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Preface

Notoriously, works of mathematical finance can be precise, and they can be
comprehensible. Sadly, as Dr Johnson might have put it, the ones which are
precise are not necessarily comprehensible, and those comprehensible are not
necessarily precise.

But both are needed. The mathematics of finance is not easy, and much
market practice 1s based on a soft understanding of what is actually going on.
This is usually enough for experienced practitioners to price existing con-
tracts, but often insufficient for innovative new products. Novices, managers
and regulators can be left to stumble around in literature which is ill suited
to their need for a clear explanation of the basic principles. Such ‘seat of
the pants’ practices are more suited to the pioneering days of an industry,
rather than the mature $15 trillion market which the derivatives business has
become.

On the academic side, effort is too often expended on finding precise
answers to the wrong questions. When working in isolation from the market,
the temptation is to find analytic answers for their own sake with no reference
to the concerns of practitioners. In particular, the importance of hedging
both as a justification for the price and as an important end in itself is often
underplayed. Scholars need to be aware of such financial issues, if only
because some of the very best work has arisen in answering the questions of
industry rather than academe.

Guide to the chapters

Chapter one is a brief warning, especially to beginners, that the expected
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Preface

worth of something is not a good guide to its price. That idea has to be
shaken off and arbitrage pricing take its place.

Chapter two develops the idea of hedging and pricing by arbitrage in the
discrete-time setting of binary trees. The key probabilistic concepts of condi-
tional expectation, martingales, change of measure, and representation are all
introduced in this simple framework, accompanied by illustrative examples.

Chapter three repeats all the work of its predecessor in the continuous-
time setting. Brownian motion is brought out, as well as the It6 calculus
needed to manipulate it, culminating in a derivation of the Black—Scholes
formula.

Chapter four runs through a variety of actual financial instruments, such as
dividend paying equities, currencies and coupon paying bonds, and adapts the
Black—Scholes approach to each in turn. A general pattern of the distinction
between tradable and non-tradable quantities leads to the definition the
market price of risk, as well as a warning not to take that name too seriously.
A section on quanto products provides a showcase of examples.

Chapter five is about the interest rate market. In spirit, a market of bonds
is much like a market of stocks, but the richness of this market makes it more
than just a special case of Black—Scholes. Market models are discussed with
a joint short-rate/HJM approach, which lies within the general continuous
framework set up in chapter three. One section details a few of the many
possible interest rate contracts, including swaps, caps/floors and swaptions.
This 15 a substantial chapter reflecting the depth of financial and technical
knowledge that has to be introduced in an understandable way. The aim is
to tell one basic story of the market, which all approaches can slot into.

Chapter six concludes with some technical results about larger and more
general models, including multiple stock n-factor models, stochastic numer-
aires, and foreign exchange interest-rate models. The running link between
the existence of equivalent martingale measures and the ability to price and
hedge 1s finally formalised.

A short bibliography, complete answers to the (small) number of exercises,
a full glossary of technical terms and an index are in the appendices.

How to read this book

The book can be read either sequentially as an unfolding story, or by random
access to the self-contained sections. The occasional questions are to allow
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Preface

practice of the requisite skills, and are never essential to the development of
the material.

A reader is not expected to have any particular prior body of knowledge,
except for some (classical) differential calculus and experience with symbolic
notation. Some basic probability definitions are contained in the glossary,
whereas more advanced readers will find technical asides in the text from
time to time.
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The parable of the bookmaker

bookmaker is taking bets on a two-horse race. Choosing to be

scientific, he studies the form of both horses over various distances

and goings as well as considering such factors as training, diet and
choice of jockey. Eventually he correctly calculates that one horse has a 25%
chance of winning, and the other a 75% chance. Accordingly the odds are
set at 3—1 against and 3~1 on respectively.

But there is a degree of popular sentiment reflected in the bets made,
adding up to $5000 for the first and $10000 for the second. Were the
second horse to win, the bookmaker would make a net profit of $1667, but
if the first wins he suffers a loss of $5000. The expected value of his profit is
25% x (—$5000) + 75% x ($1667) = $0, or exactly even. In the long term,
over a number of similar but independent races, the law of averages would
allow the bookmaker to break even. Untl the long term comes, there is a
chance of making a large loss.

Suppose however that he had set odds according to the money wagered —
that is, not 3—1 but 2—1 against and 2—1 on respectively. Whichever horse
wins, the bookmaker exactly breaks even. The outcome is irrelevant.

In practice the bookmaker sells more than 100% of the race and the odds
are shortened to allow for profit (see table). However, the same pattern
emerges. Using the actual probabilities can lead to long-term gain but there
1s always the chance of a substantial short-term loss. For the bookmaker
to earn a steady riskless income, he is best advised to assume the horses’
probabilities are something different. That done, he is in the surprising



The parable of the bookmaker

position of being disinterested in the outcome of the race, his income being
assured.

A note on odds

When a price is quoted in the form n—m against, such as 3—1 against, it means
that a successful bet of $m will be rewarded with $n plus stake returned. The
implied probability of victory (were the price fair) is m/(m + n). Usually
the probability is less than half a chance so the first number is larger than
the second. Otherwise, what one might write as 1-3 is often called odds of
3—1 on.

Actual probability 25% 75%
Bets placed $5000 $10000
1. Quoted odds  13-5 against 15—4 on
Implied probability 28% 79% Total = 107%

Profit if horse wins —$3000 $2333  Expected profit = $1000

2. Quoted odds 9-5 agamnst 5-2on
Implied probability 36% 71% Total = 107%
Profit if horse wins $1000 $1000  Expected profit = $1000

Allowing the bookmaker to make a profit, the odds change slightly. In
the first case, the odds relate to the actual probabilities of a horse winning
the race. In the second, the odds are derived from the amounts of money
wagered.




Chapter 1

Introduction

inancial market instruments can be divided into two distinct species.

There are the ‘underlying’ stocks: shares, bonds, commaodities, for-

eign currencies; and their ‘derivatives’, claims that promise some
payment or delivery in the future contingent on an underlying stock’s be-
haviour. Derivatives can reduce risk — by enabling a player to fix a price for
a future transaction now, for example ~ or they can magnify it. A costless
contract agreeing to pay off the difference between a stock and some agreed
future price lets both sides ride the risk inherent in owning stock without
needing the capital to buy it outright.

In form, one species depends on the other — without the underlying
(stock) there could be no future claims — but the connection between the
two is sufficiently complex and uncertain for both to trade fiercely in the
same market. The apparently random nature of stocks filters through to the
claims — they appear random too.

Yet mathematicians have known for a while that to be random is not
necessarily to be without some internal structure — put crudely, things are
often random in non-random ways. The study of probability and expectation
shows one way of coping with randomness and this book will build on
probabilistic foundations to find the strongest possible links between claims
and their random underlying stocks. The current state of truth is, however,
unfortunately complex and there are many false trails through this zoo of the
new. Of these, one is particularly tempting.
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1.1 Expectation pricing

Consider playing the following game — someone tosses a coin and pays you
one dollar for heads and nothing for tails. What price should you pay for
this prize? If the coin 1s fair, then heads and tails are equally likely — about
half the time you should win the dollar and the rest of the time you should
receive nothing. Over enough plays, then, you expect to make about fifty
cents a go. So paying more than fifty cents seems extravagant and less than
fifty cents looks extravagant for the person offering the game. Fifty cents,
then, seems about right.

Fifty cents is also the expected profit from the game under a more formal,
mathematical definition of expectation. A probabilistic analysis of the game
would observe that although the outcome of each coin toss is essentially
random, this is not inconsistent with a deeper non-random structure to the
game. We could posit that there was a fixed measure of likelihood attached to
the coin tossing, a probability of the coin landing heads or tails of 3. And along
with a probability ascription comes the idea of expectation, in this discrete
case, the total of each outcome’s value weighted by its attached probability.
The expected payoff in the game is § x $1 + 3 x $0 = $0.50.

This formal expectation can then be linked to a ‘price’ for the game via
something like the following:

Kolmogorov’s strong law of large numbers

Suppose we have a sequence of independent random numbers X,

X3, X3, and so on, all sampled from the same distribution, which has
mean (expectation) u, and we let S, be the arithmetical average of the
sequence up to the nth term, that is §,, = (X3 + Xo + ... + X,,)/n.
Then, with probability one, as n gets larger the value of S,, tends to-

wards the mean p of the distribution.

If the arithmetical average of outcomes tends towards the mathematical
expectation with certainty, then the average profit/loss per game tends to-
wards the mathematical expectation less the price paid to play the game. If
this difference is positive, then in the long run it is certain that you will end
up 1n profit. And if it is negative, then you will approach an overall loss with
certainty. In the short term of course, nothing can be guaranteed, but over
time, expectation will out. Fifty cents is a fair price in this sense.
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But 1s it an enforceable price? Suppose someone offered you a play of
the game for 40 cents in the dollar, but instead of allowing you a number
of plays, gave you just one for an arbitrarily large payoff. The strong law
lets you take advantage of them over repeated plays: 40 cents a dollar would
then be financial suicide, but it does nothing if you are allowed just one
play. Mortgaging your house, selling off all your belongings and taking out
loans to the limit of your credit rating would not be a rational way to take
advantage of this source of free money.

So the ‘market’ in this game could trade away from an expectation justified
price. Any price might actually be charged for the game in the short term,
and the number of ‘buyers’ or ‘sellers’ happy with that price might have
nothing to do with the mathematical expectation of the game’s outcome.
But as a guide to a starting price for the game, a ball-park amount to charge,
the strong law coupled with expectation seems to have something going
for it.

Time value of money

We have ignored one important detail — the time value of money. Our
analysis of the coin game was simplified by the payment for and the payoff
from the game occurring at the same time. Suppose instead that the coin
game took place at the end of a year, but payment to play had to be made
at the beginning — in effect we had to find the value of the coin game’s
contingent payoft not as of the future date of play, but as of now.

If we are in January, then one dollar in December is not worth one dollar
now, but something less. Interest rates are the formal acknowledgement of
this, and bonds are the market derived from this, We could assume the
existence of a market for these future promises, the prices quoted for these
bonds being structured, derivable from some interest rate. Specifically:

Time value of money

We assume that for any time 7’ less than some time horizon 7, the value now
of a dollar promised at time 7" is given by exp(—rT’) for some constant 7 > 0.
The rate r is then the continuously compounded interest rate for this period.
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The interest rate market doesn’t have to be this simple; » doesn’t have to
be constant. And indeed in real markets it isn’t. But here we assume it 1s.
We can derive a strong-law price for the game played at time 7. Paying 50
cents at time 7" is the same as paying 50 exp(—rT) cents now. Why? Because
the payment of 50 cents at time 7" can be guaranteed by buying half a unit
of the appropriate bond (that 1s, promise) now, for cost 50 exp(—r7’) cents.
Thus the strong-law price must be not 50 cents but 50 exp(—rT) cents.

Stocks, not coins

What about real stock prices in a real financial market? One widely accepted
model holds that stock prices are log-normally distributed. As with the time
value of money above, we should formalise this belief.

Stock model

We assume the existence of a random variable X, which is normally dis-
tributed with mean p and standard deviation o, such that the change in the
logarithm of the stock price over some time period 7' is given by X. That is

log St =log 5y + X, or St = Sp exp(X).

Suppose, now, that we have some claim on this stock, some contract that
agrees to pay certain amounts of money in certain situations — just as the
coin game did. The oldest and possibly most natural claim on a stock is the
forward: two parties enter into a contract whereby one agrees to give the
other the stock at some agreed point in the future in exchange for an amount
agreed now. The stock is being sold forward. The ‘pricing question’ for the
forward stock ‘game’ is: what amount should be written into the contract
now to pay for the stock one year in the future?

We can dress this up in formal notation — the stock price at time 7 is
given by St, and the forward payment written into the contract is K, thus
the value of the contract at its expiry, that is when the stock transfer actually
takes place, is S7 — K. The time value of money tells us that the value of
this claim as of now is exp(—77T)(Sr — K). The strong law suggests that
the expected value of this random amount, E{exp(—rT")(St — K)), should
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be zero. If it is positive or negative, then long-term use of that pricing
should lead to one side’s profit. Thus one apparently reasonable answer to
the pricing question says K should be set so that E(exp(—rT)(S7 — K)) = 0,
which happens when K = E(S7).

What is E(S7)? We have assumed that log(St) — log(Sp) is normally dis-
tributed with mean p and variance o2 — thus we want to find E(Sy exp(X)),
where X is normally distributed with mean p and standard deviation o. For
that, we can use a result such as:

I The law of the unconscious statistician

Given a real-valued random variable X with probability density func-
tion f(x) then for any integrable real function h, the expectation of
h(X) 1s

oo

E(h(X)) = / h(z)f(x)dx.

—0

Since X is normally distributed, the probability density function for X is
1 —(z —p)?
f(z) = > °XP (T‘g -

Integration and the law of the unconscious statistician then tells us that the

expected stock price at time 7" is Syexp(u + 3a?). This is the strong-law
Justified price for the forward contract; just as with the coin game, it can only
be a suggestion as to the market’s trading level. But the technique will clearly
work for more than just forwards. Many claims are capable of translation into
functional form, h(X), and the law of the unconscious statistician should be
able to deliver an expected value for them. Discounting this expectation
then gives a theoretical value which the strong law tempts us into linking
with economic reality.

1.2 Arbitrage pricing

So far, so plausible — but seductive though the strong law is, it is also com-
pletely useless. The price we have just determined for the forward could only
be the market price by an unfortunate coincidence. With markets where
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the stock can be bought and sold freely and arbitrary positive and negative
amounts of stock can be maintained without cost, trying to trade forward
using the strong law would lead to disaster — in most cases there would be
unlimited interest in selling forward to you at that price.

Why does the strong law fail so badly with forwards? As mentioned above
in the context of the coin game, the strong law cannot enforce a price, it
only suggests. And in this case, another completely different mechanism does enforce
a price. The fair price of the contract is Syexp(rT’). It doesn’t depend on
the expected value of the stock, it doesn’t even depend on the stock price
having some particular distribution. Either counterparty to the contract can
in fact construct the claim at the start of the contract period and then just wait
patiently for expiry to exchange as appropriate.

Construction strategy

Consider the seller of the contract, obliged to deliver the stock at time 7" in
exchange for some agreed amount. They could borrow Sy now, buy the stock
with it, put the stock in a drawer and just wait. When the contract expires,
they have to pay back the loan — which if the continuously compounded rate
is 7 means paying back Sy exp(rT’), but they have the stock ready to deliver.
If they wrote less than Sy exp(rT’) into the contract as the amount for forward
payment, then they would lose money with certainty.

So the forward price is bounded below by Sjexp(r7). But of course,
the buyer of the contract can run the scheme in reverse, thus writing more
than S) exp(r7") into the contract would guarantee them a loss. The forward
price is bounded above by Sy exp(rT") as well.

Thus there is an enforced price, not of Syexp(u + a2) but Syexp(rT).
Any attempt to strike a different price and offer it into a market would
inevitably lead to someone taking advantage of the free money available via
the construction procedure. And unlike the coin game, mortgaging the
house would now be a rational action. This type of market opportunism is
old enough to be ennobled with a name — arbitrage. The price of Sy exp(rT)
is an arbitrage price — it is justified because any other price could lead to
unlimited riskless profits for one party. The strong law wasn’t wrong — if
So exp(u+ 1o?) is greafer than Sy exp(rT"), then a buyer of a forward contract
expects to make money. (But then of course, if the stock 1s expected to grow
faster than the riskless interest rate 7, so would buyers of the stock itself.) But
the existence of an arbitrage price, however surprising, overrides the strong
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law. To put it simply, if there is an arbitrage price, any other price is too
dangerous to quote.

1.3 Expectation vs arbitrage

The strong law and expectation give the wrong price for forwards. But in
a certain sense, the forward is a special case. The construction strategy —
buying the stock and holding it ~ certainly wouldn’t work for more complex
claims. The standard call option which offers the buyer the right but not
the obligation to receive the stock for some strike price agreed in advance
certainly couldn’t be constructed this way. If the stock price ends up above
the strike, then the buyer would exercise the option and ask to receive the
stock — having it salted away in a drawer would then be useful to the seller.
But if the stock price ends up below the strike, the buyer will abandon the
option and any stock owned by the seller would have incurred a pointless
loss.

Thus maybe a strong-law price would be appropriate for a call option, and
until 1973, many people would have agreed. Almost everything appeared
safe to price via expectation and the strong law, and only forwards and close
relations seemed to have an arbitrage price. Since 1973, however, and the
infamous Black—Scholes paper, just how wrong this 1s has slowly come out.
Nowhere in this book will we use the strong law again. Just to muddy the
waters, though, expectation will be used repeatedly, but it will be as a tool
for risk-free construction. All derivatives can be built from the underlying —
arbitrage lurks everywhere.



Chapter 2

Discrete processes

he goal of this book is to explore the limits of arbitrage. Bit by

bit we will put together a mathematical framework strong enough

to be a realistic model of the real financial markets and yet still
structured enough to support construction techniques. We have a long way
to go, though; it seems wise to start very small.

2.1 The binomial branch model

Something random for the stock and something to represent the time-value of
money. At the very least we need these two things — any model without them
cannot begin to claim any relation to the real financial market. Consider,
then, the simplest possible model with a stock and a bond.

The stock

Just one time-tick — we start at time ¢t = 0 and end a short tick later at time
t = 6t. We need something to represent the stock, and it had better have
some unpredictability, some random component. So we suppose that only
two things can happen to the stock in this time: an ‘up’ move or a ‘down’
move. With just two things allowed to happen, pictorially we have a branch
(figure 2.1).

Our randomness will have some structure — we will assign probabilities to
the up and down move: probability p to move up to node 3, and thus 1 —p

10



2.1 The binomial branch model

to move down to node 2. The stock will have some value at the start (node
1 as labelled on the picture), call it s1. This value represents a price at which
we can buy and sell the stock in unlimited amounts. We can then hold on
to the stock across the time period until time ¢ = 6t. Nothing happens to
us in the intervening period by dint of holding on to the stock — there is
no charge for holding positive or negative amounts — but at the end of the
period it will have a new value. If it moves down, to node 2, then it will
have value s2; up, to node 3, value s3.

p p

1-p 1-p
time: 0 time: 1 time: 0 time: 1

Figure 2.1 The binomial branch

The bond

We also need something to represent the time-value of money ~ a cash
bond. There will be some continuously compounded interest rate r that
will hold for the period t = 0 to t = 6t — one dollar at time zero will grow
to $exp(r6t). We should be able to lend at that rate, and borrow — and in
arbitrary size. To represent this, we introduce a cash bond B which we can
buy or sell at time zero for some price, say By, and which will be worth a
definite By exp(r ét) a tick later.

These two instruments are our financial world, and simple though it is
it still has uncertainties for investors. Only one of the possible stock values
might suit a particular player, their plans surviving or failing by the random
outcome. Thus there could be a market for inscruments dependent on the
value the stock takes at the end of the tick-period. The investor’s requirement
for compensation based on the future value of the stock could be codified
by a function f mapping the two future possibilities, node 2 or node 3, to
two rewards or penalties f(2) and f(3). A forward contract, struck at &, for
example, could be codified as f(2) = s» — k, f(3) = s3 — k.

11



Discrete processes

Risk-free construction

The question can now be posed — exactly what class of functions f can be
explicitly constructed via a suitable strategy? Clearly the forward can be — as
in chapter one, we would buy the stock (cost: s1), and sell off cash bonds
to fund the purchase. At the end of the period, we would be able to hand
over the stock and demand s exp(r 6t) in exchange. The price k of the
forward thus has to be s1 exp(r 6t) exactly as we would have hoped — priced
via arbitrage.

But what about more complex f? Can we still find a construction strategy?
Our first guess would be no. The stock takes one of two random values at
the end of the tick-period and the value of the derivative would in general be
different as well. The probabilities of each outcome for the derivative f are
known, thus we also know the expected value of f at the end of the period
as well: (1 — p)f(2) + pf(3), but we don’t know its actual value in advance.

Bond-only strategy

All is not lost, though. Consider a portfolio of just the cash bond. The
cash bond will grow by a factor of exp(r ét) across the period, thus buying
discount bonds to the value of exp(—r6t)[(1 — p)f(2) + pf(3)] at the start
of the period will provide a value equal to (1 — p)f(2) + pf(3) at the end.
Why would we choose this value as the target to aim for? Because it is the
expected value of the derivative at the end of the period — formally:

Expectation for a branch

Let S be a binomial branch process with base value s; at time zero, down-
value s> and up-value s3. Then the expectation of S at tick-time 1 under
the probability of an up-move p is:

Ey(51) = (1 - p)s2 + pss.

Our claim f on § is just as much a random variable as S; is — we can
meaningfully talk of its expectation. And thus we can meaningfully aim for
the expectation of the claim, via the cash bonds. This strategy of construction
would at the very least be expected to break even. And the value of the starting

12
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portfolio of cash bonds might be claimed to be a good predictor of the value
of the derivative at the start of the period. The price we would predict for
the derivative would be the discounted expectation of its value at the end.

But of course this is just the strong law of chapter one all over again —
just thinly disguised as construction. And exactly as before we are missing
an element of coercion. We haven't explicitly constructed the two possible
values the derivative can take: f(2) and f(3); we have simply aimed between
them in a probabilistic sense and hoped for the best.

And we already know that this best isn’t good enough for forwards. For a
stock that obeys a binomial branch process, its forward price is not suggested
by the possible stock values s; and s3, but enforced by the interest rate 7 implied
by the cash bond B: namely s; exp(r 6t). The discounted expectation of the
claim doesn’t work as a pricing tool.

Stocks and bonds together

But can we do any better? Another strategy might occur to us, we have
after all two 1nstruments which we can build into a portfolio to hold for the
tick-period. We tried using the guaranteed growth of the cash bond as a
device for producing a particular desired value, and we chose the expected
value of the derivative as our target point. But we have another instrument
tied more strongly to the behaviour of both the stock and the derivative
than just the cash bond. Namely the stock itself. Suppose we attempted to
guarantee not an amount known in advance which we hope will stand as
a reasonable predictor for the value of the derivative, but the value of the
derivative itself, whatever it might be.

Consider a general portfolio (¢, ¥), namely ¢ of the stock S (worth ¢s;)
and ¥ of the cash bond B (worth ¥/ By). If we were to buy this portfolio at
time zero, it would cost ¢s; + ¥ By.

One tick later, though, it would be worth one of two possible values:

¢s3 + Y Byexp(rét) after an ‘up’ move,
and  ¢s2 + ¢¥Byexp(rét) after a ‘down’ move.
This pair of equations should intrigue us — we have two equations, two
possible claim values and two free variables ¢ and . We have two values

f(3) and f(2) which we want to duplicate under the appropriate move of
the stock, and we have two variables ¢ and ¥ which we can adjust. Thus the

13



Discrete processes

strategy can reduce to solving the following two simultaneous equations for

(¢, 9):

¢s3 + By exp(rét) = f(3),
¢s2 + Y By exp(r 6t) = f(2).

Except if perversely s, and s3 are identical — in which case S is a bond
not a stock — we have the solutions:

5o FO)-12)

83 — 82

v = Byt exp(-r51) (f(3) St (2))33) .
83 — 82

What can we do with this algebraic result? If we bought this (¢, )

portfolio and held it, the equations guarantee that we achieve our goal — if

the stock moves up, then the portfolio becomes worth f(3); and if the stock

moves down, the portfolio becomes worth f(2). We have synthesized the

derivative.

The price is right
Our simple model allows a surprisingly prescient strategy. Any derivative f
can be constructed from an appropriate portfolio of bond and stock. And
constructed in advance. This must have some effect on the value of the
claim, and of course it does — unlike the expectation derived value, this is
enforceable in an ideal market as a rational price. Denote by V the value of
buying the (¢, %) portfolio, namely ¢s; + 1By, which is:

Vo (10210

— ) + exp(—r 6t) (f(3) _ U0 _f(z))'%) :
53 52

§3 — 82

Now consider some other market maker offering to buy or sell the deriva-
tive for a price P less than V. Anyone could buy the derivative from them
in arbitrary quantity, and sell the (¢,1) portfolio to exactly match it. At
the end of the tick-period the value of the derivative would exactly cancel
the value of the portfolio, whatever the stock price was — thus this set of trades
carries no risk. But the trades were carried out at a profit of V — P per unit
of derivative/portfolio bought — by buying arbitrary amounts, anyone could
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2.1 The binomial branch model

make arbitrary risk-free profits. So P would not have been a rational price for
the market maker to quote and the market would quickly have mobilised to
take advantage of the ‘free’ money on offer in arbitrary quantity.

Similarly if a market maker quoted the derivative at a price P greater than
V, anyone could sell them it and buy the (¢, ) portfolio to lock in a risk-free
profit of P — V per unit trade. Again the market would take advantage of
the opportunity.

Only by quoting a two-way price of V can the market maker avoid handing
out risk-free profits to other players — hence V is the only rational price for
the derivative at time zero, the start of the tick-period. Our model, though
allowing randomness, lets arbitrage creep everywhere — the strong law can
be banished completely.

Example — the whole story in one step

We have an interest-free bond and a stock, both initially priced at $1. At the
end of the next time interval, the stock is worth either $2 or $0.50. What 1s
the worth of a bet which pays $1 if the stock goes up?

Solution. Let B denote the bond price, S the stock price, and X the payoft
of the bet. The picture describes the situation:

=1

B=1 o B=1

X=0
Figure 2.2 Pricing a bet

Buy a portfolio consisting of 2/3 of a unit of stock and a borrowing
of 1/3 of a unit of bond. The cost of this portfolio at time zero is § x
$1 — 1 x $1 = $0.33. But after an up-jump, this portfolio becomes worth
2 x$2— 4% x$1 = $1. After a down-jump, it is worth % x $0.5 — § x $1 = $0.
The portfolio exactly simulates the bet’s payoff, so has to be worth exactly
the same as the bet. It must be that the portfolio’s initial value of $0.33 is

also the bet’s initial value.
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Expectation regained
A surprise still lurks. The strong-law approach may be useless in this model —
leaving aside coincidence, expectation pricing involving the probabilities p
and 1 — p leads to risk-free profits being available. But with an eye to
rearranging the equations, we can define a simplifying variable:

_ s exp(rét) — so

83 — 82

What can we say about g? Without loss of generality, we can assume that
s3 1s bigger than s3. Were g to be less than or equal to 0, then s1 exp(r 6t) <
82 < 83. But s; exp(rdt) is the value that would be obtained by buying s;
worth of the cash bond B at the start of the tick-period. Thus the stock could
be bought in arbitrary quantity, financed by selling the appropriate amount of
cash bond and a guaranteed risk-free profit made. It is not unreasonable then
to eliminate this possibility by fiar — specifying the structure of our market to
avoid it. So for any market in which we have a stock which obeys a binomial
branch process S, we have ¢ > 0.

Similarly were g to be greater than or equal to 1, then s» < s3 <
s1 exp(r6t) — and this time selling stock and buying cash bonds provides
unlimited risk-free gains. Thus the structure of a rational market will force
q into (0,1), the interval of points strictly between 0 and 1 — the same
constraint we might demand for a probability.

Now the surprise: when we rewrite the formula for the value V of the

(¢,%) portfolio (try it) we get:
V = exp(—rét)((1 — @) £(2) +qf(3)).

Outrageous though it might seem, this is the expectation of the claim under q.
This re-appearance of the expectation operator is unsettling.

The price V is not the expected future value of the derivative (discounted
suitably by the growth of the cash bond) — that would involve p in the above
formula. Yet V is the discounted expectation with respect to some number ¢
in (0, 1). If we view the expectation operator as implying some information
about the future — a strong-law average over many trials, for example — then
V is not what we would unconsciously call the expected value. It sounds
pedantic to say it, but V' is an expectation, not an expected value. And it
is easy enough to check that this expectation gives the correct strike for a
forward contract: s exp(r 6t).
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2.2 The binomial tree model

Exercise 2.1 Show that a forward contract, struck at k,

can be thought of as the payoft f, where f(2) = s, — k and
f(3) = s3 — k. Now verity, using the formula for V, that
the correct strike price is indeed s1 exp{r 6t).

2.2 The binomial tree model

From branch to tree. Our single time step was simple to analyse, but it
represents a bare minimum as a model. It had a random stock and a cash
bond, but it only allowed the stock two possible values at the end of a single
time period. Markets are not quite that straightforward. But if we could
build the branch model up into something more sophisticated, then we could
transfer its results into a larger, better model. This is the intention of this
section — we shall build a tree out of branches, and see what survives.

Our financial world will again be just two instruments — a discount bond B
and a stock S. Unlimited amounts of either can be bought and sold without
transaction costs, default risks, or bid-offer spreads. But now;, instead of a
single time-period, we will allow many, stringing the individual éts together.

The stock

Changes in the value of the stock § must be random — the market demands
that — but the randomness can have structure. Our mini-stock from the
binomial branch model allowed the stock to change to just two values at the
end of the time period, and we shall keep that structure. But now, we will
string these choices together into a tree. The very first time period, from
t =0 to t = 6t, will be just as before (a tree of branches starts with just one
simple branch). If the value of S at time zero is Sy = s1, then the actual value
one tick later is not known but the range of possibilities is — Sj has only two
possible values: s, and ss.

Now, we must extend the branch idea in a natural fashion. One tick 6t
later still, the stock again has two possibilities, but dependent on the value at
tick-time 1, hence there are four possibilities. From s, S> can be either s4 or
s5; from s3, S» can be either s¢ or s7.
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As the picture suggests, at tick-time 4, the stock can have one of 2 possible
values, though of course given the value at tick-time (¢ — 1), there are still
only two admissible possibilities: from node j the process either goes down
to node 2j or up to node 25 + 1.

time: 1 time: i+1

Binary tree with numbered nodes Stock price development
Figure 2.3

This tree arrangement gives us considerably more flexibility. A claim can
now call on not just two possibilities, but any number. If we think that a
thousand random possible values for a stock is a suitable level of complexity,
then we merely have to set 6t small enough that we get ten or so layers of
the tree in before the claim time ¢. We also have a richer allowed structure
of probability. Each up/down choice will have an attached probability of it
being made. From the standpoint of notation, we can represent this pair of
probabilities (which must sum to 1) by just one of them (the up probability)
p;. the probability of the stock achieving value sz, 1, given its previous value
of s;. The probability of the stock moving down, and achieving value s3;, is
then 1 — p;. Again this is shown in the picture.

The cash bond

To go with our grown-up stock, we need a grown-up cash bond. In the
simple branch model, the cash bond behaved entirely predictably; there was a
known interest rate r which applied across the period making the cash bond
price increase by a factor of exp(r 6t). There is no reason to impose such a
strict condition — we don't have to have a constant interest rate known for
the entire tree in advance but instead we could have a sequence of interest
rates, Ro, Ry, - .., each known at the start of the appropriate tick period. The
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2.2 The binomial tree model

value of the cash bond at time n 6t thus be By exp(z?z_o1 R; 6t).

It is worth contrasting the cash bond and the stock. We have admitted
the possibility of randomness in the cash bond’s behaviour (though in fact
we will not yet be particularly interested in its exact form). But compared to
the stock it is a very different sort of randomness. The cash bond B has the
same structure as the time value of money. The interest which must be paid
or earned on cash can change over time, but the value of a cash holding at
the next tick point is always known, because it depends only on the interest
rate already known at the start of the period.

But for simplicity’s sake, we will now keep a constant interest rate r
applying everywhere in the tree, and in this case the price of the cash bond
at time n 6t is By exp(rn 6t).

Trees are complex

At this stage, the binomial structure of the tree may seem rather arbitrary,
or indeed unnecessarily simplistic. A tree is better than a single branch, but
it still won't allow continuous fluid changes in stock and bond values. In
fact, as we shall see, it more than suits our purpose. Our final goal, an
understanding of the limitations {or lack of them) of risk-free construction
when the underlying stocks take continuous values in continuous time, will
draw directly and naturally on this starting point. And as 6t tends to zero,
this model will in fact be more than capable of matching the models we have
in mind. Perhaps more pertinently, before we abandon the tree as simplistic,
we had better check that it hasn’t become too complex for us to make any
analytic progress at all.

Backwards induction

In fact most of the hard work has already been done when we examined
the branch model. Extending the results and intuitions of section 2.1 to an
entire binomial tree is surprisingly straightforward. The key idea is that of
backwards induction — extending the construction portfolio back one tick at
a time from the claim to the required starting place.

Consider, then, a general claim for our stock S. When we examined a
single branching of our tree, we had the function f dependent only on the
node chosen at the end of a single tick period — here we can extend the idea
of a claim to cover not only the value of S at the time the claim is exercised
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but also the history of S up until that point.

The tree structure of the stock was not entirely arbitrary — it embodies a
one-to-one relationship between a node and the history of the stock’s path up
to and including that node. No other history reaches that node; and trivially
no other node is reached by that history. This is precisely that condition that
allows us actually to associate a claim value with a particular end-node on
our tree. We shall also insist on the finiteness of our tree. There must be
some final tick-time at which the claim is fully determined. A condition not
unreasonable in the real financial world. A general claim can be thought of
as some function on the nodes at this claim time-horizon.

The two-step
We know that the expectation operator can be made to work for a single
branch — here, then, we must wade through the algebra for two time-steps,
three branches stuck together into a tree. If two time-steps work, then so
will many.

1-¢,

time: O time; 1 time: 2

Figure 2.4 Double fork at time 0

Suppose that the interest rate over any branch is constant at rate r. Then
there exists some set of suitable g;s such that the value of the derivative at
node j at tick-time %, f(j), is

fG) =e % (g; f(25 4+ 1) + (1 — ¢;) F(24))-

That is the discounted expectation under ¢; of the time-(i + 1) claim values
f(25+ 1) and f(2j). So in our two-step tree (figure 2.4), the two forks
from node 3 to nodes 6 and 7, and from node 2 to nodes 4 and 5, are both
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2.2 The binomial tree model

structurally identical to the simple one-step branch. This means that f(3)
comes from f(6) and f(7) via

F(3)=e g f(7)+ (1 - g3)£(6)),
and similarly, f(2) comes from f(4) and f(5), with
F(2) = e (q2f(5) + (1 — 2)f(4)).
Here g; is the probability (s; exp(r 6t) — s2;)/(s2j+1 — $2;), so for instance
_ saexp(rbt) — sy

Coand g = syexp(r6t) — 56

85 — 84 87 — 8¢
But now we have a value for the claim at time 1; it is worth f(3) if the first
jump was up, and f(2) if it was down. But this initial fork from node 1 to
nodes 2 and 3 also has the single branch structure. Its value at time zero must

be

F(1) = e (a1 f3) + (1 - a1)f(2)).
Thus the value of the claim at time zero has the daunting looking expression
formed by combining the three equations above,

(1) = e (qias £(7) + a1(1 - g3)£(6)

+ (1= a1)g2f(5) + (1 - a1)(1 - &) f(4)).

We haven’t formally defined expectation on our tree, but it is clear what it
must be.

Path probabilities

The probability that the process follows a particular path through the

tree is just the product of the probabilities of each branch taken. For

example, in figure 2.4, the chance of going up twice is the product

q1¢3, the chance of going up and then down is ¢1(1 — ¢3), and so on.
This is a case of the more general slogan that when working with

independent events, the probabilities multiply.

Expectation on a tree

The expectation of some claim on the final nodes of a tree is the sum over
those nodes of the claim value weighted by the probabilities of paths reaching
it.
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A two-step tree has four possible paths to the end. But each path carries
two probabilities attached to it, one for the first time step and one for the
second, thus the path-probability, the probability of following any particular
path, must be the product of these.

The expectation of a claim is then the total of the four outcomes each
weighted by this path-probability. But examine the expression we have
derived above — it is of course precisely the expectation of the claims f(7),

—2rét under the

..., f(4), discounted by the appropriate interest-rate factor e
probabilities q143, ¢1(1 - ¢3), (1 — g1)g2, (1 — q1)(1 — g2) corresponding to
the ‘probability tree’ (g1, ¢2, g3).

For claim pricing and expectation, a two-step tree is simply three branches.

And so on.

The inductive step

Returning to our general tree over n periods, we start at its final layer. All
nodes here have claim values and are in pairs, the ends of single branchings.
Consider any one of these final branchings, from a node at time (n — 1)
to two nodes at time n. The results from section 2.1 provide a risk-free
construction portfolio (¢, 1) of stock and bond at the root of the branch that
can generate the time n claim amount. (Both our grown-up stock and the
cash bond are indistinguishable over a single branching from the stock and bond
of the simple model.)

Thus the nodes at time (n — 1) are all roots of branches that end on the
claim layer and have arbitrage guaranteed values for the derivative attached —
claim-values in their own right now insisted on not by the investor’s contract
(that only applies to the final layer) but by arbitrage considerations. Thus
we can work back from enforced claims at the final layer to equally strongly
enforced claim-values at the layer before. This is the inductive step — we have
moved the claims on the final layer back one step.

The inductive result

By repeating the inductive step, we will sweep backwards through the tree.
Each layer will fix the value of the derivative on the layer before, because each
layer is only separated from the layer before by simple branches. What we
have done is essentially a recursive filling in process. The investor filled in the
nodes at the end of the tree with claims — we filled in the rest by constructing
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2.2 The binomial tree model

(¢, %) portfolios at each branching which guaranteed the correct outcome at
the next step.

We will reach the root of the entire tree with a single value. This is the
time-zero value of the final derivative claim — why? Because just as for the
single branch, there is a construction portfolio which, though it will change at
each tick time, will inexorably lead us to the claim payoff required, whatever
path the stock actually takes.

We now have some idea of the complexity of the construction portfolios
that will be required. Instead of a single amount of stock ¢, we now have a
whole number of them, one per node. And as fate casts the die and the stock
jumps on the tree, so this amount will jump as well. Perverse though it may
seem for a guaranteed construction procedure, the construction portfolios
(¢:, %) are also random, just like the stock. But there is a vital structural
difference — they are known just in time to be useful, unlike the stock value
they are known one-step in advance.

Arbitrage has worked its way into the tree model as well. The fact that
the tree is simply lots of branches was enough to banish the strong law here
as well. All claims can be constructed from a stock and bond portfolio, and
thus all claims have an arbitrage price.

Expectation again

The strong law may be useless, but what about expectation? We had no need
of the probabilities p;, but the re-emergence of the expectation operator is
not just a coincidence peculiar to the simplicities of the branch model. Yet
again the expectation operator will appear with the correct result — just as
the conclusion from the previous section was that with respect to a suitable
‘probability’, the expectation operator provided the correct local hedge, here
we will see that the expectation operator with respect to some suitable set of
‘probabilities’ also provides the correct global structure for a hedge.

A worked example

We can give a concrete demonstration of how this works. The tree in
Figure 2.5 is called recombinant as different branches can come back together,
or recombine, at the same node. Such trees are computationally much easier
to work with, as Jong as we remember that there is more than one path to
the final nodes. The tree nodes are the stock prices, s, and at each node the
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process will go up with probability 3/4 and down with probability 1/4. (For

simplicity, interest rates are zero.)

time: O time: 1 time; 2 time: 3

Figure 2.5 A stock price on a recombinant tree

What is the value of an option to buy the stock for 100 at time 3?

It is easy to fill in the value of the claim on the time 3 column. Reading
from top to bottom, the claim has values then of 60, 20, 0 and 0.

We shall now need our equations for the new probabilities ¢ and the claim
values f. As the interest rate r is zero, these equations are a little simpler. If we
are about to move either ‘up’ or ‘down’, then the (risk-neutral) probability
q is

__ Snow — Sdown

Sup — Sdown

and the value of a claim, f, now is

fnow = qup + (1 - (I)fdown-

We calculate that the new g-probabilities are exactly 1/2 at each and every
node. Now we can work out the value of the option at the penultimate time
2 by applying the up-down formulae to the final nodes in adjacent pairs.
Figure 2.6 shows the result of the first two such calculations.

We can complete filling in the nodes on level 2, and then repeat the process
on level 1, and so on. At the end of this process we have the completed tree
(figure 2.7).
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2.2 The binomial tree model

The price of the option at time zero is 15. We can trace through our
hedge, using the formula that, at any current time, we should hedge

units of stock.

time: 0 time: 1 time: 2 time: 3  tme: 0 time: 1 time: 2 time: 3

Figure 2.6 The option claims and claim-values at time 2

time: 0 time: 1 time: 2 time: 3

Figure 2.7 The option claim tree

Time 0 We are given 15 for the option. We calculate ¢ as (25 — 5) /(120 —
80) = 0.5. Buying 0.5 units of stock costs 50, so we need to borrow
an additional 35.

Suppose the stock now goes up to 120
Time 1 The new ¢ is (40 — 10) /(140 — 100) = 0.75, so we buy another 0.25

25



Discrete processes

units of stock at its new price, taking our total borrowing to 65.

Suppose the stock goes up again to 140
Time 2 The new ¢ is (60 — 20)/(160 — 120) = 1, so we take our stock
holding up to 1, making our debt now 100.

Finally suppose the stock goes down to 120
Time 3 The option will be in the money, and we are exactly placed to hand
over one unit of stock and receive 100 in cash to cancel our debt.
(In fact, the same would have happened if the stock had gone up to
160 instead.)

The table below shows exactly how the various processes change over
time. The portfolio strategies shown are those in force for the previous
tick-period, for instance, ¢ units of stock are held during the interval from
i =0 to i = 1. The option value matches the worth of both the old and the
new portfolios, for instance V; equals both ¢1.51 + ¥1 and ¢251 + ¥».

Table 2.1 Option and portfolio development

Stock  Option Stock Bond
Time ¢ Last Jump Price S; Value V; Holding ¢; Holding v;
0 - 100 15 - -
1 up 120 25 0.50 -35
2 up 140 40 0.75 —65
3 down 120 20 1.00 -100

This was the rosy scenario. What would have happened if the initial jump
had been down?

Suppose the stock goes down to 80
Time 1 This time, the new ¢ is (10 —0) /(100 — 60) = 0.25. We sell half our
stock holding and reduce our debt to 15.

Suppose now the stock goes up to 100
Time 2 The next hedge is (20 — 0)/(120 — 80) = 0.50. We buy an extra
0.25 units of stock and our borrowing mounts to 40.

Suppose the stock goes down again to 80
Time 3 Qur stock is now worth 40, exactly cancelling the debt. But the
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2.2 The binomial tree model
option is out of the money, so overall we have broken even.

Table 2.2 Option and portfolio development along a different path

Stock  Option Stock Bond
Time ¢ Last Jump Price S; ValueV; Holding ¢; Holding 1;
0 - 100 15 - -
1 down 80 5 0.50 =35
2 up 100 10 0.25 -15
3 down 80 0 0.50 —40

We note that all the process above (S, V, ¢ and ¢/) depend on the sequence
of up-down jumps. In particular, ¢ and 4 are random too, but depend only
on the jumps made up to the time when you need to work them out.

Exercise 2.2 Repeat the above calculations for a digital
contract which pays off 100 if the stock ends higher than it
started.

The expectation result is still here. Under the probability ¢, the chances
of each of the final nodes are (running from top to bottom) 1/8, 3/8, 3/8,
and 1/8. The expectation of the claim is indeed 15 under these probabilities,
but certainly not under the model probabilities of 3/4-up and 1/4-down.
(That gives node probabilities of 27/64, 27/64, 9/64 and 1/64, and a claim
expectation of 33.75.)

Conclusions

We can sum up. The tree structure ensured that any claim provides just
one possible value for its implied derivative instrument at every node or
else arbitrage intervened. Claim led to claim-value led to claim-value via
backwards induction until the entire tree was filled in. Arbitrage spreads into
every branch and thus across any tree.

Something else happened as well — each branchlet carries its own prob-
ability g; under which fixing the value at the branchlet’s root can be given
by a local expectation operator with parameter ¢;. The cost of the local

27



Discrete processes

construction portfolio (¢;,1);) can be written as a discounted expectation.
But a string of local construction portfolios is a global construction strategy
guaranteeing a value. Thus the global discounted expectation operator gives
the value of claims on a tree as well.

2.3 Binomial representation theorem

The expectation operator is much more general and constructive an operator
than its conventional probabilistic role suggests. We can raise the apparently
coincidental finding that there exists some set of ¢; under which any derivative
can be priced by a numerically trivial discounted expectation operation to
the status of a theorem. Though it seems strangely formal here where we
have the comfort of a pictured tree, when we move to continuous models
we shall be glad of any guidance — in the continuous case intuition will
often fail. And far from vanishing, the expectation result carries across to the
continuous model with ease.

[t is in this spirit, then, that we derive the binomial representation theorem.
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Hlustrated definitions

We must start with some formal definitions of concepts we have, in many
cases, already met informally. There are seven separate definitions and each
will be illustrated by an example on the double forked tree with seven nodes
(figure 2.8).

time: 0 time: 1 time: 2 time: time: 1 time: 2

Figure 2.8 Tree with node numbers Figure 2.9 Tree with price process

(i)  We will call the set of possible stock values, one for each node of the
tree, and their pattern of interconnections, a process S. One possible
process S on our tree is shown in figure 2.9. The random variable S;
denotes the value of the process at time i, for instance S is either 60
or 120 depending on whether we are at node 2 or node 3.

time: 0 time: 1 time: 2 time; O time: 1 time: 2

Figure 2.10a The measure P Figure 2.10b The measure Q

(ii) Separate from the process S, we will call the set of ‘probabilities’ (p;)

29



Discrete processes

or (g;) a measure P or Q on the tree. The measure describes how likely
any up/down jump is at each node, represented by p;, the probability
of moving upwards from node j. We could choose a simple measure P
with all jumps equally likely (figure 2.10a) or a more complex measure
like Q@ (shown in figure 2.10b).

Notice that in our formal system, we have separated two components that
would normally be seen as intimately connected parts of the same whole —
the probability of an up-move, and where the up-move is to. They may not
seem too different in character but the lesson of both the preceding sections
is that this intuitive elision is unwise. We didn’t need the real world measure
P in order to find the measure which allowed risk-free construction. That
measure was a function of S and no function of P. The size and interrelation
of up-moves affects the values of derivatives, the probabilities of achieving
them does not.

This separation of process and measure isn’t artificial — it is fundamental to
everything we have to do. Put crudely, the strong law failed precisely because
it paid attention to both S and P, not S alone.

(iii) A filtration (F;) is the history of the stock up until tick-time 7 on the tree.
The filtration starts at time zero with F{ equal to the path consisting of
the single node 1, that is 7y = {1}. By time 1, the filtration will either
be Fi = {1, 2} if the first jump was down, or F; = {1, 3} if it was up.
In full the filtration associated with each node is

Table 2.3 The filtration process

node I 1 2 3 4 5 6 7
filration | {1} {1,2} {1,3} {1,2,4} {1,2,5} {1,3,6} {1,3,7}

It thus corresponds to a particular node achieved at time i. Why?
Because the binomial structure ensures it — check for yourself that there
is only one path to any given node. The filtration fixes a history of
choices, and thus fixes a node. To know where you are is the same as
knowing the filtration (at least in non-recombinant trees).

(iv) A claim X on the tree is a function of the nodes at a claim time-horizon
T. Or equivalently it 1s a function of the filtration Fr, thanks to the
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one-to-one relationship between nodes and paths. For instance, the
value of the process at time 2, S, is a claim, as is the value of a call
struck at 70 and the maximum price the stock attained along its path
(table 2.4).

Table 2.4 Some claims at time 2

time 2 node So (S — 70)+ max{Sy, S1, 52}

7 180 110 180
6 80 10 120
5 72 2 80
4 36 0 80

The crucial difference between a claim and a process, is that the claim
1s only defined on the nodes at time 7', while a process is defined at all
times up to and including 7.

Table 2.5 Conditional expectation against filtration value

Expectation Filtration value Value
Ep(S2|Fo) {1} (180 + 80 + 72+ 36)/4 = 92
Ep(S2|F1) {1,3} $(180 + 80) = 130
{1,2} 3(72+36) =54
Ep(S2|F>) {1,3,7} 180
{1,3,6} 80
{1,2,5} 72
{1,2,4} 36

(v) The conditional expectation operator Eg(-|F;) extends our idea of expec-
tation to two parameters — a measure @ and a history F;. The measure
Q we might have guessed — it tells us which ‘probabilities’ to use in
determining path-probability and thus the expectation. But so far we
have only been interested in taking expectations along the whole of
a path from time zero, and it is useful to take expectations from later
starting points. The filtration serves this purpose. For a claim X, the
quantity Eg(X|F;) is the expectation of X along the latter portion of
paths which have initial segment F;. We regard the node reached at
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time ¢ as the new root of our tree, and take expectations of future claims
from there. This conditional expectation has an enforced dependence
on the value of the filtration F;, and so is itself a random variable.

For each node at time i, Eg(X|F;) is the expectation of X if we have
already got to that node. As an example, we take P to be the measure
in figure 2.10a and X to be the claim S, (table 2.5).

Sensibly enough, starting at the root gives the same answer as the
unconditioned expectation Ep(S,), whereas ‘starting’ at time 2 leaves
no further time for development, so Ep(S2|F,) = S», for every possible
value of the filtration 7.

We could also see Ep(X|F;) as a process in 7. In the case of X = S5,
it is shown in figure 2.11. In this way we can convert a claim into a
process, given a measure.

-

time: 0 time: 1 time: 2

Figure 2.11 Conditional expectation process Ep{Sz|F;)

(vi) A previsible process ¢ = ¢; is a process on the same tree whose value at
any given node at time-tick ¢ is dependent only on the history up to
one time-tick earlier, ;_{. What can we say about a previsible process?
Given the one-to-one relationship between nodes and histories on our
binary tree, it is certainly a binomial tree process in its own right, whose
values are well defined at each node later than time zero. But compared
to the main process S, it is known one node in advance. It doesn’t
seem to notice branches until one time-step after they have happened.
For instance a random bond price process B; would be previsible, as is
the delayed price process ¢; = S;_1, 1 = 1 (figure 2.12). It is not always
sensible to define the value that a previsible process has at time zero.
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2.3 Binomial representation theorem

Previsible processes will play the part of trading strategies, where we
cannot tell in advance where prices are going to go. This is an essential
feature of any model that excludes arbitrage (or insider trading).

time: 0 time: 1 time: 2

Figure 2.12 The previsible process S;_1

Our final definition is probably the most important of all — one question
that we must surely ask soon is: what is the risk-free construction measure?
Is it specific to the task in hand, or is it special in some other way as well?

vil) A process S is a martingale with respect to a measure P and a filtration
P 24 p
(Fi) if
]E]]»(Sjlfz) =S for all 7 < j.

This daunting expression needs expansion. Written out, for S to be
a martingale with respect to a measure P, it means that the future
expected value at time j of the process S under measure P (for of course
our formal expectation demands a measure, it has no meaning without
one) conditional on its history up until time ¢ is merely the process’
value at time 1.

Re-written again, that means the process S has no drift under P, no
bias up or down in its value under the expectation operator Ep. If the
process has value 100 at some point, then its conditional expected value
under PP 1s 100 thereafter.

Example (1). The process which constantly takes a fixed value is, rather
trivially, a martingale with respect to all possible measures.

Example (2). Our illustrative process S is actually a martingale under
the measure Q given in figure 2.10b. For instance Eg(S1|Fy) equals
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§x 1204 3 x 60 = 80, and 80 is indeed the value of Sy. Slighty harder,
Eq(S2|F1) equals & x 180+ 2 x 80 = 120 if the first jump was up, which
matches the value S; takes if the first jump is up. The down-jump case
and all the others need to be checked separately.

Example (3). The conditional expectation process N; = Ep(S5,|F;) is a
P-martingale. Because of the nature of its definition we only need to
check that Ep(N1|Fp) is equal to Ny. As thisis just 3 x 130+ x54 = 92,
it is immediate.

The last example above is a particular example of a general result.

The conditional expectation process of a claim
For any claim X, the process Ep(X|F;) is always a P-martingale.

To see this to be true, we need to use the fact that
]Ep(]Ep(XU-'j) } J—'z-) = Ep(X|F),  i<J.

In other words, that conditioning firstly on the history up to time j and
then conditioning on the history up to an earlier time i is the same as just
conditioning originally up to time ¢. This result is called the tower law.

Given the tower law, an easy check of whether a process is a P-martingale
or not is to compare the process S; itself with the conditional expectation
process of its terminal value Ep(St|F;). Only if these are identical 1s the
process a P-martingale.

We must also take the P dependence seriously. The process S is not a
martingale on its own, it 1s a P-martingale, it 1s a martingale with respect to
the measure P. And of course, exactly the same process can be a martingale
with respect to one measure and not to another. For instance, our illustra-
tive process S is not a P-martingale (because figure 2.9 and figure 2.11 are
different), but it is a Q-martingale, where Q is given in figure 2.10b. Such a
Q is called a martingale measure for S.

Exercise 2.3 Check that E¢(S2|F;) is the same as S;, and
so prove that S is a Q-martingale.
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2.3 Binomial representation theorem

Binomial representation theorem

We can now write down our theorem.

& Binomial representation theorem

Suppose the measure Q is such that the binomial price process S is
a Q-martingale. If N is any other Q-martingale, then there exists a
previsible process ¢ such that

Ni=DNo+ ) ¢, ASk,
k=1

. where AS; := S; — S;_1 is the change in S from tick-time ¢ — 1 to ¢,

and ¢; is the value of ¢ at the appropriate node at tick-time 3.

We can get from Ny to N; previsibly, with steps we know in advance. The
proof is formal but straightforward — with the work we have put in already,
this kind of manipulation should be second nature.

time: i-1 time: time: i-1 time: i

Figure 2.13 The branch geometry (process S on left; process NV on right)

Consider a single branching from a node at tick-time 7 — 1 to two nodes
‘up’ and ‘down’ at tick-time i. The structure of the tree ensures that the
history F; has two choices beyond JF; 1, corresponding to the up jump and
down jumps respectively. The increments over the branch of the processes S
and N are

ASz = Sz - Si_1 and ANz = Nz - Nz’_.1.

The variability that these increments contain depends on the geometry of
the branch itself (figure 2.13).
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There are only two places to go, so any random variable dependent on the
branch is fully determined by its width size and a constant offset depending
only on F;_1. So if we want to construct one random process out of another,
it will in general be a construction based on a scaling (to match the widths)
and a shift (to match the offsets).

Consider then the scaling first. The size of the difference between the up
and down jump values is 6s; = Sup — Sdown for § and én; = nyp — Ngeyn for
N, both of these dependent only on the filtration F;_1. So we define ¢; to
be the ratio of these branch widths, that is

N 682"

oF

Now we can worry about the shift — the N-increment AN; must be given
by the scaled increment ¢; AS; plus an offset k, this k again determined only
by F;_1. Thatis

AN; = ¢; AS; + k, for ¢; and k known by F;_;.

But S and N are Q-martingales, that is Eg(AN;|F;_1) and Eg(AS;|F;—1) are
both zero — the increments have zero expectation conditional on the history
Fi—1. The scaling factor ¢; is previsible, that is known by time i — 1, so
we also have Eg(¢; AS;|F;—1) = 0. Thus the offset k¥ must be zero as well
(0=0+k).

So the general scale and shift reduces in the case where S and N are both
Q-martingales to just a scaling

AN; = ¢; AS;.

And of course induction ties all these increments together to give the result
we want.

Financial application

We now have a theorem; but it is a formal theorem about binomial tree
processes and measures. Nowhere in our proof do we consider portfolios of
a stock and bond; nowhere do we consider arbitrage or market implications.
We go through many of the same steps as we had to in section 2.2, but we
haven’t reached a financial conclusion. How then can we use the binomial
representation theorem for pricing?
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2.3 Binomial representation theorem

In our binomial tree model for the market, the stock follows a binomial
process S. And if there were a measure @ which made S a martingale, we
could use the representation theorem to represent some other martingale N;
in terms of the stock price. The previsible ¢ from the theorem could act as a
construction strategy. At each point we could buy the appropriate ¢; of the
stock and we would follow the gains and losses of the martingale N;.

We would be able to match the martingale step for step, starting where it
starts and finishing where it ends, wherever that might be. If the martingale
ended in a claim, than that claim would have been synthesized.

Two things stand in our way, though. Firstly we have a claim X, not a
martingale. And though we would like to end up at the claim, the claim
doesn’t start or end anywhere. It isnt a process, its a random variable.
Secondly, we have not just a stock but a cash bond as well. X-ray vision or
intuition would suggest that the ¢, of the binomial representation theorem
is going to be a vital part of our formal construction strategy but, to use the
notation of earlier, we need a v; as well. With each stock holding comes a

bond holding.

First things first. The claim X is a random variable but we have already seen
one trick for turning random variables into processes. Given any measure Q,
we can form the process

E; = Eo(X|F:),

by taking conditional expectations. Even better, as we have already observed,
whatever measure Q we choose, E; 1s automatically a Q-martingale. Thus if
we find Q, a measure under which S; is a Q-martingale, the appropriate E;
is one as well.

What about the cash bond? Ultimately we will simply have to grind
through the algebra but a bit of intuition can guide us to what the answer
might look like. The cash bond B; represents the growth of money — $1
today is not the same as $1 at time ¢, all things being equal. One dollar today
1s like B; dollars at time i. But we would like to be in a world without the
growth of money — so we could simply factor it away.

The bond process B; 1s previsible and positive. We can assume without
loss of generality that By = 1.

(1) The process B; ! is another previsible process, just like B; itself. Call
this the discount process.
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(i) Define Z; := B, 1S, which is just as well a defined process as S itself
and it subsists on the same binomial tree. Call this the discounted stock
process.

(ii1) The value B X is also a claim and because of the simple mapping
from Z to S it’s as much a claim on Z as S. Call this the discounted claim.

What, then, now?

Construction strategy

Let’s try out the trick. With @ such that Z is a Q-martingale and claim X,
there is 2 Q-martingale process produced from B !X by taking conditional
expectations, E; = Eg(Bz!X|F;). By the binomial representation theorem,
there is a previsible process ¢ such that

i
E;=Ey+ ) ¢, AZk.
k=1
Now consider the following construction strategy: at tick-time 2, buy the
portfolio II, consisting of:

® ¢;,1 units of the stock S,
o Y1 =(E; - ngHle-_lSi) units of the cash bond.

At time zero, our starting point, IIy is worth ¢1.Sy + ¥v1By = Eg =
Eq(Br 1X) — it costs that much to create. There is also no difficulty in
determining ¢1 or vy as ¢ and ¢ are previsible.

What about one tick later? We have held the portfolio safe across the
period, but its constituents have changed in value: IIj is now worth

$151 + 91 B1 = B1(Eo + ¢1(By'S1 — By 'So)),

but B lg, — By 1Sy = AZ;. Now we can use the binomial representation
theorem to simplify the expression above: at time 1, IIy 1s worth By Ej.

We are at time 1, and the construction strategy demands that we buy a
new portfolio I1;. But the portfolio Iy, which we need to create at time 1,
costs precisely that amount above: By Ej, whatever actually happened to S,
that is whichever filtration Fq actually obtains.

Thus we can cash in our portfolio Il to create II;. And so on. At time i,
portfolio II; costs B; E; to purchase, and it will change by time (¢ + 1) to be
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2.3 Binomial representation theorem

worth B;,1F;,1, the cost of the next portfolio. Our construction strategy
is what we might call self-financing. And at the end of our self-financing
strategy, we end up with the worth of IIp_; at time 7', which is BTBQ_qu i
That is X, the claim we require.

Arbitrage

The price of the claim X is now obvious: itis Eg(Bg ' X) — the expected value
of the discounted claim, under the martingale measure Q for the discounted
stock Z. And it is an arbitrage price because any other price could be milked
for free money by running the (¢, ;) strategy the appropriate way round to
duplicate the claim. We shouldn’t be too surprised — we are simply repeating
the argument of section 2.2 in formal guise. But our formal argument has
won us an overview of the entire process and a couple of vital slogans:

The existence of self-financing strategies

The first slogan 1s that within the binomial tree model, we can produce
a self-financing (¢;, ;) strategy which duplicates any claim. What do we
mean exactly by self-financing? Let us define V;, the worth of the trading
strategy at time 7, to be the opening value of the portfolio II; at time %, that is
Vi = ¢;41S; + ;11 B;. Then a strategy is self-financing if the closing value of
the portfolio I1;_ at time 1 is precisely equal to V;. In symbols, the “financing
gap’ of cash that would otherwise have to be injected into the strategy,

D, =V, - ¢S — ¢ B,
must be zero.

Another way of representing this self-financing property comes from the
changes of the strategy value process AV, = V; — V;_1,

AV = ¢; AS; +9; AB; + D,.
The gap D; at time 1 is zero if and only if the change in value of the strategy

from time 7 — 1 to i is due only to changes in the stock and bond values alone.

Formally:
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Self-financing hedging strategies
Given a binomial tree model of a market with a stock S and bond B, then
(i, 1) 1s a self-financing strategy to construct a claim X if:

(1) both ¢ and v are previsible;

(1) the change in value V of the portfolio defined by the strategy obeys the
difference equation:

AV; = ¢; AS; + ¢, AB;

where AS; := S§; — S;_1 is the change in S from tick-time i — 1 to ¢,
and AB; := B; — B,_1 1s the corresponding change in B;

(i) and ¢rSt + 1By is identically equal to the claim X.

Expectation of the discounted claim under the martingale measure

The second of these slogans is that the price of any derivative within the
binomial tree model is the expectation of the discounted claim under the
measure Q which makes the discounted stock a martingale.

Option price formula (discrete case)
The value at tick-time 7 of a claam X maturing at date T is

BEq(B7'X | F).

Why? Precisely because there is a self-financing strategy, justified by the
binomial representation theorem, which requires that amount to start off and
yields the claim without risk at T'.

Uniqueness and existence of Q

And in this discrete world, we can add almost as an afterthought that for
any sensible stock process S, there will be a unique measure Q under which
B 1s,. the discounted stock, is a @-martingale.
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Conclusions

We are now finished in the discrete world, we have the general theorem
we require. Any claim on a stock implies a derivative instrument tied to
the underlying stock value at any time by a construction strategy capable of
providing arbitrage riches if any market player disobeyed it. That arbitrage-
justified value is the expectation of the discounted claim, but expectation
under just one special measure, the measure Q under which the discounted
stock is a martingale. The real measure P which S follows is irrelevant. The
construction strategy 1s self-financing and generates the claim whatever S
does.

2.4 Overture to continuous models

We can, in a heuristic way, look into the continuous world with our discrete
techniques. Without being fully rigorous yet, we could believe that a con-
tinuous model can be approximated by a discrete time model with a very
small intertick time. Indeed we can show that a natural discrete model with
constant growth rate and noise approximates a log-normal distribution under
both the original measure P and the martingale measure Q. It will even
be possible to ‘derive’ the Black—Scholes option pricing formula, though its
rigorous development must wait until the very end of the next chapter.

Model with constant stock growth and noise
The model is parameterised by the intertick time 6t. As that quantity gets
smaller, the model should ever more closely approximate a continuous-time
model. There are also three fixed and constant parameters: the noisiness o,
the stock growth rate p, and the riskless interest rate 7.

The cash bond B, has the simple form that B; = exp(rt), which does not
depend on the interval size.

The stock process follows the nodes of a recombinant tree, which moves
from value s at some particular node along the next up/down branch to the
new value

sexp(pudt +ovét) ifup,
sexp(pét —ov/6t)  if down.
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The jumps are all equally likely to be up as down, thatis p = 1/2 everywhere.
For a fixed time t, if we set n to be the number of ticks till time £, then

n =1t/6t and
2X, —
St = S()CXP ([Lt+0\/i (-—\/—FL—E)) 3

where X, is the total number of the n separate jumps which were up-jumps.
The random variable X,, has the binomial distribution with mean n/2 and
variance n/4, so that (2X,, — n)/+/n has mean zero and variance one. By
the central limit theorem, this distribution converges to that of a normal
random variable with zero mean and unit variance. So as 6t gets smaller and
n gets larger, the distribution of S; becomes log-normal, as log S; 1s normally
distributed with mean log Sy + ut and variance ¢°t.

Under the martingale measure

This is what happens under the original measure P, but what goes on with Q?
Following our formula the martingale measure probability ¢ 1s

sexp(r ét) — Sgown

Sup — Sdown

We can calculate that g is approximately equal to

i (=)

So, under @, X,, is still binomially distributed, but now has mean nq and
variance ng(l — g).

Thus (2X,, —n)/+/n has mean —v/#(u+40?—7r) /o and variance asymptoti-
cally approaching one. Again the central limit theorem gives the convergence
of this to a normal random variable with the same mean and variance ex-
actly one. The corresponding S; is still log-normally distributed with log S;
having mean log Sy + (r — $02)t and variance ¢%t. This can be written

Sy = Soexp(ovtZ + (r — sa?)t),

where Z is a normal N(0, 1) under Q. We have found the marginal distri-
bution of S; under the martingale measure Q.
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Pricing a call option
If X is the call option maturing at date T, struck at k, with X = (Sr — k)™,
then its worth at time zero is

IEQ(B;X) =Eg [(SO exp(oVTZ — 10°T) — kexp(—rT))+].

We will see in chapter three that this evaluates as

S S
S log 32 +(r+1o°)TY\ . log 2 + (r — 402)T |
ovVT ovVT

where ® is the normal distribution function ®(z) = Q(Z < z). This i1s a
preview of the Black—Scholes formula which we shall prove properly in the
next chapter.
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Chapter 3

Continuous processes

tock prices are not trees. The discrete trees of the previous chapter

are only an approximation to the way that prices actually move. In

practice, a price can change at any instant, rather than just at some
fixed tick-times when a portfolio can be calmly rebalanced. The binary
choice of a single jump ‘up’ or ‘down’ only becomes subtle as the ticks get
closer and closer, giving the tree more and ever-shorter branches. But such
trees grow too complex and we stop being able to see the wood.

We shall have to start from scratch in the continuous world. The discrete
models will guide us — the intuitions gained there will be more than useful —
but limiting arguments based on letting ét tend to zero are too dangerous
to be used rigorously. We will encounter a representation theorem which
establishes the basis of risk-free construction and again it will be martingale
measures that prime the expectation operator correctly. But processes and
measures will be harder to separate intuitively — we will need a calculus to
help us. And changes in measure will affect processes in surprising ways. We
will no longer be able to proceed in full generality — we will concentrate on
Brownian motion and its relatives. If there is one overarching principle to
this chapter it i1s that Brovsnian motion is sophisticated enough to produce
interesting models and simple enough to be tractable. Given the subtleties
of working with continuous processes, a simple calculus based on Brownian
motion will be more than enough for us.
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3.1 Continuous processes

We want randomness. With our discrete stock price model we didn’t have
any old random process. We forcibly limited ourselves to a binomial tree.
We started simply and hoped (with some justification) that complex enough
market models could be built from such humble materials. The single
binomial branching was the building block for our ‘realistic’ market. For the
continuous world we need an analogous basis — something simple and yet a
reasonable starting point for realism.

What 1s a continuous process? Three small-scale principles guide us.
Firstly, the value can change at any time and from moment to moment.
Secondly, the actual values taken can be expressed in arbitrarily fine fractions
— any real number can be taken as a value. And lastly the process changes
continuously — the value cannot make instantaneous jumps. In other words,
if the value changes from 1 to 1.05 it must have passed through, albeit quickly,
all the values in between.

At least as a starting point, we can insist that stock market indices or
prices of individual securities behave this way. Even though they move in
a ‘sharp-edged’ way, it isn’t too unrealistic to claim that they nonetheless
display continuous process behaviour.

And as far back as Bachelier in 1900, who analysed the motion of the Paris
stock exchange, people have gone further and compared the prices to one
particular continuous process — the process followed by a randomly moving
gas particle, or Brownian motion (figure 3.2).

1200 1.5
1
800
0.5
400
0
1970 1980 1990 0 02 04 06 038 1

Figure 3.1 UK FTA index, 1963-92 Figure 3.2 Brownian motion

Locally the likeness can be striking — both display the same jaggedness, and
the same similarity under scale changes — the jaggedness never smooths out
as the magnification increases. But globally, the similarity fades — figure 3.1
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doesn’t look like figure 3.2. At an intuitive level, the global structure of the
stock index is different. It grows, gets ‘noisier’ as time passes, and doesn’t go
negative. Brownian motion can'’t be the whole story.

But we only want a basis — the single binomial branching didn’t look
promising right away. We shouldn’t run ahead of ourselves. Brownian
motion will prove a remarkably effective component to build continuous
processes with — locally Brownian motion looks realistic.

Brownian motion

It was nearly a century after botanist Robert Brown first observed micro-
scopic particles zigzagging under the continuous buffeting of a gas that the
mathematical model for their movements was properly developed. The first
step to the analysis of Brownian motion is to construct a special family of
discrete binomial processes.

The random walk W,(t)
For n a positive integer, define the binomial process W, () to have:

(i) layer spacing 1/n,
(iii) up and down jumps equal and of size 1//n,

(iv) measure P, given by up and down probabilities everywhere equal to 3.

In other words, if X, X», ... is a sequence of independent binomial ran-
dom variables taking values +1 or —1 with equal probability, then the value
of W, at the ith step is defined by:

X
v

The first two steps are shown in figure 3.3. What does W, look like as n
gets large?

W (7)) =Wa (5H) +

K2
n

forall i > 1.

Instead of blowing out of control, the family portraits (figure 3.4) appear
to be settling down towards something as n increases. The moves of size
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1/4/n seem to force some kind of convergence. Can we make a formal
statement? Consider for example, the distribution of W,, at time 1: for a
particular W,,, there are n + 1 possible values that it can take, ranging from
—+/n to y/n. But the distribution always has zero mean and unit variance.
(Because W, (1) is the sum of n 1ID random variables, each with zero mean
and variance 1/n.)

time: 0 time: 1/n time: 2/1

Figure 3.3 The first two steps of the random walk W,
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Figure 3.4 Random walks of 16, 64, 256 and 1024 steps respectively

Moreover the central limit theorem gives us a limit for these binomial
distributions — as n gets large, the distribution of W, (1) tends towards the
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unit normal N(0, 1). In fact, the value of Wy, (¢) is the same as

Wa(t) = Vit (;:%TTX—) .

The distribution of the ratio in brackets tends, by the central limit theorem,
to a normal N (0, 1) random variable. And so the distribution of W,,(¢) tends
to a normal N(0, ).

There 1s a formal unity underlying the family — all the marginal distribu-
tions tend towards the same underlying normal structure.

And not just all the marginal distributions, but all the conditional marginal
distributions as well. Each random walk W,, has the property that its future
movements away from a particular position are independent of where that
position is {and indeed independent of its entire history of movements up
to that time). Additionally such a future displacement W, (s + t) — W, (s)
is binomially distributed with zero mean and variance ¢t. Thus again, the
central limit theorem gives us a constant limiting structure, and all conditional
marginals tend towards a normal distribution of the same mean and variance.

The marginals converge, the conditional marginals converge, and the
temptation 1is irresistible to say that the distributions of the processes converge
too. And indeed they do, though this isn’t the place to set up the careful
formal framework to make sense of that statement. The distribution of W,
converges, and it converges towards Brownian motion.

Formally:

Brownian motion
The process W = (W, : t 2 0) is a P-Brownian motion if and only if

(i) Wi is continuous, and Wy = 0,

(i) the value of W; is distributed, under P, as a normal random variable
N(0,1),

(ii} the increment Wy, — Wy is distributed as a normal N(0,t), under P,
and is independent of F;, the history of what the process did up to
tumne s.
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These are both necessary and sufficient conditions for the process W to
be Brownian motion. The last condition, though an exact echo of the
behaviour of the discrete precursors Wy(t), is subtle. Many processes that
have marginals N(0,¢) are not Brownian motion. In the continuous world,
Just as it was in the discrete, it is not just the marginals (conditional on the
process’ value at time zero) that count, but all the marginals conditional on
all the histories F. It will in fact be the daunting task of specifying all these
that drives us to a Brownian calculus.

Exercise 3.1 If Z is a normal N(0, 1), then the process
X, = V/tZ is continuous and is marginally distributed as a
normal N(0,t). Is X a Brownian motion?

Exercise 3.2 If W, and W, are two independent Brownian
motions and p 1s a constant between —1 and 1, then the pro-
cess Xy = pW; ++/1 — p2W, is continuous and has marginal
distributions N(0,t). Is this X a Brownian motion?

It is also worth noting just how odd Brownian motion really is. We won'’t
stop to prove them, but here is a brief peek into the bestiary:

e Although W is continuous everywhere, it is (with probability one)
differentiable nowhere.

e Brownian motion will eventually hit any and every real value no matter
how large, or how negative. It may be a million units above the axis,
but it will (with probability one) be back down again to zero, by some
later time.

¢ Once Brownian motion hits a value, it immediately hits it again infinitely
often, and then again from time to time in the future.

e [t doesn’t matter what scale you examine Brownian motion on — it
looks just the same. Brownian motion is a fractal.
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Brownian motion is often also called a Wiener process, and is a (one-
dimensional) Gaussian process.

Brownian motion as stock model

We had our misgivings about Brownian motion as a global model for stock
behaviour, but we don’t have to use it on its own. Brownian motion wanders.
It has mean zero, whereas the stock of a company normally grows at some
rate — and historically we expect prices to rise if only because of inflation.
But we can add in a drift artificially. For example the process S, = W, + put,
for some constant g reflecting nominal growth, is called Brownian motion
with drift.

And if it looks too noisy, or not noisy enough, we can scale the Brownian
motion by some factor: for example, S; = oW, + pt, for a constant noise
factor o.

How are we doing? Consider the stock market data shown in figure 3.1.
We could estimate o and p for the best fit [in this case, ¢ = 91.3 and p = 37.§]
and simulate a sample path.

800
600
400
200

5 10 15 20 25 30

Figure 3.5 Brownian motion plus drift

Not bad — the process has long-term upwards growth, as we want. But in
this particular case, we have a glitch right away. The process went negative,
which we may not want for the price of a stock of a limited liability company.

Exercise 3.3 Show that, for all values of o (o # 0), u,
and T > O there is always a positive probability that St is
negative. (Hint: consider the marginal distribution of St.)
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3.2 Stochastic calculus

We can though be more adventurous in shaping Brownian motion to our
ends. Consider for example, taking the exponential of our process:

X, = exp(cW; + pt).

Now we mirror the stock market’s long-term exponential growth (and for
good measure we start oft quietly and get noisier). Again finding a best fit
for 0 and g [0 = 0.178 and i = 0.087, a ‘noisiness’ of 17.8% and an annual
drift of 8.7%] we can simulate a sample path (figure 3.6).

800 800
400 400
1970 1980 1990 10 20 30
UK FTA index, 1963-92 Exponential Brownian motion
Figure 3.1 Figure 3.6

This process 1s, not surprisingly, well known and it is usually called ex-
ponential Brownian motion with drift, or sometimes geometric Brownian
motion with drift. It is not the only model for stocks — and indeed we will
look at others later on — but it is simple and not that bad. (Could you tell
which picture was which without the captions?) Brownian motion can prove
an effective building block.

3.2 Stochastic calculus

Shaping Brownian motion with functions may be powerful, but it brings a
dangerous complexity. Consider any smooth (differentiable) curve. Globally
it can have almost any behaviour it likes, because the condition that it is
differentiable does nothing to affect it at a large scale. Suppose we zoom in
though, pinning down a small section under a microscope. In figure 3.7, we
focus in on the point of a particular differentiable curve with z-co-ordinate
of 1.7, increasing the magnification by a factor of about ten each time.
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Continuous processes

Reading the graphs from left to right and line by line, each small box is
expanded to form the frame for the next graph. As the process continues, the
graph section becomes smoother and straighter, until eventually it is straight —
it is a small straight line.

5
2.5 2

2 2.45
15 2.4

1 2.35
0.5 2.3

2 4 6 8 10 12 1.2 1.4 1.6 1.8 2 2.2

2.33
2325 2.3165

2.32 2.3160/
2.315 2.3155

2.31 2.3150

1.68 1.7 1.72 1.74 1.76 1.696 1,698 1.7 1.702 1.704

Figure 3.7 Progressive magnification around the point 1.7

Differentiable functions, however strange their global behaviour, are at
heart built from straight line segments. Newtonian calculus is the formal
acknowledgement of this.

‘With a Newtonian construction, we could decide to build up a family of
nice functions by specifying how they are locally built up out of our building
block, the straight line. We would write the change in value of a Newtonian
function f over a time interval at ¢ of infinitesimal length df as

dft = Hy dt7

where y; is our scaling function, the slope or drift of the magnified straight
line at ¢. '
Then we could explore our universe of Newtonian functions. Consider,

for example:

(1) The equation df; = p dt, for some constant y. What is f? That s, what
does it look like? How does it behave globally? Could we draw it? If
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3.2 Stochastic calculus

we stick together straight line segments of slope u, then intuitively we
just produce a straight line of slope u. If fy, for example, was equal to
zero then we might guess (correctly) that f; could be written in more
familiar notation as f; = ut.

(2) The equation df; = tdt. Here we have a slope at time ¢ of value ¢ —
what does this look like? Simple integration comes to the rescue. If
fo = 0, then we could again pin down f; as f, = $t>. The going was
a bit harder here, but we managed it, and we can check it ourselves by
differentiation: f{ =t as we require.

What about uniqueness though? In the first example, our intuition dis-
missed the possibility of another solution, but what about here? The con-
struction metaphor (df; = tdt tells us how to build f;, and thus given a
starting place and a deterministic building plan we ought to produce just one
possible f;) suggests that f; = 12 is the unique solution and indeed we can
formalise this.

? Uniqueness of Newtonian differentials
| Two complementary forms of uniqueness operate here.

o If f, and f, are two differentiable functions agreeing at 0 (fo =
fo) and they have identical drifts (df, = df}), then the processes
are equal: f, = f; for all t. In other words, f is unique given the
drift 4, (and fo).

e Secondly, given a differentiable function f;, there is only one
drift function p; which satisfies f; = fo + fot its ds (for all £). So p
1s unique given f.

Instead of just giving the drift u. directly, we might have a problem where
the drift itself depends on the current value of the function. Specifically, if
the drift y1; equals p(fi,t), where u(x,t) is a known function, then

dfy = p{ fi, 1) dt
is called an ordinary differential equation (ODE). If there is a differentiable
function f which satisfies it (with given fy), it forms a solution. There are
plenty of OoDEs which have no solutions, and plenty more which do not
have unique solutions. (The uniqueness of the solution to an ODE cannot be
deduced just from the uniqueness of Newtonian differentials in the box.)
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(4)

Continuous processes

The equation df; = f; dt. Now things are harder, as direct integration
is not a route to the solution. We could guess — say f; = €' — and

then check by differentiation. This solution happens to be unique for
fo=1.

The equation df; = f;t~2dt. This is an example of a bad case, where
solutions need neither exist nor be unique. Given fy = 0, there are
an infinite number of solutions, namely f; = aexp(—1/t) for every
possible value of an arbitrary constant a. However, for fy # 0, there
are no solutions at all.

Perhaps our universe of Newtonian functions isn’t so benign. It is clear

that though ODEs are powerful construction tools, they are also dangerous
ones. There are plenty of ‘bad’ 0DEs which we haven’ta clue how to explore.

1.5
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Figure 3.8 ‘Zooming in’ on Brownian motion

Stochastic differentials

And if it was bad for Newtonian differentials, consider a construction proce-
dure based on Brownian motion. Zooming in on Brownian motion doesn’t

produce a straight line (figure 3.8)

As before, each box is expanded by suitable horizontal and vertical scaling

to frame the next graph. The self-similarity of Brownian motion means that
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3.2 Stochastic calculus

each new graph is also a Brownian motion, and just as noisy.

But of course this self-similarity is ideal for a building block — we could
build global Brownian motion out of lots of local Brownian motion seg-
ments. And we could build general random processes from small segments
of Brownian motion (suitably scaled). If we built using straight line segments
(suitably scaled) too, we could include Newtonian functions as well.

A stochastic process X will have both a Newtonian term based on dt and
a Brownian term, based on the infinitesimal increment of W which we will
call dW;. The Brownian term of X can have a noise factor o;, and so the
infinitesimal change of X is

Cl:Xt = 0t th + Mt dt.

As in the Newtonian case, the drift y; can depend on the time ¢. But it can
also be random and depend on values that X (or indeed W) took up until ¢
itself. And of course, so can the noisiness ¢;. Such processes, like X and o,
whose value at time ¢ can depend on the history F;, but not the future, are
called adapted to the filtration F of the Brownian motion W.

We call oy the volatility of the process X at time ¢ and g, the drifi of X at t.

Stochastic processes

What does our universe look like? As with Newtonian differentials, finding
this out entails ‘integrating’ stochastic differentials in some way. We can,
though, formally define what it is to be a (continuous) stochastic process.

This definition of stochastic process (see box) is not universal, and in par-
ticular it excludes discontinuous cases such as Poisson processes. Nevertheless
it will be quite adequate for all the models we will meet.

The technical condition that o and p must be F-previsible processes means
that they are adapted to the filtration F, and that they may have some jump
discontinuities. In terms of stochastic analysis, this defines stochastic processes
to be semimartingales whose drift term is absolutely continuous. This class
is closed under all the operations used later, and all the models considered
will lie within it.

And as it happens, we can provide a uniqueness result to mirror the classical
setup.
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Stochastic processes
A stochastic process X is a continuous process (X; : ¢ 2 0) such that X; can

be written as ,

t
Xt:X0+stdWs+/ﬂsd57
0 0

where ¢ and p are random JF-previsible processes such that fOt (02 + |ps|) ds
is finite for all times ¢ (with probability 1). The differential form of this
equation can be written

dX; = oy dW; + s dt.

Uniqueness of volatility and drift
Two complementary forms of uniqueness operate here.

e Firstly, if two processes X; and X, agree at time zero (X = Xo)
and they have identical volatility o; and drift u;, then the pro-
cesses are equal: X, = X, for all t. In other words, X is unique
given oy and p; (and Xjy).

e Secondly, given the process X, there is only one pair of volatility
ot and drift p; which satisfies X; = X + f(f o, dWs + fg Msds
(for all t). This uniqueness of o; and p; given X comes from the

Doob—Meyer decomposition of semimartingales.

In the special case when ¢ and g depend on W only through X;, such as
oy = 0(X4,t), where o(x,t) is some deterministic function, the equation

dXt = O'(Xt, t) th + IL(Xt, t) dt

is called a stochastic differential equation (SDE) for X. And it will generally
be easier to write down the SDE (if it exists) for a particular X then it is to
provide an explicit solution for the SDE. As in the Newtonian case (ODEs),
an SDE need not have a solution, and if it does it might not be unique. Usage
of the term SDE does tend to spread out from this strict definition to include
the stochastic differentials of processes whose volatility and drift depends not
only on X; and ¢, but also on other events in the history 7.
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3.3 Ito calculus

But can we recognise the world we have created, perhaps in terms of W,
the Brownian motion we have some handle on?

Partially. In the simple case, where ¢ and g are both constants, meaning
that X has constant volatility and drift, the SDE for X is

dX: = o dW, + pdt.
[t isn’t too hard to guess what the solution to this is:
Xt = O'Wt + ,LLt,

(assuming that Xy = 0). And our meagre understanding of W; and dW; at
least gives us some confidence that the differential form of oW} is o dW;. As
o and p are independent of X, the uniqueness result could form a part of a
proof that this is the only solution.

But consider the only slightly more complex SDE (echoing the Newtonian
ODE of example (3) above),

dXt = Xt(O'th + ,LLdt)

We're at sea.

3.3 Itd calculus

Intuitive integration doesn’t carry us very far. We need tools to manipulate
the differential equations, just as Newtonian calculus has the chain rule,
product rule, integration by parts, and so on.

How far could Newton carry us? Suppose we had some function f of
Brownian motion, say f(W;) = W2. Could we use a simple chain rule
to produce the stochastic differential df;? Under Newtonian rules, d(W}?)
would be 2W; dW;, which doesn’t look too implausible. But we should
check wia integration, because

i L t
if /d(Wsz):Z/ W,dW,, then szzf W, dW..
0 0 0
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How can we tackle fot W, dW,? Consider dividing up the time interval [0, ]
into a partition {0,t/n,2t/n,...,(n — 1)t/n,t} for some n. Then we could
approximate the integral with a summation over this partition, that is

¢ n--1
2| Wadw, 2 ;0 w (%) (W(“—'*;}E) - W(%)).
Now something begins to worry us. The difference term inside the brackets
is just the increment of Brownian motion from one particular partition
point to the next. By property (iii) of Brownian motion, that increment is
independent of the Brownian motion up to that point, and in particular it
is independent of the Brownian motion term W (it/n). Also the increment
has zero mean, which means that so too must the product of the increment
and W (it/n). So the summation consists of terms with zero mean, forcing it
to have zero mean itself,

But W2 has mean ¢, because of the variance structure of Brownian motion,
so 2W, dW, cannot be the differential of W2, because its integral doesn't even
have the right expectation.

What went wrong? Consider a Taylor expansion of f(W;) for some
smooth f:

df (Wy) = f/(We) dW, + 5" (W) (dW3)? + & f7 (W) (dWe)® + ..

Over-familiar with Newtonian differentials, we assumed that (dW;)? and
higher terms were zero. But as we have observed before, Brownian motion
is odd. Take (dW;)?, given the same partitioning of [0,] we just used:
{0,t/n,2t/n,... t}. We can model the integral of (dW,)? by the (hopefully
convergent) approximation

fot(dwl;)2 - i(w(%) - W(t-@g-ll))z.

But if we let Z,, ; be

then for each n, the sequence Z,, 1, Z,2,... is a set of 1ID normals N(0,1).
(Because each increment W (&) — W (%=1 is a normal N(0,t/n), inde-
pendent of the ones before it, by Brownian motion fact (iii).)
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3.3 1to calculus

We can rewrite our approximation for [(dW;)? as

N
We) =t _
[ am >3

By the weak law of large numbers (just like the strong law but only talking
about the distribution of random variables), the distribution of the right~
hand side summation converges towards the constant expectation of each
Zv?mf’ namely 1. Thus fot(cha)2 = t, or in differential form (dW;)? = dt,
We can’t ignore (dW;)?; it only looks second order because of the notation.
What about (dW;)? and so on? It turns out that they are zero. (For example,
E(|dW;|*) has size (dt)3/2, which is negligible compared with dt.) So Taylor

gives us:
df (Wy) = f'(W,) dW, + 3 f"(We)dt + 0.

The formal version of this surprising departure from Newtonian differen-
tials is the deservedly famous Itd’s formula (sometimes seen modestly as Itd’s
lemma).

1td’%s formula

If X is a stochastic process, satisfying dX; = o, dW; + pydt, and f is
a deterministic twice continuously differentiable function, then Y; :=
f(X,) is also a stochastic process and is given by

a¥, = (o0 f(X)) aW, + (waf'(Xo) + 4ot £/(X,) ) dt.

Returning to our W2, we can apply Itd with X = W and f(z) = z? and
we have

t
d(W?) = 2W,dW, +dt, or W2 =2 f W, dW, +t,
0
which at least has the right expectation.
More generally, if X is still just the Brownian motion W, then f(X) has

differential
df (W) = f/(We) dW, + L f/(Wy) dt,

59



Continuous processes

as hinted above.

@ Exercise 3.4 If X, = exp(W,), then what is d.X;?

SDE:s from processes

[t6’s most immediate use is to generate SDEs from a functional expression for a
process. Consider the exponential Brownian motion we set up in section 3.1:

X: = exp(cW; + ut).

What SDE does X follow? We know we can handle the term inside the
brackets but we have to take a stochastic differential of the exponential
function as well. With the right formulation though, we can use Itos
formula.

Suppose we took Y; to be the process eW;+put, and f to be the exponential
function f(z) = e*. Then Y; is simple enough that we can write down its
differential immediately: dY; = o dW; + pdt. But of course the X, we want
can be written as X; = f(Y%), so one application of [td’s formula gives us

dXe = o f' (V) dW, + (uf'(Y2) + 3021 (Y2)) dt.

The exponential function is particularly pleasant, as f'(V;) = f"(Y;) =
f(Y2) = X4, so we can rewrite the differential as

dX, = Xy (o dW, + (u+ Lo?) dt).

Here, the variable o is sometimes called the log-volatility of the process, because
it is the volatility of the process log Xy, and which is often abbreviated just
to volatility notwithstanding that term’s existing definition. We will also use
the name log-drift for the drift u of log X, which is different from the drift
of dX,/ X, above.

Processes from SDEs

Much like differentiation (easy, but its inverse can be impossible), using It
to convert processes to SDEs is relatively straightforward. And if that were all
we ever wanted to do there would be few problems. But it isn’t — one of
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3.3 It6 calculus

the key needs we have is to go in the opposite direction and convert SDEs to
processes. Or in other words, to solve them.

In general we cant. Most stochastic differential equations are just too
difficult to solve. But a few, rare examples can be, and just like some ODEs
they depend on an inspired guess and then a proof that the proposed solution
is an actual solution via Itd. Such a solution to an SDE is called a diffusion.

Suppose we are asked to solve the SDE
dXt = O'Xt th

We need an inspired guess — so we notice that the stochastic term (¢X¢ dW;)
from this SDE is the same as the SDE we generated via It6 in the section above.
Moreover, if we choose i to be —%02, then the drift term in the SDE would
match our SDE as well. We guess then that

X: = exp(cWy — %azt).

What does Ito tell us? That dX; 1s indeed oX; dW,, which is what we
wanted. So we have found one solution, and as it turns out, the only solution
(up to constant multiples). Soluble SDEs are scarce, and this one is special
enough to have a name: the Doléans exponential of Brownian motion.

Let’s go back then to the SDE we tripped over earlier:
dXt = Xt (O' th + [Ldt)

We could match both drift and volatility terms for this SDE and the SDE of
exp(oW; + vt) if and only if we take v to be p — %(72. So that is our guess,
that

X, = exp(oW, + (u — 3o%)t).

And again It6 confirms our intuition.

Exercise 3.5 What is the solution of dX; = X;(c dW; +
C pe dt), for p, a general bounded integrable function of time?
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The product rule

Another Newtonian law was the product rule, that d(f.g:) = fi dg: + g: dfs.
In the stochastic world, there are two (seemingly) separate cases.
In the more significant case, X; and Y; are adapted to the same Brownian

motion W, in that
dX: = o, dWy + pe dt,

in =M th + dt.
By applying Itds formula to §((X: + Y;)? — X? - Y2) = X.Y;, we can see

that
d(XtYf,) = Xt d)’t + Yt dXt + TPt dt.

The final term above is actually dX,dY; (following from (dW,)? = dt) and
again marks the difference between Newtonian and It calculus.

In the other case, X; and Y; are two stochastic processes adapted to two
different and independent Brownian motions, such as

dXy = oy AW, + py dt,
dY; = py dW, + v, dt,

where o, and p; are the respective volatilities of X and Y, u and vy are their
drifts, and W and W are two independent Brownian motions. Here

d(X:Y;) = X dY, + Yy d Xy,

just as in the Newtonian case.

At a deeper level these two stochastic cases can be reconciled by viewing X,
and Y; as both adapted to the two-dimensional Brownian motion (W;, W),
as will be explained in section 6.3.

Exercise 3.6 Show that if B, is a zero-volatility process
\ and X; is any stochastic process, then

d(BtXt) = Bt dXt + Xt dBt
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3.4 Change of measure — the C-M-G theorem

3.4 Change of measure — the C-M-G theorem

Something remains hidden from us. One of the central themes of the
previous chapter was the importance of separating process and measure. Yet
we don’t seem to mention measures in our stochastic differentials. We may
have our basic tools for manipulating stochastic processes, but they are a
manipulation of differentials of Brownian motion, not a manipulation of
measure. We haven’t actually ignored the importance of measure — W; is not
strictly a Brownian motion per se, but a Brownian motion with respect to
some measure P, a P-Brownian motion. And thus our stochastic differential
formulation describes the behaviour of the process X with respect to the
measure P that makes the W; (or of course the dW;) a Brownian motion.
But the only tool we have seen so far gives us no clue how W; let alone X,
changes as the measure changes.

As it happens, Brownian motions change in easy and pleasant ways under
changes in measure. And thus by extension through their differentials, so do
stochastic processes.

Change of measure — the Radon—Nikodym derivative

To get some intuitive feel for the effects of a change of measure, we should
go back for a while to discrete processes. Consider a simple two-step random
walk:

time: 0 time: 1 time: 2

Figure 3.9 Two-step recombinant tree

To get from time 0 to time 2, we can follow four possible paths {0, 1, 2},
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{0,1,0}, {0,-1,0} and {0,—1,-2}. Suppose we specified the probability
of taking these paths:

Table 3.1 Path probabilities

Path Probability
{0,1,2} P1D2 =
{05170} p1(1—p2) =73
{Oa_'1a0} (1 “pl)p3 =3

{0,—-1,-2} (1=p1)(1 —p3)=:m4

We could view this mapping of paths to path probabilities as encoding the
measure P. If we knew 71, 7, 73 and 74, then (as long as all of them are
strictly between O and 1) we know p1, p2 and p3. Thus if we represent our
process with a non-recombining tree, we can label each of the paths at the
end with the m-information encoding the measure.

time; O time: 1 time: 2

Figure 3.10 Tree with path probabilities marked

Now suppose we had a different measure Q with probabilities g1, ¢ and
q3. Again we can code this up with path probabilities, say 7, 75, 75 and 7.
And again if each 7’ is strictly between 0 and 1, 7, 75, 7} and 7, uniquely
decides Q.

And with this encoding, there is a very natural way of encoding the
differences between P and Q, giving some idea of how to distort P so as to
produce Q. If we form the ratio «}/m; for each path i, we write the mapping
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3.4 Change of measure — the C-M-G theorem

of paths to this ratio as %. This random variable (random because it depends
on the path) is called the Radon—Nikodym derivative of Q with respect to P up
to time 2.

time; time: 1 time: 2

Figure 3.11 Tree with Radon—Nikodym derivative marked

From % we can derive Q) from P, How? If we have P, then we have
Ty T2,y y T4, and % gives us the ratios ;/m;, so we have n{,75,..., 7).
And thus Q.

What about p; or ¢; being zero or one? Two things happen — firstly it
can become impossible to back out the p; from the 7;. Consider if p; is zero
then both 71 and n; are zero and so information about p; is lost. But then of
course, the paths corresponding to 7y and 7 are both impossible (probability
zero), so in some sense po really isn’t relevant. If we restrict ourselves to only

providing m; for possible paths, then we can recover the corresponding p’s.

The second problem has a similar flavour but is more serious. Suppose
one of the p’s is zero, but none of the ¢'s are. Then at least one 7; will be
zero when none of the 7 are. Not all the ratios 7} /7; will be well defined,
and thus %% can't exist. We could suppress those paths which had path
probability zero, but now we have lost something. Those paths may have
been P-impossible but they are Q-possible. If we throw them away, then
we have lost information about @ just where it is relevant — paths which are
Q-possible. Somehow we can’t define % if Q allows something which P
doesn’t. And of course vice versa.

This is important enough to formalise.
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Equivalence
Two measures P and Q are equivalent if they operate on the same sample space
and agree on what is possible. Formally, if 4 is any event in the sample space,

P(4) >0 < Q(4)> 0.

In other words, if 4 is possible under P then it is possible under Q, and if A
is impossible under P then it is also impossible under Q. And vice versa.

We can only meaningfully define 42 and % if P and Q are equivalent, and
then only where paths are P-possible. But of course if paths are P-impossible
then we know how Q acts on those paths — if Q is equivalent to P then they
are Q-impossible as well.

Thus two measures P and Q must be equivalent before they will have
Radon-Nikodym derivatives 48 and 4.

Expectation and %%

While we are still working with discrete processes, we should stock up on
some facts about expectation and the Radon-Nikodym derivative. One of
the reasons for defining it was the efficient coding it represented. Everything
we needed to know about Q could be extracted from P and %%.

Consider then a claim X known by time 2 on our discrete two-step
process. The claim X is a random variable, or in other words a mapping
from paths to values — we can let z; denote the value the claim takes if path
i is followed. So the expectation of X with respect to P is given by

Ep(X) =) mai,
i

where i ranges over all four possible paths. And the expectation of X with
respect to Q is

Eq(X) = Zﬂémi = Zm (:—3.131) = E]p (%%X) .

Just like X, 98 is a random variable which we can take the expectation of.
And the conversion from Q to P is pleasingly simple: Eq(X) = Ep(%%X ).
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3.4 Change of measure — the C-M-G theorem

Attractive though this is, it represents just one simple case: 92 is defined
with a particular time horizon in mind — the ends of the paths, in this case
T = 2. We specified X at this time and we only wanted an unconditioned
expectation. In formal terms, the result we derived was

Eq(Xr | o) = Ep( 22Xz | 7o),

where T is the time horizon for %g and Xt is known at time T. What about
Eq(X:|F,) for t not equal to T and s not equal to zero? We need somehow
to know 48 not just for the ends of paths but everywhere — 2 is a random
variable, but we would like a process.

Radon-Nikodym process

We can do this by letting the time horizon vary, and setting ¢; to be the
Radon=Nikodym derivative taken up to the horizon ¢t. That is, ¢; is the
Radon—-Nikodym derivative %g but only following paths up to time ¢, and
only looking at the ratio of probabilities up to that time. For instance, at
time 1, the possible paths are {0,1} and {0, -1} and the derivative ¢; has
values on them of q;/py and (1 —q1)/(1 — p1) respectively. At time zero, the
derivative process {p is just 1, as the only ‘path’ is the point {0} which has
probability 1 under both P and Q. Concretely, we can fill in {; on our tree
in terms of the p’s and ¢s (figure 3.12).

time: O time: 1  time: 2

Figure 3.12 Tree with {; process marked (5; =1 -p;, §i =1 - ¢;)

In fact there is another expression for (; as the conditional expectation of
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the T-horizon Radon—Nikodym derivative,

Ct :EP(% "Ft)a

for every ¢t less than or equal to the horizon T

Exercise 3.7 Prove that this equation holds for ¢ = 0,1, 2.
'.

We can see that the expectation with respect to P unpicks the % in just
the right way. The process (; represents just what we wanted — an idea of
the amount of change of measure so far up to time ¢ along the current path.
If we wanted to know Eg(X;) it would be Ep((;X:), where X, is a claim
known at time ¢. If we want to know Eg(X;|F;) then we need the amount
of change of measure from time s to time ¢ — which is just (;/{s. That is, the
change up to time ¢ with the change up to time s removed. In other words

E@(Xt ‘ .7-"3) = CQlEP(CtXt ' fs)-

Exercise 3.8 Prove this on the tree.
>

%
5
53"‘
gé
G

( E@(XT) E?

(n) E@xtlf) cs?fﬁn»(ctxtlf b

(d, \ mmT

where Ct is s:he pmcess ]Ep(églﬁ) ::.:.:..::. . i
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3.4 Change of measure ~ the C-M-G theorem

Change of measure — the continuous Radon—Nikodym derivative

What now? To define a measure for Brownian motion it seems we have
to be able to write down the likelihood of every possible path the process
can take, ranging across not only a continuous-valued state space but also a
continuous-valued time line. Standard probability theory gives some clue
to the technology required, if we were content merely to represent the
marginal distributions for the process at each time. Despite the continuous
nature of the state space, we know that we can express likelihoods in terms
of a probability density function.

For example, the measure P on the real numbers, corresponding to a
normal N(0, 1) random variable X, can be represented via the density fp(z),
where

In some loose sense, fp(z) represents the relative likelihood of the event
{X =z} occurring. Or, less informally the probability that X lies between
z and z + dz is approximately fp(z)dx. In exact terms, the probability that
X takes a value in some subset A of the reals is

1 1 2
]P’XEA=] TIT dx.

For example, the chance of X being in the interval [0, 1] is the integral of
the density over the interval, fol fe(z) dz, which has value 0.3413.

But marginal distributions aren’t enough — a single marginal distribution

won'’t capture the nature of the process (we can see that clearly even on a
discrete tree). Nor will all the marginal distributions for each time t. We
need nothing less than all the marginal distributions at each time ¢ conditional
on every history F, for all imes s < t. We need to capture the idea of a
likelihood of a path in the continuous case, by means of some conceptual
handle on a particular path specified for all times ¢t < 7.

One approach 1s to specify a path if not for all times before the horizon
T, then at least for some arbitrarily large yet still finite set of times {¢y =
0,t1,...,tn—1,t, = T}. Consider then, the set of paths which go through
the points {z1,...,Z,} at times {t1,...,t,}. If there were just one time ¢4
and one point 1, then we could write down the likelihood of such a path.
We could use the probability density function of W;,, fi(z), which is the
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density function of a normal N{0,t1), or

1,0 1 2
fp(x) = Bt exp (‘2’{1‘) .

And if we can do this for one time ¢;, then we can for finitely many ¢,.

All we require is the joint likelihood function f§(z1,...,z,) for the process
taking values {z1,...,z,} at times {t1,...,t,}.
S T
PI) | —— LA | A —— - -3 - =ik
x(1)f --=4 ‘\’ | ‘ l
\A | | N |
el | |
I ‘W’ e(1 t(2) VW ¢(3)

Figure 3.13 Two Brownian motions agreeing on the set {¢1, 2, t3}

Joint likelihood function for Brownian motion

If we take ty and xg to be zero, and write Agz; for z; — x;-1 and At; =
t; —t;—1, then given the third condition of Brownian motion that increments
AW, = W(t;) — W{(ti—1) are mutually independent, we can write down

" e 1 A.’Z‘,‘ 2
e g (-428)

i=1

So we can write down a likelihood function corresponding to the measure
PP for a process on a finite set of times. And in the continuous limit, we have
a handle on the measure P for a continuous process. If A is some subset of
R", then the P-probability that the random n-vector (Wy,,...,W;, ) isin A
is exactly the integral over A of the likelihood function f§.

70




3.4 Change of measure — the C-M-G theorem

Radon-Nikodym derivative — continuous version

Suppose P and Q are equivalent measures. Given a path w, for ev-
ery ordered time mesh {¢1,...,t,} (with t, = T), we define z; to be
Wi, (w), and then the derivative %g up to time T is defined to be the
limit of the likelihood ratios

aQ, \ _
dlp(w) - nl?c}o fI?(.Tl,...,.Tn),

as the mesh becomes dense in the interval [0, T7.
This continuous-time derivative %3 still satisfies the results that

0 Eq(Xr) = B2 Xr),
(il) ]EQ(Xt |-7:a) =CQ_1EP(CtXt |'7:S)a SgtST’

where (; is the process ]Ep(%%lft), and X, is any process adapted to the
history F;.

Just as the measute P can be approached through a limiting time mesh, so
can the Radon-Nikodym derivative . The event of paths agreeing with
w on the mesh, A = {w' : Wy, (w') = Wy, (w), i = 1,...,n}, gets smaller and
smaller till it is just the single point-set {w}. The Radon—Nikodym derivative
can be thought of as the limit

Q(4)

Q. . Q)
it %y,

Simple changes of measure — Brownian motion plus constant drift

We have the mechanics of change of measure but still no clue about what
change of measure does in the continuous world. Suppose, for example, we
had a P-Brownian motion W;. What does W; look like under an equivalent
measure Q — is it still recognisably Brownian motion or something quite
different?

Foresight can provide one simple example. Consider W; a P-Brownian
motion, then (out of nowhere) define Q to be a measure equivalent to P via

dQ
i exp(—vWr — 14*T),
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for some time horizon T. What does W, look like with respect to Q?

One place to start, and it is just a start, is to look at the marginal of Wr
under Q. We need to find the likelihood function of Wy with respect to Q,
or something equivalent. One useful trick is to look at moment-generating
functions:

Identifying normals
A random variable X is a normal N(u,o?) under a measure P if and

only if

Ep(exp(6X)) = exp(u + 16%07), for all real 6.

To calculate Eg{exp(§Wr)), we can use fact (i) of the Radon-Nikodym
derivative summary, which tells us that it is the same as the P-expectation
Ep (42 exp(0Wr)). This equals

B (exp(—yWr ~ §7°T +6Wr)) = exp(~ 1T+ (6 - 7)°T).

because Wr is a normal N(0,T) with respect to P.
Simplifying the algebra, we have

Eq(exp(6Wr)) = exp(—6+T + 16°T),

which is the moment-generating function of a normal N(—~7,T). Thus the
marginal distribution of Wy, under Q, is also a normal with variance T but
with mean —7',

What about W, for ¢ less than 7? The marginal distribution of Wr is what
we would expect if W; under Q were a Brownian motion plus a constant drift
—7. Of course, a lot of other process also have a marginal normal N(—~T, T)
distribution at time 7', but it would be an elegant result if the sole effect of
changing from P to Q via %3 = exp(—yWr — $7°T)) were just to punch in a
drift of —+.

And so it is. The process W, is a Brownian motion with respect to P
and Brownian motion with constant drift —y under Q. Using our two
results about %%, we can prove the three conditions for Wt = W; + ~t to be
Q-Brownian motion:

(i) W is continuous and Wy = 0;
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3.4 Change of measure — the C-M-G theorem

(i) W is a normal N(0,t) under Q;
(iii) Wiys — W, is a normal N(0,¢) independent of ;.
The first of these is true and (ii) and (iii) can be re-expressed as
1) Eg(exp(8W;)) = exp(36°t);
(i) Eq(exp(0(Wirs — Wy)) | F) = exp(36%¢).

Exercise 3.9 Show that (i1)’ and (iu1)’ are equivalent to (ii)
and (iii) respectively, and prove them using the change of

measure process (; = E]p(%% | Fe).

That both W, and W, are Brownian motion, albeit with respect to different
measures, seems paradoxical. But switching from P to Q just changes the
relative likelihood of a particular path being chosen. For example, W might
follow a path which drifts downwards for a time at a rate of about —+.
Although that path is P-unlikely, it is P-possible. Under @, on the other
hand, such a path 1s much more likely, and the chances are that is what we
see. But it still could be just improbable Brownian motion behaviour.

We can see this in the Radon-Nikodym derivative 98 which is large when
Wr is very negative, and small when Wy is closer to zero or positive. This
is just the consequence of the common sense thought that paths which end
up negative are more likely under Q (Brownian motion plus downward drift)
than they are under P (driftless Brownian motion). Correspondingly, paths
which finish near or above zero are less likely under Q than P.

Cameron—Martin—Girsanov

So this one change of measure just changed a vanilla Brownian motion into
one with drift — nothing else. And of course, drift is one of the elements of
our stochastic differential form of processes. In fact all that measure changes
on Brownian motion can do is to change the drift. All the processes that we
are interested in are representable as instantaneous differentials made up of
some amount of Brownian motion and some amount of drift. The mapping
of stochastic differentials under P to stochastic differentials under Q is both
natural and pleasing.
This is what our theorem provides.
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Cameron—Martin—Girsanov theorem

If W; is a P-Brownian motion and ~; is an F-previsible process satis-
fying the boundedness condition Ep exp (4 fOT v2 dt) < oo, then there
exists a measure Q such that

(i) Q is equivalent to P

dQ T . T )
i) — =exp| - dW, — f dit
( ) dP P ( L‘ L ‘ 2 0 K )

(iii) W, =W, + fg ~¢ ds 1s a Q-Brownian motion.

In other words, W, is a drifting Q-Brownian motion with drift —v; at
time ¢.

Within constraints, if we want to turn a P-Brownian motion W; into

a Brownian motion with some specified drift —v;, then theres a Q which
does it.

Within limits, drift is measure and measure drift.

Conversely to the theorem,

Cameron-Martin—-Girsanov converse
If W; is a P-Brownian motion, and Q is a measure equivalent to P,
then there exists an F-previsible process +; such that

t
Wt=Wt+/ ’)’gds
0

is a Q-Brownian motion. That is, W} plus drift 4, is Q-Brownian mo-
tion. Additionally the Radon-Nikodym derivative of Q with respect
to P (at time T) is exp(~— fOT v dWy — ifOT ~2 dt).

C-M-G and stochastic differentials

The C-M-G theorem applies to Brownian motion, but all our processes
are disguised Brownian motions at heart. Now we can see the rewards
of our Brownian calculus instantly — C-M-G becomes a powerful tool for
controlling the drift of any process.
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3.4 Change of measure — the C-M-G theorem

Suppose that X is a stochastic process with increment
dX; = oy dWy + g dt,

where W is a P-Brownian motion. Suppose we want to find if there is a
measure Q such that the drift of process X under Q is v, dt instead of u; dt.
As a first step, dX can be rewritten as

dX; = o (th + (“t _ ”t) dt) + v, dt.

ot

If we set v; to be (u; — v¢)/0¢, and if v then satisfies the C-M-G growth
condition (Ep exp(3 foT '7,2 dt) < oo) then indeed there is a new measure Q
such that W, .= W, + fo”(ua - v,)/0sds is 2 Q-Brownian motion.

But this means that the differential of X under Q is

dXt = ¢ th + dt,

where W is a Q-Brownian motion — which gives X the drift v, we wanted.

We can also set limits on the changes that changing to an equivalent
measure can wreak on a process. Since the change of measure can only
change the Brownian motion to a Brownian motion plus drift, the volatility
of the process must remain the same.

Examples — changes of measure

1. Let X, be the drifting Brownian process cW; + ut, where W is a P-
Brownian motion and ¢ and u are both constant. Then using C-M-G
with v, = u/o, there exists an equivalent measure Q under which
Wi = Wi + (u/o)t and W is a Q-Brownian motion up to time T. Then
X, = oW,, which is (scaled) Q-Brownian motion.

The measures also give rise to different expectations. For example,
Ep(X?) equals p?t? + o%t, but Eg(X?) = ot.

2.  Let X; be the exponential Brownian motion with SDE
dXt = Xt(a th + ﬂ/dt),

where W is P-Brownian motion. Can we change measure so that X
has the new sDE
dXt = Xt(O'th + Udt),
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for some arbitrary constant drift »?
Using C-M-G with v, = (1 — v) /o, there 1s indeed a measure Q under
which W, = W; + (¢ — v)t/o is a2 Q-Brownian motion. Then X does
have the SDE

dX; = Xy (o dW, + vdt),

where W 1s a Q-Brownian motion,

3.5 Martingale representation theorem

We can solve some SDEs with Itd; we can see how SDEs change as measure
changes. But central to answering our pricing question in chapter two was
the concept of a measure with respect to which the process was expected
to stay the same, the martingale measure for our discrete trees. The price
of derivatives turned out to be an expectation under this measure, and the
construction of this expectation even showed us the trading strategy required
to justify this price. And so it is here.
First the description again:

Martingales
A stochastic process My is a martingale with respect to a measure P if and

only if
1) Ep(|M}) < oo, forall ¢
i) Ep(M, | Fs) = M, for all s < t.

The first condition is merely a technical sweetener, it is the second that
carries the weight. A martingale measure is one which makes the expected
future value conditional on its present value and past history merely its present
value. It isn’t expected to drift upwards or downwards.

Some examples:

(1)  Trivially, the constant process S; = ¢ (for all ¢) is a martingale with
respect to any measure: Ep(S;|F;) = ¢ = S,, for all s < ¢, and for any
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measure P.

(2) Less trivially, P-Brownian motion is a P-martingale. Intuitively this
makes sense — Brownian motion doesn’t move consistently up or down,
it’s as likely to do either. But we should get into the habit of checking
this formally: we need Ep(W;|F,) = Ws. Of course we have that the
increment Wy — W, is independent of F, and distributed as a normal
N(0,t — s), so that Ep(W; — W, |F,) = 0. This yields the result, as

Ep(W|Fs) = Ep(Ws|Fs) + Ep(Wy — Wi|Fs) = W, + 0.

(3) For any claim X depending only on events up to time T, the process
N; = Ep(X|F:) is a P-martingale (assuming only the technical constraint
Ep(|X|) < 00).

Example (3) is an elegant little trick for producing martingales — and as we
shall see (and have already seen in chapter two) central to pricing derivatives.
First why? Convince yourself that N, = Ep(X|F;) is a well-defined process —
the first stage of the alchemy is the introduction of a time line into the random
variable X. Now for N; to be a P-martingale, we require Ep(/NV;[F5) = Ns,
but for this we merely need to be satisfied that

Ep(En(X|F) | %) = Ee(X | ).

That is, that conditioning firstly on information up to time ¢ and then on
information up to time s is just the same as conditioning up to time s to
begin with. This property of conditional expectation is the tower law.

Exercise 3.10 Show that the process X; = W; + ¢, where
W, is a P-Brownian motion, 1s a P-martingale if and only if
v = 0.

Representation

In chapter two, we had a binomial representation theorem — if M; and N,
are both P-martingales then they share more than just the name ~ locally
they can only differ by a scaling, by the size of the opening of each particular
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branching. We could represent changes in N; by scaled changes in the other
non-trivial P-martingale. Thus V; itself can be represented by the scaled sum
of these changes.

In the continuous world:

Martingale representation theorem

Suppose that M; is a Q-martingale process, whose volatility o, satis-
fies the additional condition that it is (with probability one) always
non-zero. Then if Ny is any other Q-martingale, there exists an F-
previsible process ¢ such that fOT ¢?0? dt < oo with probability one,
and N can be written as

t
Ne=No+ [ o,d
Further ¢ is (essentially) unique.

This is virtually identical to the earlier result, with summation replaced
by an integral. As we are getting used to, the move to a continuous process
extracts ‘a formal technical penalty. In this case, the Q-martingale’s volatility
must be positive with probability 1 — but otherwise our chapter two result
has carried across unchanged. If there is a measure Q under which M; is a
Q-martingale, then any other Q-martingale can be represented in terms of
M;. The process ¢, is simply the ratio of their respective volatilities.

Driftlessness

We need just one more tool. Thrown into the discussion of martingales
was the intuitive description of a martingale as neither drifting up or drifting
down. We have, though, a technical definition of drift via our stochastic
differential formulation. An obvious question springs to mind: are stochastic
processes with no drift term always martingales, and vice versa can martingales
always be represented as just o, dW; for some F-previsible volatility process o;?

Nearly.

One way round we can do for ourselves with the martingale representation
theorem. If a process X; is a P-martingale then with W, a P-Brownian
motion, we have an F-previsible process ¢; such that

t
Xt=X0+f¢gdW-
0
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3.5 Martingale representation theorem

This is just the integral form of the increment dX; = ¢; dW;, which has no
drift term.

The other way round is true (up to a technical constraint), but harder. For
reference:

A collector’s guide to martingales
If X is a stochastic process with volatility o (that is dX, = oy dW; +

pie dt) which satisfies the technical condition E[( fOT o? ds)ﬂ < oo, then

X is a martingale <= X is driftless (; = 0).

If the technical condition fails, a driftless process may not be a martingale.
Such processes are called local martingales.

Exponential martingales

The technical constraint can be tiresome. For example, take the (driftless)
SDE for an exponential process dX; = 0,X:dW;. The condition (in this

case, E[(ff o2X2 ds)é} < o0) is difficult to check, but for these specific
exponential examples, a better (more practical) test is:

A collector’s guide to exponential martingales
If dX: = 01 X dW, for some F-previsible process g, then

]E(exp(%fOT o2 ds)) < oo = X is a martingale.
We also note that the solution to the SDE is X; = Xq exp([; 0, dW, —

3 Jyolds).

= Exercise 3.11 If o; is a bounded function of both time and
< sample path, show that dX; = ;. X, dW; is a P-martingale,
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3.6 Construction strategies

We have the mathematical tools — It6, Cameron—Martin—Girsanov, and the
martingale representation theorem — now we need some idea of how to
hook them into a financial model. In the simplest models, Black—Scholes for
example, we’ll have a market consisting of one random security and a riskless
cash account bond; and with this comes the idea of a portfolio.

The portfolio (¢, )

A portfolio 1s a pair of processes ¢, and ¥, which describe respectively the
number of units of security and of the bond which we hold at time ¢. The
processes can take positive or negative values (we’ll allow unlimited short-
selling of the stock or bond). The security component of the portfolio ¢
should be F-previsible: depending only on information up to time ¢ but not
t itself.

There is an intuitive way to think about previsibility. If ¢ were left-
continuous (that is, ¢, tends to ¢, as s tends upwards to ¢ from below) then
¢ would be previsible. If ¢ were only right-continuous (that is, ¢, tends to
¢t only as s tends downwards to ¢ from above), then ¢ need not be.

Self=financing strategies
With the idea of a portfolio comes the idea of a strategy. The description
(¢¢,%) is a dynamic strategy detailing the amount of each component to
be held at each instant. And one particularly interesting set of strategies or
portfolios are those that are financially self~contained or self finandng.

A portfolio is self-financing if and only if the change in its value only
depends on the change of the asset prices. In the discrete framework this was
captured via a difference equation, and in the continuous case it is equivalent
to an SDE.

What SDE?

With stock price S; and bond price By, the value, V;, of a portfolio (¢¢, 1¢)
at time ¢ is given by V; = ¢:5; + ¢; B,. At the next time instant, two things
happen: the old portfolio changes value because S; and B; have changed

80




3.6 Construction strategies

price; and the old portfolio has to be adjusted to give a new portfolio as
instructed by the trading strategy (¢,v). If the cost of the adjustment is
perfectly matched by the profits or losses made by the portfolio then no extra
money is required from outside — the portfolio is self-financing.

In our discrete language, we had the difference equation

AV; = ¢; AS; + v; AB;.

In continuous time, we get a stochastic differential equation:

Self-financing property
If (¢, 1) is a portfolio with stock price S; and bond price B, then

(P¢,1¢) 1s self-financing <= dV; = ¢, dS; + ¥ dB:.

Suppose the stock price S; is given by a simple Brownian motion W; (so
S; = W, for all ¢), and the bond price B; is constant (B; = 1 for all £). What
kind of portfolios are self-financing?

(1) Suppose ¢ = ¢y = 1 for all t. If we hold a unit of stock and a unit
of bond for all time without change, then the value of the portfolio
(V; = W + 1) may fluctuate, but it will all be due to fluctuation of the
stock. Intuitively, no extra money is needed to come in to uphold the
(b4, 10¢) strategy and none comes out — this (¢, 1) portfolio ought to
be self-financing.
Checking this formally, V; = W; + 1 implies that dV; = dW; which is
the same as ¢; dS; ++ d By, as we required (remembering that dB; = 0).

(2) Suppose ¢; = 2W; and ¢y = —t — W72. Here (¢, ;) is a portfolio, ¢ is
previsible, and the value V; = ¢;5; + ¢, B, = W2 — t. By 1to’s formula,
dV; = 2W; dW; which is identical to ¢; dS; + ¥ dB; as required.

Exercise 3.12 Verify the It6 claim in (2) above (which also
shows that W2 — ¢ is a martingale).
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Surprising though it seems: holding as many units of stock as twice its
current price, though a rollercoaster strategy, is exactly offset by the stock
profits and the changing bond holding of —(t + W2). The (¢, ¢;) strategy
could (in a perfect market) be followed to our heart’s content without further
funding.

The second example should convince us that being self-financing is not an
automatic property of a portfolio. The Itd check worked, but it could easily
have failed if y; had been different — the (¢;, ¢, ) strategy would have required
injections or forced outflows of cash. Every time we claim a portfolio is self-
financing we have to turn the handle on Itd’s formula to check the SDE.

Trading strategies

Now we can define a replicating strategy for a claim:

Replicating strategy
Suppose we are in a market of a riskless bond B and a risky security S with
volatility oy, and a claim X on events up to time T
A replicating strategy for X is a self-financing portfolio (¢,) such that
o 022 dt < 0o and Vi = ¢pSp + ¥rBr = X.

Why should we care about replicating strategies? For the same reason as
we wanted them in the discrete market models. The claim X gives the value
of some derivative which we need to pay off at time T. We want a price if
there is one, as of now, given a model for S and B.

If there is a replicating strategy (¢:,%:), then the price of X at time
t must be V; = ¢S; + ¥y By, (And specifically, the price at time zero is
Vo = 6050 + YoBg.) If it were lower, a market player could buy one unit of
the derivative at time ¢ and sell ¢; units of S and ¢, units of B against it,
continuing to be short (¢, ) until time T. Because (¢, ) is self-financing
and the portfolio is worth X at time T guaranteed, the bought derivative and
sold portfolio would safely cancel at time T, and no extra money is required
between times t and T. The profit created by the mismatch at time ¢ can be
banked there and then without risk. And, as usual with arbitrage, one unit
could have been many; no risk means no fear.
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And of course if the derivative price had been higher than V;, then we
could have sold the derivative and bought the self-financing (¢, ¥) to the same
effect. Replicating strategies, if they exist, tie down the price of the claim X
not just at payoff but everywhere.

We can lay out a battle plan. We define a market model with a stock
price process complex enough to satisfy our need for realism. Then, using
whatever tools we have to hand we find replicating strategies for all useful
claims X. And if we can, we can price derivatives in the model. The rest of
the book consists of upping the stakes in complexity of models and of claims.

3.7 Black—Scholes model

We need a model to cut our teeth on. We have the tools and we've seen
the overall approach at the end of chapter two. So taking the stock model of
section 3.1, we will use the Cameron—Martin—-Girsanov theorem (section 3.4)
to change it into a martingale, and then use the martingale representation
theorem (section 3.5) to create a replicating strategy for each claim. Itd will
oil the works.

The model

Our first model = basic Black—=Scholes
We will posit the existence of a deterministic 7, 4 and ¢ such that the bond
price B, and the stock price follow

B; = exp(rt),
8y = Sy exp(cW; + pt),
where r is the riskless interest rate, ¢ is the stock volatility and p is the stock

drift. There are no transaction costs and both instruments are freely and
instantaneously tradable either long or short at the price quoted.

We need a model for the behaviour of the stock — simple enough that we

83




Continuous processes

actually can find replicating strategies but not so simple that we can’t bring
ourselves to believe in it as a model of the real world.

Following in Black and Scholes’ footsteps, our market will consist of a
riskless constant-interest rate cash bond and a risky tradable stock following
an exponential Brownian motion,

As we’ve seen in section 3.1, it 1s at least a plausible match to the real
world. And as we shall see here, it is quite hard enough to start with.

Zero interest rates

If there’s one parameter that throws up a smokescreen around a first run at
an analysis of the Black—Scholes model, it’s the interest rate r. The problems
it causes are more tedious than fatal — as we’ll see soon, the tools we have are
powerful enough to cope. But we’ll temporarily simplify things, and set r to
be zero.

So now we begin. For an arbitrary claim X, knowable by some horizon
time T, we want to see if we can find a replicating strategy { ¢z, ¢;).

Finding a replicating strategy

We shall follow a three-step process outlined in this box here.

Three steps to rephcatmn | |

i (1) Fmd a measure @ under whmh St isa mamngale
(2) Porm the process E; = EQ(X lft) 0 |
| _(3): Fmd a pre'vxslble process d)t, such that dEt gbtdSt

The tools described earlier on will be essential to do this. We shall use the
Cameron—Martin—Girsanov theorem (section 3.4) for the first step and the
martingale representation theorem (section 3.5) for the third one.

Step one

For two different reasons — firstly we need to apply the Cameron—Martin—
Girsanov theorem, and secondly we need to be able to tell if S; is a Q-
martingale for a given Q) — we want to find an SDE for S;.
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3.7 Black—Scholes model

The stock follows an exponential Brownian motion, S; = exp(cW; + ut),
so the logarithm of the stock price, ¥; = log(S;), follows a simple drifting
Brownian motion Y; = cW; + pt. Thus the SDE for Y; is easy to write down:
dY; = o dW; + udt. But, of course, Itd makes it possible to write down the
SDE for S; = exp(Y:) as

dS; = 0S8y AW, + (1 + $02)S; dt.

In order for S; to be a martingale, the first thing to do is to kill the drift in
this SDE. If we let ; be a process with constant value v = (u + 102) /0, then
the C-M-G theorem says that there is a measure Q such that W, =W, + ~t
is Q-Brownian motion. (The technical boundedness condition is satisfied
because 7; 1s constant.) Substituting in, the SDE is now

dS, = oS, dW,.

No drift term, thus S; could be a Q-martingale. The exponential martingales
box (section 3.5) contains a condition in terms of ¢ for S; to be a martingale
under Q. As ¢ is constant, the condition holds which means that S; must be
a Q-martingale. Consequently, Q is the martingale measure for S;.

Step two

Given Q, we can convert X into a process by forming E; = Eg(X|F;). This
1s, as we have already discussed in example (3) of section 3.5, a Q-martingale.

Step three

Since there is a Q, under which both E; and S; are Q-martingales, we
can invoke the martingale representation theorem. There exists a previsible
process ¢y which constructs E; = Eg(X|F;) out of S;. (To use the theorem,
we need to check that the volatility of S, is always positive, but this is true
because the volatility is just ¢S;, and both ¢ and S; are always positive.)
Formally:

i
E, = Eq(X|F,) = Eg(X) +/0 b, dS, .

or, of course, dE; = ¢;dS;. So the martingale representation theorem tells
us an important fact: given a Q that makes S; a Q-martingale with positive
volatility, dE: = ¢ dS; for some ¢;.
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Continuous processes

We need a replicating strategy (&, ¥;), and it's tempting to believe that we
have got one half of it. So we should try it, setting 1 to be the only thing it
can be, given that we want the portfolio to be worth E; for all ¢.

Replicating strategy
Our strategy is to:

e hold ¢; units of stock at time ¢ and
e hold y: = E; — ¢:5; units of the bond at time ¢.

s it self-financing? The value of the portfolio at time ¢ is
Vi = ¢S + i Be = Ex,

because the bond B is constantly equal to 1. Thus dV; = dE;, but of course
dE; = ¢; dS;, from the martingale representation theorem.

Since dB; 1s zero, we have the self-financing condition we want, namely
d'Vt = ¢t dSt + ’wt dBt

Since the terminal value of the strategy Vr is Er = X, we have a replicating
strategy for X — which means there is an arbitrage price for X at all times.
Specifically there is an arbitrage price for X at time zero — the value of the
(¢4, 4:) portfolio at time zero, which makes the price Ey, or Eg(X). In other
words, the price of the claim X is its expected value under the measure that
makes the stock process S; a martingale.

It is worth pausing to let a few surprises sink in. The first is just the fact
that there are replicating strategies for arbitrary claims. The model that we
have chosen isn'’t too unrealistic — it has the right kind of behaviour and a
healthy degree of randomness. So we might expect to fail in our search for
replicating strategies. It is after all particularly odd that despite the lack of
knowledge about the claim’s eventual value, we can nevertheless trade in the
market in such a way that we always produce it.

The second surprise, and just as important, is that the price of the derivative
has such a simple expression — the expected value of the claim. It is the easiest
thing to forget that this is not the expectation of the claim with respect to
the real measure of S;, which is the measure that makes it an exponential
Brownian motion with drift ¢ and volatility o. All that expectation could
give us would be a long-term average of the claim’s payout. And though that
could be a useful thing to know in order to judge whether punting with the
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3.7 Black—Scholes model

derivative is worthwhile in the long run, it doesn’t give a price. There is a
replicating strategy and thus an arbitrage price for the claim. And arbitrage
always wins out.

The price happens to be an expectation, but not the expectation in a
traditional statistics sense. [t could only be the expectation if quite by chance
the drift x we believe in for the stock were exactly and precisely right to
make S; a martingale in the first place (u = —%az).

The third surprise is the simplicity of the process S; under its martingale
measure. [f we actually want to crank the handle and calculate derivative
prices for a particular claim, we have to be able to calculate the expected
value of the claim under the martingale measure Q. Since the claim depends
on S;, this normally involves calculating the expected value, under Q, of
some function of the values of S; up to ¢t = 7. If S; were an unpleasant
process under Q, then this task could be unpleasant too. But S; is also an
exponential Brownian motion under Q. If we solve the SDE, then

S = exp(aWt — %azt),

and we find that S; has the same constant volatility o and a new but also
constant drift of —Jo2. So if we felt that S; was tractable under its original
measure, it is also tractable under the martingale measure.

Non-zero interest vates

Now we can bring the interest rate r back in again. What happens if r is
non-zero? We can’t just ignore it. Suppose we did, and considered a forward
contract with claim Sz — & for some price k. We already know that the %
which gives the forward contract a zero value at time zero is k = Spe"T. The
arbitrage to produce this is easy to figure out. But our rule, when r was
zero, of simply taking the expected value of the ciaim under the martingale

measure for S; cannot work. In fact,
Eg (ST — SoerT) = So(l - GTT) # 0.

Even discounting the claim won't help in this case. So our rule of finding a
measure which makes S, into a martingale only holds true when r is zero.
When r is not zero, the inexorable growth of cash gets in the way.

So we take a guess. If the growth of cash 1s annoying, simply remove it
by discounting everything. We call B; ! the discount process, and form a
discounted stock Z; = B; 1S, and a discounted claim Br 'x.
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In this discounted world, we could be forgiven for thinking that r was
zero again. So maybe our analysis will work again. Of course, this is all just
heuristic justification, and the proof is only in the doing. If we can’t find a
replicating strategy then, attractive as our guess is, it is also wrong.

Fortunately, we can. Focusing on our discounted stock process Z;, it is
not too hard to write down an SDE

dZy = Zy(oc dW, + (u — 7 + L0°) dt).

@ Exercise 3.13 Prove it.

Step one

To make Z; into a martingale, we can invoke C-M-G just as before, only
now to introduce a drift of (4 — 7 + 102)/0 to the underlying Brownian
motion. So there exists (another) QQ equivalent to the original measure P and
a Q-Brownian motion W, such that

dZ, = 0 Z; dW;.
So Z;, under Q, is driftless and a martingale.

Step two

We need a process which hits the discounted claim and is also a Q-martingale.
And, as before, conditional expectation provides it, namely by forming the
process E; = Eq(By' X | 7).

Step three

The discounted stock price Z; is a Q-martingale; and so is the conditional
expectation process of the discounted claim E;. Thus the martingale repre-
sentation theorem gives us a previsible ¢; such that dE; = ¢, dZ;.

We want to hit the real claim with amounts of the real stock, but in our
shadow discounted world we can hit the discounted claim by holding ¢,
units of the discounted stock. So just as a guess, let us try ¢; out in the real
world as well.
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3.7 Black—Scholes model

What about the bond holding? The bond holding in the discounted world
is Yy = By — ¢4 Z;, so we can try that in the real world too. Some reassurance
comes from the fact that at time T we will be holding ¢ units of the stock
and 17 units of the bond which will be worth ¢S +1¥rBpr = BrEr = X.

So our replicating strategy is to

e hold ¢; units of the stock at time ¢, and
e hold ¥; = E; — ¢+ Z; units of the bond.

Are we right? The value V; of the portfolio (¢¢,v:) is given by V; =
¢Sy + Y1 By = B, E;. Thus following exercise 3.6, we can write dV; as

dV; = B dE; + E, dB,.

But dE, is ¢;dZ; (our fact from the martingale representation theorem),
and so dV; = ¢;B;dZ; + E; dB;. A bit of rearrangement tells us that E; =
@12 + Y, and thus

dVi = By dZy + (d: 2 + ) dBy = ¢o(Br dZ;y + Zy dBy) + 1+ dB;.

But, from exercise 3.6 again, d(B,Z;) = By dZ;+ Z; dB,, and since S; = B;Z;,
we have

dV; = ¢y dS; + v dB;.
That is, (¢, %) 1s self-financing.

Self-financing strategies

A portfolio strategy (¢4, :) of holdings in a stock S; and a non-
volatile cash bond B; has value V; = ¢;5; + ¥, B; and discounted value
E. = ¢:Z; + 1, where Z is the discounted stock process Z; = B, 1g,.
Then the strategy is self-financing if either

th = ¢t dSt + 'lpt dBt&
or equivalently dE; = ¢, dZ;.

A strategy is self~financing if changes in its value are due only to changes
in the assets’ values, or equivalently if changes in its discounted value are due
only to changes in the discounted values of the assets.
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Since we know that Vr = X, then we have proved that (¢, 4¢y) is a
replicating strategy for X. Our guesses came good.

The important measure Q is not the measure which makes the stock a
martingale, but the measure that makes the discounted stock a martingale. And
the arbitrage price of the claim is the expectation under Q of the discounted
claim.

So when interest rates are non-zero, what are the new rules? They are just
discounted versions of the old rules:

Call options

We should price something. Following Black and Scholes, we’ll price a
call option — the right but not the obligation to buy a unit of stock for a
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3.7 Black—Scholes model

predetermined amount at a particular exercise date, say 7. If we let this
predetermined amount be k (in financial terms, the strike of the option),
then 1n formal notation, our claim is max(St — &, 0). Or in more convenient
notation, (Sr — k)t.

First we should find Vj, the value of the replicating strategy (and thus the
option) at time zero. Our formula tells us that this is given by

E—TTEQ ((ST - k)+) y

where Q is the martingale measure for B! S;.

But how do we find this? The first thing to notice is the simplicity of the
claim. The value (St — k) only depends on the stock price at one point in
time — namely the expiry time, T. So to find the expectation of this claim
we need only find the marginal distribution of St under Q.

And to do that, we can look at the process for S; written in terms of
the Q-Brownian motion W;. Since d(logS:) = odW; + (r — %az)dt, if
we denote the stock price at time zero, Sy, by s, we have that logS; =
logs + oW, + (r — 102)t, and thus S; = sexp (oW, + (r — 1o2)t).

So the marginal distribution for St is given by s times the exponential of
a normal with mean (r — %aZ)T and variance ¢27. Thus if we let Z be a
normal N (——%O'ZT, o?T), we can write St as s¢/Z+T) and thus the claim as
the expectation e "TE((se(Z+T) — k)*), which equals

1 /°° s T ( (x+ %aZT)Z)
—— se® —keT" Jexp | ———F5 | dz.
V22T Joglk /s)—rT( ) exp 20T
This integral can be decomposed by a change of variables into a couple of
standard cumulative normal integrals. If we use the notation ®(z) to denote

(27r)‘% ffoo exp(~1?/2) dy, the probability that a normal N(0, 1) has value
less than z, then we can calculate that Vy = V(s,T), where

' Black—Scholes formula

log ¢ +(r + %"Z)T) ke T (log% o %az)T) .

V(s,T):5<I>( I o TT

This is the Black—Scholes formula for pricing European call options. (Put
options, the right to sell a unit of stock for k, can be priced as a call less a
forward — put-call parity.)
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Exercise 3.14 Find the change of variable and thus prove
the Black—Scholes formula.

3.8 Black—Scholes in action

If a stock has a constant volatility of 18% and constant drift of 8%, with
continuously compounded interest rates constant at 6%, what is the value of
an option to buy the stock for $25 in two years time, given a current stock
price of $207

The description fits the Black-Scholes conditions. Thus using s = 20,
k=25,0=0.18, r = 0.06, and t = 2, we can calculate V, as $1.221.

Exercise 3.15 What information about the drift was re-
quired?

Price dependence

For values of the current stock price s much smaller than the exercise price
k, the value of the formula itself gets small, signifying that the option is out
of the money and unlikely to recover in time. Conversely, for values of s
much greater than k, the option loses most of its optionality, and becomes
a forward. Correspondingly the option price is approximately s — ke~ "7,

which is the current value of a stock forward struck at price k for time T'.

Time dependence
As the time to maturity T gets smaller, the chances of the price moving much
more decreases and the option value gets closer and closer to the claim value
taken at the current price, (s — k)*.

For larger times, however, the option value gets larger. An option with
almost infinite time to maturity would have value approaching s, as the cost
now of price k is almost zero. It can be seen in figure 3.14 that as the time
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3.8 Black-Scholes in action

to expiration gets closer to zero, the curve gets closer to the option shape

(s—k)t.

0.5 1 1.5 2

Figure 3.14 Option price against stock price for times 3, 1, and 0.3.
Exercise price k = $1, interest rate r = 0, volatility o = 1.

Volatility dependence

All else being equal, the option is worth more the more volatile the stock is.
At one extreme, if ¢ is very small, the option resembles a riskless bond and is
just worth (s — ke~"T)*, which is the value of the corresponding forward if
the option will be in the money and is zero otherwise. At the other extreme,
if o is very large, the option is worth s.

American options

Sometimes an option has more optionality about it than just choosing be-
tween two alternatives at the maturity date. American options are the most
well-known examples of such derivatives, giving the right to, say, purchase a
unit of stock for a strike price k at any time up to and including the expiration
date T, rather than only at that date. The buyer of the option then has to
make decisions from moment to moment to decide when and if to call the
option.

The buyer of an American call has the choice when to stop, and that
choice can only use price information up to the present moment. Such a
(random) time is called a stopping time. Following a strategy which will result
in exercising the option at the stopping time 7, the corresponding payoff is

(S —k)* at time .

If the option issuer knew in advance which stopping time the investor will
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use, the cost at time zero of hedging that payoff is
Eg(e™"™(S- — k)*).

As we do not know which 7 will be used, we have to prepare for the worst
possible case, and charge the maximum value (maximised over all possible
stopping strategies),

V() = sup EQ (e_TT(ST - k)+)

Pricing derivatives with optionality
In general, if the option purchaser has a set of options A, and receives
a payoft X, at time T, after choosing a in A, then the option issuer
should charge
Vo = sup Eg(e™""X,)
a€A

for it. If the purchaser does not exercise the option optimally, then the

issuer’s hedge will produce a surplus by date T

That hedge in full

Returning to the original European option, one thing that would be useful to
know would be the actual replicating strategy required, that is, to actually find
out how much stock would be required at each point of time to artificially
construct the derivative.

The amount of stock, ¢, comes from the martingale representation the-
orem, but unfortunately, the theorem merely states that ¢, exists. However
the martingale representation theorem, at heart, tells us that the reason that
the discounted claim can be built from the discounted stock is that, being
martingales under the same measure, one is locally just a scaled version of
the other. The process ¢; is merely the ratio of volatilities. Thus, intuitively,
if we looked at the ratio of the change in the value of the option caused
by a move in the stock price and the change in the stock price used, this
ought to be something like ¢;. And if we have a restricted enough claim
where the only input required from the filtration for pricing the claim is the
stock price at the current moment, and moreover that the functional relation
implied by this between the value of the claim and the current stock price is
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3.8 Black—Scholes in action

smooth, then we could guess that the partial derivative of the option value
with respect to the stock price is the ¢; we want.

And so it is. For the often-encountered case where the claim depends
only on the terminal value, the option value is a well-behaved function of the
current stock price. Suppose the derivative X is a function of the terminal
value of the stock price, so that X = f(Sr) for some function f(s). Then
the following is true.

B Terminal value pricing

B If the derivative X equals f(St), for some f, then in the value of the
I derivative at time ¢ is equal to V; = V(S;,1), where V(s,t) is given by
£ the formula

V(s,t) = exp(—r(T — 1)) Eq(f(Sr) | St = s)

And then the trading strategy is given by ¢, = 5(S,,1).

Why? Consider dV;, the infinitesimal change in the value of the option.
Remembering that dS; = ¢S, dW, + S, dt, then It gives us

Os b o2 ot

dVi = d(V(5;,1)) = (aSt%—Z

2
) dW; + (Tsta_v + %o 25227 W) dt.
But we also know that dV; = ¢, dS; + ¥, dB;, from the self-financing condi-
tion. And since dB; = rB,; dt we have

dV, = (05t¢t) th + (’I"Stqbt + T?[)tBt) dt.

But SDE representations are unique — so the volatility terms must match,
giving ¢, = 2. The amount of stock in the replicating portfolio at any
stage is the derivative of the option price with respect to the stock price.
Using this substitution for ¢; and the fact that V; = S;¢; + v, B;, we can
also match the drift terms of the two SDEs to get a partial differential equation

for V as

9%V oV oV
1 2 2___ —
20785 557 T8, TV 5 =0

Notoriously, this PDE, coupled with the boundary condition that V(s,T)
must equal f(s), gives another way of solving the pricing equation.
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Explicit Black—Scholes hedge

The call option is a terminal value claim, as described earlier, and so we
can find an expression for the hedge itself. The amount of stock held is the
derivative of the value function with respect to stock price. In symbols

ov log 5t + (r + $02)(T — t)

¢t=8—8(5t,T—t):¢’( T )

Because ¢ is always between zero and one, we need only ever have a bounded
long position in the stock. Also the value of the bond holding at any time is

S5y 1.2 _
Byt = —ke "TUd (log_k_ 5o )(T t)) )

oVl —1t

which, although always a borrowing, is bounded by the exercise price k.

There are two possibilities as the time approaches maturity. If the option
1s out of the money, that is the stock price is less than the exercise price, then
both the bond and the stock holding go to zero, reflecting the increasing
worthlessness of the option. Alternatively, if the price stays above the exercise
value, then the stock holding grows to one unit and the value of the bond to
—k. This combination exactly balances the now certain demand for a unit
of stock in return for cash amount k.

Example ~ hedging in continuous time

This can be seen operating in practice. Below are two possible realisations of
a stock price which starts at $10. Both are exponential Brownian motions

with volatility 20% and growth drift of 15%.

14 13

13 12

12 11

11 10

10 9
0 02 04 06 08 1 0 02 04 06 08 1
Figure 3.15a Stock price (A) Figure 3.15b Stock price (B)
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3.8 Black—Scholes in action

Let us price an option on this stock, to buy it at time T = 1 for the strike
price of k = $12, assuming interest rates are 5%. We can calculate both the
evolving worth of the option V; and the amount of stock to be held, ¢, to
hedge the contract.

In the case (A), these processes are shown in figure 3.16.

1
15 0.8
: 0.6
0.4
0.5
0.2
0 02 04 06 08 1 0 02 04 06 08 1

Figure 3.16a Option value (A) Figure 3.16b Stock hedge (A)

As time progresses, the option becomes in the money and the option
value moves like the stock price. Also the hedge gets closer and closer to
one, signifying that the option will be exercised.

In the case (B), these processes are shown in Figure 3.17.

1
0.6 0.8
0.4 0.6
0.4
0.2
0.2
0 02 04 06 08 1 0 02 04 06 08 1

Figure 3.17a Option value (B) Figure 3.17b Stock hedge (B)

This time the option 1s not exercised and both the value of it and the
hedge go to zero over time.

Exercise 3.16 A stock has current price $10 and moves as
an exponential Brownian motion with upward drift of 15%

a year (continuously compounded) and volatility of 20% a
year. Current interest rates are constant at 5%. What is the
value of an option on the stock for $12 in a year’s time?
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Exercise 3.17 For the same stock, what is the value of a
derivative which pays off $1 if the stock price 1s more than
$10 1n a year’s time?

Conclusions

Even with a respectable stochastic model for the stock, we can replicate any
claim. Not something we had any right to expect. The replicating portfolio
has a value given by the expected discounted claim, with respect to a measure
which makes the discounted stock a martingale. Moreover, changing to the
martingale measure has a remarkably simple effect on the process S; — only the
drift changes, to another constant value. The stock remains an exponential
Brownian motion; even the volatility o stays the same.

These three surprises conspire to make the result look easier to get at than
perhaps it really is. Something subtle and beautiful really is going on under
all the formalism and the result only serves to obscure it. Before we push on,
stop and admire the view.
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Chapter 4

Pricing market securities

he Black—Scholes model we have seen so far has a simple mathe-

matical side but it has an even simpler financial side. The asset we

considered was a stock which could be held without additional cost

or benefit and was freely tradable at the price quoted. Even leaving aside the

issues of transaction costs and illiquidity, not much of the financial market

is like that. Even vanilla products — foreign exchange, equities and bonds —

don’t actually fit the simple asset class we devised. Foreign exchange involves

two assets which pay interest, equities pay dividends, and bonds pay coupons.

Just retreading the same mathematics for each of these will be enough to
keep us busy. The sophistication we have to peddle now is financial.

4.1 Foreign exchange

In the foreign exchange market, like the stock market, holding the basic asset,
currency, is a risky business. The dollar value of, say, one pound sterling
varies from moment to moment just as a US stock does. And with this risk
comes demand for derivatives: claims based on the future value of one unit
of currency in terms of another.

Forwards

Consider, though, a forward transaction: a dollar investor wanting to agree
the cost in dollars of one pound at some future date 7. As with stocks, the
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replicating strategy to guarantee the forward claim is static. We buy pounds
now and sell dollars against them. But cash in both currencies attracts interest.
And just as in the simple Black—Scholes model, our cash holding wasn’t cash
but a cash bond, so our cash holdings here will be cash bonds as well.

Let’s make things concrete. Suppose the constant dollar interest rate is r,
the sterling interest rate 1s u, and Cyp dollars buy a pound now. Consider the
following static replicating strategy. At time ¢ we

—uT

e owne units of sterling cash bonds, and

e go short Coe %7 units of dollar cash bonds.

At time zero the portfolio has nil value, and at time T the sterling holding
will be one pound as required and the dollar short holding will be Cye™ =T —
the forward price we require.

T We must be careful

Contrast this with the stock forward price Spe
in extending our simple model to foreign exchange — both instruments now

make payments. And that makes a difference.

Black—Scholes currency model

There are three instruments and processes to model — two local currency cash
bonds and the exchange rate itself. Following the mathematical simplicity of
Black—Scholes, our market will be:

Black—Scholes currency model
We let B; be the dollar cash bond, D; its sterling counterpart, and C; be the
dollar worth of one pound. Then our model is

Dollar bond B; =e™,
Sterling bond D, = e*,
Exchange rate Cy = Cyexp(aWy + ut),

for some W, a P-Brownian motion and constants r, u, o and p.
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The dollar investor

The underlying finance dictates that there are two tradables available to the
dollar investor. One is uncomplicated — the dollar bond is straightforwardly
a dollar tradable much as the cash bond was in the basic account of Black—
Scholes. But the other is not.

We would like to think of the stochastic process C;, the exchange rate, as a
tradable but it isn’t. The process C; represents the dollar value of one pound
sterling, but sterling cash isn’t a tradable instrument in our market. To hold
cash naked would be to set up an arbitrage against the cash bond — to put it
another way, the existence of the sterling cash bond D; sets an interest rate
for sterling cash by arbitrage, and that rate is « not zero.

On the other hand, D; by itself isn’t a dollar tradable either — it 1s the price
of a tradable instrument, but it’s a sterling price. |

Fortunately, the product of the two S; = C;D; is a dollar tradable. The
dollar investor can hold sterling cash bonds, and the dollar value of the
holding will be given by the translation of the sterling price D; into dollars,
that is by multiplication by C;.

Translation, then, yields two processes, B; and S;, which mirror the basic
Black—Scholes set up.

. 'Three steps to rephcatmn (forelgn exchange)

- :(i) Find a measure. Q under whlch rhe sterhng bond dlscounted by the_;;;

- 3 . chl a prem51 ble process ¢>t, such that dEt qbt dZt

Step one

The dollar discounted worth of the sterling bond is
Zy = Coexp (oW, + (p+u —1)t).

Can we make this into a martingale under some new measure Q? Only
if Wy = Wy + oW+ u —~ r + $0%)t is a Q-Brownian motion, which is
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made possible as before by the Cameron—Martin—Girsanov theorem. Then,
under Q
Zy = Cyexp (aﬁft — %azt),
and thus Cy = Cyexp (Jﬁft +(r—u-— %Uz)t).

Step two

Given this Q, define the process E; to be the conditional expectation process
Eq(Bz 1 X|F,), which as noted before is a Q-martingale.

Step three

The martingale representation theorem produces an F-previsible process ¢,
linking F; with Z;, such that

t
E, :E0+/ b5 dZs.
0

Now where? We need a replicating strategy (¢y,;) detailing holdings of
our two dollar tradables S; and By, so we try

¢ holding ¢; units of sterling cash bond, and
e holding v, = E; — ¢4 Z; umts of dollar cash bond.

The dollar value of the replicating portfolio at time ¢ 1s V; = ¢45: + 4 B; =
BiE,. This portfolio is only self-financing if changes in its value are only due
to changes in the assets’ prices, that is dV; = ¢, dS; + 1, dB,, or as was shown
to be equivalent in section 3.7, if dE; = ¢+ dZ; — which is precisely what the
martingale representation theorem guarantees.

Since Vr = BrEr, and Er is the discounted claim Bx X we have a
self-financing strategy (¢, ;) which replicates our arbitrary claim X,

Option price formula (foreign exchange)
All claims have arbitrage prices and those prices are given by the port-

folio value
Vi = BEg(B;:' X | 7).

where Q is the measure under which the discounted asset Z; is a mar-

tingale.
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4.1 Foreign exchange

Example — forward contract

A sterling forward contract. At what price should we agree to trade sterling
at a future date 77 If we agree to buy a unit of sterling for an amount & of
dollars, our payoff at time T is

X =Cr— k.

Its worth at time t is V; = B;Eq(B7! X |F;) which is e="T~YEq(Cr — k| F,).
So the forward price at time zero for purchasing sterling at time 7" is k =
EQ(CT) or

F= EQ (CO CXP(UWT + (T‘ —y— %UZ)T)) — e(r—u)TCO‘

That 15, the current price for sterling discounted by a factor depending on
the difference between the interest rates of the two currencies. With this
strike, the contract’s value at time ¢ is ‘

V: = evuT(eutCt _ ertCO).

The discounted portfolio value is B, = B 'V, = e™%TZ, — e~*T(,, thus
dE; = e *T dZ,, and so the required hedge ¢; is the constant e~ "7, and v, is
the constant —e~ T Cj.

This confirms our earlier intuition.

Example — call option

A sterling call. Suppose we have a contract which allows us the option of
buying a pound at time T in the future for the price of k dollars. The dollar
payoff at time T is

X =(Cr—k)"'.
The value of the payoff at time ¢ is V; = B;Eg(B;'X|#:). Because Cr

1s log-normally distributed we can evaluate this easily using a probabilistic
result:

| Log-normal call formula
If Z 1s a normal N(0, 1) random variable, and F, & and k are con-
stants, then

:f:i loo £ + 152 log £ _ 152
d E((Fexp(2-13%)-k)") = Fo (M) —k (M) .

ag
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As the forward price F is Eg(Cr), the value of Cr can be written in the
form Fexp(6Z — 15?%), where 52 is the variance of log Cr, namely 0T, and
Z is a normal N(0, 1) under Q.

The option price at time zero is then E((Fexp(6Z — $52) — k)+), which
the theorem tells us is

Ve — =T ) Fop logi2 + 15T ko log% — %UZT
0 oT oVT ’

The hedge is

oVl —t

log £t — 40T - t)
ovVT —1 ’

b = T (log o e t))
t — )

wt = —k’e—rT(I) (

where F; is the forward sterling price at time ¢, F} = e(r~®W(T—8 (.

The sterling investor

A sterling investor sees things differently. Were we operating in pounds
we would not be wanting dollar price processes of tradable instruments but
sterling ones. The first of these is simply the sterling bond D; = e“*, which
will be our basic unit of account. There is also the inverse exchange rate
process C;"! — the worth in pounds of one dollar. This has the value

crl = C’O_1 exp(—oW; — ut),

but it is not the sterling price of a tradable instrument, any more than C; was
for the dollar investor. Our other actual sterling tradable price process is the
sterling value of the dollar bond C; ! B,.

With our two sterling tradable prices, D; and C; 'B,, we can follow again
our three-step replication programme. The sterling discounted value of the

dollar bond is
Y; = D7 1C7 1By = Cy Vexp(—oW; — (p+u —r)t).

This discounted price process Y; will be a martingale under the new measure
Q4, if
L -1 1.2
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is Q%4-Brownian motion. Then hedging will be possible as before.

Option price formula (sterling investor)
The value to the sterling investor of a sterling payoft X at time T is

U, = D Ege (D' X | F).

where Q% is the measure under which the sterling discounted asset Y;

is a martingale.

Change of numeraire

A worrying possibility now surfaces — the measures Q and Q£ are different.
Will the dollar and sterling investors disagree about the price of the same
security?

Suppose X is a dollar claim which pays off at time 7. To the dollar
investor, the claim is worth at time ¢

V, = BiEqg(Br'X | F) dollars.

To the sterling investor, the claim pays off Cr 1X pounds, rather than X
dollars, at time 7', and its sterling worth at time ¢ 1s

U; = D, Eqs (D;l(CEIX) l ft) pounds.

Do these two prices agree? That is, is the dollar worth of the sterling
valuation, CyU;, the same as the original dollar valuation V;?

The Q4-Brownian motion W{g is equal to W, —ot, so that by the converse
of the Cameron—Martin—Girsanov theorem the Radon—Nikodym derivative
of Q4 with respect to Q (up to time T) must be

dOL .

% = exp(ocWr — 30°T).
The Q-martingale associated with the Radon—Nikodym derivative, formed
by conditional expectation is

Ct = EQ(% ‘ ft) = exp(oW; — 1o°t).
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Note that ¢; is (up to a constant) the dollar discounted worth of the sterling
bond. Concretely, Co(; = Z; = B, 1, D,. Recall also (Radon—Nikodym
fact (11) of section 3.4) that for any random variable X which is known by
time T,

Eqc(X|F) = ¢ "Eq(CrX|F).

So the dollar worth of the sterling investor’s valuation is
CilU, = CyDyEqe (D7 C7'X | F) = oDy ' Eq(¢rDFICHIX | ),
which 1s (substituting in the (; expression) equal to
CUy = BEo(Br' X | 7)) = V.

Thus the payoft of X dollars at time T is worth the same to either investor at
any time beforehand. Similar calculations show that the dollar and sterling
investors’ replicating strategies for X are identical. So they agree not only on
the prices but also on the hedging strategy.

The difference of martingale measures only reflected the different numer-
aires of the two investors rather than any fundamental disagreement over
prices. Further details on the effect, or lack of it, of changing numeraires are
in section 6.4.

All investors, whatever their currency of account, will agree on the current
value of a derivative or other security.

4.2 Equities and dividends

An equity is a stock which makes periodic cash payments to the current
holder. Our previous models treated a stock as a pure asset, but they can be
modified to handle dividend payments.

It 1s simplest to begin with a dividend which is paid continuously.
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Equity model with continuous dividends

Let the stock price S; follow a Black—Scholes model, S; = Sy exp(cW; + ut)
and B; be a constant-rate cash bond B; = exp(rt). The dividend payment
made in the time interval of length dt starting at time ¢t is

55, dt,

where § 1s a constant of proportionality.

Just as with foreign exchange, our problem is that the process S; is not a
tradable asset. If we buy the stock for Sy, by the time we come to sell it at
time ¢, what we bought 1s worth not just the price of the stock itself, namely
S, but also the total accumulated dividends, which under the model will
depend on all the different values that the stock has taken up until time t.
The process S; is no longer the value of the asset as a whole, because it is not
enough.

We need to translate S; somehow, and to find a new process as we did in
foreign exchange, which involves S; but is a tradable. Consider the following
simple portfolio strategy. The portfolio starts with one unit of stock, costing
So, and at every instant when the cash dividend is paid out, that cash is
immediately used to buy a little more stock. That is, we are continuously
reinvesting the dividends in the stock. The infinitesimal payout is §.5; dt per
unit of stock, which will purchase § dt more units of stock. At time ¢, the
number of stock units held by the portfolio will be exp(ét), and the worth
of the portfolio is

Sy = So exp (oW + (1 + 8)t).

Note how the structure of the model’s assumptions made the translation
straightforward. We assumed that the dividend payments were a constant
proportion of the stock price. As a consequence it made it natural to
construct the tradable by reinvesting in the stock. If we had assumed that
the dividend stream was known in advance, independent of the stock price,
then we would have reinvested in the cash bond (for an example of this see
section 4.3 on bonds). Assumptions are all.
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Replicating strategies — equities
Our definition of a portfolio of stock and bond (¢, %) can be rewritten as a
portfolio of the reinvested stock and bond (<;1~5t, 1t), where b = e~ 5t¢,, with
value V; = ¢S, + v B; = ¢:5; + 1, B;. The advantage of the new framework
is that the self-financing equation retains the familiar form

dVy = ¢t dSt + 1) d By,

whereas in the plain stock/bond notation, this equation would need to be
modified by the dividend cash stream, becoming dV; = ¢, dS; + ¢, dB; +
¢:6S¢ dt. That is, changes in the portfolio value are due both to trading
profits and losses (the dS; and dB, terms) and also to dividend payments.

Working now with our reinvested stock, as usual we want to make the
discounted asset Z; = B 13, into a martingale. Now Z; has SDE

dZ, = Zt(ath +(,u+(5+ 20 ~7) d.’t),

so that we want a measure Q under which Wy = Wy +0~ ' (u+ 6 + 102 — r)t
1s Brownian motion. So under this martingale measure @, dZ, = 0 Z, dW,.
To construct a strategy to hedge a claim X maturing at date 7', again we
follow the simple Black—Scholes model, and use the martingale representation
theorem. That 1s, there exists a previsible process qgt such that

t
E, =Eq(Br'X | F) :EQ(B;1)()+/ ¢s dZ,.
0

The trading strategy is to hold ¢§t units of the translated asset S; and 1; =

— ¢:Z; units of the cash bond. In terms of our original securities, this
amounts to holding ¢, = e®té, units of the stock S; and the same %, units of
the bond B;.

Thus, under the martingale measure
S = Sy exp(cht +(r—6— %az)t),

which is log-normally distributed.
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Example — forward

An agreement to buy a unit of stock at time 7" for amount k has payoff
X =5r—k.
Its worth at time ¢ is
V; =Eq(e ™ T=(Sr — k) | i) = e 0T 08, — e TV,

The value of k£ which gives the contract initial nil value is the forward price
Of ST s

F= e(r_6)TSO.

The hedge is then to hold ¢, = e~ 8(T=t) units of the stock and ¥y = —ke™"™T
units of the bond at time ¢. Note the slightly surprising dynamic strategy for
the forward. Instead of simply holding a certain amount of stock until T', we
are continually buying more with the dividend income. Why? Again because
of our assumption — if the dividend payments are a known proportion of the
stochastic S;, we have no choice but to hide them in the stock itself.

Example — call option

A call struck at k, exercised at time 7" has payoff X = (Sr — k)™, and value
at time zero of Vy = Eq(e™"T(St — k)™), which equals

Vi = S . log% + %azT ko log% — %UZT
oVT ovT ’

where F is the forward price above e("~4TS;. The hedge will be to hold
e~ (T=t)®(+) units of the stock and have a negative holding of ke™"7®(-)
units of the bond. (Here ®(+) and ®(—) refer respectively to the two &
terms in the above equation.)

Again the Black—Scholes call option formula re-emerges —if the martingale
measure Q makes the process under study, S;, have a log-normal distribution,
then the theorem in section 4.1 comes into play. Knowing the forward F
and the term volatility o is enough to specify the price.
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Example — guaranteed equity profits

A contract pays off according to gains of the UK FTSE stock index S, with
a guaranteed minimum payout and a maximum payout. More precisely, it is
a five-year contract which pays out 90% times the ratio of the terminal and
initial values of FTSE. Or it pays out 130% if otherwise it would be less, or
180% if otherwise it would be more. How much is this payout worth?

Qur data are
FTSE drift p=7%

FTSE volatility o = 15%
FTSE dividend yield &= 4%
UK interest rate r = 6.5%

As FTSE is composed of 100 different stocks, their separate dividend payments
will approximate a continuously paying stream. The claim X is

X = min{max{1.3,0.957}, 1.8},

where T is 5 years and the initial FTSE value Sy is 1. This claim can be
rewritten as

X =13+ 0.9{(Sr — 1.444)% - (Sp -2)*}.

That is, X is actually the difference of two FTSE calls (plus some cash). The
forward price for St 1s

F=er=9Tg, = 1.133.
Using the above call price formula for dividend-paying stocks, we can value
these calls (per unit) at 0.0422 and 0.0067 respectively. The worth of X at
time zero is then

Vo = 1.3¢ T +0.9(0.0422 — 0.0067) = 0.9712.

Were we to have forgotten that the constituent stocks of FTSE pay dividends,
but the dividends are not reflected in the index, we would incorrectly have
valued the contract at 1.0183 — about 5% too high.
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Periodic dividends

In practice, an individual stock pays dividends at regular intervals rather than
continuously, but this presents no real problems for our basic model. Let
us assume that the times of dividend payments Ty, T, ... are known in
advance, and at each time T}, the current holder of the equity receives a
payment of a fraction § of the current stock price. The stock price must also
instantaneously decrease by the same amount — or else there would be an
arbitrage opportunity. At any time 7' = T;, then, we can assume the dividend
payout exactly equals the instantaneous decrease in the stock price.

Equity model with periodic dividends

At deterministic times 77, 15, ..., the equity pays a dividend of a fraction
of the stock price which was current just before the dividend is paid. The
stock price process itself is modelled as

S; = So(1 — &)™ exp (oW, + pt),

where n[t] = max{¢ : T; < t} is the number of dividend payments made by
time ¢. There is also a cash bond B; = exp(rt).

We face two problems. The first is the familiar one that S; is not by
itself the price of tradable asset. Translation, however, should provide a cure.
The second is more serious. Away from the times T;, S; has the usual SDE
of dS; = Sy(odW; + (1 + $0?)dt), but at those times it has discontinuous
jumps. Thus S; 1s discontinuous — it doesn’t fit our definition of a stochastic
process. Fortunately, translation cures this as well.

Consider the following trading strategy. Starting with one unit of stock,
every time the stock pays a dividend we reinvest the dividend by buying more
stock. At time ¢, we will have (1 — 6)'”[’5] units of the stock, and the value
of our portfolio will be S,, where

Sy = (1 — 6718, = Syexp(cW; + ut).

As before, S; is tradable but our arbitrage justified assumption that the div-
idend payments match the stock price jumps feeds through into making S;
continuous as well. We are back in familiar territory.
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Replicating strategy

Our trading strategy will then be ((Z)t, 1), where &, is the number of units
of S, we hold at time ¢, and ¢ 1s the amount of the cash bond B;. Such a
strategy is equivalent to holding ¢; = (1 — §)~"ltl¢, units of the actual stock
S.

The discounted value of the (&t,zpt) portfolio is E, = b¢Z; + 1, where
Z; is the discounted value of the reinvested stock price Z, = B 1G,. The
portfolio will be self-financing if dF; = b: dZ,.

As before, we want to find a Q which makes Zt into a martingale. As
dZ, = Zt(ath + (p + 102 —r) dt), this will have no drift if W, =W, +
o1+ Lo? — r)t is Q-Brownian motion. Then Z; is also a Q-martingale.

We can form the process F; = EQ(BITIXLE), where X 1s the option on
the stock which we wish to hedge.

Finally, the martingale representation theorem produces a hedging process
#; and the corresponding ¥; can be set to be E; — é.Z:. So hedging is still
possible in this case, and the value at time zero of the claim X is Eq(BZx 1x).

The stock price, under Q, is

Sy = Sp(1 — 6)n[t]ecrﬁ/t+(,~_%02)t.

Since this is log-normal, with the forward price for Sy equal to F = Sp(1 —
§)Tle™T | the Black—Scholes price for a call option struck at k is equal to

log £ + 15°T log £ — 1o2T
Vo=e TTFD | 2k — | —k® 2 :
‘ { ( ovT ovT

4.3 Bonds

A pure discount bond is a security which pays off one unit at some future
maturity time T. Were interest rates completely constant at rate r it would
have present value at time ¢ of "7 ~%. We might, however, want to consider
the effect of interest rates being stochastic — much as they are in real markets.
And with varying interest rates, uncertainty about their future values would
cause a discount bond price to move randomly as well.
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A full model of discount bonds, or for that matter coupon bonds, will
have to wait for chapter five and term structure models. The interplay of
interest rates of different maturities and the arbitrage minefield that models
have to tiptoe through is not something we want to worry about in a simple
Black~Scholes account. As a consequence we will try to take a schizophrenic
attitude to interest rates. Bond prices will vary stochastically, but the short-
term interest rate will be deterministic. In the real markets there is clearly a
link, but then it can be argued that there are links between stock or foreign
exchange prices and the cash bonds as well. Over short time horizons most
practitioners ignore these links in all three markets.

Discount bonds

The Black—Scholes model for discount bonds is:

Discount bond model
We assume a cash bond B; = exp(rt) for some positive constant r, and a
discount bond S; whose price follows

S; = Spexp(cW, + ut),

for all times ¢ less than T, some time horizon T long before the maturity
time 7 of the bond.

In formulation, this model is indistinguishable from the simple Black—
Scholes model for stocks. Thus the forward price for purchasing the bond at
time T' < 7 1s

F = Eq(ST),

where Q is the measure under which e~"tS; is a martingale. Since o>T is the
variance, under Q, of log St (o 1s the term volatility), then the price of a call
on St struck at k£ 1s

- log% + 1o2T log % — 12T
e Fo| —F— — | - kP | —F—ee— )
oVvT ovT

We have to be careful, though, with our assumption that 7" is much before
the maturity 7. Not only does the distinction between the deterministic cash
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bond and the stochastic discount bond get harder to maintain as T approaches
7, but for similar reasons it gets harder to justify a simple drift ¢ and a constant
positive . The bond promises one unit at time 7, thus its price at time 7
must be S, = 1. In a good model, the drift and volatility will conspire to
ensure this pull to par - and indeed this will happen in chapter five. Here if
we let T' = 7, we would have no such guarantee.

Bonds with coupons

Most market bonds do not just pay off one unit at maturity, but also pay oft
a series of smaller amounts ¢ at various pre-determined times 77, 1>, ..., T,
before maturity. Such coupon payments may resemble dividend payments,
but unlike the equity model, the amount of the coupon is known in advance.
Here the schizophrenia extends to the treatment of coupons before and after
the expiry date, T, of the option. The simplest model is to view coupons
that occur before time 7' as coming under the regime of the deterministic
cash bond, and coupons occurring after time T (including the redemption
payment at maturity) as following a stochastic price process.

Coupon bond model

There 1s a simple cash bond B; = exp{rt), and a coupon bond which
pays off an amount ¢ at times 77, 7%, ..., up to a horizon 7. Denoting
I(t) = min{i : t < T;} to be the sequence number of the next coupon
payment after time ¢, and j to be I(T) — 1, the total number of payments
before time T', then the price of the bond at time ¢ is then

J
S; = Z ce "(Timt) 4 Aexp(aWt + ,ut), t<T.
i:I(t)

Specifically, we model the first sort of coupon (payable at, for example,
T; < T) to be worth

ce "Mt attmet (t < Ty),

and for the sum of all the post-T" payments to evolve as an exponential
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Brownian motion
Aexp(oW, + ut), fort < T,

for constants A, o, and pu.

Again S, is discontinuous at the coupon payment times, and again we can
use a translation rather like the one used for equity dividends (section 4.2).
But because the coupon payments are known in advance, this time we
manufacture a continuous tradable asset by holding one unit of the coupon
bond and investing all the coupon payments, as they occur, in the cash bond.
The value of this asset is S;, where

J
Sy = Zcehrm‘t) + Aexp{oW; + put).

i=1

This 1s now a tradable asset with a continuous stochastic process.

Replicating strategy

We describe a portfolio as (J)t,wt), where <;§t is the amount of the asset S,
held at time ¢, and 1) is the direct holding of the cash bond B; = e"t. We let
Vi be the value of the portfolio, V; = #:5, + 1, By, and E, be its discounted
value B, = ¢ Z; + 1y, where Z, is the discounted value of the asset S;. The
portfolio is self-financing if dE; = ¢, dZ,.

As usual, we want to make Z; into a martingale by changing measure.

In fact Z; is just a constant cash sum of ) _, ce™"T:

plus an exponential
Brownian motion Aexp(ocW; + (1 — r)t). This will be a Q-martingale if
W, = Wy + 0~ Y(u+ 102 — r)t is Q-Brownian motion.

For an option X payable at time 7', the process E; = EQ(B;IXLE) can
be represented as dE; = é: dZ, for some previsible process ggt. We can set 14
to be E; — ¢1Z;, so that (@, ;) is a hedging strategy for X. The value of X
at time zero must now be Eg(B7 1 X).

Under Q, the price of the bond at time T is just
St = Aexp(oWr + (r — 10)T).

This 1s log-normally distributed, so we can follow the call formula from
section 4.1 to see that the forward price for St is ¥ = Ae™T and the value of
a call on St struck at &k is

T ra log% + 12T b log% —ig?T '
oVT oV'T
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4.4 Market price of risk

Now i1s the time to tie some loose ends together. The same pattern has been
repeating through all the examples so far — the stochastic processes we have
been using as models in this chapter have been tied to tradable quantities
only indirectly. The foreign exchange process had to be converted from a
non-tradable cash process to a tradable discount bond process. For equities,
the model process had to have dividends recombined to make it tradable.
And for bonds, the coupons had to be reinvested in the numeraire process.
Underlying all this was a tradable/non-tradable distinction — we couldn’t
use the martingale representation theorem to replicate claims until we had
something tradable to replicate with. But the distinction has so far been a
comimon sense one — can we do any better?

To some extent, yes. Some of the tradable/non-tradable distinction is
going to have to be founded on goodwill. After all whether something can
be traded or not in a free market is not a mathematical decision. But if we
decide on a particular process S; representing something truly tradable and
select an appropriate discounting process By, then we can explore the market
they create.

Martingales are tradables

Suppose that there is some measure Q under which the discounted tradable,
Zy = B 16, is a Q-martingale, what can we say about another process V;
adapted to the same filtration F; such that B, = B; 'V} is also a Q-martingale?

Firstly, the martingale representation theorem gives us that, as long as Z;
has non-zero volatility, we can find an F-previsible process ¢, such that

dE; = ¢, dZ,.

Taking our cue from all the examples so far, we could create a portfolio
(¢t, ¥r) where at time ¢ we are

¢ long ¢; of the tradable S,
e long ¢, = E; — ¢:Z,; of the tradable B;.

Then as before we can show that (¢;, ;) 1s a self-financing strategy, that
is changes in the value of the {¢;,:) portfolio are explainable in terms of
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changes in value of the tradable constituents alone. And the value of this
portfolio at time ¢ is always exactly V;.

In other words we can make V; out of S; and B;. So it seems reasonable
enough to ennoble V; with the title tradable as well. Being a Q-martingale
after discounting is enough to ensure that it can be made costlessly from trad-
ables — so it might as well be tradable itself. Of course all the derivatives that
we have been constructing out of claims have this property — Eq(B; ! X|F;)
is always a Q-martingale.

Non-martingales are non-tradables

What about the other way round? Suppose B; 'V, was not a Q-martingale.
Then from our definition of a martingale, there must be a positive probability
at some times 7" and s that Eq(By ! Vp|F,) # B 1V,. What would happen if
V; were tradable and the market stumbled into this possible filtration?

Suppose we define another process U; by simply setting U, to be the cost of
replicating the claim Vi, that is U, = B; Eq(Br 1VT|.7-}). Then the terminal
value of Ur will be equal to Vr but at time s, U, and V; will be (possibly)
different. As B; 1U, is a Q-martingale we can view U; as tradable by dint of
being able to construct it from S; and B;.

So we have two tradables, U; and V;, such that they are identical at time
T but different at some earlier time s (with positive probability). We then
have an arbitrage engine. If, say, U, were greater than V,, we could buy
unlimited amounts of V and sell unlimited amounts of U collecting the cash
up front. The V — U portfolio can be sold for nothing at time T, leaving
just the (invested) cash as a guaranteed profit. And if U, were less than V; we

would run the engine in reverse.

Thus if V; were genuinely tradable, the market formed by S;, B; and V;
would contain arbitrage opportunities — something we might want to dismiss
by fiat. To avoid arbitrage engines, then, if B; !V, were not a Q-martingale,
it had better not be tradable.

We have something akin to a definition then. Within an established
(complete) market of tradable securities, there is a straightforward way of
checking whether another process is a tradable security or not. It is tradable
if its discounted price is a martingale under the martingale measure Q, and is
not tradable if it isn't.
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Tradable securities

Given a numeraire B, and a tradable asset S;, a process V; represents a
tradable asset if and only if its discounted value B; !V} is actually a Q-
martingale, where Q is the measure under which the discounted asset,

B;!8;, is a martingale.

One way round, the process 1s just part of the ‘linear span’ of S; and B;
the other way round, there is only room for two ‘independent’ tradables in a
market defined by one-dimensional Brownian motion — any more and there
can be arbitrage.

under the martingale measure Q, S; = exp(aWt + (r —
1o2)t), with cash bond B; = exp(rt), show that

(i) X, = S? is non-tradable,

(i) X; = S; ®, where a = 2r/0?, is tradable.

@ Exercise 4.1 If S; 1s a tradable Black—Scholes stock price

Tradables and the market price of risk

The market price of risk is best introduced through a slight modification
of the simple Black—Scholes model. That model had stock price S; =
Soexp(oW; + put), and SDE

dSy = Sy (o dW; + (p + o?) dt).

We will find it convenient, however, to define price processes by means of
their SDEs, typically
dSt = St (0’ th + Mdt),

which has solution S; = Syexp(cW; + (i — 30)t). The only difference
between these two approaches is the subtraction of $¢? from the drift, which
can be thought of as just a change of notation. Both forms can be equally
used to define such geometric Brownian motions, but the SDE formulation
allows a greater general class of models to be more easily considered.

Suppose then that we have a couple of tradable risky securities S} and 57,
both in the same market — that is both are functions of the same Brownian
motion W, and both are defined via their SDEs,

dS; = Si(o; AWy +  dt), i=1,2.
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4.4 Market price of risk

Following the discussion on tradables, we want the discounted prices of S
and S? to be martingales under the same measure Q. So assuming a simple
numeraire B; = exp(rt), we have that

Wt:Wt+(“i_T)t

a;

must be a Q-Brownian motion for 7 equal to 1 and 2. But this can only
happen if the two changes of drift are the same. That is if

#i—r H2—T

o1 o2

In one of those coincidences that cause confusion, economists attach a mean-
ing to this quantity — if we interpret p as the growth rate of the tradable, r
as the growth rate of the riskless bond and o as a measure of the risk of the
asset, then

1s the rate of extra return (above the risk-free rate) per unit of risk. As such
it is often called the market price of risk.

Using this language then gives us a simple and compelling categorisation
of tradables in terms of their SDEs — all tradables in a market should have the same
market price of risk.

The general market price of risk

We can, in fact, generalise to more sophisticated one-factor models. Rigour
will have to wait until section 6.1, but for now we can observe that a general
stochastic price process S; will have SDE

dSt = St(Ut th + He dt),

where o, and p, are previsible processes.
Then defining

Mg

==

Yt

gives a time and state dependent market price of risk. Despite this variation,
the same as above will hold. All tradable securities must instantaneously have
the same market price of risk.
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The risk-neutral measure

It is worth reflecting on what we have done — we have provided justification
that to be tradable in a market defined by a stock S; and a numeraire B; 1s to
share, after discounting by B;, a martingale measure with S;. This translates
naturally in SDE terms to sharing a market price of risk — the market price of
risk 1s actually the drift change of the underlying Brownian motion given by
Cameron~Martin—Girsanov. So we have a natural means for sorting through
SDEs for tradables.

We also have a natural explanation for the market terminology of Q as the
risk-neutral measure. 1f we write the SDEs in terms of the Q-Brownian motion
Wi:

dS; = Sy(o: dWy + fie dt),
then S; is tradable if and only if its market price of risk is zero. All tradables
then have the same growth rate under Q as the cash bond, independent of
their riskiness o; — the measure Q is neutral with respect to risk.

But we should not overstretch the economic analogy — within our one-
factor market all tradables are instantaneously perfectly correlated. They share
a market price of risk not for profound economic reasons or because investors
behave with certain risk preferences but for the reason that to do otherwise
would produce a non-martingale process with a consequent opportunity for
arbitrage. The market price of risk is only a convenient algebraic form for
the change of measure from P to Q, not a new argument for using it.

Non-tradable quantities

But convenient it 1s. Let’s return to our underlying theme — dealing with
non-tradable processes. With foreign exchange, equities and bonds we had
a model for a process that had a fixed relationship to a tradable but was
itself non-tradable. Concretely, we might have a non-tradable X; which is
modelled with the stochastic differential

dX; = (o) th + [ dt,

where o, and p, are previsible processes and W; is P-Brownian motion. Here
ot and p; might be constants or constant multiples of X, but they needn’
be.

We have X; non-tradable but a deterministic function of X3, ¥; = f(X3),
is tradable. Then by 1t&’s formula, Y has differential increment

dY, = oo f'(Xs) AW, + (o f'(X1) + 307 £ (X)) dt.
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4.4 Market price of risk

As Y; 1s tradable, we can write down the market price of risk for ¥; imme-

diately. Assuming the discount rate is constant at r,

_ S (Xe) + 307 £ (Xe) - rf(Xs)
" or f'(Xt) '

Since this market price of risk is simply the change of measure from P to Q,

we can write down X'’s behaviour under Q as

rf(Xy) — 3o f"(Xy)

dX; = o, dW, +
B f1(X0)

dt.

Thus if we have claims on X, they can be priced via the normal expectation

route, using this risk-neutral SDE for X;.

(1)

Examples

If X; 1s the logarithm of a tradable asset, then f is the exponential
function f(x) = €*. In the simple case where 0; = o and p; = p are
constants (the basic Black—Scholes model), then the market price of

risk for tradables is
ptie?—r
Yt = P )

and the corresponding risk-neutral sDE for X; is

dX; = o dW, + (r— %02) dt.

 Time-dependent transforms
|| More generally, suppose interest rates follow the process 7z, X; is non-
 tradable with stochastic differential

dXt = Ot th + Hi dt,

and Y is a tradable security which is a deterministic function of X and
| time, that is Y; = f(X;,t). Then under the martingale measure Q, X
| has differental

th(Xt) t) - %atzf”(Xta t) - 8tf(Xta t)
fl(th)

dXt = O th + dt,

|| where [’ and f” are derivatives of f with respect to x, and ;f is the

derivative of f with respect to ¢.
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The price process Sy pays dividends at rate §S;. Let X; be the process
St and assume that it follows the Black—Scholes model

dX, = Xy(o dW, + pdt).

The asset ¥; = exp(ét)X; made from instantaneously reinvesting the
dividends back into the stock holding is a tradable asset. The function
f is thus chosen to be f(z,t) = ze®®. The market price of risk for

tradables 1s then

pXee® 4 6Xie® —rXpe®t  p4 -7
= o Xebt N c

and thus the risk-neutral SDE for X; becomes

dX; = Xi(odW; + (r — 8) dt).

Foreign exchange, the ‘wrong way round’. Let C; be the dollar/mark
exchange rate (worth in deutschmarks of one dollar), then the rate
Cy paid in dollars 1s non-tradable. (That is, if C; 1s equal to DM 1.45,
the process worth $1.45 is not tradable.) However the process 1/C;
is tradable, or more strictly e**/C; is a dollar tradable asset if German
interest rates are constant at rate u. If X; = C; has SDE

dXt = Xt(Ut th + Hi dt),

then the time-dependent transform of f(z,t) = e**/x tells us that its
risk-neutral SDE 1s

dX; = Xt(O't dﬁ/t + (O'tz +u - ’f‘) dt)

4.5 Quantos

British Petroleum, a UK company, has a sterling denominated stock price.

But instead of thinking of that stock price just in pounds, we could also

consider it as a pure number which could be denominated in any currency.
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Contracts like this which pay off in the ‘wrong’ currency are quantos. For
instance, if the current stock price were £5.20, we could have a derivative
that paid this price in dollars, that is $5.20. This is not the same as the worth
of the BP stock in dollars — that would depend on the exchange rate. What
we have done is a purely formal change of units, whilst leaving the actual

number unaltered.

Quantos are best described with examples. Here are three:

e a forward contract, namely receiving the BP stock price at time T as if
it were in dollars in exchange for paying a pre-agreed dollar amount;

¢ a digital contract which pays one dollar at time T if the then BP stock
price is larger than some pre-agreed strike;

e an option to receive the BP stock price less a strike price, in dollars.

In each case, a simple derivative is given the added twist of paying off
in a currency other than in which the underlying security is denominated.
And our intuition should warn us that this act of switching currency is not
a foreign exchange quibble but something more fundamental. The British
Petroleum stock price in dollars is a meaningful concept, but it is not a traded
security. The payoffs we describe involve a non-tradable quantity.

Suppose we have a simple two-factor model. We have not actually met
multi-factor models yet, but they are no more problematic than single-factor
ones if we keep our head. Rigour can be found in the multiple stock models
section (6.3). Our two random processes will be the stock price and the
exchange rate, which will be driven by two independent Brownian motions
Wi(t) and Wz(t).

For the construction, it is helpful to recall exercise 3.2: for p lying between
—1 and 1, then pWi(t) + /1 — p2W>(t) is also a Brownian motion, and it
has correlation p with the original Brownian motion Wi{(t). This is a useful
way to manufacture two Brownian motions which are correlated out of a
pair which are independent.

We suppose there exist the following constants: drifts 4 and v, positive
volatilities ¢y and o3, and a correlation p lying between —1 and 1.

Given these constants, the quanto model is:
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Quanto model
The sterling stock price S; and the value of one pound in dollars C; follow
the processes

Sy = Soexp (o1 Wi (t) + ut),
Cy = Coexp(poaWi(t) + poaWa(t) + vt),

where p is the orthogonal complement of p, namely 5 = /1 — p2.
In addition there is a dollar cash bond B; = exp(rt) and a sterling cash
bond D, = exp(ut), for some positive constant interest rates r and u.

Before we tease out the tradable instruments in dollars, note the co-
variance of S; and C;. If we write our model in vector form, the vector
random variable (log S;,logC}) is jointly-normally distributed with mean
vector (log S + ut,log Cy + vt) and covariance matrix

o1 0 t 0 o1 0\ N a% po1o2
POy po2 0 ¢ poa  po2 pPo102 05 '

That is, we have ensured a constant volatility for S; of o1, a constant volatility
for C; of o7 and a correlation between them of p.

Tradables

What are the dollar tradables? Following the intuition of the foreign exchange
section (4.1), there are three: the dollar worth of the sterling bond, CyDy;
the dollar worth of the stock, C:S;; and a dollar numeraire, the dollar cash
bond B;.

Writing down the first two of these tradables after discounting by the
third, the numeraire, we have Y; = B, lc,D, and Z; = B, YoR respectively.
Their SDEs are

dY;, = Y;(po2 dWi(t) + por dWa(t) + (v + 103 +u—r)dt),
dZ; = Zt((al + po2) dW1(t) + poa dWs(t)
+(p+ v+ Sof+ pojoa + Lo3 —r)dt).

(This can be checked using the n-factor Itd’s formula of section 6.3.)
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As in the market price of risk section, we know we want to find a change
of measure to make these martingales, or equivalently a market price of risk
that represents this change of drift. As there are two sources of risk, W1 (¢)
and W5 (t), there will be two separate prices of risk. Respectively, v (t) will
be the price of W (t)-risk and y2(t) will be the price of W»(t)-risk. In other
words the market price of risk will be a vector (71(t), y2(t)). We want to
choose these v so that the drift terms in dY; and dZ; vanish simultaneously.
Not surprisingly this means solving a pair of simultaneous equations, or
equivalently performing the matrix inversion

- -1
Ty _ po2 po2 v+ioltu—r
Y2(t) o1+ pox oz p+v+ 307+ pojoy+305—1 )
This 1s a particular case of the more general result that the multi-dimensional
market price of risk is

V=51 p—r1),

where ¥ is the assets’ volatility matrix, p is their drift vector, and 1 is the
constant vector (1,...,1). More details are in section 6.3.
Here then we have a market price of risk v = (v1(t),72(¢)), given by

,h:u+%0%+p01crz—u and 7y = v+ 303 +u—r1— porys

o1 po2
Thus under Q we can write the original processes Sy and C; as

S; = So exp(o1 W1 (t) + (u — poro2 — Joi)t),
Cy = Coexp(pa2Wi(t) + poaWa(t) + (r — u— 1o3)t).

Exercise 4.2 Verify that the measure Q which has Brow-
nian motions W;(¢) = W;(t) + f; ~vi(8)ds (i = 1,2) really is
the martingale measure for Y; and Z;.

Reassuringly the exchange rate process is as it was in section 4.1, given
that pW1(t) + pW>(t) is another Q-Brownian motion (as was proved in exer-
cise 3.2).
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But the stock price Sy 1s different from what we expected. The drift has an
extra term: —po10z2. For every value of p (except one, namely (v —r)/o102)
this stops the dollar-discounted stock price being a Q-martingale and thus
prevents the price in dollars from being tradable. And that’s precisely what
our intuition warned us. There isn’t a portfolio which is always worth a
dollar amount numerically equal to the BP stock price.

Pricing
Since we have a measure @, under which the dollar tradables are martingales,
we can price up our quanto options.

Forward

To price the forward contract, it helps to re-express the stock price at date
T as
St = exp(—po102T)F exp(o1VTZ — %O’%T),

where F is the local currency forward price of Sr, F = Spe¥7, and Z is a
normal N(0, 1) random variable under Q.
Then the value of the forward at time zero in dollars 1s

Vo =e "TEg(St — k) = e " (exp(—po102T)F — k).

For this to be on market, that is to have a value of zero, we must set k£ to
be Fexp(—po102T). This is not the same as the simple forward price F
for sterling purchase. As oy and o, are both positive, it is clear that this
quanto forward price is greater than the simple forward price if and only if
the correlation between the stock and the exchange rate is negative.

This actually makes some sense. Suppose we assumed that the quanto
forward price was actually the same as the simple forward price F, then we
could construct the following portfolio at time zero: by going

e long Cpexp((r — u)T) units of the quanto forward struck at F,
o short one unit of the simple sterling forward also struck at F'

If our assumption about the quanto forward price also being F were
correct then this portfolio would be costless at time zero. At time T', this
static replicating strategy would yield (in dollars)

Coexp((r—uw)T)(St—F)—Cr(Sr—F) = (Coexp((r—uw)T) — Cr) (ST — F).
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Noting that Cyexp((r — u)T) is the forward FX rate for Cr, consider the
effect of negative correlation. If the stock price ends up above its forward and
the FX rate is below its forward, then the value of this portfolio is positive.
And if the stock price ends up below F and the FX rate is above its forward,
then the value is also positive.

Negative correlation makes these win-win situations more likely — perfect
negative correlation makes them inevitable. If the quanto forward price
really were F under these circumstances it wouldn’t be hard to construct an
arbitrage. For negative p the quanto forward must be greater than F'.

Digital
Our digital contract, I(Sr > k) in dollars, has price Vp = e "7TQ(Sr > k),
or if we write Fg = F exp(—poi02T) the quanto forward price, then

F,
Vo=eTT% (log_’? - %U%T) .

0’1\/T

Again the surprise of the exp(—po02T) term. And in a ‘cleaner’ option.
Surely the event of Sr being greater than k is independent of whether the
option is denominated in sterling or dollars. Indeed it is, but again replicating
strategies, not expectation under [P, price options. And replication involves
the exchange rate, which 1s correlated with the stock price.

Call option

Finally, we can compute the option price of e "TEq((S1 — k)*) as

F F
Vo= e ( Fos log =2 + 07T 1o log =2 — }o3T .
o vT oVT

Perhaps not surprisingly for a log-normal model, this is just the original

Black—Scholes formula with the quanto forward.

Exercise 4.3 Suppose everything remains the same, except

‘ﬁ that the stock S; is the price in yen of N'TT, a Japanese stock,
C} is the dollar/yen exchange rate (the worth in yen of one
dollar), and p1is their correlation. What is the one difference,
between the sterling and yen cases, in the expression for the
quanto forward price?
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Chapter 5
Interest rates

ime is money. A dollar today is better than a dollar tomorrow. And

a dollar tomorrow is better than a dollar next year. But just how

much is that time worth — is every day worth the same or will the
price of money change from time to time?

The interest rate market is where the price of money is set — how much
does it cost to have money tomorrow, money in a year, money in ten years?
Previously we made the modelling assumption that the cost of money is
constant, but this isn’t actually so. The price of money over a term depends
not only on the length of the term, but also on the moment-to~moment
random fluctuations of the interest rate market. In this way, money behaves
just like a stock with a noisy price driven by a Brownian motion.

The uncertainty of the market opens up the possibility of derivative in-
struments based around the future value of money. Bonds, options on bonds,
interest rate swaps, exotic contracts on the time value of different curren-
cies, are all derived from basic interest-rate securities, just as stock options
are derived from stocks in the market. In nominal cash terms, the market
for such interest-rate derivatives far outstrips that for stock market products.
Fortunately we shall still be able to calculate the prices of these contracts on
exactly the same risk~free hedging basis as before.
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5.1 The interest rate market

5.1 The interest rate market

The most basic interest rate contract is an agreement to pay some money
now in exchange for a promise of receiving a (usually) larger sum later. In
general, the worth of such a contract will depend on factors other than just
the time value of money, such as the credibility of the promisor and the
perceived legality of the promise. Matters such as creditworthiness and the
like are not our concern here, and it 1s for the bond market, not the interest
rate market, to price them. We are solely concerned with the time value of
money for default-free borrowing.

This basic contract only requires two numbers to describe it — its length,
or maturity, which records when we are to receive the later payment, and
the ratio of the size of that payment to our initial payment. We can call the
maturity date on which we are paid T, and the fraction of the final payment
which 1s the initial, P(0,T). In other words, one dollar at time 7' can be
bought at time zero for P(0,T) dollars.

Discount bonds

But we can also regard the promise of a dollar as an asset, which will have
some worth at time t before 7. This asset is called a discount bond, and the
price P(0,T) is its price at time zero. But it can have a different price at any
other time ¢ up to maturity 7', call it, say, P(t,T). This price P(t,T), the
value at time ¢ of receiving a dollar at time 7, is a process in time — the price
process of a tradable security.

For any one maturity T, the situation is much like the stock market in
that here we have a tradable asset which has a stochastic price process. We
feel we should be able to model its behaviour, and to price options on this
T-bond by trading in it to hedge them. (The only difference is the technical
point that the bond evolves towards a known value — at time T the bond is
worth exactly one dollar, that is P(T,T) = 1. Stocks don’t do things like
that, but it won't turn out to be a problem.)

But we haven’t got just one maturity. We could have written the contract
for any one of the unlimited number of possible maturity dates. This matters
because the bonds, although different, will be correlated. The ten-year bond,
say, and the nine-year bond are going to move in very similar ways in the
short term. Each bond cannot just be treated in isolation as if it were a stock.
This is the real challenge of the interest rate market: the basic discount bonds
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are parameterised by two time indices, which determine both the start of the
contract and its end. Bond prices are thus a function of two time variables,
rather than just one, as stocks were.

The bond price graph is actually a two-dimensional surface lying in three-
dimensional space, which we can explore by taking two~dimensional graphi-
cal sections through it. Illustrated are sections along the lines ¢ = 0 (figure 5.1)
and T' = 10 (tigure 5.2).

Bond price Bond price
1 1
0.6 0.6
0.4 0.4
0.2 0.2
turi i
0 2 4 6 8 qorannw 0 2 4 6 8 107

Fig. 5.1 Bond prices now  Fig. 5.2 Price of 10-year bond vs time

Figure 5.1 1s not the price process of an asset, but a graph of the current price
of a whole spectrum of different assets (the bonds of different maturities).
This reflects the current time value of money, quantifying exactly how much
better it is to have cash now rather than later. Generally the more distant the
payment maturity date, the less the current worth of the bond. Figure 5.2 is
the price of one particular asset (the ten-year discount bond). Now instead of
a smooth graph, we have a noisy stochastic process, up until it hits the value
one at its maturity time. The start point of this graph is the end point of
figure 5.1, being the common value P(0, 10), or the worth now of receiving
a dollar in ten years’ time.

Yields

The picture in figure 5.1 is not particularly sensitive to what the market is
doing. Other than saying now is better than later, it doesn’t tell us very
much on quick inspection. A more informative measure of the market is an
indication of the implied average interest rate offered by a bond. If interest
rates were constant at rate r, the price of the T-bond at time ¢ would be
e~"(T=t) In this particular case, r can be recovered from the price P(t,T)
via the formula r = —log P(¢,T) /(T — t).
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Interest rates are not constant, but that doesn’t stop us viewing this trans-
lation as potentially useful. The rate we derive, R(t,T), is called the yield,
and the mapping from price to yield is one-to-one for ¢ less than 7' — no

information is lost.

Yield
Given a discount bond price P(t,T') at time t, the yield R(t,T) is given by

_log P(t,T)

R@,T) = 52

Thus for any given discount bond price curve, we can produce a yield
curve; that is, a graph of R(t,T) against T for some fixed ¢t.

Yield % Yield %
5/// 12 \
4
3 8
2 4
1
turi turi
0 2 4 6 8 qommy Oy gy

Figure 5.3 Yield curve att =0 Figure 5.4 Yield curve att =4

While the discount bond price curve contains exactly the same informa-
tion as the yield curve, the translation is friendlier to the eye. Long dated
bonds always have lower prices, so the downwards slope of the price curve
is inevitable, thus redundant. Yield curves, on the other hand, can be in-
creasing or decreasing functions of T, revealing the average return of bonds
stripped of the crude effects of maturity — the term structure of the market.

The difference in yields at different maturities reflects market beliefs about
future interest rates. If there is a possibility that rates might be higher in
the future, long-term loans will have to charge a higher rate than short-
term ones. Typically the yield does increase with maturity, due to increased
uncertainty about far-distant interest rates, but if current rates are high and
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expected to fall, the yield curve can become ‘inverted’ and long bond yields
will be less than short bonds (figure 5.4). A good model should be able to
cope with both these possibilities.

Instantaneous rate

But what is the price of money now? The yield curve gives us an idea of
the rate of borrowing for each term length, but it would be convenient if
we could summarise the current cost of borrowing in a single number. What
we can do is look at the current rate for instantaneous borrowing. That is,
borrowing which is paid back (nearly) instantly. If at time ¢ we borrow over
the period from ¢ to ¢t + At, where At is a small time increment, the rate we
get is the yield R(t,t + At):

log P(t,t + At)
- At '
For ever smaller time increments this value more closely approximates to
R(t,t), which i1s the left-most point of the yield curve at time t. We call
this value the instantaneous rate, or short rate, ¢, which is given by both the

R(t,t + At) =

expressions
re = R(t, 1),
and 1, = ——Q—logP(t t).
or ’
The instantaneous rate is just a process in time, free of any other parameters.
Figure 5.5 shows an example short rate over ten years, corresponding to the
evolution of the 10-year bond in figure 5.2.

Short rate %
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time
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Figure 5.5 Instantaneous rate

‘We can sometimes see an interaction between the short rate and the bond
prices if they are correlated. In one instance, bond prices might be lower
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when the short rate is higher, which can be seen in this example around the
4 year and 8 year marks, when the short rate gets high and the bond price
dips. Interestingly though, the high short rate at ¢ = 4 even exceeds the
increased yields on longer bonds, giving an inverted curve (figure 5.4).

The instantaneous rate 1s not only an important process in the interest rate
market, but many models are based exclusively on its behaviour, with all the
other bonds extrapolated from it.

Forwards

The short-rate process, 1, is not a one-to-one mapping from the discount
price curve P(t,T). The translation also entails a loss of information. Just
giving r; with no extra prescription on how bond prices can move will
not in general be enough to recover P(t,T'). Yet the instantaneous rate is
convenient to work with. What we require 1s a natural extension of r, which
brings back the one-to-one mapping to the prices P(t,T) and the yields
R(t,T), yet still preserves the idea of instantaneity.

Consider forward contracts, that is agreeing, at time ¢, to make a payment
at a later date 77 and receive a payment in return at an even later date 5.
We are really just striking a forward on the T>-bond. But what forward price
should we pay?

There is a way of replicating this contract by, at time ¢, buying a T>~-bond
and selling a quantity, say & units, of the T7-bond. This deal has initial cost
P(t,T») — kP(t,T1) at time t, and will require us to make a payment of k at
time 77, and will give us a payment of one dollar at time 7. To give the
contract nil initial value, we must set k to be

P(t, T3)
k= —"—<.
P(t, 1)
This k must be, or face arbitrage, the forward price of purchasing the 7>-bond

at time Ty. The corresponding (forward) yield is then

_log P(t,T5) —log P(t,T1)
T, -1 '

Were we to choose T7 and T, very close together, say 7y =T and T =
T + At, then as the increment At became smaller this would converge to a
forward rate for instantaneous borrowing,

f,T) = _5% log P(t,T).

133



Interest rates

This rate, called simply the forward rate, is the forward price of instantaneous
borrowing at time 7. As we might expect, the ‘forward’ rate for borrowing
now, at time T' = t, is exactly the current instantaneous rate, that is

f(t,t) =Tt.

But unlike r, given the forward rates f(¢,T") we can recover the prices P(¢,T)
and the yields R(t,T). The translation f(¢,T) for our particular example is
shown in figure 5.6.

Superficially, the forward rate curve resembles the bond yield curve (fig-
ure 5.3). Indeed the yield curve and the forward curve agree at their leftmost
point, the instantaneous rate, but the other points of the two curves will
generally be different. But the formula for R(¢,T') can be differentiated and
rearranged to show that

f(t,T)=R(tT)+ (T - t)g—?(t,T).

This tells us that the forward rate curve is higher than the yield curve, if the
yield curve is increasing, and lower than it if the yield curve is inverted.

Forward rate %

"

— DN W

maturi
0 2 4 6 0 v

Figure 5.6 Forward rate curve at time t = 0

As a function of time rather than maturity the forward rate will not be so
smooth, but will start with some initial value f(0,T') and evolve as a stochastic
process, finishing with the value rr at time 7.
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5.2 A simple model

Summary
We have a market of default-free zero coupon discount bonds. The price at
time ¢t of the T-bond which pays off one dollar at time T is P(¢,T). The
average vield of the bond over its remaining lifetime is R(¢,T'), and the price
now of instantaneous borrowing at time T is the forward rate f(¢,7). The

price of instantaneous spot borrowing is r, = R(t,t) = f(t, ).

Both of these associated families of rates, R(t,T") and f(¢,T"), contain all
the original price information which can be recovered. Explicitly

In other words, for modelling purposes we can choose to specify the
behaviour of only any one of these three, and the other two will follow
automatically.

5.2 A simple model

A concrete example is illuminating. The secret of this chapter is that we can
tackle interest rate models in exactly the same way as stock models. The It6
manipulations are harder but they are not significant for the story — just as
in Black=Scholes, the real work is carried by the martingale representation
theorem. In Black—Scholes, there were only two canonical tradables (the
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stock and the bond), but there are now an infinite number of underlying
discount bonds. To pick just two of these tradables to work with would seem
to favour thaf pair over the rest, but such worries will prove illusory. All the
tradables will still turn out to be martingales under the risk-neutral measure,
which itself is independent of the apparent ‘choice’ of instruments to work
with.

Simple interest rate model
Given an initial T-integrable forward rate curve f(0,T), the forward curve

evolves as:
dif(t,T) = 0 dW; + a(t,T) dt,

for some constant volatility o and drift «, a bounded deterministic function

of time and maturity.

We have set the market up not with an SDE for the price of any asset, but
with the SDE for the forward rate. However as chapter four has shown, as
long as we are an It step away from the price of something, this doesn’t have
to pose a problem.

The forward rate itself is

fit,T) =W, + f(0,T) +/O a(s, T) ds.

Thus the forward rate is normally distributed. Moreover the forward rates
at different maturities are perfectly correlated in their movements as the
difference between any two of them, f(t,T) — f(t, S), is purely deterministic.
There is only one source of randomness, the Brownian motion W;, and that
1 a process over time, not over maturity.

Tradable securities

Tradables may only be an [t step away, but what are they? One is obvious —
we want a numeraire. Though chapter six will show the choice of numeraire
doesn’t really matter, there is a canonical candidate — the cash bond formed
by the instantaneous rate ry. That is, By given by

dBt - TtBt dt, BO =1.
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5.2 A simple model

Since r; is given by f(¢,1), we can write down its integral equation easily
enough as

t
rt:aWt+f(O,t)+[ a(s,t)ds
0

[Technical trap: the SDE for r; 1s not just the SDE for f(t,T) ‘evaluated’
at T = t. Itd tells us it is actually dry = d,f(¢,t) + g{—,(t, t).] Unlike
the basic stock models, this rate is not constant but rather is a random
process, and it is normally distributed, which admits the possibility of it
being negative sometimes. Later we will show models which overcome this,
but for the moment we’ll pay this price for simplicity. Now for the cash
bond, B; = exp( fg s ds), which has the slightly daunting expression

t ¢ t pt
B, = exp (0’/ W, ds+/ f(0yu) du—}—f f (s, u) duds).
0 0 0 Js

This will be our tradable numeraire.

What about another tradable? Here, as mentioned earlier, there’s an
embarrassment of tradables, but let’s pick one. Fixing T', we have the price
of the T-maturity bond P(t,T) given by P(t,T) = exp(— ftT f(t,u)du) or

Pt,T)=exp—{c(T —t)W; + /f(Oudu+f/ sududs

Replicating strategies
Suppose then we wanted to replicate some claim X at a time horizon S less
than T (so that the T-maturity bond doesn’t vanish on us). In chapters two,
three and four we had a three-stage replicating strategy, so at least a first guess
would be to follow it here as well:

(1, T 5113 a martmgale

;.
5‘3

' ':':::'i*)ie pmcess_qﬁt, such l -
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First we tackle the complicated-looking discounted bond price process
Z, = B7P(,T):

t T t pT
Zy = exp — (O'(T—t)Wt+U/ W ds+f (0, u) du+/ ] afs,u) du ds).
0 0 0 Js

Noting that the o(T—¢)W, term’ differential can be handled with the product
rule and everything else inside the exponential is either constant or easy to
differentiate, 1to gives us the SDE for Z; as

dZ, = 2, (~o(T —t) aW, ~ ([ a(t.u) du) dt + Jo*(T )% dt).

Now we are on familiar ground. Though we are used to the cash bond B,
being deterministic, this (random) B; and the T-bond price P(t,T) are both
adapted to the same Brownian motion, W, and finding Z; doesn’t pose any
real problem.

Step one
We have an SDE for Z; and we want to see if we can find a change of measure
drift v, for the Brownian motion which makes Z; driftless. The candidate 1s

clearly

T
v =—30(T —t)+ m,l—_T)/t a(t,u) du.

And since it is bounded up to time S, the technical conditions of C-M-G
are satisfied — our candidate passes and we have a measure Q, equivalent to
P, such that W, = W, + fot s ds is a Q-Brownian motion. The SDE for the
discounted price Z; now becomes

dZy = —0Z,(T — t) dW;.

The process Z; has no drift, and because (T — t) is bounded up to time S,
Zy 1s a Q-martingale.

Step two

This gives us E; as the conditional Q-expectation of the discounted claim
BEIX , namely
B = Bo(B5'X | ).

But since E; is a Q-martingale just as Z; 1s, we take:
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5.2 A simple model

Step three

Using the martingale representation theorem to link them via an F-previsible
process ¢;:

¢
E, = E¢(B3'X) +] b5 dZ,.
0
What is our trading strategy? At time ¢,
e hold ¢, units of the T-bond P(¢,T)
e hold iy = E; — ¢;Z; units of the cash bond B;.

The undiscounted value of this portfolio at time ¢ is
Vi =¢:P(t,T) + ¢ By = BLE,.

As before, it is also true that dV;, = ¢, d, P(t,T)+ dB; and thus this portfolio
is self financing. The strategy has an initial cost of Vj = Eg(Bg' X) and has a
terminal value Vs = X, which exactly hedges the claim. Arbitrage has won
through.

[ Option price formula (interest rate)
| The price of X at time ¢ is

V, = B,Eg(B5'X | 7).

No free lunches

So far, so good — even though the [t6 work was harder, we have just another
stock-type model. The chosen pair B, and P(t,T) behaved like any of
the tradables of chapter four. But something should worry us. We picked
a particular bond, the T-maturity bond, and found a change of measure
particular to that. Yet all claims which paid off at ttme S before T could
be hedged, even those, for example, which are identical to bond of other
maturities.

So we have fwo ways of pricing the S-bond at time ¢, P(t,S). One direct
from its SDE. And the other indirect, viewing X = P(S5,S) = 1 as a claim to
be hedged via the cash bond and the T-bond.
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There is no obvious reason why they should be the same given our original
model. And yet the same they must be. If the hedge price were ever, say,
less than P(t,S) we would have an arbitrage engine capable of locking in
unlimited profits. We don’t want free lunches, so we should assume that
the real world forbids them. That 1s we should impose on our real world
model some suitable condition to make the various ways of getting at the
price P(t,S) agree. What condition?

Consider the discounted process of the S-bond, Y; = B; ' P(t,S). Re-
working the It6 from before we have, as expected,

dY; = ( (8 —t)dW, — (ft tu)du)dt+10 (S—t)zdt).

If we define v to be

1 5
S_ _1 — -
Y so(S—t)+ (S—1) /t a(t, u) du,

then we have dY; = —oY;(S—t) (th 8 dt), or in terms of the Q-Brownian
motion we had before:

dY; = oY, (S — ) (dW; + (v — ) dt).

This discounted process Y; must be a Q-martingale — it’s tradable and, from
the risk-free hedging construction, Y; = B; ' P(t,§) = Eq(Bg'|#:). So the
drift term of the SDE above must be zero: v = .

Here is the restriction we require — our arbitrary choice of T must not
have affected the process ;. So -, must be independent of T, or in other
words g—% =0.

Multiplying the formula for v, by ¢(T —t) and differentiating with respect
to T, we get:

Restriction on the drift
In an arbitrage-free market, the drift «(t,T) satisfies

a(t,T) = o*(T — t) + o7y,

This equation is saying something we did not encounter, at this level, in
the stock market. It says that there are restrictions on the drifts which the
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5.2 A simple model

forward rates can have if there is to be no arbitrage. The drift «(¢,T) may
have started off as a general deterministic function of both time and maturity,
but now it is expressed as the sum of a particular function (¢3(T — t)) and
a process which has no maturity dependence at all (o). Most general
functions cannot be written in this way.

In another sense, this is actually familiar ground. We can think of the SDE
for P(t,T) under P as

4,P(t,T) = P(t,T) (—U(T — 1) dW, + (re — o(T — t)7,) dt).

Written this way, -y, stands revealed as the market price of risk (see section 4.4).
We know that every security in the market has to have the same market price
of risk, which explains why <, does not depend on the maturity T chosen.

Two things stand out. Firstly there is a measure Q which makes a mar-
tingale not just out of one discounted bond, but each and every discounted
bond simultaneously. We worried about the embarrassment of bonds to
choose, but we needn’t have. There was only one Brownian motion and that
is what matters. If we freeze time and look at just one t, the values of the
bonds P(t,T) are just deterministic transformations of each other. And if
one bond can be brought into line by a change of measure then so can they

all.

If, that 1s, they are roughly in step in the first place. Our second point is
that there is a price to pay for this success. If we write the original SDE for
f(t, T) in terms of the Q-Brownian motion, W}, we have:

dif(t,T) = o dW; + o (T — t) dt.

As we expect from a Black—Scholes upbringing, the drift a(t, T') has vanished.
But a(t,T) must be recoverable by a change of measure 5; which has no
dependence on T. So we weren't free to pick «(¢t,T’) as any function of ¢
and T — we must, unlike Black—Scholes, have some structure to the original
real world drift.

But even if our success has brought slight complications, we have nonethe-
less succeeded. We have a model with stochastic interest rates which 1s still
arbitrage-complete. All claims can be coherently hedged by the underlying
bonds. Once more, replication provides the price.
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5.3 Single-factor HIM

From the particular to the general. We know the basic idea — all three
descriptions of the yield curve, the prices P(t,T), the yields R(¢,T) and
the forward rates f(¢,T) are equivalent, so we select one and specify its
behaviour. Heath—Jarrow—Morton (HJM) is a powerful, technically rigorous
interest-rate model based on the instantaneous forward rates f(¢,T).

Single-factor HIM model
Given an initial forward rate curve f(0,T), the forward rate for each maturity
T evolves as

¢ ¢
f(t,T):f(O,T)+/ o(s,T) dWS+/ o(s,T)ds, 0<t<T,
0 0
or in differential form

dif(t,T) = a(t, T)dW, + a(t, T) dt.

The volatilities o (¢, T") and the drifts a(¢,T) can depend on the history of the
Brownian motion W; and on the rates themselves up to time ¢.
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5.3 Single-factor HIM

For any fixed maturity T, the forward rate evolves according to its own
volatility (¢, T) and its own drift «(¢,T). In section 5.5 we will allow the
decoupling that comes when rates can move with less than perfect correlation,
but here only a single process, a P-Brownian motion Wy, will drive each and
every rate. The incremental changes of all forward rates, and thus all yields
and all bond prices are perfectly correlated.

Our formal description is vague about the precise properties of the volatil-
ity and drift functions. The general HJM model posits very few overarching
conditions on the ¢ and «, but imposes piecemeal technical constraints from
time to time. Collected, and simplified somewhat, these technical conditions
are shown in the box. The first two conditions make sure that the forward
rates f(t,T) are well defined by their SDE. The last two conditions will be
used for a Fubini-type result that the stochastic differential of the integral
of f(t,T) with respect to T is the integral of the stochastic differentials of
f. Given these box conditions, the first three conditions of the HIM model
(C1—-C3 in their paper) are satisfied.

Single-factor HJM: conditions on the volatility and drift
We assume that

e for each T, the processes o(t,T) and «a(t,T') are previsible and depend
only on the history of the Brownian motion up to time ¢, and are good
integrators in the sense that fOT o?(t,T) dt and fOT |ce(t,T')| dt are finite;

¢ the initial forward curve, f(0,T), is deterministic and satisfies the con~
dition that fOT | £(0,u)|du < oo;

e the drift « has finite integral f(;F Jo' le(t, u)| dt du;

o the volatility o has finite expectation E f0T| o o(t,u) dWy| du.

Numeraire

As chapter six will show, the choice of numeraire is arbitrary — but algebraic
convenience certainly points to a canonical choice. Our description of the
forward rates f(¢,7T") allows us to write down an integral equation for the
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instantaneous rate 7, = f(t,t) (which need not be Markov), namely:

t t
re = £(0,8) + / o(5,) AW, + / a(s, £) ds.
0 0

The simplest cash product is then the account, or bond, formed by starting
with one dollar at time zero and reinvesting continually at this rate. In other
words, the bond B is a stochastic process satisfying the SDE

t
dB; =riBydt, Byp=1, or B = exp(/ Ts ds).
0

Integration then gives us

B = exp (/Ot(]sto(s,u)du) dWs+/Otf(0,u)du+/Ot/:a(s,u)duds>.

Here we used the last technical condition of the HJM box to say that the inte-
grals of fo (fs o(s,u) dW;) du can be interchanged to fo (f o(s,u) du) dWs.

We have a numeraire.

Bond prices

We need tradable assets — and we have them, the bonds P(¢,T). Since
the forward rates f(¢,T) are a one-to-one transformation, the bond prices
themselves are contained 1n the forward rate information as

P(t,T) = exp (—]t f(t,u) du) )

which will be continuous in ¢ and T'. If we integrate the original equation
for the forward rates f(¢,T) then we have the bond price P(¢,T) equal to

exp—(/Ot(/;Tcr(s,u)du)dWS+/tTf(O,u)du-I—/Ot/tTcz(s,u)duds).

Reassuringly this expression although awkward, has the right values at time
zero {namely exp(— fo f(0,u)du)) and time T (namely one).
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Discounted bonds

Let’s fix one particular maturity T to work with for the moment. As ev-
erywhere else, our attention focuses on the discounted asset price — that 1is,
Z(t,T) = B;'P(t,T). By combining the above expressions for the cash
bond and the bond price itself, we get

(tT)—exp(/ (s,T)dW, — /fOudu—// su)duds)

where X(¢,T) is just notation for the integral — ft (t,u) du. Itd handle-
turning then gives the SDE —

T
& Z(t,T) = Z(t,T) (E(t, T) dW, + (%Zz(t,T) - / a(t, u) du) dt) ,
¢
revealing the variable %(¢,T) to be the log-volatility of P(¢,T).

Change of measure

In the usual way, we want to make the discounted bond into a martingale by
changing measure. The change of measure drift (market price of risk) is

v = %Z(t,T) — E(t1, T)/t a(t,u) du.

We need the technical Cameron—Martin—Girsanov theorem condition that

Epexp 3 f; 2 dt is finite. Then there will be a new measure Q equivalent
~ ¢ ) . .

to P, such that W; = W; + fo vs ds is Q-Brownian motion. The SDE of the

discounted bond under Q is then

d:Z(t,T) = Z(t, T)S(¢, T) dW,

which 1is driftless. For this to be a proper Q-martingale, it is sufficient that
the exponential martingale condition Eq exp 3 fOT ¥2(¢,T) dt < 0o holds (see
section 3.5).

Bond price SDE

Under this martingale measure, the bond price P now has the stochas-
tic differential

d,P(t,T) = P(t,T) (E(t,T) AW, + 1y dt) .
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The concrete model of section 5.2 partially spoilt the surprise, but we have
our Black—Scholes like result, even here with a general interest-rate model
such as HJM. The behaviour of the price P under the martingale measure
does not depend on the drift a, but only on the volatility ¥ (itself a function
of o). Just as the Black—Scholes stock model under @ had no dependence on
the original stock drift 4.

Replicating strategies
We've jumped slightly ahead of ourselves, we have found the martingale
measure and the process for P(¢,T) under it. But we ought to check that
we can produce replicating strategies for claims. Suppose we have a claim X
which pays off at time S. If we are going to hedge this with a discount bond
maturing at date 7', our only restriction is that S should come before T — we
cannot hedge a long-term product with a shorter-term instrument. (Unless
we split the time-period up into shorter subsections, and roll over short-term
bonds from section to section.) Suppose, for simplicity, we choose to use a
bond with maturity T larger than S.

As before, our second step to replication is to form the conditional Q-
expectation of the discounted claim Bg'X, rather than the raw claim X.
That is, we define E; to be the Q-martingale

E, =E¢(B5'X | 7).

For the martingale representation theorem to be used, we also need that
the bond volatility ¥(¢, T') is never zero before T', in which case, we apply the
representation theorem to the martingale Z(¢,T') and the discounted claim
process E;. This gives us that

t
Et:EO+] q")st(SaT)a
0

for some F-previsible process ¢. ‘
Our trading strategy will be a combination of both a holding in the T-bond
and a holding in the cash bond B;. Specifically, we

e hold ¢; units of the T-bond at time ¢,

e hold ¥; := E; — ¢:Z(t,T) units of the cash bond at time .
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The value of this portfolio at time ¢ is
V; = B.E, = BiEg(B3'X | F).

The strategy (¢, ;) will be self-financing if dV; = ¢, dy P(t,T) + ¥ dBy, or
equivalently (as in section 3.7) if

dEt = ¢t dtZ(t, T)

Which is ensured by the representation of E, in terms of ¢;. The portfolio
(¢¢, ) s self-financing. Thus:

 Derivative pricing

Arbitrage-free market

But the S-bond is simply a claim of X = 1 maturing at time S. Thus its
worth at time ¢ must be BtEq(Bgl |F2). Or more fully,

5
P(t,S) = Eg (exp(~/ Tu du) ‘ .7-}), t<S<T.
t

The martingale measure brings a pleasant simplicity. All bond prices are just
the expectation under Q of the instantaneous rate discount from ¢ to their
maturity.
What about the discounted S-bond, Z(t, S) = B; ' P(t, S)? This can now
be written as
Z(t,S) = Eg(Bg' | 7).

Just as we saw in the simple example (section 5.2), all the other (discounted)
bonds are now martingales under the same Q. Which means that their drifts
under P are restricted by the need to be a simple change of measure away
from a martingale. In other words, the market price of risk has to be the
same for all bonds, or else there will be an arbitrage opportunity.
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So we have a restriction on the bonds’ P-drifts. In particular, it must be
the case that, for all maturities T,

T
f a(t,u) du = 132, T) — 2(t, T), t<T.
t

Differentiating with respect to T, we see that a(t,T) = —o(¢t, T)Z(¢, T) +
o(t, Ty, that is

O{(t, T) = U(taT) ('Yt - Z(ta T))
Exactly as in section 5.2, where o(t,T) = ¢ and X(t,T) = —o(T — t), the

real world drift a(t,T) cannot be too different from the risk-neutral value of
—o(t, TYE(t,T).

Under this risk-neutral measure, the forward rate and the instantaneous
rate are then,

Forward and short rates under
dif(t,T) = o(t,T)dW; — o(t, T)S(t, T) dt,

=100+ [ ot~ [ o026

Like the bond price itself, these expressions no longer depend on the drift
at all, but are solely expressed in terms of the volatilities & and 2.

Model conditions

We have been accumulating technical conditions as we have swept through.
They are summarised in the box below.

The first condition is actually necessary and sufficient for there to be
an equivalent measure under which every single discounted bond price is a
martingale, which guarantees the absence of arbitrage. The second condition
is equivalent to asserting that the change of measure is unique, which means
that all risks can be hedged using the martingale representation theorem. The
last two conditions are technical requirements for C-M-G to operate and to
make sure that Z is a martingale under the new measure.
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Single-factor HJM: market completeness conditions
It is required that

e there exists an F-previsible process -, such that

at,T)=0(t,T)(yw—2(,T)), forallt < T;

e the process A, = X(¢,T) is non-zero for almost all (,w), t < T, for
every maturity 17,

e the expectation Eexp} f; 77 dt is finite;

e and the expectation Eexp 3 fOT(fyt — 3(¢,T))? dt is finite.

The importance of the first condition in this box is the constraint it places
on the drift a(t,T). As the process 7, is only a function of time and not
of maturity, the drift is forced to take the value —o(t,T)%(t, T) modified
only by the ‘one-dimensional’ displacement ~;o(t,T'). Given that o(,T)
and X(¢t,T) are determined by the forward rate volatilities, the only degree
of freedom for the drift comes from the one-parameter -y; process. Unlike
simple asset models, not all drift functions a(t,T) are allowable.

5.4 Short-rate models

Short-rate models are popular in the market. In particular, they are often used
to price derivatives which depend only on one underlying bond. They have
evolved from various historical starting points —some emerging from discrete
frameworks, others from equilibrium models — and are often presented in a
simple hierarchy with no apparent connection to any overarching model.

All however are HJM models, which is why we used this framework in
the first place. And there is a mathematical transformation that makes these
two alternative descriptions equivalent. Demonstrating that is the purpose
of this section.

A short-rate model posits a risk-neutral measure Q and a short-rate process
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r¢. The model is that instantaneous borrowing can take place at rate r; for an
infinitesimal period. Rolling up the periods gives rise to a cash bond process
B; = exp( fot rsds), as in the HIM model. As with the equations at the end
of section 5.3, the bond prices are given by

P(t,T) =Eg (exp(—ftT Ts ds) ’ }'t),
and the value at time ¢ of a claim X maturing at date T is
Vi = Eg (exp(~ftT rsds)X ’ .7-",5).

The paradigm of short-rate modelling is to work within a parameterised
family of processes, which typically are Markovian. The parameters are
chosen to best fit the market, and then the above expression for V; 1s calculated
to price the claim X.

HJM in terms of the short rate

It is not immediately clear that this is an HJM model. To prove this requires
choosing the forward volatility surface o(t,T) so that the resulting short rate
from the HJM model is exactly the same as the original process r;. This is
possible for any general short rate r, but it’s easiest to show in the special
case where 7y is a Markov process.

Suppose that that 7, is a Markov diffusion (though not necessarily time-
homogeneous) with volatility p(r;,t) and drift v(ry,t). That is

d’l‘t = p('l‘t, t) th + I/(’l"t, t) dt,

where p(z,t) and v(z,t) are deterministic functions of space and time.
Then ftT ft,u)du = ~logP(t,T) = g(r,t,T), where g(z,t,T) is the
deterministic function

g(z,t,T) = —logEg (exp(——ftT rs ds) ’ re = :1:)

There is a theorem:

Short-rate model in HJM terms
The required volatility structure is

2

_ d°g
U(t7T) - p(rtst)%a—T(rtataT)v
and BT = —p(re, ) 9 (ry,1,T).

Oz
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We can see why this i1s so, by thinking of the forward rate f(¢,7) as

g%(n, t,T), and using Ito to deduce that
9> 52 a3
dtf(t, T) = améqT (p(']‘t, t) th + V(’:"t, t) dt) + ata%_' dt + % angsz(’rt, t) dt.

The volatility term must match o (¢, T'), which gives us the result. In addition,
the initial forward rate curve f(0,7T) is given by

dg

a—T(TO, O,T)

£0,7T) =

This volatility structure and initial curve then identifies an HJM model for
this market with the same short rate under Q.

Short rate in terms of HIM

Conversely, it 1s also true that HJM models are short-rate models. The equa-
tion for the bond price in terms of r; holds (see near the end of section 5.3),
with ¢ in terms of the HJM volatilities o(¢,T") and 3(¢,T'), given as

t t
re = f(0,1) +/ o(s,t) dWSH/ a(s,t)X(s,t) ds.
0 0
This formula is not necessarily simple.

Ho and Lee

Now for the accepted hierarchy of short-rate models: starting with Ho and
Lee. In its short-rate form, Ho and Lee gives the SDE for r, under Q, the
martingale measure, as

Ho and Lee model
The short rate 1s driven by the SDE:

d’l"t = O'th + Bt dt,

for some 6; deterministic and bounded, and ¢ constant.
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The question we should immediately ask is, which HIM model corre-
sponds to this? Following the mechanics from earlier, we find via Itd

glz, t,T) =x(T —t) — %UZ(T —1)° + /T(T — 5)8, ds.

Thus o(t,T), the HIM volatility surface, is simply cra—iil’éif = ¢. Thus the
volatility surface is constant, depending on neither time nor maturity. We

can fully specify the HIM model under Q as

Ho and Lee model in HJM terms

dif(t,T) = 0 dW; + o*(T — t) dt

T
with f(0,T) = ng-(ro, 0,T) =ro— $0°T* + / 8, ds.
0

Equivalently, we can provide the evolution of the bond prices P(t,T)
under Q:

P(t,T)=exp— (O'(T — )W, + /T f(O,u) du + %JZT(T — t)t) :

This model is the {general) single-factor model with constant volatility, and
is actually the simple model of section 5.2. If used in the short-rate form,
then o sets the volatility of all forward rates and 6; allows matching to any
initial forward curve via the identity £(0,T) = ro — 30°T2 + [ 6, ds.

It is a simple model, and its simplicity tells against it — the forward rates and
the short rate r; can go negative occasionally, and go to infinity in the long
term. And not just of course under @, but under any equivalent measure P
as well. Many other models expend much effort just to avoid these pitfalls.

But it is not that simple a model — the HIJM formulation allows a description
of how the real forward curve can move over time. Given any previsible
process 4, the forward rates can move as

dof(t,T) = o dW; + (o*(T — t) + o) dt,
with d'l't =0 de, + (9,3 + U’)’t) dt.
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So short rates can have a wide range of possible drifts under P the real world
measure, not just the simple deterministic drift §,. The restriction with Ho
and Lee lies not there but in the implication that o(t,7) = 0.

Two extra things need mentioning. First, the bond price and the cash
bond price are both log-normally distributed and thus the Black—Scholes
formula can still hold (as hinted at in section 4.1, and shown in section 6.2).

And second, there is a straightforward generalisation to a deterministic

short-rate volatility
d’f‘t =0t th + 9t dt,

with a corresponding HJM formulation
def (t,T) = 04 AW, +02(T — t) dt,

with the initial forward rate curve given by

T T
(0,7 :7'0—/ ai(T—s)ds%—/ 8; ds.
0 0

The extra freedom here is to allow the volatility surface to depend on time,
but not on maturity. For that we require something else. . .

Vasicek / Hull-White

Next in the accepted hierarchy is to allow the short rate’s drift to depend on
its current value.

Vasicek model
We model the short rate (under Q) as:

d’l"t -':G'th+ (9'—0{7‘t) dt

for some constant «, € and o.

The SDE is composed of a Brownian part and a restoring drift which
pushes it upwards when the process is below 8/« and downwards when it is
above. The magnitude of the drift is also proportional to the distance away
from this mean. Such a process is called an Ornstein—Uhlenbeck or O-U
process.
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We can use Ito’s formula to check that the solution to this, starting r at
o, 1

t
re=0/a+e (rg—0/a) + Je_"‘t/ e** dWs.
0

As it happens, r; can be rewritten in terms of a different Q-Brownian motion
W as

_ eZat -1
r=0/a+e (rog—0/a)+ ce” MW ( 7 ) ,

so that 7, has a normal marginal distribution with mean 8/a+exp(—at)(r¢ —
6/a) and variance 0% (1 —exp(—2at))/2a. Ast gets large, this converges to an
equilibrium normal distribution of mean 6/« and variance o2 /2a. This does
not mean that the process r; converges — it doesn’t — only that its distribution
converges.

1.8
1.6
1.4
1.2

A
0.2 0.4 0.6U 0.8 1
0.8
0.6

Figure 5.7 An O-U process, with 0 =20 = 2a =1

What HJM model are we in? Again we can use Ito to find g(x,¢,7T'), and
thus o(¢,7") and f(0,T). In this case

® Vasicek model in HJM terms

o(t,T) = oexp (—a(T — t)),
2

with  £(0,T) = 8/a+ e T (ro — 8/a) — % (1—eoT)%,

Now we can see an advantage over Ho and Lee — where Ho and Lee failed
to introduce a maturity dependence into the volatility surface, this model can.
Thus this model is capable of calibration to a richer set of observed volatilities.
Note how the volatility o(t,T) is derived from both the drift and volatility
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of the short rate under Q. In order to describe an HJM model, we need two
degrees of freedom for the volatility — one for time and one for maturity.
The short rate description doesn’t abandon the second degree of freedom; it
encodes it in the relationship between its volatility p(ry, t) and its drift v(r, t).
The drift of r; under Q is a vital part of the description.

But only under Q. The Vasicek model, unlike Ho and Lee, may be mean
reverting under Q, but both models are in fact capable of mean reversion
under P. Some care has to be taken — the introduction of the extra parameter
« does give Vasicek a richer set of allowable P-drifts than Ho and Lee, but
this richness involves maturity. Simple time-dependent considerations will
not in general prejudice one over the other. Because it is possible to find a
change of measure ¢ which gives mean reverting behaviour to Ho and Lee,
Vasicek is not the inevitable choice if in the real world mean reversion is
observed. In practice it will be the volatility of the entire curve, rather than
the drift of the short rate that forces one over the other.

As before there is a natural generalisation to
d’l"t = 0¢ th + (91; — atrt) dt

where oy, 6;, and o; are deterministic functions of time. As 74 is still a
Gaussian process with normal marginals, so f(¢,T) is Gaussian and the bond
prices have log-normal marginals. In this case, the HIM volatility and initial
forward curve are

o(t,T) = o 8(t, T), where B, T) = exp(—ftT O ds), and

£(0,T) = r08(0,T) + /0 ' 8,6(s, T) ds — /O ' o28(s,T) ( T B(s,w) du) ds.

The normality of the forward rates f(t,T) is both good news and bad
news. In its favour, it means that the bond prices P(t,T") are log-normally
distributed, so that the log-normal option pricing results of section 6.2 all
hold. On the other hand, both the instantaneous rate and the forward rates
can go negative from time to time. Depending on the parameters, this can
happen more or less rarely — the next model rectifies this defect.
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Cox—Ingersoll-Ross

The model is a mean-reverting process, which pushes away from zero to keep
it positive (see box).

Cox-Ingersoll-Ross model
The instantaneous rate’s SDE, under Q, is

d’l"t = G't\/’f'_tth + (Ht — Oft’f't) dt,

where o;, 8; and «; are deterministic functions of time.

The drift term is a restoring force which always points towards the current
mean value of 6;/a;. The volatility term is set up to get smaller as r,
approaches zero, so allowing the drift 8; to dominate and to stop r; from
going below zero.

As long as 6 satisfies 8, > 107, then the process actually stays strictly
positive.

This process is called autoregressive.

3

2 4 6 8 10
Figure 5.8 Autoregressivec =1,0=2, a =2

It is difficult to find an explicit pathwise solution for r;, but we can solve
a useful partial differential equation (PDE). Firstly define B(¢,T') to be the
solution of the Riccati differential equation

=10?B*(t,T) + 4B(t,T) - 1, B(T,T) =0.
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5.4 Short-rate models

(In general, this equation has no analytic solution, but it has been well studied
numerically) Then the function g(z,t,T), which is (—log P(t,T)|rs = x)
can be written in terms of this solution B(t,T') as

T
g(z,t,T)=2B(t,T)+ / 8,B(s,T) ds.
¢
Letting D(t, T) be 42 (¢, T), then the volatility structure can be expressed as

Cox-Ingersoll-Ross in HJM terms

o(t,T) = 04/Te D(t,T),
and X(t,T) = —o\/T B(t, T),

T
with  £(0,T) = roD(0,T) + / 0,D(s, T) ds.
0

As usual, the bond price P(¢, T) has the form P(t,T) = exp ~g(r,t,T).

Black—Karasinski

Another way round the problem of keeping the short rate positive is to take
exponentials. This model is an extension of the Black-Derman—Toy model
and starts by taking X; to be the general O-U process of the Vasicek model.
Explicitly:

Black—Karasinski model
The process X; is

dXt = 0¢ th + (Bt — O[tXt) dt,

where o, 6; and oy are deterministic functions of time. The instantaneous
rate r, 1s then assumed to be

T = exp(Xt).

So the logarithm of the rate drifts towards the current mean of 8;/c.
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The rate itself also drifts towards a mean, and additionally is always positive.
We also know that X; is normally distributed, so that ; is log-normal.
However, LT rs ds is awkward to examine analytically This model is still
HJM consistent; that is, there is some volatility surface o(t, T') which generates
a single-factor HJM model which has the same instantaneous rate as given
above.

5.5 Multi-factor H/M

The drawback of the single-factor model is that all the increments in the
bond prices are perfectly correlated. For many applications, that assumption
is too coarse, especially if we are trying to price something which depends
on the difference of two points on the yield curve.

A multi-factor model involves driving the various processes by a collection
of independent Brownian motions. More details of such models are in
section 6.3. In an n-factor model, we will have n Brownian motions to
work with: Wi(t),...,W,(t). Correspondingly each T-bond forward rate
process has a volatility o;(t, T) for each Brownian factor W;(t). This allows
different bonds to depend on external ‘shocks’ in different ways, and to have
strong correlations with some bonds and weaker correlations with others.
The general form of the multi-factor HIM model is

T

A

?

f(t,T):f(O,T)—{—;/O a,-(s,T)sz-(s)—{—/ a(s,T)ds, 0<t

0

which is to say that the forward process starts with initial value f(0,7T) and is
driven by various Brownian terms and a drift. From this, the total instanta-
neous square volatility of f(t,T), and and the covariance of the increments
of the two forward rates f(¢,T) and f(t,S) are respectively

Zaiz(t,T), and Zai(t, T)oi(t, S).
i=1

i=1

In the single-factor model, 7 is 1, and the correlation of the changes in the
forward rates of the T-bond and S-bond is exactly one.
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The instantaneous rate 1y = f(t,t) can be written, similarly to before as
n i i
Ty = f(0, t)—i—Z/ oi(s,t) dWi(s)—i—[ a(s,t)ds.
= /O 0

The volatility and drift conditions are generalised to:

Multi-factor HJM: conditions on the volatilities and drift
We assume that

e for each T, the processes 0;(t,T) and «(t,T) are F-previsible and their
integrals fOT o2(t,T) dt and fOT la(t, T)| dt are finite;

e the initial forward curve, f(0,T), is deterministic and satisfies the con-
dition that fOT |7(0,4)] du < o0;

e the drift o has finite integral f(;‘r Jo Nalt, u)| dt du;

e cach volatility o; has finite expectation E fOT| Iy os(t, u) dW;(t)| du.

To make the discounted bond prices into martingales, we need a version of
the Cameron—Martin—Girsanov theorem for higher dimensions (section 6.3).
The conditions we need for this to work are shown in the two boxes, where
¥;(¢,T) is the integral — ftT o;(t,u) du.

Multi-factor HIM: market completeness conditions (1)
It is required that

e there exist previsible processes 7;(t), for 1 < i < n, such that

at,T) = ia,-(t,T) (%) — Zi(t, 1)), forallt < T;
i=1

e the expectation Eexp 3 ¢ fOT ~2(t) dt is finite;
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This is just as in the single-factor case, but with one difference. The
drift is now allowed n ‘dimensions of freedom’ away from its risk-neutral
value. That is, as a function of T, «(t,-) is allowed to deviate by any linear
combination of the functions o;(t,-). This is still much less than the set of all
possible functions, but it is larger than in the single-factor case. The second
condition is the technical requirement of the C-M-G theorem for ~;(t) to
be a drift under an equivalent change of measure.

Multi-factor HJM: market completeness conditions (2)
We also need that

e the matrix 4; = (Zi(t,T %) )?j:l 1s non-singular for almost all (¢,w),
t < T4, for every set of maturities 71 < 1> < ... < Ty;

¢ and the expectation Eexp 3 3" f(;r (v (t) — Zi(, T))2 dt is finite.

The modification from the single-factor case here is that the volatility
process A; which used to be required to be non-zero has been replaced
by a volatility matrix process which has to be non-singular. The second
condition ensures that the resulting driftless discounted bond price is in
fact a martingale (a multi-dimensional equivalent of the collector’s guide to
exponential martingales).

As before we find that the bond prices themselves have stochastic incre-
ments

&P(t,T) = P(t,T) (i S4(t, T) dWilt) . .
i=1

S G AIGCEIES ST (,u))du)dt),

where ¥;(¢,T) is the integral — ftT 0;(t,u) du. The discounted bond prices
Z(t,T) = B ' P(t,T) satisfy

d:Z(t,T) = Z(t,T) (f: Si(t, T) AW, (t)
i=1

~ (J7 (et w) + S0t w)Si(t, w) du) dt)_
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The SDE for Z now becomes

& Z(t,T)=Z(t,T) i Ei(t, T) (dW;(t) + v(t) dt).

i=1

Using the multi-dimensional C-M-G, we can find a measure Q equivalent to
P, under which Wy, ..., W,, are independent Q-Brownian motions, where
Wi(t) = Wi(t) + fg v:(8) ds. So Z’s SDE is (in Q-terms)

L) = Z(6T) 3" Su(t,T) (o),

=1

and every Z(t,T') is a Q-martingale in ¢.
Under this martingale measure, the bond price P and the forward rate f
have the stochastic differentials

Bond prices and forward rates under Q

dtP(t, T) = P(t, T) (i Ei(t, T) sz(t) + ¢ dt) y

i=1

I T) = Yot T dilt) — 3 0u(t, TYu(r, T) .
i=1

i=1

Derivative pricing and hedging
The actual price of a derivative still has a familiar form:

Option price formula (HJM)
If X is the payoft of a derivative at time T, then its value at time ¢ is

Vi = Bt]EQ(B§1X | F) :]EQ(exp(—ftT Ts ds)X ‘ .7-}).

We also need a multi-dimensional martingale representation theorem.
Formally
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Martingale representation theorem (n-factor)

Let W be n-dimensional Q-Brownian motion, and suppose that M,

is an n-dimensional Q-martingale process, My = (Mi(2), ..., My(t)),
which has volatility matrix (O‘,;j (t)), in that de(t) = Ei O'ij(t) dﬁ/,;(t),
and the matrix satisfies the additional condition that (with probabil-
ity one) it is always non-singular. Then if N; 1s any one-dimensional
Q-martingale, there exists an n-dimensional F-previsible process ¢; =
(¢1(2), ..., #n(t)) such that fOT(Ej aij(t)qﬁj(t))zdt < 00, and the mar-
tingale N can be written as

N; = No + Z/ b;(s) dM;(s).
=170

Further ¢ is (essentially) unique.

As a general rule, if we have an n-factor model, we needa trading portfolio
of n separate instruments, as well as the cash bond, in order to hedge claims.
An advantage of the HJM framework is that we are free to choose whichever
n instruments we like, and the answer will always be the same.

If we are going to hedge the claim X with discount bonds, we must still
make sure that all their maturities are later than T. Suppose we choose to
use bonds with maturities T, T3, . .., Ty, all larger than 7.

A self-financing strategy (¢(t),...,dn(t),1:) will be the combination
of both an n-vector of holdings in the bonds with maturities T,..., Ty,
respectively, and a holding ¢, in the cash bond B;. The value of the portfolio
at time ¢t 1s

Z¢g P(t,T;) + ¥ By,

and its discounted value E; = Bt_ V; is
Z ¢; (1) Z(t, Tj) + 9.

The self-financing equality for the strategy (as in section 6.4) is that

4B =Y 4;(t) W21, T)).
j=1
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We can now apply the representation theorem in the usual way to the mar-
tingale produced from the discounted claim, that is E; = Eg(Bg' X|F;). The
part of the martingales M;(t) will be taken by the discounted bonds Z (¢, T}).
Their volatility matrix is given by 4; = (Z;(t, T})); ;» which is non-singular
by the completeness conditions box. If we set E; = Eg(Bz' X|F;), then by
the representation theorem, there is an n-vector of previsible processes ¢;

such that

B~ Bo(Br' %)+ Y. [ 03(9)42(s.T)).
=1

This immediately gives a self-financing strategy ¢. We hold ¢;(t) units of the
T;-bond at time ¢, and ¢, = Ey — >~ ¢;(t) Z(¢, T;) units of the cash bond.

In the usual way, the portfolio costs an initial Eg(Bz'X) and evolves to
be worth exactly X by time T.

5.6 Interest rate products

In recent years, there has been a great increase in the number of interest
rate products available. Especially in the over-the-counter markets, contracts
which not long ago would have been considered as exotics are now com-
monplace. We cannot hope to describe the hundreds and possibly thousands
of traded claims, but we can sketch out the basic types within each area.

Forward contract

This is about the simplest product possible. We agree, at the current time ¢,
to make a payment of an amount k at a future time 73, and in return to
receive a dollar at the later time T5. What should the amount &k be?

According to the pricing formula (under whatever model we are in), the
value of the claim now is

V; = BiEo(By,) | F:) — BiEq(kBT!|Fe),

under the martingale measure QQ, where B; is the cash bond

t
B, = exp/ T5 d8.
0
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Recalling that B;Eq(B7'|F:) is just P(t,T), we see that
Vi = P(t,T2) — kP(t,Th).

For this contract to have null current net worth, we merely choose k at time

t to be
P(t,Tz)

P(t,T1)

This price makes sense, as saying that the forward yield from T; to T3 1s

_ log P(t, Tz) — log P(t, Tl)
T —T '

For T} and T3 very close together, this approximates to the instantaneous
forward rate of borrowing
—ilogP(t T) = f(t,T)
oT ’ T
The price also gives us a clue to the hedging strategy. Suppose we were,
at time ¢, to buy k units of the T7-bond and sell one unit of the T>-bond.
The initial cost of that deal is zero, and the portfolio pays us k at time T}
(matching the payment we have to make at that time) and exactly absorbs
the dollar we receive at time T5.
In this particular example, the answer is independent of our particular term
structure model, as the hedging strategy is static. There are other important
cases where this also happens.

Multiple payment contracts

Most interest rate products don't just make a single payment X at time T
Instead the contract specifies a sequence of payments X; made at a sequence
oftimes T; (¢ = 1, ..., n). Each payment X; may depend on price movements
up to its payment time T;, and even on any previous payment. As long as we
bear that in mind, this causes no serious problem, and indeed there are two
different ways to keep things clear.

e Divide and rule. We can treat each payment X; separately. On its own,
it is just a claim at time Tj, so its worth at time ¢ 1s

Vi(t) = B.Eq(Bg' X | F) = P(t,T3)Ep,, (X|Fe),
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5.6 Interest rate products

where Pr, is the T;-forward measure (see section 6.4). This approach
will always work, but the forward measure, if used, will have to be
changed for each i.

e Savings account. We could instead roll up the payments into savings
as we get them, and keep them till the last payment date T. That is,
as each payment is made, we use it to buy a T-bond (or invest it in
the bank account process B; till time T'). Then the payoff is a single
payment at time T of

with worth at time ¢

Vi, = BEq(Br' X | 7)) = P(t, T)Ep, (X|F).

Bonds with coupons

In practice, pure discount bonds with no coupon are not popular products.
Especially at the long end. Instead, a bond may not only pay its principal
back at maturity, but also make smaller regular coupon payments of a fixed
amount ¢ up until then.

Suppose a bond makes n regular payments at (uncompounded) rate & at
times T; = Ty + @6 (¢ = 1,...,n) and also pays off a dollar at time T;,. The
amount of the actual coupon payment is k6, where § is the payment period.
This income stream is equivalent to owning one T,,-bond and k§ units of
each T;-bond. The price of the coupon bond at time Tj is

P(Ty,T.) + k6 Y P(Ty,To).

i=1

If we desire the bond to start with its face value, then the coupon rate should
be
k— - P(TOJ Tn)
6 E?:‘l P(T01 Tz) .
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Floating rate bonds

A bond might also pay off a coupon which was not fixed, but depended on
current interest rates. One interesting case is where the interest paid over an
interval from time S to time T is the same as the yield of the T-bond bought
at time S.

Suppose a bond pays its dollar principal at time T;,, and also payments
at times T; = Ty + 46 (¢ = 1,...,n) of varying amounts. The amount of
payment made at time T; is determined by the LIBOR rate set at time T;j_1

L(Ti—1) = % (?(T__llT_) - 1) '

The actual payment made at time T} is L(T;_1) = P(Ti—1,T;)! = 1, which
is the amount of interest we would receive by buying a dollar’s worth of the
T; bond at time T;_.

The value to us now, at time Tj, of the T; payment is

Br, Eq(Bg (P~ (Ti-1,Ti) — 1) | Fr,).

Because the conditional expectation EQ(BE |\ Fr,_,) 18 Bi_l_lP(Tz-_l,Ti), and
the bond price P(T;_1,T;) is known with respect to the Fr,_, -information,
we can divide it through both sides to get

Eq(Br!'P~\(Ti-1,Ty) | Fr,_,) = By, .
Using the tower law, we can rewrite the value of the T; payment as
—1 —1
Br,Eq(Br,_, — By, | Fn),

which is just P(Ty,T;—1) — P(Tp,T;). This price also suggests the hedge of
selling a T;-bond and buying a T;_1-bond. When the T;_1-bond matures,
we buy P~1(T;_1,T;) units of the T;-bond, and we are left with exactly the
right payoft at time T;.

The total value of the variable coupon bond is the sum of its components.
That is,

Vo=P(Ty,T.) + Y _(P(Ty,T,—1) — P(Ty,T;)) = 1.

i=1
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Surprisingly, the bond has a fixed price equal to the face value of its principal.
Why this is so, is because the bond is equivalent to this simple sequence of
trades:

o take a dollar and buy T7-bonds with it

e take the interest from the bonds at Ty as a coupon, and buy some
T>-bonds with the dollar principal

o repeat until we are left with the dollar at time T;,.

This has exactly the same cash flows as the variable coupon bond, so the
initial prices must match.

Swaps

This very popular contract simply exchanges a stream of varying payments
for a stream of fixed amount payments (or vice versa). That is, we swap a
floating interest rate for a fixed one.

Typically, we might offer a contract where we receive a regular sequence
of fixed amounts and at each payment date we pay an amount depending on
prevailing interest rates. In practice, only the net difference is exchanged, as
shown in figure 5.9:

Receipt Receipt

O

o.sé 1 1.5{ 2 05 1¥ 1.5 21

Gross payments received and given Net receipts

Figure 5.9

A standard definition of the variable payment is that of the interest paid by
a bond over the previous time period. If the payment dates are T; = Ty + 16
(¢ = 1,...,n), then the ith payment will be determined by the é-period
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LIBOR rate set at time 7;_1. The payment made is

1
Tiot)= 5 — 1.
6L( 1) P(T',i—l 3 Tz) !
Suppose the swap pays at a fixed rate k at each time period. Then the swap
looks like a portfolio which 1s long a fixed coupon bond and short a variable

coupon bond. We know that the former is worth

P(Ty,T,) + k6 > P(Ty, To),
i=1
and the latter costs a dollar. The fixed rate needed to give the swap initial

null value is
k— 1- P(TOa T’n)

h 62?‘"—"1 P(T07 T,i) ~

Forward swaps

In a forward swap agreement, we have chosen to receive fixed payments at
rate k, starting at time Ty with payments at times T, =Ty + 6 (t = 1,...,n).
The value of this swap at time Ty will be

X = P(To,T,) + k6 3 _ P(Ty, T:) — 1.

i=1

The present value of X at time ¢ before T is given by the formula:

V, = BiEq(Bg X | F:) = P(t,T,) + ké > P(t,T;) — P(t,Tp).

i=1
The fixed rate needed to give the forward swap initial null value at time ¢ is
P(t,Tp) — P(t,T,)
63 i P4 T)

This rate k& is the forward swap rate. An alternative formulation of this expres-

k=

sion 1s
k— 1— Ft(TO7Tn)
63 it Fi(To, To)’
where F;(Ty, T;) 1s the forward price at time ¢ for purchasing a T;-bond at
time Ty. That 1s Fy(Ty, T;) = P(t,T;)/P(t,Tp). In this form the expression
resembles the instantaneous swap rate.
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Bond options

Like a stock option, a bond option gives the right to buy a bond at a future
date for a given price. An option on a T-bond, struck at k& with exercise
time ¢, has current worth

Eq (Bt_l (P(t,T) — k)+),

where Q is the martingale measure.
Under the Ho and Lee model, where the forward rates evolve as

dif(t,T) = o dW; + o*(T —t) dt,

the forward rates and the instantaneous short rate are normally distributed.
This makes the T-bond and the discount bond log-normally distributed, so
that we can price the option with the log-normal results of section 6.2. The
option price is

log £ + 5% log £ — 152t
Vo = P(0,t) | F® 2k k| ==k " :
0 (©.1) ( ( 5/t TVt

where F is the current forward price for P(¢,T), thatis F = P(0,T)/P(0,t),
and the term volatility & is o(T — t) (that is, 5%t is the log-variance of P(t,T)).
Under the Vasicek model, which is the most general single-factor model
with log-normal bond prices, this formula also holds with the same forward
price, but a different & depending on the deterministic processes o; and ¢,
in the model.

Compare this with the price of an option on a stock S, with volatility o,
struck at price k with exercise time ¢. It is worth

where 7 1s the constant interest rate and F is the current forward price of the
stock, that is F = €™y, and o is the (term) volatility of S;.

We see that the bond option price formula merely changes the discount
factor representing the value now of a dollar at time ¢. Under constant
interest rates this was €™, and under variable interest rates it is just the price
of a t-bond P(0,t). Otherwise, as long as the other variables are expressed
in terms of forward prices and term volatilities, the formula is the same.
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Options on coupon bonds

Imagine a bond which pays coupons at rate k at the times T; = Ty + id
(¢ = 1,...,n) before redeeming a dollar at time T},. We can buy or sell
the bond before time T,,, transferring the ownership of future (but not past)
coupons along with it. As we’ve seen before the value of this bond at time ¢
i .
Cy = P(t,T,) + k6 > P(t,T),
i=1(t)

where I(t) = min{i : ¢ < T;} is the sequence number of the next coupon
payment after time ¢.

Suppose we have an option to buy the bond at time ¢ for price K. In
general it is not easy to value this option analytically. However, in the special
case where we have a single-factor model with a Markovian short rate, we
can price the option more easily using a trick of Jamshidian.

Each bond price P(t,T) can be seen as a deterministic function P(t, T; 1)
of time, maturity and the instantaneous rate. Additionally, this function will
be decreasing in 7; — as rates rise, prices fall. A portfolio which is long a
number of bonds will have the same behaviour. So C; itself will be a function
C(t; r¢) which is decreasing in r;.

Thus there is some critical value r* of r such that C(¢;7*) 1s exactly K.
Setting K; to be P(t,T;;r*), then r* is also critical for an option on the
T;-bond struck at K;. This means that C; is larger than K if and only if any
(and every) P(t,T;) is larger than K;. And so

(C,— K)t = (P(t,T,,) — Kn)+ + kb Zn: (P(t, Ty) — Ki)+.

1=1I(t)

In other words, an option on this portfolio is a portfolio of options, and we
can price each one using the zero-coupon bond option formula.

Caps and floors

Suppose we are borrowing at a floating rate and want to insure against
interest payments going too high. If we make payments at times T; = Tj +ié
(i = 1,...,n), then we pay at time T; the §-period LIBOR rate set at time
T4
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How much would it cost to ensure that this rate is never greater than some
fixed rate k? The cap contract pays us the difference between the LIBOR and

the cap rate
§(L(Ti—1) — k)

at each time 7;. An individual payment at a particular time T; is called a
caplet, and if we can price caplets, we can price the cap.
Now we can rewrite the caplet claim as

X =(1+k6)P (K - P)*,

where P; is P(T;_1,T;) and K is (1 4+ k6)~!. The value of the caplet at time
tis BtEQ(BilXLFt), which equals

(1 +k8) BEo(Bz! (K - P)" | ).

This 1s just equal to the value of (1 + k6) put options on the T;-bond, struck
at K, exercised at T;_1. The option price formula (and put-call parity) will
then price the caplet.

A floor works similarly, but inversely, in that we receive a premium for
agreeing to never pay less than rate & at each time 7;. That is, we pay an
€xtra amount

§(k — L(Ti-1)"

at time T;. There is a floor-cap parity which says that the worth of a ‘floorlet’
less the cost of a caplet equals (1 + k6)P(t,T;) — P(¢t,T;—1). Buying a floor
and selling a cap at the same strike & is exactly equivalent to receiving fixed
at rate & on a swap.

Swaptions

A swaption is an option to enter into a swap on a future date at a given rate.
Suppose we have an option to receive fixed on a swap starting at date Tp.
The swap payment dates are T; = To + i (i = 1,...,n), and the fixed swap
rate is k. Then the worth of the option at time Tj is

(P(TO,TH) + k6 i P(Ty,T}) — 1)+.

i=1

This is exactly the same as a call option, struck at 1, on a T,,-bond which
pays a coupon at rate k at each time 7;. That is not entirely a coincidence
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as a swap 1s just a coupon bond less a floating bond (which always has par
value). If you receive fixed on a swap, you have a long position in the bond
market; a swap option looks like a bond option.

5.7 Multi-factor models

If we want to price a product depending on a range of bonds, it makes more
sense to use a multi-factor model. A simple case is given in Heath—Jarrow—
Morton’s original paper. It is an extension of Ho and Lee’s model to two
factors.

A two-factor model

Suppose the forward rates evolve as
def(t,T) = o1 AW1(t) + o2e XTI AW, () + a(t, T) dt,

where o1, 02 and X are constants, and « is a deterministic function of ¢ and
T. Here the W Brownian motion provides ‘shocks’ which are felt equally
by points of all maturities on the yield curve, whereas W, gives short-term
shocks which have little effect on the long-term end of the curve. This
model is HIM consistent, so we can read off information about it from that
structure. The HJM completeness conditions reduce, in this case, to there
being two F-previsible processes «y1(t) and ~,(t) such that the drift « 1s

2
alt,T) = o1y (t) +o2e T () + o (T —1) + %2 (1— e MT=0)e=AT=1),

So the range of available drifts has two degrees of functional freedom away
from the martingale measure drift. Under the martingale measure (that is
v1 = 42 = 0), the forward rate is

i i
f@t,T)=ocWi(t) + Uze_AT/ et dWs(s) + f(0,T) + / a(s,T)ds.
0 0

Like Ho and Lee, this model has normally distributed forward rates — which
does allow them to go negative. Nevertheless the model does have the
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advantages of technical tractability and an explicit option formula. We can
deduce from the forward rate formula that —log P(¢,T) ft f(t,u)duis

o (T — Wi (t) + 22 ('/‘t e 7T / t e** dWa(s)

]fOu)du—i—[/ (s,u) duds,

and that the instantaneous interest rate is

t i
T =01W1(t)+aze—”f e'\dez(s)+f(0,t)+/ afs,t)ds.
0 0

This means that the instantaneous rate is made up of a Brownian motion and
an independent mean-reverting (Ornstein—Uhlenbeck) process plus drift.
However in a multi-factor setting, the short rate loses its dominant role as
the carrier of all information about the bond prices.

Setting 52(¢,T) to be the variance (term variance) of log P(¢,T'), we have
2 1

a (1 _ 6—2)\t) )

52(t,T) = oX(T — t)%t + (2(1 _ 6—A(T—t)))
A
The discounted bond, B; = exp( f(; s ds), 1s also log-normally distributed,

because we can deduce that the integral fot T ds is normal from the expression
for ry above. We can use the results of section 6.2, given the joint log-
normality of the asset and discount bond prices. The value of an option on
the T-bond, struck at &, exercised at time £ is

| 2 1 E_l&Z ,
Vo = P(0,) (an ( %k Tt’T)(t T)) o ( og k&(t?‘T)(t T))) |

where F is P(0,T)/P(0,t), the forward price of the T-bond. This Black—
Scholes type of formula allows us to price caps and floors as well as options
on the discount T-bonds. However, in the multi-factor setting, the trick

we used before to price options on coupon-bearing bonds does not work,
making it more involved to price them and the associated swaptions.
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The general multi-factor normal model

We can actually generalise the two-factor model above to a general multi-
factor one which also has normal forward rates and an explicit Black—Scholes
type option pricing formula.

We take the instance of the completely general n-factor model, where
each volatility surface 0;(t,T) can be written as a product

oi(t,T) = z;(t)y:(T),

where z; and y; are deterministic functions. The forward rates are then
driven by

dof (¢, T) = Zyz Vs () dW; () + alt, T) dt.

Here the function z; determines the size at time ¢ of ‘type ¢ shocks’, and the
function y; controls how the shock is felt at different maturities. In the single-
factor case when n = 1, this framework incorporates both the Ho and Lee
model (z(t) = o, y(T) = 1) and the Vasicek model (z(t) = o, exp(fg o, ds),
y(T) = exp(— fOT a, ds)).

For the market to be complete, we need two conditions on the functions
« and y; to hold. Firstly, there should be n F-previsible processes 1, - - ., ¥n,
such that

sz yz )+$z(t) (t T))

where Y;(¢,T) ft yi(u)du. In other words, the drifts consistent with
hedging span an n—d1men51ona1 function space around the martingale drift.
Secondly the matrix A, = (ai;(t)), where a;;(t) = Y;(¢, T;) should be non-
singular for all ¢ < T3, for every set of n maturities T} < ... < T,,. This
condition is really just asserting that all the functions y; are different. It is
satisfied, for instance, if each volatility o; has the form

oi(t,T) = 0i(t) exp(~M(T — t)),

where the o;(t) are deterministic functions of time and the ); are distinct
constants.

For the general volatility surface o;(t,T) = z;(t)y:(T), the short rate
and the forward rates are normally distributed. Consequently the bond
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prices are log-normally distributed and a Black—~Scholes type formula holds
(see section 6.2). Let F be the forward price of the T-bond at time t,
F = P(0,T)/P(0,t), and let o be the term volatility of the T-bond up to
time ¢, that is ot is the variance of log P(¢,T), or

1 t

2 2 2
__E YA, T ; i
o tz. 1 2 (t, )[)m,(s)ds

Then the value at time zero of a call on the T-bond, struck at &, exercisable

at time ¢ 18
log £ + 1%t log £ ~ 102t
Vo=PO,t) | F& | =r—"— | -k =2E—-]].
0 ( ) ( ( O’\/f 0_\/5
Brace—=Gatarek—Musiela

The Brace—Gatarek—Musiela (BGM) model is a particular case of HJM which
focuses on the 6-period LIBOR rates. We shall simplify their notation slightly

1/ P(1T)
L(t,T) = 5 (m - 1) .

and write

So L(t,T) is the é-period (forward) LIBOR rate for borrowing at a time T..
The general HIM model (of n factors) defined by the forward volatilities
oi(t,T) is restricted in the BGM setup to those o such that

T+6
SL(t,T)
() du= — ") (4 T
/T oilt,u) du 1+5L(t,T)'Y(t)

holds for all ¢ less than T. Here, « is some deterministic R"-valued function
which is absolutely continuous with respect to T'.
Then it follows that, under the martingale measure Q, L obeys the SDE

n T+6
&L T) = L, T) Y %(t,T) (dWi(t) + ( / o(t, w) du) dt) .
i=1 t

More interestingly, under the forward measure P 5 (see section 6.4), L obeys

T

& L(t,T) = L(t,T) Y _ vl(t, T) dWi(1),

i=1
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where W; are Pr, s-Brownian motions. Thus L(¢, T), as a t-process, is not
only a Prys-martingale, but is also log-normal. We shall see later that this
enables us to price caps and swaptions easily.

To price, we only need to know the function +~, rather than the whole
volatility structure. While the « function represents the correlation at time ¢
between changes in the LIBOR rates at different forward dates T, in practice
1s calibrated by comparing the model’s prices with the market. For instance,
in their paper, Brace, Gatarek and Musiela fit a 7 function of the form

7, T) = f(t)w(T —¢)
by calibrating against known prices of caps and swaptions.
Writing L(T) for L(T, T'), the instantaneous LIBOR rate, suppose we have
a contract which pays off at a sequence of times T; = Ty + 46 (t = 1,...,n).
If the payment at time T;;1 depends on the LIBOR rate set at time T}, for
example if X = f(I(T;)), then the value of that payment at time ¢ is

Vo= Pt, Ti1) Ee,,, (£(L(T) | ).

The fact that L(T;) is log-normally distributed under Pz, allows us to
evaluate this expression for simple f.

One such simple f is the caplet payoft 6 (L(T;_1) — lc)Jr at time T;. In this
case, the worth of the caplet at time ¢ is V;, equal to

§P(L,T)) {Fq, (log% - %Cz(t,ﬂ_l)) . (1og§ - %qz(t,ﬂ_l)) }

C(tv Tz’—l) C(tu T%—l)

where F is the forward LIBOR rate L(t,T;_1) and ¢3(¢, T) is ftT |v(s, T)|? ds,
the variance of log L(T) given F;. This valuation has the familiar Black—
Scholes form because under the forward measure Pr,, L(T;_1) is log-normal
and the calculation proceeds as usual.

We can even (approximately) price swaptions. Consider the option to pay
fixed at rate k and receive floating and at times T; = Ty +46 (i = 1,...,n).
Let us set

T
1—\12 = / |’)’(S,T;;_1)|2d8,
t

which i1s the variance of log L(Ty, T;_1) given F; under the forward measure
Pr,. We also define

L SL(,Ti_y)
d; = =2l 1, T,
;1+6L(t,Tj_1) 7o
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and so to be the unique root of the equation

, -1
8: Z (k6 + Iz n)) {H(l+6L(t,Tj,-_1)exp(Fj(s+dj)))} = 1.
i=1 j=1
Then an approximation to the value at time ¢ of the above swaption is
ve=63 P11, 1o (B g (B i
t — pa sy &g y 44—1 F»; Fz 3

where F; = —T';(sp + d;).
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Chapter 6
Bigger models

he Black—Scholes stock model assumes that the stock drift and stock
volatility are constant. It assumes that there is only a single stock
in the market. And it assumes that the cash bond is deterministic
with zero volatility. None of these assumptions is necessary. The subsequent
sections tackle these restrictions one by one and show how a more general
model can still price and hedge derivatives. Also we will reveal the underlying
framework which governs all these models from behind the scenes.
This is not to say that all models, no matter how complex or bizarre, will
always give good prices. But if a model is driven by Brownian motions, and
has no transaction costs, it 1s analysable in this framework.

6.1 General stock model

We recall that the Black—Scholes model contained a bond and a stock B; and
S; with SDEs
dB; = 7B dt,
and dSt == St(CF th + udt)

Here r is the constant interest rate, o is the constant stock volatility and p 1s
the constant stock drift, and we are using the SDE formulation discussed in
section 4.4. The process W is P-Brownian motion.

Our most general stochastic process can have variable drift and volatility.
Not only can they vary with time, but they can depend on movements of the
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stock itself {or equivalently, on movements of the Brownian motion W). We
could replace the constant ¢ by a function of the stock price o(S;), or even
a function of both the stock price and time o(S;,t). Even this is not fully
general. (For instance the volatility at time ¢ might depend on the maximum
value achieved by the stock price up to time t.) We will replace o by a
general F-previsible process o;, and the constants 7 and p by F-previsible
processes 7 and p; respectively. The new SDEs are now

dBt = TtBt dt,
and dSt - St(O't th + Hi dt)

These have solutions

t
Bt=exp(] rsds),
0
t t
St = Sp exp (/ adeS+/(,us—%cr§)ds).
0 0

[Technical note: the processes o, 7; and p; cannot be fully general, as they
must be integrable enough for these integrals to exist. Explicitly, we need
that (with P-probability one), the integrals [ o2 dt, [i7 |r|dt, and [ |p|dt
are finite.]

Change of measure

As before, we aim to make the discounted stock price Z; = B 13, into
a martingale. This 1s achieved by adding a drift 4; to W. That s, if
W, =W, + fot ~s ds 18 Q-Brownian motion, then Z; has SDE

dZ, = Z, (at dW, + (e = 1¢ ~ 0¢yt) dt).
And Z is a Q-martingale if

Ht — Tt
T = ]
Ot

as was adumbrated in the market price of risk section (4.4). Now the market
price of risk depends on the time t and the sample path up to that time. It
will, however, continue to be independent of the instrument considered. It
should also be checked, in any actual case, that 7, satisfies the C-M-G growth
condition Ep(exp 3 fOT 72 dt) < oc.
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Under Q, Z has the SDE
dZy = 0,Z; dW,,

so 1t is at least a local martingale because it 1s driftless. It should also be
checked that Z is a proper martingale. For instance, it is enough that
Eg(exp fo 2 dt) 1s finite.

Replicating strategies
If X is the derivative to be priced, with maturity at time T, then the procedure
1s not much different from the basic Black—Scholes technique.

We can form a Q-martingale F; through the conditional expectation
process of the discounted claim, E, = Eg(B' X|F;). Then the martingale
representation theorem (section 3.5) says that the martingale F; 1s the integral

t
E, = FEy +/ PsdZs,
0

for some F-previsible process ¢;. (Note that we need o; never to be zero.)
Let us take ¢; to be our stock portfolio holding at time ¢. Then

Setting the bond portfolio holding ; to be ¢y = E; — ¢:Z;, then the value
of the portfolio at time ¢ 1s

Vi = ¢4St + 1 By = B4 E;.

It also follows (as in chapter three) that (¢,) is self-financing in that the
changes in the value V; are due only to changes in the assets’ prices. That is

dVy = ¢+ dS; + Y1 dBy.

So (¢, %) 1s a self-financing strategy with imitial value Vy = Eq(B71 1X) and
terminal value Vpr = X.
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Derivative pricing
Arbitrage arguments convince us that the only value for the derivative at time
t1s
Derivative price
Vi = BiEq(B7' X | ) = g (exp(~J rods) X | 7).

In other words, the value at time ¢ 1s the suitably discounted expectation
of the derivative conditional on the history up to time ¢, under the measure
which makes the discounted stock process a martingale — the risk-neutral
measure.

There is no general expression which will provide a more explicit answer
for the option value V;. To make specific calculations, one needs to know
the discount rate r;, the volatility of the stock o, — though not its drift — and
the derivative itself.

Implementation

In practice, if the model is much more complex than Black—Scholes, these
expectations cannot be performed analytically. (The log-normal cases of
section 6.2 will be notable exceptions.) Instead numerical methods must be
used.

If we can approximate the price V; at time ¢, then an approximation for

¢ or “dV;/dS;” is the delta hedge

AV,

¢t*m,

where A represents the change over a small time interval (¢, + At).

6.2 Log-normal models

We have already seen that the Black—Scholes formula can be true, even if
we are not working with the Black-Scholes model (as in section 4.1). The
common feature of models where this happens 1s that the asset prices are
log-normally distributed under the martingale measure Q.
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In the simple Black—Scholes model, the cash bond and the stock are
modelled as

B, =¢"t and Sy = Spexp(oW; + ut),

where r, o and p are constants and W is P-Brownian motion. The forward
price to purchase F' at time T is

F= SQETT.

And the value at time zero of an option to buy St for a strike price of & 1s

Vo= e | Fo log £ + 32T o log £ — 102T
ovT ovT '

Log-normal asset prices

When prices, under the martingale measure, are log-normal, there are great
advantages. This holds for the Black—Scholes model itself, for some currency
and equity models, and also for simple interest rate models.

Explicitly, suppose the stock S and the cash bond By are known to be
jointly log-normally distributed under the martingale measure Q. Let 02T
be the variance of log Sr, cr%T be the variance of log By 1 (01 and o5 are
term volatilities), and let p be their correlation. Then the forward price for
purchasing S at time 7" 1s

P Eq(Br'Sr)

——=, orequivalently F = exp(po10,T)Eg(ST),
]E@(BTl)

and the price of a call on Sp struck at k£ is the generalised Black—Scholes
formula

log £ + 103T logf — ia3T
Vo = Eg(B71) { Fd 8 2011} g o8& 2911 ) L
VT o1VT

We can see why these formulae are true. Write St as

St = Aexp (OqZ — %a%), with a% = U%T,

where A is the constant Eg(Sr) and Z is a normal N (0, 1) random variable
under Q. The discount factor B! is log-normal with log-variance 637 and
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its correlation with the stock log-price is p. Setting B to be its expectation
B = Eg(B;!), we get

B;l = Bexp(az(pZ + pW) — %a%), with o3 = U%T,

where p = /1 — p? and W is a normal N(0, 1) independent of Z.
The expected discounted stock price is then

Eq(Br'Sr) = AB exp(4(on +paz)?+3p2a3—tad - %a%) = ABexp(pajaz).
So the forward price for St is thus F = A exp(po10,T). Re-expressing Sp:
Sr = FexplayZ — 302 — payon),

gives us the call value
Vo = Eg(By (St — k)*) = BEg(erZ-20'a (g, — ky*),
which is also equal to

BEg (F6(0¢1+paz)z—%(a1+paz)2 _ kepazz~'zlpza§ A —z) ,

where z is the critical value z = (log% — éa% — poqag)/ay. Using the
probabilistic result that E(e¥? -3 7 > —z) = ®(y + z), for any constants y
and z, the result follows. [The notation E(X; A) denotes the expectation of
the random variable X over the event A, or equivalently is E(X74), where
I 4 is the indicator function of the event A.]

6.3 Multiple stock models

Black—Scholes assumes a single stock in the market. In many cases, this
assumption does little harm. If we write an option on, say, General Motors
stock, having modelled its behaviour adequately, we are unaffected by the
movements of other securities. However, more complex equity products,
such as quantos, depend on the behaviour of at least two separate securities.
Even more so in the bond market, where a swap’s current value is affected
by the movements of a large number of bonds of varying maturities.
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A good model of several securities must not only describe each one in-
dividually, but also represent the interaction and dependency between them.
For instance, our quanto contract of section 4.5 was related to both the ster-
ling/dollar exchange rate and an individual UK stock. These two processes
have some degree of co-dependence. In particular, large movements in one
may be linked with corresponding movements in the other. Such changes
would suggest that the two securities are correlated.

Stochastic processes adapted to n-dimensional Brownian motion
A stochastic process X is a continuous process (X; : t = 0) such that X; can
be written as

noat t
X: = Xo +Zf o;(s) dW? +/ s ds,
=170 0

where o1,...,0, and p are random F-previsible processes such that the
integral fot (3>, 02(s) + |ps|) ds is finite for all times ¢ (with probability 1).
The differential form of this equation can be written

dX; =Y oi(t) AW} + e dt.

i=1

Multiple stocks can be driven by multiple Brownian motions. Instead of
just one P-Brownian motion, we will have, in the n-factor case, n indepen-
dent Brownian motions W}, ..., W/*. That means that each W} behaves as
a Brownian motion, and the behaviour of any one of them is completely
uninfluenced by the movements of the others. Their filtration F; is now the
total of all the histories of the n Brownian motions. In other words, Fr is
the history of the n-dimensional vector (W},..., W) up to time 7. This
leads to an enhanced definition of a stochastic process (see box).

The drift term is unchanged from the original (one-factor) definition, but
there is now a volatility process o;(t) for each factor. We must remember
that in a multi-factor setting volatility is no longer a scalar, but strictly is now

a vector. The total volatility of the process X is \/ of(t)+...+02(t). In
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other words, the variance of dX; is }_; 07(t) dt, made up of the contribution
o2(t) dt from each Brownian motion component W?, the variances adding
because the Brownian motion components are independent.

There is also an n-factor version of Itd’s formula and the product rule.

. Ito’s formula (n-factor)

If X is a stochastic process, satisfying dX; = >, 0;(t) dW} + py dt, and
f is a deterministic twice continuously differentiable function, then
Y: := f(X3) is also a stochastic process with stochastic increment

n

4¥; = Y (e (X0 ) dWi + (e (X0 + 3 3300 £(X0)) i
=1

=1

Again this is an analogue of the one-factor It6 formula, with the replication
of the volatility terms for each additional Brownian factor.

Product rule (n-factor)

If X is a stochastic process satisfying dX; = >, o;(t) dW} + psdt, and Y
is a stochastic process satisfying dY; = > .. p;(t) dW} + vy dt, then X,Y; is
a stochastic process satisfying

d(X:Y:) = Xp dYy + Ve d X, + (Z Uz’(t)Pz‘(t)) dt.
=1

This new version unifies the two apparently different cases of the product
rule we encountered in section 3.3. If X; and Y; are both adapted to the same
Brownian motion W;, then this rule agrees with the first case. If however
X, and Y; are adapted to two independent Brownian motions, say W,! and
Wt2, then X, will have zero volatility with respect to W2, that is o3 (t) = 0,
and similarly Y; will have zero volatility with respect to W, pi(t) = 0. Thus
the term > o;(¢)p;(t) in the n-factor product rule will be identically zero,
agreeing with the second case in section 3.3.

The Cameron—Martin—-Girsanov theorem continues to hold where W is
n-dimensional Brownian motion and the drift 7 is an n-vector process for
which Ep exp(3 fOT |7¢|? dt) is finite.
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Cameron—Martin—Girsanov theorem (n-factor)

Let W = (Wl,...,W") be n-dimensional P-Brownian motion. Sup-
pose that v = (v},...,7?) is an F-previsible n-vector process which
satisfies the growth condition Ep exp(} fOT Ak dt) < 00, and we set
Wi = W} + [, ~%ds. Then there is a new measure Q, equivalent to
P up to time T, such that W = (W1,...,W") is n-dimensional Q-
Brownian motion up to time 7.

The Radon—Nikodym derivative of Q by P is

@—exp —Zn:/T'yidWi—l/Thth
dP pat 0 t t 2 0 t :

There 1s also a converse to this theorem, exactly analagous to the one-
factor converse.

Finally, we recall from section 5.5 that there is an n-factor martingale
representation theorem. With W as n-dimensional Q-Brownian motion, M
as an n-dimensional Q-martingale with non-singular volatility matrix, and
N any other one-dimensional Q-martingale, then there is an F-previsible
n-vector process ¢; = (¢},. .., ¢%) such that

n t
Nt:N0+Z/ ¢! dM3.
j=170

The general n—factor model

We will see later that it is important that we have essentially as many basic
securities (excluding the cash bond) as there are Brownian factors. Generally
speaking, if there are more securities than factors there might be arbitrage,
and if there are fewer we will not be able to hedge. The situation is not quite
as simple as that (the bond market, for instance, has an unlimited number of
different maturity bonds), but we shall start with the canonical case.

Our model then, will contain a cash bond B; as usual, and n different
market securities S1, ..., SP. Their SDEs are

dBt = T'tBt dt,

dSi =Si | Y oi(t)dW +pidt |, i=1,...,n.
j=1
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Here r; is the instantaneous short-rate process, p! is the drift of the it" security,
and (g;)}_ is its volatility vector. As each security has a volatility vector,

n

the collection of n such vectors forms a volatility matrix ¥, = (04;(t)), i1

of processes. In integral form, these securities are

¢
Bt:exp(/ rsds),
0

S; = S exp z":/*t 01 (8) dW? + /Ot(ui — %zn:agj(s)) ds
=170

Change of measure

We now want to find a new measure Q, under which all the discounted stock
prices are Q-martingales simultaneously.
Suppose we add a drift vy, = (‘y}, oY) to Wy, so that

t
W;=Wg+] vids
0

is Q-Brownian motion, by the n-factor C-M-G theorem. Then the dis-
counted stock price Z! = B; ' S? has SDE

dz} = Z} | D 0i;(t) dWY + (#i —re— Y oyt ) dt
i1 =1

To make the drift term vanish for each i, we must have that
n .
SN oultyd =pi—r,  forallt, i=1,...,n.
J=1

In terms of vectors and matrices, this can be re-expressed as
Ty = pg — 1,

where L, is the matrix (o0;;(t)) and 1 is the constant vector (1,1,...,1).
This vector equation may or may not have a solution +y; for any particular
t. Whether it does or not depends on the actual values of ¥;, py and ry. If,
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though, the matrix ¥, is invertible, then a unique such ~; must exist and be
equal to
Yo = By Hpe — o).

The one-factor market price of risk formula vy, = o; ! (g — r¢) is now just
a special case. This means that if ¥, is invertible for every ¢ and 4, satisfies
the C-M-G condition Ep exp(} fOT |7:|? dt) < oo, then there is 2 measure Q
which makes the discounted stock prices into Q-martingales. (Or at least
into Q-local martingales. We also need the integral condition that for each
i, Egexp 3377 fOT o7 (t) dt) < oo, for Z* to be a proper Q-martingale.)

Replicating strategies
Let X be a derivative maturing at time T, and let E; be the Q-martingale
E; = Eg(Br'X|F,). If the matrix X is always invertible, then the n-
factor martingale representation theorem gives us a volatility vector process
¢t = (d5,...,d7) such that

no et
E; :E0+Zf ¢! dZ3.
=170
The invertibility of I, is essential at this stage. Our hedging strategy will be

(¢1,-..,9%, ;) where ¢! is the holding of security i at time ¢ and 1; is the
bond holding. As usual, the bond holding ¥ is

n
wt - Et - Zq&gzg’
j:l

so that the value of the portfolio is V; = B, E;. The portfolio is self-financing,
in that

n

AV, = ¢l dS! + 9, dB:.

=1
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6.4 Numeraires

Although the numeraire is usually chosen to be a cash bond, it needn’t be. In
fact, not only can the numeraire have volatility, it can be any of the tradable
instruments available. We have seen in the foreign exchange context that
there can be a choice of which currency’s cash bond to use. But no matter
which numeraire is chosen, the price of the derivative will always be the
same. It is because the choice of numeraire doesn’t matter, that we usually
pick the stolid cash bond.

When we proved the self-financing condition in chapter three, we assumed
that the numeraire had no volatility. This is not actually necessary. But we
do have to check that the self-financing equations will still work. We want
to show that |

Self-financing strategies

A portfolio strategy (¢:,%:) of holdings 1n a stock S; and a possibly
volatile cash bond B; has value V; = ¢:S; + ¢: B; and discounted value
E, = ¢1Z; + 1, where Z is the discounted stock process Z, = B,” ls,.
Then the strategy 15 self~financing if either

dV, = ¢ dS; + . dBy, or equivalently dE; = ¢ dZ;.

Recall the one-factor product rule
d(XY)s = X¢ dY: + Y d X + oyp, dt,
where X and Y are stochastic processes with stochastic differentials

dXt = 0 th + Ht dt,
d}/t = Pt dW£+ Vg dt.

Suppose we have a strategy (¢,v), with discounted value E; satisfying
dE; = ¢; dZ;. We want to show that (¢, ?) is self-financing. We do this with
two applications of the product rule. Firstly

d‘/t = d(BtEt) = Bt dEt + Et dBt + Ut(¢tpt) dt,
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where o; i1s the volatility of B; and p; is the volatility of Z; (and hence
¢ py 1s the volatility of E;). We can use the substitutions dE; = ¢¢dZ; and
E; = ¢+Z; + 11 to rearrange the above expression into

d‘/t == ¢t(Bt dZt + Zt dBt + Ot dt) + wt dBt

The second use of the product rule says that the term in brackets above 1s
equal to d(BZ); = dS;. The resulting equation is the self-financing equation.
This also holds for n-factor models with multiple stocks.

Changing numeraires

Suppose we have a number of securities including some stocks Sf,..., S
and two others By and C; either of which might be a numeraire. If we
choose B; to be our numeraire, we need to find a measure Q (equivalent to
the original measure) under which

B7lst (i=1,...,n) and B¢,
are (Q-martingales. Then the value at time ¢ of a derivative payoff X at time
T 1s
Vi = B;Eq(B;'X | 7).

Suppose however that we choose C; to be our numeraire instead. Then we
would have a different measure Q¢ under which

c;lst (i=1,...,n) and  C/'B,

are Q¥-martingales. We can actually find out what Q is, or at least what its
Radon—Nikodym derivative with respect to Q is. We recall Radon—Nikodym
fact (11) from section 3.4, that for any process X;,

Cs E@C (Xt ‘ ]:s) = EQ(CtXt ‘ fs)a

where (; 1s the change of measure process (; = E@(%|ft). It follows from
this that if X; happens to be a Q€-martingale, then

CsXs = E@(CtXt ‘ }—s)a

and so (; X 1s a -martingale.
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The canonical Q%-martingales (including the constant martingale with
value 1) are 1, C; 'B;, C;'S}, ..., C; 'SP and similarly the Q-martingales
are B, 1Cy, 1, B 'S}, ..., B, 1SP. Each corresponding pair has a common
ratio of {; = B, !C;. Thus the Radon—Nikodym derivative of Q€ with
respect to Q is the ratio of the numeraire C to the numeraire B,

aQ° _Cr
dQ  Br’
The price of a payoff X maturing at T’ under the Q¢ measure is
VE = CiEgo (C7 X | F).

Using again the Radon—Nikodym result that Eqc (X|F) = ¢~ o ((r X |F),
then
VC = (' CiEg(¢rCr X | 7)) = B, Eo(Br X | 7).

This is exactly the same as the price V; under Q, so the two agree, just as
in the foreign exchange section (4.1), where the dollar and sterling investors
agreed on all derivative prices.

Example — forward measures in the interest-rate market

In interest-rate models, it 1s often popular to use a bond maturing at date T
(the T-bond with price P(t,T)) as the numeraire. The martingale measure
for this numeraire is called the T-forward measure Pr and makes the forward
rate f(t,T") a Pr-martingale, as well as the 6-period LIBOR rate for borrowing
up till time T'.

The new numeraire is the 7-bond normalised to have unit value at time
zero. If we call this numeraire Cj, then Cy = P(¢,7)/P(0,T). The forward
measure Pr thus has Radon—Nikodym derivative with respect to Q of

dPr  Cr 1

dQ Br P(0,T)Br
The associated Q-martingale 1s

o=l 1) G - pit

Now the forward price set at time t for purchasing X at date T is its
current value V; scaled up by the return on a T-bond, namely F; =
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P~ 1(t,T)B;Eqg (Br 1x | F:). Once more, by property (ii) of the Radon—
Nikodym derivative, F; equals

Fi = Ep, (X|F2),

so 1s itself a Pr-martingale. Calculating the forward price for X is now only
a matter of taking its expectation under the forward measure.
From the sDE for P(t,T), we find that (; satisfies

G =G Y %t T) dWi(t),
1=1

where W is n-dimensional Q-Brownian motion, and X;(¢,T) is the compo-
nent of the volatility of P(¢t,T") with respect to W;(t). By the converse of the
C-M-G theorem, we see that

mm:m@—f&@ﬂ@

1s Pr-Brownian motion.
This gives an alternative expression for pricing interest-rate derivatives. If
X 15 a payoff at date T, then its value at time ¢ is

Vi = B.Eq(B7' X | i) = P(t,T) Ep, (X|F2).

So the value of X at time ¢ is just the Pr-expectation of X up to time ¢ (the
forward price of X) discounted by the (I'-bond) time value of money up to
date T.

Also the forward rates f(t,T) are the forward rates for rr, so that f(t,T)
is a Pp-martingale with

f(t,T) = Epr (rr|F2);

and dJ@JUzjim@JU&%@)
i=1

Another forward measure martingale 1s the §-period LIBOR rate

=3 (% )

See chapter five (section 5.7) for more details.
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6.5 Foreign currency interest-rate models

We have looked at foreign exchange (section 4.1). We have looked at the
interest rate market (chapter five). But we have not yet studied an interest
rate market of another currency. Now we will.

For definiteness, we will imagine ourselves to be a dollar investor operating
in both the dollar and sterling interest-rate markets. Our variables will be

Table 6.1 Notation

(t,T) : the dollar zero-coupon bond market prices

(t,T) : the forward rate of dollar borrowing at date T (is — 3% log P(t,T))
(t,T) : the volatility of f(¢,T)

(t,T) : the drift of f(¢,T)

r¢ ¢ the dollar short rate (equal to f(¢,¢))

B; : the dollar cash bond (equal to exp fot rs dS)

Q(t,T) : the sterling zero-coupon bond market prices

g(t,T) : the forward rate of sterling borrowing at date T (is — ;2 log Q(¢,T))
7(t,T) : the volatility of g(¢,T')

B(t,T) : the dnift of g(t,T')

uy : the sterling short rate (equal to g(t,t))
Dy : the sterling cash bond (equal to exp fg us ds)

C; : the exchange rate value in dollars of one pound
p: : the log-volatility of the exchange rate
At : the drift coefficient of the exchange rate (the drift of dC;/Cy).

As in the HJM model, we will work in an n-factor model driven by the
independent Brownian motions W}, ..., W/*. Of course n might be one, but
it needn’t be, in which case, the volatilities o, 7 and p are n-vectors o;(¢,T),
7:(t,T)and p;(t) (i =1,...,n).

What we have here are two separate interest-rate markets (the dollar de-
nominated and the sterling denominated), plus a currency market linking
them. The multi-factor model approach is needed to reflect varying degrees
of correlation between various securities in the three markets.
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The differentials of these processes are

df(t,T) = i oi(t, T) dW; + alt, T) dt,

i=1

dig(t, T) = iﬂ' (t,T)dW; + B(t,T) dt,

i=1

dc, = C, (Z pi(t) AW} + Ay dt) :

i=1

Apart from the dollar cash bond B;, the dollar tradable securities in this
market consist of the dollar-bonds P(¢,T); the dollar worth of the sterling
bonds C;Q(t,T); and the dollar worth of the sterling cash bond C;D;. Let
us fix T, and let the dollar discounted value of these three securities be X, Y
and Z respectively, where

X, =B,'P(t,T),
}ft = B;1CtQ(t7 T)a
Z, = B¢, D,.

It will simplify later expressions to introduce the notation X;, 7; and T:,
where

T
(. T) = —/ oi(t, u) du,
¢

T
ﬂmﬂ=—f7mmmm
t

T, T) = To(t, T) + pi(t).
Then X;(t,T) is the Wi-volatility term of P(t,T), Ti(t,T) is the same for
Q(t,T), and Ty(¢t,T) is the same for C;Q(¢, T).
Our plan, much as ever, is to follow the three steps to replication. The

first thing to do 15 to find a change of measure under which X, ¥; and Z,
are all martingales.

For any previsible n-vector v = (v;(¢))"_,, there is a new measure Q and
a Q-Brownian motion W = (W},...,Wn), where W} = W¢ + fot vi(s) ds.
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Then the SDEs of X, Y and Z with respect to Q are

dX: = X, (Z (¢, T)dWE + ( /T (&t u) — alt,u)) du) dt)
dY; =Y, (Z [i(t, T) dW} + (ut + f T(n(t,T) — B(t,u)) du) dt)

4z, = Zt( 0i(t) W + vy dt),
i=1

o,
I
[l

where £(¢,T), n(t,T) and v; are defined to be

Et,T) =) oilt,u) (:(t) — Ti(t,w),
=1

W(t, T) = ZTi(t’u) (Vz(t) - CZM-Ii(tv U)),
i=1
Vg = )\t — 7T + U ~— sz(t)")’z(t)

Then there will be a martingale measure only if there is some choice of ¥
which makes all of X, Y and Z driftless. This happens if

a(t,T) =Y os(t,T) (%(t) — Ti(t, T)),
i=1

B, T) =Y 7, T)(w(t) - Tt T)),
i=1

At =7y — U + sz (t)"}’z(t)

i=1

Then under this () measure

i=1

d;P(t,T) = P(t,T) (i ¥ (t,T) dW! + ry dt) :

4Q(t,T) = Q(t,T) (znjﬂ(t,T) aW; + (w - 3 p(OT,T)) dt) ,

i=1 i=1

dCt = Ct (Z p@(t) dW: + (’i’t - ’U,t) dt) .

i=1
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As long as this measure QQ is unique, we will be able to hedge. (And uniqueness
will follow if the volatility vectors of any n of the dollar tradable securities
make an invertible matrix.) A derivative X paid in dollars at date T" will have
value at time ¢

V. = BiEo(Br' X | 7).

The sterling investor

The sterling investor is on the other side of the mirror. He works with
a different martingale measure Q4. This reflects that his numeraire is the
sterling cash bond Dy rather than the dollar cash bond. The Radon-Nikodym
derivative of QX with respect to Q will be the ratio of the dollar worth of
the sterling bond to the dollar numeraire. (Normalising Dy = 1/Cy for
convenience.) That is

L
o2

dQ

As Z, hasthe SDEdZ; = Z; ), p;(1) de, the difference in drifts between the
Q£ -Brownian motion W#£ and the Q-Brownian motion W is just p. That is

By

.Ft) == CtDt = Zt‘

L v (s
Wi =i - [ pus)as

To the sterling investor, the sterling bonds have SDE

d.Qt,T) = Q(t,T) (i Ty(t,T) dWA(t) + dt) ,

i=1

which is exactly the form that HJM leads us to expect.
As explained in section 6.4, the sterling investor will agree with the dollar
investor on prices of future payofts.

6.6 Arbitrage-free complete models
Time and again we have seen the same basic techniques used to price and

hedge derivatives. Firstly, the C-M-G theorem is used to make the dis-
counted price processes into martingales under a new measure. Then the
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martingale representation theorem gives a hedge for the derivative. The re-
peated recurrence of this program suggests that there might be a more general
result underpinning it. And there is.

Before stating this canonical theorem, it is worth carefully laying out some
concepts we have already brushed up against.

e arbitrage-free. A market is arbitrage-free if there is no way of making
riskless profits. An arbitrage opportunity would be a (self-financing)
trading strategy which started with zero value and terminated at some
definite date T with a positive value. A market is arbitrage-free if there
are absolutely no such arbitrage opportunities.

o complete. A market is said to be complete if any possible derivative claim
can be hedged by trading with a self-financing portfolio of securities.

o equivalent martingale measure (EMM). Suppose we have a market of
securities and a numeraire cash bond under a measure P. An EMM is a
measure QQ equivalent to P, under which the bond-discounted securities
are all Q-martingales. This is just a more precise name for what we call
the martingale measure.

Already we have examples of the binomial trees and the continuous-time
Black—Scholes model. Both of these are complete markets with an EMM. We
have not found an arbitrage opportunity, but neither are we sure that one
might not exist.

In both the binomial tree and Black-Scholes models we found there was
one and only one EMM, and we were able to hedge claims. Even more so in
the multiple stock models (section 6.3). There we could find a market price
of risk v, but it (and so Q too) was only unique if the volatility matrix ¥; was
invertible. And it was exactly that invertibility which lets us hedge.

Arbitrage-free and completeness theorem (Harrison and Pliska)
Suppose we have a market of securities and a numeraire bond. Then

(1) the market is arbitrage-free if and only if there is at least one
EMM Q; and

(2) in which case, the market is complete if and only if there is ex-
actly one such EMM Q and no other.
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This simple yet powerful theorem makes sense of our experience.
In the HJM bond-market model, these conditions were also visible. The
model demands that the forward rate drift (¢, T) satisfied

alt,T) =Y au(t,T) (n(t) - Tu(t,T)),
i=1

for some previsible processes v;(t). This ensures that there is an EMM Q, and
« is the market price of risk. We now see that this is to make sure that the
model is arbitrage-free.

The other key HJM condition is that the volatility matrix

(it T3));

15 non-singular for all sequences of dates Ty < ... < T, and for all ¢ less
than 77, which means there is only one viable price of risk in the market.
This is sufficient (but actually slightly more than necessary) for the EMM to
be unique, and consequently for the market to be complete.

It is worth getting a feel of why this theorem works. Although the
technical details and exact definitions are passed over, the structure of the
tollowing can be proved rigorously.

Martingales mean no arbitrage

A martingale is really the essence of a lack of arbitrage. The governing rule
for a Q-martingale M; is that

Eq(M¢|Fs) = Ms.

In other words, its future expectation, given the history up to time s, is just its
current value at time s. The martingale is not ‘expected’ to be either higher
or lower than its present value. An arbitrage opportunity, on the other hand,
is a one-way bet which is certain to end up higher than it started.

Suppose we have a potential arbitrage opportunity contained in the self-
financing portfolio strategy (¢,). (Assuming for simplicity a two security
market of stock S; and bond B;.) Then its value at time ¢ is

Vi = ¢St + 1 By,
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and it satisfies the self-financing equation
dVy = ¢+ dSy + 11 dB;.
We can calculate the discounted value of the portfolio E; = By 1y,, and then
dE; = ¢y dZy,

where Z, is the discounted stock price B; ' S; which is a Q-martingale.
Suppose now that the strategy does start with zero value (1 = 0) and

finishes with a non-negative payoff (V7 > 0). Can this really be an arbitrage

opportunity? Crucially, F; is a Q-martingale because Z; is. And so

EQ(ET) = EQ(ET|F0) =Ey=V,=0.

But Vi > 0 and (because Br! > 0) so is Ep > 0. But the Q-expectation of
Er is zero, so the only possible value that Er can take is zero too. '

From which it is clear that V7 is zero as well. Any strategy can make no
more than nothing from nothing. A martingale is essentially a ‘fair game’
and any strategy which involves only playing fair games cannot guarantee a
profit. |

Or in our language, if an EMM exists, there are no arbitrage opportunities.

Hedging means unique prices
If we can hedge, then there can only be at most one EMM.

To see this, suppose that we could hedge, but that there are two different
EMMs Q and Q'.

For any event A in the history Fr, the digital-like claim which pays off
the cash bond value at time T if A has happened has payoft X = Brl,.
(The indicator function 14 takes the value 1 if the event A happens, and zero
otherwise.) This is a valid derivative, so it must be hedgeable. (We assumed

that we could hedge all claims.) So there must be a self-financing portfolio
(¢, ) which hedges X, with value

Vi = ¢:Se + Y By
As usual the discounted claim E; = B; 1V} satisfies

dE; = ¢y dZy,
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where Z; is the discounted stock price B; 1 S;. Now Z; is both a Q-martingale
and a Q'-martingale as both Q and Q' are EMMs. So also must E; be. And

from that, we see
Ey = Eg(ET) = Eg (Er).

But E7 is just the indicator function of the event A, I4, and so Ey = Q(A) =
Q’'(A). The two measures Q and Q' which were trying to be different actually
give the same likelihood for the event A. As A was completely general, the
two measures agree completely, and thus Q = Q’. If any two EMMs are
identical, then there can only really be one EMM.

Harrison and Pliska

We have only proved each result in one direction. We showed that if there
was an EMM there was no arbitrage, but did not show that if there 1s no
arbitrage then there actually is an EMM. Also we proved that hedging can
only happen with a unique EMM, but not that the uniqueness of the EMM
forced hedging to be possible.

The full and rigorous proofs of all these results in the discrete-time case are
in the paper ‘Martingales and stochastic integrals in the theory of continuous
trading’ by Michael Harrison and Stanley Pliska, in Stochastic Processes and their
Applications (see appendix 1 for more details). For the continuous case and
more advanced models, there has been other work, notably by Delbaen and
Schachermayer. But the increasing technicality of this should not stand in
the way of an appreciation of the remarkable insight of Harrison and Pliska.
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Further reading

The longer a list of books is, the fewer will actually be referred to. The lists
below have been kept short, in the hope that in this case less choice is more.

Probability and stochastic calculus books

o A first course in probability, Sheldon R oss, Macmillan (4th edition 1994, 420
pages)

o DProbability and random processes, Geoffrey Grimmett and David Stirzaker,
Oxford University Press (2nd edition 1992, 540 pages)

Probability with martingales, David Williams, Cambridge University Press
(1991, 250 pages)

Continuous martingales and Brownian motion, Daniel Revuz and Mark Yor,
Springer (2nd edition 1994, 550 pages)

Diftusions, Markov processes, and martingales: vol. 2 Ité calculus, Chris R ogers
and David Williams, Wiley (1987, 475 pages)

These books are arranged in increasing degrees of technicality and depth
(with the last two being at an equivalent level) and contain the probabilistic
material used in chapters one, two and three. Ross is an introduction to
the basic (static) probabilistic ideas of events, likelihood, distribution and
expectation. Grimmett and Stirzaker contain that material in their first half,
as well as the development of random processes including some basic material
on martingales and Brownian motion.

Probability with martingales not only lays the groundwork for integration,
(conditional) expectation and measures, but also is an excellent introduc-

201



Appendices

tion to martingales themselves. There is also a chapter containing a simple
representation theorem and a discrete-time version of Black—Scholes.

Both Revuz and Yor, and Rogers and Williams provide a detailed technical
coverage of stochastic calculus. They both contain all our tools; stochastic
differentials, It6’s formula, Cameron—Martin—Girsanov change of measure,
and the representation theorem. Although dense with material, a reader with
background knowledge will find them invaluable and definitive on questions
of stochastic analysis.

Financial books

o Options, futures, and other derivative securities, John Hull, Prentice-Hall (2nd
edition 1993, 490 pages)

o Dynamic asset pricing theory, Darrell Duffie, Princeton University Press
(1992, 300 pages)

o Option pricing: mathematical models and computation, Paul Wilmott, Jeff
Dewynne and Sam Howison, Oxford Financial Press (1993, 450 pages)

Hull is a popular book with practitioners, laying out the various real-
world options contracts and markets before starting his analysis. A number of
models are discussed, and numerical procedures for implementation are also
included. The chapter-by-chapter bibliographies are another useful feature.

Dufhe is 2 much more mathematically rigorous text, but still accessible.
He contains sections on equilibrium pricing and optimal portfolio selection
as well as a treatment of continuous-time arbitrage-free pricing along the
same lines as this book. For readers with mathematical backgrounds, it is a
good read.

Oxford Financial Press’s volume comes at the subject purely from a differ-
ential equation framework without using stochastic techniques. Eventually,
many pricing problems become differential equation problems, but unless a
reader has experience in this area, it is not necessarily the best place to start
from.

Chapter four: pricing market securities

Some notable journal papers include:

e The pricing of options and corporate liabilities, F Black and M Scholes,
Journal of Political Economy, 81 (1973), 637—654.
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Further reading

e Theory of rational option pricing, R C Merton, Bell Journal of Economics
and Management Science, 4 (1973), 141-183.

Foreign currency option values, M B Garman and S W Kohlhagen, Journal
of International Money and Finance, 2 (1983), 231-237.

o Options markets, ] C Cox and M Rubinstein, Prentice-Hall (1985, 500
pages).
Two into one, M Rubinstein, RISK, (May 1991), p. 49.

The Black—Scholes paper is now of historical interest, but it is still fasci-
nating to see how the subject began, though the paper should be read for its
insights, not the technical detail. At the time they were as concerned with
pricing the stock of companies with outstanding liabilities (such as corporate
bonds or warrants) as they were about options and derivatives.

Merton provides a more rigorous treatment, contemporaneously with
Black—-Scholes, and makes extension to dividend-paying stocks and a barrier
option. Garman and Kohlhagen described foreign exchange options, whilst
Cox and Rubinstein contain some exotic option formulas, amongst much
else. The Rubinstein paper from RISK is concerned with quantos and
Cross-currency options.

Chapter five: interest rates

In the interest-rate setting, Heath~Jarrow—Morton is as seminal as Black—
Scholes. By focusing on forward rates and especially by giving a care-
ful stochastic treatment, they produced the most general (finite) Brownian
interest-rate model possible. Other models may claim differently, but they
are just HJM with different notation. The paper itself repays reading and
re-reading.

e Bond pricing and the term structure of interest rates: a new methodol-
ogy for contingent claims valuation, David Heath, Robert Jarrow and
Andrew Morton, Econometrica, 60 (1992), 77-105.

In addition to the HJM paper, notable papers on the various interest-rate
market models include
e Term structure movements and pricing interest rate contingent claims, T

SY Ho and S-B Lee, Journal of Finance, 41 (1986), 1011-1029.

e An equilibrium characterization of the term structure, O A Vasicek, Journal

of Finance, 5 (1977), 177-188.
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Pricing interest rate derivative securities, ] Hull and A White, The Review
of Financial Studies, 3 (1990), 573-592.

A theory of the term structure of interest rates, ] C Cox, J E Ingersoll and
S A Ross, Econometrica, 53 (1985), 385—407.

Bond and option pricing when short rates are lognormal, F Black and P
Karasinski, Financial Analysts Journal, (July—August 1991), 52-59.

o The market model of interest rate dynamics, A Brace, D Gatarek and M
Musiela, UNSW Preprint, Department of Statistics S95-2.

Which model for the term-structure of interest rates should one use?, L C
G Rogers, in Mathematical Finance (ed. M H A Davis, D Duffie, et al.),
IMA Volume 65, Springer-Verlag, 93-116.

The last of these is a review paper of models and their properties, whilst
the others describe separately all the major models considered in the chapter.

Chapter six: bigger models

e Martingales and stochastic integrals in the theory of continuous trading,
Michael Harrison and Stanley Pliska, Stochastic Processes and their Appli-
cations, 11 (1981), 215-260.

¢ The fundamental theorem of asset pricing, F Delbaen and W Schacher-
mayer, Mathematische Annalen, 300 (1994), 463-520.

e The valuation of options for alternative stochastic processes, ] C Cox and
S A Ross, Journal of Financial Economics, 3 (1976), 145—166.

Harrison and Pliska made the next step forward by linking, in a general
framework, the absence of arbitrage to the existence of a martingale measure,
and showing that the ability to hedge depended on there only being one
such measure. That this idea still underpins much of financial mathematics
today is a demonstration of the importance of the paper.

Delbaen and Schachermayer go over similar ground but in a much more
technical way to deal with the particular problems of continuous-time pro-
cesses, including discontinuous processes. Cox and Ross cover option pricing
for models more general than Black-Scholes, including those paying divi-
dends.

204



Appendix 2
Notation

Notation can be divided naturally into three parts: lower case (generally
deterministic), upper case (generally random), and Greek.

Lower case
a a (real) parameter
c a constant; coupon rate
% Radon—Nikodym derivative of Q with respect to P
dt infinitesimal time increment
dW; infinitesimal Brownian increment
f a function
fe(z) probability density function of the law P
f@, T bond forward rates
g a function
g(z,t,T)  the function (—~logP(t,T) | r, = z)
i an integer
J an integer
k contract strike/exercise price; an integer; an offset
n an integer
n|t] number of dividend payments made by time ¢
D, D; a probability
q,q; a probability
r constant interest rate
T4 variable interest rate process; instantaneous rate
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initial stock price, alternative time variable
possible value for the discrete stock process
time

foreign currency interest rate; real variable

a real variable; horizontal axis variable
time-dependent factor of volatility surface
maturity-dependent factor of volatility surface

Upper case

F(t,T)

an event; a constant

HJM volatility matrix

bond price process

solution of a Riccati equation

foreign exchange rate; coupon bond price; numeraire
financing gap

foreign currency cash bond

solution of a Riccati equation

expectation operator

expectation under the measure P

discounted portfolio value process

forward price

forward price at time s for P(t,T)

quanto forward price

history of discrete stock-price process up to tick-time ¢
history of Brownian motion up to time ¢

indicator function of the event A

sequence number of next coupon payment

option strike price

LIBOR rate

forward LIBOR rate

a martingale

a martingale

the set of non-negative integers {0,1,2,...}

a normal random variable with mean g and variance o2
hypothetical discrete derivative price

a probability measure

forward measure
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P(t,T) bond prices

Q a probability measure
R™ the n-dimensional real vector space
R(t,T) bond yield surface
S;, S stock price process
S, tradable asset price
Sl...8!  stock price processes
T maturity/exercise time of a derivative
T; coupon payment times
Ui foreign currency derivative value process
1% derivative value
Vi derivative value process
Vs, T) Black—Scholes option price
W, (%) random walk
Wy Brownian motion
W, Brownian motion
W/, ..., Wlindependent Brownian motions
X random variable; claim value of a derivative
X; sequence of random variables
X a stochastic process
Y; a stochastic process
Y; (¢, T) integral of y; over [t, T
Z a (normal) random variable
ANy discounted stock-price process
Z(t,T) discounted bond prices
Z discounted tradable asset price
Greek case
o a real parameter

at,T) forward rate drift
B(t,T) a function of two variables (Vasicek model)

Vs change of measure drift; market price of risk
~i(t, T) BGM volatility surface

6 dividend yield; coupon payment interval

ot a small time increment

bsi, bny, branch widths
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AS;, AV;

a1, 02
Tt
o(t,T)
a; (ta T)
X(t,T)

¢ta ’;gt

Vi

Appendices

change in value across 6t of S;, V;, etc
change of measure process

a real variable

deterministic drift function

a real parameter

constant stock drift

variable stock drift process

stock drift process

path probability

portfolio

correlation

the orthogonal complement /1 ~ p?
volatility process

constant stock volatility

stock volatilities

variable stock volatility process

forward rate volatility surface

multi-factor forward rate volatility surface
term volatility

volatility matrix

bond price volatilities

time horizon; maturity date; stopping time
stock-holding strategy; representation theorem integrand
normal distribution function: ®(z) = P(N(0,1) < z)
bond-holding trading strategy

a sample path
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Appendix 3
Answers to exercises

2.1 The value (at maturity) of the futures contract is the stock price less the
exercise price. If the process moved to node 2, the stock price is sz, so
the future’s value is f(2) = s» — k. The other node is similar.

Then, recalling that g is (s1 exp(r §t) — s2)/(s3 — s2),

V =exp(-r6t)((1 —q)(s2 — k) +q(s3 — k))

ot r ot
$3 — s1e” s1e" % — 8o
= exp(—r&t) (82—;3—_—52— + 83*‘?_—; - k) .

This is equal to e "% (s1e"% ~ k), which can be simplified to give
V = s; ~ ke™"®. The only strike price which gives zero present value
to the future is k = s1 exp(r 6t).

Table A.1 Option and portfolio development — in the money

Stock  Option Stock Bond
Time ¢ Last Jump Price S; Value V; Holding ¢; Holding %,
0 - 100 50 - -
1 up 120 75 1.25 ~75
2 up 140 100 1.25 ~75
3 down 120 100 0.00 100

2.2 The progression, in the first scenario, of the stock price and hedging
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strategy is laid out in table A.1, and the option claim tree is shown in
figure A.1. The corresponding table in the other case is table A.2.
The price of the option at time 0 is 50. We can represent the hedging
strategy ¢ with a tree up to time 2, each of whose nodes give the
amount of stock which should be held from that time for the next
period. The tree is given in figure A.2.

time: 0  time: 1 time: 2 time: 3

Figure A.1 The option claimn tree for a digital payoff

time: 0 time: 1 time: 2

Figure A.2 The hedging strategy tree

Table A.2 Option and portfolio development — out of the money

Stock  Option Stock Bond
Time ¢ Last Jump Price S; Value V; Holding ¢; Holding ;
0 - 100 50 - -
1 down 80 25 1.25 ~75
2 up 100 50 1.25 -~75
3 down 80 0 2.50 -200
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2.3

3.1

3.2

33

3.4

3.5

3.6

Answers to exercises

Table A.3 has the calculations which show that Eg(S3|F;) is identical
to S;. That S; is a Q-martingale is now immediate from the remarks
following the tower law.

Table A.3 Conditional expectation against filtration value

Expectation Filtration Value

Eg(S2|Fo) {1} -£-180+1-2-80+3%-3-72...
+3-4-36=280

Eq(SalF1)  {1,3} 2-180+2.80=120
{1,2}  3-72+414-36 =60

Eq(S2lF2)  {1,3,7} 180

=

{1,3,6} 80
{1,2,5} 72
[1,2,4} 36

No. The increments are wrong (or equivalently the conditional dis-
tributions are wrong). The increment X,,, — X, is a2 normal with

variance t — 2s(1/1 +t/s— 1), which is not ¢, and the increment is not
independent of X.

Yes. The increment X, ; — X is the sum of a normal N (0, tp?) and an
independent normal N (0, ¢(1—p?)), which is equal to a normal N(0, t)
in total. The increment is certainly independent of both histories
(Wy :u < s) and (W, : u < s), and hence also independent of the
history (X, : u < s).

As St 1s distributed as a normal random variable with mean uT and
variance 02T, the probability that this is negative is the same as the
probability that a normal N(0, 1) random variable is less than — /T /a.
This probability is positive.

dX; = exp(Wy) dW; + 4 exp(Wy) dt = Xy dW; + 1 X, dt.
X = Xoexp(ecW; + fg s ds — %azt).

We know that the processes can be written as dB; = f; dt and dX; =
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3.7

3.8

Appendices

oy AWy + py dt. Then
d(B.X;) = 4d((B: + X:)* - By ~ X7),
which by Ité is equal to
(By + X;)(dB; + dX;) + Y02 dt — B; dBy — X; dX; — 302 dt.

This itself simplifies to the desired answer. Alternatively, an application
of the product rules gives an immediate solution.

The formula will hold (by definition) for ¢ = 2. At time ¢t = 1, if the
first jump was ‘up’, then % will be g192/p1p2 with P-probability ps,
and ¢1G2/p192 with P-probability p». The (conditional) expectation is
then g192/p1 + @142/p1 = q1/p1. This is exactly what (; is, if the first
jump were up. The case where the first jump is down is similar.

At time t = 0, Ep(%|f0) = IEP(%) = Eg(1) = 1. This matches (p, as
we desired.

We have to prove the result for all s and ¢, such that s < ¢, and for all
possible X;. We note firstly that the s = 0 case follows immediately
from the fact that Eg(X) = Ep(22X), and that (; is 2 at time ¢. The
s =t case is also trivial, as both sides of the result are simply X;. So in
fact, we need only check the case s = 1, t = 2, for four cases of X5.
Take the case where X is the digital claim which only pays off 1 if the
process goes up twice. If the first jump was down, then both sides of
the result are zero, because X, and {3 X, must both be zero. If the first
jump was up, then the left-hand side is

Eq(X2|F1) = q2(1) + 42(0) = ¢2.

The right-hand side is

“Ep(GXo|F :’ﬂ( B2 1) 4 p o): .
¢ "Ep(QXs|F) Q1p2(p1pz) 22(0) | = @

Similarly, we can check the digital claims where X, pays off only after
an up-down, a down-up, and a down-down. This completes the
verification.
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39

3.10

3.11

Answers to exercises

The equivalence of (ii) and (ii)’ is immediate from the boxed theorem
about identifying normals. So too is the equivalence of (ii1) and (ii1)’,
as long as we note that the right-hand side of (iii)’ is independent of
the history Fs.

We can also note that (ii)’ 1s just a special case of (i1i)’ when s = 0. So
it is enough just to prove (u11)’. The left-hand side is

Eo(exp (8(Wips — Ws + 1)) | Fo)
= C‘;lEP (Cf--}—s eXp(Q(Wt+s - WS + ﬂyt)) | fs)
Here, ¢(; = IEP(%%LE). By property (iii) of the P-Brownian motion
W, 9 — exp(—yW,; — $7°T) exp(—y(Wr ~ W4)), where Wr — W is

a normal N(0,T — t) independent of F;, from which it follows that
& = exp(—yW; — 92T exp(37*(T —t)), which is just

(¢ = exp(—yW: — %’yzt).

Thus the left-hand side of (iii)’ becomes

exp (64t — %fyzt)IEp (exp((@ — ) (Wiys — Wy)) \ .7-'3).

Again using the fact that W, — W is a normal N (0, t) independent of
F,, the expectation part of the above is exp(3(8 — +)2t), which means
that the whole expression actually is exp(}6°t), as desired.

If v = 0, then X; = W;, which we know is a martingale by example
(2). If, however, v is not zero, then

E(X;|Fs) = E(Wi|Fs) + vt = Ws + 4t = X, +y(t — 5).

If 7 is not zero, then X is not a martingale, because of the extra term
~(t — s) above.

The function ¢ is bounded, in that there is a constant K such that
lo(t,w)| € K, for all t < T, and for all w in 2. Then exp(% fOT ag ds)
is bounded above by exp(%KzT) for all w, so its expectation is also
bounded by that constant. By the second collector’s guide box, the
local martingale X must also be a martingale.
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3.12

3.13

3.14

3.15

Appendices

To differentiate V; = Wt2 — t, we can treat the two terms Wt2 and —t
separately. The first of these can be handled by applying Ito’s formula
to the case f(z) = z?, with X; = W;. Then

d(f(Wy)) = f'(We) dW; + 3 " (Wy) dt = 2W; dW; + dt.

Also d(—t) = —dt, so we can deduce that dV;, = 2W,; dW;. In fact, V;

is a proper martingale, because if we let X be ( fOT i% dt)%, then it is
enough to show (collector’s guide) that E(X) < oo. In fact

(E(X))* < E(X?) = fTE(Wf) dt = 112
0

If we let L; be the logarithm of Z;, then L; = cW; + (u — r)t, and so
dL; = 0 dW; + (u — r) dt. The expression then follows from Ito.

If we change variables in the integral to v = —(z + 10°T) /o/T, then
Vo 18

1 ¢ ~oVTv—30°T —rTY ,— 30
— o v—30 _ r 3
Vo \/ﬂ/_ (Se ke )e dv,

where a is the constant (log$ + (r — 162)T)/ovT. By writing

- 1.2 1,2 1 2 .
exp(—ovTv — 30T — }v°) as exp(—}(v + ov/T)?), we can rewrite
the integral as

at+oVT T a
S 1,2 ke " 1.2
Vo = f e 2Y dv— ] e Y du.
T Vor Jow V27 Jeso

This can then be evaluated as
Vo = s®(a+ oVT) — ke "T®(a),

which 1s the expression we sought.

We needed to know that the drift was constant. So far, we can only
cancel constant drifts with our three-step plan. Later (section 6.1) we
will generalise this, but for the moment we need the drift to be constant,
even if we are indifferent to which constant it is.
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3.16

3.17

4.1

4.2

4.3

Answers to exercises

Simply evaluate the Black—Scholes formula with s = $10, & = $12,
w=0.15, 0 =0.20, r = 0.05 and T = 1. The option value is $0.325.

In this case X 15 $1 if S > $10, and is zero otherwise, where T is 1.
Hence by the derivative pricing formula

T — 0?T
Vo = Eo(B7'X) = e "TQ(Sr > $10) = ¢ T (f——iL) .

ovT
This has the numerical value of $0.532.

(i) Discounted, the asset is Z; = B; 1 X; = exp(ZJWt + (r ~ o?)t). Its
SDE is dZ; = Z;(20 dW, + (r + ¢2) dt), which has a non-vanishing drift
term. So Z; is not a Q-martingale, and thus X is not a tradable asset.
(ii) In this case, the discounted asset is Z; = B, X, = exp(»o:aWt =
art). Given that, ar = }(ao)?, the SDE of Z; is dZ;, = Z;(—ao th),
which is a Q-martingale. So X, is tradable.

Reeplace each dW;(t) by dW;(t) — v:(t) and substitute into the SDEs for
dY; and dZ; and see that the drift terms vanish.

The only difference between this example and the sterling case in the
text is that the exchange rate 1s the other way round. Before we
had the sterling/dollar rate (the worth of the local currency in domestic
terms), and here we have the dollar/yen rate (the worth of the domestic
currency in local terms). We should really be working with C; ! instead
of C, but the only difference is that the sign of the correlation changes.
Thus the forward price is Fy = exp(poi02)F, and not exp(—poi02)F,
where F is the local currency forward F' = e¥TSy. As exchange rates
tend to quote the ‘big’ number, the sign of p needed in any particular
instance depends on the actual pair of currencies in question.
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Appendix 4

Glossary of technical terms

Adapted

American call option

Arbitrage

Arbitrage free

Arbitrage price

Autoregressive
Average

Bank account process

Binomial process

Binomial representat-
ion theorem

Binomial tree

Black=Scholes

a process which depends only on the current position
and past movements of the driving processes. It is
unable to see into the future

a call option which can be exercised at any time up
to the option expiry date

the making of a guaranteed risk-free profit with a
trade or series of trades in the market

a market which has no opportunities for risk-free
profit

the only price for a security that allows no arbitrage
opportunity

of a process, that it is mean-reverting
the arithmetic mean of a sample

an account which is continuously compounded at the
prevailing instantaneous rate, and behaves like the cash

bond

a process on a binomial tree

a discrete-time version of the martingale representation
theorem on the binomial tree

a tree, each of whose nodes branches into two at the
next stage

a stock market model with an analytic option pricing
formula
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Bonds

Bond options

Brownian motion

Calculus

Call option
Cameron—Martin—

Girsanov theorem

Cap

Caplet
Cash bond

Central limit theorem

Change of measure

Claim

Commodity

Complete market

Glossary of technical terms

interest bearing securities which can either make reg-
ular interest payments and/or a lump sum payment at
maturity

an option to buy or sell a bond at a future date

the basic stochastic process formed by taking the
limit of finer and finer random walks. It is a mar-
tingale, with zero drift and unit volatility, and is not
Newtonian differentiable

generally a formal system of calculation, in particular
concerned with analysing behaviour in terms of in-
finitesimal changes of the variables. Newtonian calculus
handles smooth functions, but not Brownian motion
which requires the techniques of stochastic calculus.
[From calculus (Lat.), a pebble used in an abacus]

the option to buy a security at/by a future date for a
price specified now

a result which interprets equivalent change of mea-
sure as changing the drift of a Brownian motion

a contract which periodically pays the difference be-
tween current interest rate returns and a rate speci-

fied at the start, only if this difference is positive. A
cap can be used to protect a borrower against float-
ing interest rates being too high

an individual cap payment at some instant

a liquid continuously compounded bond which ap-
preciates at the instantaneous interest rate

a statistical result, which says that the average of a
sample of IID random variables is asymptotically nor-
mally distributed

viewing the same stochastic process under a differ-
ent set of likelihoods, changing the probabilities of
various events occurring

a payment which will be made in the future accord-
ing to a contract

a real thing, such as gold, oil or frozen concentrated
orange juice

a market in which every claim is hedgable
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Conditional
distribution

Conditional
expectation

Contingent claim

Continuous

Continuous-time
Continuously
compounded

Contract

Correlation

Coupon

Covariance

Cumulative normal
integral

Appendices

the distribution of a random variable conditional on
some information F, such as P(X < z}F)

taking an expectation given some history as known.
For instance the conditional expectation of the num-
ber of heads obtained in three tosses, given that the
first toss was heads, is two; whereas the uncondi-
tioned expectation is only one and a half. Written
E(-|F%), for conditioning on the history of the pro-
cess up to time ¢

a claim whose amount is determined by the be-
haviour of market securities up until the time it is
paid

a process or function which only changes by a small

amount when its variable or parameter is altered in-
finitesimally

a process which depends on a real-valued time pa-
rameter, allowing infinite divisibility of time

interest 15 compounded instantly, rather than annually
or monthly, leading to exponential growth

an agreement under law between two principals, or
counterparties

a measure of the linear dependence of two random
variables. If one variable gets larger as the other
does, the correlation is positive, and negative if one
gets larger as the other gets smaller. The limits of
one and minus one correspond to exact dependence,
whereas independent variables have zero correlation.
Formally correlation is the covariance of the random
variables divided by the square root of the product of
their individual variances

a periodic payment made by a bond

a measure of the relationship of two random vari-
ables, the covariance is zero if the variables are inde-
pendent (and vice versa in the case of jointly normal
random variables). Formally the covariance of two
variables is the expectation of their product less the
product of their expectations

see normal distribution function
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Currency

Default free

Density

Derivative

Difference equation

Diffusion
Digital

Discount

Discount bond

Discrete

Distribution

Distribution function

Glossary of technical terms

the monetary unit of a country or group of countries

there being no chance that the bond issuer will be
unable to meet his financial undertakings (used theo-
retically)

the probability density function f is the derivative (if
it exists) of the distribution function of a continuous
random variable. Intuitively, f(z) dx is the proba-
bility that X lies in the interval [z,z 4 dz]|. The
function f is non-negative, integrates to one, and can
be used to calculate expectations, and so forth, as

E(X?) = foo 22 f(x) de

— 00

a security whose value is dependent on (derived
from) existing underlying market securities. See also
contingent claim

the discrete analogue of a differential equation. For
example, to find the sequence () which obeys

QLp42 + b$n+1 +cx, = d

a stochastic process which is the solution to a SDE

a derivative which pays off a fixed amount if a given
future event happens, and nothing otherwise

scaling a future reward or cost down to reflect the
importance of now over later

a bond which promises to make a lump sum pay-
ment at a future date, but until then is worth less
than its face value

taking distinct, separated values; such as from the sets
N or {0, 6t,26t,...}

of a random variable, the description of the likeli-
hood of its every possible value

the (cumulative) distribution function F' of a random
variable is defined so that F'(z) is the probability that

the random variable is no larger than z. The
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Distribution function
(contd)

Dividends

Doléans exponential

Drift
Driftless

Equilibrium
distribution

Equities

Equivalent martingale
measure (EMM)

Equivalent measures

European call option

Exercise date

Exercise price

Exotics

Expectation

Exponential Brownian
motion

Exponential
martingales

Appendices

function F' increases (weakly) from 0 to 1. If F' is
differentiable, then its derivative is the density

regular but variable payments made by an equity

for a local martingale My, this is the solution of the
SDE dX;: = X dM;, which is another local martin-

gale X, = exp(M; — } [/ (dM)?)

the coefficient of the di term of a stochastic process
a process with constant zero drift

a distribution of a process which is stable under time

evolution

stocks which make dividend payments

see martingale measure

two measures [P and Q are equivalent if they agree
on which events have zero probability

a call option which can be exercised or not only at
the option exercise date. Compare with American call
option

a set future date at which an option may be exercised
or not

see strike price

new derivative securities, which will quickly either
become standard products or will sink without trace

the mean of a random variable, which will be the
limiting value of the average of an infinite number
of identical trials. For a discrete and a continuous
random variable (with density f) it is respectively

E(X)=> nP(X =n), E(X) =f°° of(z)dz

n=0

a process which is the exponential of a drifting
Brownian motion

the Doléans exponential of a martingale, which itself is

a (local) martingale

220



Filtration

Fixed

Floating

Floor

Floorlet

Foreign exchange

Forward

Forward rate

Fractal

Future
FX

Gaussian process

Heath=Jarrow—
Morton (HJM)

Hedge

History
Identically distributed

IID

Glossary of technical terms

the history, (F)¢>0, of a process, where F; is the
information about the path of the process up to
time ¢

of interest rates, that they are constant throughout
the term of the contract

of interest rates, that they can move with the market
over the term of the contract

a contract which periodically pays the difference be-
tween a rate specified at the start and current interest
rate returns, only if this difference is positive. A floor
can be used to protect a lender against floating inter-
est rates being too low. See also cp

which is to floors as caplets are to caps

the market which prices one currency in terms of
another

an agreement to buy or sell something at a future
date for a set price, called the forward price

the forward price of instantaneous borrowing

a geometrical shape which on a small-scale looks the
same as the large-scale, only smaller. A straight line
is a fractal of dimension one, and a Brownian motion
path is a fractal of dimension 1.5

a forward traded on an exchange
abbreviation for foreign exchange

a process, all of whose marginals are normally dis-
tributed, and all of whose joint distributions are
jointly normal

a model of the interest-rate market

to protect a position against the risk of market move-
ments

the information recording the path of a process

of random variables, have the same probabilistic dis-
tribution

abbreviation for Independent, Identically Distributed
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Independent

Indicator function

Induction

Instantaneous rate

Instruments
Interest rate
Interest rate market

Ito’s formula

Kolmogorov’s strong
law

Law of the
unconscious
statistician

LIBOR

Local martingale

Log-drift

Log-normal
distribution

Log-volatility

Long

Appendices

of variables, none of which have any relation or in-
fluence on any of the others

a function of a set which is one when the argument
lies in the set and zero when it is outside

a method of proof, involving the demonstration
that the current case follows from the previous case,
which itself then implies the next case, and so on

the rate of interest paid on a very very short term
loan

tradable securities or contracts
the rate at which interest is paid
the market which determines the time value of money

a stochastic version of the ‘chain rule’ which ex-
presses the volatility and drift of the function of a
stochastic process in terms of the volatility and drift
of the process itself and the derivatives of the func-
tion. If X; has volatility oy and drift p;, then Y; =
F(X:) has volatility f/(X;)o¢ and drife f/'(X;)us +

3f"(t)o?

see strong law

the result that if a random variable X has density f,
then the expectation of h(X) is

E(h(X)) = /_oo h(z)f(z)dzx

the London Inter-Bank Offer Rate. A daily set of
interest rates for various currencies and maturities

a stochastic process which is driftless, but not neces-
sarily a martingale

of a stochastic process X, the drift of log X,

a random variable whose logarithm is normally dis-
tributed

of X is the volatility of log X}, or equivalently the
volatility of dX;/X;

(of position) having a positive holding
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Marginal

Market

Market maker
Market price of risk
Markov

Martingale
Martingale measure
Martingale represent-
ation theorem

Maturity

Mean

Mean reversion

Measure

Multi-factor

Newtonian calculus

Newtonian function

Node

Noise

Glossary of technical terms

the marginal distribution of a process X at time ¢ is
the distribution of X; considered as a random vari-
able in isolation. Two processes may be different, vet
have exactly the same marginal distributions

a place for the exchanging of price information.
Commonly situated in electronic space

(in UK) a dealer who is obligated to quote and trade
at two-way prices

a standardised reward from risky investments in terms
of extra growth rate

of a process, meaning that its future behaviour is
independent of its past, conditional on the present

a process whose expected future value, conditional
on the past, is its current value. That is, E(M¢|F;)
equals M, for every s less than ¢

a measure under which a process is a martingale

a result which allows one martingale to be written
as the integral of a previsible process with respect to
another martingale

the time at which a bond will repay its principal, or
more generally the time at which any claim pays off

synonym for expectation

the property of a process which ensures that it keeps
returning to its long-term average

a collection of probabilities on the set of all possible
outcomes, describing how likely each one is

a market model which is driven by more than one
Brownian motion

classical differential and integral calculus, relating to
smooth or differentiable functions

a function which is smooth enough to have a classi-
cal (Newtonian) derivative

a point on a tree where branches start and finish

a loose term for volatility
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Normal distribution

Normal distribution
function

Numeraire

ODE
Option

Ornstein—Uhlenbeck
(O-U) process

Over-the-counter

Path probability

Payoff

PDE

Poisson process
Portfolio

Position

Previsible

Principal

Probability

Appendices

a continuous distribution, parameterised by a mean p

and variance ¢, written N (i, 02) with density

1 2
L e *_(f_zﬂ
V2ra? 20
the distribution function of the normal random wvari-
able, written ®(z) = P(N(0,1) < z)

a basic security relative to which the value of other
securities can be judged. Often the cash bond

abbreviation for Ordinary Differential Equation

a contract which gives the right but not the obliga-
tion to do something at a future date

a mean reverting stochastic process with SDE

dXt = O'th + (9 - O{Xt) dt

an agreement concluded directly between two par-
ties, without the mediation of an exchange

the probability of a tree process taking a particular
path through the tree. The probability will be the
product of the probabilities of the individual branches
taken

a payment

abbreviation for Partial Differential Equation
a type of random process with discontinuities
a collection of security holdings

the amount of a security held, which can either be
positive (a long position) or negative (a short posi-
tion)

a stochastic process which is adapted and is either
continuous or left-continuous with right-limits or is
a limit of such processes

the face value that a bond will pay back at maturity

the chance of an event occurring
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Process

Product rule

Put-call parity

Quantos

Radon-Nikodym
derivative

Random variable

Random walk

Recombinant tree

Replicating strategy

Risk free
Risk-neutral measure
SDE

Security
Self-financing

Semimartingale

Share
Short
Short rate

Single-factor

Glossary of technical terms

a sequence of random variables, parameterised by
time

a result giving the stochastic differential of the prod-
uct of two stochastic processes

the observation that the worth of a call less the price
of a put struck at the same price is the current worth
of a forward

cross-currency contracts, derivatives which pay off in
another currency

of one measure with respect to another is the relative
likelihood of each sample path under one measure
compared with the other

a function of a sample space

a discrete Markov process made up of the sum of a
number of independent steps. A simple symmetric
random walk is N-valued and after each time step

goes up one with probability % and down one with
probability %

a tree where branches can come together again

a self-financing portfolio trading strategy which hedges
a claim precisely

no chance of anything going wrong

a martingale measure

abbreviation for Stochastic Differential Equation
a piece of paper representing a promise

a strategy which never needs to be topped up with
extra cash nor can ever afford withdrawals

a process which can be decomposed into a local
martingale term and a drift term of finite variation

(in UK) a stock or equity
(of position) having a negative, or borrowed, holding
see instantaneous rate

a market model which is driven by only one Brown-
ian motion
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Standard deviation
Stochastic

Stochastic calculus

Stochastic process

Stock

Stock market

Strike price

Strong law

Swaps

Swaption

Taylor expansion

Term structure

Term variance

Term volatility

Time value of money

Appendices

the square root of the variance
synonym for random

a caleulus for random processes, such as those involv-
ing Brownian motion terms

a continuous process, which can be decomposed into
a Brownian motion term and a drift term

a security representing partial ownership of a com-
pany

a place for trading stocks

the price at which an asset may be bought or sold
under an option

the result that the average of a sample of n IID ran-
dom variables will converge to the mean of the dis-
tribution as n increases, given some technical condi-
tions

an agreement to make a series of fixed payments over
time and receive a corresponding series of payments
dependent on current interest rates, or vice versa

an option to enter into a swap agreement at a future
date

for Newtonian functions, the expression of the value
of a function f near x in terms of the value of it
and its derivatives at x, that is

flz+h) = flx)+hf (2)+3h2 f () + 1R " (). ..

the relationship between the interest rates demanded
on loans, and the length of the loans

the variance of the logarithm of a security price over

a time period, Var(log(Sr/So))

the effective (annualised) volatility of an asset over a
time period. Explicitly, its square is the tferm variance
divided by the length of the term:

&% = Var(log(S7/S0))/T

the difference between cash now, and cash later
which is subject to a discount
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Tower law

Tradable

Trading strategy

Transaction cost

Tree

Underlying

Vanilla

Variable coupon

Variance

Volatility

Weak law

Wiener process

With probability 1

Yield
Yield curve

Zero coupon

Glossary of technical terms

the result that E(E(X|%7) | Fs) = E(X|F), for
s<t

of an asset, that it can be traded either directly, or
indirectly by trading a matching portfolio

a continuous choice of portfolio, a choice which may
depend on market movements

a charge for buying or selling a security

a graph of nodes linked by branches which contains
no closed loops or circuits

a basic market security, such as stocks, bonds and
currencies

of a product, the standard basic version

periodic payments from a floating interest-rate con-
tract

a measure of the uncertainty of a random variable.
Formally, the expectation of its square less the square
of its expectation, or equivalently the expected square
of the difference between the random variable and its
mean

the amount of ‘noise’ or variability of a process,
more precisely, the coefficient of the Brownian mo-
tion term of a stochastic process

the result that the average of n IID random variables
is increasingly less likely to be significantly different
from the distribution mean as n increases

synonym for Brownian motion

of an event, having probability one of occurring,.
This is not quite the same as being guaranteed for
sure, as, for example, a normal random variable can

take the value zero, but with probability one it will
not

the average interest rate offered by a bond
the graph of yield plotted against bond maturity

a bond which does not make any payments until
maturity
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adapted processes, 55, 62
American options, 93
arbitrage, 8, 39, 41
arbitrage price, 8, 86, 139
arbitrage-free, 197
arbitrage pricing, 7-9
arbitrage-free complete models,
196-200

autoregressive process, 156

Bachelier, 45
bank account process, see cash bond
binomial

branch, 11

branch model, 10-17

distribution, 42

process, 46

tree, 19

tree model, 17-28
binomial representation theorem,

2841, 77

Black—Derman—Toy model, 157
Black—Karasinski model, 157
Black—-Scholes, 83-98

currency model, 100

Index
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formula, 43, 91, 182
hedge, 96
model, 83, 178
summary, 90
bond only strategy, 12
bond options, 169
bond prices, 144
bonds, 112-115
with coupons, 114, 165
Brace—Gatarek—Musiela model, 175
branch, 10
binomial branch process, 11
Brown, Robert, 46
Brownian motion, 44—46, 48, 49, 54
as stock model, 50
exponential with drift, 51
two-dimensional, 62
with drift, 50

calculus
It6, 5762
Newtonian, 52
stochastic, 51-57
call option, 9, 43, 90
American, 93



European, 90
foreign exchange, 103
on bonds, 169
on coupon bonds, 115, 170
on dividend paying stocks, 109
on swaps, see swaptions
quanto, 123
Cameron—Martin—Girsanov theorem,
74, 75
n-factor, 159, 186, 187
and market price of risk, 120
converse, 74, 105, 192
use in foreign exchange, 102
use in HJM models, 138, 145
use in stock models, 83, 84, 179
caplet, 171, 176
caps, 170
cash bond, 11, 18, 37, 136, 144
foreign currency, 100
central limit theorem, 42, 47, 48
change of measure, 62-76, 145, 179,
187
claim, 3, 20, 30
coin-tossing game, 4, 5
collector’s guide to
exponential martingales, 79
martingales, 79
commodity, 3
complete market, 197
completeness, 196—200
conditional expectation, 32
conditional marginal distribution, 48,
69
construction strategies, 79-83
contingent claim, see claim
continuous compounding, 5

continuous processes, 44-51

Index
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correlation, 123, 126, 158, 176, 182,
193
coupon bonds, 114, 165
options on, 115, 170
coupons
fixed rate, 165
floating rate, 166
covariance, 124, 158
Cox—Ingersoll-Ross model, 156
CrOss-currency contracts, see quantos
cumulative normal integral, see nor-
mal distribution function

currency, see foreign exchange

default free, 129
delta hedge, 181
density, 7
derivative, 3, 12
derivative pricing, 181, 188
difference equation, 40, 80
diffusion, 61, 150
digital contract, 27, 123
discount bond, 112, 129
discount process, 37, 87
discounted
bond, 138, 145
claim, 38, 87, 90
expectation, 20, 28
stock, 38, 87, 90, 179
discrete model
conclusions, 41
continuous overture, 4143
distribution function
normal, 43, 91
dividends, 106-112
continuous, 107
periodic, 111

dollar investor, 101



Doléans exponential, 61
Doob—Meyer decomposition, 56
double fork, 20
drift, 52, 55, 83
HJM, 143, 158
HJM constraints on, 141, 148
uniqueness, 56
driftlessness, 78

equilibrium distribution, 154
equities, 106—-112

guaranteed profits example, 110
equivalent martingale measure, 197—

200

also, see martingale measure
equivalent measures, 66, 74
European call option, 90
examples

pricing on tree, 23
exercise date, 91
exercise price, see strike price
existence of martingale measure, 40
exotic contracts, 128, 163
expectation, 4, 9, 23

discounted claim, 40

for a branch, 12

on a tree, 21

operator, 31

pricing, 3-7, 16, 86

re-emergence, 23

regained, 16

vs arbitrage, 9
exponential Brownian motion, 60,

84, 85
with drift, 51

exponential martingale, 79, 85

fileration, 30, 48

Index
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fixed rate, 165, 167, 168
floating rate, 166, 167
floorlet, 171
floors, 170
foreign exchange, 99-106, 122
interest rate models, 192-196
forward, 6, 11, 17
foreign exchange, 99, 103
interest rate, 133, 163
quanto, 123
use in option formula, 169, 182
forward measure, 165, 191
forward rate, 134-136, 142
bond price formula, 144
curve, 134
drift, 143, 158
under forward measure, 192
volatility, 143, 158
forward swaps, 168
fractal, 49
Fubini, 143

Gaussian process, 50

Harrison and Pliska, 197, 200

Heath—Jarrow—Morton, see HIM

hedge, 94, 145, 180, 188
Black—Scholes, 96

hedging strategy, see replicating strat-

cgy

history, 20, 30

HJM, 142, 158
conditions, 143, 148, 159
equivalence to short-rate, 150
multi-factor, 158-163
single-factor, 142—149
universality, 149



Ho and Lee model, 151, 169, 172,
174
Hull and White model, see Vasicek

IID variables, 47, 58
illustrated definitions, 29
independence, 4, 21, 46, 48
indicator function, 199
induction, 19, 22
backwards, 19
inductive step, 22, 36
result, 22
instantaneous rate, 132, 135, 136,
144
Markovian, 150
instruments, 3, 11, 83, 100, 128
interest rate, 18
foreign exchange model, 193
market, 128—-135
multi-factor models, 172—-177
products, 163-172
riskless, 83
short-rate models, 149-158
simple model, 135-142
Ité calculus, 57-62
Itds formula, 59, 61, 81, 83
n-factor, 185

Jamshidian, 170
joint likelihood function, 70

Kolmogorov’s law of large numbers,

see strong law

law of the unconscious statistician, 7

LIBOR rate, 166, 168, 170, 175-176

under forward measure, 191
local martingales, 79
log-drift, 60
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log-normal
call formula, 103
distribution, 6
models, 181-183
log-volatility, 60
long position, 96, 168, 172

marginal distribution, 48
conditional, 48, 69
market maker, 14
market price of risk, 115-122
definition, 119
in general models, 179, 188
in HJM models, 141, 145, 147
Markov process, 144, 150
martingale, 33, 76
exponential, 79
martingale measure, 34, 44, 76, 197
continuous model, 85, 87
discrete model, 34-39
existence and uniqueness, 40
Martingale representation theorem,
78
martingale representation theorem,
76-79, 94
n-factor, 161, 186, 188
and dividend payments, 108, 112
and tradable assets, 116
use in foreign exchange, 102
use in HJM, 139, 146
use in stock models, 83—85, 88,
180
maturity, 129
mean, see expectation
mean reversion, 155
measure, 30, 63
multi-factor models, 172
HJM, 158



normal models, 174

multiple payment contracts, 164

Newtonian calculus, 52
Newtonian differentials, 51
uniqueness, 53
Newtonian function, 52
node, 10
noise, 41, 50
non-tradable quantity, 116-118, 120
normal distribution
function, 43, 91
identification, 72
numeraires, 143, 188-192
changing, 190
with volatility, 189

option, 9, 43, 90, 94
ordinary differential equation, 53
Ornstein—Uhlenbeck process, 173

over-the-counter, 163

partial differential equation, 95
path probabilities, 21
payoff, 4, 15, 103, 147
Pliska, 197, 200
Poisson process, 55
portfolio, 80
position, 96
previsible process, 32, 56, 78, 80
price is right, the, 14
principal, 165-167
probability, 4
probability density function, 7
process, 29
stochastic, 55
product rule, 62, 138, 189
n-factor, 185
pull to par, 114
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put option, 91
put-call parity, 91, 171

quantos, 122-127, 183

Radon—Nikodym derivative, 63—68,
73
changing numeraire, 105, 190—
192, 196
continuous time, 69, 71
random variable, 7, 12, 32, 65
random walk, 46
recombinant tree, 23
replicating strategy, 8, 12, 40
continuous model, 82, 86, 180
discrete model, 13, 22-23
foreign exchange, 102
HJM model, 137, 146, 164
Riccati differential equation, 156
risk-free construction, see replicating
strategy
risk-neutral measure, 120

also, see martingale measure

SDE, 56
self-financing, 3940, 80, 180
equation, 81, 89, 162, 189
in HIM model, 139, 147
semimartingale, 55, 56
share, 3
short position, 80, 82
short rate, see instantaneous rate
single-factor models
HJM, 142
short-rate models, 149
standard deviation, 6
sterling investor, 104
stochastic

n-factor process, 184



calculus, 51-57
differential equation, 56
differentials, 54
process, 55
stock, 10, 17
stock model
n-factor model, 186
general model, 178-181
multiple stocks, 183188
stocks and bonds together, 13
stocks not coins, 6
stopping time, 93
strike price, 9, 91, 96
strong law, 4, 5, 13, 15
misleading nature, 6-9, 16, 23, 30
weak law and, 59
swaps, 167, 171
forward, 168
options on, 171, 176
swaptions, 171, 176

Taylor expansion, 58
term structure, 131
term variance, 173
term volatility, 169, 175, 182
terminal value pricing, 95
three steps to replication, 84
discounted case, 90
foreign exchange, 101
interest rates, 137
time value of money, 5, 129
tower law, 34, 77, 166
tradable asset, 101, 116—118
trading strategy, 40, 81
transaction cost, 17, 83
tree, 17, 19
binomial, 17

complexity of, 19

Index

financial applications, 36
pricing conclusions, 27
recombinant, 23
strategy construction, 38
two-step, 20, 63
two-dimensional Brownian motion,
62
two-factor model, 172
two-step tree, 20, 63

underlying asset, 3
uniqueness of
martingale measure, 40
Newtonian differentials, 53
volatility and drift, 56

vanilla, 73, 99
variable coupon, 166, 168
variance, 42, 47, 58
Vasicek model, 153, 169, 174
view, admiring the, 98
volatility, 55, 83

HJM, 143, 158

term volatility, 169

uniqueness, 56

weak law, 59
whole story in one step, 15

Wiener process, 50
X-ray vision, 37

yield, 130, 135
yield curve, 131
inverted, 132, 133

zero coupon bond, 135

zoo of the new, 3



