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Preface

Alberto P. Calderon turned seventy-five in September 1995, and an interna-
tional conference in his honor was convened at the University of Chicago in
February 1996, with the participation of more than three hundred mathe-
maticians.

Professor Calderon was among this century's leading analysts, and his
work is characterized by its great originality and depth. Calderon's contri-
butions have been of wide scope, and changed the way researchers approach
and think of a wide variety of areas in mathematics and its applications. His
fundamental influence is felt strongly in harmonic analysis, partial differen-
tial equations, and complex analysis, as well as in such applied areas as signal
processing, geophysics, and tomography.

The Chicago conference was a joyous occasion to celebrate Calderdn's
outstanding achievements. Many of his friends, students, and collaborators
from Europe and North and South America came to join him in the cele-
bration. This volume contains the contributions of nineteen of the speakers,
including a personal account of the history of the Chicago School of analysis
by Elias M. Stein.

The mathematical community was deeply saddened by the loss of Alberto
P. Calderon, who died in Chicago on April 16, 1998, after a short illness. We
have included, in an introduction, a short account of his life and mathematical
career. This volume, originally conceived to mark a joyous milestone, has now
also become a memorial tribute.

vii



Introduction

Michael Christ, Carlos E. Kenig, and Cora Sadosky

Alberto P. Calderon was born in Mendoza, Argentina, on September 14,
1920. His father, a physician, instilled in him the love for mathematics and
music. Impressed by Alberto's early interest in everything mechanical, he
sent him at age twelve to school in Switzerland, in preparation for the ETH,
the leading engineering school. This was not to be, and after two years in
Zurich, Calderon was called back to Mendoza, where he finished high school
and then attended the University of Buenos Aires, graduating as a civil
engineer in 1947. Throughout his studies he had been increasingly interested
in mathematics, but at the time engineering seemed a more viable career.

Upon graduation as an engineer, Calderon took a job in a geophysics
research lab at YPF, the national oil corporation of Argentina. He enjoyed
his work, where he dealt with mathematical problems arising from the design
of tools for oil prospecting. He was always proud of the problems he solved
there and frequently remarked with satisfaction that some problems he could
not solve then are still open. But he joked how fortunate it was that his
YPF supervisor made his life there difficult, since otherwise he would have
remained in Argentina as a state employee until retirement!

This did not come to pass, and Calderon's close relation with the few
active mathematicians then at the University of Buenos Aires was instru-
mental to the breakthrough that led to his mathematical celebrity. In 1948
two concurrent events changed his future: he resigned his position at YPF,
and Antoni Zygmund, one of the world's leading analysts, and a professor
at the University of Chicago, visited the Institute of Mathematics of the
University of Buenos Aires.

At that time the Institute of Mathematics-a single room plus a small
good library-was an appendix of the School of Engineering, with Julio Rey
Pastor, the Goettingen-trained Spanish mathematician who introduced mod-
ern mathematics to Argentina, as its sole professor, and young Dr. Alberto
Gonzalez Dominguez as Rey's only assistant. Still, its seminar was active,
with the participation of serious young mathematicians, including Spanish

ix
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Republic refugees like Luis Santalo, and Calderon attended it. In fact, while
still an engineering student, Calderon had attended the advanced calculus
courses of Rey Pastor. It was as a student that Calderon met Gonzalez
Dominguez, a man with a passion for mathematics, who became first his
mentor and then his lifelong friend. And it was Gonzalez Dominguez who,
through his studies with Tamarkin at Cornell University, had acquired a
strong interest in Fourier analysis by reading Zygmund's 1935 fundamental
treatise, "Trigonometrical Series."

In the years immediately after World War II, the U.S. Department of State
had a very active visitors program that sent prominent scientists to Latin
America. Thus, Adrian Albert, Marshall Stone, and George Birkhoff visited
Buenos Aires, and Gonzalez Dominguez arranged through them the visit of
Zymund, whose work on Fourier series he so much admired. At the Institute
of Mathematics, Zygmund gave a two-month seminar on topics in analysis,
based on his book. This seminar was attended by Gonzalez Dominguez,
Calderon, Mischa Cotlar, and three other young Argentine mathematicians.
Each of the participants had to discuss a portion of the text. Calderon's
assignment was to present the Marcel Riesz theorem on the continuity of the
Hilbert transform in LP. According to Cotlar's vivid recollection of the event,
Calderon's exposition was entirely acceptable to the junior audience, but not
to Zygmund, who appeared agitated and grimaced all the time. Finally,
he interrupted Calderon abruptly to ask where had he read the material he
was presenting, and a bewildered Calderon answered that he had read it in
Zygmund's book. Zygmund vehemently informed the audience that this was
not the proof in his book, and after the lecture took Calderon aside and
quizzed him about the new short and elegant proof. Calderon confessed that
he had first tried to prove the theorem by himself, and then thinking he could
not do it, had read the beginning of the proof in the book; but after the first
couple of lines, instead of turning the page, had figured out how the proof
would finish. In fact, he had found himself an elegant new proof of the Riesz
theorem! Zygmund immediately recognized Calderon's power and then and
there decided to invite him to Chicago to study with him.

This anecdote illustrates one of Calderon's main characteristics: he al-
ways sought his own proofs, developed his own methods. From the start,
Calderon worked in mathematics that way: he rarely read the work of oth-
ers farther than the statements of theorems and after grasping the general
nature of the problem went ahead by himself. In this process, Calderon not
only rediscovered results but added new insights to the subject. According
to Cotlar, while still in Buenos Aires, Calderon had arrived by himself at
something very close to the notion of distributions. This came as a conse-
quence of Calderon's interest in quantum mechanics, which had been sparked
by Guido Beck, the Italian physicist exiled in Argentina.
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The two-month visit of Zygmund to Buenos Aires resulted in two joint
papers and an invitation to Calderon to work with him in Chicago. Calderon
arrived there in 1949 as a Rockefeller Fellow. The transition was hard be-
cause Calderon felt awed when suddenly confronted with the world of top-
class mathematics. At the time, the Department of Mathematics at the Uni-
versity of Chicago was reputedly the world's best, and its faculty included,
besides Zygmund, Adrian Albert, Shiing S. Chern, Lawrence Graves, Saun-
ders McLane, Marshall Stone (chairman), and Andre Weil as professors, and
Paul Halmos, Irving Kaplansky, Irving Segal, and Edwin Spanier as assistant
professors. Calderon recalled he was so shocked that he wanted to return to
Argentina, and it required all of Zygmund's power to persuade him to stay
in Chicago. Calderon's interests were very broad from the start. He was
fascinated by Andre Weil and established a dialogue with the great French
master. Calderon loved all mathematics, and his penchant for concrete anal-
ysis did not inhibit his fascination with abstraction. He was interested in
the Bourbaki approach and asked Weil for open problems. Well complied;
Calderon later said that these problems eventually sparked some of his ideas
on pseudodifferential operators.

As a Rockefeller Fellow, Calderon had gone to Chicago to work with Zyg-
mund, not in pursuit of a degree. But the intervention of Marshall Stone (a
most visionary chairman) pushed him to obtain a doctorate, without which
Calderon's academic career would have been hindered. To make this possi-
ble Stone persuaded him to "staple together" three separate papers into a
dissertation. Thus Calderon was able to obtain his Ph.D. in mathematics
under Zygmund's supervision in 1950, only a year after arriving in Chicago.
The dissertation proved momentous: each of the three papers solved a long-
standing open problem in ergodic theory or harmonic analysis. The two on
the behavior of harmonic functions at the boundary opened up the possi-
bility of bypassing complex methods in dealing with fundamental questions
of harmonic analysis in the circle, thus leading to the extensions to the Eu-
clidean n-dimensional space that were at the core of Zygmund's program for
the future.

The collaboration begun by Zygmund and Calderon in 1948 reached
fruition in the Calderon-Zygmund theory of singular integrals and ended
only with Zygmund's death in 1992. Their memoir, "On singular integrals,"
published in Acta Mathematica in 1952, continues to be one of the most
influential papers in the modern history of analysis. Teacher and student
not only forged a major mathematical theory but cofounded what became
internationally known as the Calderon-Zygmund school of analysis. Their
methods have far-reaching consequences in many different branches of math-
ematics. A prime example of such a general method is one of their first joint
results, the famous "Calderon-Zygmund decomposition lemma," invented to
prove the "weak-type" continuity of singular integrals of integrable functions,
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which is now widely used throughout analysis and probability theory.
Although the theory of singular integrals seemed at first quite arcane to

most analysts, by the mid sixties its popularity was established thanks to
the epoch-making contributions to the theory of differential equations made
by Calderon using singular integral operators. His proof of the uniqueness in
the Cauchy problem, using algebras of singular integral operators, his exis-
tence and uniqueness theory for hyperbolic problems, his reduction of elliptic
boundary value problems to singular integral equations on the boundary (the
method of the Calder6n projector), and the crucial role played by algebras
of singular integrals (through the work of Calder6n's student R. Seeley) in
the proof of the Atiyah-Singer index theorem, gained Calder6n international
fame. The development of pseudodifferential operators, by Kohn-Nirenberg
and Hormander, is a direct consequence of Calder6n's work on the applica-
tions of algebras of singular integrals to partial differential equations. In-
deed, classical pseudodifferential operators form an algebra which includes
the "variable coefficient" singular integral operators with kernels infinitely
differentiable outside the diagonal, and partial differential operators with
smooth coefficients. Calderon himself, in part through his collaborations with
R. Vaillancourt and J. Alvarez-Alonso, contributed significantly to the theory
of pseudodifferential operators. Nevertheless, Calder6n insisted that the ear-
lier point of view of algebras of singular integral operators with nonsmooth
kernels should provide a tool to solve actual problems arising in physics and
engineering, in which lack of smoothness is a natural feature. Moreover, he
saw this greater generality as a means to "prepare the ground for applica-
tions to the theory of quasilinear and nonlinear differential operators." This
point of view led to what is now referred to as the "Calderon program,"
the first success of which was Calder6n's proof of the boundedness of the
"first commutator." Further impetus in this program came from Calder6n's
fundamental study of the Cauchy integral on Lipschitz curves (1978). Many
important works, like those of Coifman-Mclntosh-Meyer, Bony, Verchota,
David-Journe and many others followed from this. Calder6n's short com-
ment on the need still to address the open problems in this theory appears
at the end of this volume.

A commentary on the mathematical significance of some of Calder6n's
contributions is given in the article by Elias M. Stein that begins the math-
ematical body of this volume.

It should not be forgotten that Calderon retained his interest in the ap-
plications of mathematics all his life, and some items in his bibliography
stem from that interest: e.g., the papers on the phase problem for three-
dimensional Fourier expansions and on the Radon transform. He was thrilled
by the influence his work has had in applied areas, such as signal process-
ing, geophysics and tomography, and he was intrigued by its relationship to
wavelet theory.



After receiving his Ph.D. in mathematics from the University of Chicago,
Calderon went to teach at Ohio State University for two years. He was a
member of the Institute for Advanced Study at Princeton from 1953 to 1955,
and an associate professor at the Massachusetts Institute of Technology from
1955 to 1959, returning to the University of Chicago as a professor from
1959 to 1972, and, after three more years at MIT, as a University Professor of
Mathematics from 1975 until his retirement in 1985. He served as chairman of
the department for two years in the seventies and returned to it permanently
in 1989. Calderon was a Honorary Professor at the University of Buenos
Aires from 1975 and the Director of the Instituto Argentino de Matematica
(IAM) for several years during the seventies and early eighties.

Calderon always kept close links with Argentina and had a strong influ-
ence on the development of mathematics in his native country. In particular,
seven of the sixteen Ph.D. students he had while at the University of Chicago
came from the University of Buenos Aires. This happened in great measure
through Zygmund's initiative. As a witness of the extraordinary growth of
mathematics in Poland, his native country, during the twenty years of inde-
pendence from the great powers between the two World Wars, Zygmund was
a strong advocate of developing local mathematical talent in noncentral coun-
tries. He rightly claimed that mathematics, needing no major investment in
either buildings or laboratories, could initiate the uplifting of a whole scien-
tific establishment. On his 1948 trip to Buenos Aires when he "discovered"
Calderon, Zygmund also found a group of eager young researchers, among
them Mischa Cotlar. After Cotlar had also been "discovered" by George
Birkhoff, Marshall Stone intervened to have him admitted to the University
of Chicago's doctoral program, even though he had no prior schooling. He
became Zygmund's next Ph.D. student after Calderon. It was Zygmund's
second visit to Buenos Aires in 1959 that started a series of visits there
by Calderon, and it was Zygmund who personally encouraged a group of
undergraduate students and young researchers to attend Chicago to work
with Calderon. The first to come were Agnes Benedek and Rafael Panzone
(who already had obtained their Ph.D. degrees with Gonzalez Dominguez
and Cotlar, respectively), who developed with Calderon the theory of Ba-
nach space valued singular integrals, and Steven Vagi and Evelio Oklander,
who became Calderdn's Ph.D. students at the University of Chicago. More
students followed, and as was mentioned earlier, all in all seven students from
the University of Buenos Aires obtained their Ph.D. degrees under Calderon's
supervision at the University of Chicago.

Calderon and Zygmund also took an active interest in the development
of mathematics in Spain. It is remarkable that the happy circumstances of
the democratic transition after Franco's disappearance allowed the bloom-
ing of a Spanish school of real analysis which sprang from the activities of
the lone Calderon-Zygmund student from Madrid, Miguel de Guzman, a
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lifelong friend of both. Miguel had the luck--which eluded his Argentine
classmates-to return to his country at a time when it flourished, and his
energy and generous vision opened the door for Spain to assume a major role
in the international scene of mathematical analysis.

Calder6n was recognized all over the world for his outstanding contribu-
tions to mathematics. He was a member of the U.S. National Academy of
Sciences; the National Academies of Argentina, Spain, and France (corre-
sponding); the Latin American Academy of Sciences; Academy of Sciences
of the Third World, and a Fellow of the American Academy of Arts and
Sciences. He received honorary doctorates from the University of Buenos
Aires, the Technion (Israel), the Ohio State University, and the Universidad
Autonoma de Madrid. He gave many invited addresses to universities and
to learned societies, and he addressed the International Congress of Mathe-
maticians as invited lecturer in Moscow in 1966 and as plenary lecturer in
Helsinki in 1978. He was awarded the 1979 Bocher Prize and the 1989 Steele
Prize by the American Mathematical Society. He was also the recipient of
the Wolf Prize in Mathematics (Israel, 1989).

In 1991, Calder6n was honored with the National Medal of Science, the
highest award bestowed by the United States for scientific achievement. In
that exceptional recognition he followed his teacher Antoni Zygmund, who
had received the National Medal of Science in 1986. This national recognition
of the Calderon-Zygmund school's value is testimony to how well the United
States can integrate immigrants and benefit from their contributions.

Besides his remarkable research accomplishments, Calder6n was a gifted
lecturer and an inspiring teacher. But he was uneven; he could teach magnif-
icent courses, but he could also lecture obscurely, depending on the degree of
his current involvement with the subject he was teaching. Calder6n super-
vised twenty-seven Ph.D. students -five while at MIT, sixteen at the Uni-
versity of Chicago, and six at the University of Buenos Aires. His students
and collaborators had the opportunity to work with a formidable mathemati-
cian, with an array of hard and interesting problems to suggest, and they all
could profit from his unusual openness in sharing ideas.

Outside of scientific endeavors, Calder6n's interests ranged widely. He
was fluent in several languages, loved music, played the piano, and danced
the tango beautifully. He had a natural talent at fixing all sorts of appliances
and always retained the mechanical interests of his early years. To each of
his activities he brought the same enthusiasm and the same fresh outlook.

In 1950, Calder6n married Mabel Molinelli Wells, a mathematics graduate
whom he had met while both were students at the University of Buenos Aires
and who was to have a very strong influence on his life. They had a daughter,
Maria Josefina, and a son, Pablo, also a mathematician. In the late sixties
Calder6n's family settled in Buenos Aires, where Mabel died in 1985 after
a long illness. Calder6n's children and his three grandchildren reside in the
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United States, as does Calixto P. Calderdn, one of his brothers and also a
mathematician; his remaining family is in Argentina.

During a visit to MIT, Calderdn had shared an office with the Rumanian-
born mathematician Alexandra (Bagdasar) Bellow, an ergodic theorist of
world renown, currently Emeritus Professor at Northwestern University. In
1989, Alexandra and Alberto Calderdn were married. At the end of her
1991 Noether Lecture, Alexandra described their shared personal and pro-
fessional fulfillment, saying "life offered (me) peace and happiness after fifty,
and mathematics became an asset in the human aspects of my personal life."
Calderdn had been interested in ergodic theory throughout his career, and
his last two papers are joint with his wife.

Alberto P. Calderdn, Emeritus Professor of Mathematics of the University
of Chicago and Honorary Professor of the University of Buenos Aires, died
at the age of seventy-seven on April 16 of 1998, after a short illness. He
was one of the greatest mathematicians of the second half of the twentieth
century. Those whose lives he entered will long cherish his memory, and his
mathematics will live for generations to come.

Ph.D. Students of Alberto Calderdn

Robert T. Seeley (1958)
Irwin S. Bernstein (1959)
1. Norman Katz (1959)
Jerome H. Neuwirth (1959)
Earl Robert Berkson (1960)
Evelio Oklander (1964)
Cora S. Sadosky (1965)
Stephen Vagi (1965)
Umberto Neri (1966)
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Miguel S. J. de Guzman (1968)

Daniel Fife (1968)
Alberto Torchinsky (1971)
Keith W. Powls (1972)
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Telma Caputti (1976)
Robert Richard Reitano (1976)
Carlos E. Kenig (1978)
Angel Bartolome Gatto (1979)
Cristian Enrique Gutierrez (1979)
Kent G. Merryfield (1980)
Michael Christ (1982)
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Chapter 1

Calderon and Zygmund's
Theory of Singular Integrals

Elias M. Stein

At the occasion of the conference in honor of Alberto Calderdn's seventy-fifth
birthday, it is most fitting that we celebrate the mathematical achievements
for which he is so much admired. Chief among these is his role in the creation
of the modern theory of singular integrals. In that great enterprise he had
the good fortune of working with the mathematician who had paramount
influence on his scientific life: Antoni Zygmund, at first his teacher, and later
his mentor and collaborator. So any account of the modern development of
that theory must be in large part the story of the efforts of both Zygmund
and Calderon. I will try to present this, following roughly the order of events
as they unfolded. My aim will be to explore the goals that inspired and
motivated them, describe some of their shared accomplishments and later
work, and discuss briefly the wide influence of their achievements.

1.1 Zygmund's Vision: 1927-1949
In the first period his scientific work, from 1923 to the middle 1930s, Zyg-
mund devoted himself to what is now called "classical" harmonic analysis,
that is, Fourier and trigonometric series of the circle, related power series of
the unit disk, conjugate functions, Riemannian theory connected to unique-
ness, lacunary series, etc. An account of much of what he did, as well as
the work of his contemporaries and predecessors, is contained in his famous
treatise, "Trigonometrical Series," published in 1953. The time in which this
took place may be viewed as the concluding decade of the brilliant century of

1



2 Chapter 1: Calder6n and Zygmund's Theory of Singular Integrals

classical harmonic analysis: the approximately hundred-year span which be-
gan with Dirichlet and Riemann, continued with Cantor and Lebesgue among
others, and culminated with the achievements of Kolmogorov, M. Riesz, and
Hardy and Littlewood.

It was during that last decade that Zygmund began to turn his attention
from the one-dimensional situation to problems in higher dimensions. At first
this represented merely an incidental interest, but then later he followed it
with increasing dedication, and eventually it was to become the main focus of
his scientific work. I want now to describe how this point of view developed
with Zygmund.

In outline, the subject of one-dimensional harmonic analysis as it existed
in that period can be understood in terms of what were then three closely
interrelated areas of study, and which in many ways represented the central
achievements of the theory: real-variable theory, complex analysis, and the
behavior of Fourier series. Zygmund's first excursion into questions of higher
dimensions dealt with the key issue of real-variable theory-the averaging of
functions. The question was as follows.

The classical theorem of Lebesgue guaranteed that, for almost every x,

lEm ff(y)dY=f(x) , (1.1)
di..(I)-0

where I ranges over intervals, and when f is an integrable function on the
line R1. In higher dimensions it is natural to ask whether a similar result held
when the intervals I are replaced by appropriate generalizations in R". The
fact that this is the case when the I's are replaced by balls (or more general
sets with bounded "eccentricity") was well known at that time. What must
have piqued Zygmund's interest in the subject was his realization (in 1927)
that a paradoxical set constructed by Nikodym showed that the answer is
irretrievably false when the I's are taken to be rectangles (each containing
the point in question), but with arbitrary orientation. To this must be added
the counterexample found by Saks several years later, which showed that the
desired analogue of (1.1) still failed even if we now restricted the rectangles
to have a fixed orientation (e.g., with sides parallel to the axes), as long as
one allowed f be a general function in L'.

It was at this stage that Zygmund effectively transformed the subject at
hand by an important advance: he proved that the wished-for conclusion
(when the sides are parallel to the axes) held if f was assumed to belong to
LP, with p > 1. He accomplished this by proving an inequality for what is
now known as the "strong" maximal function. Shortly afterward in Jessen,
Marcinkiewicz, and Zygmund [31] this was refined to the requirement that f
belong to L(log L)"-1 locally.

This study of the extension of (1.1) to R" was the first step taken by
Zygmund. It is reasonable to guess that it reinforced his fascination with
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what was then developing as a long-term goal of his scientific efforts, the
extension of the central results of harmonic analysis to higher dimensions.
But a great obstacle stood in the way: it was the crucial role played by
complex function theory in the whole of one-dimensional Fourier analysis,
and for this there was no ready substitute.

In describing this special role of complex methods we shall content our-
selves with highlighting some of the main points.

1. The conjugate function and its basic properties

As is well known, the Hilbert transform comes directly from the Cauchy
integral formula. We also recall the fact that M. Riesz proved the
LP boundedness properties of the Hilbert transform f H H(f) _

00

f f (x - y) by applying a contour integral to (F)P, where F
-00

is the analytic function whose boundary limit has f as its real part.

2. The theory of the Hardy Spaces HP

These arose in part.as substitutes for LP, when p < 1, and were by
their very nature complex-function-theory constructs. (It should be
noted, however, that for 1 < p < oo they were essentially equivalent
with LP by Riesz's theorem.) The main tool used in their study was the
Blaschke product of their zeroes in the unit disk. Using it, one could
reduce to elements F E HP with no zeroes, and from these one could
pass to G = FP'2; the latter was in H2 and hence could be treated by
more standard (L2) methods.

3. The Littlewood-Paley theory

This proceeded by studying the dyadic decomposition in frequency
space and had many applications; among them was the Marcinkiewicz
multiplier theorem. The theory initiated and exploited certain basic
"square functions," and these we originally studied by complex-variable
techniques closely related to what were used in HP spaces.

4. The boundary behavior of harmonic functions

The main result obtained here (Privalov [1923], Marcinkiewicz and Zyg-
mund [1938], and Spencer [1943]) stated that for any harmonic function
u(re'B) in the unit disk, the following three properties are equivalent
for almost all boundary points e'B:

u has a nontangentive limit at e'0 , (1.2)

'au is nontangentially bounded at e , (1.3)
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the "area integral" (S(u)(8))2 = ff IVu(z)I2dxdy is finite, (1.4)

r(e'e )

where I'(eie) is a nontangential approach region with vertex ee.

The crucial first step in the proof was the application of the conformal
map (to the unit disk) of the famous sawtooth domain (which is pictured in
Zygmund [74], vol. 2, p. 200).

This mapping allowed one to reduce the implication (1.3) (1.2) to
the special case of bounded harmonic functions in the unit disk (Fatou's
theorem), and it also played a corresponding role in the other parts of the
proof.

It is ironic that complex methods with their great power and success in
the one-dimensional theory actually stood in the way of progress to higher
dimensions, and appeared to block further progress. The only way past,
as Zygmund foresaw, required a further development of "real" methods.
Achievement of this objective was to take more than one generation, and
in some ways is not yet complete. The mathematician with whom he was to
initiate the effort to realize much of this goal was Alberto Calderdn.

1.2 Calderon and Zygmund: 1950-1957
1. Zygmund spent a part of the academic year 1948-49 in Argentina, and
there he met Calderdn. Zygmund brought him back to the University of
Chicago, and soon thereafter (in 1950), under his direction, Calderon ob-
tained his doctoral thesis. The dissertation contained three parts, the first
about ergodic theory, which will not concern us here. However, it is the sec-
ond and third parts that interest us, and these represented breakthroughs in
the problem of freeing oneself from complex methods and, in particular, in
extending to higher dimensions some of the results described in (4) above.
In a general way we can say that his efforts here already typified the style of
much of his later work: he begins by conceiving some simple but fundamental
ideas that go to the heart of the matter and then develops and exploits these
insights with great power.

In proving (1.3) = (1.2) we may assume that u is bounded inside the
sawtooth domain H that arose in (4) above: this region is the union of
approach regions I'(etO) ("cones"), with vertex etc, for points et0 E E, and E
a closed set. Calderdn introduced the auxiliary harmonic function U, with U
the Poisson integral of and observed that all the desired facts flowed from
the dominating properties of U: namely, u could be split as u = U1 +U2, where
ul is the Poisson integral of a bounded function (and hence has nontangential
limits a.e.), while by the maximum principle, Iu21 < cU, and therefore u2
has (nontangential) limits = 0 at a.e. point of E.
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The second idea (used to prove the implication (1.2) = (1.4)) has as its
starting point the simple identity

Au2 = 2IVu12 (1.5)

valid for any harmonic function. This will be combined with Green's theorem

J J(BLA - AAB)dxdy = J (Ban - A8n) dv ,

n an

where A = u2, and B is another ingeniously chosen auxiliary function de-
pending on the domain S2 only. This allowed him to show that

J fyJvuidxdy < oo,
a

which is an integrated version of (1.4).
It may be noted that the above methods and the conclusions they imply

make no use of complex analysis, and are very general in nature. It is also
a fact that these ideas played a significant role in the later real-variable
extension of the Hp theory.

2. Starting in the year 1950, a close collaboration developed between Calderdn
and Zygmund which lasted almost thirty years. While their joint research
dealt with a number of different subjects, their preoccupying interest and
most fundamental contributions were in the area of singular integrals. In this
connection the first issue they addressed was-to put the matter simply-
the extension to higher dimensions of the theory of the Hilbert transform.
A real-variable analysis of the Hilbert transform had been carried out by
Besicovitch, Titchmarsh, and Marcinkiewicz, and this is what needed to be
extended to the IR" setting.

A reasonable candidate for consideration presented itself. It was the
operator fH T f, with

r
T (f) (x) = p.v. J

K(y) f (x - y)dy, (1.6)

Rn

when K was homogeneous of degree -n, satisfied some regularity, and in
addition the cancellation condition f K(x)do(x) = 0.

I=I=1
Besides the Hilbert transform (which is the only real example when

n = 1), higher-dimensional examples include the operators that arise as
second derivatives of the fundamental solution operator for the Laplacian,
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(which can be written as 8202 as well as the related Riesz trans-

forms,
All of this is the subject matter of their historic memoir, "On the existence

of singular integrals," which appeared in the Acta Mathematica in 1952.
There is probably no paper in the last fifty years which had such widespread
influence in analysis. The ideas in this work are now so well known that I
will only outline its contents. It can be viewed as having three parts.

First, there is the Calderdn-Zygmund lemma, and the corresponding
Calderdn-Zygmund decomposition. The main thrust of the former is as a
substitute for F. Riesz's "rising sun" lemma, which had implicitly played
a key role in the earlier treatment of the Hilbert transform. Second, using
their decomposition, they then proved the weak-type L1, and L", 1 < p < oo,
estimates for the operator T in (1.6). As a preliminary step they disposed
of the L2 theory of T using Plancherel's theorem. Third, they applied these
results to the examples mentioned above, and in addition they proved a.e.
convergence for the singular integrals in question.

It should not detract from one's great admiration of this work to note
two historical anomalies contained in it. The first is the fact that there is no
mention of Marcinkiewicz's interpolation theorem, or to the paper in which
it appeared (Marcinkiewicz 11939a]), even though its ideas play a significant
role. In the Calderdn-Zygmund paper, the special case that is needed is in
effect reproved. The explanation for this omission is that Zygmund had sim-
ply forgotten about the existence of Marcinkiewicz's note. To make amends
he published (in 1956) an account of Marcinkiewicz's theorem and various
generalizations and extensions he had since found. In it he conceded that
the paper of Marcinkiewicz ". . . seems to have escaped attention and does
not find allusion to it in the existing literature."

The second point, like the first, also involves some very important work
of Marcinkiewicz. He had been Zygmund's brilliant student and collaborator
until his death at the beginning of World War H. It is a mystery why no ref-
erence was made to the paper Marcinkiewicz [40] and the multiplier theorem
in it. This theorem had been proved by Marcinkiewicz in an n-dimensional
form (as a product "consequence" of the one-dimensional form). As an ap-
plication, the LP inequalities for the operators azaa (A-1) were obtained;'
these he had proved at the behest of Schauder.

3. As has already been indicated, the n-dimensional singular integrals had
its main motivation in the theory of partial differential equations. In their
further work, Calderdn and Zygmund pursued this connection, following the
trail that had been explored earlier by Giraud, Tricomi, and Mihlin. Start-

'In truth, he had done this for their periodic analogues, but this is a technical distinc-
tion.
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ing from those ideas (in particular the notion of "symbol") they developed
their version of the symbolic calculus of "variable-coefficient" analogues of
the singular integral operators. To describe these results one considers an
extension of the class of operators arising in (1.6), namely of the form,

T (f) (x) _= ao (x) f (x) + p.v.
r
1 K(x, y).f (x - y)dy, (1.7)

Rn

where K(x, y) is for each x a singular integral kernel of the type (1.6) in y,
which depends smoothly and boundedly on x; also ao(x) is a smooth and
bounded function.

To each operator T of this kind there corresponds its symbol a(x,
defined by

a(x, ) = ao(x) + K(x, 0 , (1.8)

where K(x, C) denotes the Fourier transform of K(x, y) in the y-variable.
Thus a(x, C) is homogeneous of degree 0 in the variable (reflecting the
homogeneity of K(x, y) of degree -n in y); and it depends smoothly and
boundedly on x. Conversely to each function a(x,t;) of this kind there exists
a (unique) operator (1.7) for which (1.8) holds. One says that a is the symbol
of T and also writes T = Ta.

The basic properties that were proved were, first, the regularity properties

T.: Lk

where Lk are the usual Sobolev spaces, with 1 < p < oo.
Also the basic facts of symbolic manipulations

Tai Taz = Tal.42 + Error (1.10)

(Ta)` = TT + Error (1.11)

where the Error operators are smoothing of order 1, in the sense that Error :
LP k - LPx+i

A consequence of the symbolic calculus is the factorizability of any linear
partial differential operator L of order m,

L = a, (X) (Lie
where the coefficients a,, are assumed to be smooth and bounded. One can
write

L = Ta(-A)mI2 + (Error)' (1.12)
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for an appropriate symbol a, where the operator (Error)' refers to an op-
erator that maps LP - Lk_,,,+i for k > m - 1. It seemed clear that this
symbolic calculus should have wide applications to the theory of partial dif-
ferential operators and to other parts of analysis. This was soon to be borne
out.

1.3 Acceptance: 1957-1965
At this stage of my narrative I would like to share some personal reminis-
cences. I had been a student of Zygmund at University of Chicago, and
in 1956 at his suggestion I took my first teaching position at MIT, where
Calderon was at that time. I had met Calderon several years earlier when
he came to Chicago to speak about the "method of rotations" in Zygmund's
seminar. I still remember my feelings when I saw him there; these first im-
pressions have not changed much over the years: I was struck by the sense
of his understated elegance, his reserve, and quiet charisma.

At MIT we would meet quite often and over time an easy conversational
relationship developed between us. I do recall that we, in the small group
who were interested in singular integrals then, felt a certain separateness from
the larger community of analysts-not that this isolation was self-imposed,
but more because our subject matter was seen by our colleagues as somewhat
arcane, rarefied, and possibly not very relevant. However, this did change,
and a fuller acceptance eventually came. I want to relate now how this
occurred.

1. Starting from the calculus of singular integral operators that he had
worked out with Zygmund, Calder6n obtained a number of important appli-
cations to hyperbolic and elliptic equations. His most dramatic achievement
was in the uniqueness of the Cauchy problem (Calder6n [5]). There he suc-
ceeded in a broad and decisive extension of the results of Holmgren (for the
case of analytic coefficients), and Carleman (in the case of two dimensions).
Calderfn's theorem can be formulated as follows.

Suppose u is a function which in the neighborhood of the origin in R"
satisfies the equation of mth order:

m u

J9X
a,, (x)ax« (1.13)

where the summation is taken over all indices a = (al, ... , an) with Jal <
n, and an < m. We also assume that u satisfies the null initial Cauchy
conditions

=0, j=0,...,m-1. (1.14)
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Besides (1.13) and (1.14), it suffices that the coefficients aQ belong to
C1+E, that the characteristics are simple, and n i4 3, or m < 3. Under these
hypotheses u vanishes identically in a neighborhood of the origin.

Calder6n's approach was to reduce matters to a key "pseudo-differential
inequality" (in a terminology that was used later). This inequality is compli-
cated, but somewhat reminiscent of a differential inequality that Carleman
had used in two dimensions. The essence of it is that

+ /
J Ok II + (P+iQ)(_A)lizu

z

II
o

I JJJ

dt < c / 0klIujI2dt, (1.15)

0

where u(0) = 0 implies u - 0, if (1.15) holds for k -+ oo.
Here P and Q are singular integral operators of the type (1.7), with real

symbols and P is invertible; we have written t = x,,, and the norms are L2
norms taken with respect to the variables x1, ... , x,,_1. The functions ¢k are
meant to behave like t-k, which when k -* oo emphasizes the effect taking
place near t = 0. In fact, in (1.13) we can take ¢k(t) = (t + 1/k)-k.

The proof of assertions like (1.15) is easier in the special case when all
the operators commute; their general form is established by using the basic
facts (1.10) and (1.11) of the calculus.

The paper of Calder6n was, at first, not well received. In fact, I learned
from him that it was rejected when submitted to what was then the leading
journal in partial differential equations, Commentaries of Pure and Applied
Mathematics.

2. At about that time, because of the applicability of singular integrals
to partial differential equations, Calder6n became interested in formulating
the facts about singular integrals in the setting of manifolds. This required
the analysis of the effect coordinate changes had on such operators. A hint
that the problem was tractable came from the observation that the class
of kernels, K(y), of the type arising in (1.6), was invariant under linear
(invertible) changes of variables yN L(y). (The fact that K(L(y)) satisfied
the same regularity and homogeneity that K(y) did, was immediate; that
the cancellation property also holds for K(L(y)) is a little less obvious.)

R. Seeley was Calder6n's student at that time, and he dealt with this
problem in his thesis (see Seeley 159)). Suppose x -+ O(x) is a local diffeo-
morphism, then the result was that modulo error terms (which are "smooth-
ing" of one degree) the operator (1.7) is transformed into another operator
of the same kind,

T'(f)(x) ao(x) = f (x) + p.v. J K'(x, y) f (x - y) dy

but now ao(x) = ao(a/i(x)), and K'(x,y) = K'(i,i(x), L,,(y)), where L. is
the linear transformation given by the Jacobian matrix az . On the level
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of symbols this meant that the new symbol a' was determined by the old
symbol according to the formula

a`(x, ) = a(V(x), L' (d))

with L'' the transpose-inverse of L. Hence the symbol is actually a function
on the cotangent space of the manifold.

The result of Seeley was not only highly satisfactory as to its conclusions,
but it was also very timely in terms of events that were about to take place.
Following an intervention by Gelfand [1960], interest grew in calculating the
"index" of an elliptic operator on a manifold. This index is the difference of
the dimension of the null-space and the codimension of the range of the op-
erator, and is an invariant under deformations. The problem of determining
it was connected with a number of interesting issues in geometry and topol-
ogy. The result of the "Seeley calculus" proved quite useful in this context:
the proofs proceeded by appropriate deformations and matters were facili-
tated if these could be carried out in the more flexible context of "general"
symbols, instead of restricting attention to the polynomial symbols coming
from differential operators. A contemporaneous account of this development
(during the period 1961-64), may be found in the notes of the seminar on
the Atiyah-Singer index theorem (see Palais [51]); for an historical survey of
some of the background, see also Seeley [61].

3. With the activity surrounding the index theorem, it suddenly seemed as
if everyone was interested in the algebra of singular integral operators. How-
ever, one further step was needed to make this a household tool for analysts:
it required a change of point of view. Even though this change of perspective
was not major, it was significant psychologically and methodologically, since
it allowed one to think more simply about certain aspects of the subject and
because it suggested various extensions.

The idea was merely to change the role of the definitions of the operators,
from (1.7) for singular integrals to pseudo-differential operators

Ta(f)(x) = fa(x,e)J(e)e2nide, (1.16)
Rn

with symbol a. (Here f is the Fourier transform, f (Z;) = f e 2'a'x'(f (x)dx.)
Rn

Although the two operators are identical (when a(x, t;) = ao(x)+K(x, t;)),
the advantage lies in the emphasis in (1.16) on the L2 theory and Fourier
transform, and the wider class of operators that can be considered, in partic-
ular, including differential operators. The formulation (1.16) allows one to
deal more systematically with the composition of such operators and incor-
porate the lower-order terms in the calculus.
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To do this, one might adopt a wider class of symbols of "homogeneous-
type": roughly speaking, a(x, l;) belongs to this class (and is of order m) if
a(x, ) is for large , asymptotically the sum of terms homogeneous in C of
degrees m - j, with j = 0, 1, 2, ... .

The change in point of view described above came into its full flower-
ing with the papers of Kohn and Nirenberg [36J and Hormander [30J, (after
some work by Unterberger and Bokobza [70J and Seeley [601). It is in this
way that singular integrals were subsumed by pseudo-differential operators.
Despite this, singular integrals, with their formulation in terms of kernels,
still retained their primacy when treating real-variable issues, issues such as
LP or L' estimates (and even for some of the more intricate parts of the
L2 theory). The central role of the kernel representation of these operators
became, if anything, more pronounced in the next twenty years.

1.4 Calderon's New Theory of Singular
Integrals: 1965-

In the years 1957-58 there appeared the fundamental work of DeGiorgi and
Nash, dealing with smoothness of solutions of partial differential equations,
with minimal assumptions of regularity of the coefficients. One of the most
striking results-for elliptic equations-was that any solution u of the equa-
tion

L(u)
8x;

(aii(x).) = 0
ij

(1.17)

in an open ball satisfies an a priori interior regularity as loi.g as the coefficients
are uniformly elliptic, i.e.,

C1
IC12 < E aj(x)C Cj ,5 C21S12 . (1.18)

is

In fact, no regularity is assumed about the aij except for the boundedness
implicit in (1.18), and the result is that u is Holder continuous with an
exponent depending only on the constants cl and c2.

Calderon was intrigued by this result. He initially expected, as he told
me, that one could obtain such conclusions and others by refining the cal-
culus of singular integral operators (1.15), making minimal assumptions of
smoothness on ao(x) and K(x, y). While this was plausible-and indeed in
his work with Zygmund they had already derived properties of the opera-
tors (1.7) and their calculus when the dependence on x was, for example, of
class C'+"-this hope was not to be realized. Further understanding about
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these things could be achieved only if one were ready to look in a somewhat
different direction. I want to relate now how this came about.

1. The first major insight arose in answer to the following:

Question: Suppose MA is the operator of multiplication (by the function
A),

MA: f

What are the least regularity assumptions on A needed to guarantee that
the commutator [T, MA] is bounded on L2, whenever T is of order 1?

In R1, if T happens to be /, then [T, MA] = MA,, and so the condition
is exactly

A' E L°°(R1) . (1.19)

In a remarkable paper, Calderbn (1965], showed that this is also the case
more generally. The key case, containing the essence of the result he proved,
arose when T = HI, with H the Hilbert transform. Then T is actually I I,

its symbol is 27rljl. and [T, MA] is the "commutator" C1,

00

C1 (f) (x) =
7r

P.V. J A (x - )2y) f (y)dy . (1.20)

00

Calderon proved that f ,-+ C1(f) is bounded on L2(118) if (1.19) held.
There are two crucial points that I want to emphasize about the proof of

this theorem. The first is the reduction of the boundedness of the bilinear
term (f, g) -+ (C1 (f ), g) to a corresponding property of a particular bilinear
mapping, (F, G) -- B(F, G), defined for (appropriate) holomorphic functions
in the upper half-plane {z = x + iy, y > 0} by

B(F, G) (x) = i J 00 F'(x + iy)G(x + iy)dy. (1.21)

This B is a primitive version of a "para-product" (in this context, the
justification for this terminology is the fact that F(x) G(x) = B(F, G)(x) +
B(G, F)(x)). It is, in fact, not too difficult to see that f H C1(f) is bounded
on L2(Rl) if B satisfies the Hardy-space estimate

IIB(F,G)[IH, < ci[F[[H2[JGI[Ha (1.22)

The second major point in the proof is the assertion need to establish
(1.22). It is the converse part of the equivalence

IIS(F)1IL' - I[F[[H> , (1.23)
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for the area integral S (which appeared in (1.4)).
The theorem of Calder6n, and in particular the methods he used, inspired

a number of significant developments in analysis. The first came because of
the enigmatic nature of the proof: a deep L2 theorem had been established
by methods (using complex function theory) that did not seem susceptible of
a general framework. In addition, the nontranslation-invariance character of
the operator C, made Plancherel's theorem of no use here. It seemed likely
that a method of "almost-orthogonal" decomposition-pioneered by Cotlar
for the classical Hilbert; transform-might well succeed in this case also. This
lead to a reexamination of Cotlar's lemma (which had originally applied to
the case of commuting self-adjoint operators). A general formulation was
obtained as follows: Suppose that on a Hilbert space, T = ET then

IITII2 < Esup{IIT;T;+kII + II7; T;+kII}. (1.24)
k 7

Despite the success in proving (1.24), this alone was not enough to reprove
Calder6n's theorem. As understood later, the missing element was a certain
cancellation property. Nevertheless, the general form of Cotlar's lemma,
(1.24), quickly led to a number of highly useful applications, such as singu-
lar integrals on nilpotent group (intertwining operators), pseudo-differential
operators, etc.

Calder6n's theorem. also gave added impetus to the further evolution of
the real-variable HP theory. This came about because the equivalence (1.23)
and its generalizations allowed one to show that the usual singular integrals
(1.6) were also bounded on the Hardy space H' (and in fact on all Hp,
0 < p < oo). Taken together with earlier developments and some later
ideas, the real-variable Hp theory reached its full-flowering a few years later.
One owes this long-term achievement to the work of G. Weiss, C. Fefferman,
Burkholder, Gundy, and Coifman, among others.

2. It became clear after a time that understanding the commutator C, (and
its "higher" analogues) was in fact connected with an old problem that had
been an ultimate, but unreached, goal of the classical theory of singular
integrals: the boundedness behavior of the Cauchy-integral taken over curves
with minimal regularity. The question involved can be formulated as follows:
in the complex plane, for a contour -y and a function f defined on it, form
the Cauchy integral

F(z) 2-l Cf
with F holomorphic outside y. Define the mapping f -+ C(f) by C(f) _
F+ + F_, where F+ are the limits of F on ry approached from either side.
When -y is the unit circle, or real axis, then f -4 C(f) is essentially the Hilbert
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transform. Also when y has some regularity (e.g., -y is in C'+`), the expected
properties of C (i.e., L2, LP boundedness, etc.) are easily obtained from the
Hilbert transform. The problem was what happened when, say, 'y was less
regular, and here the main issue that presented itself was the behavior of the
Cauchy integral when y was a Lipschitz curve.

If y is a Lipschitz graph in the plane, -y = {x + iA(x), x E R}, with
A' E L°°, then up to a multiplicative constant,

00

C(f)(x) = p.v. f
x - y + i(A(x) -

A(y))f(y)b(y)dy, (1.25)

00

where b = 1 + iA'. The formal expansion

A(x) - A(y) 1 k
x- y + iA(A(y)) x- y

k=O

(-z)k
X- Y

then makes clear that the fate of Cauchy integral C is inextricably bound up
with that of the commutator C, and its higher analogues Ck given by

00

p.v. f (A(x) - A()) k f y)
Ckf(x)= x - y x-ydy.

-00

The further study of this problem was begun by Coifman and Meyer in
the context of the commutators Ck, but the first breakthrough for the Cauchy
integral was obtained by Calderdn [9] (using different methods), in the case
the norm IIA'IILo was small. His proof made decisive use of the complex-
analytic setting of the problem. It proceeded by an ingenious deformation
argument, leading to a nonlinear differential inequality; this nonlinearity ac-
counted for the limitation of small norm for A' in the conclusion. But even
with this limitation, the conclusion obtained was stunning.

The crowning. result came in 1982, when Coifman and Meyer having en-
listed the help of McIntosh, and relying on some of their earlier ideas, to-
gether proved the desired result without limitation on the size of IIA'IIL-. The
method (in Coifman, McIntosh, and Meyer [20]) was operator-theoretic, em-
phasizing the multilinear aspects of the Ck, and in distinction to Calderdn's
approach was not based on complex-analytic techniques.

3. The major achievement represented by the theory of the Cauchy integral
led to a host of other results, either by a rather direct exploitation of the
conclusions involved, or by extensions of the techniques that were used. I
will briefly discuss two of these developments.
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The first was a complete analysis of the L2 theory of "Calderdn-Zygmund
operators." By this terminology is meant operators of the form

T (f) (x) = f K(x, y)f (y)dy (1.27)
&1n

initially defined for test-function f E S, with the kernel K a distribution.
It is assumed that away from the diagonal K agrees with a function that
satisfies familiar estimates such as

IK(x,y)1 <-AIx--yI-", IV,yK(x,y)I
<AIx-yl-n-1.

(1.28)

The main question that arises (and is suggested by the commutators Ck) is
what are the additional conditions that guarantee that T is a bounded opera-
tor on L2(R") to itself. The answer, found by David and Journ6 [23] is highly
satisfying: A certain "weak boundedness" property, namely I (TI, g) I < Arn
wherever f and g are suitably normalized bump functions, supported in a ball
of radius r; also that both T(1) and T*(1) belong to BMO. These conditions
are easily seen to be also necessary.

The argument giving the sufficiency proceeded in decomposing the opera-
tor into a sum, T = T, +T2, where for T1 the additional cancellation condition
T1 (1) = Tl (1) = 0 held. As a consequence the method of almost-orthogonal
decomposition, (1.24), could be successfully applied to Ti. The operator T2
(for which L2 boundedness was proved differently) was of para-product type,
chosen so as to guarantee the needed cancellation property.

The conditions of the David-Journe theorem, while applying in principle
to the Cauchy integral, are not easily verified in that case. However, a
refinement (the "T(b) theorem"), with 6 = 1 + iA', was found by David,
Journ6, and Semmes, and this does the job needed.

A second area that was substantially influenced by the work of the Cauchy
integral was that of second-order elliptic equations in the context of minimal
regularity. Side by side with the consideration of the divergence-form oper-
ator L in (1.17) (where the emphasis is on the minimal smoothness of the
coefficients), one was led to study also the potential theory of the Laplacian
(where now the emphasis was on the minimal smoothness of the boundary).
In the latter setting, a. natural assumption to make was that the boundary
is Lipschitzian. In fact, by an appropriate Lipschitz mappings of domains,
the situation of the Laplacian in a Lipschitz domain could be realized as a
special case of the divergence-form operator (1.17), where the domain was
smooth (say, a half-space).

The decisive application of the Cauchy integral to the potential theory
of the Laplacian in a Lipschitz domain was in the study of the boundedness
of the double layer potential (and the normal derivative of the single layer
potential). These are P.-1 dimensional operators, and they can be realized by
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applying the "method of rotations" to the one-dimensional operator (1.25).
One should mention that another significant aspect of Laplacians on Lipschitz
domains was the understanding brought to light by Dahlberg of the nature of
harmonic measure and its relation to Ay weights. These two strands, initially
independent, have been linked together, and with the aid of further ideas a
rich theory has developed, owing to the added contributions of Jerison, Kenig,
and others.

Finally, we return to the point where much of this began-the divergence-
form equation (1.17). Here the analysis growing out of the Cauchy integral
also had its effect. Here I will mention only the usefulness of multilinear
analysis in the study of the case of "radially independent" coefficients; also
in the work on the Kato problem-the determination of the domain of f
in the case the coefficients can be complex-valued.

1.5 Some Perspectives on Singular Integrals:
Past, Present, and Future

The modern theory of singular integrals, developed and nurtured by Calderon
and Zygmund, has proved to be a very fruitful part of analysis. Beyond
the achievements described above, a number of other directions have been
cultivated with great success, with work being vigorously pursued up to this
time; in addition, here several interesting open questions present themselves.
I want to allude briefly to three of these directions and mention some of the
problems that arise.

1. Method of the Calderon-Zygmund lemma. As is well known, this method
consists of decomposing an integrable function into its "good" and "bad"
parts; the latter being supported on a disjoint union of cubes, and having
mean-value zero on each cube. Together with an LZ bound and estimates of
the type (1.28), this leads ultimately to the weak-type (1,1) results, etc.

It was recognized quite early that this method allowed substantial exten-
sion. The generalizations that were undertaken were not so much pursued
for their own sake but rather were motivated in each case by the interest
of the applications. Roughly, in order of appearance, here were some of the
main instances:

(i) The heat equation and other parabolic equations. This began with
the work of F. Jones [32] for the heat equation, with the Calderdn-
Zygmund cubes replaced by rectangles whose dimensions reflected the
homogeneity of the heat operator. The theory was extended by Fabes
and Rivii re to encompass more general singular integrals respecting
"nonisotropic" homogeneity in Euclidean spaces.
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(ii) Symmetric spaces and semisimple Lie groups. To be succinct, the
crucial point was the extension to the setting of nilpotent Lie groups
with dilations ("homogeneous groups"), motivated by problems con-
nected with Poisson integrals on symmetric spaces, and construction of
intertwining operators.

(iii) Several complex variables and subelliptic equations. Here we return
again to the source of singular integrals, complex analysis, but now in
the setting of several variables. An important conclusion attained was
that for a broad class of domains in C", the Cauchy-Szego projection is
a singular integral, susceptible to the above methods. This was realized
first for strongly pseudo-convex domains, next weakly pseudo-convex
domains of finite type in CZ; and more recently, convex domains of
finite-type in C. Connected with this is the application of the above
ideas to the e-Neumann problem, and its boundary analogue for cer-
tain domains in C", as well as the study solving operators for subellip-
tic problems, such as Kohn's Laplacian, Hormander's sum of squares,
etc.; these matters also involved using ideas originating in the study of
nilpotent groups as in (ii).

The three kinds of extensions mentioned above are prime examples of
what one may call "one-parameter" analysis. This terminology refers to the
fact that the cubes (or their containing balls), which occur in the standard R"
set-up, -have been replaced by suitable one-parameter family of generalized
"balls," associated to each point. While the general one-parameter method
clearly has wide applicability, it is not sufficient to resolve the following
important question:

Problem: Describe the nature of the singular integrals operators which are
given by Cauchy-Szego projection, as well as those that arise in connection
with the solving operators for the a and ap complexes for general smooth
finite-type pseudo-convex domains in C.

Some speculation about what may be involved in resolving this question
can be found below.

2. The method of rotations. The method of rotations is both simple in its
conception, and far-reaching in its consequences. The initial idea was to take
the one-dimensional Hilbert transform, induce it on a fixed (subgroup) R' of
R", rotate this R1 and integrate in all directions, obtaining in this way the
singular integral (1.6) with odd kernel, which can be written as

Tn(f)(x)=p.v.J j.f(x - y)dy, (1.29)

gn
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where Q is homogeneous of degree 0, integrable in the unit sphere, and odd.
In much the same way the general maximal operator

MO(f)(x) = sup nr>O r f 1l(y)f (x - y)dy
lvl<r

(1.30)

arises from the one-dimensional Hardy-Littlewood maximal function.
This method worked very well for LP, 1 < p estimates, but not for Ll

(since the weak-type L' "norm" is not subadditive). The question of what
happens for Ll was left unresolved by Calder6n and Zygmund. It is now to
a large extent answered: we know that both (1.29) and (1.30) are indeed of
weak-type (1,1) if Il is in L( log L). This is the achievement of a number of
mathematicians, in particular Christ and Rubio de Francia.

When the method of rotations is combined with the singular integrals for
the heat equation (as in 1(i) above), one arrives at the "Hilbert transform
on the parabola." Consideration of the Poisson integral on symmetric spaces
leads one also to inquire about some analogous maximal functions associated
to homogeneous curves. The initial major breakthroughs in this area of
research were obtained by Nagel, Riviere, and Wainger. The subject has
since developed into a rich and varied theory: beginning with its translation
invariant setting on R" (and its reliance on the Fourier transform), and then
prompted by several complex variables, to a more general context connected
with oscillatory integrals and nilpotent Lie groups, where it was rechristened
as the theory of "singular radon transforms."

A common unresolved enigma remains about these two areas which have
sprung out of the method of rotations. This is a question which has intrigued
workers in the field, and whose solution, if positive, would be of great interest.

Problem:

(a) Is there an Ll theory for (1.29) and (1.30) if fI is merely integrable?2

(b) Are the singular Radon transforms, and their corresponding maximal
functions, of weak-type (1,1)?

3. Product theory and multiparameter analysis. To oversimplify matters,
one can say that "product theory" is that part of harmonic analysis in R"
which is invariant with respect to the n-fold dilations: x = (x1, X2.... , x,) -+
(81x1, 62x2i ... &x"), d > 0. Another way of putting it is that its initial
concern is with operators that are essentially products of operators acting on
each variable separately, and then more generally with operators (and asso-
ciated function spaces) which retain some of these characteristics. Related

'For (1.29) we assume also that 11 is odd.
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to this is the multiparameter theory, standing part-way between the one-
parameter theory discussed above and product theory: here the emphasis is
on operators which are "invariant" (or compatible with) specified subgroups
of the group of n-parameter dilations.

The product theory of R" began with Zygmund's study of the strong
maximal function, continued with Marcinkiewicz's proof of his multiplier
theorem, and has since: branched out in a variety of directions where much
interesting work has been done. Among the things achieved are an appro-
priate Hp and BMO theory, and the many properties of product (and mul-
tiparameter) singular integrals which have came to light. This is due to the
work of S.-Y. Chang, R. Fefferman, and J: L. Journe, to mention only a few
of the names.

Finally, I want to come to an extension of the product theory (more
precisely, the induced "multiparameter analysis") in a direction which has
particularly interested me recently. Here the point is that the underlying
space is no longer Euclidean R", but rather a nilpotent group or another
appropriate generalization. On the basis of recent, but limited, experience
I would hazard the guess that multiparameter analysis in this setting could
well turn out to be of great interest in questions related to several complex
variables. A first vague hint that this may be so, came with the realization
that certain boundary operators arising from the 8-Neumann problem (in the
model case corresponding to the Heisenberg group) are excellent examples of
multiple-parameter singular integrals (see Miller, Ricci, and Stein [46]). A
second indication is the description of Cauchy-Szego projections and solving
operators for ab for a wide class of quadratic surfaces of higher codimension
in C", in terms of appropriate quotients of products of Heisenberg groups
(see Nagel, Ricci, and Stein [48]). And even more suggestive are recent
calculations (made jointly with A. Nagel) for such operators in a number
of pseudo-convex domains of finite type. All this leads one to hope that a
suitable version of multiparameter analysis will provide the missing theory
of singular integrals needed for a variety of questions in several complex
variables. This is indeed an exciting prospect.

1.6 Bibliographical Notes
I wish to provide here some additional citations of the literature closely con-
nected to the material I have covered. However, these notes are not meant
to be in any sense a systematic survey of relevant work.

1.1 Zygmund [74] is a greatly revised and expanded second edition of his
1935 book. His initial work on the strong maximal function is in Zyg-
mund [71]. His views about the central role of complex methods in
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Fourier analysis are explained in Zygmund [72]. A historical survey of
square functions and an account of Zygmund's work in this area can
be found in Stein [65].

1.2.2 For the real variable theory of the Hilbert transform see Besicovitch
[1], Titchmarsh [69], and Marcinkiewicz [39].

1.2.3 Two papers of Calderon and Zygmund dealing with the symbolic cal-
culus of operators (1.7) ([12] and [13]).

1.3.1 Further work of Calderon, applying singular integrals to partial differ-
ential equations, is contained in [6] and [7].

1.4.1 The theory of para-products was developed later in Bony [2]. The
general form of Cotlar's lemma, (1.24), as well as the application to
intertwining operators, may be found in Knapp and Stein [35]; the
application to pseudo-differential operators is in Calderon and Vaillan-
court [14]. The relation between the boundedness of the usual singular
integrals on Hardy spaces and equivalences like (1.23) is in Stein [63],
chapter 7. An account of the real-variable Hp theory can be found in
Stein [66], chapters 3 and 4.

1.4.2 For systematic presentations of topics such as commutators, the Cauchy
integral, multilinear analysis, and the T(b) theorem, the reader should
consult Coifman and Meyer [21], Meyer [44], and Meyer and Coifman
[45].

1.4.3 In Kenig [34] the reader will find an exposition of the area dealing with
the operator (1.17) as well as the Laplacian on domains with Lipschitz
boundary.

1.5.1 In connection with (ii), the reader may consult Stein [64]. For the
occurrence of Calderon-Zygmund-type singular integrals on strictly-
pseudo-convex domains, see Koranyi-Vagi [37], C. Fefferman [27], and
Folland and. Stein [28]. Some corresponding results for domains in C'
of finite type may be found in Christ [17], Machedon [38], Nagel, Rosay,
Stein, and Wainger [48]. For the Cauchy-Szego projection on convex
domains in Cn, see McNeal and Stein [43].

Regarding the Calderon-Zygmund lemma, two further sources should
be cited. In Coifman and Weiss [22] the use of this method on spaces
of a general character is systematized. The work of C. Fefferman
[26] contains an important departure regarding the Calderon-Zygmund
method, involving certain additional L2 arguments, and allowing him
to prove a number of subtle weak-type results. This method has proved
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to be relevant in various other instances, in particular to the study of
operators of the type (1.29) and (1.30).

1.5.2 The method of rotations originates in Calderon and Zygmund [11].
For (1.29) and (1.30) see also Seeger [58] and Tao [68]. For singular
Radon transforms, see Stein and Wainger [67], Phong and Stein [52],
and Christ, Nagel, Stein, and Wainger [18], where other references can
be found.

1.5.3 Among the papers that may be consulted for the product and multi-
parameter theory in the Euclidean set-up are: S.-Y. Chang and R.
Fefferman [15], Journe [33], Ricci and Stein [66].
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Chapter 2

Transference Principles in
Ergodic Theory

Alexandra Bellow

The purpose of this paper is not to give a survey, but rather to discuss a few
selected topics having to do with transference in Ergodic Theory.

2.1 Classical Transference Principle
Let me first give some historical background.

Birkhoff's proof of the Pointwise Ergodic Theorem appeared in 1931 [1]
and received a great deal of attention. There have been many proofs of
Birkhoff's Pointwise Ergodic Theorem, in particular many proofs via the
Maximal Ergodic Inequality. Let me mention two of the early ones, both
going back to 1939: the Kakutani-Yosida paper [2] giving a sharp form of
the Maximal Ergodic Inequality and Wiener's celebrated paper on the Dom-
inated Ergodic Theorem [3] giving the dominated estimate in LP for the
Ergodic Maximal Function. More on Wiener's paper later.

Now there is another celebrated paper that preceded Birkhoff's Proof
of the Ergodic Theorem by one year, namely the Hardy-Littlewood paper
in Acta Mathematica, 1930 [4] (the years 1930, 1931 were spectacular years
for analysis). In their fundamental paper, Hardy and Littlewood introduced
what is now known as the Hardy-Littlewood Maximal Function and proved
various maximal inequalities, dominated estimates in LP, 1 < p < oo, and
much more. Having some knowledge of the game of cricket helps in develop-
ing a feeling for the "basic inequality" in the early part of the paper. For
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it was the game of cricket-Hardy's "other" great passion-- that motivated
this "basic inequality." For Hardy, who practiced Mathematics for the inter-
nal esthetics of Mathematics, this may be the closest he ever came to practical
applications in his mathematical work. At any rate, one quickly realizes that
this "basic inequality" implies what is now known as the Hardy-Littlewood
Weak-Type Maximal Inequality, even though the Weak-Type Maximal In-
equality is not explicitly stated as such in the Hardy-Littlewood paper.

If one thinks of the set of integers Z as a totally or-finite measure space
with mass 1 at each point, then translation by 1 is a measure-preserving
transformation and the Hardy-Littlewood Maximal Function is precisely the
Maximal Ergodic Function. Thus the Weak-Type Inequality and the Dom-
inated Estimates in L" for the Hardy-Littlewood Maximal Function follow
from the corresponding estimates for the Ergodic Maximal Function.

The remarkable fact is that the converse is also true: The Maximal Er-
godic Inequality and the Dominated Ergodic Estimates in LI can be derived
from the corresponding results for the Hardy-Littlewood Maximal Function.
This is now known as the basic "transference principle" in Ergodic Theory.
To the best of my knowledge, the story of the transference principle begins in
1939 with N. Wiener's paper on the Dominated Ergodic Theorem. Wiener
first proves a version of the Hardy-Littlewood Maximal Inequality using a
Vitali-type covering argument and then uses a transference argument to de-
rive the corresponding Maximal Inequality in the abstract dynamical system.
The technique is roughly this: consider the function along the orbit, one or-
bit at a time, then integrate and apply Fubini's Theorem making use of the
measure-preserving character of the transformations. My guess is that this
was a natural approach for Wiener to try. As a very young man, he had
spent some time at Cambridge University, where he came under Hardy's in-
fluence. Wiener greatly admired Hardy, whom he considered his "master in
mathematical training." So it should not come as a surprise that when he
learned about the Maximal Ergodic Inequality, he tried to derive it from the
Hardy-Littlewood Inequality.

It appears that Aurel Wintner was also aware of the possibility of trans-
ferring a deterministic inequality to the ergodic setting. Wintner suggested
the idea to Hartman who implemented it in yet another proof of the Maximal
Ergodic Inequality [51; in fact, he derived the Maximal Ergodic Inequality
from F. Riesz's Sunrise Lemma, via a transference argument.

Finally, in 1968, Alberto Calderdn formulated the general Transference
Principle in Ergodic Theory in his beautiful paper "Ergodic Theory and
translation-invariant operators" [6J. His motivation was to derive the Ergodic
Hilbert Transform of Cotlar from the ordinary Hilbert Transform.

People in Harmonic Analysis were quick to grasp the Calderdn Transfe-
rence Principle. Motivated also by the Calderon-Zygmund work on singular
integrals (in particular the rotation method that allowed the transference
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of results about the Hilbert Transform from the 1-dimensional to the n-
dimensional setting), and beginning in the early 1970s, R. Coifman and G.
Weiss embarked on a remarkable program to extend the framework of the
transference principle further: they replaced the group Z or JR by a more gen-
eral (locally compact, amenable) group G and the measure-preserving action
by a continuous representation of G acting on some Banach space. This has
been a very active area of research, in which Earl Berkson and his collab-
orators also figure prominently. But I shall not dwell on this, because this
is somewhat outside the scope of the paper. I would like to recall, however,
that Coifman and Weiss [7] showed how to transfer the strong-type (p, p)
maximal inequality in the case when the operators of the representation are
positivity-preserving, using the lovely transference argument of A. de la Torre
[8]. For transference of strong-type (p, p) maximal inequalities, respectively
weak-type maximal inequalities in the case of separation-preserving represen-
tations, see [9] (this paper also contains some interesting counterexamples),
respectively [10]; see also [11].

It is a curious fact that the Calderon Transference Principle took longer
to reach the ergodic circles per se. There were still books on Ergodic Theory
appearing in the 1980s-excellent books otherwise-that barely mentioned
Calderbn's paper, unaware of the transference principle. In the 1980s I recall
hearing J. Bourgain lecture on the proof of the remarkable ergodic theorems
along the sequence of squares and along the sequence of primes ([12], [13],
[14]) and making use of transference arguments-that was a novelty in those
days. I learned about the Calderon Transference Principle in 1987. Calderon
gave me a reprint of his paper and said: "You may find this of some inter-
est." Did I ever! By now the Calderon Transference Principle has become a
standard tool, a classic in Ergodic Theory, and I am happy to report that
singular integrals are a "household word" in Ergodic Theory as well.

Transference techniques, in various guises, have become common prac-
tice in Ergodic Theory. Let me give a small sample. In [15], Jones and
Olsen show how to transfer a maximal inequality from one positive invertible
isometry on LP to any other, while later, in [16], Jones, Olsen, and Wierdl
show how to transfer oscillation (variational) inequalities from the integers
to positive invertible isometries. This allows them, using Akcoglu's Dila-
tion Theorem, to extend various pointwise ergodic theorems, known in the
measure-preserving case, to Dunford-Schwartz operators [15], respectively,
to positive contractions on LP [16]. Another interesting ergodic theorem ob-
tained via transference arguments is given in [17]. See also the important,
beautiful recent work on ergodic theorems in the case of non-abelian groups
of Nevo [18] and Nevo and Stein [19].

I shall now state the Calderon Transference Principle not in its full gen-
erality, but in the discrete case, in a form which suffices for our purposes.
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Let p be a probability on Z. If cp E £'(Z) define

(pip)(p) = Ep(j)co(p+ j), for p E Z.
jEZ

Let (X, A, m, T) be an abstract dynamical system (that is, (X, A, m)
is a probability space and r : X --> X an invertible measure-preserving
transformation). If f E Ll = L' (X) define

(pf)(x) = p(j)f(r x), for x E X.
jEZ

Note that we use Greek letters to denote functions on Z and ordinary
letters to denote functions on X.

Theorem 2.1 (Transference Principle). Let (p,,) be a sequence of prob-
ability measures on Z. Consider the assertions:

(i) There is a constant C > 0 such that

# {jEZ : SuP(pnOu) > Al < IIWjIi for all cp E 2+(Z), A > 0

(that is, we have a weak-type (1,1) inequality on R1(Z))
(ii) There is a constant C > 0 such that for every abstract dynamical

system (X, A, m, r) we have

m(xEX :sup(pnf)(x)>A} IIfI11 for all fEL+(X),A>0
It n

(that is, we have a weak-type (1, 1) inequality in the ergodic context, i.e., on
LI(X))

Then (i) = (ii).

Comments:

1. The constant C is the same in (i) and (ii).

2. One can remove the restriction on the abstract dynamical system that
the total mass m(X) = 1; one can allow a-finite measure spaces (X, A, m)
and one obtains an equivalent statement.

3. The Transference Principle also applies if we replace the weak-type
(1, 1) estimate by a "weak-type (p, p) estimate" (respectively a "strong-
type (p, p) estimate") for 1 < p < oo. The moral of the story is that
if we have the estimate for the dynamical system of the integers with
translations, we can derive it for any other dynamical system.
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4. Examples.

(a) If one sets jLn = n Ej o 6j (one-sided Cesaro averages), then
yields the Hardy-Littlewood Maximal Inequality

(i)

1 n-1 C
# PEZ:suP -EcP(P+j) >A <-IkPIIi

n n j=o

for all cp E el(Z), A > 0. (ii) yields the Maximal Ergodic Inequality

m{xEX:sup
ll n

l rnn

1 6j _

j=-n

(b) Actually the Calderon Transference Principle is general enough
to include also the "Ergodic Hilbert Transform"; i.e., Cotlar's Er-
godic Hilbert Transform can be derived from the Classical Hilbert
Transform. The reason for this is that we need not restrict the
An's in the Transference Principle to be probabilities, we can allow
real-valued As a matter of fact, the Calderon Transference
Principle applies to sublinear operators, as long as they commute
with translations and are "semilocal" [6]. In particular, one can
obtain square-function estimates and variational inequalities of
the type Bourgain considered in his work. But we shall not go
into this. For our purposes the above form of the Calderon Trans-
ference Principle suffices.

2.2 Applications to Convolution Powers
Calderon has also had a hand in this in recent years. When Alberto Calderon
and I got married in 1989, I called my adviser, Professor Kakutani, to let him
know. His response was: "That's wonderful news, for Ergodic Theory. This
means we may get Alberto Calderon interested in Ergodic Theory again."

Consider now the abstract dynamical system (X, A, m, ,r), p a probability
on Z, and for f : X -+ R define as before

(p f) (x) = E p(j) f (T1 x), x E X.

n-1

7L
f (Tix)

j=0
>A}< 1011

for all f EL'(X), A > 0.
Alternatively, one can use the two-sided Cesaro averages

jEZ
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This defines a weighted average, a linear operator which is in fact a contrac-
tion in every LP space. Now iterate this operator n times

(pnf)(x) = pn(7)f(T'x)

jEZ

This corresponds in the right-hand side to the n-fold convolution An of the
probability measure p. In probabilistic language this means we are consid-
ering a summation associated with a random walk on Z, where the position
of the particle after n steps is given by pn.

There is another reason why the operator f -+ p f is of interest. In 1951
Kakutani noted that this operator corresponded to a stationary Markov chain
with phase space X [20]. In fact, if we set

P(n, x, A) = 1: pn(i)XA(r'x) = fxA(r'x)diz(i)where
XA = the indicator function of A E A, then

(pnf)(x) = jf(y)P(n,x,dY).

From the fact that T preserves the measure m, it follows that

I, P(1, x, A)dm(x) = m(A).

Thus the initial distribution m is invariant under P(1, x, A), and we are
dealing with a stationary Markov chain with transition probability P(1, x, A).

However, in order to obtain good convergence properties of the sequence
((pn f)(x)), we need to impose some restrictions on p. To illustrate this, take

p= 2(60+61).

When we iterate this (under convolution) we get the binomial average

pn
= 2n

(()ok)
k=0

and hence

(pnf)(x) = 2 (k) f (Tkx), X E X.
k=0

It is well known and not difficult to see that the Mean Ergodic Theorem
holds, i.e., that these binomial averages converge in the mean in LP(X) for
every 1 < p < 00

pnf L f, f(Tx) = f(x), x E X.
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On the other hand, a.e. convergence breaks down. In fact, it was first ob-
served by J. Rosenblatt [21] that if r is ergodic, then the "strong sweeping
out property" holds, that is: Given any e > 0, it is possible to find E E A,
m(E) < e such that

limsup(p'XE)(x) = 1 a.e. (m),
n

liminf(p"XE)(x) = 0 a.e. (m).

In fact, as was shown in [22], this phenomenon, the "strong sweeping out
property," happens whenever we have a p with finite second moment

E k2p(k) < 00

kEZ

and

E(p) = kp(k) # 0.
kEZ

The probability 2So + 1bl is just the prototype of this behavior. To rule out
this pathological behavior, we must impose some restrictions on A.

Let p be a probability on Z. Let µ(t) = >kEZ p(k) exp(-21rikt) be its
Fourier transform. We say that the probability p has "bounded angular
ratio" if the range of the Fourier transform {µ(t) : t E [0, 1)} is contained in
some proper Stolz domain. Equivalently, this means that IA(t)[ < 1 for all
tE 10,I), t960 and

sup 11 - A(t)I < 00.
tEl0,1) 1 - (p(t)I

Now there was a remarkable ergodic theorem proved in 1961 for the it-
erates of a self-adjoint operator. The case p = 2 was due to Burkholder and
Chow [23]; the general case, 1 < p < oo, is due to Stein [24]. Let me recall
Stein's theorem:

Theorem 2.2 (Stein). Let S be a linear operator which is simultaneously
defined and bounded as an operator S : L'(X) -+ Ll(X) and S : L1* (X) -+
L°°(X). Suppose that

(1) IISII1 < 1
(2) IISII,c < 1
(9) S is self-adjoint: S' = S on L2(X).
Then for 1 < p < oo we have the dominated estimate in LP; i.e., there is

a constant AP such that

supISnfl
74

<API[f{[p for f E LP(X).
P
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Moreover if S is also positive-definite in the Hilbert space sense, that is
(Sf, f) > 0 for all f E L2(X), then

lim Sn f (x) exists a.e. and in the LP norm
n

The result that follows was inspired by Stein's Theorem:

Theorem 2.3 ([22]). Assume that the probability p has bounded angular
ratio. Then for 1 < p < oo we have the dominated estimate in LP; i.e., there
exists a constant CP such that

sup I µn.f I
n

< CPIIfflP for f E LP(X).
P

Moreover, given any f E U'(X), there exists a unique r-invariant func-
tion f E LP(X) such that

lim(pn f) (x) = f' (x) a. e. and in the LP norm.
n

Comments:

1. If the probability p is symmetric, i.e. p(-k) = µ(k). and strictly aperi-
odic (this means that I i(t)I < I for all t E [0,1), t 76 0), then the range
of the Fourier transform is contained in some interval [-1 + b, 1], so
we trivially have "bounded angular ratio" and the previous Theorem
applies. Actually in this case the operator S f = p f which is an Ll-
and LOO-contraction, is also self-adjoint, S` = S, so we may use Stein's
Theorem. Thus Theorem 2.3 above can be regarded as an extension of
Stein's Theorem to the non-self-adjoint case.

2. There are probability measures p that have bounded angular ratios, but
are far from being symmetric, in fact have support entirely contained
in Z+, as was observed in [22].

3. The "bounded angular ratio" condition allows us to go over to the
Fourier transform side and use the spectral method to get the Dom-
inated Estimate in L2; then we proceed as in Stein's proof, use his
complex interpolation theorem to get the strong maximal inequality in
LP,p>1.

The fact that p is strictly aperiodic means, by the Choquet-Deny theorem,
that µn are asymptotically invariant under translation, that is, IIpn * a1 -
A'111 --> 0. This allows us to obtain easily a dense set of functions in LP for
which we have a.e. convergence, namely (see [221)

{ f1 + (f2 0 r - f2); f: E LP isr - invariant, f2 E L°°}
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(respectively,

if, + (f2 or -- f2); fl (=- IP is r - invariant, f2 E L °° n L' }
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if the measure is infinite).

Question: Does a.e. convergence also hold for f E L1(X) in Theorem 2.3?
In particular, is this always the case when the probability u is symmetric
and strictly aperiodic"

An old paper of Oseledets [25] contains a "positive" answer to the latter
question, but it appears that the proof is incomplete.

The question is also of interest from the point of view of convolutions on
Z. By Sawyer's theorem and the Transference Principle, this is equivalent
to asking whether for the convolutions on Z, the corresponding maximal
function MW = sup,, Iµ" * cpI is weak-type (1, 1); i.e., does there exist C =
C(µ) > 0 such that

#{pEZ:supl(p"*V)(p)I>a}<_ IJWJ11forallVEf'(Z),A>0?

This is an elementary but very natural question to which we should have an
answer.

We know the answer in some special cases.

Theorem 2.4. If p is a symmetric probability on Z and p(k) > p(k + 1) for
all k > 0, then the answer to the above Question is yes.

The reason for this is that in this case p, and each p" can be written as a
convex combination of the symmetric version of the usual ergodic averages,
the Cesaro averages

1
F

Cr=2p+1 Eai,

and hence sup,, I µ"f I is dominated by the Maximal Ergodic function (see
[22]).

Theorem 2.5. Let p be a probability on Z which is strictly aperiodic, has ex-
pectation zero (E(µ) =: Ek.kp(k) = 0), and a finite second moment (Ek k2p(k)
< oo). Then again the answer to the above Question is yes.

The proof is not trivial and is given in the next chapter.
Our motivation for looking at probabilities p with a second moment was

an interesting result of K. Reinhold-Larsson [26] (she considered moments
> 2 + 5). We also had the mathematical assistance of Pablo Calderon, who
prevented us from going awry in this problem. We were trying to prove a
similar result for probabilities p with a moment of order p > 1 and E(p) = 0.
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This simply is not true. In the meantime, explicit counterexamples showing
this were constructed independently by G. Chistyakov [27] and V. Losert [28].
Thus, if we restrict our attention to probabilities on Z that have a moment
of some order and expectation zero, then p = 2 is the best one can do; p = 2
is "sharp."

Comments:

1. In the aftermath of Stein's remarkable 1961 Ergodic Theorem for the
iterates of a self-adjoint operator, people tried to figure out what hap-
pens in the case of Ll with a.e. convergence. It took a while before
a counterexample was found: Ornstein came up with a counterexam-
pie in 1968. The self-adjoint operator in Ornstein's counterexample is
of the form S = PQP, where P and Q are conditional expectation
operators [29].

2. The proofs of a.e. convergence for f E L2 are concise, elegant, and make
use of spectral methods. The case of L' is quite different. L' stands
apart from L2 and L", p > 1. The techniques required for proving
a.e. convergence in L' are quite different (see the proof in the next
chapter): covering lemmas, Calderon-Zygmund decomposition, careful
estimates of Fourier coefficients, etc.

3. If the answer to the above Question is positive, that would be very
interesting indeed, because that would provide a natural class of exam-
ples for which Stein's Ergodic Theorem extends all the way to V.

4. If the answer to the Oseledets Question is negative, that too would be
very interesting. In particular, this would provide an alternative proof
of the existence of Ornstein's counterexample with conditional expec-
tations. This would follow from a beautiful old theorem of Burkholder
based on his notion of "stochastic convexity" [30].

2.3 Transference via Square Functions
There is a class of results that have been obtained recently and that can
also be regarded as transference results, but of a different kind: these results
relate one process to another via a square function.

I shall illustrate this with one example which in a sense is the archetype:
it relates martingales and the standard differentiation operators.

Let
X = [0,1)(mod l),

\ [2k-1,.Fk = the dyadic o- field with 2k atoms 0, 2k ) , [Zk, 2k I , ... , 2k 11 ,
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for k > 1. For f E L' (X ), define the dyadic martingale

fk = E(f l.I'k), fork > 1.

For f E L' (X) and extended periodically to R, define the dyadic differenti-
ation operators

r I

+(Dk J) (x) = 2k J Z2F f (t) dt, for k > 1.

Consider the square function defined by

1

2(Sf),x) = 1 E I (Dnf) (x) - fn (x)12)
n-,

Theorem 2.6 ([31]). The (sublinear) map f -* Sf is weak-type (1, 1)

m{x E X : (Sf)(x) > A} <j Ilf11, for all f E L'(X),

and, for each 1 < p < oo, it is strong type (p, p), that is

INSfllp <_ GPIl f lip for all f E L'(X).

This allows one to transfer information from the dyadic martingales to
the differentiation averages and vice versa.
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Chapter 3

A Weak-Type Inequality for
Convolution Products

Alexandra Bellow and Alberto P. Calderdn

The purpose of this paper is to give a proof of Theorem 2.5 of the previous
chapter. The setting is the same as in the previous chapter. We begin with
the following:

Theorem 3.1. Let (p,,) be a sequence of probability measures on Z and for
f : X -+ R define the maximal operator

(Mf)(x) =supI(p,f)(x)I, x E X.
n

We assume
(*) (Regularity of coefficients). There is 0 < a < 1 and C > 0 such that

for each n > 1

a

IAn(x+y) -lin(x)I 5 C Ixlil+a
forx,y E 7G, and 0 < 2Iy1 5 IxI

Then the maximal operator M is weak-type (1, 1); i.e., there is C' > 0
such that for any A > 0

m{x E X : (Mf)(x) > Al < A IIfII, for all f E L'(X).

Because of the Calderdn Transference Principle, it suffices to know the
validity of the theorem for the dynamical system Z (with the group Z acting
on itself by translations and the counting measure dy; below, for a set A C 7G
its measure will be denoted by IAI), namely,

41
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Theorem 3.2. Let (p,) be a sequence of probability measures on Z and for
f : Z -4 R define the maximal operator

(Mf)(x) = sup I(unf)(x)I, x E Z-
n

We assume
(*) (Regularity of coefficients). There is 0 < a < 1 and C > 0 such that,

for each n > 1,

C for x, y E Z, 0 < 2IyI IxI

Then the maximal operator M is weak-type (1, 1); i.e., there is a C' > 0
such that for any .A > 0

{x E Z: (Mf)(x) > A}I < AIlfIIIforallfEL'

Comments:

1. We proved Theorem 3.2 several years ago, unaware of the existence of
Zo's paper (see [2], also [1], 292-295). It turns out that Theorem 3.2
above is a special case of Zo's Theorem. In fact, it is enough to notice
that, for 0 < 2IyI <_ IxI,

IYIOW (x, y) = sup l un(x + y) - lln(x) I < C I
I'+n

and that
C Iy+trdx<C(a)<ooJ l:l>2lyf} IxI

independently of y E R - {0}. Thus the basic assumption in Zo's
Theorem is satisfied. It should be noted also that our proof of Theorem
3.2 and the proof of Zo's Theorem are very similar: they are direct
applications of the Calderdn-Zygmund decomposition.

2. The maximal operator M in Theorems 3.1 and 3.2 is obviously strong
type (oo, oo) and hence, by the Marcinkiewicz Interpolation Theorem,
also strong type (p, p), for 1 < p < oo.

For the sake of completeness we reproduce below our proof.

Proof. We start with f E L. and A > 0. Apply the Calderon-Zygmund
decomposition to f and p = 4. We get dyadic intervals (Qt), which are
pairwise disjoint, such that

1p< f(y) dy 2p for all iAl Q1
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and
0 < f (x) < p for x ¢ UEQ2.

Set

fl (x) _:

and

I4:1fQ:f(y)dy
f (x)

forxEQ2

for x V U;Q1

.f2=f-f1fl
We have

(1)

f1(x)<2p for zEU=Q1

0< fi(x) <p forx¢U;Qt,

(2)
1 fQ, f2 (Y) dy = 0 for each iPil

(3) I

f2(x) = 0 for x V U2Q

U, Qi lp < fu;Q: f (y) dy < I If III,

(4) II f1II1 <- 11f 11, and II.f2II1 < 2IIf III-

Since 0 < f1 < 2p = 2, we have Mf1 < 2. Also since f = f1 + f2 and M
is sublinear we have

{Mf >A}<{.Mf1>

2

}u{Mf2>}={Mf2>}.

Thus we only need to worry about f2.
Consider the intervals Q, obtained by dilating Qt by a factor of 5 (but

with the same center) and note that by (3)

5 20
(5) IUiQ;I < IQ;I<5IQjI=51U QtI<P IIfIII = TIIfIII-

Thus when checking the weak-type inequality for f2 it is enough to consider
the complement of U;Q; . Fix x E S = (U;Q;) and choose yi E Qt for each
i. We have, using (2), for each n,

(µn * f2)(x) = Ei fQ; /An(x - y)f2(y) dy

= Ei fQ, IPn(x - y)f2(y) - i n(x - yi)f2(y)) dy

= Ei fQ,Ii'n(x - y) - µn(x - yi)]f2(y) dy
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But by assumption (*) (Regularity of coefficients), since Iyi - yl < IQiI and
Ix - yil ? 2IQil, we have

I/1n(x-y)-i (x-yi)I <-C ly= - Yla < C IQiI
Ix - yiIl+a - Ix - yill+a

and hence

I (A. * f2)(x)I < f Ifz(y)I CIQiIa dy = g(x).
Ix - yill+aQ'

This function g(x) defined for x E S does not depend on n and is integrable:

fs g(x) dx = C fs {>i fQ, If2(y)I IxQ.1° ° dy} dx

= C Ei {fs dx fQ, If2(y)I Ix1y;li dy) }

C Ei {fQ, If2(y)I (fs IxQ;pdx) dy}
< c>:, (

S fQ. If2(y)IIQiIa (f(Q; )°
dx) dy} .

But, as observed earlier, Ix - yiI > 2IQ21 for x E (Q*)c, so that

1

ill+a dx < lQila,Q?)e Ix - y

where c = c(a) depends only on a, and hence

f 9(x) dx < cC> {L If2(y)I dy} = CIIf2II1 <- 2CIIf Ill.

inceS

Mf2(x) < g(x) for x E S,

it follows that

{xEs:(Mf2)(x)>}< {xES:9(x)>}
I

< g(x) dx < a Ilf I Ii.

This completes the proof of Theorem 3.2.

Below we shall use the notation

e(s) = exp(21ris).

0
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Lemma 3.3. There i3 a constant C > 0 such that, for any x, y E R, we
have 0 < 2IyI < jxl, and t E R

e((x + y)t) - 1 e(xt) - 1
(x + y)2 x2

Proof. Note that

and that

Hence

< CItI lyl.

d (e(ut) - 1 _ (27rit)e(ut) u2 - 2u(e(ut) - 1)
du u u4

e(ut) 2(e(ut) - 1)
_

u2
- u3

le(ut)I < 1 and Ie(ut) -1I < 2irltllul.

e((x + y)t) - 1 - e(xt) - 1 = /'x+b d fe(ut) - 11
du

(x + y)2
x2

fx du
u2

)

_ (27rit`, J x+Y e(ut) du - 2
f'+y e(ut)- 1

du.
x u U3

Since Ix+yl ? IxI - lyl -IxI - zIxl= Z Ixl,wehave

If e(ut)J 2 du
x u

If x+ye(ut)1
2;

and the Lemma is proved.

du

1 1 __ lyl < 2IyI,
x x + y Ixl lx + yl - xz

< 27rItI
IFY

z du
u

< 47rItI xI,

0

Corollary 3.4. Let (p,) be a sequence of probabilities on Z and let On (t) =
An (t) = the Fourier transform of An, t E [-1, 1). We assume that, for each2 2
n > 1, Bn is twice continuously differentiable and that

sup J z 10' (t) I I ti dt < oo.
n

Then the pn satisfy the regularity assumption (*) of Theorem 3.2.
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Proof. For u c Z we have, using integration by parts (with the appropriate
antiderivative) and the fact that the functions involved are periodic of period
1:

µn(u) = f 2

12

00(t)e(ut) dt2) 2

f 0t) dt - f B(t){0fl(t)]:
2Tfiu

I

e(ut) - 1 te(ut) - 1 _ f e(ut) - 1
Bn(t)' (2vri)2u2

dt =
l 2 gn(t) (21ri)2uz

dt.

Now for x, y E 7G, 0 < 2I yI 5 Ixl, using Lemma 3.3, we get

I µn(x + y) - ttn(x)I = f2

01.1 (t)

(e((x + y)t) - 1 - e(xt) - 1

' \ (2vri)2(x + y)2 (2vri)2x2 )
2

dt

<_ f ,

1011

' CItI Ix2l dt = Cl l f
, Ien(t)IItIdt,

z

finishing the proof. O

Corollary 3.5. Let p be a probability on Z which is strictly aperiodic, has
expectation zero (that is, E(µ) = Ek kp(k) = 0), and finite second moment
(that is, Ek k2p(k) < oe). Let 0(t) = (t). Then

sup f i I (Bn)"(t)IItI dt < 00,
z

and hence the sequence (µn) satisfies the regularity assumption (*) of Theo-
rem 3.2.

Proof. First note that 0 is twice continuously differentiable, that the Fourier
transform of Mn is on, and that

(1)
(On)tt(t) = n(n - 1)Bn-1(t) (0'(t))2 + non-' (t) 0"(t).

Since

we have

0(t) = E p(k)e(-tk),
k

0'(t) = j:(-21rik)p(k)e(-tk) and 0'(0) _ -21ri kp(k) = 0,
k k
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8"(t) = E -(47r2)k2p(k)e(-tk) _ -(41r2) I E k2µ(k)e(-tk) I

0"(0) = -(47r)2 I N: k2µ(k)] _ -a, where a = 47r2k2tc(k) > 0.
( k

In particular,

I0'(t)I = 161 (f) - 0'(0) 1 = - E(27rik)a(k)[e(-tk) - 1]
k

E 27rlkIµ(k)27rIkIItI = (42k2P(k))

so that
(2) IB'(t)I < altj for all ItI < 2

and

(3) I8"(t)I < a for all ItI < 2

By Taylor's formula,

8(t)=1-2t2+o(t2)as t-*0.

Compare 8(t) with

exp(-et2) = 1 - et2 + o(t2) as t -> 0.

There is 6 > 0 sufficiently small such that for ItI < 6 we have

IW(t)I <1-2t2+4t2=1-4t2

and
exp(-et2) > 1 - et2 - et2 = 1 - 2et2 > I8(t)I

provided 2e < a. Since
sup I8(t)I = b < 1
hl>a

tE(-3 3

by choosing a conveniently small a we get

(4) 18(t)! < exp(-et2) for all ItI < 2.

By (1), (2), (3), and (4) we can now estimate

I (0n)"(t) I It] < n(n - 1) exp(-(n - 2)et2) all tl3 + n exp(-(n - 1)et2) alt!
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so we only need to check the boundedness (in n) of the integrals

n(n - 1) exp(-(n - 2)et2) - Itl3 dt

and

and this is easily done.
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Chapter 4

Transference Couples and
Weighted Maximal Estimates

Earl Berkson, Maciej Paluszyiiski, and Guido Weiss

Suppose that 1 < p < oo. We apply the notion of transference couple in
order to transfer maximal multiplier transforms, along with their bounds,
from LP(T) to L7(w), where w belongs to a certain class Wp of weight func-
tions on R which satisfy the Ap condition of Muckenhoupt. The structural
simplicity afforded by the use of transference couples permits us to rely on
elementary tools throughout, and, in the special case of the weights w E Wn,
our methods generalize the weighted Carleson-Hunt Theorem in the direc-
tion of a wide class of maximal multiplier transforms acting on LP(w). The
requisite features of transference couples are summarized in §4.3, where we
also indicate how transference methods for square function estimates can be
extended to the setting of transference couples.

4.1 Introduction and Notation
It will be convenient in all that follows to adopt the convention that the
symbol "K" with a (possibly empty) set of subscripts denotes a nonnegative
real constant which depends only on its subscripts, and which can change
in value from one occurrence to another. The Fourier transform f of a
function f E L' (R) will be given by f (y) __ fR f (t) e-" "Y dt. For u E IR and

Research by Earl Berkson partially supported by NSF grant DMS 9401009; research by
Maciej Paluszynski partially supported by a grant from the Southwestern Bell Company;
research by Guido Weiss partially supported by NSF grant DMS 9302828.
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f : R -* C, we define Tj : R -3 C by writing (Tu f) (x) - f(x+u). We begin
the discussion by recalling a few background items concerning weights, fixing
some notation in the process. In all that follows (except as noted otherwise
in §4.3), p will be a fixed index satisfying 1 < p < oo. A measurable function
w : IR -4 [0, oo] such that 0 < w < oo a.e. (respectively, a sequence of
positive real numbers ro - {rok}k _,,.) will be called a weight function on
R (respectively, a weight sequence). We shall denote by Ap(lR) the class of
weight functions on R satisfying the AP condition of Muckenhoupt, which is
stated as follows.

Definition 4.1. A weight function w on R belongs to the class Ap(R) pro-
vided that there is a real number C (called an Ap(R) weight constant for w)
such that for all compact intervals Q whose length (Q( is positive, we have

(±..fw(t)dt)
\ I ` f1

[w(t)]l(P-1)

dt)P-1

< C. (4.1)

Similarly, we denote by Ap(Z) the class of weight sequences satisfying the
discrete counterpart of (4.1).

Definition 4.2. A weight sequence to - {rok}k _. belongs to the class
Ap(Z) provided that there is a real number C (called an A,,(Z) weight constant
for ro) such that

M M P-1

k
1/(P-1) <C,(M_+lmk)(kM-L+1(ro) )

k=L

whenever L E Z, M E Z, and L < M.

For an extensive treatment of Ap(R), we refer the reader to (10]. Funda-
mental facts regarding Ap(Z) can be found in [11).

Let w E Ap(lR). We shall symbolize by Mp,"(R) the class consisting of the
multipliers for L7(w). By definition,

(of)

a multiplier for LP(w) is a function 0 E

L°°(IR) such that the mapping f H , defined initially on the Schwartz

class S(IR), extends to a bounded lineartransformation Tof LP(w) into

L1(w). In this case we write 1I01IMp,w(R) = IITm'")11. Notice the following

immediate consequence of the preceding definitions: if 0 E Mp,"(lR), and f E

LP (w) fl LZ(IR), then T (P") f = (ii f) v This handy fact will be used without

explicit mention. The functions belonging to Mp,"(lR) (identified modulo
equality a.e.) are readily seen to form a normed algebra under pointwise
operations and the norm M (a). (In fact, with this norm, Mp,"(R) is a
Banach algebra [7, §2].)
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Suppose next that to E A,,(Z). Let P(m) be the corresponding Banach
space consisting of all complex-valued sequences x = {xk}k_. such that

00 1/P

114m.) _ E Ixk!"mk1 < oo.
k_ 00

The class Mp,,,(T) consisting of the multipliers for PP(ro) is described as fol-
lows. A function V) E LO0 (T) is a multiplier for PP(ro) provided that: (i) for
each x E P (m), and j E_ Z, the series (zY * x) (j) {Ek_. ?,V (j - k)xk }
converges absolutely, and (ii) the mapping T ('`°) : x E eP(w) H v * x is
a bounded linear mapping of PP(ro) into P(ro). We then write

IIT,( '°)II. After identifying functions modulo equality a.e. on T, we see
that Mp,,,(T) is a Banach algebra under pointwise operations and the norm

[7, §21. Notice that in the special case where w - 1 (respectively,
to = 1), Mp.(R) (respectively, Mp,,,(T)) becomes the usual Banach algebra
of Fourier multipliers MP(R) (respectively, Mp(T)).

For w E A,(R) (respectively, to E Ap(Z)), it is well known that the
classical Hilbert kernel defines a bounded convolution operator on I7(w)
(respectively, on P(ro)) (see [111), and hence the characteristic functions Xj,
where I runs through all the intervals of ]lt (respectively, through all the arcs
of T) form a bounded subset of MM,,,(R) (respectively, MM,,,(T)). In fact,
the boundedness of the Hilbert transform implies the weighted analogue of
Steckin's Theorem concerning functions of bounded variation-specifically,
BV(R) C Mp,,,(II8), and BV(T) C Mp,m(T).

In (8) the notion of transference couple was introduced, and it was shown
that under an appropriate subpositivity assumption such couples transfer
maximal convolution operators, along with their bounds, from groups to
measure spaces (see §4.3 below for precise statements of the definitions and
results we shall require concerning transference couples). In the present note,
we develop machinery for applying the transference techniques of [8) in order
to obtain bounds for maximal multiplier transforms in weighted settings. The
advantage of our approach is its structural simplicity; however, our present
methods require us to confine attention to those weight functions belonging
to AM(R) which are controlled, in the following sense, by their restrictions to
Z.

Definition 4.3. The class Wp consists of the weight functions w > 0 belong-
ing to A9(R) which satisfy the following condition:

there is a positive constant p such that, for each k E Z,
(4.2)

P_ Iw(k) < w(x) < pw(k), for all x E [k, k + 1).
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Some indication of the size of the class Wp can be inferred from the
following examples. Suppose that to E Ap(Z). A standard method for using
ro to construct a weight w E Ap(R) was introduced in [11]. Specifically,
the corresponding weight w is defined by taking w = rok on the intervals
[k - (1/4), k + (1/4)], k E Z, and requiring w to be linear on the intermediate
intervals [k + (1/4), k + (3/4)], k E Z. It is elementary to verify that the
weight function w so constructed belongs to Wp. It is also easy to see that
W, contains each real-valued weight function w E Ap(R) such that w is a
strictly positive, even function which is monotone on (0, oo). In particular,
if 0 < a < 1 and 1 + a < p, then wa(x) - IxI° + 1 belongs to Wp.

In §4.2 we develop the properties of the class Wp which implement transfe-
rence methods. Section 4.3 is devoted to a discussion of transference couples
needed for our main results on the transference of maximal multiplier trans-
forms in §4.4.

4.2 Properties of the Class Wp
Let w E Wp. Here and henceforth we denote by to = {wk}'_. the restriction
of w to Z (that is, wk = w(k), for all k E Z). We begin this section with the
following theorem, which uses Definition (4.3) to "discretize" calculations
in L'(w). This result will enable us to deduce a weighted de Leeuw type
theorem which furnishes periodic elements of Mp,,,(R).

Theorem 4.4. If w E Wp, then the following assertions are valid.

1. WE Ap(Z).

2. The positive constant p in (4.2) has the property that for each measur-
able function f defined on R we have

P 1 L E_. If (t + k) Ipwk dt < f I f (x) I pw(x) dx

P fo k =_o. If (t + k) I pwk dt.

3. For each s E R the corresponding translation operator r, is a bounded
linear mapping of L"(w) into LP(w), and {ru}UER is a strongly contin-
uous one-parameter group of operators on IP(w).

Proof. (i) is an immediate consequence of (4.2) and the definitions for Ap(R),
Ap(Z). To see that (ii) holds, we proceed from the identity

f If(x)Ipw(x)dx= E f
k+1If(x)Ipw(x)dx.

1R k_ k
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Application of (4.2) together with the the change of variable t = x - k in each
summand establishes (ii). To obtain (iii) observe first that since w E Ap(Z),
the sequences {wk+1/u'k}k_. and {wk/wk+1}k-. are bounded. It follows
by (ii) that the operators T1 and r-1 are bounded linear mappings of LR(w)
into itself, and hence rn is a bounded operator on 11(w) for each n E Z. It
is easy to see with the aid of (i) and (4.2) that

w(x - u)
S = sup < 00.

xER w(x)
0<u<1

Consequently, if s = n + u, where n E Z and u E [0,1), we see that r, is a
bounded linear map of IP(w) into itself satisfying

II;1 < (1/p [max {11T111, IIT iII}]In1 .

Moreover, this shows that, for each compact interval J of R, we now have
sup,EJ (IT,Ij < oo. Since the algebra Co (R) consisting of the infinitely differ-
entiable, compactly supported functions defined on R is dense in IP(w), the
remaining assertion in (iii) is now evident.

Our next item serves as a weighted analogue for (half of) de Leeuw's
Periodization Theorem [9, Theorem 4.5).

Theorem 4.5. Suppose that w E Wp, and A E MM,,,(T). Define 4i on R by
putting 4i(y) = A(e2"'p), for all y E R. Then 4i E Mpm(R), (('IIMM,W(R) <
P2/p I(AIIMp,.(T) (where p is the constant in (4.2)), and, for each f E IP(w),

A"(k) f (x - k), for almost all x E R, (4.3)(T'f)(x) = 00

k=-oo

the series on the right converging absolutely for almost all x E R.

Proof. Let f E LP (w). By 4.4 (ii), for almost all x E (0, 1], {f (x + k) }k _,o E
£3'(w). It follows from this and the definition of MM,,,(T) that, for almost all
x E [0, 1], the series F,k _Q Av(k) f (x + m - k) converges absolutely for all
m E Z. This shows that the series on the right of (4.3) converges absolutely
for almost all x E R. Define 9{ f a.e. on R by writing

Av(k)f (x - k).(i) (x) _ E00
k=-oo

Let be the Fejer kernel for T, and put A? = rcj * A, j > 0. By [6,
Theorem (5.2)], for j > 0, Aj E Mp,,,,(T), and

IIAAIIMM,w(T) IIAIIMM,w(T)' (4.4)
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Put

(n3f)(x) = >A,(k)f(x-k), for allxER.

Since IA, (k) f (x - k)i IAv(k) f (x - k) 1, we can use dominated convergence
in fl (Z) to infer that as j -* oo,

(3i) (x) -a (iii) (x), for almost all x E R. (4.5)

Using Theorems 4.4-(ii) and (4.4), we have for j > 0,

I17'jf IIPLP(W) <- P

00

A'(m)f(x+k-m)f k=-oo m=-oo
00

Wk dx

P

1

<- PIIAjIIMD,w(T) f E If(x+k)IPwkdx
0 k=-oo

- P2 IIfIILD(W)'

From this estimate and (4.5) we infer with the aid of Fatou's Lemma that

II1 f II LP(w) <_ P21P IIAIIM (T) IIf II LP(W) , for all f E LP(w). (4.6)

Next, observe that for g E S(R), and j > 0, we have 7tjg E S(R), and

A j

(flag) (Y) E Ai (k)e2"il,g(y) = Aj (e2"iy)
g(y), for all y E R.

k=-j

By Lebesgue's Theorem, Aj (e2"iy) -* '(y), for almost all y E R. Con-
sequently, 7tjg -+ ((Pg)v in L2(R). Combining this with (4.5), we see that
7tg = (4bg)v, for all g E S(R). In view of (4.6), the proof is now complete. 0

The following result sets up strong ties between M,,,,,) and MP,,,,(T).

Theorem 4.6. Suppose that w E Wp, %P E L°° (R), and the support of T is
a subset of [-1/2,1/21. Define E LOO(T) by writing

2"ii 1 1i(e )=fi(t), for -2<t<2' (4.7)

Then in order that IF E Mp,W(R) it is necessary and sufficient that b E
Mp,,.,(T). If this is the case, then

7?_1

IIV)IIM,,w(T) <_ W(T), (4.8)

where i is a positive constant depending only on p and w.
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Proof. For the sufficiency proof, let 4i(t) = .0 (e2x't), for all t E K By
Theorem 4.5, 41 E Mp,,(R), and II1DIIM,,w(R) < P2/P IIVGIIM,,,(T) Since the
characteristic function Xi-1/2,1/2) E Mp,,,,(It), and 'I' ='tXi_1/2,1/2) a.e. on Ht,
we see that 'I' E Mp,,,,(R) with IIWIIM,,w(R) < Kp,, IIIGIIM,,w(T)'

Conversely, suppose that 'IQ E Mp,,(R). The reasoning leading up to [7,
Theorem (4.17)] readily adapts to the present circumstances so as to show
that E Mp,,,,(T), with KPM IIWIIM,,w(R)' We omit the details
for expository reasons. O

Remark. In the unweighted setting, the necessity assertion of Theorem 4.6,
together with the left-hand inequality in (4.8), are contained in [3, Theorem
1] and [13, Theorem (2.3)].

It will now be convenient to introduce a further item of notation.

Definition 4.7. Suppose that 8 : R -+ C is compactly supported. Define
8# : R -+ C by writing

00

8(x - k), for all x E IL (4.9)
k=-oo

Using Theorems 4.5 and 4.6, we arrive at the following result.

Theorem 4.8. Suppose that w E Wp, It E Mp,,,,(R), and the support of
'I' is a subset of [-1/2,1/2]. Then ty# E Mp,u,(R), and II'I'#IIM,,w(R)

Kp,,, IIWIIM,,w(R).

The next section will review the key features of transference couples.
Theorem 4.8 will play an instrumental role in setting up transference couples
needed for the applications in §4.4.

4.3 Transference Couples
In all that follows G will be a locally compact group with given left Haar
measure A. If X is a Banach space, and 1 < p < oo, we denote by LP(A, X) the
space of all X-valued, A-measurable functions g such that fo 119(u) IlP dA(u) <
co. If k E L' (A), g E LP(A, X), then the convolution f * g is defined for
A-a.a. x E G by

(k * 9) (x) =
J c

k(xy)g (y-') dA(y) = f k(y)9 (y-lx) dA(y)'

As is well known, convolution by k is a bounded linear mapping of LP(A, I)
into itself, since

Ilk * 9IIP <- IIk1i1 II91IP'
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We shall denote by Np,x(k) the norm of convolution by k E L' (.1) on LP(A, X).
In the special case when X = C, we shall write Np(k) in place of Np,c(k).
The proof of [5, Lemma (4.2)] (reproduced in [8, p. 77]) shows that if p
is an arbitrary measure, and X is a nonzero closed subspace of LP(µ), then
Np,x(k) = Np(k).

Obviously, in the case of the general Banach space X, we have NN,x(k) <
IIkIILI(A), and familiar classical examples show that in general Np,x(k) can
have a much smaller order of magnitude than IIkDILI(),). For this reason,
transference methods for transplanting individual convolution operators must
aim at preserving convolution norms rather than L'-norms of convolution
kernels.

The remainder of this section will be devoted to a review of some essential
background items concerning the notion of transference couple. This notion
was introduced in [8], where further details can be found.

Definition 4.9. Let B(X) be the algebra of all bounded linear operators
mapping a Banach space X into itself. A transference couple defined on G
and acting in X is a pair (S, T) of strongly continuous mappings of G into
B(X) such that, after writing S =_ {Su}ueG, T = {Tu}UEG, we have:

1. <oo;

2. cTmsup{IITuII:uEG} <oo;

3. all uEG,veG.
In particular, if R is a strongly continuous, uniformly bounded represen-

tation of G in X, then (R, R) is a transference couple. Consequently, results
for transference couples generalize traditional transference methods, which
are based on representations of G.

Definition 4.10. Given k E L'(.), and a transference couple (S,T) defined
on G and acting in a Banach space X, we use X-valued Bochner integration
to define the transferred convolution operator Hk E B(X) by writing:

Hkx = fk(u)Txd)t(u), for all x E X.

Notice that by elementary reasoning we have IIHkII 5 cT IIkIILI(A) When
the group G is amenable, this crude estimate can be considerably improved
as follows.

Theorem 4.11 ([8, Theorem (2.7)]). If G is an amenable group, k E
L '(A), and (S, T) is a transference couple defined on G and acting in a Ba-
nach space 1, then

IIHkII 5 cscTNp,x(k), for 1 < p < oo.
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In the special case when X is a closed subspace of LP(p), where p is an
arbitrary measure and 1 < p < oo, the conclusion in Theorem 4.11 can be
replaced by the estimate IIHkII < cscTNP(k). In order to discuss the coun-
terpart of this result for maximal estimates, we first introduce the following
notation. Given a sequence {k1}'1 C L1(A), we denote by NP ({k}1)
(E [0, co]) the strong type (p, p) norm of the maximal convolution operator
on LP(A) defined by the sequence of convolution kernels {kk}9° 1. We shall
also need the following auxiliary notion.

Definition 4.12. Suppose that (Y, p) is an arbitrary measure space, 1 < p <
oo, and G is an amenable group. Let S = {Su}uEC be a strongly continuous
mapping of G into B (LP (p)). We say that S is a subpositive family provided
that there is a family of positive operators P = {Pu}uEC C B (LP(p)) such
that

1. for each u E G, and each f E LP(p), we have I Suf I < Pu(I f I) p-a.e. on
Y;

2. cP = SUNEG Pull < oo.

The transference by couples of the bounds for maximal convolution op-
erators has the following form.

Theorem 4.13. [8, Theorem (2.11)]. Suppose that p is an arbitrary
measure, 1 < p < oo, and G is an amenable group. Suppose further that
{k1 }J°1 C L' (A), and let (S, T) be a transference couple defined on G and
acting in X = LP(p). Then if S is a subpositive family, we have (in the
notation of (4.9)(ii) and (4.12)(ii)):

II0f II LP(µ) S cpcrrNP ({kj}, 1) Iif IIL'(,.), for all f E LP(p),

where fit f = Sup,EN I 11k, f I

Although in what follows we shall not need to transfer square function
estimates, it seems appropriate to mention here that for subspaces of LP(p),
Theorem 4.11 can be generalized to square functions under milder hypotheses
on transference couples than those employed in Theorem 4.13. Methods for
transferring the bounds associated with square functions defined by sequences
of multiplier transforms were initiated in [4] and [1]. The methods used to
establish [1, Theorems 2.2 and 2.8] are readily extended to the setting of
transference couples, where they furnish the following two results.

Theorem 4.14 (Scholium). Suppose that p is an arbitrary measure, 1 <
p < oo, X is a closed subspace of LP(p), and G is an amenable group.
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Suppose further that {kj}j_1 C L'(\), and let (S, T) be a transference couple
defined on G and acting in X. If a is a constant such that

II

`Ejt
lki * f,I2}1/2C all `r.°1 If7I2}/2II11

LP(1) LP(A)

for all sequences {f,} J°
1

C LP(A),

then we have (in the notation of (4.9) and (4.10)):

G
Ilfv o IH

.I2}1'211 < a c
II{vo I

.I2}1/211

(4.10)

! j=1 99 ,j=1 k; 9j - 3
LP(µ) LP(µ)

for all sequences {gj}'1 C X.

Theorem 4.15 (Scholium). Assume all the hypotheses of Scholium 4.14
except (4.10). If 0 is a constant such that

J
1/2

Ikj*fi2} 5 Q IIf IILP(A) , for all f E LP(A),

LP(A)

then we have (in the notation of (4.9) and (4.10)):

W

1/2

{

I

IHkj9l2

j=1

< ,B CS cT II9IILo(,,) , for all 9 E X.

LP(p)

4.4 Transference of Maximal Estimates from
LP(T) to LP(w), w E Wp

Throughout what follows we consider a weight function w E WP, where 1 <
p < oo. For u E R, we denote by ry the corresponding character of R
specified by ryu (t) - e2"i". Hence by Theorem 4.4(iii), -y E MP,(1[t), with

T. Suppose now that IF E Mp, (R) and the support of T is a subset
of [-1/2,1/2]. For each u E IIt define F. E MP,u,(R) by writing r,, = y.T.
Invoking Theorem 4.8, we see that ru E MP,,,,(R), and

IIr#IIM,,W(ue) :5 KP,W IIINIIM,,,(R) IIWIIM,,W(R),

(4.11)

where

00

ry_u(t}I'u (t) _ E e-2"tumq,(t - m), for all t E R. (4.12)
m=-oo
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Notice, in particular, that.the mapping u E llS H -y-,,F E Mp,u,(R) has pe-
riod 1 on IL Moreover, the strong continuity of {ru}uER asserted by Theorem
4.4(iii) shows by Banach-Steinhaus that SUPUEl_1,1J IIyuIIM,,W(R) < 00. Conse-
quently, we find with the aid of periodicity in u and (4.11) that

sup 11y-UM IIM,,W(.) usup) IIy_uru IIM,,,(R) <_ KP, , II"IIM,,,(R) . (4.13)
UER

Now let G be the linear manifold consisting of all g E LP(w) fl L2(R) such
that g vanishes a.e. in the complement of some corresponding compact set.
Since w E Ap(IR), L is dense in LP(w). It is also clear that, for each u E P,
the translate of 'Ti by u, u), belongs to Mp,"(Bt) with corresponding
multiplier transform on LP(w) specified by f E LP(w) F- s y_uT (yu f ). It
follows from these observations and (4.12) that for each g E L, the mapping
u E R T (P'") *g E LP(w) is continuous. An application of uniform bound-

edness, furnished by (4.13), now shows that the mapping u E R * T (P'") #
7-uru

is continuous with respect to the strong operator topology of B (LP(w)). For
u E 1R, and z = e2x" `, we can rewrite (4.12) in the form

00

y_u(t)I'u(t) = E z-"P(t - m), for all t E lit.
m=-oo

Assembling the foregoing facts, we arrive at the following theorem.

Theorem 4.16. Suppose that w E Wp, ' E Mp,"(R), and the support of
tI is a subset of [-1/2,1/2]. Then for each z E T, Mp,"(R) contains the
function q,(z) specified by

00

41(z) (t) = E z-m'Y (t - m), for all t E lt.
m=-oo

Moreover,

sslip I I"(z) I I M,. (R) < KPH" II T II M,,w(R) , (4.14)

and the mapping z E T H T ( ) is continuous with respect to the strong
operator topology of B (LP(w)).

Theorem 4.16 will be used to generate transference couples defined on T
and acting in LP(w). To begin with, we specialize the assertions in Theorem
4.16 by taking 'Ti to be the Fourier transform of the de la Vallee Poussin
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kernel of order 7r/2-in other words, we consider the special case where ' is
the function b on R defined as follows:

(i) b is linear on each of the intervals [-1/2,-1/4],[1/4,1/2]; (4.15)

1, if -1/4 < t < 1/4;
(ii) b(t) =

0, if Its > 1/2.

Since BV(R) C Mp,,(1R), we obviously have b E Mp,,(R). For u E R, let
Nu = -tub. From the relationship of b to the de la Vallee Poussin kernel, we
find by Fourier inversion that

u)2 {cos
-7r(t 2 u)

- cos ((t + u)7r) } , for u E lit, t E 1[t.(Qu)" (t) _ 72(t +
2

(4.16)

Next observe that for u E R, the restriction 6,,
I[_1/2,1/21

can be regarded as
an element of BV(T) C Mp,,,(T). It follows by Theorem 4.5 that for u E IR
we have for each f E 11(w),

(T f (x) _ (Qu)" (M) f (x - m), for almost all x E 1[t (4.17)0"
m=-oo

We now proceed to use (4.16) and (4.17) in order to show that (in the
notation of Theorem 4.16) { T s t i 1 } Z 1. is a subpositive family of operators on

LP (w). Let U E (0, 1). It follows from (4.16) that there is a positive absolute
constant 5 such that

(0u)" (m) I < m2 , for all m E Z \ {0}, and I (0u)" (0) I < b. (4.18)

It is an elementary fact that there is a continuous function f E BV(T) such
that f"(0) = b, and fl(m) = 5/m2, for all m E Z \ {0}. In fact, f has the
following explicit description:

7r2 t2(e`t)=b(1+
3

7rt+2 I, for0<t<27r.

Specializing A in Theorem 4.5 to the function f, we infer that there is a
bounded positive operator T E B (IP(w)) such that for each f E 11(w), j3f
is specified by

(i) (x) = b f (x) + m2 f (x - m), for almost all x E lL (4.19)
mEZ\{0}
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Comparing (4.17), (4.18), and (4.19), we find that for each u E [0, 1),

IT (P#") f i (If () a.e. on R, for all f E L7(w). (4.20)

Now let z E T, and put z = e2," `, where u E [0, 1). Then b(z), and
hence by (4.20) we see that

ITb
)
l f l < f I) a.e. on IR, for all f E LP(w). (4.21)

With the aid of (4.21), we can now state the following theorem.

Theorem 4.17. Suppose that w E Wp. Let b and f be as in (4.15) and
(4.19), respectively. For z E T, define BZ E'.23 (LP(w)) by setting BZ = r_ q3,
where z = e2x=,. and u E [0,1). Then {Bz}ZET is a family of positive operators
on LP(w) such that

CB = SUP IIB=II < oo. (4.22)
zET

For each z E T,

T(6p )f BZ(If I) a.e. on R, for all f E LP(w). (4.23)

Consequently { T i) } is a subpositive family in the sense of Definition
b ZFT

(4.12).

Remark. Notice that the constant CB in (4.22) depends only on p and w.

For each z E T, let S,z E93 (L3(w)) be defined by

Szf = 'Y-1/4T b()) (`Y,/4f) , for all f E LP(w). (4.24)

It is clear that for each z E T, the operator SZ in (4.24) is the multiplier
transform on LP(w) corresponding to the element of MP,,,(R) specified by
t E R F4 E00 z-mb (t + 4 - m). It follows with the aid of Theorem 4.16
that z E T '-+ SZ is uniformly bounded and strongly continuous.

Suppose next that 0 E MP,(JR), and the support of 0 is a subset of
[-1/2,0]. Applying Theorem 4.16 to A, we define the family {TI-ET S
B (17(w)) by putting TZ = To'l, for each z E T. Thus, z E T '-+ T,, is
strongly continuous, and

sup IIT=II <- KP,, IIoiIMp. ,(R)
zET
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In view of our hypothesis that the support of A is contained in [-1/2, 01, and
the definition of b in (4.15), it is easy to see that for t; E T, z E T, we have

00 /

(t + -
ml

J 0(t), for all t E IL{mooe_ml

This shows that SST,, = Tt,z f and we have established that the pair of operator
families (S, T) just defined is a transference couple defined on T and acting in
L1(w). Comparing (4.23) and (4.24), we also see that {Sz}:ET is a subpositive
family.

At this juncture, it will be convenient to exhibit the following result, a
corollary of Theorem 4.16. Here and henceforth a will denote normalized
Haar measure on T.

Theorem 4.18. Assume the hypotheses of Theorem 4.16. Suppose that k E
L' (or), and define the function t E L' (R) by putting

00

P(t) = 1] k(m)T(t - m), for all t E lit
M=_00

Then P E Mp,4,(JR), and

T tr,W) f = fk(z)T'fdcr(z), for all f E L'(w). (4.25)

Proof. For f E LP(w), we can use the results in Theorem 4.16 to define
55k f by the Bochner integral on the right-hand side of (4.25). Then 55k E
B (L7(w)). Let g belong to the linear manifold G in L1(w) which was de-
scribed right after (4.13). Since W has support contained in [-1/2,1/2], easy
calculations using the definition of the multipliers t(1), z E T, along with
the compact support of g, show that

$k9 = (t W. (4.26)

For f E S(R), we obtain a sequence C G such that Ilgn - f IILn(W) 0

and 119- - f 16 R) 0 (for example, we can take gn = f )V ) Since
55k E B (L1(w)), 5jkgn -4 f kf in L1(w). Applying (4.26) to the sequence
{g,,}',, we see that 1 k9n -+ (t f )v in LZ(R). Consequently, bkf = (fi f )v,
for all f E S(R), and this suffices to complete the proof.

In order to facilitate further discussion, we now introduce two more items
of notation. Given a sequence {Q1}j,1 C Mp,W(R), we shall symbolize by

Tr,W ({Q,}j>1) E [0, oo] the strong type (p, p) norm of the maximal operator
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on L1(w) defined b y the sequence {T (,`'') } . If 0 E 1-(Z), and 8: R -4 C
is bounded, measurable, and compactly supported, we define the bounded
measurable function WW,e : R -3 C by writing

00

E ¢(m)8(t - m), for all t E R. (4.27)
"I--- - 00

The stage is now set for the application of Theorem 4.13 to the transference
couple (S, T) described after the second remark. In view of Theorem 4.18,
this immediately furnishes the following maximal theorem.

Theorem 4.19. Suppose that w E Wp, 0 E Mp,u,(R), and the support of 0
is contained in [-1/2,0]. Then for each sequence {kj},>1 C L'(T), we have

(in the notation of (4.27)) {N °}j>1 C Mp,,,(R), and

m( l
I {k,}f>1) ,"P- <

1 .>1) Kp,. IIOIIMM.u,(R) Np
/

where 'JTp, ({W
i

(respectively, Np ({k,}j>1)) denotes the strong

type (p, p) norm of the maximal operator on L1(w) (respectively, L1(T)) de-
fined by the multiplier transforms (respectively, convolution operators) corre-

sponding to (respectively, to the convolution kernels {k3}j>1).

Suppose next that 0 E Mpm (R), and the support of ,& is contained in
[0,1/2]. We modify the preceding transference couple (S, T) as follows. For
each z E T, define Sz E 93 (L1(w)) by putting

Szf = 71/4T (') (7-114f) for all f E L"(w).

Define the family {7':}zET C M (LP (w)), by putting TZ = T f, for each

z E T. Considerations analogous to those used in establishing Theorem
4.19, now show that (S, T) is a transference couple defined on T and acting

in L1(w), with {S-}"ET a subpositive family, and that the conclusions of
_

Theorem 4.19 remain valid for ,& in place of A. Combining this fact with
Theorem 4.19, we arrive at the following result regarding the transference of
maximal estimates.

Theorem 4.20. Suppose that w E Wp, %F E Mp,4,(R), and the support of 1P
is contained in [-1/2,1/2]. Then for each sequence {k;},>, 9 L'(T), we
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have (in the notation of (4.27)) {Wkj ,y}j>1 C Mp,_,(R), and

'P,", ({WkJ,,y}j>1) < Kp,w IIWIIMp.,(R) NP ({kj}j>1) .

Theorem 4.20 can be extended so as to transfer maximal multiplier esti-
mates from LP(T) to L7(w). Let Mp(Z) be the space of Fourier multipliers for
17(T). Given a sequence of Fourier multipliers {Oj}j>1 C Mp(Z), we denote

by 91p ({lbj}j>1) the strong type (p, p) norm of the maximal multiplier trans-

form on LP(T) corresponding to {l6j}j>1. In particular, for {kj}j>1 C L'(T),

we have Np ({k3}3>1) = 'tp ({}). The extended version of Theorem
4.20 takes the following form.

Theorem 4.21. Suppose that w E Wp, %Y E Mp,,,,(]R), and the support of WY
is contained in [-1/2,1/2]. Then for each sequence {0j}j>1 C Mp(Z), we
have {Wjj,v}j>1 C MP,u,(R), and

9lp,. ({Wws,',}j>1) C Kp,w II41IIMp,u(R)% ({(bj}j>1) . (4.28)

Proof. It is enough to establish (4.28) in the case of a finite sequence N C
Mp(Z). Thus we wish to show that

91p'. 1) :5 Kp,, IIWIIMp,,(R)`1p ({Oj} 1) . (4.29)

In the special case where each (bj, 1 < j < N, is finitely supported, there is
a trigonometric polynomial kj such that kj = Oj, and it follows by Theorem
4.20 that (4.29) holds in the case where each cj has finite support.

In order to treat the general case of a sequence {Oj}N j=1 C Mp(Z), let
{jctt}'0 denote the Fejer kernel for T, and for n > 0, 1 < j < N, put
latt j = l 5,.. Since O,,,j is finitely supported, we have for each n > 0:

,- 1)
Kp,.

I%

and consequently

91". ({Won }j_1) < Kp pp IIMp.W(R) °.p ({4 } 1) (4.30)

Temporarily fix j in the range 1 < j < N. It is easy to see that
the sequence IWOn,j,*}0

o
is uniformly bounded on R and tends point-

wise on R to WO" 'F as n -* oo. It follows that for f E S(R), we have

II
f) - ,p

f)vIIL2(R)
-+ 0, as n -4 oo. Hence as n -+ oo,

II1 sup I (Wmn.j,k
1)V

1supN I (Wm,, f JV III
y

-3 0.
L (R)
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This furnishes a subsequence {sups<j<N I) vI} which conver-

ges
v_1

a.e. on R to supl<j<N I(Wij,. f )vl. Using this together with (4.30), we

can apply Fatou's Lemma to deduce that for each f E S(R),

sup (W0j,,p
I<j<N

Kp,w II LQ(w)

LP(w)

(4.31)

It follows, in particular, that { Wo 4, } j 1 C Mr,. (R). Since S(R) is dense
in L1(w), we can now use (4.31) to obtain (4.29), and thereby complete the
proof of Theorem 4.21.

A straightforward "surgical" procedure will enable us to pass from Theorem
4.21 to the case where %F is assumed to be an arbitrary compactly supported
element of Mp,w(R). The specific outcome is formulated as follows.

Theorem 4.22. Suppose that w E Wp, P E Mp,w(R), and T has compact
support. Let N be a nonnegative integer such that the support of ' is con-
tained in [-N - (1/2), N+ (1/2)]. Then for each sequence C Mp(Z),
we have }j>1 S M,,,w(R), and

9tp , ({Wwj,'p}j>1 ) (2N + 1)Kpw N'IIM,,.(R) "p ({oj}j>1) .

Proof. We can assume without loss of generality that T vanishes outside
[-N - (1/2), N + (1/2)). For -N < k < N, let Wk = X[k-(1/2),k+(1/2))T,
and let Tk be the translate of 'Pk by k. Thus, 'P = Lk_N T k, and, for
-N < k < N, Tk has support contained in [-1/2,1/2]. Given a sequence
{¢j}j>1 C Mp(Z), we apply Theorem 4.21 to Tk. This gives us:

` tp,w (IWo"Tk }j>1) < Kp,w II'`IIM,,W(R) `nP ({(pj}j>1) , for - N < k < N.

Since 91p,w ({WOj,rk}j>1) = 9Zp,w ({w,,,vk}j>1), for -N < k < N, we
have

`npw ,yk}j>1) < Kp,w (I1`IIM,,,(R) 97p for - N < k < N.
(4.32)

The remainder of the proof is evident from (4.32) and the identity

N

W4,,,y= for all j> 1.
k=-N
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We close the discussion with some observations about the relationship
between the existing literature and our results in this section. Theorem 4.22
constitutes a weighted generalization of the unweighted result in [2, Theorem
(1.1)]; that is, Theorem 4.22 essentially reduces to [2, Theorem (1.1)] when
w E Wp is specialized to be the function identically one on R. In the special
case of Theorem 4.20 where w = 1, %F = X(_1/2,1/2), and {k3},>1 is the
Dirichlet kernel for T, we have the unweighted Carleson-Hunt Theorem for
LI(R), 1 < p < oo, which was shown by other methods in [14]. The situation
regarding the weighted Carleson-Hunt Theorem in the setting of R is more
complicated. It is known in the literature that the demonstration in [12]
of the weighted Carleson-Hunt Theorem for T can be adapted to provide a
weighted Carleson-Hunt Theorem for L1(w), w E Ap(R), 1 < p < oo (see the
comments in [10, p. 466]). Theorem 4.20 falls short of this much generality,
since it only provides the weighted Carleson-Hunt Theorem for L1(w) when
wEWW.
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Chapter 5

Periodic Solutions of Nonlinear
Wave Equations

Jean Bourgain

We are investigating here the construction by the [5] method of space and
time periodic solutions of one-dimensional nonlinear wave equations of the
following form

Dy + y3 + F(x, y) = 0, F(x, y) = 0(y4).

This more resonant case, due to the absence of a linear term p y, was left aside
in [5]. Second, we consider periodic solutions of certain non-Hamiltonian
NLW, with nonlinearities involving derivatives (of first order). The model
case discussed here is the equation

Ely + py + (yt)2 = 0, p#o,

but the method is by no means restricted to that example. It mainly demon-
strates the applicability of the Lyapounov-Schmidt decomposition method to
construct periodic (or quasiperiodic) solutions independently of Hamiltonian
structure. In the last section, we construct smooth families in a of periodic
solutions of NLW

Dy+py+y3+ef(x,y) =0
with p = p(E) a parameter depending smoothly in e. This result is in the
spirit of [12, 13]. We also comment on issues concerning admissible frequen-
cies for the perturbed invariant tori.

The author is grateful to C. Wayne for many comments and improvements
of earlier versions of the paper.

69
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5.1 Periodic Solutions of Nonlinear Wave
Equations of the form y + y3 + 0(y4) = 0.

Consider the 1D NLW equation

ytt - Yxx + y3 + F(x, y) = 0, (5.1)

wherel

F(x, y) = 0(y4). (5.2)

Thus we have no linear term my, m # 0, at our disposal as in an equation
of the form

ytt - yzx + my + 0(y3) = 0 (5.3)

as considered in [5]. We assume F(x, y) is an even periodic function in x and
in fact take for simplicity F of the form

F(x,y) = aj(x)y', (5.4)

4<j<d

where the aj are trigonometric cosine polynomials in x (see comments later
on). Our aim is to construct periodic solutions of (5.1) with periods in a set of
positive measure, using the method from [5] combined with some ingredients
from [11]. In [5], equation (5.3) with m 54 0 was considered and the more
resonant case (5.1) left open. In [11], periodic solutions of the equation

ytt-yxx+y3=0 (5.5)

are produced for periods of bounded type (this avoids the small divisor prob-
lems). As in [11], our starting point is the explicit solution by the 4K-periodic
elliptic function

cn ',
002 2a '

ex n-t s +e-x n-t z COS 2K (2n - 1)t;
K 7 n=1

of the differential equation

Cu+C3=0.

'It should be mentioned that, if F(x, y) is x-independent, one may easily construct
periodic solutions of the form y(x, t) = y, (z + At) since the corresponding ODE satisfied
by yl is Hamiltonian. This observation is due to C. Wayne.
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(See [7] pp. 343, 345).

Rescaling (5.1), letting

y -4 by, (5.8)

we get the equation

lift - yzz + 62y3 + 63F, (X, y) = 0 (5.9)

(d will be restricted to a neighborhood of 0).
Defining

yo(x,t) = 4K c(4K(x + At)) = c(x + At), (5.10)

where

A = l + b2, (5.11)

we get thus a solution of the equation

°yo + o2yo = 0, (5.12)

which is 1-periodic in x and T = A-' periodic in t. The main idea is to
perform a perturbative procedure starting from yo in order to obtain a so-
lution of (5.9). The perturbation scheme is based on the Newton iteration
procedure as in [5], yielding a quadratic error at each step, hence doubly
exponentially fast convergent. It is therefore less sensitive to small divisor
phenomena than if one would perform an expansion in a 8-series (as in [11]).
During this process, a sequence of restrictions will appear that essentially
will restrict 8 (and hence A) to a Cantor-like set of positive measure (as in
[5]).

The solution y of (5.9) will be given by a Fourier series of the form

y(x,t) _ E &, k) cos 27r(nx + kAt). (5.13)

n,kEZ,n>O

Observe that by (5.6) and (5.10)

yo(x, t) = 8,/2- a E e7r(n-1/2) + e-a(n-1/2) cos 21r(2n - 1) (x + At). (5.14)

Thus the assumption on F to be an even and periodic function in x is
consistent with a representation of y in the form (5.13), in the sense that
F(x, y(x, t)) remains a Fourier series of the form (5.13). As will be apparent
later on, treating the problem in generality would lead to certain resonance
problems we do not intend to analyze here.
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We replace yo by a "truncated" version of (5.14), redefining

A

yo(x, t) = 8v'2-7r
n=1

1 cos 27r(2n - 1) (x + At) (5.15)
eir(n-1/2) + e-,r(n-1/2)

taking A .' log so that in particular

Dyo+62yo =O(63)

and

Dyo + 62yo + 63F1(x,Yo) = O(63). (5.16)

Following the procedure described in [1,2,4], we construct a solution y of
(5.9) satisfying

Iy(n, k) I < e-(InI+IkU` (5.17)

where 0 < c < 1 is some constant that will depend on F (in particular on d).
The estimate (5.17) results from the fact that the correction try to the

approximate solution yr_1 obtained at step r - 1 of the iteration will satisfy,
say,

supp try C BZ2(0, (10d)r log 1/6), (5.18)

while

109 Iltryll < (1 + 100)rlog 5. (5.19)

Thus with this procedure, supp yr is contained in some finite region in Z2 at
each stage. It is also possible to obtain a real-analytic solution y (observe
that c given by (5.6) and yo are real-analytic) and assuming more generally
that F(x, y) is real-analytic, even periodic in x, but this requires keeping
track as in [5] of a sequence of real-analytic norms

HOP = E PlnI+IkI I y(n, k)I, p > 1,
n,kEZ2

(5.20)

along the iteration.
Let yr_1 be the approximative solution to (5.9) obtained at stage r - 1.

The main point in obtaining yr = yr_1 + try by Newton's method is to
control the inverse of the linearized operator

T(try) = O(try) + 352 yr_1(try) + b3(8yFi(x, yr-1)) (try) (5.21)
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with Z2-lattice representation (expressing T passing to Fourier transform)

T == D + 362 Sy2_1 + 63

where D is the diagonal operator

Dn,k = 41r2 (-k2 A2 + n2)

(5.22)

(5.23)

and S, denotes the (Toeplitz) operator with matrix elements

SO (x, x') = (x - x') (5.24)

expressing 4-multiplication in Fourier space.
In order to obtain A ,y with the desired properties, we ensure bounds and

off-diagonal decay estimates on the inverse of restrictions

TM = TI lnl<M, Ikl<M (5.25)

of the form

IITMifI < 6-2M° (for some constant C) (5.26)

and

ITMi(x,x')I < b-2e-zlx-a'I` for say Ix - 4 > Ma (5.27)

(cf. [1]).
One then defines try satisfying TM(try)+PM[b2yr_1+63F1(x, yr_1)] = 0,

where PM refers to the projection on Fourier modes InI < M, IkI < M.
At the first step, we consider for T the operator

D + 362 Syo (5.28)

to obtain thus

IIAIyII = O(51-) (5.29)

and

El yl + 52yi + 63 F1 (x, yi) = 0(64-). (5.30)

The main point is the discussion of T-i. The structure of "singular sites"
when InI+1kI -+ oc has here a simple pattern of lacunarily separated elements
as in [5]. However, there is also the behavior of T,yo (Mo a sufficiently large
constant) that has to be taken into account, depending on specific properties
of yo and thus (5.6).
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In view of (5.26) and (5.27), it will be convenient to renormalize T defining

with, say,

T = 60T' (5.31)

60 = 10662. (5.32)

Thus by (5.22), (5.23), and (5.11)

5.33T' = 47r26o 2[n2 - k2(1 + 62)] 1 +3
82

Sy' +
b2

SaF,(x,y._1) ( )
bo 80

Hence, the off-diagonal part of T' is O(10-10), and we may define the set of
singular sites (depending on 6) as

I, _ {(n, k) E Z+ x Z : In2 -k 2(1 + 82) I < 802}. (5.34)

The inverse of the restriction may then clearly be analyzed with a
Neumann series expansion.

Deleting in [0, do] a set of small relative measure, one may ensure 6 satis-
fying for any fixed y > 1

2

Ik 1+62+nI?IIk 1+6211>c1Ik17 (k,nEZ,k 0). (5.35)

Here we use the notation I II for the distance to the nearest integer. Let
(n1, k1) E I (n2, k2) E I In, I < Ind. It follows from (5.34) and (5.35) that

62 62clIn' - n211 < 1n11, (5.36)

and thus one has the separation property

in, - n2I > 10-12 c, In1I1/'r. (5.37)

It is clear from this separation of singular sites that we may choose a
sufficiently large constant MO such that

I, C IZ° U {xa}, xa E I, (5.38)

with

Qo = [0, Mo] x [-Mo, Mo] C Z2, (5.39)

dist (xa, Ho) > Ixa 10, (5.40)

Ixa - X#I > Ixa11/2 for a 54 Q. (5.41)
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A n

Qo

Let M >> M°. Recall the resolvent identity
Mo

pI
xcrl

s k

Tn' = (T,,' + T ') - (Tall + Tn2') (TA - TA, - TA,) Tn', (5.42)

where A,flA2=0, A=A, UA2i TA=PATPA.
Applying (5.42) and arguments going back to the work of J. Frohlich and

T. Spencer on lattice Schrodinger operators (cf. [5] and see [3] for a precise
formulation in our context), the estimates (5.26) and (5.29)

II (TM)-111 < M°

and

(5.43)

I (TM)-'(x, x') I <
e-2 Ix-x'I` for Ix - x'I > M112 (5.44)

may be derived from the off diagonal decay for '

for x # x' (5.45)

and bounds on the inverse of the restriction of T' to neighborhoods of the
"islands" S20 and {xa}, say,

II (T0)-' II < C2 (5.46)

and

II
(TU-'Ii < Ixal, (5.47)

tti f i tl ng ns anceore

S20 = M0I/10 -neighborhood of 00 (5.48)

and

6a = IxaI'/10 -neighborhood of xa. (5.49)
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To obtain (5.47), we proceed simply by first-order eigenvalue variation,
using 62 as parameter. Observe that T' and its restrictions are self-adjoint.
Thus if Tnav -= pv, IvI2 = 1, (5.33) yields

a2) 2} v, v) N -41r2k'oo 2 + 0(1) J02 -Ixal2bo 2, (5.50)

where xa = (na, ka) E I. Remark that

ey,) = W-11. (5.51)

The main contribution is given by the first increment A I y = 63Tno F1 (x, yo).
From (5.50) and appropriate restrictions of 6, one may then fulfill (5.47).

Considering consecutive size regions Inl + IkI - 26, we first restrict 6 to
small intervals on which the singular sites set {xa} and hence S2a, S2a may
be fixed. A further restriction of 6 using (5.50) then allows us also to ensure
the properties (5.47). This process is similar to the one in [5].

Next, we turn our attention to condition (5.46), which is the core of the
matter. Thus we need to ensure that

(Tl?jo)

Recall (5.39). We assume

Decompose first

where

-1

< C2 b-2. (5.52)

Mo S2 < 10-6. (5.53)

no = 9' U S2", (5.54)

Q'= {(n, k) E S2o I n2 $ k2}. (5.55)

Since, for (n, k) E S2', by (5.53)

In2-k2(1+b2)I> In 2-k21-M062> (5.56)

it follows from (5.33) that

IIT51III <1. (5.57)
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Writing Tno as block matrix

Too =
To, U

U. Tn.

where U = O(82), (5.52) reduces thus to

(Tn,, - U* Tst 1U)-1
11 < C6-2 (5.58)

or, since yr-1 = Yo + 0(8) and (5.33), to

11 (-47r2k2lln,, + 3 Pn,,SSoPn,')-' [[ < C. (5.59)

Write further

Sl" = Q11 U lift ", (5.60)

where

Sl+={(k,k)I0<k<Mo} and Sl"={(k,-k)I 0<k<Mo}. (5.61)

Since

supp yo C {(n, k) E Z2 I n = k}, (5.62)

it follows from (5.61) and (5.62) that

Pn+SvoPoll = 0 = Pn'l SSgPn+ and P,,- yo(0, 0) lic, . (5.63)

Therefore, (5.59) clearly reduces to the following two statements

II [PM0 (-47r2k21 + 3 S,,) PMo ]'' 11 < C (5.64)

-47r2k2 + 3 (c)2 >
If

where c is given by (5.6) and (5.10), i.e.,

for all k E Z, (5.65)

00

14vF2 ir E 1 cos 27r (2n - 1)
n=1 ch(n - 2)9r

(5.66)

and PMo denotes the projection on the linear span of even functions

[cos 27rkx 10:5 k < Mo]. (5.67)
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Verification of (5.64).

Assuming

Mo

f = f (k) cos 27rke, (5.68)
k=0

we need to show that

11PMo(f"+362f)112> G, 111112.
(5.69)

Consider the Sturm-Liouville operator

Q =2 + 3(c)2 (5.70)

with 1-periodic potential 3(c)2, acting on 1-periodic functions. Then L2(T)
is the direct sum of invariant spaces of even and odd functions. We are here
only interested in the behavior on the space of even functions. It follows from
(5.7) and (5.10) that

(c)" + (e)3 = 0 (5.71)

and hence (e)' satisfies

Q(c)' = 0. (5.72)

It follows that 0 is in the periodic (in fact in the Dirichlet) spectrum of Q.
Since c is even, (e)' is odd. Assume 0 is also in the spectrum of Qiepr, where
epf denotes even periodic functions. Thus

Qcp = 0, cp 96 0 even periodic. (5.73)

Since (e)', cc are linearly independent, the Wronskian

W= = (O)'cp' - P" W (5.74)

does not vanish identically. On the other hand, (5.72) and (5.73) imply that

W' = (e)'cP" -
(e)"c = 0, (5.75)

so that W has to be a nonzero constant. Thus

f
1 W 0. (5.76)
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Now, by (5.74) and (5.71)

f
i j f()3cpW= -2 = 2 (5.77)

while by (5.74) and (5.73) also

r
f0

i
W=-2

J
E<p"=6 (5.78)

and (5.76), (5.77) and (5.78) are clearly contradictory. Thus 0 is not in the
spectrum of Q I (where of denotes even functions) and there is some constant
a > 0 so that

IlQ fl12 > a II f 112 for f even. (5.79)

Coming back to (5.68) and (5.69) write

11 PMo (f" + 3(E)2f) P2 Ilf"+3PMo(E2f)112

IIQf112-311(E)2f-PMo(2f)112

II Qf 112 - M. 11((Z)2f )" 112

II Qf 112-M (Ilf"112+IIf 112)

M) I1Qf112-M Ilfll2

t t l ) a o] 11 f 112 (by (5.80)

11 f 112

if we let MO be large enough and for some constants A and B.

Verification of (5.65).

From (5.66), we need to verify that

12 1 2 0 {k21 k E Z},
n=1 [ch (n - 2) 7r]

and this expression equals 1.9.. .

(5.80)

Hence (5.64) and (5.65) and thus (5.59), (5.58), (5.52) and (5.46) hold,
required to establish (5.43), (5.44) and (5.26), (5.27). This completes the
discussion of the linearized operator in the Newton scheme. Thus, following
[2], [3], and [5], we obtain the following.
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Theorem 5.1. Consider the equation

Oy + y3 + F(x, y) = 0 (5.81)

with

d

F(x, y) = d aj(x) y3 (5.82)

j=4

and aj trigonometric cosine polynomials. Then (5.81) has periodic solutions
(1-periodic in space and A-1-periodic in time) of the form

y(x, t) = 4 K 6 en (4K(x + At)) + O(52-) (5.83)

with

A= 1+52 (5.84)

for 5 taken in a set of positive measure (the relative measure --+ 1 when
5->0).

5.2 Periodic Solutions of Certain Non-
Hamiltonian Nonlinear Wave Equations

As pointed out in [1] and [5], the construction of time periodic and quasiperi-
odic solutions using the Lyapounov-Schmidt decomposition and the Newton
iteration method is a priori not restricted to Hamiltonian problems. Our pur-
pose here is to treat a model example, suggested to the author by C. Wayne
(private communication), a NLW of the form

ytt - y:: + py + (yt)2 = 0, p ¢ 0 (5.85)

(for p = 0, there are only constant solutions).

Recall that our method consists of dividing the problem into an infinite-
dimensional piece (the P-equations) containing small divisor difficulties and
a remaining finite set of equations (the Q-equations) used to determine the
parameters. Essentially speaking, the main ingredient of relevance in solving
the P-equations is the geometric structure of "singular sites" of the linearized
equation, which technically often constitutes the hardest part of the problem.
The methods of [5], as sketched in the example of the previous section and [l]
appear as rather general implicit function type results, largely independent of
Hamiltonian structure. Most of the structure appears in the context of the Q-
equations, deduced in the Hamiltonian case from an appropriate normal form.
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They determine the free parameters and are solved by the ordinary implicit
function theorem. In example (5.85), the following difficulties appear.

(i) The appearance of derivatives in the nonlinearity. As pointed out
in [1], the arguments used there to construct time-periodic or quasiperiodic
solutions permit us in the NLW-case to consider also first-order derivatives.

The type of nonlinearity considered in [1] was of the form

& 1/2

( dx2
F(x, y) (5.86)

corresponding to a Hamiltonian problem

yt=Bv
vt = -By + F(x, y),

where

d2
1/2

B
dx2)

(5.87)

As far as solving the P-equations, one may consider more generally a

nonlinear term of the form

F(x, y, axy, aty) (5.88)

and in particular equation (5.85). One observation here is that in the pres-
ence of derivatives in the nonlinear perturbation, already in the construction
of time-periodic solutions, the structure of the singular sites of the linearized
operators presents some of the difficulties of the quasiperiodic case. In par-
ticular, one does not have the separation properties at infinity appearing in
the [5] work. Indeed, in the case (5.87), the linearized operator T expressed
on the Z1+1-lattice has the form

(-(k, A) 2 + n2) Il + inl SooF(x,y) (5.89)

or

-(k, A)2 + n2
Il+SaF(x ) (5.90),y

Ini

In the periodic case, the diagonal part is thus

k2,\2 + n2
0 91)(5,

InI
, n .
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and the set of singular sites

I (n, k) E Z2 Inj - IkI JAI I < e1 (5.92)

has a self-similar structure similar to the quasiperiodic problem.
(ii) The non-Hamiltonian nature of (5.85). This will lead to a linearized

operator that is not self-adjoint. We will use the technique from [1] and [3]
to control its inverse. This method does not relay on eigenvalue perturbation
and self-adjointness. Also, as will be clear below, the Q-equations extracted
from (5.85) still permit us to determine the remaining parameters.

Coming back to (5.85) and replacing again y by 8y, rewrite the equation
as

ytt - yxx + py + 5(yt)2 = 0 (5.93)

considered as perturbation of the linear equation

Ytt-yxx+py=0 (5.94)

with spectrum

An = n2 + p. (5.95)

We assume that p is such that the sequence {µn} given by (5.95) has the
expected Diophantine properties.

For instance, let

yo = p cos (x + µ1t) + q cos (x - pit) (5.96)

be a periodic solution of (5.94). We will construct a perturbed periodic
solution of (5.93) of the form

y(x, t) = yo(x, t) = E y (n, k) cos (nx + kAt), (5.97)
n,kEZ2,n>O

where

y(1,1) = p, y(1, -1) = q, (5.98)

E e(Inl+IkD` fy(n, k) I = 0(6), (5.99)
(n,k)fS
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with

the resonant set and where

is the perturbed frequency.

S = 1(11 1), (1, -1)} (5.100)

A2 = 1+p+0(62) (5.101)

Remark: One may construct space and time-periodic solutions of (5.85) of
the form y(x, t) = c(x + At), where c satisfies the ODE

A2c'+A2 1(c)2+A2 P 1c=0

(observation due to C. Wayne). This equation has indeed small amplitude
periodic solutions which will in turn give space-time periodic solutions of
equation (5.85). This is the reason why we have chosen an unperturbed
solution of the form (5.96); cf. [11].

Expressing (5.93) in Fourier yields

(-k2A2 + n2 + P) y(n, k) + 6 (yt)2 (n, k) = 0. (5.102)

The P-equations (resp. Q-equations) are obtained restricting (k, n) V S
(resp. (k, n) E S). Starting from yo given by (5.96), we get

(yo)t =° -A,(p sin(x + Alt) - q sin(x - pit)) (5.103)

and thus from (5.102)

= p cosy (x + Alt) + q cpos (x - tilt)

+ 2 1 pq

+ 4(1 A )-Fp cos (2x + 2plt)

+
4

1_a )+p cos (2x - 2plt) - 2M cos 2x - 4-+2pg cos Aplt} + 0(62).

Hence

Yt = -Pi ({p sin (x + Alt) - q sin (x - Alt) }

- dpi { 4(1_A2)}p sin (2x + 21Alt)

4(1_A2))-FP
sin (2x - 2pit) - A% sin 2plt } + 0(52).
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Specifying (n, k) = (1, 1) and (n, k) = (1, -1), substitution of the previous

equation in (5.102) yields for the Q-equations

2 2 + 0(5) = 011 - \2 + p + 4(1-,\2)+ p - q

1 - A2 + p + 62,14 9(1-- P - _ + 0(53) = 0.4A -p

(5.104)

Assume p > 0, p # 4/3 fixed. For A2 = 1 + p + O(52), one may then solve
(5.104) for p = p(A), q = q(A). In order to be able to solve the P-equations
by Newton's method, a sequence of conditions on p, q, A are imposed that
eventually will restrict A down to some Cantor-like set C of positive measure,
such that for A E C one gets a solution of (5.93) of the form (5.97) with
p = p(A), q = q(A) in (5.98).

We now turn our attention to the P-equation. The linearization of (5.102)
at a given approximative solution y yields the linearized operator

T = (-k2A2 + n2 + p)Il + 25[S1 , o (kA)1]. (5.105)

What follows is a bit easier in the present context of time-periodic solu-
tions than in the general quasiperiodic case, due to the fact that here, for
singular sites, necessarily ski - InI.

Use (5.101) to write

-k 2,\2 + n2 + p = (1 - k2)p + n2 - k2 + O(k262). (5.106)

Since we excluded the resonant cases (n, k) = (1, 1) and (n, k) = (1, -1)
(n > 0) and p is assumed to fulfill typical Diophantine conditions, no singular
sites appear in the region Int + Iki < Mo = Mo(5) = 6-c'. Applying the
resolvent identity, the control of T-1 may then be achieved from that of Ti',
where A is a box of the form

A+= 1L<n< 11 L] x
[ 10AL<k< 12 L]

(5.107)

or

1110LIX[ L<-k<1012A] (5.108)

with L > io MO (5), say. Assume (n, k) restricted to a box A+, say. Instead
of considering T, one may invert

T,_ -k2A2+n2+p
Il + 2SS (5 109)k
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restricted to A+ (this operator is not self-adjoint since it is the sum of a
diagonal and an antisymmetric matrix). Defining the set of singular sites I,
of T' as the pairs (n, k) E A+ such that (c2 < cl sufficiently small)

I-k2 A2+n2+pl <E",
kA

we get, since k > M,

(5.110)

Ika - nI < 5". (5.111)

This permits us to conclude a separation of the singular sites by &-e3, for
some c3 > 0. Indeed, if (nl, kl) E I (nzi kz) c I and Ikl - k2I < b, it
follows from (5.101) and (5.111) that

II (kl - k2) 1 + plI < 36". (5.112)

Hence, since p is assumed Diophantine,

Ik1 - kzI `° < II(ki - k2)2p1I < 10b°zIkl - k21,
(5.113)

Ik1 -
k2$

>
10 -c2/I+C > 8-C3

implying the previous statement about separation.
Our aim is to get for suitable restrictions of the parameters p, q, A again

good (polynomial) bounds on the inverse (TT+)-1 and off-diagonal decay.
This is achieved by an inductive process considering restrictions of the oper-
ator to boxes Q C A+ of increasing size scale, much in the spirit of [1], [3],
and [8]. These boxes will be obtained by restriction of the k-index only, thus

Q IL<n< 10L] xJ, (5.114)

where J is an interval. in [-!-L L < k < -L] of a certain size o(L). The
multiscale analysis of the inverse of

TQ
=

-k2,\2kan2

+
p

II + SSIQ (5.115)

will relate to size scales of J. Observe that in (5.115) k, n - L.
Restricting T' to the complement of I,, the inverse is controlled by a

Neumann series.
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Next we consider TT = T`IQ where Q is a box containing at most one
singular site and later on restrictions to boxes of increasing size order. This
induction process is mainly based on the separation properties of "singular"
boxes, meaning essentially that, for Q1, Q2 boxes of same size not contained
in the doubling of each other, say, large II(T4,)-1II and II(T4s)-1II may only
occur when Ql and Q2 are sufficiently separated. These separation properties
are then used together with the resolvent identity to establish off-diagonal
decay of the inverse.

In view of (5.101), we introduce a new parameter r with variation range
0(1), letting

A2=1+p+b2r. (5.116)

Thus from (5.104) and (5.116) we have

ar N
b2, ap = 0(1), Ilq

I = 0(1) (5.117)
OIT

(after expressing p, q in A from (5.104)). Parameter restrictions are eventually
expressed in terms of r, which admissible values will be restricted to a Cantor-
type set.

In order to set up the multiscale induction process, we introduce an extra
parameter a, Jul < a and consider the operators

TZ -(kA+o)2+n2+pI+bS(Q
(5.118)Q kA+Q

The reason for this is the fact that

T°+koaT°
o - - Q (5.119)

and hence a discussion of (TQo)-1, Qo = [L < n < 1L] x Jo, Jo fixed, in
10

the full parameter range will also apply to k-translates Q of Qo. As in [1]
and [3], we will control (TQo)-1 by a system of monic polynomials in or with
smooth coefficients in A, p, q. In fact, these polynomials will be here of degree
1, which simplifies matters a bit. In what follows, we briefly point out the
main ideas.

From the considerations (5.110)-(5.113), it follows that, if Jo is sufficiently
short, say < b-`3, there is at most one singular site (no, ko) for TQo (fixing
the parameters). Thus

(kA+Q)2+n2+p
CZb f k kor (n, o}.) E Qo\{no,

kA + o I > (5.120)

Denote

Ql = Q + koa - no (5.121)
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assuming thus

lo1I < 812 (5.122)

Rewrite the diagonal of TQo as

[no+n+(k-ko)A+al][(n-no)+(ko-k)A-o1]+p
no +(k-ko)A+o1 (5.123)

_ [1 +
n

(1 + o(1))][n - no) - (k - ko)A - 01], (5.124)
710

where the o(1) also refers to o1 and A-derivatives and - 0 for Inol -i oo.
Write

T_ Tea\{no,ko} -g-- St -(2*b+oj)Z.
no+al

(5.125)

where, by (5.120), (TQo\{no,ko})-1 is well controlled.
To control the inverse of (TQo)-1, we need thus consider the reciprocal of

the expression

e

-(2no+oi)o1+P 2 0 1

n0+01 +(1 ((TQ0\{n0,ko})-CCS,ttS)

-201 +o(j)+S2 ((To\{no,ko})-1S, t)

-201 + W(o1 i A, R q)

considered as a function of o1 i A, p, q. Thus

o1+P

i%1V = 0(1), (5.126)

aavl N 82, (5.127)

1,9,Vl, lagwvl N 62. (5.128)

(In (5.127) and (5.128), an estimate of the form 62-2c2 is clear from
(5.120); the stated bound results from a slightly more careful analysis of
the last term in (5.126) invoking decay considerations.)
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From the implicit function theorem, one may then replace (5.126) by

al - 'b(A, p, q), (5.129)

where z/, still satisfies (5.127) and (5.128).
Observe that, from (5.121), if we let a = 0,

aa,
8a

Nko - L>Mo. (5.130)

Hence, considering A, p, q as a function of T, weI have

[koa - no - ii(A,p, q)] > M082 (5.131)

by invoking (5.117).
In order to obtain separation of "singular" matrices TT, and TQ2 with

Qi = Qo + ki (i=1,2) (5.132)

and

Ik, - k21 >> IQoI, (5.133)

one has to avoid simultaneous almost vanishing of two expressions

ai - V51 (A, p, q) 0, (5.134)

a2 - 02(A, p, q) 0, (5.135)

where

ai = a + ko,iA - no,,, Iki - ko,il < IQoI (5.136)

If (5.134), (5.135), and (5.136) hold, we have (eliminating a)

(ko,l - ko,2)A - no,l + no,2 - zlii (A, p, q) + 02(A, p, q) 0. (5.137)

Hence

II(ko,i - k0,2)A-Vi(A,p,q)+V,2(A,p,q)II 0, (5.138)

where

Iko,i - ko,21 >> IQoI (5.139)
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To avoid this, we use the fact that

as [(ko,l - ko,2).\ -'1(A,p, q) + 2(',p, q)] ' ko,1 - ko,2. (5.140)

Hence

19

[(ko,i - ko,2)A - 01 (A, p, q) + 2(A, p, q)] > IQoI52 (5.141)

The preceding is the first step in the multiscale analysis. For the continu-
ation of the process, we refer the reader to [1] and [3]. This permits us for
the restrictions TQ, Q c A±, to get estimates on the inverse that are pow-
erlike in IQI with exponential off-diagonal decay; similarly for the inverse of
restrictions of T as needed in the Newton scheme. For details, the reader is
referred to [1] and [3].

The result of the preceding is the following.

Theorem 5.2. Consider a NLW equation

yet - yxx + py + (yt)2 = 0 (5.142)

with periodic boundary conditions, where p > 0 is a typical number. Then
for b sufficiently small taken in a Cantor set of positive measure, (5.139) has
a time-periodic solution of the form (5.97)-(5.99)

y(x, t)* = p cos(x + at) + q cos(x - .\t)

+ En>o,(n,k)#(1,1),(1,-1) y(n, k) cos(nx + At),

where

(5.143)

p = p(5), q = q(5) = O(5) and A2 = 1 + p + 0(52) (5.144)

and the last term in (5.140) is 0(52).

5.3 Some Remarks on Frequencies and
Parameters

Consider a perturbed Hamiltonian system

8Ho + 6 OH1
(5.145)iq=

84
ag,
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where q = {qn}n 1, N finite or N = oo, q,, c C are the pairs of conjugate
variables. Let 1 < b < N, 0 an interval in Rb, a E 0 a b-parameter, and

qoa) = qo 1(t) (5.146)

a family of quasiperiodic solutions of

=
&
qoi 147)(54 .

with frequency vector .A (a) _ (AI(a), ... , J1b(a)). Assume the nondegeneracy
condition

det I a2 I # 0
\ 8ak / 1< j,k <n

(5.148)

is satisfied.
When b = N, the problem of persistency of some of these tori for the

perturbed equation (5.145) is treated in the classical KAM theory. In this
case, invariant tori for (5.145) are obtained for (perturbed) frequency vectors
A' satisfying some Diophantine condition, of the form

I(A',k)I > clkl-r for all k E Zb\{0}, (5.149)

where c > 0, r > b - 1 are some constants.
Our interest goes to the case N > b. For b = 1, N finite, the discussion

below will not apply since there are no small divisors. However, in the PDE
context (N = oo) the problems which we recall next appear as well for b = 1.

Take for simplicity Ho of the form

b

Ho(q,4) _ Ean(a)Ignl2+E{ln(a)Jq.J' (5.150)
n=1 n>b

corresponding in (5.147) to a parameter dependent linear equation.
For b < N, the persistency problem, which we call "Melnikov problem"

has been studied by various authors, including [6], [9], [10] and also in earlier
works of J. Moser [12, 13] (N < oo here). The method used in those works is
the standard Hamiltonian procedure. The nonresonance conditions required
are of the form

J(A', k) + V, t) I > c(JkJ + IiI)` (5.151)

for (k, t) E Z "\{0}, It < 2.

This condition is more restrictive than (5.149) since the normal frequen-
cies {µ;a} are also involved. Observe that, in the context of (5.145), if we fix
H1 but let a vary, we have

A' = A'(a, e) and p' = µ'(a, e) . (5.152)
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Thus, if we choose a =: (al, ... , ab) such that

A' = A'(a, e) = Ao, (5.153)

where A0 is fixed, satisfying (5.149), say, (5.151) is not necessarily satisfied
when b < N. As observed by J. Moser, to fulfill (5.151) requires more
parameters. Alternatively, Eliasson [7] weakens (5.153) to the property

A' = tAo for some t E R (5.154)

(thus the tangential frequency is parallel to a given vector Ao).
Essentially speaking, if b parameters are available, (5.154) corresponds to

b-1 conditions and the remaining degree of freedom is used to ensure (5.151).
In conclusion, the set of "admissible" tangential frequencies for invariant tori
of (5.145) depends on e.

In the case N = oc, quasiperiodic solutions of Hamiltonian perturbations
of linear or integrable PDE's where studied by S. Kuksin [9, 10] and C. Wayne
[14], based again on the KAM methods. In particular, condition (5.151) is
needed.

The Lyapounov-Schmidt technique applied in previous sections, origi-
nating from [5] and developed further by the author, is less restrictive since
multiplicities in the normal frequencies are not excluded. This method allows
one to understand in particular how tori with positive Lyapounov exponents
appear in perturbations of integrable systems with only elliptic tori. Roughly
speaking, the relevant nonresonant expressions here are of the form

(A', k) + (p', f) with (k, B) E ZN\{O}, jti < 1. (5.155)

However (5.155) still involves the normal frequencies and previous comments
apply as well.

There are a number of natural questions one may formulate here. For
instance, if Eliasson's result [6] with parallel tangential frequency vector may
be obtained in the infinite-dimensional (PDE) setting (either following KAM
or Lyapounov-Schmidt procedure) or whether (5.153) may be ensured if extra
parameters available. Finally, the preceding discussion only comments on
the methods and does not claim failure of existence of invariant tori if the
nonresonance conditions are violated. One may, however, expect to prove
nonexistence of certain families of invariant tori with given frequency vector
A, differentiable in the perturbation parameters, since that statement relates
directly to the linearized equation.

In the remainder of this section, we give an example of such smooth fam-
ilies with Diophantine frequency A in the context of time periodic solutions
of a NLW equation with an extra parameter. Consider an equation

ytt - yaz + py + y3 + e f (X, y) = 0, (5.156)
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where p will be a parameter. Assume for simplicity that f is a sum of the
form

f (x, y) = bi(x)yj (5.157)
f>1

with (bb} even trigonometric polynomials in x (real-analytic assumptions
should work as well). Thus according to (5.145)

Ho(y, v) = f [(Y)2 + ZY' + 4y4 + 2v2] , (5.158)

Hl (y, v) = f F(x, y) (8OF = f), (5.159)

with (y, v = y) as canonical variables.
Our parameters a will be extracted from the nonlinearity y3 by amplitude-

frequency modulation, and we let p in (5.156) be a second parameter.
For c > 0, 6 > 0, denote by A,,6 the set of frequencies A satisfying

following Diophantine conditions

IIkAII = min Ik) - nj > clkl-'-6 for all k E Z\{0} (5.160)

and

I -(k2-1)A2+n2-11>Clkl-6 for allkEZ\{1,-1}. (5.161)

Cl l (CA ) 0 f ll d 0ear y mes ,,6 or a > .

We prove the following

Theorem 5.3. Let A E A,,6 (6 small enough). For sufficiently small e, there
are smooth functions of e

p = p(e) , a = a(e) (5.162)

such that (5.156) has a A-periodic solution in time, of the form

y,(x, t) = a cos x cos At + E yE(n, k) cos nx cos kAt (5.163)
n,k>O,(n,k)$(1,1)

depending smoothly on e and such that

r e-(InI+IkU`I1/e(n, k)I = 0(e + 1a13) (5.164)
(n,k)#(1,1)

(a is small).
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Note that the representation (5.163) is compatible with the assumption
that (5.157) is even in x. This result is in the spirit of some results from [12]
and [13].

We construct (5.163) following the Lyapounov-Schmidt scheme from [5],
perturbing off from the linear equation

ytt-yza+Py=0 (5.165)

with periodic solution

yo (x, t) = a cos x cos Aot (5.166)

and -Ao = \o(P) = 1 +P . (5.167)

The Q-equation is obtained by substituting (5.163) in (5.156) and projecting
on the (1, 1) mode. Thus we get

(-A2+1+p)a+y3(1,1)+ef(x,y)(1,1) = 0, (5.168)

hence of the form

-A2+1+p+ 9 a2+O(a3)+O(e) = 0. (5.169)
16

The system of P-equations

(-A2k2 + n2 + p)y(n, k) + y3(n, k) + of (x, y)(n, k) = 0, (5.170)

(n, k) E Z+ x Z+\{1,1 }, is solved by the Newton iteration procedure.
At stage r, an approximate solution y,. is obtained and the linearized

equation at yT is given by

T=D+S, (5.171)

where D is diagonal with diagonal elements

Dn k = -A2k2 + n2 + p + Q(0, 0) + e8y f (0, 0) (5.172)

and S with 0-diagonal, given by the Toeplitz operator

S = Sm-m(oo) (5.173)

and

0 = 3yf + e8y f (x, y,.) (5.174)
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satisfying

11011 = O(a2 + e) . (5.175)

Fix a large number No and let

q=Nol and a"q, IrI <q3. (5.176)

From (5.169) and (5.176)

Ip-A2+lI g2. (5.177)

Hence, for A E A,,oi it follows from (5.172) and (5.171) that

IDf,kI > I - A 2 k2 + n2 + pI - C712 > I - A2(k2 - 1) + n2 - 1I - Cq2

> clkl_a - Cq2

and thus

IDn,kI > cNoa for InI < No. (5.178)

Therefore the inverse of TNo == TIIfI<NO,lkl<No may be controlled by a
Neumann series and in particular

(5.179)

Since supp y, C B(0, M'') for some constant M, the preceding allows us
to carry out the Newton iteration as long as M,. = Mf < No, leading to an
approximative solution up to e-(2

)r

< e(n)", say. The control of TT' for
N > No requires further conditions. The main point here is an observation
made by S. Kuksin.2

Assume moreover

ID,,,aI > I I,/2 for InI < N.

Then (for q small enough)

(5.180)

II DN'SNDN1II < 100
(5.181)

The point is that if some site (n, k), n > No, is "singular" in the sense that
I - A2k2 + n2I < 1, hence IIakII < -L, then for (n1, k1) # (n, k) and nearby

2Private communication.
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=(n, k), necessarily by (5.160) - Ak2 + nil Ik1IIIAk1II > cIk1IIk - k11-2

cIkI1-. Hence, if IDn,kI < 1, one gets IDnl,k1I > cInI1- for (nl, kl) (n, k)
nearby (n, k). Property (5.181) is then easily derived from the preceding,
(5.180) and since IISII < 1j2. It follows that TN1 may again be controlled by
the Neumann series

TN1 = (DN + SN)-1 = DN'
E(-1)1(SNDNI)' (5.182)

j>0

(see [3] for all details). We have in particular

1/2

II TN' II
772

(5.183)

In order to fulfill (5.180), we need to restrict the parameters (A, e, a, p). More
specifically, (5.172) yields

C7Dn,k
= 0(1) (5.184)

8p

and hence, for given (n, k), n > No, (5.180) amounts to removing a set of
,:S 2

measure -1n7,7,-. Since (5.180) only needs to be verified for In2 - A2k2I < 1,
thus IIakII < and A E A,,6, there is the following estimate on the total
measure to be removed from the parameter set

r !2 el-th < 772N0 1/3 = 9/7/3 .[ 01/2
Np <l<N
1 clysdic

(5.185)

On the other hand, (5.169) and (5.176) yield for p a variation range of size e.
Observe that when the parameter set excisions first occur, already IIoyII <
e'(1/n)". Thus these excisions are such that the solution to the P-equation
may be extended smoothly to the entire parameter set. There is also the
issue of varying symbol ¢ = c,. given by (5.174). Since at stage r, we let
N = M,. and II0,._1-0,.II < e-N`, this change of symbol clearly does not lead
to problems when fulfilling (5.180). We are reviewing here several issues from
[5]. In conclusion, we may obtain a solution y = ya,E,a,p to the P-equation of
the form (5.163), provided that the conditions

IDn,kI > I
X1/2 for Int < M,, (5.186)

(only to be verified for N0 < I nI < MT) are fulfilled and where moreover
ya,E,a,p is smoothly defined on the full parameter set.

Fix A E A,,6. We choose a number v(A) such that

v(A) N'I2 (5.187)
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and

z

_)2(k2-1)+n2-1+v(A)I> 10I i1i2 fork01,-1. (5.188)

The same calculation as (5.185) shows that this is possible.
Next we specify (5.162) requiring p and a to solve the equations

-a2 + 1 + p + 1 [;3(1,1) + e f (x y)(1,1)] = 0 (Q-equation),

-A2+1+p+3y2(0,0)+EOyf(x) y)(0,0)=v(A),
(5.189)

where y is substituted from solving the P-equation. If the latter equation in
(5.189) holds, then at stage r, Mr > No, we get from (5.188)

IDn,kI > I - a2(k2 - 1) + n2-1 + v(A)I + O(IIy - Y'-11)
/ -Mr 2-> 10 jnj1ze >InJ/iz

and (5.186) is fulfilled. Since the equations in (5.189) appear in the form

+ lsa2+0(a3+e) = 0
4a2 + 0(a3 + e) = v(A)

with

(5.190)

p= A2_ 1 +0 (5.191)

one obtains from the implicit function theorem p = p(e), a = a(e)
v(.1) - 77 as smooth functions of E.
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Chapter 6

Some Extremal Problems in
Martingale Theory and
Harmonic Analysis

Donald L. Burkholder

6.1 Introduction
The main new results are Theorem 6.3 and its corollary for stochastic inte-
grals, Theorem 6.6. However, we begin with a little background with roots
in some of the work of Kolmogorov and M. Riesz of more than seventy years
ago. Let n be a positive integer, D a domain of R", and H a real or complex
Hilbert space. Suppose that u and v are harmonic on D with values in H.
Let JVul = (E

1

Jauiaxk12)1/2. Then v is differentially subordinate to u if,
for all x E D,

IVv(x)I < +Du(x)l

Fix a point C E D and let Do be a bounded subdomain satisfying

CEDoCDoU8DocD.

Denote by p the harmonic measure on 8Do with respect to . If 1 < p < oo,
let r/ 11/p

IIull,=supIJ lul'dpI
Do LL ODo

where the supremum is taken over all such Do.

Research partially supported by NSF grant DMS-9626398.
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Theorem 6.1. [5]. If Jv(l;)J < lu(C)l and v is differentially subordinate to
u, then

i(IvI ? 1) < µ(Iul + Ivi > 1) < 2IIuuti (6.1)

and even for the inequality between the left and right sides of (6.1) the con-
stant 2 is the best possible. Furthermore, if 1 < p < oo and p' = max{p, q}
where 1/p+ 1/q = 1, then

IIvII, < (p' -1)IIullp. (6.2)

To see that (6.2) holds, define U and V on )Ell x lRl by

U(h, k) = p(l - i/p*)P-'(Ikl - (p* - 1)Ihl)(Ihl + Ikl)p-1 (6.3)

and

p h pk k ` 46.- 1) l lV(h, I - (p) = J ( . )

Then U majorizes V, U(h, k) < 0 if Jkl < Jhi, and U(u, v) is superharmonic
on D. Therefore,

f V (u, v) dy < f U(u, v) dp < U(u(e), v(t;)) 0, (6.5)
no no

which gives (6.2). See [5] for the details and an application to Riesz systems.
The proof of (6.1) has the same pattern. If Ihl + Iki > 1, let

U(h, k) = V (h, k) = 1 - 2Jhl. (6.6)

Otherwise, let

U(h, k) = Jkl2 - jh12 and V(h, k) = -21hl. (6.7)

It is easy to check that, as above, U majorizes V, U(h, k) < 0 if Ikl < Jhl,
and U(u, v) is superharmonic on D. So (6.5) holds here also and gives (6.1).
That the constant 2 is the best possible even for the inequality between the
left and right sides of (6.1) is shown in Remark 13.1 of [7]. In Theorem
6.1, the usual conjugacy condition on v in the classical setting of the open
unit disk is replaced by the weaker condition of differential subordination, a
condition that makes sense on domains of R". Inequalities similar to (6.1)
and (6.2) can hold even if u and v are not harmonic. As above, fix e E Do
and denote the harmonic measure on 8Do with respect to l; by p.

Theorem 6.2. (7]. Suppose here that u : D -4 [ 0, co) and v : D -5 IRE are
continuous functions with continuous first and second partial derivatives such
that

Iv(0I < Ju(l;)J, (6.8)
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IVvI $ IVul,

IovI < loin.

(i) If u is subharmonic, then

u(1v;1 > 1) < ft(u+ Ivl > 1) < 311uIIi. (6.11)

Moreover, if 1 < p < oo and p`" = max{2p,q} where 1/p+ 1/q = 1, then

Ilvlly <_ (p** - 1)IluII . (6.12)

(ii) If u is superharmonic, then (6.11) holds with the constant 2. This is the
best possible constant even for the inequality between the left and right sides.

After appropriate functions U are found the proof follows the same pat-
tern as the proof of Theorem 6.1 (see [7]). These functions U were discovered
originally in a martingale setting [4, 7]. In this setting, p' - 1 is the best
possible constant for the martingale analogue of (6.2), and the same is true
for the other constants mentioned in Theorems 6.1 and 6.2. However, it is an
open question whether or not p' - 1 is the best possible constant for (6.2).
It is also open whether 3 is the best constant for (6.11) and whether p" - 1
is the best for (6.12).

The Beurling-Ahlfors transform (the singular integral operator on IP(C),
1 < p < oo, that maps f to its convolution with -1/7rz2) is important in the
study of quasiconformal mappings and elsewhere; see, for example, the paper
of Iwaniec and Martin [13] and references given there. The LP(C)-norm of this
operator is not yet known precisely, except for p = 2, although this knowledge
would be helpful. The function U defined in (6.3) has been used recently (see
Banuelos and Wang [2], and Bai uelos and Lindeman [1]) to obtain sharper
information than previously known about the norm of the Beurling-Ahlfors
transform. Both papers outline several approaches that might lead to the
precise value of this norm. One of these approaches, attributed to the referee
of [1], is the following. The function U gives rise to a rank-one convex function
on the set of 2 x 2 matrices with real coefficients [12, 1]. It is an open question
[10] whether or not a rank-one convex function on the 2 x 2 matrices is also
quasiconvex. If the answer is positive, then the norm of the Beurling-Ahlfors
operator is p' - 1.

6.2 A Martingale Setting
One of the goals of the next few sections is to explain, justify, and augment
the following equalities and inequalities, which give some insight into the
behavior of martingales and submartingales.

fy(posmar) = /3p(mar) = /3p(possub) if 1 < p < 3/2, (6.13)
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f3P(posmar) = /3P(mar) < 33p(possub) if 3/2 < p < 2, (6.14)

/3P(posmar) < /3P(mar) < /3 (possub) if p > 2. (6.15)

Suppose that (1), F, P) is a probability space filtered by (fn)n>0, a non-
decreasing sequence of sub-a-algebras of P. Let fn and gn be strongly in-
tegrable, F -measurable functions on 9 with values in H, n > 0. Then
f = (fn)n>o is a martingale under the additional assumption that the condi-
tional expectation E(fnIFn-1) = fn_1 for all n > 1.

Write
n n

fn = E dk and gn = E ek
k=0 k=0

and suppose that g is differentially subordinate to f :

Ienl < IdnI for all n > 0. (6.16)

Let IIf I IP = suPn>0 IIf,,I IP and denote by #,,(mar) the least extended real
number 0 such that

IIgOIP < /3IIfIIP (6.17)

for all martingales f and g as above. The probability space and the filtration
(Fn)n>o vary with the pair (f, g). However, it is no loss to assume that
the probability space is a fixed nonatomic space such as the Lebesgue unit
interval.

Define /3P(posmar) similarly: f is a nonnegative real-valued martingale
and g is an H-valued martingale that is differentially subordinate to f. Here,
of course, do in (6.16) is real-valued. The sequence g is conditionally differ-
entially subordinate to f if

IE(enl-FnAI s IE(dnlFn-,)I for all n > 1. (6.18)

Notice that if f is a martingale then the right side of (6.18) vanishes. Define
/3P(possub) to be the least extended real number f3 such that (6.17) holds
for all pairs (f, g) where g is &Ei(-valued and both differentially subordinate
and conditionally differentially subordinate to f where f is a nonnegative
real-valued submartingale. Condition (6.16) has the same purpose as the
conditions (6.8) and (6.9); condition (6.18) that of (6.10). For example, if
I If IIP is finite as we can assume, then

EV (fn, gn) <- EU(fn, gn) < ... < EU(fo, go) <- 0 (6.19)

replaces (6.5). This is the way (see [4] and [7]) to prove that 0(mar) < p* - 1
and fi(possub) < p** - 1. Equality holds as can be seen by examples or by
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an alternative approach (see [6], [7]). Note that p` = p" if 1 < p < 3/2
and p` < p"' if p > 3/2. Also, the example on page 671 of [3] shows that if
1 < p < 2, then fp(postnar) _ /3p(mar). Therefore, (6.13) and (6.14) hold.
The proof of (6.15) will be complete once Theorem 6.3 is established in the
next section.

The quantities /3p(posmar), ,dp(mar), and, ,6p(possub) do not depend on
the dimension of the Hilbert space H. They also remain the same if g is
restricted to be a ±1-transform of f (ek = ekdk where ek E {1, -1}, k > 0)
and, as we shall see, in other cases as well.

6.3 On the Size of a Subordinate of a
Nonnegative Martingale

Throughout this section, assume that p > 2 and r = (p -1)/2. Also, assume
in the proofs with no loss that )Ell is the real Lebesgue sequence space

Theorem 6.3. If p > 2, then

/3P(posmar) = prp-t. (6.20)

So if p > 2, then (p - 1)/2 < flp(posmar) < p/2 < p - 1. Accordingly,
(6.15) holds.

Proof. The first part of the proof is to show that the inequality

II9lIp 5 prp-tilfllp (6.21)

holds for all martingales f and g relative to the filtration (-Fn)n>a such that
g is H -valued and is differentially subordinate to the nonnegative real-valued
martingale f . We can and do assume in the proof that I If I Ip is finite. Then,
by differential subordination, gn is in L":

n n n

I9.1 5 E Iekl 5 F, Idkl 5 21: IfkI
k=0 k=0 k-0

Here define V : [ 0, oo) x H -> R by

V (X' y) = Iyl" - prp-txp.

Then the expectation EV (fn, gn) is equal to

nllp -
p-tlifnlip

Il9

and (6.21) follows from the inequality

(6.22)

EV(fn,gn) < 0. (6.23)
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To prove (6.23), we shall show that there is a function U that majorizes V
on [ 0, oo) x liii such that, for all n > 1,

EU(fn, gn) < EU(fn-1, gn-1) < ... < EU(fo, go) < 0. (6.24)

The existence of such a U gives (6.23) as an immediate consequence. Let U
be the function on [ 0, oo) x lFll defined as follows. If lyl < rx, then

U(x, Y) = V (X' y); (6.25)

if rx < IyI < px, then

i(2p - 1) (p -
1)v-1 _p+

Iy2p-, x) (IyI + x)-'-'; (6.26)U(x, y) _ (p + 1)p-1
(i_P2

and if 0 < px < lyl, then

U(x, y) = (IyI + (p2 - p - 1)x)(Iyl - x)p-1. (6.27)

This function, which is continuous, has the desired properties. (The
method leading to its discovery is briefly described in §6.6.) By Lemma
6.4 below, it majorizes V. Let n > 1. Then, by (6.31) in Lemma 6.5 below
and the condition of differential subordination,

U(fa, gn) < U(fn-1, g.-1) + V(fn-1, gn-1)dn +,O(.fn-1, g.-j) - en. (6.28)

Using (6.32) in Lemma 6.5, we see that the last two terms in this expres-
sion are integrable and, by the martingale property, integrate to 0. The other
two terms are also integrable so the left side of (6.24) follows. The right side
follows from U(fo,go) < 0: Igol = Ieol < Idol = fo and U(x,y) < 0 if IyI < x,
which is implied by Lemma 6.5 or can be seen directly from the definition of
U. Therefore inequality (6.21) holds. It is sharp as we shall prove below, so
(6.20) also holds. 0
Lemma 6.4. If p > 2, then V < U on [ 0, oo) x H.

It will be clear from the proof that V (x, y) < U(x, y) if and only if
0 < rx < I yI. Also, notice that, if p = 2, then U = V.

Proof. The majorization of V by U will follow from the continuity of U and
V once we have shown that V < U on each of the domains Dk, 0 < k < 2,
where

Do = {(x, y) : 0 < I yl < rx},

D1 = {(x, y) : rx < I yI < px},
D2 = {(x,y):0<px<IyI}.
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(i) In view of (6.25), the inequality V < U holds trivially on D0. (ii)
Let (x, y) E D1. Then jyj + x > 0, so to prove V(x, y) < U(x, y) we can
assume by homogeneity that jyj + x = 1. Thus, jyj = 1- x and the inequality
V (x, y) < U(x, y) is equivalent to F(x) > 0 where

F(x) = (2p (p )(p

-1)p-1

i l - x -

p22-

p i 1x) - (1 - x)p + prp-1xp.

(6.29)

The assumptions on (x, y). imply that x E I where I = (1/(p+ 1), 2/(p+ 1))
but it is convenient to view F as a function on (0, 1), in which case it is easy
to see that F(2/(p + 1)) = F'(2/(p + 1)) = 0, F"(2/(p + 1)) > 0, Fis
positive on (0, 1) so F" is increasing there, and

F"(1/(p+1)) =
?(p-

1) [rp-1 -pp-3]
(p + 1)p-2

Therefore, F"(1/(p+1)) > 0 if 2< p < 3; F"(1/4) = 0 and F"(1/(p+1)) < 0
if p > 3 as can be seen by checking that the map cp defined on [2, oo) by

<p(p) = (p - 1) log(p - 1) - (p - 1) log 2 - (p - 3) log p

is strictly concave and satisfies W(2) = o(3) = 0.
These properties of F imply that if 2 < p < 3, then F is strictly convex

and positive on I. Now assume that p > 3. Then there is a number zp E I
such that F is strictly concave on [1/(p + 1), zp] and is strictly convex on
[zp, 2/(p+ 1)]. Therefore, F is positive on [zp, 2/(p+ 1)). So F is positive at
both zp and 1/(p+ 1) where F(1/(p+1)) > 0 follows from p+l > (p/(p-1))p,
which holds for p > 3. The concavity implies that F is positive on the whole
interval [1/(p + 1), zp]. Accordingly, V < U on D1. (iii) Now suppose that
(x, y) belongs to D2. Then jyj - x > (p -1)x > 0. Using homogeneity again,
we can assume that IyI - x = 1. So here jyj = 1 + x and the inequality
V (x, y) < U(x, y) is equivalent to G(x) > 0, where

G(x) = (1 + x + (p2 - p - 1)x) - (1 + x)p+ prp-'xp.

Here the assumptions on (x, y) imply that x E J where J is the interval
(0,1/(p-1)). By (ii), U > V on the intersection of the boundary of D1 with
that of D2. This implies that

G(1/(p - 1)) > 0. (6.30)

If2<p<3,then
G'(x) = p2 - p - p(1 + x)p-1 + p2rp-1xp-1

> p2 _ p _ p2p-2[1 + xp-1] + p2rp-1xp-1

> p2 _ p _ p2p-2

> 0.
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The first inequality follows from a classical moment inequality; the second is
a consequence of

p(p -
1)P-1 > 22P-3, p>2,

which follows from 0(2) = 0, Vi'(2) > 0, and ?P"(p) > 0, p > 2, where

V,(p) = loge + (p - 1) log(p - 1) - (2p - 3) log 2;

and the third follows from i(2) = ii(3) = 0 and the concavity of rt on [2, 3],
where 77(p) = p - 1 - 2p-2. Because G(0) = 0 and G' is positive on J, we see
that G is positive on J. If p > 3, then G is concave on [ 0,1/(p - 1)], so by
(6.30) and G(0) = 0, G is positive on J in this case also. Therefore, V < U
on D2. This completes the proof of Lemma 6.4. D

Lemma 6.5. There are continuous functions co : [ 0, oo) x H -* JR and 0 :
[0,oo)xH-*H such that, ifx>0,x+h>0,yEH, kE)Eli, andIkI5IhI,
then

U(x + h, y + k) < U(x, y) + cp(x, y)h + i(x, y) k (6.31)

and

Wx,y)I + I '(x,y)I <- CP(Iy1
+x)P-1. (6.32)

Proof. The functions cp and 1' are defined on [ 0, oo) x lll( as follows. If IyI < rx,
then

(P(x, y) =
-p2rP-1XP-1

and V)(x, y) = pl yIP-2y;

if rx < IyI < px, then

W(x, y) = P
(i)P_1

{(p - 2) y- (p2 - p + 1)x}(IyI + x)P2,

(Pi)P_'_
(x, y)=p{(2p-1)IyI -p(p-2)x}(IyI+x)n-2y',

where y' = y/Iyi; and if 0 < px < IyI, then

w(x,y) = p{(p - 2)lyi - (p2 - p - 1)x}(IyI - x)P-2,

&(x, y) = p{IyI +p(p - 2)x}(IyI - x)P-2y'.

It is easy to check that these functions are continuous and satisfy (6.32) for
some choice of c, that does not depend on x or y.

We show now that (6.31) holds. By the continuity of the right and left.
sides of (6.31), it is enough to show this for x > 0, x + h > 0, and with
I ki 0 {0, r1 hl }. Fix x, y, h, k and define I and J by
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I = {tE]R:x+ht>0},
J = {t E_ R : (x + ht, y + kt) E Do U D1 U D2 }.

Then I\J is finite: the coefficient of t2 in Iy + ktl2 - m2(x + ht)2 is different
from zero for m = 0, r, p. Define G on I by

G(t) = U(x + ht, y + kt).

Then G and its first derivative G' are continuous on I and

G'(t) = Us (x + ht, y + kt)h + Uy(x + ht, y + kt) k

=

implying that G'(0) = cp(x, y)h+,O(x, y) k. The inequality (6.31) is therefore
equivalent to

G(1) < G(0) + G'(0),

which follows from the concavity of G. We shall prove this concavity by
showing that if t E J, then G"(t) < 0 since if the continuous function G'
is nonincreasing on each component of J, then it is nonincreasing on I. By
translation, it is enough to prove that if (x, y) E DOUDl UD2, then G"(0) _< 0.
If a > 0, then U(ax, ay) = a&U(x, y). Therefore G"(0) does not change sign
if (x, y) E Dj is replaced by (x/IyI, y/IyI) E D1. So it is enough to prove that
G"(0) < 0 under the assumption that IyI = 1. If (x, y) E Do and IyI = 1,
then 1 < rx and

G"(0) = p(p- 2)(y k)2 +plkI2 - p2(p - 1)rP-ix-2h2

< p(p - 2)h2 + ph2 - p2(p - 1)rh2 (since rx > 1)

= -p(p - 1)(pr - 1)h2
< 0.

If (x, y) E D1 and IyI = 1, then rx < 1 < px and

G"(0)
= -p (.4)P_I (1

+ x)r-3[(p - 2)A1 + (h2 - Ik12)Bl],

where, using the positivity of px -1 and px2 - p(p - 3)x + 2p -1, we see that

Al = h2[px2 + p(p + 1)x + 1] + 2h(y k)(p - 1)(px - 1)
-(y k)2[px2 - p(p - 3)x + 2p - 11

> h2[px2 + p(p + 1)x + 1] - 2h2(p - 1)(px - 1)

-h2[px2 - p(p - 3)x + 2p - 1]
0
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and, since x < 1/r, that

B1 = (1 + x)[2p - 1 - p(p - 2)x]

is also nonnegative. Therefore, G"(0) < 0 on Dl.
If (x, y) E D2 and IyI = 1, then 0 < px < 1 and

G"(0) = -p(1 - x)'-'[(p - 2)A2 + (h2 - Ik12) B2].

Here

A2 = h2[px2 - p(p + 1)x + 2p - 1] - 1)(1 - px)

-(y.k)2(px2+p(p-2)x+1 -px]
h2[px2 - p(p+1)x+2p- 1] -2h2(p- 1)(1 - px)
-h2[px2+p(p-2)x+1-px]

= 0

in which we have used the positivity of 1 - px and px2 + p(p - 2)x + 1 - px.
Furthermore,

B2 = (1 - x)(1 + p(p - 2)x]

is also nonnegative, so G"(0) < 0 on D2. This completes the proof of (6.31)
and (6.21).

Sharpness. To complete the proof of Theorem 6.3, we shall show that the
inequality (6.21) is sharp by constructing an example. Let op be the positive
number satisfying

NPP = prP-1.

If p > 2, as we continue to assume, then aP is the best constant in the
inequality (6.21).'In fact, if 0 <,6 < /3P, then there is a ±1-transform g of a
martingale f such that

II9IIP>/311f11P

There are several steps in the construction of such a pair f and g. Through-
out, let 0 < 4r5 < 1 and xn = 1 + nb for all nonnegative integers n.

(i) As a first step, let H = (Hn)n>o be a Markov chain with values in the
closed right half-plane such that Ho = (1, p) and

P[H2n+1 = (xn - r(, pxn + rb) IH2n = (xn, pxn)]

P[H2n+1 = (2xn,2rxn)IH2n = (xn,pxn)]

P[H2n+2 = (xn+1,pxn+l)IH2n+1 = (xn - r6,pxn+rb)] _

P[H2n+2 = (0, (p - 1)xn+1)IH2n+1 = (xn - rb, pxn + rb)] _

xn
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Assume further that (2xn,2rxn) and (0,2rxn+i) are absorbing states. Let

1r0 = 1 and, for n > 1,

()
1 n-I 2r8

¶n=7rn r6 = 1+fSk=0 (I 1+(k+r)S) .

If n > 1, then
P[H2n = (xn, pxn)] = irn,

rS
P[H2n = (2xr-1 i 2rxn-1)] =

1rn-11 + (n - 1 + r)S'
-

P[H2n = (0, 2rxn)] = 7rn-1
(r + 1)6 1 + (n 1)S

1 + (n - 1 + r)S I + nS
Let F and G be the martingales defined by Hn = (Fn, Gn), and D the
difference sequence of F. Then F0 = 1, Go = p, and, for n > 1,

n

Fn=1+EDk,
k=1

n

Gn = p + 1(-1)kDk.
k=1

(ii) The second step is to show that, if n > 0, then

7rn
_ exp R(n, r, S) (6.33)

(1 + nS)P

where'R(n, r, S) < 2nr62 + lOnr2S2. To see this, note first that, if 0 < t < 1,
then

exp(-t - t2/(1 - t)) = exp(-t/(1 - t)) < 1 - t < exp(-t).

So if 0 < t < 1/2, then 1- t = exp(-t - Rt (t)) where 0 < R1(t) < 2t2. Also,

2rS 2rS z 20 < 1+k5 - 1+(k+r)S <2r S .

Now use these inequalities and the definition of lr,,, to see that, for n > 1,

1 p 1 n-1
2rb

nn
1 .: nS ex +`- 1 + kS + R2(n, r, S)/

k=0

where (R2 (n, r, S)I < lOnr2S2. Then use the inequality

n-1

0 < E 1 it A - 2r log(1 + nb) < 2nrS2
k=0
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to obtain (6.33).

(iii) Let b > 0. Choose bn so that 0 < 4rbn < 1 and limn, nbn = b. Let
(Ff,k)k>o and (Gf,k)k>o be the martingales F and Gas above with b replaced
everywhere by 5n. Then

lim EFp,2n = 1 + 2pr log(1 + b), (6.34)
n-ioo

lim EGn,2n = p' + 2prpp log(1 + b). (6.35)
n- 00

To prove (6.34), observe that if n > 1, then

EFn,2n (1 + nbn)pirn(bn)
n-1

+2p E(1 + k5n)p7rk(bn)
r6,,

k=0
1 + (k + r)5n

exp(R(n, r, bn))
n-1

+2p E exp(R(k, r,
bn))rbn

1 + kbn
k=0
n-1

+2p E exp(R(k, r, bn))R3(k, r, 5n),
k=0

where IR3(k, r, bn)I < r26n2. Consequently, (6.34) holds. Similarly, if n _> 1,
then

EGn,2n

r n+ 2prp E(1 + kbn)p7rk(6n)1
+ (k + r)bn

k=0
n-1

+ 2PrP E(1 + (k + l)bn)p7rk(bn)1
+r

(k

+
+
1)brr)&

1 +

1

(k

+
+
kbn

k=0
1)bn'

pn(1 + n5n)pirn(bn)

n-1
b

which converges to pp + 2PrP[r + (r + 1)]log(1 + 6). Therefore, (6.35) also

holds.
(iv) Now choose b so that

1 + 1[pp + 2prpplog(1 + b)]

2pp + i [1 + 2pr log(1 + b)] > gyp'
{6.36}

This is possible because /3p > Q and the limit of the left side of (6.36) as
b -+ oo is /3p. After this choice of b, choose n so that

'-+ IEGP
1p

P2 n,2n
> ,Bp. (6.37)

5 +
12

EFn,2n
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This is possible by (6.34), (6.35), and (6.36).
(v) Suppose that A E F is independent of the Markov chain H and

satisfies P(A) = 1/2. (If necessary, the original probability space can be
replaced by a slightly larger one to make such a choice possible.) With b and
n as in (iv), let fo = go = (p + 1)/2. For 0 < k < 2n, let

(fk+1,9k+1) = (r'n,k, Gn,k) on A,
(p,1)offA.

For k > 2n, let (fk+1, 9k+1) = (fen+1, 92n+1) From (i), it follows that f is a
martingale and g is a ±1-transform of f. Furthermore, the ratio

II91ip/Ilf11p

is given by the left side of (6.37). Therefore, I I9I Ip > 011f 11p. This shows that
P. gives the best constant and completes the proof of Theorem 6.3.

6.4 A Sharp Norm Inequality for an Integral
with Respect to a Nonnegative
Martingale

Suppose that X = (Xt)t>o is a nonnegative martingale on a complete prob-
ability space (1, F, P) filtered by (.Ft)t>o, a nondecreasing right-continuous
family of sub-v-algebras of F where FO contains all A E .T with P(A) = 0.
So each Xt is integrable and the conditional expectation E(XtIF,) = X, if
0 < s < t. Let Y be the Ito integral of H with respect to X where H is a
predictable process with values in the closed unit ball of the Hilbert space
E[:

Yt = HoXo + J
H. dX,.

(0.t]

Both X and Y are adapted to the filtration (.Ft)t>o and are right-continuous
on [ 0, oo) with limits from the left on (0, oo). Set IIX IIp = suPt>o IIX=IIp

Theorem 6.6. Let 2 < p < oo and r = (p - 1)/2. Then

IIYII, <_ PrP-11UXIIp (6.38)

and pry-1 is the best possible constant.

The inequality (6.38) follows from (6.21) in the same way that the analo-
gous inequality for nonnegative submartingales in [7] follows from the corre-
sponding discrete-parameter version. The fact that pry-1 is the best possible
constant in (6.38) follows from the fact that it is the best possible constant
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in (6.21) even in the special case that g is a ±1-transform of f as proved in
§6.3.

Let us now modify the definition of 8p(posmar) that is given in §6.2. Here
let fp(posmar) be the least extended real number 0 such that I]YII, < 0[[X IIp
for all X and Y as above. By Theorem 6.6 and earlier results in [3] and (7],
we obtain the same value as in the discrete-parameter case:

i3p(posmar) = p` - 1 = 1/(p - 1) if 1 < p:5 2,
= prp-1 if 2 < p < oo.

If the definitions of /3p(mar) and /3p(possub) are modified in the same way,
then (6.13), (6.14), and (6.15) hold also in this case.

We note here that the sentence near the top of page 996 of [7] beginning
with "In fact, the constant . . . " is not clear in its context. It should read
"In fact, if 1 < p < 2, then the constant p' - 1 is already the best possible
for the smaller class of nonnegative martingales."

6.5 Some Open Questions and Remarks
(i) The following question from [4] is still open even for H = R. Let M and N
be right-continuous martingales on [ 0, oo) with limits from the left on (0, oo).
Suppose they are martingales relative to the same filtration, are ]Hl-valued,
and have respective quadratic variation processes [M, M] and [N, N]. If

[N, N]t < [M, M]t for all t > 0, (6.39)

then does IINIIp < (p` - 1)IIMIIp for all p c (1,oo)? If so, is this inequality
true under the less restrictive condition

[M, M],,, < [N, N],,,,? (6.40)

There are analogous questions for weak-type, exponential, and other mar-
tingale inequalities. Wang [14] and Baiiuelos and Wang [2] consider the
following condition:

[M, M]t - [N, N]t is nonnegative and nondecreasing in t. (6.41)

Under this more restrictive condition, Wang [14] proves the inequality
I I NI Ip < (p - 1) I ] M I l p for all p e (1, oo). He also proves similar extensions
of some of the other inequalities in [4] and [7]. In [2], where the proof of
IINIIp < (p* - 1)IIMI[p is given under the condition (6.41) in the special case
that M and N are continuous, Bahuelos and Wang give applications of this
inequality to the Beurling-Ahlfors transform.
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(ii) Let a > 0. What is the effect of replacing condition (6.10) by

fOvj < alDul, (6.42)

and condition (6.18) by

for all n > 1? (6.43)

Changsun Choi [9] has proved that if 0 < a < 1, then (6.12) holds if p" is
replaced by max{(a+I)p, q}, and that the same replacement in the analogous
inequality for nonnegative submartingales (inequality (2.1) of [7]) gives the
best constant there. Earlier, Hammack [11] studied the effect of dropping the
condition that the submartingale be nonnegative while keeping the original
condition (6.18). In this case, the weak-type inequality (inequality (4.1) of
[7]) continues to hold but with 6, rather than 3, being the best constant. On
the other hand, the LP-inequalities fail to hold for 1 < p < oo.

6.6 A Note on Method
Here are the steps that can lead in a natural way to the function U of §6.3.
Start with H = R and > 0, and as in §6.3, let p > 2. Let S = [ 0, oo) x R
and define V,6 : S -a R by VV (x, y) = lyIP - /3pxp. Then attempt to find the
least majorant U of Vfi on -S such that the mapping

x ti U(x, y + ex)

is concave on [ 0, oo) for all real y and for both e = 1 and c _ -1. There is
no such U if $ is too small. However, it seems reasonable to expect that the
least $ for which there is such a majorant of VV will lead to a U that has
some smoothness, perhaps continuous derivatives of the first order on the
interior of S. Furthermore, if this U is least possible and the second-order
derivatives exist in a neighborhood of (x, y) E S, then either

U:x+2Uy+Uyy=0 or Uxx-2Uy+Uvv=0
at (x, y). Otherwise, U would not be extremal. With the use of all of this,
the right value of $ and the right function U are not hard to find for the
case H = H. For a general Hilbert space H, the right function U has the
same formula (interpret the absolute value jyj as the norm of y E HH) as can
be seen from the work in §6.3. Perhaps further insight may be gained from
Theorem 1.1 of [3] and §2 of [6]. The extremal problems for martingales that
we have considered here focus mostly on the comparison of the sizes of two
martingales related in some way, such as one being differentially subordinate
to the other. These problems lead to interesting (upper) boundary value
problems. If instead, the focus is on the comparison of the sizes of their
maximal functions, then the boundary value problems become even more
interesting; see [8].
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Chapter 7

The Monge Ampere Equation,
Allocation Problems, and
Elliptic Systems with Affine
Invariance

Luis A. Caffarelli

The Monge Ampere equation, a classical equation in differential geometry
and analysis, has been surfacing more and more often in different contexts of
applied mathematics in recent times, posing new and challenging problems.

In this paper I will try to present some of these problems, partial answers
and possible directions.

7.1 The Monge Ampere Equation as a Fully
Nonlinear Equation

The Monge Ampere equation consists of finding a convex function cp that
satisfies

det D2cp = f (x, Dip).

It has a rich history in differential geometry and analysis.
It appears locally when prescribing the density of the Gauss map, i.e.,

the map that assigns, to each point (X,cp(X)) on the surface S = graph (cp),
the unit normal vector v (convexity of co guarantees heuristically that v is a
nice oriented "one to one" map).

Research partially supported by an NSF grant.
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It also appears in problems of optimal design in optics (see Oliker [111)
in Riemannian geometry, etc. The convexity restriction on cp, that as we
will see later appears naturally in several contexts, has the virtue that it
almost puts the Monge Ampere equation in the context of solutions to fully
nonlinear equations:

F(D2w) = f.

Indeed, in this theory, one requires F to be strictly monotone and Lip-
schitz as a function of symmetric matrices M, i.e.,

F(M) + )IINlI < F(M + N) G F(M) + AIINUU

for any symmetric matrices M, N, with N positive.
In the case of det M, both monotonicity and Lipschitz regularity hold

as long as M is positive (cp convex) and M, N remain bounded, but it
deteriorates as k goes to infinity.

Our interest in fitting the Monge Ampere equation in the framework of
fully nonlinear elliptic equations is of course the powerful local regularity
theory available.

7.2 Regularity Theory of Fully Nonlinear
Equations

We point out at this time that in the study of second-order, nonlinear equa-
tions there are usually two approaches to regularity theory: boundary inher-
ited regularity and local regularity.

Boundary inherited regularity looks, for instance, at a Dirichlet problem,

F(D2u) = f (x) in V

u = g(x) along the smooth boundary, oD

and tries first to control first and second derivatives of u along 8D, by ap-
propriate barriers, and next to extend this control to the interior of V by
maximum principle techniques for Du and D2u. This method is convenient
when the geometry of the problem is good to start with (9(x) and 01D are
smooth and geometrically constrained).

Another type of theory, the one I want to address here, is that of interior
a priori estimates, in which we are given a bounded solution u of

F(D2u) = f (x)

in B1, where u is smooth in any bounded subdomain, B1_t.
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The advantage of this theory is in its compactness properties and, as
a consequence, that it occurs in the natural functional spaces (u is "two
derivatives" better than f both in Ca and L" spaces).

Since this last theory is available for solutions of uniformly elliptic, fully
nonlinear equation, one may hope to apply it with some modification to the
Monge Ampere equation. That this is not the case, at least in a straightfor-
ward way, is due to the invariances of the Monge Ampere equation.

7.3 The Monge Ampere Equation: Invariance
and Counterexamples

The Monge Ampere equation, say

det D2cp = 1,

is not only invariant under the action of rigid motions R (i.e., ;P(X) = rp(RX )
is again a solution of the same equation) and quadratic dilations (i.e., ;p(X) =
Ay W(AX)) but also under any affine transformation T, with det T = 1 (i.e.,
7(X) = cp(TX) solves the same equation).

This last property has as a consequence that we may submit the graph of
a solution cp to an enormous deformation %X) = W(Ex1i Ex2) and still obtain
a solution of the same equation.

This makes the existence of nonsmooth solutions almost unavoidable. For
instance (Pogorelov), for n > 2,

SP(X) = `(xl,... , xn-1)I2-2/n f(xn)

is a solution for

1- .) f f" - (2 - 2
)

(f,)21 f--2n-2 = constant[(1

(an ODE with nice local solutions). This W is nonnegative, but D2<p degen-
erates along the line xn = 0, where tp =_ 0. Therefore, an absolute regularity
theory is out of the question.

On the other hand, the positive effect of the rich renormalization proper-
ties of the Monge Ampere equation is that, if we start from a "reasonable"
situation, the possibility of renormalizing at every scale should give us a way
of controlling the geometry of cp in an iterative fashion.

7.4 Some Local Theorems
In order to describe these ideas let me state three basic facts.
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Fact 1 (Pogorelov):
Let cp be a (smooth) solution of

J det D2cp = 1 in St,

W =_ 0 on 199.

Assume that B1 C Q C BK, then

D2cp(0) < C(K).

Fact 2 (Elementary comparison):
Let WO be as in Fact 1, and

detD2cp1 - 1I < s, cp,Ia. = 0.

Then
IWo - W1I <- Cc in Q.

Fact 3 (Global propagation of singularities):
(a) 0 < A < detD 2W <A<ooinB1i
(b) cp > 0, cp(0) = 0.

Then the set
{X:W =0}

is (i) a point or (ii) a convex set I' with no extremal points in B1, i.e., gener-
ated by convex combinations of points in F n 0B1.

Note that the three facts are renormalization invariant. Note also that
Fact 3 is by compactness a very strong statement of strict convexity.

Indeed, if Wn is a sequence of bounded nonnegative solutions to the Monge
Ampere equation 0 < ) < det D2Wn < A that slowly deteriorates around
the origin (say inf (WnlaB,) (0) goes to zero), a limiting cpo has a nontrivial
set {cpo = 0} and therefore, from Fact 3, a very large singular set {Wo = 0).

The combination of these facts allows us to prove through renormalization
of the sections S(2) = {x : W (x) - £(x) < 0), f a linear function, that the
following holds:

"Theorem": Unless p degenerates according to Fact 3, cp is, in any compact
subset of B1, two derivatives better than f, i.e.,

(a) If f is bounded, cp is Cl," for some a (Harnack inequality for the Monge
Ampere equation).

(b) If f is continuous, cp is W2,r for every p (Calderbn-Zygmund).
(c) If f is C°, cp is C2'° (Schauder).

We will now discuss some applications of this theory.
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7.5 The Monge Ampere Equation as a
Potential of an "Irrotational Map" in
Lagrangian Coordinates

Two concepts at the heart of modelization in continuum mechanics are com-
pression and rotation. In Eulerian coordinates, infinitesimal compression is
measured through the divergence of the infinitesimal displacement (velocity)
and rotation through the curl.

Mathematically, the important fact is that the prescription of div v =
Trace Dv and curl = Dv - (Dv)t constitutes the simplest linear elliptic sys-
tem, and thus we have the two typical theorems:

Theorem 7.1. If div, curl belong to a given function space (say Ck,O or
Wk.P), then all of Dv belongs to that space (with estimates), or

Theorem 7.2 (Helmholtz decomposition). Given v in a function space,
it can be decomposed as v = U, +U2, with U, incompressible and v2 irrotational
in the same function space (with estimates). In fact v2 is found as v2 = Vu,
with

Du = div v

boundary conditions

and iJ =v-v2.

In Lagrangian coordinates, the adequate tool to describe large deforma-
tions, it is clear what the notion of compression and incompressibility should
be: instead of just having a velocity field, our dependent variable Y(X, t)
is the position at time t of that particle that at time zero was at X, and
therefore the compression that a differential of volume given at time zero
has suffered at time t is simply det DxY (i.e., conservation of mass becomes
pdet DXY = constant).

Rotation is a more unsettled question, and I assume that, for different
purposes, different definitions occur.

We will discuss briefly later the Cauchy-Novozilov notion of rotation, but
one may look at Truesdell and Toupin (16].

Let us agree now that irrotational means DIY symmetric; that is, heuris-
tically, v is the gradient of a potential gyp, and then we can state Brenier's
factorization [1].

Theorem 7.3. Let f1i S22 be two bounded domains of R", U a measurable
map from S21 into 12 that does not collapse sets of positive measure (i.e., if
E C 92 has AEI = 0 then Jv-1(E)I = 0). Then v can be factorized as

v= T2 . V1,



122 Chapter 7: The Monge Ampere Equation

where

vr:S21-- ui

is incompressible, i.e., for any measurable E C SZr

I(v1)-1(E)I = IEI

and v2 is irrotational; that is,

v2=VV,

where cp is convex.

Given this decomposition, we note that the questions raised by Theorem
7.2 become relevant: Suppose that v is in some function space (Wkp or
Ck'°). Is it true that v1, v2 are in the same spaces? This is the content of
several papers by the author (see [2], [3], [4], [5]) where this is shown to
hold under the necessary hypothesis that S21 and S22 are convex. This is
achieved through the local regularity theory for convex solutions 'p of the
Monge Ampere equation

det D2'p = f

provided the "cornpression" f is under control.

7.6 Optimal Allocation Problems
In fact, the map V2 above depends on v only through the density 5(y) =
det D2v, with which Sit is carried into S22i and it has a classic interpretation as
an "optimal allocation" problem between S21 and Sl2 with prescribed densities
61(X ), 62(Y):

Let us describe optimal allocations in a discrete setting: Assume we are
given k points X1, ... , Xk and Y1, ... , Yk in ' and we want to map the Xi
onto the Y's, minimizing a "transportation" cost

T(Y(X)) = EiC(Y(Xi) - Xi),

where C(X - Y) represents the cost of transporting X into Y.
In the finite case, an optimal map YO(X) clearly exists, and it is cyclically

monotone in the sense that, for any permutation 7r(i), EC(Y(Xi) - X,(i)) >
EC(Y(Xi) - Xi). If C(Y - X) is IY - X12 then this condition transforms
into

E(Y(Xi),Xx(o)) <- E(Y(Xi) - Xi),

the classical definition of cyclically monotone maps.
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A theorem of Rockafellar [14) then proves that Y is the gradient of a
convex potential. The continuous situation can then be described by the
following theorem: Suppose we are given the cost function

C(Y-X)= IY-X}2
62(Y) withtwo domains Q1, Q2 and densities S1(X),JS2dY.

f S1dX =

(a) There exists a unique map Yo(X) that preserves densities: i.e., for
every continuous 77

f ri(Y) 52(Y) dY = f i?(Yo(X )) 61(X) dYS22

and such that minimizes

f IY(X)-X1S1(X)dX

among all such maps.
(b) Y = V(p, cp convex and if S2i are convex, v is locally "two derivatives

better" than S1, 52.
A very beautiful problem arises when studying general strictly convex cost

functions C, with differential C5 Up Then (Yo(X) - X) is an irrotational
vector field VV. Heuristically cp satisfies then

def (X + B ( ) _ S2 (X + B; (Ow)

where B the inverse map to C;, is the gradient of B, the conjugate con-
vex function to C. Little is known about solving this Monge Ampere type
equation (see [8], [10)).

Note the analogy of this family of Monge Ampere problems with the Euler
equations coming from convex functionals:

div (B; (VV)) = 0.

These last are sort of a "linearization" of the ones above.

7.7 Optimal Allocations in Continuum
Mechanics

This is an area that is evolving, so I will just make a few remarks. We start
by noticing the relation between the functional (Si(X) = 1),

J = f(Y(X) - X)2 dX,
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and its infinitesimal version, the kinetic energy formula: If Y(X) = X + ev,
we have, at c-level, det(I + eDu) = 1 + e div v = 1 and

,1= e2 J jvj2 dX.

That is, v minimizes kinetic energy among incompressible (div v = 0) vector
fields.

Brenier used this idea to discretize incompressible Euler's equation [1).
Recently Otto [12], [13] found global weak solutions for several classical
evolution equations (degenerate diffusions, lubrication approximation, semi-
geosthrophic front formation) using different allocation cost functions. The
regularity (or partial regularity) of his solutions remains open.

The semigeostrophic equations are worth noting (see [91). We have two
sets of variables, (x1, x2, z), where x1, x2 are the physical plane variables, and
z, a pseudoheight, a function of pressure instead of x3i and the momentum-
entropy variables M1, M2, M3. The domain Q2 in (x1, x2, z) is a given cylin-
der.

The unknowns are a density bl (M, t) and the potential of the map cp(M, t)
that at any instant of time optimally allocates bl to X((12) in the (x1, x2, z)
variables. The remaining equation tells us how b(M, t) evolves, transported
by the planar vorticity:

at(M, t) = bM, (-T'M2) + SMscoM,.

Regularity or partial regularity remains open.

7.8 Elliptic Systems Invariant under Affine
Transformations

In this final section I would like to take up again the issue of what is a notion
of rotation and of an elliptic system invariant under an affine transformation.
For that, let us go back to discrete allocations.

We have seen that the optimal map Y(X,) is cyclically monotone,

E(Y(Xi), X"(0:5 E(Y(X=), X:),

for any permutation ir.
But assume that we try to "flow" to such a minimum by exchanging pairs

of Y's. Then monotone maps (satisfying only (Y(X1) - Y(X2),X1 - X2))
will be stationary.

Simple examples show that incompressible monotone maps are not regular
and can develop local singularities.
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But if we "flow" to the minimum by exchanging "triplets" of points
Y1, Y2, Y3 we get a "3-monotone map," i.e., a "cyclically monotone map"
where only permutations of three elements are allowed. This is enough to
control in some sense rotations in an affine invariant fashion (any definition
that involves inner products (Y, X) is affine invariant), and this is also enough
to reconstruct (at least partially) the local regularity theory of the Monge
Ampere equation.

Infinitesimally, 3-monotonicity means controlling on each plane the ratio
between w (vorticity) and det S, the symmetric part of the differential, i.e.,
(rotation)2 over area dilation. These ratios are called the Cauchy-Novozilov
measure of rotation [16]. A related notion described by Truesdell [15] looks
at ratios between vortic:ity and maximal line dilation. They seem to define
an affine invariant notion of "elliptic system." The issue of "elliptic systems"
with affine invariance is still wide open (see [7]).
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Chapter 8

On a Fourth-Order Partial
Differential Equation in
Conformal Geometry

Sun-Yung A. Chang

8.1 Introduction
In this paper, we will survey some of the recent study of a fourth-order
partial differential operator-namely, the Paneitz operator. The study of
this operator arises naturally from the consideration of problems in confor-
mal geometry. However, the natural partial differential equations associated
with the operator, which when restricted to domains in R" becomes the bi-
Laplacian, also are interesting in themselves. The content of this paper is
an expanded version of a talk the author gave in the conference to honor
Professor A. P. Calderon on the occasion of his seventy-fifth birthday.

On a Riemannian manifold (M", g) of dimension n, a most well-studied
differential operator is the "Laplace-Beltrami operator A = A. which in local
coordinates is defined as

Vfj _gj ax Pigigii " ),
where g = (g;j), g'i =: (g;j)-', IgI = det(g;,). On the same manifold, if we
change the metric g to a new metric h, we say h is conformal to g if there
exists some positive function p such that h = pg. Denote p = e2ri; then

Research partially supported by NSF grant DMS-94014.
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g,, = e2u'g is a metric conformal to g. When the dimension of the manifold
M" is two, Ay, is related to A. by the simple formula:

for all V E C°°(M2) . (8.1)

When the dimension of M" is greater than two, an operator which enjoys a
property similar to (8.1) is the conformal Laplacian operator L =_ -c"A + R
where c" = 4n 2 and R is the scalar curvature of the metric. We have

LgW(cp) = e +"L9 (e2 0) (8.2)

for all cP E COO (M).
In general, we call a metrically defined operator A conformally covariant

of bidegree (a, b) if, under the conformal change of metric g,,, = e'g, the pair
of corresponding operators A., and A are related by

A.(cp) = e-'A(e°`'v) for all cp E C°°(M") . (8.3)

It turns out that there are many operators besides the Laplacian A on
compact surfaces and the conformal Laplacian L on general compact mani-
fold of dimension greater than two which have the conformal covariant prop-
erty. A particularly interesting one is a fourth-order operator on 4-manifolds
discovered by Paneitz [50] in 1983:

Pcp = A2cp + 8 ` 3 RI - 2 Ric f dw, (8.4)

where b denotes the divergence, d the de Rham differential and Ric the R.icci
tensor of the metric. The Paneitz operator P (which we will later denote by
P4) is conformal covariant of bidegree (0, 4) on 4-manifolds; i.e.,

P9w (cp) = e-4i''P9(cp) for all 0 E C°°(M4) . (8.5)

For manifolds of general dimension n, when n is even, the existence of an
nth order operator P conformal covariant of bidegree (0, n) was verified in
[34]. However, it is only explicitly known on the standard Euclidean space
R1 and hence on the standard sphere S". The explicit formula for P on
the standard sphere S" has appeared in Branson [7] and independently in
Beckner [5] and will be discussed in §8.2 below.
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This paper is organized as follows. In §8.1, we will list some properties
of the Laplace operator and compare it, from the point of view of confor-
mal geometry, to some analogous properties of the Paneitz operator P4. In
section 8.2, we will discuss some natural PDE associated with the Paneitz
operators P" on S". We will discuss extremal properties of the variational
functional associated with the PDE. We will also discuss some uniqueness
properties of the solutions of the PDE. The main point here is that, although
P,, is an nth order elliptic operator (which in the case when n is odd, is a
pseudo-differential operator), the moving plane method of Alexandrov [2]
and Gidas-Ni-Nirenberg [331 can still be applied iteratively to establish the
spherical symmetry of the solutions of the PDE. In §8.3, we discuss some
general existence and uniqueness results of the corresponding functional for
the Paneitz operator P4 on general compact 4-manifolds. In §8.4, we will
discuss another natural geometric functional - namely the zeta functional
determinant for the conformal Laplacian operator - where the Paneitz oper-
ator plays an important role. We will survey some existence and regularity
results'of the extremal metrics of the zeta functional determinant, and indi-
cate some recent geometric applications by M. Gursky of the extremal metrics
to characterize some compact 4-manifolds. Finally in §8.5, we will discuss
some existence results for the P3 operator, which is conformally covariant of
bidegree (0, 3), operating on functions defined on the boundary of compact
4-manifolds. The existence of P3 would allow us to study boundary value
problems associated with the P4 operator. Our point of view here is that
the relation of P3 to P4 is parallel to the relation of the Neumann opera-
tor to the Laplace operator. Thus, for example for domains in R4, P3 is a
higher-dimensional analogue with respect to the biharmonic functions of the
Dirichlet-Neumann operator with respect to the harmonic functions. Some
understanding of the P3 operator also leads to the study of zeta functional
determinant on 4-manifolds with boundary.

In this paper we are dealing with an area of research which can be ap-
proached from many different directions. Thus many important research
works should be cited. But due to the limited space and the very limited
knowledge of the author, we will survey here mainly some recent works of
the author with colleagues: T. Branson, M. Gursky, J. Qing, L. Wang, and
P. Yang; we will mainly cite research papers which have strongly influenced
our work.

8.2 Properties of the Paneitz Operator
On a compact Riemannian manifold (M", g) without boundary, when the
dimension of the manifold n = 2, we denote by P2 =_ -A = -O9, the
Laplacian operator. When the dimension n = 4, we denote P = P4 the
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Paneitz operator as defined on (8.4). Thus both operators satisfy conformal
covariant property (P"),, = e-"°'P", where (P"),,, denotes the operator with
respect to (M", g,,,), g,., = e2" g. Other considerations in conformal geometry
and partial differential equation also identify P4 as a natural analogue of -A.
Here we will list several such properties for comparison.

(i) On a compact surface, a natural curvature invariant associated with
the Laplace operator is the Gaussian curvature K. Under the conformal
change of metric g,, = e2"'g, we have

Ow + K,,,ew = K on M2, (8.6)

where & denotes the Gaussian curvature of (M2, gw). While on a 4-manifold,
we have

-P4w + 2Q,,e4i' = 2Q on

where Q is the curvature invariant

M4,

12Q = -OR + R2 - 3JRic12. (8.8)

(ii) The analogy between K and Q becomes more apparent if one considers
the Gauss-Bonnet formulae:

dv, where M = M2, (8.9)27rX(M) = fm K

C2
47r2X(M) = (Q + 8̀f dv, where M = M4 (8.10)

MM

where X(M) denotes the Euler characteristic of the manifold M, and JC12=
norm squared of the Weyl tensor. Since (CI2dv is a pointwise invariant under
conformal change of metric, Q is the term which measures the conformal
change in formula (8.10).

(iii) When n > 3, another natural analogue of -0 on M2 is the conformal
Laplacian operator L as defined in (8.2). In this case, if we denote the
conformal change of metric by gu = u4g for some positive function u, then
we may rewrite the conformal covariant property (8.2) for L as

Lu(tp) =
u-n+2

on M", n > 3 (8.11)

for all cp E C°° (M").
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A differential equation which is associated with the operator L is the
Yamabe equation:

Lu = Ruin on M", n > 3. (8.12)

Equation (8.12) has been intensively studied in the recent decade. For exam-
ple the famous Yamabe problem in differential geometry is the study of the
equation (8.12) for solutions Ru = constant; the problem has been completely
solved by Yamabe [61], Trudinger [58], Aubin [4], and Schoen [55].

(iv) It turns out there is also a natural fourth-order Paneitz operator P4
in all dimensions n > 5, which enjoys the conformal covariance property with
respect to conformal changes in metrics also. The relation of this operator
to the Paneitz operator in dimension four is completely analogous to the
relation of the conformal Laplacian to the Laplacian in dimension two. On
(M",g) when n > 4, define

P4 = (-0)2 + b(anR + b"Ri.i )d + n 2 4Q4

where

Q' =CnlPl2+dnR2 - 2(n1
1)OR,

n-2 2+4 4 2 n34n2 16n-16and an - 4("-1 n-2), bn = "2, Cn = (n2)3e do = 8(n-1) n-2) are
dimensional constants. Thus p4 = P4i Q4 = Q. Then (Branson [71) we have

4
for g,, = u.=4 g, n > 5)

(P4 )u
(W) = u (P4)

(u(p)
(8.13)

for all V E C°°(M"). We also have the analogue for the Yamabe equation:

P47L=Q4u^-4 on Mn, n > 5. (8.14)

We would like to remark on R" with Euclidean metric, P4 = (-Q)2 the
bi-Laplacian operator. Equation (8.13) takes the form (-A)2U = c,t,Un114 , an
equation which has been studied in literature, e.g., [52].

8.3 Uniqueness Result on Sn
In this section we will consider the behavior of the Paneitz operator on the
standard spheres (S", g).. First we recall the situation when n = 2. On
(S2, g), when one makes a conformal change of metric g,,, = e" g, the Gaus-
sian curvature KW = K(g,,) satisfies the differential equation

Ow + K,,e2m = 1 (8.15)
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on S2, where A denotes the Laplacian operator with respect to the metric g
on S2.

When & - 1 on (8.15), the Cartan-Hadamard theorem asserts that e2uig
is isometric to the standard metric g by a diffeomorphism gyp; and the con-
formality requirements says that cp is a conformal transformation of S2. In
particular, w = 1 log IJ,o1, where J, denotes the Jacobian of the transforma-
tion V.

In [28], Chen studied the corresponding equation of (8.15) on R2 with
KW - 1, and they proved, using the method of moving plane, the stronger
result that, when u is a smooth function defined on R2 satisfying

-AU = e2u on JR2 (8.16)

with fR2 e2udx < oo, then u(x) is symmetric with respect to some point
xo E JR2 and there exists some ) > 0, so that u(x) = log a +- 22 x0 2 on
112. There is an alternative argument by Chanillo-Kiessling [26] for this
uniqueness result using the isoperimetric inequality.

As we mentioned in the previous section, when n > 3, a natural gen-
eralization of the Gaussian curvature equation (8.15) above is the Yamabe
equation under conformal change of metric. On (Si', g), denote gu =

un42g

the conformal change of metric of g, where u is a positive function, then the
scalar curvature Ru = R(gu) of the metric is determined by the following
differential equation

c"Du + RuuI = Ru, (8.17)

where c" = aris , R = n(n - 1). When R. = R, a uniqueness result
established by Obata [45] again states that this happens if the metric gu is
isometric to g or equivalently u = JJ,,J 2n2 for some conformal transformation
V of S". In [12], Caffarelli-Gidas-Spruck studied the corresponding equation
of (8.17) on R":

-Au = n(n - 2)u , u > 0 on 1[8" . (8.18)

They classified all solutions of (8.18), via the method of moving plane, as
n-1

u(x)=la+- xo) 2 for some xoEW',A>0.
For all n, on (S", g), there also exists a nth order (pseudo) differential

operator P" which is the pull back via stereographic projection of the operator
(-[a)"/2 from 1R with Euclidean metric to (S", g). 1P" is conformal covariant
of bidegree (0, n); i.e., (P"),, = e-'P,,. The explicit formulas for F" on S"
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have been computed in. Branson [7] and Beckner [5]:

For n even P n

For n odd IF,,

n-2

rlt=o (-A + k(n - k - 1)),

= 1 -0 + (n21)2)1/2 r1n23(-0 + k(n - k - 1)).

(8.19)

On general compact manifolds in the cases when the dimension of the mani-
fold is two or four, there exist some natural curvature invariants Qn of order
n which, under conformal change of metric g,, = e2''g, is related to Pnw
through the following differential equation:

-Pnw + (Qn),en" = Qn On M . (8.20)

In the case when n = 2, P2 is the negative of the Laplacian operator, Q2 = K,
the Gaussian curvature. When n = 4, P4 is the Paneitz operator, Q = 2Q4
as defined in (8.8). In the special case of (S2, g), P2 = 1P2, similarly on (S4, g),
P4 = P4. In §8.5 below, we will also discuss the existence of P1, P3 operators
and corresponding curvature invariants Ql and Q3 defined on boundaries of
general compact manifolds of dimension 2 and 4, respectively.
_ On (Sn, g), when the metric g,,, is isometric to the standard metric, then

(Q.). = Q. = (n - 1)!. In this case, equation (8.20) becomes

-Pnw + (n - 1)!e' = (n - 1)! on Sn. (8.21)

One can establish the following uniqueness result for solutions of equation
(8.21).

Theorem 8.1 ([21]). On (Sn, g), all smooth solutions of the equation (8.21)
are of the form e2i''g == p*(g) for some conformal transformation cp of Sn;
i.e., w = -1 log I J,,I for the transformation gyp.

We now reformulate the equation (8.21) on Rn. For each point e E
S", denote by x its corresponding point under the stereographic projection
7r from Snrrto R", sending the north pole on Sn to oo; i.e., suppose

is a point E Sn C R+', x = ( X I ,- .. , xn) E Rn, then
C

+x for 1 < i < n; Sn+l = i+1x1
2

. Suppose w is a smooth function on
Sn, denote by V(x) = log 1+- = log IJ.J-' 1, u(x) = V(x) + Since the
Paneitz operator Pn is the pullback under 7r of the operator (-0)n/2 on W
([cf. 8, Theorem 3.3]), w satisfies the equation (8.14) on Sn if and only if u
satisfies the corresponding equation

(__Q)n/2u = (n - 1)!en" on W. (8.22)

Thus Theorem 8.1 above is equivalent to the following result:
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Theorem 8.2. On R", suppose u is a smooth function satisfying the equa-
tion (8.22). Suppose in addition that

u(x) = log
1 +2Ix12 +W(s(x))

for some smooth function w defined on S". Then u(x) is symmetric w.r.t.
some point xo E IR", and there exists some A > 0 so that

2A
U(X) = log A2

+ Ix - x012
for all x E P. (8.23)

We remark that, in the case when w is a minimal solution of the func-
tional with Euler-Lagrange equation (8.21), the result in Theorem 8.2 is a
consequence of some sharp Sobolev type inequalities of Milin-Lebedev when
n = 1, Moser [43] and Onofri [47] when n = 2, and Beckner [5] for general
n. Sharp inequalities of this type played an important role in a number of
geometric PDE problems; see, for example, the article by Beckner [5] and
lecture notes by the author [14].

We would like also to mention that during the course of preparation of
the paper, the above theorem was independently proved by C. S. Lin [41]
and X. Xu [60] when n = 4 for functions satisfying equation (8.22) under
some less restrictive growth conditions at infinity. In general, it remains
open whether there exist some natural geometric conditions under which
functions satisfying equation (8.22) are necessarily of the form (8.23).

We now describe briefly the method of moving plane. First we recall a
fundamental result of Gidas-Ni-Nirenberg.

Theorem 8.3 ([33]). Suppose u is a positive C2 function satisfying

Du = f (u) on B
u = 0 on 8B (8.24)

in the unit ball B in lit" and f is a Lipschitz function. Then u(x) = u(Ixl)
is a radially symmetric decreasing function in r = IxI for all x E B.

To set up the proof in [33] of the above theorem we introduce the following
notation. For each point x E R", denote by x = (xl, x'), where xl E P.,
x' E IR"-1. For each real number A, denote

Ea = {x = (xl, X') I xl < A} ,

TA = {x = (xl, x') I xl =)1} ,

xa = (2a -- xl, x') the reflection point of x w.r.t. TA .

Define
wa(x) = u(x) - u(xa) u(x) - ua(x)
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Suppose u satisfies equation (8.24). The idea of moving plane is to prove that
wa(x) > 0 on Ea for all 0 < A < 1 and actually wa=o - 0. This is achieved
by an application of the maximum principle and Hopf's boundary lemma to
the function u. Thus u(x1, x') = u(-xl, x') for x E B. Since one can repeat
this argument for any hyperplane passing through the origin of the ball B,
one establishes that u is radially symmetric with respect to the origin.

If one attempts to generalize above argument to higher-order elliptic equa-
tion such as (-O)2u = f (u) with suitable boundary conditions, one quickly
realizes that, due to a, lack of maximum principle for higher-order elliptic
equation, such a result in general cannot be expected to hold. Nevertheless,
it turns out that for a special class of Lipschitz functions f; namely for func-
tions f satisfying f (0) > 0 with f monotonically increasing, e.g., f (u) = e",
one can modify the argument in [33]. The key observation is that, for each
f, if (-O)2u = f (u) then

(-A)' wa(x) = f (u) - f (ua) = c(x)wa(x), (8.25)

where c(x) is some positive function whose value at x lies between f (u(x))
and f (u.\ (x)). From (8.25) one then concludes that w,\ (x) > 0 on Ea if and
only if (-0)2w,\ > 0 on Ea. Since w,\(x) = (-O)wa(x) = 0 for x E TAB,
w,\(x) > 0 on Ea also happens if and only if (-O)wa(x) 0 on E. This
suggests that one should apply the maximum principle and Hopf's lemma to
the function (-0)w,\ to generalize the result in [33] to higher-order elliptic
operators like (-0)2.

In [22], Theorem 8.2 was proved by applying the above argument to the
function (-0)m-lwa(x) where m = [ 2 ]. In the case when n is even (n =
2m), one can then apply directly some technical lemmas about "harmonic
asymptotic" behavior of w at infinity in [12] to the method of moving planes
to finish the proof of Theorem 8.2. In the case when n is odd (n = 2m - 1),
a form of Hopf's lemma for the pseudodifferential operators was
established, and the technical lemmas in [12] were modified to a version
adapted to the operator (-A)1/2. One can then apply the method of moving
planes to finish the proof of Theorem 8.2.

8.4 Existence and Regularity Result on
General 4-Manifolds

On (M2, g) with Gaussian curvature K = K9, consider the functional

J[w] = J
IVwI2dv + 2f Kwdv - (f Kdv) log f e2"dv, (8.26)
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where the gradient, the volume form are taken with respect to the metric g,
and f W dv = f p dv/volume for all cp.

The Euler-Lagrange equation for J is

Ow + ce2oi = K on M2, (8.27)

where c is a constant. Notice that (8.27) is a special case of equation (8.6)
with K. = c. For the special manifold (S2, g), K - 1, and (8.27) is a special
case of equation (8.15).

In the special case of (S2, g), the functional J[w] has been extensively
studied in [44], [47], 1201, [19], [27], [38], [25] in connection with the "Niren-
berg problem"; that is, the problem to characterize the set of functions K",
defined on S2 which are the Gaussian curvature function of a metric g", = e2"'g
conformal to g. For a general compact surface (M2, g), there is an intrin-
sic analytic meaning for the functional J[w]. Namely it is the logarithmic
quotient of determinant of the Laplacian operator with respect to g", and
g respectively. This is generally known as the Ray-Singer-Polyakov formula
[53], [51] which we shall briefly describe in §8.4.

A key analytic fact which has been used in the study of the functional
J[w] is a sharp Sobolev inequality established by Trudinger [59], Moser [43]:
Given a bounded smooth domain S2 in R2, denote by W01'2(1l) the closure of
the Sobolev space of functions with first derivative in L2 and with compact
support contained in Sl, then W01'2(1) C exp L2, and there exists a best
constant ,B(1,2) = 47r such that, for all u E W01,2 (Q) with f JVuj2dx < 1,
there exists some constant c (independent of u) so that fn eOI 12dx < cISl
for all a < Q(1, 2). Moser's inequality has been generalized to the cases
of functions satisfying Neumann boundary condition, and to domains with
corners in [20], to general domains in R" by Adams [1] and to general compact
manifolds [32].

We now state some results which generalize the study of the functional
J[w] to 4-manifolds. On a compact 4-manifold (M4, g), denote by kp =
f Qdv, and define

r / r l / l
II [w] = J (P4w)w + 4 J

Qwdv - I ( Qdv) log I f e4i''dvaaa I . (8.28)

Theorem 8.4 ([21]). Suppose kp < 81r2, and/suppose P4 is a positive oper-
ator with ker P = {constants}. Then inf II",Ew2.2[w] is attained. Denote the
infarnum by wp, then the metric gp = e2pg satisfies Qp =_ constant = kp/ f dv.

Remarks. (1) In general, the positivity of P4 is a necessary condition for
the functional II to be bounded from below. But some recent work of M.
Gursky [37] indicates that under the additional assumption that kp > 0
and that g is of positive scalar class (i.e. under some conformal change of
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metric, g admits a metric of positive scalar curvature, or equivalently the
conformal Laplacian operator L = Lg admits only positive eigenvalues) P4
is always positive. Furthermore, under the same assumption, kp < 87r2 is
always satisfied unless (M4, g) is conformally equivalent to (S4, g); in the
latter case then kp = 87r2 and the extremal metric for II[w] has been studied
in [9].

(2) Notice that the extremal function wp in W2,2 for II satisfies the equa-
tion

-P4wp + 2Qpe4ria = 2Q (8.29)

with Qp - constant. Thus standard elliptic theory can be applied to establish
the smoothness of wp. This is in contrast with the smoothness property of
the extremal function :Ad of the log-determinant functional F[w], in which
II [w] is one of the term. We will discuss regularity property of Wd in §4.

(3) A key analytic fact used in establishing Theorem 8.4 above is the
generalized Moser inequality established by Adams [1], which in the special
case of domains C in 1R4 states that W02,2 (Q) " exp L2 with )3(2,4) = 327r2.

We now briefly mention some partial results in another direction which
also indicate P4 is a natural analogue of -A on 4-manifolds.

On two general compact Riemannian manifolds (Mn' g) and (Nk, h), con-
sider the energy functional

E[w] = - / (Ow)wdv = J IVW12dv, (8.30)

defined for all system of functions w E W',' : (M's, g) -1 (Nk, h). Critical
points of E[w] are defined as harmonic maps. Regularity of harmonic maps
has been and still is a subject under intensive study in geometric analysis
(see, e.g., articles [54], [57]). We will here mention some results on compact
surfaces which are relevant to the statement of Theorem 8.5 below. In the
case when the dimension of MT8 is 2, a classical result of Morrey [42] states
that all minimal solutions of E[w] are smooth. Morrey's result has been
extended to all solutions of E[w] by the recent beautiful work of Helein [39]
[40]. In the case when. n > 3, harmonic maps in general are not smooth.
The Hausdorff dimension of the singularity sets of the stationary solutions
of E[w] has also been studied for example in [56], [30], [6].

In some recent joint work [25] with L. Wang and P. Yang, we studied the
functional

E4[w] = f(P4w)wdv, (8.31)

which is a natural analogue of the functional E[w].
A preliminary result we have obtained so far follows.
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Theorem 8.5. (i) For general target manifold (Nk, h), weak solutions of the
Euler equations of E4[w] which minimizes E4[w] are smooth.

(ii) When the target manifold is (Sk, g), then all critical points of E4[w]
are smooth.

In the case when the target manifold is (Sk, g), the Euler equation for the
functional E4 takes the following form:

OAwa = -wa(>fl(Ow0)2 + 21O2w,6I2 + 4Vw# V(Aw'l))

+ lower order terms,

where forall1 <a<k.
A key step in the proof of (ii) in Theorem 8.5 above is to establish that

the function f" which denotes the function in the right-hand side of equation
(8.32) is in fact a function in the Hardy space H'. Thus duality result of H' -
BMO ([31]) may be applied to establish the continuity of the weak solution
wa. This is completely parallel to the proof by Helein [39] in establishing
the smoothness of harmonic maps for compact surfaces. But the reason
for the function f a to be in H' is not quite the same as the case in [39];
in particular, compensated compactness results of [29] cannot be applied
directly to establish that f* is in H'.

In view of the result of Helein [40], it is most plausible that for all general
target manifold (Nk, h), all critical solutions of E4 are smooth. We have
also been informed that recently R. Hardt and L. Mou have some regularity
results for minimal points of E4 on a general manifold Mn of dimension
n>5.

8.5 Zeta Functional Determinant
There is an interesting connection of the functional J[w] in (8.26) to a geomet-
ric variation problem. On compact surface (M2, g), let {0 < A, < A2 < }

be the spectrum of the (negative of) Laplacian -O9. Let C(s) _ a;
defined for ate s > 2, then ( has a meromorphic continuation to the whole
plane and is regular at the origin using the heat kernel expansion of A.
Thus -S'(0) is well defined, and one may define log det 09 to be -S'(0) (as
in Ray-Singer [53]). In [51], Polyakov further computed the logarithm of
the ratio of determinant of two conformally related metrics g,, = e2ug on a
compact surface without boundary.

=
det 0, _ 1

F[wJ log
det A 3 ,M{1

VwM2 + 2Kw}dv9, (8.32)
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under the normalization that vol(g,,,) = vol(g). Notice that F[w] is essentially
the same as the functional J[w] in (8.26). In a series of papers, Osgood-
Phillips-Sarnak ([48], [49]) have further studied the functional F[w], and
they have shown among other things that F[w] enjoys a certain compactness
property on account of the Moser-Trudinger inequality and proved that in
each conformal class, the functional F[w] attains its extrema at the constant
curvature metrics.

When the dimension. of a closed manifold is odd, it was shown in Branson
[8] that log det L9 is a conformal invariant. Thus the next natural dimension
to study the generalized Polyakov formula (8.32) is four.

Suppose (M, g) is a compact, closed 4-manifold, and suppose A is a con-
formally covariant operator satisfying (8.3) with b - a = 2. In [11], Branson-
Orsted gave an explicit computation of the normalized form of log aet a
which may be expressed as

[w] = yjI[w] + y211[w] + 7311I[w], (8.33)

where ryl, rye, rya are constants depending only on A and

I [w) = 4 J I CI2wdv - JC12dv) logf
II [w] = (Pw, w) + 4 f Qwdv - { J

QdvI logf e`t 'dv,

III[w] = 12 (Y(w) - 3 J (AR) wdv) ,

where C is the Weyl tensor, and Y(w) = f
(°Ie)2

- s f R IVw[2. We also
remark that the functional III[w] may be written as in [9)

III [w] = 3 [f R,2,, d, - f R2 dv]

so that, when the background metric is assumed to be the Yamabe metric in
a positive conformal class, the functional III is nonnegative.

In [9] we made two observations. The first is that on the standard 4-
sphere (S4, g), the functional F[w] for the conformal Laplacian L (and Dirac
square 12) is extremized in a strong way, that each term II [w] and III [w]
are extremized by the standard metric g,, = go. For III [w] this is a conse-
quence of Obata's result ([45]) that the constant scalar curvature conformal
metrics on S4 are standard. For the functional II[w], this is a consequence of
Beckner's [5] inequality which is valid for all dimensions, (see the discussion
in §8.2). The second observation is that the functional F[w] enjoys certain
compactness properties for the operators L and' 2 for most compact locally
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symmetric Einstein 4-manifolds. The basic analytic inequality required is
Adams's inequality [1].

In (21], we continue the study of the log-determinant formula (8.33) on
general 4-manifolds. We then extend the compactness criteria to a more
general class of 4-manifolds. We define therconformal invariant:

kd = -7i f ICI2dv - ry2
J

Qdv

= (-1'2) 4ir2X(M) + (g - 'ii) f I CI2dv. (8.34)

Theorem 8.6. If the functional F satisfies y2 < 0, y3 < 0, and kd <
(--y2)8ir2, then sup F[w] is attained by some function wd and the metric

wE W 2.2

gd = e2wdgo satisfies the equation

y' ICdI2 + 72 Qd - y3LdRd = -kd - Vol(gd)-'. (8.35)

Further, all functions cp E W2,2 satisfy the inequality:

kd logf 5 (-72) (PSo, cc) - 12'y3Yd(ww), (8.36)

where ip denotes the mean value of cp with respect to the metric gd, and f
denotes oot(M 9a) fm dvd.

In particular, for the operator L and 12, we obtain existence results for
extremal metrics of the corresponding log-determinant functional. Thus for a
large class of conformal 4-manifolds, we have the existence of several extremal
metrics in addition to the Yamabe metric. The study of the relation among
these metrics is interesting. For example, we found in [9] that on S4 all these
extremal metrics coincide; while on S3 x St with the standard metric, we
found in [21], [23] depending on the parameter t of that of S,1, the metric gd
and the Yamabe metric may not agree. In order to identify these extremal
metrics in special circumstances, we provide some uniqueness result:

Theorem 8.7. If kd < 0, the extremal metric gd for the functional F corre-
sponding to the conformal Laplacian operator L is unique.

This uniqueness assertion is obtained as a consequence of the convexity
of the corresponding functionals. Applying the uniqueness result, we were
able to identify some of the extremal metrics with known metric in special
circumstances.

We remark that, the extremal functions Wd in Theorems 8.6, 8.7, when
first established in [21], are functions in W2,2 and satisfy the equation (8.35)
weakly in W2'2. If we rewrite the equation (8.35) expressing ICdI2, Qd, AdRd
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all in terms of the background metric g (with gd = e2wdg), then w = wd
satisfies the following equation

OOw = ctIVwI4 + c2(Aw)2 + c3OwIVwI2 + lower order terms (8.37)

for some constants cl, e2i c3 depending only on yi, y2, rya. Equation (8.37)
should be compared to equation (8.4) in §8.4.

In a recent joint work [24] with M. Gursky and P. Yang, we established a
general regularity result for weak W2'2 solution of equation (8.37) on general
compact 4-manifolds. A special case of our result is the following theorem:

Theorem 8.8. Let F[w] be as in Theorem 8.6, then supwE,,2,2 F[w], when
attained, is a smooth function.

The main idea in the proof of Theorem 8.8 follows the same line as the
regularity result for harmonic maps in Schoen-Uhlenbeck [56]. The property
of the maximal solution of F[w] is used in some crucial way which enables
us to compare F[w] with F[h], where h is a biharmonic extension of the
boundary value of w when restricted to a geodesic ball Br. Some very basic
properties for biharmonic functions are established to estimate the growth of
E4[w] on B. We will mention below a few such properties.

For simplicity, we denote Br as a ball of radius r in R4. For a given
function w E W2'2(B2r) let h be the solution of the linear equation:

AAh = 0 on Br,

h = w on OBr,

an _- a`', on aB5n s" r.

Lemma 8.9. (i) fB. IV,_< Cr faBr IV2wI2, for some constant C.
(ii) Suppose was, is Holder of order a, and = a is in LP(aBr) for

some p > 3, then h is Holder of order,3 < min(y,1 - 3/p) on Br.

Applying Lemma 8.9, one can prove that the extremal function w of
the functional F[w] is Holder continuous. From there, one can apply some
iterative arguments to show that all weak W2,2 solutions of (8.37) which
are Holder continuous are in fact C°° smooth. It remains open whether all
critical solution of the functional F[w] are smooth. It is also interesting to
study the equation (8.37) on domains of dimension > 5.

In another direction, recently M. Gursky [35] gave some beautiful ap-
plications of the extremal metric of the log-determinant functional F[w] in
Theorem 8.6 and Theorem 8.8 above to characterize certain classes of com-
pact 4-manifolds. To state his results, we will first make some definitions.
On a compact manifold (Mn' g), define the Yamabe invariant of g as

Y(g) _= f R9wdv9. . (8.38)
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By the work of Yamabe, Trudinger, Aubin, and Schoen mentioned in §8.2,
every compact manifold Mn admits a metric g,,, conformal to g which achieves
Y(g), hence gu, has constant scalar curvature. We say (Ma,g) is of positive
scalar class if Y(g) > 0.

On compact 4-manifolds, both Y(g) and f Q9dv9 are conformal invari-
ants. The following result of Gursky [35] indicates that these two conformal
invariants constrain the topological type of W.

Theorem 8.10. Suppose (M4, g) is a compact manifold with Y(g) > 0.
(i) If f Q9dv9 > 0, then M admits no nonzero harmonic 1-forms. In

particular, the first Betti number of M vanishes.
(ii) If f Q9dvg = 0, and if M admits a nonzero harmonic 1-form, then

(M, g) is conformal equivalent to a quotient of the product space S3 x R. In
particular, (M, g) is locally conformally flat.

As a corollary of part (ii) of Theorem 8.10, one can characterize the
quotient of the product space S3 x R as compact, locally conformally flat
4-manifold with Y(g) > 0 and x(M) = 0.

A crucial step in the proof of the theorem above is to prove that for
suitable choice of 'y , y2; rya, the extremal metric gd for the log-determinant
functional F[w] exists and is unique. Furthermore, under the assumption
Y(g) > 0, one has Rgd > 0; if Y(g) = 0 then Rgd = 0. In the case f Q9dv9 =
0, the existence of nonzero harmonic 1-form actually indicates that R9d
positive constant. Gursky's proof is highly ingenious.

Using similar ideas, Gursky (36] has also applied the above line of rea-
soning to the study of Kahler-Einstein surfaces. Suppose M4 is a compact,
4-manifold in the positive scalar class which also admits a nonzero self-dual
harmonic 2-form. He established a lower bound for the Weyl functional
fey JC[2dV over all nonnegative conformal classes on M4 and proved that
the bound is attained precisely at the conformal classes of Kahler-Einstein
metrics.

8.6 P3, a Boundary Operator
In the previous sections, we have discussed the behavior of the Laplacian and
the Paneitz operator P4 on functions defined on compact manifolds without
boundary. It turns out that, associated with these operators, there also
exist some natural boundary operators for functions defined on the boundary
of compact manifolds. We will now briefly describe such operators on the
boundary of M' for n = 2 and n = 4. Most of the material described
in this section is contained in the joint work of Jie Qing with the author
[16], [17], and [18]. The reader is also referred to the lecture notes [15] for
a more detailed description of such operators derived in conjunction with
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the generalized formula of Polyakov-Alvarez ([51], [11], [9], [3], [10], [16],
[17], [18], and [46]) of the -zeta functional determinant for 4-manifolds with
boundary. We start with some terminology. On a compact manifold (Mn' g)
with boundary, we say a pair of operators (A, B) satisfies the conformal
assumptions if:

Conformal Assumptions: Both A and B are conformally covariant of
bidegree (a1, a2) and (b1i b2) in the following sense,

A,,,(.f) = e °I'A(e°2"f),
(g) = e-6jwB(e12Ig)'

for any f E C°°(M), g E C°°(8M). Assume also that

B(e°2+'g) = 0 if and only if B,,,(g) = 0,

for any w E C°°(M), where A,,, B,, denote the operator A, B, respectively,
with respect to the conformal metric g,, = e2rig.

Examples: The typical examples of pairs (A, B) which satisfy all three
assumptions above are:

(i) When n = 2, A = -A, B = , (negative of) the Laplacian operator
and the Neumann operator, respectively.

(ii) When n > 3, A = L = - 4 n 2 A + R the conformal Laplacian of bi-
degree (22, 9 ), and R is the scalar curvature, and B is either the Dirichlet
boundary condition or B = 7Z = fi a + H, the Robin operator of bi-
degree (2 , n2 22 ), where H is the trace of the second fundamental form (the
mean curvature) of the boundary M.

(iii) When n = 4, in [17] we have discovered a boundary operator P3i
conformal of bidegree (0,3) on the boundary of a compact 4-manifold. On
4-manifolds, (P4, P3) is a pair of operators satisfying the conformal covari-
ant assumptions, which, in the sense we shall describe below, is a natural
analogue of the pair of operators (-A, ) defined on compact surfaces.

As we have mentioned before, on compact surfaces, from the point of
view of conformal geometry, a natural curvature invariant associated with the
Laplacian operator is the Gaussian curvature K. K enters the Gauss-Bonnet
formula (8.9). The Laplacian operator and K are related by the differential
equation (8.6) through the conformal change of metrics g,,, = e2`''g.

On a compact surface M with boundary, the Gauss-Bonnet formula takes
the form

2iX(M) = JM Kdv + fam kda, (8.39)

where k denotes the geodesic curvature of 8M and dor the arc length measure
on 8M. Through conformal change of metric g,, = e2rig for w defined on M,
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the Neumann operator as is related to the geodesic curvature k via the
differential equation

an + k,,e" = k on M. (8.40)

Equations (8.6) and (8.40) suggest that we search for the right pair of cur-
vature functions and their corresponding differential operators through the
Gauss-Bonnet formula. Recall that on 4-manifolds, Paneitz operator P4 and
the fourth-order curvature operator Q are related via equation (8.7). It turns
out that on 4-manifolds there also exists a boundary local invariant of order 3
and a conformal covariant operator P3 of bidegree (0, 3), the relation of (Q, T)
to (P4, P3) on 4-manifolds is parallel to that of (K, k) to (A, A) on compact
surfaces. The expressions of P3 and T on general compact 4-manifolds, like
that of P4i are quite complicated but can be explicitly written down in terms
of geometric intrinsic quantities as in [16], [17]. In particular, via the confor-
mal change of metrics g,,, = e2wg, P3 and T satisfy the equation:

-P3w + T,,e3' = T on 8M, (8.41)

and

(P3),, = e-3uP3 on OM. (8.42)

Perhaps the best way to understand how T and P3 were discovered in [17]
is via the Chern-Gauss-Bonnet formula for 4-manifolds with boundary:

X(M) = (327r2)-1 fM(d2 + 4Q)dx + (47r2)-' OM (T - G4 - G5)dy, (8.43)

where G4 and C5 are boundary invariant of order 3 that are invariant under
conformal change of metrics. Hence for a fixed conformal class of metrics,

2 J
Qdv + j Tds

M 8M

is a fixed constant. We would like to remark that in the original Chern-
Gauss-Bonnet formula T is not exactly the term as we have defined in [17];
actually it differs from T by 3AH, which does not affect the integration
formula (8.43).

Thus on 4-manifolds with boundary it is natural to study the energy
functional

E[w] = 4 J iP4w + 2 J wQ + 2 ' wP3w + j wT. (8.44)
8M 8M
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In view of the complicated expressions of the operators P4, P3, Q, and T,
at this moment it is difficulty to study the functional E[w] defined as above
on general compact manifolds. But in the special case of (B4, S3) with the
standard metrics, we have

p4 = (0)2, P3 = 21VQ, + % N + z and Q = 0, and T=3, (8.45)

where denotes the the Laplacian operator 0 on (S3, g). Thus the expres-
sion in E[w] becomes relatively simple. In this special case, we are able to
study the functional E[w). The main analytic tool is the following sharp
inequality of Lebedev-Milin type on (B4, S3).

Theorem 8.11. Suppose w E C°°(. ). Then

log { z7r

3

§S3 e3(`'_ )dy}
(8.46)

4n {4 fB4wA2w+jS32wP3W-4a+4z

-anT

under the boundary assumptions fs3 r[w]ds[w] = 0 where r is the scalar cur-
vature of S3. Moreover, the equality holds if and only if e2i''g on B4 is iso-
metric to the canonical metric g.

The key step in the proof of the theorem above is the following analytic
lemma:

Lemma 8.12. Suppose w solves

I Ozw=0
W IS3= U

k Is3- 0.

in R4

Then

Ow 2 Au+2{(-;K +1)a +1 (8.47)
6B4

19- &w 2P3u + 20u - 2z 4 (8.48)an
5B4

where P3 = (-D + 1) 12(-0) is the same as the P3 operator defined on S3 as
in §8.3.

We would also like to remark that the second term in (8.47) above, i.e.,
the term { (-,& + 1) s + 1 } is the Dirichlet to Neumann operator on (B4, S3).

We can get the following result as a direct corollary of Lemma 8.12.
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Corollary 8.13. On B4,

P3(w) = P3(w) on 0B4,

provided that &w = 0 in B4.

That is, on (B4, S3), p3 is an extension of the Dirichlet-Neumann with
respect to biharmonic functions. Thus the study of the p3 operator can be
viewed as an extension of the study of Dirichlet-Neumann operator.

Further developments in this field have been made since the paper was
written. We refer the reader to the survey article by S.-Y. A. Chang and
P. Yang, On a fourth-order curvature invariant, which will soon appear in
Contemporary Mathematics.
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Chapter 9

Riesz Transforms,
Commutators, and Stochastic
Integrals

A. B. Cruzeiro and P. Malliavin

9.1 Renormalization in Probability Theory
and Elliptic Estimates in Infinite
Dimension

The state at time n of the gambler's fortune F,, in a game of heads or tails
is almost surely bounded by n2+`; denoting by gk the gain at step k we have
F. = Eo<k<n+i A. Therefore F,, appears as a sum which is small because
of a large number of cancellations. This elementary example is quite typical
of probabilistic situations associated to the Laplace central limit theorem
where semiconvergent series always appear. We shall refer to this fact as an
example of the more general concept of renormalization.

In some branches of classical analysis, as for instance in singular integrals,
cancellations play a fundamental role; a methodology for proving convergence
consists in obtaining a priori estimates for a sequence of smooth approxima-
tions. In our probabilistic context the same approach can work if a priori
elliptic estimates in infinite dimension are available. Indeed, limit theorems
concern games where the number of trials is tending to infinity and the cor-
responding probability space must be of infinite dimension.

The appearance of elliptic operators is a more hidden fact: it is linked
to the concept of some kind of "universal chaos," that is, some probability
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space containing in itself all the random fluctuations which could appear in
the universe. The Ito theory of stochastic differential equations gives to the
probability space X of the Brownian motion this status of "universal chaos;"
it is impossible to justify in few words the paramount importance of this
space.

The Brownian motion can be characterized as a Gaussian process which
has independent increments on disjoint intervals of time; for the sake of
brevity we shall grasp the Brownian motion through its Wiener series:

CC
00 sin k7rr

x(r)=rSo+vL 1_ k, 0<r<1,
k=1

where the ek are independent Gaussian normal variables. We denote by X
the probability space generated by those Gaussian random variables: it is
isomorphic to Rx with the Wiener measure p being defined as the infinite
product of the Gaussian measure pj on R. µl = sR exp (- 2) <. The data
of the l;k constitute some kind of "heat bath." The next step is to say that
this heat bath takes its stochastic regularity from the fact that it represents
some kind of "stochastic equilibrium."

On 1R, the space L2(1R, p1) has for its orthonormal basis the Hermite
polynomials H,,; these polynomials can be characterized as the eigenfunctions
of the following Sturm-Liouville operator:

G12exp 22}dal 2fd

which will be called the Ornstein-Uhlenbeck operator. It is a symmetric
operator in L2(R, µ1); therefore, the associated parabolic semigroup 1Pt =
etG' preserves µ1. This semigroup can be explicitly written through the
Mehler formula:

1I't(f)(M = f f(e-teo+(1 -e'ZC)zrl)111(d1l).
R

It is clear from this formula that 1Pt acts as a contraction on all the L.
This Mehler formula stays meaningful in infinite dimensions when we

replace u1 by the Wiener measure p; we get in this way on X a semigroup
Pt; its infinitesimal generator will be formally denoted by G. The elliptic
estimates that we shall discuss will be related to G.
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9.2 Pisier Transplantation of the Calder on-
Zygmund Rotation Method

The inverse of the Cauchy operator, A, is defined by

1 °O
a-t

A = 1 r P dt,.ir o to

where the semigroup Pt is define by the Mehler formula.
It is possible to say that R' = limR"; therefore it is sufficient to prove

the Riesz transform inequalities for the finite-dimensional case, with constants
independent of the dimension. The gradient V of a smooth function defined
on R" is an R"-valued function. The Riesz transform is defined

R f = VA f ; -the r.h.s. is an R" - valued function.

Theorem 9.1. Given P E (1, oo), there is a constant cp, independent of the
dimension n, such that

IIRfIIRn d < cpf Iflpd,
an Rn

where I I - I IRn denotes the Euclidean norm and where An denotes the Gaussian
normal measure on W.

Proof. We shall present the Pisier approach. We denote X = Y = R" and
we define on X x Y the measure v = 4!. The rotation matrix on R2 acts
on X x Y; this action preserves v; the orbit of each point is a circle. Making
in the Mehler formula the change of variable t = logcos(9)I, we get

(A f) (x) =
fa f f (x cos B + y sin 0)1 log(cos 9) I - 2 sin B d9 dµ. (9.2)

The gradient satisfies the identity

so_ Vyf(xcos0+ysin0).
In 0

This identity makes possible to transfer the differentiation relative to x of
the left-hand side of (9.2) into a differentiation relative to y, on which an
integration by parts can be made; we get

(Af)
(x) f

f
z f (x cos9 + y sin 9)0(9)yi dep(dy),

where 0(e) = signum(9) (cos 9) I log cos 9I- a .
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The variable yj is a Hermite polynomial of degree 1. Using the Hermite
expansion of a function in I?, Pisier proved that

11(lZf)(x)I1Rn < cp j IJ(x,y)Ipu(dy),

where J(x, y) =
2f J * f (x cos 9 + y sin 9)0(9) do.

z

We have 0(9) = cot (1) +?P(9), where O E C°°; using the boundedness of the
Hilbert transform on LP of the circle we get the theorem. 0

In the spirit of Benedeck-Calderbn-Panzone [2], the same theorem remains
true for B-vector-valued functionals, where B is an UMD Banach space [17].
The previous proof of Pisier depends upon beautiful identities whose exten-
sion to a general situation is not reasonable to expect.

9.3 Littlewood-Paley-Calderon-Stein Area
Integral for Harmonic Extension

We shall replace identities of the previous section by computation of com-
mutators; again on the Gaussian space commutators have a very remarkable
expression. In the general case exact expressions will be replaced by ma-
jorizations.

Lemma 9.2. We have

VPtf = e-tPtV. (9.3)

Denote C = v/ and C' = -G + 1 = A-'; then

Ve =e''V. (9.4)

Proof. We can differentiate the Mehler formula relatively to x and get (9.3).
The semigroup a-'' can be expressed by the symbolic calculus as follows:

e = f cc Pagn(s) ds, where 4,,(s) = 4 7 s-1 exp (-;) . (9.5)

Differentiating the right-hand side and using the commutator relation (9.3)
we get the same integral multiplied by exp(-s) which gives exp(-iC'). 0

Given g E LP(X) we consider its harmonic extension h9 to the half-space
Z = X x R+ constructed by

r 2

h9 = 0.h9(x, rj) = (exp(-jC)g)(x); then { ads + _C]
1
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The gradient on Z has its horizontal component Vx and its vertical compo-
nent . Then, for p E (1, oo), the area integral equivalence ([4],[20]) gives

1x [f00 1(dx) j Ig(x)I"p(dx), (9.6)

for all g such that f g dp = 0.
For the vertical gradient the analogous equivalence holds true; we shall

state it for the harmonic extension h' = e-fi'g':

1P 1/

lP

fx [Joy

\aa7h'\ 2

drl]

P2

p(dx) '=' IIg'II,. (9.7)

Theorem 9.3. (Meyer [18]). We have the following:

f I Iof I IP dp = f IC f IP dp.

Proof. By differentiating (9.3) relative to 17 we get

V e-ncC f = d-e 'vf. (9.8)

Take g = C f , g' = V f . The identity (9.8) implies that the left-hand side of
(9.6) and (9.7) are equal; therefore their right-hand sides are equivalent.

9.4 Calderon Factorization through the
Cauchy Operator and Stochastic Integrals

We shall not discuss here the general theory of Gross-Sobolev-Stroock spaces,
theory where the Riesz transform plays a paramount role [21]. We limit
ourselves to a basic existence result for stochastic integrals.

In his paper on the uniqueness of the Cauchy problem, Calderdn [5] writes
any differential operator as the product of a power of the Cauchy operator
by a pseuodifferential operator of degree zero. This idea leads us 25 years
later to derive results in stochastic analysis.

We-have a stochastic process 0(7-) defined on the probability space of the
Brownian motion X; we consider partitions e of [0,1] by a finite number of
points; given 9 E e we denote by 9} E e the point of the partition which
is closest on the right to 9. With Nualart-Pardoux we form the following
renormalized Riemann sum:

e+

Je(O) = 2[x(9+) - x(9)]0+1 eE6e f qS(r) dT
ae-e 9
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where Eae is the conditional expectation obtained by averaging on the a-
field generated by x(T) - x(8), r E [0, 0+]. We say that ¢ is stochastically
integrable if the limit of Je exists when the mesh of the partition e tends to
zero.

Theorem 9.4 (Watanabe [22]). Assume that

1 dT < oo.f IIC'O(T)IILZ(X)

Then 0 is stochastically integrable and its stochastic integral satisfies the
following L2 majoration:

E {(f'(T)dx(T))2]0IIIIII.
Proof: We shall first proceed to a transfer by duality.

Lemma 9.5 (of integration by parts (Gaveau-Trauber [13])). Assume
that 0 is stochastically integrable. Then, for every smooth functional f, the
directional derivative of f along 0 denoted by DO(f) satisfies the duality re-
lation

E(D4,f)=E(fJ c5dx).

Remark. This lemma identifies the stochastic integral of 0 with "the diver-
gence of the vector field 0."

Proof. (of the theorem) Using the Riesz transform R' = C-'V f we have
V f = CR' f ; therefore, we write (9.9) as

((CR'fI0) = (R'fIC0) = (fI[R']*CO),

where the fact that C is a symmetric unbounded operator in L2(X) implies
the first equality; the second one is due to the hypothesis CO E L2(X; L2([0,11))
and, since R' is a bounded operator from L2(X) to L2(X; L2([0,1])), its
transpose is well defined. We get finally the following expression for the
stochastic integral, which, quite unexpectedly, establishes a beautiful link
between probability theory and singular integrals:

f

i

¢dx = [R']`Cf.

The Riesz transform has a norm as a bounded operator in Lz which is equal
to 1. This implies the announced inequality.
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9.5 Commutators in Renormalized
Riemannian Geometry on Path Spaces

9.5.1 Ito Global Chart of Path Space

The Brownian motion sits in the Euclidean space R or R' and has therefore
a linear structure reflected for instance in its representation by the Wiener
series. We want to proceed in the nonlinear setting of the Brownian on a
compact Riemannian manifold M; we denote by 2L its Laplace-Beltrami
operator and by 7rt(mo, m) the fundamental solution of the heat operator
associated to 0, with pole at mo. Then the Brownian motion on M is char-
acterized by the property that it is a stochastic process p(r) having for law
of its "increments" ire+_e(p(O), *) dm for any finite subdivision 0 of [0, 11,
with the Markovian independence of those increments. Up to operations of
finite-dimensional geometry, we can limit ourselves to the case where the
Brownian motion starts at T = 0 from a fixed point. Then the probabil-
ity space of the Brownian motion will be the path space Pmo(M) with the
Brownian probability measure v.

The first question is how to construct a canonic global chart of P,,,o(M).
This ambition is feasible according to the fact that P,,,, is a contractible
space. We recall that Levi-Civita parallel transport t;,o along a smooth
curve r -4 q(T) is defined by solving the matrix differential equation

drtr-o = r(. dr)tQ -o, (9.10)

where I'k,ti denotes the Christofel symbols of the metric ds2 = g;jdm'dmi
computed in local coordinates. By some smoothing procedure we can con-
struct a 1-parameter family pE of smooth curves such that lim fro pE = p.
Then

Theorem 9.6 (K. Ito [141). The following limit exists:

l o t"«-o
t;+-o.

Theorem 9.7 (Malliavin [15], Eells-Elworthy). We define a map J-':
P., (M) -+ Po (Rd) by

T o,(dp(o)),x(T) = f
0

where the above integral is an Ito stochastic integral; then this map is an iso-
morphism of probability spaces when we take on P0(Rd) the Wiener measure.
We call 3 the Ito map.

Remark. The Ito map provides the desired global chart. This chart pre-
serves the probability measures, but it does not preserve many other canonic
geometric objects which must be directly constructed on P, (M).
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9.5.2 Structure Equation of the Path Space

Tangent process: Any infinitesimal variation Z of a Brownian path p on M
will be canonically parameterized by the vector-valued function tLT(ZT). We
call a tangent process along the Wiener space the data of a semimartingale
S which has its martingale part constructed by multiplying the Brownian
differential by an antisymmetric matrix: d(° = as dx'5 + c° dr. A tangent
process along Pm,,(M) is defined as to,T(((r)), where ( is a tangent process
on X.

Theorem 9.8 (Cruzeiro-Malliavin [9], Fang-Malliavin [121). The Ito
map can be differentiated; its differential .7' realizes an isomorphism between
the spaces of tangent process.

This theorem is false if we are dealing with restricted tangent processes,
that is, processes with a vanishing martingale part.

The expression of the derivative of the Ito map incorporates a holon-
omy factor which is a stochastic integral of the curvature of the underlying
Riemannian manifold. Then the derivative of a smooth functional f on the
path space and along a tangent process tLo(((r)), that we denote by Ds,
is computed via the transfer to the Wiener space through the Ito map. It
corresponds to the derivative D- (f o ,7), where

d(+ Sl(o', odx(o)1 odx(r)
[fTd

with S2 the curvature tensor of M and where the stochastic integral is of
Stratonochich type.

Theorem 9.9 (Bismut [3], Driver [11]). Tangent processes have a for-
mula of integration by parts:

I
E.,(D(f) = E (f Jo

[a,
+

12RM
(fTc)]

dx(r))

where R`N = to+-To Ricci o to1-T

Theorem 9.10 (Structure theorem, Cruzeiro-Malliavin [9]). The Lie
bracket of two restricted tangent processes z1, z2 has in the parallelism the
following expression:

T

[zi, z2] = Qz,z2 - QZ,zI where Q., (7) = f lp(,,)(z.,,odp(a)),
0

where Q,, denotes the curvature tensor read in the parallelism to,,,.
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We encounter therefore a new hypoelliptic phenomenon, which leads to
a necessary renormalization and is present in all subsequent developments
of the analysis on the path space. Nevertheless, we still have a natural Lie
algebra structure:

Theorem 9.11 (Cruzeiro-Malliavin [9], Driver [11]). The Lie bracket
of two tangent processes is a tangent process.

9.5.3 Energy Estimates for Stochastic Integrals
The structure theorem provides tools that are needed to compute commuta-
tors, which, in the spirit of Calderon [6], are the basic gap to reach elliptic
estimates. The commutator effect will bring a small loss in the exponent of
the integrability.

The Levi-Civita covariant derivative VI on M induces a Markovian co-
variant V" derivative on the path space.

Theorem 9.12 (Cruzeiro-Fang [8]). Given a process Z,. such that for some
p>2

1

I < oo,E [(f Jo IOPZQ12 drdo
2

the divergence of Z, b(Z), exists and satisfies E(6 (Z)2) < oo.

By Bismut's integration by parts formula we can identify the stochastic
integral fo ZT dp(r) with the divergence, modulo the Ricci correction term.

9.6 Elliptic Estimates and Riesz Transforms
on Pmn(M)

In its essence the Littlewood-Paley-Calderon-Stein area integral approach
outlined in §9.3 can be worked out in the nonlinear setting [10]. Technically,
though, some major gaps have to be filled.

We do not have a representation of the type of Mehler formula for the
semigroup and the simple commutators of the Gaussian case are no longer
available. The Ornstein-Uhlenbeck operator L f = -bD f has an explicit
expression which has recently been computed by Kazumi.

We take the point of view of Airault-Malliavin [1] that consists in evalu-
ation the intertwining of the differential with the Laplace-Beltrami operator
operating on functions, making in this way the Laplace-Beltrami operator on
forms, that is, the de Rham-Hodge operator, appear. We denote by A the
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de Rham-Hodge operator on differential forms wz of degree one and, given
the underlying Hilbert structure of the restricted tangent space, we identify
the form with the restricted tangent process z. Then we write

A=6d+db

with (df, z) = Da f .
The semigroup a-IL on the path space satisfies

(de-tU f) = dbde-tL f = A(de-tL f)

since ddu = 0. The problem of estimating the commutator between De-tL
and a-tLD reduces therefore to estimating the difference between the op-
erators L and A on differential forms, for which one has to obtain explicit
expressions. A Weitzenbock formula for 1-differential forms is then derived
in the spirit of the results of [9], where such type of theorem was shown with
respect to a particular Markovian covariant derivative on the path space.

Theorem 9.13 (Cruzeiro-Malliavin [101). The difference between the Orn-
stein-Uhlenbeck and the de Rham-Hodge operator defined for 1-differential
forms on the path space is of type

(wZ) - L(w2) = A(z) + B(Dz),

where A and B are operators with kernel representations expressed in terms
of stochastic integrals.

The stochastic integrals appearing in this Weitzenbock formula come from
the structure equations on one side and, on the other, from the integration
by parts formula. Then a commutation formula allows us to derive stochas-
tic integrals. Since one integrates geometric bounded quantities, the final
estimates follow from Ito's stochastic calculus.
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Chapter 10

An Application of a Formula of
Alberto Calderon to Speaker
Identification

Ingrid Daubechies and Stephane Maes

It was an honor as well as a great pleasure for me to be asked to contribute
to Alberto Calderon's seventy-fifth birthday conference. More than at any
other similar conference, one could feel in the air the friendship, the sense of
community among the participants representing the many different branches
of analysis with whom Calderdn himself is associated. It was wonderful to
have been invited to be a part of this celebration.

As the subject of my presentation at a meeting dedicated to Alberto
Calderon's wide ranging interests, I chose a topic that may have reminded
him of the interest in engineering of his youth. Although most of my work
is in mathematics, I make occasional excursions into engineering, assisted by
students or other collaborators who are the real engineers in the project. The
paper below reports on such an excursion. There was an additional reason to
dedicate this presentation to Alberto Calderon: the whole project had been
directly motivated by a different reading of a classical integral formula due
to him (see formulas (10.2, 10.3) in the paper).

- Ingrid Daubechies

Research by Ingrid Daubechies partially supported by NSF grant DMS-9401785. The
bulk of this paper appeared under the title A Nonlinear Squeezing of the Continuous
Wavelet T}nnsform Based on Auditory Nerve Models, 527-546, in Wavelets in Medicine
and Biology (A. Aldroubi and M. Unser, editors), CRC Press, 1996. This material was
reprinted by permission from CRC Press, Boca Raton, Florida.
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10.1 Introduction
The project concerned the very concrete problem of speaker identification.
This usually concerns a situation where speech fragments of a number of
speakers have been stored; when a new speech fragment is presented, the
speaker identification system should be able to recognize with a reasonably
high degree of accuracy whether or not this is one of the previously sampled
speakers, and, if so, who it is. Ideally, this should work even if the specific
utterance in the piece of speech under scrutiny is different from any that
were encountered- before. The problem is thus to identify, and later to de-
tect, reliable parameters that characterize the speaker independently of the
utterance. There exist various approaches that perform very well on "clean"
speech, that is, when both the previously stored samples and the speech
fragment for which the speaker has to be identified have very low noise lev-
els. Most models break down at noise levels far below those where our own
auditory recognition system starts to fail. Because of the connection of the
wavelet transform with the auditory system, and because there existed other
indications that an auditory-system-based approach might be more robust
than existing methods, we decided to construct a wavelet-based approach to
this problem.

This paper is organized as follows. Sections 10.2 to 10.4 present back-
ground material, explaining respectively (1) how the (continuous) wavelet
transform, which is essentially the same as a decomposition formula proposed
by A. Calder6n in the early sixties (see (10.2) below), comes up "naturally"
in our auditory system, (2) a heuristic approach (the ensemble interval his-
togram of 0. Ghitza [1]) based on auditory nerve models, which eliminates
much of the redundancy in the first-stage transform, and (3) the modula-
tion model, valid for large portions of (voiced) speech, and which is used for
speaker identification. (Note that our descriptions of the auditory system
are very naive and distorted. They are in no way meant as an accurate de-
scription of what is well known to be a very complex system. Rather, they
are snapshots that motivated our mathematical construction further on, and
they should be taken only as such.) In §10.5 we put all this background ma-
terial to use in our own synthesis, an approach that we call "squeezing" the
wavelet transform; with an extra refinement this becomes "synchrosqueez-
ing." The main idea is that the wavelet transform itself has "smeared" out
different harmonic components, and that we need to "refocus" the resulting
time-frequency or time-scale picture. How this is done is explained in §10.5.
Section 10.6 sketches a few implementation issues. Finally, §10.7 shows some
results: the "untreated" wavelet transform of a speech segment, its squeezed
and synchrosqueezed versions, and the extraction of the parameters used
for speaker identification. We conclude with some pointers to and compar-
isons with similar work in the literature, and with sketching possible future
directions.
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10.2 The Wavelet Transform as an Approach
to Cochlear Filtering

When a sound wave hits our eardrum, the oscillations are transmitted to
the basilar membrane in the cochlea. The cochlea is rolled up like a spiral;
imagine unrolling it (and with it the basilar membrane) and putting an axis y
onto it, so that points on the basilar membrane are labeled by their distance
to one end. (For simplicity, we use a one-dimensional model, neglecting any
influence of the transverse direction on the membrane, or its thickness.) If
a pure tone; i.e., an excitation of the form eil" (or its real part) hits the
eardrum, then the response at the level of the basilar membrane, as observed
experimentally or computed via detailed models, is in first approximation
given by e"'tFF,(y)-a temporal oscillation with the same frequency as the
input, but with an amplitude localized within a specific region in y by the
hump-shaped function ,,(y). In a first approximation, the dependence of F"
on w can be modeled by a-logarithmic shift: F,,(y) = F(y - logw). (Strictly
speaking, this model is only good for frequencies above say, 500 Hz; for
low frequencies, the dependence of F,, on w is approximately linear.) The
response to a more complicated f (t) can then be computed as follows:

f (t) = -2L,, f . f (w)e",e dw

response B(t, y) = zR f oo f (w)e"'tF(y - logw) dw .
(10.1)

(Note that we are assuming linearity here-a superposition of inputs lead-
ing to the same superposition of the respective responses. This is again
only a first approximation; richer and more realistic auditory models con-
tain significant nonlinearities [5].) This can be rewritten as a continuous
wavelet transform. Let us first recall the definition. For a fixed choice of the
"wavelet" %, a real function that is reasonably localized in "time" and "fre-
quency" (say RL'(x)I < C(1 + IxI)-2 and C(1 + lSI)-2) and that has
mean zero, f ,(x) = 0, we define the wavelet transform W,b f of a function f
by

Wmf (b, a) = f 00 f (x) -O
(f_-P) dx, (10.2)

where the scale parameter a ranges over Yt+, and the time or space localiza-
tion parameter b over all of R. The original function f can then be recon-
structed from its wavelet transform W,, f by

f(x)=COf
00

f W,j,f(b,a)
l 0(x-bl

, (10.3)
o va a J
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where Cp is a constant depending on ib.

If we relabel in (10.1) the axis along the basilar membrane by defining
y :_ - log a with a > 0 and B'(t, a) = B(t, - log a), and if we moreover
define a function G by putting F(x) G(e-x), then the response can be
rewritten as

B'(t, a) = f-oo f
oo f (t')e"* c'1G(aW) dt' dw

= foo f(t''aG (ae) dt'.
(10.4)

By taking fi(t) := G(-t), we find that B'(t, a) = Ial-z (Wp f)(a, t), where
W,p is the continuous wavelet transform as defined above. In this sense, the
cochlea can be seen as a "natural" wavelet transformer; all this is of course
a direct consequence (and nothing but a reformulation) of the logarithmic
dependence on w of F,,.

10.3 A Model for the Information
Compression after the Cochlear Filters

The cochlear filtering, or the continuous wavelet transform that approximates
it, transforms the one-dimensional signal f (t) into a two-dimensional quan-
tity. If we were to sample this two-dimensional transform like an image, then
we would end up with an enormous number of data, far more than can in fact
be handled by the auditory nerve. Some compression therefore has to take
place immediately. The ensemble interval histogram (EIH) method of Oded
Ghitza [1] gives such a compression, inspired by auditory nerve models. We
describe it here in a nutshell, with its motivation.

Near the basilar membrane, and over its whole length, one finds series
of bristles of different stiffness. As the membrane moves near a particular
bristle, it can, if the displacement is sufficiently large, "bend" the bristle.
For different degrees of stiffness, this happens for different thresholds of dis-
placement. Every time a bristle is bent, we think of this as an "event"; we
also imagine that events only count when the bristle is bent away from its
equilibrium position, not when it moves back. Figure 10.1 gives a schematic
representation of what this means. The curve represents the movement of
the membrane, as a function of time, at one particular location y.
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Figure 10.1: Displacement of the basilar membrane, at one fixed point y, as
a function of time. The horizontal lines a and fi represent the thresholds for
bristles of different stiffness.

The two horizontal lines, labeled by a and ,B, represent two different bris-
tle thresholds, and the dots and crosses mark the corresponding "events" in
the timespan represented in the figure. Replacing the information contained
in all the curves (for different y) by only the coordinates (level, time, loca-
tion) of these events would already imply a sizeable compression. The EIH
model reduces the information even more, by another transformation. Start
by setting a certain resolution level AT, and a "window width" to. Then,
for a given t, look back in time and count within the interval [t - to, t], the
number NQ,y(T) of successive events (for the bristle at position y and with
stiffness a) that were spaced apart by an interval between T and T + AT.
Next, compute S(t, T), the sum over all a and y of these NQ,y(T). This new
representation S(t,T) of the original signal is still two-dimensional, like the
original cochlear or wavelet filtering output; it is, however, often sampled
more coarsely than the continuous wavelet transform. More important, from
our point of view, than the compression that this represents, is the very non-
linear and adaptive transformation represented by S(t, T), which can again
be viewed as a time-frequency representation (a second look at the construc-
tion of S(t, T) shows that T-1 plays the role of an instantaneous frequency).
0. Ghitza [1] compared the performance of EIH-based tools for several types
of discrimination tests (such as word spotting) with the results obtained
from LPC (Linear Predictive Coding, a hidden Markov model for speech);
for clean speech, LPC performed better, but the EIH-based schemes were,
like the human auditory system itself, much more robust when the noise level
was raised, and provided still useful results at noise levels where LPC could
no longer be trusted. The nonlinear squeezing of the continuous wavelet
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transform that we describe in §10.5 is inspired by the EIH-construction.

10.4 The Modulation Model for Speech

The modulation model represents speech signals as a linear combination of
amplitude and phase modulated components,

K
p//

J (t) Ak (t) cos[Bk(t)] + 71(t) ,

k=1

where Ak(t) is the instantaneous amplitude and Wk(t) = gok(t) the instan-
taneous frequency of component (or formant) k; t(t) takes into account the
errors of modeling ([6], [7]). In a slightly more sophisticated model, the
components are viewed as "ribbons" in the time-frequency plane rather than
"curves," and one also associates instantaneous bandwidths Awk(t) to each
component. The parameters Ak(t), Wk(t), and Awk(t) are all assumed to
vary in time (as the notation indicates), but we assume that this variation is
slow when compared with the oscillation time of each component, measured
by [wk(t)]-1. For large parts of speech, the modulation model is very sat-
isfactory, and one can take i(t) = 0; for other parts (e.g., fricative sounds)
it is completely inadequate. The parameters Ak(t), wk(t), and Awk(t) (for
those portions of speech where they are meaningful) can be used for speaker
recognition. The basic idea is as follows. Imagine that the speech signal can
be well represented by, say, K = 8 components. For each component, we
have 3 parameters that vary in time. The signal can thus be viewed as a
path in an 8 x 3 = 24-dimensional space. This path depends of course on
both the speaker and the utterance. During certain portions (such as within
one vowel), the 24 parameters remain in the same neighborhood, after which
they make a rapid transition to another neighborhood, where they then dwell
for a while, and so on. The order in which these "islands" appear depends on
the utterance, but their location in our 24-dimensional space is believed to
be independent of the utterance and can be used to characterize the speaker.
To use this for a speaker identification project, one must thus do two things:
(1) extract the Ak(t), wk(t), Owk(t) (or a subset of these parameters) from
the speech signal, and (2) process this information in a classification scheme
in order to identify the speaker. When LPC methods are used for this pur-
pose ([8], [9], [10]), one determines in fact only the wk(t) and Awk(t), not the
amplitudes Ak(t). They are incorporated into one complex number,

Zk(t) = eifWk(t)+inWk(t)]
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the zk(t) are the poles of the vocal tract transfer function

K 1

i'l(z, t)
= E 1 - Z/zk (t)

It is not always straightforward to label the zk(t) correctly with the LPC
method, i.e., to decide which of the poles, determined separately, belongs to
which component. To circumvent this, one works not with the zk(t) them-
selves, but with the so-called LPC-derived cepstrum,

K

c (t) = 2 J[zk(t)]"
k=1

for which the exact attribution of the zk (t) does not matter; this formula is
due to Schroeder [14]. This speaker identification program was developed
at CAIP (Center for Aids to Industrial Productivity) at Rutgers University,
by K. Assaleh, R. Mammone, and J. Flanagan, [8], [9], [10]. Once the cep-
strum is extracted, they use a neural network to do the classification and
identification part. They fine-tuned it until it performed so well that it could
perfectly distinguish identical twins, when starting from clean speech signals,
thus outperforming most humans!

10.5 Squeezing the Continuous Wavelet
Transform

Our goal is to use the continuous wavelet transform to extract reliably the
different components of the modulation model (when it is applicable) and
the parameters characterizing them. Our first problem is that the wavelet
transform gives a somewhat "blurred" time-frequency picture. Let us take,
for instance, a purely harmonic signal,

f (t) = A cos flt .

We compute its continuous wavelet transform (W,p f) (a, b), using a wavelet Vi
that is concentrated on the positive frequency axis (i.e., support c [0, oo),
or z'(C) = 0 for C < 0; note that this means that zG is complex):

(W,pf)(a,b) = f f(t)' ip (1Q) dt

= n f f

i[b( - )) + 6(f + rill d
A f (aQ) eibu

(10.5)
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If z (1;) is concentrated around 6 = 1, then (Wy, f) (a, b) will be concentrated
around a = 52-1, as expected. But it will be spread out over a region around
this value (see figure 10.2), and not give a sharp picture of what was a signal
very sharply localized in frequency.

Or
6

10

5O' zoo 400 000 000 1000 )zoo

Figure 10.2: Absolute value I W,y f (a, b) I of the wavelet transform of a pure
tone f .

In order to remedy this blurring, the "Marseilles group" developed the
so-called "ridge and skeleton" method [11]. In this method, special curves
(the ridges) are singled out in the (a,b)-plane, depending on the wavelet
transform (W,v f) (a, b) itself (for each b, one finds the values of a where the
oscillatory integrand in (Wj, f)(a, b) has "stationary phase"; for the signals
considered here, this amounts to L%( phase of (W,i, f)(a, b)] = , where
wo is the center frequency for i/i). From the restriction of W, f to these
ridges (the "skeleton" of the wavelet transform), one can then read off the
important parameters, such as the instantaneous frequency. This method
has been used with great success for various applications, such as reliably
identifying and extracting spectral lines of widely different strengths [11]. In
our speech signals, we have many components, some of which can remain
very close for a while, to separate later again; components can also die or
new components can suddenly appear out of nowhere. For these signals, the
ridge and skeleton method does not perform as well. For this reason, we
developed a different approach, where we try to squeeze back the defocused
information in order to gain a sharper picture; in so doing, we try to use the
whole wavelet transform instead of concentrating on special curves.

Let us look back at the wavelet transform (10.5) of a pure tone. Although
it is spread out over a region in the a-variable around a = 52-1, the b-
dependence still shows the original harmonic oscillations with the correct
frequency, regardless of the value of a. This suggests that we compute, for
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any (a, b), the instantaneous frequency w(a, b) by

w(a, b) = -i[W,pf (a, b)]-'F, Mpf (a, b),

and that we transfer the information from the (a, b)-plane to a (b, w)-plane,
by taking for instance,

S,if(b,wt)IWPf(ak,b)I. (10.6)
ak such that Iw(ak,b)-wtl<Aw/2

We have assumed here that both the old a-variable and the new w-variable
have been discretized. (A continuous formulation would be to introduce, for
every b, a measure dub in the w-variable, which assigns to Borel sets A the
measure

ub(A) = f IW*f (a, b) j XA(w(a, b)) da,

where XA is the indicator function of A, XA (u) = 1 if u E A, XA(u) = 0 if
u ¢ A.) This has exactly the same flavor as the EIH transform described
in §10.3: we transform to a different time-frequency plane by reassigning
contributions with the same instantaneous frequency to the same bin, and
we give a larger weight to components with large amplitude IWW f I (just
like components with large amplitude in the EIH would give rise to several
level crossings, and would therefore contribute more). Our S,1, is also close
to the SBS (in-Synchrony Bands Spectrum, a precursor of the EIH) (12] or
to the IFD (Instantaneous Frequency Distribution) [13]. For good measure,
one can also sum the I ak I -° I W p f (ak, b) I rather than the I Wpf (ak, b) j, thus
renormalizing the fine-scale regions where often IW,p f (a, b) I is much smaller.

When this squeezing operation is performed on the wavelet transform of
a pure tone, we find a single horizontal line in the (b, w)-plane, at w = Sl, as
expected.

We can, however, refine the operation even further, and define a partic-
ular type of squeezing, which we call synchrosqueezing, that still allows for
reconstruction, even after the (highly nonlinear!) transformation. To see
this, we first have to observe that the reconstruction formula of f from W,, f ,
given by formula (10.3), is not the only one. We also have, again assuming
support ' C [0, oo),

f000 WW f (a,
b)a-3/2 da = f f f (e)e' a-' da dt:

= [f °° (e) J ' .f ,f (d')e'bt d

{21r fo k) ] f (b)

(10.7)
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This suggests that we define

W+*f(ak,b)ak3'2 (10.8)

ah such that jw(a4,b)-wjj<Gw/2

(without absolute values!); with we spaced apart by Ow, we then still have
(in the assumption that the discretizations are sufficiently fine to be good
approximations to integrals)

>2(Sof) (wt, b) = C, f (b)
I

(10.9)

Figure 10.3: Absolute value IW,y f (a, b) I of the sound /a-a-i-i/. A colored
noise is present with SNR = 15 dB. The horizontal axis is sampled at 8 kHz.
The vertical axis represents different subbands (5 octaves, split into 8 equally
spaced sub-octaves); low indices are associated to high frequencies.

Having the exact reconstruction (10.9) will be useful to us later on (see the
end of this section); note that such an exact reconstruction is not available
for the EIH. There is an added bonus to synchrosqueezing. The process of
reassigning components from the (a, b)-plane to the (b, w)-plane is not perfect,
especially when noise is present, and occasionally parts of components that
are truly different get assigned to the same wt-bin. When this happens,
the two pieces from different components are often out of phase with each
other, and cancellation takes place in the computation of S0 (but not in
S,,!). Figures 10.3 and 10.4 show the unprocessed wavelet transform and
the synchrosqueezed wavelet transform, respectively, of the speech signal
consisting of the two vowels /a-a-i-i/; clearly, the different components can
be distinguished much more clearly after the (synchro)squeezing. The extra
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focusing of the synchrosqueezing over squeezing can be seen in an example
in §10.7.

120
Synchrosqueezed Plane

19 o `1,1'

40

20
.

AO 50 100 150 200 250 300
X

Figure 10.4: Synchrosqueezed representation of /a-a-i-i/ (same signal, same
noise level as in figure 10.3). The components can be distinguished much
more clearly than in figure 10.3. (Note that because the scale a corresponds
to w-1, there is also a distortion of the vertical axis when compared to figure
10.3.)
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Figure 10.5: Synchrosqueezed representation of /ow-g-A-s-t/. A colored noise
is present with SNR of 15 dB. The "s" part is the cloud in the upper right
corner.

One remark is in order here. Both the squeezing and synchrosqueezing
operations can be defined with any arbitrary reassigning rule-it does not
have to be governed by the instantaneous frequency. In particular, the recon-
struction property from S,of does not depend on the physical interpretation
of the reassignment rule. This means that we should not worry about the
parts of f where the modulation model does not apply-true, the reassign-
ment will not be as meaningful, because instantaneous frequency does not
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make much sense there, but we still have not "hurt" the information that
was there. In fact, as the synchrosqueezed representation of "august" in fig-
ure 10.5 shows, the "s" part is still nicely localized in the upper frequencies,
where it belongs, so in practice we do not seem to displace such nonmodu-
lated parts in the time-frequency plane. Of course, the refocusing that we see
in the squeezed and synchrosqueezed transform does depend on the physical
interpretation-an arbitrary reassignment rule would give a messy picture.

After synchrosqueezing, the components are well separated and can be
identified. From the synchrosqueezed representation, we can determine the
central frequencies wk(t) and the bandwidths AWk(t). How can we find
the Ak(t)? Remember our exact reconstruction formula (10.9)! If a post-
processing step separates the different components in the synchrosqueezed
plane, then we can carve out the component under consideration in the syn-
chrosqueezed plane, delete all the rest, and reconstruct from only this compo-
nent; this is called the Selective Fusion Algorithm [2]. The direct summation
method (10.9) provides fast and relatively accurate results; a slightly slower
but even more accurate method uses double integrals (see [2]). This is carried
out for speech signals, within the modulation model framework, in [2]. From
every reconstructed single component, we can then determine Ak(t), Ok(O) so
that Ak(t) cos(Bk(t)) fits this reconstructed component, within the constraint
dj0k(t) = Wk(t)

This finishes our program of extracting the modulation model parameters
from an EIH analog based on the wavelet transform. After a (very summary)
discussion of some implementation issues, we shall return to results in §10.7.

10.6 Short Discussion of Some
Implementation Issues

First of all, the whole construction is based on a continuous wavelet trans-
form. In practice, this is of course a discrete but very redundant transform,
heavily oversampled both in time and in scale. In order to be practical, we
need a fast implementation scheme. This was achieved by borrowing a leaf
from (nonredundant) wavelet bases, i.e., by using subband filtering schemes.
For a given profile 0(t;) (close to that of a Morlet wavelet), we identified a
function 4' and trigonometric polynomials h, gt, with B = 1, ... , L, so that

(2(t-1)1Lw)

h(w)c1(w)

This means that the Fourier coefficients of h, gt can be used for an iterated
FIR filtering scheme that gives the redundant wavelet transform in linear
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time. For details on the algorithm and on the construction of the filters, see
[2], [4].

Next we note that the squeezing and synchrosqueezing operations entailed
first the determination of the instantaneous frequency w(a, b). This was done
by a logarithmic differentiation of Wj, f (a, b). This is, of course, very unstable
when (Wp f (a, b) ( is small; note, however, that these regions will contribute
very little to either Spf or S,,,f (defined by (10.6) and (10.8), respectively),
so that we can safely avoid this problem by putting a lower threshold on
(W.W f (a, b)(. On the other hand, differentiation itself is also a tricky business
when the data are noisy; in practice, a standard numerical difference oper-
ator was used, involving a weighted differencing operator, spread out over a
neighborhood of samples. Again, details can be found in [2]. Alternately, one
can also obtain w(a, b) by computing the ratio of (W,, f (a, b)( and (Wof (a, b)(;
in a discretized setting, this amounts to a particular weighted differentiation,
adapted to 0.

In the previous section, we glossed over the extraction of the Wk(t), Lwk(t)
from the synchrosqueezed picture. In fact, although we can often clearly see
the different components with our eyes, extracting them and their parameters
automatically is a different matter. For instance, in "How are you?", an
example shown in §10.7, the components are much weaker in some spots
than in others, yet we want our "extractor" to bridge those weak gaps. The
approach we use, suggested by Trevor Hastie, is to view (S,, f (b, w) I as a
probability distribution in w, for every value of b, which can be modeled
as a mixture of Gaussians, and which evolves as b changes; moreover, we
impose that the centers of the Gaussians follow paths given by splines (cubic
or linear). We also allow components to die or to be born. In order to find
an evolution law that fits the given (S,p f (b, w) 1, a few steps of an iterative
scheme suffice; for details, see [2], [3]. The resulting centers of the Gaussians
in the mixture give us the frequencies wk(t); their widths give us the Owk(t).

10.7 Results on Speech Signals
We start by illustrating the enhanced focusing of the synchrosqueezed repre-
sentation when compared to the squeezed representation of a different exam-
ple, namely the utterance, "How are you?" or /h-d-w-a-r j-u?/; see figures
10.6 and 10.7. Figure 10.8 shows the curves for the corresponding extracted
central frequencies wk(t). In this case, the original signal was somewhat
noisy; the (pink) noise had an SNR of about 15 dB.
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Synchrosqueezed Plane

300

Figure 10.6: Squeezed plane representation for /h-b-w-a-r-j-ti?/. A colored
noise is present with SNR = 15 dB.
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Figure 10.7: Synchrosqueezed plane representation for /h-5-w-a-r-j-u?/. A

colored noise is present with SNR = 15 dB.
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Figure 10.8: Curves for the central frequencies wk(t) for /h-b-w-a-r-j-u?/. A
colored noise is present with SNR = 15 dB.
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Next, we illustrate the robustness of our analysis under higher noise levels.
We return to the signal /a-a-i-i/, this time with an additional white noise
with SNR of 11 dB. Figure 10.9 shows the synchrosqueezed representation of
this noisier signal; although the representation is noisier as well, the different
components can still be identified clearly, and they have not moved. This is
borne out by a comparison of the extracted central frequency curves. Figure
10.10 shows the extracted frequency curves for the slightly noisy original of
figure 10.4.

Synchrosqueezed Plans

00, 50 100 150 200 250 300X

Figure 10.9: Synchrosqueezed plane representation for A
colored noise is present with SNR = 15 dB. An additional white noise is
added with SNR = 11dB.

120

100 I
Extracted primary components

0 50 100 150 200 250

t

Figure 10.10: Curves for the central frequencies wk(t) for /a-a-i-i/, extracted
from Figure 4.

Figure 10.11 shows the extracted frequency curves for the much noisier
version given in figure 10.9.
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Figure 10.11: Curves for the central frequencies wk(t) for /a-a i-i/ with ad-
ditional white noise; see figure 10.9.

Finally, we also show results of a first test of the use of the synchrosqueezed
representation for speaker identification. For this first test, we did not use
the full strength of the representation, and we did not develop our own clas-
sification either. Instead, we took our Wk(t), dwk(t) values, and constructed
an analog to the LPC-derived cepstrum by defining

zk'(t) = exp[iwk(t) - AWk(t)1

1
K

_ z tCnw(t) El k()]n
k=1

we called this the "wastrum." We then used the wastrum as input for the
classification scheme that had been developed at CAIP. For the experiment
we performed, the input data come from the narrowband part of the KING
database, released by ITT Aerospace/Communications Division, in April
1992. It is a telephone network database built with 52 American speak-
ers, among whom the first 26 speakers are from the San Diego region. For
each speaker, ten sessions have been recorded. The first five sessions were
recorded at intervals of one week. Each session is narrowband, with the
bandwidth of a telephone channel. Each session consists of roughly 50 to
75 seconds of conversational speech which contains roughly 40% of silences.
The sessions are recorded from the interlocutor's side. The first five sessions
are within the Great Divide, which means on the West Coast. The SNR is
about 15 dB to 20 dB. This noise is introduced by the phone network. The
five remaining sessions are recorded across the Great Divide at intervals of
one month, and they are much noisier. These last sessions were not used in
this experiment. The signal is sampled at 8 kllz and quantized over 12 bits.
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For, the experiment, the first session of the first 26 speakers is used for
training and the following four within divide sessions are used for testing.

The classifier is a vector quantizer. Decisions are made on the basis of
the cumulated distances obtained in each frame relatively to the codebooks
associated to the different speakers.

Table 10.1 summarizes the results in closed-set speaker identification ob-
tained with the LPC-derived cepstrum and the wastrum. The long-term
mean is removed from the features, in agreement with [8]. The silence frames
are removed on the basis of energy thresholds for the primary components.
The same frames are removed for the LPC approach, in order to compare
exactly the same utterances.

Method Additional SNR Error Rate

LPC-derived cepstrum none -0.22
wastrum none 0.23

LPC-derived cepstrum 15 dB 0.33

wastrum 12 dB 0.30

Table 10.1: Summary of the results obtained on KING database, within the
Great Divide, 26 speakers, first section used for training, four other sessions
used for testing. Long-term mean removal is used.

The performances of the wastrum are comparable to the LPC-derived
cepstrum for the relatively clean speech, which is reassuring: we aim to
extract the same cepstral-like information, albeit with very different methods,
and so we expect similar performance! The wastrum-method is, however,
more robust to noise when the noise cannot be considered as negligible, since
we get a lower error rate even though the noise level is significantly higher
(12 dB versus 15 dB).

Note that we are comparing here a suboptimal version of our approach
(the Ak(t) are not taken into account, and the Wk(t), Owk(t) are transformed
into the wastrum, which is then put through a classification scheme not
specially tailored to our different approach) with a very much optimized
version of the LPC-based method. Yet even so, the wastrum method leads to
fewer errors for noisy speech than the LPC-derived cepstrum. This indicates
that we have indeed inherited (some of) the robustness that characterizes
true auditory systems.

The following is a short list of promising future directions to be explored:
include the amplitude information Ak(t) (obtained by Selective Fusion [3]) as
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well; develop a more direct classification scheme, without the detour of the
wastrum, and maybe even directly from the synchrosqueezed plane, without
extraction of the parameters first; and finally, use of this approach for other
tasks in speech analysis.

There is some similarity between our squeezing and synchrosqueezing
methods and a technique of "reassignment" developed by Auger and Flandrin
[15], with the same goal of "refocusing" in the time-frequency plane; we first
heard of their method after the work described here was completed. Auger
and Flandrin typically work with Wigner-Ville or similar time-frequency dis-
tributions, and their reassignment method is not limited to one direction
only (we don't change the b variable in our scheme); on the other hand, their
scheme is not linked to an exact reconstruction formula such as our (10.9).
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Chapter 11

Analytic Capacity, Cauchy
Kernel, Menger Curvature, and
Rectifiability

Guy David

I am especially happy and honored to have participated in the conference
honoring Professor Calderon, and I am very grateful to the organizers for
having made this possible. I decided to talk about analytic capacity and the
Cauchy kernel in part because my first contact with research was a very nice
graduate course of Yves Meyer on the Cauchy integral on Lipschitz graphs
and the accomplishments of Alberto Calderon. These are very pleasant mem-
ories, and they influenced me for quite some time. However, I do not know
the subject so well, and I hope this text will not contain too many mistakes
or omissions.

A more scientific justification for this choice of topic is that there was
very impressive progress about a year and a half ago (the characterization
by Mattila, Melnikov, and Verdera of the regular measures in the plane for
which the Cauchy kernel defines a bounded operator on L2), and there is
some hope of additional progress. I will try to talk a little about both.

11.1 Analytic Capacity
Let us start with standard background material on analytic capacity. For
more details, we refer to [3], [12], [20], and [33] (which were the main sources
for the preparation of this chapter). For the rest of this text, E will denote
a compact set in the complex plane.

Definition 11.1. The analytic capacity of E is the number

-y(E) = sup{ I f'(oo) I : f analytic on C\E, I f (z) I < 1 on C\E}. (11.1)
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Observe that if f is bounded and analytic on C\E, then it has a removable
singularity at oo and so f'(oo) exists. In (11.1) we can restrict our attention
to function f such that f (oo) = 0, because a simple computation shows
that otherwise g(z) = 1_ (-) has the same L°°-norm as f, but a larger
derivative at oc.

Note that y(E) = 0 means that all the bounded analytic functions on
C\E are constant. In general, y(E) is a nondecreasing function of E which
measures how easy it is to construct analytic functions in the complement of
E. It was introduced by L. Ahlfors [1], who proved that the compact set E
has zero analytic capacity if and only if it is removable for bounded analytic
functions. This means that if U is any open set that contains E and f is a
bounded analytic function on U\E, then f has an analytic extension to U.

In my opinion, one of the most fascinating things about analytic capacity
is that so little is known about it. Here are some of the few things that one
can say.

1. If E is a countable union of compact sets of analytic capacity 0, then
-y(E) = 0. (See for instance [12], exercise 1.7 on p. 12.)

2. If E is connected, then y(E) > diam(E)/4. To prove this one uses a
conformal mapping from the complement of E in the Riemann sphere
to the unit disk.

3. If E has Hausdorff dimension > 1, then y(E) > 0. This is because
there is enough room in E to allow the existence of a positive measure
p with support in E and such that u * - is bounded, and then we can
take f=p*i.

4. If dim(E) < 1, or even if the one-dimensional Hausdorff measure H'(E)
is zero, then y(E) = 0. This is proved by finding a "curve" I' that
encloses E and has very small length and then computing the derivative
at oo of any bounded analytic function on C\E with the help of the
Cauchy formula on r.

5. On the other hand, there exist compact sets E such that Hl (E) > 0 but
y(E) = 0. This was first observed by Vitushkin; the simplest example is
the Cantor set of dimension 1 obtained by taking the Cartesian product
of two "middle half' Cantor sets. (See [11] or [13], [14].)

In this chapter we shall focus on the problem of deciding when the com-
pact set E has vanishing analytic capacity, and so we may as well restrict
our attention to one-dimensional sets. In fact, we would even be very happy
to have a geometric answer to this question when 0 < H'(E) < +oo.
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11.2 The Cauchy Kernel; Positive Results
We start with a few notations. If p is a positive Borel measure on C, we
define truncated Cauchy operators CC, by

Cµf (z) =
f (w) dp(w)

(11.2)
J IW-Z I>e Z -'W

and then we say that Cµ is bounded if the Cµ are uniformly bounded on
L2(dp). If E is a closed set in the complex plane, we say that CE is bounded
when Cµ is bounded, where p is the restriction of H1 to E.

Examples. If E is a line, then CE is essentially the Hilbert transform. By
an easy comparison argument, CE is also bounded when E is a C'+E graph.
The first really difficult continuity theorem for CE was the well-known result
of [2], which says that CE is bounded when E is the graph of a Lipschitz
function with small Lipschitz constant.

The boundedness of C. when p is an Ahlfors-regular measure is now quite
well understood.

Definition 11.2 (Ahlfors-regularity). A nonnegative Borel measure p is
said to be (Ahlfors)-regular if there is a constant C > 0 such that

C-1r < p(B(x, r)) < Cr for all x E Supp(p) and 0 < r < diam(Supp(p)).
(11.3)

An (Ahlfors)-regular set is a closed set E such that the restriction of Hl
to E is an (Ahlfors)-regular measure. [Incidentally, it is easy to prove that if
p is a regular measure, then E = Supp(p) is a regular set and p is equivalent
to the restriction of H1 to E.]

An (Ahlfors)-regular curve is a set of the form I' = h(I), where I is an
interval in R and h is a Lipschitz mapping such that the Lebesgue measure
in R of h-1(B(x, r)) is at most Cr for all balls B(x, r) C C.

Regular curves are almost the same thing as connected regular sets. In-
deed, every regular curve is a connected regular set, and it is not hard to
show that every connected regular set is contained in a regular curve.

Theorem 11.3 ([5]). The operatorCr is bounded when r is a regular curve.

Theorem 11.4 ([22]'). If u is a regular measure on C such that C is bounded,
then there is a regular curve I' that contains Supp(p).

We shall return to this very nice result of P. Mattila, M. Melnikov, and J.
Verdera later in this lecture. Let us now discuss applications of boundedness
results for C..
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Theorem 11.5. Let E be a regular set such that CE is bounded. Then there
exists a constant 77 > 0 such that y(K) > i7H'(K) for every compact set
KCE.
Corollary 11.6. If K is a compact set such that H'(K fl t) > 0 for some
rectifiable curve r, then y(K) > 0.

By rectifiable curve, we mean a curve with finite length. Corollary 11.6 is
known as Denjoy's conjecture. It is an easy consequence of Theorem 11.5 and
the result of Calderon cited above (CE is bounded when E is a small Lipschitz
graph). This is because y(K) is a nondecreasing function of K, and every
rectifiable curve can be covered, except for a set of Hausdorff measure zero,
by a countable collection of C' curves. Thus if K is as in the corollary, then
H'(KnI") > 0 for some C' curve F', and y(K) > y(Kf [") > 0 by Theorem
11.5.

If you use Theorem 11.3 instead of Calderdn's result, then you get a
slightly more precise lower estimate for y(K). Also see [25], [26] for other
estimates of the same type of y(K).

I do not know the precise history of Theorem 11.5. The duality argument
which is central in its proof was present in [32] and in [10], and specialists
such as Marshall, Havin, or Havinson were aware of something like Theorem
11.5 at the time of Calderdn's theorem. See [3] for a proof.

It was conjectured by Vitushkin that for every compact set K of finite
(or u-finite) one-dimensional Hausdorff measure, y(K) = 0 if and only if K
is purely unrectifiable, i.e., if and only if H' (K fl r) = 0 for every rectifiable
curve r.

This would be a converse to Denjoy's conjecture. Note that Theorem 11.5
goes in the direction of this conjecture, since it says that purely unrectifiable
sets are never contained in a regular set E such that CE is bounded. Also
note that this conjecture is false without the restriction that H' (K) be a-
finite. P. Jones and T. Murai [16] have an example of a compact set K such
that y(K) > 0 but whose orthogonal projection on almost every line has zero
length.

I will try to describe how far we are from this conjecture. The problem is
essentially the following: what sort of geometric information can we derive
from the fact that y(K) > 0 when K is a compact set with H'(K) < +oo?

11.3 From Positive Analytic Capacity to the
Cauchy Kernel

This is the part of the program that will have to be completed. At this
moment, Ahlfors-regular sets and sets on which H' is doubling are essentially
the only ones to be under complete control in this respect.
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Theorem 11.7 ([4]). Let K be a compact set such that ry(K) > 0. Suppose
in addition that there is an Ahlfors-regular set E that contains K. Then there
is a (possibly different) regular set F such that CF is bounded and H' (K n
F) > 0. Hence, by Mattila, Melnikov, and Verdera, there is a regular curve
r such that H' (K n r) > 0.

Note that, at least at the qualitative level, we cannot expect more than
this: K can always be the union of a nice rectifiable piece with positive
analytic capacity and a useless unrectifiable piece.

M. Christ also has more quantitative variants of this theorem. See [3] or
[4]. The general idea of the proof is to start with a bounded analytic function
on the complement of K, write it down as the Cauchy integral on K of codes'
for some bounded complex-valued function cp on K, and then modify E and
cp to get a slightly different regular curve F and a para-accretive function b
on F whose Cauchy integral lies in BMO. Then apply a T(b)-theorem to get
that CF is bounded. The argument is very nice, but it seems to rely strongly
on the presence of a regular set E.

Here is an amusing corollary of Theorem 11.7

Theorem 11.8 ([30]). Let K be a compact set such that -y(K) > 0 Suppose
that H'(K) < +oo and

0 < 0.(x) =:Iiminf,.,or-'H'(KnB(x,r))
< 0*(x) __: lim sup,.--,o r-'H'(K n B(x, r)) < +oo

(11.4)

for every point x E K. Then there is a rectifiable curve r such that H1 (K n
r)>0.

In other words, if the compact set K is purely unrectifiable, H' (K) <
+oo, and (11.4) holds for every x E K, then 7(K) = 0. Let us sketch the
argument. Pajot proves that, if H1(K) < +oo and (11.4) holds for every
x E K, then K is contained in a countable union of regular sets E,,. His
initial goal was to prove that, if in addition we have a suitable control on the
P. Jones numbers OK (x, r) on K, then we can construct the set E with the
same control on the 13E,. (x, r), and deduce rectifiability results for K from the
corresponding results on the E,,. Here, we use the fact that if we start from
a purely unrectifiable K, then it is possible to choose the regular sets E
that cover K so that they are purely unrectifiable as well. Then 0
by Theorems 11.7 and 11.4. Thus K is the countable union of the compact
sets of analytic capacity zero K n E,,, and hence 7(K) = 0 by the comments
after 11.1.

Note that, if the density condition (11.4) is not satisfied at least almost
everywhere on K, then E is not contained in a countable union of regular sets
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and we cannot use Christ's result. It looks very plausible that the hypothesis
that (11.4) holds for almost every point of K (instead of every point) is
enough for the theorem, but we do not know how to prove this.

When K is a compact set with finite length and positive analytic capacity,
but does not necessarily satisfy (11.4), we can still get a measure with some
good properties.

Proposition 11.9 ([20]). Let K be a compact subset of C, with 0 < H1(K) <
+oo, and let f : C\K -a C be a bounded analytic function with f (oo) = 0
and IIf I Ioo < 1. Then there is a (finite) complex Radon measure or such that
Supp(a) C K, Io, (B (x, r))I < r for all x E C and r > 0, and

f (z) _ J dv(w)
for all z c C\K. (11.5)z -w

The existence of this measure is obtained by writing down the Cauchy
formula on curves that surround K, and then taking appropriate weak limits.
Note that v is absolutely continuous with respect to the restriction of Hl to
K, so we may write v = VlkH1 for some bounded complex-valued Borel
function V. If y(K) > 0, we can take f such that f'(oo) = 'y(K) > 0, and
we get that v(K) = 7(K) > 0.

If a were a positive measure, then we would be able to prove that its
support is rectifiable, as we shall see in the next section. If IQI were a piece
of some nice doubling measure (even if it is not regular), then we would
probably be able to use the same sort of technique as in [4] to get a positive
measure µ such that Cµ is bounded. Unfortunately, we do not know that, or
whether it is possible to modify a and get a better one.

11.4 The Cauchy Kernel and Menger
Curvature on Regular Sets

Let us return to. Theorem 11.4. The central point of the argument is a
computation which relates the integral f ICI, (1)12 dµ to the Menger curvature
c2(µ)

Definition 11.10 (Meager curvature). For x, y, z E C we will denote by
c(x, y, z) (the Menger curvature of x, y, z) the inverse of the radius of the
circle through x, y, z. [Set c(x, y, z) = 0 when x, y, z are on a same line].
Equivalently,

c(x, y, z) = 21x - zI -1Iy - zI-1 dist(z, Lx,y), (11.6)

where Lx,y is the line through x and y. If µ is a positive measure, set

c2(µ) = fffc(x,y,z)2di(x)d(y)d/2(z). (11.7)
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The numbers c(x, y, z) give some interesting geometric information about
the flatness of the support of µ. Note that c2(µ) = 0 when Supp(µ) is
contained in a line; an elementary computation shows that c2(µ) = +oo
when µ is the restriction of H1 to the Cantor set of the end of §11.1. Their
main advantage, though, is their relation with the Cauchy kernel. Here is
the idea. If we write down f IC,(1)12dp brutally (without taking care of
truncatures), we get the triple integral

f dµ(zr) dµ(22) dµ(23)
f C,,(1)(z1)Cµ(1)(z1)dµ(zr) z2)(zr d z3

(11.8)

The value of this integral is not changed if we symmetrize it by replacing

(z1-Z2)( zlT by the sum 1-s >
. (ZO(I)

=oc2>) xo(l)_zv(g), where a runs along the

permutations of {1, 2, 3}. The advantage of doing so is that this last sum is
now positive, and is in fact equal to c2 (zi, z2, z3)/6. Thus

f IC, (1) 12 dµ = g
fffc2(zi,z2,z3)dp(zi)dp(z2)dp(z3). (11.9)

This formula is not quite right, because one should also take into account
the fact that C,(1) is not well defined. Thus we have to use truncatures and
then the triple integrals are no longer symmetric. However, it is proved in
[22] that, if the measure µ satisfies

µ(B(x,r)) < r for all x E C and all r > 0, (11.10)

then the error in (11.9) is at most CIIµII. More precisely, denote by E the
support of p and set

A(e)={(z1iz2,z3)EE3:Izi-z,I>Efori,jE{1,2,3},i96 j} (11.11)

for each e > 0. Then

if 1 J f(e) c2 (z1, z2, z3) dµ(zr) dµ(22) dµ(23) I < CI IµII

(11.12)

for all E > 0, with a constant C that does not depend on e.
Now suppose that p is a regular measure such that C,, is bounded, and set

E = Supp(µ). Then we may apply (11.12) to 1B(x,r)µ and get the Carleson
measure estimate

c2 (1B(x,r)µ) <- Cr for all x E E and 0 < r < diam(E). (11.13)

At this stage, we can forget the Cauchy kernel, and Theorem 11.4 is a
consequence of the following.
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Proposition 11.11. If µ is a regular measure that satisfies (11.13), then
E = Supp(p) is contained in a regular curve.

The simplest way to prove this lemma is to show that (11.13) implies a
similar Carleson measure estimate on the P. Jones numbers ,32(x, r). Recall
that /3q(x, r) is defined for x E E, 0 < r < diam(E), and 1 < q < +oo by

/' l 1/q
/3q(x, r) = inf {r-1 J {r-' dist(y, L) }q dµ1 , (11.14)

EnB(x,r)

where the infimum is taken over lines. It is not hard to show that, if µ is
regular, then

02(x, r) 2 < Cr-trc(x, r)2 for all x E E and 0 < r < diam(E), (11.15)

where we set

rc(x, r)2 =
fff

c2 (y, z, w) dp(y) dp(z) dp(w), (11.16)
(x,r)

,A(x, r) = { (y, z, w) E E f B(x, t) : Iy - zl,lz - wl,Iw - yl> M-'r} , (11.17)

and where the constant M is chosen large enough (depending on the regu-
larity constant for p). Then (11.13) and Fubini imply the Carleson measure
estimate

K(x, r)2 du(x) d2 < CR (11.18)r
EnB(X,R) f<r<R

for all X E E and 0 < R < diam(E), and then (11.13) yields

02(x, r)2 dµ(x)
dr
r < CR. (11.19)f nB(X,R) f<r<R

There are several ways to see that (11.19) implies the existence of a regular
curve r that contains E. [See [22] or [8].] The most natural one is perhaps to
modify the argument of P. Jones in [15] so that it works with /32(x, r) instead
of 0,,,,(x, r), and construct the curve r by hand. (See [31].)

This completes our sketch of Mattila, Melnikov, and Verdera's argument.

Remark. The first use of the estimate (11.12) was to get a new proof of the
boundedness of Cr for Lipschitz graphs. The idea is that Lipschitz graphs
satisfy the curvature estimate (11.13), and hence

1ICr (1B(x,r)) I
12 < Cr for all x E r and r > 0. (11.20)

The boundedness of Cr then follows by a T(1)-type argument. See [24] for
details. The Menger curvature was first used in connection with analytic
capacity by M. Melnikov [23].
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11.5 Menger Curvature and Rectifiability
Define the total Menger curvature of a compact set E in the plane by

c2(E)=Jf J c(x,y,z)2dH'(x)dH'(y)dH'(z)xExE

Theorem 11.12. If E C C is a compact set such that H'(E) is a -finite and
c2(E) < +oo, then E is rectifiable.

This means that E is contained in a countable union of rectifiable (or
equivalently, C') curves, plus perhaps a set of zero H'-measure. This result
can be seen as a qualitative version of Proposition 11.11. Its interest is that
we now allow E to be very thin at places, and the price we pay for this is
that we no longer have good quantitative estimates on the rectifiability of E.

Theorem 11.12 is the result of discussions with P. Mattila. We have
a manuscript for the proof that is vaguely outlined below, but it is likely
that there will be no final version of it because Jean-Christophe Leger has a
slightly better proof based on ideas from the "corona construction" [17]. The
proof in [17) is actually shorter, and has the advantage of extending to sets
of higher dimensions, but the other one is perhaps slightly easier to present
when one does not have to check the details.

We'shall say a few words about the proof of Theorem 11.12 later, but let
us first see its connection with the Cauchy kernel.

Let µ be a positive :measure such that (11.10) holds, and suppose that
C06(1) E L2(dp) with estimates that do not depend on e. Note that the
measure a in Proposition 11.9 is almost like this, except that we do not
know that it is positive. Then (11.12) tells us that c2({c) < +oo. Because of
(11.10), p is absolutely continuous with respect to the restriction of H' to
E = Supp(p) and is given by a bounded density function W. By elementary
measure theory, we can cover p-almost all of E by a countable union of
compact subsets F,, of E where cc(x) > 1/n. Then c2(F,,) < n3c2(14) < +oo
for all n. Theorem 11.12 says that F is rectifiable, and certainly E contains a
nontrivial rectifiable piece if p 0. Thus, as was mentioned before, the main
obstruction to our program seems to be getting a positive measure whose
Cauchy integral is not too large.

Let us now talk about the proof of Theorem 11.12. The reader will be
asked to forgive the few lies in the rapid sketch that follows. We start with
a few reductions.

Let p denote the restriction of H' on E. Because we are only interested
in rectifiability and can take countable unions at leisure, it does not cost us
anything to assume that p is finite, and even that

p(B(x,r)) <CrforallxECand all r > 0. (11.21)
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(This reduction relies on the fact that O*(x) = lim supremo r-1µ(E fl B(x, r))
< +oo for µ-almost every point x E E, by a classical theorem of geometric
measure theory.)

Also, it will be enough to show that one-tenth of E, say, is rectifiable,
because we may always start the argument again with the rest of E.

Our hypothesis that c2 (p) < +oo implies that

r
r)2 dp(x)d< +00, (11.22)Li

where the constant M in (11.17) is chosen later, depending on the constant
in (11.21). We may choose to > 0 so small that in (11.22) the part of the
integral that comes from r < to is smaller than e j (E), where e is as small as
we want. (In the real argument, a is chosen at the end.) We can cover E by
balls B(y, t) such that t < to, µ(B(y, t)) > t/10, and for which the sum of the
radii t is at most 100Fc(E). (Use the definition of H' and a covering lemma.)
Then the above remark and Tchebychev imply that for most B(y, t),

J J tc(x, r)2 du(x) d2 < J f tc(x, r)2 dp(x) Cet.
EnB(y,t) o<r<t r EnB(y,t) <r<to r

(11.23)

Since the B(y, t) that satisfy (11.23) cover most of E, we see that it is
enough to prove the following.

Lemma 11.13. Suppose that E satisfies (11.21) and is contained in a ball
B(y,t) such that p(B(y, t)) > C-lt and

rc(x, r)2 dp(x)
d2

< et. (11.24)f nB(y,t)f<r<t

Then there is a curve r with length < 3t such that µ(E\r) < p(E)/10. (The
precise quantifiers are that for each C > 0, we can find M [in (11.17) ] and
then a so that the statement holds.)

We are finished with our preliminary reductions. The last one was perhaps
a little less innocent as it may seem, because it takes care of the following
apparent problem.

Our set E could very well be a collection of about N little circles of the
same radius N-1, spread uniformly in the unit square (so that they lie at
distances comparable to N`1. from their neighbors). Then the curvature of
E is not very small, but it is less than some constant that does not depend
on N. This means that we may force u to look a lot like the 2-dimensional
Lebesgue measure, and yet keep the curvature O(E) bounded. This is of
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course coherent with the fact that the 2-dimensional Lebesgue measure has
finite curvature (the rr integral in (11.22) converges brutally). It is important
to understand that there is no contradiction so far. The Lebesgue measure is
not allowed in Theorem 11.12 because R2 does not have o-finite Hl-measure,
and we see this in the argument above when we say that we can cover the set
E by very small balls with a control on the sum of the radii. On the other
hand, our example with many little circles should not disturb us, because
it is rectifiable. The point of the reduction above is that if we are patient
enough, we simply wait long enough and start working in tiny balls where
the normalized curvature is very small. We do not know in advance how
long we will have to wait, but this is to be expected because our example
with little circles suggests that we can only hope to prove that the set E is
rectifiable, not that it is rectifiable with uniform estimates.

The point of the main lemma is that once you have been patient enough,
the bad guy that tries to construct a set E which is unrectifiable does not
have enough curvature left to cause much harm. For instance, replacing each
little circle by a bunch of very tiny circles spread in a disk will cost him a
definite amount of curvature. The bad guy may have used this trick a few
times at larger scales, but now he cannot anymore.

Let us now try to explain why the main lemma may be true. The idea
of the proof is to construct the curve r by the same sort of algorithm as P.
Jones [15] used to embed in a rectifiable curve any set E with appropriate
quadratic estimates on its numbers 0,,,,(x, r). Thus we start from a line at
scale t, and then we start modifying it at smaller and smaller scales to make
it go through more and more points of E. When we are working at scale
2-", say, we choose the new points that we have to add to be at distance
comparable to 2-' from previously introduced points and from each other.

As long as the density of E near the points that we want to add is not
too small, everything works as if the set E was regular, and the length that
we have to add to the current curve to go through the new point can be
controlled by a local r,82(x, r)2, which in turn can be estimated by a ,c(x, r)2,
just like for (11.15). The argument is similar to the ones in [15] and [31].

If the density near a point becomes too small, we do not have enough
control, and so we decide to ignore that point. To be a little more precise, if
we are currently working at scale 2-" and the density of E in a ball of radius
2-" centered on the current r is lower than a certain threshold, we decide to
leave this ball alone for the rest of the construction. We also decide not to
try to incorporate new points of E around which the density is too small.

With this sort of strategy, and because we trust the argument of P. Jones
in the regular case, it is believable that we shall construct a limit curve IF
with finite length, but of course we have to say why many points of E will
lie on r.

There are essentially two interesting types of points of E which do not lie
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on r. Let us call E1 the set of points of E\I' the lie in a ball centered on r
where we decided to stop the modifications of I' in the construction because
the density of E on that ball was too small. We can cover El by a collection
of such balls B; such that the B;/10 are disjoint, and then ia(E,) is much less
than the sum of the radii of the Bi, which is controlled by the length of F.
Thus E1 is as small as we want (depending on the density threshold).

The second type of points of E\I' are the points around which the con-
struction of r may have continued forever, but which are a little off I' and
which were never added as new points because the density near them is too
small. These points may exist when E looks like a line plus a thin mist
around it. Then the curve IF will simply go through the line, and we shall
miss the mist. We have to control the total amount of E that evaporates
into mist.

The most interesting case for this estimate is the case of points x E E
with the following properties. Let d denote the distance from x to r. Suppose
that the density of E in the ball B(x, d/10) is very small, but the density of
E in the ball B(x,10d) is not too small. Also suppose that #2(x, 10d) is very
small, so that there is a line L such that most of the points of EnB(x, 10d) lie
very close to L. Finally, assume that r crosses B(x,10d) and that I'fl(x,10d)
stays quite close to the line L. (The other cases can somehow be treated by
the way the curve F is constructed, and the estimates are not too interesting
for this lecture, in the sense that they only use estimates where the density
is not too small.)

Because µ(E fl B(x,10d)) is not too small (and (11.21) holds), we can
find reasonably many pairs (y, z) of points of E n B(x,10d) such that y, z lie
very close to L and ly - zI is not too small. Since dist(x, L) > d/2 because
r fl B(x,10d) stays close to L, we get that c(x, y, z) > (Cd)-1 for all those
pairs (y, z). Then the contribution of the point x to the integral in (11.24)
is > C-1. This tells us that the total mass of the points of E of this type is
controlled by (11.24), and thus is as small as we want (depending on e).

This ends our rough sketch of proof. Of course the details of the con-
struction are slightly more painful than this.

Remark. This last part of the proof is the only one where we have to use
curvature (as opposed to the numbers /31(x, r) on balls B(x, r) where the
density is not too small, and where the curvature indeed controls /31(x, r)).
Also, in the main lemma, the triples (x, y, z) E E3 are not all needed, but
only those were Ix - yl, Jy- zI and Ix - zl are all comparable (with a constant
that depends on the regularity constant in (11.21)).

As we explained before, a variant of Theorem 11.12 holds in higher di-
mension, with the curvature c(x, y, z) replaced with a function of d+ 1 points
of E that measures the distance of one of them to the d-plane that passes
through the other ones (d is the dimension of E). See [17].
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11.6 Conclusion
This part of the text was added in June 1998. It is with great sorrow that I
learned of the recent death of A. Calderon. He was always a great model for
me; I am sure many of us will miss him a lot.

Since the time of the conference, the progress that could be hoped for
after the breakthrough of [22] indeed took place. It is now known that for
a compact set K with H'(K) < +oo, 7(K) = 0 if and only if K is purely
unrectifiable. This was first proved for the analogue of ry where we consider
Lipschitz harmonic functions (instead of bounded analytic functions) in the
complement of K in R2. (See [7].) The proof uses an appropriate general-
ization of the argument of M. Christ [4]. The case of analytic capacity itself
followed a little later [6]; the new part of the argument is a generalization
of the T(b)-Theorem without doubling. It has been proved (simultaneously,
independently, and for slightly different reasons) by F. Nazarov, S. Veil, and
S. Volberg [28]. Their method also gives the result on analytic capacity [29],
with a more clever and pleasant proof. From their work, it also appears
that we have been wrong to assume systematically doubling properties (or
Ahlfors-regularity, or spaces of homogeneous type) whenever we dealt with
Calderdn-Zygmund operators.
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Chapter 12

Symplectic Subunit Balls and
Algebraic Functions

Charles Fefferman

From the work of Stein and others (see, e.g., [7]), one knows that subellip-
tic partial differential equations are controlled by the geometry of certain
non-Euclidean balls. For the last several years, A. Parmeggiani [8] and I
have tried to understand an analogous family of balls associated to pseudo-
differential operators. By studying the geometry of these balls, we have been
led to questions about the smoothness and growth of algebraic functions;
we had to show that certain algebraic functions behave like polynomials. R.
Narasimhan and I have been studying these questions on algebraic functions,
and we now understand them. However, the study of non-Euclidean balls
for pseudodifferential operators remains at a primitive level. In this exposi-
tory paper, I would like to begin by recalling the standard notion of subunit
balls for differential operators, and then explain its proposed extension to
pseudodifferential operators. Next, I will state the relevant questions on al-
gebraic functions and say a little about their solution. Finally, I will show
how the questions on algebraic functions arise in studying subunit balls. It
is a pleasure to dedicate this paper to Alberto P. Calderfn.

To recall the standard notion of non-Euclidean balls, let me restrict at-
tention to the simple case of a second-order self-adjoint differential operator
with real, smooth coefficients. Say L = - E sz; ajk(x) i , where (ajk(x))

j,k
is positive semidefinite for each x E R1, but not strictly positive definite. A
tangent vector X = gj- at a point xo E R" is called subunit for L if

we have (gjgk) < (ajk(xo)) as matrices. A subunit path ry: [0, T] -} &t" is a
Lipschitz path whose velocity vector is subunit for almost every t. The
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subunit ball BL(x°i p) consists of all points in R" that can be joined to x°
by a subunit path in time T < p. If the operator L is subelliptic, then the
geometry of the BL (X, p) may be understood completely and used to control
the regularity properties and fundamental solution of L. (See [6], [7].)

N
A basic special case is the Hormander operator L = - E X? (which is

j=1
self-adjoint modulo a negligible error). Here, X1,... , XN are smooth, real
vector fields whose repeated commutators span the tangent space at every
point of R. In effect, a subunit tangent vector is simply a linear combination
of the Xj with bounded coefficients; and the ball BL(XO, p) consists of all
points that can be reached from x° in time p by a broken path that flows
first along one, then along another of the vector fields ±Xj (1 < j < N).

The basic geometric fact about the ball BL(x°i p) is that it may be made
comparable to a rectangular box (a Cartesian product of intervals) by per-
forming a smooth coordinate change with controlled bounds. (See [6] for
the precise statement.) As an easy consequence, one sees that the volume
of BL (xo, 2p) is at most a constant multiple of that of BL(x°i p), and that
BL(x, 2p) may be covered by a bounded number of balls BL(XY, p). Thus,
the BL(x, p) behave like Euclidean balls {y E Rn : Ix - yI < p} for many
purposes.

A. Parmeggiani and I hope to find, understand, and use analogous subunit
balls for pseudodifferential operators. These balls should live in the cotangent
space and behave naturally under canonical transformations, just as standard
subunit balls behave naturally under coordinate changes.

Let us start with a second-order nonnegative symbol p(x, e) (x, E R").
Thus, p satisfies the estimates I CQ,9(1 + 1Z;1)2-1 ,11. We say that
q is a subunit symbol for p if it satisfies

I`O_"1q(x, f)I < CQp(1 + ICI)' Isl for IaI + IQI < 2 (12.1)

and

q2<p. (12.2)

n
In (12.1), note that we restrict to IaI+IaI < 2. Next, suppose X = E gja,

j=1
n

+ E hje£ is a tangent vector to R2n = T*Rn at the point E R2n.

j=1
We say that X is a subunit vector for p if it agrees at with the
Hamiltonian vector field of a subunit symbol q. That is, gj = -k(x°, 6°) and

hj = -e (x°,l;°), with q satisfying (12.1) and (12.2). For example, if p is a
n

sum p = E qj? of squares of real first-order symbols, then each qj is a subunit
j=1
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symbol, and its Hamiltonian vector field f (e a - A a) is a subunit
j axj ax'? 8C

vector field.
As in the differential case, the subunit ball Bp((x°, a°), 1) may be defined

as the set of all points that can be reached in time 1 from (x°, CO) by a
Lipschitz path whose velocity vector is subunit almost everywhere. The ball
Bp((xo, l;°), S) of radius S may then be defined as the unit ball B62p((x°,
arising from the symbol 52p.

Parmeggiani and I hope to understand the geometry of Bp((x°, t;°), p), and
to use them to prove theorems about pseudodifferential operators. However,
the geometry of these symplectic subunit balls seems much harder to under-
stand than that of standard subunit balls. Examples suggest the following
conjecture. Given (x°, °) E R2n, the ball Bp((x°, £°), 6) becomes compara-
ble to a rectangular box after we apply a suitable canonical transformation,
unless S is comparable to one of finitely many bad values S1 < Sz < . . . < SK.
The number K of bad Sk's is bounded independently of (x°, °), but there
are definitely some bad S's. For a bad S, the ball of radius 26 is much larger
than the ball of radius S, and the shape of the ball may be wild. These bad
S's have no analogues for the standard subunit balls arising from differential
operators. We know from examples that they may occur. Our upper bound
on the number of bad S's is only a conjecture. Parmeggiani and I have ideas
for a proof but do not have a complete argument even for pseudodifferential
operators on IIt2.

Let me now explain the problems on algebraic functions that arise when
one studies symplectic subunit balls. We need to know that certain algebraic
functions satisfy the standard growth and smoothness properties of polyno-
mials. Recall that if F(.c) is a polynomial of degree D on the real line, then
we have the familiar estimates

(Bernstein-Markov inequality) max IF'l < I max IFS (12.3)

(Doubling Condition) max BFI < C max IF1 (12 4)*1. 1
.

(Equivalence of Norms) max JFl < Ii f IFIdx.r
(12.5)

Here, I is any interval, I* denotes the double of I, and C* depends only
on D. Usually one studies the exact dependence of the constants in (12.3),
(12.4), (12.5) on the degree D, but this issue will not matter for symplectic
subunit balls. Rather, we need to extend these inequalities from polynomials
to the following class of algebraic functions.

Let S = [-1, 1] x [--1, 1] be the unit square in R2, and let r c S be
an algebraic arc defined by r = {(x, y) E S : Q(x, y) = 0}, where Q is a
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polynomial of degree D on V. To make sure 1' is as nice as possible, we
make the following assumptions.

For each x E [-1,1], there is exactly one y E [-1,1) with Q(x, y) = 0,
(12.6)

aQ > c > 0 for all (x, y) E S, (12.7)8y -

JQJ<C for all (x,y)ES. (12.8)

Let y = 11'(x) be the solution of Q(x, y) = 0 given by (12.6). If P(x, y) is
any polynomial of degree D on R2, then we set F(x) = P(x, -+1'(x)). Thus, in
effect, F is the restriction of a polynomial to the arc IF.

The simplest estimates needed for symplectic subunit balls are given by
the following innocent-sounding results.

Theorem 12.1 (Bernstein Theorem). Let r and F be as above. Then F
satisfies estimates (12.3), (12.4), (12.5) for all intervals I with I* C [-1,11.
The constant C* in (12.3), (12.4), (12.5) may be taken to depend only on
the degree D and on the constants C, c in (12.7), (12.8).

See Fefferman and Narasimhan [3].
When I first thought about this result, it gave me a lot of trouble. My

first reaction was to try to extend polynomials from r to S with bounds.
More precisely, I made the following:

Conjecture: Given r and P as above, there exists another polynomial
P(x, y), with the following properties

The degree of P is bounded a priori in terms of the degree D, (12.9)

P agrees with P on r, (12.10)

maxs JPJ C. maxr JP1, with C. depending only on

the degree D and on the constants C, c in (12.7), (12.8).
(12.11)

This conjecture easily reduces the above Bernstein theorem to the famil-
iar properties of polynomials on the unit square. However, as Narasimhan
quickly pointed out to me, the conjecture is false. Here is a simple counterex-
ample. Fore > 0, let rE = {(x, y) E S: y(1+x2) = e}, and let PE(x, y) = y/c.
Since r, _ {(x, y) : P, (x, y) = , } on r, we have maxr, JP,J = 1. Note
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that FE tends to the interval [-1, 1] x {0} C S. If we could find a polyno-
mial PE as in the conjecture, then we could find a sequence {e1} -+ 0 for
which the PE, converge to a limiting polynomial P(x, y) on S. Recalling that
PEA (x, y) = PEA (x, y) _ i on r(j and passing to the limit as j -+ oo, we
find that P(x, 0) = lei for all x E [-1,11. This contradicts the fact that
P(x, y) is a polynomial, so the conjecture must be false.

Fortunately, Narasimhan's counterexample suggests the correct modifi-
cation of the false conjecture. In the example, although PE(x, y) = y/e
may be as large as 1/c on S, we saw that PE(x, y) = iT on rE. Evi-
dently, maxlx,y?ES i is bounded, uniformly in e. Thus, P, extends, not to
a polynomial PE, but to a rational function with a harmless denominator.
Narasimhan and I showed in [3] that this happens in general. Our result is
as follows.

Theorem 12.2 (Extension Theorem). Let Q be a polynomial of degree
D on M. Suppose Q satisfies (12.6), (12.7), (12.8), and let r = {(x, y) E
S: Q(x, y) = 0}. Finally, let P be another polynomial of degree D on ][t2.
Then there exists a rational function P/G on R2, with the following proper-
ties:

P=P/G on r, (12.12)

P on d have degree at most D,,, (12.13)

c <G<C.onS, (12.14)

mSaxJPJ < C.mrxJPI . (12.15)

Here, D* depends only D, while c,,, C,. are positive constants depending
only on D, c, C in (12.6), (12.7), (12.8).

The Extension Theorem substitutes well for my false conjecture. In par-
ticular, it easily implies the above Bernstein Theorem. The proof of the ex-
tension theorem is not so easy. To study symplectic subunit balls, Parmeg-
giani needed a generalization of the Bernstein Theorem, in which r is a
smooth patch in a real algebraic variety, rather than an are. (See [8].) With
considerable difficulty, Narasimhan and I were able to generalize our Bern-
stein and extension theorems to this case. (See [41.) The proof of the gen-
eralized extension theorem is formidable. It uses 8 technology, the Koszul
complex, the theory of semialgebraic functions, and an induction on the di-
mension of an exceptional set of algebraic varieties. We believe that these
tools will be needed in any foreseeable proof of the extension theorem of [4].
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However, after doing all that work, Narasimhan and I discovered that
there is a much simpler route to the Bernstein theorems, bypassing the ex-
tension theorem. In fact, all the Bernstein theorems in [3], [4] are contained
in the following general result of functional analysis. (See [5].)

Theorem 12.3 (Abstract Bernstein Theorem). Let i: X -+ Y be an
injection of Banach spaces, and let f1, f2, ... , IN be real-analytic maps from
an open set U C Htn into X. For A E U, write Va for the vector subspace
span {f1(A), f2(A), ... , fN(A)} C X. Then, given K C U, we can find a
constant CK s. t. IIx(I x < CK II iX II Y whenever x E Va and A E K.

To see a typical application of the abstract Bernstein theorem, take X =
C1[-1,1], Y = C°[-1,1], U = 1[tN+2, and for A = (A1, A2, ... , AN, xo, r) E
U, define f; (A) E C'[-1, 11 by (f3(A))(x) = exp(Ai [rx+xo]).

The abstract Bernstein theorem then says that max, IF'I < maxi IFI
N

whenever F(x) _ E Al exp(A3x) and I = [a, b], with C,, depending only on
j-1

bounds for N, I Aj I, a, b. The abstract Bernstein theorem easily implies the
Bernstein theorems in [3], [4], but not the extension theorems given there.

The proof of the abstract Bernstein theorem is a double induction on the
dimension of the parameter space U and the number of real-analytic maps
fl, ... , fN. The argument is rather simple, but it uses a powerful algebraic
tool from Bierstone-Milman [1], essentially equivalent to Hironaka's theorem
on resolution of singularities in the special case of hypersurfaces.

Before leaving algebraic functions, I would like to point out that Roytvarf
and Yomdin [9] recently settled the question of how the constants C. in (12.3),
(12.4), (12.5) depend on the degree of the polynomial P. Although this is
not needed in studying symplectic subunit balls, it is a very natural question
in view of the classical estimates for polynomials.

Let me conclude this paper by explaining the connection between alge-
braic functions and symplectic subunit balls.

For simplicity, I will restrict attention to pseudodifferential operators on
R1, even though this leaves out significant issues, e.g., there are no bad a's
in one dimension. We want to understand how the symbol p(x, ) _> 0 looks
near a point (x°, °) E R. By Taylor-expanding p to high order about
(x°, 6°), we may assume without loss of generality that p is a polynomial
of some high degree D. A suitable Calder6n-Zygmund decomposition (see
[2]) breaks up JR2 into rectangles S = I x J,,, on which p is either elliptic
or "nondegenerate." The elliptic S are easy to understand. On a non-
degenerate S, after making a canonical transformation, we may assume
that 02

p(x, ) is bounded below by a positive constant. The implicit function
theorem then shows that p may be written on S in the form p(x, t;) = e(x,
(t; -,O(x))2+V (x), where e is an elliptic 0th order symbol (bounded above and
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below by positive constants). Here, e _ fi(x) is the solution of (x, ) = 0,
and V (x) = p(x,,i(x)). Since p is a polynomial of degree D, I' _ {t =
i4'(x)} C S,, is a smooth arc on an algebraic curve, and V(x) = p(x,lf'(x)) is
the restriction of a polynomial to I. Our Bernstein theorems show that V and
ip have the growth and smoothness properties of polynomials. For instance,
the maximum of I V (x) l on I (the x-component of S,,) is comparable to
the maximum of IV(x) l on the double of I,,. This is a crucial ingredient
in showing that the symplectic subunit ball of radius 26 about (x°, C°) is
comparable to that of radius J. See [8]. Note that our Bernstein inequalities
must be uniform in r to be of any use, since the arc r depends on the symbol
p. Thus, Bernstein inequalities for algebraic functions enter into the study
of symplectic subunit balls.
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Chapter 13

Multiparameter
Calderon-Zygmund Theory

Robert A. Fefferman

I would like to take this opportunity to express my deep gratitude to my
teacher, colleague, and. friend, Alberto P. Calder6n. Professor Calder6n's
brilliance, warmth, and. generosity have greatly enriched my life at the Uni-
versity, and, on the occasion of his seventy-fifth birthday, it gives me the
greatest pleasure to acknowledge this.

The purpose of this article is to give something of an overview of those
extensions of classical Calder6n-Zygmund theory dealing with classes of op-
erators which are invariant under dilation groups larger than the classical
ones. It will be as nontechnical as possible in the hope that analysts not
already familiar with the material will be able to gain a good understanding
of the main issues and features of this theory here without being burdened by
the details. The interested reader can consult the references to find precise
proofs of the results we present.

The main example of nonclassical dilations, and the only ones whose
theory is understood well at the present time, are the product dilations.
These are defined as follows: For x = (x1i X2.... , xn) E R, we set

P6l 62...6n (`C1, x2, ... , xn) _ (61x1 a 82x2, ... , 6nxn),

6i > 0, i = 0, 1, 2, ... , n. Some basic examples of operators naturally associ-
ated to these dilations are as follows:
Example 13.1. The relevant maximal function is the strong maximal func-
tion, Ms, given by

,Msf(x) =
sup IRI

fIf(v)IdY
XER

207
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where the supremum is taken over the family of all rectangles with sides
parallel to the axes. According to the well-known Jessen-Marcinkiewicz-
Zygmund Theorem [1), MS is bounded for the space L(log+ L)n-1(Q) to
weak L1(Q), where Q denotes the unit cube in W.

Example 13.2. The multiple Hilbert transform,

Hprod(f) = f *
1

xlx2...xn

is the simplest example of a product singular integral and commutes with
the product dilations. The fact that the convolution kernel for this operator
has a higher-dimensional singularity set makes its analysis delicate.

Example 13.3. If we regard in+m as a product ]R' x ]Rm, with the dilations
P61,62 (x, y) = (61x1, 62x2), 61, 62 > 0 (x E W, y e Wn) then we have a class
of Marcinkiewicz-type multipliers, M invariant under these dilations. The
class M is defined as follows: Suppose

Then a multiplier m(t:, 77) E M provided m is infinitely differentiable away
from {(t;,27) :e=0 or 27=0} and

IXY[m.(61e,6277))I < C
71

for all (l;, 71) E A, Ial < [) + 1, IQI = (m] + 1, uniformly for all 61i 62 > 0-2
This definition simply states that m(t;, 27) E M provided m behaves like a
product ml(6)m2(27) of classical (Hormander) multipliers.

Example 13.4. The product Littlewood-Paley square function. Let 71, E

C,0°(I8n), E C. (Rrn) and assume that both 771 and 272 have integral zero.
Set

Then

X6,,62(x,y)=6jnb2 'n2)1
(6X rh1/ (62J

for 61i62>0.

dt1 dt2
Sprod(f)(x,y) = fri<ti If *11)12 dude n+1 m+I-vl<t2

t1 t2
t,,t2>0

Then Sprod is a vector-valued product singular integral and plays very much
the same role for the product theory that the classical Littlewood-Paley func-
tion plays in the classical Calderon-Zygmund theory. For example, as we shall
see, Sprod will define Hardy spaces in the setting of product dilations, and
also we shall have Stein's pointwise majorization of Sprod(Tf) by an appro-
priate version of ga(f) whenever T is a multiplier operator whose associated
multiplier belongs to M.
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Example 13.5. Rubio de Francia's Square Function. If R is a rectangle with
sides parallel to the axes define the partial sum operator SR by

SR(f f = xRf.

Then let S(f) = [>k(SRkf)2]1/2, where {Rk} is a collection of pairwise
disjoint rectangles whose union is all of R2. Then S is (the product version
of) Rubio de Francia's square function.

All of these operators can be analyzed rather completely at this point.
Let us attempt here to identify some of the highlights of the theory.

In the first place, the theory of Hardy spaces was extended by Gundy and
E. M. Stein [3]. Taking the product dilation on R2 as the simplest example,
it was shown in [3] that for 5 > 0, 0 E C°°(R2). Then setting

Jprod(x,Y) = sup [f * Oti,ts(U,V)I,
In-yJ<eZ
tits>O

we have:

Theorem 13.6 (Gundy-Stein). The product space f;,w c LP(R2) if and
only if Spd(f) E LP(R2) for all p > 0 and the LP norms of these maximal
and square functions are comparable.

We may then unambiguously define HP(R1 x RI), product Hardy spaces
as if Ifprod E LP(R2)} = { If ISprod(f) E LP} and set IIfIIHP(RlxRl) to be either

IlfprodIILP(R') or IlSprod(f)IILP(RZ)

Now, as is well known, there is a basic obstacle to the theory at this
point. Thus, as was pointed out by Carleson [4], the dual spaces of H'(R' x
R1) cannot be identified with the space of functions whose mean oscillation
(defined appropriately) over rectangles is bounded. Also, one does not have
the expected atomic decomposition of functions in HP(R' x R'). Instead
one has a characterization of the dual of H'(R' x R') in terms of Carleson
conditions with respect to open sets in R2 rather than rectangles and an
atomic decomposition of HP(R' x RI) into atoms supported on open sets.
This theory, together with the theorems on interpolation between HP(R' x
RI) and L2 (R2) provide the correct framework in order to allow the almost
complete circumvention of the failure of the classical theory to extend to
product spaces (see S. Y. Chang and R. Fefferman [5], [6]). The key geometric
fact which combines with, say, the atomic decomposition of Hardy space in
order to make this happen is due to J. L. Journe [2], [7]. This fact concerns
the geometry of how maximal dyadic subrectangles sit inside an open set in
R", n > 1. Taking the case n = 2, suppose ft C R2 is open and of finite
measure. Let M(fl) denote the family of all maximal dyadic subrectangles
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of 0. Then >REM(O) IRI may well diverge, and this divergence is a serious
obstacle. However, in [7] it is shown that

IRI'Y(R)-b < C61QI for any b > 0,
REM(O)

where 7(R) is a factor which reflects how much R can be stretched and still
remain inside the expansion of S2, S2 = {Ms(Xs,) > 1/2}.

When this geometric result is combined in the right way with the atomic
decomposition, the outcome is quite surprising. To describe it, we make the
following definition:

Definition 13.7. A function a(x, y) supported in a rectangle R = I xJ C R2

is called an Hp rectangle atom provided

f,
a(x, y)x' dx = 0 for all a = 0,1,2,... , Np,

where Np is sufficiently large (for example, N. > 1/p - 2 suffices),

for all a = 0,1, 2, ... , Np,

and

IIaIIL2(R) S
IRI1/2-1/p

This means that a behaves like al(x)a2(y), where the ai are classical
HP(IR') atoms, although, of course, a(x, y) need not actually be of the form
a1(x)a2(y). According to Carleson's counterexample, the Hp rectangle atoms
do not span Hp(1R' x R') as was expected prior to his work. However, we
have

Theorem 13.8. [8]. Fix 0 < p < 1. Let T be a linear operator which is
bounded in L2(1[t2) and which satisfies

J IT(a)Ipdxdy < Cy_a for all? > 2 and for some b > 0

(here R, denotes the 7-fold concentric enlargement of R) whenever a is a
rectangle Hp atom supported in R. Then T is bounded from HP(R' x R') to
Lp(R2).

Thus, while the space H"(R' x R') has a complicated structure, and its
atoms are based on opens sets in R2 as far as operator theory is concerned,
this difficulty can be avoided. To check whether an operator acts boundedly
on product Hp, one can simply check its action on (nonspanning) rectangle
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atoms. So, in an appropriate sense, the operator theory is better than that
of the underlying functions spaces. This theme plays a central role as well
when we consider weighted estimates in product spaces. Let us turn now to
our overview of this issue.

To begin with, a certain amount of the theory is straightforward: We
define w E AP(R' x R1) by the condition that

(IRI 18W) ( I" JR

w-1/P-') < C

for all rectangles R with sides parallel to the axes.
It is very easy to see that this product AP condition is completely equiva-

lent to the requirement that w(., y) belong to AP(R) with an AP norm which
is bounded as a function of y, and also the symmetric requirement applied
to w(x, ). With this in mind it is simple to use the Jessen-Marcinkiewicz-
Zygmund iterative proof to show that Ms is bounded on L" (w dx dy), 1 <
p < oo, if and only if w E AP(R' x RI). However, the weighted estimates for
singular integrals are a different matter entirely. The reason for this is that in
most of the examples of product operators given above iteration completely
fails, and we must look to prove the desired estimates by understanding how
the strong maximal operator controls the product singular integral. Unfor-
tunately, we do not have good A inequalities at our disposal, so it is far from
obvious how to proceed..

It turns out that the solution involved an extension of the classical esti-
mate

(Tf)#(x) <_ C[M(f2)(x)]1'2,
where T is a classical CalderGn-Zygmund singular integral, M is the Hardy-
Littlewood maximal operator, and # is the (Charles) Fefferman-Stein sharp
function. In order to extend this to product spaces, we have a similar obstacle
to that facing us from product HP or BMO theory. That is, we would
be tempted to define a product version of the sharp function f#(x,y) as
sup(x,y)ER OSCR(f ), where oscR(f) would denote some suitable notion of the
(product) mean oscillation. Unfortunately, it can be shown [9] that it is
possible to have f# E 11(R2) but f ¢ LP(R) for any p > 2. Once again, the
operator theory is more satisfactory than the function theory, in the following
sense:

Suppose T is a bounded linear operator on L2(R"). We say that a positive
operator S is a sharp operator for T provided S has the property that not
only is S f (x, y) > sup(T,y)ER oscR(T f ), but has the additional property that
whenever R_is a rectangle which contains (x, y) and f is a function supported
outside of 7 > 2, then

Sf (x, y) > 76 OSCR(Tf ).
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For example, for product singular integrals like the product commutators,
we have

1'# = Ms(f2)1"2.

The point is that, whereas for an individual function the condition f # E LP
is useless, we have the following:

Theorem 13.9 (R. Fefferman [8]). If T# is bounded in Lp(R2), then T
is bounded on Lp(R2), for all 2 < p < oo.

The proof of this consists of a duality estimate:

J C2

Sprod (T f )4 dx dy, < Cfti + T#] (f )2MsNl (-0) dx dy,

where MS(N) stands for the strong maximal operator composed with itself N
times.

This estimate, which in the special case when T = I is due to Wilson
[10] is sufficiently strong to imply that whenever T# = Ms(f2)1/2 we have T
bounded on Lp(w dx dy) whenever w E API2(Rl x R'). Because the assump-
tion T# = Ms(f2)1/2 includes singular integrals only bounded on 11(R2)
when p > 2, the class Ap/2 is best possible. However, when we consider
singular integrals bounded on the full range of Lp(R2), 1 < p < oo, such as
product commutators, then it is possible to extend this result to the sharp
one, where T is bounded on Lp(w dx dy) when w E AP(R' x R') (see R.
Fefferman [11]). Here, we shall be content to remark that this is done by
using the AP/2 result above to obtain weighted estimates for the action of T
on H' (R' x R') atoms and then applying Rubio de Francia's Extrapolation
Theorem.

It is interesting to note that, while one might interpret the discussion of
the product theory above to mean that spaces of functions defined in terms
of mean oscillations over rectangles or satisfying BMO conditions uniformly
in each variable separately are of no use, this is actually quite wrong. In
fact, several interesting results in this direction have been obtained recently
by Cotlar and Sadosky [12].

For example, although our product BMO space can be used to show
that certain singular integrals are bounded on LP spaces, we have lost the
connection with the natural class of product AP weights. In [12], Cotlar
and Sadosky find the correct space (they name it bmo) to establish this
connection. A function 0 belongs to bmo provided for each rectangle R with
sides parallel to the axes,

J R1
f f I0(x, Y) - ORI dx dy < C,
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where OR denotes the mean value of 0 over R. This is shown to be equivalent
to the condition that y) belongs to BMO(R') with norm bounded as a
function of y, and ¢(x, ) E BMO(R') with norm bounded in x. The point is
then that bmo has the same relation to the classes AP(R' x R') that classical
BMO has to AP(R').

Cotlar and Sadosky also introduce another space which extends to prod-
uct dilations, the classical space BMO(R'). This space, called restricted
BMO, is defined as follows: Suppose Py and P. denote the analytic projec-
tion operators in the x and y variables, respectively. Then a function 0 on
R2 is in restricted BMO provided there exist L°° functions 00, ¢1 and 02 so
that

(I - Px)O = (I - P.)q51, (I - Py)O = (I - Py)02, and PPP10 = PPPy-oo.

Then this space of functions in restricted BMO is shown in [12] to be the
natural space to consider when characterizing the product versions of Hankel
operators. The same cannot be said of the Chang-Fefferman BMO(R' x RI).
So it is very clear that the latter space does not tell the whole story of
extending BMO to product spaces.

The eventual goal of the program is to extend harmonic analysis past the
realm of product spaces, considering other dilation groups, and the operators
associated to them. This theory is just at its start, and it seems very difficult
indeed at this point. Nevertheless, we would like to indicate here a few results
in this direction. They are delicate, and, in some cases relate directly to issues
which are new, even for singular integrals on R1.

The setting will be the next simplest after product space dilations, and
those are as follows: In 1R3 consider the family of dilations {p6,,62}6,,62>0 given
by

P61,62 (x, y, z) = (61x, 62y, 6162x)

Then the maximal operator invariant under these dilations was first consid-
ered by A. Zygmund:

Mi f (x, y, z)
= (s.s p Ra R JR if 1,y,z

where Rs denotes the family of rectangles with sides parallel to the axes,
with side lengths of the form 61, 62, 6162 for some 61, 62 > 0. The singular
integrals associated with the dilations were introduced by Ricci and Stein [13]
in connection with problems involving singular integrals along surfaces. In
order to motivate their definition of these singular integrals, let us consider
a classical singular integral kernel K(x) of R1. By examining this kernel
on intervals of the dyadic decomposition of W, it is easy to see that there
exist functions {¢k}kEz so that the 5k are all supported in [-1, 11, they all



214 Chapter 13: Multiparameter Calderdn-Zygmund Theory

have mean value 0, and they satisfy a uniform smoothness condition (such
as I(ik)'(x)I < C for all x) while

K(x) = L 2-kOk 2k
x

kEZ

In analogy with this, Ricci and Stein introduced convolution kernels of the
form

K(x, y, z) _ ' 2-2(k+j)Ok.j , y Z

k,jEZ
2 2k 2k2j

where the functions Okj are supported in the unit cube of R3, have a certain
amount of uniform smoothness and each satisfy the cancellation condition

fk.3(xYz)dxdY0forallzERlr

J q5k'3 (x, y, z) dx dz = 0 for all y E lit',

f ¢kj (x, y, z) dydz = 0 for all x E R1.
2

It is shown in [13) that the requirement of having mean value zero in
each pair of variables fixing any value of the remaining variable is the correct
cancellation condition to place on the Ok,j because without this cancellation
it is shown that one does not have (when all Ok,j are the same) boundedness
of T3f = f * K on L2(R2) and with it, one has T. bounded on LP(R3), for all
1 <p<00.

The idea required to prove the boundedness of T3 on LP(R3) is a clever
decomposition of each Ok,j into a sum of functions that have "product space
cancellation," i.e., mean value zero in each variable separately. The functions
will, however, only be supported in various rectangles of arbitrary dimension,
and so what one realizes in the end is that T3 can be viewed as a product
operator. Here, we shall discuss problems where the product theory cannot
be applied in this fashion. The first such example is A. Cordoba's solution
(14] of Zygmund's conjecture for the maximal function Al,:

m{(x,y,z) EQ: M3(f)(x,y,z) > a} < a[[f+iLlog+L(Q), (13.1)

where Q denotes the unit cube in R3. Cordoba's theorem means that M3
is a maximal operator with respect to a two-parameter family of rectangles
(i.e., a two-parameter family of dilations acting on the unit cube) and so
M3 behaves as though it were the strong maximal operator in R2, the model
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two-parameter operator. It would clearly be of no use to appeal to the
majorization of M3 be the three-dimensional strong maximal operator which,
of course, fails to satisfy (13.1).

Instead, what is used is the method (started in Cordoba and R. Fefferman
[15] and perfected in Stromberg [16] and Cordoba and R. Fefferman [17]) of
controlling more complicated maximal operators by simpler ones by means
of a covering lemma.

The next example of such a problem occurs in obtaining weighted es-
timates for M. and T. The reason that the weighted problems cannot be
solved by a direct appeal to the product theory becomes clear after a cursory
glance at the problem.

To begin with, there is an obvious guess at what is the correct class of
weights to consider. This is the class of AP(3) defined by

fw) (fwu11)'C IRI < C for all R E R4,

where R. denotes Zygmund's class of rectangles, i.e., those whose z side
length equals the product of their x and y side length. It will turn out that
this AP(J) condition is necessary and sufficient for a weight w so that M'
and Ta are bounded on IP(w), but one cannot get this directly from product
theory because there are many examples of w E AA(3) which are not product
space weights, i.e., which fail to satisfy the AP condition on all rectangles
with sides parallel to the axes. Thus if M;3) denotes the strong maximal
operator on R3, M;3) will be unbounded (in general) on 1P(w). So knowing
that M3 f < M'(3) f or that Ta can be viewed as a product singular integral is
of no use here. Let us describe the solution of this problem from R. Fefferman
and J. Pipher [18]:

We begin with the weighted estimates for M. It turns out that while
M < M;3) does us no good, the key observation is that M'' < M,, solves
the problem, where the superscript w means that w measure is substituted
for Lebesgue measure everywhere in the definition of the operator. (For
example,

M' ?f (x, y, z) = sup J if lw,
(x,y,z)ER w(R)

and the sup is taken over all R with sides parallel to the axes.) The reason
for this is that M; is bounded on LP(w) when w E A9(g) even though M. is
unbounded there. The reason for this boundedness of M; is not obvious, but
lies in the theory of the covering lemma techniques in [15]. In order to prove
Ma is bounded on IP(w), we think of proving an appropriate covering lemma
as in [15], but with w measure replacing Lebesgue measure. Now, in the
covering lemma, the main idea is to order the given rectangles in decreasing
order of their z side length. Then the rectangles are sliced by a plane parallel
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to the (x, y) plane, and the two-dimensional slices are then analyzed. So it
is not surprising that, in the w-measure version of the covering lemma, one
only needs w to be well behaved in the x and y variables only (not in z).

However, by simply observing that intervals oriented in the x direction
are collapsed versions of rectangles in Zygrund's class, it follows from the
definition of AP(3) that weights w E AP(3) are classical AP weights in the x
variable for each y and z and similarly they are uniformly in AP of the y
variable for each fixed x and z. Therefore each w E AP(3) is, in fact, well
behaved in the required two (out of three) directions, proving the desired
weighted estimates for M3.

Now, there are no good A estimates to show how Ma controls T3, so
there is no immediate way to derive weighted estimates of T3 from those
of M. We therefore proceed as follows: Our idea, as always in Calderon-
Zygmund theory, is to see why LZ theory is special and somehow simpler
than LP theory, p 0 2. Once we do this, we shall apply Rubio de Francia's
extrapolation theorem in order to establish that T3 is bounded on LP(w)
when w E AP(3). We should make it clear that Rubio's extrapolation is not
a completely abstract machine which works in the setting of an arbitrary
dilation group. So it turns out that in order to apply this theorem, we
need to know exactly one fact in advance: the weighted norm theory for the
appropriate maximal operator.

This fits our intuition on Calder6n-Zygmund theory in the sense that
the maximal operator's behavior is what is necessary to know in order to
understand properly the singular integral. Rather than the decomposition
into good and bad parts of a function using the maximal operator to pass
from L2 to LP, we use the maximal operator (in our case M3) to be able to
apply Rubio's theorem.

Now we return to the question of what is so special about the L2 the-
ory. For the case of product dilations, the weighted norm inequalities for
convolution operators analogous to T3 can be done on LP(w), 1 < p < oo by
iteration. In the case of other dilations such as Zygmund's, iteration only
works when p = 2. This is done as follows:

We introduce the appropriate square function S3 f .

/ 2 dudvdwdsdt"1/2
S3f

= Cf
... J

if *,P
s,t(x + U. y + v, z + W ) s3t3

where the Zygmund cone

1'3(0) = {(u, v, w, z, t) : Jul < s, Ivl < t, and Jwj < st while s, t > 0},

and where T E COO(W) has mean value zero in each pair of variables, fixing
any value of the other, and finally, where

/ x z
'3,t(x,y,z) = s-Zt-2 s, t,

St
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It turns out that S3 (T3 f) is very well controlled by S3 (f) so that what we
really require is the weighted Littlewood-Paley theorem,

IISI(f)IILP(w)

IIf IIL,(w)

is bounded above and below by constants depending only on p, 1 < p < 00
and on IIWIIAP(3)

The Littlewood-Paley theorem is obtainable by iteration for L2 only. This
is accomplished by an observation regarding functions which have the appro-
priate cancellation, for the definition of T., namely having vanishing mean
taken in each pair of variables separately. It turns out that any W(x, y, z)
having this cancellation can be written as a sum

W (x, y, z) ='I' 1(x, y, z) + *2 (X, y, z),

where *1 and 'y2 have stronger cancellation than does T: iIf has mean zero
in the x variable for all values of y and z and has mean zero in the (y, z)
variables (taken together) for each fixed x; W2 will have mean zero in the y
variable and in the (x, z) variables. We can then write Ta = Ta + T2 where
the bump functions defining the convolution kernel for Ty have the extra
cancellation of xF1 above and similarly the kernel for 7 will be formed out
of dilates of functions with the extra cancellation of 'I'2 above. How does
this help us? This makes it possible to control Ta using a Littlewood-Paley
function Sa defined by means of a W of the form WY(x, y, z) = i7(x)O(y, z)
where 77 and 0 have mean 0 in the x and (y, z) variables, respectively. This
"separation of variables" makes it possible to control

Ilsa(f)IILp(w)

I If I ILP(w)

when p = 2 directly by integration, and this completes the proof of the
weighted estimates for Tb (for details, see R. Fefferman and J. Pipher [18]).

There is another deep problem concerning the singular integral T. that
should be mentioned. Here we seek (Lebesgue measure) LP estimates which
express the fact that T, is a singular integral associated with a two-parameter
family of dilations. Thus in the spirit of Cordoba's estimate for M3 we might
suspect that the operator norm of Ta on LP(R3) is O(p2) as p --3 oo. In
[18], we are not able to get this, but we are able to improve upon the bound
O(p3) which follows from the Ricci-Stein approach using an appeal to product
theory in three parameters. In [18] we obtain

I IT3IILo(R3) = O(ps/2) as p -4 00,

and here we would just like to sketch one of the main ingredients in the proof
of this estimate, because it involves some new observations about classical
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operators, such as the Hilbert transform, and because it has applications in
other settings as well.

In attempting to estimate I1T3lILP(R3), one is faced with the following ques-
tion: For a classical operator, such as the Hilbert transform, does there exist
an L2 estimate which implies the sharp estimate of the operator norm of H
on LP asp --4 oo? (Of course we require the sharp estimate IIHIILP(R1) = O(p)
asp-4oo.)

The same question can be asked for the classical square function, where

ISf IILP(R') 5 Cpl/2II f IILP(R1) for large p.

This is best seen via a duality inequality in Chang, Wilson, and Wolff
[19]

f(Sf)2(x)5(x)dx< CJ f2(x)M(¢)(x)dx,
1 R1

and one could hope to answer the question for the Hilbert transform by
proving

f (H f)2(x)O(x) dx < C J f 2(x)M(M(qS))(x) dx.

Unfortunately this is false, but we do have, for example,

f (H f)2(x)O(x) dx < C J f 2(x)M(M(M(O)))(x) dx

(see Wilson [10]). This, however, does not yield sharp information about
IIHIILP(R1). The way around this lies in the idea of what might be called
"sharp weighted inequalities."

We know very well that H is bounded on L2(w) if w E A2(R'), and

II Hf IIL'-(w) < Cu,IIf IILz(w),

where Cw depends only on IIwIIA2(Rl). The point is to ask precisely for the
sharp dependence of Cw upon IIWI1A2 or at least some norm of w in an
appropriate weight space. In [18] we show that

1/2
/r' \ 1/2

(JRl f 2(x)w(x) dx) < CIIwIIA (R1) (JRI (S f)2(x)w(x) dx )

and

ll

(JR1

\
(fe' (Hf)2 (x)w(x) dx) <_ CIIwIIA'(Rt) f 2(x)w(x) dx I .

Considering, for example, the second of these estimates, we claim that it
easily implies the sharp estimate for IIHIILP(R'):
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Let p > 2, and II0II(p/2)y = 1. Then, following Rubio de Francia, define

v = O + M(O) + M o M(O) +...
2II MII L(P/ )' (2II M

Then IIVII012>' < 2 and IIvIIAl(R1) <_ 2II MII L(oi2' = O(p). Taking into
account the

j
sweighted estimate above gives

(H f)2(x)S(x) dx < j (H f)2(x)v(x) dx

CZIIvIIAI(Ri) l 1 f2(x)v(x) dx

2/p

< C2p2 (fIf(x)IPdx)

which proves that IIHIILP(R1) = 0(p).

It is interesting that the first of the sharp weighted estimates above deal-
ing with the control of f by Sf with constant O(IIwIII 2) is shown in (18] to
be completely equivalent to the estimates by Chang, Wilson, and Wolff which
show that if S f E LOO(T), then f 2 is exponentially integrable. And this allows
us to give a very simple treatment of the problem in the thesis of Jill Pipher:
If denotes the product square function on T2 then in [20] Pipher shows
that the Chang-Wilson-Wolff result extends to T2: If Spod(f) E L°O(T2),
then If I is exponentially (not square exponentially) integrable.

The reason that this is nontrivial is that one seeks to reduce this, by
an iteration argument, to the one-dimensional case. This can be done by
a standard procedure, but with the complication that one needs the one-
dimensional result for Hilbert space valued functions f (x), and if one looks
at the Chang-Wilson-Wolff estimate, this means we need to handle f eIf(x)I
where ,I I denotes the Hilbert space norm. This can be done, but it is
delicate and is not a direct consequence of the scalar valued case. However,
by observing that the Chang-Wilson-Wolff theorem in completely equivalent
to the (quadratic) sharp weighted inequalities, the extension to the Hilbert
space valued functions is absolutely immediate, and so we have an extremely
simple proof of the extension of this theorem to product spaces.
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Chapter 14

Nodal Sets of Sums of
Eigenfunctions

David Jerison and Gilles Lebeau

14.1 Introduction
In the late 1980s Harold Donnelly and Charles Fefferman [7] showed how to
estimate the rate of vanishing of eigenfunctions and the size of their zero sets.
Their results say roughly that eigenfunctions resemble polynomials of degree
comparable to the square root of the eigenvalue. But the set of polynomials
up to a fixed degree is closed under addition. So it is natural to ask whether
sums of eigenfunctions have the same polynomial-like properties as single
eigenfunctions.

This paper extends the estimates of Donnelly and Fefferman from single
eigenfunctions to sums. As in the original proofs, the key tools in our ap-
proach are Carleman inequalities. Carleman inequalities or closely related
techniques are at the heart of most approaches to uniqueness of solutions to
partial differential equations. It is entirely fitting to discuss the Carleman
method at this conference since the fundamental paper of Alberto Calderon
[5] on uniqueness for partial differential equations is a spectacular extension
of the Carleman method from equations in two variables to systems in several
variables.

The point of view that we adopt will lead us naturally to some recent work
and unsolved problems in the subject of Carleman inequalities. Namely, we
will discuss problems related to uniqueness for nonlocal (pseudodifferential)
operators with minimal smoothness. These minimal smoothness questions

Research by David Jerison partially supported by NSF grant DMS-9401355.
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are directly inspired by the Calderon program for singular integral operators
with minimal smoothness. There are other new results that we will not
discuss. In particular, we alert the reader to important works of Thomas
Wolff surveyed in [28, 29].

The approach here simplifies slightly the original proof of Donnelly and
Fefferman by eliminating the need for a technically demanding version of
Carleman inequalities. But we wish to emphasize that this paper does not
prove any new theorems. Rather it recovers results of Fang-Hua Lin [22].
Lin was led to similar questions through an attempt to extend results of
Donnelly and Fefferman to solutions of the heat equation. The details of the
present method are different only because Lin does not rely on Carleman
inequalities. There are also more recent and more general estimates due to
Igor Kukavica [18, 19, 20].

14.2 Statements of Results
Let M be a compact C°° manifold. Consider an eigenfunction cp satisfying

AV = -W2(Q.

If the boundary of M is empty, then there are no boundary conditions, but if
the boundary is nonempty, then we impose either Dirichlet boundary condi-
tions (cp = 0 on 8M) or Neumann boundary conditions (8V/8v = 0 on 8M).
The results of Donnelly and Fefferman can be stated as follows.

Theorem 14.1 (Doubling). There are constants C1 and C2 depending only
on M such that

i141+C2
IT'I,max W - e

B(r)

where B(r) and B(2r) represent concentric balls of M. In particular,
vanishes at most at a rate rclW+c2

W

Theorem 14.2. If M is real-analytic, then there are constants C1 and C2
depending only on M such that the (n - 1) -dimensional Hausdorff measure
11n_1 of the zero set of cp satisfies

Wn_1({x E M : cc(x) = 0}) < C1w + C2.

These theorems describe the sense in which cp resembles a polynomial of
degree at most C1w + C2. As already observed in [6], one cannot hope for a
lower bound for the Hausdorff measure of the nodal set because in the case
of sums of eigenfunctions the nodal sets can be the empty set.

Let Wk be an eigenfunction with eigenvalue wk, that is, Ocpk = -Wkcp, with
Dirichlet or Neumann boundary conditions in the case that the boundary is
nonempty. We will prove
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Theorem 14.3. Theorems 14.1 and 14.2 are valid for any sum of the form

E aksak
Wk <W

How should one characterize a sum of eigenfunctions? Donnelly [6] uses
the fact that cp satisfies

But then he is forced to deal with a higher-order operator. He obtains the
same type of estimates as above for sums of eigenfunctions, but his constants
depend not only on w, but also on the number of terms in the sum. More
recently Kukavica [18, 19, 20] has proved estimates for Ak that are uniform
in k and he has deduced Theorem 14.3 .

We will follow an approach similar to Lin [22]. Namely, consider a func-
tion F defined on R x M by

(i + 0)F in. R x M; F(0, x) = 0; OtF(0, x) = o(x).

The solution to this problem is

F(t,x) = raksinh(wkt)Vk(x)[r wk

Denote XT = [-T, T] x MLl.- Then the quantitative property that characterizes
the "degree" of our sum. of eigenfunctions is (for, say, T = 1, 2)

II FII xl(xT) e'11W1I La(M). (14.1)

(Here H1(XT) denotes the Sobolev space of functions with first derivatives
in L2(XT). This discussion is not very sensitive to the particular choice of
function spaces.)

The case of the constant function (with zero eigenvalue) has to be dis-
cussed separately:

sinh(wt)
lim = t.
W- +O W

Therefore, in the case wk = 0, the expression wk 1 sinh(wkt) is replaced by the
function t. The constant function is always an eigenfunction in the Neumann
problem and in the case of empty boundary. This gives the extra dividend
that Theorem 14.3 applies not only to the zero set, but also any level set
{cp = a}. In fact, we can even add the constant function in the Dirichlet
case because the comparison inequality (14.1) is still valid. (This remark will
be proved in an appendix,) Thus in all cases the theorem applies to level
sets as well as the zero set.
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14.3 Carleman Inequalities
Let L = 88 + A. The first Carleman-type inequality that we need is

J l p 1'Lgj2 > c J [Ip-,IVgl2 + lp-Ogl2] for all g E Co (B\{0}). (14.2)

Here B is the ball of fixed small radius around the origin 0 and p is a
carefully chosen function comparable to the distance to the origin. The main
point is that the inequality is valid uniformly as 0 -+ oo. This inequality was
proved by Aronszajn (3] in 1957 in the C°° case. When the coefficients of
the operator L are of class C°,1, it was proved by Aronszajn, Krzywicki, and
Szarski in 1963 [4]. The case of nonsmooth coefficients is used in the proof in
the case in which the boundary is nonempty. (See [8] and the remarks later
on.)

The proofs in [4] are not easy to read. The best reference for a proof
of (14.2) is Proposition 2.10 of [7] (smooth case) and [8] (CO,' case). The
statement omits the gradient term on the right-hand side. But inequality
(2.9) of [8] and the subsequent inequality K > I leading to the proof of
Proposition 2.10 in that paper show that the gradient term can be included.
As mentioned before, there is the slight simplification that we need only the
cased=0.

It is not hard to deduce from (14.2) that the following inequality holds.

Lemma 14.4. For any nonempty open set V, V C X1, there exists a > 0
and C such that

IIFllH'(xt) <_

Rather than carry out the proof of Lemma 14.4, we refer to the analogous
proof of Lemma 14.5 below. An immediate consequence of Lemma 14.4 is
the unique continuation property for the operator L, namely, if F = 0 on V,
then F is identically zero on all of X1.

For the remainder of the paper, we use the shorthand M for the subset
{0} x M in XT. The next lemma makes the connection between F and its
values on M.

Lemma 14.5. Let B be a ball in X2 centered on M and disjoint from M.
Let B+ = { (t, x) E B : t > 01. Suppose that V C B+ and that F(0, x) = 0.
There exists a > 0 and C depending only on V, B and M such that

IIFJJH.(v) s CliatFllL2(BnM)IIFIIHI(B+)

This lemma implies another unique continuation result; namely, if F and
8tF are zero on B f1 M, then F is identically zero in B. It can be deduced
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from a boundary Carleman-type inequality

f JB+ I (at + o)gI2e21'` dt dx + Q .fBnm(atg)2e2B10 dx

> c f JB+(I'IOt,agl2 + 133g2)e2B+G dt dx

for all g E Co (B) such that g = 0 on M. The hypothesis on 0 that is needed
will be. discussed later. This Carleman inequality was proved by Lebeau and
Robbiano [21] and used there for an application to the theory of optimal
control for solutions of the heat equation.' Closely related inequalities are
proved in [16]. We are indebted to Louis Nirenberg for pointing out what
may be the earliest instance of inequalities of the type in Lemma 14.5 (in
different function spaces and for equations with real analytic coefficients) in
the work of Flitz John [14,15]. John's main theme is that the extra hypothesis
of boundedness of the solution over the larger set X2 restores something
resembling well-posedness of what otherwise is an ill-posed Cauchy problem
in the sense of Hadamard.

14.4 Main Idea of the Carleman Method
The idea of the Carleman method is to prove inequalities with weights e00
with 0 largest on the set from which the uniqueness propagates. Thus we
want 0 to take its largest values on B n M.2 On the other hand, there is a
kind of convexity constraint on 0, to be specified later, that will be needed
in order for inequality (14.3) to be true.

Suppose, without loss of generality, that (0, 0) is the center of B. We let

O(t, x) = -t + t2/2 - Ix12/4. (14.3)

This function was chosen so that (14.3) is valid, as we shall see below. Pick
three numbers 0 > '01 > 02 > 03. Define Si = {7, > z/,,} and S, = Si n it >
0}. Thus S, C S2 C S3. Let X E Co (S3) satisfy X = 1 on SS and define
g = XF. Assume for simplicity that 0 is the ordinary Laplace operator (for

'They show that given any nonempty open set U in (t, x)-space with 0 < t < T and
any initial condition u(0, x) = f (x) one can choose an inhomogeneous term Q supported
in U so that the solution to (8t + A)u = Q satisfies u(T, x) = 0. In other words, any
disturbance (initial condition) can be restored to zero using a "control" (inhomogeneous
term) supported in an arbitrarily small region of space-time.

2Similarly, in (14.2) the key feature for applications of the function p-6 is that it is
largest (+oo in fact) at the central point. Thus the Aronszajn inequality actually proves
what is called strong unique continuation; namely, a function satisfying an elliptic equation
that vanishes to infinite order at a point must vanish identically.
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a general Laplace-Beltrami one has to use normal coordinates and make a
somewhat more detailed computation):

(J + A)g = 2Vt,xx Vt,.F + ((dt + 0)X)F = 0 on S2+.

Substituting into (14.3), we have

e2o+Gs I IFII ;(Sg I IatFIIL2(S3nM) >
Ce2ov1, IIFIIH.(Si )-

The term on the left is increased if one replaces H' (S3 \S2) with H' (S3 ).
(It may seem as if this gives away too much. But we are retaining the very
small factor e2o+G2.) Now by ordinary arithmetic, selecting the best choice
of a, one can find a > 0 depending on ipi > Y'2 for which the conclusion of
Lemma 14.5 holds.

Now we come to the proof of (14.3). Define

Lo f = eo'n' (fit + 0) (e-o* f).

This conjugated operator is the same as the one treated by Gunther Uhlmann
in chapter 19 and by coincidence we have used the same notation L,6 .3 We
change variables by replacing g by the function f = e-o0g. Then

f f [(O + 0)g]2e2o" = J J(Lf).
Decompose Lp into its self-adjoint and skew-adjoining parts.

Lg=P+Q, P'=P, Q'=-Q.
Then

and

IILofIi2 = ((P+Q)f,(P+Q)f)
= I IPf 112 + I IQf I12 + (P1, Qf) + (Qf, Pf )

(P f, Q f) = (f, PQ f) + boundary terms

= (f , [P, Q] f) + (f , Q P f) + boundaryterms

= (f, [P, Q] f) - (Q f, Pf) + boundaryterms.

3Paul Malliavin informed us in his lecture that in 1954 Alberto Calderon had already
essentially proved his result on the inverse problem discussed by Gunther Uhlmann, al-
though his paper on that subject appeared much later. Thus very early in his career
CalderGn was preoccupied with the analysis of operators conjugated by real as well as
imaginary exponentials, that is, Fourier analysis in the complex domain. The fact that he
was considering Carleman inequalities and this inverse problem at about the same time
makes the connections between the two problems seem far from coincidental.
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In all,

I I L9f I I2 = I I Pf I I2 + I IQf 112 + (f , [P, Q] f) + boundary terms.

Therefore, in order to find a lower bound for II Laf 112 we will want some
condition on 0 that guarantees that

[P, Q] > > 0 modulo P and Q.

This is a convexity condition on V). The condition can be phrased in terms
of the symbol of the operators P and Q. It is important to require uniform
control with respect to the parameter 0, which is similar to an extra dual
variable.

Let us carry out the computations explicitly. Recall that z/' was given in
(14.3) and A is the ordinary Laplace operator. Then

P= O-,t2 +L)O

Q 200t,xVJ V t,. = f (Ot + 0)O.

Note that z/i was chosen so that Vt,.V)(0, 0) = (-1, 0) and the Hessian of -0
at (0, 0) is the diagonal matrix with first entry 1 and -1/2 as the remaining
nonzero diagonal elements. Therefore

[P, Q] _ --208 + 00 + 403 + lower order terms.

The first and last terms on the right-hand side are positive as operators,
but the middle term 0,, is not. But we only need positivity modulo P and
Q. This "bad" term can be absorbed by adding and subtracting a suitable
multiple of P to obtain.

[P, Q] = 20P- 408? - 00 + 203 + lower order terms.

The term 403 was very helpful and the multiple of P that was subtracted
needed to be small enough.to cancel only part of the 403 term. Furthermore,
because f = 0 on M = {t = 01,

boundary term = -20 J (at f )2 dx.
t-o

Combining the formulas above one obtains

IILaf112+20 ft=o(8tf)2dx

IIPf112+IIQfI12+/3311f112+(f,-4082f)+(f,-,BOf)+20(f,Pf)

6jjVt, f112 + 2/3311fII2

4
[f11(Vt,.g)e,6,11I2 + i03I{9ef+L112].
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This proves the Carleman-type inequality (14.3). Arguments of the kind
just given, involving commutators and integration by parts, can be found in
Hormander's text [12, p. 182] where they are attributed to F. Treves [26].
They are closely related to the arguments of Calderon [5]. The same device
was used by J. J. Kohn to make subelliptic estimates of operators arising in
analysis in several complex variables [17].

14.5 Applications to Sums of Eigenfunctions
Lemma 14.4 says

IIFIIHI(xl) <_ CIIFIIHI(V)IIFIIXI=(x2)'

and Lemma 14.5 says

I IFI IHI(v) <_ CI I atFII L2(BnM) II FIIHI(B+)

Therefore,
2 1 -2

.IIFIIHI(x,) S CIIc9tFIIL2(BnM)IIFIIHI(x2)

Recall that cP = O F. Recall further that, for T = 1, 2,

I I FII HI(xr) eTWII (PII L2(M).

Combining these inequalities, one obtains the following theorem.

Theorem 14.6. Let eo be a sum of eigenfunctions as in Theorem 14.3. For
any ball B there exist constants C1 and C2 depending only on M and the
radius of B such that

II'PIIL2(M) <_ eCIW+C2II'IIL2(BnM)

Theorem 14.6 is the crucial global estimate. The remainder of the proof
of Theorem 14.3 follows [7, 8].

Theorem 14.7 ([7J, Proposition 6.7). Let B, denote the ball of radius r
in C. Let R" be the real n-dimensional subspace of purely real vectors of
C". Let H be a holomorphic function on B2 satisfying

IIHIILo(B2) < e"IIHIIL-(Blnlen).

Then there are dimensional constants C1 and C2 such that

Wn_1({H=0}nB112nIR") <C1p+C2.

Theorems 14.6 and 14.7 and real-analytic hypoellipticity for the operator
8i + A on IR x M ([24, 27]) give the following corollary.
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Corollary 14.8. If M and aM are real analytic, and cp is as in Theorem
14.3, then

9'ln_1{gyp = 0} < C1w + C2-

Next, we wish to deduce the doubling property for V. If one replaces a ball
with a slightly smaller ball of comparable radius, elliptic regularity implies
that the Sobolev norm of F controls the L°° norm of F and vice versa.
In particular, Theorem 14.6 and elliptic regularity imply that F satisfies
doubling at unit scale. Next, Corollary 3.5 of [7] (applied to L with A = 0)
says that if F satisfies doubling at unit scale then it satisfies doubling at all
smaller scales.

Finally, we need to pass from doubling for F to doubling for W. Lemma
14.5 says that

I IFI I xl(v) <_ CI IOOFI I L2(BnM) I I FII H1(B+)

One can rescale this estimate to sets of size r < 1. At the same time we wish
to use more appropriate function spaces for this scaling, which is possible
because elliptic regularity estimates are valid independent of scale. To state
a rescaled version of Lemma 14.5, consider a ball B,. or radius r centered on
M and a ball VV, contained in B,+ = Br fl {t > 0}. Then

IIFIILc(V,) <CIIra:FlIi-(B,nM)IIFII
"Br)-

The doubling condition for F proved in the preceding paragraph implies

IIFIIL°°(Blor) <_ e1"+1IIFIIL-(V,).

Combined with the scale-invariant version of Lemma 14.5, this yields

I I rcoI I L-(B,TnM) <_ CI IFI IL-(B,,) <_ e °"i+°' I I rWI I L-(B,.nM),

which is the desired doubling condition for W.

We need to make a few more comments to complete the proof in the case
in which the boundary of M is nonempty. Lemma 14.5 was proved only for
balls that are disjoint from the boundary of M. Nevertheless, we shall see
that the doubling property for is still valid up to the boundary. This is
because, as described in [8], one can glue an isomorphic copy of M onto M
at the boundary and consider even functions on the "doubled" manifold in
the case of Neumann boundary conditions. In the case of Dirichlet boundary
conditions, one takes the odd extension of the sum of eigenfunctions plus
the constant (even) extension of the constant. Then the C°,1 coefficient case
estimates of [4] apply, and one can prove the doubling property for F for
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balls that do not touch the boundary. In this way, the estimate up to the
boundary of the type in Lemma 14.5 is never needed. Instead it suffices
to have such an estimate for balls whose diameters are comparable to their
distances to the boundary.

The estimate of Theorem 14.6 is best possible in the following sense.

Proposition 14.9. For any Sl C M such that Si # M, and any w > 1,
there exists a sum of eigenfunctions p of eigenvalue at most w such that

1k0IIL2(M) > ea''IIcoIIL2(n)

Proof. Consider the heat kernel

p(t, x, y) = Ee-t'l Vk(x)Vk(y)'
k

where cok is a complete system of normalized eigenfunctions. Then choose
0

y EM \H such that co (y) # 0. It is not hard to show that

sup p(t, x, y) < Ae-alt for 0 < t < 1.
ZEN

Let t = 1/w and define

V(x) _ [et'kcck(y)] cok(x)
WkGW L

Then

Ilp(t, y) - L2(M) S E e-2 "k (1 +
Wk), < Ce-`/t.

Wk>l/t

Hence

On the other hand,

II(PIIL2(n) < Ce-°/t

II(aIIL2(M) >- cI(PI(y)I > 0,

independent of t. This proves the proposition. While Theorem 14.6 is best
possible for sums of eigenfunctions, it is not optimal for single eigenfunc-
tions. For example, the eigenfunctions sin(7rkx) on the unit interval are
equidistributed.

Finally, let us note that the estimates hold for infinite sums of eigenfunc-
tions with exponentially decreasing coefficients.
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Theorem 14.10. Let e >'O. Then there exist constants C1 and C2 depending
only on M and a such that if

00 00

E akcok(x),ak = 1,
'P(x) =

k=1 k=1

and

p = log M akeE"k) < 00

then Theorems 14.3 and 14.6 are valid with w replaced with p,.

The proof is similar. One need only replace the sets X1 and X2 with XE14
and XE/2. (Lin gives a more precise dependence on a quantity related to p
in (22].)

14.6 Unique Continuation
Let u be a solution to the equation Lu = 0 on a connected subset S1 of a
manifold M. Recall that L is said to satisfy the unique continuation property
if u = 0 on a nonempty open set of St implies that u = 0 on all of Q. A
central ingredient of the proof of estimates of level sets of eigenfunctions
was Lemma 14.5, a boundary version of uniqueness. Thus we are led to
uniqueness questions for operators on a boundary. We will discuss both
qualitative and quantitative forms of uniqueness for boundary operators in
the case of Lipschitz graphs.

Let f be a Lipschitz function on R", that is, IIV f lILCC. Let M be the
graph of f in R+1,

M={(x,f(x)):xER"}.
We will discuss three operators on M. First, let U satisfy DU = 0 in x"+1 >
f (x) and U = g on M. The Dirichlet to Neumann operator is defined by

Ag = 8U/8v.

Second, define the single-layer potential

- Yl"g(Y) da(Y).Sg(X) = I

Third, consider the La.place-Beltrami operator L on M.

As was first pointed out to us by Carlos Kenig, the operator A does satisfy
the unique continuation property. This can be proved as follows. Suppose
that Ag = 0 and g = 0 on an open subset V of M. Extend U to the other
side of V by defining it to be zero. The two boundary conditions imply that
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the equation AU = 0 is valid in a neighborhood in Rnt1 of any point of V.
Therefore, by unique continuation for the ordinary Laplace operator, U is
identically zero.

The qualitative uniqueness property for A led Kenig to conjecture quan-
titative forms of unique continuation such as Carleman inequalities. It is
useful to formulate several quantitative properties that are closely related,
or perhaps equivalent. For example, one variant is the substitute for well-
posedness proved in Lemma 14.7. Another is the conjecture that if g = 0
on an open set, then IAgI satisfies a doubling condition. More precisely, the
doubling constant on a unit ball controls the doubling constant on all smaller
concentric balls. Furthermore, the density IAgJ should be an A.. weight. (For
a discussion of the weight condition for solutions of elliptic equations, see the
work of Garofalo and Lin [111.) In particular, if JAgi were to satisfy the
weight property, then one could prove the following version of uniqueness: If
g = 0 on an open set V and Ag = 0 on a set of positive measure in V, then
U is identically zero. Results of this type have been proved by Adolfsson,
Escauriaza, Kenig, and Wang [1, 2, 16] for convex domains and for Cl," do-
mains for any a > 0. But as we have learned from the work of Calderdn, the
natural scale-invariant question is the one for Lipschitz graphs.

Let us turn to the second operator, the single-layer potential. This is an
integral operator with an explicit kernel that is smoothing of first order. (As
is well known, the operator is equal to A-1 in the case that M is a hyper-
plane and has the same principal part in general.) The analogous question
is whether solutions to Sg = 0 satisfy a doubling condition or if g is an A,,,,
weight on any bounded subset of M. As far as we know, this question has
not been raised before. Some evidence in favor of such bounds can be found
in [13], where certain Carleman-type estimates for fractional powers of the
Laplace operator are proved.

Finally, we consider the Laplace-Beltrami operator on M. If M were C1,1,
then the coefficients would be C°,1 and the theorem of [4] would imply unique
continuation for this operator. But since we are only assuming that M is
C°'1, the coefficients are merely bounded and measurable, an entire derivative
short of the hypothesis of [4]. The hypothesis that the coefficients are C0,1
is known to be best possible. Extending earlier examples of Plis [25], Miller
[23] gave an example in three variables of an elliptic second-order operator
with C° coefficients for any a < 1 having nonzero compactly supported
solutions. Thus there is evidence against any unique continuation result for
this operator. On the other hand, the examples of Plis and Miller are not
graphs and the assumption that M is a Lipschitz graph is known to suffice
for other estimates in harmonic analysis. (See [9, 10].) So we can still ask
the question whether unique continuation is valid for the Laplace-Beltrami
operator for M and whether solutions satisfy a doubling or A00 property.
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14.7 Appendix
Here is a proof of (14.1). In the empty boundary case and the Neumann
condition case, we use orthogonality of the eigenfunctions to compute the
norms.

IIFJ I Hl(xT) = J T fM I atFI2 + IV FI2 + IFI2 dx dt

= 2 fT E Iak I2 [cosh2 wkt + sinh2 Wkt + 81°n-2 `, dt.
WE

It follows that

2TEIakI2 < IIFI12I(xT) <_ 2T>2Iakl2(1+T2)e2)tT.

In particular, for 0 < T< 10,

TEIakI2 < IIFI12 (xT) <Ce2T"1: Iak12.

(In the case of Theorem. 14.10, w is replaced by it and T is a suitable multiple
of e.)

In the case of the Dirichlet problem, we wish to prove the variant of
(14.1) suitable for Theorem 14.10, namely, comparability of norms up to a
factor of the form e`µ. In order that Theorems 14.2 and 14.3 apply to level
sets and not just zero sets of sums of eigenfunctions, we wish to consider
a linear combination of a sum of eigenfunctions and the constant function.
The only additional difficulty beyond the case of the Neumann problem is
that the constant is not orthogonal to the eigenfunctions. Define 71 to be the
normalized constant function on M,

fi(x) = 1/ vol M.

Let Wk denote normalized Dirichlet eigenfunctions. Suppose that

00

00aa2
2= land E ake"'k = eµ < 00.E

k=1 k=1

Let

We will prove that

00

'F = Eak'Pk(x)
k=1

1 + ao + I V II L2(M) + I Iaorll I L2(M) < Cep`) I' + a0771122(M). (14.4)
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This gives the upper bound

II F + aot17I Ixl(x,,z) <_ a"III + ao771I L2(M).

The lower bound is similar, since a similar argument shows that any sum of
eigenfunctions with exponentially decreasing coefficients on sets t = to has
the same very weak orthogonality to the constant function.

We claim that there is a dimensional constant m and a constant C de-
pending on M such that

IWk(x)I < Cwk dist (x, W) (14.5)

for all x such that dist (x, 8M) < 1/wk. To prove (14.5), choose local coor-
dinates so that the boundary is a hyperplane and fix a cube with one face on
aM of side length 1/wk. Dilate by the factor wk to rescale the cube to a unit
cube. Denote by f the rescaled eigenfunction Wk. Then f satisfies an elliptic
equation of the form L f = cf, with a constant c comparable to 1 in a unit
cube with zero boundary conditions on one side. Moreover, since cpkk has L2
norm 1, the rescaled function has norm at most comparable to wk 2. Now
by elliptic interior and boundary regularity, we see that on half the cube f
is bounded by wk/2 times the distance to the boundary. This translates into
a bound on Wk of the form above with m = n/2 + 1.

Next, using (14.5), we have

Ic(x)I Ek=1 C>k=l laklwk dist(x,COM)

< C(E' la,Fe"'k)3(E001 wkme-`wk)i dist(x,8M)

< Ce' 12 dist (x, 8M).

In order to prove (14.4), note first that it follows from the triangle inequality
when ao is not comparable to 1. If, on the other hand, ao is comparable to 1,
then the estimate above shows that there is a neighborhood of 9M of volume
comparable to a-µ/2 on which IcpI < Iao77I/2. Therefore,

I I' + aorll IL-(M) >
ce-µ14,

which proves (14.4).
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Chapter 15

Large-time Behavior and
Self-similar Solutions of Some
Semilinear Diffusion Equations

Yves Meyer

In his Ph.D. dissertation, M. Cannone constructed self-similar solutions to
the Navier-Stokes equations. Then F. Planchon proved that these self-similar
solutions provide the asymptotic behavior at large scales of some global so-
lutions ([3], [18]).

Here we want to show that these results are not specific to the 3-D Navier-
Stokes equation but are also valid for the nonlinear heat equation

8u
= Du + yu3

8t

whatever be the sign of y and for the nonlinear Schrodinger equation.
This survey paper is organized as follows. We first review some well-

known material concerning the nonlinear heat equation = Du + u3 (blow
up in finite time and self-similar solutions) in §§15.1 to 15.6. We show that
these classical results are better understood when one is using a strategy
due to T. Kato [9]. This strategy amounts to finding a solution as a vector-
valued function u(x, t) of the time variable t > 0. More precisely, u will
belong to C((0, oo); E), and the novelty of our approach consists in replacing
the Lebesgue space E = L3(1R3) which was used by T. Kato by a suitable
Besov space E. Using such a Besov space offers many advantages. It permits
us to explain the role played by the oscillations of the initial value uo(x) in
the lifetime of the corresponding solution. This would not be possible if the
L3-norm were used. Moreover, the Besov spaces we will use contain functions

241
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which are homogeneous of degree -1. This is not the case for L3 (R3 ). Such
homogeneous u0 initial values will generate self-similar solutions.

In §§15.7 and 15.8 we show that the self-similar solutions which are con-
structed in the preceding sections are driving the large-scale behavior of most
of the global solutions to our nonlinear heat equation. In §15.9 we treat the
nonlinear heat equation with the opposite sign.

Sections 15.10 and 15.12 are devoted to Navier-Stokes equations which
obey the same scaling laws as our model nonlinear heat equations. The same
type of methods applies.

Finally in §15.13 we review some quite recent results obtained by T.
Cazenave and F. Weissler. These authors constructed self-similar solutions
for the nonlinear Schrodinger equation. The Besov spaces which we used in
the previous examples are now replaced by a new Banach space which looks
quite exciting.

15.1 A First Model Case: the Nonlinear Heat
Equation

Our first model case will be the following nonlinear heat equation

5 at = Du + u3 on 1[t3 x (0, oo),

1 u(x, 0) = uo(x)
(15.1)

where u = u(x, t) is a real-valued function of x E 1R3 and t > 0. Below we
will be much more specific about the functional spaces in which the solutions
will be constructed. For the time being we are considering classical solutions
to (15.1) with enough regularity and with appropriate size estimates. For
example, for the time being, all LP-norms in the x variable are supposed to
exist.

Multiplying (15.1) by u and integrating over R3 yields the equation 1 ae I Iui I2
_ -IIVuII2 + IIuII4 which means that the evolution results from a competi-
tion between IIuII4 and IIVuII2. This remark makes the following theorem
plausible.

Theorem 15.1 (J. Ball [1], H. A. Levine [13], and L. Payne [15]). If
uo E Co (I23), uo 0 0 and

IIDUoII2 :5 IIu0lI4, (15.2)

then the corresponding solution to (15.1) blows up in finite time.
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It means that there exists a To < oo such that

lim sup I Iu(', t) 112 = +00.
0Tb

Let us make a few comments about this theorem. If u(x, t) is a solution
to (15.1), so are ua(x, t) = Au (Ax, A2t) for any A > 0. The L4-norm is not
invariant under this resealing and a condition of the type f f uof f 4 < 97 for
some small 77 cannot imply the existence of a global solution. Indeed, such
a condition would always be satisfied by one among the resealed solutions
u),, A > 0. However, the V-norm is invariant, and we will see below that
11u0113 < i7, 77 small enough, implies that the corresponding solution exists
globally in time.

A second remark is the following. If V E Co (R3) then for e > 0 small
enough, V(ex) = uo(x) will satisfy (15.2).

In contrast for any cp E Co (R3), there exists a positive wo = wo((p) such
that I'4 > wo, and uo(x) = e'"''xW(x) imply that the corresponding solution
u(x, t) to (15.1) is global in time.

Our next step is to find sufficient conditions on the initial value uo(x)
that imply that the corresponding solution u(x, t) will be global in time.
Such sufficient conditions will be of the type f f uOIIB < r7, where B is some
convenient Besov space which we will now describe.

15.2 Some Besov Spaces
We consider a function p belonging to the Schwartz class S(R3) with the
following two properties: cp(C) = 1 on f ff < 1 and cp(C) = 0 on off > 4/3.
Here and in what follows, f will denote the Fourier transform of f defined
by f (f) = f e"I f (x) dx.. Next Wj(x) = 23jW(21x), Sj(f) = f * wj, Oj =
Sj+1 - Sj, and O(x) = 23cp(2x) - W(x) in such a way that Oj(f) = f * 1/ij

If a > 0, 1 < q < oo, the homogeneous Besov space Bq °'° is defined by
the condition

f1Sj(f)Ifq :f- C2j°, j E Z. (15.3)

The usual definition (which applies as well when a is any real number) is
IIOj (f) I Iq < C2j" (j E Z), but this standard definition is equivalent to (15.3)
if a > 0. The drawback of the standard definition is the fact that any
polynomial P satisfies A j (P) = 0, which forces us to add some requirement
to get rid of such polynomials. This is not the case for the "clean definition"
given by (15.3).

When a > 0, Bq is a Banach space consisting of tempered distribu-

tions. This Banach space is not separable but is the dual space of Bp , which
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is defined by

00

E2'°`IJoj(f)II1 < oo (1/q+1/p= 1).
-00

. -0,oo
If S(t) = exp(t0) is the heat semigroup, then Bq is characterized by

sup t" / 2 I S(t) f I I q= C < oo. (15.4)
t>o

Definition 15.2. We will denote by Bq the homogeneous Besov space Bq
Q'00

when a=l - q, 3 <q<oo.

It is easily checked that

L3(IIt3) C L3,-(W) C Bq C Bq C Boo's, (15.5)

where 3:5 q:5 q' < +oo.
The Banach space B',-,,,"00 consists of f = Og, where g belongs to the

Zygmund class defined by

Ig(x + y) + g(x - y) - 2g(x)I <- Clyl (15.6)

forxEIV,yER".
In the next section, we will show that IIuoI Is, < i7(q) for some q E (3,9)

suffices for the existence of a global solution. Here g(q) is a continuous
function of q, which tends to 0 as q tends to 9. It means that we are far from
obtaining an optimal sufficient condition for global solutions. For the sake
of simplicity we will concentrate on the special case q = 6.

15.3 A Sufficient Condition for Global
Solutions

The following theorem is implicit in some joint work between M. Cannone,
F. Planchon, and the author of these notes:

Theorem 15.3. There exists a positive constant 77 > 0 such that for any
uo E CO '(R) and

Iluo11s8 < 77, (15.7)

there exists a global solution u(x, t) to (15.1) such that u(x, 0) = uo(x).
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Let us stress that Theorem 15.3 cannot be valid without (15.7). Such a
claim would contradict Theorem 15.1. A second observation is given by the
following Gagliardo-Nirenberg-type inequality.

Lemma 15.4. There exists a constant C such that for any f in Sobolev
space H' (R3 )

fjfj! S CIIVf!I2lIfIIam (15.8)

A fortiori (15.7) implies IIuo114 < C,iIIVuo112, which is a strong form of
the negation of (15.2).

We should also observe that uo(x) and .uo(Ax), A > 0, have the same
B6 norm. Therefore Theorem 15.3 is in full agreement with the rescaling of
(15.1).

Theorem 15.3 explains some observations we made after stating Theorem
15.1. If cp E Co (R3) and e > 0 tends to 0, then the norm in B6 of cc(ex)
is c and tends to infinity. Therefore (15.7) is violated, and we know that
the solution to (15.1) blows up whenever a is small enough. In contrast, if g
is fixed in the Schwartz class S(R3) we consider uo(x) = ew-g(x). Then

1IuoUUBe = +0(1w!"2) as awl -3 +oo (15.9)

and (15.7) is satisfied for jwj large enough.

15.4 Self-Similar Solutions to the Nonlinear
Heat Equation

The following theorem was found by A. Haraux and F. Weissler.

Theorem 15.5. There exists a (nontrivial) function w(x) in the Schwartz
class S(R3) such that

/u(x,t)=wl), t>0, xE&3. (15.10)

is a global solution to (15.1).

This self-similar solution is invariant under the rescaling Au(Ax, Alt) _
u(x, t).

The corresponding initial value uo(x) = 0 identically. It means that
in Theorem 15.3, u E C([0, oo), L3(R3)) cannot be replaced by the weaker
condition

t) 113 < oo (15.11)
t>o
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without losing uniqueness. But the stronger condition does not imply unique-
ness either [19].

In the seminal paper [9] by A. Haraux and F. Weissler, w(x) was a radial
function. A more systematic treatment can be found in a remarkable paper
by M. Escobedo and 0. Kavian [7].

15.5 Multilinear Operators Arising in the Proof
of Theorem 15.3

The following treatment of (15.1) is due to T. Kato, who converted (15.1) into
an integral equation. Instead of writing at = Au + u3 with u(x, 0) = uo(x),
he wrote

u(t) = S(t)uo + J S(t - s)u3(s) ds (15.12)e

0

where S(t) = et° is the heat semigroup and u(x, t) is viewed as a vector-
valued function of the time variable t. Kato's program consisted in looking
for solutions u(t) belonging to C([0, oo); E), where E is a suitable Banach
space of functions of x. The norm of u(t) in C([0, oo); E) is supt>o Ilu(-, t)II E.
The collection of Banach spaces which are being used splits into two classes.
If E belongs to the first class, E will be a separable Banach space and the
condition u E C([0, oo); E) means that u, as a function of t, is continuous
when E is equipped with the topology defined by the norm. When E belongs
to the second class, E will always be the dual F' of a separable Banach space
F, and the continuity requirement will concern the a(E, F) topology.

Examples of this situation are given by E = L3'°° (the weak L3-space),
which is the dual of F = L3/2,1 (the corresponding Lorentz space), or by

E = Bq a' (the homogeneous Besov space), which is the dual of F = Bq
I

(when 1/p + 1/q = 1).
T. Kato's program consists in solving (15.12) through Picard's fixed-point

theorem. The norm of u in the Banach space X = C([0, oo); E) is defined as

I IUIIX = sup Ilu(', t)IIE (15.13)
t>o

Then the main issue is to prove the estimate

Ilr(u1,U2,U3)Ilx 5 CIIUIIIXIIu2IIxIIu3IIx

for the trilinear operator IF defined by

(15.14)

tr(u1, u2, u3) = jS(i - s)ul (s)u2(s)u3(s) ds. (15.15)
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We wrote u(s) = s) and so on for keeping the notation as simple as
possible.

A solution u E X of (15.12) is called a "mild solution" of (15.1). When-
ever (15.14) holds, Picard's fixed-point scheme can be applied and yields a
mild solution as long as the norm of uo in E is small enough. More precisely

C-1/2 where C is defined by (15.14).we should have IIUOIIE < 373
T. Kato and F. Weissler applied this program to E = L3(R3), but the

fundamental trilinear estimate is definitely incorrect. T. Kato was able to
offer a substitute for the missing estimate. Indeed, he considered a subspace
T C X consisting of function u(x, t) which are continuous on [0, oo) with
values in L3(He) and such that t) is continuous on [0, oo) with values
in L6(R3 ). Moreover, one imposes that limt-+o t1/4I t) 116 = 0 as well as
lime-.+. t1/4I1u(., t)116 = 0.

Finally one writes

IuII- = t > 0} (15.16)

and

Ilul IT = 11U1 1X + (lull..

Then the following estimates are easily verified

Ir(u1, u2, u3) I Ir <- CIIu111.1Iu211.11u311,

and

(15.17)

(15.18)

IIS(t)uollT <-11u0113 (15.19)

Therefore Picard's scheme can be used to solve (15.12) inside the Banach
space T whenever Iluo113 is small enough. The drawback of this approach is
the lack of uniqueness inside the "natural space" X. Indeed we get uniqueness
inside the smaller space T.

In [19], E. Terraneo proved the lack of uniqueness inside the "natural
space" X.

Our Theorem 15.3 is a slight improvement on Kato's ideas. We con-
sider the Banach space Y of functions u(x, t) which are continuous on (0, oo)
with values in L6(R3) such that IIull. is finite and limt.+o t)116 =

0. If no belongs to L3(R3), then S(t)uo belongs to
Y and we have IIS(t)uoll =11u011B6 < r!

Then Picard's scheme can be applied inside Y and yields a mild solution
to (15.12). Then it is easy to check that

t
1 0 S(t - s)u3(s) ds 116 -+ 0 as t -+ 0, (15.20)

I 0
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which will imply that the solution which is constructed belongs to X. If uo
belongs to CO -(R), ), we want to prove that the "mild solution" arising from
Kato's program is a classical solution to (15.1). The reader is referred to [7],
[9] where the issue is discussed.

Let us remark that Theorem 15.3 is not optimal and better sufficient
conditions can be found in [11]. However, Theorem 15.3 paves the way to
the general methodology that will be used later in these notes.

15.6 More Self-Similar Solutions to the
Nonlinear Heat Equation

We already observed that if u(x, t) is a solution to (15.1), so are ua(x, t) _
Au(Ax, alt) for A > 0. A solution u(x, t) is self-similar if u,, = u. In other
terms

(Vxlt-) -

(15.21)

In contrast with the approach indicated by A. Haraux and F. Weissler, we
want to construct our self-similar solutions by solving an initial-value prob-
lem. This approach will exclude the Haraux-Weissler's self-similar solution
for which the initial value is 0. For this trivial initial value, our approach will
uniquely yield the trivial solution to (15.12). If in the distributional sense,
limtlo 7V (7) = uo(x) exists, then this distribution uo(x) will be homoge-
neous of degree '1. This remark implies that the functional space E which
will be used in our methodology should contain homogeneous functions of
degree -1. This excludes the D' spaces but includes the Besov over spaces

. a,00
Bq , when a = 1 - 3/q or the Lorentz space setting.

Theorem 15.6. There exist two positive constants Q > 0 and ry > 0 with
the following properties: if uo E L3'0O(R3) satisfies 6 and is
homogeneous of degree -1, there exists a unique solution u(x, t) of (15.12)
such that

u(x, t) = S(t)[uo](x} + W ( ) , (15.22)
VIFVXt_

where

W(x) E L3(R3) n L6(R3) and 11WI16 < ,Q. (15.23)

Indeed, (15.22) implies that u(., t) is a continuous function of t with values
in L3'O° equipped with its a(L3,°°, L3/2,1) topology.
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Since uo(x) is homogeneous of degree -1,

5.24)S(t)[uo](x) = 7Vo (7xt)
(1

and u(x, t) is a self-similar solution to

(15.12).

If uo = 0, Theorem 15.5 yields u(x, t) = 0. It means that the Haraux-
Weissler self-similar solution 1w satisfies JJwJJ6 > $. This was observed
by M. Escobedo and 0. Kavian: all the self-similar solutions to the nonlinear
heat equation they constructed have "large" norms.

To illustrate Theorem 15.5, let us consider the trivial example where
uo(x) = 771x)-1, 77 > 0 being small. This example was treated in the Haraux-
Weissler seminal paper, and they found that the corresponding solution to
(15.12) was given by

u(x, t) =

f
u

(IxJ\
I (15.25)

where 0 < u(r) < Co on [0, oo) and lim,.,+oo ru(r) = L > 0.
It means that u(x, t) ti Ixl at infinity (t being frozen). Therefore u(x, t)

belongs to L3,o° as expected from Theorem 15.5 and u(x,t) E L6(R3)
The Lorentz space L3°°°(R3) was one example of functional space which

is adapted to finding self-similar solutions to the nonlinear heat equation. In
. -a,eo

the next section the Besov space B. , a = 1- 3/q, 3 < q < 9, will be used
for the same goal.

Theorem 15.5 was obtained in a joint work with 0. Barraza [2].

15.7 Another Approach to Self-Similar
Solutions

Instead of using the Lorentz space L3'°°(R3), we will be using the Besov space
. -a,oo

Bq = Bq where 3 < q < 9. We first construct general solutions inside a
functional setting which is adapted to the existence of nontrivial self-similar
solutions. This approach will be used for Navier-Stokes equations.

Theorem 15.7. Let us assume that 3 < q < 9. Then there exist two positive
constants rl(q) and 13(q) with the following properties: if JJUOJJB, < rl(q),
then there exists a solution u(x, t) to (15.12) which satisfies the following
properties

u(x, 0 = S(t) [uo] (x) + w(x, t), (15.26)
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sup 00, (15.27)
t>o

sup t°12l lw(-, t) l lq < /3(q)
t>o

(15.28)

Moreover such a solution to (15.12) is uniquely defined by (15.26), (15.27),
and (15.28).

In order to find self-similar solutions, it suffices to assume that uo(x) is
homogeneous of degree -1. Then the scaling invariance of the nonlinear heat
equation implies that whenever uo(x) is replaced by Auo(Ax), then u(x, t) is
replaced by Au(.x, A2t).

Finally, the uniqueness of the solution implies Au(Ax, alt) = u(x, t), and
our u(x, t) is a self-similar solution. This approach is due to M. Cannone.

Theorem 15.6 both generalized Theorem 15.3 and Theorem 15.5. Let us
explain why. Indeed, Theorem 15.3 is a special case of Theorem 15.6 (q = 6)
and for obtaining Theorem 15.5 it suffices to observe that the Lorentz space
L3,°°(R3) is contained in each Besov space Bq. Indeed L3'°°(R3) is contained

. 0,00
inside the smallest one, i.e., B3 .

The reason why Theorem 15.5 was stated before is the following. Any
analyst will tell you that (in three dimensions) Ixl-1 belongs to L3'°°(R3)
(i.e., any weak L3), and only a few would consider this function as belonging
to our fancy Besov spaces.

15.8 Convergence to a Self-Similar Solution
In this section, the exponent q will always belong to the open interval (3, 9).

If u(x,t) is a global solution to (15.12), so is

U,\ (X, t) = au(,\x, Alt) for A > 0.

In order to study the large-scale behavior of u(x, t), it becomes natural to
raise the following problem. Does there exist a limit function v(x, t) such
that

lim llua(., t) - v(., t)11L9pe3) = 0
At+oo

uniformly in t E [to, t1] whenever t1 > to > 0.

(15.29)

We then have v(x, t) = 7 V ( ) and

Jim11fu(fx,t)-V(x)11q=0. (15.30)
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Another way of raising the same problem is to ask for an asymptotic
expansion

x t) (15.31)u(x,t) = 1 V (71x ) + 1 R 1
71

where V E LQ(iR3) and

li.m t)JJq = 0 (t -+ +oo). (15.32)
t 4+o0

The following theorem was proved in a joint work with F. Planchon ([17]).
We want to know whether (15.31) holds for a global solution to the nonlinear
heat equation. An obvious necessary condition is J J f u(f x, t) J Jq < C for
t > T. We will modify our problem by imposing the stronger condition

JJfu(fx, t)IIq < C, 0 < t < 00, (15.33)

which is no longer necessary to the problem we have in mind. Then our
problem can be efficiently solved whenever 3 < q < 9.

Theorem 15.8. Let u,(x, t), x E R3, t > 0, be a global solution to (15.33)
and

u(x, t) -+ uo(x) as t tends to 0. (15.34)

The limit in (15.34) is taken in the distributional sense. Then uo(x) E

Bq , a = 1 - 3/q, 3 < q < 9. Moreover, if (15.31) and (15.32) hold,

then V ( ) is a self-similar solution to the nonlinear heat equation. Con-7t 7-t
versely there exists a positive constant ,B (q) such that whenever J Juo J J <

/3(q), the following properties (a) and (b) are equivalent ones:

a. (15.31) and (15.32) hold.

b.

a4

Auo(Ax) -4 vo(x) as A -1 +oo and (15.35)

to/2JJS(t)[uo - vo]JJq (t -+ +oo) (15.36)

It is easily checked that the second requirement (15.36) implies the first
one. Both of them concern the large-scale behavior of the initial value uo(x)
and tell that the infrared limits of uo (x) and vo (x) are the same.

For stressing the difference between (15.35) and (15.36) let us consider a
wavelets expansion of f (x) = vo(x) - uo(x). One uses the wavelets which are
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constructed in [12] and forgets the index of the mother wavelet ib (this index
ranges from 1 to 7). Then

f (x) _ 1: 1: a(j, k)2jV,(2jx - k)
j kEZ3

(the normalization of the wavelets is not the standard one). The following

observations will clarify the conditions (15.35) and (15.36). First f E BQ
means aj < C < oo, -oo < j < oo, where

aj=EIa(j,k)I9.
k

Then Af (Ax) -a 0 (A -* +oo) is equivalent to

(15.37)

sup Ia(j, k) I -+ 0 (j --+ -oo) (15.38)
k

while ta/21 I S(t) f I as - 0 (t --+ +oo) is equivalent to the stronger condition
aj -> 0 (j -* +oo).

Now it is obvious that this condition implies (15.38), and it is also obvious
that the converse is not true.

15.9 The Second Model Case

Our second model case is the nonlinear heat equation with the oppposite
sign:

8u
N = Au - u3 (15.39)

where u=u(x,t),xElR,t>0.
In that situation, IIulI2 is a decreasing function of t which excludes self-

similar solutions u(x, t) _' U where U belongs to L2(R3). For such

a solution IIu1I2 = IIUII2f However, Theorem 15.5 is still valid. This is not
surprising since Theorem 15.5 is obtained through a perturbation method in
which the nonlinearity is treated as a small error term when compared to the
linear term. Therefore the sign of this small error term does not play any
role.
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15.10 The Navier-Stokes Equations
Once more we follow Kato's approach with a small twist at the end. Navier-
Stokes equations are

V-v=0 (15.40)

v(x,0) = vo(x)

where v = (V1, v2, v3) is the velocity, p is the pressure, both the velocity and
the pressure are defined in R3 x [0, oo), v - V is the derivative in the direction
v (v . V = vl

1
+ - + v3 eXg) and v is the divergence of v. These equations09

are invariant under the resealing

(v,p) -+ (va,pa),

where A = 0, va(x, t) = \v(Ax, A2t), and pa(x, t) = A2p(Ax, A2t). The reseal-
ing of the velocity is the same as the one we used in the two model cases and
our approach to the Navier-Stokes equations will be quite similar to what we
did in the previous cases.

The drawback in what follows is the lack of understanding of the cancel-
lations which occur in the nonlinear term (v 0)v and result from V - v = 0.
In other words, our approach to Navier-Stokes equations will use perturba-
tion arguments where the bilinear term will be treated as a perturbation of
the "main term" which is Av. That is why we only will obtain local results
where the smallness of initial condition will play a crucial role.

Following T. Kato, (15.40) will be rewritten as an integral equation. Let
R1, R2, R3 be the three Riesz transformations, and let P be the orthogonal
projection on the divergence-free vector fields:

v1 vi - R, (a)

P v2 = v2-R2(o) , (15.41)

v3 v3 - R3 (a)

where o = R1(vl) + R2(v2) + R3(v3).
Then (15.40) is equivalent to

tv(x, t) = S(t) - J PS(t - s)aj(v?v)(s) ds (15.42)
0

whenever v(x, t) is sufficiently regular.
More generally, a solution to (15.42) is called a mild solution. These mild

solutions will be considered as vector-valued functions of the time variable.
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More precisely, v(x, t) E C([0, oo); E), where E is a suitable space of functions
ofxEll.

The norm of v is

0 < t < oo}. (15.43)

The main issue concerns the bilinear operators

BB,k,t(f, 9) = f R,RkS(t - s),9t(fg) ds, (15.44)t
0

where j, k, i belong to 11, 2, 3}, f = f (x, s), g = g(x, s).
If f and g belong to C([0, oo); E) then two difficulties might arise.
In many instances which will be treated, the pointwise product between

two functions f and g in E does not have any meaning (even in a weak sense).
This "divergence" needs to be fixed.

A second divergence is coming from the competition between the differ-
entiation ay, = A, which destroys smoothness, and S(t - s), which improves
smoothness. As s tends to t, the differentiation will win!

-a,oo
The Banach space which will be considered is our friend Bq . With

this choice the bilinear operators (15.44) are not continuous. This difficulty
was already present in §15.5 and was solved by introducing the "artificial
norm"'1ujjT = IIuUUx + 1+uUU. in (15.17).

T. Kato applied the same program in the Navier-Stokes case and could
prove the existence of positive constants i3 and y such that, if div vo = 0 and
IIvo,13 < 0, there exists a solution v(x, t) to the Navier-Stokes equations with
the following properties:

V(-, t) E C([0, oo); L3(R3)), (15.45)

t114IIv(', t)116 < y. (15.46)

Moreover, such a solution is unique.
We will improve on this result by relaxing the hypothesis 11veI13 <,6 into

a much weaker one. The following theorem was obtained in a collaboration
with M. Cannone when 3 < q < 6 and then improved by F. Planchon in his
Ph.D. dissertation, where he got rid of the limitation q < 6.

Theorem 15.9. There exists a continuous function q(q), defined on (3, oo),
with values in (0, oo) with the following property: if vo E L3(R), div vo = 0
and if, for some q E (3, oo) we have

lIvoIIB-a-3ia).oo < rl(q), (15.47)
9
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then there exists a unique solution v(x, t) to the Navier-Stokes equations such
that

t) E C([0, oo); L3(R3)) (15.48)

limn' lu(.,t)II.=0. (15.49)
40

-(1-3/q),-
Since the Besov spaces Bq are increasing with q one might be

tempted to believe that the largest q yields the best result in (15.47). How-
ever, q (q) = 0 as q -4 +oo, and this limitation is due to the proof.

15.11 Self-Similar Solutions to Navier-Stokes
Equations

A self-similar solution is a solution v(x, t) such that v = va for 0 < A < oo.
This implies v(x, t) = V (7--t) as before. Now V is vector-valued.

It is well known that for any solution to (15.40) for which it makes sense
we have AlIvIlz < 0. It means that V(x) cannot belong to L2(R3).

We will construct self-similar solutions to Navier-Stokes equations by solv-
ing an initial value problem. Therefore we want uo(x) to be the weak limit
of I V(I) as ttends to0.

Then uo(x) will be homogeneous of degree -1, and the functional space
which will be used should contain such functions. Once more we are led. -(1-3/q),-
to using our Besov spaces Bq = Bq . The first construction of self-
similar solutions to Navier-Stokes equations was obtained in a joint work
with M. Cannone and F. Planchon ([4], [5]).

Then F. Planchon could relax the condition imposed upon q and proved
the following theorem ([18]).

Theorem 15.10. There exist two continuous functions q(q) > 0 and /3(q) >
0, defined on (3, oc), with the following property: if uo(x) belongs to Bq for
some q. E (3, oo) and satisfies V uo = 0, uo(Ax) = A-luo(x), A > 0 and
IIuoUls9 < 77(q), then there exists a unique self-similar solution u(x,t) _

7 U (I) to the Navier-Stokes equations such that

u(x,t) = S(t)[uo](x) + W (3=), (15.50)

IIWII3 < fi(q), (15.51)

. 1,2
and, more precisely, W E B3/2.



256 Chapter 15: Large-time Behavior of Semi-linear Diffusion Equations

15.12 Convergence to Self-Similar Solutions
This section is almost identical to what we obtained for the nonlinear heat
equation. As already stressed, these similarities come from the following
two points (a) the scaling invariance is the same in the two cases, (b) the
nonlinearity is treated by a perturbation argument without taking in account
the subtle cancellations, which played a crucial role in the Navier-Stokes
equations.

We want to know the large-scale behavior of the Navier-Stokes equations,
which is related to studying

Jim Av(.\x, alt) = Jim va (x, t). (15.52)
At+oo At+oo

More precisely, we want to find necessary and sufficient conditions for the
existence of v(x, t) such that

lim flva(., t) - v(', t)f lq = 0 (15.53)
At+oo

uniformly on t E [to, ti} for t1 > to > 0.
As we already observed, this limit field v(x, t) is self-similar: v(x, t) _

7 V (7} if it exists.
Then our problem amounts to deciding whether

IIvcv(fx, t) - 0 (t -, +00). (15.54)

If it is the case, we necessarily have

I(I/GV(VLx,t)jjq < C for t > T. (15.55)

Instead of (15.55) we will assume the stronger condition

fv(fx, t)q < C for 0 < t < oo. (15.56)

We then have ([18]).

Lemma 15.11. If v(x, t) is a global solution to the Navier-Stokes equations,
if (15.56) holds for some q E (3, oo) and if limbo v(x, t) = vo(x) exists in the

-(1-3/q),oo
weak sense, then vg(x) E Bq

Our next step will be to decide, for a given initial value vo(x), whether the
corresponding solution to the Navier-Stokes equations is global and converges
to a self-similar solution. This issue is answered by the following theorem
(obtained in collaboration with F. Planchon).
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For simplifying the notation, we will denote by Dt : Lq(R3) -+ Lq(1R3) the
normalized dilation defined as Dt f (x) = V if (f x) and Dt will also act on
functions v(x, t) defined on JR3 x (0, oo) by [Dtv] (x, t) = f v(f x, t).

Our issue is to know whether

lim [Dtv](x,t) = V(x) in Lq(1R3). (15.57)
tt+oo

Theorem 15.12. There exists a continuous positive function ij(q) defined
. -(1-3/q),oo

on (3, oo) with the following property: for every vo E Bq such that

1kvoIIBq <,q(q) and V vo = 0, (15.58)

the following two properties are equivalent ones:

II [Dtv](x, t) - V(x)IIq - 0, as t -> +oo, (15.59)

II [DtS(t)vo](x, t) - Vj(x)Ilq - 0, as t -* +oo. (15.60)

Theorem 15.10 means that the asymptotic behavior of the full solution to
(15.12) is governed by the asymptotic behavior of the linear evolution. It is
easy to check that (15.60) implies limAt+oo )vo(.x) = Vo(x) in the weak-star
topology o,(Bq-(1-3/q) ,oo, Bpl-3/q),1)' where 1/p + 1/q = 1. However, as was
mentioned before, (15.60) is a stronger statement. The relationship between
V1 and Vo is given by V1 = S(1)Vo. Moreover, Vo(x) is homogeneous of
degree -1, V Vo = 0, and the corresponding self-similar solution to (15.12)
is precisely 7 V (* ) .

A final observation is limat+,,. Av(Ax, alt) = 7 V

If vo(x) belongs to L3(1 ), then Vo = 0 and the theorem yields the well-
known decay estimates for solutions of the Navier-Stokes equations.

15.13 The Nonlinear Schrodinger Equation
We will consider the following evolution equation

i + Du = ryujuj2, u(x, 0) = uo(x) (15.61)

where u = u(x, t) is a complex-valued function of x E R3 and t > 0. The
constant ry is real-valued.

T. Cazenave and F. Weissler [6] succeeded in constructing self-similar
solutions to (15.61) by applying the general organization which was used
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before. However, the functional spaces which will play a crucial role are no
longer Besov spaces.

Let us denote by S(t) = exp(itA) the linear Schrodinger group. These
operators are not smoothing but act unitarily on L2(1[3). Then (15.61) can
be rewritten

u(t) = S(t)uo - iy S(t - s)uIul2(s) ds, (15.62)
0

and we are looking for solutions u(t) to (15.61) which belong to C([0, oo); E)
where E is a suitable Banach space.

We then mimic our previous approach and define E by the following
condition

SUPt118IIS(t)[f]114 = IIf IIE < 00. (15.63)
t>o

One easily checks that testing functions belong to E. An equivalent norm
on E is defined by the condition

I I. (e'
' 2 f(x))114 CA5/6, (15.64)

where A E (0, oo) and

[Ff](x) = f e-tx'Y f(y) dy. (15.65)

It is easy to check that E does not contain any LP space for 1 < p < oo.
But E contains some nonsmooth functions since Cazenave and Weissler [5]

observed that IxI-I E E. What is most surprising is the following observation
by F. Oru [15]: f (x) E E does not imply 7(x) E E. Indeed, e'IxI2IxI-1 belongs
to E but e-ilkI2IxI-1 does not. This is related to the fact that (15.62) is valid
only for positive t. A final observation is the following: E is isometrically
invariant under translations and modulations (i.e., multiplication by e'-x).
This implies that quite irregular functions may belong to E.

Cazenave and Weissler proved the following theorem [6]:

Theorem 15.13. There exist two positive constants q and Q with the fol-
lowing properties: let uo(x) E S'(R3) satisfy the condition

sup t118IIS(t)uo114 < tl. (15.66)
t>O

Then there exists a unique solution u E C([0, oo); E) to (15.62) such that

SUP 018114,0114 < Q. (15.67)
t>o
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We should warn the reader that E is not a separable Banach space, which
implies that u E C([0, oo); E) means that u(-, t) is a continuous function of t
when E is equipped with its weak-star topology (as it was the case for the
Besov spaces). However, the solution which is being constructed will also be
a continuous function of t E (0, oo) with values in L4 (where L4 is given its
strong topology defined by the L4 norm).

After proving Theorem 15.9, Cazanave and Weissler applied Theorem 15.9
to the construction of self-similar solutions to (15.61). The rescaling is once
more the same as in the nonlinear heat equation or as in the Navier-Stokes
equations.

To obtain self-similar solutions to (15.61), it suffices to start with uo(x)
with the following properties: uo(x) E CO°(1l3\{0}) and uo(Ax) =.-luo(x),
A > 0. Then it is easily checked that such a uo belongs to the Banach space
defined by (15.66). If the norm of uo in this Banach space exceeds 77, it
suffices to multiply uo by a small constant. We end with a large family of
self-similar solutions to the nonlinear Schrodinger equation.

Addendum: With grief and sorrow we are returning to these notes which were
written three years ago when A. Calder6n was still among us. We would like
to mention two important theorems which have been obtained recently. The
first one is an improvement on Theorem 15.9. G. Furioli, P. G. Lemarie-
Rieusset, and E. Terraneo obtained uniqueness without the artificial condi-
tion (15.49). The best reference is [14]. In contrast, E. Terraneo built two dis-
tinct solutions u(x, t) and v(x, t) to (15.1) such that u(x, 0) = v(x, 0) = uo(x)
and u, v E C([0, oo), L3(R3)). In her counterexample, u is the solution given
by Theorem 15.3 while I Iv(-, t)116 = +oo fort > 0 [19].
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Chapter 16

Estimates for Elliptic Equations
in Unbounded Domains and
Applications to Symmetry and
Monotonicity

Louis Nirenberg

The maximum principle for second-order elliptic equations plays a fundamen-
tal role in their study. In recent years it has been used to derive properties
of solutions of nonlinear equations, such as symmetry and monotonicity in
some direction. For simplicity I will discuss only problems of the form

u>0, Du+f(u) =0 inSl,

u = 0 on O! .

(16.1)

Here f is a domain (open connected set) in R", and f is a Lipschitz contin-
uous function. I begin with the simplest result, one in [14]:

Theorem 16.1. Suppose u is a solution of (16.1) for Q a ball: {jxj < R}.
Then u is radially symmetric and ur < 0 for 0 < r < R.

The proof uses the method of Moving Planes introduced by A. D. Alexan-
droff [2] and then used by J. Serrin (17].

It involves showing monotonicity and symmetry in some direction, say
the x1-direction. I describe it briefly: For -R < A < 0, let Ea = {x E SI
xl < A}; one shows that if x = (x1, x'), x' = (x2i ... , is in Ex then

Research partially supported by grant ARO-DAAL-03-92-6-0143 and by NSF grant DMS-

9400912.
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u(x) < u(xa) = u(2.\ - xl, x'). (16.2)

The point xA is the reflection of x in the plane {x1 = A}. This then yields
the xl-monotonicity of u for xl < 0, and also the symmetry about {x1 = 0}.
For if we let A -4 0 in (16.2) we find that

u(xl, x') < u(-xl, x') if xl < 0 . (16.3)

However, we can replace xl by -x1 in the equation, use (16.3) again, and
conclude that equality must hold in (16.3). Since the direction xt is arbitrary,
radial symmetry of u then follows.

To prove (16.2) one uses the maximum principle. In Ea the function
v(x) = u(x") satisfies the same equation

Ov+f(v)=0.

Subtracting this from the equation for u one finds readily that

W,\(X) := u(x) - v(x)

satisfies

Awa + ca (x) wA = 0 in Ex,

wa 0 on 8E,\
(16.4)

Here Ica(x)l < k, the Lipschitz constant of f. If the maximum principle were
to hold we could conclude that wa < 0 in EA and (16.2) would be proved.
However, one cannot be sure that the maximum principle holds, since about
the coefficient cA we only know that it is in L°°. To prove that wa < 0 in
LA, one first considers 0 < A + R small; the domain Ea is then narrow in
the x1-direction, and this is a classical sufficient condition for the maximum
principle. So in this case, w,, < 0 in Ea. Now one moves the plane {x1 = A}
to the right, and one has to show that for every ) in (-R, 0), wa < 0 in
Ea. For this, the argument in [14], as in [17], uses the Hopf Lemma and a
version of it at a corner. Berestycki and I [8] have given a different proof
which avoids the use of the Hopf Lemma. It enables one to prove symmetry
and monotonicity in some direction even for domains with no smoothness
requirements on the boundary. Another method, the Sliding Method, was
also used by us to prove monotonicity.

In connection with questions concerning regularity of free boundaries,
Berestycki, Caffarelli, and I were led to extend the symmetry and monotonic-
ity results to various unbounded domains. This chapter is devoted to some
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of our recent results. They required new inequalities for elliptic equations in
unbounded domains, and I will present some here. I will also mention several
problems which are still open. I should say that since [14] and [15], which
use moving planes for 0 = R", many people have used the technique in un-
bounded as well as bounded domains to derive estimates, prove nonexistence
of solutions, etc.

First, a few words about the maximum principle. Here we consider a
general linear second-order elliptic operator

L = 1213 (x)
8x; 8x + b; (x) a

=_

+ c(x) (16.5)

in a domain 52 in RI; i, j summed from 1 to n. We assume uniform ellipticity

cofC1Z < a;j t;;l;j <
1 It 12

Co
for some co > 0 and all 1: < R' . (16.6)

The aid are assumed to be in C(i) while b;, c are in L°°, with

1b;4, IcI < b. (16.7)

There are various forms of the maximum principle. Here we use the following

Definition 16.2. We say that the maximum principle holds for L in a bounded
domain 52 in case any function w E C(Sl) fl Wig (52) which satisfies

Lw > 0 in 52,

w < 0 on 85t

necessarily satisfies
w<0 in Q.

Of course, the Maximum Principle need not always hold: on 52 = [0, 7r] in 7R,
the function w = sin x satisfies zo + w = 0, w = 0 on 852, but w is positive,
not negative. As mentioned before, a classical sufficient condition (see, for
example, Protter Weinberger [16]) is that Cl is narrow in some, say the x1,
direction:

a < x1 < a + e in Cl for a small.

How small e is to be depends only on the constants co, b in (16.6), (16.7).
In treating domains with irregular boundaries, Berestycki and I made use of
the fairly recent sufficient condition, that Cl has small measure:

meas Cl = I52I < b(n, co, b);

see Berestycki, Nirenberg, and Varadhan [9].
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F. Bakelman first observed this, but with 6 depending also on the diam-
eter of Q. In [9] we also proved a more general sufficient condition, that fl is
"narrow" in a more general sense; see also X. Cabre [11]. In case aid E C(ii)
and 8i is smooth, a long known necessary and sufficient condition for the
maximum principle to hold is that the principal eigenvalue A for -L, under
Dirichlet boundary conditions, be positive. The principal eigenvalue is one
for which there is a positive eigenfunction 0;

¢ > O, (L + 11) 4' = 0 in Sl,

=0 on Oci.

Incidentally in [9] it was proved that for any bounded 0 - 8S2 need not be
smooth - there exists a principal eigenvalue al with positive eigenfunction.
Al is algebraically simple and A < Re A for any other (possibly complex)
eigenvalue A. \1 is given by

al = sup {A ER: 30> 0 in Wi2° (S2) with (L + A) 0 < 0}

inf sup
LO(x)

0>0 'En O(x)
0EW'0

If aid E C(S2) and 0^9 is smooth, Agmon [1] proved the existence of infinitely
many eigenvalues, and proved the completeness of the eigenfunctions (includ-
ing generalized ones) - also for operators of any order.

Open Problem. If aij E C(i) and 8S2 is not smooth, do there exist eigen-
values other than A1? (See [9] for a more precise formulation.)

A useful fact in connection with the maximum principle and principal
eigenvalue is the following, which we leave as an exercise for the reader.

Lemma 16.3. Suppose u, v > 0 in 9, and satisfy

Lu < 0 < Lv in 12.

If v E C(N) and v = 0 on dSl then

u = tv , t a positive constant,

and u and v are principal eigenfunctions.

Returning to the problem (16.1), in [4] we considered the case that S2 is
a half-space {x > 0} in fit' and u is bounded:

0 < u < sup u = M < oo, Du + f (u) = O in {x>0},
u=O on {x,s=0}.

(16.8)

As always, f is Lipschitz continuous.
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Theorem 16.4 ([4]). If u is a solution of (16.8) then f (M) > 0. If f (M) _
0, then

u = u(xn) and u2,, > 0 for xn > 0 .

The proof used the Sliding Method. We also permitted f to depend on
xn. H. Tehrani [18] proved an analogous result if f also depends on Jvul.

Conjecture 1. If there is a solution u of (16.8) then necessarily f (M) = 0,
and so the conclusion of Theorem 16.4 holds.

We know that the conjecture is true in case n = 2 and f is in C'(R),
see [7].

We have not even been able to settle the conjecture for a very simple
case: f (u) = u - 1. For this case we make the following

Conjecture 2. Problem 16.8 has no solution in case

f =u-1 .

Note that there is a nonnegative solution,

v=1-cosxn,

(16.9)

but is there a positive one? We can prove Conjecture 2 in case n = 2 or 3 -
in fact, by a very simple argument.

E. N. Dancer [13] proved the following

Theorem 16.5 ([13]). If u is a solution of (16.8) and if f (0) > 0 then
uxn > 0 for x, > 0.

In [13], whether u is a function of xn alone is not studied. His result
suggested to us a weaker conjecture than Conjecture 1, namely

Conjecture 3. If u is a solution of (16.8) and u is increasing in xn, then
necessarily f (M) = 0.

We have proved this in the case n = 2 or 3 and f E C'(R ). Our proof
relies, surprisingly, on a result for a Schrodinger operator of the form

L = -0 + q in Rn, q E L°° and, say, smooth. (16.10)

Conjecture 4. Suppose v is a solution of

Lv = 0 in W, JvJ bounded

and v changes sign. Then L has some negative spectrum, i.e., 3 ( E Co (R")
such that

fCL(=JIV(l2+q2<0.
Rn Rn
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In [7] we prove this conjecture in the case n = 1 or 2.
We describe next another monotonicity result in a more general domain

Q. Consider S2 in R" bounded by a Lipschitz graph:

Sl = {x E 1R' : x > O(x')}.

Here x' = (x1,... xn-1), and ¢ is a Lipschitz continuous function defined on
all of 1Ri-1.

Theorem 16.6 ([6]). Let u E C(52) fl Woc (52) be a solution of

O < u < sup u = M < oo, Du + f (u) = 0 in Q,

u=0 on 852.

Here f is a nonnegative Lipschitz function on R+, satisfying

f(s)>0 on (0,p), f(s)<0 for s>µ,

for some p > 0, and for some positive 6o and so < Si <

f (s) > ao s on [0, so],

f (s) is nonincreasing on (si, µ).

Then

in 52,

(b) u <.a and u(x) -* p uniformly as dist (x, 852) -> co,

(c) u is the unique solution of (16.11).

The proof of the theorem uses the Sliding Method and is rather tricky.
We turn now to an unbounded domain with a quite different geometry, a

cylinder,
52=Rxw,

where w is a smooth bounded domain in R-',. More generally, we consider

52=1[Yn-J xw

with w a smooth bounded domain in Rx. The problem we consider is

u>0, Du + f (u) = 0 in 52,
(16.12)

U = 0 on 852,
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where f is a Lipschitz continuous function. Denote the coordinates in Rn-i
by x and those in w C RR by y. No conditions on the behavior of u as
IxI -+ oo are required.

Question: Let u be a solution of (16.12) for w a ball: fl yf < R}. Is it true
that for Iyi = r,

u = u(x,r) and u,. < 0 for 0 < r < R ? (16.13)

Theorem 16.7. The answer is yes in the following cases:

(i) j>1,
(ii) j=1 and n=2,
(iii) j=1, n>2 and f (0) > 0 .

Open Problem: What happens if j = 1, n > 2 and f (0) < 0?

The proofs of the different cases in Theorem 16.7 are surprisingly tricky.
For cases (i) and (iii) the proofs are in [5]; case (ii) is treated in [7]. In [5] we
use both the Method of Moving Planes and the Sliding Method. We move
planes {yl = A) to prove symmetry and monotonicity in yl. Here I will not
describe the proofs, just some ingredients.

First, it is important to have some form of the maximum principle in
unbounded domains like (I above, i.e., results of Phragmi n-Lindelof type.
Here is a form that we use in

52=R7-' x w

with w.a smooth bounded domain in RR (coordinates y).

Lemma 16.8. Suppose a function w in C(S2) fl W,o, (52) satisfies

Ow + c(x, y)w > 0 in 52,

w < 0 on 852,

w < C eµlx1 .

Ic(x,y)I <_'Y,

(16.14)

Here ry, C, µ are positive constants. There exists a constant 6 = 6(n, j, y, ,u)
such that if

measw=lwl <6

then
w < 0 in Q.
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Recently J. Busca [10] extended this result by considering in (16.14),
in place of the Laplace operator A, any uniformly elliptic operator with
coefficients depending on x and y. His proof is rather different from ours.

In Lemma 16.8, w is assumed to grow at most exponentially at infinity
while in Theorem 16.7, no assumption on u is made near infinity. A basic
step in the proof of Theorem 16.7 is

Theorem 16.9. Consider a solution of (16.14) in H = RI-i x w. Here w
may be any bounded domain in RR with smooth boundary. Then 3C, It > 0
such that

u < Ce"IxI . (16.15)

The positivity of u is essential, if u changes sign the conclusion need not
hold.

The proof of Theorem 16.9 relies on an inequality which has proved to
be very useful. It is an extension of the Krylov-Safonov, Harnack principle,
which we now recall. In a domain S2 in R", consider a uniformly elliptic
operator, i.e., satisfying (16.6),

02

M = aii (x) ax; ax;

Krylov-Safanov Harnack inequality: If

u > 0, !MuI < A(tVuj + u) in S2

then, for any xo E SZ and any compact subset K in Sl, there exists C1 =
C1(SZ, K, xo, co, A), such that

u(x) < C1 u(xo) d x E K .

The useful extension of this result is one which is valid up to the bound-
ary, under suitable conditions. After proving it we discovered that it had
essentially been proved by P. Baumann [3] .

Theorem 16.10. Let Qo be a cube of side length 2 in R" centered at en, _
(0".. , 0' 1),

Qo={xER": jxaj<1 for a=l,... n-1, 0<x"<2}.
Set

r=8Qon{x">0} .

Let u be a positive function in Wrap (Qo) n C(Q0) for some p > n, vanishing
on the side x" = 0 of OQo, and satisfying

jMuI <A(IDuj+u+,c) in Qo
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for some constants A, r, > 0. Then there are constants B, q depending only
on n, co and A (not on any modulus of continuity of the a;j) such that

u(x) <
B

[dist(x, F)]Q
r.) in Qo

The proof in [5] uses the Krylov-Safonov Harnack inequality and some
ideas from [12]. Theorem 16.9 follows rather easily from Theorem 16.10.
Here is another useful consequence of Theorem 16.10.

Let St = R"-' x w, where w is a smooth bounded domain in R' . As before,
x denotes coordinates in R"-' , y, coordinates in R' . Let L be a uniformly
elliptic operator in St, as in (16.5), in the (x, y) variables, with coefficients
depending on (x, y). Assume that the coefficients of the second-order terms
belong to Cµ(52) for some positive p < 1.

Theorem 16.11. Let u be a solution in S2 of

u>0, Lu=0 in 1,

u=0 on OSZ.

Then there exists a constant C independent of u, such that

Vxu(x,y)I <Cu(x,y) in Q.

We conclude with some remarks about "principal" eigenfunction, i.e., a
positive eigenfunction for a linear second-order elliptic operator. As we have
remarked, in a bounded domain, the principal eigenvalue is real and alge-
braically simple. What about an unbounded domain? Is there some ana-
logue of Lemma 16.3? Presumably one might have to require some condition
at infinity. For example, in the strip in R2

SZ={x,y: xER, 0<y<ir},

the two functions

satisfy

u±=e}tsiny

u>0, Au=0 in Q,
u=0 on Ol.

The eigenvalue is zero, and we have two linearly independent solutions. On
the other hand, 0 = sin y satisfies

c5>0, (A+1)q=0 in 1,
(16.16)

0=0 on acl.
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The eigenvalue is 1, greater than zero, but it is easy to see that any solution
of (16.16) is a constant multiple of sin y.

We have a general result, an analogue of Lemma 16.3, in SZ = 1[Z' x
w, where w is a smooth bounded domain in R. In w, consider an elliptic
operator satisfying (16.6) and (16.7):

+ bi(y) j + c(y)
M=

aik (y)
ay

8

i 8yk 8ysi k=1

with
aikCC(W).

Theorem 16.12. Suppose 0 E C1(w) n W,2,,, ,n-j(w) satisfies

0>0, M¢>0 in w,
¢ = 0 on 8w.

Let u E Way (52) be a function in 52 satisfying

u>0, (Ox+M)u<0 in Q.

Then

u(x, y) - tcb(y) , t constant, and MO = 0,

provided n - j = 1 or 2. The conclusion need not hold if n - j > 2.

If we strengthen the conditions in Theorem 16.12 we obtain a result valid
in all dimensions:

Theorem 16.13. Under the conditions of Theorem 16.12, the conclusion
holds for any j, n, j < n, provided we require in addition that

MO=O in w

and

u>0, (Ax+M)u=0 in Il,

u = 0 on 852.

Finally, a result in a half cylinder

x52 IR w,+= +

where w is a smooth bounded domain in R"-1:



Nirenberg 273

Theorem 16.14. Let M and 0 be as in Theorem 16.12. Suppose u > 0 in
SZ+ and continuous in R+ x w, with

u(O,y) > 5(y) in w.

Suppose also that u satisfies

(A.+M)u <'y(x,y)u in St+

with y(x, y) -+ 0 as 2: -+ +oo uniformly in y. Then u(x, y) decays more
slowly than any exponential as x -+ +oo; more precisely, d a > 0, 3 C(a)
such that

u(x) > C(a) e-' 0(y)

Theorem 16.14 was used in our first proof of Theorem 16.7(ii). Since
then, we have a simpler proof.

Recently, counterexamples to Conjecture 4 have been constructed, first
by N. Ghoussoub and C. Gui for n > 7, in On a conjecture of De Giorgi and
some related problems, Math. Ann. 31 (1998), 481-491, and then, for n > 3,
by M. T. Barlow in On the Liouville property for divergence form operators,
Canadian J. Math. 50 (1998), 487-496.
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Chapter 17

Asymptotic Expansions for
Atiyah-Patodi-Singer Problems

Robert Seeley

17.1 Background
We begin with a very brief reminder of some famous results on asymptotics
for the eigenvalues and eigenfunctions of the Laplace operator AOj = Ajoj.
They go back at least to 1912, when Hermann Weyl [20] proved, for a bounded
region in 1R2, that

x)2 '
d

I\.
a; <A

Later Carleman [7] proved it again by studying the asymptotic behavior of
the resolvent kernel

(A + A)-1(x, y)

near the diagonal, and then applying a Tauberian theorem. Although Weyl's
asymptotics cannot in general be refined by adding more terms with lower
powers of A, the asymptotics of the resolvent can be, and so can other related
expansions. The first result of this kind was due to Minakshisundaram and
Pleijel in 1949 [15] for the heat kernel:

00
e- t0 (x, x) - t-n/2 E C2j (x)tj, t -3 0+.

0

Their aim was to obtain the metamorphic extension of the "zeta function"
tr(A-8) and determine the singularities of its kernel:

-1
CO

C21 (x)
(t s - x, x)

s vol(ts) + Y, s + n/2
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In these expansions, the coefficients c23 (x) are determined by the jets of
the metric at x. Minakshisundaram and Pleijel obtained them by means of
Hadamard's transport equations. On a compact manifold without bound-
ary, each one can be integrated to give the expansion of the trace of the
corresponding operator.

The resolvent, heat, and zeta expansions are all related. For example,

e-en _ 1 f e-ta(O - A)-' dA,
27ri r

where I' is an appropriate contour in the complex plane, and

r(s)A-, = f(e_t- Ho)t21 dt,

where Ho is projection on the nullspace of A.

17.2 The Index Question
Interest in these expansions was renewed by the work of Atiyah and Singer
[3) on the index theorem. They considered the general situation of an elliptic
pseudodifferential operator D acting between two vector bundles E and F
over a compact manifold M,

D : C' (E) -+ C°°(F).

The index is

ind (D) = null (A+) - null (A-), with A+ = D*D and A- = DD`.

The nonzero elements of the spectra of A+ and A- coincide, and from this
it follows directly that the index is given by the trace formula

ind (D) = tr (e-L°+ - e-t°) for all t > 0. (17.1)

Important geometric examples include the de Rham operator on forms,

DdeR = d + d' : Aeven (M) -+ A odd (M); ind (DdeR) = Euler (M),

the a operator on a Riemann surface

c9: f - dz; ind (8) = 1 - genus (M),

and the signature operator acting between certain spaces of forms A+ and
A-

D81g, :)+(M) -+ A-(M); ind (Dej8,,) = signature(M4k)
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The question was raised, is there in general a "Minakshisundaram and Pleijel
expansion" for the Laplacians A+ and A-? It turns out that there is ([17],
[19]). If D has order w and M has dimension n, then, for a differential
operator D, the heat kernels have an expansion

00

e-t' (x, x) _ t-n/1
E c21(y)ti1°J.

0

The coefficients c21(x) depend locally on the jets of the symbol of D at x.
For a pseudodifferential operator, the expansion includes other terms, first
noted by Duistermaat and Guillemin [8]:

00 00

et o (x, x) ,,, t-' ' I: ck(x)tk/2w + T c'1(x)t1/2,' log t.

0 0

Here ck(x) is locally determined if k < n. Hence the trace formula (17.1)
above gives the index of D as the integral of a naturally defined density,
determined locally by the symbol of D:

ind (D) = JM

The density WD is obtained from the terms in t0 in the expansions for a-L°+
and e-t°-, taking the fiber trace in the appropriate bundles:

WD(X) = trE [c. (x)] - trF [cn (x)]

For the classic geometric examples, remarkable results of Patodi [16], Gilkey
[9], and Getzler [4] show that WD(x) can be expressed in terms of character-
istic polynomials for the metric on M. In the simple case of a 2-manifold,
the index form for the de Rham operator is just the scalar curvature, and
the index formula is the Gauss-Bonnet theorem.

17.3 Boundary Problems
For boundary problems there is a similar formula, but including a term in-
tegrated over the boundary. As before, we have bundles E and F over the
manifold M, an "interior operator"

D : C°°(E) - C0(F)

and a "boundary operator"

B : Coo (E]8M) -+ C°0(G)
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for some bundle G over OM. This gives us an operator DB, which is D acting
in the domain

dom(DB) = {u : Du E L2, BulaM} = 0.

If D and B are differential and (D, B) is "well posed" then there is an
expansion ([10], [18])

00

tr e-tall ,., t-"/2 ti
fM

e(x) dx + t"/2 tf
dy.

1 8M

So now the trace formula shows that there is a boundary density QD,B such
that

ind (DB) =
fM fOM

WD(x) dx - dy.

When n = 2 and DB is the de Rham operator with appropriate boundary
conditions, this gives the familiar formula

Euler (M) = 2x f (scalar K) + 2 f (geodesic tc).
M M

All terms are locally determined by the jets of the symbols o(D) and o-(B).
Many have been computed by Branson and Gilkey [5]. However, for some
operators (including the signature operator) there is no well-posed differential
boundary operator B, and this presented a serious obstacle to carrying out
the index program for boundary problems. The simplest example is on the
unit disk:

eiela,+ras).

The natural boundary operator for this is the projection on the positive
Fourier coefficients

00 00E aneine H E a"eine
00 0

B is a pseudodifferential operator, precisely, the Calderon projection for a
on the disk [6]. It is the projection on the space {iae < 01 spanned by the
eigenfunctions of is-90 with eigenvalue < 0. The boundary condition BulaM =
0 eliminates the harmonic functions from the nullspace of a.

Every elliptic differential operator has a similar Calderon projection, and
so admits a well-posed boundary condition which is not differential, but
pseudodifferential. This overcame the obstacle to the index program, and
led to the class called Atiyah-Patodi-Singer problems. In these problems, the
interior operator has the form

D = y(a,, + A + xAj(x)) (17.2)
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with 8x the normal derivative, -y : E -+ F a unitary morphism, and A a
self-adjoint first-order differential operator on El am. The boundary operator
chosen by Atiyah, Patodi, and Singer is

B == H> = projection on {A > 0},

essentially the Calderdn projection for D. (The difference in sign between
this and the a example above is due to the fact that r points toward the
boundary, while x points away.) This gives an operator D> with domain

dom(D>) = {u : Du E L2, II>(NJam) = 0} .

The index of D> is not local in a(D) and a(11>). When A, (x) - 0 for small
x, it is given by the Atiyah-Patodi-SingerPatodi-Singer formula [2]:

ind (D>) = -
2

[sign (A) + null (A)]. (17.3)

Here null (A) is the dimension of the kernel of A, and the signature sign (A)
is the "eta invariant," defined by analytic continuation to s = 0 of the "eta
function"

r/(A, s) = tr(IAI-" sign A) = tr (A(A2)-("+1)/2) ;

sign (A) = 27(A, 0).

17.4 Expansions for APS Problems
The proof of the APS formula was not based on complete expansions of
the traces of e-t°* for the Laplacians of D>. However, it is natural to
expect such expansions, and Gilkey raised the question explicitly a few years
ago. Specifically, if D is an operator of Dirac type, and B an appropriate
pseudodifferential boundary operator, is there a complete expansion for the
heat kernel e-t°B associated with the Laplacian AB = DBDB? In fact, there
is:

00 00

tre-t°B Ncot'"/2+E(c,+ytU-")/2+E(bjl logt+b;)ti/2. (17.4)
1 0

The terms down to and including t° were obtained in [9], and the others
in [12]. This expansion gives the singularities in the meromorphic contin-
uation of the zeta function tr(AB°) to the complex plane. To extend the
corresponding eta function, there is a similar expansion

00 00

tr DBe-toe cot-("+-)/2 (cj + bb)t(i-"-1)/2 + %1 log t + bju) t(i-1)/2.
1 0
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In the case considered by Atiyah, Patodi, and Singer, we get [13]

p

((A>, 0) = tr(W1)-')Fe=o

cn (x) dx + I n(A, 0) +
4

null (A) - null (A±).
M

Here tr(A-') = Ea,#o ) 8, so ((A;, s) (A s), and this reproves the
Atiyah-Patodi-Singer formula.

The method in [12] and [13] is to expand (A + A)-k for 2k > n. In (13],
this is done by a straightforward separation of variables in the cylindrical
neighborhood of the boundary. The more general case of (12] is based on a
theory of "weakly parametric zlido's" on a manifold without boundary. The
construction of (AB +A)-1 for the boundary problem is then reduced to the
expansion of a "weakly parametric Odo" on the boundary.

A motivating example for the weakly parametric class is the case of the
resolvent of a first-order ?)do A on a manifold M without boundary. A has
a symbol

v(A) (x, () = at (x, e) + ao (x, () + a-1(x, () + ... ,

det a, 0, (a, + A)-' homogeneous for ICI > 1, A > 0.

Then the resolvent has a symbol expansion

o ,(A + A)-1 = (a, + A)-1 + b_2(x, (, A) + (17.5)

In the case of a differential operator, a, and ao are polynomials in (, so
(a1 + A)-' is smooth and homogeneous for all ((, A) 54 0. This implies that
derivatives with respect to ( improve the decay as A - oo, and so the
expansion (17.5) gives the asymptotics of (A + A)-1 as A -* oo, with all
terms "local."

If, on the other hand, A is pseudodifferential, it may have a symbol such
as

a positive CO0 function coinciding with ICI when ICI > 1. In this case, terms
such as

b-1 = ([(] + A)-1 = 0(A-1) and O{b-1 = O(A-2)

behave nicely as A -* oo, but

Otb-1 = -b21 [([ + ... = O(A-2)

is not of the desired order O(A-3), and higher derivatives are no better than
0(,\-2 ). This implies that the terms which are negligible in the usual 1pdo
calculus are not negligible as A -* oo, so that calculus alone does not give
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the desired asymptotic expansion. But each term in the symbol does have
an expansion in \; the expansion for b_1 is

b-1 = ([c] +,\)-l - a-1 -
[e]a-2 +

The terms grow progressively worse in but better in A. It turns out that,
for a bdo whose symbol terms have expansions such as this, the integral
kernel has a complete expansion as A -4 oo. This expansion contains log
terms with local coefficients, and nonlocal terms such as those in (17.4). The
reader interested in the detailed technical definitions and statement of results
for the class of "weakly parametric ado's" that we have formulated will find
them in the announcement [14] or the paper [12] already cited.

The most direct application of the theory is to the case of an elliptic i,bdo
A, of positive integer order m, on a manifold M without boundary. Assume
that

o,,,, (A) + A is invertible for A > 0.

Let Q be any ?Pdo of order q. Choose k with km > q + n. Then the kernel of
Q(A + A)-k has an expansion on the diagonal

00

Q(A + A) -'(x, x) ci(x)A(n+q-j)/m-k + r [cih'(x) log A+ c., (x)] \-k-i
o 0

with global coefficients c!(x). If Q is a differential operator then co' - 0. In
the case that Q = sign (A) then fM c'o is essentially the eta invariant of A.

This expansion for the resolvent has already been obtained by Agranovich
[1], from the singularities of QA-'. These can be obtained by rewriting QA-'
as QAkA-'-k for large integer k, and analyzing A-'-k by the usual ?Pdo
calculus. However, there seems to be no similar trick to handle boundary
problems; this was what drove us to the theory suggested here. In principle,
it yields new global invariants for these boundary problems. It remains to
be seen whether some of them are interesting.
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Chapter 18

Analysis on Metric Spaces

Stephen Semmes

It is well known that a lot of standard analysis works in the very general
setting of "spaces of homogeneous type." There is a lot of analysis, related to
Sobolev spaces and differentiability properties of functions, which does not
work at this level of generality. There are nontrivial results about when it
does work.

We understand very little about geometry, just a few special cases.

18.1 Introduction
Let (M, d(x, y)) be a metric space. For the record, this means that M is a
nonempty set, d(x, y) is a nonnegative symmetric function on M x M, which
vanishes exactly on the diagonal and which satisfies the triangle inequality

d(x,z) < d(x,y) + d(y,z) (18.1)

for all x, y, z E M.
We all know that a lot of analysis, of continuity and convergence and so

forth, makes sense on abstract metric spaces. On the other hand, a lot of
analysis makes sense on abstract measure spaces, spaces with a measure but
no metric, analysis of integration and LP spaces and so forth. And then there
is a lot of analysis that makes sense on Euclidean spaces which does not carry
over to either of these abstract contexts because they do not have enough
structure. Coifman and Weiss [1], 12] had the marvelous realization that one
could go a long way with only a modest compatibility between measure and

Research partially supported by an NSF grant.
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metric. If (M, d(x, y)) is a metric space and 1 is a nonnegative Borel measure
on M, not identically zero, then we say that p is a doubling measure if there
is a constant C > 0 so that

p(B(x, 2r)) < C p(B(x, r)) (18.2)

for all x E M and r > 0, where B(x, r) denotes the (open) ball in M with
center x and radius r. In this case we call the triple (M, d(x, y), p) a space
of homogeneous type. We have both a metric and a measure, and we can
formulate many ideas in analysis in this setting. Examples include Euclidean
spaces as well as many familiar fractals, like Cantor sets and snowflakes.

For example, if f is a locally integrable function on M, then we say that
x is a Lebesgue point for f if

lim 1 If (y) - f (x) I dp(y) = 0. (18.3)
r--.O 11(B(x, r)) f (x,r)

This concept makes sense as soon as we have both a measure and a metric,
and it turns out that the doubling condition is strong enough to ensure that
almost every point in M is a Lebesgue point for any given locally integrable
function. This is true for practically the same reason that it is true on
Euclidean spaces; a suitable covering lemma of the Vitali variety works on
spaces of homogeneous type, and then the rest of the argument goes through.

To quiet the nervous voices in the back of my mind, let me assume also
that (M, d(x, y)) is complete. This ensures that closed and bounded subsets
of M are compact (in the presence of a doubling measure), and that obviates
some technical issues (like the Borel regularity of the measure).

Not only does one have Lebesgue points on spaces of homogeneous type,
but one also has working theories of Hardy spaces, BMO, and singular in-
tegral operators. Specific examples of interesting singular integral operators
on general spaces of homogeneous type are harder to come by. There do
not seem to be anything like Riesz transforms in general; they require more
geometric structure. One can build analogues of imaginary-order fractional
integral operators, but they are less interesting than Riesz transforms.

What about Lipschitz functions and Sobolev spaces? One of the great
features of analysis on Euclidean spaces is the special structure of Lipschitz
functions and Sobolev spaces, e.g., differentiability almost everywhere, vari-
ous mechanisms to control a function in terms of its gradient (Sobolev embed-
dings, Poincare inequalities, isoperimetric inequalities). Are there reasonable
versions of these results for general spaces of homogeneous type? The short
answer is no. One can see this with Cantor sets and snowflakes, for instance.

For the record, a Lipschitz function on a metric space (M, d(x, y)) means
a (real-valued) function f such that

If (x) - f(y)I <_ Cd(x,y) (18.4)



Semmes 287

for all x, y E M. If we replace d(x, y) by d(x, y)° for some a E (0,1), then
we say that f is Holder continuous of order a. In Euclidean analysis there
is an enormous difference 'between Lipschitz functions and Holder continu-
ous functions, and more generally between integer orders of smoothness and
fractional orders of smoothness. At the integers there is much more rigidity
and structure. At the level of spaces of homogeneous type one does not see
this distinction. Indeed, one is often feeling free on spaces of homogeneous
type to replace a metric d(x, y) with d(x, y)' for any s > 0, which will not
even be a metric when s > 1 (only a quasimetric).

Sometimes in analysis the special nature of the integer orders of smooth-
ness is , a nuisance, but there is a lot of geometry there that we should not
forget. The concept of Lipschitz functions has the wonderful property that
it makes sense on any metric space and enjoys interesting rigidity properties
on some metric spaces, like Euclidean spaces. Lipschitz functions are nicer
than Riesz transforms in that one always has them even if they do not always
have interesting structure.

Here is a special feature of analysis on Euclidean spaces. Let f be a
compactly supported function on R, or at least a function which tends to 0
at oo. Then

1

in-1 IVf(y)I dy (18.5)f (x)I C
Jxn Ix - y

for all x E R". This is true, for instance, if f is C', and follows from a well-
known identity. It can be proved by computing f (x) in terms of an integral
of V f over each ray emanating from x, and then averaging over the rays.
(See [15].) It holds more generally for Lipschitz functions, or functions in
Sobolev spaces, by approximation arguments. (In this case we should take
V f in the sense of distributions.) If f is not continuous we may have to
settle for (18.5) holding almost everywhere, etc.

This inequality captures a nontrivial amount of Euclidean geometry. Once
we have it we can derive Sobolev embeddings through estimates on the po-
tential operator

h (9) (x) = f 1
nn

Ix -
yI"_1

9(y) dy. (18.6)

The usual estimates for this potential operator (as in [151) work much more
generally than simply on Euclidean spaces; they depend only on fairly crude
considerations of metric and measure. It is (18.5) which contains subtle
information about Euclidean geometry, and there is nothing like it for spaces
of homogeneous type in general.

Let us try to formulate the idea of (18.5) in a general setting. The main
point is to have a generalization of IVf(y)I, some quantity which controls
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the infinitesimal oscillation of f. There are a number of ways to do this,
or one can make discrete versions that avoid some technicalities. For the
present purposes the convenient choice is the following notion of generalized
gradient, for which we follow Hajlasz, Heinonen, and Koskela.

Definition 18.1. If (M, d(x, y)) is a metric space and f and g are two Borel
measurable functions on M, with f real-valued and g taking values in [0, oo],
then we say that 9 is a generalized gradient of f if

b

If (7(a)) - f(y(b))I 5 f g(-y(t)) dt (18.7)
a

whenever 'y : [a, b] -4 M is 1-Lipschitz, i.e., d(7(s), y(t)) < Is - tI for all
s, t E [a, b].

For instance, if f is a Lipschitz function on M, then

g(x) = lim inf sup I f (y) - f (x) I (18.8)
r-+0 YEB(x,r) r

is always a generalized gradient for f.
To formulate a general version of (18.5) we also need a measure, for which

we shall use Hausdorff measure. Let (M, d(x, y)) and n > 0 be given, and let
A be a subset of M. For each d > 0 set

Hb (A) = inf (diam E2)" : {E;} is a sequence of sets in M

which covers A and satisfies diam E; < 6 for all j},

and then define the n-dimensional Hausdorff measure of A by

H"(A) laHa (A). (18.9)

The limit exists because of monotonicity in 6. The natural generalization of
(18.5) to a general metric space (M, d(x, y)) is then

If W1 < Cfm d(x,y)"-' Ig(y)I dH"(y) (18.10)

for all x E M whenever f is a function on M with compact support and
g is a generalized gradient of f in the sense of Definition 18.1. (For this
formulation we need M to be unbounded and there are other formulations
for the bounded case.)

This is not to say that such an estimate holds in general. When it is true
it contains real information about the geometry of M. To avoid trivialities
one should require something about the Hausdorff dimension of M though;
e.g., one should not take n stupidly too small so that the right-hand side is
always infinite.

When does (18.10) hold? I can prove the following.
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Theorem 18.2. Let (M, d(x, y)) be a metric space and n be a positive in-
teger. The estimate (18.10) holds for some C and all x, f, g as above if M
satisfies the following five conditions:

(i) M is complete and unbounded;

(ii) M is doubling, which means that every ball in M can be covered by a
bounded number of balls of half the radius;

(iii) every bounded subset of M has finite H"-measure;

(iv) M is a topological manifold of dimension n;

(v) M is locally linearly contractible, which means that there is a constant
k > 1 so that if B is any ball in M then B can be contracted to a
point inside of kB (the ball with the same center as B but k times the
radius).

One could say that the preceding assumptions on M are sufficient to imply
that M has some Euclidean behavior. Note that M = R" satisfies all these
conditions, and indeed much better. Condition (v) is probably the trickiest
of the conditions to understand. It says that M is locally contractible, with a
scale-invariant estimate. The requirement that M be a topological manifold
implies already that M is locally contractible, but (iv) is not quantitative;
it is (v) which provides the quantitative link between the metric and the
topology. It prevents cusps and long thin tubes, for instance. The doubling
condition is the only other part of the hypotheses which comes with a bound.

Condition (iv) implies that M has topological dimension n, and hence
Hausdorff dimension > n. From (iii) we conclude that the Hausdorff dimen-
sion is exactly n. We do not demand good control on the Hausdorff measure
here, but bad behavior would mean that the Hausdorff measure is too large
and we would pay for that in (18.10) (in the right side being large).

Theorem 18.2 is proved in [13]. In fact, one has approximately the same
structure as for Euclidean spaces, namely a large family of curves that em-
anate from a given point x and that are fairly well distributed in mass. These
curves play the role of the rays which emanate from a given point in a Eu-
clidean space. It is not so easy to produce the curves directly; instead they
are found in the fibers of some special mappings with controlled Lipschitz
behavior and topological nondegeneracy. In this outline form the methods
are the same as in [4], which treated the case of geometries obtained by
perturbing Euclidean spaces via "metric doubling measures." In the present
situation the construction of the special mappings is more involved because
of the absence of a background Euclidean structure. See also [14] for a ver-
sion of [4] in which the basic principles are implemented more clearly and
with more room for maneuver.
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Part of the point here is that there are plenty of examples of spaces with
good geometric properties but no good parameterization. (See [11], [12].)
Theorem 18.2 and its proof show that many natural constructions that would
be easy if there were good parameterizations can still be carried out when
such parameterizations fail to exist.

There are many variations on this theme in [13], e.g., localized control on
the oscillation of a function in terms of its generalized gradient, finding plenty
of curves that are not too long, concluding Sobolev or Poincare inequalities
under suitable measure-theoretic assumptions. Let us forget all of that and
instead play with the conceptual meaning of (18.10).

Let us put ourselves more firmly in the mode of spaces of homogeneous
type and require that (M, d(x, y)) be Ahlfors regular of dimension n, which
means that it is complete and that there is a constant C > 0 so that

C-'r" < H"(B(x,r)) <Cr" (18.11)

for all x E M and r > 0. This implies that M is doubling and unbounded, and
that H" is a doubling measure on M. Under this assumption the right side
of (18.10) behaves (as an integral operator) in practically the same manner
as on R.

Notice that we really need to have some concept of dimension in this story
of (18.10), because we need to know what number to put in the denominator
of the integrand in (18.10). This is not true of the usual theory of spaces of
homogeneous type.

Under what conditions can we hope that something like (18.10) holds?
Let us consider the space (R", Ix - y {') as an example, s > 0, s i6 1. If s > I
then this is not a metric space, and it is not even close, because there are no
nonconstant Lipschitz functions on (R'3, Ix - y'') when s > 1. This reflects
an important point about metric spaces and the triangle inequality: there
are plenty of Lipschitz functions on metric spaces. When we ask for versions
of (18.10), it is reasonable to start by making the a priori assumption that
our function f is Lipschitz, in order to have some reasonable behavior. If
s < 1 then (W, Ix - yl') is a kind of snowflake, and there are no nonconstant
Lipschitz mappings from an interval into it. The concept of generalized
gradient is then vacuous. Thus the power s = 1 is determined uniquely by
the existence of nontrivial Lipschitz functions on llY" and nontrivial rectifiable
curves in R".

Is anything like (18.10) ever true for spaces whose geometry is not some-
how very close to Euclidean? Some kind of fractals perhaps? The ones
with the best hope are the ones with the most rectifiable curves inside
of them, but the usual examples (like the Sierpinski carpet) do not have
enough rectifiable curves in them. For metric spaces which can be realized
as subsets of Euclidean spaces it might be that something like (18.10) would
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force approximately-Euclidean behavior, but for general metric spaces this
is not true, because there are estimates like (18.10) for the Heisenberg group
equipped with its Carnot metric. These metric spaces are Ahlfors-regular,
but with a dimension one larger than the topological dimension.

So under what conditions is something like (18.10) true? One can ask
similar questions about Sobolev inequalities, isoperimetric inequalities, etc.,
but we may as well stick to (18.10). It is a nice property that we can formulate
very generally, and we know that once we have it we can do a lot through
arguments typical for spaces of homogeneous type.

It seems reasonable to me to conjecture that if one has something like
(18.10) on an Ahlfors-regular space of dimension n, then n has to be an
integer.

Theorem 18.2 says that we can see a phenomenon like (18.10) through
quantitative topology. The proof is very much for spaces approximately Eu-
clidean; it was very important that the topological and Hausdorff dimensions
coincide. The method is completely ineffective for the Heisenberg group.

There are a lot of aspects of analysis for which Euclidean spaces and
the Heisenberg group are very similar. This includes (18.10) and the dif-
ferentiability almost everywhere of Lipschitz mappings. (See [9].) It is not
so clear how to distinguish them in simple language; I mean language that
makes sense for Ahlfors-regular metric spaces for instance. One possibility
is that, while both Euclidean spaces and Heisenberg groups satisfy (18.10),
for Euclidean spaces this might be true in a much stabler way; i.e., so that
there is a much more generous notion of "approximately Euclidean" for which
(18.10) is preserved. This idea is illustrated by Theorem 18.2, where we see
that (18.10) can be captured by relatively loose conditions. In Theorem 18.2
one need not specify much structure that is approximately Euclidean, even
though in the end these conditions imply that the structure is more like Eu-
clidean than is obvious at first. It is not clear that Heisenberg geometry is
so stable, that relatively loose conditions can still capture some nontrivial
aspect of the geometry, as in (18.10).

In fact I suspect that Heisenberg geometry is not so stable, precisely
because it is not so closely connected to topology the way that Euclidean
geometry is. Roughly speaking, one expects something like Euclidean geom-
etry when the topological dimension and the Hausdorff dimension coincide.
One can make precise statements of this nature, as discussed in [10]. Note,
however, that Heisenberg geometry is much more stable than most "fractal"
geometries, because of results like the differentiability almost everywhere of
Lipschitz mappings.

For what other geometries is there good behavior for analysis almost like
there is on Euclidean spaces, like (18.10) for instance? This question makes
me a little nervous; maybe we are a little bit lucky to have come across
Heisenberg geometry, especially since it cannot appear inside a Euclidean



292 Chapter 18: Analysis on Metric Spaces

space even up to bilipschitz equivalence, because of [9]. (See [11].) Maybe
there are many other geometries with similar properties but which are very
different from Euclidean and Heisenberg geometries. They might exist and we
just do not know where to look for them. Or maybe there are not so many
geometries that are truly different and for which (18.10) works, but then
how do we extract some common principle which includes both Euclidean
geometry and Heisenberg geometry and excludes the rest?

Incidentally, the only examples that I know of metric spaces which are
doubling but which do not admit bilipschitz parameterizations into some 1R'
are based on the Heisenberg group (or some Carnot group). The argument
uses the differentiability almost everywhere of real-valued Lipschitz functions
on the Heisenberg group, as in [9). It would be very nice to have other
examples, preferably more elementary or based on more direct principles.

What can we say about geometries as a family? How to deform geome-
tries, when are geometries very stable, so that relatively loose conditions
imply that two spaces have similar geometry? Or how to understand the va-
riety in geometry, the ways in which geometries are truly different, in terms
comprehensible to human beings? I know some examples, but I think that
we are blind to what really happens in the variety of geometry.

As to the stability of geometry, of Euclidean geometry, the story of uni-
form rectifiability of David and myself (as in [5], [6], [3), [10]) provides a
language in which we can say that relatively loose conditions on a space
imply that the geometry is approximately Euclidean. The older story of
ordinary rectifiability also does this in a less structured way.

Issues like these show up in the recent work of Heinonen and Koskela
[7], (8] too. There one asks for certain Sobolev-Poincare inequalities and one
makes conclusions about the geometry of mappings. More precisely, one asks
for bounds on functions whose gradient lies in L", where n is the dimension as
in (18.11). This is the conformally invariant case, and such bounds are weaker
than the usual range of Sobolev-Poincare inequalities, where one wants to
control functions even when the gradient lies in LP for p < n. Again one can
ask for which spaces such inequalities hold, how stable are the conditions
under which they hold, and again the answer is not so clear. The conditions
arising in [7), [8].are much closer to the edge of invariance; it is basically
a matter of knowing when nontrivial continua can be seen by the invariant
Sobolev space of functions whose gradient lies in L'. Perhaps they can be
tied to geometry in a more delicate way.



Semmes 293

References

[1] R. Coifman and G. Weiss, Analyse Harmonique Non-commutative Cer-
tains Espaces Homogenes, Lecture Notes in Math. 242, Springer-Verlag,
1971.

[2] , Extensions of Hardy spaces and their use in analysis, Bull. Amer.
Math. Soc. 83 (1977), 569-645.

[3] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lec-
ture Notes in Math. 1465, Springer-Verlag, 1991.

[4] G. David and S. Semmes, Strong Ate-weights, Sobolev inequalities, and
quasiconformal mappings, in Analysis and Partial Differential Equations,
edited by C. Sadosky, Lecture Notes in Pure and Applied Mathematics
122, Marcel Dekker, 1990.

[5] , Singular Integrals and Rectifiable Sets in R": au-deld des graphes
lipschitziens, Asterisque 193, Society Mathematique de France, 1991.

[6] , Analysis of and on Uniformly Rectifiable Sets, Mathematical
Surveys and Monographs 38, 1993, American Mathematical Society.

[7] J. Heinonen and P. Koskela, Definitions of quasiconformality, Inv. Math.
120 (1995), 61-79.

[8] , Quasiconformal maps in metric spaces with controlled geometry,
Acta Mathematica 181 (1998), 1-61.

[9] P. Pansu, Metriques de Carnot-Caratheodory et quasiisomdtries des es-
paces symmetriques de rang un, Ann. Math. 129 (1989), 1-60.

[10] S. Semmes, Finding structure in sets with little smoothness, Proc. I.C.M.
(Zurich, 1994), 875--885, Birkhauser, 1995.

[11] , On the nonexistence of bilipschitz parameterizations and geo-
metric problems about A,, weights, Revista Matem6tica Iberoamericana
12 (1996), 337-410.

[12] , Good metric spaces without good parameterizations, Revista
Matematica. Iberoamericana 12 (1996), 187-275.

[13] , Finding Curves on General Spaces through Quantitative Topol-
ogy with Applications for Sobolev and Poincare Inequalities, Selecta Math.
(N.S.) 2 (1996), 155-295.



294 Chapter 18: Analysis on Metric Spaces

[14] , Some remarks about metric spaces, spherical mappings, func-
tions and their derivatives, Publications Matematiques 40 (1996), 411-
430.

[15] E. M. Stein, Singular Integrals and Differentiability Properties of Func-
tions, Princeton University Press, 1970.



Chapter 19

Developments in Inverse
Problems since Calderon's
Foundational Paper

Gunther Uhlmann

19.1 Introduction
In 1980 A. P. Calder6n published a short paper entitled "On an inverse
boundary-value problem" [13]. This pioneering contribution motivated many
developments in inverse problems, in particular in the construction of "com-
plex geometrical optics" solutions of partial differential equations to solve
several inverse problems. We survey these developments in this paper. We
emphasize the new results since the survey paper [68] was written.

The problem that Calderdn proposed in [13] is whether it is possible to
determine the conductivity of a body by making current and voltage mea-
surements at the boundary. This problem arises in geophysical prospection
[70]. Apparently Calder6n thought of this problem while working as an en-
gineer in Argentina, but he did not publish his results until several decades
later. More recently this noninvasive inverse method, also referred in the lit-
erature as Electrical Impedance Tomography, has been proposed as a possible
diagnostic tool and in medical imaging ([5], [69]). One concrete clinical appli-
cation, which seems to be very promising, is in the monitoring of pulmonary
edema ([23], [43]).

We now describe more precisely the mathematical problem.

Research partially supported by NSF and ONR grant N00014-93-1-0295.
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Let SZ C lit" be a bounded domain with smooth boundary (many of the
results we will describe are valid for domains with Lipschitz boundaries).
The electrical conductivity of I is represented by a bounded and positive
function y(x). In the absence of sinks or sources of current the equation for
the potential is given by

div(yVu) = 0 in Cl (19.1)

since, by Ohm's law, yVu represents the current flux.
Given a potential f E H2(&S1) on the boundary the induced potential

u E H1(C) solves the Dirichlet problem

div(yVu) = 0 in Cl,

Ulan = f
(19.2)

The Dirichlet to Neumann map, or voltage to current map, is given by

A7(f) _ (y 8v}Ian' (19.3)

where v denotes the unit outer normal to 852.
The inverse problem is to determine y knowing Al. More precisely we

want to study properties of the map

(19.4)

Note that Ay : H2(8fl) -+ H-12 (00) is bounded. We can divide this problem
into several parts.

(a) Injectivity of A (identifiability)

(b) Continuity of A and its inverse if it exists (stability)

(c) The range of A (characterization problem)

(d) Formula to recover y from A.1 (reconstruction)

(e) An approximate numerical algorithm to find an approximation of the
conductivity given a finite number of voltage and current measurements
at the boundary (numerical reconstruction).

It is difficult to find a systematic way of prescribing voltage measurements
at the boundary to be able to find the conductivity. Calderon took instead
a different route.
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Using the divergence theorem we have

Q7(f) in 'YIVU12dx J A7(f)f dS, (19.5)

where dS denotes surface measure and u is the solution of (19.2). In other
words, Q7 (f) is the quadratic form associated to the linear map A7 (f ), i.e.,
to know A7 (f) or Q7 (f) for all f E H '2"(8Q) is equivalent. Q7(f) measures
the energy needed to maintain the potential f at the boundary. Calderdn's
point of view is that if one looks at Q7 (f) the problem is changed into finding
enough solutions u r= H1(Il) of the equation (19.1) in order to find ry in the
interior. We will explain this approach further in the next section where we
study the linearization of the map

7 (19.6)

Here we consider Q. as the bilinear form associated to the quadratic form
(19.5).

In §19.2 we describe Calderon's paper and how he used complex exponen-
tials to prove that the linearization of (19.6) is injective at constant conduc-
tivities. He also gave an approximation formula to reconstruct a conductivity
which is a priori close to a constant conductivity.

In §19.3 we describe the construction by Sylvester and Uhlmann [61, 62]
of complex geometrical optics solutions for the Schrodinger equation associ-
ated to a bounded potential. These solutions behave like Calderon's complex
exponential solutions for large complex frequencies. In §19.4 we use these
solutions to prove in dimension n > 3 a global identifiability result [61], sta-
bility estimates [3] and. a reconstruction method for the inverse problem [35],
[45]. We also describe an extension of the identifiability result to nonlinear
conductivities [53].

In §19.5 we consider the two-dimensional case. In particular, we follow
recent work of Brown and Uhlmann [12] to improve the regularity result in
A. Nachman's result [36]. In turn the [12] paper relies in work of Beals and
Coifman [8] and L. Sung [59] in inverse scattering for a class of first-order
systems in two dimensions.

In §19.6 we consider other inverse boundary-value problems arising in
applications. A common feature of these problems is that they can be re-
duced to consider first-order scalar and systems perturbations of the Lapla-
cian. In the scalar case we consider an inverse boundary-value problem for
the Schrodinger equation in the presence of a magnetic potential. We also
consider an inverse boundary-value problem for the elasticity system. The
problem is to determine the elastic parameters of an elastic body by mak-
ing displacements and traction measurements at the boundary. In §19.7 we
give a general method, due to Nakamura and Uhlmann [39], to construct



298 Chapter 19: Developments in Inverse Problems

the complex geometrical optics solutions in this case and a method, due to
Tolmasky [66], to construct these solutions for first-order perturbations of
the Laplacian with less regular conductivities.

Finally we consider in §19.8 the case of anisotropic conductivities, i.e.,
the conductivity depends also of direction. In particular, we outline recent
progress in the study of the quasilinear case [571-

19.2 Calderon's Paper
Calderon proved in [13] that the map Q is analytic. The Frechet derivative
of Q at y = yo in the direction h is given by

dQJry=.,,(h)(f,g)= fhVu. V vdx, (19.7)

where u, v E H'(11) solve

f div(yoVu) = div(yoVv) = 0 in Sl,
(19.8)

Mast=f EH'(O), vlan=9EH1(09 ).

So the linearized map is injective if the products of H'(SZ) solutions of
div(yoVu) = 0 is dense in, say, L2(1)).

Calderon proved injectivity of the linearized map in the case yo = con-
stant, which we assume for simplicity to be the constant function 1. The
question is reduced to whether the product of gradients of harmonic func-
tions is dense in, say, L2(St).

Calderon took the following harmonic functions

u = ex°, v = e-.,P, (19.9)

where p E C" with

p- p=0. (19.10)

We remark that the condition (19.10) is equivalent to the following:

r)+ik
k E R3= 19 112 , 77, ,p

( )
.

I71I=Ikl, 17 k=0.

Then plugging the solutions (19.9) into (19.7) we obtain if dQIryp=,(h) = 0

lkl2(Xnh)^(k) = 0, d k E W,
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where Xn denotes the characteristic function of Q. Then we easily conclude
that h = 0. However, one cannot apply the implicit function theorem to
conclude that ry is invertible near a constant since conditions on the range of
Q that would allow use of the implicit function theorem are either false or
not known.

Calderdn also observed that using the solutions (19.9) one can find an
approximation for the conductivity -y if

ry = 1 + h (19.12)

and h is small enough in L°° norm.
We are given

( lG7
= Q-y e en,

a
and

with p E C" as in (19.12). Now

Gry = fn(1 + h)Du Dv dx

+ fn h(Dbu Vv + Du Dbv) dx (19.13)

+ fn(l + h)Dbu Dbv dx

with u, v as in (19.9) and

div(yV(u + bu)) = div(yV(v + bv)) = 0 in Q,

bul = bvl = 0.
an an

Now standard elliptic estimates applied to (19.14) show that

(19.14)

IIDbvIIL'(n) S CIIhIILoe(n)Ikle2'Ikl (19.15)

for some C > 0 where r denotes the radius of the smallest ball containing 0.
Now plugging u, v into (19.13) we obtain

Xnry(k) = -2-S- + R(k) = P(k) + R(k), (19.16)
JkJ2

where F is determined by Gry and therefore known.
show that R(k) satisfies the estimate

Using (19.15), we can

IR(k)I < (19.17)

In other words, we know Xny(k) up to a term that is small for k small
enough. More precisely, let 1 < a < 2. Then for

IkI < 2 r a log
IIh1

a (19.18)
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we have that

IR(k)I s CIIhIIL-(n) (19.19)

for some C > 0.
We take r) a C°° cutoff so that i (0) = 1, supp i7(k) C {k E R", IkI 1}

and r!o(X) = Q"rl(crx). Then we obtain

Xn Y(k) (or = Ik 2 R(k)
(k)

or

Using this we get the following estimate,

Ip(x)I <- CIIhlIi-(n) [log 1 J", (19.20)
IIhlIL-(n)

where p(x) = (Xny * ij0)(x) - (F * %&). Formula (19.20) gives then an
approximation to the smoothed out conductivity Xny * rlo for h sufficiently
small.

This approximation estimate of Calderon and modifications of it have
been tried out numerically [24].

This estimate uses the harmonic exponentials for low frequencies. In the
next section we consider high (complex) frequency solutions of the conduc-
tivity equation

Lryu = div(yVu) = 0.

19.3 Complex Geometrical Optics for the
Schrodinger Equation

Let y E C2(R? ), y strictly positive in R" and y = 1 for IxI > R, some R > 0.
Let L.yu = div(yVu). Then we have

y-2L.y(y zu) q)u, (19.21)

where

(19.22)

Therefore, to construct solutions of L.yu = 0 in R it is enough to construct
solutions of the Schrodinger equation (0-q)u = 0 with q of the form (19.22).
The next result proven in [61, 62] states the existence of complex geometrical
optics solutions for the Schrodinger equation associated to any bounded and
compactly supported potential.
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Theorem 19.1. Let q E L0O(R" ), n > 2, with q(x) = 0 for I xI > R > 0.
Let -1 < 6 < 0. There exists c(6) such that, for every p E C' satisfying

and

((1 + Ixj2)'/2g(ILe(xn) + 1 <
e,

there exists a unique solution to

(0-q)u=0
of the form

u = ex '(1 +Vq(x, P)) (19.23)

with 0. p) E L2(1R' ). Moreover p) E HH (R") and for 0 < s < 1 there
exists C = C(n, s, 6) > 0 such that

IIiIq(',P)IJH; <
IP11-8

Here

(19.24)

L2(lR') = If : f(i + IxI2)6If (x)I2dx < ool

with the norm given by IIf IIL2 = f (l + Ix)2)6I f (x)I2dx and H6 (III") denotes
the corresponding Sobolev space. Note that for large IpI these solutions
behave like Calderon's exponential solutions. Equation for 'q is given by

(A + 2p . V)bq = q(1 +,q). (19.25)

The equation (19.25) is solved by constructing an inverse for (i + 2p V)
and solving the integral equation

V)q = (0 + 2p . V)-1(q(1 + (19.26)

Lemma 19.2. Let -1 < 6 < 0, 0<s<1. Let pEC
Let f E L26+1(1R ). Then there exists a unique solution up E L2(R") of the
equation

Apup := (0 + 2p V)up = f. (19.27)

Moreover, up E H3(R") and

11 f IIL6}1
IIupII1q(R')

Ca,6

IPI'-'

for 0 < s < 1 and for some constant C,,6 > 0.



302 Chapter 19: Developments in Inverse Problems

The integral equation (19.26) can then be solved in L'(R") for large IPI
since

(I -
and 11(0 + 2p v)-'q[I 6-ILS :5

T
°I for some C > 0 where II II L6,La denotes

the operator norm between LI(R") and L2(1R"). We will not give details of
the proof of Lemma 19.2 here. We refer to the papers [61, 62]. We describe
the underlying ideas in the case n > 3.

The point is that the operator OP = 0+2p V has a symbol -1e12+2ip
which is jointly homogeneous of degree 2 in p). Since we want to look at
the behavior of AP in p we consider p as another dual variable (this will be
made more precise in §19.7).

Now the characteristic variety of A. in c-space for every p is a codimension
two real submanifold. One simple example that exhibits both behaviors is
the equation )p[ (8x1 + i8x2) in R. We have that the "principal symbol" of
Ip1(exl + i8x2) is homogeneous of degree two in p) and its characteristic
variety has codimension two. The point then is that A. is microlocally
equivalent to IPI (8x1 + i8x2) and the estimates follow from the Nirenberg-
Walker [44] estimates for the 8 equation in two dimensions. Namely, in [44]
is proved the following:

Lemma 19.3. Let n = 2. Let -1 < S < 0. Let L = 8 or D. Then given
f E L'6+1 (R2) there exists a unique u E Lb(R2) so that

Lu = f .

Moreover, IIuIIL6 < C1I f IIL,2}1 for some C = C(a) > 0.

Now if we apply this result to I pi 8x1 2i8X2 with the variables x3, ... , x
as parameters we get Lemma 19.2 for s = 0 since

5-

fDtn (1 + Ix12)6Iu(x)I2dx < fn,n(1 + IxI I2 + 1x212)6(u(x)I2dx

fx^(1 + (x112 + Ix212)6+'If(x)12dx

f (1 + 1x12)6+1I f(x)[2dx.

We mention here the following extension due to R. Brown [10] of Lemma
19.2 to Besov spaces.

Lemma 19.4. Let p E C1 - 0, n > 3, satisfying p p = 0. Then for
-1 <6<0 and0<s<1 we have that

Il'
52,12

< IpIC2s
lIfIIB,2.6+1,

where C = C(n, s, 6).
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Here By,q = if : (1 + IxI2) If E Bp,9} with the norm

IIfIIn;' =11(1 + IXI2)jfIIBp

and Bp q denotes the standard Besov space, i.e., f E Bp q if and only if

\ 1.

IIf iIL' + (fR- (fR% I f (x + h) - f (x) I Pdx J al A h-"-°qdh1) 9 (19.28)
/ fff

is finite and (19.28) gives a norm.
We shall discuss the proof of Lemma 19.2 in the two-dimensional case in

§19.5 together with an extension of the estimates to weighted LP spaces.
We assume that y E C2(12) in order to have q E LO0(i)). Brown [10]

showed that one can relax the smoothness assumption on the conductivity
further. Let y be a bounded function on W strictly positive and y equal 1
forlxl>Mandforsome0<s<1

IIV7IIB;-; < M. (19.29)

Let U E C°°(R). We denote by mq(u) the distribution defined by

mq(u)(W) = - f V (tz) dx, V P E Co (W).
°

Note that if y E C2(R') then

mq(u) = qu with q =
0

vfl-y

In [10] it was proven that the map mq is bounded between certain Besov
spaces. More precisely we have

Ilmq(u)IIB + < ChhuhIB..a (19.30)
,s s.2

for -1 < 5 < 0, 0 < s < 1. Combining Lemma 19.4 and (19.30) one
concludes

Theorem 19.5 ([10]). Let -y be a bounded function in It" strictly positive
and one outside a large ball. Let p E C' satisfy p p = 0. Let 0 < s < 1 and
-1 < 8 < 0. Let f E B22'a+i Then 3 R > 0 such that for I pI > R there
exists a unique solution t/) E B28'Z to

Furthermore, we have for some C = C(n, s, 5, M) > 0

II0IIB,;2 ` IPI'2e IIlIIBz,s+l.

Local constructions of complex geometrical optics solutions can be found
in [22] and [23].
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19.4 The Inverse Conductivity Problem in
n>3

The identifiability question was resolved in [61] for smooth enough conduc-
tivities. The result is

Theorem 19.6. Let ryi E C2(S2), yi strictly positive, i = 1, 2. If A7, = A72
then 7i = rye in S2.

In dimension n > 3 this result is a consequence of a more general result.
Let q E LO°(Sl). We define the Cauchy data as the set

Cq - { (Ulan, av Ion)

is a solution of

(A - q)u = 0 in Q. (19.32)

We have that C. C HZ (8Sl) x 11-1 2(090). If 0 is not a Dirichlet eigenvalue of
A - q, then in fact Cq is a graph, namely

Cq = {(f,Aq(f)) E Hl(8SZ) x H-2(Ocl)},

where Aq(f) = a Ian with u E Hi (1) the solution of

(A - q)u = 0 in 0,

Ulan = f
Aq is the Dirichlet to Neumann map in this case.

Theorem 19.7. Let qi E L°°(SZ), i = 1, 2. Assume Cq, = Cq2, then qi = q2.

We now show that Theorem 19.7 implies Theorem'19.6.
Using (19.21) we have that

7i 2

Cq. _ {(f, try' ' Ian av l an) f + y° lanA (ryt = l f)) , f e II Z (acl) }

Then we conclude Cq, = CQ2 since we have the following result due to Kohn
and Vogelius [29].

Theorem 19.8. Let ryi E C'(12) and strictly positive. Assume A7, = A72.
Then

'Milan = 80ry21 jal < 1.0 9,
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Remark. In fact, Kohn and Vogelius proved that if yi E C°°(5), ryi strictly
positive, then A7, = A.,., implies that

8ayt y21 d a.

This settled the identifiability question in the real-analytic category. They
extended the identifiability result to piecewise real-analytic conductivities in
[30]. For related results see [18].

Proof of 19.7. Let ui E H'(Q) be a solution of

(i -gi)ui=0in0, i=1,2.

Then using the divergence theorem we have that

u2 - ul
0uav 2 dS.(qi - g2)ulu2dx =

1

fan

Now it is easy to prove that if Cot = C., then the LHS of (19.33) is zero.
Now we extend qi = 0 in SZ`. We take solutions of (z - gi)ui = 0 in R"

of the form

ui = ex"(1 + Q; (x, pi)), i = 1,2 (19.34)

with (piI large, i = 1, 2, with

Pi =
2
2 + i

f k+1
(19.35)

p2=-i+i (k
1)

2 2

and rI, k, I E R" such that

77

17712 =
Ik(2

+ (112.

(19.36)

Condition (19.36) guarantees that pi pi = 0, i = 2. Replacing (19.34) into

In
(qi - g2)ulu2dx = 0 (19.37)

we conclude

k dx.(qi - q2)(-k)
fn

(qi - 00 (19.38)
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Now II0Q;IIL2lnl < j. Therefore by taking 111 -4 oo we get that

41 42(k) = 0, V k E 1R",

concluding the proof.

We now discuss Theorem 19.8.
Sketch of proof of Theorem 19.8. We outline an alternative proof to the one
given by Kohn and Vogelius of Theorem 19.8. In the case 'y E Coo (S2) we
know, by another result of Calderon [14], that Ay is a classical pseudodiffe-
rential operator of order 1. Let (x', x") be coordinates near a point xo E Oil
so that the boundary is given by x" = 0. If A.y(x', ') denotes the full symbol
of A.y in these coordinates. It was proved in [63] that

A ,(X', f') = 'y(x', 0) ao(x', ') + r(x', c'), (19.39)

where ao(x', C') is homogeneous of degree 0 in C' and is determined by the
normal derivative of y at the boundary and tangential derivatives of y at the
boundary. The term r(x', 6') is a classical symbol of order -1. Then -y ion is

determined by the principal symbol of Ay and
a

ion is determined by the
principal symbol and the term homogeneous of degree 0 in the expansion of
the full symbol of A.. More generally, the higher order normal derivatives of
the conductivity at the boundary can be determined recursively. In [34] one
can find a more general approach to the calculation of the full symbol of the
Dirichlet to Neumann map.

The case y E C' (S2) of Theorem 19.8 follows using an approximation
argument [63]. For other results and approaches to boundary determination
of the conductivity, see [4], [11], [35].

It is not clear at present what is the optimal regularity on the conductivity
for Theorem 19.6 to hold. Chanillo proves in [15] that Theorem 19.6 is valid
under the assumption that Ay E FP, p > 21, where FP is the Fefferman-
Phong class and it is also small in this class. He also presents an argument of
Jerison and Kenig that shows that if one assumes yi E W2'P(S2) with p > a
then Theorem 19.6 holds. An identifiability result was proven by Isakov [26]
for conductivities having jump-type singularities across a submanifold.

R. Brown [10] has shown that Theorem 19.6 is valid if one assumes yi E
C1+`(12) by using the arguments in [61] combined with Theorem 19.5.

The arguments used in the proofs of Theorems 19.6, 19.7, 19.8 can be
pushed further to prove the following stability estimates. For stability esti-
mates for the inverse scattering problem at a fixed energy see [52].

Theorem 19.9 ([3]). Suppose that s > i and that yl and y2 are CO0 con-
ductivities on St C R" satisfying
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(i)0<<-y,<E,
(ii) E.

Then there exists C = C(Q, E, n, s) and 0 < o, < 1 (o- = a(n, s)) such that

117' - 721IL-(n) <- C{, log IIA71- An 11 ,-=1-° + IIA7, - Aw 1I;,- } (19.40)

where II III,Z denotes the operator norm as operators from Hf'(8Q) to
H 2 (8D).

This result is a consequence of the next two results.

Theorem 19.10 ([3]). Assume 0 is not a Dirichlet eigenvalue of A - qt,
i=1,2. Lets > 2, n > 3 and

M.

Then there exists C = C(SZ, M, n, s) and 0 < or < 1 (a = a(n, s)) such that

Ilgt - g211x-1(n) <- C(I log IIAgi - AQ2II;,-, I-° + IIAqi - Ag2II z,-1. (19.41)

The stability estimate at the boundary is of Holder type.

Theorem 19.11 ([63]). Suppose that yt and rye are COD functions on St C
R' satisfying

(_)0<E-<'y <E,
(ii) IIy'IIc2(n) < E.

Given any 0 < or < nit, there exists C = C(Q, E, n, a) such that

Ilyi - y2IIL0(8n) <- CIIA71- A.NII;,- (19.42)

and

19-h 0572

8v av L°O(8ft)
(19.43)

The complex geometrical optics solution of Theorems 19.6 and 19.7 were
also used by A. Nachman [35] and R. Novikov [45] to give a reconstruction
procedure of the conductivity from A7.

We first can reconstruct y at the boundary since yl
an

(l;'I is the principal

symbol of A7 (see (19.39)). In other words, in coordinates (x', x") so that
O 'D is locally given by x" = 0 we have

y(x'' 0) = lim e-""'4">
a->oo 8
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with w' E lRi-1 and Iw'J = 1.
In a similar fashion, using (19.39), one can find e I by computing the

a0
principal symbol of (A.y-ylanAj) where Al denotes the Dirichlet to Neumann
map associated to the conductivity 1.

Therefore if we know A., we can determine Aq. We will then show how to
reconstruct q from Aq. Once this is done, to find f, we solve the problem

L.u-qu=0inIl, (19.44)

Ulan = vr--YI,,.

Let ql = q, q2 = 0 ink formula (19.33). Then we have

J quv = - A0) (vI ) uI oS, (19.45)
n n

where u, v E H1(St) solve Du - qu = 0, Av = 0 in Q. Here A0 denotes the
Dirichlet to Neumann map associated to the potential q = 0. We choose
p=, i = 1, 2 as in (19.35) and (19.36).

Take v = ex'PI, u := up = ex'P2(1 + 1/'q(x, p2)) as in Theorem 19.1. By
taking lim in (19.45) we conclude

IlHoo

) tL I dS.q"1'-k) = lim f (Aq - Ao) (ex-P' 1,
III-+00 n n an

So the problem is then to recover the boundary values of the solutions up
from Aq.

The idea is to find up
an

by looking at the exterior problem. Namely by
extending q = 0 outside 0, up solves

Aup=0inRn-S2,

lv A ( )

(19.46)

Also note that

av I an = q up an

e-x'PUP - 1 E La(r). (19.47)

Let P E '- 0 with p- p = 0. Let Gp(x, y) E D'(Rn x Rn) denote the Schwartz
kernel of the operator Ap 1. Then we have that

gp(x) = ex*PGP(x) (19.48)

is a Green's kernel for A, namely

Ogp = ba. (19.49)
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We shall write the solution of (19.46) and (19.47) in terms of single- and
double-layer potentials using this Green's kernel (also called Faddeev's Green's
kernel (20]. For applications to inverse scattering at fixed energy of this
Green's kernel see [19], [35], [45], [46], [47].)

We define the single- and double-layer potentials

1S°f (x) =
Jan

g,(x - y).f (y)dSy, x E R" - 51, (19.50)

D f( °( - )f( )dS lR" f1)=J 19 51,° x x y y y, xE -
an

8v ( ).

B° f (x) = p.v. Jn g0 (x - y) f (y)dSy, x E 852. (19.52)

Nachman showed that f,, = u°Ian is a solution of the integral equation

fp=ex'°- (SPAq-B°- 2I) fp (19.53)

Moreover, (19.53) is an inhomogeneous integral equation of Fredholm type
for f°, and it has a unique solution in H12(090). The uniqueness of the ho-
mogeneous equation follows from the uniqueness of the solutions in Theorem
19.7.

We end this section by considering an extension of Theorem 19.6 to quasi-
linear conductivities.

Let y(x, t) be a function with domain S2 x ][t. Let a be such that 0 < a < 1.
We assume

y E C1"'(?i x [-T, T]) V T, (19.54)

y(x,t) > O V (x,t) E 52 x R. (19.55)

If f E C2'°(8 l), there exists a unique solution of the Dirichlet problem (see
e.g., [19])

J div(y(x, u)Du) = 0 in 52,

u' _ .f
asl

Then the Dirichlet to Neumann map is defined by

(19.56)

A,(f) = ,Y(X,f)l en8-Jast (19.57)

where u is a solution to (19.56). Sun [53] proved the following result.
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Theorem 19.12 ([53]). Let n > 3. Assume y= E C',' (Si x [-T, T]) V T > 0
and A7i = A72. Then yl(x, t) = y2(x, t) on S1 x R.

The main idea is to linearize the Dirichlet to Neumann map at constant
boundary data equal to t (then the solution of (19.56) is equal to t). Isakov
[27] was the first to use a linearization technique to study an inverse parabolic
problems associated to nonlinear equations. The case of the Dirichlet to Neu-
mann map associated to the Schrodinger equation with a nonlinear potential
was considered in [29], [30] under some assumptions on the potential. We
note that, in contrast to the linear case, one cannot reduce the study of
the inverse problem of the conductivity equation (19.56) to the Schrodinger
equation with a nonlinear potential since a reduction similar to (19.21) is
not possible in this case. The main technical lemma in the proof of Theorem
19.12 is

Lemma 19.13. Let y(x, t) be as in (19.54) and (19.55). Let 1 < p < oo,
0 < a < 1. Let us define

'Y`(x) = y(x,t) (19.58)

Then for any f E C2,a(Ocl), t E Il8,

1 °II1A7(t+sf)-A7°(f)II =0. (19.59)
w P"iacz)

The proof of Theorem 19.12 follows immediately from the lemma. Namely,
(19.59) and the hypotheses A7, = A72 A71 = A72t for all t E lit Then using
the linear result Theorem 19.6, we conclude that yl = y2 proving the result.

19.5 The Two-Dimensional Case
A. Nachman proved in [34] that, in the two-dimensional case, one can uniquely
determine conductivities in W2'p(Il) for some p > 1 from A.Y. An essential
part of Nachman's argument is the construction of the complex geometrical
optics solutions (19.23) for all complex frequencies p E C2 - 0, p p = 0 for
potentials of the form (19.22). Then he applies the 8-method in inverse scat-
tering, pioneered in one dimension by Beals and Coifman [6] and extended
to higher dimensions by several authors [7], [1], [37], [47], [67]. We note
one cannot construct these solutions for a general potential for all non-zero
complex frequencies as observed by Tsai [67].

In fact, the analogue of Theorem 19.7 is open, in two dimensions, for
a general potential q E L°°(I)). We describe later in 19.5.2 of this section
progress made in the identifiability problem in this case. In 19.5.1 we outline a
different approach to Nachman's result that allows less regular conductivities.
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19.5.1 The Inverse Conductivity Problem
In this section we describe an extension of Nachman's result to W'P(S2), p >
2, conductivities proved by Brown and the author [12]. We follow an earlier
approach of Beals and Coifman [8] and L. Sung [59], who studied scattering

a0
for a first-order system whose principal part is

oa
Theorem 19.14. Let n = 2. Let y E W''p(S2), p > 2, ry strictly positive.
Assume A.,, = A7,. Then

'yi = 'Yz in N.

We. first reduce the conductivity equation to a first-order system. We
define

q = -2alog'y (19.60)

and define a matrix potential Q by

0 q
Q= (19.61)

q 0

We let D be the operator

a0D= (19.62)
0a

An easy calculation will show that, if u satisfies the conductivity equation
div(yVu) = 0, then

v , (au)
W au

solves the system

(19.63)

D
v

- Q
v

= 0. (19.64)
W w

In [12] are constructed matrix solutions of (19.64) of the form

esZk 0
= rn(z, k) (19.65)

0 e-`Yk
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where z = x1+ix2i k E C, with m -+ 1 as jzl - no in a sense to be described
below. To construct m we solve the integral equation

m - Dk'Qm = 1, (19.66)

where, for a matrix-valued function A,

DkA = Ek'D EkA (19.67)

with

EkA = Ad + Ak' A°ff (19.68)

and

ei(J+Ak) 0
Ak(z) _ (19.69)

0 e i(k+A)

Here Ad denotes the diagonal part of A and A°ff the antidiagonal part.
Let

J = 2
-i 0

(19.70)
0 i

Then we have

JA =: [J, Al = 2JA°ff = -2A°ff J. (19.71)

where [ , J denotes the commutator.
To end with the preliminary notation, we recall the definition of the

weighted LP space

La(R2) = I f : f(i + Ix)2)0If(x)j dx < oo } .

The next result gives the solvability of (19.66) in an appro)))priate space.

Theorem 19.15. Let Q E LP (R), p > 2, and compactly supported. Assume
that Q is a Hermitian matrix. Choose r so that 1 + 1 > 2 and then ,l3 so that
Or > 2. Then the operator (I - D-1Q) is invertible in L',6. Moreover, the
inverse is differentiable in k in the strong operator topology.

Theorem 19.15 implies the existence of solutions of the form (19.65) with
m-1 E L_,6 (lR2) with /3, r as in Theorem 19.15. Next we compute ekm(z, k).
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Theorem 19.16. Let m be the solution of (19.66) with m - 1 E Lr,6(R2).
Then

m(z, k) = m(z, k)Ak(z)SQ(k), (19.72)

where the scattering data SQ is given by (see [8])

SQ(k) = ..!
:
EkQmdp, (19.73)

?r fR

where d1c denotes Lebesgue measure in R2.

Finally, we need an estimate for the growth of m in the variable k. The
following result is a straightforward generalization of Proposition 2.23 in [59].
(We remark that the proof in [59] is incorrect. A corrected proof, kindly
provided by L. Sung, appears in [12].)

Theorem 19.17. Let Q E Lp(R2),p > 2, and compactly supported. Then
there exists R = R(Q) so that, for all q IP-p-21

supzII m(z, .) - 1IIL9{k;IkI>R} < C,

where the constants depend on p, q and Q.

Outline of proof of Theorem 19.14. We recall (see Theorem 19.8) that if
y: E Wl'P(Q) and A7i = A7 then a0 yiI &-Y2 180 V Ial < 1. Thereforean =
we can extend y; E W"(R2), yi = y2 in R2 - 1 and yi = 1 outside a large
ball. Thus Q E Wl4'(R2). Then Theorems 19.15 and 19.16 apply. Now we
follow the following steps.

Step 1: A71 = A72 SQ, = SQ2 := S.
This just follows using that

ami - Q;mi = 1, i = 1, 2

and integrating by parts in (19.73) (in a ball containing the support of Q;).

Step 2: Using the iequation (19.72) and Step 1 we conclude that

ak (ml - m2) - (ml - m2)(z, k)Ak(z)SQ(k) = 0. (19.74)

Therefore ml - m2 E L? #(R2) satisfies the pseudoanalytic equation

ak(MI - m2) = r(z, k)(ml - m2)(z, k), (19.75)

where r(z, k) = SQ(k)Ak(z).
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Step 3: We define

(nn1 - in2) = (mi - M2) (z, k)ea 1'. (19.76)

It is easy to check that

8(ml - m2) = 0.

Then we can conclude that mi = rn2 and therefore ml = m2, which in turn
easily implies that Ql = Q2 and therefore ryl = y2 by using the following
result, combined with Theorems 19.16 and 19.17.

Lemma 19.18. Let f E L2 (R2) and w E LP(R2) for some finite p. Assume
that wee-1" is analytic. Then w = 0.

The idea of the proof of Lemma 19.18 is the observation that since r E
L2(R2), u = cV lr is in VMO(R2) (the space of functions with vanishing
mean oscillation) and thus is O(log jzi) as jzj -* oo. Hence euw E Lp for
p > p. By Liouville's theorem it follows that e"w = 0. The details can be
found in [12].

We remark that Theorem 19.12 is also valid in the two-dimensional case
[54].

19.5.2 The Potential Case
As we mentioned at the beginning of this section, the analogue of Theorem
19.7 is unknown at present for a general potential q E LOO(Q). By Nachman's
result it is true for potentials of the form q = °n with u E W2'P(12), u > 0
for some p, p > 1. Sun and Uhlmann proved generic uniqueness for pairs of
potentials in [56]. In [55] it is shown that one can determine the singularities
of an L°° potentials from the Dirichlet to Neumann map. Namely we have

Theorem 19.19. Let 12 C R2, be a bounded open set with smooth boundary.
Let qi E LOO (S2) satisfying

Cq, = Co.

Then

qi - q2 E C°(H)

forall0<a<1.
We shall outline in the remaining of this section the proof of an identifia-

F.ility result near the 0 potential. This proof exhibits some of the features of
the proof of Theorem 19.19. We also use directly Calderdn's result that the
product of harmonic functions is dense in L2(1).
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Theorem 19.20. Let I C R2 be a bounded open set with smooth boundary.
Let q, E W"°°(SZ), i = 1, 2. Then there is c(Q) > 0 such that if IIq;IIw,,-(n) <
c(Q) and

Aq, = Aq2.

Then

ql = q2

We first state an extension of Theorem 19.7 to potentials in some weighted
LP spaces. We also find an asymptotic expansion for the remainder term Vi.

Theorem 19.21. Let 1 <p < oo and

-2<b<-1+2 with p+ =1. (19.77)
IY P,

There exists a constant E(5, p) and a constant C > 0 such that for every
q E La+1(R2) fl L- (R2) and for every k E C satisfying

11(1 + IXI2)12gjIL-(jt2) <
(19 78)E,

IkI

.

there exists a unique solution to

such that

(0-q)u=0 in1R2 (19.79)

with b E L6(R2) satisfying

u = etzk(1 +'+/'(z, k)) (19.80)

II1IIL4(RW) +
kI

IIV'OIILb(RI) <- kI IIgIILP+,(R2)

Furthermore

(19.81)

,

k)'O q) + b(k) = 4 (a (19 82)(x, x,
ik

with

.

IIbIIL;(R2) + II IIVbIILL+1(R2) <_ IIZIIgliL6}1(R2). (19.83)
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Outline of Proof of Theorem 19.21. We note that in two dimensions for
z,k E C - {0},

e-izkQeizk f = 4a(a + ik) f. (19.84)

We first compute (a(a + ik))-1. We observe that

a(et(kz+)Ez) f) = ei(kz+kz)(a + ik) f (19.85)

where f E C0 -(R).
We then define

(a+ ik)-1 f _ e-i(kz+kE)a-1(ei(kz+kz) f)
(19.86)

where f E Co (R2).
Because of Lemma 19.4 and (19.86) we have that (a+ ik)-1

bounded operator from La+1(R2) and La (R2) and
extends as a

II(8+ik)-'IIL6+1,Ls <C1 (19.87)

with C1 independent of k. Here II - IIL6L° denotes the operator norm. Also
using (19.86) we have that

IIDz(a + ik)-l IIL6+1,Lg+1 < C2Ikl, (19.88)

where Dz denotes differentiation in any direction and C2 is independent of
k.

The following identities are easy to check.
Let f E L6+1(R2 )

(a+ ik)-1f =
k
(I - a(a + ik)-1) f (19.89)

and

(a + ik)-1f = - (I - a(a + ik)-1)) f
k

(19 90).
)2(i

.

Therefore it follows from (19.89) that

1
(a(a + ik))

1 f = 1

ik [a
1 - a a(8 + ik)-1J f. (19.91)

Using now (19.87) and (19.91) we get

II (a(a + ik))-1IIL6+1,L" S
I

(19.92)
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and

IID.(a(a + ik))-tIILa+1,L6+1 < C4 (19.93)

with C3, C4 independent of k.
Now substituting (19.80) into (19.79) we get that -0 must satisfy

4a(a + ik)z = q(,o + 1) (19.94)

or

y = 1((a((9 + ik))-')(q(1 (19.95)

The existence of a unique in La (R2) follows easily from a contraction
argument using (19.81) and (19.78). Also the estimate (19.81) follows from
(19.92), and (19.93). To obtain (19.82) and (19.83) we note that (19.90)
implies that

(a(a + ik))-l f = aikf
(ik)Z

a(1- a(a + ik)-1 f ). (19.96)

According to (19.95),

= 1((a(a + ik)-lq + (a(a + ik))-'(qi,)) (19.97)

The first term in (19.97) is

1(a(a + ik)-l jq = 1 a lg t9 0(1- a(a + ik)-')q
(19.98)

4 4 ik 4ik2

and the second term in (19.97) satisfies the estimate (19.83) because of
(19.92), (19.93), (19.81), concluding the proof.

Outline of proof of Theorem 19.20. The proof follows using a "compactness"
lemma for elements orthogonal to the product of solutions of the Schrodinger
equation. Specifically

Lemma 19.22. Let SZ C R2 be a bounded domain with smooth boundary.
Let 0 < s < 1. Let q;, i = 1, 2, satisfy

IIq=IIL4(n) <_ M. (19.99)

Then there exists a constant C = C(f, s, M) such that, if

ffuiu2__0 (19.100)

for all u1 E Hl (S2) solution of Du; - q;u1 = 0, i = 1, 2, with f E L2(SZ), then
f E H8(1) and

IIf IIH°(n) < CII f IIL2(Sl) (19.101)
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We now use the above lemma to conclude the proof of Theorem 19.20.
Suppose that Theorem 19.20 is false. Then there is a sequence of pairs

{gin), q(n) } with
q(n)

4
gi(n) for all n approaching zero in W'"°°(SZ) and satis-

fying

Agln) = Agzn). (19.102)

(The set of q's for which C. = A. is dense in W"°°(S2).) Now we have in this
case

1(q (n) - g2n))U(n)U(2n) = 0 (19.103)

for all uin) solution of

( - q(n))u1n) = 0 in S2, i=1,2. (19.104)

Let

q(n) - g(n)
fn =

Ilgin) - 42n)II

(19.105)

L2(n)

It follows from Rellich's Lemma and (19.101) that the fn have a conver-
gent subsequence fn(i) -+ f E L2(1l) with IIf1IL2(n) = 1. Now, let it and v be
arbitrary harmonic functions in Q with boundary values of h and g. Let u(ln)

and v2(n) denote the solutions to (19.104) with the same boundary values as
u and v, respectively; then

(u - ull1 - gin) to - uin)/ - gin)u,

(u
- u1 n)/ I = 0.

an

Hence

Ilu - uin)
11W2,2(n) C, (11 g1n)

I u - u1n)/ II
a + IIg(n) II IIuIIL2(0))\ L (S2) L \(t!)

< Ct (11qI(n)IIL-(O)
II
\u - u(1n)1

11L2(O) + Ilq( )IIL-(n) IIuIIL2(0) I .

/ (19.106)

For IIq(n)II small enough
L- (n)

.5 c2IIg1n)11 IIUIIL2(n)11
u - u1 (n)IIWa.a(n) -
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so that
(n) W''2(n

and similarly

u ui

(") W(n+vz
V.

In particular, since
(e-g., [21])

We know that

u(n)vz(n)
L (

UV.i

0 = J fnuin)9J2n),
A

so it follows from (19.103) and (19.107) that

(19.107)

0 = J fuv, (19.108)
n

for all harmonic u and. v. By Calderdn's argument we get f = 0, a contra-
diction.

Proof of Lemma 19.22. We begin by choosing ul and u2 to be solutions to

Aui - giui = 0, i = 1, 2,

in R2 of the form (19.80), with qi extended to be zero outside SI, and d
satisfying (19.77) with p = 4 of the form

u, _ eik(1++/',(x,k)),
u2 = eizk(1 + -02(x, k),

and, in order to satisfy (19.78),

Iki
11(1 + Ixl2)1/2glIL°°(c,) =: R. (19.109)

Hence, using the expansion (19.82) with gi = a 'qi, w; :_ tpq, (19.100)
becomes

convergence in W2'2(1Z) implies convergence in L4(Q)

J
R2 f

4
k s ei(zk+zk)/R2 ei(sk+zk) f =

J/R2
NIW2e(izk+:-k) + /

(

J (19.110)
+ ff (bl + b2ei(zk+'k),
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where f is extended to be zero outside Il. We denote by ,, 12, and 13 the
three terms on the right-hand side of (19.110). We have

1111 < C1IIfIIL2(n)II*11G2IIL2(n)

< Clllf!ILz(n)II lIIL4(n)II'b211L4(n),

which implies, in view of (19.81),

Illl <_ k12 IIfIIL2(n)IIg111L6+1((R2)IIg211L6+,(R2)

so that, for0<s<1,

11 IkI'IiIIL2(IkI?R) < C3(Q, s)IIg1IIL6t1(R2)IIg2IILa+,(R2)IIfIIL2(n)

In addition,

I2 = 1f (91
4 k

g2)]^(k)
with f (k)

2

es(Zk+rk)f

42

so that

11 IkI8I2IIL2(Iki2:R) s II1f (91 + 92)J"11L2(Ikl>R)

_< 11 f(91 +92)11L2(R2)

s 11 f I I L2(0)1191 + 9211 Loo (n)

< C 411 f I I L2 (n) I I ql + q21 I L6 (n).

(19.111)

(19.112)

In summary,

11 IkI'I211L2(Iki2:R) <_ C6IIf IIL2(n)(IIg1IIL6+,(R2) + IIg2IIL6+1(R2)).

To estimate 13, we use (19.83). We obtain

Ik18II31 <_ IkI'IIfIIL2(n)(IIb111L2(R2) + IIb211La(R2))

s Ikla-211 f11L2(n)(IIg1I1L6}1(R2) + IIg2IIL6}1(R2))

Finally, we note that

IIf II . <_ 2(IIfIIL2(IkI<R)(1 + R2)' + II IkI'fIIL2(IkI>R)).

(19.113)

(19.114)

(19.115)

Combining (19.115) with (19.110), (19.111), (19.113), and (19.114), where R
is chosen in (19.109), gives (19.101).
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19.6 First-Order Perturbations of the
Laplacian

In this section we consider inverse boundary-value problems associated with
first-order perturbations of the Laplacian. We consider two important cases
arising in applications. We first consider the Schrodinger equation in the
presence of a magnetic potential. The problem is to determine both the elec-
tric and magnetic potential of a medium by making measurements at the
boundary of the medium. The second example involves an elliptic system.
We consider an elastic body. The problem is to determine the elastic param-
eters of this body by making displacements and traction measurements at
the boundary. Another important inverse boundary-value problem involv-
ing the system of Maxwell's equations is the determination of the electric
permittivity, magnetic permeability, and electrical conductivity of a body by
measuring the tangential component of the electric and magnetic field [51]. A
global identifiability result and a reconstruction method can be found in (48].
This problem can also be reduced to construct complex geometrical optics
solutions for first-order perturbations of the Laplacian [58]. Recently, in [49]
it was shown that, by considering a larger system, one can reduce the prob-
lem of constructing the complex geometrical optics solutions for Maxwell's
equations to a zeroth-order perturbation of the Laplacian. Then the solutions
can be constructed as in §19.3.

19.6.1 The Schrodinger Equation with Magnetic
Potential

Let 11 be a bounded domain in ]ilk, n > 3, with smooth boundary. The
Schrodinger equation in a magnetic field is given by

n
a

(19.116)- (I_+Aj(x))2+q(x),

where A = (Al, A2, ... , An) E C'((l) is the magnetic potential, and q E
L°°(S2) is the electric potential. The magnetic field is the rotation of the
magnetic potential, rot(A).I

We assume that A and q are real-valued function, and thus (19.116) is
self-adjoint. We also assume that zero is not a Dirichlet eigenvalue of (19.116)
on 0 (or as in §19.3, one can consider the Cauchy data associated to HA q),
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so that the boundary-value problem

HA qu = 0 in 12,

ulan = f E 114(81l),
(19.117)

has a unique solution u E H'(12). The Dirichlet to Neumann map A,
which maps Ha (812) into H-1 (89), is defined by

8u
AA q ' f 8v

+ i(A v) f, f E H (812), (19.118)
an

where u is the unique solution to (19.117), and v is the unit outer normal on
812.

The inverse boundary-value problem for (19.116) is to recover information

of A and q from knowledge of AA A.

It is easy to see in [54] that the the Dirichlet to Neumann map AA q

is invariant under a gauge transformation in the magnetic potential: A
A + Vg, where g E Cn, where we denote

Cn={f EC3(R"),suppf C1 }. (19.119)

In fact, if we consider u as in (19.117), then v = e'.9u solves HA-.
+Vg,q

V = 0 in
12 and A- f = A. f. Thus, A- carries information about the magnetic

Aq A+Vg,q A,q

field instead of information about A. The natural question is whether AA q

determines uniquely rot(A) and q. In [54], this question was answered affir-
matively for A in the Cn class and q in the L°O(12) class, under the assumption

that rot(A) is small in the L°° topology.
The smallness assumption in Sun's result was used to construct complex

geometrical optics solutions similar to (19.23) in this case. In §19.7 we will
describe how Nakamura and Uhlmann [39] constructed these types of solu-
tions without the smallness assumption on rot(A). This combined with the
methods of [54] leads to the following result [42].

Theorem 19.23. Let Al E C°°(S2), q1 E C°°(fl), j = 1, 2. Assume that zero
is not a Dirichlet eigenvalue of H-. , j = 1, 2. If

Aj,q,

AAi,gi AA2,ga'

then
rot(Al) = rot(A2) and ql = q2 in Q.
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If we assume Aj E Cn, it was proved in [42] that Theorem 19.23 holds
even for qj E L°°(c). We have

Theorem 19.24. Let Aj E C °, qj E L°°(1l), j = 1, 2. Assume that zero is
not a Dirichlet eigenvalue of H-. , j = 1, 2. If

A,,gj

nAi,gi nA2,g2

then

rot(A1) = rot(A2) and q, = q2 in Q.

The inverse scattering problem at a fixed energy in this case has been

considered in [19].

C. Tolmasky [66] reduced the regularity of Aj in Theorem 19.24 to just
Aj E C. He constructs the complex geometrical optics solutions under
weaker regularity conditions. We shall outline his approach in the next sec-
tion.

19.6.2 Inverse Boundary-Value Problems for Elastic
Materials

We assume now that 92 is an elastic material, that is, if we deform S2, it will
try to come back to its original shape. Let u(x) denote the displacement of
the point x under the deformation. The undeformed domain is called the
reference configuration space. The linear strain tensor,

1 (!!U_j_ 2' (19.120)E+ 2 ax. + ax i, j = 1, ... , n,

measures the rate of deformation with respect to the Euclidean metric for
small deformations. Under the assumption of no-body forces acting on Cl,
the equation of equilibrium in the reference configuration is given by the gen-
eralized Hooke's law (see [16] for an excellent treatment of elasticity theory),

Lcu = div or(u) = 0 in Cl, (19.121)

where a(u) is a symmetric two-tensor called the stress tensor. The elastic
tensor C is a fourth-order tensor which satisfies

[n-

aij (u) = L, Cijkl (x)ekt (u), i, j = 1,... , n. (19.122)
kJ=1

We shall assume that the elastic tensor satisfies the hyperelasticity condition
([16], chap. 4)

CCjkt(x) = Cknj(x) V x E SZ. (19.123)
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We also assume that C satisfies the strong convexity condition: there exists
6 > 0 such that

n
/

n

Cijkl(x)tijtk1 tij, x E S2
i,j,k j=1 i,j=1

(19.124)

for any real-symmetric matrix (tij)l<i,j<n. Condition (19.124) guarantees the
unique solvability of the Dirichlet problem

f div a(u) = 0 in 0,

Ulan - f,
The Dirichlet integral associated with (19.125) is given by

(19.125)

) ^
auk aui

(19.126)
We

(f fCiikz(x)-dxaxl axj
i,j,k,t=1

with u the solution of (19.125). Physically, Wc(f) measures the deformation
energy produced by the displacement f at the boundary.

Applying the divergence theorem we have that

Wc(f) _ f (AC(f))ifi dx, (19.127)
i=1 n

where
uk

(Ac(f))i
n a

= E Vjcijkl a lasl'
i = 1, ... , n

x
j,k,l=1

i

(19.128)

with u the solution of (19.125) and v the unit outer normal to &Sl. In other
words, Ac is the linear operator associated to the quadratic form WC. The
map

f -*Ac(f) (19.129)

is the Dirichlet to Neumann map in this case. It sends the displacement at
the boundary to the corresponding traction at the boundary. The inverse
problem we consider in this subsection is whether we can determine C from
Ac.

We shall assume that C is isotropic, i.e., satisfies

Cijkl(x) = )(x)aijdkl + p(x)(6ikbjl + bilajk), (19.130)

where aik denotes the Kronecker delta.
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In this case the strain tensor takes the form

o, (u) = A(x)(trace e(u)) + 2p(x)div (u). (19.131)

The strong-convexity condition (19.124) is equivalent to

n.+2p>0, p>OinS2. (19.132)

The main known results for identifiability of C from AC are

Theorem 19.25 ([39]). Let n > 3, C3 E COO(S2), be an isotropic elastic
tensor, j = 1, 2. Assume

Ac1 = Ac2.

Then C1 = C2.

Theorem 19.26 ([41]). Let n = 2 and C; as in Theorem 19.9 with Lame
parameters A,, p,, j = 1, 2. There exists e > 0 such that if

II(A , N7) - (Ao, po)llw31.oo(n) < E, j=1,2,

and AC, = Ace then (al, pi) = (A2042). Here (\o, µo) denotes a constant and
(lull W31.oo(n) = sup l a°u(x)I.

.EO
IaI<31

The global uniqueness result Theorem 19.25 is the analog to Theorem
19.6 for the inverse conductivity problem. Theorem 19.26 is analogous to the
local result, Theorem 19.20. We remark that there is no known global result
in two dimensions similar to the one proven by Nachman [36] for the inverse
conductivity problem. Theorem 19.25 has been extended in [38] to a class
of nonlinear elastic materials, the so-called St. Venant-Kirchhoff's materials,
using a linearization technique similar to Lemma 19.13.

We now indicate the main steps in the proofs of Theorems 19.25 and
19.26. The first observation is that under the hypothesis of Theorems 19.25
and 19.26 we can prove an identity involving Al - A2, Al - µ2

Lemma 19.27. Let 0), i = 1, 2 be solutions

div o-(u.(')) = 0 in 0,

with u(') E H' (S2), i = 1, 2. Assume AC, = A02. Then

E (u('), u(2)) := f(A1 - )12)div div ui2)dx (19.133)

+ 2
J (p1 - e(u(2))dx = 0.

n
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The proof of the Lemma follows readily by applying the divergence theo-
rem and the boundary determination result of [40], which is the analog of
Theorem 19.8. Namely, under the hypothesis of Theorems 19.23 and 19.24
we have that the Taylor series of A1i µl and A2, A2 coincide. (It only needed
tµ, &A, jal < 1.)

The problem is now to find "enough" solutions of Lc;u(') = 0 in S2 to
conclude that the Lame parameters coincide in Q.

It is quite difficult to construct solutions of the form (19.23) directly for
the elasticity system. In the paper [39], a reduction to a system with principal
part the biharmonic operator is made by multiplying Lc on the left by an
explicit second-order system Tc to get

TcLc = 02 + Ml (x, D) A + M2(x, D) (19.134)

with M; (x, D) an n x n system of order i, i = 1, 2. Then to construct
solutions of Lcu = 0 it is enough to construct solutions of Mu = (OZ +
Mi(x, D)0 + M2(x, D))u = 0. By introducing a new dependent variable
v = Du we want to find solutions of the 2n x 2n system

u 0 0 u 0 -I u 0) () = ()
v 0

(19.135)Q v+ 0 Ml v + 0 M20-1

where 0-1 denotes the inverse of the Laplacian. Notice that (19.135) is a
first-order system perturbation of the A with the zeroth-order perturbation
being a pseudodifferential operator.

Ikehata [21] reduced the elasticity system to an (n+l) x (n+1) differential
system as follows.

Lemma 19.28 ([23]). Let with u = (u1, ... , u,,)t be a solution of
f

the (n + 1) x (n + 1) system

AIn+1 u + V 1(X)
V f

+ V°(X) u =
0

f V.u f 0

with

V°(x) =

1
( -Vlogp

(2V2 + In0)l 126 2µ (V2 - 0 In)1`D
1 t 1-ppp-

A+2µ

(19.136)

(19.137)

(19.138)
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and Ik denotes the identity k x k matrix. Then

w = p ' u + u 2V (uf ) (19.139)

satisfies

Lcw = 0. (19.140)

Therefore we are reduced to finding "enough" solutions of the first-order
system (19.136), which we rewrite as

(A + PM (x, D))v = 0 (19.141)

with PM (x, D) a first-order (n + 1) x (n + 1) differential system.
We shall indicate in §19.7, how to construct these complex geometrical

optics solutions.

19.7 Complex Geometrical Optics Solutions
for First-order Perturbations of the
Laplacian

In this section we outline the construction of complex geometrical optics
solutions for first-order perturbations of the Laplacian. For simplicity we do
this for scalar equations. A similar method applies to the first-order system
(19.136) arising from the elasticity system [39] Let us consider an operator
of the form

P(x, D) = AI + P(') (x, Dx), (19.142)

where P(')(x, Dx) is a first-order scalar system with smooth coefficients in
IL" and I denotes the identity matrix. Let p E C' with p p = 0, p 54 0.

In this section, for IpI sufficiently large we shall outline the method of [39]
to construct solutions of

P(x, D)u = 0 (19.143)

in compact sets of IV of the form

u = ex'°v(x, p) (19.144)

with a fairly precise control of the behavior of v(x, p) as IpI -+ 00.
We will construct v(x, p) as a solution of

Pp(x, D)v = 0, (19.145)
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where

P. (x, D) = z . + P,' (x, D) (19.146)

and

Apu = e-x PA(ex'Pu), PP1)(x, D)u = e-x'PP(1)(x, D)(ex'Pu).

As shown in §19.3, we have precise estimates for OP'. The problem is that
derivatives of OP 1 f do not decay for large p. Also Pnl) involves terms growing
in p. The goal is to get rid of the first-order terms in (19.146). Roughly
speaking, we will construct invertible operators AP, BP, and an operator CP
of "lower order" so that

P,,AP = BP(OP + C,,).

We will then construct solutions of PPv,, = 0 of the form

VP = APwP

(19.147)

with wP solution of (AP + CP)wP = 0.
We will accomplish (19.147) using the theory of pseudodifferential oper-

ators depending on the complex vector p. The main point is to regard the
variables C and p in equal footing. We digress to discuss the main features
of this theory. For more details, see for instance [50]. Let

Z= {pEC";IpI >

Definition 19.29. Let I E P, 0 < 6 < 1, U C R7, U open. We say that
aPESa(U,Z)gb'pEZfixed, aP(x, )EC°°(UxIlt");`daE Zn,
V K C U, K compact 3 C,,,,9,K > 0 such that

sup j :5 Ca,a,k(1 + II + Iw
pl)`+pd-1Q1

sup
VpEZ,1;ER'2.

Example 19.80. We have that

Sp(R X Z)

since it is homogeneous of degree 2 in p). Notice, however, that rP is not
elliptic.

In fact, if n = 3 and we take Rep = s(1, 0, 0), Imp = s(0,1, 0) , s E 1[l,
then the zeros of FP(e) is a codimension two circle in the plane i = 0 centered
at the point (0, -s, 0) of radius s.
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Definition 19.31. Let U C R", U open, a. E SS(U, Z). We define the
operator A. E La(U, Z) by

Ad (x) _ (2x)" f e' av(x, &(C)d , f E C. -(U). (19.148)

The kernel of A. is given by

kA, (x, y) = Je)a,,(x)de, (19.149)

where the integral in (19.149) is interpreted as an oscillatory integral. A.
extends continuously as a linear operator

where £'(U) (resp. V'(U)) denotes the space of compactly supported distri-
butions (resp. distributions).

As usual, it is easy to check that if a,, E SS(U, Z) for all 1, then A,,
6'(U) -+ C°O(U), i.e., A. is a smoothing operator.

Definition 19.32. We say that Ap is uniformly properly supported if supp kA,,
is contained in a fixed neighborhood V of the diagonal in U x U for all p E Z,
so that VK C U, K compact, V intersected with II-1(K) is compact where
11 denotes either one the projections of U x U onto U.

Proposition 19.33. Let Ap E L6 (U, Z). Then we can write

A,, =BP+R,,

with Bp E L6 uniformly properly supported and R,, smoothing.

We shall assume from now on that all pseudodifferential operators are
uniformly properly supported.

Definition 19.34. Let A. E L6(U, Z) as in (19.148).

(a) Then the full symbol of A,, is given by am(A,,)(x, l;) = a,,(x,

(b) The principal symbol of A,, is given by

am (A,.) (x, l;) = ap(x, l;) mod S6`1 (U, Z).

The functional calculus for pseudodifferential operators depending on a
parameter is completely analogous to the standard calculus. Namely, we
have

Theorem 19.35. Let Ap E L6 (U, Z), Bp E L6 (U, Z). Then
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(a) APB,, E L6 +m(U, Z)

(b) Qm+m(ApBp) - E!D'am(Ap)&.am(Bp)

(c) am+m(ApBp) = am(Ap)am(Bp)

(d) am+in([Ap, Bp]) = HQm(A,)am(B.), where [Ap, Bp] denotes the commu-
tator and H,, denotes the Hamiltonian vector associated to p, i.e.,

" 8p 8 8p aHp=rt1X;ax;
OX, k-)

Finally we shall use the following continuity property of Ap's on Sobolev
spaces (see [50]).

Theorem 19.36. Suppose l < 0, K a compact subset of R2n and Ap E
L6(Rn, Z) with supp KAp C K, Vp E Z . V k E R, Ap is a bounded
operator from H'(R') to Hk(lRn) and 3 Ck,K > 0 such that

IIAPIIk,k Ck,KIPI` V p E Z,

where IlApIlk,k denotes the operator norm.

We define

AP E Lo(R , Z) (19.150)

by

a(Ap) _ (1 12 + Ip12) 2. (19.151)

We use this to get a first-order equation. Let Pp = P,A- 1 --,&P +,6.(')(x, D)
with Op = ApAP 1, Pp') = Pp1)A; 1. A key ingredient in the construction of
complex geometrical optics solutions is the following result proven in [39].

Theorem 19.37 (Intertwining property). For all positive integers N 3Ap, Bp E
La (Rn, Z) invertible for 1 pi large so that

V 01 E Co (Rn ), 3iPi E Co
(Rn

), j=2,3,4

so that

co1PpAp = (w1B w2)Ap 1(A,I + ww3R(-N)(p4) (19.152)

with R(-N) E La N(Rn, Z), and bs E ]LP

Ika3R(-N)wP41ls,s G CIPI-r'
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Since the kernel of 03R(-Ni04 has compact support independent of p, the
last estimate follows from Theorem 19.36. Then to find solutions of PPv, = 0
in compact sets, it is enough to find solutions of

(t,I + (p3Rt-N' W4)w, = 0- (19.153)

Then A;1 A,,w, solves PPvP = 0 on compact sets (take cp1 = 1 on the compact
set).

The proof of this result for the case 5 = 0 is given in [39]. We will
write in this case Lo (R", Z) =: Lm (R") and So (U, Z) =: S"(U, Z). We will
just say a few words about the proof which is quite technical. The main
problem is to construct A,,, B,, near the characteristic variety (i.e., the set
of zeros of F. with r, as in Example 19.30). This is because away from the
characteristic variety P. and OP are elliptic and therefore invertible modulo
elements of L-N (R", Z) for all N E N, and it is therefore easy to construct
the intertwining operators A,,, B,, in that case. The characteristic variety is
given by

r,1(0) = { (x, C) E R2tt :Rep e = 0, (e + Im pl2 = JIm pJ2},

where

).rv() _ (IS I2 + Ipf2) i (-JS I2 +
2ip.

Near the characteristic variety we take A. = BP.
So we are looking for A,, E L°(R", Z) such that

P,,A,, = APi, mod L-N(R, Z),

i.e.,

(AP + PM(x, D))A,, = A,,&, mod L-v (W, Z).

We proceed inductively. We choose

M

A,,=3 A(),A' EL-'(R",Z).
jO

Let c3 (AP)) be the principal symbol of AU P. Then by the calculus of pseu-
dodifferential operators depending on a parameter we need to solve

H,.,a°(AP°)) +o°(Pp1))oo(Ap°)) = 0 (19.154)

and

iHr,(aj(A(!)) +ao(P(1))oi(A,MI) = g, (x, )
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with gj E S-j (lR , Z) so that

PpAp = APO,, mod L-M(R", Z)

(Recall that this is all done near the characteristic variety.) We note that

H,, = L1,v + iL2,v

with L1,,,, L2,p real-valued vector fields R2n so that [L1,,,, L2,,,) = 0. The
vector fields L1,,,, L2,,, are linearly independent near the characteristic variety.
Therefore Hfo can be reduced to a Cauchy-Riemann equation in two variables
of the form as + i. In fact, one can write down an explicit change of
variables in (t;, p) to accomplish this (see [39]). We also give conditions at
00 on AP to guarantee that it is invertible. Namely in the coordinates in
which the vector field H,.o is the Cauchy-Riemann equation we require, for
-1 < a < 0, that a(A,,) - I E L, where I denotes the identity matrix.

To prove Theorem 19.24 with less regularity in the magnetic potentials
Tolmasky [66] constructed complex geometrical optics solutions with the co-
efficients of PM (x, D) in C2/3+F(l) for any f positive. Using techniques from
the theory of pseudodifferential operators with nonsmooth symbols ([9], [17],
[65]) one can decompose a nonsmooth symbol into a smooth symbol plus a
less smooth symbol but of lower order. We describe below more precisely this
result. First we introduce some notation. C; (R) will denote the Zygmund
class.

Definition 19.38. Let 6 E [0, 1]:
(a) p,,(x,t;) E C;S, 6,,,(Fl;") if and only if

J Dc' pP(x, e) l <_ Ca((1 + 4 12 + IPI2) 2
)m-lal

and

J DE pp(', )IIc. < C. ((1 + IP12) a )m-1a1+86

for any a E Z+.
(b) Pp (X, E C9S 6,P(lR") if the conditions on (a) are satisfied and

additionally:

II Dfpp(', )IICi < Ca((1 + IS12 + IPI2)1)m Iai+j6

for any aEZ+anddjENsuch that 0<j<s.

Proposition 19.39. Let p,,(x, C) E C. 'S, o,,. Then we can write for any b
so that 0<6<1:

pc(x, f) = p, (x, l;) + pbp(x, ), (19.155)
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where

pp(x, ) E S%6
,P

(19.156)

and

p,(x, t;) E C;-tSi o,06, s, s - t > 0. (19.157)

Here S'1,,,6 denotes the symbol class similar to Definition 19.29 with jai
replaced by plat. Let p,,(x, D), pdp(x, D), p,(x, D) denote the corresponding
operators associated to pp(x, 0, p,(x, 0, pbp(x, l;), respectively. Then we have
the following estimates which are proved using a Littlewood-Paley decompo-
sition of the phase space depending on the parameter p.

Theorem 19.40. Let p,,(x,l;) E C;S,O,P(R'). Then

pp(x, D) Ha+my(R°) --? H',n(R")

with

IIpP(x, D)Ile+m,a < C((1
lpl2)')a+m, (19.158)

where 0 < s < r, p E (1, oo) and II ' Ila+m,s denotes the operator norm between
Sobolev spaces.

Now we describe how to construct complex geometrical optics solution of

P(x, D) = A + P(')(x, D). (19.159)

Using Theorem 19.37 (for the sake of exposition we will eliminate all the
cutoff functions) we can find operators A,,, Bp E La (R", Z) such that A,,, B,,
are invertible for large p and

(Op + N,)Ap = Bp(Ap + Cp) (19.160)

with Cp E L'(R", Z) where Pp(" (x, D) = NN (x, D) + NN(x, D) using the
decomposition (19.155). Then

(Ap + Pp(x, D))Ap = Bp(Ap + Cp) + NP(x, D)Ap (19.161)

Bp(Ap + Cp + BP'N,(x, D)A,).

Using the estimate (19.158) and the estimates for the operators Ap, Bp im-
plied by Theorem 19.36 we conclude the following estimate under the regu-
larity assumption that the coefficients of the first-order term are in C2/3+E
with e>0

II(C,, + Bp'NP(x, D)Ap)AP'IIL2(n),La(o) < CIPI -' (19.162)

for some Q = ,B(e) > 0.
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19.8 Anisotropic Conductors
In §§19.1-19.5 we considered isotropic conductivities, i.e., the electrical prop-
erties of 11 do not depend of direction. Examples of anisotropic media are
muscle tissue. In this section we consider the inverse conductivity problem
for anisotropic medium. The problem is well understood in two dimensions.
Using isothermal coordinates [2] one can in fact reduce, by a change of vari-
ables, the anisotropic conductivity equation to an isotropic one and therefore
one can apply the two-dimensional results of §19.5. Of course, this is not
available in dimension n > 2. In fact, in this case the problem is equivalent
to the problem of determining a Riemannian metric from the Dirichlet to
Neumann map associated to the Laplace-Beltrami operator [34]. Only the
real-analytic case is understood at present [34].

In this section we will consider the case of a quasilinear anisotropic con-
ductivity. We outline recent results [57] proving identical results to the linear
case. One needs to go further than the linearization procedure of Lemma
19.13 for isotropic non-linear conductivities. In fact, we show that one can
reduce the problem question about the density of product of solutions for the
linear anisotropic conductivities by using a second linearization.

We assume that ry(x, t) E Cl,°(S2 x IR) be a symmetric, positive definite
matrix function satisfying

'y(x, t) > CT', (x, t) E Ti x [-T,T], T > 0, (19.163)

where CT > 0 and I denotes the identity matrix. _
It is well known (see, e.g., [21]) that, given f E C2'"(SI), there exists a

unique solution of the boundary-value problem

f 0 - (7(x, u) Vu) = 0 in 12,

ulan = f.
(19.164)

We define the Dirichlet to Neumann map A., : C1,11(8Q) --+ Cl,"(00) as the
map given by

A7: f f)Dul an, (19.165)

where u is the solution of (19.164) and v denotes the unit outer normal of
852.

Physically, y(t, u) represents the (anisotropic, quasilinear) conductivity
of Sl and Ay(f) the current flux at the boundary induced by the voltage f.

We study the inverse boundary-value problem associated to (19.164): how
much information about the coefficient matrix y can be obtained from knowl-
edge of the Dirichlet to Neumann map A,.?
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The uniqueness, however, is false in the case where y is a general matrix
function as it is also in the linear case [33]: if 4i : ci -3 ci is a smooth
diffeomorphism which is the identity map on 811, and if we define

(44'Y)(x,t) _ (D4))TID I)(D4)) o4t-1(x), (19.166)

then it follows that

A*..y = Ay, (19.167)

where D4) denotes the Jacobian matrix of 4i and ID4I = det(D4)).
The main results of [57] concern with the converse statement. We have

Theorem 19.41. Let 52 C R2 be a bounded domain with C3,°` boundary,
0 < a < 1. Let y1 and y2 be quasilinear coefficient matrices in C2"a(S2 x R)
such that A.y, = A.y.. Then there exists a C3'° diffeomorphism 4i : S2 -* S2
with 1Iest = identity such that y2 = 4).71

Theorem 19.42. Let SZ C R", n > 3, be a bounded simply connected do-
main with real-analytic boundary. Let y1 and y2 be real-analytic quasilinear
coefficient matrices such that A, = Ate. Assume that either y1 or y2 extends
to a real-analytic quasilinear coefficient matrix on R". Then there exists a
real-analytic diffeomorphism 4):11 - 12 with 4ol., = identity, such that
y2 = Ob.'Y1

Theorems 19.41 and 19.42 generalize all known results for the linear case
[64]. In this case and when n = 2, with a slightly different regularity assump-
tion, Theorem 19.41 follows using a reduction theorem of Sylvester [60], using
isothermal coordinates, and Theorem 19.14 for the isotropic case.

In the linear case and when n > 3, Theorem 19.42 is a consequence of the
work of Lee and Uhlmann [34], in which they discussed the same problem
on real-analytic Riemannian manifolds. The assumption that one of the
coefficient matrices can be extended analytically to R" can be replaced by a
convexity assumption on the Riemannian metrics associated to the coefficient
matrices. Thus Theorem 19.42 can also be stated under this assumption,
which we omit here. We mention that, in the linear case, complex geometrical
optics solutions have not been constructed for the Laplace-Beltrami operator
in dimensions n > 3. The proof of Theorem 19.1 in the linear case follows a
different approach.

A. Linearization. The proof of linearization Lemma 19.13 is also valid in
the anisotropic case. We shall use yt to denote the function of x obtained by
freezing tin y(x, t).
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Under the assumptions of Theorem 19.6, using Lemma 19.13 we have
that

A7i = A7,t, V t E JR. (19.168)

Since Theorems 19.41 and 19.42 hold in the linear case, it follows that there
exists a diffeomorphism fit, which is in CQ when n = 2 and is real-analytic
when n > 3, and the identity at the boundary such that

72 (19.169)

It is proven in [57] that 4?t is uniquely determined by y and thus by yt,
l = 1, 2. We then obtain a function

4?(x,t)=V(x):n xR -+sixR, (19.170)

which is in C3"(SZ) for each fixed t in dimension two and real analytic in
dimension n > 3. It is also shown in [57] that 41 is also smooth in t. More
precisely we have, in every dimension n > 2, that ee E C2,a(S2).

In order to prove Theorems 19.41 and 19.42, we must then show that 4
is independent of t. Without loss of generality, we shall only prove

- I =0 in S2. (19.171)& t=o

It is easy to show, using the invariance (19.167) that we may assume that

41(x, 0) - x, that is, 4i° = identity. (19.172)

Let us fix a solution u E C3,,, (Sj) of

V AVu = 0, ul = f, (19.173)

where we denote A = y° = 72.
For every t E JR and I = 1, 2, we solve the boundary-value problem

(19.173) with 7t replaced by yi. We obtain a solution u1,):

0 inf

u'(t)I =
n f, 1=1,2.

It is easy to check that

(19.174)

u(2)((Dt(x)), x E S2.
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Differentiating this last formula in t and evaluating at t = 0 we obtain

autl) - 8u 2i
- X Vu = 0, x E SZ, (19.175)

at at
t=o

where

t
X = (19.176)& LO

It is easy to show that X Vu = 0 for every solution of (19.173) implies
X = 0. So we are reduced to prove

Nl) au(2)

at at
= 0. (19.177)

two

Using (19.174) we get

V (71 (XI t)Dut(l)) - V ('Y2(x, t)Vu'(2)) = 0. (19.178)

Differentiating (19.178) in t at t = 0 we conclude

+V.+ V '2) = 0.° {(7' _ 222 I V

U
'(1)

t t=o
(19.179)

We claim that in order to prove (19.177) it is enough to show that

v.
[(°yl _ 72)I Qul =o.at at J t=o J

This is the case since we get from (19.179) and (19.180)

V [Av ( (1) -
2)

I - = 0.
Ot J 1to

(19.180)

The claim now follows since the operator V AV : HH(Sl) n H1(1) -+ L2(Q)
is an isomorphism and therefore

au(l)

_ Ou(2) /at at
=0.

ant=o

B. Second linearization and products of solutions. In order to show
(19.180) we now study the second linearization. We introduce, for every
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t E R, the map K7,t : C2,"(8Sl) -a H'2(80) which is defined implicitly as
follows (see [53]): for every pair (fl, f2) E C21"(8f2) X C2,"(8fZ),

JI1KA,t(f2)dS Dul Vu dx (19.181)
n n

with u1, l = 1, 2, as in (19.174) with f replaced by ft, l = 1, 2. We have

Proposition 19.43 ([53]). Let y(x, t) be a positive definite symmetric ma-
trix in C2(fZ X R), satisfying (19.163). Then for every f E C2,* (0Q) and
tEIIY,

lim11s
[8'A,(t + sf) AA,(f)J -KA,t(f)II 0.

Under the assumptions of Theorems 19.41 and 19.42, using Proposi-
tion 19.43 with t = 0, we obtain

K7,,.(f) = K720(f), V f E C3."(8fZ).

Thus, by (19.181) we have

i VuT a_Y1

t_o
Due dx = f Dui

1
two

Vu 22 dx,

with u1, u2 solutions of (19.174). By writing

_ L71 _ 8'Y2B
at at } t=o

(19.182)

(19.183)

and replacing in (19.182) ul by u, and u2 by (u1 + u2)2 - ui - u2i we obtain

Vu B(x)V(ulu2)dx = 0 (19.184)

with u, ul and u2 solutions of (19.174).
To continue from (19.184), we need the following two lemmas.

Lemma 19.44. Let h(x) E C' (S2) be a vector-valued function. If

L h(x)V (ulu2)dx = 0

for arbitrary solutions ul and u2 of (19.174), then h(x) lies in the tangent
space Tx(8f2) for all x E 00.

Lemma 19.45. Let A(x) be a positive definite, symmetric matrix in C2
Define

DA = Spanp(n){uv : u, v E C3," (St), V AVu = V AVv = 0}.

Then the following are valid:
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(a) If I E 00 (U) and l1 DA, then l = 0 in S2,

(b) If n = 2, then DA = L2(I).

Now we finish the proof of (19.180) concluding the proofs of Theorems
19.41 and 19.42.

By Lemma 19.44 we have that v B(x)Vu - 0 in 852. Integrating by
parts in (19.184), we obtain

fEy B(x)Vu]u1u2dx = 0. (19.185)

We now apply Lemma 19.44 to (19.185). If n > 3, we have that y1 and
y2 are real-analytic on S2 x It Thus B E C'(Sl). Since the solutions u solve
an elliptic equation with a real-analytic coefficient matrix, we have that u is
analytic in Q. If u is analytic on fl, we can conclude from Lemma 19.45 that

V (B(x)Vu) = 0, x E SZ. (19.186)

We shall prove that (19.186) holds independent of whether u is analytic
up to 852 or not. This is due to the Runge approximation property of the
equation. Using the assumptions of Theorem 19.42, we extend A analytically
to a slightly larger domain Il D a. For any solution u E C3,°(Sl) and an
open subset 0 with 0 C fl, we can find a sequence of solutions {u,.} C
C"(?), which solves (19.184) on Sl, and u,n l -+ u l in the L2 sense,

1101 m-+oo 0,
where d1 C 52, O C O1. By the local regularity theorem of elliptic equations
this convergence is valid in H2(0). Since (19.186) holds with u = u,n, letting
m -+ oo yields the desired result for u on O. Thus (19.184) holds. If n = 2,
Lemma 19.44(b) implies that V V. (B(x)Vu) = 0 for any solution u E C3.°(SZ).

The proof of Lemma 19.44 follows an argument of Alessandrini [4], which
relies on the use of solutions with isolated singularities. It turns out that in
our case, only solutions with Green's function type singularities are sufficient
in the case n > 3, while in the case n = 2, solutions with singularities of
higher order must be used. There are additional difficulties since we are
dealing with a vector function h. We refer the readers to [57] for details.

The proof of part (a) of Lemma 19.45 follows the proof of Theorem 1.3
in [3] (which also follows the arguments of [31]). Namely, one constructs
solutions u of (19.173) in a neighborhood of fl with an isolated singularity
of arbitrary given order at a point outside of Q. We then plug this solution
into the identity

In
lu2dx = 0.

By letting the singularity of u approach to a point x in Oil, one can show
that any derivative of I must vanish on x and thus by the analyticity of 1,
1 - 0 in St. For more details, see (57].
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To prove the part (b) of Lemma 19.45, we first reduce the problem to the
Schrodinger equation.

Using isothermal coordinates (see [2]), there is a conformal diffeomor-
phism F : (S2, g) -3 (V, e), where g is the Riemannian metric determined by
the linear coefficient matrix A with gii = A7'. One checks that F transforms
the operator V AV (on Sl) to an operator V AT (on S2') with A' a scalar
matrix function ,Q(x)I. Therefore the proof of the part (b) is reduced to the
case where A =,8I, with /3(x) E C2.°(Il). By approximating by smooth so-
lutions, we see that the C3"° smoothness can be replaced by H2 smoothness.
Thus we have reduced the problem to showing that

Da = SpanL2{uv : u, v E H2(S2); V # Vu = V # Vv = 01 = L2(1).

We make one more reduction by transforming, as in §19.3, the equation
V QVu = 0 to the Schrodinger equation

Ov-qv=0

with

u = /3 2v, q = E C°(S2). (19.187)

This allows us to reduce the proof to showing that

Dq = SpanL2{vlv2 : Vi E H2(fl), Ovi - qvi = 0, i = 1, 2} = L2(SZ) (19.188)

for potentials q of the form (19.187).
Statement (19.188) was proven by Novikov [46]. In [57) it was shown that

it is enough to use the Proposition below which is valid for any potential
q E L°°(SZ). This result uses some of the techniques of [61,62] similar to the
proof of Theorem 19.20.

Proposition 19.46. Let q E L°°(1l), n = 2. Then Dq has a finite codimen-
sion in L2(0).

It is an interesting open question whether Dq = L2(1l) in the two-
dimensional case.
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Remarks Addressed to the Conference

Alberto P. Calderdn

Dear Friends:

Thank you for attending this conference. I have turned seventy-five and
I am starting to realize that the cardinality of this number is larger than I
felt it was.

Turning now to the purpose of this conference, I believe that a few math-
ematical comments of mine before the end of the conference would not be
totally out of place. Well, here they are. They concern the relationship
between singular integral operators and pseudodifferential operators. The
latter are a very refined mathematical tool whose full power is yet to be
exploited. Singular integral whose kernels are infinitely differentiable off the
diagonal are a very special case of pseudodifferential operators. However,
singular integral operators with kernels which are not infinitely differentiable
as above are not pseudodifferential. Similarly, linear partial differential op-
erators are pseudodifferential operators only if the coefficients are infinitely
differentiable. Such differential operators with nonsmooth (i.e., noninfinitely
differentiable) coefficients have important applications. They appear in prob-
lems in physics and engineering, and they can be studied by using singular
integral operators with nonsmooth kernels. It is' not difficult to construct
an algebra of singular integral operators K in such a way that differential
operators of a given order m with coefficients with specified regularity be
contained in the module, over this algebra, of operators of the form KAm,
where K is an operator in the algebra and A is the operator defined by
(Af)-(x) = T(x) co(x), where - denotes Fourier transform and V(x) is a pos-
itive infinitely differentiable function such that V(x) = lxi for Jxj > 1. The
study of these algebras is not yet complete. There are still open questions
about best possible assumptions.

Thank you.
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