p = 11. The proof is based on the following result of Nilli [1994].

Lemma 31.1.2. Let n = 4p with p odd prime and let E denote the set of vectors
x ∈ {±1}n such that x1 = 1 and x has an even number of positive components.
If F ⊆ E contains no two orthogonal vectors, then |F| ≤∑p−1

p=0

(n−1
i

)
.

Proof. Observe that the scalar product of two elements a, b ∈ E is divisible by 4.
Hence, by the assumption, aT b 6≡ 0 (mod p) for any a 6= b ∈ F . For each a ∈ F ,
we consider the polynomial Pa in the variables X1, . . . ,Xn defined by

Pa(X) :=
p−1∏

i=1

(
n∑

j=1

ajXj − i).

Then,

(i) Pa(b) ≡ 0 (mod p) for all a 6= b ∈ F ,

(ii) Pa(a) 6≡ 0 (mod p) for all a ∈ F .

Let Qa denote the polynomial obtained from Pa by developing it and repeatedly
replacing the product X2

i by 1 for each i = 1, . . . , n. Hence, Qa(x) = Pa(x) for
all x ∈ {±1}n. Therefore, Qa also satisfies the relations (i),(ii) above. These
relations permit to check that the set {Qa | a ∈ F} is linearly independent over
the field GF (p). Hence, |F| is less than or equal to the dimension of the space
of polynomials in n−1 variables (as x1 = 1) of degree at most p−1 over GF (p),
which is precisely

∑p−1
i=0

(n−1
i

)
.

We now show that the set X of all even cut vectors cannot be partitioned
into d + 1 subsets of smaller diameter. It turns out to be more convenient to
work with ±1-valued vectors rather than with the (0, 1)-valued cut vectors. In
other words, we show that the set

X1 := {xxT | x ∈ E}

cannot be partitioned into d + 1 subsets of smaller diameter if the condition
(31.1.1) holds (E is defined as in Lemma 31.1.2). (Note that xxT is the n × n
symmetric matrix with entries xixj and, thus, all its diagonal entries are equal
to 1. Hence, the vectors xxT (x ∈ {±1}n) lie, in fact, in the space of dimension
d.) Given x, y ∈ E , we have

(‖ xxT − yyT ‖2)
2 = 2n2 − 2(xT y)2 ≤ 2n2

with equality if xT y = 0. Hence, the diameter of X1 is equal to n
√

2. Suppose
that X1 is partitioned into s subsets Y 1∪ . . .∪Y s, where each Y i has diameter <
n
√

2. Then, no two vectors in Y i are orthogonal. We deduce from Lemma 31.1.2



514 Chapter 31. Geometric Properties

that |Y i| ≤∑p−1
j=0

(n−1
j

)
for all i. This implies that 2n−2 ≤ s

∑p−1
j=0

(n−1
j

)
. There-

fore, the condition (31.1.1) implies that s >
(n
2

)
+ 1 = d + 1. This shows that,

under the condition (31.1.1), the set X1 (or X) cannot be partitioned into d+ 1
subsets of smaller diameter.

31.2 Inequalities for Angles of Vectors

Let v1, . . . , vn be n unit vectors in Rm (m ≥ 1). Set

θij := arccos(vTi vj) for 1 ≤ i < j ≤ n.

We consider the question of determining valid inequalities that are satisfied by
the angles θij. A classical result in 3-dimensional geometry asserts that

θ12 ≤ θ13 + θ23, θ13 ≤ θ12 + θ23, θ23 ≤ θ12 + θ13, θ12 + θ13 + θ23 ≤ 2π

for the pairwise angles among three vectors in R3 (see Theorem 31.2.2 below).
Observe that the above inequalities are nothing but the triangle inequalities (for
the variable θ

π ). An analogue result holds in any dimensionm ≥ 3, as was shown
in Theorem 6.4.5. We repeat the result here for convenience.

Theorem 31.2.1. Let v1, . . . , vn be n unit vectors in Rm (n ≥ 3, m ≥ 1).
Let a ∈ REn and a0 ∈ R such that the inequality aTx ≤ a0 is valid for the cut
polytope CUT2

n . Then,
∑

1≤i<j≤n
aij arccos(vTi vj) ≤ πa0.

Therefore, the valid inequalities for the cut polytope CUT2n have the following
nice interpretation: They yield valid inequalities for the pairwise angles among
a set of n unit vectors. A whole wealth of such inequalities have been presented
in the preceding paragraphs. As an example,

∑

1≤i<j≤n
arccos(vTi vj) ≤

⌊
n

2

⌋ ⌈
n

2

⌉
π

for any n unit vectors v1, . . . , vn. The question of determining the maximum
value for the sum of pairwise angles among a set of vectors was first asked by
Fejes Tóth [1959]; he conjectured that the above inequality holds and proved
that this is the case for n ≤ 6. The even case n = 2p was settled by Sperling
[1960] and the general case by Kelly [1970b].

In dimension m = 3 the statement from Theorem 31.2.1 can be, in fact,
formulated as an equivalence2.

Theorem 31.2.2. The following assertions are equivalent for α, β, γ ∈ [0, π].
2This fact has been known since long; see, e.g., Blumenthal [1953] (Lemma 43.1), or Berger

[1987] (Corollary 18.6.10) or, more recently, Barrett, Johnson and Tarazaga [1993].



31.3 The Positive Semidefinite Completion Problem 515

(i) The matrix

A :=




1 cosα cos β
cosα 1 cos γ
cos β cos γ 1




is positive semidefinite.

(ii) There exist three unit vectors v1, v2, v3 ∈ R3 such that α = arccos(vT1 v2),
β = arccos(vT1 v3) and γ = arccos(vT2 v3).

(iii) α ≤ β + γ, β ≤ α+ γ, γ ≤ α+ β and α+ β + γ ≤ 2π.

Proof. Clearly, (i) ⇐⇒ (ii). Now, detA can be expressed as:

detA = 1 + 2 cosα · cos β · cos γ − cos2 α− cos2 β − cos2 γ
=
(
1 − cos2 β − cos2 γ + cos2 β · cos2 γ

)

− (cos2 α+ cos2 β · cos2 γ − 2 cosα · cos β · cos γ
)

= (1 − cos2 β)(1 − cos2 γ) − (cosα− cos β · cos γ)2

= sin2 β · sin2 γ − (cosα− cos β · cos γ)2

= (cos(β − γ) − cosα) · (cosα− cos(β + γ))

Hence, A � 0 ⇐⇒ detA ≥ 0 ⇐⇒ |β − γ| ≤ α ≤ β + γ ≤ 2π − α, which is
equivalent to (iii).

Some generalizations of this result will be presented in the next subsection;
see, in particular, Theorem 31.3.7.

31.3 The Positive Semidefinite Completion Problem

We consider here the elliptope En and its projections on subsets of the entries.
We recall from Section 28.4 that

En = {Y n× n symmetric matrix | Y � 0, yii = 1 ∀i = 1, . . . , n}.

Given a subset E of En := {ij | 1 ≤ i < j ≤ n}, consider the graph G := (Vn, E)
and the projection E(G) of En on the subspace RE , i.e.,

E(G) := {x ∈ R
E | ∃Y = (yij) ∈ En such that xij = yij ∀ij ∈ E}.

Hence, En and E(Kn) are in one-to-one correspondence as the elements of E(Kn)
are precisely the upper triangular parts of the matrices in En.

Given a graph G = (Vn, E) and x ∈ RE , denote by X the partial symmetric
n×n matrix whose off-diagonal entries are specified only on the positions corre-
sponding to edges in G (and the symmetric ones); the ijth-entry of X is xij for
ij ∈ E and the diagonal entries of X are all equal to 1. Then, x ∈ E(G) if and
only if the partial matrix X can be completed to a positive semidefinite matrix.
Hence, the positive semidefinite completion problem, which was introduced in
Section 28.4, is the problem of testing membership in the elliptope E(G).
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This problem has received a lot of attention in the literature, especially within
the community of linear algebra. This is due, in particular, to its many appli-
cations (e.g., to probability and statistics, engineering, etc.) and to its close
connection with other important matrix properties such as Euclidean distance
matrices. (See, e.g., the survey of Johnson [1990] for a broad survey on com-
pletion problems.) We present here some results about the positive semidefinite
completion problem that are most relevant to the topic of this book, namely, to
cut and semimetric polyhedra. Indeed, it turns out that, for some graphs, the
elliptope E(G) has a closed form description involving the cut and semimetric
polytopes of G. We give here a compact presentation covering results obtained
by several authors. The exposition in this section as well as in the next Section
31.4 follows essentially the survey paper by Laurent [1997b].

31.3.1 Results

Let G = (Vn, E) be a graph and let x ∈ RE with corresponding partial matrix
X. Clearly, if x ∈ E(G) then every principal submatrix of X whose entries are
all specified is positive semidefinite. In other words, if K ⊆ Vn induces a clique
in G then the projection xK of x on the edge set of G[K] belongs to the elliptope
E(K) of the clique K. (Here, we use the same letter K for denoting the clique
as a node set or as a graph.) Hence,

(31.3.1) xK ∈ E(K) for each clique K in G

is a necessary condition for x ∈ E(G), called clique condition. Another necessary
condition for membership in E(G) can be deduced from the result in Section 31.2.
Clearly, all the components of x ∈ E(G) belong to the interval [−1, 1]; hence, x
can be parametrized as

x = cos(πa), i.e., xe = cos(πae) for all e ∈ E,

where 0 ≤ ae ≤ 1 for all e ∈ E. Then, Theorem 31.2.1 can be reformulated as

E(Kn) ⊆ cos(πCUT2
n ) := {cos(πa) | a ∈ CUT2

n}.

By taking the projections of both sides on the subspace RE indexed by the edge
set of G, we obtain

E(G) ⊆ cos(πCUT2(G)) := {cos(πa) | a ∈ CUT2(G)}.

In other words,

(31.3.2) a ∈ CUT2(G)

is a necessary condition for x = cos(πa) ∈ E(G), called cut condition. As
CUT2(G) ⊆ MET2(G) (by (27.3.1)) we deduce that

(31.3.3) a ∈ MET2(G)
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is also a necessary condition for x = cos(πa) ∈ E(G), called metric condition.

None of the conditions (31.3.1), (31.3.2), or (31.3.3) suffices for characterizing
E(G) in general. For instance, let C = (Vn, E) be a circuit on n ≥ 4 nodes and
let x ∈ RE be defined by xe := 1 for all edges except xe := −1 for one edge of C.
Then, x satisfies (31.3.1) but x 6∈ E(C). As another example, consider the 4 × 4
matrixX with diagonal entries 1 and with off-diagonal entries −1

2 . Then, X 6∈ E4

(as X is not positive semidefinite because Xe = −1
2e, where e denotes the all

ones vector). Hence, the vector x := (−1
2 , . . . ,−1

2) ∈ RE(K4 ) does not belong to
E(K4), while 1

π arccos x = (2
3 , . . . ,

2
3) belongs to MET2(K4) = CUT2(K4).

Hence arises the question of characterizing the graphs G for which the con-
ditions (31.3.1), (31.3.2), (31.3.3) (taken together or separately) suffice for the
description of E(G). Let PK (resp. PM , PC) denote the class of graphs G for
which the clique condition (31.3.1) (resp. the metric condition (31.3.3), the cut
condition (31.3.2)) is sufficient for the description of E(G).

We start with the description of the class PK . Recall that a graph is said
to be chordal if every circuit of length ≥ 4 has a chord. We will also use the
following characterization from Dirac [Di61]: A graph is chordal if and only if it
can be obtained from cliques by means of clique sums.

Clearly, every graph G ∈ PK must be chordal. (For, suppose that C is a
chordless circuit in G of length ≥ 4; define x ∈ RE by setting xe := 1 for all
edges e in C except xe0 := −1 for one edge e0 in C, and xe := 0 for all remaining
edges in G. Then, x satisfies (31.3.1) but x 6∈ E(G).) Grone, Johnson, Sá, and
Wolkowicz [1984] show that PK consists precisely of the chordal graphs. Namely,

Theorem 31.3.4. For a graph G = (V,E), we have

E(G) = {x ∈ R
E | xK ∈ E(K) ∀K clique in G}

if and only if G is chordal.

The proof relies upon Lemma 31.3.5 below, since cliques belong trivially to PK
and every chordal graph can be build from cliques by taking clique sums.

Lemma 31.3.5. The class PK is closed under taking clique sums.

Proof. Let G = (V,E) be the clique sum of two graphs G1 = (V1, E1) and
G2 = (V2, E2). Suppose that G1, G2 ∈ PK ; we show that G ∈ PK . For this,
let x ∈ RE such that xK ∈ E(K) for every clique K in G. Then, for i = 1, 2,
the projection of x on the subspace REi belongs to E(Gi) and, thus, can be
completed to a positive semidefinite matrix of order |Vi|. Hence, we can find
vectors uj ∈ Rk (j ∈ V1) and vj ∈ Rk (j ∈ V2) such that xij = uTi uj for all
i, j ∈ V1 and xij = vTi vj for all i, j ∈ V2. Now, by looking at the values on the
common clique V1 ∩ V2, we have that uTi uj = vTi vj for all i, j ∈ V1 ∩ V2. Hence,
there exists an orthogonal k × k matrix A such that Aui = vi for all i ∈ V1 ∩ V2.
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Now, the Gram matrix of the system of vectors: Aui (i ∈ V1), vi (i ∈ V2 \ V1)
provides a positive semidefinite completion of x, which shows that x ∈ E(G).
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Figure 31.3.6: The elliptope E(K3) of the complete graph on 3 nodes

We now turn to the description of the classes PM and PC . Obviously,

PM ⊆ PC .

By Theorem 31.2.2 the graph K3 belongs to PM . In other words, E(K3) =
cos(πMET2

3 ). Thus, E(K3) is a ‘deformation’ via the cosine mapping of the
3-dimensional simplex MET2

3 ; see Figure 31.3.6 for a picture of the elliptope
E(K3). As was observed earlier, the graph K4 does not belong to PC . Laurent
[1996b] shows that the classes PM and PC are identical and consist precisely of
the graphs with no K4-minor.

Theorem 31.3.7. The following assertions are equivalent for a graph G:

(i) E(G) = {x = cos(πa) | a ∈ CUT2(G)}.
(ii) E(G) = {x = cos(πa) | a ∈ MET2(G)}.
(iii) G has no K4-minor.

The proof relies essentially upon the following decomposition result for graphs
with no K4-minor3 4 (see Duffin [1965]): A graph G has no K4-minor if and

3A graph with no K4-minor is also known under the name of (simple) series-parallel graph.
We stress ‘simple’ as series-parallel graphs are allowed in general to contain loops and multiple
edges. But, here, we consider only simple graphs.

4From this follows that every graph with no K4-minor is a subgraph of a chordal graph (on
the same node set) containing no clique of size 4.
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only if G = K3, or G is a subgraph of a clique k-sum (k = 0, 1, 2) of two smaller
graphs (i.e., with less nodes than G), each having no K4-minor. We state two
intermediary results.

A 2

A

V  - K   K

?

V  - K

K

V  - K

V  - K

 1

1 2

2

1

?

Figure 31.3.8

Lemma 31.3.9. Each of the classes PM and PC is closed under taking minors.

Proof. Let G = (V,E) be a graph on n = |V | nodes, let e = uv be an edge in G
and let G′ be the graph obtained from G by deleting or contracting the edge e.
We show that G′ ∈ PM (resp. G′ ∈ PC) whenever G ∈ PM (resp. G ∈ PC).

We first consider the case when G′ = G\e is obtained by deleting e. We
suppose first that G ∈ PM ; we show that G′ ∈ PM . For this, let a ∈ MET2(G′);
we show that cos(πa) ∈ E(G′). Let b ∈ MET2(G) whose projection on the edge
set of G′ is a. Then, cos(πb) ∈ E(G) as G ∈ PM , which implies that its projection
cos(πa) on the edge set of G′ belongs to E(G′).

Suppose now that G ∈ PC ; we show that G′ ∈ PC . The reasoning is similar.
Indeed, if a ∈ CUT2(G′), let b ∈ CUT2(G) whose projection on the edge set of
G′ is a; then, cos(πb) ∈ E(G) which implies that cos(πa) ∈ E(G′).

We consider now the case when G′ = G/e is obtained by contracting edge e.
Let w denote the node of G′ obtained by contraction of edge e = uv. The proof
is based on the following simple observation: Given a ∈ RE

′
define b ∈ RE by

setting buv := 0, biu := aiw if i is adjacent to u in G, biv := aiw if i is adjacent to
v in G, and bf := af for all remaining edges f of G. Then, b ∈ MET2(G) (resp.
b ∈ CUT2(G)) whenever a ∈ MET2(G′) (resp. a ∈ CUT2(G′)). Suppose that
G ∈ PM , let a ∈ MET2(G′) and let b ∈ MET2(G′) be defined as above. Then,
cos(πb) ∈ E(G). Hence, there exists a matrix B ∈ En extending cos(πb). If A
denotes the matrix obtained from B by deleting the row and column indexed by
u and renaming v as w, then A ∈ En−1 and A extends cos(πa), which shows that
cos(πa) ∈ E(G′). The proof is identical in the case of PC .

Lemma 31.3.10. The class PM is closed under taking clique sums.

Proof. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs in PM such that
K := V1∩V2 induces a clique in both G1 and G2 and there are no edges between
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V1 \V2 and V2 \V1. Let G = (V1∪V2, E1∪E2) denote their clique sum. We show
that G ∈ PM . For this, let a ∈ MET2(G). The projection ai of a on REi belongs
to MET2(Gi), which implies that cos(πai) ∈ E(Gi) for i = 1, 2. Hence, there
exists a matrix Ai ∈ Eni (ni := |Vi|) extending cos(πai). Consider the partial
symmetric matrix M shown in Figure 31.3.8, whose entries muv (u ∈ V1 \ V2,
v ∈ V2 \ V1) remain to be specified. Hence, the entries of M are specified on
the graph H defined as the clique sum (along K) of two complete graphs with
respective node sets V1 and V2. As H is chordal, we deduce from Theorem 31.3.4
that M can be completed to a positive semidefinite matrix. This shows that
cos(πa) ∈ E(G) as M extends cos(πa).

Proof of Theorem 31.3.7. As PM ⊆ PC , it suffices to verify that a graph in
PC has no K4-minor and that a graph with no K4-minor belongs to PM . The
statement that a graph in PC has no K4-minor follows from Lemma 31.3.9 and
the fact that K4 6∈ PC . Conversely, suppose that G has no K4-minor. We show
that G ∈ PM by induction on the number of nodes. If G = K3 then G ∈ PM
by Theorem 31.2.2. Otherwise, G is a subgraph of a clique sum of two smaller
graphs G1 and G2 with no K4-minors. Now, G1 and G2 belong to PM by the
induction assumption. This implies that G ∈ PM , using Lemmas 31.3.9 and
31.3.10.

Let us now consider the class PKM (resp. PKC) consisting of the graphs G
for which the clique and metric conditions (31.3.1), (31.3.3) (resp. the clique
and cut conditions (31.3.1), (31.3.2)) taken together suffice for the description
of E(G). In view of the above results, it suffices here to assume that the clique
condition (31.3.1) holds for all cliques of size ≥ 4. Obviously,

PKM ⊆ PKC .
In fact, the two classes PKM and PKC coincide. Several equivalent characteri-
zations for the graphs in this class are known; they are presented below. First,
we need some definitions.

Call splitting the converse operation to that of contracting an edge; hence,
splitting a node u in a graph means replacing u by two adjacent nodes u′ and
u′′ and replacing every edge uv in an arbitrary manner, either by u′v, or by u′′v
(but in such a way that each of u′ and u′′ is adjacent to at least one node).
(This operation can be seen as a special case of the splitting operation defined
in Section 26.5.) See Figure 31.3.12 for an example. Subdividing an edge e = uv
means inserting a new node w and replacing edge e by the two edges uw and wv.
Hence, this is a special case of splitting. A graph that can be constructed from
a given graph G by subdividing its edges is called a homeomorph of G. Note
that splitting a node of degree 2 or 3 amounts to subdividing one of the edges
incident to that node. (Therefore, homeomorphs of K4 and splittings of K4 are
the same notions; in particular, a graph has noK4-minor if and only if it contains
no homeomorph of K4 as a subgraph.) Figure 31.3.11 shows a homeomorph of
K4; the dotted lines indicate paths.
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d

  c

ba

Figure 31.3.11: A homeomorph of K4

Let Wn := ∇Cn−1 denote the wheel on n nodes, obtained by adding a new
node adjacent to all nodes of a circuit of length n − 1. Hence, W4 = K4.
Figure 31.3.12 (a) shows the wheel W7 and (c) shows the graph Ŵ4 obtained
from K4 by splitting one node. Clearly, Wn (n ≥ 5) and any splitting of Wn

(n ≥ 4) do not belong to PKC (by Theorem 31.3.7, since these graphs do not
contain cliques of size 4 while having a K4-minor).

 (c) (b) 

u"
u’

 (a)

u

Figure 31.3.12: (a) The wheel W7; (b) Splitting node u in W7;
(c) The graph Ŵ4

Several equivalent characterizations for the graphs in PKM have been dis-
covered by Barrett, Johnson and Loewy [1996]; more precisely, they show the
equivalence of assertions (i), (iii), (iv), (v) in Theorem 31.3.13 below. Building
upon their result, Johnson and McKee [1996] show the equivalence of (i) and
(vi); in other words, the graphs in PKM arise from the graphs in PK and PM
by taking clique sums. Laurent [1996c] observes moreover the equivalence of (i)
and (ii); hence, the two classes PKM and PKC coincide even though the cut
condition (31.3.2) is stronger than the metric condition (31.3.3). We delay the
proof of the next result till Section 31.3.2.

Theorem 31.3.13. The following assertions are equivalent for a graph G:

(i) G ∈ PKM , i.e., E(G) consists of the vectors x = cos(πa) such that a ∈
MET2(G) and xK ∈ E(K) for every clique K in G.

(ii) G ∈ PKC , i.e., E(G) consists of the vectors x = cos(πa) such that a ∈
CUT2(G) and xK ∈ E(K) for every clique K in G.

(iii) No induced subgraph of G is Wn (n ≥ 5) or a splitting of Wn (n ≥ 4).
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(iv) Every induced subgraph of G that contains a homeomorph of K4 contains
a clique of size 4.

(v) There exists a chordal graph G′ containing G as a subgraph and having no
new clique of size 4.

(vi) G can be obtained by means of clique sums from chordal graphs and graphs
with no K4-minor.

We close the section with a result concerning the graphs whose elliptope is
a polytope. It turns out that this occurs only in the most trivial case, when
E(G) = [−1, 1]E . Set

Qn := Conv(xxT | x ∈ {±1}n)

and, for a graph G = (Vn, E), let Q(G) denote the projection of Qn on the
subspace RE indexed by the edge set of G. Hence, Qn (resp. Q(G)) is nothing
but the image of the cut polytope CUT2

n (resp. CUT2(G)) under the mapping
x 7→ 1 − 2x. Clearly,

Qn ⊆ En, Q(G) ⊆ E(G).

The following result of Laurent [1996b] characterizes the graphs for which equal-
ity Q(G) = E(G) holds; its proof is along the same lines as that of Theo-
rem 31.3.7.

Theorem 31.3.14. For a graph G, equality Q(G) = E(G) holds if and only if
G has no K3-minor, i.e., if G is a forest. Then, E(G) = [−1, 1]E .

As the class of graphs G for which E(G) is a polytope is closed under taking
minors, we deduce:

Corollary 31.3.15. The elliptope E(G) of a graph G is a polytope if and only
if G is a forest; then, E(G) = [−1, 1]E .

31.3.2 Characterizing Graphs with Excluded Induced Wheels

We give here the full proof5 of Theorem 31.3.13, which states several equivalent
characterizations for the graphs containing no splittings of wheels as induced
subgraphs. We show the following implications:

(ii) =⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (i) and (i) ⇐⇒ (vi),

the implication (i) =⇒ (ii) being obvious.

5The proof given here follows the exposition in Laurent [1997b]. It is based essentially on
the original proofs of Barrett, Johnson and Loewy [1996] and Johnson and McKee [1996] .
However, several parts have been simplified and shortened; in particular, the implications (iv)
=⇒ (v) =⇒ (i).
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The following notion of ‘path avoiding a clique’ will be useful in the proof.
Let G = (V,E) be a graph, let K be a clique in G and let a ∈ K, x ∈ V \K. A
path P joining the two nodes a and x is said to avoid the clique K if P contains
no other node of K besides a.

We start with some preliminary results.

Lemma 31.3.16. The class PKC is closed under taking induced subgraphs.

Proof. Suppose G = (V,E) belongs to PKC and let H = G[U ] be an induced
subgraph of G, where U ⊆ V . We show that H ∈ PKC . Let x be a vector indexed
by the edge set of H satisfying (31.3.1) and (31.3.2); we show that x ∈ E(H).
For this we extend x to a vector y indexed by the edge set of G by setting
yuv := 0 for an edge uv ∈ E with u ∈ U , v ∈ V \ U and yuv := 1 for an edge
uv ∈ E contained in V \ U . It is clear that y satisfies (31.3.1). By assumption,
a := 1

π arccos x ∈ CUT2(H); we verify that b := 1
π arccos y ∈ CUT2(G). Indeed,

say
a =

∑

S⊆U
λSδH(S)

where λS ≥ 0,
∑
S λS = 1. Then,

b =
1

2

∑

S⊆U
λS (δG(S) + δG(U \ S)) ,

which shows that b ∈ CUT2(G). Hence, y satisfies (31.3.2). Therefore, y ∈ E(G)
which implies that x ∈ E(H).

Lemma 31.3.17. The class PKM is closed under taking clique sums.

We omit the proof which is analogue to that of Lemma 31.3.10.

Lemma 31.3.18. Let G = (V,E) be a graph in which every induced subgraph
containing a homeomorph of K4 also contains a clique of size 4. Let K be a
clique in G with |K| ≥ 4, let a, b, c ∈ K, v ∈ V \K, and let Pa (resp. Pb, Pc) be
a path from a (resp. from b, c) to v avoiding the clique K. Then, there exists a
node w ∈ V \K lying on one of the paths Pa, Pb or Pc which is adjacent to all
three nodes a, b and c.

Proof. Let W denote the set of nodes lying on the paths Pa, Pb or Pc. Clearly,
there is a path avoiding K from every node w ∈ W to each node in {a, b, c}.
For w ∈ W , define d(w) as the smallest sum |Qa| + |Qb| + |Qc|, where Qa, Qb,
Qc are paths avoiding K that join w to a, b, c, respectively, in the graph G[W ].
Suppose w is a node in W for which d(w) is minimum and let Qa, Qb, Qc be
the corresponding paths, as defined above. Let W0 ⊆W denote the set of nodes
lying on Qa, Qb or Qc. Then,

V (Qa) ∩ V (Qb) = V (Qa) ∩ V (Qc) = V (Qb) ∩ V (Qc) = {w}.
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Indeed, if z is a node in V (Qa) ∩ V (Qb) distinct from w, then it is easy to see
that d(z) < d(w). Hence, the three paths Qa, Qb, Qc together with the edges ab,
ac and bc form a homeomorph of K4 contained in G[W0]. By the assumption,
G[W0] must contain a clique S of size 4. We show that

S = {w, a, b, c}.

Suppose that w 6∈ S. Then, S contains two nodes r, s that lie on a common
path, say, on Qa; say, w, r, s, a lie in that order along Qa. Let t ∈ S \ {r, s}. We
can suppose that t lies on Qb (as t does not lie on Qa, by minimality of d(w)).
Then, t = b (else, we would have d(t) < d(w)). Hence, S is of the form {r, s, b, c}
which implies that d(r) < d(w), a contra diction. Therefore, the set S contains
w; so, S = {w, r, s, t} where r, s, t lie on Qa,Qb,Qc, respectively. Now, r = a
(else, d(r) < d(w)); similarly, s = b and t = c. This shows that S = {w, a, b, c}.

Proposition 31.3.19. Let G = (V,E) be a graph satisfying the following con-
ditions:

(i) Every induced subgraph of G containing a homeomorph of K4 contains a
clique of size 4.

(ii) G contains a clique of size 4.

(iii) For every maximal clique K in G, a ∈ K and v ∈ V \ K, there exists a
path avoiding K from a to v.

Then, G is chordal.

Proof. We show the result by induction on the number n of nodes in G. The
result holds trivially if n = 4 (as G = K4). Let n ≥ 5 and let K be a maximal
clique in G of size ≥ 4. We can assume that the subgraph G[V \K] induced by
V \K is connected. (Else, letting W1, . . . ,Wp denote the connected components
ofG[V \K], thenGi := G[K∪Wi] is chordal for each i = 1, . . . , p, by the induction
assumption. Hence, G is chordal as it is a clique sum of chordal graphs.) We
show that K = V , i.e., that G is a complete graph. For this, suppose K 6= V .
For each x ∈ V \K, let N(x) denote the set of nodes in K that are adjacent to
x. We claim:

(a)
If x, y ∈ V \K are adjacent and if N(x) 6⊆ N(y),N(y) 6⊆ N(x),
then N(x) ∩N(y) = ∅, |N(x)| = |N(y)| = 1.

Indeed, let a ∈ N(x) \N(y) and b ∈ N(y) \N(x). Suppose first that there exists
c ∈ N(x) ∩ N(y). Then, the subgraph of G induced by {a, b, c, x, y} contains
a homeomorph of K4 but no clique of size 4, contradicting (i). If |N(x)| ≥ 2,
we obtain again a contradiction with (i) by choosing now c in N(x) \ {a}. This
shows (a). Next, we have:

(b) If x ∈ V \K and |N(x)| = 1, then N(x) ⊂ N(y) for some y ∈ V \K.
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Say, N(x) = {a}. Let b, c ∈ K \ {a} and let Pa, Pb, Pc be paths from x to a, b,
c, respectively, that avoid K. By Lemma 31.3.18, there exists a node y ∈ V \K
lying on one of these paths which is adjacent to a, b and c. Hence, N(x) ⊂ N(y).

Call a set N(x) (x ∈ V \K) maximal if N(x) = N(y) whenever N(x) ⊆ N(y)
for y ∈ V \K. We show:

(c)
Let x 6= y ∈ V \K for which N(x) and N(y) are both maximal.
Then, N(x) = N(y).

Suppose that N(x) 6= N(y). Then, by (a) and (b), x and y are not adjacent. Let
(x, z1, . . . , zp, y) be a path of shortest length joining x and y in G[V \K]. Then,
N(z1) ⊆ N(x) and N(zp) ⊆ N(y). Let us first assume that N(zi) 6⊆ N(x) for
some i = 1, . . . , p. Let i be the smallest such index. Then, N(z1)∪. . .∪N(zi−1) ⊆
N(x) and N(zi) 6⊆ N(x). Let a ∈ N(x) \N(zi) and b ∈ N(zi) \N(x). We claim
that N(z1) ∪ . . . ∪ N(zi−1) ⊆ {a}. For, suppose that there exists an element
a′ ∈ N(z1) ∪ . . . ∪N(zi−1) with a′ 6= a. Then, applying Lemma 31.3.18, we find
a node w ∈ {x, z1, . . . , zi−1, zi} which is adjacent to all three nodes a, b and a′.
This implies that w = zj (j < i) and, thus, b ∈ N(zj) ⊆ N(x), a contradiction.
Therefore, N(z1) ∪ . . . ∪N(zi−1) ⊆ {a}. Let c ∈ N(x) \ {a}; then the subgraph
of G induced by {a, b, c, x, z1, . . . , zi−1, zi} contains a homeomorph of K4 but no
clique of size 4, contradicting (i). When N(zi) 6⊆ N(y) for some i = 1, . . . , p,
we obtain a contradiction in the same manner as above. Hence, we have that
N(z1) ∪ . . . ∪N(zp) ⊆ N(x) ∩N(y). Taking a ∈ N(x) \N(y), b ∈ N(y) \N(x),
c ∈ N(x) \ {a}, the subgraph of G induced by {a, b, c, x, z1, . . . , zp, y} contains a
homeomorph of K4 but no clique of size 4, yielding again a contradiction. Hence,
(c) holds.

We can now conclude the proof. Let N(x0) denote the unique maximal set
of the form N(x) (x ∈ V \K). Then, N(x0) = K (by (iii)). Hence, K ∪ {x0} is
a clique, which contradicts the maximality of K.

Proof of Theorem 31.3.13.
The implication (ii) =⇒ (iii) follows from Lemma 31.3.16 since Wn (n ≥ 5) and
a splitting of Wn (n ≥ 4) do not belong to PKC . The implication (vi) =⇒ (i)
follows from Lemma 31.3.17 and the fact that chordal graphs and graphs with
no K4-minor belong to PKM .

(v) =⇒ (i) Suppose G = (V,E) is a graph satisfying (v). Let G′ = (V,E′) be
a chordal graph such that E ⊆ E′ and every clique of size 4 in G′ is, in fact,
a clique in G. We show that G ∈ PKM . For this, let x = cos(πa) ∈ RE such
that a ∈ MET2(G) and xK ∈ E(K) for all cliques K in G. Let b ∈ MET2(G′)
extending a and set y := cos(πb). Then, y satisfies the clique condition (31.3.1)
(as yK = xK ∈ E(K) for each clique K of size ≥ 4 in G′). As G′ is chordal, we
deduce that y ∈ E(G′) and, thus, x ∈ E(G).

(iii) =⇒ (iv) SupposeG = (V,E) is a graph for which there exists a subset U ⊆ V
such that G[U ] contains a homeomorph of K4 and contains no clique of size 4.
Choose such U of minimum cardinality; set G′ := G[U ] := (U,E′). Moreover, let
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H = (W,F ) be a homeomorph of K4 contained in G′ having minimum number
of edges. Then, W = U (by minimality of |U |) and H 6= K4 (by assumption).
To fix ideas, suppose H is the graph shown in Figure 31.3.11; so, H consists of
the six paths Pab, Pac, Pbc, Pad, Pbd and Pcd (where Pab denotes the path joining
the nodes a and b, etc.); let us refer to the nodes a, b, c, d as the ‘corners’ of H.

We show that G′ is a wheel or a splitting of a wheel. This is obvious if
|E′ \ F | ≤ 1. So, we can suppose that |E′ \ F | ≥ 2. A first observation is:

(a) The end nodes of an edge e ∈ E′ \ F do not lie on a common path in H.

Indeed, suppose that the end nodes x and y of e lie, say, on the path Pab. Let
Pab(x, y) denote the subpath of Pab joining x and y. Then, the graph obtained
fromH by deleting Pab(x, y) and adding the edge e is again a homeomorph of K4

contained in G′ but having less edges than H. This contradicts the minimality
of H. Hence, (a) holds.

There are two possibilities for an edge e = xy ∈ E′ \ F : Either, (I) e lies
within a face of H (i.e., x and y lie on two paths in H sharing a common end
node) or, (II) e connects two disjoint paths in H. We make two observations:

(b)
Let e = xy ∈ E′ \ F where x, y are internal nodes in Pab, Pcd,
respectively. Then, |Pac| = |Pbc| = |Pad| = |Pbd| = 1.

Indeed, suppose |Pac| > 1. Then, the graph obtained from H by adding e and
deleting Pac is a homeomorph of K4 (with corners x, y, b, d) contained in G′ with
less edges than H. Similarly,

(c)

Let e = xy ∈ E′ \ F lying in a face of H. Say, x, y lie on Pab, Pac,
respectively. Then, (ci) xa, ya ∈ E, |Pbc| = |Pbd| = |Pcd| = 1,
or (cii) y = c, |Pac| = |Pbc| == |Pcd| = 1,
or (ciii) x = b, |Pab| = |Pbc| = |Pbd| = 1.

Suppose first that there exists an edge e ∈ E′ \F of type (II). Say, e = xy where
x, y are internal nodes on Pab, Pcd, respectively. Let e′ = x′y′ be another edge
in E′ \ F . Then, e′ is of type (I). (Indeed, if e′ is of type (II) then e′ connects
the same paths Pab and Pcd - this follows from (b) and the fact that H 6= K4.
Say, x 6= x′ and d, y′, y, c lie in that order along Pcd. Then, adding e, e′ to H and
deleting Pad, Pbd and the subpath Pcd(d, y

′) creates a homeomorph of K4 with
less edges than H.) We can suppose without loss of generality that e′ lies within
the face of H containing a, b, c. By (c), e′ is of the form cz where z lies on Pab.
Say, z lies between a and x. Then, adding e, e′ to H and deleting Pad, Pac and
Pab(a, z) creates a smaller homeomorph of K4 than H.

Hence, we can now suppose that every edge in E′ \ F is of type (I), i.e., lies
within a face of H. If E′ \F contains an edge as in (ci), then it is easy to see that
one can always find a smaller homeomorph of K4 in G′. Hence, we can suppose
that all edges in E′ \ F are as in (cii) or (ciii). Let e = cx ∈ E′ \ F , where x
is an internal node of Pab. This implies easily that every other edge e′ ∈ E′ \ F
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is of the form cz, where z lies on Pab, Pbd or Pad. Therefore, G′ is a wheel or a
splitting of a wheel.

(iv) =⇒ (v) Suppose that G satisfies the assumption (iv). We show that (v) holds
by induction on the number of nodes in G. We can suppose that G contains a
homeomorph of K4; else, the result holds. By (iv), G has a clique of size 4. We
can suppose, moreover, that there exist a maximal clique K in G, a0 ∈ K, and
x0 ∈ V \ K such that no path avoiding K from a to x exists; for, if not, G is
chordal by Proposition 31.3.19 and we are done. Let S denote the set of nodes
b ∈ K for which there exists a path from x0 to b avoiding K. Moreover, let
T denote the set of nodes x ∈ V \ K that can be joined to all nodes of S by
some path avoiding K, and that cannot be joined to any other point of K \ S
by a path avoiding K. Then, S 6= K (as a0 6∈ S) and T 6= ∅ (as x0 ∈ T ).
Moreover, there is no edge between T and (V \K) \ T , or K \ S. Consider the
induced subgraphs G[S ∪ T ] and G[V \ T ]; both are proper subgraphs of G. By
the induction assumption, there exists a chordal graph H1 (resp. H2) containing
G[S ∪ T ] (resp. G[V \ T ]) as a subgraph and having no new clique of size 4. Let
H := H1∪H2 denote the graph with edge set E(H1)∪E(H2). Then, H contains
G as a subgraph. Moreover, H is chordal and H contains no new clique of size
4. This follows from the fact that H is, in fact, the clique sum of the two graphs
H1 and H2 (along the clique S). Hence, G satisfies (v).

(i) =⇒ (vi). Let G be a graph in PKM . We show that G satisfies (vi) by induction
on the number of nodes. We can suppose that G is connected (else, the result
follows by induction) and that G contains a homeomorph of K4. It suffices now
to show that G contains a clique cutset, i.e., a clique K such that G[V \ K] is
disconnected. If G contains a simplicial6 node v, then the set of neighbors of v
forms a clique cutset. Suppose now that G contains no simplicial node. Using
the implication (i) =⇒ (iv) (already shown above), we know that G contains a
clique of size 4. Let K be a maximal clique in G of size ≥ 4 such that G[V \K]
is connected (else, we are done). Observe that, for every a ∈ K and x ∈ V \K,
there exists a path from a to x avoiding K. (Indeed, as a is not a simplicial node,
a is adjacent to some node w ∈ V \K. Now, v and w can be joined by some path
in G[V \K], which yields a path from v to a avoiding K.) Hence, the graph G
satisfies the conditions (i)-(iii) from Proposition 31.3.19. Therefore, G is chordal.
This yields a contradiction as every chordal graph contains a simplicial vertex.
This concludes the proof for (i) =⇒ (vi).

31.4 The Euclidean Distance Matrix Completion

Problem

Let (Vn, d) be a distance space with associated distance matrix D. We remind
that D is said to be a Euclidean distance matrix when (Vn,

√
d) is isometrically

ℓ2-embeddable; that is, when d belongs to the negative type cone NEGn.

6A node v in graph G is said to be simplicial if its set of neighbors induces a clique in G.
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Given a subset E of En = {ij | 1 ≤ i < j ≤ n}, consider the graph G =
(Vn, E). Denote by NEG(G) the projection of the negative type cone NEGn on
the subspace RE indexed by the edge set E of G. Hence, a vector d = (dij)ij∈E
belongs to NEG(G) if and only if there exist vectors u1, . . . , un ∈ Rm (for some
m ≥ 1) such that

(31.4.1)
√
dij =‖ ui − uj ‖2 for all ij ∈ E.

To d ∈ RE corresponds a partial symmetricn×nmatrixM = (mij) whose entries
are specified only on the diagonal positions and on the positions corresponding
to edges in E; namely, mii := 0 for all i ∈ Vn and mij = mji := dij for all ij ∈ E.
Then, d ∈ NEG(G) if the unspecified entries of M can be chosen in such a way
that one obtains a Euclidean distance matrix; that is, if M can be completed
to a Euclidean distance matrix. Therefore, the completion problem for partial
Euclidean distance matrices is that of characterizing membership in projections
of the negative type cone.

Barvinok [1995] shows that, for d ∈ NEG(G), there exists a system of vectors
u1, . . . , un ∈ Rm satisfying (31.4.1) in dimension m bounded by

(31.4.2) m ≤
⌊√

8|E| + 1 − 1

2

⌋
.

A short proof for this fact can be given using Theorem 31.5.3 from the next
section.

Proof of relation (31.4.2). For d ∈ RE we have:

∃ u1, . . . , un ∈ Rm such that dij = (‖ ui − uj ‖2)
2 for all ij ∈ E

m
∃ symmetric n× n matrix A � 0 with rank ≤ m such that

dij = aii + ajj − 2aij for all ij ∈ E.

Consider the convex set K := {X | X � 0, xii + xjj − 2xij = dij for ij ∈ E}.
If K 6= ∅ (that is, if d ∈ NEG(G)) and if d 6= 0 (then, K has extreme points),
then any matrix A ∈ K which is an extreme point of K has rank r satisfying(r+1

2

) ≤ |E| (by Theorem 31.5.3). This condition is equivalent to the inequality
in (31.4.2).

We present in this section a closed form description of the projected negative
type cone NEG(G) for several classes of graphs. In fact, one can formulate nec-
essary conditions for membership in NEG(G) that are similar to the conditions
(31.3.1), (31.3.2) and (31.3.3) considered in Section 31.3 for the positive semidef-
inite completion problem. Moreover, these conditions are sufficient for precisely
the same classes of graphs as those coming up in Section 31.3.

In a first step, we formulate the results concerning the Euclidean distance
matrix completion problem. Then, we show how they can be derived from the
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corresponding results for the positive semidefinite completion problem; here are
used essentially the techniques on metric transforms developed in Chapter 9.

The exposition in this section follows again essentially the survey paper of
Laurent [1997b].

31.4.1 Results

We formulate here some results for the Euclidean distance matrix completion
problem; proofs are delayed till Section 31.4.2.

Let K ⊆ Vn be a subset of nodes that induces a clique in G. For d ∈ RE

denote by dK its projection on the edge set of G[K]. Clearly, if d ∈ NEG(G)
then dK ∈ NEG(K). Therefore, the condition

(31.4.3) dK ∈ NEG(K) for every clique K in G

is a necessary condition for d ∈ NEG(G), again called clique condition. Bakonyi
and Johnson [1995] characterize the graphs G for which the condition (31.4.3) is
sufficient for the description of NEG(G). They show:

Theorem 31.4.4. For a graph G = (Vn, E), we have

NEG(G) = {d ∈ RE | dK ∈ NEG(K) ∀K clique in G}

if and only if G is chordal.

The condition (31.4.3) is not sufficient for the description of NEG(G) when G
is not chordal. Indeed, suppose that G has a chordless circuit C of length ≥ 4.
Let x ∈ RE be defined by xe := 0 for all edges e in C except xe0 := 1 for one
edge e0 in C, xij := 1 for all edges ij with i ∈ V (C), j ∈ V \ V (C), and xij := 0
for all edges ij with i, j ∈ V \ V (C). Then, x satisfies (31.4.3) but x 6∈ NEG(G).
Another necessary condition can be easily formulated in terms of the cut cone.
Namely, the condition

(31.4.5)
√
d ∈ CUT(G)

is a necessary condition for d ∈ NEG(G), called cut condition; this follows from
the fact that “ℓ2 =⇒ ℓ1” (recall Proposition 6.4.12) and taking projections.
Therefore,

(31.4.6)
√
d ∈ MET(G)

is also a necessary condition for d ∈ NEG(G), called metric condition. The
condition (31.4.6) characterizes NEG(G) in the case when G = K3. This result
has, in fact, already been mentioned in Remark 6.2.12; we repeat the proof for
clarity.
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Lemma 31.4.7. NEG3 = {d ∈ R3
+ |

√
d ∈ MET3}.

Proof. Let d be a distance on V3 and set d12 := a, d13 := b, d23 := c. Let us
consider the image of d under the covariance mapping (pointed at position 3)
and the corresponding symmetric matrix

P :=

(
b b+c−a

2
b+c−a

2 c

)
.

We use the fact that d ∈ NEG3 if and only if P � 0 (recall Figure 6.2.3). Now,
P � 0 if and only if detP ≥ 0, i.e., if 4bc − (b + c − a)2 ≥ 0. The latter
condition can be rewritten as: a2 − 2a(b+ c) + (b− c)2 ≤ 0, which is equivalent
to b+ c− 2

√
bc = (

√
b−√

c)2 ≤ a ≤ b+ c+ 2
√
bc = (

√
b+

√
c)2. Hence, we find

the condition that
√
d ∈ MET3.

More generally, Bakonyi and Johnson [1995] observe that the condition (31.4.6)
suffices for the description of NEG(G) if G is a circuit. In fact, the following
result holds, which is an analogue of Theorem 31.3.7 (Laurent [1996c]).

Theorem 31.4.8. The following assertions are equivalent for a graph G:

(i) NEG(G) = {d ∈ RE+ |
√
d ∈ CUT(G)}.

(ii) NEG(G) = {d ∈ RE+ |
√
d ∈ MET(G)}.

(iii) G has no K4-minor.

The next result identifies the graphs for which the clique and metric con-
ditions (resp. clique and cut conditions) suffice for the description of the cone
NEG(G). The equivalence of (i) and (iii) is due to Johnson, Jones and Kroschel
[1995] and that of (ii) and (iii) to Laurent [1996c].

Theorem 31.4.9. The following assertions are equivalent for a graph G:

(i) NEG(G) = {d ∈ RE+ |
√
d ∈ MET(G) and dK ∈ NEG(K) ∀K clique in G}.

(ii) NEG(G) = {d ∈ RE+ |
√
d ∈ CUT(G) and dK ∈ NEG(K) ∀K clique in G}.

(iii) No induced subgraph of G is a wheel Wn (n ≥ 5) or a splitting of a wheel
Wn (n ≥ 4).

We conclude this section with a result of geometric flavor given in Bakonyi
and Johnson [1995]; it follows as a direct application of Theorem 31.4.4.

Proposition 31.4.10. Let G = (Vn, E) be a chordal graph, let K1, . . . ,Ks

denote its maximal cliques and let d ∈ RE , R > 0. Suppose that there exist
vectors u1, . . . , un ∈ Rn satisfying (i) and (ii):

(i) ‖ ui − uj ‖2= dij for all ij ∈ E,
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(ii) for every r = 1, . . . , s, the vectors ui (i ∈ Kr) lie on a sphere of radius R.

Then there exist vectors v1, . . . , vn ∈ Rn satisfying (i) and all of them lying on a
sphere of radius R.

31.4.2 Links Between the Two Completion Problems

There is an obvious analogy between the above results for the Euclidean dis-
tance matrix completion problem and the results from Section 31.3 for the pos-
itive semidefinite completion problem. Compare, in particular, Theorems 31.3.4
and 31.4.4, as well as Theorems 31.3.7 and 31.4.8, and Theorems 31.3.13 and
31.4.9. Following Laurent [1996c], we indicate here how to derive the results for
the Euclidean distance matrix completion problem from those for the positive
semidefinite completion problem.

For convenience let us introduce the following classes of graphs: DK (resp.
DM , DC) denotes the class of graphs for which the clique condition (31.4.3) (resp.
metric condition (31.4.6), cut condition (31.4.5)) suffices for the description of
NEG(G); and DKM (resp. DKC) denotes the class of graphs for which the
clique and metric (resp. clique and cut) conditions taken together suffice for the
description of NEG(G).

It is also convenient to introduce a notation for the following classes of graphs,
already encountered in the previous section. The class Gch consists of all chordal
graphs; the class GK4 consists of the graphs that do not contain K4 as a minor;
and the class Gwh consists of the graphs that do not contain a wheel Wn (n ≥ 5)
or a splitting of a wheel Wn (n ≥ 4) as an induced subgraph.

Proving Theorems 31.4.4, 31.4.8 and 31.4.9 amounts to showing the equali-
ties: DK = Gch, DM = DC = GK4, and DKM = DKC = Gwh. For this, it suffices
to verify the inclusions: DK ⊆ Gch, PK ⊆ DK ; DC ⊆ GK4, PM ⊆ DM ; and
DKC ⊆ Gwh, PKM ⊆ DKM . We do so in Lemmas 31.4.16 and 31.4.17 below.

Crucial for the proof are some links between the negative type cone and the
elliptope. A first obvious link between the cone NEG(∇G) and the elliptope
E(G) is provided by the covariance mapping (as defined in (27.3.8)). Namely,
given vectors x ∈ RE and d ∈ RE(∇G) satisfying: di,n+1 = 1 for all i ∈ Vn and
dij = 2 − 2xij for all ij ∈ E, then

(31.4.11) x ∈ E(G) ⇐⇒ d ∈ NEG(∇G).

Another essential tool is the following property of the Schoenberg transform from
Theorem 9.1.1: For d ∈ REn ,

(31.4.12) d ∈ NEG(Kn) ⇐⇒ exp(−λd) ∈ E(Kn) for all λ > 0.
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(We remind that the notation exp(−λd) means applying the exponential function
componentwise, i.e., exp(−λd) = (exp(−λdij))ij .) This relation remains valid at
the level of arbitrary graphs. Namely,

Proposition 31.4.13. Let G = (Vn, E) be a graph and d ∈ RE . The following
assertions are equivalent.

(i) d ∈ NEG(G).

(ii) exp(−λd) ∈ E(G) for all λ > 0.

(iii) 1 − exp(−λd) ∈ NEG(G) for all λ > 0.

Proof. (i) =⇒ (ii) follows from (31.4.12) and taking projections.
(ii) =⇒ (iii) Given λ > 0, define the vector D ∈ RE(∇G) by Di,n+1 = 1 for i ∈ Vn
and Dij = 2 − 2 exp(−λdij) for ij ∈ E. Then, D ∈ NEG(∇G) (by relation
(31.4.11)) which implies that 1 − exp(−λd) ∈ NEG(G).
(iii) =⇒ (i) Let vTx ≤ 0 be a valid inequality for the cone NEG(G). We show
that vTd ≤ 0. By assumption, vT (1 − exp(−λd)) ≤ 0. Expanding in series the
exponential function, we obtain:

vT (1 − exp(−λd)) =
∑
ij∈E vij(

∑
p≥1

(−1)p−1

p! λpdpij)

=
∑
p≥1

(−1)p−1λp

p!

∑
ij∈E vijd

p
ij ≤ 0.

Dividing by λ and, then, letting λ −→ 0 yields:
∑
ij∈E vijdij ≤ 0. This shows

that d ∈ NEG(G), as d satisfies all the valid inequalities for NEG(G).

From this we can derive the following result7 permitting to link the two metric
conditions (31.3.3) and (31.4.6).

Lemma 31.4.14. Let G = (Vn, E) be a graph and d ∈ RE+ . Then,

√
d ∈ MET(G) =⇒ 1

π
arccos(e−λd) ∈ MET2(G) for all λ > 0.

Proof. Note first that it suffices to show the result in the case when G = Kn (as
the general result will then follow by taking projections). Next, observe that it
suffices to show the result in the case n = 3 (as MET(Kn) and MET2(Kn)
are defined by inequalities that involve only three points). Now, we have:√
d ∈ MET(K3) ⇐⇒ d ∈ NEG(K3) (by Lemma 31.4.7); d ∈ NEG(K3) ⇐⇒

exp(−λd) ∈ E(K3) for all λ > 0 (by Proposition 31.4.13); finally, exp(−λd) ∈
E(K3) ⇐⇒ 1

π arccos(e−λd) ∈ MET2(K3) (by Theorem 31.2.2).

One more useful preliminary result is the following.

7The implication in Lemma 31.4.14 holds, in fact, as an equivalence. The converse implica-

tion can be shown using the mean value theorem applied to the function f(t) = arccos(e−t2)
and letting λ tend to zero.



31.4 The Euclidean Distance Matrix Completion Problem 533

Lemma 31.4.15. Let Wn := ∇C be a wheel on n nodes, with center u0 and
circuit C. Consider the vector d indexed by the edge set of Wn and defined by
d(u0, u) := 1 for each node u of C, d(u, v) := 4 for each edge uv of C. Then,
d ∈ NEG(Wn) ⇐⇒ n is odd.

Proof. Let x be the vector indexed by the edge set of C and taking value −1
on every edge. By (31.4.11), d ∈ NEG(Wn) if and only if x ∈ E(C). The latter
holds if and only if 1

π arccos x ∈ MET2(C), that is, if and only if C has an even
length.

Lemma 31.4.16. We have: DK ⊆ Gch, DC ⊆ GK4, and DKC ⊆ Gwh.

Proof. We show the inclusion: DK ⊆ Gch. For this, let G = (V,E) be a non-
chordal graph and let C = (V (C), E(C)) be a chordless circuit of length ≥ 4 in
G. We define a vector d ∈ RE satisfying (31.4.3) and such that d 6∈ NEG(G)
by setting de := 0 for all edges e ∈ E(C) except de0 := 1 for one edge e0 in C;
de := 1 for every edge e joining a node of C to a node of V \ V (C); and de := 0
for every edge e joining two nodes of V \ V (C).
The example from Lemma 31.4.15 above shows that K4 = W4 does not belong
to DC . The inclusion: DC ⊆ GK4 now follows after noting that DC is closed
under taking minors.
We finally check the inclusion: DKC ⊆ Gwh. For this, let G = (V,E) be a graph
in DKC and let H := G[U ] be an induced subgraph of G where U ⊆ V . Suppose
in a first step that H is a wheel Wn := ∇C (n ≥ 5) with center u0. Consider
the vector d indexed by the edge set of G and defined in the following manner:
d takes value 4 on every edge of the circuit C excepet value 0 on one edge if
n is odd; d takes value 1 on every edge joining the center u0 of the wheel to a
node of C; d takes value 1 on an edge between a node of C and a node outside
the wheel; d takes value 0 on every remaining edge (i.e., an edge joining u0 to a
node outside the wheel or an edge joining two nodes outside the wheel). Then
d satisfies (31.4.3) and d 6∈ NEG(G) (by Lemma 31.4.15). Moreover d satisfies
(31.4.5), i.e.,

√
d ∈ CUT(G). Indeed, say C is the circuit (u1, . . . , un−1). Then,√

d =
∑n−1
i=1 δG(ui) if n is even and

√
d = δG({u1, un−1}) +

∑n−2
i=2 δG(ui) if n is

odd and (u1, un−1) is the edge of C on which d takes value 0. Finally, if H is a
splitting of a wheel Wn (n ≥ 4), extend the above vector d by assigning value 0
to every new edge created during the splitting process.

Lemma 31.4.17. PK ⊆ DK , PM ⊆ DM , and PPM ⊆ DKM .

Proof. We first verify the inclusion: PK ⊆ DK . Let G be a graph in PK ; we show
that G ∈ DK . For this, let d ∈ RE satisfying (31.4.3); we show that d ∈ NEG(G).
By Proposition 31.4.13, exp(−λdK) ∈ E(K) for every clique K in G and every
λ > 0. As G ∈ PK , this implies that exp(−λd) ∈ E(G) for all λ > 0. Using
again Proposition 31.4.13, we obtain that d ∈ NEG(G).
Suppose now that G ∈ PM ; we show that G ∈ DM . Let d ∈ RE satisfy-
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ing (31.4.6), i.e.,
√
d ∈ MET(G). Then, by Lemma 31.4.14, 1

π arccos(e−λd) ∈
MET2(G) for all λ > 0. As G ∈ PM , this implies that exp(−λd) ∈ E(G) for all
λ > 0. By Proposition 31.4.13, we obtain that d ∈ NEG(G).
The inclusion PKM ⊆ DKM follows by combining the above arguments.

31.5 Geometry of the Elliptope

In Section 28.4.1 was introduced the convex body Jn as a (nonpolyhedral) re-
laxation of the cut polytope CUT2

n . We remind that

Jn = {x ∈ REn |
∑

1≤i<j≤n
bibjxij ≤

1

4
(
n∑

i=1

bi)
2 for all b ∈ Zn}

= {x ∈ REn | J − 2X � 0}

where J is the all-ones matrix and, for x ∈ REn , X is the symmetric n×nmatrix
with zero diagonal and off-diagonal entries xij . We also remind that the elliptope
En is defined as the set of n × n symmetric positive semidefinite matrices with
an all-ones diagonal. Therefore,

x ∈ Jn ⇐⇒ J − 2X ∈ En.

Hence, the two convex sets Jn and En are essentially identical (up to the trans-
formation x 7→ 1 − 2x). The convex body Jn is a relaxation of CUT2

n , i.e.,

CUT2
n ⊆ Jn.

Moreover, Jn provides a good approximation for CUT2
n in the sense of opti-

mization (recall Theorem 28.4.7). In fact, the convex body Jn presents several
geometric features, which may explain and provide further insight for its good
behaviour in optimization. One such property is, for instance, the fact that the
only vertices of Jn are the cut vectors. This result is given below as well as sev-
eral other geometric properties. For convenience we will work with the elliptope
En rather than with Jn itself.

We start with recalling some definitions. Let K be a convex set in Rd . Given
a boundary point x0 of K, its normal cone N(K,x0) is defined as

N(K,x0) := {c ∈ R
d | cTx ≤ cTx0 for all x ∈ K}.

Hence, N(K,x0) consists of the normal vectors to the supporting hyperplanes of
K at x0. Then, the supporting cone at x0 is defined by

C(K,x0) := {x ∈ Rd | cTx ≤ 0 for all c ∈ N(K,x0)}.

The dimension of the normal cone permits to classify the boundary points. In
particular, a boundary point x0 is called a vertex ofK if its normal cone N(K,x0)
is full-dimensional. A subset F ⊆ K is a face of K if, for all x ∈ F , y, z ∈ K and
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0 ≤ α ≤ 1, x = αy + (1 − α)z implies that y, z ∈ F . In particular, an element
x0 ∈ K is called an extreme point of K if the set {x0} is a face of K. In what
follows we consider the two convex sets En and Jn. When dealing with En we
take the space of symmetric n×n matrices as ambient space, equipped with the
inner product:

〈A,B〉 :=
n∑

i,j=1

aijbij for two symmetric n× n matrices A,B

and, when dealing with Jn, the ambient space is the usual Euclidean space

R(n+1
2 ). We remind that Tr A :=

∑n
i=1 aii for an n× n matrix A.

We begin with the description of the polar of En and of its normal cones.
These results are established by Laurent and Poljak [1995b, 1996a]; proofs can
be found there.

Theorem 31.5.1. The polar of En is given by

(En)◦ = {D −M |M � 0,D diagonal matrix with Tr D = 1}.

For A ∈ En, its normal cone is defined by

N(En, A) = {D −M |M � 0, 〈M,A〉 = 0,D diagonal matrix}.

Moreover, dim N(En, A) = n+
(n−r+1

2

)
, where r is the rank of A.

Corollary 31.5.2. The only vertices of En are the ‘cut matrices’ xxT , for
x ∈ {±1}n. In other words, the convex body Jn has 2n−1 vertices, namely, the
cut vectors δ(S) for S ⊆ Vn.

We remind that, given c ∈ REn , max(cTx | x ∈ Jn) is an upper bound
for the max-cut problem: max(cTx | x ∈ CUT2

n ). Equality holds between the
bound and the max-cut precisely when c belongs to the normal cone of one of
the cut vectors. That the cut vectors are the only boundary points having a full
dimensional normal cone supports the idea that Jn approximates well CUT2

n .
From Theorem 31.5.1 one obtains that the supporting cone C(En, A) at A ∈ En
is the set

{X symmetric n× n | xii = 0 ∀i = 1, . . . , n, bTXb ≥ 0 for all b ∈ KerA}.

In particular, at A = J (the all-ones matrix), the supporting cone is −NEGn.
At every other vertex of En, the supporting cone is an affine image of the nega-
tive type cone NEGn (under the switching mapping). So, this makes one more
connection between the elliptope and the negative type cone.

We now turn to the description of the faces of En. We remind that En is
obtained by taking the intersection of the cone PSDn of positive semidefinite
matrices with the linear space W := {X | xii = 1 ∀i = 1, . . . , n}. The facial
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structure of the cone PSDn is well understood (see Hill and Waters [1987]). It
is, in some sense, rather simple. Indeed, given a matrix A ∈ PSDn with rank r
the smallest face FPSD(A) of PSDn that contains A is given by

FPSD(A) = {X ∈ PSDn | KerX ⊇ KerA}.

Hence, FPSD(A) is isomorphic to the cone PSDr and, thus, has dimension
(r+1

2

)
.

From this follows the description of the faces of En. For A ∈ En, the smallest
face FE (A) of En that contains A is equal to FPSD(A)∩W (as W is the only face
of W ). In other words,

FE (A) = {X ∈ En | KerX ⊇ KerA}.

However, computing the dimension of FE (A) requires more care8. This has been
done by Li and Tam [1994]. For convenience, we state their result in a more
general setting.

Theorem 31.5.3. Let A1, . . . , Am be n×n symmetric matrices and b1, . . . , bm ∈
R. Consider the convex set

K := {X ∈ PSDn | 〈X,Aj〉 = bj ∀j = 1, . . . ,m}.

Let A ∈ K and let FK(A) be the smallest face of K that contains A. Suppose
that A has rank r and that A = QQT , where Q is an n × r matrix of rank r.
Then,

dim FK(A) =

(
r + 1

2

)
− rank {QTAjQ | j = 1, . . . ,m}.

Proof. Call a symmetric matrix B a perturbation of A if A ± λB ∈ K for some
λ > 0. Then, dim FK(A) is equal to the rank of the set of perturbations of A.
We claim:

(a)
B is a perturbation of A⇐⇒ B = QRQT for some r × r symmetric

matrix R and 〈B,Aj〉 = 0 for all
j = 1, . . . ,m.

If B = QRQT then A ± λB = Q(I ± λR)QT is clearly positive semidefinite if
λ > 0 is small enough. Moreover, the condition: 〈B,Aj〉 = 0 for all j ensures
that A ± λB ∈ K. Conversely, suppose that B is a perturbation of A. So,
A±λB ∈ K for some λ > 0. This implies that 〈B,Aj〉 = 0 for all j. Complete Q
to an n× n nonsingular matrix P . Set C := P−1B(P−1)T ; that is, B = PCPT .
Then,

A± λB = P

(
Ir 0
0 0

)
P T ± λPCPT = P

((
Ir 0
0 0

)
± λ

(
C11 C12

C12 C22

))
P T ,

8Here arises also the question of characterizing the linear subspaces V of Rn such that
V ⊆ KerA for some A ∈ En. Delorme and Poljak [1993b] show that a vector b ∈ Rn belongs
to the kernel of some matrix A ∈ En if and only if b satisfies: |bi| ≤

∑
1≤j≤n, j 6=i

|bj | for all
i = 1, . . . , n. An analogue combinatorial characterization for higher dimensional spaces is not
known.
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setting C :=

(
C11 C12

C12 C22

)
. Hence,

(
Ir 0
0 0

)
± λ

(
C11 C12

C12 C22

)
� 0. This implies

that C12 = C22 = 0. Therefore, B = QC11Q
T , where C11 is a symmetric r × r

matrix. Hence, (a) holds.

Now, every perturbation of A is of the form B = QRQT with 〈B,Aj〉 = 0 for
all j; that is, 〈R,QTAiQ〉 = 0 for all j. Hence, the dimension of FK(A) is equal
to the dimension of the orthogonal complement of {QTAjQ | j = 1, . . . ,m} in
the space of symmetric r × r matrices. Hence, we have the desired formula for
dim FK(A).

Corollary 31.5.4. Let A ∈ En with rank r, let FE (A) denote the smallest
face of En containing A, and suppose that A is the Gram matrix of the vectors
u1, . . . , un ∈ Rr . Then,

(31.5.5) dim FE (A) =

(
r + 1

2

)
− rank {uiuTi | i = 1, . . . , n}.

In particular, one obtains bounds for the rank of extreme matrices9 of En.

Corollary 31.5.6. Let A ∈ En with rank r. If A is an extreme point of En then(r+1
2

) ≤ n.

Moreover, as we see below, for every r such that
(r+1

2

) ≤ n there exists an
extreme matrix in En having rank r. The formula (31.5.5) can be used for finding
the possible dimensions for the faces of En, as observed in Laurent and Poljak
[1996a]. Namely,

Proposition 31.5.7. Let A ∈ En with rank r and set k := dim FE (A). Then,

max(0,

(
r + 1

2

)
− n) ≤ k ≤

(
r

2

)
.

Moreover, for every integers r, k ≥ 0 satisfying the above inequality, there exists
a matrix A ∈ En with rank r and with dim FE (A) = k.

Proof. The inequality from Proposition 31.5.7 follows from (31.5.5), after noting
that r ≤ rank {u1u

T
1 , . . . , unu

T
n} ≤ n. The existence part relies essentially on

a construction proposed in Grone, Pierce and Watkins [1990], which goes as
follows. Let e1, . . . , er denote the coordinate vectors in Rr and set wij := 1√

2
(ei+

ej) for 1 ≤ i < j ≤ r. Then, the
(r+1

2

)
matrices: eie

T
i (i = 1, . . . , r) and wijw

T
ij

(1 ≤ i < j ≤ r) are linearly independent. Suppose first that n =
(r+1

2

)− k where

9Solving this question has been the subject of several papers in the linear algebra literature;
for example, by Christensen and Vesterstrøm [1979], Loewy [1980], Grone, Pierce and Watkins
[1990].
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k ≤ (r
2

)
. Hence, r ≤ n ≤ (r+1

2

)
. Define A as the Gram matrix of the following

n vectors: e1, . . . , er together with n− r of the vectors wij . By construction, A
has rank r and dim FE (A) =

(r+1
2

)−n = k. When n >
(r+1

2

)−k, we can take as

matrixA the Gram matrix of the following n vectors: e1 repeated n−(r+1
2

)
+k+1

times, e2 . . . er, and
(r
2

)− k of the wij ’s.

Therefore, the range Dn of the possible values for the dimension of the faces
of En is given by:

Dn = [0,

(
kn
2

)
] ∪

n⋃

r=kn+1

[

(
r + 1

2

)
− n,

(
r

2

)
],

where kn is the smallest integer k such that
(k+2

2

)− n >
(kn

2

)
+ 1, i.e., 2kn > n;

that is, kn =
⌊n

2

⌋
+ 1. For instance,

k3 = 2, D3 = [0, 1] ∪ {3},

k4 = 3, D4 = [0, 3] ∪ {6},

k5 = 3, D5 = [0, 3] ∪ [5, 6] ∪ {10},

k6 = 4, D6 = [0, 6] ∪ [9, 10] ∪ {15},

k7 = 4, D7 = [0, 6] ∪ [8, 10] ∪ [14, 15] ∪ {21}.
One can verify on Figure 31.3.6 that the proper faces of E3 have dimension
0 (extreme points) or 1 (an edge between two cut vectors; there are six such
faces). A detailed description of the faces of En can be found in Laurent and
Poljak [1995b, 1996a] for n = 3 and n = 4, respectively.

Finally, the possible dimensions for the polyhedral faces of En are as follows;
they were computed by Laurent and Poljak [1996a].

Theorem 31.5.8. If F is a polyhedral face of En with dimension k, then(k+1
2

) ≤ n − 1. Moreover, if all the vertices of F are cut matrices then F is

a simplex. Conversely, for every integer k ≥ 1 such that
(k+1

2

) ≤ n − 1, En has
a polyhedral face of dimension k (which can be chosen to be a simplex with cut
matrices as vertices).

Every polyhedral face of En with cut matrices as vertices yields clearly a face
of the cut polytope. We describe below a construction for such polyhedral faces,
due to Laurent and Poljak [1996a]. We need a definition in order to state the
result.

Let S1, . . . , Sk be k subsets of Vn. The cut vectors δ(S1), . . . , δ(Sk) are said
to be in general position if the set

⋂

i∈I
Si ∩

⋂

i6∈I
(Vn \ Si)
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is nonempty, for every subset I ⊆ {1, . . . , k}. This implies that 2k ≤ n, i.e.,
k ≤ log2 n. Moreover, the cut vectors δ(S1), . . . , δ(Sk) are linearly independent.

Theorem 31.5.9. Let δ(S1), . . . , δ(Sk) be k cuts in general position. Then,
the set F := Conv(δ(S1), . . . , δ(Sk)) is a face of the convex body Jn. (Equiva-
lently, the set Conv(x1x

T
1 , . . . , xkx

T
k ) is a face of En, where xh ∈ Rn is defined by

xh(i) := 1 if i ∈ Sh and xh(i) := −1 if i ∈ Vn \ Sh, for h = 1, . . . , k.) Therefore,
F is also a face of the cut polytope CUT2

n .

This result shows that Jn and CUT2
n share fairly many common faces, up

to dimension ⌊log2 n⌋. This supports again the idea that Jn approximates well
the cut polytope CUT2

n . In fact, the faces considered in Theorem 31.5.9 are also
faces in common with the semimetric polytope MET2

n ; see Theorem 31.6.4.

31.6 Adjacency Properties

We now return to the study of the geometry of the cut polytope itself, as well
as with respect to its linear relaxation by the semimetric polytope. We mention
first some results on the faces of low dimension and, then, facts and questions
about the small cut and semimetric polytopes.

31.6.1 Low Dimension Faces

A striking property of the cut polytope CUT2
n is that any two of its vertices

form an edge of CUT2
n . In fact, much more is true. In order the formulate the

results, we need some definitions.

Let P be a polytope with set of vertices V . Given an integer k ≥ 1, the
polytope P is said to be k-neighborly if, for any subset W ⊆ V of vertices such
that |W | ≤ k, the set Conv(W ) is a a face of P . This implies, in particular,
that every k vertices of P are affinely independent. Hence, every polytope is
1-neighborly and a polytope is 2-neighborly precisely when its 1-skeleton graph
is a complete graph.

Given an integer d and a polyhedron P , we let φd(P ) denote the set of d-
dimensional faces of P .

Barahona and Mahjoub [1986] show that CUT2n is 2-neighborly, i.e., that any
two cut vectors are adjacent on CUT2n . In other words, the 1-skeleton graph of
CUT2

n is a complete graph. Padberg [1989] shows the following stronger result:
Any two cut vectors are adjacent on the rooted semimetric polytope RMET2n (de-
fined by the triangle inequalities going through a given node; recall Section 27.2).
More generally, Deza, Laurent and Poljak [1992] show the following result.

Theorem 31.6.1. Let W be a set of cut vectors such that |W | ≤ 3. Then, the
set Conv(W ) is a simplex face of the semimetric polytope MET2n .
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Proof. Due to switching, we can suppose that the set W contains the zero cut
vector δ(∅). Let us first consider the case when |W | = 2; say, W = {δ(∅), δ(S)},
where S 6= ∅, Vn. In order to show that the set Conv(W ) is a face of MET2n , it
suffices to find a vector w ∈ REn satisfying the following property:

(a) wTx ≤ 0 for all x ∈ MET2
n , with equality if and only if x ∈ Conv(W ).

For this, set wij := 0 if δ(S)ij = 1 and wij := −1 otherwise. It is immediate to
verify that w satisfies the desired property.

We now consider the case when |W | = 3; say, W = {δ(∅), δ(S), δ(T )}, where
δ(S) and δ(T ) are distinct and nonzero. Set A := S∩T , B := S∩T , C := S∩T ,
and D := S ∩ T . Again, we should find w ∈ REn satisfying (a). Let us first
suppose that the sets A,B,C,D are nonempty. Let a ∈ A, b ∈ B, c ∈ C, and
d ∈ D. Define w ∈ REn by setting wab = wac = wbd = wcd := −1, wad = wbc :=
1, wij := −1 if i 6= j both belong to A, or B, or C, or D (denote by E the set
of these pairs ij), and wij := 0 otherwise. Then, wT δ(S) = wT δ(T ) = 0. Let
x ∈ MET2

n . Then,

wTx = −
∑

ij∈E
xij + σ,

where

σ := xad + xbc − xab − xbd − xcd − xac.

We have the relations:

(i) σ = (xad − xac − xcd) + (xbc − xcd − xbd) + xcd − xab ≤ xcd − xab,

(ii) σ = (xad − xab − xbd) + (xbc − xab − xac) + xab − xcd ≤ xab − xcd,

(iii) σ = (xad − xac − xcd) + (xbc − xab − xac) + xac − bbd ≤ xac − bbd,

(iv) σ = (xad − xab − xbd) + (xbc − xbd − xcd) + xbd − xac ≤ xbd − xac.

From (i)-(iv) we deduce that σ ≤ 0. Therefore, wTx ≤ 0. Moreover, if wTx = 0,
then xij = 0 for all ij ∈ E and σ = 0. Hence, using (i)-(iv), xab = xcd := α,
xac = xbd := β for some α, β ≥ 0, α+ β ≤ 1, and xad = xbc = α + β. From this
follows easily that x = αδ(S) + βδ(T ), which shows that x ∈ Conv(W ).

Finally, let us suppose that one of the sets A,B,C,D is empty. Say, D = ∅.
Then, A,B,C 6= ∅; let a ∈ A, b ∈ B and c ∈ C. We now define w ∈ REn by
wab = wac := −1, wbc := 1, wij := −1 if i 6= j both belong to A, or B, or C, and
wij := 0 otherwise. It can be verified as above that w satisfies (a).

Corollary 31.6.2. The cut polytope CUT2
n is 3-neighborly.

Corollary 31.6.3.

(i) For n ≥ 4, every face of CUT2
n of dimension d ≤ 5 is a simplex.

(ii) φd(CUT2
n ) ⊆ φd(MET2

n ), for d = 0, 1, 2.
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The results from Corollaries 31.6.2 and 31.6.3 (i) are best possible; that is, CUT2n
is not 4-neighborly and there exists a 6-dimensional face of CUT2

n (n ≥ 4) which
is not a simplex. Indeed, for n = 4, CUT2

4 itself is a nonsimplex 6-dimensional
face. For n ≥ 5, consider the face F of CUT2n which is defined by the inequality:

∑

4≤i<j≤n
xij ≥ 0.

Then, F contains the following eight cut vectors δ(S) for S = ∅, {2}, {3}, {1, 2},
{1, 3}, {2, 3}, and {1, 2, 3}. They are not affinely independent as they satisfy:

δ({1}) + δ({2}) + δ({3}) + δ({1, 2, 3}) = δ({1, 2}) + δ({1, 3}) + δ({2, 3}).

Hence, F is a nonsimplex face of dimension 6 of CUT2
n . (In fact, one can check

that F is also a face of MET2
n .) Hence, the four cut vectors δ(∅), δ({1, 2}),

δ({1, 3}), and δ({2, 3}) do not form a face of CUT2n . This shows that CUT2
n is

not 4-neighborly.

The result of Corollary 31.6.3 (ii) is also best possible, i.e., there exists a
3-dimensional face of CUT2

n which is not a face of MET2
n (for n ≥ 5). The

following example is given in Deza and Deza [1995]. Let n ≥ 5. Consider the
face F of CUT2

n which is defined by F := CUT2
5 for n = 5 and

F := {x ∈ CUT2
n | x1i + x2i + x12 = 2 and x1i − x2i − x12 = 0 for i = 6, . . . , n}

for n ≥ 6. The cut vectors lying in F are of the form δ(S ∪ {1}), where S ⊆
{2, 3, 4, 5}. Therefore, F ≈ CUT2

5 is a 10-dimensional face of CUT2
n which is

not a face of MET2
n . Consider the set

G := Conv(δ({1, 2}), δ({1, 3}), δ({1, 4}), δ({1, 5}))

and let H denote the face of MET2
n which is defined by the triangle inequalities:

x1i + x2i + x12 = 2, x1i − x2i − x12 = 0 (i = 6, . . . , n)

and x1i + x1j + xij = 2 (2 ≤ i < j ≤ 5).

Then, G is a 3-dimensional face of CUT2
n as

G = {x ∈ F |
∑

1≤i<j≤5

xij = 6 and x1i + x1j + xij = 2 for 2 ≤ i < j ≤ 5}.

But, G is not a face of MET2
n . To see it, consider the point x ∈ REn defined by

x1i = 1, x2i = x3i = x4i = x5i = 1
3 for i = 6, . . . , n, xij = 0 for 6 ≤ i < j ≤ n,

and xij = 2
3 for 1 ≤ i < j ≤ 5. Then, x ∈ H \ G. If G is a face of MET2

n ,
then G is a face of H and, thus, there exists a triangle inequality valid for G
and violated by x. Now one can easily check that no such inequality exists. This
shows that G is not a face of MET2

n .

Even though not every d-dimensional face of CUT2
n is a face of MET2

n when
d ≥ 3, the next result shows that a lot of them remain faces of MET2n when
d ≤ log2 n.
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Given S1, . . . , Sk ⊆ Vn, recall that the cut vectors δ(S1), . . . , δ(Sk) are said
to be in general position if the set

⋂

i∈I
Si ∩

⋂

i6∈I
(Vn \ Si)

is nonempty, for every subset I ⊆ {1, . . . , k}. Then, k ≤ log2 n and the cut
vectors δ(S1), . . . , δ(Sk) are linearly independent. Deza, Laurent and Poljak
[1992] show that cuts in general position form a face; the proof of this result is
along the same lines as that of Theorem 31.6.1, but with more technical details.
Compare the results in Theorems 31.6.4 and 31.5.9.

Theorem 31.6.4. Let δ(S1), . . . , δ(Sk) be k cut vectors in general position.
Then, the set Conv(δ(S1), . . . , δ(Sk)) is a face of MET2

n and, thus, of CUT2
n .

Therefore, CUT2
n and MET2

n share a lot of common faces, at least up to di-
mension ⌊log2 n⌋. This is an indication that the semimetric polytope is wrapped
quite tightly around the cut polytope.

31.6.2 Small Polytopes

We group here some results and questions related to facets/vertices of the cut
polytope CUT2

n and the semimetric polytope MET2
n , especially for the small

values of n, n ≤ 7. The reader may consult Deza [1994, 1996] for a detailed
survey on various combinatorial and geometric properties of these polyhedra.

n # facets # facets # orbits
of CUTn of CUT2

n of facets
3 3 4 1
4 12 16 1
5 40 56 2
6 210 368 3
7 38, 780 116, 764 11
8 49, 604, 520 217, 093, 472 147

Figure 31.6.5: Number of facets of cut polyhedra for n ≤ 8

All the facets of the cut cone CUTn and the cut polytope CUT2
n are known

for n ≤ 7; they were described in Section 30.6. The extreme rays of METn
and the vertices of MET2

n are also known for n ≤ 7; the extreme rays of MET7

were computed by Grishukhin [1992a] and the vertices of MET27 by Deza, Deza
and Fukuda [1996]. For n ≤ 6, they are very simple. Namely, besides the cut
vectors (that are all the integral vertices), all of them arise from the vector
(2/3, . . . , 2/3) after possibly applying switching10 and gate 0-extensions11. Fig-

10The metric polytope being preserved under the switching operation, its set of vertices is
partitioned into switching classes. Namely, if x is a vertex of MET2

n , then all vectors in its
switching class {rδ(A)(x) | A ⊆ Vn} are also vertices of MET2

n . For instance, the cut vectors
form a single switching class.

11Given x ∈ REn , we remind that its gate 0-extension is the vector y ∈ REn+1 defined by
yij := xij for ij ∈ En, y1,n+1 := 0, yi,n+1 := x1i for i = 2, . . . , n. It can be easily verified that
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ures 31.6.5 and 31.6.6 summarize information on the number of facets/vertices
of the cut and semimetric polyhedra. Data for CUT8 and CUT2

8 come from
Christof and Reinelt [1996]. (We remind that orbits are obtained by action of
switching and permutations.)

n # extreme rays # vertices # orbits
of METn of MET2

n of vertices
3 3 4 1
4 7 8 1
5 25 32 2
6 296 544 3
7 55, 226 275, 840 13

Figure 31.6.6: Number of extreme rays/vertices of semimetric polyhedra for
n ≤ 7

Much information is known about the 1-skeleton graph of MET2n and about
the ridge graphs12 of MET2

n and CUT2
n . We quote here some facts and questions

and refer to the original papers or to the survey by Deza [1996] for more details.

The 1-Skeleton Graph of the Semimetric Polytope. As the semimetric
polytope MET2

n is preserved under the switching operation, this induces a parti-
tion of its vertices into switching classes. The cut vectors form a single switching
class, which is a clique in the 1-skeleton graph of MET2

n (by Theorem 31.6.1).
On the other hand, it is shown in Laurent [1996e] that every other switching
class of vertices is a stable set in the 1-skeleton graph of MET2n ; that is, no two
nonintegral switching equivalent vertices of MET2

n form an edge on MET2
n . The

following conjecture is posed by Laurent and Poljak [1992].

Conjecture 31.6.7. Every fractional vertex of MET2n is adjacent to some cut
vector (i.e., to some integral vertex of MET2

n ). Equivalently, for every fractional
vertex x of MET2

n , some switching rδ(S)(x) of it lies on an extreme ray of METn.

This can be seen as an analogue of the following property, shared by the facets
of the cut polytope: For every facet of the cut polytope there exists a switching
of it that contains the origin. A consequence of Conjecture 31.6.7 would be that
the 1-skeleton graph of MET2

n has diameter ≤ 3. Conjecture 31.6.7 has been
verified for several classes of vertices (see Laurent [1996e]) and for n ≤ 7 (see
Deza, Deza and Fukuda [1996]).

Adjacency has been analyzed in detail for some classes of vertices. Given a
subset S ⊆ Vn, let d(KS,Vn\S) denote the path metric of the complete bipartite

graph with node bipartition (S, Vn \ S). Then, xS := 1
3d(KS,Vn\S) is a vertex of

MET2
n (taking value 1

3 on the edges of the bipartition and value 2
3 elsewhere).

y is a vertex of MET2

n+1 whenever x is a vertex of MET2

n .
12Let P be a d-dimensional polyhedron. Its ridge graph is the graph with node set the set of

facets of P and with two facets being adjacent if their intersection has dimension d − 2.
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The vertices xS (S ⊆ Vn) form a switching class. The adjacency relations between
the cut vectors δ(S) and the vertices xT (for S, T ⊆ Vn) are described in Deza
and Deza [1994b]. Namely, the two vertices δ(S) and xT are adjacent on MET2

n

if and only if the cut vectors δ(S) and δ(T ) are not adjacent in the folded n-cube
graph, i.e., if |S△T | 6= 1, n− 1. In the case n = 5, the cut vectors δ(S) and the
vectors xT (for S, T ⊆ V5) form all the vertices of MET2

5 . Hence, the 1-skeleton
graph of MET2

5 is completely known; its diameter is equal to 2.

Deza and Deza [1994b] analyze adjacency among further vertices of the form:
cut vectors δ(S), xT (S, T ⊆ Vn) and their gate extensions. This permits, in
particular, to describe the 1-skeleton graph of MET26 , whose diameter is equal
to 2.

The vertices of MET2
7 and their adjacencies are described in Deza, Deza

and Fukuda [1996]; in particular, the 1-skeleton graph of MET27 has diameter
3. Figure 31.6.8 shows the 13 orbits of vertices of MET27 ; for each orbit Oi, a
representative vertex vi is given as well as its cardinality |Oi|, the number Ai
of neighbors of vi in the 1-skeleton graph and the number Ii of triangle facets
containing vi.

Orbit Representative vertex vi |Oi| Ii Ai

O1 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 64 105 55 226

O2
2
3 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 64 35 896

O3
2
3 (1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 1 344 40 763

O4
2
3 (1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 6 720 45 594

O5
2
3 (1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 2 240 49 496

O6
1
4 (1, 2, 3, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 3, 2, 3, 2, 1, 2, 1) 20 160 30 96

O7
1
3 (1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2) 4 480 26 76

O8
2
5 (2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2) 23 040 28 57

O9
1
3 (2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2) 40 320 22 46

O10
1
3 (1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2) 40 320 23 39

O11
2
7 (1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1) 40 320 25 30

O12
1
5 (3, 2, 3, 3, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 2, 2, 4, 2) 16 128 25 27

O13
1
6 (1, 2, 4, 2, 2, 2, 1, 3, 3, 3, 3, 2, 2, 2, 4, 2, 2, 2, 4, 4, 4) 80 640 23 24

Total 275 840

Figure 31.6.8: The orbits of vertices of MET2
7

The Ridge Graph of the Semimetric Polytope. The ridge graph Gn of the
semimetric polytope MET2

n is studied in detail in Deza and Deza [1994b]. The
graph Gn has 4

(n
3

)
vertices and, for n ≥ 4, two triangle facets are adjacent in Gn

if and only if they are nonconflicting. (Two triangle inequalities are said to be
conflicting if there exists a pair ij such that the two inequalities have nonzero
coordinates of distinct signs at the position ij.) For instance, G3 = K4 and
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G4 = K4 × K4. More generally, for n ≥ 4 the complement of Gn is locally13

the bouquet14 of n − 3 copies of K3 × K3 along a common K3; its valency is
k = 3(2n − 5), two adjacent nodes have λ ∈ {2(n − 2), 4} common neighbors,
while two nonadjacent nodes have µ common neighbors with µ ∈ {4, 6} for n = 5
and µ ∈ {0, 4, 6} for n ≥ 6. In particular, the diameter of Gn is equal to 2 for
n ≥ 4. Note that the complement of the ridge graph G5 of MET2

5 provides
an example15 of a regular graph of diameter 2 in which the number of common
neighbors to two arbitrary nodes belongs to {λ, µ} = {4, 6}.

Deza and Deza [1994b] also describe the ridge graph G′n of the semimetric
cone METn, which is an induced subgraph of Gn. Namely, for n ≥ 4, the
complement of G′

n is locally the bouquet of n− 3 copies of the circuit C6 along
a common edge. The graph G′

n has diameter 2 for n ≥ 4.

The Ridge Graph of the Cut Polytope. The ridge graph of the cut polytope
CUT2

n is studied in Deza and Deza [1994a]. (It suffices to consider the case n ≥ 5
as CUT2

n = MET2
n for n ≤ 4.) The ridge graph of CUT2

n is described there for
n ≤ 7. In particular, two facets of CUT2

5 are adjacent in the ridge graph if and
only if they are nonconflicting, but this is not true for n ≥ 6. The ridge graph of
CUT2

n has diameter 2 for n = 4, 5, diameter 3 for n = 6 and its diameter belongs
to {3, 4} for n = 7. The following conjecture is posed in Deza and Deza [1994a].

Conjecture 31.6.9. Every facet of CUT2
n is adjacent to at least one triangle

facet in the ridge graph of CUT2
n .

This conjecture would imply that the ridge graph of CUT2
n has diameter ≤ 4.

The conjecture is shown to hold for n ≤ 7. Further properties and questions,
also concerning the ridge graph of the cut cone, can be found in Deza and Deza
[1994a].

n vol MET2
n vol CUT2

n ratio ρn
3 1/3 1/3 100%

4 2/45 2/45 100%

5 4/1701 32/14, 175 ∼ 96%

6 71, 936/1, 477, 701, 225 2384/58, 046, 625 ∼ 84%

Figure 31.6.10: Volumes of cut and semimetric polytopes for n ≤ 6

Further combinatorial properties of cut and semimetric polyhedra have been
studied. For instance, Deza and Deza [1995] have completely described the face
lattices of both the cut polytope CUT2

n and the semimetric polytope MET2
n

13The local structure of a graph G is the subgraph induced by the neighbors of any given
vertex, assuming that these induced subgraphs are the same at all the vertices.

14Let G = (V, E) be a graph and, for U ⊂ V , let H = G[U ] be an induced subgraph of G.
Let Gi = (Vi, Ei) (i = 1, . . . , k) be k isomorphic copies of G such that Vi ∩Vj = U for all i 6= j.
Then, the graph (∪k

i=1Vi,∪k
i=1Ei) is called the bouquet of the k copies of G along H .

15This generalization of the notion of strongly regular graph is studied in Erickson et al.
[1996].
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for n ≤ 5. Deza, Deza and Fukuda [1996] give the edge connectivity of the
adjacency and ridge graphs for cut and semimetric polytopes. To conclude we
mention some facts about the volume of cut and semimetric polyhedra.

A way of measuring the tightness of the relaxation of CUT2n by MET2
n could

be by considering the ratio

ρn :=
vol CUT2

n

vol MET2
n

of their volumes. Unfortunately, computing the volume of a polytope is a hard
task in general. These volumes have been computed in the case n ≤ 6 in Deza,
Deza and Fukuda [1996]; we report the results in Figure 31.6.10.

31.7 Distance of Facets to the Barycentrum

We are interested here in evaluating what is the minimum possible distance of
a facet to the barycentrum of CUT2

n . Most of the results here come from Deza,
Laurent and Poljak [1992].

Let b :=
(∑

S⊆Vn|16∈S δ(S)
)
/2n−1 denote the barycentrum of CUT2

n . Then,

b = (1/2, . . . , 1/2).

The Euclidean distance from b to the hyperplane defined by the equation: vTx =
α is given by the formula:

|vT b− α|
‖ v ‖2

.

It can be easily checked that the distance from b to a facet F remains invariant
if we replace F by a switching of it. In particular, the distance from b to any
triangle facet is equal to 1

2
√

3
. The following conjecture is posed by Deza, Laurent

and Poljak [1992].

Conjecture 31.7.1. The distance from the barycentrum b to any facet of CUT2n
is greater than or equal to 1

2
√

3
, this smallest distance being attained precisely by

the triangle facets.

They show that this conjecture holds for all pure facets, i.e., for all the facets
that are defined by an inequality with 0,±1-coefficients.

Theorem 31.7.2. Let vTx ≤ α be an inequality defining a facet of CUT2
n and

such that v ∈ {−1, 0, 1}En . Then, the distance from this facet to the barycentrum
b is greater than or equal to (2

√
3)−1. Moreover, this smallest distance is realized

precisely when vTx ≤ α is a triangle inequality.

The proof of Theorem 31.7.2 relies on establishing a good lower bound for the
max-cut problem in the graph Kn with edge weights v. For a vector v ∈ REn ,
set

mc(Kn, v) := max(vT δ(S) | S ⊆ Vn).
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Then, it shown in Deza, Laurent and Poljak [1992] that

mc(Kn, v) ≥

 ∑

1≤i<j≤n
vij


 /2+ ‖ v ‖2 (2

√
3)−1

for every v ∈ {0,±1}En . Note that, if one can prove that this inequality remains
valid for any v ∈ REn , then Conjecture 31.7.1 would follow.

It may be instructive to evaluate the exact distance to the barycentrum for
some concrete classes of facets. For instance, let D(r, p) denote the distance from
the barycentrum b to the hyperplane defined by the clique-web inequality:

CWr
2p−2r−1(1, . . . , 1,−1, . . . ,−1)Tx ≤ 0

(with p coefficients +1 and p− 2r − 1 coefficients −1). Then,

D(r, p) =
r + 1

2

√
p− 2r − 1

2p− r − 1
.

Hence, for r = 0 (hypermetric case), D(0, p) = 1
2

√
p−1
2p−1 , which is asymptotically

1
2
√

2
(> 1

2
√

3
) when p −→ ∞. In the case p = 2r + 3 (the case of the bicycle odd

wheel inequality), D(r, 2r+3) = r+1√
6r+10

, which tends to 1√
6
(> 1

2
√

3
) as r −→ ∞.

One can also check that the distance from b to the hyperplane defined by the
(nonpure) clique-web inequality:

CWr
p(r+1)−2r−1(r, . . . , r,−1, . . . ,−1)Tx ≤ 0

(with p coefficients r and pr − 2r − 1 coefficients −1) is asymptotically 1√
2

as
r, p −→ ∞.

We show in Figure 31.7.3 what is the exact distance to the barycentrum for
each of the eleven types of facets of CUT27 . These eleven types of facets are listed
as in Section 30.6 as Fi for i = 1, . . . , 11. The second row in Figure 31.7.3 gives
the exact value for the distance D(F ) from the barycentrum b to the hyperplane
containing the facet F . The third row gives an approximate value for D(F )·2

√
3,

that is, the ratio D(F )
D(F1) , where F1 is the triangle facet. Hence, the pentagonal

facet is the next closest facet, while the facet F8 is the farthest one.

F F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

dist. 1
2
√

3
1√
10

2√
31

1
2

√
3
7

1
2

√
6
11

7
2
√

69
1
2

5
2
√

11
9

2
√

133

√
2
7

5
2
√

29

ratio 1 1.09 1.24 1.13 1.28 1.46 1.73 2.61 1.35 1.85 1.61

Figure 31.7.3: Distance to the barycentrum of the facets of CUT7
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We conclude with two related results, concerning the width and the diameter
of the cut polytope. Given a polytope P , its width is defined as

width(P ) := min
‖c‖2=1

(max
x∈P

cTx− min
x∈P

cTx).

The diameter of P has already been defined in Section 31.1 as maxx,y∈P ‖ x−y ‖2.
It is easy to see that it can be alternatively defined as

diam(P ) = max
‖c‖2=1

(max
x∈P

cTx−min
x∈P

cTx).

In other words, the width and the diameter are, respectively, the smallest and the
largest distance between two supporting hyperplanes for P . G. Rote (personal
communication) has computed the width of CUT2

n .

Proposition 31.7.4. The width of the cut polytope CUT2n is equal to 1.

Proof. The proof is based on the following inequality: Let a1, . . . , aN ∈ R be N
scalars such that

∑N
i=1 ai = 0 and

∑N
i=1 a

2
i = N . Then,

max
i
ai − min

i
ai ≥ 2.

(Indeed, say, a1 ≤ . . . ≤ aN and set s := a1+aN
2 . If aN − a1 < 2 then |ai − s| < 1

for all i. Hence, a2
i + s2 − 2ais < 1 for all i. By summing over i, we obtain that

N +Ns2 < N , a contradiction.)
Let c ∈ REn with ‖ c ‖2= 1. For S ⊆ Vn, set xS := e−2δ(S) (where e denotes the
all-ones vector) and set aS := cTxS . Then, it is easy to check that

∑
S aS = 0

and
∑
S(aS)2 = N(:= 2n−1). Applying the above inequality, we obtain that

2 ≤ maxS c
TxS − minS c

TxS . This shows that 1 ≤ maxS c
T δ(S) − minS c

T δ(S).
Hence, the width of CUT2

n is greater than or equal to 1. The value 1 is attained,
for instance, by taking for c a coordinate vector. Hence, CUT2n has width 1.

Hence, the cut polytope has the same width as the unit hypercube. Poljak and
Tuza [1995] have computed the diameter of the cut polytope.

Proposition 31.7.5. The diameter of CUT2n is equal to
√⌊n

2

⌋ ⌈n
2

⌉
, that is, to

n
2 if n is even and to

√
n2−1
2 if n is odd.

Proof. Set α :=
√⌊n

2

⌋ ⌈n
2

⌉
. Let c ∈ REn with Euclidean norm 1. Let δ(S) and

δ(T ) be two cut vectors realizing, respectively, the maximum and the minimum
of cTx over x ∈ CUT2

n . Define c′ := cδ(T ), i.e., c′ij := −cij if |T ∩ {i, j}| = 1 and
c′ij = cij otherwise. Then,

cT δ(S) − cT δ(T ) = (c′)T δ(S△T ) ≤
√
|δ(S△T )| ≤ α

(the last but one inequality follows from the fact that
∑

1≤i≤n ui ≤
√
n for any

vector u ∈ Rn of Euclidean norm 1). On the other hand, the following vector
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c realizes equality. Let S ⊆ Vn with |S| = ⌊n2 ⌋. Set cij := 1
α if δ(S)ij = 1 and

cij := 0 if δ(S)ij = 0. Then, max cTx = α is attained at δ(S) and min cTx = 0
is attained at δ(∅).

31.8 Simplex Facets

We give here some more information on the simplex faces of CUT2
n . We have

seen in Section 31.6 that CUT2
n has lots of simplex faces of dimension up to

⌊log2 n⌋. In fact, CUT2
n has also fairly many simplex facets.

Let us summarize the known classes of simplex facets of CUT2
n ; for more

details, we refer to Deza and Laurent [1993a].

For n ≥ 3, the hypermetric inequality:

(31.8.1) Qn(n− 4, 1, 1,−1, . . . ,−1)Tx ≤ 0

defines a simplex facet of CUT2
n (Deza and Rosenberg [1984]; recall Corol-

lary 28.2.12).

For n ≥ 6, the clique-web inequality:

(31.8.2) CWn−6
n (n− 4, n− 5, n− 5,−1, . . . ,−1)Tx ≤ 0

defines a simplex facet of CUT2
n (Deza and Laurent [1992c]). For n = 6, the two

inequalities (31.8.1) and (31.8.2) coincide. Actually, for n ≤ 6, all the simplex
facets of CUT2

n arise from (31.8.2) (up to permutation and switching).

For n = 7, in addition to the simplex facets that can be derived from (31.8.1)
and (31.8.2) by permutation and switching, there are four more groups of simplex
facets; namely, the clique-web facets defined by the two inequalities:

CW1
7(2, 2, 1, 1,−1,−, 1,−1)T x ≤ 0,

CW1
7(1, 1, 1, 1, 1,−1,−1)T x ≤ 0,

the facet defined by the parachute inequality (Par7)
Tx ≤ 0 (recall (30.4.1)), and

the facet defined by Grishukhin’s inequality (Gr7)
Tx ≤ 0 (recall (30.5.1)).

Hence, among the eleven types of facets of CUT27 , six of them are simplices,
namely, the ones numbered 6 to 11 in Section 30.6. Therefore, using the data
from Figure 30.6.1, one can count the exact number of simplex facets of CUT27 .
Among its 116764 facets, CUT2

7 has 113536 simplex facets. Hence, about 97.2%
of the total number of facets are simplices ! Deza and Deza [1994a] conjecture
that this phenomenon is general, i.e., that the great majority of facets of CUT2n
are simplices. They state the following as an attempt to understand the global
shape of the cut polytope:
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“We think that the shape of the cut polytope is essentially given by
the nonsimplex facets, in particular, by its triangle facets, and that
the huge majority of the facets of CUT2

n are simplices which only
‘polish’ it.”

Interestingly, each of the simplex facets described above has the following
property (31.8.3) (see Deza and Laurent [1993a] for a proof). Let F denote such
a simplex facet and let δ(Sk) (1 ≤ k ≤ (n

2

)
) denote its roots. Let d ∈ F with

decomposition d =
∑

1≤k≤(n
2)
λkδ(Sk) where λk ≥ 0 for all k. Then,

(31.8.3)

d belongs to the cut lattice Ln
(i.e., if d ∈ ZEn and satisfies the parity condition (24.1.1)),

⇓
all λ′ks are integers.

In other words, in the terminology of Part IV, the parity condition suffices for
ensuring hypercube embeddability for the class of distances d ∈ F .
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I et II. Technical Report, Université d’Orsay, 1982. [255,257,261,262,370,477,497]

[1980] P. Assouad and M Deza. Espaces métriques plongeables dans un hypercube:
aspects combinatoires. In M. Deza and I.G. Rosenberg, editors, Combinatorics
79 - Part I, volume 8 of Annals of Discrete Mathematics, pages 197–210. North-
Holland, Amsterdam, 1980. [356]

[1982] P. Assouad and M. Deza. Metric subspaces of L1. Number 82-03 in Publications
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eaux, France, 1994. [54,416,489,500]



Bibliography 555

[1969] E.D. Bolker. A class of convex bodies. Transactions of the American Mathemat-
ical Society, 145:323–345, 1969. [110]

[1976] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. American Else-
vier, New York, and Macmillan, London, 1976. [11]

[1936] C.E. Bonferroni. Il calcolo delle assicurazioni su grouppi di teste. Studi in Onore
del Professor S.O. Carboni (Roma), 1936. [65]

[1854] G. Boole. An Investigation of the Laws of Thought on Which Are Founded the
Mathematical Theories of Logic and Probabilities. Dover Publications, New York,
original edition 1854. [61]

[1990] E. Boros, Y. Crama, and P.L. Hammer. Upper bounds for quadratic 0-1 opti-
mization problems. Operations Research Letters, 9:73–79, 1990. [430]

[1992] E. Boros, Y. Crama, and P.L. Hammer. Chvátal cuts and odd cycle inequalities
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Prömel, and A. Schrijver, editors, Paths, Flows, and VLSI-Layout, pages 47–100.
Springer-Verlag, Berlin, 1990. [3]

[1995] A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT
and MAX BISECTION. In E. Balas and J. Clausen, editors, Integer Program-
ming and Combinatorial Optimization, volume 920 of Lecture Notes in Computer
Science, pages 1–13. Springer-Verlag, Berlin, 1995. [461]

[1995] X. Fu and L. Goddyn. Matroids with the circuit cover property. Preprint, 1995.
[392,444]

[1977] J. Galambos. Bonferroni inequalities. Annals of Probability, 5:577–581, 1977. [63]

[1995] A. Gallucio and M. Loebl. (p, q)-odd digraphs. Preprint, 1995. [443]

[1996] A. Gallucio and M. Loebl. Cycles of binary matroids without an F ∗
7 -minor.

Preprint, 1996. [443]

[1975] M.R. Garey and R.L. Graham. On cubical graphs. Journal of Combinatorial
Theory B, 18:84–95, 1975. [294]

[1979] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979. [11,18,455,458]

[1995a] N. Garg. A deterministic O(log k)-approximation algorithm for the sparsest cut.
Preprint, 1995. [134]

[1995b] N. Garg. On the distortion of Bourgain’s embedding. Preprint, 1995. [125]

[1993] N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing, pages 698–707, 1993. (Updated version
in: SIAM Journal on Computing, 25:235–251, 1996.) [134]

[1979] A.V. Geramita and J. Seberry. Orthogonal Designs. Marcel Dekker, New York,
1979. [343]



Bibliography 563

[1985] A.M.H. Gerards. Testing the bicycle odd wheel inequalities for the bipartite
subgraph polytope. Mathematics of Operations Research, 10:359–360, 1985. [481]

[1995] A.M.H. Gerards and M. Laurent. A characterization of box 1/d-integral binary
clutters. Journal of Combinatorial Theory B, 65:186–207, 1995. [431]

[1993] L. Goddyn. Cones, lattices and Hilbert bases of circuits and perfect matchings.
In N. Robertson and P.D. Seymour, editors, Graph Structure Theory, volume 147
of Contemporary Mathematics, pages 419–440, 1993. [441]

[1995] C.D. Godsil, M. Grötschel, and D.J.A. Welsh. Combinatorics in statistical
physics. In R.L. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Com-
binatorics, Chapter 37 in volume II, pages 1925–1954. North-Holland, Elsevier,
Amsterdam, 1995. [51]

[1994] M.X. Goemans and D.P. Williamson. 0.878-approximation algorithms for MAX
CUT and MAX 2SAT. Proceedings of the 26th Annual ACM Symposium on the
Theory of Computing, pages 422–431, 1994. [459,460,461]

[1987] A.D. Gordon. A review of hierarchical classification. Journal of the Royal Sta-
tistical Society A, 150 - Part 2:119–137, 1987. [311]

[1982] J.C. Gower. Euclidean distance geometry. The Mathematical Scientist, 7:1–14,
1982. [80]

[1985] J.C. Gower. Properties of Euclidean and non-Euclidean distance matrices. Linear
Algebra and its Applications, 67:81–97, 1985. [75]

[1993] D.A. Grable. Sharpened Bonferroni inequalities. Journal of Combinatorial The-
ory B, 57:131–137, 1993. [65]

[1988] R.L. Graham. Isometric embeddings of graphs. In L.W. Beineke and R.J. Wil-
son, editors, Selected Topics in Graph Theory 3, pages 133–150. Academic Press,
London, 1988. [297]

[1978] R.L. Graham and L. Lovász. Distance matrix polynomials of trees. Advances in
Mathematics, 29:60–88, 1978. [286]

[1971] R.L. Graham and H.O. Pollack. On the addressing problem for loop switching.
The Bell System Technical Journal, 50:2495–2519, 1971. [278,285,293]

[1972] R.L. Graham and H.O. Pollack. On embedding graphs in squashed cubes. In
Y. Alavi, D.R. Lick, and A.T. White, editors, Graph Theory and Applications,
volume 303 of Lecture Notes in Mathematics, pages 90–110. Springer-Verlag, Berlin,
1972. [294]

[1985] R.L. Graham and P.M. Winkler. On isometric embeddings of graphs. Transac-
tions of the American Mathematical Society, 288:527–536, 1985. [80,291,297]

[1980] R. Graham, A. Yao, and F. Yao. Information bounds are weak for the shortest
distance problem. Journal of the Association for Computing Machinery, 27:428–
444, 1980. [422]

[1990] V.P. Grishukhin. All facets of the cut cone Cn for n = 7 are known. European
Journal of Combinatorics, 11:115–117, 1990. [502,503]

[1992a] V.P. Grishukhin. Computing extreme rays of the metric cone for seven points.
European Journal of Combinatorics, 13:153–165, 1992. [422,542]

[1992b] V.P. Grishukhin. On a t-extension of a distance space. Technical report SOCS-
92.5, School of Computer Science, Mc Gill University, Montreal, 1992. [213,214]

[1993] V.P. Grishukhin. L-polytopes, even unimodular lattices and perfect lattices.
Rapport LIENS-93-1, Ecole Normale Supérieure, Paris, 1993. [248]



564 Bibliography
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[1978] W. Holsztysnki. Rn as universal metric space. Notices of the American Mathe-
matical Society, 25:A–367, 1978. [156]

[1986] B.K.P. Horn. Robot Vision. M.I.T. Press, Cambridge, Massachussets, 1986. [163]

[1991] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University
Press, Cambridge, 1991. [113,116]

[1986] E. Howe, C.R. Johnson, and J. Lawrence. The structure of distances in networks.
Networks, 16:87–106, 1986. [422]

[1963] T.C. Hu. Multi-commodity network flows. Operations Research, 11:344–360,
1963. [134]

[1984] W. Imrich, J.M.S. Simões-Pereira, and C.M. Zamfirescu. On optimal embeddings
of metrics in graphs. Journal of Combinatorial Theory B, 36:1–15, 1984. [310]

[1989] A.N. Isachenko. On the structure of the quadratic boolean problem polytope. In
Combinatorics and Graph Theory, volume 25 of Banach Center Publications, pages
87–91. P.W.N., Warszawa, 1989. [54]

[1971] M. Iri. On an extension of the maximum-flow minimum-cut theorem to multi-
commodity flows. Journal of the Operations Research Society of Japan, 13:129–135,
1970-71. [422]

[1990] C.R. Johnson. Matrix completion problems: a survey. In C.R. Johnson, editor,
Matrix Theory and Applications, volume 40 of Proceedings of Symposia in Applied
Mathematics, pages 171–198. American Mathematical Society, Providence, Rhode
Island, 1990. [462,516]

[1995] C.R. Johnson, C. Jones, and B. Kroschel. The distance matrix completion prob-
lem: cycle completability. Linear and Multilinear Algebra, 39:195–207, 1995. [530]

[1996] C.R. Johnson and T.A. McKee. Structural conditions for cycle completable
graphs. Discrete Mathematics, 159:155–160, 1996. [521,522]

[1967] S.C. Johnson. Hierarchical clustering schemes. Psychometrika, 32:241–254, 1967.
[163]

[1984] W.B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. In R. Beals et al., editors, Conference in Modern Analysis and
Probability, volume 26 of Contemporary Mathematics, pages 189–206. American
Mathematical Society, Providence, Rhode Island, 1984. [129]
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Notation Index 1

G = (V,E) 11 graph
e = (u, v) = uv 11 edge in a graph joining nodes u and v
Vn 11 set of elements 1, . . . , n
En 11 set of pairs ij for 1 ≤ i < j ≤ n
Kn = (Vn, En) 11 complete graph on n nodes
Kn1,n2

11 complete bipartite graph
δG(S) 11 cut in graph G
G[W ] 12 subgraph of G induced by W
G\e 12 subgraph of G obtained by deleting edge e
G/e 12 subgraph of G obtained by contracting edge e
Pn 12 path on n nodes
Cn 12 circuit on n nodes
H(n, 2) 12 hypercube graph
1
2H(n, 2) 12 half-cube graph
Kn×2 12 cocktail-party graph
P10 13 Petersen graph
G1 ×G2 13 Cartesian product of two graphs G1 and G2

∇G 14 suspension graph of G
L(G) 14 line graph of G
R 14 set of real numbers
Q 14 set of rational numbers
Z 14 set of integer numbers
N 14 set of natural numbers
χS 14 incidence vector of a set S
A△B 14 symmetric difference of two sets A and B
xT , MT 14 transpose of vector x, matrix M
xT y 14 scalar product of vectors x and y
dim(X) 14 dimension of a set X
rank(X) 14 rank of a set X
K (X) 14 linear hull of X with coefficients in K

Conv(X) 14 convex hull of X
K◦ 14 polar of convex set K
CUTn 15 cut cone
CUT2

n 15 cut polytope
αn 16 n-dimensional simplex
βn 16 n-dimensional cross-polytope
γn 16 n-dimensional hypercube
P, NP, co-NP 18 complexity classes

1Symbols are listed in the order of first occurrence in the text.
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576 Notation Index

A−1 19 inverse of matrix A
OA(n) 19 set of orthogonal matrices of order n
A � 0 20 matrix A is positive semidefinite
det(A) 20 determinant of matrix A
PSDn 20 cone of positive semidefinite matrices
Gram(v1, . . . , vn) 20 Gram matrix of vectors v1, . . . , vn

In(A) 21 inertia of matrix A
dij , d(i, j) 27 distance between points i and j
METn 28 semimetric cone
t11n 28 equidistant metric on n points with value t
δ(S) 28 cut semimetric
‖ x ‖ 28 norm of x
d‖.‖ 28 distance induced by norm ‖ . ‖
‖ x ‖p 28 ℓp-norm of x
dℓp

28 ℓp-distance
ℓmp = (Rm , dℓp

) 28 Rm equipped with ℓp-distance
dH 29 Hamming distance
dG, d(G) 29 shortest path metric of graph G
dG,w 29 shortest path metric of weighted graph (G,w)
G →֒ H 29 G is an isometric subgraph of H
mℓp

(X, d) 29 ℓp-dimension of distance space (X, d)
mℓp

(n) 29 minimum ℓp-dimension of distance spaces
on n points

NORn(p) 31 cone of pth powers of ℓp-distances
(Ω,A, µ) 32 measure space
Lp(Ω,A, µ) 32 distance space of measurable functions
(Aµ, dµ) 33 measure semimetric space
CUT(X), CUT2(X) 38 cut cone and polytope on a set X
sℓ1(d) 45 minimum ℓ1-size of d
sh(d) 45 minimum h-size of d
η(d) 47 minimum scale of d
π(S) 53 correlation vector of set S
CORn 53 correlation cone
COR2

n 53 correlation polytope
COR(X), COR2(X) 54 correlation cone and polytope on a set X
ξ 55 covariance mapping
ξx0

56 covariance mapping pointed at position x0

πI(S), CORn(I), COR2
n (I) 64 generalized correlation vector, cone and polytope

Qn(b), Q(b) 68 vector with coordinates bibj
HYPn 69 hypermetric cone
HYP(X) 69 hypermetric cone on a set X
NEGn 69 negative type cone
CM(X, d) 76 Cayley-Menger matrix of (X, d)
Sm 86 m-dimensional unit sphere
Sm 86 spherical distance space of m-sphere
gatα(d) 93 gate extension of d
antα(d) 94 antipodal extension of d
Antα(d) 94 full antipodal extension of d
spht(d) 97 spherical extension of d
(L,�) 105 poset (partially ordered set)
x ∧ y 105 meet of x and y
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x ∨ y 105 join of x and y
fp(m) 141 order of congruence of ℓmp
C̃ 139 family of shores of the cuts in C
αd(A) 145 isolation index of δ(A)
Σd 145 set of d-splits of d
d(2) 170 square of Euclidean distance
L 177 (point) lattice
det(L) 178 determinant of lattice L
Lmin 178 set of minimal vectors of L
L∗ 179 dual lattice of L
L1 ⊕ L2 179 direct sum of lattices L1 and L2

L(P ) 179 lattice generated by the vertices of P

(V (P ), d(2)) 180 Delaunay polytope space of P
Ln 181 cut lattice
Pv(u0) 182 Voronoi polytope at u0

x∗ 183 antipode of x (on a sphere)
Pyrv(P ), Bipyrv(P ) 185 pyramid, bipyramid with base P
Ker A 189 kernel (= nullspace) of matrix A
Pd, Ld, Sd 196 Delaunay polytope, lattice, sphere associated

with distance d
An, Dn, E6, E7, E8 206 irreducible root lattices
hγn 207 n-dimensional half-cube
J(n, t) 207 Johnson graph
321 208 Gosset polytope
G56 208 Gosset graph
221 208 Schläfli polytope
G27 208 Schläfli graph
H(P ) 208 Delaunay polytope graph (= 1-skeleton of P )
Ann(X, d) 218 annullator of (X, d)
S(X, d) 218 system of hypermetric equations

associated with (X, d)
F (X, d), F (d) 218 smallest face of HYP(X) containing d
rk(X, d) 218 rank of (X, d)
rk(P ) 218 rank of P
Pm

p,q 226 repartitioning polytope
Λ24 244 Leech lattice
Λ16 245 Barnes-Wall lattice
d∗G 251 truncated distance of graph G
AG 251 adjacency matrix of G
λmin(A) 251 minimum eigenvalue of matrix A
LBCS 267 class of 187 graphs with λmin(AG) ≥ −2
θ 279 Djokovic’s relation
dimI(G) 279 isometric dimension of graph G
mh(G) 280 smallest dimension of a hypercube

containing G isometrically
PG(2, t) 335 projective plane of order t
Kk

n 382 set of k-uniform cuts on n points
KT

n 383 set of even T -cuts on n points
Kodd

n 383 set of odd cuts on n points
R(F ) 400 set of roots of face F
Sym(n) 403 group of permutations on n points
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σ(v) 403 applying permutation σ to vector v
vB 404 switching vector v by set B
rB 404 switching mapping
Ω2(F ) 407 orbit of face F in the cut polytope
Ω(F ) 407 orbit of face F in the cut cone
Is(CUT2

n ) 409 set of symmetries of cut polytope
vπ 410 π-collapse of vector v
MET2

n 421 semimetric polytope
RMET2

n+1 425 rooted semimetric polytope
MET(G), MET2(G) 430 semimetric cone and polytope of G
CUT(G), CUT2(G) 430 cut cone and polytope of G
M 436 binary matroid
M(G) 436 graphic matroid of graph G
M∗(G) 436 cographic matroid of graph G
M∗ 436 dual matroid of M
GF (2) 437 field with two elements
M\e 437 deleting element e in M
M/e 437 contracting element e in M
F7 437 Fano matroid
F ∗

7 438 dual Fano matroid
R10 438 matroid R10

Pr 438 binary projective space
CYC(M) 438 cycle cone of M
CYC2(M) 438 cycle polytope of M
MET2(M) 439 semimetric polytope of M
MET(M) 439 semimetric cone of M
Z(M) 442 cycle lattice of M
Z+(M) 444 integer cycle cone of M
γ(b) 457 gap of b
σ(b) 457 sum of components of b
Jn 459 positive semidefinite relaxation of CUT2

n

mc(Kn, c) 460 max-cut value
En 462 elliptope
Wr

p, AWr
p 467 web, antiweb graphs

(CWr
n)Tx ≤ 0 468 pure clique-web inequality

CWr
n(b)Tx ≤ 0 470 general clique-web inequality

STr
n(T, b)Tx ≤ 0 487 suspended-tree inequality

C(n, r) 496 circulant graph
(Par2k+1)

Tx ≤ 0 497 parachute inequality
(Fib2k)Tx ≤ 0 499 Fibonacci inequality
(Gr7)

Tx ≤ 0 502 inequality by Grishukhin
E(G) 515 elliptope of graph G
NEG(G) 528 negative type cone of graph G
N(K,x) 534 normal cone
C(K,x) 534 supporting cone
〈A,B〉 535 inner product of matrices A and B
Tr A 535 trace of matrix A
FK(A) 536 smallest face of K containing A
φd(P ) 539 set of d-faces of P



Subject Index 1

adjacency matrix 251
adjacent nodes 11
affine basis 178
affine generating set 178
affine integer hull 14
affine lattice 178
affine realization 219
annullator 200,218
antipodal extension 94,98-101

full 94

antipode 183
antiweb 467

weighted 470

apex 14
asymmetric Delaunay polytope 183
atom 316

proper 316

atom graph 316
automorphism of a face 408

Barnes-Wall lattice 245
basic Delaunay polytope 180,443
basic set 180
basic subgraph 242
basis 177
Bell-Wigner polytope 54
BIBD

(n, k, λ)- 342

binary matroid 435-444
biotope distance 119
bipartite graph 11
bipartition 11
bipyramid 185
body

convex 14

Boole problem 61-65
boolean quadric polytope 54

canonical metric representation 298

capacity of an edge 132
Carathéodory’s theorem 15
cardinality measure 32
Cartesian product 13
Cayley-Menger determinant 77
Cayley-Menger matrix 77
centered lattice 250
centrally symmetric 15
centrally symmetric Delaunay polytope

183
Chebyshev metric 164
chessboard metric 164
chord 431,440
chordal graph 517
chordless 431
Chvátal closure 428
Chvátal cut 428
Chvátal rank 428
circuit 12,436
circulant inequality 496-497
circular decomposable distance 91
city-block metric 164
Clebsch graph 209
clique 12
clique condition 516,529
clique k-sum 13
clique-web inequality 467-485
cocircuit 436
cocktail-party graph 12,98-101,207,313
cocycle 436
cocycle inequality 439
collapsing operation 410-413
commodity pair 132
commutative semigroup 107
complete bipartite graph 11
complete graph 11
condition

clique 516,529

1Boldface numbers refer to the pages where items are introduced.

579
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cut 516,529
four-point 310
metric 517,529
parity 354,442

cone 15

correlation 53,434
cut 37,391,430
cycle 438
even cut 399,506
finitely generated 15
Hamming 37
hypermetric 69
inequicut 399,506
integer 14
integer cycle 444
k-uniform cut 399,507
negative type 69,527-534
normal 534
polyhedral 15
positive semidefinite 20
semimetric 28,306,430
simplex 16
supporting 534

conic hull 14
connected distance space 175
connected graph 13
contact polytope 178
contraction of an edge 12
contraction of an element 437
convex [d-convex] 42
convex body 14
convex hull 14
convex set 14
correlation cone 53,434
correlation polytope 53,434
correlation triangle inequality 423
correlation vector 53

I- 64

cosimple 436
covariance

M - 58
{0, 1}- 58

covariance mapping 56,401,435
covering radius 171,214
Crofton formula 111
cross-polytope 16,207
crossing cut semimetrics 147
cut 11,133

Chvátal 428

cut condition 516,529
cut cone 37,391,430

cut lattice 93,181,381-385
cut polytope 37,430
cut semimetric 28,37

even 383,399
even T - 383
k-uniform 382,399
odd 383

cut vector 398
cycle 13,436
cycle cone 438
cycle inequality 431
cycle lattice 442
cycle polytope 438
cycle space 436

d-convex 283
d-split 145
data structure 162
degree 11
Delaunay polytope 179

asymmetric 183
basic 180,443
centrally symmetric 183
extreme 218,224,234-250
generating 180
irreducible 185
rank of 218
reducible 185
type of 181

Delaunay polytope graph 208
Delaunay polytope space 180
deletion of an edge 12
deletion of an element 437
∆Y -operation 392
∆-system 344
demand of an edge 132
design

(r, λ, n)- 342
extension of a 344
Hadamard 343

determinant of a lattice 178
diameter of a graph 251
dimension 14

ℓp- 29,75-80,138-159
isometric 279
metric 159

direct product 101
direct sum 179
disconnected graph 13
distance 27

biotope 119
circular decomposable 91
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Hamming 28,279
hexagonal 165
Kalmanson 91
Lee 166
octogonal 164
quasi h- 385-391
spherical 86
Steinhaus 118
truncated 251

distance matrix 27,277,291-293

Euclidean 75,527-534

distance space 27

connected 175
elliptic 87
spherical 86
strongly even 175,210-211

distance-regular graph 267,309
distortion 125
distributive lattice 106
dual BIBD 342
dual Fano matroid 438
dual lattice 179
dual matroid 436
duplication operation 418,500-502

edge 11
edgeweight vector 400
8-metric 164
ℓ1-embeddable 39-42
ℓ1-graph 251,280,312-330
ℓ1-rigid 44
ℓ1-rigid graph 280,314,325
ℓ1-size

minimum 45

ℓp-dimension 29,75-80,138-159

minimum 29,76,138-159

ℓp-embeddable 29
ℓp-metric 28
ℓ∞p -embeddable 30
elliptic distance space 87
elliptope 462,515-527,534-539
embeddable

ℓp- 29
ℓ∞p - 30
hypercube 30,40-41
isometrically 29
Lp- 32-35

embedding

λ- 313
Lipschitz 124-132

empty ellipsoid 188

empty sphere 179
endnode 11
equicut 399
equicut polytope 399,506
equidistant metric 28,46,95,98-101,

334-352
equivalent hypercube embeddings 45
Euclidean distance matrix 75,527-534
Eulerian graph 13
even cut cone 399,506
even cut semimetric 383,399
even lattice 178
even T -cut semimetric 383
extension

antipodal 94,98-101
full antipodal 94
gate 93
gate 0- 93
spherical t- 97,213-216

extension of a design 344
extremal graph 375
extreme Delaunay polytope 218,224,

234-250
extreme point 535
extreme ray 17

face 16

automorphism of a 408
orbit of a 407
simplex 17

facet 16
Fano matroid 437
Fibonacci inequality 499
finitely generated cone 15
folded n-cube graph 410
forest 13
4-metric 164
four-point condition 310
full antipodal extension 94
full-dimensional 14

gap inequality 457-458
gate extension 93
gate 0-extension 93
general lattice 181
general position 538
generalized bipartite metric 357-361
generalized line graph 259
generalized line graphs 266
generating Delaunay polytope 180
generating set 177

affine 178
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gonal inequality

k- 68

Gosset graph 208,240
Gosset polytope 208,240
Gram matrix 20
graph 11

atom 316
bipartite 11
chordal 517
Clebsch 209
cocktail-party 12,98-101,207,313
complete 11
complete bipartite 11
connected 13
Delaunay polytope 208
disconnected 13
distance-regular 267,309
ℓ1- 251,280,312-330
Eulerian 13
extremal 375
folded n-cube 410
Gosset 208,240
half-cube 12,207,313,315
Hamming 280,303
hypercube 12
hypercube embeddable 277,

282-293
hypermetric 251,277,287-290
interval-regular 309
irreducible 297
Johnson 207
line 14
minor of a 12
negative type 251,277,287-291
1-skeleton 16
outerplanar 330
path-block-cycle 493
Petersen 13
regular 262
Schläfli 208,240
semiregular 264
series-parallel 518
strongly regular 268
support 400
suspension 14
triangular 209
uniformely geodetic 309

graph factoring problem 305
graphic metric space 29,277
great circle metric 86
grid metric 164

Grishukhin’s inequality 502

h-labeling 333
h-realization matrix 44,333
h-rigid 44,334-340
h-size

minimum 45,347-350
Hadamard design 343
Hadamard matrix 237,343
half-cube 207
half-cube graph 12,207,313,315
Hamming cone 37
Hamming distance 28,279
Hamming graph 280,303
Hamming space 42-43
hexagonal distance 165
Hilbert basis 391-393,444
Hlawka’s inequality 110
hole 179
homeomorph 520
homothety 224
hull

affine integer 14
conic 14
convex 14
integer 14

hypercube 16
squashed 293

hypercube embeddability problem 353
hypercube embeddable 30,40-41
hypercube embeddable graph 277,

282-293
hypercube graph 12
hypercube metric space 29
hypermetric 67-86
hypermetric cone 69
hypermetric graph 251,277,287-290
hypermetric inequality 68,444-465
hypermetric space

rank of 218

incidence vector 14
induced subgraph 12
inequality

bicycle odd wheel 469
circulant 496-497
clique-web 467-485
cocycle 439
correlation triangle 423
cycle 431
Fibonacci 499
gap 457-458
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Grishukhin’s 502
Hlawka’s 110
hypermetric 68,444-465
k-gonal 68
negative type 68
parachute 497-502
path-block-cycle 492-496
pentagonal 68
pure 68,400
rooted triangle 425
suspended-tree 487-492
triangle 27,420-435
valid 17

inequicut 399
inequicut cone 399,506
inertia 21

Sylvester’s law of 21

integer cone 14
integer cycle cone 444
integer hull 14
integral lattice 178
intersection pattern 355
interval-regular graph 309
irreducible Delaunay polytope 185
irreducible graph 297
irreducible lattice 179
irredundant isometric embedding 297
isolation index 145
isometric dimension 279
isometric embedding 29
isometric subgraph 29,277
isometric subspace 29
isometrically embeddable 29
isomorphic graphs 12
isotone valuation 105

Johnson graph 207

k-framework 166
k-gonal inequality 68
k-grill 166
k-neighborly polytope 539
k-uniform cut cone 399,507
k-uniform cut semimetric 382,399
Kalmanson distance 91
kernel 189

L-decomposition 182
L-polytope 179
L-type domain 188
L1-embeddable 41-42
Lp-embeddable 32-35

Lp-norm 32
L2-embeddable 73-83
λ-embedding 313
lattice

affine 178
Barnes-Wall 245
centered 250
cut 93,181,381-385
cycle 442
distributive 106
dual 179
even 178
general 181
integral 178
irreducible 179
Leech 244
metric 105
modular 106
perfect 248
point 177
poset 105
reducible 179
root 178,206-209
self-dual 179
special 181
star of a 181
type of 181
unimodular 179

lattices
z-equivalent 181

leaf 142
Lee distance 166
Leech lattice 244
lifting

0- 413
lifting operation 413-416
line graph 14

generalized 259
linear description 15
linear programming duality theorem 17
linear programming problem 17

dual 17
Lipschitz embedding 124-132

M -clique 372
M -stable set 372
mℓp

(n) 30
Manhattan metric 164
mapping

covariance 56,401,435
switching 404

matching 12
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perfect 12

matrix

adjacency 251
distance 27,277,291-293
Gram 20
h-realization 44,333
Hadamard 237,343
orthogonal 19
positive semidefinite 20
realization 44
unimodular 178

matroid

binary 435-444
dual 436
dual Fano 438
Fano 437

max-cut problem 38,434
max-flow 133
maximum weight cycle problem 441
measure 32

cardinality 32

measure semimetric 33
measure semimetric space 33
measure space 32
metric 27

Chebyshev 164
chessboard 164
city-block 164
8- 164
ℓp- 28
equidistant 28,46,95,98-101,

334-352
4- 164
generalized bipartite 357-361
great circle 86
grid 164
Manhattan 164
Minkowski 28
norm 28,109-111
path 29
projective 111
rectilinear 164
6- 165
taxi-cab 164
tree 147,310
uniform 164

metric condition 517,529
metric dimension 159
metric lattice 105
metric representation 297

canonical 298

metric space
graphic 29,277
hypercube 29

metric transform 113
minimal norm 178
minimal vector 178
minimum ℓ1-size 45
minimum ℓp-dimension 29,76,138-159
minimum h-size 45,347-350
minimum scale 47,280
Minkowski metric 28
minor of a distance 146
minor of a graph 12
minor of a matroid 437
modular lattice 106
multicommodity flow 132-137
multicut polytope 399
multicut semimetric 42

negative type 67-86
negative type cone 69,527-534
negative type graph 251,277,287-291
negative type inequality 68
neighborly polytope

k- 539
nested 140

m- 140
node 11
node splitting operation 416,520
norm 28

Lp- 32
minimal 178

norm metric 28,109-111
normal cone 534

objective function 17
octogonal distance 164
odd cut semimetric 383
1-skeleton graph 16
1-sum 103
operation

collapsing 410-413
∆Y - 392
duplication 418,500-502
lifting 413-416
node splitting 416,520
switching 403-409
switching by roots 404

R+ -realization 43
orbit of a face 407
order of congruence 29,79,89,370
order polytope 427
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orthogonal matrix 19
outerplanar graph 330
Z+-realization 43

parachute inequality 497-502
parallelotope 85
parity condition 354,442
partial projective plane 336
path 12
path metric 29
path-block-cycle graph 493
path-block-cycle inequality 492-496
pentagonal inequality 68
perfect lattice 248
perfect matching 12
permutation equivalent inequalities 403
Petersen graph 13
point lattice 177
pointed at the position 56
polar 14
polyhedral cone 15
polyhedron 15
polynomial reduction 19
polytope 15

Bell-Wigner 54
bipartite subgraph 496
boolean quadric 54
contact 178
correlation 53,434
cut 37,430
cycle 438
Delaunay 179
equicut 399,506
Gosset 208,240
k-neighborly 539
L- 179
multicut 399
order 427
repartitioning 226
rooted semimetric 425
Schläfli 208,240
semimetric 421,430
Voronoi 182

poset lattice 105
positive semidefinite completion problem

462,515-527
positive semidefinite cone 20
positive semidefinite matrix 20
positive type 73-75,115
power transform 120
primitive semimetric 306
prism with base 184

probability space 32
problem

Boole 61-65
concurrent flow 132
graph factoring 305
hypercube embeddability 353
linear programming 17
max-cut 38,434
maximum weight cycle 441
positive semidefinite completion

462,515-527
unconstrained quadratic 0-1

programming 54,435
product

Cartesian 13
direct 101
tensor 102

projective metric 111
projective plane 335

partial 336
proper atom 316
pure inequality 68,400
pyramid with base 185

quadratic form 20
quasi h-distance 385-391

Ramsey number 370
rank 14

Chvátal 428
rank of Delaunay polytope 218
rank of hypermetric space 218
rank of matroid 437
realization

affine 219
R+ - 43
Z+- 43
special 358

realization matrix 44
h- 44,333

rectilinear metric 164
reducible Delaunay polytope 185
reducible lattice 179
regular graph 262
repartitioning polytope 226
representation 175

metric 297
spherical 175

representation matrix 437
ridge graph 543
rigid

ℓ1- 44
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h- 44,334-340

root figure 188
root lattice 178,206-209
root of an inequality 400
rooted semimetric polytope 425
rooted triangle inequality 425
Rubik’s n-cube 166

scale 47

minimum 47,280

Schläfli graph 208,240
Schläfli polytope 208,240
Schoenberg transform 115
Schur complement 22
self-dual lattice 179
semimetric 27

cut 28,37
even cut 383,399
measure 33
multicut 42
primitive 306

semimetric cone 28,306,430
semimetric polytope 421,430
semimetric space

measure 33

semiregular graph 264
series-parallel graph 518
set

affine generating 178
basic 180
convex 14
generating 177

shore 139
σ-algebra 32
simplex 16
simplex cone 16
6-metric 165
size 45

minimum ℓ1- 45
minimum h- 45,347-350

space

cycle 436
Delaunay polytope 180
distance 27
graphic metric 29,277
hypercube metric 29
measure 32
measure semimetric 33
probability 32

special lattice 181
special realization 358

spherical distance 86
spherical distance space 86
spherical representation 175
spherical t-extension 97,213-216
split-prime 145
split-prime residue 146
squashed hypercube 293
star [graph] 11
star embedding 335
star of a lattice 181
star realization 335
Steinhaus distance 118
strongly even distance space 175,210-211
strongly regular graph 268
subdividing an edge 520
subgraph 12

basic 242
induced 12

subspace
isometric 29

sum
direct 179
1- 103

sums of circuits property 439
support graph 400
supporting cone 534
suspension graph 14
switching by roots operation 404
switching mapping 404
switching operation 403-409
switching the inequality 404
Sylvester’s law of inertia 21
symmetric BIBD 342
symmetric difference 14
symmetry of a polytope 409
system

(r, λ)-intersecting 344
∆- 344

taxi-cab metric 164
tensor product 102
terminal pairs 132
tic-tac-toe board 166
totally decomposable 146
transform

metric 113
power 120
Schoenberg 115

transversal 372
tree 13
tree metric 147,310
triangle inequality 27,420-435
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triangular graph 209
trivial

design 342
embedding 335
partial projective plane 336

truncated distance 251
type of Delaunay polytope 181
type of lattice 181

ultrametric 311
unconstrained quadratic 0-1 programming

problem 54,435
uniform metric 164
uniformely geodetic graph 309
unimodular lattice 179
unimodular matrix 178

valency 262
valid inequality 17

valuation 105
vector

I-correlation 64
correlation 53
cut 398
edgeweight 400
minimal 178

vertex 16,534
Voronoi polytope 182

weakly compatible 146
web 467
wheel 329,521
width 548

z-equivalent lattices 181
zonoid 110
zonotope 110


