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Preface

Ché se la voce tua sara molesta
nel primo gusto, vital nutrimento
lascera poi, quando sara digesta.

(Dante, Paradiso, XVII, 130-132)

This book consists of lectures on classical algebraic geometry, that is, the methods
and results created by the great geometers of the late nineteenth and early twentieth
centuries.

This book is aimed at students of the last two years of an undergraduate program
in mathematics: it contains some rather advanced topics that could form material for
specialized courses and which are suitable for the final two years of undergraduate
study, as well as interesting topics for a senior thesis. The book will be welcomed by
teachers and students of algebraic geometry who are seeking a clear and panoramic
pathleading from the basic facts about linear subspaces, conics and quadrics, learned
in courses on linear algebra and advanced calculus to a systematic discussion of
classical algebraic varieties and the tools needed to study them.

The topics chosen throw light on the intuitive concepts that were the starting
point for much contemporary research, and should therefore, in our opinion, make
up part of the cultural baggage of any young student intending to work in algebraic
geometry. Our hope is that this text, which can be a first step in recovering an
important and fascinating patrimony of mathematical ideas, will stimulate in some
readers the desire to look into the original works of the great geometers of the past,
and perhaps even to find therein motivation for significant new research.

Another reason which induced us to write this book is the observation that many
young researchers, though able to obtain significant results by using the sophis-
ticated techniques presently available, can also encounter notable difficulty when
faced with questions for which classical methods are particularly indicated. This
book combines the more classical and intuitive approach with the more formally
rigorous and modern approach, and so contributes to filling a gap in the literature.

This book, which we consider new and certainly different from texts published
in the last fifty years, is the text we would have liked on our desk when we began
our studies; it is our hope that it will serve as a useful introduction to Algebraic
Geometry along classical lines.

The ideal use for this text could well be to provide a solid preliminary course to
be mastered before approaching more advanced and abstract books. Thus we lay a
firm classical foundation for understanding modern expositions such as Hartshorne
[50], Mumford [68], Liu [65], or also Dolgachev’s forthcoming treatise [34]. Our
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text can also be considered as a more modern version of Walker’s classic book
[113], but greatly enriched with respect to the latter by the discussion of important
classes of higher dimensional varieties as mentioned above.

Prerequisites. We suppose that the reader knows the foundational elements of
Projective Geometry, and the geometry of projective space and its subspaces. These
are topics ordinarily encountered in the first two years of undergraduate programs
in mathematics. The basic references for these topics are the classic treatment of
Cremona [31] and the texts of Berger [13] and Hodge and Pedoe [52, Vols. 1, 2].
The introductory text [10] by the authors of the present volume is also useful. For
the convenience of the reader in the purely introductory Chapter 1 we have given a
concise review of those facts that will be most frequently used in the sequel.

Moreover to understand the book, in addition to a few elementary facts from
Analysis, the reader should also be familiar with the basic structures of Algebra
(groups, rings, polynomial rings, ideals, prime and maximal ideals, integral domains
and fields, the characteristic of a ring), as well as extensions of fields (algebraic and
transcendental elements, minimal polynomials, algebraically closed fields) as found
in the texts of [35] or [75].

Possible “Itineraries”. The book contains several “itineraries” that could suggest
or constitute topics for different advanced undergraduate courses in mathematics,
and also for graduate level courses. Here are some more precise indications, which
also offer a view of the topics treated here.

e Chapters 2 and 3 can be the introduction to any course in algebraic geometry.
They contain the essential notions regarding algebraic and projective sets: the
Hilbert Nullstellensatz, morphisms and rational maps, dimension, simple points
and singular points of an algebraic set, tangent spaces and tangent cones, the order
of a projective variety. If one then adds the brief comments on elimination theory
in Chapter 4, one has enough material for a semester course.

e Chapter 5 is dedicated to hypersurfaces in [P” with particular attention to algebraic
plane curves and surfaces in P3. It assumes only the rudiments of the geometry of
projective space and a thorough familiarity with projective coordinates. The topics
covered in this chapter, suitably amplified and accompanied by the exercises given
in Sections 5.7, 5.8, can in themselves form the program for a course that probably
requires more than a semester, especially if one adds the first two paragraphs of
Chapter 9 which are dedicated to quadratic transformations between planes and
their most important applications, for example the proof of the existence of a plane
model with only ordinary singularities for any algebraic curve.

e Chapter 6, which deals with linear systems of algebraic hypersurfaces in [P”,
contains topics necessary for the subsequent chapters. Veronese varieties and map-
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pings are introduced, as well as the notion of the blowing up of P” with center a
subvariety of codimension > 2.

e The program for a specialized one semester course for advanced undergraduates
could be furnished by Chapter 7 and the first two sections of Chapter 9, which
are dedicated respectively to algebraic curves in P” (with particular attention to
rational curves and the curves on a quadric in P3) and to quadratic transformations
between planes. The genus of a curve is introduced, and its birational nature is
placed in evidence. Adding the remaining results discussed in Chapter 9, which has
some originality with respect to the existing literature on Cremona transformations,
would give rise to a full year course.

e Chapter 8 is the natural continuation and completion of Chapter 7, and also
makes use of some results from the first two sections of Chapter 9. It deals with
the theory of linear series on an algebraic curve, including an extensive discussion
on the Riemann—Roch theorem, and an approach to the classification of algebraic
curves in P” in terms of properties of the canonical series and the canonical curve.
This chapter was largely inspired by Severi’s classic text [100], where the so called
“quick method” for studying the geometry of algebraic curves is expounded. The
content of this chapter would give rise to a one semester course.

o Chapter 10 can furnish material for a one semester course for students who already
have a good mastery of the geometry of hyperspaces ([52, Vol. 1, Chapter V]), of
plane projective curves (Chapter 5, Section 5.7) and of Cremona transformations
between planes (Chapter 9, Sections 9.1, 9.3). Thus this chapter is well adapted
for an upper-undergraduate level course in mathematics or also for graduate level
courses. Nevertheless, the methods used are rather elementary. Among the topics to
which the most space is dedicated, we mention the rational normal ruled surfaces, the
Veronese surface, and the Steiner surface. Some of the surfaces already described
in the last section of Chapter 5 are here rediscovered and seen in a new light.
They are studied together with other surfaces that occupy an important place in
algebraic-projective geometry.

e Veronese varieties, Segre varieties, and Grassmann varieties are discussed in
Chapter 6, Section 6.7, Chapter 11 and Chapter 12 respectively. They constitute
examples of special varieties that every student of geometry should know. These
topics too could be part of an advanced course or graduate course. Among other
things, they might well suggest topics for research projects or a senior thesis.

e The numerous exercises of the text are in part distributed throughout the various
chapters, and in part collected in Chapter 13. They can be quite useful to young
graduates who are preparing for admission to a doctoral program or a position as
research assistant, or also to high school teachers preparing to qualify for promotion.
The easier exercises are merely stated; others, almost always new to this text, offer
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various levels of difficulty. Most of them are accompanied by a complete solution,
but in some cases the method of solution is merely suggested.

Sources. Inaddition to the already cited text [10] to which the present volume may
be seen as the natural successor, classical references and sources of inspiration for
part of the material contained here are the books by Bertini [14], [15], Castelnuovo
[25], Comessatti [27], Enriques and Chisini [36], Fano and Terracini [38], Hodge
and Pedoe [52], B. Segre [81], Semple and Roth [92], and C. Segre’s memoir [83].
We have also been influenced by more modern texts like Shafarevich [103] and
Harris [48], and, with particular reference to the topics regarding algebraic sets,
rational regular functions, and rational maps developed in the second chapter, by
Reid’s text [74].

Besides the texts mentioned above, in our opinion the very nice introductory
texts of Musili [69] and Kunz [60] as well as Kempf’s more advanced book [59] merit
special mention. We also call the reader’s attention to the charming “bibliographie
commentée” in Dieudonné’s text [33] which offers a panoramic view of the basic
and advanced texts and the fundamental articles which have constituted the history
and development of Algebraic Geometry, from the origins of Greek mathematics
up to the late 1960s. The bibliography is rendered even more valuable, topic by
topic, through interesting comments and historical notes illustrating an “excursus”
that starts from Heath’s interpretation of certain algebraic methods in Diophantus
and arrives at Mumford’s construction of the space of moduli for curves of a given
genus.

Changes and improvements with respect to the Italian version. The present
text offers some substantial changes and improvements with respect to the original
Italian version [9]. Among the major changes are an entirely new chapter, Chap-
ter 8, devoted to linear series on algebraic curves, a major revision to Chapter 2,
the new Section 4.3, giving greater detail regarding intersection multiplicities in
Chapter 4. Moreover a number of new exercises have been added throughout the
book, including, in particular, a new final section of Chapter 13.

Among the minor changes there is a new final paragraph in Chapter 10 dealing
with birational Cremona transformations between projective spaces of dimension 3.
There are also numerous corrections of minor typographical and mathematical er-
TorS.

We thank the many colleagues and students who have had occasion to read
parts of the Italian version of the book, thus contributing to the correction of errors
and improving the exposition of the material. In particular, we wish to thank our
friends and colleagues L. Badescu, E. Catalisano, A. Del Padrone, A. Geramita, P.
Ionescu, R. Pardini for their comments. We would like to thank I. Dolgachev who
first encouraged us to consider the possibility of a translation of the original version
of the book. We would also like to thank our friend and colleague A. Languasco for
his invaluable assistance in resolving various problems involving the use of ITEX.
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We also wish to thank D. B. Leep for his careful reading of portions of the text and
the useful suggestions for improvements in the presentation that he gave. Special
thanks are also due to F. Sullivan for the translation and for helping to make that
task a truly friendly interaction.

We are very grateful to Manfred Karbe and the European Mathematical Society
Publishing House not only for their professional and courteous manner, but also
for their unfailing warmth and encouragement that has gone well beyond mere
professional courtesy. The authors and the translator would also like to thank Irene
Zimmermann not only for her careful reading of the proofs and the many very
helpful suggestions she gave for improving the clarity and fluidity of the text, but
also for her great patience in waiting for the delayed arrival of its final version.

Finally, let us mention the web page

http://www.dima.unige.it/~beltrame/book.pdf

where data and updates regarding the book will be collected and an “errata corrige”
placed online.

Mauro C. Beltrametti
Ettore Carletti

Dionisio Gallarati
Giacomo Monti Bragadin

The authors and their translator
(from left to right: D.G., M.C.B., E.C.,, G.M.B.,and E.S.)
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Chapter 1
Prerequisites

We assume that the reader is familiar with the fundamental notions of the projective
geometry of hyperspaces, for which one may consult any classical treatise. Bertini’s
book [14] is the preferred reference, but the texts of Hodge and Pedoe [52, Vols. 1, 2]
and of Cremona [31] also merit attention. We will refer to all of these for proofs
and further developments.

Nevertheless, we believe that a rapid review of the facts that will be most fre-
quently used here may be useful for the reader, and that is the goal of this first
chapter. We assume that the base field K is algebraically closed and of character-
istic zero. The reader may, should he so desire, assume that K = C, the field of
complex numbers, without substantial loss of generality in regard of the methods
and results expounded throughout the book.

1.1.1. Let A be an abscissa coordinate on a complex line r extended to include the
point at infinity Pso. If
Ao (aoo am) (1)
daio dii

is a non-degenerate 2 x 2 matrix with complex entries (so that det(A4) = agoai; —
aop1a10 75 0), the formula
, _anki+a
 agiA + doo
furnishes a one-to-one correspondence between the numbers A and A’ (including
A =ooand A’ = 00), so that we can determine a point of r by assigning the value
of A’. Thus we could take A’ rather than A as coordinate on r. We will say that A’/
is a projective coordinate. In particular, if ago = a1; = 1 and aj9 = ap; = 0,
then equation (1.2) becomes A’ = A, and so the abscissa is a particular projective
coordinate.

Equation (1.2) can be considered as a formula for passing from one projec-
tive coordinate A on r to another projective coordinate A’ on r. Thus (1.2) is the
transformation formula for projective coordinates.

If A and A’ are projective coordinates on two lines 7 and r’ (possibly coinciding),
then (1.2) establishes a one-to-one correspondence w: r — r’ which includes all
points of the extended lines r and r’ without exception. One says that w is a
projectivity or a projective correspondence.

If A1, A2, A3, A4 are (the projective coordinates of) four points of r the element
(€ C U {o0})

(1.2)

(A3 — A1) (A4 — A2)
(A3 —A2)(Ag — A1)
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is called the cross ratio of the four points (or of the four numbers). It will be denoted
by (A1, A2, A3,A4). The cross ratio depends on the order in which the points are
taken, but it is easy to check that one obtains the same number if one interchanges
any two of the four numbers, and simultaneously interchanges the remaining two.
This implies that the 24 possible permutations of the A; yield only 6 distinct values
of the cross ratio. If one of these values is k, then the six cross ratios that one
obtains from the four points are

1 1 k k—1
k, —, 1—k, , , .
k 1-k k-1 k
Ifk = —-lork = % or k = 2, then the six cross ratios reduce to only three
(-1, %, 2) and one says that A1, A2, A3, A4 constitute a harmonic set. If k = —1

we will say that A1, A», A3, A4 form a harmonic quadruple, or that the elements
A1, Az, A3, A4 (in the given order) form a harmonic group (or harmonic range).
If one has k2 4k + 1 = 0 the six numbers reduce to only two, and A1, A5, A3, A4
is an equianharmonic quadruple.
The number

( + D22k — 1)2(k — 2)?
G ey e

does not depend on the order in which the four points are taken, and is called the
absolute invariant of the quadruple A1, A5, A3, A4.

An easy calculation shows that the cross ratio of four points is invariant under
coordinate transformations and projectivities. Indeed, if agpa11 — @p1a10 # 0 one
has

(A Ao, As, Ag) = (6111/\1 +ai anr2+a anis+ap airas+ 6110) '

9, 9, 9,
ag1A1 + ago @o1Az + ago @o1Az + ago do1As + ago

If A1, A5, and A3 are three distinct points of the line  and A is a variable point
of r we set

w= (A'17A129A37A')' (13)

Equation (1.3) has the form (1.2) and so u is a projective coordinate on r. It
follows that

(A1,A2,A3,41) =00, (A1,A2,43,42) =0, (A1,42,43,43) =1

and therefore one can choose projective coordinates on r in such a way that any
three arbitrarily assigned distinct points have coordinates oo, 0, 1. Such a choice is
unique since (00,0, 1,A) = lim;00(t,0,1,1) = A.

If A is a projective coordinate on the line r, then to each point of » we can
associate two numbers xq, x; (not both zero) such that A = ;C—(‘) They are defined
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by the point only up to a non-zero proportionality factor, since if a is an arbitrary
non-zero complex number the two ordered pairs (xo, x1) and (axg, ax;) give the
same point. Moreover, the line r may be identified with the collection of such
ordered pairs (xg, x1) (defined, that is, up to a non-zero factor).

We will say that x¢, x; are homogeneous projective coordinates on the line. To
indicate that the coordinates of P are xg, x; we write P = [xg, X1].

The points Ag = [1,0], A7 = [0, 1] (called the fundamental points of the
coordinates) and U = [1, 1] (called the unit point), that is, the points A = oo,
A =0and A = 1, constitute a reference system 8 = {Ag, A1, U} (cf. 1.1.5).

To determine a projective system of coordinates on r we can therefore take three
arbitrary distinct points Ag, A1, U of r and impose the condition that they have
coordinates (1, 0), (0, 1), and (1, 1).

If we introduce homogeneous projective coordinates, and set A = ;—(1), A= i—é,
equation (1.2) becomes °
X; _ anxi+aixXo
X  ag1X1 + agoxo

and therefore, if p is a non-zero factor,
Px6 = apoXo + do1X1, (1.4)
pX] = a10Xo + d11X1. '

x1
corresponding matrix equation

If we set £ = (1°), & = (i‘j’) then instead of equation (1.4) we have the
1

pE" = AE.

1.1.2 (Projectivities of a line into itself). Let r be a line and w; and w; two projec-
tivities of 7. The map w; cw, : r — r defined by setting w; cowz(A) = wy (w2 (1)) is
a projectivity called the product of w; and w,. Under this product the projectivities
of r form a (non-commutative) group which has the identity map on r as its neutral
element. To indicate that w is the identity we will write ® = 1.

A non-identity projectivity (w # 1) has two fixed points u, v, that is, points
such that w(u) = u, w(v) = v. If u and v are distinct, then the cross ratio
(u,v,A,w(A)) is constant, that is, it does not depend on A. The resulting constant
is called the characteristic or multiplier of w. Projectivities of characteristic —1
are of special interest. They are called involutions and may be characterized as
non-identity projectivities for which w? = 1.

Given a pair of points ¢g(xg, x1) = 0, ¢1(x0,x1) = 0 on the line, one sees
easily that the oo! pairs of points given by the equation

Ao@o(xo,x1) + A1¢1(xo, x1) =0, (1.5)
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with @g, ¢; forms of degree two, are corresponding pairs in an involution. More

generally, an involution of order r consists of the set of all r-tuples of points given

by an equation of the type (1.5) with ¢, ¢, homogeneous polynomials of degree r.
The fixed points of an involution are usually referred to as double points.

1.1.3 (Algebraic correspondences between lines). If r and r’ are two lines and A
and A’ are projective coordinates respectively on r and r’, an equation

f.A)=0 (1.6)

with f a polynomial, defines an algebraic correspondence w: r — r’.
Projectivities are particular examples of algebraic correspondences. If we set
’

A= ;—(1), A= ﬁ—(}) in equation (1.6), and eliminate the denominators, we obtain a
bihomogeneous equation for an algebraic correspondence w, that is, an equation of
the form

@(x0,x1:x0,x7) =0, (1.7

where ¢ is ahomogeneous polynomial with respect to each pair of variables (xg, x1)
and (xg, x}).

If m is the degree of ¢ with respect to x¢o, x; and 7 is its degree with respect
to xy, X7, then one says that ¢ is an (m, n) algebraic correspondence or of indices
m and n. To each A € r such a correspondence associates n points A’ € r’, and to
each A € r’ are associated m corresponding points in .

If r = r’ one says that A is a fixed point for an algebraic correspondence if it
coincides with (at least) one of its corresponding points. Chasles’ correspondence
principle asserts that the number of fixed points for a non-identity (m, n) algebraic
correspondence on a line r is equal to m + n.

1.1.4. Everything said up to now can be repeated without change when one considers
a fundamental form of the first type (a pencil of lines, a pencil of planes, etc.) rather
than a line r, or, more generally, a simply infinite algebraic entity whose elements
can be put into a one-to-one correspondence with P!. For example, the set of points
of a conic, those of the conics belonging to a pencil, or those of the lines belonging
to one of the two systems of lines of a quadric.

1.1.5. The discussion carried out for a line can be extended to the plane or ordinary
space, or, more generally, to the projective space P" of dimension n, which we will
also denote by S,,. By definition S, is the set of ordered homogeneous (n + 1)-
tuples of complex numbers (not all zero) (xg, X1, - . . , X5 ). These (n + 1)-tuples are
the points of Sy, and xg, x1, ..., X, are projective and homogeneous coordinates
for the points of S, .

The points having a single non-zero coordinate, namely the points

Ao =[1.0,...,0], Ay =[0,1,...,0], .... Ay =[0,0,....1],
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are called the fundamental points of the coordinates. They are the vertices of the
Sfundamental (n + 1)-hedron (or pyramid). The point U = [1,1,..., 1] is the unit
point. Together these points form the reference system 8 = {Ag, A1,...,A4,, U}
for the homogeneous projective coordinates x.

To change projective homogeneous coordinates in S, means replacing the x’s
with x”’s related to the x’s by a non-degenerate linear relation

pxX; = ajoxo + aj1X1 + -+ ainXy, i =0,1,...,n; det(A) = det(a;;) # 0.

(1.8)

The change of coordinate equations (1.8) can also be regarded as the formulas

relating the coordinates of two corresponding points under a mapping w of the space

S, (with x-coordinates) to the space S, (with x’-coordinates). Such a correspon-

dence is bijective (since det(A) # 0) and is called a non-degenerate projectivity or
non-degenerate projective correspondence.

1.1.6 (Quadrangles and quadrilaterals). We define a (plane) quadrangle or quad-
rangular set to be any set of four coplanar points, no three of which are collinear.

The dual figure of a quadrangle is the plane quadrilateral or quadrilateral set. 1t
consists of four lines in a plane, no three of which belong to a pencil (of concurrent
lines).

The complete quadrangle is the plane figure composed of four points (called
vertices) no three of which are collinear, and six lines (called sides), each of which
passes through two vertices. Two sides not containing a common vertex are said to
be opposite; the three points of intersection of the pairs of opposite sides are called
diagonal points, and constitute the vertices of the diagonal triangle.

1.1.7. For each index «, let Uy be the set of points P of S, with xo # 0, « =
0,1,...,n. Thus one has n + 1 subsets Uy, Uy, ..., U, which cover S, and which

we will call standard affine charts. If xg, x1,...,x, are the homogeneous pro-

. . . . . X

jective coordinates in S, we can take the quotients X2, ., Xe=L Zetl = Xn aq
Xa X Xo Xa

(projective, non-homogeneous) coordinates in U,

1.1.8. Let us consider k& + 1 points

0 0
Py _[x(()),xg),... x{01,
1 k
Pr=[x$0xM xR = 0 0 x )

in S,,. Wewill write P = Ag Po+- - -+ Ag Py to indicate the point whose coordinates
are obtained by forming the linear combination with parameters Ao, ..., A (not all
zero) of the coordinates of the points P;, j = 0,1,...,k. Thus, if (xo, X1,...,X»)
are the coordinates of P, one has

(0)

px; = Aox;  + - +Akx(k) (p#£0;i=0,1,...,n).
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We will denote the set of points P of the form Ag Py + A; P1 + -+ + A Px by
J(Py, P1,..., Py). Itisclear that J( Py, P1, ..., Px) does not depend on the choice
of coordinates used for the individual points P;.

Suppose that we have chosen coordinates for each of the points P;; for example,
in such a way that each has first non-zero coordinate equal to 1. There are then two
possibilities:

(1) There is a point P in J(Py,..., Pr) which does not uniquely determine
the homogeneous (k + 1)-tuple Ag, A1, ..., Ag; that is, there are two non-
proportional (k 4 1)-tuples (Ao, ..., Ax) and (Ko, . .., 4x) such that

k k
D AP =) Wb
=0 =0

This implies that one of the points P; is a linear combination of the others,
and so could be deleted without changing J(Po, ..., Px).

(2) Eachpoint P € J(Py, ..., Px)uniquely determines the homogeneous (k+1)-
tuple Ag, A1, ..., Ag of its coefficients A. In this case J(Py, ..., Px) can be
identified with the set of homogeneous (k + 1)-tuples (Ao, ..., Ag), and is
therefore a k-dimensional projective space. We will call it the linear sub-
space Sy of S, determined (or spanned) by the points Py, P1,..., Py. The
reference system in Sy for the projective and homogeneous coordinates A is

k
{Po. Pi,.... Pi. Y 5o Py,

In case (1) we will say that the points P; are linearly dependent. In case (2) the
points P; are linearly independent. One sees immediately that the necessary and
sufficient condition for the points P; to be linearly independent is that the matrix

(xl.(j )) formed from their coordinates have rank k£ + 1.

If P = [x¢, X1, ...,Xpn]is an arbitrary point of S,, onehas P = xoAg+x141 +
-+ 4+ x, A, whence S, coincides with the subspace spanned by the n + 1 linearly
independent points Ay, ..., A,.

The spaces So, S1, S2 in S), are respectively the points, lines, and planes of S,,.
The subspaces S,—; are called hyperplanes of S,. By convention, the empty set is
also a subspace of S, and its dimension is —1.

We remark explicitly that k + 1 is the maximal number of linearly independent
points that can lie in Sg. Furthermore, if Py, P, ..., Pk are not linearly indepen-
dent, then one can choose a linearly independent subset of size 7 + 1 < k + 1, such
that J(Py, Py, ..., Py) is the subspace S}, defined by the original k 4 1 dependent
points.

The intersection of subspaces is a subspace. The minimal (that is, of minimal
dimension) subspace that contains two or more subspaces S, @ .. §® orthe
intersection of all the subspaces that contains all the S G ), is called the conjunction
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(or, more simply and more frequently, the join) of the spaces SV, §@ . . §O,
It is denoted by J(S(V, §@ . §®),

If S, and Sy, are two subspaces of dimension / and k, and if S; and S, are their
intersection and join respectively, then one has

h+k =c+i (Grassmann’s formula).

Two subspaces Sy, and Sk are said to be skew if they have no point in common,
and hence have an Sj, 4%+ as join. Two skew subspaces S;, and S; which have
S, as join (so that # + k = n — 1) are said to be complementary. 1If Sj and
Sy are complementary, then on taking k + 1 independent points in S; and /2 + 1
independent points in S}, one obtains n + 1 = h + k + 2 independent points which
span the entire space Sj,.

1.1.9. We consider & + 1 linearly independent points Py, P1, ..., Pr and we let
P = [x¢, x1,...,Xx,] beapoint of the space S which they span. The coordinates of
P are linear combinations of those of Py, Py, ..., Pr and sothe (k +2) x (n + 1)
matrix formed from the coordinates of the k 4+ 2 points P, Py, P1,..., P; has
rank k + 1 (and indeed that is the necessary and sufficient condition to have P €
J(Py, P1,..., Pr)). This implies that (xg, X1, ..., Xy) is a solution to a system of
n —k linearly independent homogeneous linear equations. Conversely, any solution
P = [xg,X1,...,Xx,] of a system of n — k linearly independent homogeneous
linear equations in k + 1 unknowns can be written as a linear combination of
n+1—(n—k) = k + 1 independent solutions of the system, and so such solutions
constitute the points of an Sy.

In particular, a hyperplane S,,—; of S, is the locus of points of S, that satisfy
a linear homogeneous equation (the equation of the S,_; in the reference system
S = {Ao,Al,...,An;U})

UoXg + UrX] + -+ + Upx, = 0. (1.9)

This hyperplane can be identified with the homogeneous (n + 1)-tuple of com-
plex numbers (not all zero) ug, uy,...,u,. Thus, the hyperplanes of S, are the
points of an n-dimensional projective space which we denote S, and which is
called the dual of S,. One has (S,;)* = S,.

In S1, S>, and S5 the hyperplanes are respectively the points, lines, and planes.

The notion of linear independence extends naturally to the dual space S,7. If
Lo(x) = 0,...,Li(x) = 0 are the equations of k + 1 linearly independent hy-
perplanes, then the subspace S} of S determined by them consists of those hy-
perplanes having equation of the form AgLo(x) + -+ + Ax Lx(x) = 0. Thus the
space S consists precisely of the hyperplanes that pass through (that is, contain)
the space S,,—x—1 common to the hyperplanes Lo(x) = 0,..., Lx(x) = 0, namely
Sn—k—1 with equations Lo(x) = Li(x) = -+ = Lg(x) = 0. The space S; is
called the k-dimensional star with center or axis the common S, _j_1.
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In S, the stars S| are pencils of lines, while in S3 the stars S} and the stars S5
are respectively pencils and stars of planes.

The reference system 8* for the coordinates ug, uy,...,u, in S;l“ has as its
fundamental points the n + 1 hyperplanes «; which, in the reference system S, have
equations x; = 0 (i = 0,1,...,n). Moreover, the unit point is the hyperplane
which has equation ) ;_, x; = 0 in the reference system 8. Two reference systems
S and 8* (one for the points and the other for the hyperplanes of the same S,) related
in this way are said to be associated with each other. The hyperplanes «; are the
face hyperplanes of 8, that is, &; = J(Ao, A1,...,Ai—1, Ait1,..., An).

If one chooses associated reference systems for the points and hyperplanes
of S, the equation (1.9) is the condition of incidence (or belonging) of a point and
a hyperplane. If one holds the x’s fixed in (1.9) and allows the u’s to vary, one
has the equation satisfied by the hyperplanes which are incident with x (that is,
which pass through x). Thus one has the equation of the point x. More generally,
any geometric procedure regarding points and hyperplanes which leads to a “po-
sitional” property will always have a double interpretation according to whether
one considers the variables to be the point coordinates or the hyperplane coordi-
nates. Thus in addition to every positional property that one proves to hold for the
spaces So, S1,...,S55, Sy, ... one will also have the dual property for the spaces
Se> ST, ..., 80,81,.... This is the duality principle.

1.1.10. To project a point, or, more generally, a space S, from a space S; means
to consider the join space J(S,, Sx) of S, and Si, a space that we will call the
projecting space of S, from Si. To project S, from Sy onto a space S;, means to
take the intersection of the projecting space J(S,, Sx) with Sj. The space Sy is also
called the center of the projection (cf. §3.4.5).

1.1.11. Let w be a non-degenerate projectivity between two projective spaces Sy
and S, . One sees immediately that when a point varies in a hyperplane of one of the
two space the corresponding point also runs over a hyperplane in the other space in
such manner that w induces a projectivity between the dual spaces S, and (S,)*.

If the two spaces are superposed (that is, if S, and S, are two distinct copies
of a common projective space, cf. [52, Vol. 1, Chapter VIII, § 1]) we may consider
not only the projectivities (called homographies or collineations) that send points
into other points, but also the projectivities (called reciprocities or correlations)
that send points into hyperplanes, that is, projectivities w: S, — S, (which induce
projectivities Sy — S,).

In the case of a homography between two superposed spaces the search for fixed
points, that is for points P such that (P) = P, is of interest, for example, for
the classification of homographies. If x| = Z?:o a;;x; are the equations of the
homography, and x is a fixed point, there must be a complex number p # 0 such
that x; = px;, that is, px; = Z?:o ajjx;j,i =0,...,n. To have fixed points one
must find a p such that this system of linear homogeneous equations have non-trivial
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solutions: p must be a root p of the characteristic equation

aoo — P aol don
aio air—p - Aln
det(A — pI) = . . . . ,
ano anl st dpp — P

that is, one of the eigenvalues p of the matrix A = (a;;) which are certainly all
non-zero since A is non-degenerate. All the points of the linear subspace with
equations

n
,5)61' = E aijXj, i=0,1,...,n,
j=0

will be fixed points. The dimension of that subspace depends on the rank of the
matrix A — p L. Thus every eigenvalue of A leads to a subspace of fixed points.

If the matrix A has n + 1 distinct eigenvalues py, .. ., pn+1 SO that the matrices
A—p Lt =1,...,n+ 1, all have rank n (which is the most general situation) the
projectivity @ will then have n + 1 fixed points. It is easy to prove the following
fundamental result.

Theorem 1.1.12 (Fundamental Theorem for Projectivities). Given two (n + 2)-
tuples of independent points {P, ..., Ppia} in Sy and {Q1, ..., Qny2} in S,
there exists one and only one projectivity w: S, — S, such that o(P;) = Qy,
t=1,....,.n+2.

This statement is equivalent to stating that a projectivity between two superposed
S, ’s having n + 2 fixed points is the identity.

If we effect a change of coordinates in S, (associated to a matrix 7°), and
if y, y’ are the new coordinates of x and x’, then the homography w will be
represented by an equation y; = 2720 bijy; with B = (b;;) a matrix similar to
A (B = TAT!). Hence we may assume that the matrix 4 be in Jordan canonical
form (see, for example, the appendix of [9]). Thus we find exactly as many types
of homographies as there are types of Jordan canonical forms.

For example, when n = 1 the Jordan canonical forms are, for o, 8 € C,

Gs) (o) 6o
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For n = 2 the Jordan canonical forms are, for «, 8,y € C,

a 0 0 a 0 0 a 0 0
0 B8 0], 0 a 0], I o 0],
0 0 vy 0 0 B 0 0 B
a 0 0 a 0 0 a 0 0
1 o« 0], 1 « 0], 0 a O
0 0 « 0 1 « 0 0 «
1.1.13. Let w: S, — S, be a reciprocity with equation pu; = Z?:o aijxj,

i = 0,...,n. We will say that two points P = P(x) and P’ = P’(x’) of S,
are reciprocals if P’ belongs to the hyperplane corresponding to P (and then P
will belong to the hyperplane corresponding to P’). The algebraic form for this
condition is Y 7_ou;x; = 0or )_7_o (X_7—paijX;)x{ = 0, or also

n
> ajjxjx; =0. (1.10)
i,j=0

This bilinear equation expresses the fact that the two points P and P’ are recip-
rocal, which means that each belongs to the hyperplane corresponding to the other.
If we fix the x’s, the equation is that of the hyperplane corresponding to the point
P(x), while fixing the x’’s it is the equation of the hyperplane corresponding to
P’(x"). Thus the reciprocity w is represented by the bilinear equation (1.10).

The involutory reciprocities are particularly noteworthy, namely those reciproc-
ities for which to each point P(x) thought of as lying either in S, or S, there
corresponds the same hyperplane of S, or S,,. For this to happen it is necessary
that there exist a p # 0 such that one has the identity

n n n
r 1 _ ’
E aijXix; = p E aijx;x; (=p E ajixix;).

i,j=0 i,j=0 i,j=0

One must then have, for each pair of indices i, j, thata;; = pa;; and this implies
that the matrix A = (a;;) be either symmetric (p = 1) or anti-symmetric (skew-
symmetric, p = —1). Since an anti-symmetric matrix of odd degree is necessarily
degenerate, the anti-symmetric case is possible only if z is odd (so n + 1 is even). In
the case of an odd dimensional space the involutory reciprocities with p = —1 are
called null systems or null polarities. Under a null polarity each point belongs to its
corresponding hyperplane. The symmetric case is possible for all #n and one then
finds a reciprocity in which the auto-reciprocal points are precisely those which are
zeros of the quadratic form )7 j=0@ijXiX;. Such areciprocity is called a polarity

with respect to the quadric whose equation is ) ; j=o0aijxix; = 0.
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1.1.14. Particularly simple examples of projectivities between two superposed S,’s
are the so called projectivities of general type for which it is possible to choose a
representation with A being a diagonal matrix. For such a projectivity the spaces
which are loci of the fixed points are linearly independent, and they have as join the
entire space Sj,.

If, in particular, there are two subspaces S and Sy, which are loci of fixed points
and of complementary dimension (that is, 2 + &’ = n — 1) then the projectivity is
said to be a biaxial homography, and the two subspaces are its axes. The line r that
joins two corresponding points under a biaxial homography w is supported by the
axes (that is, it intersects both axes), and is therefore fixed (that is, w(A) € r for
every A € r), and on r the homography w induces a projectivity that has as fixed
points the intersections of r with the axes. The characteristic of this projectivity
on r does not depend on the pair P, P’ of corresponding points, and is therefore an
invariant ¢(w) of w called the characteristic of w (cf. §1.1.2). If c(w) = —1, we
say that w is a harmonic biaxial homography.

A biaxial homography having as axes a point O and a hyperplane H is called a
homology of center O and axis H. If, moreover, c(w) = —1 the homography w is
said to be a harmonic homology.



Chapter 2
Algebraic Sets, Morphisms, and Rational Maps

This is an introductory chapter containing basic notions regarding affine and pro-
jective algebraic sets, the Zariski topology, as well as morphisms and rational maps.
These topics are discussed in Sections 2.2, 2.6.

In Section 2.1 we recall some preliminary topological definitions which are
useful for handling the topics subsequently developed. In Section 2.7 we give a
number of exercises.

The texts of Reid [74] (whose framework we follow), [72] and the first chapter
of Hartshorne’s book [50] constitute excellent references for the contents of this
chapter. Musili’s book [69] is another good reference to the material discussed in
this chapter. For any background result from algebra that we use, we also refer to
[35] and [120].

We assume through out the chapter, except for explicit mention to the contrary,
that the base ring K is a commutative algebraically closed field of characteristic
zero. Usually K will be the complex field C. We use the usual set theoretic notation
and terminology.

2.1 Review of topology

For the convenience of the reader we briefly recall some elementary notions of
topology which are necessary in the sequel. For further information and proofs of
properties that are only stated here we refer the reader to [58] or [18].

2.1.1 Topological spaces. A topology on a set X is a family t of subsets of X
satisfying the following properties.

(1) @, X belong to t;
(2)  is stable under arbitrary unions: if U; € t foralli € I then | J,¢; U; € 7;

(3) tis stable under finite intersections: if U; € t for all i in the finite set 7, then
ﬂiel €T

The elements of t are called open subsets of X and (1)—(3) are called the axioms
for open subsets.

We say that the pair (X, t) is a topological space; often we consider 7 as im-
plicitly understood and speak of X alone as a topological space.
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A subfamily B of t is a base of t if every open subset is a union of elements
of B.

The closed subsets of (X, t) are the complements of the open subsets: that is,
A C X is closed if and only if X \ A is open. The family F of closed subsets
satisfies the following properties.

(1) 9, X belong to F;

(2) F is stable under finite unions: if F; € F for all i in the finite set / then

Ui el Fi e 3,
(3) F is stable under arbitrary intersections: if U; € &F for all i € I, then
(Nier € 7.
The verification of these properties is an easy application of De Morgan’s rules
[58, p. 4].

These properties characterize the topology in the sense that if one gives a family
JF satisfying them, then there exists a unique topology t on X such that F is the
collection of closed subsets of t. Obviously it suffices to define the open subsets
of t as the complements of the subsets comprising F. The three properties listed
just above are called the axioms for closed subsets, and one can define a topology
on X by specifying the closed subsets.

The collection of all topologies on X is partially ordered by the relation < of
fineness: o < t (0 less fine (or coarser) than 7) if every open subset in ¢ is also an
open subset of 7, or equivalently if every closed subset of ¢ is a closed subset of t.

A neighborhood of a point x € X is a set V' such that there is an open subset U
of X with x € U C V. For every subset A C X one defines the two subsets

A= {x € X | A is aneighborhood of x}

and
A={xeX|UnN A # @ for each neighborhood U of x}

which are called respectively the interior and the closure of A. The points of A are
called the interior points of A; those of A are called adherent points of A.

The interior of A is the union of all the open sets of X which are contained
in A, or, equivalently, the largest open set of X which is contained in A. Dually,
the closure A of A is the intersection of all the closed sets of X that contain A, or,
equivalently, the smallest closed set of X that contains A.

A subset A C X is dense if A = X this happens if and only if A intersects
every non-empty open set of X.

If A C X, one defines a topology t4 on A by decreeing that the open sets of 74
are precisely the intersections with A of open sets of , thatis, M C A is open in
the topology t4 if and only if there is an open set U of t suchthat M = AN U.
The topology 74 is called the fopology induced on A by t or the relative topology
on A induced by 7, and (A4, 74) is said to be a subspace of (X, 7).
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2.1.2 Continuity, compactness, and connectedness. Consider two topological
spaces (X, 7) and (Y,0) and let f: X — Y be a mapping. We say that f is
continuous at the point x € X if for every neighborhood V of f(x) there is a
neighborhood U of x such that f(U) C V; we say that f is continuous if it is
continuous at every point of X. The following conditions are equivalent:

(1) f is continuous;
(2) for every open A C Y the subset f~!(A) is openin X;
(3) for every closed A C Y the subset £ ~!(A) is closed in X;

(4) for all x € X and for every neighborhood V of f(x) the set f~1(V) is a
neighborhood of x.

An application f': X — Y is said to be a homeomorphism if it is continuous,
invertible (bijective), and the inverse f ! is also continuous. If f is continuous and
invertible, an equivalent condition for f to be a homeomorphism is that f be an
open mapping (respectively, closed mapping), that is, for each open (respectively,
closed) subset U of X the subset f(U) is open (respectively, closed) in Y.

Topological properties preserved by continuous maps are particularly important:
that is, the properties such that if they hold for a space X they also hold for any
space Y which is the image of X under a continuous mapping.

A topological space (X, 7) is compact if from every open covering of X one
can extract a finite subcover; that is, if whenever one has X = | J;; U; with all U;
open in 7, there is a finite subset J C [ suchthat X = {J;c; U;. Asubset A C X
is compact if it is compact in the topology induced by t on A.

A topological space is connected if there does not exist any proper non-empty
subset of X which is both open and closed, or equivalently, if it is not possible to
obtain X as a union of two disjoint non-empty open subsets. A subset A C X
is said to be connected if it is connected in the topology induced by t on A. A
maximal connected subset of X is called a connected component of X, that is, if
it is not properly contained in any larger connected subset of X. The connected
components of X are closed subsets and form a partition of X into disjoint subsets.

2.1.3 Product topology and quotient topology. Let X and Y be two topological
spaces, and let X x Y be their cartesian product as sets with p: X xY — X and
q: X xY — Y the canonical projection maps onto the first and second factors
respectively. The product topology on X x Y is the coarsest topology with respect to
which the projection maps p and g are continuous. The set X x Y with the product
topology is called the topological product of X and Y. The product topology on
X x Y has as a basis the family of products U x V where U is openin X and V is
open in Y. Indeed, if By and By are bases for the opens of X and Y respectively,
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then
BXxy={UXV|U€3x, Veﬁy}

is a basis for the open sets of the topological product X x Y.

Now let ~ be an equivalence relationon X andletw: X — X/ ~ be the natural
projection on the quotient. If t is a topology on X, the subsets M of X/ ~ such
that w—1(M) is an open set of T are the open sets of a topology on X/ ~. That
topology is called the quotient topology, and is the finest topology on X/ ~ such
that the projection 7 is continuous. The open subsets of the quotient topology are
the images under 7 of saturated open subsets of X, namely the open subsets that
are unions of equivalence classes.

2.2 The correspondences V and 1

Let A" := A"(K) be an n-dimensional affine space over the field K and let
Y1,...,Yn be affine coordinates in A”. If a is an ideal of the polynomial ring
K[Y1,...,Y,] we consider the “correspondence V> which associates the subset
V(a) to the ideal a where

V(a) ={y € A" | f(y) =0forall f € a}.

The set V(a) is the locus of the zeros of the polynomials in a. Since a is
finitely generated, V'(a) is the locus of zeros of a finite number of polynomials
i eK[Yr,....YRl,j=1,...,m.

The subsets X of A” of the type X = V(a) are called (affine) algebraic sets.
An algebraic set is said to be irreducible if there is no decomposition X = X; U X,
with X, X, algebraic sets strictly contained in X.

The correspondence V satisfies the following formal properties (where b and
a; indicate ideals of A = K[Y1,..., Y,]).

(1) V((0)) = A"; V(A) = @ (the empty set is not considered irreducible);
2) aC b= V(b) C V(a);
(3) V(anb) = V(a) U V(b) = V(ab), where ab means the product of ideals;

4) V(X ier ai) = (Nies V(a;) (recall that the ideal sum, even if not finite, of
the ideals a; consists of all finite sums of elements of the a;).

All the preceding properties are almost obvious except for (3), the inclusion
V(a N'b) C V(a) U V(b), which can be proved as follows. Let x € V(a N b)
and suppose that x &€ V(a) U V(b). Then there exist f € a and g € b such that

f(x) # 0and g(x) # 0. Thus fg € an bbut fg(x) = f(x)g(x) # 0, which
contradicts the assumption that x € V(a N b).
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Let P = (ai,...,ay) € A". Wecall mp = (Y1 —ay,..., Yy, —ay) the

ideal of P. Itis easy to see that mp is a maximal ideal of K[Y7,..., Y], and that
the homomorphism o : K[Y1,...,Y,] = K, defined by o (f) = f(ai,...,an),
induces an isomorphism K[Y1,...,Y,]/mp = K. One has P = V(wmp).

If a is an ideal of K[Y1, ..., Y,] the radical of a is the ideal \/a defined by
Ja:={geK[Y1,...,Y,] | g € a for some integer > 1}.
One sees immediately that
V(a) = V(Va).

Indeed, we have a C /a whence V(y/a) C V(a). Conversely, let y € V(a) and
g € J/a. Then g'(y) = g(y)* = 0so that g(y) = 0 and hence y € V(/a).

Example 2.2.1. Recall that a polynomial f € K[Y1,..., Yy] is irreducible if it is
not a constant and if whenever f = fi f> with f1, f € K[Y1,..., Yy], then one
of f1 and f5 is a constant.

An algebraic set X given by a single equation f = 0 (that is, associated to the
principal ideal ( f)) is called a hypersurface in A". If n = 2 it is a plane affine
curve, if n = 3 it is an affine surface, etc. If K is algebraically closed such a
hypersurface is irreducible if and only if f is a power of an irreducible polynomial,
as follows from the Hilbert Nullstellensatz 2.2.2. If f is a polynomial of degree 1
(respectively of degree 2) we will say that X is a hyperplane (respectively a quadric
or hyperquadric of A").

If X isasubsetof A”, we consider the “correspondence /” which to X associates
the ideal 1(X) C K[Y1,..., Y] defined by

I1(X):={f €K[Y1,....Y,4] | f(x) =0forallx € X}.
The ideal 1(X) is a radical ideal, namely

I(X)=VIX):={f € K[Yy,....Y,] | f} € I(X) for some integer ¢ > 1}.

It is surely obvious that /(X) C /I(X). Moreover, f € /I(X) if and only if
f'(x) = 0 forall x € X and for some positive integer 7. But this is equivalent to
(f(x))! =0andthusto f(x) =0forallx € X,andso f € I(X).

The correspondence I enjoys the following additional properties, where X, Y
and X; denote subsets of A” (cf. [120, Theorem 14, p. 38]).

(1) 1Y) = K[Y1, ..., Yal; I(A"(K)) = (0);
2 XCcY = I(Y)CIX);
(3) I(Uiel Xi) = ﬂiel 1(X;).
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As far as the composition V' o [ is concerned, one has the following.

e If ais an ideal of K[Y7,...,Y,] and X C A” then
X CcVU(X)) and a C I(V(a)).
In particular, if X = V(a) is an algebraic set one has
X =VU(X)).

The composition V' o I of the correspondences V' and [ is thus the identity on
algebraic sets.

The inclusion a C 7(V(a)) can be a strict inclusion and so, in particular, the
composition [ o V' is not the identity. In this regard see Theorem 2.2.2 below which
shows how the composition / o V' is the identity when restricted to radical ideals.
If K is not algebraically closed it suffices to consider a non-constant polynomial
f with no roots in K. For example, if K = R one can take / = Y7 + 1. Then
a=(f) C K[Y1,...,Y,]and a # K][Y1,...,Y,] because 1 &€ a. However,
V(a) =@ andso [(V(a)) = K[Y1,...,Y,]. If K is algebraically closed it suffices
to observe that ( f*) # I(V(f")) whenever t > 2: indeed, V(") = V() and so
felV(f) =1V(f). But f & (f').

The following fundamental theorem holds. We propose here a quick proof (of
statement (1)) which is due to Kaplansky and which we heard from P. Ionescu. For
further details and complete proofs see, for instance, the two texts of Reid [74], [75]
or Shafarevich’s book [103].

Theorem 2.2.2 (Hilbert Nullstellensatz). Let K be an uncountable algebraically
closed field (in particular K = C). Then

(1) every maximal ideal i of A := K|[Y1,...,Yy] is of the form m = (Y —
ai,...,Y, —ay) for some point P = (ay,...,a,) € A"(K);

(2) if aisanideal of A, a # A, one has V(a) # 0;

(3) for every ideal a C A one has I(V(a)) = /a (hence in particular m is the
ideal I1(P) of all polynomials that vanish at P).

Proof. Write B = K|[Y1,...,Y,]/m, with m a maximal ideal of K[Y1,..., Y]
Since B is a field generated over K by the classes of all monomials in Y7,...,Y,
it follows that the dimension of B, as a K-vector space, is at most countable.

Let now b € B \ K be an arbitrary element. We have to prove that b is

algebraic over K. To this end consider the family {ﬁ} sex Of elements of the

field B. Since K is uncountable, this is in fact an uncountable family of elements
of B. Since dimg (B) is at most countable, the elements of this family are linearly
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dependent over K, i.e., there exist finitely many non-zero elements A1, ...,A; € K
and elements ¢1,...,t; € K, s > 1, such that
A A
! 4.4 2 o,
b—t b —t

Clearing denominators we get a non-zero polynomial f(7") € K[T] of degree > 1
such that f(b) = 0, i.e., b is algebraic over K. To see this, observe that f(z;) # 0,
i =1,...,s. Since K is algebraically closed, we conclude that B = K.

Now, seta; :=Y; mod m,i =1,...,n,andlet P := (ay,...,a,) € A"(K).
It is clear that the polynomials ¥; — a; belong to the kernel of the quotient map
K[Y1,....Yy] = K[Y1,...,Yy]/m = B,i = 1,...,n. This implies that mp C
m and, since m p is maximal, we get m = mp. O

If X = V(a) is an algebraic set of A” we will say that the quotient ring
K[X] = K[Y1,...,Y,]/I(X) is the coordinate ring of X. We also say that the
pair (X, K[X]) is an affine algebraic variety. It is immediately clear that

¢ X is irreducible if and only if the ideal /(X)) is a prime ideal, that is, if and
only if its coordinate ring is an integral domain.

Indeed, let f1, f> € I(X) and let X; be the subset of X consisting of the points
at which f; vanishes, i = 1,2. If X is irreducible one then has that the union
X1 U X5 is strictly contained in X. Thus if x € X — (X; U X5) we must have
fif2(x) # 0and so f1 />, & I(X), which is to say that /(X) is a prime ideal.
Conversely, suppose that X is reducible, X = X; U X, and let f1, f> &€ I(X) be
such that f1(X;) = 0 = f,(X>) (i.e., f; vanishes at each point of X; fori = 1,2).
It follows that f1 f> € 1(X) and so /(X) is not prime.

In particular, by the preceding arguments, a hypersurface X = V(f) is irre-
ducible if and only if the polynomial f is a power of an irreducible polynomial.

2.2.3 The Zariski topology on an affine variety. In view of the properties of the
correspondence V/, it is clear that the algebraic sets X C A" form the set of closed
subsets of a topology on A", called the Zariski topology on A”".

A basis for the open subsets of A” is given by the open sets

A= A" —V(f) = {y € A" | () # 0},

with f(y) € K[Y1,...,Yy]. Open subsets of this type, complements of hypersur-

faces in A", are called principal open or basic open subsets of A”. We will also

say that a principal closed subset is the complement V' ( f) of A} in A”. Note also
n — n n

that Az, r, = A N A7, . .

Let us now examine some properties of the Zariski topology.
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¢ A" is not a Hausdorff space, because for every pair of non-empty open sets
Uy, Uy one has Uy N U, # 0. Indeed, if Uy N U, = @, one would have
A" = CanUy U CpnU, (where ConU denotes the complement of U in A™).
Since A" is irreducible one would have either CanU; = @ or Cpn U, = @. Tt
follows that every non-empty open set is dense in A”.

¢ A" isaFréchetspace (i.e., T1) in the sense thatif P and Q are any two distinct
points, each of the two is contained in an open set which does not contain the
other. In fact, if f is a polynomial satisfying f(P) % Obut f(Q) = 0, then
the open set which is the complement of the algebraic set V( f) contains P

but not Q.
» A" iscompact, that is, every open cover A” = | J, U, admits a finite subcover
h
A" =i, Ui.
Since every ideal a of K[Y1,..., Y] is generated by a finite number of poly-

nomials, one has that every closed subset of A” is the intersection of a finite
number of principal closed subsets and every open subset is a finite union of
principal open subsets. It is then easy to see that from every open cover of
A" one can extract a finite subcover. By the above remarks it suffices to show
this for a covering by principal open subsets. Let then A" = |, A;’,a. It
follows that (1), (V(f)) = @ and therefore if a is the ideal generated by all
the polynomials f, one has a = K[Y;,...,Y,]. Hence 1 € K is a polyno-
mial linear combination of a finite number of elements f1, ..., f; of a. This

implies that V(f1..... f4) = 0 and thus that A" = (J_, A" .

A more general argument, which does not make use of the Hilbert Nullstel-
lensatz, goes as follows. From A" =, A% we get

V(X)) =N fe)) = 0.

Since K[Yi,...,Y,] is noetherian, there exists a finite set of indices
{ai,...,ap) such that V(fy,,..., fo,) = V(Zf’zl(fai)) = (). Thus we
have A" = | J"_, A}

e If K = R or C, the Zariski topology in A” is coarser than the usual euclidean
topology (where, as usual, C is identified with R? viaa + ib = (a,b)). In
fact the Zariski closed sets are also closed for the euclidean topology, since
polynomial functions are continuous.

If X C A”isanalgebraic set, we can consider the Zariski topology on X , namely
the topology on X induced by the Zariski topology on A”. For each f € K[X] we
set

Xp=X-V(f)={xeX|fx)#0}
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The open sets Xy are called principal open subsets of X, and form a base for the
open subsets of the Zariski topology on X.

Remark-Example 2.2.4. We discuss a few more properties and examples.

(D

2

3)

4

(&)

The closed sets of Al are the finite subsets. The closed subsets of A2 are
finite unions of isolated points and algebraic curves.

Ifa C K[T4,..., Ty] is an ideal, we consider the extended ideal
a® :=aK[Y1,.... Y0, T1,.... Tp).
The algebraic set V(a¢) in A"t is called a cylinder.

If X = V(a) is an algebraic subset of A", a C K[Y;,...,Y,], then the
projection of X on the space A™, where the coordinates of A™ are Y1, ..., Yy
for m < n, is the algebraic set associated to the contracted ideal a® =
an K[Yq,...,Y,] (cf. Section 4.4).

Let X; € A" and X, C A’ be algebraic sets, and let T1,...,7T, and

Y1,...,Ysbecoordinatesin A" and A’ respectively. Leta; = (f1,..., fi) =
I(Xy) C K[T1,...,T;]and az = (g1,....8,) = 1(X2) C K[Y1,...,Ys].
In the product space A” x A® = A”+S with coordinates T, ..., Ty, Y1, ..., Ys

the product X := X x X, is the algebraic set of A" associated to the ideal
a:= af—i—a;:(fl,...,f;t,gl,...,gn)CK[Tl,...,Tr,Yl,...,Ys],
thatis, I(X) = J/a.

(Zariski topology on a product) For each pair r, s € N, the product topology
on A" x A® with respect to the Zariski topologies on A" and A* is strictly
coarser than the Zariski topology on A" 5.

Indeed, if a and b are ideals of K[T4, ..., T;]and K[Y1, ..., Y] respectively,
then one has

(A" \ V(@) x (A”\ V(b))
= [(A" x A) \ (V(a) x A )] N (A" x A®) \ (A" x V(b))]
= [(A" x A")\ V()] N [(A" x A*) \ V(b)].

Thus the open sets of the basis of standard open subsets of the product topology
are open subsets in the Zariski topology on A" TS,

However, not every open subset in the Zariski topology on A”*$ is an open
subset in the product topology. For example, the complement of V(x — y) in
A2y is not open in A! x Al since V(x — y) is not closed in A! x Al
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Let X; € A" and X, C A® be algebraic sets. The Zariski topology on X1x X,
is the topology induced on X x X, by the Zariski topology on A”**. From
the preceding remarks we deduce that this topology is, in general, finer than
the product topology on X; x X, with respect to the Zariski topologies on
X] and Xz.

See Section 11.2 for the case of the products of projective spaces.

(6) If X is a subset of A", V(I(X)) is the Zariski closure of X. One has X =
V(I(X)) if and only if X is an algebraic set.

2.3 Morphisms

The contents of this section and the next one have been essentially taken from [74].
Let X C A” beanirreducible algebraic subsetand K[X] = K[Y7, ..., Y,]/I1(X)
its coordinate ring. We use F to denote the class of a polynomial F € K[Y1, ..., Y]
modulo the ideal 7(X).
Given a polynomial F € K[Y,...,Y,] and putting f = F we have F'(x) =
F(x) for every polynomial F’ € F and for every x € X. Thus the polynomial
function

f:X—>K, f(x):=Fx)),xelX,

is defined. Note that a polynomial function f: X — K is a continuous map if we
consider the Zariski topology on both X and K, where K is identified with A (K).
(If K = R or C, the same is true for the euclidean topology.)

The set R of all such polynomial functions on X has a natural ring structure and
the map F' +— f defines a surjective ring homomorphism

K[Y1,....Y4] > R—0
with kernel /(X). Thus one has an isomorphism
K[X] = R,

which expresses the coordinate ring of X as a ring of polynomial functions (defined
on all of X)) with values in K.

Now let A" and A™ be two affine spaces with coordinate rings K[Y1,..., Yy]
and K|[T1, ..., T,] respectively. We say that a map ¢: A" — A™ is a morphism
(or regular map) if there are m polynomials Fy, ..., Fy, € K[Y1,..., Y,] such that
foreach y = (y1,...,yn) € A” one has

() =(t1,....t,) witht; = Fj(y1,....,yp)forj =1,...,m.
We also say that ¢ is the “polynomial function given by Fi, ..., F,,” and that

Ty=FY.....Y)., j=1...m,
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are its equations.

If X C A", W C A™ are algebraic sets, we say thatamap ¢: X — Wisa
morphism (or regular map) if it is the restriction to X of a morphism ®: A" —
A™ such that ®(X) C W. Thus, if ¢: X — W is a morphism there exist m
polynomial functions fi,..., fis € K[X] such that for every x € X one has
o(x) = (fi(x),..., fm(x)) € W (and we say that “¢ is the polynomial function
givenby f1,..., fm”).

We say that a morphism ¢p: X — W is an isomorphism if ¢ is bijective and the
inverse ¢! is a morphism. If there exists an isomorphism ¢ : X — W we say that
X and W are isomorphic.

Note that a morphism ¢: X — W is a continuous map if we consider the
Zariski topology on X and W. Furthermore, if ¢ is an isomorphism, then it is a
homeomorphism.

Example 2.3.1. A bijective morphism need not be an isomorphism. For example,
let C; and C; be the two plane curves with equations y — 1 = 0 and y3 — x2 =0
respectively. Let ¢: C; — C, be the map that sends the point P € Cj to its
projection P’ from the origin O onto C,. One sees that ¢ is bijective, in particular
¢(A) = O only for A = (0, 1). If (x, 1) are the coordinates of P, the coordinates
of P’ are x’ = x3, y' = x2, and so ¢ is a morphism. But ¢! is not a morphism
because, given P’ = (x’,y’) € C,, the coordinates of P = ¢! (P’) are (’y‘—i, 1)

and ’yc—i g K[x',y'].

Exercise 2.3.2. Let¢: X — W be a morphism of algebraic sets with X C A” and
W C A™. With the preceding notation, and considering the coordinates 77, . .., Tj,
in A™ as polynomial functions, ¢ is a polynomial function given by fi,..., fm €
K[X]ifandonlyif f; = Tj o¢ € K[X]for j = 1,...,m, thatis, if and only if
the diagram

% ¢

W c A™
TA
fj J

K

is commutative.
We observe that for x € X the j™ component of ¢ (x) is Tj o¢(x), and therefore
for each j if we put f; = T; o ¢ we have

d(x) = (T1o¢p(x),.... T o @(x)) = (f1(X),.... fm(x)).

Thus ¢ is the morphism given by f1, ..., fm.
Conversely, if ¢ (x) = (f1(x),..., fm(x)),forx € X,wethenhave Tjo ¢(x) =
fi(x)forallx € X and j = 1,...,m, whichis tosay that T; o ¢ = f; € K[X].
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Theorem 2.3.3. Let X C A", W C A™ be algebraic sets, and Y1, ...,Y, and
Ty, ..., Ty coordinates in A" and A™ respectively. Then the following holds:

(1) Amorphism¢: X — W induces a K -algebra homomorphism ¢*: K[W] —
K[X].

(2) Conversely, every homomorphism of K-algebras 6 : K[W]| — K[X] is of the
type 0 = ¢* with ¢: X — W a uniquely determined morphism.

B) Ifp: X - Wand y: W — Z are morphisms of algebraic sets, then the
morphisms (Y o )* and ¢* o * coincide as morphisms of K -algebras; that
is, (Y op)* =¢*oy™: K[Z] > K[X].

Proof. Let g € K[W], thatis, let g: W — K be a polynomial function defined on
all of W. Set ¢*(g) = g o ¢. We show that g o ¢ € K[X]. To see this it suffices
to note the following facts.

a) There exist Fi,..., Fy, € K[Y1,...,Y,] such that for all x € X one has

d(x) = (fi(x),..., fm(x)) with F;j(x) = f;(x) and f; the class of F; in
K[X],j=1,....m.

b) Let G € K|[T1,..., Tx] be such that G(w) = g(w) for all w € W (so that
g is the class of G in K[W]). We then have that P := G(Fy,..., Fy) €
K[Yi,....Y,] and its class in K[X] is G(f1,..., fx). Moreover, for each
x € X we have

(god)(x) = G(/1(x)..... fm(X¥)) = G(f1..... fm)(x) = P(x).

Thus g o ¢ € K[X]. It is then easy to see that ¢* is a K-algebra homomorphism,
and this proves (1).

To prove (2), we consider the class ¢; of the coordinate 7; in A™ as a function
on W. Weset0(t;) =6;, j =1,...,m. Since 0 is a K-algebra homomorphism
(and K[W] = K]|t1,...,tm]), we have, foreach g € K[W],0(g) = g(01,...,0m)
and so 6(g)(x) = g(01(x),...,0p(x)) forall x € X. Let ¢p: X — A™ be the
morphism defined by ¢ (x) := (61(x), ..., 0, (x)) forall x € X. By what has just
been said it follows that for all g € K[W] we have g o ¢ = 6(g), which means that
0 = ¢* is induced by ¢.

To conclude it suffices to prove that Im(¢) C W. Let y € Im(¢), that is,
y = (01(x),...,0m(x)) for some x € X, and let F € I(W). Then the class f of
F in K[W] is zero whence F(t1,...,tm) = f(t1,...,tm) = 0in K[W]. Hence
0 (F(ty,...,t,m)) = 0in K[X]. But

0=0(F(t1,....tm)) = F(0(t1),....0(tm)) = FO1,...,0m).

The 6;’s belong to K[X] and F(6:,...,6,) € K[X] is by definition the function
X = F (01(x),...,0n,(x)). Finally, for each x € X and for each F € [(W), the
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coordinates (61 (x), ..., 0, (x)) of y satisfy the condition F (61(x),...,0n(x)) =
0, from which it follows that y € W.

Statement (3) is merely the property of associativity for composition of map-
pings. For each & € K[X] one has

(Vo) (h)=ho(pop)=(ho)og
=y (W) od =" (W*(h) = (9" oy ™)(h). O
Corollary 2.3.4. A morphism ¢: X — W of algebraic sets is an isomorphism if
and only if ¢* . K[W] — K|[X] is an isomorphism of K-algebras.

Proof. In fact we have (¢~ ! 0 ¢)* = ¢* o (¢p71)* = idg[x] and (p o ¢~ 1)* =
(@~1)* 0 ¢* = idgpw). =

2.4 Rational maps

We recall the definition of the field of fractions of an integral domain.

Definition 2.4.1. Let A be an integral domain. The field of fractions Frac(A) is the
localization S ™! (A) of A with respect to the multiplicatively closed set S := A\ {0},
that is

Frac(A) = (A x S)/ ~,
where “~” is the equivalence relation defined by (a, s) ~ (a’,s) <= as’ = d's.
Thus we have

’

Frac(A) = {$ |a.b € A, b #0and § = & < ab’ =d'b}.

Let X C A” be an irreducible algebraic set on which we consider the Zariski
topology. Let K[X] be the ring of coordinates and K(X) the field of fractions
of K[X], that is, indicating by F the class modulo /(X) of a polynomial F €
K[Y1,..., Y],

KX)={%g.heK[X.h#0,% =% < gh' = g'h}.
Anelement f € K(X) is called a rational function on X. Let U C X be an open

and let P € U. We say that a rational function f € K(X) is regular at P if there
exists a neighborhood Up of P such that

f:%, g,h e K[X], h(x) #Oforall x € Up. 2.1

We say that f is regular on U if it is regular at each point of U.
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We note explicitly that if f* is regular in a point P’ € U with P # P’ then we
will also have that
g/
f= T g’ h' € K[X], W (x) #Oforall x € Up/, (2.2)
with Up- a suitable neighborhood of P’. Obviously it follows that gh’ = hg’ on
Up N Ups, and (2.1) and (2.2) are said to be local representations of f in P and
P’ respectively.

The set dom( f) of points x € X where f is regular is called the domain or
domain of definition of f. If x € dom( f) there then exist an open subset Uy of
X containing x and a local representation f = £ with & # 0 in Uy. Obviously
Uy C dom(f). Note that f: dom(f) — K is a continuous map in the Zariski
topology.

We now discuss some properties of rational functions.

¢ A rational function f € K(X) which is regular on an open set U does not,
in general, have a global representation valid on all of U.

Example 2.4.2. Let X C A*(C) be the quadric with equation Y Y, — Y3Y; = 0.
If we let y; denote the class of ¥; in C[X],i = 1,...,4, wehave y1y, —y3y4 =0
in C[X]. We consider the rational function

f=2=2ccw.
y3 )2

More precisely, % is a representation for f on the open set Uz := {y3; # 0}
while i—; represents f on the open set U, := {y, # 0}. Hence f is defined on
U = U, U Us, but does not have a global representation on U'.

Exercise 2.4.3. Let f, ' € K(X) be distinct rational functions. Then there exists
a non-empty open subset U C X such that f(x) # f'(x) forall x € U. Let

_8 a_8
f_h’ f_h,

be defined on the principal open subsets X, and X} respectively. We have gh’ #
g'h since f # f'. Consider the open subset

U:=1{xeX|(gh —ghhh'(x) # 0}

Since U C Xp and U C Xy both f and f” are defined on U, and for each x € U
we have (since (gh’ — g’h)(x) # 0)

_ 8 g ().

T =50 7 e =
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The following lemma shows that a rational function regular on all of X is a
polynomial function.

Lemma 2.4.4. Let K be an algebraically closed field and let f € K(X) be a
rational function on an algebraic set X. Then:

(1) The domain dom( f) is a dense open subset of X .
(2) dom(f) = X ifand only if f € K[X].
Proof. We consider the “ideal a of the denominators” of f defined by
a:={heK[X]| fhe K[X]} ={heK[X]| f =%.g € K[X]} U{0}.
One then has
X —dom(f)={x€ X |h(x) =0forall h € a} = V(a).

Thus X — dom( f) is an algebraic set and so dom(f) = X — V(a) is a Zariski
open subset of X; in particular it is a dense open subset and we have dom( /) = X.
Furthermore, cf. Theorem 2.2.2,

dom(f) =X <= V(a) =0 <<= leca< f € K[X]. O

If X C A", W C A™ are algebraic sets, we say thatamap¢: X — A" isara-

tional map or rational transformation if there exist rational functions fi,..., fi, €
K(X) such that

¢(x) = (f1(x)..... fin(x)) forevery x € () dom(f)). (2.3)

Jj=1

By definition ¢ is defined on the open subset

dom(¢p) := ﬂ dom( f}),

Jj=1

which we call the domain of ¢. We will also say that ¢ is regular at the points
x € dom(¢).

If¢p(dom(¢p)) C Wthen¢: X — W isarational map between the two algebraic
sets X and W. The map ¢: X — W is dominant if ¢ (dom(¢)) is dense in W, that
is, if ¢ (dom(¢p)) = W.

We note that, given two rational maps ¢: X — W, : W — Z between alge-
braic sets, one can then consider the rational map ¥ o¢p: X — Z, the composition
of ¢ and ¥, whenever ¢ (dom(¢)) N dom(y) # @. In particular, this is always the
case if ¢ is dominant.
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Remark 2.4.5. Let ¢p: X — W, with ¢(X) dense in W, and ¢y : W — Z be
rational transformations between algebraic sets. If Im(y/) is dense in Z then also
Im(y o ¢) is dense in Z. It follows that ({ o ¢p)* = ¢™ o ™.

Remark 2.4.6. In the preceding notation, let¢p: X — W be a rational map defined
as in (2.3). Each g € K[W] is of the form ¢ = G modulo /(W) for some
G € K[Th,..., Tyl and g o ¢ = F(f1,..., fm) is a well-defined element of
K(X). Thus, exactly as in the case of morphisms, one has a morphism of K-al-
gebras ¢*: K[W] — K(X). However, if i € ker(¢*) # (0) then ¢*(g/ h) is not
defined and so ¢* does not admit an extension to a homomorphism of K-algebras
K(W) — K(X), except precisely in the case in which ker(¢*) = (0). In this
regard we have the following fact.

e If ¢: X — W is a dominant rational map, the homomorphism ¢*: K[W] —
K(X) is injective (and so admits an extension to ¢*: K(W) — K(X)).

Indeed, if g = G modulo I(W) in K[W] then

9" (g) = G(f1,.... fm).

Hence ¢*(g) = 0 means that G = 0 on Im(¢), that is,

P*(@)(x) = G(f1(x),.... fm(x)) =0

for every x € X. Hence G = 0 on W because Im(¢) = W; that is to say,
Gel(W)andsog = 0.
In the case of a morphism one has the following equivalence.

e Let¢: X — W be a morphism of algebraic sets. Then ¢*: K[W] — K[X]
is injective if and only if ¢ is dominant.

Indeed, let g € K[W] be such that g o ¢ = ¢*(g) = 0, that is such that
(go¢)(x) =0forall x € X, or again, such that G( f1(x), ..., fm(x)) = 0 where
the f; are the classes in K[X] of the polynomials F; € K[Yi,...,Y,] and g is the
class of G € K[Ty,...,Ty]. Thus, G vanishes on a dense subset of W (since ¢
is dominant) and so vanishes on all of W. Therefore G € I(W), from which it
follows that g = 0 and ¢* is injective. To prove the converse one notes that the
kernel of ¢* consists of those polynomial functions g € K[W] such that go¢ = 0,
namely those g € K[W] that vanish on Im(¢) and hence also on Im(¢). Since
ker(¢*) = (0), we have that g € K[W] vanishes on Im(¢) if and only if it vanishes
on W. From this it follows that W = Im(¢), since otherwise it would be possible
to choose a point w in the open complement of Im(¢) in W, and g € K[W] such
that g(w) # O (it suffices to take g to be a non-zero constant function).
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Theorem 2.4.7. Let ¢p: X — W be a rational map between algebraic sets. Then
the following holds:

(1) If ¢ is dominant, ¢ defines a homomorphism of K -algebras ¢*: K(W) —
K(X).

(2) Conversely, every homomorphism of K-algebras 6: K(W) — K(X) is of
the form 6 = ¢* with ¢ a dominant rational map.

B)Ifp: X — Wand ¥: W — Z are dominant rational maps, then the
composition (Y o p)* = ¢* o y*: K(Z) — K(X) is a homomorphism of
K-algebras.

Proof. The first point follows immediately from Remark 2.4.6, and the proofs of
(2) and (3) are slight modifications of the proofs for the corresponding statements
in Theorem 2.3.3. O

Let ¢: X — W be a dominant rational map between algebraic sets. We say
that ¢ is a birational isomorphism (or birational transformation, or also that X
and W are birationally equivalent via ¢) if there exists a dominant rational map
¥ : W — X which is inverse to ¢, that is such that ¢ o ¥ = idy and Y o ¢ = idy
(where defined).

From Theorem 2.4.7 and the definition just given one has:

Proposition 2.4.8. Two algebraic sets X and W are birationally equivalent if and
only if K(X) =~ K(W).

2.4.9 Morphism from an open set of an affine variety. Let X, W be affine
varieties, and U C X an open subset.

A morphism ¢ : U — W is arational map ¢ : X — W such that U C dom(gp),
so that ¢ is regular at every point P € U.

If Uy C X and U, C W are opens, then a morphism ¢: Uy — U, is just a
morphism ¢: U; — W such that ¢(U;) C U,. An isomorphism is a morphism
which has a two-sided inverse morphism.

Note that if X, W are affine varieties, then by Lemma 2.4.4 (2),

{morphisms ¢: X — W} = {polynomial maps ¢: X — W};

the left-hand side of the equality consists of rational objects satisfying regularity
conditions, whereas the right-hand side is defined more directly in terms of poly-
nomials.

With regard to principal open sets, it is opportune to make the following obser-
vation.

* If X C A" is an algebraic set and f € K[X], then Xy is isomorphic to an
affine algebraic set W C A"T1,
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Indeed, let J = I(X) C K|[Y1,...,Y,] and choose F € K][Yi,...,Yy]
for which f = F modulo /(X). Consider the ideal a = (J,Y,1F — 1) C
K[Y1,...,Yy,Yyrq]and let W := V(a) C A"+,

We observe that at every point x of Xs one has f(x) # 0. The two maps

¢.W_)Xf7 (y17"'7yn’yn+1)'_)(yl""’yn)’
K”5 Xf - W7 (yl"”’yn)'_>(ylv""yfb1/f(y19'~~9yn))’

are mutually inverse morphisms; therefore one has an isomorphism W = X,.

For example, if X = A' and f = y;, so that X; = X — {0}, then W C A? s
the hyperbola of equation y;y, = 1 and the isomorphism W = X is obtained by
projection (Figure 2.1).

Y2
w
0 I
' X 1
Figure 2.1

2.4.10 Birational equivalence of an algebraic set with a hypersurface. Let us
here anticipate an important fact to which we shall return in the sequel (cf. §2.6.11
and Remark 3.4.10).

¢ An algebraic set X C A” is birationally equivalent to a hypersurface V :=
V(F) in a suitable affine space.

In this regard we must recall a few results from the theory of fields, the proofs
of which may be found, for example, in [74, 11, §3].

Lemma 2.4.11 (Noether Normalization Lemma). Let X C A" be an algebraic
set, and let K[X] = K|[y1,..., yn] be its coordinate ring. Then there exist m < n
linear forms Ly, ..., Ly in yq,..., yn such that

(1) Ly,..., Ly are algebraically independent over K;
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(2) there exists a linear combination L,,41 of the y; with coefficients in
K[L1,..., Ly] suchthat K(X) = K(L1,..., Lm, Lm+1)

The statement of the preceding lemma may be paraphrased by saying that the
extension K C K(X) can be obtained as composition of a purely transcendental
extension K C K(L,..., L) followed by an extension

K(L], e Lm) C K(Ll, e Lm)(Lm+1),

with L, algebraic over K(L1, ..., L;;). Thus K(X) = K(L1,..., Lm, Lin+1)
with only one relation of algebraic dependence among the generators. The geo-
metric meaning of this fact is the basis for what we are in the process of proving.
Indeed, by Lemma 2.4.11 there is a polynomial f € K(L1,..., Ly)[Ym+1] such
that f(L,+1) = 0. Hence, eliminating the denominators, we have a polynomial
F e K[Yy,...,Yy, Y] suchthat F(Ly,..., Ly, Ly+1) = 0. We consider the
hypersurface V := V(F) C A™*!, One then has amorphism¢: X — V C A"*!
defined by

¢(x) = (L1(x),....Lin(x), Lp+1(x)), x € X.

By the above remarks, the field of fractions of X is K(X) = K(L1,..., Ly, Lin+1)
whence X is birationally equivalent to V' by Proposition 2.4.8.

2.5 Projective algebraic sets

It is useful to recall a few definitions (see also [75]). A graded ring is a ring R
which is a direct sum

R=E@R,

where the R; are subgroups of the abelian group of R such that for each pair of
indices d,d’ > 0 one has

RiR4 C Ritar.
Thus Ry is a subring of R and for each d > 0 the subgroup R, is an Ry-module.

The elements of R; are called the homogeneous elements of degree d. An ideal a
of R is said to be homogeneous if

a =@ @an Ry).

d=0

that is, for each f € a the decomposition f = fo + f1 + --- + f with each
Jfi € R; satisfies the condition that f; e afor j =0,1,...,r.
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Example 2.5.1. The ring of polynomials K[77, ..., T,] is graded in the obvious
way: if one puts

R; = {homogeneous polynomials of degree d },

then Ry R;/ C R;44 and one has the direct sum decomposition

K[Ty.....T,] = @ Ra.

d>0

If a is ahomogeneous ideal of K[T1, ..., T,] the quotient ring K [T1, ..., T,]/a
is also graded in a natural way by the grading induced by that of K[T7, ..., T,].
More precisely, if o: K[T1,...,T,] = K][T1,...,T,]/a is the canonical projec-
tion, one has 0(Rz)0(R;/) C 0(R444+) and the direct sum decomposition

K[Ty.....Ty)/a = @ o(Ra).

d>0

Hereafter we will use P” := P”(K) to denote a projective space of dimension
n over an algebraically closed field K, and we use x1, ..., X,4+1 as homogeneous
coordinates for P”.

Remark 2.5.2. A polynomial f € K[Xi,...,Xn+1] vanishes at a point x =
[x1,...,Xp4+1] of P" if it is zero for all choices of the coordinates of x. Let
r = deg(f). If f = >/_, fi» where the f; are homogeneous polynomials of
degree i fori =0, ..., r, one then has

f(x)=0 ifandonlyif fo(x)= fi(x)=---= f(x)=0.

Indeed, if f(x) = Oonehas f(Axy,...,AXy4+1) = Z;ZO A fi(X1, . Xpg1) =0
for every integer A > 0. Hence the polynomial p(A) = >_/_, A’ fi(x) € K[A] has
infinitely many zeros, which implies that f; (x) = 0 for every index i, as stated.

Bearing this observation in mind, we define (as in the affine case, see Sec-
tion 2.2) the correspondences V' and I as follows. If J is a homogeneous ideal of
K[X1,...,X,+1] and X is a subset of P” we put

V(J) :={x € P"| f(x) = 0 for every homogeneous polynomial f € J}
and
1(X):={f € K[X1,..., Xn+1] | f(x) =0forall x € X}.

It is easy to verify that /(X) is a homogeneous ideal and that 7(X) = /1(X).
Let x1, ..., Xy+1 be projective coordinates on P”. A (projective) algebraic set

of P" is a subset X C P” of the form X = V(J) with J a homogeneous ideal

of R = K[X1,...,X,+1]. The set X is therefore the locus of zeros of a finite
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number of homogeneous polynomials f; € R;, j = 1,...,m, thatis, X = V(a),
where a = (f1,..., fm). An algebraic subset is said to be irreducible if there is no
decomposition X = X; U X, with X; and X, algebraic sets strictly contained in
X. As in the affine case, X is irreducible if and only if /(X) is a prime ideal. We
define a projective variety to be a pair (X, K[X]) where X C P” is an algebraic set
and K[X] := K[X1,..., Xn+1]/1(X) is its coordinate ring.

We note explicitly that, as in the affine case (cf. Section 2.2), the homogeneous
ideal J and its radical +/J define the same algebraic set X = V(J) = V(/J),
and the same projective variety (X, K[X]) (cf. also Theorem 2.5.4). Hereafter it
will sometimes be necessary to distinguish varieties associated to different ideals
having the same radical (cf. Section 3.4).

Example 2.5.3. An algebraic set X given by a single homogeneous polynomial
(form) f = 0 (that is, associated to the principal homogeneous ideal (f) ) is said
to be a hypersurface of P". If n = 2 it is a projective plane curve, if n = 3
it is a projective surface, etc. Such a hypersurface X is irreducible if and only
if f is a power of an irreducible polynomial (this is a consequence of the Hilbert
Nullstellensatz, Theorem 2.2.2). If f is a form of degree 1 (respectively of degree 2)
we shall say that X is a hyperplane (respectively a quadric or hyperquadric) of P".

It is simple to verify that the correspondences V', I satisfy the same formal
properties as in the affine case (cf. Section 2.2). In particular, J C I(V(J)) for
every homogeneous ideal J and V(/(X)) = X if X is a projective algebraic set.

There is, however, one fact to note. The improperideal (1) = K[Xq,..., Xn+1]
defines the empty setin A” 1 and therefore the empty setin P”. On the other hand,
the ideal (X1, ..., X,+1) defines the origin in A”*! and once again the empty set
in P”, that is, in P” one has @ = V ((X1, ..., Xn+1)). The ideal (X1, ..., X,+1)
is called the irrelevant ideal, and constitutes a “standard exception” in many state-
ments of the projective theory.

The homogeneous version of the Hilbert Nullstellensatz becomes:

Theorem 2.5.4. Let K be an algebraically closed field. Then for each homogeneous
ideal J C K[X1,..., Xn+1] one has

(1) V(J) =@ ifand only if (X1, ..., Xnt1) C VT ;
Q) if V(J) # 0, then I(V(J)) = /7.

Proof. Let w: A"T1\ {(0,...,0)} — P” be the canonical projection that defines
P*. If J C K[X1,...,Xn+1] is a homogeneous ideal we write V4(J) C A"*!
to indicate the affine algebraic set defined by J. Then, since J is homogeneous,
V4(J) has the property that

(@1,....ant1) € V(J) <= (Aay,..., Aap+1) € VE(J), forall A € K*,
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and P* D V(J) = (V4(J)—{(0,...,0)})/ ~, where x ~ yiff x = Ay, A € K*,
forx,y € V4(J)—{(0,...,0)}. Hence

V) =0 < ViJ)C{0,...,00} < (X1.,...,Xnt1) C~J,

where the last implication follows from the affine version of the Nullstellensatz
(Theorem 2.2.2). Furthermore, if V(J) # @ one has

FellV()) < fellVi()) < felJ. O

The affine algebraic set V4(J) C A"*! is called the affine cone over the pro-
jective algebraic set X = V(J), and it is denoted by C(X). If

o AT\ {(0,...,0)} > P"

is the map defined by (a1, ...,an+1) — [ai1,...,an+1] it follows that C(X) =
7 H(X)U{(,...,0)}.

Corollary 2.5.5. The correspondences V and I determine mutually inverse bijec-
tions

(1) between the set of homogeneous radical ideals J C K[X1, ..., Xn+1] with
J # K[X1,....,Xnt+1], J # (X1,..., Xn+1), and the collection of projec-
tive algebraic subsets X C P";

(2) between the set of homogeneous prime ideals J C K[X1,..., Xn+1] such
that J # K[X1,..., Xn+1], J # (X1,..., Xn+1), and the set of irreducible
projective algebraic subsets X C P".

2.5.6 The Zariski topology on a projective variety. In strict analogy with the
affine case, the algebraic subsets X C [P” are the closed subsets of a topology on
[P": called the Zariski topology on P". A base of open subsets is constituted by the
principal open subsets

PF :=P" —V(f)={x € P"| f(x) # 0, f ahomogeneous polynomial}.

The space P" can be covered by n + 1 particular principal open subsets, called
standard affine charts,

Up =Py, ={[x1,....xn41] €P" [ x; £0}, i=1,....n+1

Foreachi = 1,...,n + 1 one associates to the point [x1, X2, ..., X,+1] € U; the

point
X1 X2 Xi—1 Xi+1 Xn+1
— e, , e A"
Xi X Xi Xi Xi
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to obtain a bijection between U; and the affine space A”. We say that the %, j#i,
are the non-homogeneous (affine) coordinates in U;. The Zariski topolog}ll on each
chart U; is that induced by the Zariski topology on [P”.

Let X C P" be an algebraic set, and let 7(X) be the homogeneous ideal as-
sociated to it. We suppose for simplicity that X is not contained in any of the
hyperplanes with equation X; = 0,i = 1,...,n + 1. We know that P” is covered
by n + 1 affine charts U; = IP”I_ = P" — {X; = 0} with affine coordinates

N —_—, Yy = N 4 =
xi’ > i1 X > i1 X ’ > Jn+1 X;

RO} O _ Y-l @) _ it L G PPN

We set

Xpn=XnNU;.
Then X(;) C A" is an affine algebraic set since, for example, fori = n 4 1 the point
P = [y§n+1), eV (n+1) , 1] € X(n41) if and only 1ff(y(n+1), . y,g"+l), 1)=0
for every polynomial f € I(X), and thus X(,41) is the locus of the zeros of
polynomials in the affine coordinates (y"*?, ..., ™) More precisely, the
ideal of X, 1) in Upy1 = A" is

](X(n+1)) ={f(X1.....Xn. 1) | f € I(X)}

and

I(X)a = {X5 f(F- )| f € I(X(us1)) with deg f < d},

Xn+1 ”’X+1

where 1(X)4 is the degree d part of the homogeneous ideal 7(X).
We say that the X(;y are the standard affine charts for X. From what we have
just seen it follows that the correspondence

X=Xpn=XNU
defines a bijection

{algebraic subsets X C P" | X ¢ {X; = 0}}

)

{algebraic subsets Xy C U; = A"} .

2.5.7 Generic objects. Now that we have introduced the notion of algebraic set
and the Zariski topology we can give the notion of a generic object. We sometimes
use the world general with the same meaning. When a family of objects { X, }pep
is parameterized by the points of an irreducible algebraic set P (that is, the objects
of the family are in one-to-one correspondence with the points of P), the statement
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“the generic object X, has the property P’ means that “the subset of points p € P
for which the corresponding object X, has the property P is a non-empty open
subset in the Zariski topology”.

For example, we will say that “x is a generic point” of an algebraic set X to
mean that the set of points of X from which we may choose the point x is a given
open subset that depends on the context, that is, one must exclude that x be in the
zero sets of certain polynomials not belonging to /(X).

We shall often consider “generic” linear spaces S, in P”; by this we will mean
that the S, vary in an open set of the Grassmann variety G(r, n) which parameter-
izes the r-dimensional linear subspaces of P” (and for this we refer the reader to
Chapter 12).

Again, given, for example, a point po € P2, we say that “a generic line £ C P?
does not contain the point py” to express the fact that the set of lines containing pg
is contained in a proper subvariety of the dual plane P2* (which consists of all the
lines in P?; see, for instance, [52, Vol. 1, Chapter V, §5]). Here is another example:
we say that “the generic conic is non-degenerate” (namely the associated matrix has
rank 3) to express the fact that the subset of conics in P? can be parameterized by
the points of P>, and that the subset consisting of the degenerate conics is contained
in a proper subvariety of P>.

Exercise 2.5.8. Prove that, given a linear subspace S, C P” of dimensionr < n—2,
the generic line of P” does not intersect S,.

2.6 Rational maps and birational equivalence

The contents of this paragraph are essentially taken from [74, III, §5]. Let X
be an irreducible algebraic set and let /(X) C K[Xi,...,Xn+1] be the prime
ideal associated to X. Unlike what happens in the affine case, a polynomial F €
K[X1,..., Xn+1] can fail to define a polynomial function P” — K. In order for
F to define a polynomial function on P” one must have that, for every A € K and
for every x = [x1,...,X,+1] € P",

F(xl,...,an) = F()txl,...,)tan)

and this happens only if F is homogeneous of degree zero, that is, constant. Simi-
larly, if we set f = F modulo /(X) we see that f defines a polynomial function
X — K only if F is homogeneous of degree zero.

A rational function is a function X — K defined by

g(x)
X)=—=, x€JX,
=50
where g,h € K[X1,..., Xn+1] are homogeneous polynomials of the same de-

gree d. If h(x) # 0, the quotient g(x)/h(x) is well defined, since for 0 # A € K
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one has

gAx1, ..., AXn41) _ Ag(xr,. .., Xn+1) _ 8O Xng)
h(Axl,...,Aan) )th(xl,...,x,H_l) h(xl,...,xn“)'

Obviously g/h and g’/ h’ define the same rational function on X if and only if
hg — g’h € I(X). From this it follows that the set of all rational functions is a
field, called the field of fractions of X,

K(X) = {%lg’h € K[Xlw-an-i-l]’ h ¢ I(X)}/'\’y

T3]
~

where g, h are homogeneous of the same degree an is the equivalence relation
defined by

E 8 We—ghel(X)

h W

The notion of regular rational function is given just as in the affine case. If
f € K(X) is arational function, we say that f is regular in a point x € X if there
exists an expression f = g/h with g, h homogeneous polynomials of the same
degree such that 4(x) # 0. The domain of f is

dom(f):={x € X | f isregularin x}.

We set
Ox,x :={f € K(X) with f regular at x}.

Then Oy  is a subring of the field of fractions K(X), called the local ring of X
at x.

Proposition 2.6.1. Let X C P” be an algebraic set not contained in the hyperplane
of equation X; = 0 and let X;y = X N Py be the corresponding affine chart.
One then has an isomorphism of the fields of fractions K(X) = K(X)), i =
I,...,n+ 1.

Proof. Suppose for example that i = n + 1. If g,h € K[Xy,..., Xy+1] are
homogeneous polynomials of the same degree d and h ¢ I(X), then g/h € K(X)
and the restriction to X, 1) is the function

gX1/Xns1.. o, X/ Xnt1, 1)
h(X1/Xn+1,+-.s Xn/Xnt1,1)

Thus one obtains a map K(X) — K(X,41)), and it is easy to see that it is an iso-

morph1smof K-algebras. To construct the inverse map let y; := y("+1) eV =

€ K(X(n+1))~

Vn 1) be the affine coordinates in X, (n+1) and let

p(y17---7yn)

€ K(X(n+1))
g1, yn) (+ D
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be a rational function on X(,41). Put p = P modulo /(X), g = Q modulo /(X)
and introduce the homogeneous coordinates given by (2.4). Then the quotient P/ Q
may be rewritten as

PO/ X1 X/ Xn) _ G(Xi.o Xog)
OX1/Xns1... .. Xn/Xny1)  HX1.....Xn41)

where G, H are homogeneous polynomials of the same degree in K[ X1, ..., Xp+1]-
Passing to the quotient modulo /(X ), the fraction G/H gives rise to a rational
function g/ h € K(X). O

Rational maps between projective (or affine) varieties are defined by way of
rational functions. If X C P” is an irreducible algebraic set, then a rational map
(or rational transformation) ¢ : X — A™ is defined by setting

p(x) = (fi(x)..... fm(x)), x€X,

where fi1,..., fm € K(X). This map ¢ is well defined on the intersection

ﬂ;'n=1 dom( f).

A rational map (or rational transformation) ¢ : X — P™ is defined by setting

o(x) = [N(x)..... fmr1 ()], x €X,

where f1,..., fm+1 € K(X) and it is well defined on the set, which is an open
dense subset of X (cf. Lemma 2.4.4),

m+1
() dom(fi) —f{x € X | fi(x) =+ = fmp1(x) = O}.
i=1

One notes that if g € K(X) is a non-zero element, then g f1, ..., g fm+1 define

the same rational map. Then, assuming that the image of X is not contained in the
hyperplane of P defined by X,,+1 = 0, one can suppose that one has f;,+1 = 1.
From this it follows that there exists a bijection between the two sets (for the natural
immersion A" C P™ see, for instance, the discussion in [13, Vol. I, Chapter 5])

{rational maps ¢: X — A" cC P}

and
{rational maps ¢: X — P such that 9(X) ¢ {X;u4+1 = 0}},

inasmuch as each of these maps is given by m elements fi,..., fn € K(X).
The preceding remarks are summarized in the following definition.

Definition 2.6.2. A rational map ¢: X — P™ is regular at a point x € X if there
exists an expression ¢ = (f1,..., fm+1), fi € K(X),i = 1,...,m+ 1, such that
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a) the rational functions fi, ..., fm+1 are regular at x;
b) fi(x) # O for at least one index i.

The set on which ¢ is regular is the domain of ¢; it is an open subset of X and
is denoted by dom(¢).

If W C P™ is an algebraic set and ¢(dom(p)) C W, ¢: X — W is arational
map between the two algebraic sets X and W. As in the affine case, we shall say
thatp: X — W is dominant if p(dom(g)) is dense in W, that is, if W is the closure

of ¢(dom(g)).

Note that if ¢ = (f1,..., fm+1): X — P™ is a rational map then there is an
open subset U C X such that gy: U — AZ?) = P)'(”i C P™ is a morphism: it
suffices to take U C (); dom(fj/f;), where f; # 0. Then ¢y is the morphism
givenby {f;/fi}.j=1.....m+1,j#i.

Definition 2.6.3. If U € X is an open subset of a projective variety X, then a
morphism ¢: U — W is a rational map ¢: X — W such that U C dom(p).
Thus, a morphism ¢ : U — W is a rational map which is regular on all of U.

Example 2.6.4 (Projection of a quadric from one of its points). The map 7 : P? —
P2 defined by [x1, X2, X3,x4] > [X2,Xx3,Xx4] is a rational map, and indeed is a
morphism away from the point Py = [1,0,0,0]. Let Q C P3 be a quadric contain-
ing the point Py. Each point P of P? corresponds to the line £ of P3 that passes
through P and Py, and £ generally meets Q at Py and at a second point ¢(P).
Putting P > ¢(P) we obtain a rational map ¢: P? — Q.

For example, if Q has equation X1 X4 = X5 X3, then the restriction 7jp: Q —
P2 has as its inverse the rational map ¢: P> — Q given by [x2,x3,x4]
[x2x3 ,X2,X3, X4].

X
As an exercise, determine dom(sr) and dom(¢).

As in the affine case (cf. Section 2.4), we say that a dominant rational map
¢: X — W between two projective varieties is a birational isomorphism or bi-
rational transformation (or also, that X and W are birationally equivalent or
birationally isomorphic via ¢) if there exists an inverse dominant rational map
Y. W — X, thatis, such that ¢ o ¥ = idw, ¥ o ¢ = idy (where defined).

Proposition 2.6.5. Let p: X — W be a rational map between projective (or affine)
varieties. The following three conditions are equivalent.

(1) @ is a birational equivalence.
(2) @ is dominant and ¢*: K(W) — K(X) is an isomorphism.

(3) There exist open sets Xo C X, Wy C W such that ¢ restricted to Xy is an
isomorphism ¢ : Xo — W.
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Proof. The K-algebra homomorphism ¢* is defined exactly as in the affine case
(cf. Theorem 2.4.7) and the equivalence (1) < (2) is obtained as in Theorem 2.4.7
and Proposition 2.4.8.

The implication (3) = (1) follows from the fact that an isomorphism ¢ : X¢ —
W, and its inverse ¢~ !: Wy — X, give rise to a birational map X — W.

The essential implication is (1) = (3). We give a proof as in [74, p.87]. By
hypothesis, there exist mutually inverserationalmaps¢: X — Wandy: W — X.
We set

X' :=dom(p) CX and o:=g¢x:X —> W,

and similarly
W' :=dom(y) CW and B:=vyw: W - X.

In the diagram

Fr) X W
m/
w

all the arrows are morphisms and the equality of the morphisms idy |g—1(x) = aof
follows from the equality of the rational maps idy = ¢ o . Thus

a(B(x)) =x forallx e B71(X").

We set Xo := a!B71(X’) and Wy := B la~'(W’). Then by construction
¢: Xo — B~Y(X’) is a morphism. On the other hand, B~1(X’) C W, since
x € B71(X’) implies that @(B(x)) = x andso x € B~ la~ L (W’) = W,. It follows
that ¢ : X9 — W, is a morphism. In the same way one proves that ¥ : Wy — X
is a morphism. a

The preceding proposition has an important consequence.

Corollary 2.6.6. Given a projective (or affine) variety X, the following two condi-
tions are equivalent.

(1) The field of fractions K(X) is a purely transcendental extension of K, that
is, K(X) = K(t1,...,t3) for some integer d.

(2) There is a dense open subset Xo C X which is isomorphic to a dense open
subset Uy C A9,

A variety that satisfies the conditions of Corollary 2.6.6 is said to be rational.
In particular condition (2) is the precise statement of the fact that a rational variety
X can be parameterized by d independent variables (cf. Section 6.6).

We now give some further properties of rational transformations between pro-
jective varieties.
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2.6.7 (Local representation of a rational transformation). Let X be a subvariety
of P”. In the set of all rational transformations ¢: P” — P we introduce an
equivalence relation with respect to X in the following way.

Let g1, ¢2: P" — P™ be two rational transformations. We say that ¢; ~ @5 if
for each point x € X at which ¢; and ¢, are both defined one has ¢ (x) = @2(x).
Note that the set dom(¢;) N dom(¢,) N X of points of X in which ¢; and ¢, are
both defined is an open subset of X (cf. Definition 2.6.2).

Let [¢] be an equivalence class and ¢ € [¢] one of its representatives (so that
¢ = ¢ onU := dom(¢) Ndom(¢) N X). The closure X’ = ¢ (U) does not depend
on ¢ but only on the class [¢]; we shall say that [¢] is a rational transformation
X — X’ and that X’ is a rational transform of the projective variety X .

The rational transformation [¢] is defined outside of its exceptional set E :=
MNeere)(Eg N X), where Eg := P" \ dom(¢). For every point x € X the image
[¢](x) is the image ¢ (x) under any rational transformation ¢ € [¢] such that
x € dom(¢).

From the fact that the ring of polynomials K[X1, X5, ..., X;+1] is a Noetherian
ring one easily deduces that a finite number of representatives of [¢] suffice to
describe [¢]: that is, there exist a finite number % of representatives ¢1, ¢z, ..., ¢
of [¢] such that for every x ¢ E one has [¢](x) = ¢;(x) forsome j =1,...,h.

Example 2.6.8. Consider two surjective rational transformations ¢y, ¢ : P2 —
P!, defined by

d1(x) = [x0,x2],  P2(x) = [x2, x1],

where x = [xg, X1, x2] is a point of P2. One sees immediately that they are
equivalent with respect to the conic y with equation xox; — x% = 0. Hence we
have

Eg, = P>\ dom(¢;) = A; =[0,1,0], E,, = P?\dom(¢) = 4o = [1,0,0],
and thus E = Eg, N Eg, Ny = @. One then has

p1(y \ A1) =P\ [0,1],  ¢a(y \ 42) = P\ [1,0];

and therefore the rational transform y’ of y is y’ = P!. Thus ¢; and ¢, are two
representatives of an everywhere defined rational transformation [¢]: y — P!.

2.6.9 (The fibers of a rational transformation). If ¢: X — W is a morphism
between projective varieties, the fiber of ¢ at (or over) a point w € W is the inverse
image ¢! (w) of w; it is a closed subset of X since ¢ is obviously a continuous
map.

Ifp: X — W isarational transformation between projective varieties, X C P”,
W c P™, let U = dom(g) be the open set of X where ¢ is defined, and let
ou: U — ¢(U) be the restriction morphism of ¢ to U. If w € ¢(U) we call the
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projective closure ¢~ (w) of <pl_]1 (w) in X the fiber of ¢ over w, that is, the closure
of <p[_]1 (w) in the Zariski topology on X . More precisely, ¢ ~! (w) is the union of the
inverse image (pljl (w) of w under ¢y and of the exceptional set £, = X \ dom(¢)
of ¢, cf. §2.1.1.

If the fiber ¢~ (w) over a generic point w (which means variable in any open
set) of gy (U) contains only one point not belonging to E,, the transformation is
birational. In this case if

Y =¢;(X1..... Xp41)., j=1...m+1, 2.5)

are the equations of a rational transformation P* — [P™ that determine ¢ (by
restriction to X) and if (f1,..., f¢) is a system of generators of the homogeneous
ideal of X, the system of equations

(2.6)

}Ij = (pj(Xla"'aXn+1)1
fa(Xla---’Xn+1) = 07

where j = 1,...,m+1landa = 1,...,¢, permits one to recover the X1, ..., X, +1
as algebraic and uniform functions (that is, “single valued”) and hence as rational
functions of the Y1, ..., Y;,4+1. Indeed, since the X7, ..., X, 41 are homogeneous
coordinates, from (2.6) one can deduce (see, for instance, Exercise 13.1.1) formulas
like the following:

Xi =6;(Y1,....Y, ,

i l( 1 m+1) Q2.7)
gﬂ(Yl, ey Ym+1) = 0,

where 6;,i = 1,...,n+ 1, are homogeneous polynomials all of the same degree in

thering K[Y1, ..., Y;u41] and the polynomials gg, B = 1,...,s, comprise a system

of generators of the ideal of W C P™. Thus one has, together withp: X — W, also
a birational transformation 6 : W — X; moreover ¢ and 6 are mutually inverse.

2.6.10 (Finite morphisms). Let ¢: X — W be a dominant morphism between
affine varieties. By what we have seen in Section 2.4, it defines an immersion
¢*: K[W] — K[X] and thus K[W] can be regarded as a subring of K[X]. One
says that ¢ is a finite morphism if K[X] is an integral extension of K[W].

Now let ¢ : X — W be a finite morphism (and so, by definition, also dominant)
between affine varieties.

Since K[W] can be viewed as a subring of K[X] (via ¢*), we will use the
same symbol to denote a function of K[W] and its transform under ¢*, that is the
“same” function regarded as an element of K[X]. Anideal a of K[W], generated by
g1...., 4, givesrise to an ideal ¢* (a) of K[X], generated by ¢*(g1),...,¢*(g:),
thatis, by g1, ..., g in K[X]. Thus ¢*(a) = aK[X]is the extended ideal of a. In
particular if nt,, is the maximal ideal associated to the point w € W, m,, K[X] is
the ideal of K[X] whose zeros are the points of the fiber ¢! (w).
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Let X C A", W C A™. Then there exist m polynomial functions fi,..., fi
such that ¢(x1,...,x,) = (W1,...,Wm) withw; = f;(x1,...,x,). The coordi-
nates x1, ..., X, regarded as elements of K[X] = K|[x1,...,x,] are integral over
K[W], and so for eachi = 1,...,n one has an equation of the form

X P )T bg)(w) =0,

where w = (wy, ..., wy,). This equation (which is a consequence of the equations
w; = fj(x1,...,Xy) that define the morphism) is satisfied by the i coordinate
of the points of the fiber ¢! (w). Hence these points are finite in number for each
wew.

* A finite morphism ¢: X — Y is surjective.

In fact, if there were w € W with f~1(w) = @, by what we have just seen one
would have the contradiction m,, = K[X].

* (Finiteness is a local property) A morphism ¢: X — W of projective (or
affine) varieties is finite if there exists an affine open cover {Uy} of W such
that ¢~ 1(Uy) is affine and the restriction ¢y : ¢ 1 (Uy) — Uy is a finite
morphism for each index «.

2.6.11 (Birational equivalence of a projective variety with a hypersurface). Among
the transformations between two projective spaces one has in particular the projec-
tions.

Projecting the points of P” from a subspace Sk of P” onto a subspace Sy’ skew
to it and of dual dimension (that is, k + k' = n — 1) one obtains a rational mapping
¢: P* — Sy, defined by setting ¢(x) = J(x,S;) N S for all x & S;. The
exceptional set E, of the mapping ¢ coincides with Sk (cf. Exercise 2.7.37).

Let V; be a variety of pure dimension d in P”, with d < n (cf. Section 3.3).
Let x be a point not belonging to V; and let ¢: P* — S,_; be the projection of
[P” from x onto a hyperplane S,_1. The restriction ¢y, of ¢ to V; is the projection
of V; from x onto S,_;. Since ¢ is a rational transformation having x as its
only exceptional point (this means that £, = {x}) and x ¢ V, the restriction
v, Vg — Sp—1 is a morphism and has all its fibers finite (since otherwise Vy
would contain the line joining x to the image ¢(P) of a point P € V). Moreover,
the image V' of V is a variety of pure dimension d.

If d <n— 1, we repeat the procedure: that is, we project V; = ¢(V;) from a
point of S,_; not belonging to Vé onto an S,_» C S,—1, and so on. After a finite
number of projections we arrive at a surjective rational mapping 7 : Vy — P4 with
all fibers finite (cf. §2.6.10).

If the process of successive projections described above is terminated at the next
to last step, one obtains a rational map o : V; — X, which is surjective and has
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all fibers finite, where X, is a hypersurface in P4+!. With a suitable choice for
the successive centers of projection, one proves that it is always possible to arrange
matters so that o is a birational isomorphism (cf. §3.4.5). Therefore, every pure
d-dimensional projective variety is the birational transform of a hypersurface in
P9+1 (afact discussed in §2.4.10 for the affine case and to which we will return at
greater length in Remark 3.4.10) and can therefore be represented in the following
form:

x;i = @i(Ug,..., U , 1=0,...,n,
{z @i (uo d+1) 2.8)

f(u()’”"ud-i-l) =0,

where @o, ¢1,...,90, € K[uo,...,uz+1] are homogeneous polynomials all of the
same degree, and f = 0 is the equation of the hypersurface Xy C pd+1,

If X is a hyperplane of P4*+! (and then one can suppose that it has equation
ug+1 = 0) equation (2.8) is replaced by a representation of the type

x; = @i(Ug,...,ug), i=0,1,...,n, 2.9

and Vj is a rational variety (i.e., Vj is the birational transform of a linear space).

One notes however that, given formulas like those of (2.9), they do not in general
give a rational variety but only a unirational variety, that is, the rational transform
of a linear space.

2.7 Complements and exercises

As usual, unless otherwise specified, K denotes an algebraically closed field.

2.7.1. A descending chain X; 2 X, D --- of algebraic sets becomes stationary.

It suffices to note that the associated chain of ideals 7(X1) € I(X3) C --- is stationary
and that /(X) = I(X’) implies X = X’.

2.7.2. Every algebraic set X is a finite union of irreducible algebraic sets.

Indeed, if for some X this were not true, that X would not be irreducible, and if X =
X1 U X» the reducibility property would also hold for at least one of the X;, i = 1,2.
Suppose X2 = X} U X3; then in the same way X3 = X4 U X4, and so on. Thus one
arrives at a non-stationary sequence of strict inclusions X D X2 D X3 D X4 D ---, which
contradicts Exercise 2.7.1.

2.7.3. The decomposition of an algebraic set X = X; U X5 U -+ U X;, with each
X, an irreducible algebraic set, is reduced if none of the X; is superfluous. Every
algebraic set X uniquely determines its reduced decomposition.

LetX = X;UX2U---UX, = X, UX,U---UX/,. Since X; :== X NX; =
(Ui X)) N X; = U;(X] N X;) and since X is irreducible, there is an index i such that
Xj C X]. Similarly for some index / we have X/ C Xj. Hence X; C X/ C X;,. From
this it follows that X; (= Xj) = X/, and so on.
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2.7.4 (Primary decomposition). The decomposition of an affine algebraic set X =
V(a) as aunion of irreducible algebraic sets corresponds to the primary decomposi-
tion of the ideal a, that is, to the representation of a as an intersectiona = gy N---N
g, of primary ideals g ;. More precisely, one has I(X) = /a = p1 Np2N---Npp
where p; = ,/q; isaprimeidealandso X = X;UX,U---UXpy, with X; = V(p;),
j=1,...,h

2.75. If ¢: X — Y is a morphism of algebraic sets and X’ is a closed subset of
X the restriction ¢|x/: X’ — Y is a morphism.

2.7.6. Leta(t), B(t) € K[t]. Then p: Al — A2 defined by ¢(t) = (a(2), B(t)) is
a morphism. Verify that Im(g) is a closed subset of AZ.

2.7.7 (Frobenius morphism). Let K = Z, = Z/(p), and let p be a prime
number. The Frobenius morphism ¢: A" — A" is the morphism defined by
o(X1,...,xp) = (xf, ...,xP). If X C A" is a closed subset, the Frobenius
morphism maps X into X.

Foreach f € K[T1,...,Ty],wehave (f(x1,...,x,))? = f(x{,...,x7). The points
of X that have coordinates in K are precisely those points of X which are fixed under the
action of ¢. In fact, every A € Z, satisfies the equation 7” — T = 0.

2.78. Let ¢: C — A, where C is the hyperbola with equation xy = 1 in the
affine plane and where ¢ is defined by ¢(x, y) = x. Is the morphism ¢ surjective?
Is it dominant?

2.7.9. Let Y C X be closed subsets of A”. Then every regular function on Y is
the restriction of a regular function on X . Hence, the inclusioni: ¥ < X induces
a surjective morphism i *: K[X] — K[Y].

2.7.10. Letp: X — Y be a morphism between affine algebraic sets. If the induced
morphism ¢*: K[Y] — K[X]is surjective, then ¢ is injective and Im(¢p) is a closed
subset of Y.

Suppose that ¢(x) = ¢(x’), with x and x’ € X. Then, since ¢™ is surjective, every
function f € K[X] necessarily assumes the same value at x and x’. This implies that
x =x'.

The kernel of ¢* is an ideal of K[Y], and if ¢* is surjective it follows that Im(p) =
V(ker(¢)) by way of the correspondence V.

2.7.11. In A? we consider the curve with equation y = P(x) where P(x) € K|[x]
is a polynomial. The projection (x, y) + (x, 0) on the x-axis gives an isomorphism
between this curve and A,

2.7.12. The diagonal of an affine algebraic set X, Ay := {(x,x) | x € X}, is
closedin X x X.

The diagonal A g» of A” is the closed linear subvariety V(71 — Ty, 4-1, ..., Tn —Tan) C

A" x A" and hence the diagonal Ay, of a closed subset X of A”, is the closed subset
(X xX)NAgnof X x X.
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2.7.13. In the affine plane A% we consider two curves C; and C, with equa-
tions fi = 0, fo = 0. The points they have in common are the solutions
of the system fl (Y], Y2) = 0, fz(Tl, Tz) =0,Y =T, Y, = T,. But
f1(Y1,Y2) = fo(T1, Tz) = 0 are the equations of C; x C; in the product space
A* = A2 x A% and Y| = Ty, Y, = T, are the equations of the diagonal A in
A*. Thus the problem of finding the intersection of the two curves C;, C can be
translated into the problem of finding the intersection of the closed subset C; x C;
with the linear subspace A.

More generally, let V;, V, be algebraic subsets of A" and consider the space
A2" regarded as a product A” x A”. If Yy, ..., Y,; Ty, ..., T, are the coordinates in
A2" then the generators of the ideal of the diagonal A are Y; — T;,i,j=1,...,n.
One then sees that the map ¢: V7 NV, — (Vy x V3) N A defined by ¢(v) = (v, v)
is an isomorphism.

2.7.14. Consider in the affine plane the curve C with equation x? = y? + y3 and
the line £ with equation y = 1. If P is a point of £ and O is the coordinate origin,
the line rop intersects C in three points, two (at least) of which always coincide
with O. Discarding the two intersections that fall at O there remains a third, say
¢@(P) (which could possibly itself also coincide with the origin O). In this way one
obtains a morphism ¢ : £ — C. Prove that the associated morphism ¢* is injective.

2.7.15. Let X and X, be algebraic sets and consider the projections p; : X1 x X, —
Xi,i = 1,2, defined by p1(x,y) = x, pa(x,y) = y. They are surjective but not
injective. Verify that p}, pJ are injective but not surjective morphisms.

2.7.16. An isomorphism ¢: X — X, with X an affine algebraic set, is said to be
an automorphism of X. The automorphisms of Al are precisely the maps of the
form ¢, 5: X — ax + b, a # 0. They form a group.

2.7.17. The map ¢(x, y,z) := (x,y +a(x),z + B(x, y)), with &, B polynomials,
is an automorphism of A3 (note that its inverse is (x', y’, z') = (x', y' —a(x'), 2’ —
B(x’,y")). Similarly, the map ¢(x,y) := (x,y + «a(x)) is an automorphism of
A2. Verify that these automorphisms form a group.

2.7.18. Letay,...,a, be polynomials in K[xy,...,x,]. If

O(X1, ... xn) = (01 (X1, ..., Xn), .o (X1, ..., Xp))
is an automorphism of A” the determinant of the Jacobian matrix (g%) belongs to
J

doy.

K*. The map that associates ¢ to det (8 x; ) € K* is ahomomorphism of the group

of automorphisms of A” into the multiplicative group K*. (Note however that the
converse does not hold in general. More precisely, if «y,...,0, € K[X1,..., X,]
have Jacobian matrix with determinant in K*, then, on setting x := (xy,...,Xp),
the map x +— (1(x),...,a,(x)) does not necessarily define an automorphism
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of A" when the characteristic of the base field is positive; in characteristic zero, it
defines an automorphism of A” inthe casen = 1, and forn > 2 the question remains
an open problem (the “Jacobian Conjecture”): for this see [109, Introduction].)

2.7.19. Study the morphism ¢: A%x,y) — A%x,’y,) defined as follows: ¢(x,y) =
(x,xy). Is ¢ an isomorphism? Is Im(¢) an open set? Is Im(¢p) either closed or
dense? (Note that Im(¢) = A2\ {x’ =0} U (0,0).)

Study the restriction of ¢ to the parabola with equation y = x? or to the parabola
with equation y2 = x. Are these restrictions isomorphisms (between the parabola

and its image)?

2.7.20. Consider two planes 7 and 7’ and let x1, x, be coordinates in 7, and yq,
y2 coordinates in 7’. Let moreover C; C 7 and C, C 7’ be two curves with
equations x, — x; — 1 = 0 and (y2 — y; — 1)®> — 4y; = O respectively. Verify that
(x1,x2) = (y1 = xf, Yo = x%) defines an isomorphism ¢: C; — C,. (Note that
the inverse transformation ¢~ 1 is (y1, y2) = ((y2 —y1 —1)/2, (32— y1 +1)/2).)

2.7.21. Let X be an irreducible affine algebraic set and let x be a point of X.
We denote the local ring of x by K[X],, namely, the localization of K[X] in its
maximal ideal m, formed by the functions in K[X] which do not assume the value
0 at x. The functions of K(X) that are regular at the point x are of the form % with
P, Q0 € K[X], Q(x) # 0; therefore they are the elements of the local ring K[X].
It follows that K[X] = (),ex K[X]x (cf. Section 2.6).

2.7.22. An affine algebraic set X is said to be unirational if there exists a dominant
rational transformation A" — X of some affine space A" into X . If X is unirational
there exists an integer d such that K(X) C K(t1,...,t4) (cf. Corollary 2.6.6).

2.7.23. An irreducible quadric X of A” is rational; that is, a hypersurface with
equation F(Ty,...,T,) = 0 with F(Ty,...,T,) a polynomial of degree two is
a rational variety. A birational isomorphism between the quadric X in A” and
A"~ is obtained by way of the projection of X from any one of its non-singular
points P, which means that P must be a point in which at least one of the first
order partial derivatives of F' does not vanish, cf. Section 3.1. If X passes through
the origin (0,...,0) and F = A{(Ty,...,T,) — Ax(T1,...,T,) with the A; ho-

mogeneous polynomials of degree i, i = 1,2 (and A; # 0), a birational iso-
morphism ¢: AE’Y_ll... Yoo X is given, for example, by (y1,...,Vn—1)

(310, ..., yn_10,0), where § = % If Uy is the open subset of A1

complementary to the quadric of equation A, (Y1, ..., Y,—1,1) = 0 and U, is the
open set formed by the points of X for which 7,, # 0, then the restriction of
¢: Up — U, is bijective.

2.7.24. In the affine space A3 over a field K (of characteristic 0 < p # 3) consider
the surface F defined by the equation x> + y3 + z3 = 1. It is a rational surface.
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Indeed, if r, s are two skew lines lying in & (for example those with equations: x +y =
z—1=0andx +ey=z+¢=0, S =1 # 1), a line transversal to r and s (that is,
intersecting both) meets J in a point P (besides the two points in which it intersects r and s)
and meets a fixed plane 7 in a point P’. Then P + P’ defines a birational isomorphism
0:F—>m.

2.7.25. In A? consider the curve C with equation x> + y? = I and f = ;%7 €
K(C). For what points of C is the rational function f defined?

2.7.26. In what points of the plane curve C of equation x3 4+ y3 — x = 0 is the
rational function ﬁ € K(C) defined?

2.7.27. In what points of the plane curve C of equation y? = x2 + x3 is the
function % regular? Prove that )y—‘ g K[C].
2)2

2.7.28. Prove that the plane curve C with equation (x2 4 y2)? = xy is rational.

Consider the circle y; of equation x> + (y — ¢)2 = ¢ passing through the origin O
and tangent there to the x-axis. Away from O, the intersection C N y; consists of a single

point P;. Then ¢t — P; defines a birational isomorphism of Al with C.

2.7.29. Let A be a K-algebra and let X be an irreducible closed subset of some
affine space A” such that A =~ K[X]. Then A4 does not have O-divisors and is finitely
generated over K. Conversely, a K-algebra A with no 0-divisors and finitely gen-
erated over K is the ring of coordinates of some irreducible closed affine algebraic
set.

Let A = K|t1,...,ts]. The K-homomorphism o: K[T1,...,Ty] — Klt1,...,tx]
defined by 7; + t; is surjective and hence K|t1,...,t;] = K[T1,...,Ty]/ker(c). The
kernel ker(o) is a prime ideal of K|[T1,..., T,] inasmuch as K[T1,..., T,] is a domain.
Thus A is the coordinate ring of the algebraic set associated to ker (o).

2.7.30. Anextension L of K is isomorphic to the field of rational functions of some
irreducible affine algebraic set if and only if L is finitely generated over K.

Indeed, if L = K(t1,...,t,), then L is the field of fractions of K|t1,...,1,], that is
L = K(X), where X is the algebraic set having K[t1,...,,] as coordinate ring.

2.7.31 (Liiroth’s theorem, cf. Theorem 7.4.1). Let X be an affine algebraic set of
dimension 1. If there exists a dominant rational transformation A! — X, then
X is birationally isomorphic to A! (that is, there exists a birational isomorphism
Al = X).

Here we give the outline of an algebraic proof, based on the theory of fields. See
Theorem 7.4.1, p. 218 for an elementary proof that uses elimination theory.

By hypothesis K C K(X) € K(¢) with ¢ indeterminate and where the first inclusion is
strict.
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We observe that ¢ is algebraic over K(X) because an arbitrary element A € K(X) has the

form A = %, with A(t), B(t) € K[t], and so ¢ is aroot of AB(T) — A(T) € k(V)[T] C
K(X)[T].
Let F € K(X)[T] be the monic minimal polynomial of # over K(X) and suppose that

A= % is one of the coefficients of F and A ¢ K (such a A certainly exists). One proves

that AB(T) — A(T) has degree not greater than (and so equal to) the degree n of F with
respect to 7. Thus AB(T) — A(T) is the minimal polynomial of ¢ over K(A). Then

[K() : K(V)] = [K(@) : K(XO][KX) : K(D)],

and son = n[K(X) : K(A)]. Therefore [K(X) : K(1)] = 1 which implies that K(X) =
KQ).

2.7.32. Let X C P” be an algebraic set. Then X = @ if and only if there exists an
integer s > 0 such that (X1, ..., X,+1)* C I(X).
Let{Fy,..., F;-} be ahomogeneous basis for the ideal 7(X), and let A be the polynomial

; X1 X5 Xnt+1 ; ; (XL Xo Xnt1)
rlngK[Xi,Xi,..., X ].InAcon51derthepolyn0m1alsFJ (Xi’Xf""’ X)) =

1,...,r;if X = 0 they generate the whole ring A. Then

X1 X1
1=Gi|—,... | F1| —....
l(xi ) 1(Xi )+

and so, for an integer s; > 0, and foreachi =1,...,n + 1,
Si _
Xi =G F +--- € I(X).

2.7.33 (Quasi-projective varieties). A quasi-projective variety is an open subset V
of a projective algebraic set X C P”. Thus, V = A\ B, A, B closedin P*, B C A.

2.7.34. Let X be a quasi-projective variety in P”, x a point of X and f = 5
a homogeneous rational function of degree zero with Q(x) # 0: f is a regular
function at x. A function f regular at each point x € X is a regular function on X.
The regular functions on X formaring K[X]. In contrast to what happens in the case
of closed algebraic sets, it is not necessarily true that K[X] is a finitely generated
K-algebra (see, for instance [2, Chapter 14]). If X is a projective algebraic set one
has K[X] = K.

2.7.35. Each point x of a quasi-projective variety X has an affine neighborhood,
that is a neighborhood isomorphic to an affine algebraic set.

Let X C P” and suppose that x is contained in the chart Uy of P”, that is x =
[X1,...,Xxp4+1] Withx] # 0. Since X, as a quasi-projective variety, is of the form X = A\ B,
A, B closed subsets of P”, it follows that X N U; = W \ Wi, where W = A N Uy,
W1 = Up N B are closed subsets of Uy. Since x € X N Uy, then x & Wj. Therefore there
exists f € K[W]such that f(W;) = 0and f(x) # 0. The principal open affine W; of W
is a neighborhood of x, isomorphic to an affine closed subset (cf. Section 2.3).
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2.7.36. The composition of birational isomorphisms is a birational isomorphism.

Let X, W, Z be projective algebraic sets and «: X — W, B: W — Z birational
isomorphisms. Then there exist two open subsets Xo C X, Wp C W such that the restriction
o) x,: Xo — Wo is an isomorphism. Similarly there exist two open sets W) C W, Zo C Z
such that ﬁ|WO/ : W§ — Zg is an isomorphism. Then

a Y (Wo N W) = Wo N W = B(Wo N WY).

This means that the restriction f © o1q—1 (wonwy) © a W N Wg) — B(Wo N W) is an
isomorphism.

2.7.37 (Projections). In P” let E be a linear space of dimension d, with equations
Ly=L,=---=L,_4 = 0where the L; are linearly independent linear forms.
The rational map p: P* — P"~¢~1 given by p(x) = [L1(x),..., Ly—qg(x)],
x € P", is said to be the projection from E. It is regular at P* \ E. If X is
an algebraic set of P”, the restriction pjx: X — P*—4~1 is a finite morphism if
X N E = @; it is arational mapping if X N E is non-empty (and distinct from X).

2.7.38. Therationalmap ¢: P2 — P2, givenby [x1, x5, x3] = [X2X3, X3X1, X1 X2],
is a birational automorphism of P? (that is, a birational isomorphism of P2 with
itself). Prove that the inverse image ¢ ~!(r) of a line r is a conic which describes
a homaloidal net as r varies, that is, a net with three base points, cf. Section 9.1.
Find two open subsets between which the restriction of ¢ is an isomorphism.

2.7.39. Let X C P” be a projective variety. There exist forms of every order m
which do not vanish on any irreducible component of X.

If X = |J; X;, with irreducible components X; and x; € X;, consider a hyperplane
containing none of the points x; (which are finite in number) and its arbitrary powers.

2.7.40. Let ¢: X — Y be a morphism of quasi-projective varieties X, Y. Then,
its graph I'y := {(x, ¢(x)), x € X}isaclosed subset of X x Y, and is isomorphic
to X.

One has T, = (¢ x idy)~!(Ay), which is the inverse image of a closed set under a
morphism and hence is closed. The restriction of the projection p: X xY — Y to 'y is
inverse to the graph morphism X — Ty, defined by x > (x, ¢(x)), as required.

2.7.41. Let X be a projective variety, and Y quasi-projective. Then the second
projection p,: X x Y — Y is a closed map, that is, it sends closed sets into closed
sets.

This is a general topological fact. If X, Y are topological spaces with X compact, then

the projection p: X x Y — Y is a closed map (see for instance [18, Corollary 5, p. 103]).

2.7.42. Let X be a projective variety, Y a quasi-projective variety and ¢: X — Y
a morphism. Then the image Im(¢) is closed in Y.
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Indeed, the graph I'y, is a closed subset of X x Y by Exercise 2.7.40; on the other hand
Im(¢) = p2(Ty), where p2: ', — Y denotes the projection on the second factor. Then
Im(g) is closed by Exercise 2.7.41.

2.7.43. Let X; C A™ and X, C A" be algebraic sets. Then X1 x X3 is irreducible
if and only if X; and X, are irreducible.



Chapter 3
Geometric Properties of Algebraic Varieties

In this chapter we discuss some fundamental properties of algebraic varieties which
we will use in the sequel. By an algebraic variety over the base field K we mean an
ordered pair (X, K[X]) where X is an affine or projective algebraic set and K[X]
is its coordinate ring. Unless otherwise specified, the base field K is algebraically
closed and of characteristic zero. Usually K will be the complex field C.

In Section 3.1 we define the tangent space of a variety at one of its points and we
introduce the notions of singularity and dimension. Since these are local properties
one can in practice assume that X is an affine algebraic set. In this section we have
substantially followed the exposition of [74, III, §6]. In Section 3.2 we introduce
the notion of independent polynomials and study a useful characterization of them
in terms of the rational map they define.

In Section 3.3 we return to the concept of dimension, discussing some equivalent
formulations in the case of a projective algebraic set. Here we have followed
the discussion given in [48, Lecture 11], to which we refer the reader for further
interesting examples.

In Section 3.4, making use of classical methods of projective geometry, we
introduce and study the order of a projective variety, as well as the notions of
tangent cone and multiplicity of a singular point.

3.1 Tangent space, singularities and dimension

In this section we assume that X is an affine algebraic set and we begin by consider-
ing the case of hypersurfaces. Let ' € K[Y7,..., Y,] be anirreducible polynomial,
f ¢ K,and put X := V(f) C A". Letx = (a1,...,a,) be a point of X and
£ aline that passes through x. Since x € X, the coordinates of x are roots of the
restriction of f to £ (in the sense specified in the course of the proof of the following
proposition).

Proposition-Definition 3.1.1. Ler X = V(f) C A" be an irreducible hypersur-
face. The point x € X is a multiple root of f¢ if and only if the line { is contained
in the affine linear subspace Ty (X) C A" defined by the equation

- a_Yi(x)(Yi —a;) =0.

The space Ty (X) is called the tangent space to X at x. We say that every line
contained in Ty (X) and passing through x is tangent to X at x.
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If (0f/dY;)(x) = O for eachi = 1,...,n we say that each line £ passing
through x is tangent to X at x.
Proof. We consider parametric equations for £ of the form
Yi=a; +bit, i=1,...,n,
where x = (ay,...,a,) and (by,..., by) is the direction vector of £. Then
Sie = f(...ai +bit,...) =g(t)

is a polynomial in ¢ and ¢ = 0is aroot of g(¢) (corresponding to the point x). Thus
t = 01is a multiple root of g(¢) if and only if 2 52(0) = 0, that is, if and only if

Zb (x)—()

i=1
This condition is equivalent to the fact that £ C Tx(X). |

Definition 3.1.2. The point x is non-singular (or regular, or simple) for X = V(f)
if (0f/0Y;)(x) # 0 for some i = 1,...,n; otherwise x is a singular point (or
multiple, or a singularity) for X .

The preceding definitions lead to the following conclusion:

¢ The tangent space Ty (X ) to ahypersurface X at one of its points x isan (n—1)-
dimensional affine subspace of A” if x is non-singular, and 7x(X) = A" if
x € X is singular.

Remark 3.1.3. Suppose that K = R or K = C, and that (df/dY;)(x) # 0 for
example for i = 1. Consider the map p: A" — A" defined by (Y1,...,Y,) —

(f,Ya,...,Yy); the determinant of the Jacobian matrix
f af f
O G
0 1 0
0 0 1

is non-zero at x. Thus, by the Inverse Function Theorem, there exists a neigh-
borhood U C A", x € U, such that the restriction py: U — p(U) C A" isa
diffeomorphism of the neighborhood U with the open set p(U) of A” in the usual
Euclidean topology of R” or C", thatis, py is bijective and both p and p~! are dif-
ferentiable functions of real or complex variables. In other words, (f, Y>,...,Y,)
is a new system of coordinates on A" near to x. This implies that an euclidean
neighborhood of x in the hypersurface X of equation f = 0 is diffeomorphic to
an open set in A”~! with coordinates (Y3, ..., Y,). We express this fact by saying
that close to the non-singular point x the non-singular variety X has (Y2,...,Yy)
as local parameters (cf. paragraph 3.1.15).
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Let us consider the set
Reg(X) := {x € X, x non-singular}
of non-singular points of X.

Proposition 3.1.4. Let X = V(f) C A" be an irreducible hypersurface. Suppose
that K = C. Then the set Reg(X) is a dense open subset of X in the Zariski

topology.

Proof. The complement of Reg(X) is the set Sing(X) of singular points, which is
defined by the equations

of
aY;

Hence Sing(X) = V(f, %, el %) C A" is aclosed subset of X. But, X being
irreducible (since f is), in order to prove that Reg(X) is a dense open subset it
suffices to prove that it is non-empty (cf. Section 2.2).

We proceed by contradiction. Suppose that X = V(f) = Sing(X). Then each
of the polynomials df/dY; must vanish on X, thatis, df/dY; € I(X) = /(f) =
(f) (cf. Theorem 2.2.2). It follows that df/dY; is divisible by f in K[Y1,..., Y,];
but considered as a polynomial in Y;, df/0Y; has degree strictly less than the degree
of f. Hence if df/0dY; is divisible by f, df/0dY; it must necessarily be the zero
polynomial. This is possible only if Y; does not appear in f; and if this happens
for every index i, then f is a constant, which we have excluded. |

0, i=1,...,n.

We can now define the tangent space to an affine algebraic set X at one of its
points, and study some properties related to the concept of dimension (see also
Section 3.3 for further characterizations of the notion of dimension).

Definition 3.1.5. Let X C A” be an affine algebraic set and x = (a,...,a,) a
point of X. For each f € K[Y1,...,Y,] we set

n 8f
SO =" 0 - ap).
= aY;

This is an affine linear polynomial, that is, linear plus a constant (the first order part
of the Taylor series development of f at x). We define the tangent space Ty (X ) of
X at x by setting

To(X):= [ (A =0k
fel(X)
If X = V(a) (where we can always suppose that a is a radical ideal and so
a = I(X), cf. Theorem 2.2.2) one sees immediately that the linear parts of the

polynomials of a generate an ideal a") := {fx(l), f € a}andso

T (X) = V(aD).
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Let {f1,..., fm} be a set of generators of /(X). Since the linear part of the

sum of two polynomials is the sum of the linear parts of the two summands, one

has that for each g € I(X), the linear part g,(cl) of g in x is a linear combination

of those of the f;, j = 1,...,m. Therefore, a) = (fl(’;), e ,,(119)6) Hence the
definition of T (X) becomes simply

m
Te(X) = V(D ) = S =0p c A,
j=1

Proposition 3.1.6. Given an algebraic set X C A", the function X — N defined
by x — dim Ty (X), x € X, is an upper semi-continuous function in the Zariski
topology on X, that is, for every integer r, the subset

Sry={xeX|dmTy(X)>r}CcX
is closed in X.

Proof. Let{fi1,..., fm} be aset of generators for /(X) and
m
T(X) = (Uf =05 C A7
j=1

the tangent space to X at x. Then x € S(r) if and only if the Jacobian matrix

0(f1. f2. -5 fm) _ (% )
(3(Y1,Y2,---,Yn) (X)) o (3Yi () i=1,n, j=1,.m G-b

has rank < n —r, thatis, if and only if every minor of order (n —r + 1) x (n —r + 1)
of the matrix (3.1) vanishes. On the other hand, every element (df; /9Y;)(x) of the
matrix is a polynomial function of x. Thus every minor is the determinant of a
matrix of polynomials, and so is itself a polynomial. From this it follows that
S(r) C X C A" is an algebraic set. |

Corollary-Definition 3.1.7. There exist an integer r and an open dense subset
Xo C X C A" such that

dm Ty (X) =71 forx € XoanddimTy(X) > r forall x € X.

We say that r = dim(X) is the dimension of X, and that n — r = codiman (X) is
the codimension of X. A point x € X is said to be non-singular if dim T, (X) = r,
and singular if dim Ty (X) > r; the variety X is non-singular if each of its points
is non-singular. The closed subset Sing(X), the locus of the singular points of X,
is the singular locus of X ; it is empty if X is non-singular.
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Proof. Let r := minyey {dim T, (X)}; then we obviously have S(r) = X and the
set S(r + 1) is strictly contained in X. Hence

Sr)—=Sr+1) ={xeX|dmTy(X)=r}
is open and non-empty. |

3.1.8 (Jacobian criterion). We remark explicitly that a sufficient condition for the
point x to be simple on the affine variety X C A" (K), the locus of zeros of the

ideal ( f1, f2,..., fm), is that the rank at x of the Jacobian matrix (M)
should be n — dim(X). This follows easily on noting that

8(g11’gt) ()C)) zg(a(flvﬁfm)

n—dlm(X)zg(a(Yl”Yn) B(Yl,,Yn)

(x)) =n —dim(X),
where (g1, g2,..., &) is the ideal 7(X) of X.

This proposition is known as the “Jacobian criterion for simple points”. Under
the hypothesis that the field K is of characteristic zero, and so, in particular, if
K = R or K = C, the Jacobian criterion is a necessary and sufficient condition
for non-singularity, provided that ( f1, f2,..., fm) is the ideal I(X). The reader
wishing to study this question in detail can consult Zariski’s fundamental memoir
[119], as well as [103, Chapter II] and [81, Chapter III].

As an immediate consequence, one has that if x is a simple point for X and F
is an irreducible hypersurface passing simply through x and not containing X, the
necessary and sufficient condition for x to be a multiple point of the variety X N F,
the intersection of X with F, is that the tangent hyperplane to F at x should contain
the tangent space to X at x (cf. §5.2.4). Indeed, if f = 0 is the equation of F, this
is the necessary and sufficient condition to have

(a<f1,...,fm,f)(x))_ (3(f1,fz,...,fm)(x))
o v, ) ) T, Y
=n—dim(X) = codpan (X N F) —1.

We shall also need several elementary notions from the theory of fields (which
may be found, for example, in [62]).

Definition 3.1.9. If k C K is an extension of fields, the transcendence degree of K
over k is the maximal number of elements of K that are algebraically independent
over k. It is indicated by tr.deg.; K.

More precisely, givenay, ..., o, € K, wesaythatoy, ..., o, are algebraically
independent over k if they are not solutions of a common polynomial in k[T']. We
say that «q,...,®, generate the transcendental part of the extension k C K if
K is an algebraic extension of k(«1, ..., ®;), where k(ay, ..., o) is the field of
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fractions of k[o1, ..., o] (i.e., of the k-algebra k[ay, . .., &, ] generated as a ring
by k and 1, ..., 0,). We say that «y, .. ., o, form a transcendence basis if they
are algebraically independent over k and they generate the transcendental part of
the extension k C K. It is not difficult to prove that a transcendence basis is a
maximal set of algebraically independent elements of K over k, and also a minimal
set of generators (of the transcendental part of the extension k C K), and that any
two transcendence bases of K over k have the same number of elements.

3.1.10 The case of hypersurfaces. If X = V(f) C A" is an (irreducible) hyper-
surface defined by a non-constant polynomial f, then dim(X) = n — 1. Indeed,
for each non-singular point x € X (such points form a dense open subset in view
of Proposition 3.1.4), the tangent space is defined by the linear equation fx(l) =0
and so r = mingex{dim Tx(X)} =n — 1.

We now prove that tr.deg. x K(X) = n — 1; from this it follows, in particular,
that for a hypersurface X,

dim(X) = tr.deg. g K(X) =n — 1.
Consider the quotient mapping
o: K[Yy,...,Y,] = K[X] = K[Y1,....Yul/(f)

andlet y; := o0 (Y;),i = 1,...,n. Suppose, to fix our ideas, that the indeterminate
Y7 actually appears in f and consider the elements y5, ..., y, € K(X). If one had
tr.deg. g K(X) < n — 1, they would be algebraically dependent and so there would
exist a polynomial g(Y>,...,Y,) € K[Ya,..., Y] such that

g(y27"-7yl’l) :07

that is, g € ker(o) = (f). But that is absurd because Y; does not appear in g.

Hence tr.deg. x K(X) > n — 1. Since one certainly has tr.deg. x K(X) < n, it
follows that tr.deg. x K(X) =n — 1.

The remainder of this section deals with the proof, via reduction to the case
of hypersurfaces, of the fact that the equality dim(X) = tr.deg. x K(X) holds for
every algebraic set X C A”". The first thing to prove is that for a point x € X,
the tangent space Tx(X), which, by what has just been seen, is defined in terms
of a particular system of coordinates in A”, is really independent of the choice of
coordinates.

3.1.11 Intrinsic nature of the tangent space. Let x = (x1,...,x,) € X C A"
be a point of an affine variety X. By means of the coordinate change

I . .
Y =Y —a;, i=1,...,n,



3.1. Tangent space, singularities and dimension 57

we may suppose that x = (0,...,0) is the coordinate origin. Then Ty (X) C A"
is a linear subspace of K”. Let 1, be the ideal of x in K[X] and let us denote by
M, =(Y1,...,Y,) C K[Yq,...,Y,] the ideal of x in A”. Then obviously

iy = My /1(X).

Theorem 3.1.12. Let X C A" be an affine algebraic set and x € X one of its
points. With the preceding notation,

(1) there is a natural isomorphism of vector spaces
(Te(X))" = my/m3,
where ( )* denotes the dual of a vector space;

(2) if f € K[X]is such that f(x) # 0, and Xy C X is a principal affine open
subset, then the natural map Tx(Xy) — Tx(X) is an isomorphism.

Proof. Let (K")* be the vector space of linear forms on K”. A basis for (K”)*
is{Y1,...,Y,}. Since x = (0,...,0), foreach f € K|[Y1,...,Y,] the linear part
fx(l) is in a natural way an element of the dual vector space (K")*. Consider the
map

d: My — (K™)*

defined by putting d(f) := x(l) for each f € M.
The map d is obviously surjective. Indeed, the linear forms Y1, ...,Y, € (K")*
are the images of the elements Yq,...,Y, € M,. Moreover ker(d) = M f since

x(l) = Oifand only if f has quadratic terms in Y7, ..., Y, in minimal degree; that
is, if and only if f € M2. Thus

M,/ M? = (K™)*.

This proves (1) in the particular case X = A”".

In the general case one has the restriction map (K")* — (Tx(X))*, dual to the
inclusion 7y (X) C K", which sends a linear form A on K" into its restriction to
T, (X). By composition one obtains a map

D: My — (K")" — (Tx(X))",
which is surjective since both factors are such. It suffices to prove that
ker(D) = M2 + I(X), (3.2)
because from this it follows that

wy/mi = Mo /(M? + 1(X)) = Te(X)*.
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To prove (3.2) one notes that f € ker(D) if and only if fx(l)|Tx( x) = 0, that is to
say
fx(l) = Za,-gi(,lx) for some g; € I(X), a; € K[Y1,...,Yn]
i

(recall that T, (X) C K" is the subspace defined by {gfcl) =0, g € I(X)}). The
last condition is equivalent to

f —Zaig,- € Mf for some g; € 1(X),
i

which means that f € M2 + I(X).

To prove (2) one observes that /(Xy) = (I(X),Tf —1) C K[Yy,....Y,, T].
Hence if y = (ay,...,an.b) € Xy, then Ty(Xy) C A"*! is defined by the
equations that define Tx(X) C A" with the addition of a linear equation in which
T appears, of type ¢cT — f(x)b = 0, for some constant ¢ # 0. |

Corollary 3.1.13. Let X C A" be an affine algebraic set and x € X one of its
points. The tangent space Tx(X) depends only on a neighborhood of x.
Furthermore, if x € Xo and y € Wy, where Xo and Wy are open subsets in the
affine varieties X and W respectively, and ¢: Xo — Wy is an isomorphism such
that ¢(x) =y, then there exists a natural isomorphism Ty (Xo) — T, (Wp). Hence
dim Ty (Xo) = dim T, (Wp).
In particular, if X and W are birationally equivalent, dim(X) = dim(W).

Proof. By considering, if necessary, a smaller neighborhood of x in X, we may
suppose X to be isomorphic to an affine algebraic set (cf. §2.4.9). Then W} too is
affine, and ¢ induces an isomorphism K[Xo] = K[W}] sending the ideal 1, of x
into the ideal my of y. Therefore, m,/m?} = m, /w3, thatis, Tx(Xo) = Ty (Wo).

O

Theorem 3.1.14. For each affine algebraic set X C A",
dim(X) = tr.deg. g K(X).

Proof. Equality holds for hypersurfaces, as observed in §3.1.10. Moreover, every
affine variety is birationally equivalent to a hypersurface (cf. §2.4.10) and both
terms of the required equality are the same for birational equivalent varieties. [

3.1.15 Local parameters. Let X be an affine variety of dimension n, x € X a
non-singular point of X, Oy x the local ring of x and m, C Oy , the maximal
ideal. One says that uy, ..., u, are local parameters at x if they form a basis of
my/m2. Given the isomorphism dy : my/m2 — (Tyx(X))* of Theorem 3.1.12
one has that the following data are equivalent.
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(1) uy,...,u, are local parameters.
(2) dxuy,...,dyu, are linearly independent over T (X).

(3) The system of linear equations dyu; = --- = dxu, = 0 has only the trivial
solution in Ty (X).

Let uq,...,u, be local parameters at x (and thus rational functions on X, reg-
ular and zero at x). One can find an affine neighborhood U of x (and containing
(; dom(u;)) such that uy,...,u, € K[U], cf. Exercise 2.7.35. If F; is a poly-
nomial that determines the function u; (i.e., u; = F; modulo /(U)) on U and if
X; is the hypersurface of U of equation F; = 0, one has I(X) + (F;) C I(X;)
(since I(X) C I(X;) and F; € I(X;)) and so, bearing in mind the equations for
the tangent space given in Definition 3.1.5, one has 7% (X;) C L;, where L; is the
subspace of Ty (X) defined by the equation d, F; = 0. Since dim T (X) = n,
one has dimL; = n — 1 and so dim 7x(X;) < n — 1. On the other hand (cf.
Corollary—Definition 3.1.7) dim 7% (X;) > dim X; > n — 1, and so dim 7% (X;) =
dim X; = n—1. Then Xy, ..., X, intersect (or cut) transversally at x, that is, x is
non-singular for each of them and in some neighborhood of x one has (), X; = {x}.
[Indeed, a component of (1); X; having positive dimension and passing through x
would have tangent space in x of positive dimension and contained in all the spaces
Ty (X;) which, rather, have in common only the point x in view of the preceding
equivalent characterization of local parameters.]

If uy,...,u, are local parameters at the non-singular point x one has

iy = (Ug,..., Up).

Indeed, let U  AY be an affine neighborhood of x in which one has ﬂi X; =

{x}. If Ty, ..., Ty are the coordinates in AN and t1,...,ty are the corresponding
functions on U and if x = (0, ..., 0) one has
m, = (ll,...,lN) = (ul,...,un,tl,...,tN).

By definition of local parameters one has ty = Aquq+---+Au, +Ewithé € mi.
That is,

IN =AU+ e+ Aply + iU+ o s + G0+ Wy,
Ai €K, ui,,u} € m,. Hence
tn(1 —/L;v) =AM+ p)ur + -+ An + n)un + M/lll + -+ /L/N_ltN—l-

But ,uﬁ\, € my; so 1 — /LIN is invertible in Oy , and therefore 7y belongs to the
ideal (u1,...,un,t1,...,t8y—1)Ox x. Hence, on iterating, one obtains the desired
conclusion.
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Exercise 3.1.16. Let X C A", Y C A™ be affine algebraic sets and let X x ¥ C
A"t be their product. Prove that

dim(X x Y) = dim(X) + dim(Y).

Letxy, ..., x, becoordinates in A” regarded as elements of K[X]; and similarly
let y1,....,ym in K[Y]. We put di = dim(X), d» = dim(Y). If {x1,...,xq4,},
{¥1....,Ya,} are transcendence bases respectively for K(X) and K(Y), the ele-
ments Xy,...,Xq,, Y1, -- -, Yd, are algebraically independent over K. Indeed, were
they not, there would exist a polynomial F' = F(Xy,...,X4,,Y1,...,Yy,) non-
zero on X x Y such that, for each point x = (xy,...,X,) in X, the polynomial
F(x1,...,xq,,Y1,...,Yg,) € K[Y1,...,Y4,] would vanish on Y and so would
have all of its coefficients zero. Analogously, for each y = (y1,...,ym) € Y,
the polynomial F(X1y,...,Xg,,¥1,...,Ya,) would have all of its coefficients
equal to zero; but this contradicts the hypothesis on F. It then suffices to note
that K(X xY) = K(x1,...,Xn,Y1,--.,Ym) is an algebraic extension of
K(xt,....Xd, Y15+, Ydo)-

3.1.17 Singularities and tangent spaces for projective varieties. We begin by
recalling the following formula for homogeneous functions due to Euler which we
will use hereafter.

Exercise 3.1.18 (Euler’s formula). Let ¢ be a homogeneous differentiable function
of x1, X3, x3, ..., and let m be the degree of ¢». Then

ina_¢ = m¢. (3.3)
8x,~

1

Conversely, every differentiable solution of this equation is homogeneous of
degree m in x1, X2, X3, . . ..

Indeed, let ¢ = ¢(x1, X2, X3, ...) be ahomogeneous function of x1, x5, X3, ...
of degree m and differentiable. From the equality

¢([)C1,[X2,ZX3, .. ) = lm¢(X1,X2,X3, .. )

one has, on deriving both sides with respect to ¢, that

Zx,-qui (tx1,tx2,tx3,...) = mt™ Lp(x1, X2, X3,...)
i

from which (3.3) follows on putting t = 1.
Conversely, let ¢ = ¢(x1, x2, X3, ...) be a solution of (3.3) so that one has the
identity

in¢xi (x1,x2,%3,...) =mp(x1,x2,X3,...).
i
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Therefore, one then also has, on replacing x; by ¢x;,

th,-qui (tx1,tx2,tx3,...) = mep(txy,tx2,1X3,...). 3.4
i

If weset T(t) := ¢(tx1,tx2,tx3,...), then (3.4) may be rewritten in the form

IT(t)
ot

a0 (T(t

9 (Q) ~0.

ar \ "
Therefore T(z)/t™ = C, where C is independent of ¢. Setting 1 = 1 one obtains
C =¢(x1,x2,x3,...)and so T'(¢) = t"¢p(x1, X2, x3,...), that is,

=mT(t)

or

G(txy,tx2,tx3,...) =t"P(x1, X2, X3,...).
This proves that ¢ is a homogeneous function of degree m.

3.1.19. It is hardly necessary to observe how the notion of singularity given in
Corollary—Definition 3.1.7 extends to the projective case. If x is a point of a pro-
jective algebraic set X C P” we know in fact that x is contained in a suitable affine
neighborhood Xo C X: it suffices to take, for example, X to be a principal open
subset containing x (cf. §2.5.6 and also Exercise 2.7.35). Then x is singular or non-
singular according to its singularity or non-singularity for X. By Corollary 3.1.13
this fact does not depend on the choice of Xj.

We observe that if X is reducible, then each of its non-singular points belongs
to only one of the irreducible components of X .

Let us consider the important case of hypersurfaces. Let then X = V(f)
with f a homogeneous form of degree r. Analogously to the affine case (cf.

Definition 3.1.2) we have that a point x = [x1,...,X,+1] € X is singular if and
only if
a a
_f(x) .= (x) = 0. (3.5)
dx1 0Xp+1

One notes, however, that in the projective case the conditions (3.5) are equivalent
to the vanishing at the point x of n arbitrarily chosen of the n 4 1 partial derivatives
df/dx;,i = 1,...,n + 1. Indeed, by Euler’s formula (3.3) one has

n+1
af
rf = in—
i=1 dxi

and thus the preceding assertion follows from the fact that f(x) = 0.
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Thus we conclude that x € X = V(f) is singular if and only if n + 1 arbitrarily
chosen out of the following n 4 2 conditions hold:
af of

f =0, @ ==
1

(x) =0.
0Xp+1
If x is a non-singular point the tangent space to X at x is the hyperplane in P” with

equation
n+1

> xi i(x) =0. (3.6)
3)6,'

i=1
Note also that if x belongs to the affine chart X;) = X N IP)'(",, then the hyperplane
with equation (3.6) is the projective closure of the tangent hyperplane to Xy at x
(cf. §2.5.6).

In the general case, if X C P” is an algebraic subset and x € X a point
belonging to the affine chart X;), the tangent space 7x(X) C P” to X at x is the
projective closure of the tangent space Tx(X(;)) to X;) at x. (Bear in mind the
“local structure” of the tangent space expressed by Corollary 3.1.13.)

See also §5.2.4 for related questions.

3.2 Independence of polynomials. Essential parameters

Consider m polynomials fj(x1,x2, ..., X,) in K[x1, X2, ..., x,]. We will say that
they are independent if there is no non-zero polynomial

¢ Y2, ¥m) € K[y1.y2. ..., Y]

such that the polynomial ¢ ( f1, f2, ..., fm) € K[x1, X2, ..., x,]isidentically zero.
This is equivalent to saying that the morphism ¢: A" (K) — A™(K), defined by
the equations

yl = fl(x17x2""7-x}’l)7
Y2 = fa(x1,x2,..., xn),

Ym = fm(X1,X2,..., Xn),

is surjective. Indeed, if Im(p) = A™(K), then there are no non-zero polynomials
that vanish in each point

(f1(x1,x2,.00x0), (X1, X2, oo Xn)s ooy f (X1, X2, .00, Xp)) € Im(g).

Conversely, if ¢ is not surjective, then the image V of ¢ is a closed algebraic
subset of A (K) and if

gl(yl’y25""ym)’ g2(y1’y2"“’ym)7"'7gh(y1’y2”"’ym)
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is a system of generators for the ideal /(1) of polynomials vanishing on V' one has
that for each x = (x1, x2,...,x,) € A" (K),

gi(fi(x), o(x),... (X)) =0, 1 =1.....h,

and therefore f1,..., f;, are dependent.

It is then obvious that the polynomials fi, f2,..., f can be independent only
ifn > m.

Consider the Jacobian matrix, with elements in K[x1, X2, ..., Xx],

7= (a(fl»fz»-n»fm)) ,: (%)
8(X1,X2,...,Xn) ‘ ax; j=1,..m,i=1,...n

and denote by g(x) its rank in the point x € A" (K).

One sees immediately that if the polynomials f; are dependent, then o(x) < m
for each point x € A" (K). Indeed, in that case there exists a non-zero polynomial
¢ in K[y1,¥2,...,Vm] and an identity of the form

0(x) = ¢(f1(x), f2(x),.... fm(x)) =0,

for all x € A"(K). This identity also implies the following relations, for i =

1,...,n,
a0 d¢ 0 d¢ 0 d¢ 0
_(x) — _¢£ +_¢£+...+_¢ﬁ (x) = 0.
ox; af1 0x;  0fz 0x; 0fm 0x;
However these can hold simultaneously only if the rank o(x) of J in x is less than m.
One notes that if fj(x1,x2,...,x,) are linear homogeneous polynomials, the

Jacobian matrix is nothing but the matrix formed by their coefficients and one
recovers a well-known theorem from theory of linear forms.

Conversely it is well known that if the Jacobian matrix J has rank ¢ < m, then
m—o of the polynomials f; are functions of the other remaining polynomials and the
n “superabundant” parameters X1, X2, ..., X, (bound by relations between the f;)
can be replaced with essential parameters in number @; and one has dim(V') = o.
Compare, for example, [14, Chapter 9], and also [102, Parte I, pp. 255-262].

3.2.1 Tangent space as span of the derived points. We now describe a useful
procedure for obtaining the tangent space.

Letuy,...,ug4, be affine coordinates in Ak+2(([:); Ty, ..., Ty affine coor-
dinates in A”T1(C); and 0: A¥*+2 — A"*1 the map defined by the formulas

T = filur,... . uk42),

T = fo(uy, ..., uk42),
3.7

Tnv1 = for1(Ur, ... Uk42),
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with f; functions having continuous first partial derivatives,i = 1,...,n + 1. Let
W C A" be the image (we consider W as parameterized subvariety of A”T1),
If the parameters u 1, . .., ug 4, are essential (which means that the functions f;
can not be expressed in terms of o < k + 2 parameters) W is a variety of dimension
k 4 2 (cf. Section 3.3). The analytic condition in order for this to occur is that one

has 5
rank (M) —k 42 (3.8)
8(u1, ey Mk+2)
almost everywhere. If P = (i1, ..., Ug4>) is a point at which (3.8) holds we will

say that (P, (P)) is a regular pair of the correspondence 6. In this case 8(P) is
a non-singular point of W and the space Sk, tangent at 6(P) to W is the space

spanned by the k + 3 points 8(P), ag+1:)’ el gg}g—?z,

0P ._ ((%) ,...,(af"“) ) j=1,...k+2.
auj auj P 8uj P

In A¥*2 we take a line p containing P and we consider its image 6(p). If
(81, ...,Cx42) is a vector along p, the line p is the locus of the points (ii; +
C1t, ... Ugy2 + Cx4ot) and the curve O(p) is given parametrically by the equa-
tions

where

Ty = filur + 0uts o lgegn + Crgal),

To1 = fur1(1 + 81t oo lgg2 + Crtal).
Moreover, a vector v tangent to 6(p) in the point

O(P) = (f1(U1, ..., Ugs2), .o fur1(lr, .. Ugt2))

has components
a a
X1=(£) §1+'~-+( i ) Ck+2
au] P 8uk+2 P

Xn+1 = (8fn+1) 1+ + (aan) Ckt2-
P P

ouy Mg42
Therefore,
_— agl(:’) - fmgzg (3.9)
and 1, ..., {42 (Which are coordinates of the line p in the star of lines of Ak+2

passing through P) are the components of v with respect to the basis

(39(1)) 89(P))

ouq ’”"3uk+2
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of the space of tangent vectors to W at (P ). Thus we have established the following
fact:

e If (P, 6(P))is aregular pair, 6 induces a non-degenerate projectivity between
the star of lines of AK*2 passing through P and the star of tangent lines at
6(P) to W (that is, corresponding to the tangent vectors to W at 6(P)).

Now let ® be a hypersurface of A¥*2 with equation ¢ (i, ..., ug42) = O,
passing through P and having a tangent hyperplane there, and let 8(®) C W be its
image.

Consider the lines p tangent at P to ®. For these lines the vector ({1, ..., {x+2)
satisfies the condition

. (a_¢) +...+§k+2( 99 ) = 0. (3.10)
ouy Jp uk42 Jp

To these vectors there correspond the vectors (3.9) whose components are connected
by the relation (3.10). Thus in the space Sk 4+, one finds the tangent vectors at 6(P)
to W to be a (k + 1)-dimensional subspace, which is the space of vectors tangent at
O(P) to 8(d). The equation of this space (in the space of tangent vectors at 6(P)
to W) is (3.10).

If (P) is a simple point of W and if at P the hypersurface ® is endowed with
a tangent hyperplane, the tangent lines at 6(P) to 8(P) thus form a linear space
To(p), of dimension k + 1 = dim(®) = dim(6(P)). One sees that O(P) is a
non-singular point for 6(®), and Ty(p) is the tangent space at (P) to 6(P). We
observe that if the functions f;,i = 1,...,n+ 1, are polynomials it is not necessary
to limit ourselves to the complex field because one can define derivatives formally.

Suppose now that the functions f;,i = 1,...,n + 1, are homogeneous poly-
nomials all of the same degree m. The variety W is then a cone having as its vertex
the coordinate origin. Indeed, if Q = (f1,...,fh+1) = O0(P) = O(u1, ..., Ug12)
is a point of W (and so ; = f;(y1,...,Uky2), i = 1,...,n + 1) one has, for
arbitrary A,

fi()k?/_ll,...,kl/_lk_kz) ZAmfl'(L_ll,...,L_lk_i_2) kafi, I = 1,...,]’! + 1,

and therefore every point of the line joining the origin O to Q belongs to W.

The tangent space to W at Q is spanned by the points Q, % cees aua,(QJrz

a—sz((%) ,...,(af”“)), j=1,...k+2.
auj 8Mj P auj P

On the other hand, by Euler’s theorem on homogeneous functions one has (cf. Ex-

ercise 3.1.18)
aQ _ aQ

mQ =uy— + -+ gt
81/{1

, where
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where mQ denotes the point with coordinates (mfy,...,mi,+1), and hence the

tangent space at Q to W passes through the origin and can be considered as the
space spanned by the origin and the points &—Ql, cee, auakQJrz.
Assuming this, let X be the projective algebraic variety (of dimension k, cf.

Section 3.3) defined by the equations

Ti = fi(uy,...,ugsn), i=1,....,n+1, (3.11)
and
¢(M1,...,Mk+2) =0, (312)
where T1,..., T,41 are projective homogeneous coordinates in P” and uq,...,
U4 are projective homogeneous coordinates in P**1.
If we interpret T4, . . ., T,+1 as non-homogeneous affine coordinates in an affine
space A"*1 and uy,...,ux,» as non-homogeneous affine coordinates in an affine

space AK+2 then in A¥*2 we have a cone ®* with vertex at the coordinate origin,
and with equation (3.12), while in A”*! we have a cone W* with vertex at the
coordinate origin and equation (3.11).

The lines of A”*! passing through the origin are the points of a projective
space P (which can be thought of as the “hyperplane at infinity”, 7o, of A”*1)
and similarly the lines of Ak+2 passing through the origin are the points of a
projective space P+ (“hyperplane at infinity”, 0, of AKt2). The projective
variety W C P" with equations (3.11) is the section of the cone W* by 7y and
hence the tangent space to W at its generic point is defined by the k + 2 derived

points
J o=

, J=1,...k+2;
auj 814/] J +

and the projective hypersurface ® C P¥*! with equation (3.12) is the intersection
of the cone ®* with 0.

The tangent vectors to the variety X defined by the equations (3.11) and (3.12)
in its generic point (that is, the directional vectors of the tangent lines in the generic

point) are the vectors Zfilz ;& with Zf:lz ((.,%)é‘] = 0 (cf. (3.10)).

Example 3.2.2. Notation asin §3.2.1. We wish to write the equations of the tangent
line in the generic point Q of the projective curve L of P> defined by the equations

T] = u%,

T = 2uqus,

Ty =3, (3.13)
T4 = 2141143, '
Ts = 2usus,

T5 = M%
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and
¢ (uy,uz,uz) =0, (3.14)

where ¢ is an arbitrary homogeneous polynomial. We consider the Veronese surface
J represented by (3.13) (cf. Example 10.2.1). The derived points are
E1 = [u1,u2,0,u3,0,0], & =[0,u,uz,0,u3,0], & =1[0,0,0,uy,uz,usl.

Thus the generic point of the tangent plane to F at a point Q belonging to £ (Q is
the image, under (3.13), of a point [u1, u3, u3] such that ¢ (u, uz,uz) = 0) is

[Crur, Sruz + Sour, Sous, Srus + L3uy, SHous + {3uz, $3us).

In order that this point belongs to the tangent line to £ at Q it is necessary that
(cf. (3.10))

¢ ¢ 06
QIWI ‘Hfz% +§3W3 =0.

For the line to be tangent to £ at Q it is then sufficient to eliminate the parameters
1, £, 3 from the equations

T = Cuq,
T, = Cius + Souy,
T3 = Lous,

Ty = C1us + C3uq,
Ts = {ousz + 3uz,
Ts = L3us,
9 3 3
0= fl% + fz% + §3%-

The first, third, and sixth equation give {; = 5—}, b = 5—;, {3 = 5—2. Substituting

into the remaining equations (and then eliminating the denominators) one finds the
equations of four hyperplanes: the three hyperplanes

u%Tl + M%T3 — u1u2T2 = 0,
M%Tl + M%T6 — M1M3T4 = 0, (3]5)

M§T3 + u§T6 —Uusuzls =0,

whose intersection is the tangent plane 7 to J at 0, and the hyperplane

u2u3a—¢T1 + u1u38—¢T3 + u1u23—¢T6 =0 (3.16)
3141 Buz 8u3

which intersects 7 along the tangent line to £ at Q.
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One notes that the hyperplane with equation (3.16) does not pass through the
tangent plane to F at Q and is therefore independent of the hyperplanes (3.15). We
verify that it does pass through Q. Indeed, one has, if m = deg(¢),

d¢ o9 A
2 2 2 _ _
g g = (i)

= mujususp(uy, uz, uz).

3.3 Dimension of a projective variety

Let X C P” be a projective variety, which, except for explicit mention to the
contrary, we shall suppose to be irreducible.

The discussion regarding the dimension of an affine variety carried out in Sec-
tion 3.1 and Proposition 2.6.1 lead one naturally to define the dimension of X as
the transcendence degree of its function field K(X) over the base field K (which,
as usual, we assume to be algebraically closed),

dim(X) = tr.deg. g K(X). (3.17)

In the sequel we will study the geometric meaning of (3.17), discussing some
equivalent formulations expressed in terms of projective geometry.
We begin by proposing the following alternative definition of dimension.

Definition 3.3.1. The dimension of a variety X C [P” is the smallest integer k such
that there exists a subspace S,—x—1 C P” disjoint from X (or, equivalently, such
that a generic S, —x—1 C P” is disjoint from X).

One observes that given a generic S, _, a generic S,,_x_; contained in S,
is a generic S;,_x—1 of P”. It follows that if X C P” has dimension k, the generic
Syu—k meets X in a finite number of points. Moreover, in the same way, the generic
Syu—k+1 meets X in a variety that consists of infinitely many points since otherwise
the generic S,_; would be disjoint from X. We can then express Definition 3.3.1
in the following equivalent form.

Definition 3.3.2. The dimension of a variety X C P” is the integer k such that the
generic S,—x C P” meets X in a finite number of points.

If X C P” has dimension k, we write dim(X) = k. Onehas 0 < k <n — 1.
A 0O-dimensional variety is a finite number of points. We will say curve, surface,
hypersurface, to indicate varieties of dimension 1, 2, n — 1 respectively. An S, of
[P" is a variety of dimension r.

3.3.3. Note that from either of the two definitions 3.3.1, 3.3.2, there follows the
(apparently obvious) fact:
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e If X is an irreducible variety and Y is a variety properly contained in X, then
dim(Y) < dim(X).

This fact can also be seen directly as follows. Without loss of generality we
may suppose that Y C X are affine varieties in A” and that Y too is irreducible.

Letd = dim(X) and K(X) = K(x1,...,X4,X4d+1,---,Xn). No matter how
one chooses d + 1 indices i1, 12, ...,ig+; the elements x;,, x;,, ..., Xig satisfy
a polynomial relation f(x;,, Xi,,- .., Xi,, ;) = 0, which necessarily also holds on
Y, and so dim(Y) < dim(X).

Suppose that dim(Y') = dim(X) = d, and that there exists 0 # u € K[X] with
u =0onY. Letxy,...,xy bealgebraically independent coordinates on ¥ and thus
also on X. The elements u, x1,...,x45 € K[X] are algebraically dependent and
thus there is a polynomial relation f(u, x1,...,xg) = 0. We can even choose the
polynomial f sothat f(0,x;,...,xg) # 0. Over Y one has f(0,x;,...,x4) =0
(since ¥ = 0 on Y) and thus, by the hypothesis on xi, ..., x4, the polynomial
f(0,x1,...,xg) is identically zero. It follows that f(0,x,...,x7) = 0on X as
well; but this contradicts the independence of x1, ..., xz. Thusu = Oon Y implies
that u = 0 on X; therefore Y = X.

In the situation of 3.3.3, the difference dim(X) —dim(Y") is called the codimen-
sion of Y in X. If dim(X) — dim(Y) = 1, the variety Y is called a divisor of X.
In particular, a hypersurface X C P” is a divisor of P”.

It is useful to make the following remark explicit:

Proposition 3.3.4. Let X C P" be a variety of dimension k. If S, is a linear space
of dimension r > n — k, then S, meets X.

Proof. Indeed, sett = n —k — 1 in Definition 3.3.1. Then ¢ is the maximum of the
dimensions of the subspaces of P” which do not meet X. Thus, a linear space S;
meets X assoonasr >n—k — 1. O

Remark 3.3.5. If S; is a subspace of P" and X is a variety contained in it, the
dimension of X as a variety of P” coincides with its dimension as a variety of S,.
Indeed, if k is the dimension of X as variety of S, an arbitrary S,,_; of P meets
S, in a space of dimension > r — k and so meets X; and a generic S, _x—; of P"
meets S, in a generic S,_;_; which does not meet X .

We now show that Definitions 3.3.1 and 3.3.2 are equivalent to (3.17).

Let X C P” and let ¥ = dim(X) be the dimension expressed by Defini-
tions 3.3.1, 3.3.2. In view of Definition 3.3.1 there exists a space S;,—x—1 C P”
disjoint from X. Consider the projection of P” from that S,_x_; onto a space P¥
disjoint from S,_x_; and let 7: X — P* be the restriction. If x is a point of X,
the join J(x, S;,—x—1) is, by Grassmann’s formula, 1.1.8, an S,,_; that meets P¥ in
a point. Then

m(x) = J(x, PP N pF
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and, for a generic x € X (that is, a generic y = 7 (x) € P¥), the fiber 77! (1 (x))
consists of the finite number of points in which S, _x = J(x, S;,—x—1) meets X (cf.
Definition 3.3.2 and the successive Proposition 3.4.8). This means that the map
71 X — PK is generically finite.

The key point, which however is based on notions outside the scope of the
present book, is an algebraic fact from field theory (for whose proof we refer the
reader to [48, (7.16)]) which assures us that in the presence of a generically finite
map 77: X — P¥ one has

K(P*) = K(x1,....xx) — K(X).

This inclusion of fields expresses the field of fractions K(X) of X as a finite exten-
sion of K(x1,...,Xxg), thatis, K(X) is a K(x, ..., xg)-vector space of finite di-
mension. From this it follows that K(X) is an algebraic extension of K(x1, ..., Xg)
(see, for example, [75] or [62]); that is, every element a € K(X) is the root of a
polynomial p(T) € K(x1,...,x;)[T] with coefficients in K(x1, ..., xx). By def-
inition (cf. Definition 3.1.9), this means that the transcendence degree of K(X)
over K is k. Thus we may conclude that Definitions 3.3.1 and 3.3.2 are geometric
formulations of the notion of dimension equivalent to (3.17).

We extend the definition of dimension to include possibly reducible varieties by
defining the dimension of an arbitrary variety as the maximum of the dimensions
of its irreducible components.

We say that a variety X has pure dimension k if all the irreducible components
of X have the same dimension k.

Exercise 3.3.6. Let X C P” be a variety of dimension k and S,—; C P” a generic
hyperplane; that is, not containing any irreducible component of X and such that
the intersection S,,—; N X is irreducible if X is irreducible (cf. Theorem 6.3.11).
Then

dim(S,—-1 N X) =k —1. (3.18)

Indeed, we set W := S,_; N X. A generic S,—;—1 of S,—1 is also generic in P”
(because S,,— is generic) and so does not intersect X ; thus, it does not intersect W'.
Sincen —k—1 = (n—1)— (k — 1) — 1, one concludes in virtue of Definition 3.3.1
that W as a subvariety of S,,—; (and so of S,,) has dimension k — 1.

Iterating the reasoning, one sees that the section of X by a space S,_x is a
0-dimensional variety, that is, a finite number of points.

One notes thatif Z C P” is a hypersurface that does not contain any irreducible
component of X, one has

dm(ZNX)=k—1,

which extends the relation (3.18). Indeed, let f = f(xo,...,X,) be the form
that defines the hypersurface Z and put X; := X N Z. One has dim(X;) <
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dim(X) by 3.3.3. Consider a form f1, deg f; = deg f, that does not vanish on any
irreducible component of X; (cf. Exercise 2.7.39) and let Z; be the hypersurface
with equation fi = 0 and X, = X; N Z;. Iterating the procedure one obtains a
sequence

X=XoD2X1DX2D-+,

with X;41 = X; N Z;, Z; == {f; = 0}, deg f; = deg f, dim X;4+; < dim X;.
Since dim Xy = k, the variety X1 is empty. This means that f, f1,..., fx do
not have common zeros on X. We can obviously suppose that X is irreducible
and consider the map ¢: X — P¥ defined by ¢(x) = [f(x), f1(x),..., fr(®)].
On the other hand ¢ is a finite morphism (for this see Problem 13.1.16) and so
dim(X) = dim(¢(X)) = k. But ¢(X) is a closed subset of P¥; thus p(X) = P¥
again by 3.3.3. If one had dim(X;) < dim(X)—1, then the closed subset X3 would
be empty and so the forms f, f1,..., fx—1 would not have common zeros on X and
sothe point [0, 0, ..., 0, 1] € P¥ would not belong to ¢(X ). Thus dim(X;) = k—1.
In fact, dim(X;) = k —1i.

One should also note that if X C A" is an affine variety of dimension k and
H C A" is a hyperplane not containing any irreducible component of X, by the
preceding remarks and the definition of dimension it follows immediately that

dm(HNX)=k—1.

We now prove a fundamental result on the dimension of the intersection of
varieties; we treat the affine and projective cases separately.

Theorem 3.3.7 (Affine case). Let X, Y be irreducible subvarieties of dimensions s,
t in A", Then every irreducible component Z of X NY has dimension > s +t —n.

Proof. If Y C X the inequality is obvious, and so we suppose that Y ¢ X.

Consider the product X x Y C A2" which is a variety of dimension s + ¢ (cf.
Exercise 3.1.16). Let A := {(x,x), x € A"} C A" be the diagonal. Then A"
is isomorphic to A via the map x — (x, x) and, under that isomorphism, X N Y
corresponds to (X x ¥Y) N A. Since A has dimension 7, and since s + ¢t —n =
(s + 1) +n —2n, we have reduced to proving the result for the two varieties X x Y
and A in A",

Now, A is the intersection of exactly n affine hyperplanes in A2”, namely those

with equations x; — y; = 0,...,x, — y, = 0, where x1,...,X,, y1,..., Yy are
the coordinates of A2”. Now n applications of Exercise 3.3.6 gives the desired
conclusion. |

Theorem 3.3.8 (Projective case). Let X, Y be irreducible subvarieties of dimen-
sions s, t in P". Then every irreducible component Z of X N Y has dimension
> s+t —n. Therefore, ifs +t —n >0, then X N Y # 0.
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Proof. The first part of the thesis follows from the definition of dimension and the
preceding Theorem 3.3.7, since P” is covered by affine spaces.

Let C(X), C(Y) be the affine cones over X, Y in A”*!. Then C(X), C(Y)
have dimensions s + 1, ¢ 4 1 respectively. Moreover C(X) N C(Y) # 0 since both
contain the origin O = (0, ...,0). By Theorem 3.3.7,

dm(CX)NCE)) =+ D+t +)—m+1)=s+1—n+1>0.

Thus C(X) N C(Y) contains some point P # O, andso X NY # 0. |

3.4 Order of a projective variety, tangent cone
and multiplicity

In Section 2.5 we defined a projective variety X C P” as the locus of the zeros
X = V(a) of ahomogeneous ideal a of the ring K[T7, ..., T,+1]. While the ideal a
determines the variety X, X does notdetermine the ideal; indeed two ideals that have
the same radical have the same locus of zeros (cf. Section 2.2 and Corollary 2.5.5).

The attitude that we prefer to assume is that of considering as projective varieties
the ordered pairs (X, a) formed by an algebraic set X and by an ideal a for which
X = V(a) is the set of its zeros. We will use the term (projective) scheme for
the pair (X, a). In this way, if a and b are two different ideals that have the same
radical, (X, a) and (X, b) are two different schemes having the same associated
algebraic set V(a) = V(b) as support. In this setting, we will say that (X, a) is a
reduced scheme (or also reduced variety) if a = \/a. In essence this is the point of
view of the classical geometers, for whom it was more than natural to distinguish,
for example the hypersurface X with equation f = 0, from the hypersurface X’
with equation f 2 =0,andto say that X’ is the double of X, i.e., X counted twice,
and that every point of X is double for X'.

The classical geometers, when they thought of a variety X, in reality had in
mind a system of algebraic equations that define it, and concepts like double or
triple varieties, etc., were considered obvious. Yet they were indispensable in order
to have fundamental instruments available, like, for example, the theorems of Bézout
(cf. Sections 4.2, 4.5).

As far as the notion of order is concerned, we start by considering the simplest
case, that of a hypersurface X, with equation

f(T1,....,Tht1) = 0.

Define the order of X to be the degree r of the polynomial f = f(T1,...,Th+1)-

If f is irreducible the order r is nothing but the number of points common to
X and a line not contained in X. In fact, these points are obtained by resolving an
algebraic equation g(¢) = 0, not identically zero, of degree r and each of the points
corresponds to one of the solutions. Naturally, in agreement with what has been
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said above, each point must be counted with multiplicity equal to the multiplicity
of the root of g(¢) to which it corresponds.

If the polynomial f is a power of an irreducible polynomial, f = ¢*, the
equation g(¢) = O has all of its u-fold roots independent of the line and each
such root furnishes a point which should be counted i times. The order of the
hypersurface X continues to be the number of its intersections with a line in virtue
of the fact that X = pF is the multiple of the hypersurface F' with equation ¢ = 0.

In an affine chart, with Y1, Y5, ..., Y, as non-homogeneous coordinates, we
consider a hypersurface and one of its points x, and we can certainly suppose that x
coincides with the coordinate origin. We assume that there are no terms of degree
< m in the polynomial f, while there really are terms of degree m, and we write

f=Jnt fmt1 40,

where f; is a homogeneous polynomial of degree j in Y7,...,Y,. In this case we
will say that x is a point of multiplicity m for the hypersurface X (which means
that m is the order of vanishing of f in x) and that the hypersurface T'Cx(X) of
equation f,, = 0 is the tangent cone to X at x.

The definition is justified by the fact that for every line not contained in X and
passing through x the equation g(¢) = 0 which gives its intersection with X has
the root that corresponds to the point x as a root of multiplicity at least m (and in
general exactly m), and so x should be counted at least m times in the group of
intersections. The lines (generators) of the cone 7'Cy (X) are exceptional in that
for each of them the equation g(#) = 0 has the root furnished by the point x with
multiplicity at least m + 1. Thus all the generators of 7'Cx(X) can be considered
to be tangent to X at x (cf. Proposition—Definition 3.1.1).

If m = 1 the point x is non-singular and the tangent cone coincides with the
tangent space (hyperplane) at x.

The multiplicity of a point for a hypersurface thus coincides with the order of
the tangent cone at the given point (for further details see Section 5.2).

Example 3.4.1. Let X be an algebraic variety and P one of its points. If P is
singular on X, the tangent space Tp (X) to X at P (cf. Section 3.1) does not furnish
a good description of the local geometry of X at P. In particular, if X C A? :=
A2(K) is a plane curve and P a singular point of X, the tangent space coincides
with the tangent space Tp (A%) = A2 of the ambient affine space A2 at P.

The “tangent cone” furnishes a better description of the local structure of a
variety at its singular points. For example, if X C A% .y) is the curve with equation

y2 — x2(x 4+ 1) = 0 the tangent cone is the union of the lines with equations
x + y = 0, tangent to the two branches of X at O = (0,0) (and O is a node for
X). Similarly, the tangent cone to the curve X with equation y? — x> = 0 is the
line y = 0, counted twice (and O is a cusp for X) (see also §9.2.5). In each of
the two cases O is a double point; that is, of multiplicity two, which is equal to the
order of the tangent cone.
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Let X = V(a) C A” be an affine algebraic set and let x be a point of X. After a
suitable change of coordinates if necessary, we may suppose that x coincides with
the coordinate origin.

Definition 3.4.2. Let X = V(a) C A" be an affine algebraic set, containing the
coordinate origin x = (0,...,0). We define the tangent cone to X at x to be the
subvariety TC(X) of A" defined by TCyx(X) = (V(a*),a™), where a* is the
homogeneous ideal generated by all the homogeneous polynomials f* which are
initial forms of the polynomials f € a.

Abuse of language. For brevity, and when there is no chance of confusion, hereafter
we will sometimes write “tangent cone” rather than “support of the tangent cone”.

3.4.3 Intrinsic nature of the tangent cone. One might think that the preceding
definition depends on the particular immersion of X in A”. To render that definition
intrinsic it is useful to make use of the notion of the associated graded ring of an
ideal in a commutative ring.

Let then A be aring and a an ideal of A. We consider the graded abelian group

Ga@) = Pa?/a?*l a =4,
d=0

where the elements of a? /a?* 1 are considered as homogeneous elements of degree

d. Tt is possible to deﬁne a mulnphcatlon in G4(a) in the following way. If
fea?/a?tland 5 € a?’ /a?t onehas x € a? and y € a? andso xy € a? T4,
We then set
Fj=3y€ ad+d’/ad+d’+1.

It is easy to see that this operation is well defined, associative, commutative, and
distributive with respect to addition. In this way G4(a) becomes a graded ring
which we will call graded ring associated to A with respect to the ideal a.

Now suppose that a is finitely generated and let @ = (ay, .. .,as). Then a basis
for a? is given by the monomials of the type aj' .. Lalf withiy + -+ iy =d. It
then follows that

_il

a'l...a;v=al.. a8 € a?/adt!,

where @; € a/a?. Thus one sees that G4(a) is generated over A/a by the classes
a; of the a; modulo a?. If we then set § = a; mod a2, we will have

GA(C() = A/a[gl, e 7€S]‘

It is then immediate to consider the homomorphism

@: A/alYy,...,Ys] > A/alé1, ..., &] = Ga(a),
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defined by ¢(Y;) = &, fori = 1,...,s. The homomorphism ¢ is homogeneous
of degree zero and surjective, and the kernel ker(¢) is the homogeneous ideal of
A/alYy,..., Y] that has as generators the forms F(Yi,...,Y)in AlalYy,...,Ys]
such that F(El, ..., &) = 0, namely, such that F(ay,...,as) € a”*!, where r is
the degree of F. Thus, one has

Ga(a) = A/algy, ..., &) = A/a[Y1, ..., Ys]/ker(p). (3.19)
Let then X = V(a) C A” be an affine variety containing the coordinate
origin x = (0,...,0). Let K[Y1,...,Y,] be the ring of polynomials and let
m = (Y1,...,Y,)/a be the maximal ideal that defines the origin as a point of
X inthering A = K[Y1,...,Y,]/a.
The intrinsic nature of the definition of the tangent cone given in Definition 3.4.2
is then expressed by the isomorphism

Ga,,(mAp) = K[Y1,..., Y] /ker(p) = K[Y1,..., Yy]/a", (3.20)

where a* is the homogeneous ideal generated by all the homogeneous polynomials
f* that are initial forms of the polynomials f € a. To prove (3.20), we observe
that

G (MAm) = P m? A /mH Ay,
d>0

Now, Ay /mAw = A/m and there is an isomorphism of A /m-vector spaces
(mAm)d/(mAm)d+1 o~ md/md+1

defined by setting, for each x € md,

- X
X = class of T € mdAm mod md+1Am.

One has x = 0 if and only if % € deAm, that is, if and only if there exists

t & m such that xt € m?*!; since m?¢*! is m-primary (i.e., Vm4+1 = m) this
is equivalent to x € m?+1, From this it then follows that Gy, (MAp) = G4(m)
and so, by (3.19),

G4, (mAy) = A/m[Y, ..., Yy]/ker(p) = K[Y1,..., Ya]/ker(p).

There remains to prove that ker(¢) = a*, and, since these are homogeneous ideals,
it suffices to prove that if f(Y1,...,Y,) # Oisaform of degree r in K[Y1,..., Yy]
one has f € a* if and only if f € ker(p). On the other hand, under the given
hypotheses and setting y; = Y¥; mod a, so that mt = (y1,..., y,), one has the
equivalences

f(Y1,....Yy) €ker(p) < f(1,....yn) em"T!
— f(Y1,....Y) e(,....Y,) +a
— f(Y1,...,Y,) €a”.
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Remark 3.4.4. In contrast to what happens for the tangent space (cf. Defini-

tion 3.1.5), one notes that if X = V(a) witha = (f1,..., fm), the tangent cone at
X is not always the intersection of the tangent cones to the individual hypersurfaces
with equations f; = 0,i = 1,...,m. It suffices to observe that the initial form of a

sum of polynomials does not necessarily belong to the ideal generated by the initial
forms of the summands. For example, C = V(a) C A3, witha = (x—y2,z3—x),
is an irreducible curve formed by the intersection of two cylinders. The tangent
cone to each of the cylinders at the origin is the plane with equation x = 0 which can
not be the tangent cone to C inasmuch as the initial form y2 of (x — y?) + (z3 — x)
does not belong to the ideal (x) generated by the initial forms of the two summands.
In order to have all the “information” possible regarding the origin as a point of
the curve C we must keep in mind the tangent cones to all the surfaces that pass
through C. For example, one must also consider the tangent cone (consisting of the
plane y = 0 counted twice) of the surface with equation y? = z3 which obviously
contains C.

Another difficulty is related to the fact that even when a is a prime ideal, the
ideal a* of initial forms can very well not be prime. It is necessary to consider the
primary decomposition of the ideal a*, that is to write a® = q; N --- N qp with g;
primary ideals, j = 1,..., &, see 2.7.4; to each of these is associated an irreducible
component V(,/g;) of the tangent cone, which will be “counted” a suitable number
of times (cf. Exercise 3.4.11 (2)).

If X = V(a) and x = (0,...,0) € X, the ideal a® = {£V, £ € a
generated by the linear forms fx(l) of the polynomials f € a at x is obviously
contained in the ideal a* generated by the initial forms of the polynomials f € a.
Thus one has

V(a*) C Te(X) = V(@) c A",

that is, the (support V(a*) of the) tangent cone to X at x is a subvariety of the
tangent space Ty (X).

As in the case of tangent spaces (cf. Section 3.1), if X C P” is a projective
algebraic set and x is one of its points, we can choose an affine chart A" C P”
complementary to a hyperplane not containing x and consider the closure of the
tangent cone 7C, (X N A™) C A" in P”. In this way we obtain a projective variety
that we call the projective tangent cone to X at x.

We now wish to extend the notion of order, tangent cone, and multiplicity of a
point to varieties of arbitrary dimension in such a way as to retain the fact that the
multiplicity of a singular point on a variety X is the order of the tangent cone in
that point.

Unlike the case of hypersurfaces examined above, for projective varieties of
arbitrary dimension the situation is not at all simple, and a rigorous algebraic treat-
ment, for which we refer the reader for example to [48] and [49], requires tools
which are outside the scope of this book.
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We will overcome the obstacle by using the methods of projective geometry.
However, we will need some preliminary observations which are usually considered
evident in classical texts and left to the reader’s intuition, or possibly to verification
in the case of examples.

3.4.5 Projection of a variety from linear spaces. In P” consider an irreducible
variety X of dimension k and a generic subspace S, of P” of dimensionr < n—k—1.

We define the cone that projects X from S, (or the projecting cone of X from
S ) to be the locus V of the subspaces S, 41 that join the given S, with the individual
points of X. The S, is called the vertex of V, and each space S, is said to be a
generator of V.. We prove that

* the projecting cone V is an algebraic set of dimension dim(V) =r +k + 1.

Suppose that the variety X is the locus of common zeros of the homogeneous
polynomials f;(71,..., Ty+1) belonging to K[T'| := K[T1,...,Ty+1]. Thatis,
X = V(a) where a = (..., fj(T),...). Let S, be the intersection of the n — r
independent hyperplanes with equations Hy (T4, ..., Ty4+1) =0,g =1,...,n—r.

The space Sy +1 thatjoins S, withapointx = [a1,...,ad,+1] € X hasequations
H(T) _ Hx(T) _  _ Haor(T), 3.21)

H](x) Hz(x) Hn_r(x)’
and the equations of V' are obtained by eliminating the parameters ai, ..., d,+1

from the system consisting of the n —r — 1 equations (3.21) and from the equations
fj(al, Cen ,a,,+1) =0.

We will also say that the intersection X' = V N S,,—,_1 is the projection of X
from S, onto a subspace S, —,—1 skew to it.

We observe that if the center of projection S, has equations 77 = T, =

- = Ty—r = 0, the projection X’ = V(b) of X from S, onto the S,_,_;

with equations Ty,—y+1 = -+ = Tp,41 = 0 (where T1,75,...,T,—, are ho-
mogeneous coordinates) is the algebraic set associated to the contracted ideal
b=a:=anK][T,...,Ty,—]. The projecting cone V is the algebraic set defined
by the same equations in P”, thatis, V = V(bK][T1,..., Ty+1]), cf. §5.2.3.

As far as the dimension is concerned, we observe that a generic space H =
Sy —r—k—2 does not meet S, and is joined to S, by a space L = S,,_;_1 which does
not meet X (cf. Definition 3.3.1). Thus H does not meet V' because if there were
apoint A € V N H, the space L, that contains the join J(4, S;), would meet X
(inasmuch as the join J(A4, S,) is one of the spaces S,+; of V' and so contains a
point of X). Thus, by Definition 3.3.1, we have that dim(V) <r + k + 1.

To prove the equality, we consider a generic space S,_,_x—1. The join space
o = J(Sy—r—k—1, Sr) has dimension n — k and so, again by Definition 3.3.1, meets
X in at least one point P. The space J(P, S;), namely, the generator space of V
that passes through P, and the space S,,—,_—1, both contained in the space o, have
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a point in common by Grassmann’s formula, see 1.1.8. Thus, our S, _,_,_; meets
V,and sodim(V) > r + k.

Example 3.4.6. In P> we consider the surface X which is the locus of zeros of the
polynomials
W, —T3T4y — TsTs, Ta—Ts, Ts—Ts.

We project X from the line S; with equations 77 = T, = T3 = T4 = 0 onto the
subspace S3 = Pr, 1,,75,7,] Skew to it.
If x = [a1,...,ae]is a generic point of X, the join S, = J(x, S1) has equations

T T, T Ty

ay ajn as a4'

Remembering that a1a, — azas — asag = 0 and a4 = as = ag, we eliminate the
parameters ay, . . ., dg, to obtain the equation

T\Ty — T3Ty — T = 0. (3.22)

In this case the projecting cone is the hypersurface V of P> with equation (3.22).
The same equation, read in S3 = P(7, 1, 75,7,], Tepresents the projection X’ of X
from the line S; onto S3.

We now consider the particular case r = n — k — 2 of the preceding discussion.
Let o be a generic S,,—; of P”. It meets X in a finite number of points, and so
contains a finite number of chords of X consisting of the lines that join pairs of these
points. A generic S,_;_1 of o0 does not contain any of these lines and therefore
a space S, _x_p contained in it (and thus a generic S;,_x—_, of P") does not meet
chords of X.

Thus we find spaces S, __; passing through such S, _x_, and having in com-
mon with X only a single point. This implies that the generic S,_;_; generator
of the cone V' that projects X from S,_;_, contains only one point of X (whereas
particular generator spaces may very well meet X in more than a single point). In
this case we will say that the projection 7 of X from the S,_;_, onto a space Sk 1
which is skew to it is simple. Then for a generic point x” belonging to the projection
X' = V N Sk41, the inverse image 7! (x’) consists of the unique point in which
Sp—k—1 =J(x', S;_x_») meets X.

There can, however, be special spaces S, _x—, from which X is projected mul-
tiply. If the generic generator space of V' meets X in v > 2 points we say that the
projection is v-fold.

In the case r = n — k — 2 under consideration, the cone V' that projects X
from S,_x—, onto a subspace Si4; is a hypersurface of P” and the projection
X’ = V N Sk+1 is a hypersurface in Sy41. In this case, the elimination of the
parameters ay, . .., d,+1 described above, where x = [a1,...,d,+1] is a generic
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point of X, leads to a single equation ¢ = 0 which is the equation of the projecting
cone V', and whose degree is the order of V.

We now define the order of a projective variety in terms of the orders of the
projecting cones.

Definition 3.4.7. The order deg(X) of a k-dimensional projective variety X C P”
is the maximal order of the (n — 1)-dimensional cones that one obtains by projecting
X from spaces S;,—r—».

Proposition 3.4.8. The order deg(X) of a k-dimensional projective variety X C P"
is the number of points which X has in common with a generic Sy,—f.

Proof. Let S be a generic S,,—r—» and £ a line skew to it. The join space J(S, £)
is a generic S,_j that, by Definition 3.3.2, meets X in a finite number p of points.
The line £ meets the cone V that projects X from S in m = deg(}') points, each
of which belongs to a generator space S,_x—; of V. Since the projection 7 of X
from S is simple (in view of the fact that S is generic) each of these spaces Sy, _x—;
contains one and only one point of X. These points are contained in our S, _x;
hence such a generic S, _x meets X in (at least) m points, and so p > m. It follows
that p > deg(X).

Conversely, let x be one of the points in which S,,_x meets X. The p spaces
J(x, S), which belong to the cone V', have dimension n — k — 1 and lie in a space
S, —r that contains £, and so each has a point in common with £. From this it follows
that p < m < deg(X). O

As a consequence of Proposition 3.4.8 we can reformulate the definition of order
in the following equivalent fashion.

Definition 3.4.9. The order deg(X) of a k-dimensional algebraic set X C P”" is
the order of the (n — 1)-dimensional cone obtained by projecting X from a generic
space S, _x—2, that is, it coincides with the order of the hypersurface X’ which is
the projection of X from a generic S,__, into a subspace Sk 1.

In the sequel we shall often use the notation X ,f to indicate an algebraic variety
of dimension k and order d.

Remark 3.4.10 (Explicit construction of a birational map between a projective
variety and a hypersurface). In §2.4.10 we have proved the birational equivalence
of any affine algebraic set with a hypersurface. In §2.6.11 we observed that as a
consequence of essentially algebraic facts the analogous result also holds in the
projective case.

If X C P” is a projective algebraic set of dimension k, the construction of a
simple projectionw: X — X’ C Sk of X from a generic S,,—x—» into a subspace
Sk+1 skew to it, discussed in this paragraph, constitutes a geometric proof of the
birational equivalence of X with a hypersurface in pk+1,



80 Chapter 3. Geometric Properties of Algebraic Varieties

We now propose two alternative and elementary definitions of multiplicity. Let
X=X ,f C P”" be a k-dimensional projective variety of order d. Let L be the set
of S,,—x—> in P” in general position with respect to X, namely such that

i) they do not contain points of X;
ii) from each of them X is projected simply.

With this as premise, let x be a point of X and 75 : X — Sk the projection from
aspace 0 € L. If ug(x) is the multiplicity of the point 4 (x) for the hypersurface
75 (X) C Sk41, we take as the multiplicity of X at x (or of x for X) the integer

px(X) = inf ue(x).
o€eL

Note that this definition agrees with that given above in the case of hypersurfaces
(k = n—1). Indeed, if X = X,,_; is a hypersurface of P” the projection 7: X —
Sk+1 = Sy is the identity.

The following is another method (useful for explicit calculation) for defining
multiplicity and tangent cone in a point. We say that X = X ,f has multiplicity
Ux(X) = s at x if the number of points different from x common to X and a
generic linear space S, _j passing through x is d —s. The union of those particular
spaces S,,— that have not more than d — s — 1 distinct points different from x
in common with X constitute the projective tangent cone T'y, of order s, to X
at x. One notes that this definition agrees with that given previously in the case
of hypersurfaces. The fact that ' has order s can be easily seen as follows. We
consider a generic S, _x—» and we project X and [y onto a subspace Si ;. In this
way we find two hypersurfaces X’ and T that have their orders equal to that of X
and to that of T’ respectively. Let x” € Sy be the projection of the s-fold point
x of X. The cone I'* tangent to X’ at x” thus has order s. But I'* = I"’. Indeed,
the generator lines of the cone I'y (with vertex x) are contained in spaces S, that
pass through x and that away from x have at most d — s — 1 intersections with
X and are projected from the space S,,_x_5 in Sk into the lines through x’ and
having at most d — s — 1 intersections with X’ away from x’. This means that the
generator lines of the cone project onto the generators of T".

We note explicitly that the two definitions proposed are equivalent. Indeed, if
x € X is a point of multiplicity s on the basis of the first definition, its image 7 (x)
under the projection 7: X — X’ C Sy from a generic subspace S,,_x_» onto a
subspace Sy 11 skew to it is an s-fold point for the hypersurface X’ of Sg1. Thus,
a generic line £ of the space Si; has exactly d — s points different from 7 (x)
in common with X’. Joining these points with S,_;_, one obtains d — s generic
spaces S,,—x—1 each of which meets the variety X in a point. Thus we have d — s
distinct points of X (and also distinct from x) which are the points different from
x and common to X and to the (generic) space S,_x which joins S, _r_, with the
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line £. Thus x is a point of multiplicity s on the basis of the second definition
proposed. The verification of the converse is analogous.

Exercises 3.4.11. Let X = V(a) be an algebraic set of the affine space A3 contain-
ing the origin O = (0,0,0). Describe the tangent space To(X) and the tangent
cone TCo(X) at O in the two following cases:

M a=@x—y%x+yz+2%; Q) a=(xz—y% x> —yz, 22— x?%y).

()a = (x—y2,x+ yz +z%)isaprime ideal; X = V(a) is a curve of order 6
passing through the origin O. The tangent space T (X) at O is the plane x = 0.
Since the dimension of this space is bigger than dim(X), O is a multiple point
for X. The ideal a* of the initial forms of the polynomials of a is (x, y? + yz) =
(x,y) N (x,y + z) and thus the tangent cone TCo(X) is a pair of lines passing
through O (and contained in Tp (X)).

Using the second definition proposed, it is easy to verify that O is a point of
multiplicity 2 for X. In this regard, one notes that the points common to X and
the plane 7 : pz = Ax + py passing through O are the solutions of the system of
equations

x—y2=x+yz+z23=pz—Ax—puy =0.

The result of the elimination of x and z from this system, that is, the result of
elimination of z from the system

Y24+ yz4+23=pz—Ax—puy =0,
is
Y202 (0 + 1) + (0PA + 1)y + 3Au2y? + 322 uy% + 134 = 0.
Therefore there are four intersections of X with s distinct from O if 7 is generic;
there are instead only three if p(p 4+ @) = 0, that is, if 7 passes through the z-axis
or through the line x = y + z = 0. Thus one finds two pencils of planes that have
as axes the two lines constituting the tangent cone (cf. Section 5.3).

(2) The ideal a(? of the linear forms of the polynomials of a is the ideal (0);
hence To(X) = A3.

The ideal a* of the initial forms of the polynomials of a is a* = (y? —
xz,yz,z%). Since v/a* = (y,z) the tangent cone TCp(X) at O is the x-axis
counted a suitable number of times.

It is useful to note that the smallest integer v such that (v/a*)” C aisv = 3.
Indeed, y? ¢ a* and so v > 3. Furthermore, y3 = y(y% — xz) + x(yz) € a*.
Then, if A, B € K|[x, y, z] are two arbitrary polynomials we have

(Ay + Bz)? = A3y + (34%2By)yz + (3AB%y + B32)z% € a*.

The variety X = V(a) is the monomial curve of 5" order locus of the point
P(t) = (¢3,t*,1°). To see this it suffices to observe that if x # 0, and thus
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y.z # 0, then, setting 1 := 2

=2
coordinates K[X]) and hence

one has t = % (since y2 = xz in the ring of

Thus
X
X y

Standard arguments from the algebra of polynomials, which we give here for
completeness, show that the ideal a is prime, inasmuch as it coincides with the
kernel of the morphism v : K[x, y,z] — K|[t] defined by ¥ (x) = 13, ¥ (y) = t4,
¥ (z) = t°; in particular X is an irreducible curve.

The inclusion a C ker(y) is obvious. To prove the opposite inclusion we set
a=xz—y% B =yz—x3y=1z2—x%y. Anarbitrary f € K|[x, y, z] can be
written in the form

f=A(x,y,2%) +zB(x,y,2%) = A+ Az + xzL + yzM,
withA € K, A,L, M € K|[x, y, z?]. Since
2Z2=x*y4+y, xz=y*4a, yz=x>+8,
we have
f=Az+4+gx,y)+6, withg € K[x,y], 0 €a=(a,B,7).
If f € ker(y) one obtains
0=At>+ g3t

and therefore A = 0 and g(x, y) is the zero polynomial (because no summand of
g(t3,t*) can be of degree 5). Thus ker(y) = a.

The curve X has the origin O as a triple point. In fact, the planes passing
through O have at most two distinct points in common with X; exactly two if the
plane is generic. The planes of the pencil Ay + ux = 0 are exceptional in that the
generic plane of this pencil meets X in only one point different from O; the plane
z = 0 does not meet the curve away from O. Thus one has a triple point at O with
three tangents lines that coincide there with the x-axis, and with the plane z = 0
as osculating plane.

One also notes that X constitutes an example of a curve which is not a complete
intersection in A3 (cf. Section 7.1 and the note 5.8.5), which is however a set-theo-
retical complete intersection of the two surfaces y2 —xz = 0, x> +2z3—2x2yz =0
which have the same tangent plane at every simple point of X (cf. [71] and also [19]).



Chapter 4
Rudiments of Elimination Theory

In Section 4.1 we introduce the Euler—Sylvester resultant of two polynomials and
we recall some of its basic properties. As an application, in Section 4.2 we define
the intersection multiplicity of two algebraic coplanar curves and we prove Bézout’s
theorem (Theorem 4.2.1), which gives the numbers of points common to two such
curves.

In Section 4.3, by using another interpretation of the resultant, we show that
the intersection multiplicity of two coplanar curves is independent of the system of
projective coordinates chosen.

In Section 4.4 we discuss a procedure for the elimination of an indeterminate
first proposed by Kronecker.

In Section 4.5 we introduce the intersection multiplicity in higher dimension
and we state Bézout’s theorem in its full generality.

4.1 Resultant of two polynomials

Let A be an integral domain with identity and of characteristic zero. Suppose
furthermore that A is a factorial ring, that is, an integral domain such that every non-
zero element admits a unique factorization (up to units) as a product of irreducible
elements. An element @ # 0 of A is said to be irreducible if it is not invertible and
if for all b, ¢ € A such that a = bc, either b or ¢ is invertible. It is known that the
ring A[X] of polynomials in the indeterminate X is also factorial.

Consider two non-zero polynomials f, g € A[X] of degrees n and m that have
a non-zero common divisor i € A[X]. Setting f = hf;, g = —hg; one then has

fg1+gfi=0. @.1)

If 1 has degree > s the degree of f; will then be < n — s and that of g; will be
<m-—s.

Conversely, suppose that there exist two non-zero polynomials fj of degree
< n —s and g; of degree < m — s (with s > 0) such that one has (4.1). Each
of the irreducible divisors of f is a divisor of the product g f1 and so, A[X] being
factorial, either it divides f; oritdivides g. Since deg(f1) <n—s <n = deg(f),
some divisor of f divides g, whence f and g have a common divisor of degree
> 5. Thus we have established the following fact:

* A necessary and sufficient condition for two (non-zero) polynomials f and
g to have a non-zero common divisor / of degree > s is that there exist two
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non-zero polynomials f; of degree < n — s and g; of degree < m — s such
that fg1 +gf1 = 0.

Now, if f = aoX" +a1 X" ' 4+ 4+a,, g = boX™ + b X" 1 +... 4+ b,, with
agbg # 0, the necessary and sufficient condition for the existence of two non-zero
polynomials

fi=poX" o X" T e pass, g1 = o X T XTI T e s

such that (4.1) holds, or, equivalently, such that qq, . .., gm—s, Po, - - - » Pn—s Satisfy
the homogeneous system

aopqo + bopo =0,
aiqo + aoq1 + bipo + bop1 =0,

anqm—s + bmpn—s =0

is that the matrix

ap 0 0 ... 0 by O O ... 0
ay do 0 0 b] bo 0 0
a di1 do ... 0 b2 b] b() 0
0 0 0 ... a, 0 0 0 ... bp

withn+m—s+ 1rowsand (n —s+ 1)+ (m—s+1) = m+n—2s+ 2 columns
has rank < m 4+ n — 2s + 2. In particular, in the case s = 1, one has:

¢ The necessary and sufficient condition in order that f and g should have a
common divisor of degree > 0 is the vanishing of the determinant of order

m-+n,
a a1 a ... a, O ... ... ... 0
0 ap a1 a ... ... ap ... ... O
I . 2
RED=\pe by by oo o by o 0] @D
0 bo by by ... ... by, O ... O
0 bm

This determinant is called the Euler—Sylvester resultant of the two polynomials f
and g obtained via elimination of the indeterminate X .
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If R(f, g) = O there exist two polynomials f; of degree n — 1 and g; of degree
m — 1 such that

fgi+gfi=0.

Lemma 4.1.1. Let A be a factorial ring, and let R(f, g) be the Euler—Sylvester
resultant of two polynomials f, g € A[X]. Then

(1) R(f.g) =O0ifand only if f and g have a common divisor of degree > 0;
(2) R(f, g) belongs to the ideal ( f, g) generated by f and g.

Proof. The above discussion shows statement (1).
To show (2), observe that if p; = a;joX' + aj X" ' + - + a;; € A[X],

i =0,...,t,aret + 1 polynomials of degree < ¢ one has
doo do1 ... dot apo do1r --- Ador—1 Do
t
aipo dix ... dig aio di1 ... A41i-1 D1
= ) =E H;pi
i=0
ap dg ... Ayg ap dyg o ... dri—1 Pt
WithHl'GA.

On the other hand R( f, g) is the determinant of the coefficients of the m + n
polynomials of degree t <m +n — 1,

pi=Xfifi=0....m—1;, pi=X""gifi=m,...m+n—1.
Thus one has
R(f.&) = Ho(f)+-+ Hnt (X" f) + Hnt1(8) ++ -+ Hmsn1 (X" g),

with H; € A,i =0,...,m +n — 1, and hence

R(f,g)=Pf + Qg with P, Q € A[X]. 4.3)
Therefore one has
R(f.g)eAN([.8).
where ( f, g) denotes the ideal of A[X] generated by f, g. O

The resultant ideal of f, g is the ideal of A generated by R(f, g). By the
preceding lemma one then has

R(f.8) cAN(f.8).
Note that if A is a field the following equality holds (cf. Section 4.4):

R(f.8) =AN(f.2).
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Indeed, in that case the element R( f, g) is invertible and so by (4.3) one has ( f, g) =
A[X].
The determinant R( £, g) is a sum of products of the type

:I:Cl,'1 <Ay, bj ...bj";

the weight of a product of this type is the sumi; + -+ 4+ iy + j1 + -+ + Jn. One
sees easily that all the summands of R( f, g) have the same weight.

We will denote the element of R( f, g) that belongs to row « and column 8 by
(. B).

If < m one has (,B) = ag—q ((a, ) = 0if « > B); if « > m one has
instead (o, B) = bg—g4m (@, B) = 0if B —a 4+ m < 0). An arbitrary non-zero
summand appearing in the development Y £(r1,51)(r2,52) - .. (Fm+n, Sm+n) Of
the determinant R( f, g) is a product of m + n elements (r, s) such that each row
and each column contains one of the factors. Therefore, the weight of an arbitrary
non-zero summand is

(Sl—}’l +"'+Sm—rm)+(Sm+1—}’m+1 +m—|—---—|—sm+n—rm+n—|—m),

namely
m+n m+n
E S; — E rj +mn =mn.
i=1 j=1

We conclude that the resultant R( f, g) is isobaric of weight mn.
For further properties of the determinant R( f, g) we refer the reader, for exam-
ple, to [62, V, §10] and to [35, 14.1].

4.1.2 The homogeneous case. We add a few observations with regard to the ho-
mogeneous case.

(1) Let f, g be two binary forms (i.e., homogeneous polynomials of K[xg, x1])
of degrees n, m respectively:

n m
f(x0,x1) = Zaixg_lxll g(xo,x1) = ijxg'_]x{.
i=0

Jj=0

Assume that f, g have positive degree with respect to x¢ and let us consider
f, g as elements of A[xg], where A := K][x1]. We denote by R( f, g, x¢) the
Euler-Sylvester resultant of f, g € A[xo]. Then by Lemma 4.1.1 we know
that

(a) the polynomials f, g have a common divisor in A of positive degree if
and only if R( f, g, x¢) is the zero polynomial in 4;



(b) R(f. g.x0) € (f.) N A.

Moreover, one has

where R( £, g) is defined by (4.2).

To see this, write

ao aixi
0 aop

:R(f’ g,X()) = bo bl.xl
0 bo
0
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R(f, g, x0) = x{""R(f, &),

azx%

apxy

bzxf
b1x

azxj

bzx%

anxy

anxf cee e 0
anx’

bux* 0 -+ 0

b x]

m—1

Multiply the second row by x1, the third by xf, and so on, the m™ by X,
the (m + 2)™ by x1, the (m + 3)™ by x2, and so on, the (m + n)" by x7~1,

A:=:R(f:g’xo)x}+2+m+m—1x}+2+m+n—l:::R(f;g’xo)xl

azxf

bzxf

anxy

0

b x’

anx'thl 0

bmx

;’H’l 0 - 0

m(mfl)_i_n(nzfl)

(m+n)(m+n—1)
_ 1424+ (m+n—1) T
A= x| R(f.8) = x,

R(f. &)

Comparing the two equalities we have the result.

Similar conclusions hold by interchanging x¢ and x;.

to get
ap apxp azx%
0 aopxy a1x%
o . .
A T bo b1x1 b2x12
0 box b1x12
0
Thus
On the other hand,
) If f1, f2,-.

dl ’ d29 .
tem of equations

fi=fa== /=0,

., fn are homogeneous polynomials in K [xo, ..
.,dp and if d = max{dy,..

., Xr] of degrees

., dp}, consider, together with the sys-

(4.4)
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also the system that one obtains by substituting for every equation f; = 0,
j =1,...,h,the r + 1 equations (all homogeneous of degree d):

XV =0 i=0....r (4.5)

It is clear that every solution of the system (4.4) is also a solution of (4.5)
and one sees immediately that conversely every proper solution of the system
(4.5) is also a solution of the system (4.4).

With these facts as premise, let @1, @2, ..., ¢ € K[xo, ..., x,] be forms of the
same degree d, and suppose that one wishes to eliminate the variable xo from the
system of equations

pr=¢2=--=¢p=0. (4.6)
We set
xo=yo and x; =yx/, i=1,...,r.
If
0; = oo xd 4o (xr, . x)XET o ag (L x),
ag; € K[x1,...,x,] being homogeneous polynomials of degree s, s = 0,....d,
one has that foreach j = 1,...,A:

@i =0 (Yo, Y1X1, ..., Y1X,)
=060jyg ‘f‘alj(x,p---?x;)YIy(‘)i_l +"'+O‘dj(x/1,--.,x;)Yii7

and so the polynomials ¢ € K[yo, y1.X],...,x,] are binary forms belonging to
the ring A[yo, y1] where A = K[x],..., x.].

We construct the resultant system of these / binary forms by writing the Euler—
Sylvester determinant R(F, G) (= R(F, G, yo) in our previous notation) of the two

binary forms

h h
F(yo.y1) =Y _Ajgj and G(yo.y1) = Y 1;9}.

j=1 j=1
Itis abihomogeneous polynomial in the two sets of indeterminates A = (A1, ..., A3),
w = (i1, ..., up) with coefficients in K[x1,. .., x.]. On imposing the conditions

that all the coefficients of R(F, G) be zero one obtains a system of homogeneous
equations
Or(x7,...,x,) =0, t=1.2,.... 4.7)

If X1,...,X] is a solution of the system (4.7), there exists a common zero for the
binary forms (p;; that is, there exist y;, y; such that

@i (Fos V1 X0, ¥1X%) =0, j=1,...,h
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But this means that (3, y X}, ..., y;X,) is a solution of the system (4.6).
Since the polynomials 6; in (4.7) are homogeneous and x; = ylxlf, i=1,...,r,
the system of equations (4.6) is equivalent to the system

0,(x1,....x,) =0, t=1,2,..., (4.8)

which therefore is a resultant system of the system (4.6). The equations (4.8)
represent the cone V' projecting the variety X = V(¢1,...,¢p), thatis, V =
V(..,0q..0).

4.2 Bézout’s theorem for plane curves

As a simple application of the tools introduced in Section 4.1 we prove Bézout’s
theorem which gives the number of points common to two coplanar algebraic curves.

In the projective plane P? = P2(K) over an algebraically closed field K, let
C", C™ be two algebraic curves of orders n and m and equations f = Oand g = 0
respectively and not having common components.

We fix a system of homogeneous projective coordinates xg, X1, X choosing
as the point Ag = [1,0, 0] a point not belonging to C" U C™ and we write the
equations f = 0, g = 0 ordering them with respect to xg:

f(x0,x1,X2) = aox +ay(x1,x2)xg " + -+ an(x1,x2) = 0,

g(x0,x1,X2) = box{' + by (x1, X2)X0 1 + -+ 4+ by (x1,x2) = 0,

where a;, b; are homogeneous polynomials of degree equal to the corresponding
index and agbg # 0.

We set A = KJ[x1,x2] and consider the polynomials f, g as elements of
the ring A[xo]. Elimination of the indeterminate xo gives a resultant polyno-
mial R(x1,x2) := R(f, g, xo) isobaric of weight mn; and since the coefficients

ai, b; are homogeneous polynomials of degree equal to their respective indices,
R(x1,x3) € K[x1, x2] is a homogeneous polynomial of degree mn. It is not the
zero of A because otherwise the two polynomials f, g would have a common
divisor h(xg, X1, x2) of degree > 1 with respect to xo in A[xo] = K|[xo, X1, X2]
which contradicts the hypothesis that the two curves C”, C™ have no common
components.

If y1, y, are two elements of K such that R(yq, y») = 0, the two polynomials
in K{[xo]

f(x0.y1.¥2) = aoxy +a1(y1,y2)x5 4 + an(y1. y2),
g(x0.y1,y2) = box6" + bl()’l,)@)x(')n_l + oo+ b (y1.y2)

have a common divisor of positive degree (in x¢) and thus at least one common
root yo. Then there exists at least one point [yg, ¥1, y2] common to the two curves
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and having y; and y, as last two coordinates (that is, belonging to the line with
equation y;x; — y1x2 = 0), so that y,x; — y1x5 is one of the linear factors of the
binary form R(xy, x»).

Thus we may conclude that the equation R(x1, x2) = 0 represents the union of
the lines passing through A and containing points common to the two curves. Each
of these lines (which are finite in number, since there exists only a finite number of
pairs (y1, y2) such that R(y;, y2) = 0) contains only a finite number of common
points of the two curves (because otherwise it would be a component common to
each of them) and therefore C" and C™ have a finite number of points in common.

If the point A¢ has been chosen outside of the lines that contain pairs of these
points, each linear factor of R(x1,x,) furnishes a single common point of the
two curves, and so the number of distinct common points of C” and C™ equals
the number of distinct linear factors of R(xy,x,) and is therefore < mn, since
R(x1, x2) is a homogeneous polynomial of degree mn.

We denote the multiplicity with which a linear factor corresponding to acommon
point P of the two curves appears in the factorization of R(x;, x2) bymp(C",C™).
This non-negative integer mp (C”, C™) is called the intersection multiplicity of the
two curves in P. In Section 4.3 (see in particular Corollary 4.3.10) we will show
that it does not depend on the choice of coordinate system.

If we agree to count each common point of the two curves with multiplicity
equal to the intersection multiplicity of the two curves at the given common point,
one thereby obtains Bézout’s theorem for plane curves (cf. Theorem 4.5.2).

Theorem 4.2.1. Let C" and C™ be curves in P? of orders n and m respectively.
Then

mn = Z mp(C",C™).
pPeCcnnCm™

It would be easy to prove that if P is r-fold for one of the two curves and s-fold
for the other, the intersection multiplicity at P satisfies mp (C",C™) > rs; with
equality when the two curves present the simple case at P, namely, they do not have
any common tangent at P. If instead ¢ is the number of common tangents at P,
then

mp(C",C™) >rs +1. 4.9)

In this regard see [87].

4.3 More on intersection multiplicity

We would like to thank our colleague L. Béadescu for calling our attention to the
results discussed in this section and for letting us freely use [3] from which the
content of the section is taken. We also refer to [62, Chapter V].
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The aim of this section is to prove that the intersection multiplicity mp (C”, C™)
defined above depends only on the curves C" and C and P € C” N C™, and not
on the projective system of coordinates chosen.

The algebraic result that will be used is the following.

Theorem 4.3.1. Let A = K|[Y] be the polynomial ring in one indeterminate Y
over afield K andlet f, g € A[X] be two monic polynomials in X with coefficients
in A and without non-constant common factors. Then:

dimg (A[X]/(f. g)) = dimg (4/(R(f. £))).

where R( f, g) is the resultant of f and g.

To prove Theorem 4.3.1 we first need another interpretation of the resultant. We
shall use the following simple lemma.

Lemma 4.3.2. Let h(Xy,...,X,) € Z[X1, ..., Xn] be a polynomial with integral
coefficients. If h(X1, X1, X3,...,Xn) = 0 (that is, if h becomes zero when we
substitute X1 for X, and leave the other X; fixed, i # 2), then X1 — X; divides h
in Z[Xl, ey Xn].

Proof. Itis an easy consequence of Ruffini’s theorem and we leftit to the reader. [

Let now be vy, t1,...,t,, Wo, U1, ..., Uy be independent variables over Z and
consider the polynomials in Z[vg, t1, ..., Iy, Wo, U1, ..., Un][X]:

fo=vo(X —-11)...(X —1tp) = v X" —I—Uan_l + -4 vy,

gw =wo(X —up)...(X —upm) = wo X" +w X"+ 4w,

Thus

vi = (=) vesi(t1,....1,) and w; = (—1)jw0sj(u1,...,um),
where s;(#1,...,t,) and s; (U1, ..., ty) are the i-th and the j-th elementary sym-
metric polynomials,i = 1,...,n, j = 1,...,m. Then it is easy to prove that

UO’UI’---avn7w07wl’---awm
are still algebraically independent over Z.

Proposition 4.3.3. Under the above notation one has

R(fv, gw) = v(()nw(r)z l_[ 1_[([,' —uj).

i=1j=1
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Proof. Denote by ® the right-hand side of the equality in the statement of the propo-
sition, and set Z[v, w] := Z[vg, V1, ..., Un, Wo, W1, ..., Wy]. Since R( fy, guw) =:
R(vg,v1,..., 04, Wo, W1, ..., Wn) € Z[v, w] is homogeneous of degree m in the
variables vy, . . ., v, and homogeneous of degree n in wy, wy, ..., Wy, we get

R(fo. 8w) =vg woh(ty, ... .th 1, ..., Um) =RV, t1,... In, Wo, UL, .., Un),
with
h(tl,...,tn,ul,...,um) € Z[tl,...,tn,ul,...,um].

By the discussion made in Section 4.1, we see that the resultant vanishes when
we substitute #; foru;,i = 1,...,n, j = 1,...,m. Therefore by Lemma 4.3.2
the element #; —u; (which is a prime element of Z[vo, t1, ..., t:, Wo, U1, ..., Um])
divides the polynomial R(vg, v1, ..., Uy, W, W1, . . . , Wy, ). Since for different pairs
(i,j) and (i, j’), t; —u; and t;; — u;s are coprime, it follows that ® divides
R(vo,t, wo,u) := R(Vg,t1,... .1y, Wo, UL, ..., Up).

n m
From ® := vi'wy [[ [] (#/ —u;) and the equality
i=1j=1

n n m
[Tew@) =wi [T]]@ —un-
i=1 i=1j=1
we get
n n
0 = vy l_[gw(ti) = vy n(wot,-’" Fwit™ e wy). (4.10)
i=1 i=1

Similarly,

O = ()" wg [T fo@) = D" wg [ [wordf +v1uf ™ +---+v,). (4.11)

j=1 j=1
From (4.10) we see that ® is homogeneous of degree n in wy, . .., Wy,, and from
(4.11) we see that ® is homogeneous of degree m in vy, ..., v,. Since the polyno-

mial R(vo, t, we, 1) has exactly the same homogeneity properties, and is divisible
by 0, it follows that R(vg, t, wo, u) = k®, with k € Z. Since both R(vy, ¢, wo, 1)
and ® have a monomial v(')” w! occurring in them with coefficient 1, it follows that
k = 1. The proposition is proved. |

Corollary 4.3.4. Let f, g € A[X]be two polynomials with coefficients in a factorial
ring A. Assume that K is a field containing A such that these polynomials have all
their roots in K, i.e.,

f =qoX" —|-111Xn_1 F+idagp =ag(X — A1) ... (X —Ay),
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g=boX" + b1 X"+t by =bo(X — 1) ... (X — pm).

withd;,u; € K,i=1,...,n,j=1,...,m. Then

R(f.8) =agby [ T[] — ).

i=1j=1

Proof. We use the notation introduced above. From the universal property of poly-
nomial rings it follows that there is a unique homomorphism of rings

@: Z[vo,t1, ... ty, Wo, UL, ..., Uy —> K

such that ¢(vo) = ao, (wo) = bo, ¢(t;) = A;,i =1,...,n,and p(u;) = u;,
J =1,...,m. It also follows that ¢(v;) = a;,i = 1,...,n, and p(w;) = b;,
j = 1,...,m. The homomorphism ¢ extends uniquely to a homomorphism of
rings

Q: Zve,t1, ..., ty, Wo, UL, ..., Uun][X] = K[X]

such that the restriction of @ to Z[vg, t1,...,t,, Wg, Uy, ..., Uy] coincides with ¢

and ¢(X) = X. Then ¢(f,) = f and ¢(gw) = g, whence ¢(R(fy. gw)) =
R(f, g). Now the conclusion follows from Proposition 4.3.3. |

Proposition 4.3.5. Let A = K|[Y] be the polynomial ring with coefficients in a
field K in the indeterminate Y and let M be a free A-module of rankn > 1. Let
¢: M — M be an injective homomorphism of A-modules. Then

dimg (M/¢(M)) = dimg (4/ det(p)).

Proof. Letey,...,e, be abasis of M, and let 2 = («;;);,j=1,...,» be the matrix
associated to ¢ with respect to this basis. Since A is a principal ideal domain
(a domain in which every ideal can be generated by one element), there are two
invertible n x n matrices £2; and 2, with coefficients in A such that

& 0 ... O
8 ... 0

919922 . . ’
0 0 ... &,

withéy,...,8, € A\{0}and §; divides §;+1,i = 1,...,n—1(see[62, XV, §2]). If
¥ : M — M is the homomorphism associated to the matrix €2, Q2 2, with respect
to the basis e, ..., e,, we have

dimg (M/y (M) = dimg (M/p(M)).
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because the matrices 27 and €25 are invertible. Further, det(y) = det(2;Q2 25) =
A det(2), with A = det(2;) det(23) € K \ {0}. Therefore

dimg (A/ det(p)) = dimg (A/ det(y)).

Thus we may replace ¢ for v, i.e., there is no loss of generality if we assume that

the matrix of ¢ with respect to the basis ey, .. ., e, has the diagonal form
6 0 ... O
8 ... 0
0 0 ... 6

with §1,...,8, € A\ {0} and §; divides 6;4+1, 1 = 1,...,n — 1. It follows
that M/p(M) is generated by the classes x; := ¢; mod (M), i = 1,...,n.
Moreover, it follows easily that M/p(M) = Ax; & --- @ Ax, and Ax; = A/5; A,

i =1,...,n, whence
n n
dimg (M/@(M)) = dimg (4/8;A) =) _ deg(8;). (4.12)
i=1 i=1
On the other hand,
81 0 0
0 8 ... 0
det((p) =|. . . | =68162...6,
0 0 ... &

and therefore

dimg (4/(det(g)) = dimg (A/ (8182 ... 8,))

" 4.13
= deg(8162...8,) = ) _ deg(8)). (413)

i=1

Comparing (4.12) and (4.13) we get the result. O
Proof of Theorem 4.3.1. Write
f=X"+a, X" '+ 4a,, ai=a;,(Y)eA=K[Y],i=1,....n, (4.14)

and

g=X"+b X" ' it by, b=b;Y)eA=K[Y], j=1,....,m.
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Denote by x € A[X]/(f) the class of X. Since f is monic,
(1,x,%%,...,3" 1
is a basis of the A-module M := A[X]/(f). Moreover, (4.14) yields
a4+ 4a, =0. (4.15)

Let K’ be a field which contains A = K[Y] as a subring such that the polynomials
f and g have all the roots in K'. Let t1,...,1, € K’ be the roots of f and
S1,...,8m € K’ the roots of g. Then

A[X]/(f.g) = M/g'M, whereg' =g mod (f) € M.

We shall first prove the result form = 1. Thus g = X — s, with s = 57 € A4,
whence ¢’ = ¥ — 5. Then the multiplication (denoted “-”) by g’ = X — s yields in
M the relations

=1

F—s5)-1=(=8)-14+1-F+0-32>+---+0-3"1
(X—9) X=0-1+(=s)-X+1-3>+---4+0-7""1,

(F—8)-X"2=0-140-X4 -+ (=5) - X" 24 1.-x"1,
(X —5)- X"V =(=ay) - 1+ (=an-1)% + -+ + (—=az) - X2+ (=s —ay) - x"7L.
The last equality follows from (4.15). Thus the matrix associated to the injective

map of A-modules ¢: M — M defined by ¢(x) = g’ - x, for each x € M, is the
following:

—S 1 0 0 0
0 —s 1 0 0
0 —s 0 0
Q(s) =
0 0 0 L. =S 1
—d, —ap—1 —Ap— ... —ay —(s+ay)

Then an easy calculation yields det(2(s)) = (—1)" f(s), whence by Corollary 4.3.4,
one has det(p) = det(Q2(s)) = R(f, g). Then by Proposition 4.3.5 we get the con-
clusion in the case m = deg(g) = 1.

Ifm > 2, set M := K'[X]/(f)K'[X]. Then M is a K’-vector space with
the basis the classes of 1, X, ..., X"~ ! modulo the extended ideal ( f)K'[X], and
M C M. (Infact, M =~ M ®4 K/, although we do not need this.) Then the
morphism ¢ is the restriction to M of the composition map ¢ o@, o - -0 @, where
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the map ¢; : M — M is defined by ¢;(y) = (X —s;)y, for each y € M. By the
case m = 1, we know that det(¢;) = (—1)" f(s;), whence

det(p) = [ [ det(p)) = D" [ £(s)

Jj=1 Jj=1

=" [T T16@ =) = D™ R(f9),

i=1,=1

where the last equality follows from Corollary 4.3.4. Then we conclude Theo-
rem 4.3.1 again by Proposition 4.3.5. |

Remark 4.3.6. Proposition 4.3.5 remains still valid if we replace A = K[Y] by
the localization K[Y](y—.) defined by

K[Y)w-o) == {5 | Q) # 0},

where ¢ is an arbitrary element of K. Indeed, the ring K[Y ](y_¢) is still Euclidean,
in fact it is a discrete valuation ring, see Definition 4.3.7 below. Using this remark,
from the proof of Theorem 4.3.1 it follows that Theorem 4.3.1 remains valid if we
replace A = K[Y] by the localization K[Y ]y —).

We now need the concept of discrete valuation ring.

Definition 4.3.7. Let A be alocal Noetherian domain which is not a field, and let m
be the maximal ideal of A. We say that A is a discrete valuation ring (DVR for short)
if m is generated by one element . Any such element ¢ is called a uniformising
parameter, or sometimes regular parameter, for A.

Example 4.3.8. Let K be a field and let ¢ € K be an arbitrary element. Let
A= {% with P, Q € K[Y]and Q(c) # 0}.

Then A is the fraction ring of the polynomial ring K[Y] in the indeterminate Y with
respect to the multiplicative system S, := {Q € K[Y] | Q(c) # 0}. Indeed, since
the ideal (Y — ¢) is maximal in K[Y], the ideal m := (¥ — ¢)A is maximal in A.
Moreover, since S; = K[Y]\ (Y —¢), m is the unique maximal ideal of A, that
is, (A, m) is a local ring, with maximal ideal m generated by ¢t = Y — ¢ (in other
words, Y — c is a uniformising parameter for A). It follows that (A, ) is a discrete
valuation ring.

We are now ready to prove that the intersection multiplicity mp (C", C™) intro-
duced in Section 4.2 is independent of the system of projective coordinates chosen.
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Corollary 4.3.9. Let C" and C™ be two curves in the projective plane P? of degrees
n and m and equations F = 0, G = 0 respectively, and having no common
irreducible components. Let P € C" N C™. Then the intersection multiplicity
mp(C",C™) can be calculated by the formula

mp(C",C™) = dimK(O[PZ,P/(ﬁ g)),

where f and g are local equations of C" and C™ around P (i.e., if P € [P)%l, =
P2\ {x; = 0} then we can take f = F/x! and g = G/x").
Proof. According to the proof of Theorem 4.2.1 we can choose a system of projec-
tive coordinates of P? such that the point Py = [1, 0, 0] does not belong to C" UC™
and then the equations of C” and C™ are of the following form:

F(xo,x1,X2) = apxq + al(xl,xz)xé'“ + - 4 an(xg, x2),

G(x0, X1,X2) = boxl + b1 (x1,x2)x0 " 4+ - + b (x1, X2),
with ag, by € K \ {0} and a; (x1, x2) and b; (x1, x2) homogeneous polynomials of
degrees i and j respectively. Therefore there is no loss of generality in assuming
ag = bo = 1. Moreover, we have P € P2 U P2 because the point [1,0,0] ¢
C" N C™. If for instance P € [sz then we can take x, = 1 in the above equations
to get

f(x0,x1) := F(x0,x1,1) = x§ +ay(x;, Dxd ™' 4+ -+ au(x, 1),
g(x0,x1) := G(xg,x1,1) = X2 4+ by (x1, DX + -+ 4 by (x1, 1).

Setting xo = X, x; =Y, aq;(Y) =a;(Y,1)and b;(Y) = b;(Y,1),i =1,....n
and j = 1,...,m, we get

[=/XY)=X"+a (VX" + +an(Y) € A[X],

g=gX.Y)=X"+bi(Y)X" "+ 4+ bu(Y) € A[X],
where f, g € A[X] are monic polynomials with coefficients in A := K[Y]. Since

C" and C™ have no irreducible components in common, f and g have no common
non-constant factors. By Theorem 4.3.1,

dimg (A[X]/(f. g)) = dimg (4/(R(/. 8))).

where R( f, g) is the resultant of f and g. Now, according to Remark 4.3.6 we also
have

dimg (A'[X]/(f. &) = dimk (A'/(R(f. 8))), (4.16)
where ¢ is a root of R(f, g) and A" = K[Y]y—¢) = {% | Q(c) # 0}, which

is a discrete valuation ring (see Example 4.3.8). Then clearly the right-hand side
coincides with mp (C", C™) defined in Section 4.2.
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Now, to any point P € K? it corresponds a maximal ideal mp in A[X] =
K[Y, X]. Then the local ring Op2 p is by definition A[X]w, = K[Y, X]m, . Since
by the proof of Theorem 4.2.1, there is a bijective correspondence between the set
C" N C™ and the roots of R(f, g), we infer that the ring A'[X]/(f, g) is itself
local. Let ¢ € K be the unique root of R( f, g) which corresponds to the given
point P € C" N C™, say P = (co, ¢), cf. the proof of Theorem 4.2.1. Then the
rings A'[X]/(f.g) and Op2 p/(f. g) are fractions rings of K[X,Y]/(f. g) with
respect to the multiplicative systems S; := {h;(Y) € K[Y] | hi(c) # 0} and
Sy = {h2(X,Y) € K[X,Y] | ha(co,c) # O} respectively. Obviously, S1 C S>.
In particular, we get a canonical homomorphism of K-algebras

¢: A'X1/(f.8) > Op2 p/(f.8)-

Then we claim that ¢ is in fact an isomorphism and, in particular,

dimg (A'[X]/(f. ) = dimg (Op2 p/(f. 8)). (4.17)

To see this, first observe that A'[X]/(f, g) and Op2 p/(f. g) are rings having each
just one prime ideal (the maximal ideal). Indeed, since C" N C™ is finite, the K-
algebra K[X, Y]/(f, g) has only finitely many prime ideals and all of them are max-
imal. Since A’[X]/(f. g) is a local ring which is a fraction ring of K[X,Y]/(f. g)
it follows that A’[X]/(f. ) has just one prime ideal (namely, the maximal ideal
mA/[X]/(ﬁg)). From this we deduce that go_l(mo[Pz P) = MA/[X]/(f.g)> ie,pisa
homomorphism of local rings. This latter fact implies that the class [/5] of every
polynomial /1, € S, (that is, such that h(P) # 0) in A'[X]/(f, g) is invertible in
A'[X]/(f. g). Finally, since Op2 p/(f. g) is the fraction ring of A’[X]/(f, g) with
respect to the multiplicative system {[h>] | hy € S»}, we get (4.17).
Thus, by combining (4.16) and (4.17) we get

mp(C",C™) = dimg(Op2 p/(f. 8)).
which is exactly what we wanted. O

Corollary 4.3.10. The intersection multiplicity mp (C", C™) depends only on C",
C™ and P € C" N C™ and not on the system of projective coordinates chosen.

Proof. We have to prove that if 0 € PGL,(K) is a projective linear automorphism
of P? then mp(C",C™) = mg(p)(0(C™),0(C™)). Using Corollary 4.3.9 the
conclusion is clear because the rings Op2 p/(f, &) and Op2 ;(p)/(f 00, g o 0) are
isomorphic as K-algebras (and hence also as K-vector spaces). |

Let us point out that Corollary 4.3.9 is also very efficient for computing explicitly
the intersection multiplicities in many cases via the following result. To this end,
we propose below some exercises.
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Proposition 4.3.11. Let C" and C™ be two affine curves in A% such that the
intersection C™ N C™ contains just one point P. Let f and g be the equations of
C" and C™ respectively. Then there is a canonical isomorphism of K -algebras

K[X.Y]/(f.8) = Op2.p/(f.8).

Proof. We have a canonical homomorphism of K-algebras ¢: K[X,Y]/(f, g) —
Op2,p/(f,g). If mp is the maximal ideal of K[X, Y] corresponding to P, then
Op2.p = Sp'K[X.Y],where Sp ={h € K[X,Y]| h(P) # 0} = K[X.Y]\ mp.
Since by hypothesis C* N C™ = { P}, then by the Hilbert Nullstellensatz 2.2.2,
mp/(f, g)isthe only prime ideal of K[X, Y]/(f, g), and therefore K[X, Y]/(f, &)
is a local ring. It follows that (,o_l(mo[P2 »/(f.8)) = mp/(f g) and, in partic-
ular, the class of every & € Sp in K[X,Y]/(f.g) is invertible (cf. the proof
of Corollary 4.3.9). This finishes the proof because Op2 p/(f. g) is the fraction
ring of K[X,Y]/(f, g) with respect to the multiplicative system 7 (Sp), where
w: K[X,Y] = K[X,Y]/(f, g) is the canonical homomorphism of K-algebras.

O

Exercise 4.3.12. Let C, £, and £, be the curves in A? of equations x? 4 y2 = 1,
y = 1l and y = Orespectively. Find C N £;, C N £, and the respective intersection
multiplicities.

Exercise 4.3.13. Let C be the curve of A2 of equation y? = x2?(x + 1). Find the
intersection multiplicities at the points of intersection of C with the axis y = 0.

Exercise 4.3.14. Find the intersection multiplicity of the curves of equations y =
x™ (n >2)and y = 0in A? at the origin.

Exercise 4.3.15. Find the intersection multiplicity of the curves of equations y? =
x3 and y? = x2(x + 1) in A? at the origin.

4.4 Elimination of several variables

Letd = (f1,..., fn) be a homogeneous ideal of K[xo,...,x,]. We will assume
that J is a radical ideal and that X = V(J) C [P" is the projective variety associated
tod. Let A;,i = 0,...,r, be the r + 1 fundamental points of a fixed system of
reference in P".

Let I be a conical hypersurface containing X and having the linear space
Sr—m—1 = J(Am+1,...,A;) as vertex, where X, +1,...,X, are projective ho-
mogeneous coordinates (cf. §5.2.3). If f(xo,...,Xm,) = 0is the equation of I" we
have f € Jandso f € JN K|[xg,...,xn]. Conversely,if f € JN K[xo, ..., Xm],
the hypersurface with equation f = 0 contains X = V/(J) and is a cone with vertex
the given Sy_;,;,—1.
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For each m < r, consider the contracted ideal

dm = K[xg,...,xm] N3J. (4.18)
One notes that J,, is a homogeneous ideal of K[xo,...,X,]. Indeed, if ; are
homogeneous polynomials of K[xg,...,x,]and f =) ; @j, then, in view of the

homogeneity of g, it follows that for each index j,
fedn=fecl=uacd = o €in.
Moreover, obviously one has g, = J and
Im = Im+1 0O K[x0,...,xm], m=<r—1.

In §3.4.5 the cone projecting X from S;—_,—1 = J(Am+1, ..., Ar) was defined
to be the algebraic set V. = V(J, K][xo,...,xr]), and the projection X’ of X
from S;_;,—1 onto the space S,;, = J(Ay, ..., A;y) was defined as the intersection
X' =V NSy, thatis, X' = V(J,) C Si.

Remark 4.4.1. Note that the space S, that joins Sy—,,—1 = J(Am+1,..., Ar)
with a point P = [ag,....am] € X' C Sy, contains the entire line joining
P to a point x € X of which P is the projection, and so intersects X at x.
This point x has coordinates (ay, . .., am, AGm+1, - - - » dr), whence the polynomials
filag,....am, Xm+1,...,%xr) in K[X+1,...,x,] have at least [a+1,...,ar] €
Sy _m—1 as common zero.

The projecting cone V is a locus of zeros of polynomials in which the variables
Xm+1, - - -, Xr do not appear. We shall say that J,, is the resultant ideal of the ideal
Jd = (f1,..., fr) with respect to the indeterminates X, +1, ..., Xy, or also that J,,
is the resultant of the elimination of the variables x,,+1, . .., x, from the equations
fi =0,i =1,..., h. The geometric interpretation of this procedure may be stated
as follows:

¢ To eliminate the variables Xj,+1,...,x, from the equations f; = --- =
fn = 0 means to find the equations of the cone that projects X = V(J),J =
(fl, ey fh), from Sr—m—l = J(Am+1, ey Ar) on Sm = J(AQ, ey Am)

Note that different orderings of the variables lead to different resultant ideals.

Since we have J,, = Jm+1 N K[xo, ..., Xm], elimination of the indeterminates
Xm+1, - - - » Xr can be realized by way of successive eliminations of a single coordi-
nate; it is then sufficient to have available a procedure for the elimination of a single
variable.

In general, the most modern and advantageous approach to the theory of elim-
ination is that based on algorithms of computational type that make essential use
of the notion of “Groebner basis” of a given ideal. For this we refer the reader to
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[28, Chapter 3], to [35, Chapters 14, 15] and to [76] for a systematic exposition
of the theory. Here we limit ourselves to explaining a procedure, suggested by
Kronecker, for the elimination of a single indeterminate.

With the notation introduced in the course of this section, we eliminate, as
an example, the variable x,. If the original ideal J = (f1, f>) is generated by
only two polynomials f7, f>, the resultant of the elimination of x, is immediately
obtained by writing the Euler—Sylvester determinant, after having ordered the two
polynomials f1, f> with respect to x, and considering fi, f> as elements of A[x,],
where A = K|[xo,...,Xx,—1] (cf. Section 4.1).

If the number of polynomials generating the ideal { is greater than two, one can
make use of a trick, suggested by Kronecker, which reduces the question to the case
of two equations.

We work over an affine chart, for example Uy = {[xo, ..., x,] | xo # 0}. We
set

Oi(x1,...,x,) = fillxy,....xy), i=1,...,h,

and consider the system of equations

pr=@2=--=¢p =0. (4.19)

If d is the highest degree of the polynomials ¢; and if, for example, ¢; has degree d,
we can replace the polynomials ¢; with the polynomials ¢; + ¢;, all of degree d.
Hence without loss of generality we may suppose that the polynomials ¢; are all of
the same degree,i = 1,...,hA.

Every solution of the system (4.19) is a solution of the two equations

f=hor+-+ A =0 and g:=pi1¢1+ -+ pppn =0, (4.20)

for any choice of coefficients A = (A1,...,Ap)and u = (1, ..., up). Conversely,
if (y1,...,Yr) is a solution of the two equations (4.20) for every choice of the
parameters A and u, then (y1,..., y,) is a zero of the ideal (¢, ..., ¢p), which we
will again denote by J.

In order to find a system of equations for the cone V = V(JN K[x1, ..., Xr—1])
that projects X = V(J) from the point A, = [0, ..., 0, 1] &€ Uy, or equivalently, in
order to find the points [y1, ..., yr—1, 0] of the hyperplane of equation x, = 0 for
which there exists a solution of the system

O1(V1s - Y1, X) = = p(V1, .-, Yr—1.X7) =0,

it then suffices to require that the resultant R( f, g) of the two polynomials given
in equation (4.20) (considered as polynomials in the variable x, with coefficients
in K[x1,...,X,—1, A, i]) be zero for any choice of the parameters A and p.

The resultant R( f, g) is a bihomogeneous polynomial in the two series of vari-
ables A, u with coefficients in K[xy,...,x,—1]. On requiring that the coefficients
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vanish we obtain a system of equations
Oj(xl,...,xr_l)zo, j=1,2,...,

for the cone V' that we will also call the resultant system of the system (4.19).
Bearing in mind that the ideal J is a radical ideal, and since 9j =0onV =
V(@ N K[xy,...,xr—1]), one has

0 e VINK[x1....x, 1] C V=17
for every index j. In conclusion
Qj(xl,...,xr_l) S HﬂK[xl,...,x,_l], ] =1,2,....

We observe explicitly that the polynomials 6; need not be a minimal system of
generators of the ideal J N K[x1, ..., X,—1]. On the other hand, the computational
methods for elimination cited above do permit one to determine a minimal system
of generators for the ideal J N K[x1, ..., x,—1].

4.5 Bézout’s theorem

One of the most important facts about the order of a given variety is Bézout’s
theorem, the general form of which we wish to discuss briefly in this section. We
pattern our discussion on the exposition given in [48, Lecture 18]. In Section 4.2,
the theorem was proved in the case of plane curves by using the concept of the
resultant of two polynomials.

For our present purposes we must recall a few definitions. Suppose that X and
Y are two algebraic sets in P” and that dim(X) + dim(Y) > n. By Theorem 3.3.8
it follows that we then have X N'Y # @; let p be a point of X N Y. We say that
X and Y intersect transversally at p if they are non-singular at p with tangent
spaces T, (X) and T, (Y') such that the join J(7,,(X), T,(Y)) is all of P". If Z is an
irreducible component of the intersection X NY, we will say that X and Y intersect
transversally along Z if X and Y intersect transversally at a generic point p € Z.
If this happens for every irreducible component of X N Y, we will say that X and
Y intersect transversally.

We say that X and Y intersect properly in P" if every irreducible component
Z of X N'Y has dimension

dim(Z) = dim(X) + dim(Y) — n.

Hence in particular X N Y has “the expected dimension” (cf. Theorem 3.3.8).

The proof of the two forms of Bézout’s theorem that follow will require some
tools which are outside the scope of the present book, and so we refer the reader,
for the general case, to the proof given in [48, Lecture 18].
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Theorem 4.5.1 (Weak form). Let X and Y be algebraic sets in P" of pure dimen-
sions k and k' respectively. Suppose that k + k' > n and that X and Y intersect
transversally. Then

deg(X NY) = deg(X)deg(Y).

In particular, if X and Y intersect properly and k + k' = n, the equality assures
that the intersection X N'Y consists of deg(X) deg(Y') points.

To each pair of varieties X,Y C [P” that intersect properly, and to each irre-
ducible variety Z C P” of dimension dim(X) + dim(Y) — n, we can associate
a non-negative integer mz (X, Y), called the intersection multiplicity of X and Y
along Z, which satisfies the following properties:

) mz(X,Y)>1ifZCXNY (andmz(X,.Y)=0ifZ ¢ XNY);

i) mz(X,Y) = 1 if and only if X and Y intersect transversally at a generic
point p € Z, which means that X and Y intersect transversally along Z;

iii) mz(X,Y) is additive, that is,
mz(XUX'Y)=mz(X.Y)+mz(X'.Y)

for each X and X’ such that all three intersection multiplicities are defined
and X and X’ do not have common components.

Theorem 4.5.2 (Strong form). Let X and Y be algebraic sets in P" both of pure
dimension which intersect properly. Then

deg(X) deg(Y) = ) mz(X.Y)deg(Z),
VA

as Z varies over all the irreducible components of X NY.

If X and Y intersect properly and dim(X) + dim(Y) = n (and therefore
dim(X NY) = 0) and p is a point of X N Y then the intersection multiplicity
mp(X,Y) can be described in a simple way as

my(X,Y) = dimg (Opn_,/(I(X) + I(Y))) ,

where Opn_ is the local ring of P” at p, 1(X) and I(Y') are the ideals that define
X and Y in P” and the dimension is that of the quotient ring considered as a vector
space over K. (See Corollary 4.3.9 where the above equality is proved in the case
of plane curves. See also Theorem 4.2.1 which is the special case for two plane
curves of Theorem 4.5.2.)

In particular this is the case for two plane curves X, Y. The relation given above
thus describes the intersection multiplicity of two plane curves X and Y in a point
p which we have already met in Section 4.2.
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See Section 5.7 for exercises regarding the calculation of the intersection multi-
plicity of plane curves and also Section 5.2 for a discussion of the useful case of the
intersection multiplicity m, (X, Y') of a hypersurface X with a line Y at a point p.

Exercise 4.5.3. We use the same symbol to denote both a plane algebraic curve
and its equation. Let f, g be two curves passing through a point P, ¢ a curve not
passing through P, and i an arbitrary curve. One has

mp(f.g) =mp(ef.g +Vf).

A deeper study of intersection multiplicities is beyond the scope of the present
book. However, making use of only those properties of intersection multiplicities
already discussed, we obtain various consequences of Theorem 4.5.2.

Corollary 4.5.4. Let X and Y be algebraic sets in P" both of pure dimension and
which intersect properly. Then

deg(X NY) < deg(X)deg(Y).

Corollary 4.5.5. Let X and Y be algebraic sets in P"* both of pure dimension and
which intersect properly. Suppose that

deg(X NY) = deg(X)deg(Y).

Then X and Y are both non-singular at the generic point of every irreducible
component X NY. In particular, if X and Y have complementary dimensions they
are then necessarily non-singular at all the points of X N Y.

Proposition 4.5.6. If X C P" is an irreducible algebraic set of dimension k (not
contained in any hyperplane of P") then deg(X) > n —k + 1.

Proof. (Sketch) We consider a generic linear space S,—r4+1 C P”. Then the in-
tersection X N S, _x+1 is an irreducible curve C C P7—k+1 not contained in any
hyperplane of Pr—k+1: fora complete proof of this fact, apparently almost obvious
but actually non-trivial, we refer the reader to [48, (18.10)].

It follows that deg(X) = deg(C). It is then sufficient to observe that for an
irreducible algebraic curve C, belonging to an arbitrary projective space P but not
contained in any hyperplane of P”, one has

deg(C) > r.

Indeed, we consider r generic (and so independent) points X1, ..., x, of C and the
hyperplane H containing them. We have {x;,...,x,} C H N C and sodeg(C) =
deg(HNC)=>r. O
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We say that a variety X ,f C P" is of minimal degree if d = n — k + 1. Later
we shall return to the detailed study of certain interesting classes of varieties of
minimal degree: see Sections 7.4, 10.3. The study and classification of varieties
of minimal degree constitutes an important and interesting classical problem; we
shall return to this subject, in the case of surfaces, in Section 10.3 (see, for example,
[82], [84], [8], [92], and also [48, (19.9)]).



Chapter 5
Hypersurfaces in Projective Space

This chapter is devoted to the study of a very important class of projective varieties,
namely that of hypersurfaces, the subvarieties of a projective space P”, of maximal
dimension n — 1, which are defined as the locus of zeros of a homogeneous poly-
nomial of a given degree d, the order of the hypersurface. By reconsidering the
notion of multiplicity of a point of a hypersurface given in Section 3.4, we study in
Section 5.2 the conditions for an arbitrary point of the space P” to be a point of an
assigned multiplicity s for a hypersurface X .

In Section 5.3 we consider algebraic envelopes, that is, the hypersurfaces of
the dual projective space P"*; by duality one obtains also for algebraic envelopes
the same properties previously studied for algebraic hypersurfaces. An important
example of an algebraic envelope is constituted by the tangent hyperplanes to a
given hypersurface (cf. Proposition 5.3.1).

In Section 5.4 we introduce the notion of polarity with respect to a hypersurface
and we study its fundamental properties; polarity was considered and carefully
discussed in [52, Vol. 2, Chapter XIII] (for the special cases of conics and quadrics
see also [10, Chapters 6, 7]). Section 5.6 contains some useful complementary
topics regarding polars; in particular, the notion of Hessian hypersurfaces and that
of the class of a hypersurface.

Section 5.5 is dedicated to the simplest hypersurfaces in the space P”; namely
the quadrics, defined by a homogeneous form of degree d = 2. They enjoy impor-
tant geometric properties, the study of which is sketched here in the general case:
we refer the reader to loc. cit. where the case of quadrics in P3 was extensively
developed.

In Section 5.7 we consider the hypersurfaces of P2, that is, algebraic plane
curves, and we study some of their properties via a series of exercises, giving
particular prominence to the remarkable case of cubics.

Section 5.8 contains complements and exercises which illustrate some notewor-
thy properties of surfaces in P3.

5.1 Generalities on hypersurfaces

Let K[To, ..., Tu] = @gs0 Ra be the graded ring of polynomials in n + 1 in-
determinates with coefficients in K. If f € R, is a homogeneous polynomial of
degree r, the locus X = V() of the points [xo, ..., x,] € P? := P"(K) such that

S(x0.....xp) =0, (5.1)

that is, the locus of the zeros of f, is an algebraic hypersurface of order r.
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The algebraicity and the order of a hypersurface are clearly projective properties,
that is, they are invariant under projectivities.

If f is irreducible we say that X is irreducible; if however f = f/*' ... /",
with f; distinctirreducible forms, i = 1, ..., h, we say that X is reducible (or split)
and that the hypersurfaces X; := V(f;) are its irreducible components. In that case
X is composed of the hypersurfaces X; counted with their respective multiplicities
Wi. We will write X = Zlh=1 i X;. If the multiplicities w; are all equal to 1, we
will say that X is reduced.

In particular, when n = 1, X is a finite set of points; if each of these points is
counted according to its multiplicity then X consists of exactly r = deg(X) points.

Note that, since K is algebraically closed, the only irreducible hypersurfaces
in P! are those of first order, namely single points. Unless otherwise specified, all
hypersurfaces we consider are supposed to be irreducible and reduced.

5.1.1 Sections of a hypersurface by linear spaces. Let Sy = J(Py, ..., Py) be
the linear subspace defined by the k 4 1 independent points Py, ..., Py and let
Ao, ..., Ak be the internal projective coordinates for this Si with respect to the
reference system {Py, ..., Pg; Zf:o P;}. Each point P of S has coordinates
To, ..., T, that are linear forms in A, ..., A and so the condition for P to belong
to the hypersurface X = V(f) C P”" may be translated into the equation

g(ho, A1, ... Ak) =0, (5.2)

where g € KJ[Ao,...,Ax] is a homogeneous polynomial of degree equal to that
of f.

Equation (5.2) represents a hypersurface X’ of Si. The only exception is when
S is contained in X, in which case (5.2) vanishes. Thus, the following fact holds:

* Every hypersurface X of order r = deg(X) in [P” is cut by a subspace Sk not
contained in it in a hypersurface of Sy of the same order r. In particular, a
line not situated on a hypersurface of order r has exactly r points in common
with the hypersurface (provided that each point is counted with the correct
multiplicity). If X is reduced, a generic line of P” has exactly r distinct points
in common with X (and thus one rediscovers, in the case of hypersurfaces,
the statement of Proposition 3.4.8).

From this it follows that if » + 1 points of a line £ belong to a hypersurface X

of order r, then the line £ lies on X.

We note that if X is reducible, so too are its sections by linear spaces S;. But
the converse does not hold in general. Indeed, it can happen that an irreducible
hypersurface X intersects an Sy with the resulting hypersurface in Sy split. This
always happens when k = 1 (and » > 2), inasmuch as a binary form (that is, a
homogeneous polynomial in two indeterminates) of degree r is the product of r
linear factors and hence a hypersurface of order r of a line S; consists of r points
(not necessarily all distinct).
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5.2 Multiple points of a hypersurface

In Section 3.4 we have already introduced the notion of the multiplicity of a point
of a hypersurface X. In particular we have seen that if X C A” is an algebraic
hypersurface of an affine space in which yy, ..., y, are non-homogeneous coordi-
nates, the condition for the coordinate origin x = (0, ..., 0) to be an s-fold point
of X is that in the equation f(y1,...,¥,) = 0 of X there do not appear terms of
degree < s.

Now we wish to indicate the condition for an arbitrary point x = [ay, ..., d,]
of P” to be s-fold for the projective hypersurface that is the locus of the zeros of
the homogeneous polynomial f(xo, ..., x,). To this end it is necessary to consider
the intersection multiplicity in x of X with a generic line passing through x (cf.
Section 4.5). Indeed, if a hypersurface X is cut by every line passing through a
point A in a hypersurface (that is, in a set of points) having A as at least an s-fold
point, and thus if the intersection multiplicity at A of X with every line issuing from
A is at least s, then A is at least an s-fold point for X; and it is exactly an s-fold
point if for a generic line issuing from A the intersection multiplicity is precisely s.
For this it suffices that there be a line for which that multiplicity is s.

Let us consider the hypersurface X C P” of order r given by the equation

F(To.....Ty) =0

and the line £ that contains the two points A = [ag,...,a,] and P = [yo, ..., Yul-
The variable point on £ is

[Aao + uyo. Aay + uyi.....Aan + pya], A, pe K, (A, n) # (0,0),
and it belongs to X if and only if
f(Rao + wyo, Aay + uy1, ..., Aan + pyn) = 0. (5.3)

We set f(a) := f(ao,...,an), f(¥) := f(yo,...,yn) and also
= (L) 4. of
o t@ = (g )+ (a7,
i d
= (J’o—+---+Ynﬁ)f(a),

T,
9 ()
ﬁ) f(a)

=3 v o f
‘_. yllyZZ"'yls 87"1187’1287—‘1 A‘

A3 fla) = (yo— 4o 4 Yn
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In particular, A}l, f(a) = Ay f(a). Then one can rewrite (5.3) in the form

X f(@) + A iy f(@) + AR A2 f(a) + -
2! (5.4)

1
+ A A f(@) + e ) () = 0.

Equation (5.4) is solved by the coordinates (A, u) of the points of the line r4p that
belong to the hypersurface X .

Suppose now that A € X, that is, that f(a) = 0. Among the solutions (A, u)
of (5.4) one then has (1, 0) which gives the point A. The necessary and sufficient
condition for this to be a simple solution, that is, of multiplicity 1, is that A, f(a) #
0 (so that u appears to the first degree in (5.4)).

The intersection multiplicity of the line r4p with X in the point A will be s if

Ayfla) =N fa)=--=A"fla)=0 and A}f(a)#0. (55

Suppose that, on calculating all the various partial derivatives at the point A, the
partial derivatives 0" (i.e., f(a)), 1*',2", ..., (s — 1)* of f all turn out to be 0, and
for this, in view of Euler’s formula for homogeneous functions (cf. Exercise 3.1.18),
it is (necessary and) sufficient that all the partial derivatives of order (s — 1) should
be zero. Then A is an s-fold point, or a point of multiplicity s for X; and the
intersection multiplicity at A of X with the line r4 p is at least s. It is exactly s (and
thus the number of points distinct from P which belong to both X and the line r4p
isr —s)if r4p is a generic line issuing from A, that is, if P is a generic point of P”.
More precisely, P must not belong to the hypersurface of order s with equation

as
o= 8 0 (g ), =09

wosls

Interpreting equation (5.6) as the condition for which a point P is such that the line
r4p has intersection multiplicity > s at A with X, one sees that this hypersurface
is the locus of lines issuing from A, namely, a cone with vertex A. This cone, of
order s, is the (projective) tangent cone to X at A (cf. Section 3.4; see also the
paragraphs 5.8.4 and 5.8.6 for the description of the tangent cone to a hypersurface
in a point of an s-fold variety).

When the line r4 p is a generator of the cone, that is, when P satisfies condition
(5.6), the intersection multiplicity of 74p with X in the point A is greater than s
(since one has Aj f(a) = 0). It will be s + h, h > 0, when P, besides satisfying
(5.6), also satisfies the equations

A f(a) = AST2 f(a) = -+ = AST L f(@) = 0,

but not the equation
ASTR f (@) = 0.
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If s = 1, thatis, if f(ao,...,a,) = 0, but not all the first partial derivatives of f
at the point A vanish, then A is a non-singular point of X . In that case the tangent

cone has equation
n
a
>1 (55 =0
i=0 ITi J4

that is, it coincides with the tangent hyperplane to X at A (cf. §3.1.17).
We make two explicit remarks:

¢ If A is an s-fold point for X, then every space Sy passing through A intersects
X in a hypersurface X' := X N S C Sk that has at A multiplicity at
least s. Indeed the intersection of X with a line £ passing through A and
situated in Sy coincides with the intersection of the same line with X’ (since
XNeL=XNSNE=X'"N¥L). The multiplicity of A for X’ is exactly s if
the relevant S is not contained in the tangent cone to X at A.

e If s = 1, that is, when A is a simple point of X, every generic space Sk
(that is, not contained in the tangent hyperplane to X at A) intersects X in
a hypersurface X’ C Sy having A4 as a simple point. If, however, Sy is
contained in the space S,_; tangent to X at A, the point A will be at least
double for the hypersurface section.

5.2.1 Fundamental point as multiple point. What we have seen in the course
of the first part of this section becomes particularly easy in the case in which the
multiple point A of a hypersurface X = V(f) C P” is one of the fundamental
points for the coordinate reference system. It is always possible to reduce to this
case via a change of coordinates.

To fix ideas, we suppose that A = Ay = [1,0,...,0] and we redo the entire
calculation after having ordered the polynomial f with respect to Ty:

f=foT§ + AT + ST 4o £, =0,

where f; = f;i(T1,...,T,) is a homogeneous polynomial of degree i in only the
indeterminates 71,...,7T,,i = O0,...,r (thus fy is a constant).

If P = [yo. ..., yn],avariable pointontheline rq,p is [A+uyo, uy1. .. .. wynl.
Substituting in the expression for f (and having set y = (y1,..., y»)), one finds
the equation

JoA" + fiA T 4+ (A TP
o fm AT T AT e+ ()" =0,

which gives the intersections of the line 4, p with X. In order for at least s of these
intersections to coincide with A¢ no matter how the point P may be chosen, the
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latter equation must have & = 0 as an s-fold root, no matter how the yq, ..., y, be
chosen, and thus

fO(Tlv"'an) = fl(Tlv-uan) == fs—l(Tl,---,Tn) =0.

Thus a hypersurface of order r that has A as an s-fold point must have equation
of the form

Fi(Ti, o S TOT S+ for(Tay o T)TE ™ oo+ fo(Th, ..., Ty) = 0.

The points P = [y, ..., y,] which when joined to Ay give the lines for which
at least s + 1 of the intersections with the hypersurface X fall at Ay, are those
that satisfy the condition f;(y) = 0. Hence, they are the points of the cone with
equation

fs(Ty, ..., T,) = 0.

Therefore, in order that Ay be s-fold for the hypersurface X it is necessary and
sufficient that in the equation for X the variable Tj should appear with degree at
most 7 — s; in that case the coefficient of 7; ~*, set equal to zero, gives the equation
of the tangent cone to X at Ag.

The generators common to the cones of equations

fs(Ty,....Ty) =0, fsx1(T1,....,T) =0, ..., fs4n(T1,....Ty) =0 (5.7)

are the lines issuing from A( for which (at least) s + & + 1 intersections with X
are absorbed by Ag. In general these lines existonly if # <n —2;andifh =n—2
they are (in general) finite in number and are called principal tangents to X at Ay.
If h > n—2the h 4 1 cones (5.7) have in common (in general) only the vertex Ay.

Example 5.2.2. If A is a non-singular point of a surface X in P3, there are two
principal tangents to X at A (in this case, with the preceding notation, s = h = 1
and the two principal tangents are the intersections of the tangent plane f; = 0
at A with the quadric cone of equation f, = 0). Each of these has intersection
multiplicity at least 3 (and only 3 if A is generic) with the surface X at A (and
not just 2 as happens for a generic line passing through A4 and lying in the tangent
plane).

5.2.3 Conical hypersurfaces. Let X be a hypersurface of order r endowed with
an r-fold point A. Then X is a locus of lines issuing from A. Indeed, if P is
an arbitrary point of X distinct from A, the line r4p has at least r 4+ 1 points in
common with X (at least r at A plus the point P) and thus, since deg(X) = r, the
line r4p is contained in X (cf. Section 3.4). In this case we say that X is a conical
hypersurface with vertex A or a cone with vertex A.
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If one intersects a conical hypersurface X with vertex A with a hyperplane H
not passing through A one finds a hypersurface X’ of H that has the same order
as X; and X is the cone that projects X’ from A (cf. Section 3.4).

Conversely, if X' is a hypersurface of order r of a hyperplane H, the locus X
of the lines that join the single points of X’ with a point 4 not belonging to H is a
hypersurface of order r having A as an r-fold point, that is a cone of order r with
vertex A. Indeed, let £ be a generic line of P” and o the plane J({, A) joining ¢
and A. The plane o intersects H in a line ¢ (generic in H ) that meets X in r points
Q1,...,Qr. The r lines rag;» J = 1,...,r, that lie on X, are coplanar with {
and so the intersections of £ with X are the r points in which the lines 740, meet £.
Hence deg(X) = r. If then Q is a point of H not belonging to X', the line r40,
that is, an arbitrary line of P” passing through A and not belonging to X, does not
meet X outside of A and therefore A is an r-fold point for X.

We note explicitly that the order of a conical hypersurface X can be defined as
the number of generators of X that belong to a generic plane passing through the
vertex.

The analytic representation of a conical hypersurface X having one of the fun-
damental coordinate points as vertex is particularly simple. Suppose for example
that X has as vertex the point 49 = [1,0,...,0]. If r is the order of X the point
Ay is r-fold for X and so in the equation for X the variable Ty must appear at most
to degree r — r = 0, that is, the variable Ty must be missing. The equation of the
cone is thus of the form

f(T,...,T,) =0. (5.8)
This same equation can be interpreted as the equation of a hypersurface X’ in
the hyperplane 7o = O (where 77, 7>,...,T, are the homogeneous projective

coordinates) and X is the cone that projects X’ from Ao. Naturally X’ is represented
in P” by the equations Top = f(T1,...,T,) = 0.

That an equation like (5.8) represents a cone of vertex Ao can also be seen by
observing that if P = [0, x1,X3,...,X,] is a point satisfying the equation, this
equation will also be satisfied by every point [A, uxy, ux2,..., uxs], (A, ) #
(0, 0), of the line that joins P with Aj.

More generally, if f(Tx+1, Tk+2,.-.,Ty) is a polynomial of degree r in which

the variables Ty, 71, ..., T are missing, the equation

f(Tes1, Tiy2, ..., T) =0 5.9
represents in P” the cone X projecting from the vertex Sy = J(Ao, 41, ..., Ax) the
hypersurface X’ represented in the space S,,_x—1 (To = Ty = --- = T = 0) by

the same equation (5.9), cf. Section 3.4. The hypersurface X’ has as its equations
in P":
To=T1==Tk = f(Tk+1, Tk+2. ... Tn) = 0.
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5.2.4 Sections of varieties by tangent hyperplanes. Let F', G be two hypersur-
faces in P” which have the same tangent hyperplane at the point A, a common
simple point of both F and G. We will say that A is a point of contact of F and G,
or also that at 4 the two hypersurfaces touch or are tangent.

It is easy to see that A is at least a double point for the intersection of F and
G. We place ourselves in an affine chart containing A and in which x, ..., x, are
coordinates (non-homogeneous) with origin A. If ¢; = 0 is the hyperplane tangent
to both the hypersurfaces in A let

f=o1totaz+--=0, g=p1+p2+pf3+--=0

be the equations of F and G, where ¢, «;, Bx are homogeneous polynomials
whose degree is expressed by the subscript. The intersection variety L of F and G
can be obtained by intersecting one of the two hypersurfaces with the hypersurface
of equation

f—g=(2—=p2)+(@3—f3)+---=0

which has A as at least a double point; thus 4 is at least a double point of L.

In particular, the intersection X’ of a hypersurface X having A as simple point
with the hyperplane H tangent to it at A has the point A as a double point. This
however is geometrically obvious because an arbitrary line of H issuing from A4 is
tangent at A to X and so at least two of its intersections with X, so too with X', are
absorbed by A. We now prove the following more general fact.

e If P is a simple point of a variety V% of dimension k every hypersurface
X having P as a simple point and fangent there to Vj (which means that
the tangent hyperplane at P to X contains the space Sy tangent to V. at P)
intersects V in a variety Vi_; for which P is (at least) a double point. We
will again say that P is a point of contact of X and V.

In particular the section of V by a generic tangent hyperplane at P (that is,
with a generic hyperplane of the star with center the space S tangent to Vj
at P) is a variety V;_q for which P is (at least) a double point.

Since we are dealing with a local question it suffices to consider the affine case
and to suppose that Vj is a complete intersection of n — k algebraic hypersurfaces
F; of A", each having P as a simple point and tangent hyperplanes at P that are
linearly independent. Assuming P to be the coordinate origin O and the tangent
hyperplanes at O to the F; to be the hyperplanes x; = 0, one finds that V} has
equations of the form

xjp= fi(x1,....xp), j=1,...,n—k,

where the f; are polynomials lacking terms of degree < 2, and x; — f; = 0O is the
equation of the hypersurface Fj;.
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A hypersurface G having O as a simple point with tangent hyperplane passing
through the space Sy tangent to Vi (that is, through the space S; with equations
X1 = Xp = -+ = Xp—; = 0) has equation of the form

Axy 4+ Azxa + oo+ Ak Xp—k + ¢ =0,

with ¢ a polynomial lacking terms of degree < 2. On the other hand, to intersect
Vi with G is just to intersect V3 with the hypersurface of equation

/llfl(xl,...,xn) +/\2f2(x1,...,xn) + .- +/\n_kfn_k(x1,...,xn) + ¢ = 0
having a double point at O.

Remark 5.2.5. We know that the necessary and sufficient condition in order that a
point P of a hypersurface F (with equation f = 0, f irreducible polynomial) in
[P" should be simple for F is that

R )
ATy 0Ty 9T,

) £(0,0,...,0).
P

Analogously, if F;, F, are two hypersurfaces passing simply through a point P (and
with equations f1 = 0, f, = 0), the necessary and sufficient condition in order
that P be a simple point for their intersection variety V,_,, that is, the necessary
and sufficient condition in order that at P the two hypersurfaces do not have the
same tangent hyperplane, is that the Jacobian matrix

aft /1

( f1. f2) | 9T, T T
(3(T0~--,Tn))_ i 0f2
0Ty 0T,

should have rank 2 at P (cf. §3.1.8).

Exercise 5.2.6. Let X be a hypersurface of P” and H C [P” a hyperplane that
intersects X in a hypersurface (of H') having an s-fold point P. Then the multiplicity
of P for X is <.

As in §5.2.1, we may suppose that P = [1,0,...,0] and assume that H is the
hyperplane 77 = 0. If X has equation

f=LTy+ AT,...T)T; "+ + fo(Th.....Ty) =0,
the hypersurface X’ = X N H is represented in H by the equation

FoTd + f1(0, Ty ..., T)TS -+ £4(0,To,y..., Ty) = 0.
Since P is s-fold for X’, we must have

fo= f1(0,T,....Ty) == f5-1(0,T5,....Ty) =0 (5.10)
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and
](S(05 T2,~--, Tn) # 0.

Hence f(T1,T2,...,T,) # 0andso P is a point of multiplicity < s for X (and P
is exactly s-fold for X if fo(T1.Ta,....Ty) = --- = fs_1(T1, Ta,..., T,) = 0).
Furthermore, we have:

« If the generic hyperplane passing through P intersects X in a hypersurface
X’ having P as an s-fold point, then P is also an s-fold point for X .

Indeed, by the above, the multiplicity of P for X is < s. On the other hand, if P is s-
fold for the sections of X with s independent hyperplanes, then P is atleast s-fold for
X. Indeed, if foreachi = 1,2,...,sonehas f;(T1,...,7;-1,0, Ti41,....Ty) =
0(j =0,1,...,5 — 1) the homogeneous polynomials fy, fi1,..., fs—1 (which all
have degree < s) are divisible by 7175 ... T and are therefore identically zero.

5.3 Algebraic envelopes

In a projective space P”, where xg, x1, ..., X, are projective point coordinates, we
choose the coordinates ug, u1, ..., u, for the hyperplanes so that the condition of
membership point-hyperplane is ugxo + u1x7 + -+ + upx, = 0 (cf. [52, Vol. 1,
Chapter V, §5]).

Assuming the above choice, let I' be an algebraic envelope of class v of
hyperplanes of P”, that is, the totality of the hyperplanes of P” whose coordi-
nates annihilate a homogeneous polynomial ¢(ug,...,u,) € Klug,...,u,] of
degree v.

As one sees via duality, the class of T" is the number of hyperplanes of I" that
belong to a generic pencil, that is, passing through a generic S;,—».

Everything that has been said regarding algebraic hypersurfaces in Sections 5.1
and 5.2 can be repeated via duality for algebraic envelopes (cf. [52, Vol. 1, Chap-
ter IX, §7]); in particular, one can give the notions of a simple or multiple hyperplane
for an algebraic envelope.

The following are examples of pairs of dual statements.

A point P is s-fold for an algebraic A hyperplane IT is s-fold for an al-

hypersurface X of order r if the gebraic envelope I of class v if the
number of points of X other than number of hyperplanes of I' other
P which belong to a generic line than IT which pass through a generic

through P isr —s. Sn—» belonging to ITis v — 5.
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The points of the space which when
joined with an s-fold point P of a
hypersurface X of order r give lines
£ such that the points of X distinct
from P and belonging to £ are in
number at most » — s — 1 form the
points of an algebraic cone of order s.
In particular, if s = 1, that is, if P
is a simple point, this cone is a hy-
perplane, the tangent hyperplane to
X at P.

If f = 0 is the equation of a hyper-
surface X, the equation of the tan-
gent hyperplane to X at a simple
point P is

Chapter 5. Hypersurfaces in Projective Space

The hyperplanes of the space that
intersect with an s-fold hyperplane
IT of an envelope I' of class v to
give spaces S, —» such that the hyper-
planes of T" distinct from IT and pass-
ing through the S,_, are in number
at most v — s — 1 are the hyperplanes
of an algebraic envelope of class s.
In particular, if s = 1, that is, if IT is
a simple hyperplane, this envelope is
a point which is said to be a charac-
teristic point of TI.

If ¢ = 0 is the equation of an alge-
braic envelope I, the equation of the
characteristic point of a simple hy-
perplane IT of I is

n
Zui (8_(,0) =0.
aui I

i=0

n
ZX,‘ (g—f) =0.
i=0 YiJp

The study of an algebraic envelope I' in the neighborhood of one of its hyper-
planes IT turns out to be very easy if one assumes a projective reference system such
that IT is one of the fundamental hyperplanes. For example, if IT = [1,0,...,0]is
an s-fold hyperplane of I", the equation of I" will have the following form:

ug SO, ... uy) + u(‘;_s_19s+1(u1, e Uy) + o+ 0 (U, .. uy) =0,
where the 6; are forms of degree j, j =s,...,v. The equation 05 (u1,...,u,) =

0 represents an envelope ® of class s, the dual figure to the tangent cone to a
hypersurface at an s-fold point P (cf. §5.2.1). It consists of the hyperplanes that
cut out on IT the spaces S, of an envelope of class s (just as a cone of vertex P
consists of the points that joined with P constitute the lines of a cone of order s).

Proposition 5.3.1. The tangent hyperplanes to an algebraic hypersurface X form
an algebraic envelope.

Proof. If f = 0 is the equation of X and uy,...,u, are the coordinates of the
tangent hyperplane at a simple point P = [xo, ..., X,] of X, one has

af
8)6,' ’
The elimination of xy, ..., x, from this system of equations leads to an algebraic

equation g*(uo, . . ., u,) = 0 satisfied by the coordinates of the tangent hyperplane
at every simple point of X.

pu; = i=0,...,n, and wugxo+---+ uyx, =0. (5.11)
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The equation g*(uo,...,u,) = 0 is also satisfied by the coordinates of each
hyperplane that passes through a multiple point of X. Indeed, g*(ug,...,u,) =0
is the necessary and sufficient condition for the n + 2 equations (5.11) to admit
solutions p, Xg, ..., X,; and it is clear that they admit the solution (p, xo, . .., X,)
with p = 0and xy, . . ., X, the coordinates of a multiple point P of X if [uo, . .., uy]
is an arbitrary hyperplane that passes through P.

If, for example, the singularities of X are isolated multiple points, the poly-
nomial g*(uy,...,u,) will be divisible by the linear factors (raised to suitable
powers) that represent the multiple points of X. When these factors have been re-
moved, there remains the equation g (uy, . . . , u,) = 0 of the envelope of the tangent
hyperplanes to X (cf. Example 5.3.3). |

Remark 5.3.2 (The dual hypersurface). Notation remains as in Proposition 5.3.1.
On applying Euler’s formula, see Exercise 3.1.18, equations (5.11) are seen to be
equivalent to the system
i .
pu; =—, i=0,...,n,
0x; (5.12)

f(xo,...,x5) =0.

Equations (5.12) show that the envelope of tangent hyperplanes to X is the image
of the hypersurface X (with equation f(xy,..., x,) = 0) under the rational map

defined by
af af (x)] '

x:[xo,...,xn]r—>[E(x),...,a

Moreover one sees immediately that
(1) ¢(X) is a point if and only if X is a hyperplane;

(2) if X is not a hyperplane: ¢ is regular at x if and only if x is a simple point
for X.

We will say that ¢ (X) is the dual hypersurface of X .

For example, the dual curve of a conic is a conic: see [52, Vol. 2, Chapter XIII,
§2] for further details. See also Exercise 13.1.9 for the case of the dual curve of a
plane cubic.

In similar fashion one obtains the dual version of Proposition 5.3.1: the charac-
teristic points of the hyperplanes of an algebraic envelope are those of an algebraic
hypersurface, called the adhering hypersurface of the envelope.

Consider in particular a plane algebraic curve C and the envelope of its tan-
gents I'. Every simple point P of C is the characteristic point of the tangent to C
at P.
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If C has singularities, the envelope I" will be endowed with dual singularities.
For example, to an ordinary s-fold point there corresponds via duality a line of T'
with s characteristic distinct points, that is a tangent line to C at s distinct points,
and that will be called a bitangent if s = 2, tritangent if s = 3, .... Toacusp of C
there corresponds via duality an inflectional line, that is, a line p from every generic
point of which there emerge v — 2 lines distinct from p, where v is the class of "
(and so p is a double line); the line p has a single characteristic point (at which the
two characteristic points come to coincide).

Example 5.3.3 (Dual character of cusps and flexes). To further clarify the fact
that cusps and flexes are mutually dual it can be useful to seek the equation of the
envelope of tangents of plane cubic with equation x3 — x?x, = 0, which has the
cusp [0, 0, 1] with tangent x, = 0 and the flex [0, 1, 0] with tangent x; = 0 (see
also Section 5.7).

One must eliminate xg, x1, X2 and p from the four equations

2
puo = 3xg,
pur = —2x1x2,
2
pUz = —Xy,

UgXo + U1X1 + U Xy = 0.

Setting the values of x, deduced from the second and fourth equations equal, one

has
pU1L _ UpXo + UIX1

2X1 Uy
or, in view of the third equation,
puiuy = 2upxoxy + 2u1xf = 2UpXgX1 — 2pU U2,
that is,
3puius = 2UgXgX1-

Squaring both sides and bearing in mind the first and the third equations one has

9p*uiu; = dugxgxi 4“0( )( puz) = ——,0 UNTES
and finally
g(ug, uy, uz) = dugus + 27uiu3 = 0.

On eliminating the linear factor u, (which corresponds to the singular point of C,
that is the point [0, 0, 1] whose equation is #, = 0) one has the equation of the
envelope I" of the tangents to C:

g(uo, uy, uz) = 4ul + 27utuy = 0. (5.13)
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It has a double line [0, 0, 1], that is the line with equation x, = 0, which is an
inflexional tangent to C.

The simple line [0, 1, 0] is the line, £, of equation x; = 0. This line absorbs all
three lines of the envelope emerging from its characteristic point u; = 0, because
on setting u; = 0 in (5.13) one finds u(3) = 0. Thus £ is the cuspidal tangent of C.

Exercise 5.3.4. Determine the tangential equation, i.e., the equation of the envelope
of the hyperplanes tangent to the quadric Q in P” of equation Z:’ j=o0aijxix; = 0.
The result of elimination of the parameters xg, x1, ..., X5, p from the equations

0=upxg +uixy + -+ uyxy,,

PUo = dooXo + do1X1 + -+ + donXn,

PUpn = AnoXo + An1X1 + -+ + AnnXn

is

0 wup ... u,
Ug doo --- aon

=0,
Up dApo ... Adpn

that is, Zf =0 Ajjuju; = 0, where A;; are the algebraic complements (cofactors)
of the elements a;; of the matrix A = (a;;) of the coefficients of Q.

5.4 Polarity with respect to a hypersurface

In the projective space P” = P"(K), with homogeneous coordinates xo, . .., X,
consider a hypersurface X of order r > 1 with equation
f(xo,...,x5) =0,
where f is a form of degree r with coefficients in K. Let P = [yq,..., yn] be a
point of P”. The equation
n af
D vz =0 (5.14)
i—o 8)61'

represents a hypersurface of order » — 1 that is said to be the first polar of P with
respect to X (or also first polar of X with respect to P). We will denote it by
X1(P).

Example 5.4.1. In the case of the plane P2, if f(xo, x1,x2) = 0 is the equation
of a non-singular conic, equation (5.14) is the equation of the polar line y(P) of
the point P = [yo. y1. y2], where y : P2 — P2" is the correlation defined by the
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matrix A of the coefficients of the equation f(x¢, x1,x2) = 0 (see also [52, Vol. 2,
Chapter XIII, §2]).

Notation. If M and N are respectively matrices of type (p, ¢) and (7, ¢), henceforth
we will use the symbol M N to denote the usual matrix product of M with the
transpose of N.

The following important result holds. It expresses the fact that the operation
of “polarization with respect to the pole P”, that is, the operation that maps f to
A Jl, £, is covariant with respect to projectivities, so that the first polar of a point with
respect to a hypersurface has a geometric (projective) meaning.

Theorem 5.4.2. Let X be a hypersurface of P"* with equation f(xg,...,x,) = 0.
Let P be a point of P" and X1(P) the first polar of P with respect to X. Let
@: P*" — P" be a projectivity. Set P* := ¢(P), X* = ¢(X) and (X1(P))* =
@(X1(P)). One then has

(X1(P)* = X{(P"),

that is, the transform of X1(P) is the first polar of P* with respect to X*.
Proof. Suppose that ¢ is expressed in matricial form
p L (xgs s xp) = AN(x0,. .., Xn),

where p € K is a non-zero constant and A is an invertible matrix in My 41 (K).
Then, multiplying on the left by p~' A~!, one has

ATV g, xh) = o (x0s s X))

Thus, setting pA~! = (b;;), the equation of X * becomes

n n n
f*(x(/)a-~'7x}/1) — f(zbojxj/’zbljx]/”zbnjx]/) =0
=0 j=0 j=0

and so

— =
axj

=" Ly,

i / ¥
0x; axj = 0x;

af* X”:iax,' " of
i=0

From this it follows that

n

n af* n n af z af - af
G- ST - ()i - Dok
j=0 =0 =0

j=0 i=0 j=0

which gives the desired result. a
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As a consequence of the preceding theorem we may now conclude that in order
to study properties of the polar hypersurfaces of points P, Q, ... with respect to a
given hypersurface X, of a given order r, there is no loss of generality in supposing
that P, Q, ... coincide with the vertices Ay, A1, ... of the fundamental (n + 1)-
hedron. For example, if P = A; is the point whose only non-zero coordinate is
yi = 1, one has A; = aii and so the first polar of A; with respect to X has equation

S _

0.
3)6,‘

The first polar of a point Q = [zo,...,z,] with respect to the first polar of
P = [yo,...,yn] (with respect to X) is called the second mixed polar of P, Q
(with respect to X ) and has equation

"y I of
X(:)Zia_xi(;)yj%)zo’

i=

that is
n 32f
E Zi Yj = 0, (515)
= axiaxj
i,j=0

and clearly coincides with the second mixed polar of Q, P. In particular, assuming

Q =P,

n 82f
> iy =0 (5.16)
=0 8)61' ij

is the equation of the second pure polar of P with respect to X .

In analogous fashion one defines the successive polars Xs(P),s = 2,...,r—1,
which are hypersurfaces of order r — s; the equation of the s™ polar of the point
P =[y0,...,yn]is

A
> i ...y,-s% =0. (5.17)
i1y Xy - e OXi
The (r — 2)™ polar X,_,(P) is also called the polar quadric of P. The (r — 1)
polar X, (P) is also called the polar hyperplane of P. The hypersurface X is
also called the 0" polar.

If n = 1, that is for a line, X and the successive polars are groups of points, and
the polars are called polar groups.

The theory of polars may be efficiently formalized by using the operator

A D e
= ado——— ce a
a OaxO nax”,
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where a = (ay, ..., an), and its symbolic powers
02 02
A)=1, AL=0As Al=a}— +2a0a

0xg

a= 8)(08)61

If f(x) = f(xo0,...,Xn) is a homogeneous polynomial and P = [yp...., V]
is a designated point in P”, the notations A, f(x) (or A, f), Ag f(y) indicate
respectively

d d
Aaszaf(x)=a0_f+"'+an f?
ox 0xp

Agf(y) = (aoi+---+an af) )
P

0xo 0xp,

Equations (5.14) and (5.16) may be rewritten respectively in the form A)l, f(x)=0
and A2 f(x) = 0. In general the s™ polar Xs(P), s = 2,...,r — 1, has equation

AS f(x) = 0.

We say that a point P is self-conjugate (with respect to X) if P belongs to any
one of its successive polars X (P). In this regard one has the following result (cf.
[52, Vol. 2, Chapter XIII, §2] for the case of conics).

Proposition 5.4.3. Let X = V(f) be a hypersurface of order r > 1 of P". Then
X is the locus of points of P" self-conjugate with respect to X, that is, a point P
belongs to any of it successive polars Xs(P), s = 1,...,r — 1, if and only if P
belongs to X .

Proof. Let P = [yg,...,yn] and let y = (y9,...,¥n). For s = 1 one has
A, f(y) = rf(y) by Buler’s formula and so A} f(y) = 0if and only if f(y) = 0.
In general it suffices to observe that

AL =r(r =1 =2)...(r =s+ 1 f(y). O
Here are some properties of polars.

Proposition 5.4.4 (Permutability Theorem). Let X = V(f) be a hypersurface of
order r > 1 in P". Then the s™ polar of a point P with respect to the t™ polar
(with respect to X) of a point Q coincides with the t™ polar of Q with respect to
the s™ polar of P (with respect to X), that is

(X:(2))s(P) = (Xs(P)):(Q).

Proof. Let P = [yo,...,¥nl, ¥y = (Vo,...,¥n) and Q = [z0,...,2Z4], z =
(zo, ..., zn). It suffices to observe that

ASALf = ALAS f.

where f = 0 is the equation of the hypersurface X .
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If P = Ap and Q = A; this is nothing more than the property

95 atf _ at asf B 8t+sf -
axg \oxt ) oxt \oxy /) Oxfoxt’
Proposition 5.4.5 (Section Theorem). Let X = V(f) be a hypersurface of order
r > linP". Let S}y be alinear space of P" not contained in X andlet X' := X NS},
be the hypersurface section of X by Sy. Let P be a point of Sy. Then the section

by Sy, of the s™ polar of P with respect to X is the s™ polar of P with respect to
X', that is

Sy N Xs(P) = X.(P).

Proof. One need only observe thatif P = Ag = [1,0,...,0] and the equations of

Sy are xp41 = Xp4p = -+ = X, = 0, one has
(Bsf) 0 f(xo,.--,x4,0,...,0) O
S - S -5 .
8')C() xh+1=xh+2=...=xn=0 a ‘xO

The most important result in the theory of polarity is the following “reciprocity
theorem”.

Theorem 5.4.6 (Reciprocity Theorem). Let X be a hypersurface of order r > 1 in
P". Given two points P, Q in P", if the s™ polar of P with respect to X passes
through Q, 0 < s < r, then the (r — s)™ polar of Q with respect to X passes
through P.

Proof. Wemay assumethat P = A9 = [1,0,...,0]and Q = 4; = [0, 1,0,...,0].
Let f = 0 be the equation of X and let A be the coefficient of xjx{™* in f:

f = ...+Ax(‘§x;_s —+ ..
The equation of the s™ polar X;(P) is

o f
oxg

= s[5 4 () =0,

where (---) stands for terms of degree < r — s with respect to x;. Similarly the
equation of the (r — s)" polar X,_¢(Q) is

ar—Sf
— = —=s)Axyg+ () =0,
ox|™*
where (- - -) stands for terms of degree < s with respect to xg.

Therefore, A = 0 is the necessary and sufficient condition in order that X;(P)
pass through Q, and also the necessary and sufficient condition for X,_s(Q) to
pass through P. O
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Remark 5.4.7 (Alternative proof of Theorem 5.4.6). Here we give an alternative
proof of the preceding theorem which is independent of the fact that one can choose
the coordinates in an opportune fashion. This argument also yields other conse-
quences which will be considered in a subsequent observation (see Remark 5.4.8).

With the same notation as in Theorem 5.4.6, consider Taylor’s formula for the
polynomial f(xg,...,Xn):

flao+bo.ar +by,....an + by)

9 9
=f(ao,-..,an)+b0—f+..._|_bn f
dag day
”s 2 f (5.18)
by 2bob
T ( 82+ 018a03a1+ )+
o f
bi, ... by ———— -,
+ Z 151 ls aall L 8al's +
where, for simplicity of notation, 38 indicates af calculated at (o, . . ., dn)-

Putting a; = Ay;, b; = uz;,i =0,...,n,in (5 18) one obtains
fAyo + pzoy. s Ayn + uzn) = f(Ayo, ..., Ayn) + -+
Ly > f N
— ziooopzi | —mm—
s! Wz Ry Oxiy . 0xiy )y,

But f being a homogeneous polynomial of degree r we have

S yo+uzo, ..., Ayn + pzn) = A" f(Yo, ... yn) + -+
1., 05 f (5.19)
A8 oz —— T

o H ZZ” Zis Ayi, .- i, +

and, interchanging A with p and y with z,

fuzo+Ayo, ..., uzn + Ayn) = " f(zo, ..., zn) + -+
1 »f (5.20)
— A5 e Y e,

t S!M Zyll Yis aZil ...aZ,'S +

The left-hand sides of (5.19) and (5.20) coincide and so the right-hand sides of
(5.19) and (5.20) are the same polynomials in A and p. In particular the condition
that they have equal coefficients of A"~ may be written as:

1 o f ! i)
I _ f gy (521
ol Zyll Vi aZil ] (r _ S)! Zzll Zip_g aYil - ayir—s ( )

.. 821'5

Now, the equation of the s™ polar of the point P = [y, ..., y,] with respect to X

is
S gL =0
y”"'ylsaxil...axis -
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and the equation of the (r — s)" polar of the point Q = [z, ..., z,] with respect
to X is
ar—Sf
Ziy oo Zjyp_ o = 0.
Z " fr=s Bxil R 8xl~rﬂ

If the s™ polar of P passes through Q then the left-hand side of (5.21) is zero and
so too must be the right-hand side, that is, the (r —s)™ polar of Q passes through P.

Remark 5.4.8 (Double method for reading the equation of a polar). Notation as in
Theorem 5.4.6 and Remark 5.4.7. We set

a*f
t,x) .= E ti, ... tj, —————.
¢s(t. %) P~ n s 0xi, ... 0x;,

The polynomial ¢ (¢, x) is homogeneous of degree s with respecttot = (to, ..., 1)
and of degree r — s with respect to x = (Xo,...,X,). The equation of the s®
polar of P = [yo,..., yn] with respect to X is ¢s(y,x) = 0. It passes through
0 = [z0,...,2zn] if @s(¥,2z) = 0. Therefore ¢s(y,z) = 0 is the condition in
order for O to belong to the s polar of P and so, by Theorem 5.4.6, it is also the
condition for P to belong to the (r — s)™ polar of Q. Hence ¢s(x,z) = 0 is the
equation of the (r — s)™ polar of Q. It follows that the same equation

(Ps (ya X) = 01
of degree s with respect to y = (yo,..., V) and of degree r — s with respect to
x = (xg, ..., Xpn), represents both the s polar of the point [y, ..., y,] when y is
fixed (and so the variables are the x’s) and the (r —s)'" polar of the point [xo, . . ., X,]

when x is fixed (and the y’s vary).
In particular, consider the equation (of degree r — 1 in the x’s)

0 0
(pl(y’x):yo_f+...+yn f =0
dxo 0xp,

of the first polar of the point [y, ..., y,] with respect to X. On fixing x := a =

(@o., . ..,a,) and allowing the y’s to vary, one has the equation of the (r — 1) polar
of the point A = [ay, ..., as]:
0 d
yo(f) +...+yn(f) ~o. (522)
0x0 /, 0xn ),

If A is a point of the hypersurface X of equation f(xo, ..., Xx,) = 0, equation (5.22)
is the equation of the tangent hyperplane at A to X. (Here we tacitly assume that
A is a non-singular point for X: in this regard see the discussion in the following
paragraph 5.4.10.) Thus we have proved the following fact.
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Proposition 5.4.9. Let X be a hypersurface of order r in P"* and let P be a non-
singular point of X. Then the tangent hyperplane to X at P is the (r —1)™ polar of P
with respect to X ; analytically, if f = 0 is the equation of X and P = [yy, ..., Ynl,

-1y " of
Z Yiy oo Vip ax[] .”axir_l _Z(a_xi)Pxi-

il yeoir—1 i=0

5.4.10 The singular case. Let X be a hypersurface in P” of order r > 1, with
equation f(xo,...,X,) = 0, and let P be a point of P”. Suppose that the s™ polar
of P with respect to X is indeterminate for 1 < s < r — 1. If we suppose that
P = A4, =11,0,...,0], this means that %;—g is the null polynomial. It follows that

3s—lf as—Zf
x(s)_l Bx(s)_2
one with respect to x¢ and so on, that f is of degree s — 1 with respect to xq. This
means that P is a point of multiplicity r — s + 1 for X.
Analogously, one has that if the (r — s + 1)* polar of P with respect to X is
indeterminate, then P is an s-fold point for X.

Conversely, if P is an s-fold point for X, then f may be written in the form

the derivative does not depend on Xy, that the derivative is of degree

f=fi(xi,x2, o, Xn)xh ™5+ for1 (1, X2, o, X)X ST
s fr(xr, X2, .0, Xp).

Thus one has

gr—s+1
axr——s—i-]: =0
0
and also that
ar—Sf
e = (r—s) fo(x1,x2,...,Xn).
0

Therefore we have:

Proposition 5.4.11. Let X be a hypersurface of P" of orderr > 1. For each integer
s =1,...,r — 1, a necessary and sufficient condition in order for a point P to be
s-fold for X is that the (r —s + 1)* polar of P with respect to X be indeterminate.
In that case the (r —s)"™ polar of P with respect to X is the tangent cone to X at P.

5.5 Quadrics in projective space

In this paragraph we consider the remarkable case of hypersurfaces of order r = 2
in P := P"(K). We define a quadric (or hyperquadric) in the projective space P”"
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as a hypersurface Q defined by a quadratic form

n
f(xo,...,x,,) = Z aijXiXj = 0, aijj = djij, (523)
i,j=0

with coefficients a;; € K. We will say that the symmetric matrix A = (a;;) €
My, 11(K) is the matrix associated to the quadric Q. Thus, on setting £ =
(x0,...,xn), equation (5.23) may be rewritten in matrix form

EATE=0. (5.24)
If p(A) is the rank of A we set

p=p(4)—1

If p = n, that is if det(4) # 0, Q is non-degenerate (or not specialized). If
p =n — A we will say that Q is A times specialized.

5.5.1 Singular points of a quadric. The system of linear equations having A as
its matrix of coefficients,
nAd =(0,...,0) (5.25)

has non-trivial solutions n = (g, ..., y») only when Q is degenerate. More pre-
cisely, if Q is A times specialized the solutions of (5.25) are the points of a space
Sj—1, called the singular space of Q.

The singular points, that is, the points of that space S)_1, are double points for
Q because the system (5.25) may be rewritten in the form

Y ajjxi =0, thatis, ——=0,j=0,....n. (5.26)
. 8xj
i=0
A quadric which is A times specialized therefore has a double subspace S)_; and
is thus a cone having this S)_; as vertex (cf. §5.2.3). We will say that it is an
S —1-quadric cone.

Exercise 5.5.2. Consider a quadric Q that is A times specialized, and let r be a line
of P” that meets both the locus S _; of singular points of Q and its complement in
Q. Then it is easy to prove directly that r is contained in Q.

Indeed, let Z = [zp,...,zx] beapointof Q, Z & S;_q1, and let r = ryz
be a line that passes through Z and meets Sy_; in a point Y = [yg,..., yu]. As
u,v vary in K, the point P = uY + vZ traces the line r. Consider the vectors
n=o,---»¥n) ¢ = (20,...,2,). By equation (5.24), P € Q if and only if

(un +vo)A"(un +vt) =0, (5.27)
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that is
wnAn +uv(nA't + A ) +v¥A L = 0;

or again, since n4 't = A 'n,
wnA'n 4+ 2uvnAtt 4+ v*AT = 0.

Since Y is a singular point of Q we have n4 'n = nA '¢ = 0. On the other hand
we also have (A '¢ = 0 since Z € Q. Thus equation (5.27) hold for all u, v € K,
namely r is contained in Q.

The following proposition shows that the study of specialized quadrics reduces
to the study of non-degenerate quadrics.

Proposition 5.5.3. Let Q be a quadric A times specialized in P" and let S)_; be
the linear space that is the locus of its singular points. Then there is a linear space
Sy—a skew to S)_1 and a non-degenerate quadric Qg in S, _, such that Q is the
cone with vertex S)_1 projecting Q.

Proof. Set p = n — A. We may suppose that S_; is the space that joins the
n—p = Avertices Apy1, Apt2, . .., Ap of the reference (n + 1)-hedron. Then the
linear equations (5.26) that define S)_; become xo = x; = - = x, = 0 and so
the equation (5.23) of Q assumes the form

o
aipXiXp = 0 (5.28)
i,h=0

with det((@;n)i h=o....,p) # 0.

Since in equation (5.28) the variables x,+1, ..., X, are missing, a A times spe-
cialized quadric is the cone that projects from its vertex Sy_; a non-degenerate
quadric Qg, with equation (5.28), in a space S, = S, skew to S _;. O

We note a final point:

* The necessary and sufficient condition in order that one of the fundamental
points of the reference system be singular for Q is that one of the variables be
missing from the equation of Q. For example, the point A9 = [1,0,...,0] is
singular if and only if the variable x¢ is missing.

5.5.4 Polarity with respect to a quadric. The study of the polarity with respect
to a hypersurface X becomes particularly simple in the case when X is a quadric
Q so that one need only consider first polars, which are hyperplanes. One sees
immediately that the polar hyperplane Q(P) of a point P with respect to Q is
nothing more than the hyperplane corresponding to P in the involutory reciprocity
y of P” having as matrix of coefficients the (symmetric) matrix A associated to Q
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(cf. [52, Vol. 2, Chapter XIII, §2]). In other words, Q; (P) = y(P). The point P
is called the pole of y(P).
The results given in Section 5.4 reduce simply, in the case r = 2, to the follow-

ing.
)

2)

3)

4

Given two points P, P, if the polar hyperplane of P; passes through P,
the polar hyperplane of P, passes through P; (and the two points are said
to be reciprocal or conjugate with respect to Q). Similarly, if the pole of a
hyperplane 7r; belongs to a hyperplane m5, that of 7, belongs to 7 (and the
two hyperplanes are said to be reciprocal or conjugate with respect to Q).

If P is asimple point of Q, the polar hyperplane of P is the tangent hyperplane
in P to Q.

If Q' is a quadric section of Q by a linear space L, and P is a point of L,
the polar hyperplane of P with respect to Q’ is the section of L by the polar
hyperplane of P with respect to Q.

If Q is A times specialized and S is its vertex, the polar hyperplane of each
point P € §;_; is indeterminate; and S _; belongs to the polar hyperplane
of each point P & S;_;.

Furthermore,

a)

b)

9)

d)

The quadric Q is the locus of the self-conjugate points with respect to Q, that
is, of the points P such that P € y(P).

The polar hyperplane of a point P ¢ Q with respect to Q is the locus of
the harmonic conjugates P’ of P with respect to the pairs of points of Q
collinear with P. Indeed, on each line £ starting from P (and not tangent
to Q) the polarity y induces a non-degenerate involution which sends P to
the intersection of £ with the polar hyperplane of P. The fixed points of this
involution are the intersections of £ with Q.

The line joining two mutually reciprocal points of Q is contained in Q. Indeed,
if P is a point of Q, the polar hyperplane of P with respect to Q is the tangent
hyperplane to Q there. A point R reciprocal to P thus belongs to the tangent
hyperplane to Q at P and if R belongs to Q the line rpg has three points in
common with Q (two at P and one at R), and thus is contained in Q.

(Polar space of a given subspace) The polar hyperplanes of the points of a sub-
space Sy, of P” form a star ¥y, (of dimension /) whose center S,,_;_1 is called
the polar space of Sy,. It is obtained by intersecting the polar hyperplanes of
h + 1 linearly independent points P; of Sj,.

One sees immediately that S, is the polar space of its polar S, ;1. Indeed,
every point of S,_;_; belongs to the polar hyperplanes of the points P; and
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therefore, by the Reciprocity Theorem, its polar hyperplane passes through
these points and so too through the space Sy, that joins them.

Suppose that two mutually polar spaces Sy and S,_j;_; have a space S; in
common. Each point R € S; is self-conjugate with respect to Q. Indeed, if
we regard R for example as a point of S one sees immediately that its polar
hyperplane passes through the space S,,_,—; which is the polar space of Sy,
and so through the point R itself which belongs to that S, _;_;. This means
that

« if two mutually polar spaces are not skew, their intersection is contained
in the quadric.

For the sequel it will be useful to consider the special case n = 1.

Remark 5.5.5. A non-specialized quadric Q of P! is constituted by a pair of distinct
points (since the square matrix of the quadratic form f'(xo, x;) = 0 which defines Q
is non-degenerate). Moreover, for each Py € P!, if P; = Q;(Py) is the polar point
of Py with respect to Q, one has Py = Q;(P;) by the Reciprocity Theorem 5.4.6.

We will say that a set { Py, ..., P,} of n 4+ 1 linearly independent points con-
stitutes a self-polar (n + 1)-hedron with respect to a quadric Q (or with respect to
the polarity y associated to Q) if each of the points P; coincides with the pole of
the hyperplane H; generated by the remaining points P;, j = 0,...,n, j # i, or
equivalently (cf. Theorem 5.4.6)

y(P;) = Hi = (Po,..., Pi,.... Py).
We now prove the existence of a self-polar (n + 1)-hedron.

Lemma 5.5.6. Ler Q be a non-specialized quadric in P". Then in P" there exist
infinitely many systems of n + 1 independent points Py, Py, ..., P, none of which
belongs to Q and constituting a self-polar (n + 1)-hedron with respect to Q.

Proof. We proceed by induction on n. If n = 1 it suffices to take as Py an arbitrary
point distinct from the two points comprising Q and as P; the polar point of Py
with respect to Q (cf. Remark 5.5.5).

Ifn > 1 wetake as Py an arbitrary point not belonging to Qandlet Hy = Q1 (Po)
be the polar hyperplane of Py with respect to Q. Moreover let Qg be the quadric
section of Hy, Q9 = QN Hy. By the inductive hypothesis there exist n independent
points Py, ..., P, € Hythatconstitute (in Hy) a self-polar n-hedron with respect to
the quadric Q. In virtue of the Section Theorem 5.4.5, the polar hyperplane H; of
P; with respect to Q intersects Hy along the space S,_, polar to P; with respect to
Qp, which is to say along the space joining the points { Py, . .., }’)\j, ..., Py}. Since
H; passes through Py, H; is the join of the n points { Py, Py, ..., /}, Py O
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5.5.7 Reduction to canonical form of a quadricin P”. LetQbeanon-specialized
quadric in P", A = (a;;) € My+1(K) the associated matrix and y : P” — P"”* the
polarity associated to A. By Lemma 5.5.6 we can take as our fundamental points
Ao = [1,0,...,0],..., 4, = [0,...,0,1], the vertices of a self-polar (n + 1)-
hedron with respect to Q. Then the polar hyperplane y(A4;) = (Ao, .. -, Ai,... , An)
of A; with respect to Q has equation x; = 0,7 = 0, ..., n. Onthe other hand y(4;)
has equation
Xa; A "(x0,....,Xxp) =0,

where x4; is the vector of the coordinates of A;,i = 0, ...,n. Thus one must have
aij=0, i,j=0,...,n,i7éj,

and so the equation of the quadric Q assumes the diagonal form
n
> aix? =0, (5.29)
i=0

with all coefficients o; = a;; different from zero. By a suitable choice of the unit
point one can then always suppose that (5.29) is rewritten in the canonical form

n
> ox7=o0. (5.30)
i=0

Exercise 5.5.8. As an exercise, we give a variant of the preceding argument for
obtaining (5.29), (5.30).

We begin by considering the case n = 1. Let Py, P; be two points of a line
not belonging to Q and mutually reciprocal with respect to Q, that is such that each
is the polar point of the other (cf. Remark 5.5.5). Since Py and P; are distinct we
may suppose that Py = [1,0] and P; = [0, 1] and write the equation of Q in the
form

axy +bxi =0
with ab # 0. It then suffices to change the unit point via a change of coordinates
expressed by
Xo = axg, X; = Bxi,
with & and B such that @® = a, B2 = b, in order to obtain equation (5.30).

Now let n > 2. We take a point Py not belonging to Q and its polar hyperplane
Hy = Q1(Pyp). Since Py does not belong to Hy we may assume that the reference
system is chosen so that Py = Ay and Hy has equation xo = 0. Hence we can
suppose that the equation of Q is of the form

aooxg + g(x1,...,xp) =0,

where g = 0 is the equation of a non-specialized quadric in S,—; = Hp. One
completes the proof easily by induction on #.
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5.5.9 The linear subspaces of a quadric. Let Q be a non-specialized quadric in
P" and S, C P” a linear space. If S}, is contained in Q, it belongs to its polar
Sy—_n—1 (cf. §5.5.4,d)). Hence h <n — h — 1, that is,

h<|:n—1:|’
- 2

where “[ ]” denotes the greatest integer function.

We now prove that Q contains linear subspaces Sy of maximal dimension 7 =
h(n) = [%]

The hyperplane Tp tangent to Q in one of its points P intersects Q in a cone I'
with vertex P which contains every linear space S}, lying on Q and passing through P.

Consider a hyperplane H not passing through P and let Q' be the quadric section
of Qwith §,_, = H NTp. Every maximal linear subspace of Q intersects this S,_»
in a space Sj—; of maximal dimension in Q': indeed, if Q' contained a linear space
of dimension > & — 1, that space, joined with P, would give a space of dimension
> h lying in Q. Conversely, each Sj,_; lying on Q' gives, when joined with P, a
space S}, belonging to Q. Thus there is a bijection between the set of subspaces of
maximal dimension of Q issuing from a fixed point and the totality of the subspaces
of maximal dimension of the quadric sections Q" C S,_,. Therefore the maximal
dimension /(n) of the linear spaces lying on a quadric Q C P” verifies the relation

h(n) =1+ h(n-2).
If n = 2p + 11is odd, one has the (p — 1) relations

h2p+1) =14 h2p—1),
h@2p—1)=1+h(Q2p-73),

h(5) = 1+ h(3).

Summing term by term, and bearing in mind that 2(3) = 1, one obtains

Similarly, if » = 2p is even, one has the (p — 1) relations

h(2p) =1+ h(@2p —2),
h2p—-2)=14+h(Q2p—4),

h(4) = 1 + h(2).
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Again summing term by term, and remembering that /2(2) = 0, one obtains

h(n):h(Zp)zp—l+h(2)=p—l=[n;l].

The subspaces of maximal dimension 4(n) lying on Q are 0co?™, where d(n)
is recursively defined by the relation

dn)=dmn—2)+ (n—1) —h(n), (5.31)

on taking into account that d(2) = 1 (points on a conic are parameterized by one
parameter). Indeed, if we consider a generic S,,_p (), it will cut Q in a quadric Q
and a generic linear subspace of maximal dimension of Q in a point. Thus it suffices
to count the linear subspaces of maximal dimension of Q issuing from the points
of Q (which are oo”_h(”)_l). On the other hand, as has already been observed, the
spaces of maximal dimension issuing from a fixed point on Q are 0c0?®*~2). Thus
dn) =dn —2)+n—h(n)—1, thatis (5.31).
Then, if n = 2p + 1 is odd, we have the relations

d2p+1)=dQ2p—-1)+2p—p=dQ2p—-1)+p,
dR2p—-1)=dQR2p-3)+p—1,

d(5) =d(3) +2.

Summing term by term and recalling that d(3) = 1 (the lines on a quadric in P3
are oo!, which means that they depend on one parameter) one obtains

_plp+D  n?-1

dmn)=dQR2p+1)=1424+---+p 5 3

If n = 2p is even, one has

d2p) =dQ2p—-2)+2p—p=dQ2p—-2)+ p.
d2p—-2)=dQRp—-4)+p—1,

d4)=d(2)+2.
Once again adding term by term and recalling that d(2) = 1, one finds that

_plp+1)  n(n+2)
N 2 8

Note that, if n is odd, on Q there are two different systems of linear subspaces
of maximal dimension (indeed, by way of successive intersections of the original

din)=d@p)=1+2+-+p
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quadric Q with linear subspaces of codimension 2, one obtains a non-specialized
quadric Q' in P3, that contains two arrays of lines). The linear subspaces of maximal
dimension of a quadric in a space of even dimension by contrast form a unique
system (if fact, in the same way, in this case one obtains a conic Q’, whose points
constitute a unique system).

For example, a non-singular quadric in P* contains a unique 3-dimensional
system of lines. A quadric in P° contains two different systems of planes, both of
dimension 3.

Exercise 5.5.10. Let Q be a quadric in P” tangent to a linear space Sy, along a
subspace S,_1. Show thatif 4 > n/2 then Sj,_1 contains a double (that is, singular
for Q) subspace of dimension > 2h —n — 1.

In fact, if x4 = -+ = x, = 0 are the equations of Sj, and x;, = xp4+1 =
-+« = X, = 0 are those of Sj_;, then the equation of Q may be written in the form

xi + Lpy1xXpgr1 + -+ Lpx, =0,

with L; linear forms. The linear space with equations x, = Xp41 = -+ = X =
Lyiy = --- = L, = 0 has dimension 22 —n — 1, and all its points are double
points for Q.

5.6 Complements on polars

In the following discussion we will systematically employ the results of Sections 5.1,
5.2 and 5.4 without explicit reference.

Let X be a hypersurface in P” of order r. We have seen in §5.4.10 that if P is
an s-fold point of X, the (r — s + 1)*, (r —s + 2)™, ... polars of P with respect
to X are indeterminate and the (r — s)™ polar is the tangent cone to X at P. Now
we consider the j™ polar X;(P) of the s-fold point P, under the hypothesis that
j=<r—s.

If P=A4¢ =1[1,0,...,0], the hypersurface X has equation

f = x(’;_sf:f(xl’~-"xn)+x6_s_l.]rs+l(xls--~v-xn)+”.+fr('XIV'--vxn) = 07

and fs(x1,...,x,) = 0 is the equation of the tangent cone TCp(X) to X at P.
The j" polar X (P) has equation

8jf . r—s—j
— =@ —=s)r—s=1)...(r=s—j)fs(x1,....Xn)Xxq =
0xp
+(r—-s—-1)...r—s—j —1)fs+1(x1,...,x,,)xg_s_j_1 )

Recalling that X; (P) has order r — j, we have thus established the following
fact:
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Lemma 5.6.1. Let X = V(f) be a hypersurface of order r in P", P an s-fold
point of X, TCp(X) the tangent cone to X at P. For each j < r —s the j™ polar
X;(P) has P as an s-fold point with T Cp (X)) as tangent cone.

Now let Q be an arbitrary point of P” and P # Q an s-fold point of X. Suppose

that 0 = A; =[0,1,...,0] and also that P = Ay = [1,0,...,0]. The first polar
X1(P) of P has equation

8f;+1()€1, e ,Xn)

o (X0 X)
8x1 =0 8x1 +x0 8x1 +
afr(x1,...,
4 fr (X1 Xn) -0
8x1

and so has multiplicity r — 1 — (r —s) = s — 1 at P, and its tangent cone at P,
with equation af £ = (, is the first polar of Q with respect to the tangent cone to X
at P. But the case when the polynomial fs(xy,...,x,) doesn’t depend on x1, so
that af £ = (, is an exception. If that happens, then the point P is at least s-fold for
X (Q) and the tangent cone to X at P has the line rpg as its vertex.

More generally, the j ™ polar X;(Q) of Q has equation

TSRY YT
ax{ dx] dx{ dx]

and one has the following result.

Lemma 5.6.2. Let X be a hypersurface of order r in P", P an s-fold point of X,
and TCp (X) the tangent cone to X at P; let Q # P be an arbitrary point of P".
The j™ polar X;(Q) of Q generally has multiplicity s — j (= r — j — (r —s))
in P, and has as its tangent cone in P the j™ polar of Q with respect to TCp(X);
in symbols

TCp(X;(Q)) = (TCp(X));(Q).

In the exceptional case in which the variable x; appears in fy(x1,...,X;) only
to a degree < j (and O = A;) the multiplicity of X;(Q) at P is > s — j. In this
case the tangent cone to X at P has the line rpg as at least an (s — j )-fold generator
(that is, each point of the line is a point of multiplicity at least s — j for X).

In particular Lemma 5.6.2 assures us that if P is a double point of X the first
polar X1 (Q) of Q with respect to X passes simply through P and has as its tangent
hyperplane at P the polar hyperplane of Q with respect to the tangentcone TCp (X).
This hyperplane is the locus of the harmonic conjugates of Q with respect to the
pairs of points of TCp (X) that are collinear with Q, and so (if P is a double point
with non-singular tangent cone) it is not tangent to 7Cp (X).
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Now let X again be a hypersurface of order r in P", P = Ag,and Q = A;. If
S1, §p are positive integers such that s := 51 + s, < r (and so r > 3) we have

o5t [ 0%2 9%2 (9%
(ZL)= (), -
dxy' \ 0x) dx;* \ dx,
Now, the vanishing of the left-hand side of (5.32) means that in the equation
% = 0 of the s‘zh polar X, (A;) of A, the variable x¢ appears to degree < s; —1,
and therefore that Ay is a point of multiplicity > r —s, — (s — 1) = r —s + 1 for
X, (A1). The vanishing of the right-hand side of (5.32) means that in the equation
*1f
8x(s)1 -
and thus that A; is a point of multiplicity > r —s; — (s — 1) = r — 5 + 1 for
X, (Ap). Thus we have:

0 of the stlh polar X, (Ag) of Ao the variable x; appears to degree < s, —1,

Lemma 5.6.3. Let X be a hypersurface of order r in P*, P, Q two points of P"
and s1, 2 positive integers such that s := s1 + sy < r. If the s polar X;,(Q) of
Q has P as (at least) an (r — s + 1)-fold point, then the s\" polar X, (P) of P has
Q as (at least) an (r — s + 1)-fold point.

For example, if s; = 1 and s, = r —2, we find that if the polar quadric X, _»(Q)
of Q has P as a double point, the first polar X;(P) of P has a double point at Q.

5.6.4 The Hessian hypersurface. Let X C P” be a hypersurface of order r and
let H be the locus of points P of P whose quadric polar X,_,(P) with respect to
X has a double point.

By Lemma 5.6.3, if P is a point of J{ and Q is the double point of its quadric
polar X,_,(P), the first polar X7 (Q) of Q has a double point at P; and conversely,
if the first polar X1 (Q) of Q has a double point at P, the quadric polar X,_,(P) of
P has Q as a double point. Therefore, H{ can be defined as the locus of the double
points for some first polar.

In order for the quadric polar of P = [yy,..., y,], which has equation (cf.
(5.21) and Remark 5.4.8)

8r—2f n a2f
Z Yiy ---J’ir_zm = Z Yy, 0.

[1yeensip—2 - i,j=0

to have a double point it is necessary and sufficient that the determinant of the matrix
of coefficients vanish (cf. Section 5.5). Thus, the locus H of points of P”* whose
polar quadric has a double point, or also the locus of the double points of the first
polars, is the hypersurface represented by the equation

det( 32f ) =0 (5.33)
dy; 0y; ' '
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This hypersurface is called the Hessian hypersurface of X and has order deg(H) =
n+ 1D —-2).

One sees immediately that J passes through every multiple point P of X.
Indeed, if the multiplicity of P is s > 3, then at P all the second order partial
derivatives of f vanish and so P satisfies (5.33). Moreover, we have seen that if P
is only a double point for X, the polar quadric of P is the tangent cone to X at P
and hence has a double point at P, which is to say P € J{.

It is easy to prove that the Hessian hypersurface of X generally has multiplicity
mp(H) = (n + 1)(s — 2) + 2 at an s-fold point P of X. In fact, suppose that
P =1]1,0,...,0]is an s-fold point of X, and so

S =x0"" fs(x1,...,xn) +x6_3_1fs+1(x1,...,xn) + ot fr(x1, .. Xn).

By observing the following table, in which position (i, j) shows the degree of

2 .
02/ with respect to xo,

0x;0x;
r—s—2 r—s—1 r—s—1 ... r—s—1
r—s—1 r—s r—s r—s
r—s—1 r—s r—s r—s

one sees immediately that the degree of JH{ with respect to xg is in general
r—s—2)+n(r—s)=2r—s—DHD+m—-Dr—s)=F—s)(n+1)—2.

It follows that

deg(H)—((r—s)(n+1)=2) = (r=2)(n+1)—(r—s)(n+1)+2 = (n+1)(s—2)+2,

that is, mp(H) = (n + 1)(s —2) + 2.
We shall now see how the non-singular points of a hypersurface which belong
to the Hessian may be characterized.
Let P = Ay be a simple point of X and x; = O the tangent hyperplane to X at
P, so that
f=xb" 1 x5 2 (X0, X)) e

If f, = Z? j=14ijXiX;j, a direct calculation (long but elementary and which we
omit for brevity) shows that the necessary and sufficient condition for the Hessian
of X to pass through P is

det(aij) =0.

But this says that the quadric cone with equations x; = f> = 0 (the locus of the
lines having intersection multiplicity > 2 with X at P) has a double generator, that
is, the tangent hyperplane to X at P is tangent to the quadric cone f, = 0.



138 Chapter 5. Hypersurfaces in Projective Space

If P is a simple point of X belonging to the Hessian one says that P is a
parabolic point. The parabolic points of a plane algebraic curve X are its flexes,
which are in number (if X is non-singular) 3r(r — 2). The parabolic points of a
surface of order r in P> are the points for which the two principal tangents coincide.
In general they are the points of a curve, which is called the parabolic curve of the
surface X, of order 4r(r — 2).

The locus of the parabolic points is the intersection of the hypersurface X with
its Hessian and is (in general) an (n —2)-dimensional variety of order r (r —2) (n+1),
cf. Corollary 4.5.5.

If X is a quadric (the case r = 2), the Hessian determinant is a constant
(= 2"*1 det(A), where A is the matrix of the coefficients of the quadric) and so the
points of a non-degenerate quadric are all non-parabolic, while the simple points of
a degenerate (but irreducible) quadric are all parabolic (cf. Section 5.5).

5.6.5 The class of a hypersurface. As an application of the theory of polar hyper-
surfaces and of Bézout’s theorem, we calculate the class of an algebraic hypersurface
X of order r in P”. The class v = v(X) of X is the number of tangent hyperplanes
to X that belong to a generic pencil, that is, that pass through a generic S, _,.

Let S = S,_, be a generic (n —2)-dimensional subspace, and let Py, ..., P,_;
be n — 1 linearly independent points of S. Let IT be the hyperplane tangent to X
at one of its non-singular points Q. If IT (which is the (r — 1) polar of O with
respect to X') passes through S, that is, if IT contains all the points P;, the first
polar of each of these points with respect to X passes through Q by the Reciprocity
Theorem (Theorem 5.4.6). Conversely, if Q is a simple point of X belonging to the
first polars of the points P;, the tangent hyperplane to X at Q contains the points
P; and therefore passes through S

The points Q in which X has tangent hyperplane passing through S are thus the
simple points of X that belong to the first polars of the points P;, j = 1,...,n—1.
Since these polars are hypersurfaces of order » — 1, the number of such points Q, that
is, the class of X, is, by Bézout’s theorem (Theorem 4.5.2), v(X) < r(r — 1)1,

With respect to a reference system having among its fundamental points the
points Q = Ay, Py = A4,..., P,—1 = A,_1, the equation of the hyperplane IT is
X, = 0 and that of X is

f= xs_lxn —|—x6_2f2(x1,...,xn) +...=0.
The first polars of the points A; have equations

%:x'ﬂM

8Xj 0 axj +

and % = 0 is the equation of the tangent hyperplane to X;(4;) at Q, j =
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1,...,n — 1. The hypothesis that S, _, is generic implies that the polynomials af 2

are not null and therefore Ay is a simple point of X;(4;),forj =1,...,n—1.
The condition in order for the n hyperplanes x,, = 0 s — =0,j = 1, coo,n—1,

> 0x;
not to be linearly independent is that the matrix of their coefficients have rank
<n-—1, .namely that the matrix A € My,_1(K) of the coefﬁcients of the linear
forms fz(J)(xl, ..., Xn—1,0), have rank o(A) < n — 2, where fz(j) = % Thus

the cone with equations

f2(xl,-~axn—l,xn) = xﬂ = 07

consisting of the lines having multiplicity of intersection at least 3 with X at Ay,
should have its locus of double points of dimension > 1 (cf. (5.7) in §5.2.1).

Since the points for which this occurs are at most 00”2 (00! for the points
of X and the relation o(A) < n — 2 imposes at least one condition) for a generic
space S,—» there do not pass tangent hyperplanes of this nature. (Indeed, in the
dual space P"* the pencil of hyperplanes is a line, and a generic line of P"* does
not meet a variety of dimension < n — 2.)

Hence we may conclude that each non-singular point Q of X for which X
has tangent hyperplane passing through a generic S,— = J(Pq,..., Py—1) is a
non-singular point for the first polar X (P;) of each of the points P;. Moreover,
the n hypersurfaces X, X1(P1), X1(P2), ..., X1(P,—1) intersect transversally at Q
(having there linearly independent tangent hyperplanes) and thus their intersection
multiplicity at Q is mg (X, X1(P1), X1(P2),..., X1(Pr—1)) = 1.

By Bézout’s theorems 4.5.1 and 4.5.2, we may then conclude that if X is non-
singular its class is v(X) = r(r — 1)" L.

Suppose now that X has a node of the most general type, that is, a double point
P whose tangent cone has no multiple generators. Let P = Ag = [1,0,...,0] and
let

f=x"2fxn,....x)+-=0

be the equation of X. The point P = Ay is non-singular for X;(P;) and af 2 =

is the equation of the tangent hyperplane to X (P;) at P. The first polars X 1 (P )
have intersection multiplicity

mo(X, X1(P1),.... X1(Pp-1)) =2

with X at Q. Indeed, by the hypotheses of generality assumed, the n—1 hyperplanes
3f2 = 0 tangent to the first polars X;(P;), j = 1,. —1,at Py = A have

in common a line £ (passing through Ag). This lme is not contained in the cone
with equation f> = 0 tangent to X at Ao, because otherwise from the identity (cf.
Exercise 3.1.18)

f2 sz /2

2f, = —-=
fr=x1— oy 3x2 + -+ x ",
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and the fact that x,, = 0 is a generic hyperplane, one would have that also the

hyperplane STJ?’ = 0 would contain the line £ and so £ would be a singular generator

of the cone f, = 0.

On the other hand, by what we have seen above, and in the case of a hypersurface
of order r all of whose singularities are only isolated double points P of the most
general type, it follows from Bézout’s theorem (Theorem 4.5.2) that

deg(X) deg(X1(P1))...deg(X1(Pr-1))

=v(X) —I—ZmP(X,Xl(Pl),..-,Xl(Pn—l)),
P

where the sum is extended over the isolated double points P € X. Thus, if d is the
number of these double points, the class of X is

v(X)=r(r—1)""1-24.

In analogous fashion one proves that if the singularities of X are only isolated
multiple points of multiplicity s; and of the most general type, then the class of X
is

vX) =r(r—D"" = si(si— D"

See [44], [43] for results regarding the class of an algebraic surface; and also the
texts [108] and [115] for an exposition of other results on the notion of class for
algebraic varieties.

5.7 Plane curves

The exercises of this section serve to illustrate some properties of plane curves
related to the theory developed in this chapter. Exercises 5.7.13-5.7.20 are dedicated
to the remarkable case of plane cubics, that is, plane algebraic curves of order 3; in
this regard see also [113, Chapter III, §6]. We assume that K = C.

We start by recalling a few definitions. Let P be a non-singular point of a plane
algebraic curve X (of order r > 1) and let £ be the tangent to X at P. We say that
P is a flex of X if the intersection multiplicity of £ and X at P ismp(X,£) > 3. If
mp(X,€) = 3, P is an ordinary flex or flex of the first kind; if mp(X,€) = 2 + h,
P isaflexof type h. f mp(X,{) = 4, that is, if P is a flex of the second type, one
also says that P is a point of undulation.

An s-fold point P of a plane algebraic curve X is said to be ordinary if the
tangent cone to X at P consists of s mutually distinct tangent lines such that the
intersection multiplicity at P of each of these with X is s 4 1 (that is, the minimum
possible); in the case s = 2, an ordinary double point is also called a node.
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A double point P having its two tangent lines coinciding with a single line £
is called an (ordinary) cusp if the intersection multiplicity of £ with X at P is
mp (X, £) = 3, the minimum possible.

In the rest of this section, X C P? will denote an (irreducible) algebraic plane
curve of order r with equation f(xo, x1,x2) = 0.

5.7.1. Let X, X’ be two plane cubics having a common point P as an ordinary cusp
of both curves, and with the same cuspidal tangent. Prove that mp (X, X') = 6.

In affine coordinates, if P = (0, 0) is the common cusp and the line y = 0 is the common
tangent, the two cubics have equations of the form

v+ f3(0,9) =0, y?+g3(x,y) =0,

with f3, g3 homogeneous polynomials of degree 3. If C is the curve with equation f3—g3 =
0, one has (cf. Exercise 4.5.3)

mp(X,X’) :mp(X,C) =06,

since P is a double point for X and a triple point for C. Note that the number of common
tangents to the two cubics X, X’ at P is t = 2, in agreement with relation (4.9).

5.7.2. In the plane = we consider an algebraic curve X, a point Q not belonging
to X and a simple point P of X belonging to the first polar X;(Q) of Q. We know
that if Q is a generic point one has mp (X, X1(Q)) = 1 (cf. §5.6.5). Prove that
mp (X, X1(Q)) > 1 if and only if P is a flex of X.

If r is the order of X and if Q = [0,1,0], P = [1,0, 0] then the equation of X has the
form

f= x(r)_lxz + x6_2(ax% + bx1x2 + cx%) + x6_3f3(x1,x2) 4,

with a,b,c € C and f3 a form of degree 3 in x1, x2. And in order for the first polar of Q,
which has equation

o

_ _30f3
2 3 Y
ax1 =)C6 (2&x1+bx2)—|—x6 Q—F"':O,

to be tangent at P to X, that is, that it have the line £ with equation x» = 0 as tangent at P,
it is necessary and sufficient that @ = 0, that is, that P be a flex (if @ = 0 one has in fact
mp(X,£) = 3).

5.7.3. We know that if X is a plane algebraic curve and P is an s-fold point of X,
the first polar X (Q) of a generic point Q of the plane has P as an (s — 1)-fold point
(cf. Lemma 5.6.2). If P is an s-fold ordinary point for X, that is, with s distinct
tangents, the two curves X and X;(Q) do not have any tangent in common at P
and thus mp (X, X1(Q)) = s(s — 1).
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Suppose that P = [1,0,0], Q@ = [0, 1, 0] and that x; = 0 is one of the s tangents to X
at P, so that X has equation

‘f = xs_SX1 fS—l(xl,Xz) + x6_s_1‘f:sv+1 —+ ..

with fy—1 a binary form not divisible by x;. The first polar of Q has equation

of 81
=X —1+x +--=0
8X1 0 fS ! ! 8x1
and the polynomial fs_; + x %ﬂT—ll is not divisible by x1. Thus a simple tangent of X is

not tangent to X1(Q).

5.7.4. Let P be an s-fold point for X and Q a generic point of the plane. The first
polar X;(Q) of Q with respect to X has at P multiplicity mp(X1(Q)) > s — 1;
and we have mp (X1(Q)) > s— 1 if and only if the s tangents to X at P all coincide
with the line rpg.

If P=Ap=[1,0,0]and Q = A; = [0, 1, 0], the equation of X is

[ =x70 folenx2) #5577 (v x2) o0 =0,
and the equation of X1(Q) is
s =x5 ° ofs x5! As+1 +...=0.

0 3X1+0

8x1 8X1

That X (Q) has multiplicity > s — 1 at P is a consequence of Lemma 5.6.2. The condition
for P to be at least s-fold for X1(Q) is that 2££ = 0 and so fy = x5; therefore, the s

ox 1 -
tangents to X at P coincide with the line rppo : x2 = 0.

5.7.5. If P is an ordinary cusp for X, the first polar X;(Q) of a generic point
Q € P? has a non-singular point at P with tangent that coincides with the cuspidal
tangent, and at P the intersection multiplicity of X with X(Q) is 3.

If P = Ag = [1, 0, 0] with cuspidal tangent having equation x; = 0, the equation of X

f=x572% 42 ) o =0,
with f3 not divisible by x1, while that of X;(Q) is
af _ _30f3
L 9yl 2 r—=32° 4 .= 0.
3)61 0 e +x0 8)(1 +
From this it follows that P is non-singular for X1 (Q) with tangent x; = 0.
In particular, the system of equations f = = 0 is equivalent to the system f =
g = 0, where
a a
g;:2f_xl7f:x6_3 2f3—X1£ 4.,
ox] ox1

The equation g = O represents a curve C having P as a triple point with all tangents distinct
from the cuspidal tangent x; = 0of X at P. Itfollowsthatmp (X, X1(Q)) =mp(X,C) =3
(cf. Section 4.2).
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5.7.6. Let H be the Hessian curve of X. Prove that the following:

(1) An ordinary double point P of X is also a double point for H and the inter-
section multiplicity of X and H at P is 6.

(2) An ordinary cusp P of X is a triple point of H and two (and, in general only
two) of the three tangents to H at P coincide with the cuspidal tangent of X .
The intersection multiplicity of X and H at P is 8.

(DI P = Ao =[1,0,0] and the equation of X is
f=xy"2x1xa + x§ 7 fa(x1,x2) + oo =0,

one finds that the Hessian equation is

f 3r—9 —
T 2 Df3)xg" 04 =0,

Since 3r — 8 = 3(r —2) — 2 = deg(H) — 2, P is a double point of H. If we set

= (r—l)(r—2)x1xzxgr_s—i—(r—l)(2(r—2)x1x2 o2

82
g:=H—(r-D)(r-2)x3"°f = (2(r—1)(r—2)x1x28 /3 _2(r_1) f) 3r=9,. ..
x10
we see that the system f = H = 0 is equivalentto f = g = 0, and the equation g = 0
represents a curve C that has at P a triple point 3r — 9 = 3(r —2) — 3 = deg(C) — 3)
without any tangent in common with X. It follows that mp (X, H) = mp(X,C) = 6.
(2) The equation of X is

f=xt72xf 1§73 3l x2) + - =0,

where x; = 0 is the equation of the cuspidal tangent at P = [1,0,0]. Calculation shows
that the equation of the Hessian is

H =-2(r — 1)(r —2)x3 axf3 X0 4 =0,
1

and so two of the three tangents to H at P coincide with the cuspidal tangent of X. On
setting

2
g=H+20r—1)(r —2)8 €3x§’_7f,
0x7
one finds that the system f = H = 0is equivalentto f = g = 0, and the equation g = 0
represents a curve C that has (in general) a quadruple point without any tangent in common
with X at P. Thusmp(X,H) =mp(X,C) = 8.

5.7.7. Show that a non-singular point P of X is a flex if and only if the polar conic
P with respect to X is degenerate: one of its components is the tangent to X at P,
and the other does not pass through P. The flexes of X are therefore the simple
points of X through which the Hessian curve passes.
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If P = Ag = [1,0, 0], the equation of X is of the form
£ =xb" ax1 +bx2) + x§72(@11x7 + 2a12x1%2 + a2x3) + - = 0,
a,b,ayy,a12,az> € C. The equation of the polar conic of P is

ar—Zf

=2 = —DNaxy + bxz)xo + (r — 2)!(a11x% + 2a12x1x2 + azzx%) =0.
X
0

The necessary and sufficient condition in order that the polar conic of P be degenerate is

0 a b
a an  aiz| = —apb? + 2a12ab —aza® =0,
b a2 ax

namely, that the coordinates of the point [1, b, —a] should annull the quadratic form f> :=
ai 1x12 + 2ai2x1x2 + azzxg, and thus that the latter should be divisible by axy + bxp. If
we set

a1x? + 2a12x1x2 + axnx3 = (axy + bx2)(cxy +dxaz), c¢,d €C,

we have
ar—2 f

r—2
x|,

In particular, one component of the polar conic is the line £ tangent to X at P and the other
component does not pass through P. On the other hand, P is a flex for X if and only if
axy + bx; divides the quadratic form f5; indeed, this is equivalent to m p (X, £) > 3.

(r —2)Yaxy + bx2)((r — Dxo + cx1 + dx»).

Since the Hessian curve of X is the locus of the points P € P2 whose polar quadric is
degenerate (cf. §5.6.4), one has that the flexes of X are the simple points of X through which
the Hessian curve passes.

5.7.8. Let P be an ordinary flex of X. Then X and its Hessian H meet transversally
at Pandsomp(X,H) = 1.

Take P to be the point [1, 0, 0] and the inflectional tangent to be the line with equation
x> = 0, so that the equations of X and H may be written in the form

f=x5" o + xbT2xa fi(xn, x2) + x5 73 f3(x,x2) -

2 2
H= (- 1)((r—2) (gi) X2 —(r — 1)%);@"7 + e
1

X1

It then suffices to observe that P is a non-singular point for H 3r —7 =3(r —2)—1 =
deg(H)—1) and the tangent to H at P is distinct from the inflectional tangent of X inasmuch
as f3(x1,x2) is not divisible by x» since P is an ordinary flex.

5.7.9. Suppose that X has only Pliickerian singularities, that is, only nodes and
ordinary cusps. If r, d, k are the order, the number of nodes and the number of
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cusps and v, 8, p are the dual characters that is, the class, the number of bitangents
and the number of flexes, one has the following two relations:

v=r(r—1)—2d — 3k, (5.34)
o =73r(r—2)—6d — 8k, (5.35)

known as Pliicker’s formulas. In addition to these relations, one also has the dual
relations

r=v(v—1)—26—3p, (5.36)
k=3v(v—2)—635—8p. (5.37)

These formulas are not independent: given any three of them one can deduce the fourth.
Indeed, from (5.34), (5.35) or (5.36), (5.37) one obtains the relation

3r—k=3v—p.

If k = 0, that is, if X has only nodes, the class is v = r(r — 1) — 2d (cf. §5.6.5). Relation
(5.34) (for k > 0) then follows from Exercise 5.7.5.

We have seen in Exercise 5.7.7 that the flexes of X are the non-singular points of X
which belong to the Hessian curve, whose order is 3(r —2). In the case k > 0 relation (5.35)
then follows from Exercise 5.7.6 and Theorem 4.2.1. Relation (5.36) follows by duality from
(5.34) (cf. Example 5.3.3).

5.7.10. A non-singular C* has 24 flexes and 28 bitangents.
This follows immediately from Pliicker’s formulas.

5.7.11. Show that any non-singular plane curve of order 4 can be represented by an
equation of the type ¢2 — @193 = 0, where ¢; (xg, X1, X2) denotes a homogeneous
polynomial of degree j, j = 1,2, 3.

Let C be a non-singular plane quartic with equation f = 0, ¢1 = 0 the equation of a
bitangent £ to C and ¢ = 0 that of a conic passing through the two points of tangency. In
the pencil of quartics f* + A(p% = 0 there is a quartic split into the line £ and an additional
cubic @3 = 0. To obtain that curve, it suffices to choose A in such a way to ensure that the
quartic f + /\(p% = 0 of the pencil passes through a point of £ distinct from the two points
of contact of £ with C.

5.7.12. Prove that it is possible to choose three homogeneous polynomials
@2(x0, X1, X2), @3(X0,X1,X2), @a(xe,x1,Xx2) of degrees 2, 3, 4 respectively so
that the polynomial ¢4 — (p% is the product of six linear forms.

Let y be a conic with equation @5 (xg, x1,x2) = 0, and let C be a cubic with equation
¢3(x0, x1,x2) = 0 that intersects y in six distinct points P;. Then let £; be the tangents to
y in the points P;. In the pencil with equation <p§ — M lrl3848506 = 0 we take the curve
that contains a point of y distinct from the points P;. This curve splits into y and a further
quartic of equation ¢4 (xo, x1,x2) = 0. Thus, 294 — go% = {1420304050¢.
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5.7.13. A plane cubic C can not have two multiple points in view of Proposi-
tion 7.2.7; it can have only a node or an ordinary cusp. Using Pliicker’s formulas
(cf. 5.7.9) one sees that if C is non-singular its class is 6 and it has nine flexes. The
class of a cubic with a node is 4 and there are three flexes. Finally, a cuspidal cubic
has class 3 and only one flex. A cubic with (one) singular point is rational and one
can easily find its rational parametrization by intersecting it with the pencil of lines
having center at the singular point.

5.7.14. Show that the plane cubics that pass through eight generic points of the
plane, also pass through a ninth point determined by the others.

The cubics in the plane form a linear system X of dimension 9, and passing through a
point imposes one linear condition on the system (cf. Sections 6.1, 6.2). Hence the cubics of
> that pass through eight generic points of the plane form a pencil ® and so they also pass
through the ninth base point of the pencil ®.

5.7.15. Prove the following facts.

(1) If six of the nine base points of a pencil of cubics belong to a conic y then
the remaining three points are collinear.

(2) Let A, B, C and A’, B’, C’ be two triples of collinear points on a plane cubic
C. The lines r44/, rp’, Fcc intersect € in three points A”, B”, C” which
are also collinear.

(3) The tangentials of three collinear points of a cubic C are collinear (the zan-
gential of a point P € C is the point in which the tangent at P again meets
the cubic).

(4) The line joining two flexes of a plane cubic meets the cubic in a third flex.

Statement (1) is a simple consequence of 5.7.14. Indeed, the cubic composed of the
conic y and the line r that joins two of the three base points that do not belong to y passes
through eight base points of the pencil, and so r must also pass through the ninth point.

One could also reason as follows: the curve of the pencil that passes through a point P
belonging to y but distinct from the six base points that lie on y contains y as component (by
Bézout’s theorem); the residual component is a line that must contain the three remaining
base points.

Statements (2), (3), (4) are special cases of (1). To prove (2) it suffices to consider the
conic y composed of the two lines that join the two triples of collinear points A, B, C and
A’, B’, C’. Statement (3) is merely (2) in the particular case A = A’, B = B’ and so
C =C’.Ifthen A = A’ = A” and B = B’ = B” one must also have C = C’ = C” and
thus one obtains (4). For this last statement one can also reason as follows. Let L and M
be two flexes of the cubic C, r the line that joins them and N the remaining intersection of
C with r. The pencil of cubics determined by the cubic € and the cubic that is split into the
line r counted three times has as base points the points L, M, N each counted three times.
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Figure 5.1

The cubic split into the three tangents of C at L, M, N contains eight of the nine base points
of the pencil, and so must also contain the ninth, so that N too is a flex (Figure 5.1).

5.7.16. Another demonstration of Pascal’s theorem on conics (cf. [ 13, Vol. II, Chap-
ter 16]).

Let Ay, A2, A3z, A4, As, Ae be six points of a conic y. The two triples of lines
J = (ra,45.74544.T4544), § = (rA445.T4641.TA4,45) define a pencil of cubics whose
base points are the six points A;, together with the three points L = rq;4, N 74,45,
M =ra,4; Nrasag and N = ray 4, Nra; a4 (Figure 5.2). Since the points 4; belong to
a conic, the three points L, M, N are collinear by Exercise 5.7.15 (1).

5.7.17 (G. Salmon’s theorem [36, Vol. I, pp. 271-272]). Let € be a non-singular
cubic. Two of the six tangents that issue from a point M of C coincide with the
tangent at M. Prove that the absolute invariant of the other four tangents does not
depend on M (cf. 1.1.1). It is called the modulus of the cubic.

On € we take two points M, M’ and let A be the remaining intersection of € with the
line rasaz/, t aline issuing from A and tangent to C elsewhere and T the relative point of
tangency. Consider a line r issuing from M that intersects the cubic in two points P, Q and
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Figure 5.2

let P/, Q' be the remaining intersections of the cubic with the lines rrp, rro. The two
lines r, t intersect C in the two triples of points M, P, Q and A, T, T. Therefore, the three
points M’, P/, Q’ belong to a line 7’ by Exercise 5.7.15 (2).

Figure 5.3

Thus one has a one-to-one algebraic correspondence between the two pencils of lines
centered at M and M’, which is therefore a projectivity: two lines like r and r” correspond
to each other. To the four tangents issuing from M there correspond the four tangents issuing
from M’ (note that the class of C is 6, and if P is a point of C, two of the six tangents to C
issuing from P coincide with the tangent at P).

If the quadruple of tangents issuing from a generic point M of € to touch the cubic
elsewhere is harmonic or equianharmonic (that is, if the quadruple of points cut out by the
four tangents on a line not passing through M is harmonic or equianharmonic, cf. 1.1.1), we
say that € is a harmonic or respectively equianharmonic cubic.
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5.7.18. Let P be a flex of a cubic X. The polar conic of P splits into the tangent
at X and a residual line called the harmonic polar of P. Show that the cubic is
mapped into itself under the harmonic homology having P as its center and as axis
its harmonic polar.

If the tangent at the flex P = [0, 1, 0] is the line xo = 0 and if the harmonic polar of P
is the line x1 = 0O one finds that X has an equation of the form )coxl2 — ¢(x0,x2) = 0, with
¢ a form of degree 3. One sees immediately that X is mapped into itself by the harmonic
homology defined by [xq, x1, X2] — [x0, —x1, Xx2] (cf. 1.1.14).

5.7.19. Let X be a non-singular cubic, F a flex of X. Calculate the modulus of the
cubic (cf. Exercise 5.7.17).

Let r be the polar harmonic of F (cf. Exercise 5.7.18). Since X is non-singular, the line
r meets X in three points A, B, C of contact of the tangents issuing from F and distinct from
the tangent in F' (by the Reciprocity Theorem 5.4.6). To calculate the modulus of the cubic
it then suffices to calculate the cross ratio R(A4, B, C, D) where D is the intersection of the
line r with the tangent at F. If the tangent at the flex F = [0, 1, 0] is the line xg = 0 and if
the harmonic polar of F is x; = 0, the equation of X has the form xox% — @(xg,x2) =0,
with ¢ a form of degree 3.

The points A, B, C, the intersections of X with the line r, are given by x1 = ¢(xp, X2) =
0 and so in the induced coordinate system on the line » : x; = 0 one has 4 = [a, 1],
B = [h,1],C = [c,1], D = [0, 1], where a, b, c¢ are the roots (surely distinct by the
hypothesis that X is non-singular) of the cubic equation ¢(x, 1) = 0, x = xo9/x1. Then

c 1 0 1

a a1} blc—a)

¢ 1"’0 1’_a(c—b)'
1

R(A, B,C,D) =

b 1

5.7.20. Let O be a fixed point on a non-singular cubic X. Given two points P, Q
on X we define the sum P + Q to be the point that one obtains on X by projecting
the remaining intersection of X with the line 7pg from O. Show that in this way
one obtains the structure of an abelian group on X with O as the neutral element.

The only property which is not obvious is the associative law. In the Figure 5.4 the points
P + Q and R + Q are shown. In order to prove that (P + Q)+ R = P + (Q + R) it
suffices to show that the three points P, Z, and Q + R are collinear, where Z is the remaining
intersection of the cubic with the line joining R with P 4+ Q. To this end, consider the triples
of points P + Q, N, O and R, Q, M. The lines rp4 o, Rr, YN0 and rops intersect X in
the three points Z, P, Q + R, which are therefore collinear by Exercise 5.7.15 (2).
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Figure 5.4

5.8 Surfaces in P3

The remarks and exercises which follow serve to illustrate the theory developed in
this chapter with regard to some of the properties of surfaces in P3; see also [92,
Chapters IX, XIII]. We assume that K = C.

5.8.1 Normal singularities of a surface. One says that a surface X in P> has
normal (or ordinary) singularities if its singularities are (at most) the following:

(1) A double nodal curve L, that is, such that in each generic point of L the
tangent cone to X is composed of a pair of distinct planes; and in this case
the point is said to be a double biplanar point for X .

(2) On the curve L a finite number of double points (for X) with coincident
tangent planes; such points are called cuspidal points (or pinch-points, or
also uniplanar double points).

(3) On the curve L a finite number of triplanar triple points (that is, triple points
of X at which the tangent cone to X splits into three distinct planes) and
which are also triple points for the curve L.
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If each point of the curve L is a cuspidal point, £ is said to be a cuspidal double
curve (and in that case X does not have normal singularities).

Normal singularities are the only singularities that the generic projection in P>
of a non-singular surface I embedded in P> can possess [37]. The interest of the
notion of normal singularities depends on the following fact:

 Every algebraic surface S has a non-singular birational model (that is, bi-
rationally isomorphic to it) embedded in P°.

This important theorem was discovered by various authors. The first rigorous
proof is due to Levi [64]; for more recent proofs see, for example, Walker [112] and
Zariski [116], [117] (see also Exercise 13.1.21 for a discussion of the analogous
result for algebraic curves).

The extension of Levi’s theorem to three dimensional varieties is due to Zariski
[118]; finally, in 1964, Hironaka [51] proved the fundamental result that every
irreducible algebraic variety over a field K of characteristic zero possesses non-
singular birational models.

With regard to the generic projection X in [P3 of a non-singular algebraic surface
F in P>, Franchetta [39] has proved that the double curve of X is irreducible with a
unique exceptional case when JF is the Veronese surface, whose generic projection
is in fact the Steiner surface (cf. Exercise 10.5.6) whose nodal double curve is a
triple of lines issuing from a point.

5.8.2. Consider a surface X in P3, of order r, and having a double point P. Study
the behavior at P of the first polar X;(Q) of a point Q # P.

We take P and Q to be the points Ag = [1,0,0,0] and A1 = [0, 1,0, 0], so that

X x{202(x1,x2,x3) + 3§ 203(x1,x2,x3) + - =0,
5092 _3 003
X1(0): x{, 2%-’-)66 3%-’-"':0.

Initially we suppose that the cone I" (with equation ¢» = 0) tangent to X at P is not a pair
of planes both of which pass through Q. This is equivalent to supposing that the polynomial
@2

9x. hotbe null. In that case X (Q) passes simply through P and the plane 7 (with equation

g—‘;’f = 0) tangent to X;(Q) at P is the polar plane of Q with respect to I.

If O does not belong to I', then 7 is the locus of the harmonic conjugates of P with
respect to the pairs of points of I' collinear with Q. (In particular, if I" is a pair of distinct
planes «, § neither of which passes through Q, then 7 is the harmonic conjugate with respect
to o and B, in the pencil of planes with axis the line » = o N B, of the plane that joins Q
with r.) The point P is a node for the line L = X N X1 (Q) and I' N r is the pair of tangents
of L at P.

If, however, Q belongs to I, r is the tangent plane to I" at Q and P is (in general) a
double point with coincident tangents for L.

In the exceptional case that g% is the null polynomial (which happens if and only if I"

is a pair of planes both of which contain Q) the point P is (at least) double for X1 (Q).
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5.8.3. Prove that if two surfaces F, G in P3 are mutually tangent at a point P
(simple for both of them), that is, if at P they have the same tangent plane, P is at
least double for the curve L = F N G.

It suffices to observe that if P is the origin of a system of affine coordinates x, y, z and
if
f=z+0p+p3+--=0 g=z+6bh+03+---=0
are the equations of F and G, the curve L can be represented by the system of equations
f = f — g = 0 and is therefore the intersection of F' with the surface of equation ¢, —
02 + ¢3 — 03 + --- = 0 which passes doubly through P.

5.8.4 (Tangent cone in a point of a double curve). Let £ be a curve in P3 and X a
surface passing doubly through £. Show that if P is a simple point of £ the tangent
cone to X at P is a pair of planes passing through the tangent of L at P.

The question is of local nature, and so we may suppose that L is the complete intersection
of two surfaces with equations / = 0, g = 0both passing simply through P and not mutually
tangent there.

Itis known (cf. the next note 5.8.5) that if F' = 0 is the equation of the surface X passing
doubly through £, the polynomial F belongs to the ideal ( f, g)> = (f2, fg,g>). Let then

F =Af2+23fg+Cg2, A, B,C € Clxo, x1, x2, x3].

We have,
92 F af of Jaf dg af og dg 0g
Fi; = =2A——+42B|*——"> + —— 2C ——
Y axiaxj' 3)6,' ax]' + (8)61' 3Xj + 3x,~ Bxi) + 8xi 3x,~
Thus, on putting f; = g){l_,gi = ngi,i =0,1,2,3, we have
PF
- —2(Afi f; + B(figj + 1;8i) + Cgigj) € (1. 8).
0x; 0x;

Hence,

32
(8 aF) = 2[A(P) fi(P) fj (P) + B(P)(fi(P)g;(P)
xidx; ),

+ /;(P)gi(P)) + C(P)gi(P)g; (P)]

and the tangent cone to X at P (namely, the cone of equation Foo( P)xg +2Fo1(P)xox1 +
--=0)is

AP) Y fi(P) f5(P)xixj + B(P) Y [ fi(P)g; (P) + f; (P)gi(P)]x;x;
i.J i.j

+C(P)Y gi(P)gj(P)xix; =0,

i.J
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which is to say

AP (X i) + 280X ey ) (L (P
+ C(P)(Zgi(P)xi)z =0,

and thus it is a pair of planes passing through the line > ; fi(P)x; = > ; g&i(P)x; = 0
tangent to L at P.

If B(P)?> — A(P)C(P) = 0 the two planes coincide and P is a cuspidal point (or
pinch-point) of X.

In the special case that B> — AC € (f, g) each point of L is a cuspidal point (of the
surface) and L is a cuspidal double curve.

If £ is a nodal double curve it can have only finitely many cuspidal points, namely the
solutions of the system f = g = B> — AC = 0.

To obtain the tangent cone to X at a generic point P € L it suffices to intersect X with
an arbitrary plane 7 passing through P (but not through the tangent of £ at P) and then to
take the two planes that join the tangent of £ at P with the tangents at P to the curve X N .

5.8.5. Note. If p is a prime ideal of the ring A (commutative and with identity), the
symbol p(s) denotes its s™ symbolic power, that is, the set (which one immediately
sees to be an ideal) of elements x € A such that there is a y & p for which one has
xy € ps.

If A = K[y1,...,ys] one has f € p'¥ if and only if the affine hypersurface
f = 0 passes s-fold through V(p). It is then obvious that p* C p®). It follows
that p* = p(s) if and only if p is an ideal of principal class (and thus, in particular,
if p is generated by only two elements); cf. [17], [16].

An interesting example of a prime ideal p C K[x, y, z] such that p> # p® is
the ideal p = (xz — y2, x3 — yz, z2 — x?y) already encountered in Exercise 3.4.11
(cf. [71, ChapterI]); indeed, the polynomial f = x> —3x2yz + xy3 + z3 does
not belong to p? inasmuch as a polynomial of p? can not contain the monomial z3,
but it belongs to p®@ because one has

xf=x*—yz)? + (xz — yH)(* —x%y) € p.

5.8.6 Tangent cone at a point of an s-fold variety. Let 1, be an s-fold variety
for the hypersurface X in P” defined by the equation F = 0. Moreover, let
P =11,0,...,0] be a simple point of V and suppose that x; = --- = x,_ =0
is the tangent space Sy at P to V;. Since Vi is locally (near P) a complete
intersection, we can suppose that Vy is the locus of zeros of a homogeneous prime
ideal p = (f1,..., fu—k), Where

d._ .
fi=xy x4, j=1..n—k d;=degf;.
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Since F € p* we can write

F =ZA,~9,~ + H,
i

where 6; € p®, H € p*T1, and the A; are polynomials not all of which vanish at P.

One sees immediately that the coefficient of the highest power of x¢ in F is a
form of degree s in the indeterminates x1, .. ., x,_; with constant coefficients.

Therefore, the tangent cone to X at P has as its vertex the tangent space to Vy,
at P. In particular, if £ is an s-fold curve of a surface X in P3, the tangent cone to
X at a simple point P of L consists of s planes passing through the tangent to £
at P.

For our later purposes it is useful to give more detail in the case of a hypersurface
passing through a linear space which we may assume to be defined by the equations
X0 =+=2Xp__1 =0.Let F € (xg....,Xp_k_1) so that

F = Looxg +2Lo1XoX1 +*+* + Ly—k—1n—k—1X>_j_; + G(X0, - -, Xn—k—1),

where the coefficients L;; = L;j(Xy—k, Xn—k+1. - - - » Xn) are homogeneous poly-
nomials of degree r —2 in the indeterminates x,_x, X;—k+1, - - - » X and G belongs
tO ('an cee xn—k—1)3'
At a generic point P = [0,...,0,a,—k,an—k+1,---,an] of Sy we have
1 ( 9*°F
= = Lij(an—kaan—k-i—l’u-,an),
2 8xl- axj P

and thus the tangent cone to X at P has equation:

2
LOO(an—k’ Ap—k+1s---> an)xo + 2L01(an—ka Ap—k+1s---> an)xoxl + .-
2
o+ Ly k1 n—k—1@n—k.AGn—k41--- - an)xn_k_l =0.

This equation represents a quadric cone that has as vertex the space Sk.
The points of Sy belonging to the hypersurface D (in Sk ) with equation

A =det(Lij(an—k,dn—k+1---,an)) =0
are exceptional. If P is a point of D for which the matrix
(Lij (@n—k>An—k41----.an))

has rank k + 1 — p, the tangent cone at P has a double space of dimension k + p
(even though P is in general only a double point for F'). It is not impossible that
A is the null polynomial.

In particular, if K = n — 2 and thus

F = Loox3 + 2Lo1x0x1 + L11x? + G(xo, x1),
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the tangent cone at P consists of the pair of hyperplanes
Loo(az, ..., an)x3 +2Lo1(az, ... ,an)xox1 + Li1(aa,...,an)x7 = 0.

We will say that P is a bihyperplanar double point if the two hyperplanes are
distinct, and a unihyperplanar double point if the two hyperplanes coincide. The
hypersurface D of the space S, —, which is the locus of the unihyperplanar double
points is the intersection of S,,_, with the hypersurface having equation

Loi(x2,...,%n)* — Loo(x2, ..., Xn)L11(xX2,...,%n) =0,

and so has order 2(r — 2). On it there may very well be points of multiplicity > 2,
and so on.

In the case in which X is a surface in P23 and k = 1, the locus D is in general
composed of a finite number of points: the uniplanar points (or pinch-points) and
possible points of multiplicity > 2 that X possesses on the double line. The most
general case is that in which one has 2(r — 2) pinch-points. But it can happen that
all the points of the double line are uniplanar, and in that case the line is said to be
cuspidal double.

The extension to the case in which the double variety is not a linear space is only
formally more complex. An example of a surface in P> having a cuspidal double
curve is given by the surface spanned by the tangents of the space curve itself.

5.8.7 (Hypersurfaces in P* with a double line). In general a hypersurface X of P*
with a double line r has at each point of r a tangent cone whose vertex is just the
line r.

Consider, for example, the cubic hypersurface X with equation
xoxg + xl(x32, + axf) + @3(x2,x3,x4) =0,

where ¢3 is a form of degree 3 and a € C, which passes doubly through the line r : x» =
x3 = x4 = 0. The tangent cone at the generic point P = [A, u,0,0,0] of  is

Ax% + u(x% + axz) =0.

In each generic point of r the tangent cone is irreducible, and is the cone that projects the
conicy : xo = x1 = Ax% + M(x% +ax§) = 0 from r. This cone is a pair of hyperplanes if y
is degenerate, thatis, if A2 = 0. For A = 0 one has two distinct hyperplanes x% + axi =0;
while 1 = 0 gives the double hyperplane x% =0.

In particular, if @ = 0, the line r is a particular double line because in each of its points
the tangent cone is composed of the pair of hyperplanes Ax% + ,ux% = 0 (which coincide if
Ap = 0).

In this case we say that r is a bihyperplanar double line (cf. Exercise 13.1.34).

5.8.8. Find all the cubic surfaces passing doubly through the line x, = x3 = 0 and
for each of them find the pinch-points on that line (i.e., the uniplanar points).
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The generic cubic surface X passing doubly through the line x, = x3 = 0 has equation
of the type
x%L + 2xox3M + x%N =0,
where L, M, N are linear forms in xg, x1, x2, x3. The tangent cone to X at the generic
point P = [a, b, 0, 0] of the double line has equation (cf. §5.8.6)

x3L(a,b,0,0) + 2x2x3M(a, b, 0,0) + x3N(a,b,0,0) = 0,

and so it splits into two coincident planes if M(P)%> — L(P)N(P) = 0. The pinch-points
are thus the points of intersection of the line x2 = x3 = 0 with the quadric having equation
M? - LN =0.

5.8.9 Apparent boundary. The apparent boundary of a surface X C P3 from a
point O (or with respect to O) is the closure I' of the locus of points P € X such
that the tangent plane at P to X passes through O. It is nothing more than the curve
of intersection of X with the first polar X;(O) of O.

Therefore (cf. Lemma 5.6.2) an s-fold point of X is (in general) an s (s — 1)-fold
point for I". It is easy to see that a point A of I that is simple for X is in general
also simple for T'. Indeed, let A = [1,0,0,0], O = [0, 1, 0, 0] and assume that the
tangent plane to X at A is x, = 0, so that the equation of X may be written in the
form

fr=xg e+ xf 2 axi + )+ =0,
where n is the order of X. One then has
0
3_){1 =x02Qax; +--)+--=0
and in general the two planes x, = 0, 2ax; + -+ = 0 are distinct. (The two planes

coincide only if the two principal tangents of X at A coincide with the line r40).

The apparent boundary carried by O over a plane 7, is the line T'” which is the
intersection of 7 with the apparent boundary of X from O, that is, the projection of
I" from O onto . If £ is a curve traced on X and passing through a point A of ',
the tangents to £ and to I" at A are both contained in the tangent plane o to X at A;
since this plane passes through O, the projection L' of L from O onto 7 is tangent
to ' at the point A’, the projection of A. This fact is known as the “theorem of the
apparent boundary” (Figure 5.5).

5.8.10. Prove that an algebraic surface of order 3 contains a line, and that a surface
X" of order r > 3 does not (at least in general) contain any line.

The necessary and sufficient condition for the surface X" with equation f(x,y,z) =0
in A3 to contain the line of equations x —az —b =y —cz —d = Oisthata, b, ¢, d annull
the r 4 1 coefficients of the polynomial f(az 4+ b,cz +d, z) € C[z]. One finds a system of
r + 1 equations in the four unknowns a, b, ¢, d. If r + 1 < 4, that is, if r < 3, the system
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Figure 5.5.

has solutions and thus X" contains lines (infinitely many lines if » < 2, a finite number, in
general, if r = 3). If, however, r > 4 the system, in general, has no solutions.

5.8.11. Let X be a surface (non-singular or with at most only nodes of the most
general type, cf. §5.6.5) of P3. Then, its class is v(X) = 2 if and only if X is a
quadric.

That a quadric of P3 has class equal to two is obvious. The converse follows by duality
from Exercise 5.3.4.

5.8.12. Consider a cubic surface X of general type, and choose as the point
[1,0,0, 0] one of its non-singular points P, so that the equation of X has the form

f = xgo1(x1,x2, X3) + 2x092(x1, X2, X3) + @3(x1, X2, x3) = 0,

where @; (x1, x2, x3) is a homogeneous polynomial of degree j, j = 1,2,3. Put
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A := @193 — @3, and let V be the cone with equation A = 0. Verify the identity

191 \?
==L A
o f (28x0) + A,

and use it to prove the following facts:
(1) The tangent planes to V' are precisely the tangent planes to X that contain P.

(2) Every double generator of the cone V' which does not belong to the plane with
equation ¢; = O contains a double point of X, and conversely each double
point of X belongs to a double generator of V.

The first polar X (P) of P with respect to X has equation g-—){; = 0 and, by the

Reciprocity Theorem (Theorem 5.4.6), the curve C := X N X1 (P) is the locus of the points
of contact of X with the tangent planes containing P. On the other hand, A belongs to the
ideal generated by f and by %, and so V contains the curve C; since the variable xo does
not appear in A, we conclude that V' is the cone that projects C from P (cf. §3.4.5). From
this (1) follows.

Each double point of X is obviously also double for the surface of equation (%)2 =0
and hence is double for the cone V'; therefore belongs to a double generator of V. Moreover,
a double generator of V' that does not belong to the plane ¢; = 0 meets the surface X (P) :
5’-—;;) = 0 in a double point for the surface with equation ¢; f = 0, and hence a double point

for X. This proves (2).

5.8.13. Show that a non-singular cubic surface X (of general type) contains twenty-
seven lines.

In the notation of 5.8.12, let P = [1,0, 0, 0] be a non-singular point of X, and
f = x301(x1,x2,%3) + 2x002(x1, X2, x3) + ¢3(x1,x2,X3) = 0

the equation of X. Let V be the cone, with equation A := ¢1¢3 — (p% = 0, that projects the
curve C = X N X1 (P) from P. A bitangent plane of the cone V (that is, a plane tangent to
V along two distinct generators) is a bitangent plane of X that passes through P. Itintersects
X in a cubic with two double points; by Theorem 4.2.1 this cubic splits and contains the line
£ joining the two double points. Hence, every bitangent plane of the cone V' contains a line
lying in X.

Conversely, the plane joining P with a line of X meets X in a (reducible) cubic with
two double points, and so is bitangent to X. By the generality hypothesis made on X, the
polynomials @1, ¢2, @3 are such that the plane quartic C with equation ¢ @3 — (p% =x0=0
is non-singular (equivalently, V is a quartic cone of general type). Using Pliicker’s formulas
proved in 5.7.9, we have that the number of flexes p and the class v of C are p = 24 and
v = 12, so that the number § of bitangent lines to C is § = 28. So V has twenty-eight
bitangent planes. One of these is the plane ¢; = 0 that is a generic tangent plane (i.e., non-
bitangent) to X, and which therefore does not contain lines of the surface, since otherwise
its intersection with X would be reducible. The other twenty-seven bitangent planes each
contain a line of X.
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For a description of the configuration of the lines of X see for instance [74, III, §7] or
also [15, §11].

We recall a few definitions. We say that a surface in P> (or more generally in
P7) is ruled if it is the locus of co! lines, called generators. A curve of the surface
that meets each generator in only one point is said to be a directrix. A generator g
of a ruled surface X is said to be simple if the generic point of g is non-singular
for X. On the other hand, g is said to be multiple (double, triple, ...) if each of its
points is multiple (double, triple, ...) for X. A generator g is said to be singular if
g is simple for X and the tangent plane to X in the generic points P € g is fixed
as P varies in g. A ruled surface is said to be developable if the simple generators
are all singular.

5.8.14 Criterion for developability of a ruled surface. In a system of affine
coordinates in A3, let us represent a ruled surface X in the form

x =o() +ti(u),
y = P) +tm(u), (5.38)
z =1,

where a(u), [(u), B(u), m(u) are twice continuously differentiable functions of the
parameter u, and suppose that the generator g(u) corresponding to the value u of
the parameter is singular, that is, that the tangent plane to X along g(u) is fixed.

We consider two plane sections of X, for example the two sections Lo, £
that one has for r = 0 and ¢t = 1, and the points A, B where they meet g(u). If
the generator is singular the tangent planes to X at A and B coincide and so the
tangent to L¢ at A and the tangent to £; at B are coplanar. Thus, since they are
contained in the two parallel planes z = 0, z = 1, they must be parallel. It follows
that their direction vectors (a’(u), 8’ (1), 0) and (o’ (u) + I’ (u), B’ (u) + m’(u), 0),
must be parallel, where the prime indicates the derivative with respect to u. Hence
o (w)(B'(u) + m'(w)) — B’ ()’ () + I’(u)) = 0, which is to say

o' (w)ym'(u) — B'(u)!’(u) = 0. (5.39)

This is the necessary and sufficient condition in order for g(u) to be singular. If
the ruled surface is developable, that is, if all of its generators are singular, this
condition is verified for all values of the parameter u. Condition (5.39) is obviously
satisfied if I’(u) = m’(u) = 0, that is, if /(u) and m(u) are constants (in which
case X is a cylinder).

If I’(u), m’(u) are not both zero, condition (5.39) implies that there exists a
function o (1) such that

o' (w) =o' (), B'w)=ocW)m'(u). (5.40)
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On every generator we then take the point P (1) obtained fort = —o (). Supposing
that this point is not independent of u [if P(u) were independent of u, the ruled
surface X would be a cone with vertex («(u), B(u), 0)] one obtains the curve I on
X defined by parametric equations

x = a()—o@)l(u),
y = pu) —o@mu),
z = —o(u).

The tangent line to I at its generic point P (u) joins the point P (u) (which belongs
to g(u)) to the improper point

[/ () — o ()l'(w) — 0" (W) (u), B'(w) — o (W)m' (u) — o’ (W)m(u), =0’ (). 0]
= [0 (w)l(u), o' (u)m(u), =0 (u), 0],

that is, to the improper point [/(u), m(u), 1, 0] of g(u). The generator g(u) is then
the tangent to I" at P(u) and X is the surface spanned by the tangents of T'.
Bearing in mind (5.40), the osculating plane of I" at P (1) has equation

x —a) +o)l(u) y—Bu)+owmm) z+ o)
o’ (u)l(u) o' (u)ym(u) o'(u) | =0,
o'Wl (u) + o' w)l'(w) o"wymu) + o' (wym’(u) o’ (u)

that is,
x—a() y—p :z
[ (u) m(u) 1| =0.
I (u) m'um) 0

Thus T coincides with the tangent plane to X at the point of the generator g (u) that
comes from the value # = 0 of the parameter, that is, with the tangent plane to the
ruled surface along the generator.

Note in addition that, again recalling (5.40), criterion (5.39) is the necessary and
sufficient condition in order that the tangent plane to X at the point P(u) coming
from the value t = —o (u) of the parameter ¢ should be indeterminate.

In conclusion, for developable ruled surfaces the following property holds: On
every generator of a developable ruled surface X there is a singular point, at which
the ruled surface does not have a well-defined tangent plane. If this point is fixed
(that is, does not depend on u) X is a cone with vertex in that point. Otherwise, the
locus of the singular points P(u) of the various generators is a curve I, called the
regression edge, having as tangent and as osculating plane at P (u) the generator
g(u) and the tangent plane to X along g(u).

As an example, we consider the affine cubic surface F : 72 y - x2 = 0. The
line x = z = 0 is double for F. Every plane of the pencil with axis r therefore
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meets the surface in a line, and thus JF is ruled. For F we consider the parametric
representation

X = ut,
=u2’
z=t.

For each fixed u the generator g(u) is the line passing through («(u), (u),0) =
(0,u?,0) and having direction vector (/(u), m(u),n(u)) = (u,0, 1). Applying the
preceding criterion, in order for g(u) to be a singular generator it is necessary and
sufficient that

B')l'(u) =2u =0,

which means that ¥ = 0; thus one has the singular generator x = y = 0 (along
which the fixed tangent plane is x = 0).

5.8.15. Let J be the surface with equation x%xl — x§X3 = 0. Noting that J has a
double line and then observing that it is a ruled surface, find the singular generators
and the pinch-points on the double line.

Since x(z)xl — x%)@ € (xo, x2)2 N (x1,x3), F contains the two lines r : xo = x2 = 0,
s 1 x1 = x3 = 0 and r is a double line. A generic plane passing through r meets F in
another line. Therefore J is a ruled surface.

A plane passing through s meets F in a conic that has a double point P on r and which
thus splits into two lines g, g’. The two planes (r, g), (r, g’} form the tangent cone to F at P.
If g = g’, P is a uniplanar point (or pinch-point). On r there are two pinch-points. Indeed,
the section with the plane Ax; + px3 = 0 (containing s) is

Ax1 + pux3 =0,
m(ux% + )LX%) =0

and it consists of the line s and the two lines g, g’ given by the system Ax| + pux3 =
;Lxg + Ax% = 0, which coincide if A = 0. The two pinch-points (intersections of r with
the two planes x; = 0, x3 = 0) are P; = [0,0,0, 1] and P> = [0, 1,0,0]. The singular
generators are p1 : x;] = xp2 = 0 and p> : xo = x3 = 0; along each of them the tangent
plane to J is fixed (the plane x; = 0 and the plane x3 = 0 respectively).

5.8.16. Let X be a surface in P3 having at most nodes of the most general type and
let d be the number of its nodes. Let r be the order of X and suppose that X is not
ruled. Prove thatd < 4ifr =3 andd < 16if r = 4.

Then write the equation of a cubic surface with four nodes.

By 5.8.11 we know that the class v(X) of a ruled surface X of order > 2 is at least 3.
Thus we have (cf. §5.6.5)
v(X)=r(r—1)2%—-2d > 3.
Since d is an integer by parity one obtains 7 (r — 1) —2d > 4; and thus d < 4if 7 = 3 and
d <16ifr = 4.
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A cubic that has four nodes in the vertices of the fundamental tetrahedron has equation
axyxpx3 + bxoxzxg + cx3xoxy + dxox1x2 =0, a,b,c,d € C, abcd # 0.

5.8.17 (The Kummer surface). Let X be the quartic hypersurface defined by the
equation

f = xgea(x1, %2, X3) + 2x093(X1, X2, X3) + @a(x1, X2, Xx3) = 0,

where ¢; (x1, X2, x3) are homogeneous polynomials of degree j, j = 2,3, 4, such
that A = @4 — <p32 is the product of six linear forms £; € C[xy, x5, x3] (cf. 5.7.12)
Using the identity (immediately verified)

_(1af Y
o f = (EE) + A, (5.41)

prove that X has sixteen double points.

Let P;; = [0,a, b, c] be a double point of the curve with equation A = xg = 0, namely
one of the fifteen points defined by {; = £; = xo = 0. The tangent cone ¢ = 0 to
X at its double point [1,0,0, 0] meets the plane xo = 0 in a conic y that is tangent to
the six lines {; = xo = 0. Since P;; ¢ y one has ¢z(a,b,c) # 0. Consider the point
ij =[- %,a, b, c] (of which P;; is the projection on the plane xo = 0). The
coordinates of Q;; annull the partial derivative 5’70 = 2(xo9p2 + ¢3); and so Q;; is double

for the surface (% ngo)z = 0. Furthermore, Q;; is double for the cone with equation A = 0

and so, bearing in mind that ¢>(a, b, ¢) # 0, we obtain by (5.41) that Q;; is a double point
for X. Thus X has sixteen double points; the fifteen points Q;; and in addition the point
[1,0,0,0].

Historical note. The difficult problem of determining the maximum number w(r)
of isolated double points (i.e., not belonging to multiple lines) that a surface of order
r in P3 can have has been resolved only for r < 6. Besides the results j1(2) = 1,
n(3) =4, u(4) = 16 one has:

u(5) =31 (Togliatti [107]: u(5) > 31, Beauville [7]: n(5) < 31);
u(6) = 65 (Jaffe and Rubermann [56]: u(6) < 65, Barth [5]: u(6) > 65).

5.8.18. Let X be aruled surface in P3 and let g be a simple generator of X. Prove
the following:

(1) If g is a singular generator of X then g contains a point that is multiple for
X (which is said singular point of the singular generator).

(2) (Chasles’ theorem) If g is non-singular, associating to each point of g the
tangent plane to X in that point one obtains a projectivity between the pointed
line g and the pencil of planes having g as axis.
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In the affine space A3 let X be the ruled surface which is the locus of P(u,t) =
(a(u) + tl(u),b(u) + tm(u),c(u) + tn(u)), where a(u), b(u), c(u), I(u), m(u), n(u) are
functions of a parameter u.

It suffices to observe that the tangent plane at the point P (u, t) of the generator g = g(u)
ism; i L +tM =0, where L = 0and M = 0 are the equations of the tangent planes to X
in the points P(u,0) and P(u,?~), and oo denotes the improper point on the ¢-axis in the
(u, t)-plane.

If g(u) is singular, and hence L = kM , k € C, the tangent plane at P (u, t) has equation
(k +t)M = 0 and so on g(u) there is the singular point P(u,—k), at which the tangent
plane does not exist.

5.8.19. Show that the normals to a ruled surface F C A3(R) in the points of a
non-singular generator g span a hyperbolic paraboloid.

The normal n p at a point P to g is the perpendicular at P to the tangent plane 7p to F
at P. Itsimproper point N p thus belongs to the improper line 7o, of the planes perpendicular
to g.

The correspondence 7p +— Np between the pencil of planes with axis g and the line
Foo 18 algebraic and bijective, and hence projective.

By Chasles’ theorem, see 5.8.18 (2), the points P and Np thus correspond under a
projectivity between the two lines g, roc.-

A simple check shows that the locus of the lines that join points corresponding under a
projectivity between two skew lines is a non-singular quadric (cf. 13.1.41). Then the lines
np are the generators of a quadric that is a hyperbolic paraboloid because it contains the
improper line 7.

5.8.20. If X C P3 is a (non-developable) ruled surface of order r, its class is
v(X)=r.

A generic line £ meets X in r distinct points Pp, ..., P,; from each of these points P;
there issues a generator g; of the ruled surface. It then suffices to observe that the tangent
planes to X (at the points P;) containing the line £ are the r planes that join £ with the single
generators g;,i = 1,...,r,cf. 5.8.18 (2).

5.8.21. Let X be a non-developable ruled surface of order » > 2. Show that X
contains a multiple curve £, which in general is a double curve, that meets every
non-singular generator in r —2 points. The curve L is also called a double directrix.

Let g be a simple generator. A generic plane & passing through g meets X in a curve I"
of order r which splits into g and a residual curve y of order r — 1. The curve y intersects
g inr — 1 double points of I". By 5.8.18 (2) the plane = is tangent to X at only one of these
points; the other r — 2 points are double for X (cf. Exercise 5.2.6). As 7 varies in the pencil
with axis g, these r — 2 points describe a double curve L.

5.8.22. The double curve of a non-developable ruled cubic X is necessarily a line b
and the tangent cone at a point P € b splits into a pair of planes passing through d.



164 Chapter 5. Hypersurfaces in Projective Space

The ruled surface X is said to be general (or of general type) if the tangent cones
in the points P of D are pairs of planes both of which vary as P varies on ; and
then they are the pairs of corresponding elements in an involution w of the pencil
of planes having D as axis (cf. [52, Vol. 1, Chapter VIIL, §2]). The two points of D
corresponding to the two fixed planes of w are the cuspidal points (or pinch-points)
of X; at them the tangent cone consists of a pair of coinciding planes. Note that
if X is a general ruled cubic, from each point P € b, which is not cuspidal, there
issue two distinct generators of the ruled surface: the two lines that when joined
with b define the two planes into which the tangent cone to X at P splits.

A general ruled cubic X also has a rectilinear directrix which is skew to the
double line.

Prove these results and use them to find a simple analytic representation for a
general ruled cubic.

The double curve L of a ruled cubic is necessarily a straight line, which we will denote
by . Indeed, two arbitrary points A, B of L are joined by a line lying on X, having at least
four intersections with it (two in A, two in B). Thus, £ can not be a plane curve of order
> 2 because otherwise X would contain the plane of L.

But neither can it be a space curve, because the chords of a space curve span all the space
(cf. Exercise 7.5.2).

Let P be a generic point of the double line d and let «, B be the two tangent planes to X
at P. The three intersections of a line passing through P and contained in one of these two
planes coincide with P. Therefore, each of the two planes meets the ruled cubic in a curve of
third order having P as triple point, and thus that curve must be composed of the double line
b counted twice and of another line containing P. Therefore from each point P of b there
issue two generators a, b of X (which coincide only if P is one of the pinch-points). The
plane of these two lines intersects X in another line r which is skew to b. A plane passing
through r meets the ruled cubic in a curve consisting of r and a pair of lines issuing from
the point in which the plane intersects D. All the generators of X are thus supported by r,
which is therefore a simple directrix.

Take the cuspidal points to be A3 = [0,0,0, 1] and A> = [0, 0, 1, 0] (so that the double
line D has equations xo = x1 = 0) and take as points A9 = [1,0,0,0] and A; = [0, 1,0, 0]
the intersections of r with the planes (of equations x; = 0 and xo = 0) which when doubly
counted give the tangent cones in A3 and A5 respectively, and finally take the unit point
[1, 1,1, 1] to be a point of the surface. One finds that the ruled surface then has the simple
equation x%xz — x%x3 = 0. (Note that the planes x; = 0 and xp = 0 meet X, besides in
the double line b counted twice, respectively in the lines x; = x» = 0 and xo = x3 = 0.)

5.8.23 (Cayley’s ruled cubic, cf. 10.5.17). Represent analytically a ruled cubic X
which is not a cone, and such that the tangent cones in the points of the double
directrix are pairs of planes, one of which is fixed.

We have seen in 5.8.22 that the double directrix is a line d. A cubic hypersurface passing
doubly through the line with equations xo = x; = 0 has an equation of the form

X202(x0, x1) + X395 (x0, x1) + 03(x0,x1) = 0,
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where @2, ¢4 are quadratic forms and 63 is a cubic form. The tangent cone in the generic
point P = [0,0, h, k] of b has equation hgs(xo, x1) + k¢ (x0,x1) = 0. If the fixed plane
is x1 = 0 one then finds an equation for X of the form

x1x2(axo + bx1) + x1x3(cxo + dx1) + mxS + nx%xl + pxoxf + qxf =0.

Note that m # 0, for otherwise X would be reducible. One must also have ad — bc # 0.
Indeed, if ad = bc, the surface X would have Q = [0,0, —c,a] = [0,0,—d, b] as a triple
point and thus would be a cone with vertex Q.

The equation of X may be rewritten as

mxg + x%(pxo 4+ gx1 + bxo + dx3) + xox1(nxo + axz + cx3) = 0.
We can then effect a change of coordinates such that X receives the equation
x(3) + x%xz + xox1x3 = 0.

Note that the fixed plane x; = 0 osculates the ruled surface along the double line d (which
means that it intersects X along the line b counted three times) and from each point P of D
there issues a single generator g p (and not two, as in the case of the general ruled surface in
5.8.22). More precisely, the tangent cone to X at the point P = [0, 0, &, k] of D has equation
hxl2 + kxox1 = x1(hx1 + kxo) = 0 and the plane ix; + kxo = 0 meets X in the line d
counted twice and in the further generating line gp. The generator contained in the plane
x1 = 0is b which is thus simultaneously a double directrix and a generator.



Chapter 6
Linear Systems

The notion of “linear system of divisors” on an algebraic variety X plays a crucial
role in algebraic geometry. The present chapter is dedicated to that concept in the
case of linear systems of projective hypersurfaces, that is, in the case X = P”.
The topics discussed here constitute an indispensable prerequisite for the reading
of Chapters 9 and 10.

In Sections 6.1, 6.2 we will give the general definitions, in particular that of the
dimension of a linear system, and we consider the hypersurfaces of a linear system
that satisfy specific conditions.

In Section 6.3 we study the base locus of a linear system X, that is, the locus of
those points common to all the hypersurfaces which make up the system 3. In this
regard, Bertini’s first theorem (Theorem 6.3.11), is one of the fundamental theorems
of algebraic geometry. It assures us that the generic hypersurface of 3 does not
have singularities outside of its base subvariety.

Some properties of the Jacobian variety of a linear system X, that is, the projec-
tive variety which is the locus of the zeros of the ideal generated by the minors of
maximal order of the Jacobian matrix associated to X, are discussed in Section 6.4.

In Section 6.5 we consider the notions of simple and composite linear sys-
tems, and we state Bertini’s second theorem (Theorem 6.5.2), which describes the
structure of reducible linear systems, that is, those consisting entirely of reducible
hypersurfaces.

In Section 6.6 we study the notion, fundamental in algebraic geometry, of the
projective image of a linear system and describe unirational and rational varieties
in terms of projective images of linear systems. In this regard, we state Liiroth’s
theorem (Theorem 6.6.2), proved in Section 7.4, and Castelnuovo’s theorem (The-
orem 6.6.3), which concern the cases of curves and surfaces respectively.

Section 6.7 is dedicated to the Veronese varieties, that is, to the varieties V, 4
which are the projective images of the linear systems X, ; of all the hypersurfaces
of a suitable order d in P”. The Veronese varieties constitute a very interesting
example of rational varieties; we shall dedicate ample space to Veronese surfaces
in the course of Chapter 10.

Finally, in Section 6.8 we mention a class of rational transformations widely
used in algebraic geometry: blow-ups of a variety X along a given subvariety B.
We examine the interesting particular cases in which B is a point or a linear space
P?. The case of blowing up a plane at a point will be reconsidered in §9.2.7 within
the context of the study of quadratic transformations between planes.
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6.1 Linear systems of hypersurfaces

Let f;(To,...,T,) = 0, j = 0,1,...,h, be algebraic hypersurfaces in P" :=
P"*(K) all of the same order r. The totality of the hypersurfaces with equations of
the form

Aofo+ o+ A frn =0, 6.1)

where Ao, ..., A; are elements of the base field K not all equal to zero, is said to
be a linear system of hypersurfaces of order r or, more briefly, a linear system of
order r.

Since the K-vector space V' of homogeneous polynomials of degree r inn + 1
indeterminates is generated by the ("Jrrr ) monomials T(;x 0 Tla VLT where 0 <
o <r,ap+ -+ o, = r, which are linearly independent, all the hypersurfaces
of a given order r in P” constitute a linear system which can be viewed as the
projective space P(V) = PV ) where

N(r) = (n:r) -1

The linear system X represented by the equation (6.1) is the subspace S of PV()
generated by the i 4+ 1 “points” given by the hypersurfaces with equation f; = 0
(see also Section 6.6).

By the dimension of ¥ we mean its dimension as a subspace of PN If
dim X (< h) is the dimension of the system X with equation (6.1), the same system
can be obtained by taking linear combinations of any dim X + 1 of its linearly
independent hypersurfaces.

A linear system X of dimension 1 will be called a pencil; if dim ¥ = 2 we will
say that ¥ is a net of hypersurfaces.

From now on we will assume, as we may without loss of generality, that the
hypersurfaces f; = 0 in (6.1) are linearly independent, and thus that &/ = dim X.
We will also write that X is a system oco”.

In the case n = 1 linear systems are customarily referred to as linear series (of
groups of points of P!). A linear series of dimension / and order r is denoted by the
symbol gi‘. Its elements are groups of r points (not necessarily all distinct) of P!,

All statements regarding the space P(V) = PV and its subspaces can be
referred to the totality of the hypersurfaces X, _, C P" of order r and to linear
systems of hypersurfaces. Thus, for example, if X; and X, are two linear systems
of hypersurfaces of order r in P”, then so too are their intersection X1 N X, and
their join X; + X5 (i.e., the set of hypersurfaces having equation f + g = 0 with
f € X1, g € X,)and one has

dim T; + dim 2, = dim(Z; + £,) + dim(Z; N ).
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The linear systems of hypersurfaces X _, C P" are particular algebraic systems,
where by algebraic system we mean an algebraic variety X in PY®)_ The dimension
of X is, by definition, the dimension of the algebraic system. An algebraic system
is said to be irreducible, reduced, pure, ... according to whether or not the variety
X that represents it is irreducible, reduced, pure, ... (cf. Chapter 3).

6.2 Hypersurfaces of a linear system that satisfy given
conditions

We will say that a condition X imposed on the hypersurfaces X, _, of P" is linear if
it translates into a system of linear equations among the coefficients of the equation
of X;_,. The set of all the hypersurfaces of a given order that satisfy a linear
condition constitutes a linear system.

We will say that X is a linear condition of dimension d if it translates into d
independent linear equations, so that the hypersurfaces of given order r that satisfy
the condition constitute a linear system of dimension N(r) — d.

Similarly, we say that X is an algebraic condition of dimension d if it translates
into polynomial equations that define a variety of codimension d in PV,

The hypersurfaces in P” of a given order r that satisfy a linear condition are
the points of a subspace of PY(); those that satisfy an algebraic condition are the
points of a closed algebraic subset of PV,

An important example of a linear condition is that of passage through a given
point P with assigned multiplicity. In order that the hypersurface with equation
f = 0 have a point P with multiplicity s it is necessary and sufficient that in that
point all the partial derivatives of order s — 1 of f should vanish. The number of
such derivatives is equal to the number of combinations with repetitions of s — 1
objects chosen from a class of n + 1 objects, namely ("7°7") = (" +;_1).

It is useful to perform this calculation in the following alternative fashion. We
may suppose that P is the origin of a system of affine coordinates. Then in the
equation of a hypersurface having P as an s-fold point, the constant term, the
n = (]) = (,",) coefficients of the linear terms, the (" ;1) = (:’:11) coefficients
of the terms of degree two, ..., the (" Jsrfl_z) = (":f 12) coefficients of the terms of
degree s — 1 must be zero. Moreover, we have

n n+1 n+s—2 n+s—1
n—1 n—1 n—1 n

This argument assures us that these are indeed independent linear conditions, and
therefore s-fold passage through a given point P is indeed a linear condition of
dimension ("7*71).
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Example 6.2.1 (The case of plane curves). The algebraic plane curves of order r
that pass with multiplicity s(< r) through a given point P constitute a linear system
whose dimension is

r+2 | s+1\ _r(r+3) sis+1)
2 ) N2 )T 2 2

Example-Definition 6.2.2 (Regular systems). Let Py, P5,..., P; be g points of
[P". Passage through any one of them imposes a linear condition on the hypersur-
faces X, _, of degree r in [P". For particular choices of ¢, n, or r these g conditions
can fail to be independent.

A trivial example is the following: we take three collinear points in the plane
and impose on the lines of the plane to contain these points. One obtains three linear
conditions which are manifestly not independent inasmuch as passing through two
of these points implies passage also through the third.

A more interesting example is the following. Once again in the plane, we
consider two curves of order 3 and the nine points that they have in common. Each
of these points imposes a linear condition on the cubics in the plane. But the nine
conditions are not independent because otherwise the curve of order 3 containing
these points would be unique.

In any case, one does have that if r is sufficiently large with respect to g (for
example if r > g — 1), then the conditions imposed by the g points are independent.
Indeed, one immediately finds curves of order > g — 1 (having ¢ — 1 lines as
components) that pass through g — 1 chosen arbitrarily among the g assigned points
but not through the remaining point.

The algebraic plane curves of order r that pass with multiplicities s1, $2, .. ., §;
through ¢ distinct points Py, P;, ..., P; constitute a linear system X of dimension

r(r+3) e si(si +1)
T_Z—' (6.2)

dim ¥ >
2

i=1
Note that the right-hand side of (6.2) may well be negative; even in that case the
system X can still be non-empty. For example, on imposing that a quartic have five
given double points, the right-hand side of (6.2) yields —1, but the system X of such
quartics is non-empty since it clearly contains the square of the conic through the
five points.

The non-negative integer
t

r(r+3) si(si +1)
2 2 2

o :=dimX

i=1
is called the superabundance of 3. If 0 = 0 the system is said to be regular; in that
case the Y0_, (1F1) = i, 56+ conditions imposed by the s;-fold points
P;,i =1,...,t,are independent. As we shall see in Lemma 7.2.14 this is always

the case if the curves are rational. If o > 0 one says that X is superabundant.
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Another example of a linear condition on the hyperfurfaces X, _; in P" is that
of possessing a given component with an assigned multiplicity s. This amounts to
considering hypersurfaces with equations of the form p* f where p is a fixed and
f an arbitrary homogeneous polynomial.

An important example of an algebraic but non-linear condition is that of pos-
sessing a not specified point of a given multiplicity s > 2. It is a condition of

dimension
—n
n

In particular, when s = 2 one has a condition of dimension 1. In this case the
condition corresponds to requiring the existence of a non-trivial solution to the
system of equations arising from the vanishing of the n + 1 first partial derivatives
of the polynomial defining the hypersurface.

Consider for example the case of the quadrics in P”, that is, the case r = 2.
In order that the quadric with equation ) _ a;;x;x; = 0 should have a double point
it is necessary and sufficient that there be proper solutions to the system of n + 1
linear homogeneous equations in n + 1 indeterminates having (a;;) as its matrix
of coefficients. This means that the point of PV having the coefficients a; j as
coordinates must belong to the algebraic hypersurface of order n + 1 represented
in PY) by the equation det(a;;) = 0.

Furthermore it can be proved that the algebraic plane curves of order » with d
nodes constitute an algebraic system of dimension w — d. The classical proof
is due to Severi [101] (cf. also [36, Vol. II1I, pp. 386—387]). For a modern treatment
of this topic we refer the reader, for example, to Sernesi’s book [94, IV.7].

6.3 Base points of a linear system

A point x that belongs to all the hypersurfaces having equations fo = 0, f; = 0,
..., fn = 0 which determine a linear system X of equation (6.1) evidently belongs
to all the hypersurfaces of the system. We will say that x is a base point of X. If
the generic hypersurface of X has x as a simple point, we will say that x is a simple
base point.

More generally, suppose that the point x has, for each of the hypersurfaces
J; = 0, a multiplicity at least as great as s. Then the same fact will hold for any
other hypersurface of 3. If in addition x has multiplicity exactly s for at least one
of the f; = 0, the same will hold for the generic hypersurface of X and we will say
that x is an s-fold base point. One sees immediately that if x is an s-fold base point,
the system X can be obtained by taking a linear combination of hypersurfaces all
having the same multiplicity s in that point.

The locus of base points of X is the base variety. It is the algebraic variety
B =V (fo, f1,..., fn) associated to the homogeneous ideal ( fo, f1,..., fn). One
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says that B, or one of its components, is an s-fold base variety of X if each of its
generic points is an s-fold base point.

We define the degree deg ¥ of a linear system X of hypersurfaces in P” to be
the number of points, not belonging to the base variety, which are common to n
generic hypersurfaces of X.

One says that P is an isolated base point if it does not belong to any irreducible
base variety of dimension > 0. Similarly, an irreducible base variety of dimension
k is said to be an isolated base variety if it does not belong to any irreducible base
variety having dimension > k.

An s-fold isolated base point is said to be ordinary if the tangent cone there to
the generic hypersurface of the system does not have any multiple generator and it
varies with the hypersurface.

An s-fold isolated base variety By of dimension k is an s-fold ordinary base
variety if the tangent cone to the generic hypersurface of ¥ at the generic point
of By does not have any multiple generator Sk, and that cone varies with the
hypersurface.

It is not excluded that on the ordinary s-fold base variety there are subvarieties
that are base varieties of multiplicity s’ > s for X. For example, the surfaces in P>
that pass simply through a curve having a triple point x with non coplanar tangents
are constrained to have x as at least a double point.

One can say something more regarding the s-fold base points, not limiting
ourselves to their multiplicities, but also considering the possibility of there being
fixed tangents. For example, if at an s-fold base point x of the linear system (6.1)
the hypersurfaces that define it have a common tangent (that is, a line common to
their tangent cones at x), then all the hypersurfaces of the system will have that
same common tangent at x.

We now return to the case in which the hypersurfaces of the A-dimensional
linear system X are merely required to pass (simply) through the various given
points. Passage through any one of these points is equivalent to one condition, so
that giving a number ¢ of points, with ¢ < &, one will have, in general, a linear
system of dimension /& — g.

However, we have seen that the dimension will rise whenever imposing the
passage through those g points does not constitute imposition of independent con-
ditions.

In particular, for ¢ = &, one has the following:

Theorem 6.3.1. In a linear system oo” of hypersurfaces there is, in general, only
one hypersurface that passes through h given points (that is, the system includes
only one hypersurface that passes through h generic points, namely points that
represent h independent conditions).

Remark 6.3.2 (“Generic” points with respect to a linear system). In regard to the
statement of Theorem 6.3.1, one does well to look a bit more deeply at the meaning
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of the term “generic”. To start with, one takes an arbitrary first point P;, provided
only that it not belong to the base variety of the given linear system ¥ of dimension /.
Then the hypersurfaces of X that pass through P; do not exhaust the entire system,
but rather constitute a certain linear system oo ~!. This new system will contain as
base points all those of the previous system, together with the point P; as well, and
possibly other new points too. One then takes a point P, different from all these
base points. The hypersurfaces of the second linear system which pass through P,
do not exhaust it, but rather constitute a certain linear system ooh_z, which will
have as base points all those already encountered, together with the point P, and
possibly other new points as well. In analogous fashion one then takes a point Ps3,
and so on, until one has / points, through which will really pass one and only one
hypersurface of .

The fact that the preceding theorem has a converse is important. More precisely,
one has the following result which we will only state here (and for whose proof one
may consult, for example [14, Chapter 10]).

Theorem 6.3.3. Let A be an algebraic system oo of hypersurfaces in P" all having
the same order, and with generic member non multiple. If only one hypersurface of
A passes through h generic points of P", then A is a linear system.

We observe that the hypothesis in Theorem 6.3.3 that the generic hypersurface
of A should not be multiple is essential. It suffices to consider the algebraic system
A of dimension 2 consisting of the double degenerate conics of a plane (that is,
constituted by a double line). Through two generic points of the plane there passes
one and only one conic of A, and yet A is not a linear system.

The reasoning by which we arrived at a set of / points through which there passes
only one hypersurface of the linear system X with equation (6.1) can be repeated
when, instead of a linear system X, one has an algebraic system A of dimension &
consisting of algebraic hypersurfaces. Rather than a single hypersurface one now
arrives at a 0-dimensional algebraic system of hypersurfaces, that is, at a finite
number i (A) of hypersurfaces of A.

The number i (A), namely, the number of hypersurfaces of A that pass through
h generic points of the space, is called the index of the algebraic system A. If A is
linear, then i (A) = 1. The following fact is easily seen:

e If A is a pure and reduced algebraic system of hypersurfaces of order r with
the dimension of A being & > 0, and if the generic hypersurface of A is
without multiple subvarieties that vary with it, then the index of A is equal to
the order of the variety V}, that represents A in PV,

Indeed, the hypersurfaces of A that pass through a point P are the points of a
hyperplane section of V}, and thus the index of A is the number of points that 1,
has in common with the space in which / generic hyperplanes of P¥() meet.
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We also note that the hypothesis that the generic hypersurface of A be without
multiple subvarieties that vary with it is also essential. For example, the system A
of double lines in the plane has index i(A) = 1 since through two points there
passes only one doubly degenerate conic, but it is represented in P> by a surface
of fourth order (the Veronese surface, which we will study in Example 10.2.1 and
Section 10.4).

6.3.4 Section of a linear system by a subspace. Given a linear system X of
hypersurfaces of order r in [P, we consider a subspace S not contained in the base
variety of X and the linear system X of the hypersurfaces of X that contain it.
The intersections with S of the hypersurfaces of X constitute a linear system X’ of
hypersurfaces of S (cf. Section 5.1) and it is easy to see that

dimY = dim ¥ —dim 2o — 1.
Indeed, we assume that the reference system is chosen so that the equations of .S
(= 8;)are x;41 = Xp42 = -+ = x5, = 0. Puth = dim X and hy = dim X,

and choose & + 1 hypersurfaces g9 = 0,¢; = 0,...,¢; = 0in X among which
there are ho + 1, for example those with equations ¢o = 0,91 = 0,...,¢p, =0,

contained in X (and thus the forms ¢g, @1, . . ., ¢p,, all belong to the ideal generated
by X;41,X¢42, ..., Xu, while none of the remaining forms ¢p, 41, ..., ¢, belongs
to that ideal). The system of equations
h

D Ao =X = =x,=0

i=0
is equivalent to the system

h
Z Aigi(xo,. .., x4,0,...,0) =x447 =---=x, =0.
i=ho+1

Therefore dim ¥’ < h — hg — 1; and in fact the equality dim X’ = h — ho — 1
holds in view of the hypothesis that no hypersurface having as equation a linear
combination of @p 41, ..., @, contains S. So we have the following

Theorem 6.3.5. A linear system X of hypersurfaces cuts out on a subspace S a
linear system whose dimension is equal to that of ¥ diminished by the maximum
number of linearly independent forms belonging to & and passing through S.

Exercise 6.3.6. In P3 we consider a plane 7 and in 7 we take a linear system X
of algebraic curves of order r. Supposing that dim X = & (< W), determine
the maximal dimension § that a linear system of surfaces of order r in P3 that cuts
3 in 7 can have. Similarly, given in a subspace S; of P” a linear system X of
hypersurfaces of order r, determine the maximal dimension of the linear systems
of hypersurfaces of a fixed order r that can cut X in S;.
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6.3.7 Section of a linear system by an irreducible subvariety. We consider a
linear system X of hypersurfaces in P” and an irreducible and reduced variety X .
The hypersurfaces of ¥ meet X in a totality ‘D of divisors (that is, of subvarieties of
codimension 1) which we will call a linear system or linear series of divisors of X.
If it happens that there is a one-to-one correspondence between the elements of D
and the hypersurfaces of X we will say that D has dimension equal to that of X.
As we have seen in §6.3.4 in the case in which X was a linear space, one can take
in X a linear system X’ complementary to the system X of hypersurfaces of X
passing through X and one sees that there is a one-to-one correspondence between
hypersurfaces of X" and divisors of D. Thus the relation

dimD = dim ¥ — dim Xy — 1

holds. In most cases it is convenient to consider, rather than D, the totality (which
we will continue to call D), of the variable parts of the divisors of D. In other words,
one can dispense with possible components common to all the divisors of D. By
contrast, it can sometimes be opportune to add a fixed divisor to all the elements of
a linear system.

6.3.8 Tangent cones at a base point. It is easy to see that the tangent cones to the
hypersurfaces X, _, of a linear system X of dimension /% at an s-fold base point x
constitute a linear system of dimension & — hg, where /g is the maximum number
of linearly independent hypersurfaces that can be found in X all having x as a point
of multiplicity > s.

To prove this it suffices to assume that x is the point [1, 0, .. ., 0] and to choose a
system of generators go, €1, - .-, &hg—1- fho - - - » Jn in X that are linearly indepen-
dent and such that the /¢ hypersurfaces g; = 0 have x as at least an (s + 1)-fold
point:

g = x0T T e e S =00 ke — I
fi:xs—s(pgi)+x6—S—l(p§21+...’ i =ho,... <

The generic hypersurface of ¥ has equation ) ; A; fi + > ; 1jgj =0, thatis

XG_S(lho¢§h()) NI Ah(ps(h)) + xg—s—l(...) +...=0.

As the parameters A vary, the tangent cone to that hypersurface at x runs over the
linear system
Mg @' + -+ Ay =0,

generated by the i1 — ho + 1 cones with equations (ps(h") =0,..., (ps(h) = 0. These
equations are linearly independent. Indeed, if there were h — iy + 1 elements
apg, . - ., ap not all zero in K such that

ang@dM0 + -+ app® = 0,
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the hypersurface ap,, fp, + -+ an fn = 0 would have x as at least an (s + 1)-fold
point and so its equation would be a linear combination of go, g1, ..., gn,—1 and
the polynomials go, g1.- .., &ho—1- fhos - - - » fr Would not be linearly independent.

Remark 6.3.9 (Tangent hyperplanes to the hypersurfaces of a pencil at a base point).
Let P be an s-fold base point of a pencil ¥ of hypersurfaces. One observes that
if in the pencil there is a hypersurface having P as at least an (s + 1)-fold point,
then all the other hypersurfaces of the pencil have at P the same tangent cone; and
conversely, if two generic hypersurfaces of the pencil have the same tangent cone
at P, in the pencil there is a hypersurface having multiplicity at least s 4+ 1 at P.
In particular, two hypersurfaces have at the point P, simple for both of them, the
same tangent hyperplane if and only if in the pencil that they determine there is an
(obviously unique) hypersurface having P as singular point.

6.3.10 Bertini’s first theorem. An important theorem, known as “Bertini’s first
theorem”, states that over a base field of characteristic zero the generic hypersurface
of a linear system % without fixed components does not have singularities outside
the base variety. For a modern proof we refer to [48, Lecture 17] and also to [50,
Chapter 111, §10].

Note that the hypothesis requiring the base field K to have characteristic zero
is essential, since there are counterexamples in characteristic p > 0. The modern
proof of Bertini’s theorem uses “generic smoothness” type results in an essential
way, while the classical proof uses some delicate analytical arguments. For a
complete panorama of Bertini type theorems we also refer to [57].

Here we offer an elementary proof, along the lines of the classical approach,
and also inspired by the argument given in [92, Chapter VI, §1].

Theorem 6.3.11 (Bertini’s first theorem). Let K be a field of characteristic zero,
and let ¥ be a linear system without fixed components of hypersurfaces of order
r in P"(K). If the generic hypersurface of ¥ has a (variable) s-fold point, with
s > 2, the locus of such points is a base variety that is at least (s — 1)-fold for X.

Proof. Let

Y Aofo(x, .o xn) F A f1(X1, e Xn) F oo+ AR (X1, ... x,) =0,

where fj(xo,...,x,) are linearly independent homogeneous polynomials of de-
gree r, without common factors, # = dim X.

If f € Clxo,...,xn], wewilluse f™* to denote an arbitrary (s —2)-nd derivative
of f.

Fix an index j € {1,...,h}. We suppose that the generic hypersurface of the
pencil
D folxo,x1,...,xn) +tfi(x0,X1,...,x4) =0,
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contained in X, has an s-fold point P which varies with the parameter t. Thus the
point P satisfies the equations

a *
—(fo+f, f" aj;

By Euler’s theorem on homogeneous functions (cf. Exercise 3.1.18) we have

=0, i=0,...,n. (6.3)

- 9
(r=s + 5 +1/7) = Y xig—(f5 +1/7) = 0.
i=0 !

Arguing by contradiction, suppose that f*(P) # 0 (or, equivalently, f¢"(P) # 0)
which means that P is not an (s — 1)-fold point of the base variety of the pencil
®;. Substituting the value

J;
in (6.3) we find
Wy fo oS .
@i (X0, ..., Xp) 1= 8)?5 fO*W—O, i=0,...,n,
as well as

o (fe\ o (afy frarr
E(F) f*(ax, fj*axi)—o, l—0,...,n.

This implies that the point P does not depend on ¢ (since P satisfies the equa-
tion @;(xg,...,X,) = 0, where the rational function ¢; is independent of z,
i =0,. n) and so contradicts the assumption made on P. Thus one must
have f] (P) = fo (P) = 0, which is to say that P is an (s — 1)-fold point for the
base variety of the pencil ®;.

Since the same reasoning applies to each of the pencils ®; as j varies in
{1, ..., h}, this establishes the desired conclusion.

Let us finally note a crucial point: ¢; (xg, X1, ..., X;) can not be identically zero

foreveryi = 0,...,n. Otherwise
o0 (fe
0x; fj*

would be identically zero for every i, and so one would have f§* = kf* for some
k € C. Therefore, foreachi = 0, ...n, it would follow that

0 D
a_xi(f‘))_ka_xi(ff)’

and so (6.3) would be equivalent to %(fj*) =0,i =0,...,n. Thus there would
not exist variable s-fold points for the generic hypersurface of X. a
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Example 6.3.12. The quadric 53 C P> with equation
xf + xo(xp —Ax3) =0

is a cone with vertex [0,0, A, 1]. As A varies it describes a pencil ¥ of quadrics
whose generic element has a double point. The locus of the double points [0, 0, A, 1]
of the quadrics of X is the line xo = x; = 0 which is a (simple) base line for X.

6.4 Jacobian loci
We consider the linear system X of hypersurfaces X/_, C P" of equation
Aofo+ -+ Anfp =0,

where f; are linearly independent homogeneous polynomials of degree r, so that
dim X = h.

Theorem 6.3.11 assures us that the generic hypersurface of ¥ does not have
singular points outside the base variety. There may however be particular hyper-
surfaces in ¥ having a multiple point that is not a base point of the system.

Let P = [y0, V1, - - ., Yn] be apoint of P” that is multiple for some hypersurface
of the system. Then there exist 4 + 1 elements Ag, ..., A (not all of which are
zero) from the field K such that

0 d d
oo a2 Yy im0, 6.4)
Ay dyi Ay
where we have written 31% rather than (aixi)(yg, ¥Y1,...,¥n). The linear homo-

geneous system (6.4) thus admits non-trivial solutions and so the Jacobian matrix
(%)jzo,m,h (with n 4+ 1 rows and & + 1 columns) has rank < /& + 1 at P, that is

dax;

i=0,...,n

0 (%) <h+1. (6.5)
dyi

Conversely, if this condition holds the system (6.4) has non-trivial solutions and so

there exist hypersurfaces of 3 having P as at least a double point.
The projective variety which is the locus of the zeros of the ideal generated by
the minors of order 1 + 1 of the Jacobian matrix is called the Jacobian variety of X.
If h > n, condition (6.5) is always satisfied (indeed, the Jacobian matrix then
has rank < n + 1 < h + 1). It follows that if ¥ has dimension & > n, every point
of P is multiple for some hypersurface of the system (this means that the Jacobian
variety coincides with all of P"). In fact we know that the hypersurfaces of X that
have a given point P (which is not a base point) as double point constitute a linear
system whose dimension is # —n — 1. (One really does have a linear condition
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of dimension n + 1, inasmuch as it is expressed by the n + 1 independent linear
conditions obtained by setting the first partial derivatives of the equation of the
generic hypersurface of X equal to zero.)

If & = n the condition (6.5) reduces to det (
then the hypersurface with equation

s
det (i) =0
8)6,'
and its orderis (n + 1)(r — 1).

One can prove that when 4 < n, the Jacobian variety generally has dimension
h — 1 and order (cf. [89, n. 5] and also [14, Chapter 10, n. 11])

I’l+1 n—h
( I )(r—l) +

As for the dimension, if one desires that the Jacobian matrix have rank / (as happens
in the general case), it suffices to annull all the minors of order 4 + 1 that contain
a non-zero minor of order 4. The number of such minors is n + 1 — h. Thus one
obtains 1 + 1 —h equations that define a variety of dimensionn—(n+1—h) = h—1.

af;

3Yi) = 0. The Jacobian variety is

6.4.1 The Jacobian group of a series g ,1 Consider P! with homogeneous coor-
dinates xo, x1 and the linear series g} on P! represented by

Aowo(xo,x1) + A1¢1(x0,x1) = 0,

where ¢, ¢ are forms of degree r.

We impose the passage through apoint P € P! andwelet{P, P,, ..., P,}bethe
group of 7 points of the line that constitutes the group of points of g! containing P.
Thus we obtain an involution of order r on the line, that is, an algebraic totality of
groups of r points that has the property that its groups are in algebraic one-to-one
correspondence with the values of a parameter, and that every point of the line
determines the group containing it (one notes that to each point P, P,, ..., P, of
the group there corresponds the same value of the parameter, cf. §1.1.2). Making
each point P of the line correspond to the r — 1 points P, ..., P, (which are, in
general, distinct from P) one obtains an algebraic correspondence w: P! — P!
of indices (r — 1,7 — 1), endowed with 2(r — 1) fixed points (cf. §1.1.3). These
2(r — 1) points are the double points of the involution and constitute the Jacobian
group of gl.

The Jacobian group consists of the s-fold points of the series g}, s > 2. These
are the points P € P! for which the group {P, P,, ..., P;} of the g} containing P
is such that s — 1 of its remaining points P, ..., P, coincide with P. Hence an
s-fold point of the series is counted s — 1 times in the Jacobian group.
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This fact is immediate from an analytic point of view. If, for example, the s-fold
point is A; = [0, 1] and ¢1(xp, x1) = 0 is the equation of the group containing
Ay, one clearly has ¢ (xg,x1) = x§ fr—s(xo, x1), where f,_; is a form of degree
r — s. It then suffices to calculate the Jacobian matrix of ¢g, ¢; and observe that

its determinant is divisible by x{)_l.

Example 6.4.2. In P! consider the linear series g% represented by
Ao(xo — xl)x(z, + Ale’ = 0.

The group {P, P,, P3} of gj that contains the point P = [aq, a1] corresponds to
the value of the parameter Ag : A1 such that Ag(ag — al)a(z) + Alaf = 0, that is

)LO . )L] = le . a(z)(al —a()).
So one finds that group by solving the equation a3 (xo —x1)x3 +a3 (a1 —ag)x; = 0,
or
(a1x0 — aox1)[(a1x0 — aoxl)z + 3apaixox1 —arxi(aixo + aox1)] = 0.

The point P is (at least) double for g; if ayxo —aopx; is a divisor of the polynomial
(a1xo —aopx1)? + 3apai xox1 —aix1 (a1 xe + aoxy); thatis, if apa; = 0. The two
points Ag = [1,0] and Ay = [0, 1] are both triple for g}.

6.4.3 Exercises. Some further properties of the Jacobian variety are described in
the exercises proposed here.
(1) What is the Jacobian variety of a generic pencil of quadrics in P"?

The Jacobian variety of a pencil ¥ of quadrics is constituted by the vertices
of the quadric cones belonging to X. If the pencil is generic the Jacobian
variety is a finite set with n + 1 points.
For the first few values of n this fact is easily verified in the following way.
Ifn =2, let

Ao fo(xo, X1, X2) + A1 f1(xo, x1,X2) =0

be the equation of the pencil of conics. The Jacobian matrix is

o o h
8x0 8x1 8X2
0 ah ih

8x0 8x1 8)(2

The Jacobian variety then consists of the three points belonging to the inter-
section of the two conics of equation

0fo 0/ _ 0fo 0/1 _ . 0fo 0fi _ 0fo 01 _

8)C0 axl 8x1 8x0 ’ 8)C0 8x2 8x2 8x0
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o, 2

 Txg = = (0 meet.

and distinct from the point in which the lines

In the case of a pencil of quadrics
Ao fo(xo, X1, X2, X3) + A1 f1(X0, X1, X2,%3) =0

in P3, the Jacobian matrix is

8)60 8x1 sz 8)63
o h A

8)60 8x1 3)62 8X3

Consider the quadrics with equation

dfo 3f1  9fo 9f1 _0 9fo dfi  dfo 3f1 _

8x0 8)61 8)61 on ’ 8x0 8)62 8)62 on

and

dfo 9f1  dfo 0f1

axo 8x3 8)63 on
The three quadrics contain the line r with equation 3 o 0 = % = 0. Two of
the three quadrics intersect the third, outside of r, 1n two cubics belonging
to the same family, that is, both are curves of type (2, 1) (while r is a curve
of type (0, 1)). Thus they meet in (2, 1)(2, 1) = 4 points which make up the
Jacobian variety of the pencil (cf. Section 7.3).

Let C C P" be a rational curve of order r (cf. Section 7.4). How many of
the hyperplanes that pass through a generic S,—, are tangent to C?

The pencil of hyperplanes with center the given S, _, cuts out a linear series
gl on the curve C (= P!) where r is the order of C. The hyperplanes of
the pencil that are tangent to C are in one-to-one correspondence with the
2(r — 1) points of the Jacobian group of g}, cf. §6.4.1.

Prove that the Jacobian curve of a net of algebraic plane curves having an
s-fold base point P passes through P with multiplicity 3s — 1.

Let r be the order of the curves of the net, and let P = [1, 0, 0]. Further, let
ﬁ_x(r) S¢§1)+ ) i=172’3’

with gas(i) a homogeneous polynomial of degree s in x;, x», be three inde-
pendent curves of the net. By Euler’s formula for homogeneous functions
(Exercise 3.1.18), we have

g g

s<ps’) =X 8x1 + xo s

)

i=1,2,3,
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and so

I 8P 9P

8x1 8x1 8x1
det [ dgV 09  9p® | =0.

8)62 8)(2 8x2

o @ p®

From this it follows easily that in the homogeneous polynomial of degree
3(r — 1) given by

on aX() 8)60
Afi  df2 9fs
det | 2L 22 2
¢ 8)61 8x1 8x1
o if f

8)(?2 6x2 8X2

the indeterminate x appears at most to degree 3r — 3s — 2. The multiplicity
of P for the Jacobian curve is thus 3(r — 1) — (3r —3s —2) = 35 — 1.

Show that the Jacobian curve of a net of algebraic plane curves of order r
can also be defined as the locus of the points in the plane that are contact
points between curves of the net.

Suppose that the point x (not a base point) is at least double for a curve C of
the net. Then the curves of the net passing through x constitute a pencil of
curves all (except for the curve C) having the same tangent at the point x (cf.
Remark 6.3.9). Indeed, if x = [1, 0, 0], the curve C has equation of the type
x(’,_zwz (x1,x2) +--- =0, ¢, a form of degree 2. Hence the curves of X that
pass through x describe a pencil (defined by the curve C and by a curve of
¥ passing simply through x, with equation x§ !¢ (x1,x2) + - =0, ¢1 a
linear form) that has an equation of the form

H1x6_1§01(X1,X2) + ,uzx(r)_z(pz(xl,xz) 4+ .. =0.

Therefore (if ;1 # 0) they all have as their tangent at x the line with equation
¢1(x1,x2) = 0. Hence x is a point of contact of the two curves.

Conversely, suppose we have a point x in the plane that is a contact point for
two curves of the net. These two curves will determine a pencil of curves
(of the net) all tangent to one another at the point x. Therefore, there will
be a curve in the pencil having x as a double point. Thus x is a point of
the Jacobian variety. This reasoning is no longer valid if x is a base point;
nevertheless, any possible base points also belong to the Jacobian variety.
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(5) Prove that the Jacobian surface of a linear system oo> of surfaces in P> may
be regarded as the locus of the points of contact of two surfaces of the system,
or also as the locus of the points x such that the surfaces of the net of surfaces
that pass through x have a common tangent at x.

The reasoning is analogous to that of the preceding exercise.
(6) Ina pencil of algebraic plane curves of order r there are, in general, 3(r —1)?
curves endowed with a double point.

Indeed, let f, g be two forms of degree r in x¢, x1, X2. The points where the
Jacobian matrix

af af af
8x0 8X1 8X2
dg  dg  dg

8x0 8x1 8x2

hasrank 1 are the points that annull the two minors of order 2 which contain the

first column, except for the points that annull I and 28 (where the matrix
dxo dx0

has, in general, rank 2). Thus one finds the 4(r — 1)2 — (r — 1)?> = 3(r — 1)?
points of the Jacobian group of the pencil. This number coincides with that
of the curves of the pencil which are endowed with a double point.

6.5 Simple, composite, and reducible linear systems

Let X be a linear system of hypersurfaces X, _, in [P”. We say that X is simple if the
hypersurfaces of X that contain a point P are not required to contain a variety W,
properly containing P (and depending on P); in the contrary case we say that ¥ is
composed with the congruence T" of the variety W, or simply that ¥ is composite.
If the varieties W are 0-dimensional, that is, groups of points, one says that X is
composed with the involution T.

As is clear from the analysis carried out in Section 6.6, the following is a char-
acteristic property of the congruence I': every point of the space (which is not a
base point of ¥) belongs to one and only one variety of I', and every variety W
of I' is determined by each of its points (the case of a composite linear system X
corresponds to the case in which the closure of the projective image of X has di-
mension < n, or has dimension n and the generic fiber of the associated morphism
@ consists of a finite number ¢ > 1 of points; cf. Section 6.6).

Obviously every linear system X of dimension 2 < n is composite. Indeed, the
hypersurfaces of such a system which pass through a generic point P are those of
a linear system X’ of dimension & — 1 (cf. Section 6.3), which certainly has a base
variety W passing through P and hence not contained in the base variety of X. The
variety W is the intersection of 4 hypersurfaces that define X’. In particular, a pencil
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¥ of hypersurfaces is a composite system and the varieties W are the hypersurfaces
of X.

A linear system of cones having the same vertex is composite, because the cones
that pass through a generic point P have in common a linear space that contains P.

Example 6.5.1 (Geiser’s involution). A non-trivial example of a composite linear
system is the linear system X of plane cubic curves that pass through seven arbitrary
points of the plane. Indeed, the cubics of X that contain an eighth point P form
a pencil @ and thus all of them also pass through the ninth base point P’ of ®.
Similarly, the cubics of the system that pass through P’ also pass through P. The
pairs (P, P’) are the elements of a plane involution ' which is called Geiser’s
involution and ¥ is composed with T".

The same discussion could be made for plane curves of order r > 4 which
contain 72 — 2 points; but one must note that for 72 — 2 generic points with r > 4
such a linear system does not exist, while for » = 4 it consists of a single curve,
on which one can not impose an additional condition of passing through another
arbitrary point.

A linear system X of hypersurfaces X, _, in P” is said to be irreducible if its
generic hypersurface is irreducible. One says that X is reducible if its hypersurfaces
are all reducible. Note that in the case of an algebraic system of hypersurfaces X _,
we have said that the system is irreducible or reducible according to the irreducibility
or reducibility of the variety that represents the system in PY) . A linear system,
which is represented by a linear space, obviously is always an irreducible algebraic
system. Thus, to call a linear system of reducible hypersurfaces a reducible system
should not cause any confusion.

The following are examples of reducible linear systems.

* Linear system with a fixed component, that is, a linear system defined by
O(Aofo+ Arfi+ -+ Anfn) =0, (6.6)

whose hypersurfaces have a fixed component (or part), namely, the common
component with equation 6 = 0.

* Linear system composed with a pencil, that is, of the type
ho@" + 29"V + Map" Y+ + Myt =0, (6

where ¢, ¥ are forms of the same degree. The left-hand side of (6.7) is a
binary form in ¢, ¥ and so is the product of 4 factors of the type Ap + uy.
Every hypersurface of X is thus split into /& hypersurfaces of the pencil ® with
equation Ap + uy = 0: the hypersurfaces of X that pass through a point P
all have the hypersurface of ® that passes through that point as a component.
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In regard to reducible linear systems, there is the following important theorem,
known as “Bertini’s second theorem”, for the proof of which we refer the reader to
[14, Chapter 10, n. 13] and [100, p. 45]).

Theorem 6.5.2 (Bertini’s second theorem). A reducible linear system of hypersur-
faces in P" (n > 1) either has a fixed component, or is composed with a pencil, or
satisfies both these conditions.

The two foregoing examples thus exhaust all possible cases for reducible linear
systems.

Exercise 6.5.3. Let X be a linear system of hypersurfaces in P”, of dimension
h < n, an