

Canadian Mathematical Society

Editor s-in-Chief

Société mathématique du Canada

K. Dilcher
K. Taylor

Advisory Board
Comité consultatif

Rédacteurs-en-chef

P. Borwein
R. Kane
S. Shen

For other titles published in this series, go to
www.springer.com/series/4318

ABC

Hugh C. Williams

Solving the Pell Equation

Michael J. Jacobson, Jr.

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

ISBN 978-0-387-84922-5 e-ISBN 978-0-387-84923-2
DOI 10.1007/978-0-387-84923-2

2500 University Drive NW
Calgary AB T2N 1N4
Canada

2500 University Drive NW
Calgary AB T2N 1N4
Canada

Hugh C. W illiams

williams@math.ucalgary.ca

Library of Congress Control Number: 2008939034

Michael J. Jacobson, Jr.
Department of Computer Science
University of Calgary

Department of Mathematics and Statistics
University of Calgary

jacobs@cpsc.ucalgary.ca

Editor s-in-Chief
Rédacteurs-en-chef

Canada

Karl Dilcher
K. Taylor
Department of Mathematics and Statistics
Dalhousie University

Mathematics Subject Classification (2000): 11D09 11A55

Halifax, Nova Scotia B3H 3J5

cbs-editors@cms.math.ca

To the children: Amanda, Alexa, Hannah, Graeme, and Sarah.

Preface

Let D be a positive non-square integer. The misnamed Pell equation is an
expression of the form

T 2 −DU2 = 1 , (0.1)

where T and U are constrained to be integers. For example, if D = 13, then
T = 649 and U = 180 is a solution of (0.1). This very simple Diophantine
equation seems to have been known to mathematicians for over 2000 years.
Indeed, there is very strong evidence that it was known to Archimedes, as
the Cattle Problem, attributed to him in antiquity, makes very clear. Even
today, research involving this equation continues to be very active; at least
150 articles dealing with it in various contexts have appeared within the last
decade. One of the main reasons for this interest is that the equation has
a habit of popping up in a variety of surprising settings; it is also of great
importance in solving the general second-degree Diophantine equation in two
unknowns:

ax2 + bxy + cy2 + dx+ ey + f = 0 .

Furthermore, the problem of solving (0.1) is connected to that of determining
the regulator, an important invariant of a real quadratic number field, and to
solving the discrete logarithm problem in such structures. Today, this latter
problem is of interest to cryptographers.

Such is the interest in the Pell equation that at least three books have
been devoted to it:

• H. Konen, Geschichte der Gleichung t2 −Du2 = 1, Leipzig, 1901.
• E. E. Whitford, The Pell Equation, College of the City of New York, New

York, 1912
• Edward J. Barbeau, Pell’s Equation, Springer, 2003

The first two have been out of print for a long time and are currently very
difficult to find. Also, because they are quite old, they do not deal with the
modern theory of the equation. Much has been learned since 1912. The last
book, according to its author, “is a focused exercise book in algebra” and

viii Preface

is intended to motivate college students to develop an appreciation of math-
ematical technique. As such, it succeeds very well, but there is no attempt
in the book to explore the deeper aspects of this equation, nor was that its
author’s intent.

It is well known that for any positive non-square integer D, (0.1) has an
infinitude of solutions, which can be easily expressed in terms of the funda-
mental solution t, u, where t, u > 0. For example, the fundamental solution
of (0.1) for D = 7 is t = 8 and u = 3. If D = 1620, then t = 161, but if
D = 1621, then t is a number of 76 digits! As we will see in Chapter 13, there
are even more extreme examples of this phenomenon for larger values of D.
It is this puzzle of finding the fundamental solution that we refer to as the
problem of solving the Pell equation. It was very likely investigated by the
ancients, but it was not until the early 7th century AD that the Indian math-
ematician Brahmagupta discovered an ad hoc method of solving this problem.
Unfortunately, his method and its more deterministic successors, which make
use of the theory of continued fractions, cannot conveniently be used when D
becomes large, say in excess of 15 digits.

The purpose of this book is to provide a comprehensive discussion of how
to find the fundamental solution and, in particular, to describe methods for
doing this that have been developed since 1972 for large values of D. As much
of this material is scattered rather widely throughout the literature, this will
be the first book to discuss this subject in any detail. The principal component
of our enquiry will be computational techniques, but in order to derive these,
it will be necessary to develop the required theory. In doing this, we will
explore a great variety of different topics in number theory, some indication
of which may be found by examining the table of contents.

As our approach to the Pell equation is largely computational, we assume
that the reader is at least vaguely familiar with the basic precepts of mea-
suring the computational complexity of an algorithm. We will use the terms
“complexity,” “time complexity,” and just plain “runtime” or “time” inter-
changeably to describe the efficiency (the number of bit operations needed)
by a particular computational technique. Thus, for example, we might say
that a particular algorithm executes in time complexity O(f(n)), where f is
some function and n is the input length, or we might say that it completes its
computation in time O(f(n)). We may also have to measure the maximum
number of bits required by an algorithm in order for it to execute. We call
this the space or space complexity of the algorithm.

In order to solve (0.1) for large D, it has been discovered that it is easier
first to evaluate the regulator R of the associated real quadratic number field
Q(
√
D). Nevertheless, the problem of computing R can still be very difficult,

particularly when the value of the radicand D becomes very large (> 1025).
(Clearly, the actual value of the regulator can never be computed because
it is a transcendental number; we are content to produce a rational number
(often an integer) R′ which is within 1 of the actual value.) The best method
currently available for computing R′ is Buchmann’s subexponential method.

Preface ix

Unfortunately, the correctness of the value of R′ produced by this technique
is conditional on a generalized Riemann hypothesis, for which there is as yet
no proof. The best unconditional algorithm (the value of R′ is unconditional,
not the running time) for computing the regulator of a real quadratic field is
Lenstra’s O(D1/5+ε) Las Vegas algorithm.

In this book we will discuss all of the above techniques and ultimately
describe a rigorous method for verifying the regulator produced by the subex-
ponential algorithm. This technique is of complexity O(D1/6+ε) and is uncon-
ditional, once we have a candidate for R′. It has been used to verify a 33-digit
R′ for a field with a 65-digit value of D. In addition, these methods can be
extended to the problem of determining rigorously for real quadratic fields
of large radicand whether or not a given ideal is principal. This, as we will
point out, is of great importance in solving certain Diophantine equations.
We will also describe some rather surprising applications of this material to
cryptography.

Most of these techniques rely on estimations of certain irrational quanti-
ties; thus, in order to establish our results rigorously, it is essential that we
have provable upper bounds on the errors that result from our use of these
approximations. We provide a complete discussion of this and the associated
algorithms, but, unfortunately, certain aspects of this are necessarily very
technical and, frankly, rather wearisome. In order to facilitate a relatively
smooth flow of this material, we have relegated the greater portion of the
more tedious minutiae required by this investigation to an appendix.

We use different modes of presentation of the algorithms discussed in
this book. The most formal of these include a name, such as NUCOMP or
WNEAR, and a detailed listing of the pseudocode for the algorithm. This is
usually provided for the basic algorithms, which are frequently employed in
the latter part of the book. Several of these can be found in the aforemen-
tioned appendix. Some of the other algorithms, which in this formal format
would be far too long, are described in pseudocode, which is less detailed.
This is particularly the case for the index-calculus techniques described in
Chapter 13. Finally, we sometimes simply describe certain processes rather
informally as a simple sequence of steps which involve the use of the more
formally presented algorithms that have been described previously. For exam-
ple, this is the case for the technique of rigorously verifying the value of R′

mentioned in Chapter 15.
We wish to emphasize here that this book is not intended to be used as a

textbook; its focus is much too narrow, and although we do include a number
of examples, we provide no exercises. It could, however, be used as supplemen-
tary reading for students enrolled in a second course in number theory. The
intended primary audience is number theorists, both professional and ama-
teur, and students, but as we discuss a number of cryptographic applications
of the material that we develop in the book, a possible secondary readership
would be that of mathematical cryptographers at about the same level as the
primary readership. The subject matter should be accessible to anyone with

x Preface

an undergraduate knowledge of elementary number theory, abstract algebra,
and analysis. We have provided many references and notes for those who may
wish to follow up on various topics, but in spite of the size of the Reference
section, we must point out that it should not be regarded as complete. We
have mostly included citations to work which is relevant to our theme of deriv-
ing methods for solving (0.1), and we sincerely hope that we have not though
ignorance or inadvertence omitted any important contributions.

We had two principal objectives in writing this book. One was to provide
a relatively gentle introduction for senior undergraduates, and others with
the same level of preparedness, to the delights of algebraic number theory
through the medium of a mathematical object that has fascinated people since
the time of Archimedes. Our other goal was to detail the enormous progress
that has been made, since Shanks’ discovery in 1972 of what he termed the
infrastructure of an ideal class, on the development of efficient algorithms for
performing arithmetic in quadratic number fields. What we are able to do
today is most remarkable; it certainly surprises us.

Acknowledgements

The idea of writing this book was conceived about two decades ago when it
became apparent that a conditional, subexponential algorithm could be used
to solve the Pell equation. During the time that has elapsed, many changes
were made to the original concept of this book. Only during the last 2 years,
however, did we think that the state of research on this topic had stabilized to
the point that we were able to complete this work. It is important to empha-
size that it is not possible to write a book such as this in isolation. Over the
years, many individuals have made contributions to this work either in provid-
ing advice, ideas, or encouragement. We wish to acknowledge, in particular,
Mark Bauer, Mike Bennett, Andrew Booker, Richard Brent, Henri Cohen,
Wayne Eberly, Mark Giesbrecht, Andrew Granville, Robbert de Haan, Sa-
fuat Hamdy, Hendrik Lenstra, Jr., Stephane Louboutin, Richard Lukes, Keith
Matthews, Markus Maurer, Richard Mollin, Stefan Neis, Roger Patterson,
Alper Ozdamar, Sachar Paulus, Michael Pohst, Alf van der Poorten, Shan-
tha Ramachandran, Rei Safavi-Naini, Renate Scheidler, Arthur Schmidt, Jon
Sorensen, Andreas Stein, Arne Storjohann, Edlyn Teske, Patrick Theobald,
Ulrich Vollmer, Gary Walsh, and Jim White.

We also wish to single out some individuals for special thanks. The first
of these is Karl Dilcher, who in his capacity as one of the Editors in Chief of
the Canadian Mathematical Society’s Books in Mathematics series solicited
this work. It is fair to say that neither of us would have even considered
writing, let alone completing, this book without his continued support and
encouragement. It is difficult for us to express the extent of our gratitude to
Johannes Buchman. He has acted as mentor, contributor, and friend to this
project since its conception. He also made available, before its publication, a

Preface xi

copy of his book with Ulrich Vollmer entitled Binary Quadratic Forms: An
Algorithmic Approach. As this book covers in part some of the material of this
volume, we are most appreciative of this gesture. It allowed us to produce a
more focused work which presents some of the same material from a different
point of view and which we hope will be seen as complementary to his. We
extend our considerable thanks also to John P. Robertson for his eagerness in
asking to be involved as a proofreader for this book from the very beginning
and for his enormous competence in carrying out this duty. His efforts in
this regard have resulted in a much better book. What errors remain, and
it is inevitable that there will be some, are totally the responsibility of the
authors.

To our former student, Reg Sawilla, we wish to express our thanks for the
considerable programming effort that has gone into testing the many algo-
rithms that appear in this work. We are also most indebted to our current
student, Alan Silvester, for completing with great competence the enormous
task of entering and editing this work on the computer. This should be seen
in the light of our almost completely indecipherable handwriting, particularly
that of the second author.

There are also a number of institutions that we wish to acknowledge. First
and foremost of these is the Alberta Informatics Circle of Research Excel-
lence (iCORE). Their generous support of our efforts has provided us with
precious time and several much needed opportunities to interact with many
scholars in the preparation of this work. We also thank Alberta Ingenuity
and the Canadian Foundation for Innovation (CFI) for providing us with the
funds needed to acquire the computing machinery that was used so often in
producing the results and testing the routines in this work. In this connec-
tion, we want to thank Marc Wrubleski for his considerable efforts in keeping
the machines working efficiently. Of course, we are also most grateful to the
National Science and Engineering Research Council (NSERC) for their con-
tinued support of our research. We are also indebted to the libraries of several
universities for providing us access to their collections. In no particular order
these are the University of Calgary, the University of Toronto, the Univer-
sity of Sydney, Australian National University, and the University of Illinois
at Urbana-Champaign. The second author would like to express his grati-
tude to the Fields Institute and to the Department of Computing Sciences
at Macquarie University for providing him sanctuaries in which much of the
work needed for his contribution to this work could be undertaken free of the
inevitable interruptions that occur in his own institution.

Finally, we wish to acknowledge the contribution of our respective families
to this project. During the time needed to complete this work, we have not
been as attentive to them as we should have been, and we deeply appreciate
this sacrifice on their part.

Calgary, AB, Michael J. Jacobson, Jr.
June, 2008 Hugh C. Williams

Contents

Preface . vii

1 Introduction . 1
1.1 Diophantine Equations . 1
1.2 The Pell Equation . 3
1.3 Representation of All Solutions . 8
1.4 The Lucas Functions . 13

2 Early History of the Pell Equation . 19
2.1 The Cattle Problem of Archimedes . 19
2.2 Further Contributions of the Greeks . 24
2.3 The Indian Mathematicians . 31
2.4 Fermat and His Successors . 36

3 Continued Fractions . 43
3.1 General Continued Fractions . 43
3.2 Simple Continued Fractions . 47
3.3 Simple Continued Fractions of Quadratic Irrationals 53
3.4 Some Special Results . 63

4 Quadratic Number Fields . 75
4.1 Algebraic Numbers . 75
4.2 Modules and Orders of K . 78
4.3 The Units of O . 81
4.4 The Ideals of O . 83
4.5 Equivalence and Norms . 88
4.6 Divisibility and Prime Ideals . 93

5 Ideals and Continued Fractions . 97
5.1 Reduced Ideals of O . 97
5.2 Reduction Algorithms . 104

xiv Contents

5.3 Reduced Ideals When Δ > 0 . 109
5.4 Ideal Products and NUCOMP . 116

6 Some Special Pell Equations . 125
6.1 Introduction . 125
6.2 Continued Fractions . 128
6.3 Schinzel’s Families . 134
6.4 Creepers and Kreepers . 140
6.5 Yamamoto’s Results . 145

7 The Ideal Class Group . 153
7.1 Introduction . 153
7.2 The Cohen-Lenstra Heuristics . 157

7.2.1 Imaginary Quadratic Fields . 157
7.2.2 Real Quadratic Fields . 164

7.3 The 2-Sylow Subgroup . 169
7.4 Infrastructure . 172

8 The Analytic Class Number Formula . 185
8.1 Dirichlet Characters . 185
8.2 Primitive Characters . 191
8.3 The L-Function . 194
8.4 Ideal Density . 197
8.5 The Class Number Formula . 202

9 Some Additional Analytic Results . 209
9.1 More on Gauss Sums . 209
9.2 A Closed Formula for hK . 212
9.3 The Riemann Zeta-Function . 217
9.4 The Euler Product for L(1, χ) . 222
9.5 Bounds on L(1, χ) . 226

10 Some Computational Techniques . 237
10.1 Introduction . 237
10.2 Computing the Regulator . 238
10.3 Computing the Class Number . 245
10.4 Computing the Class Group . 253
10.5 Numerical Results . 256

10.5.1 Imaginary Quadratic Fields . 257
10.5.2 Real Quadratic Fields . 260

11 (f, p) Representations of O-ideals . 265
11.1 Basic Concepts and Definitions . 265
11.2 w-Near Representations . 270
11.3 Exponentiation of Ideals and Computation of a[x] 275

Contents xv

12 Compact Representations . 285
12.1 Compact Representation of θj . 285
12.2 Compact Representation of Quadratic Integers 290
12.3 The Arithmetic of Compact Representations 297

13 The Subexponential Method . 307
13.1 Introduction . 307
13.2 Solving the Discrete Logarithm Problem in ClΔ 308
13.3 Computing the Class Number and Class Group 316
13.4 Computing the Regulator . 322
13.5 Principality Testing . 331
13.6 Complexity . 333
13.7 Practical Improvements . 337

13.7.1 Improvements to the Random Exponents Method 337
13.7.2 The Large Prime Variation . 338
13.7.3 Parallelism . 340
13.7.4 Computing Relations Using Sieving 340
13.7.5 Self-initialization . 342

13.8 Computational Results . 345
13.9 Open Problems and Further Improvements 348

14 Applications to Cryptography . 353
14.1 Introduction . 353
14.2 The Pell Equation in a Public-Key Cryptosystem 355
14.3 Cryptography in Imaginary Quadratic Fields 360

14.3.1 Cryptographic Protocols . 363
14.3.2 Efficiency . 363

14.4 Cryptography in Real Quadratic Fields . 364
14.4.1 Security . 369
14.4.2 Efficiency . 373
14.4.3 Other Cryptosystems . 374

14.5 Cryptosystems in Non-Maximal Quadratic Orders 374
14.5.1 NICE . 376
14.5.2 REAL-NICE . 378
14.5.3 Trapdoor Discrete Logarithm Computation 380

15 Unconditional Verification of the Regulator and the Class
Number . 387
15.1 Introduction . 387
15.2 Some Preliminary Results . 388
15.3 The Algorithm and Some Implementation Issues 393
15.4 The Class Number . 399

xii Contents

16 Principal Ideal Testing in O . 405
16.1 Introduction . 405
16.2 Another Approach to Problem P . 410
16.3 The Equation X2 �DY 2 = N . 415

17 Conclusion . 423
17.1 A More General Equation . 423
17.2 Other Generalizations of the Pell Equation 426
17.3 Some Questions . 432

Appendix . 439
A.1 NUCOMP . 439
A.2 NUMULT . 446
A.3 Theoretical Background for WNEAR . 449
A.4 WNEAR . 454

References . 461

Index . 489

. . . .

List of Symbols

We list below, in the order in which they appear in the book, several of
the symbols that we frequently use. However, the reader is cautioned that
occasionally the same symbol may be used to represent two or more different
objects. For example, the symbol (a, b), usually used to denote the greatest
common divisor of a and b, is also used to denote the pair a, b. In these cases,
the exact meaning of the symbol should be clear through context.

N,Z,Q,R,C the natural, integer, rational, real, and complex
numbers (resp.)

F,Fp finite fields
Sl a subset of S whose elements satisfy the logical

condition l; for example, Z≥0 = {z ∈ Z : z ≥ 0}
(a, b, . . .),

gcd(a, b, . . .)
the greatest common divisor of the elements a, b, . . .

�x� the floor of x; �x� = max{z ∈ Z : z ≤ x}
�x	 the ceiling of x; �x	 = min{z ∈ Z :x ≤ z}
a, b, c, . . . , z (rational) integers . 1
(x1, y1, σ1) fundamental solution of the Diophantine equation . . 10
ε = (x1 + y1

√
D)/2 . 10

(t, u) fundamental solution of the Pell equation 11
un(P,Q), vn(P,Q) Lucas functions (abbr. un, vn) 13
(k

m) Kronecker and Jacobi symbol . 14
ω(m) rank of apparition of m . 14
φd(m) Euler’s totient function (if d perfect square and

(m, d) = 1) . 15
PP Parmenides Proposition . 27
〈q0, q1, . . . , qi, φi+1〉 continued fraction . 44
φi+1 complete quotient of a continued fraction;

φi+1 = 1/(φi − qj) . 44
Ai/Bi ith convergent of a continued fraction 44
α conjugate of an element α = a+ b

√
D; α = a− b√D 45

xviii List of Symbols

N(α) norm of an element α; N(α) = αα 45
Gj = Q0Aj − P0Bj . 45
θj+2 = Aj −Bjφ0 . 46
ψj = −1/φj . 46
[q0, q1, . . . , qi, φi+1] simple continued fraction . 47
τ the golden ratio; τ = (1 +

√
5)/2 48

[q0, q1, q2, . . .] infinite simple continued fraction 51
(P +

√
D)/Q quadratic irrational . 53

[q0, . . . , qk−1;
qk, . . . , ql−1]

periodic simple continued fraction 56

[q0, q1, . . . , qn] purely periodic simple continued fraction 56
Fn the nth Fibonacci number . 68
Pr(· · ·) the probability of a condition occurring 70
α, β, γ, . . . , ω algebraic numbers . 75
K algebraic number field (usually K = Q(

√
D0),

where D0 is squarefree) . 76
Q(α) the extension field of Q by adjoining α 76
D the radicand of K = Q(

√
D) . 77

T (α) the trace of the element α; T (α) = α+ α 77
r = 1 if D0 �≡ 1 (mod 4), 2 if D0 ≡ 1 (mod 4) 77
ω0 = (r − 1 +

√
D0)/r. 77

K,L,M (Z-)module . 78
[ξ1, ξ2] Z-module with basis {ξ1, ξ2} . 79
GL2(Z) group of invertible 2× 2 matrices over Z 79
O an order of the algebraic number field K 80
OK the maximal order [1, ω0] of the algebraic number

field K . 80
Δ,Δ(O) discriminant of the order O . 80
ΔK the (fundamental) discriminant of K 80
f the conductor of O . 81
OΔ the order of discriminant Δ . 81
O∗ the unit group of O . 81
w cardinality of the unit group of O; w = |O∗| 82
εΔ the fundamental unit of O . 82
εK the fundamental unit of the maximal order OK of K 83
a, b, c, . . . , z (integral) ideal of the order O; and O-ideal 84
[Q/r, (P +

√
D)/r] a frequently used representation of an ideal a of O . 86

(θ1, θ2, θ3, . . . , θk) the ideal generated by the set θ1, θ2, θ3, . . . , θk 86
(α), (β), (γ), . . . principal ideals . 87
a ∼ b equivalent ideals . 88
[a] the set of all O-ideal equivalent to a; an ideal class

of O . 88
[O] the set of all principal O-ideals 89
N(a) the norm of the O-ideal a; N(a) = |O/a| 90
�x	 the nearest integer to x; �x	 = �x+ 1/2� 97

List of Symbols xix

ρ the (forward) baby-step function; ρ(a)i) = ai+1 99
ρ−1 the backward baby-step function; ρ−1(ai) = ai−1 . . . 111
RΔ, R(Δ) the regulator of O; = log εΔ . 113
l(φ) length of the period in the SCF expansion of the

quadratic irrational φ . 134
νp(x) largest power of p that divides x 135
f � g for some fixed constant c, f(x) > cg(x) for x

sufficiently large . 140
ωn =

√
Dn or (1 +

√
Dn)/2 . 141

C the cycle of the reduced principal ideals of O 146
ClΔ ideal class group of OΔ . 153
hΔ class number of OΔ . 153
ClK ideal class group of the maximal order OK of K 154
hK class number of the maximal order OK of K 154
IΔ the set of all invertible fractional ideals of OΔ 154
PΔ the set of principal ideals of OΔ 154
Cl∗Δ the odd part of ClΔ . 157
h∗Δ the class number of the odd part of the ideal class

group . 157
ζ(s) the Riemann zeta-function . 158
χ a Dirichlet character . 186
χ0 a principal Dirichlet character 186
S(n, χ) the Gauss sum . 190
χ(n) complex conjugate of χ(n) . 190
p∗ = (−1)(p−1)/2p, where p an odd prime 193
L(s, χ) the Dirichlet L-function . 194
μ(n) the Möbius μ-function . 197
H(C, t) the number of distinct invertible ideals in the ideal

class C−1 . 198
G(a, t) the number of distinct principal ideals (α) formed

by taking α ∈ a for which 0 < N((α)) < t and
(N((α)), f) = 1, where a ∈ C (see H(C, t)) and f
is the conductor of OΔ . 198

Γ an arc . 199
Λ a lattice . 199
κΔ the Dirichlet structure constant 200
H(t) the number of distinct invertible ideals of OΔ such

that (N(a), f) = 1 and N(a) ≤ t, where a ∈ OΔ

and f is the conductor of OΔ . 202
G(n, k) a particular Gauss sum . 209
�(x) the real part of x . 210
Bn the nth Bernoulli number . 216
En the nth Euler number . 216
ζ(s) the Riemman zeta-function . 217
ζK(s) the Dedekind zeta-function . 219

xx List of Symbols

ν(n) the number of distinct ideals of K of norm n 219
Λ(n) the (von Mangoldt) lambda function 222
π(x) the number of rational primes ≤ x 222
θ(x) =

∑
p≤x log p . 222

L(s, χ,K) the Hecke L-function . 231
erfc(x) the complementary error function 232
(a, d, k) an (f, p) representation of the ideal a 267
c(m) error propagation function . 281
H(α) the height of α, = max{|α|, |α|} 289
LΔ[a, b] LΔ[a, b] = exp

(
b(log |Δ|)a(log log |Δ|)1−a

)
. 309

FB a factor base . 309
v a vector in Zk . 309
FBv =

∏k
i=1 pvi

i , where pi ∈ FB . 309
FB∗ an extended factor base . 310
HNF(A) the Hermite normal form of the integer matrix A . . 317
SNF(A) the Smith normal form of the integer matrix A 317
rgcd(x, y) the “real” gcd of x, y ∈ R . 324
P the problem of determining whether or not i is a

principal O-ideal; the principal ideal problem 331
P the complexity class of problems that can be

solved in polynomial time . 333
NP the complexity class of decision problems that

have short proofs that the answer is “yes” 333
co-NP the complexity class of decision problems that

have short proofs that the answer is “no” 333
ρ(D) = log t1/ log t0 . 346
RΔ the base-2 regulator of O; RΔ = log2 εΔ 387

1

Introduction

1.1 Diophantine Equations

A Diophantine equation is an indeterminate equation whose unknowns are
only allowed to assume integral∗ or sometimes rational values. The study
of such equations goes back to the ancients; indeed, they are named after
Diophantus of Alexandria (c. 200–284 AD) in honour of his work on them.1.
However, it is most likely that the Greek mathematicians were investigating
their properties much earlier than this. To take a simple example, consider
the equation

x2 + y2 = z2 , (1.1)

where we constrain a solution (x, y, z) to be a triple of integers.2 Every student
of high school geometry is familiar with the solution (3, 4, 5) and some are even
made aware of the additional solutions (5, 12, 13) and (8, 15, 17). In fact, as
we shall see below, there exists an infinitude of distinct integral solutions of
(1.1) for which (x, y, z) = 1.

There are a number of questions that can be asked concerning any partic-
ular Diophantine equation.

We might only be interested in whether any solutions exist. For example,
the simple Diophantine equation

x2 + y2 = 3

can have no solution in integers, nor can

x2 − 3y2 = 2 .

Sometimes a certain Diophantine equation has one or more trivial (obvious)
solutions, and we are interested in whether it has any non-trivial solutions.
Consider the celebrated equation of Fermat3

∗ We will use the term “integer” here to refer to a rational integer, an element of
Z.

2 1 Introduction

xn + yn = zn (n > 2) .

Clearly this has some trivial solutions where xyz = 0, but it was not until
recently that it was finally shown by Taylor and Wiles that it has no non-
trivial solutions.4

Some Diophantine equations have a few non-trivial solutions and then have
no more solutions. Back in 1942, Ljunggren5 showed that the only solutions
in positive integers of

x2 − 2y4 = −1

are (x, y) = (1, 1), (239, 13). In 1844 Catalan conjectured that the only con-
secutive powers except the trivial 0 and 1 are 8 and 9; that is, the Diophantine
equation

xp − yq = 1 (|x| �= 1; p, q > 1)

has only the solutions (x, y, p, q) = (±3, 2, 2, 3). There is an enormous litera-
ture on this conjecture, which was finally proved by Mihăilescu6 in 2002. As
a third example we mention the Ramanujan-Nagell equation

2n − 7 = x2 .

In 1913, Ramanujan7 asked if this had any other solution other than those for
which n = 3, 4, 5, 7, 15. This was answered in the negative by Nagell8 in 1948.

We might also be interested in whether there are only a finite number
of solutions or whether there are infinitely many. In the latter case, can we
characterize all solutions? We will now show that (1.1) has an infinitude of
solutions and we will show how to characterize all of them.

We begin by observing that if (1.1) is soluble in integers x, y, z, then if d
divides any two of x, y, or z, then d must divide the third. Also, if (x, y, z) is a
solution of (1.1), then so is (dx, dy, dz) for any integer d. We may therefore only
consider primitive solutions of (1.1); these are solutions for which (x, y, z) = 1.
Thus, one of x or y must be odd and the other even; for if they were both
odd, then x2 + y2 ≡ 2 (mod 4), but z2 can only be 1 or 0 (mod 4). With no
loss of generality we assume that 2 | y and write

y2 = z2 − x2 = (z − x)(z + x) .

If we put g = (z−x, z+x), then g | 2z and g | 2x, which means that g | (2z, 2x)
or g | 2(z, x). Since (x, y, z) is a primitive solution, we have (z, x) = 1; hence,
g | 2. Since x ≡ z ≡ 1 (mod 2), we have g = 2. It follows that

(y

2

)2

=
(
z − x

2

)(
z + x

2

)

,

where ((z − x)/2, (z + x)/2) = 1. Thus, both (z − x)/2 and (z + x)/2 must
be perfect squares. We put (z − x)/2 = m2 and (z + x)/2 = n2 and find that
y = 2mn, z = m2 + n2, and x = n2 −m2, where m and n must have different

1.2 The Pell Equation 3

parity. To verify that this parametric representation of a solution to (1.1) is
valid, we simply note the identity

(n2 −m2) + (2mn)2 = (m2 + n2)2 . (1.2)

We can now characterize all of the solutions of (1.1) as those given by the
form (d(n2 −m2), 2dmn, d(m2 + n2)), where d,m, and n are integers and m
and n have the opposite parity. Putting d = 1, n = 2, and m = 1, we get
(x, y, z) = (3, 4, 5).

The Diophantine equation (1.1), sometimes called the Pythagorean equa-
tion, is an example of one that is particularly easy to solve; however, it is
important to point out that many Diophantine equations are very difficult
to solve. Up to the early years of the 20th century there were few, if any,
generally applicable techniques that might be successfully employed for this
purpose. The study seemed to be little more than a grab bag of mathematical
tricks that might or (more likely) might not be useful in solving a particular
equation. This situation has changed profoundly during the last half-century,
and there are now a number of very deep and powerful methods that can
be employed to solve a wide variety of Diophantine equations.9 However, it
must be emphasized that it is a mathematical fact that there cannot exist any
general algorithm which can be used for solving all Diophantine equations.10

1.2 The Pell Equation

Let us now return to (1.1), but with a small change. We will try to solve, for
a given integer a, the Diophantine equation

x2 + ay2 = z2 . (1.3)

We note that the following generalization of (1.2) holds:

(m2 − an2)2 + a(2mn)2 = (m2 + an2)2 ;

thus, the equation has an infinitude of solutions, but are all of the solutions
(x, y, z) characterized by the parametric triple (d(m2 − an2), 2dmn, d(m2 +
an2)), where d,m, and n are integers? While we have shown that this is the
case for a = 1, this is not the case generally. For, consider the simple equation

x2 − 21y2 = z2 ,

and note that (5, 1, 2) is a solution. This is clearly not included in the set of
solutions mentioned earlier.

We will therefore approach this equation in another way. There is no loss
of generality in assuming that a < 0 and −a is not a perfect square (this
would lead us back to the problem of solving (1.1)). We will denote −a by D.

Consider the identity

4 1 Introduction

(x2 −Dy2)(p2 −Dq2) = (xp+Dyq)2 −D(xq + yp)2 . (1.4)

Thus, if
p2 −Dy2 = 1 , (1.5)

then if (x, y, z) is a solution of

x2 −Dy2 = z2 , (1.6)

so is
(xp+Dyq, xq + yp, z) ;

that is, we get another solution of (1.6) from a given one, provided we can
solve (1.5).

The Diophantine equation

T 2 −DU2 = 1 (1.7)

is called the Pell equation. As a simple example consider

T 2 − 7U2 = 1 ,

which has the solutions (±1, 0) (trivial solutions), (±8,±3), (±127,±48), etc.
This deceptively simple looking Diophantine equation has been the object
of study by mathematicians for over two millennia. It is named after John
Pell because of an error in attribution by Euler11 to a method of solving
it in “Wallis’s works.” This was most likely the result of a cursory reading
by Euler of Wallis’ Algebra. As noted by several authorities, most recently
Weil,12 Pell’s name occurs frequently in Algebra, but never in connection with
the Pell equation. In fact, it seems most likely that the method referred to by
Euler for solving (1.7) is a technique that Wallis credits to Lord Brouncker.
In spite of ample evidence attesting to Euler’s carelessness,13 there have even
been relatively recent efforts made to connect14 Pell with (1.7). This seems to
have begun with a misunderstanding of a remark of Hankel,15 who actually
stated, in speaking of the Pell equation, “Pell has done it no other service
than to set it forth again in a much read work.” The “much read work” is
the English translation16 of the Teutschen Algebra of Rahn. However, careful
examinations of this work by Konen,17 Wertheim,18 and Eneström19did not
result in the discovery of any mention of (1.7). There can be little doubt that
much of this book, particularly pages 100–192, were due to Pell,20 yet the only
mention of anything even resembling the Pell equation in it is the equation

x = 12y2 − z2 (1.8)

on page 143. This persuaded Whitford21 that Pell had some acquaintance
with (1.7) and seems also to have served as the reason that Pell’s biography22

suggests this may have been the case. However, a thorough inspection of the
context in which (1.8) arises reveals that it is to be used to find x after values

1.2 The Pell Equation 5

for y and z have been selected. This, then, can scarcely be regarded as the
Pell equation. Thus, there is no evidence whatsoever linking Pell with (1.7).
Nevertheless, as Weil23 asserts, the “traditional designation [of (1.7)] as ‘Pell’s
equation’ is unambiguous and convenient.” Consequently, it is the term used
throughout this work for (1.7), even though it is both historically wrong and
unjust to those early individuals who did make important contributions to its
study.

The Pell equation has a habit of appearing in a variety of settings, some
quite unexpected.24 Consider the simple problem of finding integers that are
both triangular and square. A triangular number simply counts the number
of points in a grid in which the first row contains a single point and each sub-
sequent row contains one more point than the previous. Thus, the triangular
numbers are 1, 3, 6, 10, 15, etc. and are given by the formula x(x + 1)/2. We
are therefore searching for those integers x such that x(x+1)/2 = y2 for some
integer y. This means that

4x2 + 4x = 8y2

or
(2x+ 1)2 = 8y2 + 1 , (1.9)

a Pell equation with D = 8. In fact, the smallest positive value of x (�= 1)
satisfying (1.9) is 8, yielding the square triangular number 36. In fact, as we
shall see below, there exists an infinitude of such numbers.

Another simple problem is that of finding integral Pythagorean triangles
whose non-hypotenuse sides differ by 1. We already know that these sides
must be given by m2 − n2 and 2mn for integral values of m and n. Thus, we
must find such m and n for which

m2 − n2 − 2mn = ±1 .

This can be rewritten as

(m− n)2 − 2n2 = ±1 ,

an example of a Pell equation and an analogous equation with T 2−DU2 = −1
with D = 2. Putting m − n = 3 and n = 2, we get the triangle with sides
21, 20, 29.

As another, less simple example, we mention the surprising occurrence of
the Pell equation in Lehmer’s25 parameterization of solutions of the cubic
Diophantine equation x3 + y3 + z3 = 1.

We will now show that (1.7) always has a non-trivial (U �= 0) solution
when D is positive and not a perfect square. We first require a simple lemma.

Lemma 1.1. Let s be any positive integer. Integers t and u always exist such
that

|t− u
√
D| < 1

s
≤ 1
|u| .

6 1 Introduction

Proof. For each integer u such that 0 ≤ u ≤ s, put t = �u√D	. Then for each
such (t, u) pair we have

0 < t− u
√
D < 1 .

If we divide the interval between 0 and 1 into s subintervals, each of length
1/s, we see by the box principle that two of the above s+ 1 pairs, say (t1, u1)
and (t2, u2), must be such that t1−u1

√
D and t2−u2

√
D lie within the same

interval. Since u1 �= u2, we see that t1 − u1

√
D and t2 − u2

√
D are distinct

and −1
s
< t1 − u1

√
D − (t2 − u2

√
D) <

1
s

or
|t1 − t2 − (u1 − u2)

√
D| < 1

s
.

Also, since |u1 − u2| ≤ s, we get

|t1 − t2 − (u1 − u2)
√
D| < 1

s
≤ 1
|u1 − u2| .

��
Corollary 1.2. There exists an infinitude of pairs of integers (t, u) such that

|t− u
√
D| < 1

|u| .

Proof. Suppose there exists only a finite set S of such pairs. Then there must
exist some minimal integer M such that

1
M

< min{t− u
√
D : (t, u) ∈ S} .

By the lemma there must exist integers t′ and u′ such that

|t′ − u′
√
D| < min

{
1
M
,

1
|u′|

}

.

Since |t′ − u′√D| < 1/|u′|, we have (t′, u′) ∈ S. However, since

|t′ − u′
√
D| < 1

M
< min{t− u

√
D : (t, u) ∈ S} ,

this is impossible. ��
We will now use S to denote the infinite set of all pairs (t, u) such that

|t− u
√
D| < 1

|u| .

Theorem 1.3. The Pell equation always has at least one non-trivial solution.

1.2 The Pell Equation 7

Proof. If (t, u) ∈ S, then

|t+ u
√
D| ≤ |t− u

√
D|+ |2u

√
D| < 1

|u| + 2|u|
√
D .

Hence,

|t2 −Du2| = |t−Du||t+ u
√
D| < 1

|u|
(

1
|u| + 2|u|

√
D

)

=
1
u2

+ 2
√
D

≤ 1 + 2
√
D .

Thus, for all (t, u) ∈ S, we have |t2−Du2| < 1+2
√
D. Since 1+2

√
D is fixed,

we must, again by the box principle, have an infinitude of pairs (t, u) ∈ S such
that

t2 −Du2 = k

for some fixed k ∈ Z with |k| < 1 + 2
√
D. It must also be the case that

there exists an infinitude of these pairs for which both the t values and the
u values are the same modulo k. Let (t1, u1) and (t2, u2) be two such pairs
where t1 �= ±t2 and u1 �= ±u2. By (1.4) we see that

(t1t2 −Du1u2)2 −D(t1u2 − t2u1)2 = k2 .

Now, t1u2 − t2u1 ≡ 0 (mod k); hence, t1t2 −Du1u2 ≡ 0 (mod k) and
(
t1t2 −Du1u2

k

)2

−D
(
t1u2 − t2u1

k

)2

= 1 .

Since (t1t2 − Du1u2)/k, (t1u2 − t2u1)/k ∈ Z, we have a non-trivial solu-
tion of (1.7) as long as t1u2 − t2u1 �= 0. However, if t1u2 − t2u1 = 0, then
t1t2−Du1u2 = ±k, and these are two equations which can be simultaneously
satisfied only if t1 = ±t2 and u1 = ±u2, possibilities that we have already
excluded. ��

Theorem 1.3 is a most remarkable result because if, for example, we started
to conduct an exhaustive search for the smallest value of T for which

T 2 − 1621U2 = 1 ,

we would go a very long way before we found such a T with U �= 0. Indeed, we
would likely become convinced that there is no such value of T ; this is because
the least such value for T is a number of 76 decimal digits. Nevertheless, we
know that this equation does have a non-trivial solution, but the proof of
Theorem 1.3 gives us no information as to how to determine T and U . Much
of the rest of this book will be devoted to developing results that provide this
kind of information.

8 1 Introduction

1.3 Representation of All Solutions

We have show that (1.7) always has at least one non-trivial solution. In this
section we will characterize all of the non-trivial solutions of the Pell equation.
Indeed, as we will need slightly more general results later, we will examine
the solutions of the Diophantine equation

X2 −DY 2 = 4σ, σ ∈ {−1, 1} . (1.10)

Evidently, if X,Y , and σ satisfy (1.10), then X ≡ DY (mod 2). Also, in the
case of X ≡ DY ≡ 0 (mod 2) and σ = 1, there are two possible subcases.
When X ≡ Y ≡ 0 (mod 2), we get (1.7) with T = X/2, U = Y/2. When
X ≡ 0 (mod 2) and Y ≡ 1 (mod 2), then we must have D ≡ 0 (mod 4).
We then see that if we put T = X/2 and U = Y , we again obtain (1.7) on
replacingD byD/4. Of course, by Theorem 1.3, (1.10) always has a non-trivial
solution. We will now show that it has an infinitude of non-trivial solutions.
We will use (X,Y, σ) to denote any integral solution of (1.10).

Theorem 1.4. If (x1, y1, σ1) and (x2, y2, σ2) are solutions of (1.10) where we
do not have x1 = ηx2, y1 = −ηy2 for η ∈ {−1, 1}, then (x3, y3, σ3) is a
solution of (1.10), where

x3 =
x1x2 +Dy1y2

2
, y3 =

x1y2 + x2y1
2

, σ3 = σ1σ2 .

Proof. By (1.4) it suffices to show that

x1y2 + x2y1 ≡ x1x2 +Dy1y2 ≡ 0 (mod 2)

and y3 �= 0. The first of these follows easily from the observations that x1 ≡
Dy1, x2 ≡ Dy2 (mod 2). Also, if y3 = 0, then since x1 = −x2y1/y2 and
x3

2 = 4σ1σ2, we get x3 = ±2. If we put η = x1/x2, then y1/y2 = −η and we
find from x3 = ±2, that η(x2

2 − Dy2
2) = ±4. Since x2

2 − Dy2
2 = 4σ2, we see

that |η| = 1, a case we have excluded. ��
Remark 1.5. If x1, x2, x3, y1, y2, and y3 are defined as in Theorem 1.4, then
if λ1 = (x1 + y1

√
D)/2, and λ2 = (x2 + y2

√
D)/2, we have

λ1λ2 =
x3 + y3

√
D

2
.

Thus, if (x1, y1, σ1) is any solution of (1.10), we can produce an infinitude
of solutions of (1.10) as (xn, yn, σ1

n) (n = 1, 2, 3, . . .), where

xn + yn

√
D

2
= λ1

n .

These must all be distinct because if (xm, ym, σ1
m) = (xn, yn, σ1

n) for n > m,
then λ1

n = λ1
m and λ1

n−m = 1. However, this means that yn−m = 0, which
is impossible by Theorem 1.4.

We will next show how all the solutions of (1.10) can be generated. We
will need some preliminary results.

1.3 Representation of All Solutions 9

Lemma 1.6. If (x, y, σ) is a solution of (1.10), then x+y
√
D > 2 if and only

if x > 0, y > 0.

Proof. Certainly, if x, y > 0, then x+y
√
D ≥ 1+

√
D > 2. Suppose x+y

√
D >

2. Since
(x+ y

√
D)(x− y

√
D) = 4σ ,

we get
|x− y√D|

2
=

2
x+ y

√
D
< 1 .

Hence, −2 < x− y√D < 2. Since x+ y
√
D > 2, it follows that x, y > 0. ��

Lemma 1.7. If (x, y, σ) is a solution of (1.10) and x, y > 0, then 2yD ≥ 8.
If x > 0 and y > 1, then 2x+ 1 + (2y − 1)D > 8.

Proof. Clearly both inequalities hold for D ≥ 8. Suppose D < 8; since D is
not a square we can only have D = 2, 3, 5, 6, 7. If D = 2, 3, 6, 7, then 2 | x and
2 | y, which means that x ≥ 2, y ≥ 2 and both inequalities are satisfied. If
D = 5, then 2yD ≥ 10 > 8, and if x ≥ 1, y > 1, then 2x+ 1 + (2y − 1)D > 8.

��
Theorem 1.8. Suppose (x1, y1, σ1) and (x2, y2, σ2) are solutions of (1.10). If
x1, x2, y1, y2 > 0, we have

x2 + y2
√
D > x1 + y1

√
D

if and only if x2 > x1 and y2 ≥ y1.

Proof. It is evident that if x2 > x1 and y2 ≥ y1, then x2+y2
√
D > x1+y1

√
D.

Suppose now that x2 + y2
√
D > x1 + y1

√
D. We distinguish two cases.

Case 1: x1 − y1
√
D > 0:

In this case we have

x1 − y1
√
D

2
=

2
x1 + y1

√
D
>

2
x2 + y2

√
D

=
|x2 − y2

√
D|

2
.

Hence,
y1
√
D − x1

2
<
x2 − y2

√
D

2
<
x1 − y1

√
D

2
.

Since x2 + y2
√
D > x1 + y1

√
D, we see that

−y2
√
D =

−x2 − y2
√
D

2
+
x2 − y2

√
D

2

<
−x1 − y1

√
D

2
+
x1 − y1

√
D

2
= −y1

√
D

10 1 Introduction

and y2 > y1. Since y2 ≥ y1 + 1, we have Dy22 > Dy1
2 + 2Dy1. It follows

that

x2
2 = Dy2

2 + 4σ2 > Dy1
2 + 2Dy1 + 4σ2 = x1

2 − 4σ1 + 4σ2 + 2Dy1
≥ x1

2 + 2Dy1 − 8 ≥ x1
2

and x2 > x1.

Case 2: x1 − y1
√
D < 0:

We have

y1
√
D − x1

2
=

2
x1 + y1

√
D
>

2
x2 + y2

√
D

=
|x2 − y2

√
D|

2
,

which means that

x2 =
x2 − y2

√
D

2
+
x2 + y2

√
D

2
>
x1 − y1

√
D

2
+
x1 + y1

√
D

2
= x1 .

If y2 < y1, then y2 ≤ y1 − 1 and

4σ2 ≥ (x1 + 1)2 −D(y1 − 1)2 = 4σ1 + 2x1 + 1 + (2y1 − 1)D .

Since y2 > 0, we have y1 > 1 and, by Lemma 1.7,

2x1 + 1 + (2y1 − 1)D > 8 ≥ 4σ2 − 4σ1 ≥ 2x1 + 1 + (2y1 − 1)D ,

a contradiction. Hence, y2 ≥ y1.
��

We know that (1.10) has a solution (x, y, 1), where x ≡ y ≡ 0 (mod 2), and
without any loss of generality we may assume that x, y > 0. Now, suppose we
have another solution (x1, y1, σ1) of (1.10) with x1, y1 > 0 and x1 + y1

√
D <

x + y
√
D. By Theorem 1.8, we know that x1 < x and y1 ≤ y. These bounds

dictate that there can only be a finite number of possibilities for (x1, y1, σ1)
and therefore only a finite number of possibilities for x1 + y1

√
D. We can

therefore define a unique solution (x1, y1, σ1) of (1.10) for which x1 + y1
√
D

exceeds 2 and is least. We call this solution of (1.10) the fundamental solution
and we put ε = (x1 + y1

√
D)/2.

Theorem 1.9. If (x′, y′, σ′) is any solution of (1.10), then

η = (x′ + y′
√
D)/2 = ±εn

for some n ∈ Z.

Proof. Since (
x′ − y′√D

2

)(
x′ + y′

√
D

2

)

= σ′ ,

1.3 Representation of All Solutions 11

we see that one and only one of η, −η, η−1, or −η−1 is greater than 1. Denote
this by γ (= (|x′| + |y′|√D)/2 by Lemma 1.6). Since γ > 1 and ε > 1, there
must exist some non-negative n ∈ Z such that

εn ≤ γ < εn+1 .

If γ = εn, we are done because n �= 0 and η ∈ {γ,−γ, γ−1,−γ−1}. If γ �= εn,
then

1 < γε−n < ε .

Since ε(x1 − y1
√
D)/2 = σ1, we have

ε−n = σ1
n

(
x1 − y1

√
D

2

)n

.

Since (x1,−y1, σ1) is a solution of (1.10), it follows from Remark 1.5

λ = γε−n =
x2 + y2

√
D

2

for some x2, y2 ∈ Z with x2 ≡ Dy2 (mod 2). Also, since λ > 1, by Lemma 1.6
we have x2, y2 > 0 and by Theorem 1.4 we have

x2
2 −Dy22 = 4σ′σ1

n .

Hence, (x2, y2, σ
′σ1

n) is a solution of (1.10) and 1 < λ < ε. By selection of ε,
this is impossible. ��

Let (t, u) be that solution of the Pell equation (1.7) for which t, u > 0 and
t+ u

√
D is least. We call this the fundamental solution of (1.7).

Corollary 1.10. Let (t, u) be the fundamental solution of the Pell equation.
If

T 2 −DU2 = 1 and T, U > 0 ,

then
T + U

√
D = (t+ u

√
D)n

for some positive integer n.

Proof. By the theorem we know that

t+ u
√
D = εk (1.11)

and
T + U

√
D = εm

for k,m ∈ Z. Since (t, u) is the fundamental solution of (1.7), we must have
m > k > 0. Let

m = nk + r ,

12 1 Introduction

where n > 0, 0 ≤ r < k. Then,

T + U
√
D = (t+ u

√
D)nεr

and
1 ≤ εr = (T + U

√
D)(t− u

√
D)n .

Since εr = (x′+y′
√
D)/2, for some x′, y′ ∈ Z, we see by the preceding equation,

that if r > 0, we must have x′ ≡ y′ ≡ 0 (mod 2) and

(
x′

2

)2

−D
(
y′

2

)2

= 1 .

Since r < k, we have εr < εk = t + u
√
D, but this contradicts the definition

of the solution (t, u). Hence, r = 0 and

T + U
√
D = (t+ u

√
D)n .

��
Remark 1.11. Notice that if (T, U) is any solution of the Pell equation, then

T + U
√
D = ±(t+ u

√
D)n

for some n ∈ Z and proper choice of sign.

Thus, we can characterize all of the solutions of the Pell equation or its more
general form (1.10) once we know the corresponding fundamental solution.

We should emphasize that it is not always possible to solve (1.10) for
certain preselected values of σ or X (mod 2). For example, there is no integer
solution of X2 −DY 2 = −4 when D ≡ −1 (mod 4). Also, there is no integer
solution of X2−DY 2 = 4 for X ≡ Y ≡ 1 (mod 2) when D = 11. Thus, when
we speak of a fundamental solution of (1.10), we do not necessarily know
the value of σ1 and x1 (mod 2) a priori. However, as we have seen, there is
always a fundamental solution of (1.10) as long as we do not preselect σ and
X (mod 2).

We next attack the problem of determining k in (1.11). We note that if
2 | x1 and σ1 = 1, then 2 | y1, or if 2 � y1, then 4 | D. In the first case,
ε = t+ u

√
D; in the second, it is easy to see that t+ u

√
D = ε2. If 2 | x1 and

σ1 = −1, then t + u
√
D �= ε, but since σ1

2 = 1, we have t + u
√
D = ε2. If

2 � x1, then 2 � y1, and if we define (xi, yi) by

xi + yi

√
D

2
= εi ,

we see that 2 � y2 (y2 = x1y1) and 2 � y4 (y4 = x2y2, x2 = x2
1−2σ1). However,

since

1.4 The Lucas Functions 13

x3 = (x1
3 + 3y12x1D)/2 = 2x1(σ1 + y1

2D) ,

y3 = (3x1
2y1 + y1

3D)/2 = 2y1(x1
2 − σ1) ,

we see that (x3/2, y3/2) is a solution of

T 2 −DU2 = σ1 .

Thus, if σ1 = 1, then k = 3; if σ1 = −1, then k �= 4 because 2 � y4 and k �= 5
because x5

2 −Dy5
2 = −4. Hence, since 2 | x6 and 2 | y6 and σ1

6 = 1, we see
that k = 6 when σ1 = −1 and 2 � x1. We summarize these results in Table 1.1.

Table 1.1. Value of k in (1.11)

x1 (mod 2) y1 (mod 2) σ1 k

0 0 1 1

0 1 1 2

0 — −1 2

1 — 1 3

1 — −1 6

We remark that it is easy to determine σ1 when we know the values of
x1, y1 (mod 8) and that of D (mod 16).

1.4 The Lucas Functions

In this section we will briefly discuss the Lucas functions. We will not provide
proofs of their many properties, as these can easily be found in the literature.26

These functions are useful in characterizing all of the solutions of (1.7) and
(1.10) once a fundamental solution is known.

We let P and Q be coprime integers and let α and β denote the zeros of
x2 − Px+Q. The Lucas functions are defined as follows:

un = un(P,Q) = (αn − βn)/(α− β) ,
vn = vn(P,Q) = αn + βn .

The properties of these functions have been investigated for well over a cen-
tury, and as a result, a great deal of literature concerning them has accu-
mulated.27 We will assume here that d = (α − β)2 = P 2 − 4Q �= 0. Note
that

v2
n − du2

n = 4Qn .

14 1 Introduction

If we put α = ε = (x1 + y1
√
D)/2 and β = (x1 − y1

√
D)/2, then P =

α+ β = x1 and Q = σ1. Also, α− β = y1
√
D and d = y1

2D. If we define xn

and yn by
xn + yn

√
D

2
= εn ,

then

xn = αn + βn = vn(x1, σ1) ,

yn =
y1(αn − βn)

α− β = y1un(x1, σ1) .

Also, as noticed by Lehmer,28 if we put α = t+ u
√
D, β = t− u√D, then for

Tn + Un

√
D = (t+ u

√
D)n, we get

2Tn = vn(2t, 1) ,
Un = uun(2t, 1) .

Thus, the successive solutions to (1.7) or (1.10) can be easily characterized
in terms of vn and un and many properties of xn and yn or Tn and Un can
be derived from those of the Lucas functions. In particular, there are several
results concerning the divisibility properties of un that will be useful in the
sequel.

We begin by noting that if n | m, then un | um; that is, the sequence {un}
is a divisibility sequence.

Definition 1.12. Let n = 2νm, where 2 � m. Then if 4 | k or k ≡ 1 (mod 4),
the Kronecker symbol (k

n) is defined as

(
k

n

)

=
(
k

2

)ν (
k

m

)

,

where (k
m) is the Jacobi symbol and

(
k

2

)

=

⎧
⎨

⎩

0 when 4 | k
1 when k ≡ 1 (mod 8)
−1 when k ≡ 5 (mod 8) .

The Law of Apparition concerning {un} states that if p is any prime such
that p � Q, then p | up−δ, where δ is the Kronecker symbol (k

n). The Law of
Repetition concerning {un} states that if pu || un, then pu+ν | upνn, and if
pu �= 2, then pu+ν || upνn when p � n. Thus, if (m,Q) = 1, we see that there
is some n such that m | un. We call the least positive value of n the rank of
apparition of m and denote this by ω(m), or ω.

It is known that m | un for some n if and only if ω(m) | n. Thus, by
combining these results we see that if (m,Q) = 1, then

1.4 The Lucas Functions 15

ω(m) | φd(m) ,

where we define φd(m) by

φd(m) =
∏

pα||m
pα−1

(

p−
(
d

p

))

.

Indeed,

ω(m) | lcm
pα||m

[

pα−1

(

p−
(
d

p

))]

. (1.12)

Notice that if d is a perfect square, then φd(m) is Euler’s totient function
φ(m) when (m, d) = 1.

By using these results, we can show that when (m,Q) = 1, the value of
ω(m)/m can be bounded.

Theorem 1.13. If (m,Q) = 1, then

ω(m) ≤
(

2ω(2)
3

)

m ≤ 2m .

Proof. Let m = 2kn1n2, where (2, n1n2) = 1, (n2, d) = 1, and any prime
divisor of n1 must divide d. We have

ω(m) | lcm[
ω(2k), ω(n1), ω(n2)

]

and, therefore,
ω(m) ≤ ω(2k)ω(n1)ω(n2) . (1.13)

If p | d, then it is easy to prove that p | up; hence, by the Law of Repetition,
ω(n1) | n1; also, ω(2k) | 2k−1ω(2). If n2 = pj for some prime p, then

ω(n2) ≤ pj−1(p+ 1) ≤ 4
3
pj =

4
3
n2 .

If n2 is not a prime power, then by (1.12),

ω(n2) ≤ φd(n2)
2t−1

,

where t (≥ 2) is the number of distinct primes dividing n2. Since29

φd(n2)/2t−1 < n2 ,

the result follows from (1.13). ��
Now, suppose that D = f2D0, where D0 has no integer square divisor. Let

(t, u) be the fundamental solution of

T 2 −D0U
2 = 1 (1.14)

16 1 Introduction

and put g = (f, u). Let (t′, u′) be the fundamental solution of

T 2 −DU2 = 1 .

Since this equation can also be written as

T 2 −D0(fU)2 = 1 ,

we see that

t′ + fu′
√
D0 = (t+ u

√
D0)n = Tn + Un

√
D0

for some minimal n ∈ Z>0; that is,

fu′ = Un = uun(2t, 1)

or f/g | un(2t, 1). This means that n = ω(f/g), t′ = tn and u′ = un/f .
Since all of the possible values for n must be divisors of an easily computed
integer φd(f/g), it is not a difficult problem to determine (t′, u′) once (t, u) is
known, provided we have the complete factorization of f . Thus, the problem
of finding a fundamental solution of (1.7) can be reduced to that of finding a
fundamental solution of (1.14) when we have a complete factorization of f .

Notes and References 17

Notes and References

1Very little is known about the life of Diophantus Even the dates given here are
to some degree conjectural and have been disputed. See [Kno93]. Diophantus’ work,
Arithmetica, can be found in [Hea64].

2This equation has a very long history which may extend back to Pythagoras.
See [Dic19, Vol. II, p. 165].

3This problem is posed in a marginal note in Fermat’s copy of Diophantus’ Arith-
metica. Fermat claimed to have a proof that this equation has only trivial solutions
but was unable to include it because the margin was too small to contain it. The note
itself is believed to have been written about 1630. Few today believe that Fermat
had a correct proof.

4See [Wil95a] and [TW95]. For a lively discussion of the proof of this result, see
[vdP96].

5See [Lju42], [ST91], and [Che94].
6[Mih03] and [Mih04]. For a discussion of this result, see [Bil04] and [Bil05].
7[Ram00], p. 327.
8[Nag48] and [Nag61].
9See, for example, [Sma98], [Spr93], and [ST86].

10This is essentially the substance of Hilbert’s Tenth Problem: Given any Dio-
phantine equation, devise a process according to which it can be decided in a finite
number of operations whether the equation is solvable in integers. This problem was
solved in the negative by Matiyasevich in 1970. For a full account of this, the reader
is referred to [Mat93].

11[Eul43].
12[Wei84], p. 174.
13[Whi12], p. 59 footnotes.
14See, for example, [Sco38], p. 268.
15[Han65], p. 203.
16[Rah68].
17[Kon01], pp. 33–34, footnote 1.
18[Wer02].
19[Ene02].
20See [Scr74].
21[Whi12], p. 2.
22[ACL91], pp. 1973–1975.
23[Wei84], p. 174.
24Several of these are mentioned in Chapter 8 of [Mor69].
25[Leh56].
26Much information concerning the properties of these functions, together with

proofs, can be found in [Rib96] and [Wil98].
27See [Wil98].
28[Leh26b] and [Leh28].
29See, for example, Lemma 4.3.11 of [Wil98].

2

Early History of the Pell Equation

2.1 The Cattle Problem of Archimedes

This chapter is devoted to various aspects of the history of the Pell equation
before the work of Lagrange. As this topic has already been dealt with in some
detail by Konen,1 Whitford,2, and Dickson,3 our discussion here will be brief.
We will concentrate on providing a more modern historical perspective and
a somewhat different presentation of this material than that given in these
earlier works.

In 1773, the poet and literary critic Gotthold Ephraim Lessing (1729–1781)
published4 a Greek epigram which he had edited from an Arabic manuscript
in the Herzog-August Library in Wolfenbüttel in northern Germany. The text
of this epigram consists of a heading, followed by a poem of 44 lines made
up of 22 elegiac distichs, a scholium giving a (false) solution, and a lengthy
analysis of the problem by Chr. Leiste. There has been some controversy5

concerning the exact translation of the heading, but it seems that Fraser’s
version,6 given belown, is about as accurate as can be expected.

A problem which Archimedes set in epigrammatic form and sent to
those interested in these matters in Alexandria, in the letter addressed
to Eratosthenes of Cyrene.

The most frequently cited translation of the problem itself is that of Thomas.7

If thou art diligent and wise, O stranger, compute the number of
cattle of the Sun, who once upon a time grazed on the fields of the
Thrinacian isle of Sicily, divided into four herds of different colours,
one milk white, another a glossy black, the third yellow and the last
dappled. In each herd were bulls, mighty in number according to these
proportions: Understand, stranger, that the white bulls were equal to
a half and a third of the black together with the whole of the yellow,
while the black were equal to the fourth part of the dappled and
a fifth, together with, once more, the whole of the yellow. Observe

20 2 Early History of the Pell Equation

further that the remaining bulls, the dappled, were equal to a sixth
part of the white and a seventh, together with all the yellow. These
were the proportions of the cows: The white were precisely equal to the
third part and a fourth of the whole herd of the black; while the black
were equal to the fourth part once more of the dappled and with it a
fifth part, when all, including the bulls went to pasture together. Now
the dappled in four parts8 were equal in number to a fifth part and a
sixth of the yellow herd. Finally the yellow were in number equal to
a sixth part and a seventh of the white herd. If thou canst accurately
tell, O stranger, the number of cattle of the Sun, giving separately the
number of well-fed bulls and again the number of females according
to each colour, thou wouldst not be called unskilled or ignorant of
numbers, but not yet shall thou be numbered among the wise. But
come, understand also all these conditions regarding the cows of the
Sun. When the white bulls mingled their number with the black, they
stood firm, equal in depth and breadth, and the plains of Thrinacia,
stretching far in all ways, were filled with their multitude. Again,
when the yellow and the dappled bulls were gathered into one herd
they stood in such a manner that their number, beginning from one,
grew slowly greater till it completed a triangular figure, there being
no bulls of other colours in their midst nor none of them lacking.
If thou art able, O stranger, to find out all these things and gather
them together in your mind, giving all the relations, thou shalt depart
crowned with glory and knowing that thou hast been adjudged perfect
in this species of wisdom.

Recently, a charming translation9 by Hillion and Lenstra has appeared, which
possesses much of the light-hearted spirit of the original.

This problem is referred to in a scholium to Plato’s Charmides as being
called the Cattle Problem by Archimedes. It may also have been mentioned
in some work of Cicero.10 Since Krumbiegel’s11 criticism of this work in 1880,
it has been customary to regard the problem, now called the Cattle Problem,
as most likely having originated with Archimedes (c. 287–212 BC), but the
poem itself as a Hellenistic fabrication. However, Fraser12 has argued very
convincingly that we should also accept Archimedes as the author of the
poetical form of the problem, and there seeems to be no good reason to dispute
this judgement.

The problem is to find the numbers W,X, Y , and Z of the white, black,
dappled, and yellow bulls, respectively and the numbers w, x, y, and z of the
cows of corresponding colours. We can now write the equations which these
quantities satisfy as

W =
(

1
2

+
1
3

)

X + Z , (2.1)

2.1 The Cattle Problem of Archimedes 21

X =
(

1
4

+
1
5

)

Y + Z , (2.2)

Y =
(

1
6

+
1
7

)

W + Z , (2.3)

w =
(

1
3

+
1
4

)

(X + x) , (2.4)

x =
(

1
4

+
1
5

)

(Y + y) , (2.5)

y =
(

1
5

+
1
6

)

(Z + z) , (2.6)

z =
(

1
6

+
1
7

)

(W + w) , (2.7)

W +X = � , (2.8)
Y + Z = � . (2.9)

Leiste13 found integral solutions of (2.1), (2.2), and (2.3) as

Y = 1580m , Z = 891m , W = 2226m , X = 1602m , (2.10)

where m is an integer parameter. (This is simply linear algebra.) He then
went on to find solutions to (2.1)–(2.7) for the unknowns that were all 20
times larger than they might be. However,14 if we multiply (2.4) by 4800,
(2.5) by 2800, (2.6) by 1260, and (2.7) by 462 and add, we get

4657w = 2800X + 1260Y + 462Z + 143W .

By using (2.10), we find that m = 4657n, for an integer parameter n. From
this and (2.4)–(2.7), we find that

W = 10366482n , X = 7460514n ,
Y = 7358060n , Z = 4149387n ,
w = 7206360n , x = 4893246n ,
y = 3515820n , z = 5439213n .

(2.11)

Since the coefficients of n have greatest common divisor 1, (2.11) represents
all of the possible solutions of (2.1)–(2.7). As mentioned earlier, Leiste gave a
solution with n = 20 and the scholium,15 with no explanation, gives a solution
for n = 80. Neither of these satisfies (2.8) or (2.9).

It remains to consider (2.8) and (2.9). Since W +X must be a square and

W +X = 4× 957× 4657n ,

we must have n = 957 · 4657U2 = 4456749U2. Also, Y + Z = V (V + 1)/2
means that

22 2 Early History of the Pell Equation

T 2 = 8(Y + Z) + 1 = DU2 + 1 ,

where T = 2V + 1 and

D = 410286423278424 . (2.12)

Thus, in order to solve the Cattle Problem, we must solve the Pell equation
(1.7) of Chapter 1 with D given by (2.12). We will discuss in the next chapter
(Example 3.10) how this problem can be solved.

There has been some dispute16 about the exact wording of the Cattle
Problem, but no significant changes to it have been met with acceptance
by modern scholars. Some doubt has been expressed concerning whether the
second part of the problem actually reduces to a Pell equation. This has to
do with whether to interpret the text of the problem as asking for W +X to
be an integral square or whether the bulls when packed together should fill a
square. As a bull is longer than it is broad, the latter reading would simply ask
that W +X should be a rectangular number. This problem is called Wurm’s
problem,17 as it was solved by him to produce a solution where

W +X = 1409076 · 1485583 .

This suggests, then, that the ratio of the length to the breadth of the bulls
would be 1485583/1409076, which is rather close to 1. As the authors of this
book come from the cattle-producing province of Alberta, we are able to attest
that we have seen many bulls, but never a bull with these proportions, and it
is unlikely that the bulls in Sicily ever had such proportions either. Indeed, as
Dijksterhuis18 has noted, this apparently simplifying assumption is nothing
of the sort, because if we assume that the ratio of the length to the breadth
of a bull is λ, a rational number, then the condition that W +X be a square
becomes W + X is λ times a square, and the supposed simplification of the
problem is lost. Moreover, as Archimedes was far too good a mathematician
not to include in his statement of the problem all of the values needed to solve
it, and no value for λ is provided, we must assume that his intent was that the
second part of the problem should reduce to what we now call a Pell equation.
Although it is only implicit, as far as is currently known, the Cattle Problem
represents the earliest mention in history of a Pell equation.

We are left with a number of questions concerning this remarkable work.
For example, what caused Archimedes to devise it in the first place? Hultsch19

has provided a very clever explanation for this. Apollonius of Perga (c. 262–
c. 190 BC) in his Easy Delivery produced a better approximation to π than
that of Archimedes in his earlier Measurement of the Circle, and it seems that
part of Apollonius’s motivation for doing this was to exhibit his superior skill
in this sort of numerical manipulation. Certainly, he must have performed
more difficult multiplications than those mentioned in the Measurement of
the Circle. Another work of Apollonius concerning the multiplication of large
numbers, preserved within the Synogoge or Collection of Pappus (c. 290–c. 350

2.1 The Cattle Problem of Archimedes 23

AD), although inspired by Archimedes’s Sand-reckoner , also seems to imply
some criticism of Archimedes’ methods. Thus, it does not seem unreasonable
for Archimedes to have responded by issuing the Cattle Problem as a challenge
to Apollonius and others; for, as we shall see in §3.3, solving the second part
of it involves the manipulation of enormous numbers. This supposition is to
some extent supported by the Cattle Problem’s lightly satirical tone, which is
particularly evident in the mockery displayed in the last lines of the epigram,
which Fraser20 translates as:

If thou findest out these things, and layest them to mind, giving all
the measures of the numbers, go victorious in glory and know in truth
that thou hast been judged consummate in this wisdom at least.

From a mathematician’s perspective, the tone of this provides us with the best
reason to reject the Wurm hypothesis mentioned earlier: his solution is just too
simple to derive. Of course, as Dijksterhuis21 rightly points out, it is impossible
to verify these suppositions, but it is interesting that, as Apollonius spent most
of his career in Alexandria, he might very likely have been there during the
time that the letter containing the problem was sent to Eratosthenes (276–
194 BC). Knorr22 has made the interesting suggestion that Eratosthenes had
composed the first part of the problem and that Archimedes had responded
by sending it back to him with the addition of the second, more difficult part.
This suggestion, however, does not seem to have found much support among
scholars, as most seem to accept Krumbiegel’s earlier judgement23 that “there
is no ground whatever in the poem for... a division of authorship.”

The problem appears to owe some of its inspiration to Homer; for, in Book
XII, lines 127–139, of the Odyssey, the poet wrote24:

Your next landfall will be the island of Thrinacie, where the Sun-god
pastures his large herds and well-fed sheep. There are seven herds of
cattle and as many flocks of beautiful sheep, with fifty head in each.

The Greek word “thrinacian” means three-cornered and was used to designate
the three-cornered Island of Sicily,25 where Archimedes lived. Notice that there
also seems to be a computation problem in Homer’s lines. Any educated Greek
of the time would have recognized this Homeric allusion in the Cattle Problem.

There is also another important question concerning this problem: Could
Archimedes himself solve it? Given our discussion of its solution in §3.3, the
answer must be no. Although the basic idea of how to go about solving it
had been demonstrated by Amthor26 as early as 1880, it was not until the
advent of modern computing devices that it was possible to compute the
enormous numbers representing the size of the various herds. Indeed, as late
as 1964, Beiler27 could write concerning this problem that “stupendous feats of
calculation have been performed and the answers have not yet been completely
computed nor is it likely that they ever will be.” The more important question,
as noted by Vardi,28 is: Did Archimedes know that it had a solution? As we
will see in the next section, this could be the case, but we will likely never know

24 2 Early History of the Pell Equation

for certain. One thing, however, must be borne in mind. In our modern society,
with its very sophisticated mathematics and computers, it is easy to lose sight
of what a remarkable piece of work this is. Given its date of composition and
the state of mathematics (as far as we currently understand it) at this time, it
must be regarded as a work of considerable genius. Who else, but Archimedes,
could have posed it? Moreover, the poem with its lighter side also contributes
something to our understanding of this extraordinary man. In this regard, we
can do no better than to conclude this section with a quote of Fraser.29

The poem... helps us to gain a picture of Archimedes as one who,
for all his extraordinary pre-eminence in his abstract and theoretical
world, possessed a warm and lively human sympathy, and this side
of his character is worthy of emphasis no less than the superlative
tributes to his mathematical genius.

2.2 Further Contributions of the Greeks

The first explicit mention of a Pell equation seems to occur in the work of
Theon of Smyrna. (c. 130 AD)30 If we put s1 = 1 and d1 = 1 and compute

sn+1 = sn + dn, dn+1 = 2sn + dn (n = 1, 2, 3, . . .) ,

then
d2

n − 2s2n = (−1)n . (2.13)

Of course, Theon does not use the modern notation that we are employing
here, nor did he provide a proof of (2.13), being content instead to simply
verify it for the first few cases. Some further light was shed on these obser-
vations much later by the neoplantonist philosopher Proclus31 (412–485 AD).
He referred to an identity, which in our notation would be expressed as

(2x+ y)2 + y2 = 2x2 + 2(x+ y)2 (2.14)

and appears to appeal to Proposition 10 in Book II of Euclid’s Elements for
a proof. If we rewrite the identity, we get

(2x+ y)2 − 2(x+ y)2 = −(y2 − 2x2) ,

which does provide a proof of (2.13), although Proclus does not say this.
Most mathematical historians agree that both Theon and Proclus appear to
be drawing on a much earlier Pythagorean source for this material. What
is remarkable about these side and diagonal numbers is that they suggest
that the Pythagoreans used the values of dn/sn as a means of producing ever
better rational approximations of

√
2. As the early Greek mathematicians were

interested in the problem of irrationality, it is possible that the existence of
this infinite sequence approaching, but never reaching, the value of

√
2 might

2.2 Further Contributions of the Greeks 25

have been used in producing an early (but incorrect) proof of the irrationality
of this quantity.

In fact, it is possible to use (2.13) to produce a correct proof of the irra-
tionality of

√
2. For, if we assume that

√
2 is rational, then

√
2 = a/b for some

a, b ∈ Z>0. Hence, we can rewrite (2.13) as

bdn + asn =
b2

|bdn − asn| .

Since bdn−asn �= 0 (otherwise (2.13) could not hold), we have |bdn−asn| ≥ 1
and

0 < bdn + asn < b2 . (2.15)

As dn and sn increase beyond any limit, we see that (2.15) is impossible for
all n ∈ Z>0. While this proof seems very simple to us, it is by no means likely
that the Pythagoreans would have discovered it.

Thus, it appears that the early Greeks knew how to produce solutions of
(1.7) when D = 2. It is difficult to say with any certainty that they extended
the idea of side and diagonal numbers any further, but if32 we put D = 3 and
define s1 = 1 and d1 = 2,

sn+1 = sn + dn, dn+1 = 3sn + dn (n = 1, 2, 3, . . .) ,

we get

dn

sn
=

2
1
,
5
3
,
7
4
,
19
11

,
26
15

,
71
41

,
97
56

,
265
153

,
362
209

,
989
571

,
1351
780

, . . . (2.16)

as n = 1, 2, 3, . . . , 11, These are exactly the convergents in the simple con-
tinued fraction expansion (see §3.2) of

√
3. Furthermore, in the Measurement

of the Circle, Archimedes33 introduces with no explanation the inequality

265
153

<
√

3 <
1351
780

. (2.17)

Note that both of the bounds used in this occur in (2.16). However, there are
several other methods34 by which Archimedes might have discovered (2.17).
What does seem to be clear is that the Greeks were in possession of some
techniques that allowed them to find good rational approximations to

√
n (and

other irrationals) for certain integral values of n. As will be demonstrated in
Chapter 3, simple continued fractions can be used to produce the best rational
approximations to a given irrational. Could the Greeks have been aware, at
least on some level, of these objects? The answer is yes. In Proposition 2 of
Book X of Euclid’s Elements we have:

If, when the less of two unequal magnitudes is continually subtracted
in turn from the greater, that which is left never measures the one
before it, the magnitudes will be incommensurable.

26 2 Early History of the Pell Equation

The process Euclid (c. 325–265 BC) is describing here is called anthyphairesis,
and it has become the subject of considerable scrutiny by modern historians of
early Greek mathematics. Anything like a full discussion of this is well beyond
the scope of this book, and we refer the interested reader to the excellent books
of Knorr35 and Fowler36 for a fascinating treatment of this subject. We will
be content here with a few simple observations.

Euclid’s understanding of a magnitude is what we might call a line segment
and is distinct from what he understood by a number (integer). If we have
two line segments A and B, we will write A < B to denote that the line
segment A is shorter than the line segment B. Now, suppose we are given
two line segments L0 and L1, where L1 < L0. We apply the anthyphairesis
process to L1 and L0; that is, we subtract L1 from L0 a certain number of
times, say q0 times, until we get a remaining line segment L2 < L1. We then
repeat the procedure with L2 and L1, etc. We will get the following sequence
of equations, where the q values are all positive integers:

L0 = q0L1 + L2 (L2 < L1) ,
L1 = q1L2 + L3 (L3 < L2) ,

...
Li = qiLi+1 + Li+2 (Li+2 < Li+1) ,

...

If this process does not terminate (no Ln ever “measures” Ln−1; i.e., no length
of any Ln+1 is ever 0), then L0 and L1 are not commensurable or, in more
modern parlance, L0/L1 is irrational. If we examine this process from a mod-
ern perspective and put

φi =
Li

Li+1
(i = 0, 1, 2, . . .) ,

then
0 < φi − qi =

Li+2

Li+1
< 1 .

Thus, qi = �φi� and

φi+1 = (φi − qi)−1 > 1 (i = 0, 1, 2, . . .) ; (2.18)

that is, the anthyphairesis of L0/L1 is given by

L0

L1
= φ0 = [q0, q1, q2, . . . , qi, . . .] ,

the simple continued fraction expansion of φ0 (see §3.2). We call the qi (i =
1, 2, . . .) the partial quotients in this representation.

We know that there were several instances in which the Greeks might
have employed this process, both geometrically and arithmetically.37 This is

2.2 Further Contributions of the Greeks 27

corroborated by early references to the ancient’s (5th-4th century BC) un-
derstanding that magnitudes are in proportion to each other if they have the
same anthyphairesis (same sequence of partial quotients). Indeed, this seems
to have formed the basis of their concept of proportion. Concerning this,
Knorr38 states:

We can conceive of only one reason for the ancients’ invention of the
anthyphairetic definition of proportion: to extend the formal numerical
definition so that proportions of incommensurable magnitudes may be
included.

We also know that the early Greek mathematicians were very interested in the
problem of incommensurability; in particular, they seem to have spent a lot
of effort in demonstrating the possible incommensurability of line segments
whose ratio is

√
n/
√
m, where m and n are positive integers,39 and they could

construct geometrically such line segments. It is not unreasonable to assume
in their earliest investigations into this that they might have employed the
anthyphairetic process to such line segments. This certainly seems to be what
is behind parts of Books II, X, and XIII of the Elements . The main problem in
doing this, as Fowler40 has observed, would be the difficulty that they would
face in determining the partial quotients that would be needed to express the
anthyphairesis of

√
n/
√
m. This is simply because their arithmetic procedures

would not permit the easy manipulation of the decimal numbers that would
result. Fowler41 has provided a possible and plausible solution to this problem
by making use of concepts that would be known to the ancients. The basis
of his procedure is what he calls the Parmenides Proposition (PP), which
we give below as Proposition 2.1. A form of this result appears in Plato’s
Parmenides and was very likely known to the Greeks of Plato’s time (427–
347 BC). Certainly, it appears in the much later Collection of Pappus and
could easily be derived from results42 in Books VII or V of the Elements . We
give this proposition next.

Proposition 2.1 (The Parmenides Proposition). Let A,B,C,D ∈ Z>0.
If A/B < C/D, then

A

B
<
A+ C

B +D
<
C

D
.

Now, suppose φ is any real number and

A

B
< φ <

C

D
,

where A,B,C,D ∈ Z>0. We have φB − A > 0 and C − φD > 0; hence,
(φB − A)/(C − φD) > 0, and, consequently, there exist positive integers p
and p′ such that p > (φB −A)/(C − φD) and p′ > (C − φD)/(φB −A). This
means that

pC +A

pD +B
> φ and

p′A+ C

p′B +D
< φ .

28 2 Early History of the Pell Equation

These observations lead us to the following simple algorithm, proposed by
Fowler, for finding rational approximations to φ.

Algorithm 2.1:
Input: Suppose φ,A,B,C,D are defined as above, and

A

B
< φ <

C

D
.

1: Compute R = (A+ C)/(B +D). We now have two cases.
2: case 1: R > φ
3: Apply PP repreatedly to find a q so that

A

B
<

(q + 1)A+ C

(q + 1)B +D
< φ <

qA+ C

qB +D
<
C

D
.

4: Return q, C′ = qA+ C, and D′ = qB +D. Note that

A

B
< φ <

C′

D′ <
C

D
.

5: end case
6: case 2: R < φ
7: Apply PP repeatedly to find a q so that

A

B
<
A+ qC

B + qD
< φ <

A+ (q + 1)C
B + (q + 1)D

<
C

D
.

8: Return q, A′ = A+ qC, and B′ = B + qD. Note that

A

B
<
A′

B′ < φ <
C

D
.

9: end case

When this algorithm is applied repeatedly, the cases will strictly alternate;
that is, if a given iteration falls under Case 1, then the next iteration will fall
under Case 2, and vice versa.

In Case 1 we can compute q directly from

q =
⌊
C − φD
φB −A

⌋

and in Case 2 from

q =
⌊
φB −A
C − φD

⌋

.

Suppose we consider the simple case of φ =
√
n/1 =

√
n for some non-

square positive integer n. We begin with

2.2 Further Contributions of the Greeks 29

�φ�
1

< φ <
�φ�+ 1

1
. (2.19)

If φ0 = φ, q0 = �φ0�, and R = �φ� + 1/2 < φ, then q1 = 1/(φ− q0) = 1; but
if R > φ, then we can apply Algorithm 2.1 to (2.19) to obtain

�φ�
1

< φ <
q�φ�+ �φ�+ 1

q + 1
,

where

q =
⌊�φ�+ 1− φ

φ− �φ�
⌋

= q1 − 1 .

Thus, if R < φ, we already have, by (2.19),

q0
1
< φ <

q1q0 + 1
q1

,

and if R > φ, we get
q0
1
< φ <

q1q0 + 1
q1

after the application of Algorithm 2.1 to (2.19).
To proceed further with our analysis we will need a result which is proved

in §3.1. If we put A−2 = 0, A−1 = 1, B−2 = 1, and B−1 = 0 and define
subsequent values for Ai and Bi by the recursive formulas (3.4), then by (3.9)
we have

φi+1 =
Ai−1 − φBi−1

φBi −Ai
. (2.20)

By our previous remarks we may assume that we have, after a possible appli-
cation of Algorithm 2.1 to (2.19),

A0

B0
<
√
n <

A1

B1
.

Also, it is easy to see that if for some i ≥ 1,

Ai−1

Bi−1
<
√
n <

Ai

Bi
, (2.21)

then since φi+1 > 1, we must have R = (Ai +Ai−1)/(Bi +Bi−1) <
√
n. Thus,

on applying Algorithm 2.1 to (2.21), we get

q =
⌊
Ai−1 − φBi−1

φBi −Ai

⌋

= �φi+1� = qi+1

by (2.18) and (2.20). Also,

Ai+1

Bi+1
<
√
n <

Ai

Bi
.

30 2 Early History of the Pell Equation

Similarly, if
Ai

Bi
<
√
n <

Ai−1

Bi−1
,

we find after the application of Algorithm 2.1 (hereR > φ =
√
n) that qi+1 = q

and
Ai

Bi
<
√
n <

Ai+1

Bi+1
.

By induction (a process of deduction not likely known to the early Greek
mathematicians), this procedure of repeated application of Algorithm 2.1 will
produce the anthyphairesis of

√
n/1 = [q0, q1, q2, . . .].

Algorithm 2.1 is evidently a very simple process that anyone with knowl-
edge of the PP could, for example, apply successively to

√
n/1 in the manner

that we have described above. It is highly unlikely, of course, that the Greeks
of the time would have been able to prove formally that this procedure would
produce the anthyphairesis of

√
n/1 as we have done here, but they could

easily have computed the successive convergents Ai/Bi to
√
n and discovered

their anthyphairesis to be [q0, q1, q2, . . . , qi] (i = 0, 1, 2, . . .). As they would
have known by construction of the convergents that the value of

√
n is al-

ways bounded above and below by two successive convergents, they would
likely conclude (correctly) that the anthyphairesis

√
n/1 is [q0, q1, q2, . . .]. For

small values of n, they would notice the periodic structure of [q0, q1, q2, . . .]
and perhaps, as Fowler43 suggests, be able to prove geometrically that their
conjectured anthyphairesis is correct. The difficulty of checking the inequali-
ties that occur in Algorithm 2.1 would be much diminished because φ =

√
n;

hence, all that would be needed in each case is the determination of whether
or not some rational number a/b exceeded

√
n. This, of course, is possible

simply by checking the value of the integer a2 − nb2. During the process of
checking these values, the Greeks would have discovered that if this process is
carried out far enough for a given n, they would get A2

i − nB2
i = 1 (see §3.3)

for perhaps several values of i, and thereby find solutions to the Pell equation
for D = n. While this would not have been their original objective, they would
nevertheless have been struck by the discovery, just as the Pythagoreans were
in the case of n = 2.

Of course, this is conjectural, and it is possible to develop other plausi-
ble processes whereby the ancients might have been able to find good rational
approximations to

√
n, but it fits very well with what we have been able to de-

duce from the few tantalizing grains of information that have survived time’s
winnowing. Certainly, the Greeks must have been able to perform some cal-
culations like these, at least for small values of n. For example, if Archimedes
had applied this to

√
27 (a better choice than

√
3 for his purpose44), he would

have found that the first few convergents are 5/1, 26/5, 265/51, and 1351/260
and that

265
51

<
√

27 <
1351
260

,

2.3 The Indian Mathematicians 31

which, on dividing by 3, yields (2.17). Indeed, 13512 − 3 · 7802 = 1. Thus,
it is reasonable to infer that an expert calculator like Archimedes had some
knowledge about how to solve the Pell equation for small values of D, at least.
Possibly these investigations prompted him to believe that the Pell equation
is always solvable, but that when D is large, this is a very difficult problem.
This would explain his thinking in setting the Cattle Problem.

One other place where the Pell equation is explicitly mentioned by the
Greeks is in Diophantus’ Arithmetica. In Sections 9 and 11 of Book V, he
solved (1.7) for D = 26 and D = 30, respectively. While this might cause us to
think that the later Greeks had found a technique for solving the Pell equation,
it is important to realize that the method given would, in general, only find
rational solutions to the Pell equation, not integral ones. Diophantus also
showed in a lemma in Section 14 of Book VI how one could find, given rationals
x and y and integers D and r, a second rational solution to x2 − Dy2 =
r2. The concentration in the Arithmetica on techniques that only produce
rational solutions to Diophantine equations strongly suggests that the later
Greeks were either not able or not interested in producing integral solutions.
Tannery45 suggested that possibly Diophantus might have considered such
problems, particularly the Pell equation, in the then lost seven books of the
Arithmetica; however, although more recent research46 has revealed some of
these lost books, there is still no evidence that Diophantus ever considered
the problem of finding only integral solutions. This, then, represents the very
unsatisfactory state of our knowledge concerning the ancients’ contributions
to the study of the Pell equation.

2.3 The Indian Mathematicians

The situation is much different when we consider the achievements of the
Indian mathematicians of the early to late middle ages.47 As early as the 5th
century AD, Aryabhata I (b. 476 AD) had developed a method for solving
the linear Diophantine equation

ax− by = c (2.22)

for integers x and y, given positive integers a, b, and c. Aryabhata’s original
problem was to find an integer n which on being divided by a given integer a
leaves a given remainder of r1 and on division by a given b leaves a remainder
r2. On putting c = |r1− r2|, this problem reduces to making either (ax+ c)/b
or (by + c)/a a positive integer according to whether r1 > r2 or r2 > r1.
Aryabhata then goes on to describe a solution technique, called the kuttaka
(pulverizer), which is a variant of the now standard method of solving this
problem by making use of the continued fraction expansion of a/b (see §3.2).
It is often assumed by number theorists that the Greeks must have found a
method of solving (2.22). Indeed, no less of an authority than Thomas Heath48

seems to have believed this.

32 2 Early History of the Pell Equation

Thus, the solution of the equation ax−by = c, given by Aryabhata. . . is
an easy development from Euclid’s method of finding the greatest
common measure or proving by that process that two numbers have
no common factor (Eucl. VII. 1, 2, X. 2, 3), and it would be strange
if the Greeks had not taken this step.

It would not be strange, however, if the Greeks had no interest in the prob-
lem. We have seen that the earlier Greeks were concerned with finding rational
approximations to irrationals, but the problem of finding a rational approxi-
mation to a rational like a/b, would likely not have been regarded as a problem
at all. The later Greeks seemed to be interested only in rational solutions of
Diophantine equations, and this explains why Diophantus never dealt with
(2.22). In any event, what is true is that we have no evidence at all that any
of the Greek mathematicians made the slightest contribution to the problem
of solving (2.22) for integers x and y.

In 628, Brahmagupta (598–670) was the first to discover our identity (1.4);
that is, if

A2 −DB2 = Q (2.23)

and
P 2 −DR2 = S , (2.24)

then
(AP +DBR)2 −D(AR +BP)2 = QS . (2.25)

Today we call this process of multiplying two quadratic forms to yield a
third quadratic form composition, but the Indian mathematicians referred to
it as samasa.

If we have Q = S = ±2, A = P , and B = R, then T = (A2 + DB2)/2 =
A2− (±1), U = AB is a solution of (1.7). Brahmagupta discovered this result
together with those in Table 1.1 and this enabled him to solve the Pell equation
whenever he had any solution (A,B) of

A2 −DB2 = −1 ,±2 ,±4 . (2.26)

However, he could do more than this: He developed an ad hoc way of solving
the Pell equation. For example,49 consider the equation x2 − 92y2 = 1, about
which Brahmagupta declared, “[a person solving this problem] within a year
[is] a mathematician.” He first notes that 102 − 92 = 8 and then composes
this with itself to obtain 1922− 92 · 202 = 64. After dividing this equation by
64, he gets 242 − 92(5/2)2 = 1, and on composing this latter equation with
itself, he obtains 11512 − 92 · 1202 = 1. Brahmagupta also realized that by
using this composition principle he could produce many more solutions to the
Pell equation, once he had one solution.

However, the crowning achievement of Indian mathematics with respect to
the Pell equation was the development of the cyclic method for solving it. The
technique, described by Bhaskara II (1114–1185) in 1150 AD, and its history

2.3 The Indian Mathematicians 33

are well described by Selenius50 and the interested reader should consult this
work for further details and references. We will only sketch, with additional
information, a variant (there are several) of the algorithm here.

We will assume that Q,A,B ∈ Z and that (A,B) = 1 in (2.23); this means
that (B,Q) = 1. As the technique for solving (2.22) was known, the step of
finding an integer P such that Q | BP + A could be easily achieved by the
kuttaka process. It follows that since (B,Q) = 1, we must have Q | P 2 −D
and Q | AP +DB. By putting R = 1 in (2.24), we see from (2.25) that

(
AP +DB

Q

)2

−D
(
A+BP

Q

)2

=
P 2 −D
Q

. (2.27)

From this simple observation we can develop the cyclic method for solving the
Pell equation.

Given integers n,An−1, Bn−1, Qn, and Pn where (An−1, Bn−1) = 1 such
that ∣

∣A2
n−1 −DB2

n−1

∣
∣ = Qn ,

find by the kuttaka process a positive51 integer Pn+1 such that |P 2
n+1 −D| is

minimal and Qn | (Pn+1Bn−1 +An−1). Put Qn+1 = |P 2
n+1 −D|/Qn,

An =
An−1Pn+1 +DBn−1

Qn
, Bn =

Bn−1Pn+1 +An−1

Qn
. (2.28)

By (2.27) we get ∣
∣A2

n −DB2
n

∣
∣ = Qn+1 , (2.29)

and (An, Bn) = 1. The latter result follows easily by observing that |AnBn−1−
BnAn−1| = 1. The method terminates when, for some n, Qn+1 = 1, 2, 4
because, as we have explained above, Brahmagupta had already shown how
to solve the Pell equation once any solution of (2.26) is known.

Consider the example of D = 67. We begin with n = 0, A−1 = 1, B−1 = 0,
Q0 = 1, and P0 = 0. We now summarize in Table 2.1 the solution of the Pell
equation by this process, called the cakravala (the circle or cyclic method) by
the Indians.

Table 2.1. Cakravala for D = 67

n Pn Qn An−1 Bn−1 Pn+1 (mod Qn)

0 0 1 1 0 1

1 8 3 8 1 1

2 7 6 41 5 5

3 5 7 90 11 2

4 9 2 221 27

34 2 Early History of the Pell Equation

Since 2212− 67 · 272 = −2, we get T = 2212 +1 = 48842, U = 27 · 221 = 5967
as a solution of the Pell equation T 2 − 67U2 = 1. Concerning this technique,
Hankel52 stated, “It is beyond all praise; it is certainly the finest thing that
was achieved in the theory of numbers before Lagrange.” Unfortunately, the
Indians did not provide a proof that the cyclic method would always work.
They were content, it seems, in the empirical knowledge that it always seemed
to do so, and they used it to solve the Pell equation for D = 61, 67, 97, 103.
It was not until the late 1930s that a proof that the cyclic method would
always produce a value of Qi = 1 was produced by Ayyangar.53 He noted
that this process could be represented as the expansion of

√
D into a type of

semiregular continued fraction which would always be periodic.
We note that if (as is certainly the case for n = 0)

PnBn−1 ≡ An−1 (mod Qn) ,

then, by (2.28),

Pn+1Bn −An = Bn−1(P 2
n+1 −D)/Qn

≡ 0 (mod Qn+1) .

Thus, by induction we may assume that Qn | (PnBn−1 − An−1). Since Qn |
(Pn+1Bn−1 + An−1) by construction and (Qn, Bn−1) | (An−1, Bn−1), we get
(Qn, Bn−1) = 1 and

Pn+1 ≡ −Pn (mod Qn) .

Hence,
Pn+1 = qnQn − Pn (2.30)

for some qn ∈ Z. If we now begin with n = 0 and define

φi =
Pi +

√
D

Qi
(> 0) (i = 0, 1, 2, . . .) ,

ηi+1 = sign(P 2
i+1 −D) ,

we get

φi+1 =
Pi+1 +

√
D

Qi+1
=

ηi+1Qi√
D − Pi+1

.

By (2.30), √
D − Pi+1

Qi
= φi − qi ;

hence,
φi+1 =

ηi+1

φi − qi . (2.31)

We now investigate the problem of the value of qn.

Theorem 2.2. If we put q = �(Pn +
√
D)/Qn�, then 0 < q ≤ qn ≤ q + 1.

2.3 The Indian Mathematicians 35

Proof. Put P = qQn − Pn, P ′ = (q + 1)Qn − Pn and note that P ≡ P ′ ≡
Pn+1 (mod Qn). By definition of q, we have P <

√
D and P ′ >

√
D.

If qn < q, then

0 < Pn+1 = qnQn − Pn < P <
√
D .

Hence, |D− P 2
n+1| = D− P 2

n+1, |D − P 2| = D − P 2. Since Pn+1 < P , we get
D − P 2

n+1 > D − P 2, which is impossible by selection of Pn+1.
If qn > q + 1, then

Pn+1 = qnQn − Pn > P ′ >
√
D .

In this case, |D − P 2
n+1| = P 2

n+1 −D, |D − P ′2| = P ′2 −D, and P 2
n+1 −D >

P ′2 −D, which is also impossible. ��
By Theorem 2.2 and (2.31), we see that

φi+1 > 1 (i = 0, 1, 2, . . .) .

This means that the expression (2.31) can be used to give us

√
D = q0 +

η1

q1 +
η2

q2 +
η3

q3 + .. .

, (2.32)

a semiregular54 continued fraction expansion of
√
D.

A number of misconceptions continue to circulate concerning the cyclic
method. One of these is that it was rediscovered by Lagrange. This, as Sele-
nius has pointed out, is not the case. Lagrange made use of simple continued
fractions, which would not necessarily be the same as the semiregular contin-
ued fractions implicitly employed by the cyclic method. Often the algorithm
is attributed to Bhaskara II, but as mentioned by Shankar Shukla,55 Bhaskara
made no claim to being the originator of the method, and as Jayadeva, who
worked in the 10th century or earlier, had discovered a variant of the tech-
nique, it seems that it must have been developed much earlier than the time
of Bhaskara. Finally, there is the belief, perhaps due to Tannery,56 that the
cyclic method derives from Greek influences. There seems, in spite of Tan-
nery’s analysis, to be little solid evidence in support of this. The simple fact is
that, as mentioned earlier, we do not really know what the Greeks knew about
the Pell equation. What we do know, however, is that the Indian methods dis-
play a history of steady development and refinement up to and including the
discovery of the cyclic method, and this very strongly suggests that Hankel’s57

position that the Indians evolved the technique by themselves is the correct
one.

36 2 Early History of the Pell Equation

2.4 Fermat and His Successors

The story of the Pell equation resumes with the challenge58 issued in 1657 to
Frénicle in particular and mathematicians in general by Fermat. Fermat had
most likely, through his research, come to recognize the fundamental nature
of the Pell equation. He asks for a proof of the following statement:

Given any [positive] number [D] whatever that is not a square, there
are also given an infinite number of squares such that, if the square is
multiplied into the given number and unity is added to the product,
the result is a square.

It next requests a general rule by which solutions of the problem could be
determined and, as examples, asks for solutions when D = 109, 149, 433.

The story of how the second part of this challenge was answered by
Brouncker and Wallis has been very well told by Weil59 and Mahoney60

and needs no elaboration here. Instead, we will content ourselves with giv-
ing a somewhat different account from that provided by Weil61 concerning
Brouncker’s technique for solving the Pell equation. We emphasize that, al-
though Brouncker’s method is equivalent to what we will describe, he did not
think about it in quite this way.

Let P,Q,R ∈ Z, where Q �= 0,

P 2 −QR = D > 0 ,

and D is not an integral square. Put

F (X,Y) = QX2 − 2PXY +RY 2 (2.33)

and let ρ and ρ′ denote the zeros of F (x, 1). Since D is not a square, we know
that ρ, ρ′ �∈ Q. Brouncker seems to have used the following result, although
he provides no proof of it.

Proposition 2.3. Suppose ρ > 1 and ρ′ < 0. If F (X,Y) = 1, where X,Y ∈ Z

and X > Y > 1, then �ρ� < X/Y < �ρ�+ 1.

Proof. Since F (X,Y) = 1, we may assume that X = qY +Z, where 0 < Z <
Y . Also,

|Q||X − ρ′Y ||X − ρY | = 1 . (2.34)

Since ρ′ < 0, we get |X−ρ′Y | = X−ρ′Y > X > 1. Also,X−ρY = (q−ρ)Y+Z;
thus, if q − ρ < −1, then X − ρY < −Y + Z ≤ −1, and if q − ρ > 0, then
X − ρY > Z ≥ 1. In either case, |X − ρY | > 1, which is impossible by (2.34).
It follows that ρ− 1 < q < ρ or q = �ρ�. ��

If we substitute X = qY + Z in (2.33), we get

F ′(Y, Z) = Q′Y 2 − 2P ′Y Z +R′Z2 ,

2.4 Fermat and His Successors 37

where Q′ = q2Q− 2qP +R, P ′ = P − qQ, R′ = Q, and

P ′2 −Q′R′ = D . (2.35)

It is easy to show that

P ′ −√D
Q′ =

1
P+

√
D

Q − q
,

P ′ +
√
D

Q′ =
1

P−√
D

Q − q
.

Thus, if τ and τ ′ are the zeros of F ′(x, 1), then τ = 1/(ρ− q), τ ′ = 1/(ρ′− q).
If ρ > 1, ρ′ < 0, and q = �ρ�, then τ > 1, τ ′ < 0.

With these preliminary observations, we can now go on to describe
Brouncker’s very ingenious technique. We suppose T, U is a solution of
T 2 −DU2 = 1 and put Q0 = 1, P0 = 0, R0 = −D, X0 = T , and X1 = U . We
have F0(X0, X1) = Q0X

2
0 − 2P0X0X1 +R0X

2
1 = 1 and ρ0 =

√
D, ρ′0 = −√D

are the zeros of F0(x, 1). Putting q0 = �ρ0� and substituting q0X1 + X2 for
X0 in F0(X0, X1) we get F1(X1, X2) = 1 (0 < X2 < X1). Here,

Q1 = q20Q0 − 2q0P0 +R0, P1 = P0 − q0Q0, R1 = Q0 .

We put ρ1 = 1/(ρ0− q0), q1 = �ρ1�, and X1 = q1X2 +X3 (0 < X3 < X2) and
compute F2(X2, X3) (= 1), etc. In fact, if Fi(Xi, Xi+1) = 1 (0 < Xi+1 < Xi),
we put

ρi =
1

ρi−1 − qi−1
, (2.36)

qi = �ρi�, and
Xi = qiXi+1 +Xi+2 (2.37)

in Fi to obtain Fi+1(Xi+1, Xi+2) = 1 with

Qi+1 = (P 2
i+1 −D)/Qi, Pi+1 = Pi − qiQi, Ri+1 = Qi ,

by (2.35).
As the sequence {Xi} is a strictly decreasing (for increasing i) sequence

of positive integers, this process must come to a halt with Xj = 1, Xj+1 = 0
for some j ≥ 0. To find T and U , all that is necessary is to proceed backward
using (2.37) once all the values of q0, q1, q2, . . . , qj−1 have been determined.

We will now exemplify62 the process for the case of

T 2 − 13U2 = 1 . (2.38)

Here,

F0(X0, X1) = X2
0 − 13X2

1 , q0 =
⌊√

13
⌋

= 3 ;

F1(X1, X2) = −4X2
1 + 6X1X2 +X2

2 , q1 =

⌊
3 +

√
13

4

⌋

= 1 ;

38 2 Early History of the Pell Equation

F2(X2, X3) = 3X2
2 − 2X2X3 − 4X2

3 , q2 =

⌊
1 +

√
13

3

⌋

= 1 ;

F3(X3, X4) = −3X2
3 + 4X3X4 + 3X2

4 , q3 =

⌊
2 +

√
13

3

⌋

= 1 ;

F4(X4, X5) = 4X2
4 − 2X4X5 − 3X2

5 , q4 =

⌊
1 +

√
13

4

⌋

= 1 ;

F5(X5, X6) = −X2
5 + 6X5X6 + 4X2

6 , q5 =

⌊
3 +

√
13

1

⌋

= 6 ;

F6(X6, X7) = 4X2
6 − 6X6X7 −X2

7 , q6 =

⌊
3 +

√
13

4

⌋

= 1 ;

F7(X7, X8) = −3X2
7 + 2X7X8 + 4X2

8 , q7 =

⌊
1 +

√
13

3

⌋

= 1 ;

F8(X8, X9) = 3X2
8 − 4X8X9 − 3X2

9 , q8 =

⌊
2 +

√
13

3

⌋

= 1 ;

F9(X9, X10) = −4X2
9 + 2X9X10 + 3X2

10 , q9 =

⌊
1 +

√
13

4

⌋

= 1 ;

F10(X10, X11) = X2
10 − 6X10X11 − 4X2

11 .

We observe that F10(X10, X11) = 1 can be easily achieved with X10 = 1
and X11 = 0. We can now find

X9 = q9X10 +X11 = 1 , X8 = q8X9 +X10 = 2 , X7 = 3 ,
X6 = 5 , X5 = 33 , X4 = 38 ,
X3 = 71 , X2 = 109 , X1 = 180 ,
X0 = 649 ,

and put T = 649, U = 180 as a solution of (2.38).
Brouncker used his method to find solutions of several difficult Pell equa-

tions, including x2 − 433y2 = 1. This was a major feat of calculation, as
the value of y is a number of 19 digits. However, neither he nor Wallis nor
Frénicle was able to provide a proof that the Pell equation could always be
solved (non-trivially) for any positive non-square value of D. Fermat63 took
notice of this and stated that he had such a proof “by means of descente
duly and appropriately applied.” Unfortunately, Fermat provided no further
information concerning his proof than this. Hofmann64 and, with greater suc-
cess, Weil65 have attempted to reconstruct what Fermat’s method might have
been. While we may never really know what this was, it is nevertheless very
likely that Fermat did have a proof. The fact that he selected 109, 149, and

2.4 Fermat and His Successors 39

433 for values of D as challenge examples is particularly suggestive because
the corresponding Pell equations have large values of t and u.

The method of Brouncker was modified and extended by Euler, who re-
alized that, as is apparent from (2.36), continued fractions could be used to
provide an efficient algorithm for solving the Pell equation. However, even
through he had devised all of the important tools, he just fell short of prov-
ing that his method would work for any non-square D. As mentioned earlier,
the development of such a technique was first done by Lagrange in a rather
clumsy work, which he later improved. For further information on this partic-
ularly interesting part of mathematical history, the reader is referred to Weil’s
book. In the next chapter we will describe Lagrange’s method of using simple
continued fractions to solve the Pell equation.66

40 Notes and References

Notes and References

1[Kon01].
2[Whi12].
3[Dic19], Vol. II, Ch. 12.
4[Les73], pp. 421–446. A more accessible source for some of this is [Les97], p. 100.
5[Fra72], Vol. II, p. 587, note 243.
6[Fra72], Vol. I, p. 409.
7[Tho80], Vol. II, p. 203–206.
8That is, a fifth and sixth of both of the males and of the females.
9[Arc99] and [Len02].

10[Kru80], p. 124; [Fra72], Vol. II, p. 588, note 245; [Dij87], p. 398, note 2.
11[Kru80].
12[Fra72], Vol. I, pp. 407–408.
13See [Dic19], Vol. II, pp. 342–343.
14See [Amt80], p. 155ff or [Hea12], p. 320.
15For the original Greek version of the scholium and a French translation, see

[Arc71], pp. 171–173.
16See, for example, [Sch93] and [Wat95].
17[Wur30]. For a more easily accessible version, see [Hea12], pp. 319–323.
18[Dij87], p. 399, note 3.
19[Pau96b], II. 1, p. 534–535; [Hea12], p. xxxv.
20[Fra72], Vol. I, p. 409.
21[Dij87], p. 399; [Fra72], Vol. II, p. 590, note 256.
22[Kno86], p. 295.
23[Kru80], p. 124. See also [Fra72], Vol. II, p. 590, note 257.
24[Hom46], Book XII, lines 127–130, p. 192.
25[Str61], 6.2.1; [Thu92], Book VI, 2.
26[Amt80].
27[Bei64], p. 249.
28[Var98].
29[Fra72], p. 409.
30For a lengthy treatment of this, see [Kno75b], Ch. II. A translation of the relevant

work of Theon is in [Fow87], p. 58.
31[Fow87], pp. 101–102.
32[Kno75a], p. 137.
33[Hea12], pp. 91–98.
34See [Hea12], 1xxx–xcix; [Kno75a], pp. 136–139.
35[Kno75b].
36[Fow87].
37[Kno75b], pp. 255–261; [Fow87], Ch. 2.
38[Kno75b], p. 258.
39[Hea81], Vol. I, pp. 202–212; [vdW54], pp. 165–179.
40[Fow87], p. 45.
41[Fow87], Section 2.3(b).
42[Kno75a], p. 138; [Fow87], pp. 42–44.
43[Fow87], Ch. 3.
44[Fow87], p. 50, pp. 54–55.
45[Tan84].

Notes and References 41

46[Ses82], Part I.
47Two useful sources for this material are [DS62] and [Sri67].
48[Hea64], p. 281.
49[Col17], p. 363.
50[Sel63] and [Sel75].
51This is never explicitly stated, but it seems to be implicit in the kuttaka process

that would be used to find Pn+1.
52[Han65], p. 202.
53See [Ayy40].
54See §38 of Vol. I of [Per57].
55[Shu54], p. 1 and p. 20.
56[Tan37], p. 240ff.
57[Han65], pp. 203–204.
58[Fer12], pp. 333–335. An English version can be found in [Hea64], pp. 285–286.
59[Wei84].
60[Mah94].
61[Wei84], pp. 92–97.
62This example of Brouncker’s can be found in [Fer12], Vol. III, p. 480. It is also

reprinted in [Whi12], pp. 53–55.
63[Fer12], p. 433.
64[Hof94].
65[Wei79]; [Wei84], Section XIII.
66For another perspective on this see Edwards [Edw05], pp. 65–112.

3

Continued Fractions

3.1 General Continued Fractions

While the techniques of the Indian mathematicians and those of Brouncker,
Euler, and Lagrange for solving the Pell equation are different to some degree,
they can all be unified by considering the theory of what are called semiregular
continued fractions.

If we have two sequences of integers {an} for n ≥ 1 and {qn} for n ≥ 0
and some complex number φ, we put φ0 = φ and define

φj+1 =
aj+1

φj − qj .

Then a general continued fraction1 expansion of φ can be given as

φ0 = q0 +
a1

q1 +
a2

q2 +
a3

. . .
qi−1 +

ai

qi +
ai+1

φi+1
.

(3.1)

In the case where φ is irrational, (3.1) is said to be semiregular2 if the following
hold:

1. |ai| = 1 (i ≥ 1).
2. qi ≥ 1, qi + ai+1 ≥ 1 (i ≥ 1).
3. qi + ai+1 ≥ 2 infinitely often.

For example, if φ is real and qn = �φn + 1/2�, the nearest integer to φn, and
signan+1 = sign(φn − qn) (n ≥ 0), we have what is called the nearest integer
continued fraction expansion of φ.

44 3 Continued Fractions

For our purposes,3 however, it will only be necessary to consider ex-
pressions of the form (3.1), where an = 1 (n ≥ 1). In this case we let
q0, q1, q2, . . . , qi, . . . be any given sequence of integers (partial quotients) and
let φ (= φ0) be any given complex number. If we define

φj+1 =
1

φj − qj (j = 0, 1, 2, . . . , i) , (3.2)

then we can express φ0 as the continued fraction

φ0 = q0 +
1

q1 +
1

q2 +
1

.. .
qi−1 +

1

qi +
1

φi+1
.

We denote this by
φ0 = 〈q0, q1, . . . , qi, φi+1〉 ,

where φi+1 is called a complete quotient . We will now develop some simple
properties of these continued fractions. As its use has become more-or-less
standard in computational number theory, we will, for the most part, make
use of Perron’s4 notation in what follows.

We put A−2 = 0, A−1 = 1, B−2 = 1, and B−1 = 0 and define
{
Aj+1 = qj+1Aj +Aj−1

Bj+1 = qj+1Bj +Bj−1

(j = −1, 0, 1, . . .) . (3.3)

It is easy to establish by induction that

AjBj−1 −BjAj−1 = (−1)j−1 . (3.4)

We also see by induction that

Ai

Bi
= 〈q0, q1, . . . , qi〉, Ai

Ai−1
= 〈qi, qi−1, . . . , q1, q0〉 ,

Bi

Bi−1
= 〈qi, qi−1, . . . , q1〉 .

(3.5)

We call Ai/Bi the ith convergent of a continued fraction (3.2) and note that

φ0 =
φi+1Ai +Ai−1

φi+1Bi +Bi−1
(3.6)

or

3.1 General Continued Fractions 45

φi+1 = −φ0Bi−1 −Ai−1

φ0Bi −Ai
. (3.7)

We also observe that φ−1 = 〈0, φ〉. Thus, if A/B (A,B �= 0) is a convergent
of the continued fraction (3.2), then B/A will be a convergent of the continued
fraction 〈0, q0, q1, . . . , qi, φi+1〉 = φ−1.

We will now restrict the possible values of φ0 to

φ0 =
P |Q|+√

Q2D

Q|Q| ,

where P,D,Q ∈ Z,
√
D �∈ Q, and Q | D − P 2. This latter condition is not as

restrictive as it may seem, as we can always replace D by Q2D, P by |Q|P ,
and Q by |Q|Q. Since φ0 = (P |Q|+

√
Q2D)/Q|Q| and Q2 | DQ2−Q2P 2, we

have the necessary condition.
Before going any further, we will need some simple observations concerning

numbers of the form a+b
√
D, where D, a, b,∈ Q (the rationals) and

√
D �∈ Q.

If α = a+ b
√
D, we define its conjugate α to be a− b√D and its norm N(α)

to be αα. Note that N(α) ∈ Q. Also, if α = a + b
√
D and β = c + d

√
D,

a, b, c, d ∈ Q, then αβ = αβ, and since 1/α = α/N(α), we get (α/β) = α/β.
Also, N(αβ) = N(α)N(β).

Put P0 = P , Q0 = Q, and Gj = Q0Aj − P0Bj . We have

Q0

[

Aj −
(
P0 −

√
D

Q0

)

Bj

]

= Gj +
√
DBj (3.8)

and
GjBj−1 −BjGj−1 = Q0(−1)j−1 (3.9)

by (3.4). Also by (3.7) and (3.8) we see that

φi+1 = −Gi−1 −
√
DBi−1

Gi −
√
DBi

. (3.10)

By using (3.2) and induction, we find that

φj =
Pj +

√
D

Qj
,

where Pj , Qj ∈ Z, Qj | D − Pj
2, and

Pj+1 = qjQj − Pj , Qj+1 =
D − Pj+1

2

Qj
(3.11)

(j = 0, 1, 2, . . . , i). If we now refer to (3.10) and equate rational and irrational
parts, we get

46 3 Continued Fractions

{
DBi = Pi+1Gi +Qi+1Gi−1 ,
Gi = Pi+1Bi +Qi+1Bi−1 .

(3.12)

From these results, (3.9), and (3.3), it is easy to deduce that
{

(−1)i+1Qi+1 = (Gi
2 −DBi

2)/Q0 ,

(−1)iPi+1 = (GiGi−1 −DBiBi−1)/Q0

(3.13)

and {
Gi = (DBi−1 + Pi+1Gi−1)/Qi ,

Bi = (Gi−1 + Pi+1Bi−1)/Qi .
(3.14)

If we define

θj+2 = Aj −Bjφ0 =
Gj +

√
DBj

Q0
(j = −2,−1, 0, 1, . . .) ,

we get

θ0 =
√
D − P0

Q0
= −φ0 , θ1 = 1 , θj+1 = qjθj + θj−1 . (3.15)

By (3.10),

φj =
−θj

θj+1

and − 1
φj

=
θj+1

θj
.

Putting

ψj = − 1
φj

=
Pj +

√
D

Qj−1
,

we get
θj+1 = ψjθj . (3.16)

Hence, since ψk = Qkφk/Qk−1, we see from (3.16) that

θj+1 =
j∏

k=1

ψk =
Qj

Q0

j∏

k=1

φk (j ≥ 1) . (3.17)

Note that
N(θj+1) = (−1)j Qj

Q0
. (3.18)

From this we get

θj+1
−1 = (−1)jQ0θj+1

Qj

= (−1)jGj−1 −
√
DBj−1

Qj

= (−1)j(Bj−2 +Bj−1φj) (3.19)

3.2 Simple Continued Fractions 47

by (3.12).
Notice that all of these results are dependent only on the value of φ0 and

the numbers in the sequence {qn}. Suppose φ0 is real. In the special case that
q1, q2, . . . , qi ≥ 1 and φi+1 > 1, we say that the continued fraction is regular
or simple (SCF) and denote this by

φ0 = [q0, q1, . . . , qi, φi+1] .

3.2 Simple Continued Fractions

In order to have φi+1 > 1, we must have (φi − qi)−1 > 1 or 0 < φi − qi < 1.
It follows that qi = �φi�. Since qi ≥ 1, we can argue that qi+1 = �φi+1�, etc.
Hence, qj = �φj� for j = 0, 1, 2, . . . , i. Simple continued fractions5 will play a
very important role in much of what is to follow. We will begin by considering
the SCF of a rational number K/L, where K,L ∈ Z and L > 0. We put
R−2 = K and R−1 = L and define

qj = �Rj−2/Rj−1� , (3.20)
Rj−2 = qjRj−1 +Rj (3.21)

(0 < Rj < Rj−1; j = 0, 1, 2, . . . , n − 1). This is simply the Euclidean6 algo-
rithm; we ultimately find Rn = 0 for some n, and, therefore,

K

L
= [q0, q1, . . . , qn] .

Also, as is well known, (K,L) = Rn−1.
It is easy to establish by induction that for this continued fraction we have

(−1)j+1Rj = LAj −KBj (3.22)

and
L = BjRj−1 +Bj−1Rj . (3.23)

Also, if Cj = (−1)j−1Bj , then it is clear that

Cj = Cj−2 − qjCj−1 . (3.24)

As is well known, this algorithm can be extended to the problem of solving
the linear Diophantine equation

ax+ by = c , (3.25)

where a, b, and c are given integers and we want integer values for x and y.
We first note that in order for (3.25) to have integer solutions, it is necessary
that d = (a, b) be a divisor of c. We therefore make this assumption and put
a = a/d, b = b/d, and c = c/d. If we put K = a and L = b (we may assume

48 3 Continued Fractions

with no loss of generality that b > 0 because its sign can be absorbed by y),
we get

a

b
=
a

b
= [q0, q1, . . . , qn] =

An

Bn
.

By (3.4) we have
AnBn−1 − BnAn−1 = (−1)n−1 ;

hence, (An, Bn) = 1, and since (a, b) = 1, Bn > 0, and b > 0, we must have
a = An and b = Bn. Hence,

aBn−1 − bAn−1 = (−1)n−1

from which we see that

a(−1)n−1cBn−1 + b(−1)ncAn−1 = c

or

a(−1)n−1cBn−1 + b(−1)ncAn−1 = c .

Thus, a particular solution of (3.25) is given by

x0 = (−1)n−1cBn−1 , y0 = (−1)ncAn−1 .

To find all solutions of (3.25) we assume that x, y is any solution. We must
have

ax+ by = c = ax0 + by0 .

It follows that
a(x− x0) = −b(y − y0) .

Since (a, b) = 1, we must have x− x0 = bt and y − y0 = −at for some integer
parameter t. It is easy to verify that x = x0 +bt, y = y0−at satisfies (3.25) for
any integer t. Thus, we can characterize all solutions of (3.25) by x = x0 + bt,
y = y0 − at, where (x0, y0) is any particular solution and t is any integer.

Of course, to get some idea of how quickly these algorithms execute, we
will need to be able to bound the value of n above. A result usually attributed
to Lamé7 states that if |a|, b < N , then8

n <
log(

√
5N)

log τ
− 1 , where τ =

1 +
√

5
2

.

Hence, we know that these algorithms will execute in polynomial (in logN)
time. In fact, a careful analysis of the runtime for this algorithm, taking
into consideration the fact that the numbers involved become smaller as
the algorithm proceeds, allows us to assert that it executes in O((logN)2)
bit operations.9 The Knuth-Schönhage greatest common divisor (GCD) al-
gorithm10 is based on fast Fourier transform (FFT) multiplication11 and is

3.2 Simple Continued Fractions 49

asymptotically the fastest GCD algorithm known, executing in running time
O(n log2 n log log n), where n = logN . Unfortunately, this algorithm can be
practical only when the inputs are sufficiently large for the FFT multiplica-
tion technique to be efficient. In 2004, Stehlé and Zimmermann12 presented a
binary-type recursive GCD algorithm with the same complexity of the Knuth-
Schönage algorithm. While this new algorithm is much easier to implement
and more practical, its inputs still need to be about 25,000 digits for it to be
comparable in efficiency to the k-ary algorithm of Jebelean13 and Sorenson14

as implemented in the GNU MP (multiprecision) integer arithmetic library.15

Lehmer16 pointed out that for large a and b it is possible to modify the
Euclidean algorithm to make it run faster. Briefly put, the idea is to work with
only single-precision numbers in the divide steps rather than multiprecision
numbers. This is possible because in order to compute �Ri−2/Ri−1�, all that is
usually needed are the leading digits of Ri−2 and Ri−1. The actual technique
is somewhat more complicated than this, but it does improve the execution
time of the algorithm.17 It is remarkable that methods for finding the GCD of
two integers have been resistant to any significant speed-up over the technique
of the basic Euclidean algorithm.18 Indeed, no one has even discovered a way
of effectively parallelizing this or any other GCD algorithm.19

We will now derive some features of the SCF of a real irrational number
φ. As we will need this result later, we mention that by (3.17) and the fact
that φi ≥ 1 (i ≥ 1), we get

θj+1

Qj
>
θi+1

Qi
(3.26)

for j > i ≥ 0. We note that because φi is irrational for all i ≥ 0, the sequence
of partial quotients {qi} must be infinite. Since by (3.6)

φ = [q0, q1, . . . , qi, φi+1] =
φi+1Ai +Ai−1

φi+1Bi +Bi−1
,

we see that

φ− Ai

Bi
=
φi+1Ai +Ai−1

φi+1Bi +Bi−1
− Ai

Bi
=

BiAi−1 −AiBi−1

Bi(φi+1Bi +Bi−1)

=
(−1)i

Bi(φi+1Bi +Bi−1)
(3.27)

by (3.2).
At this point we make a number of observations concerning the sequence

{Bj} (j = −2,−1, 0, . . .). We have B−2 = 1, B−1 = 0, B0 = 1, and B1 =
q1(≥ 1). Since

Bj = qjBj−1 +Bj−2

and qj ≥ 1 for j ≥ 1, we have Bj ≥ 1 (j ≥ 0). Also,

Bj > Bj−1 (j ≥ 2) . (3.28)

50 3 Continued Fractions

Hence,
Bj ≥ Bj−1 (j ≥ 0) .

We also have

φj+1Bj +Bj−1 > qi+1Bj +Bj−1 = Bj+1 (j ≥ 0) .

From this and (3.27) it follows that
∣
∣
∣
∣φ−

Ai

Bi

∣
∣
∣
∣ <

1
BiBi+1

(i ≥ 0) . (3.29)

Thus, as mentioned in the previous chapter, the convergents of the SCF ex-
pansion of φ provide very good rational approximations to the value of φ. We
will now show that as i increases, the convergents Ai/Bi provide successively
better approximations of φ.

We note that in a SCF, we have qi + 1 > φi (i ≥ 0); hence,

φiBi−1 +Bi−2 < (qi + 1)Bi−1 +Bi−2 = qiBi−1 +Bi−2 +Bi−1

= Bi +Bi−1 ≤ qi+1Bi +Bi−1 = Bi+1 (i ≥ 0) .

It follows from (3.27) that
∣
∣
∣
∣φ−

Ai−1

Bi−1

∣
∣
∣
∣ =

1
Bi−1(φiBi−1 +Bi−2)

>
1

Bi−1Bi+1
(i ≥ 1)

and
|Bi−1φ−Ai−1| > 1

Bi+1
> |φBi −Ai| (i ≥ 1) (3.30)

by (3.29). We next see that
∣
∣
∣
∣φ−

Ai

Bi

∣
∣
∣
∣ =

1
Bi
|φBi −Ai| < 1

Bi
|φBi−1 −Ai−1|

≤ 1
Bi−1

|φBi−1 −Ai−1| =
∣
∣
∣
∣φ−

Ai−1

Bi−1

∣
∣
∣
∣ (i ≥ 1) .

Thus, ∣
∣
∣
∣φ−

Ai

Bi

∣
∣
∣
∣ <

∣
∣
∣
∣φ−

Ai−1

Bi−1

∣
∣
∣
∣ for i ≥ 1 . (3.31)

From (3.28) and (3.29), we see that

φ = lim
i→∞

Ai

Bi
.

Thus, any irrational number φ is uniquely expressible, through the process
described at the beginning of this section, as an infinite SCF; that is, we can
write φ as

3.2 Simple Continued Fractions 51

φ = [q0, q1, q2, . . .] ,

where the sequence {qi} is infinite. Furthermore, any such continued fraction
determined by an infinite sequence of partial quotients {qi} which are all
positive for i > 0 must represent an irrational number.

We now prove the following useful theorem.

Theorem 3.1. If a and b are integers, b > 0, and |φb − a| < |φBi − Ai| for
some i ≥ 0, then b ≥ Bi+1.

Proof. Suppose that |φb − a| < |φBi − Ai| for some i ≥ 0 and b < Bi+1. We
will show that this leads to a contradiction. By (3.4) there must exist integers
x and y such that

xBi + yBi+1 = b ,

xAi + yAi+1 = a .

If x = 0, then b = yBi+1, which means that y > 0 and b ≥ Bi+1, a contradic-
tion. If y = 0, then b = xBi and a = xAi; hence, x �= 0 and

|φb− a| = |φxBi − xAi| = |x||φBi −Ai| ≥ |φBi − Ai| ,
another contradiction.

We next show that x and y must have opposite signs. If y < 0, then since
xBi = b − yBi+1, we must have x > 0. If y > 0, then our assumption that
b < Bi+1 means that b < yBi+1 and, therefore, xBi < 0 and x < 0. Since
φi+2 > 0, we see by (3.7) that φBi−Ai and φBi+1−Ai+1 have opposite signs;
hence, both x(φBi−Ai) and y(φBi+1−Ai+1) must have the same sign. Now,
as

φb− a = x(φBi −Ai) + y(φBi+1 −Ai+1) ,

it follows that

|φb − a| = |x(φBi −Ai)|+ |y(φBi+1 −Ai+1)|
> |x(φBi −Ai)| = |x||φBi −Ai| ≥ |φBi −Ai| ,

a contradiction. ��
We can now use this theorem to prove a most important result20 concern-

ing the convergents of the SCF of φ.

Theorem 3.2. Suppose that a, b ∈ Z and b > 0. If |φ − a/b| < 1/2b2, then
a/b must be a convergent in the SCF expansion of φ.

Proof. Since b > 0, by (3.28) there must exist some integer i ≥ 0 such that

Bi ≤ b < Bi+1 .

By Theorem 3.1, we must have

1
2b

> |φb − a| ≥ |φBi −Ai| .

52 3 Continued Fractions

Clearly, if a/b �= Ai/Bi, then |bAi − aBi| ≥ 1. Hence,

1
bBi

≤ |bAi − aBi|
bBi

=
∣
∣
∣
∣
Ai

Bi
− a

b

∣
∣
∣
∣

≤ |φBi −Ai|
Bi

+
∣
∣
∣φ− a

b

∣
∣
∣

<
|φb − a|
Bi

+
1

2b2

<
1

2bBi
+

1
2b2

.

However, this means that b < Bi, contradicting the selection of Bi. ��
We see, then, that not only do the convergents of the SCF expansion of a

real number φ provide very good rational approximations of φ, but if we have
a very good rational approximation to φ, it must be such a convergent. We
will see how this is applicable to the problem of solving the Pell equation in
the next section.

To get some idea of how we will proceed, we conclude this section with
the following result.

Theorem 3.3. If x, y,D, n ∈ Z; D,x, y > 0;
√
D �∈ Q; |n| < √D; and

x2 −Dy2 = n ,

then x/y is a convergent in the SCF expansion of
√
D.

Proof. We first consider the case of n > 0. Here we have x − √Dy > 0 and
x+

√
Dy > 2

√
Dy. Hence,

0 < x−
√
Dy =

n

x+
√
Dy

<

√
D

2
√
Dy

=
1
2y

,

∣
∣
∣
∣
x

y
−
√
D

∣
∣
∣
∣ <

1
2y2

and the result holds by Theorem 3.2.
When n < 0, we get

Dy2 − x2 = |n|
and

y2 − 1
D
x2 =

|n|
D

with y > (1/
√
D)x. Since

y − 1√
D
x =

|n|
D(y + x/

√
D)

<
|n|

2D(x/
√
D)

<
1
2x

,

3.3 Simple Continued Fractions of Quadratic Irrationals 53

we get ∣
∣
∣
∣
y

x
− 1√

D

∣
∣
∣
∣ <

1
2x2

.

Thus, y/x must be a convergent in the SCF expansion of 1/
√
D and the

theorem follows. ��

3.3 Simple Continued Fractions of Quadratic Irrationals

In this section we will develop some of the properties of SCF expansions of real
quadratic irrationals. Such numbers can be represented as φ = (P +

√
D)/Q,

where P,Q,D ∈ Z, D > 0,
√
D �∈ Q, and Q | D − P 2. We first require a very

simple result.

Proposition 3.4. If φ is a quadratic irrational defined as above and if for
some j in the SCF expansion of φ the complete quotient φj (> 1) satisfies
φj < 0, then −1 < φj+1 < 0.

Proof. Since

φj+1 =
1

φj − qj ,

we have

φj+1 =
1

φj − qj
.

The result follows easily by noting that qj = �φj� ≥ 1 and φj < 0. ��
From this we can easily prove some useful results concerning the integers

Pi and Qi for i ≥ j. If φj > 1 and φj < 0, then, by induction, φi > 1 and
φi < 0 for all i ≥ j. This means that φi = (Pi +

√
D)/Qi > 1 and −φi =

(
√
D − Pi)/Qi > 0. By adding these we get 2

√
D/Qi > 1 or 0 < Qi < 2

√
D.

Also, we see that Pi <
√
D. If i > j, then φi = (Pi−

√
D)/Qi > −1, and since

φi > 1, we get 2Pi/Qi > 0 or Pi > 0.
Thus, if i > j, we have

{
0 < Qi < 2

√
D ,

0 < Pi <
√
D .

(3.32)

We also observe that since ψi = (Pi +
√
D)/Qi−1, we have

ψi <
2
√
D

Qi−1
, (3.33)

54 3 Continued Fractions

and since

ψi = qi−1 +
√
D − Pi−1

Qi−1
= qi−1 +

(√
D + Pi−1

Qi

)−1

,

we get

ψi > 1 +
Qi

2
√
D
. (3.34)

We now address the question of whether we ever find some j for which
φj < 0.

Theorem 3.5. If in the SCF expansion of the quadratic irrational φ = (P +√
D)/Q we get

Bj−2Bj−1 >
|Q|

2
√
D
,

then φj < 0.

Proof. Since the Bi increase without bound, there must be some j for which
Bj−2Bj−1 > |Q|/(2

√
D). From (3.19), we have

φj =
−Bj−2 + (−1)jθj+1

−1

Bj−1
, (3.35)

where θj+1 = Aj−1 −Bj−1φ. Now,

(−1)jθj+1 = (−1)j(Aj−1 −Bj−1φ) + (−1)jBj−1(φ− φ)

= (−1)j(Aj−1 −Bj−1φ) + (−1)jBj−1(2
√
D/Q) .

By (3.29) we know that |Aj−1−Bj−1φ| < 1/Bj. Also, as observed in the proof
of Theorem 3.1, we know that for i = 0, 1, 2, . . . , the quantities Ai−1 −Bi−1φ
and Ai − Biφ have opposite signs. Since A0 − B0φ = q0 − φ0 is negative, it
follows that sign(Aj−1 −Bj−1φ) = (−1)j .

Clearly, if (−1)jθj+1 < 0, then φj < 0 by (3.35). Suppose (−1)jθj+1 > 0.
If (−1)jQ < 0, then

1
Bj−2

≥ 1
Bj

> |Aj−1 −Bj−1φ| > Bj−1

(
2
√
D

|Q|

)

,

but since Bj−2Bj−1 > |Q|/(2
√
D), this is a contradiction. If (−1)jQ > 0, then

(−1)jθj+1 > Bj−1
2
√
D

|Q| >
1

Bj−2
;

hence, φj < 0 by (3.35). ��

3.3 Simple Continued Fractions of Quadratic Irrationals 55

We also have the following results which will be useful later.

Theorem 3.6. If Q0 > 0 and φm−1 > 0 (m ∈ Z>0), then |θm| ≤ 1.

Proof. This result is trivially true for m = 1. If m = 2, then since θ2 = ψ1,
ψ1 = −1/φ1, and φ1 = 1/(φ0 − q0), we see that ψ1 < 0 and ψ1 = q0 − φ0 >
φ0 − φ0 − 1 = 2

√
D/Q0 − 1 > −1. Hence, |θ2| < 1. If m ≥ 3, then by (3.35)

we have

φm−1 =
−Bm−3 + (−1)m+1θ−1

m

Bm−2
> 0 .

It follows that
(−1)m+1θ−1

m > Bm−3 ≥ 1 .

Thus, |θ−1
m | > 1 and |θm| < 1. ��

Note that if t is the least positive integer such that φt < 0, then since
0 < Qt < 2

√
D, |Pt| <

√
D, and QtQt−1 = D − P 2

t , we either have

0 < Qt <
√
D or 0 < Qt−1 <

√
D .

Thus, there must exist some least positive integer m such that

0 < Qm−1 <
√
D

and m− 1 ≤ t.

Theorem 3.7. If Q0 > 0 and m (≥ 1) is defined as above, then |θm| < 2.

Proof. If m = 1, the result is trivial. If m = 2, then since Q0 >
√
D and

D − P 2
1 = Q0Q1 > 0, we get |P1| <

√
D. Also, θ2 = ψ1 = (P1 +

√
D)/Q0;

hence, |θ2| ≤ 2
√
D/Q0 < 2. If m ≥ 3 and φm−1 > 0, then |θm| < 1 by

Theorem 3.6. If m ≥ 3, φm−1 < 0 and φm−2 < 0, we get t ≤ m − 2, which
is impossible because t ≥ m − 1. Hence, φm−2 > 0 and |θm−1| ≤ 1. Since
φm−1 < 0, we get |Pm−1| <

√
D and Qm−2 > 0. Thus, Qm−2 >

√
D, which

means that

|ψm−1| = |Pm−1 +
√
D|

Qm−2
< 2

and |θm| = |ψm−1θm−1| < 2. ��
From this result we know that φj < 0 for some j. Also, by (3.32), once

this happens we also know that the values of Pi and Qi are bounded for all
i > j. This means that there can only be a finite number of distinct complete
quotients φi for i > j. Thus, as there exist infinitely many complete quotients,
for some minimal k and p (> 0), we must have

φk+p = φk .

However, since qi = �φi�, we see by (3.2) and induction that

56 3 Continued Fractions

φm+p = φm, qm+p = qm,

for all m ≥ k; that is, the infinite sequence of complete (and partial) quotients
in the SCF expansion of any quadratic irrational must ultimately be periodic.
(Also, if the SCF expansion of any irrational φ is periodic, then φ must be a
quadratic irrrational.) We often represent this by the notation

φ = [q0, q1, . . . , qk−1; qk, qk+1, . . . , qk+p−1] ,

where the bar is placed over the periodic part of the sequence of partial quo-
tients. The ordered set of partial quotients {q0, q1, . . . , qk−1} is called the
preperiod and the ordered set {qk, qk+1, . . . , qk+p−1} is called the period of
the SCF expansion. The value of k is called the length of the preperiod and
the value of p is called the length of the period. Certain semiregular continued
fraction expansions of quadratic irrationals are also periodic. For example,
Hurwitz21 showed that this is the case for both the nearest integer continued
fraction and the singular continued fraction.

Of particular interest are those real quadratic irrationals φ which have no
preperiod (k = 0). Such continued fractions are said to be purely periodic. If
φ has a purely periodic expansion, then

φ = [q0, q1, . . . , qn]

and p = n+ 1. Hence, φ can be written as

φ = [q0, q1, . . . , qn, φ] ,

and by (3.6),

φ =
φAn +An−1

φBn +Bn−1
.

It follows that if

F (x) = x2Bn + x(Bn−1 −An)−An−1 ,

then F (φ) = 0 and the only other zero of F (x) is φ.
Now, because φ has a purely periodic expansion, we must have q0 ≥ 1

because q0 = qn+1 ≥ 1. Thus, φ > 1. We note, however, that F (0) = −An−1 <
0 and F (−1) = Bn−Bn−1 +An−An−1 > 0; hence, F (x) has a zero between
−1 and 0. This can only be φ. Hence,

−1 < φ < 0, φ > 1 . (3.36)

Thus, if φ is a quadratic irrational with a purely periodic SCF, it satisfies
(3.36).

Now, suppose φ (= φ0) satisfies (3.36); then we know by Proposition 3.4
that φi satisfies (3.36) for all i ≥ 0. We must have some j and k (k > j) such
that φj = φk, but by (3.2), this means that

3.3 Simple Continued Fractions of Quadratic Irrationals 57

qj−1 − qk−1 = φk−1 − φj−1 .

Since |φk−1 − φj−1| < 1, we can only have qj−1 = qk−1 and φj−1 = φk−1 by
(3.2). By induction, we will finally get φ = φ0 = φk−j . Thus, we have proved
the following theorem.

Theorem 3.8. The SCF expansion of the real quadratic irrational φ is purely
periodic if and only if φ satisfies (3.36).

As we mentioned in §1.3, the problem of determining the fundamental
solution t, u of the Pell equation can be reduced to the problem of determining
ε, the fundamental solution of (1.10). We will now show how ε can be found by
making use of continued fractions. We point out that the technique about to
be described will find ε for D ∈ S = {2, 3, 5, 8, 12}, but it is more convenient
simply to present these values of ε in Table 3.1 and assume that D �∈ S in
what follows.

Table 3.1. ε for D ≤ 5

D ε σ1

2, 8 1 +
√

2 −1

3, 12 2 +
√

3 1

5 1 +
√

5

2

−1

We first note that if (1.10) is solvable for X ≡ DY ≡ 1 (mod 2), then
D ≡ 1 (mod 4). For a given D, we define s and q as follows:

s =
{

2 if 4 | D or D ≡ 1 (mod 4)
1 otherwise ,

q =
{

0 if D �≡ 1 (mod 4)
1 if D ≡ 1 (mod 4) .

We put

δ =
q +

√
D

s
> 1

and observe that N(δ) ∈ Z and ε = w1 + δz1, where

w1 =
x1 − qy1

2
, z1 =

sy1
2

are both integers. We next see that (1.10) becomes

εε = σ1

58 3 Continued Fractions

or
(w1 + δz1)(w1 + δz1) = σ1 .

Since δ + δ = 2q/s = q, we can write this as

(w1 + δz1)(w1 + qz1 − δz1) = σ1 ;

hence,
|w1 + qz1 − δz1| = |w1 + δz1|−1 . (3.37)

Since x1
2 − Dy1

2 = 4σ1, we have x1
2 ≥ Dy1

2 − 4 > 5y12 − 4 ≥ y1
2. It

follows that x1 > (s − 1)y1 and w1, z1 > 0. Also, since δ > 2, we have
ε = w1 + δz1 > 2z1. From this we can deduce the following inequality from
(3.37): ∣

∣
∣
∣
w1 + qz1

z1
− δ

∣
∣
∣
∣ <

1
2z12

.

By Theorem 3.2, we see that (w1 + qz1)/z1 must be a convergent in the SCF
expansion of δ; that is, if

δ = φ0 = [q0, q1, . . . , qi, φi+1] ,

Q0 = s, and P0 = q, then
w1 + qz1

z1
=
An

Bn

for some minimal n (≥ 0). Since (w1, z1) = 1, we must have z1 = Bn, w1 +
qz1 = An, from which we see that w1 = An−qBn and sw1+qz1 = sAn−qBn =
Gn. By (3.13) we get

σ1 =
(−1)n+1Qn+1

s
.

Since φ0 = δ > 1 and δ < 0, we have (3.32) satisfied for all i ≥ 0. Hence,
σ1 = (−1)n+1 and Qn+1 = s. Since Qn+1 | D − Pn+1

2, we have Pn+1 ≡
−q (mod s). If we put Pn+1 = sS− q, then because 0 < (

√
D−Pn+1)/s < 1,

we get S = �δ� = q0 and Pn+1 = sq0 − q = P1 �= q = P0 because δ > 2.
Hence, qn+1 = 2q0 − q and Pn+2 = sqn+1 − Pn+1 = sq0 − q = P1. Thus, since
Pn+2 = P1 and Qn+2 = (D − Pn+2

2)/Qn+1 = (D − P1
2)/Q0 = Q1, we see

that the period length of the SCF expansion of δ is n+ 1 and the preperiod
consists of only q0. We therefore have

δ = [q0; q1, q2, . . . , qp] ,

where p = n+ 1. Also,

ε =
Gp−1 +

√
DBp−1

s
= θp+1 .

The minimality condition on ε guarantees that there cannot be a period of
smaller length than p.

3.3 Simple Continued Fractions of Quadratic Irrationals 59

We now have the following algorithm for finding ε. Put P0 = q, Q0 = s,
q0 = �(√D + q)/s�, B−1 = 0, B0 = 1, G−1 = s and G0 = sq0 − q. Use the
recurrences

Pi+1 = qiQi − Pi ,

Qi+1 =
D − Pi+1

2

Qi
,

qi+1 =

⌊
Pi+1 +

√
D

Qi

⌋

,

Gi+1 = qi+1Gi +Gi−1 ,

Bi+1 = qi+1Bi +Bi−1 (from (3.3))

for i = 0, 1, 2, . . . until we find the least positive p for which Qp = s. Then

ε =
Gp−1 +

√
DBp−1

s
and σ1 = (−1)p .

The determination of �(Pi+1 +
√
D)/Qi� might be considered troublesome

because
√
D is not an integer, but it is easy to show that for any real number

ρ and any positive integer m that �ρ/m� = ��ρ�/m�. Hence, we have
⌊
Pi +

√
D

Qi

⌋

=

⌊
Pi + �√D�

Qi

⌋

.

Example 3.9. Find ε when D = 46.
Here D �≡ 1 (mod 4) and q = 0, s = 1, φ = δ =

√
46, and �√46� = 6. We

begin with P0 = 0, Q0 = 1, q0 = 6, B−1 = 0, B0 = 1, G−1 = 1, and G0 = 6.
We use the formulas above to produce Table 3.2.

Table 3.2. Computing ε when D = 46

n Pn Qn qn Gn Bn

1 6 10 1 7 1

2 4 3 3 27 4

3 5 7 1 34 5

4 2 6 1 61 9

5 4 5 2 156 23

6 6 2 6 997 147

n Pn Qn qn Gn Bn

7 6 5 2 2150 317

8 4 6 1 3147 464

9 2 7 1 5297 781

10 5 3 3 19038 2807

11 4 10 1 24335 3588

12 6 1 (= s)

Hence, in this case we get p = 12, σ1 = 1, and

ε = 24335 + 3588
√

46 .

Also, by the results in Table 1.1 we know that t+u
√

46 = ε, so t = 24335 and
u = 3588.

60 3 Continued Fractions

Of course, it is clear that we can rewrite the Pell equation as

(2T)2 − (4D)U2 = 4 .

If we replace D by 4D, we get s = 2, q = 0, and δ =
√
D. Thus, we can find

the solution (t, u) of the Pell equation by simply developing the continued
fraction expansion of

√
D until we find Qp = 1. However, there are cases in

which, for a given D, it is more convenient to solve for ε than to find (t, u) as
described by this process. We illustrate this in the next example.

Example 3.10. Find ε when D = 541.
In this case, we haveD ≡ 1 (mod 4) and δ = (1+

√
541)/2. Here, �√541� = 23

and P0 = 1, Q0 = 2, q0 = 12, B−1 = 0, B0 = 1, G−2 = 2, and G0 = 23. We
now produce the values in Table 3.3.

Table 3.3. Computing ε when D = 541

n Pn Qn qn Gn Bn

1 23 6 7 163 7

2 19 30 1 186 8

3 11 14 2 535 23

4 17 18 2 1256 54

5 19 10 4 5559 239

6 21 10 4 23492 1010

7 19 18 2 52543 2259

8 17 14 2 128578 5528

9 11 30 1 181121 7787

10 19 6 7 1396425 60037

11 23 2 (= s)

Here, we have p = 11, σ = (−1)11 = −1, and

ε =
1396425 + 60037

√
541

2
.

Referring to Table 1.1, we see that

t+ u
√

541 = ε6 ;

hence, the fundamental solution of the Pell equation T 2−541, U2 = 1 is given
by

t = 3707453360023867028800645599667005001

3.3 Simple Continued Fractions of Quadratic Irrationals 61

and

u = 159395869721270110077187138775196900 .

If we were to solve this equation by employing the SCF expansion of
√

541,
we would get a fundamental solution of T 2 −DU2 = −1 and p = 39.

We conclude this series of examples with a discussion of the Cattle Problem.

Example 3.11. The Cattle Problem.
As mentioned in Chapter 2, the Cattle Problem reduces to that of solving the
Pell equation

T 2 −DU2 = 1 (3.38)

for D = 410286423278424. We could solve this by finding the SCF expansion22

of
√
D, but as the period length23 is 203254, this would take a great deal of

effort. In 1880, Amthor24 noted that

D = (9314)24729494 .

Thus, he could make use of ideas similar to those presented in §1.4 to solve
(3.38) by first solving

T 2 −D0U
2 = 1 ,

where D0 = 4729494. The period length of the SCF expansion of
√
D0 is only

92, and for this equation we get

t = 109931986732829734979866232821433543901088049

and

u = 50549485234315033074477819735540408986340 .

We now need to find n such that the fundamental solution (t′, u′) of (3.38) is
given by

t′ + u′
√
D = (t+ u

√
D0)n .

We know that f = 9314 and n = ω(f/g), where g = (f, u) = 2. Thus,
n = ω(4657). Since 4657 is a prime and (D0/4657) = −1, we know that
ω(4657) | 4658. In fact, Amthor found that ω(4657) = 2329. Hence,

t′ + u′
√
D = (t+ u

√
D0)2329 .

Amthor was unable to complete the solution of the Cattle Problem because
the value of u′ is approximately 1.86 × 10103265. The total number of cattle
was finally computed25 in 1965 by making use of a computer; it was later
published by Nelson26 in 12 pages of fine print. Vardi27 has given a very
elegant representation of the total number of cattle as

62 3 Continued Fractions

⌈
25194541
184119142

(
109931986732829734979866232821433543901088049

+ 50549485234315033074477819735540408986340
√

4729494

)4658
⌉

and Lenstra28 has presented a short table which describes all possible solutions
for each herd of cattle. The least possible number of cattle on the Thrinacian
isle is approximately 7.76 × 10206544, an enormous figure, which Archimedes
could not possibly have known.

The SCF method of solving the Pell equation had been pretty well de-
veloped by the time of Euler and Lagrange. Subsequent to its development,
several authors, starting with Legendre in 1798, produced tables of values of
t and u for values of D in certain ranges. These tables were described by
Lehmer.29 This work culminated in an unpublished table of Lehmer30 in 1926
which dealt with all non-square D in the range 1700 < D ≤ 2000. At this
point, (1.7) had been solved for all positive non-square D < 2000. Consid-
ering that all of these tables had been produced by hand calculation, it is
not difficult to see why this was about as much as could be done for several
years. In 1941 and more extensively in 1955, Patz31 produced tables of the
SCF of

√
D for all non-square values of D such that 1 < D < 10000, but he

did not compute t and u for each D. Finally, in 1961 Kortum and McNeil32

used a computer to produce a very large table, giving, among other things,
the SCF of

√
D and the least solution of T 2 −DU2 = ±1 for all non-square

D such that 1 < D < 10000. For reasons that will become clear later, no
further tables of Pell equations have ever been published. It should, however,
be mentioned that before the advent of computers, several authors attempted
to solve certain Pell equations for values of D in excess of 2000. One of the
more inpressive of these is the solution for D = 9817 by Martin33 in 1877.
Not only is his solution correct, but the value of t is a number of 97 decimal
digits.

At this point it may appear to the reader that the problem of solving the
Pell equation has been solved. This is certainly the case for D < 10000, but
there are many questions left outstanding. For example, how large does p get
for a certain size of D? This is important to know in order to determine the
computational complexity of solving (1.7) by the continued fraction method.
Also, associated with this problem is that of bounding the size of t and u for
a given D. This is important for giving us information about just how likely
we can actually solve (1.7) for large values of D. Are there faster ways than
the continued fraction method for solving (1.7)? For what size of D can we
expect to be able to solve the Pell equation? We will attempt to answer all of
these questions and more in the subsequent chapters of this book. However,
just to motivate this discussion further, we mention that if

D = 990676090995853870156271607886 ,

the value of t is a number consisting of over 2 × 1015 decimal digits, whereas
the solutions of the Cattle Problem are numbers of just over 2× 105 digits.

3.4 Some Special Results 63

3.4 Some Special Results

Because of the importance of simple continued fractions in solving the Pell
equation, we will provide some further results concerning these objects. We
first mention that the development of the SCF of any quadratic irrational
φ = (P +

√
D)/Q can be made more efficient by the use of what has become

known as Tenner’s34 modification to the expansion technique given earlier.
We first define Q−1 = (D−P 2)/Q. We let Ri−1 be the remainder on dividing
the integer Pi−1 + �√D� by Qi−1. Since

Pi−1 + �
√
D� = qi−1Qi−1 +Ri−1 ,

we get
Pi = qi−1Qi−1 − Pi−1 = �

√
D� −Ri−1 .

Also,

Qi =
D − Pi

2

Qi−1
=
D − (qi−1Qi−1 − Pi−1)2

Qi−1

=
(D − Pi−1

2)
Qi−1

− qi−1
2Qi−1 + 2Pi−1qi−1

= Qi−2 − qi−1(Pi − Pi−1) (i ≥ 1) .

Thus, we can now find φi from φi−1 by dividing Pi−1 + �√D� by Qi−1 and
obtaining the quotient qi−1 and remainder Ri−1. Then

Pi = �
√
D� −Ri−1

and

Qi = Qi−2 − qi−1(Pi − Pi−1) .

As most computers provide both the quotient and the remainder on a simple
divide instruction, this means that (ignoring the cost of a subtraction) we
replace a process for finding φi from φi−1 which requires 2 divides, 1 multiply,
and 1 squaring by one that requires only 1 divide and 1 multiply (usually by
a small number; see the latter part of this section).

We have seen that in the SCF expansion of φ0, it is a simple matter to
determine φi from φi−1; however, if φ0 > 1 and φ0 < 0, then we can also
determine φi−1, given only φi (i > 1). We do this by noting that

Qi−1 =
D − Pi

2

Qi

and
Pi +

√
D

Qi−1
=
qi−1Qi−1 − Pi−1 +

√
D

Qi−1

= qi−1 +
√
D − Pi−1

Qi−1
.

64 3 Continued Fractions

Since, by Proposition 3.4, 0 < −φi−1 = (
√
D − Pi−1)/Qi−1 < 1 (i > 1),

we get

qi−1 =

⌊
Pi + �√D�

Qi−1

⌋

(i > 1) . (3.39)

With this information, we find Pi−1 by

Pi−1 = qi−1Qi−1 − Pi .

The Tenner variant of this process is to let R′
i−1 be the remainder on dividing

Pi + �√D� by Qi−1. Then by using reasoning similar to that used earlier, we
get

Qi−1 = Qi+1 − qi(Pi − Pi+1) ,

qi−1 =

⌊
Pi + �√D�

Qi−1

⌋

,

Pi−1 = �
√
D� −R′

i−1 .

We now discuss some properties of the SCF of special values of φ = (P +√
D)/Q, where

1. Q | 2P
2. φ < �φ� − 1.

Notice that both δ and
√
D satisfy these conditions. In Examples 3.9 and

3.10, we saw that the values of Qi, Pi, and qi (i = 1, 2, . . . , p) are symmetric
around �p/2�. This is a consequence of the following theorem.

Theorem 3.12. In the SCF expansion of φ satisfying properties (1) and (2)
above, we have

Qp−i = Qi ,

Pp−i = Pi+1

for 0 ≤ i < p, where p is the period length. Also, if 0 < i < p, then

qp−i = qi .

Proof. Put P0 = P , Q0 = Q. We know that φ1 > 1, and since φ0 < �φ0� − 1,
we know that −1 < φ1 < 0; hence, the SCF expansion of φ1 is purely periodic
by Theorem 3.8 and (3.39) must hold. It follows that for the period length p,
we have φp+i = φi for i ≥ 1 and

φ = [q0, q1, q2, . . . , qp] .

Since φp+1 = φ1, we get Pp+1 = P1, Qp+1 = Q1. Now,

Qp+1Qp = D − Pp+1
2 = D − P1

2 = Q1Q0 ;

3.4 Some Special Results 65

hence, Qp = Q0. Also, since P1 = q0Q0 − P0 and Pp+1 = qpQp − Pp, we
have P0 ≡ Pp (mod Q0). However, we know by property (1) that P0 ≡
−P0 (mod Q0) and, therefore, P0 ≡ −Pp (mod Q0). Let Pp = mQ0−P0. Since
−1 < φp < 0, we get m = �(P0 +

√
D)/Q0� = q0 and Pp = q0Q0 − P0 = P1.

We now have Pp = P1 and Qp = Q0. From this we see that the theorem is
true for p = 1. Suppose p > 1. Since

Qp−1 =
D − Pp

2

Qp
=
D − P1

2

Q0
= Q1 ,

we find by (3.39) that

qp−1 =

⌊
Pp +

√
D

Qp−1

⌋

=

⌊
P1 +

√
D

Q1

⌋

= q1

and
Pp−1 = qp−1Qp−1 − Pp = q1Q1 − P1 = P2 .

Thus, the result is true for i = 0, 1. Suppose next that Qp−i = Qi, Pp−i =
Pi+1, and qp−i = qi for some i such that 0 < i < p. Then

Qp−i−1 =
D − Pp−i

2

Qi−1
=
D − Pi+1

2

Qi
= Qi+1 .

If i+ 1 < p, then, by (3.39),

qp−i−1 =

⌊
Pp−i +

√
D

Qp−i−1

⌋

=

⌊
Pi+1 +

√
D

Qi+1

⌋

= qi+1

and

Pp−i−1 = qp−i−1Qp−i−1 − Pp−i

= qi+1Qi+1 − Pi+1

= Pi+2 .

Thus, the theorem follows by induction on i. ��
Theorem 3.13. Let p be the period length of the SCF expansion of φ satisfy-
ing conditions (1) and (2) above. If p = 2t, then Pt = Pt+1 and

Gp−1 = GtBt−1 +Gt−1Bt−2 ,

Bp−1 = Bt−1(Bt +Bt−2) ;

if p = 2t+ 1, then Qt = Qt+1 and

Gp−1 = GtBt +Gt−1Bt−1 ,

Bp−1 = Bt
2 +Bt−1

2 .

66 3 Continued Fractions

Proof. If p = 2t, then by Theorem 3.12,

Ap−1

Bp−1
= [q0, q1, . . . , qt−1, qt, qt−1, . . . , q1] .

By (3.5), we have

[qt, qt−1, . . . , q1] =
Bt

Bt−1
,

and by (3.6),

Ap−1

Bp−1
=

(Bt/Bt−1)At−1 +At−2

(Bt/Bt−1)Bt−1 +Bt−2
=
BtAt−1 +Bt−1At−2

BtBt−1 +Bt−1Bt−2
.

If u is any prime such that u | BtAt−1+Bt−1At−2 and u | BtBt−1+Bt−1Bt−2,
then, by (3.4), it is easy to see that u | Bt and u | Bt−1, which by (3.4) is
impossible. Hence,

Ap−1 = BtAt−1 +Bt−1At−2 = AtBt−1 +At−1Bt−2 by (3.4)

and
Bp−1 = Bt−1(Bt +Bt−2) .

From the definition of Gi, it is easy to show via the above two results that

Gp−1 = GtBt−1 +Gt−1Bt−2 .

If p = 2t+ 1, then

Ap−1

Bp−1
= [q0, q1, q2, . . . , qt−1, qt, qt, qt−1, . . . , q1]

=
(Bt/Bt−1)At +At−1

(Bt/Bt−1)Bt +Bt−1
=
AtBt +At−1Bt−1

Bt
2 +Bt−1

2 .

By using (3.4), it is easy to show that (Bt
2 + Bt−1

2, AtBt + At−1Bt−1) = 1
and, therefore,

Ap−1 = AtBt +At−1Bt−1 ,

Bp−1 = Bt
2 +Bt−1

2 .

We can then easily deduce from the definition of Gi that

Gp−1 = GtBt +Gt−1Bt−1 .

��
In the next theorem we will require the following lemma.

3.4 Some Special Results 67

Lemma 3.14. If in the SCF expansion of φ we have Pk = Pk+1 (k ≥ 0), then

Gk−1
2 +DBk−1

2 = Qk(GkBk−1 +Gk−1Bk−2)
2Gk−1 = Qk(Bk +Bk−2) .

If Qk = Qk+1 (k ≥ 0), then

Gk−1Gk +DBkBk−1 = Qk+1(GkBk +Gk−1Bk−1) ,

GkBk−1 +Gk−1Bk = Qk+1(Bn
2 +Bk−1

2) .

Proof. These can be easily verified by making use of (3.12), (3.14), and (3.3).
For example, to verify that Gk−1Gk +DBkBk−1 = Qk+1(GkBk +Gk−1Bk−1)
when Qk = Qk+1, we note that by (3.12) and (3.14),

Gk−1Gk +DBkBk−1 = Gk(BkQk − Pk+1Bk−1)
+Bk−1(Pk+1Gk +Qk+1Gk−1)

= QkGkBk +Qk+1Gk−1Bk−1

= Qk+1(GkBk +Gk−1Bk−1) .

��
Theorem 3.15. If in the SCF expansion of δ we get Pk = Pk+1, for some
minimal k ≥ 1, then p = 2k; if we get Qk = Qk+1 for some minimal k ≥ 0,
then p = 2k + 1.

Proof. By the symmetry properties in Theorem 3.12, we may assume that
k ≤ �p/2� = t. If k �= t, then k < t and k + 2 ≤ t+ 1. By (3.34) and (3.17),
we note that

θk+1 < θt+1 .

Also, since |ψi| = 1/φi < 1 (i = 0, 1, 2, . . .), we get, by (3.17),

1 ≥ |θk+1| > |θk+2| ≥ |θt+1| > |θt+2| ;

hence,
1 ≤ |θk+1|−1 < |θk+2|−1 ≤ |θt+1|−1 < |θt+2|−1 .

It follows that θk+1/|θk+1|, θk+1/|θk+2| > 1 and each is less than either
θt+1/|θt+1| or θt+1/|θt+2|. By the definition of θj , (3.19), Theorem 3.13, and
Lemma 3.14, we see that

ε =
{
θt+1/|θt+1| when Pt = Pt+1

θt+1/|θt+2| when Qt = Qt+1 .

However, if Pk = Pk+1, then |N(θk+1/|θk+1|)| = 1, which by Lemma 3.14
means that we have a solution to (1.10) for σ = N(θk+1/|θk+1|). IfQk = Qk+1,
then by (3.18), we get

68 3 Continued Fractions

|N(θk+1/|θk+2|)| = |N(θk+1)/N(θk+2)| = Qk/Qk+1 = 1

and we have a solution to (1.10) for σ = N(θk+1/|θk+2|).
In either case we get a solution (x, y, σ) for (1.10) such that 1 < (x +

y
√
D)/2 < ε. By definition of ε, this is impossible. ��
This means that we have a faster way of finding ε than by going though

the entire period of the SCF of δ. We need only go as far as t where either
Pt = Pt+1 or Qt = Qt+1. If we return to Example 3.9, we see that P6 = P7;
hence, p = 12 and t = 6. We get

G11 = 23 · 997 + 156 · 9 = 24335 ,
B11 = 23(147 + 9) = 3588 .

In Example 3.10, we see that Q5 = Q6 and p = 11, t = 5. Here,

G10 = 5559 · 239 + 1256 · 54 = 1396425 ,

B10 = 2392 + 542 = 60037 .

It is possible to deduce by elementary reasoning35 that the period length
of the SCF expansion of δ (or

√
D) is bounded by

p = O(
√
D logD) .

By using results in §5.3 and §9.5 it is possible to produce a more precise
bound,36 but in order to do so we will need some preliminary results. We
begin by examining the well-known sequence {Fn} of Fibonacci, where F0 =
0, F1 = 1, and Fj+1 = Fj + Fj−1 (j = 1, 2, . . .).

Now, as is well known, Fi can be represented in closed form by the Binet
formula Fi = (τ i − τ i)/

√
5, where τ = (1 +

√
5)/2. Since τ + τ = 1 and

τ−τ =
√

5, we have τ2−τ2 =
√

5. Also, since τ = −τ−1, we have −1 < τ < 0;
hence, 0 < τ2i ≤ τ2 < τ2,

τ2 − (−1)i−1τ2i ≥
√

5 ,

and
τ i+1 − τ i+1 ≥

√
5τ i−1 (i ≥ 1) .

Thus,
Fi+1 ≥ τ i−1 .

We now establish the following simple proposition.

Proposition 3.16. Consider the SCF expansion of δ and let θj be defined as
in §3.1. We have

θm+i > Fi+1θm ,

where i,m ≥ 1.

3.4 Some Special Results 69

Proof. Since ψm > 1 (see (3.34)), we see that the result holds for i = 1
(F2 = 1). Now,

ψm+1ψm = ψm
Pm+1 +

√
D

Qm

= ψm
qmQm − Pm +

√
D

Qm

= ψmqm +
(
√
D − Pm)(

√
D + Pm)

QmQm−1

= ψmqm + 1 .

Since m ≥ 1, we have qm ≥ 1 and ψmψm+1 > 2; thus, the result holds for
i = 2. That it holds for all i ≥ 3 follows by using

θj = qj−2θj−1 + θj−2 ≥ θj−1 + θj−2

and mathematical induction. ��
If we now put i = n− 1 and m = 1 in Proposition 3.16, we get

θn > Fn ≥ τn−2 ;

hence,
log θn > (n− 2) log τ

or
n <

log θn

log τ
+ 2 . (3.40)

Since 1/ log τ < 2.078087, we get, on putting n = p+ 1,

p < 2.078087 logθp+1 + 1 .

To get a better idea of how p and log θp+1 usually relate, we appeal to a
result from the metrical theory of continued fractions.37 We will now review
some results from this theory that will be of importance to us later. If

φ = [q0, q1, . . . , qj , φj+1] ,

then t = φ − q0 = [0, q1, . . . , qj , φj+1]. Since 0 ≤ t < 1, we may confine
ourselves to the study of the SCF of t for 0 ≤ t < 1. We use φj+1(t) to denote
φj+1 above.

Theorem 3.17 (Khintchine-Lévy38). For almost all real t such that 0 ≤
t < 1, we have

lim
n→∞

(
n∏

i=1

φi

)1/n

= eλ ,

where φi = φi(t) and λ = π2/(12 log 2) ≈ 1.186569.

70 3 Continued Fractions

From (3.17) and the fact that Qi is bounded in the SCF expansion of
t = δ − �δ�, we see that this means that we would expect that

log θp+1 ≈ pλ , (3.41)

or
p ≈ 1

λ
log θp+1 ≈ 0.842766 logθp+1 .

For example, if D = 26437680473689, the value of p in the SCF expansion39

of δ is 18334815 and log θp+1 = 21737796.43. In this case we get
p

log θp+1
= 0.84345 .

However, it must be emphasized that Theorem 3.17 is not true for all real t.
Indeed, there are many values of D for which it is not true for δ − q0. For
example, consider D = M2 +1, where 2 � M . In this case it is easy to see that
δ =

√
D and φi = M +

√
D (i = 1, 2, . . .). Hence,

lim
n→∞

(
n∏

i=1

φi

)1/n

= M +
√
D �= eλ .

Another useful result from the metrical theory is the Gauss-Kuz’min the-
orem.

Theorem 3.18 (Gauss-Kuz’min40). As before, we let 0 ≤ t < 1 and let
y ≥ 1 be a given real number. If Pr(φj+1(t) > y) denotes the probability that
φj+1(t) > y (j ≥ 0), then

Pr(φj+1(t) > y) =
log(1 + 1/y)

log 2
+O(qj) ,

where q is some real number such that 0 < q < 0.76.

If we put y = 10, we see that we would expect in the SCF of any t that
φj > 10 for about 13.75% of the j values. In other words, most of the partial
quotients in a SCF tend to be small. For a given integer k, this result can be
used41 to determine Pr(qj+1 = k) (j ≥ 0), the probability that any partial
quotient qj+1 is equal to k. This is given by

Pr(qj+1 = k) =
log (1 + 1/k(k + 2))

log 2
+O

(
qj

k(k + 1)

)

.

We provide some approximate values of these probabilities in Table 3.4.
Notice that we expect that over 58% of all the partial quotients42 are either
1 or 2. Also, Pr(qn = r) and Pr(qn+m = s) are only weakly dependent, as it
can be proved43 that

Pr(qn = r and qn+m = s) = Pr(qn = r) Pr(qn+m = s) (1 +O(qm)) ,

where 0 < q < 1.

3.4 Some Special Results 71

Table 3.4.

k Pr(qi+1 = k)

1 0.415037

2 0.169925

3 0.093109

4 0.058894

5 0.040642

72 Notes and References

Notes and References

1The best reference for this is still [Per57]. However, there are a number of other
sources that are extremely useful, especially for the analytic properties of continued
fractions. In this category, we mention [Wal48] and [LW92]. Also, in [Bre80] there
is a historical account of much of this material.

2[Per57] Vol. I, §38. At the beginning of this section it is shown that if φi > 1
(for all i > 0), then (3.1) must be semiregular.

3This is a more general presentation than that for the usual simple continued
fraction, but it will be found to be useful for improving certain algorithms.

4[Per57], Vol. I.
5There is a considerable literature concerning simple continued fractions. We

mention only a few sources here such as [Old63], [RS92], and [Per57]. It should be
pointed out that many elementary textbooks on number theory (such as [NZM91],
Ch. 7; [Dav60], Ch. 4; [Sta70], Ch. 7) contain a chapter on simple continued fractions.

6This is probably one of the oldest algorithms known. It appears in Euclid’s
Elements around 300 BC as Proposition 2 in Book VII. See [Hea56].

7However, see [Sha94].
8See [Knu98], §4.5.3.
9See, for example, [BS96a], p. 70.

10[Sch71]. See also [AHU74].
11[SS71]. See also [AHU74] and [Knu98].
12[SZ04].
13[Jeb93].
14[Sor04a].
15[Gra07].
16[Leh38]. See also [Jeb95]. The complete algorithm can be found in [JSW06a] as

Algorithm 3.1.
17See [Sor95].
18See, for example, [Sor04b], [Sor94], [Web95], and [Bsh99].
19See [CG90] and the discussion in Note 4.10 on p. 96 of [BS96a].
20This result has been generalized to |φ − a/b| < c/b2 for any real positive c by

Worley [Wor81].
21[Hur89].
22This was attempted by Meyer in 1867 (see [Dic19], Vol. II, p. 344), but he gave

up after he had computed 240 steps in the continued fraction.
23[Len02].
24[Amt80].
25[WGZ65].
26[Nel81].
27[Var98].
28[Len02].
29[Leh41].
30[Leh26a].
31[Pat41] and [Pat55].
32[KM61]. See also Shanks’ interesting review of this work in [Sha62].
33[Mar77b].

Notes and References 73

34Tenner’s algorithm can be found on p. 372 of Vol. II of [Dic19]. It should be
emphasized that only the formula for Pi is due to Tenner. The formula for Qi seems
to go back to at least 1941, as is was mentioned in [Pat41], p. xiii, formula (3).

35See [RS92], p. 50.
36Some indication of how this can be done is given in [SSW76] and [Wil81]. Some

numerical testing of this is provided in [Wil81] and [PW85].
37For sources on this material, see [RS92], Ch. V, or [Khi97] or [Knu98].
38[Khi36] and [Lév36]. Khintchine demonstrated that the limit exists indepen-

dently of t almost everywhere and Lévy at about the same time also determined
this, together with the value of the limiting value λ.

39See [Sha74].
40See [Knu98] or Chapter V of [RS92] A proof of this is provided in [RS92], p.

152.
41[RS92], p. 156ff.
42However, this is a probabilistic result and need not be true in any given instance.

For example, if we return to the SCF expansion of
√

D for D = M2 + 1 (2 � M), we
find that q0 = M and qi = M + [

√
D] = 2M for all i > 0.

43[RS92], p. 159.

4

Quadratic Number Fields

4.1 Algebraic Numbers

In this chapter we will show how the Pell equation has an important connec-
tion to the theory of real quadratic number fields. In order to do this, it will
first be necessary to develop some theory of these structures. Several of the
results in this section will be given without proof because they are standard
elementary results which can be found in several texts.1 We will begin with
the definition of an algebraic number

Definition 4.1. A complex number α is called algebraic if it is a zero of some
polynomial f(x) ∈ Q[x].

A very important property of an algebraic number is provided in the fol-
lowing result.

Theorem 4.2. An algebraic number α is the zero of a unique irreducible (over
Q) monic polynomial g(x) ∈ Q[x]. Furthermore, if h(x) ∈ Q[x] and h(α) = 0,
then g(x) divides h(x) in Q[x].

Definition 4.3. The minimal polynomial of an algebraic number α is the
g(x) described in Theorem 4.2. The degree of α is the degree of its minimal
polynomial.

We will require a useful result concerning monic polynomials with integer
coefficients.

Theorem 4.4 (Gauss’ Lemma2). If a monic polynomial f(x) ∈ Z[x] factors
into the product of two monic polynomials g(x), h(x) ∈ Q[x], then g(x), h(x) ∈
Z[x].

We now need the concept of an algebraic integer.

Definition 4.5. An algebraic number α is an algebraic integer if α is the zero
of a monic polynomial f(x) ∈ Z[x].

76 4 Quadratic Number Fields

Note that if m ∈ Z, then m is the zero of f(x) = x −m; hence, m is an
algebraic integer. We now show that the only elements of Q which can be
algebraic integers are those in Z.

Theorem 4.6. If α ∈ Q and α is an algebraic integer, then α ∈ Z.

Proof. If α ∈ Q, then α = a/b, where a, b ∈ Z, b �= 0, and (a, b) = 1. Since α
is a zero of a monic polynomial f(x) = xn + c1x

n−1 + c2x
n−2 + · · ·+ cn with

c1, c2, . . . , cn ∈ Z, we get

(a

b

)n

+ c1

(a

b

)n−1

+ c2

(a

b

)n−2

+ · · ·+ cn = 0

or
an + c1ba

n−1 + c2b
2an−2 + · · ·+ cnb

n = 0 .

It follows that b | an. Since (a, b) = 1, we can only have b = ±1 and therefore
α ∈ Z. ��

We see, then, that the term algebraic integer in Definition 4.5 is a general-
ization of the common use of the term integer . We will use the term rational
integer (or just integer) to distinguish the elements of Z from the irrational
algebraic integers such as

√−2 and (1 +
√

5)/2.

Theorem 4.7. The minimal polynomial of an algebraic integer is monic with
integer coefficients.

Proof. Clearly, we may assume that the minimal polynomial is monic. What
we need to establish is that the remaining coefficients of this polynomial are
(rational) integers. Suppose that the algebraic integer α is a zero of a monic
f(x) ∈ Z[x] and let the minimal polynomial of α be g(x). By Theorem 4.2,
we know that f(x) = g(x)h(x), where g(x), h(x) ∈ Q[x], and h(x) is monic.
By Theorem 4.4, we have g(x) ∈ Z[x]. ��
It is evident that if we let A be the set of all algebraic numbers, then A is a
field. Furthermore, the set of all algebraic integers I is a ring contained in A.

Definition 4.8. An algebraic number field is any subfield of A.

For example, if α is an algebraic number, then

K =
{
f(α)
g(α)

: f(x), g(x) ∈ Q[x]; g(α) �= 0
}

is a subfield of A. We denote such a field by Q(α), the extension field of Q by
adjoining α. Also, if I ′ is the set of algebraic integers in Q(α), then I ′ must
be a subring of I and therefore is a subring of Q(α).

4.1 Algebraic Numbers 77

Theorem 4.9. If α is an algebraic number of degree n, then every element
β ∈ Q(α) can be written uniquely as

β = a0 + a1α+ a2α
2 + · · ·+ an−1α

n−1 ,

where ai ∈ Q (i = 0, 1, 2, . . . , n− 1).

The study of algebraic number fields has resulted in the development of
what is called algebraic number theory, a very beautiful and deep collection
of results, many of which are both fascinating and surprising.3 As we will see,
there are still many open questions concerning algebraic number theory, even
in the simple instance of it that we will investigate.4 Indeed, as our interest
here concerns the Pell equation, we will confine our attention to the case of
Q(α) where α is of degree 2. These fields are known as quadratic number
fields , or simply quadratic fields. Thus, we may assume that α is the zero of
an irreducible polynomial f(x) = ax2 + bx+ c, where a, b, c ∈ Z. Hence,

α =
−b±√b2 − 4ac

2a
.

If we put D = b2 − 4ac ∈ Z, we get K = Q(α) = Q(
√
D). From this point

forward, we will use K to denote Q(
√
D). We call D the radicand of K. Notice

that
√
D �∈ Q because f(x) is irreducible. Also, if D = f2D0, where D0 is

squarefree, then K = Q(
√
D0). Thus, either D0 or any square multiple of it

can be the radicand of K.
If β ∈ K, we have β = (c1 + c2

√
D)/c3, where c1, c2, c3 ∈ Z, c3 �= 0.

We have previously defined β = (c1 − c2
√
D)/c3 and N(β) = ββ; we now

introduce the trace of β, denoted by T (β), as β + β. Note that

β2 = T (β)β −N(β) . (4.1)

Let β (�∈ Z) be an algebraic integer of K; then β must be a zero of a monic
irreducible polynomial g(x) of degree 2 over Q. Since β is a zero of f(x) =
x2−T (β)x+N(β), we must have g(x) | f(x). It follows that g(x) = f(x) and
T (β), N(β) ∈ Z.

Put

r =
{

1 when D0 �≡ 1 (mod 4)
2 when D0 ≡ 1 (mod 4)

and define ω0 = (r − 1 +
√
D0)/r. Notice that if we are only given D instead

of D0, we can easily evaluate r. If 2α || D, then r = 1 when α is odd. If α is
even, then D0 ≡ D/2α (mod 4). We have T (ω0) = 2(r − 1)/r = r − 1 and
N(ω0) = ω0ω0 = ((r − 1)2 − D0)/r2 ∈ Z. We are now able to completely
characterize the algebraic integers of K.

Theorem 4.10. β is an algebraic integer of K = Q(
√
D0) if and only if β =

x+ yω0, where x, y,∈ Z.

78 4 Quadratic Number Fields

Proof. If β = x + yω0, then T (β) = β + β = 2x + yT (ω0) ∈ Z and N(β) =
x2 + xyT (ω0) + y2N(ω0) ∈ Z. Hence, by (4.1), β is an algebraic integer of K.
We next suppose that β is an algebraic integer of K. We have

β =
c1 + c2

√
D0

c3
(c1, c2, c3 ∈ Z, c3 > 0) ,

and we may assume with no loss of generality that (c1, c2, c3) = 1. Also,
T (β) = 2c1/c3 ∈ Z and N(β) = (c12 − c22D0)/c32 ∈ Z. If p is any prime such
that p | c1 and p | c3, then since N(β) ∈ Z, we get p2 | c22D0. Since D0 is
squarefree, it follows that p | c2, a contradiction; hence, (c1, c3) = 1. Since
T (β) ∈ Z, we can only have c3 | 2. There are two possible cases.

Case 1: c3 = 2:
Here, c12 − c2

2D0 ≡ 0 (mod 4). If 2 | c2, then 2 | c1, a contradiction.
Thus, c2 is odd and c1 is odd, which means that D0 ≡ 1 (mod 4) and
β = (c1 + c2

√
D0)/2, c1 ≡ c2 ≡ 1 mod 2. We have

β =
c1 − c2

2
+ c2

(
1 +

√
D0

2

)

= x+ yω0 (x, y ∈ Z) .

Case 2: c3 = 1:
Here,

β = c1 + c2
√
D0 = c1 − c2 + 2c2

(
1 +

√
D0

2

)

= x+ yω0 (x, y ∈ Z) .

��

4.2 Modules and Orders of K

The structure of the set of algebraic integers of K is that of a module.5

Definition 4.11. Let A be any additive abelian group. We say that M is a
(Z-)module of A if M is an additive abelian subgroup of A.

If L andM are modules and L ⊆M, then since both L andM are additive
abelian groups, we can produce the group of cosets (or quotient group) of M
modulo L and we denote this by M/L. When M/L is finite, we call the
number of distinct cosets, denoted by |M/L|, the index of L in M.

Proposition 4.12. If M,L, and K are modules and K ⊆ L ⊆ M, and if
M/K is finite, we have

|M/K| ≥ |M/L| .
If K is properly contained in L, then

|M/K| > |M/L| .

4.2 Modules and Orders of K 79

Proof. If α, β ∈M and α− β �∈ L, then α− β �∈ K. This means that if μ is a
coset representative for a coset in M/L, then μ is also a coset representative
for a coset in M/K and the first result follows. If n = |M/K| = |M/L|,
we may assume that M/K and M/L have precisely the same coset leaders:
μ1, μ2, . . . , μn. We may also assume with no loss of generality that μ1 = 0. If
L properly contains K, then there must exist some λ ∈ L such that λ �∈ K.
Since λ ∈ K+ μi for some i (1 ≤ i ≤ n), we have λ ∈ L+ μi, but since L+ μi

and L are disjoint, this is impossible. ��
Definition 4.13. If X is a subset of a module M, then the intersection of all
submodules of M containing X is called the submodule generated by X.

Suppose X = {ξ1, ξ2, ξ3, . . . , ξn} ⊆ K; then

M =

{
n∑

i=1

xξi : x1, x2, x3, . . . , xn ∈ Z

}

⊇ X

is a (free) module of K and M is generated by X . We denote this by

M = [ξ1, ξ2, . . . , ξn] .

Since X is a finite set, we say that M if finitely generated ; however, it is
important to observe that not all modules of K are finitely generated. For
example, Q is a module of K, but Q cannot be generated by a finite number
of rational numbers. We will be particularly concerned with modules generated
by two elements of K. For this study, we will require the following proposition.

Proposition 4.14. Let M = [ξ1, ξ2], where ξ1 = a1 + b1
√
D0, ξ2 = a2 +

b2
√
D0, and a1, a2, b1, b2 ∈ Q. There exists a ξ3 = a3 + b3

√
D0 (a3, b3 ∈ Q) in

K such that M = [ξ3] if and only if a1b2 − b1a2 = 0.

Proof. If M = [ξ3], then ξ1 = z1ξ3 and ξ2 = z2ξ3, where z1, z2 ∈ Z. By
equating rational and irrational parts, we get a1 = z1a3, b1 = z1b3, a2 = z2a3,
and b2 = z2b3; hence, a1b2 − b1a2 = 0.

If a1b2−b1a2 = 0, we may assume that b1 �= 0. For if b1 = 0, then a1b2 = 0.
If b2 = 0, then M = [a1, a2] = [g], where g = (a1, a2). If a1 = 0, then M =
[0, ξ2] = [ξ2]. Since b2ξ1 − b1ξ2 = 0, we see that M = [ξ1, (b2/b1)ξ1]. Putting
b2/b1 = m/n, where m,n ∈ Z and (m,n) = 1, we get M = (ξ1/n)[m,n] =
[ξ1/n]. ��

If M = [ξ1, ξ2], we say that {ξ1, ξ2} is a Z-basis of M. Now, let GL2(Z)
be the group of invertible 2 × 2 matrices over Z and let M ∈ GL2(Z). If
M = [ξ1, ξ2] and

(φ1, φ2) = (ξ1, ξ2)M , (4.2)

then [φ1, φ2] = M. Furthermore, if [φ1, φ2] = [ξ1, ξ2], then there must exist
some M ∈ GL2(Z) such that (4.2) holds.

Notice that [1, ω0] is the module of algebraic integers in K, but as men-
tioned earlier, it is also a subring of K. This brings us to the definition of an
order of K.

80 4 Quadratic Number Fields

Definition 4.15. An order of K is a module M of K with the following
properties6:

1. M is a subring of K containing 1.
2. M = [ξ1, ξ2], where ξ1 = a1 + b1

√
D0, ξ2 = a2 + b2

√
D0, a1, b1, a2, b2 ∈ Q,

and a1b2 − b1a2 �= 0.

Clearly, [1, ω0] is an order of K; we denote it by OK.

Definition 4.16. If O = [ξ1, ξ2] is any order of K, we define the discriminant
Δ of O, written Δ(O), to be

Δ =

∣
∣
∣
∣
∣

ξ1 ξ2

ξ1 ξ2

∣
∣
∣
∣
∣

2

= (ξ1ξ2 − ξ1ξ2)2 .

If M ∈ GL2(Z) and (4.2) holds, then
(
φ1 φ2

φ1 φ2

)

=

(
ξ1 ξ2

ξ1 ξ2

)

M ,

and taking determinants, we get

φ1φ2 − φ1φ2 = |M | (ξ1ξ2 − ξ1ξ2
)

= ± (
ξ1ξ2 − ξ1ξ2

)
.

Thus, Δ is an invariant of the order O. We have ΔK = Δ(OK) = (ω0−ω0)2 =
(2/r)2D0. Note that ΔK is either ≡ 1 (mod 4) or ΔK ≡ 8, 12 (mod 16). Also,
ΔK or ΔK/4 is squarefree. Any value of Δ which satisfies these conditions is
called a fundamental discriminant .

It turns out that all orders of K are submodules of OK, which we call the
maximal order of OK.

Theorem 4.17. If O is any order of K, then O ⊆ OK and O = [1, fω0] for
some f ∈ Z.

Proof. Let O = [ξ1, ξ2]. Since 1 ∈ O, there exist x, y ∈ Z such that xξ1+yξ2 =
1. Let d = (x, y). Since (x/d, y/d) = 1, there must exist p, q ∈ Z such that

p
(x

d

)
− q

(y

d

)
= 1 .

Put

M =
(
x/d q
y/d p

)

.

Clearly, M ∈ GL2(Z) and O = [(xξ1 + yξ2)/d, qξ1 + pξ2] = [1/d, γ]. Since O
is a ring and 1/d ∈ O, we have 1/d2 ∈ O, which means that 1/d2 = s/d+ tγ.
Since γ �∈ Q, this is impossible unless d = 1. Thus, O = [1, γ]. Since γ ∈ O, we
must have γ2 ∈ O and, therefore, there exist a, b ∈ Z such that γ2 = a+ bγ.
Since γ is the zero of a monic polynomial over Z, we must have γ ∈ OK. Hence,
γ = c+ fω0, where c, f ∈ Z. Thus, O ⊆ OK and O = [1, c+ fω0] = [1, fω0]. ��

4.3 The Units of O 81

With no loss of generality we may assume that f > 0. We call f the conduc-
tor of O. We haveΔ(O) = f2ΔK and we observe thatΔ(O) ≡ 0, 1 (mod 4). It
follows from this that if we are given any Δ ∈ Z with Δ ≡ 0, 1 (mod 4), there
is only one order OΔ of discriminant Δ of Q(

√
Δ), and OΔ can be written as

[

1,
Δ+

√
Δ

2

]

= [1, fω0] .

When Δ is assumed to be known, we will write O for OΔ and ω for fω0. It is
often useful to observe that

Δ = T (ω)2 − 4N(ω) (4.3)

and
4N(b+ cω) = (2b+ cT (ω))2 − c2Δ . (4.4)

4.3 The Units of O
Of particular concern to us will be the units of the order O.

Definition 4.18. Let α, β ∈ O. We say that α divides β in O, denoted by
α | β, if there exists some γ ∈ O such that β = αγ.

Definition 4.19. We say that η is a unit of O if η | 1 in O.

Notice that a unit of O trivially divides any element of O. We define
an indecomposable element of O to be any non-unit β of O for which the
factorization β = αγ for α, γ ∈ O is possible only when α or γ is a unit of O.
If γ is a unit of O, we say that β and α are associates in O. We next define a
prime in O as a non-unit element π of O such that if π | αβ for any α, β ∈ O,
then π divides α or β in O.

We denote the set of all units in O by O∗. It is easy to see that this is a
multiplicative group with identity 1. If η is a unit of O, then

η = x+ y

(
Δ+

√
Δ

2

)

=
2x+ yΔ+ y

√
Δ

2
,

where x, y ∈ Z and N(y) = ±1. Hence,

(2x+ yΔ)2 − y2Δ = ±4 . (4.5)

If Δ < 0, then
(2x+ yΔ)2 + y2|Δ| = ±4 . (4.6)

In this case we easily deduce from (4.6) that

82 4 Quadratic Number Fields

O∗ =

⎧
⎨

⎩

{1,−1, ζ, ζ2,−ζ,−ζ2 : ζ2 + ζ + 1 = 0} when Δ = −3
{1,−1, i,−i : i2 + 1 = 0} when Δ = −4
{1,−1} when Δ < −4 .

If we put w = |O∗|, then

w =

⎧
⎨

⎩

6 when Δ = −3
4 when Δ = −4
2 when Δ < −4 .

If Δ > 0, the problem of finding O∗ is somewhat more complicated. If we
put X = 2x+ yΔ and Y = y in (4.5), we get

X2 −ΔY 2 = 4σ , (4.7)

where σ = ±1. Since this is the same equation as (1.10) of Chapter 1 with D
replaced by Δ, we know that there exists a fundamental solution (X1, Y1, σ1)
of (4.7). Put

εΔ =
X1 + Y1

√
Δ

2
.

Since, by (4.7), X1 ≡ ΔY1 (mod 2), we see that

εΔ ∈ O =

[

1,
Δ+

√
Δ

2

]

.

Also by Theorem 1.9, we must have

η = ±εnΔ ;

hence, O∗ = 〈−1, εΔ〉. We call εΔ the fundamental unit of O.
Let t, u be the fundamental solution of the Pell equation (1.7). If we put

q = ur and p = t − 2uD/r, then t + u
√
D = p + q(Δ +

√
Δ)/2. Thus,

t + u
√
D ∈ O. By Theorem 1.9, t + u

√
D = εnΔ for some n ∈ Z≥0. If r = 1,

then εΔ ∈ [1,
√
D] and

t+ u
√
D =

{
εΔ when N(εΔ) = 1

ε2Δ when N(εΔ) = −1 .
(4.8)

If r = 2 and 2 | Y1, then 2 | X1, εΔ ∈ [1,
√
D] and (4.8) holds. If r = 2 and

2 � ΔY1, then by the same reasoning as that used to produce Table 1.1, we
get

t+ u
√
D =

{
ε3Δ when N(εΔ) = 1

ε6Δ when N(εΔ) = −1 .

Finally, if r = 2 and 2 | Δ, then εΔ �∈ [1,
√
D], but ε2Δ ∈ [1,

√
D]; hence,

t+ u
√
D = ε2Δ. Thus, in summary, if εΔ = (x+ y

√
Δ)/2, then

4.4 The Ideals of O 83

Table 4.1.

r Δ (mod 2) y (mod 2) N(εΔ) v

1 — — 1 1

1 — — −1 2

2 — 0 1 1

2 — 0 −1 2

2 1 1 1 3

2 1 1 −1 6

2 0 1 — 2

t+ u
√
D = εvΔ ,

where v is given in Table 4.1.
Thus, the problem of finding the fundamental solution of the Pell equation

(1.7) is equivalent to the problem of determining εΔ, the fundamental unit in
the order of conductor f of K where D = f2D0 and D0 is squarefree. In view
of this, we will spend much of the remainder of this work on the problem of
finding εΔ.

Of course, we have already seen how this can be done in Chapter 3, but
our focus will be on finding ways of doing this that are more efficient than
that technique. Our main tool in this investigation will be the arithmetic of
the ideals7 of O, a topic which we will introduce in the next section.

We conclude this section be observing that since εΔ ∈ OΔ ⊆ OK, we must
have εΔ ∈ OK

∗ and, therefore, εΔ = εK
n, where εK is the fundamental unit of

the order OK, the maximal order of K. Since εΔ, εK > 1, n must be positive.
We call n the unit index of εΔ. For example, when D0 = 7 (ΔK = 28), we
have OK = [1,

√
7] and εK = 8 + 3

√
7; but if Δ = 4ΔK, then OΔ = [1, 2

√
7]

and εΔ = 127 + 48
√

7 = εK
2. Thus, the unit index of εΔ is 2 in this case. If

εK = (v+w
√
ΔK)/2, then by the results in §1.4, the unit index n of εΔ, where

Δ = f2ΔK is given by n = ω(f/g). Here, g = (f, w) and P = x, Q = N(εK).
By Theorem 1.13, we know that8 n ≤ 2f .

4.4 The Ideals of O
In this section we will describe the ideals of an order O and discuss some
of their properties. In order to motivate their introduction here, we remind
the reader of the Fundamental Theorem of Arithmetic, which states that any
integer greater than 1 can be uniquely represented (up to order) as a product
of primes in Z>0. This result, proved implicitly by Euclid,9 and explicitly
by Gauss10 is of such importance in elementary number theory that it was
often assumed by mathematicians to be true for algebraic integers. However,

84 4 Quadratic Number Fields

consider the simple example of the order OK = [1,
√−5] of K = Q(

√−5). It
is not difficult to show by taking norms that 2, 3, 1 +

√−5, and 1−√−5 are
all indecomposable elements of OK, but

6 = 2 · 3 =
(
1 +

√−5
) (

1−√−5
)

;

that is, we have two distinct ways of expressing 6 as a product of indecom-
posable elements of OK. In Z, the indecomposable elements are the primes or
their associates (in this case, the units are just 1 and −1), but in this OK,
we have that 3 | (1 +

√−5
) (

1−√−5
)

but 3 � (1 +
√−5) and 3 � (1 −√−5).

Hence, 3 is not a prime in OK. Thus, there is no unique factorization of 6 into
indecomposable elements of OK, nor can there be any representations of 6 as
a product of primes of OK. Thus, the failure of unique factorization in OK

is the failure of indecomposable elements of OK to be prime in general. It is
this observation (in a more general setting) that has motivated much of the
development of algebraic number theory.

However, unique factorization can be restored to OK by the introduction
of “ideal” elements. These were introduced by Kummer11 in 1857 as actual
numbers, but it was Dedekind12 who discovered in 1871 that unique factor-
ization could be accomplished by the use of special modules called ideals. In
order to define these objects, we begin by defining γS, where S ⊆ C and
γ ∈ C, to be the set {γs : s ∈ S}. If γS1 = γS2, where S1, S2 ⊆ C, γ ∈ C, and
γ �= 0, then S1 = S2. We are now able to define an ideal.

Definition 4.20. An (integral) ideal a of an order O (an O-ideal) is an ad-
ditive subgroup of O such that ξa ⊆ a for any ξ ∈ O.

Since a is an additive abelian group, it can be regarded as a submodule of
O. We remark that in order to prove that any submodule M of O is an ideal
of O, it suffices to prove that ωM⊆M. We will now show that an ideal is a
finitely generated submodule of O.

Theorem 4.21. Any ideal a of an order O = [1, ω] of K is a finitely generated
submodule of O.

Proof. The result is trivially true for a = {0}. Suppose a �= {0}, then there
must exist some α ∈ a, where α �= 0. Since α = T (α)− α, we see that α ∈ O.
Hence, αα ∈ a. Since N(α) = αα ∈ Z, we see that a contains a non-zero
rational integer N(α). Also, a ⊇ N(α)O. Since the set of coset representatives
for O/N(α)O can be made up of precisely those elements β = a + bω ∈ O
such that 0 ≤ a, b < |N(α)|, we get

N(α)2 = |O/N(α)O| ≥ |O/a| ;
we see that |O/a| is finite. If a = N(α)O, then a = [N(α), N(α)ω] is finitely
generated. If a �= N(α)O, then |O/N(α)O| > |O/a| by Proposition 4.12. Let
α1 ∈ a but α1 �∈ N(α)O, and consider the module M1 = [N(α), N(α)ω, α1].
We have O ⊆M1 ⊆ a and

4.4 The Ideals of O 85

|O/N(α)O| > |O/M1| ≥ |O/a| .
If |O/M1| = |O/a|, then a = M1 and a is finitely generated. If |O/M1| >
|O/a|, then there must be an element α2 ∈ a such that α2 �∈ M1. We continue
to produce a sequence of modules in this way:

M1,M2,M3, . . .

where Mi = [N(α), N(α)ω, α1, α2, . . . , αi] (i = 1, 2, 3, . . .) andMi properly
contains Mi−1 and Mi ⊆ a. This produces a strictly decreasing sequence of
positive integers |O/Mi| (i = 1, 2, . . .). Such a sequence must terminate and
will when a = Mi for some i. Since Mi is finitely generated, so is a. ��

We now consider some properties of finitely generated submodules of O.

Theorem 4.22. If M (�= {0}) is a finitely generated submodule of O = [1, ω],
we have a, b, c ∈ Z, a ≥ 0, c ≥ 0 such that M = [a, b+ cω].

Proof. The theorem clearly holds if M = [ξ1]. Suppose M = [ξ1, ξ2], where
ξ1 = a1 + b1ω and ξ2 = a2 + b2ω. Let c = (b1, b2). There must exist p, q ∈ Z

such that
pb1 + qb2 = c .

Put

M =
(
b2/c q
−b1/c p

)

.

Since M ∈ GL2(Z), we have M = [(a1b2 − b1a2)/c, pa1 + qa2 + cω]. Putting
a = |a1b2 − b1a2|/c and b = pa1 + qa2, we get M = [a, b+ cω].

Next, suppose that M = [ξ1, ξ2, ξ3], where ξi = ai + biω and ai, bi ∈ Z

(i = 1, 2, 3). Since [ξ1, ξ2] = [a′, b′ + c′ω], a′ ≥ 0, c′ ≥ 0, we see that

M = [a′, b′ + c′ω, b3 + c3ω] = [a′, a′′, b′′ + c′′ω] (a′′ ≥ 0, c′′ ≥ 0) .

If we put a = (a′, a′′), b = b′′, and c = c′′, we get M = [a, b+ cω]. It follows
by induction that if M = [ξ1, ξ2, . . . , ξn] with ξi = ai + biω and ai, bi ∈ Z

(i = 1, 2, . . . , n), then M = [a, b+ cω] with a ≥ 0, c ≥ 0, and a, b, c ∈ Z. ��
Proposition 4.23. If M = [a, b + cω], where a, b, c ∈ Z and ac > 0, then
|O/M| = ac.

Proof. It is easy to see that if β ∈ O, then β − λ ∈ M, for some λ ∈ T =
{t1 + t2ω : 0 ≤ t1 < a, 0 ≤ t2 < c; t1, t2 ∈ Z}. Furthermore, if λ1, λ2 ∈ T and
λ1 �= λ2, then λ1 − λ2 �∈ M. Hence, there must be exactly ac cosets of O
modulo M. ��

If a is a non-zero ideal of O, then Theorems 4.21 and 4.22 allow us to
write a = [a, b+ cω], where a, b, c ∈ Z and a, c ≥ 0. Indeed if a = 0, then since
ωa ⊆ a, we must have some integer x such that ω(b+ cω) = x(b+ cω), which

86 4 Quadratic Number Fields

is impossible unless b = c = 0. If c = 0, then a = [d], where d = (a, b). In this
case, ωd = xd, which is also impossible unless d = 0. Thus, if a is a non-zero
O-ideal, then a = [a, b+cω], where a, b, c ∈ Z and ac > 0. We may also assume
that 0 ≤ b < a. From this point on we will only deal with non-zero ideals of
O. We can now characterize all such ideals of O.

Theorem 4.24. a is an ideal of O if and only if a can be represented as
[a, b + cω], where a, b, c ∈ Z, a > 0, c > 0, 0 ≤ b < a, c | a, c | b, and
ac | N(b+ cω).

Proof. Suppose a = [a, b + cω] is an ideal of O. Since ωa ⊆ a, we must have
ωa = xa+ y(b+ cω) for integers x and y. By equating rational and irrational
parts, we get a = yc and xa+yb = 0. It follows that c | a and b = −cx, so c | b.
We next notice that if d ∈ a∩Z, then a | d; thus, a is the least positive integer
in a. Since b/c+ ω ∈ O, we have N(b+ cω)/c = (b/c+ ω)(b+ cω) ∈ a. Thus,
ac | N(b+cω). Now, suppose thatM is the submodule ofO given as [a, b+cω],
where a, b, and c satisfy the conditions of the theorem. As noted earlier, M
will be an ideal of O if ωM ⊆ M. If we put x = −N(b + cω)/ac ∈ Z and
y = b/c+ T (ω) ∈ Z, then ω(b+ cω) = xa+ y(b+ cω); if we put p = −b/c ∈ Z

and q = a/c ∈ Z, then ωa = pa + q(b + cω). Thus, ωM ⊆ M and M is an
ideal of O. ��

Let O be an order of K and let a be any ideal of O. We have seen that
a = [a, b+ cω], where a, b, c ∈ Z, a > 0, c > 0, c | a, c | b, and ac | N(b+ cω).
If we put S = c, Q = ra/c, and P = rb/c+ f(r− 1), where f is the conductor
of O, then since S2(P 2 −D) = r2N(b+ cω), we can represent a by

a = S

[
Q

r
,
P +

√
D

r

]

, (4.9)

where S,Q, P ∈ Z, r | Q, rQ | D − P 2, and D = f2D0. Also, any such
representation must be that of an ideal of O. This representation will be of
importance when we make use of continued fractions to aid us in our calcula-
tions involving ideals.

Let θ1, θ2, θ3, . . . , θk ∈ O and note that if we define

a =

{
k∑

i=1

ξiθi : ξi ∈ O for i = 1, 2, 3, . . . , k

}

= θ1O + θ2O + θ3O + · · ·+ θkO ,

then a is an O-ideal. We say that a is the ideal generated by θ1, θ2, θ3, . . . , θk

and we denote this by a = (θ1, θ2, θ3, . . . , θk). This may be somewhat confusing
considering the way we have defined generators for modules; however, the
following useful proposition shows that in the case of ideals, these ideas are
the same.

4.4 The Ideals of O 87

Proposition 4.25. If a is the ideal given as [θ1, θ2, θ3, . . . , θk], then a =
(θ1, θ2, θ3, . . . , θk).

Proof. Clearly,

(θ1, θ2, θ3, . . . , θk) ⊇ [θ1, θ2, θ3, . . . , θk] .

Now, θi ∈ [θ1, θ2, θ3, . . . , θk] means that

θiO ⊆ [θ1, θ2, θ3, . . . , θk] (i = 1, 2, 3, . . . , k) .

Hence,
[θ1, θ2, θ3, . . . , θk] ⊇ θ1O + θ2O + θ3O + · · ·+ θkO

= (θ1, θ2, θ3, . . . , θk) .
��

We have already seen that a �= [θ] for any θ ∈ O, but it is possible for
a = (θ) = θO. Such an ideal is said to be principal . If a and b are O-ideals and
a and b are both principal, then we can put a = (α), b = (β) for α, β ∈ O. If
α = β, then clearly a = b, but if a = b, then we cannot conclude that α = β.
Since (α) = (β), we see that α ∈ βO and β ∈ αO, which means that both
α/β and β/α ∈ O. Thus, η = α/β must be a unit of O. Also, if α/β is a unit,
then (α) = (βη) = (β)(η) = (β)O = (β). Thus, if (α) = (β), then α = ηβ,
where η is some unit of O; that is, α and β are associates.

As any β ∈ O can have many associates when Δ > 0, we distinguish a
particular associate α of β which we call primary. We call some α ∈ O primary
if α > 0 and

1 ≤ |α/α| < ε2Δ .

Theorem 4.26. When Δ > 0, every β ∈ O (β �= 0) has precisely one primary
associate.

Proof. The most general form of an associate of β is γ = ±εnΔβ (n ∈ Z). We
have

log |γ| = log |β|+ n log εΔ
and

log |γ| = log |β|+ n log |εΔ| .
Also, since εΔ|εΔ| = 1, we get log εΔ + log |εΔ| = 0. Putting λ = log |β/β|, we
get

log |γ/γ| = λ+ 2n log εΔ .

Thus, only if

n =
⌊

λ

2 log εΔ

⌋

do we get
0 ≤ log |γ/γ| < 2 log εΔ .

If, for this particular value of n, we select the sign such that γ > 0, we find
that γ is the unique primary associate of β. ��

88 4 Quadratic Number Fields

In the next section we will show how to determine a, b, and c such that a
principal O-ideal a given by (θ) can be represented as [a, b+ cω], but before
doing that, we turn to the definition of the product and sum of two ideals.

Definition 4.27. If a = (θ1, θ2, θ3, . . . , θk) and b = (φ1, φ2, φ3, . . . , φm) are
both O-ideals, we define their product ab to be

(θ1φ1, θ1φ2, . . . , θ1φm, θ2φ1, θ2φ2, . . . , θnφm) ;

we define their sum a + b to be

{α+ β :α ∈ a, β ∈ b} .

We observe that both ab and a + b are O-ideals. Also, if c is an O-ideal
and b ⊆ c, then ab ⊆ ac. If we let a = [α1, α2], then (α)a = α(α1, α2) =
(αα1, αα2) = [αα1, αα2] = αa.

4.5 Equivalence and Norms

We say that two O-ideals a and b are equivalent if there exists α, β ∈ O such
that αβ �= 0 and

(α)a = (β)b .

We write this as a ∼ b. Of course, we have already shown that the product of
the ideal a by the principal ideal (α) is exactly the same as αa, but we often
include the parentheses for emphasis.

Proposition 4.28. Let a and b be two O-ideals. Then a ∼ b if and only if
b = κa, where κ ∈ K and κ �= 0.

Proof. If a ∼ b, then there must exist α, β ∈ O with αβ �= 0 such that
αa = βb. Since β/α ∈ K and β/α �= 0, we have b = κa, where κ ∈ K and
κ �= 0. We next suppose that b = κa, where κ ∈ K and κ �= 0. Since κ ∈ K and
κ �= 0, we have κ = (n1 +n2ω0)/n3 �= 0, where n1, n2, n3 ∈ Z and n3 �= 0. Let
f be the conductor of O; then putting α = fn3 �= 0 and β = fn1+fn2ω0 �= 0,
we have αβ �= 0 and α, β ∈ O. Thus, αa = βb, which means that (α)a = (β)b,
and therefore a ∼ b. ��

The equivalence established above is a true equivlance relation on all of
the ideals of O. If a is an O-ideal, we denote by [a] the set of all O-ideals
which are equivalent to a. We call [a] an ideal class of O.

Definition 4.29. We say that an O-ideal a (�= (0)) is invertible if there exists
another O-ideal b (�= (0)) such that

ab ∈ [O] .

4.5 Equivalence and Norms 89

Note that [O] is the set of all principal ideals ofO. Also, if a is any principal
O-ideal, then a = (α); if we put b = (α), then b is a principal O-ideal and
ab = (αα) = (N(α)). Thus, principal ideals are always invertible.

As an example of a non-invertible ideal, consider O = [1,
√−3], the order

of conductor 2 in Q(
√−3). We see that a = [2, 1 +

√−3] is an ideal of O, but
a is not invertible in O. For if a were invertible, there would exist an O-ideal
b and some γ ∈ O (γ �= 0) such that ab = (γ). If we put β = (1 +

√−3)/2,
we see that β �∈ O, 2β = 1 +

√−3, 2β2 = −1 +
√−3 = 1 +

√−3 − 2. Hence,
(β)a ⊆ a. It follows that

(βγ) = (β)ab ⊆ ab = (γ) .

However, this means that β ∈ O, a contradiction.
We will now develop a simple criterion for determining whether or not a

given O-ideal is invertible. First, suppose that a is any invertible ideal of O.
Then by definition there must exist another O-ideal b and some γ ∈ O such
that

ab = (γ) .

If ξ ∈ K and ξa ⊆ a, then

ξγO = ξab = (ξa)b ⊆ ab = γO .

Hence, ξ ∈ O; that is, the set X of all ξ ∈ K such that ξa ⊆ a is precisely O.
Ideals of O which possess this property are said to be proper . We now require
two simple lemmas.

Lemma 4.30. Let O be an order of K with conductor f and let a = [a, b+cω]
(a, b, c ∈ Z) be any O-ideal. If we define

d =
(
a

c
,
T (b+ cω)

c
,
N(b + cω)

ac

)

,

then d | f .
Proof. Let ξ = (b + cω)/a, m1 = a/cd, m2 = T (b + cω)/cd, and m3 =
N(b+ cω)/acd. Then since m1,m2,m3 ∈ Z and by (4.1)

m1ξ
2 −m2ξ +m3 = 0 ,

we must have m1ξ ∈ OK. Thus,

m1ξ = (b+ cω)/cd = x+ yω0

for x, y ∈ Z. Since ω = fω0, we must have f = dy and d | f . ��
Lemma 4.31. Let a and d be defined as in Lemma 4.30. If d > 1, then a is
not a proper O-ideal.

90 4 Quadratic Number Fields

Proof. If d > 1, then γ = (b+ cω)/cd �∈ O. However,

γa =
(a

cd

)
(b+ cω) ∈ a ,

γ(b+ cω) =
(b + cω)2

cd
=
T (b+ cω)

cd
(b+ cω) + a

N(b+ cω)
acd

∈ a .

Thus, γa ⊆ a, and since γ �∈ O, we see that a is not proper. ��
We are now able to show that an O-ideal is invertible if and only if it is

proper.

Theorem 4.32. Let a and d be defined as in Lemma 4.30. If d = 1, then a is
invertible.

Proof. Let a = [a, b + cω] be an O-ideal (a, c > 0) and put b = [a, b + cω].
Clearly, b is also an O-ideal, and by Proposition 4.25,

ab = [a2, a(b+ cω), a(b+ cω), N(b+ cω)]

= ac

[
a

c
,
b

c
+ ω,

b

c
+ ω,

N(b+ cω)
ac

]

.

Since ω = T (ω)− ω, we get

ab = ac

[
a

c
,
b

c
+ ω,

b

c
+ T (ω)− ω, N(b+ cω)

ac

]

= ac

[
a

c
,
T (b+ cω)

c
,
N(b+ cω)

ac
,
b

c
+ ω

]

.

Since d = 1, we get [a/c, T (b+ cω)/c,N(b+ cω)/ac] = [1]; hence,

ab = ac[1, ω] = (ac)

and it follows that a is invertible. ��
Thus, we see that a is an invertible O-ideal if and only if d = 1. We now

need to define the norm of an O-ideal.

Definition 4.33. We define the norm N(a) of an O-ideal a to be the index
|O/a|.

By Proposition 4.23 we know that N(a) = ac for a = [a, b+ cω].
If a = [α, β] is an O-ideal, we define the ideal a conjugate to a to be [α, β].

Notice that a is also an O-ideal. With these definitions, we have the following
corollary to Theorem 4.32.

Corollary 4.32.1. Let a be any O-ideal. Then a is proper if and only if a is
invertible; furthermore, if a is invertible, then

aa = (N(a)) .

4.5 Equivalence and Norms 91

We also notice that if a is any O-ideal and (N(a), f) = 1, then d = 1 and
therefore a is invertible.

If a is an O-ideal, but a is not a proper O-ideal, then there must exist some
γ, where γ ∈ K but γ �∈ O such that γa ⊆ a. If b is any O-ideal equivalent to
a, then b = κa for some κ ∈ K (κ �= 0) and

γb = κγa ⊆ κa = b .

Thus, b is also not a proper ideal of O. If, on the other hand, a is a proper
O-ideal and b is an O-ideal equivalent to a, then b must also be a proper
O-ideal. We will next show that if we are given any integer M and a proper
O-ideal a, there exists an O-ideal b such that b ∼ a and (N(b),M) = 1. We
first require the following simple result.

Proposition 4.34. If f(x, y) = ax2 + bxy + cy2, where a, b, c ∈ Z and
(a, b, c) = 1, then for any given integer M there exists a pair of values
x′, y′ ∈ Z such that (f(x′, y′),M) = 1.

Proof. Let p be any prime divisor of M . Since (a, b, c) = 1, at least one of
f(1, 0) = a, f(0, 1) = c, and f(1, 1) = a+ b+ c must be relatively prime to p.
Thus, we can use the Chinese remainder theorem to compute values x′ and
y′ such that (f(x′, y′),M) = 1. ��

Now, let a = [a, b + cω] be any invertible O-ideal of O = [1, ω] and let
λ = xa+y(b+ cω) ∈ a for x, y ∈ Z. If we put b = κa, where κ = λ/N(a), then

b =
[

x
a

c
+ y

(
b

c
+ ω

)

, x

(
b

c
+ ω

)

+ y
N(b+ cω)

ac

]

is certainly a submodule of O. Also, ωb = κωa ⊆ κa = b; hence, b is an
O-ideal and

(N(a))b = (λ)a . (4.10)

We now need some important results concerning the norm of an ideal.

Theorem 4.35. Let O = [1, ω] be an order of K, a be an O-ideal, and β ∈ O.
Then

N((β)a) = |N(β)|N(a) .

Proof. Since a is anO-ideal, we have a = [a, α], where α = b+cω for a, b, c ∈ Z

and c | a, c | b and a, c > 0. By Proposition 4.23 we have N(a) = ac. Since
β ∈ O and αβ ∈ O, we have m,n, s, t ∈ Z such that β = m+nω, αβ = s+ tω,
where c | s and c | t. It follows that tβ − nαβ = tm− ns. Since β −m = nω,
we get

β(t− nα) = β(t− nb− ncω) = β(t− nb− cβ + cm) = tm− ns .
Hence, β2 − β(t − nb + cm)/c + (tm − ns)/c = 0 and therefore N(β) =
(tm − ns)/c. Now, by Theorem 4.22, (β)a = [(m + nω)a, s + tω] = [a(tm −
ns)/g, h+ gω] for some h ∈ Z, where g = (na, t). Thus, by Proposition 4.23
we get N((β)a) = a|tm− ns| = |N(β)|N(a). ��

92 4 Quadratic Number Fields

Notice that if a = O, then N(b) = |N(β)|, where b = (β). Thus, the proof
of this result shows us how to find a Z-basis for a principal O-ideal b when
we know a generator β of b. We show later that the problem of finding a
generator for a principal O-ideal, given its Z-basis, is much more difficult.

Another important result concerning the norm is given in the following
theorem.

Theorem 4.36. If a and b are both invertible O-ideals, then ab is invertible
and N(ab) = N(a)N(b).

Proof. Since a and b are both invertible, we know from Corollary 4.32.1 that
aa = (N(a)) and bb = (N(b)). Thus,

abab = (N(a)N(b))

and therefore ab is invertible. It follows that

(N(ab)) = abab = abab = (N(a)N(b)) .

Since N(ab), N(a), N(b) ∈ Z>0, we must have N(ab) = N(a)N(b). ��
We now return to (4.10). By using the results above, we get

N(a)2N(b) = N(λ)N(a) .

Hence, N(b) = N(λ)/N(a). Also,

N(λ)
N(a)

=
a

c
x2 +

T (b+ cω)
c

xy +
N(b+ cω)

ac
y2 .

Since a is invertible, we have d = 1 and we can use Proposition 4.34 to prove
the following theorem.

Theorem 4.37. If a is an given invertible O-ideal and M is any given integer,
there is always some O-ideal b such that b ∼ a and (N(b),M) = 1.

We conclude this long section by proving the cancellation law.

Proposition 4.38. Let a, b, c be O-ideals such that

ab = ac .

If a is invertible, then b = c.

Proof. We have
aab = aac ;

hence, by Corollary 4.32.1,

N(a)b = N(a)c

and b = c. ��

4.6 Divisibility and Prime Ideals 93

4.6 Divisibility and Prime Ideals

If a and b are non-zero O-ideals, we say that a divides b if there exists an
O-ideal c such that b = ac. We denote this by a | b. We next show that to
divide is to contain.

Theorem 4.39. If a and c are non-zero O-ideals and a is invertible, then a | c
if and only if a ⊇ c.

Proof. If a | c, then there exists an O-ideal b such that c = ab. If γ ∈ c,
then γ ∈ ab. Let a = [α1, α2] and b = [β1, β2]; then by Proposition 4.25,
γ ∈ [α1β1, α1β2, α2β1, α2β2]. Since αiβj ∈ βja ⊆ a, we have γ ∈ a and a ⊇ c.

If a ⊇ c, then aa ⊇ ca and (N(a)) ⊇ ca. Thus, every element of ca is
divisible by N(a) and ca = (N(a))b, where b is an O-ideal. It follows that

caa = (N(a))ab ;

hence, N(a)c = N(a)ab and c = ab. ��
Now, suppose that c is an invertible O-ideal and an O-ideal a divides c.

Then c = ab for some O-ideal b. If κa ⊆ a for some κ ∈ K, then κc = κab ⊆
ab = c. Since c is invertible, we must have κ ∈ O; hence, a is proper and
therefore invertible.

From this result, we see from Proposition 4.12 that there can only be a
finite number of O-ideals which divide a given invertible O-ideal.

Since we now have the concept of divisibility of ideals, it seems appropriate
to consider the concept of primality of an ideal.

Definition 4.40. A prime ideal of O is an invertible O-ideal p �= O with the
property that if p | ab, where a and b are any two O-ideals, then p | a or p | b.

We will now attempt to characterize all the primeO-ideals. We first discuss
some properties of the sum13 of two O-ideals.

If a1 and a2 are two O-ideals and a1 = [a1, b1 + c1ω], a2 = [a2, b2 + c2ω],
then by definition of a1 + a2 we have

a1 + a2 = {α1 + α2 :α1 ∈ a1, α2 ∈ a2} .
However this is the same as

a1 + a2 = [a1, b1 + c1ω, a2, b2 + c2ω]
= [a3, b3 + c3ω] ,

where a3 = (a1, a2), c3 = (c1, c2), and b3 ∈ Z.
We next prove the following theorem.

Theorem 4.41. If p is any prime O-ideal, there exists a unique rational prime
p such that p | (p).

94 4 Quadratic Number Fields

Proof. Since p is an O-ideal, it must contain some rational integer a. Since
p ⊇ aO, we see that p | (a). Since a can be written as a product of rational
primes, we see by Definition 4.40 that we must have p | (p) for some prime
p such that p | a. If p | (q) for some other prime q �= p, then p | (p) + (q).
However, since (p, q) = 1, we can only have (p) + (q) = O, which means that
p | O or p = O, a contradiction. ��

At this point, it is useful to introduce the concept of an indecomposable
O-ideal.

Definition 4.42. An indecomposable ideal of O is an invertible O-ideal r
(�= O) which has no divisors other than O and r.

Now, let p be any rational prime and let p | (p), where p is a prime ideal.
Since p is an O-ideal, we have p = [a, b + cω], where a, b, c ∈ Z, a > 0, and
c > 0. Since p ⊇ (p), we have p ∈ p and p = ax+ y(b+ cω) for some x, y ∈ Z.
It follows that p = ax; hence, p | a or p � a and p | x. In the latter case, we
must have a = 1 and p = O, a contradiction; hence, a = p. Since c | a, we can
only have c = 1 or p. If c = p, then p = (p). If c = 1, then p = [p, b+ω]. Since
p is an ideal, we must also have p | N(b+ ω), which is equivalent to

(2b+ T (ω))2 ≡ Δ (mod 4p) .

If the Kronecker symbol (Δ/p) = −1, this is impossible. Thus, if (Δ/p) = −1,
then p can only be (p). In this case we say that p is inert in O. If r is some
ideal that divides (p), by Theorem 4.36 we must have N(r) | p2. If N(r) = 1,
then r = O. If N(r) = p, then r = [p, b′ + c′ω], where b′, c′ ∈ Z and c′ | p. If
c′ = p, then (p) | r and therefore r = (p). If c′ = 1, then r = [p, b′ + ω] and
p | N(b′ + ω), which is impossible by (4.4) as (Δ/p) = −1. Thus, (p) is an
indecomposable ideal of O.

If (Δ/p) �= −1, then there must exist some t ∈ Z such that

t2 ≡ Δ (mod 4p) .

By (4.3), t ≡ T (ω) (mod 2). We put

q =

[

p,
t+

√
Δ

2

]

= [p, t′ + ω] ,

where t′ = (t− T (ω))/2. Then q is an O-ideal and we cannot have (p) | q.
Now, N(q) = p and therefore qq = (p). Since p | (p), we get p | q or

p | q. If p | q, then c = 1 and p = [p, b + ω] ⊇ q = [p, t′ + ω]. It follows that
b ≡ t′ (mod p) and p = q. Similarly, if p | q, then p = q. If r is any O-ideal
such that r | q, then N(r) | N(q) and therefore N(r) = 1 or p. If N(r) = 1,
then r = O; if N(r) = p, then r = [p, b′ + ω] ⊇ [p, t′ + ω] and b′ ≡ t′ (mod p).
Thus, r = q. Also, if r | q, then it is easy to show that r = q. Thus, we have
shown that any prime ideal of O is indecomposable.

4.6 Divisibility and Prime Ideals 95

If q = q, then p | t and (Δ/p) = 0. Thus, if (Δ/p) = 1, then (p) = qq. In
this case we say that p splits in O. Finally, if (Δ/p) = 0, then p | t and q = q.
In this case, (p) = q2, and we say that p ramifies in O. Notice that in this
latter case we must have (p, f) = 1; otherwise q is not invertible.

We have therefore found that if p is a prime ideal of O, then p = (p) or
p = q or p = q. Also, (p, f) = 1.

It remains to show that these are indeed prime ideals. For this, we now
require the following theorem.

Theorem 4.43. If r is an indecomposable O-ideal such that (N(r), f) = 1,
then r is a prime ideal of O.

Proof. Suppose r | ab, where a and b are any two O-ideals, and put d =
a + b. We observe that d ⊇ r and d ⊇ a. Also, by the remarks following
Definition 4.40, we have (N(d), f) = 1. Since d is invertible, we have d | r and
d | a. Since r is indecomposable, we can only have d = O or d = r. If d = r,
then r | a; if d = O, then since 1 ∈ O, there must exist some ρ ∈ r and some
α ∈ a such that ρ+ α = 1. Let β be any element of b. We have

β = βρ+ βα .

Now, r ⊇ ab and αβ ∈ ab; hence, αβ ∈ r. Since ρ ∈ r and r is an O-ideal, we
must have βr ⊆ r, which means that βρ ∈ r. It follows that β(= βρ+ βα) ∈ r
and this is true for all β ∈ b. Hence, b ⊆ r and r | b by Theorem 4.39. ��

It might seem that all indecomposable O-ideals should be prime ideals,
but consider the ideal r = [p2, pω0] in the order O = [1, ω], where ω = pω0. If
we select p to be some rational prime such that p � N(ω0), then r is invertible.
Also, it is not difficult to show that r is indecomposable in O, but it is certainly
not a prime ideal of O because r | (p)[p, ω], but r � (p) and r � [p, ω].

If we produce any O-ideal a as a product of prime ideals of O, we see by
Theorem 4.36 that (N(a), f) = 1. We will now show that if (N(a), f) = 1 for
any O-ideal a, then a can be represented as a unique (up to order) product
of prime ideals of O.

Theorem 4.44. If a is any O-ideal such that (N(a), f) = 1, then a can be
written uniquely (up to order) as a product of prime ideals of O.

Proof. Clearly, a is invertible, and since a has only a finite number of divisors,
it can be written as a product of indecomposable ideals of a. Furthermore,
by Theorem 4.36, if r is any one of these indecomposable ideals, we have
(N(r), f) = 1, which, by Theorem 4.43, means that r is a prime ideal of O.
That this product is unique follows in the same way as the proof for the unique
factorization of any rational integer. ��

Thus, if O = OK, then f = 1 and any ideal of OK can be written uniquely
(up to order) as a product of prime ideals of OK. Note, however, that this is
not the case when f > 1 unless the ideal a has norm relatively prime to f .

96 Notes and References

Notes and References

1See, for example, [NZM91].
2This was proved in a different form in art. 42 of [Gau86]. For an interesting

discussion of this result and its generalization, see [MM05].
3For an elementary introduction to this subject, see [AW04], [ST87], or [PD98].

For more advanced texts, see, for example, [Mar77a], [Lan91], [IR82], and the ency-
clopaedic [Nar04].

4We confine our discussions to quadratic fields. For further information on these
structures, see [Coh62] and [Cox89].

5For a more general discussion of modules, consult any standard text in abstract
algebra such as [DF04] or [Hun74].

6An order of K can be defined more generally as a subset O of K such that O is
a subring of K containing 1, O is a finitely generated module of K, and O contains
a basis for K over Q. However, as mentioned in [Cox89], p. 133, this is equivalent to
the definition provided here.

7It has become customary to use binary quadratic forms instead of ideals for
these kinds of investigations, but we will use ideals because they are computationally
more convenient. For more information on the use of binary quadratic forms in this
context, the reader is referred to [BV07], [Bue89], [Coh93], or [Hua82].

8We are grateful to John P. Robertson for bringing this result to our attention.
9See Prop. VII.30 in [Hea56].

10See art. 16 in [Gau86].
11A good introduction to Kummer’s work can be found in [Smi65].
12This appeared in Supplement XI (second edition, 1871) appended to Dirichlet’s

Vorlesungen über Zahlentheorie. For an English version, see [Ded96].
13For a very comprehensive treatment of the problem of adding two ideals, the

reader is referred to [Wei06].

5

Ideals and Continued Fractions

5.1 Reduced Ideals of O
Throughout this chapter we will let O = [1, ω] be the order of discriminant
Δ in the quadratic field K = Q(

√
D). If a is any ideal of O, it is evident that

its corresponding ideal class, [a], contains an infinitude of ideals. In order to
deal with this difficulty in managing [a], we will restrict our attention to a
finite subset of particular ideals of [a]. To this end we provide the following
definitions.1

Definition 5.1. We say that an ideal a of O is primitive if it cannot be
written as

a = mb ,

where b is an ideal of O and m ∈ Z, |m| > 1.

By Theorem 4.24, we know that any O-ideal a can be represented as

a = [a, b+ cω] ,

where a, b, c ∈ Z; c | b, c | a; a, c > 0, ac | N(b+cω). Since a = c[a/c, b/c+ω] =
c[−a/c, b/c+ ω], it follows that we can represent any primitive ideal b by

b = [s, t+ ω] ,

where s, t ∈ Z, N(b) = |s|, and N(b) | N(t + ω). That N(b) = |s| must, of
course, follow from Proposition 4.23. Clearly, we see that [b] contains primitive
ideals. We will now derive some properties of such ideals. We use �x	 to denote
�x+ 1/2�, the nearest integer to x ∈ R.

Proposition 5.2. If a = [a, b + ω] is any primitive ideal of O, there exists
some α ∈ a such that a = [a, α] and |T (α)| ≤ |a|.
Proof. Put q = �T (b + ω)/2a	 and α = b + ω − qa. Certainly, a = [a, α] and
|T (α)| = |T (b+ ω)− 2qa| = 2|a||T (b+ ω)/2a− q| ≤ |a|. ��

98 5 Ideals and Continued Fractions

We will now show that for a given a the value of |T (α)| in Proposition 5.2
is unique.

Proposition 5.3. Let a be a primitive O-ideal and suppose that a = [a, α]
and a = [a, β]. If |T (α)| ≤ |a| and |T (β)| ≤ |a|, then |T (α)| = |T (β)|.
Proof. Suppose that |T (α)| ≤ |a| and |T (β)| ≤ |a|. Since β ∈ [a, α] and
α ∈ [a, β], we must have x, y, s, t ∈ Z such that

β = x|a|+ yα, α = s|a|+ tβ .

Thus, β = x|a|+y(s|a|+ tβ) and, therefore, ty = 1, which means that |y| = 1.
If x = 0, then |T (α)| = |T (β)|. Suppose x �= 0. Since T (β) = 2x|a| + yT (α),
we have

|T (β)| ≥ |2x|a| − (−y)T (α)| ≥ 2x|a| − |T (α)| ≥ 2|a| − T (α) .

If |a| > |T (α)|, then T (β) > |a|, which is not possible. If |a| = |T (α)|, then
|T (β)| ≥ |a|. Since T (β) ≤ |a|, we must have |T (β)| = |a| = |T (α)|. ��

When we perform arithmetic in Z, it is often very useful to simplify our
calculations by reducing the results modulo some integer m. This allows us to
reduce all our intermediate results to numbers whose values are bounded by
m, thereby guaranteeing that our computations will not produce numbers that
are unmanageably large. It turns out that we can also perform a reduction
operation on ideals. As we shall see, this operation is extremely useful when
we need to perform arithmetic on the ideals of O. Indeed, ideal reduction is
the most important of all the basic arithmetic operations that we will perform
on ideals. It is for this reason that we discuss it in considerable detail in this
chapter.

Definition 5.4. If a is an O-ideal, then a is said to be a reduced ideal of
O if a is primitive and there does not exist a non-zero α ∈ a such that both
|α| < N(a) and |α| < N(a) hold.

Notice that if a is a reduced O-ideal, then so is a. Note further that when
Δ < 0, we have |α| = |α|; thus, in this case we could shorten the definition of
a reduced ideal a in O by simply demanding that there be no non-zero α ∈ a
such that |α| < N(a).

We will now distinguish between the two cases of Δ < 0 and Δ > 0. We
first consider the case of Δ < 0.

Theorem 5.5. If a is a primitive ideal of O, Δ < 0 and a = [a, α], with
|T (α)| ≤ |a|, then a is a reduced ideal of O if and only if |α| ≥ |a|.
Proof. If a is reduced, then |α| ≥ |a| = N(a). (We will often simply use the
shorter term “reduced” to mean a reduced O-ideal when there is no doubt

5.1 Reduced Ideals of O 99

about the underlying order O.) Now assume that |α| ≥ |a|. By (4.4), we also
have

4|α|2 = 4αα = T (α)2 + |Δ| .
Hence,

|Δ| = 4|α|2 − T (α)2 ≥ 4a2 − a2 = 3a2 .

If a is not a reduced O-ideal, there must exist some β ∈ a such that
|β| < |a| and β �= 0. Thus, there must exist x, y ∈ Z such that

β = x|a|+ yα (y �= 0)

and, by (4.4),
4|β|2 = 4ββ = T (β)2 + y2|Δ| . (5.1)

Since |Δ| ≥ 3a2, we get 4|β|2 ≥ 3y2a2 > 4a2 when |y| > 1. Thus, since
|β| < |α|, we must have |y| = 1 and therefore a = [a, β]. If |T (β)| > |a|, then
by (5.1), 4|β|2 > 4a2 and |β| > |a|, which is impossible. Thus, |T (β)| ≤ |a|.
By Proposition 5.3, we must have |T (β)| = |T (α)|, which by (5.1) and the
fact that |y| = 1 means that |β| = |α| ≥ |a|, a contradiction. ��
Corollary 5.5.1. If a is a reduced O-ideal and Δ < 0, then N(a) ≤√|Δ|/3.

We also have a companion result to this corollary below.

Theorem 5.6. If a = [a, b + ω] is a primitive O-ideal, Δ < 0, and N(a) <√|Δ|/2, then a is reduced.

Proof. Let β ∈ a, β �= 0. By (5.1) we have

4|β|2 ≥ |Δ| > 4a2

and |β| > |a|. Thus, a must be a reduced O-ideal by definition. ��
We next point out that if a = [a, α] is a primitive O-ideal (α = b + ω),

then so is b = [−N(α)/a,−α]. Also, it is easy to verify that

(−α)a = (a)b (5.2)

and therefore a ∼ b. This result is independent of the sign of Δ. We now put

q =
{ �T (α)/2a	 when Δ < 0
�α/a� when Δ > 0 (5.3)

and β = α − qa. We define the operation2 ρ acting on a = [a, b + ω] as
that action that produces the ideal a′ = [−N(β)/a,−β]. We denote this by
a′ = ρ(a), where a′ = [a′, b′+ω] with b′ = qa−b−T (ω) and a′ = −N(b′+ω)/a,
and by (5.2), since a = [a, α] = [a, β], we get

ρ(a) = γa , (5.4)

100 5 Ideals and Continued Fractions

where γ = (b′ + ω)/a. Notice also that since b′ + ω = qa − b − ω, we have
a = [a, b′ + ω] and

b′ + ω

a′
=

−a
b′ + ω

=
−a

qa− b− ω =
1

b+ω
a − q . (5.5)

It is important to realize that although the ideal ρ(a) is independent of
the value of b used in the representation of a = [a, b+ ω], it does depend on
the sign of a. For example, if D = 67, ω =

√
67, a = −3, and b = 1, then

ρ(a) = [18, 11+ω], but if we change a to 3, then ρ(a) = [1, 8+ω]. Thus, when
we use the shorthand notation ρ(a), we are assuming that we have been given
a and b in the representation of a as [a, b+ ω] and then ρ(a) = a′ as defined
above.

We now have a simple criterion for determining when the primitive O-ideal
a when Δ < 0 is reduced.

Theorem 5.7. If a = [a, b + ω] is a primitive O-ideal and Δ < 0, then a is
reduced if and only if N(ρ(a)) ≥ N(a).

Proof. We define β as above and observe that |T (β)| ≤ |a| = N(a). Thus,
by Theorem 5.5, a = [a, β] is reduced if and only if |β| ≥ |a| = N(a). Also,
|β|2 = N(a)N(a′), where a′ = ρ(a). If N(a′) ≥ N(a), then |β|2 ≥ N(a)2. It
follows that |β| ≥ |a| and a is reduced. If, on the other hand, a is reduced,
then |β| ≥ |a| and, therefore, N(a′) = |β|2/N(a) ≥ N(a). ��

We remark here that since |T (β)| ≤ |a| and N(ρ(a)) = |β|2/|a|, we get
N(ρ(a)) ≤ (1/4)(T (β)2 + |Δ|)/|a|. Hence,

N(ρ(a)) ≤ |a|+ |Δ|/|a|
4

(Δ < 0) . (5.6)

Notice that we have proved that every ideal class of O, when Δ < 0, must
contain a reduced ideal. For if we start with the primitive O-ideal a = [a, b+ω]
and define ρn(a) recursively by ρn(a) = ρ(ρn−1(a)), then the sequence of
positive integers

N(a), N(ρ(a)), N(ρ2(a)), . . .

cannot be strictly decreasing indefinitely. Thus, at some point, we must have

N(ρi(a)) ≥ N(ρi+1(a))

for some i ≥ 0. It follows that ρi(a) is a reduced ideal of O. Also, since
ρ(a) ∼ a, we have ρi(a) ∼ a by induction.

We now turn our attention to the case of Δ > 0. We first need to develop
a result like Theorem 5.5 for this case. This is provided in the next theorem.

Theorem 5.8. If a is a primitive ideal of O, Δ > 0, and a = [a, b+ ω], then
a is a reduced ideal of O if and only if there exists some β ∈ a such that
a = [a, β], β > |a|, and −|a| < β < 0.

5.1 Reduced Ideals of O 101

Proof. Suppose a is a reduced O-ideal. There certainly exists an infinitude of
pairs (x, y) ∈ Z2 such that

|xa+ yα| < |a| ,
for α = b + ω. (For example, x = �−yα/a�, y = 1, 2, 3,) Let (s, t) be
one such pair and put γ = sa + tα. We note that there can only be a finite
number of elements λ ∈ a such that |λ| < |γ| and |λ| < |a|. If there are no
such elements, we put β = |γ| ∈ a. If there are such elements, we put β = |λ|,
where |λ| is minimal. Hence, we may properly define β to be the least positive
element of a such that |β| < |a|. Since a is a reduced ideal of O, we must
have β ≥ |a|, but since |β| < |a|, we cannot have β = |a|; hence, β > |a| and
0 < β − |a| < β. It follows that since β is the least positive element of a such
that |β| < a, β−|a| ∈ a, and 0 < β−|a| < β, we must have |β−|a|| ≥ |a| > |β|
and therefore −|a| < β < 0.

Since β ∈ a, we must have (p, q) ∈ Z2 such that β = pa + qα. Suppose
|q| > 1 and let u ≡ p (mod q), where |u| ≤ |q/2|; then μ = |(β − ua)/q| ∈ a.
Hence,

|μ| ≤ |β/q|+ |ua/q| ≤ |β|/2 + |a|/2 < |a| .
Also, μ > 0 and

μ ≤ |β/q|+ |ua/q| < β/2 + |a|/2 < β ;

however, such a μ ∈ a cannot exist by selection of β. Hence, we must have
|q| ≤ 1. Since q �= 0, we can only have q = ±1 and a = [a, β].

Next, suppose that a = [a, b + ω], where β = b + ω > |a| and −|a| <
b+ ω < 0. If a is not a reduced ideal of O, there must exist some λ ∈ a such
that λ �= 0, |λ| < |a|, and |λ| < |a|. Since λ = x|a|+ yα for some x, y ∈ Z, we
have

|x|a|+ yβ| < |a|, |x|a|+ yβ| < |a| .
We see that if x = 0, then y = 0, and if y = 0, then x = 0; hence, xy �= 0.
Also, xy < 0 by the first inequality and xy > 0 by the second. Hence, no such
λ can exist in a and, therefore, a must be reduced. ��
Corollary 5.8.1. If a is a reduced O-ideal and Δ > 0, then N(a) <

√
Δ.

Proof. By the theorem a = [a, β], where β > |a| and −|a| < β < 0. Thus,
N(a) = |a| < β − β = ω − ω =

√
Δ. ��

We also have a result similar to Theorem 5.6.

Theorem 5.9. If Δ > 0, a is a primitive ideal of O, and N(a) <
√
Δ/2, then

a is reduced.

Proof. Let a = [a, α] and put β = α + �−α/|a|�|a|. Then a = [a, β], where
−|a| < β < 0. Since β − β = ω − ω (a is primitive) and β > −|a|, we get
β > ω − ω − |a| = √

Δ− |a| > |a|. Hence, a is reduced by Theorem 5.8. ��

102 5 Ideals and Continued Fractions

We also have a simple criterion for determining when the primitive O-ideal
a = [a, b+ ω] is reduced.

Theorem 5.10. Let a = [a, b+ω] be any primitive O-ideal, where Δ > 0. Put
β = k|a|+ b+ω, where k = �−(b+ω)/|a|�. a is reduced if and only if β > |a|.
Proof. We have −|a| < β < 0. If β > |a|, then a is reduced by Theorem 5.8.
If |a| > β, then β �= 0 and

β = β − β + β > β − β − |a| = ω − ω − |a| > −|a| .
Hence, |β| < |a|, and since |β| < |a|, we see that a cannot be a reduced
O-ideal. ��

We now denote any primitive O-ideal a = [a, b + ω] by the equivalent
representation given by (4.9):

a =

[
Q

r
,
P +

√
D

r

]

, (5.7)

where a = Q/r and b + ω = (P +
√
D)/r. If we put Q0 = Q, P0 = P , and

q0 = q, where q is defined by (5.3), then

ρ(a) =

[
Q1

r
,
P1 +

√
D

r

]

,

where
P1 +

√
D

Q1
=

1
(P0 +

√
D)/Q0 − q0

by (5.5). In computing the sequence of ideals

a, ρ(a), ρ2(a), . . . , ρn(a), . . .

we produce a sequence of integers representing the value of q at each stage in
the process. If these are represented as

q0, q1, q2, . . . , qn, . . . ,

then we can consider the continued fraction given by

P +
√
D

Q
=

〈

q0, q1, q2, . . . , qn−1,
Pn +

√
D

Qn

〉

. (5.8)

In this case we find by (5.5) and our results in §3.1 of Chapter 3 that

ρj(a) =

[
Qj

r
,
Pj +

√
D

r

]

(j = 0, 1, 2, . . . , n) .

5.1 Reduced Ideals of O 103

Also,
ρj(a) = ψjρ

j−1(a)

by (5.4). If we define aj+1 = ρj(a) (j = 0, 1, 2, . . . , n), we get

aj = ψj−1aj−1 (j = 2, 3, . . . , n+ 1) (5.9)

and, by (3.17),
aj = θja1 (j = 1, 2, 3, . . . , n+ 1) . (5.10)

We also mention that

ψj =
Pj +

√
D

Qj−1
= qj−1 +

√
D − Pj−1

Qj−1
= qj−1 − φj−1 ,

and since aj = [Qj−1/r, (Qj−1/r)φj−1], we get aj = [Qj−1/r, (Qj−1/r)ψj].
Hence, by (5.10), (3.18), and (3.16), we get

(Qj−1)a1 = (Q0θj)aj =

[
Q0Qj−1θj

r
,
Q0Qj−1θjψj

r

]

= (Qj−1)
[
Q0θj

r
,
Q0θj+1

r

]

.

Thus,

a1 =
[
Q0θj

r
,
Q0θj+1

r

]

. (5.11)

In the case of Δ > 0, the definition of ρ implies that the continued fraction
expansion given by (5.8) is simple. Thus, by Theorem 3.5, we must find some
j ≥ 0 such that

ρj(a) =

[
Qj

r
,
Pj +

√
D

r

]

has φj = (Pj −
√
D)/Qj < 0. By Proposition 3.4 we get

ρj+1(a) =

[
Qj+1

r
,
Pj+1 +

√
D

r

]

,

where
Pj+1 +

√
D

Qj+1
> 0 and − 1 <

Pj+1 −
√
D

Qj+1
< 0 .

By Theorem 5.8, ρj+1(a) is reduced. Thus, we have shown that when Δ > 0,
there is always a reduced ideal in any ideal class of O.

Indeed, from the discussion in §3.3 we know that there must be some
minimal m ∈ Z>0 such that

0 < Qm−1 <
√
D .

104 5 Ideals and Continued Fractions

Since am = ρm−1(a) = θma and N(am) = Qm−1/r <
√
Δ/2, we see that am is

a reduced ideal equivalent to a, and if Q0 > 0, we also know from Theorem 3.7
that |θm| < 2. Since, by (3.17),

|θm| = |Qm−1|
Q0

m−1∏

k=1

φk >
|Qm−1|
Q0

≥ r

Q0
,

we have
r

Q0
< |θm| < 2 . (5.12)

5.2 Reduction Algorithms

We have seen in the previous section that if we are given any O-ideal a, we
can find a reduced O-ideal b such that b ∼ a. We call this the process of
reducing a, and we have provided algorithms for doing this when Δ < 0 and
when Δ > 0. Ideal reduction (or the equivalent process involving quadratic
forms) has been studied for many years, starting with Lagrange3 in the 18th
century, but not a lot of progress has been made in significantly reducing the
computational complexity of the various techniques developed for perform-
ing this process. For the most part, these procedures are of bit complexity4

O(nM(n)), where n is the bit length of N(a) (�log2N(a)) and M(n) is the
number of bit operations required to multiply two n-bit integers. However,
this can be improved5 to O(n2) by using a more sophisticated analysis of the
runtime similar to that used to show that the bit complexity of the Euclidean
algorithm is O((logN)2) (see §3.2).

It is not our intention here to review all of the algorithms6 that have been
proposed for ideal reduction. We should, however, point out that currently
the best algorithm, from the point of view of asymptotic complexity, is that
of Schönhage.7 This technique is of asymptotic bit complexity O(log nM(n));
however, tests8 indicate that the benefit of using this algorithm is not realized
in any practical computational setting until the value of n = logΔ exceeds
105. Since Schönage’s algorithm is somewhat intricate and impractical for
numbers the size that we will be considering, we offer here a simple reduction
technique that performs well in practice9 whether Δ is positive or negative.

Let

a =

[
Q

r
,
P +

√
D

r

]

be a primitive O-ideal. If |Q| < √|D|, we already know that a is reduced by
Theorems 5.6 and 5.9. Thus, we will consider the case of |Q| >√|D|. We put
K = P and L = |Q| and expandK/L into a simple continued fraction by using
the Euclidean algorithm. We then compute Rj and Cj (j = 0, 1, 2, . . . , n) by
(3.20), (3.21), and (3.24). Since R−1 = L >

√|D| and Rn = 0, there must
exist some integer i such that 0 ≤ i ≤ n and

5.2 Reduction Algorithms 105

Ri <
√
|Q||D|1/4 < Ri−1 .

If (P +
√
D)/Q = 〈q0, q1, q2, . . . , qi, (Pi+1 +

√
D)/Qi+1〉, then by (3.13) and

the definition of Ci,

(−1)i+1Qi+1 =
Gi

2 −DCi
2

|Q| .

Now,
Gi = |Q|Ai − PBi = (−1)i+1Ri

by (3.22); hence, Gi
2 = Ri

2 < |Q|√|D|. Also, by (3.23),

|Q| = BiRi−1 +Bi−1Ri ,

and it follows that Bi ≤ |Q|/Ri−1 <
√|Q||D|−1/4. Thus, |D|Bi

2 = |D|Ci
2 <

|Q|√|D| and

|Qi+1| ≤
{

2
√|D| when D < 0√
D when D > 0 .

In the latter case we have

N(ai+2) <
√
Δ/2 ;

thus,

ai+2 =

[
|Qi+1|
r

,
Pi+1 +

√
D

r

]

,

where

Qi+1 = (−1)i+1(Ri
2 −DCi

2)/|Q|

and (by (3.12))

Pi+1 =
(
(−1)i+1Ri −Qi+1Bi−1

)
/Bi

= (Ri +Qi+1Ci−1)/Ci

is a reduced O-ideal by Theorem 5.9 when D > 0. In the case of D < 0, we
can only show that N(ai+2) <

√|Δ|; however, this case is easily handled by
making use of the following result.

Theorem 5.11. Let a = [a, b + ω] be a primitive ideal of O where Δ < 0. If
N(a) <

√|Δ|, then either a or ρ(a) is reduced.

Proof. Put a′ = [a′, b′ + ω] = ρ(a). If a′ is not a reduced ideal of O, there
must exist some non-zero λ ∈ a′ such that |λ| < N(a′). Since |a| = N(a) and
by (5.4),

aa′ = −βa ,

106 5 Ideals and Continued Fractions

where −β = b′ + ω, there must exist some μ ∈ a such that μβ = λa. Hence,

|μ| = |λ||a|
|β| <

|a′||a|
|β| = |β| .

Also, since μ ∈ a and a = [a, β], we must have x, y ∈ Z such that μ = xa+ yβ
and

4|μ|2 = T (μ)2 + |Δ|y2 . (5.13)

By our remarks in the proof of Theorem 5.7 we have |T (β)| ≤ |a|; thus, if a
is not a reduced O-ideal, then |β| < |a| by Theorem 5.5. Hence,

|a| > |β| > |μ| ≥
(√|Δ|

2

)

|y| >
(
N(a)

2

)

|y|

and therefore |y| ≤ 1. If y = 0, then |μ| = |xa|. Since μ �= 0, we have |μ| ≥ |a|,
which is impossible. If |y| = 1, then a = [a, μ]. Thus, since a is primitive, we
have

4|β|2 = T (β)2 + |Δ| ,
with |β| > |μ|. It follows by (5.13) with |y| = 1 that |T (μ)| < |T (β)| ≤
|a|. However, by Proposition 5.3, this must mean that |T (μ)| = |T (β)|, an
impossibility. Thus, if a is not a reduced ideal of O, then ρ(a) must be. ��

From this result we see that if ai+2 is not a reduced O-ideal, then ρ(ai+2)
is a reduced O-ideal when Δ < 0. It is easy to determine whether or not ai+2

is reduced by comparing |Qi+2| and N(ρ(ai+2)). The advantage in using this
reduction technique is that all we need to do is use the Euclidean algorithm
on P and |Q|. The operations are simple and we can easily perform the reduc-
tion process in essentially the same time complexity as that of the Euclidean
algorithm. Tests carried out on this reduction algorithm have shown that it
is very efficient in practice.10

It will be helpful in what follows to derive some results analogous to The-
orem 5.11 in the case of Δ > 0. We begin by observing that in this case we
have

b′ + ω = −ηa , b′ + ω =
√
Δ− ηa , (5.14)

where η = (b+ ω)/a− q. Hence, 0 < η < 1. We also have

a′ = η(b′ + ω) = η(
√
Δ− ηa) . (5.15)

Here, the symbols a, b, a′, b′, and q have the meanings assigned to them in §5.1
when we write [a′, b′ + ω] = ρ(a) and a = [a, b+ ω].

Theorem 5.12. Let Δ > 0. If a > 0 and a = [a, b+ ω] is a reduced O-ideal,
then ρ(a) is also a reduced O-ideal.

5.2 Reduction Algorithms 107

Proof. Let a′ = ρ(a) = [a′, b′ + ω] and recall that a = [a, b + ω] = [a, b′ + ω].
Since a is reduced, we know by Corollary 5.8.1 that a <

√
Δ. This means by

(5.14) that b′ + ω > 0 and by (5.15) that a′ > 0, b′ + ω > a′. Also, by (5.14),
we have −a < b′ + ω < 0. Thus, since a is a reduced ideal, we must have
b′ + ω > a because b′ + ω ∈ a and a is reduced.

Since |b′ + ω|
a′

=
a

|b′ + ω| ,

we get |b′ + ω|/a′ < 1. Hence, −a′ < b′ + ω < 0 and b′ + ω > a′. It follows
that ρ(a) = a′ is reduced by Theorem 5.8. ��

Notice that if a = [a, b+ ω] is reduced and a < 0, then ρ(a) = [a′, b′ + ω]
is not necessarily reduced. For example, consider D = 67, ω =

√
67, a = −3,

and b = −14. Certainly, [−3,−14 + ω] is a primitive ideal of O = [1, ω]
and a is reduced because N(a) = 3 and 3 <

√
D =

√
Δ/2. However, q =

[−14+ω/(−3)] = 1, b′ = qa− b−T (ω) = 11, and a′ = −N(11+
√

67)/(−3) =
18 > 2

√
D =

√
Δ. Hence, a′ is not reduced by Corollary 5.8.1.

We are now able to present a theorem analogous to Theorem 5.9 for Δ > 0.

Theorem 5.13. Let Δ > 0. If 0 < a < 3
√
Δ/2 and a = [a, b + ω] is a

primitive O-ideal, then ρ(a) is a reduced O-ideal. Furthermore, if a is not a
reduced O-ideal, then ρ(a) = ψa, where |ψ|, |ψ| < 1.

Proof. As before, we put a′ = ρ(a) = [a′, b′ + ω]. We have ρ(a) = ψa, where
ψ = (b′ + ω)/a and |ψ| < 1 by (5.14). If a is a reduced ideal, we have our
result by Theorem 5.12. Suppose that a is not reduced. If

√
Δ > ηa, then

b′ + ω > a′ > 0 by (5.15). Since a is not reduced, b′ + ω ∈ a, and −a <
b′ + ω < 0 by (5.14), we must, by Theorem 5.8, have b′ + ω < a. Thus,
|b′ + ω|/a′ = a/(b′ + ω) > 1 and we have −a′ < b′ + ω < 0, b′ + ω > a′. It
follows from Theorem 5.8 that a′ is reduced. Also, 0 < ψ < 1. In the case
of
√
Δ < ηa, we get b′ + ω < 0 and −b′ − ω = ηa − √Δ <

√
Δ/2. Thus,

−√Δ/2 < b′ + ω < 0 and we find that |a′| = η|b′ + ω| < √Δ/2. Hence, ρ(a)
is reduced by Theorem 5.9. Also, |ψ| = |b′ + ω|/a < √Δ/2a < 1 because a is
not a reduced O-ideal. ��
Remark 5.14. Notice that if a is a reduced ideal and N(a) >

√
Δ/2, then

N(ρ(a)) <
√
Δ/2. This is simply because both a and a′ = ρ(a) are reduced

and, therefore, by Corollary 5.8.1, N(a)N(a′) < Δ. In the appendix (Theo-
rem A.1), we extend Theorem 5.13 somewhat further.

We will next concern ourselves with the problem of finding all of the re-
duced O-ideals in a given ideal class of O. We first give the following simple
proposition.

Proposition 5.15. If a and b are O-ideals, b is primitive, and a ∼ b, then
there exists some non-zero λ ∈ a such that (λ)b = (N(b))a.

108 5 Ideals and Continued Fractions

Proof. Since a ∼ b, there must exist α, β ∈ O such that αβ �= 0 and (α)a =
(β)b. Since b is primitive, we have N(b) ∈ b, and therefore there must exist
some λ ∈ a such that αλ = βN(b). Consider the O-ideal c = (λ)b. We have

(α)c = (αλ)b = (βN(b))b = (N(b)α)a .

Since α �= 0, we get c = (N(b))a by Proposition 4.38 and the result follows
immediately. ��

We next require a simple lemma.

Lemma 5.16. Let Δ < 0 and a = [a, α] be a primitive O-ideal with |T (α)| ≤
|a|. If a is a reduced O-ideal and λ ∈ a such that |λ| = |a|, then either λ = ±a
or a = [a, λ] and |T (λ)| = |T (α)|, |λ| = |α|.
Proof. Since λ ∈ a, there must exist x, y ∈ Z such that λ = xa + yα and, by
(4.4),

4a2 = 4|λ|2 = T (λ)2 + y2|Δ| .
Since a is a reduced ideal, we must have |Δ| ≥ 3a2, which means that |y| ≤ 1. If
y = 0, we get λ = xa, and since |λ| = |a|, we can only have λ = ±a. If |y| = 1,
then T (λ)2 ≤ 4|λ|2 − |Δ| ≤ 4|λ|2 − 3a2 = a2 and therefore |T (λ)| ≤ |a|.
Since a = [a, λ], we must have |T (λ)| = |T (α)| by Proposition 5.3. Since
4|α|2 = T (α)2 + |Δ|, we get |α| = |λ|. ��

We are now able to show that in the case of Δ < 0, there can never be
more than two reduced O-ideals in any ideal class of O.

Theorem 5.17. Let Δ < 0. If a and b are reduced O-ideals such that a ∼ b,
then either a = b or a = b.

Proof. By Proposition 5.2, we may assume with no loss of generality that
a = [N(a), α], b = [N(b), β], where |T (α)| ≤ N(a) and |T (β)| ≤ N(b). By
Proposition 5.15, we must have μ ∈ a and ν ∈ b such that μν �= 0 and

(μ)b = (N(b))a , (ν)a = (N(a))b . (5.16)

If we take norms of both sides of these two equations, we get

|μ|2N(b) = N(b)2N(a), |ν|2N(a) = N(a)2N(b)

by Theorem 4.35. Hence, |μ|2 = |ν|2 = N(a)N(b). IfN(b) < N(a), then |μ|2 <
N(a)2 and |μ| < N(a) which is impossible because a is reduced. Similarly, if
N(a) < N(b), we find that |ν| < N(b), which is also impossible. Thus, we
must have |ν| = |μ| = N(a) = N(b). If μ = ±N(a), then b = a by the
first equation in (5.16). If ν = ±N(b), then b = a by the second equation
in (5.16). Suppose that μ �= ±N(a) and ν �= ±N(b). By Lemma 5.16 we
must have a = [N(a), μ], b = [N(b), ν], |T (μ)| = |T (α)|, |T (ν)| = |T (β)|, and

5.3 Reduced Ideals When Δ > 0 109

|α| = |μ| = |ν| = |β|. Since 4|μ|2 = T (μ)2 + |Δ| and 4|ν|2 = |T (ν)|2 + |Δ|, we
get |T (μ)| = |T (ν)| and therefore |T (α)| = |T (β)|. Since

0 = α2 − (α+ α)α+ αα = α2 ∓ (β + β)α+ ββ = (α∓ β)(α ∓ β) ,

we see that α = ±β or α = ±β. If α = ±β, then a = b; if α = ±β, then a = b.
��

It is possible11 for a and b to be reduced, a ∼ b, a = b, and a �= b. We have
already seen in the proof of Theorem 5.17 that if a and b are reduced and
equivalent and a �= b, then N(a) = |α|, where a = [N(a), α] and α = b + ω.
Now, suppose that a = [N(a), α] is any primitiveO-ideal such thatN(a) = |α|.
We have

N(a)2 = |α|2 = T (α)2 +Δ > T (α)2

and therefore |T (α)| < N(a). Since N(a) = |α|, we know that a is reduced by
Theorem 5.5. Also, since

N(a)[N(a), α] = α[N(a), α] ,

we have a ∼ a. However, if a = a, we must have α ∈ a. This means that there
exist x, y ∈ Z such that α = xN(a) + yα. Since α = b+ ω, we get

b+ ω = xN(a) + y(b+ T (ω)− ω) .

It follows that y = −1 and T (α) = 2b+ T (ω) = xN(a). Since |T (α)| < N(a),
this is impossible.

The set of reduced ideals in any equivalence class of O is more complicated
when Δ > 0. In this case it is possible to have many more than two reduced
ideals in a given class. Since, by Proposition 5.2, the norm of any reduced
ideal in this case is bounded by

√
Δ, there can only be a finite number of

reduced ideals in any ideal class of O. We will devote the next section to a
detailed discussion of this case.

5.3 Reduced Ideals When Δ > 0

We have seen that if a = [a, b+ ω] (a > 0) is any reduced O-ideal, then ρ(a)
is a reduced O-ideal. Also, ρ(a) = a′ = [a′, b′ +ω], and since a <

√
Δ, we have

a′ > 0 by (5.15). Since a ∼ ρ(a), we see that each ideal in the sequence

a , ρ(a) , ρ2(a) , . . . , ρn(a) , . . . (5.17)

is reduced and equivalent to a. We will now show that the sequence (5.17)
contains all of the reduced ideals equivalent to a. We initially recall that if
a ∼ b, then γb = a for some γ ∈ K. We may certainly assume that γ > 0, and
if γ > N(a)/N(b), we can multiply γ by that power (εkΔ) of εΔ (> 1) such
that κ = εkΔγ ≤ N(a)/N(b). Since (εΔ)b = b, we get

110 5 Ideals and Continued Fractions

κb = a ,

where 0 < κ < N(a)/N(b). We now require the following result.

Theorem 5.18. Let a = [a, b + ω] (a > 0) and b be reduced O-ideals. If
a = κb, where κ ∈ Q(

√
Δ) and 0 < κ < N(a)/N(b), then κ = θm

−1, where
ρm−1(a) = θma (m ≥ 1).

Proof. We have θ1 = 1, and by (3.17) and (3.18),

|θj | = (−1)j−1θj =
j−1∏

k=1

φk
−1 (j = 2, 3, . . .) . (5.18)

In the case of Δ > 0, the continued fraction (5.8) is a simple continued
fraction; hence, φk > 1. Also, because φk+1 = 1/(φk−�φk�), we get φk+1φk =
�φk�φk+1 + 1 > 2 for k ≥ 1.

By (5.18), there must, therefore, exist some integer m ≥ 1 such that

|θm+1| < N(b)κ
N(a)

≤ |θm| . (5.19)

Suppose N(b)κ/N(a) �= |θm|. Since κN(b) ∈ a, we must have

κN(b) = N(a)(xθm + yθm+1) (5.20)

by (5.11), and by (5.19), we have

|θm+1| < |xθm + yθm+1| < |θm| . (5.21)

Also, since N(a)θm+1 ∈ a, there must exist some λ ∈ b such that

N(a)θm+1 = κλ ;

hence, |λ| < N(b) by (5.19). Since b is a reduced O-ideal, we must have
|λ| ≥ N(b). By (5.20) this means that

|xθm + yθm+1| ≤ θm+1 . (5.22)

However, θm and θm+1 are both positive and therefore (5.22) cannot hold
unless xy ≤ 0. However, if xy ≤ 0, then (5.21) cannot hold because θm and
θm+1 have opposite signs; hence, we must have N(b)κ/N(a) = |θm|. It follows
that (N(a)θm)b = (N(b))a. By taking norms of both sides of this equality we
get |N(θm)| = θm|θm| = N(b)/N(a) and, therefore, κ = θm

−1. ��
By our earlier remarks and Theorem 5.18, we see that if b is any reduced

O-ideal equivalent to a, then b = θma = am; hence, b is in the sequence (5.17).
Since the number of reduced O-ideals in any equivalence class is finite, there
must be some i and j (j > i ≥ 0) such that

5.3 Reduced Ideals When Δ > 0 111

ρi(a) = ρj(a) . (5.23)

We will now show that ρj−i(a) = a.
Let a = [a, b+ ω] be any primitive O-ideal. If we put a∗ = −N(b+ ω)/a,

q∗ = �(b+ ω)/a∗�, b∗ = q∗a∗ − b− T (ω), then

a∗ = [a∗, b∗ + ω]

is a primitive ideal of O, and by (5.2),

(a)a∗ = (b+ ω)a . (5.24)

Suppose that (b+ ω)/a > 1. In this case, since

b∗ + ω

a∗
= q∗ − b+ ω

a∗
= q∗ +

a

b+ ω
, (5.25)

we see that ⌊
b∗ + ω

a∗

⌋

= q∗ .

If we compute a′ = [a′, b′ + ω] = ρ(a∗), we find that

b′ = �(b∗ + ω)/a∗�a∗ − b∗ − T (ω) = q∗a∗ − b∗ − T (ω) = b ,

a′ = −N(b′ + ω)/a∗ = −N(b+ ω)/a∗ = a .

Hence, ρ([a∗, b∗+ω]) = [a, b+ω] = a. Thus, if a = [a, b+ω] and (b+ω)/a > 1,
we can define the operation ρ−1 whose action on a is to produce a∗ = [a∗, b∗+
ω] and ρ(ρ−1(a)) = a. If, in addition, we suppose that −1 < (b + ω)/a < 0
and a′ = ρ(a) = [a′, b′ + ω], we have (b′ + ω)/a′ > 1 by (5.5) and, therefore,
we can apply ρ−1 to a′ to obtain ã = [ã, b̃+ ω], where

ã =
−N(b′ + ω)

a′
= a ,

q̃ =
⌊
b′ + ω

ã

⌋

= q +
⌊−(b+ ω)

a

⌋

= q ,

b̃ = q̃ã− b′ − T (ω) = qa− b′ − T (ω) = b .

Hence, ã = a and, consequently, ρ−1(ρ(a)) = a. We also point out that if
a = [a, b + ω] with (b + ω)/a > 1, −1 < (b + ω)/a < 0, then ρ−1(a) =
a∗ = [a∗, b∗ + ω], where q∗ = �−a/(b + ω)� ≥ 1 and −1 < (b∗ + ω)/a∗ < 0,
(b∗ + ω)/a∗ > 1 by (5.25).

If we represent a by [Q/r, (P +
√
D)/r] as in (4.9) and we have (P +√

D)/Q > 1, −1 < (P −√D)/Q < 0, we can repeatedly apply ρ−1 to a. We
put Q0

∗ = Q, P0
∗ = P and define

Qi
∗ =

D − P ∗
i−1

2

Q ∗
i−1

, qi
∗ =

⌊
Pi−1

∗ + �√D�
Qi

∗

⌋

≥ 1 ,

112 5 Ideals and Continued Fractions

Pi
∗ = qi

∗Qi
∗ − P ∗

i−1 (i = 1, 2, 3, . . .) .

Thus, if we define ρ−n(a) recursively by ρ−n(a) = ρ−1(ρ−n+1(a)), we get

ρ−j(a) =

[
Qj

∗

r
,
Pj

∗ +
√
D

r

]

(5.26)

and

−1 <
P ∗

i−1 −
√
D

Q ∗
i−1

< 0 .

Also, by (5.24) we get ρ−j−1(a) = ξj+1ρ
−1(a), where

1 > ξi =

√
D − P ∗

i−1

Q ∗
i−1

> 0 .

It follows that
ρ−j(a) = χja , (5.27)

where χ0 = 1 and χn =
∏n

i=1 ξi (n ≥ 1). Tenner’s variant for this is given by

Qi
∗ = Q ∗

i−2 − q ∗
i−1(P

∗
i−1 − P ∗

i−2) (i ≥ 2) ,

Pi
∗ = �

√
D� −Ri

∗ (i ≥ 1) ,

where Ri
∗ is the remainder on dividing P ∗

i−1 + �√D� by Qi
∗. In this case, we

use Q1
∗ = (D − P0

∗2)/Q0
∗.

It is easy to verify that ξiξi = (P ∗
i−1

2 −D)/Q ∗
i−1 = −Qi

∗/Q ∗
i−1; hence,

N(χj) = χjχj = (−1)jQj
∗/Q0

∗ . (5.28)

Since

ξi+1 = −qi∗ +

√
D + P ∗

i−1

Qi
∗ ,

we get
ξi+1ξi = −qi∗ξi + 1 .

From this it is easy to deduce that

χi+1 = ξi+1ξiχi−1 = −qi∗χi + χi−1 , (5.29)

and this can be used to establish that

χj = (−1)j(B ∗
j−2 + A ∗

j−2φ0) = (−1)j(G ∗
j−2 −

√
DA ∗

j−2)/Q0
∗ , (5.30)

where we define Gi
∗ by Gi

∗ = Q0
∗Bi

∗ + P0
∗Ai

∗ (i = −2,−1, 0, . . .). Here,
A−2

∗ = 0, A−1
∗ = 1, B−2

∗ = 1, B−1
∗ = 0, and

A ∗
i+1 = q ∗

i+2Ai
∗ +A ∗

i−1, B ∗
i+1 = q ∗

i+2Bi
∗ +B ∗

i−1 (i = −1, 0, 1, . . .) .

5.3 Reduced Ideals When Δ > 0 113

Also, by (5.28) and (5.30), we get

1
χn

=
Gn−2

∗ +
√
DAn−2

∗

Qn
∗ (5.31)

Notice that if a is a reducedO-ideal and b = ρj(a), where a > 0, j > 1, then
b = [c, d+ω], where (d+ω)/c > 1 and −1 < (d+ω)/c < 0 by Theorem 5.12.
Thus, we can apply ρ−1 repeatedly on both sides of (5.23) until we get

a = ρj−i(a) .

Thus, there must be a minimal integer p ≥ 1 for which a = ρp(a). Also, the p
ideals in the set {

a, ρ(a), ρ2(a), . . . , ρp−1(a)
}

(5.32)

must all be distinct, for, otherwise, there would be a positive integer n such
that a = ρn(a) and n < p, which is impossible by the definition of p. Also,
(5.32) must include all of the reduced ideals equivalent to a. We call the set
(5.32) the cycle of reduced ideals in the ideal class of a. Thus, we now have
shown that if a (= a1) is any primitive O-ideal, to which the simple continued
fraction of a corresponding φ (= φ0) is applied, we must ultimately produce
a reduced ideal ak ∼ a1, and once this has occurred, the subsequent ideals
determined by this process will be only the reduced ideals of O which are
equivalent to a. This, of course, means, as we already showed in Chapter 3,
that the simple continued fraction expansion of φ must ultimately become
periodic. We have also shown that the preperiod of the simple continued
fraction expansion of φ corresponds to the process of finding a reduced ideal
equivalent to a.

Since (ε−1
Δ)a = a and 0 < ε−1

Δ < 1, we see by Theorem 5.18 with κ = ε−1
Δ

and a = b that εΔ = θm for some m > 1. Also, since ρm−1(a) = θma = εΔa =
a, we must have m − 1 ≥ p. Now, a = ρp(a) = θp+1a means that θp+1 is a
unit of O. Thus, θp+1 = εkΔ (k ≥ 1). However, since m− 1 ≥ p, we also must
have εΔ = θm ≥ θp+1 = εkΔ and k = 1. Hence,

εΔ = θp+1 . (5.33)

Also, since Qp+1 = Q0, we get

εΔ =
p∏

i=1

φi =
p∏

i=1

ψi . (5.34)

From this and (3.41), we would expect that the number of reduced ideals in
the cycle (5.32) is p ≈ log εΔ/λ, where λ is the Khinchine-Lévy constant.
Certainly we have

p < 2.08 log εΔ + 1

by (3.40). The invariant RΔ or R(Δ) = log εΔ of O will be of great importance
in much of our subsequent work. We call RΔ the regulator12 of O. If O = OK,
then R = R(K) or RK = log εK is called the regulator of K. Notice that

114 5 Ideals and Continued Fractions

εΔ < (
√
Δ)p

by (3.28) and (5.34). Thus,

RΔ < p log
√
Δ . (5.35)

We have seen that if a = a1 = [Q0/r, (P0 +
√
D)/r] is a reduced ideal

and Q0 > 0, then by expanding φ0 = (P0 +
√
D)/Q0 into a simple continued

fraction, we find that ρj−1(a) = aj = [Qj/r, (Pj +
√
D)/r] and the sequence

of ideals (5.17) is periodic with period p. Since (P1 +
√
D)/Q1 > 1 and −1 <

(P1 −
√
D)/Q1 < 0, the continued fraction expansion of φ0 is either purely

periodic or has a preperiod consisting of only one element. We are now able to
extend some of the results in §3.4. If the O-ideal a satisfies a = a, we say that
a is ambiguous in O. For example, if a = O, then since O = O, we know that
a is ambiguous. If, however, a = [Q/r, (P +

√
D)/r] and a is ambiguous, it is

easy to show that since (P −√D)/r ∈ a, then Q | 2P . Thus, by Theorem 3.12
we have the following result.

Theorem 5.19. If a is a reduced ambiguous O-ideal and Q0 > 0, then

Qp−i = Qi, Pp−i = Pi+1 (0 ≤ i ≤ p)

and
qp−i = qi (0 < i < p) .

Corollary 5.19.1. If a is a reduced ambiguous ideal, then

ai+1 = ap+1−i (i = 0, 1, 2, . . . , p) .

The next result allows us to extend some results in §3.3 and §3.4.

Theorem 5.20. Let a be a reduced ambiguous O-ideal with Q0 > 0. If p = 2s
(s ≥ 1), then

εΔ = Q0θs+1
2/Qs

and
Gp−1 = GsBs−1 +Gs−1Bs−2, Bp−1 = Bs−1(Bj +Bj−2) ;

if p = 2s+ 1 (s ≥ 1), then

εΔ = Q0θs+1θs+2/Qs

and
Gp−1 = GsBs +Gs−1Bs−1 , Bp−1 = Bs

2 +Bs−1
2 .

Proof. If p = 2s, then by Corollary 5.19.1 we have as+1 = as+1. Since as+1 =
θs+1a1, it follows that θs+1a1 = θs+1a1. Thus, θs+1/|θs+1| must be a unit of
O. Also, since s = p/2 < p, we have εΔ = θp+1 > θs+1 > 1 and |θp+1| <
|θs+1| < 1; hence, 1 < θs+1/|θs+1| < θp+1/|θp+1| = θp+1

2 = εΔ
2. Thus, we

must have εΔ = θs+1/|θs+1| = Q0θs+1
2/Qs by (3.19). In the case of p = 2s+1,

we get as+1 = as+2 and εΔ = θs+1/|θs+2| = Q0θs+1θs+2/Qs. The remaining
results follow as in the proof of Theorems 3.13 and 3.15. ��

5.3 Reduced Ideals When Δ > 0 115

We can also extend Theorem 3.15 by using the same techniques.

Corollary 5.20.1. If in the simple continued fraction expansion of φ0 we get
Pk = Pk+1 for some minimal k ≥ 1, then p = 2k; if Qk = Qk+1 for some
minimal k ≥ 1, then p = 2k + 1.

Corollary 5.20.2. Let a (= a1) be any reduced ambiguous ideal of an order
O. If we have k reduced ideals b1, b2, . . . , bk in [a] such that

N(bi) �= N(bj) (i �= j)

and
N(bi) � 2D/r (i = 1, 2, . . . , k) ,

then there are at least 2k + 1 distinct reduced ideals in [a].

Proof. As above, we let a = [Q0/r, (P0+
√
D)/r]. Since each bi is equivalent to

a and is reduced, we must have bm = aim for some im ≤ p. Also, Qim+1/r =
N(bm) are all distinct for m = 1, 2, . . . , k. If p = 2s+1, then since Qs = Qs+1,
we must have s ≥ k. If p = 2s, then since Ps+1 = Ps, we get 2Ps = qsQs

and Qs | 2Ps. Since Qs | D − Ps
2, we get Qs | 2D. Since Qim+1 � 2D (m =

1, 2, . . . , k), we must have k > s. ��
Suppose p > 1. By Theorem 5.20, (5.18) and (3.19), we see that if Ps =

Ps+1 when s ≥ 1 is minimal, then

εΔ =
Qs

Q0

s∏

i=1

φi
2 ;

if Qs = Qs+1 when s ≥ 1 is minimal, then

εΔ =
Ps+1 +

√
D

Q0

s∏

i=1

φi
2 .

In the first case we get

RΔ = log
(
Qs

Q0

)

+ 2
s∑

i=1

logφi

and in the second case we get

RΔ = log

(
Ps+1 +

√
D

Q0

)

+ 2
s∑

i=1

logφi .

These are very simple formulas for computing RΔ when p is not large.13

We can get similar formulas from the nearest integer continued fraction
expansion (NICF) of φ =

√
D. Such results were used14 to compute the val-

ues of RK for all real quadratic fields Q(
√
D) with D < 106. This approach is

116 5 Ideals and Continued Fractions

about 25% faster than that utilizing the simple continued fraction (SCF) ex-
pansion of φ. Adams15 derived a relation concerning the speed of convergence
of the nearest integer and simple continued fractions for almost all irrational
numbers. Indeed, if we let l(D) be the length of the period of the SCF expan-
sion of

√
D and let n(D) be that for the NICF, he conjectured, based on his

findings, that for almost all squarefree D,

lim
D→∞

n(D)
l(D)

=
log

(√
5+1
2

)

log 2
≈ 0.6942419 .

Thus, we would expect that by using the NICF instead of the SCF, we might
get almost a 30% speedup. Unfortunately, the mid-period criteria16 for the
NICF are more complicated than those for the SCF, which explains why the
speedup is only 25%.

Before closing this section we mention another useful feature of the reduced
ideals in any ideal class of O. If b is any given ideal of O, there always exists
a reduced ideal c of O such that c ∼ b and c = γb, where 1/

√
Δ < γ < 1; that

is, there is always a reduced O-ideal which is equivalent to any given ideal b
and it is not very far away from b. To show this, we observe that there must
exist some reduced O-ideal a such that a ∼ b. Hence, there exists some κ ∈ K

(κ > 0) such that a = κb. Put λ = κεkΔ such that

ε−1
Δ < λ ≤ 1 .

If we define θi by
ai = ρi−1(a) = θia

as in (5.10), then because 1 ≤ λ−1 < εΔ, we must have θi ≤ λ−1 < θi+1 for
some i such that 1 ≤ i ≤ p (θp+1 = εΔ). It follows that

ψi
−1 =

θi

θi+1
< λθi ≤ 1 .

Since ai = θia = θiλb, we get c = γb, where c = ai is reduced and γ = λθi < 1
and γ > ψi

−1 > 1/
√
Δ by (3.33). Indeed, since �ψi� = qi, we expect by our

remarks at the end of §3.4 that, in most cases, γ > 1/10.

5.4 Ideal Products and NUCOMP

In subsequent work it will be necessary to find a representation for the product
of two ideals. This is an old problem, called composition, which was originally
dealt with in the case of quadratic forms by Legendre and more extensively by
Gauss,17 but it is still rather difficult to find a simple description of how to do
this in the literature. We will discuss, based on the observations of Shanks,18

how to do this here. For simplicity, we will assume that

5.4 Ideal Products and NUCOMP 117

a′ =

[
Q′

r
,
P ′ +

√
D

r

]

and a′′ =

[
Q′′

r
,
P ′′ +

√
D

r

]

are two primitive invertible O-ideals. Since the product of two primitive O-
ideals need not be primitive, we will write

a′a′′ = S

[
Q

r
,
P +

√
D

r

]

.

We need to show how to compute S,Q, and P . We know by Proposition 4.25
that

a′a′′ =

[
Q′Q′′

r2
,
Q′(P ′′ +

√
D)

r2
,
Q′′(P ′ +

√
D)

r2
,
P ′P ′′ +D + (P ′ + P ′′)

√
D

r2

]

.

Also,

N(a′a′′) =
S2Q

r
= N(a′)N(a′′) =

Q′Q′′

r2
.

Thus,

Q =
Q′Q′′

S2r
. (5.36)

Since Q′(P ′′ +
√
D)/r2 ∈ a′a′′, we must have Q′(P ′′ +

√
D)/r2 = xQS +

SPy+S
√
Dy (x, y ∈ Z); it follows that S | Q′/r on equating irrational parts.

Similarly, S | Q′′/r and S | (P ′ + P ′′)/r.
Also, S(P +

√
D)/r ∈ a′a′′ means that there must exist X,V,W, Y ∈ Z

such that

S(P +
√
D)

r
= X

Q′Q′′

r2
+ V

Q′P ′′

r2
+W

Q′′P ′

r2
+ Y

P ′P ′′ +D

r2

+
(

V
Q

r2
+W

Q′′

r2
+ Y

(
P ′ + P ′′

r2

))√
D .

Hence,

S = V

(
Q′

r

)

+W

(
Q′′

r

)

+ Y

(
P ′ + P ′′

r

)

.

Since S | gcd(Q′/r,Q′′/r, (P ′+P ′′)/r), we see that S = gcd(Q′/r,Q′′/r, (P ′+
P ′′)/r). It remains to determine P , but we need only compute P modulo Q.
We have

SP = X
Q′Q′′

r
+ V

Q′P ′′

r
+W

Q′′P ′

r
+ Y

P ′P ′′ +D

r
;

thus,

P ≡ V
Q′P ′′

rS
+W

Q′′P ′

rS
+ Y

P ′P ′′ +D

rS
(mod Q) .

118 5 Ideals and Continued Fractions

Since

V
Q′

rS
+W

Q′′

rS
+ Y

(
P ′ + P ′′

rS

)

= 1 ,

we get

P ≡
(

1−WQ′′

rS
− Y

(
P ′ + P ′′

rS

))

P ′′

+W
Q′′P ′

rS
+ Y

(
P ′P ′′ +D

rS

)

(mod Q)

= P ′′ +
Q′′

rS
(W (P ′ − P ′) + Y R′′) (mod Q) ,

where R′′ = (D − P ′′2)/Q′′.
Thus, to find P , we use the extended Euclidean algorithm to find V,W ,

and Y such that

V
Q′

r
+W

Q′′

r
+ Y

(
P ′ + P ′′

r

)

= S

and put
U ≡W (P ′ − P ′′) + Y R′′ (mod Q′/S) ;

then

P ≡ P ′′ + U
Q′′

rS
(mod Q) . (5.37)

If we assume that a′ and a′′ are reduced and put a = [Q/r, (P +
√
D)/r],

it is very likely that a is not reduced; however, we often need a reduced ideal
which is equivalent to a. We have already mentioned that there are several
ways of finding a reduced O-ideal equivalent to a, and we produced such an
algorithm in §5.2 which is very effective for values ofD that are not very large.
To use this algorithm we must first calculateQ and P and these numbers could
be as large as O(D), whereas Q′, Q′′, P ′, and P ′′ are O(

√
D).

For example, if we were to reduce a by finding the least m ∈ Z≥0 for which

0 < Qm−1 <
√
D ,

then since
Q0

r
=
Q′Q′′

S2r2
<

Δ

S2
,

we see that am = θma and
S2

Δ
< |θm| < 2 (5.38)

by (5.12).
Shanks19 discovered that there is a more efficient technique for finding

a reduced ideal equivalent to a′a′′ than first multiplying a′ by a′′ and then
using a reduction algorithm on a. He was guided in searching for such an

5.4 Ideal Products and NUCOMP 119

algorithm by his need to keep the numbers involved in the calculations as
small as possible.20 Since Q could be as large as about the size of D, and he
wanted to keep all the values computed by his algorithm to be of size roughly√
D, the technique of first multiplying a′ and a′′ and then carrying out the

reduction phase was not acceptable. Instead, he developed a new technique
which he called NUCOMP, standing for “New COMPosition”. We will not
discuss Shanks’ version of this algorithm or its later improvements by Atkin,
van der Poorten, and Jacobson21 here. Instead we will provide a version22 of
the algorithm that is congenial to our previously developed continued fraction
theme.23

When we used the technique in §5.2 to effect the reduction of a =
[Q/r, (P +

√
D)/r], we simply developed the simple continued fraction ex-

pansion of P/Q. If we were to do that here, the values of P and Q might be
as large as D. However, we note that

P

Q
=

P ′′ + UQ′′/rS
(Q′/S)(Q′′/rS)

≈ SU

Q′ .

Thus, instead of finding the simple continued fraction expansion of P/Q, we
instead will look at that of SU/Q′. We will need the following result.

Theorem 5.21. Suppose Q,D,P,N,L,K, P ′, and P ′′ are integers such that
D > 0,

√
D �∈ Q, Q | D − P 2, and

P = P ′′ +NK, Q = NL, P ≡ P ′ (mod L) .

If K/L = [q0, q1, q2, . . . , qn] and we put

P +
√
D

Q
= 〈q0, q1, . . . , qi, φi+1〉 (i < n) ,

then

Qi+1 = (−1)i−1(RiM1 − CiM2) ,
M1 = (NRi + (P ′ − P ′′)Ci)/L ∈ Z ,

M2 = (Ri(P ′ + P ′′) + TCi)/L ∈ Z ,

Pi+1 = (NRi +Qi+1Ci−1)/Ci − P ′′ ,

where T = (D − P ′′2)/N .

Proof. From (3.13) we know that

Qi+1 = (−1)i+1(Gi
2 −DBi

2)/Q

= (−1)i+1

[

Gi

(
Gi + PBi

Q

)

−Bi

(
DBi +GiP

Q

)]

. (5.39)

Also, by (3.22)

120 5 Ideals and Continued Fractions

(−1)i+1Ri = LAi −KBi = LAi − (−1)i+1KCi .

Since
Gi = AiQ− PBi ,

we get
Gi = NLAi − PBi = (−1)i+1(NRi − P ′′Ci) (5.40)

and

Gi + PBi

Q
=
LAi

L
=

(−1)i+1(Ri +KCi)
L

, Ri ≡ −KCi (mod L) . (5.41)

Furthermore,

(DBi +GiP)/Q =
(
(D − P ′′P)Bi +NPRi(−1)i+1

)
/Q

=
(
(D − P ′′2)Bi −NKP ′′Bi +NPRi(−1)i+1

)
/Q

= (−1)i+1(TCi −KP ′′Ci + PRi)/L .

(5.42)

Since DBi +GiP ≡ DBi − P 2Bi ≡ 0 (mod Q), we must have

TCi ≡ −(P ′′ + P)Ri ≡ −(P ′′ + P ′)Ri (mod L) .

If we substitute (5.40), (5.41), and (5.42) into (5.39), we get the value for Qi+1

in the theorem. The value for Pi+1 follows from (3.13) and (5.4). Since Ri ≡
−KCi (mod L) and TCi ≡ −(P ′′ +P ′)Ri (mod L), we see that M1,M2 ∈ Z.

��
With this result we can now provide a simple description of our version

of NUCOMP. We will begin by assuming that both a′ and a′′ are reduced
and N(a′) ≥ N(a′′). Thus, 2

√
D > Q′ ≥ Q′′ > 0. We will also assume that

Q >
√|D|. For if Q <

√|D|, then N(a) <
√|Δ|/2, and by Theorems 5.6 and

5.9, a is already reduced. Since a′′ is also a reduced ideal, there is no loss in
generality by assuming that 0 < P ′′ <

√|D| or |2P ′′/r| < N(a) = Q′′/r when
D < 0. We now put K = U , N = Q′′/rS, and L = Q′/S. It is easy to see that
we must have P ≡ P ′ (mod Q′/S) and we can now invoke Theorem 5.21. We
select i such that 0 ≤ i ≤ n and

Ri <
√
rQ′/Q′′|D|1/4 < Ri−1 . (5.43)

Such an i must exist because Q >
√|D| means that R−1 = Q′/S >√

rQ′/Q′′|D|1/4. We now find Qi+1 and Pi+1 by computing Rj and Cj

(j = 0, 1, 2, . . . , i) and using the formulas

Qi+1 = (−1)i+1(RiM1 − CiM2) ,

Pi+1 = ((Q′′/rS)Ri +Qi+1Ci−1)/Ci − P ′′ ,
(5.44)

where

5.4 Ideal Products and NUCOMP 121

M1 = ((Q′′/rS)Ri + (P ′ − P ′′)Ci)/(Q′/S) ,
M2 = (Ri(P ′ + P ′′) + rSR′′Ci)/(Q′/S) ,

R′′ = (D − P ′′2)/Q′′ .

We now have

Gi = QAi − PBi = (−1)i+1((Q′′/rS)Ri − P ′′Ci)

and

|Qi+1| = |Gi
2 −DCi

2|/Q
= |(Q′′/rS)Ri

2 + 2P ′′(−1)iRiCi − rSR′′Ci
2|/(Q′/S) .

Put x = (Q′′/rS)Ri
2/(Q′/S). Since Ri <

√
rQ′/Q′′|D|1/4, we get 0 < x <√|D|. If we put y = (−1)i2P ′′RiCi/(Q′/S), then since Q′/S ≥ BiRi−1 by

(3.23), we get |Ci| ≤ (Q′/S)/Ri−1 and |y| < 2|P ′′|. We now consider z =
rSR′′Ci

2/(Q′/S). We have

Ci
2 ≤ (Q′/S)2/Ri−1

2 < (Q′/S)2/[r(Q′/Q′′)
√
|D|] = Q/

√
|D| .

Hence,
rSCi

2/(Q′/S) < Q′′/
√
|D| .

If D > 0, then R′′ = (D − P ′′2)/Q′′ > 0 and

0 < z < (D − P ′′2)/
√
D .

In this case,

−2|P ′′|+ P ′′2/
√
D −

√
D < x+ y − z <

√
D + 2|P ′′|

and
|Qi+1| <

√
D + 2|P ′′| < 3

√
D .

If D < 0, then R′′ = (D − P ′′2)/Q′′ = −(|D|+ P ′′2)/Q′′. Here, we have

−2|P ′′| < x+ y − z < 2
√
|D|+ 2|P ′′|+ P ′′2/

√
|D| .

Since a′′ is a reduced O-ideal, we must have N(a′′) <
√|Δ|/3. It follows that

Q′′ < 2
√|D|/3, P ′′ <

√|D|/3 and therefore

|Qi+1| < 3.5
√
|D|

in this case.
Thus, once U has been computed we need use little more than the Eu-

clidean algorithm to find a primitive O-ideal

122 5 Ideals and Continued Fractions

ai+2 =

[
|Qi+1|
r

,
Pi+1 +

√
D

r

]

∼ a =

[
Q

r
,
P +

√
D

r

]

such that

|Qi+1| <
{

3
√
D if D > 0

3.5
√|D| if D < 0 .

Also, as we usually have Q′ ≈ Q′′, we would expect that Ri ≈ |D|1/4, and we
know that |Ci| < 2|D|1/4; thus, the numbers involved in this step of NUCOMP
do not get much larger than |D|1/4 until we compute Qi+1 and Pi+1. However,
even in the worst case, the numerators of M1 and M2 are about |D|3/4 and
the denominator about |D|1/2.

Since N(ai+2) < 3
√
Δ/2 when Δ > 0, we see by Theorem 5.13 that

if ai+2 is not already reduced, then ρ(ai+2) is reduced. Computations have
revealed that ai+2 is reduced about 98% of the time; thus, we only infre-
quently have to evaluate ρ(ai+2). When Δ < 0, we have N(ai+2) < 2

√|Δ|.
If N(ai+2) <

√|Δ|, then by Theorem 5.11 if ai+2 is not reduced, then
ρ(ai+2) is. If N(ai+2) >

√|Δ|, then ai+2 is not reduced and, by (5.6),
N(ρ(ai+2)) <

√|Δ|. Hence, either ρ(ai+2) or ρ2(ai+2) must be reduced. Thus,
we can always find a reduced ideal equivalent to a in no more than the appli-
cation of two ρ-steps to ai+2. We do not have to evaluate Q or use numbers
near in value to |D| in order to find this ideal by NUCOMP.

There might be some concern for the need to evaluate
√
rQ′/Q′′|D1/4|,

particularly if NUCOMP has to be performed many times in O. In the case of
D > 0 (the case of most concern to us), we can avoid this by simply evaluating√

2rD1/4. This value does not change with the ideals being multiplied. With
this in mind, we are now able to present our version of NUCOMP for D > 0.
In order to improve the flow of the material which we will present in this and
some further chapters, we have elected to record our most useful algorithms
by providing only the inputs and outputs. The interested reader can find
the complete pseudocode for these procedures, together with proofs of their
correctness, in the Appendix.

Algorithm 5.1: NUCOMP

Input: a′ = [Q′/r, (P ′+
√
D)/r], a′′ = [Q′′/r, (P ′′+

√
D)/r] reduced invertible

O-ideals with Q′ ≥ Q′′ > 0.
Output: A reduced O-ideal b = [Q/r, (P +

√
D)/r] such that b ∼ a′a′′.

(Optional output: μ where a′a′′ = μb.)

At the conclusion of Algorithm 5.1 we will have a reduced ideal b such
that

μb = a′a′′ .

We show in the Appendix (§A.1) that

1 ≤ μ < 2Δ3/4 (5.45)

5.4 Ideal Products and NUCOMP 123

and
1

q′ + 3
<

μ

Δ1/4
<

2(q̃ + 2)
q′

, (5.46)

where both q̃ and q′ are partial quotients in the simple continued fraction
expansion of quadratic irrationals. Thus, we would expect that they would
not normally be very large. Since, by (5.46), we have

| logμ− logΔ1/4| < max
{

log(q′ + 3), log
(

2(q̃ + 2)
q′

)}

, (5.47)

we observe that logμ would normally not differ very much from (logΔ)/4,
and this is what occurs when we compute values of logμ, particularly when
D is fairly large (> 1010).

124 Notes and References

Notes and References

1Much of the information in this section is based on earlier work of Berwick
[Ber28] and, particularly Ince [Inc34]. Further work relevant to this chapter can be
found in [WW87], [BW88a], and [SW88b].

2This operation was introduced in [JSW01].
3An account of this can be found in the third volume of [Dic19], p. 5ff. An

interesting historical account of the work of Lagrange is presented in [Wei84].
4By bit complexity, we mean the number of bit operations (add, subtract, multi-

ply, shift, etc.) that need to be performed in the process of executing the algorithm.
Lagarias [Lag80b] seems to have been the first to examine the problem of determin-
ing the bit complexity of ideal reduction.

5[BB97].
6Several of these are reviewed in some detail in [JSW06a].
7[Sch91].
8See the remarks in [BB97] and the results of testing in [JSW06a].
9This is a slightly modified version of the new algorithm presented in [JSW06a].

10See the discussion in [JSW06a].
11This is not the case in the theory of positive definite quadratic forms, where there

can only be one reduced form equivalent to a given one. The reason for the difference
between the situations for ideals and forms is a slight difference in the definition of
reduction for forms as opposed to the definition given here for a reduced ideal.

12The term “regulator” was first used (in a much wider context than this) by
Dedekind [Dir93], p. 597, in 1893. However, as pointed out in a footnote, he borrowed
the term from an 1844 paper of Eisenstein [Eis44a], p. 313, who used it in a somewhat
different context.

13These formulas were used in [WB76] to compute the values of RK for all positive
D0 < 1.5 × 105.

14[WB79].
15[Ada79].
16[Wil80b] and [Wil85b].
17An account of the history of this early work on composition is given in [Wei84],

Ch. IV, §VI. See also [Edw07].
18[Sha71].
19[Sha89].
20At the time, Shanks was performing all of his computations by making use of

a pocket calculator which had a fixed word size of 10 decimal digits. As he was
often working with quadratic fields of discriminants near 20 decimal digits, it was
important for him to keep the size of the numbers small in order to simplify the
programming on the calculator.

21This is described in [vdP03] and [JvdP02]. Atkin’s work, while providing some
important insights with respect to NUCOMP, was never published.

22An earlier version of this was first discussed in [JSW06b].
23The version that we give here will work regardless of the sign of Δ, but a bit

more work may need to be done if Δ < 0. Shanks’ version of NUCOMP was intended
to be used only when Δ < 0. It was van der Poorten [vdP03] who discovered that
the basic idea of NUCOMP could be applied to the case of Δ > 0.

6

Some Special Pell Equations

6.1 Introduction

Let D be a positive non-square integer and let (t, u) denote the fundamental
solution of the Pell equation

T 2 −DU2 = 1 . (6.1)

In this chapter we will be concerned with Pell equations for which the values
of t and u tend to be small. As we shall see later in Chapter 9, this appears
to be a very unusual circumstance; for this reason, then, if no other, it is of
some interest to investigate this phenomenon. For example, consider the case
of D = M2− 1 for M ∈ Z>0. Clearly, (M, 1) is a solution of the Pell equation
(6.1). Furthermore, it is easy to verify that this is the fundamental solution.
Of course, we might regard such Pell equations as being easy to solve, and in
a sense this is the case; however, there are a few problems that do develop.

We have seen in Chapter 3 that we can solve the Pell equation by expand-
ing

√
D into a simple continued fraction. In this case we have

√
D = [q0, q1, q2, . . . , qp] ,

Qp = Q0 = 1, Pp = P1 = q0, qp = 2q0, and qi = qp−i (i = 1, 2, . . . , p − 1).
Also, by (3.13)

A2
p−1 −DB2

p−1 = (−1)p .

Thus, if 2 | p, then t = Ap−1, u = Bp−1; if 2 � p, then

t+ u
√
D = (Ap−1 +

√
DBp−1)2

and
t = A2

p−1 +DB2
p−1 = 2A2

p−1 + 1 , u = 2Ap−1Bp−1 .

Euler1 showed how to solve (6.1) for certain values of D for which p is
small. For example, if p = 1, then q1 = qp = 2q0, Ap−1 = A0 = q0, and

126 6 Some Special Pell Equations

Bp−1 = 1. Hence, q02 − D = −1 or D = q0
2 + 1. Thus, the fundamental

solution of (6.1) for D = M2 + 1 (M ∈ Z>0) is given by

t = 2M2 + 1 , u = 2M .

However, when p = 2, the problem becomes somewhat more difficult. In
this case, √

D = [q0, q1, 2q0] ,

Ap−1 = A1 = q0q1 + 1, Bp−1 = q1, and

(q0q1 + 1)2 −Dq12 = 1 .

From this we see that we must have

Dq1 = q0
2q1 + 2q0

and, therefore, q1 | 2q0. In this case, then,

D = q0
2 + 2q0/q1 .

If we put m = 2q0/q1, then q0 = q1m/2 and D = (q1m/2)2+m, where 2 | q1m.
If m = 2M and q1 = N , then

D = M2N2 + 2M (M > 0) (6.2)

and t = MN2 + 1 and u = N ; if 2 � m and m = M , then q1 = 2N (N ∈ Z>0),

D = M2N2 +M (M > 0) , (6.3)

t = 2MN2 + 1, and u = 2N .
If we next examine the forms

D = N4M2 + 2MN with x = N3M + 1 , y = N , N ∈ Z>0 ,

or
D = N4M2 +MN with x = 2N3M + 1 , y = 2N , N ∈ Z>0 ,

we see that in each case we get

x2 −Dy2 = 1 and y | D .

We can, of course, prove that t = x and u = y by making use of the con-
tinued fraction approach, but there is another method which makes use of a
pretty observation of Störmer.2 In order to establish Störmer’s theorem (The-
orem 6.3), we need two simple results concerning Lucas functions. We employ
the notation introduced in §1.4 of Chapter 1.

Proposition 6.1. If p is a prime such that p > 3, p � Q, and p | d, then
ω(pn) = pn.

6.1 Introduction 127

Proof. From
vpn + upn

√
d

2
=

(
vn + un

√
d

2

)p

we get that

2p−1upn =
(
p

1

)

vp−1
n un +

(
p

3

)

vp−3
n u3

nd+ · · ·+ up
nd

(p−1)/2 .

Thus, if p > 3, then p | (p
3

)
and

2p−1up = pvp−1
1

(
mod p2

)
.

Since p | d and d = P 2 − 4Q, we cannot have p | P ; hence, p � v1 and p || up.
By the Law of Repetition, we must have pk || upk . Thus, ω(pk) = pν

(ν ≤ n). Since pν || upν , we cannot have pn | upν if ν < n; hence, ω(pn) = pn.
��

Lemma 6.2. Suppose d,Q > 0. If p is a prime such that p > 3 and p | (d, un),
then there exists a prime q such that q | un and q � d.

Proof. We first note that since (P,Q) = 1, we must have (d,Q) = 1. Let
pα || un. By Proposition 6.1 we know that ω(pα) = pα and pα || n by the Law
of Repetition. Put T = |upα/(pupα−1)|; we must have T ∈ Z and p � T . Also,
T | un. If we put m = pα−1 and refer to the proof of Proposition 6.1, we see
that

2p−1upm =
(
p

1

)

vp−1
m um +

(
p

3

)

vp−3
m u3

md+ · · ·+ up
md

(p−1)/2 .

Since
v2

m − du2
m = 4Qm

and d,Q > 0, we see that |vm| > √p and d > p; hence, 2p−1|upm/pum| > 1
and T > 1. Since p > 3, we have

2p−1T ≡ vp−1
m (mod d) .

Suppose 2 � d. There must be a prime divisor q of T and if q | d, then q | vm,
which means that q | Q, an impossibility. If 2 | d, then 2 | P . Since (P,Q) = 1,
we have 2 � Q, and u2i+1 ≡ 1 (mod 2). It follows that upm and T are odd. As
before, any prime divisor q of T cannot divide d. ��
Theorem 6.3. Suppose x2 −Dy2 = 1 (x, y ≥ 1) and each prime that divides
y also divides D. Then x = t and y = u; that is, (x, y) is the fundamental
solution of the Pell equation.

128 6 Some Special Pell Equations

Proof. Certainly, we must have

x+ y
√
D = (t+ u

√
D)n

for some n ≥ 1. Hence, y = uun(P,Q), where P = 2t, Q = 1. If y �= u, then
there must exist a prime p such that p | un and p | y. Since d = 4u2D and
p | D, we have p | d. If 2 | n, then u2 | un (u2 = P = 2t) and t | un. Since t > 2,
there must be a prime q such that q | t and q | D, but this is impossible because
t2−Du2 = 1. If 3 | n, then u3 | un, and since u3 = 4t2−1 = (2t−1)(2t+1) and
t > 2, there must be a prime p such that p | un, p | d, and p �= 2, 3. Suppose
(n, 6) = 1. Since p | d, we must have p | u2 if p = 2 or p | u3 if p = 3; however,
since (n, 6) = 1 and p | un, this is not possible. Thus, p > 3. By Lemma 6.2,
there must exist a prime q such that q | un and q � d, a contradiction. ��

6.2 Continued Fractions

In view of our earlier remarks, we might expect that as the period length
p becomes larger, the problem of finding suitable values of D would become
much more complicated.3 However, we do have a general result concerning this
problem.4 We now assume that we are given some p (> 2), q1, q2, q3, . . . , qp−1 ∈
Z>0 (qi = qp−i; i = 1, 2, . . . , p− i), and we want∗

φ0 = [q0, q1, q2, . . . , qp−1, 2q0] (6.4)

to be the square root of an integer D. This problem, then, reduces to that
of finding those values of q0 for which φ0

2 = D ∈ Z. Define qi
′ = qi+1

(i = 0, 1, 2, . . . , p− 2) and use the formulas (3.4) to compute the convergents

A′
p−2/B

′
p−2 = [q0′, q1′, . . . , q′p−2] = [q1, q2, . . . , qp−1] ,

A′
p−3/B

′
p−3 = [q0′, q1′, . . . , q′p−3] = [q1, q2, . . . , qp−2] .

Now, [q1, q2, . . . , qp−1] = [qp−1, qp−2, . . . , q1] = Bp−1/Bp−2 by (3.5). Thus,

A′
p−2 = Bp−1 , B′

p−2 = Bp−2 . (6.5)

Notice that the values of A′
p−2, B

′
p−2 A

′
p−3, B

′
p−3 are all independent of the

choice of q0. Also, by the third formula of (3.5) and the symmetry of the
partial quotients (Theorem 3.12),

Ap−1

Bp−1
= [q0, qp−1, . . . , q1] = q0 +

Bp−2

Bp−1
;

thus,
∗ We remind the reader that [a, b, c, . . .] denotes a simple continued fraction with

partial quotients a, b, c,

6.2 Continued Fractions 129

Ap−1 = q0Bp−1 +Bp−2 . (6.6)

If we consider
φ0 = [q0, q1, . . . , qp−1, φp] ,

by (3.6) we must have

φ0 =
Ap−1φp +Ap−2

Bp−1φp +Bp−2
.

Also, by (6.4), we have φp = q0 + φ0, and we get

Bp−1φ0
2 + (q0Bp−1 +Bp−2)φ0 = Ap−1φ0 + q0Ap−1 +Ap−2 .

By (6.6), this reduces to

Bp−1φ0
2 = q0Ap−1 +Ap−2 .

Putting φ0
2 = D, we get

Bp−1D = q0Ap−1 +Ap−2 . (6.7)

Computing both Ap−1 and Ap−2 involves using the value of q0, so we now
need to rewrite (6.7) in such a way that the value of q0 is independent of all
the coefficients. By (6.5) and (6.6), this is not difficult for Ap−1. It remains to
consider Ap−2. Since

Ap−2/Bp−2 = [q0, q1, . . . , qp−2] ,

we get Ap−2/Bp−2 = q0 +B′
p−3/A

′
p−3; hence,

Ap−2 = q0A
′
p−3 +B′

p−3 , (6.8)

B′
p−2 = Bp−2 = A′

p−3 (6.9)

and (6.7) becomes

A′
p−2D = q0(q0A′

p−2 +B′
p−2) + q0B

′
p−2 +B′

p−3

or
A′

p−2(D − q0
2)− 2q0B′

p−2 = B′
p−3 . (6.10)

Now, (6.10) is a linear Diophantine equation in D − q02 and 2q0 and

A′
p−2B

′
p−3 −B′

p−2A
′
p−3 = (−1)p−1 (6.11)

by (3.4). It follows that from our observations in §3.2 that we must have

2q0 = (−1)p−1A′
p−3B

′
p−3 +mA′

p−2 ,

D − q02 = (−1)p−1B′
p−3

2 +mBp−2 ,

for some integer parameter m. Thus, if

130 6 Some Special Pell Equations

√
D = [q0, q1, q2, . . . , qp−1, 2q0] ,

it is necessary that

q0 =
(−1)p−1A′

p−3B
′
p−3 +mA′

p−2

2
(6.12)

and
D = q0

2 +mA′
p−3 + (−1)p−1B′

p−3
2
, (6.13)

where
(−1)p−1A′

p−3B
′
p−3 +mA′

p−2

is a positive even integer.
We next suppose that q0 and D are given by (6.12) and (6.13). By the

results in §3.1 we know that
√
D = 〈q0, q1, q2, . . . , qp−1φ̃p〉 ,

where φ̃p = (P̃ +
√
D)/Q̃ and P̃ , Q̃ ∈ Z. Also, by (3.13),

(−1)pQ̃ = A2
p−1 −DB2

p−1 , (6.14)

(−1)p−1P̃ = Ap−1Ap−2 −DBp−1Bp−2 . (6.15)

By (6.5), (6.6), and (6.8), we have

Ap−1 = q0A
′
p−2 +B′

p−2 , Ap−2 = q0A
′
p−3 +B′

p−3 .

Furthermore, since q0 and D must satisfy (6.10), we get

DBp−1 = DA′
p−2 = q0

2A′
p−2 + 2q0B′

p−2 +B′
p−3 .

By substituting this into (6.14) and (6.15) and using (6.11), we get Q̃ = 1 and
P̃ = q0. Hence, √

D = 〈q0, q1, q2, . . . qp−1, q0 +
√
D〉 ,

and therefore
√
D = [q0, q1, q2, . . . , qp], where qp = 2q0. We have proved the

following theorem.

Theorem 6.4. Suppose we are given an integer p > 2 and a finite sequence of
p− 1 positive integers q1, q2, . . . , qp−1 such that qi = qp−i (i = 1, 2, . . . , p− 1).
There exists an integer D such that

√
D = [q0, q1, q2, . . . qp−1, 2q0] (6.16)

if and only if D is given by (6.13) and q0 by (6.12), where m ∈ Z and

(−1)p−1A′
p−3B

′
p−3 +mA′

p−2

is a positive even integer. Furthermore,

Ap−1 = q0A
′
p−2 +A′

p−3 and Bp−1 = A′
p−2 . (6.17)

6.2 Continued Fractions 131

Example 6.5. Suppose p = 4 and we are given values for q1, q2, and q3 with
q3 = q1. We get

B′
p−2 = A′

p−3 = q1q2 + 1, B′
p−3 = q2 , A′

p−2 = q1
2q2 + 2q1 .

Thus, if

q0 =
m(q12q2 + 2q1)− q2(q1q2 + 1)

2
and

D = q0
2 +m(q1q2 + 1)− q22 ,

then
√
D = [q0, q1, q2, q1, 2q0] when m, q0 ∈ Z and q0 > 0. Note that if 2 | q2,

then q0 ∈ Z. If 2 � q2, then q0 ∈ Z if and only if 2 � q1 and 2 | m. If we consider
the special case of q1 = 1 and q2 = n, then we must have m(n+2)−n(n+1) ≡
0 (mod 2) or 2 | mn. If 2 � n, then 2 | m− n+ 1 and we put 2M = m− n+ 1
and N = n+ 2 > 0. Since 2q0 = m(n+ 2)− n(n+ 1) ≥ 2, we must have

m ≥ n2 + n+ 2
n+ 2

> n− 1

and M ≥ 1. We get q0 = NM − 1 and

D = N2M2 − 2M (M > 0, N > 2 and 2 � N) . (6.18)

Here, A3 = N2M − 1 and B3 = N ; thus, t = N2M − 1 and u = N in this
case.

The forms (6.2), (6.3), and (6.18) are all instances of a more general form
referred to as a Richaud-Degert type.5 Such forms are given by

D = Q2 +R ,

where R | 4Q, Q ≥ 1, and R �= 0. There is no loss in generality in making the
futher assumption that

−2Q < R ≤ 2Q . (6.19)

For if R > 2Q, then since R | 4Q, we must have R = 4Q, D = Q2 + 4Q =
(Q+2)2−4 and −4 > −2(Q+2). If R ≤ −2Q, then R = −4Q or R = −2Q. In
the first case, D = Q2−4Q = (Q−2)2−4, and since Q > 4, −4 > −2(Q−2);
in the second case,D = Q2−2Q = (Q−1)2−1 and −1 > −2(Q−1). Note that
(6.19) also guarantees thatD is not a perfect square and that �√D� = Q−1 or
Q. For such values of D it is possible to develop the simple continued fraction
(SCF) expansion6 of

√
D, and for each possible value, we have p ≤ 12. From

this, of course, it is possible to determine t and u. However, it is instructive
to do this in another way.7

Suppose we put γ = Q+
√
D; then,

N(γ) = −R .

132 6 Some Special Pell Equations

If |R| = 1, it is easy to see that if ε is defined as in §1.3, then ε = γ. If R = −4,
then ε = γ/2 and N(ε) = 1. Thus,

t+ u
√
D =

{
ε2 when 2 | Q
ε3 otherwise .

Suppose for the remainder of our discussions that R �= ±1,−4, and consider

λ =
γ2

|R| =
4Q2

|R| + 2R
|R| + 4Q

|R|
√
D

2
.

We now define η = ε when N(ε) = 1 and η = ε2 when N(ε) = −1. Since we
have N(λ) = 1, 4Q2/|R|+ 2R/|R| > 1, and 4Q/|R| ≥ 1, we must have

λ = ηn (n ∈ Z>0) .

Also,
4Q2

|R| +
2R
|R| =

4D − 2R
|R| < 4D + 2 .

Let

η =
w1 + z1

√
D

2
(w1, z1 ∈ Z>0) .

Since N(η) = 1, we have w1
2 = z1

2D + 4 and, as a consequence, w1 > 2. If
we define wj and zj by

wj + zj

√
D

2
= ηj ,

then
wj+1 =

wjw1 + zjz1D

2
> wj .

If n > 1, then

wn ≥ w2 =
w1

2 + z1
2D

2
= 2 + z1

2D ≥ 4D + 2

when z1 ≥ 2. If z1 = 1, then D = w1
2−4. Since, in this case, �√D� = w1−1 ∈

{Q,Q− 1}, we can only have R = −4 or R = 2Q− 3. Now, 2Q− 3 | 4Q only
if Q = 1, 2; thus, since R �= ±1,−4, we cannot have z1 = 1. For the remaining
cases, then,

wn �= 4Q2 + 2R
|R| < 4D + 2 (|R| > 1)

for n ≥ 2 and, therefore, n = 1 and η = λ. Now, suppose η = ε2. In this case
we have N(ε) = −1, ε = (x1 + y1

√
D)/2 (x1, y1 ∈ Z>0), and Dy12 = x1

2 + 4.
Also,

6.2 Continued Fractions 133

4Q2 + 2R
|R| =

x1
2 +Dy1

2

2
= x1

2 + 2 ,

4Q
|R| = x1y1 .

It follows that
x1

2 = 4Q2 + 2R− 2|R| .
If R = −|R|, then x1

2 = 4Q2 + 4R = 4D, which is impossible because D is
not square. If R = |R|, then x1 = 2Q, y1 = 2/R, and R ∈ {1, 2}. If R = 2,
then y1 = 1 and

4Q2 + 4 = D = Q2 +R ,

which is impossible. If R = 1, then y1 = 2 and D = Q2 + 1. Thus, η = ε2 only
when D = Q2 + 1; in this case, ε = Q+

√
D. Thus, if R �∈ {−1, 1,−4}, we get

λ = ε and, by Table 1.1,

t+ u
√
D =

⎧
⎨

⎩

λ if R | 2Q
λ2 if R � 2Q and R | 2Q2

λ3 otherwise .

On returning to Theorem 6.4, we observe that if we put R = A′
p−3, S =

B′
p−3, and T = A′

p−2, then by (6.9) and (6.11) we get

TS −R2 = (−1)p−1 . (6.20)

From this it is clear that if 2 � RS, then 2 | T and 2 � (−1)p−1RS + mT for
any integer m. Thus, there can be no positive, integral values of q0 and D
such that

√
D satisfies (6.16). We now assume that 2 | RS. When 2 | m, then

putting X = m/2, we get q0 = q0(X) = XT + (−1)p−1RS/2 and

D = D1(X) = a1
2X2 + b1X + c1 ,

where a1 = T , b1 = (−1)p−1RST +2R, and c1 = R2S2/4+(−1)p−1S2. When
2 � m, we must have 2 | T . If we put X = (m − 1)/2, then q0 = q0(X) =
XT + (T + (−1)p−1RS)/2,

D = D2(X) = a2
2X2 + b2X + c2 ,

where
a2 = T,

b2 = (−1)p−1RST + T 2 + 2R ,

c2 =
[
(−1)p−1RS + T

2

]2

+R+ (−1)p−1S2 .

Thus, if we completely specify

p, q1, q2 . . . , qp−1 with qi = qp−i (i = 1, 2, . . . , p− 1) ,

134 6 Some Special Pell Equations

then there can be at most two single parameter families {D1(X)}, {D2(X)}
such that

√
Di(X) = [q0(X), q1, q2, . . . , qp−1, 2q0(X)]. Furthermore, because

of (6.20), we also have

bi
2 − 4ai

2ci = 4(−1)p (i = 1 or 2) . (6.21)

6.3 Schinzel’s Families

If φ is any quadratic irrational, we will denote by l(φ) the length of the period
in the SCF expansion of φ. We would expect by (5.34) that the solution of
(6.1) will tend to be small when l(

√
D) is. As mentioned in the previous

section, the search for values for which this is the case goes back to at least
the time of Euler. Since Euler’s work, many results8 concerning this problem
have been produced. For example, as early as 1834, Stern9 noted 42 different
forms of D for which l(

√
D) is small. These include

D = m2n2 + 2m , D = (6n± 1)2 + (8n± 1)2 , and D = (16n+ 7)(25n+ 11) .

By far the greater portion of these examples have the general form of
D = aX2 + bX + c, where a, b, and c are fixed integers and X is allowed
to vary. However, it was not until 1961 that Schinzel10 examined in a system-
atic manner the problem of finding univariate polynomials D(X) in Z[X] for
which l(

√
D(X)) is small. He first proved the following important result.

Theorem 6.6. Let f(X) = a0X
k + a1X

k−1 + · · ·+ ak,∈ Z[x] with a0 > 0. If

1. 2 � k

or

2. 2 | k and a0 is not a perfect integral square,

then for n ∈ Z

lim
n→∞ l

(√
f(n)

)
=∞ .

Notice that, unlike the case of D(X) = D1(X) or D2(X) in the previous sec-
tion, we will have an infinitude of values of n such that l(

√
f(n)) is arbitrarily

large when (1) or (2) is true. As the proof of this result is quite lengthy and
somewhat outside the scope of this work, we suggest that the interested reader
consult Schinzel’s original paper.

Schinzel went on to prove another important result for the case of k = 2.

Theorem 6.7. If f(X) = a2X2 + bX + c, where a, b, c ∈ Z, then for n ∈ Z,

lim
n→∞ l

(√
f(n)

)
<∞

if and only if
d | 4(2a2, b)2 , (6.22)

where d = b2 − 4a2c.

6.3 Schinzel’s Families 135

These two remarkable results completely solved the problem of when
l(
√
f(n)) could be bounded independently of n when f(X) is a quadratic

polynomial in Z[X]. In a second paper11 he also provided a result which gen-
eralized Theorem 6.7 to polynomials in Z[X] of degree greater than 2. In this
section we will confine our attention to the case of quadratic polynomials.
Since Schinzel’s seminal work on this case, further work has been done which
provides more detail than Schinzel’s techniques were able to produce. While
his methods were very powerful, they were not constructive and therefore
could not be used to exhibit explicit bounds on l(

√
f(n)). We will briefly

describe here some more recent constructive approaches to Theorem 6.3.
Put f(X) = a2X2 + bX + c, d = b2 − 4a2c, and δ = d/(2a, b)2. We can

write

f(X) =
(2a2X + b)2 − d

(2a)2
. (6.23)

If we put e = (2a2, b), then Theorem 6.3 asserts that

lim
n→∞ l

(√
f(n)

)
=∞

if d | 4e2. We will prove this here by making use of a clever idea of Louboutin.12

For any prime p we define νp(x) (x ∈ Z) to be that value of m such that
pm || x. Note that

νp(xy) = νp(x) + νp(y) (x, y ∈ Z) .

We now observe that if a = 2a2/e and b = b/e, then

4(2a2X + b)2 = 4e2(aX + b)2 .

Also, if d � 4e2, there must exist a prime p such that νp(d) > νp(4e2). If p | a,
then νp(aX+ b) = 0 for all X ∈ Z; if p � a, then there must exist an infinitude
of values of X ∈ Z such that (aX + b, p) = 1 [i.e., νp(aX + b) = 0]. In either
case, then, there must exist infinitely many values of X ∈ Z such that

νp(d) > νp

(
4(2a2X + b2)2

)
= 2νp

(
2(2a2X + b)

)
.

Let x be any one of these values of X and put m = 2a2x + b; then νp(d) >
2νp(2m) ≥ 2νp(x), and by definition of δ, we have νp(δ) > 2νp(2a′), where
a′ = m/(2a, b). If we put b′ = 2a/(2a, b), by (6.23) we get

f(x) =
a′2 − δ
b′2

;

hence, we have
0 ≤ νp(f(x)) = 2 (νp(a′)− νp(b′)) ,

which means that νp(a′) ≥ νp(b′). Since (a′, b′) = 1, we find that νp(b′) = 0
and νp(f(x)) = 2νp(a′).

We next put P = 2a′, Q = δ, and d′ = P 2 − 4Q = 4b′2f(x). We have
νp(Q) > 2νp(P). We now require a simple lemma involving the Lucas functions
introduced in §1.4.

136 6 Some Special Pell Equations

Lemma 6.8. For the Lucas functions vn(P,Q) and un(P,Q), if νp(Q) >
2νp(P), then

νp(vn) = nνp(P), νp(un) = (n− 1)νp(P) .

Proof. We see that since v1 = P and u1 = 1, the result holds for n = 1. Also,
since v2 = P 2 − 2Q and u2 = P , we have νp(v2) = 2νp(P), νp(u2) = νp(P)
and the result also holds for n = 2. It is easy to show that

vn+1 = Pvn −Qvn−1, un+1 = Pun −Qun−1 ;

thus, we can prove the lemma by using induction on n. ��
We are now able to prove Louboutin’s version of Schinzel’s result above.

Theorem 6.9. If d � 4m2, then

l
(√

f(x)
)
≥ 1 + 2

⌊
log

√
f(x)

log |δ|

⌋

.

Proof. Since
vk

2 − d′uk
2 = 4Qk ,

we have
vk

2 − 4f(x)b′2uk
2 = 4δk .

Put N = �log
√
f(x)/ log |δ|� and observe that δN <

√
f(x). By Theorem 3.3,

we see that (vk/2)/(b′uk) must be some convergent Cik
in the SCF expansion

of
√
f(x) whenever 1 ≤ k ≤ N . If we put gk = (vk/2, b′uk), then Aik

= vk/2gk

and Bik
= b′uk/gk, and since

A2
ik
− f(x)B2

ik
= (−1)ik+1Qik+1 ,

we get Qik+1 = |δ|k/gk
2. By definition of gk and Lemma 6.8, we have

νp(gk) = min
{
νp

(vk

2

)
, νp (b′uk)

}

= min{kνp(2a′)− νp(2), (k − 1)νp(2a′)}
= (k − 1)νp(2a′) ;

hence,
νp(Qik+1) = k (νp(δ)− 2νp(2a′)) + 2νp(2a′) .

Since νp(δ) > 2νp(2a′), it follows that all the values of Qik+1 are distinct
for k = 1, 2, . . . , N . Also, since νp(Qik+1) > 2νp(a′) ≥ νp(2f(x)), we have
Qik+1 � 2f(x). Thus, the theorem now follows from Corollary 5.20.2. ��

6.3 Schinzel’s Families 137

Since f(x) becomes arbitrarily large as x does, Louboutin’s result proves
that l(

√
f(x)) is unbounded as x goes to infinity whenever d � 4e2. We now

turn our attention to the case where d | 4e2. Notice that by (6.21), this
includes the cases discussed in §6.1. Also, it is easy to deduce that if D is of
Richard-Degert type, then

D = a2X2 ± a, a2X2 ± 2a , or a2X2 ± 4a

and such forms are, of course, covered by Schinzel’s results.
It has been found convenient to deal with those f(X) such that

f(X) = a2X2 + bX + c , (6.24)

where 2 | a and 2 | b. This is not really a restiction because we can divide the
possible values of X into even (X = 2W) and odd (X = 2W +1) integers and
write

f(X) = g(W) = a′2W 2 + b′W + c′ ,

where if X = 2W ,
a′ = 2a , b′ = 2b , c′ = c ,

or if X = 2W + 1,

a′ = 2a , b′ = 4a2 + 2b , c′ = a2 + b+ c .

In either case we get d′ = b′2 − 4a′2c′ = 4d and 2e | (2a′2, b′); hence, d′ |
4(2a′, b′)2 whenever d | 4e2. As we may always assume that 2 | b, we will
replace b by 2B and rewrite the polynomial in (6.24) as

D(X) = A2X2 + 2BX + C . (6.25)

In this case, Schinzel’s condition d | 4e2 becomes Δ0 | 4(A2, B)2, where Δ0 =
B2 −A2C.

If, in (6.25), (A2, 2B,C) is squarefree, thenD(X) is of Richard-Degert type
when C ≤ 0 or C is a perfect square.13 If C > 0 and not a perfect square, then
with no real loss of generality we may assume that B > 0 and C > RT 2, where
G = (A,B) and Δ0/G

2 = RT 2, with R squarefree. In this case it was shown14

that l(
√
C) | l(√D(X)) and l(

√
D(X))/l(

√
C) is independent of the value of

X . Later,15 the condition that (A2, 2B,C) be squarefree was removed and the
complete continued fraction expansion of

√
D(X) was determined whenever

Δ0 | 4(A2, B)2.
We put |Δ0| = Δ1Δ2

2Δ4
4, where Δ1 and Δ2 are squarefree; we set A′ =

A/G, Δ′ = Δ2Δ4
2/G, σ = Δ/|Δ| = sign(Δ), and

η =
{

1 if A | B and σ = 1
0 otherwise .

For integers a ≥ r ≥ 0, define an ordered set

138 6 Some Special Pell Equations

S(a, r) =

⎧
⎪⎪⎨

⎪⎪⎩

∅ if r = 0
{s0, s1, . . . , sm−1} otherwise ,

where a/r = [s0, s1, . . . , sm−1]
with (−1)m−1 = σ .

Finally, we define δi ∈ {0, 1} and δi ≡ i (mod 2). Note that δi+1 = 1−δi. Our
subsequent results will be conditional on X being sufficiently large. Here, this
means that

X >
|Δ|
AG2

+
1

2A
− B

A2
and X > 1 +

1
A
− B

A2
. (6.26)

We next assume that X ≡ K (mod Δ′), where 0 ≤ K < Δ′, and write
B = Aq + r, where 0 ≤ r < A.

The following complicated theorem completely characterizes the SCF ex-
pansion of

√
D(X).

Theorem 6.10. Suppose that D(X) = A2X2+2BX+C satisfies the Schinzel
condition Δ0 | 4(A2, B)2 where X satisfies (6.26). Write X = WΔ′ + K for
some W ≥ 0. Put d0 = Δ′ and r0 = (r + Aη)/G and inductively define the
following.

For i ≥ 0, define

Si = S(A′Δ′/di, ri) , di+1 = (Δ′/di, ri) ,

where the parity of |Si| is even if σ = −1 and odd if σ = 1. Put gi+1 = 0
or gi+1 = di according to whether ri = 0 or ri = A′Δ′/di. If ri �≡
0 (mod A′Δ′/di), then choose gi+1 ∈ Z so that

gi+1

di

ri
di+1

≡ σ

(

mod
A′Δ′

didi+1

)

and 0 < gi+1 <
A′Δ′

di+1
.

Also, set

qi+1(W) =
2AWd2

i+1

Δ1
δi+1Δ′

⎢
⎢
⎢
⎢
⎣

2A2K + 2B −Δ1
δi+1gi+1

(
A
A′

)(
Δ′

di+1

)
−Aη − r

AΔ1
δi+1

(
Δ′

di+1

)2

⎥
⎥
⎥
⎥
⎦ .

Compute ri+1 such that

ri+1 ≡ di+1(2A2K + 2B)
Δ1

δi+1Δ2Δ4
2

− gi+1

(

mod
A′Δ′

di+1

)

,

where 0 ≤ ri+1 < A′Δ′/di+1 when σ = −1 and 0 < ri+1 ≤ A′δ′/di+1 when
σ = 1.

Then the simple continued fraction expansion of
√
D(X) is given by

[AX + q − η,S0, q1(W),S1, q2(W), . . . ,Sκ−1, qκ(W)] ,

where κ is the least natural number such that

dκ = Δ′ and Δ1
δκ = 1 .

6.3 Schinzel’s Families 139

The proof of this result and those in the next section is both lengthy and
intricate; thus, for the sake of brevity we will not provide them in this chapter.
The interested reader can find the proofs in the references cited in the notes.

We notice that S0 is independent of the residue classes of X modulo Δ′,
but Si with i ≥ 1 depends on the residue classes. In particular, if r = 0 (i.e.,
A | B), then S0 = ∅ or {1} according to whether σ = −1 or 1. Also, when
ri ≡ 0 (mod A′Δ′/di) for i ≥ 1, Si = ∅ or {1} according to whether σ = −1
or 1. Furthermore, if r > 0, then ri > 0 for i ≥ 0.

Example 6.11. 16 Consider D(X) = 1192X2 +2(2205)X+343. We first look
at X ≡ 1 (mod 7), where X > 1 and list qi(0), Si, gi, di, and ri:

q0(0) = 137 , S0 = {1, 1, 8} , d0 = Δ′ = 7, r0 = 9 ,
q1(0) = 2 , S1 = {1, 2, 4, 1, 1, 1, 2} , d1 = 1 , g1 = 14 , r1 = 82 ,
q2(0) = 5 , S2 = {4, 3, 1} , d2 = 1 , g2 = 45 , r2 = 28 ,
q3(0) = 136 , S3 = {1, 3, 4} , d3 = 7 , g3 = 13 , r3 = 13 ,
q4(0) = 5 , S4 = {2, 1, 1, 1, 4, 2, 1} , d4 = 1 , g4 = 28 , r4 = 45 ,
q5(0) = 2 , S5 = {8, 1, 1} , d5 = 1 , g5 = 82 , r5 = 14 ,
q6(0) = 247 , S6 = {1, 1, 8} , d6 = Δ′ = 7 , r6 = 9 .

Since δ6 = 0 by definition of δi, we have Δ1
δ6 = 1. Also, since d6 = Δ′, the

computation of Si of the continued fraction expansion of
√
D(1) is complete

and κ = 6. Hence, when X = 7W + 1 for W ≥ 0, we have
√
D(7W + 1) = [833W + 137, 1, 1, 8, q1(W), 1, 2, 4, 1, 1, 1, 2, q2(W),

4, 3, 1, q3(W), 1, 3, 4, q4(W), 2, 1, 1, 1, 4, 2, 1, q5(W),

8, 1, 1, 2(833W + 137)] ,

where q1(W) = q5(W) = 17W + 2, q2(W) = q4(W) = 34W + 5 and q3(W) =
833W + 136.

Similarly, when X = 7W + 2 and W ≥ 0,
√
D(7W + 2) = [833W + 256, 1, 1, 8, 17W + 5, 8, 1, 1, 2(833W + 256)] .

From Theorem 6.10 it is also possible to deduce17 that when X satisfies
(6.26),

l
(√

D(X)
)
≤ 3Δ′ log(

√
5A′Δ′)

log τ
,

where τ = (1 +
√

5)/2. Finally, if ηD(X) is the fundamental unit of the order
[1, D(X)], then the SCF expansion of

√
D(X) can be used to prove18 that

ηD(X) =

(
A2X +B +A

√
D(X)

√|Δ0|

)κ

(6.27)

140 6 Some Special Pell Equations

and N(ηD(X)) = σκ.
We now require some further notation. Let f(x) and g(x) be two functions

such that f : R≥0 → R≥0 and g : R≥0 → R≥0. We write f(x) � g(x) if there
exists some fixed constant c, independent of x, such that

f(x) > cg(x)

for all sufficiently large x.
For example, if Δ (> 0) is the discriminant of an order O, then εΔ =

(x+ y
√
Δ)/2 and

x2 −Δy2 = ±4 .

Thus, since x2 = Δy2 ± 4 ≥ Δ− 4 and y ≥ 1, we get

εΔ ≥
√
Δ− 4 +

√
Δ

2
>

√
Δ

2
. (6.28)

Hence, RΔ � logΔ.
We write f(x) = Θ(g(x)) when f(x) = O(g(x)) and f(x) � g(x). Now,

the value of κ above depends only on the values of A, B, and C; thus, if
R(D(X)) is the regulator of [1, D(X)], then by (6.27), we have

R(D(X)) = Θ(logD(X)) .

We also see that we can easily solve the Pell equation for D = D(X) as

t+ u
√
D =

{
η when σk = 1
η2 when σk = −1

for any X satisfying (6.26).

6.4 Creepers and Kreepers

We have seen how to obtain the fundamental unit of [1, D(X)] when D(X) is
any of the Richard-Degert types: D(X) = X2−1, X2−2, and X2−4. In 1969
Shanks19 considered the case of D(X) = X2−8, a form that does not obey the
Schinzel condition. He observed that the fundamental unit of [1, D(X)] tended
to be large as the values of X increased, but for D(X) = 4481 = 672 − 8, it
was uncharacteristically small. This caused him to investigate numbers of the
form

Sn = (2n + 3)2 − 8 = (2n + 1)2 + 2n+2 .

He also stated20 that if ηn = tn + un

√
Sn, where (tn, un) is the fundamental

solution of (6.1) with D = Sn, then log ηn = 2n2 log 2 + O(n2−n). Later,
Yamamoto21 pointed out that in the SCF expansion of (

√
Sn + 1)/2, we get

P0 = 1, Q0 = 2, P2i−1 = 2n + 1, Q2i−1 = 2n+2−i, q2i−1 = 2i+1, P2i = 2n − 1,
Q2i = 2i+1, and q2i = 2n−i. Thus,

6.4 Creepers and Kreepers 141

εn =
αγn

2n
,

where α = (2n + 1 +
√
Sn)/2 and γ = (2n + 3 +

√
Sn)/2. In this case,

l((
√
Sn + 1)/2) = 2n+ 1. This seems to be the first example ever found of a

parametric family {Sn} for which the fundamental unit of the corresponding
order On can be easily predicted, even though (unlike the cases of our previ-
ous examples {D(X)}) the period length of the associated continued fraction
becomes arbitrarily large.

Since 1969, a number of generalizations of Shanks’ sequence have been
described.22 Indeed, it turns out that the first such sequences to be mentioned
in the literature are those of Nyberg23 in a little noticed work published in
1949. These sequences are given by

Nn = (xn ± (x− 1)/2)2 + x .

Here, l(
√
Nn) = 6n−2 for the negative sign and l(

√
Nn) = 6n for the positive

sign.
Before proceeding any further, it will be useful to introduce some more

notation. If D (> 0) is the discriminant of some order O, by our results in
§4.2 we know that D ≡ i (mod 4), where i ∈ {0, 1}. If we put

ω =
{√

D/2 when i = 0
(
√
D + 1)/2 when i = 1 ,

then O = [1, ω]. Thus, if we are given a family {Dn} of positive discriminants
of the orders On, then On = [1, ωn], where Dn ≡ in (mod 4) and

ωn =
{√

Dn when in = 0
(1 +

√
Dn)/2 when in = 1 .

We now consider Hendy’s24 generalization of Shanks’ sequence:

Dn = (qxn + (x− 1)/q)2 + 4xn ,

where x ≡ 1 (mod q) and 2 � (qxn + (x− 1)/q). In this case,

ωn = [(qxn + (x− 1)/q + 1)/2, q1, q2, . . . , qp] ,

where p = l(ωn) = 2n+1, q2j+1 = qxj , qj+2 = qxn−j−1 (j = 0, 1, 2, . . . , n−1),
and qp = 2q0 − 1. For the family {Dk} given by

Dn = (qxn − (x+ 1)/4q)2 + xn ,

when x ≡ 1 (mod 4q), we get25

√
Dn = [qxn − (x+ 1)/4q, q1, q2, . . . , qp] ,

where

142 6 Some Special Pell Equations

q3j+1 = 2qxj − 1 , q3j+2 = 1 , q3j+3 = 2qxn−j−1 − 1

(j = 0, 1, . . . , n − 1) and p = l(
√
Dn) = 3n + 1. Bernstein26 regarded

subsequences like {qxj , qxn−j−1} in the period of ωn above and {2qxj −
1, 1, 2qxn−j−1 − 1} in the period of

√
Dn to be cycles within the respective

continued fraction periods. By the length of these cycles he meant the number
of items in the relevant subsequences. It seems that he was the first individual
to examine the cycle structure of periodic continued fractions to any great
extent. As a result of his investigations into the continued fraction expansion
of
√
Dn for certain parametric families {Dn}, he was able to produce a rather

complicated definition of a cycle. He also found examples of such families for
which there were cycles of length 2, 4, 5, 6, 8, 10, 11, and 12. Indeed, he ex-
pressed some surprise27 that a cycle length as large as 12 could even exist. In
fact, as was shown later,28 it is possible to find a family {Dn} for which the
cycle length of the SCF expansion of ωn can be any preselected integer. Such
examples have l(ωn) = an+ b for some fixed a, b ∈ Z. For example, if we put
q = 1450042921,

Dn = (qx6n+1 + (x3n − 1)/q) + 4x6n+1

and x ≡ 84498480 (mod q), then l(
√
Dn) = 59n+ 2 and the SCF expansion

of
√
Dn has a cycle structure with cycle length 59.

However, it is possible to find families {Dn} such that l(ωn) = an + b,
where a, b ∈ Q. In these examples, of course, the values of n must be selected
from certain residue classes. For example, consider the rather peculiar family29

given by

Dn = 10182 · 13190112n + 132932744752 · 1319077n + 652909572 . (6.29)

Here,

l(ωn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

284
5
n− 94

5
when n ≡ 1 (mod 60)

604
15

n− 8
15

when n ≡ 2 (mod 60)

203
5
n− 29

5
when n ≡ 3 (mod 60)

392
3
n− 48 when n ≡ 21 (mod 60)

53
3
n+

13
3

when n ≡ 37 (mod 60) .

In fact, there is a value for a and b for n in each residue class modulo 60.
Kaplansky30 named families like the {Dn} given above creepers .

“Creepers”? Along with “sleepers” these are my silly nicknames. A
sleeper is a family of continued fractions bounded in length; Schinzel

6.4 Creepers and Kreepers 143

pretty well wrapped these up. In a creeper the lengths go to infinity,
but gently, forming one or more arithmetic progressions when sorted
out into residue classes; there may be a waiting period before the
arithmetic progressions begin.

We have already dealt with several types of sleepers in the previous section.
In the remainder of this section we will discuss what (little) is known about
creepers.

By selecting discriminants from families of sleepers, it is possible to form
a sequence of discriminants with linear period length. These are now referred
to as beepers .31 As an example, we mention one discovered by Buck and
Williams32:

Dn = (2F6n+1 + 1)2 + 8F6n + 4 ,

where Fn is the nth Fibonacci number. Here, we get

ωn = [F6n+1 + 1, 1, 1, 1, . . . , 1, 2F6n+1 + 1]

and l(ωn) = 6n+1. It follows that since all the partial quotients are bounded
except for the obvious ones, we must have R(Dn) = O(logDn) by (5.34).

Madden33 constructed sequences {Dn} for which the SCF expansion of√
Dn possesses a slowly growing period length. These examples are distinct

from our earlier examples of creepers because they are not polynomially pa-
rameterized in terms of xn. However, they can be viewed as a selection of
specific discriminants from the various families that we will discuss in sequel,
just as beepers are specifically selected sleepers.

Let {f(X,n)} be a set of polynomials in Q[X] parameterized by n ∈ Z.
In his discussion of a creeper, Kaplansky was thinking of an infinite family
of discriminants {Dn} such that for a fixed x ∈ Z, we have Dn = f(x, n)
satisfying

l(ωn) = an+ b (a, b ∈ Q)

and
R(Dn) = Θ((logDn)2) .

He made several conjectures about creepers that are quadratic in xn and
suggested that each such creeper could be written as {Dn}, where

Dn = A2x2n +Bxn + C2

and A,B,C ∈ Q. Each of the corresponding orders On on which his conjec-
tures were based contains a principal ideal with norm xg, where g (∈ Z>0) is
independent of n.

Given this information, we define a Kaplansky creeper or kreeper as an
infinite family of discriminants Dn such that the following hold:

1. Dn = A2x2n +Bxn + C2, where A,B,C ∈ Q, x ∈ Z>0.
2. l(ωn) = an+ b, where a, b ∈ Q are independent of n.

144 6 Some Special Pell Equations

3. In the principal ideal cycle of On, there exists an ideal whose norm is xg

for some fixed g (∈ Z>0) independent of n.

We point out that condition (3) implies that R(Dn) = Θ((logDn)2); that is,
every kreeper is a creeper.

Recently, the following two results,34 which completely characterize kreep-
ers, have been demonstrated.

Theorem 6.12. Any kreeper Dn can be written as

d2Dn = c2
((
qrxn + (mz2xk − ly2)/q

)2
+ 4ly2rxn

)
, (6.30)

where each term in the above equation is an element of Z; the terms r, l, and
m are squarefree, r and x are positive, and the following conditions hold:

(qrx,mlzy) = 1 , (qr, x) = 1 , (mz, ly) = 1 ,
q | mz2xk − ly2 , c2rly2mz2 | d2Dn .

(6.31)

Theorem 6.13. Any sequence of discriminants given by (6.32) and satisfying
the conditions (6.33) as above must in fact be a kreeper.

For example, if we return to one of Nyberg’s forms

Nn = (xn + (x− 1)/2)2 + x ,

we see that
4Nn = (2xn + x+ 1)2 − 8xn .

Putting Dn = 4Nn, we have a family of discriminants {Dn} which satisfy the
conditions for a kreeper with r = 2, k = d = c = z = y = m = 1, and l = −1.
Thus, from Theorem 6.13, we can deduce that l(

√
Dn/2) = l(

√
Nn) = an+ b

(a, b ∈ Q). Of course, we know in this case that a = 6 and b = 0. If we put
d = c = k = 1, q = 2, r = 509, m = 11, z = 3, l = 7, y = 5, and x = 1319011,
we get the Dn in (6.29).

For any kreeper {Dn}, it is also possible to determine εn, the fundamental
unit of On. If, for a fixed n, we put

α =
S1 + d

√
Dn

2d
, β =

S2 + d
√
Dn

2d
,

where

S1 = cqrxn +
c(z2mxk − y2l)

q
, S2 = cqrxn − c(z2mxk − y2l)

q
,

then
εn = λw ,

where

6.5 Yamamoto’s Results 145

λ =
(αβ)nαk

√|N(αβ)nN(α)k| .

Here, the value of w depends only on a number which divides 2cyz, and as it
is a rank of appartition of this number in a certain Lucas function un(P,Q),
we know by Theorem 1.13, that it must be bounded above by 4cyz. Also,

N(α) =
−c2rly2xn

d2
, N(β) =

−c2rmz2xn+k

d2
,

and
αβ = cqrxnγ/d ,

where γ = (S3 + d
√
Dn)/2d and S3 = cqrxn + c(z2mxk + y2l). Thus, we can

write

εn =
(

γnαkdn+kqn

cn+kyn+kzn
√
rkln+kmn

)w

,

a generalization of the results of Shanks and Yamamoto when Dn = Sn. Of
course, we can then find (t, u) for D = Dn by using this result and Table 4.1.
Notice that R(Dn) = Θ((logDn)2). Very little is known about creepers that
are not kreepers; they do, however, exist. For example,

Dn = (x2n+2 + xn+2 + xn − 1)2 + 4xn

is a creeper, but not a kreeper. Indeed, the theory of creepers does not enjoy
the same state of development as that of sleepers. We conclude this section
with some unsolved problems concerning these objects.

Problem 1. Show that if d2Dn = AX2n + BXn + C, then {Dn} is a creeper
implies that A and C must be squares in Q.

Problem 2. Show that if d2Dn = A2X2 + BXn + C2 and {Dn} is a creeper,
then {Dn} is a kreeper.

Problem 3. Show that there are no jeepers.35 These are polynomially parame-
terized families {Dn} which are not creepers such that l(ωn) can be explicitly
given and R(Dn) = O((logDn)k) for k ≥ 3.

6.5 Yamamoto’s Results

Let
O1,O2, . . . ,Ok, . . . (6.32)

be a sequence of real quadratic orders with discriminants Δi = Δ(Oi) and
0 < Δi < Δi+1, i = 1, 2, . . . , k, In the last two sections we have shown
that such sequences of orders exist with R(Δi) = Θ(logΔi) in the case of
sleepers and R(Δi) = Θ((logΔi)2) in the case of kreepers. We also mentioned

146 6 Some Special Pell Equations

that no jeepers are known, but Yamamoto36 has shown that we do have a
sequence of orders such that R(Δi)� (logΔi)3. Notice that by (5.35), in this
case we have

l(ωi)� (logΔi)2 ,

where Oi = [1, ωi].
In this section we will present Yamamoto’s proof of this result. We begin

by assuming that for the sequence (6.32) there exists a set of n rational primes
{p1, p2, . . . , pn} such that in each Oi, each of the primes pj (j = 1, 2, . . . , n)
splits into the product of two principal ideals pj and pj (i.e., (Δi/pj) = 1).
Let O = [1, ω] by any one of these orders and put Δ = Δ(O).

We now consider the set

S =

⎧
⎨

⎩

n∏

j=1

pj
ej pj

fj : ej , fj ≥ 0; ejfj = 0;
n∏

i=1

p
ej+fj

j <
√
Δ/2

⎫
⎬

⎭
.

We observe that all the ideals in S are distinct, principal, and primitive and
by Theorem 5.9 they are also reduced. Thus, if C denotes the cycle of the
reduced principal ideals of O, then C ⊇ S.

Let a ∈ S. Since a is a reduced ideal of O, we may assume from the
results developed in §5.3 that a = [N(a), b+ ω], where (b + ω)/N(a) > 1 and
−1 < (b+ ω)/N(a) < 0. Hence, b+ ω > ω − ω =

√
Δ/2 and

b+ ω

N(a)
>

√
Δ/2
N(a)

.

Also, for some m ∈ Z>0 and m ≤ l(ω), (b + ω)/N(a) = φm in the SCF
expansion of ω. Thus, if ak = [N(ak), bk + ω] ∈ S, by (5.34) we must have

εΔ ≥
|S|∏

k=1

bk + ω

N(ak)

>
∏′

√
Δ/2

pe1+f1
1 pe2+f2

2 · · · pen+fn
n

,

where the product is over all the pairs (ek, fk) ∈ Z2 satisfying the following:

1. ek ≥ 0, fk ≥ 0, ekfk = 0 (k = 1, 2, . . . , n)
2.

∑n
k=1(ek + fk) log pk < log(

√
Δ/2).

Let α1, α2, . . . , αn, and B be positive reals. In order to estimate a lower
bound on R(Δ) = log εΔ, we need some results concerning lattice points in
the tetrahedron in

Rn = {(y1, y2, . . . , yn) : yi ∈ R (i = 1, 2, . . . , n)}
defined by yi ≥ 0 (i = 1, 2, . . . , n) and

∑n
i=1 αiyi = B. Let (x1, x2, . . . , xn) ∈

(Z≥0)n and let

6.5 Yamamoto’s Results 147

T (n,B) = (x1, x2, . . . , xn)

denote the number of distinct lattice points such that

n∑

i=1

αixi ≤ B . (6.33)

Then
T (n,B) =

Bn

n!A
+O(Bn−1) , (6.34)

where A =
∏n

i=1 αi. Also, if we take the sum S(n,B) of all the values of∑n
i=1 αixi satisfying (6.33), we have

S(n,B) =
nBn+1

(n+ 1)!A
+O(Bn) . (6.35)

Both of these results can be established analytically37 or by induction38 on
n. For example, if we wish to prove (6.35), we first observe that if n = 1, it is
clear that S(1, B) =

∑	B/α1

x1=0 α1x1 = B2/2A+ O(B) (here A = α1). We put

B(x1) = B − α1x1 and assume (6.35) holds for n− 1. Then

S(n,B) =
	B/α1
∏

x1=0

∑′
(α1x1 + α2x2 + · · ·+ αnxn) ,

where
∑′ denotes the sum over all x2, x3, . . . , xn ∈ Z≥0 such that

α2x2 + α3x3 + · · ·+ αnxn ≤ B(x1) .

It follows that

S(n,B) =
	B/α1
∏

x1=0

[α1x1T (n− 1, B(x1)) + S(n− 1, B(x1))] .

We can now use (6.34) and (6.35) with n replaced by n − 1 and B replaced
by B(x1), the well-known result

m∑

i=1

ik =
mk+1

k + 1
+O(mk) ,

and the combinatorial identity

n

(n+ 1)!
=

1
(n− 1)!

n−1∑

i=0

(
n− 1
i

)

(−1)i 1
i+ 2

+
n− 1
n!

n∑

i=0

(
n

i

)

(−1)i 1
i+ 1

(6.36)
to prove (6.35). The identity (6.36) is easily derived (p = 1 and p = 2) from
the identity39

148 6 Some Special Pell Equations

(
n+ p

n

)−1

=
n∑

i=0

(−1)i

(
n

i

)
p

i+ p
.

If we now put αi = log pi and B = log
√
Δ/2, we see that

log εΔ = log
∏′

√
Δ/2

pe1+f1
1 pe2+f2

2 · · · pen+fn
n

= 2nBT (n,B)− 2nS(n,B)

=
2n

(n+ 1)!
Bn+1

A
+O(Bn) .

Hence, for a fixed value of n,

R(Δ) � (logΔ)n+1 .

Of course, in order to use this result we have to find the sequence (6.32)
and the primes {p1, p2, . . . , pn}. Yamamoto considered

Dk = (pkq + p+ 1)2 − 4p ,

where p and q are distinct primes and either p = 2 or p and q are both odd.
We note that

Dk ≡ 1 (mod 4) ,
Dk ≡ 1 (mod p) ,

Dk ≡ (p− 1)2 (mod q) .

If we put ωk = (
√
Dk+1)/2 and Ok = [1, ωk], thenDk = Δ(Ok) and (Dk/p) =

(Dk/q) = 1. Since
(pkq + p+ 1)2 −Dk = 4p ,

in OK, we have

(p) = pp, where p =
(
pkq + p+ 1 +

√
Dk

2

)

.

Also, (q) = qq, and from

(pkq + p− 1)2 −Dk = −4pkq ,

we see that either pkq or pkq must be a principal ideal of OK. However, since
p and p are both principal, this means that q and, therefore, q are both
principal. Thus, the conditions on our sequence of ideals is fulfilled for n = 2
and {p1, p2} = {p, q}. Consequently, for the family given by {Dk}, we have

R(Dk) � (logDk)3 . (6.37)

6.5 Yamamoto’s Results 149

Table 6.1. Values for l(ωn)

n l(ωn)

2 29

3 81

4 217

5 652

n l(ωn)

6 1801

7 2216

8 22206

9 44776

n l(ωn)

10 20968

11 61748

12 566474

Thus, {Dk} cannot be a sleeper or a creeper; furthermore, it seems to be very
difficult to predict the value of l(ωk). For example, when p = 3 and q = 5, we
get the values in Table 6.1.

If Dk is squarefree, then OK is the maximal order of Q(
√
Dk). If 2 | k, we

have

Dk = D2j = (p2jq + p+ 1)2 − 4p

= q2p4j + 2q(p+ 1)p2j + (p− 1)2 .

Suppose f2 | D2j and we put D2j = f2D; then

f2D = q2x4 + 2q(p+ 1)x2 + (p− 1)2 ,

where x = pj . For a fixed D, this Diophantine equation can only have a finite
number of solutions (f, x) by Siegel’s Theorem.40 Thus, Q(

√
D2j) represents

an infinitude of distinct, real quadratic fields as j = 1, 2, 3, It follows that
there exists an infinite sequence of distinct, real quadratic fields

K1,K2, . . . ,Kn, . . . , (6.38)

where Ki = Q(
√
Di), such that

RKi � (logDi)3 . (6.39)

This is the best result of this type currently known.41 Indeed, in Chapter 9
we will provide reasons that suggest the existence of some sequence (6.38) for
which

RKi � Di
1/2−ε ,

but the best rigorously proved result is still (6.39).
However, if we are allowed to deal with orders with non-unit conductors,

we can do much better than (6.39). To show this we will make use of an idea
of Lagarias.42 We put O = [1, ω], where Δ = Δ(O) = (ω − ω)2 is fixed, and
(Δ, 3z) = 1, where εΔ = w+zω (w, z ∈ Z). Clearly, such orders must exist, as
εΔ = M +

√
Δ = M − 1+2ω when Δ = M2 +1 and 2 |M . Select some odd f

(∈ Z) such that each prime divisor of f must divide Δ. Define Ok = [1, fkω].

150 6 Some Special Pell Equations

Put P = εΔ + εΔ, Q = εΔεΔ = ±1, and d = (εΔ − εΔ)2 = z2Δ and let
un(P,Q) be the Lucas function in §1.4. If εk (> 1) is the fundamental unit of
Ok, then we know that

εk = εmΔ

and m = ω(fk/g), where g = (fk, z) = 1. From Proposition 6.1, it follows
that if pn || f , then p | Δ and p | d. Thus, ω(pnk) = pnk; therefore,

m = ω(fk) = fk

and
R(f2kΔ) = fkRΔ .

If we put Δk = f2kΔ = Δ(Ok), then fk =
√
Δk/

√
Δ and R(Δk) =√

Δk(RΔ/
√
Δ). Since RΔ/

√
Δ is fixed, we get

R(Δk) �
√
Δk

in this case.

Notes and References 151

Notes and References

1See [Dic19], Vol. II, pp. 354–355.
2This result was used in [Stö97] to address the following problem: Let P =

{p1, p2, . . . , pt} be a set of distinct primes and let Q be the set Q = {∏t
i=1 pαi

i : αi ≥
0}; find s such that s and s + 1 ∈ Q. This is another instance of a Diophantine
problem in which the Pell equation arises somewhat unexpectedly. Several years
later, Lehmer [Leh64] simplified Störmer’s procedure and extended his results.

3See, for example, [Kra26].
4[Per57], Vol. I, Satz 3.17. There is also a version of this result for (

√
D + 1)/2

in Satz 3.34 of Vol. I. See also [Fri88], [HK91], and [Che03], pp. 67–72.
5These were named by Hasse in [Has65], p. 51 in honour of the earlier work done

on them by Richaud [Ric66] and Degert [Deg58]. Much information on these forms
can be found in [Mol95].

6[HK90], §3. These results can also be found as Theorem 3.2.1 in [Mol95].
7We use the ideas in [Deg58] for this.
8See Chapter XII of [Dic19] for a summary of many of these results.
9[Ste34].

10[Sch61].
11[Sch62].
12[Lou89]. Later, this work was extended by Farhane [Far94]. Dubois and Paysant-

Le Roux [DPLR91] applied Louboutin’s idea to the case of polynomials of degree
greater than 2.

13See Theorem 2.2 of [vdPW99].
14[vdPW99]. See also [Che03], pp. 60–66, where a minor error in [vdPW99] is

corrected.
15[CW05]; [Che03], Ch. 4.
16Additional examples can be found in [Che03], Appendix C.
17[Sha69] and [Sha71].
18This is an extension of a result of Stender [Ste79].
19[Sha69].
20[Sha71].
21[Yam70].
22[Hen74], [Ber76a], [Ber76b], [Azu84], [Azu87], [LR86], [Wil85a], [Lev88], [deM88],

[HK89a], [MW92b], [MW92c], [Wil95a], [vdP94], and [MZ].
23[Nyb49].
24[Hen74].
25[Wil85a], p. 203.
26[Ber76a] and [Ber76b].
27[Ber76a], p. 446.
28[Wil00].
29[Pat03], pp. 97–100.
30[Kap98].
31These families are called beepers in honour of the beer won by van der Poorten.

See [vdP99a]. Much further work on beepers has been done by Mollin and Cheng.
See [MC02a], [MC02b], [MC04], and [MCG02].

32[BW94].
33[Mad01].
34[PvdPW07] and [Pat03].

152 Notes and References

35The reader will perhaps be relieved to learn that so far there are no families
named peepers.

36[Yam70].
37See [Yam70] or [HK89b].
38In the case of (6.34), see, for example, the work of Lehmer [Leh40]. Stronger

estimates were found later by Granville [Gra91].
39See [Rio68], p. 47.
40See [Mor69], pp. 264, 268.
41Halter-Koch [HK89b] thought he had found a family {Di} for which RKi �

(log Di)
4, but, unfortunately, an error in his main theorem invalidates this result.

For a brief discussion of this error, see [Pat03], p. 66. Nevertheless, [HK89b] contains
some valuable insights that were very useful in establishing Theorem 6.12.

42[Lag80a], Appendix A.

7

The Ideal Class Group

7.1 Introduction

As we have seen in §4.3 of Chapter 4, solutions of the Pell equation are closely
related to the fundamental unit of a real quadratic field. In particular, the
regulator, defined in §5.3 to be the logarithm of the fundamental unit, is
the number of bits of a fundamental solution up to a small constant factor.
In Chapter 6 we have seen that the size of the regulator can vary greatly;
indeed, there are many special families of discriminants that yield very small
regulators.

In Chapter 8 we will show that the size of the regulator is closely linked
to another invariant of a quadratic field, namely the ideal class number. This
is the number of elements in the ideal class group, a finite abelian group
consisting of equivalence classes of integral ideals.

In this chapter we introduce the ideal class group and class number of
a quadratic field. A number of properties concerning the size and structure
of the class group will be presented, including classical results on its 2-Sylow
subgroup and heuristics on its odd part due to Cohen and Lenstra. Finally, we
will introduce Shanks’ idea of the infrastructure of an ideal equivalence class
and show how it can be used to improve dramatically the speed of computing
the regulator. In order to do this, we will discuss the notion of the distance
of a reduced ideal in a given cycle and develop some useful results concerning
it.

We begin by defining the ideal class group. Recall from §4.5 that ideal
equivalence, as defined in Proposition 4.28, partitions the set of invertible
OΔ-ideals into equivalence classes.

Definition 7.1. The set of equivalence classes of invertible OΔ-ideals of a
quadratic order is a finite abelian group called the ideal class group, denoted
by ClΔ.

Definition 7.2. The class number of OΔ is defined as the order of ClΔ and
is denoted by hΔ.

154 7 The Ideal Class Group

When we wish to emphasize that OΔ is maximal, we write ClK and hK to
denote the class group and class number of the quadratic field K = Q(

√
Δ),

respectively.
The group operation, written multiplicatively, is given by [a][b] = [ab];

that is, an ideal representative of the product of two equivalence classes is
computed by selecting ideal representatives of each equivalence class and mul-
tiplying them. It is fairly straightforward to verify the group axioms and com-
mutativity from the definition of ideal multiplication (Definition 4.27) and
the discussion on invertibility in §4.5. In particular, closure, associativity, and
commutativity follow easily from Definition 4.27, the identity element of the
class group is the principal class [OΔ], and the inverse of [a] is [a]. Finiteness1

follows from the facts that each ideal equivalence class contains at least one
reduced ideal and that the coefficients of a reduced ideal are bounded (see
§5.1).

The ideal class group can also be defined using fractional ideals.

Definition 7.3. A fractional ideal of OΔ is a subset a of Q(
√
Δ) such that

da is an integral ideal of OΔ for some d ∈ Z>0. The minimal such d is called
the denominator of a, denoted by d(a).

Recall that OΔ acts as the identity for multiplication of integral ideals. How-
ever, most integral ideals do not have integral ideal inverses in the sense that,
given an integral ideal b, there is in general no integral ideal b−1 such that
bb−1 = OΔ. As a result, the set of integral ideals is not a group under ideal
multiplication, Fractional ideals, on the other hand, do have inverses in this
sense. To show this, we first generalize the notion of ideal norm to fractional
ideals.

Definition 7.4. The norm N(a) of a fractional ideal a of OΔ is defined to
be the unique non-negative rational generator of the Z-module containing the
norms of all the elements in a. We have N(a) = N(b)/d(a)2, where a = b/d(a)
for an integral OΔ-ideal b.

By Corollary 4.32.1, bb = (N(b)) for any integral ideal b. It follows that for
any fractional ideal a we have

a

(
a

N(a)

)

= OΔ ,

and a−1 = a/N(a). Thus, it is easy to see that IΔ, the set of all invertible
fractional ideals of OΔ, is an abelian group under ideal multiplication with
identity OΔ. Furthermore, the set of principal ideals PΔ is a subgroup of
IΔ, so IΔ/PΔ is a finite abelian group. Clearly, this is another description
of the ideal class group as defined in Definition 7.1. This formulation allows
us to represent equivalence classes using fractional ideals as well as integral
ideals, and it allows us to write [a]−1 = [a−1] when a is fractional. These
generalizations will be useful when describing the algorithms for computing
class groups and regulators in Chapter 13.

7.1 Introduction 155

In practice, reduced ideals are most often used as representatives of ideal
classes, allowing NUCOMP, as presented in §5.4, to be used as the group
operation in the class group. As shown in §5.1, the coefficients of reduced
ideals are bounded by

√
Δ, so using reduced ideals provides the additional

computational advantage that the operands used are relatively small in terms
of Δ. Furthermore, in imaginary quadratic fields, the results in §5.2 show
that using reduced ideal representatives results in a unique representative of
each non-ambiguous ideal equivalence class and two reduced representatives
for ambiguous classes.2 Thus, testing whether two ideal classes are equal can
be done efficiently by comparing their reduced representatives. Reduced ideal
representatives are also used in the real case, but, as shown in §5.3, the number
of reduced equivalent ideals can be approximately the same size as the regu-
lator. Thus, testing equality of ideal equivalence classes can be difficult if the
regulator is large, a fact exploited by a number of public-key cryptosystems
(see Chapter 14).

Adding the additional restriction that N(κ) > 0 in Proposition 4.28 yields
the notion of narrow or proper equivalence. The class group and class number
can also be defined with respect to narrow equivalence, resulting in the narrow
class group, denoted by Cl+Δ, and the narrow class number, denoted by h+

Δ.
The usual class group and class number, as defined above, are sometimes
referred to as the wide class group and wide class number. As all elements of
an imaginary quadratic field have positive norm, narrow and wide equivalence
are the same in this case, so hΔ = h+

Δ. In real quadratic fields, h+
Δ = hΔ if

and only if N(εΔ) = −1, because two equivalent ideals a and b are also
properly equivalent in this case; if a = κb and N(κ) < 0, then a = εΔκb
and N(εΔκ) > 0. If N(εΔ) = 1, then improperly equivalent ideals form two
distinct proper equivalence classes, so we have h+

Δ = 2hΔ.
As mentioned earlier, the class number and regulator are closely linked, so

in order to understand the behaviour of the regulator and, hence, fundamental
solutions of Pell’s equation,3 it is necessary to understand how large the class
number can be as a function of the discriminant Δ. Results in this direction
will be presented in detail in Chapter 9; we summarize a few highlights here.

For negative discriminants, solutions of Pell’s equation are trivial, so
bounds on the class number in terms of Δ alone can be obtained. For ex-
ample, Cohen4 stated that

hΔ <
1
π

√
|Δ| log |Δ| if Δ < −4 .

Siegel5 proved asymptotic lower and upper bounds on hΔ. His lower bound,
that hΔ tends to infinity as fast as |Δ|1/2−ε for every ε > 0, immediately
suggests that there should be only finitely many imaginary quadratic fields
with a given class number. Gauss6 was the first to conjecture that there are
only nine imaginary quadratic fields with class number 1 and that their dis-
criminants are −1, −2, −3, −7, −11, −19, −43, −67, and −163. Baker and
Stark,7 using methods anticipated by Heegner,8 proved that this list is in

156 7 The Ideal Class Group

fact complete. The most recent work in this area is by Watkins,9 in which he
listed all imaginary quadratic fields with class number hΔ ≤ 100, a dramatic
improvement over the previous bound of class numbers less than or equal to
7 and odd values up to 23 due to Arno, Robinson, Wheeler, and Wagner.10

Although significant progress has been made in terms of solving Gauss’ class
number problems for imaginary quadratic fields, as we will see below, there is
still much that is unknown about this fundamental invariant.

The situation is much different in real quadratic fields, due to the fact that
the class number and regulator are so closely related. Indeed, analogues of the
bounds for the imaginary case typically bound the product hΔRΔ as opposed
to hΔ. For example, Hua11 showed that

hΔRΔ < (1 + (1/2) logΔ)
√
Δ if Δ > 0 , (7.1)

and Siegel’s bound implies that hΔRΔ tends to infinity as fast as Δ1/2−ε for
every ε > 0. In Chapters 8 and 9 we will explore the connection between
hΔ and RΔ more closely in the context of the analytic class number formula
and present even tighter bounds whose correctness depends on the extended
Riemann hypothesis12.

For families of fields with small regulators, one would expect exhaustive
lists of fields with a given class group similar to the imaginary case. Mollin
and Williams13 have produced a series of papers on this subject, in which, for
example, methods similar to those used in the imaginary case were used to
enumerate all real quadratic fields with continued fraction period length of ω
less than 25 that have class number 1 or 2. However, in general, the regulator
is usually large, meaning that the class number can be as small as 1 no matter
what size the discriminant is. Assuming that the regulator is large for most
real quadratic fields, one might conjecture that the class number is 1 infinitely
often, and, in fact, Gauss posed the following:

Conjecture 7.5 (Gauss Conjecture14). There are infinitely many real quadratic
fields with class number 1.

There is a great deal of numerical evidence supporting this conjecture,15 but
to date a proof remains elusive.

In addition to the size of the class group, one can ask various questions
concerning divisibility properties of the class number and the structure of
the class group. By the structure of the class group, we mean its canonical
decomposition as a direct product of cyclic subgroups; that is,

ClΔ ∼= C(m1)× · · · × C(ms) ,

where the positive integers m1, . . . ,ms satisfy m1 ≥ 1, mj+1 | mj for 1 ≤
j < s, and C(x) denotes the cyclic group of order x. We call the mi’s the
elementary divisors of ClΔ. The p-rank of the class group is the number of
elementary divisors that are divisible by p—in other words, it is the number
of cyclic factors of the p-Sylow subgroup.

7.2 The Cohen-Lenstra Heuristics 157

In §7.2, we will discuss the odd part of the class group, the subgroup of
ideal classes whose orders are odd. Although very little can be proved in this
case, we have a good heuristic understanding thanks to the work of Cohen
and Lenstra, which we will describe. The situation with the even part of the
class group is much better understood. There are many proved results, several
of which are classical and were known to Gauss. We will give an overview of
these results in §7.3.

7.2 The Cohen-Lenstra Heuristics

Let ClΔ be the class group of Q(
√
Δ) and let Cl∗Δ be the odd part of ClΔ,

the subgroup of ideal classes with odd order. Cohen and Lenstra16 presented
some heuristics on the distribution and structure of various Cl∗Δ and divisi-
bility properties of h∗Δ = |Cl∗Δ|. For example, the probability that h∗Δ = 1 is
conjectured to be approximately 0.75446 if Δ > 0, a figure supported by ex-
tensive computations.17 As another example, Cl∗Δ is conjectured to be cyclic
over 97% of the time when Δ < 0, and this is also supported by extensive
numerical evidence.18

7.2.1 Imaginary Quadratic Fields

The fundamental heuristic assumption used by Cohen and Lenstra came from
the observation that tables of class groups of imaginary quadratic fields avail-
able at the time did indeed indicate that Cl∗Δ was cyclic much more frequently
than non-cyclic. As the automorphism group of a cyclic group is smaller than
that of any other abelian group of the same size, Cohen and Lenstra hypoth-
esized that when computing probabilities of occurrences of particular abelian
groups G, each isomorphism class of G should have a weight associated with it
equal to 1/|Aut(G)|, where |Aut(G)| is the order of the automorphism group
of G. The Cohen-Lenstra heuristics for imaginary quadratic fields are derived
from this heuristic assumption.

Define
w(n) =

∑

G
|G|=n

1
|Aut(G)| ,

where the sum is taken over all abelian groups of order n up to isomorphism.
The main idea for deriving heuristics on class groups is that w(n) is the sum of
weights of all groups of order n. The probability of occurrence of a particular
odd order group or set of groups is computed by dividing the sum of weights
for the target groups by the sum of the weights of all finite abelian groups of
odd order,

∑∞
d odd w(d).

As an example, we now derive the probability that Cl∗Δ is cyclic when
Δ < 0 using the above heuristic assumption. The number of automorphisms

158 7 The Ideal Class Group

of a cyclic group of order n is equal to the number of generators, φ(n). Thus,
we need to compute

Pr(Cl∗Δ is cyclic) =

∑
d≥1

d odd
1/φ(d)

∑
d≥1

d odd
w(d)

. (7.2)

We begin with the numerator of (7.2). Define

Φ(x) =
∑

n≤x
n odd

1
φ(n)

.

From Landau19 we have that

Φ(x) = E′
1 log x+ E′

2 +O

(
log x
x

)

, (7.3)

where E′
1 = 315 ζ(3)/6π4 and E′

2 are explicit constants and ζ(s) denotes the
Riemann zeta function, which we will discuss in more detail in §9.3.

We now derive an analogous result for the denominator of (7.2). If we
define

W (x) =
∑

n≤x
n odd

w(n) , (7.4)

then we have the following theorem.

Theorem 7.6. There exist constants E1 and E2 such that

W (x) = E1 log x+ E2 +O

(
log x
x

)

,

where E1 = 1/2C = η∞(2)C∞,

ηk(p) =
k∏

i=1

(1− 1/pi) ,

and

C∞ =
∞∏

i=2

ζ(i) ≈ 2.294856589 .

Before proving this theorem, we first describe how to approximate η∞(2)
efficiently. An identity of Euler 20 allows us to express functions of the form

1
(1− ax)(1 − ax2) · · · (1− axi) · · ·

7.2 The Cohen-Lenstra Heuristics 159

as the more rapidly converging

1 +
ax

1− x +
a2x2

(1 − x)(1 − x2)
+

a3x3

(1− x)(1 − x2)(1 − x3)
+ · · · . (7.5)

At a = 1 and x = 1/2 this gives us

1
η∞(2)

= 1 +
1

2(1− 1/2)
+

1
4(1− 1/2)(1− 1/4)

+
1

8(1− 1/2)(1− 1/4)(1− 1/8)
+ · · ·

and we can compute
η∞(2) = 0.288788095 . . . ,

an approximation correct to nine digits. This gives us

C =
1

2η∞(2)C∞
≈ 0.754458173

in the statement of the theorem.

Proof (of Theorem 7.6). We first need some additional results21 on w(n). We
have

w(n) =
∏

pα||n

(

pα

(

1− 1
p

)(

1− 1
p2

)

· · ·
(

1− 1
pα

))−1

, (7.6)

∑

d|n
w(d) = nw(n) , (7.7)

and
A

φ(n)
< w(n) <

B

φ(n)
, (7.8)

where A and B are constants such that 0 < A < B. It is also known22 that
∑

d>x

1
dφ(d)

= O

(
1
x

)

, (7.9)

∑

d>x

log d
dφ(d)

= O

(
log x
x

)

, (7.10)

∑

d≤x
(d,l)=1

1
φ(d)

= O(log x) , (7.11)

and

∑

d≤x
(d,l)=1

1
d

=
φ(l)
l

log x+ E0(l) +O

(
1
x

)

, (7.12)

160 7 The Ideal Class Group

where E0(l) is a constant which only depends on l; for example, E0(1) = γ.
From (7.8), it follows that

∑

d>x

w(d)
d

= O

(
1
x

)

, (7.13)

∑

d>x

w(d) log d
d

= O

(
log x
x

)

, (7.14)

and ∑

d≤x
(d,l)=1

w(d) = O(log x) . (7.15)

Now, let
Ω(x, l) =

∑

n≤x
(n,l)=1

w(n) .

We apply standard analytic methods similar to those employed by Landau.
From (7.7) we have

Ω(x, l) =
∑

n≤x
(n,l)=1

⎛

⎝ 1
n

∑

d|n
w(d)

⎞

⎠

=
∑

d≤x
(d,l)=1

⎛

⎜
⎜
⎝w(d)

∑

n≤x,d|n
(n,l)=1

1
n

⎞

⎟
⎟
⎠

=
∑

d≤x
(d,l)=1

⎛

⎜
⎜
⎝
w(d)
d

∑

m≤x/d
(m,l)=1

1
m

⎞

⎟
⎟
⎠ ,

and from (7.9) we have

Ω(x, l) =
∑

d≤x
(d,l)=1

w(d)
d

(
φ(l)
l

log
x

d
+ E0(l) +O

(
d

x

))

=
∑

d≤x
(d,l)=1

w(d)
d

φ(l)
l

log
x

d
+ E0(l)

∑

d≤x
(d,l)=1

w(d)
d

+O

⎛

⎜
⎜
⎝

1
x

∑

d≤x
(d,l)=1

w(d)

⎞

⎟
⎟
⎠ .

By (7.15) we can set

7.2 The Cohen-Lenstra Heuristics 161

O

⎛

⎜
⎜
⎝

1
x

∑

d≤x
(d,l)=1

w(d)

⎞

⎟
⎟
⎠ = O

(
log x
x

)

,

so we now have

Ω(x, l) =
φ(l)
l

log x
∑

d≤x
(d,l)=1

w(d)
d

− φ(l)
l

∑

d≤x
(d,l)=1

w(d) log d
d

+ E0(l)

⎛

⎜
⎜
⎝

∑

d≥1
(d,l)=1

w(d)
d

−
∑

d>x
(d,l)=1

w(d)
d

⎞

⎟
⎟
⎠+O

(
log x
x

)

=
φ(l)
l

log x

⎛

⎜
⎜
⎝

∑

d≥1
(d,l)=1

w(d)
d

−
∑

d>x
(d,l)=1

w(d)
d

⎞

⎟
⎟
⎠

− φ(l)
l

⎛

⎜
⎜
⎝

∑

d≥1
(d,l)=1

w(d) log d
d

−
∑

d>x
(d,l)=1

w(d) log d
d

⎞

⎟
⎟
⎠

+ E0(l)

⎛

⎜
⎜
⎝

∑

d≥1
(d,l)=1

w(d)
d

−
∑

d>x
(d,l)=1

w(d)
d

⎞

⎟
⎟
⎠+O

(
log x
x

)

.

Since φ(l)/l and E0(l) are constants depending only on l, we can use (7.13)
and (7.14) to obtain

Ω(x, l) =
φ(l)
l

log x
∑

d≥1
(d,l)=1

w(d)
d

− φ(l)
l

∑

d≥1
(d,l)=1

w(d) log d
d

+ E0(l)
∑

d≥1
(d,l)=1

w(d)
d

+O

(
log x
x

)

.

Put

E2(l) = E0(l)
∑

d≥1
(d,l)=1

w(d)
d

− φ(l)
l

∑

d≥1
(d,l)=1

w(d) log d
d

and

E1(l) =
φ(l)
l

∑

d≥1
(d,l)=1

w(d)
d

.

162 7 The Ideal Class Group

Then we have

Ω(x, l) = E1(l) log x+ E2(l) +O

(
log x
x

)

.

Now, W (x) = Ω(x, 2), so if we set E1 = E1(2) and E2 = E2(2), then

W (x) = E1 log x+ E2 +O

(
log x
x

)

.

Finally, we show that E1 = 1/2C. We have

E1 = E1(2) =
φ(2)

2

∑

d≥1
d odd

w(d)
d

and need to evaluate the sum in this expression. Since w(d)/d is multiplicative
and

∑
w(d)/d converges23, we can apply the Euler product formula, yielding

∞∑

d=1

w(d)
d

=
∏

p

(∞∑

i=0

w(pi)
pi

)

=

(∞∑

i=0

w(2i)
2i

)
⎛

⎜
⎝

∞∑

d=1
d odd

w(d)
d

⎞

⎟
⎠ .

We have24

∑

n≥1

w(n)
ns

= ζ(s+ 1)ζ(s+ 2) · · ·

for s > 0, so
∞∑

d=1

w(d)
d

= ζ(2)ζ(3) · · · = C∞ .

Also, from (7.6) we have
∞∑

i=0

w(2i)
2i

=
∞∑

i=0

1
22i(1− 1/2)(1− 1/22) · · · (1− 1/2i)

.

Applying Euler’s identity (7.5) with a = 1/2 and x = 1/2 gives us
∞∑

i=0

w(2i)
2i

=
1

(1− 1/22)(1 − 1/23)(1− 1/24) · · · =
1

2η∞(2)
.

Hence,
∑

d≥1
d odd

w(d)
d

= 2η∞(2)C∞ (7.16)

and we obtain

E1 =
φ(2)

2

∑

d≥1
d odd

w(d)
d

=
1
2

(2η∞(2)C∞) =
1

2C

as required. ��

7.2 The Cohen-Lenstra Heuristics 163

In order to estimate Pr(Cl∗Δ is cyclic), we write (7.2) as

Pr(Cl∗Δ is cyclic) = lim
x→∞

Φ(x)
W (x)

.

Applying (7.3) and Theorem 7.6 yields

Pr(Cl∗Δ is cyclic) = lim
x→∞

E′
1 log x+ E′

2 +O
(

log x
x

)

E1 log x+ E2 +O
(

log x
x

)

= lim
x→∞

E′
1 + E′

2/ logx+O(1/x)
E1 + E2/ logx+O(1/x)

=
E′

1

E1

=
315 ζ(3)

6π4η∞(2)C∞
.

Approximations of η∞(2) and C∞ are given above, and the function ζ(3) is
easy to approximate efficiently as it converges rapidly using its Euler product
representation. Hence, we obtain

Pr(Cl∗Δ is cyclic) ≈ 0.977575 .

We now summarize some of the main heuristics obtained using this
method.

Conjecture 7.7 (Cohen-Lenstra Heuristics for Imaginary Quadratic Fields25).
Let Cl∗Δ be the odd part of the class group of an imaginary quadratic field.

1. The probability that Cl∗Δ is cyclic is

Pr(Cl∗Δ is cyclic) =
315 ζ(3)

6π4η∞(2)C∞
≈ 0.977575 .

2. The probability that an odd prime p | hΔ is

Pr(p | hΔ) = 1− η∞(p) ≈ 1/p+ 1/p2 .

For example, Pr(3 | hΔ) ≈ 0.43987, Pr(5 | hΔ) ≈ 0.23967, and Pr(7 |
hΔ) ≈ 0.16320, and these are significantly higher than the expected value
of 1/p for divisibility of a random integer by p.

3. The probability that the p-rank of ClΔ is equal to r for an odd prime p is

Pr(p-rank = r) =
η∞(p)

pr2ηr(p)2
.

164 7 The Ideal Class Group

All the numerical evidence produced to date supports the validity of Con-
jecture 7.7. For example, Jacobson, Ramachandran, and Williams26 have com-
puted the class group for each imaginary quadratic field with absolute value
of the discriminant less than 1011 unconditionally (i.e., without having to
assume the extended Riemann hypothesis). The tabulation was extended to
2 ·1011 in Ramachandran’s M.Sc. thesis,27 and in both cases, the results com-
pletely support the Cohen-Lenstra heuristics.28 Some of the computational
techniques used to produce these results will be discussed in Chapter 10.

7.2.2 Real Quadratic Fields

For real quadratic fields, we assign the weight w(n)/n to those Cl∗Δ with
|Cl∗Δ| = n. Dividing by n can be justified by the fact that the ideal classes
of real quadratic fields partition themselves into hΔ distinct cycles of reduced
ideals and that each of these cycles exhibits a group-like structure called the
infrastructure (see §7.4). Now, w(n) is the sum of the weights of all groups
G of order n up to isomorphism, so since we are considering real quadratic
field class groups, we divide w(n) by n because we do not want to count the
n “groups” corresponding to the infrastructures of the n ideal classes.29

As an example, we show how to derive the heuristic result on the proba-
bility that h∗ = l. If the weight w(n)/n is assigned to those Cl∗Δ with h∗ = n,
then we would expect that

Pr(h∗ = l) =
w(l)/l

∑
d≥1

d odd
w(d)/d

.

This is simply the weight assigned to groups with |G∗| = l divided by the sum
of the weights of groups of all odd orders. Applying (7.16) yields

Pr(h∗Δ = l) = C
w(l)
l

.

This gives us Pr(h∗Δ = 1) = 0.754458173 . . . , Pr(h∗Δ = 3) = 0.125743028 . . . ,
and Pr(h∗Δ = 5) = 0.037722908 . . . for the first few values of l.

We also derive the probability that Cl∗Δ is cyclic for real quadratic fields,
because, to the best of our knowledge, this result does not appear elsewhere
in the literature. In this case, we need to compute

Pr(Cl∗Δ is cyclic) =

∑
d≥1

d odd
1/φ(d)d

∑
d≥1

d odd
w(d)/d

. (7.17)

The denominator of (7.17) is evaluated in (7.16), so we only need to evaluate
the numerator. Because φ(d)d is multiplicative and

∑
1/(φ(d)d) converges,30

we can write

7.2 The Cohen-Lenstra Heuristics 165

∞∑

d=1

1
φ(d)d

=
∏

p

(∞∑

i=0

1
φ(pi)pi

)

=

(∞∑

i=0

1
φ(2i)2i

)
⎛

⎜
⎝
∑

d≥1
d odd

1
φ(d)d

⎞

⎟
⎠ . (7.18)

Using the fact that φ(pi) = pi(1 − 1/p) when i ≥ 1, we obtain

∞∑

i=0

1
φ(2i)2i

= 1 +
∞∑

i=1

1
4i(1− 1/2)

= 1 + 2
∞∑

i=1

1
4i

=
5
3

(7.19)

and
∞∑

d=1

1
φ(d)d

=
∏

p

(

1 +
∞∑

i=1

1
p2i(1− 1/p)

)

=
∏

p

(

1 + (1− 1/p)−1
∞∑

i=1

1
p2i

)

=
∏

p

(
p3 − p2 + 1

(p− 1)(p2 − 1)

)

.

(7.20)

Thus, from (7.16), (7.19), and (7.20) we obtain

Pr(Cl∗Δ is cyclic) =
3

10η∞(2)C∞

∏

p

(
p3 − p2 + 1

(p− 1)(p2 − 1)

)

≈ 0.997631 .

We now summarize some of the main heuristics obtained using this
method.

Conjecture 7.8 (Cohen-Lenstra Heuristics for Real Quadratic Fields31). Let
Cl∗Δ be the odd part of the class group of a real quadratic field.

1. The probability that Cl∗Δ is cyclic is

Pr(Cl∗Δ is cyclic) =
3

10η∞(2)C∞

∏

p

(
p3 − p2 + 1

(p− 1)(p2 − 1)

)

≈ 0.997631 .

2. The probability that an odd prime p | hΔ is

Pr(p | hΔ) = 1− η∞(p)
1− 1/p

.

For example, Pr(3 | hΔ) ≈ 0.15981, Pr(5 | hΔ) ≈ 0.049584, and Pr(7 |
hΔ) ≈ 0.023739.

3. The probability that the p-rank of ClΔ is equal to r for an odd prime p is

Pr(p-rank = r) =
η∞(p)

pr(r+1)ηr(p)ηr+1(p)
.

166 7 The Ideal Class Group

4. The probability that h∗Δ = l for an odd integer l is

Pr(h∗Δ = l) = C
w(l)
l

.

For example, Pr(h∗Δ = 1) ≈ 0.754458173, Pr(h∗Δ = 3) ≈ 0.125743028, and
Pr(h∗Δ = 5) ≈ 0.037722908.

5. (Hooley’s Conjecture32) Let hp be the class number of the field Q(
√
p),

where p is a prime congruent to 1 (mod 4) . Then
a) Pr(hp > x) = 1/2x as x→∞,
b)

∑
p≤x hp ∼ x/8.

Using the same heuristic assumptions, Jacobson, Lukes, and Williams33

were able to show that part (a) of the last conjecture holds for all h∗Δ, thereby
providing even further heuristic evidence in support of the hypothesis that
h∗Δ is almost always small.

Conjecture 7.9. The probability that h∗Δ > x is given by

Pr(h∗Δ > x) =
1
2x

+O

(
log x
x2

)

.

This result is derived as follows. Assuming the conjecture on Pr(h∗Δ = l), we
would expect Pr(h∗Δ > x) to be given by

Pr(h∗Δ > x) = C
∑

j>x
j odd

w(j)
j

. (7.21)

Thus, we need to estimate the sum in this expression.

Theorem 7.10. For n and x both odd,

∑

n>x

w(n)
n

=
E1

x
+O

(
log x
x2

)

.

Proof. Consider the sum
∑

n>2r+1
n odd

w(n)
n

. (7.22)

Using the fact
w(2j + 1) = W (2j + 1)−W (2j − 1) ,

we apply partial summation34 to (7.22) and obtain

7.2 The Cohen-Lenstra Heuristics 167

∑

n>2r+1
n odd

w(n)
n

=
∑

n>2r+1
n odd

1
n

(W (n)−W (n− 2))

= −W (2r + 1)
2r + 3

+
∑

n>2r+1
n odd

W (n)
(

1
n
− 1
n+ 2

)

= −W (2r + 1)
2r + 3

+ 2
∑

n>2r+1
n odd

W (n)
n(n+ 2)

.

Now, consider

2
∑

n>2r+1
n odd

W (n)
n(n+ 2)

.

By Theorem 7.6 we have

∑

n>2r+1
n odd

W (n)
n(n+ 2)

= E1

∑

n>2r+1
n odd

logn
n(n+ 2)

+ E2

∑

n>2r+1
n odd

1
n(n+ 2)

+O

(
∑

n>x

logn
n2(n+ 2)

)

.

(7.23)

We know that
∑

n>x

logn
n3

= O

(∫ ∞

x

log t
t3

dt

)

= O

(
log x
x2

)

,

so
∑

n>x

logn
n2(n+ 2)

= O

(
log x
x2

)

. (7.24)

Since ∑

n>2r+1
n odd

1
n(n+ 2)

=
1

2(2r + 3)
,

we can write
∑

n>x
n, x odd

1
n(n+ 2)

=
1
2x

+O

(
1
x2

)

. (7.25)

From
logn
n2

− 2 logn
n(n+ 2)

=
2 logn

n2(n+ 2)

we have by (7.24)

∑

n>x
n, x odd

logn
n2

− 2
∑

n>x
n, x odd

logn
n(n+ 2)

=
∑

n>x
n, x odd

logn
n2(n+ 2)

= O

(
log x
x2

)

.

168 7 The Ideal Class Group

Thus,

2
∑

n>x
n, x odd

logn
n(n+ 2)

=
∑

n>x
n, x odd

logn
n2

+O

(
log x
x2

)

=
∫ ∞

x+1
2

log(2t+ 1)
(2t+ 1)2

dt+O

(
log x
x2

)

,

and by evaluating the integral, we obtain

2
∑

n>x
n, x odd

logn
n(n+ 2)

=
1
2

(
log x+ 2
x+ 2

+
1

x+ 2

)

+O

(
log x
x2

)

. (7.26)

Substituting (7.24), (7.25), and (7.26) into (7.23) yields

2
∑

n>2r+1
n odd

W (n)
n(n+ 2)

= E1
log x+ 2
x+ 2

+
E1

x+ 2
+
E2

x
+O

(
log x
x2

)

. (7.27)

We now apply Theorem 7.6 to

−W (2r + 1)
2r + 3

= −W (x)
x+ 2

and combine the result with (7.27), giving us

∑

n>x
n, x odd

w(n)
n

=
−E1 log x
x+ 2

+
E1 log x+ 2

x+ 2
+

E1

x+ 2
− E2

x+ 2

+
E2

x
+O

(
log x
x2

)

=
E1(log(x + 2)− log x+ 1)

x+ 2
+O

(
log x
x2

)

=
E1

x+ 2
+
E1 log(1 + 2/x)

x+ 2
+O

(
log x
x2

)

.

Finally, since

log
(

1 +
2
x

)

= O

(
1
x

)

,

we have
∑

n>x
n, x odd

w(n)
n

=
E1

x
+O

(
log x
x2

)

and the theorem is proved. ��

7.3 The 2-Sylow Subgroup 169

Proof (of Conjecture 7.9). Combining (7.21) and Theorem 7.10 gives us

C
∑

j>x
j odd

w(j)
j

= C

(
E1

x
+O

(
log x
x2

))

= C
1

2Cx
+O

(
log x
x2

)

=
1
2x

+O

(
log x
x2

)

,

as required. ��
As in the imaginary case, there is a fair amount of numerical evidence

supporting the truth of these conjectures. The most extensive tabulations
to date35 consist of statistics for class groups of real quadratic fields with
Δ < 109 and class numbers for all primes p ≡ 1 (mod 4) and p < 2 · 1011

(computed primarily to provide evidence in support of Hooley’s conjecture). In
both cases, the numerical data completely support the conjectures. However,
the correctness of the class groups computed in these cases is conditional on
the Extended Riemann Hypothesis. As we will see in Chapter 10, it is still an
open problem to construct an unconditionally correct tabulation algorithm
whose efficiency is close to that used in the imaginary case.

7.3 The 2-Sylow Subgroup

In contrast to the odd part of the class group, there is a great deal that can be
proved about the even part. For example, given only the prime factorization
of the discriminant, it is easy to determine whether the class number is even
or odd and to determine the 2-rank of the class group.

Much of what is known about the 2-Sylow subgroup begins with the con-
nection between divisors of the discriminant and ambiguous ideals. Recall
that an ambiguous OΔ-ideal a satisfies a = a. We refer to an ideal equivalence
class [a] satisfying [a]2 = [OΔ] as an ambiguous class and, in the real case,
the cycle of reduced ideals in an ambiguous class as an ambiguous cycle. As
an ambiguous class is equal to its own inverse in ClΔ, it must contain both
a and a. Thus, if an equivalence class contains an ambiguous ideal, then that
class is ambiguous. The converse is not true; if Δ > 0 and N(εΔ) > 0, then
there may exist at most one ambiguous class without an ambiguous ideal.36

Suppose that a = [Q/r, (P +
√
D)/r] is a primitive ambiguous ideal. We

show that every ambiguous ideal corresponds to a divisor of the discriminant
Δ.

Theorem 7.11. If a = [Q/r, (P +
√
D)/r] with N(a) = Q/r is a primitive

ambiguous ideal, then N(a) | Δ.

170 7 The Ideal Class Group

Proof. As a is assumed to be ambiguous, by definition a = a, so both (P +√
D)/r and (P −√D)/r ∈ a. Thus, (P +

√
D)/r + (P −√D)/r = 2P/r ∈ a,

and because Q/r is the least positive integer in a, we have that Q | 2P. Since
Q | D − P 2, we also have Q | 2D − 2P 2, which, together with the fact that
Q | 2P, implies Q | 2D and Q/r | 2D/r. If r = 1, we have Q/r | 2D, and thus,
Q/r | 4D = Δ. If r = 2, Q/r | D = Δ. In either case we have Q/r | Δ. ��

In fact, if Δ is fundamental and has k distinct prime divisors, then there
are precisely 2k ambiguous ideals in OΔ. This follows from the fact that, by
Theorem 4.44, every ambiguous ideal has a unique factorization into prime
ideals. As an ambiguous ideal is equal to its conjugate, every prime ideal
divisor of an ambiguous ideal must be ambiguous itself and thus ramified.
The ramified prime ideals are those whose norms divide Δ, so if Δ has k
distinct prime factors, then there are exactly 2k ambiguous ideals.

To determine the 2-rank of the class group, it suffices to determine how
many independent ambiguous ideal classes are formed from the ambiguous
ideals and the one possible additional ambiguous class. In the imaginary case,
two ambiguous ideals, one reduced and one non-reduced, exist in each am-
biguous class, yielding 2k−1 independent ambiguous classes,37 where k is the
number of distinct prime divisors of Δ. This implies that k − 1 is the 2-rank
of the class group, that 2k−1 divides the class number, and the class number
of an imaginary quadratic field is odd if and only if |Δ| is a prime congruent
to 3 (mod 4) .

In the real case, it is possible to have multiple reduced ambiguous ideals
in the same equivalence class. Barrucand and Cohn38 stated that the 2-rank
of the class group is k − 1 if all odd prime divisors of Δ are congruent to
1 (mod 4) and k−2 otherwise, indicating that either 2k−1 or 2k−2 divides the
class number. As a result,39 we see that the class number of a real quadratic
field Q(

√
D) is odd if and only if D = 2, p, 2q1, or q1q2, where p is any odd

prime and q1 and q2 are primes congruent to 3 (mod 4) .
The connection between ambiguous ideals and divisors of the discriminant

has not been overlooked by those studying the integer factorization problem.
Clearly, being able to produce an ambiguous ideal different from OΔ yields
a non-trivial divisor of Δ, allowing one partially to factor Δ. A variety of
methods have been proposed.40 We briefly mention a few noteworthy examples
here.

Using imaginary quadratic fields, one approach to factor a positive inte-
ger N is to compute the class number of the imaginary quadratic field of
discriminant −N or −4N, after which raising a random element in the class
group to the power of hΔ/2 will likely yield a non-trivial ambiguous ideal.
Shanks’ CLASNO algorithm41 uses this approach and was part of his motiva-
tion for developing the baby-step giant-step method to speed the computation
of class numbers.42 Schoof43 presented an improved version of this approach
and proved that it factors N in time O(N1/5+ε) under the extended Rie-
mann hypothesis (ERH). The algorithm Schoof used to compute hΔ will be

7.3 The 2-Sylow Subgroup 171

described in Chapter 10. Schnorr and Lenstra presented a Monte Carlo al-
gorithm for factoring N, also known as SPAR,44 which attempts to find an
ambiguous ideal by raising a random element in the class group to a highly-
composite exponent consisting of a large number of small odd primes raised
to large powers. If the random element has smooth order (i.e., the largest
prime divisor of the order is small), then the result will be an element whose
order is a power of 2, from which an ambiguous ideal can be found quickly
by repeated squaring. Assuming a certain smoothness conjecture on the class
number, this algorithm has subexponential complexity in logN. Finally, the
index-calculus method was applied to construct ambiguous ideals by Seysen45

and Lenstra and Pomerance.46 The latter algorithm is noteworthy in that it is
the first factoring algorithm for which subexponential running time, namely
O(exp((1+o(1))(logN log logN)1/2)), could be rigorously proved without any
assumptions, including the ERH.

Computing the regulator often allows one to factor the discriminant as
well. If the norm of the fundamental unit is 1, then there is a single ambiguous
ideal not equal to OΔ halfway through the cycle of reduced principal ideals.47

Given the regulator, this ideal can be found efficiently using Shanks’ infra-
structure techniques (see §7.4). Schoof48 described how this idea can be used
to factor N deterministically in time O(N1/5+ε) under the ERH. Shanks49

also developed a factoring algorithm based on finding ambiguous ideals in
real quadratic fields called SQUFOF, which stands for “SQUare FOrm Fac-
torization.” The idea is to search for a reduced principal ideal whose norm is
a square. Then the square root can be computed and will lie in an ambigu-
ous class. Using Shanks’ infrastructure techniques, an ambiguous ideal in that
class can be located rapidly. Gower and Wagstaff50 have recently provided a
detailed description and analysis of SQUFOF. Although it has exponential
complexity, O(N1/4+ε), it is a very simple, elegant algorithm that performs
extremely well for integers between 10 and 18 decimal digits.

The fact that integer factorization reduces to computing the class number
of a quadratic field has not been overlooked by cryptographers, as this can
be interpreted as evidence that the discrete logarithm problem (computing
the order of an element is a special case of the discrete logarithm problem) in
the class group is at least as hard as factoring. One can draw an analogous
conclusion based on the fact that, due to Schoof’s algorithm, integer factor-
ization also reduces to computing the regulator. We will revisit these issues
in Chapter 14, in which we discuss cryptosystems based on quadratic fields.

Although the subgroup of order 2 elements can be determined completely
as described above, the picture is not yet complete for higher powers of 2.
Genus theory51 yields some results; for example, it was known to Gauss52

that the 4-rank is equal to the 2-rank if the ambiguous ideals are all squares
and that there are simple quadratic residuosity conditions on the prime divi-
sors of the discriminant that indicate when this is the case. Other than that,
it is usually conjectured that the 2-Sylow subgroup of Cl2Δ, the subgroup of
squares, behaves like the odd part of the class group and that, in particular,

172 7 The Ideal Class Group

the same heuristic assumptions and results from the Cohen-Lenstra heuris-
tics should hold. Numerical evidence53 does indeed support his hypothesis.
Recently, Fouvry and Klüners54 were able to prove that the predicted proba-
bility for the 2-rank of Cl2Δ (i.e., the 4-rank of ClΔ) to be equal to r is exactly
as predicted by the Cohen-Lenstra heuristics, one of the few rigorously proved
results in this area.

7.4 Infrastructure

Recall from Chapter 5 that each ideal equivalence class of a real quadratic field
contains a finite set of reduced ideals. Shanks55 noticed that the set of reduced
ideals of any ideal class has certain additional group-like structural properties,
which he called the infrastructure. This discovery allowed Shanks to adapt his
baby-step giant-step method to this setting, resulting in significantly improved
algorithms for computing the regulator, testing ideal equivalence classes for
equality, and, therefore, for computing class groups. Most modern methods for
computing the regulator and class number rely explicitly on Shanks’ discovery.
In this section, we describe the infrastructure, how to compute in it, and how
it can be used to compute the regulator.

We will confine our discussion of infrastructure here to the cycle of reduced
ideals in the principal class

C =
{
a1 = (1), a2 = ρ(1), a3 = ρ2(1), . . . , ap = ρp−1(1)

}
,

although the principles presented here also apply to other ideal classes. We
will refer to C as the principal cycle in what follows.

Notice that, by (5.10), we have ai = (θi) for i ≥ 1. Shanks’ first observation
was that the size of the generators θi increases with i, thereby providing a
measure of how far along ai is on the principal cycle. Shanks dubbed this
quantity the distance of an ideal.

Definition 7.12. The distance56 of the reduced principal ideal am is

δ(am) = log θm .

The following notion of the relative distance between two equivalent ideals is
also sometimes useful.

Definition 7.13. Let am and a be two reduced, equivalent ideals such that
am = ρm−1(a) = (θm)a. Then the relative distance from a to am is defined as

δ(am, a) = log θm .

Notice that the first notion of distance is equivalent to the relative distance
of a reduced principal ideal from (1), because

δ(am, (1)) = log θm = δ(am) .

7.4 Infrastructure 173

It can be shown that δ(am) is a strictly increasing function of m and,
recalling (5.33), that δ(ap+1) = log θp+1 = RΔ. Hence, as a1 = ap+1, the
regulator can be viewed as the distance around the entire cycle of reduced
principal ideals. Furthermore, if k ∈ Z and δ(am) = kR+ δ(as) for ideals am

and as, then am = as; in other words, we may work with distances reduced
modulo RΔ.

Example 7.14. Consider the real quadratic field Q(
√

193). Computing the
continued fraction expansion of ω = (1 +

√
193)/2 yields 15 distinct reduced

principal ideals a1 = (1) through a15 = ρ14(1), listed in Table 7.1 along with
their distances. Notice that a16 = a1, so δ(a16) ≈ 15.07631652 is the regulator

Table 7.1. Principal Cycle for Δ = 193

j (Qj , Pj), for aj = [Qj/r, (Pj +
√

D)/r] δ(aj)

1 (2, 1) 0

2 (12, 13) 2.59869817

3 (6, 11) 3.32835583

4 (4, 13) 4.82844171

5 (18, 11) 6.65671165

6 (8, 7) 6.80572746

7 (14, 9) 7.85709282

8 (12, 5) 8.15679754

9 (12, 7) 8.71127845

10 (14, 5) 9.16513386

11 (8, 9) 9.65688343

12 (18, 7) 10.61682945

13 (4, 11) 10.94102199

14 (6, 13) 12.84657298

15 (12, 11) 14.26937782

16 (2, 13) 15.07631652

of Q(
√

193). Notice also that δ(aj) ≈ j in all cases, as one would expect from
the Khintchine-Lévy Theorem (Theorem 3.17) and its consequence (3.41).

As mentioned above, Shanks’ goal in developing the infrastructure was to
be able to apply his baby-step giant-step method for computing the order of
an element in a finite abelian group to the problem of computing the regu-
lator. Consider first the cyclic group generated by an element g. Computing
consecutive powers of g eventually produces all elements in the group be-
cause gord(g) = 1, so the elements in 〈g〉 form a cycle ordered by their base-g

174 7 The Ideal Class Group

discrete logarithms. This discrete logarithm measures how far around the cy-
cle a particular element is, and, clearly, ord(g) measures the “circumference”
of the cycle. In addition, one can compute ord(g) by iteratively computing
gi−1g = gi for i = 1, 2, . . . until gi = 1, in which case i = ord(g). These
“baby steps,” consisting of multiplication by g, walk through the entire cycle,
increasing the distance traversed by 1 each time.

The infrastructure as described so far has properties similar to those of
〈g〉. The elements of C form a cycle and are ordered in terms of distance,
as described above. The regulator, the distance around the entire cycle, is
analogous to ord(g). The ρ operation acts as a baby step, in that iteratively
applying ρ walks through the cycle one step at a time. By the Khintchine-Lévy
Theorem (Theorem 3.17), the distance traversed through each step is close to
1. Walking through the entire cycle using baby steps yields the regulator.

The baby-step giant-step algorithm improves on this method by utilizing
so-called giant steps that allow one to move t steps through the cycle in a single
operation. In the case of 〈g〉, multiplication by gt acts as such a giant step,
as gsgt = gs+t, the element precisely t steps further along in the cycle from
gs. Shanks57 described how to combine baby steps and giant steps in 〈g〉 to
compute ord(g) in time O(

√
H) for an upper bound H of ord(g) as opposed

to O(ord(g)). In order to realize the same improvement for computing the
regulator, Shanks required an analogue of the giant step. In particular, he
needed a giant-step operation that would efficiently compute a reduced ideal
ak equivalent to asat with δ(ak) ≈ δ(as) + δ(at). The second key observation
in developing the infrastructure was a solution to this problem.

Let as and at be reduced principal ideals in C and consider the product
asat. As as and at are both principal, their product must also be principal,
but it may not be reduced. Let c be defined via the ideal product of as and
at as described in §5.4 such that

(S)c = asat .

If c = [Q′
0/r, (P

′
0 +

√
D)/r], then by Theorem 5.9 we can compute a reduced

ideal c′ = [Q′
m/r, (P ′

m +
√
D)/r] equivalent to c by expanding the continued

fraction corresponding to c as in §5.2 until we have 0 < Q′
m−1 <

√
D/2. Since

c′ is reduced and in the principal class, we must have c′ = ak for some k ≥ 1
and, because by (5.10) c′ = (θ′m)c, we have

ak = asat(θ′m/S) .

Thus, we have

θk = θsθt
|θ′m|
S

,

so if we set κ = log |θ′m/S|, we have

δ(ak) = δ(as) + δ(at) + κ . (7.28)

7.4 Infrastructure 175

By (5.38) we know that − logΔ < κ < log 2, so δ(ak) ≈ δ(as) + δ(at), as
required. NUCOMP, as described in §5.4, yields a similar result, the difference
being that in this case, |θ′m|/S = 1/μ and by (5.45) we have (1/2)Δ−3/4 <
1/μ ≤ 1, so (−3/4) logΔ − log 2 < κ ≤ 0. We will use the symbol “∗” to
denote such a giant-step operation, namely the reduced product of two input
ideals computed using either ideal multiplication followed by reduction or
NUCOMP.

The infrastructure of the principal cycle C is depicted in Figure 7.1 as a
circle. The first ideal in the cycle of reduced principal ideals, a1, is at the

a1

a2
a
3 a

4

a2
a3

a4

an+1an
an−1

an−
2

· · ·

· · ·

ρ
(a

i
)

a
i

ρ−
1
(a

i
)

δ(ai+1)

δ(ai)

δ(ai−1)

a
i

a
n
+

2−
i

aj

δ(a
j)

a
l

δ(
a i)

+
δ(

a j
)

δ(an+1)

= RΔ

Fig. 7.1. The infrastructure of the principal class

top of the circle, and the first few baby steps follow it clockwise. The fig-
ure emphasizes that the distances between consecutive ideals are not equal,
but that in most cases, they are all roughly the same, approximately 1 by
the Khintchine-Lévy Theorem. The distance of each ideal measures how far
around the circle it is placed, and the distance around the entire circle, cor-
responding to an+1 = a1, is equal to the regulator RΔ. The symmetry of
C is also illustrated, in that an+1−i = ai+1 for i ≥ 1. Finally, the giant step

176 7 The Ideal Class Group

al = aiaj is also illustrated in the figure. Notice that, as described above, δ(al)
is slightly less than δ(ai) + δ(aj) but that al is nevertheless roughly distance
δ(aj) from ai around the circle, thereby traversing a greater distance than a
baby step.

Despite the similarities of the infrastructure to a cyclic group, it must
be emphasized that the infrastructure as presented here is not a group. For
example, in the cyclic group generated by g, the (i+ j)th element in the
cycle is always equal to the product of the ith and the jth, as gi+j = gigj.
This need not be the case in the infrastructure, as δ(ai ∗ aj) is only close to
δ(ai) + δ(aj). As a result, it can be seen that the giant step operation need
not be associative, so the infrastructure is not a group under this operation.

It is interesting to note that it is nevertheless possible to embed the in-
frastructure into a group. One approach, due to Lenstra,58 embeds the in-
frastructure into the infinite cyclic group R/RΔZ. A more recent approach,
due to Schoof,59 provides a description of the class group and infrastructure
via Arakelov class groups. Although these approaches are certainly of interest
theoretically, for example, in understanding infrastructure in higher-degree
algebraic number fields, it is currently unclear whether they will have any
impact in terms of practical improvements to computations in the infrastruc-
ture.

We now describe Shanks’ algorithm for computing RΔ using baby steps
and giant steps in the infrastructure. First, we compute a list of baby steps
starting with a1 = (1) by iteratively applying the ρ operator, yielding the list
L = {a1, a2, . . . , at, at+1, at+2}.We select t such that δ(at) >

4
√
Δ > δ(at−1). If

during the computation of the list we find an ideal an+1 = [Qn/r, (Pn+
√
D)/r]

with Pn = Pn+1, then by Theorem 5.20 we can immediately set

RΔ = 2δ(an+1) + log
Q0

Qn
.

Similarly, if Qn = Qn+1, then we set

RΔ = 2δ(an+1) + log
Q0ψn+1

Qn
.

In either case, we terminate the algorithm.
The list L must be maintained in such a way that creating it and searching

in it can be done efficiently. Lexicographical ordering on the ideal coefficients,
yielding worst-case search and insert times in O(log n) for lists of size n, is
sufficient for the purposes of complexity analysis. In practice, a hash table
using some portion of the Q coefficients as the key is usually used, as one can
obtain average-case times of O(1) for these operations.

Once the list L has been computed, we put b1 = at and compute giant
steps b2, b3, . . . using bi+1 = bi ∗ b1. Notice that by (7.28),

δ(bi+1)− δ(bi) < δ(b1) + log 2 = δ(at) + log 2 ,

7.4 Infrastructure 177

and Proposition 3.16, taking m = t and i = 2, yields

θt+2 > F3 θt = 2θt .

Thus, log θt+2 > log 2 + log θt and we have

δ(bi+1)− δ(bi) < δ(at+2) .

This implies that the distance traversed by a single giant step with distance
δ(at) will always be less than δ(at+2), the distance encompassed by the baby-
step list, so eventually we will find some giant step bi ∈ L with bi = aj , and
can compute

RΔ = δ(bi)− δ(aj) .

The following algorithm summarizes this method.

Algorithm 7.1: Regulator of a Real Quadratic Order (Shanks)
Input: discriminant Δ > 0 of a real quadratic order
Output: RΔ

/* Compute baby steps*/
1: Set a1 = (1) and compute L = {a1, a2, . . . , at, at+1, at+2} where ai =
ρ(ai−1) and δ(at) >

4
√
Δ > δ(at−1).

2: if an+1 = [Qn/r, (Pn +
√
D)/r] ∈ L such that Pn = Pn+1 then

3: Set RΔ = 2δ(an+1) + log(Q0/Qn).
4: else if an+1 = [Qn/r, (Pn +

√
D)/r] ∈ L such that Qn = Qn+1 then

5: Set RΔ = 2δ(an+1) + log(Q0ψn+1/Qn).
6: else

/* Compute giant steps*/
7: Set b1 = at, b2 = b1 ∗ at, and i = 2.
8: while bi �∈ L do
9: Set i = i+ 1 and compute bi = bi−1 ∗ at.

10: end while
11: Find aj ∈ L such that bi = aj.
12: Set RΔ = δ(bi)− δ(aj).
13: end if

The idea behind this algorithm is depicted in Figure 7.2. As before, C,
the principal cycle, is represented by a circle. The first ideal in the cycle,
a1, is shown at the top of the circle, and the baby steps in L are listed on
the circle clockwise from a1. The first few giant steps, b1, b2, b3, and b4, are
also illustrated. The first giant step b1 is equal to at. Notice that the baby
steps are all fairly close together, whereas the giant steps each move distance
approximately δ(at) around the circle. Finally, the last giant step bi shown in
the figure ends up in the list of baby steps and is equal to aj . This ideal has
made one complete traversal of the circle before landing in L. Thus, the total
distance around the circle traversed by bi is RΔ + δ(aj), and it can be seen
that RΔ = δ(bi)− δ(aj).

178 7 The Ideal Class Group

a1

a2 · · · a
j · · ·

a
t

a
t+

1
a

t+
2

b
1

b 2
b3

b
4

· · ·
b
i

Fig. 7.2. Baby steps and giant steps in the infrastructure of the principal class

Example 7.15. Consider once again the example with Δ = 193. We will now
compute RΔ using the baby-step giant-step method. We have 4

√
Δ ≈ 3.7, so

we take t = 4. The list of baby steps consists of

L = {a1, a2, a3, a4, a5, a6} ,
where throughout this example we use (Q,P) to denote the ideal [Q/r, (P +√
D)/r], with the ideals taken from Table 7.1. We use a4 = (4, 13) with dis-

tance δ(a4) ≈ 4.82844171 for the giant steps. The sequence of giant steps
is

b2 = a4 ∗ a4 = (8, 1) , δ(b2) ≈ 9.65688343 ,
b3 = b2 ∗ a4 = (12, 11) , δ(b3) ≈ 14.26937782 ,
b4 = b3 ∗ a4 = (6, 5) , δ(b4) ≈ 18.40467235 .

We find that b4 ∈ L with b4 = a3, so

RΔ = δ(b4)− δ(a3) ≈ 18.40467235− 3.32835583 = 15.07631652 .

7.4 Infrastructure 179

Shanks’ baby-step giant-step algorithm is a significant improvement for
computing RΔ over simply computing the continued fraction expansion of ω
as described in §3.3, a process which clearly has complexity O(RΔ

1+ε). We
know from (7.1) that Δ1/2+ε is an upper bound on RΔ, so we would expect
that, as in the order computation algorithm, the complexity would be the
square root of this upper bound, namely O(Δ1/4+ε), a considerable savings
over the continued-fraction-based method, especially when Δ is large. We will
now prove that this is in fact the case.

Theorem 7.16. Shanks’ baby-step giant-step algorithm as described above
computes the regulator RΔ of OΔ in time O(Δ1/4+ε).

Proof. First, we know that RΔ > δ(bi−1) because bi is the first giant step to
have traversed the entire cycle and to have distance greater than RΔ. Second,
by (7.28) and because bi−1 = ai−1

t where “*” is the operation used in ai−1
t ,

we know that
δ(bi−1) > (i− 1)δ(at)− (i− 2) logΔ .

Thus, since t is chosen such that δ(at) >
4
√
Δ > δ(at−1), we have

Δ1/2+ε > (i− 1)δ(at)− (i− 2) logΔ > (i− 1) 4
√
Δ− (i− 2) logΔ ,

so i, the number of giant steps, is O(Δ1/4+ε). Also, by the Khintchine-Lévy
Theorem (Theorem 3.17), we have that t, the number of baby steps, is also
O(Δ1/4+ε). It follows that the complexity of determining RΔ by Shanks’
method is O(Δ1/4+ε) as claimed. ��

One shortcoming of this method is that its efficiency depends on the accu-
racy of the upper bound on RΔ used. Ideally, one would like to have roughly
the same number of baby steps and giant steps,60 but a coarse bound such as
Δ1/2 will almost certainly not achieve an optimal balance, especially in cases
where hΔ > 1. With a tighter bound on RΔ, it should be possible to obtain
a runtime of O(RΔ

1/2+ε) as opposed to O(Δ1/4+ε).
Two modifications of the basic baby-step giant-step algorithm presented

above have been proposed that circumvent this problem, both of which have
complexity O(RΔ

1/2Δε). The first of these, which we will sketch briefly here,
is due to Buchmann and Williams.61 The basic idea is to select a small value
of v and use the baby-step giant-step method to test whether 0 < RΔ < v2

using baby steps with distance bounded by v and a giant step of distance v,
requiring roughly v baby steps and v giant steps. If the regulator is not found
in this interval (i.e., RΔ > v2), we double v and test whether v2 < RΔ < (2v)2

by extending the baby-step list to include baby steps with distance bounded
by 2v and using a giant step of distance 2v. This doubling process is repeated
until the regulator is found in some interval (2k−1v)2 < RΔ < (2kv)2. In the
worst case, this algorithm requires 2kv > RΔ

1/2 baby steps and giant steps,
so the overall complexity is O(RΔ

1/2Δε).

180 7 The Ideal Class Group

Buchmann and Vollmer62 presented an improved version of this approach
based on an algorithm due to Terr63 for computing the order of an element g
in a finite abelian group G. Terr’s algorithm relies on the following result64.

Lemma 7.17. Let g ∈ G. Then there exist e ∈ N and f ∈ {0, . . . , e− 1} with
ge(e+1)/2 = gf . If e is chosen minimal with this property, then e(e − 1)/2 <
ord(g) ≤ e(e+ 1)/2 and ord(g) = e(e+ 1)/2− f.
The algorithm consists of finding the minimal value of e for which ge(e+1)/2 =
gf with f ∈ {0, . . . , e − 1} by maintaining a set of baby steps {(gf , f) | 0 ≤
f < e} and a current giant step ge(e+1)/2, beginning with e = 1. In the eth
iteration we add a new baby step ge to the list, compute the next baby step
gge = ge+1, and compute a new giant step ge+1ge(e+1)/2 = g(e+1)(e+2)/2. As
soon as the giant step is equal to one of the elements gf in the baby-step
list, Lemma 7.17 tells us that ord(g) = e(e+ 1)/2 − f. Using the bounds on
ord(g) from Lemma 7.17, Terr proved that this algorithm computes ord(g)
using 2�√2(ord(g)− 1)	 − 2 multiplications in G and �√2(ord(g)− 1)	 − 1
searches in the baby-step list. Given the similarities between the cyclic group
〈g〉 and the infrastructure we have discussed previously, it is clear that a
similar strategy can be employed to compute RΔ. Buchmann and Vollmer
described the details of such an algorithm and proved that it computes RΔ

in time O((logΔ+
√
RΔ)(logΔ)3).

In addition to computing the regulator, the baby-step giant-step method
can be used in the infrastructure to solve the principal ideal problem, namely
computing the distance of a given reduced principal ideal. This is the infra-
structure analogue of the discrete logarithm problem in 〈g〉, for which, given
g, h ∈ 〈g〉, one finds the smallest integer n such that gn = h, if it exists.
Once again, the discrete logarithm n can be viewed as the distance the ele-
ment h is around the cycle of elements in 〈g〉. Thus, using reasoning similar
to that above, it is fairly straightforward to adapt the baby-step giant-step
algorithm for solving the discrete logarithm problem in 〈g〉 to an algorithm
that solves the principal ideal problem with complexity O(Δ1/4+ε), assuming
Δ1/2+ε is an upper bound on the unknown distance.65 More generally, this
idea can be used to decide whether two reduced ideals are equivalent, also
in time O(Δ1/4+ε). It is also possible to generalize the improved baby-step
giant-step algorithms mentioned above to decide equivalence or principality
in time O(δ1/2Δε), where δ is the unknown distance (for principality testing)
or relative distance (for equivalence testing).66

Another application of infrastructure is the ability to efficiently compute
a reduced principal ideal with distance close to a given quantity. Once again,
we draw on the analogy to 〈g〉, in which an element with distance n around
the cycle (i.e., gn) can be computed efficiently using binary exponentiation. A
similar method can be used in the infrastructure. In particular, we can find an
ideal with distance close to n by performing about n/δ(as) multiply-reduction
steps using an ideal as with distance δ(as), as opposed to n/γ continued
fraction steps. A more precise formulation of such an algorithm will be given in

7.4 Infrastructure 181

Chapter 11, along with a description of a method called (f, p)-representations
for approximating distances in such a way that we can ensure that sufficient
precision is used to guarantee that our results are numerically accurate.

Finally, it is also possible, and sometimes useful, to perform a “backward”
giant step. Notice that if al is the first reduced ideal obtained by expanding the
continued fraction of asat, then, because at = (θm) = (N(θt)/θt) = (N(a)/θt),
we have

δ(al) = δ(as)− δ(at) + logN(at) + κ (mod RΔ) .

Thus, multiplying a reduced principal ideal by at and reducing results in a
reduced principal ideal whose distance is roughly δ(at) less than the original
distance, effectively a giant step backwards in the principal cycle.

In Chapters 10, 13, and 15, we will discuss additional algorithms for com-
puting RΔ, including state-of-the-art methods for computing it conditionally
and unconditionally, some of which are refinements of the basic baby-step
giant-step method presented above. A number of these require accurate ap-
proximations of the product hΔRΔ. In the next two chapters, we will present
analytic results related to this quantity and describe how to approximate it
efficiently.

182 Notes and References

Notes and References

1The finiteness of the class group is more generally proved using the geometry of
numbers, in particular Minkowski’s convex body theorem. For details, see [AW04].

2Using a different representation of ideals, more closely aligned with positive
definite quadratic forms, it is possible to define reduced ideals in such a way that
every equivalence class has a unique reduced representative. See [Bue89] or [BV07]
for details.

3Our interest in the ideal class number for the purposes of this work is mainly
its connection to solutions of Pell’s equation. However, early interest was due to the
fact that class number 1 implies that the maximal order of the quadratic field is
a principal ideal domain and, hence, is also a unique factorization domain. Class
numbers larger than 1 provide a measure of sorts as to how far away OΔ is from
having unique factorization. See [Mas79] for a survey and examples illustrating this
phenomenon.

4[Coh93], p. 295.
5[Sie35].
6Gauss’ study of class groups was in the context of equivalence classes of binary

quadratic forms, which are closely related to ideal equivalence classes discussed here.
See [Bue89], [Coh93], and [BV07] for more details on the correspondence between
these two models of the class group.

7[Bak66] and [Sta67].
8[Hee52].
9[Wat04].

10[Arn92], [Wag96], and [ARW98].
11See [Hua82], Ch. 12.
12The extended Riemann hypothesis (ERH) is a hypothesis on the locations of

non-trivial zeros of Dirichlet L-functions. Dirichlet L-functions are defined in Chap-
ter 8, and the ERH is discussed in §9.5.

13See, for example, [MW91b] and [MW91c].
14Again, Gauss’ original conjecture was posed with respect to the related class

number of indefinite binary quadratic forms.
15See [SW88a], [Jac98], and [tRW03] for some examples of computations providing

numerical evidence in support of the Gauss conjecture.
16The Cohen-Lenstra heuristics, mostly for quadratic fields, are presented in

[CL83] and [CL84]. Analogous heuristic results were derived for number fields of
degree ≥ 2 by Cohen and Martinet [CM87].

17See, for example, [SW88a] and [Jac98].
18[Bue99], [JRW06], and [Ram06].
19[Lan36], Eq. (3).
20See, for example, [Hua82], p. 194.
21These results are taken from [CL84].
22[Lan36].
23See [CL84].
24[CL84].
25These are conjectures C1, C2, and C5 from [CL84].
26[JRW06].
27[Ram06].

Notes and References 183

28The tabulations presented in [JRW06] and [Ram06] are the latest in numerous
tabulations of class groups of imaginary quadratic fields, most notably by Buell
[Bue76], [Bue87], and [Bue99].

29Further justification of this is provided in [CL83].
30[Lan36], Eq. (6).
31The first of these conjectures is not listed in [CL84] and is presented here for

the first time. The others are conjectures C7, C9, C11, and C12 from [CL84].
32This was independently conjectured by Hooley [Hoo84].
33[JLW95].
34This process is described in some detail in §8.3
35[Jac98] and [tRW03].
36This result is sketched in [Coh62], pp. 189–190.
37[Coh62], p. 225, Table 1.
38[BC70], Theorem 3.1.
39See [BC70], Corollary 3.1.1.
40See [Bue89], Ch. 10, for a partial survey.
41[Sha71].
42It was also numbers produced from Lehmer’s number sieve the DLS-127, an

earlier version of the DLS-157 (see, for example, [Wil98], pp. 194–195), which in-
spired Shanks’ discovery of the baby-step giant-step technique. In 1968, Lehmer had
produced three values of D for which he wanted the value of hD, the class number of
Q(

√−D). These values were selected in order to minimize the value of hD/
√

D (see
[TW99]), but they were too large for computing hD by the means currently avail-
able. The first time the baby-step giant-step idea was used was in the determination
of hD = 29351 for D = −229565917267 in August 1968.

43[Sch83].
44This algorithm, published in [SL84] by Schnorr and Lenstra, was independently

discovered by Atkin and Rickert, who called it SPAR after Shanks, Pollard, Atkin,
and Rickert.

45[Sey87].
46[LP92].
47[Sch83].
48[Sch83].
49[Bue89] and [GW08].
50[GW08].
51Genus theory partitions the class group into genera according to which congru-

ence classes of integers belong to the ideals in a particular collection of equivalence
classes (a genus). Once again, this theory was developed by Gauss and, as such, is
usually described in the language of binary quadratic forms and when integers can
be represented by forms. See [Coh62], Ch. l3, Sec. 3, and [Bue89], Ch. 4, for brief
introductions to this area.

52See [Bue89], Ch. 9.
53For example, [Bue99] and [JRW06].
54[FK06].
55[Sha72].
56We are using Shanks’ original formulation of distance from [Sha72]. Lenstra

[Len82] used the alternative formulation

184 Notes and References

δ(am) =
1

2
log

∣
∣
∣
∣
θm

θm

∣
∣
∣
∣ ,

which has some computational advantages when ideal conjugation is involved. We
will revisit Lenstra’s distances in Chapter 13 when discussing subexponential index-
calculus algorithms.

57[Sha71].
58[Len82]
59[Sch08]
60In order to further optimize baby-step giant-step methods in the infrastruc-

ture, it is necessary to account for the fact that baby steps are much faster than
giant steps. This idea is applied to the unconditional verification algorithm for RΔ

presented in Chapter 15.
61[BW88b].
62[BV06] and [BV07], Section 10.2.
63[Ter00].
64[BV07], Lemma 9.7.7.
65This procedure is described in much greater detail in §16.1 of Chapter 16. There

we assume that we are given a rational approximation to RΔ.
66[BW88b] and [BV07].

8

The Analytic Class Number Formula

8.1 Dirichlet Characters

In much of what will follow we will be concerned with problems which require
knowledge of bounds on hΔ and RΔ. To this end, we need to develop the
analytic class number formula,1 a remarkable result which relates hΔ, RΔ,
Δ, and a particular value of a function called the Dirichlet L-function.2 In
order to derive this formula we first need to discuss some results concerning
characters.

Definition 8.1. Let G be any group. A complex-valued function f defined on
G is called a character of G if

f(ab) = f(a)f(b)

for all a, b ∈ G and f(c) �= 0 for some c ∈ G.

If f is any character of a group G, it is easy to see by Definition 8.1 that
f must also be a character of any subgroup of G. From this definition it is
possible to prove the following results.

Theorem 8.2. If f is a character of a finite group G with identity element
e, then f(e) = 1, and e is the only element of G such that f(e) = 1 for all
possible characters of G. Furthermore, each functional value f(a) is a root of
unity. In fact, if an = e, then f(a)n = 1.

Theorem 8.3. A finite abelian group of order n has exactly n distinct char-
acters.

If f(a) = 1 for all a ∈ G, we call f the principal character ofG. Every group
has this character. There are a number of other results that can be derived
concerning these general characters, but we will now confine our attention to
characters defined on the group of reduced residue classes modulo m, where
m ∈ Z≥0.

186 8 The Analytic Class Number Formula

Definition 8.4. Let G be the group of reduced residue classes modulo m. Cor-
responding to each character f of G we define an arithmetical function χ = χf

as follows:

χ(n) =

{
f([n]) if (n,m) = 1
0 if (n,m) > 1 .

The function χ is called a Dirichlet character modulo m.

Notice that if χ(n) �= 0, then χ(n) is a root of unity, and we must have
|χ(n)| = 1; also, χ(1) = 1 and χ(−1) = ±1. If χ(−1) = 1, χ is said to be an
even character; if χ(−1) = −1, χ is said to be odd .

The principal character χ0 has the property that

χ0(n) =

{
1 if (n,m) = 1
0 if (n,m) > 1 .

The least positive integer k such that χk(n) = χ0(n) for all n is called the
order of χ. The following result is an easy consequence of the definition of χ.

Theorem 8.5. If χ is a Dirichlet character modulo m, then we have the fol-
lowing:

1. χ(rs) = χ(r)χ(s) for all r, s ∈ Z

2. χ(r +m) = χ(r).

Conversely, if χ obeys (1) and (2) and if χ(n) = 0 for (n,m) > 1, then χ is
one of the Dirichlet characters modulo m.

We will require the following results in the sequel.

Theorem 8.6. If χ is a Dirichlet character modulo m, then

∑

n

χ(n) =

{
φ(m) if χ = χ0

0 if χ �= χ0 ,

where the sum is taken over a complete set of residues modulo m.

Proof. From the definition of χ0, we see that the theorem clearly holds for
χ = χ0. If χ �= χ0, there must exist some a such that χ(a) �= 1 and (a,m) = 1.
Now,

χ(a)
∑

n

χ(n) =
∑

n

χ(an) =
∑

n

χ(n) .

Thus,
(χ(a)− 1)

∑

n

χ(n) = 0

and the result follows. ��

8.1 Dirichlet Characters 187

Corollary 8.6.1. If χ is a non-principal Dirichlet character modulo m and
b ≥ a ≥ 0, then

b∑

n=a

χ(n) =
r∑

n=0

χ(n+ a) ,

where b− a ≡ r (mod m) and r ≥ 0.

Proof. Let b− a = qm+ r. Then by the theorem we have

b∑

n=a

χ(n) =
qm+r+a∑

n=qm+a

χ(n) .

The corollary follows from (2) of Theorem 8.5. ��
Theorem 8.7. If χ is a non-principal Dirichlet character modulo m and
χ(−1) = 1, then we have the following:

1.
	m/2
∑

n=1

χ(n) = 0

2.
m∑

n=1

nχ(n) = 0.

Proof. Since χ(−1) = 1, we get χ(m−n) = χ(n). Also, if 2 | m, then χ(m/2) =
0. Thus, by Theorem 8.6, we can easily deduce part 1. Also,

m∑

n=1

nχ(n) =
	m/2
∑

n=1

nχ(n) +
m−	m/2
−1∑

n=1

(m− n)χ(m− n)

=
	m/2
∑

n=1

nχ(n) +m

	m/2
∑

n=1

χ(n)−
	m/2
∑

n=1

nχ(n)

= 0 ,

by part 1. ��
We use these results to produce a bound on |∑N

n=1 χ(n)|.
Theorem 8.8. If χ is any non-principal character modulo m, then

∣
∣
∣
∣
∣

N∑

n=1

χ(n)

∣
∣
∣
∣
∣
≤ φ(m)

2
.

Proof. By Corollary 8.6.1,
∣
∣
∣
∣
∣

N∑

n=1

χ(n)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

N∑

n=0

χ(n)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

r∑

n=0

χ(n)

∣
∣
∣
∣
∣
≤

r∑

n=0

|χ(n)| ,

188 8 The Analytic Class Number Formula

where r ≡ N (mod m). Suppose χ(−1) = 1. By part 1 of Theorem 8.7, we
get

r∑

n=0

χ(n) =

{∑r
n=0 χ(n) if r ≤ �m/2�

∑r
n=	m/2
+1 χ(n) if r > �m/2� .

Since (n,m) = 1 if and only if (m− n,m) = 1, we must have

r∑

n=0

|χ(n)| ≤ φ(m)
2

.

If χ(−1) = −1, then χ(m− n) = −χ(n) and, therefore,

χ
(m

2
− j

)
= −χ

(m

2
+ j

)

when 2 | m or

χ

(
m− 1

2
− j

)

= −χ
(
m+ 1

2
+ j

)

when 2 � m. It follows that
∑r

n=0 |χ(n)| ≤ φ(m)/2. ��
If a Dirichlet character can assume only real values, we call such a character

a real character. For example, if d ∈ Z, d ≡ 1 (mod 4), or d ≡ 8, 12 (mod 16)
and d is not a perfect square, then it is easy to verify that the Kronecker
symbol satisfies3 (

d

k

)

=
(

d

|d|+ k

)

and (d/k) = χ(k) is a real character modulo |d| with χ(−1) = 1 when d > 0
and χ(−1) = −1 when d < 0. Furthermore, we have the following result.

Theorem 8.9. If d is as defined above, then (d/k) is a non-principal character
modulo |d|.
Proof. Suppose 2n || d and n is odd; we must have n ≥ 3. Put s ≡ 1
(mod d/2n) and s ≡ 5 (mod 2n). We get

(
d

s

)

=
(

2
s

)n

= −1 .

If n is even, there must exist an odd prime q and an odd m such that qm || d.
Let r be a quadratic nonresidue of q. Find s such that

s ≡ 1
(

mod
d

qm

)

and s ≡ r (mod qm) .

We have (
d

s

)

=
(s

d

)
=
(
r

q

)m

= −1 .

��

8.1 Dirichlet Characters 189

We now obtain some results concerning products of Dirichlet characters.

Theorem 8.10. If m1,m2 ∈ Z≥0, (m1,m2) = 1 and χi (i = 1, 2) are Dirich-
let characters modulo mi (i = 1, 2), then χ(n) = χ1(n)χ2(n) is a Dirichlet
character modulo m1m2.

Proof. Clearly part 1 of Theorem 8.5 is satisfied for m = m1m2. Also,

χ(r +m) = χ1(r +m)χ2(r +m) = χ1(r)χ2(r) = χ(r) .

Let (n,m) = g. If g > 1, there exists g1 > 1, where g1 | (m1, n) or g1 | (m2, n),
and χ(n) = χ1(n)χ2(n) = 0. ��

In fact, we can produce a sort of converse of Theorem 8.10.

Theorem 8.11. Let χ be a Dirichlet character modulo m, where m = m1m2

and (m1,m2) = 1. Then there exist unique characters χ1 and χ2 modulo m1

and m2, respectively, such that

χ(n) = χ1(n)χ2(n) .

Furthermore, χi(n) = χ(ni), where we define ni by

ni ≡ n (mod mi) , ni ≡ 1 (mod mj) (i, j = 1, 2; j �= i) .

Proof. Define n1 and n2 as above. Then n ≡ n1n2 (mod m1) and n ≡
n1n2 (mod m2); hence, n ≡ n1n2 (mod m). Now, define

χi(n) = χ(ni) (i = 1, 2) .

Then χi is a Dirichlet character modulo mi (i = 1, 2). We see immediately
that if a ≡ b (mod m), then a ≡ b (mod mi) and χi(a) = χi(b). Also, if
r ≡ s (mod mi), then ri ≡ si (mod m) and

χi(r) = χ(ri) = χ(si) = χi(s) .

Since
χ(n) = χ(n1n2) = χ(n1)χ(n2) = χ1(n)χ2(n) ,

we have expressed χ as a product of χ1 and χ2.
To show uniqueness, suppose that χ = χ′

1χ
′
2 is another decomposition of

χ into characters modulo m′
1 and m′

2, respectively. Then

χi(n) = χ(ni) = χ′
1(ni)χ′

2(ni) = χ′
i(ni) = χ′

i(n) .

��
At this point it is convenient to introduce a particular exponential sum,

called a Gauss sum. We will need some properties of this object in the next
chapter.

190 8 The Analytic Class Number Formula

Definition 8.12. Let χ be a Dirichlet character modulo m and define the
Gauss sum

S(n, χ) =
m∑

j=1

χ(j)e2πijn/m ,

where i2 + 1 = 0.

Theorem 8.13. Let χ, χ1, χ2,m,m1, and m2 be defined as in the previous
theorem. We have

S(n, χ) = χ1(m2)χ2(m1)S(n, χ1)S(n, χ2) .

Proof. By multiplying we get

S(n, χ1)S(n, χ2) =
m1∑

j=1

m2∑

k=1

χ1(j)χ2(k)e2πin(m2j+m1k)/m .

Now, m2j + m1k runs through a complete set of residues modulo m1m2 as
j = 1, 2, . . . ,m1 and k = 1, 2, . . . ,m2. Also,

χ1(m2j +m1k) = χ1(m2j) = χ1(m2)χ1(j) ,
χ2(m2j +m1k) = χ2(m2k) = χ2(m1)χ2(k) ;

thus,
χ1(m2)χ2(m1)S(n, χ1)S(n, χ2) = S(n, χ) .

��
We next show an important factorization property of this Gauss sum. Here,

we will use the symbol z to denote the complex conjugate of z ∈ C. We also
use χ(n) to denote χ(n).

Theorem 8.14. If χ is any Dirichlet character modulo m, then

S(n, χ) = χ(n)S(1, χ) (8.1)

whenever (n,m) = 1.

Proof. Note that χ(n)χ(n) = 1; hence,

χ(nk) = χ(n)χ(k) = χ(k)/χ(n)

or χ(k) = χ(n)χ(nk). It follows that

S(n, χ) =
m∑

k=1

χ(k)e2πikn/m = χ(n)
m∑

k=1

χ(nk)e2πikn/m .

Since (n,m) = 1, nk will run through a complete set of residues modulo m as
k does; thus,

S(n, χ) = χ(n)S(1, χ) .

��

8.2 Primitive Characters 191

8.2 Primitive Characters

We next investigate under what conditions (8.1) can hold when (n,m) > 1.
We note that if (n,m) > 1, then χ(n) = 0; hence, we can only have (8.1)
when S(n, χ) = 0. The question of when we have S(n, χ) �= 0 if (n,m) > 1 is
answered by the following theorem.

Theorem 8.15. Let χ be a Dirichlet character modulo m and suppose that
S(n, χ) �= 0 for some n such that (n,m) > 1. Then there exists a divisor d of
m such that d < m and χ(a) = 1 whenever (a,m) = 1 and a ≡ 1 (mod d).

Proof. For the given n value, let g = (m,n) and d = m/g. We have d | m and
d < m because g > 1. Choose any a such that (a,m) = 1 and a ≡ 1 (mod d).
Since (a,m) = 1, in the sum defining S(n, χ) we can replace k in the exponent
and in χ(k) by ak and get

S(n, χ) =
m∑

k=1

χ(k)e2πikn/m =
m∑

k=1

χ(ak)e2πiakn/m

= χ(a)
∞∑

k=1

χ(k)e2πiakn/m .

Since a ≡ 1 (mod d), d = m/g, and g | n, we have

akn ≡ kn (mod m) .

Thus,
S(n, χ) = χ(a)S(n, χ) .

Since S(n, χ) �= 0, we have χ(a) = 1. ��
This result leads us to consider those characters modulo m for which there

is a divisor d < m satisfying the properties in Theorem 8.15.

Definition 8.16. Let χ be a Dirichlet character modulo m and let d be any
positive divisor of m. The number d is called an induced modulus for χ if we
have

χ(a) = 1 whenever (a,m) = 1 and a ≡ 1 (mod d) .

The smallest induced modulus fχ for χ is called the conductor of χ.

That is to say, d is an induced modulus if the character χ acts like a character
modulo d on the elements, which are relatively prime to m, of the residue
class of integers congruent to 1 modulo d. Notice that m is always an induced
modulus for χ if χ is a Dirichlet character modulo m. If there are no other
induced moduli, we say that the character is primitive.

Definition 8.17. A Dirichlet character modulo m is said to be primitive mod-
ulo m if it has no induced modulus d < m.

192 8 The Analytic Class Number Formula

We now derive some results concerning primitive characters; these will
be of use to us in the next chapter. It is easy to show that 1 is an induced
modulus for χ if and only if χ = χ0. Thus, if m > 1, the principal character
χ0 is not primitive since it has 1 as an induced modulus. Also, in view of
Definitions 8.16 and 8.17 and Theorems 8.14 and 8.15, we have

Theorem 8.18. If χ is a primitive (Dirichlet) character, then

S(n, χ) = χ(n)S(1, χ)

for all n.

We also note that the product of primitive characters is always a primitive
character.

Theorem 8.19. Let χi (i = 1, 2) be primitive characters modulo mi (> 1)
(i = 1, 2), where (m1,m2) = 1. Then χ = χ1χ2 is a primitive character
modulo m = m1m2.

Proof. By Theorems 8.10 and 8.11, χ is certainly a character and its rep-
resentation as the product of χ1χ2 is unique. If χ is not primitive, it must
have an induced modulus d < m such that if (a,m) = 1 and a ≡ 1 (mod d),
then χ(a) = 1. Let di = (d,mi) (i = 1, 2). Now, suppose that we have any
a such that (a,mi) = 1 and a ≡ 1 (mod mi) for i either 1 or 2. As in The-
orem 8.11, we define ai by ai ≡ a (mod mi) and ai ≡ 1 (mod mj) (j �= i).
Then χi(a) = χ(ai). Since ai ≡ a ≡ 1 (mod di) and ai ≡ 1 (mod dj), we
must have ai ≡ 1 (mod d) and χi(a) = 1. It follows that di must be an in-
duced modulus for χi. Since χi is primitive, di can only be mi and d = m, a
contradiction. Thus, χ must be a primitive character modulo m. ��

Another result that must hold for primitive characters is the following.

Theorem 8.20. If χ is a primitive character modulo m, then

|S(n, χ)|2 = m .

Proof. We have

|S(n, χ)|2 = |S(1, χ)|2 = S(1, χ)S(1, χ)

= S(1, χ)
m∑

k=1

χ(k)e−2πik/m

=
m∑

k=1

S(k, χ)e−2πik/m (by Theorem 8.18)

=
m∑

k=1

m∑

r=1

χ(r)e2πikr/me−2πik/m ,

8.2 Primitive Characters 193

|S(n, χ)|2 = |S(1, χ)|2 =
m∑

r=1

χ(r)
m∑

k=1

e2πik(r−1)/m

= mχ(1) = m .

��
Corollary 8.20.1. If χ is a primitive character modulo m, then

S(1, χ)S(1, χ) = χ(−1)m .

Proof. The proof follows easily on observing that

S(1, χ) = χ(−1)S(1, χ) .

��
If we now consider ΔK, the fundamental discriminant of the maximal order

of K, we know by Theorem 8.9 that (ΔK/n) is a Dirichlet character modulo
|ΔK|. We will next show that (ΔK/n) is primitive, but in order to do this, we
need to develop a result concerning the representation of ΔK as a product of
certain funamental discriminants.

If p is an odd prime, define by p∗ the value (−1)(p−1)/2p. Notice that p∗ ≡
1 (mod 4) and therefore satisfies the properties of a fundamental discriminant.
Notice also that so do the numbers 4, 8, and −8. We will call numbers 4,±8,
and p∗ for all primes p the prime discriminants.

Theorem 8.21. A product of distinct relatively prime prime discriminants
is a fundamental discriminant. A fundamental discriminant ΔK is a unique
product of distinct relatively prime prime discriminants.

Proof. Clearly, the product of distinct relatively prime discriminants is a fun-
damental discriminant. We now prove the converse by dividing it into three
cases. We will also assume that ΔK > 0, as the proof for ΔK < 0 is derived
by using similar reasoning.

Case i: ΔK ≡ 1 (mod 4):
In this case, ΔK = p1p2 · · · pk, where the pi are distinct odd primes. Also,
the number of these primes equivalent to 3 (mod 4) must be even because
ΔK ≡ 1 (mod 4). Thus,

ΔK = p∗1p
∗
2 · · · p∗k .

Case ii: ΔK ≡ 12 (mod 16):
In this case,

ΔK = 4p1p2 · · · pk

and the number of primes equivalent to 3 (mod 4) must be odd. Thus,

ΔK = −4p∗1p
∗
2 · · · p∗k .

194 8 The Analytic Class Number Formula

Case iii: ΔK ≡ 8 (mod 16):
Here, ΔK = 8p1p2 · · · pk = ±8p∗1p

∗
2 · · · p∗k.

��
With this result we can now establish that the Kronecker symbol (ΔK/n)

is a primitive character.

Theorem 8.22. If χ(n) = (ΔK/n), then χ(n) is a primitive character modulo
ΔK.

Proof. We first note that if χ(n) = (p∗/n), where p is a prime, then χ is a prim-
itive character. This is because χ is a non-principal character (Theorem 8.9)
and therefore cannot have 1 as an induced modulus. Also, if χ(n) = (−4/n)
is not primitive, then it can only have 2 as an induced modulus. In this case,
χ(3) = χ(1) = 1, but χ(3) = −1; hence, χ is primitive. If χ(n) = (±8/n),
then χ(5) = −1, so neither 2 nor 4 is an induced modulus. If 2 is the induced
modulus, then (±8/n) = 1 for all odd n, which is not so. If 4 is the induced
modulus, then χ(n) = 1 whenever n ≡ 1 (mod 4); however, χ(5) = −1. Thus,
(±8/n) is also a primitive character for either sign. By Theorem 8.21 and the
above remarks, we have

χ(n) =
(
ΔK

n

)

=
k∏

i=1

χi(n) ,

where each of χi(n) is a primitive character. By Theorem 8.19, χ(n) must be
a primitive character modulo ΔK. ��

8.3 The L-Function

Definition 8.23. Let χ be a non-principal character modulo m and let s =
σ+ it (σ, t ∈ R) be a complex variable. We define the Dirichlet L-function by

L(s, χ) =
∞∑

n=1

χ(n)
ns

.

We note that if σ > 1, then L(s, χΔ) is absolutely convergent. We now inves-
tigate the case where σ > 0. In order to do this, we will need some results
which are variations on the theme of partial summation.

Theorem 8.24. Let a, b ∈ Z, a ≤ b, and C(n) and f(n) be real or complex
numbers, where n ∈ Z and a ≤ n ≤ b. If

S(n) =
∑

a≤t≤n

C(t) ,

8.3 The L-Function 195

then
∣
∣
∣
∣
∣

b∑

n=a

C(n)f(n)

∣
∣
∣
∣
∣
≤ max

a≤n≤b
|S(n)|

(

|f(b)|+
b−1∑

t=a

|f(t)− f(t+ 1)|
)

.

Proof. Let S(a− 1) = 0. We have

b∑

n=a

C(n)f(n) =
b∑

n=a

(S(n)− S(n− 1)) f(n)

=
b∑

n=a

S(n)f(n)−
b−1∑

n=a

S(n)f(n+ 1)

=
b−1∑

n=a

(S(n)(f(n)− f(n+ 1))) + S(b)f(b) .

Thus,
∣
∣
∣
∣
∣

b∑

n=a

C(n)f(n)

∣
∣
∣
∣
∣
≤

b−1∑

n=a

|S(n)||f(n)− f(n+ 1)|+ |S(b)f(b)|

≤ max
a≤n≤b

|S(n)|
(

|f(b)|+
b−1∑

t=a

|f(t)− f(t+ 1)|
)

.

��
Corollary 8.24.1. If f(n) is a positive decreasing function of n, then

∣
∣
∣
∣
∣

b∑

n=a

C(n)f(n)

∣
∣
∣
∣
∣
≤ max

a≤n≤b
|S(n)||f(a)| .

We now suppose that x ∈ R and f is a function f : R → R.

Theorem 8.25. Let x ≥ 1 and let f(x) be a function with a continuous
derivative for x ≥ 1. Let S(x) =

∑
1≤n≤xC(n), where C(n) is a real or

complex number for n ∈ Z. Then

∑

1≤n≤x

C(n)f(n) = S(x)f(x) −
∫ x

1

S(t)f ′(t) dt .

Proof. Let k = �x�; then

S(x) =
k∑

n=1

C(n) = S(k) .

Define S(0) = 0 and get

196 8 The Analytic Class Number Formula

∑

1≤n≤x

C(n)f(n) =
k∑

n=1

(S(n)− S(n− 1))f(n)

=
k∑

n=1

S(n)f(n)−
k−1∑

n=1

S(n)f(n+ 1)

=
k−1∑

n=1

(f(n)− f(n+ 1))S(n) + S(k)(f(k)− f(x)) + S(k)f(x)

= −
k−1∑

n=1

S(n)
∫ n+1

n

f ′(t) dt− S(k)
∫ x

k

f ′(t) dt+ S(x)f(x)

= S(x)f(x)−
∫ x

1

S(t)f ′(t) dt .

��
By Corollaries 8.24.1 and 8.6.1 we get

∣
∣
∣
∣
∣

M∑

n=N

χ(n)
1
ns

∣
∣
∣
∣
∣
≤ m

|N |s ; (8.2)

hence, L(s, χ) must converge for all σ > 0. We also can put an upper bound
on L(1, χ), a quantity that will be of much interest later.

Theorem 8.26.
|L(1, χ)| < logm+ 1 .

Proof. By Theorem 8.25 we have

N∑

n=1

χ(n)
1
n

=
S(N)
N

+
∫ N

1

S(x)
x2

dx ,

where

S(x) =
	x
∑

n=1

χ(n) .

Thus, since |S(N)| < m, we get
∣
∣
∣
∣
∣

∞∑

n=1

χ(n)
1
n

∣
∣
∣
∣
∣
=
∣
∣
∣
∣

∫ ∞

1

S(x)
x2

dx

∣
∣
∣
∣ ≤

∫ m

1

|S(x)|
x2

dx+
∫ ∞

m

|S(x)|
x2

dx .

Now, |S(x)| ≤ x for 0 ≤ x ≤ m, and |S(x)| ≤ m always. Hence
∣
∣
∣
∣
∣

∞∑

n=1

χ(n)
1
n

∣
∣
∣
∣
∣
≤
∫ m

1

1
x
dx+m

∫ ∞

m

1
x2

dx = logm+ 1 .

��

8.4 Ideal Density 197

Also, as we shall see below, L(1, χΔ) > 0 when χΔ(n) = (Δ/n).
We should also note the following simple result, which connects the value

of L(1, χΔ) to that of L(1, χΔK
). Here, Δ = f2ΔK, where f is the conductor

of OΔ.

Theorem 8.27.

L(1, χΔ) =
∏

p|f

(

1− (ΔK/p)
p

)

L(1, χΔK
) ,

where the product is taken over all the distinct prime divisors p of f .

Proof. It is easy to see that

∏

p|f

(

1− (ΔK/p)
p

)

=
∑

g|f
μ(g)

(ΔK/g)
g

,

where μ(n) is the Möbius4 μ-function. Thus,

∏

p|f

(

1− (ΔK/p)
p

)

L(1, χΔK
) =

∑

g|f
μ(g)

(ΔK/g)
g

∞∑

n=1

(
ΔK

n

)
1
n

=
∞∑

n=1

∑

g|(f,n)

μ(g)
(
ΔK

g

)
1
g

(
ΔK

n/g

)
1
n/g

=
∞∑

n=1

∑

g|(f,n)

μ(g)
(
ΔK

n

)
1
n
.

Since
∑

r|k μ(r) = 0 unless k = 1, we get

∏

p|f

(

1− (ΔK/p)
p

)

L(1, χΔK
) =

∞∑

n=1
(n,f)=1

(
ΔK

n

)
1
n

=
∞∑

n=1

(
f2ΔK

n

)
1
n

= L(1, χΔ) .

��

8.4 Ideal Density

Since we know that any invertible ideal in OΔ is equivalent to an integral
ideal a of OΔ such that (N(a), f) = 1, we can confine our attention to such
ideals in order to determine hΔ. Our next objective is to estimate the number
of invertible ideals a of OΔ that are such that (N(a), f) = 1 and N(a) < t for
some t > 0. To this end we first define H(C, t).

198 8 The Analytic Class Number Formula

Definition 8.28. Let C be any class of invertible ideals of OΔ. We define
H(C, t) to be the number of distinct invertible ideals a in the ideal class C−1

such that N(a) < t and (N(a), f) = 1. We denote by G(a, t) the number of
distinct principal ideals (α) formed by taking α ∈ a for which 0 < N((α)) < t
and (N((α)), f) = 1.

We now prove the following simple lemma.

Lemma 8.29. If a ∈ C, then

H(C, t) = G(a, tN(a)) .

Proof. Let a ∈ C. If α ∈ a and (f,N((α))) = 1, then (α) = ab, b ∈ C−1 and
N((α)) = N(a)N(b) by Theorems 4.35 and 4.36. Also, every b ∈ C−1 with
(N(b), f) = 1 defines a principal ideal (α) = ab, where (N((α)), f) = 1. Thus,
every b ∈ C−1 with (N(b), f) = 1 and 0 < N(b) < t corresponds uniquely to
a principal ideal (α) ⊆ a with N((α)) ≤ tN(a) and (N((α)), f) = 1. ��

From this lemma, we see that the task of estimating H(C, t) is reduced to
that of estimating G(a, tN(a)) for some a ∈ C. In order to accomplish this we
require some further preliminary results.

Lemma 8.30. Let F (x, y) = Ax2 + Bxy + Cy2, where A,B,C ∈ Z, and put
D = B2−4AC. If (k,A) = 1 and k | D, then there are precisely kφ(k) distinct
pairs (x, y) modulo k such that (F (x, y), k) = 1.

Proof. By the Chinese Remainder Theorem it suffices to show that if pm || k,
where p is any prime, then there are pmφ(pm) pairs (x, y) modulo pm such
that p � F (x, y). We consider two cases.

Case 1: p > 2:
We have

4AF (x, y) = (2Ax+By)2 −Dy2 .

Since p � 2A, we can have p � F (x, y) if and only if p � 2Ax + By. For
each of the possible pm values of y modulo pm there are p− 1 values of x
modulo p such that p � 2Ax+By. Thus, there are pm−1(p− 1) = φ(pm)
values of x modulo pm.

Case 2: p = 2:
In this case, 2 | B and

F (x, y) ≡ Ax+By (mod 2) .

By using the same reasoning as above, we see that there are 2m−1 =
φ(2m) values of x modulo 2m for each of the 2m values of y modulo 2m

such that 2 � F (x, y).

��

8.4 Ideal Density 199

Our argument for estimatingG(a, tN(a)) will depend upon counting lattice
points in certain regions of the plane. We will therefore require a simple lemma
which allows us to do this.5

Lemma 8.31. Let Γ be a continuous arc such that the radius of curvature at
any point of Γ is greater than or equal to r > 0, and suppose that about each
point of Γ , there is drawn a circle of radius r. Let the resulting domain be
denoted by Γ (r) and let |Γ | be the length of the arc Γ . Then the area |Γ (r)|
of the domain Γ (r) satisfies the inequality

|Γ (r)| ≤ 2r|Γ |+ πr2 .

Proof. Let (x, y) and (x′, y′) be two points on Γ and at each of these points
construct a normal to the curve Γ . If the limit as (x′, y′) approaches (x, y),
these normals will intersect at the centre of curvature for the point (x, y) of
Γ . Let the normals intersect in an angle dφ. If R is the radius of curvature,
then

ds = Rdφ ,

and, on the other hand, since R > r, the element of area of Γ (r) is

dA =
2r
2

((R + r) dφ + (R− r) dφ) = 2rR dφ = 2r ds .

If we integrate along Γ and supplement this integral by the areas of the
semicircles at the end points of Γ , we get

|Γ (r)| ≤ 2r|Γ |+ πr2 .

��
If Λ is the lattice given by Λ = {x(0, 1) + y(1, 0) :x, y,∈ Z}, we can prove

the following corollary to Lemma 8.31.

Corollary 8.31.1. Let A be a region bounded by a curve Γ consisting of a
finite number n of arcs Γ1, Γ2, . . . , Γn of curves satisfying the conditions of the
lemma with ri ≥

√
2 (i = 1, 2, . . . , n). Then if M(A) is the number of points

of Λ in A or on Γi, then
M(A) = |A|+ E ,

where |A| is the area of the region A and

E = O(|Γ |) .

Proof. We obtain the number of points of Λ within or on the boundary of A
as follows: Around each point of the curve Γi we draw a circle of radius

√
2.

Since
√

2 is less than or equal to the radius of curvature of any point of Γi,
we get our result on using the lemma. ��

200 8 The Analytic Class Number Formula

Definition 8.32. Define the Dirichlet structure constant κΔ by

κΔ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2π
w
√|Δ| if Δ < 0 (w is definied in §4.3)

2RΔ√
Δ

if Δ > 0 .

We are finally ready to prove the main theorem of this section.

Theorem 8.33. For H(C, t) defined as in Definition 8.28 we have

H(C, t) =
φ(f)κΔt

f
+O(

√
t) .

Proof. For a given invertible a we will investigate the problem of evaluating
G(a, tN(a)). By Theorem 4.24 and Definition 4.33 we may assume that

a = [α1, α2] ,

where α1 = a, α2 = b+ cω, a, b, c ∈ Z, N(a) = ac, and (ac, f) = 1. Let α ∈ a
such that (N((α)), f) = 1. We have

α = α1x+ α2y, α = α1x+ α2y (x, y ∈ Z) ,

and putting A = α1α1, B = α1α2 + α1α2, C = α2α2, we get

N((α)) = |αα| = ∣
∣Ax2 +Bxy + Cy2

∣
∣ .

Thus, to determine G(a, tN(a)) we need to count the number of pairs (x, y) ∈
Z2 such that ∣

∣Ax2 +Bxy + Cy2
∣
∣ ≤ tN(a) (8.3)

and (f,Ax2 +Bxy+Cy2) = 1. However, we notice that if β is an associate of
α, then (α) = (β); thus, we must count these pairs (x, y) in such a way that
no two corresponding values of α are associates.

In the case of Δ > 0, by Theorem 4.26, we need select only those values of
α such that α > 0 and 1 < |α/α| < ε2Δ. Thus, we must append to inequality
(8.3) the further side conditions:

1 ≤
∣
∣
∣
∣
α1x+ α2y

α1x+ α2y

∣
∣
∣
∣ < ε2Δ, α1x+ α2y > 0. (8.4)

Let P denote the set of all pairs (x, y) modulo f such that (Ax2 + Bxy +
Cy2, f) = 1. By Lemma 8.30 we know that

|P| = fφ(f) .

8.4 Ideal Density 201

Let (x0, y0) ∈ P and let N(a, t, x0, y0) denote the number of points (x, y) of Λ
for which both (8.3) and (8.4) hold and x ≡ x0 (mod f) and y ≡ y0 (mod f).
Then

G(a, tN(a)) =
∑

(x,y)∈P
N(a, t, x, y) .

Suppose (x0, y0) ∈ P and x = x0 +uf , y = y0 +vf . Let A be the region in the
u − v plane subject to the constraints of (8.3) and (8.4) for u = (x − x0)/f ,
v = (y − y0)/f . Then the area |A| of A is given by

|A| =
∫ ∫

du dv .

Putting {
ξ = α1x0 + α2y0 + f(α1u+ α2v) ,

ξ = α1x0 + α2y0 + f(α1u+ α2v) ,
(8.5)

we must have

|ξξ| < s (s = tN(a))

1 ≤ |ξ/ξ| < ε2Δ ,

ξ < 0 .

These conditions in the ξ − ξ plane define two sectors (of equal area) of a
hyperbola. We will deal with the sector defined by

ξξ < s , ξ/ξ < ε2Δ , ξ > ξ > 0 .

The Jacobian of the transformation (8.5) is f2(α1α2 − α1α2) = f2N(a)
√
Δ;

thus,
f2
√
ΔN(a)|A|

2
=
∫ ∫

dξ dξ ,

where the integration is over ξξ ≤ s, ξ > 0, and ξ < ξ < ε2Δξ. Thus,

f2
√
ΔN(a)|A|

2
=
∫ √

s

0

dξ

∫ ξ

ξ/ε2Δ

dξ +
∫ √

sεΔ

√
s

dξ

∫ s/ξ

ξ/ε2Δ

dξ = s log εΔ .

It follows that
|A| = 2RΔt

f2
√
Δ
.

Since the radius of curvature of the hyperbolic arcs bounding A increases
with increasing t and the arc length is O(

√
t), we see from Corollary 8.31.1

that
N(a, t, x0, y0) =

2RΔt

f2
√
Δ

+O(
√
t) .

Hence,

202 8 The Analytic Class Number Formula

G(a, tN(a)) =
2φ(f)RΔt

f
√
Δ

+O(
√
t) .

In the case of Δ < 0, the region described by (8.3) is an ellipse and there
are only w associates to every α. Thus, since the area of the ellipse given by
(8.3) is well known6 to be 2πtN(a)/

√|Δ|, we get

G(a, tN(a)) =
2πφ(f)t
wf
√
Δ

+O(
√
t) .

Thus, if C is any invertible ideal class, we have

H(C, t) =
κΔtφ(f)

f
+O(

√
t) .

��
Corollary 8.33.1. If H(t) denotes the number of distinct invertible ideals a
of OΔ such that (N(a), f) = 1 and N(a) ≤ t, then

H(t) =
hΔκΔtφ(f)

f
+O(

√
t) .

Proof. Clearly,
H(t) =

∑

C
H(C, t)

and our result easily follows from the finiteness of hΔ. ��

8.5 The Class Number Formula

Our next step is to establish the analytic class number formula:

κΔhΔ = L(1, χΔ) .

In order to derive this from our previous results, we require a simple lemma.

Lemma 8.34. Let m > 0 and (Δ,m) = 1. The number of distinct solutions
to the congruence

x2 ≡ Δ (mod 4m) (8.6)

is equal to

2
∑

d|m

′
(
Δ

d

)

,

where the sum is taken over the squarefree divisors of m.

8.5 The Class Number Formula 203

Proof. If Δ is odd, then Δ ≡ 1 (mod 4) and (Δ, 4m) = 1. If p is any prime,
the number of solutions of

x2 ≡ Δ (mod pn)

is 2 if p = m = 2, 2(1 + (Δ/p)) if p = 2, m > 2, and 1 + (Δ/p) if p > 2. Thus,
by the Chinese Remainder Theorem the number of solutions of (8.6) is

2
∏

p|m

(

1 +
(
Δ

p

))

= 2
∑

d|m

′
(
Δ

d

)

.

If Δ is even, then 4 | Δ and m is odd. Hence, the congruence

x2 ≡ Δ ≡ 0 (mod 4)

has two solutions; the remaining part of the proof is similar to that of the first
case. ��
Note that the number of solutions of (8.6) which are distinct modulo 2m is

∑

d|m

′
(
Δ

d

)

.

Now, let a be any ideal of OΔ such that N(a) = k and (k, f) = 1. We have
seen by Theorem 4.24 that a will be such an ideal if and only if

a = (m)

[

k0,
l +
√
Δ

2

]

,

where k = m2k0, (k, f) = 1, and 4k0 | Δ− l2. Furthermore, if

b = (m)

[

k0,
r +

√
Δ

2

]

,

then b = a if and only if l ≡ r (mod 2k0). If by ν(k) we denote the number
of distinct ideals of norm k, we see by the previous result that

ν(k) =
∑

m2|k

∑

j|k/m2

′
(
Δ

j

)

.

If k = s2q, where q is squarefree and n is written as n1n
2
2, where n1 is

squarefree, then we can write

∑

n|k

(
Δ

n

)

=
∑

n2
2|k

∑

n1|k/n2
2

′
(
Δ

n1

)

;

204 8 The Analytic Class Number Formula

thus, we have the simple expression for ν(k):

ν(k) =
∑

n|k

(
Δ

n

)

. (8.7)

The total number of distinct invertible ideals a such that N(a) ≤ t is given
by

H(t) =
∑

1≤k≤t
(k,f)=1

ν(k). (8.8)

From this observation and (8.7) we can derive another result concerningH(t).

Theorem 8.35.

lim
t→∞

H(t)
t

=
φ(f)
f

L(1, χΔ) .

Proof. Let M(t; f, n) be the number of positive integers not exceeding t/n
and relatively prime to f . By (8.7) and (8.8) we have

H(t)
t

=
1
t

∑

1≤k≤t
(k,f)=1

∑

n|k

(
Δ

n

)

=
1
t

∑

1≤k≤t

(
Δ

n

) ∑

1≤k≤t
(k,f)=1

n|k

1

=
1
t

∑(
Δ

n

) ∑

l≤k≤t/n
(k,f)=1

1

=
∞∑

n=1

(
Δ

n

)
M(t; f, n)

t
.

Now, M(t; f, n) cannot increase as n increases and

M(t; f, n)
t

≤ 1
n

;

hence, by Corollary 8.24.1 we see that

∞∑

n=1

(
Δ

n

)
M(t; f, n)

t

will converge uniformly in t. For a fixed value of n,

lim
n→∞

M(t; f, n)
t

=
φ(f)
nf

.

8.5 The Class Number Formula 205

Thus,

lim
t→∞

H(t)
t

=
∞∑

n=1

(
Δ

n

)

lim
t→∞

M(t; f, n)
t

=
φ(f)
f

L(1, χΔ) .

��
Corollary 8.35.1.

κΔhΔ = L(1, χΔ) .

Proof. The proof follows easily from the theorem and Corollary 8.33.1. ��
Let Δ = f2ΔK, where ΔK is the fundamental discriminant of K, and put

αK =
∏

p|f

(

1− (ΔK/p)
p

)

.

By Theorem 8.27 and Corollary 8.35.1 we have

hΔ =
αKκΔK

hK

κΔ
,

where hK is the class number of the maximal order [1, ω0] of K. Thus, we can
find hΔ in terms of hK by using

hΔ =
αKfhK

n
, (8.9)

where n is the unit index of εΔ over εK.
We can also use Corollary 8.35.1 to put an upper bound on hΔ. In order

to do this, we will make use of an idea of Slavutskii.7 We begin with the case
of Δ > 0 and let εΔ = (x+ y

√
Δ)/2, where x, y ∈ Z>0. Since

x2 − y2 = ±4 ,

we get
x ≥ y

√
Δ− 4

and

εΔ >
y(
√
Δ− 4 +

√
Δ)

2
>
√
Δ− 4 .

Thus,
RΔ > log

√
Δ− 4. (8.10)

If we put k = φ(Δ)/2 and S(n) =
∑n

r=1(Δ/r), we get

|L(1, χΔ)| =
∣
∣
∣
∣
∣

∞∑

n=1

S(n)− S(n− 1)
n

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∞∑

n=1

S(n)
n(n+ 1)

∣
∣
∣
∣
∣

<

k−1∑

n=1

n

n(n+ 1)
+

∞∑

n=k

k

n(n+ 1)

206 8 The Analytic Class Number Formula

by part 2 of Theorem 8.7. Now,

k−1∑

n=1

n

n(n+ 1)
+ k

∞∑

n=k

1
n(n+ 1)

=
k∑

n=2

1
n

+ k

∞∑

n=k

(
1
n
− 1
n+ 1

)

=
k∑

n=1

1
n
.

Since it is easily established8 that

k∑

n=1

1
n
< log k + γ +

1
k
− 1

2(k + 1)
,

where γ = 0.5772 . . . is Euler’s constant, we get

|L(1, χΔ)| < log(Δ− 1)− log 2 + γ +
φ(Δ) + 4

φ(Δ)(φ(Δ) + 2)
.

If Δ > 60, then φ(Δ) ≥ 16 and (φ(Δ) + 4)/(φ(Δ)(φ(Δ) + 2)) < 0.07. Hence,
in this case

|L(1, χΔ)| < log(Δ− 1)− 0.04 .

Since

hΔ =
L(1, χΔ)
κΔ

=
√
ΔL(1, χΔ)

2RΔ
<

√
Δ log(Δ− 1)− 0.04

log(Δ− 4)

by (8.10), we see that for Δ > 80, we have

hΔ <
√
Δ .

If Δ < 80, it is easy to verify that this inequality also holds by checking each
case.

If Δ < 0, we find, by using the same technique, that |L(1, χΔ)| < log |Δ|.
In this case, we get

hΔ <

√|Δ| log |Δ|
3

.

In summary, we have9

hΔ <

⎧
⎪⎪⎨

⎪⎪⎩

√
Δ when Δ > 0

√|Δ| log |Δ|
3

when Δ < 0 .
(8.11)

Notes and References 207

Notes and References

1This result was proved by Dirichlet in 1839. See [Dir99].
2The material in this chapter is classical. Useful references are [Hua82], [Coh62],

[Apo98], [Ayo63], and [IK04].
3See, for example, the treatment in [Hua82], §12.3.
4See, for example, [Apo98], §2.2.
5See [Ayo63], p. 283.
6See [Coh62], p. 160ff.
7[Sla69].
8This follows easily from the more precise inequality

k∑

n=1

1

n
< log k + γ +

1

2k
− 1

12k2
+

1

120k4
,

which can be found in [Knu97], §1.2.11.2.
9In the case where Δ is positive and a fundamental discriminant, this result was

improved by Le [Le94] to

hK <
√

Δ/2 .

See also [Ram01], p. 248.

9

Some Additional Analytic Results

9.1 More on Gauss Sums

By (8.9), it is clear that we can evaluate hΔ for any order O of discriminant
Δ of K, once we know the unit index n and hK. However, if we refer to Corol-
lary 8.35.1 for determining hK, we notice that the expression for L(1, χΔ) is
an infinite series. The purpose of this section is to derive a closed-form for-
mula for hK. To this end we must first consider some properties of a particular
Gauss sum.

Let G(n, k) be the Gauss sum defined by

G(n, k) =
k−1∑

j=0

e2πij2n/k =
k∑

j=1

e2πij2n/k ,

where (k, n) = 1. We first prove the following simple theorem.

Theorem 9.1. If p is an odd prime, then

G(n, p) =
p∑

j=1

(
j

p

)

e2πijn/p .

Proof. The number of solutions to

x2 ≡ k (mod p)

is 1 + (k/p); hence,
p∑

j=1

e2πij2n/p =
p∑

k=1

(

1 +
(
k

p

))

e2πikn/p

=
p∑

k=1

(
k

p

)

e2πikn/p .

��

210 9 Some Additional Analytic Results

Corollary 9.1.1. G(n, p) = (n/p)G(1, p).

Proof. χ(n) = (n/p) is a real primitive character modulo p. Hence, the result
follows by Theorem 8.18. ��

We now turn our attention to the value of G(1, p).

Corollary 9.1.2.

G(1, p)2 =
(−1
p

)

p .

Proof. This follows from Corollary 8.20.1. ��
By this result we see that G(1, p) = ±√p when p ≡ 1 (mod 4) and

G(1, p) = ±i
√
p when p ≡ −1 (mod 4). The problem of determining the

correct sign is very difficult and was solved by Gauss in 1805 after several
attempts. Since that time, many different proofs of the value of G(1, p) have
appeared.1 In what follows, we give the proof presented by Hua.2 It is conve-
nient for its simplicity and its relative brevity.

Theorem 9.2.

G(1, p) =
{ √

p when p ≡ 1 (mod 4)
i
√
p when p ≡ −1 (mod 4) .

Proof. For a given p, we know that

G(1, p) = η
√
p

when p ≡ 1 (mod 4) or
G(1, p) = ηi

√
p

when p ≡ −1 (mod 4). Here, η = ±1. We can combine both of these formulas
as

1
2
(1 + ip)(1 − i)G(1, p) = η

√
p .

Thus, if we can show that

�
(

1
2
(1 + ip)(1− i)G(1, p)

)

> −√p ,

we have η = 1.
We first note that if f is any function and p is odd, then

(p−1)/2∑

j=1

f(j) +
(p−1)/2∑

j=1

f(p/2− j) =
p−1∑

j=1

f(j/2) .

This is easily seen by evaluating the sum on the right over the even values
of j and then over the odd values of j. Putting f(j) = e2πij2/p, we see that
f(p/2− j) = ipe2πij2/p; hence,

9.1 More on Gauss Sums 211

(1 + ip)
(p−1)/2∑

j=1

e2πij2/p =
p−1∑

j=1

eπij2/2p .

Now,

G(1, p)− 1 =
p−1∑

j=1

e2πij2/p

=
(p−1)/2∑

j=1

e2πij2/p +
(p−1)/2∑

j=1

e2πi(p−j)2/p

= 2
(p−1)/2∑

j=1

e2πij2/p .

Putting

W =
∑

j<
√

p

eπij2/2p, Z =
p−1∑

j>
√

p

eπij2/2p ,

we get

1
2
(1 + ip)(1− i)G(1, p) =

1
2
(1 + ip)(1 − i) + (1 − i)(W + Z) .

Since

�
(

1
2
(1 + ip)(1− i)

)

= 0, 1

and
|�((1− i)Z)| ≤

√
2|Z| ,

we get

�
(

1
2
(1 + ip)(1− i)G(1, p)

)

≥ �((1 − i)W)−√2|Z| .

Also,

�((1− i)W) =
∑

j<
√

p

(

cos
πj2

2p
+ sin

πj2

2p

)

and cosx+ sinx ≥ 1 for 0 < x < π/2; thus, we get

�((1 − i)W) ≥ �√p� > √p/2 .
It remains to bound |Z|. Put

vj = eπij(j+1)/2p , wj =
1

sin(πj/2p)
, q = �√p� .

We have

212 9 Some Additional Analytic Results

(vj − vj−1)wj = 2ieπij2/2p .

Consequently,

2iZ =
p−1∑

j=q+1

(vj − vi−1)wj

and

2|Z| =
∣
∣
∣
∣
∣
∣

p−1∑

j=q+1

vj(wj − wj+1) + vp−1wp − vqwq+1

∣
∣
∣
∣
∣
∣
.

Now, wj decreases for increasing values of j in the range of summation. Also,
since sinx > 2x/π for 0 ≤ x ≤ π/2, we get

2|Z| ≤
⎛

⎝
p−1∑

j=q+1

wj − wj+1

⎞

⎠+ wp + wq+1 = 2wq+1 ≤ 2p
q + 1

< 2
√
p .

Thus,

�
(

1
2
(1 + ip)(1 − i)G(1, p)

)

>

(
1
2
−
√

2
)√

p > −√p .
��

If χ(j) is the Kronecker symbol (m/j), define

S(n,m) = S(n, χ) =
|m|∑

j=1

(
m

j

)

e2πijn/|m| .

Note that if p∗ = (−1)(p−1)/2p, where p is an odd prime, then by Corol-
lary 9.1.1, Theorem 9.2, and the Law of Quadratic Reciprocity, we get

S(n, p∗) =
(
p∗

n

)√
p∗ . (9.1)

Also, by direct calculation, we have

S(n,−4) =
(−4
n

)√−4 , (9.2)

S(n,±8) =
(±8
n

)√±8 . (9.3)

9.2 A Closed Formula for hK

In order to derive the formula for hK, we will need to generalize (9.1). Indeed,
we will show that

S(n,ΔK) =
(
ΔK

n

)√
ΔK .

We require two lemmas.

9.2 A Closed Formula for hK 213

Lemma 9.3. If m1 and m2 are coprime integers and χi(j) = (mi/j) (i =
1, 2), then if one of m1 or m2 is congruent to 1 (mod 4), we have

χ1(|m2|)χ2(|m1|) =
{−1 if m1,m2 < 0

1 otherwise .

Proof. Suppose that m1 ≡ 1 (mod 4); then

χ1(|m2|) =
(
m1

|m2|
)

=
(|m2|
|m1|

)

.

Thus,

χ1(|m2|)χ2(|m1|) =
(
m2|m2|
|m1|

)

= 1

when m2 > 0. If m2 < 0, then

χ1(|m2|)χ2(|m1|) =
(−1
|m1|

)

=
{

1 if m1 > 0
−1 if m1 < 0 .

��
Lemma 9.4. Let m1 and m2 be coprime integers such that at least one is
congruent to 1 (mod 4) and let χi(j) = (mi/j) (i = 1, 2). If χ is a character
mod |m1m2| such that χ(j) = χ1(j)χ2(j) and

S(n,m1) = χ1(n)
√
m1, S(n,m2) = χ2(n)

√
m2 ,

then
S(n,m1m2) = χ(n)

√
m1m2 .

Proof. By Theorem 8.13, we have

S(n,m1m2) = χ1(|m2|)χ2(|m1|)S(n,m1)S(n,m2)
= χ1(|m2|)χ2(|m1|)χ(n)

√
m1
√
m2 .

By Lemma 9.3, we get

S(n,m1m2) = χ(n)
√
m1m2

because3 √m1
√
m2 = −√m1m2 when m1,m2 < 0. ��

We are now able to prove the result mentioned earlier.

Theorem 9.5. If Δ is a fundamental discriminant, then

S(n,Δ) =
(
Δ

n

)√
Δ .

214 9 Some Additional Analytic Results

Proof. The proof follows easily from (9.1), (9.2), (9.3), Theorem 8.21, and the
preceeding lemma. ��

We will now make use of the result of Theorem 9.5 in order to derive our
formula for hK. We will do this by finding a finite sum for L(1, χΔK

). We also
require a simple, preliminary lemma.

Lemma 9.6. If 0 < φ < 2π, then

∞∑

n=1

sinnφ
n

=
1
2
(π − φ)

and ∞∑

n=1

cosnφ
n

= − log
(

2 sin
φ

2

)

.

Proof. It is well known that if |z| ≤ 1 and z �= 1, then

− log(1− z) =
∞∑

n=1

zn

n
,

where the logarithm takes its principal value. If we put z = eiφ, where 0 <
φ < 2π, then arg(1− z) = (φ− π)/2 and |1− z| = 2 sin(φ/2). Hence,

∞∑

n=1

einφ

n
= − log

(

2 sin
φ

2

)

− (φ− π)i
2

.

The lemma follows on equating real and imaginary parts. ��
Theorem 9.7. If ΔK is a fundamental discriminant, then

L(1, χΔK
) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− π

|ΔK|3/2

|ΔK|∑

j=1

(
ΔK

j

)

j when ΔK < 0

− 1√
ΔK

ΔK∑

j=1

(
ΔK

j

)

log sin
πj

ΔK

when ΔK > 0 .

Proof. We have

√
ΔKL(1, χΔK

) =
∞∑

n=1

(
ΔK

n

) √
ΔK

n
=

∞∑

n=1

1
n

|ΔK|∑

j=1

(
ΔK

j

)

e2πijn/|ΔK|

=
|ΔK|∑

j=1

(
ΔK

j

) ∞∑

n=1

e2πijn/|ΔK|

n

9.2 A Closed Formula for hK 215

by Theorem 9.5. If ΔK < 0, then on taking imaginary parts of the above
formula, we get

√
|ΔK|L(1, χΔK

) =
|ΔK|∑

j=1

(
ΔK

j

) ∞∑

n=1

1
n

sin
2πnj
|ΔK|

=
|ΔK|∑

j=1

(
ΔK

j

)(
π

2
− πj

ΔK

)

= − π

|ΔK|
|ΔK|∑

j=1

(
ΔK

j

)

j .

If Δ > 0, by taking real parts we get

√
ΔKL(1, χΔK

) =
|ΔK|∑

j=1

(
ΔK

j

) ∞∑

n=1

1
n

cos
2πnj
ΔK

= −
|ΔK|∑

j=1

(
ΔK

j

)

log
(

2 sin
πj

ΔK

)

= −
ΔK∑

j=1

(
ΔK

j

)

log sin
πj

ΔK

.

��
Putting the results of Theorem 9.7 together with that of Corollary 8.35.1

we get

hK =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− w

2ΔK

|ΔK|∑

j=1

(
ΔK

j

)

j when ΔK < 0 (9.4)

− 1
2RΔK

ΔK∑

j=1

(
ΔK

j

)

log sin
πj

ΔK

when ΔK > 0 . (9.5)

We can modify (9.5) somewhat by writing it as

ε−2hK

K
=

∏
r sin πr

ΔK∏
n sin πn

ΔK

,

where by
∏

r (
∏

n) we mean the product taken over all the r (n) such that
1 ≤ r ≤ ΔK (1 ≤ n ≤ ΔK) and (ΔK/r) = 1 ((ΔK/n) = −1). If we put
ζ = e2πi/ΔK and use part 2 of Theorem 8.7, we get

ε−2hK

K
=

∏
r(1− ζr)

∏
n(1− ζn)

, (9.6)

216 9 Some Additional Analytic Results

another result proved by Dirichlet.
If ΔK = p, where p is a prime and p ≡ 1 (mod 4), it is a simple matter to

deduce from (9.6) that √
p εhp

p =
∏

n

(1− ζn) , (9.7)

where hp is the class number of Q(
√
p). In 1948, Kisilev4 used (9.7) to show

that if εp = (x+ y
√
p)/2 is the fundamental unit of Q(

√
p), then

hpy ≡ xB p−1
2

(mod p) (9.8)

and

x ≡ (−1)(hp−1)/2

(
p− 1

2

)

! (mod p) .

Here, Bn is the nth Bernoulli number defined by

x

ex − 1
=

∞∑

n=0

Bn

n!
xn .

In the course of proving some results concerning ΔK = pm, where p is an odd
prime, Ankeny, Artin, and Chowla5 rediscovered (9.8) for p ≡ 5 (mod 8).
They asked6 if it were always the case that p � y. Later, Mordell7 put this in
the form of a conjecture stating that p � y, and this has since become known
as the Ankeny-Artin-Chowla conjecture.8 In Chapter 10 we will describe how
this conjecture has been verified for all p < 1011. Notice9 that since hp < p,
we can have p | y if and only if p | B(p−1)/2.

When ΔK = 4p, where p ≡ −1 (mod 4), Mordell10 showed that p | y if
and only if p | E(p−3)/2, where En is the Euler number defined by

sec x =
∞∑

n=0

(−1)nEnx
n

n!

or
2ex

e2x + 1
=

∞∑

n=0

En

n!
xn .

All of these results have since been extended to other values of ΔK and to
other moduli by Kisilev and Slavutskii.11

We conclude this section by pointing out that the above results relate to
the Pell equation through the following proposition.

Proposition 9.8. Let εΔ = (x + y
√
Δ)/2 and Δ = (2/r)2D. If (t, u) is the

fundamental solution of the Pell equation (1.7) and p (> 3) is a prime such
that p | Δ, then p | u if and only if p | y.

9.3 The Riemann Zeta-Function 217

Proof. Put α = εΔ, β = εΔ. Then by our results in §1.4 and Table 4.1, we
have

ru = yuv(x, n) ,

where n = N(εΔ) = ±1. Clearly, if p | y, then p | u. Suppose p | u and p � y.
In this case we must have p | uv(x, n), but since d = Δy2, we have p | d. It is
easy to see that we must have p | up(x, n); hence, ω(p) = p and p | v. Since
v ∈ {1, 2, 3, 6}, we can only have p = 3, a contradiction. ��

9.3 The Riemann Zeta-Function

As we have seen in Chapter 8, the Dirichlet L-function L(s, χ) for χ(n) =
(Δ/n) is of great importance for connecting the value of κΔ to that of the
class number hΔ of the order OΔ. In this section we shall derive several other
properties of L(s, χ). These will be of considerable importance when we turn
our attention to deriving computational techniques for evaluating hΔ.

We first define the Riemann zeta-function ζ(s) for s = σ + it, σ > 1 by

ζ(s) =
∞∑

n=1

1
ns

. (9.9)

An important special value for the zeta-function is ζ(2) = π2/6. If σ ≥ σ0 > 1,
then the series on the right of (9.9) converges uniformly and absolutely as

∞∑

n=1

∣
∣
∣
∣

1
nσ+it

∣
∣
∣
∣ =

∞∑

n=1

1
nσ
≤

∞∑

n=1

1
nσ0

< 1 +
∫ ∞

1

du

uσ0
= 1 +

1
σ0 − 1

.

Also, each of the terms in (9.9) is an analytic function of s, and, as a conse-
quence, ζ(s) is analytic for �(s) = σ > 1.

Theorem 9.9. If s = σ + it and σ > 1, then

ζ(s) =
∏

p

(

1− 1
ps

)−1

,

where the product is taken over all rational prime numbers p.

Proof. Let x > 2 and define the function ζx(s) by

ζx(s) =
∏

p≤x

(

1− 1
ps

)−1

.

Now, for any p,
(

1− 1
ps

)−1

=
∞∑

m=0

1
pms

,

218 9 Some Additional Analytic Results

and each of these progressions is absolutely convergent and can therefore be
multiplied term by term. Thus,

ζx(s) =
∏

p≤x

∞∑

m=0

1
pms

=
∞∑

m1=0

∞∑

m2=0

· · ·
∞∑

mj=0

(
1

pm1
1 pm2

2 · · · pmj

j

)s

,

where 2 = p1 < p2 < · · · < pj and p1, p2, . . . , pj are all the primes less than or
equal to x. Also, by the Fundamental Theorem of Arithmetic, all of the terms
in this sum are distinct. Hence, we can write this sum as

∑

n≤x

1
ns

+
∑

n>x

′ 1
ns

,

where the
∑′ represents summation over the integers n > x whose prime

divisors are all less than or equal to x. Now,
∣
∣
∣
∣
∣

∑

n>x

′ 1
ns

∣
∣
∣
∣
∣
≤
∑

n>x

′ 1
nσ

<
∑

n>x

1
nσ
≤ 1
xσ

+
∫ ∞

x

du

uσ

=
1
xσ

+
1

σ − 1
x1−σ ≤ σ

σ − 1
x1−σ .

Hence,

ζx(s) =
∑

n≤x

1
ns

+O

(
σ

σ − 1
x1−σ

)

.

If we let x→∞, then since σ > 1, we get x1−σ → 0; thus,

ζ(s) =
∏

p

(

1− 1
ps

)−1

.

��
We can extend the definition of ζ(s), given earlier for σ > 1 only, to a

function in the region for which σ > 0. We have

ζ(s) =
∞∑

n=1

n−s =
∞∑

n=1

n
(
n−s − (n+ 1)−s

)

= s
∞∑

n=1

n

∫ n+1

n

x−s−1 dx

= s

∫ ∞

1

�x�x−s−1 dx .

9.3 The Riemann Zeta-Function 219

Putting �x� = x− {x}, where {x} represents the fractional part of x, we find
that

ζ(s) =
s

s− 1
− s

∫ ∞

1

{x}x−s−1 dx .

The integral here is absolutely convergent for σ > 0 and converges uniformly
for σ ≥ σ0 > 0; therefore, it represents an analytic function for σ > 0. It
follows that ζ(s) is meromorphic for σ > 0 with only one pole with residue 1
at s = 1.

As suggested by results in Chapter 8, there is a similar result for L(s, χ).
If we define

S(x) =
∑

n≤x

χ(n) ,

then

L(s, χ) =
∞∑

n=1

χ(n)
ns

=
∞∑

n=1

S(n)
[
n−s − (n+ 1)−s

]

= s

∫ ∞

1

S(x)x−s−1 dx

for σ > 1. If χ is not the principal character χ0, we know by Theorem 8.6 that
S(n) is a bounded function of x. Thus, the integral here provides the analytic
continuation of L(s, χ) to that region in the plane for which σ > 0.

We can generalize the Riemann zeta-function, which can be thought of as
being defined over the rational field Q, by defining a similar kind of function
over the field K. We define the Dedekind zeta-function

ζK(s) =
∑

a

1
N(a)s

(σ > 1) ,

where the summation extends over all the (integral) ideals a of K. We can
also write this as

ζK(s) =
∞∑

n=1

ν(n)
ns

,

where ν(n) is the number of distinct ideals of K of norm n. It is of some interest
to examine ζK(s) from the point of view of possible analytic continuation to
σ > 1/2. As in Chapter 8, we let

H(n) =
∑

t≤n

ν(t) .

Since ζK is defined over K, we may assume that K has fundamental discrim-
inant ΔK, and in this case, the conductor is 1. Thus, by Corollary 8.33.1 we
have

H(n) = hκn+O(
√
n) = O(n) ,

220 9 Some Additional Analytic Results

where h = hK, κ = κΔK
. By using the method of partial summation of Theo-

rem 8.24, we see that

N∑

n=1

ν(n)
ns

=
N−1∑

n=1

H(n)
(
n−s − (n+ 1)−s

)
+H(N)N−s .

Since H(N) = O(N), we get

ζk(s) =
∞∑

n=1

ν(n)
ns

=
∞∑

n=1

H(n)
(
n−s − (n+ 1)−s

)
(σ > 1)

= s

∫ ∞

1

H(x)x−s−1 dx

= s

∫ ∞

1

(hκx+ d(x))x−s−1 dx

=
shκ

s− 1
+ s

∫ ∞

1

d(x)x−s−1 dx .

Since d(x) = O(
√
x), the integral here converges for σ > 1/2, which means

that ζK(s) can be extended analytically to σ > 1/2. Thus, ζK(s) is analytic for
σ > 1/2 except for a single pole at s = 1 with residue hκ; that is, lims→1(s−
1)ζK(s) = hκ.

Just as in the case of the Riemann zeta-function, we can express ζK(s) as
an Euler product.

Theorem 9.10. If σ > 1, then

ζK(s) =
∏

p

(

1− 1
N(p)s

)−1

,

where the product is taken over all the prime ideals p of K.

Proof. The argument is almost the same as that used in the proof of Theo-
rem 9.9. We use

ζK,x(s) =
∏

N(p)≤x

(

1− 1
N(p)s

)−1

and the fact, established in §4.4, that the decomposition of an ideal into prime
ideals is unique. ��

We can now use this result to relate ζK(s), ζ(s) and L(s, χ), where χ(n) =
(ΔK/n).

Theorem 9.11. If σ > 1 and χ(n) = (ΔK/n), then

ζK(s) = ζ(s)L(s, χ) .

9.3 The Riemann Zeta-Function 221

Proof. We note that

ζK(s) =
∏

p

∏

p|p

(

1− 1
N(p)s

)−1

.

We now investigate the inner product. There are three cases.

Case 1: (ΔK/p) = 1:
Since (ΔK/p) = 1, we have (p) = pp and N(p) = N(p) = p. Thus,

∏

p|p

(

1− 1
N(p)s

)−1

=
(

1− 1
ps

)−2

=
(

1− 1
ps

)−1 (

1− χ(p)
ps

)−1

.

Case 2: (ΔK/p) = −1:
In this case, (p) = p and N(p) = p2; thus,

∏

p|p

(

1− 1
N(p)2

)−1

=
(

1− 1
p2s

)−1

=
(

1− 1
ps

)−1 (

1− χ(p)
ps

)−1

.

Case 3: (ΔK/p) = 0:
Here we have p = p2 and N(p) = p. Hence,

∏

p|p

(

1− 1
N(p)s

)−1

=
(

1− 1
ps

)−1

=
(

1− 1
ps

)−1 (

1− χ(p)
ps

)−1

.

In each case, we have

∏

p|p

(

1− 1
N(p)s

)−1

=
(

1− 1
ps

)−1 (

1− χ(p)
ps

)−1

;

it follows by Theorem 9.9 that

ζK(s) = ζ(s)
∏

p

(

1− χ(p)
ps

)−1

.

By using the same argument as that employed in the proof of Theorem 9.9,
it can be shown that for any Dirichlet character χ modulo m,

L(s, χ) =
∏

p

(

1− χ(p)
ps

)−1

(σ > 1) . (9.10)

Thus,
ζK(s) = ζ(s)L(s, χ) .

��

222 9 Some Additional Analytic Results

9.4 The Euler Product for L(1, χ)

We have seen in Chapter 8 that the value of L(1, χ) exists. Furthermore, we
know by (9.10) that we can express L(s, χ) as an Euler product as long as
�(s) > 1. In view of the importance of L(1, χ) when χ = (Δ/n), it is of some
interest to prove that (9.10) holds when s = 1. To this end, we first define the
(von Mangoldt) lambda function

Λ(n) =
{

log p if n is a power of a rational prime p
0 otherwise .

We first note that if

n =
k∏

i=1

pαi

1

is the decomposition of n into the powers of distinct primes, then

∑

r|n
Λ(r) =

k∑

i=1

αi log pi = logn . (9.11)

If by π(x) we denote the number of rational primes less than or equal to x,
then by the definition of Λ(n) we have

Ψ(x) :=
∑

r≤x

Λ(r) ≤ π(x) log2 x . (9.12)

To get some idea of the growth rate of Ψ(x), we will require a simple lemma
concerning π(x).

Lemma 9.12. There exists a constant C such that for all x > 1,

π(x) <
Cx

log x
.

Proof. Put θ(x) =
∑

p≤x log p. Now,

θ(x) ≥
∑

√
x<p≤x

log p ≥ (
π(x)− π(

√
x)
)
log
√
x .

Thus, since π(
√
x) <

√
x, we have

π(x) <
2θ(x)
log x

+
√
x . (9.13)

Consider the binomial coefficient N =
(
2n
n

)
. We note that

N < (1 + 1)2n = 22n ;

9.4 The Euler Product for L(1, χ) 223

but since

N =
2n(2n− 1) · · · (n+ 1)

n!
,

we see that N is divisible by all the primes p such that n < p ≤ 2n, as each
of these primes divides the numerator but does not divide the denominator.
Thus,

N ≥
∏

n<p≤2n

p ,

and we get

2n log 2 > logN ≥
∑

n<p≤2n

log p = θ(2n)− θ(n) .

Putting n = 2r−1 and summing from r = 1 to t, we find that

θ
(
2t
)
<

t∑

k=1

2r log 2 < 2t+1 log 2 .

Hence, if n > 1 and t is defined by 2t−1 ≤ n < 2t, then

θ(n) ≤ θ(2t) < 2t+1 log 2 ≤ 4n log 2 .

It follows by (9.13) that

π(n) <
8n log 2
logn

+
√
n ,

and it follows that there must exist a constant C such that

π(x) <
Cx

log x

for all x > 1. ��
In fact, Rosser and Schoenfeld12 have shown by a much deeper analysis that
C can be as small as C = 1.25506. By using Lemma 9.12 and (9.12) we also
have

Ψ(x) = O(x) . (9.14)

We are now able to prove the following result.

Theorem 9.13. If χ(n) is a non-principal Dirichlet character modulo m, then
∣
∣
∣
∣
∣

∑

p

χ(p)
p

∣
∣
∣
∣
∣
,

where the sum is taken over all the rational primes, converges.

224 9 Some Additional Analytic Results

Proof. We consider the sum

∑

n≤x

χ(n) log n
n

=
∑

k1,k2≤x

χ(k1)χ(k2)Λ(k1)
k1k2

by (9.11). Then

∑

n≤x

χ(n) logn
n

=
∑

k1≤x

χ(k1)Λ(k1)
k1

∑

k2≤x/k1

χ(k2)
k2

.

Now,

L(1, χ) =
∑

n≤x

χ(n)
n

+
∑

n>x

χ(n)
n

,

and by (8.2), we have ∣
∣
∣
∣
∣

∑

n>x

χ(n)
n

∣
∣
∣
∣
∣
= O

(
1
x

)

.

Hence,

∑

n≤x

χ(n) logn
n

=
∑

k1≤x

χ(k1)Λ(k1)
k1

(

L(1, χ) +O

(
k1

x

))

and
∣
∣
∣
∣
∣
∣

∑

n≤x

χ(n) logn
n

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
L(1, χ)

∑

k1≤x

χ(k1)Λ(k1)
k1

∣
∣
∣
∣
∣
∣
+O

⎛

⎝x−1
∑

k≤x

Λ(k)

⎞

⎠

=

∣
∣
∣
∣
∣
∣
L(1, χ)

∑

k≤x

χ(k)Λ(k)
k

∣
∣
∣
∣
∣
∣
+O(1)

by (9.14). By using Corollary 8.24.1, we see that as x→∞, the sum
∣
∣
∣
∣
∣
∣

∑

n≤x

χ(n) log n
n

∣
∣
∣
∣
∣
∣

converges; it follows that
∣
∣
∣
∣
∣
∣

∑

k≤x

χ(k)Λ(k)
k

∣
∣
∣
∣
∣
∣
= O(1) .

The contribution of the prime values of k in this sum is

∑

p≤x

χ(p) log p
p

9.4 The Euler Product for L(1, χ) 225

and the contribution of the other terms is easily shown to be O(1); hence, if

S(x) :=
∑

p≤x

χ(p) log p
p

,

then |S(x)| = O(1). Since

∑

p≤x

χ(p)
p

=
∑

2≤n≤x

S(n)− S(n− 1)
logn

,

we have ∣
∣
∣
∣
∣
∣

∑

p≤x

χ(p)
p

∣
∣
∣
∣
∣
∣
= O(1)

by Corollary 8.24.1. ��
If we consider the product P (x), where

P (x) =
∏

p≤x

(

1− χ(p)
p

)−1

,

then by using the infinite series expansion for log(1− x) when x2 < 1, we can
deduce that ∣

∣
∣
∣
∣
∣
logP (x)−

∑

p≤x

χ(p)
p

∣
∣
∣
∣
∣
∣
= O(1) .

Thus, by Theorem 9.13 we have P (x) = O(1); hence,

∏

p

(

1− χ(p)
p

)−1

converges. Since L(s, χ) =
∏

p (1− χ(p)/ps)−1 holds for all s such that �(s) >
1 and L(1, χ) exists, we must have

L(1, χ) =
∏

p

(

1− χ(p)
p

)−1

, (9.15)

where χ is any non-principal Dirichlet character. An important question that
we will consider in the sequel is how to use the Euler product (9.15) to obtain
an approximate value for L(1, χ).

226 9 Some Additional Analytic Results

9.5 Bounds on L(1, χ)

Let χ be a Dirichlet character modulo m of order r. We have already seen in
Theorem 8.26 that

|L(1, χ)| < logm+ 1 ;

however, in view of the importance of L(1, χ) as a component of the analytic
class number formula, it is of some interest to discuss other bounds on this
quantity. As a complete discussion of the material in this section would require
a book in itself, we will only provide a brief description, without proofs, of the
results that will be of interest to us. Some of the results mentioned below are
now considered to be classical and can be found in standard works13 devoted
to analytic number theory. As usual, we will provide citations in the notes at
the end of this chapter for those results that may be more difficult to find.

As an example of a more precise upper bound for L(1, χ) when χ is a prim-
itive character, we mention the following result of Granville and Soundarara-
jan.14

Theorem 9.14. Define c2 = 2 − 2/
√
e = 0.786938 . . . , c3 = 4/3 − 1/e2/3 =

0.819916 . . . , c4 = 0.8296539741 . . . , and ck = c∞ = 34/35 for k ≥ 5. For any
primitive Dirichlet character χ (mod m) of order k, we have

|L(1, χ)| ≤

⎧
⎪⎪⎨

⎪⎪⎩

1
4
(ck + o(1)) logm if m is cube-free, or χ has order mo(1)

1
3
(ck + o(1)) logm otherwise .

However, this powerful result is unfortunately not effective. In the case of
χ = χΔ = (Δ/n), Hua15 showed that

L(1, χΔ) <
1
2

log |Δ|+ 1 . (9.16)

In the case when Δ (> 0) is a fundamental discriminant, this has been im-
proved and generalized by Louboutin16 to

|L(1, χ)| ≤ 1
2
(log fχ + κ0) , (9.17)

where χ is any primitive even character of conductor fχ (> 1) and

κ0 = 2 + γ − log(4π) = 0.046191

In certain cases, this inequality can be improved; for example,
∣
∣
∣
∣

(

1− χ(2)
2

)

L(1, χ)
∣
∣
∣
∣ <

1
4
(log fχ + 5)

9.5 Bounds on L(1, χ) 227

when Δ is a positive fundamental discriminant. Ramaré17 has improved (9.17)
to

|L(1, χ)| < 1
2

log fχ (9.18)

when χ is a primitive, even character. Thus, since hΔ ≥ 1, we see by Corol-
lary 8.35.1 and (9.18) that

RK <

√
ΔK

4
logΔK .

To obtain a lower bound on |L(1, χ)| is much more problematical. In the
case of χ = χΔ, where Δ is a fundamental discriminant, it is known18 that if
L(s, χ) has no real zero in the interval

(

1− c1
log |Δ| , 1

)

(9.19)

for some constant c1, then

L(1, χ) >
c2

log |Δ| ,

where the constant c2 depends on c1 only. It is also known that L(s, χ) can
have at most one zero in the interval (9.19). Furthermore,19 for some suitable
constant c, there is at most one real primitive χ to a modulus m ≤ v for which
L(s, χ) has a real zero β satisfying

β > 1− c

log v
.

Such a zero β is called a Landau-Siegel zero. It is not known whether any such
zero exists, but it is strongly believed that none does. However, even if such
a zero does exist, Siegel20 was able to show that for any ε > 0, we must have

L(1, χΔ) >
c1(ε)
|Δ|ε , (9.20)

where c1(ε) is an ineffective (unfortunately) constant depending on ε. From
this, we see that if Δ is a fundamental discriminant and ε > 0, there exists
some (ineffective) constant c2(ε) such that

hΔ > c2(ε)|Δ|1/2−ε for Δ < 0 (9.21)

and
hΔRΔ > c2(ε)Δ1/2−ε for Δ > 0 . (9.22)

To render (9.20) effective, we have to deal with the possibility of the existence
of a Landau-Siegel zero; this was done by Tatuzawa,21 who showed that if
0 < ε < 1/2 and |Δ| ≥ max{e1/ε, e11.2}, then

228 9 Some Additional Analytic Results

L(1, χ) >
0.655ε
|Δ|ε

with one possible exception. This result has been improved by Hoffstein.22

It seems, then, that to obtain an effective lower bound on L(1, χ), it is
important to know something about the location of the zeros of L(s, χ). In
the case of ζ(s), it was proved by Riemann that if

ξ(s) =
1
2
s(s− 1)π−s/2Γ

(s

2

)
ζ(s) ,

then ξ(s) is an entire function and we get the functional equation

ξ(s) = ξ(1 − s) .
From this result we can derive some important characteristics of the zeros of
ζ(s).

Theorem 9.15. The zeros of ξ(s), if any, are all located in the strip 0 ≤ σ ≤ 1
and lie symmetrically about the lines t = 0 and σ = 1/2. The zeros of ζ(s)
are identical in position and multiplicity with those of ξ(s), except that ζ(s)
has a simple zero at the points s = −2,−4,−6,

The strip 0 ≤ σ ≤ 1 is called the critical strip and the line σ = 1/2 is called
the critical line. The points s = −2,−4,−6, . . . are called the trivial zeros of
ζ(s). In 1860, Riemann conjectured that the only non-trivial zeros of ζ(s) lie
on the critical line. Today this conjecture is called the Riemann hypothesis
(RH). The RH is of great importance in number theory, and as a consequence
of this importance, there have been many attempts to prove it. In spite of
the expense of a great deal of effort and ingenuity, it still remains unproved23;
however, several attempts have been made to verify the RH numerically for
certain ranges of t in the critical strip. In fact, the first 1013 zeros have been
found by Gourdon,24 and without exception they are on the critical line.
Odlyzko25 examined the neighbourhood of the 1022th zero of ζ(s). He found
10 billion zeros in this region, all of which are on the critical line. Although
such extensive computations do not prove the RH, they are strongly suggestive
of its truth.

For the remainder of this section we will assume that χ = χΔ and Δ is a
fundamental discriminant. We also have a functional equation for L(s, χ).

Theorem 9.16. Let χ be a primitive non-principal character modulo m. Let

a =
{

0 if χ(−1) = 1
1 if χ(−1) = −1 .

Then
ξ(s, χ) = ξ(1 − s, χ) ,

where

ξ(s, χ) =
(
π

|Δ|
)

−(s+a)/2Γ

(
s+ a

2

)

L(s, χ) .

9.5 Bounds on L(1, χ) 229

Since L(s, χ) �= 0 for σ > 1 (see (9.10)), we see that ξ(s, χ) �= 0 and
ξ(s, χ) �= 0 for σ > 1. By the functional equation, ξ(s, χ) �= 0 for σ < 0, so
that all the zeros of ξ(s, χ) must lie in the critical strip. The only zeros L(s, χ)
that lie outside the critical strip are at s = 0,−2,−4,−6, . . . when χ(−1) = 1
and at s = −1,−3,−5, . . . when χ(−1) = −1. These are simple zeros and are
called the trivial zeros of L(s, χ). Since the L-function behaves, with respect
to its zeros, in a manner rather similar to that of the zeta-function, it has
been conjectured that all of the non-trivial zeros of L(s, χ) lie on the critical
line. This is called the extended Riemann hypothesis (ERH). Its status, like
that of the RH, is unproved; however, numerical trials of the ERH have always
confirmed its validity. Extensive numerical testing of the ERH was done by
Rumely.26

Assuming the ERH, Littlewood27 showed that as |Δ| goes to infinity:

(1 + o(1))(c1 log log |Δ|)−1 < L(1, χ) < (1 + o(1))c2 log log |Δ| , (9.23)

where c2 = 2eγ and c1 = c2/ζ(2). He also showed (again under the ERH) that
there are infinitely many values of Δ such that

L(1, χ) ≥ (1 + o(1))c2
2

log log |Δ| (9.24)

and

L(1, χ) ≤ 1 + o(1)
(c1/2) log log |Δ| ; (9.25)

later, Chowla28 established (9.25) unconditionally. Shanks29 improved (9.23)
slightly by noticing that the constants c1 and c2 can be changed to c2 = reγ

and c1 = 4(r + 1)eγ/π2. He also carried out some numerical calculations
to determine whether (9.23) is ever violated. Such computations have been
extended by later investigations,30 and in every case, no violation of (9.23)
has ever been detected.

Nevertheless, while such numerical experiments may constitute some sup-
port for (9.23), we still seem to be a very long way from a proof. Other
researchers31 have attempted to use probabilistic methods to examine the dis-
tribution of the values of Δ which produce what are called the extreme values
of L(1, χ) (i.e., those values of L(1, χ) for which either (9.24) or (9.25) holds).
As a result of their research into this matter, Montgomery and Vaughn32 made
the following conjecture.

Conjecture 9.17. The proportion P of fundamental discriminants |Δ| ≤ x with
L(1, χ) ≥ (c2/2) log log |Δ| is

exp(−C log x/ log log x) < P < exp(−c log x/ log log x)

for appropriate finite constants 0 < c < C.

230 9 Some Additional Analytic Results

Similar estimates apply to the proporition of fundamental discriminants
|Δ| ≤ x with L(1, χ) ≤ 2/c1 log log |Δ|. A stronger version of this conjecture
was recently proved by Granville and Soundararajan.33 Thus, it would appear
that the values of Δ which produce extreme values for L(1, χ) tend to be very
sparsely distributed as |Δ| becomes large. Indeed, Granville and Soundararjan
speculated that possibly

max
|Δ|<x

L(1, χ) =
c2
2

(log log x+ log log log x+ C1 + o(1)) ,

where C1 is some constant.
If we bear in mind the above results and take into additional consideration

the Cohen-Lenstra heuristics mentioned in Chapter 7, it certainly appears that
for any ε, there must exist families of positive fundamental discriminants {Dk}
for which

R(Dk)� D
1/2−ε
k .

However, as mentioned in §6.5, the best result that we can prove uncondition-
ally is

R(Dk) � (logDk)3 .

This enormous difference between what must be the case and what can be
unconditionally established is most remarkable and is indicative of a significant
gap in our knowledge concerning the growth of the regulator of a quadratic
field. Indeed, because the value of hK tends to be small, we would expect that

RK � Δ
1/2−ε
K

(9.26)

for a large proportion of all the real quadratic fields. We certainly observe this
in calculations, but as mentioned earlier, we are far from being able to prove
it.

The situation in the case of Δ < 0 is somewhat better. Of course, in this
case we are not concerned about the growth of the regulator but rather that
of the class number. As early as 1801, Gauss34 conjectured that the number
of negative discriminants Δ < 0 which have a given class number hK is finite.
By Siegel’s result (9.21) we get

hK � |Δ|1/2−ε , (9.27)

but the implied constant is not computable. Thus, we cannot use (9.27) to
find all imaginary quadratic fields with a fixed class number. For hK = 1
and hK = 2, this problem was solved by Heegner, Stark, and Baker.35 Later,
Gross and Zagier,36 building on previous work of Goldfeld37 which made use
of L-functions of elliptic curves, showed that

hK �
∏

p|Δ

(

1− 2√
p

)

log |Δ| ,

9.5 Bounds on L(1, χ) 231

where the implied constant is effectively computable. Indeed, Oesterlé38

showed that

hK >
1

7000
log |Δ|

∏

p|Δ
p�=|Δ|

(

1− �2
√
p�

p+ 1

)

.

This allowed for the determination39 of all the imaginary quadratic fields for
which hK ≤ 100.

Considering the Cohen-Lenstra heuristics, it is easy to understand that
the equivalent problem of obtaining lower bounds on class numbers of K for
the case of Δ > 0 is much more complicated. For example, although we
strongly believe it, we still do not know whether there exists an infinitude
of fundamental discriminants Δ (> 0) for which hK = 1. In certain cases,
however, we can say something. For example, if {Dk} is a sleeper, then because
the regulator is bounded by O(logDk), we see by (9.21) that we must have
limk→∞ hK = ∞. If we make use of Tatazawa’s result, we can even get effective
lower bounds on hK with one possible exception.40 Getting rid of this exception
is very difficult. In 1976, Chowla41 conjectured that if Δ = M2 + 1 is a
fundamental discriminant and hK = 1, thenM ≤ 26. It was only quite recently
that Biró42 was able to prove this unconditionally. These techniques have
also been successfully applied by him43 to the case of Δ = M2 + 4 (Yokoi’s
conjecture) and by Biró and Granville44 to Δ = M2 + 4M .

As their regulators are also bounded, we can also consider similar problems
for creepers. In this case, the situation is, somewhat surprisingly, less difficult.
In the case of the Shanks sequence

Sn = (2n + 3)2 − 8 ,

it is very easy to show45 that hK = 1 if and only if n ∈ {1, 2, 3, 4, 5}. This
is because of the remarkable property that (Sn/127) = 1 for any n ∈ Z≥0.
By results in §4.4 this means that the ideal (127) splits in OK as (127) = pp
and N(p) = 127. If hK = 1, there can only be one cycle of reduced ideals
in OK; hence, if 127 <

√
Sn/2, we must find 127 as a value of Qi/2 in the

simple continued fraction (SCF) expansion of (
√
Sn +1)/2. However, we have

already seen in §6.4 that these values of Qi/2 are all powers of 2. Thus, hK = 1
if
√
Sn/2 < 127 or Sn < 64516 or n ≤ 7. By evaluating hK for n = 1, 2, . . . , 7,

the result is easily established. This technique has been extended to other
creepers.46

There is even a more general L-function, called the Hecke L-function. This
makes use of a more general character χ than a Dirichlet character, called a
Hecke character . This character can be defined on the class group of K and
we can define the Hecke L-function as

L(s, χ,K) =
∑

a

χ(a)
N(a)s

,

232 9 Some Additional Analytic Results

where, as before, s is a complex variable and the sum is taken over all the
integral ideals of OK. When χ = χ0, a special Hecke character for which
χ0(a) = 1, we have

L(s, χ0,K) = ζK(s) .

The Hecke L-function satisfies a functional equation similar to that in Theo-
rem 9.16, and the RH for Hecke L-functions asserts that the real part of its
non-trivial zeros must be 1/2. Under this hypothesis, Bach47 was able to show
that the class group of OK is generated by classes which contain the prime
ideals p of OK such that

N(p) < 6 log2 |ΔK| . (9.28)

Furthermore, the class group of any maximal or non-maximal order O can be
generated by classes which contain the prime ideals p of O such that

N(p) < 12 log2 |Δ| .
There remains the problem of estimating the value of L(1, χ). In 1903,

Lerch48 converted the L(1, χ) series when Δ > 0 into the form

L(1, χ) = Δ−1/2
∞∑

n=1

(
Δ

n

)

E(An2) +
∞∑

n=1

(
Δ

n

)

n−1 erfc(n
√
A) , (9.29)

where

A =
π

Δ
, E(x) =

∫ ∞

x

e−tt−1 dt, erfc(x) =
2√
π

∫ ∞

x

e−t2 dt .

At first glance, this expression appears to be far more formidable than the
simpler formula in §8.3, but we can discuss the convergence of this series much
more easily and we do not need any RHs. We point out that

0 < erfc(x) <
e−x2

x
√
π
, 0 < E(x) <

e−x

x
;

hence, if

T (m) = Δ−1/2
∞∑

n=m+1

(
Δ

n

)

E(An2) +
∞∑

n=m+1

(
Δ

n

)

n−1 erfc(n
√
A) ,

then we can show that

|T (m)| < Δ3/2e−Am2

π2m3
.

Since the value of T (m) becomes small very quickly, we do not have to go
very far in summing (9.29) until we get a good estimate for L(1, χ). Note

9.5 Bounds on L(1, χ) 233

that each of the transcendental functions E(x) and erfc(x) can be evaluated
to good accuracy by using power series expansions in no more than O(logΔ)
terms (in practice, Chebychev approximations are more efficient). Indeed, if
m = O(Δ1/2), this is sufficient accuracy to find the value of hK (given RK)
unambiguously. This result was used49 to find all the values of hK for K =
Q(
√
D0) and D0 < 1.5 × 105. There is also a similar analysis that can be

performed for Δ < 0.
Recently, Louboutin50 devised a version of this technique which dispenses

with the need to compute approximations to the E and erfc functions. As
with the previous technique, this requires O(Δ1/2+ε) operations to compute
hK, but it is much more efficient. This procedure and that of simply counting
classes are the fastest non-conditional methods known for evaluating hΔ; the
only ways of doing any better involve invoking the ERH.

If we refer back to (9.15), it seems reasonable to attempt to approximate
L(1, χ) by using

B(x, χ) =
∏

p<x

(

1− χ(p)
p

)−1

and finding some x such that B(x, χ) is as close as we want to L(1, χ). If we
put

B(x, χ) =
∏

p>x

(

1− χ(p)
p

)−1

,

then under the ERH it is possible to show that

| logB(x, χ)| = O

(
log |Δ|x√

x

)

. (9.30)

As Bach51 has pointed out, however, it is possible to improve on this result.
To estimate B(x, χ), we introduce weights ai defined by

ai =
(x+ i) log(x+ i)

∑x−1
i=0 (x+ i) log(x + i)

(i = 0, 1, 2, . . . , x− 1) .

We note that
x−1∑

i=0

ai = 1 .

Bach showed that under the ERH,
∣
∣
∣
∣
∣
logL(1, χ)−

x−1∑

i=0

ai logB(x+ i, χ)

∣
∣
∣
∣
∣
<
A log |Δ|+ B√

x log x
(9.31)

for constants A and B, and he provided a table of values for such constants.
Notice that this result is better than (9.30). It has also been found to be of
great use in determining values of hK, but it must be borne in mind that these
values of hK are contingent on the truth of the ERH.

234 Notes and References

Notes and References

1See, for example, [Lan50], pp. 158–171.
2[Hua82], pp. 165–166.
3For a historical perspective on this observation, see [Mar07].
4[Kis48].
5[AAC52].
6[AAC52], p. 480.
7[Mor60].
8In fact, it was Mordell [Mor60] who put Ankeny, Artin, and Chowla’s result

in the form (9.8). He also noted that this had been proved by them only for p ≡
5 (mod 8). Later, Ankeny and Chowla [AC62] established it for all p ≡ 1 (mod 4),
but, as we pointed out earlier, this had been done previously by Kisilev.

9This was noticed by Ankeny and Chowla [AC60] and earlier by Carlitz [Car53]
and Kisilev [Kis48].

10[Mor61].
11See [Sla69] and, in particular, [Sla65] for references. In fact, in [Sla65] it is

mentioned that Kisilev anticipated Mordell’s result for p ≡ −1 (mod 4).
12[RS62].
13See, for example, [Dav00] and [IK04].
14[GS02].
15[Hua82], §12.13. In fact, Hua almost proved this result in 1942, but made a small

error. See the discussion by Louboutin in [Lou02b], p. 12.
16[Lou02b].
17[Ram01].
18See [Lan18] and [Dav00], Ch. 21.
19[Dav00], Ch. 14.
20[Sie35] and [Dav00], Ch. 21.
21[Tat51].
22[Hof80].
23For a historical account of investigations into this famous problem, see [Edw74].

Also, see the interesting account of more recent investigations in [Con03].
24[Gou04]. He also computed two billion zeros at height 1024.
25[Odl01]. In more recent unpublished work, Odlyzko computed 20 billion zeros

at height 1025.
26[Rum93].
27[Lit28].
28[Cho49].
29[Sha73].
30See [JLW95], [Jac98], and [JRW06].
31See [Ell69], [Ell73], [Ell70], [Ell80], Ch. 22, and [MV99].
32[MV99].
33[GS03].
34[Gau86], §303.
35The case of h = 1 was solved by arithmetical means in [Hee52] and [Sta67] and

by transcendental techniques in [Bak66]. For some interesting historical commentary
on this problem, see [Sta69a] and [Sta69b]. The case of h = 2 was solved in [MW74]
and [Sta75].

36[GZ86].

Notes and References 235

37[Gol76].
38[Oes85]. For a very readable account of all of this work, see [Gol85].
39[Wat04].
40See, for example, [MW91b]. More information on this can be found in [Mol95].
41[CF76], p. 48.
42[Bir03a].
43[Bir03b].
44[BG07].
45[MW91a].
46[MW94].
47[Bac90].
48See [Dic19], Vol. III, p. 164.
49[WB76].
50[Lou02a].
51[Bac95].

10

Some Computational Techniques

10.1 Introduction

In the previous chapters, various methods for computing the regulator were
presented. Using Shanks’ infrastructure, we have seen in Chapter 7 how to im-
prove the continued fraction algorithm for computing the regulator using the
baby-step giant-step method, resulting in an algorithm that computes RΔ un-
conditionally in time O(Δ1/4+ε) and, using improvements due to Buchmann,
Williams, and Vollmer, in time O(RΔ

1/2Δε). In Chapter 8 we have seen how
the class number and regulator are intimately connected to L(1, χ) via the
analytic class number formula (Corollary 8.35.1), and in Chapter 9 methods
for efficiently computing estimates of hΔ or hΔRΔ using the analytic class
number formula were discussed.

The next step in improving these baby-step giant-step algorithms for com-
puting the regulator is to combine the infrastructure techniques with an-
alytic methods for approximating hΔRΔ. The resulting algorithm, due to
Lenstra, computes an unconditionally correct approximation of RΔ which,
under the assumption of the extended Riemann hypothesis (ERH), has com-
plexity O(Δ1/5+ε). We will present a description of Lenstra’s algorithm in
§10.2.

Once the regulator is computed, analytic methods for approximating
L(1, χ) can also be used to compute the class number efficiently. Some purely
analytical algorithms were described in Chapter 9. In §10.3 we describe an
algorithm due to Shanks and Lenstra for computing the class number that
combines the algebraic baby-step giant-step approach with analytic methods,
resulting in a running time O(Δ1/5+ε). Given the class number, a method of
Buell can then be used to determine the structure of the class group. This
method is surveyed in §10.4, along with algorithms of Buchmann, Jacobson,
and Teske and Buchmann and Schmidt that compute the structure of the class
group without prior knowledge of the class number in time roughly O(h1/2

Δ).

238 10 Some Computational Techniques

Finally, in §10.5 we will survey some large-scale computations for nu-
merical verification of a variety of conjectures that make use of the algo-
rithms described in this chapter. These will include the most recent numeri-
cal verifications of the Cohen-Lenstra heuristics, Hooley’s conjecture, and the
Ankeney-Artin-Chowla conjecture. The methods used to compute these tables
of class numbers, including a recent method of Jacobson, Ramachandran, and
Williams for verifying unconditionally tables of class numbers of imaginary
quadratic fields, will also be discussed.

10.2 Computing the Regulator

After Shanks’ discovery of the infrastructure and the application of the baby-
step giant-step method to computing the regulator of a real quadratic field
Q(
√
Δ), the next significant advance was due to Lenstra,1 who invented an

algorithm for computing the regulator RΔ or a real quadratic order OΔ in
time O(Δ1/5+ε). Lenstra’s algorithm has been used extensively in practice;
some examples will be discussed at the end of this chapter. The improvement
over Shanks’ algorithm described in §7.4 is a result of the combination of
Shanks’ baby-step giant-step method with analytic results from Chapters 8
and 9. The main idea is to compute an approximation of hΔRΔ using the
analytic class number formula and an appropriately accurate approximation
of L(1, χ). Bounds on the error of this approximation are used to obtain an
interval in which hΔRΔ is known to lie. Using the infrastructure, the baby-step
giant-step method is then employed to find an integer multiple h∗RΔ of the
regulator by searching this interval. Finally, once again using infrastructure,
the integer multiplier h∗ is computed, yielding the regulator RΔ.

We now describe a recent version2 of Lenstra’s method in detail. The first
step is to compute an approximation of logL(1, χ) using Bach’s method (equa-
tion (9.31) from Chapter 9). Any sufficiently accurate and efficient method for
approximating L(1, χ) can be used; we use Bach’s method because it is the
most accurate and efficient in practice. Recall that, given a bound Q, Bach’s
method computes

S(Q,Δ) =
Q−1∑

i=0

ai logB(Q+ i, χ) , (10.1)

an approximation of logL(1, χ), which from (9.31), satisfies

|logL(1, χ)− S(Q,Δ)| < A(Q,Δ) :=
A log |Δ|+B√

Q logQ
(10.2)

for explicit constants A and B determined by Bach.3 If we put

E =

√
Δ exp(S(Q,Δ))

2
, (10.3)

10.2 Computing the Regulator 239

then hΔRΔ ≈ E, and by using the analytic class number formula and (10.2),
we have, assuming the ERH, that

|E − hΔRΔ| =
√
Δ

2
|exp(S(Q,Δ))− L(1, χ)|

= E

∣
∣
∣
∣

L(1, χ)
exp(S(Q,Δ))

− 1
∣
∣
∣
∣

≤ E |exp(A(Q,Δ)) − 1| .

Thus,
|E − hΔRΔ| < L2 , (10.4)

where we set
L2 = E |exp(A(Q,Δ)) − 1| .

Taking Q ≈ Δ1/5 is optimal for Lenstra’s algorithm, as we will prove below.
Given the approximation E of hΔRΔ from (10.3), we proceed to compute

an integer multiple of RΔ using the baby-step giant-step method in the in-
frastructure. We first compute a list L of baby steps consisting of all reduced
principal ideals with distance less than L+ log 2 by developing the continued
fraction expansion corresponding to a1 = OΔ. As in the baby-step giant-step
algorithm described in Chapter 7, the list L is usually stored as a hash table
in order to enable fast searching and insertion of new elements. If during the
computation of the list we find an ideal an+1 = [Qn/r, (Pn +

√
D)/r] with

Pn = Pn+1, then, as in Shanks’ algorithm described in §7.4, we can immedi-
ately set

RΔ = 2δ(an+1) + log
Q0

Qn
,

and if Qn = Qn+1, we set

RΔ = 2δ(an+1) + log
Q0ψn+1

Qn
.

In either case, we terminate the algorithm.
We next compute a reduced principal ideal am = [Qm−1/r, (Pm−1 +√

D)/r] with δ(am) ≈ E. Recall that, as described in §7.4, if 2k < E < 2k+1,
then we can use k “doubling” steps to find am by selecting some as(= b1) with
δs ≈ E/2k and computing bj+1 = bj ∗ bj until we get bk = am, where by a ∗ b
we again denote the result of either reducing ab or computing a reduced ideal
equivalent to ab using NUCOMP as described in §5.4. At each step, after we
compute the product a = bj ∗bj we move through the cycle of principal ideals
from a until we find some ai such that δi ≤ E/2k−j < δi+1 and set bj+1 = ai.
We do this so that each ideal bj+1 has distance as close to E/2k−j as possible.

We then use this ideal am to compute a multiple h∗RΔ of RΔ, where h∗

is some positive integer, as follows. Select the reduced principal ideal at from
the list L such that δt < L < δt+1. Set c1 = am, d1 = am and compute

240 10 Some Computational Techniques

ci+1 = ci ∗at and di+1 = di ∗at until we find some cj or dj in L. If cj = ak ∈ L
has distance δ(cj) and ak has distance δ(ak), then

h∗RΔ = δ(cj)− δ(ak) .

If dj = ak, where dj has distance δ(dj , d1) from d1, then

h∗RΔ = δ(am)− (δ(dj , d1)− δ(ak))− log
Qm−1

r
.

Notice that h∗ is not necessarily the class number of OΔ but is at least a
rational integer. By (10.4) and the fact that Qm−1 < 2

√
D, we know that this

process must terminate after the performance of O(L) giant steps.
Using the value of h∗RΔ,we must now compute RΔ.We first check whether

RΔ < E/
√
L by using a technique similar to that for finding h∗RΔ. As above,

select the reduced principal ideal at from L such that δ(at) < L < δ(at+1).
Set c1 = at and compute ci+1 = ci ∗ at. If for some cj we get δ(cj) ≥ E/

√
L,

then we know that RΔ ≥ E/
√
L. However, if cj = ak, where ak ∈ L, then, as

in the baby-step giant-step algorithm described in Chapter 7,

RΔ = δ(cj)− δ(ak) .

If cj = ak, then

RΔ = δ(cj) + δ(ak)− log
Qj−1

r
.

In either case we terminate the algorithm.
In the case where RΔ ≥ E/

√
L, we must find h∗. The main idea is to check

for all primes q that could possibly divide h∗; that is, we check whether the
ideal a at distance h∗RΔ/q from (1) is such that a = (1). If so, then we know
that h∗RΔ/q is also a multiple of the regulator, so q | h∗. We check the ideals
at distance h∗RΔ/q

2, h∗RΔ/q
3, . . . , until we find one equal to (1) at distance

h∗RΔ/q
α but not at h∗RΔ/q

α+1. Then we have qα as the highest power of q
that divides h∗. If there are n primes q1, . . . , qn that were found to divide h∗,
then

h∗ =
n∏

i=1

qαi

i

and RΔ can be computed easily. Because we know that RΔ > E/
√
L, we need

only consider primes q such that h∗RΔ/q > E/
√
L, so q < h∗RΔ/(E/

√
L).

By (10.4), h∗RΔ < L2 + E, so we have that

q <
√
L+ L2

√
L/E

suffices.
The following algorithm summarizes Lenstra’s method.

10.2 Computing the Regulator 241

Algorithm 10.1: Regulator of a Real Quadratic Order (Lenstra)
Input: discriminant Δ > 0 of a real quadratic order
Output: RΔ

/* Compute approximation of hΔRΔ*/
1: Set Q = Δ1/5, compute E =

√
Δ exp(S(Q,Δ))/2 using (10.1).

2: Compute L =
√
E| exp(A(Q,Δ)) − 1| using (10.2).

/* Compute integer multiple R′ of RΔ*/
3: Set a1 = (1) and compute L = {a1, a2, . . . , at, at+1, . . . , as} where ai =
ρ(ai−1), δ(at+1) > L > δ(at), and δ(as+1) > L+ log 2 > δ(as).

4: if an+1 = [Qn/r, (Pn +
√
D)/r] ∈ L such that Pn = Pn+1 then

5: Set RΔ = 2δ(an+1) + log(Q0/Qn).
6: else if an+1 = [Qn/r, (Pn +

√
D)/r] ∈ L such that Qn = Qn+1 then

7: Set RΔ = 2δ(an+1) + log(Q0ψn+1/Qn).
8: else
9: Compute am with δ(am) ≈ E.

10: Set c1 = am, d1 = am, and i = 1.
11: while ci �∈ L and di �∈ L do
12: Set i = i + 1 and compute ci = ci−1 ∗ at, di = di−1 ∗ at, and

δ(di, d1).
13: end while
14: if ci = ak ∈ L then
15: Set R′ = δ(ci)− δ(ak).
16: else if di = ak ∈ L then
17: Set R′ = δ(am)− (δ(di, d1)− δ(ak))− log(Qm−1/r).
18: end if

/* Check whether RΔ < E/
√
L*/

19: Set c1 = at, c2 = c1 ∗ at, and i = 2.
20: while ci �∈ L and δ(ci) < E/

√
L do

21: Set i = i+ 1 and compute ci = ci−1 ∗ at.
22: end while
23: if ci = ak ∈ L then
24: Set RΔ = δ(ci)− δ(ak).
25: else

/* Compute h∗*/
26: Set h∗ = 1 and p = 2.
27: while p <

√
L+ L2

√
L/E do

28: Set α = 1 and compute a such that δ(a) ≈ R′/q.
29: while a = (1) do
30: Set α = α+1 and compute a such that δ(a) ≈ R′/(qα).
31: end while
32: Set h∗ = h∗pα−1 and p to the next prime larger than p.
33: end while
34: Set RΔ = R′/h∗.
35: end if
36: end if

242 10 Some Computational Techniques

We now derive the complexity of Lenstra’s method.4

Theorem 10.1. Lenstra’s algorithm as described above computes the regula-
tor RΔ of OΔ in time O(Δ1/5+ε) assuming the ERH.

Proof. Recall that there are four main steps in this algorithm, namely com-
puting an approximation E of hΔRΔ such that |E−hΔRΔ| < L2, computing
the multiple h∗RΔ of RΔ using the baby-step giant-step method, checking
whether RΔ < E/

√
L, and computing h∗ in the case that RΔ > E/

√
L. We

will estimate the cost of each of these steps in terms of Q, E, and L, and at
the end, we will determine optimal values of these quantities that minimize
the total runtime.

The dominant part of the first step is computing the approximation
S(Q,Δ) of L(1, χ) using Bach’s method, costing O(Q) evaluations of Leg-
endre symbols.5 As the evaluation of a Legendre symbol is polynomial in
logΔ, the cost of this step is O(QΔε).

The second step, computing h∗RΔ, requires three main parts. Computing
the baby-step list containing reduced principal ideals with distance less than
L + log 2 requires O(L) continued fraction steps, each of which has runtime
O(Δε), resulting in an overall cost of O(LΔε). The second part, computing
a reduced principal ideal am with δ(am) ≈ E, requires O(logE) ideal multi-
plications and reductions, all of which have polynomial complexity in logΔ,
for an overall cost of O((logE)Δε). Finally, O(L) giant steps are required to
find a match in the baby step list (and hence h∗RΔ), and as each of these has
complexity O(Δε), the cost of this step is O(LΔε). Thus, the total cost for
computing h∗RΔ given E is

O(LΔε) +O((logE)Δε) +O(LΔε) = O(LΔε) .

Determining whether RΔ < E/
√
L is done with the baby-step giant-step

method using the same list of baby steps as before and the same giant step
of distance roughly L. Thus, the cost of this step is E/(L

√
L) giant steps, for

a total complexity of O(E/(L
√
L)Δε).

The last step requires computing ideals at distances h∗RΔ/q for all
primes q <

√
L + L2

√
L/E. Each of these ideals can be computed in time

O(log(h∗RΔ)Δε) = O(Δε) using the same method used to compute am de-
scribed above, as all these distances are bounded by h∗RΔ. Thus, the overall
complexity of the last step is O(Δε(

√
L+ L2

√
L/E)).

Putting the above results together indicates that the running time of
Lenstra’s algorithm is

O(QΔε) +O(LΔε) +O(E/(L
√
L)Δε) +O(Δε(

√
L+ L2

√
L/E)) . (10.5)

It remains to find optimal values for Q, L, and E and to express (10.5) as a
function of Δ.

10.2 Computing the Regulator 243

Assume that Q = Δα for α > 0; we will show below that α = 1/5 optimizes
the complexity of the algorithm. From the definition of S(Q,Δ) (see §9.5 and
(10.1)), it is easy to show that

exp(S(Q,Δ)) ≤
∏

q<2Q

q

q − 1

and by Mertens’ Theorem we know that
∏

q<2Q

q

q − 1
= O(logQ) .

Thus, we have
E = O(Δ1/2+ε) .

Recall that, using (10.4), we have |E − hΔRΔ| ≤ L2, with

L2 = E |exp(A(Q,Δ)) − 1| .

Assuming that Q = Δα and the ERH holds, we have, from (9.31),

A(Q,Δ) = O(Δ−α/2)

and one can show that

|exp(A(Q,Δ)) − 1| = O(Δ−α/2+ε) , (10.6)

yielding
L2 = O(Δ1/2−α/2+ε) .

Finally, we have that

L = O(Δ1/4−α/4+ε) ,

E/(L
√
L) = O(Δ1/8+3α/8+ε) ,

and

√
L+ L2

√
L/E = O(Δ1/8−α/8+ε) .

The complexity of Lenstra’s algorithm is therefore

O(Δα+ε) +O(Δ1/4−α/4+ε) +O(Δ1/8+3α/8+ε) ,

and this is minimized when α = 1/4 − α/4 = 1/8 + 3α/8 (i.e., α = 1/5).
Hence, under the ERH, Lenstra’s algorithm has complexity O(Δ1/5+ε). ��

244 10 Some Computational Techniques

A method to compute h∗ that is more efficient in practice was proposed
by Jacobson, Lukes, and Williams.6 We first compute a list I of reduced
principal ideals at0 , at1 , . . . , atn , where at0 = at, atj = atj−1 ∗atj−1 , and δtn−1 <

h∗RΔ/2 < δtn . We then produce a list of all primes q <
√
L + L2

√
L/E in

decreasing order. For each prime qs, we must find a reduced principal ideal ae

such that
h∗RΔ

qs
< δ(ae) <

h∗RΔ

qs
+ δ(at) .

From the preceding prime qs+1 (> qs) we have an ideal am, with

h∗RΔ

qs+1
< δ(am) <

h∗RΔ

qs+1
+ δ(at) .

Notice that if we find an ideal as such that

δ(as) ≈ h∗RΔ

qs
− δ(am)

and
h∗RΔ

qs
< δ(as) + δ(am) ≤ h∗RΔ

qs
+ δ(at) ,

then we can set ae = as ∗ am, with δ(ae) ≈ δ(as) + δ(am). To find as, we
first put rδ(at) = h∗RΔ/qs − δ(am) for some real number r. We then have
δ(as) ≈ qδ(at), where q = [r] + 1. If we represent q in binary as

q = bk2k + bk−12k−1 + · · ·+ b0 ,

where bk = 1 and bj ∈ {0, 1} for j < k, then we have

qδt = bk2kδ(at) + bk−12k−1δ(at) + · · ·+ b0δ(at) .

In the list I, we have δ(atk
) ≈ 2kδ(at), so we can find as with distance

δ(as) ≈ qδ(at) by simply computing a reduced ideal equivalent to

k∏

j=0

a
bj

tj
.

Once ae has been determined, we check whether there is an ideal aj ∈ L such
that ae = aj and δ(ae) = h∗RΔ/qs + δ(aj). If so, then the ideal at distance
h∗RΔ/qs must be (1), implying that qs | h∗, and we repeat the above process
to determine the precise power αs of qs that divides h∗. After the above
process has been performed for all qs <

√
L+ L2

√
L/E, we have

h∗ =
s∏

i=1

qαi

i

and we can compute RΔ.

10.3 Computing the Class Number 245

Lenstra’s algorithm has been implemented and used for a variety of ap-
plications, one of the first being Schoof’s real quadratic field-based integer
factorization algorithm.7 It is feasible, using currently available technology,
to use this algorithm to compute RΔ for discriminants as large as 1040. The
main obstacle in pushing this further is the fact that the amount of storage
required for the baby-step list becomes prohibitively large.

It must be emphasized that although the complexity of Lenstra’s algorithm
is conditional on the ERH, the regulator computed is unconditionally correct.
The ERH is only required for estimating the error in the approximation of
hΔRΔ. Given any such approximation, the algorithm will, using the baby-step
giant-step method, compute an integer multiple of RΔ and from that correctly
determine RΔ itself. The estimate of the error in approximating hΔRΔ only
plays a role in determining the complexity of the baby-step giant-step stage
of the algorithm.

Indeed, Srinivasan8 has presented a variation of this algorithm in which the
approximation of hΔRΔ is determined using a novel technique called random
summation, as opposed to Bach’s method. The idea of random summation
is to approximate L(1, χ) by taking random terms in its Euler product ex-
pansion instead of a weighted average of truncated Euler products. The error
in the approximation can be estimated probabilistically without appealing to
the ERH, but there is a small chance that the approximation is incorrect and
may need to be computed again. The result is an algorithm that, like Lenstra’s
algorithm described above, computes an unconditionally correct approxima-
tion of RΔ in expected time O(Δ1/5+ε), where, although the algorithm is not
deterministic, the complexity result does not depend on the ERH.9

10.3 Computing the Class Number

The simplest method for computing the class number of an imaginary quad-
ratic order is to enumerate every reduced ideal. Because the coefficients of
reduced ideals are bounded by

√|Δ|, this strategy amounts to simply looping
over all possible values of the coefficients and counting the number of (Q,P)
pairs that represent valid reduced ideals of OΔ. Although the complexity of
this method is O(|Δ|1+ε) for a single discriminant, it has the advantages of be-
ing unconditionally correct and not involving any operations more complicated
than basic integer arithmetic; in particular, no ideal arithmetic is required.
In addition, as only coefficients of reduced ideals are used, the operands are
small, bounded by

√|Δ|. This method can be quite effective when computing
tables of class numbers and has been used extensively by Buell.10 When loop-
ing over the ideal coefficients, a separate reduced ideal counter is maintained
corresponding to each discriminant in the tabulation interval. The result is a
tabulation algorithm that requires only O(|Δ|1/2+ε) operations per discrimi-
nant.

246 10 Some Computational Techniques

This method can also be adapted to work in real quadratic orders. The
difference is that we have multiple reduced ideals per equivalence class, so
instead of simply counting reduced ideals, one has to count the number of
cycles of reduced ideals. It is possible to construct an algorithm based on
this approach that runs in time O(Δ1/2+ε) that, as in the imaginary case,
computes hΔ unconditionally.11

Assuming that the regulator has been computed, even faster algorithms for
computing the class number exist that make use of the analytic class number
formula. A few of these have been described in Chapter 8 and Chapter 9 which
work by computing a sufficiently accurate approximation of L(1, χ) or by us-
ing a closed-form formula. These algorithms are all unconditionally correct
but have complexity O(|Δ|1+ε) or, at best, O(|Δ|1/2+ε) and are thus unsuit-
able for large discriminants. In the following, we will describe an algorithm
due to Shanks12 that computes hΔ in time O(|Δ|1/5+ε). This algorithm makes
it possible, with currently available technology, to compute class numbers for
discriminants as large as 1040 in absolute value, but, unfortunately, the cor-
rectness of the class numbers is conditional on the ERH. In general, algorithms
whose complexity breaks the O(Δ1/2+ε) barrier sacrifice the unconditionality
of the computed class numbers, the sole exception being a recent algorithm
due to Booker13 that we will describe in Chapter 15.

We will describe Shanks’ algorithm in terms of real quadratic orders; modi-
fications to the imaginary case are relatively straightforward.14 The main idea
behind Shanks’ algorithm is to compute an estimate of hΔ using the analytic
class number formula. Assuming that RΔ is known, a sufficiently accurate
approximation of L(1, χ) is used to verify that the estimate is in fact equal to
hΔ.

The algorithm proceeds as follows. First, assume that hΔ has a known
factor h1 and put h2 = hΔ/h1. We can take h1 = 1, but the larger h1 is the
faster the algorithm will execute, and a sufficiently large divisor h1 is required
in order to prove the O(Δ1/5+ε) complexity. We will discuss how to compute
a suitable value of h1 below, but for now we assume that this is provided.
Given an approximation S(Q,Δ) of logL(1, χ), we have, by the analytic class
number formula, that

h̃2(Q) =

⌊√
Δ exp(S(Q,Δ))

2RΔh1

⌉

is an approximation of h2. If we put

κ(Q) =
√
Δ exp(S(Q,Δ))/(2RΔh1)− h̃2(Q) , (10.7)

then, clearly, |κ(Q)| < 1/2.
Given RΔ and h1, we need to find a sufficiently large value of Q such that

we can prove h̃2(Q) = h2 (i.e., hΔ = h1h̃2(Q)). We need the following two
elementary lemmas noted by Mollin and Williams.15

10.3 Computing the Class Number 247

Lemma 10.2. If

|log x| < log
(
k + 1
k + |y|

)

,

where k ≥ 0, x > 0, and |y| < 1/2, then

k

k + 1 + y
< x <

k + 1
k + y

.

Proof. The proof is easy to show using elementary algebraic manipulations.
��
Lemma 10.3. If k ∈ Z and

k

k + 1 + κ(Q)
< T (Q,Δ) <

k + 1
k + κ(Q)

,

for T (Q,Δ) = L(1, χ)/ exp(S(Q,Δ)), then h2 = k if and only if h̃2(Q) = k.

Proof. The proof follows easily from the fact that, by (10.7), we have

κ(Q) = h2 exp(S(Q,Δ))/L(1, χ)− h̃2(Q) ,

so we can write
T (Q,Δ) =

h2

h̃2(Q) + κ(Q)
. (10.8)

First, assume that h2 = k. Then we have T (Q,Δ) = k/(h̃2(Q) + κ(Q))
and

k

k + 1 + κ(Q)
<

k

h̃2(Q) + κ(Q)
<

k + 1
k + κ(Q)

.

The first inequality yields

h̃2(Q) + κ(Q) < k + 1 + κ(Q) ,

so
h̃2(Q) < k + 1 . (10.9)

The second inequality yields

h̃2(Q) >
k(k + κ(Q))

k + 1
− κ(Q) =

k2 − κ(Q)
k + 1

>
k2 − 1
k + 1

= k − 1 (10.10)

because |κ(Q)| < 1/2. Thus, by (10.9) and (10.10) we have h̃2(Q) = k.
Next, assume that h̃2(Q) = k. Then T (Q,Δ) = h2/(k + κ(Q)) and

k

k + 1 + κ(Q)
<

h2

k + κ(Q)
<

k + 1
k + κ(Q)

.

The first inequality yields

248 10 Some Computational Techniques

h2 >
k(k + κ(Q))
k + 1 + κ(Q)

=
k(k + 1 + κQ)− k
k + 1 + κ(Q)

= k − k

k + 1 + κ(Q)
> k − 1 ,

(10.11)
again because |κ(Q)| < 1/2. The second inequality yields

h2 > k + 1 , (10.12)

and it follows from (10.11) and (10.12) that h2 = k. ��
From these two lemmas and (10.2) it follows that h2 = h̃2(Q) whenever Q

is sufficiently large that

A(Q,Δ) < log

(
h̃2(Q) + 1

h̃2(Q) + |κ(Q)|

)

. (10.13)

Thus, given RΔ and h1, we can use the following algorithm to compute an
approximation of L(1, χ) to sufficient accuracy to determine h̃2(Q) such that
hΔ = h1h̃2(Q).

1. Set Q = Δβ (we will prove below that β = 1/5 is optimal)
2. F =

√
Δ exp(S(Q,Δ))/(2RΔh1)

3. h̃2 = �F 	
4. κ = F − h̃2

5. If A(Q,Δ) ≥ log
(

h̃2+1

h̃2+|κ|

)
, increase Q (eg. Q = Q+5000) and go to step 2

6. hΔ = h̃2h1

Given RΔ and h1, this algorithm will run in time O(QΔε), the cost of
computing the approximations h̃2 of hΔ. We have already seen that RΔ can
be computed in time O(Δ1/5+ε). In order to prove that we can compute hΔ

in the same time, the next step is to determine how large h1 needs to be in
terms of β.

Theorem 10.4. Assuming the ERH, the algorithm described above computes
the class number hΔ of OΔ in time O(Δβ+ε), given the regulator RΔ and a
divisor h1 of hΔ such that h1 > Δα/RΔ with 0 < α < 1/2 and β = 1 − 2α.
The correctness of the computed class number is also conditional on the ERH.

Proof. First, observe that for |y| < 1/2,

log
(

1 + x

|y|+ x

)

> log
(

1 +
1

2x+ 1

)

>
1

2x+ 2
,

so we see that (10.13) will hold if

A(Q,Δ) <
1

2h̃2(Q) + 2
. (10.14)

If h1 > Δα/RΔ, where 0 < α < 1/2, then from (10.7), and |κ(Q)| < 1/2, we
have

10.3 Computing the Class Number 249

2h̃2(Q) + 1 < Δ1/2−α exp(S(Q,Δ)) .

Now, we know that
exp(S(Q,Δ)) ≤

∏

q<2Q

q

q − 1

and by Mertens’ Theorem we also know that
∏

q<2Q

q

q − 1
∼ eγ log 2Q .

Thus, there exists some positive constant c1 such that

2h̃2(Q) + 2 < c1Δ
1/2−α log 2Q

and

1
2h̃2(Q) + 2

>
Δα−1/2

c1 log 2Q
.

From (10.2) we see that, assuming the ERH, there exists a positive constant
c2 such that

A(Q,Δ) <
c2 logΔ√
Q logQ

.

It follows that (10.14) will certainly hold if

Δα−1/2

c1 log 2Q
>

c2 logΔ√
Q logQ

Δα−1/2 >
c1c2 logΔ log 2Q√

Q logQ
√
Q >

c1c2 logΔ log 2Q
logQ

Δ1/2−α

√
Q > c3Δ

1/2−α+ε ,

where c3 > 0. Finally, if β/2 = 1/2 − α, i.e., β = 1 − 2α, then (10.14) holds
with Q = Δβ+ε and the result follows. Note that, as claimed, the ERH is
required for both the value of Q (hence the complexity of the algorithm) and
the correctness of the error approximation corresponding to h2 (hence the
correctness of the algorithm). ��

Let hΔ < Δl. From the analytic class number formula and Littlewood’s
bound in (9.24), there exists a positive constant c4 such that

RΔhΔ > c4
√
Δ/ log logΔ .

Thus, even if h1 = 1, we have

250 10 Some Computational Techniques

RΔh1 > c4Δ
1/2−l/ log logΔ .

Putting α = 1/2−l, we see that the above algorithm evaluates hΔ in O(Δ2l+ε)
operations. Hence, if hΔ < Δ1/10, which one can expect to occur quite fre-
quently for real quadratic fields due to the Cohen-Lenstra heuristics, this
method will work well, even if the best divisor of hΔ we can obtain is h1 = 1.
For hΔ > Δ1/10, this method will determine h in O(Δ1/5+ε) operations pro-
vided we can obtain a divisor h1 of hΔ such that h1 > Δ2/5/RΔ (i.e., taking
α = 2/5 in Theorem 10.4).

The following method16 can be used to find a suitable value of h1 when
hΔ > Δ1/10. The idea is to use, once again, Shanks’ baby-step giant-step
method combined with an approximation of hΔ found via the analytic class
number formula to compute the order of a random ideal class. If this integer,
which is clearly a divisor of hΔ, is greater than Δ2/5/RΔ, then we are fin-
ished; otherwise, we select a second ideal class and compute the order of the
subgroup generated by both classes, repeating this process until the order of
this subgroup, also a divisor of hΔ, is greater than Δ2/5/RΔ.

Given an approximation S(Q,Δ) of logL(1, χ) as before, we have, by the
analytic class number formula, that

h̃(Q) =

⌊√
Δ exp(S(Q,Δ))

2RΔ

⌉

is an approximation of hΔ and, by (10.2),
∣
∣
∣hΔ − h̃(Q)

∣
∣
∣ < B2(Q) ,

where

B2(Q) = 1/2 +
√
Δ exp(S(Q,Δ))(exp(A(Q,Δ)) − 1)/(2RΔ) .

If we set Q = Δ1/5, B2 = B2(Q), and h̃ = h̃(Q), we have from (10.6) (assum-
ing the ERH),

RΔB2 = O(Δ2/5+ε) , (10.15)

and it follows that there exists some integer m such that |m| < B2 and
hΔ = h̃−m. Thus, for any ideal a, we have

ah̃ ∼ am , (10.16)

and we can use the baby-step giant-step method to find m such that (10.16)
holds. The result is that |h̃−m| is a multiple of the order of [a] ∈ ClΔ.

Given h̃ and B2, we find integers i and j such that |m| = ki + j with
0 ≤ j ≤ k for some fixed integer k ≥ 1 to be determined below. We first select
a random prime ideal a and compute ideals d ∼ ah̃ and g ∼ ak. If (10.16)
holds for m ≥ 0, then there exist i and j such that d ∼ giaj and

10.3 Computing the Class Number 251

(g)id ∼ aj (10.17)

holds. On the other hand, if (10.16) holds for m < 0, then a−h̃ ∼ d ∼ giaj

and
(g)id ∼ aj (10.18)

holds.
To find i and j, we proceed in one of two ways. If the regulator is small,

then testing equivalence of ideals is easy, so we can find i and j using a
simple adaptation of the baby-step giant-step method. On the other hand,
if the regulator is large, then equivalence testing is difficult, but we know
that the value of m will be small. In that case, we set k = 1 and j = 0 in
(10.17) and (10.18) and simply find the smallest integer i such that ai ∼ ah̃

or ai ∼ a−h̃. The trick is to determine a cut off point to decide between
these two approaches in such a way that the entire computation of h1 still has
complexity O(Δ1/5+ε). The value B2 is precisely the value we need.

If B2 ≥ RΔ, or if OΔ is imaginary, then the number of reduced ideals
in any equivalence class is sufficiently small that we can use the baby-step
giant-step method to compute i and j and handle equivalence testing by
exhaustively enumerating all equivalent reduced ideals corresponding to each
of the baby steps. Specifically, we set k = [

√
B2/RΔ] + 1 and compute the

cycles of reduced ideals in the classes of the baby steps OΔ, a, a2, . . . , ak−1.
As usual, these ideals are all stored in a list J that admits fast searching
such as a hash table. To find i, we compute the giant steps bn and cn using
bt+1 = bt ∗ g and ct+1 = ct ∗ g, where b0 = d and c0 = d, until we find either
bi or ci in J . If bi ∈ J , then bi ∼ (g)i ∗ d ∼ aj and we have m = ik + j. If
ci ∈ J , then ci ∼ (g)i ∗ d ∼ aj and we have m = −ik − j.

If B2 < RΔ, then we set k = 1 and j = 0 and compute the ideals bn and
cn as above and find the smallest n for which one of bn or cn is principal. If
bn is principal, then we have bn ∼ (g)n ∗ d ∼ OΔ, so d ∼ ah̃ ∼ an and we
take m = n. Similarly, if cn is principal, then we have cn ∼ (g)n ∗ d ∼ OΔ,

so d ∼ a−h̃ ∼ an and we take m = −n. Thus, in this case, the main difficulty
is testing bn and cn for principality. Here, we use the baby-step giant-step
method as mentioned in §7.4 with a step size of S =

√
RΔB2.

We now prove that in either case we compute m in time O(Δ1/5+ε).

Theorem 10.5. Given an ideal a and the regulator RΔ of OΔ, the algorithm
described above computes an integer m such that ah̃ ∼ am in time O(Δ1/5+ε)
assuming the ERH.

Proof. First, suppose that B2 ≥ RΔ. The total number of ideals stored in
the baby-step list is O(kRΔ), so by (10.15) the complexity of computing the
baby steps is O(RΔ(

√
B2/RΔ + 1)Δε) = O(

√
B2RΔ +RΔ)Δε = O(Δ1/5+ε).

Because |m| < B2 and j ≥ 0, the value of i found by this method must satisfy
i < B2/k = O(Δ1/5+ε), and the overall complexity is O(Δ1/5+ε).

252 10 Some Computational Techniques

Otherwise, if B2 < RΔ, the algorithm consists of n baby-step giant-step
principality tests using a step size of S =

√
RΔB2. To compute the baby

steps, the first O(S) reduced ideals in the principal cycle requires O(SDε)
operations. This step need only be done once, as all the principality tests we
require can make use of this same baby-step list. Each principality test will
require RΔ/S giant steps, at a cost of O(RΔΔ

ε/S) each. Finally, as we know
that n < B2, the total cost in this case is

O(SΔε) +O(B2RΔΔ
ε/S) = O(Δ1/5+ε)

by (10.15).
In both cases, the ERH is required to bound RΔB2 in (10.15), so the

complexity is dependent on the ERH. ��
The value of m found here often satisfies hΔ = |h̃−m|, but this need not be

the case. However, |h̃−m| is unconditionally (i.e., without assuming the ERH)
a multiple of e1, the order of [a] in the class group. After factoring |h̃ −m|,
we use one of the two methods for testing principality outlined above to find,
for each prime divisor pi, the largest positive integer αi such that a|h̃−m|/p

αi
i

is principal, yielding e1 = |h̃ −m|/ (
∏
pαi

i) . If e1 > Δ2/5/RΔ, then we take
h1 = e1 and we are finished. Otherwise, we select another ideal b and find the
order e2 of the subgroup generated by a and b. This process is repeated until
the order ei of the subgroup generated by i ideals satisfies ei > Δ2/5/RΔ.
Details of how the baby-step giant-step method can be adapted to compute
the ei have been presented by a number of authors.17 However, as predicted
by the Cohen-Lenstra heuristics, most class groups tend to be cyclic or close
to cyclic, so e1 is likely to suffice. In general, it can be shown18 that, assuming
the generalized Riemann hypothesis (GRH) for Hecke L-functions and the
ERH, a suitable value en > Δ2/5/RΔ can be found in O(Δ1/5+ε) operations.
The assumption of the GRH guarantees that, by a result of Bach (9.28), the
number of prime ideals required to generate the class group is polynomial in
logΔ, so n = O(Δε). Thus, we obtain the following theorem.

Theorem 10.6. Assuming the ERH, Shanks’ algorithm as described above
computes the class number hΔ of OΔ in time O(Δ1/5+ε). The correctness of
the class number computed is also dependent on the ERH.

Proof. The proof follows from Theorems 10.1, 10.4, 10.5, and the preceding
remarks. ��

It must be emphasized that although an unconditionally correct approxi-
mation of the regulator can be computed in time O(Δ1/5+ε) using Lenstra’s
algorithm (Theorem 10.1), the class number cannot be computed uncondition-
ally in the same time using Shanks’ algorithm described above. The reason
for this is that, in Shanks’ algorithm, the estimate A(Q,Δ) of the error in
our approximation of L(1, χ) is conditional on the ERH, and the condition for
determining that our approximation of hΔ is correct depends on this estimate.

10.4 Computing the Class Group 253

However, note that the O(Δ1/5+ε) complexity depends on the ERH in both
cases.

As with Lenstra’s algorithm for computing the regulator, Srinivasan’s ran-
dom summation technique19 can be used in place of Bach’s ERH-dependent
method to approximate L(1, χ), resulting in an algorithm for computing hΔ in
expected time O(Δ1/5+ε) without assuming any Riemann hypotheses. Using
random summation to approximate L(1, χ) removes the need to assume the
ERH, and a novel method of selecting random ideals and an accompanying
analysis of the probability that each newly selected ideal enlarges the sub-
group generated by the previous ideals remove the need to assume the GRH.
The output of Srinivasan’s algorithm is unconditionally correct in the case of
real quadratic fields, as an incorrect approximation of L(1, χ) will be detected
when computing the regulator RΔ. In the imaginary case, it is not possible
to make this check, so the output is only correct with high probability.

10.4 Computing the Class Group

In some cases, it is desirable to compute the structure of the class group in
addition to the class number and regulator. Recall that by the structure of
the class group, we mean the elementary divisors m1, . . . ,ms with m1 ≥ 1,
mj+1 | mj for 1 ≤ j < s, such that

ClΔ ∼= C(m1)× C(m2)× · · · × C(ms) ,

is the canonical decomposition of ClΔ as a direct product of cyclic subgroups.
For example, as described in Chapter 7, a number of the Cohen-Lenstra heuris-
tics predict properties of the structure when Δ is fundamental, such as the
probability that the odd part is cyclic and the probability that the p-rank
is equal to a given value. Tabulating class group structures can thus provide
evidence in support of these conjectures.

One approach to computing the class group structure is to first compute
the class number and then deduce the structure. This approach is described
in detail by Buell20 and used extensively in his tabulations of class groups
of imaginary quadratic fields.21 The idea is to first factor hΔ and determine
which p-Sylow subgroups could possibly be non-cyclic (i.e., those primes p for
which p2 | hΔ). For each of these primes, the p-Sylow subgroup is explicitly
determined. An advantage of this approach is that, as predicted by the Cohen-
Lenstra heuristics, the odd part of the class group is cyclic with very high
probability, so in most cases, even if some power of p | hΔ, the structure
can be resolved with very little additional work beyond computing hΔ and
factoring it.

Another approach is to compute the class number and class group si-
multaneously. The idea is to use a generic method to compute the subgroup
generated by a single ideal and extend this by adding additional generators

254 10 Some Computational Techniques

until the entire class group is obtained. This method has been used by Ja-
cobson22 for tabulating class groups of real quadratic fields and by Jacobson,
Ramachandran, and Williams23 for tabulating class groups of imaginary quad-
ratic fields.

Suppose that we have computed the subgroup Gl−1 of ClΔ generated by
g1, . . . , gl−1 (i.e., Gl−1 = 〈g1, . . . , gl−1〉). In order to compute Gl = 〈g1, . . . , gl〉
given another generator gl, compute the smallest integer vl,l > 0 such
that [gvl,l

l] ∈ Gl−1. Then there exist integers v1,l, v2,l, . . . , vl−1,l such that
g

v1,l

1 . . . g
vl−1,l

l−1 g
vl,l

l ∼ OΔ. Note that we can take 0 ≤ vi,l < vi,i and vi,j = 0
if i > j. Thus, the matrix A = (vi,j)l×l is in Hermite normal form, and the
Smith normal form24 of A yields the structure of Gl; the diagonal elements
are precisely the elementary divisors of Gl.

The reason this method works is as follows.25 The columns of A form
a Hermite normal form basis of the lattice kerφ, where φ is the surjective
homomorphism

φ : Zl → Gl, e = (e1, . . . , el) �→ ge1
1 . . . gel

l .

The vectors v ∈ kerφ are referred to as relations . The fundamental theorem
of algebra states that Zl/ kerφ ∼= Gl; thus, the columns of A provide a rep-
resentation of Gl corresponding to the generators g1, . . . , gl. In particular, we
have detA = hΔ. The Smith normal form of A yields another representation
of Gl corresponding to another set of generators obtained by applying the
row operations applied to A to the original generators. This method, essen-
tially computing relations corresponding to a set of generators of a group, is
a standard technique for representing a finite abelian group.

There are two main issues to be addressed in applying this method in
practice. The first is how to compute the required relations—in particular,
determining the integer vl,l such that g

vl,l

l ∈ Gl−1 given some representation
of Gl−1. The second issue is how to determine when we have Gl = ClΔ.

The first problem is typically solved by a generalization of a method used
to compute the order of an element in a group such as the baby-step giant-step
or Pollard’s rho method. For example, suppose that vl,l ≤ H for some known
upper bound H. Then Shanks’ original baby-step giant-step method can be
employed as follows. One can show26 that there exist integers v1,l, . . . , vl,l such
that g

v1,l

1 · · · gvl,l

l ∼ OΔ with vi,l = fiBi + ei for 1 ≤ i ≤ l and 0 ≤ ei, fi <

Bi = �√vi,i	, Bl = �√H	. Assuming that we have computed the sets

R = {g−e1
1 · · · g−el

l | 0 ≤ ei ≤ Bi}
Q = {gf1B1

1 · · · gflBl

l | 0 ≤ fi ≤ Bi, 1 ≤ fl ≤ Bl} ,
we search for a match gQ = gR with gR ∈ R and gQ ∈ Q. In this case, we
have

gQg−1
R = gf1B1+e1

1 · · · gflBl+el

l ∼ OΔ

as required, and if fl is minimal, then vl,l = flBl +el is minimal. Furthermore,
we have |Gl| = v1,1v2,2 · · · vl,l, Bi ≈ √vi,i and Bl ≈

√
H, so we would expect

10.4 Computing the Class Group 255

that |R| ≈√|Gl| and |Q| ≈√|Gl|, thereby yielding an algorithm that should
cost roughly O(

√|Gl|Δε) operations.
There are three noteworthy improvements and refined analyses of this

method. The first, due to Buchmann, Jacobson, and Teske,27 is an adaptation
of a baby-step giant-step algorithm for computing the order of an element in
a finite abelian group whose complexity depends on the order of the element
as opposed to an upper bound. The main idea is the same as that used by
Buchmann and Williams in their refinement of Shanks’ baby-step giant-step
algorithm for computing RΔ discussed in Chapter 7. For each l, the required
value of vl,l is found by using the baby-step giant-step method to search the
interval 0 to v2 for some small initial step width v and repeatedly doubling v
until the minimal value of vl,l is found. The resulting algorithm can be shown
to have complexityO(2l

√|Gl|Δε), where the exponential dependence on l only
occurs for highly non-cyclic groups, the worst of all being groups isomorphic
to C(2) × · · · × C(2). Thus, when applied to class group computation where
highly non-cyclic groups are expected to be very rare, this method performs
well.

The second improvement, due to Buchmann and Schmidt,28 is also based
on the baby-step giant-step method and eliminates the exponential depen-
dence on l, resulting in a complexity of O(

√|Gl|Δε). The main idea here is,
instead of the doubling strategy used by Buchmann, Jacobson, and Teske, to
use Terr’s method—in particular, Lemma 7.17 as stated in our discussion of
Buchmann and Vollmer’s method for computing RΔ in Chapter 7. Using this
method allows the sizes of the sets R and Q to be balanced better, thereby
eliminating the exponential complexity worst case. Although of great interest
in terms of complexity, empirical results of Ramachandran29 indicate that,
for imaginary quadratic fields, the algorithm of Buchmann, Jacobson, and
Teske is in the majority of cases faster due to the extra overhead required to
balance the sizes of the sets R and Q in the Buchmann-Schmidt algorithm.
However, it is possible that the Buchmann-Schmidt algorithm may have some
advantages when applied to real quadratic fields, where groups of the form
C(2)× · · · × C(2) occur more frequently.

The main drawback of both of these methods is that they require storage
proportional to

√|Gl| due to the fact that they employ variations of the baby-
step giant-step method. Clearly, this storage requirement becomes a limiting
factor for large discriminants. Teske30 described an algorithm that uses a
variation of Pollard’s rho algorithm to find the required relations. The result
is a probabilistic algorithm for which the expected number of operations is
O(

√|Gl|Δε) that requires constant storage at the cost of additional overhead
for minimizing the coefficients of the relations returned.

In the case of imaginary quadratic fields, any of these strategies can be
applied directly, as equivalence testing is easy. When applied to real quad-
ratic fields, it is necessary to incorporate a baby-step giant-step strategy for
equivalence testing, essentially using a similar method to that described above

256 10 Some Computational Techniques

for computing h1. To the best of the authors’ knowledge, no such method, in
particular based on the Buchmann-Jacobson-Teske or Buchmann-Schmidt al-
gorithms, has been described and analyzed for real quadratic fields. However,
a simple strategy involving such an extension of the Buchmann-Jacobson-
Teske algorithm was employed by Jacobson,31 and such an algorithm should
be fairly straightforward to develop and analyze. Generalizing Teske’s prob-
abilistic method to incorporate equivalence testing in the real quadratic case
seems to be much more difficult, due to the complications related to equiva-
lence testing.

The second issue, determining when we have Gl = ClΔ, is resolved using,
once again, the analytic class number formula. We compute an approximation
h∗ of hΔ such that h∗ < hΔ < 2h∗; that is, no other divisor or multiple of
hΔ lies between h∗ and 2h∗. This is done by computing an approximation
of L(1, χ) with error less than

√
2 and applying the analytic class number

formula. More specifically, we compute L(1, χ) = exp(S(Q,Δ)) using (10.1)
such that |L(1, χ)−L(1, χ)| < √2. In order to ensure that our approximation
has the required accuracy, we need to select Q such that A(Q,Δ) < log

√
2,

using the table of constants given by Bach.32 Then Düllmann33 showed that

h∗ =

√
2 |Δ|
π

L(1, χ) (10.19)

suffices for the imaginary case and Abel34 showed that

h∗ =

√
Δ

2
L(1, χ) (10.20)

suffices for the real case. As soon as |Gl| > h∗, we know that Gl = ClΔ, as Gl

is always guaranteed to be a subgroup of ClΔ.
Note that this method will only compute the class group uncondition-

ally if the accuracy of the approximation of L(1, χ) does not depend on
the ERH. Thus, if we use Bach’s method for the approximation, we ob-
tain an algorithm which computes the class group deterministically in time
O(h1/2

Δ Δε) = O(Δ1/4+ε) for which the correctness of the output depends on
the ERH. Using unconditionally correct approximations, the fastest of which
is due to Louboutin,35 results an algorithm with complexity O(Δ1/2+ε) where
the running time is dominated by the cost of computing the approximation.36

In all these cases, the complexity results require the assumption of the GRH
to ensure, via Bach’s theorem, that the number of prime ideals required to
generate the class group is O(log2 |Δ|).

10.5 Numerical Results

The methods described above have been used for a number of large-scale
tabulations of class numbers and class groups of quadratic fields. We will
highlight a few of the most recent results in this area below.

10.5 Numerical Results 257

10.5.1 Imaginary Quadratic Fields

One of the pioneers in tabulating class groups of imaginary quadratic fields is
Buell, who, in a series of papers from 1976 to 1999, tabulated the class group
structures of all imaginary quadratic fields with discriminants less than 2.2×
109 in absolute value.37 The algorithm of enumerating all reduced ideals was
used to compute the class numbers, and the group structures were determined
by computing the structures of the p-Sylow subgroups38 for each prime p such
that p2 | hΔ. Thus, the class groups computed are all correct without assuming
any Riemann hypotheses such as the ERH.

The most recent efforts in this area are due to Jacobson, Ramachan-
dran, and Williams39 and Ramachandran40 in her masters thesis. Jacob-
son, Ramachandran, and Williams presented the results of a tabulation for
|ΔK| < 1011, and this bound is extended to 2×1011 by Ramachandran. In both
cases, the class groups are unconditionally correct and, in particular, do not
depend on the ERH. The main idea used to extend Buell’s tables was to use a
faster conditional algorithm, namely the generic algorithm of Buchmann, Ja-
cobson, and Teske mentioned above combined with a novel batch verification
algorithm applied as a postprocessing step. The result is a tabulation that
costs only O(Δ1/4+ε) operations per field as opposed to O(Δ1/2+ε).

The verification algorithm is based on an idea of Booker41 to use the
Eichler-Selberg trace formula,42 a formula relating the trace of the Hecke
operator Tn acting on the space Sk(Γ0(N), χ) of cusp forms of weight k, level
N, and character χ to a sum of class numbers of imaginary quadratic fields.
As the space S2(Γ0(1), 1) has dimension zero, the traces of the corresponding
Hecke operators are also zero, yielding an identity relating a sum of class
numbers to an easily computable expression.43

The idea for verifying a table of class numbers for all fundamental dis-
criminants with |ΔK| < B is to compute a sum involving the Hurwitz class
numbers44 H(Δ) =

∑
f hω(Δ/f2) for values of Δ = t2−4n for a fixed integer

n ≥ 1. The Eichler-Selberg trace formula tells us that this is equal to another
sum involving all divisors of n that can be computed rapidly. Thus, we simply
compute both parts of the identity and check whether they are equal. This
is done for sufficiently many n such that each class number in our table has
appeared in at least one identity, after which we know that all the computed
class numbers are correct. Note that the group structures will also be correct,
as the algorithm of Buchmann, Jacobson, and Teske correctly produces the
structure of some subgroup of ClΔ without assuming the ERH, so if the class
numbers are verified, these are also correct.

The version of the trace formula that we require is derived as follows.45

For Δ = ΔKf
2, where ΔK is fundamental, let

H(Δ) = hw(ΔK)K(Δ) (10.21)

denote the Hurwitz class number of the quadratic order OΔ, where

258 10 Some Computational Techniques

hw(Δ) =

⎧
⎪⎨

⎪⎩

hΔ if |Δ| > 4
1/2 if Δ = −4
1/3 if Δ = −3

and

K(Δ) =
∑

t|f
t
∏

q|t

⎛

⎝1−
(

Δ
q

)

q

⎞

⎠ .

Using results of Schoof and van der Vlugt46, we have equality

Tr(Tn) = A1 +A2 +A3 +A4 = 0 , (10.22)

where

A1 =
1
12
σ(n) ,

A2 = −1
2
H(−4n)−

√4n�−1∑

t=1

H(t2 − 4n) ,

A3 = −

⎛

⎜
⎜
⎝

∑

d|n
d<

√
n

d

⎞

⎟
⎟
⎠−

1
2
σ(n)

√
n ,

A4 =
∑

d|n
d ,

and σ(n) = 1 if n is a square and zero otherwise. Rearranging (10.22) gives
us

H(−4n) + 2
√4n�−1∑

t=1

H(t2 − 4n)

= 2

⎛

⎝
∑

d|n
d

⎞

⎠− 2

⎛

⎜
⎜
⎝

∑

d|n
d<

√
n

d

⎞

⎟
⎟
⎠− σ(n)

√
n+

1
6
σ(n) . (10.23)

To verify all the class numbers for discriminants Δ with |Δ| < B, we need
to verify that (10.23) is satisfied for a certain set of n values that ensures
every fundamental discriminant appears in (10.23) for at least one value of n.
One possibility is to use a preprocessing step to select an appropriate set of
n values, but this is somewhat costly.

A better approach is to evaluate (10.23) for 1 ≤ n ≤ X = �B/4	 by
summing both sides of (10.23), yielding the identity

10.5 Numerical Results 259

X∑

n=1

⎛

⎝H(−4n) + 2
√4n�−1∑

t=1

H(t2 − 4n)

⎞

⎠

=
X∑

n=1

⎛

⎜
⎜
⎝2

⎛

⎝
∑

d|n
d

⎞

⎠− 2

⎛

⎜
⎜
⎝

∑

d|n
d<

√
n

d

⎞

⎟
⎟
⎠− σ(n)

√
n+

1
6
σ(n)

⎞

⎟
⎟
⎠ . (10.24)

Clearly, every fundamental discriminant Δ with |Δ| ≤ B will occur at least
once in (10.24). The trick in making this efficient is to realize that we can count
precisely how many times a particular discriminant Δ, not necessarily funda-
mental, appears in (10.24). This allows us to rewrite (10.24) as a sum over
discriminants Δ where each discriminant appears exactly once, as opposed
to evaluating (10.23) separately for each value of n. If we define r(Δ,X) as
the number of different representations of Δ as t2 − 4n for integers t and n
satisfying 1 ≤ n ≤ X and 1 ≤ t ≤ �√4X	 [i.e., the number of times Δ appears
in (10.24)], then (10.24) can be rewritten as

⎛

⎜
⎜
⎝

∑

Δ≡0 (mod 4)
|Δ|≤4X

H(Δ)

⎞

⎟
⎟
⎠ + 2

⎛

⎜
⎜
⎝

∑

Δ≡0,1 (mod 4)
|Δ|≤4X

r(Δ,X)H(Δ)

⎞

⎟
⎟
⎠

=
X∑

n=1

⎛

⎜
⎜
⎝2

⎛

⎝
∑

d|n
d

⎞

⎠− 2

⎛

⎜
⎜
⎝

∑

d|n
d<

√
n

d

⎞

⎟
⎟
⎠− σ(n)

√
n+

1
6
σ(n)

⎞

⎟
⎟
⎠ . (10.25)

The first sum in the left-hand side accounts for representations of Δ of the
form Δ = t2 − 4n with t = 0. If is easy to verify47 that

r(Δ,X) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⌊�√4X +Δ�
2

⌋

if Δ ≡ 0 (mod 4)

⌊�√4X +Δ�+ 1
2

⌋

if Δ ≡ 1 (mod 4)

(10.26)

by counting the number of square values of 4n+Δ for 1 ≤ n ≤ X.
The verification algorithm consists of evaluating the left- and right-hand

sides of (10.25) separately and checking that they are equal. Equality will be
violated if one or more of the tabulated class numbers is incorrect. Due to the
nature of our algorithm for computing ClΔ, if the number we computed is not
equal to the class number, it is always a divisor of hΔ and hence less than or
equal equal to hΔ. Thus, any number of incorrect class numbers would cause
the left-hand side of (10.25) to be strictly less than the right-hand side, so if
(10.25) holds, we are able to unconditionally verify our results.

260 10 Some Computational Techniques

The right-hand side of (10.25) is evaluated by processing each value of n
separately, allowing for a trivial parallel implementation. The main computa-
tional task is computing the set of divisors of each n, Although this could be
done by factoring each value of n individually, it is more efficient to factor all
required values of n simultaneously using the Sieve of Eratosthenes.48

The left-hand side of (10.25) is evaluated by looping over all fundamental
discriminants ΔK with |ΔK| ≤ B, (i.e., every discriminant for which a class
number was tabulated). As (10.25) contains Hurwitz class numbers of funda-
mental and non-fundamental discriminants, we need to find, for each funda-
mental discriminant ΔK, all non-fundamental discriminants Δf = ΔKf

2 that
appear in (10.24). Thus, for every discriminant Δf such that |Δf | ≤ 4X for
1 ≤ f ≤ �√4X/ΔK�, we compute H(Δf) (using (10.21)) and r(Δf , X) (using
(10.26)) for each Δf and add the term 2r(Δf , X)H(Δf) to a running total.
We also add H(Δf) or each Δf ≡ 0 (mod 4) to account for the representation
of Δf = −4n. Note that it is also trivial to parallelize this step, by having
each processor handle a distinct interval of fundamental discriminants.

This method was used to compute all ClΔ for all fundamentalΔwith |Δ| <
2×1011, a total of 60792710179 fields.49 The total running time, using a cluster
of 256 2.4-GHz Xeon processors with 1 GB of RAM each, was roughly 2 weeks
for computing the class groups and 3 days for the verification. The data were
used to test a number of conjectures, including the relevant Cohen-Lenstra
heuristics from Chapter 7 and Littlewood’s bounds on L(1, χ) presented in
Chapter 9; not surprisingly, all the data support the truth of these conjectures.
In addition, following Buell, first occurrences of various “exotic” class groups
were recorded. Table 10.1 lists a few new examples discovered during this
tabulation of the smallest |Δ| for which ClΔ has p-rank equal to 3.

Table 10.1. Minimal Examples of Imaginary Quadratic Fields Q(
√

Δ) with p-Rank
Equal to 3

p Δ ClΔ

11 −23235125867 C(264) × C(11) × C(11)

13 −38630907167 C(1131) × C(13) × C(13)

19 −136073793499 C(190) × C(19) × C(19)

10.5.2 Real Quadratic Fields

There have been many efforts to tabulate class numbers and class groups of
real quadratic fields.50 The most recent effort for tabulating class groups is
due to Jacobson,51 for which ClΔ was computed for all Δ < 109. Lenstra’s
algorithm as described above was used to compute the regulators, and a gen-
eralization of the generic algorithm of Buchmann, Jacobson, and Teske men-
tioned above was used to compute the class groups. Unfortunately, as it is

10.5 Numerical Results 261

currently an open problem to devise a batch verification algorithm as used for
the imaginary case, the correctness of the class groups is conditional on the
ERH.

As in the class group tables of imaginary quadratic fields, the data were
used to test a variety of conjectures, including the Cohen-Lenstra heuristics
presented in Chapter 7 and Littlewood’s bounds on L(1, χ); all the data com-
pletely supported these conjectures. First occurrences of exotic class groups
were also recorded, including the smallest discriminant (Δ = 999790597) for
which the class group has 5-rank equal to 3 (ClΔ ∼= C(40)× C(5)× C(5)).

The most extensive tabulation of class numbers at the time of writing
this book is due to te Riele and Williams,52 for which all class numbers were
computed for quadratic fields Q(

√
p) of prime discriminant p ≡ 1 (mod 4)

and p < 2 × 1011. Versions of Lenstra’s and Shanks’ algorithms described
above were used to compute the regulators and class numbers, so the data
are conditional on the ERH. These algorithms were modified to make use
of an improvement to Bach’s L(1, χ) approximation algorithm and to take
advantage of the fact that for discriminants in this range, the approximations
obtained are usually quite close to the actual class number, thereby improving
the computation of a divisor of hΔ. The data were used to test the Cohen-
Lenstra heuristics involving only the class numbers (and not the class group
structures) as well as Hooley’s conjecture, and, as usual, the data supported
all the conjectures.

The tabulation of class numbers described by Jacobson, Lukes, and
Williams,53 although not as extensive as that of te Riele and Williams, is
noteworthy in that the data were applied to a few conjectures not considered
in the latter case. The authors computed all class numbers for real quadratic
fields with discriminant Δ < 108 and for prime discriminants less than 109.
Similar algorithms were used to compute the regulators and class groups, but
in addition to testing the Cohen-Lenstra heuristics and Hooley’s conjecture,
the data were applied to Littlewood’s bounds on L(1, χ) in order to provide ev-
idence in support of what is believed about the magnitude of RΔ, namely that
there exists an infinitude of real quadratic fields for which RΔ >

√
Δ log logΔ.

However, as in the case of te Riele and Williams, the correctness of the data
is conditional on the ERH.

Finally, we mention the numerical verification of the Ankeney-Artin-
Chowla (AAC) conjecture by van der Poorten, te Riele, and Williams.54 As
mentioned in §9.2, the AAC conjecture asserts that if (t+u

√
p)/2, t, u ∈ Z, is

the fundamental unit of Q(
√
p) for any prime p ≡ 1 (mod 4) , then p � u. This

conjecture was verified for all such p < 1011. For each prime p, a modification
of the first part of Lenstra’s algorithm was used to compute a multiple kRΔ

of RΔ = log2 εp. It was shown that in order to verify that p � u, it is sufficient
to verify that p � Y for εkΔ = (T + Y

√
p)/2 for any integer k not divisible by

p. Thus, for the values of p considered, if kR2 < 8p, then p � k and the dis-
tance kR2 = log2 ε

k
Δ can be used, using infrastructure techniques, to compute

u mod p and verify that it is not equal to zero.

262 10 Some Computational Techniques

The method used to approximate distances is a crucial component of any
algorithm using infrastructure computations in practice. One has to ensure
that sufficient accuracy is maintained to guarantee an accurate output, but,
at the same time, arithmetic with distances needs to be as fast as possible,
so excessive amounts of precision are undesirable. One possibility is to use
basic floating point arithmetic with as large a precision as necessary to ensure
the numerical stability of the results, but this method, although simple to
implement, is difficult to analyze in terms of the precision required. A variation
of this approach was introduced by te Reile and Williams and van der Poorten,
te Riele, and Williams for their tabulations mentioned above, in which base-2
logarithms are used for distances as opposed to base-e, allowing part of the
floating point arithmetic to be performed with integers. Another possibility
is to use explicit representations of the relative generators as opposed to their
logarithms, as in the algorithm of Buchmann and Vollmer55 for computing RΔ.
This method clearly does not suffer from problems with numerical accuracy,
but the amount of storage required is somewhat large and, unless great care
is taken, arithmetic with them is more time-consuming.

In the following chapters, we will explore two additional methods for repre-
senting and manipulating distances. The first of these, (f, p) representations, is
similar to that of van der Poorten, te Riele, and Williams but with extensions
that enable fairly easily derived error estimates, allowing the required preci-
sion guaranteeing accurate output to be determined explicitly. This method
will be used for cryptographic applications described in Chapter 14 and an
algorithm for unconditionally computing RΔ in Chapter 15. The second, com-
pact representations, is a method for explicitly representing and computing
with elements in a quadratic field Q(

√
Δ) in such a way that the bit length

of the representation is polynomial in logΔ. In addition to infrastructure
computations, this provides the capability of explicitly representing units and
solutions of Pell’s equation using polynomially many bits.

Notes and References 263

Notes and References

1[Len82].
2[JLW95].
3The constants A and B are found in [Bac95], Table 3.
4The proof presented here follows the exposition in [MW92a].
5See ß 2 of [JLW95] for a description of a method to compute S(Q, Δ).
6See [JLW95]. This method is based on ideas of Fung [Fun90] for pure cubic fields

but is easily adapted to real quadratic fields.
7[Sch83].
8[Sri98].
9The authors are unaware of any implementations of Srinivasan’s method [Sri98].

It would be interesting to compare its performance in practice to Lenstra’s algorithm
using Bach’s method for approximating L(1, χ).

10See, for example, [Bue76], [Bue87], and [Bue99].
11According to [MW92a], footnote 11, p. 273, the existence of this algorithm was

communicated to the authors of that paper by H.W. Lenstra, Jr. To the best of our
knowledge, a formal description has not appeared in the literature.

12[Sha71].
13[Boo06].
14For a complete description of Shanks’ algorithm for computing the class number

of an imaginary quadratic field, see [Sch83] or [Coh93].
15The first of these Lemmas is Lemma 8.1 of [MW92a]. The second is Lemma 8.2,

adapted to the situation where Bach’s method is used to approximate L(1, χ).
16This method, based on that proposed by Lenstra [Len82] and Schoof [Sch83], is

described by Mollin and Williams in [MW92a].
17See [Len82], [Sch83], and [Sri98] for some examples.
18[MW92a].
19[Sri98].
20[Bue89].
21[Bue76], [Bue87], and [Bue99].
22[Jac98].
23[JRW06] and [Ram06].
24See [Coh93] for definitions of the Hermite and Smith normal forms of an integer

matrix as well as algorithms to compute them.
25This is described in detail in [Hun74], Ch. 7 Appendix.
26See, for example, [Ram06].
27[BJT97].
28[BS05].
29[Ram06].
30[Tes98].
31[Jac98].
32[Bac95].
33[Dül91].
34[Abe94].
35[Lou02a].
36We will see in Chapter 15 an algorithm due to Booker for approximating L(1, χ)

unconditionally in time O(Δ1/4+ε), which, when combined with the methods in this

264 Notes and References

chapter, results in an algorithm for computing ClΔ unconditionally in the same
time.

37See [Bue76], [Bue87], and [Bue99].
38As described in [Bue89].
39[JRW06].
40[Ram06].
41A. Booker, private communication.
42[SvdV91], Theorem 2.2.
43This formula is also suggested for computing individual class numbers in

[Coh93].
44See [Coh93], Definition 5.3.6.
45[JRW06].
46The result follows from Theorems 2.2 and 2.5 of [SvdV91] with k = 2.
47See [Ram06].
48See, for example, [CP05], Section 3.2.
49See [Ram06] for details.
50See [MW92a] for a partial survey up to 1992.
51[Jac98].
52[tRW03].
53[JLW95].
54[vdPtRW01].
55[BV06] and [BV07], Section 10.2.

11

(f, p) Representations of O-ideals

11.1 Basic Concepts and Definitions

We assume in this chapter and the next that O is an order of K with positive
discriminant Δ. As we have seen in the previous chapter, we can greatly im-
prove the speed of determining RΔ when we make use of the infrastructure
technique of Shanks. Unfortunately, however, this requires that we compute
distances, and as such quantities are logarithms of quadratic irrationals, they
must be transcendental numbers.1 This means, of course, that we cannot
compute them to full accuracy but must instead be content with approxi-
mations to a fixed number of figures. When Δ is small, this is not likely to
cause many difficulties, but when Δ becomes large, we have no real handle on
how much round-off or truncation error might accumulate. Numerical analysts
pay a great deal of attention to this problem, but, frequently, computational
number theorists ignore it, hoping or believing that their techniques are suf-
ficiently robust that serious deviations of their results from the truth will not
occur. It must be admitted that this is usually what happens, but if a com-
putational algorithm is to produce a numerical answer that is to be formally
accepted as correct, it must contain within it the same aspects of rigour that
one would expect within any mathematical proof. This means that we must
provide provable bounds on the possible errors in our results.

In the procedures that we describe below,2 we deal with this problem of
error accumulation by making use of what we call (f, p) representations of
ideals.3 After defining these representations and deriving a number of their
properties, we will produce a number of core algorithms essential for our sub-
sequent work. Because of the fundamental importance of these procedures, we
will provide them in considerable detail in the Appendix. It must be empha-
sized that there are many other ways in which we could approach these same
processes; however, we have found through our experience in implementing
such techniques that the algorithms given below, however tedious, are the
most efficient means of producing the required output.4

266 11 (f, p) Representations of O-ideals

Suppose we are given some θ ∈ R+ and some p ∈ Z>0. There exists some
k, q, r ∈ Z such that

2k < θ ≤ 2k+1

and
�22p−kθ	 = 2pq + r ,

where −2p + 1 ≤ r ≤ 0. If we put η = �22p−kθ	 − 22p−kθ, then 0 ≤ η < 1 and

|22p−kθ − 2pq| = |r − η| ≤ |r|+ |η| < 2p − 1 + 1 = 2p .

Hence,
2pq < 22p−kθ + 2p ≤ 22p+1 + 2p

and
q < 2p+1 + 1 .

Since
2pq = 22p−kθ − r + η > 22p + η ≥ 22p ,

we also have q > 2p. Furthermore,

|22p−kθ − 2pq| < 2p < q .

It follows that for any θ ∈ R+ and p ∈ Z>0, there always exists some q, k ∈ Z

such that 2p < q ≤ 2p+1 and
∣
∣
∣
∣
2pθ

2kq
− 1

∣
∣
∣
∣ <

1
2p

.

In the case of θ = (a + b
√
D)/c, where a, b, c ∈ Z and θ �∈ Q, we can

compute �mθ	 (m ∈ Z>0) by assuming with no loss of generality that c > 0
and using ⌈

m(a+ b
√
D)

c

⌉

=

⌈
�m(a+ b

√
D)	

c

⌉

.

Since �m(a+ b
√
D)	 = ma+ �mb√D	, we are left with the problem of eval-

uating �d√D	 for d = mb. If d < 0, then �d√D	 = −�−d√D	 + 1; thus, we
may now assume that d > 0. We develop the simple continued fraction (SCF)
expansion of

√
D and compute Ai, Bi until Bi > d and 2 � i. In this case, we

have by (3.27) and (3.29),

0 <
Ai

Bi
−
√
D <

1
B2

i

.

Hence,

0 < d
Ai

Bi
− d
√
D <

d

B2
i

<
1
Bi

.

Since I = �dAi/Bi	 satisfies

11.1 Basic Concepts and Definitions 267

0 < I − d
√
D < 1− 1

Bi
+

1
Bi

= 1 ,

we have
�d
√
D	 = I .

Thus, since Bi ≥ Fi+1 > τ i−1, we can compute �mθ	 in O(log(m|b|)) steps in
the SCF expansion of

√
D. If �θ	 > 1, it is easy to find k from

2k < �θ	 ≤ 2k+1 .

If �θ	 ≤ 1, we find �θ−1	 and compute t such that

2t−1 ≤ �θ−1	 < 2t ;

in this case, k = −t.
Definition 11.1. Let p ∈ Z>0, f ∈ R with f ≥ 1 and let a be an O-ideal. An
(f, p) representation of a is a triple (b, d, k) where the following hold:

1. b is an O-ideal equivalent to a, d ∈ N with 2p < d ≤ 2p+1, k ∈ Z.
2. There exists a θ ∈ K with b = θa and

∣
∣
∣
∣
2p−kθ

d
− 1

∣
∣
∣
∣ <

f

2p
. (11.1)

An (f, p) representation of a is said to be reduced if b is a reduced O-ideal.
Note that (a, 2p+1,−1) or (a, 2p + 1, 0) is an (f, p) representation of a (θ = 1)
for any f ≥ 1. The symbol f here should not be confused with that used for
the conductor of O.

Although it is obvious by (11.1), it is nevertheless important to observe
that if (b, d, k) is an (f, p) representation of an O-ideal a, then it is also an
(f ′, p) representation of a for any f ′ ≥ f . By our earlier remarks, we see that,
given any f, θ ∈ R and p ∈ Z>0 such that f ≥ 1, there always exist k, d ∈ Z

such that 2p < d ≤ 2p+1 and
∣
∣
∣
∣
2pθ

2kd
− 1

∣
∣
∣
∣ <

f

2p
.

If f, p, k, and θ satisfy (11.1) and f < 2p, then

0 <
d

2p

(

1− f

2p

)

<
θ

2k
<

d

2p

(

1 +
f

2p

)

< 4 . (11.2)

Since

1 > 1−
(
f

2p

)2

=
(

1− f

2p

)(

1 +
f

2p

)

,

we see that

268 11 (f, p) Representations of O-ideals

∣
∣
∣
∣log

(
2pθ

2kd

)∣
∣
∣
∣ <

∣
∣
∣
∣log

(

1− f

2p

)∣
∣
∣
∣ .

Hence,

|p− log2 d+ log2 θ − k| <
∣
∣
∣
∣log2

(

1− f

2p

)∣
∣
∣
∣ . (11.3)

Since −1 ≤ p− log2 d < 0 and | log(1− f/2p)| is small when f is not too close
to 2p, we see that k ≈ log2 θ. When f/2p <

√
2 − 1, we can be more precise

than this. If we recall that 1 < d/2p ≤ 2 and take logarithms across (11.2),
we see that

log2

(

1− f

2p

)

< log2 θ − k < 1 + log2

(

1 +
f

2p

)

.

Since f/2p <
√

2− 1, we have

log2

(

1 +
f

2p

)

<
1
2
.

Also, 1− (f/2p)2 > 1/2, and this means that

− log2

(

1− f

2p

)

< 1 + log2

(

1 +
f

2p

)

<
3
2
.

Hence,

| log2 θ − k| <
3
2
. (11.4)

Thus, if we are given an (f, p) representation (b, d, k) of an unknown O-
ideal a, then 2k−pd is an approximation to the value of the (unknown) relative
generator θ of b with respect to a to accuracy f/2p, and p can be thought of
as the precision of the approximation. In working with reduced ideals we will
use k as our measure of distance.

Suppose we are given (b′, d′, k′) and (b′′, d′′, k′′), which are respectively an
(f ′, p) representation of a′ and an (f ′′, p) representation of a′′, where a′ and
a′′ are both O-ideals. We now consider the problem of finding f and (b, d, k),
a reduced (f, p) representation of a′a′′. We begin with the following result for
dealing with products of (f, p) representations.5

Theorem 11.2. Let (b′, d′, k′) be an (f ′, p) representation of an O-ideal a′

and let (b′′, d′′, k′′) be an (f ′′, p) representation of an O-ideal a′′. If d′d′′ ≤
22p+1, put d = �d′d′′/2p	 and k = k′+k′′. If d′d′′ > 22p+1, put d = �d′d′′/2p+1	
and k = k′+k′′+1. Then (b′b′′, d, k) is an (f, p) representation of the product
ideal a′a′′, where f = 1 + f ′ + f ′′ + 2−pf ′f ′′.

Proof. By the bounds on d′ and d′′ and the definition of d in the theorem, it
is easy to see that 2p < d ≤ 2p+1. By assumption, we may let b′ = θ′a′ and
b′′ = θ′′a′′ with θ′, θ′′ ∈ K≥0 and

11.1 Basic Concepts and Definitions 269

∣
∣
∣
∣
∣

2p−k′
θ′

d′
− 1

∣
∣
∣
∣
∣
<
f ′

2p
,

∣
∣
∣
∣
∣

2p−k′′
θ′′

d′′
− 1

∣
∣
∣
∣
∣
<
f ′′

2p
.

By (11.2) we get
(

1− f ′

2p

)(

1− f ′′

2p

)

<
22p−k′−k′′

θ′θ′′

d′d′′
<

(

1 +
f ′

2p

)(

1 +
f ′′

2p

)

.

If we put f∗ = f ′ + f ′′ + f ′f ′′/2p, then (1 + f ′/2p)(1 + f ′′/2p) = 1 + f∗/2p

and (1 − f ′/2p)(1− f ′′/2p) > 1− f∗/2p. Hence,

1− f∗

2p
<

22p−k′−k′′
θ′θ′′

d′d′′
< 1 +

f∗

2p
.

Suppose d′d′′ ≤ 22p+1. Since d = d′d′′/2p + η (0 ≤ η < 1), we get

1− f∗

2p
<

2p−kθ′θ′′

d− η < 1 +
f

2p

and
(

1− η

d

)(

1− f∗

2p

)

<
2p−kθ′θ′′

d
<

(

1− η

d

)(

1 +
f∗

2p

)

< 1 +
f∗

2p
.

Since d > η2p, we have
(

1− η

d

)(

1− f∗

2p

)

>

(

1− f

2p

)

,

and it follows that
1− f

2p
<

2p−kθ′θ′′

d
< 1 +

f

2p
;

since b′b′′ = θ′θ′′a′a′′, we get our result. The theorem follows in similar manner
when d′d′′ > 22p+1. ��

We can now use this result to produce the following algorithm.

Algorithm 11.1: NUMULT
Input: (b′, d′, k′), (b′′, d′′, k′′), p, where (b′, d′, k′) is a reduced (f ′, p) rep-

resentation of an invertible O-ideal a′ and (b′′, d′′, k′′) is reduced (f ′′, p)
representation of an invertible O-ideal a′′. Here,

b′ =

[
Q′

r
,
P ′ +

√
D

r

]

, b′′ =

[
Q′′

r
,
P ′′ +

√
D

r

]

, Q′ ≥ Q′′ > 0.

Output: A reduced (f, p) representation (b, d, k) of a′a′′, where

b =

[
Q

r
,
P +

√
D

r

]

,

(P +
√
D)/Q > 1, −1 < (P −√D)/Q < 0, k ≤ k′ + k′′ + 1, f = f∗ + 17/8

with f∗ = f ′ + f ′′ + 2−pf ′f ′′. (Optional output: a, b ∈ Z, where ν =
(a+ b

√
D)/r ∈ O, and b = νb′b′′/(N(b′)N(b′′)).)

270 11 (f, p) Representations of O-ideals

11.2 w-Near Representations

A reduced (f, p) representation (b, d, k) of an O-ideal a is said to be w-near
for some w ∈ Z≥0 if the following conditions hold:

1. k < w.
2. If ρ(b) = ψb, b1 = b, and b2 = ρ(b1) (= ψb), then there exist integers d′

and k′ with k′ ≥ w, 2p < d′ ≤ 2p+1 such that
∣
∣
∣
∣
∣

2p−k′
θψ

d′
− 1

∣
∣
∣
∣
∣
<

f

2p
.

If (b, d, k) is a w-near (f, p) representation of some O-ideal a and f is
not too large, then the parameters θ and k will not be far from 2w and w,
respectively. We can be more precise about this in the following lemma.

Lemma 11.3. Let (b, d, k) be a w-near (f, p) representation of some O-ideal
a with p > 4 and f < 2p−4. If θ and ψ have the meaning assigned to them
above, then

15N(b)
16
√
Δ

<
15

16ψ
<

θ

2w
<

17
16

and 0 > k − w > − log2

(
34ψ
15

)

.

Proof. By (11.1) and Condition 2 we have

1− f

2p
<

2p−kθ

d
< 1 +

f

2p
, 1− f

2p
<

2p−k′
θψ

d
< 1 +

f

2p
.

Since k < w and d ≤ 2p+1, we get 2k−pd ≤ 2w−p−1 · 2p+1 = 2w; hence

θ

2w
<

2k−pd

2w

(

1 +
f

2p

)

< 1 +
2p−4

2p
=

17
16

. (11.5)

Also, since k′ ≥ w and d′ > 2p, we get 2k′−pd′ > 2w and

θψ

2w
> 1− 2p−4

2p
=

15
16

. (11.6)

From (3.33) we have
N(b)ψ <

√
Δ ;

hence,
15

16ψ
>

15
16
N(b)√
Δ

.

By (11.5) and (11.6) we have

2−k+w <
2−pd2w

θ

(

1 +
f

2p

)

<
34
15
ψ .

11.2 w-Near Representations 271

Hence,

0 > k − w > − log2

(
34ψ
15

)

.

��
Corollary 11.3.1. Under the conditions of Lemma 11.3, we have

15
16
√
Δ
<

θ

2w
<

17
16

and 0 > k − w > − log2

(
34
15

√
Δ

)

.

Furthermore, if a is a reduced ambiguous O-ideal and b ∈ R, b ≥ 1, then

θ >
15
16b

and w − k < log2

(
34
15
b

)

with probability approximately 1− log2(1 + b−1).

Proof. The first set of inequalities follows from 1 < ψ <
√
Δ. In the second

case, we have ψ = ψj in the continued fraction expansion of (P +
√
D)/Q,

where a = [Q/r, (P +
√
D)/r]. By Theorem 5.21, we have ψj = φn+1−j , where

n is the period length of the continued fraction. By the Gauss-Kuz’min the-
orem (Theorem 3.18), the probability that ψi > b for any b ≥ 1 is about
log2(1 + b−1). Hence, ψj ≤ b with approximate probability 1− log2(1 + b−1),
in which case θ/2w > 15/16ψ ≥ 15/16b and w − k < log2(34ψ/15) ≤
log2(34b/15). ��
For example, setting b = 60/17 = 3.529 . . . , we would expect that θ/2w >
17/64 and w − k ≤ 2 about 64% of the time.

If (b, d, k) and (c, e, h) are two w-near (f, p) representations of some O-
ideal a, it is not necessarily the case that b = c. However, we can provide the
following theorem.

Theorem 11.4. Let (b, d, k) and (c, e, h) be two w-near (f, p) representations
of some O-ideal a with p > 4 and f < 2p−4. Then

b ∈ {
ρ−2(c), ρ−1(c), c, ρ(c), ρ2(c)

}
.

Proof. Since c and b are equivalent reduced O-ideals, by the results in §5.3
we must have c = ρi(b) = bi+1 = θi+1b1 for b1 = b. Also, ρ(b) = ψ1b1 and
ρ(c) = bi+2 = ψi+1bi+1. By the definition of an (f, p) representation, we have
θ, γ ∈ K, where θ, γ > 0, b = θa, and c = γa. Furthermore, by Lemma 11.3

15
16ψ1

<
θ

2w
<

17
16

(11.7)

and
15

16ψi+1
<

γ

2w
<

17
16

. (11.8)

272 11 (f, p) Representations of O-ideals

Since c = (θi+1θ/γ)c, we must also have

εjΔ =
θi+1θ

γ
,

where εΔ = θn+1, ρn(b) = b and n is positive and minimal.
We may assume that i < n; suppose 3 ≤ i ≤ n− 3. We get

εjΔ =
θψ1

γ
(ψ2 · · ·ψi) >

2θψ1

γ

by Proposition 3.16. By (11.7) and (11.8), we get θψ1/γ > 15/17; hence,
εjΔ > 1. Also, by (11.7) and (11.8),

εjΔ =
θi+2θ

ψi+1γ
<

17
15
θn−1 =

17
15

θn+1

ψn−1ψn
<

17
30
εΔ < εΔ .

However, 1 < εjΔ < εΔ is impossible; hence, i ∈ {2, 1, 0, n−2, n−1}. It follows
that

b ∈ {
ρ−2(c), ρ−1(c), c, ρ(c), ρ2(c)

}
.

��
Very frequently, however, it turns out that b = c. Some explanation for

this is provided in the next theorem.

Theorem 11.5. Let (b, d, k) and (c, e, h) be two w-near reduced (f, p) repre-
sentations of an O-ideal a. Suppose (ρ(b), d′, k′) and (ρ(c), e′, h′) (h′, k′ ≥ 0)
are also (f, p) representations of a. If

min
{
e′

d
,
d′

e

}

≥ 1
2

+
f

2p − f , (11.9)

then b = c.

Proof. There must exist θ1, θ2 ∈ K such that b = θ1a and c = θ2a; hence,
b = (θ1/θ2)c. Furthermore,

d2k

2p

(

1− f

2p

)

< θ1 <
d2k

2p

(

1 +
f

2p

)

,

e2h

2p

(

1− f

2p

)

< θ2 <
e2h

2p

(

1 +
f

2p

)

.

Also, k, h < w, 2p < e, and d ≤ 2p+1. If b �= c, then θ1 �= θ2. Suppose θ1 > θ2.
Now, ρ(c) = (ψ)c and therefore θ1 ≥ ψθ2; but

e′2h′

2p

(

1− f

2p

)

< ψθ2 <
e′2h′

2p

(

1 +
f

2p

)

.

11.2 w-Near Representations 273

Hence,

d2k

2p

(

1 +
f

2p

)

>
e′2h′

2p

(

1− f

2p

)

,

2k−h′
>
e′

d

(
1− f/2p

1 + f/2p

)

,

and
e′

d
< 2k−h′

(
1 + f/2p

1− f/2p

)

≤ 1
2

(
1 + f/2p

1− f/2p

)

=
1
2

+
f

2p − f .

Similarly, if θ1 < θ2, then

d′

e
<

1
2

+
f

2p − f .

��
Since 1/2 < e′/d and d′/e < 2, we would certainly expect (11.9) to hold

very frequently, particularly when f is significantly smaller than 2p. We can
justify this statement by using the following argument.

Theorem 11.6. Let μ ∈ R such that 1/2 ≤ μ < 1, a ∈ Z>0 and S = {a+ 1,
a+ 2, . . . , 2a}. If i and j are selected at random from S, the probability that

i/j > μ (11.10)

is given by

P := Pr
(
i

j
> μ

)

= 3− 2μ− (2μ)−1 + γ , (11.11)

where |γ| < 3/a.

Proof. We first observe that there are a2 possible pairs such that i, j ∈ S. If
T ⊆ S × S such that for (i, j) ∈ T , we have (11.10); then P = |T |/a2. Select
any j ∈ S. If �μj� < a, then any i ∈ S satisfies (11.10). If �μj� ≥ a, the values
of i ∈ S for which (11.10) holds are

�μj�+ 1, �μj�+ 2, . . . , 2a .

It follows that

|T | = a

2a∑

	μj
<a
j=a+1

1 +
2a∑

	μj
≥a
j=a+1

(2a− �μj�) . (11.12)

Let N denote the maximum value of j ∈ Z such that �μj� < a. Clearly, we
may write N = a/μ− η, and it is easy to show that 0 < η ≤ 1. We can now
write (11.12) as

274 11 (f, p) Representations of O-ideals

|T | = a(N − a) + 2a(2a−N)−
2a∑

j=N+1

�μj� . (11.13)

Since �μj� = μj − ηj and 0 ≤ ηj < 1, we get

2a∑

i=N+1

�μj� = μ
2a∑

j=N+1

j −H ,

where H =
∑2a

j=N+1 ηj . Thus, 0 ≤ H < 2a−N and

2a∑

j=N+1

j =
2a(2a+ 1)

2
− N(N + 1)

2
.

If we substitute these results back into (11.13), we get

|T | = 3a2 − aN − 2μa2 − μa+ μN2/2 + μN/2 +H .

Replacing N by a/μ− η, we get

|T | = 3a2 − a2

2μ
− 2μa2 + γa ,

where |γ| < 3. ��
Put a = 2p, g = f/(2p−f), f < 2p−4, and μ = 1/2+g. Then 0 < g < 1/15.

If we assume that for a large number of (f, p) representations of ideals in O,
the values for e, d, e′, and d′ are randomly distributed in S, then6

Pr
(
e′

d
>

1
2

+ g

)

= Pr
(
d′

e
>

1
2

+ g

)

.

Also, if 2p is much larger than 3, we get by Theorem 11.6 that

Pr
(
e′

d
>

1
2

+ g

)

≈ 3− (1 + 2g)− (1 + 2g)−1

= 3− (1 + 2g)− (1− 2g + 4g2 − 8g3 + · · ·)
≈ 1− 4g2 .

Hence,

Pr
(

min
{
e′

d
,
d′

e

}

>
1
2

+ g

)

≈ (1− 4g2)2 ≈ 1− 8g2 .

When g is small, this probability is very close to 1.
We also have an algorithm for producing a w-near representation for an O-

ideal a, given a reduced (f, p) representation (b, d, k) of a. We will assume that
b = [Q/r, (P +

√
D)/r], where (P +

√
D)/Q > 1 and −1 < (P −√D)/Q < 0.

11.3 Exponentiation of Ideals and Computation of a[x] 275

Algorithm 11.2: WNEAR
Input: (b, d, k), w, p, where (b, d, k) is a reduced (f, p) representation of some

O-ideal a. Here b = [Q/r, (P+
√
D)/r], where P+�√D� ≥ Q, 0 ≤ �√D�−

P ≤ Q.
Output: (c, g, h) a w-near (f +9/8, p) representation of a. (Optional output:

a reduced (f + 9/8, p) representation (ρ(c), g′, h′) of a.)

11.3 Exponentiation of Ideals and Computation of a[x]

In this section we will first develop an algorithm, EXP, to determine, given
an invertible O-ideal a, a w-near representation (b, d, k) of an for a positive
integer n. In the case of computing b ≡ an (mod m), where a, b,m, n ∈ Z>0,
we can put

n = b02k + b12k−1 + · · ·+ bk

(b0, b1, . . . , bk ∈ {0, 1}). If s0 = b0 = 1 and si+1 = 2si + bi+1, then sk = n. We
let ri ≡ asi (mod m); then

ri+1 ≡ asi+1 = a2si+bi+1 = abi+1r2i (mod m) .

Hence,

ri+1 =
{
r2i (mod m) when bi+1 = 0
ar2i (mod m) when bi+1 = 1 .

Thus, we can compute b ≡ rk (mod m) in O(k) = O(log n) elementary arith-
metic operations.7

We can do the same thing with ideals, but we use ideal reduction as op-
posed to reduction modulo m. This, of course, returns us to the problem of
ideal multiplication, which we have discussed in §5.4. We can now incorpo-
rate the previous two algorithms into one operation, which on input of two
w-near representations outputs a w-near representation of the product of the
two ideals represented by the inputs.

Algorithm 11.3: WMULT
Input: (b′, d′, k′), (b′′, d′′, k′′), w, p where (b′, d′, k′) is a w-near (f ′, p) repre-

sentation of an invertible O-ideal a′ and (b′′, d′′, k′′) is a w-near (f ′′, p)
representation of an invertible O-ideal a′′. Here b′ = [Q′/r, (P ′ +

√
D)/r],

b′′ = [Q′′/r, (P ′′ +
√
D)/r].

Output: A w-near (f∗ + 13/4, p) representation (c, g, h) of a′a′′ with f∗ =
f ′+f ′′+2−pf ′f ′′. (Optional output: a w-near (f∗+13/4, p) representation
(ρ(c), g′, h′) of a.)

1: if Q′ ≥ Q′′ then
2: (b, d, k) = NUMULT((b′, d′, k′), (b′′, d′′, k′′), p)
3: else

276 11 (f, p) Representations of O-ideals

4: (b, d, k) = NUMULT((b′′, d′′, k′′), (b′, d′, k′), p)
5: end if
6: (c, g, h) = WNEAR((b, d, k), w, p).

(((c, g, h), (ρ(c), g′, h′)) = WNEAR((b, d, k), w, p).)

From this point forward we will regard the addition, subtraction, compari-
son, multiplication, and division of integers of O(p+log2Δ) bits to be elemen-
tary operations. After step 1 of WMULT, we have k ≤ k′ + k′′ + 1 ≤ 2w − 1.
Also, k ≥ k′ + k′′ − t, where t = O(log μ) = O(logΔ) by (5.45). Hence,
k′ + k′′ − k = O(logΔ). Since by Lemma 11.3 and (3.33), w − k′ = O(logΔ)
and w − k′′ = O(logΔ), we find that

−w < w − k < −w +O(logΔ) .

It follows that WMULT will execute in O(max{w, logΔ}) elementary opera-
tions.

Clearly, there are any number of possible selections for a value of w in
WMULT. If we select w such that

2w−1 < Δ1/4 < 2w , (11.14)

then by (5.47) we expect | log2 μ−w| to be small much of the time NUMULT
is executed and, therefore, |k−w| will be small much of the time. This follows
on noting that after NUMULT is executed,

k ≈ k′ + k′′ − log2 μ

≈ k′ + k′′ − w
≈ w + w − w = w .

In fact, we have discovered by empirical studies that the amount of time
needed to find a w-near reduced representation (b, d, k) for this value8 of w
from the result produced by NUMULT takes between 10% and 18% of the
time required for NUMULT to execute.

We can now use the standard binary exponentiation technique to do “ex-
ponentiation” on w-near (f, p) representations.

Algorithm 11.4: EXP
Input: (b0, d0, k0), n, w, p, where n ∈ N and (b0, d0, k0) is a w-near (f0, p)

representation of some invertible O-ideal a.
Output: A w-near (f, p) representation of (b, d, k) of a for suitable f ∈ [1, 2p).
1: Compute the binary representation of n, say n =

∑l
i=0 bi2

l−i (b0 = 1, bi ∈
{0, 1} for 1 ≤ i ≤ l, l = �log2 n�).

2: Set (b, d, k) = (b0, d0, k0).
3: for i = 1 to l do
4: (b, d, k) = WMULT((b, d, k), (b, d, k), w, p).
5: if bi = 1 then

11.3 Exponentiation of Ideals and Computation of a[x] 277

6: (b, d, k) = WMULT((b, d, k), (b0, d0, k0), w, p).
7: end if
8: end for

By our previous remark, we see that EXP executes in O(log n logΔ) ele-
mentary operations when w < logΔ.

There remains the problem of determining an upper bound on f after EXP
has executed. We will require a preliminary lemma.

Lemma 11.7. Let a0 ∈ Z≥0, p, k ∈ Z>0, and c, h ∈ R+ with p ≥ 8 and
h ≥ max{16, k}. Define the sequence {ai} (i ≥ 0) by

ai = 2c+

((

1 +
1
h

)2

+
c

2p

)

a0 +
(

2 +
1
h

)

ai−1 (i = 1, 2, 3, . . . , k) .

Then

ak < 2ke1/2

(
(528 + c)a0

256
+ 2c

)

.

Proof. Set g = 2 + h−1 (> 2). It is easy to verify that a closed form for ai is
given by

ai =
(

gi+1 − g + 1 +
gi − 1
g − 1

c

2p

)

a0 + 2c
gi − 1
g − 1

for i ∈ Z>0. Now, (gi − 1)/(g − 1) < gi and, thus, the multiple of a0 in the
above formula is bounded above by gi+1 + cgi/256. Since h ≥ 16, we get

ai < gi

((

2 +
1
16

+
c

256

)

a0 + 2c
)

= 2i

(

1 +
1
2h

)i (528 + c

256
a0 + 2c

)

< 2i exp
(
i

2h

)(
(528 + c)a0

256
+ 2c

)

.

Since h ≥ k, we have exp(i/2h) ≤ e1/2 for i ≤ k. ��
Theorem 11.8. Suppose p ≥ 8 and h ∈ R+ with h ≥ max{16, log2 n}. Put
m = 3.43f0 + 10.72. If hmn < 2p, then the value of f after EXP has executed
satisfies f < mn and, therefore, f < 2p/h.

Proof. After the ith iteration of step 3 of EXP, put bi = b, di = d, and ki = k.
If we set s0 = b0 = 1 and si = 2si−1 + bi for 1 ≤ i ≤ l, then (bi, di, ki) is a
w-near (fi, p) representation of asi where c = 13/4 and

fi = c+ f0 +
(

c+ 2fi−1 +
f2

i−1

2p

)

+ f0

(
c+ 2fi−1 + f2

i−1/2
p
)

2p
(11.15)

278 11 (f, p) Representations of O-ideals

for i = 1, 2, . . . , l. We can rewrite this difference equation as

fi = 2c+

((

1 +
fi−1

2p

)2

+
c

2p

)

f0 +
(

2 +
fi−1

2p

)

fi−1 . (11.16)

Put f = fl. Since sl = n, algorithm EXP produces a w-near (f, p) represen-
tation (bl, dl, kl) of an.

Put a0 = f0. If we define ai (i = 1, 2, . . . , l) as in Lemma 11.7, then since
h ≥ l, we have al < m2l ≤ mn. Since ai is a strictly increasing function of i
and hmn < 2p, we must have hai < 2p for i = 0, 1, 2, . . . , l. Hence, hf0 < 2p,
and it follows inductively from (11.16) that fi ≤ ai (i = 0, 1, 2, . . . , l). Hence,
fi < mn and hfi < 2p (i = 0, 1, 2, . . . , l). In particular, f < mn and hf < 2p.

��
Suppose we are given p and f wth f < 2p−4. Let a (= a1) be any reduced

O-ideal. By our results in Chapter 5, we can use the SCF expansion of (P +√
D)/Q, where a = [Q/r, (P +

√
D)/r], to produce a sequence of reduced

ideals
a1, a2, a3, . . . , aj, . . . , (11.17)

with aj = θja1 (j = 1, 2, . . .). We may also assume that for each aj we have
dj , kj ∈ Z such that (aj , dj , kj) is a reduced (f, p) representation of a. Since

∣
∣
∣
∣
2pθj

2kjdj
− 1

∣
∣
∣
∣ <

1
16

and 2p < dj ≤ 2p+1, we get

15
16

2kj < θj <
17
8

2kj . (11.18)

By Proposition 3.16, we have θj+2 > 2θj, θj+i > 3θj (i ≥ 3). Thus, if i ≥ 3,
then

2kj+i >
8
17
θj+i >

8 · 3
17

θj > 2kj .

Hence, kj+i > kj when i ≥ 3. If j = 2, then

2kj+2 >
15
17

2kj > 2kj−1 ;

consequently, kj+2 ≥ kj .
Now suppose (aj , dj , kj) and (ah, dh, kh) are both w-near (f, p) represen-

tations of a. Since aj+1 = ρ(aj) and ah+1 = ρ(ah), we must have kj < w,
kj+1 ≥ w, and kh < w, kh+1 ≥ w. We will assume with no loss of generality
that h > j. Clearly, we cannot have h = j + 1. If h = j + i, where i ≥ 3, then

kh = kj+1+i−1 ≥ kj+1 ≥ w ,

11.3 Exponentiation of Ideals and Computation of a[x] 279

a contradiction. Thus, if we have distinct O-ideals aj and ah such that both
(aj , dj , kj) and (ah, dh, kh) are w-near (f, p) representations of a, then |h−j| =
2. It follows that there can be at most two distinct O-ideals which can occur
in any w-near (f, p) representation of a. We will use the notation a[w] to
denote any one of these ideals if there are two; certainly, there must be at
least one such ideal. That a[w] need not be unique will not be a problem in
our applications of this concept.9

We will now develop an algorithm that can be used to compute an O-ideal
a[x] in the important special case when a = (1) and x is a positive integer.
Our first algorithm ADDXY gives us the ability to determine, given O-ideals
a[x] and a[y], an O-ideal a[x+ y]. This will enable us to jump quickly through
the cycle of reduced principal ideals in O.

Algorithm 11.5: ADDXY
Input: (a[x], d′, k′), (a[y], d′′, k′′), x, y, p, where (a[x], d′, k′) and (a[y], d′′, k′′)

are respectively x- and y-near (f ′, p) and (f ′′, p) representations of the
O-ideal a = (1).

Output: (a[x + y], d, k), an (x + y)-near (f, p) representation of a, where
f = 13/4 + f ′ + f ′′ + f ′f ′′/2p.

1: Put (c, g, h) = NUMULT((a[x], d′, k′), (a[y], d′′, k′′), p).
2: Put (c′, g′, h′) = WNEAR((c, g, h), x+ y, p).
3: Put a[x+ y] = c′, d = g′, k = h′.

We remark here that after step 1 has executed, we have h ≤ k′ + k′′ + 1 ≤
x+ y− 1. Thus, only case 1 of WNEAR need be executed in step 2. Also, by
Lemma 11.3 and (3.33), we may use the same reasoning as that employed in
the remark concerning the computational complexity of WMULT to deduce
that ADDXY will execute in O(logΔ) elementary operations. This is because
x+ y − h = O(logΔ) and h < x + y. Finally, it is important to observe that
since a = (1), we have a2 = a = (1); hence, a[x + y] as determined in the
algorithm is principal.

The next algorithm, AX, finds for a given x and the O-ideal a = (1), an
x-near (f, p) representation of a for a certain value of f .

Algorithm 11.6: AX
Input: x ∈ Z>0 and p ∈ Z>0.
Output: (a[x], d, k) an x-near (f, p) representation of a = (1) for a suitable

f ∈ [1, 2p).
1: Put l = �log2 x� and compute the binary representation of x, say

x =
l∑

i=0

bi2l−i

(b0 = 1, bi ∈ {0, 1} for 1 ≤ i ≤ l).

280 11 (f, p) Representations of O-ideals

2: Let Q = r, P = r�(�√D� − r + 1)/r� + r − 1, b = [1, (P +
√
D)/r],

d = 2p + 1, k = 0, i = 0, s0 = 1.
3: Put (b0, d0, k0) = WNEAR((b, d, k), 1, p)
4: while i < l do
5: Put (bi+1, di+1, ki+1) = ADDXY((bi, di, ki), (bi, di, ki), si, si, p).
6: Put si+1 = 2si

7: if bi+1 = 1 then
8: Put si+1 = 2si + 1 and

(bi+1, di+1, ki+1)←WNEAR((bi+1, di+1, ki+1), si+1, p) .

9: end if
10: i← i+ 1.
11: end while
12: Put a[x] = bl d = dl, k = kl.

Clearly, Algorithm AX will execute in O(log x logΔ) elementary opera-
tions. That the algorithm is correct follows easily by observing that

bj = a[sj] ∼ a (j = 0, 1, 2, . . . , l) .

As in the case of EXP, we must now find an upper bound on f . We do
this in the next theorem.

Theorem 11.9. Suppose p ≥ 8 and h ∈ R+ with h ≥ log2 x. Put m = 11.2.
If hmx < 2p, then the value of f after AX has executed satisfies f < mx and
therefore f < 2p/h.

Proof. After step 11.6, we see that (bi+1, di+1, ki+1) is an si+1-near (fi+1, p)
representation of a, where

fi+1 =
9
8

+
13
4

+ 2fi +
f2

i

2p
(1 ≤ i+ 1 ≤ l) (11.19)

and f0 = 1+9/8 = 17/8. We put f = fl. Since sl = x, algorithm AX produces
an x-near (f, p) representation (bl, dl, kl) of a. We now define a0 = f0, c = 37/8
and

ai+1 =
(

2 +
1
h

)

ai + c .

If g = 2 + 1/h, a closed-form representation for ai is given by ai = gia0 +
c(gi − 1)/(g − 1); hence, an analysis similar to that employed in the proof of
Lemma 11.7 yields

al < gl(a0 + c) < 2le1/2(a0 + c) < 2lm ≤ mx ,

where m = 11.2. As in the proof of Theorem 11.8, we have hai < 2p (i =
0, 1, 2, . . . , l) and hf0 < 2p. Thus, by using induction on (11.19), we can show
that fi ≤ ai (i = 0, 1, 2, . . . , l). It follows that f < mn and hf < 2p. ��

11.3 Exponentiation of Ideals and Computation of a[x] 281

Suppose now that we are given some x ∈ R and a ∈ R≥0 such that

|x− log2 θj | ≤ a ,

where aj = θja1 in (11.17). If a is not too large, we would expect that if
ai = a[x] in (11.17), then i and j should be close in value. However, just how
close would they be? In order to answer this question we will begin by defining
c(m).

Definition 11.10. For a fixed m ∈ R, we define c(m) = max{m1,m2}, where
m1 and m2 are respectively the largest integers such that the Fibonacci num-
bers Fm1 and Fm2+1 satisfy:

Fm1 <
16
15

2m and Fm2+1 <
17
16

2m+1 .

Notice that m1 ≥ 0, m2 ≥ −1. For example, if m = −3/2 then m1 = 0,
m2 = −1, and c(−3/2) = 0. A short table of values for c(m) is given in
Table 11.1.

Table 11.1. Some Values of c(m)

m c(m)

≤ −2 0

−1 1

0 2

1 3

m c(m)

2 5

3 6

4 8

5 9

It is easy to show that if m′ ≤ m, then c(m′) ≤ c(m). We can also find an
upper bound on c(m).

Proposition 11.11. If m ≥ 1, then

c(m) < 3 +
3m
2

.

Proof. We have seen in §3.4 that if m ≥ 1, then Fm > τm−2 > (8/5)m−2.
Also, (8/5)3/2 > 2. Suppose that m1 ≥ 2.14 + (3/2)m. Then

Fm1 >

(
8
5

)m1−2

≥
(

8
5

)0.14 (8
5

)(3/2)m

>

(
8
5

)0.14

2m >
16
15

2m ,

which is impossible. Next, suppose m2 ≥ 2.61 + (3/2)m. Then

Fm2+1 >

(
8
5

)m2−1

>

(
8
5

)1.61

2(3/2)m =
(8/5)1.61

2
2(3/2)m+1 >

17
16

2m+1,

282 11 (f, p) Representations of O-ideals

which is also impossible. Thus, we must have

m1 < 2.14 +
3
2
m and m2 < 2.61 +

3
2
m

and, hence,

c(m) < 3 +
3
2
m .

��
We can now use c(m) to bound the value of |i− j|.

Theorem 11.12. Let x ∈ Z, where x ≥ 1. Suppose a, b ∈ R and

a < log2 θj − x < b .

If ai = a[x], then
j − c(b) ≤ i ≤ j + c(−a− 1) .

Proof. We must have
2x+a < θj < 2x+b . (11.20)

By Lemma 11.3 we know that

θi <
17
16

2x, θi+1 >
15
16

2x . (11.21)

By Proposition 3.16 when n ≥ 1 and i ≥ 0, we have

θi+n ≥ Fnθi+1 > Fn

(
15
16

)

2x .

By (11.21) and Definition 11.10, we find that for m = b,

θi+m1+1 > Fm1+1θi+1 > Fm1+1

(
15
16

)

2x > 2m+x = 2b+x > θj .

It follows that j < i+m1 + 1 ≤ i+ 1 + c(m). Hence, i ≥ j − c(b).
Also, if i > n, by Proposition 3.16, (11.20), and (11.21), we get for n ≥ 0

and m = −a− 1,

Fn+1θi−n ≤ θi <

(
17
16

)

2x =
(

17
16

)

2−a2x+a <

(
17
16

)

2m+1θj .

Putting n = m2 + 1 and noting that Fm2+2 > (17/16)2m+1, we get

θi−m2−1 < θj .

Thus, j > i−m2− 1 ≥ i− c(m)− 1 and i ≤ j+ c(−a− 1). If i ≤ n = m2 + 1,
then i ≤ c(m) + 1 ≤ j + c(−a− 1). ��

Notes and References 283

Notes and References

1This is an easy consequence of the Gelfond-Schneider Theorem. See, for example,
[Niv56], Ch. 10.

2Much of this material on (f, p) representations was developed in [JSW01] and
[JSW06b].

3This idea represents a refinement of the representations introduced in [HP00].
4Of course, we are assuming here that the values of our ideal norms are not so

large that Schönhage’s reduction algorithm would be of greater efficiency than the
simple reduction technique that we will employ. See the discussion at the beginning
of §5.2.

5This technique provides a somewhat less precise result on f than that given in
Theorem 5.1 of [JSW06b], but it is easier to present.

6Extensive numerical testing of this by the authors tends to support this assump-
tion.

7There is a lengthy literature on this problem containing many improvements
to this basic idea for fast exponentiation. For references, see [Gor98]. More recent
information can be found in [MS06] and [BS07]. Several of these techniques can also
be applied to the problem of exponentiating ideals, but we will only describe the
simplest of these here.

8The idea of using this value of w is an adaptation of an idea that occurs in a
similar context involving hyperelliptic curves in [JSS07a].

9The use of a[x] was introduced in [dHJW07], but we have adopted the notation
a[x] here instead of the a(x) used there in order to avoid functional notation which
would imply a unique a(x).

12

Compact Representations

12.1 Compact Representation of θj

As we have seen in Chapter 9 (cf. (9.26)), we would expect that

RK � Δ
1/2−ε
K

holds for a large proportion of all the real quadratic fields. It follows that for
such fields,

εΔ � exp(Δ1/2−ε
K

) .

If εΔ = (x+ y
√
Δ)/2, where x, y ∈ Z, then x = εΔ + εΔ, y = (εΔ − εΔ)/

√
Δ.

Also, since εΔ|εΔ| = 1 and εΔ > 1, we see that

x, y � exp(Δ1/2−ε) .

When Δ is large, this implies that x and y could be so enormous that it would
not be possible to write them out in conventional decimal representation.
Indeed, it is clear that the problem of doing so is of exponential complexity
in Δ1/2. For example, at the end of §3.3 we mentioned the 30-digit

D = 990676090995853870156271607886 .

By using the ideas mentioned in Chapter 10, it was shown1 that

RΔ = 4770372955851343.43 .

From this information, we see that if εΔ = (x + y
√
Δ)/2 with x, y ∈ Z,

then x, y > 102·1015
. This means that it would require over 6,000,000 books,

each of 1000 pages, of the same small format used by Nelson2 to record the
solution of the Cattle Problem, to write out x and y. However, it requires less
than one page to write εΔ as a compact representation.

In this chapter we define what is meant by a compact representation3 of a
quadratic integer α (> 1) and show how it can be computed when we are given

286 12 Compact Representations

an approximation to log2 |α| and a representation like (4.9) for the ideal (α)
in O. We will begin with the problem of representing some θ, where a[x] = (θ)
for some given x ∈ Z>0.

We next require two simple algorithms. The first of these, which will be
needed below, is a modification of WNEAR. WNEAR is executed on an O-
ideal b to produce an equivalent ideal c. In the case where k < w, EWNEAR
computes (c, g, h), a w-near representation of a and κ, where c = κb.

Algorithm 12.1: EWNEAR
Input: (b, d, k), w, p, where (b, d, k) is a reduced (f, p) representation of some

O-ideal a and k < w.
Output: (c, g, h) a w-near (f + 9/8, p) representation of a and a, b, where

N(b)κ = (a+ b
√
D)/r and c = κb (κ > 1).

Next, suppose we have O-ideals a, b, and c and N = N(b), M ∈ a ∩ Z,
where

Mb = γ1a, Nc = γ2b ,

and γ1, γ2 ∈ O. If

γ1 =
a1 + b1

√
D

r
, γ2 =

a2 + b2
√
D

r
,

where a1, b1, a2, b2 ∈ Z, then
Mc = γa ,

and γ = (a+ b
√
D)/r ∈ O. Indeed, γ = γ1γ2/N . The process of determining

γ, given γ1, γ2, and N , is given in the following algorithm. At this point we
will also start putting most of our algorithms in the body of this book rather
than in the Appendix.

Algorithm 12.2: IMULT

Input: γ1 = (a1 + b1
√
D)/r, γ2 = (a2 + b2

√
D)/r, N , where a1, b1, a2, b2 ∈ Z.

Output: γ, a, b ∈ Z, where γ = γ1γ2/N = (a+ b
√
D)/r.

1: Put

a = (a1a2 +Db1b2)/rN ,

b = (a1b2 + a2b1)/rN .

We can now employ these algorithms to produce a simple modification of
ADDXY.

Algorithm 12.3: EADDXY
Input: (a[x], d′, k′), (a[y], d′′, k′′), x, y, p, where (a[x], d′, k′), (a[y], d′′, k′′) are

respectively x (y)-near (f ′, p),(f ′′, p) representations of the O-ideal a =
(1).

12.1 Compact Representation of θj 287

Output: (a[x + y], d, k), a, b, where (a[x + y], d, k) is a x + y-near (f, p)
representation of a, f = 13/4 + f ′ + f ′′ + f ′f ′′/2p,

a[x+ y] =
(

λθ′θ′′

N(a[x])N(a[y])

)

a .

Here

λ =
a+ b

√
D

r
and a[x] = θ′a, a[y] = θ′′a .

1: Put ((c, g, h), a′, b′) = NUMULT((a[x], d′, k′), (a[y], d′′, k′′), p).
2: Put ((c′, g′, h′), a′′, b′′) = EWNEAR((c, g, h), x+ y, p).
3: Put a[x+ y] = c′, d = g′, k = h′,

(a, b) = IMULT(a′, b′, a′′, b′′, N(c)) .

In step 12.3, we use the optional output feature of NUMULT to find a′

and b′ where

c =
(

ν

N(a[x])N(a[y])

)

a[x]a[y]

and ν = (a′ + b′
√
D)/r ∈ O. In step 12.3 we find

c′ = κc ,

where κ = (a′′ + b′′
√
D)/r ∈ O. Hence,

λ =
νκ

N(c)
=
a+ b

√
D

r
∈ O

and

a[x+ y] = c′ =
(

λ

N(a[x])N(a[y])

)

a[x]a[y] = θa ,

where θ = λθ′θ′′/(N(a[x])N(a[y])). Also,
∣
∣
∣
∣
θ2p

2kd
− 1

∣
∣
∣
∣ <

f

2p
.

Suppose we are now given some integer x ≥ 1. With these routines we
can now produce an algorithm that will find a certain representation of some
θ ∈ O where a[x] = (θ) (a1 = a = (1)). This is again a modification of a
previous algorithm (AX).

Algorithm 12.4: CRAX
Input: x, p, where x ∈ Z>0 and 2p > 11.2xmax{16, log2 x}.
Output: (a[x], d, k), an x-near (f, p) representation of a = (1) where f <

2p−4 and a set of integer pairs (mi, ni) and Li ∈ Z>0, i = 0, 1, 2, . . . , l,
where l = �log2 x�.

288 12 Compact Representations

1: Compute the binary representation of x with

x =
l∑

i=0

bi2l−i, b0 = 1, bi ∈ {0, 1} (1 ≤ i ≤ l) .

2: Put

Q = r, P = r

⌊
�√D� − r + 1

r

⌋

+ r − 1, b =

[

1,
P +

√
D

r

]

,

d = 2p + 1, k = 0, i = 0, s0 = 1, L0 = 1.
3: Put ((b0, d0, k0),m0, n0) = EWNEAR((b, d, k), 1, p).
4: while i < l do
5: Put Li+1 = N(bi) and

((bi+1, di+1, ki+1),mi+1, ni+1)
= EADDXY((bi, di, ki), (bi, di, ki), si, si, p) .

6: Put si+1 = 2si.
7: if bi+1 = 1 then
8: Put si+1 ← si+1 + 1, N = N(bi+1), and

((bi+1, di+1, ki+1),m′, n′)
← EWNEAR((bi+1, di+1, ki+1), si+1, p) .

9: Put (mi+1, ni+1) = IMULT(mi+1, ni+1,m
′, n′, N).

10: end if
11: i← i+ 1.
12: end while
13: Put a[x] = bl, d = dl, k = kl.

Notice that CRAX will execute in O(log x logΔ) elementary operations.
As this algorithm executes, it finds reduced principal O-ideals bi = a[si] =

μia, where ∣
∣
∣
∣
2pμi

2kidi
− 1

∣
∣
∣
∣ <

f

2p
(i = 0, 1, 2, . . . , l) .

Since 2p > 11.2xmax{16, log2 x}, we know by Theorem 11.9 that f < 2p−4.
If we put λi = (mi + ni

√
D)/r, then

μi+1 =
(
λi+1

L2
i+1

)

μ2
i (i = 0, 1, 2, . . . , l− 1) (12.1)

where μ0 = λ0. Also, μi ∈ O and

|N(μi)| = N(a[si]) = N(bi) = Li+1 . (12.2)

12.1 Compact Representation of θj 289

Now, for any fixed i (1 ≤ i ≤ l), we must have some θj in the simple con-
tinued fraction (SCF) expansion of (P +

√
D)/r such that μi = θj . Also, by

Lemma 11.3,
15N(bi)
16
√
Δ

2si < θj <
17
16

2si . (12.3)

Hence, by (12.3), we have

15Li+1

16
√
Δ

2si < μi <
17
16

2si (i = 1, 2, 3, . . . , l) . (12.4)

Since, by (12.1),

λi =
L2

iμi

μ2
i−1

(i = 1, 2, 3, . . . , l) ,

we get

0 < λi <

(
16
√
Δ

15
2−si−1

)2
17
16

2si

=
16 · 17
152

Δ2si−2si−1

<
5
2
Δ .

Also, since

λi =
L2

iμi

μ2
i−1

and |μiμi| = Li+1, we get

|λi| =
Li+1μ

2
i−1

μi
<

16
√
Δ

15
2−si

(
17
16

)2

22si−1

≤ 172

15 · 16

√
Δ <

7
5

√
Δ .

We now define H(α) for α ∈ O to be max{|α|, |α|}. Notice that if α, β ∈ O,
then H(αβ) ≤ H(α)H(β). Also, since |N(α)| = |αα| ≥ 1, H(α) cannot be
arbitrarily small; in fact, H(α) ≥ 1. By our previous results we have

H(λi) <
5
2
Δ . (12.5)

Futhermore, since λi = (mi + ni

√
D)/r, we see that λi = (xi + yi

√
Δ)/2,

where xi = 2mi/r and yi = ni. It follows that

|xi|, |yi

√
Δ| < λi + |λi| < 5

2
Δ+

7
2

√
Δ (12.6)

for i = 1, 2, . . . , l. We also have

290 12 Compact Representations

15L1

16
√
Δ
< λ0 <

17
8

(s0 = 1)

and λ0|λ0| = N(b0) = L1. Thus, (12.5) and (12.6) also hold for i = 0.
If we define L0 = 1, from (12.1), we get

μj =
j∏

i=0

(
λi

L2
i

)2j−i

(j = 0, 1, 2, . . . , l) .

If we put di = Li+1 (i = −1, 0, 1, . . . , l), then

μj = λj

j−1∏

i=0

(
λi

di

)2j−i

(j = 0, 1, . . . , l) . (12.7)

Also, since di = Li+1 and Li+1 is the norm of a reduced O-ideal, we have
0 < di <

√
Δ. When j = l, we get sl = x, a[x] = bl = (μl); hence, a[x] = (θ),

where

θ = λ
l∏

i=0

(
λi

di

)2l−i

. (12.8)

(In this case, λ = dl.) Since l = �log2 x� and 2x < (16
√
Δ/15)θ, we find that

l = O(log2 log2 θ)

when θ > 16
√
Δ/15.

Hence, for any O and any θ such that (θ) = a[x] ∈ O, we can get a
representation (12.8) of θ with the following properties:

1. l = O(log log θ) for large θ.
2. λ, λi ∈ O, di ∈ Z (0 ≤ i ≤ l).
3. 0 < di ≤ Δ1/2, H(λ) = O(Δ1/2), and H(λi) = O(Δ) (0 ≤ i ≤ l).
4. Also, μj given by (12.7) is in O, |N(μj)| = dj , μj generates a reduced
O-ideal bj , where b0 = a[1] and d2

i+1b
2
i+1 = λi+1b

2
i (i = 0, 1, . . . , l − 1).

A representation (12.8) of θ satisfying the properties (1)–(4) above is an ex-
ample of a compact representation of θ. The total number of bits needed to
represent θ by this means is O(l log2Δ) = O(log log θ logΔ), which, for large
θ, is considerably smaller than the O(log θ) bits needed to represent θ in con-
ventional decimal representation. In the next section, we will produce the
definition of a compact representation for any γ ∈ O. In order to do this, we
will first show how to compute what we will call a compact representation of
γ.

12.2 Compact Representation of Quadratic Integers

Suppose we are given some c ∈ Z≥0, a reduced (f, p) representation (b, d, k)
of an O-ideal a, and a reduced O-ideal c such that if b = ai, then c = aj,
where

12.2 Compact Representation of Quadratic Integers 291

i ≤ j ≤ i+ c .

We can easily devise an algorithm, based on the SCF expansion of a quadratic
irrational, which will find (c, g, h), a reduced (f + 1/4, p) representation of a
and the quadratic integer λ ∈ O such that

N(b)c = λb .

Algorithm 12.5: FIND
Input: c ∈ Z≥0; (b, d, k) a reduced (f, p) representation of an O-ideal a

with b = ai = [Qi−1/r, (Pi−1 +
√
D)/r], where (Pi−1 +

√
D)/Qi−1 > 1,

−1 < (Pi−1 −
√
D)/Qi−1 < 0; c = [Qj−1/r, (Pj−1 +

√
D)/r] with

i ≤ j ≤ i+ c .

Output: (c, g, h) a reduced (f + 1/4, p) representation of a (optional output
m,n ∈ Z, where λ = (m+ n

√
D)/r ∈ O and N(b)c = λb.)

As pointed out in the Appendix, we have

1 ≤ λ

N(b)
< εΔ (12.9)

for the λ produced by FIND, where εΔ is the fundamental unit of O.

Remark 12.1. Suppose we are given a reduced principal O-ideal b = (θ) such
that H(θ) < B for some bound B and we wish to find |θ|. Since at least one
of |θ| or |θ| must exceed 1, we may assume that

1 < |θ| < B or 1 < |θ| < B .

Thus, we can find |θ| (or |θ|) by using the SCF algorithm on a1 = [1, ω] to
find θi and ai such that (θi) = ai = b (or b). Then |θ| = θi (or |θ| = θi). In
the latter case, we can easily produce |θ| by conjugation of θi. This process
executes in O(logB) elementary operations on numbers of O(logB) bits.

At this point, we will assume that we have been given some reduced prin-
cipal O-ideal b and some y, q ∈ Q such that y ≥ q + 2, b = (θ), and

| log2 θ − y| < q . (12.10)

Certainly, we have log2 θ > y − q ≥ 2. We will also assume that q is not very
large, say q < 10, and εΔ > 22q+3

√
Δ. When q is small, this is not a very

great restriction because we know by (6.28) that εΔ must exceed
√
Δ/2. Also,

if εΔ < 22q+3
√
Δ, then finding θ is a very simple problem because

θ = εnΔγ (n ∈ Z≥0) (12.11)

292 12 Compact Representations

and 1 ≤ γ < εΔ. Thus, γ can be easily determined by a direct application of
the continued fraction algorithm on a to find b. From (12.10) and (12.11) we
see that with good rational approximations of RΔ and log2 γ, we can easily
compute the integer n in (12.11).

If we put x = �y − q� − 1, then

1 < log2 θ − x < 2q + 2 . (12.12)

If ai = a[x], by Theorem 11.12 we must have

b ∈ {ai, ai+1, . . . , ai+c} ,

as c(−2) = 0 and c = c(2q + 2) < 6 + �3q	 by Proposition 11.11. With this
information we can now produce an algorithm for determining a compact
representation of θ.

Algorithm 12.6: CR

Input: A reduced principal O-ideal b = [Q/r, (P +
√
D)/r], where (P +√

D)/Q > 1 and −1 < (P − √D)/Q < 0. Here b = (θ) for θ ∈ O;
y, q ∈ Q+; y ≥ q + 2 and

| log2 θ − y| < q .

Output: A compact representation of θ, where

θ = λ

l∏

i=0

(
λi

di

)2l−i

.

(Optional output: (b, g, h), a reduced (f + 1/4, p) representation of a.)
1: Put c = 6 + �3q	, x = �y − q� − 1 and find p such that 2p >

11.2xmax{16, log2 x}.
2: Execute CRAX(x, p) to find an (f, p) representation (a[x], d, k) of a, where

a[x] = [Q′/r, (P ′ +
√
D)/r] and a compact representation

μ = dl

l∏

i=0

(
λi

di

)2l−i

of μ, where (μ) = a[x].
3: Execute FIND(c, (a[x], d, k), b) to produce (b, g, h), a reduced (f + 1/4, p)

representation of a, and m,n, where λ = (m+ n
√
D)/r ∈ O and

Nb = λa[x], N = N(a[x]) = dl .

12.2 Compact Representation of Quadratic Integers 293

Proof (of correctness of CR). Clearly, (θ) = (λμ/N) and

λμ

N
= λ

l∏

i=0

(
λi

dl

)2l−i

.

We now need to show that θ = λμ/N . By (12.12) we have

2 <
θ

2x
< 22q+2 (12.13)

and by (12.4) we have
15N

16
√
Δ
<

μ

2x
<

17
16

.

Hence,

1 <
θ

μ
<

22q+216
√
Δ

15N
<

22q+3
√
Δ

N
<
εΔ
N

. (12.14)

Since θ = εnΔλμ/N , we get

1 <
θ

μ
=
εnΔλ

N
<
εΔ
N

;

however, by (12.9) we have ε−1
Δ < N/λ ≤ 1. It follows, then, that n = 0 and

θ = λμ/N . It remains to bound H(λ). Since λ/N = θ/μ, we deduce from
(12.14) that λ > N and λ < 22q+3

√
Δ. Since |λλ| = NN(b), we also have

|λ| < N(b) <
√
Δ. Hence, H(λ) < 22q+3

√
Δ. This algorithm will execute in

O(log y logΔ+ q) elementary operations. ��
Naturally, if we have a value of y′ such that | log2 θ − y′| < q′, where

q′ is smaller than q, then CR will execute faster and H(λ) will be smaller.
We can find such a value for y′ by simply executing AX on x and p, where
2p > 11.2xmax{16, log2 x}. We then get an x-near (f, p) representation of a,
where f < 2p−4. If we next execute FIND on c, (a[x], d, k), and b, we get
(b, g, h), a reduced (f + 1/4, p) representation of a. By (11.3)

|p− log2 g + log2 θ − h| < log2

(

1− f + 1/4
2p

)

.

Now, if 0 < t < 1, then

| log2(1− t)| < 1.45| loge(1− t)|

= 1.45
(

t+
t2

2
+
t3

3
+ · · ·

)

= 1.45t
(

1 +
t

2
+
t2

3
+ · · ·

)

< 1.45t
(

1 +
t

2
(1 − t)−1

)

;

294 12 Compact Representations

hence, ∣
∣
∣
∣log2

(

1− f ′

2p

)∣
∣
∣
∣ <

3f ′

2p+1
< 0.1 ,

when f ′ < 2p−4 + 1/4 and p > 10. If, for example, we compute r = �3 log2 g�
(i.e., find r ∈ Z such that 2r < g3 ≤ 2r+1), then

−1
3
≤ r

3
− log2 g < 0 .

Putting y′ = −p+ h+ r/3 ∈ (1/3)Z ⊆ Q, we get

|y′ − log2 θ| <
1
3

+ 0.1 <
1
2
.

(Of course, by Theorem 11.9, it is possible to select a sufficiently large value of
p such that 3f ′/2p+1 is as small as we like. After doing this and determining
a sufficiently accurate4 approximation to log2 g, we can produce a value of y′

which is as close as we wish to log2 θ.)
We now turn to the problem of finding a compact representation of γ,

where c = (γ) is not necessarily a reduced O-ideal. We assume that we are
given σ = signγ, c = S[Q/r, (P +

√
D)/r], and some z, q′ ∈ Q such that

| log2 |γ| − z| < q′ .

We first use the reduction algorithm of §5.2 on the primitive O-ideal c1 =
[Q/r, (P +

√
D)/r] to find

θi+2 =
Gi +Bi

√
D

Q

such that
Sci+2 = θi+2c ,

and ci+2 is a reduced O-ideal. Put β = S/|θi+2|, b = ci+2. We can compute,
by the technique of §11.1, values for h and e such that

∣
∣
∣
∣
2p|θi+2|/S

e2h
− 1

∣
∣
∣
∣ <

1
2p

;

hence, by our earlier observations, we can compute y′, q′′ ∈ Q, q′′ < 1/2, such
that ∣

∣
∣
∣
log2 |θi+2|

S
− y′

∣
∣
∣
∣ < q′′ .

It follows that if we put y = z + y′ and q = q′ + q′′, we get

| log2 θ − y| < q

12.2 Compact Representation of Quadratic Integers 295

for θ = |θi+2γ|/S or |γ| = βθ when b = (θ). If y ≥ q + 2, we can use CR
to find a compact representation of θ. If y ≤ t − q − 5/2, where t ∈ Q and
|t− log2N(b)| < 1/2, then since log2 |θ|+ log2 θ = log2N(b), we get

∣
∣log2

∣
∣θ
∣
∣− (t− y)∣∣ < q +

1
2

and t−y ≥ q+1/2+2. We can now use CR to find a compact representation of
|θ|, where b = (θ). From this we can easily produce a compact representation
of |θ| by conjugating the compact representation of |θ|.

If

θ = λ

l∏

i=0

(
λi

di

)2l−i

, (12.15)

then

|γ| = βλ

l∏

i=0

(
λi

di

)2l−i

.

Now, in the process of producing (12.15) we get

dlb = λa[x]

for some x ∈ Z>0 and N(a[x]) = dl. Hence,

dlc = βλa[x] ,

and we see that βλ ∈ c ⊆ O. If we put ν = N(b)β ∈ O, then

ν =
S|Gi −Bi

√
D|

r
.

Since |Gi| <
√
Q 4
√
D and |Bi| <

√
Q/ 4
√
D (see §5.2), we get

|ν|, |ν| < 2S
√
Q 4
√
D

r

and

H(ν) =
2S
√
Q 4
√
D

r
=
√

2Δ1/4
√
N(c) .

As H(λ) < 22q+4
√
Δ, we must have

H(νλ) < 22q+4
√

2Δ3/4
√
N(c) ,

and, therefore,

H(βλ) <
22q+4

√
2Δ3/4

√
N(c)

N(b)
.

Thus, if λ′ = σβλ, we get a compact representation of γ:

296 12 Compact Representations

γ = λ′
l∏

i=0

(
λi

di

)2l−i

.

This algorithm executes in O(log logH(γ) logΔ + q + logN(c)) elementary
operations.

There remains the problem of finding a compact representation of γ when

t− q − 5
2
< y < q + 2 .

Since |Gi| <
√
Q 4
√
D and |Bi| <

√
Q/ 4
√
D, we get

∣
∣
∣
∣
θi+2

S

∣
∣
∣
∣ ,

∣
∣
∣
∣
θi+2

S

∣
∣
∣
∣ ≤

S(|Gi|+ |Bi|
√
D)

rN(c)
<

√
2Δ1/4

√
N(c)

. (12.16)

Also, from (12.16) and

S2N(b) = |θi+2θi+2|N(c) ,

we have ∣
∣
∣
∣
θi+2

S

∣
∣
∣
∣ >

N(b)
Δ1/4

√
2N(c)

. (12.17)

Now,

log2 |γ| < z + q′ = y − y′ + q′

< y − log2

∣
∣
∣
∣
θi+2

S

∣
∣
∣
∣+ q

< 2q + 2 +
log2Δ

4
+ log2

√
2N(c)
N(b)

by (12.17). Also,

log2 |γ| > z − q′ = y − y′ − q′ > y − log2

∣
∣
∣
∣
θi+2

S

∣
∣
∣
∣− q .

Hence

log2 |γ| = log2N(c)− log2 |γ| < log2N(c) + q − y + log2

∣
∣
∣
∣
θi+2

S

∣
∣
∣
∣

< −t+ 2q +
5
2

+ log2

∣
∣
∣
∣
N(c)θi+2

S

∣
∣
∣
∣

< 2q + 3 +
log2Δ

4
+ log2

√
2N(c)
N(b)

by (12.16). It follows that

12.3 The Arithmetic of Compact Representations 297

H(γ) <

√
2N(c)
N(b)

Δ1/422q+3 .

If q is small, we can now find a compact representation of γ by using the
technique described in Remark 12.1.

Thus, for any O and any γ ∈ O, we can now produce the following defini-
tion for a compact representation5 of γ. This is a representation of γ as

γ = λ
l∏

i=0

(
λi

di

)2l−i

,

where

1. l = O(log logH(γ)).
2. λ, λi ∈ O, di ∈ Z (0 ≤ i ≤ l).
3. 0 < di ≤ Δ1/2, H(λ) = O(Δ|N(γ)|), H(λi) = O(Δ) (0 ≤ i ≤ l).
4. If

μj = λj

j−1∏

i=0

(
λi

di

)2j−i

,

then μj ∈ O and |N(μj)| = dj . Also, μj is a generator of a principal
O-ideal bj and

d2
i bi+1 = λi+1b

2
i (i = 0, 1, . . . , l− 1) .

Furthermore, we have shown how such a compact representation of γ can be
computed when we are given c = (γ), the sign of γ, and some small q such
that | log2 |γ| − z| < q.

12.3 The Arithmetic of Compact Representations

We have seen that we can represent a very large real quadratic integer γ ∈ O
in a notation which requires only O(log logH(γ) logΔ + log |N(γ)|) bits. All
that is needed in order to do this is the O-ideal (γ) represented as [Q/r, (P +√
D)/r], the sign of γ, and a reasonably close estimate of the value of log2 |γ|.

Certainly, this can be done for εΔ when we have an estimate of RΔ.
In this section we will describe techniques6 that can be used to solve cer-

tain problems concerning quadratic integers which are represented by com-
pact representations. All of the techniques described will execute in polyno-
mial time; that is, the algorithms are polynomial in logΔ, l, and log |N(γ)|.
Here, l is the length of the compact representation, which is O(log | log |γ||) =
O(log logH(γ)).

We remind the reader that if we are given any λ ∈ O, we could use
the technique of Theorem 4.35 to determine values of a, b, c ∈ Z such that
(λ) = [a, b+ cω]. However, the following proposition makes this more explicit.

298 12 Compact Representations

Proposition 12.2. Let λ = m+ nω, where m,n ∈ Z. If a, b, c ∈ Z such that
c = (m,n), a = |N(λ)|/c, and b = cb′, where b′ ≡ (m/c)(n/c)−1 (mod a/c),
then (λ) = [a, b+ cω].

Proof. Since (λ) is an ideal of O, we may write (λ) = [a, b + cω] for some
a, b, c ∈ Z. Now, λ ∈ [a, b + cω], and c | b, and c | a; thus, we must have
c | m and c | n. If d = (m,n), then since b + cω ∈ (λ), we have b + cω =
xλ + yλω for some x, y ∈ Z. It follows that d | c and therefore d = c. Since
N([a, b + cω]) = ac, we also have |N(λ)| = ac. Finally, since b = cb′ and
[a, b + cω] = c[a′, b′ + ω], where a′ = a/c, and (λ′) = (λ/c) = [a′, b′ + ω], we
must have b′ ≡ (m/c)(n/c)−1 (mod a/c). ��

Thus, if we are only given the compact representation

γ = λ

l∏

i=0

(
λi

di

)2l−i

, (12.18)

then we can put b0 = (λ0), and we can recover the ideals b1, b2, . . . , bl by
using Proposition 12.2 and

d2
i bi+1 = λi+1b

2
i . (12.19)

Also,

(γ) = c =
(
λ

dl

)

bl .

The sign of γ can be easily deduced from the sign of λ.
By our remarks at the beginning of §11.1, we can compute for each λi/d

2
i−1,

values of ei and ki such that
∣
∣
∣
∣

λi2p

d2
i−1ei2ki

− 1
∣
∣
∣
∣ <

1
2p

.

We also compute e and k such that
∣
∣
∣
∣
λ2p

dle2k
− 1

∣
∣
∣
∣ <

1
2p

.

From this information and (12.19), we can use the ideas in the proof of Theo-
rem 11.2 to produce di and ki such that (bi, di, ki) is an (fi, p) representation
of a = (1). Here, fi satisfies (11.15) with c = 1 = f0. It follows from the
argument used in the proof of Theorem 11.8 that if h ≥ max{16, l}, then
fl < 2p−4 when 2p > 7h2l. (Note that 7 > e1/2(529/256 + 2).) By Theo-
rem 11.2 we can then compute an (f, p) representation (c, d, k) of a such that
f < 2 + fl + 2−pfl. Furthermore, as described earlier, we can use this repre-
sentation to find some g ∈ Q such that | log2 |γ| − g| < 1/2. These processes
execute in O(log logH(γ) logΔ+ logN(c)) elementary operations.

So far we have only discussed the problem of recovering information that
could be used to produce (12.18). We now examine how we may solve the
following problems, given (12.18):

12.3 The Arithmetic of Compact Representations 299

1. Determine sign(γ).
2. Determine N(γ).

Since signγ = signλ · signλl and N(γ) = N(λ)/dl, these problems are easily
solved in polynomial time.

Suppose we have compact representations for α and β ∈ O. In polynomial
time we can find a, b ∈ (1/3)Z and O-ideals a and b such that

| log2 |α| − a| <
1
2
, | log2 |β| − b| <

1
2

and a = (α) and b = (β). Here are some problems concerning α and β that
we can also solve.

3. Find a compact representation of αβ.
4. Is α = β?
5. Is |α| > |β|?
6. Does β | α? If so, find a compact representation of α/β.

Problem 3 is easily solved by finding c = ab. Then c = (γ), where γ = αβ.
Also,

| log2 |γ| − (a+ b)| < 1 .

Hence, we can find a compact representation of γ in O(log logH(γ) logΔ +
N(c)) elementary operations.

We next observe that since

a− 1
2
< log2 |α| < a+

1
2

and
b− 1

2
< log2 |β| < b+

1
2
,

then if b ≥ a+ 1, we have |β| > |α| and if a ≥ b+ 1, we have |α| > |β|. Thus,
the only difficulty in solving Problems 4 and 5 arises when |a− b| < 1.

We see that if α = β, then a = b and |a − b| < 1. Also, if a = b, then
|α| = εnΔ|β| for n ∈ Z. Hence,

|n log2 εΔ − (a− b)| < 1

and
|n| < 2

log2 εΔ
.

Since log εΔ > 2 for Δ > 64, we must have |n| < 1 or n = 0. Hence, |α| = |β|
if and only if a = b and |a− b| < 1. The determination of whether α = β can
now be easily settled by examining the signs of α and β.

Suppose |α| �= |β| and |a− b| < 1. Consider c = ab and let γ = αβ, where
c = (γ). Since

∣
∣αβ

∣
∣ =

∣
∣
∣
∣
αN(b)
β

∣
∣
∣
∣ ,

300 12 Compact Representations

we see that |α/β| < 1 if and only if |αβ| < N(b). Now,

log2 |γ| = log2 |α|+ log2 |β|
= log2 |α|+ log2N(b)− log2 |β|

log2 |γ| = log2 |β|+ log2N(a)− log2 |α| .
Since | log2 |α| − log2 |β|| < |a− b|+ 1, we get

log |γ| < 2 + log2N(b), log2 |γ| < 2 + log2N(a) .

Hence, |γ| < 4N(b), |γ| < 4N(a), and H(γ) < 4 max{N(a), N(b)}. We can
then find |γ| by using the technique of Remark 12.1 and then compare |γ| to
N(b). If |γ| < N(b), then |α| < |β|, and if |γ| > N(b), we have |α| > |β|.

To solve Problem 6, we note that β | α if and only if ab = N(b)c, where c
is an O-ideal. To see this, we first suppose that α = βγ where γ ∈ O. Then
a = bc, where c = (γ) and ab = N(b)c. If ab = N(b)c, then a = bc and
(α) = (β)c. Hence, c is a principal O-ideal and c = (γ), where γ ∈ O. Thus,
we can determine whether or not β | α by checking whether or not the O-ideal
ab = N(b)c, where c is an O-ideal. If β | α, then if γ = α/β, we get c = (γ)
and

log2 |γ| = log2 |α| − log2 |β| ,
with

| log2 |γ| − (a− b)| < 1 .

Thus, we can find a compact representation of |γ| in polynomial time, and
from this and the signs of α, β, it is easy to find a compact representation of
γ.

We now turn our attention to how, given some m ∈ Z>0, we can use
(12.18) to determine the values of x, y (mod m), where γ = x+ yω. We point
out that the problem of computing7 γ (mod m) is very easy if (m, di) = 1
for all i such that 1 ≤ i ≤ l. In this case, we put Γ0 = λ0 and D0 = d0 and
compute

Di+1 ≡ di+1D
2
i (mod m) (i = 0, 1, 2, . . . , l− 1)

and
Γi+1 ≡ λi+1Γ

2
i (mod m) (i = 0, 1, 2, . . . , l − 1) ,

where Γi+1 ∈ O. Then

γ ≡ λD−1
l Γl (mod m) .

However, if some of the values of the di (i = 0, 1, 2, . . . , l) are not relatively
prime to m, we must make a modification to this simple process. We begin
by introducing a proposition which is similar to Proposition 5.15.

Proposition 12.3. If a is an invertible ideal of O and α ∈ a, then there exists
an invertible ideal b of O such that (N(b))a = (α)b.

12.3 The Arithmetic of Compact Representations 301

Proof. Since α ∈ a, we have a ⊇ (α). Thus,

(N(a)) = aa ⊇ (α)a ,

and, therefore, every element of (α)a is divisible by N(a). It follows that

(α)a = (N(a))c ,

where c is an ideal of O. From this we deduce that

(α) = ca .

Since (N(α)) = ca(α), we see that c is invertible; hence,

(α)c = (N(c))a .

Putting b = c, we see that b is invertible and (α)b = (N(b))a. ��
Our next step will be to use this proposition to show that there are many

representations of the form (12.18) for γ. We know that bi = (μi), where

μj = λj

j−1∏

i=0

(
λi

di

)2j−i

.

We select any βi ∈ bi. By Proposition 12.3 we know that there must exist
some principal O-ideal ci such that

N(ci)bi = (βi)ci (12.20)

and ci = (γi), where γi = βiμi/di ∈ O. If we put β−1 = 1, then c−1 = b−1 =
(1) and γ−1 = 1. Since

μi = λi

(
μi−1

di−1

)2

(i = 0, 1, 2, . . . , l) ,

we get

γi = νi

(
γi−1

N(ci−1)

)2

(i = 0, 1, 2, . . . , l) , (12.21)

where

νi =
βiλiN(ci−1)2

diβ
2

i−1

=
βλiβ

2
i−1

d2
i−1

=
±N(ci)λiβ

2
i−1

d2
i−1βi

.

By (12.19) and (12.20), we have

302 12 Compact Representations

(
N(ci−1)2d2

i−1βi

)
ci =

(
N(ci)λiβ

2
i−1

)
c2i−1 ;

hence, νi ∈ ci ⊆ O. If we select βl = N(bl) = dl, then γl = μl and bl = cl,
and by (12.21), we get

γ =
λμl

dl
=
λγl

dl
= λ

l∏

i=1

(
νi

N(ci)

)2l−i

, (12.22)

another representation of the form (12.18).
In order to compute γ (mod m) easily, we need to be able to find βi in

each bi such that (N(ci),m) = 1. By (12.20) and the multiplication property
of the norm, we must find βi such that

(
N(βi)
N(bi)

,m

)

= 1 .

If we let b = [a, b + ω] be any primitive principal ideal in O and let β ∈ b,
then β = xa+ y(b+ ω) for x, y ∈ Z and

N(β)
N(b)

= ax2 + T (b+ ω)xy +
(
N(b+ ω)

a

)

y2 .

Since b is invertible, we know that if

a1 = a, a2 = T (b+ ω), a3 =
N(b+ ω)

a
,

then (a1, a2, a3) = 1 by our results in §4.5. Put h1 = a, h2 = a1 + a2 + a3,
and h3 = a3. Since (a1, a2, a3) = 1, we must have (h1, h2, h3) = 1. We now
present the following algorithm.

Algorithm 12.7: SPLIT
Input: h ∈ Z, m ∈ Z>0.
Output: r, s ∈ Z>0 such that m = rs, (r, h) = 1 and any prime divisor of s

must divide h.
1: Put g1 = (m,h), r1 = m/g1, s1 = g1, i = 1.
2: while gi > 1 do
3: Put

gi+1 = (ri, gi)
ri+1 = ri/gi+1

si+1 = gi+1si

i← i+ 1 .

4: end while
5: Put r = ri, s = si.

12.3 The Arithmetic of Compact Representations 303

Proof (of correctness of SPLIT). We note that

rj =
m

sj
, sj =

j∏

i=1

gi .

It follows that since rj ∈ Z, we must find some j such that gj = 1 and
j = O(logm). Also, rjsj = m, rj | ri (i ≤ j), gj | gi (i ≤ j). We now show
that (rj , g1) = 1. Certainly, (rj , gj) = 1; suppose (rj , gk) = 1 for some k such
that 2 ≤ k ≤ j. Since gk = (rk−1, gk−1), we get (rk, gk−1/gk) = 1. Also,
rj | rk, and therefore (rj , gk−1/gk) = 1. Since (rj , gk) = 1, we must have
(rj , gk−1) = 1; thus, we may conclude by induction that (rj , g1) = 1. Since
(r1, h/g1) = 1 and rj | r1, we get (rj , h/g1) = 1. Since (rj , g1) = 1, we must
have (rj , h) = 1. If p is any prime such that p | sj , then p | gi for some i ≤ j; it
follows that p | g1 and p | h. Thus, r = rj and s = sj satisfy the requirements
of the algorithm and it executes in O(logm) arithmetic operations on numbers
of O(log max{m,h}) bits.

We now use SPLIT to put

m = r1s1, s1 = r2s2, s2 = r3s3 ,

where (ri, hi) = 1 and any prime which divides si must divide hi (i = 1, 2, 3).
We get m = r1r2r3s3 and (r1, r2) = (r2, r3) = (r3, r1) = 1. If p is a prime and
p | s3, then p | s2 and p | s1, but this means that p | (h1, h2, h3), which is
impossible. Thus,

m = r1r2r3 .

We next use the Chinese Remainder Theorem to find x, y such that 0 < x, y <
m, x ≡ 1 (mod r1r2), x ≡ 0 (mod r3), y ≡ 1 (mod r2r3), and y ≡ 0 (mod r1).
If β = xa + y(b + ω) and p is a prime divisor of (m,N(β)/a), then since
N(β)/a ≡ hi (mod ri) (i = 1, 2, 3), we must have p | hi for some i ∈ {1, 2, 3},
which is contrary to the construction of the ri values. It follows then that

(
N(β)
N(b)

,m

)

= 1 . (12.23)

Thus, given m and an O-ideal b = [a, b+ω], we can compute a value of β ∈ b
such that (12.23) holds and this process requires only O(logm) arithmetic
operations on numbers of O(log max{m, a, |T (b+ ω)|, |N(b+ ω)|/a}) bits.

To compute γ (mod m), we need to find a sequence β1, β2, . . . , βl such that
βi ∈ bi and (N(βi)/di,m) = 1. We can do this by putting βi = N(bi) = di

whenever (m, di) = 1 and by using the process described above whenever
(m, di) > 1. We can use

νi =
βiλiβ

2
i−1

d2
i−1

to compute νi and we must compute νi exactly, not just modulo m. We can
then use (12.22) to determine γ (mod m). The overall complexity of this

304 12 Compact Representations

process is O(l logm) arithmetic operations on numbers of O(log max{m,Δ,
|N(γ)|}) bits. We emphasize that, in practice, it is usually not necessary to
invoke SPLIT to compute a βi such that (N(ci),m) = 1. Finding ci by apply-
ing ρ repeatedly to bi will rapidly result in a βi for which (N(βi)/di,m) = 1.

Notes and References 305

Notes and References

1[Wil02], p. 418.
2[Nel81].
3Although to some degree this idea was anticipated in work of Lagarias ([Lag79],

[Lag81]), the term was first mentioned in [Coh93], p. 274, and the basic idea is de-
scribed there on pp. 280–282. The concept was extended and formalized in [BTW95]
and an improved, but much briefer, version appears in [BV07], pp. 251–256. Our
approach here is different from that of [BTW95] and [BV07] in that it makes use
of (f, p) representation theory. This allows us to avoid trying to approximate loga-
rithms and produces somewhat better results than those in [BV07].

4Fast methods of determining accurate approximations of the values produced by
elementary functions such as log can be found in [Bre76]. For our purposes, however,
we will not require such precision.

5This is a different definition from that found in [BTW95] or [BV07], but it is
certainly in the spirit of the definitions that appear in these works.

6Similar techniques are described in [BTW95].
7This problem was addressed in [BTW95], but the technique given there is not

very practical. We give here the method described in [JW02].

13

The Subexponential Method

13.1 Introduction

Up to this point, all the algorithms we have presented for computing the reg-
ulator RΔ of the real quadratic order OΔ, and, hence, for solving Pell’s equa-
tion, have exponential complexity in the size of the discriminant Δ. The most
exciting recent development has certainly been the discovery of a Las Vegas
algorithm1 by Buchmann for computing RΔ and hΔ whose expected running
time is subexponential in log |Δ|. This algorithm has enabled the computation
of RΔ for discriminants Δ as large as 101 decimal digits, a dramatic improve-
ment over what had been attainable previously. Unfortunately, as we will dis-
cuss in more detail below, this improvement comes at a price. Like Lenstra’s
algorithm for computing RΔ described in Chapter 10, the complexity result
is conditional on the generalized Riemann hypothesis (GRH) for Hecke L-
functions and the extended Riemann hypothesis (ERH), but in the case of
the subexponential algorithm, the correctness of the output is conditional as
well. Nevertheless, the fact that RΔ can be computed in subexponential time,
even assuming the GRH and ERH, remains an important breakthrough.

The subexponential algorithm is based on the widely used index-calculus
method.2 This probabilistic strategy has been employed with great success
for integer factorization and computing discrete logarithms in finite fields,3

the most recent algorithm being the number field sieve.4 The work of Hafner,
McCurley, and Buchmann showed that the index-calculus approach can also
be applied to computational problems in quadratic fields—in particular, the
discrete logarithm problem in the class group, computing the class number
and structure of the class group, computing the regulator, and solving the
principal ideal problem. In addition, some of the ideas used in this algorithm
have been used to reason about the complexity classes to which these problems
belong. In particular, the work of McCurley, Buchmann, and Williams shows
that, under the assumption of the GRH, these problems are in the complexity
class NP ∩ co-NP.

308 13 The Subexponential Method

The main ideas behind applying index-calculus to computations in number
fields were first suggested by Lenstra and Lenstra5 in 1987. Seysen6 used these
ideas in his integer factorization algorithm based on using index-calculus to
find ambiguous ideals in an imaginary quadratic order. These ideas were soon
elaborated by Hafner and McCurley7 in 1989 for imaginary quadratic fields
and by Buchmann8 in 1989 for real quadratic fields. Various people have con-
tributed further improvements,9 and Vollmer’s recent work10 describes vari-
ations of these algorithms with the best known complexity. The resulting
algorithms all have expected running time subexponential in the bit length of
Δ. The most efficient variation for solving these problems in practice, due to
Jacobson,11 uses ideas from the self-initializing quadratic sieve factoring algo-
rithm to improve significantly the relation generation stage of the algorithm.

In this chapter, we will describe the index-calculus algorithm for comput-
ing the regulator RΔ of a real quadratic order. We will begin with a discussion
of Vollmer’s method for solving the discrete logarithm problem in the ideal
class group of an imaginary quadratic order, as this is the one of the most
straightforward applications of the index-calculus method to quadratic or-
ders. We will then show how this approach can be modified to compute the
class number and group structure of an imaginary quadratic order, essentially
giving the algorithm of Hafner and McCurley, followed by Buchmann’s exten-
sions for computing the class group and regulator of a real quadratic order.
Vollmer’s Monte Carlo algorithm for computing RΔ will also be presented, as
well as an index-calculus algorithm for solving the principal ideal problem. A
complete analysis of these algorithms is presented in the recent book by Buch-
mann and Vollmer,12 so we will present these algorithms as they are typically
used in practice and only provide sketches of the complexity analysis, referring
the interested reader to this source for more details. This will be followed by
a discussion of known complexity results, including the fact that the problem
of computing RΔ, and hence solving the Pell equation, is in NP ∩co-NP. We
will also describe modifications to these algorithms that work especially well
in practice, including the use of sieving for generating relations and the sig-
nificant computational results obtained with them. Finally, we will conclude
with an outlook toward further potential improvements

13.2 Solving the Discrete Logarithm Problem in ClΔ

We begin by describing how to use the index calculus approach to solve the
discrete logarithm problem (DLP) in the class group of an imaginary quadratic
order.

Definition 13.1. The imaginary quadratic order discrete logarithm problem
is, given OΔ-ideals a and g, to compute the minimal positive integer x such
that a ∼ gx or prove that no such integer exists.

Note that this is nothing more than the usual finite abelian group discrete
logarithm problem set in the ideal class group. Throughout this section, we

13.2 Solving the Discrete Logarithm Problem in ClΔ 309

will assume that we are given ideals a and g of an imaginary quadratic order
OΔ and wish to find a solution to the discrete logarithm problem.

The first index-calculus algorithm for solving this problem is due to Mc-
Curley.13 It uses a strategy similar to that of computing discrete logarithms in
finite fields and requires that the class number be computed ahead of time. We
will present a modified version of a more recent algorithm due to Vollmer14

that does not require the class number and solves the discrete logarithm prob-
lem in expected subexponential time in log |Δ|. In particular, it runs in ex-
pected time LΔ[1/2,

√
2 + o(1)], where

LΔ[a, b] = exp
(
b(log |Δ|)a(log log |Δ|)1−a

)
.

Notice that if a = 0, then LΔ[0, b] = (log |Δ|)b is a polynomial in log |Δ|, and
if a = 1, then LΔ[1, b] = |Δ|b is exponential in log |Δ|. Thus, when 0 < a < 1,
LΔ[a, b] is a function that is larger asymptotically than a polynomial function
but smaller than an exponential function, and it is said to be subexponential.

In general, index-calculus algorithms consist of two main stages: generating
random relations and solving a linear algebra problem. Relations correspond
to objects that are smooth in some sense, and the key to the fast running
times enjoyed by many index-calculus algorithms is the probability that a
random object of a particular size is smooth. For example, integer factorization
algorithms search for certain smooth integers whose prime divisors are all less
than some bound. The linear algebra problem varies by context. For integer
factorization, one solves a linear system modulo 2 in an effort to find squares
modulo the integer to be factored, and for computing discrete logarithms in
finite fields, a linear system must be solved modulo the size of the field.

In our setting, relations correspond to smooth principal ideals (i.e., prin-
cipal ideals that factor into a product of prime ideals whose norms are all less
than some bound). In particular, let p1, p2, . . . , pk be the smallest k rational
primes for which the Kronecker symbol (Δ/pi) �= −1, so (pi) = pipi, where pi

is an invertible prime ideal. The factor base is defined to be the set

FB = {p1, p2, . . . , pk} .
Define for v = (v1, v2, . . . , vk) ∈ Zk ,

FBv =
k∏

i=1

pvi

i ,

where we use the fractional ideal p−1 if vi is negative. We say that v is a
relation if FBv = (γ); that is, the principal ideal (γ) factors completely over
the factor base. Relations have the following properties:

1. If v is a relation, then av is also a relation for every a ∈ Z. To see this,
note that FBav = (FBv)a = (γ)a ∼ OΔ.

2. If v and w are relations, then v + w is a relation. To see this, note that
FBv+w = FBvFBw = (γ1)(γ2) ∼ OΔ.

310 13 The Subexponential Method

It follows that any integer linear combination of a set of relations is also a
relation, so the set of all relations Λ = {v ∈ Zk | FBv = (γ)} is a sublattice
of Zk called the relation lattice.

The use of relations to solve the discrete logarithm problem is as follows.
We first compute a set of random relations corresponding to the extended
factor base FB∗ = {g, a−1, p1, . . . , pk},where a−1 is the fractional ideal inverse
of a. Suppose that v1, . . . ,vn are relations over FB∗ and consider the relation
matrix

B = (vT
1 ...vT

n) ,

the matrix whose columns consist of the relations. If a ∼ gx, then gxa−1 ∼ OΔ

and the vector (x, 1, 0, . . . , 0) ∈ Zk+2 is a relation with respect to FB∗. Thus,
if the columns of B generate the entire extended relation lattice Λ∗, there
exists a vector x ∈ Zn such that Bx = (x, 1, 0, . . . , 0). We cannot find x by
solving this linear system directly because x is unknown. Instead, we use the
following approach that finds a non-minimal solution to the discrete logarithm
problem, provided that a solution exists.

Algorithm 13.1: Imaginary Quadratic Order DLP
Input: discriminant Δ < 0 of an imaginary quadratic order, reduced ideals a

and g such that [a] ∈ 〈[g]〉.
Output: x ∈ Z such that a ∼ gx.
1: Compute a factor base FB = {p1, . . . , pk} consisting of all non-inert prime

ideals pi with N(pi) < P for some bound P.
2: Compute n > k random relations v1, . . . ,vn over FB.
3: Compute va,vg such that a ∼ FBva and g−1 ∼ FBvg . Note that

a−1FBva and gFBvg are both principal, so (1, 0,vg) and (0, 1,va) are
relations on the extended factor base FB∗ = {g, a−1, p1, . . . , pk}.

4: Form the relation matrices A and B with

A =
(
vT

1 . . .vT
n

)
, B =

⎛

⎝
1 0 0
0 1 0

vT
g vT

a A

⎞

⎠ =
(

b
B′

)

.

Thus, the columns of A are relations on FB and the columns of B are
relations on FB∗.

5: Solve B′y = (1, 0, . . . , 0) over Z. If no solution exists, increase n and go to
step 13.1.

6: x = b · y, the first entry in y.

Notice that the solution y of B′y = (1, 0, . . . , 0) also satisfies By =
(x, 1, 0, . . . , 0) with x = b · y. The following proposition states that the value
of x computed is in fact a solution of the discrete logarithm problem.

Proposition 13.2. Assume that the columns of B generate Λ∗, the relation
lattice corresponding to the extended factor base FB∗. Then a ∼ gx is solvable
if and only if ∃x ∈ Zn+2 such that Bx = (x, 1, 0, . . . , 0).

13.2 Solving the Discrete Logarithm Problem in ClΔ 311

Proof. First, if x exists, then z = (x, 1, 0, . . . , 0) is a relation with respect to
the extended factor base FB∗, because this vector is a linear combination of
the columns of B, which are, in turn, relations over FB∗. Thus, (FB∗)z =
gxa−1 ∼ OΔ and we have gx ∼ a, as required.

Conversely, if gx ∼ a is solvable, then gxa−1 ∼ OΔ and z = (x, 1, 0, . . . , 0)
is a relation over FB∗. If the columns of B generate Λ∗, then every relation
over FB∗ can be expressed as a linear combination of the columns of B. Thus,
z has to be equal to some linear combination of the columns of B; that is, x
exists as required. ��

A necessary condition for the columns of B to generate Λ∗ is that the
prime ideals p1, . . . , pk generate the cyclic group 〈[g]〉. If this is the case,
then the two relations corresponding to factorizations of a and g−1 over these
prime ideals will exist. Also, linear combinations of these two relations and
the other relations only involving the prime ideals pi can be used to generate
any extended relation involving a and g as long as the columns of A generate
all of Λ.

It is possible to select the factor base in such a way that it generates all
of ClΔ and, hence, the subgroup generated by [g]. Assuming the GRH, the
size of the factor base will be polynomial in log |Δ| by Bach’s theorem (9.28),
and in order to analyze the running time, we require an even larger factor
base. However, much smaller factor bases typically suffice to generate ClΔ in
practice,15 so the bound P can be selected according to other considerations,
such as limitations on the size of the relation matrix that can be handled in
practice, and the algorithm will still almost certainly terminate successfully.

In order to make use of this algorithm, we need to be able to solve three
main computational tasks. First, we need to be able to rapidly compute ran-
dom relations in order to find a relation matrix that will hopefully yield so-
lutions to the required linear system. Second, we need to be able to factor
an arbitrary ideal class over the factor base. Finally, we need to solve linear
systems over Z.

The following idea for generating relations is due to Hafner and McCur-
ley.16 Although this is not the fastest method in practice, it is fairly simple
and clearly demonstrates the feasibility of finding relations. In addition, this
method does randomly sample relations and is thus easy to incorporate into
an analysis of the algorithm. We will discuss more efficient methods for finding
relations in §13.7.

For a random v ∈ Zk with each entry vi ∈ {0, 1, . . . , |Δ| − 1}, compute a
reduced ideal a ∼ FBv. Note that in general FBv is not reduced, so a �= FBv.
If a can be factored over the factor base as FBw, then we have

a = FBw ∼ FBv =⇒ FBv−w ∼ OΔ ,

and v − w is a relation. The condition that the entries of v be sampled
randomly from the integers {0, 1, . . . , |Δ| − 1} ensures that the probability of
successfully finding a relation using this strategy is sufficiently high.17 As we

312 13 The Subexponential Method

will see in §13.7, this condition can typically be relaxed in practice in order
to speed the search for relations significantly.

To factor the ideal a, we recall from Theorem 4.44 that a factors uniquely
into a product of prime ideal powers and by Theorem 4.36 that the ideal
norm is multiplicative. Thus, to factor a, we factor the integer N(a) and check
whether all integer primes in the factorization are norms of prime ideals in
the factor base. This yields the prime ideals that divide a and the magnitude
of the multiplicities, but it remains to determine whether p or p−1 divides a
for each p (i.e., the sign of the exponent in the prime ideal factorization of a).
If a prime ideal p = [p/r, (t +

√
D)/r] divides a = [Q/r, (P +

√
D)/r], then

we must have P ≡ t (mod 4p) . So, given a with p | N(a), we simply check
whether P ≡ t (mod 4p) . If so, then p | a; otherwise, p−1 | a.

The second task is finding factorizations of the ideal classes [a] and [g−1]
over the factor base. If the ideals a and g−1 themselves are not smooth, we
attempt to find equivalent ideals that are and proceed as follows. Suppose
we are trying to factor [a]. For a random v ∈ Zk, compute a reduced ideal
c ∼ aFBv. Suppose c can be factored over the factor base as c = FBw. Then
we have

aFBv ∼ FBw =⇒ a ∼ FBw−v ,

and we have factored [a] over the factor base.
The third task is solving a linear system over the integers. This problem18

can be solved in time O(n3+ε) for n ×m matrices assuming that m = O(n)
and the coefficients of the matrix are in O(nε). Note that this step could be
done modulo the class number hΔ if it were known, and it would result in
a minimal solution to the discrete logarithm problem. However, as discussed
in Chapter 7, computing hΔ appears to be a difficult problem, so we cannot
assume that it is known in general.

We now present an example illustrating the use of Algorithm 13.1. In this
example, and in rest of the chapter, we will use the shorthand notation (Q,P)
to denote the ideal [Q/r, (P +

√
D)/r].

Example 13.3. We compute x ∈ Z such that gx ∼ a inOΔ withΔ = −32003,
g = (78,−17), and a = (58,−19). We follow the algorithm described above.

1. We set the factor base to be the smallest three prime ideals in terms of
norm, yielding

FB = {(6, 1), (14, 1), (26, 9)} .
2. We compute five random relations, hoping that having two more relations

than factor base elements (two more columns than rows in the relation
matrix) will be enough to find a solution to the discrete logarithm problem.
a) The random vector v = (1, 9, 4) gives us

FBv ∼ (6915236217162, 1237094462899) .

Reducing yields (182,−69) ∼ FBw with w = (0, 1, 1). Thus, v−w =
(1, 8, 3) is a relation.

13.2 Solving the Discrete Logarithm Problem in ClΔ 313

b) The random vector v = (5, 7, 8) gives us

FBv ∼ (326489612029948458, 133483783758025177) .

Reducing yields (182, 69) ∼ FBw with w = (0,−1,−1).Thus, v−w =
(5, 8, 9) is a relation.

c) The random vector v = (5, 5, 3) gives us

FBv ∼ (17945539794, 13474508797) .

Reducing yields (6, 1) ∼ FBw with w = (1, 0, 0). Thus, v − w =
(4, 5, 3) is a relation.

d) The random vector v = (6, 5, 7) gives us

FBv ∼ (1537627686169302, 735260185408771) .

Reducing yields (26, 9) ∼ FBw with w = (0, 0, 1). Thus, v − w =
(6, 5, 6) is a relation.

e) The random vector v = (4, 8, 7) gives us

FBv ∼ (58600699595118954, 33025441594964113) .

Reducing yields (78,−17) ∼ FBw with w = (1, 0, 1). Thus, v −w =
(3, 8, 6) is a relation.

3. Next, we factor a and g−1 over the factor base.
a) Using v = (9, 3, 5), we have

aFBv ∼ (145388537407386, 3489781931749) .

Reducing yields (26, 9) ∼ FBw with w = (0, 0, 1). Thus, a ∼ FBu

with u = w − v = (−9,−3,−4).
b) g−1 factors immediately over the factor base with u = (−1, 0,−1).

4. The relation matrix corresponding to the extended factor base that in-
cludes g and a−1 is

B =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 −9 1 5 4 6 3
0 −3 8 8 5 5 8
−1 −4 3 9 3 6 6

⎞

⎟
⎟
⎟
⎟
⎠

=
(

b
B′

)

, B′ =

⎛

⎜
⎜
⎝

0 1 0 0 0 0 0
−1 −9 1 5 4 6 3
0 −3 8 8 5 5 8
−1 −4 3 9 3 6 6

⎞

⎟
⎟
⎠ .

5. We solve the linear system B′y = (1, 0, 0, 0) over Z. One solution is y =
(2429, 1,−888, 0, 311, 0, 694).

6. Finally, we compute x = b · y = 2429. It can be verified that g2429 ∼ a.

314 13 The Subexponential Method

Analysis

The goal in analyzing this algorithm is to find the optimal size of the factor
base that balances the time required for finding relations with that needed to
perform the linear algebra, thereby minimizing the overall running time. The
larger the factor base one uses, the easier it is to find relations, as smooth
ideals are more likely to be found. On the other hand, using a smaller factor
base speeds the linear algebra because the dimensions of the relation matrix
will be smaller.

To begin, we need to know the probability that a random reduced ideal
is smooth with respect to a given factor base, allowing us to determine the
expected number of trials required to find a relation. Given that an ideal is
smooth if its norm (an integer) is smooth with respect to the norms of the
prime ideals in the factor base (a bounded set of prime numbers), one might
expect that this probability would be similar to the probability that a random
integer of a certain size is smooth with respect to some bound. This is indeed
the case, as proved by Seysen for imaginary quadratic orders and by Abel for
real quadratic orders.19 In particular, we have the following.20

Proposition 13.4. For any ε > 0 there is a positive real number c(ε) such
that for any x, y ∈ R>0 and any discriminant Δ with

max{(log x)1+ε, (log |Δ|)2+ε} ≤ y ≤ exp((log x)1−ε) ,

the number of primitive OΔ-ideals with y-smooth norm ≤ x is at least

x exp(−u(log u+ log log u+ c(ε))) ,

where u = (log x)/(log y).

In a similar manner to that employed to analyze index-calculus algorithms for
integer factorization, one can derive the probability that a single attempt at
finding a relation succeeds.21

Lemma 13.5. Suppose that the factor base contains all prime ideals with
norm less than LΔ[1/2, z] for some constant z. Then the probability that
the relation generation strategy described above successfully finds a relation
is bounded from below by LΔ[1/2,−1/(4z)− o(1)].

Second, we need to know how many relations we expect to require before
the linear system B′y = (1, 0, . . . , 0) has a solution over Z. Assuming that the
discrete logarithm problem instance gx ∼ a has a solution, the linear system
will have a solution if the factor base FB generates the class group and if the
set of relations v1, . . . ,vn generates the entire relation lattice Λ. One approach
is to first compute a set of relations that generate a full-rank sublattice of Λ
and then to determine the probability that additional relations lie outside of
this sublattice.

To ensure that the relations generated form a full-rank sublattice of Λ, we
use an idea of Seysen22 of ensuring that the relation matrix whose columns
consist of the first k = |FB| relations is strictly diagonally dominant.

13.2 Solving the Discrete Logarithm Problem in ClΔ 315

Definition 13.6. A matrix A = (aij) ∈ Zk×k is strictly diagonally dominant
if

|aii| >
∑

j �=i

|aji|

for 1 ≤ i ≤ k.

If A is strictly diagonally dominant, then it can be shown that it has full
rank.23 We can ensure that A is strictly diagonally dominant if, when finding
the ith relation for each 1 ≤ i ≤ k, the random exponent vector v is selected
with the ith coefficient vi ≥ (k − 1)|Δ| + log |Δ|. Assuming that the factor
base contains all non-inert prime ideals of norm less than LΔ[1/2, z], the
prime number theorem implies that k = |FB| = LΔ[1/2, z + o(1)]. With this
assumption on k, we expect that LΔ[1/2, 1/(4z)+o(1)] random exponents will
be required to find each of the k relations. Each trial requires time LΔ[1/2, z+
o(1)], because the computation of pvi

i with vi = O(|Δ|) requires polynomial
time in log |Δ| for each of the LΔ[1/2, z + o(1)] prime ideals pi ∈ FB, and
factoring a reduced ideal over FB, even using trial division, can be done in
time LΔ[1/2, z + o(1)]. Thus, we have the following.24

Proposition 13.7. Assuming that k = LΔ[1/2, z + o(1)], the running time
required to generate a full-rank sublattice of Λ is bounded from above by
LΔ[1/2, 2z + 1/(4z) + o(1)].

Once a full-rank sublattice of Λ has been found, additional relations are
generated until we can say with constant probability that the collection of
relations generates the full relation lattice Λ. Buchmann and Vollmer25 show
that every random relation lies outside of a proper sublattice of Λ with proba-
bility 2−17 and that LΔ[1/2, z+1/(4z)+o(1)] additional relations are required
to generate all of Λ with constant probability. An analogue of Proposition 13.7
shows that these can be found in the same expected time as the initial full-rank
sublattice, and, thus, we obtain the following.26

Proposition 13.8. The expected running time for finding a set of relations
that generates Λ is LΔ[1/2, 2z + 1/(4z) + o(1)].

Once we have a set of relations that we expect generates Λ, it remains
to solve the linear system B′y = (1, 0, . . . , 0). Using, for example, the algo-
rithm of Giesbrecht, Jacobson, and Storjohann,27 this can be done in time
LΔ[1/2, 3z+ o(1)]. Thus, the discrete logarithm problem can be solved in ex-
pected time LΔ[1/2,max(2z + 1/4z, 3z) + o(1)]. As this is optimized when
z = 1/2, we obtain the following theorem.

Theorem 13.9. Given OΔ ideals a and g such that [a] ∈ 〈[g]〉, the imagi-
nary quadratic order discrete logarithm problem can be solved in expected time
LΔ[1/2, 3/2 + o(1)] for |Δ| > 157 assuming the GRH.

The condition that |Δ| > 157 is required to ensure that, under the GRH, the
factor base generates the class group; this will be discussed in more detail
below.

316 13 The Subexponential Method

This algorithm is fine for scenarios in which the discrete logarithm is known
to exist; for example, when attempting to cryptanalyze certain public-key
cryptosystems based on class groups of imaginary quadratic orders. However,
there are two issues that must be addressed if this algorithm is to be applied
to an arbitrary instance of the imaginary quadratic order discrete logarithm
problem.

1. In general, the value of x computed will not be minimal. For some applica-
tions that may be adequate; for example, when cryptanalyzing imaginary
quadratic order based public-key cryptosystems.

2. This algorithm gives no way of certifying that an instance of the imaginary
quadratic order discrete logarithm problem does not have a solution. If
after generating n relations the resulting linear system does not have a
solution, it is not possible (without extending the algorithm) to determine
whether there is no solution or if the relations generated so far do not
generate the full relation lattice Λ.

Both of these issues can be addressed by extending the algorithm to compute
the class number. If the class number is known, then the computed value
of x can be reduced modulo hΔ to find the minimal solution. In order to
certify that an instance of the DLP has no solution, it is necessary to verify
that the relations generate the entire relation lattice Λ. We will describe how
computing the class number from the relations can be used to accomplish this
under the assumption of the GRH and ERH.

13.3 Computing the Class Number and Class Group

Recall that the relation lattice Λ = {v ∈ Zk | FBv = (γ)} is a sublattice of
Zk. Let θ be the homomorphism

θ : Zk → ClΔ

v �→ [FBv] .

If we assume that the prime ideals in FB generate the class group, then θ
is surjective and Λ is its kernel, so Zk/Λ ∼= ClΔ and det(Λ) = hΔ. This was
first observed by Pohst and Zassenhaus28 in 1979 and presented in a more
fully developed form29 in 1985. The algorithm described below is based on
this observation and was described in 1989 by Hafner and McCurley.30

In order to guarantee that FB generates the class group, we take all the
prime ideals with norm less than a certain bound P. Unconditionally, we can
use P =

√|Δ|, due to the fact that every ideal equivalence class contains a
reduced ideal with norm less than

√|Δ| (see §5.1), but, unfortunately, this
bound is exponential in the bit length of Δ, resulting in an algorithm of expo-
nential complexity at best. If we assume the GRH, then a theorem of Bach,31

stated as (9.28) for maximal orders, implies that we can take B = c log2 |Δ|

13.3 Computing the Class Number and Class Group 317

with c = 6 if Δ is the discriminant of a maximal order and c = 12 otherwise.
Thus, in order to obtain an algorithm with subexponential complexity, we
have to rely on Bach’s result, meaning that the factor base generates ClΔ
only assuming the GRH. Hence, the correctness of the class group obtained
is also conditional on the GRH.

Assuming that the factor base FB generates ClΔ, we compute a set of
random relations L = {v1, . . . ,vn} that we hope generates Λ, as described in
the previous section. We know that the relations produced generate Λ with
constant probability, but in order to find the class number, we need to verify
this. In particular, we know that L generates Λ as soon as the determinant
of the lattice generated by L is equal to hΔ. We compute det(L) by finding
a Hermite normal form (HNF) basis of the lattice generated by L. We form
the relation matrix A whose columns consist of the random relations in L
and, via elementary column operations, reduce A to its Hermite normal form
HNF(A) = [0 | H], where H is upper triangular and all elements in a row of H
to the right of the diagonal are strictly less than the diagonal element of that
row. Then det(L) = det(H) can be computed easily. In addition, the columns
of H form a basis for the sublattice generated by L, given in a canonical
form. There are a number of algorithms for computing the HNF of an integer
matrix; one of the most promising for this particular application is due to
Giesbrecht, Jacobson, and Storjohann.32

In order to determine whether det(L) = hΔ, we compute an approxima-
tion h∗ of hΔ such that h∗ < hΔ < 2h∗, so the only integral multiple of hΔ

in the interval (h∗, 2h∗) is hΔ itself. If the lattice generated by L is a proper
sublattice of Λ, then its determinant will be a multiple of hΔ and lie outside
this interval. Thus, as soon as det(L) < 2h∗, we know that L generates Λ and
det(L) = det(Λ) = hΔ. The approximation h∗ can be computed by approxi-
mating L(1, χ) and using the analytic class number formula to approximate
hΔ as described in (10.19) and (10.20). Unfortunately, in order to be able to
approximate L(1, χ) to sufficient accuracy in polynomial time, Bach’s method
relies on the ERH. Thus, the correctness of h∗ is also conditional on ERH, as
is the class number computed by our algorithm.

Once we have computed hΔ, we can also compute the structure of ClΔ
by computing the Smith normal form (SNF) of the HNF matrix H. As the
columns of A form a generating system of Λ, the diagonal entries of SNF(A)
are precisely the elementary divisors of ClΔ. In practice, it is more efficient

to compute SNF(H) because it is already in upper-triangular form, and, as
the columns of H are a basis of Λ, this gives the same result.

The following algorithm uses the approach described above to compute
hΔ and ClΔ.

Algorithm 13.2: Class Group of an Imaginary Quadratic Order
Input: discriminant Δ < 0 of an imaginary quadratic order
Output: hΔ and elementary divisors m1, . . . ,ml of ClΔ such that ClΔ =

C(m1)× · · · × C(ml).

318 13 The Subexponential Method

1: Compute a factor base FB = {p1, . . . , pk} consisting of all non-inert prime
ideals pi with N(pi) < P for some bound P.

2: Compute h∗ such that h∗ < hΔ < 2h∗ using (10.19) or (10.20).
3: Compute n > k random relations v1, . . . ,vn.
4: Compute [0 | H] = HNF(A) where A = [vT

1 . . .v
T
n] and compute h =

det(H).
5: If h = 0 or h > 2h∗, increase n and go to step 3.
6: Compute S = SNF(H).
7: Set hΔ = h and ClΔ = C(m1) × · · · × C(ml), where m1, . . . ,ml are the

diagonal elements of S that are greater than 1.

Example 13.10. We continue the earlier example to compute the structure
of ClΔ for Δ = −32003. We first need a bound on hΔ in order to determine
whether the set of relations generate Λ. Using Bach’s method with Q = 1427,
we get that 45 < hΔ < 90 by (10.19). The relation matrix is

A =

⎛

⎝
1 5 4 6 3
8 8 5 5 8
3 9 3 6 6

⎞

⎠

and its HNF is

HNF(A) =

⎛

⎝
0 0 21 13 2
0 0 0 1 0
0 0 0 0 3

⎞

⎠ .

The determinant is 63, and as 63 < 2h∗ = 90 we know that hΔ = 63. Finally,
we compute the Smith normal form (SNF) of HNF(A) and obtain

SNF(A) =

⎛

⎝
63 0 0
0 1 0
0 0 1

⎞

⎠ .

Thus, ClΔ is cyclic of order 63 under the assumption of the ERH and the
assumption that the factor base used generates ClΔ. Although Bach’s bound
does not imply that this factor base generates ClΔ, it does in fact suffice for
this example; we will discuss how this can be proved in §13.7 when discussing
practical improvements. Also, note that we can compute a minimal solution
to the DLP instance from the previous example by reducing the non-minimal
solution modulo 63, yielding x = 2429 mod 63 = 35.

Analysis

The analysis of this algorithm is almost the same as that for the imagi-
nary quadratic order DLP described above. In particular, we assume that
k = |FB| = LΔ[1/2, z + o(1)] for some z ≤ 1 and that the factor base FB
generates ClΔ, which will be the case33 if |Δ| > 157. We use the same strat-
egy to generate relations; by Proposition 13.8, this requires expected time

13.3 Computing the Class Number and Class Group 319

LΔ[1/2, 2z + 1/(4z) + o(1)]. It can be seen from (10.1), (10.2), and (10.19)
that Bach’s method computes the bound on hΔ in time polynomial in log |Δ|.
Finally, Storjohann34 has shown that the HNF and SNF of the relation matrix
can be computed in time LΔ[1/2, 4z + o(1)] as long as the number of rela-
tions n = O(k). Thus, the expected running time of the entire algorithm is
LΔ[1/2,max(2z + 1/4z, 4z) + o(1)], and as this is optimized when z = 1/

√
8,

we obtain the following theorem.35

Theorem 13.11. The class number and class group of an imaginary quad-
ratic order can be computed in expected time LΔ[1/2,

√
2+o(1)] for |Δ| > 157

assuming the GRH and ERH.

By using this method to compute the class number, it is possible to certify
that an arbitrary instance of the imaginary quadratic order DLP does not
have a solution. Once the class number has been computed, we know that
the relations generate the entire relation lattice Λ. Thus, by Proposition 13.2
we know that the given instance of the imaginary quadratic order DLP has a
solution if and only if the linear system B′y = (1, 0, . . . , 0) has a solution and
we obtain the following theorem.

Theorem 13.12. The imaginary quadratic order DLP can be solved in ex-
pected time LΔ[1/2,

√
2 + o(1)] for |Δ| > 157 assuming the GRH and ERH.

Recall that, according to Theorem 13.9, we can compute discrete loga-
rithms in expected time LΔ[1/2, 3/2 + o(1)] if a solution is known to exist.
In practice, this algorithm, which does not certify whether a solution exists,
would be expected to be faster than that described above, as the relation
generation stages would be essentially the same, but solving a linear system
is faster than computing a HNF. While it may seem counterintuitive that this
algorithm would have a worse asymptotic complexity, this should be seen as
a quirk of the asymptotic nature of these estimates. Note that the function
2z+1/4z has a minimum value of

√
2 at z = 1/

√
8.When optimizing the entire

algorithm, this minimal value is only achieved when using a HNF algorithm
of complexity LΔ[1/2, 4z+ o(1)]. Any other complexity for the linear algebra,
such as that used for the version that only solves the DLP, will result in a
larger value than

√
2. In order to break the

√
2 barrier, it is necessary to use

a faster linear algebra algorithm and to improve the LΔ[1/2, 2z+1/4z+o(1)]
running time for finding relations.

In fact, it should be possible36 to improve the expected running time for
solving the DLP and computing the class group to LΔ[1/2, 1.013 + o(1)]. The
idea comes from the fact that the set of prime ideals required to generate
the class group given by Bach’s bound is significantly smaller (polynomial
in log |Δ|) than the subexponential-sized factor base required to obtain the
complexities given above. We can make use of this fact to find relations in
expected time LΔ[1/2, 1/(4z) + o(1)] by selecting the random vectors v with
only O(log2 |Δ|) non-zero terms and factoring the reduced ideal norms with
an asymptotically fast algorithm such as the elliptic curve method. If it can

320 13 The Subexponential Method

be shown that the same number of such “sparse” relations is required to
generate the full relation lattice as the “dense” relations used in the previous
analysis, then these relations could be found37 in expected time LΔ[1/2, z +
1/(4z) + o(1)]. Note that the function z + 1/4z has a minimum value of 1
at z = 1/2, so the overall complexity could be improved to LΔ[1/2, 1 + o(1)]
with the discovery of an algorithm for computing the HNF of the relation
matrix with complexity LΔ[1/2, 2 + o(1)]. The fastest known algorithm in
terms of asymptotic complexity, due to Storjohann and Labahn,38 computes
the HNF of the relation matrix in time LΔ[1/2, 2.38z + o(1)]. Putting these
observations together yields an optimal value of z = 1/

√
5.52 ≈ 0.4257 and

an overall complexity of LΔ[1/2, 2.38/
√

5.52 + o(1)] = LΔ[1/2, 1.013 + o(1)].
Unfortunately, to the best of our knowledge, the required result on the number
of sparse relations needed to generate the entire relation lattice has not been
proved, so this running time remains conjectural for now.

Once the class group structure has been computed, it is sometimes of in-
terest to compute a set of generators, namely reduced ideals g1, . . . , gl that
generate the disjoint subgroups isomorphic to C(m1), . . . , C(ml). More gener-
ally, as observed by Buchmann and Düllmann,39 if we have an explicit version
of the isomorphism φ : Zk �→ ClΔ, allowing us to represent any ideal equiv-
alence class a that factors over FB in the group C(m1) × · · · × C(ml), then
we can use it to solve instances of the DLP by mapping the input ideals to
this representation of the class group. One advantage of this approach is that,
given representations of the input ideals over C(m1)× · · · ×C(ml), the DLP
can be solved easily using the extended Euclidean algorithm to find solutions
modulo each of the mi followed by a generalized version of the Chinese Re-
mainder Theorem to compute the solution modulo m1 × · · · ×ml. Note that
a generalized version of the Chinese Remainder Theorem is required because
the mi are not relatively prime.40 A second advantage is that once the class
group is computed, individual instances of the DLP can be solved quite easily,
the most expensive part being factoring the input ideals over the factor base,
essentially equivalent to finding two relations.

Suppose that H is a HNF basis of the relation lattice Λ. Then, as argued
above, S, the SNF of H, has the elementary divisors of ClΔ as its diagonal el-
ements. During the computation of S, we can also compute the corresponding
unimodular transformation matrices U, V ∈ GLk(Z) such that

S = UHV .

If U−1 = (u′ij)k×k, then

gi ∼
k∏

j=1

p
u′

ji

j , 1 ≤ i ≤ k ,

form a system of generators of ClΔ if we ignore those gi ∼ OΔ corresponding
to the trivial elementary divisors mi = 1. Conversely, if U = (uij)k×k, then
for each factor base element pj we have

13.3 Computing the Class Number and Class Group 321

pj ∼
k∏

i=1

g
uij

i .

Thus, if a ∼ FBv, it can be represented over the system of generators by

a ∼
k∏

i=1

g
(
∑k

j=1 vjuij)

i , (13.1)

and the equivalence class [a] maps to
⎛

⎝
k∑

j=1

vjuij , . . . ,

k∑

j=1

vjulj

⎞

⎠ ∈ C(m1)× · · · × C(ml) .

In practice, we avoid computing the entire transformation matrix U ∈ Zk.
Instead, we work with the essential part of H, the entries remaining after re-
moving all rows and columns corresponding to diagonal elements equal to 1.
This matrix will have much smaller dimensions than H, because the diagonal
entries not equal to 1 correspond roughly to the number of non-cyclic compo-
nents of ClΔ which, by the Cohen-Lenstra heuristics presented in Chapter 7,
is expected to be small. It is possible41 to convert a factorization of an ideal a
over the entire factor base to one over only those prime ideals corresponding
to entries in the essential part of H, allowing the method described above to
work using the essential part of H in place of H.

It is important to emphasize the conditional nature of the output and
running time of the index-calculus algorithm for computing ClΔ. In particular,
versions of the Riemann hypothesis are required in two places. We require the
ERH on L-functions in order to guarantee the fact that the value h∗ computed
using Bach’s algorithm for approximating L(1, χ) satisfies h∗ < hΔ < 2h∗.
As this value is used to determine when the full relation lattice has been
generated, the correctness of the computed value of hΔ is conditional on the
ERH. If the ERH is false and the algorithm terminates incorrectly, then the
best we can say is that the class number computed is a multiple of the actual
class number, as in that case it will be the determinant of a proper sublattice
of Λ.

The GRH on Hecke L-functions is required to ensure that the prime ideals
contained in the factor base generate the class group. This assumption is
essential in proving the subexponential complexities, as without it, the best
available bound is exponential in log |Δ|. It is also required for the correctness
of the output, because if the factor base does not generate the entire class
group, the best we can hope to find is the size and structure of a subgroup.

Thus, both the running time and the correctness of the subexponential
algorithm for computing the class group of an imaginary quadratic order de-
pend on the assumptions of the GRH and ERH. It remains an open problem to
find an unconditionally correct algorithm with subexponential running time.

322 13 The Subexponential Method

Note that although the GRH and ERH are required for the running time of
the algorithm for solving the imaginary quadratic order DLP, these are only
required to certify correctness when a problem instance does not have a solu-
tion, as any solution x produced can be verified unconditionally by checking
that gx ∼ a.

13.4 Computing the Regulator

Not long after Hafner and McCurley’s algorithm for computing the class group
of an imaginary quadratic field was announced, it was generalized to compute
class groups and regulators of real quadratic fields, and in fact arbitrary al-
gebraic number fields, by Buchmann.42 This Las Vegas algorithm runs in ex-
pected time LΔ[1/2, 1.7+o(1)] for a real quadratic field of discriminantΔ, and
as with the algorithm for imaginary quadratic orders described above, both
the complexity and correctness of the output are conditional on the GRH and
ERH. Abel43 subsequently showed that the same algorithm could be used for
real quadratic orders and improved the complexity to LΔ[1/2, 5

√
3/6 + o(1)].

In this section, we will describe two algorithms for computing RΔ due to
Vollmer44 that currently have the best known complexity. The first is a Las
Vegas algorithm which computes RΔ and ClΔ in expected time LΔ[1/2,

√
2+

o(1)], where both the running time and the correctness of the output are
conditional on the GRH and ERH. The second is a Monte Carlo algorithm
which computes RΔ in time LΔ[1/2, 3

√
2/4 + o(1)]. The complexity result is

conditional on the GRH, and the output is correct with probability greater
than some fixed value p selected at runtime. Once again, the analysis of these
algorithms is presented in detail by Buchmann and Vollmer elsewhere,45 so
we will only give a sketch of these results here.

Although the algorithms described above also work for real quadratic or-
ders in principle, there are two main issues that need to be addressed. The
first is the problem of finding random relations. The complication is that in
the real case there are multiple reduced ideals in any particular ideal equiv-
alence class. The method described above finds a random ideal equivalence
class, but the reduced ideal produced also needs to be randomly selected from
that class. We will describe a strategy that accomplishes this below.

The second issue is determining when the relations found generate the
entire relation lattice. Recall that by approximating L(1, χ), we can obtain
an estimate of the product of the class number and regulator. The method
described above only produces a multiple of the class number, so it must be
extended to produce an approximation of the regulator as well.

Buchmann’s idea, as specialized to the real quadratic case, was to compute
relations of the form (v, log |γ|), where FBv = (γ); that is, γ generates the
principal ideal FBv. It can be verified that integer linear combinations of
such extended relations are themselves extended relations, so the set of all
extended relations forms a sublattice of Zk × R. We will refer to

13.4 Computing the Regulator 323

Λ′ = {(v, log |γ|) ∈ Zk × R | FBv = (γ)} ⊂ Zk × R

as the extended relation lattice.
The key to Buchmann’s algorithm is the following result.46

Proposition 13.13. The set Λ′ is a (k + 1)-dimensional lattice. If the ideal
classes of the elements of FB generate the class group, then det(Λ′) = hΔRΔ.

To see this, let Λ be the part of Λ′ in Zk. As before, we have that Λ is k
dimensional and ClΔ ∼= Zk/Λ as long as FB generates ClΔ, so det(Λ) = hΔ.
Let {b1, . . . ,bk} be a basis of Λ. Then Buchmann shows that

{(b1, log |γ1|), . . . , (bk, log |γk|), (0, . . . , 0, RΔ)} ,

where
k∏

i=1

p
bi,j

i = (γj)

for 1 ≤ j ≤ k, is a basis of Λ′. It can be verified that this set of extended
relations is linearly independent, that any linear combination of them is in Λ′,
and that an arbitrary element of Λ′ can be expressed as a linear combination
of these extended relations.

Similar to Hafner and McCurley’s algorithm, we produce a generating
system

L′ = {(v1, log |γ1|), (v2, log |γ2|), . . . , (vn, log |γn|)}
of random relations that we hope will generate all of the extended relation
lattices Λ′. In order to determine whether L′ generates Λ′, we use the idea
described in Chapter 10, namely (10.20), to compute an approximation h∗

such that h∗ < hΔRΔ < 2h∗ and check whether det(L′) < 2h∗. As soon as
this condition holds, the SNF of the relation matrix A = (v1, . . . ,vn) yields
ClΔ, det(A) = hΔ, and RΔ = det(L′)/hΔ.

To compute det(L′), we first compute the HNF of A, giving us det(L).
We also need to compute the multiple of RΔ corresponding to the real part
of L′. Let r = (log |γ1|, log |γ2|, . . . , log |γn|). If x ∈ Zn is such that Ax = 0,
then r ·x is some integer multiple of RΔ. To see this, note that x corresponds
to a linear combination of the columns of A that yields the extended relation
(0, log |γ|) with

γ =
n∏

i=1

γxi

i .

Because FB0 = OΔ, γ must be a unit and

r · x = x1 log |γ1|+ · · ·+ xn log |γn| = log |γ|

is a multiple of RΔ. If we compute a basis {x1, . . . ,xl} of the null space of A,
then we have det(L′) = det(L)R′, where R′ = rgcd(r · x1, . . . , r · xl) = mRΔ.

324 13 The Subexponential Method

The function rgcd here denotes a “real” gcd of integer multiples of the same
real number (in our case RΔ). In particular, we define

rgcd(xR, yR) = gcd(x, y)R ,

where x, y ∈ Z and R ∈ R.
One method to compute the rgcd of two multiples of RΔ, as described

by Cohen, Diaz y Diaz, and Olivier,47 is to use an analogue of the Eu-
clidean algorithm for integers, terminating when the “remainder” is less
than log((1 +

√
5)/2), the minimum possible value of RΔ. Maurer48 de-

scribed another method that computes rgcd(l1, l2) with l1 = x1RΔ and
l2 = x2RΔ, x1, x2 ∈ Z, by computing the continued fraction expansion
of l1/l2 = x1RΔ/(x2RΔ) = x1/x2. The result is integers y1 and y2 such
that y1x1 + y2x2 = gcd(x1, x2), allowing one to compute y1l1 + y2l2 =
(y1x1 + y2x2)RΔ = gcd(x1, x2)RΔ as required. Maurer’s method works well
in practice and has the important advantage that the required precision to
ensure the numerical accuracy of the output can be determined given explicit
representations of γ1, . . . , γn and the kernel vectors associated to the regulator
multiples.

The following algorithm uses the approach described above to compute
RΔ, hΔ, and ClΔ of a real quadratic order OΔ.

Algorithm 13.3: Regulator and Class Group of a Real Quadratic Order
Input: discriminant Δ > 0 of a real quadratic order
Output: RΔ, hΔ, and elementary divisorsm1, . . . ,ml of ClΔ such that ClΔ =

C(m1)× · · · × C(ml).
1: Compute a factor base FB = {p1, . . . , pk} consisting of all non-inert prime

ideals pi with N(pi) < P for some bound P.
2: Compute h∗ such that h∗ < hΔRΔ < 2h∗.
3: Compute n > k random extended relations (v1, log |γ1|), . . . , (vn, log |γn|).
4: Compute [0 | H] = HNF(A) where A = [vT

1 . . .v
T
n] and compute h =

det(H).
5: Compute a basis {x1, . . . ,xn−k} of ker(A).
6: Compute R = rgcd(r · x1, . . . , r · xn−k) where r = (log |γ1|, . . . , log |γn|).
7: If h = 0 or hR > 2h∗, increase n and go to step 3.
8: Compute S = SNF(H).
9: Set RΔ = R, hΔ = h and ClΔ = C(m1)× · · · × C(ml), where m1, . . . ,ml

are the diagonal elements of S that are greater than 1.

If desired, a compact representation of the fundamental unit can be com-
puted from RΔ using the methods from Chapter 12.

The “random exponents” method of Hafner and McCurley can be gen-
eralized49 to randomly sample extended relations from Λ′. We first select
uniformly at random v ∈ Zk with each entry vi ∈ {0, 1, . . . , |Δ|−1} and com-
pute a reduced ideal b = (α)FBv. In order to ensure that we randomly sample
from all of Λ′, we randomly select a reduced ideal a equivalent to b by using

13.4 Computing the Regulator 325

infrastructure techniques to find a reduced ideal with distance δ(b, a) ≈ δ
for a random integer δ ∈ {0, . . . , Bd} for some bound Bd > RΔ. This yields
a = (γ)FBv for γ = αβ ∈ Q(

√
Δ). If a can be factored over the factor base as

(d)FBw, where d denotes the denominator of the fractional ideal FBw, then
we have

a = (d)FBw = (γ)FBv =⇒ FBw−v = (γ/d) ,

and (w − v, log |γ/d|) is an extended relation.
Note that the real part of these relations can be computed using floating

point approximations, but in practice it is better to store the generators γ
explicitly, using a standard representation or a compact representation as
described in Chapter 12, if necessary. Having explicit representations allows
Maurer’s method mentioned above to be used to compute a multiple of RΔ

with sufficient precision to ensure the numerical accuracy of the result.

Example 13.14. We compute the class group and regulator of OΔ with Δ =
12301.

1. We set the factor base to be the smallest three prime ideals in terms of
norm, yielding

FB = {(6, 109), (10, 101), (14, 101)} .
2. We need a bound on hΔRΔ in order to determine whether the set of

relations generate Λ. Using Bach’s method with Q = 1289 and (10.20),
we get that 61 < hΔRΔ < 122.

3. We compute five random relations, hoping that having two more relations
than factor base elements (two more columns than rows in the relation
matrix) will be enough to generate Λ′.
a) The random vector v = (5, 0, 1) gives us

FBv = (3402,−1103) .

Reducing yields a = (70, 101) = FBw, with w = (0, 1, 1). The reduc-
tion algorithm yields FBv(γ1) = FBw, with

γ1 =
131 +

√
12301

486
,

so (w−v, log |γ1|) = (−5, 1, 0,−0.6976433914) is an extended relation.
b) The random vector v = (5, 2, 0) gives us

FBv = (12150, 5701) .

Reducing yields b = (10, 109) = (5)FBw, with w = (0,−1, 0). The
reduction algorithm yields FBv(γ2) = FBw, with

γ2 =
2527 + 23

√
12301

60750
,

so (w − v, log |γ2|) = (−5,−3, 0,−2.481863958) is an extended rela-
tion.

326 13 The Subexponential Method

c) The random vector v = (9, 4, 0) gives us

FBv = (24603750, 4719901) .

Reducing yields b = (14, 109) = (7)FBw, with w = (0, 0,−1). The
reduction algorithm yields FBv(γ3) = FBw, with

γ3 =
102293 + 907

√
12301

172226250
,

so (w− v, log |γ3|) = (−9,−4,−1,−6.743908938) is an extended rela-
tion.

d) The random vector v = (2, 4, 0) gives us

FBv = (11250,−5099) .

Reducing yields (182, 94), which unfortunately does not factor over
the factor base. However, two applications of the reduction operator
yields b = (126, 95) = (327)FBw, with w = (−2, 0,−1). We have,
again from the reduction algorithm, FBv(γ4) = FBw, with

γ4 =
93061 + 839

√
12301

708750
,

so (w− v, log |γ4|) = (−4,−4,−1,−1.337141404) is an extended rela-
tion.

e) The random vector v = (9, 9, 0) gives us

FBv = (76886718750,−5531123849) .

Reducing yields b = (150, 101) = (3)FBw, with w = (−1, 2, 0). The
reduction algorithm yields FBv(γ5) = FBw, with

γ5 =
153187 + 1238

√
12301

4613203125
,

so (w − v, log |γ5|) = (−10,−7, 0,−9.672852058) is an extended rela-
tion.

4. The relation matrix corresponding to these extended relations is

A =

⎛

⎝
−5 −5 −9 −4 −10
1 −3 −4 −4 −7
0 0 −1 −1 0

⎞

⎠

and we set

r = (log |γ1|, log |γ2|, . . . , log |γ5|)
= (−0.6976433914,−2.481863958,−6.743908938,

− 1.337141404,−9.672852058) .

13.4 Computing the Regulator 327

5. The HNF of the relation matrix A is

HNF(A) =

⎛

⎝
0 0 5 0 4
0 0 0 1 0
0 0 0 0 1

⎞

⎠ .

The determinant is 5, so we know that h = 5 is a multiple of the class
number.

6. A basis for the kernel of A is

ker(A) = (x1x2) =

⎛

⎜
⎜
⎜
⎜
⎝

−3 7
−1 0
4 −9
−4 9
0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

To find multiples of RΔ, we compute the dot product of r with each of
the two kernel vectors. The first kernel vector yields

R′
1 = r · x1 = −17.05227601

and the second yields

R′
2 = r · x2 = 34.10455201 .

It can be seen by inspection that the “real gcd” of R′
1 and R′

2 is

R = 17.05227601 ,

and this yields a multiple of the regulator.
7. Finally, we have that hR = 85.26138005 < 121, so we conclude that
hΔ = 5 and RΔ = 17.05227601. Computing the SNF of HNF(A) yields

SNF(A) =

⎛

⎝
5 0 0
0 1 0
0 0 1

⎞

⎠ ,

so ClΔ is cyclic of order 5.

Note that these results hold under the assumption of the ERH and the as-
sumption that the factor base used generates ClΔ. Although Bach’s bound
does not imply that this factor base generates ClΔ, it does in fact suffice for
this example; we will discuss how this can be proved in §13.7 when discussing
practical improvements.

Analysis

As in the imaginary case, the complexity of this algorithm depends on the
probability that a random ideal is smooth. Using Proposition 13.4, one can
show that the strategy described above for computing extended relations suc-
ceeds with the same probability as in the imaginary case.50

328 13 The Subexponential Method

Lemma 13.15. Suppose that the factor base contains all prime ideals with
norm less than LΔ[1/2, z] for some constant z. Then the probability that
the relation generation strategy described above successfully finds a relation
is bounded from below by LΔ[1/2,−1/(4z)− o(1)].

Also, as in the imaginary case, we generate the first k relations in such a way
that the relation matrix formed by the integer vector parts of the extended
relations is strictly diagonally dominant, and hence non-singular. By using
compact representations as described in Chapter 12 to compute and represent
the generators of each relation, it can be shown51 that each trial of the relation
generation strategy requires time LΔ[1/2, z+o(1)]. By applying Lemma 13.15,
we can bound the running time for finding a full-rank relation matrix.52

Proposition 13.16. Assuming that k = O(LΔ[1/2, z]), the running time
required to generate a full-rank sublattice of Λ′ is bounded from above by
LΔ[1/2, 2z + 1/(4z) + o(1)].

Once we have a full-rank sublattice of Λ′, it remains to estimate how
many additional extended relations are required to conclude that, with con-
stant probability, we have a complete generating system of Λ′. Buchmann
and Vollmer53 show that every random extended relation found is outside
of a proper sublattice of Λ′ with probability � 1/(1 + logΔ). Arguing
in a similar fashion to the imaginary case, one can show that additional
LΔ[1/2, z+ 1/(4z)+ o(1)] relations are required to generate Λ′ with constant
probability and we obtain the following.54

Proposition 13.17. The expected running time for finding a set of extended
relations that generates Λ′ is in LΔ[1/2, 2z + 1/(4z) + o(1)].

The next step is to compute a multiple of the regulator by computing the
real gcd of a set of regulator multiples, each of which corresponds to a basis
vector of the kernel of the relation matrix. Another strategy due to Vollmer,55

that results in a better asymptotic running time is as follows. Compute two ad-
ditional extended relations (vn+1, log |γn+1|) and (vn+2, log |γn+2|). Assuming
that the first n extended relations generate Λ′, there exist vectors x1,x2 ∈ Zn

such that
Axi = vn+i, i = 1, 2 , (13.2)

where, as before, A ∈ Zk×n is the matrix whose columns consist of the integer
vector parts of the extended relations. Equation (13.2) implies that

n∏

j=1

(γxij

i) = (γn+i)

and

εi =

⎛

⎝
n∏

j=1

(γxij

i)

⎞

⎠ /γn+i

13.4 Computing the Regulator 329

are units for i = 1, 2. Thus,

Ri = log |γn+i| − r · xi, i = 1, 2 ,

are both integer multiples of RΔ. The observation that the gcd of two random
integers is likely to be 1 suggests that rgcd(R1, R2) = RΔ with non-negligible
probability, and in fact, Vollmer56 proved that this holds with probability
greater than 1/2. As the linear system (13.2) can be solved deterministically57

in time LΔ[1/2, 3z+o(1)] and Lemma 13.15 implies that the expected time to
find a single relation is LΔ[1/2, z + 1/(4z) + o(1)], we obtain the following.58

Proposition 13.18. The expected time required to find the regulator by the
method described above is LΔ[1/2,max(z + 1/(4z), 3z) + o(1)].

The proof of this result also requires the use of Maurer’s algorithm for com-
puting rgcd(R1, R2), which, according to Buchmann and Vollmer,59 requires
time LΔ[1/2, 2z + o(1)] in this context.

The analysis of the complete algorithm is similar to that of computing the
class group of an imaginary quadratic order. We assume that k = |FB| =
O(LΔ[1/2, z]) for some z ≤ 1 and that the factor base FB generates ClΔ,
which will be the case60 if Δ > 41. By Proposition 13.17, finding a complete
generating set of Λ′ requires expected time LΔ[1/2, 2z + 1/(4z) + o(1)]. It
can be seen from (10.1) that Bach’s method computes the bound on hΔRΔ

in time polynomial in logΔ as long as Q = O(Δε), and (10.2) and (10.20)
imply that Q can be chosen of this size. The expected time for computing the
regulator is LΔ[1/2,max(z + 1/(4z), 3z)+ o(1)] by Proposition 13.18, and by
using Storjohann’s algorithms,61 the HNF and SNF of the relation matrix can
be computed in time LΔ[1/2, 4z + o(1)]. Thus, the expected running time of
the entire algorithm is in LΔ[1/2,max(2z + 1/4z, 4z) + o(1)], and as this is
optimized when z = 1/

√
8, we obtain the following theorem.62

Theorem 13.19. The regulator, class number, and class group of a real quad-
ratic order OΔ can be computed in expected time LΔ[1/2,

√
2 + o(1)]) for

Δ > 41 assuming the GRH and ERH.

As in the imaginary case, both the running time and the correctness of
this algorithm depend on the assumptions of the GRH and ERH. The GRH is
required to ensure that the factor base generates ClΔ even when it is chosen
to have subexponential size in logΔ, and the ERH is required to determine
that the set of extended relations produced generates all of Λ′. Without the
assumption of the GRH, we can only guarantee that some subgroup of ClΔ
is produced. Without the assumption of the ERH, the best we can say is that
the class number and regulator produced are multiples of their actual values.

It should be possible to improve the expected running time for computing
the class group and regulator to LΔ[1/2, 1.013 + o(1)] using the same ideas
as in the imaginary case. Here, we also use the fact that Storjohann and
Labahn’s HNF algorithm computes a unimodular transformation matrix U

330 13 The Subexponential Method

such that AU = HNF(A) = [0 | H] in the same time as computing HNF(A)
alone. The first dim(ker(A)) columns of U form a basis of the kernel of A,
which can be used to compute a multiple of RΔ. Similar to the imaginary case,
this complexity only holds under the assumption that O(LΔ[1/2, z]) “sparse”
relations suffice to generate the entire extended relation lattice.

If one is only interested in computing the regulator, then it is possible
to obtain a faster Monte Carlo algorithm that computes an unconditionally
correct approximation of RΔ with high probability. The idea is to use the
approach of producing integer multiples of RΔ outlined above. One first gen-
erates a full-rank sublattice of Λ′ as described above, followed by a sequence of
additional random extended relations. Multiples of RΔ corresponding to two
of these extra extended relations are computed, also as described above, and
their real gcd is computed using Maurer’s algorithm. Repeating this process
for different pairs of random extended relations yields independent multiples
of RΔ, and after each application we can keep the smallest of the regulator
multiples found. As each regulator multiple produced is equal to RΔ with
constant probability, repeating this process a sufficient number of times en-
sures that the regulator multiple obtained is equal to RΔ with any probability
p < 1 we wish.

The key observation in deriving an improved running time for this method
is that it is not necessary to ensure that the extended relations generate Λ′;
it is enough for the sublattice they generate to have full rank, in order for
the linear systems (13.2) to have solutions. Thus, the method for finding
relations can be adjusted by selecting the initial random exponent vectors
in such a way that, except for the ith entry that is selected to be large in
order to ensure strict diagonal dominance, only the first k′ entries are non-
zero, where FB′ = {p1, . . . , pk′} contains all the non-inert prime ideals with
norm bounded by 12 log2Δ. We cannot prove that relations produced in this
manner are randomly sampled from the set of all relations, but as argued
by Vollmer,63 this assumption is not necessary to ensure that the regulator
multiplies obtained are random.

The advantage of this method is that the expected time required to find a
relation is reduced from LΔ[1/2, z + 1/(4z) + o(1)] to LΔ[1/2, 1/(4z) + o(1)],
provided that an asymptotically fast factoring algorithm such as the elliptic
curve method is used to factor norms of ideals when testing for smoothness.
Therefore, the required LΔ[1/2, z + o(1)] extended relations can be found
in expected time LΔ[1/2, z + 1/(4z) + o(1)], and following the analysis of
the regulator algorithm described above, we see that the expected time to
compute a multiple of RΔ is LΔ[1/2,max(z + 1/(4z), 3z) + o(1)]. As this is
again minimized for z = 1/

√
8, we obtain the following theorem.64

Theorem 13.20. Given p with 0 < p < 1, the regulator of a real quadratic
order OΔ can be computed in expected time LΔ[1/2, 3

√
2/4 + o(1)] under the

GRH. The output is unconditionally correct with probability p.

13.5 Principality Testing 331

Thus, we can remove the GRH and ERH assumptions for the correctness of
the regulator and obtain a faster algorithm, but at the price of having a Monte
Carlo algorithm which only guarantees correctness up to a given probability.
It is unknown whether it is possible to certify that the regulator is correct
in subexponential time, without assuming the GRH and ERH and using the
previous algorithm to compute hΔ as well.

13.5 Principality Testing

Once we have verified that L′ generates Λ′, we can also solve the principal
ideal problem.

Definition 13.21. Given an OΔ-ideal a, the principal ideal problem P is
to determine whether a is principal and, if so, compute an approximation of
log |α| where a = (α).

The problem of computing an approximation of log |α| is also known as the
infrastructure discrete logarithm problem, in analogy to the DLP in a cyclic
group.

The algorithm proceeds as follows. Given a set of extended relations L′

that generate Λ′, we know that every principal ideal of OΔ can be represented
by a vector v ∈ Zk, where v is a linear combination of the vectors in L′.
Thus, in order to determine whether an ideal a is principal, we search for an
equivalent ideal that is smooth over the factor base, yielding a = (γ)FBv for
some γ ∈ Q(

√
Δ). We then test whether there exists a solution x ∈ Zn of

Ax = v, where A is the relation matrix as defined above. If not, then a is not
principal. Otherwise, we have a = (α) with

α = γ

n∏

i=1

γxi

i

and δ(a) = log |α| = log |γ|+(r ·x). In practice, we compute an approximation
of log |α| mod RΔ using methods of Maurer,65 which also determine the float-
ing point precision required in order to ensure that the result is numerically
accurate. Given δ(a), we can compute a compact representation of α using
the methods of Chapter 12, if desired.

Example 13.22. We solve the principal ideal problem for the ideal a =
(50, 101) in OΔ with Δ = 12301. Recall, from the previous example, that
we have hΔ = 5, RΔ = 17.05227601, and that a generating system of Λ′ is
given by the relation matrix

A =

⎛

⎝
−5 −5 −9 −4 −10
1 −3 −4 −4 −7
0 0 −1 −1 0

⎞

⎠

332 13 The Subexponential Method

with corresponding distance vector

r = (−0.6976433914,−2.481863958,−6.743908938,
− 1.337141404,−9.672852058) .

To test a for principality, we proceed as follows.

1. The first step is to find an equivalent ideal that factors over the factor
base. In this case, a itself is smooth with v = (0, 2, 0).

2. We solve the linear system Ax = v. One solution is x = (1, 2,−1, 1,−1).
3. Given x, we compute

δ(a) = r · x mod RΔ = 9.418248286 .

We can verify that a = (α), where

α =
5∏

i=1

γxi

i =
12311 + 111

√
12301

2

and that log |α| = 9.418248286, so this result is unconditionally correct.

Example 13.23. We solve the principal ideal problem for the ideal a =
(30, 101) in OΔ with Δ = 12301.

1. The first step is to find an equivalent ideal that factors over the factor
base. In this case, a itself is smooth with v = (−1, 1, 0).

2. We solve the linear system Ax = v. In this case, the linear system does
not have a solution, so we conclude that a is not principal.

Notice that this result only holds under the assumption that the factor base
used generates ClΔ and the ERH, which is required to guarantee that the set
of extended relations generate all of Λ′.

The running time of this algorithm is dominated by the cost of produc-
ing and verifying a generating system of Λ′. Once that has been computed,
requiring expected time LΔ[1/2,max(2z + 1/(4z), 4z) + o(1)], the remain-
ing operations are finding one additional relation, requiring time LΔ[1/2, z+
1/(4z) + o(1)], and solving Ax = v, requiring time LΔ[1/2, 3z + o(1)]. Thus,
the overall running time is LΔ[1/2,max(2z + 1/(4z), 4z) + o(1)], and as this
is optimized when z = 1/

√
8, we obtain the following theorem.

Theorem 13.24. The principal ideal problem in a real quadratic order OΔ

with Δ > 41 can be solved in expected time LΔ[1/2,
√

2 + o(1)] assuming the
GRH and ERH.

If the input ideal a is in fact principal and the algorithm returns its distance
δ(a), then the output can be verified unconditionally by, for example, us-
ing infrastructure to compute a compact representation of γ ∈ Q(

√
Δ) with

13.6 Complexity 333

log γ = δ(a), verifying that (γ) = a. As in the case of the imaginary quadratic
order DLP, the GRH and ERH are required in order to certify that an ideal is
not principal, because both are required to ensure that the extended relations
produced generate the entire lattice Λ′.

Finally, note that testing whether two ideals are equivalent and solving
the DLP in the class group of a real quadratic order can also be done in
expected time LΔ[1/2,

√
2 + o(1)]. Testing whether two ideals are equivalent

(i.e., whether there exists α ∈ Q(
√
Δ) such that a = (α)b) amounts to solving

the principal ideal problem for ab−1. Solving the DLP can be done as in
the imaginary quadratic case, with the exceptions that the extended relation
lattice must be computed in order to certify that no solution exists and the
relative generator α such that a = (α)gx is also required to prove that the
computed value of x is correct. Given x, we can compute α by solving the
principal ideal problem for ag−x.

13.6 Complexity

We have now seen algorithms with the best known complexities for computing
class groups and regulators of quadratic orders, all of which are subexponential
in log |Δ|. It is also interesting to consider to which computational complexity
class each of these problems belongs. The index-calculus algorithms described
above allow us to give some results in this direction.

As we know of no algorithms that solve these problems in deterministic
polynomial time, it is not known whether they belong to P , the class of
problems that can be solved in polynomial time. The complexity class NP
denotes the set of decision problems (i.e., problems whose output is either
“yes” or “no”) that have short proofs that the answer is “yes.” In other words,
if a problem is in NP , then there exists a short (polynomial sized) certificate
that a verifier can process in polynomial time in order to verify that the output
of the decision problem is “yes.” Certainly, it may be difficult to compute such
a certificate, but once it is found, it can be verified efficiently. Similarly, the
class co-NP denotes the set of decision problems that admit short proofs
that the answer is “no.” Formal definitions for these complexity classes can
be found in standard textbooks on the subject.66

A major open problem in theoretical computer science is whether P = NP
(i.e., whether there exist polynomial-time algorithms that can solve every
problem in NP). Any results on classifying problems into complexity classes
furthers our understanding as to how difficult a problem actually is.

The problems of computing the class group and regulator have decision
problem versions and thus can be considered in this paradigm. For exam-
ple, the decision problem version of computing the regulator is to determine
whether or not a given approximation of a real number is an approximation
of the regulator. If a short certificate, of polynomial length in log |Δ|, exists
that a verifier can use to certify that a given floating point number is an

334 13 The Subexponential Method

approximation of the regulator in polynomial time, then the problem of com-
puting RΔ would be considered to be in NP . If a short proof exists that a
given floating point number is not an approximation of the regulator, then
the problem would be in co-NP.

It can be shown that the DLP in the ideal class group, computing hΔ,
ClΔ, and RΔ and solving the principal ideal problem belong to NP ∩ co-NP
under the assumptions of the GRH and ERH.67 The idea is to devise short
certificates making use of the index-calculus methods described above and
compact representations of elements in Q(

√
Δ).

We will describe a slightly modified version of the proof of Buchmann and
Williams68 showing that the problems of computing the class number and
regulator of a real quadratic order are both in NP ∩ co-NP. Their method is
a generalization of McCurley’s proof69 that computing the class number of an
imaginary quadratic order is in the same complexity class, so the techniques
we describe here also apply in that context.

The idea of the proof is to submit as a certificate certain components
from the index-calculus algorithm described above to a verifier to check their
correctness. In particular, the certificate consists of the following:

1. a factor base FB = {p1, . . . , pk} with N(pk) < 12 log2 |Δ|,
2. for each prime ideal p �∈ FB with N(p) ≤ 12 log2 |Δ|, a vector v ∈ Zk and

compact representation of γ ∈ Q(
√
Δ) such that

p

k∏

i=1

pvi

i = (γ) ,

3. an HNF basis of the relation lattice Λ consisting of relations v1, . . . ,vk ∈
Zk,

4. compact representations of γ1, . . . , γk such that

FBvi = (γi) ,

5. a compact representation of a unit ε ∈ OΔ,
6. an integer Q such that the value h∗ computed using Bach’s method for

approximating L(1, χ) and (10.19) or (10.20) satisfies h∗ ≤ hΔRΔ ≤ 2h∗

assuming the ERH.

The verification proceeds as follows. The first step is to verify that the
factor base presented generates ClΔ. The verifier checks that the ideals pre-
sented in the factor base are all prime ideals by proving that their norms are
prime, which can be done in polynomial time using the algorithm of Agrawal,
Kayal, and Saxena.70 Alternatively, short proofs of the primality of each of
these norms could be submitted as part of the certificate. Next, the verifier
checks that

p

k∏

i=1

pvi

i = (γ) (13.3)

13.6 Complexity 335

holds for each prime ideal p �∈ FB with N(p) ≤ 12 log2 |Δ|. If so, then,
assuming the GRH, the factor base provided does generate ClΔ, because each
of the prime ideals less than Bach’s bound can be factored over the factor base.
This step can also be done in polynomial time, because the number of prime
ideals to check is polynomial in log |Δ| and because the γ are given in compact
representation. In particular, the left-hand side of (13.3) can be evaluated
using ideal arithmetic in polynomial time. Given a compact representation of
γ, we can compute a Z-basis representation of (γ) in polynomial time using
Proposition 12.2 and the subsequent remarks, and this is simply compared to
the ideal resulting from evaluating the left-hand side of (13.3).

The next step is to verify that the HNF basis provided is a basis of a
sublattice of Λ. First, each of the relation vectors vi is verified by checking
that

FBvi = (γi) .

This can be done in polynomial time because the number of relations is equal
to the size of the factor base, which is polynomial in log |Δ|, and as in the
previous step, each test can be done in polynomial time because the γi are
given in compact representation. As long as the relations are all valid, we
know that they form a sublattice Λ′ ⊆ Λ, and because they are given in HNF,
Λ′ has full rank and detΛ′ is a multiple of hΔ.

It remains to verify that ε is a unit with ε > 1 (i.e., a positive power of the
fundamental unit) and to prove that h = detΛ′ = hΔ and R = log ε = RΔ.
As ε is given in compact representation, we can verify that it is a unit in
polynomial time by computing its norm as described in §12.3 and verifying
that it is ±1. We can evaluate h = detΛ′ in polynomial time because we are
given an HNF basis of Λ′, and the matrix with the basis vectors as columns
is upper triangular. We can also approximate R = log ε in polynomial time
because ε is in compact representation. If R > 0, then we know that ε > 1.
Next, we verify, using (10.2), that Bach’s method with the given bound Q
yields an approximation of L(1, χ) accurate to within

√
2 and compute h∗

using (10.19) or (10.20) such that h∗ < hΔRΔ < 2h∗. Finally, to prove that
h = hΔ and R = RΔ, we have only to check that hR < 2h∗. Because Λ′

is a full-rank sublattice and ε is a positive power of the fundamental unit,
h = c1hΔ and R = c2RΔ for c1, c2 ∈ Z≥1, so this inequality will only be
satisfied if h = hΔ and R = RΔ.

The total length of the contents of the certificate is polynomial in log |Δ|,
because all of the elements of Q(

√
Δ) are given in compact representation,

and the total number of items is polynomial in log |Δ|. Therefore, we have
exhibited a short certificate that provides a proof of the class number and
regulator of a quadratic order. This implies that the problems of computing
these invariants are in NP . We can use almost the same proof to show that
these problems are also in co-NP. To prove that the given values h and R
are not equal to hΔ and RΔ, respectively, we simply check the certificate
described above, thereby obtaining hΔ and RΔ, and compare these to the

336 13 The Subexponential Method

submitted values h and R. Thus, the problems of computing the class number
and regulator are in NP ∩ co-NP. However, this result is conditional on the
GRH and ERH. Once again, the GRH is required to ensure that the number
of prime ideals needed to generate ClΔ is polynomial in log |Δ|, and the ERH
is required to guarantee that h∗ < hΔRΔ < 2h∗.

The proof described above makes use of short proofs of ideal principality,
namely verifying that an element γ ∈ Q(

√
Δ) given in compact representa-

tion is the generator of the input ideal. Thus, principal ideal testing is in
NP . Similarly, the DLP is in NP . The certificate consists of an integer x
and a compact representation of γ ∈ Q(

√
Δ). The certificate is verified by

checking that gxa−1 = (γ), implying that gx ∼ a. Note that these results are
unconditional; that is, the assumption of GRH and ERH is not required.

Proving that the principal ideal problem and the DLP are in co-NP re-
quires two components in the certificates. In both cases, we require the cer-
tificate proving the correct values of hΔ and RΔ. Given that, we can prove
that an ideal a is not principal by exhibiting a vector v ∈ Zk and a compact
representation of γ ∈ Q(

√
Δ) such that

a = (γ)
k∏

i=1

pvi

k .

As described above, this can be verified in polynomial time. Then because the
proof that hΔ and RΔ are correct gives us a basis of Λ, we can prove that a
is not principal by showing that the linear system Hx = v has no solution,
where H is an HNF matrix whose columns are the basis of Λ. The fact that
the columns of H form a basis of Λ implies that all principal ideals can be
factored over the factor base via a linear combination of the basis vectors; so
the fact that the linear system has no solution implies that a is not principal.
This can be done in polynomial time because H is in HNF, and, hence, upper
triangular. The proof that the DLP is in co-NP is similar and follows Vollmer’s
algorithm described above. Note that these results are dependent on the GRH
and ERH, because these are needed for the certification of hΔ and RΔ.

It is interesting to note that we do not know of a short proof for RΔ that
does not also prove hΔ. We can give a compact representation of any element
in Q(

√
Δ) with small norm and check in polynomial time whether it is a unit,

but we currently require the class number in order to prove fundamentality
by using an approximation of L(1, χ) and the analytic class number formula
to determine that the product of the class number and regulator is correct.

Note that because knowledge of the regulator RΔ is sufficient to find so-
lutions to the Pell equation, this also shows that the problem of solving the
Pell equation is in NP ∩ co-NP.

13.7 Practical Improvements 337

13.7 Practical Improvements

13.7.1 Improvements to the Random Exponents Method

There are a number of ways to improve the algorithms described above. The
first results discussing fit-for-implementation versions of these algorithms in
the imaginary case are due to Buchmann and Düllmann.71 Their first improve-
ment was to simplify the relation generation process. Rather than selecting
random exponent vectors from Zk, the idea was to force the majority of the
coefficients to be zero and to select the remaining coefficients randomly using
a constant bound such as 30 as opposed to |Δ|. The result is that the time
required to find relations is significantly faster, as the number of ideal multipli-
cations required to generate a relation will be reduced. This can be improved
further by precomputing a few tables of factor base elements raised to small
powers up to the exponent bound. A second benefit of this approach is that
the resulting relation matrices are sparse, because the number of non-zero
elements per relation is small. This reduces the amount of memory required
to store the relation matrix and permits the use of special-purpose linear al-
gebra algorithms that can exploit the sparseness of the matrix. For example,
structured Gaussian elimination72 can be used to reduce the relation matrix
to a much smaller dense matrix on which standard HNF algorithms can be
applied.

A second observation by Buchmann and Düllman was that in practice
it is often unnecessary to force the relation matrix to be strictly diagonally
dominant. In addition, the total number of relations required to generate
Λ tends to be significantly smaller than that predicted by the analysis; in
particular, generating k random relations tends to work reasonably well in
practice, and if not, only a small number of additional relations are required.
If, during the process of computing the HNF, it is discovered that the relation
matrix is in fact singular, it is possible to compute the rank profile of the
row space of the matrix, a list of row indices of the rows that are linearly
independent. Given this information, additional relations can be generated
with non-zero coefficients in the locations of the linearly dependent rows, by
choosing the random vectors to have non-zero coefficients in these locations, in
an effort to remove the dependencies. If the relation matrix is non-singular but
the columns do not generate Λ, Buchmann and Düllman suggested computing
one additional relation and computing the HNF and determinant again. Note
that this additional relation can be appended to the previous HNF matrix, so
computing the new HNF is easy as the matrix is already in triangular form.

Using these ideas, Buchmann and Düllman were able to compute class
groups and solve instances of the DLP for several imaginary quadratic fields.
The largest of these has the 40-digit discriminant −4F7, where F7 = 2128 + 1
denotes the seventh Fermat number. To the best of our knowledge, this was
the first implementation of these algorithms.

Buchmann and Düllman’s ideas were adapted to the real case by Cohen,
Diaz y Diaz, and Olivier.73 They suggested that computing an initial k + 10

338 13 The Subexponential Method

random extended relations was usually enough to generate Λ′ in practice, and
if not, generating a small number of additional relations and recomputing the
HNF would produce a complete generating system after very few iterations.

Cohen et al. also observed that the subexponential-sized factor bases are
much larger than necessary for practical use and suggested the use of much
smaller factor bases. Using a smaller factor base decreases the probability of
finding relations because the chance that a random ideal is smooth is smaller
if the factor base is smaller, but this is often offset by the fact that the linear
algebra will be faster. Thus, there is some opportunity to fine-tune the factor
base size to obtain a reduced overall running time in practice. However, in
order to certify that the output is correct under the assumption of the GRH, it
is necessary to show that all prime ideals p /∈ FB but with N(p) < 12 log2 |Δ|
(or 6 log2 |Δ| if Δ is known to be fundamental) can be factored over the factor
base, implying that their equivalence classes belong to the subgroup of ClΔ
generated by the factor base. This can be done for each such p by using the
method described above to factor an arbitrary ideal over the factor base.

Note that this observation also allows an implementer to choose the factor
base size based on the amount of available memory. Even if the largest factor
base size that one can use in this context does not generate ClΔ under the
GRH, one can perform the computation and verify that the smaller factor
base does in fact generate ClΔ using this idea.

Finally, Cohen et al. suggested using Lenstra’s distance 1
2 log |γ/γ| for the

principal ideal generators γ of each relation instead of Shanks’ distance log |γ|.
Notice that if γ is a unit, then Lenstra’s distance will yield the same regulator
multiple as Shanks’ distance. The advantage of using Lenstra’s distance is
that it is not necessary to keep track of rational factors of γ that arise from
ideal inversion. In particular, whenever an exponent in a relation is negative,
the inverse of the corresponding prime ideal p is involved, and as the fractional
ideal p−1 = (1/p)p, one must account for the rational factors of 1/p when com-
puting γ. However, these rational factors are eliminated when using Lenstra’s
distance, because γ/γ = (a+ b

√
Δ)/(a− b√Δ) when γ = (a+ b

√
Δ)/c.

Cohen, Diaz y Diaz, and Olivier described the results of an implementation
of these algorithms incorporating the improvements described above. To the
best of our knowledge, this was the first implementation of an index-calculus
algorithm for computing invariants of real quadratic fields. Results and run-
ning time data are given for six examples, including the 40-digit discriminant
1040 + 1.

13.7.2 The Large Prime Variation

The large prime variation has proved to be a useful practical improvement for
index-calculus algorithms in other settings, including integer factorization and
discrete logarithm computation in finite fields. Buchmann and Düllmann74

generalized this technique to the quadratic field-based index-calculus algo-
rithms described above.

13.7 Practical Improvements 339

The idea behind this variation is that many of the randomly produced
reduced ideals that we attempt to factor over the factor base almost factor
completely except for one large prime factor lying outside the factor base. If
we find two such factorizations with the same large prime factor, then they can
be combined in such a way that the large primes cancel, yielding a relation.
In practice, many of these partial factorizations are found, and the time spent
generating relations can be decreased considerably.

Suppose that we compute a reduced ideal b such that a(γ) = b with
a = FBv as before. In addition, suppose that b factors over FB except for
one additional prime ideal factor, that is, that

b = psFBw ,

with s = ±1. Then
(γ) = psFBw−v

and the vector e = w−v almost is a relation, except for the single large prime
factor ps. We call the tuple (p, s, e, log |γ|) a partial relation, in contrast to the
full relations described above that correspond to principal ideals that factor
completely over the factor base.

Suppose now that we have two partial relations (p, s1, e1, log |γ1|) and
(p, s2, e2, log |γ2|) that have the same large prime ideal factor p, but possi-
bly with different signs si. In order to form a full relation, we need to find
some combination of these two partial relations that yields a principal ideal
which factors completely over the factor base. If s1 �= s2 (i.e., s1 + s2 = 0),
then the two almost smooth principal ideals can be multiplied, yielding

(γ1γ2) = ps1FBe1ps2FBe2 = ps1+s2FBe1+e2 = FBe1+e2 ,

and (e1 + e2, log |γ1|+ log |γ2|) is a full relation. On the other hand, if s1 = s2
(i.e., s1 − s2 = 0), then

(γ1γ
−1
2) = ps1FBe1p−s2FB−e2 = ps1−s2FBe1−e2 = FBe1−e2 ,

and (e1 − e2, log |γ1| − log |γ2|) is a full relation.
To apply the large prime variation to relation generation, we select a bound

LB for the norms of the large prime ideals which we will accept. Then, in
the course of searching for relations, we save any partial relations that occur
for with the large prime factor p satisfies N(p) ≤ LB. At certain intervals
during the relation generation process, we sort the list containing the partial
relations according to the large primes pi. Now, suppose we have found l
partial relations containing the same large prime ideal pi. Note that these l
partial relations are easy to find, since the list is sorted. We can compute a
full relation from each distinct pair of these partial relations, yielding

(
l
2

)
new

full relations.
Since sorting the list of partial relations is relatively time-consuming, we

only collect the full relations at a few points during the relation generation

340 13 The Subexponential Method

procedure. The following method works well in practice.75 Assume that we
need to generate n relations in total. As soon as we have generated n′ = 0.1n
full relations (10% of n), we sort the list of partial relations and count the
number p of new full relations that could be generated. We do not actually
compute these new full relations; rather we note the fact that they can be gen-
erated if needed. We repeat this step each time we have n′ = 0.2n, n′ = 0.3n,
etc.... until n′ + p ≥ n. At this point, we sort the list of partial relations one
last time and explicitly compute the full relations produced by combinations
of the partial relations.

13.7.3 Parallelism

Buchmann and Düllman76 observed that the relation generation stage can
be parallelized using master-slave parallelism, in which a number of “slave”
computers compute relations and send them to a single “master” computer
responsible for coordinating the entire computation . When using the random
exponents strategy, each slave independently computes relations and sends
them to the master. As long as the sequences of random numbers used are
different for each slave, obtained by, for example, ensuring that the pseudo-
random number generator used by each slave receives a different seed, the
relations produced are likely to be distinct. The result is that the relation
generation can be sped up by a factor of n, where n slave nodes are used. By
using large primes and parallel relation generation, Buchmann and Düllman
were able to compute ClΔ for an imaginary quadratic field with the 55-decimal
digit discriminant Δ = −4(1054 + 1).

13.7.4 Computing Relations Using Sieving

As with factoring algorithms, an important breakthrough in improving effi-
ciency was the realization that sieving could be used to simultaneously test a
set of equivalent ideals for smoothness. Using the relation generation strategies
described above requires that each candidate reduced ideal be factored indi-
vidually using trial division or some other method such as the elliptic curve
method (ECM)77. However, as shown by Jacobson78, it is possible to use a
sieve procedure similar to the multiple polynomial quadratic sieve79 (MPQS)
integer factorization algorithm to find relations in both the imaginary and
real quadratic cases.

The main idea is due to Paulus,80 who observed that in order to find a
relation given a reduced ideal b equivalent to some ideal that is smooth with
respect to the factor base, it is enough to factor any ideal equivalent to b.
In addition, he observed that the norms of ideals equivalent to b are equal
to values of a bivariate quadratic polynomial whose coefficients correspond to
the coefficients of b. This polynomial can be sieved using the norms of the
prime ideals in the factor base to identify norms of ideals equivalent to b that
are smooth. In addition, given the values of the variables corresponding to the

13.7 Practical Improvements 341

smooth norm, it is possible to explicitly generate the smooth ideal itself and
factor it.

Paulus’ idea was improved by Jacobson81 by extending it to model the
successful MPQS factoring algorithm and compute the extended relations
required for the algorithms set in real quadratic orders. We begin, as before,
by computing a random OΔ-ideal

a = (d)
k0∏

i=1

pvi

i =

[
Q

r
,
P +

√
D

r

]

with k0 small and vi ∈ {0, 1,−1}, where by d we denote the denominator of
the (possibly) fractional ideal

∏k0
i=1 pvi

i . Note that this is similar to Düllmann’s
strategy, except the exponents are chosen from an even more restrictive set.
As suggested by Paulus, rather than reducing a and testing it for smoothness,
we use a sieve to test many ideals equivalent to a for smoothness. Any ideal
equivalent to a that factors over the factor base yields a relation. We can sieve
over many ideals a, thus obtaining a multiple polynomial-type algorithm.

The following lemma gives us the basis for setting up the sieve.

Lemma 13.25. If γ ∈ a = [Q/r, (P +
√
D)/r], so that γ = (Q/r)x+ P+

√
D

r y
for x, y ∈ Z, then there exists an ideal b such that (γ) = ab and

N(b) = (Q/r)x2 + (2P/r)xy +
P 2 −D
rQ

y2 .

Proof. Put R = (P 2 − D)/(rQ) and note that since we get γ ∈ a, we have
(γ) = ab for some OΔ-ideal b. We also have

N((γ)) = |γγ| =
∣
∣
∣
∣
∣

(
Q

r
x+

P +
√
D

r
y

)(
Q

r
x+

P −√D
r

y

)∣
∣
∣
∣
∣

=
∣
∣(Q/r)

(
(Q/r)x2 + (2P/r)xy +Ry2

)∣
∣

= N(a)N(b) .

Because ideal norm is multiplicative, we get an ideal b with norm N(b) =
(Q/r)x2 + (2P/r)xy +Ry2. ��

Using the lemma, if we can find x, y ∈ Z such that N(b) = f(x, y) factors
over the norms of the prime ideals in the factor base (i.e., b factors over FB)
then we get a relation. Note that if an extended relation is required, the value
of γ is obtained immediately, which, after adjusting for negative powers in
the factorizations of a and b, will be the generator of a smooth principal
ideal. Thus, the problems of finding both relations and extended relations are
reduced to finding smooth values of quadratic polynomials, which can be done
with a sieve. In practice, given a sieve radius M ∈ Z, we set y = 1 and search
for values of the quadratic polynomial f(x, 1) = (Q/r)x2 +(2P/r)X+R with

342 13 The Subexponential Method

−M ≤ x ≤ M that factor completely over the norms of the prime ideals in
the factor base. Sieving is possible due to the observation that if p | f(x, 1),
then p | f(x + mp, 1) for all m ∈ Z, allowing one to determine rapidly all
values of x for which the quadratic polynomial is divisible by a prime p, given
its roots modulo p.

We can also make use of the ideas of Silverman’s MPQS in order to max-
imize the chances of finding relations, by forcing the values of f(x, y) to be
as small as possible, given bounds on x and y. In particular, for a given sieve
radius M, ensuring that N(a) ≈ (

√|Δ|/2)/M will achieve this goal when we
take y = 1. Also, as with the MPQS factoring algorithm, this method is trivial
to parallelize; each processor simply performs sieving on its own unique set of
ideals a.

The sieving idea can be extended to factor an ideal a over the factor base.
For a random v ∈ Zk, compute c = [Q/r, (P +

√
D)/r] with c ∼ aFBv. For

γ = (Q/r)x + ((P +
√
D)/r)y ∈ c, there exists an ideal b such that (γ) = cb

and N(b) = (Q/r)x2 + (2P/r)xy + Ry2 = f(x, y) as above. Thus, (γ) = cb
implies that a ∼ b−1FB−v, and the problem is reduced to finding smooth
values of f(x, y). As above, the idea of MPQS factoring can be applied, also
in parallel.

13.7.5 Self-initialization

After sieving with one ideal, if additional relations are required, we have to
start over by computing a new ideal via a random power product of factor base
elements. In addition, we have to compute the roots of the sieve polynomial
corresponding to the new ideal modulo the norm of each prime ideal in the
factor base in order to initialize the sieving procedure. Both of these tasks are
significantly more expensive than performing the sieving itself.

For integer factorization, Alford and Pomerance82 addressed this problem
by extending the MPQS algorithm to incorporate a technique called self-
initialization. Their method was extended to computations in quadratic fields
by Jacobson.83 The idea behind self-initialization is to use a special set of
sieve polynomials that enables fast switching from one sieve polynomial to
the next. Select S = {q1, . . . , qt} ⊂ FB such that

t∏

j=1

N(qj) =
t∏

j=1

qj ≈
√|Δ|/2
M

.

As before, the bound on the norm ensures that the values of the sieve polyno-
mial will be as small as possible for values of x in the interval [−M,M]. The
OΔ-ideals we use for sieving are computed as a = (d)Sv, where v ∈ {−1, 1}t

and d denotes the denomiantor of the fractional ideal Sv. Note that there are
2t−1 possibilities for v if we only count one of a and a−1. For each of these
different possible ideals, the norm Q/r = N(a) =

∏t
j=1 qj is fixed, but there

are 2t−1 different possible P coefficients with P 2 ≡ D (mod rQ) .

13.7 Practical Improvements 343

The point behind self-initialization is to avoid explicitly computing each
of the 2t−1 ideals Sv via ideal multiplication. We will instead construct the
2t−1 solutions Pi of the congruence

P 2
i ≡ D (mod rQ) (13.4)

corresponding to a given value of Q/r = q1 · · · qt. If Δ ≡ 0 (mod 4) , i.e., r =
1, the solutions Pi can be constructed directly using the Chinese remainder
theorem modulo the qj . Given integers Bj for 1 ≤ j ≤ t such that

{
Bj ≡ 0 (mod qk) if k �= j

B2
j ≡ D (mod qj) otherwise ,

the Chinese Remainder Theorem tells us that any combination of the form
B = ±B1±B2 ± · · · ±Bt−1 +Bt is a solution of (13.4). We fix the sign of Bt

in order to obtain only one of B and −B, and thus one of a or a−1. The values
of Pi correspond to the least positive remainders of B mod Q. As shown by
Alford and Pomerance, the Bj are given by

Bj =
(
Q

qj

)((
Q

qj

)−1

tqj (mod qj)

)

(mod Q) ,

where tqj is the solution of T 2 ≡ D (mod qj) yielding the smallest least
positive residue of (Q/qj)−1tqj (mod qj) . If Δ ≡ 1 (mod 4) (i.e., r = 2) we
follow the same procedure, and at the end, we take the least positive remainder
of B +Q (mod 2Q) .

It remains to be seen how to generate efficiently each of the 2t−1 solutions
Pi of (13.4). Recall that each Pi corresponds to a combination of the t values of
Bj , where each Bj is either added or subtracted. We associate a binary vector
u ∈ {−1, 1}t to each of the Pi, where uj = 1 if Bj is added and uj = −1 if
Bj is subtracted. Take P1 = B1 + B2 + · · · + Bt so that u1 = (1, 1, . . . , 1).
Starting with u1, we order the 2t−1 possible vectors ui in a Gray code:

ui+1 = ui + ni .

Here, entry ν of ni is 2(−1)i/2ν�, where ν is the unique positive integer such
that 2ν || 2i, and all other entries are zero. Note that any two consecutive
vectors ui and ui+1 in this ordering differ in only a single entry. If entry ν of
ui is −1, we add 2 to it in order to obtain 1, and if it is 1, we subtract 2. This
ordering of the ui yields a similar ordering of the Pi given by

Pi+1 = Pi + 2Bν(−1)i/2ν� (2ν || 2i) . (13.5)

If Pi was formed by subtracting Bν , then we add 2Bν in order to obtain Pi+1,
and if Pi was formed by adding Bν , we subtract 2Bν.

The roots of the sieving polynomials Fi(X) = (Q/r)X2 + (2Pi/r)X +Ri,
where Ri = (P 2

i −D)/(rQ), can also be computed iteratively. For some pj =

344 13 The Subexponential Method

N(pj), where pj ∈ FB and pj � Q, let r1,j be a root of F1(X) (mod pj) . If
pj � Δ, the two roots of F1(X) are given by

−
(

2P1

r

)(
2Q
r

)−1

±
√
Δ

(
2Q
r

)−1

(mod pj) ,

and if pj | Δ, the single root is given by −(2P1/r)(2Q/r)−1 (mod pj) . By
(13.5), for any Pi and Pi+1 we have

2Pi+1

r
− 2

2Pi

r
=
(

2
r

)

2Bν(−1)i/2ν� ,

and it follows that

ri+1,j ≡ ri,j − 2BνQ
−1(−1)i/2ν� (mod pj) . (13.6)

We have to compute the root of Fi(X) (mod qj) for each qj | Q separately,
using the fact that these roots are given by −Ri(2Pi/r)−1 (mod qj) . However,
only t of these special roots have to be computed for each Fi(X); all the others
can be computed using (13.6).

To use these polynomials for relation generation, we also need to know the
factorizations of the ideals ai = (Q,Pi) over the factor base as a = (d)FBwi .
The non-zero coefficients of wi will always correspond to the same t ideals in
the set S; the only question is to determine their signs according to whether
Pi ≡ tj (mod qj) for each of the prime ideals qj = (qj , tj) ∈ S. Notice that
once the correct signs are determined for the factorization of a1, these can
be iteratively updated using Grey-code-based ideas similar to the methods
described above.

If more than 2t−1 polynomials are required to generate a sufficient number
of relations, we simply choose another set S of t ideals in the factor base, from
which we can generate another 2t−1 ideals. Any set of t ideals whose product
yields an ideal a with N(a) ≈ (

√|Δ|/2)/M will suffice for this purpose, so in
general there are plenty of possibilities for S, and the probability of running
out of sieve polynomials is negligible.

In practice, the time to compute the Pi and the roots of Fi(X) (mod pj)
from (13.5) and (13.6) can be shortened considerably by storing a few pre-
computed values for each different value of Q. For example, the values of 2Bi

and Q−1 (mod pj) only depend on Q = q1 . . . qt, and can be computed once
when the set S is chosen. In addition, the values

√
Δ (mod pj) can be com-

puted once for the entire computation, as these are independent of the set S.
With these precomputed values, only one addition or subtraction is required
to compute Pi+1 given Pi, and only one subtraction and one multiplication
modulo pj for each of the roots ri+i,j given ri,j , considerably fewer opera-
tions than would be required using ideal arithmetic to generate each sieving
polynomial and computing the roots directly.

13.8 Computational Results 345

13.8 Computational Results

The introduction of sieving for relation generation has resulted in a signifi-
cant increase in speed. For example, Jacobson84 reports that computing the
class group of OΔ with Δ = −4(1039 + 1) requires over 4 hours on a 296-
MHz Sun UltraSPARC-II using Buchmann and Düllman’s improved version
of Hafner and McCurley’s algorithm, but only about 2 minutes using MPQS-
style sieving. Using self-initialization improves this to less than half a minute.
In addition, the class group for the 55-decimal digit −4(1054 + 1) was com-
puted in just over 15 minutes on this machine, whereas a parallel computation
using 14 processors lasting more than 10 days was required using random ex-
ponents. Similarly, the class group and regulator of OΔ with Δ = 1040 + 1
required over 8 hours on this machine using the improvements of Cohen et
al. described above, but only about 48 seconds using MPQS and 22 seconds
using self-initialization.

The most recent computational results for solving DLPs and computing
invariants of quadratic orders make use of self-initialized sieving and the large
prime variant. Using a single computer, the following results have been ob-
tained by Jacobson.85 The class group of an imaginary quadratic order with
discriminant |Δ| ≈ 1080 was computed on a 296-MHz UltraSPARC-II in about
5.5 days. Solutions to instances of the DLP were each computed in about 4.5
hours using Buchmann and Düllman’s method of finding the images of the
equivalence classes of a and g in the canonical representation of the class group
as a direct product of cyclic subgroups.

The largest instance of the principal ideal problem solved to date86 is for
a discriminant Δ ≈ 1066. This computation, also on a 296-MHz UltraSPARC-
II, required 1 day to compute RΔ plus 4.5 hours per instance of the principal
ideal problem. The largest class number and regulator computed sequentially
using the methods described above87 are for the 80-digit discriminant

Δ = 127794031002605867150254928246579160440674038637246970397197
77303886059655053681

for which, assuming the GHR and ERH, we have

RΔ = 18287108921995753667199230265771142676945.486446669 ,
hΔ = 1 .

On a 296-MHz UltraSPARC-II, this computation required 3.45 days of com-
puting time.

It is interesting to note that there is some disparity in the performance of
the index-calculus algorithm. For example, the next largest discriminant for
which the class number and regulator was computed using this algorithm88 is
the 72-digit

Δ = 133007243922787512412600341028518035429251391005992761399935
498154029253 ,

346 13 The Subexponential Method

for which, assuming the GHR and ERH, we have

RΔ = 6625291330661652053429358727545606.557249020 ,
hΔ = 4 ,

ClΔ = C(2)× C(2) .

Even though this discriminant is smaller than the previous one presented,
over 18 days were required on the same computer to compute hΔ and RΔ.
The reason for this disparity lies in the fact that it is harder to find relations
for quadratic orders that have few prime ideals of small norm in the factor
base, because it is more probable to find smooth integers (norms of ideals in
our case) with small prime factors. When using the index-calculus algorithm
to compute the regulator and class number, the 80-digit discriminant has all
primes less than 239 in the factor base, whereas the smallest prime in the
factor base for the 72-digit discriminant is 347. Thus, we would expect finding
relations to be more difficult in the latter case.89

These two examples were specially constructed for different applications.
The 80-digit example was constructed so that the ratio between the funda-
mental solutions to Pell’s equation for D = Δ/r2 and D − 1 was forced to
be large. In particular, if we define ρ(D) = log t1/ log t0, where (t1, u1) is the
fundamental solution of Pell’s equation for D and (t0, u0) is the fundamental
solution for D − 1, then, for this example,

ρ(D) ≈ 398551394858929682817618914464379104488.73182644883 .

In contrast, the example of D = 1621 mentioned in the Preface only has
ρ(D) = 34.35. Jacobson and Williams90 proved that ρ(D) can be arbitrarily
large by exhibiting an infinite family of D for which ρ(D) � D1/6/ logD.
However, if the ERH is assumed, then we would expect that there exists
an infinitude of values of D for which ρ(D) � √

D log logD/ logD. The 80-
digit example and others provided by Jacobson and Williams provide evidence
that this should indeed be the case. These examples were found, in part, by
maximizing the first few terms in the Euler product expansion of L(1, χ). The
construction used to find the 80-digit example forced the Kronecker symbol
(Δ/p) = 1 for all primes p ≤ 239.

In contrast, the 72-digit example was constructed in such a way that the
asymptotic density of prime values of the quadratic polynomial fA(x) = x2 +
x + A with Δ = 1 − 4A is high. The construction used minimizes the first
few terms of the Euler product expansion of L(1, χ)—in this case, by forcing
(Δ/p) = −1 for all primes p ≤ 337. A conjecture of Hardy and Littlewood,91

called Conjecture F, implies that PA(n), the number of prime values assumed
by fA(x) for 0 ≤ x ≤ n, satisfies

PA(n) ∼ C(Δ)LA(n) ,

where

13.8 Computational Results 347

LA(n) = 2
∫ n

0

dx

log fA(x)

and

C(Δ) =
∏

p≥3

1− (Δ/p)
p− 1

,

indicating that values of Δ for which C(Δ) is large should yield polynomi-
als fA(x) that have large asymptotic densities of prime values. Jacobson
and Williams92 described how to approximate C(Δ) efficiently and accu-
rately given hΔ and RΔ, together with constructions that force (Δ/p) = −1
for several small primes p, thereby maximizing the first terms of C(Δ).
The 72-digit example mentioned here was produced in this manner and has
C(Δ) = 5.65726388, the largest known C(Δ) value to date. Thus, assuming
Conjecture F, the ERH, and the GRH, the latter two being required for the
correctness of hΔ and RΔ, and hence for the approximation of C(Δ), the
polynomial x2 + x+A for

A = −33251810980696878103150085257129508857312847751498190349983
874538507313

has the largest asymptotic density of prime values for any polynomial of this
type currently known.

Using parallel computations, it is possible to compute hΔ and RΔ for even
larger Δ. For example, Hühnlein, Jacobson, and Weber93 reported the com-
putation of the class number and class group of an imaginary quadratic field
whose discriminant |Δ| ≈ 1090. Using a cluster of 16, 550-MHz Pentium III
computers, this computation required 3 days to compute ClΔ plus 3 minutes
per instance of the DLP. Using the same computers, Jacobson, Scheidler, and
Williams94 reported the computation of the class number, class group, and
regulator of a real quadratic field Q(

√
Δ) with a 90-decimal-digit discriminant.

In particular, for

Δ = 215224698103728400410483771240601671668634200915018506046263
918977716591590126558308631804

we get, under the GRH and ERH,

RΔ = 1314117837933813360543450767405060115166686144.03321787 ,
hΔ = 1 .

This computation took a total of 10 days, or approximately 5.2 months of CPU
time, using the same cluster. In addition, the 101-decimal-digit discriminant

Δ = 130221941021903504103190853297932051273194641328847761633615
78366571379092583560263087397184669099836

348 13 The Subexponential Method

was shown, under the GRH and ERH, to have

RΔ = 317802546231747555392917649154948636172763163478260.945231457 ,
hΔ = 1 .

This computation took 87 days of real time using the cluster, approximately
3.8 years of CPU time.

The latter result is the first computation of a regulator corresponding
to a discriminant of 100 or more decimal digits and the largest regulator
found to date. Recall that, given the regulator, it is possible to compute a
compact representation of the fundamental unit and, hence, the fundamental
solution of Pell’s equation. However, once again, it must be emphasized that
the correctness of this result, as well as the other class number and class
group computations mentioned above, is dependent on the truth of the GRH
and ERH. On the other hand, the discrete logarithms and solutions to the
principal ideal problem mentioned above are unconditionally correct.

13.9 Open Problems and Further Improvements

There remain numerous potential improvements to the subexponential method
that have yet to be explored. For relation generation, one possibility is the
use of double large prime relations. This strategy, which has been employed in
other settings including integer factorization, and discrete logarithm compu-
tation in finite fields and hyperelliptic curves, involves making use of principal
ideals that factor completely over the factor base except for one or two addi-
tional large prime factors. It is possible to find collections of such double large
prime relations for which, when combined by multiplying or dividing, all the
large prime factors cancel, resulting in a relation. This process of finding com-
binations of double large prime relations is slightly more complicated than in
the integer factorization context, as the large prime factors must completely
cancel as opposed to combining into even multiplicities that become zero when
reduced modulo 2. Nevertheless, similar techniques can be used, as illustrated
by Gaudry et al. for the low-genus hyperelliptic curve DLP.95 These ideas
should carry over easily to the index-calculus algorithms for quadratic orders
described above and will likely offer improvements in practice for sufficiently
large discriminants.

The linear algebra algorithms used to produce the examples described
above can also be improved significantly. For example, the algorithms of Gies-
brecht, Jacobson, and Storjohann referred to in the analyses have yet to be
tried in practice. These algorithms for solving linear systems over the integers
and computing the HNF and kernel basis of an integer matrix should work
very well in practice, allowing class groups and regulators for significantly
larger discriminants of quadratic orders to be computed. The algorithm for
solving linear systems, in particular, should be very effective in conjunction

13.9 Open Problems and Further Improvements 349

with Vollmer’s algorithm for computing discrete logarithms, but this also has
not yet been attempted. One drawback of these methods is that they do not
take advantage of the sparseness of the relation matrices that arise in practice,
especially using sieving. Efficient algorithms that solve linear systems, com-
pute a basis of the kernel, compute the determinant, and compute the SNF of
a large sparse integer matrix exist96 that all have subcubic complexity in the
dimensions of the input matrices and may offer an even greater improvement
in practice. To the best of our knowledge, there is no known HNF algorithm
with subcubic complexity that exploits sparseness.

In addition to these practical issues, there are two important open theoret-
ical problems that have yet to be solved. The first is whether it is possible to
find an algorithm that breaks the LΔ[1/2, α] complexity barrier. In the con-
text of integer factorization and computing discrete logarithms in finite fields
Fp, this has been achieved by the number field sieve, for which a heuristic anal-
ysis suggests a running time of Ln[1/3, α] for factoring n and Lq[1/3, α] for
solving discrete logarithms in the finite field Fq. Given the many similarities
between factoring algorithms and algorithms for computing class groups and
regulators and the fact that most of the advances in factoring have success-
fully been translated to the quadratic order setting, it is tempting to believe
that a number field sieve analogue exists. At the moment, we have no idea
how to do this, and in fact, Bauer and Hamdy97 provided some evidence that
it may not be possible.

The other important theoretical problem is whether the dependence on
the GRH and ERH of the running time analysis and correctness can be re-
moved. This appears to be a very difficult problem, and we currently know
of no Las Vegas type algorithm that removes this dependence on unproven
hypotheses and retains subexponential complexity. However, it is possible to
certify unconditionally the regulators and the output to the principal ideal
problem produced by the index-calculus algorithms described above, result-
ing in algorithms whose expected runtimes are faster than the deterministic
algorithms presented in Chapters 7 and 10. The problems of unconditionally
verifying the regulator and class number of a real quadratic order are dis-
cussed in Chapter 15 and that of unconditionally verifying the output to the
principal ideal problem is discussed in Chapter 16.

350 Notes and References

Notes and References

1A Las Vegas algorithm is a probabilistic algorithm for which the output is correct
but the running time is probabilistic. This is in contrast to Monte Carlo algorithms,
which have deterministic running time but can only guarantee the correctness of
their output up to some small probability of error.

2This idea seems to have originated with Kraitchik [Kra22], pp. 120–123, who
used it to solve the discrete logarithm problem in the group of residues modulo a
prime p.

3See [CP05] or [Coh93] for a survey of factoring algorithms.
4[LL93], [Gor93], and [Sch00].
5[LL90].
6[Sey87].
7[HM89].
8[Buc90].
9See [BD91b], [CDyDO93], [BD92], and [Abe94] for some significant examples of

improvements to Buchmann’s method.
10[Vol00] and [Vol02].
11[Jac99b] and [Jac00].
12[BV07].
13[McC89].
14[Vol00].
15See [Jac98], [JRW06], and [Ram06] for descriptions of numerical experiments

supporting this phenomenon.
16[HM89].
17See [BV07], Lemma 11.4.6.
18See, for example, [GJS01] or [MS99].
19Seysen’s result on ideal smoothness for imaginary quadratic orders appears in

[Sey87]. Buchmann and Hollinger [BH96] generalized this to real quadratic fields,
and Abel (née Hollinger) extended the result to real quadratic orders [Abe94], Propo-
sition 7.2.2. It is interesting to note that no analogous result on smooth ideals has
been proved for non-quadratic number fields. Thus, the analysis of index-calculus al-
gorithms for arbitrary degree number fields requires the assumption of a smoothness
result of this type.

20See [BV07], Proposition 11.4.3, for the statement and proof of this proposition
in the context of quadratic fields.

21Adapted from [BV07], Lemma 11.4.6.
22[Sey87].
23See, for example, [BV07], Lemma A.5.5.
24Adapted from [BV07], Proposition 11.4.9.
25[BV07], Lemma 11.4.11.
26Adapted from [BV07], Proposition 11.4.13.
27[GJS01].
28[PZ79].
29[PZ85].
30[HM89].
31[Bac90].
32[GJS01].
33See [BV07], p. 235.

Notes and References 351

34[Sto00].
35Adapted from [BV07], Corollary 11.4.16.
36See [BV07], p. 268. Here, Buchmann and Vollmer argue that complexity

LΔ[1/2, 3
√

2/4 + o(1)] = LΔ[1/2, 1.061 + o(1)]

should be possible. Our improvement comes from combining their observations with
an asymptotically faster HNF algorithm due to Storjohann and Labahn [SL96b].

37In fact, Vollmer stated in [Vol00] that the imaginary quadratic order DLP could
be solved in expected time LΔ[1/2, 3

√
2/4 + o(1)], but subsequently acknowledged

in [Vol02], Corrigendum, that his proof was not valid because it did not differentiate
between the costs of finding these “dense” and “sparse” relations.

38[SL96b].
39[BD91a].
40See Exercise 3 on p. 292 of [Knu98], and the solution on p. 630 for an explicit

version of the generalized Chinese Remainder Theorem.
41[Jac00].
42[Buc90].
43[Abe94].
44[Vol02].
45See [BV07] and [Vol02].
46This result originally appeared as [Buc90], Theorem 2.1. See [BV07], Proposi-

tion 11.5.2, for a complete proof.
47[CDyDO93].
48[Mau00].
49See [BV07], Section 11.5.4, for a precise description of this method.
50Adapted from [BV07], Lemma 11.5.17.
51[BV07], Corollary 11.5.21.
52Adapted from [BV07], Proposition 11.5.23.
53[BV07], Lemma 11.5.24.
54Adapted from [BV07], Proposition 11.5.26.
55[Vol02] and [BV07], Algorithm 11.15.
56See [Vol02] and [BV07], Proposition 11.5.28.
57See, for example, [GJS01].
58Adapted from [BV07], Proposition 11.5.29.
59See [Mau00], Theorem 12.1.5.
60See [BV07], p. 235.
61[Sto00].
62Adapted from [BV07], Theorem 11.5.30.
63[Vol02].
64Adapted from [Vol02], Theorem 1.
65[Mau00].
66See, for example, [HMU07].
67See [McC89], [BW89b], and [BW91].
68[BW89b].
69[McC89].
70[AKS04].
71[BD91b] and [BD91a].
72As described in, for example, [BD91b].

352 Notes and References

73[CDyDO93].
74[BD92].
75[Jac99b].
76[BD92].
77[Len87].
78[Jac99a].
79[Sil87].
80[Pau96a].
81See [Jac99b] and [Jac99a].
82[AP95].
83[Jac99b].
84See Tables 5.12, 5.33, and 5.34 of [Jac99b] for additional examples.
85[Jac00].
86[Jac00].
87[JW00].
88[JW03].
89This phenomenon is explored in more detail by Jacobson in [Jac99b].
90[JW00].
91[HL23].
92[JW03].
93[HJW03].
94[JSW01].
95[GTTD07].
96[EGG+06] and [EGG+07].
97[BH03].

14

Applications to Cryptography

14.1 Introduction

We now live in a world where the security and integrity of our information and
communications is not guaranteed, where the number and sophistication of
attacks on these systems are increasing rapidly, and where the impact of those
attacks can be measured in billions of dollars and in the loss of reputation
and personal integrity. Thus, it is essential today, more than ever, to develop
techniques that will protect our communications. One essential component of
any installation in which secure communication is needed is cryptography. Its
use goes back to Julius Caesar, or perhaps even earlier.1

Briefly put, cryptography is the study and development of techniques for
rendering information unintelligible to all but intended recipients of that in-
formation.2 If a sender, Alice, and a receiver, Bob, of a message wish to com-
municate over an insecure channel (e.g., mobile phone, internet) and want to
ensure that no other unauthorized party can read their transmission, they will
make use of a particular cryptosystem. A conventional cryptosystem can be
thought of as a large collection of transformations (ciphers), any one of which
will render the original message (plaintext) to unintelligible ciphertext , but in
order for the receiver to read the message, Bob must know which particular
transformation was used by Alice. The information that identifies the trans-
formation used by the sender is called the key. It is important to point out
that if an eavesdropper (Eve) acquires some message and its encrypted equiv-
alent, she should not be able to extract the key from this information. Nor
should the system be vulnerable to an adaptive attack; such attacks make use
of information previously acquired to obtain new information from the sender
and so on until the system is broken.

Cryptanalysis is the process by which Eve, on receiving some ciphertext,
determines the original message without prior knowledge of the key. When
this is successful, we say that Eve has broken the system. Cryptology is the
study of both cryptography and cryptanalysis. With regard to cryptology, we
should always bear in mind a famous quote of Poe3:

354 14 Applications to Cryptography

Few persons can be made to believe that it is not quite an easy thing
to invent a method of secret writing which shall baffle investigation.
Yet it may be roundly asserted that human ingenuity cannot concoct
a cipher which human ingenuity cannot resolve.

To maintain security, it is vital that the key be known to only the sender
and receiver of the messages. Of course, this means that at some point the key
must be communicated between the sender and receiver in a very secure man-
ner. In one-key or symmetric cryptosystems, this must be done over a differ-
ent and more secure transmission channel than that used for the transformed
(encrypted) messages. As separate communication channels are expensive and
often inconvenient to use, one important objective of modern cryptography
has been to try to eliminate them altogether. An extremely important event
of the mid-1970s was the landmark contribution of Diffie and Hellman in their
paper New Directions in Cryptography.4 In this work they introduced several
important concepts, such as the one-way function and a kind of scheme now
referred to as a Diffie-Hellman key exchange protocol . In such a scheme, the
transmitter and the receiver exchange information over a public channel that
they can then assemble into a common communication key. An eavesdropper,
however, does not acquire sufficient information to construct this key. They
also suggested, but provided no example, another method of avoiding the use
of a separate key channel by using a public-key cryptosystem. In such a system,
each participant has two keys: a private one and a public one. The idea is that
knowledge of the public key should not reveal anything about the private key.
Thus, anyone who wants to send a secure message to one of the participants
uses that individual’s public key, available in an easily accessible directory,
for example, to encrypt the message; as only this same individual knows his
private key, he can use this to decrypt the enciphered message, but no one
else can. The first example of a public-key cryptosystem was discovered a year
later and is now well known as the RSA system after its inventors: Rivest,
Shamir, and Adelman.5 The notion of a digital signature quickly followed and
versions of these two protocols in particular have been adopted in a variety
of standards and are in everyday use.6

In this short description of the development of public-key cryptography,
it should be noted that all of the important concepts mentioned above had
been discovered earlier by workers at the Communications-Electronics Secu-
rity Group (CESG), a division of GCHQ in Cheltenham, U.K., but as this
information was classified, credit today is generally given to the individuals
mentioned above.7 We also emphasize that Poe’s dictum seems to be true for
these modern techniques, but the difference is that the amount of time that
is required to break these systems is very long, and even when this happens,
all one has to do to frustrate the cryptanalyst is make the key larger.

The designer, say Alice, of an RSA cryptosystem selects at random two
large (1024 bits is now being widely advocated) primes p and q and calculates
n = pq. She also selects at random a value of e (< n) such that (e, φ(n)) = 1

14.2 The Pell Equation in a Public-Key Cryptosystem 355

and finds d such that
de ≡ 1 (mod φ(n))

and 0 < d < n. For this scheme, Alice’s public key is {e, n} and her private
key is d.

If Bob wishes to send a secure message M (< n) such that (M,n) = 1 to
Alice, he sends

C ≡Me (mod n) ,

where 0 < C < n. Alice can recover M from C by calculating

Cd ≡M ed ≡M1+kφ(n) ≡M (mod n) .

Since M < n, it can now be determined easily.
It is important to stress that great care much be exercised in actually

implementing this encryption technique,8 but if properly done the scheme re-
sists attack very well.9 This is still the most widely used public-key encryption
method, although new methods, for example based on the arithmetic of el-
liptic curves,10 which make use of smaller key sizes, especially applicable to
small, hand-held devices, are becoming popular. It is clear that if a cryptan-
alyst succeeds in solving the difficult problem of factoring11 n, then she has
broken the system. However, it has never been shown that if she can break
the system, then she can factor n; that is, we do not know whether breaking
RSA and factoring the modulus n are of equivalent difficulty12.

14.2 The Pell Equation in a Public-Key Cryptosystem

In 1979, Rabin13 succeeded in developing a method for encrypting which is
demonstrably as difficult to break as it is to factor a modulus n. However,
Rabin’s scheme has several problems, and he only advocated its use as a
technique for producing digital signatures. In what follows, we will describe
an RSA-like technique14 for encrypting M which does not have the problems
of Rabin’s method and is as difficult to break as factoring n.

Let15 t, u ∈ Z and t2 − Du2 = 1. We will now produce some properties
of the Tn and Un introduced in §1.4. If we let i, j ∈ Z, it is easy to establish
from

Tn +
√
DUn = (t+

√
Du)n

that
Ti+j = TiTj +DUiUj , Ui+j = TiUj + TjUi , (14.1)

and
Ti+j = 2TiTj − Tj−i, Ui+j = 2TiUj − Uj−i . (14.2)

Hence, if i = j, we get

T2i = T 2
i +DU2

i = 2T 2
i − 1, U2i = 2TiUi .

356 14 Applications to Cryptography

Since T1 = t, we see by the first formula of (14.1) that Ti can be expressed
as a polynomial in Z[t], which we will sometimes denote by Ti(t). Also, we
deduce from

(t+
√
Du)ij = (Tj +

√
DUj)i

that
Ti(Tj(t)) = Tij(t) . (14.3)

If, for some values of k and n ∈ Z, we wish to compute Tk(t) (mod n) , we
first write the binary expansion of k as

k = b02l + b12l−1 + · · ·+ bl ,

where b0 = 1, b1, . . . , bl ∈ {0, 1} and l = �log2 k�. Put P1 ≡ (T2, T1) (mod n) .
Here, we use the notation (A1, B1) ≡ (A2, B2) (mod n) to denote that A1 ≡
A2 (mod n) and B1 ≡ B2 (mod n) . If

Pj ≡ (Ts+1, Ts) (mod n) ,

we define

Pj+1 ≡
{

(2TsTs−1 − T1, 2T 2
s − 1) (mod n) when bs+1 = 0

(2T 2
s+1 − 1, 2TsTs+1 − T1) (mod n) when bs+1 = 1.

By the first formula of (14.2), we see that

Pj+1 ≡ (T2s+bs+1+1, T2s+bs+1) (mod n) .

By the same reasoning as that used at the beginning of §11.3, it follows that

Pl ≡ (Tk+1, Tk) (mod n) .

Also, the amount of work needed to compute Pl (mod n) is not much more
than that needed to compute ak (mod n) .

Let p and q be distinct odd primes and put ηp ≡ p (mod 4) and ηq ≡
q (mod 4) , where ηp, ηq ∈ {1,−1}. Find a non-square integer D > 0 such
that

(D/p) = −ηp and (D/q) = −ηq .

Since there are (p− 1)/2 values of D (mod p) satisfying the first of these con-
ditions and (q − 1)/2 values of D (mod q) satisfying the second, there must,
by the Chinese Remainder Theorem, be (q−1)(p−1)/4 values of D (mod n) ,
where n = pq, satisfying these conditions. Thus, under the reasonable assump-
tion that such values of D are randomly distributed, we would expect to find
a rather small value of D by trial, and this is what happens in practice.16

We now put n = pq and m = (p− ηp)(q−ηq)/4. We also observe that m is
odd and (D,n) = 1. We are now able to prove the following useful theorem.

14.2 The Pell Equation in a Public-Key Cryptosystem 357

Theorem 14.1. Let D,n, and m be defined as above and let γ = a + b
√
D,

where a, b ∈ Z and the Jacobi symbol (N(γ)/n) = 1. If α = γ/γ, then

α2k ≡ ±α (mod n) ,

where k ≡ (m+ 1)/2 (mod m) .

Proof. It is well known that

γp ≡
{
γ (mod p) where ηp = 1
γ (mod p) where ηp = −1 ;

thus,
γp−ηp ≡ N (1−ηp)/2,

where N = N(γ). Since Nα = γ2, we get

α(p−ηp)/2 ≡ N
p−1
2 ≡ (N/p) (mod p) .

Similarly,
α(q−ηq)/2 ≡ (N/q) (mod q) .

Thus, αm ≡ (N/p) (mod p) and αm ≡ (N/q) (mod q) . Since (N/pq) = 1, we
have (N/p) = (N/q) and

αm ≡ ±1 (mod n) .

Since k = tm+ (m+ 1)/2, we get

α2k ≡ α2tmαm+1 ≡ αm+1 ≡ ±α (mod n) ,

as required. ��
We can now use this result as the basis of a two-key cryptosystem. Alice

first selects p, q, and a value for S ∈ Z such that the Jacobi symbol ((S2 −
D)/n) = −1. As there are close to φ(n)/2 such values of S, she can usually
find a small value for S by trial. Alice also selects a value for e such that
(e,m) = 1 and makes her key {n, e, S,D} public. She also solves

de ≡ (m+ 1)/2 (mod m)

for d and keeps d as her secret key. As we have noted that S and D are usually
small, Alice’s public key will not be much larger than a typical RSA key.

Let M be a message that Bob wishes to communicate to Alice. He com-
putes j1 = ((M2 −D)/n). As the chance that j1 = 0 is very remote, we may
assume that |j1| = 1. If j1 = 1, Bob puts

t ≡ (M2 +D)/(M2 −D) (mod n) ,

u ≡ 2M/(M2 −D) (mod n) ;

358 14 Applications to Cryptography

if j1 = −1, Bob puts

t ≡ (
(M2 +D)(S2 +D) + 4DMS

)
/((M2 −D)(S2 −D)) (mod n) ,

u ≡ (
2S(M2 +D) + 2M(S2 +D)

)
/((M2 −D)(S2 −D)) (mod n) .

He also selects j2 ≡ t (mod 2) , where j2 ∈ {0, 1}. In other words, if μ =
M +

√
D, ν = S +

√
D, then

α = t+ u
√
D ≡ γ/γ (mod n) ,

where
γ = μν(1−j1)/2

and (N(γ)/n) = 1. Also,

t2 −Du2 ≡ 1 (mod n)

for these values of t and u. Throughout the discussion that follows, we will
assume that (u, n) = 1, a restriction17 similar to (M,n) = 1 for the RSA
scheme.

For this value of t, Bob computes the pair (Tl+1, Tl) (mod n) by the tech-
nique described earlier. As T1 = t and U1 = u, by the first formula in (14.1),
we get

DUl = Tl+1 − tTl .

By Theorem 14.1 we must have

T2ed ≡ σt (mod n) ,
U2ed ≡ σu (mod n) ,

where σ ∈ {−1.1}. Also, if p or q divides UlTl, then p | U2e and therefore
p | U2ed, but this means that p | u, which is impossible. Hence, (n,UlTl) = 1.
Thus, since (n, uDUl) = 1, Bob can compute

E ≡ Tl/El ≡ DuTl(Tl+1 − tTl)−1 (mod n) ,

with 0 < E < n. Bob sends E(M) = {E, j1, j2} to Alice.
To recover M from E(M), Alice computes T2l and U2l (mod n) by

T2l ≡ T 2
l +DU2

l ≡
T 2

l +DU2
l

T 2
l −DU2

l

≡ E2 +D

E2 −D (mod n)

U2l ≡ 2TlUl

T 2
l −DU2

l

≡ 2E
E2 −D (mod n) .

She next computes

Td(T2e) ≡ T2de(t) (mod n) and Td+1(T2e) ≡ T2de+2e(t) (mod n)

14.2 The Pell Equation in a Public-Key Cryptosystem 359

by the technique mentioned earlier. By (14.1),

DU2eU2ed = T2ed+2e − T2eT2ed ;

thus, Alice can compute T2de (mod n) and DU2eU2ed (mod n) . Since, by
Theorem 14.1, T2de ≡ σt (mod n) and Alice knows j2 ≡ t (mod 2) , she can
find σ and therefore determine t (mod n) . Since

u ≡ σU2ed ≡ σ(T2ed+2e − T2eT2ed)/(DU2e) (mod n) ,

she can also find u.
She now has α ≡ t+ u

√
D (mod n) . On putting

α′ =

⎧
⎨

⎩

α when j1 = 1
α(S −√D)
S +

√
D

when j1 = −1 ,

she has
α′ ≡ (M +

√
D)/(M −

√
D) (mod n)

and
M ≡ (α′ + 1)

√
D/(α′ − 1) (mod n) .

Of course, if anyone finds p or q, he can immediately compute M and d
and break the system. Suppose, on the other hand, that a cryptanalyst has
found an algorithm which can be used to break the system. We now show that
this algorithm can be used to factor n. We select by trial some X such that
((X2 − D)/n) = −1. We encrypt X by putting γ = X +

√
D and creating

the “ciphertext” E(X) = (E, 1, j2). The false value of j1 = 1 is selected on
purpose. The cryptanalyst uses his algorithm to decrypt E(X) and finds the
corresponding plaintext Y. However, Y will not be the same as X, because of
the false value for j1. Indeed, it can be shown that (X − Y, n) = p or q and,
therefore, the cryptanalyst’s algorithm can be used to factor n.

Results from many different areas of mathematics have been applied to the
development of cryptographic systems. One reason for this is that it is always
sound cryptographic practice to have access to as many different systems as
possible; this ensures that the sender has a choice of possible schemes, a very
useful feature if one or more of them is compromised. The above encryption
technique18 appeared in 1984 and represents an early instance of the applica-
tion of algebraic number theory to produce cryptosystems. Since that time,
several other secure communication algorithms have been developed that in-
volve the properties of algebraic number fields. Most often these make use of
quadratic fields, as these structures possess many of the complicating features
that make them much more difficult, particularly from the perspective of a
cryptanalyst, to deal with than the field of rational numbers. Furthermore, as
we have seen, conducting arithmetic in them is relatively simple and efficient
compared to the same operations in number fields of higher degree. In the re-
mainder of this chapter, we will present some other cryptosystems that make
use of various properties of quadratic fields.

360 14 Applications to Cryptography

14.3 Cryptography in Imaginary Quadratic Fields

The class group of an imaginary quadratic field19 was first proposed for use in
cryptographic protocols in 1988 by Buchmann and Williams.20 Although cur-
rently not used in practical applications, there are a number of factors which
make these protocols interesting to study. The first is that, unlike most widely
used public-key cryptographic protocols, the security of quadratic field-based
protocols does not rely on the presumed difficulty of integer factorization,
computing discrete logarithms in finite fields, or the elliptic curve discrete
logarithm problem. As pointed out in Chapter 7, it is known that integer fac-
torization reduces to the problem of computing the class number hΔ, imply-
ing that computing these invariants (and likely solving the associated discrete
logarithm problems) is at least as hard as integer factorization. The current
belief, due to the fact that no number field sieve analogue with complex-
ity LΔ(1/3, α) has been discovered for computational problems in quadratic
fields, is that these problems are likely harder than integer factorization. Al-
though the elliptic curve discrete logarithm problem is currently believed to
be harder (the best known general-purpose algorithms have exponential com-
plexity), it is still important to have alternative cryptosystems whose security
is unrelated to those currently being used. To the best of our knowledge, there
are no reductions between the elliptic curve discrete logarithm problem and
discrete logarithm problems in quadratic fields.

Cryptography in imaginary quadratic fields has been described elsewhere
in some detail.21 Hence, we will only present here some of the main highlights
and refer the interested reader to these sources for further details.

Buchmann and Williams’ original contribution was a version of Diffie-
Hellman key exchange set in the ideal class group of an imaginary quadratic
field. The participants, Alice and Bob, agree on a publicly-available discrimi-
nant Δ < 0 and a reduced OΔ-ideal g. Alice selects a random integer x and
sends the reduced ideal equivalent to gx to Bob, who selects a random integer
y and sends gy to Alice. Then, Alice and Bob can both compute the same
reduced ideal K ∼ gxy. Notice that an eavesdropper, who only has Δ, g, gx,
and gy, has to solve the Diffie-Hellman problem in the class group in order
to obtain K. One method to do this is to solve an instance of the discrete
logarithm problem in the class group to obtain either x or y.

In general, it is straightforward to use any finite abelian group in this
protocol; however, any such group should satisfy the following requirements
if it is to be used for cryptography:

1. efficient, unique representation of group elements,
2. efficient group operation,
3. exponentiation is a one-way function (e.g. the discrete logarithm problem

should be computationally infeasible).

We have seen in previous chapters that all three of these requirements are
satisfied for class groups of imaginary quadratic fields. Group elements (ideal

14.3 Cryptography in Imaginary Quadratic Fields 361

equivalence classes) are represented by reduced ideals, essentially an ordered
pair of integers, each of which is bounded in absolute value by

√
Δ. Ideal arith-

metic, especially using NUCOMP, is not as efficient as, say, adding points on
an elliptic curve, but it is nevertheless polynomial in log |Δ| and fairly effi-
cient in practice. Finally, in the previous chapter, we saw that the best known
algorithms for solving the discrete logarithm problem in the class group are of
subexponential complexity in log |Δ|. Thus, class groups of imaginary quad-
ratic fields are, at least in principle, suitable for cryptographic applications.

More generally, the usual problems related to finite abelian groups are
believed to be hard in the class group of an imaginary quadratic order. The
following are the main problems:

• IQ-DHP (computational Diffie-Hellman problem): Given ideals g, a, and b
of an imaginary quadratic order with a ∼ ga and b ∼ gb for some unknown
integers a and b, compute an ideal equivalent to gab.

• IQ-DLP (discrete logarithm problem): Given ideals g and a of an imaginary
quadratic order, find the smallest positive integer x such that a ∼ gx or
decide that no such x exists.

• IQ-OP (order problem): Given an ideal a of an imaginary quadratic order,
compute the order of [a] ∈ ClΔ.

• IQ-RP (root problem): Given an ideal a of an imaginary quadratic order
and an integer x > 1, compute g such that a ∼ gx or decide that no such
g exists.

The following reductions between these problems are known.22 The notation
A ≤P B indicates that there exists a polynomial-time reduction from problem
A to problem B.

• IQ-RP ≤P IQ-OP
• IQ-OP ≤P IQ-DLP
• IQ-DHP ≤P IQ-DLP

The existence of these reductions indicates that the discrete logarithm prob-
lem is at least as hard as the root problem and the order problem, as any
algorithm for computing discrete logarithms can also be used to solve the the
other two problems by applying the polynomial-time reductions. In fact, there
is some evidence that the root and order problems may be easier in practice.
Sutherland23 has discovered an algorithm for solving the order problem in a
generic group of order N that runs in time O((N/ log logN)1/2) in the worst
case (N is prime). In contrast, Shoup24 proved that any algorithm for solving
the discrete logarithm problem in a generic group has complexity � (N1/2),
so the order problem is in fact easier in a generic group. In class groups of
imaginary quadratic fields, Buchmann and Vollmer have shown25 that a mod-
ification of the index-calculus algorithm for computing the class group de-
scribed in Chapter 13 can solve the IQ-RP in expected time LΔ[1/2, 1+o(1)].
Thus, according to our current knowledge, the root problem is easier than

362 14 Applications to Cryptography

both the order and discrete logarithm problems in class groups of imaginary
quadratic orders.

On the other hand, as shown in Chapter 7, we also have that the IFP ≤P

IQ-OP, where by IFP we denote the integer factorization problem. In addition,
the IQ-RP and IFP are equivalent26 if x = 2 (i.e., computing square roots).
This suggests that computing element orders, the class number, and even
discrete logarithms and roots are all likely intractable, so cryptosystems whose
security relies on any of these can, and have been, proposed.

There is one main difficulty in adapting generic public-key cryptosystems
to imaginary quadratic fields. Many of these systems, especially digital signa-
ture protocols such as the digital signature algorithm27 (DSA), require knowl-
edge of the order of the group. As we have seen in Chapters 10 and 13, com-
puting the class number is essentially as hard in practice, given our current
knowledge, as computing discrete logarithms, so cryptographic protocols in
class groups cannot, in general, make use of the group order. In addition,
even when the class number is not explicitly required for the protocol itself,
it is desirable to compute it to verify that the group is not cryptographically
weak in the sense that it admits special-purpose algorithms that can solve
the discrete logarithm problem significantly faster. For example, if the class
number is smooth, the Pohlig-Hellman algorithm28 can be used to solve the
discrete logarithm problem by computing discrete logarithms in the small or-
der p subgroups corresponding to each prime p | hΔ and combining these via
the Chinese Remainder Theorem.

Fortunately, at least heuristically, a random class group is cryptograph-
ically suitable with high probability. The following summarizes results from
previous chapters supporting this conclusion:

1. On average, hΔ ≈
√|Δ| by Siegel’s theorem (see Chapter 9, (9.21)).

2. Assuming the extended Riemann hypothesis (ERH)

hΔ �
√
|Δ|/(log log |Δ|)

due to a result of Littlewood (see Chapter 9, (9.23)).
3. The class number hΔ is odd if and only if |Δ| is a prime congruent to 3

modulo 4 (see §7.3).
4. If hΔ is odd, ClΔ is cyclic with probability > 0.97 according to heuristics

of Cohen-Lenstra (Conjecture 7.7), and these, while still conjectural, are
supported by extensive numerical data.

In addition, Hamdy and Möller29 showed that hΔ behaves asymptotically like
an arbitrary integer with respect to smoothness assuming the Cohen-Lenstra
heuristics. Thus, with high probability, simply taking |Δ| ≡ 3 (mod 4) prime
at random yields a cryptographically suitable imaginary quadratic field. It is
not known how to construct a cryptographically weak imaginary quadratic
field of large discriminant; for example, one whose class number is smooth.

14.3 Cryptography in Imaginary Quadratic Fields 363

14.3.1 Cryptographic Protocols

Diffie-Hellman key exchange and El Gamal encryption30 using the ideal class
group ClΔ are straightforward. Versions that are provably secure against
chosen-ciphertext attacks, including a generalization of the Diffie-Hellman in-
tegrated encryption scheme,31 are also straightforward, and the security proofs
carry over directly.

Signature schemes are more difficult, because computing hΔ is believed to
be computationally infeasible and most group-based signature schemes require
knowing the order of the group (e.g. to reduce the sizes of exponents in DSA).
Nevertheless, the following have been proposed for imaginary quadratic fields:

• IQ-RDSA32: a variant of the NIST standard Digital Signature Algorithm
(DSA) whose security is based on the intractability of the IQ-RP. This
protocol was broken by Fouque and Poupard33 in 2003.

• IQ-DSA34: a variant of Schnorr signatures due to Poupard and Stern35

that does not require the group order hΔ. This is secure against exis-
tential forgery in the random oracle model36 using an adaptive chosen
message attack assuming the intractability of IQ-DLP. It requires signif-
icantly larger exponents and has larger signatures than DSA because the
exponents cannot be reduced modulo the unknown group order.

• IQ-GQ37: an analogue of the Guillou-Quisquater signature scheme38 whose
security is based on the intractability of the IQ-RP. IQ-GQ is also secure
in the random oracle model against existential forgery using an adaptive
chosen message attack.

14.3.2 Efficiency

As shown in Chapter 13, the IQ-DLP in ClΔ can be solved in time

LΔ[1/2,
√

2 + o(1)]

using Vollmer’s algorithm, where

LΔ[a, b] = exp
(
b(log |Δ|)a(log log |Δ|)1−a

)
.

In practice, an analogue of the self-initializing quadratic sieve factoring al-
gorithm is used, which, according to a numerical investigation of Hamdy,39

likely runs in time LΔ[1/2, 1 + o(1)]. Thus, the IQ-DLP can be solved in
subexponential time, but not as fast as the number field sieve (NFS) for fac-
toring or computing discrete logarithms in a finite field. The discriminants for
imaginary quadratic field-based protocols required to provide the same level of
security as RSA will therefore be smaller than the corresponding RSA moduli.
For example, Hamdy estimates that a 795-bit Δ provides roughly the same
security as a 1024-bit RSA. The discrepancy in sizes increases with the se-
curity level; Hamdy’s estimates suggest that a 5704-bit discriminant provides

364 14 Applications to Cryptography

the same level of security as a 15360-bit RSA. As mentioned in Chapter 13,
it is unknown whether an NFS analogue exists for the IQ-DLP.

Because inversion of ideal classes is almost free (simply negate the P coeffi-
cient), standard improvements to binary exponentiation such as non-adjacent
form and window-based extensions can be applied directly to speed the re-
quired ideal exponentiations in these protocols. Hamdy40 gives some perfor-
mance data on optimized implementations of IQ-DSA and IQ-GQ. From these
data, it is clear that these protocols do not offer any improvements in effi-
ciency over more established schemes such as DSA and RSA. However, the
times listed are within a factor of at most six of these faster protocols, and
perhaps with a concentrated effort, the efficiency of cryptographic protocols
based on class groups of imaginary quadratic fields can be improved to the
point that they will be competitive with other protocols.

14.4 Cryptography in Real Quadratic Fields

In 1989, Buchmann and Williams41 described how to perform an analogue
of Diffie-Hellman key exchange in the infrastructure of the principal class of
a real quadratic field. This was especially noteworthy, as this key exchange
protocol was the first based on arithmetic in a structure that is not a group.

Recall that ideal representation and arithmetic are similar to the imaginary
case, except for the following main differences (see Chapter 7):

• By the Cohen-Lenstra heuristics, we expect that hΔ is usually small. As
hΔRΔ ≈

√
Δ, we typically have RΔ ≈

√
Δ, so hΔ ≈ 1.

• Ideal reduction is not unique. Each ideal equivalence class contains a finite
cycle of reduced ideals that can be traversed using the reduction algorithm
(continued fraction expansion of (P +

√
D)/Q). The number of ideals in

the cycle is roughly RΔ, and hence, typically of size
√
Δ.

Thus, DLP-based cryptographic protocols using the ideal class group of a real
quadratic field cannot be used directly in general, because there is no efficient
method to decide equality of equivalence classes.

One possible solution to this problem is to restrict the use of real quadratic
fields in cryptography to special families for which the regulator is guaranteed
to be small. In this way, the protocols based on imaginary quadratic fields
can be applied almost directly, after adjusting for the fact that there will
still be multiple reduced representatives (although the number of these will
be small) of each ideal equivalence class. Chapter 6 describes a number of
families of discriminants for which the corresponding regulator will be small,
and Schielzeth and Pohst42 described further results in this direction.

Another approach is to instead make use of the fact that equivalence test-
ing is usually difficult and use this (typically, principality testing) as the basis
for cryptosystems. In other words, the infrastructure of the principal class, as
described in §7.4, is used as the setting for cryptography as opposed to the

14.4 Cryptography in Real Quadratic Fields 365

class group. This was the idea proposed by Buchmann and Williams in their
infrastructure-based version of the Diffie-Hellman key exchange protocol.

The main idea behind Buchmann and Williams’ key exchange protocol is
as follows. Two parties, Alice and Bob, first agree on a public discriminant of
a real quadratic field Q(

√
Δ) and a reduced principal ideal g, after which the

following steps are executed:

1. Alice selects a random integer a with 0 < a < B for some bound B,
computes a reduced ideal a = (θa)ga with θa ≈ 1, and sends a to Bob.

2. Bob selects a random integer b such that 0 < b < B, computes a reduced
ideal b = (θb)gb with θb ≈ 1, and sends b to Alice.

3. Alice computes kA = (θα)ba, with θα ≈ 1.
4. Bob computes kB = (θβ)ab, with θβ ≈ 1.

At the end of this protocol, Alice and Bob have ideals kA and kB , both of
which are equivalent to gab. The conditions on the associated relative gener-
ators ensure that kA = (α)gab and kB = (β)gab with α, β ≈ 1. If sufficiently
accurate approximations of these relative generators, or their logarithms, are
maintained, it is possible to ensure that kA = kB, so that Alice and Bob share
the same ideal at the end of the protocol. Buchmann and Williams described a
solution that guarantees that Alice and Bob each obtain one of only two pos-
sible key ideals in the worst case and described how to resolve this ambiguity
by transmitting at most one additional bit.

Although this protocol is clearly similar to standard Diffie-Hellman key
exchange set in the class group of an imaginary quadratic field, there are
two significant differences. The first is that extra infrastructure operations
are required during exponentiation in order to keep the associated relative
generators close to 1. After each ideal multiplication, we obtain a reduced
ideal equivalent to the product of the inputs, say, c = (γ)ab. If NUCOMP
as described in §5.4 is used, we expect that the relative generator γ typically
satisfies | log γ| ≈ (logΔ)/4 by (5.47). Additional baby steps are required af-
ter reduction to find another equivalent ideal c′ = (γ′)ab, with log |γ| ≈ 0,
implying that γ ≈ 1. In comparison to the imaginary case, where only ideal
multiplication and reduction are required, this represents additional compu-
tational overhead.

The second difference between this protocol and that in the imaginary
case is that it is necessary to compute and maintain approximations of the
relative generators arising from the ideal arithmetic. This is again additional
overhead not required in the imaginary quadratic case. Furthermore, these
approximations must be computed to sufficient accuracy in order to guarantee
that the participants end up with the same ideal when the protocol terminates.

Since Buchmann and William’s original protocol, there have been some
efforts to mitigate these complications in an attempt to achieve practical per-
formance comparable to key exchange in imaginary quadratic fields. These
improvements focus primarily on the methods used to approximate the rela-
tive generators and the analysis of the required precision to ensure successful

366 14 Applications to Cryptography

completion of the protocol. The first significant result is due to Hühnlein and
Paulus,43 who showed that unique key ideals can be obtained if approxima-
tions to the logarithms of the relative generators are maintained that are
accurate to at least log2(3072

√
ΔB2) bits, where B is the bound on the ex-

ponents a and b used in the protocol.
The latest results in this direction are due to Jacobson, Scheidler, and

Williams,44 who described how to use NUCOMP for ideal multiplication and
(f, p) representations, as described in Chapter 11, to approximate the relative
generators. The idea is for Alice and Bob to each compute near-reduced45

(f, p) representations (kA, dA, kA) and (kB , dB, kB) of gab. Then, as long as
the precision p is sufficiently large, kA and kB will both be close to gab. In
particular, with p > log2(50B2 log2B), a precision bound that is dependent
only on the exponent bound B, it can be shown that Alice and Bob each obtain
one of five possible key ideals in the worst case and that by communicating
an additional five bits, this ambiguity can be resolved.

One advantage to this approach is that the precision requirement is not
directly dependent on the discriminant. This becomes particularly advanta-
geous when using an exponent bound B proportional to the number of bits of
security offered by a given discriminant. For example, under the assumption
that solving the principal ideal problem and the ideal class group discrete loga-
rithm problem requires the same amount of time for discriminants of the same
size, Hamdy’s estimates suggest that a 795-bit discriminant offers roughly 80
bits of security; that is, the time required to solve the discrete logarithm prob-
lem is similar to that for breaking a block cipher with an 80-bit key. Thus,
an exponent bound B = 2160 can be used without compromising security,
as baby-step giant-step methods would be able to solve the principal ideal
problem, given the upper bound 2160 on the unknown distance, in time 280.
Using these parameters, Hühnlein and Paulus’ method would require 730 bits
of precision for approximating the relative generators, whereas the method
with (f, p) representations requires only 333 bits. In addition to yielding im-
proved practical performance by way of requiring less precision, using (f, p)
representations also simplifies the precision analysis itself, as approximations
of logarithms are not required.

It is possible to obtain even further improvements by making use of w-near
(f, p) representations. By using a value of w > 0, it is possible to reduce the ex-
tra baby-step operations required by the WNEAR algorithm (Algorithm 11.2)
to ensure that the relative generators remain close to w. The idea is based
on an observation of Stein as applied to cryptographic key exchange in the
infrastructure of a real quadratic function field defined over a finite field.46

As pointed out in the discussion in §11.3 and in §A.1 of the Appendix, on
average, the relative generators γ (= 1/μ) obtained from NUCOMP tend to
satisfy log γ ≈ −(logΔ)/4. Suppose that b = (θ)g and that log θ ≈ (logΔ)/4.
Then the reduced ideal c equivalent to b2 satisfies c = (θ′)g2 with θ′ = γθ2 and
θ′ ≈ θ. Thus, c = (θ′)a2, with log θ′ ≈ (logΔ)/4, and very few (if any) extra
baby steps beyond those required for reduction are required to ensure that

14.4 Cryptography in Real Quadratic Fields 367

θ′ is of this size. Carrying this idea further allows one to compute d = (α)ga

with logα ≈ (logΔ)/4 using binary exponentiation, again with few additional
baby steps beyond those required for reduction expected to ensure that the
relative generator is indeed close in size to (logΔ)/4.

This observation suggests making use of w-near (f, p) representations as
described in §11.2. Instead of exponentiating the ideal g, we exponentiate
a w-near representation of g using EXP (Algorithm 11.4). As discussed in
§11.2 (after the presentation of WMULT), if we take w such that 2w−1 <
Δ1/4 < 2w (i.e., w = �(log2Δ)/4), then we would expect to compute a w-
near representation of ga with very few extra baby steps required to reestablish
the w-near property after each ideal multiplication during EXP.

We now describe a version of cryptographic key exchange in the infrastruc-
ture using w-near (f, p) representations. Alice and Bob first publicly agree on
a large discriminant Δ of a real quadratic field, a reduced principal ideal g in
the maximal order OΔ, and a bound B ∈ N on the exponents. Let (g0, d0, k0)
be a w-near (f, p) representation of g. Using Algorithm 11.2 (WNEAR), we
can compute (g0, d0, k0) with f = 1 + 9/8.

The first result47 shows the effect on the error term f when truncating the
approximation d when using (f, p) representations. This allows us to transmit
fewer bits in the key exchange protocol without greatly affecting the required
precision.

Lemma 14.2. Let (b, d, k) be a w-near reduced (f, p) representation of some
ideal a. Let r ∈ N with r < p. Set d′ = 2r�2−rd	. Then (b, d′, k) is a w-near
reduced (f + 2r, p) representation of a.

The proof of this lemma is straightforward using Definition 11.1.
The key exchange protocol consists of each participant computing a w-

near representation of gab via two successive exponentiations. Theorem 11.4
states that if we select the precision p sufficiently large that at the end of these
exponentiations we can ensure that the error f < 2p−4 in both cases, then
the ideal computed by each participant is one of at most five that are easily
computed by the other. The next result48 shows what precision p is required
to ensure that this happens.

Theorem 14.3. Let (g0, d0, k0) be a w-near (1 + 9/8, p) representation of a
reduced principal ideal g and let p, a, b, B ∈ Z with B ≥ 14, 0 < a, b ≤ B, and
2p ≥ 66B2 max{16, log2B}. Set r = �log2B� and

(a, da, ka) = EXP((g0, d0, k0), a, w, p) ,

(k, d, k) = EXP((a, 2r�2−rda	, ka), b, w, p) .

Then (k, d, k) is a w-near (f, p) representation of gab with f < 2p−4.

Proof. Set h = max{16, log2B}. As a ≤ B and

h(3.43(1 + 9/8) + 10.72)B < (18.0088)Bh < 2p .

368 14 Applications to Cryptography

Theorem 11.8 implies that (a, da, ka) is a w-near (g, p) representation of ga

with g < 18.0088a < 18.0088B and hg < 2p. By Lemma 14.2, (a, 2rd2−rdae,
ka) is a w-near (g + 2r, p) representation of ga, where g + 2r ≤ g + B <
19.0088B. As B ≥ 14, we have 0.7998B > 10.72, so

h(3.43(19.0088B) + 10.72)b < h(65.2002B + 10.72)B < 66B2h ≤ 2p .

Thus, by Theorem 11.8, (k, d, k) is a w-near (f, p) representation of gab with
f < 2p/h ≤ 2p−4. ut

Corollary 14.3 and Theorem 11.4 show how to use w-near representations
and EXP to construct a key exchange protocol, as well as the precision p re-
quired to ensure that at the end, the approximations of the relative generators
involved are sufficiently accurate that the ideal Alice obtains is one of at most
five that Bob can compute easily. In particular, the following theorem49 is a
straightforward consequence of these two results.

Theorem 14.4. Let g0, d0, k0, r, p, a, b, and B be as in Theorem 14.3 and set

(a, da, ka) = EXP((g0, d0, k0), a, w, p) ,

(b, db, kb) = EXP((g0, d0, k0), b, w, p) ,

(k, d, k) = EXP((a, 2rd2−rdae, ka), b, w, p) ,

(m, e, h) = EXP((b, 2rd2−rdbe, kb), a, w, p) .

Then (k, d, k) and (m, e, h) are w-near (f, p) representations of gab with f <
2p−4 and k ∈ {ρ−2(m), ρ−1(m), m, ρ(m), ρ2(m)}.

Theorem 14.4 immediately suggests the following protocol.

Protocol 14.1: Cryptographic Key Exchange

Parameters:

• discriminant ∆ of a real quadratic field,
• exponent bound B ≥ 14,
• precision p ≥ log2(66B2 max{16, log2B}),
• w = d(log2∆)/4e,
• (g0, d0, k0), w-near (1 + 9/8, p) representation of a reduced principal

ideal g

• r = blog2Bc
Alice

1: secretly generates a ∈ N, a ≤ B;
2: computes (a, da, ka) = EXP((g0, d0, k0), a, w, p);
3: sends (a, d2−rdae, ka) to Bob.

Bob
1: secretly generates b ∈ N, b ≤ B;
2: computes (b, db, kb) = EXP((g0, d0, k0), b, w, p);

14.4 Cryptography in Real Quadratic Fields 369

3: sends (b, d2−rdbe, kb) to Alice.
4: Alice computes (k, d, k) = EXP((b, 2rd2−rdbe, kb), a, w, p).
5: Bob computes (m, e, h) = EXP((a, 2rd2−rdae, ka), b, w, p).

Note that Alice transmits roughly log2∆+ log2B log2 log2B bits: the co-
efficients of the ideal a are of approximate size log2(

√
∆), |ka| tends to be

very small, and 2−rda ≈ 2p−r ≈ 66B log2B; similarly for Bob. This is an
improvement of approximately log2(B) bits over the original version of this
protocol.50 Notice also that the required precision is larger than that in the
first improvement to the original protocol, but this is offset by the improve-
ment offered by using w-near representations to eliminate most of the extra
baby steps required to maintain small relative generators.

Even though Theorem 14.4 only guarantees that

k ∈ {ρ−2(m), ρ−1(m),m, ρ(m), ρ2(m)} ,
Theorem 11.6 and the subsequent remarks suggest that we should expect to
have k = m with high probability. Indeed, since f < 2p/ logB, we see that

f

2p − f <
1

log2B − 1
.

Thus, the probability that k = m is about

1− 8

(log2B)2
.

In fact, it is usually better than this, as Table 14.1 indicates. However, if
Alice and Bob have doubts about whether they computed the same ideal, they
could simply derive a shared symmetric key K from k and verify that they
have the same key K by, for example, encrypting and decrypting a challenge
ciphertext. Alternatively, they can choose ∆ = 4D with D ≡ 3 (mod 4) and
execute another small protocol that guarantees them a common key ideal.51

Table 14.1. Key-Exchange Protocol Mismatches

log2 ∆ log2 B No. of trials Mismatches

795 160 12 × 106 32

1384 224 5.5 × 106 7

1732 256 2 × 106 1

14.4.1 Security

Aspects of the security of the general idea underlying the real quadratic fields
key exchange protocol have been discussed in some detail.52 In the following,

370 14 Applications to Cryptography

we summarize the main results, especially those that pertain to the version of
key exchange described above.

We note that for the fixed values p and r, a pair of unknown integers a and
b, and a given ideal g, the objects roughly corresponding to a Diffie-Hellman
triple here are

(a, �2−rda	, ka), (b, �2−rdb	, kb), and k ,

where

(a, da, ka) = EXP((g0, d0, k0), a, w, p) ,
(b, db, kb) = EXP((g0, d0, k0), b, w, p) ,

(k, d, k) = EXP((a, 2r�2−rda	, ka), b, w, p) ,

because usually k = m. Solving this version of the Diffie-Hellman problem
[i.e., computing k given (a, �2−rda	, ka) and (b, �2−rdb	, kb)] breaks the system.
Certainly, an attacker can do this if he can deduce a or b from the transmitted
information.

If g is selected to be a principal ideal, then the discrete logarithm problem
in this context, computing a or b, can be solved by solving the infrastructure
DLP [i.e., finding a generator α (or a good approximation of log |α|) of the
reduced principal ideal a or b]. For example, since (a, �2−rda	, ka) is a w-near
(f, p) representation of ga, we have

a = (θa)ga (14.4)

for some θa ∈ Q(
√
Δ). Suppose an attacker can find a generator α of a, or

a good approximation of log |α|. Then he could solve (14.4) for a as follows.
First, the attacker computes γ ∈ Q(

√
Δ) with g = (γ) by solving the principal

ideal problem for γ. Then by (14.4), |α| = εmΔθaγ
a, where m ∈ Z and εΔ is

the fundamental unit of Q(
√
Δ), so

logα = mRΔ + log θa + a log γ ,

where RΔ = log εΔ is the regulator of Q(
√
Δ). Now, log θa is small by Corol-

lary 11.3.1, and m is small by our choice of the upper bound B on a. So it
would not be hard to find a once RΔ is known, and as seen in Chapter 13, com-
puting RΔ is closely related to solving the principal ideal problem in practice.
In particular, both problems can be solved in expected time LΔ[1/2,

√
2+o(1)]

using index-calculus methods.
However, it is possible to attack (14.4) from another point of view. The

attacker knows �2−rda	 and ka. Note that knowledge of ka provides him with
little information, since ka is usually small by Corollary 11.3.1 As mentioned
right after the proof of that corollary, we expect w − ka ≤ 2 in 64% of all

14.4 Cryptography in Real Quadratic Fields 371

cases, so many possible values for θa could have the same ka value. How-
ever, the adversary also knows by (11.4) that |2p−kaθaγ/da − 1| < 2−pf for
some f < 19.0088B and γ such that ρ(a) = (γ)a. Thus, he can use ψ̂ =
2p−r−kaγ/�2−rda	 as an approximation to ψ = θ−1

a . If we set δ = |ψ̂/ψ − 1|,
then it can be shown that δ < (1 + 21−r) · 2−pf < (1 + 2−15) · 2−pf when
B ≥ 216, so δ < (1 + 2−15) · 19.0088/(66B log2B). We may therefore assume
that the attacker knows a good rational approximation ψ̂ to ψ as well as an
upper bound δ < 0.29/(B log2B) on the relative error of that approximation.

Let m/n be any convergent of the continued fraction expansion of
√
Δ.

Then for a given n, it is possible to formulate explicitly an infinitude of distinct
pairs of rationals (r(n), s(n)) such that r(n), s(n)

√
Δ = Θ(n), and if ψ(n) =

r(n) − s(n)
√
Δ, then |ψ̂ − ψ(n)| = O(n−1), so knowing ψ̂ and δ still leaves

infinitely many possibilities for ψ.
On the other hand, if the coefficients of ψ were known to lie in a certain

range that is not too large, then it might be possible to search for them
successfully. If ψ = r− s√Δ, then since r = (ψ+ψ)/2 and s

√
Δ = (ψ−ψ)/2,

an interval containing r and s
√
Δ can be determined from bounds on ψ and

|ψ|. By (14.4), we have
N(g)a = ψ|ψ|N(a) . (14.5)

Now, N(g) is public information, 1 ≤ N(a) <
√
Δ since a is reduced, and we

have the bounds 16/17 < ψ < 16
√
Δ/15 from Lemma 11.3 on ψ. It follows

from (14.5) that |ψ| = Θ(N(g)a) as a grows, so r and s
√
Δ are exponentially

large in a. Since a < B tends to be quite large, this does not allow for an
efficient search for a.

It is important that the discriminant Δ be chosen in such a way that
principal ideal testing is as hard as possible. One consideration is that the
regulator RΔ should be large, implying that the set of reduced principal ideals
is also large. Although, as described in Chapter 9, Littlewood’s bounds on
L(1, χ) and the Cohen-Lenstra heuristics suggest that, under the ERH, RΔ �
Δ1/2−ε for a large proportion of real quadratic fields, it is unknown how to
produce values of Δ for which this is guaranteed. If Δ is selected prime, then
the class number hΔ will be odd and the Cohen-Lenstra heuristics suggest
that hΔ will almost certainly be small. Thus, simply selecting a sufficiently
large prime discriminant will suffice with high probability.

The two best available algorithms for solving the principal ideal problem
are the index-calculus algorithm described in Chapter 13 and the baby-step
giant-step algorithm described in Chapter 7. The complexity of the index-
calculus algorithm depends only on the discriminant Δ, so selecting Δ suf-
ficiently large is enough to resist this procedure. As mentioned earlier, if we
assume that solving the principal ideal problem and the ideal class group dis-
crete logarithm problem require the same amount of time for discriminants of
the same size, Hamdy’s estimates suggest that a 795-bit discriminant offers
roughly the same level of security as a block cipher with an 80-bit key; that
is, the time required to solve the principal ideal problem will be proportional

372 14 Applications to Cryptography

to 280, the time required to break a block cipher with an 80-bit key. NIST53

recommends five security levels, providing 80, 112, 128, 192, and 256 bits of
security. According to Hamdy’s estimates, discriminants of 795, 1384, 1732,
3460, and 5704 bits should provide roughly these levels of security. Further
work is required to verify that these estimates do in fact hold for real quad-
ratic fields, but given the similarities between index-calculus algorithms in
imaginary and real quadratic fields, these recommendations are likely to be
reasonably close to what a more detailed investigation would reveal.

It is also possible to select Δ in such a way that the index-calculus algo-
rithm preforms worse than for a randomly selected discriminant. The idea, as
described by Jacobson, Scheidler, and Williams,54 is to chooseΔ such that the
Kronecker symbol (Δ/p) = −1 for as many small primes as possible. Then,
the factor base constructed for the index-calculus algorithm will not contain
any of these small primes, and it will be harder to find smooth principal ideals
(relations) because none of these primes will divide the norms of any ideals
in OΔ. This does indeed appear to adversely affect the performance of the
index-calculus algorithm in practice; an example is given at the end of Chap-
ter 13. Such discriminants can be found using special-purpose sieving software
or hardware that solves systems of simultaneous linear congruences and can
be done easily if the designer of the cryptosystem wishes to invest extra time
to make the cryptanalyst’s task a little more difficult.

The complexity of the baby-step giant-step algorithm, on the other hand,
depends on the distance of the principal ideal itself. In our case, we know that
these distances are bounded approximately by the exponent bound B, so this
algorithm will take O(

√
B) steps. Notice that if we use a discriminant that we

expect will provide b bits of security (i.e., for which solving the principal ideal
problem using index calculus will take time approximately 2b) then using an
exponent bound B = 22b will ensure that attacking the protocol using the
baby-step giant-step method would require the same amount of time. Thus,
exponent bounds of 2160, 2224, 2256, 2384, and 2512 can be used for the 80−,
112−, 128−, 192−, and 256− bit security levels. The fact that the precision
required for the (f, p) representations in the protocol described above only
depends on B, and not on Δ, indicates that this method of selecting B will
also positively affect the performance of the protocol.

The restriction that the base ideal g be principal is necessary to ensure that
the protocol takes place in the infrastructure of Q(

√
Δ). However, the protocol

will still work correctly if g is not principal. The security considerations are
then slightly different, as the adversary would also need to determine the ideal
class to which gab belongs by solving a discrete logarithm problem in the ideal
class group. This more general version is unlikely to offer any more security
because, as seen in Chapter 13, the discrete logarithm problem can be solved
in the same expected time as the principal ideal problem. However, it does
provide additional flexibility in choosing Δ and alleviates some concerns that
we are unlucky and select a field Q(

√
Δ) with large class number.

14.4 Cryptography in Real Quadratic Fields 373

14.4.2 Efficiency

Table 14.2 contains the average CPU time per communication partner for a
single application of the key exchange protocol described above. For each dis-
criminant size, the average was taken over 1000 separate runs of the protocol,
each using a different randomly selected prime discriminant. The protocol was
implemented using the GNU C++ compiler version 4.2 and the C++ computer
algebra library NTL,55 and the computations were performed on a Pentium
IV 2.53-GHz computer running Linux. For comparison purposes, key exchange
in imaginary quadratic fields and the previous versions of the real quadratic
field-based protocol described above were implemented using the same soft-
ware. In the table, the protocol using imaginary quadratic fields is denoted by
IMAG; the first version of the protocol of Jacobson, Scheidler, and Williams56

that uses (f, p) representations, but regular ideal multiplication is denoted by
REAL; the second version57 uses NUCOMP and WNEAR with w = 0 by
NEAR; and the new version uses WNEAR described above by WNEAR. We
also give the ratio of the average time using WNEAR over the average time
using imaginary quadratic fields. The five discriminant sizes are selected to
provide 80, 112, 128, 192, and 256 bits of security as described above. For a
discriminant providing b bits of security, the exponent bound B is selected to
be 22b, also as described above.

Table 14.2. Average CPU Times (in Seconds) per Key Exchange per Partner

log2 Δ log2 B IMAG REAL NEAR WNEAR WNEAR/IMAG

795 160 0.04 0.38 0.13 0.05 1.25

1384 224 0.11 1.05 0.30 0.14 1.27

1732 256 0.15 1.63 0.43 0.21 1.40

3460 384 0.50 6.34 1.45 0.75 1.50

5704 512 1.32 17.97 3.86 2.04 1.55

It can be seen that the version using WNEAR is the fastest of the three
real quadratic field-based versions, and that its performance is close to that
of imaginary quadratic fields. In addition, it is clear that significant progress
has been made in terms of improving the efficiency of key exchange in the real
quadratic case since the introduction of (f, p) representations, and with some
more effort, it is possible that real quadratic field-based cryptography will
be a viable alternative to its imaginary counterpart. For example, it may be
possible to make use of the fact that the baby-step operation (stepping through
cycle of equivalent reduced ideals via the continued fraction algorithm) is
faster than ideal multiplication, both asymptotically and in practice. Stein has
observed58 that one can improve the efficiency of key exchange in low-genus

374 14 Applications to Cryptography

real quadratic function fields to the point that it compares favourably to the
corresponding protocols in imaginary quadratic function fields, by essentially
taking advantage of the fact that baby steps in the infrastructure are much
less expensive than ideal multiplications. Whether this idea will bear fruit in
the real quadratic field case is a topic of further research.

14.4.3 Other Cryptosystems

Most of the literature on real quadratic field-based cryptography deals with
the version of Diffie-Hellman key exchange as described above. However, two
digital signature schemes have also been proposed, an analogue of El Gamal
encryption due to Biehl, Buchmann, and Thiel59 and a generalization of the
Fiat-Shamir signature protocol due to Buchmann, Maurer, and Möller.60 The
(f, p) representation approach has not yet been adapted to either of these
protocols, and a detailed investigation of their efficiency remains open.

14.5 Cryptosystems in Non-Maximal Quadratic Orders

Let Δ1 be a fundamental discriminant, the discriminant of a maximal order
OΔ1 of the quadratic field Q(

√
Δ1). The non-maximal order of conductor f >

1 with non-fundamental discriminant Δf = Δ1f
2 is the submodule [1, (Δf +√

Δf)/2] ofOΔ1 and is denoted byOΔf
. As described in §4.5, the fundamental

unit εΔf
of OΔf

is a power of the fundamental unit εΔ1 of OΔ1 ; in particular,
εΔf

= εnΔ1
, where the positive integer n is called the unit index of εΔf

. In
addition, the class number hΔf

of OΔf
is a multiple of the class number hΔ1

of OΔ1 , and by (8.9), we have

hΔf
=
αf

n
hΔ1 ,

where

α =
∏

p|f

(

1− (Δ1/p)
p

)

and, again, n denotes the unit index of εΔf
with respect to εΔ1 .

Non-maximal quadratic orders have been proposed for cryptographic ap-
plications, based on the fact that exponentiation in ClΔf

, the ideal class group
of OΔf

, is a one-way trapdoor function; the factorization of Δf serves as trap-
door information, allowing the possessor to invert the function by solving the
discrete logarithm problem more efficiently than without it. This has been
used to construct cryptosystems whose security is based on the intractabil-
ity of the integer factorization problem, but with properties beyond those of
RSA. The first of these was a version of the El Gamal public-key cryptosystem
in the class group ClΔf

of a non-maximal imaginary quadratic order due to
Hühnlein, Jacobson, Paulus, and Takagi,61 where knowledge of the conductor

14.5 Cryptosystems in Non-Maximal Quadratic Orders 375

is used to improve the speed of decryption. Paulus and Takagi62 subsequently
refined this approach, resulting in a cryptosystem called New Ideal Coset
Encryption (NICE) for which decryption can be done in quadratic time in
log |Δf |, as opposed to cubic time as in most other public-key cryptosystems,
including RSA. An IND-CCA2 secure63 version of NICE was presented by
Buchmann, Sakurai, and Takagi,64 and NICE has been generalized to non-
maximal real quadratic orders by Jacobson, Scheidler, and Weimer.65 Non-
maximal imaginary quadratic orders were also used by Hühnlein, Jacobson,
and Weber66 to construct a non-interactive ID-based cryptosystem, where
the trapdoor information is used to compute discrete logarithms in ClΔf

ef-
ficiently.

The main idea underlying all these cryptosystems is that there exists a
surjective homomorphism between ClΔf

and ClΔ1 given by

φ : ClΔf
→ ClΔ1 ,

[a] �→ [aOΔ1]

that can be computed in quadratic time if the conductor f is known. Given an
ideal a = [Q/r, (P +

√
Df)/r] of OΔf

, where Δf = (2/r)Df and Df = f2D1,

we can compute an ideal A = [Q′/r, (P ′+
√
D1)/r] = aOΔ1 using the formulas

Q′ = Q , P ′ = Pμ+ (Q/r)λ (mod Q) ,

where 1 = μf + λ(r − 1)(Q/r); these can be derived using the ideal multi-
plication method derived in §5.4. Thus, to compute φ([a]), we compute A as
above and reduce it to get a reduced representative of the class [A] ∈ ClΔ1 .
We need to have gcd(Q/r, f) = 1 in order for the above algorithm to work. If
gcd(Q/r, f) > 1, we can find an ideal equivalent to a whose norm is relatively
prime to f and then apply the algorithm. As shown67 in Theorem 4.37, ev-
ery ideal equivalence class of an order OΔf

contains an ideal whose norm is
relatively prime to f.

For cryptographic applications, we typically choose |Δ1| = p and f = q
prime, both for simplicity and for security, as |Δf | = q2p will be more difficult
to factor than f2p, where f is composite. Then hΔq = hΔ1 (q − (Δ1/q)) /n.
For now, we will restrict our attention to the imaginary case, where the unit
index n = 1. Then if |Δ1| = p and f = q are prime, there are exactly q−(Δ1/q)
preimages under φ for each [A] in ClΔ1 . If we select Δ1 such that |Δ1| is prime
and gcd(q, h(Δ1)) = 1, then with high probability, ClΔq is cyclic.68

Using the algorithm mentioned above, one can evaluate φ if the conductor
is known. The following theorem illustrates that the converse is also true; any
algorithm for computing φ can be used to find the conductor. This theorem69

is presented in the case that |Δ1| and the conductor are both prime, but it
can be generalized easily.

Theorem 14.5. Computing φ is equivalent to knowing the factorization of
Δq.

376 14 Applications to Cryptography

Proof. If q is known, then we can compute φ using the algorithm mentioned
above. If there exists an oracle that evaluates φ, we can use it to compute
q as follows. From the algorithm described above for computing φ, it can be
seen that if φ([a]) = [A] for reduced ideals a = [Q/r, (P +

√
Df)/r] ∈ +OΔf

and A = [Q′/r, (P ′ +
√
D1)/r] ∈ OΔ1 , we have P ′ ≡ Pq−1 (mod Q) , or,

alternatively, q ≡ P (P ′)−1 (mod Q) . To find q, we simply obtain φ(p) for
several prime ideals p ∈ OΔf

and compute q using the Chinese Remainder
Theorem. This method will succeed after polynomially many operations in
logΔq. ��

14.5.1 NICE

NICE, which stands for New Ideal Coset Encryption, is a public-key cryp-
tosystem set in the class group of a non-maximal imaginary quadratic order
OΔq = −q2p for primes p and q. Its security is based on the hidden kernel
problem: givenΔq, a generator [k] of ker(φ), and a random element in the coset
[m] ker(φ), find [m]. The instances of this problem that arise in NICE can be
solved if the homomorphism φ can be computed, which, by Theorem 14.5,
is equivalent to being able to factor Δq. The distinguishing feature of NICE
as compared to other factoring-based public-key cryptosystems such as RSA
is that decryption is especially fast and can be done in quadratic time as
opposed to cubic.

The idea of NICE is to make use of the homomorphism φ to decrypt
messages efficiently by solving the hidden kernel problem. If the factorization
of Δq is known only to the decryptor (i.e., the conductor q serves as the
private key), then the decryptor can compute φ easily, but anyone else cannot
without being able to factor Δq.

To encrypt a message m, it is first embedded into the Q coefficient of an
OΔq -ideal m, in such a way that N(m) < Δ

1/4
q . This condition guarantees

that N(m) <
√
p/2, so that φ([m]), a reduced ideal in Op, will have the same

norm as m. To encrypt m, a random element in ker(φ) is computed by raising a
publicly known generator of ker(φ) to a random power, yielding the ciphertext
ideal c ∼ krm, a reduced OΔq -ideal.

To decrypt c, the conductor q is used to obtain M = φ([c]), a reduced ideal
in the maximal order Op. The plaintext can then be recovered from the first
coefficient of M, because we have

φ([c]) = φ([m][k]r) = φ([m])φ([k])r = φ([m])

due to the facts that φ is a homomorphism and [k] ∈ ker(φ). The first co-
efficient of M = φ([m]) contains the message because φ([m]) is already re-
duced in Op due to the size condition on the first coefficient (note that
N(m) = N(mOΔ1)).

The operation of NICE is summarized in the following protocol.

14.5 Cryptosystems in Non-Maximal Quadratic Orders 377

Protocol 14.2: NICE

Public key: ∆q = −pq2, an O∆q
-ideal k such that [k] generates ker(φ)

Private key: q
Encryption:
1: Given a message ideal m with N(m) <

√
p/2 (embed message in first

coefficient) compute the reduced ciphertext ideal c ∼ mkr for random
r ∈ Z.

Decryption:
1: Compute φ([c]) and extract the message from the first coefficient

Notice that decryption in NICE only requires one computation of the map
φ, which can be done in quadratic time in log |∆q |. Encryption, on the other
hand, requires exponentiation in Cl∆q

, which takes cubic time. In compari-
son with RSA, the most widely used cryptosystem whose security is related
to integer factorization, encryption is slower, but decryption is significantly
faster.70

By Theorem 14.5, the main security consideration is that ∆q must be
chosen so that factoring ∆q is infeasible. The best known general-purpose
factoring algorithm is the number field sieve (NFS), so ∆q must be sufficiently
large to resist factorization by the NFS. However, the elliptic curve method
(ECM) is effective at finding prime factors of a given size, and, in general, its
complexity depends on the size of the smallest prime factor. Thus, p and q
must be sufficiently large to prevent factorization by the ECM as well. There
exists a special version of ECM designed to factor numbers of the form pq2,
but this does not appear to yield a significant improvement in practice.71

Unfortunately, NICE, as presented above, is vulnerable to a chosen cipher-
text attack discovered by Jaulmes and Joux.72 The following attack allows an
adversary to factor ∆q given two specially chosen ciphertexts:

1. Compute m1 and m2 with N(mi) = mi and

√

p/3 < mi <
√
p (i = 1, 2) .

These two ideals are the chosen ciphertexts. The condition on their norms
implies that their images under φ will likely require just one reduction
step to produce a reduced ideal in O∆1

.
2. The victim decrypts m1 and m2, providing the attacker with m′

i =
N(φ(mi)). Note that m′

i = (N2
i + p)/mi 6= mi for some integers Ni (un-

known to the attacker), because one reduction step has to be applied
to miO∆1

when computing φ([mi]). Thus, we have p = m1m
′
1 − N2

1 =
m2m

′
2 −N2

2 , and if the attacker can find N1 or N2, he can factor ∆q .
3. The attacker computes k = m1m

′
1 − m2m

′
2. By the above relation we

have that k = N2
1 −N2

2 = (N1−N2)(N1 +N2). The attacker attempts to
find N1 and N2 by factoring k ≈ p. If successful, then he can compute p,
thereby factoring ∆q .

378 14 Applications to Cryptography

The NICE-X protocol modifies NICE in order to resist this attack. It can
be proved that NICE-X is IND-CCA2 secure in the random oracle model
under the assumption that the smallest kernel-equivalent problem (SKEP) is
intractable. SKEP is a version of the hidden kernel problem that takes into
account the norm bound of message ideals in NICE. The additional overhead
NICE-X incurs in comparison to NICE is negligible; roughly two hash function
applications and one ideal multiplication more than NICE for both encryption
and decryption.

The hidden kernel problem as described above has also been used as the
basis for a digital signature protocol due to Hühnlein73 and an undeniable sig-
nature scheme due to Biehl, Paulus, and Takagi.74 A method of distributed
RSA key generation due to Biehl and Takagi75 also makes use of the relation-
ship between the class groups of maximal and non-maximal quadratic orders.

14.5.2 REAL-NICE

A natural question to ask is whether the ideas behind NICE can be general-
ized to real quadratic orders. Jacobson, Scheidler, and Weimer76 described a
protocol called REAL-NICE that uses ideas inspired by NICE for a public-
key cryptosystem set in the class group of a real non-maximal quadratic order
that also has quadratic decryption time.

The heart of REAL-NICE is also the homomorphism φ, mapping elements
of the class group ClΔq of a non-maximal quadratic order to that of the cor-
responding maximal order, Clp. The same results on φ hold in the real case,
and the same algorithm can be used to evaluate it. The security results of
REAL-NICE are thus similar to those of NICE, as decryption involves evalu-
ating φ, and this is still equivalent to knowing the factorization of Δq. As a
result, REAL-NICE also makes use of non-maximal orders with discriminants
Δq = q2p, where p and q are prime. However, the fact that ideal equivalence
classes do not have unique reduced representatives requires certain modifica-
tions before NICE can be employed in this setting.

The first issue is that decryption in NICE relies on the fact that the reduced
ideal obtained by computing φ(c) for the ciphertext ideal c is unique. In the
real setting, this will not be the case; the best we can say is that the output
will be one of the approximately Rp reduced ideals equivalent to the ideal
M whose norm encodes the plaintext. Thus, in order to guarantee that we
can efficiently find the correct ideal M, it is necessary to ensure that Rp

be sufficiently small. Fortunately, as we have seen in Chapter 6, there are a
number of families of discriminants that satisfy this property. The solution
presented by Jacobson, Scheidler, and Weimer is to choose p to be a prime
Schinzel sleeper (i.e., a prime of the form a2x2 + 2bx + c with a, b, c, x ∈ Z,
a �= 0, and b2 − a2c dividing 4 gcd(a2, b)2). Recall from §6.3 that if p is a
Schinzel sleeper, then Rp = O(log p), so the number of reduced ideals the
decryptor will have to search before finding the plaintext is also O(log p).

14.5 Cryptosystems in Non-Maximal Quadratic Orders 379

Even when p is chosen in this manner, M will still be one of a small
set of reduced ideals. Thus, some mechanism must be employed to allow the
decryptor to identify which of these ideals is M. One solution is to encode
some redundancy into the message before encrypting; for example, enforcing
a fixed bit pattern to occur in the message. The decryptor then computes
all the reduced ideals equivalent to φ(c), using the baby-step operation ρ
described in §5.1, and selects that ideal whose norm contains this bit pattern.

Notice that although decryption is more complicated than in the imaginary
case, the extra work required, searching a set of O(log p) ideals, requires time
O(log2 p), as each baby step requires time O(log p). Thus, the overall time
required for decryption is still quadratic in the bit length of Δq = q2p.

The second issue with extending NICE to real non-maximal quadratic
orders is that, in NICE, it is necessary that ker(φ) be large, so that the coset
m ker(φ) is sufficiently large to hide the message when encrypting. In the real
case, recall that

| ker(φ)| = hΔq

hp
=
q − (p/q)

n
,

where n is the unit index of the non-maximal order OΔq with respect to the
maximal order Op. It is possible that n is large, resulting in a very small,
perhaps even trivial, kernel.

The solution described by Jacobson, Scheidler, and Weimer is to make use
of infrastructure, realizing that in addition to hiding a message ideal within
its coset m ker(φ), we can also hide it within an equivalence class of m ker(φ)
if the regulator RΔq is large. In fact, if the unit index, and hence RΔq , is
sufficiently large, it suffices to encrypt m by hiding it in its own equivalence
class by, for example, multiplying it by a random principal ideal. Then the
resulting ciphertext c is still in m ker(φ), and decryption will work as described
above.

To ensure that the unit index n is large, we select p as above and search
for a prime conductor q such that (q − (p/q)) has a large prime factor. If
(q − (p/q)) = Ld for some large prime L, then Weimer77 proved that n ≥ L
with high probability. For a particular choice of p and q, this can be verified
by checking that n � d. Because p is chosen so that Rp = log εp ∈ O(log p), it
is possible to write down the fundamental unit explicitly as εp = U1 + V1

√
p.

Then we check that εdp = Ud + Vd
√
p �= εkΔq

(i.e., that Vd �≡ 0 (mod q)).
The value of Vd mod q can be evaluated efficiently using Lucas functions via a
method similar to binary exponentiation, as described in §14.2.78 Thus, given
p, we can find q such that RΔq ≈ q log p, and we can make this as large as we
like simply by choosing a sufficiently large value of q.

Numerical experiments show that it is not difficult to find suitable parame-
ters for REAL-NICE. However, as expected, the performance is not as good as
that of NICE. It is clear that decryption will be somewhat slower, due to the
overhead of identifying the correct plaintext ideal in the equivalence class of
φ(c), but it is, nevertheless, still faster than RSA decryption when using RSA

380 14 Applications to Cryptography

moduli offering the same level of security. Encryption is currently slower than
in NICE, but one intriguing aspect of REAL-NICE is that it may be possible
to improve this. In particular, the main part of encryption in REAL-NICE
involves finding a random principal ideal. The method described by Jacobson,
Scheidler, and Weimer makes use of ideal exponentiation. As mentioned above
in the context of key exchange in real quadratic fields, it may be possible to
replace some ideal multiplications with the faster baby-step operation in order
to accomplish the same task faster. Finding such an encryption method that
does not compromise the security of the protocol remains an open research
problem.

14.5.3 Trapdoor Discrete Logarithm Computation

Suppose that OΔf
is an imaginary non-maximal quadratic order. Hühnlein,

Jacobson, and Weber79 showed that if the factorization of Δf = f2Δ1 is
known, the discrete logarithm problem (DLP) in ClΔf

can be reduced to two
significantly easier DLP instances, one in the class group of the maximal order
OΔ1 and another in ker(φ). The latter can be reduced to the DLP in a finite
field.

One consequence of this fact is that it is possible, at least in theory, to
set up a non-interactive ID-based cryptosystem using the class group of a
non-maximal imaginary quadratic order. In an ID-based cryptosystem, public
keys are derived directly from users’ identities, so there is no need to au-
thenticate the binding of public keys to user identities, for example, by using
certificates.80 In such a scheme, a trusted key generation centre is required
that uses trapdoor information to assign private keys to users based on their
fixed public keys. For example, if a cryptosystem is set in the class group of
a non-maximal order OΔf

, a key generation centre which knows the factor-
ization of Δf could use the trapdoor reduction mentioned above to compute
discrete logarithms in ClΔf

and assign these as private keys to be used with
the Diffie-Hellman integrated encryption scheme or the IQ-DSA digital signa-
ture scheme. In this case, none of the users of the cryptosystem would know
the factorization of Δf ; they would simply use the class group as described
in §14.3.

Another consequence is that if the class group ClΔf
is to be used for

standard cryptographic protocols, then the secret factorization of Δq could
be kept by an escrow agent and used to compute discrete logarithms upon
request. Once again, the users of the system would simply use cryptographic
protocols in the class group as described in §14.3. If it is desirable to have
assurance that such an escrow system is not being used, then it would be nec-
essary to provide a proof that the discriminant Δ being used is fundamental;
for example, that |Δ| is prime.

Computing discrete logarithms in ClΔf
is done as follows.81 Suppose that

we wish to solve [g]x = [a] in ClΔf
for x.

14.5 Cryptosystems in Non-Maximal Quadratic Orders 381

1. Compute x1 such that φ([g])x1 = φ([a]) by solving the DLP in ClΔ1 .
Because φ is a homomorphism, we know that x = x2h + x1, where h is
the order of φ([g]) ∈ ClΔ1 .

2. Compute G ∼ gh, A ∼ ag−x1. Notice that both of [G] and [A] are in
ker(φ).

3. Compute x2 such that Gx2 ∼ A. We now have x = x2h+ x1, because
(
gh
)x2 ∼ ag−x1 =⇒ gx2h ∼ gxg−x1 =⇒ x = x2h+ x1 .

We therefore need to solve two problems in order to compute x :

• compute a discrete logarithm in ClΔ1

• compute a discrete logarithm in ker(φ).

Both of these are easier than solving the DLP directly in ClΔf
. As shown in

Chapter 13, the DLP in ClΔ1 can be solved in expected time LΔ1 [1/2,
√

2 +
o(1)]. As Δ1 < Δf ; this is faster than solving the DLP in ClΔf

.
To compute discrete logarithms in ker(φ), we first note the existence of

the following surjective homomorphism82:

ψ : (OΔ1/fOΔ1)
∗ → ker(φ) ,

[α] �→ [αOΔ1 ∩ OΔf
] .

Hühnlein et al. showed how to compute preimages of ψ given elements in
ker(φ), allowing the DLP in ker(φ) to be solved by solving it in (OΔ1/fOΔ1)∗

and reducing the result modulo | ker(φ)|. Assuming f = pe1
1 p

e2
2 · · · pek

k , where
p1, p2, . . . , pk are primes, the DLP in (OΔ1/fOΔ1)

∗ reduces to DLPs in
(OΔ1/piOΔ1)

∗ via the Chinese Remainder Theorem and the Pohlig-Hellman
algorithm. The group (OΔ1/piOΔ1)

∗ is isomorphic to
{

F∗
pi
⊗ F∗

pi
if (Δ1/pi) ∈ {0, 1}

F∗
p2

i
if (Δ1/pi) = −1 ,

where Fq denotes the finite field of q elements and, as usual, F∗
q = Fq \ {0} is

the multiplicative group of units in Fq. Let [γ] = [x + yω] ∈ (OΔ1/piOΔ1)
∗ .

Then

[γ] �→
{

(x+ yω, x+ yω) (mod pi) if (Δ1/pi) ∈ {0, 1}
x+ yω (mod pi) if (Δ1/pi) = −1 .

Thus, to solve the DLP in ker(φ) we only need to compute DLPs in F∗
pi

or F∗
p2

i
. The number field sieve can be used to do this in expected time

Lpi [1/3, α+o(1)] for some constant α, which, once again, is significantly faster
than computing the DLP in ClΔf

directly.
These ideas can be applied almost directly to compute discrete logarithms

in ClΔf
when OΔf

is real. It may even be possible to use a similar method to

382 14 Applications to Cryptography

reduce the principal ideal problem in OΔf
to instances of the principal ideal

problem in OΔ1 and a finite field; this is a subject of ongoing research.
In order to use OΔq with Δq = −pq2, p, and q prime for an ID-based or

key escrow system, we require83 (at least) the following restrictions on p and
q :

• Δq > 2576 (to prevent NFS factorization of Δq),
• p, q > 2222 (to prevent ECM factorization of Δq),
• p < 2300 (to ensure that the DLP in Clp is feasible),
• q < 2300 (to ensure that the DLP in ker(φ), essentially in F∗

q , is feasible).

Using p ≈ 2304 and q ≈ 2305, Hühnlein, Jacobson, and Weber showed that the
reduction described above can be used to compute a discrete logarithm in 3
days using a cluster of 16, 500-Mhz PIII processors running Linux.

These results show that the method is really not suitable for a practical de-
ployment of an ID-based cryptosystem, especially since bilinear maps84 offer
much more practical solutions. Nevertheless, non-maximal imaginary quad-
ratic orders should be viewed as an interesting alternative setting, especially
for key escrow systems, where the escrow authority may be able to invest more
time and resources in retrieving private keys when required. In addition, the
lesson that only maximal orders should be used if key escrow is to be avoided
should be emphasized.

We hope that the reader now has an appreciation of the various appli-
cations of quadratic fields and the Pell equation to public-key cryptography.
Although none of the cryptosystems described above is currently used in prac-
tice, it is possible that this will change if some of the more widely used systems
such as RSA or elliptic curve cryptography are broken or if the ongoing work
on improving ideal arithmetic continues to progress. In any event, the ex-
istence of these applications certainly provides extra motivation for further
investigations into efficient algorithms for computational problems in quad-
ratic fields and, perhaps, another entry point for introducing more people to
this fascinating subject.

Notes and References 383

Notes and References

1For a discussion of the lengthy history of this subject, see [Kah96] and [Mol05].
2Over the past 30 years, cryptography has become a subject of intense research

activity. To get some idea of the breadth and depth of this work, the reader is advised
to consult [MvOV96] and [Sch96]. Furthermore, many textbooks on the subject of
cryptography have also appeared, the most popular of which seem to be [Mol07],
[Sti05], and [TW06].

3[Poe41].
4[DH76].
5[RSA78].
6For a history of these developments, see [Sin99] and [Lev02].
7See [Sin99], pp. 279–292, and [Ell87].
8See, for example, [BJN00] and [FOPS04].
9See [Bon99].

10Elliptic curves cryptography was independently invented by Koblitz [Kob87] and
Miller [Mil86]. See [HMV04] for information on current practical recommendations
and protocols.

11Although much progress has been made on this problem in the last 30 or more
years, it still seems to be very difficult to solve. The best general-purpose technique
for factoring an integer is still the number field sieve technique, which is discussed
in [LL93] and [Pom94]. More recent developments can be found in [Kle06]. So far,
the largest (difficult) number that has been factored by these techniques is RSA200,
a specially crafted 200-digit integer which was factored in 2005 [BBFK05]. At this
writing it seems that factoring a 300-digit number is an impossible dream, but then
factoring a 200-digit number was also an impossible dream 20 years ago.

12In fact, it appears that these problems may not be equivalent. See [BV99].
13[Rab79].
14See [Wil85d], [Wil85b], and [Sal90], pp. 159–166. A more recent analysis of this

idea can be found in [Mül06]. This work developed from a technique in which n = pq,
where p ≡ 3 (mod 8) and q ≡ 7 (mod 8) in [Wil80a].

15In this discussion, it is not necessary that t, u be a fundamental solution of the
Pell equation.

16In fact, there exists a constant c such that D < c(log n)2. This is guaranteed
by the effective version of the Chebotarev density theorem; however, the truth of
this result requires the assumption of a generalized Riemann hypothesis. See [LO77].
Also, by using [Oes79], it is possible to compute an explicit value of c. For a charming
introduction to Chebotarev and his important theorem, the reader is urged to consult
[SL96a].

17In [Mül06], a version of this process is given in which this assumption need not
be made, but then a different (and more lengthy) process must be used to compute
Tl, Ul and T2ed, U2ed. See [Sal90], p. 161.

18[Wil85d] and [Wil85c].
19The earliest application of quadratic number fields seems to be [OSS84], a digital

signature scheme whose security is related to solving norm equations in imaginary
quadratic fields.

20[BW88a].

384 Notes and References

21See, for example, the survey articles of Buchmann, Hamdy, Takagi, and Vollmer
[BTV04, BH01], Hamdy’s thesis [Ham02], and the recent book of Buchmann and
Vollmer [BV07].

22See [BV07] for discussion of how these reductions are constructed.
23[Sut07].
24[Sho97b].
25[BV07], p. 276.
26See [BS96c] [BS97].
27[Nat00].
28[PH78].
29[HM00a].
30[Gam85].
31[ABR01].
32[BBHM02].
33[FP03].
34[BH01].
35[PS98].
36The random oracle model is an assumption that certain functions used in a

protocol are random functions (mapping of inputs to outputs is fixed but random)
and is in many cases required to prove strong notions of security such as resistance
to existential forgery under an adaptive chosen message attack. Although proofs
of security that rely on the random oracle model do not carry over to an actual
implementation of the protocol, because the required random functions are typically
approximated by hash functions, it is believed that these protocols nevertheless offer
more security than protocols without any associated proof. For more on the random
oracle model, see [Gol04].

37[BH01].
38[GQ88].
39[Ham02].
40[Ham02].
41The original idea appeared in [BW89a]. Subsequently, Scheidler, Buchmann,

and Williams published a more detailed version in [SBW94].
42[SP05].
43[HP00].
44[JSW01] describes the first version of (f, p) representations as applied to cryp-

tographic key exchange in the infrastructure. [JSW06b] extends these ideas to in-
corporate the parameter k of Definition 11.1 and NUCOMP for ideal multiplication.

45The notion of near-reduced, as described in [JSW06b], is equivalent to w-near,
as presented in §11.2, with w = 0.

46[JSS07a].
47Adapted from [JSW06b], Lemma 7.1.
48Adapted from [JSW06b], Corollary 7.1.
49Adapted from [JSW06b], Theorem 7.1.
50[JSW01].
51See [JSW06b], Protocol 8.1, for details.
52See, for example, [SBW94] and [JSW01].
53[Nat07].
54[JSW01].
55[Sho01].

Notes and References 385

56[JSW01].
57[JSW06b].
58This observation, substituting certain ideal multiplications with baby steps dur-

ing exponentiation, is described by Jacobson, Scheidler, and Stein in [JSS07a], to-
gether with numerical experiments demonstrating that significant performance im-
provements can indeed be realized.

59[BBT95].
60[BMM00].
61[HJPT98].
62[PT00].
63IND-CCA2 stands for indistinguishability under an adaptive chosen ciphertext

attack. Informally, this means that when presented with a ciphertext that is known
to be the encryption of one of two possible plaintexts, an adversary with polyno-
mially bounded time and computational resources is unable to gain any significant
advantage in determining which of the two plaintexts was encrypted. In addition,
the adversary is unable to do so even when mounting an adaptive chosen ciphertext
attack, where he or she can obtain the decryptions of any ciphertexts (except the
one in question) adaptively during the course of the attack. This is considered to
be one of the strongest notions of security for a public-key cryptosystem and is, in
general, expected of any cryptosystem to be used in practice. For a formal definition,
and more information about “provable security” in general, see [Gol04], and, for a
more critical examination, see [KM07].

64[BST02].
65[JSW08].
66[HJW03].
67Also, see [HJPT98] for a constructive proof.
68See [HJW03].
69[PT00], Theorem 1.
70See [PT00] for some running times in support of this claim.
71This method is described in [PO96], and its practical performance is investigated

in [ET02].
72[JJ00].
73[Hüh01].
74[BPT04].
75[BT02].
76This protocol, published in [JSW08], is also described in Weimer’s master’s

thesis [Wei04].
77[Wei04], Theorem 5.8.
78See also [Wil98], Ch. 4, pp. 69–95.
79[HJW03].
80The binding between public keys and user identities is in some sense the Achilles

heel of public-key cryptography. If this binding is not guaranteed, there is nothing to
prevent an active adversary from impersonating a legitimate user by replacing the
user’s public key with one of his or her choosing. Public-key infrastructures, in which
a trusted authority issues unforgeable certificates guaranteeing that a given public
key belongs to a particular user, is the most widely deployed solution to this problem.
ID-based cryptography offers an interesting alternative. For more information on
early work on these topics, see [Gag03].

386 Notes and References

81The method here is described in detail by Hühnlein, Jacobson, and Weber in
[HJW03]. It is interesting to note that this approach is essentially a special case of
the more general setting of computations in ray class groups described by Cohen,
Diaz y Diaz, and Olivier in [CDyDO98], where the modulus is an integer.

82For more details and proofs of these results, see [HJW03].
83These recommendations are based on somewhat out dated estimates from

[HJW03], but nevertheless illustrate the difficulties of using such a system in prac-
tice.

84The Weil or Tate pairing on an elliptic curve is an example of a bilinear map
that can be used to construct practical ID-based cryptosystems. See, for example,
the seminal paper by Boneh and Franklin [BF03].

15

Unconditional Verification of the Regulator
and the Class Number

15.1 Introduction

We have seen that if εΔ is the fundamental unit of O = [1,
√
D], then

t+ u
√
D =

{
εΔ when N(εΔ) = 1
ε2Δ when N(εΔ) = −1 ,

where t, u is the fundamental solution of the Pell equation. We have also seen
in Chapter 12 that if we have a sufficiently accurate approximation RΔ

′ to
RΔ = log εΔ, then we can compute a compact representation of εΔ, from
which it is a simple matter to determine certain properties of t and u. This
is of particular importance when εΔ is very large, which, as we have pointed
out, is often the case when Δ is large.

In Chapter 13 we presented a fast technique for computing both RΔ
′and

hΔ, the latter being the class number of the quadratic order O of discrimi-
nant Δ. However, the correctness of these values is contingent on unproved
hypotheses. In this chapter, we discuss techniques1 for verifying the values
of RΔ

′ and hΔ that the index-calculus method provides. This process is in
certain respects very similar to the techniques described in Chapter 10. As
much of the work discussed here is intended for computer implementation,
it is more convenient to make use of RΔ = log2 εΔ instead of RΔ. This will
cause no real problem because

RΔ = (log 2)RΔ

and log 2 = 0.6931471805 . . . can be easily computed to great precision. We
remind the reader that the most we can be sure of on applying the techniques
of Chapter 13 is a value for RΔ

′, which is close to an integral multiple of the
actual RΔ, and a value for hΔ, which is a divisor of the actual hΔ. We will
assume here, then, that we have been presented with a value of R′

Δ that is
sufficiently close to some integral multiple of RΔ (i.e., a value of R′

Δ ∈ Q for
which it should be true that

388 15 Unconditional Verification of the Regulator and the Class Number

|R′
Δ − cRΔ| < 1 (15.1)

for some c ∈ Z≥0). The goal of our verification technique will be to prove
(15.1) and subsequently establish that c = 1. As this problem is very easily
solved when εΔ < Δ3/2, we will also assume that εΔ > Δ3/2.

We first examine the problem of verifying that (15.1) holds. Certainly,
if (15.1) does hold, then on putting x = �R′

Δ� − 2, a1 = O, ai = a[x],
θj = η = εcΔ, a = 1, and b = 4 in Theorem 11.12, we must have

aj ∈ {ai, ai+1, . . . , ai+8} (15.2)

because aj = θja1 = ηa1 = a1. Thus, we can use the AX algorithm to compute
an (f, p) representation (ai, di, ki) of a1 (f < 2p−4) and then check to see
whether a1 (= aj) is an ideal in {ai, ai+1, . . . , ai+8}. However, if (15.2) holds,
it may not be the case that |R′

Δ − cRΔ| < 1 for the value of R′
Δ that we

have been given. Nevertheless, we can use the FIND algorithm to produce an
(f + 1/4, p) representation of (aj , dj , kj) of a1 and we can use the reasoning
following Algorithm CR in §12.2 to see that if we replace R′

Δ by

R′
Δ = kj − p+

s

2
,

where
2s < d2

j ≤ 2s+1 ,

then we can be sure that (15.1) is true for this value of R′
Δ.

Thus, the process of verifying (15.1) will execute in O(logR′
Δ logΔ) el-

ementary operations. The difficult problem is proving that c = 1. We will
approach this in two stages. In the first stage, we will verify that RΔ > K for
some preassigned value of K. In the second, we will show that (15.1) cannot
hold for any integer c such that

1 < c <
R′

Δ

K
+ 1 .

Since it is clear that c cannot exceed or equal R′
Δ/K + 1, this means that c

must be 1.

15.2 Some Preliminary Results

In this section we establish some results that will be useful in developing our
technique of proving that c = 1. Throughout this section and the next we
will assume that all ideals are O-ideals, b = �(1/2) log2Δ	+ 1, and f < 2p−4.
We will show in the sequel what p should be in order to justify this latter
assumption. We now introduce a simple proposition.

Proposition 15.1. If a1 = O, ai = a[x], and aj = a[x+ b], then j > i.

15.2 Some Preliminary Results 389

Proof. By Lemma 11.3, we know that θi < (17/16)2x and

θj+1 >
15
16

2x+b >
15
8

2x
√
Δ .

Also, since θi+1 = ψiθi and ψi <
√
Δ, we get θi+1 < (17/16)2x

√
Δ, and

therefore
θj+1 >

15 · 16
8 · 17

θi+1 > θi+1 .

It follows that j > i. ��
In order to prove an important result concerning the baby-step giant-step

technique that we will employ in the process of showing that RΔ > K, we
need to establish two lemmas.

Lemma 15.2. Let x = �cRΔ	, where c ∈ Z>0, and let (aj , dj , kj) and
(ai, di, ki) be (f, p) representations of a1 = O such that aj = a[x + r] and
ai = a[r] with r ∈ Z>0. Then

a[x+ r] ∈ {an, an+1, . . . , ai+3} ,
where n = max{1, i− 2}.
Proof. We have kj < x + r, kj+1 ≥ x + r and x = log2 η + ε for η = (2RΔ)c

and some ε with 0 < ε < 1. By Lemma 11.3, we have θj < (17/16)2x+r =
(17/8)2ε+r−1η and θj+1 > (15/16)2x+r = (15/16)2ε+rη > 1 (as r ≥ 1 and
η > 1).

Put θm = η−1θj+1. Then also θm > 1, so we must have m > 1, which im-
plies that m−1 ≥ 1. Note that by Lemma 11.3, θm−1 = η−1θj < (17/8)2ε+r−1

and θm > (15/16)2ε+r, and similarly we have θi < (17/16)2r and θi+1 >
(15/16)2r = (15/8)2r−1.

Now,

θm >
15
17

2εθi >
15
17
θi ;

it follows that
θm+2 > F3θm = 2θm >

2 · 15
17

θi > θi ,

which implies m+ 1 ≥ i or m− 1 ≥ i− 2. Also,

θm−1 <
17
15

2εθi+1 < 3θi+1 = F4θi+1 < θi+4 ,

which implies m− 1 < i+ 4 or m− 1 ≤ i+ 3.
By the definition of θm, we have am−1 = (η−1θj)a1 = aj, which, together

with our determined bounds on m− 1, gives us the required result. ��
Corollary 15.2.1. Under the conditions of the lemma with the exception now
that ai = a[s] for some s ∈ Z such that s ≥ r, we have a[x + r] = aj, where
1 ≤ j ≤ i+ 3.

390 15 Unconditional Verification of the Regulator and the Class Number

Proof. Since θi+1 > (15/8)2s−1, we get

θm−1 <
17
8

2ε+r−1 ≤ 17
8

2ε+s−1 ≤ 17
15

2εθi+1 < 3θi+1 < θi+4 .

��
Lemma 15.3. Let r ∈ Z<0, x = �cRΔ	 and x+ r > 0. If we let aj = a[x+ r]
(�= a1), ai = a[|r|] and at = a[|r|+ b], then

a[x+ r] ∈ {an, an+1, . . . , at} ,
where n = max{2, i− 1}.
Proof. Again, we have that x = log2 η + ε for η = (2RΔ)c and some ε with
0 < ε < 1. By Lemma 11.3, we have θj < (17/16)2x+r = (17/16)2ε+rη, from
which we can deduce that since θj |θj | = N(aj),

|θj | > 16
17

2|r|−εη−1N(aj)

or
η|θj | > 16

17
2|r|−εN(aj) > 1 ,

as N(aj) > 1 and |r| ≥ 1.
Since aj is reduced and aj �= a1, aj = am for some m such that m > 1

and θm = η|θj | > 1. From this it follows that η|θj+1| = θm−1 because aj+1 =
am−1. Now, by Lemma 11.3 and Proposition 3.16,

θi <
17
16

2|r| <
(

17
16

)2

2εη|θj |N(aj)−1

=
(

17
16

)2

2εθmN(aj)−1 < 2θm = F3θm < θm+2 .

So i < m+ 2 and thus m ≥ i− 1 and we already had m > 1.
Also, again using Lemma 11.3, as θj+1 = θjψj ,

θj =
1
ψj
θj+1 >

1
ψj

15
16

2x+r =
1
ψj

15
16

2r+εη

and, thus,

|θj | < 16
15

2|r|−εη−1ψjN(aj) .

Since ψjN(aj) <
√
Δ, we get θm = η|θj | < (16/15)2|r|−ε

√
Δ. Now,

θt+1 >
15
16

2|r|+b >
30
16

2|r|
√
Δ >

30
16
· 15
16

2εθm > θm

and t+ 1 > m; hence, m ≤ t. ��

15.2 Some Preliminary Results 391

Let
L = {a1, a2, . . . , at} ,

where at = a[s+b] for some s ∈ Z≥0. We are now able to prove Theorem 15.4.

Theorem 15.4. Let c ∈ Z>0 and x = �cRΔ	 and suppose that x = 2qs − r
(for 0 < |r| ≤ s, s > 1, and r, s ∈ Z). Then a[2qs] or a[2qs] ∈ L.

Proof. Assume that al = a[s] and ai = a[|r|]. We distinguish between when
r > 0 and when r < 0, but in both cases, we have i < t by Proposition 15.1
and the fact that |r| ≤ s.

Case 1: r > 0:
We have ai = a[r], thus a[x+r] ∈ {amax{1,i−2}, . . . , ai+3} by Lemma 15.2.
Furthermore, {amax{1,i−2}, . . . , ai+3} ⊆ {a1, a2, . . . , at+2}, as i < t.

Case 2: r < 0:
Either a[x + r] = a1 or a[x + r] �= a1. If a[x + r] �= a1, then a[x + r] ∈
{amax{2,i−1}, . . . , av} for some v ≤ t by Lemma 15.3 and the fact
that |r| ≤ s. So, either way, a[x + r] ∈ {a1, amax{2,i−1}, . . . , av} ⊆
{a1, a2, . . . , at+2}.

Since x+ r = 2qs, this concludes our proof. ��
From Theorem 15.4 we see that if a[2qs] and a[2qs] are not in L for q =

1, 2, . . . , B, then �cRΔ	 > 2Bs+s > 2Bs for all c ∈ Z≥0 (i.e., �RΔ	 > 2Bs). It
follows that if we choose s andB large enough, we can determine a lower bound
K for RΔ by verifying that neither a[2qs] nor a[2qs] is in L for q = 1, 2, . . . , B.

We now derive some results that are useful for proving that c = 1.

Theorem 15.5. Let x = �log2 θj	 + γ, where γ ∈ {−1, 0, 1}. If a1 = O,
ai = a[x], and x > 1, then max{1, j − 3} ≤ i ≤ j + 3.

Proof. This result follows easily on putting b = 1 and a = −2 in Theo-
rem 11.12. ��
Corollary 15.5.1. If η (> Δ3/2) is any unit of O and x = �log2 η	 + γ ≥ 2
(γ ∈ {−1, 0, 1}), we must have a[x] ∈ S, where

S = {a4, a3, a2, a1, a2, a3, a4} .

Proof. We know that aj = ηa1, where η = θj . We also have θj < θj−3(
√
Δ)3;

hence, θj−3 > 1 and j − 3 > 1 or j > 4. Hence, by the theorem,

a[x] ∈ {aj−3, aj−2, aj−1, aj, aj+1, aj+2, aj+3} .

Furthermore, aj = θja1 = ηa1 = a1, so aj−3 = a4, aj−2 = a3, etc. ��

392 15 Unconditional Verification of the Regulator and the Class Number

Now suppose that q ∈ Z>0 and q | c; then c = kq (k ∈ Z>0). If x =
�R′

Δ/q	, η = εkΔ, and y = �kRΔ	 = �log2 η	, then since
∣
∣
∣
∣
R′

Δ

q
− log2 η

∣
∣
∣
∣ <

1
q
< 1 ,

we see that x = �log2 η	+γ, where γ ∈ {−1, 0, 1}. Hence, if a[x] �∈ S, then q � c.
However, what can we say if we find that a[x] ∈ S? It is not immediately clear
that q | c in this case because if q ≈ RΔ, we might find that x is sufficiently
small that a[x] ∈ S even though this value of q would not divide c.

In order to deal with this problem, we first point out that if x = y + γ,
where x, y ∈ Z, γ ∈ {−1, 0, 1}, then �x/q	 = �y/q	+γ′, where γ′ ∈ {−1, 0, 1},
for any q ≥ 1. We are now able to prove a useful result which puts an upper
bound of those values of q such that if a[x] ∈ S, then q | c.
Theorem 15.6. Let η = εmΔ (m ∈ Z>0) and x = �(log2 η + γ)/q	, where
γ ∈ {−1, 0, 1}. If q ∈ Z>0 and RΔ > q(2 log2Δ + log2 17/4), we must have
q | m when a[x] ∈ S.

Proof. Let aj = a[x]. If we do have aj = ai or aj = ai with i ≤ 4, then either
θj/θi = εkΔ or θj/|θi| = εkΔ for some i ≤ 4 and k ∈ Z. Using Lemma 11.3, we
can deduce that

θj <
17
16

2(log η+γ)/q� =
17
16

2log η/q�+γ′
=

17
16
ε
m/q
Δ 2ε+γ′

(15.3)

and
θj+1 >

15
16

2(log η+γ)/q� =
15
16

2log η/q�+γ′
=

15
16
ε
m/q
Δ 2ε+γ′

;

hence,

θj >
1
ψj

15
16
ε
m/q
Δ 2ε+γ′

(15.4)

for some γ′ ∈ {−1, 0, 1} and some ε with 0 < ε < 1.
Now, put ν = θi if aj = ai or ν = |θi| if aj = ai, so that θj = νεkΔ. If ν = θi,

then 1 ≤ ν ≤ θ4 < (
√
Δ)3, as i ≤ 4. If ν = |θi|, then since θi|θi| = N(ai) and

i ≤ 4, we get
(√

Δ
)−3

<
N(ai)
θi

(= ν) <
√
Δ .

Hence, −(3/2) log2Δ < log2 ν < (3/2) log2Δ.
Using (15.3), we obtain

νεkΔ = θj <
17
16

4εm/q
Δ ,

which means that

log2 ν + kRΔ < log2

17
4

+
m

q
RΔ .

15.3 The Algorithm and Some Implementation Issues 393

Using (15.4), we get

νεkΔ = θj >
1
2

15
16
η

m/q
0

1√
Δ

=
15
32
ε
m/q
Δ

1√
Δ

and
log2 ν + kRΔ > − log2

√
Δ+ log2

15
32

+
m

q
RΔ .

Hence,

− log2 ν − log2

√
Δ+ log2

15
32

<

(

k − m

q

)

RΔ < − log2 ν + log2

17
4
,

∣
∣
∣
∣

(

k − m

q

)

RΔ

∣
∣
∣
∣ < 2 log2Δ+ log2

17
4
,

and

|kq −m|RΔ < q

(

2 log2Δ+ log2

17
4

)

.

Thus, when RΔ > q(2 log2Δ + log2(17/4)), we must have kq − m = 0 and
q | m. ��

From this result it follows that we can verify that c = 1 by determining
that

a[xq] �∈ S ,
for all primes q < R′

Δ/K + 1. Here, xq = �R′
Δ/q	 and we assume that RΔ >

q(2 log2Δ+ log(17/4)).

15.3 The Algorithm and Some Implementation Issues

In order to verify our value for R′
Δ, we must compute L, a process requiring

the computation of t + 2 baby steps. Since at = a[s + b], we see by taking
logarithms to base 2 of the result of Theorem 3.17 that we would expect that

t ≈ s+ b

1.7
. (15.5)

Thus, we require O(s) elementary operations to compute L. We next have to
compute the giant steps a[2qs] for q = 1, 2, . . . , B. Since a[2(q+1)s] = a[2qs+
2s], we need to perform algorithm ADDXY once for each value of q, which
means that in order to show thatRΔ > K, we must execute O(s)+O(B logΔ)
elementary operations, where 2Bs > K. If we equate B and s, the complexity
of this algorithm is O(K1/2 +K1/2+ε) = O(K1/2+ε).

In order to verify that c = 1, we must execute algorithm AX approximately
M/ logM times, where M = R′

Δ/K + 1. The cost of this part of the process
is

394 15 Unconditional Verification of the Regulator and the Class Number

O

((
M

logM

)

logR′
Δ logΔ

)

= O
(
M1+ε

)

elementary operations. To make the complexities of the two main components
of the algorithm roughly equal, we need

√
K = R′

Δ/K (ignoring log factors),
which means that we should select K = R′

Δ
2/3. On doing this, we see that

the complexity of the algorithm is O(R′
Δ

1/3+ε). Under the general Riemann
hypothesis (GRH), we expect that RΔ is close to R′

Δ; indeed, since we have
an explicit upper bound on RΔ from (9.16) and the analytic class number
formula, we would certainly not execute this process if R′

Δ exceeds this bound
by more than 1. Thus, we have O(R′

Δ
1/3) = O(Δ1/6+ε). Of course, if the

second stage of the algorithm is to give a correct answer, we must guarantee
that

RΔ > M

(

2 log2Δ+ log
17
4

)

.

Since RΔ > K, this will be the case if

K > M

(

2 logΔ+ log2

17
4

)

.

Now, K = R′
Δ

2/3 and M = R′
Δ

1/3 + 1; thus, this will certainly happen if

R′
Δ > 216 (logΔ)3 .

If R′
Δ is less than this bound, then RΔ is small and R′

Δ can be easily and
quickly verified by other methods, such as the continued fraction technique.

Notice that this algorithm for verifying that c = 1 is completely deter-
ministic. If we include the running time of the subexponential algorithm for
computingR′

Δ, then we obtain a Las Vegas algorithm for computing RΔ given
the discriminant Δ.

Theorem 15.7. The regulator of a real quadratic order OΔ can be computed
in expected time O(Δ1/6+ε) under the extended Riemann hypothesis (ERH)
and GRH. The output is unconditionally correct.

This result follows from the fact that the subexponential algorithm will com-
pute R′

Δ in expected subexponential time in logΔ, and that, assuming the
ERH, we have c = 1. Although the algorithm is not deterministic, it is the
fastest known algorithm for computing RΔ unconditionally in practice, as we
will see below.

The basic algorithm is quite simple, but in order to get the best perfor-
mance from it on a computer, there are a number of issues that should be
discussed.2

In practice, we only have a limited amount of storage space available to
store the baby-step list L. Since we have a fixed set of ideals to compute
for the baby-step list (all ideals up to a[s + b] and two beyond), we have to

15.3 The Algorithm and Some Implementation Issues 395

somehow limit the number of ideals that we are going to store, which we do
by introducing gaps in the baby-step list. Note that (15.5) shows us there are
roughly u = (s+ b)/1.7 ideals in L.

Assume that at = a[s + b]. Furthermore, assume that we have space for
storing N + 4 ideals and that our approximation t′ of t (the number of ideals
below a[s + b]) is such that t < 1.05t′.3 When 1.05t′ ≤ N , we should have
enough space to store the entire baby-step list L. However, as soon as 1.05t′ >
N , we need to leave out part of the baby-step list. Let l = �1.05/N	. Instead
of storing the entire list L, we store the sublist

L′ = {a1, al, a2l, . . . , at = a[s+ b], at+1, at+2} ,
which contains every lth ideal before ideal at and the ideals a1, at, at+1, and
at+2. Because of the way in which we determined l, we know that we have
enough space to store these ideals. It is now fairly easy to show that if we
have an ideal aj that is in L, then at least one of the ideals in the list

N := {aj, aj+1, . . . , aj+l−1}
has to be in L′, so that we can replace matching of the ideal aj with the ideals
in the list L with an iteration that tries to match the ideals in N with the
ideals in L′.

We next present an improvement, first introduced by Jacobson et al.,4

to the algorithm for determining that c = 1. In our presentation below, the
original method is discussed in greater detail and has been modified to work
with (f, p) representations. While trying to determine the multiplier c, we
repeatedly have to compute an ideal a[�R′

Δ/qi] and determine whether this
ideal is in the list S. We start this procedure with the largest prime and
proceed with the primes sorted in a decreasing order, so that the valuesR′

Δ/qj
increase during the algorithm. Instead of computing the ideal a[�R′

Δ/qi] from
scratch for every prime qi, we can now use the fact that we have already
computed the ideal a[�R′

Δ/qi−1] in the preceding step (where qi < qi−1), and
this lies close to the new ideal a[�R′

Δ/qi]. Because we already have this ideal,
we can put δ′ := �R′

Δ/qi−1	, determine the difference δ := �R′
Δ/qi	 − δ′, and

use the infrastructure to take a giant step from a[�R′
Δ/qi−1] to a[�RΔ/qi]

using the ideal a[δ] and the algorithm ADDXY.
To make the process of computing the ideals a[δ] more efficient, we can

further optimize the algorithm by approximating these ideals using products
of precomputed ideals. We first precompute all ideals at0 , at1 , . . . , atm , where
ati = a[δti], δti = 2is′, s′ = s − 1 (here s is the s in Theorem 15.4), and m
depends on which ideals we expect to use. Now, after computing the ideal
a[δ′], where δ′ ≈ �R′

Δ/qi−1	, we compute δ and put ρ := �δ/s′� + 1, so that
δ < ρs′ ≤ δ + s′. We can use the binary expansion br2r + br−12r−1 + · · ·+ b0
of ρ to get

δ ≈ ρs′ = ρδt0 = 2rδt0 + br−12r−1δt0 + · · ·+ b0δt0

= brδtr + br−1δtr−1 + · · ·+ boδt0 .

396 15 Unconditional Verification of the Regulator and the Class Number

So if we have a[δ′], where δ′ ≈ �R′
Δ/qi−1	, we can find an ideal near a[�R′

Δ/qi]
by computing the ideal a[δ′ + ρs′]. Here, we can easily compute ideal a[ρs′]
by applying ADDXY to those ideals ati for which bi = 1, after which we can
then use a[ρs′] and a[δ′] to compute efficiently the ideal a[δ′ + ρs′].

Because we actually add ρs′ instead of δ to δ′, we do not in general compute
the ideal a[�R′

Δ/qi] but obtain an ideal that is close by. The relevance of
the next theorem is that it tells us that we can use the technique described
above to compute rapidly an ideal near a[�R′

Δ/q] for each prime q and then
determine that the q does not divide the multiplier c for which |R′

Δ−cRΔ| < 1
when the ideal that we compute does not end up in the list mentioned in the
theorem.

Theorem 15.8. Suppose that c is a positive integer and |R′
Δ − cRΔ| < 1.

Let s (> 1) and t be defined as in Theorem 15.4 and suppose that 0 < δ′ <
�R′

Δ/q	 + s, where q is a positive integer. Then if q | c, we must have that
a[δ′+ρs′] is an element of {a4, a3, a2, a1, a2, . . . , at+2}, where ρ = �δ/s′�+1 >
−1, s′ = s− 1, and δ = �R′

Δ/q	 − δ′.
Proof. Since ρ = �δ/s′�+ 1, we have δ < ρs′ < δ + s. Also,

ρ > δ/s′ = �R′
Δ/q	/s′ − δ′/s′

> �R′
Δ/q	/s′ − (�R′

Δ/q	+ s′)/s′

= −s′/s′ = −1 .

Now, δ+δ′ < ρs′+δ′ < δ+δ′+s implies that �R′
Δ/q	 < ρs′+δ′ < �R′

Δ/q	+s.
Since �R′

Δ/q	 = �cRΔ/q	 + γ, where γ ∈ {−1, 0, 1}, we have �cRΔ/q	 ≤
ρs′ + δ′ ≤ �cRΔ/q	+ s. If q | c, then �kRΔ	 ≤ ρs′ + δ′ ≤ �kRΔ	+ s, where
k = c/q is an integer.

By Corollary 15.5.1, we have a[�kRΔ] ∈ {a4, a3, a2, a1, a2, a3, a4}. If ai =
a[s], ρs′ + δ′ = �kRΔ	+ r, and r ≥ 1, then r ≤ s, and for aw = a[�kRΔ	+ r],
we have w < i + 3 ≤ t + 2 by Corollary 15.2.1 and Lemma 15.2. It follows
that a[ρs′ + δ′] ∈ {a4, a3, a2, a1, a2, . . . , at+2}. ��

In order to use the theorem, we first order all the k possible primes (≤M)
such that q1 is the largest such prime and qi > qi+1 (i = 1, 2, . . . , k − 1). Put
δ′1 = �RΔ

′/q1	 and define

δi = �RΔ
′/qi	 − δ′i ,

ρi = �δi/s′	+ 1 ,
δi+1 = δi + ρis

′

for i = 1, 2, . . . , k− 1. We certainly have 0 < δ′1 < �RΔ
′/q1	+ s. Suppose that

0 < δi < �RΔ
′/qi	+ s; from the proof of the theorem, we must have

δ′i+1 < �RΔ/qi	+ s ≤ �RΔ/qi+1	+ s .

15.3 The Algorithm and Some Implementation Issues 397

Thus, by induction, δ′i < �RΔ/qi	 + s for 1 ≤ i ≤ k. It follows that in order
to show that c = 1, all we need do is check that

a[δi] �∈ {a4, a3, a2, a1, a2, . . . , at+2} .

Also, as mentioned earlier, a[δi] is easily computed from the previously deter-
mined a[δi−1] and a[ρi−1s

′]. We begin this process by using AX to compute
a[δ1].

Because the computations required for the verification procedure can be-
come very time-consuming, it is useful to have the ability to run the algorithm
in parallel. Being able to do this allows us to share the workload among mul-
tiple machines and/or processors and thereby to handle the verification for
orders O of discriminant Δ, where the value for Δ is larger than the values
that we can handle with a non-parallelized version of the algorithm.

Dividing the workload for various parts of the algorithm can be done in a
relatively simple way, as all parts basically work with intervals that can simply
be divided into smaller, equally sized intervals. For example, while computing
the baby-step list, we compute a1 (= O), a2, a3, . . . and determine when we
are done by checking whether we encounter the ideal a[s + b] computed by
AX. To divide this interval between 1 and s + b into y smaller intervals, we
introduce lower and upper bounds (i−1)(s+ b)/y and i(s+ b)/y for each new
interval i = 1, 2, . . . , y and compute the corresponding ideals with distances
close to these bounds using AX. If we work with gaps in the baby-step lists,
we also need to ensure that the number of omitted ideals is not larger than
l ideals by storing the ideal corresponding to the lower bound in the list L′.
Because this may introduce additional ideals to store, we need to adjust l
accordingly before initiating the computation. Similar techniques can be used
for the other parts of the algorithm, for which identifying the intervals is more
straightforward.

The part of the verification algorithm that computes the multiplier is easy
to parallelize, as each processor simply works on a different interval of primes.
In our implementation, we employed a heuristic method to balance roughly
the time spent by each processor by creating a large number of subintervals
and supplying processors with a new interval only after they finished checking
the previous interval obtained. Because an interval containing small primes
takes longer to process than one containing the same number of large primes,
the intervals with small primes are distributed first.

The baby-step giant-step part of the verification algorithm is unfortunately
difficult to parallelize optimally unless all processors have access to the same
memory. In that case, a straightforward parallelization in which each processor
computes a subset of the baby steps and a subset of the giant steps would
work. This approach will most likely fail in a message passing model because
the communication overhead would be too high. For example, in order to
determine whether a giant-step ideal is in the list of baby steps, a machine
would have to query every other machine to determine whether the ideal is

398 15 Unconditional Verification of the Regulator and the Class Number

in that machine’s piece of the baby-step list. As a result, we opted for a sub-
optimal solution in which each machine computes an identical copy of the
baby-step list. The disadvantage is that the number of baby steps is confined
to that which a single machine can store, but the advantage is that there
is no interprocessor communication other than the coordinating processor
sending initialization information to the other processors at the beginning of
the computation.5

It is, of course, necessary to have f < 2p−4 throughout this process. This
can be done by using the following bounds on p.

• For the baby-step giant-step algorithm, if s > 16 and B > max{16, log s},
then f < 2p−4 for all (f, p) representations computed during the algorithm
if p is chosen such that 2p ≥ 221B2s.

• For verifying that c = 1 we first assume that R′
Δ > 106, R′

Δ
1/2

< K <

R′
Δ

5/6 and max{16,K2/5} < s < K3/5, which does not restrict the choice
for the values of the variables too much when R′

Δ is large. It turns out
that, under these conditions, f < 2p−4 for all (f, p) representations that
are computed during the determination algorithm if 2p > 19R′

Δ logR′
Δ.

• If the initial approximation R′
Δ needs to be refined, as mentioned at

the beginning of §15.2, we assume that R′
Δ > 106 and require that

2p > 21R′
Δ logR′

Δ in order to ensure that AX will produce an (f, p) rep-
resentation of a[�R′

Δ	 − 2] with f < 2p−4.

The proofs6 of these results can be derived by an analysis similar to that
employed in Chapter 11.

To get some idea of how effective this verification is, we first programmed
it to run on a machine with two Intel P4 Xeon 2.4-GHz processors and 2
GB of RAM. The resulting runtimes are listed in Table 15.1, where we have
incorporated the time needed for the subexponential algorithm in the time
needed for the Δ1/6+ε algorithm, as the latter depends on the former for its
input. In our examples, Δ was selected to be a fundamental discriminant.

The data in Table 15.1 show that even though Lenstra’s Δ1/5+ε algorithm
is initially faster, the Δ1/6 algorithm becomes significantly faster as soon
as Δ ≈ 1020 or larger. In fact, the only reason why the Δ1/5+ε has this
initial advantage is because of the standard overhead of the subexponential
algorithm, which for Δ ≈ 1015 can be seen to be the most costly part of the
Δ1/6+ε algorithm. Furthermore, we can see from the table that even though
theΔ1/6+ε algorithm is significantly faster than theΔ1/5+ε algorithm for large
Δ, it is still very slow compared to the subexponential algorithm.

We also implemented a parallel version of the Δ1/6+ε algorithm and ran
it on 240 processors in a cluster of machines containing two Intel P4 Xeon
2.4-GHz processors and 2 GB of RAM. The timings of the corresponding
verifications can be found in Table 15.2, together with a rough approximation
of the corresponding regulators.

In particular, we were able to compute unconditionally the regulator for a
65-digit value ofΔ; this is far beyond the capabilities of previous unconditional

15.4 The Class Number 399

Table 15.1. Comparison of Runtimes

Δ ≈ 10... Subexponential Δ1/6+ε Δ1/5+ε

15 0.29 sec 0.42 sec 0.25 sec

20 0.45 sec 0.93 sec 3.65 sec

25 0.68 sec 3.20 sec 2 min, 20 sec

30 1.44 sec 14.60 sec 44 min, 26 sec

35 2.57 sec 1 min, 27 sec 2 days, 13 hours

40 6.06 sec 6 min, 12 sec N/A

45 26.27 sec 1 hour, 10 min N/A

50 1 min, 27 sec 1 day, 9 hours N/A

Table 15.2. Parallel Version Runtimes

Δ ≈ 10... RΔ ≈ . . . × 1030 Subexponential Δ1/6+ε

62 3.4 1 hour, 14 min 6 days, 3 hours

63 5.2 1 hour, 37 min 8 days, 2 hours

64 8.1 2 hours, 17 min 10 days, 13 hours

65 195.6 2 hours, 5 min 102 days, 7 hours

algorithms. On examining Table 15.2, the runtime for this value of Δ appears
to be excessive in light of the complexity discussion at the beginning of this
section, which predicts an increase in runtime of approximately a factor 3
over the 64-digit value. However, this is due to some practical issues resulting
from the amount of memory available to store L′. For the 65-digit example,
the time required for l table look-ups exceeds the time used by the ADDXY
operation, which causes the time for all but the baby-step part to increase
quadratically.7

The precise value of this Δ and its corresponding R′
Δ are

Δ = 39286375734542594749758050835151655092118848530833398743561568481

and
R′

Δ = 195696290466865524253842387693615.28 .

15.4 The Class Number

We now turn to the problem of verifying that the value of hΔ furnished by the
index-calculus method of Chapter 13 is correct. In order to avoid confusion
with the correct class number hΔ, we will denote this value by h′Δ. Since we

400 15 Unconditional Verification of the Regulator and the Class Number

know that h′Δ | hΔ, it sufficies to verify that hΔ/h
′
Δ < 2. This problem was

addressed recently by Booker,8 and we will briefly discuss his results in this
section.

By Corollary 8.35.1, we have9

hΔ

h′Δ
=

√
Δ

2h′ΔRΔ
L(1, χΔ) . (15.6)

By (9.31), we can write this as

hΔ

h′Δ
=

1
h′ΔRΔ

∞∑

n=1

χΔ(n)F
(

n√
Δ

)

, (15.7)

where χΔ(n) = (Δ/n) and

F (x) =
∫ ∞

x

(
1
x

+
1
t

)

e−πt2 dt . (15.8)

Notice that F (x) is a monotonically decreasing, convex function for x > 0.
We now write (15.7) as
∣
∣
∣
∣
∣

hΔ

h′Δ
− 1
h′ΔRΔ

X∑

n=1

χΔ(n)F
(

n√
Δ

)∣∣
∣
∣
∣
=

1
h′ΔRΔ

∣
∣
∣
∣
∣

∞∑

n=X+1

χΔ(n)F
(

n√
Δ

)∣∣
∣
∣
∣
.

(15.9)
We can therefore estimate the value of hΔ/h

′
Δ by computing the first X

terms of the series in (15.7), provided that the right-hand side of (15.9) is
small enough. Our next objective will be to find a value for X for which this
will be the case. By partial summation,10 we can write this as

1
h′ΔRΔ

∣
∣
∣
∣
∣

∞∑

n=X+1

χΔ(n)F
(

n√
Δ

)∣∣
∣
∣
∣

=
1

h′ΔRΔ

∣
∣
∣
∣
∣

∞∑

n=X+1

S(n)
[

F

(
n√
Δ

)

− F
(
n+ 1√
Δ

)]∣∣
∣
∣
∣
,

where

S(n) =
n∑

j=X+1

χΔ(n) . (15.10)

For any fixed ε and fixed positive integer r, a result of Burgess11 gives us

S(n) = O
(
n1−1/rΔ(r+1)/4r2+ε

)
. (15.11)

It is easy to see that F ′(x) = O(x−2), and since F (x) is a continuous
decreasing function, we have

15.4 The Class Number 401

∣
∣
∣
∣F

(
n√
Δ

)

− F
(
n+ 1√
Δ

)∣
∣
∣
∣ = O

(√
Δ

n2

)

by the mean value theorem. Thus, by (15.11),
∣
∣
∣
∣
∣

∞∑

n=X+1

χΔ(n)F
(

n√
Δ

)∣∣
∣
∣
∣
= O

(

Δ1/2+(r+1)/4r2+ε
∞∑

n=X+1

1
n1+1/r

)

= O
(
X−1/rΔ1/2+(r+1)/4r2+ε

)
.

If, as we are reasonably certain, h′Δ = hΔ, then by Siegel’s result (9.22), we
get ∣

∣
∣
∣
∣

∞∑

n=X+1

χΔ(n)F
(

n√
Δ

)∣∣
∣
∣
∣

h′ΔRΔ
= O

(
X−1/rΔ(r+1)/4r2+ε

)
. (15.12)

This will be small if
X � Δ1/4+1/4r+2rε . (15.13)

Since each term of
X∑

n=1

χΔ(n)F
(

n√
Δ

)

(15.14)

can be computed to high precision in polynomial (in logΔ) time and r and ε
are arbitrary, we can produce an algorithm for calculating a sufficiently accu-
rate value of (15.14) that permits us to assert that hΔ/h

′
Δ < 2. Furthermore,

this algorithm will execute in running time O(Δ1/4+ε) as long as h′Δ = hΔ.
The difficulty with this approach to verifying the value of hΔ is that (15.11) is
not effective, which means that we have no way of computing an upper bound
on the value of the right-hand side of (15.9).

Booker solved this problem by producing an effective version12 of Burgess’
result, which we give below as Theorem 15.9.

Theorem 15.9. Let Δ > 1020 be a prime number congruent to 1 (mod 4),
r ∈ {2, 3, . . . , 15}, and M and N be integers with 0 < M,N ≤ 2

√
Δ. Then

∣
∣
∣
∣
∣
∣

∑

M≤n<M+N

χΔ(n)

∣
∣
∣
∣
∣
∣
≤ α(r)Δ(r+1)/4r2

(logΔ+ β(r))1/2rN1−1/r , (15.15)

where α(r) and β(r) are given in Table 15.3.

402 15 Unconditional Verification of the Regulator and the Class Number

Table 15.3. Values of α(r) and β(r)

r α(r) β(r)

2 1.8221 8.9077

3 1.8000 5.3948

4 1.7263 3.6658

5 1.6526 2.5405

6 1.5892 1.7059

7 1.5363 1.0405

8 1.4921 0.4856

r α(r) β(r)

9 1.4548 0.0085

10 1.4231 −0.4106

11 1.3958 −0.7848

12 1.3721 −1.1232

13 1.3512 −1.4323

14 1.3328 −1.7169

15 1.3164 −1.9808

He next used partial summation to bound the right-hand side of (15.9) as

1
h′ΔRΔ

∣
∣
∣
∣
∣

∞∑

n=X+1

χΔ(n)F
(

n√
Δ

)∣∣
∣
∣
∣

≤ 1
h′ΔRΔ

⎛

⎝ 1√
Δ

∑

X<n<2
√

Δ

∣
∣
∣
∣S(n)F ′

(
n√
Δ

)∣
∣
∣
∣

+
∣
∣
∣S(2

√
Δ)

∣
∣
∣F (2) +

∣
∣
∣
∣
∣
∣

∑

n>2
√

Δ

χΔ(n)F
(

n√
Δ

)
∣
∣
∣
∣
∣
∣

⎞

⎠ , (15.16)

where S(n) is given by (15.10). In this expression it is necessary to bound the
three terms on the right.

It is easy to see by integrating by parts that

∫ ∞

x

t−αe−πt2 dt <
e−πx2

2πxα+1
(15.17)

when α > −1 and x > 0. Hence,
∣
∣
∣
∣
∣
∣

∑

n>2
√

Δ

χΔ(n)F
(

n√
Δ

)
∣
∣
∣
∣
∣
∣
≤
∫ ∞

2
√

Δ

F

(
t√
Δ

)

dt =
√
Δ

∫ ∞

2

F (x) dx .

Since F (x) < (1/πx2)e−πx2
, we get

√
Δ

∫ ∞

2

F (x) dx <
√
Δ

π

∫ ∞

2

x−2e−πx2
dx <

√
Δ

16π2e4π
.

As we expect h′ΔRΔ to be hΔRΔ =
√
ΔL(1, χΔ)/2, we see that on examining

the left-hand side of (9.24) that

15.4 The Class Number 403

1
h′ΔRΔ

∣
∣
∣
∣
∣
∣

∑

n>2
√

Δ

χ(n)F
(

n√
Δ

)
∣
∣
∣
∣
∣
∣
<

1
8π2e4πL(1, χΔ)

(15.18)

should be small, but, of course, this must be checked.
Also, |S(2

√
Δ)|F (2) can be bounded by using (15.17) and (15.15). The

more difficult problem is to select a candidate for X which will permit us to
bound the value of

1√
Δ

∑

X<n<2
√

Δ

∣
∣
∣
∣S(n)F ′

(
n√
Δ

)∣
∣
∣
∣ (15.19)

in such a way that we can conclude that hΔ/h
′
Δ < 2. For n < 2

√
Δ, we find

from (15.17) that

S(n) ≤ α(r)Δ(r+1)/4r2
(logΔ+ β(r))1/2r(n−X)1−1/r . (15.20)

We now initiate an interpolation process to find X . We begin by selecting a
candidate value of X = �√Δ�, say, and estimate the sum (15.19) by using
(15.20) and several13 precomputed upper bounds on |F ′(x)| for sample values
of x such that 0 < x < 2. Since F is convex, we can interpolate between them.
We can also vary the value of r in (15.20) according to the interval over which
we are summing in (15.19). For example, if n is near 2

√
Δ, take r = 2, but as

n decreases, successive values of r = 3, 4, . . . work best.
After computing this trial upper bound T (X) on (15.19), we compute

S(X), the sum of T (X)/h′ΔRΔ, and our bounds on S(2
√
Δ)F (2)/h′ΔRΔ and

the term (15.18).14 If S(X) < η, some number near 1, say 0.995, we conclude
on noting (15.12) that X is too large; if S(X) > η, we conclude that X is too
small. We can now employ a bisection process to obtain the smallest value of
X such that S(X) ≤ η. By (15.13), this value of X should be O(Δ1/4+ε), and
we use it to compute

R(X) =

∣
∣
∣
∣
∣

X∑

n=1

χΔ(n)F
(

n√
Δ

)∣∣
∣
∣
∣
.

If R(X) < 2− η, we know that hΔ/h
′
Δ < 2 or hΔ = h′Δ.

By using this basic process, together with some clever refinements,15

Booker was able to verify the class number of O with fundamental discrimi-
nant Δ = 1031 + 33 as 43. This required about 95 hours of computation time
on a 500-MHz Ultra Sparc II.

404 Notes and References

Notes and References

1These techniques developed from an idea mentioned in [JPW03]. They were
reported in [dHJW07] and in much more detail in [dH04].

2These matters are discussed much more thoroughly in [dH04].
3In some emirical work it was found that t′ tends to be somewhat larger than t.

This was likely because the value 1.7 is only an approximation.
4[JLW95].
5Much more information concerning this and the determination of optimal values

for the parameters s, B, etc. can be found in §§6.4 and 6.5 of [dH04].
6See §6.3 of [dH04]. In fact, some refinement of the arguments presented there

would result in a reduction of the constants 221, 19, and 21, inspite of our use here
of the less precise technique of Theorem 11.2 as opposed to that of Theorem 3.2 of
[dH04].

7Furthermore, a significant amount of computation time was added due to syn-
chronization after each part of the verification algorithm and hardware problems
in combination with insufficiently fine-grained checkpointing. Under ideal circum-
stances, we would expect the same computation to take approximately 83 days,
given the same memory constraints.

8[Boo06].
9We are only considering the case of Δ > 0 here, but the method can also be

applied to the Δ < 0 case.
10See the proof of Theorem 8.24.
11[Bur57].
12Booker only proves his result for Δ a prime, but his method could be applied

to a general Δ with a concomitant increase in the constants α and β.
13Booker suggests 10,000 such values geometrically spaced to ensure that there

are many more samples near 0. This is because there is a 1/x2 singularity there, and
as a consequence, these terms will be of greatest importance.

14We have written RΔ here, but this is a convenience because we do not know
RΔ exactly; we would have to use RΔ

′ − 1, which we know is a lower bound on RΔ.
15See §4 of [Boo06].

16

Principal Ideal Testing in O

16.1 Introduction

Let i be any given O-ideal. In this chapter we will denote by P the problem
of determining whether or not i is a principal O-ideal. Of course, as we can
easily find α and a reduced O-ideal b such that b = (α)i, we may consider
this problem as applying, instead, to a given reduced O-ideal b. Also, since
a principal ideal is invertible, we may also assume that b (or i) is invertible.
An extended version of P is the problem of determining, once we know that
b is principal, a generator β of b. By our observations in Chapter 12, all
we really need to determine β is some q, b ∈ Q such that | log2 β − b| < q,
where q is small, say q ≤ 10. Both of these problems can be solved by the
index-calculus method described in §13.4, but because we need the truth of
unproved hypotheses to be sure our result is correct, particularly when b has
been declared not principal, this technique is conditional. In this chapter we
will develop methods for solving P that are either unconditional or are only
conditional concerning the runtime; the answer is still mathematically correct
(a Las Vegas algorithm). The problem with these processes is that they are
unfortunately of exponential complexity.

The simplest unconditional technique for solving P is simply to determine
the cycle C of reduced principal O-ideals by computing the period of the
continued fraction expansion of ω. The reduced O-ideal b is principal if and
only if b ∈ C. Also, if b ∈ C, then b = am (a1 = O) for some 1 ≤ m ≤ l, where
l is the period length of the simple continued fraction (SCF) expansion of ω
and therefore b = (θm). Since |C| = l = O(RΔ), this algorithm will solve P
in O(RΔ) = O(Δ1/2+ε) elementary operations. We next show how we can use
some of our earlier routines to solve P in O(R1/2+ε

Δ) elementary operations.
The basic idea behind this technique was briefly discussed near the end of
Chapter 7; we give here a complete method that is provably exact.

We begin by assuming that Δ > 220 and that we are given R′
Δ such that

|R′
Δ −RΔ| < 1, where, as before, RΔ = log2 εΔ. We also assume that

406 16 Principal Ideal Testing in O
√
R′

Δ > 15 +
5
2

log2Δ (> 65) . (16.1)

If this is not the case, then RΔ = O((logΔ)2), and we can solve P by the pre-
vious technique in time O((logΔ)2). We present our algorithm as a sequence
of three steps.

1. We put x = �√R′
Δ	 and select p such that

2p > mmax{16, logx}x ,
where m = 11.2. We next use AX to compute an (f, p) representation
(a[x], d, k) of a1 (= O). Since a[x] is a reduced ideal, we have a[x] = an =
θna1 and by (11.4) and Theorem 11.9, we know that f < mx, f < 2p−4,
and

| log2 θn − k| < 3
2
. (16.2)

Also, by Corollary 11.3.1, we have

17
16
x > log2 θn > log2

(
15

16
√
Δ

)

+ x . (16.3)

Hence, by (16.1), we get

k > log2

(
15

16
√
Δ

)

+ x− 3
2
>

3
4

logΔ+ 4 . (16.4)

2. We next compute the SCF expansion of ω to obtain

S = {a1, a2, a3, . . . , an} .
Since, by (3.40),

n <
log2 θn

log2 τ
+ 2 ,

we get

n <
17
16

x

log2 τ
+ 2 < 1.6x+ 2 (16.5)

by (16.3). Thus, this step can be performed in time O(RΔ
1/2+ε).

3. Put c1 = b and use NUCOMP as

ci = NUCOMP(ci−1, a[x]) (16.6)

to produce a sequence of reduced O-ideals c1, c2, c3, We now put κ =
�(3/4) log2Δ	 and

j =
⌈R′

Δ − k + 3/2
k − κ− 3/2

⌉

+ 2 .

Notice that k − κ− 3/2 > 0 by (16.4). By using (16.1), (16.2), (16.4) and
Corollary 11.3.1, it is a simple matter to show that

16.1 Introduction 407

j < 2
√
R′

Δ ≤ 2x . (16.7)

If, for any i ≤ j, we get ci ∈ S, then b must be a principal O-ideal. If
ci �∈ S for all i such that 1 ≤ i ≤ j, then b is not a principal ideal. Since
j = O(RΔ

1/2), we see that this step, and hence the entire procedure, can
be executed in time O(RΔ

1/2+ε).

We will now explain why this technique works. Note that γ1 = 1 and
ci = γib, where

γi =
γi−1θn

μi
,

μici = ci−1a[x], and, by (5.45),

0 ≤ log2 μi <
3
4

log2Δ (i = 2, 3, 4, . . .) .

Suppose b is principal; then b = at for some t ≤ l. Hence, ci = γiθta1 and ci

is reduced and principal for i = 1, 2, Futhermore, if b �∈ S, then θt > θn.
By (16.3) and (16.1) we have μi < θn; thus, γi > γi−1 (i = 2, 3, . . .) and there
must therefore exist some h such that

γh−1 <
εΔ
θt

and γh ≥ εΔ
θt

;

that is,
εΔ
θt
≤ γh =

γh−1θn

μh
<
εΔθn

θt

and
1 ≤ θtγhε

−1
Δ < θn .

Since ch = θtγha1 = θtγhε
−1
Δ a1, we must have ch ∈ S.

We now requre an upper bound on h. Since

log2 γi = log2 γi−1 + log2 θn − log2 μi ,

we can easily deduce, by using (16.2), that

log2 γi > (i− 1)(k − κ− 3/2) .

Also,

log2 γh−1 < RΔ − log2 θt < RΔ − log2 θn < R′
Δ − k +

3
2

;

consequently,

R′
Δ − k +

3
2
> (h− 2)(k − κ− 3/2)

and we get

h− 2 <
R′

Δ − k + 3/2
k − κ− 3/2

≤ j − 2 .

408 16 Principal Ideal Testing in O

Unfortunately, when b is principal, the above process does not furnish us
with any information concerning the size of the generator θt of b. Nevertheless,
we can learn something about θt by using a similar procedure in which we
first ask that p satisfy

2p > 102R′
Δ .

Since we must find that ch = as for some s such that 1 ≤ s ≤ n, we can use
FPCF (see the Appendix) to obtain an (fs, p) representation (as, ds, ks) of a1,
where fs < 1+2s ≤ 1+2n. We next use NUMULT instead of NUCOMP and
replace (16.6) by

(ci, d
′
i, k

′
i) = NUMULT((ci−1, d

′
i−1, k

′
i−1), (a[x], d, k), p) ,

where we initialize c1 = b, d′1 = 2p+1, k′1 = 0, and f ′
1 = 1. Here, (ci, d

′
i, k

′
i) is

an (f ′
i , p) representation of c1 = b.

Since
2p > 102R′

Δ ,

we get (m = 11.2)

2p > 2(
√

2 + 1)(m+ 1)(e− 1)R′
Δ

> 2(
√

2 + 1)(e− 1)
[(

17
8

+m

)√
RΔ

′ +mRΔ
′
]

> 2(
√

2 + 1)(e− 1)
(

17
8

+mx

)√
RΔ

′ . (16.8)

It certainly follows from (16.8) that

2p > mmax{16, logx}x ,
and

2p > (
√

2 + 1)(1 + 2n) ≥ (
√

2 + 1)fs (by (16.5) and (16.1)) ; (16.9)

hence, by (11.4),

|ks − log2 θs| < 3
2
. (16.10)

Also, if we put f = fs, we have

f < mx < 2p−4

by Theorem 11.9.
Since, f ′

1 = 1 and

f ′
i+1 =

17
8

+ f ′
i + f +

f ′
if

2p
, (16.11)

we get

16.1 Introduction 409

f ′
i =

(
17
8

+ f

)(
ci−1 − 1
c− 1

)

+ ci−1

<

(
17
8

+ f

)(
ci − 1
c− 1

)

,

where c = 1 + f/2p < ef/2p

. Thus,

f ′
i <

(
17
8

+ f

)(
efi/2p − 1
f/2p

)

. (16.12)

Now, by (16.11), f ′
i is an increasing function of i, and since f < mx, we see

by (16.8) that
2p > 2mx

√
RΔ

′ > mxj > fj ;

consequently, fj/2p < 1. Since for a fixed i, (exi − 1)/x is an increasing
function of x for x > 0, we get

efi/2p − 1
f/2p

<
ei/j − 1

1/j
≤ j(e− 1)

when i ≤ j. It follows from (16.12), (16.7), and (16.8) that

f ′
i <

(
17
8

+ f

)

j(e− 1) < 2
√
RΔ

′(e− 1)
(

17
8

+mx

)

< (
√

2− 1)2p

(i = 1, 2, 3, . . . , j). Thus, by (11.4),

|k′h − log γh| < 3
2
. (16.13)

Since ch = as = θsa1, we get

θs = ηθtε
−1
Δ γh , (16.14)

where η is some unit of O. By selection of γh, we have γh ≥ εΔ/θt and
γh = γh−1θn/μi ≤ γi−1θn < εΔθn/θt. Hence, since, by (16.3) and (16.1),
θs ≤ θn < εΔ, we get

ε−1
Δ < η < εΔ ,

and, therefore, η = 1. By (16.14), we have

log2 θt + log2 γh = RΔ + log2 θs ,

and by (16.10) and (16.13), we get

| log2 θt −RΔ
′ − k′h − ks| < 4 .

Since we know RΔ
′, k′h, and ks, we can use this result to compute a compact

representation of θt by the technique in Chapter 12.

410 16 Principal Ideal Testing in O

16.2 Another Approach to Problem P

In this section we will describe a Las Vegas process for determining whether
a given reduced ideal b is (or, more importantly, is not) principal.1 We will
assume that we have used the method of Chapter 13 to produce the class
number h and the process described in Chapter 15 to compute R′

Δ. We will
discuss the technique by providing a series of several steps. We assume that
R′

Δ > 11/2+log2(34
√
Δ/15); if this is not the case, we can solve P very easily

in O(logΔ) time by simply searching for b in C.
1. We put a1 = a = O and quickly check that b �= ai for 1 ≤ i ≤ 16. Clearly,

if b is one of these ideals, then b is principal. If b is not one of these 16
ideals, then if b = (β), where β ∈ O and β > 1, then β ≥ θ17 > F17 > 210

and log2 β > 10.
2. We first execute algorithm EXP((b, 2p+1,−1), h, 0, p) of Chapter 11 to find

a 0-near reduced (f, p) representation (c, d, k) of bh, where f < 2p−4. By
(11.4), we know that | log2 φ− k| < 3/2, where c = φbh.

3. We next make use of the index-calculus algorithm to solve the infrastruc-
ture discrete logarithm problem (DLP) for c to obtain some g ∈ Q such
that

| log2 γ − g| < 1 ,

where c = (γ) and 1 ≤ γ < εΔ. We certainly expect this process to be
successful because bh must be principal if h is really the class number.
It is this aspect of our technique that renders it a Las Vegas algorithm
because we cannot be certain that this step will execute in subexponential
time.

If g is small, say g < 3, then since | log2 γ−g| < 1, we have 1 < γ < 16.
By Lemma 3.14, we can verify that c is principal by checking that

c ∈ {a1, a2, . . . , a7} .
If this is the case, we can use FIND to compute a (5/4, p) representation
(c, d′′, k′′) of a.

4. If g ≥ 3, we execute algorithm AX(�g� − 2, p) with

2p > 11.2g log max{16, g}
to produce (d, d′, k′), a (�g� − 2)-near (f, p) representation of a with f <
2p−4 and d = a[�g� − 2].

5. Since 1 < log2 γ−�g�+2 < 4, we see by Theorem 11.12 that if g has been
computed correctly, then

ρi(d) = c

for some i ∈ {0, 1, 2, . . . , 8}. Thus, this step serves to verify the result of
step 3. Also, in the process of conducting this verification, we can use
FIND to compute an (f + 1/4, p) representation (c, d′′, k′′) of the ideal a.
Thus, if g < 3 or g ≥ 3, by (11.4), we must have

16.2 Another Approach to Problem P 411

| log2 γ − k′′| < 3/2 .

Therefore,

−3 + k′′ − k < log2 γ − log2 φ < 3 + k′′ − k . (16.15)

Before continuting to produce the next steps needed in this process, we
should make a few observations. If b is principal, then we may assume that
b = (β), where β ∈ O and 1 ≤ β < εΔ. Also,

βh = γφ−1λ ,

where λ is a positive unit of O. Hence, λ = εrΔ (r ∈ Z) and

h log2 β = log2 γ − log2 φ+ rRΔ . (16.16)

We can deduce two useful results from this equation.

Theorem 16.1. If RΔ > 9/2+log2(34
√
Δ/15), then r in (16.16) must satisfy

−1 ≤ r ≤ h .

Proof. By Corollary 11.3.1, we have

− log2

34
√
Δ

15
< k < 0 .

Also, since |k′′ − log2 γ| < 3/2, we get

−3
2
< k′′ < RΔ +

3
2
.

Since log2 β ≥ 0, we have

rRΔ ≥ log2 φ− log2 γ > k − k′′ − 3

by (16.15). Hence,

rRΔ > − log2

34
√
Δ

15
−RΔ − 3

2
− 3

and

r > −1−
(

log2
34

√
Δ

15 + 9
2

RΔ

)

> −2 .

Since log2 β < RΔ, we have

rRΔ + log2 γ − log2 φ < hRΔ .

It follows that

rRΔ < hRΔ + 3− k′′ + k < hRΔ + 3 +
3
2
.

and
r < h+ 1 .

��

412 16 Principal Ideal Testing in O

If b is a principal ideal, then (16.16) must hold for some r such that

−1 ≤ r ≤ h . (16.17)

We next look at the problem of establishing whether or not this is the case.
To this end, we first define b(r) by

b(r) =
⌈
rR′

Δ + k′′ − k
h

⌉

− 6 .

It is clear that if (16.16) holds, then log2 β must be close to b(r) for some r in
the range (16.17). The next result establishes a bound on how close this is.

Theorem 16.2. If (16.16) holds, then

−1 < log2 β − b(r) < 10 .

Proof. We first observe that since |RΔ −R′
Δ| < 1, we get

−3 + k′′ − k + r(R′
Δ − 1)

h
< log2 β <

3 + k′′ − k + r(R′
Δ + 1)

h

by (16.16) and (16.15). Since

b(r) =
rR′

Δ + k′′ − k
h

+ η − 6 (0 ≤ η < 1) ,

we get

−3
h

+ b(r) − η − r

h
+ 6 < log2 β <

3
h

+ b(r) − η +
r

h
+ 6 .

By Theorem 16.1,
3
h
− η +

r

h
≤ 3
h

+
h

h
=

3
h

+ 1

and −3
h
− η − r

h
>
−3
h
− 1− 1 ;

hence,

−1 ≤ −3
h

+ 4 < log2 β − b(r) <
3
h

+ 7 ≤ 10 .

��
By step 1, we must have log2 β > 10; hence, b(r) > 0. Now, suppose we use

AX to compute a[b(r)] for r = −1, 0, 1, . . . , h. If b is principal, by Theorem 16.2
and Theorem 11.12 we must have a[b(r)] ∈ S, where S = {ρi(b) :−16 ≤ i ≤ 0}
for some r in the range (16.17). Thus, since a[b(r)] is a principal ideal, b is
principal if and only if a[b(r)] ∈ S for some r in the range (16.17). We now
have our final step.

16.2 Another Approach to Problem P 413

6. For r = −1, 0, 1, . . . , h, test to determine whether a[b(r)] ∈ S. b is principal
if and only if this happens for some r in the given range. Since, if b is
principal, ρi(a[b(r)]) = b for some 0 ≤ i ≤ 16, we can use FIND to
produce an (f + 1/4, p) representation of (b, g, l) of a and from this it is
easy to compute some b ∈ Q such that | log2 β − b| < 1. We can then go
on to produce a compact representation of β, if needed.

We can improve the execution of step 6 by determining the value of b(r+1)
from that of b(r). We have

b(r + 1) =
⌈

(r + 1)RΔ
′ + k′′ − k
h

⌉

− 6

=
rRΔ

′ + k′′ − k
h

+
RΔ

′

h
+ η1 − 6 (0 ≤ η1 < 1) ,

=
⌈
rRΔ

′ + k′′ − k
h

⌉

+
RΔ

′

h
+ η1 − η2 − 6 (0 ≤ η2 < 1) ,

=
⌈
rRΔ

′ + k′′ − k
h

⌉

− 6 +
⌈
RΔ

′

h

⌉

+ η1 − η2 − η3 (0 ≤ η3 < 1) .

Hence,

b(r + 1) = b(r) +
⌈
RΔ

′

h

⌉

+ η1 − η2 − η3 ,

where
−2 < η1 − η2 − η3 < 1

and η1 − η2 − η3 ∈ Z. It follows that

b(r + 1) = b(r) +
⌈
RΔ

′

h

⌉

+ k(r) , (16.18)

where k(r) ∈ {0,−1}. We can precompute a[�RΔ
′/h] and a[�RΔ

′/h	−1] and
then we have

a[b(r + 1)] =
{

ADDXY(a[b(r)], a[�RΔ
′/h]) when k(r) = 0

ADDXY(a[b(r)], a[�RΔ
′/h	 − 1]) when k(r) = −1 .

The value of k(r) is easily computed from the formula for b(r + 1) and (16.18).
Clearly, step 6 executes in time complexity O(hΔε). Thus, if we take into
consideration that we must verify RΔ

′, a process that requires O(RΔ
1/3+ε)

elementary operations, steps 1–6 will execute in expected time complexity

O(RΔ
1/3+ε) +O(hΔε).

As we have seen in Chapter 7, the value of h tends to be small, so in most cases
this step executes very quickly. In the case where h is large, say h > Δ1/6,
an unusual circumstance, the infrastructure method in §16.1 will determine

414 16 Principal Ideal Testing in O

unconditionally whether or not b is principal in time complexity O(RΔ
1/2),

but in this case, RΔ = O(Δ1/2+ε/h) = O(Δ1/3+ε); hence, the complexity of
solving P by this method is O(Δ1/6+ε).

In the more usual case of h < Δ1/6, the method of this section will execute
in O(Δ1/6+ε) operations provided the subexponential technique required in
step 3 succeeds. Thus, we now have a Las Vegas method of solving P of com-
plexity O(Δ1/6+ε). Furthermore, once RΔ

′ has been computed, the process
of determining the principality of any ideal in O will execute very quickly
because, as mentioned earlier, h is likely to be small.

We conclude this section with a problem that was considered by Jacobson
and Williams.2 Let

d1 = 187060083 ,
d3 = 1311942540724389723505929002667880175005208 ,

j1 = 2 ,
j2 = 21040446251556347115048521645334887 .

It was necessary to show that

d1x
2
3 − d3x

2
2 =

d3j1 − d1j2
j2

= c = 880813063496060911643645 (16.19)

has no integer solutions. Since 4 | d3, it is sufficient to show that all the ideals
of norm cd1 in O = [1,

√
D], where D = d1d3/4, are not principal. In this

case, Δ, the discriminant of O, is the 51-digit number

Δ = d1d3 = 245412080559135221803366130231160886970528733912264 .

By using the index-calculus algorithm, we found that

h = 1024 and R′ = 6851106675369184895740.24677 .

Here, R′ is an approximation to the regulator R of O. Looking at the prime
factors of cd1, we see

cd1 = 5 · 769 · 33809 · 6775714175075849︸ ︷︷ ︸
factors of c

· 3 · 7 · 8907623︸ ︷︷ ︸
factors of d1

,

and since the prime factors of d1 ramify in O, we found a total of 16 ideals
of norm cd1. By excluding ideal conjugates, we reduced this to only eight
candidates. By invoking the ERH, it was possible to show that (16.19) had no
solutions. However, by using the method described here, we are able to show
unconditionally that this equation has no solutions. Most (87%) of the time
needed to perform this algorithm was required to verify RΔ

′.

16.3 The Equation X2 − DY 2 = N 415

16.3 The Equation X2 − DY 2 = N

We now consider the Diophantine equation

X2 −DY 2 = N (N �= 1) , (16.20)

an extension of the Pell equation. Notice that if G2 | (N,D), then G | X ; if
we put X ′ = X/G, N ′ = N/G2, and D′ = D/G2, then (16.20) reduces to

X ′2 −D′Y 2 = N ′ .

Thus, we may assume with no loss of generality that (N,D) is squarefree.
Also, if S = (X,Y), then S2 | N and (16.20) becomes

X ′2 −DY ′2 = N ′ ,

where X ′ = X/S, Y ′ = Y/S, N ′ = N/S2, and (X ′, Y ′) = 1. Thus, there is
no loss of generality in considering only those solutions of (16.20) for which
(X,Y) = 1. We say that such solutions are primitive. For such solutions, we
must have (Y,N) = 1.

Let O = Z[
√
D] = [1,

√
D]; then Δ = 4D and ω =

√
D. We next let

X,Y be any primitive solution of (16.20) and consider the principal O-ideal
a = (X + Y

√
D). By Proposition 12.2, we have

a = [a, b+ ω] , (16.21)

where a = |N | = |N(X + Y
√
D)| and b ≡ XY −1 (mod a). Since b2 ≡

D (mod a), we can find the representation (16.21) without prior knowledge
of X and Y by solving

Z2 ≡ D (mod N) . (16.22)

One of the solutions Z of (16.22) with 0 < Z < |N | must be b. We put a = |N |
and b = Z in (16.21). Also, since a must be principal, it must be invertible,
which means by Lemma 4.31 that

(

N, 2Z,
Z2 −D
N

)

= 1 .

If Z does not satisfy this condition, it must be eliminated as a possible can-
didate for b.

We may now perform the following steps.

1. Determine whether or not a is principal. If a is not principal. then there
is no solution of (16.20) corresponding to our selected value of Z.

2. If a is principal, solve the infrastructure DLP for a to produce g ∈ Q such
that | log2 γ − g| < 1, where a = (γ), 1 < γ < εΔ. (εΔ is the fundamental
unit of O.)

416 16 Principal Ideal Testing in O

3. From the compact representation of γ = X + Y
√
D, we can determine

whether N(γ) = N . If so, we have a solution X,Y of (16.20). If N(γ) =
−N and N(εΔ) = −1, then N(γεΔ) = N and this will also produce
a solution of (16.20). Otherwise, there cannot be a solution of (16.20)
corresponding to our selection of Z.

Clearly, all solutions of (16.20) can be determined in this way by repeating
the process for each distinct S such that S2 | N and each possible candidate
for Z that results.

As the quadratic congruence (16.22) is of great importance in this inves-
tigation, it is necessary to discuss it in some detail.3

Suppose

N = 2α
k∏

i=1

pαk

i (α ≥ 0, αi ≥ 0) , (16.23)

where pi (i = 1, 2, . . . , k) are distinct odd primes. We can find all of the
solutions of (16.22) by finding all the solutions of

Z2 ≡ D (mod 2α) , (16.24)

Z2 ≡ D (mod pαi

i) (i = 1, 2, . . . , k) (16.25)

and combining them by use of the Chinese Remainder Theorem. Of course,
we must first be able to factor N . As mentioned in Note 11 of Chapter 14, the
problem of integer factorization has been studied very intensively during the
last 30 years and much progress has been made on it.4 A complete discussion
of this is well beyond the scope of this work; we only mention here that the best
general-purpose method for factoring currently known is the general number
field sieve (GNFS) technique.5 The heuristic estimate for the complexity of
factoring a general N by this process is LN [1/3, (64/9)1/3 + o(1)].

We observe that if p is any prime such that p2 | N and p | D, then p2 | Z,
which means that p2 | D, an impossibility by selection of D and N . Thus, if
p2 | N , then p � D. It is well known that there is one solution of (16.24) if
α = 1; there are two solutions if α = 2 and D ≡ 1 (mod 4); and there are
four solutions if α ≥ 3 and D ≡ 1 (mod 8). Otherwise, there are no solutions
when α ≥ 2. Thus, if μ denotes the number of solutions of (16.24), we have
μ ≤ 4. If p is odd, there are exactly 1 + (D/p) solutions6 of

Z2 ≡ D (mod pα) . (16.26)

Thus, the number ν(D,N) of possible solutions of (16.22) is given by

ν(D,N) = μ
k∏

i=1

(

1 +
(
D

p

))

≤ 2ω(N)+1 ,

where ω(N) denotes the number of distinct prime divisors ofN . The behaviour
of ω(N) is quite irregular, but its average value7 is known to be log log |N |;

16.3 The Equation X2 − DY 2 = N 417

thus, we expect that the usual number of solutions of (16.22) will be of the
order of log |N |; this means that in most cases it is only necessary to search
for solutions of (16.20) by using only a few values for Z.

In order to find solutions of (16.26), we must first solve

Z2 ≡ D (mod p) (16.27)

and then use the simple lifting process described in most textbooks on elemen-
tary number theory to find the solutions of (16.26) when α > 1. Polynomial
(in log p) time algorithms8 are known for solving (16.27) when (D/p) = 1 and
a quadratic non-residue x of p is known in advance. Practically, the determi-
nation of this x is easy because it can usually be found in a few trials. Also,
under the extended Riemann hypothesis (ERH), it is possible to show9 that
x < 2(log p)2. We see, then, that as long as we can factor N , the problem of
finding all the solutions of (16.22) is quite tractable.

Thus, we can find all solutions of (16.20) if we can solve the principal ideal
problem in O and exhibit a generator λ for each of the principal ideals which
are relevant. However, we will try to abbreviate this process somewhat in the
material below. We first consider the case of D < 0. Without loss of generality,
we will assume that Y > 0. The process of solving (16.20) that we will now
outline goes back to an old algorithm of Cornacchia.10 If (16.20) holds, we
must have N > |D| + 1 > 0 in the non-trivial case of |X |Y > 1. We let Z
(0 < Z < N) be a solution of (16.22) and note that there must exist some
W ∈ Z such that

X = ZY −NW , (W,Y) = 1 ,

if X,Y is a primitive solution of (16.20). Now,

0 < 2|X |Y < X2 + Y 2 ≤ X2 + |D|Y 2 = N ;

hence, ∣
∣
∣
∣
W

Y
− Z

N

∣
∣
∣
∣ =

|X |
NY

<
1

2Y 2
.

By Theorem 3.2, this means that W/Y must be a convergent in the SCF
expansion11 of Z/N ; that is, W/Y = Ai/Bi for some i ≤ n, where Z/N =
[q0, q1, q2, . . . , qn]. Since (W,Y) = 1 and (Ai, Bi) = 1, Y > 0, Bi > 0, we must
have W = Ai, Y = Bi and

X = ZBi −NAi = (−1)iRi

by (3.34). It follows, then, that in order to solve (16.20) when D < 0, we need
only expand Z/N by the Euclidean algorithm and find remainders Ri for
which Ri <

√
N . Indeed, it can be shown12 that if (16.20) has a solution, we

need only consider those values of Z satisfying (16.22) for whichN/2 < Z < N
and the corresponding value of i is such that Ri <

√
N and Ri−1 ≥

√
N . Of

course, it is necessary to verify that R2
i + |D|B2

i = N . All solutions of (16.20)
can be found by this procedure.

418 16 Principal Ideal Testing in O

We next turn to the more difficult case of D > 0. If λ = X + Y
√
D

gives a solution of (16.20), then so will λη, where η is any unit of O for
which N(λ) = 1. Thus, if (16.20) has a solution, it must have an infinitude
of solutions, unlike the case of D < 0. A technique for solving (16.20) was
given more than two centuries ago by Lagrange,13 but his procedure is quite
inefficient for large values ofD. The reason for this is that Langrange’s method
reduced (16.20) to a similar equation where |N | < √D and then appeals to
Theorem 3.3.

Lagrange’s technique14 essentially takes a candidate ideal a and finds a
reduced ideal b ∼ a, where b = θa and N(b) <

√
Δ/2. By Remark 5.14, this

can always be done. If b = (μ) is principal, then λ = μ/θ and we can find μ
by searching through the (finite) period of the SCF expansion of

√
D until we

find (or do not) some μ for which N(μ)/N(θ) = N . However, we know that
the continued fraction process is not likely to be fast when D is large.

Thus, for large values of D > 0, we are left with the process of solving
(16.20), which was described earlier. There remains the problem of character-
izing the (possibly) infinite number of solutions of (16.20).

Let T, U be any solution of the Pell equation

T 2 −DU2 = 1 . (16.28)

Following Nagell,15 we will say that if X1, Y1 and X2, Y2 are any (they need
not be primitive) two solutions of (16.20) such that

X2 + Y2

√
D = (X1 + Y1

√
D)(T + U

√
D) , (16.29)

then they are associated . Notice that if S = (X1, Y1), then S = (X2, Y2). The
set of all solutions of (16.20) that are associated with each other forms a class
of solutions of (16.20).

Theorem 16.3. If X1, Y1 and X2, Y2 are solutions of (16.20), they are asso-
ciated if and only if

N | X1X2 −DY1Y2 and N | X1Y2 −X2Y1 .

Proof. Suppose X1, Y1 and X2, Y2 are associated. By (16.29), we get

(X2 + Y2

√
D)(X1 − Y1

√
D) = (T + U

√
D)N . (16.30)

The result follows on equating rational and irrational parts. Next, suppose
that N | X1X2 −DY1Y2 and N | X1Y2 −X2Y1. Since

X2
1 −DY 2

1 = X2
2 −DY 2

2 = N ,

we get
(X2

1 −DY 2
1)(X2

2 −DY 2
2) = N2 ,

which we rewrite as

16.3 The Equation X2 − DY 2 = N 419

(X1X2 −DY1Y2)2 −D(X1Y2 −X2Y1)2 = N2

or (
X1X2 −DY1Y2

N

)2

−D
(
X1Y2 −X2Y1

N

)2

= 1 .

It follows that (X1X2 −DY1Y2)/N = T and (X1Y2 −X2Y1)/N = U , where
T 2 −DU2 = 1, and by (16.30), we see that X1, Y1 and X2, Y2 are associated.

��
Let (t, u) be the fundamental solution of (16.28). If

ε = t+ u
√
D ,

then

ε =
{
εΔ when N(εΔ) = 1
ε2Δ when N(εΔ) = −1 .

It follows from our earlier observations that if (16.20) has a solution, we may
assume that it has a solution with

1 < X + Y
√
D < ε . (16.31)

We call any solution of (16.20) satisfying (16.31) a fundamental solution of
(16.20). Also, there can only be one such solution in any given class. For
if there were two, say X1, Y1 and X2, Y2, we may assume with no loss of
generality that X2 + Y2

√
D > X1 + Y1

√
D. Hence, by (16.31),

ε >
X2 + Y2

√
D

X1 + Y1

√
D

= T + U
√
D = εn (n ≥ 1) ,

which is impossible. If S is the set of all the fundamental solutions of (16.20),
then, by our earlier discussion, |S| could not exceed the total number of dis-
tinct primitive O-ideals of norm |N |/S2 for each square factor S2 of N ; that
is16

|S| ≤
∑

S2|N
ν

(

D,
N

S2

)

.

It follows that we can characterize all solutions of (16.20) by

X + Y
√
D = νiε

n (n ∈ Z; i = 1, 2, . . . , s) ,

where s = |S| and νi = Xi + Yi

√
D is a fundamental solution.

We conclude this chapter with a brief discussion of (16.20) for small values
of |N |. The most interesting of these cases is that of N = −1. The Diophantine
equation

X2 −DY 2 = −1 (16.32)

is of importance because of its relationship to the problem of when N(εΔ) =
−1. Unlike the case of the Pell equation, (16.32) does not always have a

420 16 Principal Ideal Testing in O

solution for any positive non-square integer D. For example, we see by simple
congruence considerations that (16.32) cannot have a solution if a prime p
divides D and p ≡ −1 (mod 4). However, even if D = 2p, where p is a
prime with p ≡ 1 (mod 8), it is possible for (16.32) to not have a solution;
for example, consider D = 194 = 142 − 2. We should mention here that
Stevenhagen17 has produced some very convincing conjectures concerning the
density of those values of D for which (16.32) has a solution. The problem of
determining a fast technique for recognizing whether or not (16.32) is solvable
in integers has attracted a great deal of attention.18 It was Lagarias19 who
finally developed such a method for doing this when the complete factorization
of D is known, together with a quadratic non-residue for each prime which
divides D.

Another simple case20 is that ofN = ±2. Here, we note that if ν = x+y
√
D

and
x2 −Dy2 = ±2 , (16.33)

we may assume that 1 < ν < εΔ. Also, ν2/2 ∈ O and N(ν2/2) = 1. Hence,
ν2/2 = εnΔ and n > 0. If n ≥ 2, then ν ≥ √2εΔ, which is impossible; thus,
εΔ = ν2/2. If we have a good approximation to log2 εΔ, we can find one for
log2 ν and use this in conjunction with Algorithm AX and Theorem 11.12
to determine whether or not there exists a principal ideal a = (ν) such that
N(a) = 2. This process will execute very quickly if we know an approximation
to log2 εΔ. This remark also applies to21

x2 −Dy2 = ±4 , (16.34)

when x and y are odd. For in this case, as mentioned in Chapters 1 and 4, we
may assume that ν = x+ y

√
D, 1 < ν < εΔ, and we get

εΔ =
(ν

2

)3

.

In conclusion, we mention that there are also some scattered results22

concerning (16.20) for other small values of |N |.

Notes and References 421

Notes and References

1This technique is described in some detail in [Sil06].
2See [JW02].
3See, for example, [Vin54], p. 91ff.
4We have had occasion to mention this important problem several times in

this book. In addition to the references already given, we also recommend [Len00],
[Rie94], [CP05], and [Bre00].

5See [LL93].
6[Vin54], p. 94.
7[CM05], pp. 32–35.
8See [BS96b], §§7.1 and 7.2.
9[Bac90].

10[Cor08].
11In our proof of Theorem 3.2 we assumed that φ is irrational, but the result also

holds when φ is rational ([Per57], §13, Satz 11).
12See, for example, [Nit95].
13[Lag68], pp. 406–495; [Dic19], pp. 360–361.
14A good description of this technique can be found in [Chr61], pp. 482–487. This

method has been revisited recently by Matthews [Mat00].
15[Nag64], pp. 204–212.
16More precise values for the number of classes were determined by Stolt in [Sto52].

See also Theorem 2 of [Le95]. From this it can be easily deduced that there can be
at most 2ω(n)−1 classes of primitive solutions of (16.20).

17[Ste95]. Later, Bosma and Stevenhagen [BS96b] extended these observations and
acquired much supporting numerical data.

18See [BW72] and [Lag80a] for references.
19[Lag80a].
20The equation is discussed in [Per57], §26.
21The problem of determining an a priori condition for the solvability of (16.34)

when the right-hand side is 4 is called Eisenstein’s problem (see [Eis44b]), but it was
known previously to Gauss in a somewhat different form ([Gau86], Art. 256, VI).
This problem was dealt with in [SW89], but the criterion for solvability derived there
is of complexity O(D1/4+ε). Other, less efficient criteria can be found in [IKW90] and
[Wil90]. Stevenhagen [Ste96b] has also produced conjectures concerning the density
of those values of D for which (16.34) is solvable.

22See, for example, [MvdPW94] for the case of N = −3 and a discussion concern-
ing other values of |N |.

17

Conclusion

17.1 A More General Equation

In this section1 we will investigate the Diophantine equation

ax2 + bxy + cy2 + dx+ ey + f = 0 , (17.1)

where it is required to find integral values of x and y, given a, b, c, d, e, f ∈
Z. This is the most general form of a quadratic Diophantine equation in
two variables and, as such, represents a further generalization of the Pell
equation.2 A method for solving this equation was given over 200 years ago
by Lagrange,3 and this method has not been improved significantly since that
time. The reason for this is that Lagrange’s method works perfectly well as
long as the coefficients in (17.1) do not get very large. However, if we put
H = max{|a|, |b|, |c|, |d|, |e|, |f |}, it has been shown4 that there is an infinite
collection of equations of the form (17.1) having integer solutions x, y, but
none with max{|x|, |y|} ≤ 2H/5. Thus, it is possible for solutions of (17.1) to be
very large, even when H is only moderately large. For such cases, Lagrange’s
method will likely be far too slow to produce the solutions of (17.1). We will
show here how our previously developed results can be used to produce a
faster method for solving this equation.

If we put D = b2−4ac, E = bd−2ae, and F = d2−4af , Lagrange realized
that (17.1) can be written as

DY 2 = (Dy + E)2 +DF − E2 , (17.2)

where Y = 2ax+ by+d. Clearly, if we put N = E2−DF = −4a(ebd+4acf−
ae2 − fb2 − cd2), then (17.2) can be written as

X2 −DY 2 = N , (17.3)

where X = Dy + E. Thus, if we have any solution X,Y of (17.3) such that
there are integers x and y for which

424 17 Conclusion

X = Dy + E and Y = 2ax+ by + d , (17.4)

we get a solution x, y of (17.1).
We have discussed how to solve (17.3) in §16.3. If D < 0, this equation

has only a finite number of solutions which can be found by making use of
the algorithm of Cornacchia. If D = 0 or D > 0 and D is a perfect integral
square, the problem of solving (17.3) reduces to that of factoring N and, once
again, there can only be a finite number of solutions of (17.3). Also, if D > 0
and N = 0, then (17.3) can only have a solution if D is a perfect integral
square. In this case, we get an infinitude of solutions of (17.3), but they are
very easily characterized.

Thus, the only remaining case is that of N �= 0, D > 0, and D not a
perfect integral square. Let t, u denote the fundamental solution of the Pell
equation

T 2 −DU2 = 1 .

If
Xn + Yn

√
D = (X + Y

√
D)(t+ u

√
D)n (n ∈ Z) , (17.5)

where (X,Y) is any solution of (17.3), then (Xn, Yn) is also a solution of (17.3).
Indeed, as we have mentioned in §16.3 and as Lagrange was well aware, there
exists a finite set S made up of ordered pairs (X,Y) of solutions X,Y of (17.3)
such that if X ′, Y ′ is any solution of (17.3), then X ′ = Xn and Y ′ = Yn for
some n ∈ Z and some (X,Y) ∈ S. Thus, after having found S by the methods
of §16.3, the problem reduces to that of identifying for each (X,Y) ∈ S those
values of n for which

{
Xn ≡ E (mod D) ,
Yn ≡ b(Xn − E)/D + d (mod 2a) .

(17.6)

We will now rewrite (17.6) as
{

Xn ≡ E (mod D) ,
DYn ≡ bXn − bE +Dd (mod 2aD) .

(17.7)

Lagrange noted that as there are only a finite number of possible values of

(t+ u
√
D)n (mod 2aD) ,

there must be a least positive integer π for which

(t+ u
√
D)π ≡ 1 (mod 2aD) .

Thus, (17.5) yields values of Xn and Yn satisfying (17.7) if and only if it does
so when n is replaced by n+π. It follows that in order to test all the solutions
of (17.3) produced by (17.5) to see if they satisfy (17.7), it suffices to examine
only those for which 0 ≤ n ≤ π − 1.

17.1 A More General Equation 425

Lagrange’s method, then, compels us to test up to π values of n to deter-
mine those congruence classes of n (mod π) for which we produce solutions
of (17.1) from (17.5). Unfortunately, this could be a very inefficient process
when π is large, which is frequently the case when aD is. This difficulty can
be overcome by using a technique of Legendre as modified by Dujardin.5 If
we define

Tn + Un

√
D = (t+ u

√
D)n (n ∈ Z) , (17.8)

we see from (17.5) that

Xn = XTn +DY Un, Yn = Y Tn +XUn .

Since we require that Xn ≡ E (mod D), we must have TnX ≡ E (mod D).
By (17.8), it is clear that Tn ≡ tn (mod D), and since t2 ≡ 1 (mod D), we
get

Tn ≡ tε (mod D)

when n ≡ ε (mod 2), ε ∈ {0, 1}. Thus, if neither X ≡ E (mod D) nor
tX ≡ E (mod D) holds, then (17.5) will yield no solutions of (17.1).

Suppose that TnX ≡ E (mod D). By (17.7), we also require that

dD − bE ≡ (DY − bX)Tn + (DX − bDY)Un (mod 2aD) . (17.9)

From (17.4), we can deduce that

X − bY = Dy + E − 2abx− b2y − bd
= −2a(2cy + e+ bx) .

Thus, another necessary condition for (17.5) to produce solutions to (17.1) is
that

2a | X − bY . (17.10)

Since b2 ≡ D (mod 2a), this means that 2a | DY − bX . We next observe that

dD − bE = 2a(eb− 2dc) .

Hence, we can now put (17.9) in the form

dD − bE
2a

≡
(
DY − bX

2a

)

Tn +
(
DX − bDY

2a

)

Un (mod D) .

By (17.8), we have Un ≡ nutn−1 (mod D); hence, (17.9) can be rewritten as

dD − bE
2a

≡
(
DY − bX

2a

)

tn + nutn−1

(
DX − bDY

2a

)

(mod D) . (17.11)

Since t2 ≡ 1 (mod D), this becomes a linear congruence in the unknown n.
However, by (17.10) we have D | (DX − bDY)/2a. Thus, (17.11) can hold

for all even n only if

426 17 Conclusion

D | dD − bE −DY + bX

2a
(17.12)

and for all odd n only if

D | dD − bE −DY t+ bXt

2a
. (17.13)

Thus, it is no longer necessary to search for all possible values of n up to π.
We need only check to see that (17.10) holds. If so and (17.12) holds, then
(17.5) produces solutions of (17.1) for any even n, and if (17.13) holds, then
(17.5) produces solutions of (17.1) for any odd n. If none of these conditions
holds, then (17.5) produces no solutions of (17.1).

The problem of solving (17.1) is therefore very simple once we have deter-
mined S. However, even the smallest possible values of X and Y satisfying
(17.3) when D is large can be absolutely enormous. Indeed, as we have seen
in Chapter 12, it is often not even possible to write them down in standard
decimal notation. However, in order to solve (17.1), we need to have the values
of X and Y (and t) modulo 2aD; thus, we need to have a method of finding X
and Y that allows for this. Fortunately, this problem is easy to solve because
the index-calculus methods can furnish us with an approximation to logλ,
where λ = X + Y

√
D, and this can be used to produce a compact represen-

tation of λ. From this, we can then find X and Y modulo 2aD by using the
process described in §12.3. The value of t (mod 2aD) can be determined from
the compact representation of the fundamental unit of O = [1,

√
D].

If RΔ is the regulator of O, we know that Lagrange’s method of solving
(17.3) is of complexity O(RΔ), whereas the method of §16.3 is, at worst, likely
to be of complexity O(RΔ

1/3+ε). Thus, if D is large (or, more precisely, RΔ is
large), we are better off using the methods of Chapter 16 to solve (17.3) than
the method of Lagrange.

17.2 Other Generalizations of the Pell Equation

As mentioned in the previous section, (17.1) represents a generalization of
the Pell equation, where we retain the conditions of two variables and degree
2. There are, of course, a number of different directions in which we could
go in order to produce other versions of the Pell equation. In fact, we could
consider almost any Diophantine equation of degree at least 2 to represent a
generalization of (1.7), but we will confine our discussion here to equations
that are fairly evident extensions of it. Even with this restriction, however,
we caution the reader that the literature concerning this topic is vast, and we
will barely scratch the surface of it here.

The most obvious generalization of the Pell equation, where we retain the
constraint of keeping only two variables, is

T n −DUn = 1 . (17.14)

17.2 Other Generalizations of the Pell Equation 427

Unlike the Pellian case (n = 2), this equation can only have a finite number
of solutions for any given D (> 0) when n > 2. Indeed, Bennett6 has shown
by very advanced methods that if a, b, and n (≥ 3) are integers with ab �= 0,
then the Diophantine equation

|axn − byn| = 1

has at most one solution in positive integers. There remains, of course, the
problem of determining what the solution of (17.14) is or whether it even
exists. In the case of even n, this problem can be solved by making use of the
following theorem.7

Theorem 17.1. If (17.14), where D is a positive non-square integer, n = 2m
(m ≥ 3), has a solution in positive integers T and U , then

Tm
1 + Um

1

√
D = εΔ or ε2Δ ,

where εΔ is the fundamental unit of O = [1,
√
D] and N(εΔ) = 1. If N(εΔ) =

−1, there is no solution of (17.14) with U �= 0.

There is a similar result8 for m = 2.
One can also generalize the Pell equation to

X2 −DY 2m = 1 . (17.15)

For any given m ≥ 2, we know that there can be at most two solutions of
(17.15) in positive integers. Recently Togbe, Voutier, and Walsh9 (for the
case of m = 2) and Bennett10 (for the case m ≥ 3) have produced results
which provide restrictions on what these two solutions can be. However, their
technique nevertheless requires us to determine whether or not Uk for some
fixed value of k is a perfect mth power. The value of k is either 1 or 2, and
Tk + Uk

√
D = (t + u

√
D)k, where t, u is the fundamental solution of (1.7).

Fortunately, it seems11 that if (17.15) has a solution, the values of X and Y
are not large compared to D; thus, we can usually detect the solutions without
too much trouble. On the other hand, if (17.15) does not have a solution and
D is large, determining that Uk is not a perfect mth power could be difficult
on account of its possible great size. However, in this case, we need only find
a compact representation of t+ u

√
D and use this to determine the value of

Uk modulo enough primes. If Uk is not a perfect mth power, it should turn
out that Uk is not an mth power modulo one of these primes.12

Instead of changing the degree of the Pell equation, we could consider the
problem of solving the simultaneous Pell equations

T 2 −D1U
2 = 1 , V 2 −D1U

2 = 1 (17.16)

for integers T, U , and V . For such systems it is known13 that if D1 and D2

are distinct positive integers, then the system (17.16) admits at most two

428 17 Conclusion

solutions (T, U, V) in positive integers. There is also a similar result14 for the
system

T 2 −D1U
2 = 1 , U2 −D2V

2 = 1 .

If we relax both of the conditions of requiring two variables and degree 2,
we can produce another generalization of the Pell equation by observing that
it can be written as ∣

∣
∣
∣
T DU
U T

∣
∣
∣
∣ = 1 .

This can be very easily extended to an equation of degree n in n variables
T1, T2, . . . , Tn as ∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T1 DTn DTn−1 · · · DT2

T2 T1 DTn · · · DT3

T3 T2 T1 · · · DT4

...
...

...
. . .

...
Tn Tn−1 Tn−2 · · · T1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 . (17.17)

If we let δn = D, where δ > 0, and ζn denote a primitive nth root of unity,
we know from the theory of circulants that we can write (17.17) as15

n∏

i=1

(
T1 + ζi

nδT2 + (ζi
nδ)

2T3 + · · ·+ (ζi
nδ)

n−1Tn

)
= 1 . (17.18)

For example, in the case of n = 3, (17.18) becomes16

T 3
1 +DT 3

2 +D2T 3
3 − 3DT1T2T3 = 1 . (17.19)

We can even generalize (17.18) by considering algebraic number fields. Let
K = Q(θ) be such a field with θ a zero of an irreducible polynomial f(x) of
degree n. If α ∈ K, we generalize the concept of the norm by defining the
norm of α, N(α), to be simply

N(α) =
n∏

i=1

αi ,

where α1 = α and αi (i = 2, 3, . . . , n) represent the other n − 1 zeros of the
minimal polynomial of α. We may now write (17.18) as

N(α) = 1 ,

where α =
∑n

j=1 Tjδ
j−i ∈ Z[δ]. Thus, a more general version of (17.18) would

be
N(α) = 1 , (17.20)

where α is an algebraic integer of K = Q(θ). If OK denotes the ring of all
algebraic integers of K, then we see that α in (17.20) must be an invertible
element or unit of OK. We use O∗

K
to denote the group of all the units in OK.

17.2 Other Generalizations of the Pell Equation 429

Let r1 denote the number of real zeros of f(x) and let 2r2 denote the num-
ber of complex zeros (r1 + 2r2 = n). It is a fundamental result of Dirichlet,17

generalizing the results in §4.3, that

O∗
K

= 〈ζ, ε1, ε2, . . . , εs〉 ,
where s = r1 + r2 − 1 and ζ is some root of unity in K. The set of units
U = {ε1, ε2, . . . , εs} is multiplicatively independent and is called a fundamental
system of units for OK (or K); the quantity s is called the unit rank of OK

(or K). Since N(εi) = σi, where σi ∈ {−1, 1}, we see that α is a solution of
(17.20) if and only if

α = ζm
s∏

i=1

εmi

i ,

where m,m1,m2, . . . ,ms ∈ Z and
∏s

i=1 σ
mi

i = 1.
It follows, then, that the problem of solving (17.20) or (17.18) becomes

that of determining a fundamental system of units in K. In general, this can
be a very difficult problem, particularly when the degree of f(x) is large (> 20,
say) or its coefficients exceed 106. Also, when s > 1, the infrastructure ideas
mentioned earlier in Chapter 7 cannot be readily applied.18 As the problem of
determining U is of immense importance in computational algebraic number
theory and the methods currently available for solving it are often quite intri-
cate, we urge the interested reader to consult the literature on this subject.19

Another way to generalize the Pell equation is to change the domain of
T, U , and D. For example, consider the equation

ξ2 − γη2 = 1 ,

where γ (�= 0) is an algebraic integer in K = Q(
√
D) and ξ and η are con-

strained to be in OK. It is known20 that this equation has an infinitude of
solutions if and only if γ is not a square in OK when D < 0 and γ is not to-
tally negative (γ and γ not both negative) when D > 0. We can also consider
the problem of solving

T 2 −DU2 = 1 , (17.21)

when D ∈ Z[X] and D is not a constant. Here, we insist that T, U ∈ Z[X] and
U �= 0. Clearly, in order for (17.21) to have non-trivial solutions, the degree
of D must be even and its leading coefficient must be a perfect square in Z.
In Chapter 6, we discussed this problem for certain quadratic polynomials
D(X). Unlike the case of (1.7), it is not always true that there is a solution of
(17.20) for any non-square D(X) of even degree. Indeed, this is a rather rare
event. For example,21 if D(X) = X2 + d (d ∈ Z), there are no (non-trivial)
solutions of (17.20) if d �= ±1,±2.

Now, let D ∈ Q[X], where D is not a perfect square in Q[X]. We can
extend (17.21) to the equation

T 2 −DU2 = e , (17.22)

430 17 Conclusion

where we now require that T, U ∈ Q[X] and e be a unit of Q. As before, if
(17.22) has a solution, then D must be of even degree with leading coefficient
a perfect square in Q. Certainly, any solution of (17.21) is a solution of (17.22),
but it is not necessarily the case that if (17.22) has a solution, then (17.21)
does. For example, consider the simple case of

D = a2X2 + bX + c , e =
b2 − 4a2c

4a2
.

Here, (17.22) always has the non-trivial solution T = aX+ b/2a, U = 1. (The
constraint that D not be a perfect square in Q[X] means that e �= 0 and is
therefore a unit in Q.) However, as we have seen, if we take the simple case
of a = 1, b = 0, and c = d, then (17.21) can only have a solution if d = ±1 or
±2.

Notice that if (17.22) has a solution and we put T ′ = (T 2+DU2)/e ∈ Q[X],
and U ′ = 2DTU/e ∈ Q[X], we get

T ′2 −DU ′2 = 1 .

Thus, if (17.22) has a solution, then so does

T 2 −DU2 = 1 (17.23)

for some T, U ∈ Q[X]. An important application of (17.23) occurs in the inves-
tigation of those polynomials D(X) ∈ Z[X] for which l(

√
D(n)) is bounded

for n ∈ Z. We have already seen in §6.3 that Schinzel solved the problem in
the case of degD = 2. He also showed22 that if degD ≥ 2, then l(

√
D(n))

will be bounded as n varies if and only if the solution T, U of (17.23), where T
is of minimal positive degree, is such that T ∈ 1

2Z[X]. Subsequently, Dubois
and Paysant le Roux23 were able to generalize Louboutin’s Theorem 6.9.

Unfortunately, the problem of determining whether or not (17.20) (or
(17.23)) is solvable for a given D can, in general, be quite difficult24; however,
if it is solvable, the continued fraction algorithm applied to polynomials25 can
be used to find all of its solutions.

As we have seen, the theory of quadratic number fields, especially units, is
closely related to solutions of Pell’s equation defined over the integers. In other
domains, such as Q[X], the theory of quadratic function fields plays a similar
role. Briefly, a quadratic function field26 is a degree 2 extension of the rational
function field K(X) consisting of rational functions with coefficients in a field
K. The extension is formed by adjoining the root of an irreducible quadratic
polynomial27 in K[X] (i.e., the function field K(X,Y) = {a + bY | a, b ∈
K(X)}, where Y 2 + h(X)Y − f(X) = 0 with h, f ∈ K[X]).

Quadratic function fields have much in common with quadratic number
fields. Both are quadratic extensions of fields, either the rational numbers Q

in the case of number fields or a field of rational functions K(X) in the case
of function fields. The definitions of orders, ideals, the class group, and units

17.2 Other Generalizations of the Pell Equation 431

also carry over. In particular, we have the same connection between solutions
of the analogue of Pell’s equation and units in the field.

If K = Q, then the setting is as described above, and non-trivial units are a
rare occurence. However, if K is a finite field of q elements, then the situation
is very similar to what we have described in previous chapters. In particular,
we have analogues of imaginary and real quadratic function fields that have
no non-trivial units and infinitely many, respectively. The real case also has
infrastructure that is very similar to that described in §7.4; this was discovered
and first investigated by Stein.28 Many of the infrastructure-based algorithms
described in previous chapters generalize to the function field case without
too much difficulty,29 including NUCOMP, baby-step giant-step algorithms,
and the cryptographic protocols described in §14.3.

There are also some intriguing differences between real quadratic fields
and function fields. The first is that distances in the infrastructure of a real
quadratic function field are defined to be the degrees of elements in the field
as opposed to logarithms of real numbers. Thus, distances are integers as op-
posed to real numbers. This has some important consequences; for example,
because distances are discrete, approximation is not an issue, and relatively
expensive methods such as (f, p) representations are not required. In addi-
tion, finding the regulator, defined to be the degree of the fundamental unit
of the function field, given a multiple can be done efficiently if the multiple
(an integer) is factored, by using infrastructure to find the smallest divisor
that is the distance of a unit. Stein and Teske showed that Pollard’s kangaroo
method, which has a similar complexity to the baby-step giant-step algorithm
but requires only constant memory, can also be employed to compute the reg-
ulator.30 This method, which relies on being able to follow efficiently a random
walk through the infrastructure, is not amenable to the number field case be-
cause maintaining accurate approximations of the rapidly growing distances
is too cumbersome.

A second interesting aspect of function fields is that whereas the index-
calculus methods of Chapter 13 carry over to the function field case almost
directly, they do now always work in subexponential time. Müller, Stein, and
Thiel31 showed that regulator computation and solving the principal ideal
problem in a real quadratic function field over an odd characteristic finite field
can be done in subexponential time as long as the genus of the function field,
an invariant that is approximately equal to half the degree of the quadratic
polynomial that defines the function field, is larger than log q (i.e., only for
cases where the genus is large and the finite field is small). In fact, the best
known algorithms for solving these problems for small genus and large finite
fields have exponential complexity, suggesting that such function fields should
provide similar security guarantees as for hyperelliptic curves of the same sizes.
Jacobson, Scheidler, and Stein32 have investigated the performance of such
protocols and showed that they provide efficiency close to their hyperelliptic
curves counterparts.

432 17 Conclusion

In short, there has been much interesting work in the last 15 years ex-
ploring which methods and results from quadratic fields can also be used for
quadratic function fields. We fully expect this trend to continue and to have
novel methods introduced in one setting which are inspired by methods which
have proved successful in the other.

17.3 Some Questions

We have seen that during the last four decades a great deal of progress has
been made on solving the Pell equation (1.7). It used to be that the best
algorithms for solving it were of complexity O(D1/2+ε), but we now know that
by making use of a number of new ideas, we can find the regulator (actually
an approximation to it) by a process that requires only subexponential time.
Of course, there is some uncertainty about this value, but we can verify it
rigorously by a procedure which is of complexity O(D1/6+ε). We have also
seen that this technique can be applied to values of D of up to 65 digits, an
achievement that would have been regarded as impossible 20 years ago.

Once we know the regulator, we can very quickly find a compact repre-
sentation of the fundamental solution t, u of the Pell equation, even when the
values of t and u are very large, and this permits us to answer most questions
that one might have concerning these numbers. We have also seen how these
ideas can be extended to the problem of solving the general two-variable Dio-
phantine equation of degree 2. In the process of developing these techniques,
we have also derived efficient algorithms for conducting arithmetic in quad-
ratic number fields. In particular, we have been able to provide a fairly efficient
version of Shanks’ NUCOMP algorithm for finding a reduced ideal equivalent
to the product of two given reduced ideals. This is a fundamental operation
which is an essential component in any collection of algorithms devoted to
manipulating ideals in quadratic orders. Indeed, we have shown how it can be
used in a technique for raising an ideal to a large power and, subsequently, in
a cryptographic key exchange protocol.

However, in spite of the advances that have been made on the problem of
solving the Pell equation, we are left with a number of questions. We will order
them here in what we believe to be their level of difficulty or importance.

1. Is there a deterministic polynomial-time (in logΔ) algorithm for finding
a close approximation R′

DK of RΔ?

If such an algorithm exists, then under the generalized Riemann hypothesis
(GRH) there is a polynomial-time algorithm for factoring Δ, something that
is not widely believed to exist.

It is interesting to note that, in the quantum model of computation, such
an algorithm does exist. Hallgren33 discovered algorithms for solving Pell’s
equation and the principal ideal problem that run in polynomial time on a

17.3 Some Questions 433

quantum computer, a device that can achieve exponential speed-ups for cer-
tain applications by exploiting the properties of quantum mechanics. The
first number-theoretic problems to benefit from quantum computing, and to
highlight its potential, were integer factorization and discrete logarithm com-
putation in finite fields, due to algorithms discovered by Shor,34 and these
ideas have been generalized to solve many problems in abelian groups, in-
cluding computing discrete logarithms in class groups of quadratic fields. An
explicit version and analysis of an algorithm for solving the discrete logarithm
problem in the class group of an imaginary quadratic field has been published
by Schmidt.35 In addition, Hallgren’s results have recently been extended, in-
dependently by Hallgren and by Schmidt and Vollmer,36 to compute the unit
group of any number field. The resulting algorithms run in polynomial time
as long as the degree of the number field is fixed, but they are exponentially
dependent on the degree in general.

One implication of these results is that in the event that it becomes possible
to build large quantum computers, most public-key cryptosystems, including
those based on arithmetic in quadratic fields presented in Chapter 14, would
be broken. Although some small quantum computers have been built,37 it
seems very difficult to scale these up to the size required to solve these prob-
lems for large inputs. In fact, Schmidt38 has proposed using the number of
qubits required to implement an algorithm as a measure of the algorithm’s
complexity. Under that metric, he has derived estimates for key lengths of vari-
ous cryptosystems, including RSA, elliptic curve cryptography, and imaginary
and real quadratic field cryptography, that would provide the same level of
security (i.e., require roughly the same number of qubits to implement). Sur-
prisingly, Schmidt found that real quadratic field cryptography required the
smallest key lengths and offered the best performance in this context, due
largely to the fact that the quantum algorithms to break these protocols are
more complex than the others.

In summary, it does not appear that quantum computers will be able to
solve Pell’s equation for very large values of D in the near future. However,
further advances in experimental physics that would allow quantum computers
to scale better may make this exciting possibility a reality.

2. Is there an unconditional, deterministic algorithm for evaluating RΔ
′ that

executes in subexponential time?

There may well be such an algorithm, but at present no one has any idea
about how to tackle this admittedly difficult problem.

3. Is there a fast way to verify the value of RΔ
′ produced by the index-

calculus algorithm of Chapter 13?

We know that this can be done in O(Δ1/6+ε) elementary operations, but this
seems still to be much too large. Certainly, as mentioned in §13.6, there exists
a short certificate for the value of RΔ

′ which can be verified in polynomial
time under the GRH. Of course, this problem could be solved if a fast method

434 17 Conclusion

were found for determining whether or not a compact representation of εΔ is
a perfect power in O.

4. Is there an unconditional, deterministic algorithm for computing RΔ
′ that

executes in time O(RΔ
νΔε), where ν < 1/2?

We have seen that this should appear to be the case, but we are still, it seems,
a long way from answering this question.

5. Is there an efficient method of determing RΔ
′ when we are given S′, an

approximation of an integral multiple S of RΔ?

We have shown that the answer to this is yes if S/RΔ is small, but if it is
large, we have no idea of how to approach this problem.

6. Can the number field sieve methods be applied to the problem of comput-
ing RΔ

′ with the success that they have enjoyed with respect to the integer
factoring problem or the discrete logarithm problem in finite fields?

So far, no one knows how to do this and we have seen that it may simply not
be possible.

7. Can the index-calculus methods be improved to run significantly faster
than they do currently?

This is almost certainly possible. There is much room for improvement, but
the problems involved, such as reducing Bach’s bound and computing a value
for S, are not easy. Of course, even if the Bach bound were to be reduced,
we still have to find a sufficient number of relations in order to guarantee
success. Thus, there is an interesting trade-off here that needs investigation.
Furthermore, there is very likely much that could be done to improve the
performance of the linear algebra component of this process.

8. We have seen that in the process for verifying RΔ
′, we must compute

and store a lengthy list of baby steps and that accessing this list can
degrade the performance of the procedure. Is there an algorithm with
expected runtime O(RΔ

1/2Δε) that requires constant storage? Alterna-
tively, is there a better data structure that could be used to improve the
storage requirements of the baby-step giant-step algorithm?

As mentioned earlier, Pollard’s kangaroo does solve the first problem in the
function field setting where distances are discrete, but it seems difficult to
apply to number fields. Addressing the second question is a matter of paring
down what is stored in order to have the least amount of data needed in order
to solve the problem. This should be possible when we take into consideration
that all we need to verify is that S′ = RΔ

′, something that is almost certainly
true.

The next question is left over from the previous section. We list it last
here, not because we think it easy but because it does not pertain directly to
the problem of solving the Pell equation.

17.3 Some Questions 435

9. Given a compact representation of x + y
√
D, is there a fast way (poly-

nomial in logD) to determine whether or not y (or x) is a perfect mth
power?

If y is not a perfect mth power, there may well be a way to tackle this, but
if it is, it might not be possible to prove it, particularly when y is very large
compared to D.

Given these questions, it appears that we are still a great distance from
declaring the state of the art in solving the Pell equation to be completely
satisfactory. Much has been done, but much more remains to be learned,
guaranteeing that this will not be the last book devoted to this remarkable
equation.

436 Notes and References

Notes and References

1An earlier version of this discussion can be found in [SSW08].
2The solution of this equation when reduced to a congruence modulo n is dis-

cussed in [AEM87]. See also [PS87].
3[Lag68].
4[Kor90].
5[Duj94] and [Dic19], Vol. II, p. 416.
6[Ben01].
7See [Mor69], p. 274.
8See [Mor69], p. 275.
9[TVW05].

10[Ben05].
11For example, in the case of m = 2, see the table of solutions of (17.15) in [WZ72].
12See [BS93].
13[BCMO06].
14[CM07].
15This equation is discussed in Chapters 7 and 8 of [Bar03].
16This equation was first investigated in 1891 by Meissel and, independently, by

Mathews. See [Dic19], Vol. II, p. 594.
17See, for example, [Hec81], p. 109.
18For an investigation of this, see [Buc87b].
19Much information on this topic can be found in [PZ97]. Additional references

are [Buc87a] and [BJP94]. Compact representations are discussed in [Thi95] and
index-calculus methods are discussed in [Buc90]. The infrastructure of the principal
ideal class in the case of s = 1 is described in [BW88b]. In the case of n = 3, the use
of the algorithm of Voronoi (see, for example, [DF64], Ch. 4) is analogous to that of
the SCF algorithm in the case of n = 2. A detailed implementation of this algorithm
for solving (17.19) is presented in [WCS80]. A more general version, utilizing the
infrastructure, is given in [WDS83].

20See [Niv42] and [Niv43]. Further results concerning this equation can be found
in [Sko45a] and [Sko45b].

21[Nat76]. See also [Ste05] §§6.7 and 6.8 for further information.
22[Sch62].
23[DPLR91].
24See, for example, [vdP99b] and relevant sections, such as §1.5, of [Pat03].
25See [vdPT00] and [vdPT02]. Additional work concerning continued fraction ex-

pansions of the square root of a polynomial can be found in [WY02], [McL03a], and
[McL03b].

26For more precise definitions and for further information on the theory of function
fields, see [Sti93] or [Ros02].

27Quadratic function fields are an alternate representation of hyperelliptic curves
Y 2 + h(X)Y = f(X) defined over a field K, so many results in this area can be
described and derived using the language of algebraic geometry. See [DL06] for
more information about hyperelliptic curves.

28Stein described the infrastructure of a real quadratic function field defined over
an odd characteristic finite field in [SZ91] and [Ste96a]. Zuccherato [Zuc97] subse-
quently extended Stein’s results to the even characteristic case.

Notes and References 437

29NUCOMP in function fields was first described by Jacobson and van der Poorten
[JvdP02] and, subsequently, presented in a more efficient form [JSS07b]. Generaliza-
tions of the O(Δ1/4+ε) and O(Δ1/5+ε) baby-step giant-step algorithms for comput-
ing the regulator were described by Stein and Williams [SW99], as well as optimized
versions by Stein and Teske [ST02a] [ST05]. Cryptography in the infrastructure of
a real quadratic function field was first proposed by Scheidler, Stein, and Williams
[SSW96]. The most recent work on the subject, including improvements that make
use of the fast baby-step operation, including the basis for the idea of w-near (f, p)
representations from Chapter 11, is due to Jacobson, Scheidler, and Stein [JSS07a].

30[ST02b].
31[MST99]. Although this result only holds for function fields defined over an odd

characteristic function field, the ideas certainly generalize to the even characteristic
case.

32[JSS07a].
33[Hal02].
34[Sho97a].
35[Sch06].
36[Hal05] and [SV05].
37At the time of writing this book, the largest quantum computer of which we

are aware was able to compute with 8 qubits [HHR+05]. A qubit is the quantum
analogue of a bit, the basic unit of computation in a quantum computer.

38[Sch06] and [Sch07].

Appendix

A.1 NUCOMP

As mentioned in §5.4, we use this appendix as the place to record the pseu-
docode for some of our most needed algorithms, together with the proofs of
correctness of these routines. We will begin by deriving some useful material
needed in establishing our version of NUCOMP for D > 0.

Theorem A.1. Let ∆ > 0. If a = [a, b+ω] is a primitive O-ideal and
√
∆ <

a < 2
√
∆, then either ρ(a) or ρ2(a) is a reduced O-ideal. Furthermore, if ρ(a)

is not a reduced ideal, then ρ2(a) = ψa, where |ψ|, |ψ| < 1.

Proof. By Theorem 5.13, we know that if a < 3
√
∆/2, then ρ(a) is reduced

and we are done. We will now assume that ρ(a) is not a reduced O-ideal.
Since a′ = ρ(a) = [a′, b′ + ω] and b′ + ω =

√
∆ − ηa (0 < η < 1), we have

−
√
∆ < b′ + ω <

√
∆. If η ≤ 1/2, then |a′| = η|b′ + ω| <

√
∆/2, which is

not possible because a′ is not a reduced O-ideal. If η > 1/2 and ηa <
√
∆,

then 0 < b′ + ω =
√
∆ − ηa <

√
∆/4 and 0 < a′ <

√
∆/4, which we have

just argued is impossible. Thus, we can only have η > 1/2, ηa >
√
∆ and

−
√
∆ < a′ < −

√
∆/2 by (5.15) and Theorem 5.9.

Now, in this case, a′′ = ρ2(a) = [a′′, b′′ + ω], where b′′ + ω =
√
∆ − η′a′

and a′′ = η′(
√
∆− η′a′) > 0. Also, b′′ = q′a′ − b′ − T (ω), q′ = b(b′ +ω)/a′c =

b1/ηc = 1 by (5.5), 0 < η′ < 1, and 2b′′ + T (ω) =
√
∆− 2η′a′ >

√
∆. Hence,

2b′ + T (ω) = 2a′ − 2b′′ − T (ω) < 2a′ −
√
∆ .

Since
a′′ = −N(a′ − b′ − T (ω) + ω)/a′ = −a′ + a+ 2b′ + T (ω)

and a′ < −
√
∆/2, we get

0 < a′′ < a′ + a−
√
∆ <

√
∆/2 .

440 A Appendix

It follows that ρ2(a) is reduced. In this case, we get a′′ = ψa, where ψ =
(b′ + ω)(b′′ + ω)/aa′. We must have |ψ| = |ηη′| < 1 by (5.14). Also,

ψ =
b′ + ω

a

[

1− b′ + ω

a′

]

=
b′ + ω

a
+ 1 .

Since (b′ + ω)/a < 0 and −(b′ + ω) = ηa−
√
∆ <

√
∆, we get −(b′ + ω)/a <√

∆/a < 2; thus, (b′ + ω)/a > −2 and −1 < ψ < 1. ut
Suppose that for some i ∈ Z≥0, we have

P +
√
D

Q
= 〈q0, q1, q2, . . . , qi, φi+1〉 ,

where φi+1 = (Pi+1 +
√
D)/Qi+1. Put σ = signQi+1, P0

∗ = Pi+1, and Q0
∗ =

σQi+1 = |Qi+1|, and let

P ∗ +
√
D

Q∗ = 〈q0∗, q1∗, . . . , qj∗, φ ∗
j+1〉 ,

where we define φk
∗, Qk

∗, Pk
∗, and θk

∗ analogously to the definitions of φk ,
Qk, Pk, and θk in the continued fraction expansion of (P +

√
D)/Q.

Theorem A.2. If we put B̃−2 = σBi−1, and B̃−1 = Bi and define

B̃k+1 = q ∗
k+1B̃k + B̃k−1 (k = −1, 0, 1, . . .) ,

then
|θ ∗

j+1θi+2|−1 = |B̃j−2 + φ
∗
j B̃j−1| (j = 0, 1, 2, . . .) .

Proof. For j = 0, |B̃j−2 + φ
∗
j B̃j−1| = |σBi−1 + φ

∗
0Bi| = |Bi−1 + φi+1Bi| =

1/|θi+2| by (3.19). Since θ1
∗ = 1, the theorem is true for j = 0. For k ≥ 1, we

have

Q ∗
k−1B̃k−3 + P ∗

k−1B̃k−2 = Q ∗
k−1(B̃k−1 − q ∗

k−1B̃k−2) + P ∗
k−1B̃k−2

= Q ∗
k−1B̃k−1 − Pk

∗B̃k−2 .

Hence,
−B̃k−2ψk

∗ + B̃k−1 = B̃k−3 + B̃k−2φ
∗
k−1 .

Since ψk
∗φ

∗
k = −1, we have

B̃k−2 + φ
∗
kB̃k−1 = −(B̃k−3 + B̃k−2φ

∗
k−1)/ψk

∗ .

Putting k = j and iterating the above, we get

B̃j−2 + φ
∗
j B̃j−1 =

(−1)j(B̃−2 + B̃−1φ
∗
0)

θ ∗
j+1

=
(−1)iσ(Bi−1 + φi+1Bi)

θ ∗
j+1

.

A.1 NUCOMP 441

Thus,
|B̃j−2 + φ

∗
j B̃j−1| = |θ ∗

j+1θi+2|−1 .

ut

Now suppose we are given reduced O-ideals a′ and a′′. Write a = S[Q/r,
(P +

√
D)/r] = a′a′′ as in §5.4. We will now assume that Q > 2

√
D; in this

case, because Q′′ < Q′, we have R−1 = Q′/S >
√

2rD1/4. If Q < 2
√
D,

then either a or ρ(a) is reduced by Theorem 5.13, so this is not a severe
restriction. We proceed as in the version of NUCOMP given in §5.4 except
that we compute Ri, Ci, and Ci−1 such that

Ri <
√

2rD1/4 < Ri−1 .

In this case, we have 0 < x < 2
√
D, |y| < 2

√
D, and

Bi <
Q′/S√
2rD1/4

.

We may assume with no loss of generality that because a′′ is reduced, we have
0 < (

√
D − P ′′)/Q′′ < 1 and (

√
D + P ′′)/Q′′ > 1. Hence,

0 < R′′ = [(
√
D − P ′′)/Q′′](

√
D + P ′′) <

√
D + P ′′ < 2

√
D .

Thus, since Q′ < 2
√
D, we get

0 < z = rSR′′Ci
2/(Q′/S) < R′′ < 2

√
D .

It follows that
|Qi+1| < 4

√
D .

In fact, empirical studies suggest that ai+2 is reduced about 88% of the
time. However, if not, ρ(ai+2) turns out to be reduced for most of the re-
maining 12% of the cases. Only very infrequently do we have to go as far as
ρ2(ai+2) to find the reduced ideal that we need. That at least one of ai+2,
ρ(ai+2) or ρ2(ai+2) must be reduced follows from Theorem A.1.

We are now ready to present the NUCOMP algorithm for D > 0. We
implicitly assume in this and all subsequent algorithms involving arithmetic
in Q(

√
D) that D is included in the input.

Algorithm 5.1: NUCOMP

Input: a′ = [Q′/r, (P ′+
√
D)/r], a′′ = [Q′′/r, (P ′′+

√
D)/r] reduced invertible

O-ideals with Q′ > Q′′ > 0.
Output: A reduced O-ideal b = [Q/r, (P +

√
D)/r] such that b ∼ a′a′′.

(Optional output: A,B,C, where µ = |(A+B
√
D)/C| and a′a′′ = µb.)

1: Compute G = (Q′/r,Q′′/r) and solve (Q′′/r)X ≡ G (mod Q′/r) for
X ∈ Z, 0 ≤ X < Q′/r.

442 A Appendix

2: Compute S = ((P ′ + P ′′)/r,G) and solve Y (P ′ + P ′′)/r + ZG = S for
Y, Z ∈ Z.

3: Put R′′ = (D − P ′′2)/Q′′, U ≡ XZ(P ′ − P ′′) + Y R′′ (mod Q′/S), where
0 ≤ U < Q′/S.

4: Put R−1 = Q′/S, R0 = U , C−1 = 0, C0 = −1, i = −1.
5: if R−1 < b

√
2rD1/4c then

6: Put

Qi+1 = Q′Q′′/rS2 ,

Pi+1 ≡ P ′′ + UQ′′/rS (mod Qi+1) .

(B−2 = 1, B−1 = 0.)
7: Go to 16.
8: end if
9: while Ri > b

√
2rD1/4c do

10: i← i+ 1
11: qi = bRi−2/Ri−1c
12: Ci = Ci−2 − qiCi−1

13: Ri = Ri−2 − qiRi−1

14: end while
15: Put

M1 =
(Q′′/rs)Ri + (P ′ − P ′′)Ci

Q′/S
,

M2 =
(P ′ + P ′′)Ri + rSR′′Ci

Q′/S
,

Qi+1 = (−1)i+1(RiM1 − CiM2) ,

Pi+1 =
(Q′′/rS)Ri +Qi+1Ci−1

Ci
− P ′′ .

16: Put j = 1,

Q′
i+1 = |Qi+1| ,

ki+1 =

⌊

b
√
Dc − Pi+1

Q′
i+1

⌋

,

P ′
i+1 = ki+1Q

′
i+1 + Pi+1 .

(σ = sign(Qi+1), Bi−1 = σ|Ci−1|, Bi−2 = |Ci−2|.)
17: if P ′

i+1 + b
√
Dc ≥ Q′

i+1 then
18: Go to 27.
19: else
20: Put j = 2 and

A.1 NUCOMP 443

qi+1 =

⌊

Pi+1 + b
√
Dc

Q′
i+1

⌋

,

Pi+2 = qi+1Q
′
i+1 − Pi+1 ,

Qi+2 =
D − P 2

i+2

Q′
i+1

,

Q′
i+2 = |Qi+2| ,

ki+2 =

⌊

b
√
Dc − Pi+2

Q′
i+2

⌋

,

P ′
i+2 = ki+2Q

′
i+1 + Pi+2 .

(Bi+1 = qi+1Bi +Bi−1 .)

21: if P ′
i+2 + b

√
Dc ≥ Q′

i+2 then
22: Go to 27.
23: else
24: Put j = 3 and

Qi+3 = Q′
i+3 = Qi+1 −Qi+2 + 2Pi+2 ,

Pi+3 = Qi+2 − Pi+2 ,

P ′
i+2 = Pi+3 −Qi+3 .

(Bi+2 = Bi+1 +Bi .)

25: end if
26: end if
27: Put b = [Q′

i+j/r, (P
′
i+j +

√
D)/r]. (A = S(Qi+jBi+j−2 + Pi+jBi+j−1),

B = −SBi+j−1, C = Qi+j .)

Proof (of correctness of NUCOMP). We have seen by (5.36) and (5.37) that

a′a′′ = S

[

Q

r
,
P +

√
D

r

]

.

By the variation of NUCOMP presented in §5.4, (5.44), and Theorem A.1, we
know that

a′a′′ = µb ,

where b = [Q′
i+j/r, (P

′
i+j+

√
D)/r] is a reduced ideal with (P ′

i+j+
√
D)/Q′

i+j >

1 and −1 < (P ′
i+j −

√
D)/Q′

i+j < 0 (see Theorem 5.10). In the case where
j = 3, we know by Theorem A.1 that qi+2 = 1. Also, it is not difficult to
show that 0 < (Pi+2−

√
D)/Qi+2 < 1; hence, ki+2 = −1 and the formulas for

Pi+3, P
′
i+3, Qi+3, and Q′

i+3 in NUCOMP follow easily.
Since we can put µ = S/|ψθi+2|, where ψ = θ ∗

j+1 for j = 0, 1, or 2, we
can easily compute µ once we have Bi, Bi−1, Qi+1 and Pi+1. Indeed, by
Theorem A.2,

444 A Appendix

|Qi+j |µ = S|Qi+jBi+j−2 + (Pi+j −
√
D)Bi+j−1| . (A.1)

Since N(a′), N(a′′) <
√
∆, we see that NUCOMP will execute in O(log∆)

elementary operations.
We now derive some results concerning the size of µ. As above, we have

µ = S/|ψθi+2| . (A.2)

By Theorems 5.13 and A.1, we know that |ψ|, |ψ| < 1. Since

θi+2 = (Gi +
√
DBi)/Q

and
Gi = (−1)i+1 (Q′′Ri/rS − P ′′Ci) ,

we get

θi+2 =
(−1)i+1

(

Ri + rSCi(
√
D − P ′′)/Q′′

)

Q′/S
. (A.3)

Hence,

|θi+2| <
Ri + rS|Ci|

Q′/S
. (A.4)

If i = 0, then C0 = −B0 = −1 and

θ2 =
rS(
√
D − P ′′)/Q′′ −R0

Q′/S
<

rS

Q′/S
.

Since Q′/rS ≥ 1, we have θ2 < S. Also, since

θ2 > −R0/(Q
′/S) = −R0/R−1 > −1 ,

we get |θ2| < S. If i = 1, then

θ3 =
R1 + rSB1(

√
D − P ′′)/Q′′

Q′/S
> 0 .

Since θ3 = q1θ2 + 1 and q1 = bR−1/R0c, we get

θ3 <
Q′/S

R0

(

rS(
√
D − P ′′)/Q′′ −R0

Q′/S

)

+ 1

=
rS(
√
D − P ′′)

Q′′R0
<
rS

R0
.

Since r | R−1 and r | R−2, we must have r | R0 and, therefore, 0 < θ3 < S.
If i > 1, then Bi ≥ 2 and

|θi+2| <
Ri + rS|Ci|

Ri|Ci−1|+ |Ci|Ri−1

A.1 NUCOMP 445

by (A.4) and (3.23). Thus,

|θi+2| <
Ri + rS|Ci|
|Ci|Ri−1

=
Ri

|Ci|Ri−1
+

rS

Ri−1

< 1/2 + rS/Ri−1 .

Now, Ri−1 >
√

2rD1/4 means that Ri−1/r > D1/4 > 2 (we will assume that
D > 16). Thus,

|θi+2| < 1/2 + S/2 ≤ S .
By (A.2), we see that µ > 1. In the case that Q < 2

√
D, we get b = a or ρ(a)

and µ = 1 or ψ. Hence, we can say that µ ≥ 1.
We will now attempt to get some idea of what the value of µ will usually

be. We may assume that since a′ is reduced, we have Q′ and P ′ such that
(P ′ +

√
D)/Q > 1 and −1 < (P ′ −

√
D)/Q′ < 0. Hence, P ′ >

√
D −Q′ and

P ′ <
√
D. Since (P ′ +

√
D)/Q′ = q′ + η (0 < η < 1), it is easy to deduce that

q′ < 2
√
D/Q′ < q′ + 2 . (A.5)

By (A.4), we have
|θi+2|/S < Ri/Q

′ + rS|Ci|/Q′ ;

also,
rS|Ci|/Q′ < r/Ri−1 <

√

r/2D−1/4 .

Since, by (A.5),

Ri/Q
′ <
√

2rD1/4/Q′ <
√

r/2D−1/4(q′ + 2) ,

we get
S

|θi+2|
>

√

2/rD1/4

q′ + 3

and
µ >

√

2/rD1/4/(q′ + 3) . (A.6)

By (A.3), we have

|θi+2| =
|Ri − rSCi(P

′′ +
√
D)/Q′′|

Q′/S
;

thus, by (3.19), we get

S

|θi+2|
=
|(Q′′/r)Ri − S(

√
D + P ′′)Ci|

|Qi+1|

<
(Q′′/r)Ri + 2

√
DS|Ci|

|Qi+1|
.

446 A Appendix

We know that

S|Ci| < Q′/Ri−1 < (2
√
D/q′)(

√
2rD1/4)−1 =

√

2/rD1/4/q′

and

(Q′′/r)Ri ≤ (Q′/r)Ri < (2
√
D/rq′)

√
2rD1/4 = 2

√

2/rD3/4/q′ .

It follows that
S

|θi+2|
<

4
√

2/rD3/4

q′|Qi+1|
. (A.7)

Since |ψψ| = N(b)/N(ai+2), we get

|ψ|−1 =
N(ai+2)|ψ|
N(b)

≤ N(ai+2)

N(b)
=
|Qi+1|
rN(b)

. (A.8)

Hence,

µ <
2
(√

2/rD1/4
)3

q′N(b)
≤ 2∆3/4. (A.9)

Now, b = [Q̃/r, (P̃ +
√
D)/r] is a reduced ideal equivalent to a, and we may

assume that 2
√
D/Q̃ < q̃ + 2, where N(b) = Q̃/r and q̃ is a partial quo-

tient in the simple continued fraction expansion of (P +
√
D)/Q. Thus, since

√

2/rD1/4 = ∆1/4, we can easily derive (5.45) from (A.6), (A.7), and (A.8).

A.2 NUMULT

In order to develop the pseudocode for NUMULT, we need an algorithm which
permits us to remove factors in K from (f, p) representations. In order to prove
the correctness of this algorithm, we will require two preliminary lemmas.

Lemma A.3. Let γ = |(a + b
√
D)/c| > 1, where a, b, c ∈ Z, and

√
D 6∈ Q.

Put t = 2sa + bb2s
√
Dc with s ∈ Z≥0 and 2s|c| > 2p+4|b|. If we put e =

b2p+3−s|t/c|e, then e ≥ 2p+3 and
∣
∣
∣
∣

2p+3γ

e
− 1

∣
∣
∣
∣
<

1

2p+3
.

Proof. Since 2s|c| > 2p+4|b|, we have
∣
∣
∣
∣
∣

a+ b
√
D

c
− t

2sc

∣
∣
∣
∣
∣
<
|b|

2s|c| <
1

2p+4
.

Also, since |a+ b
√
D/c| > 1, we must have sign(t) = sign(a+ b

√
D) and

∣
∣
∣
∣
2p+3γ − 2p−s+3 |t|

|c|

∣
∣
∣
∣
<

1

2
.

It follows that |2p+3γ − e| < 1 and so e > 2p+3γ − 1 > 2p+3 − 1. Hence,
e ≥ 2p+3 and |2p+3γ/e− 1| < 1/2p+3. ut

A.2 NUMULT 447

Lemma A.4. Suppose p, k, d, f, e,∈ Z, 2p < d ≤ 2p+1, 1 ≤ f < 2p, e ≥ 2p+3,
p ≥ 2, and θ, γ ∈ K such that

∣
∣
∣
∣

2pθ

2kd
− 1

∣
∣
∣
∣
<

f

2p
,

∣
∣
∣
∣

2p+3γ

e
− 1

∣
∣
∣
∣
<

1

2p+3
.

If t ∈ Z≥0 is defined by

2t−1 ≤ e

8d
< 2t ,

then ∣
∣
∣
∣

2pθ

2hgγ
− 1

∣
∣
∣
∣
<
f + 9/8

2p
,

where g = d2p+3+td/ee and h = k − t. Furthermore, 2p < g ≤ 2p+1.

Proof. We have
∣
∣
∣
∣

2p−kθ

d
− 1

∣
∣
∣
∣
<

f

2p
,

∣
∣
∣
∣

2p+3γ

e
− 1

∣
∣
∣
∣
<

1

2p+3
,

so
1− 2−pf

1 + 2−(p+3)
< 2−(k+3) θe

γd
<

1 + 2−pf

1− 2−(p+3)
. (A.10)

Also,

1 +
f

2p
< 1 +

f

2p
+

1

2p

(

1− f + 9/8

2p+3

)

=

(

1 +
f + 9/8

2p

)(

1− 1

2p+3

)

.

Since, by definition of g, 2p−hθ/γg ≤ 2−(k+3)θe/γd, we get

2p−hθ

γg
< 1 +

f + 9/8

2p
.

By definition of g and t, we see that 2p < g ≤ 2p+1. Now, 2p < g < 2p+t+3d/e+
1 implies

1− 1

2p
< 1− 1

g
<

2p+t+3d

eg
,

so

2p−hθ

γg
= 2−(k+3) θe

γd

2p+t+3d

eg
> 2−(k+3) θe

γd

(

1− 1

2p

)

>
(1− 2−p)(1− 2−pf)

1 + 2−(p+3)
,

where the last inequality follows from (A.10). Furthermore,
(

1 +
1

2p+3

)(

1− f + 9/8

2p

)

= 1− f + 1

2p
− f + 9/8

22p+3
<

(

1− 1

2p

)(

1− f

2p

)

,

from which we see that

2p−hθ

γg
> 1− f + 9/8

2p
.

ut

448 A Appendix

We are now able to present our first routine.

Algorithm A.1: REMOVE

Input: (b, d, k), T, C, s, p, where (µb, d, k) is an (f, p) representation of some
ideal a with µ = |(A + B

√
D)/C| ≥ 1 (A,B,C ∈ Z with C 6= 0), T =

2sA+Bb2s
√
Dc, and s ∈ Z≥0 with 2s|C| > 2p+4|B|.

Output: An (f + 9/8, p) representation (b, d′, k′) of a.
1: Set e = b2p+3−s|T/C|e.
2: Find t ∈ Z≥0 with 2t−1 ≤ e/8d < 2t.
3: Set d′ = d2p+3+td/ee and k′ = k − t.

The correctness of this algorithm follows immediately from Lemmas A.3
and A.4. Notice that since

e

8d
< µ+

1

2p+4
,

we get

t− 1 < log2

(

µ+
1

2p+4

)

and
t ≤ blog2 µc+ 2. (A.11)

Algorithm NUMULT is essentially NUCOMP performed on (f, p) repre-
sentations.

Algorithm 11.1: NUMULT

Input: (b′, d′, k′), (b′′, d′′, k′′), p, where (b′, d′, k′) is a reduced (f ′, p) repre-
sentation of an invertible O-ideal a′ and (b′′, d′′, k′′) is reduced (f ′′, p)
representation of an invertible O-ideal a′′. Here,

b′ =

[

Q′

r
,
P ′ +

√
D

r

]

, b′′ =

[

Q′′

r
,
P ′′ +

√
D

r

]

, Q′ ≥ Q′′ > 0 .

Output: A reduced (f, p) representation (b, d, k) of a′a′′, where

b =

[

Q

r
,
P +

√
D

r

]

,

(P +
√
D)/Q > 1, −1 < (P −

√
D)/Q < 0, k ≤ k′ + k′′ + 1, f = f∗ + 17/8

with f∗ = f ′ + f ′′ + 2−pf ′f ′′. (Optional output: a, b ∈ Z, where ν =
(a+ b

√
D)/r ∈ O, and b = ν/(N(b′)N(b′′))b′b′′.)

1: Compute (b, A,B,C) = NUCOMP(b′, b′′), where b = [Q/r, (P +
√
D)/r].

2: if d′d′′ ≤ 22p+1 then
3: Put e = bd′d′′/2pc, h = k′ + k′′

4: else

A.3 Theoretical Background for WNEAR 449

5: Put e = bd′d′′/2p+1c, h = k′ + k′′ + 1
6: end if
7: Find s ≥ 0 such that 2sQ > 2p+4B.
8: Put T = 2sA+Bb2s

√
Dc. (a = A, b = −B.)

9: (b, d, k) = REMOVE((b, e, h), T, C, s, p).

Proof (of correctness of NUMULT). By Theorem 11.2, (b′b′′, e, h) is an (f, p)
representation of a′a′′ with f = 1 + f∗. Also, since µ ≥ 1 and µb = b′b′′,
REMOVE will compute an (f, p) representation (b, d, k) of a′a′′ with f =
1 + f∗ + 9/8 = 17/8 + f∗. Furthermore, |N(µ)| = N(b′)N(b′′)/N(b), N(b) =
|Qi+j |/r,

ν =
N(b′)N(b′′)

µ
= N(b)|µ| =

∣
∣
∣
∣
∣

a+ b
√
D

r

∣
∣
∣
∣
∣
∈ O ,

by (A.1). Also, since N(b)|µ| < N(b′)N(b′′) < ∆ and, by (A.9),

2
√
D

r
|B| ≤ N(b)|µ|+N(b)µ < ∆+ 2∆3/4 ,

we see that |B| < ∆1/2 + 2∆1/4; hence, 2s = O(2p∆1/2).

Notice that NUMULT also executes in O(log∆) elementary operations.

A.3 Theoretical Background for WNEAR

We will devote this section to developing the theoretical background needed
for devising an algorithm which will produce a w-near representation for an O-
ideal a, given a reduced (f, p) representation (b, d, k) of a. We will assume that
b = [Q/r, (P +

√
D)/r], where (P +

√
D)/Q > 1 and −1 < (P −

√
D)/Q < 0.

We require two lemmas. The first of these is a refinement of Lemma A.3
and the second is a version of Lemma A.4 in which multiplication is featured
instead of division.

Lemma A.5. Let γ = (a + b
√
D)/c, where D, a, b, c ∈ Z,

√
D 6∈ Q, 1 ≤ c <

2
√
D, b ≥ 0, γ ≥ 1, and |γ| ≤ 1. If we compute s ∈ Z>0 such that 2sc ≥ 2p+4

and put t = 2sa+ bb2s
√
Dc, and e = d2p+3−st/ce, then e ≥ 2p+3 and

∣
∣
∣
∣

2p+3γ

e
− 1

∣
∣
∣
∣
<

1

2p+3
.

Proof. We have
0 < γ − 2−st/c < 2−sb/c ≤ 2−p−4b .

Since
e− 1 < 2p+3−st/c ≤ e ,

450 A Appendix

we get
−1 < 2p+3γ − e < b/2 .

If b ≤ 2, then e > 2p+3γ−b/2 > 2p+3−1 and e ≥ 2p+3, |2p+3γ/e−1| < 2−p−3.
Suppose b ≥ 3. Since γ + γ = 2b

√
D/c, we get γ > 2b

√
D/c − |γ| > b − 1.

Hence,

e > 2p+3(b− 1)− b/2 = (2p+3 − 1/2)b− 2p+3 > 2p+2b .

It follows that e > 2p+3 and

|2p+3γ/e− 1| < b/2e < 2−(p+3) .

ut

Lemma A.6. Suppose that (b, d, k) is an (f, p) representation of a with b =
θa and suppose further that e and γ obey the same conditions as those in
Lemma A.5. If t ∈ Z is defined by

2t <
ed

22p+3
≤ 2t+1 ,

then ∣
∣
∣
∣

2pθγ

2hg
− 1

∣
∣
∣
∣
<
f + 1/4

2p
,

where g = ded/2p+t+3e and h = k + t. Furthermore, 2p < g ≤ 2p+1.

Proof. We note that
ed = 2p+t+3(g − η) ,

where 0 ≤ η < 1. The lemma now follows on using the same kind of reasoning
as that employed in the proof of Theorem 11.2. ut

We now let b = θa and put b1 = b, Q0 = Q, and P0 = P . Suppose that
w > k. In this case, we will now show how to use the simple continued fraction
(SCF) (cf. (5.10)) algorithm to find some n ≥ 2, bn−1 (= ρn−2(b1) = θn−1b1),
h, g, and bn (= ρn−1(b1) = θnb1), h

′, g′ such that

∣
∣
∣
∣

2pθn−1θ

2hg

∣
∣
∣
∣
<
f + 1/4

2p
,

∣
∣
∣
∣

2pθnθ

2h′g′
− 1

∣
∣
∣
∣
<
f + 1/4

2p
,

2p < g, g′ ≤ 2p+1, h < w, and h′ ≥ w.
We begin by finding s ∈ Z>0 such that 2sQ0 > 2p+4. If we define

Tj = 2sGj +Bjb2s
√
Dc ,

we find that T−2 = b2s
√
Dc − 2sP0 ≥ 0 and T−1 = 2sQ0; since

Tj+1 = qj+1Tj + Tj−1 , (A.12)

A.3 Theoretical Background for WNEAR 451

we have
Tj+1 > Tj (j ≥ 1) .

Put M = d2p+s−k+wQ0/de; then

M ≥ 2p+s−k+wQ0/2
p+1 = 2sQ02

w−k−1 ≥ 2sQ0 = T−1 .

Thus, for some i (≥ 2), we must find Ti−2 > M and Ti−3 ≤M .
We next define

ej =

⌈
2p−s+3Tj−2

Q0

⌉

.

For j ≥ 3, we have Tj−2 ≥ Tj−3 + T−1; hence,

ej ≥ 2p−s+3(Tj−3 + 2sQ0)/Q0 = 2p−s+3Tj−3/Q0 + 2p+3

> ej−1 + 2p+3 − 1 .

Also, by definition of θj and Lemma A.6, we have

∣
∣
∣
∣

2p+3θj

ej
− 1

∣
∣
∣
∣
<

1

2p+3
.

We next observe that

ei > 2p−s+3Ti−2/Q0 > 2p−s+3M/Q0 ≥ 22p−k+w+3/d .

Also, e1 = 2p+3 and de1 ≤ 22p+4 ≤ 22p−k+w+3. Thus, if dei−1 > 22p−k+w+3,
then i ≥ 3. Furthermore,

ei−2 ≤ ei−1 − 2p+3 + 1

≤ 2p−s+3Ti−3/Q0 − 2p+3 + 1

<
2p−s+3

Q0

(
2p+s−k+wQ0

d
+ 1

)

− 2p+3 + 1

≤ 22p−k+w+3/d+
3

2
− 2p+3

< 22p−k+w+3/d .

Thus, for n = i or n = i− 1, we must have

den−1

22p+3
≤ 2w−k ,

den

22p+3
> 2w−k .

If we define t and t′ by

2t <
den−1

22p+3
≤ 2t+1 ,

2t′ <
den

22p+3
≤ 2t′+1

452 A Appendix

and put h = k + t, h′ = k + t′, g = dden−1/2
p+t+3e, and g′ = dden/2

p+t+3e,
then by Lemma A.6 we get

∣
∣
∣
∣

2pθn−1θ

2hg
− 1

∣
∣
∣
∣
,

∣
∣
∣
∣

2pθnθ

2h′g′
− 1

∣
∣
∣
∣
<
f + 1/4

2p

and 2p < g, g′ ≤ 2p+1. Since den−1/2
2p+3 ≤ 2w−k, we must have 2t < 2w−k

and w > k + t = h; in addition, den/2
2p+3 > 2w−h, so we get 2t′+1 > 2w−k

and w < k + t′ + 1 or h′ ≥ w.
The case of w ≤ k is similar except that we need certain Q∗

n and Q∗
n−1,

which we do not know a priori. We overcome this by selecting s = p+ 4. In
this case, we apply the SCF algorithm backward (see §5.3) to find g, g′, h, h′,

cn = ρ−n(b1) = χnb1 (cf. (5.27)) ,

and
cn−1 = ρ−(n−1)(b1) = χn−1b1 ,

where ∣
∣
∣
∣

2pθχn

2hg
− 1

∣
∣
∣
∣
,

∣
∣
∣
∣

2pθχn−1

2h′g′
− 1

∣
∣
∣
∣
<
f + 9/8

2p
,

2p < g, g′ ≤ 2p+1, h < w, and h′ ≥ w.
Note that since 0 < ξj < 1 and −ξj > 1 (j ≥ 1), we get 0 < χk ≤ 1 and

|χk| ≥ 1 for k ≥ 0. Put Q∗
0 = Q and P ∗

0 = P and define

T ∗
j = 2sG∗

j +A∗
j b2s
√
Dc .

We have T ∗
−2 = 2sQ∗

0 and T ∗
−1 = 2sP ∗

0 + b2s
√
Dc ≥ 2sQ∗

0. Since

T ∗
j+1 = q∗j+2T

∗
j + T ∗

j−1 , (A.13)

we see that T ∗
j+1 > T ∗

j (j ≥ −1). Put M∗ = d2k−w+4 = d2k−w−p+s > 2s. It
follows that T−2 = 2sQ∗

0 < Q∗
0M

∗. Since the value of Q∗
j is bounded above

by 2
√
D and the integers T ∗

−1, T
∗
0 , T ∗

1 , . . . strictly increase, there will be some
minimal i such that

T ∗
i−2 ≥ Q∗

iM
∗ .

We define

ej =

⌈

T ∗
j−1

2Q∗
j+1

⌉

.

Now, 1 ≤ Q∗
j+1 < 2

√
D, 1/χj+1 ≥ 1, and 1/|χj+1| ≤ 1 (j ≥ −1); hence, by

Lemma A.5 and (5.31), we get

∣
∣
∣
∣

2p+3

χj+1ej
− 1

∣
∣
∣
∣
<

1

2p+3
.

Also, e−1 = 2p+3, e−1/8d = 2p/d < 1 ≤ 2k−w,

A.3 Theoretical Background for WNEAR 453

ei−1 ≥
T ∗

i−2

2Q∗
i

≥ M∗

2
= 8d2k−w ,

and

ei−2 <
T ∗

i−3

2Q∗
i−1

+ 1 <
M∗

2
+ 1 = 8d2k−w + 1 .

Put η = 2s
√
D − b2s

√
Dc. By (5.31), we have

1

χj
−
T ∗

j−2

2sQ∗
j

=
ηA∗

j−2

2sQ∗
j

and
1

χj
− 1

χj

=
2
√
DA∗

j−2

Q∗
j

.

From these results we can easily deduce that

1

χj

(

1− η

2s+1
√
D

)

=
T ∗

j−2

2sQ∗
j

− η

2s+1
√
Dχj

. (A.14)

Since χj+1 = ξj+1χj , we can use (A.14) and (A.14) with j replaced by j + 1
to discover that

T ∗
j−1

2sQ∗
j+1

=
1

ξj+1

(

T ∗
j−2

2sQ∗
j

− η

2s+1
√
Dχj

)

+
η

2s+1
√
Dχjξj+1

.

Also, ξ−1
j+1 = (

√
D + P ∗

j)/Q∗
j+1; hence,

T ∗
j−1

2Q∗
j+1

=
1

ξj+1

T ∗
j−2

2Q∗
j

− η

2sQ∗
j+1χj

.

It follows that since 0 < η < 1, |χj | ≥ 1, and Q∗
j+1 ≥ 1, we get

ej >
1

ξj+1
(ej−1 − 1)− 1

2
(A.15)

and
ej + 1/2

ej−1 − 1
>

1

ξj+1
.

If 3 ≤ ej ≤ ej−1, then
1

ξj+1
< 2 .

If we replace j by j − 1 in (A.15), we get

ej−1 >
1

ξj
(ej−2 − 1)− 1

2
,

454 A Appendix

and on substituting this into (A.15), we find that

ej >
1

ξjξj+1
(ej−2 − 1)− 7

2

when 1/ξj+1 < 2. Hence,

1

ξjξj+1
<
ej + 7/2

ej−2 − 1
.

If ej−2 ≥ ej ≥ 6, then 1/ξjξj+1 < 2, but since, by (5.29),

1

ξj

1

ξj+1
= q∗j

1

ξj+1
+ 1 > 2 ,

this is a contradiction. Thus, if we have ej = 8d2k−w for some j, then either
ej−1 or ej−2 must be less than 8d2k−w.

It follows that we must be able to find some n ≥ 1 and n ∈ {i− 2, i− 1, i}
such that

en−1

8d
≥ 2k−w and

en−2

8d
< 2k−w .

If we define t and t′ by

2t−1 ≤ en−1

8d
< 2t , 2t′−1 ≤ en−2

8d
< 2t′ ,

respectively, then by Lemma A.4 with γ = 1/χn or 1/χn−1, we have

∣
∣
∣
∣

2pθχn

2hg
− 1

∣
∣
∣
∣
,

∣
∣
∣
∣

2pθχn−1

2h′g′
− 1

∣
∣
∣
∣
<
f + 9/8

2p
,

where g = d2p+3+td/en−1e, g′ = d2p+3+t′d/en−2e, h = k − t, h′ = k − t′,
and 2p < g, g′ ≤ 2p+1. Since en−1/8d ≥ 2k−w, we have 2t > 2k−w; hence,
t > k − w and h < w. Since en−2/8d < 2k−w, we have 2t′−1 < 2k−w. In this
case, t′ − 1 < k − w, w < k − t′ + 1, and h′ ≥ w.

A.4 WNEAR

We can now consolidate these various observations to produce Algorithm
WNEAR.

Algorithm 11.2: WNEAR

Input: (b, d, k), w, p, where (b, d, k) is a reduced (f, p) representation of some
O-ideal a. Here b = [Q/r, (P +

√
D)/r], where P + b

√
Dc ≥ Q, 0 ≤

b
√
Dc − P ≤ Q.

Output: (c, g, h) a w-near (f +9/8, p) representation of a. (Optional output:
a reduced (f + 9/8, p) representation (ρ(c), g′, h′) of a.)

A.4 WNEAR 455

/*There are two possible cases.*/
1: case 1: k < w
2: Find s ∈ Z≥0 such that 2sQ ≥ 2p+4. Put Q0 = Q, P0 = P , M =

d2p+s−k+wQ0/de,Q−1 = (D−P 2)/Q, T−2 = −2sP0+b2s
√
Dc, T−1 =

2sQ0, i = 1.
3: while Ti−2 ≤M do
4: qi−1 = b(Pi−1 + b

√
Dc)/Qi−1c

5: Pi = qi−1Qi−1 − Pi−1

6: Qi = Qi−2 − qi−1(Pi − Pi−1)
7: Ti−1 = qi−1Ti−2 + Ti−3

8: i← i+ 1
9: end while

10: Put ei−1 = d2p−s+3Ti−3/Q0e
11: if dei−1 ≤ 22p−k+w+3 then
12: Put c = [Qi−2/r, (Pi−2 +

√
D)/r], e = ei−1.

(ρ(c) = [Qi−1/r, (Pi−1 +
√
D)/r], e′ = d2p−s+3Ti−2/Q0e.)

13: else
14: Put c = [Qi−3/r, (Pi−3 +

√
D)/r], e = d2p−s+3Ti−4/Q0e.

(ρ(c) = [Qi−2/r, (Pi−2 +
√
D)/r], e′ = ei−1.)

15: end if
16: Find t (t′) such that

2t <
ed

22p+3
≤ 2t+1 .

(

2t′ <
e′d

22p+3
≤ 2t′+1 .

)

17: Put

g =

⌈
ed

2p+t+3

⌉

, h = k + t .

(

g′ =

⌈
e′d

2p+t+3

⌉

, h′ = k + t′ .

)

18: end case
19: case 2: k ≥ w
20: Put s = p+ 4, Q∗

0 = Q, P ∗
0 = P , M∗ = d2k−w+4, Q∗

1 = (D− P 2)/Q,
T ∗
−2 = 2sQ∗

0, T
∗
−1 = 2sP ∗

0 + b2s
√
Dc, i = 1.

21: while T ∗
i−2 < Q∗

iM
∗ do

22: q∗i = b(P ∗
i−1 + b

√
Dc)/Q∗

i c
23: P ∗

i = q∗iQ
∗
i − P ∗

i−1

24: Q∗
i+1 = Q∗

i−1 − q∗i (P ∗
i − P ∗

i−1)
25: T ∗

i−1 = q∗i T
∗
i−2 + T ∗

i−3

26: i← i+ 1
27: end while
28: Put q∗i = b(P ∗

i−1 + b
√
Dc)/Q∗

i c, P ∗
i = q∗iQ

∗
i − P ∗

i−1, e = dT ∗
i−2/2Q

∗
i e,

e′ = dT ∗
i−3/2Q

∗
i−1e, j = 3.

29: while e′ ≥ d2k−w+3 do
30: e← e′

31: e′ ← dTi−2−j/2Q
∗
i−je

456 A Appendix

32: j ← j + 1
33: end while
34: Find t (t′) such that

2t−1 ≤ e

8d
< 2t .

(

2t′−1 ≤ e′

8d
< 2t′ .

)

35: Put c = [Q∗
i−j+3/r, (P

∗
i−j+3 +

√
D)/r], g = d2p+3+td/ee, h = k − t.

(ρ(c) = [Q∗
i−j+2/r, (P

∗
i−j+2 +

√
D)/r], g′ = d2p+3+td/e′e, h′ = k− t′.)

36: end case

In order to determine how quickly WNEAR will execute, we first note that
in Case 1, we perform O(i) steps where

Ti−3 ≤M < Ti .

In Case 2, we perform O(i) steps where

T ∗
i−2 ≥ Q∗

iM
∗ and T ∗

i−3 < Q∗
i−1M

∗ .

From (A.12) and (A.13), we can easily establish by induction that

Tn > τnT−1 , T ∗
n > τnT ∗

−1 ,

where τ = (1 +
√

5)/2. Now, T−1 = 2sQ0 and T ∗
−1 ≥ b2s

√
Dc+ 2s > 2s

√
D.

Also, M < 2p+3−k+wQ0/d+1 < 2sQ02
w−k +1; hence, for Case 1 of WNEAR,

τ i−3 < Ti−3/T−1 < 2w−k + 1 .

Since M∗ < d2k−w+4 + 1 and Q∗
i−1 < 2

√
D, we get

τ i−3 < T ∗
i−3/T

∗
−1 < 2k−w+2 + 1

for Case 2. It follows from these observations that, in either case, i = O(|k−w|)
and that the number of steps needed to execute WNEAR is O(|k − w|).

We compare Ti−2 (T ∗
i−2) to M (Q∗

i−1M
∗) instead of directly examining

de (e/8d) in order to avoid performing the divides needed to compute these
numbers until we are close to the correct values. This is because on a computer,
the division process is much more expensive than that for multiplication.

Because b ∼ a, in WNEAR there must exist some κ ∈ K such that
N(b)κ ∈ O and c = κb. In Chapter 12, it is necessary to have a technique
for computing this κ. We can do this by making some very simple modifica-
tions to WNEAR, and we will call this extended algorithm EWNEAR. For
our purposes it will only be necessary to consider Case 1. step 2 of this case
of WNEAR should also initialize B−2 = 1, and B−1 = 0 and step 7 should
also compute Bi−1 = qi−1Bi−2 +Bi−3. In step 16, when dei−1 ≤ 22p−k+w+3,
put a = (Ti−3 − b2s

√
DcBi−2)/2

s = Gi−3, and b = Bi−3; otherwise put

A.4 WNEAR 457

a = (Ti−4−b2s
√
DcBi−4)/2

s = Gi−4, and b = Bi−4. Then κ = (a+b
√
D)/Q0.

This follows very easily by recalling that

[

Qj

r
,
Pj +

√
D

r

]

=
Gj−1 +Bj−1

√
D

Q0

[

Q0

r
,
P0 +

√
D

r

]

.

Also, note that κ > 1 in this case.

Algorithm 12.1: EWNEAR

Input: (b, d, k), w, p, where (b, d, k) is a reduced (f, p) representation of some
O-ideal a and k < w. Here b = [Q/r, (P +

√
D)/r], where P + b

√
Dc ≥ Q,

0 ≤ b
√
Dc − P ≤ Q.

Output: (c, g, h) a w-near (f + 9/8, p) representation of a and a, b, where
κ = (a+ b

√
D)/Q and c = κb.

1: Put B−2 = 1, B−1 = 0.
2: Find s ∈ Z≥0 such that 2sQ ≥ 2p+4. Put Q0 = Q, P0 = P , M =
d2p+s−k+wQ0/de, Q−1 = (D − P 2)/Q, T−2 = −2sP0 + b2s

√
Dc, T−1 =

2sQ0, i = 1.
3: while Ti−2 ≤M do
4: qi−1 = b(Pi−1 + b

√
Dc)/Qi−1c

5: Pi = qi−1Qi−1 − Pi−1

6: Qi = Qi−2 − qi−1(Pi − Pi−1)
7: Ti−1 = qi−1Ti−2 + Ti−3

8: Bi−1 = qi−1Bi−2 +Bi−3

9: i← i+ 1
10: end while
11: Put ei−1 = d2p−s+3Ti−3/Q0e
12: if dei−1 ≤ 22p−k+w+3 then
13: Put c = [Qi−2/r, (Pi−2 +

√
D)/r], e = ei−1, a = (Ti−3−b2s

√
Dc)/2s,

b = Bi−3.
14: else
15: Put c = [Qi−3/r, (Pi−3 +

√
D)/r], e = d2p−s+3Ti−4/Q0e, a = (Ti−4−

b2s
√
Dc)/2s, b = Bi−4.

16: end if
17: Find t such that

2t <
ed

22p+3
≤ 2t+1 .

18: Put

g =

⌈
ed

2p+t+3

⌉

, h = k + t .

By employing somewhat similar ideas to those used in developing
WNEAR, we can produce the FIND algorithm.

458 A Appendix

Algorithm 12.5: FIND

Input: (b, d, k) a reduced (f, p) representation of a primitive O-ideal a with
b = ai = [Qi−1/r, (Pi−1 +

√
D)/r], where (Pi−1 +

√
D)/Qi−1 > 1, −1 <

(Pi−1 −
√
D)/Qi−1 < 0; c = aj = [Qj−1/r, (Pj−1 +

√
D)/r] with

i ≤ j ≤ i+ c ,

where c ∈ Z≥0.
Output: (c, g, h) a reduced (f + 1/4, p) representation of a (optional output

m,n ∈ Z, where λ = (m+ n
√
D)/r ∈ O and N(b)c = λb.)

1: Find s ∈ Z≥0 such that 2sQ > 2p+4. Put Q′
0 = Qi−1, P

′
0 = Pi−1, Q

′
−1 =

(D − P ′
0
2
)/Q′

0, G
′
−2 = −P ′

0, G
′
−1 = Q′

0, B
′
−2 = 1, B′

−1 = 0, l = 0.
2: while Q′

l 6= Qj−1 or P ′
l 6= Pj−1 do

3: Put

q′l =

⌊

P ′
l + b

√
Dc

Q′
l

⌋

,

P ′
l+1 = q′lQ

′
l − P ′

l ,

Q′
l+1 = Q′

l−1 − q′l(P ′
l+1 − P ′

l) ,

B′
l = q′lB

′
l−1 +B′

l−2 ,

G′
l = q′lG

′
l−1 +G′

l−2 ,

l ← l + 1 .

4: end while
5: Put c = [Q′

l/r, (P
′
l +
√
D)/r].

6: Put T = 2sG′
l−1 +B′

l−1b2s
√
Dc.

7: Put e = d2p+3−sT/Q′
0e and find t such that

2t <
ed

22p+3
≤ 2t+1 .

8: Put g = ded/2p+t+3e, h = k + t. (m = G′
l−1, n = B′

l−1.)

Proof (of correctness of FIND). If we define

θ′q =
G′

q−2 +
√
DB′

q−2

Q′
0

(q = 0, 1, 2, . . .) ,

then after step 3 has executed we have

c = aj =

[

Q′
l

r
,
P ′

l +
√
D

r

]

= θ′l+1ai =

(
λ

N(b)

)

b . (A.16)

By Lemmas A.5 and A.6, we know that (c, g, h) is a reduced (f + 1/4, p) rep-
resentation of a. Clearly, the complexity of this algorithm is O(c) elementary
operations.

A.4 WNEAR 459

We remark here that since FIND searches for the least value of l for which
(A.16) holds, we must have

1 ≤ λ

N(b)
< ε∆ ,

where ε∆ is the fundamental unit of O.
Algorithm FIND will work resaonably well as long as the values of A′

l

and B′
l do not become very large (i.e., c is not very large). In the case of

larger values of c, we need to modify the algorithm. As before, we let a =
[Q/r, (P +

√
D)/r] be any reduced O-ideal and let

a1(= a), a2, a3, . . . , aj , . . .

denote the sequence of reduced ideals equivalent to a produced from the SCF
expansion of (P +

√
D)/Q. Here, as usual, aj = [Qj−1/r, (Pj−1 +

√
D)/r].

Now, let (aj , dj , kj) denote a reduced (fj , p) representation of a and put E =

d2p
√
De. We now need the following simple theorem.

Theorem A.7. If we put

ei =

⌈
2pPi +E

Qi−1

⌉

, d′i =

⌈
eidi

2p

⌉

and find t such that
2p+t < d′i ≤ 2p+t+1 ,

then (ai+1, di+1, ki+1) is a reduced (fi+1, p) representation of a, where

di+1 =

⌈
d′i
2t

⌉

=

⌈
eidi

2p+t

⌉

, ki+1 = ki + t , fi+1 < fi + 2 .

Proof. We recall that ai = θia1, ai+1 = θi+1a1, and θi+1 = ψiθi. Also, ei >
2pψi > 2p and, therefore, d′i > 2p, t ≥ 0. That

2p < di+1 ≤ 2p+1

follows easily from the definition of di+1 and t. Since
∣
∣
∣
∣

2pθi

2kidi
− 1

∣
∣
∣
∣
<
fi

2p
,

∣
∣
∣
∣

2pψi

ei
− 1

∣
∣
∣
∣
<

1

2p
,

and
eidi

2p+t
= di+1 − η (0 ≤ η < 1) ,

we get
(

1− η

di+1

)(

1− fi

2p

)(

1− 1

2p

)

<
2pθi+1

2ki+1di+1
<

(

1 +
fi

2p

)(

1 +
1

2p

)

.

Hence,

1− fi + 2

2p
<

2pθi+1

2ki+1di+1
< 1 +

fi + 2

2p
.

ut

460 A Appendix

We are now able to present algorithm FPCF. This algorithm is a version
of FIND for larger values of c than those used in the FIND algorithm, but
it obtains its output at the expense of less precision. Its proof of correctness
follows by induction from Theorem A.7.

Algorithm A.2: FPCF

Input: p and (b, di, ki) a reduced (f, p) representation of a primitive O-ideal
a with b = ai = [Qi−1/r, (Pi−1 +

√
D)/r], where (Pi−1 +

√
D)/Qi−1 > 1,

−1 < (Pi−1 −
√
D)/Qi−1 < 0; c = aj = [Qj−1/r, (Pj−1 +

√
D)/r] with

j = i+ c, where c ∈ Z≥0.
Output: (c, dj , kj) a reduced (f + 2c, p) representation of a.

1: Put Q′
0 = Qi−1, P

′
0 = Pi−1, Q

′
−1 = (D−P ′

0
2
)/Q′

0, d
′
0 = di, k

′
0 = ki, l = 0,

E = d2p
√
De.

2: while Q′
l 6= Qj−1 or P ′

l 6= Pj−1 do
3: Put

q′l =

⌊

P ′
l + b

√
Dc

Q′
l

⌋

,

P ′
l+1 = q′lQ

′
l − P ′

l ,

Q′
l+1 = Q′

l−1 − q′l(P ′
l+1 − P ′

l) ,

e′l =

⌈
2pP ′

l+1 +E

Q′
l

⌉

,

d =

⌈
e′ld

′
l

2p

⌉

.

4: Compute t such that

2p+t < d < 2p+t+1 .

5: Put
d′l+1 = dd/2te , k′l+1 = k′l + t .

6: l ← l + 1
7: end while
8: Put

c =

[

Q′
l

r
,
P ′

l +
√
D

r

]

, dj = d′l, kj = k′l .

References

[AAC52] N. C. Ankeny, E. Artin, and S. Chowla, The class-number of real quad-
ratic number fields, Annals of Math. 56 (1952), no. 3, 479–493.

[Abe94] C. S. Abel, Ein Algorithmus zur Berechnung der Klassenzahl und des
Regulators reellquadratischer Ordnungen, Ph.D. thesis, Universität des
Saarlandes, Saarbrücken, Germany, 1994.

[ABR01] M. Abdalla, M. Bellare, and P. Rogaway, DHIES: An encryption
scheme based on the Diffie-Hellman problem, Topics in Cryptology CT-
RSA 2001, Lecture Notes in Computer Science, vol. 2020, Springer,
Berlin, 2001, pp. 143–158.

[AC60] N. C. Ankeny and S. Chowla, A note on the class number of real
quadratic fields, Acta Arith. 6 (1960), 145–147.

[AC62] , A further note of the class number of real quadratic fields,
Acta Arith. 7 (1962), 271–272.

[ACL91] American Council of Learned Societies, Bibliographical Dictionary of
Mathematics, Vol. 4, Scribner’s Sons, New York, 1991.

[Ada79] W. W. Adams, On the relationship between the convergents of the near-
est integer and regular continued fractions, Math. Comp. 33 (1979),
1321–1331.

[AEM87] L. Adelman, D. Estes, and K. McCurley, Solving bivariate quadratic
congruences in random polynomial time, Math. Comp. 48 (1987), 17–
28.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P , Annals of
Math 160 (2004), 781–793.

[Amt80] A. Amthor, Das Problema bovinum des Archimedes, Zeitschrift für
Math. u. Physik (Hist. Litt. Abtheilung) 25 (1880), 153–171.

[AP95] W. R. Alford and C. Pomerance, Implementing the self-initializing
quadratic sieve on a distributed network, Proceedings of International
Conference “Number Theoretic and Algebraic Methods in Computer
Science” (Moscow, 1993) (A. J. van der Poorten, I. Shparlinski, and
H. G. Zimmer, eds.), World Scientific, Singapore, 1995, pp. 163–174.

[Apo98] T. Apostol, Introduction to Analytic Number Theory, Springer, New
York, 1998.

462 References

[Arc71] Archimède, Oeuvres, 3 vol., texte établi et traduit par C. Mugler, Les
Belles Lettres, Paris, 1970–71.

[Arc99] Archimedes, The Cattle Problem, in English verse by S. J. P. Hillion
& H. W. Lenstra Jr., Mercator, Santpoort, 1999.

[Arn92] S. Arno, The imaginary quadratic fields of class number 4, Acta Arith-
metica 60 (1992), 321–334.

[ARW98] S. Arno, M. Robinson, and F. Wheeler, Imaginary quadratic fields with
small odd class number, Acta Arithmetica 83 (1998), 295–330.

[AW04] Ş. Alaca and K. S. Williams, Introductory Algebraic Number Theory,
Cambridge University Press, Cambridge, 2004.

[Ayo63] R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer-
ican Mathematical Society, Providence, RI, 1963.

[Ayy40] A. A. Krishnaswami Ayyangar, Theory of the nearest square continued
fraction, J. Mysore Univ. Sect A. 1 (1940), 21–32, (1941), 97–117.

[Azu84] T. Azuhata, On the fundamental units and the class numbers of real
quadratic fields, Nagoya Math. J. 95 (1984), 125–135.

[Azu87] , On the fundamental units and the class numbers of real quad-
ratic fields II, Tokyo J. Math 10 (1987), no. 2, 259–270.

[Bac90] E. Bach, Explicit bounds for primality testing and related problems,
Math. Comp. 55 (1990), no. 191, 355–380.

[Bac95] , Improved Approximations for Euler Products, Number The-
ory: CMS Proc. Vol. 15, American Mathematical Society, Providence,
RI, 1995, pp. 13–28.

[Bak66] A. Baker, Linear forms in the logarithms of algebraic numbers, Math-
ematika 13 (1966), 204–216.

[Bak71] , Imaginary quadratic fields with class number two, Annals of
Math 94 (1971), 139–152.

[Bar03] E. J. Barbeau, Pell’s Equation, Springer, New York, 2003.
[BB94] I. Biehl and J. Buchmann, Algorithms for quadratic orders, Proceed-

ings of Symposium in Applied Mathematics Vol. 48, American Math-
ematical Society, Providence, RI, 1994, pp. 425–451.

[BB97] , An analysis of the reduction algorithms for binary quadratic
forms, Tech. Report No. TI-26/97, Technische Universität Darmstadt,
1997.

[BB98] , An analysis of the reduction algorithm for binary quadratic
forms, Voronoi’s Impact on Modern Science (P. Engel and H. Syta,
eds.) Vol. 1, Institute of Mathematics of National Academy of Sciences,
Kyiv, Ukraine, 1998, pp. 71–98.

[BBFK05] F. Bahr, M. Boehm, J. Franke, and T. Kleinjung, RSA-200, Email an-
nouncement, 2005, http://www.crypto-world/com/announcements/

rsa200.txt.
[BBHM02] I. Biehl, J. Buchmann, S. Hamdy, and A. Meyer, A signature scheme

based on the intractability of extracting roots, Designs, Codes and Cryp-
tography 25 (2002), 223–236.

[BBT95] I. Biehl, J. Buchmann, and C. Thiel, Cryptographic protocols based on
discrete logarithms in real-quadratic orders, Advances in Cryptology —
CRYPTO ’94, Lecture Notes in Computer Science Vol. 839, Springer,
Berlin, 1995, pp. 56–60.

[BC70] P. Barrucand and H. Cohn, A rational genus, class number divisibility,
and unit theory for pure cubic fields, J. Number Theory 2 (1970), 7–21.

References 463

[BCMO06] M. A. Bennett, M. Cipu, M. Mignotte, and R. Okazaki, On the number
of solutions of simultaneous Pell equations II, Acta Arith. 122 (2006),
407–417.

[BD91a] J. Buchmann and S. Düllmann, On the computation of discrete log-
arithms in class groups, Advances in Cryptology — CRYPTO ’90,
Lecture Notes in Computer Science Vol. 537, Springer, Berlin, 1991,
pp. 134–139.

[BD91b] , A probabilistic class group and regulator algorithm and its
implementation, Computational Number Theory, Walter de Gruyter
& Co., New York, 1991, pp. 53–72.

[BD92] , Distributed class group computation, Festschrift aus Anlaß des
sechzigsten Geburtstages von Herrn Prof. Dr. G. Hotz, Universität des
Saarlandes, 1991 / and Teubner, Stuttgart, 1992, pp. 69–79.

[BDW90] J. Buchmann, S. Düllmann, and H. C. Williams, On the complexity
and efficiency of a new key exchange system, Advances in Cryptology
- EUROCRYPT ’89, Lecture Notes in Computer Science Vol. 434,
Springer, Berlin, 1990, pp. 597–616.

[Bei64] A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York,
1964.

[Ben01] M. A. Bennett, Rational approximation to algebraic numbers of small
height: The Diophantine equation |axn − byn| = 1, J. Reine Angew
Math. 535 (2001), 1–49.

[Ben05] , Powers in recurrence sequences: Pell equations, Trans. Amer.
Math. Soc. 357 (2005), 1675–1691.

[Ber] D. Bernstein, How to find small factors of integers, Math. Comp., to
appear.

[Ber28] W. E. H. Berwick, The arithmetic of quadratic number-fields, Math.
Gazette 14 (1928), 1–11.

[Ber76a] L. Bernstein, Fundamental units and cycles I, J. of Number Theory 8
(1976), no. 4, 446–491.

[Ber76b] , Fundamental units and cycles in the period of real quadratic
numbers fields I, II, Pac. J. Math. 63 (1976), 37–61, 63–78.

[BF03] D. Boneh and M. Franklin, Identity based encryption from the Weil
pairing, SIAM Journal of Computing 32 (2003), no. 3, 586–615.

[BG07] A. Biró and A. Granville, Zeta functions for ideal classes in real quad-
ratic fields, at s = 0, submitted for publication, 2007.

[BH01] J. Buchmann and S. Hamdy, A survey on IQ-cryptography, Public-
Key Cryptography and Computational Number Theory, de Gruyter,
Berlin, 2001, pp. 1–15.

[BH03] M. Bauer and S. Hamdy, On class group computations using the
number field sieve (extended abstract), Advances in Cryptology -
ASIACRYPT 2003, Lecture Notes in Computer Science Vol. 2894,
Springer, Berlin, 2003, pp. 311–325.

[BH96] J. Buchmann and C. S. Hollinger, On smooth ideals in number fields,
J. Number Theory 59 (1996), no. 1, 82–87.

[Bil04] Y. F. Bilu, Catalan’s conjecture (after Mihailescu), Astérisque (2004),
no. 294, 1–26.

[Bil05] , Catalan without logarithmic forms (after Bugeaud, Hanrot and
Mihailescu), J. Théor. Nombres Bordeaux 17 (2005), 69–85.

464 References

[Bir03a] A. Biró, Chowla’s conjecture, Acta Arith. 107 (2003), 178–194.
[Bir03b] , Yokoi’s conjecture, Acta Arith. 106 (2003), 85–104.
[BJN00] D. Boneh, A. Joux, and P. Nguyen, Why textbook El Gamal and RSA

encryption are insecure, Advances in Cryptology - ASIACRYPT 2000,
Lecture Notes in Computer Science Vol. 1976, Springer, Berlin, 2000,
pp. 30–44.

[BJP94] J. Buchmann, M. Jüntgen, and M. Pohst, A practical version of the
generalized Lagrange algorithm, Exper. Math. 3 (1994), 200–207.

[BJT97] J. Buchmann, M. J. Jacobson, Jr., and E. Teske, On some compu-
tational problems in finite abelian groups, Math. Comp. 66 (1997),
no. 220, 1663–1687.

[BM98] J. Buchmann and M. Maurer, Approximate evaluation of L(1, χd),
Tech. Report TI-6/98, Department of Computer Science, Technical
University of Darmstadt, Darmstadt, Germany, 1998.

[BMM00] J. Buchmann, M. Maurer, and B. Möller, Cryptography based on num-
ber fields with large regulator, Journal de Théorie des Nombres de Bor-
deaux 12 (2000), 293–307.

[Bon99] D. Boneh, Twenty years of attacks on the RSA cryptosystem, Notices
of the AMS 46 (1999), no. 2, 203–213.

[Boo06] A. Booker, Quadratic class numbers and character sums, Math. Comp.
75 (2006), no. 255, 1481–1492.

[BP97] J. Buchmann and S. Paulus, A one way function based on ideal arith-
metic in number fields, CRYPTO ’97, Lecture Notes in Computer Sci-
ence Vol. 1294, Springer, Berlin, 1997, pp. 385–394.

[BPT04] I. Biehl, S. Paulus, and T. Takagi, Efficient undeniable signatures based
on ideal arithmetic in quadratic orders, Designs, Codes and Cryptog-
raphy 31 (2004), 99–123.

[Bre00] R. P. Brent, Recent progress and prospects for integer factorization al-
gorithms, Computing and Combinatorics, Lecture Notes in Computer
Science Vol. 1858, Springer-Verlag, Berlin, 2000, pp. 3–22.

[Bre76] , Fast multiple-precision evaluation of elementary functions,
Journal of the ACM 23 (1976), 242–251.

[Bre80] C. Brezinski, History of Continued Fractions and Padé Approximants,
Springer-Verlag, New York, 1980.

[BS05] J. Buchmann and A. Schmidt, Computing the structure of a finite
abelian group, Math. Comp. 74 (2005), 2017–2026.

[BS07] D. Bernstein and J. Sorenson, Modular exponentiation via the explicit
Chinese Remainder Theorem, Math. Comp. 76 (2007), 443–454.

[BS93] E. Bach and J. Sorenson, Sieve algorithms for perfect power testing,
Algorithmica 9 (1993), 313–328.

[BS96a] E. Bach and J. O. Shallit, Algorithmic Number Theory, MIT Press,
Cambridge, MA, 1996.

[BS96b] W. Bosma and P. Stevenhagen, Density computations for real quadratic
units, Math. Comp. 65 (1996), no. 215, 1327–1337.

[BS96c] , On the computation of quadratic 2-class groups, Journal de
Théorie des Nombres de Bordeaux 8 (1996), no. 2, 283–313.

[BS97] , Erratum: On the computation of quadratic 2-class groups,
Journal de Théorie des Nombres de Bordeaux 9 (1997), no. 1, 249.

[Bsh99] N. H. Bshouty, Lower bounds for the complexity of functions in a re-
alistic RAM model, J. of Algorithms 32 (1999), 1–20.

References 465

[BST02] J. Buchmann, K. Sakurai, and T. Takagi, An IND-CCA2 public-key
cryptosystem with fast decryption, Information Security and Cryptol-
ogy — ICISC 2001, Lecture Notes in Computer Science Vol. 2288,
Springer, Berlin, 2002, pp. 51–71.

[BT02] I. Biehl and T. Takagi, A new distributed primality test for shared RSA
keys using quadratic fields, ACISP 2002, Lecture Notes in Computer
Science Vol. 2384, Springer, Berlin, 2002, pp. 1–16.

[BTV04] J. Buchmann, T. Takagi, and U. Vollmer, Number field cryptography,
High Primes and Misdemeanors: Lectures in Honour of the 60th Birth-
day of Hugh Cowie Williams, Fields Institute Communications Vol. 41,
American Mathematical Society, Providence, RI, 2004, pp. 111–125.

[BTW95] J. Buchmann, C. Thiel, and H. C. Williams, Short representation of
quadratic integers., Computational Algebra and Number Theory, Math-
ematics and its Applications 325, Kluwer Academic Publishers, Ams-
terdam, 1995, pp. 159–185.

[Buc87a] J. Buchmann, On the computation of units and class numbers by a
generalization of Lagrange’s algorithm, Journal of Number Theory 26
(1987), 8–30.

[Buc87b] , Zur Komplexität der Berechnung von Einheiten und
Klassenzahlen algebraischer Zahlkörper, Habilitationsschrift, Univer-
sität Düsseldorf, 1987.

[Buc90] , A subexponential algorithm for the determination of class
groups and regulators of algebraic number fields, Séminaire de Théorie
des Nombres, Paris 1988–1989, Progress in Mathematics Vol. 91,
Birkhäuser, Boston, 1990, pp. 27–41.

[Bue76] D. A. Buell, Class groups of quadratic fields, Math. Comp. 30 (1976),
no. 135, 610–623.

[Bue87] , Class groups of quadratic fields. II, Math. Comp. 48 (1987),
no. 177, 85–93.

[Bue89] , Binary quadratic forms, Classical Theory and Modern Com-
putations, Springer, New York, 1989.

[Bue99] , The last exhaustive computation of class groups of complex
quadratic number fields, Number theory, CRM Proceedings and Lec-
ture Notes Vol. 19, American Mathematical Society, Providence, RI,
1999, pp. 35–53.

[Bur57] D. A. Burgess, The distribution of quadratic residues and non-residues,
Mathematika 4 (1957), 106–112.

[BV06] J. Buchmann and U. Vollmer, A Terr algorithm for computations in
the infrastructure of real-quadratic number fields, Journal de Théorie
des Nombres de Bordeaux 18 (2006), no. 3, 559–572.

[BV07] , Binary Quadratic Forms: An Algorithmic Approach, Algo-
rithms and Computation in Mathematics Vol. 20, Springer-Verlag,
Berlin, 2007.

[BV99] D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to
factoring, Advances in Cryptology - EUROCRYPT ’98, Lecture Notes
in Computer Science Vol. 1233, Springer-Verlag, Berlin, 1999, pp. 59–
71.

[BW72] B. D. Beach and H. C. Williams, A numerical investigation of the Dio-
phantine equation x2−dy2 = −1, Proc. 3rd S.-E. Conf. Combinatories,
Graph Theory and Computing, 1972, pp. 37–52.

466 References

[BW88a] J. Buchmann and H. C. Williams, A key exchange algorithm based on
imaginary quadratic fields, J. Cryptology 1 (1988), 107–118.

[BW88b] , On the infrastructure of the principal ideal class of an algebraic
number field of unit rank one, Math. Comp. 50 (1988), no. 182, 569–
579.

[BW89a] , A key-exchange system based on real quadratic fields,
CRYPTO ’89, Lecture Notes in Computer Science, Vol. 435, Springer,
Berlin, 1989, pp. 335–343.

[BW89b] , On the existence of a short proof for the value of the class
number and regulator of a real quadratic field, Proc. NATO ASI on
Number Theory and Applications (R. A. Mollin, ed.), Kluwer Aca-
demic Press, Amsterdam, 1989, pp. 327–345.

[BW90] , Quadratic fields and cryptography, Number Theory and Cryp-
tography, London Math. Soc. Lecture Note Series 154 (1990), 9–26.

[BW91] , Some remarks concerning the complexity of computing class
groups of quadratic fields, Journal of Complexity 7 (1991), 311–315.

[BW94] N. Buck and K. Williams, Comparison of the lengths of the continued

fractions of
√

D and 1+
√

D
2

, Proc. Amer. Math. Soc. 120 (1994), no. 4,
992–1002.

[Car53] L. Carlitz, Note on the class number of real quadratic fields, Proc.
Amer. Math. Soc. 4 (1953), 535–537.

[CDyDO93] H. Cohen, F. Diaz y Diaz, and M. Olivier, Calculs de nombres
de classes et de régulateurs de corps quadratiques en temps sous-
exponentiel, Séminaire de Théorie des Nombres, Paris 1990–1991,
Progress in Mathematics Vol. 108, Birkhäuser, 1993, pp. 35–46.

[CDyDO97] H. Cohen, F. Diaz y Diaz, and M. Olivier, Subexponential algorithms
for class and unit group computations, J. Symb. Comp. 24 (1997),
433–441.

[CDyDO98] , Computing ray class groups, conductors, and discriminants,
Math. Comp. 67 (1998), no. 222, 773–795.

[CF76] S. Chowla and J. Friedlander, Class numbers and quadratic residues,
Glasgow Math. J. 17 (1976), 47–52.

[CG90] B. Chor and O. Goldreich, An improved parallel algorithm for integer
gcd, Algorithmica 5 (1990), 1–10.

[Che03] K. H. F. Cheng, Some results concerning periodic continued fractions,
Ph.D. thesis, University of Calgary, Calgary, 2003.

[Che94] J. H. Chen, A new solution of the Diophantine equation x2 + 1 = 2y4,
J. Number Theory 48 (1994), no. 1, 62–74.

[Cho49] S. Chowla, Improvement of a theorem of Linnik and Walfisz, Proc.
London Math. Soc. 50 (1949), 423–429.

[Chr61] G. Chrystal, Algebra, Part II, Dover Publications, New York, 1961.
[CL83] H. Cohen and H. W. Lenstra, Jr., Heuristics on class groups of num-

ber fields, Number Theory, Lecture Notes in Mathematics Vol. 1068,
Springer-Verlag, New York, 1983, pp. 33–62.

[CL84] , Heuristics on class groups, Number Theory, Noordwijkerhout,
1983, Lecture Notes in Mathematics Vol. 1052, Springer-Verlag, New
York, 1984, pp. 26–36.

[CM05] A. C. Cojocaru and M. R. Murty, An Introduction to Sieve Methods
and their Application, Cambridge University Press, Cambridge, 2005.

References 467

[CM07] M. Cipu and M. Mignotte, On the number of solutions to systems of
Pell equations, Journal of Number Theory 125 (2007), 356–392.

[CM87] H. Cohen and J. Martinet, Class groups of number fields: Numerical
heuristics, Math. Comp. 48 (1987), no. 177, 123–137.

[Coh62] H. Cohn, A Second Course in Number Theory, John Wiley and Sons,
New York, 1962.

[Coh93] H. Cohen, A course in Computational Algebraic Number Theory,
Springer-Verlag, Berlin, 1993.

[Col17] H. T. Colbrooke, Algebra with Arithmetic and Mensuration from the
Sanscrit of Brahmegupta and Bhascara, John Murray, London, 1817.

[Con03] J. B. Conrey, The Riemann hypothesis, Notices of the AMS 50 (2003),
341–35.

[Con97] S. Contini, Factoring integers with the self-initializing quadratic sieve,
Master’s thesis, University of Georgia, Athens, Georgia, 1997.

[Cor08] G. Cornacchia, Sur di un metodo per la risoluzione in numeri in-
teri dell’ equazione

∑n
h=0 Chxn−hyh = P , Giornale di Matematiche

di Battaglini 46 (1908), 33–90.
[Cox89] D. A. Cox, Primes of the form x2 + ny2, John Wiley and Sons, New

York, 1989.
[CP05] R. Crandall and C. Pomerance, Prime numbers: A computational per-

spective, 2nd ed., Springer-Verlag, New York, 2005.
[CW05] K. Cheng and H. Williams, Some results concerning certain periodic

continued fractions, Acta. Arith. 117 (2005), no. 3, 247–264.
[Dav00] H. Davenport, Multiplicative Number Theory, rev. ed., Springer-Verlag,

New York, 2000.
[Dav60] H. Davenport, The Higher Arithmetic, Harper and Brothers, New

York, 1960.
[Ded96] R. Dedekind, Theory of Algebraic Integers, J. Stillwell (trans.), Cam-

bridge University Press, Cambridge, 1996.
[Deg58] G. Degert, Über die Bestimmung der Grundeinheit gewisser reell-

quadratischer Zahlkörper, Math. Sem. Univ. Hamburg 22 (1958), 92–
97.

[deM88] I. G. deMille, The continued fraction of (1+
√

D)/2 for certain infinite
classes of D with applications to units and class numbers, Master’s
thesis, Carleton University, Ottawa, 1988.

[DF04] D. S. Dummit and R. M. Foote, Abstract algebra, 3rd ed., John Wiley
and Sons, New York, 2004.

[DF64] B. N. Delone and D. K. Faddeev, The Theory of Irrationalities of
the Third Degree, Translations of Mathematical Monographs Vol. 10,
American Mathematical Society, Providence, RI, 1964.

[dH04] R. de Haan, A fast, rigorous technique for verifying the regulator of a
real quadratic field, Master’s thesis, University of Amsterdam, 2004.

[DH76] W. Diffie and M. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory 22 (1976), 472–492.

[dHJW07] R. de Haan, M. J. Jacobson, Jr., and H. C. Williams, A fast, rigorous
technique for computing the regulator of a real quadratic field, Math.
Comp. 76 (2007), no. 260, 2139–2160.

[Dic19] L. E. Dickson, History of the Theory of Numbers, Carnegie Institution
of Washington, Publication No. 256, 1919; Dover Publications, New
York, 2005.

468 References

[Dij87] E. J. Dijksterhuis, Archimedes, Princeton University Press, Princeton,
NJ, 1987.

[Dir93] P. G. L. Dirichlet, Vorlesungen über zahlentheorie, 4th ed., Vieweg,
Braunschweig, 1893.

[Dir99] , Lectures on Number Theory, American Mathematical Society,
Providence, RI, 1999.

[DK02] I. Damg̊ard and M. Koprowski, Generic lower bounds for root extrac-
tion and signature schemes in general groups, Advances in Cryptology
- EUROCRYPT 2002, Lecture Notes in Computer Science Vol. 2332,
Springer, Berlin, 2002, pp. 256–271.

[DL06] C. Doche and T. Lange, Arithmetic of elliptic curves, Handbook of
Elliptic and Hyperelliptic Curve Cryptography (H. Cohen and G. Frey,
eds.), Chapman and Hall/CRC, New York, 2006, pp. 267–302.

[DPLR91] E. Dubois and R. Paysant-Le Roux, Sur la longueur du développement
en fraction continue de

√
f(n), Journées Arithmétiques, 1989 (Luminy,

1989), Astérisque Vol. 198–200, 1991, pp. 107–119 (1992).
[DS62] B. Datta and A. N. Singh, History of Hindu Mathematics, Asia Pub-

lishing House, Bombay, 1962, Part II.
[Duj94] M. Dujardin, Sur une erreur relevée dans la “Théorie des nombres”

de Legendre, Computes Rendus, Acad. des Sciences, Paris 119 (1894),
843–844.

[Dül91] S. Düllmann, Ein Algorithmus zur Bestimmung der Klassengruppe pos-
itiv definiter binärer quadratischer Formen, Ph.D. thesis, Universität
des Saarlandes, Saarbrücken, Germany, 1991.

[Edw05] H. M. Edwards, Essays in Constructive Mathematics, Springer, New
York, 2005.

[Edw07] , Composition of binary quadratic forms and the foundations
of mathematics, Springer, New York, 2007.

[Edw74] , Riemann’s zeta function, Academic Press, New York, 1974.
[EGG+06] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard,

Solving sparse rational linear systems, International Symposium on
Symbolic and Algebraic Computation (ISSAC’06) (Genova, Italy),
ACM Press, New York, 2006, pp. 63–70.

[EGG+07] , Faster inversion and other black box matrix computations us-
ing efficient block projections, International Symposium on Symbolic
and Algebraic Computation (ISSAC’07) (Waterloo, Ontario, Canada),
ACM Press, New York, 2007, pp. 143–150.

[Eis44a] G. Eisenstein, Allgemeine Untersuchengen über dir Formen dritten
Grades mit drei variabeln, welche der Kreistheilung ihre Enstehung
verdanken, J. Reine Angew. Math. 28 (1844), 289–374.

[Eis44b] , Aufgaben, J. Reine Angew. Math. 27 (1844), 86–87.
[Ell69] P. D. T. A. Elliott, On the size of L(1, χ), J. Reine Angew. Math. 236

(1969), 26–36.
[Ell70] , The distribution of the quadratic class number, Litovsk. Math.

Sb. 10 (1970), 189–197.
[Ell73] , On the distribution of the values of quadratic L-series in the

half-plane σ > 1/2, Invent. Math. 21 (1973), 319–338.
[Ell80] , Probabilistic Number Theory II, Springer-Verlag, Berlin, 1980.

References 469

[Ell87] J. H. Ellis, The History of Non-Secret Encryption, CESG, 1987, Declas-
sified and available at http://www.cseg.gov.uk/site/publications/
media/ellis.pdf.

[Ene02] G. Eneström, Über der Ursprung der Benennung “Pellsche Gle-
ichung,” Bibliotheca Math. 3 (1902), pp. 204–207.

[ET02] P. Ebinger and E. Teske, Factoring N = pq2 with the Elliptic Curve
Method, Algorithmic Number Theory - ANTS-V (Sydney, Australia),
Lecture Notes in Computer Science Vol. 2369, Springer-Verlag, Berlin,
2002, pp. 475–490.

[Eul43] L. Euler, Correspondence, Mathématique et Physique P. H. Fuss (ed.),
Vol. T1, Imperial Academy of Science, St. Petersbourg, 1843, pp. 35–
39.

[Far94] A. Farhane, Minoration de le période du développement de√
a2n2 + bn + c en fraction continue, Acta. Arith. 67 (1994), no. 1,

63–67.
[Fer12] P. Fermat, Oeuvres de fermat, Vol. II, Gauthier-Villars, Paris, 1891–

1912.
[FK06] É. Fouvry and J. Klüners, Cohen-Lenstra heuristics of quadratic num-

ber fields, Algorithmic Number Theory - ANTS-VII (Berlin, Germany),
Lecture Notes in Computer Science Vol. 4076, Springer-Verlag, Berlin,
2006, pp. 40–55.

[FOPS04] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, RSA-OAEP is
secure under the RSA assumption, Journal of Cryptology 17 (2004),
81–104.

[Fow87] D. H. Fowler, The Mathematics of Plato’s Academy: A new reconstruc-
tion, 2nd ed., Clarendon Press, Oxford, 1987, 1999.

[FP03] P.-A. Fouque and G. Poupard, On the security of RDSA, Advances in
Cryptology - EUROCRYPT 2003, Lecture Notes in Computer Science
Vol. 2656, Springer, Berlin, 2003, pp. 462–476.

[Fra72] P. M. Fraser, Ptolemaic Alexandria, The Clarendon Press, Oxford,
1972.

[Fri88] C. Friesen, On continued fractions of given period, Proc. Amer. Math.
Soc. 103 (1988), no. 1, 9–14.

[Fun90] G. W. Fung, Computational problems in complex cubic fields, Ph.D.
thesis, University of Manitoba, Winnipeg, Manitoba, 1990.

[Gag03] M. Gagné, Identity-based encryption: A survey, RSA Laboratories
Cryptobytes 6 (2003), no. 1, 10–19.

[Gam85] T. El Gamal, A public key cryptosystem and a signature scheme based
on discrete logarithms, IEEE Transactions on Information Theory 31
(1985), 469–472.

[Gau86] C. F. Gauss, Disquisitiones Arithmeticae, A. A. Clarke (trans.),
Springer-Verlag, New York, 1986.

[GJS01] M. Giesbrecht, M. J. Jacobson, Jr., and A. Storjohann, Algorithms
for large integer matrix problems, Applied Algebra, Algebraic Algo-
rithms and Error-Correcting Codes - AAECC-14 (Melbourne, Aus-
tralia), Lecture Notes in Computer Science Vol. 2227, Springer, Berlin,
2001, pp. 297–307.

[Gol04] O. Goldreich, The Foundations of Cryptography - Basic Applications,
Cambridge University Press, Cambridge, 2004.

470 References

[Gol76] D. Goldfeld, The class number of quadratic fields and the conjectures
of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
3 (1976), no. 4, 623–663.

[Gol85] , Gauss’s class number problem for imaginary quadratic fields,
Bulletin of the AMS (N.S.) 13 (1985), no. 1, 23–37.

[Gor93] D. Gordon, Discrete logarithms using the number field sieve, SIAM J.
Discrete Math. 6 (1993), 124–138.

[Gor98] , A survey of fast exponentiation methods, J. Algorithms 27
(1998), 129–146.

[Gou04] X. Gourdon, The 1013 first zeros of the Riemann zeta func-
tion, and zeros computation at very great height, Available at
http://numbers.computation.free.fr/Constants/Miscellaneous/

zetazeros1e13-1e24.pdf, 2004.
[GQ88] L. C. Guillou and J.-J. Quisquater, A practical zero-knowledge protocol

fitted to security microprocessors minimizing both transmission and
memory, Advances in Cryptology - EUROCRYPT’88, Lecture Notes
in Computer Science Vol. 330, Springer, Berlin, 1988, pp. 123–128.

[Gra07] T. Granlund, GNU MP: The GNU Multiprecision Arithmetic Library,
Edition 4.2.2, http://gnulib.org/manual/, 2007.

[Gra91] A. Granville, The lattice points of an n-dimensional tetrahedron, Ae-
quationes Math. 41 (1991), 234–241.

[GS02] A. Granville and K. Soundararajan, Upper bounds for |L(1, χ)|, Quar-
terly J. Math. 53 (2002), 265–284.

[GS03] , The distribution of values of L(1, χd), GAFA, Geometric and
Functional Analysis 13 (2003), 992–1028.

[GTTD07] P. Gaudry, E. Thomé, N. Thériault, and C. Diem, A double large prime
variation for small genus hyperelliptic index calculus, Math. Comp. 76
(2007), no. 257, 475–492.

[GW08] J. E. Gower and S. S. Wagstaff, Jr., Square form factorization, Math.
Comp. 77 (2008), no. 261, 551–588.

[GZ86] B. Gross and D. Zagier, Heegner points and derivatives of L-series,
Invent. Math. 84 (1986), 225–320.

[Hal02] S. Hallgren, Polynomial-time quantum algorithms for Pell’s equation
and the principal ideal problem, STOC ’02: Proceedings of the Thirty-
Fourth Annual ACM Symposium on Theory of Computing, 2002,
pp. 653–658.

[Hal05] , Fast quantum algorithms for computing the unit group and
class group of a number field, STOC ’05: Proceedings of the Thirty-
Seventh Annual ACM Symposium on Theory of Computing, 2005,
pp. 468–474.

[Ham02] S. Hamdy, Über die Sicherheit und Effizienz kryptografischer Verfahren
mit Klassengruppen imaginär-quadratischer Zahlkörper, Ph.D. thesis,
Technische Universität Darmstadt, Darmstadt, Germany, 2002.

[Ham08] , libiq: A library for arithmetic in class groups of imagi-
nary quadratic orders, Software, 2008, http://faculty.uaeu.ac.ae/
s_hamdy/libiq.html.

[Han65] H. Hankel, Zur Geschichte der Mathematik in Altertum und Mittelal-
ter, 2nd ed., Georg Olms Verlag, Hildesheim, 1965.

[Has65] H. Hasse, Über mehrklassige, aber eingeschlechtige reell-quadratische
Zahlkörper, Elem. Math. 20 (1965), 49–59.

References 471

[Hea12] T. L. Heath, The Works of Archimedes with the Method of Archimedes,
Cambridge University Press, Cambridge, 1912; reprinted by Dover
publication, New York, undated.

[Hea56] , The Thirteen Books of Euclid’s Elements, Dover, New York,
1956.

[Hea64] , Diophantus of Alexandria: A Study in the History of Greek
Algebra, Dover, New York, 1964.

[Hea81] , A History of Greek Mathematics, Vols. I and II, Dover, New
York, 1981.

[Hec81] E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer-
Verlag, New York, 1981.

[Hee52] K. Heegner, Diophantische Analysis und Modulfunctionen, Math. Z.
56 (1952), 227–253.

[Hen74] M. D. Hendy, Applications of a continued fraction algorithm to some
class number problems, Math. Comp. 28 (1974), 267–277.

[HHR+05] H. Häffner, W. Hänsell, C. F. Roos, J. Benhelm, D. Chek al kar,
M. Chwalla, U. D. Rapol T. Körber and, M. Riebe, P. O. Schmidt,
C. Becher, O. Gühne, W. Dür, and R. Blatt, Scalable multiparticle
entanglement of trapped ions, Nature 438 (2005), 643–646.

[HJPT98] D. Hühnlein, M. J. Jacobson, Jr., S. Paulus, and T. Takagi, A cryp-
tosystem based on non-maximal imaginary quadratic orders with fast
decryption, Advances in Cryptology - EUROCRYPT ’98, Lecture
Notes in Computer Science Vol. 1403, Springer, Berlin, 1998, pp. 294–
307.

[HJW01] D. Hühnlein, M. J. Jacobson, Jr., and D. Weber, Towards practi-
cal non-interactive public-key cryptosystems using non-maximal imag-
inary quadratic orders (extended abstract), Selected Areas in Cryp-
tography — SAC2000, Lecture Notes in Computer Science Vol. 2012,
Springer, Berlin, 2001, pp. 275–287.

[HJW03] , Towards practical non-interactive public-key cryptosystems
using non-maximal imaginary quadratic orders, Designs, Codes and
Cryptography 30 (2003), no. 3, 281–299.

[HK89a] F. Halter-Koch, Einige periodische Kettenbruchentwicklungen und
Grundeinheiten quadratischer Ordnungen, Abh. Math. Sem. Univ.
Hamburg 59 (1989), 157–169.

[HK89b] , Reell-quadratische Zahlkörper mit großer Grundeinheit, Abh.
Math. Sem. Univ. Hamburg 59 (1989), 171–181.

[HK90] , Quadratische Ordnungen mit grosser Klassenzahl, J. Number
Theory 34 (1990), 82–94.

[HK91] , Continued fractions of given symmetric period, Fibonacci
Quart. 29 (1991), no. 4, 298–303.

[HL23] G. H. Hardy and J. E. Littlewood, Partitio numerorum III: On the
expression of a number as a sum of primes, Acta Mathematica 44
(1923), 1–70.

[HM00a] S. Hamdy and B. Möller, Security of cryptosystems based on class
groups of imaginary quadratic orders, Advances in Cryptology -
ASIACRYPT 2000, Lecture Notes in Computer Science Vol. 1976,
Springer, Berlin, 2000, pp. 234–247.

472 References

[HM00b] D. Hühnlein and J. Merkle, An efficient NICE-Schnorr-type signature
scheme, Proceedings of PKC 2000, Lecture Notes in Computer Science
Vol. 1751, Springer, Berlin, 2000.

[HM89] J. L. Hafner and K. S. McCurley, A rigorous subexponential algorithm
for computation of class groups, J. Amer. Math. Soc. 2 (1989), 837–
850.

[HMU07] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to
Automata Theory, Languages, and Computation, 3rd ed., Addison-
Wesley, Reading, MA, 2007.

[HMV04] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography, Springer-Verlag, New York, 2004.

[Hof80] J. Hoffstein, On the Siegel-Tatuzawa theorem, Acta Arith. 38 (1980),
167–174.

[Hof94] J. E. Hofmann, Studien zur Zahlentheorie Fermats, Abh. Preuss. Akad.
Wiss., 1994, no. 7.

[Hom46] Homer, The Odyssey, E. V. Rieu (trans.) Penguin Books, Baltimore,
1946.

[Hoo84] C. Hooley, On the Pellian equation and the class number of indefinite
binary quadratic forms, J. Reine Angew. Math. 353 (1984), 98–131.

[HP00] D. Hühnlein and S. Paulus, On the implementation of cryptosystems
based on real quadratic number fields, Seventh Annual Workshop on Se-
lected Areas in Cryptography SAC(2000), Lecture Notes in Computer
Science Vol. 2012, Springer, New York, 2000, pp. 288–302.

[Hua82] L. K. Hua, Introduction to Number Theory, Springer-Verlag, New York,
1982.

[Hüh00] D. Hühnlein, Quadratic orders for NESSIE – overview and parameter
sizes of three public key families, Technical Report TI-3/00, Depart-
ment of Computer Science, TU Darmstadt, Germany, 2000, Available
at http://www.informatik.tu-darmstadt.de/TI/Welcome.html.

[Hüh01] , Faster generation of NICE-Schnorr signatures, Topics in
Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA Con-
ference 2001, Lecture Notes in Computer Science Vol. 2020, Springer,
Berlin, 2001, pp. 1–12.

[Hun74] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
[Hur89] A. Hurwitz, Über eine besondere Art der Kettenbruchentwicklung

reeller Grössen, Acta. Math. 12 (1889), 367–405.
[IK04] H Iwaniec and E. Kowalski, Analytic number theory, American Math-

ematical Society, Providence, RI, 2004.
[IKW90] N. Ishii, P. Kaplan, and K. S. Williams, On Eisenstein’s problem, Acta

Arith. 54 (1990), 323–345.
[Inc34] E. L. Ince, Cycles of Reduced Ideals in Quadratic Fields, Mathematical

Tables Vol. IV, British Association for the Advancement of Science,
London, 1934.

[IR82] K. Ireland and M. Rosen, A Classical Introduction to Modern Number
Theory, Springer, New York, 1982.

[Jac00] M. J. Jacobson, Jr., Computing discrete logarithms in quadratic orders,
Journal of Cryptology 13 (2000), 473–492.

[Jac98] , Experimental results on class groups of real quadratic
fields (extended abstract), Algorithmic Number Theory - ANTS-III

References 473

(Portland, Oregon), Lecture Notes in Computer Science Vol. 1423,
Springer-Verlag, Berlin, 1998, pp. 463–474.

[Jac99a] , Applying sieving to the computation of quadratic class groups,
Math. Comp. 68 (1999), no. 226, 859–867.

[Jac99b] , Subexponential class group computation in quadratic orders,
Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany,
1999.

[Jeb93] T. Jebelean, A Generalization of the Binary GCD Algorithm, ACM
International Symposium on Symbolic and Algebraic Computation
(M. Bronstein, ed.), ACM Press, New York, 1993, pp. 111–116.

[Jeb95] , A double-digit Lehmer-Euclid algorithm for finding the GCD
of long integers, J. Symbolic Comput. 19 (1995), no. 1–3, 145–157.

[JJ00] É. Jaulmes and A. Joux, A NICE cryptanalysis, Advances in Cryp-
tology - EUROCRYPT 2000, Lecture Notes in Computer Science Vol.
1807, Springer, Berlin, 2000, pp. 382–391.

[JLW95] M. J. Jacobson, Jr., R. F. Lukes, and H. C. Williams, An investigation
of bounds for the regulator of quadratic fields, Experimental Mathe-
matics 4 (1995), no. 2, 211–225.

[JPW03] M. J. Jacobson, Jr., Á. Pintér, and P. G. Walsh, A computational
approach for solving y2 = 1k + 2k + · · ·+ xk, Math. Comp. 72 (2003),
no. 244, 2099–2110.

[JRW06] M. J. Jacobson, Jr., S. Ramachandran, and H. C. Williams, Numerical
results on class groups of imaginary quadratic fields, Algorithmic Num-
ber Theory - ANTS-VII (Berlin, Germany), Lecture Notes in Com-
puter Science Vol. 4076, Springer-Verlag, Berlin, 2006, pp. 87–101.

[JSS07a] M. J. Jacobson, Jr., R. Scheidler, and A. Stein, Cryptographic protocols
on real hyperelliptic curves, Advances in Mathematics of Communica-
tions 1 (2007), no. 2, 197–221.

[JSS07b] , Fast arithmetic on hyperelliptic curves via continued fraction
expansions, Advances in Coding Theory and Cryptology (T. Shaska,
W. C. Huffman, D. Joyner, and V. Ustimenko, eds.), Series on Coding
Theory and Cryptology Vol. 3, World Scientific Publishing, Singapore,
2007, pp. 201–244.

[JSW01] M. J. Jacobson, Jr., R. Scheidler, and H. C. Williams, The efficiency
and security of a real quadratic field based key exchange protocol, Pub-
lic Key cryptography and Computational Number Theory, Walter de
Gruyter, Berlin, 2001, pp. 89–112.

[JSW06a] M. J. Jacobson, Jr., R. E. Sawilla, and H. C. Williams, Efficient ideal
reduction in quadratic fields, International Journal of Mathematics and
Computer Science 1 (2006), 83–116.

[JSW06b] M. J. Jacobson, Jr., R. Scheidler, and H. C. Williams, An improved real
quadratic field based key-exchange procedure, J. Cryptology 19 (2006),
211–239.

[JSW08] M. J. Jacobson, Jr., R. Scheidler, and D. Weimer, An adaptation of the
NICE cryptosystem to real quadratic orders, Progress in Cryptology -
AFRICACRYPT 2008, Lecture Notes in Computer Science Vol. 5023,
Springer-Verlag, Berlin, 2008, pp. 191–208.

[JvdP02] M. J. Jacobson, Jr. and A. J. van der Poorten, Computational aspects
of NUCOMP, Proc. ANTS-V, Lecture Notes in Computer Science Vol.
2369, Springer, Berlin, 2002, pp. 120–133.

474 References

[JW00] M. J. Jacobson, Jr. and H. C. Williams, The size of the fundamental
solutions of consecutive Pell equations, Experimental Mathematics 9
(2000), no. 4, 631–640.

[JW02] , Modular arithmetic on elements of small norm in quadratic
fields, Designs, Codes and Cryptography 27 (2002), 93–110.

[JW03] , New quadratic polynomials with high densities of prime values,
Math. Comp. 72 (2003), no. 241, 499–519.

[Kah96] D. Kahn, The codebreakers, Scribner, New York, 1996.
[Kap98] I. Kaplansky, Letter to Richard Mollin, Kenneth Williams and Hugh

Williams, November 23, 1998.
[Khi36] A. Y. Khintchine, Zur metrischen Theorie der Diophantischen Approx-

imatisnen, Math. Z. 24 (1936), 706–714.
[Khi97] , Continued fractions, Dover, New York, 1997.
[Kis48] A. A. Kiselev, An expression for the number of classes of ideals of real

quadratic fields by means of Bernoulli numbers, Doklady Akad. Nauk
SSSR (N.S.) 61 (1948), 777–779, (in Russian).

[Kle06] T. Kleinjung, On polynomial selection for the general number field
sieve, Math. Comp. 75 (2006), no. 256, 2037–2047.

[KM07] N. Koblitz and A. Menezes, Another look at “provable security,” Jour-
nal of Cryptology 20 (2007) 3–37.

[KM61] R. Kortum and G. McNeil, A Table of Periodic Continued Fractions,
Lockheed Aircraft Corp., Sunnyvale, CA, 1961.

[Kno75a] W. Knorr, Archimedes and the measurement of the circle: A new in-
terpretation, Arch. Hist. Exact Sci. 15 (1975), 115–140.

[Kno75b] , The Evolution of the Euclidean Elemets, D. Reidel, Dordrecht,
Boston, 1975.

[Kno86] , The Ancient Tradition of Geometric Problems, Birkhäuser,
Boston, 1986.

[Kno93] , Arithmetike stoicheiosis: on Diophantus and Hero of Alexan-
dria, Historia Math. 20 (1993), no. 2, 180–192.

[Knu97] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental
algorithms, 3rd ed., Addison-Wesley, Reading, MA, 1997.

[Knu98] , The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, 3rd ed., Addison-Wesley, Reading, MA, 1998, pp. 333–379.

[Kob87] N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), 203–
209.

[Kon01] H. Konen, Geschichte der Gleichung t2 − du2 = 1, S. Hirzel, Leipzig,
1901.

[Kor90] D. M. Kornhauser, On the smallest solution to the general binary quad-
ratic Diophantine euqation, Acta Arith. 55 (1990), 83–94.

[Kra22] M. Kraitchik, Théorie des Nombres, Vol. T. I, Gauthier-Villars, Paris,
1922.

[Kra26] , Théorie des Nombres, Vol. T. II, Gauthier-Villars, Paris, 1926.
[Kru80] B. Krumbiegel, Das problema bovinum des Archimedes, Zeitschrift für

Math. u. Physik (Hist. Litt. Abtheilung) 25 (1880), 121–136.
[Lag68] J. L. Lagrange, Sur la solution des problèmes indétermine’s du second

degré, Oeuvres, Vol. II Gauthier-Villars, Paris, 1868, pp. 377–535.
[Lag79] J. C. Lagarias, Succinct certificates for the solvability of binary quad-

ratic Diophantine equations (extended abstract), Proc. 20th IEEE
Symp. on Foundations of Computer Science, 1979, pp. 47–54.

References 475

[Lag80a] , On the computational complexity of determining the solvability
of the equation X2−DY 2 = −1, Trans. Amer. Math. Soc. 260 (1980),
485–508.

[Lag80b] , Worst-case complexity bounds for algorithms in the theory of
integral quadratic forms, J. Algorithms 1 (1980), 142–186.

[Lag81] , Succinct certificates for the solvability of binary quadratic Dio-
phantine equations, Technical Memorandum 81-11216-54, Bell Labs,
1981.

[Lan18] E. Landau, Über die Klassenzahl imaginär-quadratischer Zahlkörper,
Gött. Nachr. (1918), 285–295.

[Lan36] , On a Titchmarsh-Estermann sum, J. London Math. Soc. II
(1936), 242–245.

[Lan50] , Elementare Zahlentheorie, Chelsea, New York, 1950.
[Lan91] S. Lang, Algebraic Number Theory, 2nd ed., Springer, Berlin, 1991.
[Le94] M. Le, Upper bounds for class numbers of real quadratic fields, Acta.

Arith. 68 (1994), 141–144.
[Le95] , Some exponential Diophantine equations I: The equation

D1x
2 − D2y

2 = λkz, Journal of Number Theory 55 (1995), 209–221.
[Leh26a] D. H. Lehmer, A list of errors in tables of the Pell equation, Bull.

Amer. Math. Soc. 32 (1926), 545–550.
[Leh26b] , On the indeterminate equation y2 − p2du2 = 1, Annals of

Math. 27 (1926), 471–476.
[Leh28] , On the multiple solutions of the Pell equation, Annals of Math.

30 (1928), 66–72.
[Leh38] , Euclid’s algorithm for large numbers, The American Mathe-

matical Monthly 45 (1938), no. 4, 227–233.
[Leh40] , The lattice points of an n-dimensional tetrahedron, Duke

Math. J. 7 (1940), 341–353.
[Leh41] , Guide to Tables in the Theory of Numbers, National Research

Council, Washington, DC, 1941.
[Leh56] , On the Diophantine equation x3 + y3 + z3 = 1, J. London

Math. Soc. 31 (1956), 275–280.
[Leh64] , On a problem of Störmer, Illinois Journal of Mathematics 8

(1964), 57–79.
[Len00] A. K. Lenstra, Integer factoring, Designs, Codes and Cryptography 19

(2000), 101–128.
[Len02] H. W. Lenstra, Jr., Solving the Pell equation, Notices of the the AMS

49 (2002), no. 2, 182–192.
[Len82] , On the calculation of regulators and class numbers of quadratic

fields, London Math. Soc. Lecture Note Series 56 (1982), 123–150.
[Len87] , Factoring integers with elliptic curves, Annals of Math. (2)

126 (1987), 649–673.
[Les73] G. E. Lessing, Zur Geschichte der Literatur. aus den schatzen der herz.

Bibliothek zu Wolfenbüttel., Zweiter Beitrag. Braunschweig, 1773.
[Les97] , Sämmtliche Schriften, Lerausgegeben von K. Lachmannm, be-

sorgt durch F. Munker, Göschen, Leipzig, Band 12, 1897, pp. 100–107,
110–115.

[Lev02] S. Levy, Crypto: How the code rebels beat the government, Penguin,
London, 2002.

476 References

[Lév36] P. Lévy, Sur le développement en fraction continue d’un nombre choisi
au hasard, Compositio Math. 3 (1936), 286–303 reprinted in Oemres
de Paul Lévy Vol. 6, Gauthier-Villars, Paris, 1980, pp. 285–302.

[Lev88] C. Levesque, Continued fraction expansions and fundamental units, J.
Math. Phys. Sci. 22 (1988), no. 1, 11–44.

[Lit28] J. E. Littlewood, On the class number of the corpus P (
√−k), Proc.

London Math. Soc. 27 (1928), 358–372.
[Lju42] W. Ljunggren, Zur Theorie der Gleichung x2 + 1 = dy4, Avh. Norske

Vid. Akad. Olso (1942), no. 5, 1–27.
[LL90] A. K. Lenstra and H. W. Lenstra, Jr., Algorithms in number theory,

Handbook of theoretical computer science (J. van Leeuwen, ed.), El-
sevier Science Publishers, Amsterdam, 1990, pp. 673–715.

[LL93] A. K. Lenstra and H. W. Lenstra, Jr. (eds.), The Development of the
Number Field Sieve, A. K. Lenstra and H. W. Lenstra, Jr. (eds.),
Lecture Notes in Mathematics Vol. 1554, Springer-Verlag, New York,
1993.

[LO77] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev
density theorem, Algebraic Number Fields (A. Frohlich, ed.), Academic
Press, New York, 1977, pp. 409–464.

[Lou02a] S. Louboutin, Computation of class numbers of quadratic number
fields, Math. Comp. 71 (2002), no. 240, 1735–1743.

[Lou02b] , Explicit upper bounds for |L(1, χ)| for primitive even Dirichlet
characters, Acta Arith. 111 (2002), 1–18.

[Lou89] , Une version effective d’un théorèm de A. Schinzel sur les
longueurs des périodes de certains développements en fractions contin-
ues, C. R. Acad. Sci. Paris. Sér. I Math. 308 (1989), no. 17, 511–513.

[LP92] H. W. Lenstra, Jr. and C. Pomerance, A rigorous time bound for fac-
toring integers, J. Amer. Math. Soc. 5 (1992), 483–516.

[LR86] C. Levesque and G. Rhin, A few classes of periodic continued fractions,
Util. Math. 30 (1986), 79–107.

[LW92] L. Lorentzen and H. Waadeland, Continued Fractions with Applica-
tions, North-Holland, Amsterdam, Netherlands, 1992.

[Mad01] D. Madden, Constructing families of long continued fractions, Pac. J.
Math. 198 (2001), no. 1, 123–147.

[Mah94] M. S. Mahoney, The Mathematical Career of Pierre de Fermat, 2nd
ed., Princeton University Press, NJ, 1994.

[Mar07] A. A. Martinez, Euler’s “mistake?” The radical product rule in histor-
ical perspective, Amer. Math. Monthly 114 (2007), 273–285.

[Mar77a] D. A. Marcus, Number fields, Springer-Verlag, New York, 1977.
[Mar77b] A. Martin, Solution, The Analyst 4 (1877), 154–155.
[Mas79] J. Masley, Where are number fields with small class numbers?, Num-

ber Theory, Proceedings of the Southern Illinois Conference (Southern
University, Carbondale, Illinois), Lecture Notes in Mathematics, vol.
751, Springer, Berlin, 1979, pp. 221–242.

[Mat00] K. R. Matthews, The diophantine equation x2 − Dy2 = N , D > 1, in
integers, Expositiones Math. 18 (2000), 323–331.

[Mat93] Y. Y. Matiyasevich, Hilbert’s tenth problem, MIT Press, Cambridge,
MA, 1993.

References 477

[Mau00] M. Maurer, Regulator approximation and fundamental unit compu-
tation for real-quadratic orders, Ph.D. thesis, Technische Universität
Darmstadt, Darmstadt, Germany, 2000.

[MC02a] R. A. Mollin and K. Cheng, Beepers, creepers, and sleepers, Int. Math.
J. 2 (2002), no. 9, 951–956.

[MC02b] , Continued fractions beepers and Fibonacci numbers, C. R.
Math. Acad. Sci. Soc. R. Can. 24 (2002), no. 3, 102–108.

[MC04] , Period lengths of continued fractions involving Fibonacci num-
bers, Fibonacci Quart. 42 (2004), 161–169.

[McC89] K. S. McCurley, Cryptographic key distribution and computation in
class groups, Proc. NATO ASI on Number Theory and Applica-
tions (R. A. Mollin, ed.), Kluwer Academic Press, Amsterdam, 1989,
pp. 459–479.

[MCG02] R. A. Mollin, K. Cheng, and B. Goddard, Pellian polynomials and
period lengths of continued fractions, JP J. Algebra Number Theory
Appl. (2002), no. 1, 47–60.

[McL03a] J. McLaughlin, Multi-variable polynomial solutions to Pell’s equation
and fundamental units in real quadratic fields, Pacific J. Math. 210
(2003), no. 2, 335–349.

[McL03b] , Polynomial solutions to Pell’s equation and fundamental units
in real quadratic fields, J. London Math. Soc. (2) 67 (2003), no. 1, 16–
28.

[Mih03] P. Mihailescu, A class number free criterion for Catalan’s conjecture,
J. Number Theory 99 (2003), 225–231.

[Mih04] , Primary cyclotomic units and a proof of Catalan’s conjecture,
J. Reine Angew. Math. 572 (2004), 167–195.

[Mil86] V. Miller, Use of elliptic curves in cryptography, Advances in Cryp-
tology — CRYPTO ’85, Lecture Notes in Computer Science Vol. 218,
Springer, Berlin, 1986, pp. 417–426.

[MM05] A. Magidin and D. McKinnon, Gauss’s Lemma for number fields,
Amer. Math. Monthly 112 (2005), 385–416.

[Mol05] R. A. Mollin, Codes, Chapman and Hall/CRC Press, Boca Raton, FL,
2005.

[Mol07] , An Introduction to Cryptography, 2nd ed., Chapman and
Hall/CRC Press, Boca Raton, FL, 2007.

[Mol95] , Quadratics, CRC Press, Boca Raton, FL, 1995.
[Mor60] L. J. Mordell, On a Pellian equation conjecture, Acta Arith. 6 (1960),

137–144.
[Mor61] , On a Pellian equation conjecture (II), J. London Math. Soc.

36 (1961), 282–288.
[Mor69] , Diophantine Equations, Academic Press, London, 1969.
[MS06] J. A. Muir and D. R. Stinson, Minimality and other properties of the

width-w nonadjacent form, Math. Comp. 75 (2006), 369–384.
[MS99] T. Mulders and A. Storjohann, Diophantine linear system solving,

Proc. International Symposium on Symbolic and Algebraic Compu-
tation: ISSAC’99, 1999, pp. 281–288.

[MST99] V. Müller, A. Stein, and C. Thiel, Computing discrete logarithms in
real quadratic congruence function fields of large genus, Math. Comp.
68 (1999), 807–822.

478 References

[Mül06] S. Müller, Some remarks on Williams’ public-key crypto functions, Fi-
bonacci Quart. 44 (2006), 224–234.

[MV99] H. L. Montgomery and R. C. Vaughan, Extreme values of Dirichlet L-
functions at 1, Number Theory in progress, de Gruyter, Berlin, 1999,
pp. 1039–1052.

[MvdPW94] R. A. Mollin, A. J. van der Poorten, and H. C. Williams, Halfway to
a solution of X2 − DY 2 = −3, J. Théorie des Nombres Bordeaux 6
(1994), 421–459.

[MvOV96] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptograph, Series on Discrete Mathematics and Its Applications,
CRC Press, Boca Raton, FL, 1996.

[MW74] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers,
Acta Arith. 24 (1974), 529–542.

[MW90] R. A. Mollin and H. C. Williams, Class number problems for real quad-
ratic fields, Number Theory and Cryptograph, LMS Lecture Note Se-
ries 154, 177–195, LMS Lecture Note Series 154, Cambridge University
Press, Cambridge, 1990, pp. 177–195.

[MW91a] , Affirmative solution of a conjecture related to a sequence of
Shanks, Proc. Japan Academy 67 (1991), 70–71.

[MW91b] , On a determination of real quadratic fields of class number
one and related continued fraction period length less than 25, Proceed.
Japan Acad. 67 (1991), 20–25.

[MW91c] , On real quadratic fields of class number two, Math. Comp. 67
(1991), 20–25.

[MW92a] , Computation of the class number of a real quadratic field,
Utilitas Mathematica 41 (1992), 259–308.

[MW92b] , Consecutive powers in continued fractions, Acta. Arith. 61
(1992), no. 3, 233–264.

[MW92c] , On the period length of some special continued fractions, J.
Théor. Nombres Bordeaux 4 (1992), no. 1, 19–42.

[MW94] , Quadratic residue covers in certain real quadratic fields, Math.
Comp. 62 (1994), 885–897.

[MZ] J. McLaughlin and P. Zimmer, Some more long continued fractions, I,
Acta. Arith., to appear.

[Nag48] T. Nagell, Laste oppgaver, Nordisk Mat. Tidskr. 30 (1948), 62–64.
[Nag61] , The Diophantine equation x2 + 7 = 2n, Arkiv. for Mat. 4

(1961), 185–187.
[Nag64] , Introduction to Number Theory, Chelsea, New York, 1964.
[Nar04] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Num-

bers, 3rd ed., Springer-Verlag, Berlin, 2004.
[Nat00] National Institute of Standards and Technology (NIST), Digital signa-

ture standard (DSS), Federal Information Processing Standard, FIPS
PUB 186-2, Jan. 2000.

[Nat07] , Recommendation for key management - part 1: Gen-
eral (revised), NIST Special Publication 800-57, March, 2007,
Available at http://csrc.nist.gov/groups/ST/toolkit/documents/
SP800-57Part1_3-8-07.pdf.

[Nat76] M. B. Nathanson, Polynomial Pell equations, Proc. Amer. Math. Soc.
56 (1976), 89–92.

References 479

[Nel81] H. L. Nelson, A solution to Archimedes’ Cattle Problem, J. Recre-
ational Math. 13 (1981), 162–176.

[Nit95] A. Nitaj, L’algorithme de Cornacchia, Expositiones Math. 13 (1995),
358–365.

[Niv42] I. Niven, Quadratic Diophantine equations in the rational and quad-
ratic fields, Trans. Amer. Math. Soc. 52 (1942), 1–11.

[Niv43] , The Pell equation in quadratic fields, Bull. Amer. Math. Soc.
49 (1943), 413–416.

[Niv56] , Irrational Numbers, The Carus Mathematical Monographs,
No. 11, MAA, New York, 1956.

[Nyb49] M. Nyberg, Culminating and almost culminating continued fractions,
Norsk. Math. Tidsskr. 31 (1949), 95–99, (in Norwegian).

[NZM91] I. Niven, H. S. Zuckerman, and H. Montgomery, An Introduction to the
Theory of Numbers, 5th ed., John Wiley and Sons, New York, 1991.

[Odl01] A. M. Odlyzko, The 1022nd zero of the Riemann Zeta function, Dy-
namical Spectral and Arithmetic Zeta Function, American Mathemat-
ical Society Contemporary Math Series, no. 290, 139–144, American
Mathematical Society Contemporary Math Series, no. 290, American
Mathematical Society, Providence, RI, 2001, pp. 139–144.

[Oes79] J. Oesterlé, Versions effectives du théorèm de Chebotarev sous
l’hypothèse de Riemann généralisee, Astérisque 61 (1979), 165–167.

[Oes85] , Nombres de classes des corps quadratiques imaginaires,
Séminaire N. Bourbaki (1983–84), Astérisque 121–122 (1985), 309–
323.

[Old63] C. D. Olds, Continued fractions, Random House, New York, 1963.
[OSS84] H. Ong, C. P. Schnorr, and A. Shamir, An efficient signature scheme

based on quadratic equations, STOC ’84: Proceedings of the Sixteenth
Annual ACM symposium on Theory of computing, ACM, Washington,
DC, 1984, pp. 208–216.

[Pat03] R. D. Patterson, Creepers: Real quadratic number fields with large class
numbers, Ph.D. thesis, Macquarie University, Sydney, 2003.

[Pat41] W. Patz, Tafel der Regelmässigen Kettenbrüche für die Quadratwirzeln
aus den Natürlichen Zahlen von 1–10000, Becker and Erler, Leipzig,
1941.

[Pat55] , Tafel der Regelmässigen, Kettenbrüche und ihres vollständigen
Quotienten für Quadratwuzeln aus den Natürlichen Zahlen von 1–
10000, Akademie-Verlag, Berlin, 1955.

[Pau96a] S. Paulus, An algorithm of subexponential type computing the class
group of quadratic orders over principal ideal domains, Algorithmic
Number Theory - ANTS-II (Université Bordeaux I, Talence, France),
Lecture Notes in Computer Science, vol. 1122, Springer-Verlag, Berlin,
1996, pp. 243–257.

[Pau96b] A. F. Pauly, Paulys Real-Encyclopädie der classischen Altertumswis-
senschaft, Neue Bearbeitung begonnen von G. Wissowa fortgefürht von
W. Kroll und K. Mittelhaus, J. B. Metzler, Stuttgart, 1894–1896.

[PD98] H. Pollard and H. G. Diamond, The Theory of Algebraic Numbers, 3rd
ed., Dover, Mineola, NY, 1998.

[Per57] O. Perron, Die Lehre von den Kettenbrüchen, 3. verb. und erweiterte
Aufl., Teubner, Stuttgart, 1954–57.

480 References

[PH78] S. C. Pohlig and M. E. Hellman, An improved algorithm for comput-
ing logarithms over GF (p) and it’s cryptographic significance, IEEE
Transactions on Information Theory 24 (1978), 106–110.

[PO96] R. Peralta and E. Okamoto, Faster factoring of integers of a special
form, IEICE Transactions Fundamentals E79-A (1996), no. 4, 489–
493.

[Poe41] E. A. Poe, A few words on secret writing, Graham’s Magazine 19
(1841), 33–38.

[Pom83] C. Pomerance, Analysis and comparison of some integer factoring al-
gorithms, Computational Methods in Number Theory, (H. W. Lenstra,
Jr. and R. Tijdeman, eds.), Math. Centre Tracts, Number 154, Part I,
Mathematisch Centum, Amsterdam, 1983, pp. 89–139.

[Pom94] , The number field sieve, Proceedings of Symposia in Applied
Mathematics 48 (1994), 465–480.

[PS87] J. M. Pollard and C-P. Schnorr, An efficient solution of the congruence
x2 +ky2 ≡ m (mod n), IEEE Trans. Inform. Theory 33 (1987), no. 5,
702–709.

[PS98] G. Poupard and J. Stern, Security analysis of a practical on the
fly authentication and signature generation, Advances in Cryptology
- EUROCRYPT’98, Lecture Notes in Computer Science, vol. 1403,
Springer, Berlin, 1998, pp. 422–436.

[PT00] S. Paulus and T. Takagi, A new public-key cryptosystem over a quad-
ratic order with quadratic decryption time, Journal of Cryptology 13
(2000), 263–272.

[PvdPW07] R. D. Patterson, A. J. van der Poorten, and H. C. Williams, Charac-
terization of a generalized Shanks sequence, Pac. J. Math. 230 (2007),
185–216.

[PW85] C. D. Patterson and H. C. Williams, Some periodic continued fractions
with long periods, Math. Comp. 44 (1985), 523–532.

[PZ79] M. Pohst and H. Zassenhaus, On unit computation in real quadratic
fields, Symbolic and Algebraic Computation, Lecture Notes in Com-
puter Science, vol. 72, Springer, Berlin, 1979.

[PZ85] , Über die Berechnung von Klassenzahlen und Klassengruppen
algebraischer Zahlkörper, J. Reine Angew. Math. 365 (1985), 50–72.

[PZ97] , Algorithmic Algebraic Number Theory, Cambridge University
Press, Cambridge, 1997.

[Rab79] M. O. Rabin, Digitalized signatures and public-key functions as in-
tractable as factorization, MIT Laboratory for Computer Science
MIT/LCS/TR-212, 1979.

[Rah68] J. H. Rahn, An Introduction to Algebra, T. Brancker (trans.), Moses
Pitt, London, 1668.

[Ram00] S. Ramanujan, Collected papers of Srinivasa Ramanujan, G. H. Hardy,
P. V. S. Alyar, and B. M. Wilson (eds.), American Mathematical So-
ciety, Providence, RI, 2000.

[Ram01] O. Ramaré, Approximate formulae for L(1, χ), Acta. Arith. 100
(2001), 245–266.

[Ram06] S. Ramachandran, Class Groups of Quadratic Fields, Master’s thesis,
University of Calgary, Calgary, Alberta, 2006.

[Rib96] P. Ribenboim, The New Book of Prime Number Records, 3rd ed.,
Springer, New York, 1996.

References 481

[Ric66] C. Richaud, Sue la résolution des équations x2−Ay2 = ±1, Atti Accad.
pontif. Nuovi Lincei (1866), 177–182.

[Rie94] H. Riesel, Prime Numbers and Computer Methods for Factorization,
2nd ed., Birkhäuser, Berlin, 1994.

[Rio68] J. Riordan, Combinatorial Identities, John Wiley and Sons, New York,
1968.

[Ros02] M. Rosen, Number Theory in Function Fields, Graduate Texts in
Mathematics, vol. 210, Springer-Verlag, Berlin, 2002.

[RS62] B. Rosser and L. Schoenfeld, Approximate formulas for some functions
of prime numbers, Illinois J. Math. 6 (1962), 64–94.

[RS92] A. M. Rockett and P. Szüsz, Continued Fractions, World Scientific,
New York, 1992.

[RSA78] R. Rivest, A. Shamir, and L. Adelman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the ACM
21 (1978), 120–126.

[Rum93] R. Rumely, Numerical computations concerning the ERH, Math.
Comp. 61 (1993), 415–440.

[Sal90] A. Salomaa, Public key cryptography, Springer, Berlin, 1990.
[SBW94] R. Scheidler, J. Buchmann, and H. C. Williams, A key-exchange proto-

col using real quadratic fields, Journal of Cryptology 7 (1994), 171–199.
[Sch00] O. Schirokauer, Using number fields to compute logarithms in finite

fields, Math. Comp. 69 (2000), 1267–1283.
[Sch06] A. Schmidt, Quantum algorithm for solving the discrete logarithm prob-

lem in the class group of an imaginary quadratic field and security
comparison of current cryptosystems at the beginning of the quantum
computer age, ETRICS 2006, Lecture Notes in Computer Science, vol.
3995, Springer, Berlin, 2006, pp. 481–493.

[Sch07] , Zur Lösung von zahlentheoretischen Problemen mit klassis-
chen und Quantencomputern, Ph.D. thesis, Technische Universität
Darmstadt, Darmstadt, Germany, 2007.

[Sch08] R. J. Schoof, Computing Arakelov class groups, Surveys in algorith-
mic number theory, MSRI Publications, vol. 44, Cambridge University
Press, Cambridge, 2008, pp. 447–495.

[Sch61] A. Schinzel, On some problems of the arithmetical theory of continued
fractions, Acta. Arith. 6 (1961), 393–413.

[Sch62] A. Schinzel, On some problems of the arithmetical theory of continued
fractions II, Acta. Arith. 7 (1962), 187–298, Corrigendum, ibid, 47
(1986), 295.

[Sch71] A. Schönhage, Schnelle Berechnung von Kettenbruchentwicklungen,
Acta. Arith. 1 (1971), 139–144.

[Sch83] R. J. Schoof, Quadratic fields and factorization, Computational Meth-
ods in Number Theory (H. W. Lenstra, Jr. and R. Tijdeman, eds.),
Math. Centre Tracts, Number 155, Part II, Mathematisch Centrum,
Amsterdam, 1983, pp. 235–286.

[Sch91] A. Schönhage, Fast reduction and composition of binary quadratic
forms, ISSAC: International Symposium on Symbolic and Algebraic
Computation, ACM, New York, 1991, pp. 128–133.

[Sch93] P. Schreiber, A note on the Cattle Problem of Archimedes, Historia
Math. 20 (1993), 304–306.

482 References

[Sch96] B. Schneier, Applied Cryptography, Wiley, New York, 1996.
[Sco38] J. F. Scott, The Mathematical Work of John Wallis, Taylor and Fran-

cis, London, 1938.
[Scr74] C. J. Scriba, John Pell’s English edition of J. H. Rahn’s Teutsche

Algebra, R. S. Cohen et al. (eds.), For Dirk Struick, Reidel, Dordrecht,
1974.

[Sel63] C.-O. Selenius, Kettenbruchtheoretische Erklärung der zyklischen
Methode zur Lösung der Bhaskara-Pell-Gleichung, Acta acad. Aboen-
sis, math. phys. 23 (1963), no. 10.

[Sel75] , Rationale of the chakravala process of Jayadeva and Bhaskara
II, Historia Math. 2 (1975), 167–184.

[Ses82] J. Sesiano, Books IV to VII of Diophantus’ Arithmetica, Springer-
Verleg, New York, 1982.

[Sey87] M. Seysen, A probabilistic factorization algorithm with quadratic forms
of negative discriminant, Math. Comp. 48 (1987), 757–780.

[Sha62] D. Shanks, Review RMT30, Math. Comp. 16 (1962), 377–379; also 23
(1969), 217–219.

[Sha69] , On Gauss’s class number problems, Math. Comp. 23 (1969),
151–163.

[Sha71] , Class number, a theory of factorization and genera, Proc.
Sympos. Pure Mathematics, vol. 29, American Mathematical Society,
Providence, RI, 1971, pp. 415–440.

[Sha72] , The infrastructure of a real quadratic field and its applications,
Proc. 1972 Number Theory Conference, Boulder, CO, University of
Colorado, Boulder, 1972, pp. 217–224.

[Sha73] , Systematic examination of Littlewood’s bounds on L(1, χ), An-
alytic Number Theory, Proc. Symp. Pure Math., vol. 24, American
Mathematical Society, Providence, RI, 1973, pp. 267–283.

[Sha74] , Review of RMT 11, Math. Comp. 28 (1974), 333–334.
[Sha89] , On Gauss and composition I, II, Number Theory and Appli-

cations, NATO ASI Series C, vol. 265, Kluwer, Dordrecht, 1989.
[Sha94] J. O. Shallit, Origins of the analysis of the Euclidean algorithm, His-

toria Mathematica 21 (1994), 401–419.
[Sho01] , NTL: A library for doing number theory, Software, 2001,

Available at http://www.shoup.net/ntl.
[Sho97a] P. Shor, Polynomial-time algorithms for prime factorization and dis-

crete logarithms on a quantum computer, SIAM Journal of Computing
26 (1997), no. 5, 1484–1509.

[Sho97b] V. Shoup, Lower bounds for discrete logarithms and related problems,
Advances in Cryptology - EUROCRYPT’97, Lecture Notes in Com-
puter Science, vol. 1233, Springer, Berlin, 1997, pp. 256–266.

[Shu54] K. Shankar Shukla, Acarya Jayadeva, the mathematician, Ganita 5
(1954), 1–20.

[Sie35] C. L. Siegel, Über die Klassenzahl quadratischer Zahlkörper, Acta
Arithmetica 1 (1935), 83–86.

[Sil06] A. K. Silvester, Fast and unconditional principal ideal testing, Mas-
ter’s thesis, University of Calgary, 2006, Available at http://math.

ucalgary.ca/~aksilves/papers/msc-thesis.pdf.
[Sil87] R. D. Silverman, The multiple polynomial quadratic sieve, Math.

Comp. 48 (1987), 329–339.

References 483

[Sin99] S. Singh, The code book, Doubleday, New York, 1999.
[Sko45a] Th. Skolem, A remark on the equation ζ2−δη2 = 1, δ > 0, δ′, δ′′, · · · <

0, where δ, ζ, η belong to a total real number field, Avh. Norske Vid.
Akad. Olso I (1945), no. 12, 1–15.

[Sko45b] , A theorem on the equation ζ2 − δη2 = 1 where δ, ζ, η are
integers in an imaginary field, Avh. Norske. Vid. Akad. Oslo I (1945),
no. 1, 1–13.

[SL84] C. P. Schnorr and H. W. Lenstra, Jr., A Monte Carlo factoring algo-
rithm with linear storage, Math. Comp. 43 (1984), no. 167, 289–311.

[SL96a] P. Stevenhagen and H. W. Lenstra, Jr., Chebotarëv and his density
theorem, Math Intelligencer 18 (1996), no. 2, 26–37.

[SL96b] A. Storjohann and G. Labahn, Asymptotically fast computation of
Hermite normal forms of integer matrices, Proceedings of the 1996
International Symposium on Symbolic and Algebraic Computation—
ISSAC’96 (Zürich, Switzerland), ACM Press, New York, 1996, pp. 259–
266.

[Sla65] I. S. Slavutskii, On Mordell’s theorem, Acta Arith. 11 (1965), 57–66.
[Sla69] , Upper bounds and numerical calculation of the number of ideal

classes of real quadratic fields, Amer. Math. Soc. Transl. (2) 82 (1969),
67–71.

[Sma98] N. P. Smart, The Algorithmic Resolution of Diophantine Equations,
LMS Student Text, vol. 41, Cambridge University Press, Cambridge,
1998.

[Smi65] H. J. S. Smith, Report on the Theory of Numbers, Chelsea, New York,
1965.

[Sor04a] J. P. Sorenson, An analysis of the generalized binary gcd algorithm,
High Primes and Misdemeanors: Lectures in Honour of the 60th Birth-
day of Hugh Cowie Williams (Banff, AB, Canada) (A. van der Poorten
and A. Stein, eds.), American Mathematical Society, Providence, RI,
2004, pp. 327–340.

[Sor04b] , Lehmer’s algorithm for very large numbers, abstract appeared
in SIGSAM Bulletin 38 (2004), no. 3, 102–104.

[Sor94] , Two fast GCD algorithms, Journal of Algorithms 16 (1994),
110–144.

[Sor95] J. P. Sorenson, An analysis of Lehmer’s Euclidean GCD algorithm,
1995 ACM International Symposium of Symbolic and Algebraic Com-
putation (A. H. M. Levelt, ed.), Montreal, Canada, 1995, pp. 254–258.

[SP05] D. Schielzeth and M. E. Pohst, On real quadratic number fields suitable
for cryptography, Experimental Mathematics 14 (2005), no. 2, 189–
197.

[Spr93] V. G. Sprindzuk, Classical Diophantine Equations, Lecture Notes in
Mathematics, vol. 1559, Springer-Verlag, Berlin, 1993.

[Sri67] C. N. Srinivasiengar, The History of Anicent Indian Mathematics, The
World Press Private Ltd., Calcutta, 1967.

[Sri98] A. Srinivasan, Computations of class numbers of real quadratic fields,
Math. Comp. 67 (1998), no. 223, 1285–1308.

[SS71] A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen,
Computing (Arch. Elektron. Rechnen) 7 (1971), 281–292.

484 References

[SSW08] R. Sawilla, A. Silvester, and H. C. Williams, A new look at an old equa-
tion, Algorithmic Number Theory, proceedings of ANTS-VIII, Lecture
Notes in Computer Science, vol. 5011, 39–59, Lecture Notes in Com-
puter Science, Springer, Berlin, 2008, pp. 39–59.

[SSW76] R. G. Stanton, C. Sudler, and H. C. Williams, An upper bound for
the period of the simple continued fraction for

√
D, Pacific Jounal of

Math. 67 (1976), 525–536.
[SSW96] R. Scheidler, A. Stein, and H. C. Williams, Key-exchange in real quad-

ratic congruence function fields, Designs, Codes and Cryptography 7
(1996), 153–174.

[ST02a] A. Stein and E. Teske, Explicit bounds and heuristics on class numbers
in hyperelliptic function fields, Math. Comp. 71 (2002), no. 238, 837–
861.

[ST02b] , The parallelized Pollard kangaroo method in real quadratic
function fields, Math. Comp. 71 (2002), no. 238, 793–814.

[ST05] , Optimized baby step-giant step methods in hyperelliptic func-
tion fields, J. Ramanujan Math. Soc. 20 (2005), 1–32.

[ST86] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations,
Cambridge Tracts in Mathematics, vol. 87, Cambridge University
Press, Cambridge, 1986.

[ST87] N. Stewart and D. O. Tall, Algebraic Number Theory, 2nd ed., Chap-
man and Hall/CRC Press, New York, 1987.

[ST91] R. Steiner and N. Tzanakis, Simplifying the solution of Ljunggren’s
equation x2 + 1 = 2y4, J. Number Theory 37 (1991), no. 2, 123–132.

[Sta67] H. M. Stark, A complete determination of the complex quadratic fields
of class number one, Michigan Math. J. 14 (1967), 1–27.

[Sta69a] , A historical note on complex quadratic fields with class-number
one, Proc. Amer. Math. Soc. 21 (1969), 254–255.

[Sta69b] , On the “gap” in a theorem of Heegner, J. Number Theory 1
(1969), 16–27.

[Sta70] , An Introduction to Number Theory, Markham Publishing,
Chicago, 1970.

[Sta71] , A transcendence theorem for class number problems, Annals
of Math 94 (1971), 153–173.

[Sta75] , On complex quadratic fields with class number two, Math.
Comp. 29 (1975), 289–302.

[Ste05] J. Steuding, Diophantine Analysis, Chapman and Hall/CRC, Boca Ra-
ton, FL, 2005.

[Ste34] M. A. Stern, Theorie der Kettenbrüche und ihre Anwendung, J. Reine
Angew. Math. 11 (1834), 327–341.

[Ste79] H.-J. Stender, Über die Grundeinheit der reell-quadratischen
Zahlkörper Q(

√
A2N2 + BN + C), J. Reine Angew. Math. 311–312

(1979), 302–306.
[Ste95] P. Stevenhagen, A density conjecture for the negative Pell equation,

Computational algebra and number theory (Sydney, 1992), Mathe-
matics and Its Applications, vol. 325, Kluwer Academic Publishers,
Dordrecht, 1995, pp. 187–200.

[Ste96a] A. Stein, Algorithmen in reell-quadratischen Kongruenzfunktio-
nenkörpern, Ph.D. thesis, Universität des Saarlandes, Saarbrücken,
Germany, 1996.

References 485

[Ste96b] P. Stevenhagen, On a problem of Eisenstein, Acta. Arith. 74 (1996),
no. 3, 259–268.

[Sti05] D. Stinson, Cryptography: Theory and Practice, 3rd ed., Chapman and
Hall/CRC Press, Boca Raton, FL, 2005.

[Sti93] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag,
Berlin, 1993.

[Sto00] A. Storjohann, Algorithms for matrix canonical forms, Ph.D. thesis,
ETH Zurich, Zurich, Austria, 2000.

[Sto52] B. Stolt, On the Diophantine equation u2−Dv2 = ±4N , Parts I,II,III,
Ark. Math. 2 (1952), 1–23, 251–268; 3 (1955), 117–132.

[Stö97] C. Störmer, Quelques théorèmes sur l’équation de Pell x2 −Dy2 = ±1
et leurs applications, Skrifter Videnskabs-selskabet (Christiania), Mat.-
Naturv. Kl. I (1897), no. 2, 48 pp.

[Str61] Strabo, The Geography of Strabo, Vol. 3, Loeb Classical Library, No.
182, Harvard University Press, Cambridge, MA, 1961.

[Sut07] A. V. Sutherland, Order Computations in Generic Groups, Ph.D. the-
sis, Department of Mathmatics, Massachusetts Institute of Technology,
Cambridge, MA, 2007.

[SV05] A. Schmidt and U. Vollmer, Polynomial time quantum algorithm for
the computation of the unit group of a number field (extended abstract),
STOC ’05: Proceedings of the Thirty-Seventh Annual ACM Sympo-
sium on Theory of Computing, 2005, pp. 475–480.

[SvdV91] R. Schoof and M. van der Vlugt, Hecke operators and the weight dis-
tributions of certain codes, Journal of Combinatorial Theory, Series A
57 (1991), 163–186.

[SW88a] A. J. Stephens and H. C. Williams, Computation of real quadratic fields
with class number one, Math. Comp. 51 (1988), no. 184, 809–824.

[SW88b] , Some computational results on a problem concerning powerful
numbers, Math. Comp. 50 (1988), 619–632.

[SW89] , Some computational results on a problem of Eisenstein,
Théorie des nombres/Number Theory, Walter de Gruyter, Berlin,
1989, pp. 869–886.

[SW99] A. Stein and H. C. Williams, Some methods for evaluating the regulator
of a real quadratic function field, Experimental Mathematics 8 (1999),
119–133.

[SZ04] D. Stehlé and P. Zimmermann, A binary recursive GCD algo-
rithm, Sixth International Algorithmic Number Theory Symposium
(D. Buell, ed.), Lecture Notes in Computer Science, Vol. 3076,
Springer, Berlin, 2004, pp. 411–425.

[SZ91] A. Stein and H. G. Zimmer, An algorithm for determining the regu-
lator and the fundamental unit of a hyperelliptic congruence function
field, International Symposium on Symbolic and Algebraic Compu-
tation (ISSAC’91) (Bonn, Germany), ACM Press, New York, 1991,
pp. 183–184.

[Tan37] P. Tannery, Sur la mesure de circle d’Archimède, Mémoires Scien-
tifiques, T. I., Toulouse 1912–1937, pp. 226–253.

[Tan84] , La perte de sept livres de Diophante, Bull. des Sciences Math.
8 (1884), 192–206.

[Tat51] T. Tatuzawa, On a theorem of Siegel, Japan J. Math. 21 (1951), 163–
178.

486 References

[Ter00] D. C. Terr, A modificiation of Shanks’ baby-step giant-step algorithm,
Math. Comp. 69 (2000), no. 230, 767–773.

[Tes98] E. Teske, A space efficient algorithm for group structure computation,
Math. Comp. 67 (1998), no. 224, 1637–1663.

[Thi95] C. Thiel, On the complexity of some problems in algorithmic algebraic
number theory, Ph.D. thesis, Universität des Saarlandes, Saarbrücken,
Germany, 1995.

[Tho80] I. Thomas, Greek Mathematical Works, Loeb Classical Library, Vol.
335, 362, Harvard University Press, Cambridge, MA, 1980.

[Thu92] Thucydides, History of the Peloponnesian War, Books V and VI, C.
F. Smith (trans.), Loeb Classical Library, No. 110, Harvard University
Press, Cambridge, MA, 1992.

[tRW03] H. J. te Riele and H. C. Williams, New computations concerning the
Cohen-Lenstra heuristics, Experimental Mathematics 12 (2003), no. 1,
99–113.

[TVW05] A. Togbe, P. M. Voutier, and P. G. Walsh, Solving a family of Thue
equations with an application to the equation x2−dy4 = 1, Acta Arith.
120 (2005), 39–58.

[TW06] W. Trappe and L. C. Washington, Introduction to Cryptography with
Coding Theory, 2nd ed., Prentice-Hall, Eaglewood Cliffs, NJ, 2006.

[TW95] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke al-
gebras, Ann. Math. 141 (1995), 553–572.

[TW99] E. Teske and H. C. Williams, A problem concerning a character sum,
Experimental Mathematics 8 (1999), no. 1, 63–72.

[Var98] I. Vardi, Archimedes’ Cattle Problem, Amer. Math. Monthly 105
(1998), 305–319.

[vdP03] A. van der Poorten, A note on NUCOMP, Math. Comp. 72 (2003),
1935–1946.

[vdP94] A. J. van der Poorten, Explicit formulas for units in certain quad-
ratic number fields, Algorithmic Number Theory Symposium, ANTS
I, (Ithaca, NY, 1994), Lecture Notes in Computer Science, vol. 887,
Springer, Berlin, 1994, pp. 194–208.

[vdP96] , Notes on Fermat’s Last Theorem, Wiley, New York, 1996.
[vdP99a] , Beer and continued fractions with periodic periods, Number

Theory (Ottawa, ON, 1996), CRM Proceedings Lecture Notes, Vol. 19,
American Mathematical Society, Providence, RI, 1999, pp. 309–314.

[vdP99b] , Reduction of continued fractions of formal power series, Con-
tinued fractions: from analytic Numbe Theory to Constructive Approx-
imations, (Columbia, MO, 1998), Contemporary Mathematics, No.
236, American Mathematical Society, Providence, RI, 1999, pp. 343–
355.

[vdPT00] A. J. van der Poorten and X. C. Tran, Quasi-elliptic integrals and
periodic continued fractions, Mohatshefte Math. 131 (2000), 155–169.

[vdPT02] , Periodic continued fractions in elliptic function fields, Algebric
Number Theory, proceedings of ANTS-V, Lecture Notes in Computer
Science, Vol. 2369, Springer, Berlin, 2002, pp. 390–404.

[vdPtRW01] A. J. van der Poorten, H. te Riele, and H. C. Williams, Computer
verification of the Ankeney-Artin-Chowla conjecture for all primes less
than 100000000000, Math. Comp. 70 (2001), no. 235, 1311–1328.

References 487

[vdPW99] A. J. van der Poorten and H. C. Williams, On certain continued frac-
tion expansions of fixed period length, Acta. Arith. 89 (1999), no. 1,
23–25.

[vdW54] B. L. van der Waerden, Science Awakening, P. Noordhoff, Groningen,
The Netherlands, 1954.

[Vin54] I. M. Vinogradov, Elements of Number Theory, Dover Publications,
New York, 1954.

[Vol00] U. Vollmer, Asymptotically fast discrete logarithms in quadratic num-
ber fields, Algorithmic Number Theory — ANTS-IV, Lecture Notes in
Computer Science, Vol. 1838, Springer, Berlin, 2000, pp. 581–594.

[Vol02] , An accelerated Buchmann algorithm for regulator computa-
tion in real quadratic fields, Algorithmic Number Theory — ANTS-V,
Lecture Notes in Computer Science, Vol. 2369, Springer, Berlin, 2002,
pp. 148–162.

[Wag96] C. Wagner, Class number 5, 6, and 7, Math. Comp. 65 (1996), no. 214,
785–800.

[Wal48] H. S. Wall, Analytic Theory of Continued Fractions, Chelsea Publish-
ing Company, Bronx, NY, 1948.

[Wat04] M. Watkins, Class numbers of imaginary quadratic fields, Math. Comp.
73 (2004), no. 246, 907–938.

[Wat95] W. Waterhouse, On the Cattle Problem of Archimedes, Historia Math.
22 (1995), 186–187.

[WB76] H. C. Williams and J. Broere, A computational technique for evaluating
L(1, χ) and the class number of a real quadratic field, Math. Comp. 30
(1976), 887–893.

[WB79] H. C. Williams and P. Buhr, Calculation of the regulator of Q(
√

D) by
use of the nearest integer continued fraction algorithm, Math. Comp.
33 (1979), 369–381.

[WCS80] H. C. Williams, G. V. Cormack, and E. Seah, Calculation of the regu-
lator of a pure cubic field, Math. Comp. 34 (1980), 567–611.

[WDS83] H. C. Williams, G. W. Dueck, and B. K. Schmid, A rapid method of
evaluating the regulator and class number of a pure cubic field, Math.
Comp. 41 (1983), 235–286.

[Web95] K. Weber, The accelerated integer GCD algorithm, ACM Transactions
on Mathematical Software 21 (1995), no. 1, 111–122.

[Wei04] D. Weimer, An adaptation of the NICE cryptosystem to real quad-
ratic orders, Master’s thesis, Technische Universität Darmstadt, Darm-
stadt, Germany, 2004, Available at http://www.cdc.informatik.

tu-darmstadt.de/reports/reports/DanielWeimer.diplom.pdf.
[Wei06] A. Weilert, Two efficient algorithms for the computation of ideal sums

in quadratic orders, Math. Comp. 75 (2006), 941–981.
[Wei79] A. Weil, Fermat et l’équation de Pell, Collected Papers, Vol. III,

Springer, Berlin, 1979, pp. 413–419.
[Wei84] , Number Theory. An Approach Through History, Birkhäuser,

Boston, 1984.
[Wer02] G. Wertheim, Die Algebra des Johann Heinrich Rahn (1659) und die

englische übersetzung derselben, Bibliotheca Math. 3 (1902), no. 3,
113–126.

[WGZ65] H. C. Williams, R. A. German, and C. R. Zarnke, Solution of the Cattle
Problem of Archimedes, Math. Comp. 19 (1965), 671–674.

488 References

[Whi12] E. E. Whitford, The Pell Equation, College of the City of New York,
New York, 1912.

[Wil00] H. C. Williams, A number theoretic function arising from continued
fractions, Fibonacci Quart. 38 (2000), no. 3, 201–211.

[Wil02] , Solving the Pell equation, Proc. Millennial Conference on
Number Theory, A. K. Peters, Natick, MA, 2002, pp. 397–435.

[Wil80a] , A modification of the RSA public-key encryption procedure,
IEEE Transactions on Information Theory 26 (1980), no. 6, 726–729.

[Wil80b] , Some results concerning the nearest integer continued fraction
expansion of

√
D, J. Reine. Agnew. Math. 315 (1980), 1–15.

[Wil81] , A numerical investigation into the length of the period of the
continued fraction of

√
D, Math. Comp. 36 (1981), 593–601.

[Wil85a] , A note on the period length of the continued fraction expansion
of certain

√
D, Util. Math. 28 (1985), 201–209.

[Wil85b] , On mid period criteria for the nearest integer continued frac-
tion expansion of

√
D, Utilitas Math. 27 (1985), 169–185.

[Wil85c] , Some public-key crypto-functions as intractable as factoriza-
tion, Cryptologia (1985), no. 9, 223–237.

[Wil85d] , Some public-key crypto-functions as intractable as factoriza-
tion, extended abstract, Advances in Cryptology — CRYPTO ’84, Lec-
ture Notes in Computer Science, Vol. 196, Springer-Verlag, Berlin,
1985.

[Wil90] , Eisenstein’s problem and continued fractions, Utilitas Math.
37 (1990), 145–158.

[Wil95a] A. Wiles, Modular elliptic-curves and Fermat’s last theorem, Ann.
Math. 141 (1995), 443–551.

[Wil95b] H. C. Williams, Some generalisations of the Sn sequence of Shanks,
Acta. Arith. 69 (1995), no. 3, 199–215.

[Wil98] , Edouard Lucas and Primality Testing, Wiley-Interscience,
New York, 1998.

[Wor81] R. T. Worley, Estimating |α − p/q|, J. Austral. Math. Soc. Ser. A 31
(1981), 202–206.

[Wur30] J. F. Wurm, Review of J. G. Hermann’s pamphlet: De Archimedis
Problemate Bovino, Leipzig, 1828, Jahrbücher für Philologie und
Pädagogik 14 (1830), 194–202, (in German).

[WW87] H. C. Williams and M. C. Wunderlich, On the parallel generation of the
residues for the continued fraction factoring algorithm, Math. Comp.
48 (1987), 405–423.

[WY02] W. A. Webb and H. Yokota, Polynomial Pell’s equation, Proc. Amer.
Math. Soc. 131 (2002), 993–1006.

[WZ72] H. C. Williams and C. R. Zarnke, Computation of the solutions of the
Diophantine equation x2 − dy4 = 1, Proc. 3rd S-E Conference, Com-
binatorics, Graph Theory and Computing, Utilitas Math., Winnipeg,
1972, pp. 463–483.

[Yam70] Y. Yamamoto, Real quadratic number fields with large fundamental
units, Osaka Math. J. 7 (1970), 57–76.

[Zuc97] R. J. Zuccherato, The continued fraction algorithm and regulator for
quadratic function fields of characteristic 2, Journal of Algebra 190
(1997), 563–587.

Index

(f, p) representation 267
near 270
reduced 267

Δ1/5+ε algorithm 398
Δ1/6+ε algorithm 398

Abel, C. S. 256, 322, 350
Adams, W. W. 116
ADDXY 393, 395, 399

pseudocode 279
Adelman, L. 354
Agrawal, M. 334
Alberta 22
Alford, W. R. 342
algebraic integer 75, 76

divides 81
unit 81

algebraic number 75
degree 75

algebraic number field 76
Amthor, A. 23, 61
analytic class number formula 202,

249, 394
Ankeney-Artin-Chowla conjecture

216, 238, 261
Ankeny, N. C. 216
anthyphairesis 26
Apollonius of Perga 22, 23

Easy Delivery 22
Arakelov class group 176
Archimedes 19, 20, 23–25, 30, 62

Sand-reckoner 23
Cattle Problem 19, 23, 31, 61, 285
Measurement of the Circle 22, 25

Arno, S. 156

Artin, E. 216

Aryabhata I 31

associate 81

primary 87

Atkin, A. O. L. 119, 124

AX 388, 393, 406, 412, 420

pseudocode 279

Ayyangar, A. A. Krishnaswami 34

baby-step giant-step technique 389

Bach, E. 232, 233, 238, 256, 263, 316

backward giant step 181

Baker, A. 155, 230

Barrucand, P. 170

Bauer, M. 349

beeper 143

Beiler, A. H. 23

Bennett, M. A. 427

Bernoulli number 216

Bernstein, D. J. 142

Berwick, W. E. H. 124

Bhaskara II 32, 35

Biehl, I. 374, 378

binary quadratic form 96

positive definite 124

binary quadratic forms 183

Binet formula 68

Biró, A. 231

Booker, A. 246, 257, 400, 401

Brahmagupta 32, 33

Brouncker, Lord W. 4, 36, 39, 41, 43

490 Index

Buchmann, J. 179, 180, 237, 255, 257,
260, 307, 315, 322, 334, 337, 345,
350, 351, 360, 361, 364, 365, 374

Buchmann-Williams key exchange 365
Buell, D. A. 237, 245, 253, 257
Burgess, D. A. 400, 401

Caesar, Julius 353
cakravala 33
Catalan, E. C. 2
Cattle Problem

see Archimedes 19
character 185

conductor 191
Dirichlet 186
even 186
odd 186
order 186
primitive 191
principal 185
real 188

Chebotarev density theorem 383
Chebychev approximation 233
Cheng, K. 151
Chowla, S. 216, 229, 231
Cicero 20
cipher 353
ciphertext 353
CLASNO 170
class number 153
Cohen, H. 153, 155, 157, 324, 337
Cohen-Lenstra heuristics 157, 172,

238, 261, 362, 371
imaginary quadratic fields 163
real quadratic fields 165

Cohn, H. 170
Communications-Electronics Security

Group (CESG) 354
compact representation 290, 297, 426
composition 32
conductor

character 191
order 81, 197

Conjecture F 346
conjugate 45
continued fraction 44

ith convergent 44
complete quotient 44
general 43

nearest integer 43
partial quotient 26, 44
period 56
preperiod 56
purely periodic 56
regular 47
semiregular 34, 35, 43
simple 35, 47

Cornacchia, G. 424
CR 388

definition 292
proof of correctness 293

CRAX
pseudocode 287

creeper 142, 145
cryptanalysis 353
cryptography 353
cryptology 353
cryptosystem 353

group requirements 360
public-key 354

elliptic curve 355
RSA 354

symmetric key 354
cycle (within a continued fraction)

142
cycle of reduced ideals 113
cyclic method 35

see also cakravala 32

Düllmann, S. 256, 320, 337, 345
Dedekind zeta-function 219

as Euler product 220
Dedekind, R. 84, 124
Degert, G. 151
descente 38
diagonally dominant 314
Diaz y Diaz, F. 324, 337
Dickson, L. E. 19
Diffie, W. 354
Diffie-Hellman integrated encryption

scheme 363, 380
Diffie-Hellman key exchange 354, 360,

363, 364, 374
Diffie-Hellman problem 370
Digital Signature Algorithm (DSA)

362, 363
Dijksterhuis, E. J. 22, 23
Diophantine equation 1, 415

Index 491

assosciated solution 418
class of solutions 418
fundamental solution 10, 419
linear 31, 47
primitive solution 2, 415

Diophantus of Alexandria 1, 17, 31, 32
Arithmetica 17, 31

Dirichlet L-function 194, 217
Dirichlet structure constant 200
Dirichlet, J. P. G. L. 96, 216, 429

Vorlesungen über Zahlentheorie 96
discrete logarithm problem

imaginary quadratic order 308
pseudocode 310

discriminant
order 80

fundamental discriminant 80
distance 172
DSA 364
Dubois, E. 151, 430
Dujardin 425

EADDXY
pseudocode 286

ECM 340, 377
Eichler-Selberg trace formula 257
Eisenstein, G. 124
El Gamal encryption 363
elliptic curve method 340, 377
Eratosthenes of Cyrene 19, 23
Euclid 24, 26, 72, 83

Elements 24, 25, 27, 72
Euclidean algorithm 47, 49
Euler number 216
Euler, L. P. 4, 39, 43, 62, 134, 158
EWNEAR

definition 286
EXP 367, 368

pseudocode 276
extended Riemann hypothesis (ERH)

156, 170, 229, 237
extension field 76

factor base 309
Farhane, A. 151
Fermat, P. 1, 17, 36, 38
Fiat-Shamir signature scheme 374
Fibonacci 68
Fibonacci sequence 68

FIND 388, 410, 413
definition 291

Fouque, P.-A. 363
Fouvry, É. 172
Fowler, D. H. 26–28, 30
FPCF 408
Frénicle, B. 36, 38
Fraser, P. M. 19, 20, 23, 24
Fundamental Theorem of Algebra 254
Fundamental Theorem of Arithmetic

83
Fung, G. W. 263

Gaudry, P. 348
Gauss sum 190
Gauss, C. F. 70, 83, 116, 155, 183, 210,

230
Gauss conjecture 156
Gauss’ lemma 75
Gauss-Kuz’min theorem 70

Gauss-Kuz’min theorem 70
GCHQ 354
general number field sieve (GNFS)

416
generalized Riemann hypothesis (GRH)

394
for Hecke L-functions 252, 321

genus theory 171
Giesbrecht, M. 315, 317, 348
GMP 49
Goldfeld, D. 230
Gourdon, X. 228
Gower, J. E. 171
Granville, A. 152, 226, 230, 231
Gross, B. 230
Guillou-Quisquater signature scheme

363

Hühnlein, D. 347, 366, 374, 378, 380
Hafner, J. L. 307, 316, 322, 345
Hallgren, S. 432
Halter-Koch, F. 152
Hamdy, S. 349, 362–364, 366, 372
Hankel, H. 4
Hardy, G. H. 346
Hasse, H. 151
Heath, T. 31
Hecke L-function 231
Hecke character 231

492 Index

Heegner, K. 155, 230
Hellman, M. 354
Hendy, M. D. 141
Henkel, H. 34, 35
Hermite normal form 254, 317
hidden kernel problem 376
Hilbert’s Tenth Problem 17
Hillion, S. J. P. 20
Hoffstein, J. 228
Hofmann, J. E. 38
Hollinger, C. S. 350
Homer 23

Odyssey 23
Hooley, C. 166

Hooley’s conjecture 238, 261
Hua, L. K. 156, 210, 226
Hultsch, F. 22
Hurwitz, A. 56

ideal 84
ambiguous 114, 169
cancellation law 92
composition 116
conjugate 90
divides 93
equivalent 88
fractional 154
generated by a set 86
ideal class 88
indecomposable 94
inert 94
invertible 88
norm 90
prime 93
primitive 97
principal 87
product 88
proper 89
ramified 95
reduced 98
reduction 104
split 95
sum 88
unique factorization 95

ideal class group 153
p-Sylow subgroup 156
p-rank 156
2-Sylow subgroup 169
elementary divisors 156

principal cycle 172
structure 156

IFP 362
IMULT

pseudocode 286
Ince, E. L. 124
IND-CCA2 375, 378
indecomposable element 81
index 78
induced modulus 191
infrastructure 172, 364, 395
infrastructure discrete logarithm

problem 331, 370, 410, 415
integer 76
integral ideal 84
IQ-DHP 361
IQ-DLP 361, 363, 364
IQ-DSA 363, 364, 380
IQ-GQ 363, 364
IQ-OP 361
IQ-RDSA 363
IQ-RP 361, 363

expected time 361

Jacobi symbol 14
Jacobson, Jr., M. J. 119, 164, 166, 237,

244, 254, 255, 257, 260, 308, 315,
317, 340, 345–348, 366, 372–374,
378, 380, 395, 414, 431

Jaulmes, É. 377
Jayadeva, A. 35
Jebelean, T. 49
jeeper 145
Joux, A. 377

Kaplansky, I. 142
Kayal, N. 334
key 353
Khinchine-Lévy 113
Khintchine, A. Y. 69, 73
Khintchine-Lévy theorem 69, 173
Kisilev, A. A. 216
Klüners, J. 172
Knorr, W. 23, 26, 27
Knuth, D. 48
Koblitz, N. 383
Konen, H. 4, 19
Kortum, R. 62
Kraitchik, M. 350

Index 493

kreeper 143
Kronecker symbol 14, 188
Krumbiegel, B. 20, 23
Kummer, E. 84, 96
kuttaka 31, 33, 41
Kuz’min, R. O. 70

Gauss-Kuz’min theorem 70

Lévy, P. 69, 73
Labahn, G. 329, 351
Lagarias, J. C. 124, 420
Lagrange, J. L. 34, 35, 39, 43, 62, 104,

124, 423, 424
lambda function 222
Landau, E. 158
Landau-Siegel zero 227
Las Vegas algorithm 350, 394, 405, 414
Law of Apparition 14
Law of Repetition 14
Legendre, A.-M. 62, 116
Lehmer, D. H. 5, 49, 62, 151, 152
Leiste, C. 19, 21
Lenstra, A. K. 308
Lenstra, Jr., H. W. 20, 62, 153, 157,

171, 176, 237, 308
Lerch, M. 232
Lessing, G. E. 19
linear Diophantine equation 31, 47
Littlewood, J. E. 229, 346, 362
Ljunggren, W. 2
Louboutin, S. 135, 226, 233, 256, 430
Lucas functions 13, 126, 145, 379
Lukes, R. F. 166, 244, 261

Madden, D. 143
Mahoney, M. S. 36
Martin, A. 62
Matiyasevich, Y. 17
Maurer, M. 324, 374
McCurley, K. 345
McCurley, K. S. 307, 309, 311, 316,

322, 334
McNeil, G. 62
Mertens, F. 249
Meyer, C. F. 72
Mihăilescu, P. 17
Miller, V. 383
minimal polynomial 75
Möbius μ-function 197

module 78
Z-basis 79
finitely generated 79
submodule generated by a set 79

Möller, B. 362, 374
Mollin, R. A. 151, 156, 246
Monte Carlo algorithm 350
Montgomery, H. L. 229
Mordell, L. J. 216
Müller, V. 431

Nagell, T. 2, 418
narrow class group 155
narrow class number 155
Nelson, H. L. 61, 285
NFS 377
NICE 375, 376
NICE-X 378
NIST 372
norm 45
NTL 373
NUCOMP 119, 155, 175, 239, 361, 365,

373, 406, 408
definition 122

number field sieve (NFS) 363
NUMULT 408

pseudocode 269
Nyberg, M. 141

Odlyzko, A. M. 228
Oesterlé, J. 231
Olivier, M. 324, 337
one-way trapdoor function 374
order 80

of a character 186
conductor 81, 197
discriminant 80

fundamental discriminant 80
maximal order 80
regulator 113

Pappus 22, 27
Synagogue 22, 27

parallelizing 397
Parmenides Proposition 28, 30
Patz, W. 62
Paulus, S. 340, 341, 366, 374, 378
Paysant-Le Roux, R. 151, 430
Pell equation 4, 415

fundamental solution 11

494 Index

Pell, J. 4
Perron, O. 44
plaintext 353
Plato 20, 27

Parmenides 27
Poe, Edgar Allen 353
Pohlig-Hellman algorithm 362
Pohst, M. E. 316, 364
Pomerance, C. 171, 342
Poupard, G. 363
prime 81
prime discriminant 193
principal cycle 172
principal ideal problem 331, 405
Proclus 24
proper equivalence 155
Pythagoras 17
Pythagorean 24
Pythagorean equation 3
Pythagoreans 30

quadratic field 77, 96
radicand 77

Rabin, M. O. 355
radicand 77
Rahn, J. H. 4
Ramachandran, S. 164, 238, 254, 255,

257
Ramanujan, S. 2
Ramanujan-Nagell equation 2
Ramaré, O. 227
rank of apparition 14
rational integer 76
REAL-NICE 378
regulator 124, 174
relation lattice 310

extended relation lattice 323
relation matrix 310
relations 254, 309

full 339
partial 339

Richaud, C. 151
Richaud-Degert type 131
te Riele, H. J. 261
Riemann hypothesis 228

for Hecke L-functions 232
Riemann zeta-function 158, 217

critical line 228

critical strip 228
trivial zeros 228

Riemann, B. 228
Rivest, R. 354
Robertson, J. P. 96
Robinson, M. 156
Rosser, B. 223
RSA 363, 364, 374, 379
Rumely, R. 229

Sakurai, K. 375
samasa 32
Saxena, N. 334
Scheidler, R. 347, 366, 372, 373, 378,

431
Schielzeth, D. 364
Schinzel sleeper 378
Schinzel, A. 134, 140, 430
Schmidt, A. 237, 255, 433
Schnorr signatures 363
Schnorr, C. P. 171
Schoenfeld, L. 223
Schönhage, A. 48, 104
Schoof, R. J. 170, 171, 176, 245
Selenius, C.-O. 33, 35
self-initializing quadratic sieve (SIQS)

363
Seysen, M. 171, 308, 314, 350
Shamir, A. 354
Shanks sequence 231
Shanks, D. 116, 118, 124, 140, 145, 153,

170–173, 229, 237, 246
Shanks’ algorithm 176

Shor, P. 433
Shoup, V. 361
Shukla, K. Shankar 35
Sicily 22
Siegel, C. L. 149, 155, 156, 227, 230,

362, 401
Sieve of Eratosthenes 260
sieve radius 341
Silverman, R. D. 342
SKEP 378
Slavutskii, I. S. 205, 216
sleeper 142
smallest kernel-equivalent problem

378
Smith normal form 263, 317
Sorenson, J. 49

Index 495

Soundararajan, K. 226, 230
SPAR 171
SPLIT

proof of correctness 303
pseudocode 302

SQUFOF 171
Srinivasan, A. 245, 253
Störmer, C. 126, 151
Stark, H. 155, 230
Stehlé, D. 49
Stein, A. 366, 373, 431
Stender, H.-J. 151
Stern, J. 363
Stern, M. A. 134
Stevenhagen, P. 420
Storjohann, A. 315, 317, 319, 329, 348,

351
Sutherland, A. 361

Takagi, T. 374, 378
Tannery, P. 31, 35
Tatuzawa, T. 227
Taylor, R. 2
Tenner, G. W. 73

Tenner’s algorithm 63, 112
Terr, D. C. 180, 255
Teske, E. 237, 255, 257, 260, 431
The Parmenides Proposition 27
Theon of Smyrna 24, 40
Thiel, C. 374, 431
Thomas, I. 19
Togbe, A. 427
trace 77
triangular number 5

unit 81
fundamental unit 82

unit index 83

van der Poorten, A. 119, 124, 151, 261
Vardi, I. 23, 61

Vaughn, R. C. 229
Vollmer, U. 180, 237, 255, 308, 309,

315, 322, 328, 351, 361, 363, 433
von Mangoldt lambda function 222
Voutier, P. M. 427

Wagner, C. 156
Wagstaff, Jr., S. S. 171
Wallis, J. 4, 36, 38
Walsh, P. G. 427
Watkins, M. 156
Weber, D. 347
Weber, K. 375, 380
Weil, A. 4, 5, 36, 38
Weimer, D. 375, 378
Wertheim, G. 4
Wheeler, F. 156
Whitford, E. E. 4, 19
wide class group 155
wide class number 155
Wiles, A. 2
Williams, H. C. 156, 164, 166, 179, 237,

238, 244, 246, 254, 255, 257, 261,
307, 334, 346, 347, 360, 364–366,
372, 373, 414

WMULT 367
pseudocode 275

WNEAR 366, 367, 373
definition 275

Worley, R. T. 72
Wurm, J. F. 23

Wurm’s problem 22

Yamamoto, Y. 140, 145
Yokoi’s conjecture 231

Zagier, D. 230
Zassenhaus, H. 316
Zimmermann, P. 49
Zuccherato, R. J. 436

	cover-large.tif
	front-matter.pdf
	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	fulltext_4.pdf
	fulltext_5.pdf
	fulltext_6.pdf
	fulltext_7.pdf
	fulltext_8.pdf
	fulltext_9.pdf
	fulltext_10.pdf
	fulltext_11.pdf
	fulltext_12.pdf
	fulltext_13.pdf
	fulltext_14.pdf
	fulltext_15.pdf
	fulltext_16.pdf
	fulltext_17.pdf
	back-matter.pdf

