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Leb wohl, du kiihnes, herrliches kind!

—Wotan's farewell to his daughter
Brtinnhilde from Act III of
Die Walkiire by Richard Wagner
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Preface

T HIS book is built around six computer programs that treat various aspects
of the determination of the aerodynamic or hydrodynamic characteristics of

wings and bodies at low Mach numbers. It is intended to support a first course on
the subject. The pedagogical theory on which the book is based is that the material
is better understood when the student can devote more effort to formulating the
problem and interpreting the answer and less effort to generating the solution.
Generating the solutions to many end-of-chapter problems is therefore left to the
programs.

There is substantial danger in such an approach: The student will use the
program and fail to study the accompanying material to determine the limits of
the theory that is programmed. To minimize this risk the book treats the problems
to be solved at two levels: 1) one simple enough to be solved readily by hand and
2) the other realistic enough to make computer solution attractive.

The treatment is limited to cases where the freestream flow velocity is much
smaller than the local speed of sound. As a result of this limitation, the theory
presented applies both to bodies in the atmosphere and to bodies fully submerged
in the ocean.

The title should suggest that only the basics of the subject are treated. Many
subtitles are left for advanced courses. This includes the idea of wing-body com-
binations.

The book begins with a determination of the characteristic of the operating
environment. Beginning with a derivation of the governing differential equation,
it is shown that mathematical models of the ocean and the atmosphere repre-
sent three special cases of this equation: 1) a constant density case, 2) a case
where the temperature decreases linearly with increasing altitude, and 3) a case
where the temperature remains constant with increasing altitude. The pressure-
density-temperature relations for these situations are derived. The meaning of the
coefficient of dynamic viscosity is also discussed.

The second chapter treats elementary inviscid flow functions and shows how
by combining a uniform stream, a source, and a sink, a flow resembling that over
a cylinder normal to the stream can be generated. The cylinder may be rotating, in
which case it generates a lift. Depictions of the flow-field for a number of cases are
provided, and source code for the software that was used to generate the figures is
supplied on an accompanying 3.5-in. disk. These codes are in addition to the six
principal programs supplied with the book.

The third chapter describes how, through a conformal transformation, the lifting
circular cylinder can be mapped into an airfoil shape. The details of performing this
transformation are handled by the program JOUKOW following the exposition of

XI

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



xii , PREFACE

the technique in the text. The program contains two enhancements to yield better
agreement with experimental data. How these enhancements accomplish this feat
is discussed. Typical airfoil shapes generated by this program are shown, as are
the pressure distributions they generate at various angles of attack and a portion
of a typical text listing.

The extension of the fluid model to accommodate fluid viscosity is treated in
Chapter 4. The concept of a boundary layer is introducted, and a method is devel-
oped (momentum integral technique) for determining the effective displacement
of the freestream due to the presence of a body in the flow. The method also yields
the skin friction due to the flow over the surface. In addition, the method provides
the basis for determining the size of the body wake or wing wake and, thus, the
form drag of the configuration. When added to the skin-friction drag this yields
the net fluid resistance on the body. The details of how this is accomplished for
fuselagelike or nacellelike bodies are provided in Chapter 7.

Chapter 5 describes the theory behind a major program, AIRFOIL, which can
determine the lift, drag, and pitching moment characteristics of a specified air-
foillike shape. Instructions for entering data into the program are provided, as
are typical results. The chapter text discusses limitations imposed by the theory
coded on the types of airfoils that can be analyzed and the maximum lift coeffi-
cient value for which the code gives results that closely match those determined
experimentally. Example results for a variety of airfoils are given.

Chapter 6 discusses how airfoil characteristics at various spanwise stations can
be integrated to determine the characteristics of a complete wing through the
program F2D3D. Included is a discussion of the origins of induced drag and the
theoretical foundations of F2D3D. Typical program input and output are shown.
Because F2D3D requires the two-dimensional characteristics to be in functional
form, a least-squares fit of experimental data or the tabular data produced by
AIRFOIL is generated by POLYFIT. Two auxiliary programs, 2DHELP and
3DHELP, help the user set up input files for the two principal programs.

Chapter 7 deals with the determination of the lift, drag, and moment charac-
teristics of a body with a plane of symmetry at small inclination to the flow.
The theory, which is programmed in BODY, is discussed, and instructions for
entering the body geometry and other required data are provided in addition to a
program (BODYGEN), which generates input data for general ellipsoids. Results
for sample cases, including graphics, are given.

Chapter 8 deals with the flowfield generated by a lifting wing. WASH de-
termines the streamlines in the downwash field including the rollup of the tip
vortices. WAKE calculates the momentum deficiency in the downwash field. The
combined result of the two programs can be used to determine the magnitude and
persistance of the vortical flow components in the field up to three or four chord
lengths aft of the wing trailing edge and the streamwise momentum defect faced
by a tailplane at various vertical locations. This is important to the designer when
selecting a suitable tailplane area and incidence angle. Chapter 8 also provides
some auxiliary programs to assist in data entry and graphics preparation.
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PREFACE xiii

Chapter 9 is a brief survey of some aspects of what is termed computational
fluid dynamics. This is included to indicate to the reader the direction in which
the effort is proceeding to make the prediction of the aerodynamic characteristics
of complete configurations entirely analytic.

The programs themselves are supplied on high-density diskettes both as personal
computer executables and as Fortran source code in ASCII format, which can be
user compilied for other platforms. Only the JOUKOW program and the auxiliary
programs have not been previously published. AIRFOIL, F2D3D, POLYFIT, and
BODY appeared in NASA CR-2523 and WAKE and WASH appeared in NASA
CR-2774. For the present work, however, the user interface on the previously
published programs has been updated to take advantage of currently available
personal graphics systems (for example, the AIRFOIL program now generates
PostScript files of the airfoil shape, the pressure distributions, and the complete
lift, drag, and moment characteristics), and a slightly more accurate version of the
program BODY is provided. The Input/Output operations were altered (disk files
in place of tape files, for example) to better fit current standards and to segregate
data into separate files. To facilitate program usage a number of auxiliary programs
were prepared especially for this book.

The programs taken from the NASA contractor's reports have received favorable
comments from the general aviation industry and from home builders for the last
20 years. With the widespread availability of computers capable of running the
larger programs quickly, it was felt that now the methods the programs implement
could also be incorporated into the undergraduate teaching program to good effect.

Some familiarity with mathematics and physics, at least to the extent of their
basic vocabulary, is assumed in the developments of theory in the text. For exam-
ple, the reader should understand the meaning of superposition as related to the
summing of solutions of differential equations or the concept of linear vs nonlinear
or ordinary vs partial differential equations.

This book differs from most currently available texts in that it does not seek
broad coverage of the subject area; rather, only sufficient theory is provided for
understanding the applicability and limitations of the computer programs. The
author believes that encyclopedias are not the best textbooks for introductory
students. For one thing, an instructor cannot possibly cover all of such a book
during the usual course framework. In the student's opinion that portion of the
book that is not covered is simply excess weight and cost. At this point in the
development of technology, it should also be abundantly clear that the student will
someday have to acquire additional books in the course of a career for self-study—
books that treat advanced aspects of the topics studied as an undergraduate or that
open the door to entirely new fields.

A single method that will quickly lead to the student's being able to perform
some useful design or analysis holds student interest much better than a succession
of theoretical treatments, the applications of that are never explained. The programs
supplied with this book most certainly are not the only ones that could be applied
to such instructional purposes; the fundamental pedagogical point to be made,
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xiv , PREFACE

however, is that students need to be given tools, such as these programs, to assist
them in learning the subject matter. In particular, it is important that students
be given the opportunity to carry out "what if" studies on their own. Several of
the end-of-chapter problems prompt the student in this direction. The author has
discovered from personal experience that such studies are an excellant vehicle to
facilitate individual learning, as well as being a device that could not have been
used before the availability of low-cost personal computers of adequate capability
because of the time that would have been required for the various computations.

The author urges the reader not to attempt to use these computer programs
blindly. Although this is possible, it is fraught with pitfalls. Computer results,
these or any others, should never be accepted without a reasonably good under-
standing of the underlying theory. Only with such understanding are the programs
not used in inappropriate situations, and only with such understanding can the
results be properly evaluated. With the increasing reliance now being placed on
computer usage it is important that this point be stressed to students early in their
educations.

The end-of-chapter problems often seek to teach some new ideas, that is, some
ideas not mentioned in the body of the chapter or mentioned only in passing,
by having students perform some operation and then asking them to discuss the
significance of the result. There are also some problems that permit students to
check their understanding of the material. Some problems suggest archival lit-
erature from which interesting and informative data can be obtained. In contrast
to many books, some of the end-of-chapter problems are really discussion ques-
tions in which students are urged to express in words their understanding of the
physics of the situation. Although such problems must be graded subjectively,
they provide the instructor with an indication of whether students can verbalize
significant concepts, important practice for when students seek to convince others
of the Tightness of their ideas.

To the Student
The author appreciates that students at this level are not called upon to solve

differential equations in their engineering courses. This book will make no great
demands in that direction either, unless the student is provided with a computer
program that enables the task to be accomplished rapidly with a minimum of
errors. However, to use the programs effectively the student must understand the
procedure that is coded. Unless there is this understanding, there will be little
feeling for whether the results given by the computer are valid. In the workplace
computer results are often used to design important pieces of hardware. Errors in
the result can have serious economic consequences and may even create health
and safety hazards.

Only rarely are errors in computed results the fault of the computer. Most of
the time they are the result of errors in the input data or the use of the program in
inappropriate circumstances. The latter situation can easily happen if the user does
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PREFACE xv

not understand the procedures that have been coded; thus there exists the need to
study and understand those procedures and not to use the programs blindly.

Most of the methods, which have been coded in these programs, are what might
be called integral methods in that they really involve integrals of differential equa-
tions. The integrals are often approximated by a system of algebraic equations.
The solution algorithms for these equations are tedious but not especially sophis-
ticated. A general appreciation of how they work should not be that difficult to
acquire and should be adequate for successful use of the programs.

The author has found that the study of new subjects is greatly enhanced if the
software supplied with the course is used to obtain solutions to what if problems of
his own devising and if those solutions are examined to see what lessons they have
to teach. For example, one might wish to compute the aerodynamic characteristics
of an airfoil over a wide range of angles of attack or a wide range of Reynolds
numbers or over a series of airfoils where one geometric parameter is varied over
a wide range. At some point in each of these computations the results will become
ridiculous. Such an investigation serves to define the region of applicability of
the program. There are many tools that can assist in evaluating program results:
experimental data, analytical solutions for simple cases, results obtained by other
methods, and numbers produced by the program that are obviously impossible on
physical grounds. It may be noted that trying to match experimental results for
airfoils under conditions where the programs can be expected to work lead to the
development of tweaks that improve program performance. Students tend to resist
doing such "what if" studies in the interests of saving time, but as the old saying
goes: no pain, no gain. The programs execute rapidly. The output is provided as
both listings and graphics. Time is not spent on tedious hand calculations, and the
errors that usually come with such calculations do not occur. Thus, the student can
spend a majority of the time doing what a human still does better than a machine:
evaluating the results and learning therefrom.

In this text the author has made the use of software the raison d'etre in the hope
that students will find that it facilitates learning and ability to undertake more
realistic problems earlier in their careers.

Software Issues
The software is supplied on the attached diskettes. The user will probably find

it most convenient to load all of the executable files in one directory on a hard
disk. If the user desires to modify the source files, they should be placed in the
same directory. If the user desires to run the codes under a non-MSDOS operating
system, then, of course, the .EXE files are of no use and may be discarded. The
DOSXNT and DOSXMFS files must be in the same directory from which the ex-
ecutable MSDOS files are run. These files create the protected mode environment
that is needed to permit large programs to run. One of these files is used when the
user is in the MSDOS environment and the other in the Windows 3.1 environment.
A recompilation with a newer version of the PowerStation or other FORTRAN
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xvi , PREFACE

compiler will probably be necessary to run under Windows 95 or Windows NT
and, almost certainly, to run under operating system 2 (OS/2).

The FORTRAN source files are written in ASCII and should be readable by
most computers. The FORTRAN is quite standard although some compilers will
complain (give warnings) about the order of arrays in COMMON blocks or DI-
MENSION statements. Some Unix compilers the author has seen use only unit 0
to write to the screen although most will accept either unit 0 or unit * commands
for screen writes. Unit * has been utilized in these codes.

Users will find it convenient to have available a software PostScript interpreter
such as GHOSTSCRIPT, which contains screen drivers and drivers for most
popular printers. [GHOSTSCRIPT is a shareware program distributed by the
Open Software Foundation, usually as a set of compressed files. It is distributed
with a set of public domain font files. It can accept additional proprietary fonts in
Type 1 (PostScript) format and can be made to use the True Type fonts distributed
with Windows. It supports color Postscript. The GHOSTSCRIPT distribution
contains a number of document files, which are very useful in helping first time
users get started. As with most shareware programs, however, technical support
is not available. The user may also find some commercial software PostScript
interpreters that perform the same functions as GHOSTSCRIPT. Many commercial
graphics packages contain a skeletal PostScript interpreter (they read files in Adobe
Illustrator format) and can perform file conversions.] Use of such a software
interpreter is usually preferable to the use of the built-in interpreter in many
PostScript-equipped printers because the computer CPU is usually much faster
than the CPU in the printer. To print or view the vector PostScript files that the
programs write under Windows, a file conversion to a Windows compatible format
may be necessary. The author chose to write the graphics in PostScript format
because of its portability and because the files are written in ASCII characters, not
in a binary format, making it possible for the user to alter it, add titles and legends,
change the figure size and shape, and send it by email.

Sample input files are given for most of the programs in the text. Users should
try the respective programs with these files to see if the output data given in the text
are reproduced. When the same results are achieved it generally means that the
program is being used correctly and that the executable file is operating correctly.

Users with access to compilers are encouraged to try modifications to the
programs. Modifications may be in the form of the visual appearance of the output,
in the tasks the program performs, or in the language in which the programs are
written. Users who develop useful modifications or who rewrite the source code(s)
in another programming language, and this includes MATLAB m-files, are asked
to share their codes with the author and with the scientific community at large.

Even users who do not have a FORTRAN compiler can still find the source
code useful in checking the order of input data in a .DAT file, for example, for
reviewing the algorithm actually used to solve a problem or to generate a plot, or
when checking for suspected coding errors. The author is entirely responsibile for
any such errors that remain and would appreciate being notified if and when such
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PREFACE xvii

errors are found so that they may be corrected in future releases of the software.
The author would also like to hear from users who have suggestions to make
regarding ease of use issues or program utility.
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1
The Atmosphere and the Ocean

1.1 Introduction

A ERODYNAMICS and hydrodynamics are fields of study concerned with
predicting the forces and moments experienced by bodies moving in a fluid

medium. The two fluids of greatest interest are air and water. Both are viscous and
compressible. As a result of the compressibility, these fluids have sound speeds
dependent on the characteristics of the particular medium. We note that the speed
of sound in a medium is the speed at which remote regions of the fluid receive
information regarding the existence of a weak disturbance elsewhere in the fluid.
The speed of sound in water is many times faster than it is in air, while the density of
water is about 800 times that of air at sea level. As a result of the denser medium and
higher sound speed, vehicles traveling in water move at speeds that are very much
smaller that the local speed of sound; that is, they have Mach numbers approaching
zero. (The Mach number is the ratio of the vehicle's speed to the speed of sound of
the medium in which the vehicle is traveling.) Although transonic and supersonic
flight in the atmosphere is now common, we will restrict our consideration, in
so far as this book is concerned, to Mach numbers of 0.3 or less. At these Mach
numbers the air at any altitude can be considered to be incompressible.

The ocean differs from the atmosphere most notably in that vehicular travel is
possible on the surface as well as beneath the surface. We will restrict our con-
sideration to vehicular motion sufficiently far beneath the surface that the effects
of surface waves and of wave reflections from the surface on the fluid through
which the vehicle must travel are vanishingly small. Under these conditions the
same basic theory is valid for flight in the atmosphere or in the ocean. To be sure,
the greater density of the water means that vehicle bouancy is always a signifi-
cant force in undersea travel although it is usually insignificant when applied to
heavier-than-air machines.

1.2 Relation of Pressure and Altitude
For us to determine the forces and moments experienced by a vehicle moving in a

particular fluid, it is necessary that we first deduce some of the properties of the fluid
and their variation with altitude (or depth). Let us consider a small fluid element
having dimensions dx, dy, and dz. This element is shown in Fig. 1.1. The mass of
the element is p dx dy dz where p is the density. The weight of the element is simply
the mass times the acceleration due to gravity g. If the pressure on the bottom face
of the element is /?, then the force on this surface is P dxdy directed upward.

The pressure on the upper surface is P + AF, and the force on this surface
directed downward is (P + AF)(dxd^). If the element is to remain stationary,
the forces on it must be in equilibrium. Hence,

Pdxdy = gpdxdydz + (P + AP)(dxd;y)
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AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Fig. 1.1 Element of volume.

If we now divide this equation by dx d;y we have

P = gpdz + P +dP

or

dP = -gpdz (1.1)

1.2.1 In the Ocean
The solution to differential equation (1.1) tells us how the fluid pressure varies

with variations in z (height or depth). To solve Eq. (1.1) we need an additional
relationship. For the ocean we will assume that p is constant, which is the same
as assuming that the fluid is incompressible. Eq. (1.1) then has the solution

^2 - P\ = ~gp(z2 - z\) (1-2)

For convenience we call zi , the depth at the surface of the ocean, zero. Because
our positive direction is up, increasing depth means increasingly negative values
of Z2. The pressure at any depth is then

P = Po + gpd (1.3)

where PQ is the atmospheric pressure at the surface and d is the depth of the point of
interest measured positively with respect to the surface. From Eq. (1.3) we see that
the pressure at a point 100 ft below the surface is 2116.2 + (64)(100) = 8516.2
psf or about 59 psi. Here, 64 is the weight in pounds of a cubic foot of sea water.

1.2.2 In the Atmosphere
To solve Eq. (1.1) for the atmosphere, we first employ the equation of state for

a perfect gas

P = pKT (1.4)

where 7£ is the gas constant and T is the temperature measured from absolute
zero. 71 has the value of 1718 in U.S. customary units (USCU). However, this
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THE ATMOSPHERE AND THE OCEAN 3

equation introduces an additional variable and we must specify a relationship
among the variables in order to obtain a solution.

In the troposphere. Measurements in the atmosphere indicate that from the
ground up to an altutide of 36,150 ft, the region of the atmosphere called the
troposphere, the temperature decreases about 3.56°F for each 1,000-ft increase in
altitude. This behavior can be expressed as

T = TQ-ah (1.5)

where a = 0.00356/ft or 0.0065° K/m.

Pressure-altitude variation in the stratosphere. From 36,150 to 82,300 ft
the temperature is constant. In this region, called the stratosphere, Eq. (1.1) can
be written

or

^ = -^ (1.6)P UT

Equation (1.6) has the solution

kP = ~(g/7tr)A + C (1.7)

If the pressure at ho is /?o, then

C = U>0 +

and

or

/<C7
n Q,(1.8)

In Eq. (1.8) h > h0 so that P is always less than PQ. Here, A0 = 36,150 ft,
PO = 471.54 psf, and T = 389.99°R.

Pressure-altitude variation in the troposphere. For the case where the
temperature decreases linearly with altitude

n 9)
KT0[l- (ah/To)]
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4 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Equation (1.9) has the solution

(u> = - - i - — +c
When h = 0,P = P0. Thus,

and

(1.11)

Typical values for Po,g/aH,To, and a/To are 2116.2, 5.26481, 518.69, and
6.86 x 1(T6 in USCU.

1.3 Density-Altitude Relationship
After the expressions for the variation of pressure with altitude are known, the

expressions for the variation of density with altitude can be found with the aid of
the equation of state. Because

^-j-T <U2>Po PO T

the density-altitude relationship in the troposphere is

p = Po(l - 6.86 x 1(T6/04-26 (1.13)

and the density-altitude relationship in the stratosphere is

(1.14)

1 .4 Density-Temperature Relationship in Water
Sea water, of course, is not a gas and so Eq. (1.4) does not apply. Nevertheless,

water has a density-temperature relationship that is quite interesting. Water has
its maximum density at 4°C or 39°F. It is less dense at lower temperatures (to
0°C) and decreasingly dense as the temperature increases above 4°C. As a result,
the temperature in the ocean below a depth of a few hundred feet in the artic,
temperate, or equatorial regions (in fact, everywhere on Earth) is always 4°C. The
density difference between sea water at 4°C and sea water at colder or warmer
temperatures is not large. For this reason the assumption of constant density is
quite reasonable for purposes of force calculations.
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THE ATMOSPHERE AND THE OCEAN 5

1.5 Definition of Altitude
Equations (1.8), (1.11), (1.13), and (1.14) are definitions of the altitudes at which

certain pressures or densities are assumed to exist. On any given day, however,
the pressure or density at any geometric altitude may be quite different from
the values obtained from these equations. The relations are still useful, however,
because the forces on the vehicle are dependent on the actual density, not the
altitude. Similary, pneumatic altimeters, airspeed indicators, and Mach meters are
calibrated according to the standard pressure altitude relationship. Thus, these
instruments are said to read pressure altitude, which may or may not be the
same as geometric altitude. The altitude pressure indication plus a measurement
of the static temperature at that altitude are used to determine the density altitude.
Again, it may or may not be the same as the geometric altitude.

In addition to these differences, we must be aware that these formulas are based
on a constant value for the acceleration due to gravity. The value of g actually
diminishes according to the formula

2.0856 x 1Q7

2.0856 x 107 + h (1.15)

where h is the geometric distance from the surface of the Earth in feet and go is
the sea level value of g. From this relation it is obvious that the vehicle must be
a great deal higher than 82,300 ft before the decrease in gravitational attraction
becomes noticeable.

1.6 Viscosity
There is one additional property of fluids that is important in calculating the

forces experienced by bodies moving through the fluid: viscosity. Viscosity is the
property that describes the resistance of the fluid to being sheared. A fluid that
shears easily has a low viscosity; one that is difficult to shear has a high viscosity.

The concept of fluid shear is illustrated in Fig. 1.2.
A fluid element consists of two regions, A and B. If region B moves relative

to region A the element is said to shear. The coefficient of dynamic viscosity JJL
is the ratio of force per unit shear area required to separate region B from region
A to the difference in velocity between regions A and B divided by the distance

U+AU

Fig. 1.2 Illustration of concept of viscosity.
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6 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

between them. Mathematically this is expressed as

;r (1-16)dy

where F is the force, dA the shear area, du the change in velocity, and dy the
distance between regions A and B. Another measure of viscosity used with liquids
is the rate at which the fluid will pass through a given size hole at the bottom of
an open top container under the influence of gravity.

For gases the coefficient of viscosity increases roughly with the square root
of the absolute temperature. There is also a modest pressure effect, primarily at
superatmospheric pressures. Liquids usually exhibit a decrease in viscosity with
increasing temperature. (The effect is celebrated in folklore with the phrase: as
slow as molasses in January.)

The complex molecular interactions that manifest themselves as viscosity also
give rise to heat conduction. In contrast to pressure and temperature, viscosity
and heat conduction require that the molecules of the fluid be in relatively close
proximity to each other. Thus, the magnitude of the effects we call viscosity
and heat conduction decline as the distance between molecules increases. Gases
exhibit less viscosity and heat conduction than liquids, and rarefied gases are less
viscous than the same gas under denser conditions.

Heat conduction is significant in aerodynamics only for Mach numbers greater
than 2.0; thus, it will not be discussed further. Viscosity, on the other hand, is
the dominant physical phenomenon leading to the production of most body drag
and a significant portion of wing drag. We will discuss methods for quantitative
determination of the various drag components in a subsequent chapter.

1.6.1 Example 1
Use Eq. (1.11) to determine the pressure at 36,150 ft.
The result is easily obtained to a greater accuracy than can be obtained with

pocket calculators using the following short program:

IMPLICIT REAL*8(A-H,0-Z)
H=36150.0DO
A=0.00356DO
TO=518.69DO
PO=2116.2DO
EX=32.2/(1718.0DO*A)
P=PO*(1.ODO-(A/TO)*H)**EX
T=518.69DO-A*H
WRITE(*,1) P,T,EX

1 FORMAT(10X,'P = ',023.16,
1/,10X,'T = ',D23.16,
2/,10X,'EX = >,D23.16)
STOP
END
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THE ATMOSPHERE AND THE OCEAN 7

The results are printed on the screen. The pressure value is 471.54.... The pressure
at any other altitude less than 36,150 ft can be computed with the program merely
by changing the value of H. A table of pressure vs altitude can be generated by
putting the computation below line 6 in a loop and incrementing the value of H.
In this case, it is more satisfactory to write the results to a two-column file.

1.6.2 Example 2
A hemicylindrical shell forms part of the gate trapping a quantity of water (see

Fig. 1.3). Determine the vertical force generated by the hemicylinder.
The solution is as follows. The pressure at any point on a hemicylindrical shell

can be shown to be

A) + Pgh0 + pgr(l - cos 6>)

where PQ is the atmosphereic pressure, HQ is the depth of the top of the hemi-
cylindrical shell, r is the radius of the shell, and 9 is measured from the vertical.
Here, 9 is zero at the top and n at the bottom. The area element on the surface of
the shell is rdOdw. If we let dw = 1, we can say that r dO is the area element on
the surface of the shell per unit length of the shell. The force due to the pressure
of the water has a vertical component and a horizontal component. The vertical
component is obtained by integrating the product of the pressure and cos 9 over
the shell surface,

/"Jo

n
o + pgr(l - cos<9)]rcos#dO = Pgr2 —

This force acts up.
For simplicity we have ignored the force due to the air pressure on the down-

stream side of the shell. In any case, it is less than 1/800 times the force of the water.
We can also obtain the vertical force as a consequence of Archimedes principle,

that is, the bouyant force is the difference in the weight of the water excluded from
the shell and that of the air contained therein. The weight of the excluded water is
the same result we obtained previously, simply

Pg(nr2/2)

Fig. 1.3 Gate with hemicylindrical shell.
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8 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Problems
1.1. Assume the pressure-altitude relation is given by Eq. (1.11). Determine
the density of the air in a) Leadville, Colorado (elevation 10,000 ft) when the
temperature is —40°F and when it is 100°F; b) Edwards, California (elevation
2500 ft) when the temperature is 20°F and when it is 120°F; c) Death Valley,
California (elevation —260 ft) when the temperature is 130°F; and d) Washington,
D.C. (elevation about sea level) when the temperature is 59°F.

1.2. If a submarine is designed to withstand a pressure of 1000 psi on its hull,
what is the greatest depth to which it can safely descend?

1.3. What is the weight of a sphere of sea water with a radius of 20 ft?

1.4. What is the weight of the same sphere when filled with air at standard
temperature and pressure?

1.5. If the sphere in problem 4 were immersed in sea water, what bouyant force
would it experience? Assume the container is rigid and weightless.

1.6. The density of gases is roughly proportional to their molecular weight. Air,
which is a mixture of gases, can be assumed to have a molecular weight of 29.
Octofluorocyclobutane has a molecular formula given by C4F8. What would you
expect its density to be relative to air at standard temperature and pressure (STP)?

1.7. The surface area of a sphere is given by 4nr 2. A balloon is made of material
that weighs 0.025 psf. The balloon has a radius of 100 ft when fully inflated.
The balloon is filled with helium at the same temperature and pressure as the
surrounding air when fully inflated. What is the maximum altitude to which the
balloon will ascend? What is the maximum altitude if the balloon is filled with
hydrogen?

1.8. Supply the correct numbers for the constants in Eqs. (1.3), (1.8), and (1.11)
in System International (SI) units.

1.9. If the temperature-altitude relation given by Eq. (1.5) holds on a particular
day, what should you expect the temperature to be at the 6000-ft level on Mt.
Mitchell, North Carolina, if the temperature at sea level on that day is 52°F?

1.10. The force per unit width created by the water on the dam shown in Fig. P1.1
is given by

-Lh
P(z)dz

where z is measured from the surface down. The point where all of the force can
be assumed to act is 2h/3 from the surface. There are two possible failure modes
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THE ATMOSPHERE AND THE OCEAN

Fig. Pl.l Dam.

for the dam: 1) it can slide down the river bed if its weight is insufficient or 2) it
can tip over if b is made too small. If concrete weighs 2.6 times as much as fresh
water for equal volumes, what should the relation of b be to ft if a is ft/20?

1.11. Write a computer program to generate a table of pressure, density, and
temperature vs geometric altitude to an altitude of 82,300 ft in 100-ft increments.
Take P0 = 2116.2 psf, p0 = 0.002377 slugs/ft3, and 70 = 518.69°R. Format the
output so that data from 0 to 4900 ft appear on the first page, 5000 to 9900 on the
second page, and so forth.

1.12. Generate a table for the same conditions in SI units.
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2
Elementary Flow Functions

2.1 Introduction

I T has long been the goal of researchers to describe fluid flow over bodies in
mathematical terms. If this can be done, then it is a simple matter, at least

conceptually, to determine the change in the forces acting on the body that result
from a change in body shape. Unfortunately, successful descriptions thus far have
been limited to fairly simple shapes. Nevertheless, the understanding gained from
studies of flows over these simple shapes has enabled researchers to generalize
the treatment to surprisingly realistic configurations.

All analyses of fluid flow begin with a mathematical statement of some funda-
mental conservation laws. Our present interest is a statement of the conservation
of mass. This law says that the fluid mass entering a unit volume either leaves
or accumulates. We may derive a mathematical expression of this statement as
follows.

Given an element of volume having dimensions of dx, dv, and dz (see Fig. 2.1)
the mass entering the left face has a density p and a velocity u. The area of the
flow is dydz. Assume now that the mass leaving the right face has a slightly
different velocity and density. The mass leaving the right face is, therefore, [pu +
(dpu/dx) dx] dy dz. We may write similar terms for the mass entering and leaving
the volume in the y direction: pvdxdz and [pv -f (dpv/dy)dy]dxdz. In the z
direction the same procedure leads to pwdxdy and [pw -f (dpw/dz)dz]dxdy.

The change in the mass inside the volume is given by

—d.xdydz
dt

Equating the change in the mass inside the volume to the sum of the inflows
less the sum of the outflows results in the following equation:

—dxdjdz = pudydz + pvdxdz + pwdxdy — I pu + ——dx \ dydz
dt \ dx /

( dPv , \ , , / dPw * \ i ,— \pv + ——dy dxdz — [ pw + ——dz dxdy
V dy ) V fa )

/dpu dpv 3pw\
= -( —— + —— + -— dxdydz (2.1)

\ dx dy dz )

However, dxdydz is simply the differential volume. Dividing both sides by the
differential volume we have the law of mass conservation or the continuity equation
as applied to a fluid medium

dpu _ Q (2_2a)

at v

11
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12 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

j ' For compressible fluids replace every
occurrence of u, v, and w bypu, pv, pw

Fig. 2.1 Element of volume.

For steady, incompressible flow in two dimensions, that is with p constant, the
continuity equation reduces to

(2.2b)

2.2 Potential Functions
It can be shown1 that the statement that the line integral between two points

in a plane is independent of the path of integration between the two points is
equivalent to the statement that the line integral around any closed path is zero.
This equivalence leads to the following theorem:

In a simply connected region in which u(x, v), v(x, y ) , and their first partial
derivatives are continuous, the necessary and sufficient condition that the integral

udx + vdy

around a closed path should be zero and that the integral along a path connecting
two points should be independent of the path is

du dv (2.3)

Further, if Eq. (2.3) is satisfied for any two functions u and v, there exists a function
0 for which

= u\ = V (2.4)
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ELEMENTARY FLOW FUNCTIONS 1 3

Therefore,

udx + vdy=d(/) (2.5)

is an exact differential.
Readers interested in the proof may consult Ref. 1 or other advanced calculus

texts. We shall not pursue it here; rather we are interested in what conclusions we
can draw from the theorem as it relates to steady, inviscid fluid flows.

Suppose we have a flow with a component of velocity in the x direction desig-
nated as u and a component of velocity in the y direction designated as D. Further,
let u and v be continuous differentiate functions of position. Then if Eq. (2.3)
is satisfied we conclude that a velocity potential 0 exists. We have demonstrated
previously that when two-dimensional, inviscid, incompressible flows satisfy the
requirement for conservation of mass, the velocity components are related through
the equation

du dv
— + - = 0 (2.6)
dx dy

Using the relationship between 0 and u and v we may write Eq. (2.6) as

This is Laplace's equation, probably the most studied partial differential equation
in the mathematical literature. If a potential function satisfies this equation it is
irrotational, as we shall now demonstrate.

2.3 Conditions for Irrotationality
Consider the plane element of area shown in Fig. 2.2. We will treat this element

as if it were solid rather than fluid in the interests of keeping the analysis simple.
Doing so does not affect the conclusions drawn from the analysis but it does affect
the values of the numerical constants in the result. In the more usual treatment, the
angular velocity of the fluid element in Fig. 2.2 is mass averaged with the result
that the coefficient in Eq. (2. 8) is one-half rather than 2. Our purpose in conducting
this analysis is to inquire whether, as a result of the difference in velocities shown
in Fig. 2.2, the element will rotate and translate or simply translate. We designate
a clockwise angular velocity about the center of the element as CD. There are four
components to a)

We see, therefore, that if

r-r-°dy dx
the element will simply translate; that is, it is irrotational.
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14 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

dy

dx

dx
Fig. 2.2 Plane element.

If a potential function 0 exists such that

90
u =

90

(2.10a)

(2.10b)

0 satisfies the continuity equation if and only if the flow is irrotational. The velocity
may be said to be the gradient of the 0. As a simple example to demonstrate this,
we choose the potential function

Then

and

0 = xy3 - yx3

820
= 3y2 -
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ELEMENTARY FLOW FUNCTIONS 15

It is obvious that 0 is irrotational because

dxdy dydx

Because 0 is irrotational it should also satisfy the continuity equation

If we substitute the recently computed values for these derviatives we obtain
— 6xy + 6xy = 0

and see that, indeed, the continuity equation is satisfied.
Potential functions are called state functions in thermodynamics because the

value of the function depends only on the values of the coordinates. Flows in which
there is significant energy dissipation, such as flows where viscosity is important,
or flows that contain shock waves are rotational. If they are real flows they must, of
course, still satisfy mass conservation (continuity). But to analyze them we must
forego the simplicity that follows from representing them by potential functions.

2.4 Laplace's Partial Differential Equation and the
Stream Function

Hydrodynamics is the branch of mathematical physics concerned with the prop-
erties of functions that satisfy Laplace's partial differential equation. We will re-
strict our consideration at this level to the two-dimensional form. In rectangular
coordinates we can restate Laplace's equation, written here in terms of the stream
function, as

aV 9Virr + inr = 0 (2-n)
3x2 3yz

In polar coordinates Laplace's equation is

3r> r 2 9 0 2 r dr ~ '

Because this equation is a linear partial differential equation, a sum of solutions
is also a solution. For example, if

(2.13)

and

^ = —^r (2.14)

are solutions, then

i/r = —b^r + UrsmO (2.15)Y 2n
is also a solution.
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16 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

We should note that certain stream functions, like certain potential functions,
satisfy the Laplace equation. They differ mathematically from potential functions
by how their boundary conditions must be specified. The physical basis of stream
functions is discussed in the following discussion.

Assume we seek to find functions that model some physical fluid flow. (By
model we mean that the graph of the function looks like a picture of the physical
flow.) It is readily seen that if the product r sin 9 is a constant regardless of
the value of r or 9, then i/s = Ur sin# represents a straight line. By choosing
(r sin#)7- = (r sin#)y-_i + C

\ff = UrsinO

represents a series of straight lines each separated by a distance C from the line
below it and by a distance C from the line above it. If these lines are parallel to the
direction of the flowing stream and the fluid anywhere between any pair of lines
is of the same constant density and it flows at the same constant velocity, then the
fluid flow is termed a uniform stream. Now, a curve that is always parallel to the
local direction of a flowing stream is called a streamline. A function of x and y or
r and 9 that describes a series of streamlines is called a stream function. Because
there is no flow across streamlines (else the streamline would not be parallel to the
local flow direction) the fluid volume per unit depth per unit time flowing between
a pair of streamlines remains constant. Obviously, then, there is a relationship
between fluid flow as modeled by stream functions and the continuity equation.
We shall seek to determine this relationship and some aspects of its characteristics.

Suppose we consider the function

i/r = UrsmO (2.16)

We can readily see that this function satisfies the definition for a stream function
we have given. In this case, the stream function represents a uniform stream.

We are going to restrict our attention to fluid flows for which the density
remains essentially constant. Water and air at low Mach numbers can be treated
as constant density fluids for purposes of our analysis. The mass flowing past a
given stream wise station can be expressed by

pvh=m/d (2.17)

where p is the density, v is the average velocity, h is the distance between the
boundaries of the flow, d is the depth of the fluid and is assumed to remain constant,
and m is the time rate of change of the fluid mass. Since m must be constant
for a steady flow with no additions or removals, the mass flowing between two
streamlines remains constant, as we have already noted. When the streamlines
converge, the average velocity must increase; when the streamlines diverge, the
average velocity must decrease; when the streamlines are parallel, the velocity
remains constant. The value of the stream function is then a measure of the mass
flow (or the volumetric flow) between a particular streamline and the reference
streamline. It has the units of length x length per unit time.

When one goes from one streamline to an adjacent one the change in the
volumetric flow rate is a measure of the velocity of the flow parallel to the stream.
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ELEMENTARY FLOW FUNCTIONS 17

If we take as our coordinates y as being normal to the freestream flow direction
and x as being parallel to the freestream flow direction, then

dils 1 3ti
-^-=u IV = -TJ (2.18a)dy r 30

and

dti 3ti
-f- = -v ve = —f- (2.18b)
3x 3r

The negative sign on v indicates that if the value of ̂  increases as one moves in the
streamwise direction, the streamlines are converging and the velocity component
along the y axis points in the negative direction.

In a two-dimensional flow the change in the volumetric flow at a point has two
components that must sum to zero to satisfy mass conservation. We expressed this
condition by means of the continuity equation (2.26). If we substitute definitions
for u and v in terms of the stream function into Eq. (2.26) we obtain

=0 (2.19)
3x3y 3y3x

which is true regardless of ̂  because the order of differentiation does not matter.
If the flow is irrotational and we substitute the expressions for u and v into Eq.
(2.9) we find that

3y2 + dx*

which is Laplace's equation. Thus, we are led to the very important conclusion
that when applied to steady, incompressible, inviscid flows this equation provides
a complete description of the flow.

2.5 Euler's Equations
Moving fluids also obey Newton's laws of motion but in a form that is a little

different from the form applied to solid bodies. Newton's second law of motion
says that the sum of all of the external forces applied to a fluid element must equal
the change in the momentum of the fluid mass in the element. The fluid element
depicted in Fig. 2.1 has a volume given by dx d;y dz. Multiplying the volume by the
density gives the mass of the fluid element or p dx dy dz. Because we will consider
only cases in which the fluid mass is conserved, the change in momentum across
the fluid element in the /th direction is

3ui

where the repeated subscript j indicates that the expression actually represents
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18 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

a sum of three terms, a term with 7 = 1, one with j = 2, and one with 7 = 3 ,
corresponding to the x, y, and z directions. Because the net force can be applied
in an arbitrary direction, it must be considered to have components in all three
directions. Generally, the net force has contributions from the pressure differences
across the element, from viscous stresses acting on the element, and, in the case of
water, from the gravitational attraction acting on the fluid mass in the element. The
latter, however, acts only normal to the Earth's surface. The mass in an element of
air is considered to be so small that one can safely neglect the effects of gravity
in that case. To be consistent with the other analyses in this chapter we will also
neglect the effects of fluid viscosity as they affect the motion of the fluid element.
The net force in the /th direction acting on the dydz face of the element because
of hydrostatic pressure is simply

dp——dxdydz
3x

Equating the net force to the change in momentum in the x direction yields

dp du du 3u du
- — = p — + pu — + pv — + pw — (2.21a)

ox at ox 3y oz

after dividing out the volume element dxdydz on both sides of the equation. The
equations for the y and z directions are similar,

op dv 3v dv dv--£- = p— + pu— + pv— + pw— (2.21V)
3y 3t 3x 3y 3w

3p 3w 3w 3w 3w
- — = pg + p— + pu— + pv— + PW — (2.21c)

9z 3t 3x 3y 3z

Writing the equations in this fashion assumes that the z direction is normal to the
Earth's surface.

This inviscid form of the equations of motion are generally termed the Euler
equations because Euler was one of the first to study the equations of motion
extensively in connection with hydrodynamics problems. Euler's studies began
during the later years of the 18th century. In the early 19th century, Navier2 and
Stokes3 undertook studies of the motion of fluids when the forces applied to the
fluid element contained viscous stresses, as well as the hydrostatic pressure.

The inclusion of viscous stress in the equations of motion greatly complicates
their solution because they are then nonlinear in general. Analytical solutions have
been found for only a few cases with very simple boundaries. We shall consider
a few of the possible analytical solutions in Chapter 4. In general, solving the
Navier-Stokes equations, as they are called, has become a specialized industry
populated by mathematical physicists running powerful computational hardware.
We will consider the task faced by these scientists in somewhat more detail in
Chapter 9.
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ELEMENTARY FLOW FUNCTIONS 1 9

2.6 Bernoulli's Equation
If we restrict application of the Euler equations to situations where the flow is

steady and two dimensional, we can write the equations as

8p du
—
3x

3u
—
3z

dp dw
—3x

3w

(2.22a)

(2.22b)

It is convenient for what we wish to do next to write these equations in terms
of the streamline coordinates, that is, coordinates that are parallel and normal to a
streamline at any point rather than in terms of fixed Cartesian coordinates. In such
coordinates,4 the equations become

3V I 3p 3zv+-+s=° (2-23a)

R p
,2.23b)

where V is the magnitude of the velocity vector, R is the radius of streamline
curvature, n is the distance normal to the streamline, and s is the distance along
the streamline.

For most problems of interest the radius of streamline curvature is fairly large,
and the other terms in the equation of motion normal to the streamline are much
smaller than those in the equation of motion along the streamline. Therefore, we
will discard the equation of motion normal to a streamline. As a consequence,
the remaining equation has only one independent variable and, therefore, can be
written as an ordinary differential equation

VdV + -dp + gdz = 0
P

Upon integration we can write this as

or

2
(2.24)

This is known as Bernoulli's equation. It is valid everywhere along a streamline
in incompressible flow, and if the flow is initially uniform, inviscid, and irrotational
it is valid anywhere in the flowfield. It is, as we have seen, an integral of the
momentum equation along a streamline. When multiplied by p it has the units of
force per unit area. When applied to situations in the atmosphere, the third term

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



20 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

on each side of the equation can be discarded because it is then much smaller
than the other two. This equation has been used to relate pressure measurements
to flow velocity for the past 150 years.

2.7 Elementary Solutions of Laplace's Equation
Four elementary solutions of Laplace's equation have been found to be ex-

tremely useful in building models of flow over solid bodies of interest. We will
discuss these four solutions and show that when they are combined, they can
represent remarkably realistic flows. The illustrations of the streamlines of the
combined flows were created with computer programs the source code of which
is supplied on the accompanying disk. The reader may use the codes, if desired,
to create illustrations of flows with different values of the constants. The reader
is warned, however, that large departures from the example values may move the
streamlines outside the boundaries of the figure or cause the function to enter
regions of the trignometric or log functions that yield infinite values. Because
source code is provided, such problems are correctable.

2. 7. 1 Uniform Stream
This is the first of the four elementary functions we will discuss. We used this

function for the examples cited earlier [see Eq. (2. 16)]. It is illustrated in Fig. 2.3a.
To show that it is, indeed, a solution of the Laplace equation, we calculate

— = Usin6 — V = 0dr dr2

= -UrsinO

We substitute these values into Eq. (2.12) to obtain

— -Ur sin (9 + -U sin6> = 0 (2.25)
r1 r

which demonstrates that this ^ is a solution to Laplace's equation.

2.7.2 Source
The source is the second elementary stream function shown in Fig. 2.3. The

figure represents the case of fluid issuing from a point with equal volumetric flow
in all directions. The stream function in this case may be written as

VT = (Q/27t)9 (2.26)
where Q is called the strength of the source and has dimensions of volume per
unit time per unit depth.

2.7.3 Sink
Figure 2.3c shows a sink. This can be thought of as a negative source in that the

fluid coming equally from all directions disappears into a point. For the sink,

ir - -(Q/2x)8 (2.27)
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ELEMENTARY FLOW FUNCTIONS 21

a) Streamlines for a uniform stream.

b) Streamlines for a source.

c) Streamlines for a sink.

d) Streamlines for a vortex.

Fig. 2.3 Four elementary stream functions.
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22 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

2.7.4 Vortex
The vortex (shown in Fig. 2.3d) is a flow wherein the fluid circulates about

a point. The angular velocity decreases in a logrithmetic fashion as the distance
from the point increases. As such the origin of the vortex is a singular point, that
is, one where the fluid velocity is infinite. The origins of sources and sinks are
also singular points. For a vortex

^ = (£/27r)fcvr (2.28)

K is the vortex strength and has the dimensions of volume per unit time per unit
depth.

2.8 Superposition of Elementary Flow Functions
We indicated earlier that because Laplace's equation is linear, a sum of solu-

tions (for example, an addition of certain stream functions) is also a solution. In
this section we will generate and examine the streamlines associated with some
stream functions produced by various combinations of elementary flow functions.
Although for reasons of clarity we have chosen not to indicate the values of the
stream function for the various streamlines on the figures, the values can be de-
duced, if desired, from the provided computer codes, which were used to generate
the illustrations. Note, too, that because the relationship between adjacent points
on a particular streamline is not always clear the streamlines have been created
simply by calculating the coordinates for a very large number of points and plot-
ting each result as a small circle. In some cases streamlines for only one quadrant
of the picture were actually calculated; the portion of the picture in the second
quadrant is a mirror image of the image in the first quadrant about the y axis. The
portion in the fourth quadrant is a mirror image of that in the first quadrant about
the x axis. The image in the third quadrant is generated from either that in the
second or that in the fourth quadrant.

2.8. 1 Source in a Uniform Stream
Shown in Fig. 2.7a is the streamline created by a source in a uniform stream.

Note that a sort of boundary is visible (where the streamline is normal to the x
axis). This represents the line where the rightward flow of the uniform stream is
just balanced by the leftward flow from the source. Because the value of the stream
function is zero at this point the flow velocity is also zero. Note that if such points
are located in an otherwise flowing stream, they are called stagnation points. As
we will see later such points have particular significance. The combined stream
function for this case is

^ = —0 + UrsmO (2.29)

2.8.2 Separated Source and Sink
Shown in Fig. 2.7b are the streamlines created by a source and sink of equal

strength separated by a distance 2a on the x axis. The stream function for this flow
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ELEMENTARY FLOW FUNCTIONS 23

is

= Q- I
2;r |_

tan-1 I -^— } - tan'1 ^— (2.30)
*x-aj \x + aj]

2.8.3 Separated Source and Sink in a Uniform
Stream: Rankine Oval

The geometric figure created by the streamline pattern shown in Fig. 2.7c for
a separated source and sink in a uniform stream is called a Rankine oval. The
boundary of the geometric figure is the iff = 0 line. It is important to note that for
negative values of the combined stream function, the streamlines would lie inside
the figure. They are not shown here.

Note that the locations of the source and the sink relative to the origin of the
closed figure ty = 0 must be included in the combined representation

^ = — tan"1 ( — ^ — ) - tan"1 ( ——— } + Uy (2.31)
2jr L \x — a / \x + a J \

2.8.4 Coincident Source and Sink: Doublet
The streamlines resulting from a coincident source and sink are shown in Fig.

2.4a. The stream function itself is

(2.32)
r

where A is the strength of the doublet.

2.8.5 Doublet in a Uniform Stream
The streamlines created by placing a doublet in a uniform stream are shown in

Fig. 2.5a. The stream function for this case is

= Ur (1 - r | sin<9 (2.33)
r2

2.8.6 Sink and Vortex
The combined stream function for a sink and vortex, shown in Fig. 2.6a, can be

represented mathematically by the expression

y, = JL^r __ Jr-tf (2.34)
2n 2n

This stream function closely models the flow patterns one sees in water leaving
a large surface through a centrally located drain or on the Earth's surface in the
neighborhood of a tornado or hurricane everywhere except at the very center of
the flow. Because mass must be conserved, it is natural to ask what happens in the
real world to the air mass that "disappears" through the sink. There is a problem

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



24 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

a) Streamlines for a doublet; superposition of a source and sink.

b) Computed streamlines for vortex and uniform stream; U = 10, vortex strength
78.5, stream function increment = 2, 0 = 1 deg.

c) Computed streamlines for vortex and uniform stream; U = 10, vortex strength
157, stream function increment = 2, 9 = 1 deg.

Fig. 2.4 Superposition of elementary functions.

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



ELEMENTARY FLOW FUNCTIONS 25

a) Computed streamlines for doublet and uniform stream; U = 10, stream function
increment = 2, 6 = 1 deg.

b) Computed streamlines for vortex, doublet and uniform stream; U = 10, vortex
strength = 31.4, stream function increment = 2, 6 = 1 deg.

c) Computed streamlines for vortex, doublet, and uniform stream; U = 10, vortex
strength = 15.7, stream function increment = 2,6 = 1 deg.

Fig. 2.5 Superposition of elementary functions.
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26 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

a) Computed streamlines for a sink and a vortex; Q - 109.9, sink strength = —78.5,
stream function increment = 2.75, R = 0.01.

b) Computed streamlines for two counter-rotating vortices; vortex strength = 109.9,
stream function increment = 3.0, DX = 0.01.

Fig. 2.6 Superposition of elementary flows.

with the theoretical vortex as a model for real flows. As one approaches the origin,
the model breaks down, as is seen by the appearance of an eye in a tornado or
hurricane. It is well known that in the eye of such storms the air becomes relatively
calm in contrast to the very high horizontal velocities just outside the eye. In fact,
the mass entering the eye from the rest of the storm moves vertically upward in
sort of a tube formed by the eye and is disgourged horizontally from the top of the
storm. The vertical air motion in the eye is not readily apparent to an observer on
the surface, however. To simulate the eye the streamlines in the picture terminate
at a finite distance from the origin.

2.8.7 Vortex and Uniform Flow
This stream function,

K-(I; = Urs'mO + —V^r
27T

is shown with two different vortex strengths in Figs. 2.4b and 2.4c.

(2.35)
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ELEMENTARY FLOW FUNCTIONS 27

a) Computed streamlines for a source in a uniform stream; U = 10, source strength :
78.5, stream function increment = 4, 9 = 0.01 rad.

b) Computed streamlines for a source and a sink; source sink strength = 109.9, stream
function increment = 1.5, DX = 0.01.

c) Computed streamlines for source, sink and uniform flow; U = 12, source sink
strength = 109.9, stream function increment = 3.0, DX = 0.01.

Fig. 2.7 Superposition of elementary flows.
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28 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

2.8.8 Counter-Rotating Vortices
When two vortices of equal strength but rotating in opposite directions are

separated by a distance 2a they create the streamline patterns shown in Fig. 2.6.
The stream function for the pair can be written as

We have chosen to use Cartesian coordinates rather polar coordinates in this case
because the coordinates of points on lines of constant ̂  are more easily determined
in these coordinates when the function origins are separated.

2.8.9 Circular Cylinder with Circulation in a Uniform Stream
This stream function is created by the combination of a doublet, a uniform

stream moving from left to right, and a clockwise vortex coincident with the
doublet. Historically, it is the most important of those discussed because it can be
used to explain the Magnus effect (though it does not give the correct magnitude
of the normal force) and because it forms the basis of the first successful attempt to
explain the lift of an airfoil. Figure 2.5 shows that this combination of elementary
stream functions models the flow over a circular cylinder with varying amounts
of circulation provided by the coincident vortex. In Fig. 2.5a, the vortex strength
is zero. Figures 2.5b and c are for two different vortex strengths.

The stream function for this case can be written

- ^- 1 sin<9 + — L,r (2.37)
27T

The circumferential velocity at any radius is

= -— = - (V0 = -— = - (UsinO + UsinO + —— (2.38)
9r \ r2 2nr )

We define the points on the circle r — a where VQ = 0 as stagnation points.
Because

vr = ~ - = Ur 1 - } cosO (2.39)

is zero when r = a, we see that both velocity components are zero at stagnation
points. When the vortex strength is zero the stagnation points occur at 0 and n. As
the vortex strength increases, the stagnation points both move toward 6 = 3n/2.
Setting VQ = 0 and letting a = 1, we see that

2[/sin<9 + — =0 (2.40)

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



ELEMENTARY FLOW FUNCTIONS 29

from which we deduce that the value of K is 4n U when both stagnation points are
at 3n/2. For larger values of K, the stagnation points move away from the cylinder
along the line 9 = 3jt/2. Physically, such large values of K are not realizable.

The maximum value of ve always occurs at 0 = ir/2, that is, the top of the
cylinder. Its value at this point is

ve = 2U + — (2.41)

The point on the circle where the velocity is the same as freestream can be
found by setting v& = U and solving for 9. This value of 9 is

(2.42)

An important application of this information is the angle relative to the bottom
centerline at which the static pressure taps should be located on a pitot static tube
so that the static pressure indication is independent of tube angle of attack. Such
a device is shown in Fig. 2.8.

Let Ps be the total pressure indication and P be the static pressure indication.
Then the airspeed is determined from

U = S - P)/p

and the Mach number from

\ y - l

(2.43)

(2.44)

In Eq. (2.44) y is the ratio of specific heats, 1.4 for air at temperatures less than
400°F. The pressure altitude is a function of static pressure alone. If the static
pressure is sensitive to changes in angle of attack, then the indications of all these
instruments will be in error. By locating the static pressure taps at ±38 deg (as
determined experimentally rather than by the theoretical value of ±30 deg) from
the bottom centerline, the point on the tube diameter at which the pressure due to

-13d

Pilot or Total Pressure Source

Flow Direction
Section Through Tube

At Static Pressure Source
Pressure taps at +/- 38°from bottom centerline

Fig. 2.8 Pitot-static tube.
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30 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

the crossflow component of the velocity is the same as the freestream value for
positive angles of attack to 90 deg and for sideslip angles in the range ±5 deg,
the static pressure indication can be made to be independent of changes in angle
of attack. The total or stagnation pressure source is countersunk with a 10-deg
half-angle cone to the point that the tube lip is sharp. This configuration yields
constant total pressure values over the angle-of-attack range of ±27 deg. The static
taps each cover about 10 deg circumferentially and can be elongated to about 3.5
times their circumferential dimension in order to improve the airflow rate into and
out of the instruments, which are connected to the source. By so doing the lag of
the indications of pneumatic instruments to rapid changes in altitude is reduced.
To keep the pressure indications from being distorted by ice buildup on the tube,
pitot-static tubes are usually heated electrically by helical calrod heaters brazed to
the inside wall of the tube. In some designs the interior portion of the tube is a static
pressure plenum, with the line from the total pressure source running through it.

2.9 Circulation
We noted earlier that \jf and 0 are state functions when the flow is irrotational.

This means that the change in value of one of these functions around any closed
path is zero or

= 0 (2.45)

There is one exception to this rule, however, and that is when the path encloses
a singular point. We note that

> (2.46)
or au

In the case of a vortex

8^ £di/f = —dr = ——dr (2.47)
3r 2nr

We choose as our path a circle of radius r. In that case we may write dr = rdO
and choose as our limits of integration 0 and In. Then,

/

27T If

——rde = K (2.48)
2nr

The circumferential velocity for the source and for the sink is zero; thus, even
though the closed path may include the singular point at the origin

(2.49)
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ELEMENTARY FLOW FUNCTIONS 31

2.9.1 Magnus Effect
The Magnus effect is a well-known phenomenon associated with rotating cylin-

ders or spheres. When a cylinder at right angles to an oncoming stream rotates at
high speed it drags the fluid that is on and next to the surface with it. (This is a result
of the viscosity of the fluid.) Because this layer of entrained air (or water) moves
faster at 9 — 7t/2 (and slower at 0 = 3n/2) than it normally would, the pressure
at 0 = 7t/2 is lower than it normally would be (and the pressure at 6 = 3n/2 is
higher than it normally would be). This results in a force on the cylinder normal
to the direction of fluid motion. Golf balls are dimpled to enhance this effect. The
lacings on baseballs serve the same purpose. One might imagine that the rotational
velocity of the cylinder could be set to r/2jra • t = K /2na as indicated in Eq.
(2.38) to obtain the lift predicted by Eq. (2.50). However, the measured lift forces
are usually much smaller.

A vortex imposed on a doublet creates the same flow pattern as is observed ex-
perimentally about a rotating cylinder. An integration of the pressure components
normal to the oncoming stream at r = a shows that the resultant lift force is

L = pUT (2.50)

where F is the circulation due to the vortex. F is K times the length of the
cylinder, t. This well-known result was obtained independently by Kutta in 1902
and Joukowski in 1906. One of the most profound insights in all of aerodynamic
theory follows from Eq. (2.50): lift is independent of profile shape. This also turns
out to be the case in practice as well, despite what the popular media would have
one believe regarding the accretion of ice on a wing. Becuase lift is independent
of profile shape, the Kutta-Joukowski theory says we can take the results for the
flow about a right circular cylinder with circulation and apply them to a specific
airfoil. The details of how this may be done are related in Chapter 3.

The Kutta-Joukowski results model the lifting behavior of airfoils very well for
angles of attack, up to the point where there is significant flow separation on the
upper surface. Flow separation is a consequence of fluid viscosity, the effects of
which are discussed in Chapter 4. Separation is present when airfoils move in real
fluids. It becomes significant for most airfoils when the lift coefficient, defined by

CL =

is above a value of about 0.8. In this expression, s is the planform area of the
lifting surface.

The Kutta-Joukowski model, being inviscid, predicts that the circulation and,
hence the lift, will increase with angle of attack all the way to 90 degrees. The
effects of ice on the wing surface will generally be to 1) change the pitching
moment, 2) reduce the maximum lift because it promotes flow separation at
lower angles of attack, and 3) increase the drag. However, for low angles of
attack such as those used for cruise flight or even takeoff, normal lift can still be
generated although perhaps at a different trim condition and almost certainly with
an additional power requirement. The additional weight of ice will increase the
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32 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

takeoff speecl slightly. Ice can be a serious problem if it prevents control surfaces
from moving or clogs engine air intakes. If ice accretion is not symmetrical on the
two wings, rolling moments and/or yawing moments can be generated.

2.10 Relationship of Stream Function and Potential Function
We now ask the question: If I know the stream function for a flow, how can

I develop the potential function from it? Let us take as an example the stream
function

Then the velocity components are

^.=2 + 2y = -v (2.51a)
ox

d\ls
-^ = 2x = u (2.5 Ib)
dy

But

u = — = 2x (2.52a)
dx

v= — = -2-2y (2.52b)
dy

Integration of these equations yields

0 = x2 + f ( y ) (2.53a)

0 = -2? -/ + /(*) (2.53b)

Evidently, then,

</> = x
2 - 2y - y2 (2.54)

One of the interesting facets of the relationship between 0 and ty is that they are
orthogonal; that is, lines of constant 0 and lines of constant T/A are everywhere
at right angles. How may we demonstrate this? To simplify matters, let 0 and \/f
be —8 and 0, although almost any constant value will suffice. Then solve both
expressions for y

The first expression is a straight line parallel to the x axis. The slope of the second
expression is
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ELEMENTARY FLOW FUNCTIONS 33

which is infinite at x = land}; = -1, proving that at (1, -1),0 = — 8 and ̂  = 0
are orthogonal.

2.11 Stream Function Generation Software
To obtain accurate plots of the stream functions, the coordinates of points

along particular streamlines were evaluated using Fortran programs, which also
generated the PostScript plotting files. Source code for these programs is provided
on the accompanying disk. It may be noted that the PostScript rasterizer locates
points on the paper to within 0.003 in. As noted earlier, rather than attempt to
incorporate sufficient logic to connect points on the same streamline, the programs
generally compute the coordinates for several hundred to a thousand points per
quadrant spread over a number of streamlines and plot the results as filled circles.
By spacing the points close together the effect of a continuous streamline is created
in most cases. Cases where this is not true are those in which one coordinates varies
widely with small changes in the other. No attempt was made to supply more points
in such regions.

The programs are on the order of 125 lines long, each including comments.
The size of the executable files depends largely on the compiler used, but with the
Microsoft PowerStation compiler they each require about 103,000 bytes. Some of
the PostScript output files can be very large, about a megabyte in length. The files
are

STREAMO.FOR—doublet and coincident vortex in a uniform stream,
STREAM1.FOR—vortex in a uniform stream,
STREAM2.FOR—separated source and sink in a uniform stream,
STREAM3.FOR—source in a uniform stream,
STREAM4.FOR—separated source and sink,
STREAMS.FOR—sink in a uniform stream, and
STREAM6.FOR—separated, counter-rotating vortices.

Streamlines for the doublet are circular and, thus, can be drawn without com-
putation. The streamlines for the doublet in a uniform stream can be drawn using
STREAMO.FOR by setting the vortex strength to zero.

Where one coordinate of the stream functions can be written simply in terms of
the the other, that form is used in the computation. For example, the source in a
uniform stream was rewritten as

Qa\—— u I

- (2.55)

and 6 was then varied in small increments to obtain the ouput points. In some cases
a Newton-Raphson scheme is used to find one coordinate in terms of the other
and, finally, for those cases involving inverse trignometric functions, a function in
the form

Z = ̂ -1 (-*—} - tan'1 f-f-) + ^(Uy- V) (2.56)
\x-aj \x-\-aJ Q

is evaluated as both variables are increased over their expected ranges in very
small increments. The first occurence of a change in the sign of Z is then an
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34 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

indication that the current values satisfy the equation approximately. Such a crude
procedure is too time consuming if not carried out on a computer. That such a
simple-minded procedure is effective and readily programmed is further indication
that the computer can have a significant impact on the way we do tasks, as well as
performing established procedures more rapidly.

The programs can be used to produce plot files for other values of the strengths
of the elementary functions and/or the uniform stream velocity. The user should
recognize, however, that large changes from the values used in the programs may
produce plots that lie outside the outlined region. If many plots are desired, it
is probably wise to replace the assignment statements used to specify parame-
ter values with file reads, either from the console or from a previously written
data file.

2.12 Concluding Remarks
In this chapter we sought to present those elements of fluid dynamics theory

on which current mathematical models of airfoil lift are based. We showed how
the law of conservation of mass is developed as a partial differential equation
and how two-dimensional inviscid, incompressible flows obeying this law can be
represented by a stream function, the partial derivatives of which with respect to
the spatial coordinates represent the velocity components of the flow. When such
flows are irrotational we showed that there exists another function, the velocity
potential, the partial derivatives of which with respect to the spatial coordinates
also represent the velocity components.

We then considered the development of a version of Newton's second law of
motion applicable to fluids and showed how an integral of the law along one
coordinate direction yielded a very useful relationship, Eq. (2.24). In fact, the
three terms in Eq. (2.24) represent three components of the energy in the flow. As
written, Eq. (2.24) applies only to conservative systems, that is, systems in which
no energy is added or removed from the flow.

We continued by showing that by using the velocity components in terms of the
stream function in the condition for irrotationality one obtains Laplace's partial
differential equation. Since the Laplace equation is a linear partial differential
equation, a sum of solutions, stream functions or potential functions that satisfy
it can be added to obtain a new solution. We then displayed four elementary
stream functions, which can be used to represent simple flows: a uniform flow, a
source, a sink, and a vortex. We showed that by combining various aspects of these
elementary stream functions we could adequately represent more complex flows.
We gave a series of examples and an application of the result. We considered the
concept of circulation as the generating mechanism in airfoil lift and its relationship
to the strength of one or more vortices, which may be components of the overall
stream function. Finally, we showed that stream functions and potential function
are orthogonal. Knowing one enables the other to be found, at least for simple cases.

The chapter concludes with a description of the accompanying computer pro-
grams, which were used to generate the flowfield diagrams shown in the text.
This section indicates how the provided source codes can be modified to generate
diagrams for flows not discussed in the text.

With the exception of a theoretical treatment of viscous effects, which has been
delayed until Chapter 4, this chapter presents at least briefly all of the analytical
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ELEMENTARY FLOW FUNCTIONS 35

concepts on which the mathematical models of lifting wings and bodies embodied
in the attached computer codes are built and from which certain aerodynamic
characteristics of these wings and bodies can be deduced. It is important that the
code user gain at least a reasonable understanding of these methods as well as
the flow and boundary conditions under which they can be safely applied. How
this is done by users is left to their own devices, but answering the end-of-chapter
problems, devising alternate combinations of elementary flow functions to model
specific flow situations, and checking the degree to which these models produce
results that agree with experimental data are recommended procedures that the
author has found to be effective in his own case.

Problems
2.1. Following the procedure used to obtain Eq. (2.1), derive a set of equations
expressing Newton's second law of motion. Assume that the only force present is
pressure. Show all steps.

2.2. Integrate the equation

du dP
PU~dx ~ ~~dx

in the x direction. Use the fact that P = Ps when u — 0 to evaluate the constant
of integration. The result is called Bernoulli's equation.

2.3. Make a copy of Fig. 2.3 and sketch lines of constant potential on the figures.

2.4. Explain, using Eq. (2.37), why the choice of r = a is a convenient way to
use the stream function to represent a solid right-circular cylinder.

2.5. Define the pressure coefficient as follows:
Pr — Pr

 rL rooCp = -

where the subscript L refers to local conditions. Using the Bernoulli equation we
could also write

Ps - \pUl - Ps + {pUlc fUL^2

Determine the maximum and minimum values of the pressure coefficient on a
circular cylinder in a uniform stream with no circulation.

2.6. When K = 4nU, what are the maximum and minimum values of the pres-
sure coefficient on a circular cylinder in a uniform stream?

2.7. For the stream function

= 4r26>
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36 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

a) sketch the streamlines, and b) determine whether the function satisfies the
continuity equation.

2.8. Sketch the streamlines for the following stream functions and determine
whether the function satisfies the continuity equation:

a) V =2x(l+y)9
b) ty = x3 - 3y,
c) i/f = 3x2 + 2y2,
d) T/T = 2xy, and
e) if/ = x2y.

2.9. Calculate and plot the pressure coefficients on a circular cylinder in a uni-
form stream with K = 2nU . Plot points every 6 deg. around the cylinder.

2.10. Integrate the pressures determined in problem 2.9 to find the force normal
to the stream. Compare with L = pUY.

2.11. Integrate the pressures found in problem 2.9 to find the force in the stream-
wise direction. Why is this result called D'Alembert's paradox? If you do the
problem correctly you will get the same result that D'Alembert did. He knew his
result was incorrect but could not explain why.

2.12. Determine and plot the \l/ = 0 streamline for the following cases:
a) source at x — —a, sink at x = a, U = 12, Q source = 109.9, Q^^ = 55.0;
b) source atx = —a, sink at x = a, sink at x = 2a, U = 12, (Source = 109.9,

Gsink = 54.95; and
c) source at x = —a, sink at* = a, U — 18, 2 source = 109.9, Qsink = 109.9.

Note that problems 2.12a and 2.12b are symmetric about the x axis but not about
the y axis.

2.13. The stream function is not defined for general three-dimensional flows.
However, an axisymmetric flow is a special type of three-dimensional flow requir-
ing only two spatial coordinates, r and z, with z being the axial dimension and r
being the radial dimension. The continuity equation for this case reads

dvr dvz vr__ + __ _|_ — _ (j
or dz r

Show that the velocity components

i a^ i av

satisfy the continuity equation.

2.14. When the flow is steady and compressible, the two-dimensional continuity
equation in rectangular coordinates reads

dp dp /du dv\
u— + u— + p — + — 1 = 0

dx dy \dx 3yJ
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ELEMENTARY FLOW FUNCTIONS 37

Show that velocity components in the form

u = —— v = —— —
p ay p dx

satisfy continuity.

2.15. The velocity components for steady, compressible axisymmetrical flow
read

13$ 13$vr = — — vz = — — —
pr dz pr 3r

Construct the continuity equation for this case.

2.16. Given the potential function

find the stream function.

2.17. A stream function is given by

$ = U(a + b)sinh(£ - £0)sin(?7 — a)

In this expression

a = ccosh£o b = csinh£o

a2-b2 = c2

a-b

c2cosh2£ c2sinh2

x2 y2

Let b = 0. Therefore, c = a. Also choose a = n/2 and c = 4. Let U = 12 and
0 < r\ < 2n. In this case, £ > 0. For $ = 1, 2, 3, 4 , . . . , 20 select closely spaced
values of £ and solve for the corresponding values of r]. Then determine the
matching set of x and y for each value of $ and plot. Plot also the mirror image
about the x axis. Describe the resulting image.

2.18. Now let b = VT5, c = 1, and U - 12. Repeat problem 2.17 using these
values.

2.19. With b = 0, c = 4, U = 12, and a = 0, repeat problem 2.17 using these
values.
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38 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

2.20. With a = 5, b = 3, U = 12, and a = 0, repeat problem 2.17. Note: Prob-
lems 2.17-2.29 are the problems solved most easily by writing a program similar
to one of the STREAMX.FOR programs. If a Fortran compiler is not available, the
problem can be set up to be done using a spreadsheet program. If your spreadsheet
does not use hyperbolic functions, these can be generated using the exponential
function.

2.21. Compare the units of the circulation F with those of K and with those of
co as defined by Eq. (2.8).

2.22. The circulation per unit span is defined as the integral of the velocity
around any closed path. What will the units of this circulation be?

2.23. What are the units of the stream function?

2.24. The Laplace equation is homogeneous. If one saw, instead, an equation
written as

~
what would be the significance of £2?

2.25. The pitot-static tube shown in Fig. 2.8 is a design developed for the U.S. Air
Force in the 1960s for use on transonic aircraft. The great length is made necessary
by the streamwise extent of flow disturbances when the flight Mach number is
near 1.0. For Mach numbers near zero (this includes operation submerged beneath
the surface of the ocean) the older designs such as that shown in Fig. P2. 1 are
satisfactory provided their alignment does not depart by more than ±5 deg from
the direction of the flow. Considering the static pressure ports in Fig. P2.1, how
might you estimate the static pressure error at the port location? Does the picture in
Fig. 2. 5 a give you a suggestion? You may wish to consider a means of estimating
the error from the relations

PS = +

Total
pressure Static

pressure

Fig. P2.1 Pitot static tube.
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ELEMENTARY FLOW FUNCTIONS 39

Therefore,

",2 + "I
II2

2.Woo Uoo

2.26. Although the nose of the pitot-static tube in Fig. P2. l isa three-dimensional
body what sort of estimate might you make based on the use of a two-dimensional
stream function that would indicate the range of angle-of-attack values to which
the tube could be inclined and still indicate a reasonably accurate value of total
pressure?

2.27. Identify the three flow patterns shown in Figs. P2.2 (examples might be:
circulatory flow with no uniform stream, uniform stream) and indicate an appro-
priate caption to place beside the callout in Fig. P2.2, part c.

2.28. Does the potential function

0 = xy3 — yx3

a) satisfy continuity and b) satisfy the condition for irrotationality?

2.29. What assumption is implicit regarding p in Eq. (2.24)?

2.30. Suggest one means by which the circulation about an airfoil section might
be increased beyond that naturally generated. Hint: a method for doing this could
also increase the Magnus effect on cylinders and spheres.

a)

b)

flow attached
at trailing edge

c)

Fig. P2.2 Flow patterns.
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40 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

2.31. If a cylinder in a uniform stream of velocity V is spinning at an angular
velocity of

where D is the cylinder diameter, what lift coefficient would be expected assuming
the circulatory flow velocity is that given by the formula?

2.32. If the actual lift coefficient for the preceding problem were found to be
0.4, what is the value of the actual circulation?

2.33. Derive an expression for CL per unit wing chord in terms of F, U , and the
wing span b.

2.34. A particular airfoil has a maximum lift coefficient of 1.52 and a corre-
sponding drag coefficient of 0.055. With double slotted flaps fully deployed the
lift coefficient is 3.48 and the drag coefficient is 0.28. By what factor does the
circulation change in going from the clean configuration to full flaps deployed?

2.35. Discuss the mechanism by which the flap deployment is able to increase
circulation.

2.36. Consider Eq. (2.24). Assume there is a horizontal pipe through which water
is flowing. Pressures and velocities at two stations along the pipe are measured. If

2 p 2 p

to what do you attribute the inequality?

2.37. If the inequality of problem 2.36 exists, can the flow be described by a
potential function?

2.38. If the fluid in the pipe were air instead of water, would your answers to
problems 2.36 and 2.37 need to change and why?

2.39. Can Eq. (2.24) be used to determine the pressure at various depths in the
ocean? Explain.

2.40. Given that

ty = Arnsin(nO)

(/) = Arncos(nO)

plot the streamlines and velocity potential when a) n = 3, b) n = 2, c) n = 3/2,
and d)n= 2/3.

2.41. Consider the flow functions given in problem 2.40. a) In order for the sign
of ^ to remain positive what is the permissible range of 9 in 2.40a, 2.40b, 2.40c,
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ELEMENTARY FLOW FUNCTIONS 41

and 2.40d? b) Can you think of any physical situation which these functions might
represent?

2.42. A building is constructed from a hemicylindrical shell. A strong wind with
velocity U blows at 90 degrees to the shell axis but parallel to the ground, a) How
might you model this situation with a combination of flow functions which we
have used in this Chapter? b) Under what conditions does the force of the wind
seek to move the building horizontally? c) Assuming the pressure inside the shell
is atmospheric, is there a compression or a tension in the shell? d) Outline the
procedure by which you would calculate the force in the vertical direction.

2.43. Given the function
x v

= sin—sinh—
A JL

where X and Y are constants. Then, restricting 0 < x < nX and y > 0 determine
whether 0 can exist. If it does, locate any stagnation points and generate some
streamlines.

2.44. Given a flow which can be represented by the stream function

^ = Cxy

where C is a constant, determine if the flow is irrotational. Generate some stream-
lines. What practical situation does it represent? Choose a streamline and calculate
the pressures at several points along the streamline.

2.45. A non-rotating circular cylinder is inserted normal to a uniform stream.
Assume that the cylinder generates a wake in which the pressure is atmospheric
and which begins on the lea side of cylinder at a point on the cylinder where the
pressure first equals atmospheric pressure. (Invicid theory says that there should
be a region on the lea side where the pressure is above atmospheric. In our example
this is the region in the wake.) Compute the drag coefficient of the cylinder per
unit span.

2.46. At a point in the flow over the cylinder in problem 2.45 where 0 = n/2 and
r = 3a, how does the pressure coefficient compare with the pressure coefficient
at the point 0 = n/w and r = al

2.47. For the flow situation in problem 2.45, how does the velocity of the fluid
immediately next to the surface differ in the viscous and inviscid cases? It is
useful in the viscous case to think of the fluid as being composed of point mass
molecules which have random velocities as well as mass mean velocities. From
what you know of such solid-solid interactions, what is the likely effect on particle
momentum of impact with the surface?
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3
Airfoils and the Joukowski Transform

3.1 Introduction

H AVING arrived at an understanding of the means by which certain physical
flows can be modeled mathematically, we seek to determine how this knowl-

edge was used to construct a satisfactory explanation of the phenomenon of lift. In
order to provide the proper framework for our discussion, we need to distinguish
between a wing and an airfoil. A wing is a three-dimensional structure while an
airfoil is a two-dimensional structure. An airfoil can be thought of as a slice of
the wing whose sides are parallel to the direction of the freestream flow. To really
appreciate the remarkable achievement of a satisfactory explanation of wing lift
derived from mathematical descriptions of elementary fluid flows, it is helpful to
review the understanding of the lifting mechanism extant in the general scientific
community as it existed around the dawn of the 20th century. We will then go on
to examine in detail the mathematical device by which Kutta and Joukowski were
able to transform the mathematical description of uniform flow over a rotating
cylinder to that for uniform flow over an airfoil. To ease the task of performing
such transformations we provide a computer program that does all of the neces-
sary calculations and creates PostScript files of the resulting airfoil shape and the
associated pressure distributions at various angles of attack. Instructions for the
use of the program are provided in this chapter. FORTRAN source code for the
program is given on the accompanying 3.5-in. disks so that users may compile it
on platforms other than the IBM personal computer and can modify it if they so
desire to suit their own interests.

To ensure that we have a common understanding of airfoil nomenclature, we
will define the various terms that may arise during our discussion with the aid of
Fig. 3.1. In this figure the airfoil is moving through the fluid medium from left to
right. A straight line drawn from the rightmost part of the airfoil to the leftmost
point is called the chord. A curved line connecting the two ends of the chord in a
manner such that there is an equal distance from the line to the upper surface of the
airfoil as from the line to the lower surface at every point along the line is called
the mean camber line. The angle the oncoming air flow makes with the airfoil
chord is called the angle of attack. The angle between the two airfoil surfaces at
the downstream end of the airfoil is termed the trailing-edge angle. The upstream
end of the airfoil, termed the leading edge, must always be rounded to some
degree. The amount of roundness is specified as the leading-edge radius. Airfoil
thickness is usually specified as a percentage of chord. The camber is the maximum
distance the mean camber line is displaced from the chord. It may also be stated
as a percentage of chord. The chord wise location of the maximum thickness, the
amount of camber, the thickness, the leading-edge radius, and the trailing-edge
angle taken together as a group are usually sufficient to classify the airfoil shape
or profile. The pressure distribution, usually stated as a value of specific points on
the upper and lower surface of the airfoil, can be integrated to determine the lift
and pitching moment developed by the airfoil at a particular angle of attack.

43
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44 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Airfoils in inviscid flow always have two stagnation points, that is, points on the
surface where the flow velocity is zero. The rear stagnation point is always located
at the trailing edge. The location of the forward stagnation point depends on the
angle of attack. In real fluids, no physical rear stagnation point exists per se because
part of the fluid's energy is converted by friction into heat. In the flow region near
the airfoil surface, the stagnation pressure actually falls as the fluid moves aft so
that at the trailing edge it cannot be as high as it was at the leading edge.

3.2 Historical Perspective
Building on ideas set down by Sir Isaac Newton a hundred years earlier, scien-

tists in the last years of the 18th century concluded that the lift of an airfoil could
be calculated in the following manner. Assume the airfoil is flying at an angle of
attack a relative to the oncoming wind. The stream of fluid striking this airfoil
contains a quantity of mass per unit span given by

pUcsina

where c is the length of the airfoil chord (the distance from the nose to the tail).
Upon impact with the airfoil, the fluid is turned so that its velocity normal to the
airfoil changes from 0 to U since and its velocity parallel to the airfoil changes
from U to U cos a. Multiplying this change in velocity normal to the airfoil by the
mass involved gives the normal force applied to the airfoil

F = pcW2sin2a (3.1)

The component of this force normal to the original stream direction is

L = pclU2sin2acosa (3.2)

and the component parallel to the original stream direction is

D = pc£U2sin3a (3.3)

In these equations t is the span, that is, the extent of the wing normal to the flow
in the plane of the wing.

According to Eqs. (3.2) and (3.3) the lift-to-drag ratio is infinite at a = 0 and
decreases as a is increased. To build a flying machine one would like to operate at
small values of a. However, the lift at small a is also quite small according to this
calculation. Thus, scientists reasoned, one would have to build a very large craft
that was nearly weightless in and of itself to lift the weight of a man. With known
construction techniques of the time, this was not possible. For a more modest size
vehicle, the drag and, thus, the power required would become enormous because
the vehicle now had to operate at higher a. Large amounts of power were also
impossible to provide with the then-known means of propulsion. It is not surprising
that they concluded that man could never fly.

People begin to build crude flying machines in the early part of the 19th century,
and it soon became obvious that the lift values predicted on the basis of the fore-
going analysis were incorrect when applied to inclined wings in the atmosphere or
in the ocean. Some of those people experimenting with flying machines were
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, AIRFOILS AND THE JOUKOWSKI TRANSFORM 45

scientists, but most were not. The scientists had no theory that could explain the
experimental results, and the others said surely if the birds can do it, we can figure
out a way and they continued to experiment.

In the latter quarter of the 19th century, John William Strutt, Baron Rayleigh,
attempted to model the problem of the motion of the cut tennis ball. He was,
of course, familiar with the Magnus effect, a phenomenon artillery men had
encountered since the early years of the century. Rayleigh's solution did a better
job than the Newtonian theory in explaining the ball's behavior and, in addition,
showed the basis of fluid dynamic drag. But it was still a factor of 30 off under
some conditions.

The correct explanation, or so we believe today, was developed more or less
independently during the period from 1894 to 1909 by Lanchester in England,
Kutta in Germany, and Joukowski first in Russia and then in France. Kutta was a
mathematician, Joukowski a physicist, and Lanchester an engineer. Lanchaster's
work was published first but was more heuristic in nature and as a result was
not well understood. In fact, it was Prandtl, who is often given credit for putting
forward the successful model explaining induced drag, who stated in a lecture to the
Royal Aeronautical Society in 1927 that because he and his group were interested
in the same phenomena they were able to understand Lancaster's arguments when
people in Britain were not. A fascinating account of this early work is contained
in a memoir by Theodore von Karman,5 a Hungarian, who at the time was a
young contemporary of the first three and a student of Prandtl, having received his
doctorate degree at Gottingen in 1908. As Director of the Guggenheim School of
Aeronautics at the California Institute of Technology during the 1930s and 1940s,
von Karman played a key role in the development of American aeronautical
technology. He was also one of the founders of the Aerojet Corporation, which
provided the U.S. military with small rockets for assisting aircraft takeoff and
other tasks during World War II. Later the Aerojet Corporation would be one of the
pioneers in the development of large solid fuel rockets. His stock in the company
made him wealthy. The U.S. Air Force recognized his many contributions to the
nation by naming the gas dynamics facility at the Arnold Engineering Center at
Tullahoma, Tennessee, in his honor.

The basic idea that everyone came to recognize as important in explaining what
had been found experimentally was that a circulation formed around the airfoil
similar to that used to model a vortex. Prandtl, some years later, was even able
to photograph the manner in which the circulation was created by sprinkling alu-
minum powder on water into which an airfoil was inserted. When the airfoil was
put into motion he took a series of high-speed pictures from the airfoil using re-
flected light from the aluminum to show the creation of a vortex at the trailing edge
and its shedding into the wake. For the vortex to be shed into the wake, an equal
strength vortex in the opposite direction must be created over the airfoil because
it had been proved that a fluid that is initially irrotational will remain that way.
This followed from an 1858 paper, von Helmholtz showed that if there is no initial
vorticity in a fluid, vorticity can only be created by friction or by the presence of
sharp edges on a body. He went on to demonstrate that when two nearly parallel
streams of different velocity meet at an edge they create a continuous sequence
of vortices or a vortex sheet. Theoretically, the vortex sheds in a horseshoe from
the tips of a three-dimensional airfoil—a wing with the initial starting vortex con-
necting the two long trailing vortices. The vorticity is completed by what in lifting
line theory is called a bound vortex, one which runs along the span of the wing.
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46 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Accepting the idea that a circulation is created, the investigators still found it
necessary to fix its strength at a particular value for a given angle of attack. They
reasoned that as long as vorticity leaves the wing, the circulation increases. When
the starting vortex is swept far away, the circulation has reached its maximum
value because there is no longer a velocity difference between the flows leaving
the upper and lower surfaces. This assumption was put forward independently by
both Kutta and Joukowski. It is the salient point in the theory of lift because it fixes
the magnitude of the circulation. Stated in this way the rule applies only to airfoils
with a zero trailing-edge angle, that is, one that forms a cusp. If the airfoil has a
finite trailing-edge angle it is necessary to place the rear stagnation point on the
trailing edge, else flows of two different velocities would then exist simultaneously
at one point. Because all real airfoils of necessity have finite trailing-edge angles,
this is the condition now employed.

With this assumption the problem of computing the pressures, the lift, and
the moment on an airfoil obtained by transforming a circle became a purely
mathematical one. As noted previously, the theory was essentially complete by
1909—six years after the Wright brothers flew. Their contribution was not in the
understanding (at least in an empirical manner) of the lift of wings, which had
been done as far back as 1832 by Sir George Cayley. The Wrights' contribution—
the one for which they were issued a patent which they successfully defended in
court—was for a method of lateral control, specifically wing warping. To place
this in its proper context, recall that the three principal problems of powered flight
are 1) developing sufficient lift in a lightweight structure, 2) developing sufficient
power with a lightweight engine, and 3) controlling the machine once it is built.
As noted, the problem of designing a lifting wing was solved at least empirically
long before the Wrights began their work. A gasoline engine of suitable power and
weight was demonstrated around 1896 by Langley's assistant Manly. The Wrights
used their glider tests and wind-tunnel tests to develop a suitable control system,
which they then patented. Glenn Curtiss built and flew an airplane (the June Bug)
in 1908, which used ailerons for lateral-directional control. The aircraft and the
flight received considerable publicity. To defend their patent the Wrights were
forced to sue Curtiss for patent infringement. They won their case when the court
decided that ailerons were a form of wing warping. (See Refs. 6-18 for related
literature on the historical development of the theory of lifts.)

The Kutta-Joukowski theory is in reasonably good agreement with experiment
up to an angle of attack for which viscous effects begin to become dominant. It
can yield even better agreement with two empirical modifications: 1) reduce the
circulation about 10% to account for the viscous boundary layer, and 2) move the
stagnation points slightly inside the circle to cause the transformation to produce
an airfoil with a finite trailing-edge angle. We will consider the transformation
process in detail in Sec. 3.3.

3.3 Conformal Transformations
A transformation can be said to map a region from one plane to a region in

another plane. It is conformal if for every point in the first plane there is a unique
point in the second plane and the angles between lines in one plane are preserved
in the second. If we know for, example, the pressure at some point in the first plane
the transformation tells us where this pressure exists in the second plane. Thus, if
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AIRFOILS AND THE JOUKOWSKI TRANSFORM 47

the transformation maps a circle in one plane to an airfoil shape in the second, we
may take the solution for pressures in the first plane on the ̂  = 0 line for a doublet
and coincident vortex in a uniform stream and from this determine the pressures
on the airfoil. We can determine the lift and pitching moment either analytically
or by integration of the pressures over the surface. Hence, if we construct an
airfoil that has the same shape as that given by the transformation of a circular
cylinder we immediately know a majority of its aerodynamic characteristics. To
the extent to which this inviscid theory correctly models the flow of real fluids,
we have a successful prediction of the lift and pitching moment of a wing of very
high aspect ratio where aspect ratio is defined as the span to the second power
divided by the planform area. We will couple this idea to that now well known by
aerodynamicists as the Kutta condition, which says that we must choose a value
for the vortex strength such that at every angle of attack the rear stagnation point
of the flow is located at the trailing edge of the airfoil.

3.4 Mapping the Doublet with Circulation in a Uniform
Stream to an Airfoil

The transformation devised by Joukowski can be written in the form

(3.4)

where z, in the target plane, and f , in the source plane, are both complex numbers.
We will set

z = £ + jri (3.5a)

and

S=x + jy (3.5b)

Then,

c2(x - jy)— ( 3 - 6 )

from which it is seen that

xc2

n = y- -rr-2 (3-7b)
x2 + y2

These equations give us the coordinates of a point in the z plane in terms of the
coordinates of the point in the £ plane, the plane in which the circle is located.
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48 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

We now demonstrate that if the center of the circle is at the origin, the circle
transforms into a straight line of length 4c. First, let

(3.8a)

y=rsin9 (3.8b)

Then, we have

rc2cos$
—— - — (3.9a)

(3.9b)
r

We take the radius of the circle to be c with the result that

£ = ± 2 c (3.10a)

77 = 0 (3.10b)

By moving the center of the circle away from the origin, we can affect the
thickness and camber of the resulting airfoil. Camber is the curvature of mean
line between upper and lower surface of the airfoil. We will define F as the
displacement of the center along the y axis and ec as the displacement of the
center along the x axis. Here, eis a number less than or equal to one. We will also
define

0 = sin"1 -— (3.11)
\c + ecj

whereas a is the angle of attack and ft is related to the camber of the airfoil, which
results from the transformation.

Note that coordinates in the £ plane still must be measured with respect to
the origin despite the fact that the center of the circle may be displaced. If 9 is
measured with respect to the center of the circle, then the coordinates of points on
the circle in the £ plane are

(3.12a)

x = ce + acosO (3.12b)

In the z plane the coordinates of the transformed point are

c2(ce H- #cos$)
£ = ce + acosO + ————— - — - ———— - ———— - (3.13a)S (ce

Z7 , - a C2(F+asin9)n — F + asm9 — ———————— - ————————— - (3.13b)
(ce 4- acos9)2 4- (F -f asin6>)2

Pressures at a particular value of 9 on the circle have that same value at the
transformed point in the z plane.
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AIRFOILS AND THE JOUKOWSKI TRANSFORM 49

In the form just used the transform yields a cusp at the trailing edge. If a, the
circle radius, in Eqs. (3.13) is replaced by

a = c(l + f e ) (3.14)

where the trailing-edge factor / is greater than or equal to 1.0 but usually not
more that 2.0, the stagnation points will exist inside the circle leading to a finite
angle trailing edge, and the point of maximum thickness on the airfoil exists a
little farther aft than when / = 1.0.

To guarantee that the trailing edge is a stagnation point we make the circulation

K = (3.15)

Notice that the amount of circulation does not affect the shape of the airfoil, which
is determined entirely by the values of c, e, F, and /.

Figure 3.1 illustrates the characteristics of the Joukowski airfoils. The airfoil
in Fig. 3.la is termed a circular arc airfoil because it is made up of sections of
circles. In this case the center of the circle is just moved upward on the y axis. The
airfoil in Fig. 3.1b is one made by shifting the center of the circle to the right only.
E in the program is l/e in the preceding equations. The airfoil in Fig. 3.1c has
both thickness and camber but still a cusp trailing edge. The airfoil in Fig. 3.Id
has been generated with a greater thickness so that the finite trailing-edge angle is
visible. The nominal circle radius for these airfoils is 1.0.

Fig. 3.1 Joukowski airfoils: a) E = l.OD + 10, F = 0.2, full circulation, and cusp
trailing edge; b) E = 14.0, F = 0.0, full circulation, and cusp trailing edge; c) E = 14.0,
F = 0.2, full circulation, and cusp trailing edge; and d) E = 7.0, F = 0.2, full circulation,
and trailing-edge factor = 1.25.
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50 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

With the use of this vortex strength, the stream function is

r2 / 1-n
Then,

(3.16)

O/Y

1 + 7 ) sin <9 + —- sin (a + ft) (3.17)
r2 / r

On the surface of the cylinder r = a and so here

ve =2t/sin<9 + 2[/sin(c* + £) (3.18)

from which we see that v0 = 0 when 9 = —(ex + ft) and 9 = a + ft — n. These
are the locations of the stagnation points.

The lift per unit span is

pU24nasm(a + ft) (3.19)

To normalize to the lift coefficient we divide by \pU2 • chord. The actual chord
length is a little more than 4c, i.e.,

(3-20)

for a symmetrical Joukowski airfoil. Hence, for such an airfoil

l+3e + 2e2-] .
sma (3.21)

1 + 2e + e2 J

For cambered Joukowski airfoils or airfoils with finite trailing-edge angles, it is
preferable to write

c(\ -f. fe\
Ct = STT J sin(g + ft) (3.22)

chord

where chord = |fmax| + |£minl- The computer program uses this value. Notice the
very important result that the lift curve slope is

= %n-
3 a chord

(3.23)

for all airfoils. This is another way of saying that the lift is approximately indepen-
dent of the airfoil shape, as we noted previously. The lift curve slope does increase
slightly as the airfoil thickness increases. This trend is seen for all airfoils, not just
those of the Joukowski type.

An analytical expression can be derived for the pitching moment coefficient
about specific chordwise locations on symmetrical airfoil (for example, the nose,
the quarter-chord, or the aerodynamic center) but for cambered airfoils it is too
complex for easy use. In that case it is recommended that the value be obtained
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AIRFOILS AND THE JOUKOWSKI TRANSFORM 51

from a process that can be described by an expression such as

(3'24)m'i< - chord

when the summation is carried out over the entire airfoil. Because of the air-
foil curvature the segments A* are not the same length everywhere but rather
fy+i — £/. The program has available pressure coefficients at 180 such values. In
the example, the term x — xc/4 represents the distance from the quarter-chord to
the current segment.

Joukowski airfoils, even those produced by the modifications implemented in
the program, have not proven to be as satisfactory as one could wish, primarily
because the minimum pressure point on the upper surface occurs too far forward.
As a result, the viscous boundary layer faces an unfavorable pressure gradient
over most of the upper surface. Consequently, the boundary layer thickens and
then separates at lower angles of attack than on more modern airfoils. Joukowski
airfoils, therefore, have somewhat higher drag coefficients and lower maximum
lift coefficients than newer designs. Of course, this is a result of viscous forces,
which are not treated in the theory.

The other less-than-desirable feature of Joukowski airfoils is that one does not
know the airfoil shape a priori. Attempts to transform a given shape back into a
circle do not always yield a circle. Frequently, one cannot use the theory to predict
the pressure distribution on a given shape that for structural or other reasons one
may wish to use.

Theoretical developments after Joukowski took one of two paths: 1) construction
of a thin airfoil theory in which the airfoil is replaced by a distribution of vortices
on the mean camber line and 2) generalization of the Joukowski theory, of which
Theodorsen's work is typical. Although it can handle a wider variety of shapes,
Theodorsen's method is relatively abstract (entailing two transformations) and
the computations are tedious. For that reason it was little used outside of NACA.
Even at NACA a strong program was developed during the 1930s to conduct
a systematic series of tests to determine the characteristics of whole classes of
airfoil sections whose shapes were more the result of careful experimentation
into what characteristics were desirable than of guidance from some theory. The
published test results16 on these airfoils (also see Ref. 17) formed the basis for
airfoil selection for new aircraft for 30 years.

With the advent of the digital computer, methods such as that described in
Chapter 5 have become sufficiently accurate and reliable to enable the designer to
optimize the airfoil(s) for the vehicle on which it is to be installed.

3.5 Program JOUKOW
Source code for this program occupies 36,224 bytes. A separate program to

generate pressure coefficients plots from tabular data, CRFOR, occupies 3,200
bytes. CP.FOR is effectively incorporated in JOUKOW.FOR and so it need not
be run if all pressure data are generated by JOUKOW. The output files are
JOUKOW.TXT, which contain printer plots of the airfoil shape and pressure co-
efficients; JOUKOW. AIR, a PostScript plot of the profile; and CRPS, PostScript
plots of the pressure distribution. Executable code for JOUKOW is 116,224 as
made with the Microsoft PowerStation compiler. At this size execution is very
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52 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

rapid. JOukoW.TXT is a large file (247,655 bytes) and CRPS is much smaller at
133,096 bytes. JOUKOW.AIR requires only 16,096 bytes.

The program generally implements the method for generating the airfoil shape
described in Ref. 18, which uses Eqs. (3.4-3.15).

3.5.1 Program Graphics
The program generates two types of graphical output. First are graphs of the

airfoil shape and pressure distributions at 12 angles of attack via the printer
character set; then, PostScript files of the same data are created. The latter requires
a PostScript printer or a software PostScript interpreter to view or print the files.

3.5.2 Program Data Entry
All data entry is by keyboard response to questions displayed on the screen.

These ask for the original diameter of the circle to be transformed; the displacement
of its center, F, along the y axis and c/E along the x axis; the factor by which to
reduce the circulation; and the factor by which the stagnation points are to be em-
bedded, /. One final query gives the user the option to write or not write 12 pressure
distribution plots using the printer character set into the text file JOUKOW.TXT.

3.5.3 Typical Results
Prints of typical PostScript output files are shown in Fig. 3.2. A portion of one of

the listings is shown in Fig. 3.3. The listings provide the airfoil ordinates at closely

a)

-5.283

1.000

Fig. 3.2 Joukowski airfoil: a) transformed from a circle (airfoil chord is about four
times circle radius) and b) pressure distribution, angle of attack = 11.0 deg, leading
edge on left and trailing edge on right.
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.AIRFOILS AND THE JOUKOWSKI TRANSFORM 53

CIRCLE'RADIUS = 1.000
HORIZONTAL OFFSET OF CENTER = .1428571
VERTICAL OFFSET OF CENTER = .2000000
FACTOR TO CHANGE HORIZONTAL LOCATION OF REAR STAGNATION POINT = 1.25000
FACTOR TO CHANGE CIRCULATION = .90000

ALPHA = .00000000 LIFT COEFFICIENT = 1.257
J XI ETA CP VELOCITY

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

-1.969
-1.981
-1 .990
-1.996
-2.000
-2.000
-1.997
-1.991
-1.982
-1.970
-1.954
-1.935
-1.912
-1.886
-1.856
-1.823
-1.787
-1.747
-1.704
-1.657
-1.607
-1.554
-1.497
-1.438
-1.376
-1.311
-1.243
-1.173
-1.101
-1.027
-.950
-.872
-.793
-.712
-.630
-.548
-.464
-.380
-.296
-.212
-.127
-.043
.040
.123
.205
.287

.019

.013

.008

.004

.001

.000
-.001
-.001
.000
.002
.005
.009
.014
.019
.025
.031
.037
.044
.051
.058
.065
.071
.078
.084
.089
.094
.098
.102
.104
.106
.107
.107
.105
.103
.100
.095
.090
.084
.077
.069
.060
.050
.040
.029
.018
.006

.3005

.3595

.4423

.5844

.8984
-.1830
-.1731
.0189
.1163
.1769
.2200
.2531
.2800
.3025
.3217
.3384
.3529
.3657
.3768
.3865
.3949
.4020
.4080
.4128
.4165
.4192
.4209
.4216
.4213
.4200
.4177
.4145
.4103
.4052
.3991
.3921
.3841
.3751
.3652
.3543
.3424
.3295
.3157
.3008
.2850
.2681

.83634143

.80031076

.74679140

.64465457

.31873757
-1.08764916
-1.08311252
-.99052693
-.94003118
-.90722206
-.88319448
-.86423561
-.84855526
-.83519223
-.82358767
-.81339638
-.80439483
-.79643272
-.78940587
-.78324012
-.77788156
-.77329013
-.76943554
-.76629439
-.76384825
-.76208228
-.76098417
-.76054347
-.76075100
-.76159843
-.76307798
-.76518214
-.76790350
-.77123456
-.77516763
-.77969470
-.78480736
-.79049673
-.79675336
-.80356719
-.81092749
-.81882277
-.82724075
-.83616827
-.84559123
-.85549449

Fig. 3.3 Example of listing produced by JOUKOW.

spaced chordwise coordinates with sufficient accuracy to permit the construction
of a template for fabrication if desired.

The lift coefficents shown are those computed by Eq. (3.22).

3.6 Closure
This chapter has dealt with the use of elementary flow functions and a math-

ematical transformation both to create a means for representing an airfoil-like
shape mathematically and for determining from the transformation the pressures
that will exist on the shape and its lift at various angles of attack. Two slight mod-
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54 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

ifications to the original 1909 theory have been included in a computer program,
which performs the operations indicated by the transformation, illustrates the re-
sulting airfoil, determines the lift coefficient at 12 angles of attack, and depicts the
pressure distributions at these angles of attack.

The problems at the end of this chapter include some illustrations depicting
the nomenclature associated with the aerodynamic characteristics of airfoils and
indicate some of the flow characteristics about real airfoils at various angles
of attack. What are not shown are wind-tunnel test results of the aerodynamic
characteristics of real airfoils, in particular the variation of lift with angle of attack
at those angles of attack where the lift is influenced significantly by the fluid
viscosity. This will be treated in Chapter 5 where the theory includes a method for
determining some viscous effects, as well as some compressible effects. Whereas
with the Joukowski transform technique the shape of the airfoil is not known a
priori, the method in Chapter 5 permits calculation of the characteristics of existing
airfoils valid for lift coefficients of 0.8 or less. Other end-of-chapter problems ask
the user to generate airfoils with specific characteristics.

The origins of airfoil drag, a characteristic that the Joukowski theory cannot
predict, are discussed in the next chapter.

For the angles of attack at which the Joukowski theory provides reliable results,
the moment characteristics can be determined from the pressure data. One of the
problems describes a semigraphical method.

Although most of the discussion in this chapter has used the word airfoils,
it should be understood that the theory applies equally to hydrofoils operating
at sufficient depth to eliminate the effect of surface reflections. The forces on a
hydrofoil, however, are some 800 times as great as those on an airfoil of the same
geometry at the same speed; therefore, the structure must be designed with this in
mind. Another difference between airfoils and hydrofoils is the latter is to operate
at "high" speeds. The faster the hydrofoil goes the lower is the pressure at some
point on the surface. When this pressure is below the vapor pressure of water, the
water in this region will vaporize. However, the gas bubble thereby created will
collapse when the local pressure returns to an above-vapor-pressure value. The
intense scouring action of this collapse quickly erodes the surface beneath it. The
process is called cavitation. Supercavitating hydrofoils are designed to ensure that
the steam bubble collapses in the wake downstream of the aft end of the hydrofoil.

Problems
3.1. See if you can find information on the first man-powered flight over the
English Channel. The desired information is a) Bryan Alien's weight, b) weight of
Gossamer Albatross, c) wing span, d) wing area, e) power developed, f) average
speed, and g) average altitude. Also, a) discuss why it took so long before man-
powered flight became a reality, b) Can you determine from these data the drag of
the craft? c) What was the wing loading in pounds per square foot and the power
loading in horsepower per square foot? For birds W/S is approximately W°'25.

3.2. Glue an 8.5 x 11 in. print of the pressure distribution for some angle of
attack on stiff paper. Then cut the picture along the line depicting the pressure
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AIRFOILS AND THE JOUKOWSKI TRANSFORM 55

coefficients. When you are finished you should have an irregularly shaped object
with most of its area to one end. Then take a draftsman's triangular scale, place the
cutout on it so that the chord line is perpendicular to the long axis of the scale, and
move the cutout until it balances on the scale. Mark the location on the chord line.
This is the x location of the center of pressure, a) Where is this location relative
to the nose of the airfoil as a function of the chord length? b) Use this result to
obtain the pitching moment coefficient of the airfoil about the quarter chord for
the angle of attack at which the data were generated.

3.3. Trace the pressure distribution on millimeter graph paper, count the squares
under the curve above the chord line, and record. Count the squares below the
chord line that fall between the curve and the chord line. Add the two results.
Relate this total to the lift coefficient reported by the program for the angle of
attack. What is the result?

3.4. Integrate the components of the pressures on the airfoil at a = 0 in the
direction of the chord line. What result do you obtain?

3.5. Designate a pressure force coefficient normal to the chord line as C/y.
Designate a pressure force coefficient parallel to the chord line as CA. Then
construct the relations

CL = C/v cosa - CA sina

CD = CN sina -f CA cosa

a) What results do you obtain? b) Is it what you expected? c) Why?

3.6. The thickest airfoils found to be practical in use are about 22% thick, a) What
value of E is necessary to generate a Joukowski airfoil of that thickness that also
has a lift coefficient of 0.4 at a = 0 and a finite trailing-edge angle? Use a factor
of 1.25 in Eq. (3.14) to multiply l/E to obtain a finite trailing-edge angle, b) What
value of F is used? c) Does the factor / in Eq. (3.14) affect the lift coefficient?

3.7. Repeat problem 3.6 but generate an airfoil that is 6% thick. Change the factor
multiplying l/E in Eq. (3.14) to 2.0. b) Repeat, but change the lift coefficient at
a = 0 to 0.2. c) Repeat, but make a symmetrical airfoil. Indicate how you verified
the airfoil thickness.

3.8. Figure P3.1 illustrates the nomenclature associated with airfoil aerodynamic
characteristics, a) Where is the center of pressure when the pitching moment
coefficient about the quarter-chord is negative? b) If the airfoil is cambered as
indicated in the figure, at what approximate angle relative to the oncoming flow
should it be operated if the lift is to be zero? The angle of attack is zero when the
chord line is aligned with the oncoming stream, c) Is the drag likely to change
from the value it had when the angle of attack was zero if the angle of attack is
changed to the angle of attack for zero lift?

3.9. Consult the a = 0 pressure distributions for the airfoils generated in prob-
lems 3.6 and 3.7. Do any of them have regions of constant or very slowly increasing
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56 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

lift

aerodynamic
center

moment about aerodynamic
center is independent
of angle of attack

moment coefficient is zero at center of pressure
center of pressure moves forward with increasing
angle of attack

lift

quarter ^C^_ moment about
chord —y ^**** one-quarter chord point
point depends on angle of attack
Fig. P3.1 Airfoil aerodynamic characteristics.

values of —Cpl Such regions are necessary to keep the viscous boundary layer
from thickening and perhaps separating.

3.10. Figure P3.2 shows the condition of the actual flow over an airfoil at various
angles of attack. Notice that the viscous boundary layer is relatively thin and its
effects are confined primarily to the aft end of the airfoil when the angle of attack
is small. This is the reason inviscid airfoil theory can do a good job describing
flow behavior for these conditions. Figure P3.2 shows why inviscid airfoil theory
fails at higher angles of attack. For angles of attack beyond stall the separated
flow region becomes much larger and unsteady, causing a decrease in lift and a
significant increase in drag, a) How, from an experimental plot of CL vsa, might
one determine at what angle of attack (or value of lift coefficient) the effects of
viscosity are sufficent to modify the behavior of the airfoil? b) Determine what
you would expect the characteristics of the airfoil to be at negative angles of attack
and explain, c) Determine if you can make a qualitative correlation between the
vertical extent of the wake and the drag on the airfoil and explain.

3.11. On what portion of the airfoil should you expect the pressures to differ
most from the theoretical expectation?
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, AIRFOILS AND THE JOUKOWSKI TRANSFORM

a) 'angle of attack-0 separation point

57

angle of attack = 5

c) angle of attack = 16
maximum lift/stall angle

turbulent wake

separation point
moves slightly forward

turbulent wake

separation point jumps
forward

Fig. P3.2 Stall formation.

3.12. Generate a 22% thick Joukowski airfoil that has a lift coefficient at a = 0
of 0.4. At what value of x/cis the pressure coefficient on the upper surface most
negative at a = 0? Let / = 1.25 and the circulation factor be 1.0.

3.13. Assume that P^ = 2116 psf, p^ = 0.002378 slugs/ft3, and U^ = 316
ft/s. a) What is the stagnation pressure? b) At what lift coefficient would the
minimum pressure point on the airfoil in problem 3.12 first experience a local
pressure of 0.528/^7 c) What is the angle of attack at which this would occur? d)
Would you expect this angle of attack to be within the normal operating range of
this airfoil and why?

3.14. What would be the value of the circulation/per unit span for problem 3.13?

3.15. At what value of the lift coefficient would the two stagnation points on a
circle in a uniform stream come together at 9 = 270 deg?

3.16. The following conditions are observed: q = 64.316 psf, maxt/c = 0.22,
p = 0.002378 slugs/ft3, Joukowski airfoil, P^ = 2116 psf, CLoo={) = 0.4, CPmin
= —15, g = ^pU2, f = 1.0, and circulation factor = 1.0. Determine:

a) stagnation pressure,
b) freestream velocity,
c) minimum pressure on airfoil,
d) velocity at minimum pressure point,
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58 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Fig. P3.3 Stagnation pressures on streamlines.

e) lift coefficient of Joukowski airfoil when these conditions exist, and
f) angle of attack of airfoil. How would the answers to problems 3.16c-3.16f

change when the circulation factor is 0.9?

3.17. Figure P3.3 shows two examples of the stagnation pressures along stream-
lines, a) Is either of these flows irrotational? b) If so, which is irrotational?
c) Which flow is representative of that approaching the airfoil? d) Which flow is
representative of that in an airfoil wake? In these figures pt is stagnation pressure.

3.18. What is the largest possible positive value of the pressure coefficient?

3.19. Where (as a percent of chord) are the stagnation points in Fig. 3.2?

3.20. Determine the lift curve slope for the airfoils in Fig. 3.1.

3.21. Let z = £ + ir] and f = x -f iy. Draw an airfoil section on millimeter
graph paper as smoothly as you can. The chord of this airfoil should be exactly
10 cm long and will serve as the vertical reference. At every millimeter from the
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AIRFOILS AND THE JOUKOWSKI TRANSFORM 59

nose to the trailing edge, record values of the other airfoil coordinate for the lower
surface in millimeters. Then, going from tail to nose record, again in millimeters,
the coordinates of the upper surface at every millimeter along the chord. You
should have exactly 200 sets of (£, rj) values. Let the horizontal reference be the
midchord point. Set up a program or a spread sheet that will make £ and rj the
real and imaginary parts of the complex number z. Let us say a portion of the
FORTRAN code might look like the following:

IMPLICIT REAL*(A-H,0-Z)
COMPLEX*16 Z,ZETA,CC,HALF,FOUR
DIMENSION A(200),B(200),X(200),Y(200),Z(200),ZETA(200)
OPEN(1,FILE='INVERS.DAT',STATUS='OLD')
DO 1 J=l,200
READ(1,2) A(J),B(J)

1 Z(J)=DCMPLX(A(J),B(J))
2 FORMAT(F5.1,IX,F5.1)

C=25.0DO
CC=DCMPLX(C,0.0)
FOUR=DCMPLX(4.ODO,0.ODO)
HALF=DCMPLX(0.5DO,0.ODO)
DO 3 J=l,200
SIGN=1.0DO
IF(BU).LT.O.ODO) SIGN=-1.0DO

3 ZETA(J)=HALF*(Z(J)+SIGN*CDSQRT(Z(J)*Z(J)-FOUR*CC*CC))

a) Plot the real vs imaginary part of ZETA. Connect points by straight line
segments, b) Describe the resulting figure in as much detail as you can. c) How
would you characterize the process that was carried out? If necessary you can find
the square root of a complex number as follows:

A=DREAL(Z)
B=DIMAG(Z)
ZM=(A*A+B*B)**0.25
TH=0.5DO*DATAN2(A,B)
ZSQRT=DCMPLX(ZM*DCOS(TH),ZM*DSIN(TH))

Z and ZSQRT are complex numbers.
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4
Drag, Viscosity, and the Boundary Layer

4.1 Introduction

F ROM at least the 18th century onward it has been recognized that all real
fluids are viscous to some extent (except for superfluids, which do not exist at

room temperature). It has also been generally accepted that the best mathematical
description of the motion of such fluids is provided by the Navier-Stokes nonlinear
partial differential equations. There are probably fewer than a dozen cases for
which exact solutions of these equations are known. Given the difficulty of solving
such equations for any but the simplest of boundary conditions, it is not surprising
that the study of fluid flow early divided into two camps: 1) theoretical study of the
far simpler equations for inviscid flow, which was called hydrodynamics, and 2) a
largely empirical investigation of fluild flow, called hydraulics. The second camp
was peopled primarily by engineers, who had to get answers to practical problems.
Because they could not solve the problems analytically they devised experiments,
often at a smaller scale, to determine the flow rates and forces that would exist
with the full-scale hardware. For this approach to be productive, they needed to
know the proper scaling laws for the forces and flow rates and the correct form of
the force coefficients.

The first camp was composed of physicists and mathematicians, who developed
analytical solutions to an increasing array of problems, which could be modeled
with reasonable accuracy by inviscid flows. Instead of cross fertilizing each other,
the two camps tended to drift further apart during the 19th century. We note that the
work of Helmholtz, Kichhoff, Lamb, Kutta, and Joukowski was entirely inviscid.

Ludwig Prandtl began his career as a careful experimenter but he also had
received solid training in mathematics. His observations revealed that the effects of
viscosity were generally confined to a small layer of fluid immediately adjacent to
the surface of the body over which the fluid was flowing. This he called the "Grenz-
schicht" or boundary layer. Prandtl then looked at the Navier-Stokes equations
and, by considering the relative importance of the terms in the equations when
applied to boundary-layer flow, was able to simplify the equations considerably.
Prandtl19 published the results of these investigations in a seminal paper in 1904.
Prandtl's boundary-layer equations form the basis of all modern treatments of the
determination of skin friction and the creation of form drag.

We shall emulate Prandtl and show how the boundary-layer equations are ob-
tained from the Navier-Stokes equations. We do this in an attempt to help the
reader appreciate the conditions under which a boundary-layer analysis is valid.
We will employ a technique for determining boundary-layer growth and for cal-
culating associated skin friction, called the momentum integral method. This is
the method used for these purposes by the programs discussed in Chapters 5 and
7. In this chapter we will go through a derivation of the procedure in some detail
in the hope that the reader will gain an indication of its strengths and weaknesses,
as well as an indication of how the algorithm fits into the drag calculations carried
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62 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

out by the programs. Then if there is a question about the validity of the results
produced by the programs, the reader will know that the procedures by which they
are obtained have been set out for inspection.

To provide the reader with some additional association with viscous flows and
their characteristics, we will obtain exact solutions to the Navier-Stokes equations
for five simple cases and approximate boundary-layer type solutions in three
additional cases. The exact solutions and one of the approximate solutions involve
internal flows. The remaining two involve external flows. The problems at the end
of the chapter deal primarily with these eight cases and some extensions thereof.

4.2 Drag
Because of viscosity, bodies that move through a fluid experience a resistance to

motion that we call drag. As a result, energy must be added constantly to the body
to maintain its motion. It is convenient to think of the drag on a body as being
composed of two components: a skin-friction drag and a profile or form drag.
Skin friction results from the rubbing of the fluid on the body surface as the fluid
moves over it. The energy dissipation usually results in heat being transferred to
the body surface, but this depends on the value of the Prandtl number. As a result
of the momentum loss in the boundary layer, the flow leaving the body contains
a region with a lower velocity than that in the remainder of the flow. Figure P3.2
illustrates this situation. Figure P3.2 shows a relatively small wake. By the time
a large angle of attack is reached the wake is quite thick. In a streamline near
the forward stagnation point the static pressure is near the stagnation value and
the velocity is low. As the flow makes its way over the airfoil, the pressure drops
and the velocity increases. Normally, the presssures then begin to rise toward the
stagnation value as the trailing edge of the airfoil is reached. However, when there
is extensive separation, as shown in Fig. P3.2, this pressure rise does not occur.
The flow leaves the surface and roughly maintains the pressure it had when it
separated. By Prandtl's hypothesis the pressures in these separating streamlines
are transmitted unabated through the boundary layer to the surface below such
that when the pressures on the entire body are integrated there is a net force in the
streamwise direction, called the pressure or form drag.

The form drag depends on the extent to which the boundary layer adheres to the
body surface. If the boundary layer encounters rising pressures (called an adverse
pressure gradient) of sufficient intensity that it cannot overcome them, it separates
from the body surface. When this happens the pressures on the aft end of the body
are very low relative to the stagnation pressure, and the corresponding form drag
is very high.

To relate the drag of one body to that of another, it is common to nondimen-
sionalize it as a coefficient. Thus, we write

For most geometrically similar bodies, the drag coefficient is a function only of
the Reynolds number when the Mach numbers are less than about 0.5. This means
that two bodies of different size but of similar shape have the same drag coefficient
if the Reynolds number for the two cases is the same. In Eq. (4.1) p is the fluid
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, DRAG, VISCOSITY, AND THE BOUNDARY LAYER 63

density, S is the reference area, and V is the fluid velocity. Reynolds number Re^
is expressed by

pVL
- —— (4.2)

M
where L is a reference length (usually the chord length for airfoils) and IJL is
the coefficient of dynamic viscosity. The latter is a physical property of the fluid
determined by measurement. Its magnitude varies with temperature. For gases it
increases with increasing temperature; for liquids its magnitude decreases with
increasing temperatures.

4.3 The Boundary-Layer Equations
We begin with a development of the equations expressing the conservation of

momentum (also known as Newton's second law of motion as applied to viscous
fluids). Much as we did in Chapter 2, we will consider the difference in the
momentum of the fluid mass entering an element of fluid and momentum in the
fluid mass leaving it and equate these differences to the changes in the forces
acting on the fluid mass. Because force is a vector quantity (that is, it has both a
magnitude and a direction), we must write an expression of this law in each of the
principal directions of our Cartesian coordinate system.

Now we can write the mass of fluid crossing a plane area per unit time as

puidx2dx*$ (4.3)

If we multiply this mass by its velocity in the x\ direction, we obtain its momentum
in the x\ direction. Because mass must be conserved, the change in momentum in
the x\ direction is given by

(4.4)
ox\

Now the mass entering a fluid element may also have components in the x2
and %3 directions. Each of these components can contribute to the momentum
and, thus, to the change in the momentum in the x\ direction. We can generalize
Eq. (4.4) to account for all changes in momentum per unit volume by writing

(4-5)

where we interpret the repeated index j to mean summation:

3ut 3ui 3ufpu{—— + pu2 — - + P«3—— (4.6)
ox\ 3x2 3xi

The result given by Eq. (4.5) indicates a change in momentum due to a change
in position. In addition, there may also be a temporal change in momentum. Thus,
we need to add the term

,£
to Eq. (4.5) to obtain a complete expression for the change in momentum.
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64 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

The viscous forces acting on the element per unit area can be of two types:
normal stresses and shearing stresses. Such stresses are tensor quantities because
they require that we employ two indices to identify them properly. We need to
know both the surface (identified by the direction of its normal) on which the
stress acts as well as the direction on or along this surface in which it acts. Note
that there are, in general, nine such stress components.

A fluid medium cannot resist shearing per se but it does develop a force propor-
tional to the rate at which it is sheared. We express such a force per unit area as

T"= ̂  (4-7)

Because / and j can each have values 1, 2, and 3, r/y in general has nine compo-
nents. The proportionality between the rate of shearing and the stress it creates is
expressed by /x. Essentially, it serves the same purpose in fluids as Young's modu-
lus, (the modulus of elasticity) does for solids. Just as Young's modulus is constant
for most materials up to an elastic limit, the coefficient of dynamic viscosity, as
it is called, is constant or primarily a function of temperature for fluids, which
are termed Newtonian. Non-Newtonian fluids are fluids where the proportionality
between the rate of shearing and the shearing force is a function of the rate of
shearing. Non-Newtonian liquids are more common than non-Newtonian gases.

Conceptually, one may have a bit of difficulty visualizing a normal viscous
stress, particularly because its effect, if present, is usually hidden by the hydrostatic
pressure. Suffice it to say at this point that normal viscous stresses (exclusive of
pressure) are usually not of significant magnitude, except perhaps through shock
waves. For completeness, however, we give the generally accepted expression for
the viscous stress in common fluids, which reads

T/. = _^..^!£ + M (^L + 3uJ\ (4.8)
IJ 3 IJ 3xk \dxj d*i J

Here, <$// (called the Kronecker delta) has the value of 1 when / = j and 0 when
/ ^ j. The repeated subscript k indicates that the term 3uk/3xk represents a sum
of three normal gradients.

The units of Eq. (4.6a) are force per unit volume. The units of pressure and
viscous stress are force per unit area. Thus, a pressure gradient has the units of
force per unit volume and, therefore, according to Newton's second law of motion,
is equal to the change in momentum as defined by Eqs. (4.5) and (4.6a),

Because / may take any of three values in a Cartesian coordinate system, Eq. (4.9)
is a compact way of writing three equations. Notice that / is the free index in
the equation whereas j is a repeated index indicating summation. Because we are
dealing with a three-dimensional space, the terms involving j actually represent a
sum of three terms.

If we wish to apply Eq. (4.9) to water or other liquids we need to add the term
pg to the left side of the equation when the index / refers to the direction normal to
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, DRAG, VISCOSITY, AND THE BOUNDARY LAYER 65

the Earth's surface. This term is called a body force or a potential to indicate that
it is due to a gravitational attraction between the liquid and the Earth. For gases
the mass of a small volume is insufficient to produce a significant gravitational
attraction; in that case the term is ignored.

Equations (4.9) are a system of second-order nonlinear partial differential equa-
tions, second order because r// already represents partial derivatives of the velocity
components with respect to the position variables. If the density is constant (the
case with which we will be concerned) there are four dependent variables: the
pressure and the three velocity components. Because Eq. (4.9) represents only
three equations, we need another equation to make the system solvable. We find
this in the equation for mass conservation

p^=0 (4.10)
ox i

If we limit our discussion to steady flow, the first term on the right-hand side of
Eq. (4.9) can be set equal to zero.

If we multiply Eq. (4.10) by U[ and then add it to the steady form of Eq. (4.9)
we obtain

dTu dP diij But
—— - —— = PW/-— + P«/ ——ax i oXi dxj dXj

or

Prandtl's boundary-layer concept asserts that, except for shock wave effects,
the influence of viscous stresses in flow over solid bodies is confined to a layer
next to the surface (termed the boundary layer in English), which is thin compared
with some characteristic dimension of the body. For our present purpose we will
limit consideration to plane flows, that is, to flows in two dimensions. We will also
restrict consideration to those cases where the boundary has no more than a small
slope with respect to the freestream. If, in addition, it is curved we assume that
the radius of curvature is very large. As a consequence of these assumptions, the
pressure is essentially constant through the boundary layer. Outside the boundary
layer we can determine the variation of the pressure in the streamwise direction
from a solution of the inviscid equations of motion. Thus, we have essentially
removed the pressure as a dependent variable in the problem.

Let us now consider the order of magnitude of terms in the equation of mass
conservation for two-dimensional flow

_
3x2

We may write this as
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66 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

where

8 = boundary-layer thickness
L = characteristic dimension
u2 = velocity component normal to the surface in the boundary layer
U — freestream velocity, parallel to x\
O() = order of

We see from this that

<
o

-U } (4.13)

Because of our assumptions

« 1 (4.14a)

« 1 (4.14b)

We wish now to apply these considerations to the stress terms

4 dui 2 du2

(4.15b)
2

4 du2 2 dm
t22 = ~^T— - o/^T— (4.15c)3 dx2 3 dxi

The order of magnitude of these terms are as follows:

(4.16a)
L ) \ 8 / \ L

= O - + O U^ = O V (4.16b)

T22 = o n + O - = O (4.16c)
V <> / \ L / \ L /

Applying the same rationale to the x\ momentum equation, Eq. (4.11) with
/ = 1, yields

This can be written as

0(1)] = -^- + O (^} \0 (¥-} + 0(1)] (4.18)
dx{ V <$2/ L \ L / J

By removing the terms that the foregoing analysis shows are small relative to the
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,DRAG, VISCOSITY, AND THE BOUNDARY LAYER 67

other terms, we obtain the Prandtl boundary-layer equations,

\ 0X2 OX\ 0X2

du\ du2p--i + p-^=0 (4.19b)
dx\ 0x2

From the foregoing it can be seen that

" ) - « •
or

Therefore,

5 a — = (4.21 a)
Vtfe/v

where

(4.21b)
Notice that the momentum equation in the x2 direction has been discarded

because all of its terms are of lower order than the terms retained in the x\
momentum equation. The reader is urged to follow the procedure indicated and
verify the boundary-layer equations.

4.4 Boundary Layer and Displacement Thickness
To develop some of the concepts associated with boundary layers, consider the

viscous flow over a flat plate aligned with the stream. In contrast with the inviscid
case where the flow slips along the surface unimpeded, viscous flow has zero
relative velocity at a solid boundary. The relative velocity increases as a function
of distance away from the boundary until it is equal to the freestream velocity.
Because the flow is steady over the flat plate, the velocity in the x\ direction does
not change; the freestream pressure is also constant for this configuration. As a
result of these assumptions, the boundary-layer equations reduce to

+ =0 (4.22b)
\ 0X2

Expanding the term on the left side of Eq. (4.22a) yields

M I — — + w2—— = - —^- 4- —— ( —— ) (4.23)
3X2 3X2 P L dX2 ^X{ \dx2/ J

From Eqs. (4.4-4.16b) the second term on the right-hand side of Eq. (4.23) is at
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68 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

least an order of magnitude smaller than the other term and so is neglected. Thus,
we have for this case

dll2 du\ Li 32U\
«iT^+«2F

1 = --4 (4.24)
6X2 OX'2 P d*2

Now make the following substitutions:

(4.25a)

(4.25b)

vxiUfW (4.25c)
dils dri .
— —— = Uf'(r]) (4.25d)
3 77 dx2

dils 1 [vU
"2 = -—— = - J — — ( r t f - /) (4.25e)

3*1 2V *iT

With these substitutions, Eq. (4.24) becomes

_U^_ ., .„ _£/^ .,_ .„ _ ^ .,„
2*i ' 2*i ' ' ' *iv

or simply,

//" + 2f" = 0 (4.26)
The effect of these substitutions has been to transform the set of two nonlinear

partial differential equations into a single nonlinear ordinary differential equation.
This was accomplished by choosing the new independent variable rj to be a
function of both of the original spatial coordinates. The boundary conditions on
this third-order equation are

•q = 0: / = 0, /' = 0; 77 = oo: /' - 1 (4.27)

A number of ways have been devised to solve this equation, beginning with
Blasius.20 Almost all have been numerical. We choose to use a familiar numerical
technique, the Runge-Kutta method. This involves breaking the equation down
into three first-order equations,

/' - g (4.28a)

(4.28b)

(4.28c)

Unfortunately, the Runge-Kutta technique requires initial conditions and one
of the boundary conditions available is not an initial condition. Therefore, we will
have to choose an initial value of h from another solution of the boundary-layer
equations (along with / = 0, g = 0). We will pick the value found by Ho warm,21

0.33206. A short computer program, which performs a fourth-order Runge-Kutta
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DRAG, VISCOSITY, AND THE BOUNDARY LAYER 69

integration on the equation, follows.
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 K1,K2,K3,K4
DIMENSION DU(3),U(3),WU(3),XU(3),YU(3),ZU(3),K1(3),K2(3),
1K3(3),K4(3)

C
OPEN(61,FILE='BL.DAT',STATUS=>UNKNOWN')

C
DO 1 J=l,3
U(J)=O.ODO

1 DU(J)=O.ODO
C
C ESTIMATE OF INITIAL VALUE OF f 7'
C

U(3)=0.33206DO
TDEL=0.001DO
ICNT=0
T=O.ODO
N=3
WRITE(61,22) T,(U(I),I=1,3)
T=TDEL

C
C BEGIN RUNGE-KUTTA FORWARD INTEGRATION
C

DO 10 J=l,10001
ICNT=ICNT+1
DO 5 1=1,N

5 WU(I)=U(I)
CALL FUN(DU,WU)
DO 6 1=1,N
K1(I)=DU(I)*TDEL

6 XU(I)=U(I)+DU(I)*TDEL/2.0
CALL FUN(DU,XU)
DO 7 1=1,N
K2(I)=DU(I)*TDEL

7 YU(I)=U(I)+DU(I)*TDEL/2.0
CALL FUN(DU,YU)
DO 8 1=1,N
K3(I)=DU(I)*TDEL

8 ZU(I)=U(I)+DU(I)*TDEL
CALL FUN(DU,ZU)
DO 9 1=1,N
K4(I)=DU(I)*TDEL
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70 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

9 U(I)=U(I)+1.0DO/6.0DO*(K1(I)+2.0*K2(I)+2.0DO*K3(I)+K4(I))
IFCICNT.EQ.20) WRITE(61,22) T,(U(I),1=1,3)
IFCICNT.EQ.20) ICNT=0

10 T=T+TDEL
22 FORMAT(1X,F5.2,1X,3(F11.8,1X))

RETURN
END

C
SUBROUTINE FUNCDU,U)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION DUC3),U(3)

C
C THIS SUBROUTINE PROVIDES THE EQUATIONS TO BE INTEGRATED
C

DU(1)=U(2)
DU(2)=U(3)
DU(3)=-0.5DO*U(1)*U(3)
RETURN
END

Here the increment in r\ is 0.001 and £7(2) is /' in Eq. (4.26). £7(3) is /", T is
77, and

t /(l) = /(*?) =-4= (4.29)

Because /' approaches the value of 1.0 in an asymptotic fashion, it is customary
to select a value of 0.99 as indicating that the freestream value has been reached.
This corresponds to a value of rj of approximately 5.0. We will designate as 8 the
value of KI corresponding to 77 = 5.0. Thus,

8= 'u

or

8 5.0
(4.30)

Notice that the boundary-layer thickness grows as the square root of the Reynolds
number based on length in the stream wise direction.

Figure 4.1 shows the velocity distribution /' in a laminar boundary layer as a
function of the new space variable 77, as well as the gradient of the velocity /".

A physically meaningful measure for the boundary-layer thickness is the dis-
placement thickness <5*. The displacement thickness is that distance by which
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, DRAG, VISCOSITY AND THE BOUNDARY LAYER 71

Fig. 4.1 Velocity distribution and its gradient in a laminar boundary layer.

the external potential field of flow is displaced outward as a consequence of the
decrease in velocity in the boundary layer. We define the displacement thick-
ness by

(4.3 la)

We may also write 8* as

(4.3 Ib)

where rji is a point outside the boundary layer. We can evaluate rji — f(rj\) using
the computer program given earlier and obtain a value of 1.7208 for a flat plate.
Hence,

8* =
1.7208*1 (4.32)

Another important quantity is the momentum thickness defined as

(4.33)
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72 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

For the flat plate at zero incidence

r/=0

or

(4.34)

We can also work out the value of the transverse component of velocity at the
outer edge of the boundary layer (when rj —> oo) as

0.8604^7
(4.35)

This means that there is an outward flow because the increasing boundary-layer
thickness causes the fluid to be displaced from the wall as it flows along it. This is
not a separation because the pressure gradient on the flat plate is zero.

Finally, we can determine the value of the skin friction on the plate. Remember
that

With /"(O) = 0.33206, we may write

0.664
(4.36)

When integrated over one surface of the plate we have

D = 0.664/7 vV/^3 (4.37)

where b is the width of the plate in the direction normal to the flow and i is the
length of the plate in the streamwise direction.

A word of caution should be injected at this point. The boundary-layer equations
are correctly applied to the flat plate everywhere except in the region near the
beginning of the plate, that is, the upstream end of the plate. Here the assumption
that 1 82u 1/dxf \ <^C |32wi/3x|| is not satisfied. Note, too, that the numerical values
of the various coefficients were derived for a flat plate, that is, for the case where the
pressure gradient is always zero. For other pressure distributions, these coefficients
will have different values.

4.5 The Momentum Integral Method
In the preceding section we defined some terms commonly used in boundary-

layer analysis and showed how one may apply the associated concepts to the
simplest of cases: that for flow over a flat plate. The problem of analyzing the
flow over more complex bodies quickly grows in difficulty with the complexity of
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DRAG, VISCOSITY, AND THE BOUNDARY LAYER 73

the body so that for engineering purposes one is driven to consider approximate
methods. One of the first methods to find widespread acceptance was developed by
von Karman22 and is termed the momentum integral method. We will now consider
the development of the relevent differential equation. First, we note that in an
inviscid stream outside the boundary layer the x\ momentum equation reduces to

pU— + — =0 (4.38)
dx dx

Substitution of Eq. (4.38) into Eq. (4.19a) and integration of the result in the x2
direction yields the expression

+ u2—— -U——}dx2 = -— (4.39)
dx2 dx\ J p

Here h is a point in the x2 direction outside the boundary layer and TW is the shear
stress at the wall or boundary.

From the continuity equation,

fX2 duiu2 = - ——dx2 (4.40)
Jo 3*1

Substitution of Eq. (4.40) into Eq. (4.39) yields

[k ( dill 9«1 [*2 dill rr^U\^ r™ SA A ^ ^/ M I — — - —— / ——dx 2 - U—— dx2 = —— (4.41)
Jx2=o\ 9*i dz2 Jo 9*1 d*i/ P

Integrating the second term by parts leads to the result

/

h f d u i f*2 dui \ f h dui f l dui
I —— / ——dx 2 1 dx2 = U I ——dx 2 — I u\——dx2

2=0 \dx2 Jo 9#i / Jo 9#i Jo dxi

so that
[IJo

I —— [ W i ( £ / - K i ) ] d j c 2 + — ( (U-ui}dx2 = --
Jo °x\ d*i Jo f-

2ui—— - U—— - U— I dx2 = - —
0 \ i 1 1 / r

which can be contracted to

ATI rh r...
(4.42)

P

Because the integrand in both integrals vanishes outside the boundary layer we
can set h -* oo. Now making use of our definitions for displacement thickness
and momentum thickness we write

/

oo
(U -m)dx2

2=0

eu2 =
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74 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

When these relations are substituted in Eq. (4.42) we have the momentum integral
equation as

+ SfU— (4.43)
p dxj djti

Another form of Eq. (4.43)

d<9 2
+dxl U dxi U2 dx2

(4.44)

is perhaps more useful for our present purpose. We note that Eq. (4.43) or Eq. (4.44)
is only an approximate description of boundary-layer flow because the process of
integration smooths out local departures from mean values.

To solve Eq. (4.44), that is, to find 6, 5*, and rw as functions of x\, we require
an expression for u\(x2). We shall assume, following Polhausen,23 that we can
represent this function by the polynomial

— = Ay + Erf- + Crf + Drf (4.45)

where rj is X2/S. We choose this polynomial because it is the lowest-order polyno-
mial that can represent the essential characteristics of what we know of boundary-
layer flow and is the highest-order polynomial for which we can evaluate the
constants. These are found from the boundary conditions; at x^ = 0

dP dU
M l = 0; — - -pU—— (4.46a)

d* dx\

and at x2 = 8

ui=U; —— = 0; — ^ = 0 (4.46b)

The result is

A = 2 + 1̂  (4.47a)
6 v dx\

B==__L —— (4 Alb)
2 v dx\

C = -2+- — —— (4 Ale)

£> = !-- — —— (4.47d)
6 v dx\

Substitution of these results into Eq. (4.45) gives

= 2^-2^ + I?
4 + -(J7-3^ + 3^-^) (4.48)

U 6 v djci
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DRAG, VISCOSITY, AND THE BOUNDARY LAYER

With this definition for u \ / U we have

= 8

10 120 v dx

2L--L — ̂ L __L
315 " 9457dZ" ~ 9072 v dxj

_rw-

75

(4.49a)

(4.49b)

(4.49c)

Substituting these expressions into Eq. (4.44) yields

37
315

3<52 dU 584

945v 9072v2
dt

285 dU
9072v2.

^_
To

d^[/ 2(5 I" 37 1 82dU I (82dU\2~
dxf + U |_315 " 945 Tdjq ~ 9072 VVdJq J

- — ——
6 y d^i

(4.50)

Equation (4.50) is a very nonlinear first-order ordinary differential equation
with 8 as the dependent variable and x\ as the independent variable. Notice that
U, dU/dx\, and d2U/dx2 must all be supplied as data obtained from the po-
tential solution (the solution for the flow outside the boundary layer) and that
they are all functions of position along the body, x\. Near x\ = 0 we must select
a small finite value for the dependent variable because the equation is singu-
lar at x\ = 0. Generally, something on the order of <Jx\ will be satisfactory.
This can be seen for the case of flow over a flat plate where Eq. (4.50) reduces
to

whose solution is

or

315

37 2 =

315 pU

(4.51)

8 =
5.84*1 (4.52)

The coefficient 5.84 is somewhat greater than the value of approximately 5.0
found by solution of the third-order differential equation. However, u\/U is less
than 0.8% greater than its value at 5.0. We noted that the upper edge of the
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76 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

boundary layer is defined somewhat nebulously. Thus, the approximations made
in developing Eq. (4.50) seem to have been reasonable. We will employ the fact
that the momentum integral method overpredicts the displacement thickness to
justify an empirical correction to the computed displacement thickness given by
the computer program discussed in Chapter 5. In the program the Reynolds num-
ber is simply multiplied by a factor of 2 because this results in a slightly thinner
boundary layer. Of course, the factor of 2 was chosen because of several val-
ues tried it produced the best agreement between predicted values and measured
values.

Schlichting24 describes the more commonly used methods for solving the mo-
mentum integral equation for a variety of flow situations. Interested readers will
also find therein a discussion of a finite difference approach for solving the equa-
tion.

It is evident from Eq. (4.47) that the velocity distribution through the boundary
layer is very dependent on the pressure distribution outside the boundary layer.
This effect is expressed in Eq. (4.47) by the sign and magnitude of the term
dU/dx\. When dU/dx\ is positive 8 grows more slowly than given by Eq. (4.52).
When dU /dx\ is negative, that is, when the pressure gradient is adverse, 8 grows
more rapidly than as given by Eq. (4.52). In the face of a sufficiently strong
adverse pressure gradient, du\/dx2 will become zero at the wall at some point;
the boundary layer then is beginning to separate, that is, to leave the surface of the
body. It leaves behind a region of zero mean velocity relative to the body surface
in which the pressure is approximately the same throughout. This region is usually
at a lower pressure than that on the windward side of the body is and, therefore, is
the origin of the body's form or profile drag.

4.5.1 Application to Turbulent Boundary Layers
The preceding development, either explicitly or implicitly, has referred to lam-

inar boundary layers, those flows in which the fluid remains layerlike as it moves
over a body surface. Another very important and probably even more common
type of viscous flow is turbulent flow, so called because groups of fluid particles in
such flows do not appear to follow well-defined paths in the manner of streamlines
but rather move in seemingly disorganized fashion. Since the turn of the cen-
tury researchers have attempted to describe such flows in a satisfactory analytical
manner without a great deal of success. As a result, workers who had to devise
a means of computing the resistance to motion of a body on which the boundary
layer was turbulent have had to resort to semiempirical schemes. That none of the
many theoretical models proposed over the years to describe turbulent flows is
uniformly satisfactory is probably an indication that an entirely new approach, one
divorced from the continuum model basis from which the laminar flow description
evolved, must be used.

We may note that the coefficient of dynamic viscosity for air is

( T \ ll5 717

sis) rns (4'53)

where /x has dimensions of slugs per foot-seconds and T is in degrees Rankine.
One of the devices by which the momentum integral equation has been used to
describe turbulent flows has been to replace the expression for the shearing stress
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.DRAG, VISCOSITY, AND THE BOUNDARY LAYER 77

at the wall

9*2

with an empirical relationship developed by Ludwieg and Tillmann (as quoted by
Schlichting24)

pU2(O.U3

while using an expression for u\/U given by

where n is between 4 and 6 but is usually taken as the latter value.
The use of Eq. (4.54) in Eq. (4.44) still leaves the resulting equation noninte-

grable because an explicit relation between <5* and 0 has not been given. One way
around this problem is to multiply the reduced x\ momentum equation (4.43) by
M I and then integrate the equation with respect to x?.. We obtain what might be
termed an energy integral equation

-771 (£)<*' ^o pU2\U )

analogous to the momentum equation, Eq. (4.43). The name, of course, refers to
the fact that momentum times velocity has the units of energy. Here,

-/Jo

It has been found experimentally that there exists a unique relationship between
S*/& and 8**/O, which can be expressed as

r* _ _8 l^j-0-379
Further, experiments have led to the conclusion that

rw d / M , \ 0.56 x 10~2
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78 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Substitution of these experimental results into Eq. (4.56) yields

I d , „ , ........ (46Q)
l.269U3(~ j<9

_(y) -° - 3 7 9 _
0.56 x 1(T2

iue\l/6

\ /

whereas Eq. (4.54) substituted into Eq. (4.44) gives

dO_ 20 + <T dU _ 0.123 x lQ-°-678T
(4.61)

Simultaneous solution of Eqs. (4.60) and (4.61) will yield 8*(x\) and 0(x\). When
these results are substituted into Eq. (4.54), one has tw(x\). The skin-friction drag
is then computed by integrating rw over both surfaces.

4.5.2 Transition
As has been indicated, the correct expression for rw depends on whether the

boundary layer is laminar or turbulent. Generally, one would expect the boundary
layer to be laminar over the forward portion of a body and turbulent over the aft
portion. The change between laminar and turbulent motion is called transition.
Equation (4.50) would give a good approximation expression for rw upstream of
the transition point and Eq. (4.54) gives a good approximation downstream of this
point. Because the boundary layer already has a finite thickness at the transition
point, one chooses as a starting point for the turbulent calculation that point which
will give the same 8 as the laminar solution beginning at the leading edge. The
laminar values of rw and 8* are used up to the point of transition, and the turbulent
values are used downstream. They are approximately the same at transition.

The beginning of transition has been found to occur at Reynolds numbers from
3 x 105 to 4 x 106 and depends on such factors as surface roughness, freestream
turbulence, and dU /dx\. The latter is the only one that actually can be determined
before the wing is built. A laminar boundary layer is said to be unstable, that is, it
tends to become turbulent, when a velocity disturbance in this boundary layer can
grow.

Tollmein was able to show that a necessary and sufficient condition for neutral
stability of disturbances in laminar boundary layers is the existence of a point
of inflection in the boundary layer's velocity profile u\(x2). Using a sixth-order
polynomial to represent the velocity profile, Schlichting and Ulrich were able to
plot a relationship between the value of U8*/v for which an inflection point exists
and ( S 2 / v ) ( d U / d x i ) . With this plot one can take values of 8, <$*, U, dU /dx\, and
v and determine whether or not the boundary layer is unstable.

Most computer programs that perform complete front-to-back boundary-layer
calculations over a body include a form of this plot or similar relationships as curve
fits or table lookups from which they can determine whether to use the laminar form
or the turbulent form of the equation for calculations. For our purpose we will not
detail further the steps by which a determination of transition occurrence is made
in specific codes but merely note that a criterion based on these considerations is
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DRAG, VISCOSITY, AND THE BOUNDARY LAYER 79

generally included. The interested user can usually determine what is being done
in a specific code by consulting the boundary-layer subroutine headers and the
running comments in the source code.

4.6 Examples
In addition to an exposition of some elements of boundary-layer theory, consid-

eration of some of the simple solutions to the exact equations for viscous flow can
be instructive by demonstrating some of the other characteristics of viscous flows.
We shall develop solutions for a few of these, as well as examine some classical
results obtained with boundary-layer theory.

4.6.1 Steady Internal Axisymmetric Flow with Various
Boundary Conditions

For this problem we will consider only incompressible flow in a tube long
enough that we can assume dvz/3z = 0. The momentum equations for this case
reduce to

— = /i —T + --T (4-62)dz \ dr2 r dr /

where in our cylindrical coordinate system z is the axial coordinate and r is the
radial coordinate. We assume that there is no angular motion of the fluid about
the centerline of our geometry. We are able to write this as an ordinary differential
equation because we have assumed that dP /dz may be considered to be a con-
stant. We will consider the solution of this equation, termed the Hagen-Poiseuille
equation, for the following cases: case I, flow in a tube of radius R, dP /dz ^ 0;
case II, flow in the annular region between a tube of radius R\ and a tube of radius
R2, dP /dz ^ 0; case III, same as case II except that (R2 - R\}/R\ < 1; case IV,
flow in the annular region between a tube of radius R\ and a tube of radius R2,
dP /dz = 0, R2 moves axially relative to /?f, and case V, same as case IV except
thatdP/dz ^0.

Case I. The boundary conditions are: vz = 0 at r = R and dvz/dr = 0 at
r = 0. Equation (4.62) can also be written

_d_ / dvz\ _ r_dP_
dr \~dr~) ~ l^~dz~

which can be integrated to
rdvz ( 1 dP\ 2

dr \2/x dz /

and integrated a second time to

.r + C2 (4.63)

Because duz/dr = 0 when r = 0, C = 0. Because vz = 0 when r = R,

1 dP\ R^
2
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80 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

and

dz
(4.64)

Case //. The boundary conditions are now vz = 0 at r = R\ and vz = 0 at
r = R2. When these are applied to Eq. (4.63) we have

a system of two equation we must solve for C and Ci> We can eliminate €2 by
subtracting the first equation from the second,

dz

From this we can find C as

and C2 as

Hence,

t;7 = dz
(4.65)

Case ///. For this case R\ is approximately R2 but both are large compared
with their difference. As a result, the term on the right side of Eq. (4.62) 1/r —^ 0.
The differential equation is then

d2vz I dP
dzdr2

The first integral is

dr dz
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DRAG, VISCOSITY, AND THE BOUNDARY LAYER 81

and the second integral is

1 dPr2

vz = - — — -f-Cr + C2// dz 2

With the boundary conditions applied we have

1 dP /??
0=- — -J- + CRi+C2/z dz 2

1 d/> #2

0 = - — ̂  + C#2 + C2/x dz 2

As before, subtract the first from the second to eliminate C2 with the result that

and

c = _1 d/J \Rl ~ R2\~\
2n dz |_ /? 2 - /? i J

Then C2 is found by back substitution

2 = - — — [/?2
2 - (R2

The equation then reads
1 dP ~
- -z 2/x dz

This is the equation of a parabola whose maximum value is located at

R\ +/?2

Case IV. The boundary at R\ has a velocity — £/. The boundary at /?2 is fixed
mddP/dz =0. Then,

If /?i is large and the distance h between R\ and /?2 is small, then Eq. (4.67) can
be written as

(4.67a)
h

which is essentially the classical Couette solution for plane flow if r is assumed
to go from 0 to h.
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82 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Case \/ The boundary at R\ has a velocity —U. The boundary at R2 is fixed
and dP /dz ^ 0. For this case,

\

—
"dz"

t/2
Uv—— (4.68)

Depending on the signs and magnitudes of U and dP/dz, the velocity profiles
may be quite unusual. In fact, it is possible to move the boundary at R\ at such a
velocity that there is no net fluid flow despite the presence of dP /dz.

To compute the volume of fluid flow in the channel we construct an element
of area r dr dO , multiply this element of volume by its velocity, and integrate with
respect to r and 0

Q
r2n nR

= I vz
Jo Jo

rdrdO

or, with the expression for the fluid velocity in case I,

The result of the first integration yields

2n f R r 1 H P
/ \-^(R2-

_ Jo [ 4/x dz

dz

Finally, carrying out the indicated evaluation and integrating with respect to 0
yields

^ dP - (4.69)
8/x dz

If desired, the flow quantities in the other geometries can be computed in a similar
manner.

4.6.2 Some Classical Boundary-Layer Solutions
In this section we will either briefly sketch methods for obtaining solutions or

merely state the result for boundary layers on some simple bodies. The object is
to give the reader an indication of the nature of these solutions.

The first problem we will consider is the steady flow over a circular cylinder
normal to the stream. Following Blasius we will write the velocity as a power
series (using the notation of Schlichting):

U(x) = u\x -f (4.70)

We will call 3; the spatial coordinate normal to the freestream direction and we
will normalize it as follows:

(4.71)
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DRAG, VISCOSITY, AND THE BOUNDARY LAYER 83

This leads to the form

nr
^ = ,/— [MI/I fo) + 4M3/3fo) + 6115/5 W + • • •] (4.72)V u\

for the stream function and permits us to calculate u — d\///dyandv = —(
Substituting these expressions into the equation of motion (4.24) and comparing
coefficients of like powers permits us to write a series of ordinary differential
equations, the first two of which are

/ i 2- / i / r=l + /r (4.73a)

4/1/3 - 3//73 - /i /3" = 1 + /f (4.73b)

The associated boundary conditions at r\ = 0 are

/i = F{ - 0; /3 = /3' = 0 (4.74a)

and at r\ = oo are

/' = i; /s = I (4.74b)
Now the potential flow solution for the velocity around a cylinder is

u(x) = f/oosin—
K

where R refers to the radius of the cylinder. If we expand the sine function in a
series and compare terms with Eq. (4.70) we obtain

«i=2^ (4.75a)
A

"3 = - <4.75b)

(4.75c)

We may then proceed to solve Eq. (4.73). From the solutions we can obtain the
velocity profiles for the boundary-layer flow over the cylinder, which are plotted
in nondimensional form as (y /^^/U^R/v on the ordinate and u/U^ on the
abscissa. Notice that the flow is accelerating from the stagnation point all of the
way to the top of the cylinder. Because of the favorable pressure gradient, the
boundary layer grows very slowly but still as l/^/Re^. However, once the flow
begins to move over the lea side of the cylinder, the pressure gradient becomes
increasingly unfavorable and the condition for separation is found at an angle from
the stagnation point of 108 deg. (More terms than those used here must be retained
in the series to obtain this value because of the existence of the increasingly adverse
pressure gradient.)

How such knowledge can sometimes be put to good use in an unusual way may
be illustrated by the following example. The author once wished to determine
the discharge characteristics of a nozzle with an upstream wall that was turned
using a tool with a rectangular shape from which a quarter-circle section had been
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84 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES
i

removed. The throat radius of the nozzle was a little less than one-third the wall ra-
dius. It was desired to find a semi-empirical expression for the displacement thick-
ness of the boundary layer at the throat because this is related to the mass deficiency
in the flow that passes through the throat. We assume that an expression of the sort

r2 - 2r<5* + (5*)2

= ————— (4.76)

represents the ratio of the actual flow area to the ideal. This expression is approx-
imately

.
£*

-r
and can be written approximately as

1
25*

1 + ——r

(4.77)

through use of the binomial theorem. Now, for such a flow we assume further that

S* C (4.78)

where C is a constant whose value can be estimated but whose actual value will be
determined experimentally and d is the diameter of the nozzle throat, which can
be related to the distance along the nozzle wall from the point where the nozzle
wall is normal to the stream direction to the throat through a constant factor for
any given nozzle of this general geometric shape. With Eq. (4.78) the discharge
coefficient becomes

Cd = -——1-=— (4.79)

The value of C was found to be about 3.9. Notice that as Re^(j -> oo, Cj —> 1.0,
which is to be expected in a well-designed nozzle. Notice also that as Re^(l —> 0

Cd = djR^ (4.80)
which is again the correct behavior when the nozzle flow is completely viscous.
As an aside we may note that for fully developed pipe flow the average velocity is

_
(/vlscous =

In inviscid flow the average velocity is

t/inviscid =

By definition the discharge coefficient is a ratio of the two velocities
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DRAG, VISCOSITY, AND THE BOUNDARY LAYER 85

which says that CD is proportional to A/AP when the geometry remains fixed.
Because the velocity in viscous flow is proportional to AP and Eq. (4.80) gives

CD = Ci^/pUd/ii

we see that the discharge coefficients in Eq. (4.80) and that obtained from the ratio
of the velocities have the same dependence on A P.

Experiments have shown that Eqs. (4.79) and (4.80) give the correct limiting
forms for the flow of liquids or gases. However, the constant determined in one
region may not be the most satisfactory one to use in the other flow regime. At still
lower Reynolds numbers in gases the effects of rarefaction become significant,
and then the discharge coefficient is also dependent on the pressure ratio across
the nozzle.

Obviously, this type of relationship, e.g., Eq. (4.79) is better suited for use
with nozzles where the boundary layer does not become turbulent on its journey
from the upstream region on the nozzle wall to the throat as it may in a nozzle
such as the contraction region of a large full-scale wind tunnel. Also note that
difficulty in representing the transition from a flow characterized by Eq. (4.79)
to one characterized by Eq. (4.80) is because, in this transition region, the entire
nozzle throat is filled with viscous flow and many of the assumptions of boundary-
layer theory are no longer valid. (It may interest the reader to know that once a
supersonic nozzle throat is filled with viscous flow it is an experimental fact that
the gas downstream of the throat can never go supersonic regardless of how low
the exhaust pressure at the end of the nozzle is made. The author is unaware of the
reason for this phenomenon but has observed it numerous times.)

As our next example we will consider the flow in the wake of a flat plate at zero
incidence. We will assume that the station of interest is at least three plate lengths
aft of the downstream end of the plate where the static pressure is constant from far
below the plate to far above the plate. The wake is caused by a loss of momentum
experienced by the flow because of its interaction with the plate. According to
Newton's third law of motion the drag is equal to the force associated with the
change in the momentum of the flow. If b is the span of the plate, u is the velocity
at any distance _y above or below the plate, and U is the freestream velocity, then
the change in momentum due to the two wetted surfaces is

/

oo
u(U-u)dy (4.81)

Using an asymptotic expansion from Blasius's result at the end of the plate,
Tollmein, as described by Schlichting,24 found that the velocity distribution is
given by

0.664 ,AO ^(4-82)u
~U

Interestingly, this is a Gaussian distribution at every value of x/i downstream
of the plate. Unless there is large-scale separation, such a distribution is what is
found experimentally. Surveying the loss of stagnation pressure in the wake has
been a favorite method of determining the drag of bodies, such as two-dimensional
airfoils, which could not easily be mounted on a drag balance.

Schlichting24 provides a number of other exact solutions of the steady-state
boundary-layer equations.
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86 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

4.7 Closure
In this chapter we have sought to illustrate the approach by which the effects

of the viscosity of the fluid flowing over a body's surface can be treated mathe-
matically. To the continuity equation developed in Chapter 2 we have added the
momentum equation—a statement of Newton's second law of motion. These two
equations are sufficient to describe the motion of an incompressible viscous fluid.
We have taken advantage of Prandtl's observation that for flows with moderate to
high Reynolds numbers the effects of viscosity are confined to a relatively thin
layer, called the boundary layer, next to the surface over which the fluid is flow-
ing. Following order of magnitude arguments made by Prandtl we were able to
reduce the complexity of the equations of motion and develop the boundary-layer
equations. Through the use of a transformation we were able to convert this set
of partial differential equations to a single ordinary differential equation. This
we solved numerically for a flat plate using a simple fourth-order Runge-Kutta
integrator. We listed the Fortran code for this process and presented a graph of the
results. The solution of this equation can be used to show the velocity distribu-
tion in the laminar boundary layer and to determine the skin-friction drag on the
surface over which the fluid flows. The latter represents that part of the body drag
called skin-friction drag. We noted for streamlined bodies, the skin-friction drag
represents about 80% of the total drag.

We also noted that for more general cases the equation contains terms repre-
senting functions of the longitudinal pressure distribuiton outside the boundary
layer. This external pressure distribution is created by largely inviscid flowfields
such as those discussed in Chapter 2. These functions of the external pressure
distribution, when supplied to the integration routine for Eq. (4.50), determine the
rate at which the boundary layer grows, whether it separates or not, and when it
may become turbulent.

Our examination continued by looking at some simple solutions of the exact
equations of motion for various axisymetric geometries and at solutions given in
the literature for the boundary-layer flow over a cylinder normal to a stream and in
the wake of a flat plate. We showed how the classical solution for the flow over a
cylinder could be used as the basis of a semiempirical description of the discharge
coefficient of one type of nozzle, the discharge coefficient being the ratio of the
actual flow through a nozzle to the theoretical flow if there were no viscosity.

Our examination of viscous effects in this chapter is intended to provide a basis
for understanding the manner by which these effects are treated in the computer
programs described, in Chapters 5 and 7, which determine the aerodynamic char-
acteristics of specified wings and bodies. Such an examination is necessary to
permit the reader to gain an appreciation of the assumptions made in developing
the methods and the consequences of such assumptions.

Problems
Although USCU units are used with these problems, SI units could be assumed

without materially affecting the utility of the problems. The value for the coefficient
of viscosity given in problem 4.1 would be in error, of course, but one might
substitute the word fluid for water without indicating a particular fluid. A consistent
units set could then be attached to the numbers given in the problems.
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DRAG, VISCOSITY, AND THE BOUNDARY LAYER 87

4.1. A long, annular flow channel containing water (JJL = 674 Ib-s/ft) has an inner
radius of 10 ft and an outer radius of 11 ft. Assume that dp/dz = 10 lb/ft3 and
that U = —9 ft/s. a) Plot as accurately as you can vz against r from RI to R2
and b) determine the net volumetric flow rate. You may wish to approximate the
integral

/'JR}
vzrdr

by the series
*2

Y vzrAr

where Ar < 0.01.

4.2. Repeat problem 4.1 with RI =1.0 and R2 = 2.0. Comment on the differ-
ences between the results for this problem and those for problem 4.1 both as to
flow quantity and the shape of the velocity distribution.

4.3. Repeat problem 4.2 with £ 7 = 0

4.4. Repeat problem 4.1 with dP /dz = 0. How linear is duz/dr?

4.5. With #2 = 11, #1 = 10, U = 0, and dP/dz = 10, compute the flow
through a tube of equal cross-sectional area. Compute the flow quantity through
the annular area and compare with the flow quantity through the tube.

4.6. Repeat problem 4.1 for JJL 10 times as large as that given for water. Is there
any difference in the shape of the velocity distribution?

4.7. Repeat problem 4.1 for dP /dz 10 times as large as that given.

4.8. Can you find a value of U in problem 4.1 such that the net volumetric flow
rate is zero? If so, what is the value?

4.9. Evaluate and plot Eq. (4.82) for the following conditions: 1 = 1, x =
3t, U = 10, and v = 1.1. At which value of y is u i > 0.99£7?

4.10. What is the force required to move RI relative to R21

4.11. How would the force calculated in problem 4.10 change if R2 were reduced
to 10.1 ft? What is the shape of the velocity distribution in this case?

4.12. Consider the geometry described in problem 4.11. Let dP /dz — 0 and
U = 0. Instead, R\ rotates at constant velocity about its axis with a speed of n
radians per second, a) Show that

represents the velocity distribution in the gap. Graph the results, b) Under what
conditions is the velocity distribution approximately linear? c) How could such
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88 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

a device be used to measure the viscosity of a fluid? d) Is the frictional resistance
more when RI rotates about its axis or when R\ moves axially? Assume that the
boundary velocity is the same whether rotating axially or circumferentially.

4.13. It has been observed that as the flow velocity is reduced below a certain
value, the drag coefficient on a circular cylinder placed normal to a stream in-
creases. Because we consider a fixed cylinder in the same fluid, the Reynolds
number of the cylinder is decreasing in this case. What does this fact imply about
the vertical extent of the cylinder wake?

4.14. If you were to assume that the boundary layer separates from the 0 = 90
and 180 deg positions relative to the stagnation point on a circular cylinder and the
flow proceeds straight downstream from those points, what should you estimate
the drag coefficient of the cylinder to be? Assume the pressure in the wake is
freestream.

4.15. If the measured drag coefficient is actually larger than that obtained by the
method indicated in problem 4.14, what does this tell you about the extent of the
region of separated flow?

4.16. At low Reynolds numbers the flow over bodies such as airfoils is laminar.
Recall that the skin-friction coefficient varies as 1 /^/Re^x when the flow is laminar.
At some value of Reynolds number, the flow becomes turbulent. The variation in
skin-friction coefficient with Reynolds number has been observed to follow the
law ReY

N where y has values varying from — | to — ̂ . Assuming that the turbulent
skin friction is the same as the laminar value for a Reynolds number of 104, how
would the skin friction coefficients compare at a Reynolds number of 107?

4.17. It has been observed experimentally that the skin-friction coefficient for
turbulent flows over rough surfaces is greater than that for turbulent flow over
smooth surfaces. In view of this, what would you expect to be the effect on drag
of bug deposits, ill fitting pieces of wing skin, protruding rivets, or rain drops on
the surface of a wing? How would these things affect the wake behind an airfoil
for a given angle of attack?

4.18. The Prandtl number of a fluid indicates the rate at which heat is produced
at a site by viscous dissipation relative to the rate at which it is conducted away
from the site in the fluid. The Prandtl number for air is about 0.72. What is the
implication of this value for the heating of a surface over which a boundary layer
has developed?

4.19. Assume that a closed-circuit wind tunnel has a rectangular test section of
36 x 45 in. It is powered by a 50-hp motor driving a variable pitch propeller. Top
speed of the test section air is 94 mph. When the tunnel has been run continuously
for several hours at maximum speed, how much heat is being dissipated to the
room by the wind-tunnel walls?

4.20. It is assumed that dP/dz = C and U = C for fluid flow in a long tube.
What does this imply for the stagnation pressure from one end of the tube to the
other?
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DRAG, VISCOSITY, AND THE BOUNDARY LAYER 89

4.21. Derive the equation of motion for the fluid surrounding a semi-infinite
flat plate accelerated suddenly from rest. The fluid in which the plate resides is
initially quiescent, a) Is this equation properly an ordinary differential equation or
a partial differential equation? b) If it is a partial differential equation, what sort of
transformation could be used to make it an ordinary differential equation? (Hint: an
ordinary differential equation has only one independent variable. If the problem
actually has two independent variables, it can be sometimes be transformed to
an ordinary differential equation by devising a new independent variable that is
some function of the two.) c) Why would we want the equation to an ordinary
differential equation rather than a partial differential equation?

4.22. If we allowed the time the plate is in motion to approach infinity, could
we see a boundary layer develop over the plate in the solution to the equation
developed for problem 4.21 and why?

4.23. Given a flat plate over which water is flowing at 2 ft/s, what is the force
per unit area on the plate at a point 10 ft behind the leading edge?

4.24. What is the effect on the integral of the surface pressures on an airfoil of a
finite boundary-layer displacement thickness at the trailing edge?

4.25. By what factor is the boundary-layer displacement thickness decreased if
twice the actual Reynolds number is used in the formula for £*? Explain.

4.26. On physical grounds, argue the relative sizes of the skin-friction drag and
the form drag for a streamlined body aligned with the stream and operating at a
speed such that the boundary layer is laminar.

4.27. A billboard 40 ft tall and 60 ft wide is placed so that the bottom of the
billboard is 40 ft off the ground for the entire 60 ft length. It is supported by two
posts. The structural designer is in a quandry about how big to make the posts.
He does not know what bending moment at the ground he should design for. He
does know that the maximum expected wind in the area is 80 mph. He wants an
estimate from you as to what the bending moment would be in an 80-mph wind.
a) Outline the steps you would need to take to arrive at such an estimate and put a
number with it. Assume that you can use a sea level value of density. Assume also
that the pressure in the wake region on the lea side of the billboard is atmospheric.
b) Sketch the billboard wake.

4.28. Is the drag experienced by the billboard form drag or skin-friction drag?

4.29. Octofluorocyclobutane is an interesting gas. It has a molecular weight of
200 (vs 29 for air) and has a dynamic viscosity that is about 70% as large as that
of air. It is nontoxic and, therefore, safe to use in wind tunnels. Boiling point at
atmospheric pressure is near 0°C. If it has a velocity of 300 ft/s, by what factor
can a model size be reduced when tested in it if the Reynolds number is to be the
same as for testing in air at the same speed?

4.30. Repeat problem 4.29 with perfluoromethane (CF4) gas.
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90 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

4.31. a) Sketch a turbulent boundary layer and a laminar boundary layer,
b) Which type of boundary layer applies the greater shear stress to the wall
for a given Reynolds number? Suppose you have a material that sublimes under
the action of shear stresses on the wall. Suppose, also, that the material is very
reflective, c) Could you paint this material on a wing surface and by shining a
light on it normal to the flow over the wing identify the location of transition?
Assume that the wing is originally painted black and that a 35-mm movie camera
records the condition of the wing surface as a function of time, d) Explain your
reasoning.

4.32. Explain why it is desirable to have the point of minimum pressure as far
back on an airfoil as possible while still allowing the boundary layer to remain
attached all of the way to the trailing edge.

4.33. Consult a standard tabulation of airfoil wind-tunnel test results, such as
NACA TR 824.16 You will notice that the standard roughness drag values are much
higher than for the smooth airfoil. Can you give a physical explanation for this?
The roughness strip is affixed far forward on the airfoil.

4.34. Can you give an explanation in terms of the ability of the boundary layer
to remain attached as to why airfoil thicknesses do not go beyond 24% of chord?
If you wish, you can use the JOUKOW program to generate data on the most
negative CP for airfoils in a given family with only the thickness varying.

4.35. In general, boundary layers have a difficult time going around small radius
turns without separating because the pressure gradients in the region are so high.
Based on this idea, what would you expect to be the result of making the leading-
edge radius of an airfoil very small, particularly at angle of attack?

4.36. If the separation point on a cylinder normal to a stream moves from 100
deg from the stagnation point to 120 deg from the stagnation point, what is the
effect on the drag coefficient? Be as quantitative as you can.
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5
Direct Computation of Airfoil Characteristics

5.1 Introduction

I N Chapter 3 we used the Joukowski transform to generate one class of airfoils.
We noted, however, that this approach was rather impractical for engineering

use because it is difficult to determine exactly what shape any particular circle
may transform to a priori and because airfoils resulting from this transformation
have their minimum pressure point too far forward, a situation that leads to higher
drag and lower Cim^ than are obtained with many other airfoil families. Without
knowledge of the airfoil shape it is not possible to consider manufacturing diffi-
culties, to undertake wing planform optimization, or to do any structural design
involving the wing, items connected to the wing, or the wing-fuselage junction.
In this chapter we consider a direct method for determining the aerodynamic char-
acteristics of a given shape. Later we will consider what characteristics we should
look for in given situations.

This direct method has been implemented as a computer program for ease of
use. The program25 was originally written at the Lockheed Georgia Company. It
was modified internally at NASA Langley Research Center and then extensively
modified at the Department of Mechanical and Aerospace Engineering of North
Carolina State University (NCSU). The NCSU modifications are detailed in NASA
Contractor's Report 2523.26 The original Lockheed program was a multielement
program; that is, it included the capability to treat airfoils plus flaps. Because the
NCSU version was intended primarily for use with the general aviation class of
airplane and for use on what was then a minicomputer, the multielement capability
was removed. The NCSU modifications were directed toward improving the accu-
racy of the drag prediction, simplifying the code, reducing memory requirements,
and reducing the running time.

Following is an outline of the programmed method. A number of vortices are
distributed along the outline of the airfoil. The strengths of the individual vortices
are chosen such that the flow velocity due to all vortices combined with that due
to the freestream is parallel to the airfoil surface at control points between vortex
locations. There is one control point for each vortex strength to be determined.
Hence, we may write a system of N equations describing the contribution of all of
the vortices and the freestream to the direction of the flow at each of the N control
points on the airfoil where N is the number of vortices. Because the overall flow is
not required to be parallel to the surface at any other points along the airfoil outline,
the number of vortices and control points should be fairly numerous to adequately
model the flow about the airfoil. After some experimentation it was determined that
N = 65 (32 distinct upper surface points and 32 distinct lower surface points plus
1 common leading-edge point) yielded the best compromise between accuracy of
representation and the time required to compute the aerodynamics characteristics
of most conventional airfoils, that is, airfoils without a concavity on the lower
surface, an important point as we shall see.
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92 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Because it is important in determining the conditions under which the program
gives reliable results, we will now undertake a detailed exposition of the program
algorithm.

5.2 Program Algorithm
Suppose we consider an arbitrary airfoil section, and at various points along its

surface place mathematical vortices of undetermined strength. We will connect
adjacent vortex centers by straight line segments so as to form a close approxima-
tion of the airfoil from the segments. The quality of the approximation depends
on the number of vortices we choose and where we place them. We will designate
the center of a particular vortex as being located at (j^ , )%)• Any other point in
the two-dimensional flowfield has coordinates ( x , y ) . The line segment between
(*%, yoj and (*oN+1, )VH) is represented by

(5.D

The midpoint of this line has coordinates given by

2 (X°N+\ ~ -^Oyv) = 2

JM = yoN + \ (yoN+l -yoN) = j. (yoN+i + y<*N) (5-3)
By reference to the expression for the velocity associated with a vortex developed
in Chapter 2 the velocity components al(x, y) induced by a vortex of strength Fyv
at (XQN , _yoN ) can be seen to be

/ \^ I / \ ^(y -yoN) + (x -XON)

*=. (X~X°N}rN J±) (5-5)

Note that the denominator of Eqs. (5.4) and (5.5) represents the distance from
(XON , y o N ) t o ( x , y ) squared.

The net velocity at a point due to all K vortices representing the airfoil has as
its components

-yotf + (*-*<>„¥
(56)

i ^ (x-xoN)rN
V = —— > ———— ̂  —— 2 ——— —————— 2 ^ -*27rfet (y-yON) + ( X - X O N )
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 93

Now suppose we require that x and y be given by Eq. (5.2) and (5.3). Then,

1 (3VH -yoN)

by

-yoN+l -y<*N) + (XQN+I - XQN)

1 V^ (*0"+1 -XQN)TN-.L 7 ———— ̂ 77 ———— ̂  <5-9)
^ /v=i (}Uv+1 -yoN) + (*(v+1 - *OM)

The direction of the surface of the airfoil at points (XM, JM) can be represented

-tana (5.10)
M

when the airfoil is at some angle of attack a to the oncoming stream. Now we will
require that the combination of the freestream and the induced velocities due to
all vortices be parallel to the surface of the airfoil at the same points. Thus,

V
d^
dx

-tana (5.11)

where UM and VM are given by Eq. (5.8) and (5.9) and V is the freestream velocity.
Let us designate

aMN =
yoN+i -yoN)

With these definitions we can write Eq. (5.1) as

bM\ TI + bM2r2 + /7M3r3 + • • • + bMK YK = dy_
V - aM\^\ — aM2^2 - ^MS^S — • • • — aMK^K dx

Suppose we now define the right-hand side of Eq. (5.13) as

— tana

(5.1

(5.12b)

-tana (5.13)

(5.14)
M

then,

V —

represents a system of K linear algebraic equations, which presumably we could
solve for the unknown F. However, when N = K in Eqs. (5.2) and (5.3),
(XON+I, y^N+i^ is not defined. Thus, only K - 1 values of (XM, JM} are known.

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



94 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

We can ideiitify a A^th set by closing the polygon and letting

•*%+i =*0i (5.16a)

y^K+i = yoi (5.16b)

Even though we have chosen to let (x$K+l, 3>(v+i) be (XQ,, 3>0i) the midpoint of
the line segment between (XQK , y0ff) and (^Ol, 3>0i) is not the same as any other
(#M» 3^)' The system of equations is, therefore, not singular.

We will usually assume that the first vortex is located at the trailing edge. Ac-
cording to the Kutta condition, this must be a stagnation point. If the velocity at this
point is zero, the vortex strength is zero. However, this statement determines the
strength of one vortex and, thus, there is one more equation in Eq. (5.15) than nec-
essary. However, if we place an additional vortex at (XQK+I , yoK+l) and require that

r*+i - -ri (5.1?)
then the number of unknown vortex strengths matches the number of equations.
By specifying the strengths in this fashion, we guarantee that a stagnation point
exists at the trailing edge without having to specify r\ a priori.

We ask now what happens when the angle of attack changes. The vortices,
line segments, and midpoints are all defined with reference to a fixed coordinate
system. Either we must redefine these values as a changes or we can assume that
the airfoil remains fixed and the direction of the oncoming flow changes. The latter
is easier to implement computationally. In that case, Eq. (5.11) is rewritten as

+ Vsina dy
UM + Vcosot dx

and Eq. (5.15) becomes

(5.18)

=

One additional aspect of the specification of vortex locations should be noted.
For the line segment approximation to be reasonably close, the vortices need to
be closer together in highly curved regions of the airfoil surface than in those
regions where the surface is nearly flat. For airfoils without significant concavity,
65 vortices properly distributed over the surface do a reasonably good job of
representing the flow. For airfoils with significant concavity, it has been found to
be necessary to modify the program to accept additional vortices, perhaps as many
as 100 or more. The program is easily modified to do this.

The program uses a curvature criterion to determine how to reposition the
supplied vortex locations to obtain the best flow representation. Nevertheless, the
user should carefully select vortex locations to avoid large movements of the
supplied vortices. The application of the curvature criterion and the movement
of the supplied vortices is a program detail that will not be discussed. Interested
readers should consult the code directly for specifics.

As noted, the left-hand side of Eq. (5.19) is the slope of the airfoil surface
at point M. The 65 values of BM must be computed from a knowledge of the
airfoil geometry. Then the system of 65 simultaneous equations represented by
Eq. (5.19) can be solved for the 65 unknown values of F. Once these values
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 95

are known, the flow velocity can be computed at 65 values of M. From this it is
possible to determine the pressure at 65 points on the airfoil surface. Assuming that
the pressure is constant along a line segment representing a section of the airfoil
surface permits us to determine a magnitude and direction for the force created by
the pressure. Summing the components of these forces in the direction normal to
the oncoming stream yields the lift created by the airfoil. The sum of the streamwise
components yields the drag. The lift and drag together create the pitching moment.

5.2.1 Treatment of Viscous Effects Within
the Inviscid Formulation

In Chapter 4 we developed a means for analyzing the flow in the boundary
layer that surrounds the airfoil. In particular, we recall that the boundary-layer
displacement thickness represents the distance displaced if the mass above the
surface were inviscid. This concept suggests that by adding the boundary-layer
displacement thickness to the airfoil ordinates one may be able to continue to treat
the combination as an inviscid flow problem. Unfortunately, this must be done
iteratively because the pressure distribution that governs boundary-layer growth
changes as a result of the addition to the airfoil ordinates. Generally, five iterations
are sufficient for the pressure distribution over the airfoil after the addition of the
boundary-layer displacement thickness to be approximately the same as that used
to determine the boundary-layer displacement thickness.

When the boundary displacement thickness is added to the airfoil, the trailing
edge can no longer be a stagnation point because the effective thickness at this point
is no longer zero. The stagnation point for purposes of the program must be placed
somewhat downstream of the actual trailing edge. One possible device for deter-
mining this location is to determine the intersection of the lines made by extending

from each surface. For example, if 5* is 0.05C and dy/dx = —0.25 on the upper
surface at x = C and 5* = 0.03C and dy/dx = -0.05 on the lower surface, then
the intersection of the two extrapolations occurs at about 0.25C behind the trailing
edge. Because the intersection is assumed to be a stagnation point, the pressure
coefficient at this point must be +1. Because this is fairly close to the trailing
edge, it implies that the pressures on the actual trailing edge may be somewhat
higher than are usually found experimentally.

As we discuss subsequently, the program places the downstream stagnation
point at x — 2C and assumes an exponential decay in the dimensions of the
wake body from the wake thickness at the trailing edge to zero thickness at the
stagnation point to obtain a more realistic value. After the displacement thickness
and the wake body are added to the airfoil, the inviscid computation determines
the pressure distribution over this combination. Only the pressures over the airfoil
plus displacement thicknesses are used to determine the lift, drag, and pitching
moment, however. These are assumed to act unchanged through the boundary
layer on to the airfoil surface. The pressures on the wake body are ignored.

Because the airfoil surface plus wake body is now somewhat longer than in
the inviscid case we must accept fewer points on the physical airfoil at which
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96 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

to evaluate the pressure or else increase the number of vortices representing the
airfoil. Because the wake body has relatively little curvature, the vortex distribution
algorithm will assign relatively few vortices to the wake body. Thus, the choice
of whether to add a few additional vortices to the 65 originally specified or to
redistribute the original 65 comes down to a decision as to which approach will
be easier to implement computationally. For the airfoil, the choice was made to
redistribute the 65 vortices.

Part of the result of the boundary-layer computations is the determination of
the skin friction (which is a component of the vehicle drag) on the airfoil. For
those cases where the wake is very small the skin friction may be 80% of the total
drag. When the wake is larger, the form drag may become dominant. The form
drag results from an excess pressure on the forward part of the airfoil acting in the
streamwise direction relative to the pressure on the rearward portions of the airfoil
that acts in the upstream direction. In separated flow, of course, the skin-friction
drag disappears but the form drag is very high.

5.2.2 Algorithm Limitations
The model used in the program to calculate the boundary layer assumes the flow

is always attached. Thus, when the angle of attack reaches a value where there
is actually significant flow separation, the algorithm no longer models the flow
accurately. On most airfoils this point seems to occur about CL =0.8. More
recent airfoil analysis programs position one or two sources on the aft portion of
the airfoil to model the separated wake. The strength of these sources are such
that the flow separates from the airfoil at an angle roughly equal to that of the
freestream. The separated wake may be closed at the downstream stagnation point
by the addition of a sink. By this means the newer algorithms are able to compute
C/,max with reasonable accuracy. Most such algorithms are proprietary, however,
and cannot be distributed freely. Further, they differ from the algorithm discussed
herein chiefly in what may be considered for our purposes to be details. For that
reason no major pedagogical liability is incurred by restricting consideration at
this level to the present algorithm.

5.2.3 Tuning Applied to the Program
Several semiempirical modifications were made to the basic program formula-

tion to improve the agreement of the program output with experimental results.
These can be thought of as a form of tuning or tweaking, which is commonly ap-
plied to theoretical models to take into account that they do not include a treatment
of all known effects.

1) Instead of using point vortices as described in the development, the vorticity
is assumed to be distributed at a constant strength over each of the line segments.
The integral of the strength per unit length of the distributed vorticity over a line
segment equals the strength of the point vortex for that segment. It has been found
that the use of distributed vorticity leads to a less wavy line of iff = const than
does the use of point vortices. In other words, it gives a better representation of
the surface of an actual airfoil.

2) The Reynolds number was doubled for computations of the boundary layer. It
is well known that the momentum integral method, which is used in the program,
overpredicts the boundary-layer thickness. However, boundary-layer thickness
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 97

decreases with increasing Reynolds number. Thus, by doubling the actual Reynolds
number for purposes of the computation, a displacement thickness somewhat
closer to that found in practice was achieved.

3) The integration of the streamwise components of the pressures on the airfoil
(those in the drag direction) before the boundary-layer displacement thickness is
added did not equal zero as it must for an inviscid computation. This is probably
because the circulation was assumed to be constant on a line segment. The drag
results were improved considerably by subtracting this value as a tare from the
final drag.

4) The ordinates of the wake body behind the symmetrical form of the airfoil
are actually modeled by the relation

(5.20)

where zte is the trailing-edge thickness plus the finite wake thickness at the trailing
edge, C is the airfoil chord, and Z^Q = ^CpC. The downstream stagnation point
according to this model is at x = 2C.

5) A small correction was inserted to the calculated lift coefficient to account
for wake effects. This is given by

CL^ = l.O - 0.21 C CLm ̂  (5.21)

The relation and the constant 0.214 come from the literature. However, even
with this correction, the predicted lift coefficient for thick airfoils is somewhat
optimistic at higher angles of attack. A better agreement with experiment can
probably be had by replacing 0.214 with 3.57(f/C). No correction of this sort is
available for the pressure distribution, however.

In addition to the semiempirical changes just noted, a change in the theoreti-
cal method for computing the magnitude of the distributed vorticity on the line
segments representing the airfoil was made at the Langley Research Center prior
to the program's acquisition by NCSU. These changes, based on the work of
Oeller27 and Chen28 replace the requirement that the sum of the induced velocities
and the freestream components be parallel to the airfoil surface with a requirement
that the sum of the stream functions due to the freestream and to the distributed
vortices trace the airfoil surface exactly, at least at the control points. This can
be thought of as an integral version of the method previously described in this
section. The advantage of such an approach is that integration tends to smooth out
local variations. As a result, with the integral approach the representation of the
airfoil surface is smoother between control points than it would be by determining
the surface from the velocity components. To hasten the convergence to a solution
when adding the boundary displacement thickness, Lockheed split the solution
process into two parts: a camber solution and a thickness solution. The effect of
adding the displacement thickness is to reduce the effective camber. The effect of
the displacement thickness on the thickness solution is to move the rear stagnation
point downstream as already indicated. The separate solutions are then added to
obtain the overall solution.

The interested reader will find a more extended discussion of these changes, as
well as those made to the orignal program for reasons of computational robustness
and efficiency, in NASA CR-2523.26 The latter changes need not concern us at
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98 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

this time. We may note, however, that the implementation of simple concepts may
not always be simple as this case illustrates. Although the alterations and addi-
tions needed to achieve a successful implementation seldom extend the range of
applicability or validity of the underlying concepts, they do not obviate their study.

We may comment at this point that a process like the present calculation of
aerodynamic characteristics is not one that could have been carried out in a routine
manner before the availability of a computer with the computational capabilities
of the mainframes of the early 1970s. Too many arithmetic processes are required.
Conceptually the method is an extension of the thin airfoil theory, which had been
in use since the 1920s, coupled with a boundary-layer calculation of like vintage.
That concepts from several areas of research have been brought together to create
a procedure of greater utility than that of its constituent parts separately is the
significant achievement made possible by the availability of computer technology.
Really new concepts evolve only sporadically. Synthesis of well-known concepts,
however, can almost be produced to order through the use of this tool.

5.3 Program AIRFOIL
5.3.1 Features of the AIRFOIL Program

This program produces three output files, AIRFOIL.TXT, AIRFOIL.PS, and
AERO.PS. The first provides tabulated results (in a 132 column format). The sec-
ond draws the outline of the profile. The third plots the results of the computation
as Ct vs a, Cd vs Ct, Cm(./4 vs a, and C/> vs x/C with each plot presented on
a separate page. As presently dimensioned, the program can compute 10 sets of
such data during one run. Because a Cp vs x/C plot is produced for each a, there
may be as many as 10 pages of CP vs x/C plots.

AIRFOIL.PS draws a rather large profile to facilitate its inspection for input
points that may be misplaced. The input points are connected by straight line
segments. This enables the user to obtain an indication of the smoothness of the
theoretical representation.

Program size is moderate. Both the source code and the executable (as made by
Microsoft Powerstation) are slightly less than 200K. Running time on a 90-MHz
Pentium varies from 15 to 18 s for a 10 alpha case depending on the amount of
output requested.

The program permits the user to designate the Reynolds number at which the
airfoil is expected to operate. This will affect primarily the computed drag be-
cause the program cannot compute C£max, the other characteristic that is primarily
Reynolds number dependent.

The program can also be instructed to compute the characteristics at several
different Mach numbers. Because the von Karman-Tsien formula is employed
for this purpose, requested Mach numbers should be less than 0.6 if reasonably
accurate results are desired.

The program permits the user to designate the point of transition from laminar
to turbulent boundary-layer flow on each surface or it can be instructed to compute
the locations of the transition points. Fixing the transition point is not the same
thing as applying standard roughness at that location. Applying material such as
grains of sand to an otherwise smooth surface does in fact cause the boundary layer
to become turbulent; however, even the small grain size used for this purpose is
relatively large compared with the thickness of the boundary layer on the forward
portions of the airfoil. As a result, the shearing stresses are much larger than
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS

NACA'23012 AIRFOIL

99

18 18
0.0000
0.2500
0.9000
0.0000
0.0760
0.0092
0.0000
0.2500
0.9000
0.0000
-0.0428
-0.0070
10

.0000
8.0000
1

.300
1.0

520.0
0
0

0 0
0.0125
0.3000
1.0000
0.0267
0.0755
0.0013
0.0125
0.3000
1.0000

-0.0123
-0.0446
-0.0013

1.0000
9.0000

.300
1.000

3.0
0.0
0.0

0
0.0250
0.3500

0.0361
0.0714

0.0250
0.3500

-0.0171
-0.0448

2.0000
10.0000

.7
0.0
0.0

0.0500
0.4000

0.0491
0.0614

0.0500
0.4000

-0.0226
-0.0417

3.0000

1.0
0.0
0.0

0.0750
0.5000

0.0580
0.0547

0.0750
0.5000

-0.0261
-0.0367

4.0000

0.1000
0.6000

0.0643
0.0436

0.1000
0.6000

-0.0292
-0.0300

5.0000

0.1500
0.7000

0.0719
0.0308

0.1500
0.7000

-0.0350
-0.0216

6.0000

0.2000
0.8000

0.0750
0.0168

0.2000
0.8000

-0.0397
-0.0123

7.0000

END

Fig. 5.1 Output data from AIRFOIL program.

for natural transition. Consequently, the measured drag is greater than the drag
predicted by the program for these conditions.

As a check on the drag computations, the program computes the profile drag
by the Squire-Young formula. This result should agree closely with the drag
coefficient calculated from the sum of the form drag and the skin-friction drag.

By specifying IPUNCH = 1 the program will create another output file AIR-
FOIL.PUN, which contains the two-dimensional characteristics at NA angles of
attack in a form that can be used by F2D3D to convert section results to wing data.

5.3.2 Program Data Entry
For this version of the program the input data can be entered in response to a

series of English language questions. The user responses to these questions are
written in the correct format to the file AIRFOIL.DAT. This file can be edited
separately and then processed without having to respond to the questions again.
The number of input points on the airfoil may be greater less than 65 but should
define the airfoil adequately, including the trailing-edge thickness. The current
program limit is 50 points per surface.

Figure 5.1 shows a typical input file. Users desiring to edit this file should
consult the source code (subroutine READIT) for identification of the various
data fields. Subroutine READIT contains the questions that identify the data. The
associated WRITE statements show the location and format of the information as
it is written to AIRFOIL.DAT.

5.3.3 Typical Results
Results obtained from processing the typical input data are shown in Figs. 5.2

to 5.7.

Fig. 5.2 NACA 23012 airfoil drawn from input data.
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100 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

1.6

1.5

1.4

1.3

1.2

1.1

1.0

.9

C L .7

•5 •-

.4

.3

.2

.1

.0
0 1 2 3 4 5 6 7 8 9 1 0 1 1

Angle of Attack, Degrees

Fig. 5.3 Lift variation with angle of attack, NACA 23012 airfoil.

.05

.045-

.04

.035

.03

.025

D
.02

.015

.01

.005
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Lift Coefficient

Fig. 5.4 Lift-drag characteristics, NACA 23012 airfoil.
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 101

.01 ;;:::::::::::::::|:::::::

CM !E::E^E:::::: = :ET^:::::
-.02 ;=::::::::::::::::::::::::

-.04 £:::::::±:::::::::::T::

-.07 ; = ::¥ = |"=|P=q= = :£=jE = :

2 3 4 5 6 7 8 9 1 0 1 1
Angle of Attack, Degrees

Fig. 5.5 Quarter-chord pitching moment characteristics.

-3.656

1.013

NACA 23012 AIRFOIL
AIRFOIL PRESSURE DISTRIBUTION
ANGLE OF ATTACK = 9.0 degrees

x/C

An indication of the computational accuracy of the
program may be obtained by noting the stagnation
pressure coefficient of 1.013, a little higher than the
expected value of 1.0. Note, too, that the pressure
distribution exhibits a dip in the same region as the
defect in the upper surface contour.

Fig. 5.6 Pressure distribution, NACA 23012 airfoil.
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LOAD SUMMARY SHEET-ITERATION NUMBER 4

MACH NUMBER
REYNOLDS NO.

NACA 23012 AIRFOIL

= .30000
= 3.00000 MILLION

LONGEST CHORDLINE = 1.00000 FEET

ANGLE BETWEEN LONGEST CHORDLINE AND REFERENCE LINE

NORMAL FORCE COEFFICIENTS
(CN) PRESS. = 1.08824
(CN) SHEAR = .00165
CN = 1.08989

AXIAL FORCE COEFFICIENTS
(CA) PRESS. - -.16413
(CA) SHEAR = .00618
CA = -.15795

MOMENT COEFFICIENTS
(ABOUT NOSE) (CM) PRESS = -.27112

(CM) SHEAR = .00016
CM = -.27096

REFERENCE CHORD (BASIS FOR ALL COEFFICIENT NORMALIZATION)
ANGLE OF ATTACK (VALUE OF IALPHA = 0)

(IALPHA=0--ANGLE DEFINED W.R.T. REFERENCE LINE)
(IALPHA=1--ANGLE DEFINED W.R.T. LONGEST CHORDLINE)

1.00000 FT.
9.00000 DEG.

.00000 DEG. (POSITIVE FOR REFERENCE LINE BELOW THE LONGEST CHORDLINE)

LIFT COEFFICIENTS
(CL) PRESS. =1.10052 '
(CL) SHEAR = .00066 '
CL = 1.10118 '

* DRAG COEFFICIENTS
(CD) PRESS. = .00812 '
(CD) SHEAR = .00636 '
CD = .01449 '

* MOMENT COEFFICIENTS
(CM) ABOUT NOSE = -.27096 '
(CM) QUARTER CHORD = .00151 '

m
HJ
O

Oco

azi
O
3

DRAG COEFFICIENT COMPUTED BY SQUIRE-YOUNG FORMULA = .01174
ZEROTH ITERATION PRESSURE DRAG = -.00183
TRANSITION POINTS: X/C(LOWER) = .39289 X/C(UPPER) = .03570

OCO
O

]NACA 23012 AIRFOIL
FSMACH= .30000

*
*

*
*

*

ALPHA

.000000
1 .000000
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
9.000000

CL

.106393

.223105

.336017

.451138

.566448

.680761

.794064

.906054
1.005502
1.101179

CD

.006192

.006193

.007168

.007758

.007994

.008728

.009591

.010167

.012724

.014487

CM (NOSE)

-.025781
-.055059
-.083858
-.112719
-.141452
-.169848
-.197798
-.225053
-.249026
-.270964

CM (1/4-CHORD) *

.000817 *

.000736 *

.000158 *

.000012 *
-.000046 *
-.000115 *
-.000119 *
.000082 *
.000345 *
.001508 *

O
CO

a
co
Oa
m
CO

Fig. 5.7 Partial output listing of AIRFOIL program.
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 103
i

Notice that Fig. 5.2 does evidence some lack of smoothness. Because the
smoothing algorithm creates a total of 65 points, the figure actually analyzed will
be somewhat smoother than the one shown, which has only 36 points. (Notice,
too, the finite trailing-edge thickness.)

The amount of output data written to AIRFOIL.TXT can vary from 3.5 Kbytes
to 505 Kbytes depending on the value of IWRITE selected. Initially the user may
wish to invoke the verbose option (IWRITE = 0) but for production runs IWRITE
= 3 will probably be sufficient.

The value of the computed results ultimately depends on how well the results
match experimental data for a variety of situations. The NASA contractor's report
shows how well the computed results match wind-tunnel test data for 15 airfoils of
varying camber and thickness. Eight of these, covering a range of thicknesses, are
shown in Fig. 5.8. Lift and drag characteristics for these airfoils and one additional
airfoil taken from the contractor's report are shown in Fig, 5.9.

5.3.4 Significance of Results
Some comments on the characteristics exhibited by these airfoils and the ability

of the program to predict them would seem to be in order.
The airfoil designated S-14.1 is formed by two circular arcs. The entire lower

surface is essentially concave as far as the oncoming flow is concerned up to
a fairly large angle of attack. The effect of the program's inability to handle
such geometries is shown clearly in the characteristics. They are actually very
nonlinear, a fact not detected by the analysis. Only at a = 2 deg is the lift coefficient
approximately correct. At the same time, the predicted drag coefficient is less than
half the actual value.

The variation of lift coefficient with angle of attack for the very thin NACA 63-
006 airfoil is predicted accurately for angles of attack up to 8 deg. The predicted
drag is reasonable over this angle range but does not evidence the familiar drag
bucket, which occurs for lift coefficients between —0.1 and 0.1.

When the airfoil thickness is increased 50%, the prediction gets even better
as evidenced by the characteristics of the 0009 airfoil. Both the lift and drag
predictions are very good, the former to a CL of 1.2.

The very thick NACA 2424 airfoil exhibits a nonconstant lift curve slope, which
the predicted results fail to replicate, particularly for angles of attack greater than 6
deg. The drag characteristics underpredict the experimental values for CL greater
than 0.8. These results may be considered in light of the discussion regarding
Eq. (5.21).

The lift characteristics of the moderate thickness NACA 632-615 airfoil are well
predicted for angles of attack up to 8 deg and the drag characteristics agree closely
with the experimental results for CL < 1.3. Even the thicker NACA 634-421 airfoil
gives similar results. However, when one attempts to maintain a laminar boundary
layer even farther aft on the upper surface by specifying a NACA 644-421 airfoil,
good agreement with experiment ceases when a > 8 deg or Ci > 1.0 (for drag
values).

As we have mentioned previously, when boundary-layer trips are affixed to
the airfoil in the form of strips of sand paper, the changes in drag and C/,max are
greater than predicted by fixing transition at the leading edge. For the NACA 4412
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104 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Fig. 5.8 Tested airfoils.
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Fig. 5.9h Measured and predicted characteristics of NAC A 644-421 airfoil.
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 115

airfoil the actual minimum drag coefficient is more than 25% greater than program
prediction. The prediction becomes worse as CL increases.

A review of these results indicates that for conventional airfoils, e.g., those
without concave surfaces, the program yields good agreement with experiment
for Ci < 0.8 and in some cases for higher values of Ci. Although we have chosen
not to show them here, Ref. 26 gives comparisons between the predictions of
our theory and experimental data from Ref. 29 for an unconventional airfoil. Drag
results for dirty airfoils, e.g., those with bugs on them or with manufacturing irreg-
ularities, will probably be optimistic because the boundary-layer routine used in
the program is simply not able to account for such disturbances. Thus, the program
can be very useful for performing design analyses when the aircraft is in the cruise
or climb configuration, but it is of limited utility for estimating the aerodynamic
characteristics during approach when the lift coefficient is large. Depending on
the individual design it may or may not be useful during takeoff. If the CL exceeds
0.8 during takeoff or if extensive use of flaps is required, then more sophisticated
routines or experimental results should be employed. Nevertheless, the relative
simplicity of AIRFOIL and the quality of the results it produces should give the
reader an indication of the theoretical bases of modern aerodynamic prediction
programs and provide a guide to those areas where the present theory has been
improved in more recent work.

The problems supplied later in this chapter provide the reader with some struc-
tured examples of how the program may be applied and some of the points to be
noted in the results.

5.4 Airfoil Selection Criteria
With the ability to determine many of the aerodynamic characteristics of virtu-

ally any arbitrary airfoil now provided by a relatively simple computer program,
the question naturally arises as to what characteristics are desirable. The answer
to that question, not surprisingly, depends on the application to which the airfoil
is put. We have alluded to some of the considerations used to make this choice.
All of the applications we will consider are in the subsonic flight regime.

5.4.7 Long-Range Vehicle
To construct a long-range air-supported vehicle we need a wing with a high

aspect ratio and a high lift-to-drag ratio. The latter condition is usually satisfied
by ensuring that the wing surface is smooth and that the wing operates at angles
of attack where the pressure gradient is favorable over a significant portion of the
upper surface. A high aspect ratio minimizes induced drag, a type of drag of which
we have not yet spoken. But for structural reasons a high aspect ratio is difficult
to provide if the wing is not relatively thick. These considerations alone dictate
an airfoil at least 12% thick. Then there is the question as to whether one wishes
to use the wing to encase engines, landing gear, or other items. For example,
the B-36 intercontinental bomber, which was the mainstay of the U.S. Air Force
immediately following World War II, used the NACA 63(420)-422 airfoil. The
root wing section on this aircraft was 8 ft thick and the span extended 320 ft. The
six 3500-hp Pratt and Whitney R-4360 radial engines were enclosed in the wing
and drove three-bladed pusher propellers. (In later models two turbojet engines
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116 AERQDYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

in an external pod were mounted outboard of the piston engines on each wing.
The same pod was used on the first jet bomber, the B-47. The use of these pods
enabled the gross takeoff weight of the B-36J to reach 450,000 Ib.)

The wing on the B-36 was sufficiently thick that a mechanic could move along
a passageway in the wing on a creeper to service the engines while in flight. This
thick airfoil also provided an additional benefit: unmatched stall characteristics.
Tests showed that Cz,max could be maintained all of the way from 16-deg angle of
attack to 24-deg angle of attack. One can well imagine the sight of this 230-ft-long
aircraft landing. With its long, cylindrical fuselage it was said that the pilots were
100 ft in the air when the main wheels touched down.

A long-range aircraft must be relatively lightweight to carry a large amount of
fuel. Making its wing stiff in torsion and in bending requires additional weight.
The compromise selected by the designers of the B-36 was to limit the forward
speed to 150 mph indicated. The means that the dynamic pressure is never more
than 57.4 lb/ft2 at any altitude. Although this might seem unduly slow considering
the aircraft's mission, it should be remembered that the operational altitude of
the aircraft was 50,180 ft. At that altitude 150 mph indicated is 383.6-mph true
airspeed. At that altitude the speed of sound is 661 mph. For the thick airfoil used
on the B-36 the critical Mach number is about 0.58 for a CL of about 0.346. A true
airspeed of 383.4 mph represents a flight Mach number of 0.58 at that altitude.
Because the aircraft was Mach number limited to 150 mph indicated at its design
altitude, the decision was made to design the structure to that limit as well. The
supporting calculations for this rationale may be summarized as follows:

flight velocity = 150 mph at sea level = 1.467 x 150 = 220 ft/s
dynamic pressure = [-pv2 = \(0.002378)(220)2 = 57.4 psf
density at 50,180 ft = 0.00036238 slugs/ft^
true airspeed = 72(57.2)70.00036238 = 383.6 mph
temperature at 50,180 ft = 390°R
speed of sound at 50,180 ft = 661 mph
Mach number corresponding to true airspeed = 383.6/661 =0.58
most negative C/> on airfoil at a = 0 deg is — 1.064
CL = 0.346
MCR see Fig. 5.10
weight at 50,180 ft and 383.6 mph = 178,681 Ib
wing area = 9000 ft2

maximum airfoil lift-to-drag ratio = 102.1, and
aspect ratio = 11.378.

Although the NACA 63(420)-422 airfoil has good stall characteristics it does
not have a particularly high value of Cz,max (about 1.3) at a Reynolds mumber
of 3 x 106. Because of this one would ordinarily expect that a more complex
flap arrangement would have to be used than for an airfoil with a higher C^max
to obtain the same landing speed. However, the root chord of the wing is over
36 ft long which means the Reynolds number for landing is on the order of
107. Because C£,max increases with increasing Reynolds number, the actual C/,max
for landing will be somewhat greater than originally expected. Propeller driven
aircraft, particularly those with pusher propellers in the plane of the wing, can
energize a low-turbulence airstream over the wing by the application of power.
This can make the effective Reynolds number over the wing during landing even
higher.
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 117

5.4.2 High-Level Flight Speed
For highest level flight speed on a given amount of power one seeks to reduce

the drag to the maximum extent possible. This means that the profile drag of the
wing will be one of the drag factors one seeks to minimize. The induced drag
at this condition is naturally very low because the aircraft will be operating at a
CL -> 0. Thin airfoils have inherently less profile drag than thick airfoils. Thus,
for operation at the high-speed level flight condition one desires as thin an airfoil
as is structually feasible. We may note that the X-3 research airplane used a 3%
thick wing machined from a solid bar of aluminum alloy. Other requirements such
as acceptable stall characteristics and the need for storage space within the wing
may ameliorate the specification of such a thin wing.

By way of definition, the critical Mach number is the flight Mach number for
which the velocity on the upper surface of the airfoil first reaches the speed of
sound. The reason this is important is that flight velocities above this value but
below sound speed cause regions of supersonic flow to develop on the wing, which
must terminate in shock waves. The resultant pressure rise across the shock wave
can cause the boundary layer to separate. The point on the upper surface where the
flow first reaches the speed of sound is also the point where the pressure coefficient
is a minimum. The location of this point and the minimum pressure coefficient
may change with angle of attack or, to put it another way, with lift coefficient. As
used, the pressure coefficient is defined in terms of incompressible theory. Prandtl
and Glauert developed a simple correction to the pressure coefficient to account
for the compressibility of air. They suggested that the compressible value could
be obtained from the incompressible in the following manner:

Beginning with the equation defining the stagnation pressure in a compressible
stream in terms of the static pressure, Mach number, and ratio of specific heats
y, and assuming that the stagnation pressure is constant in the flow around the
airfoil, one can derive the following equation relating the minimum incompressible
pressure coefficient to the critical Mach number:

L2 ' "' (5.23)

This equation is graphed in Fig. 5.10.
NACA TR-82416 contains charts relating critical Mach number to lift coefficient

for specific airfoils. The relationship is linear for most of the CL range. In the case
of the NACA 63(420)-422 airfoil, the chart gives the critical Mach number at
CL = 0 as 0.6 and 0.5 at a CL = 1. Because the minimum pressure coefficient for
a zero lift coefficient is about —0.84 and the minimum pressure coefficient for a
lift coefficient of 1.0 is about — 1.6 for this airfoil, it will be seen that the values in
Fig. 5.10 agree with the NACA charts. The difference in the presentations is that
the data in Fig. 5.10 are universal. However, to apply that graph to a specific airfoil,
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Variation of Minimum Cp with Mcr

0

1
o
Q.
O

-6

0.4 0.6 0.8

Critical Mach Number
1.0

Fig. 5.10 Variation in critical Mach number with minimum pressure coefficient on
airfoil.

the incompressible pressure distribution over that airfoil must be known at various
lift coefficients. For greater understanding, the reader may wish to undertake the
derivation of Eq. (5.23).

5.4.3 HighC,y Lmax
When high C/,max becomes a dominant consideration driven, say, by a wish to

obtain low landing speeds without the use of flaps or large wing areas, then special
attention is paid to the exact Reynolds number at which CLmax is required and to the
characteristics of airfoils at this Reynolds number. To obtain a favorable pressure
gradient on the upper surface of the airfoil to as high an angle of attack as possible,
it is necessary that the radius of curvature in this region be relatively large. Airfoils
that achieve this condition often have rather bulbous noses with a nearly flat, but
still convex, upper surface. Almost all of the shaping of the airfoil occurs on the
lower surface. A C/,max of 2.1 at Re = 9.2 x 102 is reachable in these designs.

5.4.4 Supercavitating Hydrofoils
Hydrofoils encounter a problem at high speeds that airfoils do not: cavitation.

This refers to visible pitting, which occurs on shapes that move at high speed in
water. The pitting is the result of the collapse of gas bubbles near the surface of
the foil and the subsequent erosion due to the very high shear rates, which are
created by the liquid rushing to fill the collapsed gas bubble. The gas bubbles are
created when the velocity over the foil is sufficiently high that the local pressure
drops below the local vapor pressure of the water. This erosion can be very severe
in a relatively short period of time.

For years the onset of cavitation served to limit the speed that hydrofoils could
be operated much like the speed of sound served to limit the speed of airfoils
although for a different reason. The solution to the problem was the development
of supercavitating hydrofoils. These foils are wedge shaped with blunt aft ends.
Such foils have their minimum pressure points at the aft end of the foil. When
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 1 1 9

the gas bubble collapses, there is nothing but wake below it, and the foil itself
suffers relatively little damage. However, there is a price to be paid for the ability
to operate at speeds above those for which cavitation would occur on normal
hydrofoils: higher drag than for hydrofoils with near zero trailing-edge angles.

The design of supercavitating hydrofoils is beyond the scope of the present text
as is the design of supercritical airfoils, which are those that are shaped such that
the shock wave due to the recovery from locally supersonic flow over the upper
surface occurs very near the trailing edge and is relatively weak.

5.4.5 Sailplanes
A high cruise lift-to-drag ratio is desirable for many flight vehicles because it

means that for a given weight the drag at cruise will be low. In a powered aircraft
this translates to long range because the available fuel will burn at a lower rate and
the flight can last longer at the same speed. In an unpowered vehicle a high lift-
to-drag ratio translates into a shallower gliding angle and a lower sinking speed.
Setting up a balance of the forces involved shows that

Lsiny = Dcosy

Lcosy + Dsiny = W

Hence, the glide path angle y for steady-state glide is seen to be

where the sinking speed Vs is

Vs — Vsiny

For best sailplane performance, a very high lift-to-drag ratio is essential. This
means we seek an airfoil section with very low profile drag but thick enough to
support a very high aspect ratio. Because of the very high aspect ratio the wing
chord and, therefore, the wing Reynolds number will be relatively small. We will
not, therefore, be able to take advantage of airfoil sections that can achieve high
values of CL at high Reynolds numbers.

If we plot L/D vs CL for airfoils we find that the peak value of L/D usually
occurs in the range of 0.6 < CL < 1.0. The peak values are 100-133. A 15%
thick airfoil probably has a minimum drag coefficient that is about 50% greater
than a 6% thick airfoil. When all factors are considered, an airfoil 12-15% thick
with a modest pitching moment coefficient (to keep the trim drag, i.e., the drag
associated with the tail load necessary to balance the wing pitching moment, at
moderate levels) will usually be selected. It will be built into a wing with a taper
ratio of 0.5 to 0.7 and an aspect ratio of around 25. Taper ratio, a term we have not
defined previously, is the ratio of the tip chord to the root chord. We show in the
next chapter that an elliptical wing planform leads to minimum induced drag and
that a trapezoidal planform with the proper taper ratio yields only slightly greater
induced drag and is easier to build. The wing surface itself will be made as smooth
as possible to ensure that the predicted value of CD is actually achieved.

The airfoils chosen for sailplane are often of the NACA 65 and 66 series
with design lift coefficients in the 0.4-0.6 range. Note, however, that because the
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120 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

pitching moment coefficient cannot be permitted to become excessive the design
lift coefficient may be restricted to the lower end of the range.

5.4.6 Maneuverable, Medium-Speed Vehicle
In this class of vehicle we may put such aircraft as World War II fighters and

modern agricultural aircraft (crop dusters). Here the desire is for a wing that pro-
vides good high-lift characteristics without the use of auxiliary high-lift devices.
Good high-lift characteristics include high C^max and benign stall characteristics.
The NACA 4412 section was much used for such aircraft. Its characteristics are
shown in Fig. 5.9c. Shown also are its characteristics with standard roughness
(Fig. 5.9d) which in service might mean bug and dust deposits. It will be seen that
this airfoil's lift characteristics are relatively unaffected, although the drag will
increase significantly.

5.4.7 Piston Powered Transport Aircraft
Aircraft in this class may operate under conditions similar to those experienced

by aircraft in the previous class. By operating at lower altitudes and smaller fields
they may experience relatively greater amounts of bugs and dust than jets, which re-
quire longer runways and fly at higher altitudes. Money usually is not available for
sophisticated high-lift devices and so inherently good C^max from the airfoil itself
is desired. Because very high cruise speeds are not achieved because the necessary
power is not available in this class of aircraft, the selected airfoil need not have the
absolute minimum profile drag. Again, the NACA 4412 section is a good selection
but with higher aspect ratios (up to 11 or 12) than those in the previous class.

5.4.8 General Aviation Vehicle
New aircraft in this class are often kit built. The current trend is for wings to

be constructed in molds from composite materials. This manufacturing process
results in very smooth surfaces and makes it practical to think of using very low-
drag sections. Use of such sections along with similarly smooth fuselages can yield
sharply lower power requirements for a given speed. With sharply lower power
requirements comes smaller, less expensive engines, greater range, and reduced
operating costs while maintaining acceptable cruise speeds. Airfoils in the NACA
64 and 65 series with design CL in the 0.2-0.4 range are usually considered first
for this application. With aspect ratios in the 6-7 range, a 12% thick section is
feasible with the fabrication techniques employed.

It is also possible to employ programs such as AIRFOIL to design custom airfoil
sections for such aircraft. A marketing advantage may be seen by the designer
from the use of a custom section. Perhaps a simpler structural layout or manu-
facturing simplicity may be realized with a custom design without compromising
performance.

The flap arrangements in these aircraft are comparatively simple. A plain flap,
split flap, or simple slotted flap may be used.

5.5 Other Approaches to Airfoil Design
AIRFOIL is what may be called an analysis program. It permits one to deter-

mine the aerodynamic characteristics of an existing airfoil. There is, however, an
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 121

inverse procedure, one in which the pressure distribution is specified at a partic-
ular angle of attack. The program then generates an airfoil shape producing the
specified pressure distribution if such a shape is possible. Such a procedure may
be called a synthesis approach to airfoil design. We do not propose to discuss the
details of such a procedure in this book but merely note that one popular pro-
gram that operates in this manner was developed by Richard Eppler of Stuttgart
University in Germany and Dan Sommers of NASA Langley Research Center.
Analysis approaches usually are simpler to understand but often require iterative
refinement to achieve optimal results. The synthesis approach trades somewhat
greater mathematical complexity for a direct path to the optimal shape.

5.6 Concluding Remarks
In this chapter we looked in detail at a method for determining the lift, drag,

and moment characteristics of a prespecified airfoil shape provided the airfoil has
no concave surfaces. The method yields results that agree well with experimental
data for smooth airfoils operating at lift coefficients up to 0.8 or so. The method
does not include the ability to model large, separated wakes (for example, by
additional sources whose strengths are set to produce separation from a predicted
point at a particular angle) and, therefore, cannot predict CLmax. The method can
accommodate increases in Mach number up to about 0.55.

Although ostensibly an inviscid procedure, the method accounts for the effect of
viscosity in the flow over the airfoil surface by adding a displacement thickness to
the airfoil geometry and recomputing the inviscid flowfield outside the boundary
layer. The iteration between airfoil pseudo-boundaries and the external pressure
distribution is continued until the boundary-layer displacement thickness is that
which one would calculate for the then existing pressure distribuion outside the
boundary layer. The existence of displacement thicknesses on both upper and
lower surfaces lead to the creation of an airfoil wake and associated form drag and
necessitates the location of the downstream stagnation point at some place in the
wake. The skin-friction drag is calculated as part of the boundary-layer routine.
Integration of the surface pressures gives the lift coefficient and the moment
coefficient. Integration of the stream wise components of the pressure around the
airfoil gives the form drag.

Problems
5.1. Take a 65-point set of coordinates for a Joukowski airfoil and run the
AIRFOIL program for this coordinate set. Compare the lift values with the results
ofJOUKOW.

5.2. For the same Joukowski airfoil take 65 other points and run AIRFOIL on
them. Do you get the same results as for problem 5.1? What do you conclude as a
result of this comparison?

5.3. The following data, written in AIRFOIL.DAT format, represent one of the
NACA 6-series airfoils.
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NACA 63 (420) -422

26 26 2 0

.0000

14.5090

55.0570

95.0510

.0000

10.2310

11.1470

1.1810

.0000

15.4910

54.9430

94.9490

.0000

-7.5390

-6.7670

.0830

19.

60,

100.

1,

11,

10.

20,

59,

100,

-1,

-8

-5,

,1870

,5630

.1040
,0000

,9595

.4890

,2770

,0000

.8130

.4370

.8960

.0000

.7590

.3050

.9430

.000

0

24.

65,

2.

12.
9.

1.

25,

64,

-2,

-8,

-5,

,3980

,6300

.1400

.4020

,3770

,1690

,1020

.3700

.8600

.1220

.7970

.0490

29.

70.

3.

12.

7.

1.

30.

69.

-2.

-9,
-4.

,8500

,7050

,1630

,0880

,8900

,9880

,6500

,2950

,8370

,6600

.0020

,1000

2.0410

34.7840

75.1720

4.3120

13.0340

6.7000

2.9590
35.2160

74.8280

-3.5680

-8.9140

-3.1200

4.4920

39.8610

80.1650

6.0500

12.8830

5.3290

5.5080

40.1390

79.8350

-4.7860

-8.5990

-2.1450

6

44

85

7

12

3

8

45

84

-5

-8

-1

.9770

.9340

.1420

.3870

.4930

.9180

.0230

.0660

.8580

.6910

.1130

.2260

9.4780

50.0000

90.1030

8.4960

11.9070

2.5130

10.5220
50.0000

89.8970

-6.4280

-7.4950

-.4450

The reference chord is 100.0 units. Run AIRFOIL for nine angles of attack, 0-8
deg in 1 deg increments. Base the Reynolds number on a real chord length of 36 ft
and a flight Mach number of 0.223 when the absolute temperature is 520°R. Note
that the graph of pitching moment coefficient about the quarter-chord may be off
scale. The scale can be changed by changing the factor multiplying CM 14 on line
2682 of AIRFOIL.FOR and recompiling. The numbers identifying the vertical
scale in the figure then need to be changed to match. A factor of 10 is easiest to
implement.

a) From the pressure distributions, deduce the largest angle of attack for which
the pressure gradient is favorable over the forward portion of the upper surface.

b) What is the lift curve slope at a = 0? Is it constant for the data available and
if not, why not?

c) What is the minimum drag coefficient?
d) What is the drag coefficient for the angle of attack you deduce in problem

5.3a?
e) If the angle of attack is 5 deg and the dynamic pressure is 743 psf, what is the

minimum pressure on the upper surface for these conditions? Assume the static
pressure is 2116 psf and the absolute temperature is 520°R.

f) What is the highest Mach number over the upper surface for these conditions?
g) What application might be suitable for the use of this airfoil?
h) What is the lift coefficient for the minimum drag coefficient?
i) At what angle of attack is the maximum lift-to-drag ratio achieved?
j) In terms of application of this airfoil to airplanes, what is the implication of

the values of Cm<:/4 found by the program?
k) Investigate the effect of changing Reynolds number and transition location on

the aerodynamic characteristics of this airfoil. Consider Reynolds numbers from
1 x 106 to 108. Describe your results. Note particularly which characteristics are
most affected.

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 123

1) See if you can find wind-tunnel test results for this airfoil and compare them
to the results predicted by the program. Your best source of data will be NACA
Report 824.16 Comment also on the experimental stall characteristics of this airfoil.

m) At what flight Mach number does the Mach number on the upper surface
first reach 1.0 when the angle of attack is 5 deg?

n) At what angle of attack is the design lift coefficient reached?
o) At what angle of attack should you expect to find a lift coefficient of zero?
p) Assume that you can model ice accumulation on the airfoil by forcing

transition at the leading edge. What is the effect of ice accumulation on the
aerodynamic characteristics? Referring now to experimental data, what generally
is the effect of applying standard roughness to the airfoil?

5.4. Determine the thickness of the airfoil shown in Fig. P5.1 relative to the
chord.

5.5. Is the airfoil in Fig. P5.1 cambered?

5.6. What technique is used in an effort to have AIRFOIL account for bugs
smashed on the airfoil surface, manufacturing irregularities, or rain drops on the
surface?

5.7. The airfoil in Fig. P5.1 is shown at a. = 0. Should you expect the lift
coefficient at this angle of attack to be zero? Why?

5.8. Using the airfoil data given in problem 5.3, determine the variation in
aerodynamic characteristics for negative angles of attack. (Note that the Ci vs a
and CL vs CD plots may be blank because CL may be negative for most a or a is
negative. Note, too, that because of the downwardly curved trailing-edge data for
a less than some value will probably be in error because this portion of the airfoil
then will be operating as a concave surface in relation to the oncoming stream.) Is
there an angle about which the lift coefficient is a mirror image? If so, what is the
angle?

5.9. How would undesirable stall characteristics show up on the CL vs a plot?
Explain why a particular characteristic is undesirable.

5.10. Plot the airfoil data given in problem 5.3 to a large scale on graph paper.
Then for about 30 points along the chord line determine the mean camber line by
adding the ordinates of the upper surface to those of the lower surface including

Fig. P5.1 Airfoil profile drawn using straight line segments between the 50 input
points.

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



124 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

the signs oh the lower surface ordinates. This sum should be the mean camber
line. Now subtract the z value of the mean camber line from the upper surface
ordinates and the lower surface ordinates. Submit the resulting data to AIRFOIL. In
effect the new airfoil should be a symmetrical version of the original airfoil. Do the
aerodynamic characteristics of the symmetrical airfoil match those of the cambered
airfoil except for being shifted in a? Provide graphs to support your contention.

5.11. If the boundary layer on a 0024 airfoil at a = 0 remains attached to the
surface, how should you expect CD to differ from that obtained on a 0006 airfoil at
the same angle of attack? Discuss and, in particular, suggest how the magnitudes
of the drag coefficients on the two airfoils may differ. If all else fails, run the
AIRFOIL program to obtain the information.

5.12. The ordinates of a NACA 66-006 airfoil follow. Present a pressure coef-
ficient plot for an angle of attack for which the drag coefficient lies in the drag
bucket. This region should occur where the lift coefficient is near zero for this air-
foil. Then, present a pressure coefficient plot for an angle of attack for which the
drag coefficient is outside the drag bucket. Discuss the differences in the pressure
coefficient plots.

1.2500 2.5000 5.0000 7.5000 10.0000

30.0000 35.0000 40.0000 45.0000 50.0000

70.0000 75.0000 80.0000 85.0000 90.0000

.6930 .9180 1.2570 1.5240 1.7520

2.7820 2.8990 2.9710 3.0000 2.9850

2.3160 1.9430 1.5430 1.1070 .6650

1.2500 2.5000 5.0000 7.5000 10.0000

30.0000 35.0000 40.0000 45.0000 50.0000
70.0000 75.0000 80.0000 85.0000 90.0000

-.6930 -.9180 -1.2570 -1.5240 -1.7520

-2.7820 -2.8990 -2.9710 -3.0000 -2.9850
-2.3160 -1.9530 -1.5430 -1.1070 -.6650

5.13. Repeat problem 5.3(m) for the NACA 66-006 airfoil.

5.14. The drag force experienced by a wing in flight is given by CD^pSV2

where p is the atmospheric density, V is the flight velocity, and S is the wing area.
Assuming that structural considerations can be ignored for the moment and that
all other conditions and dimensions, such as wing area and wing chord, are the
same except for the airfoil section, compare the drag associated with the NACA

NACA 66-006 AIRFOIL

26

15

55

95

2

2

15

55

95

-2

-2
-

26

.0000

.0000

.0000

.0000

.0000

.1190

.9250

.2620

.0000

.0000

.0000

.0000

.0000

.1190

.9250

.2620

2

20,

60

100,

2

2

20

60

100

-

-2

-2

1

.5000

.0000

.0000

.0000

.4610

.4010

.8150

.0000

.5000

.0000

.0000

.0000

.4610

.4010

.8150

.0000

0

25.

65,

2.

2,

25,

65,

-,

-2

-2

,7500

,0000

,0000

,5540

,6180

.6110

.7500

.0000

.0000

.5540

.6180

.6110
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 125

65-006 airfoil relative to the NACA 63(420)-422 airfoil at sea level and a speed
of250ft/s.

5.15. Considering the results of problems 5.13 and 5.14, what would be the
motive in selecting the NACA 66-006 airfoil if high-speed flight is desired?

5.16. The deflection of a simple cantilever beam depends inversely on the depth
cubed. What inference might one make as to the deflection under load of wings
of the same span and chord if one wing uses a NACA 63(420)-422 airfoil and the
other uses a NACA 66-006 airfoil? Which airfoil is better suited for use in wings
of high aspect ratio?

5.17. Boundary layers separate in the face of steep adverse pressure gradients.
(An adverse pressure gradient is one for which the pressure is increasing). When
the boundary layer separates, there is a large region on the lea side of the airfoil
over which the pressure is very low. Hence, the airfoil exhibits a significant drag. If
the flow must negotiate a region with a small radius of curvature the velocities must
change rapidly in a short distance and, hence, pressure gradients in such regions
are likely to be steep. Considering this information, what are the likely stall
characteristics of thin airfoils such as the NACA 65-006? By stall characteristics
we mean the change in lift coefficient for a small change in angle of attack in the
region near CLmax. For many airfoils, the lift coefficient drops suddenly for a small
increase in angle of attack. This is considered poor stall characteristics.

5.18. What are the expected stall characteristics of the NACA 63(420)-422
airfoil?

5.19. Consult a reference such as NACA TR 82416 and determine the variation
of CL with a for a between 16 and 24 deg. Does this airfoil have good stall
characteristics?

5.20. The NACA-6 series of airfoils were intended to provide varying amounts
of laminary boundary-layer flow on the upper surface at design lift coefficient. The
second number in the designation indicates the chord fraction over which there
is a favorable pressure gradient and, therefore, the chord fraction over which the
boundary layer should be laminar. Depending on the manufacturing technology
used, the wing skin may be rather smooth or exhibit an occasional wrinkle. Which
of the airfoil series, the 63,64,65, or 66, should you expect to be the most sensitive
to manufacturing imperfections, rain, or bug splatter? For the clean condition,
which of the series should you expect to have the lowest drag?

5.21. The center of gravity is the point about which the aircraft rotates in its x-z
plane as a result of unbalanced forces or moments applied to the aircraft in this
plane. When the wing lift is considered to be applied at the wing quarter chord, a
pitching moment, represented by CWf./4, results because the center of pressure on
the airfoil is actually located at some other place. When the center of pressure is
farther aft than the quarter-chord, Cmc/4 is negative, that is, the moment seeks to
cause the aircraft nose to pitch down. In equilibrium flight, the forces and moments
must be in balance. When the center of gravity is located near the leading edge
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126 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

of the wingi there is a large negative moment around it due to the lift force times
the distance from the quarter-chord to the center of gravity, in addition to the
moment about the quarter-chord. These moments must be balanced by a moment
produced by a download on the tail. When the forces involved are summed, it is
seen that for such a case the wing lift must be equal to the aircraft weight plus
the download on the tail. Associated with this additional lift is an additional drag.
This is termed a trim drag because it arises from the need to balance or trim the
aircraft. If one is going to design a flying wing, that is, an airplane without a tail to
provide the trimming force, and needs to place the center of gravity slightly ahead
of the quarter-chord for stability reasons, what sort of aerodynamic characteristics
should one look for in an airfoil?

5.22. What changes would you make to the data set shown in problem 5.12 if
the airfoil were to be used on a undersea vehicle traveling at 10 knots? How are
these changes likely to affect the lift, drag, and pitching moment? Although the
program does not compute the characteristics for angles of attack greater than
8-10 deg properly, generate some informed speculation on the effect that insertion
into water has on the characteristics near Cz,max.

5.23. Both the Joukowski theory and thin airfoil theory find a lift curve slope of
2n per radian. Compare the results of programs calculations for the NACA 66-006
and NACA 63(420)-422 airfoils with this value. What are your conclusions?

5.24. Discuss how you might use Eqs. (5.18) and (5.19) to construct a picture
of a specific airfoil in the manner of the stream function plots of Chapter 2. You
are not being asked to do it. Just outline the steps involved. Is this something you
might conceivably do by hand?

5.25. How does the boundary-layer displacement thickness on the aft portions
of a specific airfoil vary with increasing flight velocity when the angle of attack
remains constant? Be quantitative.

5.26. Locate the chordwise station on the NACA 63(420)-422 airfoil where the
thickness is a maximum. For a = 0, integrate the components of the pressure in the
drag direction for all locations forward of the point of maximum thickness on the
airfoil. Assume that the boundary layer separates from both surfaces at the point
of maximum thickness and that the pressure on the airfoil surface aft of the point
of maximum thickness is constant at the value of the C/> at the point of separation
on the upper surface. For such an assumption, what is the drag coefficient?

5.27. Which airfoil, a NACA 66-006 or a NACA 63(420)-422 airfoil, has the
highest maximum lift-to-drag ratio?

5.28. Modify the coordinates of the NACA 66-006 airfoil according to how
you think some ice accumulation on the wing might cause the profile to appear.
Then run AIRFOIL and compare the aerodynamic characteristics with those of the
unmodified airfoil. Submit a listing of your modified coordinates. [Two approaches
you may wish to consider are: a) a uniform coating over the entire airfoil surface
and b) a buildup primarily in the nose region.]
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 127

5.29. If an airfoil section and wing planform are selected primarily to suit the
power available at the cruise condition, what does the designer normally do to
reduce the landing speed?

5.30. Based on the concept suggested in problem 5.26 estimate the wake thick-
ness for the NACA 66-006 airfoil at a = 0. Apply the concept to the NACA
63(420)-422 airfoil.

5.31. Rerun problem 5.30 for the same velocity but operating in water instead
of air.

5.32. Before the development of programs such as AIRFOIL, NACA TR 82416

was the principal source of information used by airframe designers to select airfoils
for their subsonic vehicles. Discuss the change in subsonic airframe design practice
permitted by the availablility of programs like AIRFOIL.

5.33. What traps can a user fall into by using AIRFOIL without understanding
the theoretical basis of the program?

5.34. If the NACA 63(420)-422 airfoil were turned upside down and a = 5 deg,
at what Mach number would the velocity on the then upper surface first reach the
speed of sound?

5.35. Construct a 22% Joukowski airfoil with roughly the same camber as the
NACA 63(420)-422 airfoil. Compare the location of the minimum pressure on
the upper surface for a — 4 deg. Does your result support the contention that the
minimum pressure point on the Joukowski profile is farther forward than on the
NACA 63(420)-422?

5.36. As already noted, the NACA 6-series airfoils were intended primarily to
produce low values of drag. Maximum lift coefficient on these airfoils is about 1.6
for a Reynolds number of 3 x 106. Some of the thicker airfoils have maximum lift
coefficients of 1.3 or so at this Reynolds number. What sort of shapes might one
use to obtain airfoils capable of higher maximum lift coefficients? For some hints,
you may wish to consult NASA TN D-7071 (Ref. 30) or some of the work of
Richard Whitcomb related to his supercritical airfoil shapes. A critical feature of
such airfoils is that they are contoured to preserve a favorable pressure distribution
at high angles of attack.

5.37. Discuss the correlation between lift coefficient at a = 0 and the value of

5.38. Older 4-digit NACA airfoils such as the 4412 were used extensively on
World War II military aircraft. Why would this airfoil be suitable for situations
where manufacturing irregularities were difficult to prevent and where service
factors might lead to frequent debris on the wing?

5.39. Using the coordinates for a 12% thick uncambered Joukowski airfoil, run
AIRFOIL and determine the aerodynamic characteristics up to an angle of attack
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128 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

of 12 deg. Then manually modify the coordinates on the upper surface alternately
by 1 % (so as to make the surface rough) and rerun AIRFOIL. Discuss your results.

5.40. Compare the minimum drag coefficient of the NACA 63(420)-422 airfoil
with that of the NACA 66-006 airfoil. Assuming the aspect ratio and wing area
were the same, how would the drag of the two airfoils compare?

5.41. Draw a supercavitating hydrofoil on paper. For simplicity let the chord be
10 cm long. Let the base have a thickness of 1 cm. If you wish you may put a
small amount of camber into it. Let the nose radius be 1 mm. Now enter a set of
ordinates describing this hydrofoil into AIRFOIL. Report your results and discuss.
In your calculations consider a speed of 10 knots under water. Be sure to obtain
data at several angles of attack.

5.42. Would you expect to use a cambered airfoil section as the dive planes on
a submarine and why?

5.43. A Fowler flap is one which first extends rearward and then deflects the
trailing edge downward. What does extension and/or deflection of a Fowler flap
do the the airfoil's pitching moment.

5.44. What is the likely effect on CL vs a of using some means to keep the
boundary layer attached regardless of a? Devices used to accomplish this are
multielement flaps and slats, suction of the boundary layer at a far rearward
chordwise station, and blowing into the boundary layer along a line parallel to the
airfoil surface.

5.45. Investigate the variation of the lift curve slope with airfoil thickness. You
may use the data in Fig. 5.9 for this purpose.

5.46. The ordinates of a modified NACA 632-615 airfoil are given in the follow-
ing data set against which you are to run AIRFOIL:

2.0500 4.4920 6.9730 9.4730
34.7780 39.8570 44.9320 50.0000
75.1630 80.1530 85.1270 90.0890

3.9170 5.3891 6.3294 7.1760
10.5870 10.5980 10.3840 9.9740
5.8000 4.6930 3.5550 2.3980

2.9500 5.5080 8.0270 10.5270
35.2220 40.1430 45.0680 50.0000
74.8370 79.8470 84.8730 89.9110

-2.6840 -3.1362 -3.5346 -3.8860
-4.4070 -4.1720 -3.8140 -3.3560
-.4300 .0830 .4830 .7040

NACA 63-615 AIRFOIL
26 26 2 1

14.
55.
95.

8.
9.
1,

15,
54,
94,

-4
-2

,0000
,5040
,0580
,0420
,0000
,3812
.3930
.2450
.0000
.4960
.9420
.9580
.0000
.2020
.8230
.6510

19.
60.
100,

2,
9,
8,

20,
59
100
-1
-4
-2

,2050
,5580
,1050
.0000
.1636
.3560
.6650
.0000
.7950
.4420
.8950
.0000
.8306
.3500
.2390
.0000

(modified)
0

24.
65.

2.
10
7.

1.
25.
64.

-1.
-4.
-1.

4180
6250
1390

3882
.000
8090

0820
3750
8610

9728
4300
6290

29,
70,

2,
10.
6,

1,
30,
69

-2
-4
-1

.8660

.7000

.1590

.9718

.4310

.8470

.6340

.3000

.8410

.2065

.4990

.0150
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DIRECT COMPUTATION OF AIRFOIL CHARACTERISTICS 129

For the range of applicability of the program are any of the characteristics of
this modified airfoil superior to those of the original airfoil for any of the uses
discussed in Sec. 5.4?

5.47. Aircraft that are supposed to fly supersonically must still takeoff and land.
One of the early supersonic airfoils developed from a consideration of inviscid
compressible flow theory was in the shape of a diamond with two corners at 0.5C
and the other two corners at 0.0 and 1 .OC. Although inviscid supersonic theory tells
one the corners should be sharp, subsonic theory would prefer rounded corners.
Construct a diamond airfoil with a maximum thickness of 0.09C. Put a radius of
0.01C on all four corners. (Such an airfoil type was actually flown on the X-3
research airplane; however, the test wing was only 3% thick.) Analyze this airfoil
with AIRFOIL, a) How reliable do you think the results are? b) Why? c) Assuming
the results are reliable, would this be an airfoil one might consider using for a light
aircraft wing? d) Why?

5.48. Submit the pressure distribution results for the airfoil in problem 5.47 in a
report discussing the results.

5.49. Construct a 10% thick airfoil made with two circular arcs such that the
airfoil has no concave surfaces, a) Analyze via AIRFOIL, b) Discuss the suitability
of this airfoil for a light aircraft wing application based on your results, c) Under
what conditions should you expect the results to require verification via a wind-
tunnel test? d) Why?

5.50. Construct a 3% flat plate airfoil with nose and tail radii equal to 1.5% of
chord, a) Analyze via AIRFOIL for Reynolds numbers 103, 104, 105, and 106

and several angles of attack, b) Discuss your results. Estimate the validity of the
result as part of your discussion. In particular, consider the pressure gradient on
the upper surface as the angle of attack increases.

5.51. For use in a wind powered electric generator one desires an airfoil with a
high lift-to-drag ratio. Also, the blades should have a high length-to-chord ratio
to minimize induced drag. Thus, very thin airfoils may not be satisfactory for this
application. Determine the maximum lift-to-drag ratio and the angle of attack at
which it occurs for the NACA 632-615 airfoil.

5.52. Draw an airfoil such as that shown in Fig. P5.2 on millimeter graph paper.
Consider this a representation of the airfoil section used in an airplane made by
folding a piece of paper. Develop a set or ordinates for this airfoil and analyze by
AIRFOIL for several angles of attack and a Reynolds number less than 10,000. a)
Discuss your results, b) Is AIRFOIL a suitable means to analyze such an airfoil?
c) Explain.

Fig. P5.2 Representation of airfoil for paper airplane.
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130 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

5.53. Consult a set of steam tables to determine the vapor pressure of water. At
what speed in water would a NACA-0006 airfoil at zero angle of attack first find
a mimimum pressure below the vapor pressure of water? Assume the hydrofoil is
operating at a depth of 10 ft. The hydrofoil chord may be assumed to be 1 ft.

5.54. Develop the coordinates of an ellipse where the semimajor axis is 10 times
the semiminor axis. Submit the configuration to AIRFOIL, a) Comment on the
results, b) Discuss the problems the shape might have operating at an angle of
attack of 180 deg. Angle of attack in this case is measured relative to the major
axis.

5.55. Assume that you have been given the task of designing an airfoil that can
produce the greatest possible value of CLmax without the use of slats, flaps, or other
auxilliary devices at a given Reynolds number. Would AIRFOIL prove to be a
useful tool in this endeavor and why?

5.56. Under what conditions (to what angle of attack) would AIRFOIL prove
useful in analyzing the characteristics of a NACA 63(420)-422 airfoil at negative
angles of attack and why?

5.57. The moment of inertia of a wing in bending is roughly proportional to
the thickness squared. Assuming the chord remains constant, by how much could
the span of a wing be increased for the same maximum bending stress by going
from a NACA 0006 airfoil to a NACA 63(420)-422 airfoil? We will assume that
the lift coefficient in the two cases is the same; hence, the lift force will increase
directly with area, e.g., with span. We will also assume that the lift per unit span
is constant. Bending stress is r = Me/I where c is half the maximum thickness
of the wing. M is the product of the total lift times the distance from the center of
lift to the fixed edge of the wing.
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6
The Wing

6.1 Introduction

S ELECTION of an airfoil profile or profiles is but the first task in the creation
of a wing. There are structural considerations, considerations of the mission

and the environment in which the wing will operate, consideration of the planform
and the twist applied the wing so as to minimize induced drag, consideration of
the effects of flexibility on the performance of aerodynamic surfaces attached to
the wing and on wing flutter, and considerations of sweepback or sweepforward
so as to minimize compressibility drag if the flight is to include speeds near Mach
number 1. We will treat only those aspects related to the low-speed flight of a rigid
wing. However, we may include the effects of stall on the performance of lateral
control devices in assisting us to select suitable tip twist or section camber.

Early investigators soon realized that the characteristics of a complete wing
were not the same as those of a two-dimensional airfoil. For example, the angle
of attack at which a complete wing stalls is higher than the angle at which an
airfoil section stalls. Also, the drag of a complete wing is higher than the drag of
an airfoil section. Investigators noticed that aspect ratio, taper ratio, and twist all
affect these differences. Twist refers to the angular difference between the angle
of attack of the wing tip and the angle of attack of the wing root.

We could define sweepback as the angle between the wing leading edge and a
line normal to the fuselage centerline. We could also use as our sweepback angle
reference the wing quarter-chord or the wing half-chord lines. In cases where the
airplane has tapered wings, it seems preferable to use the wing half-chord line as
the sweepback reference, and we shall do so. Because we limit our consideration to
wings with little or no sweepback, the choice of a half-chord sweepback reference
helps make unambiguous the planform of the considered wings.

We will also restrict our consideration also to wings of moderate to high aspect
ratio, which means aspect ratios of about 5 or greater. We do this because such
wings better fit the assumptions of the lifting line theory, which will be the basis
of our analysis. In this theory the actual wing is replaced by a vortex bundle, the
ends of which trail into space behind the aircraft and come together at infinity.
Looking at the bundle from the left wingtip, the vortices are clockwise. Looking
at the trailing vortices from downstream, the left trailing vortex has clockwise
circulation and the right trailing vortex has counterclockwise circulation. The
horseshoe vortex system is shown schematically in Fig. 6.1.

We use the term vortex bundle to indicate that the wing is represented by
a number of line vortices of different lengths, which may be laid on top of one
another along the wing; the ends of each vortex leave the wing at different spanwise
stations. The portion of each line vortex that lies in the plane of the wing is called
a bound vortex. The bound vortex and the two trailing vortices together make up a
horseshoe vortex. Because the components of the bound vortex vary in length the
net vorticity can vary along the wing span. The shed portions of all of the vortices
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132 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

A-A' bound vortex
A-B trailing vortex
A'-B' trailing vortex

B'

Fig. 6.1 Horseshoe vortex system.

roll up near the wing tips to form single vortex patterns, which can be made visible
with smoke or, sometimes, with fine water droplets.

The lifting line theory is an inviscid theory. Therefore, it cannot include in
its drag computation the form drag of the wing or its skin-friction drag. As a
result, we shall be interested in how the F2D3D computer program does this. The
F2D3D program also manages to include in its computation of the aerodynamic
characteristics of complete wings the portion of the fuselage included in the wing
planform area. This, too, is not usually a part of the lifting line theory; how the
effect of a portion of the fuselage is included will also be of interest.

6.2 Induced Angle of Attack due to a Finite Wingspan
and its Consequences

The first to provide what we now believe to be a correct description of the effect
on lift of having a finite wingspan was the Englishman Frederick W. Lanchester,31

who published his ideas somewhat belatedly in 1907. Because his exposition of
the theory was easier to understand, Prandtl is usually given credit for developing
the lifting line theory. However, in his 1927 Wilbur Wright Memorial Lecture to
The Royal Aeronautical Society Prandtl32 said:

In England you refer to it as the Lanchester-Prandtl theory, and quite rightly
so, because Lanchester obtained independently an important part of the
results. He commenced working on the subject before I did, and this no
doubt led people to believe that Lanchester's investigations, as set out in
1907 in his Aerodynamics, led me to the ideas upon which the aerofoil theory
was based. But this was not the case. The necessary ideas upon which to build
up that theory, so far as these ideas are comprised in Lanchester's book, had
already occurred to me before I saw the book. In support of this statement
I should like to point out that as a matter of fact we in Germany were
better able to understand Lanchester's book when it appeared than you in
England.... The truth of the matter, however, is that Lanchester's treatment
is difficult to follow, since it makes very great demands on the reader's
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THE WING 133

intuitive perceptions, and only because we had been working on similar
lines were we able to grasp Lanchester's meaning at once. At the same time,
however, I wish to be distinctly understood that in many particular respects
Lanchester worked on different lines than we did, lines which were new to
us, and that we were able to draw many useful ideas from his book.

Von Karman5, who knew both men well, summarized Prandtl's contribution to the
development of the lifting theory in these words:

Prandtl systematized and simplified the picture in the following ways: (1) the
wing is replaced by a lifting line perpendicular to the flight direction; (2) the
lifting line is assumed to consist of a bound vortex with circulation variable
in order to account for the fact that the lift may change along the span; (3) in
accordance with the change in circulation along the span, free vortices are
born and extend downstream; (4) the flow produced by the vortex system is
considered as a small perturbation of the fundamental stream relative to the
wing, and therefore; (5) it is assumed that the free vortices approximately
follow the original direction of the streamlines parallel and opposite to
the flight direction, instead of winding up immediately into tip vortices as
Lanchester assumed; (6) the flow in the immediate neighborhood of a wing
section is determined by the two-dimensional solution given by Kutta and
Joukowski.

6.2.1 Calculation of Induced Angle of Attack
We indicated that we would represent the wing by a group of horseshoe vortices

which physically roll up aft of the tips to form a single trailing vortex. The circu-
lation associated with these vortices will vary along the span, being symmetrical
about the midspan point and falling to zero at the tips. Between y and dy on the
span (see Fig. 6.1) the circulation decreases by an amount

- — dy (6.1)

Ideally, a trailing vortex of this strength springs from each element of span dy.
Therefore, there is a sheet of trailing vortices extending across the span, and the
induced velocity normal to the freestream velocity must be obtained as the sum of
the effects of all trailing vortices in this sheet.

To determine the form of the expression giving the sum of the effects of all trail-
ing vortices consider the case of a wing represented by a single horseshoe vortex.
The velocity induced by a vortex at a point depends on the distance from the point
to the vortex filament. In Fig. 6.1 the distance from point P to the wing filament
is PM. The total velocity, \fu2 + u2, is normal to the line, ^/x2 -f y2, connecting
the filament to the point where the velocity is to be determined. Therefore, one
could write

>———— r
(6.2)

It seems reasonable to conclude that at any point the velocity induced by a semi-
infinite vortex filament is half that induced by an infinite vortex. Let us ask, then,
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134 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

what is the velocity induced at the point by a small segment of the vortex filament.
We know that the velocity depends on the distance from the segment to the point.
If we call x2 + y2 = r 2, then this distance from the vortex filament at A' is r/ sin 9\
where 0\ is the angle P A' M in Fig. 6.1.

Substitution of this expression for distance into an expression for the velocity
induced at a point, say, in the X O Z plane, by a segment of semi-infinite vortex
can be seen to yield

(6.3)
nr

Integration of this expression yields

Vi = —— cos#i (6.4)
4nr

Calculation of the contribution to the velocity from the part of the filament beyond
0 in the figure yields

V2 = —— cos #2 (6.5)
4nr

so that the total induced velocity is

r
V = —— (cos 0i + cos 02) (6.6)

4nr

This is one form of the Biot-Savart law. Continuing in the notation of Fig. 6.1 the
downwash velocity at point P (normal to PM) may be written

V = ———— [cos PA' A + cos PAA'} (6.7)4nPM

If we now assume that the point P is located along the span at, say, y\ , then
the distance from 3^1 to any other point is y\ — y. Further, if F is variable along y,
then

fb/2 dp
= / -r-dj (6.8)J-b/2 dy

Therefore, following Prandtl, one may write the induced velocity w at some point
y\ along the span as

-b/2 y\—y
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THE WING 135

Thus, the angle of attack of the induced flow is

»*/2 dr
ty

(6.9)y\-y
Unfortunately, the circulation F about an airfoil is not readily measured nor

is it a quantity that is easily thought of in physical terms. More commonly, the
characteristic of an airfoil is stated in terms of its lift coefficient, a quantity easily
measured and important in aerodynamic and structural design. It can be shown on
analytical grounds (see Chapter 3) that the lift per unit span of wing is pVF. The
airfoil or section lift coefficient is, therefore,

pVr 2FCI = T-^T = ̂ - (6-1Q)^pV2c Vc

Hence,

Y = \CtVc (6.11)

Because both Q and c can vary as functions of 3; we put

dF _ V d(Ctc)
dy ~ 2 dy

or in nondimensional form

dF Vbd(Ctc/b)
dy 2 dy

from which we write

(6.12)

/V/2

1 /
87T I »J dy (6>13)

t/-b/2 y \ - y
The use of an overbar in the preceding equation indicates that the equation

applies to variables in the transformed u plane, which is discussed in Sec. 6.3 of
this chapter. At this point it will be sufficient to assert that the transformation does
not affect geometric quantities in the chordwise direction so that c = c. Wing twist
is also not affected nor does the transformation affect quantities such as the local
value of the circulation. Thus,

Ct(y)c = Ci(y)c (6.14)

Let us now represent C^c/b by the series

(6.15)
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136 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

and call 0 = cos~l(—2y/b). Then, we can write the expression for the induced
angle of attack at any spanwise station in the u plane as

(6.16)

However,

/'t/0 cos 0 — cos 0 sin

so that

cosnO sin/20
(6.17)

00

5Z ftrin '

(6.18)
T nAnsi

Because y\ is an arbitrary spanwise location, we can discard the subscript.
We choose to evaluate the lift at m evenly spaced points along_the span with

a finite series of r — 1 terms. We assume m and r are related by 9 = mn/r and
m = 1, 2, 3, . . . . The lift is assumed to be constant over each spanwise interval.
Thus, to get a reasonably accurate representation it is necessary to consider a fairly
large number of intervals. We write the lift in each interval as

(6.19)
\ *> /m ~i r

for which
r _ 1 , v

A, = -V(-4^) shift —— (6.20)
r ^—\ V /? / w rm—1 v 7 w

Substitution of this result into the expression for the induced angle of attack yields

mn I - I
sin/z—— sin nO > (6.21)

Now

sin a sin /3 — ^ [cos(a — ,

With the use of this identity we can write

cos n | 6 — —— | — cos n

(6.22)

For computational purposes we have chosen to terminate the series at r — 1 terms.
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THE WING 137

We wish to evaluate the induced angle of attack at the same points at which we
were required to find Q. To accomplish this we put 0 — kn/r and define

r sin — «=i
r

— cos n
(k

Then,

(6.23)

Now if k = m

r sin

2knnl
- —J

(6.24)

(6.25)

The sum of the series in Eq. (6.25) is not easily found. By evaluating series of
varying length it can be shown to be r2/2; hence,

Pmk = —AT- (6.26)
2 sin —

r

When k -f- m is even and k ^ m, then pmk = 0. When k + m is odd

1
£TT

r sin —
r

1 1

1 ™ (* + m)jr 1 .̂ , ̂  ~ m)7r

L r r J

(6.27)

Note that the value of fimk depends only on the number of spanwise stations used
in the analysis and is independent of aspect ratio or taper ratio.

We will return to the evaluation of &i(y) following our consideration of the
effects of aspect ratio, planform shape, and the presence of a fuselage on the wing
flowfield.

6.2.2 Effect of Aspect Ratio and Planform Shape
The effect of the induced flow is to reduce the effective angle of attack so

that an additional physical angle of attack is required to produce the same lift.
Mathematically, we can express this as

The term on the left side of Eq. (6.28) can also be expressed as

C t ( y ) 2T
ote(y) = CLa cVCLa

(6.28)

(6.29)
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138 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

But
oo

r = 2bV^An sin 726* (6.30)
n=l

so that

ae(y) =
4b

(6.31)
^La n = l

Now set /x = 4b/cCLa and use Eq. (6.18) for at(y). Then Eq. (6.28) becomes
r oo

= ct(y) —
Ann si

(6.32)

or when fractions are cleared

-f (6.33)

This is called the fundamental monoplane equation. By picking n locations (and,
therefore, n values of 0} along the semispan at which the two-dimensional aero-
dynamics characteristics are known, it is possible to write n equations in An
unknowns, which can then be solved. With these An known, one can evaluate the
finite series for the sectional characteristics and then integrate over the semispan
to obtain the overall three-dimensional characteristics. We discuss the procedure
in somewhat more detail in our review of the F2D3D program.

Alternately, one may think of the effect of a finite wing span to be a rearward
tilting of the lift vector. This rearward tilting reduces the lift and adds a component
of force in the drag direction. This component is called the induced drag. Notice
that this drag is not created by viscosity but is an unavoidable consequence of
producing lift with a finite wing. Making use of the small angle approximation
this induced drag is La?/ = L(w/ V)/ . But the induced velocity is

Hence,

D, = - =' pnV2b2

(634)

(6.35)

In Eq. (6.35) S is the wing area. The induced drag coefficient is then simply

r2 9 c2
CD, = ±± = ±f- (6.36)

nb2 nAR

Here we have used the symbol AR = b2/S to represent the aspect ratio.
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THE WING 139

From a force diagram it will be seen that CQ. is C^a/ so that the average induced
angle of attack for the wing is, from Eq. (6.36),

CL (6.37)
7tAR

We should note that the expressions we just obtained are not accurate for
low aspect ratio wings, swept back wings, or swept forward wings. For those
cases where they are properly applied, we see that the effect of a finite aspect
ratio is to increase the geometric angle at which a given wing lift coefficient is
obtained compared with the two-dimensional coefficient. We can write this effect
in mathematical form as

(CLa\ (a + -^-} = (CLa}2 (av n V nARJ v / 2 \
(6.38)

If we take ARl = oo and CLU = 2;r, then Eq. (6.38) becomes

from which we can construct a general expression for the effect of aspect ratio on
thin airfoils,

(6.39)

For thicker airfoils we can replace 2n in Eq. (6.39) by the appropriate value.
A similarly useful relationship can be obtained for the change in the angle of

attack required to achieve a given CL - Let

CL
oil =

nARl

CL

with oiQ the angle of attack for infinite aspect ratio. Then it is easily seen that

(6>40)
7T \ARl AR

Now let us consider a distribution of circulation given by
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140 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

and integrate this distribution over the span

=Pv r
I b

— T

To facilitate the integration make the subsitutions

b
y = -sin<9

and

2

Then, as a result of the integration we can write

pnVb
If we had substituted

oo

(6.42)

dy = - cos 0

and change the limits of integration appropriately,

L = pVr0 I 2 y/\ -sin26>-cos#d6> (6.43)
J—?• 2.

(6.44)

An sinnO (6.45)
n = \

for Eq. (6.41) when integrating Eq. (6.42) we would have obtained

fn

L = pV2b2 An sin nO sin 6 dy (6.46)
Jo

However,

/ sin/?6>sin<9d<9 =0
Jo

forn^l. Thus,

L = ±PV2nb2A{ (6.47)

By comparing Eqs. (6.44) and (6.47) we can evaluate AI for a wing with an
elliptical planform,

(6.48)

We can use the same approach to develop a general form for the induced drag,

/
5 W

pVT-dy (6.49a)
4 v
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-sin6>d<9

/•7T

nA2
nsi

Jo
= pV2b2 nA2

nsin2nOd0

Because

-

Eq. (6.49b) can be written

oo

" ~ " &l (6-5°)

Now, because all An are squared in Eq. (6.50), the minimum D/ occurs when
n = 1, which reduces Eq. (6.50) to

(6.51)

Because

we can use Eqs. (6.47) and (6.51)

F-v P 1 72 1 2 A ^ L *- , 9 T 7 2 4 2Dt = -Vz7rbzAl—- = -p7ibLVLA\
2

to show that A\ is

Ai = -%- (6.52)nAR

With Eq. (6.52), Eq. (6.51) becomes

or

Equation (6.53) shows that the minimum induced drag is obtained through the
use of an elliptical planform or a planform that, by means of appropriate taper
and twist, achieves essentially the same thing aerodynamically. Readers interested
in history may recall that the Supermarine Spitfire, the victorious fighter in the
Battle of Britain in 1940, employed an elliptical planform. Later versions of the
aircraft, however, employed more squared-off wing tips. A reason for this change
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142 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

may be that the chord of an elliptical planform near the tip is very short and, thus,
the Reynolds number is very small. At low Reynolds numbers the maximum lift
coefficient is reduced and the drag coefficient is increased. As a consequence,
the desired elliptical spanwise loading was probably not achieved. In addition,
the difficulty of forming aerodynamically accurate sections in a small size on
a production basis would seem to have contributed to the decision to use more
squared-off tips.

6.3 Wing-Fuselage Interaction
The portion of the fuselage lying between the wings (see Fig. 6.2) is by defi-

nition included in the wing planform area. This is reasonable because this region
contributes to the overall wing lift although in a manner that is not readily charac-
terized. Multhopp33 devised a transform similar to the Joukowsky transform, which
squeezes an elliptical fuselage into a line along the major axis and distributes its
upwash effects along a trace of the wing. As far as the flow is concerned, there
is no fuselage in the u plane. A cross section of the wing-fuselage combination
normal to the airflow is shown in Fig. 6.2a. Figure 6.2b displays the transformed
wing-fuselage combination. The figure also identifies the nomenclature used in
the following analysis.

We begin by writing the coordinates of the trace of the wing-fuselage combi-
nation as a complex variable

u = z + iy = a cos i/f + ib sin \/f (6.54)

We use the angle T/T simply as an aid in some of the mathematical operations. After
the transformation is applied, the coordinates of the wing-fuselage combination
are written in terms of the complex variable

u = z -f iy (6.55)

a) u - plane

•i
b)

u~- plane

Fig. 6.2 a) Physical plane and b) transformed plane.
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THE WING 143

The trace of the wing-fuselage combination in the y-z plane is transformed from
the physical u plane to the u plane according to the relation

u = -fi^j, \A!u - £VV

The following definitions also apply:

a =

(6.56)

(6.57a)

(6.57b)

(6.57c)

Substituting the trignometric form of u into the transformation relationship
yields

u =
' -B

\A'(a cos i/r + ib sin ̂ ) — B'(b cos/ L sn i

Comparing real and imaginary parts shows that

1
A -

\A'y — B'a si' L y a sin i

= z + iy

(6.58)

(6.59)

But because

y = b sin ty
?

Hence,

y = y
A' -B'

A'-B'-

(6.60)

(6.61)

This relationship determines how points along the span in the physical plane or u
plane transform into the u plane.

Now we seek to find how the flow in the neighborhood of the fuselage influences
the flow direction and magnitude at each station along the wing's semispan. In
effect, the real part of dii/du distributes the vertical components of the fuselage
flow along the wing. If UB is the fuselage angle of attack in the u plane, then the
amount by which the flow angularity exceeds that due to geometric inclination at
points along the span is given by

(6.62)

where the symbol 71 indicates we are to consider only the real part of the derivative.
Because of the nature of the transformation, ctB will have the same value in either
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144 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

plane. Now the real part of du/du is the vertical component of the flow. After
some manipulation we find that

du A' - B'
A' -B'-

1 +
af2y2

(a2 - e'2)2 J

(6.63)

If the wing is very thick at the junction with the fuselage, then the actual
Aa obtained is less than predicted. It has been suggested that one should reduce
Acy (_y) by a factor T, taken as a constant across the wing span, which is the ratio of
the body cross-sectional area above and below the wing to the total frontal area of
the body. The area of an elliptical fuselage is, of course, n A' B'. The segment of the
fuselage that represents a continuation of the wing has an area of approximately

T = 1-
TtA'B'

Using this relation we can write Aa(;y) as

30 = TaB K— - 1
L du

We could also have written this expression as

dw\ 1
—) - 1
duJT J

if we had known how to write

(6.64)

(6.65)

(6.66)

(6.67)

explicitly. However, by comparing the two expressions for Aa(;y) we choose to
write as a first approximation

du
(6.68)

In addition to the flow angularity induced along the wing by the presence of
a fuselage, there is also a flow downwash induced by the lift associated with the
finite wing. This angle in the u plane is written as a/ (y). Now we seek to transform
this angle into the u plane so that we may more easily see its influence on the
actual lift and drag of the local airfoil section. We note that the induced angle in
the u plane multiplied by the real part of the change in u for a given change in u
is just the induced angle in the u plane. Thus, for thick airfoils

(6.69)
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THE WING 145

This angle is negative in the usual sense. The geometric angle of attack can be given
in terms of the angle of attack at the root and the twist relative to the root angle as
a function of span: ote(y) = MR + e(y). To the geometric angle we must add flow
angularities due to body up wash, as, and due to wing lift, a,-. The result is that for
thick wings, the effective section angle of attack in the physical plane is given by

* 00 = - <*/ 001 ' 1 -
nA'B'

1
A' -B! A' -B'-

1 +
e'2y2 - 1

(a2 - e'2)v2\2

(6.70)

with

and

a = (h- A'2 - £'2)2] (6.7 la)

(6.71b)

Note that with the exception of a/ (j) all of the quantities in Eq. (6.70) can
be determined from the geometry of the design. The angle a/ 00 is determined
according to the analysis carried out in Sec. 6.2 and 6.4.

6.4 Characteristics of the Three-Dimensional Wing
Much of this section and portions of section 6.3 are based on the treatment

given in Ref. 26. The present discussion provides the theoretical basis for program
F2D3D, which is a modified version of the program presented in that document.

To this point we have developed an implicit relation giving the spanwise varia-
tion of induced angle of attack and a relationship distributing the upwash effects
of the fuselage along the wing. We desire to develop a procedure similar to that
arising from the use of Eq. (6.33) to determine explicitly the three-dimensional
characteristics of the wing as a function of spanwise station that we can integrate
to find the overall force and moment coefficients.

We begin by writing

(6.72)

As a first approximation, we will assume that the variation of lift coefficient with
angle of attack Cta at any spanwise location is constant. Then by writing

(6.73)

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



146 AERQDYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

we can define A^ as the amount that must be added to the initial estimate for
(C^c/b) to obtain a new value that includes in it the effects from other portions of
the wing. A second iteration is formed as follows:

Subtraction of Eq. (6.74) from Eq. (6.73) yields

If we define

then Eq. (6.75) could be written as

"r-l

180r
i J k STT sin(kn/m)

Dividing by Gkk yields

*Pmk A ,

Gkk

(6.75)

(6.76)

(6.77)

(6.78)

Equation (6.78) represents r/2 simultaneous equations, which may be represented
in matrix form as

(6.79)

where G// is a matrix with all of the principal diagonal elements equal to
(1 + I/Gkk) and the other elements are fimklfak- The values to be added to one
set of approximate values to obtain a better approximation, therefore, are given by

77- HA/} (6.80)

As a first approximation to the distribution of lift on the wing, we use the
expression

AR C \ / £JR \ /ft* / u
» — \ 2

b )

(6.81)
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THE WING 147

which, as can be seen, contains a simple aspect ratio correction and a single taper
ratio A correction to the typical elliptical lift distribution. In Eq. (6.81) CR is the
root chord. The value of Q on the right-hand side of Eq. (6.81) comes from the
two-dimensional data corresponding to the local geometric angle of attack.

The flow in the tip regions and its effect on the overall wing characteristics are
particularly difficult to determine quantitatively. The more inboard sections of a
finite wing are influenced by the downwash generated by the horseshoe vortex
system and the upwash due to the fuselage so that the primary effect on the more
inboard sections is a change in effective angle of attack. In the tip region, on the
other hand, there is a substantial span wise flow that detracts from the flow moving
chordwise; consequently, the tip region is able to generate less lift than one would
normally expect for a given freestream flow velocity. This, of course, reduces the
total lift of the wing somewhat. To accommodate this loss in lift within the idea
of using two-dimensional data at an appropriate angle of attack, we modify ae to
read

(ae -
(6.82)

We use ot'e to look up the three-dimensional value of the section lift coefficient
from the two-dimensional data.

If CiC/b computed in this fashion is not sufficiently close to the initial estimate
of C^c/b, then a correction given by Eq. (6.80) is added. The process is repeated
until a satisfactory agreement is obtained.

When a satisfactory lift distribution has finally been obtained, one can employ
the same section data to find the profile drag and moment coefficient at each
station along the wing. The local induced drag is simply a product of the lift and
the induced angle of attack at that point. The overall force and moment coefficients
are obtained by integrating the local values over the span. If one uses Simpson's
rule for this integration, explicit relations for the lift, drag, and moment can be
obtained.

<6'85)

C~ = " ' 2 > l 3 - <-«"]»» —— (6.86)'
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148 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

In Eq. (6.86)

Cm = Cm, - (x/c)\Ct cos(aB - at + Cd() sin(aB ~ a/)]

- (z/c)[Ct sin(aB - a/) - Cd(} sm(aB - a,)] (6.87)

If c' is the mean aerodynamic chord, the preceding integrations are somewhat
analogous to the process represented by

Because the computation of (Ctc/b) has really been carried out in the i/_plane
as far as the wing span is concerned, we must multiply our result by b/b to
transform it to the physical plane. AR is just b/c', and the average (aerodynamic
not geometric) value of c over the span is c''. The term in the braces in (6.83)-(6.86)
is the multiplier employed by Simpson's rule. It is seen, therefore, that CL is, in
fact, an average over the span in the physical plane.

6.5 Curve Fitting Aerodynamic Characteristics: POLYFIT
The aerodynamics characteristics calculated by the AIRFOIL program are pro-

duced at discrete angles of attack. The present version of F2D3D requires that
these data be in the form of the five coefficients of a fourth-order polynomial.
POLYFIT (see Ref. 26) performs a least squares fit on the results produced by
AIRFOIL to obtain the coefficients. Four sets of coefficients are produced: CL vs
a, CD vs CL, Cm vs CL, and a vs CL- Program output is divided between two
files: POLYFIT.TXT and POLYFIT.DAT. The first provides printer plots of curves
generated from the polynomials; the second is in a form that can be read directly
by F2D3D.

Some renaming of the output files will be required, the amount depending on the
airfoil sections chosen for the wing root and wing tip. F2D3D will require at least
two input data files: one for the root and another for the tip. If the airfoil sections
for the root and tip come from different families, then two sets of data must be
input for the root and two for the tip. (A family consists of all of the sections with
designations beginning with 230xx, for example; that is, members of one family
differ from each other by their thicknesses.) The reason that two airfoil sections
from one family must be used is so that the program can interpolate on thickness.
For this reason some care must be exercised in selecting the second member of the
family to use. For example, if the root section is to be 20% thick and the tip section
is to be 12% thick, then the program will interpolate to find the correct thickness at
each spanwise station. If the sections are from the same family, then only data for
the 20% and 12% sections need be entered. However, if the root and tip are to use
different families, then the data for the root family must include coefficients for a
thinner member and the tip must include coefficients for a thicker family so that
this interpolation can be carried out successfully. When only one family is used
for both root and tip sections, the coefficients for the root section should reside
in a file renamed POLYFIT.RT1, and those for the tip section should be in a file
named POLYFIT.TP1. In the event that the root and tip sections are from different

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



THE WING 149
i

23012 SERIES AIRFOIL / ALPHA=-4,-2,0,2,4,6,8,10,12 / RN=3.49 / MACH NO .2
9

-4.0000 -.31963 .78733E-02 -.50869E-02
-2.0000 -.94990E-01 .75489E-02 -.66658E-02
.00000 .12565 .64448E-02 -.85043E-02
2.0000 .34962 .68430E-02 -.10548E-01
4.0000 .57321 .70861E-02 -.12139E-01
6.0000 .79169 .80974E-02 -.13172E-01
8.0000 1.0056 .99529E-02 -.14259E-01
10.000 1.1850 .14048E-01 -.12825E-01
12.000 1.3580 .18434E-01 -.10255E-01

Fig. 6.3 Input data file for POLYFIT program.

families, there will be four files: POLYFIT.RTl, POLYFIT.RT2, POLYFIT.TPl,
and POLYFIT.TP2.

Program 2DHELP generates input file AIRFOIL.PUN for POLYFIT. AIR-
FOIL.PUN must be manually edited or 2DHELP must be edited, recompiled, and
executed when a different airfoil is to be analyzed.

6.5.1 Data Entry
For each airfoil the program requires the following input.
1) The 80 characters of the array TITLE is used as a header for identifying

output. In this version of the program only one airfoil per run can be analyzed.
The format is 20A4.

2) The number NUM is the variable that specifies the number of angles of attack
that follow. The largest permissible value of NUM is 20. The format is 110.

3) The first element values of the arrays AL, CL, CD, and CM are the angle of
attack and the two-dimensional coefficients of lift, drag, and pitching moment for
that angle of attack. Similar lines with successive array elements follow until the
number of point specified by NUM are read in. The format is G16.5.

In addition, two switches can be set in the program. When SWITCH is set to
zero, printer plots are produced. When SWITCH is set to 1, no plots are produced.
The other switch is PUNCH. It is set to zero to write output files for use in F2D3D.
A typical input data set (AIRFOIL.PUN) is shown in Fig. 6.3

6.5.2 Typical Results
Results produced by the program for the example case in Fig. 6.3 are shown in

Fig. 6.4. While the numbers shown in Fig. 6.3 are indeed those used to generate the
results shown in Fig. 6.4, the horizontal location of the numbers in the figure has not
been indicated. If in doubt, the READ statement in the program may be consulted
to determine where in the formatted data field the program expects to find each
column of numbers. Subsection 6.5.1 indicates that, for this case, each column
occupies exactly 16 spaces with 5 digits to the right of the decimal point. Failure to
observe this instruction will result in nonsense numbers if the program runs at all.

Note that the output file POLYFIT.TXT, although shown here as a series of
figures, is actually produced as a single file using a print format of 132 characters
per line. Printing it using 17 characters per inch on a dot matrix printer will
render it in the correct form on 8.5 in. x 11 in. paper. If the file is printed with
6-point Courier bold type on a laser printer it will also have the desired appearance
(8.5 x 11 paper).
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150 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

THE NUMBER

ALPHA
- .000000 -

.000000

.000000

.000000

.000000

.000000 1
10.000000 1
12.000000 1

OF DATA

CL
319630

125650

791690

185000
358000

IPUT

POINTS IS = 9

CD CM
.007873 - 005087

.006445 -

.008097 -

.014048 -

.018434 -

008504

013172

012825
010255

TWO DIMENSIONAL CURVE FIT FUNCTIO

C(0) C(l) C(2) C(3) C(4)
CL VERSUS ALPHA .12631 .11213 .00014 -.00003 .00000

CM VERSUS CL -.00751 -.00769 -.00095 -.00205 .00429

1 DATA

DOMAIN= -4.0000 TO 12.0000

DOMAIN= -.3196 TO 1.3580

Fig. 6.4a Tabular results for curve fit.

-.ntuo x- -4.000 X« 12.0000

Fig. 6.4b CL vs a curve produced by program.
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THE WING 151

1444(01-0), X» .Mi«30

Fig. 6.4c CD vs CL curve produced by program.

V -.)0t«t»l-03

V -.143S10B-01. X

0«XD fOOABI DIM

".

•X

• -.J11MO

onion > »• .2ii«o
X- .UJM*

"•

KAUt
•03

•X

X- .131103 01
V- .1173101-03 01

m/IHCH
rrri/iMCM

•

./"

x.

•

.35100

Fig. 6.4d Cm vs CL curve produced by program.
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152 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Fig. 6.4e Angle a vs CL curve produced by program.

6.6 Converting Two-Dimensional Data to Three-Dimensional:
Program F2D3D

Program F2D3D uses the lifting line theory discussed in Sees. 6.2 and 6.3 to
determine the lift distribution of a complete wing in the manner of Sec. 6.4. (Note:
F2D3D26 is an extensive modification of the STALL program.34) It begins with the
two-dimensional airfoil lift data for the root and tip airfoil sections as produced
by program AIRFOIL and adds to these the effects of aspect ratio, taper ratio,
and twist. The program can interpolate between the characteristics of sections of
different thickness and even between the characteristics of sections from different
families. The interpolations are linear along the semispan. Once the lift distribution
is known, the program can then find the distribution of induced drag and induced
angle of attack. The profile or form drag of the airfoil sections between the wing
root and the wing tip are then interpolated from the root, and tip data supplied to
the program. The pitching moment distribution is also determined by interpolation
using input pitching moment characteristics as a function of section lift coefficient
and the calculated section lift coefficient distribution. Each of these distributions
is evaluated at 20 stations over the span. Overall wing characteristics are deter-
mined by integrating these distributions over the wing span using Simpson's rule.
Interpolation in this manner is valid because there is little spanwise flow over a
major portion of the span for straight wings of moderate to high aspect ratio.

On the following pages the data entry requirements for F2D3D are described.
Translated into the files F2D3D.IN and POLYFIT1.DAT they are shown in Figs.
6.5a and 6.5b.
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THE WING 153

DEGREE= 4

CL VERSUS ALPHA

THE FIT COEFFICIENTS ARE

0 = .126309
1 = .112130
2 = .141772E-03
3 = -.333841 E-04
4 = -.377345E-05

X-VALUE Y-VALUE

-4.000000 -.3196300
-2.000000 -.9499000E-01
.0000000 .1256500
2.000000 .3496200
12.00000 1.358000

Y-FIT

-.3187732
-.9717798E
.1263086
.3508087
1.356352

4.000000
6.000000
8.000000
10.00000

.5732100

.7916900
1.005600
1.185000

.5739952

.7920923

.9998749
1.190669

DEGREE= 4

CD VERSUS CL

THE FIT COEFFICIENTS ARE

0)= .70761 5E-02
1)=-.201854E-02
2)= .195345E-02
3)= .575336E-03
4)= .269089E-02

X-VALUE

-.3196300
-.9499000E-01
.1256500
.3496200
1.358000

Y-VALUE

.7873300E-02

.7548900E-02

.6444800E-02

.6843000E-02

.1843400E-01

Y-FIT

.7930206E-02

.7285243E-02
.6855173E-02
.6673997E-02
.1852986E-01

.5732100

.7916900
1.005600
1.185000

.70861 OOE-02
.8097400E-02
.9952900E-02
.1404800E-01

.6959807E-02

.8045048E-02

.1035842E-01

.1369064E-01

DEGREE= 4

CM VERSUS CL

THE FIT COEFFICIENTS ARE

C(0)=-.751337E-02
C( 1)=-.769025E-02
C( 2)= -.954965E-03
C( 3)= -.204935E-02
C(4) = .428902E-02

0 X-VALUE Y-VALUE

-.3196300 -.5086900E-02
-.9499000E-01 -.6665800E-02
.1256500 -.8504300E-02
.3496200 -.1054800E-01
1.358000 -.1025500E-01

Y-FIT

-.5041208E-02
-.6789380E-02
-.849771 8E-02
-.1034226E-01
-.1026347E-01

.5732100

.791 6900
1.005600
1.185000

-.1213900E-01
-.1317200E-01
-.1425900E-01
-.1282500E-01

-.1215820E-01
-.1353219E-01
-.1391044E-01
-.129201 3E-01

DEGREE= 4

ALPHA VERSUS CL

THE FIT COEFFICIENTS ARE

0 = -1.13586
1 = 9.02353
2 = -.557649E-01
3 = -.49731 1
4 = .659905

X-VALUE

-.3196300
-.9499000E-01
.1256500
.3496200
1.358000

Y-VALUE

-4.000000
-2.000000

.0000000
2.000000
12.00000

Y-FIT

-4.002625
-1.993032
-.3759550E-02
2.000734
12.01410

.5732100

.7916900
1.005600
1.185000

4.000000
6.000000
8.000000
10.00000

3.995770
5.985492
8.050906
9.952416

Fig. 6.4f Fit information.
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154 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

10.05 .12 .20 .40 -3.50 20.00 3.49 .001
.00 .00 .00 .00 .00 .00 100.00
1 0 0 0 • 1

23020 root series 23012 tip series
-4. -3. -2. -1. 0. 1. 2. 3. 4. 5.
6. 7. 8. 9. 10. 11. 12. 99.

Fig. 6.5a Input file F2D3D.IN for a typical data set.

23012 SERIES AIRFOIL / ALPHA=-4,-2,0,2,4,6,8,10,12 / RN=3.49 / MACH NO .2
.12000
.12631

-4.0000
.70761E-02

-.31963
-.75134E-02
-.31963
1.13580
-.31963

.11213
12.000
-.20185E-02
1.3580
-.76902E-02
1.3580
9.0235
1.3580

.14177E-03

. 19535E-02

-.95496E-03

-.55860E-01

-.33384E-04

.57534E-03

-.20493E-02

-.49714

-.37735E-05

.26909E-02

.42890E-02

.65984

Fig. 6.5b Input file POLYFIT1.DAT for a typical data set.

6.6.1 Program Data Entry
For each configuration the program requires the following input data.
1) The aspect ratio ASPEC, the thickness ratio of the tip TAUT, the thickness

ratio of the root TAUR, the taper ratio TAPER, the geometric twist TWIST in
degrees (if geometric twist is specified the aerodynamic twist TWISA must be set
to a value of 100.0), the number of spanwise stations R (R must be less than or
equal to 20.0), Reynolds number in millions based on wing mean aerodynamic
chord REYND, and a criterion for convergence of the lift distribution DISCR are
required. The format for this line is 8F10.2.

2) Fuselage height to wing span ratio A; fuselage width to wing span ratio B;
the height of the wing above the fuselage centerline //, again as a ratio to wing
span; wing-body incidence angle ALPHR, in degrees; x coordinate of the moment
reference X\ z coordinate of the moment reference Z; and the aerodynamic twist
TWISA, in degrees are required. The format for this line is 7F10.2.

3) The number of airfoil families (two tables per family) to be read in with this
configuration IFAM, a control parameter for reading in the wing geometric param-
eters ISWIT(l), a control parameter for printing out the intermediate calculations
as they are performed ISWIT(2), a control parameter for printing out matrices
ISWIT(3), and an indicator that the tip airfoil is or is not of the same family as the
root IRT are required. A yes action is implied when IRT = 1; otherwise, IRT = 0.
The format for this line is 5110.

4) The 80 characters of the array NAME are used as a header for identifying
output. The format is 20A4.

5) The 80 characters of the array TITLE1 serve as identification for the first
airfoil table. The format is 20A4.

6) The thickness ratio in the first table RT1 is required. The format is G16.5.
7) The five coefficients of the array for the lift polynomial CCLRT1 for the

airfoil in the first table are required. The format is 5G16.5.
8) The domain is required for which the members of CCLRT1 are valid, XLO(l)

andXHI(l).
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THE WING 155

TWO DIMENSIONAL CURVE FIT FUNCTION DATA
OF THE FORM Y=C(0)+C(1)*X+C(2)*X**2+...

23012 SERIES AIRFOIL / ALPHA=-4,-2,0,2,4,6,8,10,12 / RN=3.49 / MACH NO .2
THICKNESS RATIO= .12

CL VERSUS ALPHA
CD VERSUS CL
CM VERSUS CL
ALPHA VERSUS CL

CCO)
.12631
.00708

-.00751
1.13580

C(l)
.11213

-.00202
-.00769
9 . 02350

C(2)
.00014
.00195

-.00095
-.05586

CCS)
-.00003
.00058

-.00205
-.49714

CC4)
.00000
.00269
.00429
.65984

DOMAIN=
DOMAIN=
DOMAIN=
DOMAIN=

-4.0000
-.3196
-.3196
-.3196

THICKNESS RATIO= .21
CCO) CCD CC2) CCS) CC4)

CL VERSUS ALPHA .13324 .11788 -.00013 -.00015 .00001
•• CD VERSUS CL .00775 -.00047 .00338 .00154 -.00003
CM VERSUS CL -.00176 -.01808 -.00626 .01679 -.00705

•• ALPHA VERSUS CL -1.12080 8.48720 -.32278 1.16880 -.42162

12.0000
1.3580
1.3580
1.3580

23021 SERIES AIRFOIL / ALPHA=-4,-2,0,2,4,6,8,10,12 / RN=3.49 / MACH NO .2

DOMAIN= -4.0000 TO 12.0000
DOMAIN= -.3295 TO 1.3580
DOMAIN= -.3295 TO 1.3580
DOMAIN= -.3295 TO 1.4304

SPECIAL FEATURES FOR THIS RUN

NO SWITCH SETTINGS REGULAR RUN

23020 root series 23012 tip series

( 1)
( 6)
(11)
(16)

( 1)
( 6)
(11)
(16)

( 1)
( 6)
(11)
(16)

( 1)
( 6)
(11)
(16)

( 1)
( 6)
(11)
(16)

SPANWISE STATIONS
.98768840 ( 2) .95105660 ( 3) .89100670 ( 4) .80901730 ( 5) .70710720
.58778590 ( 7) .45399130 ( 8) .30901800 ( 9) .15643560 (10) .12973930E-05

-.15643310 (12) -.30901550 (13) -.45398900 (14) -.58778380 (15) -.70710540
-.80901580 (17) -.89100550 (18) -.95105580 (19) -.98768790 (

THICKNESS / CHORD DISTRIBUTION
.12241770 ( 2) .12911920 ( 3)
.17094340 ( 7) .18003350 ( 8)
.19447560 (12) .18786080 (13)
.14969110 (17) .13873580 (18)

SECTION REYNOLDS NUMBERS
1.9141270 ( 2) 2.0173960 ( 3)
3.0415030 ( 7) 3.4186870 ( 8)
4.2575420 (12) 3.8273930 (13)
2.4178280 (17) 2.1866880 (18)

CHORD DISTRIBUTION
.40738700 ( 2) .42936610 ( 3)
.64732840 ( 7) .72760520 ( 8)
.90614010 (12) .81459070 (13)
.51459060 (17) .46539670 (18)

TWIST DISTRIBUTION
-3.3942270 ( 2) -3.1010350 ( 3)
-1.2712250 ( 7) -.87353400 ( 8)
-.24169140 (12) -.53109090 (13)
-2.2010160 (17) -2.6803110 (18)

.13873560 ( 4)

.18786070 ( 9)

.18003370 (14)

.12911930 (19)

2.1866850
3.8273860
3.4186940
2.0173990

( 4)
( 9)
(14)
(19)

.46539600 ( 4)

.81458920 ( 9)

.72760660 (14)

.42936660 (19)

-2.6803180
-.53109620
-.87352780
-3.1010290

.14969090 ( 5) .16069820

.19447550 (10) .20000000

.17094360 (15) .16069840

.12241780 (

2.4178240
4.2575350
3.0415090
1.9141280

( 5) 2.7051210
(10) 4.6985440
(15) 2.7051260

.51458960 ( 5)

.90613860 (10)

.64732970 (15)

.40738720 (

( 4)
( 9)
(14)
(19)

-2.2010240
-.24169580
-1.2712180
-3.3942230

.57573560

.99999920

.57573680

( 5) -1.7194530
(10) -.18163520E-05
(15) -1.7194450

Fig. 6.6 File F2D3D.TXT: result of two-dimensional to three-dimensional conversion.
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156 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

23020 root series 23012 tip series

BODY HEIGHT / SPAN . . . . . = .00
ASPECT RATIO . . . . . . . . = 10.05
WING BODY INCIDENCE, DEC . . = .00
ROOT THICKNESS CHORD . . . . = .20
NUMBER OF SPANWISE STATIONS. = 20.00
TAPER RATIO. . . . . . . . . = .40
COORDINATES OF MOMENT REFERENCE POINT
VALUE OF DISCRIMINANT. . . . = .001000

BODY WIDTH / SPAN. . . .
WING HEIGHT / SPAN . . .
TIP THICKNESS CHORD. . .
GEOMETRIC TWIST, DEC . .
AERODYNAMIC TWIST, DEC .
REYNOLDS NUMBER. . . . .
X= .00 Z=

.00

.00

.12
-3.50
-5.45
3.49

THREE DIMENSIONAL LIFT,

ALPHA
-4.000000
-3.000000
-2.000000
-1.000000
.000000
1.000000
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
9.000000
10.000000
11.000000
12.000000

CL
-.350241
-.259806
- . 168407
-.076028
.016982
.110283
.203571
.296575
.389053
.480793
.571613
.661363
.749921
.837199
.923140

1.007723
1.090962

CDP
.008186
.007969
.007776
.007623
.007517
.007462
.007467
.007540
.007688
.007922
.008252
.008687
.009238
.009914
.010726
.011684
.012797

DRAG, AND

GDI
.004358
.002563
.001287
.000542
.000345
.000703
.001618
.003082
.005087
.007614
.010647
.014162
.018137
.022548
.027372
.032586
.038171

MOMENT DATA

CD
.012545
.010532
.009063
.008166
.007862
.008166
.009085
.010622
.012775
.015537
.018899
.022849
.027375
.032462
.038098
.044270
.050968

CM
.000462

-.000419
-.001497
-.002753
-.004127
-.005562
-.007007
-.008415
-.009752
-.010988
-.012105
-.013091
-.013942
-.014662
-.015258
-.015743
-.016135

Fig. 6.6 Contd.

9) The five coefficients of the drag polynomial CCDRT1 for the airfoil in the
first table are required. The format is 5G16.5.

10) The domain is required for which the coefficients of CCDRT1 are valid,
XLO(2) and XHI(2).

11) The five coefficients of the moment polynomial CCMRT1 for the airfoil in
the first table are required. The format is 5G16.5.

12) The domain for which the coefficients of CCMRT1 are valid, XLO(3) and
XHI(3), is required.

13) The five coefficients of the alpha polynomial CALRT1 for the airfoil in the
first table are required.

14) The domain for which the coefficients of CALRT1 are valid, XLO(4) and
XHI(4), is required.

15) A duplication of steps 4-14 is required for each additional airfoil.
16) The 20 elements of the array ALPHB are required representing the angles of

attack for which the three-dimensional lift, drag, and pitching moment coefficients
are to be calcuated. One element of this array must contain the value 99.0 to ensure
a later return to the main portion of the program.

The program will continue execution until it encounters an ASPEC value of
99.0 followed by a blank line. For the present version of the program, input has
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THE WING 157

been divided among 3-5 files. F2D3D.IN contains the general program instruc-
tions. It may be produced by a user edited version of 3DHELP or it may be user
edited. This method was chosen for general program data entry because a separate
interactive program to write F2D3D.IN was regarded as too confusing given the
quantity of data to be entered, particularly as regards to character strings identi-
fying the various airfoils and other features of the wing design. The other input
files are POLYFIT1.DAT and POLYFIT2.DAT and perhaps POLYFIT3.DAT and
POLYFIT4.DAT. Figure 6.5 shows F2D3D.IN and POLYFIT1.DAT for a typical
case. Note that the listings for 2DHELP.FOR and 3DHELPFOR are provided on
the accompanying disk as are personal computer executable versions.

6.6.2 Typical Results
Results produced by F2D3D appear in the file F2D3D.TXT. Operating on the

input data shown in Fig. 6.5 the results given by F2D3D are shown in Fig. 6.6.
No graphics are produced at the present time. However, the three-dimensional
characteristics are produced in a compact tabular form at the end of the listing,
which is easily converted to graphs by readily available plotting programs should
the need for such a representation arise. At the beginning of the listing is a repeat
of the input data so that it can be checked for accuracy in case the program fails to
execute properly. In the middle are listed any special switch setting and the station
by station values of the chord, the thickness, the Reynolds number, and the twist.

6.7 Other Methods of Analyzing Complete Wings
The moderate to high aspect ratio requirement makes the lifting line theory of

little use to hydrodynamicists where, because of structural considerations, wings
almost always have fairly low aspect ratios. Most modern corporate jets and
commercial transports employ swept back wings to enable them to operate at
higher Mach numbers (than unswept wings) before encountering the transonic
drag rise. Some fighter designs carry the need for swept leading edges and thin
wings to a logical conclusion by utilizing delta wing planforms. Such planforms
have aspect ratios of three or less. Obviously, these planforms cannot be analyzed
by the lifting line theory. There are also other classes of flight vehicle, such as
sport aircraft, which find it desirable to employ moderate to low aspect ratio wings
despite the increased induced drag that such use entails.

This situation lead researchers to develop what was called the lifting surface
theory, a theory in which the wing's chord dimension was included. This theory
was difficult to employ in practice because of its mathematical complexity. With
the arrival of the digital computer it became possible to consider methods that
although simple in concept required extensive computational effort. One such
method applied to wing analysis is the vortex lattice method.35 In this method
the wing may be considered to be planar and is represented by many horseshoe
vortices laid out in both the span wise and chordwise directions, hence the name
vortex lattice. The strengths of the individual vortices are determined from the
requirement that the flow at a control point in each lattice element must be parallel
to the wing surface. Several hundred vortices may be employed. An equation is
written for the velocity induced at a control point by each vortex in the system.
Additional equations are added to the system to define the net induced velocity
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158 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

at all other 'control points on the wing until there is an equation for each of the
unknown vortex strengths. Obviously, such a method would be attempted on a
production basis only with the aid of a digital computer. One can see, however,
how such a method is but a logical extension to the lifting line theory. The major
wing analysis computer programs employed by the military and the major airframe
constructors are generally refinements of the vortex lattice method.

In the next chapter we shall consider the representation of a body by a lattice
structure where, instead of a vortex, there is a source and a control point in each
of the lattice elements. Because the sources do not induce a circulation the body
has no lift.

We will not discuss the lifting surface and vortex lattice methods in any addi-
tional detail because we believe them beyond the scope of an introductory text
and because we have not provided one of the more complex computer programs
that employ them with the book.

6.8 Concluding Remarks
In this chapter we have presented a method for converting two-dimensional

airfoil section data for lift, drag, and pitching moment to three-dimensional wing
characteristics including the effects of wing taper, wing twist, and fuselage up wash.
Although based on the inviscid lifting line theory developed by Prandtl and others,
the method permits one to determine the induced drag of medium to high aspect
ratio wings, an inviscid phenomenon, as well as their profile drag, a result of
viscosity. To obtain the latter result, the method serves merely to interpolate the
readin section results and then integrates these values over the span. High-angle-
of-attack lift characteristics can be handled in the same manner, that is, through
interpolation and then integration over the span. By obtaining the induced angle
of attack at up to 20 stations along the span, the program can give results of quite
high accuracy. It is unable, however, to account properly for the unusual drag
characteristics of some 6-series airfoils in their cruise configuration because the
drag characteristics are fit with only a fourth-order polynomial.

Whereas the physical concepts behind F2D3D are readily appreciated, the math-
ematics by which these concepts are implemented in the program is more obtuse.
When faced with such a situation, prior to using the program the reader would
seem to have two choices: either spend the time necessary to become familiar with
the mathematics or undertake to test the program results against known two- and
three-dimensional data to gain confidence that the program is being used correctly
and that it gives correct results. The latter course is recommended for the beginning
student.

One may ask why, in light of this recommendation, the details of the program
implementation are presented at all. The answer is that at some point in the
user's career, when the program is applied to a case for which three-dimensional
experimental results are unavailable and program output is perhaps suspicious,
the user will want to check the procedure to determine what credance one should
apply to the results for that case. Another reason for presenting the program
implementation at this level is to give the student an indication of what is really
involved in going on to make such conversions.

Also, at some point the user may have the opportunity to employ one of the
various implementations of the vortex lattice method. For aircraft with unswept
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THE WING 159

moderate to high aspect ratio wings the method described in this chapter will be
found to execute more rapidly, require fewer computational resources, and provide
reliable estimates of wing profile drag (which other methods may be incapable of
providing) as compared with most implementations of the vortex lattice method.
On the other hand, if the problem involves low aspect ratio wings, whether on
aircraft or on undersea vessels, the method of analysis described in this chapter
may not be applied, and one must then have recourse to a vortex lattice or other
lifting surface method.

Problems
6.1. Using the two-dimensional data in Fig. P6.1 determine the change in char-
acteristics resulting from a) a change in aspect ratio from 10.05 to 5.8, b) a
change in twist from —3.5 deg to 0.0 deg, c) a change in taper ratio from 0.4 to
1.0. Plot CL vs a in each case. Comment on the differences.

6.2. Determine the spanwise lift distribution for the three cases in problem 6.1,
then plot and discuss them. The program will display such results by setting
ISWIT(2) = 1. Do not set ISWIT(l) = 1. Doing so will cause the program to
crash because a portion of the code for which no data exists in F2D3D.IN is then
invoked.

6.3. Compare the spanwise lift distributions for the three cases in problem 6.2
with an elliptical distribution. Which one is closest and which is least like an
ellipse?

6.4. A certain wing has a 23012 root section, a 23020 tip section, a 0.4 taper ratio,
a 10.05 aspect ratio, and —3.5-deg geometric twist. The Reynolds number based
on the mean aerodynamic chord is 3.49 x 106. Compare the three-dimensional

05

LU
CL
0 4
C/)
LJJ

DC -
D 3

O

LL

Taper Ratio = 1.0; Semicircular Tips
Corrected For Taper Ratio and Tip Effect

10 15
ASPECT RATIO

20

Fig. P6.1 Corrected CL(x vs AR curve for A = 1.0.
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160 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

aerodynamic characteristics of this wing with that shown in Fig. P6.1. Discuss
them.

6.5. The AIRFOIL program cannot reliably predict the aerodynamic characteris-
tics of an airfoil section when the lift coefficient exceeds about 0.8. When supplied
with experimentally determined section data, however, the F2D3D program can
function correctly up to and including the maximum lift coefficient of the sec-
tion. Using the experimental data in Chapter 5, determine the angle of attack and
spanwise location where stall first appears on the following wing: airfoil section
NACA 4412, aspect ratio 6.0, taper ratio 0.5, twist —3.5 deg, and Reynolds num-
ber 3 x 106. [Stall is characterized by a failure of the lift to increase (and often
to decrease) as the angle of attack is increased. A benign stall is one in which the
decreases in lift are gentle as a increases. An undesirable stall is one in which
the decrease in lift is large and sudden for small increases in a.] Note: it may be
necessary to extrapolate the C^vsC^ curve slightly to obtain a drag coefficient
for Cimm. To maintain lateral control near stall, it is desirable to ensure that the
root area of the wing stalls before the tip area. That is one of the reasons for using
washout, e.g., negative wing twist, at the tip region.

6.6. The first airplane to fly around the world unrefueled employed an aspect
ratio of 22 and a taper ratio of about 0.4. Assuming a geometric twist of —3.5
deg, what percentage increase did the induced drag represent over the basic wing
profile drag? Assume for purposes of this problem that the root and tip airfoil
sections are the same as those in problem 6.1.

6.7. We wish to investigate how low the aspect ratio can be before F2D3D begins
to yield results that are significantly in error. For purposes of this problem we will
consider the standard of comparison to be the wing's lift curve slope. We will
consider the characteristics of an untapered, untwisted wing with a NACA 0009
airfoil section. We will assume that the Reynolds number is 3 x 106. We will
further assume that the wing tips are semicircles. For such a wing, the minimum
aspect ratio is 4b2/(nb2) = 4/jr. (Experimental data exists for such wings. During
the 1930s Charles Zimmermann of NACA conducted of series of wind-tunnel tests
on such planforms the, results of which were published in a technical report or
technical note. His interest in the circular planform led the Navy to support the
construction of such an aircraft following World War II. Could the sight of this
aircraft have led to stories of flying saucers?) Beginning with an aspect ratio of 6,
run F2D3D at aspect ratio increments down to 4/jr. In Ref. 36 there is a formula
for lift curve slope as a function of aspect ratio that for thin airfoils can be plotted
as shown in Fig. P6.1. Compare the results given by F2D3D with the data shown
on the graph. The curve on the graph is corrected for the fact that the wing is
untapered and has a 9% thick airfoil section and semicircular tips.

6.8. What is the aspect ratio of a true delta wing?

6.9. If the airfoil used on a delta wing has a maximum lift coefficient of 1.5 at
an angle of attack of 15 deg, what angle of attack should one expect the wing to
reach for a lift coefficient of 1.5?
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THE WING 161

6.10. It can be shown that the maximum range of an aircraft is achieved when
the aircraft flies at such a speed, weight, and altitude that the induced drag is equal
to the profile drag. How does increasing the aspect ratio change the speed at which
the aircraft reaches maximum range assuming that the weight, altitude, and wing
area remain the same?

6.11. Discuss why a high aspect ratio is not desirable for all aircraft.

6.12. An undersea vessel has a hull diameter of 10 ft. Wings extending 10 ft
from the hull on each side have a chord of 10 ft. What is the aspect ratio of the
resulting wing?

6.13. How does the magnitude of the velocity induced by a vortex vary with
distance from the vortex?

6.14. How does the bending moment on a wing vary with semispan?

6.15. If you assume that all of the airfoil's mass is concentrated at its maximum
thickness from the mean chord line, how does the moment of inertia that resists
bending vary with thickness ratio? Assume the mass is the same in each case;
compare symmetrical sections 6, 12, 18, and 24% thick.

6.16. If you have studied charts of airfoil mimimum drag as a function of
Reynolds number you would have discovered that the drag coefficient increases
as the size of the wing and the flight velocity decrease. You should also be aware
the maximum lift coefficient also decreases with decreasing Reynolds number.
Given this information how would you expect the lift and profile drag of a paper
airplane to compare with that of a typical general aviation craft? What should be
your expectations of the induced drag?

6.17. Would you expect the aerodynamic characteristics of a GA class aircraft
or a 747 to be more or less susceptible to a given amount of ice on the wing?
Explain why.

6.18. Induced drag is a consequence of higher pressure air underneath the wing
surface flowing span wise and up over the tip to the lower pressure region over the
upper surface. As a designer, if you place an external store such as a fuel tank
projecting from the wing tip, what is the likely effect of that store on the induced
drag? If the external tank is full, discuss what effect it has on the wing root bending
moment.
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7
Characteristics of Bodies at Small

Angles of Attack

7.1 Introduction

I N this chapter we consider a method for modeling a body with a plane of
symmetry from which we will be able to deduce the pressure distribution, the

lift, and the drag when the body has little or no inclination to the oncoming flow.
Therefore, the method is suitable for determining the aerodynamic characteristics
of isolated bodies such as a fuselage or a nacelle; however, it is unable to determine
the characteristics of such bodies in the presence of a wing. For those cases where
wing-body interference effects are small and other restrictions on the method's
accuracy are observed, it is superior to the use of common handbook values for
accurate determinations of the drag of fuselages and nacelles.

It may be recalled that in Chapter 2 we showed that placing a separated source
and sink in a uniform stream creates a two-dimensional body called the Rankine
oval. In the present method, the body surface is represented by a sort of wire frame
that divides the surface into a series of quadrilaterals. Each quadrilateral represents
the edges of a flat surface. On each of these small surfaces is placed a source of
unknown strength and a control point. We require that the exterior flow normal
to the each quadrilateral surface is zero at the control point. This gives us the
necessary information to write an equation giving the contribution of all sources
to the flow over each quadrilateral. Solving this system of equations permits us to
determine the value of the individual source strengths. Obviously, the greater the
number of quadrilaterals used, the more accurately the surface can be represented.
One can also expect the computation time and memory required to increase as n2

where n is the number of quadrilateral panels in the analysis.
The idea of representing bodies in this manner seems to have originated with

Hess and Smith37 of the Douglas Aircraft Company who created a computer pro-
gram in 1962 to perform the necessary calculations. Some of their Fortran code
probably still exists within the present program, which is the result of many mod-
ifications and expansions of their original code. When the Hess-Smith program
first appeared, computer memory was a very scarce commodity and so the au-
thors were forced to spend most of their development effort on means to swap
data and code in and out of main memory rapidly and efficiently and to devise
means to solve the large system of equations in a piecemeal fashion. The situation
had eased considerably by the mid 1970s when the first versions of BODY were
written. Most of the elaborate I/O procedures were replaced; all code and data
for the analysis of 225 panels on a half-body (some 5 Mbytes worth) could then
be held in main memory, provided no other user was given a portion of the CPU
memory. However, that memory requirement limited runs to nights and weekends
on a large mainframe. Now, that amount of memory is available for program use
on most home computers. Even when this quantity of memory is not available,
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164 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

current personal computer operating systems will make the machine appear to
have virtual memory. They do this by swapping portions of the code and data to
disk in a manner tranparent to the user if there should be insufficient real memory.
The use of virtual memory, however, entails a significant increase in program
execution time because disk reads and writes are many times slower than writing
to and reading from random access memory (RAM).

We must note that the original program was entirely inviscid. No drag values
could be determined from it. The program was later modified and expanded at the
Naval Ship Research and Development Center to include the ability to calculate
on-body and off-body streamlines. At NCSU the boundary-layer routines from
AIRFOIL were employed along the on-body streamlines. A wake body was created
from the boundary-layer displacement thickness to simulate the body wake and
permit a profile drag to be calculated. The skin-friction drag is calculated from
the value of the skin-friction coefficient on each panel times the panel area.
Several empirical tweeks and a more refined pressure integration routine were
later employed to improve the agreement of the results with experimental data.
One such tweek was to subtract the integral of the stream wise component of the
pressures over the inviscid body from the final drag result. The force resulting
from this integration should be zero. Depending on how many panels are used and
the rapidity with which the pressure changes on the aft portions of the body the
result may not be zero. Subtracting this tare usually improves the computed drag
values.

The vehicle used for program evaluation was a prolate spheroid. NACA col-
lected considerable wind-tunnel data early in the 1930s on fairly large models of
the airship Akron. These data were very useful in helping to select the separation
criteria for the boundary-layer flow from the physical body. These locations were
then used as the points at which the wake body was attached to the physical body.
No significant alterations have been made in the fundamental operation of the
code since 1984, however.

The changes made for the present version of BODY deal with data I/O, the
type of graphics routines used, and changes required by the evolving nature of
the FORTRAN language and various operating systems. The NCSU version of
the program was originally intended to drive a plotter; the plotter-specific routines
have been replaced in the present version of the code by routines that write
PostScript code. When the 1970s version of BODY was run the plots were created
at the same time as the output text file was generated. With the present version,
PostScript files are created at the same time that the text files are generated. One
will then have to submit these PostScript files to a PostScript-equipped printer or
to a software PostScript interpreter that can create a bitmap image for the screen
or a laser, dot matrix, or inkjet printer to create the pictures. A four-view graphical
description of a general ellipsoid produced by BODY is shown in Fig. 7.1. Notice
the resemblence to a wire frame model.

One reason such pictures are still generated by the current version of the program
is that they permit one to readily detect certain types of erroneous input data. Errors
in the coordinates of panel corners stand out immediately when the wire frame
image of the body is viewed; when they are buried in the mass of input data such
errors are difficult to detect simply from a listing of the coordinates. It also enables
one to see graphically the wake body that the program appends to the physical
body.
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CHARACTERISTICS OF BODIES AT SMALL ANGLES OF ATTACK 165

BODY Front View
Fig. 7.la Wire frame representation of general ellipsoid.

Half-Body Isometric View

Fig. 7.1b Isometric view, general ellipsoid.
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166 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

BODY Plan View
Fig. 7.1c Plan view, general ellipsoid.

BODY Elevation View
Fig. 7. Id Elevation view, general ellipsoid wire frame representation with 320 panels.

7.2 Theory Behind Program BODY
7.2. 1 Basic Hess-Smith Method

In the basic Hess-Smith37 method the body surface is approximated by a set of
plane quadrilaterals and the solution is constructed in terms of the source density on
the surface of the body. Based on the assumption that the source density is constant
on each quadrilateral, a system of algebraic equations is used to approximate the
integral equation for the source density over the body. The source density in each
quadrilateral is chosen so that the normal component of the velocity is zero at
one point on each quadrilateral. The resulting matrix equation is solved by a
simultaneous displacement iteration scheme with a two-eigenvalue extrapolation
procedure to speed up convergence.

The fluid is assumed to have a uniform velocity Voo, which is parallel with the
x axis of the body. Because the fluid is assumed to be inviscid and irrotational a
velocity potential exists, and we assume it satisfies the following equations:

in the fluid

~8n ~

on the surface of the body and

</> = — x • Voox — y •

(7.1)

(7.2)

(7.3)
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CHARACTERISTICS OF BODIES AT SMALL ANGLES OF ATTACK 167

at infinity. Here, n is the direction normal to the surface. A solution to these
equations is constructed in the form of a source density distribution S(q) on the
surface of the body

~ x ' v°°< -yv^-z- v°°, (7-4)
body J surface L r (P ' <7 )

Here, r ( p , q ) is the distance between the point p where we are interested in
finding the potential and some other point q on the body. Aq denotes the area of
the quadrilateral containing point q. Note that Eqs. (7.1) and (7.3) are satisfied by
0 as defined by Eq. (7.4). The boundary condition on the body, Eq. (7.2) can be
applied to obtain the equation for the source density at p:

=^=2nS(p)- I I ^
%np Jbody ./surface 9^body .

-npx - Voox - npy • Vooy - npz • V^z (7.5)

Because the surface of the body is approximated by a set of plane quadrilaterals
that are generated from input points, in the limit Eq. (7.5) requires that the body
surface be represented by an infinite number of panels with the flow normal to
the surface zero at each panel. It is important to obtain satisfactory results with a
finite number of panels and to properly size and position these panels on the body
surface. Unfortunately, selection of panel size and panel placement is largely a
matter of experience. Panels should be concentrated in regions where the source
density is expected to vary rapidly. The method gives good results for convex
surfaces. For rounded concave surfaces, however, a very large concentration of
panels has been found to be required. Panel size also plays a role in determining
the validity of the solution. Hess and Smith37 found that if several small panels are
in the vicinity of a large panel, the accuracy of the representation in that region
is associated with the large panel. Thus, panel size should change gradually when
going from a region of highly concentrated small panels to a region of sparce panel
concentration. They recommend that the characteristics dimensions of adjacent
panels should vary by no more than 50%.

The source density is assumed to be constant in each of the body panels and is
computed by satisfying Eq. (7.5) at one point in each of the quadrilaterals. Thus,
the Fredholm integral equation is approximated by the matrix equation

(7.6)
j

where

• (7.7)

CH = 0 (7.8)

V, = (l/2jr) (nx • Voo, + ny • V^ + nz • V) (7.9)
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168 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Equation (7.6) is solved for 5/ by the mentioned iteration procedure. The ve-
locity components of each panel centroid are then computed from the following
equations:

'lijSj + Vn, (7.10)

V Yt = V V2ij Sj + V^ (7.11)
./

./

where

/

f r\ i 1 \
/ — — )dA (7.13)

,uad J j uX \ r /y /

C C r) / 1 \

V2tj = - I —{ — )dA (7.14)
JquadJ / ^ V/7/

v3u = -[ [^-(—}dA (7-15)
Jqu&dJj °Z \rij /

The pressure coefficient is then computed from these velocity components.
An integral over a quadrilateral is evaluated by one of three methods depending

on the distance of the zth point from the quadrilateral to the maximum dimension
of the quadrilateral. If the ratio is greater than 4.0, the quadrilateral is approximated
as a monopole (as if it were concentrated at one point); if the ratio is between
2.0 and 4.0, the quadrilateral is approximated by a quadrapole; if the ratio is less
than 2.0, the integrals are evaluated exactly. The approximate methods are used
because they require much less time than the exact method and yield effectively
the same result for distant sources.

7.2.2 Streamline Determination
The on-body streamlines are computed once the velocities at the panel centroids

are known. The method, developed by Dawson and Dean38 of the Naval Ship
Research and Development Center, may be outlined as follows.

1) The coordinates of a starting point within a particular quadrilateral are spec-
ified.

2) The two points are found at which the streamline, passing through the starting
point, intersects the sides of the starting quadrilateral.

3) The intersection point, which is in the upstream flow direction, is retained.
4) A search is made of the adjacent quadrilaterals to determine which quadri-

lateral the streamline is entering in the upstream direction.
5) Using this quadrilateral as a starting quadrilateral, the point is found at which

the streamline leaves the new quadrilateral in the upstream direction.
6) Steps 4 and 5 of the procedure are repeated until the streamline reaches the

nose of the body.
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CHARACTERISTICS OF BODIES AT SMALL ANGLES OF ATTACK 169

7) The upstream portion of the streamline so traced is now defined by the
coordinates of its intersection points on the sides of the quadrilaterals through
which it passes.

8) It should be noted that as each point on the streamline is found the velocity
at that point and the distance from that point to the previous streamline point are
calculated.

9) After returning to the original starting quadrilateral the same procedure is
used to trace the streamline in the downstream direction to the body tail.

10) The arc lengths from point to point are then all referenced to the nose of the
body so that the distance of any point along a streamline is known.

To this point the entire procedure is still inviscid. With the streamline paths
now known we can move on to a determination of the effects of viscosity. We will
assume that the crossflow velocity along a streamline is small compared with the
velocity in the streamline direction and that we are therefore justified in applying
the two-dimensional boundary-layer method used in the AIRFOIL program to
determine the boundary-layer displacement thickness and skin-friction coefficient
at a point on each quadrilateral. From the boundary-layer displacement thickness
and its rate of growth at the line of flow separation around the body, we can begin
our determination of the shape of the wake body, a fictitious shape, which we
append to the physical body to model the body wake. The use of this wake body
enables us to apply the invicid theory we have been discussing to the combined
body and thereby obtain the correct pressure distribution over the physical body.
When this pressure distribution is integrated one obtains a form drag.

7.2.3 Addition of a Wake Body
For this version26 of BODY we will make the assumption that the flow always

separates from the body at the second from last N station. (In the version created
by Fox39 for his dissertation, the flow separates at the odd numbered N station
just upstream of the point at which the flow separation criterion is satisfied along
one of the streamlines.) This arbitrary selection of separation N station was made
to keep the program as simple as possible and to reduce its execution time. This
is also the reason there are no iterations on the initial wake body shape in the
manner in which the airfoil shape was adjusted to account for the boundary-layer
displacement thickness.

The assumptions used in BODY are not quite the large sources of error one may
at first imagine them to be because the axial placement of N stations is restricted
only by the requirment that the panels not vary too greatly in area. By selecting the
second from last N station somewhere near where one might imagine separation
to occur, the wake body size for purposes of the drag calculation is forced to be
approximately correct. When we discuss the results of the computation we shall
see how reliable the results can be when using an arbitrary number of equally
spaced N stations.

From the point of its attachment to the physical body, the wake body extends
downstream a distance that depends on the rate of growth of the displacement
thickness on the after portion of the physical body. The formula developed to
define the wake body shape is semiempirical, designed to yield approximately
correct pressures on the body in the separated flow region. It must satisfy two
criteria: 1) there must be a stagnation point at the downstream end of the wake
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170 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

body and 2) the change in the wake body slope from the physical body aft should
be monotonic; otherwise, the pressure distribution will exhibit confusing bumps.
The procedure for generating the wake body can be described using the actual
code instructions.

Begin by identifying the N station at which the wake body is to be attached. This
station is identified in the program by the variable ISTART, defined as follows:

ISTART=(NMAXQD-3)*MMAXQD+1

Then, identify a second N station one station further downstream.

IST=ISTART+MMAXQD

The X values associated with these numbers are

XHOLD1=X(ISTART+1)
XHOLD2=X(IST+1)

Now let us determine the average value of the Z coordinate and load the XNEW,
YNEW, and ZNEW arrays with the coordinates of the panel corners at the N
station corresponding to ISTART,

ZAV=0.ODO
DO 405 I=1,MMAXQD
XNEW(I)=X(ISTART+I-1)
YNEW(I)=Y(ISTART+I-1)
ZNEW(I)=Z(ISTART+I-1)

405 ZAV=ZAV+ZNEW(I)

Then define two housekeeping variables and the average Z coordinate per panel,

pi=DACOS(-1.0DO)
THETA=-90.ODO*pi/180.ODO
ZAV=ZAV/MMAXQD

Next find an average radius and convert it to a per panel value,

RAV=0.ODO
DO 410 I=1,MMAXQD

410 RAV=RAV+DSQRT((YNEW(I))**2+(ZNEW(I)-ZAV)**2)
RAV=RAV/MMAXQD

Define FAC in terms of XHOLD1, XHOLD2, and AVXCG, the average X coor-
dinate of the panels whose upstream edge lies along N station ISTART,

FAC=(AVXCG-XHOLD1)/(XHOLD2-XHOLD1)

We now find the Y and Z coordinates of these same panels, the average radius at
N station ISTART, the average radius at the panel centroids including twice the
average boundary-layer displacement thickness AVDELS, which had been found
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CHARACTERISTICS OF BODIES AT SMALL ANGLES OF ATTACK 171

during the boundary-layer analysis, and the initial slope of the wake body and its
per panel value

AVSLOP=0.ODO
DO 415 I=1,MMAXQD
YCG=YNEW(I)-(YNEW(I)-Y(IST+I))*FAC
ZCG=ZNEW(I)-(ZNEW(I)-Z(IST+I))*FAC
R1=DSQRT((YNEW(I))**2+(ZNEW(I)-ZAV)**2)
R2=DSQRT((YCG)**2+(ZCG-ZAV)**2)+2.ODO*AVDELS
SLOPE==(R2-R1)/(XHOLD1-AVXCG)

415 AVSLOP=AVSLOP+SLOPE
AVSLOP=AVSLOP/MMAXQD

Then define the downstream extent of the wake body XINF, in terms of the average
panel area AREAAV,

AREAT=4.0*AREAAV*2.0*Dfloat(MMAXQD)
XINF=XHOLD1-AREAT/(PI*RAV)

Next we use an exponential function to define the shape of the wake body and
locate the N stations in it so that the panel areas are nearly the same as the upstream
panel areas,

DELTAZ=0.010DO
KK=1
XX1=XHOLD1
ZZ2=O.ODO
RR1=RAV

425 ZZ2=ZZ2+DELTAZ
XX2=ZZ2*(XINF-XHOLD1)+XHOLD1
RR2=RAV*EXP(AVSLOP*ZZ2)*(1.ODO-ZZ2)
DTHETA=PI/(MMAXQD-1)
AREA2=(RR2+RR1)*DSIN(DTHETA/2.0)*DSQRT((RR2-RR1)**2
1+(XX2-XX1)**2)
IF (AREA2.LT.AREAAV) GO TO 425
XK(KK)=XX2
RK(KK)=RR2
XX1=XX2
RR1=RR2
KK=KK+1
IF (KK.GE.4) GO TO 430
GO TO 425

430 XK(4)=XINF

We now set up the loop to define the coordinates of the wake body at its various
M and N stations,
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172 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

RK(4)=O.ODO
X1=XK(1)
X2=XK(2)
X3=XK(3)
X4=XK(4)
R1=RK(1)
R2=RK(2)
R3=RK(3)
R4=RK(4)
NSTRT1=MMAXQD
NSTRT2=2*MMAXQD
NSTRT3=3*MMAXQD
NSTRT4=4*MMAXQD
YFAC=(-Y(1))/(XINF-XHOLD1)
ZFAC=(ZAV-Z(1))/(XINF-XHOLD1)
DO 435 I=1,MMAXQD
COSTHT=DCOS(THETA)
SINTHT=DSIN(THETA)
XNEW(NSTRT1+I)=X1
XNEW(NSTRT2+I)=X2
XNEW(NSTRT3+I)=X3
XNEW(NSTRT4+I)=X4
YNEW(NSTRTl+I)=Rl*qrl*COSTHT-(XNEW(NSTRTl+I)

1-XHOLD1)*YFAC
YNEW(NSTRT2+I)=R2*qrl*COSTHT-(XNEW(NSTRT2+I)

1-XHOLD1)*YFAC
YNEW(NSTRT3+I)=R3*qrl*COSTHT-(XNEW(NSTRT3-fI)

1-XHOLD1)*YFAC
YNEW(NSTRT4-Hl)=R4*COSTHT-(XNEW(NSTRT4-»-I)

1-XHOLD1)*YFAC
ZNEW(NSTRTl+I)=Rl/qrl*SINTHT+ZAV-(XNEW(NSTRTl-fI)

1-XHOLD1)*ZFAC
ZNEW(NSTRT2+I)=R2/qrl*SINTHT-hZAV-(XNEW(NSTRT2+I)

1-XHOLD1)*ZFAC
ZNEW(NSTRT3+I)=R3/qrl*SINTHT+ZAV-(XNEW(NSTRT3-H)

1-XHOLD1)*ZFAC
ZNEW(NSTRT4+I)=R4*SINTHT+ZAV-(XNEW(NSTRT4-fI)

1-XHOLD1)*ZFAC
435 THETA=THETA+DTHETA

For the example problem just given MMAXQD is 17, ISTART is 307, XHOLD1 is
-8.0,andXHOLD2is -9.0. In these equations qrl is (Z MAX/ Y MAX) **0.49.
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CHARACTERISTICS OF BODIES AT SMALL ANGLES OF ATTACK 173

It magnifies the Z dimension and shrinks the Y dimension of the wake body so
that it is elliptical and matches the shape of the physical body and also ensures that
the wake body slope changes monotonically. The ability to treat elliptical bodies
was first added for the version of the program to accompany this book. It requires
no user intervention.

Wake bodies generated by the program are quasiconic sections with a length
about three times that of the base diameter. This ratio was selected after studies
showed that making the wake body too short resulted in excessive pressures on
the aft surfaces of the physical body. Making it too long resulted in pressures on
the aft surfaces of the body that were too low. (In Fox's39 version, the wake body
length can vary over a significantly greater range than in the present version.)

As indicated previously, the body plus wake body is treated as a physical body for
purposes of an inviscid flow computation. Then the pressures, which are calculated
to exist on this pseudobody, are applied to the region of the physical body that
lies beneath the wake body. Because the pressures in this region are now lower
than those calculated for the physical body alone, the physical body experiences
a pressure drag. (In the program, the pressure drag is obtained by summing the
product of the pressure coefficient on a panel centroid, the panel area, and the
direction cosine in the streawise direction for that panel over all panels on the
body surface. Increasing the number of panels used can improve the accuracy of
this approximation, but the greatest improvement can be obtained, as Fox39 found,
by recognizing that the pressures on the triangular panels at the downstream end of
the wake body change rapidly. The pressure at the geometric centroid of the panel
does not represent the average pressure over the panel. Therefore, Fox employed
a bicubic spline to represent the data in this region of the body. In the interests of
simplicity and rapid execution, this feature was not incorporated into the present
version of the program.) When the pressure drag is combined with the skin-friction
drag calculated during the boundary-layer analysis, one thereby obtains the total
drag on the physical body.

7.3 General Program Description
The present version of the BODY source code consists of 3000 lines of Fortran

instructions including the comments. It consumes 219,264 bytes of storage space.
The executable file made with MicroSoft PowerStation Fortran is 186,880 bytes
long with no unusual optimization or the use of 486 specific commands. The
input data file is BODY.DAT. The output files are BODY.TXT, BODYWK.PS, and
BOLD.PS. Temporary data files, which are left on the hard disk after the program
has executed, are BODY7.DAT, BODY8.DAT, BODY9.DAT, and BODY10.DAT.
BODY11 .DAT usually contains the coordinates of the panel corners after the wake
body has been added in the format used by BODY.DAT. Therefore, BODY 11.DAT
can be used as an input file if desired.

The input file generation program BODYGEN is 250 lines and 10,496 bytes
long. The executable file has a length of 110,080 bytes.

The average running time of BODY is about 10 min on a 90-MHz Pentium.
This is for a case with 320 panels on the half-body. Generally, the running time is
proportional to the number of panels squared. This time estimate is for a situation
where less than 23 iterations are required to achieve a satisfactory source strength

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



174 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

distribution, that is, one that meets the error criterion set in the program. Because
the program limits the number of iterations to 150, it is easily seen that the program
may run 50 min or longer. The maximum number of body panels permitted on
the half-body including those on the wake body by the current array dimensions
is 650.

All of the comments from the 1975 version of the program have been retained,
and a few new ones have been added. In addition, some notes were added to the
source code file header. This version of the program contains two subroutines,
which write PostScript vector files. These files show the body in orthographic
three view plus a pseudoisometric view, both with and without wake body, as well
as the symmetry plane pressure distribution with and without wake body. These
files can be rendered on any device having a hardware or software PostScript
interpreter.

The intermediate data files can be quite large. For the 320 panel case, BODY9.
DAT may be more than 7.7 Mbytes and BODY10.DAT more than 2.6 Mbytes.
About 13 Mbytes of free disk space should be available to run BODY with a
problem having 320 panels. The intermediate data files remain on the hard disk
after the program has completed execution. Normally, these intermediate data
files can be discarded after program execution. If problems arise during execution
these file often can be used after the fact to locate the source of the trouble. The
intermediate data files are simply a relic of the days when computer memory was
very scarse and small hard disks were common. The intermediate results were then
written off to tape. Of course, this slowed the program considerably but it was the
only practical solution for the large memory requirements. For this version, hard
disk space, rather than RAM, replaced the tapes. This strategy permits somewhat
larger problems to be run on machines with modest complements of RAM. The
read/write speeds of modern hard drives are now fast enough that this does not
appear to be a major factor limiting program execution time.

In Fox's39 version these intermediate files are assigned to arrays in RAM. If the
amount of memory required for a program is not available, most modern operating
systems spool intermediate data to a hard drive. Thus, in practice, there may be
little actual difference in hard drive usage for large problems.

Figure 7.2a is a depiction of how the wake body is related to the original physical
body. It will be seen that the first two sets of panels on the wake body do not exactly
cover the last two sets of physical body panels, whereas the last two sets of the
wake body panels become increasingly long in order to obtain panel areas that are
about the same as the average panel area on the physical body. Figure 7.2a shows
quite clealy why the application of the pressures developed over the wake body to
the physical body beneath result in a pressure drag on the physical body.

Figures 7.2b and 7.2c show the location of the axis reference and the order of the
panel numbering on the physical body. Note, particularly, that panel numbering
must begin at the ventral centerline and proceed to the dorsal centerline at each N
station. Note, too, that the axis reference is usually taken to be the maximum area
cross section.

Figure 7.2d shows how the wire frame grid can be used to describe more
complex bodies such as complete aircraft. Of course, only one, non-lifting body
at a time can be analyzed by BODY. The program also has no means by which
it can account for the interaction between two major components, particularly the
interaction of viscous flows.
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CHARACTERISTICS OF BODIES AT SMALL ANGLES OF ATTACK 175

Wakebody Attachment Station
Pressures computed assuming inviscid flow over
the first two sets of panels on fine wake body
are applied to the last two sets of panels on the
physical body. Result: a pressure drag on the body.

Panels For Last Two Stations Of
Physical Body Are Shown Shaded

Fig. 7.2a How the wake body is related to the physical body.

M=4

N=6

M=2

M=1
SECTION AT ORIGIN

N=2

N=11

N=3
N=4 N=5 N=6 N=7 N=8

ELEVATION VIEW

Fig. 7.2b Reference quantities and nomenclature.
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176 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

N=2 N=3 N=4

N=7

N=11

N=8 N=9 N=10

Fig. 7.2c Reference quantities and nomenclature, hidden lines not removed.

Fig. 7.2d Wire frame model of complete aircraft.
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CHARACTERISTICS OF BODIES AT SMALL ANGLES OF ATTACK 177

7.4 Program Data Entry
The lines in the input data file each replace a card in the version of the program

described in NASA CR-2523.26 The first line carries the problem identification in
a 16A4 format. To enter this data in response to an on screen request, it may be
necessary to separate each four characters by a carriage return. The second line
provides values for the following five program flow control variables.

1) VINF is the reference freestream flow velocity in units per second where the
units are those used to input the body coordinates.

2) VO is the kinematic viscosity of the fluid. If the velocity is in feet per second,
then VO has units of square foot per second; it is the dynamic viscosity of the fluid
divided by its density.

3) ROE is the density of the fluid in which the body moves in slugs per cubic
foot, taken as 0.002378 for standard sea-level conditions in air; for fresh water the
density is about 1.94 slugs/ft3; for sea water, the density is about 2.0 slugs/ft3.

4) REFA is the reference area on which the aerodynamic coefficients will be
based, usually taken as the maximum cross-sectional area; for an ellipitcal body
this is n AB where A is the semimajor axis dimension and B is the semiminor
axis dimension.

5) IWRITE is a parameter to indicate how much of the program output is to
be printed. IWRITE = 0 yields maximum information. IWRITE = 1 deletes the
information about each input point. IWRITE = 2 deletes streamline and boundary-
layer information as well.

The format for this line is 4F10.5,I5.
The third line holds the parameter NQE, an integer in 14 format, which must be

right justified.
Lines 4, 5, 6, . . . contain six values that describe a point on the body surface:

XI, the X coordinate of the input point; Yl, the Y coordinate of the input point;
Zl, the Z coordinate of the input point; Nl, the N body (axial) station index;
Ml, the M body (circumferential) station index; and NS, section identification
number.

A separate line must appear at this position in the input file for each point used to
describe the body surface. It is absolutely essential that the input point coordinates
be entered in the following order: For the first N station, which is usually the front
of the body, the M points are numbered consecutively from the ventral centerline
to the dorsal centerline as viewed from the front of the body. Then, the points for
the next N station are entered in like manner and so on. Failure to follow this
numbering scheme will cause the program to give erroneous results.

A small program BODYGEN is provided on the accompanying disk to assist the
user in entering input data points for a general ellipsoid. This can be quite a chore
if done manually because the present example has 357 points on the half-body.
BODYGEN can create wireframe bodies for which the three axes dimensions
are either equal or unequal. For the general ellipsoid shown in Figs. 7.1 and 7.2
A = 10, B = A/4.5, and C = A/3.0. A prolate spheroid (ellipsoid with B and C
equal) is shown subsequently in Sec. 7.5.

To obtain the data BODYGEN writes on the first two lines of the file BODY
DAT, the user is asked to respond to questions displayed on the screen. A typical
input file is shown in Fig. 7.3.
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178 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

gene'ral ellipsoid
100.000000 .000100 0.002378 23.250000 2
320
10,
10,
10.
10,
10.
10,
10,
10,
10,
10,
10,
10,
10,
10,
10,
10,
10.
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
8,
8,
8,
8,
8,
8
8
8
8
8
8
8
8

.000000000
,000000000
,000000000
.000000000
.000000000
.000000000
.000000000
.000000000
,000000000
,000000000
.000000000
.000000000
.000000000
.000000000
,000000000
,000000000
,000000000
.000000000
,000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
,000000000
.000000000
,000000000
,000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.188973111

.370684091

.538149889

.684934889

.805398225

.894910560

.950031983

.968644210

.950031983

.894910560

.805398225

.684934889

.538149889

.370684091

.188973111

.000000000

.000000000

.260120429

.510244576

.740760311

.942809042
1.108626150
1.231839377
1.307713707
1.333333333
1.307713707
1.231839377
1.108626150
.942809042

-1,
-1,
-1,
-1,
-1,
-,
-,
-

1,
1.
1,
1,
1,

-2,
-1,
-1,
-1,
-1
-1
-
-

1
1

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.000000000

.452966315

.425047974

.342365839

.208097338

.027402334

.807224834

.556026136

.283459666

.000000000

.283459666

.556026136

.807224834

.027402334

.208097338

.342365839

.425047974

.452966315

.000000000

.961570561

.847759065

.662939225

.414213562

.111140466

.765366865

.390180644

.000000000

.390180644

.765366865

.111140466

.414213562

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Fig. 7.3 Sample input file.
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CHARACTERISTICS OF BODIES AT SMALL ANGLES OF ATTACK 179

8.
8.
8.
8.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6,
5.
5.
5.
5.
5,
5.
5.
5,
5,
5,
5,
5,

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
,000000000
,000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000

1,
1,
1,
1 ,
1,
1,
1,
1 ,
1 ,

1
1,
1
1
1,
1,
1,
1,
1

1
1
1
1
1
1
1
1
1

.740760311

.510244576

.260120429

.000000000

.000000000

.309605238

.607312521

.881681124

.122167215

.319529050

.466182124

.556490641

.586984095

.556490641

.466182124

.319529050

.122167215

.881681124

.607312521

.309605238

.000000000

.000000000

.346827239

.680326102

.987680414

.257078722

.478168200

.642452502

.743618276

. 777777778

.743618276

.642452502

.478168200

.257078722

.987680414

.680326102

.346827239

.000000000

.000000000

.375451500

.736474609

.069195412

.360827635

.600164015

.778006989

.887522152

.924500897

.887522152

.778006989

.600164015

Fig. 7

1
1
1
2
-2
-2
-2
-1
-1
-1
-
-

1
1
1
2
2
2
-2
-2
-2
_0

-1
-1
-1
-

1
1
1
2
2
2
2
-2
-2
-2
-2
-2
-1
-1
-

1
1

.3

.662939225

.847759065

.961570561

.000000000

.380476143

.334735961

.199273186

.979293576

.683250823

.322521685

.910968781

.464407857

.000000022

.464407857

.910968781

.322521685

.683250823

.979293576

.199273186

.334735961

.380476143

.666666667

.615427414

.463678753

.217252299

.885618083

.481520621

.020489153

.520240859

.000000000

.520240859

.020489153

.481520621

.885618083

.217252299

.463678753

.615427414

.666666667

.886751346

.831283228

.667010484

.400246022

.041241452

.603793118

.104711913

.563177250

.000000000

.563177250

.104711913

.603793118

Contd.

3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6

14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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5.
5.
5.
5.
5.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4,
4,
3,
3,
3,
3.
3,
3,
3,
3,
3,
3,
3,
3,
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2

000000000
000000000
000000000
000000000
000000000
000000000
,000000000
000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
,000000000
.000000000
.000000000
.000000000
.000000000
,000000000
.000000000
,000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000

1.
1.

1.
1.
1.
1.
1.
2.
1.
1.
1.
1.
1.

1.
1.
1.
1.
2.
2.
2.
1.
1.
1,
1,

1,
1,
1
2
2
2
2
2

360827635
069195412
736474609
375451500
000000000
000000000
397340519
779411465
131530065
440164600
693454416
881665729
997565684
036700309
997565684
881665729
693454416
440164600
131530065
779411465
397340519
,000000000
,000000000
,413565124
811237173

, 177733832
498970840
,762603240
,958499785
,079132283
,119864892
,079132283
,958499785
,762603240
,498970840
, 177733832
,811237173
,413565124
,000000000
.000000000
.424774882
.833225904
.209656522
.539600718
.810378922
.011585279
. 135487542
.177324216
. 135487542
.011585279

2.
2.
2.
2.
2.
-3.
_0

-2.
-2.
-2.
-1.
-1.
-.

1.
1.
2.
2.
2.
2,
3,

-3,
-3,
-2,
-2,
-2,
-1,
-1,
-,

1,
1,
2
2
2
3
3
-3
-3
-3
-2
-2
-1
-1
-

1

041241452
400246022
667010484
831283228
886751346
055050463
996348525
822498594
540181624
,160246899
,697295098
,169117197
596010779
,000000000
,596010779
,169117197
,697295098
,160246899
,540181624
,822498594
,996348525
.055050463
. 179797338
.118698424
,937749678
,643904860
,248456261
.766600748
.216855760
.620347687
.000000000
.620347687
.216855760
.766600748
.248456261
.643904860
.937749678
.118698424
. 179797338
.265986324
.203231312
.017377918
.715568382
.309401077
.814484783
.249838856
.637162324
.000000023
.637162324
.249838856

6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9

13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Fig. 7.3 Contd.
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2,
2,
2,
2,
2,
2,
I ,
1,
1,
1,
1
1
1,
1,
1
1,
1,
1,
1,
1,
1,
1,
1,

-1
•1
-1
-1
•1
-1
-1
-1
-1
-1

,000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000

1.
1.
1.

1.
1.
1,
2,
2,
2,
2.
2,
1,
1,
1,

1.
1,
1,
2,
2,
2,
2
2,
1,
1
1,

1
1
1
2
2
2
2

,810378922
,539600718
,209656522
,833225904
,424774882
,000000000
,000000000
,431360932
.846144906
.228412005
.563471920
. 838448486
. 042774507
.168597850
.211083194
. 168597850
.042774507
. 838448486
.563471920
.228412005
.846144906
.431360932
.000000000
.000000000
.433534049
.850407627
.234600518
.571348403
.847710250
.053065628
. 179522845
.222222222
.179522845
.053065628
.847710250
.571348403
.234600518
.850407627
.433534049
.000000000
.000000000
.431360932
.846144906
.228412005
.563471920
. 838448486
. 042774507
.168597850
.211083194
. 168597850

1.
2.
2.
3.
3.
3.
-3.
-3.
-3.
-2.
-2.
-1,
-1.
-.

1,
1,
2,
2,
3,
3,
3,
-3,
-3,
-3,
-2
-2,
-1,
-1,
-,

1,
1,
2
2,
3,
3,
3,

-3,
-3,
-3,
-2
-2
-1
-1
-

,814484783
.309401077
,715568382
,017377918
,203231312
,265986324
,316624790
,252896775
.064161761
,757672729
,345207880
.842618008
.269217359
.647041398
.000000000
.647041398
.269217359
.842618008
.345207880
.757672729
.064161761
.252896775
.316624790
. 333333333
.269284268
.079598442
.771565374
.357022604
.851900777
.275611441
.650301073
.000000000
.650301073
.275611441
.851900777
.357022604
.771565374
. 079598442
.269284268
. 333333333
.316624790
.252896775
.064161761
.757672729
.345207880
.842618008
.269217359
.647041398
.000000000
.647041398

9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12

12
13
14
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16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
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15
16
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1
2
3
4
5
6
7
8
9
10

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
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7.5 Typical Results
Results produced by the program for this sample case are shown in Figs. 7.4,

7.5, and 7.6. Figure 7.4 shows the appearance of the half-body when the wake
body has been appended. Notice that the body slope changes reasonably smoothly
from the physical body, over the wake body, to the point where the wake body
terminates and that the length of the body plus wake body is about 5/4 that of the
physical body alone.

Figure 7.5 compares the pressure distribution over the physical body to that
over the physical plus wake body as calculated in the plane of symmetry. Notice
that the pressures over the physical body approach the stagnation value as the end
of the body is approached. As a result, the drag coefficient of the body is zero.
However, when the wake body is added, the pressures on the aft portions of the
physical body never exceed about 0.2 times the stagnation value. Consequently,
there is a positive pressure drag coefficient for this case. Both Figs. 7.4 and 7.5
are produced by the program.

Shown in Fig. 7.6 is a partial listing of the program output produced by the
program. Even for IWRITE = 2 there is a significant quantity of output most of
which was deleted when creating Fig. 7.6. There are, however, a number of very
interesting results displayed in the figure. Notice that both the pressure drag and
the lift are zero for the inviscid case. The effect of fluid viscosity is shown by the
frictional drag coefficient result. Also an effect of fluid viscosity is the pressure or
form drag coefficient, which is given here as 0.07065. The pressure drag coefficient
was computed as 0.02078, and the lift coefficient with wake body is calculated
as -0.00005, a value that indicates that the symmetry of the attached wake body
with the original physical body is good. The fact that the pressure drag coefficient
is less than 1/3 of the frictional drag coefficient shows that the body, even with
the wake body attached, is quite streamlined. Finally, a total drag coefficient of
0.09143 is 4-12% greater than the values reported in the literature for similarly
shaped bodies (prolate spheroids). This is because the pressure at the center of
the last set of panels is much lower than it is toward the rear of the panels. Fox39

circumvented the problem by integrating the pressure distribution (represented by
a bicubic spline) over these panels rather than assuming the pressure to be constant
at the center value.

The listing also shows the coordinates of the panel corners and the velocity
components over each of the panels, as well as the normal velocity at the panel
control point. This value is unusually significant because it provides a direct
indication of the accuracy to which the computation as been performed. The
reader may recall that the condition imposed on the induced flows was that the
sum of all of the induced velocities plus the component of the freestream flow
should be zero at the control point on each panel. It will be seen that the normal
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186 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

BODY Plan View
Wake Body Attached

Fig. 7.4a Body with added wake body, plan view.

BODY Elevation View
Wake Body Attached

Fig. 7.4b Body with added wake body, elevation view.

Half-Body Isometric View
Wake Body Attached

Fig. 7.4c Body with added wake body, isometric view.
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Cp
-1.0

H———I———,———I———,———,
6.0 4.0 2.0 0.0 -2.0 -4.0 -6.0

-+1.0

Fig. 7.5a Pressure distribution over general ellipsoid as calculated by program body;
flow left to right.

Cp
r-1.0

6.0 4.0 2.0 0.0 -2.0 -4.0 -6.0

L+1.0

Fig. 7.5b Pressure distribution over general ellipsoid with added wake body as cal-
culated by BODY.

velocities vary from less than l.OD-4 to less than l.OD-6 ft/s. In other words, the
error in satisfying the condition of no flow normal to a panel surface at any control
point is less than 1 part in IxlO6 (recall the freestream value of the velocity is
102) and less than 1 part in 108 at some points. (See Figs. 7.7 and 7.8.)

Figure 7.9 shows a comparison between the pressure distribution obtained using
BODY and that obtained using an analytical solution for a 3 to 1 prolate spheroid.
Considering all of the assumptions that had to be made to put together this version
of BODY the agreement is remarkably good.

The drag coefficient of the prolate spheroid was found to be about 20% smal-
ler than that of the general ellipsoid. (Compare Figs. 7.6 and 7.8.) Most of this
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188 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

general ellipsoid
NO. OF QUADS. = 320
NO. OF SECTIONS= 1
MAX. NO. OF ITERATIONS X FLOW 150
VINF = 100.000000 VO = .000100
1 PLANES OF SYMMETRY
CONVERGENCE CRITERIA , .00010
general ellipsoid
X FLOW
PT. X Y Z

1 9.33333 .06299 -.95934
2 8.47360 .11321 -1.72420

ROE = .002378 REFA = 23.271057 IWRITE

VX
-.43310
-.83689

VY
.07812
.06509

VZ
-.49615
-.44036

PAGE = 1

ABS.V
.66320
.94791

CP
.56016
.10146

SOURCE
.07135
.04173

V NORMAL
.55E-06
.27E-06

PRESSURE LIFT AND DRAG COEFFICIENTS

PRESSURE CL = .00000
PRESSURE CD = .00000

REFERENCE AREA = 23.27106
REYNOLDS NUMBER = .2000E+08

POTENTIAL FLOW PROGRAM SECTION 5
SUMMARY OF BOUNDARY LAYER INFORMATION FOR QUADRILATERALS
NQUAD X Y Z DSTAR SKIN

1 9.33333 .06299 -.95934 .00036 .00041
2 8.47360 .11321 -1.72420 .00108 .00122

FRICTION DRAG COEFFICIENT

FRICTION CD =
REFERENCE AREA =
REYNOLDS NUMBER =

BODY LENGTH =

.07065
23.27106
.2000E+08
20.00000

BEGIN WAKE BODY GEOMETRY
AVERAGE SLOPE = -.93816 AVERAGE PANEL AREA = .28351 AVERAGE X-CENTROID = -8.47360
END OF BODY AT X = -15.21116
X VELOCITY=-1.0 Y VELOCITY= 0.0 Z VELOCITY= 0.0
POTENTIAL FLOW PROGRAM SECTION 4
general ellipsoid
X FLOW
PT. X Y Z

1 9.33333 .06299 -.95934
2 8.47360 .11321 -1.72420

PAGE = 1

VX VY VZ ABS.V CP SOURCE V NORMAL
-.43309 .07812 -.49615 .66320 .56017 .07135 .66E-05
-.83688 .06509 -.44036 .94791 .10147 .04172 .52E-05

general ellipsoid
X FLOW
PT. X Y Z
351 -11.22330 .05295 .77431
352 -13.43240 .01890 .27633

PAGE

VX VY VZ ABS.V CP SOURCE V NORMAL
-.84611 -.03307 -.23724 .87936 .22672 -.01912 .99E-05
-.89684 -.02649 -.15600 .91070 .17063 -.01213 .16E-04

Fig. 7.6 BODY program output listing greatly condensed as to quantity of data and
vertical spacing on the page.
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CHARACTERISTICS OF BODIES AT SMALL ANGLES OF ATTACK 189

PRESSURE LIFT AND DRAG COEFFICIENTS

PRESSURE CL =
PRESSURE CD =

EFERENCE AREA =
REYNOLDS NUMBER =

-.00005
.02078

23.27106
.2000E+08

TOTAL BODY COEFFICIENTS

TOTAL BODY CL =
TOTAL BODY CD =
REFERENCE AREA =
REYNOLDS NUMBER =

BODY LENGTH =

-.00005
.09143

23.27106
.2000D-I-08
20.00000

Fig. 7.6 Contd.

BODY Plan View
Wake Body Attached

Fig. 7.7a Plan view of 3 to 1 prolate spheroid.

Half-Body Isometric View
Wake Body Attached

Fig. 7.7b Isometric view of 3 to 1 prolate spheroid.
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190 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

prolate spheroid
NO. OF QUADS. = 320
MAX. NO. OF ITERATIONS X FLOW 150
VINF = 100.000000 VO =.000100 ROE =.002378
REFA =34.790000 IWRITE = 2

CONVERGENCE CRITERIA = 0.00010

X VELOCITY=-1.0 Y VELOCITY= 0.0 Z VELOCITY= 0.0

PRESSURE LIFT AND DRAG COEFFICIENTS
*****************************

PRESSURE CL = .00000
PRESSURE CD = .00000

REFERENCE AREA = 34.79000
REYNOLDS NUMBER = .2000E+08
*****************************

FRICTION DRAG COEFFICIENT
*****************************

FRICTION CD = .05823
REFERENCE AREA = 34.79000
REYNOLDS NUMBER = .2000E+08

BODY LENGTH = 20.00000
*****************************

PRESSURE LIFT AND DRAG COEFFICIENTS
*****************************

PRESSURE CL = -.00004
PRESSURE CD = .01928

REFERENCE AREA = 34.79000
REYNOLDS NUMBER = .2000E+08
*****************************

TOTAL BODY COEFFICIENTS
*****************************
TOTAL BODY CL = -.00004
TOTAL BODY CD = .07751
REFERENCE AREA = 34.79000
REYNOLDS NUMBER = .2000D+08

BODY LENGTH = 20.00000
*****************************

Fig. 7.8 General results for 3 to 1 prolate spheroid; normal velocities are less than
l.OD-06 for all panels.

difference is due to the smaller frictional drag coefficient exhibited by the prolate
spheroid. That the surface area of the general ellipsoid is proportionally greater
than the surface area of the prolate spheroid for the same cross-sectional area
probably accounts for this. Notice that the reference area of the prolate spheroid
is about 50% greater than for the general ellipsoid.

That the prolate spheroid has smaller velocities normal to its surface panels and
has a lower lift coefficient are indications that source strengths, which vary only
in the axial direction, are easier for the program to accommodate than the source
strengths that vary circumferentially as well as axially.
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CHARACTERISTICS OF BODIES AT SMALL ANGLES OF ATTACK 191

0.25

Q.o
c
0)
§ -0.25
"0

8
o -0.50

CD
CL -0.75

-1.00
Circles computed by program BODY
Solid line is theoretical solution

- 1 0 - 5 0 5

Axial Position Along 3 to 1 Prolate Spheroid

10

Fig. 7.9 Comparison of the results produced by BODY program with those obtained
from an analytical determination of the pressure distribution on a prolate spheroid.

Data reported in Ref. 26 indicates that the results given by BODY for more
complex bodies such as general aviation fuselages are similar to but slightly lower
than drag coefficients determined by the well-known Con or drag buildup method.

7.6 Concluding Remarks
In this chapter we have attempted to show how a relatively simple yet rigorous

concept can be used to determine the drag coefficients of isolated nonlifting bodies.
We began by representing the body by an ensemble of linked, flat quadrilaterals,
a sort of wire frame model of the body. On each of these panels we placed a
fluid dynamic source of unknown strength. We determined the source strengths
by requiring that the flow velocity induced by all sources plus the freestream
normal to the panel surface be zero at one point on each panel. The solution of this
problem gave us the inviscid pressure distribution over the body. When the forces
due to these pressures are summed in the lift and drag directions one should, if the
computations were carried out with sufficient accuracy and precision, obtain zero
lift coefficient and zero drag coefficient.

The program also determines the flow streamlines on the body surface. Com-
bined with the pressure distribution it is possible to determine the skin friction
along streamlines, as well as the boundary-layer displacement thickness. The skin-
friction results in a drag on the body regardless of whether there is a pressure drag.
It is well known that for very streamlined bodies the skin-friction drag may repre-
sent 80% of the total drag. For less streamlined bodies, however, viscosity causes
a wake to form behind the body. The pressure in the wake is less than one would
predict from inviscid theory and, as a result, a pressure drag exists on the body.
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192 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

To model this effect within the framework of the general inviscid theory, we ap-
plied the concept of a wake body, a ficticious extension of the physical body about
which we perform an inviscid flow analysis. Then, when the pressures developed
over the wake body are applied to the physical body, a drag of approximately the
correct magnitude is developed. For the BODY program we have chosen to attach
the wake body 2 N stations upstream of the end of the physical body. We select
as the initial slope of the wake body the slope of the physical body plus twice
the boundary-layer displacement thickness. Finally, we locate the terminus of the
wake body downstream in the physical wake at a point such that the wake body
slope can vary monotonically from its inital value in an exponential manner. We
note that to retain the concept of inviscid flow over the body plus wake body, a
stagnation point must exist at the vertex of the wake body.

Using this model to acccount for viscous flow over a body with a plane of
symmetry causes the computation time to be somewhat greater than twice as
long as for inviscid flow alone because 1) the streamlines must be determined, 2)
the skin friction and boundary-layer displacement thickness must be determined
along a streamline passing through the centroid of each panel used to represent
the surface, 3) a wake body must be created and attached to the physical body,
and 4) the pressure distribution over this combined body must be determined.
Although such a computation is more difficult than an inviscid computation alone,
it is far less resource intensive than a solution of Navier-Stokes equations with
the physical body as the boundary condition. We will have a bit more to say on
this point in the chapter on computational fluid dynamics.

The results obtained with this method for determining the drag of slender,
isolated bodies have proven to be fairly accurate; unfortunately, there is little
data available in the literature that could be used to compare the results for more
complex body shapes. Also, generating the grid describing more complex bodies
is a tedious task. Nevertheless, the success of this method indicates the progress
made in calculating the aerodynamic characteristics of complete configurations
in a fairly rigorous manner from first principles. As computers become more
powerful, it can be expected that the procedures will be refined to eliminate some
of the assumptions made in this version. Automatic gridding schemes will be
of enormous assistance in analyzing complex shapes. The ability to treat bodies
with concavities, a feat that the present method cannot accomplish in a practical
manner, can also be expected. (An inward normal on a panel is an indication that
the local surface is concave. The program reports these inward normals when it
finds them.)

Readers interested in more detail regarding the inviscid theory treated herein
are urged to consult the references.

Problems
To spare the user the arduous task of identifying and recording the coordinates

of more than 100 points on a general body, the following problems are intended
to be solved using the BODYGEN program to create input files for analysis by
BODY.
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CHARACTERISTICS OF BODIES AT SMALL ANGLES OF ATTACK 193

7.1. Let N = 21 and M = 17 (for a half-body). Then generate a prolate spheroid
with the semimajor axis equal to 10.0 and the semiminor axis equal to 5.0. Use
sea level air as the medium through which the body is moving. Determine the
pressure and frictional and total drag of the body when its velocity is 100 ft/s.
Compare these with the results for the 3 to 1 prolate spheriod and comment on the
differences. Are the trends in the directions to be expected?

7.2. Repeat problem 7.1 for a 6 to 1 prolate spheroid. Choose the semimajor axis
to be 10.0 ft.

7.3. Repeat problem 7.1 for a 2 to 1 prolate spheroid. Choose the semimajor axis
to be 10.0 ft.

7.4. A 3 to 1 prolate spheroid is traveling at 100 ft/s in sea level air. It has
a semimajor axis of 10.0 ft. Choose N = 21 and M = 1 (for the half-body).
Generate the drag values using BODY. Compare the results with those for the
case where M = 17. Comment on the differences.

7.5. Repeat problem 7.4 for the case where N =29 and M = 17.

7.6. For the 3 to 1 prolate spheroid traveling in air let the semimajor axis be
10.0 ft. Choose N = 21 and M = 17. Let the velocity be 1 ft/s. Run BODY and
compare the results with the case where the velocity is 100 ft/s. Comment on any
differences observed.

7.7. Repeat problem 7.6 for a speed of 0.1 ft/s.

7.8. Choose a 3 to 1 prolate spheroid running in sea water at 100.0 ft/s. Let
N =21 and M = 17. Let the semimajor axis be 10.0 ft. Determine the drag
coefficient and compare with the case where the medium is air.

7.9. Repeat problem 7.8 for a velocity of 10.0 ft/s.

7.10. Repeat problem 7.8 for a velocity of 1.0 ft/s.

7.11. Repeat problem 7.8 for a speed of 0.1 ft/s.

7.12. From all of the data you have collected on the 3 to 1 prolate spheroid, plot
Co vs Reynolds number. Discuss your results.

7.13. Repeat problem 7.8 with the semimajor axis 1.0 ft. Compare the results
with those obtained for problem 7.8 and those obtained for problem 7.9.

7.14-7.25. Repeat the problems involving a 3 to 1 prolate spheroid for a body
with semimajor axis equal to 10.0 ft, semiminor axis in the plane of symmetry
of 3.33333 ft, and semiminor axis normal to the plane of symmetry equal to
2.22222 ft.
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194 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

7.26-7.35. Repeat the problems with the two semiminor axes reversed.

7.36-7.46. Repeat the problems for a body with the ratio of the two semiminor
axes equal to 1.25. The semimajor axis in the plane of symmetry is 3.0 ft. The
semimajor axis is 9.0 ft.

7.47. A prolate spheroid has a semimajor axis of 10.0 ft and a semiminor axis
of 1.0 ft. Develop the drag coefficients for this body when the speed is 100.0 ft/s
in sea water. Determine the ratio of the frictional drag coefficient to the pressure
drag coefficient for this configuration and discuss.

7.48. The program creates a file in input data format giving the coordinates of
the panel corners when a wake body has been attached. Submit to the program
a body that results from the analysis of the 2 to 1 prolate spheroid. Describe in
detail the results and in particular how the aft end of the body has been changed.

7.49. A body is formed by rotating the figure described by positive values of y
from the equation

for x > —5.4 and by the equation

y = 3.6 + (3.6/9.6)(* + 5.4)

for x < —5.4 about the x axis. Let dx = —0.9 for x > —5.4. For x < —5.4 the
values of x are -6.5, -7.8, -9.3, -11.0, -12.9 and -15.0. The body formed is
a 2 to 1 prolate spheroid with a conical afterbody such that the slope of the cone
is equal to the slope of the body at the point of attachment. The semimajor axis
is 9.0, and the semiminor axis is 4.5. Choose the number of M stations to be 15.
The number of N stations is 23. How does the drag of this body compare with the
drag of the basic 2 to 1 prolate spheroid? Compare pressure drag and skin-friction
drag separately.

7.50. Based on your experience with general ellipsoids (bodies for which the
three principal axes are unequal) what should you expect relative to the program's
ability to determine the drag coefficient of bodies like light aircraft fuselages?
Discuss. Does the same reasoning apply to fuselages of commercial transport
aircraft or submarine hulls?

7.51. If you were asked to determine the drag of a 1 to 2 ellipsoid by the use of
the program BODY what should be your reply and why?

7.52. If you were asked to determine the pressure distribution for inviscid flow
about a 1 to 2 ellipsoid using BODY could you legitimately do so and why?
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8
Characteristics of Wing Wakes

8.1 Introduction

T HE horizontal tailplane on conventional aircraft flies in the wake of the main
wing. Because the wing is lifting, the flow behind the wing exhibits a down-

wash, which varies along the wing semispan. (Simple momentum considerations
tell us that because the flow has created an upward force on the wing, there is an
equal and opposite force on the flow that imparts a downward velocity component
to it.) Inboard of the tips, the downwash can be thought of as a downward com-
ponent in the flow relative to the direction of flight. In the tip regions, however,
there is a significant outward component in the flow below the wing and a similar
inward component in the flow above the wing in addition to a downward com-
ponent. These spanwise flow components eventually cause the flow leaving the
tip regions to roll up into vortices. The strength of these vortices depends on the
lift being generated by the wing. Large transport aircraft, for example, are heavy
and, thus, generate considerable lift (equal to their weight) and, hence, very strong
vortical flows immediately aft of the aircraft.

The generation of lift can be treated as a purely inviscid matter. However, the
finite drag of the main wing causes a momentum defect to exist in the flow at
the center of the downwash field. Locating the horizontal tailplane in or near
the center of this downwash field can reduce its effectiveness by 15% or more.
In particular, locating the horizontal tailplane in a region where it is impacted
by the flow at the center of the downwash field only during high-angle-of-attack
situations causes this loss in effectiveness to be felt just at the occasion where the
maximum contribution of the tailplane to aircraft control is desired.

To minimize the size of the horizontal tailplane and thus minimize overall
aircraft drag, it is necessary that the tailplane operate in a flow region where
there is little momnentum loss at high-lift situations. If designers are to find such
locations they must be able to develop fairly complete knowledge of the direction
and magnitude of the flow at stations 2-10 chord lengths aft of the wing. It is the
purpose of the programs in this chapter to provide such information.

WASH is an inviscid program that calculates the local direction of the flow
from the trailing edge of the wing to as far downstream as one is able to track the
streamlines successfully. The methodology is very similar to that used to find the
flow over airfoils and bodies. WAKE is a program that determines the momentum
loss in the flow sheet immediatly downstream of the wing. Together they can be
used to create a three-dimensional picture of the directions and magnitudes of the
flow in the field downstream of the wing.

8.2 Program WASH
A review of previous literature in the area and a detailed discussion of the theory

leading to the creation of WASH are provided in Ref. 40. Here we relate the theory
necessary to the understanding of program operation.
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196 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

We begin with a consideration of the horseshoe vortex system such as that shown
schematically in Fig. 6.1, Chapter 6, page 132. Note that we are representing the
wing surface by what is called a lifting line approximation, which is satisfactory
for wings with little or no sweep and moderate to high aspect ratios. Along the
lifting line we place a bundle of horseshoe vortices. Each of these vortices has
a different circulation strength and spanwise extent. As a group they define the
spanwise lift distribution. (In more exact representations of the wing we use a
chordwise as well as a spanwise distribution of horseshoe vortices.) If the dark
line in Fig. 6.1, A-A7, is thought of as representing all the horseshoe vortices,
then F varies in a symmetrical manner with respect to point 0. Lines A!-E' and
A-B represent all the trailing vortices which eventually roll up into two large
tip vortices. According to the Biot-Savart law all these vortices induce velocity
components into the flowfield whose strengths are inversely proportional to their
distances from the point of consideration.

One form of the Biot-Savart law is given by

(8.1)

where:

d W = total velocity induced at a particular point by a filament d€
P = strength of the vortex filament
r = distance to increment of filament at the point the velocity is induced
9 = angle between the length r and the filament

The contibution of the bound vortex is calculated by integrating Eq. (8.1) from
the negative wing tip to the positive wing tip. Expressing sin 0 and r in terms of
x, y , and z, and noting that d£ becomes dj, the induced velocity at a point ( x , y , z )
can be expressed by

w - x2)2 + (z- zb) dy0Wb= I ——————————————————————— (8.2)[ '= I
'-i 4n [(x - xbf + (y- yb)2 + (z -

where all coordinates are nondimensionalized by the semispan. Equation (8.2)
may be solved numerically or, if the functional for F(yo) is known, it may be
integrated in closed form. To use the closed- form technique, two successive spec-
ified values of F(v) for the bound vortex were fitted using a cubic spline. The
coefficients in the spline relationship were obtained by matching the first and
second derivatives at the endpoints. We recall that the cubic spline is of the
form

TOO = Aljy
3 + A2jy2 + A3jy + A4j (8.3)

where y; < y < J /+i, j = 1, 2, 3, . . . , 19.
Note that for each of the 19 intervals the coefficients of the spline function over

the interval yj-yj+\ are constant. However, a different set of constant coefficients
may apply to the interval yj+\-yj+2. Using Eq. (8.3) in Eq. (8.2) permits us to
integrate Eq. (8.2) to yield the total velocity induced by the bound vortex at point
p(x, y, z). The total velocity can be divided into a freestream component u and
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CHARACTERISTICS OF WING WAKES 1 97

a downwash component iu,

Wh (x - xh)ub = (8.4a)
J(x-xh)2 + (z-zb)2

w* ^ - z^wb = (8.4b)
J(x - xbf + (z - z,)2

The subscript b refers to the bound vortex. Here, w and W are defined as positive
in the negative z direction, and u is positive in the positive x direction. Because the
bound vortex is always parallel to the 3; axis there is no sidewash component in Wb.
The streamwise component is usually very small compared with the freestream
velocity.

The velocity induced by a trailing vortex is calculated by summing the effects
of each straight line segment of the vortex. The total velocity induced at a point
by a straight line segment is also calulated by Eq. (8.1); however, the evaluation is
much simpler than the bound contribution because F is constant along all segments
of the trailing vortex. Suppose we call the distance along a straight line segment
L Expressing dl and r in terms of 0, that is, rdO = d£, we can write the equation
for the velocity induced by a trailing vortex segment as

=-f4n Je.
Wt = 0 (8.5)

where:

wt = total velocity induced at point p(x, v, z) by a vortex of
length A B, see Fig. 6.1

9A = angle P AB between the length r or P A and the filament at point A
9B = angle PB A between the length r or P B and the filament at point B
h = perpendicular distance from p to the filament, P N in Fig. 6.1

Carrying out the integration indicated in Eq. (8.5) we have

wt = (r/47T/0(cos6U - cos 0B) (8.6)

This inital induced velocity must also be divided into its component parts:
freestream, sidewash, and downwash velocities. As shown in Fig. 8.1 the total
induced velocity po due to a line vortex from p\ to p2 of strength F may be
written as

F(cos6>i+cos# 2 ) ,Q_Wt = —————————— (8.7)
47r(b/2)dmsmOl

The three lengths shown in the figure are defined as follows:

doi = \/(*o --^i)2 + (jo - y\)2 + (ZQ - ^i)2 (8.8b)

d$i = y (XQ — X2) + (^0 + ^2) + (ZQ — Z2) (8.8c)
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198 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Fig. 8.1 Schematic showing velocity induced at PQ due to a vortex from PI to P2.

The angles 9\ and 0% are defined in terms of these lengths by the relationships

"(4+4-4)"i\ — cos

e/2 = cos" (4+4-4)

(8.9a)

3.9b)

In terms of these quantities and the locations of points 1 and 2, the location of
point 3 is given by

(8.10a)

(8.10b)

(8*10c)

• (cos 6*0 • [(x2-xl)/d2i]
y3 = yi + d01 . (cos 0i ) - [<j2

z3 - Z! + dbi • (cos 00 - [(z2 - z

We will define three additional quantities as

B = (x2~ X l ) (z3 - n) - fe -

C = (*2 - ^0 ( ^ 3 - i) - (?2 -

(z2 -

(8.1 la)
(S.llb)

so that we can write the components of the velocity induced by the trailing vortices
as

" (8.12a)

(8.12b)

(8.12c)

where

R = A2 + B2 + C2 (8.12d)

We note that the induced velocity components at a point are determined from
contributions due to the bound vortex given by Eqs. (8.4) and to the trailing vortices
given by Eqs. (8.7) and (8.12). The velocity induced by the entire vortex system
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CHARACTERISTICS OF WING WAKES 199

is computed by summing the contributions of the bound vortex and each segment
of the 18 trailing vortices.

The curvature in the trailing vortex system is modeled by representing each
vortex by a number of straight line segments, which are free to follow the local
direction of flow. Their position is found by marching stepwise in the x direction,
determining the flow direction at a particular value of x from the v and w compo-
nents due to all vortices at that point, and aligning the segment with the flow by
use of the equations

Ay = vAx (8.13a)
Az = wAx (8.13b)

(A marching procedure is required because the position of each segment and,
therefore, the velocity components it induces is unknown a priori)

8.2.1 Features of WASH Program
The current version of WASH produces, in addition to listings of the locations

of shed vortices, PostScript views of the downwash field, as shown in Fig. 8.2. In
these views the locations of the centers of the 9 vortices shed from each half of
the wing are shown at 15 stations downstream of the wing trailing edge. As many
as 5 additional downstream stations can be added. One view is a quasiplan view,
and the other shows their appearance as seen by an observer in the region of the
horizontal tailplane. Figure 8.2 was computed for an angle of attack of 11 deg and
a lift coefficient of about 1.0. Notice that for this lift coefficient the vortices do
not appear to roll up completely, at least over the field of observation. (A rollup
would be indicated by having, say, the center of the most outboard vortex move
to the inside of the next most outboard vortex at some X station; however, the
figure does appear to show the beginning of this situation.) Figure 8.2b indicates
that there is a relatively large upward displacement of the vortex centers as one
moves outward along the wing semispan. The figure maintains the correct Y-Z
scale relationships. Different scaling was used for the three axes in Fig. 8.2a to
highlight the characteristics of the vortex sheet.

In addition to providing data from which to construct these views, the program
offers options to compute the downwash field in the X—Z plane behind the wing
or the upwash field in the X—Z plane ahead of the wing. Typical results are shown
in Fig. 8.5b. The significance of the results in this figure is discussed in Sec.
4.0. Figure 8.5a shows the sidewash components in the Y-Z plane at six inboard
Y -locations for a specified value of X . The data appear in WASH.TXT. The
PostScript file created from these data is called SWASH.PS. If the user wishes
to plot these data in some other fashion they are available for this purpose in
WASH.OUT, a permanent file.

Two additional executables, WASHDAT1 and WASHDAT, have been provided
with the present version of WASH to assist the user in creating input files for
WASH. These are described in more detail in the next section.

Programs sizes are as follows.

NAME NUMBER OF LINES BYTES IN SOURCE BYTES IN EXECUTABLE
WASHDAT1 39 1,792 89,088
WASHDAT 125 5,504 90,624
WASH 1200 83,456 133,120
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200 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Note that data along each of
the three axes in this figure
are scaled differently. Distortions
in the shed vortex sheet are emphasized

b)

Fig. 8.2 Two views of downwash field: a) shed vortex sheet and b) view from region
of horizontal tailplane.
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CHARACTERISTICS OF WING WAKES 201

wing
15

11.00000
.98769
.15644
.45462
.13458

20.00000
.95106
.12974
.75759

1.08261
1 .75000
0 .75000

.49000

.89101

.92777

4.00000
.80902

1.02802

.25000

.70711

1.09002

.58779 .45399 .30902

1.12809 1.14835 1.15099

Fig. 8.3 Typical input date file for WASH program.

8.3 Program Data Entry
A typical input data file is shown in Fig. 8.3. On the first line is the name one

wishes to assign to the job. The next line shows the number of the downstream sta-
tion at which the downwash is to be computed and the type of computation desired.
The number 1, which follows, tells the program to generate file WASH.OUT. The
next two lines show the stations on the semispan for which section lift coefficient
values are available. These are given in the following two lines. Next are two
numbers, the first of which indicates the type of computation desired. The number
1 indicates that the views shown in Fig. 8.2 are desired. For 2, the downwash in the
X-Z plane behind the wing is produced. For 3, the upwash in the X-Z plane is pro-
duced. The second number indicates the downstream separation between planes
of computation in semispans. In the last line the first number has been changed to
zero to signal the program to halt following one set of computations. A provision
to enable the program to read a second set of input data at this point was eliminated
from this version. This input file is produced by program WASHDAT. WASHDAT
in turn uses a file, WASHDAT.DAT, made by WASHDAT1 from an edited version
of F2D3D.TXT called CODE.DAT. All files can also be created with an editor.

8.4 Typical Results
Results produced by the program for the input data file given in Fig. 8.3 are

shown in Fig. 8.4.
Some of the values in the figure are self-explanatory. The circulation values,

of course, are determined from the section lift coefficients. These are then spline
fitted to give a smooth variation over the wing semispan. The next item in the
listing is the locations of the centers of the shed vortices at each of the downstream
planes for which computation was desired. This is the information that is plotted
in Fig. 8.2. Finally, the last three sets of numbers in the listing are the total
flow deviation, the sidewash, and the downwash in X-Z planes at six spanwise
locations 0.75 semispans aft of the wing trailing edge (roughly the region in which
the horizontal tailplane would be located). These data give the actual directions
of the flow components at the specified locations. Note that Y and Z values have
been normalized by dividing by b/2.

The strength of the tip vortex and, hence, the amount of rollup that will be
seen in the figures is dependent on the aspect ratio, the taper ratio, and the lift. A
taper ratio of about 0.5 makes the lift distribution nearly elliptical and, therefore,
spreads the vorticity over the span. Increasing aspect ratio has the same effect.
In the example, the aspect ratio is about 10. For this example, therefore, a high
degree of rollup is not expected, even at maximum lift coefficient where the tip
vortex is strongest. Notice, too, that the rollup takes time (or distance) to develop.
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202 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

wing !
ALPHA = .110000D+02 DEGREES
B2 = .2000000+02 FEET
TR = .4900000+00
CR = .4000000+01 FEET
DX = .2500000+00 SEMISPANS
XB = -.1472440+00 SEMISPANS
ZB = .2862130-01 SEMISPANS
NSTEP = 15

INPUT SEMI -SPAN VALUES
I Y(I) CLS(I)
1
2
3
4
5
6
7
8
9
10

REORDERED
I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

987690D+00
951060D+00
891010D+00
8090200+00
7071100+00
5877900+00
4539900+00
3090200+00
1564400+00
129740D+00

.4546200+00

.7575900+00

.9277700+00

.1028020+01

.1090020+01

.1128090+01

.1148350+01

.1150990+01

.1134580+01

.1082610+01

TIP VALUE (Y-POSITIVE)
I
1
1
I
1
1
1
1

ROOT VALUE
FULL- SPAN VALUES
Y(I)
9876900+00
9510600+00
8910100+00
8090200+00
707110D+00
5877900+00
453990D+00
3090200+00
1564400+00
1297400+00
1297400+00
.1564400+00
.3090200+00
.4539900+00
587790D+00
707110D+00
.8090200+00
.8910100+00
.9510600+00
.9876900+00

CLS(I)
.4546200+00
.7575900+00
.9277700+00
.1028020+01
.1090020+01
.1128090+01
.1148350+01
.1150990+01
.1134580+01
.1082610+01
.1082610+01
.1134580+01
.1150990+01
.1148350+01
.1128090+01
.1090020+01
.1028020+01
.9277700+00
.7575900+00
.4546200+00

C(I)
.1985110+01
.2059840+01
.2182340+01
.2349600+01
.2557500+01
.2800910+01
.3073860+01
.3369600+01
.3680860+01
.3735330+01
.3735330+01
.3680860+01
.3369600+01
.3073860+01
.2800910+01
.2557500+01
.2349600+01
.2182340+01
.2059840+01
.1985110+01

GAM(I)
.4512360+00 TIP VALUE (Y- NEGATIVE)
.7802560+00
.1012350+01
.1207720+01
.1393860+01
.1579840+01
.1764930+01
.1939190+01
.2088120+01
.2021950+01
.2021950+01
.2088120+01
.1939190+01
.1764930+01
.1579840+01
.1393860+01
.1207720+01
.1012350+01
.7802560+00
.4512360+00 TIP VALUE (Y-POSITIVE)

LOCATIONS & STRENGTHS OF THE 9 SHED VORTICES ON THE NEGATIVE Y-AXIS
(A MIRROR IMAGE IS ASSUMED FOR POSITIVE AXIS)

TIP VALUE (Y-NEGATIVE)
I
1
2
3
4
5
6
7
8
9

YGAMS(I)
-.9693750+00
-.9210350+00
-.8500150+00
-.7580650+00
-.6474500+00
-.5208900+00
-.3815050+00
-.2327300+00
-.1430900+00

GAMS (I)
-.3290200+00
-.2320980+00
-.1953630+00
-.1861430+00
-.1859780+00
-.1850950+00
- . 1742540+00
-.1489290+00
.6616340-01 ROOT VALUE

SPLINE FIT OF BOUND VORTEX STRENGTHS VERSUS Y

Y
-1.000
-.950
-.900
-.850

GAMMA
.29496022
.78702135
.98914547

1.11428501

Fig. 8.4 Typical WASH output slightly condensed.
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CHARACTERISTICS OF WING WAKES 203

-.800
-.750
-.700
-.650
-.600
-.550
-.500
-.450
-.400
-.350
-.300
-.250
-.200
-.150
-.100
-.050
.000
.050
.100
.150
.200
.250
.300
.350
.400
.450
.500
.550
.600
.650
.700
.750
.800
.850
.900
.950
1.000

1.22664068
1.32158156
40539683
48447691
56124217
63692988
70818065
76930779

1.81983732
1.87578828
95633746
05722452

2.11893155
2.07414920
1.95363527
1.87864287
1.85364540
1.87864287
1.95363527
2.07414920
2.11893155
2.05722452
1.95633746
1.87578828
1.81983732
1.76930779
1.70818065
1.63692988
1.56124217
1.48447691
1.40539683
1.32158156
1.22664068
1.11428501
.98914547
.78702135
.29496022

COORDINATES FOR DOWNSTREAM SHED VORTICES ALONG THE POSITIVE Y-AXIS (FROM WING ROOT TO WING TIP)
S DENOTES PATH DISTANCE DOWNSTREAM FROM TRAILING EDGE FOR EACH VORTEX AT THE GIVEN STEP

TRAILING
X
Y
Z
S

EDGE
.000000
. 143090
.000000
. 000000

.000000

.232730

.000000

.000000

.000000

.381505

.000000

.000000

.000000

.520890

. 000000

.000000

.000000

.647450

.000000

.000000

.000000

.758065

.000000

.000000

.000000

.850015

.000000

.000000

.000000

.921035

. 000000

.000000

.000000

.969375

.000000

.000000
STEP 1
X .250000 .250000 .250000
Y .143984 .232817 .382258
Z -.022468 -.021898 -.018595
S .251009 .250957 .250692

STEP 2
X .500000 .500000 .500000
Y .144488 .232959 .382612
Z -.039406 -.038205 -.031814
S .501583 .501489 .501041

.250000 .250000 .250000

.521974 .648964 .760332

.016289 -.014382 -.012848

.250532 .250418 .250340

.500000 .500000 .500000

.522401 .649522 .761234

.027657 -.024397 -.021989

.500791 .500619 .500509

.250000 .250000 .250000

.853875 .928128 .973796

.011403 -.007702 .008567

.250290 .250219 .250186

.500000 .500000 .500000

.855846 .933954 .969278

.020015 -.014573 .019780

.500446 .500381 .500478

STEP 15
X 3,
Y
Z -,
S 3,

.750000

.156020

.210121

.756101

3.750000
.245240

-.200511
3.755582

3.

-,
3,

750000
,392773
,156468
,753462

3.750000
. 534388

-.129880
3.752437

3.750000
.668241

-.108960
3.751799

3.750000
.804516

-.088926
3.751586

3.750000
.953388
.003273

3.753374

3.

3.

,750000
,898712
,094423
,755558

3.750000
.886099
.007110

3.752393

Fig. 8.4 Contd.
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204 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

TOTAL FLOW ANGULAR DEVIATION INFORMATION FOR POSITIVE Y-AXIS AT THE X STATION OF
Y = .1450 Y = .2332 Y = .3830 Y = .5228 Y = .6501
Z
.1955
.1455
.0955
.0455

-.0045
-.0545
-.1045
-.1545
-.2045
-.2545
- . 3045

SIDEWASH
Y = ,
Z
.1955
.1455
.0955
.0455

- . 0045
-.0545
-.1045
-.1545
-.2045
-.2545
-.3045

DOWNWASH
Y =
Z
.1955
.1455
.0955
.0455

-.0045
-.0545
-.1045
-.1545
-.2045
-.2545
-.3045

ANGLE
1.79
1.94
2.05
2.05
1.86
1.64
1.81
1.92
1.85
1.72
1.57

Z ANGLE
.1974
.1474
.0974
.0474

- . 0026
-.0526
-.1026
-.1526
-.2026
-.2526
-.3026

INFORMATION FOR
.1450
ANGLE
-1.46
-1.54
-1.55
-1.39
-.85
.21

1.19
1.57
1.59
1.50
1.37

Y =
Z
.1974
.1474
.0974
.0474

-.0026
-.0526
-.1026
-.1526
-.2026
-.2526
-.3026

INFORMATION FOR
.1450
ANGLE
1.03
1.17
1.33
1.51
1.65
1.63
1.36
1.10
.94
.84
.77

Y =
Z
.1974
.1474
.0974
.0474

-.0026
-.0526
-.1026
-.1526
-.2026
-.2526
-.3026

1.85
1.97
2.05
2.06
1.96
1.83 -
1.88 -
1.95 -
1.91
1.81
1.69 -

POSITIVE
.2332
ANGLE
-1.23
-1.28
-1.25
-1.10
-.68
.09
.84 -

1.22
1.32 -
1.30 -
1.23 -

POSITIVE
.2332
ANGLE
1.38
1.50
1.62
1.74
1.84
1.83 -
1.68 -
1.52 -
1.38 -
1.26
1.16 -

Z ANGLE
.2068
.1568
.1068
.0568
.0068
.0432
.0932
.1432
.1932
.2432
.2932

Y-AXIS
Y = .
Z

.2068

.1568

.1068

.0568

.0068

.0432

.0932

.1432

.1932

.2432

.2932

Y-AXIS
Y = ,
Z

.2068

.1568

.1068

.0568

.0068

.0432

.0932

.1432

.1932

.2432

.2932

1.96
2.08
2.17
2.21
2.18
2.11
2.10
2.10
2.04
1.94
1.82

AT THE
3830
ANGLE
-.99
-1.02
-.99
-.86
-.52
.06
.63
.94

1.05
1.05
1.01

AT THE
.3830
ANGLE
1.70
1.81
1.93
2.04
2.12
2.11
2.00
1.87
1.75
1.63
1.51

Z
.2127
.1627
.1127
.0627
.0127

-.0373
-.0873
-.1373
-.1873
-.2373
-.2873

ANGLE
2.11
2.25
2.38
2.48
2.53
2.51
2.45
2.36
2.25
2.11
1.97

X STATION OF
Y =
Z
.2127
.1627
.1127
.0627
.0127

-.0373
-.0873
-.1373
-.1873
-.2373
-.2873

.5228
ANGLE
-.71
-.72
-.70
-.60
-.36
.05
.45
.68
.76
.76
.73

X STATION OF
Y =
Z
.2127
.1627
.1127
.0627
.0127

-.0373
-.0873
-.1373
-.1873
-.2373
-.2873

.5228
ANGLE
1.99
2.13
2.27
2.41
2.50
2.51
2.41
2.26
2.12
1.97
1.83

Z
.2172
.1672
.1172
.0672
.0172

-.0328
-.0828
-.1328
-.1828
-.2328
-.2828

ANGLE
2.26
2.43
2.62
2.84
3.08
3.20 -
3.01
2.72
2.47 -
2.27
2.09 -

7500
Y = .
Z
.2204
.1704
.1204
.0704
.0204
.0296
.0796
.1296
.1796
.2296
.2796

SEMI-SPANS
,7623
ANGLE
2.34
2.50
2.69
2.91
3.19
3.34
3.12
2.81
2.56
2.35
2.17

.7500 SEMI-SPANS
Y = .
Z
.2172
.1672
.1172
.0672
.0172

-.0328
-.0828
-.1328
-.1828
-.2328
-.2828

6501
ANGLE
-.35
-.33
-.28
-.17
-.02
.08 -
.15 -
.25 -
.33 -
.36
.36 -

Y = .
Z
.2204
.1704
.1204
.0704
.0204
.0296
.0796
.1296
.1796
.2296
.2796

,7623
ANGLE
-.48
-.51
-.53
-.52
-.38
.05
.45
.57
.56
.52
.48

.7500 SEMI-SPANS
Y =
Z
.2172
.1672
.1172
.0672
.0172

-.0328
-.0828
-.1328
-.1828
-.2328
-.2828

,6501
ANGLE
2.23
2.41
2.60
2.83
3.08
3.19 -
3.01
2.71
2.45
2.24 -
2.06 -

Y = .
Z
.2204
.1704
.1204
.0704
.0204
.0296
.0796
.1296
.1796
.2296
.2796

.7623
ANGLE
2.29
2.45
2.64
2.87
3.16
3.34
3.09
2.75
2.50
2.29
2.11

Fig. 8.4 Contd.

In most conventional aircraft, the horizontal tailplane is set 3-4 chord lengths
aft of the aircraft e.g. (which is approximately at the wing quarter-chord). In the
example problem, the wing semispan is 5 times the wing chord. With a stepsize of
0.25 semispans one would expect to find the horizontal tailplane at about the third
step of the net in Fig. 8.2 behind the wing. Although tip vortex rollup is unlikely
to impact the horizontal tailplane of the aircraft that generates it, the diameter of
the vortex grows as the vortex moves downstream. When this is coupled with the
fact that the strength of the vortex is dependent on the actual lift being generated,
one can easily see the hazard created when a small aircraft enters the vortex field
of a much larger aircraft.

Although the wing tip vortex is unlikely to impact the aircraft's own horizontal
tailplane, the downwash field associated with it can have a very significant impact
on the control of the aircraft. The reader may recall that the lift of the horizontal
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ALL DIMENSIONS SHOWN IN SEMI-SPANS
HEAVY DASHED LINE IS WAKE CENTER
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Fig. 8.5a Flowfield in F-Z plane. The magnitude of the sidewash is dependent on the
value of CL, here about 1.0. To make it more apparent, add a scale factor of 20 to line
1157 in the program.

tailplane generates a pitching moment about the aircraft e.g., one that is needed
to balance the wing's pitching moment. Because the tailplane lift is dependent on
its angle of attack relative to the oncoming stream, the effect of the down wash
is to reduce the tailplane's angle of attack and, hence, its lift. At high values of
wing lift coefficient, the downwash angle at some values of Z near the aircraft's
plane of symmetry may exceed 10 deg. If this had not been accounted for during
the aircraft's design by changing the tailplane's incidence angle and locating the
tailplane vertically in a position where the downwash is weaker, the most forward
e.g. location at which the aircraft could be trimmed (balanced in steady flight)
would be severly restricted.

The sidewash shown in Fig. 8.5a indicates the degree of spanwise flow taking
place at various locations in the flowfield at X = 0.75 semispans. Note that the
data plotted in the figure do not include Y values near the tip. Although this view
does not depict the tip vortex field, it does show the sidewash in the flowfield
through which the horizontal tail will fly. Note also that the lengths of all arrows
are the same so that only the deviation from vertical of the arrow has meaning:
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206 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

GRID SEPARATION IS 0.05 SEMI-SPANS IN BOTH X AND Z DIRECTIONS
ORIGIN IS WING TRAILING EDGE. STAT=.75

Fig. 8.5b Downwash in X-Z plane at Y = 0; vertical flow displacement is emphasized
by a factor of 15.

vertical arrow equals zero sidewash. The deviation is shown here unamplified. The
flow direction shown is that which exists at the origin of an arrow. The data from
which this figure was made are available only when NXORY = 1.

In addition to a downwash effect, there is a momentum defect in the flow
downstream of the wing resulting from the wing's profile drag. If the horizontal
tailplane should encounter the momentum defect at its most severe, it can lose
10% or more of its effectiveness. Notice that the vertical location of the most
severe momentum defect changes with changes in lift coefficient. For the spanwise
stations of interest, this vertical location lies within the vortex sheet shown in Fig.
8.2. Hence, the computations used to determine the path of the shed vortex sheet
also provide the starting point for the WAKE calculations.

There are several ways in which the downwash data could be presented graph-
ically. The usual method is to draw contours of constant downwash angle. This is
somewhat tedious because it is necessary to interpolate the available data to find
the actual Z location for a specific contour at each X station. One could also show
the direction by a short line tangent to the flow in the same manner as one depicts
streamlines. This is essentially what is done experimentally with a tuft grid. If
necessary, the angle of the line can be amplified (as was done in Fig. 8.5b) to
render the flow angle changes more visible. The resulting figure is qualitative in
nature rather than quantitative. Quantitative data can be obtained from the file. In
any case, this technique is easily incorporated into the program or made into an
auxiliary program such as DWASH.FOR, which obtains its input from a portion
of WASH.TXT. Note that the parameter STAT has a value of 0.75 for both figures
but means the X distance to the Y—Z plane in the first case and Z value of the
center of the X-Z plane in the second.
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CHARACTERISTICS OF WING WAKES 207

15 ^^

o>
Q

®" 5
O)

-0.5 0.5 1.0 1.5

Horizontal Position Relative To Wing Trailing Edge
Fig. 8.5c Upwash and downwash magnitudes in the X-Y plane, which lies along the
wing chord line. Generated with options NXORY = 2 and NXORY = 3.

Other data of interest also appear in the file WASH.TXT. The distribution of
circulation along the span, for instance, is listed and thus may be easily plotted, if
desired.

Figure 8.5b shows the flow direction in the plane of symmetry for the portion of
the X-Z plane where one might expect the horizontal tail to located on a low-wing
aircraft. Notice that the downwash diminishes as one moves up from the trailing
edge and also as one moves downstream. This figure is generated for a value of
STAT = 0.75. When STAT = 0.0, Z goes from -0.5 to +0.5. To use DWASH
with STAT = 0.0, it will be necessary to change the value of ZZO on line 101 of
DWASH.FOR and change the bias value on line 74 to 550 to shift the reference
upward on the page. The vertical location of the text may have to be moved as well.

Figure 8.5c shows the magnitude of the downwash and the upwash ahead of the
wing in the X-Y plane. (This is taken from a run with STAT = 0.0 and NXORY
= 2. The data for X < 0.0 are obtained from a run with NXORY = 3.) Notice
that the flow angle magnitudes are considerably greater than those in Fig. 8.5b.
Perusal of the listing shows that, in general, the greatest downwash is at or below
the Z = 0 line. The maximum downwash angle decreases as X increases. In the
area of the tail it is about one-half that at the trailing edge. The flow would appear
to be headed toward a 0-deg asymptote.

8.5 Program WAKE
We have been able to treat the problem of determining the Y-Z coordinates at

specified values of X of the constituent parts of the vortex sheet that is shed from
the wing by an integral technique, that it, a technique that did not require us to
solve any differential equations. Such a technique can tell us the net result of fluid
dynamic activity inside a volume but cannot give us any details of that activity.
Thus, having determined the path of the shed vortex sheet and the associated
inviscid downwash field, we now seek to find the magnitude and extent of the
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208 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

velocity defect at various downstream locations in the viscous wing wake. For
such a problem we are interested in fluid dynamic details; hence, we will have to
solve some sort of differential equation.

The general problem is obviously three dimensional and so we will resort to
experimental observations in an effort to find some reasonable assumptions to
simplify the problem. To begin we recognize that we are interested in a region of
flow whose extent in the Y direction is probably no more than 1/3 semispan from
the fuselage and whose extent in the X direction is on the order of 3/4 semispan. In
this region we observe that 1) vortex rollup is still minimal, 2) streamline curvature
in either the Y or Z directions is very gradual, and 3) the wake centerline lies along
the shed vortex sheet of inviscid theory. As a result of these observations we will
assume that 1) we can treat the flow along the wake centerline as two dimensional
2) the position of the wake centerline is known a priori, and 3) because of the low
curvature the pressure is constant across the wake and the describing differential
equations are the two-dimensional boundary-layer equations. Therefore, we look
for a method of solving these equations that yields the variation in streamwise
velocity across the wake.

One technique for solving partial differential equations, which these are, is to
first find a new independent variable that is a combination of the two previous
independent variables. If we are successful, the transformed equations become
ordinary differential equations and can be solved by one of the many analytical
or numerical procedures available for this purpose. Even if we are not completely
successful we may be able to transform the equations into a form that is easier to
solve. We will assume that a suitable combination of independent variables is

(8.14a)

(8.14b)

where:

c = wing chord at some value of wing semispan
t = wing thickness at this value of wing semispan
cd = section profile drag coefficient
y = physical coordinate normal to the streamline
x = physical coordinate along the stream

In addition, we will assume that the flow can be described by the stream function

t(x, y) = tWlOOcdr*/(£, 77) (8.15)

where /(£, rf) is a function of the new independent variables whose explicit form
is given by the solution of the equations.

We recall that the two-dimensional boundary-layer equations are written as
follows.

du du I dr ,n is \u— - j-f— = — — Equation for x momentum (o.loa)
3x 3y p 3y 4
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CHARACTERISTICS OF WING WAKES 209

du dv
— + — =0 Continuity equation
dx dy

(8.16b)

We will consider the wake to be turbulent and, therefore, we should write

r =
3y

(8.17)

where € is called the eddy viscosity coefficient. We will defer for the moment
discussion on how € is evaluated.

Substitution of the expression for T into Eq. (8.16a) yields

du du
^~ay

d2u
(8.18a)

(8.18b)

If we substitute the expression for the stream function into the continuity equa-
tion, we have seen in Chapter 2 that the equation vanishes. To transform the
remaining equation we first write the values of the following derivatives:

— = . (8.19a)
dy fT7^

dx
d^/_
~fy

(8.19b)

u = —— = U0dr] dy

= V

3u
——
dx

dy2 W0cdtx

dx dr] dx

(8.19c)

dx
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210 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

When these expression are substituted into Eq. (8.18a) we have

Clearing the second term, dividing by [/£,, and multiplying by x gives

(8.20)

or

This is the equation that must be solved at every § to find w = u(rj). It is a third-
order partial differential equation in a single dependent variable / and requires
three boundary conditions,

u(x,y
-oc) =

, oo) = 1

, -oo) -

9?
= 0

(8.22a)

(8.22b)

(8.22c)
$=o

The left-hand expressions give the boundary conditions in physical coordinates,
and the right-hand expressions given them in transformed coordinates.

We will now make the substitution

T = f

so that our equation reads

+ ,df dT\nf — -T—\ =0

Now let

so that

c\ =

' - /' = 0

(8.23a)

(8.23b>

0. ,.23c)

(8.24)
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CHARACTERISTICS OF WING WAKES 211

Then take

(8.25a)

(8.25b)

from which

(8.26)

We shall solve Eq. (8.26) by assuming a solution for ct\ and ct^. Then T can be
found by integrating Eq. (8.26) numerically, and a\ and o?2 can be updated. With
the updated values a new solution for T can be found. The process is continued in
this fashion until convergence is achieved. A finite difference scheme is employed
in WAKE to convert Eq. (8.26) into a set of algebraic equations. Following Cebeci
and Smith41 we write

\,m+l (8.27a)

ar ~~ Tn- 1,/n+l (8.27b)

ar

,
i (8.27c)

(8.27d)

(8.27e)

The subscripts refer to points on the grid as shown in Fig. 8.6.
These grid points are the only points at which the solution is actually ob-

tained. Note that in contrast to the solutions of a differential equation, which,
in this context, is found for any position in the £, 77 space, the solutions ob-
tained by a finite difference technique are valid only at discrete points. The solu-
tion is not known anywhere else in the field. However, if the grid is reasonably
fine this is not an obstacle of practical importance. The advantage achieved by
making this approximation is that the system of algebraic equations is readily
solved on a computer by modern matrix techniques, as we shall now demon-
strate.
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212 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

n+2

n+1

n

n-1

m 1̂m-11 m+1

Fig. 8.6 Grid on which finite difference solution is evaluated.

When the approximations for the derivatives are subtituted into Eq. (8.26) we
obtain

i , «,
+

r -2
+ ,2 + «2

L(Af?)

or

If we let

— Dn

(8.28)

(8.29)

i „,

-2
Bn = ~——-T +«2-

Cn =

-*2

2A??

Tn,m-\ +

(8.30b)

(8.30c)
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CHARACTERISTICS OF WING WAKES 213

The total number, flmax, of TI stations must be odd. The bottom of the wake
(rj —> — oo) is defined by n = 1, while the top (77 —>• oo) is defined by n — nmdx.
The wake center is definded by nm\d[(nmdx - l)/2] + 1. Therefore, the boundary
conditions can be specified using the index n.

At/i = 1,

At n = nmid

(8.31a)

3.31b)
(£,0)

At n = n

When written in matrix form, Eq. (8.29) is

1
C2

0

0
B2

C3

0
A2

0
0
A3

B A 0
0 Cn-i BB_i Att-i
0 0 0 1

V
*

Tn-2

Tn

1

Z>3

Dn-2

1

(8.32

Because the matrix is tridiagonal the solution procedure can be greatly simplified.
If the left matrix in Eq. (8.32) is designated as A, then

AJ = D (8.33)

where we employ the notation of a boldface upright character to represent a
rectangular matrix. Equation (8.33) shows the two column matrices in Eq. (8.32)
in boldface, also a commonly used representation. Readers unfamiliar with this
notation may notice that one can write the system of equations this represents by
inspection:

etc.
Now let

= LX (8.34)
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214 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

where

0 0
0

Pn-l (*>n-\ 0
0 pn 0}n

(8.35a)

1 -El 0
0 1 -E2

and

ft
0
0

•o)\Ei
'2 4- 0)2)

0

0 1 -En-i
0 0 1

0
0

(8.35b)

0
0
0
0

(8.35c)

Equations (8.35a), (8.35b), and (8.35c) use a bold equals sign. There is no
particular significance to this. It was done simply to improve the visual appearance
of the equation. The centered dots, of course, are meant to indicate that many rows
of the matrix have simply not been written down because the form of the terms in
these rows is similar to those in the rows above or below with appropriate changes
in subscript values. The use of such matrix notation is usually a convenient and
compact way to write what would otherwise be a dense page full of innumerable
terms in a very large system of equations.

A finite difference scheme such as this for determining the the flowfield veloci-
ties is really feasible only through the use of a computer and is written to make use
of the strengths of a computer. Assuming that one could find an analytical solution
to the partial differential equation with these boundary conditions, it would be of
an entirely different character, perhaps making use of a new class of functions or
some special mathematical insight. This is another example showing that solution
techniques are developed to take advantage of the tools at hand. As the tools change
and become more powerful, the methods that employ them should also change.
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CHARACTERISTICS OF WING WAKES

fa — Ci co\ = 1

ft = £3 ~£ift + 002 = B2 —

p4 = C4 -#2ft + 003 = B3 -

— o)\E\ = 0

= A2

215

ft = Cn -En-iPn + C0n = Bn 0)nEn = An (8.36)

Applying these equations a step by step procedure is used to evaluate the ft CD,
and E given the An, Bn, and Cn. From Eqs. (8.33) and (8.34)

LXT =

and if

then

or

~a>i 0 0 0
ft ^2 0 0
0 ft 0)3 0

0 0 ft 0)4

ft-i <w«-i 0
0 ft *)„_

::

en-\

' Di ~
L^2
D^
1^4

Dn-l

(8.37)

(8.38)

(8.39)

(8.40)

If ^i = 1 and £ i = 0 , then all of the e and E are evaluated using the relations

and

Bn + CnEn-\

Bn

(8.41a)

(8.41b)
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216 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

With these relations, Eq. (8.38) may be written as

1 — E\
0 1
0 0

0
-E2

1

0
0

0 1 -£„_,
0 0 1

" T, '
T2

T3

Tn-\

_ T» .

e\
e2

£3

en-\
_ e"

(8.42)

Starting with Tn, the n values of T are obtained by using the recursive relation

Tn = en (8.43)

These Tn values represent the solution at the £ station m -\- 1. With these values
known, one can then march forward to find all Tn at £ station m -f- 2 and so forth.
This type of recursive procedure is possible because the first matrix in Eq. (8.32)
is tridiagnonal.

8.5.1 Procedure Summary
1) The solution is assumed to be known at station £m for all n.
2) An approximate solution, T0\^ is assumed at station ^m+\ to evaluate the An,

Bn, Cn, Dn, en, and En. (This approximate solution at station m -f 1 is usually
taken to be the solution for station m.)

3) Using the computed values of en and En, the solution Tnew is calculated using
Eq. (8.43).

4) J^d and rnew are compared to see whether they are the same at every n station
to within a certain accuracy; if not, the T0\^ is set equal to rnew and steps 2 and 3
are repeated.

5) This iteration procedure is continued until T0\^ and Tnew are sufficiently close,
signaling a converged solution at the £ station m + 1. Usually, no more than 2 or
3 iterations are required.

6) Steps 1-5 are repeated for each downstream station.
As noted in step 1, the finite difference technique requires that a solution be known
at some £ station to compute solutions downstream. Although an actual velocity
profile is not known in general, a profile shape can be found at the trailing edge of
an airfoil on both the upper and lower surfaces whenever the flow over an airfoil is
calculated. One method of finding the viscous solution over an airfoil is given, as
we have seen, in Chapter 5. There the flow is computed by solving the boundary-
layer equations by a momentum integral technique. Using the output from the
AIRFOIL program the velocity profiles on both surfaces may be determined
from their respective boundary-layer thicknesses, form factors, and the equations

t/n

Hu-l
2

(8.44a)
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CHARACTERISTICS OF WING WAKES 217

(8-44b>

Although Eq. (8.44) do yield an initial velocity profile, there is still a problem
due to the singular nature of the boundary-layer equations at the airfoil trailing
edge. From Eqs. (8.14) it is evident that r\ is unbounded at x = 0 and, therefore, at
£ = 0. Therefore, some procedure or technique must be used to provide an initial
profile downstream of the trailing edge. Examination of some experimental data
suggested that the velocity profile a short distance downstream from the trailing
edge is much the same as it is at the trailing edge. Consequently, the assumption
was made that the velocity profile at 0.01 chord lengths downstream of the trailing
edge is the same as at the trailing edge.

8.5.2 Eddy Viscosity
The eddy viscosity model used in WAKE is

€ = ^wake ("max - "min) (8.45)

This model was derived by Prandtl for a fully developed wake flow. In general, the
velocity term in parentheses represents the difference between the maximum and
minimum velocity in the profile. Traditionally, £wake represents the wake thickness
or height at a velocity station halfway between the maximum and minimum
velocity values. Also, c is a constant whose value is to be determined. These
parameters can be estimated given the velocity profile in a fully developed wake;
but if the the initial profile is the trailing-edge profile, then another set of parameters
must be defined, which will correlate with experimental measurements, because
^max — wmin is always umdx at the trailing edge and /?Wake is always smaller at the
trailing edge than for a fully developed flow.

A value for the constant c in the eddy viscosity model must also be chosen.
Earlier, in Eq. (8.23a), the eddy viscosity appeared in the expression

c\ =

where

€ = t?Wake C

We could have also defined € as

w a e m a x /n A^\€ = ———— - ————— (8.46)
UOQ

As a results of some experimental correlations, it was decided to redefine /?wake
in Eq. (8.46) as the distance between the points in the wake where the velocities
are 75% of the freestream value and to give c a constant value of 0.03. These
choices gave good agreement with experiment for small values of c</. Such values
are generally found only for Q < 0.8, that is, for unseparated boundary -layer
flows on the aft portions of the airfoil.
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218 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

It may be remarked at this point that the whole idea of an eddy viscosity is an
attempt to fit what is obviously not a laminar flow process within the confines
of the mathematical description for laminar flow (traditional Navier-Stokes for-
mulation for fluid motion). Turbulent flow involves additional motions by large
groups of molecules, some of which may appear to be random, which are over and
beyond the mass mean, or average, motion of the flow. It has proven to be difficult,
if not impossible, to devise a solvable mathematical representation for these mo-
tions that matches our physical understanding of the nature of turbulence. Since
Prandtl's time, therefore, it has been customary to use the eddy viscosity concept
in place of or in addition to the dynamic viscosity associated with laminar flows
when using the general Navier-Stokes model to represent such flows. Because the
mathematical representation of turbulence within this model is semiempirical, one
can devise many forms by which to express it. Each, it seems, has a limited range
of applicability. None of the proposed models has been shown to work well over
a large range of Reynolds numbers and pressure gradients. If truth be told, there
has really been no significant advance in describing such flows for engineering
purposes since Prandtl.

8.5.3 Caveats
To create a program without undue complexity, it was necessary to make a

number of simplying assumptions. The limitations these assumptions place on the
input data and on the results should be clearly understood by the program user.
The first of these assumptions is that there is no pressure variation across the wake.
Second, we will also assume that the section lift coefficient will always be less
than about 0.8, which generally implies that there is no boundary-layer separation
over the rear portion of the airfoil and that the section drag coefficient is near its
minimum value. Third, we assume that the node spacing in Fig. 8.6 is sufficiently
fine that the approximation of the partial differential equation by a set of finite
difference equations will yield comparable results when the resulting system of
algebraic equations is solved. Fourth, we assume that the initial velocity profile
we obtain from the airfoil program is adequate to serve as our initial estimate.

8.6 Features of Program WAKE
The WAKE program solves the finite difference approximations to the boundary-

layer equations as described in the preceding section. Running time is generally
under 1 min on a Pentium 90 but may be longer if the number of iterations required
for convergance becomes large or the number of X stations for which results are
desired exceeds about 5.

The primary output is a listing of the velocity deficit at various positions above
and below the wake centerline. Up to 20 such results can be computed at user
selected X stations. A secondary form of output, added especially for the present
version, is a PostScript file of the velocity profile at a particular X station. As
many as 20 such files may be produced during a run. The data from which the
PostScript figures are made are taken from the arrays used to print the results. The
data in the arrays are then scaled to show the velocity defect a little more clearly.
However, the Y dimension and the velocity magnitude scales are not shown on the
PostScript graphs to permit them to be combined more readily into a single figure.
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CHARACTERISTICS OF WING WAKES 219

joukowski airfoil
1601 20 156 4 1.00000 0.00001 0.00125 0.00005

0.01000 0.03000 0.11800 0.01039 0.01378 0.05000
113 128 136 157

0.02429 0.02429 1.41390 1.41390

Fig. 8.7 Typical data entry file for WAKE program.

8.7 Program Data Entry
Data are entered into WAKE via the file WAKE.DAT, a typical copy of which

is shown in Fig. 8.7.
The first line contains title of the job in a 20A4 format.
On the second line are the number of mesh points (see Fig. 8.6) in the r]

direction, NPTS; the number of 77 steps between prints of the result in the rj
direction, NETAPT; the number of steps in the x or £ direction, NXSTEP; the
number of profiles for which results are requested, NXPRT; a proportionality
constant for uneven stepsize in the r? direction, AK; the accuracy for solution
convergence, EPS; the stepsize in the rj direction, DETA; and the stepsize in the
X direction, DX, in chord lengths. The format is 4I10,4F10.5.

The first item on the third line is the X station at which the initial velocity
profile is assumed, X(l). A value of 0.01 is generally used. The second item is the
value of a constant used to evaluate the eddy viscosity model, CEDDY. A value of
0.03 correlates best with experimental data. The third item is the airfoil thickness
at the station of interest, T, in chord lengths. The fourth item is the profile drag
coefficient at the spanwise station of interest, CD. The last item is the minimum
drag coefficient at the spanwise station of interest, CDMIN. CD and CDMIN are
the same unless there is a significant amount of boundary-layer separation from
the airfoil. These five items are entered in an F10.5 format. Most of the data can
be obtained from AIRFOIL.

The fourth line gives the X stations at which printing of a velocity profile is
desired. In this case these are the inital solutions, one for step 113, one for step
128, one for step 136, and one for step 157. These are in an 14 format.

The fifth line gives the boundary-layer thickness on the upper surface of the
airfoil at its trailing edge, DELTAU; the boundary-layer thickness on the lower
surface of the airfoil at the trailing edge, DELTAL; the form factor on the upper
surface, HU; and the form factor on the lower surface, HL. The reader will recall
that H is the boundary-layer displacement thickness divided by the momentum
thickness. These are in an F10.5 format. The data may be obtained from AIR-
FOIL. No actual data from WASH are required; it is assumed that the analysis is
carried out with repect to the centerline of the shed vortex sheet whose position is
determined by WASH.

8.8 Typical Results
The first part of the output file produced by WASH is shown in Fig. 8.8.
The graphical output produced by WAKE for five X stations is shown in Fig.

8.9. WAKE actually produces each profile as a separate figure. They have been
show here in the same figure to better illustrate the lateral growth of the wake and
the decrease in the velocity deficit as the flow moves downstream. At the first X
station, located at the trailing edge of the wing, as one should expect, the wake
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220 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

joukowski airfoil
NPTS
NMID
NETAPT =
NXSTEP =
NXPRT =
NXPRNT =
AK
EPS
DETA
DX
X(l) =
CEDDY =
B12
T
UMUDEL =
CD
DXSTEP =
Cl

DELTAU =
DELTAL =
HU
HL

1601
801
20
156
4

113 128 136 157
.10000000D+01
. 10000000D-04
.12500000D-02
.500000000-04
.100000000-01
.300000000-01
.604940850-02
.118000000+00

-.326275260+00
.103900000-01
.500000000-01
.509365720+03

.242900000-01

.242900000-01

.141390000+01

.141390000+01

CONVERGENCE ATTAINED AFTER 1 ITERATIONS

RESULTS FOR X/C STATION .100000000-01

joukowski airfoil

ETA
. 100000000+01
.975000000+00
.950000000+00
.925000000+00
.900000000+00
.875000000+00
.850000000+00
.825000000+00
.800000000+00
.775000000+00
.750000000+00
.725000000+00
.700000000+00
.675000000+00
.650000000+00
.625000000+00
.600000000+00
.575000000+00
.550000000+00
.525000000+00
.500000000+00
.475000000+00
.450000000+00
.425000000+00
.400000000+00
. 375000000+00
.350000000+00
.325000000+00
.300000000+00
.275000000+00
.250000000+00
.225000000+00

U/UDEL
. 100000000+01
. 100000000+01
. 100000000+01
.100000000+01
.100000000+01
. 100000000+01
. 100000000+01
. 100000000+01
. 100000000+01
. 100000000+01
. 100000000+01
. 100000000+01
. 100000000+01
.994357320+00
.986621280+00
.978645560+00
.970412680+00
.961903090+00
.953094840+00
.943963120+00
. 934479770+00
.924612590+00
.914324570+00
.903572800+00
.892307160+00
.880468520+00
.867986440+00
.854776000+00
.840733410+00
.825729810+00
.809602320+00
.792140530+00

F
.880935870+00
.855935870+00
.830935870+00
.805935870+00
.780935870+00
.755935870+00
.730935870+00
.705935870+00
.680935870+00
.655935870+00
.630935870+00
.605935870+00
.580935870+00
.555988480+00
.531225770+00
.506659420+00
.482295630+00
.458141090+00
.434202970+00
.410489050+00
.387007750+00
.363768260+00
.340780630+00
.318055900+00
.295606270+00
.273445320+00
.251588210+00
.230052070+00
.208856350+00
. 188023410+00
.167579220+00
. 147554410+00

Y/C
.350145680-01
.341392040-01
.332638400-01
.323884760-01
.315131120-01
.306377470-01
.297623830-01
.288870190-01
.280116550-01
.271362910-01
.262609260-01
.253855620-01
.245101980-01
.236348340-01
.227594690-01
.218841050-01
.210087410-01
.201333770-01
.192580130-01
.183826480-01
.175072840-01
.166319200-01
.157565560-01
.148811920-01
.140058270-01
.131304630-01
.122550990-01
.113797350-01
.105043710-01
.962900630-02
.875364210-02
.787827790-02

(U/UDEL) **2
.100000000+01
.100000000+01
.100000000+01
.100000000+01
.100000000+01
.100000000+01
.100000000+01
.100000000+01
.100000000+01
.100000000+01
.100000000+01
.100000000+01
.100000000+01
.988746480+00
.973421560+00
.95774713D+00
.941700760+00
.925257560+00
.908389780+00
.891066380+00
.873252440+00
.854908440+00
.835989420+00
.816443810+00
.796212060+00
.775224810+00
.753400470+00
.730642020+00
.706832660+00
.681829710+00
.655455920+00
.627486610+00

Fig. 8.8 First portion of WAKE program output as given in the WAKE.TXT file:
notice that rj goes from -1.0 to +1.0, whereas Y/C goes to ±0.035.
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CHARACTERISTICS OF WING WAKES 221

.200000000+00

. 175000000+00

.150000000+00

. 125000000+00

. 100000000+00

.75000000D-01

.500000000-01

.25000000D-01

.000000000+00

.250000000-01

.500000000-01

.750000000-01

.100000000+00

.125000000+00

.150000000+00

. 175000000+00

.200000000+00

.225000000+00

.250000000+00

.275000000+00

.300000000+00

.325000000+00

.350000000+00

.375000000+00

.40000000D+00

.425000000+00

.450000000+00

.475000000+00

.500000000+00

.525000000+00

.550000000+00

.575000000+00

.600000000+00

.625000000+00

.650000000+00

.675000000+00

.700000000+00
•.725000000+00
.750000000+00
.775000000+00
-.800000000+00
-.825000000+00
-.850000000+00
-.875000000+00
-.900000000+00
-.925000000+00
-.950000000+00
-.975000000+00
-.100000000+01

.773065370+00

.751994710+00

.728383580+00

.701412640+00

.669758230+00

.631047410+00

.580256350+00

.502714890+00

.000000000+00

.502714890+00

.580256350+00

.631047410+00

.669758230+00

.701412640+00

.728383580+00

.751994710+00

.773065370+00

.792140530+00

.809602320+00

.825729810+00

.840733410+00

.854776000+00

.867986440+00

.880468520+00

.892307160+00

.903572800+00

.914324570+00

.924612590+00

.934479770+00

.943963120+00

.953094840+00

.961903090+00

.970412680+00

.978645560+00

.986621280+00

.994357320+00

.100000000+01

.100000000+01

.100000000+01

.100000000+01

.100000000+01

.100000000+01

.100000000+01

.100000000+01

. 100000000+01

.100000000+01

.100000000+01

.100000000+01

.100000000+01

.127985630+00

.108917740+00

.904070190-01

.725264670-01

.553752000-01

.390968030-01

.239216630-01

.102966840-01

.000000000+00
-.102966840-01
-.239216630-01
-.390968030-01
-.553752000-01
-.725264670-01
-.904070190-01
-.108917740+00
-.127985630+00
-.147554410+00
-.167579220+00
-.188023410+00
-.208856350+00
-.230052070+00
-.251588210+00
-.273445320+00
-.295606270+00
-.318055900+00
-.340780630+00
-.363768260+00
-.387007750+00
-.410489050+00
-.434202970+00
-.458141090+00
-.482295630+00
-.506659420+00
-.531225770+00
-.555988480+00
-.580935870+00
-.605935870+00
-.630935870+00
-.655935870+00
-.680935870+00
-.705935870+00
-.730935870+00
-.755935870+00
-.780935870+00
-.805935870+00
-.830935870+00
-.855935870+00
-.880935870+00

.700291370-02

.612754950-02

.525218530-02

.437682100-02

.350145680-02

.262609260-02

. 175072840-02

.875364210-03

.000000000+00
-.875364210-03
-.175072840-02
-.262609260-02
-.350145680-02
-.437682100-02
-.525218530-02
-.612754950-02
-.700291370-02
-.787827790-02
-.875364210-02
-.962900630-02
-.105043710-01
-.113797350-01
-.122550990-01
-.131304630-01
-.140058270-01
-.148811920-01
-.157565560-01
-.166319200-01
-.175072840-01
-.183826480-01
-.192580130-01
-.201333770-01
-.210087410-01
-.218841050-01
-.227594690-01
-.236348340-01
-.245101980-01
-.253855620-01
-.262609260-01
-.271362910-01
-.280116550-01
-.288870190-01
-.297623830-01
-.306377470-01
-.315131120-01
-.323884760-01
-.332638400-01
-.341392040-01
-.350145680-01

.597630060+00

.565496040+00

.530542640+00

.491979690+00

.448576090+00

.398220830+00

.336697430+00

.252722260+00

.000000000+00

.252722260+00

.336697430+00

.398220830+00

.448576090+00

.491979690+00

.530542640+00

.565496040+00

.597630060+00

.627486610+00

.655455920+00

.681829710+00

.706832660+00

.730642020+00

.753400470+00

.775224810+00

.796212060+00

.816443810+00

.835989420+00

. 854908440+00

.873252440+00

.891066380+00

.908389780+00

.925257560+00

.941700760+00

.957747130+00

.973421560+00

.988746480+00

. 100000000+01

. 100000000+01

.100000000+01

. 100000000+01

.100000000+01

. 100000000+01

. 100000000+01

. 100000000+01

. 100000000+01

. 100000000+01

.100000000+01

. 100000000+01

. 100000000+01

Fig. 8.8 Contd.

center velocity is 0.0. The small values, which would have extended the figure far
to the left (those which correspond to 0.0), have been removed from the figure in
the interests of obtaining a more compact representation. The significant aspects
of the figure are just how small the vertical extent of the actual wake region is
in the neighborhood of the horizontal tail location and what the magnitude of the
momentum deficit is. It will be seen in the figure that the total momentum deficit
region is about 1/3 chord lengths wide at 2 chord lengths aft of the wing trailing
edge. The maximum value of the velocity deficit is 9%.
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222 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Fig. 8.9 Velocity profiles in wing wake at X - 0.01, X = 0.245, X = 0.5, X = 0.734, and
X = 2.03 measured from trailing edge in chords. Note: X positions of profiles are not
shown to scale; vertical extent of profiles is approximately ±0.2 chords; maximum
velocity deficit at X = 2.45 is 9%.

This region of velocity deficit moves up and down in the Z direction as the
angle of attack changes. The case selected here for analysis has a fairly large value
of profile drag and so corresponds to a fairly high angle of attack. The direction
and position of the shed vortex sheet is also related to the angle of attack. Together
there is enough effect to warrant running these analyses if the use of a low mounted
horizontal tailplane is contemplated. A horizontal tailplane mounted on top of the
vertail tail almost never encounters a momentum defect due to the wing wake
unless the wing, too, is mounted high.

8.9 Concluding Remarks
In this chapter we have sought to present rigorous methods by which the direc-

tion and magnitude of the flow approaching the horizontal tailplane of an airplane
can be determined. We found that the flow direction could be determined by an
inviscid method similar to that used to determine the induced drag of a wing,
provided w& ignored the interaction of the downwash field with flow around the
fuselage. Particularly for the case where the wings emanate from the middle of
the fuselage, this effect is expected to be small. We also ignored the effect of the
small upwash field created by the horizontal tailplane on the downwash field of
the main wing. Upwash fields are smaller than downwash fields for a given wing
(see Fig. 8.5b) and their strength is proportional to the area of the wing creating
them. Given that the horizontal tailplane is usually on the order of 20% of the area
of the main wing, this assumption seems reasonable.

We determined the magnitude of the flow in the downwash field by the use
of the WAKE program. Here we assumed that the analysis could be applied
along the centerline of the wake as shed from the wing trailing edge, that the
curvature of the wake was sufficiently small that the pressure across the wake
could be considered to be constant, that in the region of interest the spanwise
flow component was sufficiently small that we could employ a two-dimensional
analysis, and that as a result of these assumptions the governing equations are
the turbulent boundary-layer equations, which we solved by a finite difference
scheme. Such a scheme transforms the partial differential equation into a set of
algebraic equations, which are readily solved on a computer by the techniques
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CHARACTERISTICS OF WING WAKES 223

of linear algebra. From the solution we were able to determine the magnitude of
the velocity deficit as a function of distance above and below the centerline of
the wake. The aircraft designer's task is then to keep the horizontal tailplane
out of the wake region over as much of the aircraft's angle-of-attack range as
possible.

The WAKE and WASH programs provide the tools to enable the designer to
identify the regions to avoid and to compute the penalty involved when avoidance
is not possible.

Problems
8.1. It is desired to obtain a graphical indication of the downwash field behind
a wing near stall. Run F2D3D for a case where the lift coefficient is about 1.5.
Transfer the necessary data and create an input file for WASH. Modify WASH
so that the downwash data are also written to the file WASHT.DAT in the format
required for DWASH. Create a PostScript plot of the downwash field. From this
plot and the output file determine how much of an incidence angle should be
applied to a horizontal tailplane that is to be located 0.25 semispans above and 0.8
semispans behind the wing trailing edge to compensate for the downwash. Note
that the PostScript file is easily enlarged by changing the scaling directive on the
second line. To alter the amplification of the flow angle, change the value on line
1157 of DWASH.FOR, recompile, and then execute.

8.2. If the horizontal tailplane is to located 0.8 semispans aft of the wing trailing
edge and 1.0 semispan above it, how would your answer change?

8.3. If the vertical position of the horizontal tailplane is in line with the wing at
a point 0.8 semispans behind it, what compensation is required?

8.4. You have probably noticed that at each of the three previous locations
the required compensation angle was different. At each of these locations the
compensation required also changes with lift coefficient (or speed). Unless the
airplane has an all movable tail with automatic compensation adjustment, a single
incidence angle must be chosen that does not give the proper compensation at any
other lift coefficient. What is an effective strategy to minimize this problem? (The
strategy, however, may not be available in all cases.)

8.5. Figure 8.5c shows the downwash angle slowing approaching zero as X
increases. Argue the validity or nonvalidity of this result on physical grounds.

The following seven problems test semiempirical equations related to wakes
found in the literature.

8.6. Use the results of a WAKE run and attempt to match the velocity profile at
some downstream point in the wake by the following equation:

= cos2

2 d?wake
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224 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

Note your results will depend somewhat upon your selection of the definition of
dwake, the width of the half-wake, a) Report and graph your results. Be sure you
identify your selection of the definition of dwake- b) Try the problem with the left
side of the equation equal to

8.7. a) Repeat problem 8.6 for the following equation:

I -
1.75

b) Also try this equation with the left-hand side equal to

Which equation or variation thereof gives the best fit?

8.8. If f is the width of the half-wake divided by the wing chord and £ is the
distance behind the wing chord divided by the wing chord generate a plot of f vs
£. On the same graph plot the equation

f = 0.68 VQ^/£+0-15

How do they compare?

8.9. If rj is (w/t/oo)2, how well does the equation

£+0.3

fit the data?

8.10. At a downstream location, say, X = 0.5c, evaluate the equation

/

^wake

U '

Then divide your result by pU^/2 and compare with the value of Q() you used
in problem 8.8 or problem 8.9. Show all steps and report your results.
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CHARACTERISTICS OF WING WAKES 225

8.11. Use the following nomenclature:

d = cylinder diameter
CD = cylinder drag coefficient
u = velocity in the wake at a point y above or below the wake centerline
x = distance downstream of the cylinder
60 = constant of eddy viscosity
TI = nondimensionalized y coordinate,
UOQ = freestream velocity

and generate a plot of the equation

CDd

Consult a fluid mechanics text to find a suitable CD value of a cylinder with a
turbulent wake. Make d and UQQ consistent with the Reynolds number for which
you have selected the drag coefficient. Let

where:

b\ — half the wake width between wmax and um[n at some x station
wmax = the maximum value of u in the wake at that x station

Does it appear to possess the correct variation with x and y?

8.12. Repeat problem 8.11 for the following equation:

_u_ _ VlQ /_*
~U^ = 18(0.18) \C~Dd)

Which equation gives the better result?

8.13. Run WAKE for a Reynolds number of 107 and again for a Reynolds
number of 104. Note any differences in results. This will require that you get two
sets of data from AIRFOIL.

8.14. Attempt to determine at what value of X the vortex rollup becomes too
great for program WASH to accommodate. Determine if this distance is sufficient
to permit the program to be used to determine potential upsets encountered by
aircraft following behind larger aircraft and explain.

8.15. Explain why a finite difference technique was used to solve the boundary-
layer equation in program WAKE rather than a momentum integral technique
such as was used in program AIRFOIL.
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9
Computational Fluid Dynamics

9.1 Introduction

W E saw in Chapter 8 that when the problem of analyzing the velocity dis-
tribution in the wake of an airfoil was formulated in such a way as to take

advantage of those computational processes that computers perform very effi-
ciently, we employed a finite difference scheme from which we obtained solutions
to the governing equation only at discrete points in the flowfield, or, we might say,
on the nodes of a net. In this chapter we briefly consider the task of extending
this concept of devising analysis techniques tailored to the strengths of the com-
puter to treat more complex fluid dynamics problems. The purpose is to indicate
the direction, mathematically speaking, in which these newer design and analysis
techniques for determining the forces developed by moving wings and bodies are
evolving. Because these methods all involve the solution of partial differential
equations, first we will consider how such equations are classified because this
determines how the boundary conditions (and initial conditions, if required) must
be specified.

9.2 Classification of Partial Differential Equations
Partial differential equations, we recall, are those differential equations where

there is more than one independent variable. Equations (4.9) are one form of
the momentum equations that are part of the complete Navier-Stokes equations.
In their most general form they are written for unsteady flow of compressible,
heat conducting gases and require, in addition to the continuity and three mo-
mentum equations, an energy equation and an equation of state. The momentum
equation in Chapter 4 [Eq. (4.9)] is written for steady flow of an incompress-
ible medium and, therefore, has put p outside the partial derivative symbols. It
can be shown that if the velocity changes are small enough for this approxi-
mation to be valid, then the energy equation and the equation of state are not
needed.

Written as shown in Eq. (4.9), the partial differential equation is first order. If we
write the velocity components in terms of a stream function, however, the resulting
equation is second order. This is the form commonly used for many analyses. We
may recall from our study of analytical geometry that the equation for an ellipse
can be written as

i + j - <>•»
whereas the equation for the trace of a hyperboloid can be written as

x2 y2

*-F-' (9-2)

227
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228 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

The equation for a parabola contains one first-order term and one second-order
term,

y = Axz (9.3)

By analogy with these geometric figures, two-dimensional second-order partial
differential equations are classified as elliptical, such as

hyperbolic, such as

^4-^4-0 (9.5)

or parabolic, such as

3T 82T
(9'6)

Each of these equation types have different requirements for specifying their
boundary conditions. The boundary conditions for elliptical partial differential
equations (PDEs), for example, are specified on the outer surface of the flow
regime, often at infinity. A change in a boundary condition is immediately reflected
as a change in the dependent variable throughout the entire flow regime. As a result,
we say that the velocity of signal propagation in such a flow is infinite.

When one of the independent variables in Eq. (9.5) is time, the equation is called
the wave equation. It requires two boundary conditions and two initial conditions
to obtain a solution. Hyperbolic PDEs such as Eq. (9.5) have regions of influence.
The flow outside of these regions is unaffected by a change in the flowfield inside
the region. The velocity of signal propagation in such flowfields is finite.

Steady supersonic flows can also be described by a hyperbolic PDE, often
written as

(1-0^+^=0 (9.7)

This equation is hyperbolic as long as M^ > 1 and elliptic if M^ < 1. In super-
sonic flow the boundary between the region of influence and that which does not
perceive the flow is formed in two ways: first by a shock wave, the so-called strong
solution or, second, by two straight lines (called characteristics), which emanate
from the point of interest and extend in the streamwise direction, one with a slope
of 17-y/M^ — 1 and the other with a slope of — 1/^/Mj, - 1, the weak solution.
In three dimensions the zone of influence is conical. The speed of signal propa-
gation along the characteristics is the speed of sound. Strong disturbances travel
at a higher speed (up to 2.5 times the speed of sound), which is why attempts to
measure the speed of sound by timing the interval between the appearance of a
muzzle flash and the report of a cannon give values higher than the speed of sound.
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COMPUTATIONAL FLUID DYNAMICS 229

When M^ -> 0, Eq. (9.7) becomes elliptic.
Parabolic PDEs exert an influence over a semi-infinite region. The unsteady,

one-dimensional heat conduction equation is an example of a parabolic PDE. The
velocity of signal propagation in a parabolic PDE is generally finite, which means
that it takes a finite amount of time for the heat injected at one end of an insulated
rod to travel to its other end. The amount of heat present at any point along the
rod is indicated by the local temperature. This will change with time and with the
type of boundary conditions (either a fixed temperature or a definite heat transfer
rate).

The Laplace equation is an example of an elliptical PDE. In such a PDE, the
velocity of signal propagation is infinite.

When approximate methods are devised to solve these equations, the require-
ments for proper specification of the boundary conditions, the regions of influence,
and the speed of disturbance propagation must all be taken into account.

Reference 42 is a very detailed exposition of many of the finite difference
methods, their strengths, weaknesses, computational problems, etc., for solving
fluid dynamic and heat transfer problems, which have been developed over the
years. Readers seriously interested in pursing advanced computational methods
for solving such problems will find this source an unexcelled primer.

9.2.1 Euler Formulation
When the viscous terms are removed from the Navier-Stokes equations one

has what are called the Euler equations after Leonhard Euler, who published his
studies of these equations beginning in 1755. These equations are suitable for
the analysis of flow phenomena wherein viscosity is not a significant mechanism.
From the standpoint of computational fluid dynamics, one is concerned with
finding algorithms that permit rapid and accurate solution of the set of equations
that approximate the PDEs and with algorithms that set up suitable computational
nets, the nodes of which are the points at which the solutions for the velocity
components are determined. The nets must have a sufficiently fine mesh to define
the geometry adequately yet not so fine that the problem becomes computationally
impossible. The Euler equations are either elliptic or hyperbolic depending on the
magnitude of the Mach number.

Around M^ = 1 there exists what is called the transonic flow regime. For small
disturbances the describing equation can be written

= 0 (9.8)
' T T I " ' " OO T XX ' 7- V V \^ '^/u

where we use the prime as a way of expressing the small difference between a
dependent variable and a constant value at any time, such as in the expression

u = U + u'

This nonlinear equation is either elliptic or hyperbolic depending on the magnitude
of the Mach number. The reader will recognize that at flight near M^ = 1 some
regions of the flowfield around a body or wing will be subsonic while others will
be supersonic, which adds greatly to the difficulty.
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230 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

9.2.2 Navier-Stokes Formulation
In the Navier-Stokes formulation, one has the additional complication of the

effects viscosity to consider. Not only are the individual equations more complex,
there are more of them and they are of a higher order than the Euler equa-
tions, which means additional boundary conditions are required. The unsteady,
compressible Navier-Stokes equations are a set of mixed hyperbolic-parabolic
equations, whereas the unsteady, incompressible Navier-Stokes equations are a
mixed set of elliptic-parabolic equations. As a consequence, different numerical
techniques must be used to solve the Navier-Stokes equations in compressible
and incompressible flow regimes.

9.3 Major Problems in Computational Fluid Dynamics
The straightforward concept of representing the derivatives in the equations of

fluid motion by finite differences to transform these equations into a system of
algebraic equations is one that modern digital computers are optimized to solve.
Problems arise when one attempts to implement the concept. Principal among these
are the stability of the solution (i.e., does the solution go rapidly to infinity or does
it tend toward a physically meaningful result?), the time required to compute a
solution, and the selection and construction of a computational grid, which is at
the same time sufficient to yield the desired flow detail yet not overly consuming
of computer resources. We will consider each of these problems briefly.

9.3.1 Solution Stability
Reference 42 explains,

The stability problem in numerical analysis is similar to the problem of
stability encountered in a modern control system. The transfer function plays
the role of difference operator.... The stability of such a system depends
upon the operations performed by the black box (transfer function) on the
input data.. . . A controls system engineer would require that the transfer
function have no poles in the right-half plane. Without this requirement,
input signals would be falsely amplified and the output would be useless; in
fact it would grow without bound. Similarly, the way in which the difference
operator alters the input information to produce the solution at the next time
level is the central concern of stability analysis.

Needless to say, different algorithms operate differently. Part of the problem is how
they respond to roundoff and discretization. Roundoff error is that error resulting
from a change or no change in the least significant digit retained in a number to
account for the values of even less significant digits. If we designate the solution
obtained by a machine using an infinite number of digits as D and the solution
obtained by a machine with a finite number of digits as N, then the roundoff error
is N — D. The difference between D and the analytical solution A we call the
discretization error. Fortunately, there are procedures that indicate the stability of
the various methods in a manner similar to the Routh-Hurwitz criteron in control
theory. Examination of its stability should be an integral part of the process of
selecting an algorithm.
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COMPUTATIONAL FLUID DYNAMICS 231

9.3.2 Time Required to Effect a Solution
Depending on the type of problem, certain algorithms are more efficient in

arriving at a solution than are others. There is no one method that is superior for
all types of problem. If the problem is relatively simple this may not be of great
concern; however, if the problem is complex, the choice of an efficient algorithm
may be the difference between solving the problem or not solving it. Because the
times required for certain algorithms to solve certain kinds of problems are known
and are reported in the literature, selection of an algorithm to solve a given prob-
lem should include an investigation of the projected computational time require-
ments. An absolutely stable algorithm that takes too long to reach a solution is of
no use.

9.3.3 Selection of Computational Grid
On the selection of a computational grid, Ref. 42 comments:

The solution of a system of partial differential equations can be greatly
simplified by a well-constructed grid. It is also true that a grid that is not well
suited to the problem can lead to an unsatisfactory result. In some problems,
improper choice of grid point locations can lead to apparent instability or
lack of convergence. One of the central problems in computing numerical
solutions to partial differential equations is that of grid generation.

Many procedures can be followed in developing grids. One popular method de-
scribed in Ref. 42 is as follows:

.. .transform the physical domain into a computational domain. Numerous
advantageous accrue when this procedure is followed. For example, the
body surface can be selected as a boundary in the computational plane
permitting easy application of the surface boundary condition.... Several
requirements must be placed on such mappings. A partial list can be stated
as follows:

1. The mapping must be one on one.
2. The grid lines should be smooth to promote continuous transformation

derivatives.
3. Grid points should be closely spaced in the physical domain where

large numerical errors are expected.
4. Excessive grid skewness should be avoided.. .since it.. .sometimes

exagerates truncation errors.

Several methods for grid generation follow explicit rules and thus can be auto-
mated. The various processes involved, however, are details beyond the view we
wish to bring to the present discussion. For example, Ref. 42 devotes an entire
30-page chapter to the subject. Grid generation remains one of the most difficult
aspects of the task of applying computational fluid dynamics (CFD) to the analysis
of the characteristics of real configurations.

9.4 Practical Application
An indication43 of the accuracy and cost achievable with current CFD codes is

that the predicted maximum reverse thrust produced by a 10 passenger twin engine
business jet in ground effect was within 5% of the value obtained from actual
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232 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

test data. Trie three-dimensional calculation employed approximately 0.5 x 106

grid points and required 5 h of CPU time on an SGI Indigo 2, a very powerful
workstation that can run the problem in about 1/5 the time that would be required
by a 133-MHz Pentium. The company that ran the problem developed the code,
as well as three other CFD codes of various capabilities over a 20-25 year period,
primarily with government sponsorship. It now derives a significant portion of its
income by acting as a service bureau, that is, by applying its codes to customer
problems for a fee.

9.5 Other Methods
In addition to the finite difference methods such as that discussed in Chapter 8,

some problems are amenable to solution by integral techniques. An example of
this approach is the determination of the temperature distribution in an infinite rod
as a function of time given some initial temperature distribution. (Although we
are using temperature as the dependent variable in this problem, any scalar fluid
property with a distribution described by the same equation could have been used
in the place of temperature.) We assume for this example that all surfaces of the
rod are insulated so that no heat enters or leaves the rod. To simplify the problem
we will take

f\ rji

— =Q at x = 0 (9.9a)
dx

This implies that the temperature distribution is symmetrical with respect to the
origin of the coordinate system. We will say the initial temperature distribution is
given by

r(*,0) = /(*) (9.9b)

The equation describing the temperature distribution in the rod as a function of
time and distance is

^ = ̂  (9.90dt dx2

for t > 0 and 0 < x < oo. Applying the Laplace transform to this equation yields

— -S23> = 0' (9.10)
dt

where

and

ft QO r\2r7~![ 11
Jo dx2

/
oo

e~s*T(x,f)dx (9.11)

3T
e~Sxdx = S2$(S, t) - 57(0+) - — (0+) (9.12)
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COMPUTATIONAL FLUID DYNAMICS 233

The last two terms on the right are boundary conditions, which we will assume to
be zero.

The solution of the transformed PDE (9.10) is

O = Aes2t (9.13)

where

/

oo
f(X)e~sxdX (9.14)

-oo

In this expression, /(A.) represents the distribution of temperature along x at t = 0.
We use a dummy variable to enable us to perform unambiguous integrations over
the entire length of the rod when this is required to determine the variation in
temperature with time at a particular value of x. With this definition for A, we can
write the solution to the PDE as

poo

<D(S, f ) = es2t I f(X)e~sxdX (9.15)
Jo

Inversion of Eq. (9.15) to the time domain yields
i poo r poo ~i

T(x,t) = —— es2'\ fWe-^dXle^dS
2XJ J-oo Uo J

1 pOO pOQ
I 4-' (\ \ A \ I s>$ t — iJ^-~l~'jA',Jf1 / O 1 A \= ——; / / (A)dA / e do (-^.lo)

2nj J_oo Jo

But

4r
Now, call

2V?
and

(9.18a)

dw = v^d^ (9.18b)

Then,

,O = -L
2jr; J_

But

/

CO

(9.20)
C

_

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 W

is
co

ns
in

-M
ad

is
on

 o
n 

Se
pt

em
be

r 
30

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/4
.8

62
11

3 



234 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

so that

i r
L\j7lt J —

(9.21)

is the desired solution. Notice that if we specify a position along the rod and a
time of interest, then carrying out the indicated integration in Eq. (9.21) permits
us to determine the temperature.

9.5.1 Similar Solutions
A variation on the foregoing solution may be achieved by first finding a new

independent variable, which is a combination of the two existing variables. If such
a variable can be found, say,

r] = -^7= (9.22a)2V?
and we let

f(rj) = — (9.22b)

then the equation becomes

T

dt dx2

or

(9.23)
Br,lt

an ordinary differential equation,

Whereas the original boundary conditions could have been written

T(0 , j c )=0 (9.25a)

T(r,oo) = 0 (9.25b)

r(r,0) = r0 (9.25c)

they become

/(O) - 1 (9.26a)

/(oo) = 0 (9.26b)
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COMPUTATIONAL FLUID DYNAMICS 235

in the transformed case. The ordinary differential equation (ODE) may then be
solved to yield

/ 2 n 2 \= T0(l- —— e ^ d r j )
\ */n JQ J

(9.27a)

or

(9.27b)

Tables of the error function, erf (77), are found in many collections of standard
tabulated functions.

Solutions obtained with this device are called similar solutions because the
solution is the same for all cases with the same value

9.5.2 Finite Element Technique
Still another technique for solving a problem properly described by PDEs

is to model the distributed phenomena by a large collection of mathematical
representations of equivalent phenomena, the finite element method. In this process
one may replace a single PDE by a system of ODEs. Although conceptually
an infinite number of finite elements would be required to achieve an accurate
representation of a PDE, a reasonable number, say, 10-30 finite elements, may be
sufficient to achieve the desired level of accuracy.

The actual means by which the describing PDEs are best solved involves con-
sideration of 1) the least accurate solution acceptable and 2) the least costly of
several possibile algorithms available to solve the problem at hand. The latter
depends heavily on the available computational tools. For example, if a problem
can be structured so that it can be solved piecemeal by a group of networked
workstations working on the problem in parallel, it may be less expensive to use
this algorithm than to employ an algorithm that solves the problem serially on a
supercomputer in the same time.

Engineers who have the task of designing flight vehicles today have been hearing
from CFD scientists for the past 30 years that within the next few years it will be
possible to determine fluid flows around complex configurations with an accuracy
and reliability sufficient to obviate the need for wind tunnel or flight testing.
While great strides have indeed been made in this direction in terms of computer
capacity and speed, as well as algorithmically, the complexity of configuration for
which this vision has been realized is still embarrassingly simple. Nevertheless,
it is because the potential for cost savings and accuracy improvements is so great
that work continues at a relatively high level on developing improved algorithms
at the same time that computer designers seek to develop better computational
topologies and faster components. The vehicle designer should remain cognizant
of such developments and appropriate for use those which appear to offer cost
effective solutions to current problems.

9.6 Concluding Remarks
In this chapter, we have attempted to indicate something of the configuration that

the task of computing the aerodynamics and hydrodynamic characterics of wings
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236 AERODYNAMICS AND HYDRODYNAMICS OF WINGS AND BODIES

and bodies appears to be taking as we approach the new century. We have already
moved from a time of basing new designs on correlations of empirical data to a
period where design methods are based on integral forms of the fundamental fluid
dynamic relationships. As computational horsepower increases, we can expect the
preferred design methods to rely increasingly on accurate approximate solutions
of the governing PDEs, methods probably developed from one of the techniques
mentioned in this chapter. Nevertheless, the need for experimental verification
of predicted results will remain, even though its scope and thoroughness may
be reduced by the increased confidence one may then place in the theoretical
computations. Engineering judgement, however, still has its place in balancing the
use of the two technologies.

Problems
9.1. Assume the initial temperature distribution in an infinite, insulated rod is
constant, a) Using Eq. (9.21) determine the variation in temperature at x = 1.0.
Perform the integration numerically, b) From physical considerations, what answer
should you expect? Did you obtain the expected answer?

9.2. How does representing derivatives by finite differences make the equations
of fluid motion easier to solve?

9.3. Comment on the type of PDEs one may use to describe the motion of a
body through air at 400 ft/s vs the type of PDEs one should use to described the
motion of the same body through C4pg at the same speed.

9.4. Look up Chapman.44 From a perusal of the AIAA Journal for the last two
years prepare a rather detailed commentary, with citations, on the extent to which
Chapman's vision has been realized at the present time.

9.5. What would be the utility of CFD methods, such as those mentioned in this
chapter, in the design of small, personal use aircraft? In your answer consider the
application of the methods to determining the lift and drag characteristics of the
vehicle, the aerodynamic or hydrodynamic stability derivatives for control and
navigation system design, and the pressures on the vehicle surface, which can
translate into some of the structural characteristics that the craft requires.

9.6. In what class of flight vehicles would the methods mentioned in the chapter
be expected to find their inital application? Explain why.
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2DHELP, xiv
3DHELP, xiv

aerodynamics, 1
aerodynamic center, 50
air, 1, 16, 89
AIRFOIL, xiv, xv, 91, 98,120, 121,127-130,

159, 169, 219, 225
tuning, 96

airfoil, 34, 40, 43-45, 49, 91
S-14.1 114

altitude, 1, 3-5, 116
angle of attack, 43, 44, 47, 54,116
Archimedes principle, 7
aspect ratio, 131, 137, 139, 157
atmosphere, 1, 2, 19

B-36, 116
baseballs, 31
Bernouilli equation, 19
Biot-Savart law, 196
BODY, xiv, xv, 163-169, 173,187, 191,192
BODYGEN, xiv, 173, 177, 192
boundary layer, 61, 62, 67

equations, 63, 68
classical solutions, 82-85
thickness, 70, 96
turbulent, 76, 90

buoyancy, 1, 7

camber, 43, 50
Cayley, Sir George, 46
chord, 43
circular cylinder, 28, 35, 41
circulation, 28, 30, 31, 46, 47
coefficient of dynamic viscosity, 5, 64, 76,

218
compressibility, 131
compressible, 1, 227
computational grid, 231
conservative system, 34

continuity equation, 1, 14, 15, 36
for axisymmetric flow, 36

critical Mach number, 116, 117
Curtiss, Glenn, 46

D'Alembert, 36
depth, 2
displacement thickness, 67, 71, 95, 191
DOSXMFS, xvii
DOSXNT, xvii
doublet, 23, 47
drag, 6, 44, 98, 185, 191

form, 61, 62, 89
induced, 45, 131, 138, 141
skin friction, 61, 89,132,191

drag coefficient, 40, 62,142

eddy viscosity, 217
energy integral equation, 77
Eppler-Sommers computer program, 121
Euler equations, 17, 229

F2D3D, xiv, xv, xix, 132, 138, 152, 157,158,
160, 223

finite difference scheme, 214, 218, 232
finite element technique, 235
flaps, 40
fluid density, 1, 2, 4, 16,116
fundamental monoplane equation, 138

gas, 6
carbontetrafluoride, 89
octofluorocyclobutane, 89, 237

gas constant, 2
GHOSTSCRIPT, xviii
golf balls, 31
Gossamer Albatross, 54

Bryan Alien, pilot 54
gravitational constant, 5

attraction, 65
gravity, acceleration due to, 1, 2, 5
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Grenzschicht, 61
Guggenheim School of Aeronautics,

California Institute of Technology, 45

Hagan-Poiseuille equation, 79
solutions of, 79-81

von Helmholtz, 45, 61
Hess, John, and Smith, A.M.O., method, 163,

166
hydraulics, 61
hydrodynamics, 1, 61
hydrofoil, 54

super cavitating, 54, 118

ice, 31
incompressible flow, 34
inviscid flow, 19, 34, 43
irrotationality, 13,14, 19, 39, 34, 45

Joukowski, Nicolai, 31, 45, 61, 133
Joukowski transform, 43, 47, 54, 142
JOUKOW, xiii, xv, 51, 90, 121

von Karman, 45, 133
Kirchoff, 61
Kronecker delta, 64
Kutta condition, 47
Kutta, M. W., 31, 45, 46, 133

Lamb, Sir Horace, 61
Lanchester, Frederick W., 45, 132
Langley, Samuel P., 46
Laplace equation, 13, 15, 17, 20, 34, 229
lateral control

ailerons, 46
wing warping, 46

law of conservation of mass, 11, 17
law of conservation of momentum, 64, 86
leading edge, 43
lift, 31, 34, 44, 142, 191
lift coefficient, 31, 40, 116, 118
lifting line theory, 45, 132
lifting surface theory, 157

Mach number, 1, 6, 16, 62, 116, 121, 131,
157

Magnus effect, 31, 39, 45
Manly, 46
mass flow, 16
MATLAB, xviii

mean camber line, 43
momentum integral equation, 61
momentum integral method, 72, 96
momentum thickness, 71
MSDOS, xvii
Multhopp, H. W., 142

NACA airfoils
23012, 99-102
2424, 103,113
0009, 104, 106, 160
4412, 104, 107, 120,127, 159
632-006, 103, 105
632-615, 103, 104, 109, 128, 129
632-618, 104, 110
634-421, 103, 111
63(420)-422, 115, 125, 126, 128,130
66-006, 124, 126
65-006, 125
0006, 130
0024, 124

Navier-Stokes equations, 18, 61, 62, 192,
218, 227

Newton, Sir Isaac, 44
Newton's laws of motion, 17, 34, 64, 86
Newton Raphson method, 33
non-Newtonial fluid, 64

ocean, 1, 2
ordinary differential equation, 89, 235
OS/2, xviii

partial differential equation, 15, 34, 61, 89,
208, 218, 222
non-linear partial differential equation, 65
classification of, 227
elliptical, 228
hyperbolic, 228
parabolic, 228
similar solutions, 234

pitching moment, 43, 47
pitot-static tube, 29, 30, 38
planform shape, 137

elliptical, 141,142
delta, 157, 160

POLYFIT, xiv, xv, 148
PostScript, xviii, 33, 51, 52
potential functions, 12, 14, 32, 37
Prandtl, Ludwig, 45, 61, 132, 218
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Prandtl number, 88
pressure, 1, 2, 3, 29
pressure coefficient, 35
pressure distribution, 43, 185

R-4360, 115
Rankine oval, 23
ratio of specific heats, 29
Rayleigh, John William Strutt, Baron, 45
Reynolds number, 62, 63, 88, 96, 116, 142,

160, 218
Runge-Kutta method, 68

sailplane, 119
shearing stress, turbulent, 77, 98
sink, 20, 22, 23, 30, 34
source, 20, 22, 23, 30, 34
span, 45
stagnation points, 43, 47
stagnation pressure, 29, 30, 62
stall, 123, 131
STALL computer program, 152
stratosphere, 3
stream function, 15,16, 32, 34, 36, 37, 227
STREAMO.FOR, 33
STREAM1.FOR, 33
STREAM2.FOR, 33
STREAM3.FOR, 33
STREAM4.FOR, 33
STREAM5.FOR, 33
STREAM6.FOR, 33
streamline, 16,18, 20, 62,168
streamline coordinates, 19
Supermarine Spitfire, 141
superposition, 22
sweepback, 131, 139
sweep forward, 131,139

taper ratio, 119, 131, 160
temperature, 2, 3, 4, 64, 116
Theodorsen, Theodore, 51
trailing edge, 43
transition, 78
troposphere, 3
twist, 131

uniform stream, 20, 22, 23, 28, 34, 47

viscosity, 5, 6,185,191
viscous, 1
viscous stress, 64
vortex, 22, 23, 26, 28, 34, 45,131,133, 208

bound, 45, 131
vortex distribution, 96
vortex lattice method, 157
vortex sheet, 45

WAKE, xiv, xv, 195, 206, 207, 217,218, 219,
222, 223, 225

wake body, 95, 169, 173, 185
WASH, xiv, xv, 195,199, 219, 223, 225
water, 1, 4, 6, 16, 64

sea water, 2
wind tunnel, 88
WINDOWS 95, xviii
WINDOWS NT, xviii
wing, 43, 45, 145
wing fuselage interaction, 142
Wright brothers, 46, 132

X-3,129

Young's modulus, 64
also Modulus of Elasticity
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