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Preface

Linear algebra is one of the core topics studied at university level
by students on many different types of degree programme. Alongside
calculus, it provides the framework for mathematical modelling in many
diverse areas. This text sets out to introduce and explain linear algebra
to students from any discipline. It covers all the material that would
be expected to be in most first-year university courses in the subject,
together with some more advanced material that would normally be
taught later.

The book has drawn on our extensive experience over a number of
years in teaching first- and second-year linear algebra to LSE under-
graduates and in providing self-study material for students studying at
a distance. This text represents our best effort at distilling from our
experience what it is that we think works best in helping students not
only to do linear algebra, but to understand it. We regard understand-
ing as essential. ‘Understanding’ is not some fanciful intangible, to be
dismissed because it does not constitute a ‘demonstrable learning out-
come’: it is at the heart of what higher education (rather than merely
more education) is about. Linear algebra is a coherent, and beauti-
ful, part of mathematics: manipulation of matrices and vectors leads,
with a dash of abstraction, to the underlying concepts of vector spaces
and linear transformations, in which contexts the more mechanical,
manipulative, aspects of the subject make sense. It is worth striving for
understanding, not only because of the inherent intellectual satisfaction,
but because it pays off in other ways: it helps a student to work with the
methods and techniques because he or she knows why these work and
what they mean.

Large parts of the material in this book have been adapted and devel-
oped from lecture notes prepared by MH for the Mathematical Methods
course at the LSE, a long-established course which has a large audience,
and which has evolved over many years. Other parts have been influ-
enced by MA’s teaching of non-specialist first-year courses and second-
year linear algebra. Both of us have written self-study materials for

 



xiv Preface

students; some of the book is based on material originally produced
by us for the programmes in economics, management, finance and the
social sciences by distance and flexible learning offered by the Univer-
sity of London International Programmes (www.londoninternational.
ac.uk).

We have attempted to write a user-friendly, fairly interactive and
helpful text, and we intend that it could be useful not only as a course
text, but for self-study. To this end, we have written in what we hope is an
open and accessible – sometimes even conversational – style, and have
included ‘learning outcomes’ and many ‘activities’ and ‘exercises’. We
have also provided a very short introduction just to indicate some of the
background which a reader should, ideally, possess (though if some of
that is lacking, it can easily be acquired in passing).

Reading a mathematics book properly cannot be a passive activity:
the reader should interrogate the text and have pen and paper at the ready
to check things. To help in this, the chapters contain many activities –
prompts to a reader to be an ‘active’ reader, to pause for thought and
really make sure they understand what has just been written, or to think
ahead and anticipate what is to come next. At the end of chapters, there
are comments on most of the activities, which a reader can consult to
confirm his or her understanding.

The main text of each chapter ends with a brief list of ‘learning
outcomes’. These are intended to highlight the main aspects of the
chapter, to help a reader review and consolidate what has been read.

There are carefully designed exercises towards the end of each
chapter, with full solutions (not just brief answers) provided at the end
of the book. These exercises vary in difficulty from the routine to the
more challenging, and they are one of the key ingredients in helping a
reader check his or her understanding of the material. Of course, these
are best made use of by attempting them seriously before consulting the
solution. (It’s all very easy to read and agree with a solution, but unless
you have truly grappled with the exercise, the benefits of doing so will
be limited.)

We also provide sets of additional exercises at the end of each
chapter, which we call Problems as the solutions are not given. We hope
they will be useful for assignments by teachers using this book, who will
be able to obtain solutions from the book’s webpage. Students will gain
confidence by tackling, and solving, these problems, and will be able to
check many of their answers using the techniques given in the chapter.

Over the years, many people – students and colleagues – have
influenced and informed the way we approach the teaching of linear
algebra, and we thank them all.

 



Preliminaries: before we
begin

This short introductory chapter discusses some very basic aspects of
mathematics and mathematical notation that it would be useful to be
comfortable with before proceeding. We imagine that you have studied
most (if not all) of these topics in previous mathematics courses and
that nearly all of the material is revision, but don’t worry if a topic is
new to you. We will mention the main results which you will need to
know. If you are unfamiliar with a topic, or if you find any of the topics
difficult, then you should look up that topic in any basic mathematics
text.

Sets and set notation

A set may be thought of as a collection of objects. A set is usually
described by listing or describing its members inside curly brackets.
For example, when we write A = {1, 2, 3}, we mean that the objects
belonging to the set A are the numbers 1, 2, 3 (or, equivalently, the set
A consists of the numbers 1, 2 and 3). Equally (and this is what we
mean by ‘describing’ its members), this set could have been written
as

A = {n | n is a whole number and 1 ≤ n ≤ 3}.

Here, the symbol | stands for ‘such that’. (Sometimes, the symbol ‘:’ is
used instead.) As another example, the set

B = {x | x is a reader of this book}

has as its members all of you (and nothing else). When x is an object
in a set A, we write x ∈ A and say ‘x belongs to A’ or ‘x is a member
of A’.

 



2 Preliminaries: before we begin

The set which has no members is called the empty set and is denoted
by ∅. The empty set may seem like a strange concept, but it has its uses.

We say that the set S is a subset of the set T , and we write S ⊆ T ,
or S ⊂ T , if every member of S is a member of T . For example,
{1, 2, 5} ⊆ {1, 2, 4, 5, 6, 40}. The difference between the two symbols
is that S ⊂ T means that S is a proper subset of T , meaning not all
of T , and S ⊆ T means that S is a subset of T and possibly (but not
necessarily) all of T . So in the example just given we could have also
written {1, 2, 5} ⊂ {1, 2, 4, 5, 6, 40}.

Given two sets A and B, the union A ∪ B is the set whose members
belong to A or B (or both A and B); that is,

A ∪ B = {x | x ∈ A or x ∈ B}.
For example, if A = {1, 2, 3, 5} and B = {2, 4, 5, 7}, then A ∪ B =
{1, 2, 3, 4, 5, 7}.

Similarly, we define the intersection A ∩ B to be the set whose
members belong to both A and B:

A ∩ B = {x | x ∈ A and x ∈ B}.
So, if A = {1, 2, 3, 5} and B = {2, 4, 5, 7}, then A ∩ B = {2, 5}.

Numbers

There are some standard notations for important sets of numbers. The
set R of real numbers, the ‘normal’ numbers you are familiar with,
may be thought of as the points on a line. Each such number can be
described by a decimal representation.

The set of real numbers R includes the following subsets: N, the set
of natural numbers, N = {1, 2, 3, . . . }, also referred to as the positive
integers; Z, the set of all integers, {. . . , −3, −2, −1, 0, 1, 2, 3, . . .}; and
Q, the set of rational numbers, which are numbers that can be written as
fractions, p/q, with p, q ∈ Z, q 
= 0. In addition to the real numbers,
there is the set C of complex numbers. You may have seen these before,
but don’t worry if you have not; we cover the basics at the start of
Chapter 13, when we need them.

The absolute value of a real number a is defined by

|a| =
{

a if a ≥ 0
−a if a ≤ 0

.

So the absolute value of a equals a if a is non-negative (that is, if a ≥ 0),
and equals −a otherwise. For instance, |6| = 6 and | − 2.5| = 2.5. Note
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that
√

a2 = |a|,
since by

√
x we always mean the non-negative square root to avoid

ambiguity. So the two solutions of the equation x2 = 4 are x = ±2
(meaning x = 2 or x = −2), but

√
4 = 2.

The absolute value of real numbers satisfies the following
inequality:

|a + b| ≤ |a| + |b|, a, b ∈ R.

Having defined R, we can define the set R2 of ordered pairs (x, y) of
real numbers. Thus, R2 is the set usually depicted as the set of points in
a plane, x and y being the coordinates of a point with respect to a pair
of axes. For instance, (−1, 3/2) is an element of R2 lying to the left of
and above (0, 0), which is known as the origin.

Mathematical terminology

In this book, as in most mathematics texts, we use the words ‘definition’,
‘theorem’ and ‘proof’, and it is important not to be daunted by this
language if it is unusual to you. A definition is simply a precise statement
of what a particular idea or concept means. Definitions are hugely
important in mathematics, because it is a precise subject. A theorem is
just a statement or result. A proof is an explanation as to why a theorem
is true. As a fairly trivial example, consider the following:

Definition: An integer n is even if it is a multiple of 2; that is, if n = 2k
for some integer k.

Note that this is a precise statement telling us what the word ‘even’
means. It is not to be taken as a ‘result’: it’s defining what the word
‘even’ means.

Theorem: The sum of two even integers is even. That is, if m, n are
even, so is m + n.

Proof: Suppose m, n are even. Then, by the definition, there are integers
k, l such that m = 2k and n = 2l. Then

m + n = 2k + 2l = 2(k + l).

Since k + l is an integer, it follows that m + n is even. �
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Note that, as here, we often use the symbol � to denote the end of
a proof. This is just to make it clear where the proof ends and the
following text begins.

Occasionally, we use the term ‘corollary’. A corollary is simply a
result that is a consequence of a theorem and perhaps isn’t ‘big’ enough
to be called a theorem in its own right.

Don’t worry about this terminology if you haven’t met it before. It
will become familiar as you work through the book.

Basic algebra

Algebraic manipulation

You should be capable of manipulating simple algebraic expressions
and equations.

You should be proficient in:

� collecting up terms; for example, 2a + 3b − a + 5b = a + 8b
� multiplication of variables; for example,

a(−b) − 3ab + (−2a)(−4b) = −ab − 3ab + 8ab = 4ab

� expansion of bracketed terms; for example,

−(a − 2b) = −a + 2b,

(2x − 3y)(x + 4y) = 2x2 − 3xy + 8xy − 12y2

= 2x2 + 5xy − 12y2.

Powers

When n is a positive integer, the nth power of the number a, denoted
an, is simply the product of n copies of a; that is,

an = a × a × a × · · · × a︸ ︷︷ ︸
n times

.

The number n is called the power, exponent or index. We have the power
rules (or rules of exponents),

ar as = ar+s, (ar )s = ars,

whenever r and s are positive integers.
The power a0 is defined to be 1.
The definition is extended to negative integers as follows. When n

is a positive integer, a−n means 1/an. For example, 3−2 is 1/32 = 1/9.
The power rules hold when r and s are any integers, positive, negative
or zero.
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When n is a positive integer, a1/n is the positive nth root of a; this
is the positive number x such that xn = a. For example, a1/2 is usually
denoted by

√
a, and is the positive square root of a, so that 41/2 = 2.

When m and n are integers and n is positive, am/n is (a1/n)m
. This

extends the definition of powers to the rational numbers (numbers which
can be written as fractions). The definition is extended to real numbers
by ‘filling in the gaps’ between the rational numbers, and it can be
shown that the rules of exponents still apply.

Quadratic equations

It is straightforward to find the solution of a linear equation, one of
the form ax + b = 0 where a, b ∈ R. By a solution, we mean a real
number x for which the equation is true.

A common problem is to find the set of solutions of a quadratic
equation

ax2 + bx + c = 0,

where we may as well assume that a 
= 0, because if a = 0 the equation
reduces to a linear one. In some cases, the quadratic expression can
be factorised, which means that it can be written as the product of two
linear terms. For example,

x2 − 6x + 5 = (x − 1)(x − 5),

so the equation x2 − 6x + 5 = 0 becomes (x − 1)(x − 5) = 0. Now,
the only way that two numbers can multiply to give 0 is if at least one
of the numbers is 0, so we can conclude that x − 1 = 0 or x − 5 = 0;
that is, the equation has two solutions, 1 and 5.

Although factorisation may be difficult, there is a general method for
determining the solutions to a quadratic equation using the quadratic
formula, as follows. Suppose we have the quadratic equation ax2 +
bx + c = 0, where a 
= 0. Then the solutions of this equation are

x1 = −b − √
b2 − 4ac

2a
x2 = −b + √

b2 − 4ac

2a
.

The term b2 − 4ac is called the discriminant.

� If b2 − 4ac > 0, the equation has two real solutions as given above.
� If b2 − 4ac = 0, the equation has exactly one solution, x =

−b/(2a). (In this case, we say that this is a solution of multiplicity
two.)
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� If b2 − 4ac < 0, the equation has no real solutions. (It will have
complex solutions, but we explain this in Chapter 13.)

For example, consider the equation 2x2 − 7x + 3 = 0. Using the
quadratic formula, we have

x = −b ± √
b2 − 4ac

2a
= 7 ± √

49 − 4(2)(3)

2(2)
= 7 ± 5

4
.

So the solutions are x = 3 and x = 1
2 .

The equation x2 + 6x + 9 = 0 has one solution of multiplicity 2; its
discriminant is b2 − 4ac = 36 − 9(4) = 0. This equation is most easily
solved by recognising that x2 + 6x + 9 = (x + 3)2, so the solution is
x = −3.

On the other hand, consider the quadratic equation

x2 − 2x + 3 = 0;

here we have a = 1, b = −2, c = 3. The quantity b2 − 4ac is negative,
so this equation has no real solutions. This is less mysterious than it
may seem. We can write the equation as (x − 1)2 + 2 = 0. Rewriting
the left-hand side of the equation in this form is known as completing
the square. Now, the square of a number is always greater than or equal
to 0, so the quantity on the left of this equation is always at least 2 and
is therefore never equal to 0. The quadratic formula for the solutions to
a quadratic equation is obtained using the technique of completing the
square. Quadratic polynomials which cannot be written as a product of
linear terms (so ones for which the discriminant is negative) are said to
be irreducible.

Polynomial equations

A polynomial of degree n in x is an expression of the form

Pn(x) = a0 + a1x + a2x2 + · · · + anxn,

where the ai are real constants, an 
= 0, and x is a real variable. For
example, a quadratic expression such as those discussed above is a
polynomial of degree 2.

A polynomial equation of degree n has at most n solutions. For
example, since

x3 − 7x + 6 = (x − 1)(x − 2)(x + 3),

the equation x3 − 7x + 6 = 0 has three solutions; namely, 1, 2, −3.
The solutions of the equation Pn(x) = 0 are called the roots or zeros
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of the polynomial. Unfortunately, there is no general straightforward
formula (as there is for quadratics) for the solutions to Pn(x) = 0 for
polynomials Pn of degree larger than 2.

To find the solutions to P(x) = 0, where P is a polynomial of degree
n, we use the fact that if α is such that P(α) = 0, then (x − α) must
be a factor of P(x). We find such an a by trial and error and then write
P(x) in the form (x − α)Q(x), where Q(x) is a polynomial of degree
n − 1.

As an example, we’ll use this method to factorise the cubic poly-
nomial x3 − 7x + 6. Note that if this polynomial can be expressed as a
product of linear factors, then it will be of the form

x3 − 7x + 6 = (x − r1)(x − r2)(x − r3),

where its constant term is the product of the roots: 6 = −r1r2r3. (To
see this, just substitute x = 0 into both sides of the above equation.) So
if there is an integer root, it will be a factor of 6. We will try x = 1.
Substituting this value for x , we do indeed get 1 − 7 + 6 = 0, so (x − 1)
is a factor. Then we can deduce that

x3 − 7x + 6 = (x − 1)(x2 + λx − 6)

for some number λ, as the coefficient of x2 must be 1 for the product to
give x3, and the constant term must be −6 so that (−1)(−6) = 6, the
constant term in the cubic. It only remains to find λ. This is accomplished
by comparing the coefficients of either x2 or x in the cubic polynomial
and the product. The coefficient of x2 in the cubic is 0, and in the product
the coefficient of x2 is obtained from the terms (−1)(x2) + (x)(λx), so
that we must have λ − 1 = 0 or λ = 1. Then

x3 − 7x + 6 = (x − 1)(x2 + x − 6),

and the quadratic term is easily factorised into (x − 2)(x + 3); that is,

x3 − 7x + 6 = (x − 1)(x − 2)(x + 3).

Trigonometry

The trigonometrical functions, sin θ and cos θ (the sine function and
cosine function), are very important in mathematics. You should know
their geometrical meaning. (In a right-angled triangle, sin θ is the ratio
of the length of the side opposite the angle θ to the length of the
hypotenuse, the longest side of the triangle; and cos θ is the ratio of the
length of the side adjacent to the angle to the length of the hypotenuse.)
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It is important to realise that throughout this book angles are mea-
sured in radians rather than degrees. The conversion is as follows: 180
degrees equals π radians, where π is the number 3.141 . . .. It is good
practice not to expand π or multiples of π as decimals, but to leave them
in terms of the symbol π . For example, since 60 degrees is one-third of
180 degrees, it follows that in radians 60 degrees is π/3.

The sine and cosine functions are related by the fact that
cos x = sin(x + π

2 ), and they always take a value between 1 and −1.
Table 1 gives some important values of the trigonometrical functions.

There are some useful results about the trigonometrical functions,
which we use now and again. In particular, for any angles θ and φ, we
have

sin2 θ + cos2 θ = 1,

sin(θ + φ) = sin θ cos φ + cos θ sin φ

and

cos(θ + φ) = cos θ cos φ − sin θ sin φ.

Table 1

θ sin θ cos θ

0 0 1

π/6 1/2
√

3/2

π/4 1/
√

2 1/
√

2

π/3
√

3/2 1/2

π/2 1 0

A little bit of logic

It is very important to understand the formal meaning of the word ‘if’
in mathematics. The word is often used rather sloppily in everyday life,
but has a very precise mathematical meaning. Let’s give an example.
Suppose someone tells you ‘If it rains, then I wear a raincoat’, and
suppose that this is a true statement. Well, then suppose it rains. You
can certainly conclude the person will wear a raincoat. But what if it
does not rain? Well, you can’t conclude anything. The statement only
tells you about what happens if it rains. If it does not, then the person
might, or might not, wear a raincoat. You have to be clear about this:
an ‘if–then’ statement only tells you about what follows if something
particular happens.
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More formally, suppose P and Q are mathematical statements (each
of which can therefore be either true or false). Then we can form the
statement denoted P =⇒ Q (‘P implies Q’ or, equivalently, ‘if P , then
Q’), which means ‘if P is true, then Q is true’. For instance, consider
the theorem we used as an example earlier. This says that if m, n are
even integers, then so is m + n. We can write this as

m, n even integers =⇒ m + n is even.

The converse of a statement P =⇒ Q is Q =⇒ P and whether that
is true or not is a separate matter. For instance, the converse of the
statement just made is

m + n is even =⇒ m, n even integers.

This is false. For instance, 1 + 3 is even, but 1 and 3 are not.
If, however, both statements P =⇒ Q and Q =⇒ P are true, then

we say that Q is true if and only if P is. Alternatively, we say that P
and Q are equivalent. We use the single piece of notation P ⇐⇒ Q
instead of the two separate P =⇒ Q and Q =⇒ P . 



1

Matrices and vectors

Matrices and vectors will be the central objects in our study of linear
algebra. In this chapter, we introduce matrices, study their properties
and learn how to manipulate them. This will lead us to a study of vectors,
which can be thought of as a certain type of matrix, but which can more
usefully be viewed geometrically and applied with great effect to the
study of lines and planes.

1.1 What is a matrix?

Definition 1.1 (Matrix) A matrix is a rectangular array of numbers or
symbols. It can be written as

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎞⎟⎟⎟⎠ .

We denote this array by the single letter A or by (ai j ), and we say that
A has m rows and n columns, or that it is an m × n matrix. We also say
that A is a matrix of size m × n.

The number ai j in the i th row and j th column is called the (i, j)
entry. Note that the first subscript on ai j always refers to the row and
the second subscript to the column.

Example 1.2 The matrix

A =
⎛⎝ 2 1 7 8

0 −2 5 −1
4 9 3 0

⎞⎠
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is a 3 × 4 matrix whose entries are integers. For this matrix, a23 = 5,
since this is the entry in the second row and third column.

Activity 1.3 In Example 1.2 above, what is a32?

A square matrix is an n × n matrix; that is, a matrix with the same
number of rows as columns. The diagonal of a square matrix is the list
of entries a11, a22, . . . , ann.

A diagonal matrix is a square matrix with all the entries which are
not on the diagonal equal to 0. So A is diagonal if it is n × n and ai j = 0
if i 
= j . Then A looks as follows:⎛⎜⎜⎜⎝

a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

⎞⎟⎟⎟⎠ .

Activity 1.4 Which of these matrices are diagonal?⎛⎝−3 0 0
0 2 1
0 0 1

⎞⎠ ,

⎛⎝ 0 0 0
0 −1 0
0 0 2

⎞⎠ ,

(
2 0 0
0 1 0

)
.

Definition 1.5 (Equality) Two matrices are equal if they are the same
size and if corresponding entries are equal. That is, if A = (ai j ) and
B = (bi j ) are both m × n matrices, then

A = B ⇐⇒ ai j = bi j 1 ≤ i ≤ m, 1 ≤ j ≤ n.

1.2 Matrix addition and scalar multiplication

If A and B are two matrices, then provided they are the same size we
can add them together to form a new matrix A + B. We define A + B
to be the matrix whose entries are the sums of the corresponding entries
in A and B.

Definition 1.6 (Addition) If A = (ai j ) and B = (bi j ) are both m × n
matrices, then

A + B = (ai j + bi j ) 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We can also multiply any matrix by a real number, referred to as a scalar
in this context. If λ is a scalar and A is a matrix, then λA is the matrix
whose entries are λ times each of the entries of A.
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Definition 1.7 (Scalar multiplication) If A = (ai j ) is an m × n matrix
and λ ∈ R, then

λA = (λai j ) 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Example 1.8

A + B =
(

3 1 2
0 5 −2

)
+
(−1 1 4

2 −3 1

)
=
(

2 2 6
2 2 −1

)

−2A = −2
(

3 1 2
0 5 −2

)
=
(−6 −2 −4

0 −10 4

)
.

1.3 Matrix multiplication

Is there a way to multiply two matrices together? The answer is some-
times, depending on the sizes of the matrices. If A and B are matrices
such that the number of columns of A is equal to the number of rows
of B, then we can define a matrix C which is the product of A and
B. We do this by saying what the entry ci j of the product matrix AB
should be.

Definition 1.9 (Matrix multiplication) If A is an m × n matrix and
B is an n × p matrix, then the product is the matrix AB = C = (ci j )
with

ci j = ai1b1 j + ai2b2 j + · · · + ainbnj .

Although this formula looks daunting, it is quite easy to use in practice.
What it says is that the element in row i and column j of the product
is obtained by taking each entry of row i of A and multiplying it by the
corresponding entry of column j of B, then adding these n products
together.

row i of A −→

⎛⎜⎜⎜⎜⎜⎝ ai1 ai2 · · · ain

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

b1 j

b2 j
...

bnj

⎞⎟⎟⎟⎠ .

↑
column j of B

What size is C = AB? The matrix C must be m × p since it will have
one entry for each of the m rows of A and each of the p columns of B.
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Example 1.10 In the following product, the element in row 2 and
column 1 of the product matrix (indicated in bold type) is found, as
described above, by using the row and column printed in bold type.

AB =

⎛⎜⎜⎝
1 1 1
2 0 1
1 2 4
2 2 −1

⎞⎟⎟⎠
⎛⎝ 3 0

1 1
−1 3

⎞⎠ =

⎛⎜⎜⎝
3 4
5 3
1 14
9 −1

⎞⎟⎟⎠ .

This entry is 5 because

(2)(3) + (0)(1) + (1)(−1) = 5.

Notice the sizes of the three matrices. A is 4 × 3, B is 3 × 2, and the
product AB is 4 × 2.

We shall see in later chapters that this definition of matrix multiplication
is exactly what is needed for applying matrices in our study of linear
algebra.

It is an important consequence of this definition that:

� AB 
= B A in general. That is, matrix multiplication is not ‘commu-
tative’.

To see just how non-commutative matrix multiplication is, let’s look at
some examples, starting with the two matrices A and B in the example
above. The product AB is defined, but the product B A is not even
defined. Since A is 4 × 3 and B is 3 × 2, it is not possible to multiply
the matrices in the order B A.

Now consider the matrices

A =
(

2 1 3
1 2 1

)
and B =

⎛⎝ 3 1
1 0
1 1

⎞⎠ .

Both products AB and B A are defined, but they are different sizes, so
they cannot be equal. What sizes are they?

Activity 1.11 Answer the question just posed concerning the sizes of
AB and B A. Multiply the matrices to find the two product matrices,
AB and B A.

Even if both products are defined and the same size, it is still generally
true that AB 
= B A.

Activity 1.12 Investigate this last claim. Write down two different
2 × 2 matrices A and B and find the products AB and B A. For example,
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you could use

A =
(

1 2
3 4

)
B =

(
1 1
0 1

)
.

1.4 Matrix algebra

Matrices are useful because they provide a compact notation and we
can perform algebra with them.

For example, given a matrix equation such as

3A + 2B = 2(B − A + C),

we can solve this for the matrix C using the rules of algebra. You must
always bear in mind that to perform the operations they must be defined.
In this equation, it is understood that all the matrices A, B and C are
the same size, say m × n.

We list the rules of algebra satisfied by the operations of addition,
scalar multiplication and matrix multiplication. The sizes of the matrices
are dictated by the operations being defined. The first rule is that addition
is ‘commutative’:

� A + B = B + A.

This is easily shown to be true. The matrices A and B must be of the
same size, say m × n, for the operation to be defined, so both A + B
and B + A are m × n matrices for some m and n. They also have the
same entries. The (i, j) entry of A + B is ai j + bi j and the (i, j) entry
of B + A is bi j + ai j , but ai j + bi j = bi j + ai j by the properties of real
numbers. So the matrices A + B and B + A are equal.

On the other hand, as we have seen, matrix multiplication is not
commutative: AB 
= B A in general.

We have the following ‘associative’ laws:

� (A + B) + C = A + (B + C),
� λ(AB) = (λA)B = A(λB),
� (AB)C = A(BC).

These rules allow us to remove brackets. For example, the last rule says
that we will get the same result if we first multiply AB and then multiply
by C on the right as we will if we first multiply BC and then multiply
by A on the left, so the choice is ours.

We can show that all these rules follow from the definitions of the
operations, just as we showed the commutativity of addition. We need

 



1.4 Matrix algebra 15

to know that the matrices on the left and on the right of the equals sign
have the same size and that corresponding entries are equal. Only the
associativity of multiplication presents any complications, but you just
need to carefully write down the (i, j) entry of each side and show that,
by rearranging terms, they are equal.

Activity 1.13 Think about these rules. What sizes are each of the
matrices? Write down the (i, j) entry for each of the matrices λ(AB)
and (λA)(B) and prove that the matrices are equal.

Similarly, we have three ‘distributive’ laws:

� A(B + C) = AB + AC ,
� (B + C)A = B A + C A,
� λ(A + B) = λA + λB.

Why do we need both of the first two rules (which state that matrix
multiplication distributes through addition)? Well, since matrix multi-
plication is not commutative, we cannot conclude the second distributive
rule from the first; we have to prove it is true separately. These state-
ments can be proved from the definitions of the operations, as above,
but we will not take the time to do this here. If A is an m × n matrix,
what is the result of A − A? We obtain an m × n matrix all of whose
entries are 0. This is an ‘additive identity’; that is, it plays the same
role for matrices as the number 0 does for numbers, in the sense that
A + 0 = 0 + A = A. There is a zero matrix of any size m × n.

Definition 1.14 (Zero matrix) A zero matrix, denoted 0, is an m × n
matrix with all entries zero:⎛⎜⎜⎜⎝

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

⎞⎟⎟⎟⎠ .

Then:

� A + 0 = A,
� A − A = 0,
� 0A = 0 , A0 = 0,

where the sizes of the zero matrices above must be compatible with the
size of the matrix A.

We also have a ‘multiplicative identity’, which acts like the number 1
does for multiplication of numbers.
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Definition 1.15 (Identity matrix) The n × n identity matrix, denoted
In or simply I , is the diagonal matrix with aii = 1,

I =

⎛⎜⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞⎟⎟⎟⎠ .

If A is any m × n matrix, then:

� AI = A and I A = A,

where it is understood that the identity matrices are the appropriate size
for the products to be defined.

Activity 1.16 What size is the identity matrix if A is m × n and
I A = A?

Example 1.17 We can apply these rules to solve the equation,
3A + 2B = 2(B − A + C) for C . We will pedantically apply each rule
so that you can see how it is being used. In practice, you don’t need to
put in all these steps, just implicitly use the rules of algebra. We begin
by removing the brackets using the distributive rule.

3A + 2B = 2B − 2A + 2C (distributive rule)
3A + 2B − 2B (add −2B to both sides)

= 2B − 2A + 2C − 2B
3A + (2B − 2B) (commutativity, associativity

= −2A + 2C + (2B − 2B) of addition)
3A + 0 = −2A + 2C + 0 (additive inverse)
3A = −2A + 2C (additive identity)
3A + 2A = −2A + 2C + 2A (add 2A to both sides)
5A = 2C (commutativity, associativity of

addition, additive identity)
C = 5

2 A (scalar multiplication).

1.5 Matrix inverses

1.5.1 The inverse of a matrix

If AB = AC , can we conclude that B = C? The answer is ‘no’, as the
following example shows.
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Example 1.18 If

A =
(

0 0
1 1

)
, B =

(
1 −1
3 5

)
, C =

(
8 0

−4 4

)
,

then the matrices B and C are not equal, but

AB = AC =
(

0 0
4 4

)
.

Activity 1.19 Check this by multiplying out the matrices.

On the other hand, if A + 5B = A + 5C , then we can conclude that
B = C because the operations of addition and scalar multiplication
have inverses. If we have a matrix A, then the matrix −A = (−1)A is
an additive inverse because it satisfies A + (−A) = 0. If we multiply a
matrix A by a non-zero scalar c, we can ‘undo’ this by multiplying cA
by 1/c.

What about matrix multiplication? Is there a multiplicative inverse?
The answer is ‘sometimes’.

Definition 1.20 (Inverse matrix) The n × n matrix A is invertible if
there is a matrix B such that

AB = B A = I,

where I is the n × n identity matrix. The matrix B is called the inverse
of A and is denoted by A−1.

Notice that the matrix A must be square, and that both I and B = A−1

must also be square n × n matrices, for the products to be defined.

Example 1.21 Let A =
(

1 2
3 4

)
. Then with

B =
(−2 1

3
2 −1

2

)
,

we have AB = B A = I , B = A−1.

Activity 1.22 Check this. Multiply the matrices to show that AB = I
and B A = I , where I is the 2 × 2 identity matrix.

You might have noticed that we have said that B is the inverse of A.
This is because an invertible matrix has only one inverse. We will prove
this.

Theorem 1.23 If A is an n × n invertible matrix, then the matrix A−1

is unique.
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Proof: Assume the matrix A has two inverses, B and C , so that
AB = B A = I and AC = C A = I . We will show that B and C must
actually be the same matrix; that is, that they are equal. Consider the
product C AB. Since matrix multiplication is associative and AB = I ,
we have

C AB = C(AB) = C I = C.

On the other hand, again by associativity,

C AB = (C A)B = I B = B

since C A = I . We conclude that C = B, so there is only one inverse
matrix of A. �

Not all square matrices will have an inverse. We say that A is invertible
or non-singular if it has an inverse. We say that A is non-invertible or
singular if it has no inverse.

For example, the matrix (
0 0
1 1

)
(used in Example 1.18 of this section) is not invertible. It is not possible
for a matrix to satisfy(

0 0
1 1

)(
a b
c d

)
=
(

1 0
0 1

)
since the (1,1) entry of the product is 0 and 0 
= 1.

On the other hand, if

A =
(

a b
c d

)
, where ad − bc 
= 0,

then A has the inverse

A−1 = 1

ad − bc

(
d −b

−c a

)
.

Activity 1.24 Check that this is indeed the inverse of A, by showing
that if you multiply A on the left or on the right by this matrix, then you
obtain the identity matrix I .

This tells us how to find the inverse of any 2 × 2 invertible matrix. If

A =
(

a b
c d

)
,

the scalar ad − bc is called the determinant of the matrix A, denoted
|A|. We shall see more about the determinant in Chapter 3. So if
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|A| = ad − bc 
= 0, then to construct A−1 we take the matrix A, switch
the main diagonal entries and put minus signs in front of the other two
entries, then multiply by the scalar 1/|A|.

Activity 1.25 Use this to find the inverse of the matrix
(

1 2
3 4

)
, and

check your answer by looking at Example 1.21.

If AB = AC , and A is invertible, can we conclude that B = C? This
time the answer is ‘yes’, because we can multiply each side of the
equation on the left by A−1:

A−1 AB = A−1 AC =⇒ I B = I C =⇒ B = C.

But be careful! If AB = C A, then we cannot conclude that B = C ,
only that B = A−1C A.

It is not possible to ‘divide’ by a matrix. We can only multiply on
the right or left by the inverse matrix.

1.5.2 Properties of the inverse

If A is an invertible matrix, then, by definition, A−1 exists and AA−1 =
A−1 A = I . This statement also says that the matrix A is the inverse of
A−1; that is,

� (A−1)−1 = A.

It is important to understand the definition of an inverse matrix and
be able to use it. Essentially, if we can find a matrix that satisfies the
definition, then that matrix is the inverse, and the matrix is invertible.
For example, if A is an invertible n × n matrix, then:

� (λA)−1 = 1

λ
A−1.

This statement says that the matrix λA is invertible, and its inverse
is given by the matrix C = (1/λ)A−1. To prove this is true, we just
need to show that the matrix C satisfies (λA)C = C(λA) = I . This is
straightforward using matrix algebra:

(λA)
(

1

λ
A−1

)
= λ

1

λ
AA−1 = I and

(
1

λ
A−1

)
(λA) = 1

λ
λA−1 A = I.

If A and B are invertible n × n matrices, then using the definition of
the inverse you can show the following important fact:

� (AB)−1 = B−1 A−1.
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This last statement says that if A and B are invertible matrices of the
same size, then the product AB is invertible and its inverse is the product
of the inverses in the reverse order. The proof of this statement is left
as an exercise. (See Exercise 1.3.)

1.6 Powers of a matrix

If A is a square matrix, what do we mean by A2? We naturally mean the
product of A with itself, A2 = AA. In the same way, if A is an n × n
matrix and r ∈ N, then:

Ar = A A . . . A︸ ︷︷ ︸
r times

.

Powers of matrices obey a number of rules, similar to powers of num-
bers. First, if A is an n × n matrix and r ∈ N, then:

� (Ar )−1 = (A−1)r .

This follows immediately from the definition of an inverse matrix and
the associativity of matrix multiplication. Think about what it says: that
the inverse of the product of A times itself r times is the product of A−1

times itself r times.
The usual rules of exponents hold: for integers r, s,

� Ar As = Ar+s ,
� (Ar )s = Ars .

As r and s are positive integers and matrix multiplication is associative,
these properties are easily verified in the same way as they are with real
numbers.

Activity 1.26 Verify the above three properties.

1.7 The transpose and symmetric matrices

1.7.1 The transpose of a matrix

If we interchange the rows and columns of a matrix, we obtain another
matrix, known as its transpose.
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Definition 1.27 (Transpose) The transpose of an m × n matrix

A = (ai j ) =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

⎞⎟⎟⎟⎠
is the n × m matrix

AT = (a ji ) =

⎛⎜⎜⎜⎝
a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn

⎞⎟⎟⎟⎠ .

So, on forming the transpose of a matrix, row i of A becomes column
i of AT.

Example 1.28 If A =
(

1 2
3 4

)
and B = ( 1 5 3 ) , then

AT =
(

1 3
2 4

)
, BT =

⎛⎝ 1
5
3

⎞⎠ .

Notice that the diagonal entries of a square matrix do not move under
the operation of taking the transpose, as aii remains aii . So if D is a
diagonal matrix, then DT = D.

1.7.2 Properties of the transpose

If we take the transpose of a matrix A by switching the rows and
columns, and then take the transpose of the resulting matrix, then we
get back to the original matrix A. This is summarised in the following
equation:

� (AT)T = A.

Two further properties relate to scalar multiplication and addition:

� (λA)T = λAT and
� (A + B)T = AT + BT.

These follow immediately from the definition. In particular, the (i, j)
entry of (λA)T is λa ji , which is also the (i, j) entry of λAT.

The next property tells you what happens when you take the trans-
pose of a product of matrices:

� (AB)T = BT AT.
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This can be stated as: The transpose of the product of two matrices is
the product of the transposes in the reverse order.

Showing that this is true is slightly more complicated, since it
involves matrix multiplication. It is more important to understand why
the product of the transposes must be in the reverse order: the following
activity explores this.

Activity 1.29 If A is an m × n matrix and B is n × p, look at the
sizes of the matrices (AB)T, AT, BT. Show that only the product
BT AT is always defined. Show also that its size is equal to the size
of (AB)T.

If A is an m × n matrix and B is n × p, then, from Activity 1.29, you
know that (AB)T and BT AT are the same size. To prove that (AB)T =
BT AT, you need to show that the (i, j) entries are equal. You can try
this as follows.

Activity 1.30 The (i, j) entry of (AB)T is the ( j, i) entry of AB, which
is obtained by taking row j of A and multiplying each term by the
corresponding entry of column i of B. We can write this as(

(AB)T
)

i j
= a j1b1i + a j2b2i + · · · + a jnb1n.

Do the same for the (i, j) entry of BT AT and show that you obtain the
same number.

The final property in this section states that the inverse of the transpose
of an invertible matrix is the transpose of the inverse; that is, if A is
invertible, then:

� (AT)−1 = (A−1)T.

This follows from the previous property and the definition of inverse.
We have

AT(A−1)T = (A−1 A)T = I T = I

and, in the same way, (A−1)T AT = I . Therefore, by the definition of the
inverse of a matrix, (A−1)T must be the inverse of AT.

1.7.3 Symmetric matrices

Definition 1.31 (Symmetric matrix) A matrix A is symmetric if it is
equal to its transpose, A = AT.
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Only square matrices can be symmetric. If A is symmetric, then ai j =
a ji . That is, entries diagonally opposite to each other must be equal, or,
in other words, the matrix is symmetric about its diagonal.

Activity 1.32 Fill in the missing numbers if the matrix A is symmetric:

A =
⎛⎝ 1 4

2
5 3

⎞⎠ =
⎛⎝ 1

−7

⎞⎠ = AT.

If D is a diagonal matrix, then di j = 0 = d ji for all i 
= j . So all
diagonal matrices are symmetric.

1.8 Vectors in Rn

1.8.1 Vectors

An n × 1 matrix is a column vector, or simply a vector

v =

⎛⎜⎜⎜⎝
v1

v2
...
vn

⎞⎟⎟⎟⎠ ,

where each vi is a real number. The numbers v1, v2, . . . , vn, are known
as the components (or entries) of the vector v.

We can also define a row vector to be a 1 × n matrix.
In this text, when we simply use the term vector, we shall mean a

column vector.
In order to distinguish vectors from scalars, and to emphasise that

they are vectors and not general matrices, we will write vectors in
lowercase boldface type. (When writing by hand, vectors should be
underlined to avoid confusion with scalars.)

Addition and scalar multiplication are defined for vectors as for
n × 1 matrices:

v + w =

⎛⎜⎜⎜⎝
v1 + w1

v2 + w2
...

vn + wn

⎞⎟⎟⎟⎠ , λv =

⎛⎜⎜⎜⎝
λv1

λv2
...

λvn

⎞⎟⎟⎟⎠ .
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For a fixed positive integer n, the set of vectors (together with the
operations of addition and scalar multiplication) form the set Rn, usually
called Euclidean n-space.

We will often write a column vector as the transpose of a row vector.
Although

x =

⎛⎜⎜⎜⎝
x1

x2
...

xn

⎞⎟⎟⎟⎠ = ( x1 x2 · · · xn )T ,

we will usually write x = (x1, x2, · · · , xn)T, with commas separating
the entries. A matrix does not have commas; however, we will use them
in order to clearly distinguish the separate components of the vector.

For vectors v1, v2, . . . , vk in Rn and scalars α1, α2, . . . , αk in R, the
vector

v = α1v1 + · · · + αkvk ∈ Rn

is known as a linear combination of the vectors v1, . . . , vk .
A zero vector, denoted 0, is a vector with all of its entries equal

to 0. There is one zero vector in each space Rn . As with matrices,
this vector is an additive identity, meaning that for any vector v ∈ Rn,
0 + v = v + 0 = v. Further, multiplying any vector v by the scalar zero
results in the zero vector: 0v = 0.

Although the matrix product of two vectors v and w in Rn cannot
be calculated, it is possible to form the matrix products vTw and vwT.
The first is a 1 × 1 matrix, and the latter is an n × n matrix.

Activity 1.33 Calculate aTb and abT for a =
⎛⎝ 1

2
3

⎞⎠ , b =
⎛⎝ 4

−2
1

⎞⎠.

1.8.2 The inner product of two vectors

For v, w ∈ Rn, the 1 × 1 matrix vTw can be identified with the real num-
ber, or scalar, which is its unique entry. This turns out to be particularly
useful, and is known as the inner product of v and w.

Definition 1.34 (inner product) Given two vectors

v =

⎛⎜⎜⎜⎝
v1

v2
...
vn

⎞⎟⎟⎟⎠ , w =

⎛⎜⎜⎜⎝
w1

w2
...

wn

⎞⎟⎟⎟⎠ ,
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the inner product, denoted 〈v, w〉, is the real number given by

〈v, w〉 =
〈⎛⎜⎜⎜⎝

v1

v2
...
vn

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
w1

w2
...

wn

⎞⎟⎟⎟⎠
〉

= v1w1 + v2w2 + · · · + vnwn.

The inner product, 〈v, w〉, is also known as the scalar product of v and
w, or as the dot product. In the latter case, it is denoted by v · w.

The inner product of v and w is precisely the scalar quantity (that
is, the number) given by

vTw = ( v1 v2 · · · vn )

⎛⎜⎜⎜⎝
w1

w2
...

wn

⎞⎟⎟⎟⎠ = v1w1 + v2w2 + · · · + vnwn,

so that we can write

〈v, w〉 = vTw.

Example 1.35 If x = (1, 2, 3)T and y = (2, −1, 1)T, then

〈x, y〉 = 1(2) + 2(−1) + 3(1) = 3.

It is important to realise that the inner product is just a number, a scalar,
not another vector or a matrix.

The inner product on Rn satisfies certain basic properties as shown
in the next theorem.

Theorem 1.36 The inner product

〈x, y〉 = x1 y1 + x2 y2 + · · · + xn yn , x, y ∈ Rn

satisfies the following properties for all x, y, z ∈ Rn and for all α ∈ R:

(i) 〈x, y〉 = 〈y, x〉,
(ii) α〈x, y〉 = 〈αx, y〉 = 〈x, αy〉,

(iii) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉,
(iv) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.

Proof: We have, by properties of real numbers

〈x, y〉 = x1 y1 + x2 y2 + · · · + xn yn

= y1x1 + y2x2 + · · · + ynxn = 〈y, x〉,
which proves (i). We leave the proofs of (ii) and (iii) as an exercise. For
(iv), note that

〈x, x〉 = x2
1 + x2

2 + · · · + x2
n
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is a sum of squares, so 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if each
term x2

i is equal to 0; that is, if and only if each xi = 0, so x is the zero
vector, x = 0. �

Activity 1.37 Prove properties (ii) and (iii). Show, also, that these two
properties are equivalent to the single property

〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉.
From the definitions, it is clear that it is not possible to combine vectors
in different Euclidean spaces, either by addition or by taking the inner
product. If v ∈ Rn and w ∈ Rm , with m 
= n, then these vectors live in
different ‘worlds’, or, more precisely, in different ‘vector spaces’.

1.8.3 Vectors and matrices

If A is an m × n matrix, then the columns of A are vectors in Rm . If
x ∈ Rn, then the product Ax is an m × 1 matrix, so is also a vector in
Rm . There is a fundamental relationship between these vectors, which
we present here as an example of matrix manipulation. We list it as a
theorem so that we can refer back to it later.

Theorem 1.38 Let A be an m × n matrix

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎞⎟⎟⎟⎠ ,

and denote the columns of A by the column vectors c1, c2, . . . , cn, so
that

ci =

⎛⎜⎜⎜⎝
a1i

a2i
...

ami

⎞⎟⎟⎟⎠ , i = 1, . . . , n.

Then if x = (x1, x2, . . . , xn)T is any vector in Rn,

Ax = x1c1 + x2c2 + · · · + xncn.

The theorem states that the matrix product Ax, which is a vector in Rm ,
can be expressed as a linear combination of the column vectors of A.
Before you look at the proof, try to carry out the calculation yourself, to
see how it works. Just write both the left-hand side and the right-hand
side of the equality as a single m × 1 vector.
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Proof: We have

Ax =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

x2
...

xn

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

⎞⎟⎟⎟⎠

= x1

⎛⎜⎜⎜⎝
a11

a21
...

am1

⎞⎟⎟⎟⎠+ x2

⎛⎜⎜⎜⎝
a12

a22
...

am2

⎞⎟⎟⎟⎠+ · · · + xn

⎛⎜⎜⎜⎝
a1n

a2n
...

amn

⎞⎟⎟⎟⎠
= x1c1 + x2c2 + · · · xncn.

�

There are many useful ways to view this relationship, as we shall see in
later chapters.

1.9 Developing geometric insight

Vectors have a broader use beyond that of being special types of matri-
ces. It is possible that you have some previous knowledge of vectors; for
example, in describing the displacement of an object from one point to
another in R2 or in R3. Before we continue our study of linear algebra,
it is important to consolidate this background, for it provides valuable
geometric insight into the definitions and uses of vectors in higher
dimensions. Parts of the next section may be a review for you.

1.9.1 Vectors in R2

The set R can be represented as points along a horizontal line, called a
real-number line. In order to represent pairs of real numbers, (a1, a2),
we use a Cartesian plane, a plane with both a horizontal axis and a
vertical axis, each axis being a copy of the real-number line, and we
mark A = (a1, a2) as a point in this plane. We associate this point with
the vector a = (a1, a2)T, as representing a displacement from the origin

 



28 Matrices and vectors

x

y

(0, 0)

(a1, a2)a2

a1

a

Figure 1.1 A
position vector, a

x

y

(0, 0)

Figure 1.2
Displacement
vectors, v

(0, 0)

p2

p1

q2

q1

p

v

q

P
Q

Figure 1.3 If
v = (v1, v2)T, then
q1 = p1 + v1 and
q2 = v2 + p2

(the point (0, 0)) to the point A. In this context, a is the position vector
of the point A. This displacement is illustrated by an arrow, or directed
line segment, with the initial point at the origin and the terminal point
at A, as shown in Figure 1.1.

Even if a displacement does not begin at the origin, two displace-
ments of the same length and the same direction are considered to be
equal. So, for example, the two arrows in Figure 1.2 represent the same
vector, v = (1, 2)T.

If an object is displaced from a point, say (0, 0), the origin, to a
point P by the displacement p, and then displaced from P to Q by the
displacement v, then the total displacement is given by the vector from
0 to Q, which is the position vector q. So we would expect vectors to
satisfy q = p + v, both geometrically (in the sense of a displacement)
and algebraically (by the definition of vector addition). This is certainly
true in general, as illustrated in Figure 1.3.
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(0, 0)

p

v

p

v

Figure 1.4
p + v = v + p

x

y

(0, 0)

(a1, a2)

a2

a1

a

Figure 1.5 A
right-angled triangle
to determine the
length of a vector

The order of displacements does not matter (nor does the order of
vector addition), so q = v + p. For this reason, the addition of vectors
is said to follow the parallelogram law. This is illustrated in Figure 1.4.

From the equation q = p + v, we have v = q − p. This is the dis-
placement from P to Q. To help you determine in which direction the
vector v points, think of v = q − p as the vector which is added to the
vector p in order to obtain the vector q.

If v represents a displacement, then 2v must represent a displace-
ment in the same direction, but twice as far, and −v represents an equal
displacement in the opposite direction. This interpretation is compatible
with the definition of scalar multiplication.

Activity 1.39 Sketch the vector v = (1, 2)T in a coordinate system.
Then sketch 2v and −v. Looking at the coordinates on your sketch,
what are the components of 2v and −v?

We have stated that a vector has both a length and a direction. Given
a vector a = (a1, a2)T, its length, denoted by ‖a‖, can be calculated
using Pythagoras’ theorem applied to the right triangle shown in
Figure 1.5.

So the length of a is the scalar quantity

‖a‖ =
√

a2
1 + a2

2 .
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The length of a vector can be expressed in terms of the inner product,

‖a‖ = √〈a, a〉,
simply because 〈a, a〉 = a2

1 + a2
2. A unit vector is a vector of length 1.

Example 1.40 If v = (1, 2)T, then ‖v‖ = √
12 + 22 = √

5. The vector

u =
(

1√
5
, 2√

5

)T
is a unit vector in the same direction as v.

Activity 1.41 Check this. Calculate the length of u.

The direction of a vector is essentially given by the components of
the vector. If we have two vectors a and b which are (non-zero) scalar
multiples, say

a = λb, λ ∈ R, (λ 
= 0),

then a and b are parallel. If λ > 0, then a and b have the same direction.
If λ < 0, then we say that a and b have opposite directions.

The zero vector, 0, has length 0 and has no direction. For any other
vector, v 
= 0, there is one unit vector in the same direction as v, namely

u = 1

‖v‖v.

Activity 1.42 Write down a unit vector, u, which is parallel to the
vector a = (4, 3)T. Then write down a vector, w, of length 2 which is
in the opposite direction to a.

1.9.2 Inner product

The inner product in R2 is closely linked with the geometrical concepts
of length and angle. If a = (a1, a2)T, we have already seen that

‖a‖2 = 〈a, a〉 = a2
1 + a2

2 .

Let a, b be two vectors in R2, and let θ denote the angle between
them.1 By this we shall always mean the angle θ such that 0 ≤ θ ≤ π .
If θ < π , the vectors a, b and c = b − a form a triangle, where c is the
side opposite the angle θ , as, for example, in Figure 1.6.

The law of cosines (which is a generalisation of Pythagoras’ theo-
rem) applied to this triangle gives us the important relationship stated
in the following theorem.

1 Angles are always measured in radians, not degrees, here. So, for example 45 degrees is π/4 radians.
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a c = b − a

b
θ

Figure 1.6 Two
vectors and the
angle between them

Theorem 1.43 Let a, b ∈ R2 and let θ denote the angle between them.
Then

〈a, b〉 = ‖a‖ ‖b‖ cos θ.

Proof: The law of cosines states that c2 = a2 + b2 − 2ab cos θ , where
c = ‖b − a‖, a = ‖a‖, b = ‖b‖. That is,

‖b − a‖2 = ‖a‖2 + ‖b‖2 − 2‖a‖ ‖b‖ cos θ. (1)

Expanding the inner product and using its properties, we have

‖b − a‖2 = 〈b − a, b − a〉 = 〈b, b〉 + 〈a, a〉 − 2〈a, b〉,
so that

‖b − a‖2 = ‖a‖2 + ‖b‖2 − 2〈a, b〉. (2)

Comparing equations (1) and (2) above, we conclude that

〈a, b〉 = ‖a‖ ‖b‖ cos θ.
�

Theorem 1.43 has many geometrical consequences. For example, we
can use it to find the angle between two vectors by using

cos θ = 〈a, b〉
‖a‖ ‖b‖ .

Example 1.44 Let v =
(

1
2

)
, w =

(
3
1

)
, and let θ be the angle

between them. Then

cos θ = 5√
5
√

10
= 1√

2
,

so that θ = π

4
.

Since

〈a, b〉 = ‖a‖ ‖b‖ cos θ,

and since −1 ≤ cos θ ≤ 1 for any real number θ , the maximum value
of the inner product is 〈a, b〉 = ‖a‖ ‖b‖. This occurs precisely when
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y

z

x

(a1, a2, a3)

(a1, a2, 0)

Figure 1.7 Diagram
for Activity 1.45

cos θ = 1; that is, when θ = 0. In this case, the vectors a and b are
parallel and in the same direction. If they point in opposite directions,
then θ = π and we have 〈a, b〉 = −‖a‖ ‖b‖. The inner product will be
positive if and only if the angle between the vectors is acute, meaning
that 0 ≤ θ < π

2 . It will be negative if the angle is obtuse, meaning that
π
2 < θ ≤ π .

The non-zero vectors a and b are orthogonal (or perpendicular
or, sometimes, normal) when the angle between them is θ = π

2 . Since
cos(π

2 ) = 0, this is precisely when their inner product is zero. We restate
this important fact:

� The vectors a and b are orthogonal if and only if 〈a, b〉 = 0.

1.9.3 Vectors in R3

Everything we have said so far about the geometrical interpretation of
vectors and the inner product in R2 extends to R3. In particular, if

a =
⎛⎝ a1

a2

a3

⎞⎠ ,

then

‖a‖ =
√

a2
1 + a2

2 + a2
3 .

Activity 1.45 Show this. Sketch a position vector a = (a1, a2, a3)T in
R3. Drop a perpendicular to the xy-plane as in Figure 1.7, and apply
Pythagoras’ theorem twice to obtain the result.

The vectors a, b and c = b − a in R3 lie in a plane and the law of
cosines can still be applied to establish the result that

〈a, b〉 = ‖a‖ ‖b‖ cos θ,

where θ is the angle between the vectors.
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x

y

(0, 0)

Figure 1.8 The line
y = 2x . The vector
shown is v = (1, 2)T

Activity 1.46 Calculate the angles of the triangle with sides a, b, c and
show it is an isosceles right-angled triangle, where

a =
⎛⎝ 1

2
2

⎞⎠ , b =
⎛⎝−1

1
4

⎞⎠ , c = b − a.

1.10 Lines

1.10.1 Lines in R2

In R2, a line is given by a single Cartesian equation, such as y = ax + b,
and, as such, we can draw a graph of the line in the xy-plane. This line
can also be expressed as a single vector equation with one parameter.
To see this, look at the following examples.

Example 1.47 Consider the line y = 2x . Any point (x, y) on this line
must satisfy this equation, and all points that satisfy the equation are on
this line (Figure 1.8).

Another way to describe the points on the line is by giving their
position vectors. We can let x = t , where t is any real number. Then y
is determined by y = 2x = 2t . So if x = (x, y)T is the position vector
of a point on the line, then

x =
(

t
2t

)
= t

(
1
2

)
= tv , t ∈ R.

For example, if t = 2, we get the position vector of the point (2, 4) on
the line, and if t = −1, we obtain the point (−1,−2). As the parameter
t runs through all real numbers, this vector equation gives the position
vectors of all the points on the line.

Starting with the vector equation

x =
(

x
y

)
= tv = t

(
1
2

)
, t ∈ R,
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x

y

(0, 0)

Figure 1.9 The line
y = 2x + 1. The
vector shown is
v = (1, 2)T

we can retrieve the Cartesian equation using the fact that the two vectors
are equal if and only if their components are equal. This gives us the
two equations x = t and y = 2t . Eliminating the parameter t between
these two equations yields y = 2x .

The line in the above example is a line through the origin. What about
a line which does not contain (0, 0)?

Example 1.48 Consider the line y = 2x + 1. Proceeding as above, we
set x = t , t ∈ R. Then y = 2x + 1 = 2t + 1, so the position vector of
a point on this line is given by

x =
(

t
2t + 1

)
=
(

0
1

)
+
(

t
2t

)
=
(

0
1

)
+ t
(

1
2

)
, t ∈ R.

We can interpret this as follows. To locate any point on the line, first
locate one particular point which is on the line, for example the y
intercept, (0, 1). Then the position vector of any point on the line is a
sum of two displacements, first going to the point (0, 1) and then going
along the line, in a direction parallel to the vector v = (1, 2)T. It is
important to notice that in this case the actual position vector of a point
on the line does not lie along the line. Only if the line goes through the
origin will that happen.

Activity 1.49 Sketch the line y = 2x + 1 and the position vector q
of the point (3, 7) which is on this line. Express q as the sum of two
vectors, q = p + tv where p = (0, 1)T and v = (1, 2)T for some t ∈ R,
and add these vectors to your sketch.

In the vector equation, any point on the line can be used to locate the
line, and any vector parallel to the direction vector, v, can be used to
give the direction. So, for example,(

x
y

)
=
(

1
3

)
+ s

(−2
−4

)
, s ∈ R

is also a vector equation of this line.
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Activity 1.50 If q = (3, 7)T, what is s in this expression of the line?

As before, we can retrieve the Cartesian equation of the line by equating
components of the vector and eliminating the parameter.

Activity 1.51 Do this for each of the vector equations given above for
the line y = 2x + 1.

In general, any line in R2 is given by a vector equation with one param-
eter of the form

x = p + tv,

where x is the position vector of a point on the line, p is any particular
point on the line and v is the direction of the line.

Activity 1.52 Write down a vector equation of the line through the
points P = (−1, 1) and Q = (3, 2). What is the direction of this line?
Find a value for c such that the point (7, c) is on the line.

In R2, two lines are either parallel or intersect in a unique point.

Example 1.53 The lines �1 and �2 are given by the following equations
(for t ∈ R)

�1 :
(

x
y

)
=
(

1
3

)
+ t
(

1
2

)
,

�2 :
(

x
y

)
=
(

5
6

)
+ t
(−2

1

)
.

These lines are not parallel, since their direction vectors are not scalar
multiples of one another. Therefore, they intersect in a unique point. We
can find this point either by finding the Cartesian equation of each line
and solving the equations simultaneously, or using the vector equations.
We will do the latter. We are looking for a point (x, y) on both lines, so
its position vector will satisfy(

x
y

)
=
(

1
3

)
+ t
(

1
2

)
=
(

5
6

)
+ s

(−2
1

)
for some t ∈ R and for some s ∈ R. We need to use different symbols
(s and t) in the equations because they are unlikely to be the same
number for each line. We are looking for values of s and t which will
give us the same point. Equating components of the position vectors of
points on the lines, we have

1 + t = 5 − 2s
3 + 2t = 6 + s

}
⇒ 2s + t = 4

−s + 2t = 3
⇒ 2s + t = 4

−2s + 4t = 6
.
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y

z

x

(0, 0, 0)

Figure 1.10 A line
in R3

Adding these last two equations, we obtain t = 2, and therefore s = 1.
Therefore, the point of intersection is (3, 7):(

1
3

)
+ 2

(
1
2

)
=
(

3
7

)
=
(

5
6

)
+ 1

(−2
1

)
.

What is the angle of intersection of these two lines? Since〈(
1
2

)
,

(−2
1

)〉
= 0,

the lines are perpendicular.

1.10.2 Lines in R3

How can you describe a line in R3? Because there are three variables
involved, the natural way is to use a vector equation. To describe a line,
you locate one point on the line by its position vector, and then travel
along from that point in a given direction, or in the opposite direction
(Figure 1.10).

Therefore, a line in R3 is given by a vector equation with one
parameter,

x = p + tv, t ∈ R,

where x is the position vector of any point on the line, p is the position
vector of one particular point on the line and v is the direction of the line,

x =
⎛⎝ x

y
z

⎞⎠ =
⎛⎝ p1

p2

p3

⎞⎠+ t

⎛⎝ v1

v2

v3

⎞⎠ , t ∈ R. (1.10.2)

The equation, x = tv represents a parallel line through the origin.

Example 1.54 The equations

x =
⎛⎝ 1

3
4

⎞⎠+ t

⎛⎝ 1
2

−1

⎞⎠ and x =
⎛⎝ 3

7
2

⎞⎠+ s

⎛⎝−3
−6
3

⎞⎠ , s, t ∈ R

describe the same line. This is not obvious, so how do we show it?
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The lines represented by these equations are parallel since their direction
vectors are parallel ⎛⎝−3

−6
3

⎞⎠ = −3

⎛⎝ 1
2

−1

⎞⎠ ,

so they either have no points in common and are parallel, or they have
all points in common and are really the same line. Since⎛⎝ 3

7
2

⎞⎠ =
⎛⎝ 1

3
4

⎞⎠+ 2

⎛⎝ 1
2

−1

⎞⎠ ,

the point (3, 7, 2) is on both lines, so they must have all points in
common. We say that the lines are coincident.

On the other hand, the lines represented by the equations

x =
⎛⎝ 1

3
4

⎞⎠+ t

⎛⎝ 1
2

−1

⎞⎠ and x =
⎛⎝ 3

7
1

⎞⎠+ t

⎛⎝−3
−6
3

⎞⎠ , t ∈ R

are parallel, with no points in common, since there is no value of t for
which ⎛⎝ 3

7
1

⎞⎠ =
⎛⎝ 1

3
4

⎞⎠+ t

⎛⎝ 1
2

−1

⎞⎠ .

Activity 1.55 Verify this last statement.

Now try the following:

Activity 1.56 Write down a vector equation of the line through the
points P = (−1, 1, 2) and Q = (3, 2, 1). What is the direction of this
line? Is the point (7, 1, 3) on this line? Suppose you want a point on
this line of the form (c, d, 3). Find one such point. How many choices
do you actually have for the values of c and d?

We can also describe a line in R3 by Cartesian equations, but this time
we need two such equations because there are three variables. Equating
components in the vector equation 1.10.2 above, we have

x = p1 + tv1, y = p2 + tv2, z = p3 + tv3.

Solving each of these equations for the parameter t and equating the
results, we have the two equations

x − p1

v1
= y − p2

v2
= z − p3

v3
, provided vi 
= 0, i = 1, 2, 3.
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Example 1.57 To find Cartesian equations of the line

x =
⎛⎝ 1

2
3

⎞⎠+ t

⎛⎝−1
0
5

⎞⎠ , t ∈ R,

we equate components

x = 1 − t, y = 2, z = 3 + 5t,

and then solve for t in the first and third equation. The Cartesian equa-
tions are

1 − x = z − 3

5
and y = 2.

This is a line parallel to the xz-plane in R3. The direction vector has a
0 in the second component, so there is no change in the y direction: the
y coordinate has the constant value y = 2.

In R2, two lines are either parallel or intersect in a unique point. In R3,
more can happen. Two lines in R3 either intersect in a unique point, are
parallel or are skew, which means that they lie in parallel planes and are
not parallel.

Try to imagine what skew lines look like. If you are in a room with
a ceiling parallel to the floor, imagine a line drawn in the ceiling. It
is possible for you to draw a parallel line in the floor, but instead it is
easier to draw a line in the floor which is not parallel to the one in the
ceiling. These lines will be skew; they lie in parallel planes (the ceiling
and the floor). If you could move the skew line in the floor onto the
ceiling, then the lines would intersect in a unique point.

Two lines are said to be coplanar if they lie in the same plane, in
which case they are either parallel or intersecting.

Example 1.58 Are the following lines L1 and L2 intersecting, parallel
or skew?

L1 :

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 1

3
4

⎞⎠+ t

⎛⎝ 1
2

−1

⎞⎠ , t ∈ R

L2 :

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 5

6
1

⎞⎠+ t

⎛⎝−2
1
7

⎞⎠ , t ∈ R.

Activity 1.59 Clearly, the lines are not parallel. Why?
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The lines intersect if there is a point (x, y, z) on both lines; that is, if
there exist values of the parameters, s, t such that⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 1

3
4

⎞⎠+ t

⎛⎝ 1
2

−1

⎞⎠ =
⎛⎝ 5

6
1

⎞⎠+ s

⎛⎝−2
1
7

⎞⎠ .

Equating components, we need to solve the three simultaneous equa-
tions in two unknowns,

1 + t = 5 − 2s
3 + 2t = 6 + s
4 − t = 1 + 7s

⎫⎬⎭ ⇒
2s + t = 4

−s + 2t = 3
7s + t = 3.

We have already seen in Example 1.53 that the first two equations have
the unique solution, s = 1, t = 2. Substituting these values into the
third equation,

7s + t = 7(1) + 2 
= 3,

we see that the system has no solution. Therefore, the lines do not
intersect and must be skew.

Example 1.60 On the other hand, if we take a new line L3, which is par-
allel to L2 but which passes through the point (5, 6, −5), then the lines

L1 :

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 1

3
4

⎞⎠+ t

⎛⎝ 1
2

−1

⎞⎠ ,

L3 :

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 5

6
−5

⎞⎠+ t

⎛⎝−2
1
7

⎞⎠ , t ∈ R

do intersect in the unique point (3, 7, 2).

Activity 1.61 Check this. Find the point of intersection of the two lines
L1 and L3.

1.11 Planes in R3

On a line, there is essentially one direction in which a point can move,
given as all possible scalar multiples of a given direction, but on a
plane there are more possibilities. A point can move in two different
directions, and in any linear combination of these two directions. So
how do we describe a plane in R3?

The vector parametric equation

x = p + sv + tw, s, t,∈ R
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describes the position vectors of points on a plane in R3 provided that
the vectors v and w are non-zero and are not parallel. The vector p is
the position vector of any particular point on the plane and the vectors
v and w are displacement vectors which lie in the plane. By taking all
possible linear combinations x = p + sv + tw, for s, t ∈ R, we obtain
all the points on the plane.

The equation

x = sv + tw, s, t,∈ R

describes a plane through the origin. In this case, the position vector, x,
of any point on the plane lies in the plane.

Activity 1.62 If v and w are parallel, what does the equation x =
p + sv + tw, s, t ∈ R, actually represent?

Example 1.63 You have shown that the lines L1 and L3 given in exam-
ple 1.60 intersect in the point (3, 7, 2). Two intersecting lines determine
a plane. A vector equation of the plane containing the two lines is given
by ⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 3

7
2

⎞⎠+ s

⎛⎝ 1
2

−1

⎞⎠+ t

⎛⎝−2
1
7

⎞⎠ , s, t ∈ R.

Why? We know that (3, 7, 2) is a point on the plane, and the directions
of each of the lines must lie in the plane. As s and t run through all
real numbers, this equation gives the position vector of all points on
the plane. Since the point (3, 7, 2) is on both lines, if t = 0 we have the
equation of L1, and if s = 0, we get L3.

Any point which is on the plane can take the place of the vector
(3, 7, 2)T, and any non-parallel vectors which are linear combinations
of v and w can replace these in the equation. So, for example,⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 1

3
4

⎞⎠+ t

⎛⎝ 1
2

−1

⎞⎠+ s

⎛⎝−3
−1
8

⎞⎠ , s, t ∈ R

is also an equation of this plane.

Activity 1.64 Verify this. Show that (1, 3, 4) is a point on the plane
given by each equation, and show that (−3, −1, 8)T is a linear combi-
nation of (1, 2, −1)T and (−2, 1, 7)T.

There is another way to describe a plane in R3 geometrically, which
is often easier to use. We begin with planes through the origin. Let n
be a given vector in R3 and consider all position vectors x which are
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orthogonal to n. Geometrically, the set of all such vectors describes a
plane through the origin in R3.

Try to imagine this by placing a pencil perpendicular to a table
top. The pencil represents a normal vector, the table top a plane, and
the point where the pencil is touching the table is the origin of your
coordinate system. Then any vector which you can draw on the table
top is orthogonal to the pencil, and conversely any point on the table
top can be reached by a directed line segment (from the point where the
pencil touches the table) which is orthogonal to the pencil.

A vector x is orthogonal to n if and only if

〈n, x〉 = 0,

so this equation gives the position vectors, x, of points on the plane. If
n = (a, b, c)T and x = (x, y, z)T, then this equation can be written as

〈n, x〉 =
〈⎛⎝ a

b
c

⎞⎠ ,

⎛⎝ x
y
z

⎞⎠〉 = 0

or

ax + by + cz = 0.

This is a Cartesian equation of a plane through the origin in R3. The
vector n is called a normal vector to the plane. Any vector which is
parallel to n will also be a normal vector and will lead to the same
Cartesian equation.

On the other hand, given any Cartesian equation of the form

ax + by + cz = 0,

then this equation represents a plane through the origin in R3 with
normal vector n = (a, b, c)T.

To describe a plane which does not go through the origin, we choose
a normal vector n and one point P on the plane with position vector
p. We then consider all displacement vectors which lie in the plane
with initial point at P . If x is the position vector of any point on the
plane, then the displacement vector x − p lies in the plane, and x − p is
orthogonal to n. Conversely, if the position vector x of a point satisfies
〈n, x − p〉 = 0, then the vector x − p lies in the plane, so the point (with
position vector x) is on the plane.

(Again, think about the pencil perpendicular to the table top, only
this time the point where the pencil is touching the table is a point, P ,
on the plane, and the origin of your coordinate system is somewhere
else; say, in the corner on the floor.)

 



42 Matrices and vectors

The orthogonality condition means that the position vector of any
point on the plane is given by the equation

〈n, x − p〉 = 0.

Using properties of the inner product, we can rewrite this as

〈n, x〉 = 〈n, p〉,
where 〈n, p〉 = d is a constant.

If n = (a, b, c)T and x = (x, y, z)T, then

ax + by + cz = d

is a Cartesian equation of a plane in R3. The plane goes through the
origin if and only if d = 0.

Example 1.65 The equation

2x − 3y − 5z = 2

represents a plane which does not go through the origin, since (x, y, z) =
(0, 0, 0) does not satisfy the equation. To find a point on the plane, we
can choose any two of the coordinates, say y = 0 and z = 0, and then
the equation tells us that x = 1. So the point (1, 0, 0) is on this plane.
The components of a normal to the plane can be read from this equation
as the coefficients of x, y, z: n = (2, −3, −5)T.

How does the Cartesian equation of a plane relate to the vector para-
metric equation of a plane? A Cartesian equation can be obtained from
the vector equation algebraically, by eliminating the parameters in the
vector equation, and vice versa, as the following example shows.

Example 1.66 Consider the plane⎛⎝ x
y
z

⎞⎠ = s

⎛⎝ 1
2

−1

⎞⎠+ t

⎛⎝−2
1
7

⎞⎠ = sv + tw, s, t ∈ R,

which is a plane through the origin parallel to the plane in Example 1.63.
The direction vectors v = (1, 2, −1)T and w = (−2, 1, 7) lie in the
plane.

To obtain a Cartesian equation in x , y and z, we equate the compo-
nents in this vector equation.

x = s − 2t
y = 2s + t
z = −s + 7t
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and eliminate the parameters s and t . We begin by solving the first
equation for s, and then substitute this into the second equation to solve
for t in terms of x and y,

s = x + 2t

⇒ y = 2(x + 2t) + t = 2x + 5t

⇒ 5t = y − 2x

⇒ t = y − 2x

5
.

We then substitute back into the first equation to obtain s in terms of x
and y,

s = x + 2
(

y − 2x

5

)
⇒ 5s = 5x + 2y − 4x ⇒ s = x + 2y

5
.

Finally, we substitute for s and t in the third equation, z = −s + 7t , and
simplify to obtain a Cartesian equation of the plane

3x − y + z = 0.

Activity 1.67 Carry out this last step to obtain the Cartesian equation
of the plane.

This Cartesian equation can be expressed as 〈n, x〉 = 0, where

n =
⎛⎝ 3

−1
1

⎞⎠ , x =
⎛⎝ x

y
z

⎞⎠ .

The vector n is a normal vector to the plane. We can check that n is,
indeed, orthogonal to the plane by taking the inner product with the
vectors v and w, which lie in the plane.

Activity 1.68 Do this. Calculate 〈n, v〉 and 〈n, w〉, and verify that both
inner products are equal to 0.

Since n is orthogonal to both v and w, it is orthogonal to all linear
combinations of these vectors, and hence to any vector in the plane.
So this plane can equally be described as the set of all position vectors
which are orthogonal to n.

Activity 1.69 Using the properties of inner product, show that this
last statement is true. That is, if 〈n, v〉 = 0 and 〈n, w〉 = 0, then
〈n, sv + tw〉 = 0, for any s, t ∈ R.

Can we do the same for a plane which does not pass through the origin?
Consider the following example.
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Example 1.70 The plane we just considered in Example 1.66 is parallel
to the plane with vector equation⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 3

7
2

⎞⎠+ s

⎛⎝ 1
2

−1

⎞⎠+ t

⎛⎝−2
1
7

⎞⎠ = p + sv + tw, s, t ∈ R,

which passes through the point (3, 7, 2). Since the planes are parallel,
they will have the same normal vectors. So the Cartesian equation of
this plane is of the form

3x − y + z = d.

Since (3, 7, 2) is a point on the plane, it must satisfy the equation for the
plane. Substituting into the equation we find d = 3(3) − (7) + (2) = 4
(which is equivalent to finding d by using d = 〈n, p〉). So the Cartesian
equation we obtain is

3x − y + z = 4.

Conversely, starting with a Cartesian equation of a plane, we can obtain
a vector equation. Consider the plane just discussed. We are looking for
the position vector of a point on the plane whose components satisfy
3x − y + z = 4, or, equivalently, z = 4 − 3x + y. (We can solve for
any one of the variables x, y or z, but we chose z for simplicity.) So we
are looking for all vectors x such that⎛⎝ x

y
z

⎞⎠ =
⎛⎝ x

y
4 − 3x + y

⎞⎠ =
⎛⎝ 0

0
4

⎞⎠+ x

⎛⎝ 1
0

−3

⎞⎠+ y

⎛⎝ 0
1
1

⎞⎠
for any x, y ∈ R. Therefore,⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 0

0
4

⎞⎠+ s

⎛⎝ 1
0

−3

⎞⎠+ t

⎛⎝ 0
1
1

⎞⎠ , s, t ∈ R

is a vector equation of the same plane as that given by the original vector
equation,⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 3

7
2

⎞⎠+ s

⎛⎝ 1
2

−1

⎞⎠+ t

⎛⎝−2
1
7

⎞⎠ , s, t ∈ R.

It is difficult to spot at a glance that these two different vector equations
in fact describe the same plane. There are many ways to show this, but
we can use what we know about planes to find the easiest. The planes
represented by the two vector equations have the same normal vector n,
since the vectors (1, 0, −3)T and (0, 1, 1)T are also orthogonal to n. So
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we know that the two vector equations represent parallel planes. They
are the same plane if they have a point in common. It is far easier to
find values of s and t for which p = (3, 7, 2)T satisfies the new vector
equation ⎛⎝ 3

7
2

⎞⎠ =
⎛⎝ 0

0
4

⎞⎠+ s

⎛⎝ 1
0

−3

⎞⎠+ t

⎛⎝ 0
1
1

⎞⎠ , s, t ∈ R

than the other way around (which is by showing that (0, 0, 4) satisfies
the original equation) because of the positions of the zeros and ones in
these direction vectors.

Activity 1.71 Do this. You should be able to immediately spot the
values of s and t which work.

Using the examples we have just done, you should now be able to tackle
the following activity:

Activity 1.72 The two lines, L1 and L2,

L1 :

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 1

3
4

⎞⎠+ t

⎛⎝ 1
2

−1

⎞⎠ ,

L2 :

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 5

6
1

⎞⎠+ t

⎛⎝−2
1
7

⎞⎠ , t ∈ R

in Example 1.58 are skew, and therefore are contained in parallel planes.
Find vector equations and Cartesian equations for these two planes.

Two planes in R3 are either parallel or intersect in a line. Considering
such questions, it is usually easier to use the Cartesian equations of
the planes. If the planes are parallel, then this will be obvious from
looking at their normal vectors. If they are not parallel, then the line
of intersection can be found by solving the two Cartesian equations
simultaneously.

Example 1.73 The planes

x + 2y − 3z = 0 and − 2x − 4y + 6z = 4

are parallel, since their normal vectors are related by

(−2, −4, 6)T = −2(1, 2, −3)T.

The equations do not represent the same plane, since they have no points
in common; that is, there are no values of x, y, z which can satisfy both
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equations. The first plane goes through the origin and the second plane
does not.

On the other hand, the planes

x + 2y − 3z = 0 and x − 2y + 5z = 4

intersect in a line. The points of intersection are the points (x, y, z)
which satisfy both equations, so we solve the equations simultaneously.
We begin by eliminating the variable x from the second equation, by
subtracting the first equation from the second. This will naturally lead
us to a vector equation of the line of intersection:

x + 2y − 3z = 0

x − 2y + 5z = 4

}
⇒ x + 2y − 3z = 0

−4y + 8z = 4 .

This last equations tells us that if z = t is any real number, then y =
−1 + 2t . Substituting these expressions into the first equation, we find
x = 2 − t . Then a vector equation of the line of intersection is⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 2 − t

−1 + 2t
t

⎞⎠ =
⎛⎝ 2

−1
0

⎞⎠+ t

⎛⎝−1
2
1

⎞⎠ .

This can be verified by showing that the point (2,−1, 0) satisfies both
Cartesian equations, and that the vector v = (−1, 2, 1)T is orthogonal
to the normal vectors of each of the planes (and therefore lies in both
planes).

Activity 1.74 Carry out the calculations in the above example and
verify that the line is in both planes.

1.12 Lines and hyperplanes in Rn

1.12.1 Vectors and lines in Rn

We can apply similar geometric language to vectors in Rn . We can think
of the vector a = (a1, a2, . . . , an)T as defining a point in Rn . Using the
inner product (defined in Section 1.8.2), we define the length of a vector
x = (x1, x2, . . . , xn)T by

‖x‖ =
√

x2
1 + x2

2 + · · · + x2
n or ‖x‖2 = 〈x, x〉.

We say that two vectors, v, w ∈ Rn are orthogonal if and only if

〈v, w〉 = 0.
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A line in Rn is the set of all points (x1, x2, . . . , xn) whose position
vectors x satisfy a vector equation of the form

x = p + tv, t ∈ R,

where p is the position vector of one particular point on the line and v
is the direction of the line. If we can write x = tv, t ∈ R, then the line
goes through the origin.

1.12.2 Hyperplanes

The set of all points (x1, x2, . . . , xn) which satisfy one Cartesian
equation,

a1x1 + a2x2 + · · · + anxn = d,

is called a hyperplane in Rn .
In R2, a hyperplane is a line, and in R3 it is a plane, but for n > 3

we simply use the term hyperplane. The vector

n =

⎛⎜⎜⎜⎝
a1

a2
...

an

⎞⎟⎟⎟⎠
is a normal vector to the hyperplane. Writing the Cartesian equation in
vector form, a hyperplane is the set of all vectors, x ∈ Rn such that

〈n, x − p〉 = 0,

where the normal vector n and the position vector p of a point on the
hyperplane are given.

Activity 1.75 How many Cartesian equations would you need to
describe a line in Rn? How many parameters would there be in a vector
equation of a hyperplane?

1.13 Learning outcomes

You should now be able to:

� explain what is meant by a matrix
� use matrix addition, scalar multiplication and matrix multiplication

appropriately (and know when and how these operations are defined)
� manipulate matrices algebraically
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� state what is meant by the inverse of a square matrix, a power of a
square matrix and the transpose of a matrix, and know the properties
of these in order to manipulate them

� explain what is meant by a vector and by Euclidean n-space
� state what is meant by the inner product of two vectors and what

properties it satisfies
� state what is meant by the length and direction of a vector, and what

is meant by a unit vector
� state the relationship between the inner product and the length of a

vector and angle between two vectors
� explain what is meant by two vectors being orthogonal and how to

determine this
� find the equations, vector and Cartesian, of lines in R2, lines and

planes in R3, and work problems involving lines and planes
� state what is meant by a line and by a hyperplane in Rn.

1.14 Comments on activities

Activity 1.3 For this matrix, a32 = 9.

Activity 1.4 Only the second matrix is diagonal.

Activity 1.11 AB is 2 × 2 and B A is 3 × 3,

AB =
(

10 5
6 2

)
B A =

⎛⎝ 7 5 10
2 1 3
3 3 4

⎞⎠ .

Activity 1.12 AB =
(

1 3
3 7

)
B A =

(
4 6
3 4

)
.

Activity 1.13 If A is m × n and B is n × p, then AB is an m × p
matrix. The size of a matrix is not changed by scalar multiplication,
so both λ(AB) and (λA)B are m × p. Looking at the (i, j) entries of
each,

(λ(AB))i j = λ
(
ai1b1 j + ai2b2 j + . . . + ainbnj

)
= λai1b1 j + λai2b2 j + . . . + λainbnj

= ((λA)B)i j ,

so these two matrices are equal.
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Activity 1.16 In this case, I is m × m.

Activity 1.22 AB =
(

1 2
3 4

)(−2 1
3
2 −1

2

)
=
(

1 0
0 1

)
and B A =

(−2 1
3
2 −1

2

)(
1 2
3 4

)
=
(

1 0
0 1

)
.

Therefore, A−1 =
(−2 1

3
2 −1

2

)
.

Activity 1.24 We will show one way (namely, that AA−1 = I ), but you
should also show that A−1 A = I .

AA−1 =
(

a b
c d

)
1

ad − bc

(
d −b

−c a

)
= 1

ad − bc

(
ad − bc −ab + ba
cd − dc −bc + ad

)
=
(

1 0
0 1

)
.

Activity 1.26 We will do the first, and leave the others to you. The
inverse of Ar is a matrix B such that Ar B = B Ar = I . So show that
the matrix B = (A−1)r works:

Ar (A−1)r = (A A . . . A︸ ︷︷ ︸
r times

)(A−1 A−1 . . . A−1︸ ︷︷ ︸
r times

).

Removing the brackets (matrix multiplication is associative) and replac-
ing each central AA−1 = I , the resultant will eventually be AI A−1 =
AA−1 = I . To complete the proof, show also that (A−1)r Ar = I . There-
fore, (Ar )−1 = (A−1)r .

Activity 1.29 Given the sizes of A and B, the matrix AB is m × p, so
(AB)T is p × m. Also, AT is n × m and BT is p × n, so the only way
these matrices can be multiplied is as BT AT (unless m = p).

Activity 1.30 The (i, j) entry of BT AT is obtained by taking row i of BT,
which is column i of B and multiplying each term by the corresponding
entry of column j of AT, which is row j of A, and then summing the
products: (

BT AT
)

i j
= b1i a j1 + b2i a j2 + . . . + b1na jn.

This produces the same scalar as the (i, j) entry of (AB)T.
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Activity 1.32 The matrix is

A =
⎛⎝ 1 4 5

4 2 −7
5 −7 3

⎞⎠ = AT.

Activity 1.33

aTb = ( 1 2 3 )

⎛⎝ 4
−2
1

⎞⎠ = (3)

abT =
⎛⎝ 1

2
3

⎞⎠ ( 4 −2 1 ) =
⎛⎝ 4 −2 1

8 −4 2
12 −6 3

⎞⎠ .

Activity 1.37 To prove properties (ii) and (iii), apply the definition to
the LHS (left-hand side) of the equation and rearrange the terms to
obtain the RHS (right-hand side). For example, for x, y ∈ Rn, using the
properties of real numbers:

α〈x, y〉 = α(x1 y1 + x2 y2 + · · · + xn yn)

= αx1 y1 + αx2 y2 + · · · + αxn yn

= (αx1)y1 + (αx2)y2 + · · · + (αxn)yn = 〈αx, y〉.
Do the same for property (iii).

The single property 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 implies prop-
erty (ii) by letting β = 0 for the first equality and then letting α = 0 for
the second, and property (iii) by letting α = β = 1. On the other hand,
if properties (ii) and (iii) hold, then

〈αx + βy, z〉 = 〈αx, z〉 + 〈βy, z〉 by property (iii)

= α〈x, z〉 + β〈y, z〉 by property (ii) .

Activity 1.42 ‖a‖ = 5, so

u = 1

5

(
4
3

)
and w = −2

5

(
4
3

)
.

Activity 1.45 In the figure below

y

z

x

(a1, a2, a3)

(a1, a2, 0)
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the line from the origin to the point (a1, a2, 0) lies in the xy-plane, and

by Pythagoras’ theorem, it has length
√

a2
1 + a2

2. Applying Pythagoras’
theorem again to the right triangle shown, we have

‖a‖ =
√(√

a2
1 + a2

2

)2

+ (a3)2 =
√

a 2
1 + a 2

2 + a 2
3 .

Activity 1.46 We have

a =
⎛⎝ 1

2
2

⎞⎠ , b =
⎛⎝−1

1
4

⎞⎠ , c = b − a =
⎛⎝−2

−1
2

⎞⎠ .

The cosines of the three angles are given by

〈a, b〉
‖a‖‖b‖ = −1 + 2 + 8√

9
√

18
= 1√

2

〈a, c〉
‖a‖‖c‖ = −2 − 2 + 4√

9
√

9
= 0;

〈b, c〉
‖b‖‖c‖ = 2 − 1 + 8√

18
√

9
= 1√

2
.

Thus, the triangle has a right-angle, and two angles of π/4.
Alternatively, as the vectors a and c are orthogonal, and have the

same length, it follows immediately that the triangle is right-angled and
isosceles.

Activity 1.49 If t = 3, then q = (3, 7)T. You are asked to sketch the
position vector q as this sum to illustrate that the vector q does locate a
point on the line, but the vector q does not lie on the line.

Activity 1.50 Here s = −1.

Activity 1.51 We will work through this for the second equation and
leave the first for you. We have, for s ∈ R,(

x
y

)
=
(

1
3

)
+ s

(−2
−4

)
⇒
{

x = 1 − 2s

y = 3 − 4s
⇒ 1 − x

2
= s = 3 − y

4
,

which yields 2(1 − x) = 3 − y or y = 2x + 1.

Activity 1.52 A vector equation of the line is

x =
(−1

1

)
+ t
(

4
1

)
= p + tv, t ∈ R,
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where we have used p to locate a point on the line, and the direction
vector, v = q − p. The point (7, 3) is on the line (t = 2), and this is
the only point of this form on the line, since once 7 is chosen for the x
coordinate, the y coordinate is determined.

Activity 1.55 Once given, for example, that the x coordinate is x = 3,
the parameter t of the vector equation is determined. Therefore, so too
are the other two coordinates. We saw in the example that t = 2 satisfies
the first two equations and it certainly does not satisfy the third equation,
1 = 0 − t .

Activity 1.56 This is similar to the earlier activity in R2. A vector
equation of the line is

x =
⎛⎝−1

1
2

⎞⎠+ t

⎛⎝ 4
1

−1

⎞⎠ = p + tv, t ∈ R.

The point (7, 1, 3) is not on this line, but the point (−5, 0, 3) is on
the line. The value t = −1 will then satisfy all three component equa-
tions. There is, of course, only one possible choice for the values of c
and d.

Activity 1.59 The lines are not parallel because their direction vectors
are not parallel.

Activity 1.62 If v and w are parallel, then this equation represents a
line in the direction v. If w = λv, then this line can be written as

x = p + (s + λt)v, where r = s + λt ∈ R.

Activity 1.69 Using the properties of the inner product, we have for any
s, t ∈ R,

〈n, sv + tw〉 = s〈n, v〉 + t〈n, w〉 = s · 0 + t · 0 = 0.

Activity 1.71 Equating components in the vector equation, we have
3 = s and 7 = t from the first two equations, and these values do satisfy
the third equation, 2 = 4 − 3s + t .

Activity 1.72 The parallel planes must each contain the direction vec-
tors of each of the lines as displacement vectors, so the vector equations
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of the planes are, respectively⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 1

3
4

⎞⎠+ s

⎛⎝ 1
2

−1

⎞⎠+ t

⎛⎝−2
1
7

⎞⎠
and ⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 5

6
1

⎞⎠+ s

⎛⎝ 1
2

−1

⎞⎠+ t

⎛⎝−2
1
7

⎞⎠ ,

where s, t ∈ R.
The parallel planes have the same normal vector, which we need

for the Cartesian equations. Recall that in Example 1.70, we found a
Cartesian equation and a normal vector to the first plane, the plane
which contains L1:

3x − y + z = 4, with n =
⎛⎝ 3

−1
1

⎞⎠ .

Note that the point (1, 3, 4) is on this plane because it satisfies the
equation, but the point (5, 6, 1) does not. Substituting (5, 6, 1) into the
equation 3x − y + z = d, we find the Cartesian equation of the parallel
plane which contains L2 is

3x − y + z = 10.

Activity 1.74 As stated, to verify that the line is in both planes, show
that its direction vector is perpendicular to the normal vector of each
plane, and that the point (2,−1, 0) satisfies both equations.

Activity 1.75 To describe a line in Rn, you need n − 1 Cartesian equa-
tions. A vector parametric equation of a hyperplane in Rn would require
n − 1 parameters.

1.15 Exercises

Exercise 1.1 Given the matrices:

A =
(

1 3 5
−1 1 0

)
, B =

⎛⎝ 1 0 1
2 1 1
1 1 −1

⎞⎠ ,

C =
⎛⎝ 1 1

3 2
−1 4

⎞⎠ , d =
⎛⎝ 2

−1
1

⎞⎠ ,
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which of the following matrix expressions are defined? Compute those
which are defined.

(a) Ad (b) AB + C (c) A + CT (d) CTC (e) BC

(f) dT B (g) Cd (h) dTd (i) ddT .

Exercise 1.2 Find, if possible, a matrix A and a constant x such that⎛⎝ 1 7
5 0
9 3

⎞⎠ A =
⎛⎝−4 14

15 0
24 x

⎞⎠ .

Exercise 1.3 If A and B are invertible n × n matrices, then using the
definition of the inverse, prove that

(AB)−1 = B−1 A−1.

Exercise 1.4 Solve for the matrix A:(
5AT +

(
1 0
2 5

))T

= 3A +
(

1 −2
−1 3

)−1

.

Exercise 1.5 Suppose A and B are matrices such that A and AB are
invertible. Suppose, furthermore, that

(AB)−1 = 2A−1.

Find B.

Exercise 1.6 If B is an m × k matrix, show that the matrix BT B is a
k × k symmetric matrix.

Exercise 1.7 Let A be an m × n matrix and B an n × n matrix. Sim-
plify, as much as possible, the expression

(AT A)−1 AT(B−1 AT)T BT B2 B−1

assuming that any matrix inverse in the expression is defined.

Exercise 1.8 Write down a vector equation for each of the following
lines.

(a) In R2, the line through the points (3, 1) and (−2, 4).
(b) In R5, the line through the points (3, 1, −1, 2, 5) and

(−2, 4, 0, 1, 1). Is the point (4, 3, 2, 1, 4) on this line?

Exercise 1.9 Find the vector equation of the line in R3 with Cartesian
equations

x − 1

3
= y + 2 = 5 − z

4
.
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Exercise 1.10 Let

L1 be the line with equation

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 1

3
2

⎞⎠+ t

⎛⎝−1
5
4

⎞⎠ ,

L2 the line through (8, 0, −3) parallel to the vector

⎛⎝ 6
2

−1

⎞⎠,

L3 the line through (9, 3, 1) and (7, 13, 9).

Show that two of the lines intersect, two are parallel and two are skew.
Find the angle of intersection of the two intersecting lines.

Exercise 1.11 Referring to the previous exercise, find the vector equa-
tion and the Cartesian equation of the plane containing L1 and L3.

Exercise 1.12 Show that the line

x =
⎛⎝ 2

3
1

⎞⎠+ t

⎛⎝−1
4
2

⎞⎠
does not intersect the plane 2x + z = 9.

Find the equation of the line through the point (2, 3, 1) which is
parallel to the normal vector of the plane, and determine at what point
it intersects the plane. Hence, or otherwise, find the distance of the line
to the plane.

1.16 Problems

Problem 1.1 Given the matrices

A =
⎛⎝ 2 1

1 1
0 3

⎞⎠ , b =
⎛⎝ 1

1
−1

⎞⎠ , C =
⎛⎝ 1 2 1

3 0 −1
4 1 1

⎞⎠ ,

D =
⎛⎝ 0 1

2 5
6 3

⎞⎠ ,

which of the following matrix expressions are defined? Compute those
which are defined.

(a) Ab

( f ) D AT + C

(b) C A

(g) bTb

(c) A + Cb

(h) bbT

(d) A + D

(i) Cb.

(e) bT D

Problem 1.2 If a and b are both column matrices of the same size,
n × 1, what is the size of the matrix product aTb?

What is the size of the matrix expression bTa?
What is the relationship between aTb and bTa?
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Problem 1.3 Let B =
(

3 7
0 −1

)
and suppose B−1 =

(
x y
z w

)
.

Solve the system of four equations given by the matrix equation
B B−1 = I , (

3 7
0 −1

)(
x y
z w

)
=
(

1 0
0 1

)
,

to obtain the matrix B−1.
Check your solution by finding B−1 using the result in Activity 1.24.

Then make absolutely sure B−1 is correct by checking that B B−1 =
B−1 B = I .

Problem 1.4 Find the matrix A if

(A−1)T =
(

3 5
1 2

)
.

Problem 1.5 A square matrix M is said to be skew symmetric if M =
−MT.

Given that the 3 × 3 matrix A = (ai j ) is symmetric and the 3 × 3
matrix B = (bi j ) is skew symmetric, find the missing entries in the
following matrices:

A =
⎛⎝ 1 7

−4 6
0 2

⎞⎠ B =
⎛⎝ 3 0 2

−5

⎞⎠ .

Problem 1.6 If A is an n × n matrix, show that the matrix A +
AT is symmetric and the matrix A − AT is skew symmetric. (See
Problem 1.5.)

Show that any matrix A can be written as the sum of a symmetric
matrix and a skew symmetric matrix.

Problem 1.7 Suppose that

A =
(

a b
c d

)
is a 2 × 2 matrix such that AB = B A for all 2 × 2 matrices B. Show
that a = d, b = 0, c = 0. Deduce that the only such matrices are scalar
multiples of the identity matrix.

Hint: If something is true for all 2 × 2 matrices, then it is true for
any such matrix. Try some simple choices for B, such as

B =
(

1 0
0 0

)
,

 



1.16 Problems 57

and calculate AB = B A. Use the fact that two matrices are equal if
and only if corresponding entries are equal to derive the conditions on
a, b, c, d.

Can you generalise the result to 3 × 3 matrices? To n × n matrices?

Problem 1.8 Find a vector equation of the line through the points
A = (4, 5, 1) and B = (1, 3, −2).

Find values of c and d such that the points A, B and C = (c, d, −5)
are collinear; that is, are points on the same line.

Problem 1.9 Show that the line

x =
⎛⎝ 1

1
1

⎞⎠+ t

⎛⎝ 2
1

−1

⎞⎠ , t ∈ R

intersects the line with Cartesian equations,

x = 5, y − 4 = z − 1

2
,

and find the point of intersection.

Problem 1.10 What is the relationship between the lines with equations

x =
⎛⎝ 1

2
1

⎞⎠+ t

⎛⎝ 3
−2
1

⎞⎠ , t ∈ R; x =
⎛⎝ 8

4
−3

⎞⎠+ t

⎛⎝ 1
−2
2

⎞⎠ , t ∈ R ?

Problem 1.11 Find the Cartesian equation of the plane which contains
the point (5, 1, 3) and has normal vector n = (1, −4, 2)T.

Find also a vector (parametric) equation of this plane.

Problem 1.12 Find a Cartesian equation of the plane given by

x =
⎛⎝ 1

1
1

⎞⎠+ s

⎛⎝ 2
1

−1

⎞⎠+ t

⎛⎝ 0
1
2

⎞⎠ , s, t ∈ R.

Show that the equation

x =
⎛⎝ 1

2
3

⎞⎠+ s

⎛⎝ 6
2

−5

⎞⎠+ t

⎛⎝ 2
−2
−7

⎞⎠ , s, t ∈ R

represents the same plane.

Problem 1.13 Find the equation of the plane containing the two inter-
secting lines of Problem 1.9.
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Problem 1.14 Find the point of intersection of the line

x =
⎛⎝ 2

1
4

⎞⎠+ t

⎛⎝ 6
−1
2

⎞⎠
with the plane

x + y − 3z = 4.

 



2

Systems of linear equations

Being able to solve systems of many linear equations in many unknowns
is a vital part of linear algebra. We use matrices and vectors as essential
elements in obtaining and expressing the solutions.

We begin by expressing a system in matrix form and defining ele-
mentary row operations on a related matrix, known as the augmented
matrix. These operations mimic the standard operations we would use
to solve systems of equations by eliminating variables. We then learn a
precise algorithm to apply these operations in order to put the matrix in
a special form known as reduced echelon form, from which the general
solution to the system is readily obtained. The method of manipulat-
ing matrices in this way to obtain the solution is known as Gaussian
elimination.

We then examine the forms of solutions to systems of linear equa-
tions and look at their properties, defining what is meant by a homoge-
neous system and the null space of a matrix.

2.1 Systems of linear equations

A system of m linear equations in n unknowns x1, x2, . . . , xn is a set of
m equations of the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
...

am1x1 + am2x2 + · · · + amnxn = bm .

The numbers ai j are known as the coefficients of the system.
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Example 2.1 The set of equations

x1 + x2 + x3 = 3

2x1 + x2 + x3 = 4

x1 − x2 + 2x3 = 5

is a system of three linear equations in the three unknowns x1, x2, x3.

Systems of linear equations occur naturally in a number of applications.
We say that s1, s2, . . . , sn is a solution of the system if all m equa-

tions hold true when

x1 = s1, x2 = s2, . . . , xn = sn.

Sometimes a system of linear equations is known as a set of simul-
taneous equations; such terminology emphasises that a solution is an
assignment of values to each of the n unknowns such that each and
every equation holds with this assignment. It is also referred to simply
as a linear system.

Example 2.2 The linear system

x1 + x2 + x3 + x4 + x5 = 3

2x1 + x2 + x3 + x4 + 2x5 = 4

x1 − x2 − x3 + x4 + x5 = 5

x1 + x4 + x5 = 4.

is an example of a system of four equations in five unknowns,
x1, x2, x3, x4, x5. One solution of this system is

x1 = −1, x2 = −2, x3 = 1, x4 = 3, x5 = 2,

as you can easily verify by substituting these values into the equations.
Every equation is satisfied for these values of x1, x2, x3, x4, x5. How-
ever, this is not the only solution to this system of equations. There are
many more.

On the other hand, the system of linear equations

x1 + x2 + x3 + x4 + x5 = 3

2x1 + x2 + x3 + x4 + 2x5 = 4

x1 − x2 − x3 + x4 + x5 = 5

x1 + x4 + x5 = 6.

has no solutions. There are no numbers we can assign to the unknowns
x1, x2, x3, x4, x5 so that all four equations are satisfied.
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How do we know this? How do we find all the solutions to a system
of linear equations?

We begin by writing a system of linear equations in matrix form.

Definition 2.3 (Coefficient matrix) The matrix A = (ai j ), whose (i, j)
entry is the coefficient ai j of the system of linear equations is called the
coefficient matrix

A =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

⎞⎟⎟⎟⎠ .

Let x = (x1, x2, . . . , xn)T be the vector of unknowns. Then the product
Ax of the m × n coefficient matrix A and the n × 1 column vector x is
an m × 1 matrix,⎛⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

x2
...

xn

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

...
am1x1 + an2x2 + · · · + amnxn

⎞⎟⎟⎟⎠,

whose entries are the left-hand sides of our system of linear equations.
If we define another column vector b, whose m components are the

right-hand sides bi , the system is equivalent to the matrix equation

Ax = b.

Example 2.4 Consider the following system of three linear equations
in the three unknowns, x1, x2, x3:

x1 + x2 + x3 = 3
2x1 + x2 + x3 = 4
x1 − x2 + 2x3 = 5.

This system can be written in matrix notation as Ax = b with

A =
⎛⎝ 1 1 1

2 1 1
1 −1 2

⎞⎠ , x =
⎛⎝ x1

x2

x3

⎞⎠ , b =
⎛⎝ 3

4
5

⎞⎠ .

The entries of the matrix A are the coefficients of the xi . If we perform
the matrix multiplication of Ax,⎛⎝ 1 1 1

2 1 1
1 −1 2

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ =
⎛⎝ x1 + x2 + x3

2x1 + x2 + x3

x1 − x2 + 2x3

⎞⎠ ,

 



62 Systems of linear equations

the matrix product is a 3 × 1 matrix, a column vector. If Ax = b, then⎛⎝ x1 + x2 + x3

2x1 + x2 + x3

x1 − x2 + 2x3

⎞⎠ =
⎛⎝ 3

4
5

⎞⎠ ,

and these two 3 × 1 matrices are equal if and only if their components
are equal. This gives precisely the three linear equations.

2.2 Row operations

Our purpose is to find an efficient means of finding the solutions of
systems of linear equations.

Consider Example 2.4. An elementary way of solving a system of
linear equations such as

x1 + x2 + x3 = 3
2x1 + x2 + x3 = 4
x1 − x2 + 2x3 = 5

is to begin by eliminating one of the variables from two of the equations.
For example, we can eliminate x1 from the second equation by multi-
plying the first equation by 2 and then subtracting it from the second
equation.

Let’s do this. Twice the first equation gives 2x1 + 2x2 + 2x3 = 6.
Subtracting this from the second equation, 2x1 + x2 + x3 = 4, yields
the equation −x2 − x3 = −2. We can now replace the second equation
in the original system by this new equation,

x1 + x2 + x3 = 3
−x2 − x3 = −2

x1 − x2 + 2x3 = 5

and the new system will have the same set of solutions as the original
system.

We can continue in this manner to obtain a simpler set of equations
with the same solution set as the original system. Our next step might
be to subtract the first equation from the last equation and replace the
last equation, to obtain the system

x1 + x2 + x3 = 3
x2 + x3 = 2

−2x2 + x3 = 2
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so that the last two equations now only contain the two variables x2 and
x3. We can then eliminate one of these variables to eventually obtain
the solution.

So exactly what operations can we perform on the equations of a
linear system without altering the set of solutions? There are three main
such types of operation, as follows:

O1 multiply both sides of an equation by a non-zero constant.
O2 interchange two equations.
O3 add a multiple of one equation to another.

These operations do not alter the set of solutions since the restrictions
on the variables x1, x2, . . . , xn given by the new equations imply the
restrictions given by the old ones (that is, we can undo the manipulations
made to retrieve the old system).

At the same time, we observe that these operations really only
involve the coefficients of the variables and the right-hand sides of the
equations.

For example, using the same system as above expressed in matrix
form, Ax = b, then the matrix

(A|b) =
⎛⎝ 1 1 1 3

2 1 1 4
1 −1 2 5

⎞⎠ ,

which is the coefficient matrix A together with the constants b as the
last column, contains all the information we need to use, and rather than
manipulating the equations, we can instead manipulate the rows of this
matrix. For example, subtracting twice equation 1 from equation 2 is
executed by taking twice row 1 from row 2.

These observations form the motivation behind a method to solve
systems of linear equations, known as Gaussian elimination. To solve
a linear system Ax = b, we first form the augmented matrix, denoted
(A|b), which is A with column b tagged on.

Definition 2.5 (Augmented matrix) If Ax = b is a system of linear
equations,

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎞⎟⎟⎟⎠ x =

⎛⎜⎜⎜⎝
x1

x2
...

xn

⎞⎟⎟⎟⎠ b =

⎛⎜⎜⎜⎝
b1

b2
...

bm

⎞⎟⎟⎟⎠ ,
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then the matrix

(A|b) =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm

⎞⎟⎟⎟⎠
is called the augmented matrix of the linear system.

From the operations listed above for manipulating the equations of the
linear system, we define corresponding operations on the rows of the
augmented matrix.

Definition 2.6 (Elementary row operations) These are:

RO1 multiply a row by a non-zero constant.
RO2 interchange two rows.
RO3 add a multiple of one row to another.

2.3 Gaussian elimination

We will describe a systematic method for solving systems of linear
equations by an algorithm which uses row operations to put the aug-
mented matrix into a form from which the solution of the linear system
can be easily read. This method is known as Gaussian elimination or
Gauss–Jordan elimination. To illustrate the algorithm, we will use two
examples: the augmented matrix (A|b) of the example in the previous
section and the augmented matrix (B|b) of a second system of linear
equations,

( A|b ) =
⎛⎝ 1 1 1 3

2 1 1 4
1 −1 2 5

⎞⎠ , ( B|b ) =
⎛⎝ 0 0 2 3

0 2 3 4
0 0 1 5

⎞⎠ .

2.3.1 The algorithm: reduced row echelon form

Using the above two examples, we will carry out the algorithm in detail.

(1) Find the leftmost column that is not all zeros.
The augmented matrices are⎛⎝ 1 1 1 3

2 1 1 4
1 −1 2 5

⎞⎠ ⎛⎝ 0 0 2 3
0 2 3 4
0 0 1 5

⎞⎠ .
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So this is column 1 of (A|b) and column 2 of (B|b).

(2) Get a non-zero entry at the top of this column.
The matrix on the left already has a non-zero entry at the top. For

the matrix on the right, we interchange row 1 and row 2:⎛⎝ 1 1 1 3
2 1 1 4
1 −1 2 5

⎞⎠ ⎛⎝ 0 2 3 4
0 0 2 3
0 0 1 5

⎞⎠ .

(3) Make this entry 1; multiply the first row by a suitable number or
interchange two rows. This 1 entry is called a leading one.

The left-hand matrix already had a 1 in this position. For the second
matrix, we multiply row 1 by one-half:⎛⎝ 1 1 1 3

2 1 1 4
1 −1 2 5

⎞⎠ ⎛⎝ 0 1 3
2 2

0 0 2 3
0 0 1 5

⎞⎠ .

(4) Add suitable multiples of the top row to rows below so that all
entries below the leading one become zero.

For the matrix on the left, we add −2 times row 1 to row 2, then we
add −1 times row 1 to row 3. These are the same operations as the ones
we performed earlier on the example using the equations. The matrix
on the right already has zeros under the leading one:⎛⎝ 1 1 1 3

0 −1 −1 −2
0 −2 1 2

⎞⎠ ⎛⎝ 0 1 3
2 2

0 0 2 3
0 0 1 5

⎞⎠ .

At any stage, we can read the modified system of equations from the new
augmented matrix, remembering that column 1 gives the coefficients of
x1, column 2 the coefficients of x2 and so on, and that the last column
represents the right-hand side of the equations. For example, the matrix
on the left is now the augmented matrix of the system

x1 + x2 + x3 = 3
−x2 − x3 = −2

−2x2 + x3 = 2.

The next step in the algorithm is

(5) Cover up the top row and apply steps (1) to (4) again.
This time we will work on one matrix at a time. After the first four

steps, we have altered the augmented matrix (A|b) to

(A|b) −→
⎛⎝ 1 1 1 3

0 −1 −1 −2
0 −2 1 2

⎞⎠ .
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We now ignore the top row. Then the leftmost column which is not all
zeros is column 2. This column already has a non-zero entry at the top.
We make it into a leading one by multiplying row 2 by −1:

−→
⎛⎝ 1 1 1 3

0 1 1 2
0 −2 1 2

⎞⎠ .

This is now a leading one, and we use it to obtain zeros below. We add
2 times row 2 to row 3:

−→
⎛⎝ 1 1 1 3

0 1 1 2
0 0 3 6

⎞⎠ .

Now we cover up the top two rows and start again with steps (1) to (4).
The leftmost column which is not all zeros is column 3. We multiply
row 3 by one-third to obtain the final leading one:

−→
⎛⎝ 1 1 1 3

0 1 1 2
0 0 1 2

⎞⎠ .

This last matrix is in row echelon form, or simply, echelon form.

Definition 2.7 (Row echelon form) A matrix is said to be in row
echelon form (or echelon form) if it has the following three properties:

(1) Every non-zero row begins with a leading one.
(2) A leading one in a lower row is further to the right.
(3) Zero rows are at the bottom of the matrix.

Activity 2.8 Check that the above matrix satisfies these three
properties.

The term echelon form takes its name from the form of the equations
at this stage. Reading from the matrix, these equations are

x1 + x2 + x3 = 3
x2 + x3 = 2

x3 = 2.

We could now use a method called back substitution to find the solution
of the system. The last equation tells us that x3 = 2. We can then
substitute this into the second equation to obtain x2, and then use these
two values to obtain x1. This is an acceptable approach, but we can
effectively do the same calculations by continuing with row operations.
So we continue with one final step of our algorithm.
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(6) Begin with the last row and add suitable multiples to each row
above to get zeros above the leading ones.

Continuing from the row echelon form and using row 3, we replace
row 2 with row 2−row 3, and at the same time we replace row 1 with
row 1−row 3:

(A|b) −→
⎛⎝ 1 1 1 3

0 1 1 2
0 0 1 2

⎞⎠ −→
⎛⎝ 1 1 0 1

0 1 0 0
0 0 1 2

⎞⎠ .

We now have zeros above the leading one in column 3. There is only
one more step to do, and that is to get a zero above the leading one in
column 2. So the final step is row 1−row 2:

−→
⎛⎝ 1 0 0 1

0 1 0 0
0 0 1 2

⎞⎠ .

This final matrix is now in reduced row echelon form. It has the
additional property that every column with a leading one has zeros
elsewhere.

Definition 2.9 (Reduced row echelon form) A matrix is said to be
in reduced row echelon form (or reduced echelon form) if it has the
following four properties:

(1) Every non-zero row begins with a leading one.
(2) A leading one in a lower row is further to the right.
(3) Zero rows are at the bottom of the matrix.
(4) Every column with a leading one has zeros elsewhere.

If R is the reduced row echelon form of a matrix M , we will sometimes
write R = RREF(M).

The solution can now be read from the matrix. The top row says
x1 = 1, the second row says x2 = 0 and the third row says x3 = 2. The
original system has been reduced to the matrix equation⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ =
⎛⎝ 1

0
2

⎞⎠ ,

giving the solution ⎛⎝ x1

x2

x3

⎞⎠ =
⎛⎝ 1

0
2

⎞⎠ .

This system of equations has a unique solution.
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We can check that this solution is the correct solution of the orig-
inal system by substituting it into the equations, or equivalently, by
multiplying out the matrices Ax to show that Ax = b.

Activity 2.10 Do this: check that

⎛⎝ 1 1 1
2 1 1
1 −1 2

⎞⎠⎛⎝ 1
0
2

⎞⎠ =
⎛⎝ 3

4
5

⎞⎠.

We now return to the example (B|b), which we left after the first round
of steps (1) to (4), and we apply step (5). We cover up the top row and
apply steps (1) to (4) again. We need to have a leading one in the second
row, which we achieve by switching row 2 and row 3:

(B|b) −→
⎛⎝ 0 1 3

2 2
0 0 2 3
0 0 1 5

⎞⎠ −→
⎛⎝ 0 1 3

2 2
0 0 1 5
0 0 2 3

⎞⎠ .

We obtain a zero under this leading one by replacing row 3 with row
3 + (−2) times row 2:

−→
⎛⎝ 0 1 3

2 2
0 0 1 5
0 0 0 −7

⎞⎠
and then, finally, multiply row 3 by −1

7 :

−→
⎛⎝ 0 1 3

2 2
0 0 1 5
0 0 0 1

⎞⎠ .

This matrix is now in row echelon form, but we shall see that there is
no point in going on to reduced row echelon form. This last matrix is
equivalent to the system⎛⎝ 0 1 3

2
0 0 1
0 0 0

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ =
⎛⎝ 2

5
1

⎞⎠ .

What is the bottom equation of this system? Row 3 says 0x1 + 0x2 +
0x3 = 1, that is 0 = 1, which is impossible! This system has no solution.

Putting an augmented matrix into reduced row echelon form using
this algorithm is usually the most efficient way to solve a system of
linear equations. In a variation of the algorithm, when the leading one
is obtained in the second row, it can be used to obtain zeros both below it
(as in the algorithm) and also above it. Although this may look attractive,
it actually uses more calculations on the remaining columns than the
method given here, and this number becomes significant for large n.
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2.3.2 Consistent and inconsistent systems

Definition 2.11 (Consistent) A system of linear equations is said to be
consistent if it has at least one solution. It is inconsistent if there are no
solutions.

The example above demonstrates the following important fact:

� If the row echelon form (REF) of the augmented matrix ( A|b )
contains a row (0 0 · · · 0 1), then the system is inconsistent.

It is instructive to look at the original systems represented by the aug-
mented matrices above:

( A|b ) =
⎛⎝ 1 1 1 3

2 1 1 4
1 −1 2 5

⎞⎠ ( B|b ) =
⎛⎝ 0 0 2 3

0 2 3 4
0 0 1 5

⎞⎠ .

These are⎧⎨⎩
x1 + x2 + x3 = 3

2x1 + x2 + x3 = 4
x1 − x2 + 2x3 = 5

⎧⎨⎩
2x3 = 3

2x2 + 3x3 = 4
x3 = 5.

We see immediately that the system Bx = b is inconsistent since it is
not possible for both the top and the bottom equation to hold.

Since these are systems of three equations in three variables, we
can interpret these results geometrically. Each of the equations above
represents a plane in R3. The system Ax = b represents three planes
which intersect in the point (1, 0, 2). This is the only point which lies
on all three planes. The system Bx = b represents three planes, two of
which are parallel (the horizontal planes 2x3 = 3 and x3 = 5), so there
is no point that lies on all three planes.

We have been very careful when illustrating the Gaussian elimina-
tion method to explain what the row operations were for each step of
the algorithm, but it is not necessary to include all this detail. The aim
is to use row operations to put the augmented matrix into reduced row
echelon form, and then read off the solutions from this form. Where it is
useful to indicate the operations, you can do so by writing, for example,
R2 − 2R1, where we always write down the row we are replacing first,
so that R2 − 2R1 indicates ‘replace row 2 (R2) with row 2 plus −2 times
row 1 (R2 − 2R1)’. Otherwise, you can just write down the sequence of
matrices linked by arrows. It is important to realise that once you have
performed a row operation on a matrix, the new matrix obtained is not
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equal to the previous one; this is why you must use arrows between the
steps and not equal signs.

Example 2.12 We repeat the reduction of (A|b) to illustrate this for the
system

x1 + x2 + x3 = 3
2x1 + x2 + x3 = 4
x1 − x2 + 2x3 = 5.

Begin by writing down the augmented matrix, then apply the row
operations to carry out the algorithm. Here we will indicate the row
operations:

(A|b) =
⎛⎝ 1 1 1 3

2 1 1 4
1 −1 2 5

⎞⎠ →

R2 − 2R1

R3 − R1

⎛⎝ 1 1 1 3
0 −1 −1 −2
0 −2 1 2

⎞⎠ →

(−1)R2

⎛⎝ 1 1 1 3
0 1 1 2
0 −2 1 2

⎞⎠ →

R3 + 2R2

⎛⎝ 1 1 1 3
0 1 1 2
0 0 3 6

⎞⎠ →

( 1
3 )R3

⎛⎝ 1 1 1 3
0 1 1 2
0 0 1 2

⎞⎠ .

The matrix is now in row echelon form. We continue to reduced row
echelon form:

R1 − R3

R2 − R3

⎛⎝ 1 1 0 1
0 1 0 0
0 0 1 2

⎞⎠ →

R1 − R2
⎛⎝ 1 0 0 1

0 1 0 0
0 0 1 2

⎞⎠ .

The augmented matrix is now in reduced row echelon form.
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Activity 2.13 Use Gaussian elimination to solve the following system
of equations:

x1 + x2 + x3 = 6

2x1 + 4x2 + x3 = 5

2x1 + 3x2 + x3 = 6.

Be sure to follow the algorithm to put the augmented matrix into reduced
row echelon form using row operations.

2.3.3 Linear systems with free variables

Gaussian elimination can be used to solve systems of linear equations
with any number of equations and unknowns. We will now look at an
example of a linear system with four equations in five unknowns:

x1 + x2 + x3 + x4 + x5 = 3

2x1 + x2 + x3 + x4 + 2x5 = 4

x1 − x2 − x3 + x4 + x5 = 5

x1 + x4 + x5 = 4.

The augmented matrix is

(A|b) =

⎛⎜⎜⎝
1 1 1 1 1 3
2 1 1 1 2 4
1 −1 −1 1 1 5
1 0 0 1 1 4

⎞⎟⎟⎠ .

Check that your augmented matrix is correct before you proceed, or
you could be solving the wrong system! A good method is to first write
down the coefficients by rows, reading across the equations, and then
to check the columns do correspond to the coefficients of that variable.
Now follow the algorithm to put (A|b) into reduced row echelon form:

−→
R2 − 2R1

R3 − R1

R4 − R1

⎛⎜⎜⎝
1 1 1 1 1 3
0 −1 −1 −1 0 −2
0 −2 −2 0 0 2
0 −1 −1 0 0 1

⎞⎟⎟⎠

(−1)R2

−→

⎛⎜⎜⎝
1 1 1 1 1 3
0 1 1 1 0 2
0 −2 −2 0 0 2
0 −1 −1 0 0 1

⎞⎟⎟⎠
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−→
R3 + 2R2

R4 + R2

⎛⎜⎜⎝
1 1 1 1 1 3
0 1 1 1 0 2
0 0 0 2 0 6
0 0 0 1 0 3

⎞⎟⎟⎠

−→
( 1

2 )R3

⎛⎜⎜⎝
1 1 1 1 1 3
0 1 1 1 0 2
0 0 0 1 0 3
0 0 0 1 0 3

⎞⎟⎟⎠

−→

R4 − R3

⎛⎜⎜⎝
1 1 1 1 1 3
0 1 1 1 0 2
0 0 0 1 0 3
0 0 0 0 0 0

⎞⎟⎟⎠ .

This matrix is in row echelon form. We continue to reduced row echelon
form, starting with the third row:

R1 − R3

R2 − R3

−→

⎛⎜⎜⎝
1 1 1 0 1 0
0 1 1 0 0 −1
0 0 0 1 0 3
0 0 0 0 0 0

⎞⎟⎟⎠

R1 − R2

−→

⎛⎜⎜⎝
1 0 0 0 1 1
0 1 1 0 0 −1
0 0 0 1 0 3
0 0 0 0 0 0

⎞⎟⎟⎠ .

There are only three leading ones in the reduced row echelon form of
this matrix. These appear in columns 1, 2 and 4. Since the last row gives
no information, but merely states that 0 = 0, the matrix is equivalent to
the system of equations:

x1 + 0 + 0 + 0 + x5 = 1

x2 + x3 + 0 + 0 = −1

x4 + 0 = 3.

The form of these equations tells us that we can assign any values to x3

and x5, and then the values of x1, x2 and x4 will be determined.

Definition 2.14 (Leading variables) The variables corresponding to
the columns with leading ones in the reduced row echelon form of an
augmented matrix are called leading variables. The other variables are
called non-leading variables.
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In this example, the variables x1, x2 and x4 are leading variables, x3 and
x5 are non-leading variables. We assign x3, x5 the arbitrary values s, t ,
where s, t represent any real numbers, and then solve for the leading
variables in terms of these. We get

x4 = 3, x2 = −1 − s, x1 = 1 − t.

Then we express this solution in vector form:

x =

⎛⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 − t

−1 − s
s
3
t

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1

−1
0
3
0

⎞⎟⎟⎟⎟⎟⎠+ s

⎛⎜⎜⎜⎜⎜⎝
0

−1
1
0
0

⎞⎟⎟⎟⎟⎟⎠+ t

⎛⎜⎜⎜⎜⎜⎝
−1
0
0
0
1

⎞⎟⎟⎟⎟⎟⎠ .

Observe that there are infinitely many solutions, because any values of
s ∈ R and t ∈ R will give a solution.

The solution given above is called a general solution of the system,
because it gives a solution for any values of s and t , and any solution
of the equation is of this form for some s, t ∈ R. For any particular
assignment of values to s and t , such as s = 0, t = 1, we obtain a
particular solution of the system.

Activity 2.15 Let s = 0 and t = 0 and show (by substituting it into the
equation or multiplying Ax0) that x0 = (1, −1, 0, 3, 0)T is a solution of
Ax = b. Then let s = 1 and t = 2 and show that the new vector x1 you
obtain is also a solution.

With practice, you will be able to read the general solution directly from
the reduced row echelon form of the augmented matrix. We have

(A|b) −→

⎛⎜⎜⎝
1 0 0 0 1 1
0 1 1 0 0 −1
0 0 0 1 0 3
0 0 0 0 0 0

⎞⎟⎟⎠ .

Locate the leading ones, and note which are the leading variables. Then
locate the non-leading variables and assign each an arbitrary parameter.
So, as above, we note that the leading ones are in the first, second and
fourth column, and so correspond to x1, x2 and x4. Then we assign
arbitrary parameters to the non-leading variables; that is, values such
as x3 = s and x5 = t , where s and t represent any real numbers. Then
write down the vector x = (x1, x2, x3, x4, x5)T (as a column) and fill in
the values starting with x5 and working up. We have x5 = t . Then the
third row tells us that x4 = 3. We have x3 = s. Now look at the second
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row, which says x2 + x3 = −1, or x2 = −1 − s. Then the top row tells
us that x1 = 1 − t . In this way, we obtain the solution in vector form.

Activity 2.16 Write down the system of three linear equations in three
unknowns represented by the matrix equation Ax = b, where

A =
⎛⎝ 1 2 1

2 2 0
3 4 1

⎞⎠ , x =
⎛⎝ x

y
z

⎞⎠ , b =
⎛⎝ 3

2
5

⎞⎠ .

Use Gaussian elimination to solve the system. Express your solution
in vector form. If each equation represents the Cartesian equation of a
plane in R3, describe the intersection of these three planes.

2.3.4 Solution sets

We have seen systems of linear equations which have a unique solution,
no solution and infinitely many solutions. It turns out that these are the
only possibilities.

Theorem 2.17 A system of linear equations either has no solutions, a
unique solution or infinitely many solutions.

Proof: To see this, suppose we have a linear system Ax = b which has
two distinct solutions, p and q. So the system has a solution and it is
not unique. Thinking of these vector solutions as determining points in
Rn, then we will show that every point on the line through p and q is
also a solution. Therefore, as soon as there is more than one solution,
there must be infinitely many.

If p and q are vectors such that Ap = b and Aq = b, p 
= q, then
the equation of the line through p and q is

v = p + t(q − p) t ∈ R.

Then for any vector v on the line, we have Av = A(p + t(q − p)).
Using the distributive laws,

Av = Ap + t A(q − p) = Ap + t(Aq − Ap) = b + t(b − b) = b.

Therefore, v is also a solution for any t ∈ R, so there are infinitely many
of them. �

Notice that in this proof the vector w = q − p satisfies the equation
Ax = 0. This leads us to our next topic.
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2.4 Homogeneous systems and null space

2.4.1 Homogeneous systems

Definition 2.18 A homogeneous system of linear equations is a linear
system of the form Ax = 0.

There is one easy, but important, fact about homogeneous systems:

� A homogeneous system Ax = 0 is always consistent.

Why? Because A0 = 0, so the system always has the solution x = 0.
For this reason, x = 0 is called the trivial solution.

The following fact can now be seen:

� If Ax = 0 has a unique solution, then it must be the trivial solution,
x = 0.

If we form the augmented matrix, (A | 0), of a homogeneous system,
then the last column will consist entirely of zeros. This column will
remain a column of zeros throughout the entire row reduction, so there
is no point in writing it. Instead, we use Gaussian elimination on the
coefficient matrix A, remembering that we are solving Ax = 0.

Example 2.19 Find the solution of the homogeneous linear system,

x + y + 3z + w = 0
x − y + z + w = 0

y + 2z + 2w = 0.

We reduce the coefficient matrix A to reduced row echelon form,

A =
⎛⎝ 1 1 3 1

1 −1 1 1
0 1 2 2

⎞⎠ −→
⎛⎝ 1 1 3 1

0 −2 −2 0
0 1 2 2

⎞⎠

−→
⎛⎝ 1 1 3 1

0 1 1 0
0 1 2 2

⎞⎠ −→
⎛⎝ 1 1 3 1

0 1 1 0
0 0 1 2

⎞⎠

−→
⎛⎝ 1 1 0 −5

0 1 0 −2
0 0 1 2

⎞⎠ −→
⎛⎝ 1 0 0 −3

0 1 0 −2
0 0 1 2

⎞⎠ .

Activity 2.20 Work through the above calculation and state what row
operation is being done at each stage. For example, the first operation
is R2 − R1.
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Now we write down the solution from the reduced row echelon form
of the matrix. (Remember that this is the reduced row echelon of the
coefficient matrix A, representing the homogeneous system Ax = 0.)

The solution is

x =

⎛⎜⎜⎝
x
y
z
w

⎞⎟⎟⎠ = t

⎛⎜⎜⎝
3
2

−2
1

⎞⎟⎟⎠ , t ∈ R,

which is a line through the origin, x = tv, with v = (3, 2, −2, 1)T. There
are infinitely many solutions, one for every t ∈ R.

This example illustrates the following fact.

Theorem 2.21 If A is an m × n matrix with m < n, then Ax = 0 has
infinitely many solutions.

Proof: The system is always consistent (because it is homogeneous)
and the solutions are found by reducing the coefficient matrix A. If A
is m × n, then the reduced row echelon form of A contains at most
m leading ones, so there are at most m leading variables. Therefore,
there must be n − m non-leading variables. Since m < n, n − m > 0,
which means n − m ≥ 1. This says that there is at least one non-
leading variable. So the solution involves at least one arbitrary param-
eter which can take on any real value. Hence, there are infinitely many
solutions. �

What about a linear system Ax = b? If A is m × n with m < n, does
Ax = b have infinitely many solutions? The answer is: provided the
system is consistent, then there are infinitely many solutions. So the
system either has no solutions, or infinitely many. The following exam-
ples demonstrate both possibilities.

Example 2.22 The linear system

x + y + z = 6
x + y + z = 1

is inconsistent, since there are no values of x, y, z which can satisfy
both equations. These equations represent parallel planes in R3.

Example 2.23 On the other hand, consider the system

x + y + 3z + w = 2

x − y + z + w = 4

y + 2z + 2w = 0.
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We will show that this is consistent and has infinitely many solutions.
Notice that the coefficient matrix of this linear system is the same matrix
A as that used in Example 2.19.

The augmented matrix is

(A|b) =
⎛⎝ 1 1 3 1 2

1 −1 1 1 4
0 1 2 2 0

⎞⎠ .

Activity 2.24 Show that the reduced row echelon form of the aug-
mented matrix is ⎛⎝ 1 0 0 −3 1

0 1 0 −2 −2
0 0 1 2 1

⎞⎠ .

Then write down the solution.

The general solution of this system,

x =

⎛⎜⎜⎝
x
y
z
w

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1

−2
1
0

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
3
2

−2
1

⎞⎟⎟⎠ = p + tv t ∈ R,

is a line which does not go through the origin. It is parallel to the line
of solutions of the homogeneous system, Ax = 0, and goes through
the point determined by p. This should come as no surprise, since the
coefficient matrix forms the first four columns of the augmented matrix.
Compare the solution sets:

Ax = 0 : Ax = b :

RREF(A) RREF(A|b)⎛⎝ 1 0 0 −3
0 1 0 −2
0 0 1 2

⎞⎠ ⎛⎝ 1 0 0 −3 1
0 1 0 −2 −2
0 0 1 2 1

⎞⎠

x = t

⎛⎜⎜⎝
3
2

−2
1

⎞⎟⎟⎠ x =

⎛⎜⎜⎝
1

−2
1
0

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
3
2

−2
1

⎞⎟⎟⎠ .

The reduced row echelon form of the augmented matrix of a system
Ax = b will always contain the information needed to solve Ax = 0,
since the matrix A is the first part of (A|b). We therefore have the
following definition.
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Definition 2.25 (Associated homogeneous system) Given a system
of linear equations, Ax = b, the linear system Ax = 0 is called the
associated homogeneous system.

The solutions of the associated homogeneous system form an important
part of the solution of the system Ax = b, as we shall see in the next
section.

Activity 2.26 Look at the reduced row echelon form of A in
Example 2.19, ⎛⎝ 1 0 0 −3

0 1 0 −2
0 0 1 2

⎞⎠ .

Explain why you can tell from this matrix that for all b ∈ R3, the linear
system Ax = b is consistent with infinitely many solutions.

Activity 2.27 Solve the system of equations Ax = b given by

x1 + 2x2 + x3 = 1

2x1 + 2x2 = 2

3x1 + 4x2 + x3 = 2.

Find also the general solution of the associated homogeneous system,
Ax = 0. Describe the configuration of intersecting planes for each sys-
tem of equations (Ax = b and Ax = 0).

2.4.2 Null space

It is clear from what we have just seen that the general solution to
a consistent linear system Ax = b involves solutions to the system
Ax = 0. This set of solutions is given a special name: the null space or
kernel of the matrix A. This null space, denoted N (A), is the set of all
solutions x to Ax = 0, where 0 is the zero vector. That is:

Definition 2.28 (Null space) For an m × n matrix A, the null space of
A is the subset of Rn given by

N (A) = {x ∈ Rn | Ax = 0},
where 0 = (0, 0, . . . , 0)T is the zero vector of Rm .

We now formalise the connection between the solution set of a consistent
linear system, and the null space of the coefficient matrix of the system.
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Theorem 2.29 Suppose that A is an m × n matrix, that b ∈ Rm and
that the system Ax = b is consistent. Suppose that p is any solution of
Ax = b. Then the set of all solutions of Ax = b consists precisely of
the vectors p + z for z ∈ N (A); that is,

{x | Ax = b} = {p + z | z ∈ N (A)}.
Proof: To show the two sets are equal, we show that each is a subset
of the other. This means showing that p + z is a solution for any z in
the null space of A, and that all solutions, x, of Ax = b are of the form
p + z for some z ∈ N (A).

We start with p + z. If z ∈ N (A), then

A(p + z) = Ap + Az = b + 0 = b,

so p + z is a solution of Ax = b; that is, p + z ∈ {x | Ax = b}. This
shows that

{p + z | z ∈ N (A)} ⊆ {x | Ax = b}.
Conversely, suppose that x is any solution of Ax = b. Because p is also
a solution, we have Ap = b and

A(x − p) = Ax − Ap = b − b = 0,

so the vector z = x − p is a solution of the system Az = 0; in other
words, z ∈ N (A). But then x = p + z, where z ∈ N (A). This shows
that all solutions are of the form, p + z for some z ∈ N (A); that is,

{x | Ax = b} ⊆ {p + z | z ∈ N (A)}.
So the two sets are equal, as required. �

The above result is the ‘Principle of Linearity’. It says that the gen-
eral solution of a consistent linear system Ax = b is equal to any one
particular solution p (where Ap = b) plus the general solution of the
associated homogeneous system.

{solutions of Ax = b} = p + {solutions of Ax = 0}.
In light of this result, let’s have another look at some of the examples
we worked earlier. In Example 2.23, we observed that the solutions of

x + y + 3z + w = 2
x − y + z + w = 4

y + 2z + 2w = 0.
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are of the form

x =

⎛⎜⎜⎝
x
y
z
w

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1

−2
1
0

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
3
2

−2
1

⎞⎟⎟⎠ = p + tv, t ∈ R,

where x = tv is the general solution we had found of the associated
homogeneous system (in Example 2.19). It is clear that p is a particular
solution of the linear system (take t = 0), so this solution is of the form
described in the theorem.

Now refer back to the first two examples Ax = b and Bx = b,
which we worked through in Section 2.3.1. (For convenience, we’ll call
the variables x, y, z rather than x1, x2, x3.)⎧⎨⎩

x + y + z = 3
2x + y + z = 4
x − y + 2z = 5

⎧⎨⎩
2z = 3

2y + 3z = 4
z = 5.

The echelon forms of the augmented matrices we found were

(A|b) −→
⎛⎝ 1 0 0 1

0 1 0 0
0 0 1 2

⎞⎠ , (B|b) −→
⎛⎝ 0 1 3

2 2
0 0 1 5
0 0 0 1

⎞⎠ .

The first system, Ax = b, has a unique solution, p = (1, 0, 2)T, and the
second system, Bx = b, is inconsistent.

The reduced row echelon form of the matrix A is the identity matrix
(formed from the first three columns of the reduced augmented matrix).
Therefore, the homogeneous system Ax = 0 will only have the trivial
solution. The unique solution of Ax = b is of the form x = p + 0,
which conforms with the Principle of Linearity.

This principle does not apply to the inconsistent system Bx = b.
However, the associated homogeneous system is consistent. Notice that
the homogeneous system is⎧⎨⎩

2z = 0
2y + 3z = 0

z = 0.

which represents the intersection of two planes, since the equations
2z = 0 and z = 0 each represent the xy-plane. To find the solution, we
continue to reduce the matrix B to reduced row echelon form.

B −→
⎛⎝ 0 1 3

2
0 0 1
0 0 0

⎞⎠ −→
⎛⎝ 0 1 0

0 0 1
0 0 0

⎞⎠ .
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The non-leading variable is x , so we set x = t , and the solution is

x =
⎛⎝ t

0
0

⎞⎠ = t

⎛⎝ 1
0
0

⎞⎠ , t ∈ R,

which is a line through the origin; namely, the x axis. So the plane
2y + 3z = 0 intersects the xy-plane along the x axis.

We summarise what we have noticed so far:

� If Ax = b is consistent, the solutions are of the form x = p + z,
where p is any one particular solution and z ∈ N (A) the null space
of A.

If Ax = b has a unique solution, then Ax = 0 has only the trivial
solution.

If Ax = b has infinitely many solutions, then Ax = 0 has
infinitely many solutions.

� Ax = b may be inconsistent, but Ax = 0 is always consistent.

Activity 2.30 Look at the example we solved in Section 2.3.3 on
page 71.

x1 + x2 + x3 + x4 + x5 = 3

2x1 + x2 + x3 + x4 + 2x5 = 4

x1 − x2 − x3 + x4 + x5 = 5

x1 + x4 + x5 = 4.

Show that the solution we found is of the form

x = p + sv + tw, s, t ∈ R,

where p is a particular solution of Ax = b and sv + tw is a general
solution of the associated homogeneous system Ax = 0.

2.5 Learning outcomes

You should now be able to:

� express a system of linear equations in matrix form as Ax = b and
know what is meant by the coefficient matrix and the augmented
matrix

� put a matrix into reduced row echelon form using row operations
and following the algorithm

� recognise consistent and inconsistent systems of equations by the
row echelon form of the augmented matrix
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� solve a system of m linear equations in n unknowns using Gaussian
elimination

� express the solution in vector form
� interpret systems with three unknowns as intersections of planes in

R3

� say what is meant by a homogeneous system of equations and what
is meant by the associated homogeneous system of any linear system
of equations

� explain why the solution of a consistent system of linear equations
Ax = b is the sum of a particular solution and a general solution of
the associated homogeneous system

� say what is meant by the null space of a matrix.

2.6 Comments on activities

Activity 2.13 Put the augmented matrix into reduced row echelon form.
It should take five steps:⎛⎝ 1 1 1 6

2 4 1 5
2 3 1 6

⎞⎠ −→ (1) −→ (2) −→ (3) −→ (4)

−→
⎛⎝ 1 0 0 2

0 1 0 −1
0 0 1 5

⎞⎠ ,

from which you can read the solution, x = (2, −1, 5)T. We will state the
row operations at each stage. To obtain (1), do R2 − 2R1 and R3 − 2R1;
for (2) switch R2 and R3; for (3) do R3 − 2R2. The augmented matrix
is now in row echelon form, so starting with the bottom row, for (4),
do R2 + R3 and R1 − R3. The final operation, R1 − R2, will yield the
matrix in reduced row echelon form.

Activity 2.15 Multiply the matrices below as instructed to obtain b:

Ax0 =

⎛⎜⎜⎝
1 1 1 1 1
2 1 1 1 2
1 −1 −1 1 1
1 0 0 1 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

1
−1
0
3
0

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
3
4
5
4

⎞⎟⎟⎠ ,

Ax1 =

⎛⎜⎜⎝
1 1 1 1 1
2 1 1 1 2
1 −1 −1 1 1
1 0 0 1 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

−1
−2
1
3
2

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
3
4
5
4

⎞⎟⎟⎠ .
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Activity 2.16 The equations are:

x1 + 2x2 + x3 = 3

2x1 + 2x2 = 2

3x1 + 4x2 + x3 = 5.

Put the augmented matrix into reduced row echelon form:⎛⎝ 1 2 1 3
2 2 0 2
3 4 1 5

⎞⎠ −→
⎛⎝ 1 2 1 3

0 −2 −2 −4
0 −2 −2 −4

⎞⎠

−→ · · · −→
⎛⎝ 1 2 1 3

0 1 1 2
0 0 0 0

⎞⎠ −→
⎛⎝ 1 0 −1 −1

0 1 1 2
0 0 0 0

⎞⎠ .

So we have solution⎛⎝ x
y
z

⎞⎠ =
⎛⎝−1 + t

2 − t
t

⎞⎠ =
⎛⎝−1

2
0

⎞⎠+ t

⎛⎝ 1
−1
1

⎞⎠ ,

for t ∈ R. This is the equation of a line in R3. So the three planes
intersect in a line.

Activity 2.26 This is the reduced row echelon form of the coefficient
matrix, A. The reduced row echelon form of any augmented matrix,
(A|b), will have as its first four columns the same four columns. As
there is a leading one in every row, it is impossible to have a row of the
form (0 0 . . . 0 1), so the system will be consistent. There will be one
free (non-leading) variable, (fourth column, say x4 = t), so there will
be infinitely many solutions.

Activity 2.27 Using row operations to reduce the augmented matrix to
echelon form, we obtain⎛⎝ 1 2 1 1

2 2 0 2
3 4 1 2

⎞⎠ →
⎛⎝ 1 2 1 1

0 −2 −2 0
0 −2 −2 −1

⎞⎠

→
⎛⎝ 1 2 1 1

0 1 1 0
0 −2 −2 −1

⎞⎠ →
⎛⎝ 1 2 1 1

0 1 1 0
0 0 0 −1

⎞⎠ .

There is no reason to reduce the matrix further, for we can now conclude
that the original system of equations is inconsistent: there is no solution.
For the homogeneous system, Ax = 0, the row echelon form of A
consists of the first three columns of the echelon form of the augmented
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matrix. So starting from these and continuing to reduced row echelon
form, we obtain

A =
⎛⎝ 1 2 1

2 2 0
3 4 1

⎞⎠ → · · · →
⎛⎝ 1 2 1

0 1 1
0 0 0

⎞⎠ →
⎛⎝ 1 0 −1

0 1 1
0 0 0

⎞⎠ .

Setting the non-leading variable x3 to x3 = t , we find that the null space
of A consists of all vectors, x, of the following form:

x = t

⎛⎝ 1
−1
1

⎞⎠ , t ∈ R.

The system of equations Ax = 0 has infinitely many solutions.
Geometrically, the associated homogeneous system represents the

equations of three planes, all of which pass through the origin. These
planes intersect in a line through the origin. The equation of this line is
given by the solution we found.

The original system represents three planes with no common points
of intersection. No two of the planes in either system are parallel. Why?
Look at the normals to the planes: no two of these are parallel, so
no two planes are parallel. These planes intersect to form a kind of
triangular prism; any two planes intersect in a line, and the three lines
of intersection are parallel, but there are no points which lie on all three
planes. (If you have trouble visualising this, take three cards, place one
flat on the table, and then get the other two to balance on top, forming
a triangle when viewed from the side.)

2.7 Exercises

Exercise 2.1 Write down the augmented matrix for each of the follow-
ing systems of equations, and use it to solve the system by reducing the
augmented matrix to reduced row echelon form.

(a)

⎧⎪⎨⎪⎩
x − y + z = −3

−3x + 4y − z = 2
x − 3y − 2z = 7

(b)

⎧⎪⎨⎪⎩
2x − y + 3z = 4

x + y − z = 1
5x + 2y = 7.

Interpret the solutions to each of the above systems as intersections of
planes, describing them geometrically.
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Exercise 2.2 Solve each of the following systems of equations.

(a)

⎧⎪⎨⎪⎩
−x + y − 3z = 0

3x − 2y + 10z = 0
−2x + 3y − 5z = 0

(b)

⎧⎪⎨⎪⎩
−x + y − 3z = 6

3x − 2y + 10z = −10
−2x + 3y − 5z = 9.

Exercise 2.3 Find the vector equation of the line of intersection of the
planes

3x1 + x2 + x3 = 3 and x1 − x2 − x3 = 1.

What is the intersection of these two planes and the plane

x1 + 2x2 + 2x3 = 1 ?

Exercise 2.4 Solve the system of equations Ax = b, where

A =
⎛⎝ 2 3 1 1

1 2 0 −1
3 4 2 4

⎞⎠ , b =
⎛⎝ 4

1
9

⎞⎠
using Gaussian elimination. (Put the augmented matrix into reduced
row echelon form.) Express your solution in vector form as x = p + tv,
where t is a real number. Check your solution by calculating Ap and
Av.

Write down the reduced row echelon form of the matrix A. Refer-
ring to this reduced row echelon form, answer the following two ques-
tions and justify each answer.

(i) Is there a vector d ∈ R3 for which Ax = d is inconsistent?
(ii) Is there a vector d ∈ R3 for which Ax = d has a unique solution?

Exercise 2.5 Find the reduced row echelon form of the matrix

C =
⎛⎝ 1 2 −1 3 8

−3 −1 8 6 1
−1 0 3 1 −2

⎞⎠ .

(a) If C is the augmented matrix of a system of equations Ax = b,
C = (A|b), what are the solutions? What Euclidean space are they
in?

(b) If C is the coefficient matrix of a homogeneous system of equa-
tions, Cx = 0, what are the solutions? What Euclidean space are
they in?

(c) Let w = (1, 0, 1, 1, 1)T. Find d such that Cw = d. Then write
down a general solution of Cx = d.
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Exercise 2.6 Find the null space of the matrix

B =

⎛⎜⎜⎝
1 1 3
4 1 2

−2 1 5
3 −5 1

⎞⎟⎟⎠ .

Let c1, c2, c3 denote the columns of B. Find d = c1 + 2c2 − c3. Then
write down all solutions of Bx = d.

2.8 Problems

Problem 2.1 Write down the augmented matrix for each of the follow-
ing systems of equations, and use it to solve the system by reducing the
augmented matrix to reduced row echelon form.

(a)

⎧⎪⎨⎪⎩
x + y + z = 2

2y + z = 0
−x + y − z = −4.

(b)

⎧⎪⎨⎪⎩
x + y + 2z = 2

2y + z = 0
−x + y − z = 0.

(c)

⎧⎪⎨⎪⎩
x + y + 2z = 2

2y + z = 0
−x + y − z = −2.

(d)

⎧⎪⎨⎪⎩
−3x − y + z = 0

−2x + 3y + 2z = 0
x + 2y + 3z = 0.

Interpret the solutions to each of the above systems as intersections of
planes, describing them geometrically.

Problem 2.2 Find the general solution of the following system of linear
equations using Gaussian elimination.⎧⎪⎪⎨⎪⎪⎩

x1 + x2 + x3 + x5 = 1

3x1 + 3x2 + 6x3 + 3x4 + 9x5 = 6

2x1 + 2x2 + 4x3 + x4 + 6x5 = 5.

The general solution should be expressed in vector form.
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Problem 2.3 Express the following system of equations in matrix form:

−5x + y − 3z − 8w = 3

3x + 2y + 2z + 5w = 3

x + z + 2w = −1 .

Show that the system is consistent and find the general solution.
Then write down the general solution of the associated homoge-

neous system of equations.

Problem 2.4 Given that the matrix below is in reduced row echelon
form, find the missing entries (as indicated by *). Replace every * which
has to be a 0 with a 0. Replace every * which has to be a 1 with a 1.
Replace every * which does not have to be either a 0 or a 1 with a 2.

C =
⎛⎝ ∗ ∗ ∗ ∗ ∗

∗ 1 ∗ ∗ ∗
∗ ∗ ∗ −4 3

⎞⎠ .

If C is the reduced row echelon form of the augmented matrix of a
system of linear equations, Ax = b, then write down the solution of the
system in vector form.

If C is the reduced row echelon form of a matrix B, write down the
general solution of Bx = 0.

Problem 2.5 Consider the following matrices and vector:

A =
⎛⎝ 3 1 −1

1 1 0
2 1 2

⎞⎠ , B =
⎛⎝ 1 0 5 3 2

0 2 4 2 2
−1 5 5 0 1

⎞⎠ , b =
⎛⎝ 11

2
−6

⎞⎠ .

Solve each of the systems Ax = b and Bx = b using Gaussian elimi-
nation, and express your solution in vector form.

Problem 2.6 Put the matrix

B =

⎛⎜⎜⎝
1 1 4 5
2 1 5 5
0 1 3 2

−1 1 2 2

⎞⎟⎟⎠
into reduced row echelon form.

(a) The homogeneous system of equations Bx = 0 represents how
many equations in how many unknowns? Is there a non-trivial
solution? If so, find the general solution of Bx = 0.

(b) Is there a vector b ∈ R4 for which Bx = b is inconsistent? Write
down such a vector b if one exists and verify that Bx = b is
inconsistent.
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(c) Write down a vector d ∈ R4 for which Bx = d is consistent. Then
write down the general solution of Bx = d.

Problem 2.7 Let

A =
⎛⎝ 4 −1 1

−1 4 −1
1 −1 4

⎞⎠ , x =
⎛⎝ x

y
z

⎞⎠ .

Write out the system of linear equations Ax = 6x and find all its solu-
tions.

Problem 2.8 Let

B =

⎛⎜⎜⎝
1 0 1
0 1 1

−1 0 3
3 1 2

⎞⎟⎟⎠ , b =

⎛⎜⎜⎝
a
b
c
d

⎞⎟⎟⎠ .

Find an equation which the components a, b, c, d of the vector b must
satisfy for the system of equations Bx = b to be consistent.

If Bx = b is consistent for a given vector b, will the solution be
unique? Justify your answer.

Problem 2.9 (Portfolio theory) A portfolio is a row vector

Y = ( y1 . . . ym)

in which yi is the number of units of asset i held by an investor. After a
year, say, the value of the assets will increase (or decrease) by a certain
percentage. The change in each asset depends on states the economy
will assume, predicted as a returns matrix, R = (ri j ), where ri j is the
factor by which investment i changes in one year if state j occurs.

Suppose an investor has assets in y1 = land, y2 = bonds and
y3 = stocks, and that the returns matrix is

R =
⎛⎝ 1.05 0.95 1.0

1.05 1.05 1.05
1.20 1.26 1.23

⎞⎠ .

Then the total values of the portfolio in one year’s time are given by
Y R, where (Y R) j is the total value of the portfolio if state j occurs.

(a) Find the total values of the portfolio W = ( 5000 2000 0 ) in
one year for each of the possible states.

(b) Show that U = ( 600 8000 1000 ) is a riskless portfolio; that
is, it has the same value in all states j .
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(c) An arbitrage portfolio, Y = ( y1 . . . ym ) is one which costs
nothing (y1 + · · · + ym = 0), cannot lose ((Y R) j ≥ 0 for all j),
and in at least one state makes a profit ((Y R) j > 0 for some j).
Show that Z = ( 1000 −2000 1000 ) is an arbitrage portfolio.
(The bond asset of −2000 indicates that this sum was borrowed
from the bank.)
Can you find a more profitable arbitrage vector than this one?

(d) Let R be an m × n returns matrix, and let u = (1, 1, . . . , 1)T ∈ Rn .
If the system Rx = u has a solution p = (p1, . . . , pm)T with
pi > 0, then the components pi of p are called state prices and
the investor is said to be taking part in a ‘fair game’. If state prices
exist, then there are no arbitrage vectors for R, and if state prices
do not exist, then arbitrage vectors do exist. Show that state prices
for the given matrix, R, do not exist.

Problem 2.10 (Conditioning of matrices) Some systems of linear
equations lead to ‘ill-conditioned’ matrices. These occur if a small
difference in the coefficients or constants yields a large difference in the
solution, in particular when the numbers involved are decimal approx-
imations of varying degree of accuracy.

The following two systems of equations represent the same problem,
the first to two decimal places accuracy, the second to three decimal
places accuracy. Solve them using Gaussian elimination and note the
significant difference in the solutions you obtain.{

x + y = 51.11
x + 1.02y = 2.22

{
x + y = 51.106
x + 1.016y = 2.218.



3

Matrix inversion and
determinants

In this chapter, all matrices will be square n × n matrices, unless explic-
itly stated otherwise. Only a square matrix can have an inverse, and the
determinant is only defined for a square matrix.

We want to answer the following two questions: When is a matrix
A invertible? How can we find the inverse matrix?

3.1 Matrix inverse using row operations

3.1.1 Elementary matrices

Recall the three elementary row operations:

RO1 multiply a row by a non-zero constant.
RO2 interchange two rows.
RO3 add a multiple of one row to another.

These operations change a matrix into a new matrix. We want to exam-
ine this process more closely. Let A be an n × n matrix and let Ai

denote the i th row of A. Then we can write A as a column of n
rows,

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
A1

A2
...

An

⎞⎟⎟⎟⎠ .
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We use this row notation to indicate row operations. For example, what
row operations are indicated below?⎛⎜⎜⎜⎝

A1

3A2
...

An

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
A2

A1
...

An

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
A1

A2 + 4A1
...

An

⎞⎟⎟⎟⎠ .

The first is multiply row 2 by 3, the second is interchange row 1 and row
2, and the third is add 4 times row 1 to row 2. Each of these represents
new matrices after the row operation has been executed.

Now look at a product of two n × n matrices A and B. The (1, 1)
entry in the product is the inner product of row 1 of A and column 1 of
B. The (1, 2) entry is the inner product of row 1 of A and column 2 of
B, and so on. In fact, row 1 of the product matrix AB is obtained by
taking the product of the row A1 with the matrix B; that is, A1 B. This
is true of each row of the product; that is, each row i of the product AB
is obtained by calculating Ai B. So we can express the product AB as⎛⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
A1 B
A2 B

...
An B

⎞⎟⎟⎟⎠ .

Now consider the effect of a row operation on a product AB. The first
matrix below is the product AB after the row operation ‘add 4 times
row 1 of AB to row 2 of AB’⎛⎜⎜⎜⎝

A1 B
A2 B + 4A1 B

...
An B

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
A1 B

(A2 + 4A1)B
...

An B

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
A1

A2 + 4A1
...

An

⎞⎟⎟⎟⎠ B.

In the second matrix, we have used the distributive rule to write

A2 B + 4A1 B = (A2 + 4A1)B.

But compare this matrix to the row form of a product of two matrices
given above. You can see that it is what would result if we took the
matrix obtained from A after the same row operation, and multiplied
that by B.

We have shown that the matrix obtained by the row operation, ‘add
4 times row 1 to row 2’ on the product AB is equal to the product of
the matrix obtained by the same row operation on A, with the matrix
B. The same argument works for any row operation in general, so
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that

(matrix obtained by a row operation on AB)
= (matrix obtained by a row operation on A)B.

This is true for any n × n matrices A and B.
Now take A = I , the identity matrix. Since I B = B, the previous

statement now says that:

� The matrix obtained by a row operation on B = (the matrix obtained
by a row operation on I )B.

This leads us to the following definition:

Definition 3.1 (Elementary matrix) An elementary matrix, E , is an
n × n matrix obtained by doing exactly one row operation on the n × n
identity matrix, I .

For example,⎛⎝ 1 0 0
0 3 0
0 0 1

⎞⎠ ,

⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠ ,

⎛⎝ 1 0 0
4 1 0
0 0 1

⎞⎠
are elementary matrices. The first has had row 2 multiplied by 3, the
second has had row 1 and row 2 interchanged, and the last matrix has
had 4 times row 1 added to row 2.

Activity 3.2 Which of the matrices below are elementary matrices?⎛⎝ 2 1 0
0 1 0
0 0 1

⎞⎠ ,

⎛⎝ 0 1 0
1 0 0

−1 0 1

⎞⎠ ,

⎛⎝ 1 0 0
0 1 0

−1 0 1

⎞⎠ .

Write the first matrix as the product of two elementary matrices.

Elementary matrices provide a useful tool to relate a matrix to its
reduced row echelon form. We have shown above that the matrix
obtained from a matrix B after performing one row operation is equal
to a product E B, where E is the elementary matrix obtained from I by
that same row operation.

For example, suppose we want to put the matrix

B =
⎛⎝ 1 2 4

1 3 6
−1 0 1

⎞⎠
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into reduced row echelon form. Our first step is

B =
⎛⎝ 1 2 4

1 3 6
−1 0 1

⎞⎠ R2−R1−→
⎛⎝ 1 2 4

0 1 2
−1 0 1

⎞⎠ .

We perform the same operation on the identity matrix to obtain an
elementary matrix, which we will denote by E1

I =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠ R2−R1−→
⎛⎝ 1 0 0

−1 1 0
0 0 1

⎞⎠ = E1.

Then the matrix E1 B is

E1 B =
⎛⎝ 1 0 0

−1 1 0
0 0 1

⎞⎠⎛⎝ 1 2 4
1 3 6

−1 0 1

⎞⎠ =
⎛⎝ 1 2 4

0 1 2
−1 0 1

⎞⎠ ,

which is the matrix obtained from B after the row operation.
We now want to look at the invertibility of elementary matrices and

row operations. First, note that any elementary row operation can be
undone by an elementary row operation.

RO1 is multiply a row by a non-zero constant.
To undo RO1, multiply the row by 1/(constant).

RO2 is interchange two rows.
To undo RO2, interchange the rows again.

RO3 is add a multiple of one row to another.
To undo RO3, subtract the multiple of one row from the other.

If we obtain an elementary matrix by performing one row operation
on the identity, and another elementary matrix from the row operation
which ‘undoes’ it, then multiplying these matrices together will return
the identity matrix. That is, they are inverses of one another. This
argument establishes the following theorem:

Theorem 3.3 Any elementary matrix is invertible, and the inverse is
also an elementary matrix.

Activity 3.4 Let

E =
⎛⎝ 1 0 0

−4 1 0
0 0 1

⎞⎠ .

Write down E−1. Then show that E E−1 = I and E−1 E = I .
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We saw earlier in our example that multiplying E1 B we obtain

E1 B =
⎛⎝ 1 0 0

−1 1 0
0 0 1

⎞⎠⎛⎝ 1 2 4
1 3 6

−1 0 1

⎞⎠ =
⎛⎝ 1 2 4

0 1 2
−1 0 1

⎞⎠ .

We can undo this row operation and return the matrix B by multiplying
on the left by E−1

1 :⎛⎝ 1 0 0
1 1 0
0 0 1

⎞⎠⎛⎝ 1 2 4
0 1 2

−1 0 1

⎞⎠ =
⎛⎝ 1 2 4

1 3 6
−1 0 1

⎞⎠ .

3.1.2 Row equivalence

Definition 3.5 If A and B are m × n matrices, we say that A is row
equivalent to B if and only if there is a sequence of elementary row
operations to transform A into B.

This is an example of what is known as an equivalence relation. This
means it satisfies three important conditions; it is:

� reflexive: A ∼ A,
� symmetric: A ∼ B ⇒ B ∼ A,
� transitive: A ∼ B and B ∼ C ⇒ A ∼ C.

Activity 3.6 Argue why it is true that row equivalence is an equivalence
relation; that is, explain why row equivalence as defined above satisfies
these three conditions.

The existence of an algorithm for putting a matrix A into reduced row
echelon form by a sequence of row operations has the consequence that
every matrix is row equivalent to a matrix in reduced row echelon form.
This fact is stated in the following theorem.

Theorem 3.7 Every matrix is row equivalent to a matrix in reduced
row echelon form.

3.1.3 The main theorem

We are now ready to answer the first of our questions: ‘When is a matrix
invertible?’ We collect our results in the following theorem.

Theorem 3.8 If A is an n × n matrix, then the following statements are
equivalent (meaning if any one of these statements is true for A, then
all the statements are true):
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(1) A−1 exists.
(2) Ax = b has a unique solution for any b ∈ Rn.
(3) Ax = 0 only has the trivial solution, x = 0.
(4) The reduced row echelon form of A is I .

Proof: If we show that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1), then any one
statement will imply all the others, so the statements are equivalent.

(1) =⇒ (2). We assume that A−1 exists, and consider the system of
linear equations Ax = b where x is the vector of unknowns and b is any
vector in Rn. We use the matrix A−1 to solve for x by multiplying the
equation on the left by A−1. We have

A−1 Ax = A−1b =⇒ I x = A−1b =⇒ x = A−1b.

This shows that x = A−1b is the only possible solution; and it is a solu-
tion, since A(A−1b) = (AA−1)b = I b = b. So Ax = b has a unique
solution for any b ∈ Rn.

(2) =⇒ (3). If Ax = b has a unique solution for all b ∈ Rn , then this
is true for b = 0. The unique solution of Ax = 0 must be the trivial
solution, x = 0.

(3) =⇒ (4). If the only solution of Ax = 0 is x = 0, then there are no
free (non-leading) variables and the reduced row echelon form of A
must have a leading one in every column. Since the matrix is square
and a leading one in a lower row is further to the right, A must have a
leading one in every row. Since every column with a leading one has
zeros elsewhere, this can only be the n × n identity matrix.

(4) =⇒ (1). We now make use of elementary matrices. If A is row
equivalent to I , then there is a sequence or row operations which reduce
A to I , so there must exist elementary matrices E1, . . . , Er such that

Er Er−1 · · · E1 A = I.

Each elementary matrix has an inverse. We use these to solve the above
equation for A, by first multiplying the equation on the left by E−1

r ,
then by E−1

r−1, and so on, to obtain

A = E−1
1 · · · E−1

r−1 E−1
r I.

This says that A is a product of invertible matrices, hence invertible.
(Recall from Chapter 1 that if A and B are invertible matrices of the
same size, then the product AB is invertible and its inverse is the product
of the inverses in the reverse order, (AB)−1 = B−1 A−1.)

This proves the theorem. �
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3.1.4 Using row operations to find the inverse matrix

From the proof of Theorem 3.8, we have

A = E−1
1 · · · E−1

r ,

where the matrices Ei are the elementary matrices corresponding to the
row operations used to reduce A to the identity matrix, I . Then, taking
the inverse of both sides,

A−1 = (E−1
1 · · · E−1

r )−1 = Er · · · E1 = Er · · · E1 I.

This tells us that if we apply the same row operations to the matrix I
that we use to reduce A to I , then we will obtain the matrix A−1. That
is, if

Er Er−1 · · · E1 A = I,

then

A−1 = Er · · · E1 I.

This gives us a method to find the inverse of a matrix A. We start with
the matrix A and we form a new, larger matrix by placing the identity
matrix to the right of A, obtaining the matrix denoted (A|I ). We then
use row operations to reduce this to (I |B). If this is not possible (which
will become apparent) then the matrix is not invertible. If it can be done,
then A is invertible and B = A−1.

Example 3.9 We use this method to find the inverse of the matrix

A =
⎛⎝ 1 2 4

1 3 6
−1 0 1

⎞⎠ .

In order to determine if the matrix is invertible and, if so, to determine
the inverse, we form the matrix

(A | I ) =
⎛⎝ 1 2 4

1 3 6
−1 0 1

∣∣∣∣∣
1 0 0
0 1 0
0 0 1

⎞⎠ .

(We have separated A from I by a vertical line just to emphasise how
this matrix is formed. It is also helpful in the calculations.) Then we
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carry out elementary row operations.

R2 − R1

R3 + R1

⎛⎝ 1 2 4
0 1 2
0 2 5

∣∣∣∣∣
1 0 0

−1 1 0
1 0 1

⎞⎠

R3 − 2R2

⎛⎝ 1 2 4
0 1 2
0 0 1

∣∣∣∣∣
1 0 0

−1 1 0
3 −2 1

⎞⎠
R1 − 4R3

R2 − 2R3

⎛⎝ 1 2 0
0 1 0
0 0 1

∣∣∣∣∣
−11 8 −4
−7 5 −2
3 −2 1

⎞⎠
R1 − 2R2

⎛⎝ 1 0 0
0 1 0
0 0 1

∣∣∣∣∣
3 −2 0

−7 5 −2
3 −2 1

⎞⎠ .

This is now in the form (I |B), so we deduce that A is invertible and
that

A−1 =
⎛⎝ 3 −2 0

−7 5 −2
3 −2 1

⎞⎠ .

It is very easy to make mistakes when row reducing a matrix, so the
next thing you should do is check that AA−1 = I .

Activity 3.10 Do this. Check that when you multiply AA−1, you get the
identity matrix I . (In order to establish that this is the inverse matrix,
you should also show A−1 A = I , but we will forgo that here. We’ll
come back to this issue shortly.)

If the matrix A is not invertible, what will happen? By Theorem 3.8, if
A is not invertible, then the reduced row echelon form of A cannot be
I , so there will be a row of zeros in the row echelon form of A.

Activity 3.11 Find the inverse, if it exists, of each of the following
matrices

A =
⎛⎝−2 1 3

0 −1 1
1 2 0

⎞⎠ , B =
⎛⎝ 2 1 3

0 −1 1
1 2 0

⎞⎠ .

3.1.5 Verifying an inverse

At this stage, in order to show that a square matrix B is the inverse
of the n × n matrix A, it seems we have to show that both statements,
AB = I and B A = I , are true. However, after we have proved the
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following theorem (which follows from Theorem 3.8), we will be able
to deduce from the single statement AB = I that A and B must be
inverses of one another.

Theorem 3.12 If A and B are n × n matrices and AB = I , then A
and B are each invertible matrices, and A = B−1 and B = A−1.

Proof: If we show that the homogeneous system of equations Bx = 0
has only the trivial solution, x = 0, then by Theorem 3.8 this will prove
that B is invertible. So we consider the matrix equation Bx = 0 and
multiply both sides of this equation on the left by the matrix A. We have

Bx = 0 =⇒ A(Bx) = A0 =⇒ (AB)x = 0.

But we are given that AB = I , so that

(AB)x = 0 =⇒ I x = 0 =⇒ x = 0,

which shows that the only solution of Bx = 0 is the trivial solution. We
therefore conclude that B is invertible, so the matrix B−1 exists.

We now multiply both sides of the equation AB = I on the right
by the matrix B−1. We have

AB = I =⇒ (AB)B−1 = I B−1 =⇒ A(B B−1) = B−1 =⇒ A = B−1.

So A is the inverse of B, and therefore A is also an invertible matrix.
Then taking inverses of both sides of the last equation, we conclude that
A−1 = (B−1)−1 = B. �

3.2 Determinants

3.2.1 Determinant using cofactors

The determinant of a square matrix A is a particular number associated
with A, written |A| or det A. This number will provide a quick way to
determine whether or not a matrix A is invertible. In view of this, sup-
pose A is a 2 × 2 matrix, and that we wish to determine A−1 using row
operations. Then we form the matrix (A | I ) and attempt to row reduce
A to I . We assume a 
= 0, otherwise we would begin by switching rows:

(A | I ) =
(

a b
c d

∣∣∣∣∣ 1 0
0 1

)
(1/a)R1−→

(
1 b/a
c d

∣∣∣∣∣ 1/a 0
0 1

)

R2−cR1−→
(

1 b/a
0 d − cb/a

∣∣∣∣∣ 1/a 0
−c/a 1

)
a R2−→

(
1 b/a
0 (ad − bc)

∣∣∣∣∣ 1/a 0
−c a

)
,

which shows that A−1 exists if and only if ad − bc 
= 0.
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For a 2 × 2 matrix, the determinant is given by the formula∣∣∣∣( a b
c d

)∣∣∣∣ =
∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc.

Note the vertical bars used in the notation for the determinant of a matrix
(and note also that we usually dispense with the large parentheses around
the matrix when we write its determinant).

For example, ∣∣∣∣ 1 2
3 4

∣∣∣∣ = (1)(4) − (2)(3) = −2.

To extend this definition to n × n matrices, we define the determinant of
an n × n matrix recursively in terms of (n − 1) × (n − 1) determinants.
So the determinant of a 3 × 3 matrix is given in terms of 2 × 2 matrices,
and so on. To do this, we will need the following two definitions.

Definition 3.13 Suppose A is an n × n matrix. The (i, j) minor of
A, denoted by Mi j , is the determinant of the (n − 1) × (n − 1) matrix
obtained by removing the i th row and j th column of A.

Definition 3.14 The (i, j) cofactor of a matrix A is

Ci j = (−1)i+ j Mi j .

So the cofactor is equal to the minor if i + j is even, and it is equal to
the negative of the minor if i + j is odd.

Example 3.15 Let

A =
⎛⎝ 1 2 3

4 1 1
−1 3 0

⎞⎠ .

Then the minor M23 and the cofactor C23 are

M23 =
∣∣∣∣ 1 2
−1 3

∣∣∣∣ = 5, C23 = (−1)(2+3) M23 = −5.

There is a simple way to associate the cofactor Ci j with the entry ai j of
the matrix. Locate the entry ai j and cross out the row and the column
containing ai j . Then evaluate the determinant of the (n − 1) × (n − 1)
matrix which remains. This is the minor, Mi j . Then give it a ‘+’ or ‘−’
sign according to the position of ai j on the following pattern:⎛⎜⎜⎜⎝

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎠ .
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Activity 3.16 Write down the cofactor C13 for the matrix A above using
this method.

If A is an n × n matrix, the determinant of A is given by

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ = a11C11 + a12C12 + · · · + a1nC1n.

This is called the cofactor expansion of |A| by row one. It is a recursive
definition, meaning that the determinant of an n × n matrix is given in
terms of some (n − 1) × (n − 1) determinants.

Example 3.17 We calculate the determinant of the matrix A in
Example 3.15:

|A| = 1C11 + 2C12 + 3C13

= 1
∣∣∣∣ 1 1
3 0

∣∣∣∣− 2
∣∣∣∣ 4 1
−1 0

∣∣∣∣+ 3
∣∣∣∣ 4 1
−1 3

∣∣∣∣
= 1(−3) − 2(1) + 3(13) = 34.

Activity 3.18 Calculate the determinant of the matrix

M =
⎛⎝−1 2 1

0 2 3
1 1 4

⎞⎠ .

You might ask: ‘Why is the cofactor expansion given by row 1, rather
than any other row?’ In fact, it turns out that using a cofactor expansion
by any row or column of A will give the same number |A|, as the
following theorem states.

Theorem 3.19 If A is an n × n matrix, then the determinant of A can
be computed by multiplying the entries of any row (or column) by their
cofactors and summing the resulting products:

|A| = ai1Ci1 + ai2Ci2 + . . . + ainCin

(cofactor expansion by row i )
|A| = a1 j C1 j + a2 j C2 j + . . . + anj Cnj

(cofactor expansion by column j ).

We will look into the proof of this result later, but first note that this
allows you to choose any row or any column of a matrix to find its
determinant using a cofactor expansion. So we should choose a row or
column which gives the simplest calculations.

Obtaining the correct value for |A| is important, so it is a good idea
to check your result by calculating the determinant by another row or
column.
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Example 3.20 In the matrix of Example 3.15, instead of using the
cofactor expansion by row 1 as shown above, we can choose to evaluate
the determinant of the matrix A by row 3 or column 3, which will involve
fewer calculations since a33 = 0. To check the result |A| = 34, we will
evaluate the determinant again; this time using column 3. Remember
the correct cofactor signs:

|A| =
∣∣∣∣∣∣

1 2 3
4 1 1

−1 3 0

∣∣∣∣∣∣ = 3
∣∣∣∣ 4 1
−1 3

∣∣∣∣− 1
∣∣∣∣ 1 2
−1 3

∣∣∣∣+ 0 = 3(13) − (5) = 34.

Activity 3.21 Check your calculation of the determinant of the matrix

M =
⎛⎝−1 2 1

0 2 3
1 1 4

⎞⎠
in the previous activity by expanding by a different row or column.
Choose one with fewer calculations.

3.2.2 Determinant as a sum of elementary signed products

We will give an informal proof of Theorem 3.19, because it is useful to
understand how the definition of determinant works. This section can
be safely omitted (meaning you can simply accept the theorem without
proof and move on), but you might find it worth your while to read
through it.

For a 2 × 2 matrix, the cofactor expansion by row 1 is equivalent to
the definition given on page 99:∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21.

Notice that each term of the sum is a product of entries, one from each
row and one from each column. Indeed, a11 is the entry from row 1 and
column 1, and a22 is not in either: it comes from row 2 and column 2.
Similarly, the second term, a12a21, is the only different way of taking
one entry from each row and each column of the matrix.

For a 3 × 3 matrix, the cofactor expansion by row 1 yields,∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
= a11(a22a33−a23a32)−a12(a21a33−a23a31)+a13(a21a32−a22a31).
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Then |A| is the sum of the products:

a11a22a33 +a12a23a31 +a13a21a32

− a11a23a32 −a12a21a33 −a13a22a31.
(∗)

The row indices of each product are in ascending order, 123, and the
column indices are:

123 231 312
132 213 321.

These are the six permutations of the numbers 1,2,3.

Definition 3.22 A permutation of a set of integers {1, 2, 3, . . . , n} is
an arrangement of these integers in some order with no omissions and
no repetitions.

To find all permutations of a set of numbers, we can use a permutation
tree:

1 2 3 ← 3 choices
/\ /\ /\
2 3 1 3 1 2 ← 2 choices
| | | | | |
3 2 3 1 2 1 ← 1 choice

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
3 · 2 · 1 = 3!

In the above expansion of |A|, each term has the row indices arranged
in ascending order and the column indices form a different permutation
of the numbers 1,2,3. We know, therefore, that each term of the sum
is a different product of entries, one from each row and one from each
column of A, and the set of six products contains all ways in which this
can happen.

But what about the minus signs? An inversion is said to occur in
a permutation whenever a larger integer precedes a smaller one. For
example,

1 2 3 ← no inversions 1 3 2 ← one inversion.

A permutation is said to be even if the total number of inversions is
even. It is odd if the total number of inversions is odd.

To find the total number of inversions of a permutation, we can
start at the left and find the total number of integers to the right of the
first integer which are smaller than the first integer. Then go to the next
integer to the right and do the same. Continue until the end, and then
add up all these numbers.

Example 3.23 Consider the permutation 5 2 3 4 1. We apply the method
just described. This tells us that total number of inversions is

4 + 1 + 1 + 1 = 7,
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so this permutation is odd. The total number of inversions gives the min-
imum number of steps that it takes to put these numbers into ascending
order, where in each step you are only allowed to switch the positions of
two adjacent numbers. For the permutation 5 2 3 4 1, this can be done
in seven steps as follows:

52341 → 25341 → 23541 → 23451

→ 23415 → 23145 → 21345 → 12345.

If we look again at the list of products (∗), we find that the permutations
of the column indices corresponding to the products with a plus sign
are all even, and those corresponding to the products with a minus sign
are all odd.

Definition 3.24 An elementary product from an n × n matrix A is a
product of n entries, no two of which come from the same row or
column. A signed elementary product has the row indices arranged in
ascending order, multiplied by −1 if the column indices are an odd
permutation of the numbers 1 to n.

We are now ready to give an intrinsic (but completely impractical)
definition of determinant.

Definition 3.25 (Determinant) The determinant of an n × n matrix A
is the sum of all signed elementary products of A.

A cofactor expansion is a clever way to obtain this sum of signed
elementary products. You choose the entries from one row, say, and then
cross out that row and the column containing the entry to obtain the
cofactor, and each stage of calculating the cofactor repeats the process.
At the heart of a proof of Theorem 3.19 is the fact that each possible
cofactor expansion is the sum of all signed elementary products, and so
all the cofactor expansions are equal to each other.

Activity 3.26 Expand the determinant

|A| =
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
using the cofactor expansion by column 2, and show that you get
the same list of signed elementary products as we obtained in (∗) on
page 102.
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For very large matrices, using a cofactor expansion is impractical. For
example,

|A| =

∣∣∣∣∣∣∣∣
1 −4 3 2
2 −7 5 1
1 2 6 0
2 −10 14 4

∣∣∣∣∣∣∣∣ = 1C11 + (−4)C12 + 3C13 + 2C14

would require calculating four 3 × 3 determinants. Fortunately, there is
a better way. To simplify the calculations, we will turn once again to
row operations. But first we need to establish some useful results on
determinants, which follow directly from Theorem 3.19.

3.3 Results on determinants

We now look at some standard and useful properties of determinants.

Theorem 3.27 If A is an n × n matrix, then

|AT| = |A|.
Proof: This theorem follows immediately from Theorem 3.19. The
cofactor expansion by row i of |AT| is precisely the same, number for
number, as the cofactor expansion by column i of |A|. �

Each of the following three statements follows from Theorem 3.19.
(They are ‘corollaries’, meaning consequences, of the theorem.) As a
result of Theorem 3.27, it follows that each is true if the word row is
replaced by column. We will need these results in the next section. In
all of them, we assume that A is an n × n matrix.

Corollary 3.28 If a row of A consists entirely of zeros, then |A| = 0.

Proof: If we evaluate the determinant by the cofactor expansion using
the row of zeros, then each cofactor is multiplied by 0 and the sum will
be zero. To visualise this, expand the determinant below using row 1:∣∣∣∣∣∣∣∣∣

0 0 . . . 0
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ = 0C11 + 0C12 + · · · + 0C1n = 0.

�

Corollary 3.29 If A contains two rows which are equal, then |A| = 0.
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Proof: To prove this, we will use an inductive argument. If A is a 2 × 2
matrix with two equal rows, then

|A| =
∣∣∣∣ a b
a b

∣∣∣∣ = ab − ab = 0.

Now consider a 3 × 3 matrix with two equal rows. If we expand the
determinant by the other row, then each cofactor is a 2 × 2 determinant
with two equal rows, therefore each is zero and so is their sum. For
example,

|A| =
∣∣∣∣∣∣∣
a b c
d e f
a b c

∣∣∣∣∣∣∣ = −d

∣∣∣∣∣b c
b c

∣∣∣∣∣+ e

∣∣∣∣∣a c
a c

∣∣∣∣∣− f

∣∣∣∣∣a b
a b

∣∣∣∣∣
= 0 + 0 + 0 = 0.

Generally, in a similar way, the result for (n − 1) × (n − 1) matrices
implies the result for n × n matrices. �

Corollary 3.30 If the cofactors of one row are multiplied by the entries
of a different row and added, then the result is 0. That is, if i 
= j , then
a j1Ci1 + a j2Ci2 + · · · + a jnCin = 0.

Proof: Let

A =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

⎞⎟⎟⎟⎠ .

The cofactor expansion of |A| by row i is

|A| = ai1Ci1 + ai2Ci2 + · · · + ainCin.

Look at the expression

a j1Ci1 + a j2Ci2 + · · · + a jnCin for i 
= j.

This expression is not equal to |A|, so what is it? It is equal to |B| for
some matrix B, but what does the matrix B look like?

In the expression |B| = a j1Ci1 + a j2Ci2 + · · · + a jnCin , each
cofactor Cik , for k = 1, . . . , n, is made up of entries of the matrix
A, omitting the entries from row i . For example, if i 
= 1, then Ci1 is
obtained from the matrix resulting in removing row i and column 1
from A, and Cik is obtained by removing row i and column k. So the
matrix B will have the same entries as the matrix A except in row i .
In the cofactor expansion of a determinant by row i , the entries of row
i are the numbers multiplying the cofactors. Therefore, the entries of
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row i of the matrix B must be a j1, . . . , a jn . Then B has two equal rows,
since row i has the same entries as row j . It follows, by Corollary 3.29,
that |B| = 0, and the result follows. �

Corollary 3.31 If A = (ai j ) and if each entry of one of the rows, say
row i, can be expressed as a sum of two numbers, ai j = bi j + ci j for
1 ≤ j ≤ n, then |A| = |B| + |C |, where B is the matrix A with row i
replaced by bi1, bi2, · · · bin and C is the matrix A with row i replaced
by ci1, ci2, · · · cin.

Proof: First, let’s illustrate this with a 3 × 3 matrix. The corollary states
that, for example,

|A| =
∣∣∣∣∣∣∣
a b c
d + p e + q f + r
g h i

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
a b c
p q r
g h i

∣∣∣∣∣∣∣
= |B| + |C |.

To show this is true, you just need to use the cofactor expansion by
row 2 for each of the determinants. We have

|A| = (d + p)C21 + (e + q)C22 + ( f + r )C23

= dC21 + eC22 + f C23 + pC21 + qC22 + rC23

= |B| + |C |,
where the cofactors C21, C22, C23 are exactly the same in each expansion
(of the determinants of B and C), since each consists entirely of entries
from the matrix A other than those in row i .

The proof for a general matrix A is exactly the same. The cofactor
expansion by row i yields

|A| = ai1Ci1 + ai2Ci2 + · · · + ainCin

= (bi1 + ci1)Ci1 + (bi2 + ci2)Ci2 + · · · + (bin + cin)Cin

= (bi1Ci1 + bi2Ci2 + · · · + binCin)

+ (ci1Ci1 + ci2Ci2 + · · · + cinCin)

= |B| + |C |.
�

3.3.1 Determinant using row operations

In this section, we take a different approach to evaluating determinants,
by making use of row operations.
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Definition 3.32 An n × n matrix A is upper triangular if all entries
below the main diagonal are zero. It is lower triangular if all entries
above the main diagonal are zero.

upper
triangular

matrix

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

0 a22 . . . a2n
...

...
. . .

...
0 0 . . . ann

⎞⎟⎟⎟⎠

lower
triangular

matrix

⎛⎜⎜⎜⎝
a11 0 . . . 0
a21 a22 . . . 0
...

...
. . .

...
an1 an2 . . . ann

⎞⎟⎟⎟⎠

diagonal
matrix

⎛⎜⎜⎜⎝
a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann

⎞⎟⎟⎟⎠ .

Suppose we wish to evaluate the determinant of an upper triangular
matrix, such as ∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

0 a22 . . . a2n
...

...
. . .

...
0 0 . . . ann

∣∣∣∣∣∣∣∣∣ .
Which row or column should we use for the cofactor expansion? Clearly,
the calculations are simplest if we expand by column 1 or row n.
Expansion by column 1 gives us

|A| = a11

∣∣∣∣∣∣∣
a22 . . . a2n
...

. . .
...

0 . . . ann

∣∣∣∣∣∣∣ ,
where the (n − 1) × (n − 1) matrix on the right is again upper triangular.
Continuing in this way, we see that |A| is just the product of the diag-
onal entries. The same argument holds true for a matrix which is diag-
onal or lower triangular, so we have established one more corollary of
Theorem 3.19:

Corollary 3.33 If A is upper triangular, lower triangular or diagonal,
then

|A| = a11a22 · · · ann.
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A square matrix in row echelon form is upper triangular. If we know how
a determinant is affected by a row operation, then this observation will
give us an easier way to calculate large determinants. We can use row
operations to put the matrix into row echelon form, keep track of any
changes and then easily calculate the determinant of the reduced matrix.
So how does each row operation affect the value of the determinant?
Let’s consider each in turn.

The first row operation is:

RO1 multiply a row by a non-zero constant

Suppose the matrix B is obtained from a matrix A by multiplying row
i by a non-zero constant α. For example,

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ , |B| =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

αa21 αa22 . . . αa2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ .
If we evaluate |B| using the cofactor expansion by row i , we obtain

|B| = αai1Ci1 + αai2Ci2 + · · · + αainCin

= α(ai1Ci1 + ai2Ci2 + · · · + ainCin)

= α|A|.
So we have:

� The effect of multiplying a row of A by α is to multiply |A| by α,
|B| = α|A|.

When we actually need this, we will use it to factor out a constant α

from the determinant as follows:∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

αa21 αa22 . . . αa2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ = α

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ .
The second type of row operation is:

RO2 interchange two rows

This time we will use an inductive proof involving the cofactor expan-
sion. If A is a 2 × 2 matrix and B is the matrix obtained from A by
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interchanging the two rows, then

|A| =
∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc, |B| =
∣∣∣∣ c d
a b

∣∣∣∣ = bc − ad,

so |B| = −|A|.
Now let A be a 3 × 3 matrix and let B be a matrix obtained from

A by interchanging two rows. Then if we expand |B| using a different
row, each cofactor contains the determinant of a 2 × 2 matrix which is
a cofactor of A with two rows interchanged, so each will be multiplied
by −1, and |B| = −|A|. To visualise this, consider for example

|A| =
∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ , |B| =
∣∣∣∣∣∣
g h i
d e f
a b c

∣∣∣∣∣∣ .
Expanding |A| and |B| by row 2, we have

|A| = −d
∣∣∣∣ b c
h i

∣∣∣∣+ e
∣∣∣∣ a c
g i

∣∣∣∣− f
∣∣∣∣ a b
g h

∣∣∣∣
|B| = −d

∣∣∣∣ h i
b c

∣∣∣∣+ e
∣∣∣∣ g i
a c

∣∣∣∣− f
∣∣∣∣ g h
a b

∣∣∣∣ = −|A|

since all the 2 × 2 determinants change sign. In the same way, if this
holds for (n − 1) × (n − 1) matrices, then it hold for n × n matrices.

So we have:

� The effect of interchanging two rows of a matrix is to multiply the
determinant by −1: |B| = −|A|.

Finally, we have the third type of row operation:

RO3 add a multiple of one row to another.

Suppose the matrix B is obtained from the matrix A by replacing row
j of A by row j plus k times row i of A, j 
= i . For example, consider
the case in which B is obtained from A by adding 4 times row 1 of A
to row 2. Then

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ ,

|B| =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 + 4a11 a22 + 4a12 . . . a2n + 4a1n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ .
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In general, in a situation like this, we can expand |B| by row j :

|B| = (a j1 + kai1)C j1 + (a j2 + kai2)C j2 + · · · + (a jn + kain)C jn

= a j1C j1 + a j2C j2 + · · · + a jnC jn

+ k(ai1C j1 + ai2C j2 + · · · + ainC jn)

= |A| + 0.

The last expression in brackets is 0 because it consists of the cofactors
of one row multiplied by the entries of another row (see Corollary 3.30).
So this row operation does not change the value of |A|.

So we see that:

� There is no change in the value of the determinant if a multiple of
one row is added to another.

We collect these results in the following theorem.

Theorem 3.34 (Effect of a row (column) operation on |A|) All state-
ments are true if row is replaced by column.

(RO1) If a row is multiplied by a constant α, then
|A| changes to α|A|.

(RO2) If two rows are interchanged, then
|A| changes to −|A|.

(RO3) If a multiple of one row is added to another, then
there is no change in |A|.

Example 3.35 We can now use row operations to evaluate

|A| =

∣∣∣∣∣∣∣∣
1 2 −1 4

−1 3 0 2
2 1 1 2
1 4 1 3

∣∣∣∣∣∣∣∣
by reducing A to an upper triangular matrix. First, we obtain zeros
below the leading one by adding multiples of row 1 to the rows below.
The new matrix will have the same determinant as A. So

|A| =

∣∣∣∣∣∣∣∣
1 2 −1 4
0 5 −1 6
0 −3 3 −6
0 2 2 −1

∣∣∣∣∣∣∣∣ .
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Next, we observe that∣∣∣∣∣∣∣∣
1 2 −1 4
0 5 −1 6
0 −3 3 −6
0 2 2 −1

∣∣∣∣∣∣∣∣ = −3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 5 −1 6
0 1 −1 2
0 2 2 −1

∣∣∣∣∣∣∣∣ ,
where we factored −3 from the third row. (We would need to multiply
the resulting determinant on the right by −3 in order to put the −3 back
into the third row, and to get back a matrix with the same determinant
as A.) Next we switch row 2 and row 3, with the effect of changing the
sign of the determinant.

|A| = 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 5 −1 6
0 2 2 −1

∣∣∣∣∣∣∣∣ .
Next, we use RO3 operations to achieve upper triangular form. These
operations result in no change in the value of the determinant. So we
have

|A| = 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 0 4 −4
0 0 4 −5

∣∣∣∣∣∣∣∣ = 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 0 4 −4
0 0 0 −1

∣∣∣∣∣∣∣∣ .
Finally, we evaluate the determinant of the upper triangular matrix,
obtaining

|A| = 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 0 4 −4
0 0 0 −1

∣∣∣∣∣∣∣∣ = 3(1 × 1 × 4 × (−1)) = −12.

A word of caution with row operations on a determinant! What is the
change in the value of |A| in the following circumstances:

(1) if R2 is replaced by R2 − 3R1?
(2) if R2 is replaced by 3R1 − R2?

For (1), there is no change, but for (2), the determinant will change sign.
Why? Well, 3R1 − R2 is actually two elementary row operations: first,
we multiply row 2 by −1 and then we add three times row 1 to it. When
performing row operation RO3, to leave the determinant unchanged,
you should always add a multiple of another row to the row you are
replacing.
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Activity 3.36 You can shorten the writing in the above example by
expanding the 4 × 4 determinant using the first column as soon as you
have obtained the determinant with zeros under the leading one. You
will then be left with a 3 × 3 determinant to evaluate. Do this. Without
looking at the example above, work through the calculations in this way
to evaluate

|A| =

∣∣∣∣∣∣∣∣
1 2 −1 4

−1 3 0 2
2 1 1 2
1 4 1 3

∣∣∣∣∣∣∣∣ .

3.3.2 The determinant of a product

One very important result concerning determinants can be stated as:
‘the determinant of the product of two square matrices is the product of
their determinants’. This is the content of the following theorem.

Theorem 3.37 If A and B are n × n matrices, then

|AB| = |A||B|.
Proof: We will outline the proof of this theorem without filling in all
the details. We first prove the theorem in the case when the matrix A is
an elementary matrix. We use again the fact established in Section 3.1.1
(page 92) that the matrix obtained by a row operation on the matrix B
is equal to the product of the elementary matrix of that row operation
times the matrix B.

Let E1 be an elementary matrix that multiplies a row by a non-zero
constant k. Then E1 B is the matrix B obtained by performing that row
operation on B, and by Theorem 3.34, |E1 B| = k |B|. For the same
reason, |E1| = |E1 I | = k|I | = k. Therefore,

|E1 B| = k|B| = |E1| |B|.
The argument for the other two types of elementary matrices follows
the same steps.

Activity 3.38 Try these. Show that if E2 is an elementary matrix that
switches two rows, then |E2 B| = |E2| |B|, and do the same for an
elementary matrix E3 that adds a multiple of one row to another.

So we assume that the theorem is true when A is any elementary matrix.
Now recall that every matrix is row equivalent to a matrix in reduced

row echelon form, so if R denotes the reduced row echelon form of the
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matrix A, then we can write

A = Er Er−1 . . . E1 R,

where the Ei are elementary matrices. Since A is a square matrix, R is
either the identity matrix or a matrix with a row of zeros.

Applying the result for an elementary matrix repeatedly

|A| = |Er Er−1 . . . E1 R| = |Er ||Er−1| . . . |E1||R|,
where |R| is either 1 or 0. In fact, since the determinant of an elementary
matrix must be non-zero, |R| = 0 if and only if |A| = 0.

If R = I , then by repeated application of the result for elementary
matrices, this time with the matrix B,

|AB| = |(Er Er−1 . . . E1 I )B|
= |Er Er−1 . . . E1 B|
= |Er ||Er−1| . . . |E1||B|
= |Er Er−1 . . . E1||B|
= |A| |B|.

If R 
= I , then

|AB| = |Er Er−1 . . . E1 R B| = |Er ||Er−1| . . . |E1||R B|.
Since the product matrix R B must also have a row of zeros, |R B| = 0.
Therefore, |AB| = 0 = 0|B| and the theorem is proved. �

3.4 Matrix inverse using cofactors

3.4.1 Using determinants to find an inverse

We start with the following characterisation of invertible matrices.

Theorem 3.39 If A is an n × n matrix, then A is invertible if and only
if |A| 
= 0.

We will give two proofs of Theorem 3.39. The first follows easily from
Theorem 3.8. The second is included because it gives us another method
to calculate the inverse of a matrix.

First proof of Theorem 3.39
We have already established this theorem indirectly by our arguments
in the previous section; we will repeat and collect them here.
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By Theorem 3.8, A is invertible if and only if the reduced row
echelon form of A is the identity matrix. Let A be any n × n matrix and
let R be the reduced row echelon form of A. Then either R is the identity
matrix (in which case A is invertible) and |R| = 1, or R is a matrix with
a row of zeros (in which case A is not invertible) and |R| = 0.

As we have seen, row operations cannot alter the fact that a deter-
minant is zero or non-zero. By performing a row operation, we might
be multiplying the determinant by a non-zero constant, or by −1, or
not changing the determinant at all. Therefore, we can conclude that
|A| = 0 if and only if the determinant of its reduced row echelon form,
R, is also 0, and |A| 
= 0 if and only if |R| = 1.

Putting these statements together, |A| 
= 0 if and only if the reduced
row echelon form of A is the identity; that is (by Theorem 3.8), if and
only if A is invertible. �

Second proof of Theorem 3.39
We will now prove Theorem 3.39 directly. Since it is an if and only if
statement, we must prove both implications.

First we show that if A is invertible, then |A| 
= 0. We assume
A−1 exists, so that AA−1 = I . Then taking the determinant of both
sides of this equation, |AA−1| = |I | = 1. Applying Theorem 3.37 to
the product,

|AA−1| = |A| |A−1| = 1.

If the product of two real numbers is non-zero, then neither number can
be zero, which proves that |A| 
= 0.

As a consequence of this argument, we have the bonus result that

|A−1| = 1

|A| .

We now show the other implication; that is, if |A| 
= 0, then A is invert-
ible. To do this, we will construct A−1, and to do this we need some
definitions.

Definition 3.40 If A is an n × n matrix, the matrix of cofactors of A is
the matrix whose (i, j) entry is Ci j , the (i, j) cofactor of A. The adjoint
(also sometimes called the adjugate) of the matrix A is the transpose
of the matrix of cofactors. That is, the adjoint of A, adj(A), is the
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matrix

adj(A) =

⎛⎜⎜⎜⎝
C11 C21 . . . Cn1

C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn

⎞⎟⎟⎟⎠ .

Notice that column 1 of this matrix consists of the cofactors of row 1 of
A (and row 1 consists of the cofactors of column 1 of A), and similarly
for each column and row.

We now multiply the matrix A with its adjoint matrix:

A adj(A) =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

C11 C21 . . . Cn1

C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn

⎞⎟⎟⎟⎠ .

Look carefully at what each entry of the product will be.
The (1, 1) entry is a11C11 + a12C12 + · · · + a1nC1n . This is the

cofactor expansion of |A| by row 1.
The (1,2) entry is a11C21 + a12C22 + · · · + a1nC2n . This consists of

the cofactors of row 2 of A multiplied by the entries of row 1, so this is
equal to 0 by Corollary 3.30.

Continuing in this way, we see that the entries on the main diagonal
of the product are all equal to |A|, and all entries off the main diagonal
are equal to 0. That is,

A adj(A) =

⎛⎜⎜⎜⎝
|A| 0 · · · 0
0 |A| · · · 0
...

...
. . .

...
0 0 · · · |A|

⎞⎟⎟⎟⎠ = |A| I,

since |A| is just a real number, a scalar.
We know |A| 
= 0, so we can divide both sides of the equation by

|A| to obtain

A
(

1

|A| adj(A)
)

= I.

This implies that A−1 exists and is equal to

A−1 = 1

|A| adj(A).

�
This gives not only a proof of Theorem 3.39, but a useful method to
calculate the inverse of a matrix using cofactors.
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Example 3.41 Find A−1 for the matrix

A =
⎛⎝ 1 2 3

−1 2 1
4 1 1

⎞⎠ .

The first thing to do is to calculate |A| to see if A is invertible. Using
the cofactor expansion by row 1,

|A| = 1(2 − 1) − 2(−1 − 4) + 3(−1 − 8) = −16 
= 0.

We then calculate the minors: for example

M11 =
∣∣∣∣ 2 1
1 1

∣∣∣∣ = 1,

and we can fill in the chart below

M11 = 1 M12 = −5 M13 = −9
M21 = −1 M22 = −11 M23 = −7
M31 = −4 M32 = 4 M33 = 4.

Next, we change the minors into cofactors, by multiplying by −1 those
minors with i + j equal to an odd number. Finally, we transpose the
result to form the adjoint matrix, so that

A−1 = 1

|A|adj(A) = − 1

16

⎛⎝ 1 1 −4
5 −11 −4

−9 7 4

⎞⎠ .

As with all calculations, it is easy to make a mistake. Therefore, having
found A−1, the next thing you should do is check your result by showing
that AA−1 = I ,

− 1

16

⎛⎜⎝1 2 3
−1 2 1
4 1 1

⎞⎟⎠
⎛⎜⎝1 1 −4

5 −11 −4
−9 7 4

⎞⎟⎠
= − 1

16

⎛⎜⎝−16 0 0
0 −16 0
0 0 −16

⎞⎟⎠ = I.

Activity 3.42 Use this method to find the inverse of the matrix

A =
⎛⎝ 1 2 3

0 4 0
5 6 7

⎞⎠ .

Check your result.

Remember: The adjoint matrix only contains the cofactors of A; the
(i, j) entry is the cofactor C ji of A. A common error is to attempt to
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form the adjoint by multiplying cofactors by entries of the matrix. But
the entries of a matrix A only multiply the cofactors when calculating
the determinant of A, |A|.

3.4.2 Cramer’s rule

If A is a square matrix with |A| 
= 0, then Cramer’s rule gives us an
alternative method of solving a system of linear equations Ax = b.

Theorem 3.43 (Cramer’s rule) If A is n × n, |A| 
= 0, and b ∈ Rn,
then the solution x = (x1, x2, . . . , xn)T of the linear system Ax = b is
given by

xi = |Ai |
|A| ,

where, here, Ai is the matrix obtained from A by replacing the i th
column with the vector b.

Before we prove this theorem, let’s see how it works.

Example 3.44 Use Cramer’s rule to find the solution of the linear
system

x + 2y + 3z = 7
−x + 2y + z = −3
4x + y + z = 5.

In matrix form Ax = b, this system is⎛⎝ 1 2 3
−1 2 1
4 1 1

⎞⎠⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 7

−3
5

⎞⎠ .

We first check that |A| 
= 0. This is the same matrix A as in
Example 3.41, and we have |A| = −16. Then, applying Cramer’s rule,
we find x by evaluating the determinant of the matrix obtained from A
by replacing column 1 with b, and divide this by |A|:

x =

∣∣∣∣∣∣
7 2 3

−3 2 1
5 1 1

∣∣∣∣∣∣
|A| = −16

−16
= 1
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and, in the same way, we obtain y and z:

y =

∣∣∣∣∣∣
1 7 3

−1 −3 1
4 5 1

∣∣∣∣∣∣
|A| = 48

−16
= −3,

z =

∣∣∣∣∣∣
1 2 7

−1 2 −3
4 1 5

∣∣∣∣∣∣
|A| = −64

−16
= 4,

which can easily be checked by substitution into the original equations
(or by multiplying Ax).

We now prove Cramer’s rule.

Proof: Since |A| 
= 0, A−1 exists, and we can solve for x by multiplying
Ax = b on the left by A−1. Then x = A−1b:

x =

⎛⎜⎜⎜⎝
x1

x2
...

xn

⎞⎟⎟⎟⎠ = 1

|A|

⎛⎜⎜⎜⎝
C11 C21 . . . Cn1

C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

b1

b2
...

bn

⎞⎟⎟⎟⎠ .

The entry xi of the solution is equal to the i th row of this product.

xi = 1

|A| (b1C1i + b2C2i + · · · + bnCni ).

Stare at this expression a moment. The cofactors all come from row i
of the adjoint matrix, and they are the cofactors of column i of A, so
this looks like a cofactor expansion by column i of a matrix which is
identical to A except in column i , where the entries are the components
of the vector b. That is, the term in brackets is the cofactor expansion
by column i of the matrix A with column i replaced by the vector b; in
other words, it is |Ai |. �

To summarise, for a system Ax = b, where A is square and |A| 
= 0, to
find xi using Cramer’s rule:

(1) replace column i of A by b,
(2) evaluate the determinant of the resulting matrix,
(3) divide by |A|.
Cramer’s rule is quite an attractive way to solve linear systems of equa-
tions, but it should be stressed that it has fairly limited applicability.
It only works for square systems, and only for those square systems
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where the coefficient matrix is invertible. By contrast, the Gaussian
elimination method works in all cases: it can be used for non-square
systems, square systems in which the matrix is not invertible, systems
with infinitely many solutions; and it can also detect when a system is
inconsistent.

Activity 3.45 Can you think of another method to obtain the solution
to the above example? One way is to use the inverse matrix. Do this.
We found A−1 in Exercise 3.41. Now use it to find the solution x of⎛⎝ 1 2 3

−1 2 1
4 1 1

⎞⎠⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 7

−3
5

⎞⎠
by calculating x = A−1b.

3.5 Leontief input–output analysis

In 1973, Wassily Leontief was awarded the Nobel prize in Economics for
work he did analysing an economy with many interdependent industries
using linear algebra. We present a brief outline of his method here.

Suppose an economy has n interdependent production processes,
where the outputs of the n industries are used to run the industries and
to satisfy an outside demand. Assume that prices are fixed so that they
can be used to measure the output. The problem we wish to solve is
to determine the level of output of each industry which will satisfy
all demands exactly; that is, both the demands of the other industries
and the outside demand. The problem can be described as a system of
linear equations, as we shall see by considering the following simple
example.

Example 3.46 Suppose there are two industries: water and electricity.
Let

x1 = total output of water ($ value)

x2 = total output of electricity ($ value).

We can express this as a vector

x =
(

x1

x2

)
called a production vector. Suppose we know that the production
of water requires both water and electricity as inputs, and that the
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production of electricity requires both water and electricity as inputs.
Specifically, suppose the following is known:

water production needs
$ 0.01 water

$ 0.15 electricity

}
to produce $1.00 water

electricity production needs
$ 0.21 water

$0́.05 electricity

}
to produce $1.00 electricity.

What is the total water used by the industries? Water is using $ 0.01 for
each unit output, so a total of 0.01x1; and electricity is using $ 0.21 water
for each unit of its output, so a total of 0.21x2. The total amount of water
used by the industries is therefore 0.01x1 + 0.21x2. In the same way,
the total amount of electricity used by the industries is 0.15x1 + 0.05x2.
The totals can be expressed as(

water
electricity

)
=
(

0.01 0.21
0.15 0.05

)(
x1

x2

)
= Cx.

The matrix C is known as a consumption matrix or a technology matrix.
After the industries have used water and electricity to produce their

outputs, how much water and electricity are left to satisfy the outside
demand?

Activity 3.47 Think about this before continuing. Write down an
expression for the total amount of water which is left after the industries
have each used what they need to produce their output. Do the same for
electricity.

Let d1 denote the outside demand for water, and d2 the demand for
electricity. Then in order for the output of these industries to supply the
industries and also to satisfy the outside demand exactly, the following
equations must be satisfied:{

x1 − 0.01x1 − 0.21x2 = d1 (water)

x2 − 0.15x1 − 0.05x2 = d2 (electricity).

In matrix notation,(
x1

x2

)
−
(

0.01 0.21
0.15 0.05

)(
x1

x2

)
=
(

d1

d2

)
,

or, x − Cx = d, where

d =
(

d1

d2

)
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is the outside demand vector. If we use the the fact that I x = x, where
I is the 2 × 2 identity matrix, then we can rewrite this system in matrix
form as

I x − Cx = d, or (I − C)x = d.

This is now in the usual matrix form for a system of linear equations. A
solution, x, to this system of equations will determine the output levels
of each industry required to satisfy all demands exactly.

Now let’s look at the general case. Suppose we have an economy with n
interdependent industries. If ci j denotes the amount of industry i used
by industry j to produce $1.00 of industry j , then the consumption or
technology matrix is C = (ci j ):

C =

⎛⎜⎜⎜⎝
c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

⎞⎟⎟⎟⎠ ,

where:

� row i lists the amounts of industry i used by each industry
� column j lists the amounts of each industry used by industry j .

If, as before, we denote by d the n × 1 outside demand vector, then
in matrix form the problem we wish to solve is to find the production
vector x such that

(I − C)x = d,

a system of n linear equations in n unknowns.

Activity 3.48 Return to the example given above and assume that the
public demand for water is $627 and for electricity is $4,955. Find the
levels of output which satisfy all demands exactly.

3.6 Learning outcomes

You should now be able to:

� say what is meant by an elementary matrix, and understand how
they are used for row operations

� find the inverse of a matrix using row operations
� find the determinant of a square matrix and use it to determine if a

matrix is invertible
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� find the inverse of a matrix using cofactors
� solve a system of linear equations using Cramer’s rule
� say what is meant by the Leontief input–output model and solve

input–output analysis problems.

In addition, you should know that:

� There are three methods to solve Ax = b if A is n × n and |A| 
= 0:
(1) Gaussian elimination
(2) find A−1, then calculate x = A−1b
(3) Cramer’s rule.

� There is one method to solve Ax = b if A is m × n and m 
= n, or
if |A| = 0:
(1) Gaussian elimination.

� There are two methods to find A−1:
(1) using cofactors for the adjoint matrix
(2) by row reduction of (A | I ) to (I | A−1).

� If A is an n × n matrix, then the following statements are equivalent
(Theorems 3.8 and 3.39):
(1) A is invertible.
(2) Ax = b has a unique solution for any b ∈ Rn .
(3) Ax = 0 has only the trivial solution, x = 0.
(4) the reduced row echelon form of A is I .
(5) |A| 
= 0.

3.7 Comments on activities

Activity 3.2 Only the last matrix is an elementary matrix, represent-
ing the operation R3 − R1 on I . The others each represent two row
operations. For example,

⎛⎝ 2 1 0
0 1 0
0 0 1

⎞⎠ =
⎛⎝ 1 1 0

0 1 0
0 0 1

⎞⎠⎛⎝ 2 0 0
0 1 0
0 0 1

⎞⎠ = E2 E1,

where E1 represents 2R1 and E2 represents R1 + R2. You should mul-
tiply the matrices in the opposite order, E1 E2, and notice the effect,
thinking about the row operations on I .

Activity 3.4 The matrix E is the identity matrix after the row operation
R2 − 4R1 has been performed on it, so the inverse matrix is the identity



3.7 Comments on activities 123

matrix after R2 + 4R1,

E−1 =
⎛⎝ 1 0 0

4 1 0
0 0 1

⎞⎠ .

Multiply out E E−1 and E−1 E as instructed.

Activity 3.11 For the matrix A,

(A|I ) =
⎛⎝−2 1 3

0 −1 1
1 2 0

∣∣∣∣∣
1 0 0
0 1 0
0 0 1

⎞⎠ R1↔R3−→
⎛⎝ 1 2 0

0 −1 1
−2 1 3

∣∣∣∣∣
0 0 1
0 1 0
1 0 0

⎞⎠
R3+2R1−→

⎛⎝ 1 2 0
0 −1 1
0 5 3

∣∣∣∣∣
0 0 1
0 1 0
1 0 2

⎞⎠ (−1)R2−→
⎛⎝ 1 2 0

0 1 −1
0 5 3

∣∣∣∣∣
0 0 1
0 −1 0
1 0 2

⎞⎠
R3−5R2−→

⎛⎝ 1 2 0
0 1 −1
0 0 8

∣∣∣∣∣
0 0 1
0 −1 0
1 5 2

⎞⎠ 1
8 R3−→
⎛⎝ 1 2 0

0 1 −1
0 0 1

∣∣∣∣∣
0 0 1
0 −1 0
1
8

5
8

1
4

⎞⎠
R2+R3−→

⎛⎝ 1 2 0
0 1 0
0 0 1

∣∣∣∣∣
0 0 1
1
8 −3

8
1
4

1
8

5
8

1
4

⎞⎠ R1−2R2−→
⎛⎜⎝ 1 0 0

0 1 0
0 0 1

∣∣∣∣∣
−2

8
6
8

1
2

1
8 −3

8
1
4

1
8

5
8

1
4

⎞⎟⎠ .

So,

A−1 = 1

8

⎛⎝−2 6 4
1 −3 2
1 5 2

⎞⎠ .

Now check that AA−1 = I .
When you carry out the row reduction, it is not necessary to always

indicate the separation of the two matrices by a line as we have done so
far. You just need to keep track of what you are doing.

In the calculation for the inverse of B, we have omitted the line but
added a bit of space to make it easier for you to read.

(B|I ) =
⎛⎝ 2 1 3 1 0 0

0 −1 1 0 1 0
1 2 0 0 0 1

⎞⎠ R1↔R3−→
⎛⎝ 1 2 0 0 0 1

0 −1 1 0 1 0
2 1 3 1 0 0

⎞⎠

R3−2R1−→
⎛⎝ 1 2 0 0 0 1

0 −1 1 0 1 0
0 −3 3 1 0 −2

⎞⎠ (−1)R2−→
⎛⎝ 1 2 0 0 0 1

0 1 −1 0 −1 0
0 −3 3 1 0 −2

⎞⎠

R3+3R2−→
⎛⎝ 1 2 0 0 0 1

0 1 −1 0 −1 0
0 0 0 1 −3 −2

⎞⎠ ,
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which indicates that the matrix B is not invertible; it is not row equivalent
to the identity matrix.

Activity 3.16 C13 = 13.

Activity 3.18 |M | = −1(8 − 3) − 2(0 − 3) + 1(0 − 2) = −1.

Activity 3.21 You should either expand by column 1 or row 2. For
example, using column 1: |M | = −1(8 − 3) + 1(6 − 2) = −1.

Activity 3.36

|A| =

∣∣∣∣∣∣∣∣
1 2 −1 4
0 5 −1 6
0 −3 3 −6
0 2 2 −1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣

5 −1 6
−3 3 −6
2 2 −1

∣∣∣∣∣∣ .

At this stage you can expand the 3 × 3 matrix using a cofactor expan-
sion, or continue a bit more with row operations:

|A| = 3

∣∣∣∣∣∣
1 −1 2
5 −1 6
2 2 −1

∣∣∣∣∣∣ = 3

∣∣∣∣∣∣
1 −1 2
0 4 −4
0 4 −5

∣∣∣∣∣∣ = 3
∣∣∣∣ 4 −4
4 −5

∣∣∣∣ = 3(−4) = −12.

Activity 3.42

|A| = −32 
= 0

A−1 = 1

|A|adj(A) = − 1

32

⎛⎝ 28 4 −12
0 −8 0

−20 4 4

⎞⎠ = 1

8

⎛⎝−7 −1 3
0 2 0
5 −1 −1

⎞⎠.

Activity 3.47 The total water output remaining is x1 − 0.01x1 −
0.21x2, and the total electricity output left is x2 − 0.15x1 − 0.05x2.

Activity 3.48 Solve (I − C)x = d by Gaussian elimination, where

C =
(

0.01 0.21
0.15 0.05

)
, x =

(
x1

x2

)
, d =

(
627

4955

)
.
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Reducing the augmented matrix,

((I − C)|d) =
(

0.99 −0.21 627
−0.15 0.95 4955

)
→

(
33 −7 20900
−3 19 99100

)
(

1 −7/33 1900/3
−3 19 99100

)
→

(
1 −7/33 1900/3
0 202/11 101000

)
(

1 −7/33 1900/3
0 1 5500

)
→

(
1 0 1800
0 1 5500

)
.

So, x =
(

1800
5500

)
.

3.8 Exercises

Exercise 3.1 Use elementary row operations to find any inverses of the
following matrices.

A =
⎛⎝ 1 2 −1

0 1 2
3 8 1

⎞⎠ , B =
⎛⎝−1 2 1

0 1 2
3 1 4

⎞⎠ .

Let b =
⎛⎝ 1

1
5

⎞⎠. Find all solutions to Ax = b. Find all solutions to

Bx = b.
Is there a vector d ∈ R3 for which Ax = d is inconsistent? Is there

a vector d ∈ R3 for which Bx = d is inconsistent? In each case, justify
your answer and find such a vector d if one exists.

Exercise 3.2 Use elementary row operations to reduce the matrix

A =
⎛⎝ 1 0 2

0 1 −1
1 4 −1

⎞⎠
to the identity matrix. Hence, write A as a product of elementary
matrices.

Use this to evaluate |A| as a product of matrices, then check your
answer by evaluating |A| using a cofactor expansion.

Exercise 3.3 Evaluate each of the following determinants using a
cofactor expansion along an appropriate row or column.

(a)

∣∣∣∣∣∣
5 2 −4

−3 1 1
−1 7 2

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣∣∣
1 23 6 −15
2 5 0 1
1 4 0 3
0 1 0 1

∣∣∣∣∣∣∣∣ .
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Exercise 3.4 Suppose w ∈ R and B is the matrix

B =
⎛⎝ 2 1 w

3 4 −1
1 −2 7

⎞⎠ .

For what values of w is the determinant of B equal to 0?

Exercise 3.5 Evaluate the following determinant using row operations
to simplify the calculation:∣∣∣∣∣∣∣∣

5 2 −4 −2
−3 1 5 1
−4 3 1 3
2 1 −1 1

∣∣∣∣∣∣∣∣ .
Check your answer by evaluating it a second time using column
operations.

Exercise 3.6 For which values of λ is the matrix

A =
(

7 − λ −15
2 −4 − λ

)
not invertible?

Exercise 3.7 Suppose A is a 3 × 3 matrix with |A| = 7. Find |2A|,
|A2|, |2A−1|, |(2A)−1|.
Exercise 3.8 Use the method of the adjoint matrix to find the inverse
of each of the following matrices, if it exists.

B =
⎛⎝−1 2 1

0 1 2
3 1 4

⎞⎠ , C =
⎛⎝ 5 2 −1

1 3 4
6 5 3

⎞⎠ .

Exercise 3.9 Write out the system of equations Bx = b, where

B =
⎛⎝−1 2 1

0 1 2
3 1 4

⎞⎠ , x =
⎛⎝ x

y
z

⎞⎠ , b =
⎛⎝ 1

1
5

⎞⎠ .

Find the solution using Cramer’s rule.

Exercise 3.10 Consider an economy with three industries,

i1 : water i2 : electricity i3 : gas

interlinked so that the corresponding consumption matrix is

C =
⎛⎝ 0.2 0.3 0.2

0.4 0.1 0.2
0 0 0.1

⎞⎠ .
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Each week the external demands for water, electricity and gas are,
respectively,

d1 = $40, 000 d2 = $100, 000. d3 = $72, 000.

(a) How much water, electricity and gas is needed to produce $1 worth
of electricity?

(b) What should be the weekly production of each industry in order
to satisfy all demands exactly?

Exercise 3.11 The vector product or cross product of two vectors is
defined in R3 as follows. If

a =
⎛⎝ a1

a2

a3

⎞⎠ , b =
⎛⎝ b1

b2

b3

⎞⎠ , e1 =
⎛⎝ 1

0
0

⎞⎠ , e2 =
⎛⎝ 0

1
0

⎞⎠ , e3 =
⎛⎝ 0

0
1

⎞⎠ ,

then a × b is the vector given by

a × b =
∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣
= (a2b3 − a3b2)e1 − (a1b3 − a3b1)e2 + (a1b2 − a2b1)e3.

(That determinant might look odd to you since it has vectors as some of
its entries: but really this is just an extension of the earlier notation, and
you can take the second equation as the definition of what it means.)
The vector a × b is perpendicular to both a and b (see part (b)).

(a) Calculate w = u × v for the vectors u =
⎛⎝ 1

2
3

⎞⎠ and v =
⎛⎝ 2

−5
4

⎞⎠.

Check that w is perpendicular to both u and v.

(b) Show that for general vectors a, b, c ∈ R3 the scalar triple product,
〈a, b × c〉 is given by the following determinant:

〈a, b × c〉 =
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ (∗)

Use this and properties of the determinant to show that the vector
b × c is perpendicular to both b and c.

(c) Show that the vectors a, b, c are coplanar (lie in the same plane)
if and only if the determinant (∗) is equal to 0.

Find the constant t if the vectors⎛⎝ 3
−1
2

⎞⎠ ,

⎛⎝ t
5
1

⎞⎠ ,

⎛⎝−2
3
1

⎞⎠
are coplanar.
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3.9 Problems

Problem 3.1 Use elementary row operations to find inverses of each
of the following matrices when the matrix has an inverse.

A =
⎛⎝ 1 2 3

2 3 0
0 1 2

⎞⎠ B =
⎛⎝ 1 2 3

2 3 0
0 1 6

⎞⎠ C =

⎛⎜⎜⎝
1 0 4 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ .

Is C an elementary matrix? If the answer is ‘yes’, what operation does
it perform? If the answer is ‘no’, write it as a product of elementary
matrices.

Problem 3.2 Given a system of equations Ax = b for several different
values of b, it is often more practical to find A−1, if it exists, and then
to find the solutions using x = A−1b.

Use this method to solve Ax = br for the matrix

A =
⎛⎝ 1 2 3

2 3 0
0 1 2

⎞⎠ ,

and for each of the following vectors br , r = 1, 2, 3:

(a) b1 =
⎛⎝ 1

0
3

⎞⎠ ; (b) b2 =
⎛⎝ 1

1
1

⎞⎠ ; (c) b3 =
⎛⎝ 0

1
0

⎞⎠ .

Be certain your solution for A−1 is correct before carrying out this
problem by checking that AA−1 = I .

Problem 3.3 Evaluate the following determinants using the cofactor
expansion along an appropriate row or column.

(a)

∣∣∣∣∣∣
2 5 1
1 0 2
7 1 1

∣∣∣∣∣∣.

(b)

∣∣∣∣∣∣∣∣
7 5 2 3
2 0 0 0
11 2 0 0
23 57 1 −1

∣∣∣∣∣∣∣∣.

(c)

∣∣∣∣∣∣∣∣
1 2 1 0
3 2 1 0
0 1 6 5
0 1 1 1

∣∣∣∣∣∣∣∣.
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(d)

∣∣∣∣∣∣∣∣
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣.

(e)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 1
0 0 0 0 3 2
0 0 0 2 9 3
0 0 1 0 7 4
0 6 9 8 7 5
1 3 4 2 9 6

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Problem 3.4 Let

B =
⎛⎝ 3 t −2

−1 5 3
2 1 1

⎞⎠ .

For what values of t is the determinant of B equal to zero?

Problem 3.5 Evaluate the following determinants (use row operations
to simplify the calculation).

(a)

∣∣∣∣∣∣∣∣
1 −4 3 2
2 −7 5 1
1 2 6 0
2 −10 14 4

∣∣∣∣∣∣∣∣.

(b)

∣∣∣∣∣∣∣∣∣∣∣

1 4 −1 3 0
1 7 4 3 8
2 8 −2 6 0
2 0 5 5 7

−1 9 0 9 2

∣∣∣∣∣∣∣∣∣∣∣
.

(c)

∣∣∣∣∣∣
3 3a 3a2

2 2b 2b2

1 c c2

∣∣∣∣∣∣.
Problem 3.6 Consider the matrix

A =
(

2 − λ 3
2 1 − λ

)
, λ ∈ R.

For which values of λ will the matrix equation Ax = 0 have non-trivial
solutions?
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Problem 3.7 Use the method of the adjoint matrix to find the inverse
of each of the following matrices, if it exists.

A =
⎛⎝ 2 0 −3

0 3 1
−1 4 2

⎞⎠ B =
⎛⎝ 1 0 2

2 1 3
0 −1 1

⎞⎠ C =
⎛⎝ 1 2 0

0 1 1
2 1 −1

⎞⎠ .

Problem 3.8 Express the following system of equations in matrix form,
as Ax = b. ⎧⎪⎪⎨⎪⎪⎩

2x − y + 5z = 2

x + y − 2z = 1

−3x − 2y + z = −7.

Solve the system using each of the three matrix methods. Solve it
by Gaussian elimination, by using A−1, and by using Cramer’s rule.
Express your solution in vector form.

Problem 3.9 Use Cramer’s rule to find the value of x , y, z for system
(a) and to find the value of z for system (b) where a, b are constants,
a 
= ±b, a 
= 2b.

(a)

⎧⎪⎨⎪⎩
x + y + z = 8

2x + y − z = 3
−x + 2y + z = 3.

(b)

⎧⎪⎨⎪⎩
ax − ay + bz = a + b
bx − by + az = 0

−ax + 2by + 3z = a − b.

Problem 3.10 Prove the following statement using either determinants
or Theorem 3.12.

If A and B are n × n matrices and (AB)−1 exists,
then A and B are invertible.
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Rank, range and linear
equations

In this short chapter, we aim to extend and consolidate what we have
learned so far about systems of equations and matrices, and tie together
many of the results of the previous chapters. We will intersperse an
overview of the previous two chapters with two new concepts, the rank
of a matrix and the range of a matrix.

This chapter will serve as a synthesis of what we have learned so
far, in anticipation of a return to these topics later.

4.1 The rank of a matrix

4.1.1 The definition of rank

Any matrix A can be reduced to a matrix in reduced row echelon form
by elementary row operations. You just have to follow the algorithm and
you will obtain first a row-equivalent matrix which is in row echelon
form, and then, continuing with the algorithm, a row-equivalent matrix
in reduced row echelon form (see Section 3.1.2). Another way to say
this is:

� Any matrix A is row-equivalent to a matrix in reduced row echelon
form.

There are several ways of defining the rank of a matrix, and we shall
meet some other (more sophisticated) ways later. All are equivalent. We
begin with the following definition:
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Definition 4.1 (Rank of a matrix) The rank, rank(A), of a matrix A is
the number of non-zero rows in a row echelon matrix obtained from A
by elementary row operations.

Notice that the definition only requires that the matrix A be put into
row echelon form, because by then the number of non-zero rows is
determined. By a non-zero row, we simply mean one that contains
entries other than 0. Since every non-zero row of a matrix in row echelon
form begins with a leading one, this is equivalent to the following
definition.

Definition 4.2 The rank, rank(A), of a matrix A is the number of
leading ones in a row echelon matrix obtained from A by elementary
row operations.

Generally, if A is an m × n matrix, then the number of non-zero rows
(the number of leading ones) in a row echelon form of A can certainly
be no more than the total number of rows, m. Furthermore, since the
leading ones must be in different columns, the number of leading ones
in the echelon form can be no more than the total number, n, of columns.
Thus, we have:

� For an m × n matrix A, rank(A) ≤ min{m, n}, where min{m, n}
denotes the smaller of the two integers m and n.

Example 4.3 Consider the matrix

M =
⎛⎝ 1 2 1 1

2 3 0 5
3 5 1 6

⎞⎠ .

Reducing this using elementary row operations, we have:⎛⎝ 1 2 1 1
2 3 0 5
3 5 1 6

⎞⎠ →
⎛⎝ 1 2 1 1

0 −1 −2 3
0 −1 −2 3

⎞⎠ →
⎛⎝ 1 2 1 1

0 1 2 −3
0 0 0 0

⎞⎠ .

This last matrix is in row echelon form and has two non-zero rows (and
two leading ones), so the matrix M has rank 2.

Activity 4.4 Show that the matrix

B =
⎛⎝ 1 2 1 1

2 3 0 5
3 5 1 4

⎞⎠
has rank 3.
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4.1.2 The main theorem again

If a square matrix A of size n × n has rank n, then its reduced row
echelon form has a leading one in every row and (since the leading
ones are in different columns) a leading one in every column. Since
every column with a leading one has zeros elsewhere, it follows that
the reduced echelon form of A must be I , the n × n identity matrix.
Conversely, if the reduced row echelon form of A is I , then, by the
definition of rank, A has rank n. The main theoretical result of Chapter 3
is a characterisation of invertible matrices. We can now add to the
main theorem, Theorem 3.8, and to Theorem 3.39, one more equivalent
statement characterising invertibility. This leads to the following result:

Theorem 4.5 If A is an n × n matrix, then the following statements
are equivalent.

� A−1 exists.
� Ax = b has a unique solution for any b ∈ Rn.
� Ax = 0 has only the trivial solution, x = 0.
� The reduced echelon form of A is I .
� |A| 
= 0.
� The rank of A is n.

4.2 Rank and systems of linear equations

4.2.1 General solution and rank

Recall that to solve a system of linear equations using Guassian elim-
ination, we form the augmented matrix and reduce it to echelon form
by using elementary row operations. We will look at some examples to
review what we learned in Chapter 2, and link this to the concept of the
rank of a matrix.

Example 4.6 Consider the system of equations

x1 + 2x2 + x3 = 1

2x1 + 3x2 = 5

3x1 + 5x2 + x3 = 4.

The augmented matrix is the same as the matrix B in the previous
activity. When you reduced B to find the rank, after two steps you
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found⎛⎝ 1 2 1 1
2 3 0 5
3 5 1 4

⎞⎠ →
⎛⎝ 1 2 1 1

0 −1 −2 3
0 −1 −2 1

⎞⎠ →
⎛⎝ 1 2 1 1

0 1 2 −3
0 0 0 −2

⎞⎠ .

Thus, the original system of equations is equivalent to the system

x1 + 2x2 + x3 = 1

x2 + 2x3 = −3

0x1 + 0x2 + 0x3 = −2.

This system has no solutions, since there are no values of x1, x2, x3 that
satisfy the last equation, which reduces to the false statement ‘0 = −2’
whatever values we give the unknowns. We deduce, therefore, that the
original system has no solutions and we say that it is inconsistent. In
this case, there is no reason to reduce the matrix further.

Continuing with our example, the coefficient matrix, A, consists of
the first three columns of the augmented matrix, and the row echelon
form of A consists of the first three columns of the row echelon form
of the augmented matrix:

A =
⎛⎝ 1 2 1

2 3 0
3 5 1

⎞⎠ → · · · →
⎛⎝ 1 2 1

0 1 2
0 0 0

⎞⎠ .

(A|b) =
⎛⎝ 1 2 1 1

2 3 0 5
3 5 1 4

⎞⎠ → · · · →
⎛⎝ 1 2 1 1

0 1 2 −3
0 0 0 1

⎞⎠ .

The rank of the coefficient matrix A is 2, but the rank of the augmented
matrix (A|b) is 3.

If, as in Example 4.6, the row reduction of an augmented matrix has a
row of the kind (0 0 . . . 0 a), with a 
= 0, then the original system is
equivalent to one in which there is an equation

0x1 + 0x2 + · · · + 0xn = a (a 
= 0),

which clearly cannot be satisfied by any values of the xi s, and the system
is inconsistent. Then the row echelon form of the augmented matrix will
have a row of the form (0 0 . . . 0 1), and there will be one more leading
one than in the row echelon form of the coefficient matrix. Therefore,
the rank of the augmented matrix will be greater than the rank of the
coefficient matrix. If the system is consistent, there will be no leading
one in the last column of the augmented matrix and the ranks will be
the same. In other words, we have the following result:
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� A system Ax = b is consistent if and only if the rank of the aug-
mented matrix is precisely the same as the rank of the matrix A.

Example 4.7 In contrast, consider the system of equations

x1 + 2x2 + x3 = 1

2x1 + 3x2 = 5

3x1 + 5x2 + x3 = 6.

This system has the same coefficient matrix A as in Example 4.6, and
the rank of A is 2. The augmented matrix for the system is the matrix
M in Example 4.3, which also has rank 2, so this system is consistent.

Activity 4.8 Write down a general solution for this system. Note that
since the rank is 2 and there are three columns in A, there is a free
variable and therefore there are infinitely many solutions.

Now suppose we have an m × n matrix A which has rank m. Then there
will be a leading one in every row of an echelon form of A, and in this
case a system of equations Ax = b will never be inconsistent. Why?
There are two ways to see this. In the first place, if there is a leading one
in every row of A, the augmented matrix (A|b) can never have a row of
the form (0 0 . . . 0 1). Second, the augmented matrix also has m rows
(since its size is m × (n + 1)), so the rank of (A|b) can never be more
than m. So we have the following observation:

� If an m × n matrix A has rank m the system of linear equations,
Ax = b will be consistent for all b ∈ Rm .

Example 4.9 Suppose that

B =
⎛⎝ 1 2 1 1

2 3 0 5
3 5 1 4

⎞⎠
is the coefficient matrix of a system of three equations in four unknowns,
Bx = d, with d ∈ R3. This matrix B is the same as that of Activity 4.4
and we determined its row echelon form in Example 4.6 (where it was,
differently, interpreted as an augmented matrix of a system of three
equations in three unknowns):

B =
⎛⎝ 1 2 1 1

2 3 0 5
3 5 1 4

⎞⎠ → · · · →
⎛⎝ 1 2 1 1

0 1 2 −3
0 0 0 1

⎞⎠ .

The matrix B is 3 × 4 and has rank 3, so as we argued above, the system
of equations Bx = d is always consistent.
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Now let’s look at the solutions. Any augmented matrix (B|d) will be row
equivalent to a matrix in echelon form for which the first four columns
are the same as the echelon form of B; that is,

(B|d) → · · · →
⎛⎝ 1 2 1 1 p1

0 1 2 −3 p2

0 0 0 1 p3

⎞⎠
for some constants pi , which could be zero. This system will have
infinitely many solutions for any d ∈ R3, because the number of
columns is greater than the rank of B. There is one column without
a leading one, so there is one non-leading variable.

Activity 4.10 If p1 = 1, p2 = −2 and p3 = 0, and

x = (x1, x2, x3, x4)T,

write down the solution to the given system Bx = d in vector form, and
use it to determine the original vector d.

If we have a consistent system such that the rank r is strictly less than
n, the number of unknowns, then as illustrated in Example 4.9, the
system in reduced row echelon form (and hence the original one) does
not provide enough information to specify the values of x1, x2, . . . , xn

uniquely and we will have infinitely many solutions. Let’s consider this
in more detail.

Example 4.11 Suppose we are given a system for which the augmented
matrix reduces to the row echelon form⎛⎜⎜⎝

1 3 −2 0 0 0
0 0 1 2 3 1
0 0 0 0 1 5
0 0 0 0 0 0

⎞⎟⎟⎠ .

Here the rank (number of non-zero rows) is r = 3, which is strictly less
than the number of unknowns, n = 5.

Continuing to reduced row echelon form, we obtain the matrix⎛⎜⎜⎝
1 3 0 4 0 −28
0 0 1 2 0 −14
0 0 0 0 1 5
0 0 0 0 0 0

⎞⎟⎟⎠ .

Activity 4.12 Verify this. What are the additional two row operations
which need to be carried out?
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The corresponding system is

x1 + 3x2 + 4x4 = −28

x3 + 2x4 = −14

x5 = 5 .

The variables x1, x3 and x5 correspond to the columns with the leading
ones and are the leading variables. The other variables are the non-
leading variables.

The form of these equations tells us that we can assign any values to
x2 and x4, and then the leading variables will be determined. Explicitly,
if we give x2 and x4 the arbitrary values s and t , where s, t represent
any real numbers, the solution is given by

x1 = −28 − 3s − 4t, x2 = s, x3 = −14 − 2t, x4 = t, x5 = 5.

There are infinitely many solutions because the so-called ‘free variables’
x2, x4 can take any values s, t ∈ R.

Generally, we can describe what happens when the row echelon form
has r < n non-zero rows (0 0 . . . 0 1 ∗ ∗ . . . ∗). If the leading one
is in the kth column, it is the coefficient of the variable xk . So if
the rank is r and the leading ones occur in columns c1, c2, . . . , cr , then
the general solution to the system can be expressed in a form where the
unknowns xc1, xc2, . . . , xcr (the leading variables) are given in terms of
the other n − r unknowns (the non-leading variables), and those n − r
unknowns are free to take any values. In Example 4.11, we have n = 5
and r = 3, and the three variables x1, x3, x5 can be expressed in terms
of the 5 − 3 = 2 free variables x2, x4.

If r = n, where the number of leading ones r in the echelon form
is equal to the number of unknowns n, there is a leading one in every
column since the leading ones move to the right as we go down the
rows. In this case, a unique solution is obtained from the reduced
echelon form. In fact, this can be thought of as a special case of the
more general one discussed above: since r = n, there are n − r = 0
free variables, and the solution is therefore unique.

We can now summarise our conclusions thus far concerning a gen-
eral linear system of m equations in n variables, written as Ax = b,
where the coefficient matrix A is an m × n matrix of rank r :

� If the echelon form of the augmented matrix has a row (0 0 . . . 0 1),
the original system is inconsistent; it has no solutions. In this case,
rank(A) = r < m and rank(A|b) = r + 1.
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� If the echelon form of the augmented matrix has no rows of the above
type, the system is consistent, and the general solution involves n − r
free variables, where r is the rank of the coefficient matrix. When
r < n, there are infinitely many solutions, but when r = n there are
no free variables and so there is a unique solution.

A homogeneous system of m equations in n unknowns is always con-
sistent. In this case, the last statement still applies.

� The general solution of a homogeneous system involves n − r free
variables, where r is the rank of the coefficient matrix. When r < n
there are infinitely many solutions, but when r = n there are no
free variables and so there is a unique solution, namely the trivial
solution, x = 0.

4.2.2 General solution in vector notation

Continuing with Example 4.11, we found the general solution of the
linear system in terms of the two free variables, or parameters, s and t .
Expressing the solution, x, as a column vector, we have

x =

⎛⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎝
−28 − 3s − 4t

s
−14 − 2t

t
5

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎝
−28

0
−14

0
5

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
−3s

s
0
0
0

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
−4t

0
−2t

t
0

⎞⎟⎟⎟⎟⎟⎠.

That is, the general solution is

x = p + sv1 + tv2 s, t ∈ R,

where

p =

⎛⎜⎜⎜⎜⎜⎝
−28

0
−14

0
5

⎞⎟⎟⎟⎟⎟⎠ , v1 =

⎛⎜⎜⎜⎜⎜⎝
−3
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠ , v2 =

⎛⎜⎜⎜⎜⎜⎝
−4
0

−2
1
0

⎞⎟⎟⎟⎟⎟⎠ .

Applying the same method, more generally, to a consistent system of
rank r with n unknowns, we can express the general solution of a
consistent system Ax = b in the form

x = p + a1v1 + a2v2 + · · · + an−r vn−r .
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Note that if we put all the ai s equal to 0, we get a solution x = p, which
means that Ap = b, so p is a particular solution of the system. Putting
a1 = 1 and the remaining ai s equal to 0, we get a solution x = p + v1,
which means that A(p + v1) = b. Thus,

b = A(p + v1) = Ap + Av1 = b + Av1.

Comparing the first and last expressions, we see that Av1 = 0. Clearly,
the same equation holds for v2, . . . , vn−r . So we have proved the
following:

� If A is an m × n matrix of rank r , the general solution of Ax = b is
the sum of:
� a particular solution p of the system Ax = b and
� a linear combination a1v1 + a2v2 + · · · + an−r vn−r of solutions

v1, v2, . . . , vn−r of the homogeneous system Ax = 0.
� If A has rank n, then Ax = 0 only has the solution x = 0, and so

Ax = b has a unique solution: p + 0 = p.

This is a more precise form of the result of Theorem 2.29, which
states that all solutions of a consistent system Ax = b are of the form
x = p + z where p is any solution of Ax = b and z ∈ N (A), the null
space of A (the set of all solutions of Ax = 0).

4.3 Range

The range of a matrix A is defined as follows:

Definition 4.13 (Range of a matrix) Suppose that A is an m × n
matrix. Then the range of A, denoted by R(A), is the subset of Rm

given by

R(A) = {Ax | x ∈ Rn}.
That is, the range is the set of all vectors y ∈ Rm of the form y = Ax
for some x ∈ Rn .

What is the connection between the range of a matrix A and a system
of linear equations Ax = b? If A is m × n, then x ∈ Rn and b ∈ Rm . If
the system Ax = b is consistent, then this means that there is a vector
x ∈ Rn such that Ax = b, so b is in the range of A. Conversely, if b
is in the range of A, then the system Ax = b must have a solution.
Therefore, for an m × n matrix A:
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� the range of A, R(A), consists of all vectors b ∈ Rm for which the
system of equations Ax = b is consistent.

Let’s look at R(A) from a different point of view. Suppose that the
columns of A are c1, c2, . . . , cn , which we can indicate by writing
A = (c1 c2 . . . cn). If x = (α1, α2, . . . , αn)T ∈ Rn, then we saw in
Chapter 1 (Theorem 1.38) that the product Ax can be expressed as
a linear combination of the columns of A, namely

Ax = α1c1 + α2c2 + · · · + αncn.

Activity 4.14 This is a good time to convince yourself (again) of this
statement. Write out each side using ci = (c1i , c2i , . . . , cmi )T to show
that

Ax = α1c1 + α2c2 + · · · + αncn.

Try to do this yourself before looking at the solution to this activity.
This is a very important result which will be used many times in this
text, so make sure you understand how it works.

So, R(A), the set of all matrix products Ax, is also the set of all
linear combinations of the columns of A. For this reason, R(A) is
also called the column space of A. (We’ll discuss this more in the next
chapter.)

If A = (c1 c2 . . . cn), where ci denotes column i of A, then we can
write

R(A) = {a1c1 + a2c2 + . . . + ancn | a1, a2, . . . , an ∈ R}.
Example 4.15 Suppose that

A =
⎛⎝ 1 2

−1 3
2 1

⎞⎠ .

Then for x = (α1, α2)T,

Ax =
⎛⎝ 1 2

−1 3
2 1

⎞⎠(α1

α2

)
=
⎛⎝ α1 + 2α2

−α1 + 3α2

2α1 + α2

⎞⎠ = α1

⎛⎝ 1
−1
2

⎞⎠+ α2

⎛⎝ 2
3
1

⎞⎠ ,

so

R(A) =
⎧⎨⎩
⎛⎝ α1 + 2α2

−α1 + 3α2

2α1 + α2

⎞⎠ ∣∣∣∣∣ α1, α2 ∈ R

⎫⎬⎭ ,
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or

R(A) = {α1c1 + α2c2 | α1, α2 ∈ R} ,

where c1 =
⎛⎝ 1

−1
2

⎞⎠ and c2 =
⎛⎝ 2

3
1

⎞⎠ are the columns of A.

Again, thinking of the connection with the system of equations
Ax = b, we have already shown that Ax = b is consistent if and only
if b is in the range of A, and we have now shown that R(A) is equal to
the set of all linear combinations of the columns of A. Therefore, we
can now assert that:

� The system of equations Ax = b is consistent if and only if b is a
linear combination of the columns of A.

Example 4.16 Consider the following systems of three equations in
two unknowns.⎧⎪⎪⎨⎪⎪⎩

x + 2y = 0

−x + 3y = −5

2x + y = 3

⎧⎪⎪⎨⎪⎪⎩
x + 2y = 1

−x + 3y = 5

2x + y = 2.

Solving these by Gaussian elimination (or any other method), you will
find that the first system is consistent and the second system has no
solution. The first system has the unique solution (x, y)T = (2, −1)T.

Activity 4.17 Do this. Solve each of the above systems.

The coefficient matrix of each of the systems is the same, and is equal
to the matrix A in Example 4.15. For the first system,

A =
⎛⎝ 1 2

−1 3
2 1

⎞⎠ , x =
(

x
y

)
, b =

⎛⎝ 0
−5
3

⎞⎠ .

Checking the solution, you will find that

Ax =
⎛⎝ 1 2

−1 3
2 1

⎞⎠( 2
−1

)
=
⎛⎝ 0

−5
3

⎞⎠
or ⎛⎝ 0

−5
3

⎞⎠ = 2

⎛⎝ 1
−1
2

⎞⎠−
⎛⎝ 2

3
1

⎞⎠ = 2c1 − c2.
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On the other hand, it is not possible to express the vector (1, 5, 2)T as a
linear combination of the column vectors of A. Trying to do so would
lead to precisely the same set of inconsistent equations.

Notice, also, that the homogeneous system Ax = 0 has only the
trivial solution, and that the only way to express 0 as a linear combination
of the columns of A is by 0c1 + 0c2 = 0.

Activity 4.18 Verify all of the above statements.

4.4 Learning outcomes

You should now be able to:

� explain what is meant by the rank of a matrix
� find the rank of an m × n matrix A
� explain why a system of linear equations, Ax = b, where A is an

m × n matrix, is consistent if and only if the rank(A) = rank((A|b));
and why if rank(A) = m, then Ax = b is consistent for all b ∈ Rm

� explain why a general solution x to Ax = b, where A is an m × n
matrix of rank r , is of the form

x = p + a1v1 + a2v2 + · · · + an−r vn−r , ai ∈ R;

specifically why there are n − r arbitrary constants
� explain what is meant by the range of a matrix
� show that if A = (c1 c2 . . . cn), and if x = (α1, α2, . . . , αn)T ∈ Rn,

then Ax = α1c1 + α2c2 + · · · + αncn
� write b as a linear combination of the columns of A if Ax = b is

consistent
� write 0 as a linear combination of the columns of A, and explain

when it is possible to do this in some way other than using the trivial
solution, x = 0, with all the coefficients in the linear combination
equal to 0.

4.5 Comments on activities

Activity 4.8 One more row operation on the row echelon form will
obtain a matrix in reduced row echelon form which is row equivalent
to the matrix M , from which the solution is found to be

x =
⎛⎝ 7

−3
0

⎞⎠+ t

⎛⎝ 3
−2
1

⎞⎠ , t ∈ R.
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Activity 4.10 Substitute for p1, p2, p3 in the row echelon form of the
augmented matrix and then continue to reduce it to reduced row echelon
form. The non-leading variable is x3. Letting x3 = t , the general solution
is

x =

⎛⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
5

−2
0
0

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
3

−2
1
0

⎞⎟⎟⎠ = p + tv, t ∈ R.

Since Bp = d, multiplying Bp, you will find that d = (1, 4, 5)T. (You
can check all this by row reducing (B|d).)

Activity 4.14 First write out the matrix product of A = (ci j ) and x.

Ax =

⎛⎜⎜⎜⎝
c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
. . .

...
cm1 cm2 . . . cmn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

α1

α2
...

αn

⎞⎟⎟⎟⎠ .

The product is m × 1; that is,

Ax =

⎛⎜⎜⎜⎝
c11α1 + c12α2 + · · · + c1nαn

c21α1 + c22α2 + · · · + c2nαn
...

cm1α1 + cm2α2 + · · · + cmnαn

⎞⎟⎟⎟⎠
and can be written as a sum of n, m × 1 vectors:

Ax =

⎛⎜⎜⎜⎝
c11α1

c21α1
...

cm1α1

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
c12α2

c22α2
...

cm2α2

⎞⎟⎟⎟⎠+ · · · +

⎛⎜⎜⎜⎝
c1nαn

c2nαn
...

cmnαn

⎞⎟⎟⎟⎠ .

So,

Ax = α1

⎛⎜⎜⎜⎝
c11

c21
...

cm1

⎞⎟⎟⎟⎠+ α2

⎛⎜⎜⎜⎝
c12

c22
...

cm2

⎞⎟⎟⎟⎠+ · · · + αn

⎛⎜⎜⎜⎝
c1n

c2n
...

cmn

⎞⎟⎟⎟⎠ .

That is,

Ax = α1c1 + α2c2 + · · · + αncn .

All these steps are reversible, so any expression

α1c1 + α2c2 + · · · + αncn
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can be written in matrix form as Ax, where A = (ci j ) and x =
(α1, α2, . . . , αn)T.

4.6 Exercises

Exercise 4.1 Solve the following system of equations Ax = b by reduc-
ing the augmented matrix to reduced row echelon form:

x1 + 5x2 + 3x3 + 7x4 + x5 = 2

2x1 + 10x2 + 3x3 + 8x4 + 5x5 = −5

x1 + 5x2 + x3 + 3x4 + 3x5 = −4.

If r = rank(A) and n is the number of columns of A, show that your
solution can be written in the form x = p + a1v1 + . . . + an−r vn−r

where ai ∈ R.
Show also that Ap = b and that Avi = 0 for i = 1, . . . , n − r .
Express the vector b as a linear combination of the columns of the

coefficient matrix A. Do the same for the vector 0.

Exercise 4.2 Find the rank of the matrix

A =

⎛⎜⎜⎝
1 0 1 0 2
2 1 1 1 3
1 3 −1 2 2
0 3 −2 2 0

⎞⎟⎟⎠ .

Determine N (A), the null space of A, and R(A), the range of A.

Exercise 4.3 Consider the system of linear equations Ax = b given
below, where λ and μ are constants, and

A =
⎛⎝ 1 2 0

5 1 λ

1 −1 1

⎞⎠ , x =
⎛⎝ x

y
z

⎞⎠ , b =
⎛⎝ 2

7
μ

⎞⎠ .

Compute the determinant of A, |A|.
Determine for which values of λ and μ this system has:

(a) a unique solution,
(b) no solutions,
(c) infinitely many solutions.

In case (a), use Cramer’s rule to find the value of z in terms of λ and
μ. In case (c), solve the system using row operations and express the
solution in vector form, x = p + tv.
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Exercise 4.4 A system of linear equations Bx = d is known to have
the following general solution:

x =

⎛⎜⎜⎝
1
0
2
0

⎞⎟⎟⎠+ s

⎛⎜⎜⎝
−3
1
0
0

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
1
0

−1
1

⎞⎟⎟⎠ s, t ∈ R.

Let c1 =
⎛⎝ 1

1
2

⎞⎠ be the first column of B. If d =
⎛⎝ 3

5
−2

⎞⎠, find the

matrix B.

Exercise 4.5 Consider the matrix

A =
⎛⎝ 1 2 1

2 3 0
3 5 1

⎞⎠ .

Find a condition that the components of the vector b = (a, b, c)T must
satisfy in order for Ax = b to be consistent. Hence, or otherwise, show
that R(A) is a plane in R3, and write down a Cartesian equation of this
plane.

Show that d = (1, 5, 6)T is in R(A). Express d as a linear combi-
nation of the columns of A. Is it possible to do this in two different
ways? If the answer is yes, then do so; otherwise, justify why this is not
possible.

Exercise 4.6 Consider the matrices

A =

⎛⎜⎜⎝
1 1 1
0 1 −2
2 −1 8
3 1 7

⎞⎟⎟⎠ B =

⎛⎜⎜⎝
−2 3 −2 5
3 −6 9 −6

−2 9 −1 9
5 −6 9 −4

⎞⎟⎟⎠ b =

⎛⎜⎜⎝
4
1
a
b

⎞⎟⎟⎠ .

(a) Find the rank of the matrix A. Find a general solution of Ax = 0.
Either write down a non-trivial linear combination of the column
vectors of A which is equal to the zero vector, 0, or justify why
this is not possible.

Find all real numbers a and b such that b ∈ R(A), where b is
the vector given above. Write down a general solution of Ax = b.

(b) Using row operations, or otherwise, find |B|, where B is the matrix
given above. What is the rank of B?
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Either write down a non-trivial linear combination of the column
vectors of B which is equal to the zero vector, 0, or justify why this is
not possible.

Find all real numbers a and b such that b ∈ R(B), the range of B,
where b is the vector given above.

4.7 Problems

Problem 4.1 Solve the following system of equations Ax = b by reduc-
ing the augmented matrix to reduced row echelon form:

x1 − x2 + x3 + x4 + 2x5 = 4

−x1 + x2 + x4 − x5 = −3

x1 − x2 + 2x3 + 3x4 + 4x5 = 7.

Show that your solution can be written in the form x = p + sv1 + tv2

where Ap = b, Av1 = 0 and Av2 = 0.

Problem 4.2 Express the following system of linear equations in matrix
form, as Ax = b:

x + y + z + w = 3

y − 2z + 2w = 1

x + 3z − w = 2 .

Find the general solution.

(a) Determine N (A), the null space of A.
(b) If a = (a, b, c)T, find an equation which a, b, c must satisfy so

that a ∈ R(A), the range of A.
(c) If d = (1, 5, 3), determine if the system of equations Ax = d is

consistent, and write down the general solution if it is.

Problem 4.3 Show that the following system of equations is consistent
for any c ∈ R: ⎧⎪⎪⎨⎪⎪⎩

x + y − 2z = 1

2x − y + 2z = 1

c x + z = 0 .

Solve the system using any matrix method (Cramer’s rule, inverse
matrix, or Gaussian elimination) and hence write down expressions
for x, y, z in terms of c.
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Problem 4.4 Consider the following system of equations, where λ is a
constant: ⎧⎪⎪⎨⎪⎪⎩

2x + y + z = 3

x − y + 2z = 3

x − 2y + λz = 4.

Determine all values of λ, if any, such that this system has:

(1) no solutions;
(2) exactly one solution;
(3) infinitely many solutions.

In case (2) find the solution using either Cramer’s rule or an inverse
matrix. In case (3) solve the system using Gaussian elimination. Express
the solution in vector form.

Problem 4.5 Solve the system of equations Bx = b using Gaussian
elimination, where

B =
⎛⎝ 1 1 2 1

2 3 −1 1
1 0 7 2

⎞⎠ , b =
⎛⎝ 3

2
−2

⎞⎠ .

Show that the vector b cannot be expressed as a linear combination
of the columns of B.

Problem 4.6 A system of linear equations Ax = d is known to have
the following solution:

x =

⎛⎜⎜⎜⎜⎜⎝
1
2
0

−1
0

⎞⎟⎟⎟⎟⎟⎠+ s

⎛⎜⎜⎜⎜⎜⎝
2
1
1
0
0

⎞⎟⎟⎟⎟⎟⎠+ t

⎛⎜⎜⎜⎜⎜⎝
1
1
0

−1
1

⎞⎟⎟⎟⎟⎟⎠ , s, t ∈ R.

Assume that A is an m × n matrix. Let c1, c2, . . . , cn denote the
columns of A.

Answer each of the following questions or, if there is insufficient
information to answer a question, say so.

(1) What number is n?
(2) What number is m?
(3) What (number) is the rank of A?
(4) Describe the null space N (A).
(5) Write down an expression for d as a linear combination of the

columns of A.
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(6) Write down a non-trivial linear combination of the columns ci

which is equal to 0.

Problem 4.7 Let

A =

⎛⎜⎜⎝
3 1 5 9 −1
1 0 1 2 −1

−2 1 0 −1 2
1 1 3 5 0

⎞⎟⎟⎠ , b =

⎛⎜⎜⎝
11
5

−8
4

⎞⎟⎟⎠ .

Solve the system of equations, Ax = b, using Gaussian elimination.
Express your solution in vector form, as x = p + a1v1 + · · · + akvk ,
and verify that k = n − r where r is the rank of A. What is n?

If possible, express b as a linear combination of the column vectors
of A in two different ways.
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Vector spaces

In this chapter, we study the important theoretical concept of a vector
space. This, and the related concepts to be explored in the subsequent
chapters, will enable us to extend and to understand more deeply what
we’ve already learned about matrices and linear equations, and lead us
to new and important ways to apply linear algebra. There is, necessarily,
a bit of a step upwards in the level of ‘abstraction’, but it is worth the
effort in order to help our fundamental understanding.

5.1 Vector spaces

5.1.1 Definition of a vector space

We know that vectors of Rn can be added together and that they can
be ‘scaled’ by real numbers. That is, for every x, y ∈ Rn and every
α ∈ R, it makes sense to talk about x + y and αx. Furthermore, these
operations of addition and multiplication by a scalar (that is, multi-
plication by a real number) behave and interact ‘sensibly’ in that, for
example,

α(x + y) = αx + αy,

α(βx) = (αβ)x,

x + y = y + x,

and so on.
But it is not only vectors in Rn that can be added and multiplied

by scalars. There are other sets of objects for which this is possible.
Consider the set F of all functions from R to R. Then any two of these
functions can be added; given f, g ∈ F , we simply define the function
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f + g by

( f + g)(x) = f (x) + g(x).

Also, for any α ∈ R, the function α f is given by

(α f )(x) = α f (x).

These operations of addition and scalar multiplication are sometimes
known as pointwise addition and pointwise scalar multiplication. This
might seem a bit abstract, but think about what the functions x + x2

and 2x represent: the former is the function x plus the function x2, and
the latter is the function x multiplied by the scalar 2. So this is just
a different way of looking at something with which you are already
familiar. It turns out that F and its rules for addition and multiplication
by a scalar satisfy the same key properties as the set of vectors in Rn with
its addition and scalar multiplication. We refer to a set with an addition
and scalar multiplication which behave appropriately as a vector space.
We now give the formal definition of a vector space.

Definition 5.1 (Vector space) A (real) vector space V is a non-empty
set equipped with an addition operation and a scalar multiplication
operation such that for all α, β ∈ R and all u, v, w ∈ V :

1. u + v ∈ V (closure under addition).
2. u + v = v + u (the commutative law for addition).
3. u + (v + w) = (u + v) + w (the associative law for addition).
4. there is a single member 0 of V , called the zero vector, such that

for all v ∈ V , v + 0 = v.

5. for every v ∈ V there is an element w ∈ V (usually written as
−v), called the negative of v, such that v + w = 0.

6. αv ∈ V (closure under scalar multiplication).
7. α(u + v) = αu + αv (distributive law).
8. (α + β)v = αv + βv (distributive law).
9. α(βv) = (αβ)v (associative law for scalar multiplication).

10. 1v = v.

This list of properties, called axioms, in the definition is the shortest
possible number which will enable any vector space V to behave the
way we would like it to behave with respect to addition and scalar
multiplication; that is, like Rn. Other properties which we would expect
to be true follow from those listed in the definition. For instance, we
can see that 0x = 0 for all x, as follows:

0x = (0 + 0)x = 0x + 0x
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by axiom 8; so, adding the negative −0x of 0x to each side,

0 = 0x + (−0x) = (0x + 0x) + (−0x) = 0x + (0x + (−0x))

= 0x + 0 = 0x

by axioms 5, 3, 5 again, and 4. The proof may seem a bit contrived, but
just remember the result:

0x = 0.

This would be easy to show in Rn because we know what the vector 0
looks like, namely 0 = (0, 0, . . . , 0)T. But because we want to show it
is true in any vector space, V , we have to derive this property directly
from the definition. Once we’ve established a result, we can use it to
prove other properties which hold in a vector space V .

Activity 5.2 Prove that for any vector x in a vector space V ,

(−1)x = −x,

the negative of the vector x, using a similar argument with 0 = 1 + (−1).
If you’re feeling confident, show that α0 = 0 for any α ∈ R.

Note that the definition of a vector space says nothing at all about
multiplying together two vectors, or an inner product. The only oper-
ations with which the definition is concerned are addition and scalar
multiplication.

A vector space as we have defined it is called a real vector space, to
emphasise that the ‘scalars’ α, β and so on are real numbers rather
than (say) complex numbers. There is a notion of complex vector
space, where the scalars are complex numbers, which we shall cover in
Chapter 13.

In the discussions that follow, be aware of whether we are talking
about Rn or about an abstract vector space V .

5.1.2 Examples

Example 5.3 The set Rn is a vector space with the usual way of adding
and scalar multiplying vectors.

Example 5.4 The set V = {0} consisting only of the zero vector is a
vector space, with addition defined by 0 + 0 = 0, and scalar multipli-
cation defined by α0 = 0 for all α ∈ R.
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Example 5.5 The set F of functions from R to R with pointwise
addition and scalar multiplication (described earlier in this section) is a
vector space. Note that the zero vector in this space is the function that
maps every real number to 0 – that is, the identically zero function.

Activity 5.6 Show that all 10 axioms of a vector space are satisfied. In
particular, if the function f is a vector in this space, what is the vector
− f ?

Example 5.7 The set of m × n matrices with real entries is a vector
space, with the usual addition and scalar multiplication of matrices. The
‘zero vector’ in this vector space is the zero m × n matrix, which has
all entries equal to 0.

Example 5.8 The set S of all infinite sequences of real numbers,
y = {y1, y2, . . . , yn, . . .}, yi ∈ R, is a vector space. We can also use
the notation y = {yn}, n ≥ 1 for a sequence. For example, the sequence
y = {1, 2, 4, 8, 16, 32, . . .} can also be represented as {yn} with
yt = 2t ,, t = 0, 1, 2, 3, . . . .

The operation of addition of sequences is by adding components.
If y, z ∈ S,

y = {y1, y2, . . . , yn, . . .}, z = {z1, z2, . . . , zn, . . .},
then

y + z = {y1 + z1, y2 + z2, . . . , yn + zn, . . .}.
Multiplication by a scalar α ∈ R is defined in a similar way, by

αy = {αy1, αy2, . . . , αyn, . . .}.
These operations satisfy all the requirements for S to be a vector space.
The sum and scalar multiple of an infinite sequence as defined above
is again an infinite sequence. The zero vector is the sequence consist-
ing entirely of zeros, and the negative of y = {yn} is −y = {−yn}.
The remaining axioms are satisfied because the components of a
sequence are real numbers. For example, using the notation y = {yn},
z = {zn}, n ≥ 1,

y + z = {yn + zn} = {zn + yn} = z + y.

Activity 5.9 If it is not immediately clear to you that all ten axioms are
satisfied, then try to write down proofs for some of them.

The following example concerns a subset of R3.
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Example 5.10 Let W be the set of all vectors in R3 with the third entry
equal to 0; that is,

W =
⎧⎨⎩
⎛⎝ x

y
0

⎞⎠ ∣∣∣∣∣∣ x, y ∈ R

⎫⎬⎭ .

Then W is a vector space with the usual addition and scalar multiplica-
tion. To verify this, we need only check that W is non-empty and closed
under addition and scalar multiplication. Why is this so? The axioms 2,
3, 7, 8, 9, 10 will hold for vectors in W because they hold for all vectors
in R3, and if W is closed under addition and scalar multiplication, then
all linear combinations: of vectors in W are still in W . Furthermore, if
we can show that W is closed under scalar multiplication, then for any
particular v ∈ W , 0v = 0 ∈ W and (−1)v = −v ∈ W . So we simply
need to check that W 
= ∅ (W is non-empty), that if u, v ∈ W , then
u + v ∈ W , and if α ∈ R and v ∈ W , then αv ∈ W . Each of these is
easy to check.

Activity 5.11 Verify that W 
= ∅, and that for u, v ∈ W and α ∈ R,
u + v ∈ W and αv ∈ W .

5.1.3 Linear combinations

For vectors v1, v2, . . . , vk in a vector space V , the vector

v = a1v1 + a2v2 + · · · + akvk

is known as a linear combination of the vectors v1, v2, . . . , vk . The
scalars ai are called coefficients. The structure of a vector space is
designed for us to work with linear combinations of vectors.

Example 5.12 Suppose we want to express the vector w = (2, −5)T

in R2 as a linear combination of the vectors v1 = (1, 2)T and
v2 = (1, −1)T. Then we solve the system of linear equations given
by the components of the vector equation(

2
−5

)
= α

(
1
2

)
+ β

(
1

−1

)
to obtain α = −1 and β = 3. Then w = −v1 + 3v2, which is easily
checked by performing the scalar multiplication and addition:(

2
−5

)
= −

(
1
2

)
+ 3

(
1

−1

)
.
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Activity 5.13 On a graph, sketch the vectors v1 and v2 and then sketch
the vector w as a linear combination of these. Sketch also the vector
x = 1

2v1 + v2. Do you think you can reach any point on your piece of
paper as a linear combination of v1 and v2?

Example 5.14 If F is the vector space of functions from R to R,
then the function f : x �→ 2x2 + 3x + 4 can be expressed as a lin-
ear combination of three simpler functions, f = 2g + 3h + 4k, where
g : x �→ x2, h : x �→ x and k : x �→ 1.

5.2 Subspaces

5.2.1 Definition of a subspace

Example 5.10 is informative. Arguing as we did there, if V is a vector
space and W ⊆ V is non-empty and closed under scalar multiplication
and addition, then W too is a vector space (and we do not need to verify
that all the other axioms hold). The formal definition of a subspace is
as follows:

Definition 5.15 (Subspace) A subspace W of a vector space V is a
non-empty subset of V that is itself a vector space under the same
operations of addition and scalar multiplication as V .

The discussion given in Example 5.10 justifies the following important
result:

Theorem 5.16 Suppose V is a vector space. Then a non-empty subset
W of V is a subspace if and only if both the following hold:

� for all u, v ∈ W , u + v ∈ W
(that is, W is closed under addition),

� for all v ∈ W and α ∈ R, αv ∈ W
(that is, W is closed under scalar multiplication).

Activity 5.17 Write out a proof of this theorem, following the discus-
sion in example 5.10.
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5.2.2 Examples

Example 5.18 In R2, the lines y = 2x and y = 2x + 1 can be defined
as the sets of vectors,

S =
{(

x
y

) ∣∣∣∣∣ y = 2x, x ∈ R

}
,

U =
{(

x
y

) ∣∣∣∣∣ y = 2x + 1, x ∈ R

}
.

Each vector in one of the sets is the position vector of a point on that
line. We will show that the set S is a subspace of R2, and that the set U
is not a subspace of R2.

If v =
(

1
2

)
and p =

(
0
1

)
, these sets can equally well be expressed

as

S = {x | x = tv, t ∈ R}, U = {x | x = p + tv, t ∈ R}.
Activity 5.19 Show that the two descriptions of S describe the same
set of vectors.

To show S is a subspace, we need to show that it is non-empty, and we
need to show that it is closed under addition and closed under scalar
multiplication using any vectors in S and any scalar in R. We’ll use the
second set of definitions, so our line is the set of vectors

S = {x | x = tv, t ∈ R}, v =
(

1
2

)
.

The set S is non-empty, since 0 = 0v ∈ S.
Let u, w be any vectors in S and let α ∈ R. Then

u = s
(

1
2

)
w = t

(
1
2

)
for some s, t ∈ R.

• closure under addition:

u + w = s
(

1
2

)
+ t
(

1
2

)
= (s + t)

(
1
2

)
∈ S (since s + t ∈ R).

• closure under scalar multiplication:

αu = α

(
s
(

1
2

))
= (αs)

(
1
2

)
∈ S (since αs ∈ R).

This shows that S is a subspace of R2. �

To show U is not a subspace, any one of the three following statements
(counterexamples) will suffice:
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1. 0 /∈ U .
2. U is not closed under addition:(

0
1

)
∈ U,

(
1
3

)
∈ U, but

(
0
1

)
+
(

1
3

)
=
(

1
4

)
/∈ U,

since 4 
= 2(1) + 1.
3. U is not closed under scalar multiplication:(

0
1

)
∈ U, 2 ∈ R, but 2

(
0
1

)
=
(

0
2

)
/∈ U.

�

Activity 5.20 Show that 0 /∈ U . Why does this suffice to show that U
is not a subspace?

The line y = 2x + 1 is an example of an affine subset, a ‘translation’
of a subspace.

It is useful to visualise what is happening here by looking at the
graphs of the lines y = 2x and y = 2x + 1. Sketch y = 2x and sketch
the position vector of any point on the line. You will find that the
vector lies along the line, so any scalar multiple of that position vector
will also lie along the line, as will the sum of any two such position
vectors. These position vectors are all still in the set S. Now sketch the
line y = 2x + 1. First, notice that it does not contain the origin. Now
sketch the position vector of any point on the line. You will find that
the position vector does not lie along the line, but goes from the origin
up to the point on the line. If you scalar multiply this vector by any
constant α 
= 1, it will be the position vector of a point which is not on
the line, so the resulting vector will not be in U . The same is true if you
add together the position vectors of two points on the line. So U is not
a subspace.

Activity 5.21 Do these two sketches as described above.

If V is any vector space and v ∈ V , then the set

S = {αv | α ∈ R}
is a subspace of V . If v 
= 0, then the set S defines a line through the
origin in V .

Activity 5.22 Show this. Let v be any non-zero vector in a vector space
V and show that the set

S = {αv | α ∈ R}
is a subspace.
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Example 5.23 If V is a vector space, then V is a subspace of V .

Example 5.24 If V is a vector space, then the set {0} is a subspace
of V . The set {0} is not empty, it contains one vector, namely the zero
vector. It is a subspace because 0 + 0 = 0 and α0 = 0 for any α ∈ R.

5.2.3 Deciding if a subset is a subspace

Given any subset S of a vector space V , how do you decide if it is
a subspace? First, look carefully at the definition of S: what is the
requirement for a vector in V to be in the subset S? Check that 0 ∈ S.
If 0 /∈ S, then you know immediately that S is not a subspace.

If 0 ∈ S, then using some vectors in the subset, see if adding them
and scalar multiplying them will give you another vector in S.

To prove that S is a subspace, you will need to verify that it is
closed under addition and closed under scalar multiplication for any
vectors in S. (To represent a general vector in Rn, you will need to use
letters to represent the vector and possibly its components.) You will
need to show that the sum of two general vectors and the multiple of
a general vector by any scalar, say α ∈ R, also satisfy the definition
of S.

To prove a set S is not a subspace, you only need to find one
counterexample: either two particular vectors for which the sum does
not satisfy the definition of S, or a vector for which some scalar multiple
does not satisfy the definition of S. (For a particular vector in Rn, use
numbers.)

Activity 5.25 Write down a general vector (using letters) and a par-
ticular vector (using numbers) for each of the following subsets. Show
that one of the sets is a subspace of R3 and the other is not:

S1 =
⎧⎨⎩
⎛⎝ x

x2

0

⎞⎠ ∣∣∣∣∣ x ∈ R

⎫⎬⎭ , S2 =
⎧⎨⎩
⎛⎝ x

2x
0

⎞⎠ ∣∣∣∣∣ x ∈ R

⎫⎬⎭ .

There is an alternative characterisation of a subspace. We have seen that
a subspace is a non-empty subset W of a vector space that is closed
under addition and scalar multiplication, meaning that if u, v ∈ W and
α ∈ R, then both u + v and αv are in W . Now, it is fairly easy to see
that the following equivalent property characterises when W will be a
subspace:

Theorem 5.26 A non-empty subset W of a vector space is a subspace
if and only if for all u, v ∈ W and all α, β ∈ R, we have αu + βv ∈ W .
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That is, W is a subspace if it is non-empty and closed under linear
combination.

Activity 5.27 If it is not already obvious to you, show that the prop-
erty given above is equivalent to closure under addition and scalar
multiplication.

To summarise, here is how you would prove that a subset W of a vector
space is a subspace:

� Prove that W is non-empty. Usually the easiest way is to show that
0 ∈ W .

� Prove that W is closed under addition: if u, v are any vectors in W ,
then u + v ∈ W .

� Prove that W is closed under scalar multiplication: if v is any vector
in W and α is any real number, then αv ∈ W .

Alternatively, by Theorem 5.26, you could do the following:

� Prove that W is non-empty. Usually the easiest way is to show that
0 ∈ W .

� Prove that W is closed under linear combinations: if u, v are any
vectors in W , and α, β are any real numbers, then αu + βv ∈ W .

In doing either of these, your arguments have to be general: you need
u, v, α (and β, in the second approach) to be arbitrary. Simply showing
these statements for some particular vectors or numbers is not enough.
On the other hand, if you want to show that a set is not a subspace, then
as we’ve noted above, it suffices to show how some of these properties
fail for particular choices of vectors or scalars.

5.2.4 Null space and range of a matrix

Suppose that A is an m × n matrix. Then the null space N (A), the set
of solutions to the homogeneous linear system Ax = 0, is a subspace
of Rn.

Theorem 5.28 For any m × n matrix A, N (A) is a subspace of Rn.

Proof: Since A is m × n, the set N (A) is a subset of Rn. To prove it is a
subspace, we have to verify that N (A) 
= ∅, and that if u, v ∈ N (A) and
α ∈ R, then u + v ∈ N (A) and αu ∈ N (A). Since A0 = 0, 0 ∈ N (A)
and hence N (A) 
= ∅. Suppose u, v ∈ N (A). Then, to show u + v ∈
N (A) and αu ∈ N (A), we must show that u + v and αu are solutions
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of Ax = 0. We have

A(u + v) = Au + Av = 0 + 0 = 0

and

A(αu) = α(Au) = α0 = 0,

so we have shown what was needed. �

The null space is the set of solutions to the homogeneous linear sys-
tem. If we instead consider the set of solutions S to a general system
Ax = b, S is not a subspace of Rn if b 
= 0 (that is, if the system is not
homogeneous). This is because 0 does not belong to S. However, as we
saw in Chapter 2 (Theorem 2.29), there is a relationship between S and
N (A): if x0 is any solution of Ax = b, then

S = {x0 + z | z ∈ N (A)},
which we may write as x0 + N (A). S is an affine subset, a translation
of the subspace N (A).

Definition 5.29 (Affine subset) If W is a subspace of a vector space V
and x ∈ V , then the set x + W defined by

x + W = {x + w | w ∈ W }
is said to be an affine subset of V .

In general, an affine subset is not a subspace, although every subspace
is an affine subset, as we can see by taking x = 0.

Recall that the range of an m × n matrix is

R(A) = {Ax | x ∈ Rn}.
Theorem 5.30 For any m × n matrix A, R(A) is a subspace of Rm.

Proof: Since A is m × n, the set R(A) consists of m × 1 vectors, so
it is a subset of Rm . It is non-empty since A0 = 0 ∈ R(A). We need
to show that if u, v ∈ R(A), then u + v ∈ R(A), and for any α ∈ R,
αv ∈ R(A). So suppose u, v ∈ R(A). Then for some y1, y2 ∈ Rn, u =
Ay1, v = Ay2. We need to show that u + v = Ay for some y. Well,

u + v = Ay1 + Ay2 = A(y1 + y2),

so we may take y = y1 + y2 to see that, indeed, u + v ∈ R(A). Next,

αv = α(Ay1) = A(αy1),

so αv = Ay for some y (namely, y = αy1) and hence αv ∈ R(A). There-
fore, R(A) is a subspace of Rm . �



160 Vector spaces

5.3 Linear span

Recall that by a linear combination of vectors v1, v2, . . . , vk we mean
a vector of the form

v = α1v1 + α2v2 + · · · + αkvk,

for some constants αi ∈ R. If we add together two vectors of this form,
we get another linear combination of the vectors v1, v2, . . . , vk . The
same is true of any scalar multiple of v.

Activity 5.31 Show this; show that if v = α1v1 + α2v2 + · · · + αkvk

and w = β1v1 + β2v2 + · · · + βkvk , then v + w and sv, s ∈ R, are also
linear combinations of the vectors v1, v2, . . . , vk .

The set of all linear combinations of a given set of vectors of a vector
space V forms a subspace, and we give it a special name.

Definition 5.32 (Linear span) Suppose that V is a vector space and
that v1, v2, . . . , vk ∈ V . The linear span of X = {v1, . . . , vk} is the set
of all linear combinations of the vectors v1, . . . , vk , denoted by Lin(X )
or Lin{v1, v2, . . . , vk}. That is,

Lin{v1, v2, . . . , vk} = {α1v1 + · · · + αkvk | α1, α2, . . . , αk ∈ R}.
Theorem 5.33 If X = {v1, . . . , vk} is a set of vectors of a vector space
V , then Lin(X ) is a subspace of V . It is the smallest subspace containing
the vectors v1, v2, . . . , vk .

Proof: The set Lin(X ) is non-empty, since

0 = 0v1 + · · · + 0vk ∈ Lin(X ).

If you have carefully carried out Activity 5.31 above, then you have
shown that Lin(X ) is closed under addition and scalar multiplication.
Therefore, it is a subspace of V . Furthermore, any vector space which
contains the vectors v1, v2, . . . , vk must also contain all linear combi-
nations of these vectors, so it must contain Lin(X ). That is, Lin(X ) is
the smallest subspace of V containing v1, v2, . . . , vk . �

The subspace Lin(X ) is also known as the subspace spanned by the
set X = {v1, . . . , vk}, or, simply, as the span of {v1, v2, . . . , vk}. If
V = Lin(X ), then we say that the set {v1, v2, . . . , vk} spans the vector
space V .

If we know that a set of vectors {v1, v2, . . . , vk} spans a vector space
V , then we know that any vector w ∈ V can be expressed in some way
as a linear combination of the vectors v1, v2, . . . , vk . This gives us a lot
of information about the vector space V .
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5.3.1 Row space and column space of a matrix

If A is an m × n matrix, then the columns of A are vectors in Rm and the
rows of A are row vectors, 1 × n matrices. When written as a column –
that is, when transposed – a row gives an n × 1 matrix; that is, a vector
in Rn . (Recall, from Chapter 1, that, by a vector, we mean a column
vector.) We define the row space of A to be the linear span of its rows,
when written as vectors, and the column space to be the linear span of
its columns.

Definition 5.34 (Column space) If A is an m × n matrix, and if
c1, c2, . . . , cn denote the columns of A, then the column space of A,
C S(A), is

C S(A) = Lin{c1, c2, . . . , cn}.
The column space of an m × n matrix A is a subspace of Rm .

Definition 5.35 (Row space) If A is an m × n matrix, and if
r1, r2, . . . , rn denote the rows of A written as vectors, then the row
space of A, RS(A), is

RS(A) = Lin{r1, r2, . . . , rm}.
The row space of an m × n matrix A is a subspace of Rn .

We should just add a note of clarification. Our approach to the
definition of row space is slightly different from that found in some other
texts. It is perfectly valid to think of the set of row vectors, by which
we mean 1 × n matrices, as a vector space in an entirely analogous
way to Rn, with the corresponding addition and scalar multiplication.
This is simply a different ‘version’ of Rn, populated by row vectors
rather than column vectors. Then the row space could be defined as the
linear span of the rows of the matrix, and is a subspace of this vector
space. However, for our purposes, we prefer not to have to work with
two versions of Rn, and nor do we want (as some are content to do) to
make no distinction between rows and columns. It is because we want
the row space to be a subspace of Euclidean space as we understand it
(which entails working with column vectors) that we have defined row
space in the way we have.

In the previous chapter, we observed that the range, R(A), of an
m × n matrix A is equal to the set of all linear combinations of its
columns. (See Section 4.3.) That is, R(A) is equal to the linear span of
the columns of A, so

R(A) = C S(A).
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Therefore, the range of A and the column space of A are precisely the
same subspace of Rm , although their original definitions are different.

On the other hand, the row space of A is a subspace of Rn. Although
the notations are similar, it is important not to confuse the row space of
a matrix, RS(A), with the range of a matrix R(A) = C S(A).

We have seen one more vector space associated with a matrix,
namely the null space, N (A), which is also a subspace of Rn .

Recall that two vectors in Rn are orthogonal if and only if their
inner product is equal to 0. The null space of a matrix A and the row
space of A are orthogonal subspaces of Rn, meaning that every vector
in the null space is orthogonal to every vector in the row space. Why is
this true? A vector x is in N (A) if and only if Ax = 0. Look at the i th
component of the product Ax. This is just the inner product of ri with
x, where ri is the i th row of A written as a vector. But, since Ax = 0, it
must be true that 〈ri , x〉 = 0 for each i . Since any r ∈ RS(A) is some
linear combination of the spanning vectors r1, . . . , rm , the inner product
〈r, x〉 equals zero for any r ∈ RS(A) and any x ∈ N (A). We restate this
important fact:

� If A is an m × n matrix, then for any r ∈ RS(A) and any x ∈ N (A),
〈r, x〉 = 0; that is, r and x are orthogonal.

Activity 5.36 Show that if {r1, r2, . . . , rm} is any set of vectors in Rn,
and x ∈ Rn is such that 〈ri , x〉 = 0 for i = 1, . . . , m, then 〈r, x〉 = 0
for any linear combination r = a1r1 + a2r2 + · · · + amrm .

5.3.2 Lines and planes in R3

What is the set Lin{v}, the linear span of a single non-zero vector
v ∈ Rn? Since the set is defined by

Lin{v} = {αv | α ∈ R},
we have already seen that Lin{v} defines a line through the origin in
Rn. In fact, in Activity 5.22 you proved directly that this is a subspace
for any vector space, V .

In Chapter 1 (Section 1.11), we saw that a plane in R3 can be
defined either as the set of all vectors x = (x, y, z)T whose components
satisfy a single Cartesian equation, ax + by + cz = d, or as the set
of all vectors x which satisfy a vector equation with two parameters,
x = p + sv + tw, s, t ∈ R, where v and w are non-parallel vectors and
p is the position vector of a point on the plane. These definitions are
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equivalent, as it is possible to go from one representation of a given
plane to the other.

If d = 0, the plane contains the origin; so, taking p = 0, a plane
through the origin is the set of vectors

{x | x = sv + tw, s, t ∈ R}.
Since this is the linear span, Lin{v, w}, of two vectors in R3, a plane
through the origin is a subspace of R3.

Let’s look at a specific example.

Example 5.37 Let S be the set given by

S =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ 3x − 2y + z = 0

⎫⎬⎭ .

Then for x ∈ S,

x =
⎛⎝ x

y
z

⎞⎠ =
⎛⎝ x

y
2y − 3x

⎞⎠ =
⎛⎝ x

0
−3x

⎞⎠+
⎛⎝ 0

y
2y

⎞⎠
= x

⎛⎝ 1
0

−3

⎞⎠+ y

⎛⎝ 0
1
2

⎞⎠ .

That is, S can be expressed as the set

S = {x | x = sv1 + tv2, s, t ∈ R},
where v1, v2 are the vectors v1 = (1, 0, −3)T, v2 = (0, 1, 2)T. Since S
is the linear span of two vectors, it is a subspace of R3. Of course, you
can show directly that S is a subspace by showing it is non-empty, and
closed under addition and scalar multiplication.

If d 
= 0, then the plane is not a subspace. It is an affine subset, a
translation of a subspace.

Activity 5.38 Show this in general, as follows. If a, b, c are real num-
bers, not all zero, show that the set

S =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ ax + by + cz = d

⎫⎬⎭
is a subspace if d = 0 by showing that S is non-empty and that it is
closed under addition and scalar multiplication. Show, however, that if
d 
= 0, the set S is not a subspace.
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In the same way as for planes in R3, any hyperplane in Rn which
contains the origin is a subspace of Rn. You can show this directly,
exactly as in the activity above, or you can show it is the linear span of
n − 1 vectors in Rn.

5.4 Learning outcomes

You should now be able to:

� explain what is meant by a vector space and a subspace
� prove that a given set is a vector space
� decide whether or not a subset of a vector space is a subspace
� prove that a subset is a subspace or show by a counterexample that

it is not a subspace
� explain what is meant by the linear span of a set of vectors
� explain what is meant by the column space and the row space of a

matrix
� explain why the range of a matrix is equal to the column space of

the matrix
� explain why the row space of a matrix is orthogonal to the null space

of the matrix.

5.5 Comments on activities

Activity 5.2 For any x,

0 = 0x = (1 + (−1))x = 1x + (−1)x = x + (−1)x,

so adding the negative −x of x to each side, and using axioms 3 and 4
of the definition of a vector space,

−x = −x + 0 = −x + x + (−1)x = (−1)x,

which proves that −x = (−1)x.

To show that α0 = 0 for any α ∈ R, let u denote any vector in V .
Then

α0 + αu = α(0 + u) = αu.

Why? This follows from axioms 7 and 4 of the definition of a vector
space. Now add −αu to both sides of the equation, to obtain the result
that α0 = 0. Which axioms are you using to deduce this?
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Activity 5.6 The axioms are not hard to check. For example, to check
axiom 2, let f, g ∈ F . Then the function f + g is given by

( f + g)(x) = f (x) + g(x) = g(x) + f (x) = (g + f )(x),

since real numbers commute. But this means f + g = g + f . We omit
the details of the other axioms; they are all straightforward and follow
from the properties of real numbers. The negative of a function f is the
function − f given by (− f )(x) = −( f (x)) for all x .

Activity 5.9 Just write out each sequence in the shorter form, y = {yn}
and use the properties of real numbers.

Activity 5.11 Clearly, W 
= ∅ since 0 ∈ W . Suppose

u =
⎛⎝ x

y
0

⎞⎠ , v =
⎛⎝ x ′

y′

0

⎞⎠ ∈ W,

and that α ∈ R. Then

u + v =
⎛⎝ x + x ′

y + y′

0

⎞⎠ ∈ W and αv =
⎛⎝αx

αy
0

⎞⎠ ∈ W,

as required.

Activity 5.13 Do the sketches as instructed. Yes, you can reach any
point in R2 as a linear combination of these vectors. Why? Because
you can always solve the system of linear equations resulting from the
vector equation x = αv1 + βv2 for α and β (since the determinant of
the coefficient matrix is non-zero).

Activity 5.17 Since this is an ‘if and only if’ statement, you must prove
it both ways.

If W is a subspace, then certainly it is closed under addition and
scalar multiplication.

Now suppose that W is a non-empty subset of a vector space V ,
which is closed under the addition and scalar multiplication defined on
V , so that axioms 1 and 6 are satisfied for W under these operations.
W is non-empty, so there is a vector v ∈ W . Since W is closed under
scalar multiplication, then also 0 = 0v ∈ W and (−1)v = v ∈ W for
any v ∈ W . The remainder of the axioms are satisfied in W since they are
true in V , and any vector in W is also in V (and any linear combination
of vectors in W remains in W ).
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Activity 5.19 This follows from

x =
(

x
y

)
= t

(
1
2

)
=
(

t
2t

)
⇐⇒ x = t

y = 2t

}
⇐⇒ y = 2x .

Activity 5.20 The vector 0 is not in the set U as

0 =
(

0
0

)

=
(

0
1

)
+ t
(

1
2

)
for any t ∈ R,

so axiom 4 of the definition of a vector space is not satisfied.

Activity 5.22 Note first that S is non-empty because 0 ∈ S. Suppose
that x, y ∈ S. (Why are we carefully not using the usual symbols u and
v? It is because v is representing a particular vector and is used in the
definition of the set S.) Suppose also that β ∈ R. Now, because x and y
belong to S, there are α, α′ ∈ R such that x = αv and y = α′v. Then,

x + y = αv + α′v = (α + α′)v,

which is in S since it is a scalar multiple of v. Also,

βx = β(αv) = (βα)v ∈ S

and it follows that S is a subspace.

Activity 5.25 A general vector in S1 is of the form

⎛⎝ a
a2

0

⎞⎠, a ∈ R, and

one particular vector, taking x = 1, is

⎛⎝ 1
1
0

⎞⎠. A general vector in S2 is

of the form

⎛⎝ a
2a
0

⎞⎠, a ∈ R, and one particular vector, taking x = 1, is⎛⎝ 1
2
0

⎞⎠.

Each of these subsets contains the zero vector, 0.
The set S1 is not a subspace. To show this, you need to find one

counterexample, one or two particular vectors in S1 which do not satisfy
the closure properties. For example,⎛⎝ 1

1
0

⎞⎠ ∈ S1 but

⎛⎝ 1
1
0

⎞⎠+
⎛⎝ 1

1
0

⎞⎠ =
⎛⎝ 2

2
0

⎞⎠ /∈ S1.

The set S2 is a subspace. You need to show it is closed under addition
and scalar multiplication using general vectors. Let u, v ∈ S2, α ∈ R.
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Then

u =
⎛⎝ a

2a
0

⎞⎠ and v =
⎛⎝ b

2b
0

⎞⎠ , for some a, b ∈ R.

Taking the sum and scalar multiple,

u + v =
⎛⎝ a

2a
0

⎞⎠+
⎛⎝ b

2b
0

⎞⎠ =
⎛⎝ a + b

2(a + b)
0

⎞⎠ ∈ S2 and

αu =
⎛⎝ αa

2(αa)
0

⎞⎠ ∈ S2,

which proves that S2 is a subspace.

Activity 5.27 Let u, v ∈ W . If αu + βv ∈ W for all α, β ∈ R, then
taking, first, α = β = 1 and, second, β = 0, we have u + v ∈ W and
αu ∈ W for all α ∈ R. Conversely, if W is closed under addition
and scalar multiplication, then (by closure under scalar multiplication)
αu ∈ W and βv ∈ W for all α, β ∈ R, and it follows, by closure under
addition, that αu + βv ∈ W .

Activity 5.31 Any two such vectors will be of the form

v = α1v1 + α2v2 + · · · + αkvk

and

v′ = α′
1v1 + α′

2v2 + · · · + α′
kvk

and we will have

v + v′ = (α1 + α′
1)v1 + (α2 + α′

2)v2 + · · · + (αk + α′
k)vk,

which is a linear combination of the vectors v1, v2, . . . , vk . Also,

αv = α(α1v1 + α2v2 + · · · + αkvk)

= (αα1)v1 + (αα2)v2 + · · · + (ααk)vk

is a linear combination of the vectors v1, v2, . . . , vk .

Activity 5.36 Using properties of the inner product of two vectors in
Rn,

〈r, x〉 = 〈a1r1 + a2r2 + · · · + amrm, x〉
= a1〈r1, x〉 + a2〈r2, x〉 + · · · + am〈rm, x〉.

Since 〈ri , x〉 = 0 for each vector ri , we can conclude that also 〈r, x〉 = 0.
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Activity 5.38 It is easy to see that S 
= ∅ in either case: just list one
vector in each set. For example, (0, 0, 0)T ∈ S if d = 0, and, assuming
a 
= 0, (d/a, 0, 0) ∈ S if d 
= 0 (or even if d = 0).

Suppose d = 0. Let u, v ∈ S and α ∈ R. Then

u =
⎛⎝ x

y
z

⎞⎠ , v =
⎛⎝ x ′

y′

z′

⎞⎠ ,

where ax + by + cz = 0 and ax ′ + by′ + cz′ = 0. Consider u + v.
This equals ⎛⎝ x + x ′

y + y′

z + z′

⎞⎠ =
⎛⎝ X

Y
Z

⎞⎠
and we want to show this belongs to S. Now, this is the case, because

a X + bY + cZ = a(x + x ′) + b(y + y′) + c(z + z′)
= (ax + by + cz) + (ax ′ + by′ + cz′)
= 0 + 0

= 0,

and, similarly, it can be shown that for any α ∈ R, αv ∈ S. So in this
case S is closed under addition and scalar multiplication and is therefore
a subspace.

If d 
= 0, the simple statement that 0 does not satisfy the equation
means that in this case S is not a subspace.

(However, you can see why closure fails when d is not 0; for then,
choosing any two particular vectors for u and v, if u + v = (X, Y, Z )T,
then a X + bY + cZ will equal 2d , which will not be the same as d. So
we will not have u + v ∈ S. Similarly, we can see that αv will not be in
S if α 
= 1.)

5.6 Exercises

Exercise 5.1 Which of the following sets are subspaces of R3?

S1 =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ z = y = 3x

⎫⎬⎭ , S2 =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ z + y = 3x

⎫⎬⎭ ,

S3 =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ zy = 3x

⎫⎬⎭ , S4 =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ xyz = 0

⎫⎬⎭ .

Provide proofs or counterexamples to justify your answers.
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Exercise 5.2 Suppose A is an n × n matrix and λ ∈ R is a fixed
constant. Show that the set

S = {x | Ax = λx}
is a subspace of Rn.

Exercise 5.3 Consider the following vectors

v1 =
⎛⎝−1

0
1

⎞⎠ , v2 =
⎛⎝ 1

2
3

⎞⎠ , u =
⎛⎝−1

2
5

⎞⎠ , w =
⎛⎝ 1

2
5

⎞⎠ .

(a) Show that u can be expressed as a linear combination of v1 and
v2, and write down the linear combination; but that w cannot be
expressed as a linear combination of v1 and v2.

(b) What subspace of R3 is given by Lin{v1, v2, u}? What subspace
of R3 is given by Lin{v1, v2, w}?

(c) Show that the set {v1, v2, u, w} spans R3. Show also that any vector
b ∈ R3 can be expressed as a linear combination of v1, v2, u, w in
infinitely many ways.

Exercise 5.4 If v, w ∈ Rn, explain the difference between the sets

A = {v, w} and B = Lin{v, w}.
Exercise 5.5 Let F be the vector space of all functions from R → R

with pointwise addition and scalar multiplication. Let n be a fixed
positive integer and let Pn be the set of all real polynomial functions of
degree at most n; that is, Pn consists of all functions of the form

f (x) = a0 + a1x + a2x2 + · · · + anxn, where a0, a1, . . . , an ∈ R.

Prove that Pn is a subspace of F , under the usual pointwise addition
and scalar multiplication for real functions. Find a finite set of functions
which spans Pn .

Exercise 5.6 Let U and W be subspaces of a vector space V .

(a) Show that U ∩ W is a subspace of V .
(b) Show that U ∪ W is not a subspace of V unless U ⊆ W or W ⊆ U .

Recall the intersection of the two sets U and W is defined as

U ∩ W = {x : x ∈ U and x ∈ W }
and that the union of the two sets U and W is defined as

U ∪ W = {x : x ∈ U or x ∈ W }.
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Give a simple example of sets U and W in R3 illustrating that U ∩ W
is a subspace, but for which U ∪ W is not.

5.7 Problems

Problem 5.1 Which of the following are subspaces of R3?

S1 =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠∣∣∣∣∣ x + y + z = 0

⎫⎬⎭ , S2 =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠∣∣∣∣∣ x2 + y2 + z2 = 1

⎫⎬⎭,

S3 =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ x = 0

⎫⎬⎭ , S4 =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ xy = 0

⎫⎬⎭ ,

S5 =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ x = 0 and y = 0

⎫⎬⎭ =
⎧⎨⎩
⎛⎝ 0

0
z

⎞⎠ ∣∣∣∣∣ z ∈ R

⎫⎬⎭ .

Provide proofs or counterexamples to justify your answers. Describe
the sets geometrically.

Problem 5.2 Suppose

u =
⎛⎝ 2

−1
1

⎞⎠ and v =
⎛⎝−1

1
3

⎞⎠ .

Determine which of the vectors below are in Lin{u, v}, and for each
such vector, express it as a linear combination of u and v:

a =
⎛⎝ 3

−2
4

⎞⎠ , b =
⎛⎝ 0

0
0

⎞⎠ , c =
⎛⎝ 7

−5
−7

⎞⎠ .

Problem 5.3 Let

S1 =
⎧⎨⎩
⎛⎝ 1

2
3

⎞⎠ ,

⎛⎝ 1
0

−1

⎞⎠ ,

⎛⎝ 0
1
1

⎞⎠ ,

⎛⎝ 1
1
0

⎞⎠⎫⎬⎭ ,

S2 =
⎧⎨⎩
⎛⎝ 1

0
−1

⎞⎠ ,

⎛⎝ 2
1
3

⎞⎠ ,

⎛⎝ 1
2
9

⎞⎠⎫⎬⎭ , S3 =
⎧⎨⎩
⎛⎝ 1

1
1

⎞⎠ ,

⎛⎝ 2
0
1

⎞⎠⎫⎬⎭ .

Show that the set S1 spans R3, but any vector v ∈ R3 can be written as
a linear combination of the vectors in S1 in infinitely many ways. Show
that S2 and S3 do not span R3.
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Problem 5.4

(a) Solve the following equation to find the coefficients α and β by
finding A−1:(

2
−5

)
= α

(
1
2

)
+ β

(
1

−1

)
=
(

1 1
2 −1

)(
α

β

)
= Ax.

(b) Show that Lin{w1, w2} = Lin
{(

1
2

)
,

(
1

−1

)}
= R2. That is,

show any vector b ∈ R2 can be expressed as a linear combination
of w1 and w2 by solving b = Ax for x:(

b1

b2

)
= α

(
1
2

)
+ β

(
1

−1

)
=
(

1 1
2 −1

)(
α

β

)
= Ax.

(c) Show, in general, that if v and w are non-zero vectors in R2, with
v = (a, c)T and w = (b, d)T, then

Lin{v, w} = R2 ⇐⇒ v 
= tw for any t ∈ R ⇐⇒
∣∣∣∣ a b
c d

∣∣∣∣ 
= 0.

Problem 5.5 Let F be the vector space of all functions from R → R

with pointwise addition and scalar multiplication. (See Example 5.5.)

(a) Which of the following sets are subspaces of F?

S1 = { f ∈ F | f (0) = 1}, S2 = { f ∈ F | f (1) = 0}.
(b) (For readers who have studied calculus) Show that the set

S3 = { f ∈ F | f is differentiable and f ′ − f = 0}
is a subspace of F .

Problem 5.6 Let M2(R) denote the set of all 2 × 2 matrices with real
entries. Show that M2(R) is a vector space under the usual matrix
addition and scalar multiplication.

Which of the following subsets are subspaces of M2(R)?

W1 =
{(

a 0
0 b

) ∣∣ a, b ∈ R

}
, W2 =

{(
a 1
1 b

) ∣∣ a, b ∈ R

}
,

W3 =
{(

a2 0
0 b2

) ∣∣ a, b ∈ R

}
.

Justify your answers.
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Linear independence, bases
and dimension

In this chapter, we look into the structure of vector spaces, developing
the concept of a basis. This will enable us to understand more about
a given vector space, and know precisely what we mean by its dimen-
sion. In particular, you should then have a clear understanding of the
statement that Rn is an n-dimensional vector space.

6.1 Linear independence

Linear independence is a central idea in the theory of vector spaces. If
{v1, v2, . . . , vk} is a set of vectors in a vector space V , then the vector
equation

α1v1 + α2v2 + · · · + αr vk = 0

always has the trivial solution, α1 = α2 = · · · = αk = 0.
If this is the only possible solution of the vector equation, then we

say that the vectors v1, v2, . . . , vk are linearly independent. If there are
numbers α1, α2, . . . , αk , not all zero, such that

α1v1 + α2v2 + · · · + αkvk = 0,

then the vectors are not linearly independent; we say they are linearly
dependent. In this case, the left-hand side is termed a non-trivial linear
combination of the vectors {v1, v2, . . . , vk}.

So the vectors {v1, v2, . . . , vk} are linearly independent if no non-
trivial linear combination of them is equal to the zero vector, or, equiv-
alently, if whenever

α1x1 + α2x2 + · · · + αkxk = 0,

then, necessarily, α1 = α2 = · · · = αk = 0.
We state the formal definitions now.
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Definition 6.1 (Linear independence) Let V be a vector space and
v1, . . . , vk ∈ V . Then v1, v2, . . . , vk are are linearly independent (or
form a linearly independent set) if and only if the vector equation

α1v1 + α2v2 + · · · + αkvk = 0

has the unique solution

α1 = α2 = · · · = αk = 0;

that is, if and only if no non-trivial linear combination of the vectors
equals the zero vector.

Definition 6.2 (Linear dependence) Let V be a vector space and
v1, v2, . . . , vk ∈ V . Then v1, v2, . . . , vk are linearly dependent (or
form a linearly dependent set) if and only if there are real numbers
α1, α2, . . . , αk , not all zero, such that

α1v1 + α2v2 + · · · + αkvk = 0;

that is, if and only if some non-trivial linear combination of the vectors
is equal to the zero vector.

Example 6.3 In R2, the vectors

v =
(

1
2

)
and w =

(
1

−1

)
are linearly independent. Why? Well, suppose we have a linear combi-
nation of these vectors which is equal to the zero vector:

α

(
1
2

)
+ β

(
1

−1

)
=
(

0
0

)
.

Then this vector equation holds if and only if{
α + β = 0

2α − β = 0.

This homogeneous linear system has only the trivial solution, α = 0,
β = 0, so the vectors are linearly independent.

Activity 6.4 Show that the vectors

p =
(

1
−2

)
and q =

(−2
4

)
are linearly dependent by writing down a non-trivial linear combination
which is equal to the zero vector.
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Example 6.5 In R3, the following vectors are linearly dependent:

v1 =
⎛⎝ 1

2
3

⎞⎠ , v2 =
⎛⎝ 2

1
5

⎞⎠ , v3 =
⎛⎝ 4

5
11

⎞⎠ .

This is because

2v1 + v2 − v3 = 0.

(Check this!).
Note that this can also be written as v3 = 2v1 + v2.

This example illustrates the following general result. Try to prove it
yourself before looking at the proof.

Theorem 6.6 The set {v1, v2, . . . , vk} ⊆ V is linearly dependent if and
only if at least one vector vi is a linear combination of the other vectors.

Proof: Since this is an ‘if and only if’ statement, we must prove it both
ways. If {v1, v2, . . . , vk} is linearly dependent, the equation

α1v1 + α2v2 + · · · + αr vk = 0

has a solution with some αi 
= 0. Then we can solve for the vector vi :

vi = −α1

αi
v1 − α2

αi
v2 − · · · − αi−1

αi
vi−1 − αi+1

αi
vi+1 − · · · − αk

αi
vk ,

which expresses vi as a linear combination of the other vectors in the
set.

If vi is a linear combination of the other vectors, say

vi = β1v1 + · · · + βi−1vi−1 + βi+1vi+1 + · · · + βkvk,

then

β1v1 + · · · + βi−1vi−1 − vi + βi+1vi+1 + · · · + βkvk = 0

is a non-trivial linear combination of the vectors that is equal to the zero
vector, since the coefficient of vi is −1 
= 0. Therefore, the vectors are
linearly dependent. �

Theorem 6.6 has the following consequence.

Corollary 6.7 Two vectors are linearly dependent if and only if at least
one vector is a scalar multiple of the other.

Example 6.8 The vectors

v1 =
⎛⎝ 1

2
3

⎞⎠ , v2 =
⎛⎝ 2

1
5

⎞⎠ ,
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in the example above are linearly independent, since neither is a scalar
multiple of the other.

If V is any vector space, and {v1, v2, . . . , vk} ⊂ V , then the set
{v1, v2, . . . , vk, 0} is linearly dependent. Why? Well, we can write

0v1 + 0v2 + · · · + 0vk + a0 = 0,

where a 
= 0 is any real number (for example, let a = 1). This is a
non-trivial linear combination equal to the zero vector. Therefore, we
have shown the following.

Theorem 6.9 In a vector space V , a non-empty set of vectors which
contains the zero vector is linearly dependent.

6.1.1 Uniqueness of linear combinations

There is an important property of linearly independent sets of vectors
which holds for any vector space V .

Theorem 6.10 If v1, v2, . . . , vm are linearly independent vectors in V
and if

a1v1 + a2v2 + · · · + amvm = b1v1 + b2v2 + · · · + bmvm,

then

a1 = b1, a2 = b2, . . . , am = bm .

Activity 6.11 Prove this. Use the fact that

a1v1 + a2v2 + · · · + amvm = b1v1 + b2v2 + · · · + bmvm

if and only if

(a1 − b1)v1 + (a2 − b2)v2 + · · · + (am − bm)vm = 0.

What does this theorem say about x = c1v1 + c2v2 + · · · + cmvm?
(Pause for a moment and think about this before you continue reading.)

It says that if a vector x can be expressed as a linear combination
of linearly independent vectors, then this can be done in only one way:
the linear combination is unique.

6.1.2 Testing for linear independence in Rn

Given k vectors v1, . . . , vk ∈ Rn, the vector expression

α1v1 + α2v2 + · · · + αkvk
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equals Ax, where A is the n × k matrix whose columns are the vectors
v1, v2, . . . , vk and x is the vector, x = (α1, α2, . . . , αk)T. (This is by
Theorem 1.38.) So the equation

α1v1 + α2v2 + · · · + αkvk = 0

is equivalent to the matrix equation Ax = 0, which is a homogeneous
system of n linear equations in k unknowns. Then, the question of
whether or not a set of vectors in Rn is linearly independent can
be answered by looking at the solutions of the homogeneous system
Ax = 0. We state this practical relationship as the following theorem:

Theorem 6.12 The vectors v1, v2, . . . , vk in Rn are linearly dependent
if and only if the linear system Ax = 0 has a solution other than x = 0,
where A is the matrix A = (v1 v2 · · · vk). Equivalently, the vectors are
linearly independent precisely when the only solution to the system is
x = 0.

If the vectors are linearly dependent, then any solution x 
= 0,
x = (α1, α2, . . . , αk)T of the system Ax = 0 will directly give a non-
trivial linear combination of the vectors that equals the zero vector,
using the relationship that Ax = α1v1 + αv2 + · · · + αkvk .

Example 6.13 The vectors

v1 =
(

1
2

)
, v2 =

(
1

−1

)
, v3 =

(
2

−5

)
are linearly dependent. To show this, and to find a linear dependence
relationship, we solve Ax = 0 by reducing the coefficient matrix A to
reduced row echelon form:

A =
(

1 1 2
2 −1 −5

)
→ · · · →

(
1 0 −1
0 1 3

)
.

There is one non-leading variable, so the general solution is

x =
⎛⎝ t

−3t
t

⎞⎠ t ∈ R.

In particular, taking t = 1, and using the relationship

Ax = tv1 − 3tv2 + tv3 = 0,

we have that (
1
2

)
− 3

(
1

−1

)
+
(

2
−5

)
=
(

0
0

)
,

which is a non-trivial linear combination equal to the zero vector.
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Activity 6.14 This is the method used to find the linear combination
given in Example 6.5 for the vectors v1, v2, v3,

v1 =
⎛⎝ 1

2
3

⎞⎠ , v2 =
⎛⎝ 2

1
5

⎞⎠ , v3 =
⎛⎝ 4

5
11

⎞⎠ .

Find the solution of a1v1 + a2v2 + +a3v3 = 0 to obtain a linear
dependence relation.

Continuing with this line of thought, we know from our experience of
solving linear systems with row operations that the system Ax = 0 will
have precisely the one solution x = 0 if and only if we obtain from the
n × k matrix A an echelon matrix in which there are k leading ones.
That is, if and only if rank(A) = k. (Make sure you recall why this is
true.) Thus, we have the following result:

Theorem 6.15 Suppose v1, . . . , vk ∈ Rn. The set {v1, . . . , vk} is lin-
early independent if and only if the n × k matrix A = (v1 v2 · · · vk)
has rank k.

But the rank is always at most the number of rows, so we certainly need
to have k ≤ n. Also, there is a set of n linearly independent vectors in
Rn. In fact, there are infinitely many such sets, but an obvious one is

{e1, e2, . . . , en} ,

where ei is the vector with every entry equal to 0 except for the i th
entry, which is 1. That is,

e1 =

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠ , e2 =

⎛⎜⎜⎜⎝
0
1
...
0

⎞⎟⎟⎟⎠ , . . . , en =

⎛⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎠ .

This set of vectors is known as the standard basis of Rn.

Activity 6.16 Show that the set of vectors

{e1, e2, . . . , en} ,

in Rn is linearly independent.

Therefore, we have established the following result:

Theorem 6.17 The maximum size of a linearly independent set of
vectors in Rn is n.
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So any set of more than n vectors in Rn is linearly dependent. On the
other hand, it should not be imagined that any set of n or fewer is linearly
independent; that is not true.

Example 6.18 In R4, which of the following sets of vectors are linearly
independent?

L1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0

−1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
2
9
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
1
3
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
5
9
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ,

L2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0

−1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
2
9
2

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , L3 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0

−1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
2
9
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
1
3
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ,

L4 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0

−1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
2
9
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
1
3
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Try this yourself before reading the answers.
The set L1 is linearly dependent because it consists of five vectors

in R4. The set L2 is linearly independent because neither vector is a
scalar multiple of the other. To see that the set L3 is linearly dependent,
write the vectors as the columns of a matrix A and reduce A to echelon
form to find that the rank of A is 2. This means that there is a non-trivial
linear combination of the vectors which is equal to 0, or, equivalently,
that one of the vectors is a linear combination of the other two. The
last set, L4, contains the set L3 and is therefore also linearly dependent,
since it is still true that one of the vectors is a linear combination of the
others.

Activity 6.19 For the set L3 above, find the solution of the correspond-
ing homogeneous system Ax = 0, where A is the matrix whose columns
are the vectors of L3. Use the solution to write down a non-trivial linear
combination of the vectors that is equal to the zero vector. Express one
of the vectors as a linear combination of the other two.

6.1.3 Linear independence and span

As we have just seen in Example 6.18, if we have a linearly dependent
set of vectors, and if we add to the set another vector, then the set is
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still linearly dependent, because it is still true that at least one of the
vectors is a linear combination of the others. This is true whether or
not the vector we add is a linear combination of the vectors already in
the set.

On the other hand, if we have a linearly independent set of vectors,
and if we add another vector to the set, then the new set may or may not
be linearly independent, depending on the vector we add to the set. The
following is a very useful result which tells us that if we have a linearly
independent set of vectors and add to the set a vector which is not a
linear combination of those vectors, then the new set is still linearly
independent. (Clearly, if we were to add to the set a vector which is a
linear combination of the vectors in the set, then the new set would be
linearly dependent by Theorem 6.6.)

Theorem 6.20 If S = {v1, v2, . . . , vk} is a linearly independent set of
vectors in a vector space V and if w ∈ V is not in the linear span
of S, w /∈ Lin(S), then the set of vectors {v1, v2, . . . , vk, w} is linearly
independent.

Proof: To show that the set {v1, v2, . . . , vk, w} is linearly independent,
we need to show that the vector equation

a1v1 + a2v2 + · · · + akvk + bw = 0

has only the trivial solution. If b 
= 0, then we can solve the vector
equation for w and hence express w as a linear combination of the
vectors in S, which would contradict the assumption that w /∈ Lin(S).
Therefore, we must have b = 0. But that leaves the expression

a1v1 + a2v2 + · · · + akvk = 0,

and since S is linearly independent, all the coefficients ai must be 0.
Hence the set {v1, v2, . . . , vk, w} is linearly independent. �

Now suppose we have a set of vectors S = {v1, v2, . . . , vk} which spans
a vector space V , so V = Lin(S). If the set of vectors is linearly inde-
pendent, and if we remove a vector, say vi , from the set, then the smaller
set of k − 1 vectors cannot span V , because vi (which belongs to V ) is
not a linear combination of the remaining vectors. On the other hand,
if the set is linearly dependent, then some vector, say vi , is a linear
combination of the others; we can safely remove it and the set of k − 1
vectors will still span V .
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6.1.4 Linear independence and span in Rn

If S = {v1, v2, . . . , vk} is a set of vectors in Rn, then we have seen
that the questions of whether or not the set S spans Rn or is linearly
independent can be answered by looking at the matrix A whose columns
are the vectors v1, v2, . . . , vk .

The set S spans Rn if we can show that the system of linear equations
Ax = v has a solution for all v ∈ Rn; that is, if the system of equations
Ax = v is consistent for all v ∈ Rn. We looked at this in Section 4.2
(page 135): if the n × k matrix A has rank n, then S will span Rn. So
we must have k ≥ n.

In Section 6.1.2 (Theorem 6.12), we saw that the set S =
{v1, v2, . . . , vk} is linearly independent if and only if the system of
equations Ax = 0 has a unique solution, namely the trivial solution, so
if and only if the matrix A has rank k. Therefore, we must have k ≤ n.

So to do both – to span Rn and to be linearly independent – the
set S must have precisely n vectors. If we have a set of n vectors
{v1, v2, . . . , vn} in Rn, then the matrix A whose columns are the vectors
v1, v2, . . . , vn is a square n × n matrix. Therefore, to decide if they span
Rn or if they are linearly independent, we only need to evaluate |A|.
Example 6.21 The set of vectors {v1, v2, w}, where

v1 =
⎛⎝ 1

2
3

⎞⎠ , v2 =
⎛⎝ 2

1
5

⎞⎠ , w =
⎛⎝ 4

5
1

⎞⎠
is linearly independent. The vector equation a1v1 + a2v2 + a3w = 0
has only the trivial solution, since

|A| =
∣∣∣∣∣∣
1 2 4
2 1 5
3 5 1

∣∣∣∣∣∣ = 30 
= 0.

To emphasise how the properties of linear independence and span work
together in Rn , we will prove the following result, which shows explic-
itly that a linearly independent set of n vectors in Rn also spans Rn .

Theorem 6.22 If v1, v2, . . . , vn are linearly independent vectors in Rn,
then for any x in Rn, x can be written as a unique linear combination
of v1, . . . , vn.

Proof: Because v1, . . . , vn are linearly independent, the n × n matrix

A = (v1 v2 . . . vn)
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has rank(A) = n. (In other words, A reduces to the n × n identity
matrix.) By Theorem 4.5, the system Az = x has a unique solution for
any x ∈ Rn. But let’s spell it out. Since there is a leading one in every
row of the reduced echelon form of A, we can find a solution to Az = x,
so any vector x can be expressed in the form

x = Az = (v1 v2 . . . vn)

⎛⎜⎜⎜⎝
α1

α2
...

αn

⎞⎟⎟⎟⎠ ,

where we have written z as (α1, α2, . . . , αn)T. Expanding this matrix
product, we have that any x ∈ Rn can be expressed as a linear
combination

x = α1v1 + α2v2 + · · · + αnvn,

as required. This linear combination is unique since the vectors are
linearly independent (or, because there is a leading one in every column
of the echelon matrix, so there are no free variables). �

It follows from this theorem that if we have a set of n linearly indepen-
dent vectors in Rn , then the set of vectors also spans Rn. So any vector
in Rn can be expressed in exactly one way as a linear combination of
the n vectors. We say that the n vectors form a basis of Rn . This is the
subject of the next section.

6.2 Bases

Consider a set of vectors {v1, v2, . . . , vk} in a vector space V . We have
seen two concepts associated with this set. If the set {v1, v2, . . . , vk}
spans V , then any vector x ∈ V can be expressed as a linear combina-
tion of the vectors v1, v2, . . . , vk . If the set {v1, v2, . . . , vk} is linearly
independent and if a vector x ∈ V can be expressed as a linear combi-
nation of the vectors v1, v2, . . . , vk , then this expression is unique.

If a set of vectors {v1, v2, . . . , vk} has both properties – if it spans
V and it is linearly independent – then every vector v ∈ V can be
expressed as a unique linear combination of v1, v2, . . . , vk . This gives
us the important concept of a basis.

Definition 6.23 (Basis) Let V be a vector space. Then the subset B =
{v1, v2, . . . , vn} of V is said to be a basis for (or of) V if:

(1) B is a linearly independent set of vectors, and
(2) B spans V ; that is, V = Lin(B).
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An alternative characterisation of a basis can be given. The set B =
{v1, v2, . . . , vn} is a basis of V if every vector in V can be expressed
in exactly one way as a linear combination of the vectors in B. The set
B spans V if and only if each vector in V is a linear combination of
the vectors in B; and B is linearly independent if and only if any linear
combination of vectors in B is unique. We have therefore shown:

Theorem 6.24 B = {v1, v2, . . . , vn} is a basis of V if and only if any
v ∈ V is a unique linear combination of v1, v2, . . . , vn.

Example 6.25 The vector space Rn has the basis {e1, e2, . . . , en} where
ei is (as earlier) the vector with every entry equal to 0 except for the
i th entry, which is 1. It is clear that the vectors are linearly independent
(as you showed in Activity 6.16 on page 177), and it is easy to see that
they span the whole of Rn , since for any x = (x1, x2, . . . , xn)T ∈ Rn,
x = x1e1 + x2e2 + · · · + xnen. That is,

x =

⎛⎜⎜⎜⎝
x1

x2
...

xn

⎞⎟⎟⎟⎠ = x1

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠+ x2

⎛⎜⎜⎜⎝
0
1
...
0

⎞⎟⎟⎟⎠+ · · · + xn

⎛⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎠ .

The basis {e1, e2, . . . , en} is the standard basis of Rn.

Example 6.26 We will find a basis of the subspace of R3 given by

W =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ x + y − 3z = 0

⎫⎬⎭ .

If x = (x, y, z)T is any vector in W , then its components must satisfy
y = −x + 3z, and we can express x as

x =
⎛⎝ x

y
z

⎞⎠ =
⎛⎝ x

−x + 3z
z

⎞⎠ = x

⎛⎝ 1
−1
0

⎞⎠+ z

⎛⎝ 0
3
1

⎞⎠
= xv + zw (x, z ∈ R).

This shows that the set {v, w} spans W . The set is also linearly inde-
pendent. Why? Because of the positions of the zeros and ones, if
αv + βw = 0, then, necessarily, α = 0 and β = 0.

Example 6.27 The set

S =
{(

1
2

)
,

(
1

−1

)}
is a basis of R2. We can show this either using Theorem 6.22, or by
showing that it spans R2 and is linearly independent, or, equivalently,
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that any vector b ∈ R2 is a unique linear combination of these two
vectors. We will do the latter. Writing the vectors as the columns of a
matrix A, we find that |A| 
= 0, so this is true by Theorem 4.5.

As in the above example, we can show that n vectors in Rn are a
basis of Rn by writing them as the columns of a matrix A and invoking
Theorem 4.5. Turning this around, we can see that if A = (v1 v2 . . . vn)
is an n × n matrix with rank(A) = n, then the columns of A are a basis
of Rn. Indeed, by Theorem 4.5, the system Az = x will have a unique
solution for any x ∈ Rn, so any vector x ∈ Rn can be written as a unique
linear combination of the column vectors. We therefore have two more
equivalent statements to add to Theorem 4.5, resulting in the following
extended version of that result:

Theorem 6.28 If A is an n × n matrix, then the following statements
are equivalent:

� A−1 exists.
� Ax = b has a unique solution for any b ∈ Rn.
� Ax = 0 has only the trivial solution, x = 0.
� The reduced echelon form of A is I .
� |A| 
= 0.
� The rank of A is n.
� The column vectors of A are a basis of Rn.
� The rows of A (written as vectors) are a basis of Rn.

The last statement can be seen from the facts that |AT| = |A| and
the rows of A are the columns of AT. This theorem provides an easy
way to determine if a set of n vectors is a basis of Rn. We sim-
ply write the n vectors as the columns of a matrix and evaluate its
determinant.

Example 6.29 The vector space Lin{v1, v2, w}, where

v1 =
⎛⎝ 1

2
3

⎞⎠ , v2 =
⎛⎝ 2

1
5

⎞⎠ , w =
⎛⎝ 4

5
1

⎞⎠
is R3, and the set of vectors {v1, v2, w} is a basis. Why? In Example 6.21,
we showed that the set {v1, v2, w} is linearly independent, and since
it contains three vectors in R3, it is a basis of R3. (In fact, we
showed that |A| 
= 0, where A is the matrix whose column vectors are
v1, v2, w.)
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What about the vector space U = Lin{v1, v2, v3}, where v1, v2, v3 are
the following vectors from Example 6.5?

v1 =
⎛⎝ 1

2
3

⎞⎠ , v2 =
⎛⎝ 2

1
5

⎞⎠ , v3 =
⎛⎝ 4

5
11

⎞⎠ .

This set of vectors is linearly dependent since v3 = 2v1 + v2, so we
know that v3 ∈ Lin{v1, v2}. Therefore, Lin{v1, v2} = Lin{v1, v2, v3}.
Furthermore, {v1, v2} is linearly independent since neither vector is a
scalar multiple of the other, so this space is the linear span of two
linearly independent vectors in R3 and is therefore a plane. The set
{v1, v2} is a basis of U . A parametric equation of this plane is given
by

x =
⎛⎝ x

y
z

⎞⎠ = sv1 + tv2 = s

⎛⎝ 1
2
3

⎞⎠+ t

⎛⎝ 2
1
5

⎞⎠ , s, t ∈ R,

and we could find a Cartesian equation by eliminating the variables s
and t from the component equations. But there is a much simpler way.
The vector x belongs to U if and only if x can be expressed as a linear
combination of v1 and v2, as in the equation above; that is, if and only
if x, v1, v2 are linearly dependent. This will be the case if and only if
we have

|A| =
∣∣∣∣∣∣
1 2 x
2 1 y
3 5 z

∣∣∣∣∣∣ = 0.

Expanding this determinant by column 3, we obtain

|A| = 7x + y − 3z = 0.

This is the equation of the plane.

Activity 6.30 Carry out the calculation of the determinant. Then verify
that 7x + y − 3z = 0 is the equation of the plane by checking that the
vectors v1, v2, v3 each satisfy this equation.

Another way to look at a basis is as a smallest spanning set of vectors.

Theorem 6.31 If V is a vector space, then a smallest spanning set is a
basis of V .

Proof: Suppose we have a set of vectors S and we know that S is a
smallest spanning set for V , so V = Lin(S). If S is linearly independent,
then it is a basis. So can S be linearly dependent? If S is linearly
dependent, then there is a vector v ∈ S which is a linear combination
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of the other vectors in S. But this means that we can remove v from
S, and the remaining smaller set of vectors will still span V since any
linear combination of the vectors in S will also be a linear combination
of this smaller set. But we assumed that S was a smallest spanning set,
so this is not possible. S must be linearly independent and therefore S
is a basis of V . �

6.3 Coordinates

What is the importance of a basis? If S = {v1, v2, . . . , vn} is a basis of
a vector space V , then any vector v ∈ V can be expressed uniquely as
v = α1v1 + α2v2 + · · · + αnvn. The real numbers α1, α2, · · · , αn are
the coordinates of v with respect to the basis, S.

Definition 6.32 (Coordinates) If S = {v1, v2, . . . , vn} is a basis of
a vector space V and v = α1v1 + α2v2 + · · · + αnvn, then the real
numbers α1, α2, · · · , αn are the coordinates of v with respect to the
basis, S. We use the notation

[v]S =

⎡⎢⎢⎢⎣
α1

α2
...

αn

⎤⎥⎥⎥⎦
S

to denote the coordinate vector of v in the basis S.

Example 6.33 The sets B = {e1, e2} and S = {v1, v2}, where

B =
{(

1
0

)
,

(
0
1

)}
and S =

{(
1
2

)
,

(
1

−1

)}
are each a basis of R2. The coordinates of the vector v = (2, −5)T in
each basis are given by the coordinate vectors,

[v]B =
[

2
−5

]
B

and [v]S =
[−1

3

]
S

.

In the standard basis, the coordinates of v are precisely the components
of the vector v, so we just write the standard coordinates as

v =
(

2
−5

)
.

In the basis S, the components of v arise from the observation that

v = −1
(

1
2

)
+ 3

(
1

−1

)
=
(

2
−5

)
, so [v]S =

[−1
3

]
S
.
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Activity 6.34 For the example above, sketch the vector v on graph
paper and show it as the sum of the vectors given by each of the linear
combinations: v = 2e1 − 5e2 and v = −1v1 + 3v2.

Activity 6.35 In Example 6.26, we showed that a basis of the plane W ,

W =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ x + y − 3z = 0

⎫⎬⎭ ,

is given by the set of vectors B = {v, w}, where v = (1, −1, 0)T and
w = (0, 3, 1)T. Show that the vector y = (5, 1, 2)T belongs to W and
find its coordinates in the basis B.

6.4 Dimension

6.4.1 Definition of dimension

A fundamental fact concerning vector spaces is that if a vector space
V has a finite basis, meaning a basis consisting of a finite number
of vectors, then all bases of V contain precisely the same number of
vectors.

In order to prove this, we first need to establish the following result.

Theorem 6.36 Let V be a vector space with a basis

B = {v1, v2, . . . , vn}
of n vectors. Then any set of n + 1 vectors is linearly dependent.

This fact is easily established for Rn, since it is a direct consequence
of Theorem 6.17 on page 177. But we will show directly that any set
of n + 1 vectors in Rn is linearly dependent, because the proof will
indicate to us how to prove the theorem for any vector space V .

If S = {w1, w2, . . . , wn+1} ⊂ Rn, and if A is the n × (n + 1) matrix
whose columns are the vectors w1, w2, . . . , wn+1, then the homoge-
neous system of equations Ax = 0 will have infinitely many solutions.
Indeed, since the reduced row echelon form of A can have at most n
leading ones, there will always be a free variable, and hence infinitely
many solutions. Therefore, the set S of n + 1 vectors is linearly depen-
dent. Using these ideas, we can now prove the theorem in general for
any vector space V with a basis of n vectors.
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Proof: Let S = {w1, w2, . . . , wn+1} be any set of n + 1 vectors in V .
Then each of the vectors wi can be expressed as a unique linear combi-
nation of the vectors in the basis B. Let

wi = a1,i v1 + a2,i v2 + · · · + an,i vn.

Now consider any linear combination of the vectors w1, w2, . . . , wn+1

such that

b1w1 + b2w2 + · · · + bn+1wn+1 = 0.

Substituting for the vectors wi in the linear combination, we obtain

b1(a1,1v1 + a2,1v2 + · · · + an,1vn) + · · ·
+ bn+1(a1,n+1v1 + a2,n+1v2 + · · · + an,n+1vn) = 0

Now comes the tricky bit. We rewrite the linear combination by collect-
ing all the terms which multiply each of the vectors vi . We have

(b1a1,1 + b2a1,2 + · · · + bn+1a1,n+1)v1 + · · ·
+ (b1an,1 + b2an,2 + · · · + bn+1an,n+1)vn = 0.

But since the set B = {v1, v2, . . . , vn} is a basis, all the coefficients
must be equal to 0. This gives us a homogeneous system of n linear
equations in the n + 1 unknowns b1, b2, . . . , bn+1,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b1a1,1 + b2a1,2 + · · · + bn+1a1,n+1 = 0

b1a2,1 + b2a2,2 + · · · + bn+1a2,n+1 = 0

...

b1an,1 + b2an,2 + · · · + bn+1an,n+1 = 0,

which must therefore have a non-trivial solution. So there are constants
b1, b2, . . . , bn+1, not all zero, such that

b1w1 + b2w2 + · · · + bn+1wn+1 = 0.

This proves that the set of vectors S = {w1, w2, . . . , wn+1} is linearly
dependent. �

Using this result, it is now a simple matter to prove the following
theorem, which states that all bases of a vector space with a finite basis
are the same size; that is, they have the same number of vectors.

Theorem 6.37 Suppose that a vector space V has a finite basis con-
sisting of r vectors. Then any basis of V consists of exactly r vectors.
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Proof: Suppose V has a basis B = {v1, v2, . . . , vr } consisting of r
vectors and a basis S = {w1, w2, . . . , ws} consisting of s vectors. By
Theorem 6.36, we must have s ≤ r since B is a basis, and so any set
of r + 1 vectors would be linearly dependent and therefore not a basis.
In the same way, since S is a basis, any set of s + 1 vectors would be
linearly dependent, so r ≤ s . Therefore, r = s. �

This enables us to define exactly what we mean by the dimension of a
vector space V .

Definition 6.38 (Dimension) The number k of vectors in a finite basis
of a vector space V is the dimension of V , and is denoted dim(V ). The
vector space V = {0} is defined to have dimension 0.

A vector space which has a finite basis – that is, a basis consisting of
a finite number of vectors – is said to be finite-dimensional. Not all
vector spaces are finite-dimensional. If a vector space does not have
a basis consisting of a finite number of vectors, then it is said to be
infinite-dimensional.

Example 6.39 We already know Rn has a basis of size n; for example,
the standard basis consists of n vectors. So Rn has dimension n. (This
is reassuring, since it is often referred to as n-dimensional Euclidean
space.)

Example 6.40 A plane in R3 is a two-dimensional subspace. It can be
expressed as the linear span of a set of two linearly independent vectors.
A line in Rn is a one-dimensional subspace. A hyperplane in Rn is an
(n − 1)-dimensional subspace of Rn .

Example 6.41 The vector space F of real functions with pointwise
addition and scalar multiplication (see Example 5.5) has no finite basis.
It is an infinite-dimensional vector space. The set S of real-valued
sequences (of Example 5.8) is also an infinite-dimensional vector
space.

If we know the dimension of a finite-dimensional vector space V , then
we know how many vectors we need for a basis. If we have the correct
number of vectors for a basis and we know either that the vectors span
V or that they are linearly independent, then we can conclude that both
must be true and they form a basis. This is shown in the following
theorem. That is, if we know the dimension is k and we have a set of k
vectors, then we do not need to show both. We only need to show either
that the set is linearly independent or that it spans V .
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Theorem 6.42 Let V be a finite-dimensional vector space of dimension
k. Then:

� k is the largest size of a linearly independent set of vectors in V .
Furthermore, any set of k linearly independent vectors is necessarily
a basis of V ;

� k is the smallest size of a spanning set of vectors for V . Furthermore,
any set of k vectors that spans V is necessarily a basis.

Thus, k = dim(V ) is the largest possible size of a linearly independent
set of vectors in V , and the smallest possible size of a spanning set
of vectors (a set of vectors whose linear span is V ). We have already
proved part of this theorem for Rn as Theorem 6.22.

Proof: If V has dimension k, then every basis of V contains precisely
k vectors. Now suppose we have any set S = {w1, w2, . . . , wk} of k
linearly independent vectors. If S does not span V , then there must be
some vector v ∈ V which cannot be expressed as a linear combination
of w1, w2, . . . , wk , and if we add this vector v to the set, then by
Theorem 6.20 the set of vectors {w1, w2, . . . , wk, v} would still be
linearly independent. But we have already shown in Theorem 6.36 that
k is the maximum size of a linearly independent set of vectors; any set
of k + 1 vectors is linearly dependent. Therefore, such a vector v cannot
exist. The set S must span V , and so S is a basis of V .

To prove the next part of this theorem, suppose we have any set
S = {w1, w2, . . . , wk} of k vectors which spans V . If the set is linearly
dependent, then one of the vectors can be expressed as a linear combi-
nation of the others. In this case, we could remove it from the set and
we would have a set of k − 1 vectors which still spans V . This would
imply the existence of a basis of V with at most k − 1 vectors, since
either the new set of k − 1 vectors is linearly independent, or we could
repeat the process until we arrive at some subset which both spans and
is linearly independent. But every basis of V has precisely k vectors, by
Theorem 6.37. Therefore, the set S must be linearly independent, and
S is a basis of V . This argument also shows that it is not possible for
fewer than k vectors to span S. �

Example 6.43 We know (from Example 6.26) that the plane W in R3,

W =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ x + y − 3z = 0

⎫⎬⎭ ,

has dimension 2, because we found a basis for it consisting of two
vectors. If we choose any set of two linearly independent vectors
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in W , then that set will be a basis of W . For example, the vectors
v1 = (1, 2, 1)T and v2 = (3, 0, 1)T are linearly independent (why?),
so by the Theorem 6.42, S = {v1, v2} is a basis of W .

6.4.2 Dimension and bases of subspaces

Suppose that W is a subspace of the finite-dimensional vector space
V . Any set of linearly independent vectors in W is also a linearly
independent set in V .

Activity 6.44 Prove this last statement.

Now, the dimension of W is the largest size of a linearly independent
set of vectors in W , so there is a set of dim(W ) linearly independent
vectors in V . But then this means that dim(W ) ≤ dim(V ), since the
largest possible size of a linearly independent set in V is dim(V ). There
is another important relationship between bases of W and V : this is that
any basis of W can be extended to one of V . The following result states
this precisely:

Theorem 6.45 Suppose that V is a finite-dimensional vector space and
that W is a subspace of V . Then dim(W ) ≤ dim(V ). Furthermore, if
{w1, w2, . . . , wr } is a basis of W , then there are s = dim(V ) − dim(W )
vectors v1, v2, . . . , vs ∈ V such that {w1, w2, . . . , wr , v1, v2, . . . , vs} is
a basis of V . (In the case W = V , the basis of W is already a basis
of V .) That is, we can obtain a basis of the whole space V by adding
certain vectors of V to any basis of W .

Proof: If {w1, w2, . . . , wr } is a basis of W , then the set of vectors is a
linearly independent set of vectors in V . If the set spans V , then it is a
basis of V , and W = V . If not, there is a vector v1 ∈ V , which cannot
be expressed as a linear combination of the vectors w1, w2, . . . , wr .
Then the set of vectors {w1, w2, . . . , wr , v1} is a linearly independent
set of vectors in V by Theorem 6.20. Continuing in this way, we can
find vectors v2, . . . , vs ∈ V until the linearly independent set of vectors
{w1, w2, . . . , wr , v1, v2, . . . , vs} spans V and is therefore a basis. This
must occur when r + s = dim(V ), so dim(W ) ≤ dim(V ). �

Example 6.46 The plane W in R3,

W = {x ∣∣ x + y − 3z = 0},
has a basis consisting of the vectors v1 = (1, 2, 1)T and v2 =
(3, 0, 1)T.
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Let v3 be any vector which is not in this plane. For example, the vector
v3 = (1, 0, 0)T is not in W , since its components do not satisfy the
equation. Then the set S = {v1, v2, v3} is a basis of R3. Why?

Activity 6.47 Answer this question. Why can you conclude that S is a
basis of R3?

6.5 Basis and dimension in Rn

6.5.1 Row space, column space and null space

We have met three important subspaces associated with an m × n
matrix A:

� the row space is the linear span of the rows of the matrix (when they
are written as vectors) and is a subspace of Rn,

� the null space is the set of all solutions of Ax = 0 and is also a
subspace of Rn ,

� the column space, or range of the matrix, is the linear span of the
column vectors of A and is a subspace of Rm .

In Chapter 12, we will meet a fourth subspace associated with A, namely
N (AT), but these are, for now, the three main ones.

In order to find a basis for each of these three spaces, we put the
matrix A into reduced row echelon form.

To understand how and why this works, we will first work carefully
through an example.

Example 6.48 Let A be the 4 × 5 matrix

A =

⎛⎜⎜⎝
1 2 1 1 2
0 1 2 1 4

−1 3 9 1 9
0 1 2 0 1

⎞⎟⎟⎠ .

Then the row space of A, RS(A) is the linear span of the transposed
rows:

RS(A) = Lin

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
1
2
1
1
2

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
0
1
2
1
4

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
−1
3
9
1
9

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
0
1
2
0
1

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

The null space, N (A), is the set of all solutions of Ax = 0.



192 Linear independence, bases and dimension

Whereas the row space and the null space of A are subspaces of R5, the
column space is a subspace of R4. Recall that the column space of a
matrix, C S(A), is the same as the range of the matrix, R(A). Although
the original definitions of the range and the column space are different,
we saw in Section 5.3.1 that they are precisely the same set of vectors,
namely the linear span of the columns of A:

R(A) = C S(A) = Lin

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0

−1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
1
3
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
2
9
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
1
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
4
9
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

We put the matrix A into reduced row echelon form using elemen-
tary row operations. Each one of these row operations involves replac-
ing one row of the matrix with a linear combination of that row and
another row: for example, our first step will be to replace row 3 with
‘row 3 + row 1’. We will let R denote the matrix which is the reduced
row echelon form of A.

A −→ · · · −→ R =

⎛⎜⎜⎝
1 0 −3 0 −3
0 1 2 0 1
0 0 0 1 3
0 0 0 0 0

⎞⎟⎟⎠ .

Activity 6.49 Carry out the row reduction of A to obtain the matrix R.

The row space of the matrix R is the linear span of the rows of R
(written as vectors) and it is clear that a basis for this is given by the
non-zero rows. Why is this? Each of these rows begins with a leading
one, and since the rows below have zeros beneath the leading ones of
the rows above, the set⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
1
0

−3
0

−3

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
0
1
2
0
1

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
3

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
is linearly independent and is therefore a basis of RS(R).

Activity 6.50 Validate this argument: use the definition of linear inde-
pendence to show that this set of vectors is linearly independent.

But RS(R) = RS(A). Why? Each of the rows of R is a linear combina-
tion of the rows of A, obtained by performing the row operations. There-
fore, RS(R) ⊆ RS(A). But each of these row operations is reversible,
so each of the rows of A can be obtained as a linear combination
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of the rows of R, so RS(A) ⊆ RS(R). Therefore, RS(A) = RS(R) and
we have found a basis for the row space of A. It is the set of non-zero
rows (written as vectors) in the reduced row echelon form of A. These
are the rows with a leading one.

In this example, the row space of A is a three-dimensional subspace
of R5, where rank(A) = 3.

To find a basis of the null space of A, we write down the general
solution of Ax = 0, with x = (x1, x2, x3, x4, x5)T. Looking at R, we see
that the non-leading variables, corresponding to the columns without a
leading one, are x3 and x5. If we set x3 = s and x5 = t , where s, t ∈ R

represent any real numbers, then the solution is⎛⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
3s + 3t
−2s − t

s
−3t

t

⎞⎟⎟⎟⎟⎟⎠ = s

⎛⎜⎜⎜⎜⎜⎝
3

−2
1
0
0

⎞⎟⎟⎟⎟⎟⎠+ t

⎛⎜⎜⎜⎜⎜⎝
3

−1
0

−3
1

⎞⎟⎟⎟⎟⎟⎠
= sv1 + tv2, s, t ∈ R.

Activity 6.51 Check this solution. Check the steps indicated and check
that Av1 = 0. Av2 = 0.

The set of vectors {v1, v2} is a basis of the null space, N (A). Why? They
span the null space since every solution of Ax = 0 can be expressed as a
linear combination of v1, v2, and they are linearly independent because
of the positions of the zeros and ones as the third and fifth components;
the only linear combination sv1 + tv2 which is equal to the zero vector
is given by s = t = 0. This is not an accident. The assignment of the
arbitrary parameters, s to x3 and t to x5, ensures that the vector v1 will
have a ‘1’ as its third component and a ‘0’ as its fifth component, and
vice versa for v2.

In this example, the null space of A is a two-dimensional subspace
of R5. Here 2 = n − r , where n = 5 is the number of columns of A and
r = 3 is the rank of the matrix. Since A has r leading ones, there are
n − r non-leading variables, and each of these determines one of the
basis vectors for N (A).

Finding a basis of the column space of A from the reduced row
echelon form is not as obvious. The columns of R are very different
from the columns of A. In particular, any column with a leading one
has zeros elsewhere, so the columns with leading ones in the reduced
row echelon form of any matrix are vectors of the standard basis of
Rm . In our example, these are e1, e2, e3 ∈ R4, which are in columns 1,
2 and 4 of R. But we can use this information to deduce which of the
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column vectors of A are linearly independent, and by finding a linearly
independent subset of the spanning set, we obtain a basis.

Let c1, c2, c3, c4, c5 denote the columns of A. Then, if we choose
the columns corresponding to the leading ones in the reduced row
echelon form of A, namely c1, c2, c4, these three vectors are linearly
independent. Why? Because if we row reduce the matrix consisting of
these three columns,⎛⎜⎜⎝

1 2 1
0 1 1

−1 3 1
0 1 0

⎞⎟⎟⎠ → · · · →

⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1
0 0 0

⎞⎟⎟⎠ ,

the reduced row echelon form will have a leading one in every column.
On the other hand, if we include either of the vectors c3 or c5, then this
will no longer be true, and the set will be linearly dependent.

Activity 6.52 Make sure you understand why this is true.

Since {c1, c2, c4} is linearly independent, but {c1, c2, c4, c3} is linearly
dependent, we know that c3 can be expressed as a linear combination
of c1, c2, c4. The same applies to c5, so

C S(A) = Lin{c1, c2, c3, c4, c5} = Lin{c1, c2, c4}
and we have found a basis, namely {c1, c2, c4}.

So in our example, the range, or column space of A is a three-
dimensional subspace of R4, where rank(A) = 3. Our basis consists of
those columns of A which correspond to the columns of the reduced
row echelon form with the leading ones.

The same considerations can be applied to any m × n matrix A, as we
shall see in the next section.

If we are given k vectors v1, v2, . . . , vk in Rn and we want to find a
basis for the linear span V = Lin{v1, v2, . . . , vk}, then we have a choice
of how to do this using matrices. The point is that the k vectors might
not form a linearly independent set (and hence they are not a basis). One
method to obtain a basis for V is to write the spanning set of vectors
as the rows of a k × n matrix and find a basis of the row space. In
this case, we will obtain a simplified set of vectors for the basis (in the
sense that there will be leading ones and zeros in the vectors), which
are linear combinations of the original vectors. Alternatively, we can
write the spanning set of vectors as the columns of an n × k matrix and
find a basis of the column space. This will consist of a subset of the
original spanning set, namely those vectors in the spanning set which



6.5 Basis and dimension in Rn 195

correspond to the columns with the leading ones in the reduced echelon
form.

6.5.2 The rank–nullity theorem

We have seen that the range and null space of an m × n matrix are
subspaces of Rm and Rn, respectively (Section 5.2.4). Their dimensions
are so important that they are given special names.

Definition 6.53 (Rank and nullity) The rank of a matrix A is

rank(A) = dim(R(A))

and the nullity is

nullity(A) = dim(N (A)).

We have, of course, already used the word ‘rank’, so it had better
be the case that the usage just given coincides with the earlier one.
Fortunately, it does. If you look again at how we obtained a basis of the
column space, or range, in Example 6.48 in the previous section, you
will see the correspondence between the basis vectors and the leading
ones in the reduced row echelon form. This connection is the content
of the following theorem.

Theorem 6.54 Suppose that A is an m × n matrix with columns
c1, c2, . . . , cn, and that the reduced row echelon form obtained from
A has leading ones in columns i1, i2, . . . , ir . Then a basis for R(A) is

B = {ci1, ci2, . . . , cir }.
Note that the basis is formed from columns of A, not columns of the
echelon matrix: the basis consists of those columns of A corresponding
to the leading ones in the reduced row echelon form.

Proof: Any solution x = (α1, α2, . . . , αn) of Ax = 0 gives a linear com-
bination of the columns of A which is equal to the zero vector,

0 = α1c1 + α2c2 + · · · + αncn.

If R denotes the reduced echelon form of A, and if c′
1, c′

2, . . . , c′
n denote

the columns of R, then exactly the same relationship holds:

0 = α1c′
1 + α2c′

2 + · · · + αnc′
n.

In fact, we use R to obtain the solution x = (α1, α2, . . . , αn). So the
linear dependence relations are the same for the columns of both



196 Linear independence, bases and dimension

matrices. This means that the linearly independent columns of A cor-
respond precisely to the linearly independent columns of R. Which
columns of R are linearly independent? The columns which contain the
leading ones. Why? (Think about this before continuing to read.)

The form of the reduced row echelon matrix R is such that the
columns with the leading ones are c′

i1
= e1, c′

i2
= e2, . . . , c′

ir
= er ,

where e1, e2, . . . , er are the first r vectors of the standard basis of Rm .
These vectors are linearly independent. Furthermore, since R has r
leading ones, the matrix has precisely r non-zero rows, so any other
column vector of R (corresponding to a column without a leading one)
is of the form

c′
j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1
...

αr

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= α1e1 + · · · + αr er .

This gives a linear dependence relationship:

α1e1 + · · · + αr er − c′
j = 0.

The same linear dependence relationship holds for the columns of A,
so that

α1ci1 + · · · + αr cir − c j = 0.

This implies that the set B spans R(A). Since the only linear combina-
tion of the vectors e1, e2, . . . , er which is equal to the zero vector is the
one with all coefficients equal to zero, the same is true for the vectors
ci1, ci2, . . . , cir . Therefore these vectors are linearly independent, and
the set B is a basis of R(A). �

Although the row space and the column space of an m × n matrix may
be subspaces of different Euclidean spaces, RS(A) ⊆ Rn and C S(A) ⊆
Rm , it turns out that these spaces have the same dimension. Try to see
why this might be true by looking again at the example in the previous
section, before reading the proof of the following theorem.

Theorem 6.55 If A is an m × n matrix, then

dim(RS(A)) = dim(C S(A)) = rank(A).

Proof: By Theorem 6.54, the dimension of the column space, or range,
is equal to the number of leading ones in the reduced row echelon form
of A.



6.5 Basis and dimension in Rn 197

If R denotes the reduced row echelon form of A, then RS(A) =
RS(R) and a basis of this space is given by the non-zero rows of R;
that is, the rows with the leading ones. The reason this works is that:
(i) row operations are such that, at any stage in the procedure, the row
space of the reduced matrix is equal to the row space of the original
matrix (since the rows of the reduced matrix are linear combinations of
the original rows), and (ii) the non-zero rows of an echelon matrix are
linearly independent (since each has a one in a position where the rows
below it all have a zero).

Therefore, the dimension of the row space is also equal to the
number of leading ones in R; that is,

dim(RS(A)) = dim(C S(A)) = dim(R(A)) = rank(A).

�

Example 6.56 Let B be the matrix

B =
⎛⎝ 1 1 2 1

2 0 1 1
9 −1 3 4

⎞⎠ .

The reduced row echelon form of the matrix is (verify this!)

E =
⎛⎝ 1 0 1

2
1
2

0 1 3
2

1
2

0 0 0 0

⎞⎠ .

The leading ones in this echelon matrix are in the first and second
columns, so a basis for R(B) can be obtained by taking the first and
second columns of B. (Note: ‘columns of B’, not of the echelon matrix!)
Therefore, a basis for R(B) is⎧⎨⎩

⎛⎝ 1
2
9

⎞⎠ ,

⎛⎝ 1
0

−1

⎞⎠⎫⎬⎭ .

A basis of the row space of B consists of the two non-zero rows of the
reduced matrix or, alternatively, the first two rows of the original matrix
(written as vectors):⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎜⎝
1
0
1
2
1
2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
1
3
2
1
2

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ or

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
1
2
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
0
1
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Note that the column space is a two-dimensional subspace of R3 (a
plane) and the row space is a two-dimensional subspace of R4. The
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columns of B and E satisfy the same linear dependence relations,
which can be easily read from the reduced echelon form of the matrix,

c3 = 1

2
c1 + 3

2
c2 , c4 = 1

2
c1 + 1

2
c2.

Activity 6.57 Check that the columns of B satisfy these same linear
dependence relations.

There is a very important relationship between the rank and nullity of
a matrix, known as the rank–nullity theorem or dimension theorem for
matrices. This theorem states that

dim(R(A)) + dim(N (A)) = n,

where n is the number of columns of the matrix A.
We have already seen some indications of this result in our consid-

erations of linear systems (Section 4.2). Recall that if an m × n matrix
A has rank r , then the general solution to the system Ax = 0 involves
n − r ‘free parameters’. Specifically, the general solution takes the form

x = s1v1 + s2v2 + · · · + sn−r vn−r , si ∈ R,

where v1, v2, . . . , vn−r are themselves solutions of the system Ax = 0.
But the set of solutions of Ax = 0 is precisely the null space N (A).
Thus, the null space is spanned by the n − r vectors v1, v2, . . . , vn−r ,
and so its dimension is at most n − r . In fact, it turns out that its
dimension is precisely n − r . That is,

nullity(A) = n − rank(A).

To see this, we need to show that the vectors v1, v2, . . . , vn−r are linearly
independent. Because of the way in which these vectors arise (look at
the examples we worked through), it will be the case that for each of
them there is some position where that vector will have an entry equal
to 1 and the entry in that same position for all the other vectors will
be 0. From this we can see that no non-trivial linear combination of
them can be the zero vector, so they are linearly independent. We have
therefore proved the following central result:

Theorem 6.58 (Rank–nullity theorem) For an m × n matrix A,

rank(A) + nullity(A) = n.

Activity 6.59 Find a basis of the null space of the matrix B in Exam-
ple 6.56 and verify the rank–nullity theorem:

B =
⎛⎝ 1 1 2 1

2 0 1 1
9 −1 3 4

⎞⎠ .
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Use the null space basis vectors to obtain the linear dependence relations
between the columns of B (which we found earlier using the columns
of R).

This is a good time to recall that the row space, RS(A), and the null
space, N (A), of an m × n matrix A are orthogonal subspaces of Rn. As
we saw in Section 5.3.1, any vector in one of the spaces is orthogonal
to any vector in the other. Therefore, the only vector in both spaces is
the zero vector; that is, the intersection RS(A) ∩ N (A) = {0}.
Activity 6.60 Prove this last statement.

6.6 Learning outcomes

You should now be able to:

� explain what is meant by linear independence and linear dependence
� determine whether a given set of vectors is linearly independent or

linearly dependent, and in the latter case, find a non-trivial linear
combination of the vectors which equals the zero vector

� explain what is meant by a basis
� find a basis for a linear span
� find a basis for the null space, range and row space of a matrix from

its reduced row echelon form
� explain what it means for a vector space to be finite-dimensional

and what is meant by the dimension of a finite-dimensional vector
space

� explain how rank and nullity are defined, and the relationship
between them (the rank–nullity theorem).

6.7 Comments on activities

Activity 6.4 Since 2p − q = 0, the vectors are linearly dependent.

Activity 6.11 As noted,

a1v1 + a2v2 + · · · + amvm = b1v1 + b2v2 + · · · + bmvm

if and only if

(a1 − b1)v1 + (a2 − b2)v2 + · · · + (am − bm)vm = 0.

But since the vectors are linearly independent, this can be true only if
a1 − b1 = 0, a2 − b2 = 0, and so on. That is, for each i , we must have
ai = bi .
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Activity 6.14 We need to find constants ai such that

a1

⎛⎝ 1
2
3

⎞⎠+ a2

⎛⎝ 2
1
5

⎞⎠+ a3

⎛⎝ 4
5

11

⎞⎠ =
⎛⎝ 0

0
0

⎞⎠ .

This is equivalent to the matrix equation Ax = 0, where A is the matrix
whose columns are these vectors. Row reducing A, we find

A =
⎛⎝ 1 2 4

2 1 5
3 5 11

⎞⎠ →
⎛⎝ 1 0 2

0 1 1
0 0 0

⎞⎠ .

Setting the non-leading variable equal to t , the general solution of
Ax = 0 is

x = t

⎛⎝−2
−1
1

⎞⎠ , t ∈ R.

Taking t = 1, then Ax = −2v1 − v2 + v3 = 0, which is a linear depen-
dence relation.

Activity 6.16 Looking at the components of the vector equation

a1

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠+ a2

⎛⎜⎜⎜⎝
0
1
...
0

⎞⎟⎟⎟⎠+ · · · + an

⎛⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠ ,

you can see that the positions of the ones and zeros in the vectors lead to
the equations a1 = 0 from the first component, a2 = 0 from the second
component and so on, so that ai = 0 (1 ≤ i ≤ n) is the only possible
solution and the vectors are linearly independent. (Alternatively, the
matrix A = (e1, e2, . . . , en) is the n × n identity matrix, so the only
solution to Az = 0 is the trivial solution, proving that the vectors are
linearly independent.)

Activity 6.19 The general solution to the system is

x =
⎛⎝ x

y
z

⎞⎠ = t

⎛⎝−3/2
−1/2

1

⎞⎠ , t ∈ R.

Taking t = −1, for instance, and multiplying out the equation Ax = 0,
we see that

3

2

⎛⎜⎜⎝
1
0

−1
0

⎞⎟⎟⎠+ 1

2

⎛⎜⎜⎝
1
2
9
2

⎞⎟⎟⎠−

⎛⎜⎜⎝
2
1
3
1

⎞⎟⎟⎠ = 0,
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and hence ⎛⎜⎜⎝
2
1
3
1

⎞⎟⎟⎠ = 3

2

⎛⎜⎜⎝
1
0

−1
0

⎞⎟⎟⎠+ 1

2

⎛⎜⎜⎝
1
2
9
2

⎞⎟⎟⎠ .

Activity 6.35 The vector y belongs to W since it satisfies the equation
of the plane, (5) + (1) − 3(2) = 0. For the coordinates in the basis B,
you need to solve the vector equation⎛⎝ 5

1
2

⎞⎠ = α

⎛⎝ 1
−1
0

⎞⎠+ β

⎛⎝ 0
3
1

⎞⎠
for constants α and β. Because of the positions of the zeros and ones
in this basis, this can be done by inspection. From row 1 (equating the
first components), we must have α = 5, and from row 3, we must have
β = 2. Checking the middle row, 1 = 5(−1) + 2(3). Therefore,

[y]B =
[

5
2

]
B

.

Activity 6.44 If S = {w1, w2, . . . , wr } is a linearly independent set of
vectors in W , then we can state that the only linear combination

a1w1 + a2w2 + · · · + ar wr = 0

is the trivial one, with all ai = 0. But all the vectors in W are also in V ,
and this statement still holds true, so S is a linearly independent set of
vectors in V .

Activity 6.47 The set S is linearly independent since v3 /∈ Lin{v1, v2},
and it contains precisely 3 = dim(R3) vectors.

Activity 6.50 Consider any linear combination of these vectors which
is equal to the zero vector,

a1

⎛⎜⎜⎜⎜⎜⎝
1
0

−3
0

−3

⎞⎟⎟⎟⎟⎟⎠+ a2

⎛⎜⎜⎜⎜⎜⎝
0
1
2
0
1

⎞⎟⎟⎟⎟⎟⎠+ a3

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
3

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ .

Clearly, the only solution is the trivial one, a1 = a2 = a3 = 0.
This will happen for any set of non-zero rows from the reduced

row echelon form of a matrix. Since the vectors arise as the non-zero
rows of a matrix in reduced row echelon form, each vector contains
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a leading one as it first non-zero component, and all the other vectors
have zeros in those positions. So in this example the equations relating
the first, second and fourth components (the positions of the leading
ones) tell us that all coefficients are zero and the vectors are linearly
independent.

Activity 6.59 A general solution of the system of equations Bx = 0 is

x = s1

⎛⎜⎜⎝
−1

2

−3
2

1
0

⎞⎟⎟⎠+ s2

⎛⎜⎜⎝
−1

2

−1
2

0
1

⎞⎟⎟⎠ = s1u1 + s2u2.

The set {u1, u2} is a basis of the null space of B, so dim(N (B)) = 2.
From the example, rank(B) = 2. The matrix B has n = 4 columns:

rank(B) + nullity(B) = 2 + 2 = 4 = n.

The basis vectors of the null space give the same linear dependence
relations between the column vectors as those given in the example.
Since Au1 = 0 and Au2 = 0,

Au1 = −1

2
c1 − 3

2
c2 + c3 = 0 and Au2 = −1

2
c1 − 1

2
c2 + c4 = 0.

Activity 6.60 Let A be an m × n matrix. If x ∈ RS(A), then 〈x, v〉 = 0
for all v ∈ N (A), and if x ∈ N (A), then 〈w, x〉 = 0 for all w ∈ RS(A).
Therefore, if x is in both, we must have 〈x, x〉 = ‖x‖2 = 0. But this
implies that x is the zero vector; that is, RS(A) ∩ N (A) = {0}.

6.8 Exercises

Exercise 6.1 Show that the vectors x1, x2, x3 given below are linearly
independent:

x1 =
⎛⎝ 2

1
−1

⎞⎠ , x2 =
⎛⎝ 3

4
6

⎞⎠ , x3 =
⎛⎝−2

3
2

⎞⎠ .

Express the vector

v =
⎛⎝−5

7
−2

⎞⎠
as a linear combination of them.
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Exercise 6.2 Let

x1 =
⎛⎝ 2

3
5

⎞⎠ , x2 =
⎛⎝ 1

1
2

⎞⎠ , v =
⎛⎝ a

b
c

⎞⎠ .

Find a vector x3 such that {x1, x2, x3} is a linearly independent set of
vectors.

Find a condition that a, b, c must satisfy for the set of vectors
{x1, x2, v} to be linearly dependent.

Exercise 6.3 Using the definition of linear independence, show that
any non-empty subset of a linearly independent set of vectors is linearly
independent.

Exercise 6.4 Let S = {v1, v2, . . . , vn} be a set of n vectors in Rn and let
A be the matrix whose columns are the vectors v1, v2, . . . , vn. Explain
why the set S is linearly independent if and only if |A| 
= 0.

Exercise 6.5 Show that the following vectors are linearly dependent by
finding a non-trivial linear combination of the vectors that equals the
zero vector. ⎛⎜⎜⎝

1
2
1
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0

−1
3
4

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
4

−11
5

−1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
9
2
1

−3

⎞⎟⎟⎠ .

Exercise 6.6 Prove that if n > m, then any set of n vectors in Rm is
linearly dependent.

Exercise 6.7 Let A be any matrix. Let v1 and v2 be two non-zero
vectors and suppose that Av1 = 2v1 and Av2 = 5v2. Prove that {v1, v2}
is linearly independent. (Hint: Assume α1v1 + α2v2 = 0. Multiply this
equation through by A to get a second equation for v1 and v2. Then
solve the two equations simultaneously.)

Can you generalise this result?

Exercise 6.8 Consider the sets

U =
⎧⎨⎩
⎛⎝−1

0
1

⎞⎠ ,

⎛⎝ 1
2
3

⎞⎠ ,

⎛⎝−1
2
5

⎞⎠⎫⎬⎭ , W =
⎧⎨⎩
⎛⎝−1

0
1

⎞⎠ ,

⎛⎝ 1
2
3

⎞⎠ ,

⎛⎝ 1
2
5

⎞⎠⎫⎬⎭ .

What subspace of R3 is Lin(U )? Lin(W )? Find a basis for each subspace
and show that one of them is a plane in R3. Find a Cartesian equation
for the plane.

Exercise 6.9 Write down a basis for the xz-plane in R3.
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Exercise 6.10 Let B be the set of vectors B = {v1, v2, v3}, where
v1 = (1, 1, 0)T, v2 = (−4, 0, 3)T, v3 = (3, 5, 1)T. Show that B is a basis
of R3.

Let w = (−1, 7, 5)T and e1 = (1, 0, 0)T. Find the coordinates of w
and e1 with respect to the basis B.

Exercise 6.11 Let V be a vector space with a basis B =
{v1, v2, . . . , vn}. Show that for any u, w ∈ V ,

[αu + βw]B = α[u]B + β[w]B .

Exercise 6.12 Consider the matrix

A =
⎛⎝ 1 2 −1 3

2 3 0 1
−4 −5 −2 3

⎞⎠ .

Find a basis of the row space of A, RS(A), and the column space, C S(A).
State why C S(A) is a plane in R3, and find a Cartesian equation of this
plane.

State the rank–nullity theorem (the dimension theorem for matri-
ces), ensuring that you define each term. Use it to determine the dimen-
sion of the null space, N (A).

For what real values of a is the vector

b(a) =
⎛⎝−1

a
a2

⎞⎠
in the range of A? Write down any vectors in R(A) of this form.

Exercise 6.13 A matrix A is said to have full column rank if and only
if the columns of A are linearly independent. If A is an m × k matrix
with full column rank, show that:

(1) AT A is a symmetric k × k matrix,
(2) AT A is invertible.

Then verify the above results for the matrix M =
⎛⎝ 1 −2

3 0
1 1

⎞⎠ .

Exercise 6.14 Let B be an m × k matrix whose row space, RS(B), is
a plane in R3 with Cartesian equation 4x − 5y + 3z = 0.

From the given information, can you determine either m or k for
the matrix B? If it is possible, do so.

Can you determine the null space of B? If so, write down a general
solution of Bx = 0.
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Exercise 6.15 Let S be the vector space of all infinite sequences of real
numbers. Let W be the subset which consists of sequences for which
all entries beyond the third are zero. Show that W is a subspace of S of
dimension 3.

6.9 Problems

Problem 6.1 Determine which of the following sets of vectors are
linearly independent.

L1 =
{(

1
2

)
,

(
1
3

)}
, L2 =

{(
1
2

)
,

(
1
3

)
,

(
4
5

)}
,

L3 =
{(

0
0

)
,

(
1
2

)}
, L4 =

⎧⎨⎩
⎛⎝ 1

2
0

⎞⎠ ,

⎛⎝ 2
7
0

⎞⎠ ,

⎛⎝ 3
5
0

⎞⎠⎫⎬⎭ ,

L5 =
⎧⎨⎩
⎛⎝ 1

2
0

⎞⎠ ,

⎛⎝ 3
0

−1

⎞⎠ ,

⎛⎝ 4
1
2

⎞⎠⎫⎬⎭ .

Problem 6.2 Which of the following sets of vectors in R4 are linearly
independent?

S1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
2
1
3

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
0

−1
2

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , S2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
2
1
3

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
0

−1
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
1
1
2

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ,

S3 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
2
1
3

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
0

−1
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
4
4
1
8

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ,

S4 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
2
1
3

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
0

−1
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
4
4
1
8

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
1
1
2

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Problem 6.3 Show that the following set of vectors is linearly
dependent

S = {v1, v2, v3, v4, v5} =
⎧⎨⎩
⎛⎝ 1

2
1

⎞⎠ ,

⎛⎝ 2
0

−1

⎞⎠ ,

⎛⎝ 4
4
1

⎞⎠ ,

⎛⎝ 1
1
1

⎞⎠ ,

⎛⎝ 3
5
0

⎞⎠⎫⎬⎭ .

Write down a largest subset W of S which is a linearly independent set
of vectors. Express any of the vectors which are in S but not in W as a
linear combination of the vectors in W .
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Problem 6.4 What does it mean to say that a set of vectors
{v1, v2, . . . , vn} is linearly dependent?

Given the following vectors

v1 =

⎛⎜⎜⎝
1
2
0

−1

⎞⎟⎟⎠ , v2 =

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠ , v3 =

⎛⎜⎜⎝
4
5
3
2

⎞⎟⎟⎠ , v4 =

⎛⎜⎜⎝
5
5
2
2

⎞⎟⎟⎠ ,

show that {v1, v2, v3, v4} is linearly dependent.
Is it possible to express v4 as a linear combination of the other

vectors? If so, do this. If not, explain why not. What about the vector
v3?

Problem 6.5 For each of the sets Si of vectors given below, find a basis
of the vector space Lin(Si ) and state its dimension. Describe geometri-
cally any sets Lin(Si ) which are proper subspaces of a Euclidean space
Rn, giving Cartesian equations for any lines and planes.

S1 =
{(

1
2

)
,

(
2
3

)}
, S2 =

{(
1

−1

)
,

(
0
0

)
,

(
2

−2

)
,

(−3
3

)}
,

S3 =
⎧⎨⎩
⎛⎝ 1

0
−1

⎞⎠ ,

⎛⎝ 2
1
3

⎞⎠ ,

⎛⎝ 1
2
9

⎞⎠⎫⎬⎭ ,

S4 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
2
1
3

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
0

−1
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
4
4
1
8

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
1
1
2

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Problem 6.6 Which of the following sets are a basis for R3? (State
reasons for your answers.)

S1 =
⎧⎨⎩
⎛⎝ 1

2
3

⎞⎠ ,

⎛⎝ 2
1
0

⎞⎠ ,

⎛⎝ 4
1
0

⎞⎠ ,

⎛⎝ 7
2
1

⎞⎠⎫⎬⎭ , S2 =
⎧⎨⎩
⎛⎝ 1

0
1

⎞⎠ ,

⎛⎝ 1
−1
1

⎞⎠⎫⎬⎭ ,

S3 =
⎧⎨⎩
⎛⎝ 2

1
1

⎞⎠ ,

⎛⎝ 1
2

−1

⎞⎠ ,

⎛⎝ 3
3
0

⎞⎠⎫⎬⎭ , S4 =
⎧⎨⎩
⎛⎝ 2

1
1

⎞⎠ ,

⎛⎝ 1
2

−1

⎞⎠ ,

⎛⎝ 3
3
1

⎞⎠⎫⎬⎭ .

Problem 6.7 Find the coordinates of the vector (1, 2, 1)T with respect
to each of the following bases for R3:

B1 =
⎧⎨⎩
⎛⎝ 1

0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠⎫⎬⎭ , B2 =
⎧⎨⎩
⎛⎝ 1

1
1

⎞⎠ ,

⎛⎝ 1
−1
0

⎞⎠ ,

⎛⎝ 2
−3
−3

⎞⎠⎫⎬⎭ .
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Problem 6.8 Find a basis for each of the following subspaces of R3.

(a) The plane x − 2y + z = 0;
(b) The yz-plane.

Problem 6.9 Prove that the set

H =
⎧⎨⎩
⎛⎝ 2t

t
3t

⎞⎠ : t ∈ R

⎫⎬⎭
is a subspace of R3.

Show that every vector w ∈ H is a unique linear combination of
the vectors

v1 =
⎛⎝ 1

0
−1

⎞⎠ and v2 =
⎛⎝ 0

1
5

⎞⎠ .

Is {v1, v2} a basis of the subspace H? If yes, state why. If no, write
down a basis of H . State the dimension of H .

Let G be the subspace G = Lin{v1, v2}. Is {v1, v2} a basis of G?
Why or why not?

State a geometric description of each of the subspaces H and G.
What is the relationship between them?

Problem 6.10 Find the general solution of each of the following
systems of equations in the form x = p + α1s1 + · · · + αn−r sn−r where
p is a particular solution of the system and {s1, . . . , sn−r } is a basis for
the null space of the coefficient matrix.

Ax = b1: Bx = d1:⎧⎪⎪⎨⎪⎪⎩
x1 + x2 + x3 + x4 = 4

2x1 + x3 − x4 = 2

2x2 + x3 + 3x4 = 6

⎧⎪⎪⎨⎪⎪⎩
x1 + 2x2 − x3 − x4 = 3

x1 − x2 − 2x3 − x4 = 1

2x1 + x2 − x3 = 3 .

Find the set of all b ∈ R3 such that Ax = b is consistent.
Find the set of all d ∈ R3 such that Bx = d is consistent.

Problem 6.11 Let

A =

⎛⎜⎜⎝
1 −2 1 1 2

−1 3 0 2 −2
0 1 1 3 4
1 2 5 13 5

⎞⎟⎟⎠ .

Find a basis for the range of A. Find a basis of the row space and the
null space of A. Verify the rank–nullity theorem for the matrix A.
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Problem 6.12 Find a basis of the row space, a basis of the range, and
a basis of the null space of the matrix

B =
⎛⎝ 1 2 1 3 0

0 1 1 1 −1
1 3 2 0 1

⎞⎠ .

Find the rank of B and verify the rank–nullity theorem.
Let b = c1 + c5, the sum of the first and last column of the matrix

B. Without solving the system, use the information you have obtained
to write down a general solution of the system of equations Bx = b.

Problem 6.13 Find the rank of the matrix

A =
⎛⎝ 1 0 1

1 1 2
0 −1 −1

⎞⎠ .

Find a basis of the row space and a basis of the column space of A.
Show that RS(A) and C S(A) are each planes in R3. Find Cartesian
equations for these planes and hence show that they are two different
subspaces.

Find the null space of A and verify the rank–nullity theorem. Show
that the basis vectors of the null space are orthogonal to the basis vectors
of the row space of A.

Without solving the equations, determine if the systems of equations
Ax = b1 and Ax = b2 are consistent, where

b1 =
⎛⎝ 1

−1
2

⎞⎠ and b2 =
⎛⎝ 2

1
3

⎞⎠ .

If the system is consistent, then find the general solution. If possible,
express each of b1 and b2 as a linear combination of the columns of A.

Problem 6.14 A portion of the matrix A and the reduced row echelon
form of A are shown below:

A =
⎛⎝ 1 4 ∗ ∗

2 −1 ∗ ∗
3 2 ∗ ∗

⎞⎠ → · · · →
⎛⎝ 1 0 −1 5

0 1 3 2
0 0 0 0

⎞⎠ .

Find a basis of the row space of A, RS(A), a basis of the range of A,
R(A), and a basis of the null space of A, N (A).

Let b = (9, 0, a)T for some a ∈ R. The matrix equation Ax = b
represents how many equations in how many unknowns? Find the
value of a for which the system of equations Ax = b is consistent.

Find, if possible, the missing columns of A.
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Problem 6.15 Let B be a 3 × 4 matrix whose null space is

N (B) =

⎧⎪⎪⎨⎪⎪⎩x = t

⎛⎜⎜⎝
1
2
3
4

⎞⎟⎟⎠
∣∣∣∣∣ t ∈ R

⎫⎪⎪⎬⎪⎪⎭ .

Determine the rank of B. Find the range of B, R(B).
Consider the row space of B, RS(B). Show that the vector v1 =

(4, 0, 0, −1)T is in RS(B). Extend {v1} to a basis of RS(B), and justify
that your set of vectors is a basis.



7

Linear transformations and
change of basis

We now turn our attention to special types of functions between vector
spaces known as linear transformations. We will look at the matrix
representations of linear transformations between Euclidean vector
spaces, and discuss the concept of similarity of matrices. These ideas
will then be employed to investigate change of basis and change of coor-
dinates. This material provides the fundamental theoretical underpin-
ning for the technique of diagonalisation, which has many applications,
as we shall see later.

7.1 Linear transformations

A function from one vector space V to a vector space W is a rule
which assigns to every vector v ∈ V a unique vector w ∈ W . If this
function between vector spaces is linear, then it is known as a linear
transformation, (or linear mapping or linear function).

Definition 7.1 (Linear transformation) Suppose that V and W are
vector spaces. A function T : V → W is linear if for all u, v ∈ V and
all α ∈ R:

1. T (u + v) = T (u) + T (v), and
2. T (αu) = αT (u).

A linear transformation is a linear function between vector spaces.

A linear transformation of a vector space V to itself, T : V → V is
often known as a linear operator.
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If T is linear, then for all u, v ∈ V and α, β ∈ R,

T (αu + βv) = αT (u) + βT (v).

This single condition implies the two in the definition, and is implied
by them.

Activity 7.2 Prove that this single condition is equivalent to the two of
the definition.

So a linear transformation maps linear combinations of vectors to the
same linear combinations of the image vectors. In this sense, it preserves
the ‘linearity’ of a vector space.

In particular, if T : V → W , then for 0 ∈ V , T (0) = 0 ∈ W . That
is, a linear transformation from V to W maps the zero vector in V to the
zero vector in W . This can be seen in a number of ways. For instance,
take any x ∈ V . Then T (0) = T (0x) = 0T (x) = 0.

7.1.1 Examples

Example 7.3 To get an idea of what a linear mapping might look like,
let us look first at R. What mappings F : R → R are linear?

The function F1(x) = px for any p ∈ R is a linear transformation,
since for any x, y ∈ R, α, β ∈ R, we have

F1(αx + βy) = p(αx + βy) = α(px) + β(py) = αF1(x) + βF1(y).

But neither of the functions F2(x) = px + q, (for p, q ∈ R, q 
= 0) or
F3(x) = x2 is linear.

Activity 7.4 Show this. Use a specific example of real numbers to show
that neither of these functions satisfies the property

T (x + y) = T (x) + T (y) for all x, y ∈ R.

Example 7.5 Suppose that A is an m × n matrix. Let T be the function
given by T (x) = Ax for x ∈ Rn. That is, T is simply multiplication
by A. Then T is a linear transformation, T : Rn → Rm . This is easily
checked, as follows: first,

T (u + v) = A(u + v) = Au + Av = T (u) + T (v),

and, second,

T (αu) = A(αu) = αAu = αT (u).
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So the two ‘linearity’ conditions are satisfied. We call T the linear
transformation corresponding to A, and sometimes denote it by TA to
identify it as such.

Example 7.6 (More complicated) Let us take V = Rn and take W
to be the vector space of all functions f : R → R (with pointwise
addition and scalar multiplication). Define a function T : Rn → W as
follows:

T (u) = T

⎛⎜⎜⎜⎝
u1

u2
...

un

⎞⎟⎟⎟⎠ = pu1,u2,...,un = pu,

where pu = pu1,u2,...,un is the polynomial function given by

pu1,u2,...,un (x) = u1x + u2x2 + u3x3 + · · · + unxn.

Then T is a linear transformation. To check this, we need to verify that

T (u + v) = T (u) + T (v) and T (αu) = αT (u).

Now, T (u + v) = pu+v, T (u) = pu, and T (v) = pv, so we need to check
that pu+v = pu + pv. This is in fact true, since, for all x ,

pu+v(x) = pu1+v1,...,un+vn

= (u1 + v1)x + · · · + (un + vn)xn

= (u1x + · · · + unxn) + (v1x + · · · + vnxn)

= pu(x) + pv(x)

= (pu + pv)(x).

The fact that for all x , pu+v(x) = (pu + pv)(x) means that the func-
tions pu+v and pu + pv are identical. The proof that T (αu) = αT (u) is
similar.

Activity 7.7 Do this. Prove that T (αu) = αT (u).

7.1.2 Linear transformations and matrices

In this section, we consider only linear transformations from Rn to Rm

for some m and n. But much of what we say can be extended to linear
transformations mapping from any finite-dimensional vector space to
any other finite-dimensional vector space.
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We have seen that any m × n matrix A defines a linear transformation
T : Rn → Rm given by T (v) = Av.

There is a reverse connection: for every linear transformation
T : Rn → Rm , there is a matrix A such that T (v) = Av. In this context,
we sometimes denote the matrix by AT in order to identify it as the
matrix corresponding to T . (Note that in the expression AT , T refers
to a linear transformation. This should not be confused with AT, the
transpose of the matrix A.)

Theorem 7.8 Suppose that T : Rn → Rm is a linear transformation.
Let {e1, e2, . . . , en} denote the standard basis of Rn and let A be the
matrix whose columns are the vectors T (e1), T (e2), . . . , T (en): that is,

A = (T (e1) T (e2) . . . T (en)).

Then, for every x ∈ Rn, T (x) = Ax.

Proof: Let x = (x1, x2, . . . , xn)T be any vector in Rn. Then⎛⎜⎜⎜⎝
x1

x2
...

xn

⎞⎟⎟⎟⎠ = x1

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠+ x2

⎛⎜⎜⎜⎝
0
1
...
0

⎞⎟⎟⎟⎠+ · · · + xn

⎛⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎠
= x1e1 + x2e2 + · · · + xnen.

Then by the linearity properties of T we have

T (x) = T (x1e1 + x2e2 + · · · + xnen)

= T (x1e1) + T (x2e2) + · · · + T (xnen)

= x1T (e1) + x2T (e2) + · · · + xnT (en).

But this is just a linear combination of the columns of A, so we have
(by Theorem 1.38),

T (x) = (T (e1) T (e2) . . . T (en))x = Ax,

exactly as we wanted. �

Thus, to each matrix A there corresponds a linear transformation TA,
and to each linear transformation T there corresponds a matrix AT .
Note that the matrix A we found was determined by using the standard
basis in both vector spaces; later in this chapter we will generalise this
to use other bases.
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Example 7.9 Let T : R3 → R3 be the linear transformation given by

T

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ x + y + z

x − y
x + 2y − 3z

⎞⎠ .

We can find the image of a vector, say u = (1, 2, 3)T, by sub-
stituting its components into the definition, so that, for example,
T (u) = (6, −1, −4)T.

To find the matrix of this linear transformation, we need the images
of the standard basis vectors. We have

T (e1) =
⎛⎝ 1

1
1

⎞⎠ , T (e2) =
⎛⎝ 1

−1
2

⎞⎠ , T (e3) =
⎛⎝ 1

0
−3

⎞⎠ .

The matrix representing T is A = (T (e1) T (e2) T (e3)), which is

A =
⎛⎝ 1 1 1

1 −1 0
1 2 −3

⎞⎠ .

Notice that the entries of the matrix A are just the coefficients of x, y, z
in the definition of T .

Activity 7.10 Calculate the matrix product Au for the vector u =
(1, 2, 3)T and the matrix A above, and observe that this has exactly
the same effect as substituting the components.

7.1.3 Linear transformations on R2

Linear transformations from R2 to R2 have the advantage that we can
‘observe’ them as mappings from one copy of the Cartesian plane to
another. For example, we can visualise a reflection in the x axis, which
is given by

T :
(

x
y

)
�→
(

x
−y

)
,

with matrix

A =
(

1 0
0 −1

)
.

We know that linear transformations preserve linear combinations, and
we can interpret this geometrically by saying that lines are mapped
to lines and parallelograms are mapped to parallelograms. Because
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x

y

1

(0, 0) 1

(a, c)
T (e1)

T (e2)(b, d)

θ

θ

Figure 7.1 A
rotation

we know that any linear transformation T : R2 → R2 corresponds to
multiplication by a matrix A, we can describe the effects of these on the
plane. As another example, consider the linear transformation

T (x) =
(

2 0
0 3

)(
x
y

)
.

This has the effect of stretching the plane away from the origin by a
factor of 2 in the x direction and by a factor of 3 in the y direction. If
we look at the effect of this linear transformation on the parallelogram
whose sides are the vectors e1 and e2 (a unit square), we find that the
image is a parallelogram (a rectangle) whose corresponding sides are
2e1 and 3e2. (In this sense, the linear transformation can be described
as an ‘enlargement’.)

What about a rotation? If we ‘rotate’ the plane about the origin
anticlockwise by an angle θ , the unit square with sides e1 and e2 will be
rotated. To find the matrix A which represents this linear transformation,
we need to find the images of the standard basis vectors e1 and e2. Let

T (e1) =
(

a
c

)
, T (e2) =

(
b
d

)
,

so that

A =
(

a b
c d

)
.

We want to determine the coordinates a, c and b, d. It is helpful to draw
a diagram of R2 such as Figure 7.1, with the images T (e1) and T (e2)
after rotation anticlockwise by an angle θ , 0 < θ < π

2 .
The vectors

T (e1) =
(

a
c

)
and T (e2) =

(
b
d

)
are orthogonal and each has length 1 since they are the rotated standard
basis vectors. We drop a perpendicular from the point (a, c) to the
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x axis, forming a right-angled triangle with angle θ at the origin. Since
the x coordinate of the rotated vector is a and the y coordinate is c, the
side opposite the angle θ has length c and the side adjacent to the angle
θ has length a. The hypotenuse of this triangle (which is the rotated
unit vector e1) has length equal to 1. We therefore have a = cos θ and
c = sin θ . Similarly, we can drop the perpendicular from the point (b, d)
to the x axis and observe that the angle opposite the x axis is equal to θ .
Again, basic trigonometry tells us that the x coordinate is b = − sin θ

(it has length sin θ and is in the negative x direction), and the height is
d = cos θ . Therefore,

A =
(

a b
c d

)
=
(

cos θ − sin θ

sin θ cos θ

)
is the matrix of rotation anticlockwise by an angle θ . Although we have
shown this using an angle 0 < θ < π

2 , the argument can be extended to
any angle θ .

Example 7.11 If θ = π
4 , then rotation anticlockwise by π

4 radians is
given by the matrix

B =
(

cos π
4 − sin π

4
sin π

4 cos π
4

)
=
( 1√

2
− 1√

2
1√
2

1√
2

)
.

Activity 7.12 Confirm this by sketching the vectors e1 and e2 and the
image vectors

T (e1) =
( 1√

2
1√
2

)
and T (e2) =

(− 1√
2

1√
2

)
.

What is the matrix of the linear transformation which is a rotation anti-
clockwise by π radians? What is the matrix of the linear transformation
which is a reflection in the line y = x? Think about what each of these
two transformations does to the standard basis vectors e1 and e2 and
find these matrices.

7.1.4 Identity and zero linear transformations

If V is a vector space, we can define a linear transformation T : V → V
by T (v) = v, called the identity linear transformation.

If V = Rn , the matrix of this linear transformation is I , the n × n
identity matrix.

There is also a linear transformation T : V → W defined by T (v) =
0, mapping every vector in V to the zero vector in W .
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If V = Rn and W = Rm , the matrix of this linear transformation is
an m × n matrix consisting entirely of zeros.

7.1.5 Composition and combinations of linear
transformations

The composition of linear transformations is again a linear transforma-
tion. If T : V → W and S : W → U , then ST is the linear transforma-
tion given by

ST (v) = S(T (v)) = S(w) = u,

where w = T (v). Note that ST means do T and then do S; that is,

V
T→ W

S→ U. (For ST , work from the inside, out.)
If T : Rn → Rm and S : Rm → Rp, then in terms of matrices,

ST (v) = S(T (v)) = S(AT v) = AS AT v.

That is, AST = AS AT ; the matrix of the composition is obtained by
matrix multiplication of the matrices of the linear transformations. The
order is important. Composition of linear transformations, like multi-
plication of matrices, is not commutative.

Activity 7.13 What are the sizes of the matrices AS and AT ? Show
that the sizes of these matrices indicate in what order they should be
multiplied (and therefore in what order the composition of the linear
transformations is written).

A linear combination of linear transformations is again a linear transfor-
mation. If S, T : V −→ W are linear transformations between the same
vector spaces, then S + T and αS, α ∈ R, are linear transformations,
and therefore so is αS + βT for any α, β ∈ R.

Activity 7.14 If you have any doubts about why any of the linear
transformations mentioned in this section are linear transformations,
try to prove that they are by showing the linearity conditions.

For example, the composition ST is a linear transformation because

ST (αx + βy) = S(T (αx + βy))

= S(αT (x) + βT (y))

= αS(T (x)) + βS(T (y))

= αST (x) + βST (y).
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7.1.6 Inverse linear transformations

If V and W are finite-dimensional vector spaces of the same dimension,
then the inverse of a linear transformation T : V → W is the linear
transformation T −1 : W → V such that

T −1(T (v)) = v.

In Rn, if T −1 exists, then its matrix satisfies

T −1(T (v)) = AT −1 AT v = I v.

That is, T −1 exists if and only if (AT )−1 exists, and (AT )−1 = AT −1 .

Activity 7.15 What result about inverse matrices is being used here in
order to make this conclusion?

Example 7.16 In R2, the inverse of rotation anticlockwise by an angle θ

is rotation clockwise by the same angle. Thinking of clockwise rotation
by θ as anticlockwise rotation by an angle −θ , the matrix of rotation
clockwise by θ is given by,

AT −1 =
(

cos(−θ ) − sin(−θ)
sin(−θ) cos(−θ )

)
=
(

cos θ sin θ

− sin θ cos θ

)
.

This is easily checked:

AT −1 AT =
(

cos θ sin θ

− sin θ cos θ

)(
cos θ − sin θ

sin θ cos θ

)
=
(

1 0
0 1

)
.

Activity 7.17 Check this by multiplying the matrices.

Example 7.18 Is there an inverse to the linear transformation in
Example 7.9,

T

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ x + y + z

x − y
x + 2y − 3z

⎞⎠ ?

We found

A =
⎛⎝ 1 1 1

1 −1 0
1 2 −3

⎞⎠ .

Since |A| = 9, the matrix is invertible, and T −1 is given by the matrix

A−1 = 1

9

⎛⎝ 3 5 1
3 −4 1
3 −1 −2

⎞⎠ .
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That is,

T −1

⎛⎝ u
v

w

⎞⎠ =
⎛⎜⎝

1
3u + 5

9v + 1
9w

1
3u − 4

9v + 1
9w

1
3u − 1

9v + −2
9w

⎞⎟⎠ .

Activity 7.19 Check that T −1(w) for w = T (u) = (6, −1, −4)T is
u = (1, 2, 3)T (see Example 7.9). Also check that T −1T = I .

7.1.7 Linear transformations from V to W

Theorem 7.20 Let V be a finite-dimensional vector space and let T
be a linear transformation from V to a vector space W . Then T is
completely determined by what it does to a basis of V .

Proof: Let dim(V ) = n, and let B = {v1, v2, . . . , vn} be a basis of V .
Then any v ∈ V can be uniquely expressed as a linear combination of
these basis vectors: v = a1v1 + a2v2 + · · · + anvn.

Then

T (v) = T (a1v1 + a2v2 + · · · + anvn)

= a1T (v1) + a2T (v2) + · · · + anT (vn).

That is, if v ∈ V is expressed as a linear combination of the basis vectors,
then the image T (v) is the same linear combination of the images of the
basis vectors. Therefore, if we know T on the basis vectors, we know it
for all v ∈ V . �

If both V and W are finite-dimensional vector spaces, then this result
allows us to find a matrix which corresponds to the linear transformation
T . The matrix will depend on the basis of V and the basis of W .
Suppose V has dim(V ) = n and basis B = {v1, v2, . . . , vn}, and that W
has dim(W ) = m and basis S = {w1, w2, . . . , wm}. Then the coordinate
vector of a vector v ∈ V is denoted by [v]B , and the coordinate vector of
a vector T (v) ∈ W is denoted [T (v)]S. By working with the coordinates
of these vectors (rather than the vectors themselves), we can find a
matrix such that [T (v)]S = A[v]B .

Using the result above we can write,

[T (v)]S = a1[T (v1)]S + a2[T (v2)]S + · · · + an[T (vn)]S

= ( [T (v1)]S [T (v2)]S . . . [T (vn)]S )[v]B,

where [v]B = ( a1, a2, · · · , an )T is the coordinate matrix of the vector
v in the basis B, and [T (vi )]S are the coordinates of the image vectors
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in the basis S (see Exercise 6.11). That is, A is the matrix whose
columns are the images T (vi ) expressed in the basis of W . Then we
have [T (v)]S = A[v]B .

7.2 Range and null space

7.2.1 Definitions of range and null space

Just as we have the range and null space of a matrix, so we have the
range and null space of a linear transformation, defined as follows:

Definition 7.21 (Range and null space) Suppose that T is a linear
transformation from a vector space V to a vector space W . Then the
range, R(T ), of T is

R(T ) = {T (v) | v ∈ V } ,

and the null space, N (T ), of T is

N (T ) = {v ∈ V | T (v) = 0},

where 0 denotes the zero vector of W .

The null space is also called the kernel, and may be denoted ker(T ) in
some texts.

The range and null space of a linear transformation T : V → W
are subspaces of W and V , respectively.

Activity 7.22 Prove this. Try this yourself before looking at the answer
to this activity.

Of course, for any m × n matrix, A, if T is the linear transformation
T (x) = Ax, then R(T ) = R(A) and N (T ) = N (A). The definitions of
the subspaces are the same since T : Rn → Rm and for all x ∈ Rn , if
T (x) = Ax, we have:

R(T ) = {T (x) | x ∈ Rn} = {Ax | x ∈ Rn} = R(A) ⊆ Rm,

and

N (T ) = {x ∈ Rn | T (x) = 0} = {x ∈ Rn | Ax = 0} = N (A) ⊆ Rn.
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Example 7.23 We find the null space and range of the linear transfor-
mation S : R2 → R4 given by

S
(

x
y

)
=

⎛⎜⎜⎝
x + y

x
x − y

y

⎞⎟⎟⎠ .

The matrix of the linear transformation is

AS =

⎛⎜⎜⎝
1 1
1 0
1 −1
0 1

⎞⎟⎟⎠ .

Observe that this matrix has rank 2 (by having two linearly independent
columns, or you could alternatively see this by putting it into row
echelon form), so that N (S) = {0}, the subspace of R2 consisting of
only the zero vector. This can also be seen directly from the fact that⎛⎜⎜⎝

x + y
x

x − y
y

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ ⇐⇒ x = 0, y = 0 ⇐⇒
(

x
y

)
=
(

0
0

)
.

The range, R(S), is the two-dimensional subspace of R4 with basis
given by the column vectors of AS .

7.2.2 Rank–nullity theorem for linear transformations

If V and W are both finite-dimensional, then so are R(T ) and N (T ),
and we refer to their dimensions as the rank and nullity of the linear
transformation, respectively.

Definition 7.24 (Rank and nullity of a linear transformation) The
rank of a linear transformation T is

rank(T ) = dim(R(T ))

and the nullity is

nullity(T ) = dim(N (T )).

As for matrices, there is a strong link between these two dimensions
known as the Rank–nullity theorem or the Dimension theorem for linear
transformations. Here we are concerned with subspaces of any vector
spaces V and W (not just Euclidean spaces).
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Theorem 7.25 (Rank–nullity theorem linear transformations)
Suppose that T is a linear transformation from the finite-dimensional
vector space V to the vector space W . Then

rank(T ) + nullity(T ) = dim(V ).

(Note that this result holds even if W is not finite-dimensional.)

Proof: Assume that dim(V ) = n and nullity(T ) = k. We need to show
that rank(T ) = n − k. Let {v1, v2, . . . , vk} be a basis of the null space,
N (T ). As N (T ) is a subspace of V , we can extend this basis to a basis
of V , {v1, v2, . . . , vk, vk+1, . . . , vn} (by Theorem 6.45). For any v ∈ V,

we have v = a1v1 + a2v2 + · · · + anvn. Then,

T (v) = a1T (v1) + · · · + ak T (vk) + ak+1T (vk+1) + · · · + anT (vn)

= a10 + · · · + ak0 + ak+1T (vk+1) + · · · + anT (vn)

= ak+1T (vk+1) + · · · + anT (vn),

since T (vi ) = 0 for i = 1, . . . , k (because vi ∈ N (A)). Hence the
vectors {T (vk+1), · · · , T (vn)} span the range, R(T ). If they are a basis
of R(T ), then rank(T ) = n − k. So it only remains to show that they
are linearly independent.

If there is a linear combination of the vectors equal to the zero
vector,

bk+1T (vk+1) + · · · + bnT (vn) = T (bk+1vk+1 + · · · + bnvn) = 0,

then the vector bk+1vk+1 + · · · + bnvn is in the null space of T , and can
be written as a linear combination of the basis vectors of N (T ),

bk+1vk+1 + · · · + bnvn = b1v1 + · · · + bkvk .

Rearranging, we have

b1v1 + · · · + bkvk − bk+1vk+1 − · · · − bnvn = 0.

But {v1, v2, . . . , vk, vk+1, . . . , vn} is a basis of V , and hence all coeffi-
cients bi must be 0. This shows that {T (vk+1), · · · , T (vn)} are linearly
independent and the theorem is proved. �

For an m × n matrix A, if T (x) = Ax, then T is a linear transforma-
tion from V = Rn to W = Rm , and we have rank(T ) = rank(A) and
nullity(T ) = nullity(A). So this theorem is the same as the earlier result
that

rank(A) + nullity(A) = n.

Here n is the dimension of Rn = V (which, of course, is the same as
the number of columns of A).
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Example 7.26 Is it possible to construct a linear transformation
T : R3 → R3 with

N (T ) =
⎧⎨⎩t

⎛⎝ 1
2
3

⎞⎠ : t ∈ R

⎫⎬⎭ , R(T ) = xy-plane?

A linear transformation T : R3 → R3 must satisfy the rank–nullity
theorem with n = 3:

nullity(T ) + rank(T ) = 3.

Since the dimension of the null space of T is 1 and the dimension of
R(T ) is 2, the rank–nullity theorem is satisfied, so at this stage, we
certainly can’t rule out the possibility that such a linear transformation
exists. (Of course, if it was not satisfied, we would know straight away
that we couldn’t have a linear transformation of the type suggested.)

To find a linear transformation T with N (T ) and R(T ) as above,
we construct a matrix AT , which must be 3 × 3 since T : R3 → R3.
Note that if R(AT ) = R(T ) is the xy-plane, then the column vectors
of AT must be linearly dependent and include a basis for this plane.
You can take any two linearly independent vectors in the xy-plane to
be the first two columns of the matrix, and the third column must be
a linear combination of the first two. The linear dependency condition
they must satisfy is revealed by the basis of the null space.

For example, we may take the first two column vectors to be the
standard basis vectors, c1 = e1, and c2 = e2. Then if v is the null space
basis vector, we must have AT v = 0. This means

AT v = ( c1 c2 c3 )

⎛⎝ 1
2
3

⎞⎠ = 1 c1 + 2 c2 + 3 c3 = 0.

Therefore, we must have c3 = −1
3 c1 − 2

3 c2. So one possible linear
transformation satisfying these conditions is given by the matrix

AT =
⎛⎝ 1 0 −1

3

0 1 −2
3

0 0 0

⎞⎠ .

7.3 Coordinate change

In this section, we shall limit our discussion to Rn for some n, but
much of what we say can be extended to any finite-dimensional vector
space V .
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Suppose that the vectors v1, v2, . . . , vn form a basis B for Rn. Then, as
we have seen, any x ∈ Rn can be written in exactly one way as a linear
combination,

x = α1v1 + α2v2 + · · · + αnvn,

of the vectors in the basis, and the vector

[x]B =

⎡⎢⎢⎢⎣
α1

α2
...

αn

⎤⎥⎥⎥⎦
B

is called the coordinate vector of x with respect to the basis B =
{v1, v2, . . . , vn}.

One very straightforward observation is that the coordinate vector
of any x ∈ Rn with respect to the standard basis is just x itself. This is
because if x = (x1, x2, . . . , xn)T, then

x = x1e1 + x2e2 + · · · + xnen.

What is less immediately obvious is how to find the coordinates of a
vector x with respect to a basis other than the standard one.

7.3.1 Change of coordinates from standard to basis B

To find the coordinates of a vector with respect to a basis B =
{v1, v2, . . . , vn}, we need to solve the system of linear equations

a1v1 + a2v2 + · · · + anvn = x,

which, in matrix form, is

x = (v1 v2 . . . vn)a

with a = (a1, a2, . . . , an)T = [x]B . In other words, if we let P be the
matrix whose columns are the basis vectors (in order),

P = (v1 v2 . . . vn),

then for any x ∈ Rn ,

x = P[x]B .
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The matrix P is invertible because its columns form a basis. So we can
also write

[x]B = P−1x.

Definition 7.27 (Transition matrix) If B = {v1, v2, . . . , vn} is a basis
of Rn , the matrix

P = (v1 v2 . . . vn),

whose columns are the basis vectors in B, is called the transition matrix
from B coordinates to standard coordinates. Then, the matrix P−1 is
the transition matrix from standard coordinates to coordinates in the
basis B.

In order to emphasise the connection of a transition matrix P with the
corresponding basis B, we will sometimes denote the matrix by PB .

Example 7.28 Let B be the following set of vectors of R3:

B =
⎧⎨⎩
⎛⎝ 1

2
−1

⎞⎠ ,

⎛⎝ 2
−1
4

⎞⎠ ,

⎛⎝ 3
2
1

⎞⎠⎫⎬⎭ .

To show that B is a basis, we can write the vectors as the columns of a
matrix P ,

P =
⎛⎝ 1 2 3

2 −1 2
−1 4 1

⎞⎠ ,

then evaluate the determinant. We have |P| = 4 
= 0 so B is a basis of
R3.

If we are given the B coordinates of a vector v, say

[v]B =
⎡⎣ 4

1
−5

⎤⎦
B

,

then we can find its standard coordinates either directly as a linear
combination of the basis vectors,

v = 4

⎛⎝ 1
2

−1

⎞⎠+
⎛⎝ 2

−1
4

⎞⎠− 5

⎛⎝ 3
2
1

⎞⎠ =
⎛⎝−9

−3
−5

⎞⎠ ,
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or by using the matrix P ,

v = P[v]B =
⎛⎝ 1 2 3

2 −1 2
−1 4 1

⎞⎠⎡⎣ 4
1

−5

⎤⎦
B

=
⎛⎝−9

−3
−5

⎞⎠ ,

which, of course, amounts to the same thing.
To find the B coordinates of a vector x, say x = (5, 7, −3)T, we

need to find constants a1, a2, a3 such that⎛⎝ 5
7

−3

⎞⎠ = a1

⎛⎝ 1
2

−1

⎞⎠+ a2

⎛⎝ 2
−1
4

⎞⎠+ a3

⎛⎝ 3
2
1

⎞⎠ .

We can do this either using Gaussian elimination to solve the system
Pa = x for a = (a1, a2, a3)T or by using the inverse matrix, P−1, to
find

[x]B = P−1x =
⎡⎣ 1

−1
2

⎤⎦
B

.

We can check the result as follows:

x = 1

⎛⎝ 1
2

−1

⎞⎠+ (−1)

⎛⎝ 2
−1
4

⎞⎠+ 2

⎛⎝ 3
2
1

⎞⎠ =
⎛⎝ 5

7
−3

⎞⎠ .

Activity 7.29 Check all the calculations in this example. Find P−1 and
use it to find [x]B .

Activity 7.30 Continuing with this example, what are the B coordinates
of the basis vectors

v1 =
⎛⎝ 1

2
−1

⎞⎠ , v2 =
⎛⎝ 2

−1
4

⎞⎠ , v3 =
⎛⎝ 3

2
1

⎞⎠ ?

7.3.2 Change of basis as a linear transformation

If P is the transition matrix from coordinates in a basis B of Rn to stan-
dard coordinates, then considered as the matrix of a linear transforma-
tion, T (x) = Px, the linear transformation actually maps the standard
basis vectors, ei , to the new basis vectors, vi . That is, T (ei ) = vi .

Example 7.31 Suppose we wish to change basis in R2 by a rotation of
the axes π

4 radians anticlockwise. What are the coordinates of a vector
with respect to this new basis, B = {v1, v2}?



7.3 Coordinate change 227

The matrix of the linear transformation which performs this rotation is
given by (

cos π
4 − sin π

4
sin π

4 cos π
4

)
=
( 1√

2
− 1√

2
1√
2

1√
2

)
,

and the column vectors of the matrix are the new basis vectors, v1 =
T (e1) and v2 = T (e2), since these are the images of the standard basis
vectors. So the matrix is also the transition matrix from B coordinates
to standard coordinates:

P =
( 1√

2
− 1√

2
1√
2

1√
2

)
,

and we have v = P[v]B . Then the coordinates of a vector with respect
to the new basis are given by [v]B = P−1v. The inverse of rotation
anticlockwise is rotation clockwise, so we have,

P−1 =
(

cos(−π
4 ) − sin(−π

4 )
sin(−π

4 ) cos(−π
4 )

)
=
(

cos π
4 sin π

4− sin π
4 cos π

4

)
=
( 1√

2
1√
2

− 1√
2

1√
2

)
.

Suppose we want the new coordinates of a vector, say x = (1, 1)T. Then
we have

[x]B = P−1x =
( 1√

2
1√
2

− 1√
2

1√
2

)(
1
1

)
=
[√

2
0

]
B

.

From a different viewpoint, we could have noticed that

x =
(

1
1

)
=

√
2

( 1√
2

1√
2

)
=

√
2 v1,

so that

[x]B =
[√

2
0

]
B

.

7.3.3 Change of coordinates from basis B to basis B ′

Given a basis B of Rn with transition matrix PB , and another basis B ′

with transition matrix PB ′ , how do we change from coordinates in the
basis B to coordinates in the basis B ′?

The answer is quite simple. First, we change from B coordinates to
standard coordinates using v = PB[v]B and then change from standard
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coordinates to B ′ coordinates using [v]B ′ = P−1
B ′ v. That is,

[v]B ′ = P−1
B ′ PB[v]B .

The matrix M = P−1
B ′ PB is the transition matrix from B coordinates to

B ′ coordinates.
In practice, the easiest way to obtain the matrix M is as the product

of the two transition matrices, M = P−1
B ′ PB . But let’s look more closely

at the matrix M . If the basis B is the set of vectors B = {v1, v2, . . . , vn},
then these are the columns of the transition matrix, PB = (v1 v2 . . . vn).
Looking closely at the columns of the product matrix,

M = P−1
B ′ PB = P−1

B ′ (v1 v2 . . . vn) = (P−1
B ′ v1 P−1

B ′ v2 . . . P−1
B ′vn

);

that is, each column of the matrix M is obtained by multiplying the
matrix P−1

B ′ by the corresponding column of PB . But P−1
B ′ vi is just the

B ′ coordinates of the vector vi , so the matrix M is given by

M = ([v1]B ′ [v2]B ′ . . . [vn]B ′).

We have therefore established the following result:

Theorem 7.32 If B and B ′ are two bases of Rn, with

B = {v1, v2, . . . , vn},
then the transition matrix from B coordinates to B ′ coordinates is given
by

M = ([v1]B ′ [v2]B ′ . . . [vn]B ′).

Activity 7.33 The above proof used the following fact about matrix
multiplication. If A is an m × n matrix and B is an n × p matrix with
column vectors b1, b2, . . . , bp, then the product AB is the m × p matrix
whose columns are Ab1, Ab2, . . . , Abp; that is,

AB = A(b1 b2 . . . bp) = (Ab1 Ab2 . . . Abp).

Why is this correct?

Example 7.34 Each of the sets of vectors

B =
{(

1
2

)
,

(−1
1

)}
, S =

{(
3
1

)
,

(
5
2

)}
is a basis of R2, since if

P =
(

1 −1
2 1

)
, Q =

(
3 5
1 2

)
,
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then their determinants, |P| = 3 and |Q| = 1, are non-zero. P is the
transition matrix from B coordinates to standard and Q is the transition
matrix from S coordinates to standard.

Suppose you are given a vector x ∈ R2 with

[x]B =
[

4
−1

]
B

.

How do you find the coordinates of x in the basis S? There are two
approaches you can take.

First, you can find the standard coordinates of x,

x = 4
(

1
2

)
−
(−1

1

)
=
(

1 −1
2 1

)(
4

−1

)
=
(

5
7

)
and then find the S coordinates using Q−1

[x]S = Q−1x =
(

2 −5
−1 3

)(
5
7

)
=
[−25

16

]
S
.

Alternatively, you can calculate the transition matrix M from B coor-
dinates to S coordinates. Using v = P[v]B and v = Q[v]S, we have
[v]S = Q−1 P[v]B , so

M = Q−1 P =
(

2 −5
−1 3

)(
1 −1
2 1

)
=
(−8 −7

5 4

)
.

Then

[x]S =
(−8 −7

5 4

)(
4

−1

)
=
[−25

16

]
S
.

Note that the columns of M are the S coordinates of the basis B vectors
(which would be another way to find M).

Activity 7.35 Check the calculations in this example. In particular,
check the S coordinates of the vector x, and check that the columns of
M are the basis B vectors in S coordinates.

7.4 Change of basis and similarity

7.4.1 Change of basis and linear transformations

We have already seen that if T is a linear transformation from Rn to
Rm , then there is a corresponding matrix A such that T (x) = Ax for all
x. The matrix A is given by

A = (T (e1) T (e2) . . . T (en)).
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This matrix is obtained using the standard basis in both Rn and in Rm .
Now suppose that B is a basis of Rn and B ′ a basis of Rm , and suppose
we want to know the coordinates [T (x)]B ′ of T (x) with respect to B ′,
given the coordinates [x]B of x with respect to B. Is there a matrix M
such that

[T (x)]B ′ = M[x]B

for all x? Indeed there is, as the following result shows.

Theorem 7.36 Suppose that B = {v1, . . . , vn} and B ′ = {v′
1, . . . , v′

m}
are bases of Rn and Rm and that T : Rn → Rm is a linear transforma-
tion. Let M = A[B,B ′] be the m × n matrix with the i th column equal to
[T (vi )]B ′ , the coordinate vector of T (vi ) with respect to the basis B ′.
Then for all x, [T (x)]B ′ = M[x]B.

The matrix M = A[B,B ′] is the matrix which represents T with respect
to the bases B and B ′.

Proof: In order to prove this theorem, let’s look at the stages of transition
which occur from changing basis from B to standard, performing the
linear transformation in standard coordinates and then changing to the
basis B ′.

Let A be the matrix representing T in standard coordinates, and
let PB and PB ′ be, respectively, the transition matrix from B coordi-
nates to standard coordinates in Rn and the transition matrix from B ′

coordinates to standard coordinates in Rm . (So PB is an n × n matrix
having the basis vectors of B as columns, and PB ′ is an m × m matrix
having the basis vectors of B ′ as columns.) Then we know that for any
x ∈ Rn, x = PB[x]B ; and, similarly, for any u ∈ Rm , u = PB ′[u]B ′ , so
[u]B ′ = P−1

B ′ u.
We want to find a matrix M such that [T (x)]B ′ = M[x]B . If we

start with a vector x in B coordinates, then x = PB[x]B will give us the
standard coordinates. We can then perform the linear transformation on
x using the matrix A,

T (x) = Ax = APB[x]B,

giving us the image vector T (x) in standard coordinates in Rm . To
obtain the B ′ coordinates of this vector, all we have to do is multiply on
the left by the matrix P−1

B ′ ; that is,

[T (x)]B ′ = P−1
B ′ T (x).

Then substituting what we found for T (x) in standard coordinates,

[T (x)]B ′ = P−1
B ′ APB[x]B .
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Since this is true for any x ∈ Rn , we conclude that

M = P−1
B ′ APB

is the matrix of the linear transformation in the new bases.
This, in fact, is the easiest way to calculate the matrix M . But

let’s take a closer look at the columns of M = P−1
B ′ APB . We have

PB = (v1 v2 . . . vn), so

APB = A(v1 v2 . . . vn) = (Av1 Av2 . . . Avn).

But Avi = T (vi ), so

APB = (T (v1) T (v2) . . . T (vn)).

Then M = P−1
B ′ APB , so

M = P−1
B ′ (T (v1) T (v2) . . . T (vn))

= (P−1
B ′ (T (v1)) P−1

B ′ (T (v2)) . . . P−1
B ′ (T (vn)));

that is, M = ([T (v1)]B ′ [T (v2)]B ′ . . . [T (vn)]B ′) and the theorem is
proved. �

Thus, if we change the basis from the standard bases of Rn and Rm , the
matrix representation of the linear transformation T changes.

7.4.2 Similarity

A particular case of this Theorem 7.36 is so important it is worth stating
separately. It corresponds to the case in which m = n and B ′ = B.

Theorem 7.37 Suppose that T : Rn → Rn is a linear transformation
and that B = {x1, x2, . . . , xn} is a basis of Rn. Let A be the matrix
corresponding to T in standard coordinates, so that T (x) = Ax. Let

P = (x1 x2 . . . xn)

be the matrix whose columns are the vectors of B. Then for all x ∈ Rn,

[T (x)]B = P−1 AP[x]B .

In other words, A[B,B] = P−1 AP is the matrix representing T in the
basis B. The relationship between the matrices A[B,B] and A is a central
one in the theory of linear algebra. The matrix A[B,B] performs the
same linear transformation as the matrix A, only A[B,B] describes it in
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terms of the basis B rather than in standard coordinates. This likeness
of effect inspires the following definition.

Definition 7.38 (Similarity) We say that the square matrix C is similar
to the matrix A if there is an invertible matrix P such that C = P−1 AP .

Note that ‘similar’ has a very precise meaning here: it doesn’t mean
that the matrices somehow ‘look like’ each other (as normal use of the
word similar would suggest), but that they represent the same linear
transformation in different bases.

Similarity defines an equivalence relation on matrices. Recall that an
equivalence relation satisfies three properties; it is reflexive, symmetric
and transitive (see Section 3.1.2). For similarity, this means that:

� a matrix A is similar to itself (reflexive),
� if C is similar to A, then A is similar to C (symmetric), and
� if D is similar to C , and C to A, then D is similar to A (transitive).

Activity 7.39 Prove these! (Note that we have purposely not used the
letter B here to denote a matrix, since we used it in the previous discus-
sion to denote a set of n vectors which form a basis of Rn .)

Because the relationship is symmetric, we usually just say that A and
C are similar matrices, meaning one is similar to the other, and we
can express this either as C = P−1 AP or A = Q−1C Q for invertible
matrices P and Q (in which case Q = P−1).

As we shall see in subsequent chapters, this relationship can be used
to great advantage if the new basis B is chosen carefully.

Let’s look at some examples to see why we might want to change
basis from standard coordinates to another basis of Rn.

Example 7.40 You may have seen graphs of conic sections, and you
may know, for example, that the set of points (x, y) ∈ R2 such that
x2 + y2 = 1 is a circle of radius one centered at the origin, and that,
similarly, the set of points x2 + 4y2 = 4 is an ellipse.

These equations are said to be in standard form and as such they
are easy to sketch. For example, to sketch a graph of the ellipse in R2,
all you need to do is note that if x = 0, then y = ±1, and if y = 0,

then x = ±2; mark these four points on a set of coordinates axes and
connect them in an ellipse (see Figure 7.2).

Suppose, however, we want to graph the set of points (x, y) ∈ R2

which satisfy the equation 5x2 + 5y2 − 6xy = 2. It turns out that this,
too, is an ellipse, but this is not obvious, and sketching the graph is
far from easy. So suppose we are told to do the following: change the
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2–2

–1

1

x

yFigure 7.2 The
ellipse
x2 + 4y2 = 4

basis in R2 by rotating the axes by π
4 radians anticlockwise, express the

equation in the new coordinates and then sketch it.
Let’s see what happens. The linear transformation which accom-

plishes this rotation has matrix

AT =
(

cos θ − sin θ

sin θ cos θ

)
=
( 1√

2
− 1√

2
1√
2

1√
2

)
= P,

where the columns of P are the new basis vectors. We’ll call the new
basis B and denote the new coordinates of a vector v by X and Y ; more
precisely, [v]B = (X, Y )T. Then,

v = P[v]B ⇐⇒
(

x
y

)
=
( 1√

2
− 1√

2
1√
2

1√
2

)(
X
Y

)
.

To see the effect of this change of basis, we can substitute

x = 1√
2

X − 1√
2

Y and y = 1√
2

X + 1√
2

Y

into the equation 5x2 + 5y2 − 6xy = 2 and collect terms. The result in
the new coordinates is the equation

X2 + 4Y 2 = 1.

Activity 7.41 Carry out the substitution for x and y to obtain the new
equation.

So how do we sketch this? The new coordinate axes are obtained from
the standard ones by rotating the plane by π

4 radians anticlockwise.
So we first sketch these new X, Y axes and then sketch X2 + 4Y 2 = 1
on the new axes as described above (by marking out the points on the
X axis where Y = 0, and the points on the Y axis where X = 0 and
connecting them in an ellipse). See Figure 7.3.

We will look at these ideas again later in Chapter 11. Now let’s look at
a different kind of example.
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y

x

Y X

1
2

–

1
2

–1

1

Figure 7.3 The
ellipse
5x2 +5y2−6xy = 2

Example 7.42 Suppose we are given the linear transformation
T : R2 → R2,

T
(

x
y

)
=
(

x + 3y
−x + 5y

)
and we are asked to describe the effect of this linear transformation
on the xy-plane. At this point there isn’t much we can say (other than
perhaps sketch a unit square and see what happens to it). So suppose
we are told to change the basis in R2 to a new basis

B = {v1v2} =
{(

1
1

)
,

(
3
1

)}
and then to find the matrix of the linear transformation in this basis.
Call this matrix C . We have just seen that C = P−1 AP, where A is the
matrix of the linear transformation in standard coordinates and P is the
transition matrix from B coordinates to standard:

A =
(

1 3
−1 5

)
, P =

(
1 3
1 1

)
.

Then

C = P−1 AP = 1

2

(−1 3
1 −1

)(
1 3

−1 5

)(
1 3
1 1

)
=
(

4 0
0 2

)
.

Activity 7.43 Check this calculation by multiplying the matrices.

So what does this tell us? The B coordinates of the B basis vectors are

[v1]B =
[

1
0

]
B

and [v2]B =
[

0
1

]
B

,

so in B coordinates the linear transformation can be described as a
stretch in the direction of v1 by a factor of 4 and a stretch in the
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direction of v2 by a factor of 2:

[T (v1)]B =
(

4 0
0 2

) [
1
0

]
B

=
[

4
0

]
B

= 4[v1]B,

and, similarly, [T (v2)]B = 2[v2]B . But the effect of T is the same no
matter what basis is being used to describe it; it is only the matrices
which change. So this statement must be true even in standard coordi-
nates; that is, we must have

Av1 = 4v1 and Av2 = 2v2.

Activity 7.44 Check this. Show that Av1 = 4v1 and Av2 = 2v2.

In each of these examples, we were told the basis to use in R2 in order to
solve the questions we posed. So you should now be asking a question:
‘How did we know which basis would work for each of these examples?’
We shall begin to discover the answer in the next chapter.

7.5 Learning outcomes

You should now be able to:

� explain what is meant by a linear transformation and be able to prove
a given mapping is linear

� explain what is meant by the range and null space, and rank and
nullity of a linear transformation

� explain the rank–nullity theorem (the dimension theorem) for linear
transformations and be able to apply it

� explain the two-way relationship between matrices and linear trans-
formations

� find the matrix representation of a transformation with respect to
two given bases

� change between different bases of a vector space
� explain what it means to say that two square matrices are similar.

7.6 Comments on activities

Activity 7.2 To show the condition is equivalent to the other two, we
need to prove two things: first, that the two conditions imply this one
and, second, that this single condition implies the other two. So suppose
the two conditions of the definition hold and suppose that u, v ∈ V
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and α, β ∈ R. Then we have T (αu) = αT (u) and T (βv) = βT (v), by
property 2, and, by property 1, we then have

T (αu + βv) = T (αu) + T (βv) = αT (u) + βT (v),

as required. On the other hand, suppose that for all u, v ∈ V and α, β ∈
R, we have T (αu + βv) = αT (u) + βT (v). Then property 1 follows
on taking α = β = 1 and property 2 follows on taking β = 0.

Activity 7.4 You just need to use one specific example to show this. For
example, let x = 3 and y = 4. Then

F2(3 + 4) = 7p + q 
= F2(3) + F2(4) = (3p + q) + (4p + q)

= 7p + 2q

since q 
= 0. Similarly, F3(3 + 4) = 49 but F3(3) + F3(4) = 25, so F3

is not linear. (Of course, you can conclude F2 is not linear since F2(0) =
q 
= 0.)

Activity 7.7 T (αu) = pαu, and T (u) = pu, so we need to check that
pαu = αpu. Now, for all x ,

pαu(x) = pαu1,αu2,...,αun (x)

= (αu1)x + (αu2)x2 + · · · + (αun)xn

= α(u1x + u2x2 + · · · + unxn)

= αpu(x),

as required.

Activity 7.12 Rotation by π radians is given by the matrix A below,
whereas reflection in the line y = x is given by the matrix C :

A =
(−1 0

0 −1

)
, C =

(
0 1
1 0

)
.

Activity 7.13 Since AT is m × n and AS is p × m, the matrices can
be multiplied in the order AS AT and not necessarily in the other order,
unless p = n. Therefore, the composite linear transformation ST is
defined. But, in any case, you should still remember that this means:
first do T and then do S.

Activity 7.15 The result that if AB = I , then A = B−1 and B = A−1

(Theorem 3.12).
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Activity 7.19 You can check that AA−1 = I , or you can substitute
u = x + y + z, v = x − y, and w = x + 2y − 3z into the formula for
T −1 to see that you get back the vector (x, y, z)T.

Activity 7.22 This is very similar to the proofs in Chapter 5 that, for a
matrix A, R(A) and N (A) are subspaces.

First, we show R(T ) is a subspace of W . Note that it is non-empty
since T (0) = 0 and hence it contains 0. (The fact that T (0) = 0 can
be seen in a number of ways. For instance, take any x ∈ V . Then
T (0) = T (0x) = 0T (x) = 0.) We need to show that if u, v ∈ R(T ), then
u + v ∈ R(T ), and, for any α ∈ R, αv ∈ R(T ). Suppose u, v ∈ R(T ).
Then for some y1, y2 ∈ V , u = T (y1), v = T (y2). Now,

u + v = T (y1) + T (y2) = T (y1 + y2),

and so u + v ∈ R(T ). Next,

αv = α(T (y1)) = T (αy1),

so αv ∈ R(A).
Now consider N (T ). It is non-empty because the fact that T (0) =

0 shows 0 ∈ N (T ). Suppose u, v ∈ N (A) and α ∈ R. Then to show
u + v ∈ N (T ) and αu ∈ N (T ), we must show that T (u + v) = 0 and
T (αu) = 0. We have

T (u + v) = T (u) + T (v) = 0 + 0 = 0

and

T (αu) = α(T (u)) = α0 = 0,

so we have shown what we needed.

Activity 7.29 Once you have found P−1, check that it is correct; check
that P P−1 = I . We have

[x]B = P−1x = 1

4

⎛⎝−9 10 7
−4 4 4
7 −6 −5

⎞⎠⎛⎝ 5
7

−3

⎞⎠ .

Activity 7.30 The B coordinates are

[v1]B =
⎡⎣ 1

0
0

⎤⎦
B

, [v2]B =
⎡⎣ 0

1
0

⎤⎦
B

, [v3]B =
⎡⎣ 0

0
1

⎤⎦
B



238 Linear transformations and change of basis

since, for example, v1 = 1v1 + 0v2 + 0v3. This emphasises the fact
that the order of the vectors in B = {v1, v2, v3} is important, and that it
must be the same order for the columns of the matrix P .

Activity 7.33 This is just how matrix multiplication works. For example,
let’s look closely at the first column, c1, of the product matrix.⎛⎜⎜⎜⎝

a11 · · · a1n

a21 · · · a2n
...

. . .
...

am1 · · · amn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

b11 · · · b1p

b21 · · · b2p
...

. . .
...

bnp · · · bnn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
c11 · · · · · ·
c21 · · · · · ·
...

. . . . . .
cm1 · · · · · ·

⎞⎟⎟⎟⎠ .

↑
b1

↑
c1

Each entry ci1 of column 1 of the product is obtained by taking the
inner product of the i th row of A (regarded as a vector) with column 1
of B, so ci1 is the same as the i th entry of Ab1. This is true for any of
the columns of AB, so that AB = (Ab1, Ab2, . . . , Abp).

Activity 7.35 We have, for x,

−25
(

3
1

)
+ 16

(
5
2

)
=
(

5
7

)
so [x]S =

[−25
16

]
S
,

and for the basis B vectors,

−8
(

3
1

)
+ 5

(
5
2

)
=
(

1
2

)
and − 7

(
3
1

)
+ 4

(
5
2

)
=
(−1

1

)
,

so these are the correct coordinates in the basis S. You could also check
all of these by using [v]S = Q−1v.

Activity 7.39 Let I denote the n × n identity matrix. Then A = I −1 AI ,
which shows that A is similar to itself.

If C is similar to A, then there is an invertible matrix P such that
C = P−1 AP . But then A = PC P−1 = (P−1)C P−1, so A is similar to
C .

If D is similar to C, then there is an invertible matrix Q such that
D = Q−1C Q. If C is similar to A, then there is an invertible matrix P
such that C = P−1 AP . Then

D = Q−1C Q = Q−1 P−1 AP Q = (P Q)−1 A(P Q),

so D is similar to A.
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Activity 7.44 We have

Av1 =
(

1 3
−1 5

)(
1
1

)
=
(

4
4

)
= 4v1,

Av2 =
(

1 3
−1 5

)(
3
1

)
=
(

6
2

)
= 2v2.

7.7 Exercises

Exercise 7.1 Find bases for the null space and range of the linear
transformation T : R3 → R3 given by

T

⎛⎝ x1

x2

x3

⎞⎠ =
⎛⎝ x1 + x2 + 2x3

x1 + x3

2x1 + x2 + 3x3

⎞⎠ .

Verify the rank–nullity theorem. Is T invertible?

Exercise 7.2 Let S and T be the linear transformations from R2 to R2

given by the matrices

AS =
(

0 1
1 0

)
, AT =

(
0 1

−1 0

)
.

Sketch the vectors e1 and e2 in the xy-plane, and sketch the unit square.
Describe the effect of S in words, and illustrate it using the unit square,
by adding the images T (e1) and T (e2) to your sketch (and filling in the
image of the unit square). Do the same for the linear transformation T .

Now consider the composed linear transformations ST and T S.
Illustrate the effect of ST and T S using the unit square (by first per-
forming one linear transformation and then the other). Then calculate
their matrices to check that ST 
= T S.

You should also check that your matrix for ST matches the images
ST (e1) and ST (e2) in your sketch, and do the same for T S.

Exercise 7.3 Consider the vectors

v1 =
⎛⎝ 1

0
1

⎞⎠ , v2 =
⎛⎝−1

1
2

⎞⎠ , v3 =
⎛⎝ 0

1
5

⎞⎠ and u =
⎛⎝ 1

2
3

⎞⎠ .

Show that B = {v1, v2, v3} is a basis of R3. Find the B coordinates of
u and hence express u as a linear combination of v1, v2, v3.

A linear transformation S : R3 → R3 is known to have the
following effect

S(v1) = e1 S(v2) = e2 S(v3) = e3,



240 Linear transformations and change of basis

where e1, e2, e3, are the standard basis vectors in R3. Using properties
of linear transformations, find S(u).

Find, if possible, the null space of S and the range of S.
Write down the corresponding matrix AS.

Exercise 7.4 Show that the rank–nullity theorem for linear transfor-
mations does not rule out the possibility that there exists a linear trans-
formation T : R3 → R2, whose null space, N (T ), consists of vectors
x = (x, y, z)T ∈ R3 with x = y = z and whose range, R(T ), is R2.

Suppose, further, that we require that T maps e1, e2 ∈ R3 to the
standard basis vectors in R2. Find a matrix AT such that the linear
transformation T (x) = AT x is as required. Write down an expression
for T (x) as a vector in R2 in terms of x, y, z.

Exercise 7.5 If S and T are the linear transformations given in the
previous two exercises, decide which composed linear transformation,
ST or T S, is defined, and find its corresponding matrix.

Exercise 7.6 Let {e1, e2, e3, e4} be the standard basis of R4, and
let v1, v2, v3, x be the following vectors in R3 (where x, y, z are
constants):

v1 =
⎛⎝ 1

0
−1

⎞⎠ , v2 =
⎛⎝ 2

1
2

⎞⎠ , v3 =
⎛⎝ 5

1
−1

⎞⎠ , x =
⎛⎝ x

y
z

⎞⎠ .

Let T be a linear transformation, T : R4 → R3, given by

T (e1) = v1, T (e2) = v2, T (e3) = v3, T (e4) = x.

(i) Suppose the vector x is such that the linear transformation T has

dim(R(T )) = dim(N (T )).

Write down a condition that the components of x must satisfy for
this to happen. Find a basis of R(T ) in this case.

(ii) Suppose the vector x is such that the linear transformation has

dim(N (T )) = 1.

Write down a condition that the components of x must satisfy for
this to happen. Find a basis of N (T ) in this case.

Exercise 7.7 Determine for what values of the constant λ, the vectors

v1 =
⎛⎝ 1

3
−5

⎞⎠ , v2 =
⎛⎝ 1

−1
1

⎞⎠ , v3 =
⎛⎝ 2

0
λ

⎞⎠
form a basis of R3.
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Let b = (2, 0, 1)T and s = (2, 0, 3)T. Deduce that each of the sets

B = {v1, v2, b} and S = {v1, v2, s}
is a basis of R3. Find the transition matrix P from S coordinates to B
coordinates.

If [w]S =
⎡⎣ 1

2
2

⎤⎦
S

, find [w]B .

Exercise 7.8 Consider the plane W in R3,

W =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ x − 2y + 3z = 0

⎫⎬⎭ .

Show that each of the sets

S =
⎧⎨⎩
⎛⎝ 2

1
0

⎞⎠ ,

⎛⎝−3
0
1

⎞⎠⎫⎬⎭ B =
⎧⎨⎩
⎛⎝−1

1
1

⎞⎠ ,

⎛⎝ 1
2
1

⎞⎠⎫⎬⎭
is a basis of W .

Show that the vector v = (5, 7, 3)T is in W and find its coordinates,
[v]S, in the basis S.

Find a transition matrix M from coordinates in the basis B to
coordinate in the basis S; that is,

[x]S = M[x]B .

Use this to find [v]B for the vector v = (5, 7, 3)T and check your answer.

Exercise 7.9 Suppose that T : R2 → R3 is the linear transformation
given by

T
(

x1

x2

)
=
⎛⎝ x2

−5x1 + 13x2

−7x1 + 16x2

⎞⎠ .

Find the matrix A[B,B ′] of T with respect to the bases

B =
{(

3
1

)
,

(
5
2

)}
and B ′ =

⎧⎨⎩
⎛⎝ 1

0
−1

⎞⎠ ,

⎛⎝−1
2
2

⎞⎠ ,

⎛⎝ 0
1
2

⎞⎠⎫⎬⎭ .

Exercise 7.10 (For readers who have studied calculus) Consider the
vector space F of functions f : R → R with pointwise addition and
scalar multiplication. The symbol C∞(R) denotes the set of all functions
with continuous derivatives of all orders. Examples of such functions
are polynomials, ex , cos x , sin x . Show that C∞(R) is a subspace of
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F . Show also that differentiation, D : f → f ′, is a linear operator on
C∞(R).

7.8 Problems

Problem 7.1 Suppose T and S are linear transformations with respec-
tive matrices:

AT =
( 1√

2
− 1√

2
1√
2

1√
2

)
, AS =

(−1 0
0 1

)
.

(a) Sketch the effects of T and S on the standard basis, and hence on
the unit square with sides e1, e2. Describe T and S in words.

(b) Illustrate ST and T S using the unit square. Then calculate their
matrices to check that ST 
= T S.

Problem 7.2 Consider the vectors

v1 =
⎛⎝ 1

0
1

⎞⎠ , v2 =
⎛⎝ 1

1
3

⎞⎠ , v3 =
⎛⎝ 0

0
1

⎞⎠ ,

w1 =
⎛⎝ 1

1
1

⎞⎠ , w2 =
⎛⎝ 1

−1
0

⎞⎠ , w3 =
⎛⎝ 0

1
−1

⎞⎠ .

(a) Show that each of the sets B = {v1, v2, v3} and B̂ = {w1, w2, w3}
is a basis of R3.

(b) Write down the matrix AT of the linear transformation T given
by T (e1) = v1, T (e2) = v2, T (e3) = v3, where {e1, e2, e3} ⊂ R3

is the standard basis.
Express T (x) for x = (x, y, z)T as a vector in R3 (in terms of x, y
and z).

(c) Write down the matrix AS of the linear transformation S given
by S(v1) = e1, S(v2) = e2, S(v3) = e3. What is the relationship
between S and T ?

(d) Write down the matrix AR of the linear transformation R given by
R(e1) = w1, R(e2) = w2, R(e3) = w3.

(e) Is RS defined? What does this linear transformation do to v1, v2

and v3? Find the matrix ARS and use it to check your answer.

Problem 7.3 For each of the following linear transformations, find a
basis for the null space of T , N (T ), and a basis for the range of T ,
R(T ). Verify the rank–nullity theorem in each case. If any of the linear
transformations are invertible, find the inverse, T −1.
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(a) T : R2 → R3 given by T
(

x
y

)
=
⎛⎝ x + 2y

0
0

⎞⎠.

(b) T : R3 → R3 given by T

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ x + y + z

y + z
z

⎞⎠.

(c) T : R3 → R3 given by T

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 1 1 0

0 1 1
−1 0 1

⎞⎠⎛⎝ x
y
z

⎞⎠.

Problem 7.4 Consider the vectors

v1 =

⎛⎜⎜⎝
1
2
0

−1

⎞⎟⎟⎠ , v2 =

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠ , v3 =

⎛⎜⎜⎝
4
5
3
2

⎞⎟⎟⎠ , w =

⎛⎜⎜⎝
5
5
2
2

⎞⎟⎟⎠ .

Let {e1, e2, e3} be the standard basis in R3 and let T : R3 → R4 be the
linear transformation defined by

T (e1) = v1, T (e2) = v2, T (e3) = v3.

Write down the matrix AT such that T (x) = AT x.
What is the dimension of R(T ), the range of T ? Is the vector w in

R(T )? Justify your answers.
State the rank–nullity theorem for linear transformations and use it

to determine the dimension of the null space of T , N (T ).
Find a basis of N (T ).

Problem 7.5 If any of the linear transformations Ti given below can
be defined, write down a matrix ATi such that Ti (x) = ATi x. Otherwise,
state why Ti is not defined.

T1 : R3 → R2, where the null space of T1 is the x axis and the range of
T1 is the line y = x .
T2 : R2 → R3, such that N (T2) = {0} and

R(T2) = Lin

⎧⎨⎩
⎛⎝ 1

0
1

⎞⎠ ,

⎛⎝ 1
1
1

⎞⎠ ,

⎛⎝ 2
1
2

⎞⎠⎫⎬⎭ .

T3 : R2 → R3, where the null space of T3 is the line y = 2x and the
range of T3 is the line

−x

4
= y

5
= z.
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Problem 7.6 Let V and W be the subspaces

V = Lin

⎧⎨⎩
⎛⎝ 1

0
−1

⎞⎠ ,

⎛⎝ 1
−1
0

⎞⎠⎫⎬⎭ ⊂ R3,

W = Lin

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
3
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−2
5
0
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ⊂ R4.

Consider the possibility of a linear transformation T and a linear trans-
formation S such that

T : Ra → Rb with N (T ) = V and R(T ) = W ;

S : Rc → Rd with N (S) = W and R(S) = V .

Show that one of these, S or T , cannot exist. Then find a matrix AS

or AT representing the other linear transformation (with respect to the
standard basis in each Euclidean space).

Check your answer by row reducing the matrix and finding the null
space and range of the linear transformation.

Problem 7.7 Consider the linear transformations T : R2 → R3 and
S : R3 → R3 with matrices

AT =
⎛⎝ 1 −3

−2 6
−1 3

⎞⎠ , AS =
⎛⎝ 1 0 1

−1 1 0
0 2 1

⎞⎠ .

Find the null space of T , N (T ), and the range of T , R(T ). Describe
each subspace or write down a basis. Do the same for the nullspace of
S, N (S), and the range of S, R(S).

Which linear transformation is defined: ST or T S?
Deduce the null space of the composed linear transformation.
Use the rank–nullity theorem to find the dimension of the range of

the composed linear transformation.

Problem 7.8 Let

A =
⎛⎝ 5 9 −1 15

−3 1 7 −4
1 2 0 3

⎞⎠ , d =
⎛⎝ 4

4
1

⎞⎠ .

(a) Let T denote the linear transformation T (x) = Ax. Find a basis of
the null space of T , N (T ). Find the range of T , R(T ). Show that
d ∈ R(T ). Find all vectors x such that T (x) = d.
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(b) Let S be a linear transformation, S : R3 → R2, such that the range
of S is R2 and the null space of S is the subspace:

N (S) = {x | x = td, t ∈ R},
where d is the vector given above.

Consider the composition ST of linear transformations S and
T . Deduce the range of ST from the ranges of T and S. Then use
the rank–nullity theorem to determine the dimension of N (ST ),
the null space of ST .

Find a basis of N (ST ).

Problem 7.9 Let c1, c2, c3 denote the columns of the matrix P , where

P =
⎛⎝ 1 0 1

1 1 2
3 −2 4

⎞⎠ .

Find the determinant of P . Why can you deduce that the set B =
{c1, c2, c3} is a basis of R3?

If w = (1, 1, 0)T in standard coordinates, find the coordinates of w
in the basis B, [w]B .

Find the vector v in standard coordinates if [v]B =
⎡⎣ 6

−1
−2

⎤⎦
B

.

Problem 7.10 Show that each of the following sets B and B̂ is a basis
of R3:

B =
⎧⎨⎩
⎛⎝ 1

0
1

⎞⎠,

⎛⎝ 1
1
3

⎞⎠,

⎛⎝ 0
0
1

⎞⎠⎫⎬⎭ and B̂ =
⎧⎨⎩
⎛⎝ 1

1
1

⎞⎠,

⎛⎝ 1
−1
0

⎞⎠,

⎛⎝ 0
1

−1

⎞⎠⎫⎬⎭ .

Write down the transition matrix P from B coordinates to standard
coordinates. Write down the transition matrix Q from B̂ coordinates to
standard coordinates.

Find the transition matrix from B̂ coordinates to B coordinates.

If [x]B̂ =
⎡⎣ 2

1
3

⎤⎦
B̂

, find [x]B .

Problem 7.11

(a) Change the basis in R2 by a rotation of the axes through an angle
of π/6 clockwise: First write down the matrix of the linear trans-
formation which accomplishes this rotation and then write down
the new basis vectors, v1 and v2 (which are the images of e1 and
e2).
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Let B = {v1, v2} be the new basis. Write down the transition
matrix P from B coordinates to standard coordinates.

(b) The curve C is given in standard coordinates, x, y, by the equation
3x2 + 2

√
3xy + 5y2 = 6. Find the equation of the curve in the

new B coordinates, (X, Y ).
Use this information to sketch the curve C in the xy-plane.

Problem 7.12 Suppose

M =
{(

2
1

)
,

(−1
1

)}
, v =

(−1
2

)
, T

(
x
y

)
=
(

7x − 2y
−x + 8y

)
.

(a) Show that M is a basis of R2. Write down the transition matrix
from M coordinates to standard coordinates. Find [v]M , the M
coordinates of the vector v.

(b) Write down the matrix A of the linear transformation

T : R2 → R2

with respect to the standard basis.
Find the matrix of T in M coordinates. Call it D.
Describe geometrically the effect of the transformation T as a map
from R2 → R2.

(c) Find the image of [v]M using the matrix D.
Check your answer using standard coordinates.
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Diagonalisation

One of the most useful techniques in applications of matrices and linear
algebra is diagonalisation. This relies on the topic of eigenvalues and
eigenvectors, and is related to change of basis. We will learn how to find
eigenvalues and eigenvectors of an n × n matrix, how to diagonalise a
matrix when it is possible to do so and also how to recognise when it
is not possible. We shall see in the next chapter how useful a technique
diagonalisation is.

All matrices in this chapter are square n × n matrices with real
entries, so all vectors will be in Rn for some n.

8.1 Eigenvalues and eigenvectors

8.1.1 Definition of eigenvalues and eigenvectors

The first important ideas we need are those of eigenvalues and their
corresponding eigenvectors.

Definition 8.1 Suppose that A is a square matrix. The number λ is said
to be an eigenvalue of A if for some non-zero vector x,

Ax = λx.

Any non-zero vector x for which this equation holds is called an eigen-
vector for eigenvalue λ or an eigenvector of A corresponding to eigen-
value λ.

8.1.2 Finding eigenvalues and eigenvectors

To determine whether λ is an eigenvalue of A, we need to determine
whether there are any non-zero solutions x to the matrix equation
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Ax = λx. Note that the matrix equation Ax = λx is not of the stan-
dard form, since the right-hand side is not a fixed vector b, but depends
explicitly on x. However, we can rewrite it in standard form. Note that
λx = λI x, where I is, as usual, the identity matrix. So, the equation
is equivalent to Ax = λI x, or Ax − λI x = 0, which is equivalent to
(A − λI )x = 0.

Now, a square linear system Bx = 0 has solutions other than x = 0
precisely when |B| = 0. Therefore, taking B = A − λI , λ is an eigen-
value if and only if the determinant of the matrix A − λI is zero. This
determinant, p(λ) = |A − λI | is a polynomial of degree n in the vari-
able λ.

Definition 8.2 (Characteristic polynomial and equation) The poly-
nomial |A − λI | is known as the characteristic polynomial of A, and
the equation |A − λI | = 0 is called the characteristic equation of A.

To find the eigenvalues, we solve the characteristic equation |A − λI | =
0. Let us illustrate with a 2 × 2 example.

Example 8.3 Let

A =
(

7 −15
2 −4

)
.

Then

A − λI =
(

7 −15
2 −4

)
− λ

(
1 0
0 1

)
=
(

7 − λ −15
2 −4 − λ

)
and the characteristic polynomial is

|A − λI | =
∣∣∣∣ 7 − λ −15

2 −4 − λ

∣∣∣∣
= (7 − λ)(−4 − λ) + 30

= λ2 − 3λ − 28 + 30

= λ2 − 3λ + 2.

So the eigenvalues are the solutions of λ2 − 3λ + 2 = 0. To solve this
for λ, we could use either the formula for the solutions to a quadratic
equation, or simply observe that the characteristic polynomial fac-
torises. We have (λ − 1)(λ − 2) = 0 with solutions λ = 1 and λ = 2.
Hence the eigenvalues of A are 1 and 2, and these are the only eigen-
values of A.

To find an eigenvector for each eigenvalue λ, we have to find a non-
trivial solution to (A − λI )x = 0, meaning a solution other than the zero
vector. (We stress the fact that eigenvectors cannot be the zero vector
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because this is a mistake many students make.) This is easy, since for a
particular value of λ, all we need to do is solve a simple linear system.
We illustrate by finding the eigenvectors for the matrix of Example 8.3.

Example 8.4 We find the eigenvectors of

A =
(

7 −15
2 −4

)
.

We have seen that the eigenvalues are 1 and 2. To find the eigenvectors
for eigenvalue 1, we solve the system (A − I )x = 0. We do this by
putting the coefficient matrix A − I into reduced echelon form.

(A − I ) =
(

6 −15
2 −5

)
−→ · · · −→

(
1 −5

2
0 0

)
.

This system has solutions

v = t
(

5
2

)
, for any t ∈ R.

There are infinitely many eigenvectors for 1: for each t 
= 0, v is an
eigenvector of A corresponding to λ = 1. But be careful not to think
that you can choose t = 0; for then v becomes the zero vector, and this
is never an eigenvector, simply by definition. To find the eigenvectors
for 2, we solve (A − 2I )x = 0 by reducing the coefficient matrix,

(A − 2I ) =
(

5 −15
2 −6

)
−→ · · · −→

(
1 −3
0 0

)
.

Setting the non-leading variable equal to t , we obtain the solutions

v = t
(

3
1

)
, t ∈ R.

Any non-zero scalar multiple of the vector (3, 1)T is an eigenvector of
A for eigenvalue 2.

Note that, in this example, each system of equations is simple
enough to be solved directly. For example, if x = (x1, x2)T, the system
(A − 2I )x = 0 consists of the equations

5x1 − 15x2 = 0 , 2x1 − 6x2 = 0.

Clearly, both equations are equivalent to x1 = 3x2. If we set x2 = t for
any real number t , then we obtain the eigenvectors for λ = 2 as before.
However, we prefer to use row operations. There are two reasons for this.
The first reason is that the system of equations may not be as simple
as the one just given, particularly for an n × n matrix where n > 2.
The second reason is that putting the matrix A − λI into echelon form



250 Diagonalisation

provides a useful check on the eigenvalue. If |A − λI | = 0, the echelon
form of A − λI must have a row of zeros, so the system (A − λI )x = 0
has a non-trivial solution. If we have reduced the matrix (A − λ0 I ) for
some supposed eigenvalue λ0 and do not obtain a zero row, we know
immediately that there is an error, either in the row reduction or in the
choice of λ0, and we can go back and correct it.

We now give two examples with 3 × 3 matrices.

Example 8.5 Suppose that

A =
⎛⎝ 4 0 4

0 4 4
4 4 8

⎞⎠ .

Let’s find the eigenvalues of A and corresponding eigenvectors for each
eigenvalue.

To find the eigenvalues, we solve |A − λI | = 0. Now,

|A − λI | =
∣∣∣∣∣∣
4 − λ 0 4

0 4 − λ 4
4 4 8 − λ

∣∣∣∣∣∣
= (4 − λ)

∣∣∣∣ 4 − λ 4
4 8 − λ

∣∣∣∣+ 4
∣∣∣∣ 0 4 − λ

4 4

∣∣∣∣
= (4 − λ) ((4 − λ)(8 − λ) − 16) + 4 (−4(4 − λ))

= (4 − λ) ((4 − λ)(8 − λ) − 16) − 16(4 − λ).

We notice that each of the two terms in this expression has 4 − λ as
a factor, so instead of expanding everything, we take 4 − λ out as a
common factor, obtaining

|A − λI | = (4 − λ) ((4 − λ)(8 − λ) − 16 − 16)

= (4 − λ)(32 − 12λ + λ2 − 32)

= (4 − λ)(λ2 − 12λ)

= (4 − λ)λ(λ − 12).

It follows that the eigenvalues are 4, 0, 12. (The characteristic polyno-
mial will not always factorise so easily. Here it was simple because of
the common factor 4 − λ. The next example is more difficult.)

To find an eigenvector for 4, we have to solve the equation
(A − 4I )x = 0 for x = (x1, x2, x3)T. Using row operations, we have⎛⎝ 0 0 4

0 0 4
4 4 4

⎞⎠ −→ · · · −→
⎛⎝ 1 1 0

0 0 1
0 0 0

⎞⎠ .
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Thus, x3 = 0 and setting the free variable x2 = t , the solutions are

x = t

⎛⎝−1
1
0

⎞⎠ , t ∈ R.

So the eigenvectors for λ = 4 are the non-zero multiples of

v1 =
⎛⎝−1

1
0

⎞⎠ .

Activity 8.6 Determine the eigenvectors for 0 and 12. Check your
answers: verify that Av = λv for each eigenvalue and one correspond-
ing eigenvector.

Example 8.7 Let

A =
⎛⎝−3 −1 −2

1 −1 1
1 1 0

⎞⎠ .

Given that −1 is an eigenvalue of A, find all the eigenvalues of A.
We calculate the characteristic polynomial of A:

|A−λI | =
∣∣∣∣∣∣
−3 − λ −1 −2

1 −1 − λ 1
1 1 −λ

∣∣∣∣∣∣
= (−3 − λ)

∣∣∣∣−1 − λ 1
1 −λ

∣∣∣∣− (−1)
∣∣∣∣ 1 1
1 −λ

∣∣∣∣− 2
∣∣∣∣ 1 −1 − λ

1 1

∣∣∣∣
= (−3 − λ)(λ2 + λ − 1) + (−λ − 1) − 2(2 + λ)

= −λ3 − 4λ2 − 5λ − 2 = −(λ3 + 4λ2 + 5λ + 2).

Now, the fact that −1 is an eigenvalue means that −1 is a solution of the
equation |A − λI | = 0, which means that λ − (−1) (that is, λ + 1) is a
factor of the characteristic polynomial |A − λI |. So this characteristic
polynomial can be written in the form

−(λ + 1)(aλ2 + bλ + c).

Clearly, we must have a = 1 and c = 2 to obtain the correct λ3

term and the correct constant. So the polynomial can be written as
−(λ + 1)(λ2 + bλ + 2). Using this, and comparing the coefficients of
either λ2 or λ with the cubic polynomial, we find b = 3. For instance,
think about the term involving λ2. We know that the characteristic poly-
nomial has the following term: −4λ2. On the other hand, if we look
at how the expression −(λ + 1)(λ2 + bλ + 2) would be expanded, it
would generate the term −λ2 − bλ2. So we must have −1 − b = −4
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and hence b = 3. In other words, the characteristic polynomial is

−(λ3 + 4λ2 + 5λ + 2) = −(λ + 1)(λ2 + 3λ + 2)

= −(λ + 1)(λ + 2)(λ + 1).

Activity 8.8 Perform the calculations to check that b = 3 and that the
characteristic polynomial factorises as stated.

We have, |A − λI | = −(λ + 1)2(λ + 2). The eigenvalues are the solu-
tions to |A − λI | = 0, so they are λ = −1 and λ = −2.

Note that in this case there are only two distinct eigenvalues. We
say that the eigenvalue −1 has occurred twice, or that λ = −1 is an
eigenvalue of multiplicity 2. We will find the eigenvectors when we
look at this example again in Section 8.3.

8.1.3 Eigenspaces

If A is an n × n matrix and λ is an eigenvalue of A, then the set of
eigenvectors corresponding to the eigenvalue λ together with the zero
vector, 0, is a subspace of Rn. Why?

We have already seen that the null space of any m × n matrix is a
subspace of Rn. The null space of the n × n matrix A − λI , consists of
all solutions to the matrix equation (A − λI )x = 0, which is precisely
the set of all eigenvectors corresponding to λ, together with the vector
0. We give this a special name.

Definition 8.9 (Eigenspace) If A is an n × n matrix and λ is an eigen-
value of A, then the eigenspace of the eigenvalue λ is the subspace
N (A − λI ) of Rn.

The eigenspace of an eigenvalue λ can also be described as the set S,

where

S = {x | Ax = λx}.

Activity 8.10 Show this.

In Exercise 5.2, you showed that the set S = {x | Ax = λx} is a subspace
of Rn for any λ ∈ R. If λ is not an eigenvalue of A, then S contains only
the zero vector, S = {0}, and dim(S) = 0. When, and only when, λ is
an eigenvalue of A do we know that there is a non-zero vector in S, and
hence dim(S) ≥ 1. In this case, S is the eigenspace of the eigenvalue λ.
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8.1.4 Eigenvalues and the matrix

We now explore how the eigenvalues of a matrix are related to other
quantities associated with it, specifically the determinant (with which
we are already familiar) and the trace.

There is a straightforward relationship between the eigenvalues of
a matrix A and its determinant. Suppose A is an n × n matrix. Then the
characteristic polynomial of A is a polynomial of degree n in λ:

p(λ) = |A − λI | = (−1)n(λn + an−1λ
n−1 + · · · + a0).

Let λ1, λ2, . . . , λn be the eigenvalues of A, with multiple roots listed
each time they occur. In terms of the eigenvalues, the characteristic
polynomial factors as

p(λ) = |A − λI | = (−1)n(λ − λ1)(λ − λ2) · · · (λ − λn).

For instance, let’s look at the matrix in Example 8.7,

A =
⎛⎝−3 −1 −2

1 −1 1
1 1 0

⎞⎠ .

The eigenvalues of A are λ = −1, of multiplicity 2, and λ = −2. So
we may list the eigenvalues as λ1 = λ2 = −1 and λ3 = −2. Then,

p(λ) = (−1)3(λ − λ1)(λ − λ2)(λ − λ3) = −(λ + 1)(λ + 1)(λ + 2),

as we saw earlier.
If we let λ = 0 in the equation

p(λ) = |A − λI | = (−1)n(λ − λ1)(λ − λ2) · · · (λ − λn),

then we obtain the constant term of the polynomial,

p(0) = |A| = (−1)na0 = (−1)n(−1)n(λ1λ2 . . . λn) = λ1λ2 . . . λn.

Therefore, we have proved the following.

Theorem 8.11 The determinant of an n × n matrix A is equal to the
product of its eigenvalues.

Example 8.12 Let’s look again at the matrix in Example 8.7,

A =
⎛⎝−3 −1 −2

1 −1 1
1 1 0

⎞⎠ .

The eigenvalues of A are λ1 = λ2 = −1 and λ3 = −2. Calculating
the determinant of the matrix, we find |A| = −2, which is indeed the
product of the three eigenvalues.
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Activity 8.13 Check this. Calculate |A|.
Now look at the sum of the diagonal entries of the matrix in the example
just given, and notice that it is equal to the sum of the three eigenvalues.
This is true in general. The sum of the diagonal entries of a matrix is
known as the trace of the matrix.

Definition 8.14 (Trace) The trace of a square matrix A is the sum of
the entries on its main diagonal.

Theorem 8.15 The trace of an n × n matrix A is equal to the sum of
its eigenvalues.

Proof: We can obtain this result by examining the equations

|A − λI | = (−1)n(λn + an−1λ
n−1 + · · · + a0)

= (−1)n(λ − λ1)(λ − λ2) · · · (λ − λn)

again, this time looking at the coefficient of λn−1. You can consider the
proof optional and safely omit it, but if you wish to see how it works,
read on.

The coefficient of λn−1 is (−1)nan−1 in the middle expression, but
what we are actually interested in is how the coefficient of λn−1 is
obtained from the other two expressions. First, think about how it is
obtained from the factorised polynomial

(−1)n(λ − λ1)(λ − λ2) · · · (λ − λn)

when the factors are multiplied together. Ignoring the (−1)n for the
moment, if we multiply all the λs together, one from each factor, we
obtain the term λn. So to obtain the terms with λn−1, we need to multiply
first −λ1 times the λs in all the remaining factors, then −λ2 times the
λs in all the other factors and so on. Putting back the factor (−1)n, the
term involving λn−1 is

(−1)n(−λ1 − λ2 − · · · − λn)λn−1 = (−1)n−1(λ1 + λ2 + · · · + λn)λn−1.

(1)

Now let’s look at the coefficient of λn−1 in the expansion of the deter-
minant, |A − λI |. This is far more complicated, and we will need an
inductive argument.

If A is a 2 × 2 matrix,

A =
(

a11 a12

a21 a22

)
,
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then

|A − λI | =
∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣ = λ2 − (a11 + a22)λ + |A|.

We see that the coefficient of λ is (−1) times the trace of A.
Now consider a 3 × 3 matrix A. We have

|A − λI | =
∣∣∣∣∣∣
a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

∣∣∣∣∣∣ .
Expanding by the first row, we see that the only term which contains
powers of λ higher than 1 comes from the (1, 1) entry times the (1, 1)
cofactor; that is, (a11 − λ)C11. But C11 is the determinant of a 2 × 2
matrix, so we are looking at the λ2 terms of

(a11 − λ)(λ2 − (a22 + a33)λ + (a22a33 − a23a32)).

The λ2 terms are

a11λ
2 + (a22 + a33)λ2 = (a11 + a22 + a33)λ2,

so the coefficient of λ2 is (−1)2 times the trace of A.
What we have seen so far makes us fairly certain that the coefficient

of the term λn−1 in the expansion of the determinant |A − λI | for an
n × n matrix A is equal to (−1)n−1 times the trace of A. We have shown
that this is true for any 2 × 2 and any 3 × 3 matrix. We now assume it
is true for any (n − 1) × (n − 1) matrix, and then show that this implies
it is also true for any n × n matrix. In this way, starting with n = 2, we
will know it is true for all n × n matrices.

So suppose A = (ai j ) is an n × n matrix and look at the coefficient
of λn−1 in the cofactor expansion of |A − λI | by row 1:

|A − λI | =

∣∣∣∣∣∣∣∣∣
a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n
...

...
. . .

...
an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣∣
= (a11 − λ)C11 + a12C12 + · · · .

Only the first term of the cofactor expansion, (a11 − λ)C11, contains
higher powers of λ than λn−2.

Activity 8.16 Look at the other terms to see why this is true.

Now C11 is the determinant of the (n − 1) × (n − 1) matrix obtained
from the matrix (A − λI ) by crossing out the first row and first col-
umn, so it is of the form |C − λI |, where C is the (n − 1) × (n − 1)
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matrix obtained from A by crossing out the first row and first column.
Therefore, by our assumption,

|A−λI |
= (a11 − λ)C11

= (a11 − λ)((−1)n−1λn−1 + (−1)n−2(a22 + · · · + ann)λn−2 + · · · )

= (−1)nλn + (−1)n−1(a11+ a22 + · · · + ann)λn−1 +· · · .
We can now conclude that the term involving λn−1 in the expansion of
|A − λI | for any n × n matrix A is equal to

(−1)n−1(a11 + a22 + a33 + · · · + ann)λn−1. (2)

Comparing the coefficients of λn−1 in the two expressions (1) and (2),
we see that

a11 + a22 + a33 + · · · + ann = λ1 + λ2 + · · · + λn;

that is, the trace of A is equal to the sum of the eigenvalues, �

8.2 Diagonalisation of a square matrix

8.2.1 Diagonalisation

Recall that square matrices A and M are similar if there is an invertible
matrix P such that P−1 AP = M . We met this idea earlier when we
looked at how a matrix representing a linear transformation changes
when the basis is changed. We now begin to explore why this is such
an important and useful concept.

Definition 8.17 (Diagonalisable matrix) The matrix A is diagonalis-
able if it is similar to a diagonal matrix; in other words, if there is a
diagonal matrix D and an invertible matrix P such that P−1 AP = D.

When we find suitable P and D such that P−1 AP = D, we say that we
are diagonalising A.

Example 8.18 The matrix

A =
(

7 −15
2 −4

)
from Example 8.3 is diagonalisable, because if we take P to be

P =
(

5 3
2 1

)
,
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then P is invertible, with

P−1 =
(−1 3

2 −5

)
and, as you can check,

P−1 AP = D =
(

1 0
0 2

)
,

which is a diagonal matrix.

Activity 8.19 Check this! Obtain the product P−1 AP by first multi-
plying AP and then multiplying on the left by P−1. What do you notice
about AP?

The example just given probably raises a number of questions in your
mind. Prominent among those will be: ‘How was such a matrix P
found?’ (Have a look back at Example 8.4. What do you notice?) A
more general question is: ‘When will a matrix be diagonalisable?’ To
answer both of these questions, we start by outlining a general method
for diagonalising a matrix (when it is possible).

8.2.2 General method

Let’s first suppose that the n × n matrix A is diagonalisable. So, assume
that P−1 AP = D, where D is a diagonal matrix

D = diag(λ1, λ2, . . . , λn) =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λn

⎞⎟⎟⎟⎠ .

(Note the useful notation for describing the diagonal matrix D.) Then,
since P−1 AP = D, we have AP = P D. Suppose the columns of P
are the vectors v1, v2, . . . , vn. Then, thinking about how matrix multi-
plication works (see Activity 7.33), we can see that

AP = A(v1 . . . vn) = (Av1 . . . Avn).

Furthermore,

P D = (v1 . . . vn)

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λn

⎞⎟⎟⎟⎠ = (λ1v1 . . . λnvn).
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So this means that

Av1 = λ1v1, Av2 = λ2v2, . . . , Avn = λnvn.

The fact that P−1 exists means that none of the vectors vi is the zero
vector (because any matrix with a column of zeros would not be invert-
ible). So this means that (for i = 1, 2, . . . , n), vi is a non-zero vector
with the property that Avi = λi vi . But this means precisely that λi is
an eigenvalue of A and that vi is a corresponding eigenvector. Since P
has an inverse, these eigenvectors are linearly independent. Therefore,
A has n linearly independent eigenvectors.

Conversely, suppose A has n linearly independent eigenvectors,
v1, v2, . . . , vn, which correspond to eigenvalues λ1, λ2, . . . , λn . Let P
be the matrix whose columns are these eigenvectors: P = (v1 . . . vn).
Because the columns are linearly independent, P will be invertible.
Furthermore, since Avi = λi vi , it follows that

AP = A(v1 . . . vn)

= (Av1 . . . Avn)

= (λ1v1 . . . λnvn)

= (v1 . . . vn)

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λn

⎞⎟⎟⎟⎠
= P D,

where D = diag(λ1, λ2, . . . , λn) is the diagonal matrix whose entries
are the eigenvalues. The fact that P is invertible then implies that
P−1 AP = P−1 P D = D. So it follows that A is diagonalisable and the
matrix P is such that P−1 AP is a diagonal matrix.

Example 8.20 Now it should be clear where P in Example 8.18 came
from. In Examples 8.3 and 8.4, we discovered that the eigenvalues of

A =
(

7 −15
2 −4

)
are 1 and 2 and that corresponding eigenvectors are

v1 =
(

5
2

)
, v2 =

(
3
1

)
.

This is why, if we take

P = (v1 v2) =
(

5 3
2 1

)
,
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then P is invertible and P−1 AP is the diagonal matrix

D =
(

1 0
0 2

)
.

Moreover, the general discussion we have given establishes the follow-
ing important result:

Theorem 8.21 An n × n matrix A is diagonalisable if and only if it has
n linearly independent eigenvectors.

Since n linearly independent vectors in Rn form a basis of Rn , another
way to state this theorem is:

Theorem 8.22 An n × n matrix A is diagonalisable if and only if there
is a basis of Rn consisting of eigenvectors of A.

Example 8.23 In Example 8.5 (and Activity 8.6), we found the eigen-
values and eigenvectors of the matrix

A =
⎛⎝ 4 0 4

0 4 4
4 4 8

⎞⎠ .

We will now diagonalise A. We have seen that it has three dis-
tinct eigenvalues 0, 4, 12. From the eigenvectors we found, we
take one eigenvector corresponding to each of the eigenvalues
λ1 = 4, λ2 = 0, λ3 = 12, in that order,

v1 =
⎛⎝−1

1
0

⎞⎠ , v2 =
⎛⎝−1

−1
1

⎞⎠ , v3 =
⎛⎝ 1

1
2

⎞⎠ .

We now form the matrix P whose columns are these eigenvectors:

P =
⎛⎝−1 −1 1

1 −1 1
0 1 2

⎞⎠ .

Then we know that D will be the matrix

D =
⎛⎝ 4 0 0

0 0 0
0 0 12

⎞⎠ .

You can choose any order for listing the eigenvectors as the columns of
the matrix P , as long as you write the corresponding eigenvalues in the
corresponding columns of D; that is, as long as the column orders in P
and D match. (If, for example, we had instead chosen P = (v2 v1 v3),
then D would instead be diag(0, 4, 12).)
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As soon as you have written down the matrices P and D, you should
check that your eigenvectors are correct. That is, check that

AP = (Av1 Av2 Av3) = (λ1v1 λ2v2 λ3v3) = P D.

Activity 8.24 Carry out this calculation to check that the eigenvectors
are correct; that is, check that the columns of P are eigenvectors of A
corresponding to the eigenvalues 4, 0, 12.

Then, according to the theory, if P has an inverse – that is, if the eigen-
vectors are linearly independent – then P−1 AP = D = diag(4, 0, 12).

Activity 8.25 Check that P is invertible. Then find P−1 (which may
be calculated using either elementary row operations or the cofactor
method) and verify that P−1 AP = D.

Note how important it is to have checked P first. Calculating the inverse
of an incorrect matrix P would have been a huge wasted effort.

8.2.3 Geometrical interpretation

There is a more sophisticated way to think about diagonalisation in terms
of change of basis and matrix representations of linear transformations.
Suppose that T = TA is the linear transformation corresponding to A,
so that T (x) = Ax for all x. Then A is the matrix representing the linear
transformation T in standard coordinates.

Suppose that A has a set of n linearly independent eigenvectors
B = {v1, v2, . . . , vn}, corresponding (respectively) to the eigenvalues
λ1, . . . , λn. Then B is a basis of Rn . What is the matrix representing T
with respect to this basis?

By Theorem 7.37, the matrix representing T in the basis B is

A[B,B] = P−1 AP ,

where the columns of P are the basis vectors of B, so that

P = (v1 . . . vn) .

In other words, the matrices A and A[B,B] are similar. They repre-
sent the same linear transformation, but A does so with respect to the
standard basis and A[B,B] represents T in the basis B of eigenvectors
of A.

But what is A[B,B]? According to Theorem 7.36, the i th column of
M should be the coordinate vector of T (vi ) with respect to the basis B.
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Now, T (vi ) = Avi = λi vi , so the coordinate vector [T (vi )]B is just the
vector with λi in position i and all other entries zero.

Activity 8.26 Why is this true?

It follows that A[B,B] must be the diagonal matrix

D =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λn

⎞⎟⎟⎟⎠ .

We see, therefore, that

P−1 AP = A[B,B] = D.

Let’s explore this a little further to see what it reveals, geometrically,
about the linear transformation T = TA. If x ∈ Rn is any vector, then its
image under the linear transformation T is particularly easy to calculate
in B coordinates. For example, suppose the B coordinates of x are given
by

[x]B =

⎡⎢⎢⎢⎣
b1

b2
...

bn

⎤⎥⎥⎥⎦
B

.

Then, since [T (x)]B = A[B,B][x]B = D[x]B , we have

[T (x)]B =

⎛⎜⎜⎜⎝
λ1 0 . . . 0
0 λ2 . . . 0

0 0
. . . 0

0 0 . . . λn

⎞⎟⎟⎟⎠
⎡⎢⎢⎢⎣

b1

b2
...

bn

⎤⎥⎥⎥⎦
B

=

⎡⎢⎢⎢⎣
λ1b1

λ2b2
...

λnbn

⎤⎥⎥⎥⎦
B

.

So the effect is simply to multiply each coordinate by the corresponding
eigenvalue.

This gives an interesting geometrical interpretation. We can
describe the linear transformation T as a stretch in the direction of
the eigenvector vi by a factor λi (in the same direction if λ > 0 and in
the opposite direction if λ < 0). We say that the line x = tvi , t ∈ R,
is fixed by the linear transformation T in the sense that every point on
the line is mapped to a point on the same line. Indeed, this can be seen
directly. Since Avi = λi vi , each vector on the line tvi , is mapped into
the scalar multiple λi tvi by the linear transformation A. If λi = 0, the
line tvi is mapped to 0.



262 Diagonalisation

Activity 8.27 Geometrically, how would you describe the linear trans-
formation TA(x) = Ax for Example 8.23?

Activity 8.28 Have another look at Example 7.42.

8.2.4 Similar matrices

Now let’s consider any two similar matrices A and B with B = P−1 AP .
We will show that A and B have the same eigenvalues, and that they have
the same corresponding eigenvectors expressed in different coordinate
systems.

First, let’s look at this geometrically.
If T = TA, then A is the matrix of the linear transformation T in

standard coordinates, and B = P−1 AP is the matrix of the same linear
transformation T in coordinates with respect to the basis given by the
columns of the matrix P (see Section 7.4.2). As we have just seen,
the effect of T as a mapping T : Rn → Rn can be described in terms of
the eigenvalues and eigenvectors of A. But this description (involving
fixed lines and stretches) is intrinsic to the linear transformation, and
does not depend on the coordinate system being used to express the
vectors. Therefore, the eigenvalues of B must be the same as those of
A, and the corresponding eigenvectors must be the same vectors, only
given in a different basis.

To establish these facts algebraically, we begin with the following
result:

Theorem 8.29 Similar matrices have the same characteristic polyno-
mial.

Proof: Let A and B be similar matrices with B = P−1 AP . The char-
acteristic polynomial of A is given by the determinant |A − λI |. The
characteristic polynomial of B is

|B − λI | = |P−1 AP − λI | = |P−1 AP − λP−1 I P|
= |P−1 AP − P−1λI P|,

since P−1 I P = I . We now factor out P−1 on the left and P on the right
to obtain

|B − λI | = |P−1(A − λI )P| = |P−1| |A − λI | |P| = |A − λI |,
since the determinant of a product is the product of the determinants,
and since |P−1| = 1/|P|. �
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We can now prove the following theorem:

Theorem 8.30 Similar matrices have the same eigenvalues, and the
same corresponding eigenvectors expressed in coordinates with respect
to different bases.

Proof: That similar matrices have the same eigenvalues is a direct
consequence of the previous theorem, since the matrices have the same
characteristic polynomials and the eigenvalues are the solutions of the
characteristic equations, |A − λI | = |B − λI | = 0.

Now for the eigenvectors. Let A and B be similar matrices, with B =
P−1 AP . We consider the invertible matrix P as the transition matrix
from standard coordinates to coordinates in the basis, S, consisting of
the column vectors of P , so that

v = P[v]S and [v]S = P−1v.

If λ is any eigenvalue of A and v is a corresponding eigenvector, then

Av = λv.

Using these facts, let’s see what happens if we multiply the matrix B
with the same eigenvector given in the S coordinates:

B[v]S = P−1 AP[v]S

= P−1 Av

= P−1λv

= λP−1v

= λ[v]S.

Therefore, [v]S is an eigenvector of B corresponding to eigenvalue
λ. �

8.3 When is diagonalisation possible?

By Theorem 8.21, an n × n matrix is diagonalisable if and only if it has
n linearly independent eigenvectors. However, not all n × n matrices
have this property, and we now explore further the conditions under
which a matrix can be diagonalised.

First, we give two examples to show that not all matrices can be
diagonalised.
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8.3.1 Examples of non-diagonalisable matrices

Example 8.31 The 2 × 2 matrix

A =
(

4 1
−1 2

)
has characteristic polynomial λ2 − 6λ + 9 = (λ − 3)2, so there is only
one eigenvalue, λ = 3. The eigenvectors are the non-zero solutions to
(A − 3I )x = 0: that is,(

1 1
−1 −1

)(
x1

x2

)
=
(

0
0

)
.

This is equivalent to the single equation x1 + x2 = 0, with general
solution x1 = −x2. Setting x2 = t , we see that the solution set of the
system consists of all vectors of the form v = (−t, t)T as t runs through
all real numbers. So the eigenvectors are precisely the non-zero scalar
multiples of the vector v = (−1, 1)T. Any two eigenvectors are therefore
scalar multiples of each other and hence form a linearly dependent set.
In other words, there are not two linearly independent eigenvectors, and
the matrix A is not diagonalisable.

There is another reason why a matrix A may not be diagonalisable over
the real numbers. Consider the following example:

Example 8.32 If A is the matrix

A =
(

0 −1
1 0

)
,

then the characteristic equation

|A − λI | =
∣∣∣∣−λ −1

1 −λ

∣∣∣∣ = λ2 + 1 = 0

has no real solutions.
This matrix A can be diagonalised over the complex numbers, but

not over the real numbers. (We will look at complex numbers and
matrices in Chapter 13.)

So far, and until Chapter 13, we are dealing with matrices A with real
number entries. If A is diagonalisable, so that there is an invertible P
(with real number entries) with P−1 AP = diag(λ1, . . . , λn), then, as
we have seen, the λi are the eigenvalues of A. So, it follows that all
the eigenvalues must be real numbers. Example 8.32 is an example of
a matrix that fails to be diagonalisable because it does not have this
property. On the other hand, the matrix in Example 8.31 does have only
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real eigenvalues, yet fails to be diagonalisable. We will return shortly to
the general question of when a matrix can be diagonalised. But for now
we consider the special case in which an n × n matrix has n different
(real) eigenvalues.

8.3.2 Matrices with distinct eigenvalues

We now show that if a matrix has n different eigenvalues (that is, if
it has distinct eigenvalues), then it will be diagonalisable. This is a
consequence of the following useful result. The proof we give here is a
proof by contradiction.

Theorem 8.33 Eigenvectors corresponding to different eigenvalues are
linearly independent.

Proof: Suppose the result is false for the n × n matrix A. Let’s take
any smallest possible set S of eigenvectors corresponding to distinct
eigenvalues of A with the property that the set is linearly dependent.
(This set S will have at least 2 and at most n members.) So, S consists
of eigenvectors of A, each corresponding to different eigenvalues, and
it is a linearly dependent set; and, furthermore, any proper subset of S is
not a linearly dependent set. Call the vectors in this set v1, v2, . . . , vk .
Then, because S is linearly dependent, there are non-zero numbers
c1, c2, . . . , ck such that

c1v1 + c2v2 + . . . + ckvk = 0.

(You might wonder why we assert that all the ci are non-zero, rather
than just that not all of them are zero. But remember that no proper
subset of S is linearly dependent. If ci was 0, we could delete vi from S
and have a proper subset of S that is linearly dependent, which can’t be
the case.)

Multiplying this equation by A, we have:

A(c1v1 + c2v2 + . . . + ckvk) = c1 Av1 + c2 Av2 + . . . + ck Avk

= λ1c1v1 + λ2c2v2 + . . . + λkckvk .

But this must be equal to A0 = 0, since c1v1 + c2v2 + . . . + ckvk = 0.
Hence we have

L1 = λ1c1v1 + λ2c2v2 + . . . + λkckvk = 0.

Furthermore, if we simply multiply both sides of the equation

c1v1 + c2v2 + . . . + ckvk = 0



266 Diagonalisation

by λ1, we obtain

L2 = λ1c1v1 + λ1c2v2 + · · · + λ1ckvk = 0.

It follows that

L1 − L2 = (λ1c1v1 + · · · + λkckvk) − (λ1c1v1 + · · · + λ1ckvk)

= 0 − 0

= 0,

which means

(λ2 − λ1)c2v2 + · · · + (λk − λ1)ckvk = 0.

Since the λi are distinct and the ci are non-zero, this says that the
vectors v2, . . . , vk are linearly dependent, which contradicts the original
assumption that no proper subset of S is linearly dependent. So we must
conclude (for otherwise, there is a contradiction) that there is no such
set S. That means that any set of eigenvectors corresponding to distinct
eigenvalues is linearly independent. �

It follows that if an n × n matrix has n different eigenvalues, then a
set consisting of one eigenvector for each eigenvalue will be a linearly
independent set of size n and hence, by Theorem 8.21, the matrix will
be diagonalisable. That is, we have the following theorem.

Theorem 8.34 If an n × n matrix has n different eigenvalues, then
it has a set of n linearly independent eigenvectors and is therefore
diagonalisable.

8.3.3 The general case

Theorem 8.34 provides a sufficient condition for an n × n matrix to
be diagonalisable: if it has n different (real) eigenvalues, then it is
diagonalisable. It is not, however, necessary for the eigenvalues to be
distinct in order for the matrix to be diagonalisable. What is needed for
diagonalisation is a set of n linearly independent eigenvectors, and this
can happen even when there is a ‘repeated’ eigenvalue (that is, when
there are fewer than n different eigenvalues). The following example
illustrates this.

Example 8.35 Consider the matrix

A =
⎛⎝ 3 −1 1

0 2 0
1 −1 3

⎞⎠ .
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The eigenvalues are given by the solutions of the characteristic equation
|A − λI | = 0. Expanding the determinant by the second row,

|A − λI | =
∣∣∣∣∣∣
3 − λ −1 1

0 2 − λ 0
1 −1 3 − λ

∣∣∣∣∣∣
= (2 − λ)

∣∣∣∣ 3 − λ 1
1 3 − λ

∣∣∣∣
= (2 − λ)(λ2 − 6λ + 9 − 1)

= (2 − λ)(λ2 − 6λ + 8)

= (2 − λ)(λ − 4)(λ − 2) = −(λ − 2)2(λ − 4).

The matrix A has only two eigenvalues: λ = 4 and λ = 2. Because
(λ − 2)2 is a factor of the characteristic polynomial (or, equivalently,
λ = 2 is a double root of the polynomial), we say that λ = 2 is an
eigenvalue of multiplicity 2. If we want to diagonalise the matrix, we
need to find three linearly independent eigenvectors. Any eigenvector
corresponding to λ = 4 will be linearly independent of any eigenvec-
tors corresponding to the eigenvalue 2. What we therefore need to do
is to find two linearly independent eigenvectors corresponding to the
eigenvalue 2 of multiplicity 2. (Then these two vectors taken together
with an eigenvector corresponding to λ = 4 will give a linearly inde-
pendent set.) So let’s look first at the eigenvector λ = 2. We row reduce
the matrix (A − 2I ):

(A − 2I ) =
⎛⎝ 1 −1 1

0 0 0
1 −1 1

⎞⎠ −→
⎛⎝ 1 −1 1

0 0 0
0 0 0

⎞⎠ .

We see immediately that this matrix has rank 1, so its null space (the
eigenspace for λ = 2) will have dimension 2, and we can find a basis of
this space consisting of two linearly independent eigenvectors. Setting
the non-leading variables equal to arbitrary parameters s and t , we find
that the solutions of (A − 2I )x = 0 are

x = s

⎛⎝ 1
1
0

⎞⎠+ t

⎛⎝−1
0
1

⎞⎠ = sv1 + tv2, s, t ∈ R,

where v1 and v2 are two linearly independent eigenvectors for λ = 2.

Activity 8.36 How do you know that v1 and v2 are linearly independent?

Since {v1, v2} is a linearly independent set, and since eigenvectors cor-
responding to distinct eigenvalues are linearly independent, it follows
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that if v3 is any eigenvector corresponding to λ = 4, then {v1, v2, v3}
will be a linearly independent set.

We find an eigenvector for λ = 4 by reducing (A − 4I ).

(A − 4I ) =
⎛⎝−1 −1 1

0 −2 0
1 −1 −1

⎞⎠ −→ · · · −→
⎛⎝ 1 0 −1

0 1 0
0 0 0

⎞⎠
with solutions

x = t

⎛⎝ 1
0
1

⎞⎠ , t ∈ R.

Let

v3 =
⎛⎝ 1

0
1

⎞⎠ .

Then v1, v2, v3 form a linearly independent set of eigenvectors. If we
take

P =
⎛⎝ 1 1 −1

0 1 0
1 0 1

⎞⎠ ,

then

P−1 AP = D =
⎛⎝ 4 0 0

0 2 0
0 0 2

⎞⎠ .

Activity 8.37 Check this! Check that AP = P D and that |P| 
= 0.
Why do these two checks enable you to find any errors?

Here is another example where, this time, diagonalisation is not
possible.

Example 8.38 We found in Example 8.7 that the matrix,

A =
⎛⎝−3 −1 −2

1 −1 1
1 1 0

⎞⎠
has an eigenvalue λ1 = −1 of multiplicity 2, and a second eigenvalue,
λ2 = −2. In order to diagonalise this matrix, we need two linearly
independent eigenvectors for λ = −1. To see if this is possible, we row
reduce the matrix (A + I ):

(A + I ) =
⎛⎝−2 −1 −2

1 0 1
1 1 1

⎞⎠ −→ · · · −→
⎛⎝ 1 0 1

0 1 0
0 0 0

⎞⎠ .
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This matrix has rank 2 and the null space (the eigenspace for λ = −1)
therefore (by the rank–nullity theorem) has dimension 1. We can only
find one linearly independent eigenvector for λ = −1. All solutions of
(A + I )x = 0 are of the form

x = t

⎛⎝−1
0
1

⎞⎠ , t ∈ R.

We conclude that this matrix cannot be diagonalised as it is not possible
to find three linearly independent eigenvectors to form the matrix P .

8.3.4 Algebraic and geometric multiplicity

To describe in more detail what it is that makes a matrix diagonalisable
(and what it is that distinguishes the matrices in Example 8.35 and
Example 8.38), we introduce the concepts of algebraic and geometric
multiplicity of eigenvalues.

Definition 8.39 (Algebraic multiplicity) An eigenvalue λ0 of a matrix
A has algebraic multiplicity k if k is the largest integer such that
(λ − λ0)k is a factor of the characteristic polynomial of A.

Definition 8.40 (Geometric multiplicity) The geometric multiplicity
of an eigenvalue λ0 of a matrix A is the dimension of the eigenspace
of λ0 (that is, the dimension of the null space, N (A − λ0 I ), of
A − λ0 I ).

If A is an n × n matrix with an eigenvalue λ, then we know that there
is at least one eigenvector corresponding to λ. Why? Since we know
that |A − λI | = 0, we know that (A − λI )v = 0 has a non-trivial solu-
tion v, which is an eigenvector corresponding to λ. So the eigenspace
of any eigenvalue has dimension at least 1, and hence the geometric
multiplicity, dim(N (A − λI )), is at least 1.

In Example 8.31 we have an eigenvalue (namely, λ = −1) of alge-
braic multiplicity 2, but because the eigenspace only has dimension
one, there does not exist two linearly independent eigenvectors. Here,
the fact that the geometric multiplicity is less than the algebraic mul-
tiplicity means that the matrix cannot be diagonalised. For, it turns
out that if we are to find enough linearly independent eigenvectors to
diagonalise a matrix, then, for each eigenvalue, the algebraic and geo-
metric multiplicities must be equal. We will prove this. First, though,
we have a straightforward relationship between algebraic and geometric
multiplicity, which has been alluded to in the above examples.
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Theorem 8.41 For any eigenvalue of a square matrix, the geometric
multiplicity is no more than the algebraic multiplicity.

Proof: Let’s suppose that μ is an eigenvalue of the n × n matrix
A and that μ has geometric multiplicity k. Then there is a lin-
early independent set {v1, v2, . . . , vk} of eigenvectors of A corre-
sponding to μ. By Theorem 6.45, we can extend this to a basis
B = {v1, v2, . . . , vk, vk+1, . . . , vn} of Rn .

Let T be the linear transformation given by multiplication by A;
that is, T (x) = Ax. We now apply Theorem 7.37. According to this
theorem, the matrix M representing T with respect to the basis B is
P−1 AP, where the columns of P are the vectors of the basis B. But, by
Theorem 7.36, column i of M is equal to [Avi ]B . So, since Avi = μvi

for i = 1, 2, . . . , k, we must have

M = P−1 AP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ 0 0 · · · 0 · · ·
0 μ 0 · · · 0 · · ·
0 0 μ · · · 0 · · ·
...

...
...

. . .
... · · ·

0 0 0 · · · μ · · ·
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

a matrix in which, for i = 1, 2, . . . , k, column i has μ in position i
and 0 elsewhere. (So, the top-left k × k submatrix is μ times the k × k
identity matrix.) Now, it follows that the characteristic polynomial of
M will be

|M − λI | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

μ − λ 0 0 · · · 0 · · ·
0 μ − λ 0 · · · 0 · · ·
0 0 μ − λ · · · 0 · · ·
...

...
...

. . .
... · · ·

0 0 0 · · · μ − λ · · ·
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (μ − λ)kq(λ),

where q(λ) is the determinant of the bottom-right (n − k) × (n − k)
submatrix of M − λI . So (λ − μ)k divides the characteristic polynomial
of M, which, as we saw earlier (Theorem 8.29), is the same as the
characteristic polynomial of A. So the algebraic multiplicity of μ is at
least k, the geometric multiplicity. �

The following theorem provides a characterisation of diagonalisable
matrices in terms of algebraic and geometric multiplicities. The proof
might look daunting, but its key ideas are not so hard.
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Theorem 8.42 A matrix is diagonalisable if and only if all its eigen-
values are real numbers and, for each eigenvalue, the geometric multi-
plicity equals the algebraic multiplicity.

Proof: We have already noted earlier that if a matrix is to be diagonal-
isable, then all its eigenvalues must be real numbers. Suppose A is an
n × n matrix with real eigenvalues, and denote the distinct eigenvalues
by λ1, . . . , λr . Then r ≤ n and the characteristic polynomial of A takes
the form

p(λ) = |A − λI | = (−1)n(λ − λ1)k1(λ − λ2)k2 · · · (λ − λr )kr ,

where ki is the algebraic multiplicity of λi . But p(λ) is of degree n and
hence n = k1 + k2 + · · · + kr .

To be diagonalisable, there must be a basis consisting of n eigen-
vectors of A. We know that if mi is the geometric multiplicity of λi ,
then mi ≤ ki . Suppose that m j < k j for some j . Then there will not be
a linearly independent set of k j eigenvectors corresponding to λ j . But
that means there cannot be a set of n linearly independent eigenvectors
of A. To see why, we note that in any set S of linearly independent
eigenvectors, each eigenvector must correspond to some eigenvalue λi

and, by the definition of geometric multiplicity, no more than mi of
these can correspond to λi , for each i . So the maximum number of
vectors in the set S is

m1 + m2 + · · · + m j + · · · + mr .

But since mi ≤ ki for all i , and m j < k j , we have

m1 + m2 + · · · + m j + · · · + mr < k1 + k2 + · · · + kr = n.

So, S contains fewer than n vectors, and A will not be diagonalisable.
The argument so far shows that A will be diagonalisable only if it all

its eigenvalues are real numbers and, for each eigenvalue, the geometric
multiplicity equals the algebraic multiplicity. We now need to show the
converse.

Suppose, then, that A has only real eigenvalues and that, for each, the
algebraic and geometric multiplicities are equal. Suppose the eigenval-
ues are λ1, λ2, . . . , λr and that, for each i , the multiplicity (algebraic and
geometric) of λi is mi . Let Si = {v(i)

1 , v(i)
2 , . . . , v(i)

mi
} be a linearly inde-

pendent set of eigenvectors for λi . We know such a set exists because
the geometric multiplicity is mi . Then the set S = S1 ∪ S2 ∪ · · · ∪ Sr

(the union of the sets Si ) is a set of eigenvectors for A and we will show
that it is linearly independent, which will imply that A is diagonalisable.
So, suppose some linear combination of the vectors in S is 0. We can
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write this as

α
(1)
1 v(1)

1 + · · · + α(1)
m1

v(1)
m1

+ · · · + α
(r )
1 v(r )

1 + · · · + α(r )
mr

v(r )
mr

= 0.

For each i , let

w(i) = α
(i)
1 v(i)

1 + α
(i)
2 v(i)

2 + · · · + α(i)
mi

v(i)
mi

.

Then this equation can be written as

w(1) + w(2) + · · · + w(r ) = 0. (∗)

Now, for any i , w(i) is a linear combination of eigenvectors correspond-
ing to λi , so it is either 0 or is itself an eigenvector (since it belongs to the
eigenspace). However, if any of the w(i) is not 0, then equation (∗) shows
that a non-trivial linear combination of eigenvectors corresponding to
distinct eigenvalues is 0, and this is not possible since, by Theorem 8.33,
eigenvectors for distinct eigenvalues are linearly independent. It follows
that, for all i , w(i) = 0. Therefore,

α
(i)
1 v(i)

1 + α
(i)
2 v(i)

2 + · · · + α(i)
mi

v(i)
mi

= 0.

But the set Si = {v(i)
1 , v(i)

2 , . . . , v(i)
mi

} is linearly independent, so it follows
that

α
(i)
1 = α

(i)
2 = · · · = α(i)

mi
= 0.

So all the coefficients α
(i)
j are 0. This shows that the set S is linearly

independent. �

8.4 Learning outcomes

You should now be able to:

� state what is meant by the characteristic polynomial and the charac-
teristic equation of a matrix

� state carefully what is meant by eigenvectors and eigenvalues, and
by diagonalisation

� find eigenvalues and corresponding eigenvectors for a square matrix
� state what is meant by the eigenspace of an eigenvector
� know how the eigenvalues are related to the determinant and trace

of a matrix
� diagonalise a diagonalisable matrix
� determine whether or not a matrix can be diagonalised
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� recognise what diagonalisation does in terms of change of basis and
matrix representation of linear transformations (similarity)

� use diagonalisation to describe the geometric effect of a linear
transformation

� know how to characterise diagionalisability in terms of the algebraic
and geometric multiplicities of eigenvalues.

8.5 Comments on activities

Activity 8.6 The eigenvectors for λ = 0 are the non-zero solutions of
Ax = 0. To find these, row reduce the coefficient matrix A.

⎛⎝ 4 0 4
0 4 4
4 4 8

⎞⎠ −→ · · · −→
⎛⎝ 1 0 1

0 1 1
0 0 0

⎞⎠ .

The solutions are

x = t

⎛⎝−1
−1
1

⎞⎠ , t ∈ R,

so that the eigenvectors are non-zero multiples of v2 = (−1, −1, 1)T.
The eigenspace of λ = 0 is the null space of the matrix A. Note that
Av2 = 0v2 = 0.

Similarly, you should find that for λ = 12, the eigenvectors are
non-zero multiples of

v3 =
⎛⎝ 1

1
2

⎞⎠ .

Activity 8.10 Since Ax = λx ⇐⇒ Ax − λx = (A − λI )x = 0, the
two sets contain precisely the same vectors.

Activity 8.19 You should notice that the columns of AP are v1 and 2v2,
where v1, v2 are the columns of P .

Activity 8.24 Perform the matrix multiplication to show that

AP = (4v1 0v2 12v3) = P D .
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Activity 8.25 Since |P| = 6 
= 0, P is invertible. Using the adjoint
method (or row reduction), obtain

P−1 = 1

6

⎛⎝−3 3 0
−2 −2 2
1 1 2

⎞⎠ .

Check that P P−1 = I . You have calculated AP in the previous activity,
so now just multiply P−1 AP to obtain D.

Activity 8.26 Since vi is the i th vector in the basis B, writing T (vi ) =
λi vi expresses it as a linear combination of the basis vectors of B, so
the B coordinates are precisely as stated: λi in the i th position and 0
elsewhere.

Activity 8.27 TA is a stretch by a factor 4 in the direction of the vector
v1 = (−1, 1, 0)T, a stretch by a factor of 12 in the direction of v3 =
(1, 1, 2)T and it maps the line x = tv2 to 0.

Activity 8.36 This is immediately obvious since setting sv1 + tv2 = 0,
the second components tell us s = 0 and the third components that
t = 0. However, this was a good time to recall that the method of
solution ensures that the vectors will be linearly independent; see the
discussion at the end of Section 6.5.2.

Activity 8.37 If you know that AP = P D, then you know that the
eigenvectors are correct and the eigenvalues are in the correct positions
in D. If you also check that |P| 
= 0, then you know that you have
chosen three linearly independent eigenvectors, so P−1 exists and then
P−1 AP = D. If any of the checks fail, then you should be able to find
any errors in your choice of eigenvectors and eigenvalues.

8.6 Exercises

Exercise 8.1 Diagonalise the matrix

A =
(

4 5
−1 −2

)
;

that is, find an invertible matrix P and a diagonal matrix D such that
P−1 AP = D. Check your answer.
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Exercise 8.2 Find the eigenvalues of the matrix

B =
⎛⎝ 0 2 1

16 4 −6
−16 4 10

⎞⎠
and find an eigenvector for each eigenvalue. Hence find an invertible
matrix P and a diagonal matrix D such that P−1 B P = D. Check your
work.

Exercise 8.3 Determine if either of the following matrices can be
diagonalised:

A =
(

1 1
0 1

)
, B =

(
1 1
1 1

)
.

Exercise 8.4 Let M be an n × n matrix. State precisely what is meant
by the statement

‘λ is an eigenvalue of M with corresponding eigenvector v.’

Exercise 8.5 Let

A =
⎛⎝ 6 13 −8

2 5 −2
7 17 −9

⎞⎠ , v =
⎛⎝ 1

0
1

⎞⎠ .

Using the definition of eigenvector, show that v is an eigenvector of A
and find its corresponding eigenvalue.

The matrix A defines a linear transformation T : R3 → R3 by
T (x) = Ax. It is known that T fixes a non-zero vector x, T (x) = x. Use
this information to determine another eigenvector and eigenvalue of A.
Check your result.

Diagonalise the matrix A: write down an invertible matrix P and a
diagonal matrix D such that P−1 AP = D.

Describe the linear transformation T .

Exercise 8.6 Show that the vector x is an eigenvector of A, where:

A =
⎛⎝−1 1 2

−6 2 6
0 1 1

⎞⎠ , x =
⎛⎝ 1

1
1

⎞⎠ .

What is the corresponding eigenvalue?
Find the other eigenvalues of A, and an eigenvector for each of

them. Find an invertible matrix P and a diagonal matrix D such that
P−1 AP = D. Check that AP = P D.



276 Diagonalisation

Exercise 8.7 Diagonalise the matrix A:

A =
⎛⎝ 0 0 −2

1 2 1
1 0 3

⎞⎠ .

Describe the eigenspace of each eigenvalue.

Exercise 8.8 Prove the following statement:

0 is an eigenvalue of A if and only if Ax = 0 has a non-trivial solution.

Exercise 8.9 Look again at Exercise 6.7. Repeating what you did there,
show that two eigenvectors corresponding to distinct eigenvalues are
linearly independent.

Using an inductive argument, prove that eigenvectors corresponding
to distinct eigenvalues are linearly independent; that is, give another
proof of Theorem 8.33.

Exercise 8.10 Suppose that A is a real diagonalisable matrix and that
all the eigenvalues of A are non-negative. Prove that there is a matrix
B such that B2 = A.

8.7 Problems

Problem 8.1 Determine which, if any, of the following vectors are
eigenvectors for the given matrix A:

x =
⎛⎝ 1

−1
3

⎞⎠ , y =
⎛⎝ 1

5
3

⎞⎠ , z =
⎛⎝ 5

0
1

⎞⎠ ; A =
⎛⎝ 1 1 0

1 4 3
0 3 1

⎞⎠ .

Problem 8.2 Find the eigenvalues and corresponding eigenvectors for
the matrix

A =
(

1 4
3 2

)
.

Hence, find an invertible matrix P such that P−1 AP is diagonal. Cal-
culate P−1 AP to check your answer.

Problem 8.3 Diagonalise the matrix

A =
(

7 −2
−1 8

)
.

Describe (geometrically) the linear transformation T : R2 → R2 given
by T (x) = Ax.
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Problem 8.4 Find the characteristic equation of the matrix B,

B =
⎛⎝ 3 −1 2

5 −3 5
1 −1 2

⎞⎠ .

Find the eigenvalues (which are integers) and corresponding eigenvec-
tors for B.

Find a basis of R3 consisting of eigenvectors of the matrix B.
Find an invertible matrix P and a diagonal matrix D such that

P−1 B P = D, Check your answer for P by showing that B P = P D.
Then calculate P−1 and check that P−1 B P = D.

Problem 8.5 Diagonalise the matrix

A =
⎛⎝ 5 0 4

1 −1 2
2 0 3

⎞⎠ .

Problem 8.6 Explain why the matrix

C =
⎛⎝ 5 0 4

a −1 b
2 0 3

⎞⎠ .

can be diagonalised for any values of a, b ∈ R.

Problem 8.7 Find the eigenvalues of the matrices

A =
⎛⎝ 1 1 1

0 1 −1
1 0 2

⎞⎠ and B =
⎛⎝−2 1 −2

−1 0 1
2 1 2

⎞⎠
and show that neither matrix can be diagonalised over the real numbers.

Problem 8.8 Consider the matrix A and the vector v:

A =
⎛⎝−5 8 32

2 1 −8
−2 2 11

⎞⎠ , v =
⎛⎝ 2

−2
1

⎞⎠ .

Show that v is an eigenvector of A and find the corresponding eigen-
value. Find all the eigenvectors corresponding to this eigenvalue, and
hence describe (geometrically) the eigenspace.

Diagonalise the matrix A.

Problem 8.9 Let the matrix A and the vector v1 be as follows:

A =
⎛⎝ 4 3 −7

1 2 1
2 2 −3

⎞⎠ , v1 =
⎛⎝ 1

2
1

⎞⎠ .
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(a) Show that v1 is an eigenvector of A and find its corresponding
eigenvalue.

Diagonalise the matrix A; that is, find an invertible matrix P and
a diagonal matrix D such that P−1 AP = D. Check your answer
without finding P−1.

(b) Deduce the value of |A| from the eigenvalues, and show that A is
invertible.

Indicate how to diagonalise A−1 without any further calcula-
tions. (Find its matrix of eigenvectors and corresponding diagonal
matrix.)

(c) Find the missing entries s12 and s31 of A−1:

A−1 = 1

|A|

⎛⎝−8 s12 17
5 2 −11

s31 −2 5

⎞⎠ .

Then verify that A−1v = λv for each of the eigenvalues and eigen-
vectors of A−1 found in part (b).

Problem 8.10 Show that one of the following two matrices can be
diagonalised and the other cannot:

A =
⎛⎝ 2 3 0

3 2 0
1 1 5

⎞⎠ , B =
⎛⎝ 2 3 0

3 2 0
1 −1 5

⎞⎠ .

Diagonalise the appropriate matrix.

Problem 8.11 Suppose that you would like to find a linear transfor-
mation T : R3 → R3 which is a stretch by factor of two in the direc-
tion v1 = (1, 0, 1)T, which fixes every point on the line x = tv2, where
v2 = (1, 1, 0)T, and which maps the line x = tv3, where v3 = (2, 1, 1)T,
to 0.

Show that no such linear transformation can exist.

Problem 8.12 Suppose that A and B are diagonalisable n × n matrices
with the same eigenvalues. Prove that A and B are similar matrices.

Problem 8.13 Diagonalise each of the following matrices A and B,

A =
(

5 4
−2 −1

)
, B =

(−5 24
−2 9

)
.

Show that A and B are similar by finding an invertible matrix S such
that B = S−1 AS. Check your result by multiplying S−1 AS to obtain B.

Problem 8.14 If A is an n × n matrix, show that the matrices A and AT

have the same characteristic polynomial. Deduce that A and AT have
the same eigenvalues.
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Applications of
diagonalisation

We will now look at some applications of diagonalisation. We apply
diagonalisation to find powers of diagonalisable matrices. We also solve
systems of simultaneous linear difference equations. In particular, we
look at the important topic of Markov chains. We also look at systems of
differential equations. (Do not worry if you are unfamiliar with differ-
ence or differential equations. The key ideas you’ll need are discussed.)
We will see that the diagonalisation process makes the solution of linear
systems of difference and differential equations possible by essentially
changing basis to one in which the problem is readily solvable, namely
a basis of Rn consisting of eigenvectors of the matrix describing the
system.

9.1 Powers of matrices

For a positive integer n, the nth power of a matrix A is simply

An = A A A · · · A︸ ︷︷ ︸
n times

.

Example 9.1 Consider the matrix

A =
(

7 −15
2 −4

)
(which we met in Example 8.3). We have

A2 = AA =
(

7 −15
2 −4

)(
7 −15
2 −4

)
=
(

19 −45
6 −14

)
,

A3 = A.A.A = A.A2 =
(

7 −15
2 −4

)(
19 −45
6 −14

)
=
(

43 −105
14 −34

)
.
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It is often useful, as we shall see in this chapter, to determine An for a
general integer n. As you can see from Example 9.1, we could calculate
An by performing n − 1 matrix multiplications. But it would be more
satisfying (and easier) to have a ‘formula’ for the nth power, a matrix
expression involving n into which one could substitute any desired
value of n. Diagonalisation helps here. If we can write P−1 AP = D,
then A = P D P−1 and so

An = A A A · · · A︸ ︷︷ ︸
n times

= (P D P−1) (P D P−1) (P D P−1) · · · (P D P−1)︸ ︷︷ ︸
n times

= P D(P−1 P)D(P−1 P)D(P−1 P) · · · D(P−1 P)D P−1

= P DI DI DI · · · DI D P

= P DDD · · · D︸ ︷︷ ︸
n times

P−1

= P Dn P−1.

The product P Dn P−1 is easy to compute since Dn is simply the diag-
onal matrix with entries equal to the nth power of those of D.

Activity 9.2 Convince yourself that if

D =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λk

⎞⎟⎟⎟⎠ , then Dn =

⎛⎜⎜⎜⎝
λn

1 0 · · · 0
0 λn

2 · · · 0
...

...
. . .

...
0 0 · · · λn

k

⎞⎟⎟⎟⎠ .

Let’s look at an easy example that builds on some work we did in the
previous chapter.

Example 9.3 As mentioned in the previous chapter, the matrix

A =
(

7 −15
2 −4

)
from Example 8.3 is diagonalisable: if

P =
(

5 3
2 1

)
,

then P is invertible and

P−1 AP = D =
(

1 0
0 2

)
.
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Suppose we want to find an expression for An. Well, since P−1 AP = D,
we have A = P D P−1 and so, as explained above,

An = P Dn P−1 =
(

5 3
2 1

)(
1 0
0 2n

)(−1 3
2 −5

)

=
(−5 + 6(2n) 15 − 15(2n)

−2 + 2(2n) 6 − 5(2n)

)
.

You can see that the cases n = 2, 3 in Example 9.1 clearly comply with
this general formula for the nth power.

Here is another fairly easy example, which we will fully work through.

Example 9.4 Suppose that we want a matrix expression for the nth
power of the matrix

A =
(

1 4
1
2 0

)
.

The characteristic polynomial |A − λI | is (check this!)

λ2 − λ − 2 = (λ − 2)(λ + 1).

So the eigenvalues are −1 and 2. An eigenvector for −1 is a solution of
(A + I )v = 0, found by

A + I =
(

2 4
1
2 1

)
−→

(
1 2
0 0

)
,

so we may take (2, −1)T. Eigenvectors for 2 are given by

A − 2I =
(−1 4

1
2 −2

)
−→

(
1 −4
0 0

)
,

so we may take (4, 1)T. Let P be the matrix whose columns are these
eigenvectors. Then

P =
(

2 4
−1 1

)
.

The inverse is

P−1 = 1

6

(
1 −4
1 2

)
.

We have P−1 AP = D = diag(−1, 2). The nth power of the matrix A
is given by

An = P Dn P−1

= 1

6

(
2 4

−1 1

)(
(−1)n 0

0 2n

)(
1 −4
1 2

)
= 1

6

(
2(−1)n + 4(2n) −8(−1)n + 8(2n)
−(−1)n + 2n 4(−1)n + 2(2n)

)
.

Activity 9.5 Check the calculations in the examples just given.
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9.2 Systems of difference equations

9.2.1 Introduction to difference equations

A difference equation is an equation linking the terms of a sequence to
previous terms. For example, xt+1 = 5xt − 1 is a first-order difference
equation for the sequence xt . (It is said to be first-order because the
relationship expressing xt+1 involves only the previous term.) If you
have a first-order difference equation, once you know the first term
of the sequence, the relationship determines all the other terms of the
sequence. Difference equations are also often referred to as recurrence
equations. Here t is always a non-negative integer: t ∈ Z, t ≥ 0.

By a solution of a difference equation, we mean an expression for
the term xt which involves t and the first term of the sequence (the initial
condition). One very simple result we will need is that the solution to
the difference equation

xt+1 = axt

is simply

xt = at x0,

where x0 is the first term of the sequence. (We assume that the members
of the sequence are labeled as x0, x1, x2, . . ., rather than x1, x2, . . ..)
You might recognise these as the terms of a geometric progression, if
you have studied those before.

This result is easily established. If xt+1 = axt , we have

x1 = ax0

x2 = ax1 = a(ax0) = a2x0

x3 = ax2 = a(a2x0) = a3x0

...

xt = at x0.

9.2.2 Systems of difference equations

We shall now see how we can use diagonalisation to solve (linear) sys-
tems of difference equations. This is a powerful and important applica-
tion of diagonalisation. We introduce the ideas with a fairly manageable
example.
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Example 9.6 Suppose the sequences xt and yt are related as follows:
x0 = 1, y0 = 1, and, for t ≥ 0,

xt+1 = 7xt − 15yt , (9.1)

yt+1 = 2xt − 4yt . (9.2)

This is an example of a coupled system of difference equations. We
cannot directly solve equation (9.1) for xt since we would need to know
yt . On the other hand, we can’t work out yt directly from equation (9.2)
because to do so we would need to know xt ! You might think that
it therefore seems impossible. However, there is a way to solve the
problem, and it uses diagonalisation.

Example 9.6 continued Let us notice that the system we’re considering
can be expressed in matrix form. If we let

xt =
(

xt

yt

)
,

then the problem is to find xt given that xt+1 = Axt for t ≥ 0 and given
that x0 = (1, 1)T, where A (our old friend from the previous chapter
and Example 9.1) is

A =
(

7 −15
2 −4

)
.

We’re very familiar with the matrix A. We know how to diagonalise it
and we know its nth power from Example 9.3. The expression we have
for the nth power is immediately useful here. We have xt+1 = Axt for
t ≥ 0. So,

x1 = Ax0,

x2 = Ax1 = A(Ax0) = A2x0,

x3 = Ax2 = A(A2x0) = A3x0

and, in general,

xt = At x0.

But we know (from Example 9.3) an expression for At . So we can see
that (

xt

yt

)
= xt = At x0 =

(−5 + 6(2n) 15 − 15(2n)
−2 + 2(2n) 6 − 5(2n)

)(
1
1

)
=
(

10 − 9(2t )
4 − 3(2t )

)
.

Therefore, the sequences are

xt = 10 − 9(2t ), yt = 4 − 3(2t ).
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This example demonstrates a very general approach to solving systems
of difference equations where the underlying matrix A is diagonalisable.

Note that we could equally well express the system xt+1 = Axt for
t ≥ 0, as xt = Axt−1 for t ≥ 1. The systems are exactly the same.

9.2.3 Solving using matrix powers

Suppose we want to solve a system xt+1 = Axt , in which A is diago-
nalisable. As we have seen, we can use diagonalisation to determine the
powers of the matrix and, as indicated above, this can help us to solve
the system. The key ideas are encapsulated in Example 9.6. We now
illustrate further with an example involving three sequences, in which
the underlying matrix is therefore a 3 × 3 matrix.

Example 9.7 The system we consider is as follows. We want to find
the sequences xt , yt , zt , which satisfy the difference equations

xt+1 = 6xt + 13yt − 8zt

yt+1 = 2xt + 5yt − 2zt

zt+1 = 7xt + 17yt − 9zt

and the initial conditions x0 = 1, y0 = 1, z0 = 0.
In matrix form, this system is xt+1 = Axt , where

A =
⎛⎝ 6 13 −8

2 5 −2
7 17 −9

⎞⎠ , xt =
⎛⎝ xt

yt

zt

⎞⎠ .

We need to diagonalise A. You will probably have worked through this
diagonalisation yourself in Exercise 8.5. If we take

P =
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠ and D =
⎛⎝−2 0 0

0 1 0
0 0 3

⎞⎠ ,

then P−1 AP = D. Now, as you can calculate,

P−1 =
⎛⎝−1 −3 2

−1 −1 1
1 2 −1

⎞⎠ .

It follows that At = P Dt P−1, so that

xt = At x0 = P Dt P−1x0.
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Therefore, the solution is given by

xt =
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠⎛⎝ (−2)t 0 0
0 1t 0
0 0 3t

⎞⎠⎛⎝−1 −3 2
−1 −1 1
1 2 −1

⎞⎠⎛⎝ 1
1
0

⎞⎠ .

You can multiply these matrices in any order, but the simplest way is to
begin at the right with

P−1x0 =
⎛⎝−1 −3 2

−1 −1 1
1 2 −1

⎞⎠⎛⎝ 1
1
0

⎞⎠ =
⎛⎝−4

−2
3

⎞⎠
so that⎛⎝ xt

yt

zt

⎞⎠ =
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠⎛⎝−4(−2)t

−2
3(3t )

⎞⎠ =
⎛⎝−4(−2)t + 2 + 3(3t )

−2 + 3(3t )
−4(−2)t − 2 + 6(3t )

⎞⎠ .

The sequence are

xt = −4(−2)t + 2 + 3(3t )

yt = −2 + 3(3t )

zt = −4(−2)t − 2 + 6(3t ).

How can we check that this solution is correct? We should at least check
that it gives us the correct initial conditions by substituting t = 0 into
the solution. This is easily done.

Activity 9.8 Do this!

We can also find x1 in two different ways. The original equations will
give us

x1 = Ax0 =
⎛⎝ 6 13 −8

2 5 −2
7 17 −9

⎞⎠⎛⎝ 1
1
0

⎞⎠ =
⎛⎝ 19

7
24

⎞⎠ .

If we get the same result from our solution, then we can be fairly certain
that our solution is correct. According to our solution,⎛⎝ x1

y1

z1

⎞⎠ =
⎛⎝−4(−2) + 2 + 3(3)

−2 + 3(3)
−4(−2) − 2 + 6(3)

⎞⎠ =
⎛⎝ 19

7
24

⎞⎠ .

So we do indeed obtain the same answer.

Activity 9.9 Carry out any omitted calculations in this example.
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9.2.4 Solving by change of variable

We can use diagonalisation as the key to another general method for
solving systems of difference equations. Given a system xt+1 = Axt , in
which A is diagonalisable, we perform a change of variable or change
of coordinates, as follows. Suppose that P−1 AP = D (where D is
diagonal) and let

xt = Put .

Equivalently, the new variable vector ut is ut = P−1xt . One way of
thinking about this is that the vector xt is in standard coordinates and
ut is in coordinates in the basis of eigenvectors. Then substituting
xt = Put into the equation xt+1 = Axt , and noting that xt+1 = Put+1,
the equation becomes

Put+1 = APut ,

which means that

ut+1 = P−1 APut = Dut .

Since D is diagonal, this is very easy to solve for ut . To find xt , we then
use the fact that xt = Put .

We will illustrate the method using the system in Example 9.7

Example 9.10 We find the sequences xt , yt , zt which satisfy the differ-
ence equations

xt+1 = 6xt + 13yt − 8zt

yt+1 = 2xt + 5yt − 2zt

zt+1 = 7xt + 17yt − 9zt

and the initial conditions x0 = 1, y0 = 1, z0 = 0.
Using the matrices A, P and D given in Example 9.7, we let

ut =
⎛⎝ ut

vt

wt

⎞⎠
be given by xt = Put . Then the equation xt+1 = Axt gives rise (as
explained above) to ut+1 = Dut . That is,⎛⎝ ut+1

vt+1

wt+1

⎞⎠ =
⎛⎝−2 0 0

0 1 0
0 0 3

⎞⎠⎛⎝ ut

vt

wt

⎞⎠ ,
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so we have the following system for the new sequences ut , vt , wt :

ut+1 = −2ut

vt+1 = vt

wt+1 = 3wt .

This is very easy to solve: each equation involves only one sequence,
so we have uncoupled the equations. We have, for all t ,

ut = (−2)t u0, vt = v0, wt = 3tw0.

We have not yet solved the original problem, however, since we need to
find xt , yt , zt . We have

xt =
⎛⎝ xt

yt

xt

⎞⎠ = Put =
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠⎛⎝ ut

vt

wt

⎞⎠

=
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠⎛⎝ (−2)t u0

v0

3tw0

⎞⎠ .

But we have also to find out what u0, v0, w0 are. These are not given in
the problem, but x0, y0, z0 are, and we know that⎛⎝ x0

y0

z0

⎞⎠ = P

⎛⎝ u0

v0

w0

⎞⎠ =
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠⎛⎝ u0

v0

w0

⎞⎠ .

To find u0, v0, w0, we can either solve the linear system

P

⎛⎝ u0

v0

w0

⎞⎠ =
⎛⎝ x0

y0

z0

⎞⎠ =
⎛⎝ 1

1
0

⎞⎠
using row operations, or we can (though it may involve more work) find
out what P−1 is and use the fact that u0 = P−1x0,⎛⎝ u0

v0

w0

⎞⎠ = P−1

⎛⎝ x0

y0

z0

⎞⎠ = P−1

⎛⎝ 1
1
0

⎞⎠ .

Either way (and the working is omitted here, but you should check it),
we find ⎛⎝ u0

v0

w0

⎞⎠ =
⎛⎝−4

−2
3

⎞⎠ .
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Returning then to the general solution to the system, we obtain⎛⎝ xt

yt

xt

⎞⎠ =
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠⎛⎝ (−2)t u0

v0

3tw0

⎞⎠

=
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠⎛⎝−4(−2)t

−2
3(3t )

⎞⎠ ,

so we have the solution⎛⎝ xt

yt

xt

⎞⎠ =
⎛⎝−4(−2)t + 2 + 3(3t )

−2 + 3(3t )
−4(−2)t − 2 + 6(3t )

⎞⎠ .

And, of course, this is in agreement with the answer obtained earlier
using matrix powers.

Activity 9.11 Perform all the omitted calculations for this example.

9.2.5 Another example

Let’s find the sequences xt , yt , zt which satisfy the following system of
linear difference equations

xt+1 = 4xt + 4zt

yt+1 = 4yt + 4zt

zt+1 = 4xt + 4yt + 8zt

and x0 = 6, y0 = 12, z0 = 12.
We will do this by both methods described above (although, of

course, you would only need to choose one of the methods and solve it
that way). In matrix form, this system is xt+1 = Axt , where

A =
⎛⎝ 4 0 4

0 4 4
4 4 8

⎞⎠ , xt =
⎛⎝ xt

yt

zt

⎞⎠ .

This is the matrix we diagonalised in Example 8.23. There, we found
that P−1 AP = D, where

P =
⎛⎝−1 −1 1

1 −1 1
0 1 2

⎞⎠ , D =
⎛⎝ 4 0 0

0 0 0
0 0 12

⎞⎠ .

First, we use matrix powers. Since xt+1 = Axt , we therefore have

xt = At x0.
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Because A = P D P−1, we have At = P Dt P−1, so

xt = P Dt P−1x0.

Now, as you can calculate,

P−1 = 1

6

⎛⎝−3 3 0
−2 −2 2
1 1 2

⎞⎠ .

Therefore, the solution is given by

xt =
⎛⎝−1 −1 1

1 −1 1
0 1 2

⎞⎠⎛⎝ 4t 0 0
0 0t 0
0 0 12t

⎞⎠ 1

6

⎛⎝−3 3 0
−2 −2 2
1 1 2

⎞⎠⎛⎝ 6
12
12

⎞⎠ .

Now (and this is a fact you may not have seen before) 0t = 0 for all
t ≥ 1, but 00 = 1 (since by definition x0 = 1 for all real numbers x).
So for all t ≥ 1, we have

xt =
⎛⎝ xt

yt

zt

⎞⎠ =
⎛⎝−1 −1 1

1 −1 1
0 1 2

⎞⎠⎛⎝ 4t 0 0
0 0 0
0 0 12t

⎞⎠⎛⎝ 3
−2
7

⎞⎠ .

That is, for t ≥ 1, ⎛⎝ xt

yt

zt

⎞⎠ =
⎛⎝−3(4t ) + 7(12t )

3(4t ) + 7(12t )
14(12t )

⎞⎠ ,

and, of course (since this is given),

x0 =
⎛⎝ 6

12
12

⎞⎠ .

(You might observe that if you take the expression for xt given for t ≥ 1,
and if you substitute t = 0, you don’t get the right value for x0. That
isn’t because the solution is wrong; it’s simply because that expression
only works for t ≥ 1. Look at how it is obtained: we set 0t equal to 0,
something that is true for t ≥ 1 but not for t = 0.)

For the second method (in which we change the variable), let

ut =
⎛⎝ ut

vt

wt

⎞⎠
be given by xt = Put . Then the equation xt+1 = Axt becomes Put+1 =
APut , or ut+1 = P−1 APut ; that is, ut+1 = Dut ,⎛⎝ ut+1

vt+1

wt+1

⎞⎠ =
⎛⎝ 4 0 0

0 0 0
0 0 12

⎞⎠⎛⎝ ut

vt

wt

⎞⎠ .
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So we have the following system for the new sequences ut , vt , wt :

ut+1 = 4 ut

vt+1 = 0 vt

wt+1 = 12 wt ,

with solutions

ut = 4t u0, vt = 0 for t ≥ 1, wt = 12t w0.

To find u0, v0, w0, we use u0 = P−1x0. As calculated earlier,⎛⎝ u0

v0

w0

⎞⎠ = 1

6

⎛⎝−3 3 0
−2 −2 2
1 1 2

⎞⎠⎛⎝ 6
12
12

⎞⎠ =
⎛⎝ 3

−2
7

⎞⎠ .

Then the solution is,⎛⎝ xt

yt

xt

⎞⎠ =
⎛⎝−1 −1 1

1 −1 1
0 1 2

⎞⎠⎛⎝ 4t u0

0
12tw0

⎞⎠

=
⎛⎝−1 −1 1

1 −1 1
0 1 2

⎞⎠⎛⎝ 3(4t )
0

7(12t )

⎞⎠

=
⎛⎝−3(4t ) + 7(12t )

3(4t ) + 7(12t )
14(12t )

⎞⎠ , for t ≥ 1

and x0 = (6, 12, 12)T. This is in agreement with the answer obtained
earlier using matrix powers.

Activity 9.12 Check all the calculations in this section.

Activity 9.13 Check the solutions by finding x1. See what happens if
you keep 0t as part of your solution in either method; will the solution
then work for all t ≥ 0?

9.2.6 Markov Chains

To illustrate just what a Markov chain is, let’s begin by looking at an
example.

Example 9.14 Suppose two supermarkets compete for customers in
a region with 20 000 shoppers. Assume that no shopper goes to both
supermarkets in any week, and that the table below gives the proba-
bilities that a shopper will change from one supermarket (or none) to
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another (or none) during the week.

From A From B From none
To A 0.70 0.15 0.30
To B 0.20 0.80 0.20
To none 0.10 0.05 0.50

For example, the second column tells us that during any given week
supermarket B will keep 80% of its customers while losing 15% to
supermarket A and 5% to no supermarket. Notice that the probabilities
in the column add up to 1, since every shopper has to end up somewhere
in the following week.

Suppose that at the end of a certain week (call it week zero), it is
known that the total population of T = 20 000 shoppers was distributed
as follows: 10 000 (that is, 0.5 T ) went to supermarket A, 8 000 (0.4 T )
went to supermarket B and 2 000 (0.1 T ) did not go to a supermarket.

Given this information, the questions we wish to answer are: ‘Can
we predict the number of shoppers at each supermarket in any future
week t?’, and ‘Can we predict a long-term distribution of shoppers?’

In order to answer these questions, we formulate the problem as
a system of linear difference equations. Let xt denote the (decimal)
percentage of total shoppers going to supermarket A in week t , yt the
percentage going to supermarket B and zt the percentage who do not go
to any supermarket. The numbers of shoppers in week t can be predicted
by this model from the numbers in the previous week; that is,

xt = Axt−1,

where

A =
⎛⎝ 0.70 0.15 0.30

0.20 0.80 0.20
0.10 0.05 0.50

⎞⎠ , xt =
⎛⎝ xt

yt

zt

⎞⎠
and x0 = 0.5, y0 = 0.4, z0 = 0.1.

What features of this problem make it a Markov chain? In general, a
Markov chain or a Markov process is a closed system consisting of a
fixed total population which is distributed into n different states, and
which changes during specific time intervals from one distribution to
another. We assume that we know the probability that a given member
will change from one state into another, depending on the state the
member occupied during the previous time interval.

These probabilities are listed in an n × n matrix A, where the (i, j)
entry is the probability that a member of the population will change
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from state j to state i . Such a matrix is called a transition matrix of a
Markov chain.

Definition 9.15 The n × n matrix A = (ai j ) is a transition matrix of a
Markov chain if it satisfies the following two properties:

(1) The entries of A are all non-negative.
(2) The sum of the entries in each column of A is equal to 1:

a1 j + a2 j + · · · + anj = 1.

Property (2) follows from the assumption that all members of the pop-
ulation must be in one of the n states at any given time. (Informally, all
those at state j have to be somewhere at the next observation time, so
the sum (over all i) of the ‘transition probabilities’ of going from state
j to state i , must equal 1.)

The distribution vector (or state vector) for the time period t is the
vector xt , whose i th entry is the percentage of the population in state i at
time t . The entries of xt sum to 1 because all members of the population
must be in one of the states at any time. Our first goal is to find the state
vector for any t , and to do this we need to solve the difference equation

xt = Axt−1, t ≥ 1.

A solution of the difference equation is an expression for the distribution
vector xt in terms of A and x0, and, as we have seen earlier, the solution
is xt = At x0.

Now assume that A can be diagonalised. If A has eigenvalues
λ1, λ2, . . . , λn with corresponding eigenvectors v1, v2, . . . , vn, then
P−1 AP = D where P is the matrix of eigenvectors of A and D is
the corresponding diagonal matrix of eigenvalues.

The solution of the difference equation is

xt = At x0 = (P Dt P−1)x0.

Let’s examine this solution to see what it tells us. If we set x = Pz, so
that z0 = P−1x0 = (b1, b2, . . . , bn)T represents the coordinates of x0 in
the basis of eigenvectors, then this solution can be written in vector
form as

xt = P Dt (P−1x0)

=
⎛⎝ | | |

v1 v2 · · · vn

| | |

⎞⎠
⎛⎜⎜⎜⎝

λt
1 0 · · · 0

0 λt
2 · · · 0

...
...

. . .
...

0 0 · · · λt
n

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

b1

b2
...

bn

⎞⎟⎟⎟⎠
= b1λ

t
1v1 + b2λ

t
2v2 + · · · + bnλ

t
nvn.
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Activity 9.16 Make sure you understand how the final equality above
follows from matrix multiplication properties.

Now let’s return to our example.

Example 9.14 continued We will use this solution to find the number
of shoppers using each of the supermarkets at the end of week t , and
see if we can use this information to predict the long-term distribution
of shoppers.

First, we diagonalise the matrix A. The characteristic equation of A
is

|A − λI | =
∣∣∣∣∣∣
0.70 − λ 0.15 0.30

0.20 0.80 − λ 0.20
0.10 0.05 0.50 − λ

∣∣∣∣∣∣
= −λ3 + 2λ2 − 1.24λ + 0.24 = 0.

This equation is satisfied by λ = 1, and hence 1 is an eigenvalue. Using
the fact that (λ − 1) is a factor of the polynomial, we find

(λ − 1)(λ2 − λ + 0.24) = (λ − 1)(λ − 0.6)(λ − 0.4) = 0,

so the eigenvalues are λ1 = 1, λ2 = 0.6, and λ3 = 0.4. The corre-
sponding eigenvectors vi are found by solving the homogeneous sys-
tems (A − λi I )v = 0. (We omit the calculations.) Writing them as the
columns of a matrix P , we find that P−1 AP = D, where

P =
⎛⎝ 3 3 −1

4 −4 0
1 1 1

⎞⎠ , D =
⎛⎝ 1 0 0

0 0.6 0
0 0 0.4

⎞⎠ .

Activity 9.17 Carry out the omitted calculations for the diagonalisation
above.

The distribution vector xt at any time t is then given by

xt = b1(1)t v1 + b2(0.6)tv2 + b3(0.4)tv3,

where it only remains to find the coordinates, b1, b2, b3 of x0 in the
basis of eigenvectors.

Before we do this, let’s see what the solution tells us about a long-
term distribution of shoppers. We want to know what happens to xt

for very large values of t ; that is, as t → ∞. Note – and this is very
important – that 1t = 1, and that as t → ∞ , (0.6)t → 0 and (0.4)t → 0.
So there is a long-term distribution: the limit of xt as t → ∞ is a scalar
multiple, q = b1v1, of the eigenvector v1 whose eigenvalue is 1.
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Now we’ll complete the solution by finding b1, b2, b3. The coordi-
nates of x0 in the basis of eigenvectors are given by

P−1x0 = 1

8

⎛⎝ 1 1 1
1 −1 1

−2 0 6

⎞⎠⎛⎝ 0.5
0.4
0.1

⎞⎠ =
⎛⎝ 0.125

0.025
−0.05

⎞⎠ =
⎛⎝ b1

b2

b3

⎞⎠ .

Hence,

xt = 0.125

⎛⎝ 3
4
1

⎞⎠+ 0.025(0.6)t

⎛⎝ 3
−4
1

⎞⎠− 0.05(0.4)t

⎛⎝−1
0
1

⎞⎠ ,

and the long-term distribution is

q = lim
t→∞ xt =

⎛⎝ 0.375
0.500
0.125

⎞⎠ .

Relating this to numbers of shoppers, and remembering that the total
number of shoppers is 20000, the long-term distribution is predicted
to be 20000q: 7500 to supermarket A, 10000 to B and 2500 to no
supermarket.

Activity 9.18 Verify that P−1 is as stated.

You will have noticed that an essential part of the solution of predicting
a long-term distribution for this example is the fact that the transition
matrix A has an eigenvalue λ = 1 (of multiplicity 1), and that the other
eigenvalues satisfy |λi | < 1. In this case, as t increases, the distribution
vector xt will approach the unique eigenvector q for λ = 1 which is
also a distribution vector. The fact that the entries sum to 1 makes q
unique among the vectors satisfying Aq = q.

We would like to be able to know that this is the case for any Markov
chain, but there are some exceptions to this rule. A Markov chain is
said to be regular if some power of the transition matrix A has strictly
positive entries (so it has no zero entries). In this case, there will be a
long-term distribution, as the following theorem implies.

Theorem 9.19 If A is the transition matrix of a regular Markov chain,
then λ = 1 is an eigenvalue of multiplicity 1, and all other eigenvalues
satisfy |λi | < 1.

We will not prove this theorem here. However, we will prove a similar,
but weaker result, which makes it clear that the only thing that can go
wrong is for the eigenvalue λ = 1 to have multiplicity greater than 1.
First, we need a definition.
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Definition 9.20 A matrix C is called a stochastic matrix if it has the
following two properties:

(1) The entries of C are all non-negative.
(2) The sum of the entries in each row of C is equal to 1:

ci1 + ci2 + · · · + cin = 1.

Note that if A is a transition matrix for a Markov process, then AT is
a stochastic matrix (because all of its entries are non-negative and the
sum of the entries of each row of AT is equal to 1).

Matrices A and AT have the same eigenvalues, because by prop-
erties of transpose and determinant, they have the same characteristic
polynomials (the roots of which are the eigenvalues):∣∣A − λI

∣∣ = ∣∣(A − λI )T∣∣ = ∣∣AT − λI
∣∣.

We will prove the following theorem for stochastic matrices, and then
apply it to transition matrices.

Theorem 9.21 If C is a stochastic matrix, then:

� v = (1, 1, . . . , 1)T is an eigenvector of C with eigenvalue λ = 1.
� If λ is an eigenvalue of C, then |λ| ≤ 1.

Proof: Let C = (ci j ). That Cv = v follows immediately from property
(2) of the definition of a stochastic matrix, since the i th entry of Cv is
ci1(1) + ci2(1) + · · · + cin(1) = 1.

To prove the second statement, let λ be an eigenvalue of C , let
u 
= 0 be any vector satisfying Cu = λu, and let ui denote the largest
component (in absolute value) of u. To show that |λ| ≤ 1, set

w = 1

ui
u.

Then Cw = λw, wi = 1, and |wk| ≤ 1 for 1 ≤ k ≤ n. Consider what
the i th row of the matrix equation Cw = λw tells us. It says that

λwi = ci1w1 + ci2w2 + · · · + cinwn,

and hence

|λ| = |λwi | (since wi = 1)

= |ci1w1 + ci2w2 + · · · + cinwn|
≤ ci1|w1| + ci2|w2| + · · · + cin|wn|
≤ ci1 + ci2 + · · · + cin = 1 (because wk ≤ 1).

So we’ve shown that λ = 1 is an eigenvalue and that all eigenvalues λi

satisfy |λi | ≤ 1. �



296 Applications of diagonalisation

What does this theorem imply about Markov chains? We saw earlier that
if A is the transition matrix of a Markov chain, then AT is a stochastic
matrix and also that A and AT have the same eigenvalues. Therefore,
you can deduce from Theorem 9.21 that:

� λ = 1 is an eigenvalue of A, and
� if λi is an eigenvalue of A then |λi | ≤ 1.

The theorem tells us that λ = 1 is an eigenvalue, but it might have
multiplicity greater than 1, in which case either there would be more
than one (linearly independent) eigenvector corresponding to λ = 1, or
the matrix might not be diagonalisable.

In order to obtain a long-term distribution, we need to know that
there is only one (linearly independent) eigenvector for the eigenvalue
λ = 1. So if the eigenvalue λ = 1 of a transition matrix A of a Markov
chain does have multiplicity 1, then Theorem 9.21 implies all the other
eigenvalues λi satisfy |λi | < 1. There will be one corresponding eigen-
vector which is also a distribution vector, and provided A can be diag-
onalised, we will know that there is a long-term distribution. This is all
we will need in practice.

9.3 Linear systems of differential equations

This section is aimed at those who will have studied calculus before,
as many of you have (or will be doing so concurrently with your linear
algebra studies). But if you have not yet studied calculus, you can simply
omit this section.

A differential equation is, broadly speaking, an equation that
involves a function and its derivatives. We are interested here only
in very simple types of differential equation and it is quite easy to
summarise what you need to know so that we do not need a lengthy
digression into calculus (which would detract from the whole point of
the exercise, which is to demonstrate the power of diagonalisation).

For a function y = y(t), the derivative of y will be denoted by
y′ = y′(t) or dy/dt . The result we will need is the following: if y(t)
satisfies the ‘linear’ differential equation

y′ = ay,

then the general solution is

y(t) = βeat for β ∈ R.
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If an initial condition, y(0) is given, then since y(0) = βe0 = β, we
have a particular (unique) solution y(t) = y(0)eat to the differential
equation.

Activity 9.22 Check that y = 3e2t is a solution of the differential equa-
tion y′ = 2y which satisfies the initial condition y(0) = 3.

We will look at systems consisting of these types of differential equa-
tions. In Section 9.2.4, we used a change of variable technique based on
diagonalisation to solve systems of difference equations. We can apply
an analogous technique to solve systems of linear differential equations.

In general, a (square) linear system of differential equations for the
functions y1(t), y2(t), . . . , yn(t) is of the form

y′
1 = a11 y1 + a12 y2 + · · · + a1n yn

y′
2 = a21 y1 + a22 y2 + · · · + a2n yn

...

y′
n = an1 y1 + an2 y2 + · · · + ann yn,

for constants ai j ∈ R. So such a system takes the form

y′ = Ay,

where A = (ai j ) is an n × n matrix whose entries are constants (that
is, fixed numbers), and y = (y1, y2, . . . , yn)T, y′ = (y′

1, y′
2, . . . , y′

n)T are
vectors of functions.

If A is diagonal, the system y′ = Ay is easy to solve. For instance,
suppose

A = diag(λ1, λ2, . . . , λn).

Then the system is precisely

y′
1 = λ1 y1, y′

2 = λ2 y2, . . . , y′
n = λn yn,

and so

y1 = y1(0)eλ1t , y2 = y2(0)eλ2t , . . . , yn = yn(0)eλnt .

Since a diagonal system is so easy to solve, it would be very helpful if
we could reduce our given system to a diagonal one, and this is precisely
what the method will do in the case where A is diagonalisable. We will
come back to the general discussion shortly, but for now we explore
with a simple example.
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Example 9.23 Suppose the functions y1(t) and y2(t) are related as
follows:

y′
1 = 7y1 − 15y2

y′
2 = 2y1 − 4y2.

In matrix form, this is y′ = Ay, where A is the 2 × 2 matrix we
considered earlier:

A =
(

7 −15
2 −4

)
.

We’ve seen this matrix is diagonalisable; if

P =
(

5 3
2 1

)
,

then P is invertible and

P−1 AP = D =
(

1 0
0 2

)
.

We now use the matrix P to define new functions z1(t), z2(t) by setting
y = Pz (or equivalently, z = P−1y); that is,

y =
(

y1

y2

)
=
(

5 3
2 1

)(
z1

z2

)
= Pz,

so that,

y1 = 5z1 + 3z2

y2 = 2z1 + z2.

By differentiating these equations, we can express y′
1 and y′

2 in terms
of z′

1 and z′
2,

y′
1 = 5z′

1 + 3z′
2

y′
2 = 2z′

1 + z′
2,

so that y′ = (Pz)′ = Pz′. Then we have,

Pz′ = y′ = Ay = A(Pz) = APz

and hence

z′ = P−1 APz = Dz.

In other words, (
z′

1
z′

2

)
=
(

1 0
0 2

)(
z1

z2

)
=
(

z1

2z2

)
.
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So the system for the functions z1, z2 is diagonal and hence is easily
solved. Having found z1, z2, we can then find y1 and y2 through the
explicit connection between the two sets of functions, namely y = Pz.

Let us now return to the general technique. Suppose we have the sys-
tem y′ = Ay, and that A can indeed be diagonalised. Then there is an
invertible matrix P and a diagonal matrix D such that P−1 AP = D.
Here

P = (v1 . . . vn), D = diag(λ1, λ2, . . . , λn),

where λi are the eigenvalues and vi corresponding eigenvectors. Let
z = P−1y (or, equivalently, let y = Pz). Then

y′ = (Pz)′ = Pz′,

since P has constant entries.

Activity 9.24 Prove that (Pz)′ = Pz′.

Therefore,

Pz′ = Ay = APz,

and

z′ = P−1 APz = Dz.

We may now easily solve for z, and hence y.
We illustrate with an example of a 3 by 3 system of differential

equations, solved using this method. Note carefully how we use the
initial values y1(0), y2(0) and y3(0).

Example 9.25 We find functions y1(t), y2(t), y3(t) such that y1(0) =
2, y2(0) = 1 and y3(0) = 1 and such that they are related by the linear
system of differential equations,

dy1

dt
= 6y1 + 13y2 − 8y3

dy2

dt
= 2y1 + 5y2 − 2y3

dy3

dt
= 7y1 + 17y2 − 9y3.

We can express this system in matrix form as y′ = Ay, where

A =
⎛⎝ 6 13 −8

2 5 −2
7 17 −9

⎞⎠ .
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As we saw earlier (in Exercise 8.5 and in Example 9.10), P−1 AP = D,

where

P =
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠ , D =
⎛⎝−2 0 0

0 1 0
0 0 3

⎞⎠ .

We set y = Pz, and substitute into the equation, y′ = Ay to obtain
(Pz)′ = A(Pz). That is, Pz′ = APz and so z′ = P−1 APz = Dz. In
other words, if

z =
⎛⎝ z1

z2

z3

⎞⎠ ,

then ⎛⎝ z′
1

z′
2

z′
3

⎞⎠ =
⎛⎝−2 0 0

0 1 0
0 0 3

⎞⎠⎛⎝ z1

z2

z3

⎞⎠ .

So,

z′
1 = −2z1, z′

2 = z2, z′
3 = 3z3.

Therefore,

z1 = z1(0)e−2t , z2 = z2(0)et , z3 = z3(0)e3t .

Then, using y = Pz, we have⎛⎝ y1

y2

y3

⎞⎠ =
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠⎛⎝ z1(0)e−2t

z2(0)et

z3(0)e3t

⎞⎠ .

It remains to find z1(0), z2(0), z3(0). To do so, we use the given initial
values y1(0) = 2, y2(0) = 1, y3(0) = 1. Since y = Pz, we can see that
y(0) = Pz(0). We could use row operations to solve this system to
determine z(0). Alternatively, we could use z(0) = P−1y(0). Perhaps
the first way is generally easier, but in this particular case we already
know the inverse of P from earlier:

P−1 =
⎛⎝−1 −3 2

−1 −1 1
1 2 −1

⎞⎠ .

Therefore,

z0 =
⎛⎝ z1(0)

z2(0)
z3(0)

⎞⎠ = P−1y(0) =
⎛⎝−1 −3 2

−1 −1 1
1 2 −1

⎞⎠⎛⎝ 2
1
1

⎞⎠ =
⎛⎝−3

−2
3

⎞⎠ .
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Therefore, finally,⎛⎝ y1

y2

y3

⎞⎠ =
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠⎛⎝ z1(0)e−2t

z2(0)et

z3(0)e3t

⎞⎠

=
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠⎛⎝−3e−2t

−2et

3e3t

⎞⎠

=
⎛⎝−3e−2t + 2et + 3e3t

−2et + 3e3t

−3e−2t − 2et + 6e3t

⎞⎠ .

The functions are

y1(t) = −3e−2t + 2et + 3e3t

y2(t) = −2et + 3e3t

y3(t) = −3e−2t − 2et + 6e3t .

How can we check our solution? First of all, it should satisfy the initial
conditions. If we substitute t = 0 into the equations, we should obtain
the given initial conditions.

Activity 9.26 Check this!

The real check is to look at the derivatives at t = 0. We can take the
original system, y′ = Ay and use it to find y′(0),⎛⎝ y′

1(0)
y′

2(0)
y′

3(0)

⎞⎠ =
⎛⎝ 6 13 −8

2 5 −2
7 17 −9

⎞⎠⎛⎝ y1(0)
y2(0)
y3(0)

⎞⎠
=
⎛⎝ 6 13 −8

2 5 −2
7 17 −9

⎞⎠⎛⎝ 2
1
1

⎞⎠ =
⎛⎝ 17

7
22

⎞⎠ .

And we can differentiate our solution to find y′, and then substitute
t = 0: ⎛⎝ y′

1(t)
y′

2(t)
y′

3(t)

⎞⎠ =
⎛⎝ 6e−2t + 2et + 9e3t

−2et + 9e3t

6e−2t − 2et + 18e3t

⎞⎠ .

Activity 9.27 Substitute t = 0 to obtain y′(0) and check that it gives
the same answer.

Often it is desirable to find a general solution to a system of differential
equations, where no initial conditions are given. A general solution will
have n arbitrary constants, essentially one for each function, so that
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given different initial conditions later, different particular solutions can
be easily obtained. We will show how this works using the system in
Example 9.25.

Example 9.28 Let y1(t), y2(t), y3(t) be functions related by the system
of differential equations

dy1

dt
= 6y1 + 13y2 − 8y3

dy2

dt
= 2y1 + 5y2 − 2y3

dy3

dt
= 7y1 + 17y2 − 9y3.

Let the matrices A, P and D be exactly as before in Example 9.25,
so that we still have P−1 AP = D, and setting y = Pz, to define new
functions z1(t), z2(t), z3(t), we have

y′ = Ay ⇐⇒ Pz′ = APz ⇐⇒ z′ = P−1 APz = Dz.

So we need to solve the equations

z′
1 = −2z1, z′

2 = z2, z′
3 = 3z3

in the absence of specific initial conditions. The general solutions are

z1 = αe−2t , z2 = βet , z3 = γ e3t ,

for arbitrary constants α, β, γ ∈ R.
Therefore, the general solution of the original system is

y =
⎛⎝ y1

y2

y3

⎞⎠ = Pz =
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠⎛⎝αe−2t

βet

γ e3t

⎞⎠ ;

that is,

y1(t) = αe−2t − βet + γ e3t

y2(t) = βet + γ e3t

y3(t) = αe−2t + βet + 2γ e3t

for α, β, γ ∈ R.

Using the general solution, you can find particular solutions for any
given initial conditions. For example, using the same initial conditions
y1(0) = 2, y2(0) = 1 and y3(0) = 1 as in Example 9.25, we can substi-
tute t = 0 into the general solution to obtain,

y1(0) = 2 = α − β + γ

y2(0) = 1 = β + γ

y3(0) = 1 = α + β + 2γ
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and solve this linear system of equations for α, β, γ . Of course, this
is precisely the same system y(0) = Pz(0) as before, with solution
P−1y(0), ⎛⎝ α

β

γ

⎞⎠ =
⎛⎝−1 −3 2

−1 −1 1
1 2 −1

⎞⎠⎛⎝ 2
1
1

⎞⎠ =
⎛⎝−3

−2
3

⎞⎠ .

Activity 9.29 Find the particular solution of the system of differen-
tial equations in Example 9.28 which satisfies the initial conditions
y1(0) = 1, y2(0) = 1 and y3(0) = 0. Compare your result with the solu-
tion of difference equations in Example 9.10 which uses the same initial
conditions for sequences. What do you notice? Why does this happen?

9.4 Learning outcomes

You should now be able to:

� calculate the general nth power of a diagonalisable matrix using
diagonalisation

� solve systems of difference equations in which the underlying matrix
is diagonalisable, by using both the matrix powers method and the
change of variable method

� know what is meant by a Markov chain and its properties, and be
able to find the long-term distribution

� solve systems of differential equations in which the underlying
matrix is diagonalisable, by using the change of variable method.

9.5 Comments on activities

Activity 9.2 Take any 2 × 2 diagonal matrix D. Calculate D2 and D3,
and observe what happens. Then see how this generalises.

Activity 9.13 We have

x1 = Ax0 =
⎛⎝ 4 0 4

0 4 4
4 4 8

⎞⎠⎛⎝ 6
12
12

⎞⎠ =
⎛⎝ 72

96
168

⎞⎠ =
⎛⎝−3(4) + 7(12)

3(4) + 7(12)
14(12)

⎞⎠ .

If you keep 0t as part of the solution, the solution is⎛⎝ xt

yt

xt

⎞⎠ =
⎛⎝−3(4t ) + 2(0t ) + 7(12t )

3(4t ) + 2(0t ) + 7(12t )
−2(0t ) + 14(12t )

⎞⎠ .
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Using 0t = 0 for t ≥ 1 and 00 = 1, this gives the correct x0 and the
same solution for t ≥ 1.

Activity 9.16 First multiply the two matrices on the right to obtain

Dt (P−1x0) =

⎛⎜⎜⎜⎝
λt

1 0 · · · 0
0 λt

2 · · · 0
...

...
. . .

...
0 0 · · · λt

n

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

b1

b2
...

bn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
b1λ

t
1

b2λ
t
2

...
bnλ

t
n

⎞⎟⎟⎟⎠ .

Then express the product P(Dt (P−1x0)) as a linear combination of the
columns of P (see Activity 4.14),

P(Dt (P−1x0)) =
⎛⎝ | | |

v1 v2 · · · vn

| | |

⎞⎠
⎛⎜⎜⎜⎝

b1λ
t
1

b2λ
t
2

...
bnλ

t
n

⎞⎟⎟⎟⎠
= b1λ

t
1v1 + b2λ

t
2v2 + · · · + bnλ

t
nvn.

Activity 9.22 It is clear that y(0) = 3e0 = 3. Furthermore,

y′ = 6e2t = 2(3e2t ) = 2y.

Activity 9.24 Each row of the n × 1 matrix Pz is a linear combination
of the functions z1(t), z2(t), . . . , zn(t). For example, row i of Pz is

pi1z1(t) + pi2z2(t) + · · · + pinzn(t).

The rows of the matrix (Pz)′ are the derivatives of these linear combi-
nations of functions, so the i th row is

(pi1z1(t) + pi2z2(t) + · · · + pinzn(t))′

= pi1z′
1(t) + pi2z′

2(t) + · · · + pinz′
n(t),

using the properties of differentiation, since the entries pi j of P are
constants. But

pi1z′
1(t) + pi2z′

2(t) + · · · + pinz′
n(t)

is just the i th row of the n × 1 matrix Pz′, so these matrices are equal.

Activity 9.29 For the initial conditions y1(0) = 1, y2(0) = 1, y3(0) = 0
the constants α, β, γ are⎛⎝ α

β

γ

⎞⎠ =
⎛⎝−1 −3 2

−1 −1 1
1 2 −1

⎞⎠⎛⎝ 1
1
0

⎞⎠ =
⎛⎝−4

−2
3

⎞⎠ ,
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so the solution is

y1(t) = −4e−2t + 2et + 3e3t

y2(t) = −2et + 3e3t

y3(t) = −4e−2t − 2et + 6e3t .

Compare this with the solution of the difference equations in
Example 9.10 on page 288⎛⎝ xt

yt

xt

⎞⎠ =
⎛⎝−4(−2)t + 2 + 3(3t )

−2 + 3(3t )
−4(−2)t − 2 + 6(3t )

⎞⎠ .

The two solutions are essentially the ‘same’, with the functions eλt

replaced by λt . Why? The coefficient matrix A is the same for both
systems, and so are the matrices P and D. So the change of basis
used to solve the systems is the same. We are changing from a system
formulated in standard coordinates to one in coordinates of the basis of
eigenvectors of A in order to find the solution.

9.6 Exercises

Exercise 9.1 Given the matrix

A =
(

4 5
−1 −2

)
,

find An for any positive integer n.
Deduce from your result that the expression (−1)k − 3k is divisible

by 4 for all k ≥ 1.

Exercise 9.2 Solve the following system of difference equations.

xt+1 = xt + 4yt

yt+1 = 1
2 xt ,

given that x0 = y0 = 1000.

Exercise 9.3 Sequences xt , yt , zt are defined by x0 = −1, y0 = 2,

z0 = 1 and

xt+1 = 7xt − 3zt

yt+1 = xt + 6yt + 5zt

zt+1 = 5xt − zt .

Find formulae for xt , yt , and zt .
Check your solution.
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Exercise 9.4 Given that

v1 =
⎛⎝ 1

−1
1

⎞⎠ , v2 =
⎛⎝−3

0
1

⎞⎠ , v3 =
⎛⎝−1

1
0

⎞⎠
are eigenvectors of the matrix

A =
⎛⎝ 1 −2 −6

2 5 6
−2 −2 −3

⎞⎠ ,

find an invertible matrix P such that P−1 AP is diagonal. Using the
method of changing variables, find sequences xt , yt , zt satisfying the
equations

xt+1 = xt − 2yt − 6zt

yt+1 = 2xt + 5yt + 6zt

zt+1 = −2xt − 2yt − 3zt ,

and with the property that x0 = y0 = 1 and z0 = 0.
Find the term x5.

Exercise 9.5 At any time t , the total population of 210 people of Desert
Island is divided into those living by the sea (xt ) and those living in the
oasis (yt ). Initially, half the population is living by the sea, and half in
the oasis. Yearly population movements are given by

xt = Axt−1 where A =
(

0.6 0.2
0.4 0.8

)
, xt =

(
xt

yt

)
.

Show this is a Markov process and interpret the yearly population
movements from the matrix A.

Find expressions for xt and yt at any future time t .

Determine the ‘long-term’ population distribution; that is, find what
happens to xt as t → ∞.

Exercise 9.6 Consider the matrices

A =
⎛⎝ 0.7 0.2 0.2

0 0.2 0.4
0.3 0.6 0.4

⎞⎠ , B =
⎛⎝ 7 2 2

0 2 4
3 6 4

⎞⎠ , xt =
⎛⎝ xt

yt

zt

⎞⎠ .

(a) What is the relationship between the matrices A and B?
Show that A and B have the same eigenvectors. What is the rela-

tionship between the corresponding eigenvalues?
Show that the system xt = Axt−1 is a Markov chain by showing

that the matrix A satisfies the two conditions to be the transition matrix
of a Markov chain.

Deduce that λ = 10 is an eigenvalue of B.
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(b) Find an eigenvector of B corresponding to the eigenvalue
λ = 10.

Diagonalise the matrix B: Find an invertible matrix P and a diagonal
matrix D such that P−1 B P = D. Check that B P = P D.

Write down the eigenvalues and corresponding eigenvectors of A.
(c) An economic model of employment of a fixed group of 1000 workers
assumes that in any year t , an individual is either employed full-time,
employed part-time or unemployed. Let xt denote the percentage (as
a decimal) of full-time workers in year t , yt the percentage working
part-time and zt the percentage who are unemployed. Then according
to this model, the probabilities that a worker will change from one
state to another in year t are given by the matrix A above, so that
xt = Axt−1. Initially, 200 are employed full-time and 300 are employed
part-time.

Find the long-term population distribution of this system. Eventu-
ally, what number of workers are employed, either full or part-time?

Exercise 9.7 Suppose functions y1(t), y2(t) are related by the following
system of differential equations:

y′
1 = 4y1 + 5y2

y′
2 = −y1 − 2y2.

Find the solutions to these equations that satisfy y1(0) = 2, y2(0) = 6.
Check your answer.

Exercise 9.8 Find the general solution of the following system of dif-
ferential equations:

dy1

dt
= −y1 + y2 + 2y3

dy2

dt
= −6y1 + 2y2 + 6y3

dy3

dt
= y2 + y3

for functions y1(t), y2(t), y3(t), t ∈ R.

Exercise 9.9 Find functions y1(t), y2(t), y3(t) satisfying the system of
differential equations:

y′
1 = 4y1 + 4y3

y′
2 = 4y2 + 4y3

y′
3 = 4y1 + 4y2 + 8y3

and with y1(0) = 6, y2(0) = 12, y3(0) = 12.
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Exercise 9.10 Consider

A =
⎛⎝ 5 −8 −4

3 −5 −3
−1 2 2

⎞⎠ , v1 =
⎛⎝ 2

1
0

⎞⎠ .

Find a basis for the null space of A, N (A).
Show that the vector v1 is an eigenvector of A and find the corre-

sponding eigenvalue. Find all the eigenvectors of A which correspond
to this eigenvalue. Hence find an invertible matrix P and a diagonal
matrix D such that P−1 AP = D.

Find An. What do you notice about the matrix A and its powers An?
Find the solution to the system of difference equations given by

xt+1 = Axt for sequences xt = (xt , yt , zt )T, t ∈ Z, t ≥ 0, with initial
conditions x0 = 1, y0 = 1, z0 = 1. Write down the first four terms of
each sequence.

9.7 Problems

Problem 9.1 Find A5 if A =
(

1 4
3 2

)
.

Problem 9.2 Find sequences xt and yt which satisfy the following
system of difference equations

xt+1 = xt + 4yt

yt+1 = 3xt + 2yt ,

and the initial conditions x0 = 1, y0 = 0.
Find the values of x5 and y5.

Problem 9.3 Find sequences xt , yt , zt satisfying the equations

xt+1 = 4xt + 3yt − 7zt

yt+1 = xt + 2yt + zt

zt+1 = 2xt + 2yt − 3zt ,

and with the property that x0 = 4, y0 = 5 and z0 = 1. (See Problem 8.9.)
Check your answer by calculating x1, y1, z1 from both the solution

and the original system.

Problem 9.4 A Markov process satisfies the difference equation xk =
Axk−1 where

A =
(

0.7 0.6
0.3 0.4

)
, x0 =

(
0.6
0.4

)
.
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Solve the equation and find an expression for xk as a linear combination
of the eigenvectors of A.

Use this to predict the ‘long term’ distribution; that is, find what
happens to xk as k → ∞.

Problem 9.5 Consider the system of equations xt = Axt−1 where

A =
⎛⎜⎝ 0 1

2
1
2

1
2

1
2 0

1
2 0 1

2

⎞⎟⎠ , xt =
⎛⎜⎝ xt

yt

zt

⎞⎟⎠ .

State the two conditions satisfied by the matrix A so that it is the
transition matrix of a Markov process. What can you conclude about
the eigenvalues of the matrix A?

Find an invertible matrix P and a diagonal matrix D such that
P−1 AP = D.

Assume that the system represents a total population of 6000 mem-
bers distributed into three states, where xt is the number of members in
state one at time t , yt is the number in state two, and zt is the number in
state three. Initially 1/6 of the total population is in state one, 1/3 is in
state two, and 1/2 is in state three. Find the long term population dis-
tribution of this system. State clearly the expected number of members
which will eventually be in each of the three states.

Problem 9.6 The population of osprey eagles at a certain lake is dying
out. Each year the new population is only 60% of the previous year’s
population.
(a) Conservationists introduce a new species of trout into the lake and
find that the populations satisfy the following system of difference
equations, where xt is the number of osprey in year t and yt is the
number of trout in year t : xt = Axt−1, where

xt =
(

xt

yt

)
, A =

(
0.6 0.2

−0.25 1.2

)
, x0 =

(
20

100

)
.

Give a reason why this system of difference equations is not a Markov
process. Describe in words how each of the populations depends on
the previous year’s populations.

Solve the system of difference equations. Show that the situation
is not stable: that according to this model both osprey and trout will
increase without bound as t → ∞. What will be the eventual ratio of
osprey to trout?
(b) In order to have the populations of osprey and trout achieve a
steady state, they decide to allow an amount of fishing each year, based
on the number of osprey in the previous year. The new equations are
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xt = Bxt−1, where

xt =
(

xt

yt

)
, B =

(
0.6 0.2
−α 1.2

)
, x0 =

(
20

100

)
and α > 0 is a constant to be determined.

What property of the transition matrix of a Markov process deter-
mines that there is a (finite, non-zero) long-term distribution? Deduce
a condition on the eigenvalues of the matrix B to produce the same
effect. Then find the value of α which satisfies this condition.

Show that for this value of α the population now reaches a steady
state as t → ∞ and determine what this stable population of osprey
and trout will be.

Problem 9.7 Find the general solution of the following system of linear
differential equations:{

y′
1(t) = y1(t) + 4y2(t)

y′
2(t) = 3y1(t) + 2y2(t) .

Then find the unique solution satisfying the initial conditions y1(0) = 1
and y2(0) = 0.

Check your solution by finding the values of y′
1(0) and y′

2(0).

Problem 9.8 Write the system of differential equations{
y′

1(t) = 3y1(t) + 2y2(t)

y′
2(t) = 2y1(t) + 6y2(t)

, y =
(

y1

y2

)
,

in matrix form, as y′ = Ay. Find the solution which satisfies the initial
conditions y1(0) = 5, y2(0) = 5.

Problem 9.9 Diagonalise the matrix

A =
⎛⎝−1 3 0

0 2 0
−3 3 2

⎞⎠ .

Write out the system of linear differential equations given by y′ = Ay,
where y = (y1(t), y2(t), y3(t))T, and find the general solution.

Problem 9.10 Show that the vectors

v1 =
⎛⎝ 1

0
1

⎞⎠ , v2 =
⎛⎝ 1

1
2

⎞⎠ , v3 =
⎛⎝ 3

−2
2

⎞⎠
form a basis B = {v1, v2, v3} of R3.
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(a) If w = (2, −3, 1)T, find [w]B , the B coordinates of w.
(b) Find a matrix A for which v1 is an eigenvector corresponding to the

eigenvalue λ1 = 1, v2 is an eigenvector with eigenvalue λ2 = 2,
and v3 is an eigenvector with eigenvalue λ3 = 3. Verify that your
matrix A satisfies these conditions.

(c) Find a general solution of the system of differential equations

y′ = Ay

where A is the matrix in part (b) and y = (y1(t), y2(t), y3(t))T,
t ∈ R, is a vector of functions.

Then find the unique solution which satisfies y(0) = w, where
w is the vector in part (a).
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Inner products and
orthogonality

In this chapter, we develop further some of the key geometrical ideas
about vectors, specifically the concepts of inner products and orthog-
onality of vectors. In Chapter 1, we saw how the inner product can be
useful in thinking about the geometry of vectors. We now investigate
how these concepts can be extended to a general vector space.

10.1 Inner products

10.1.1 The inner product of real n-vectors

In Chapter 1, we looked at the inner product of vectors in Rn. Recall
that, for x, y ∈ Rn, the inner product (sometimes called the dot product
or scalar product) is defined to be the number 〈x, y〉 given by

〈x, y〉 = xTy = x1 y1 + x2 y2 + · · · + xn yn.

This is often referred to as the standard or Euclidean inner product.
We re-iterate that it is important to realise that the inner product

is just a number, not another vector or a matrix. The inner product on
Rn satisfies certain basic properties and is, as we have seen, closely
linked with the geometric concepts of length and angle. This provides
the background for generalising these concepts to any vector space V ,
as we shall see in the next section.

It is easily verified (using Theorem 1.36) that for all x, y, z ∈ Rn

and for all α, β ∈ R, the inner product satisfies the following properties:

(i) 〈x, y〉 = 〈y, x〉.
(ii) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉.

(iii) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.
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We have seen that the length, ‖a‖, of a vector a satisfies ‖a‖2 = 〈a, a〉.
We also noted that if a, b are two vectors in R2 and θ is the angle between
them, then 〈a, b〉 = ‖a‖ ‖b‖ cos θ. In particular, non-zero vectors a and
b are orthogonal (or perpendicular) if and only if 〈a, b〉 = 0.

10.1.2 Inner products more generally

There is a more general concept of inner product than the one we met
earlier, and this is very important. It is ‘more general’ in two ways: first,
it enables us to say what we mean by an inner product on any vector
space, and not just Rn, and, second, it allows the possibility of inner
products on Rn that are different from the standard one.

Definition 10.1 (Inner product) Let V be a vector space (over the real
numbers). An inner product on V is a mapping from (or operation on)
pairs of vectors x, y to the real numbers, the result of which is a real
number denoted 〈x, y〉, which satisfies the following properties:

(i) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .

(ii) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 for all x, y, z ∈ V and all
α, β ∈ R.

(iii) 〈x, x〉 ≥ 0 for all x ∈ V , and 〈x, x〉 = 0 if and only if x = 0, the
zero vector of the vector space.

Some other basic facts follow immediately from this definition, for
example

〈z, αx + βy〉 = α〈z, x〉 + β〈z, y〉.
Activity 10.2 Prove that 〈z, αx + βy〉 = α〈z, x〉 + β〈z, y〉.
Of course, given what we noted above, it is clear that the standard inner
product on Rn is indeed an inner product according to this more general
definition. This new, more general, abstract definition, though, applies
to more than just the vector space Rn, and there is some advantage in
developing results in terms of the general notion of inner product. If a
vector space has an inner product defined on it, we refer to it as an inner
product space.

Example 10.3 (This is a deliberately strange example. Its purpose is to
illustrate how we can define inner products in non-standard ways, which
is why we’ve chosen it.) Suppose that V is the vector space consisting
of all real polynomial functions of degree at most n; that is, V consists
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of all functions p : x �→ p(x) of the form

p(x) = a0 + a1x + a2x2 + · · · + anxn, a0, a1, . . . , an ∈ R.

The addition and scalar multiplication are, as usual, defined pointwise.
(Recall that this means that (p + q)(x) = p(x) + q(x) and (αp)(x) =
αp(x).) Let x1, x2, . . . , xn+1 be n + 1 fixed, different, real numbers, and
define, for p, q ∈ V ,

〈p, q〉 =
n+1∑
i=1

p(xi )q(xi ).

Then this is an inner product. To see this, we check the properties in the
definition of an inner product. Property (i) is clear. For (iii), we have

〈p, p〉 =
n+1∑
i=1

p(xi )
2 ≥ 0.

Clearly, if p is the zero vector of the vector space (which is the
identically-zero function), then 〈p, p〉 = 0. To finish verifying (iii), we
need to check that if 〈p, p〉 = 0, then p must be the zero function. Now,
〈p, p〉 = 0 must mean that p(xi ) = 0 for i = 1, 2, . . . , n + 1. So p(x)
has n + 1 different roots. But p(x) has degree no more than n, so p must
be the identically-zero function. (A non-zero polynomial of degree at
most n has no more than n distinct roots.) Part (ii) is left to you.

Activity 10.4 Prove that, for any α, β ∈ R and any p, q, r ∈ V ,

〈αp + βq, r〉 = α〈p, r〉 + β〈q, r〉.

Example 10.5 Let’s define, for x, y ∈ R2,

〈x, y〉 = x1 y1 + 2x2 y2.

Then this is an inner product. It is very easy to see that 〈x, y〉 = 〈y, x〉.
It is straightforward to check that 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉.
Finally, we have 〈x, x〉 = x2

1 + 2x2
2 so 〈x, x〉 ≥ 0 and, furthermore,

〈x, x〉 = 0 if and only if x1 = x2 = 0, meaning x = 0.

Example 10.3 shows how we may define an inner product on a vector
space other than Rn , and Example 10.5 shows how we may define an
inner product on R2 which is different from the standard Euclidean
inner product (whose value would simply be x1 y1 + x2 y2).
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10.1.3 Norms in a vector space

For any x in an inner product space V , the inner product 〈x, x〉 is
non-negative (by definition). Now, because 〈x, x〉 ≥ 0, we may take its
square root (obtaining a real number). We define the norm or length
‖x‖ of a vector x to be this real number:

Definition 10.6 (Norm) Suppose that V is an inner product space and
x is a vector in V . Then the norm, or length, of x, denoted ‖x‖, is

‖x‖ = √〈x, x〉.
For example, for the standard inner product on Rn ,

〈x, x〉 = x2
1 + x2

2 + · · · + x2
n

(which is clearly non-negative since it is a sum of squares), the norm is
the standard Euclidean length of a vector:

‖x‖ =
√

x2
1 + x2

2 + · · · + x2
n .

We say that a vector v is a unit vector if it has norm 1. If v 
= 0, then
it is a simple matter to create a unit vector in the same direction as v.
This is the vector

u = 1

‖v‖v.

The process of constructing u from v is known as normalising v.

10.1.4 The Cauchy–Schwarz inequality

This important inequality will enable us to apply the geometric intuition
we have developed to a much more general, completely abstract, setting.

Theorem 10.7 (Cauchy–Schwarz inequality) Suppose that V is an
inner product space. Then

|〈x, y〉| ≤ ‖x‖‖y‖
for all x, y ∈ V .

Proof: Let x, y be any two vectors of V . For any real number α, we
consider the vector αx + y. Certainly, ‖αx + y‖2 ≥ 0 for all α. But

‖αx + y‖2 = 〈αx + y, αx + y〉
= α2〈x, x〉 + α〈x, y〉 + α〈y, x〉 + 〈y, y〉
= α2‖x‖2 + 2α〈x, y〉 + ‖y‖2.
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Now, this quadratic expression in α is non-negative for all α. Generally,
we know that if a quadratic expression at2 + bt + c is non-negative for
all t, then b2 − 4ac ≤ 0.

Activity 10.8 Why is this true?

Applying this observation to the above quadratic expression in α, we
see that we must have

(2〈x, y〉)2 − 4‖x‖2‖y‖2 ≤ 0,

or

(〈x, y〉)2 ≤ ‖x‖2‖y‖2.

Taking the square root of each side, we obtain

|〈x, y〉| ≤ ‖x‖‖y‖,
which is what we need. �

For example, if we take V to be Rn and consider the standard inner
product on Rn, then for all x, y ∈ Rn, the Cauchy–Schwarz inequality
tells us that ∣∣∣∣∣

n∑
i=1

xi yi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

x2
i

√√√√ n∑
i=1

y2
i .

10.2 Orthogonality

10.2.1 Orthogonal vectors

We are now ready to extend the concept of angle to an abstract inner
product space V . To do this, we begin with the result that in R2, 〈x, y〉 =
‖x‖ ‖y‖ cos θ, where θ is the angle between the vectors. This suggests
that we might, more generally (in an abstract inner product space),
define the cosine of the angle between vectors x and y to be

cos θ = 〈x, y〉
‖x‖ ‖y‖ .

This definition will only make sense if we can show that this number
cos θ is between −1 and 1. But this follows immediately from the
Cauchy–Schwartz inequality, which can be stated as∣∣∣∣∣ 〈x, y〉

‖x‖ ‖y‖

∣∣∣∣∣ ≤ 1 .

The usefulness of this definition is in the concept of orthogonality.
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Definition 10.9 (Orthogonal vectors) Suppose that V is an inner
product space. Then x, y ∈ V are said to be orthogonal if and only
if 〈x, y〉 = 0. We write x ⊥ y to mean that x, y are orthogonal.

So what we have here is a definition of what it means, in a general
inner product space, for two vectors to be orthogonal. As a special case
of this, of course, we have the familiar notion of orthogonality in Rn

(when we use the standard inner product), but the key thing to stress is
that this definition gives us a way to extend the notion of orthogonality
to inner product spaces other than Rn .

Example 10.10 With the usual inner product on R4, the vectors x =
(1, −1, 2, 0)T and y = (−1, 1, 1, 4)T are orthogonal.

Activity 10.11 Check this!

10.2.2 A generalised Pythagoras theorem

We can now begin to imitate the geometry of vectors discussed in
Chapter 1. We are already familiar with Pythagoras’ theorem in R3,
which states that if c is the length of the longest side of a right-angled
triangle, and a and b the lengths of the other two sides, then c2 =
a2 + b2. The generalised Pythagoras theorem is:

Theorem 10.12 (Generalised Pythagoras theorem) In an inner prod-
uct space V , if x, y ∈ V are orthogonal, then

‖x + y‖2 = ‖x‖2 + ‖y‖2.

Proof: This is fairly straightforward to prove. We know that for any z,
‖z‖2 = 〈z, z〉, simply from the definition of the norm. So,

‖x + y‖2 = 〈x + y, x + y〉
= 〈x, x + y〉 + 〈y, x + y〉
= 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉
= ‖x‖2 + 2〈x, y〉 + ‖y‖2

= ‖x‖2 + ‖y‖2,

where the last line follows from the fact that, x, y being orthogonal,
〈x, y〉 = 0. �

We also have the triangle inequality for norms. In the special case of
the standard inner product on R2, this states the obvious fact that the
length of one side of a triangle must be no more than the sum of the
lengths of the other two sides.
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Theorem 10.13 (Triangle inequality for norms) In an inner product
space V , if x, y ∈ V , then

‖x + y‖ ≤ ‖x‖ + ‖y‖.
Proof: We have

‖x + y‖2 = 〈x + y, x + y〉
= 〈x, x + y〉 + 〈y, x + y〉
= 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉
= ‖x‖2 + 2〈x, y〉 + ‖y‖2

≤ ‖x‖2 + ‖y‖2 + 2 | 〈x, y〉 |
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖
= (‖x‖ + ‖y‖)2,

where the last inequality used is the Cauchy–Schwarz inequality. Thus,
‖x + y‖ ≤ ‖x‖ + ‖y‖, as required. �

10.2.3 Orthogonality and linear independence

If a set of (non-zero) vectors are pairwise orthogonal (that is, if any
two are orthogonal), then it turns out that the vectors are linearly
independent:

Theorem 10.14 Suppose that V is an inner product space and that
vectors v1, v2, . . . , vk ∈ V are pairwise orthogonal (meaning vi ⊥ v j

for i 
= j ), and none is the zero-vector. Then {v1, v2, . . . , vk} is a linearly
independent set of vectors.

Proof: We need to show that if

α1v1 + α2v2 + · · · + αkvk = 0,

(the zero-vector), then α1 = α2 = · · · = αk = 0. Let i be any integer
between 1 and k. Then taking the inner product with vi ,

〈vi , α1v1 + α2v2 + · · · + αkvk〉 = 〈vi , 0〉 = 0.

But

〈vi , α1v1 + · · · + αkvk〉
= α1〈vi , v1〉 + · · · + αi−1〈vi , vi−1〉 + αi 〈vi , vi 〉

+ αi+1〈vi , vi+1〉 + · · · + αk〈vi , vk〉.
Since 〈vi , v j 〉 = 0 for j 
= i , this equals αi 〈vi , vi 〉, which is αi‖vi‖2. So
we have αi‖vi‖2 = 0. Since vi 
= 0, ‖vi‖2 
= 0 and hence αi = 0. But i
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was any integer in the range 1 to k, so we deduce that

α1 = α2 = · · · = αk = 0,

as required. �

10.3 Orthogonal matrices

10.3.1 Definition of orthogonal matrix

There is a particulary useful property that a matrix might possess, and
which has links with orthogonality of vectors. This is described in the
following definition.

Definition 10.15 (Orthogonal matrix) An n × n matrix P is said to
be orthogonal if PT P = P PT = I ; that is, if P has inverse PT.

Example 10.16 The matrix

P =
(

3/5 4/5
−4/5 3/5

)
is orthogonal.

Activity 10.17 Check this!

At first it appears that the definition of an orthogonal matrix has little
to do with the concept of orthogonality of vectors. But, as we shall see,
it is closely related. If P is an orthogonal matrix, then PT P = I , the
identity matrix. Suppose that the columns of P are x1, x2, . . . , xn. Then
the fact that PT P = I means that xT

i x j = 0 if i 
= j and xT
i xi = 1, as

the following theorem shows:

Theorem 10.18 A matrix P is orthogonal if and only if, as vectors, its
columns are pairwise orthogonal, and each has length 1.

Proof: Let P = (x1 x2 · · · xn), so that PT is the matrix whose rows
are the vectors xT

1 , xT
2 , . . . , xT

n . Then PT P = I can be expressed as⎛⎜⎜⎜⎝
xT

1
xT

2
...

xT
n

⎞⎟⎟⎟⎠ (x1 x2 · · · xn) =

⎛⎜⎜⎜⎝
xT

1 x1 xT
1 x2 · · · xT

1 xn

xT
2 x1 xT

2 x2 · · · xT
2 xn

...
...

. . .
...

xT
n x1 xT

n x2 · · · xT
n xn

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞⎟⎟⎟⎠ .
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The theorem is an ‘if and only if’ statement, so we must prove it both
ways.

If PT P = I, then the two matrices on the right are equal, and so

xT
i xi = 〈xi , xi 〉 = ‖xi‖2 = 1 and xT

i x j = 〈xi , x j 〉 = 0 if i 
= j.

This says that the vectors are unit vectors and that the columns xi , x j
are orthogonal.

Conversely, if the columns are pairwise orthogonal unit vectors,
then

‖xi‖2 = 〈xi , xi 〉 = xT
i xi = 1 and 〈xi , x j 〉 = xT

i x j = 0 for i 
= j,

so the matrix PT P is equal to the identity matrix. �

10.3.2 Orthonormal sets

Theorem 10.18 characterises orthogonal matrices through an important
property of their columns. This important property is given a special
name.

Definition 10.19 (Orthonormal) A set of vectors {x1, x2, . . . , xk} in
an inner product space V is said to be an orthonormal set if any two
different vectors in the set are orthogonal and each vector is a unit
vector; that is,

〈xi , x j 〉 = 0 for i 
= j and ‖xi‖ = 1.

An important consequence of Theorem 10.14 is that an orthonor-
mal set of n vectors in an n-dimensional vector space is a basis. If
{v1, v2, . . . , vn} is an orthonormal basis of a vector space V , then the
coordinates of any vector w ∈ V are easy to calculate, as shown in the
following theorem.

Theorem 10.20 Let B = {v1, v2, . . . , vn} be an orthonormal basis of
a vector space V and let w ∈ V . Then the coordinates a1, a2, . . . , an of
w in the basis B are given by

ai = 〈w, vi 〉.
Proof: We have w = a1v1 + a2v2 + · · · + anvn. We calculate the inner
product of w with a basis vector vi .

〈w, vi 〉 = 〈a1v1 + a2v2 + · · · + anvn, vi 〉
= a1〈v1, vi 〉 + a2〈v2, vi 〉 + · · · + an〈vn, vi 〉
= ai 〈vi , vi 〉
= ai .
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The last two equalities follow from the fact that {v1, v2, . . . , vn} is an
orthonormal set. �

If P is an orthogonal matrix, then its columns form an orthonormal
basis. So we can restate Theorem 10.18 as follows.

Theorem 10.21 An n × n matrix P is orthogonal if and only if the
columns of P form an orthonormal basis of Rn.

If the matrix P is orthogonal, then since P = (PT)T, the matrix PT is
orthogonal too.

Activity 10.22 Show that if P is orthogonal, so too is PT.

It therefore follows that Theorem 10.21 remains true if column is
replaced by row, with rows written as vectors, and we can make the
following stronger statement: a matrix P is orthogonal if and only if the
columns (or rows, written as vectors) of P form an orthonormal basis
of Rn .

10.4 Gram–Schmidt orthonormalisation process

Given a set of linearly independent vectors {v1, v2, . . . , vk}, the Gram–
Schmidt orthonormalisation process is a way of producing k vectors that
span the same space as {v1, v2, . . . , vk}, and that form an orthonormal
set. That is, the process produces a set {u1, u2, . . . , uk} such that:

� Lin{u1, u2, . . . , uk} = Lin{v1, v2, . . . , vk}
� {u1, u2, . . . , uk} is an orthonormal set.

We will see in the next chapter why this is a useful process to be able
to perform. It works as follows. First, we set

u1 = v1

‖v1‖
so that u1 is a unit vector and Lin{u1} = Lin{v1}.

Then we define

w2 = v2 − 〈v2, u1〉u1,

and set

u2 = w2

‖w2‖ .

Then {u1, u2} is an orthonormal set and Lin{u1, u2} = Lin{v1, v2}.
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Activity 10.23 Make sure you understand why this works. Show that
w2 ⊥ u1 and conclude that u2 ⊥ u1. Why are the linear spans of {u1, u2}
and {v1, v2} the same?

Next, we define

w3 = v3 − 〈v3, u1〉u1 − 〈v3, u2〉u2

and set

u3 = w3

‖w3‖ .

Then {u1, u2, u3} is an orthonormal set and Lin{u1, u2, u3} is the same
as Lin{v1, v2, v3}. Generally, when we have u1, u2, . . . , ui , we let

wi+1 = vi+1 −
i∑

j=1

〈vi+1, u j 〉u j ,

ui+1 = wi+1

‖wi+1‖ .

Then the resulting set {u1, u2, . . . , uk} has the required properties.

Example 10.24 In R4, let us find an orthonormal basis for the linear
span of the three vectors

v1 =

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠ , v2 =

⎛⎜⎜⎝
−1
4
4

−1

⎞⎟⎟⎠ , v3 =

⎛⎜⎜⎝
4

−2
2
0

⎞⎟⎟⎠ .

First, we have

u1 = v1

‖v1‖ = v1√
12 + 12 + 12 + 12

= 1

2
v1 =

⎛⎜⎜⎝
1/2
1/2
1/2
1/2

⎞⎟⎟⎠ .

Next, we have

w2 = v2 − 〈v2, u1〉u1 =

⎛⎜⎜⎝
−1
4
4

−1

⎞⎟⎟⎠− 3

⎛⎜⎜⎝
1/2
1/2
1/2
1/2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−5/2
5/2
5/2

−5/2

⎞⎟⎟⎠ ,

and we set

u2 = w2

‖w2‖ =

⎛⎜⎜⎝
−1/2
1/2
1/2

−1/2

⎞⎟⎟⎠ .
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(Note: to do this last step, we merely noted that a normalised vector
in the same direction as w2 is also a normalised vector in the same
direction as (−1, 1, 1, −1)T, and this second vector is easier to work
with.) At this stage, you should check that u2 ⊥ u1. Continuing, we
have

w3 = v3 − 〈v3, u1〉u1 − 〈v3, u2〉u2

=

⎛⎜⎜⎝
4

−2
2
0

⎞⎟⎟⎠− 2

⎛⎜⎜⎝
1/2
1/2
1/2
1/2

⎞⎟⎟⎠− (−2)

⎛⎜⎜⎝
−1/2
1/2
1/2

−1/2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2

−2
2

−2

⎞⎟⎟⎠ .

Then,

u3 = w3

‖w3‖ = (1/2, −1/2, 1/2, −1/2)T.

So

{u1, u2, u3} =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1/2
1/2
1/2
1/2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−1/2
1/2
1/2

−1/2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1/2

−1/2
1/2

−1/2

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Activity 10.25 Work through all the calculations in this example. Then
verify that the set {u1, u2, u3} is an orthonormal set.

10.5 Learning outcomes

You should now be able to:

� explain what is meant by an inner product on a vector space
� verify that a given inner product is indeed an inner product
� compute norms in inner product spaces
� state and apply the Cauchy–Schwarz inequality, the generalised

Pythagoras theorem, and the triangle inequality for norms
� prove that orthogonality of a set of vectors implies linear

independence
� explain what is meant by an orthonormal set of vectors
� use the Gram–Schmidt orthonormalisation process
� state what is meant by an orthogonal matrix
� explain why an n × n matrix is orthogonal if and only if its columns

are an orthonormal basis of Rn
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10.6 Comments on activities

Activity 10.2 By property (i) 〈z, αx + βy〉 = 〈αx + βy, z〉. Then
applying property (ii), and then property (i) again, the result follows.

Activity 10.4 Since αp + βq is the polynomial function

x �→ αp(x) + βq(x),

we have

〈αp + βq, r〉 =
n+1∑
i=1

(αp(xi ) + βq(xi ))r (xi )

= α

n+1∑
i=1

p(xi )r (xi ) + β

n+1∑
i=1

q(xi )r (xi )

= α〈p, r〉 + β〈q, r〉,
as required.

Activity 10.8 By the quadratic formula, the solutions of

at2 + bt + c = 0,

are given by

t = −b ± √
b2 − 4ac

2a
.

If b2 − 4ac > 0, then this will have two real solutions, so the graph of
the function f (t) = at2 + bt + c will cross the t axis twice, and so it
must have both positive and negative values. Therefore it would not be
true that at2 + bt + c ≥ 0 for all t ∈ R.

Activity 10.11 Just check that 〈x, y〉 = 0.

Activity 10.17 Multiply PT P and show that you get the identity matrix.

Activity 10.22 The matrix P is orthogonal if and only if P PT =
PT P = I . Since (PT)T = P, this statement can be written as
(PT)T PT = PT(PT)T = I , which says that PT is orthogonal.

Activity 10.23 We have

〈w2, u1〉 = 〈v2 − 〈v2, u1〉 u1, u1〉 = 〈v2, u1〉 − 〈v2, u1〉〈u1, u1〉 = 0.

The fact that w2 ⊥ u1 if and only if u2 ⊥ u1 follows from property (ii)
of the definition of inner product since w2 = αu2 for some constant α.



10.7 Exercises 325

The linear spans are the same because u1, u2 are linear combinations
of v1, v2 and conversely.

Activity 10.25 We only need to check that each ui satisfies ‖ui‖ = 1,
and that 〈u1, u2〉 = 〈u1, u3〉 = 〈u2, u3〉 = 0. All of this is very easily
checked. (It is much harder to find the ui in the first place. But once you
think you have found them, it is always fairly easy to check whether
they form an orthonormal set, as they should.)

10.7 Exercises

Exercise 10.1 Let V be the vector space of all m × n real matrices
(with matrix addition and scalar multiplication). Define, for A = (ai j )
and B = (bi j ) ∈ V ,

〈A, B〉 =
m∑

i=1

n∑
j=1

ai j bi j .

Prove that this is an inner product on V .

Exercise 10.2 Prove that in any inner product space V ,

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2,

for all x, y ∈ V .

Exercise 10.3 Suppose that v ∈ Rn . Prove that W = {x ∈ Rn | x ⊥ v},
the set of vectors orthogonal to v, is a subspace of Rn . How would you
describe this subspace geometrically?

More generally, suppose that S is any (not necessarily finite) set of
vectors in Rn and let S⊥ denote the set

S⊥ = {x ∈ Rn | x ⊥ v for all v ∈ S}.
Prove that S⊥ is a subspace of Rn.

Exercise 10.4 Show that if P is an orthogonal matrix, then |P| = ±1.

Exercise 10.5 Consider the mapping from pairs of vectors x, y ∈ R2

to the real numbers given by

〈x, y〉 = xT Ay, with A =
(

5 2
2 1

)
,

where the 1 × 1 matrix xT Ay is interpreted as the real number which is
its only entry. Show that this is an inner product on R2.

Let

v =
(

1
1

)
, w =

(−1
2

)
.
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(a) Find 〈v, w〉 under this inner product.
(b) Find the length of the vector v in the norm defined by this inner

product.
(c) Find the set of all vectors which are orthogonal to the vector v

under this inner product. That is, if S = Lin(v), find

S⊥ = {x ∈ R2 | x ⊥ v}.
Write down a basis of S⊥.

(d) Express the vector w above as w = w1 + w2 where w1 ∈ S and
w2 ∈ S⊥.

(e) Write down an orthonormal basis of R2 with respect to this inner
product.

Exercise 10.6 Use the Gram–Schmidt process to find an orthonormal
basis for the subspace of R4 spanned by the vectors

v1 =

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ , v2 =

⎛⎜⎜⎝
1
2
1
1

⎞⎟⎟⎠ , v3 =

⎛⎜⎜⎝
0
1
2
1

⎞⎟⎟⎠ .

Exercise 10.7 Let

W =
⎧⎨⎩x =

⎛⎝ x
y
z

⎞⎠ ∣∣∣∣∣ x − 2y + 3z = 0

⎫⎬⎭ .

Find an orthonormal basis of W . Extend it to an orthonormal basis of
R3.

10.8 Problems

Problem 10.1 Consider the vectors

a =

⎛⎜⎜⎝
1
1
2
1

⎞⎟⎟⎠ , b =

⎛⎜⎜⎝
2
3
1
0

⎞⎟⎟⎠ .

Show that the vectors a, b, b − a form an isosceles right-angled trian-
gle. Verify that these vectors satisfy the generalised Pythagoras theorem.

Problem 10.2 Let A be an m × k matrix with full column rank, mean-
ing that rank(A) = k.

(a) Show that AT A is a k × k symmetric matrix. Show also that
xT(AT A)x > 0 for all x 
= 0, x ∈ Rk .
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(b) Using the results in part (a), show that the mapping from pairs of
vectors in Rk to the real numbers given by the rule

〈x, y〉 = xT(AT A)y

defines an inner product on Rk , where the 1 × 1 matrix xT(AT A)y
is identified with the scalar which is its unique entry.

Problem 10.3 If P is an orthogonal n × n matrix and x = Pz, show
that ‖x‖ = ‖z‖ using the standard inner product on Rn.

Problem 10.4 Let P be an orthogonal n × n matrix and let T be the
linear transformation defined by T (x) = Px. Using the standard inner
product, show that for any x, y ∈ Rn ,

〈T (x), T (y)〉 = 〈x, y〉.
Problem 10.5 Suppose T and S are linear transformations of R2 to R2

with respective matrices:

AT =
( 1√

2
− 1√

2
1√
2

1√
2

)
, AS =

(−1 0
0 1

)
.

Describe the effect of T and S in words. Show that the both AT and AS

are orthogonal matrices.
Write down the matrix A that represents the linear transformation

of R2 which is a rotation anticlockwise about the origin by an angle θ .
Show that A is an orthogonal matrix.

Problem 10.6 Find an orthonormal basis for the subspace of R3 given
by

V =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ 5x − y + 2z = 0

⎫⎬⎭ .

Extend this to an orthonormal basis of R3.

Problem 10.7 Show that S = {v1, v2, v3} is a basis of R3, where

v1 =
⎛⎝ 1

0
1

⎞⎠ , v2 =
⎛⎝ 2

−1
1

⎞⎠ , v3 =
⎛⎝ 1

1
5

⎞⎠ .

Beginning with the vector v1, find an orthonormal basis of the subspace
Lin{v1, v2}. Using any method, extend this to an orthonormal basis B
of R3.

Find the B coordinates of the vectors v2 and v3.
Find the transition matrix P from coordinates in the basis S to

coordinates in the basis B.
Check that [v3]B = P[v3]S .
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Problem 10.8 Beginning with the vector v1, use the Gram–Schmidt
orthonormalisation process to obtain an orthonormal basis for the sub-
space of R4 spanned by the following vectors:

v1 =

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ v2 =

⎛⎜⎜⎝
3
0
2
0

⎞⎟⎟⎠ v3 =

⎛⎜⎜⎝
2
1

−1
3

⎞⎟⎟⎠ .

Problem 10.9 Put the following matrix into reduced row echelon form:

A =
⎛⎝ 1 1 −1 2

−1 0 1 1
1 2 −1 5

⎞⎠ .

Find an orthonormal basis of the null space of A. Extend this to an
orthonormal basis of R4 using the row space of A.

Problem 10.10 Consider the planes in R3:

U =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠∣∣∣∣∣ x − y + 2z = 0

⎫⎬⎭ , V =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠∣∣∣∣∣ 3x + 2y + z = 0

⎫⎬⎭ .

Find the vector equation of the line of intersection of U and V .
Find vectors x, y, z in R3 with the following properties:

(i) The vector x is on both planes, that is, x ∈ U ∩ V ;
(ii) The set {x, y} is an orthonormal basis of U ;

(iii) The set {x, z} is an orthonormal basis of V .

Is your set {x, y, z} a basis of R3? Is it an orthonormal basis of R3?
Justify your answers.
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Orthogonal diagonalisation
and its applications

In this chapter, we look at orthogonal diagonalisation, a special form
of diagonalisation for real symmetric matrices. This has some useful
applications: to quadratic forms, in particular.

11.1 Orthogonal diagonalisation of symmetric
matrices

Recall that a square matrix A = (ai j ) is symmetric if AT = A. Equiv-
alently, A is symmetric if ai j = a ji for all i, j ; that is, if the entries in
opposite positions relative to the main diagonal are equal. It turns out
that symmetric matrices are always diagonalisable. They are, further-
more, diagonalisable in a special way.

11.1.1 Orthogonal diagonalisation

We know what it means to diagonalise a square matrix A. It means to find
an invertible matrix P and a diagonal matrix D such that P−1 AP = D.
If, in addition, we can find an orthogonal matrix P which diagonalises A,
so that P−1 AP = PT AP = D, then this is orthogonal diagonalisation.

Definition 11.1 A matrix A is said to be orthogonally diagonalisable
if there is an orthogonal matrix P such that PT AP = D where D is a
diagonal matrix.

As P is orthogonal, PT = P−1, so PT AP = P−1 AP = D. The fact
that A is diagonalisable means that the columns of P are a basis of
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Rn consisting of eigenvectors of A (Theorem 8.22). The fact that A
is orthogonally diagonalisable means that the columns of P are an
orthonormal basis of Rn consisting of an orthonormal set of eigenvec-
tors of A (Theorem 10.21). Putting these facts together, we have the
following theorem:

Theorem 11.2 A matrix A is orthogonally diagonalisable if and only
if there is an orthonormal basis of Rn consisting of eigenvectors of A.

Let’s look at some examples.

Example 11.3 The matrix

B =
(

7 −15
2 −4

)
,

which we have met in previous examples, cannot be orthogonally diag-
onalised. The eigenvalues are λ1 = 1 and λ2 = 2. All the eigenvec-
tors corresponding to λ = 1 are scalar multiples of v1 = (5, 2)T, and
all the eigenvectors corresponding to λ = 2 are scalar multiples of
v2 = (3, 1)T. Since

〈v1, v2〉 =
〈(

5
2

)
,

(
3
1

)〉

= 0

no eigenvector in the eigenspace of λ1 is perpendicular to any eigenvec-
tor for λ2, so it is not possible to find an orthogonal set of eigenvectors
for B.

Example 11.4 Now consider the matrix

A =
(

5 −3
−3 5

)
.

The eigenvalues are given by

|A − λI | =
(

5 − λ −3
−3 5 − λ

)
= λ2 − 10λ + 16 = 0.

So the eigenvalues are λ1 = 2 and λ2 = 8. The corresponding eigen-
vectors are the solutions of (A − λI )v = 0, so

(A − 2I ) =
(

3 −3
−3 3

)
−→

(
1 −1
0 0

)
=⇒ w1 =

(
1
1

)
(A − 8I ) =

(−3 −3
−3 −3

)
−→

(
1 1
0 0

)
=⇒ w2 =

(−1
1

)
.

Because 〈w1, w2〉 = 0, the eigenvectors w1 and w2 are orthogonal! So A
can be orthogonally diagonalised. We just need to normalise the vectors
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by making them into unit vectors. If

P =
( 1√

2
− 1√

2
1√
2

1√
2

)
and D =

(
2 0
0 8

)
,

then P is orthogonal and PT AP = P−1 AP = D.

Note that the matrix A in this example is symmetric, whereas the matrix
B in the first example is not.

11.1.2 When is orthogonal diagonalisation possible?

It’s natural to ask which matrices can be orthogonally diagonalised.
The answer is remarkably straightforward and is given by the following
important result.

Theorem 11.5 (Spectral theorem for symmetric matrices) The
matrix A is orthogonally diagonalisable if and only if A is symmetric.

Since this is an if and only if statement, it needs to be proved in both
directions. One way is easy: if A can be orthogonally diagonalised,
then it must be symmetric.

Activity 11.6 Try to prove this yourself before you continue reading.
Assuming that A can be orthogonally diagonalised, write down what
this means, and then show that AT = A.

The argument goes as follows. If A is orthogonally diagonalisable, then
there exists an orthogonal matrix P and a diagonal matrix D such that
PT AP = P−1 AP = D. Then solving for the matrix A,

A = P D P−1 = P D PT.

Taking the transposes of both sides of this equation (using properties
of transpose), and using the fact that DT = D since D is diagonal, we
have

AT = (P D PT)T = P DT PT = P D PT = A,

which shows that A is symmetric.
So only symmetric matrices can be orthogonally diagonalised.

That’s the ‘only if’ part of the proof. It is much more difficult to prove
the ‘if ’ part: if a matrix is symmetric, then it can be orthogonally diago-
nalised. We will first prove this for the special case in which the matrix
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has distinct eigenvalues, and then prove it for the more general case in
Section 11.1.5.

For both of these, we will need one important fact about symmetric
matrices: symmetric matrices have only real eigenvalues. (As we noted
in Theorem 8.42, this is a necessary condition for diagonalisability, so
we certainly need it.) We state it here as a theorem, but we will defer
the proof of this fact until Chapter 13, as it is most easily established
as a corollary (that is, a consequence) of a similar theorem on complex
matrices.

Theorem 11.7 If A is a symmetric matrix, then all of its eigenvalues
are real numbers.

This means that the characteristic polynomial of an n × n symmetric
matrix factorises into n linear factors over the real numbers (repeating
any roots with multiplicity greater than 1).

11.1.3 The case of distinct eigenvalues

Assuming Theorem 11.7, we now prove Theorem 11.5 for symmetric
n × n matrices which have n different eigenvalues. To do so, we need
the following result:

Theorem 11.8 If the matrix A is symmetric, then eigenvectors corre-
sponding to distinct eigenvalues are orthogonal.

Proof: Suppose that λ and μ are any two different eigenvalues of A and
that x, y are corresponding eigenvectors. Then Ax = λx and Ay = μy.
The trick in this proof is to find two different expressions for the product
xT Ay (which then, of course, must be equal to each other). Note that
the matrix product xT Ay is a 1 × 1 matrix or, equivalently, a number.

First, since Ay = μy, we have

xT Ay = xT(Ay) = xT(μy) = μxTy.

But also, Ax = λx. Since A is symmetric, A = AT. Substituting and
using the properties of the transpose of a matrix, we have

xT Ay = xT ATy = (xT AT)y = (Ax)Ty = (λx)Ty = λxTy.

Equating these two different expressions for xT Ay, we have μxTy =
λxTy, or

(μ − λ)xTy = 0.
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But since λ 
= μ (they are different eigenvalues), we have μ − λ 
= 0.
We deduce therefore that xTy = 〈x, y〉 = 0. But this says precisely that
x and y are orthogonal. �

Theorem 11.8 shows that if an n × n symmetric matrix has exactly n
different eigenvalues and if we take a set of n eigenvectors with one
eigenvector corresponding to each eigenvalue, then any two of these
eigenvectors are orthogonal to one another. We may take the eigenvec-
tors to have length 1, simply by normalising them. This shows that we
have an orthonormal set of n eigenvectors, which is therefore a basis of
Rn. So by Theorem 11.2, the matrix can be orthogonally diagonalised.
But let’s spell it out. If P is the matrix with this set of eigenvectors
as its columns, then (as usual) P−1 AP = D, the diagonal matrix of
eigenvalues. Moreover, since the columns of P form an orthonormal
set, by Theorem 10.18, P is an orthogonal matrix. So P−1 = PT and
hence PT AP = D. In other words, we have the following result (which
outlines the method):

Theorem 11.9 Suppose that A is symmetric and has n different eigen-
values. Take n corresponding unit eigenvectors, each of length 1. Form
the matrix P which has these unit eigenvectors as its columns. Then
P−1 = PT (that is, P is an orthogonal matrix) and PT AP = D, the
diagonal matrix whose entries are the eigenvalues of A.

Here is an example of the technique.

Example 11.10 The matrix

A =
⎛⎝ 4 0 4

0 4 4
4 4 8

⎞⎠
is symmetric. We have seen in Example 8.23 that it has three distinct
eigenvalues, λ1 = 4, λ2 = 0, λ3 = 12, and we found that correspond-
ing eigenvectors are (in that order)

v1 =
⎛⎝ 1

−1
0

⎞⎠ , v2 =
⎛⎝ 1

1
−1

⎞⎠ , v3 =
⎛⎝ 1

1
2

⎞⎠ .

Activity 11.11 Check that any two of these three eigenvectors are
orthogonal.

These eigenvectors are mutually orthogonal, but not of length 1, so we
normalise them. For example, the first one has length

√
2. If we divide

each entry of it by
√

2, we obtain a unit eigenvector. We can similarly
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normalise the other two vectors, obtaining

u1 =
⎛⎝ 1/

√
2

−1/
√

2
0

⎞⎠ , u2 =
⎛⎝ 1/

√
3

1/
√

3
−1/

√
3

⎞⎠ , u3 =
⎛⎝ 1/

√
6

1/
√

6
2/

√
6

⎞⎠ .

Activity 11.12 Verify that the normalisations of the second and third
vectors are as just stated.

We now form the matrix P whose columns are these unit eigenvectors:

P =
⎛⎝ 1/

√
2 1/

√
3 1/

√
6

−1/
√

2 1/
√

3 1/
√

6
0 −1/

√
3 2/

√
6

⎞⎠ .

Then P is orthogonal and PT AP = D = diag(4, 0, 12).

Activity 11.13 Check that P is orthogonal by calculating PT P .

11.1.4 When eigenvalues are not distinct

We have seen that if a symmetric matrix has distinct eigenvalues, then
(since eigenvectors corresponding to different eigenvalues are orthog-
onal) it is orthogonally diagonalisable. But, as stated in Theorem 11.5,
all n × n symmetric matrices are orthogonally diagonalisable, even if
they do not have n distinct eigenvalues. We will prove this in the next
section, but first we discuss how, in practice, we would go about orthog-
onally diagonalising a matrix in the case when it does not have distinct
eigenvalues.

What we need for orthogonal diagonalisation is an orthonormal
set of n eigenvectors. As we have seen, if it so happens that there are
n different eigenvalues, then any set of n corresponding eigenvectors
form a pairwise orthogonal set of vectors, and all we need to do is
normalise each vector. However, if we have repeated eigenvalues, more
care is required.

Suppose that λ0 is a repeated eigenvalue of A, by which we mean
that, for some k ≥ 2, (λ − λ0)k is a factor of the characteristic polyno-
mial of A. As we saw in Definition 8.39, the algebraic multiplicity of λ0

is the largest k for which this is the case. The eigenspace corresponding
to λ0 is (see Definition 8.9)

E(λ0) = {x | (A − λ0 I )x = 0},
the subspace consisting of all eigenvectors corresponding to λ0, together
with the zero-vector 0. It turns out (and, indeed, by Theorem 8.42,
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it must be the case if A is diagonalisable) that, for any symmetric
matrix A, the dimension of E(λ0) (that is, the geometric multiplicity)
is exactly the algebraic multiplicity k of λ0. This means that there is
some basis {v1, v2, . . . , vk} of k vectors of the eigenspace E(λ0). So far,
we are proceeding just as we would in diagonalisation, generally. But
remember that we are trying to orthogonally diagonalise. We therefore
use the Gram-Schmidt orthonormalisation process to take any such
basis and produce an orthonormal basis of E(λ0).

Since, by Theorem 11.8, eigenvectors from different eigenspaces
are orthogonal (and hence linearly independent), if we construct a set of
n vectors by taking orthonormal bases for each of the eigenspaces, the
resulting set is an orthonormal basis of Rn . We can therefore orthog-
onally diagonalise the matrix A by means of the matrix P with these
vectors as its columns. Here is an example of how we can carry out this
process.

Example 11.14 We orthogonally diagonalise the symmetric matrix

B =
⎛⎝ 2 1 1

1 2 1
1 1 2

⎞⎠ .

The eigenvalues of B are given by the characteristic equation

|B − λI | = −λ3 + 6λ2 − 9λ + 4 = −(λ − 1)2(λ − 4) = 0 .

The eigenvalues are 4 and 1, where 1 is an eigenvalue of multiplicity 2.
We will find the eigenvectors for λ = 1 first. Reducing B − I , we

have ⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ → · · · →
⎛⎝ 1 1 1

0 0 0
0 0 0

⎞⎠ ,

so the eigenspace for λ = 1 does indeed have dimension 2. From the
reduced row echelon form, we deduce the linearly independent eigen-
vectors

v1 =
⎛⎝−1

1
0

⎞⎠ , v2 =
⎛⎝−1

0
1

⎞⎠ .

For λ = 4,

B − 4I =
⎛⎝−2 1 1

1 −2 1
1 1 −2

⎞⎠ → · · · →
⎛⎝ 1 0 −1

0 1 −1
0 0 0

⎞⎠ ,
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so we may take

v3 =
⎛⎝ 1

1
1

⎞⎠ .

The vectors v1 and v2 are not orthogonal. However, each of the vectors
v1 and v2 is orthogonal to v3, the eigenvector for λ = 4. (This must be
the case since they correspond to distinct eigenvalues.)

Activity 11.15 Check that 〈v1, v3〉 = 0, 〈v2, v3〉 = 0, and 〈v1, v2〉 
= 0.

Notice that the eigenspace for λ = 1 can be described geometrically
as a plane through the origin in R3 with normal vector v3. It consists
of all linear combinations of v1 and v2; that is, all vectors which are
perpendicular to v3.

Activity 11.16 Look at the reduced row echelon form of the matrix
B − I . Could you have deduced the last eigenvector from this matrix?
Why?

We still need to obtain an orthonormal basis of eigenvectors, so we now
apply the Gram–Schmidt orthonormalisation process to Lin{v1, v2}.
First we set

u1 =
⎛⎜⎝−1/

√
2

1/
√

2
0

⎞⎟⎠ .

Then we define

w2 =
⎛⎜⎝−1

0
1

⎞⎟⎠−
〈⎛⎜⎝−1

0
1

⎞⎟⎠ ,

⎛⎜⎝−1/
√

2
1/

√
2

0

⎞⎟⎠〉
⎛⎜⎝−1/

√
2

1/
√

2
0

⎞⎟⎠ =
⎛⎜⎝−1/2

−1/2
1

⎞⎟⎠ .

This vector is parallel to (−1, −1 , 2) with length
√

6, so we have

u2 =
⎛⎜⎝−1/

√
6

−1/
√

6
2/

√
6

⎞⎟⎠ .

Activity 11.17 What should you check now, before you proceed to the
next step?

Normalising the vector v3, we can let P be the matrix

P =
⎛⎝−1/

√
2 −1/

√
6 1/

√
3

1/
√

2 −1/
√

6 1/
√

3
0 2/

√
6 1/

√
3

⎞⎠
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and D the diagonal matrix

D =
⎛⎝ 1 0 0

0 1 0
0 0 4

⎞⎠ .

Then PT = P−1 and PT B P = D.

11.1.5 The general case

Assuming for now the fact that symmetric matrices have only real eigen-
values (Theorem 11.7, which will be proved in Chapter 13), we have
proved Theorem 11.5 for symmetric matrices with distinct eigenvalues.
We have also indicated how, in practice, to orthogonally diagonalise
any symmetric matrix (in general, even if the eigenvalues are not dis-
tinct). To complete the picture, we will now prove the Spectral theorem
for symmetric matrices in general. This is a fairly long and difficult
proof, and it can safely be omitted without affecting your ability to
carry out orthogonal diagonalisation. You can skip it and proceed on to
the next section, where we begin to look at applications of orthogonal
diagonalisation. However, we include the proof for two reasons: first,
for completeness and, second, because it draws on many of the most
important ideas we have studied so far, so trying to understand it will
be a good exercise.

We will give a proof by induction on n, the size of the matrix. That
means we establish the theorem for the case n = 1 and we show that,
for n ≥ 2, if the theorem holds for all symmetric (n − 1) × (n − 1)
matrices, then it will also be true for n × n matrices. (So, the n = 2
case then follows from the n = 1 case; the n = 3 from the n = 2, and
so on.)

Proof of Theorem 11.5 Let’s just remind ourselves what it is we are
trying to prove. It is that, for any symmetric matrix A, there is an
orthogonal matrix P and a diagonal matrix D such that PT AP = D.

Any 1 × 1 symmetric matrix is already diagonal, so we can take
P = I , which is an orthogonal matrix. So the result is true when n = 1.

Now let us consider a general value of n ≥ 2 and assume that the
theorem holds for all (n − 1) × (n − 1) symmetric matrices. Let A be
any n × n symmetric matrix. As mentioned above, we take for granted
now (and will prove in Chapter 13) the fact that A has real eigenvalues.
Let λ1 be any eigenvalue of A and let v1 be a corresponding eigenvector
which satisfies ‖v1‖ = 1. By Theorem 6.45, we can extend the basis
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{v1} of Lin{v1} to a basis {v1, x2, x3, . . . , xn} of Rn. We can then use
the Gram–Schmidt process to transform this into an orthonormal basis
B = {v1, v2, . . . , vn} of Rn. (Remember that we chose v1 to be a unit
vector, so we can take it to be the first member of the orthonormal
basis.)

Let P be the matrix whose columns are the vectors in B, with the
first column being v1. Then P is orthogonal, by Theorem 10.18, and (by
Theorem 7.37) PT AP = P−1 AP represents the linear transformation
T : x �→ Ax in the basis B. But we know, by Theorem 7.36, that the first
column of PT AP will be the coordinate vector of T (v1) with respect
to the basis B. Now, T (v1) = Av1 = λ1v1, so this coordinate vector
is ⎛⎜⎜⎜⎝

λ1

0
...
0

⎞⎟⎟⎟⎠ .

It follows that, for some numbers d1, d2, . . . , dn−1 and c(i, j) for i, j =
1, . . . , n − 1, PT AP takes the form

PT AP =

⎛⎜⎜⎜⎜⎜⎜⎝

λ1 d1 · · · dn−1

0 c(1,1) · · · c(1,n−1)

0 c(2,1) · · · c(2,n−1)
...

...
. . .

...
0 c(n−1,1) · · · c(n−1,n−1)

⎞⎟⎟⎟⎟⎟⎟⎠ .

But A is symmetric, and so therefore is PT AP , since

(PT AP)T = PT AT P = PT AP.

The fact that this matrix is symmetric has two immediate consequences:

� d1 = d2 = · · · = dn−1 = 0;
� the (n − 1) × (n − 1) matrix C = (c(i, j)) is symmetric.

So we can write

PT AP =
(

λ1 0T

0 C

)
,

where 0 is the all-zero vector of length n − 1 and C is a symmetric
(n − 1) × (n − 1) matrix.

We are assuming that the theorem holds for (n − 1) × (n − 1) sym-
metric matrices, so it holds for the matrix C . That means there is some
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orthogonal (n − 1) × (n − 1) matrix R such that RTC R = D, where D
is a diagonal matrix. Consider the n × n matrix

Q =
(

1 0T

0 R

)
.

This is an orthogonal matrix because the fact that R is orthogonal means
columns 2, 3, . . . , n of Q are mutually orthogonal and of length 1; and,
furthermore, the first column is evidently orthogonal with all the other
columns, and also has length 1. Let S = P Q. Then S is orthogonal
because P and Q are: we have

S−1 = (P Q)−1 = Q−1 P−1 = QT PT = (P Q)T = ST.

Now, let us think about ST AS. We have:

ST AS = (P Q)T A(P Q)

= QT PT AP Q

= QT(PT AP)Q

=
(

1 0T

0 R

)T ( λ1 0T

0 C

)(
1 0T

0 R

)
=
(

1 0T

0 RT

)(
λ1 0T

0 C

)(
1 0T

0 R

)
=
(

λ1 0T

0 RTC R

)
=
(

λ1 0T

0 D

)
,

which is a diagonal matrix, because D is diagonal. So we’re done! We
have established that there is an orthogonal matrix, S, such that ST AS
is diagonal. �

Activity 11.18 In order to understand this proof fully, work through it
for a 2 × 2 symmetric matrix A. That is, assuming only that A has real
eigenvalues, show that there is an orthogonal matrix P and a diagonal
matrix D such that PT AP = D.

11.2 Quadratic forms

A very useful application of orthogonal diagonalisation is to the analysis
of quadratic forms.
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11.2.1 Quadratic forms

A quadratic form in two variables x and y is an expression of the form

q(x, y) = ax2 + 2cxy + by2.

This can be written as

q = xT Ax,

where A is the symmetric matrix A =
(

a c
c b

)
and

x =
(

x
y

)
, xT = ( x y ) .

Activity 11.19 Check this. Perform the matrix multiplication xT Ax to
see how the expression q(x, y) is obtained. Notice how the coefficients
of the expression of q(x, y) correspond to the entries of A.

Of course, there are other ways of writing q(x, y) as a product of
matrices, xT Bx, where B is not symmetric, but these are of no interest
to us here; our focus is on the case where the matrix is symmetric. We
say that q is written in matrix form when we express it as q = xT Ax,

where A is symmetric.

Activity 11.20 Find an expression for q(x, y) = xT Bx, where B is not
symmetric.

Here is a specific example of how a two-variable quadratic form can be
expressed in matrix form.

Example 11.21 The quadratic form q = x2 + xy + 3y2 in matrix form
is

q = ( x y )
(

1 1/2
1/2 3

)(
x
y

)
.

More generally, we consider quadratic forms in n variables.

Definition 11.22 (Quadratic form) A quadratic form in n ≥ 2 vari-
ables is an expression of the form

q = xT Ax,

where A is a symmetric n × n matrix and x ∈ Rn.

Example 11.23 The following is a quadratic form in three variables:

q(x1, x2, x3) = 5x2
1 + 10x2

2 + 2x2
3 + 4x1x2 + 2x1x3 − 6x2x3.
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In matrix form, it is xT Ax, where x = (x1, x2, x3)T and A is the sym-
metric matrix

A =
⎛⎝ 5 2 1

2 10 −3
1 −3 2

⎞⎠ .

Activity 11.24 Check this.

You should be able to write down the n × n symmetric matrix A from
the expression of the quadratic form, and conversely, without having
to multiply out the matrices. If you don’t already understand the cor-
respondence between A and the expression q(x1, x2, . . . , xn) (that is,
how to obtain one from the other by inspection), take a general 3 × 3
symmetric matrix with (i, j) entry equal to ai j and calculate explicitly
what the product xT Ax equals, where x = (x1, x2, x3)T. You will find
that the diagonal entries of A are the coefficients of the corresponding
x2

i terms, and that the coefficient of the xi x j term comes from the sum
of the entries ai j and a ji , where ai j = a ji , since A is symmetric. Try
the following activity.

Activity 11.25 As practice, write down an expression for q(x, y, z) =
xT Bx, where x = (x, y, z)T and B is the symmetric matrix

B =
⎛⎝ 3 2 −1

2 7 4
−1 4 −5

⎞⎠ .

11.2.2 Definiteness of quadratic forms

Consider the quadratic form q1(x, y) = x2 + y2. For any choices of x
and y, q1(x, y) ≥ 0 and, furthermore, q1(x, y) = 0 only when x = y =
0. On the other hand, the quadratic form q2(x, y) = x2 + 3xy + y2 is
not always non-negative: note, for example, that q2(1, −1) = −1 < 0.
An important general question we might ask (and one which has useful
applications) is whether a quadratic form q is always positive (except
when x = y = 0). Here, eigenvalue techniques help: specifically, we
can use orthogonal diagonalisation. First, we need some terminology.

Definition 11.26 Suppose that q(x) is a quadratic form. Then:

� q(x) is positive definite if q(x) ≥ 0 for all x, and q(x) = 0 only when
x = 0, the zero-vector,

� q(x) is positive semi-definite if q(x) ≥ 0 for all x,
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� q(x) is negative definite if q(x) ≤ 0 for all x, and q(x) = 0 only
when x = 0, the zero-vector,

� q(x) is negative semi-definite if q(x) ≤ 0 for all x,
� q(x) is indefinite if it is neither positive definite, nor positive semi-

definite, nor negative definite, nor negative semi-definite; in other
words, if there are x1, x2 such that q(x1) < 0 and q(x2) > 0.

Consider the quadratic form q = xT Ax, where A is symmetric, and
suppose that we have found P that will orthogonally diagonalise A; that
is, which is such that PT = P−1 and PT AP = D, where D is a diagonal
matrix. We make the (usual) change of variable as follows: define z
by x = Pz (or, equivalently, z = P−1x = PTx). P is the transition
matrix from coordinates in the orthonormal basis of eigenvectors of A
to standard coordinates. Then

q = xT Ax = (Pz)T A(Pz) = zT(PT AP)z = zT Dz.

Now, the entries of D must be the eigenvalues of A: let us suppose
these are (in the order in which they appear in D) λ1, λ2, . . . , λn . Let
z = (z1, z2, . . . , zn)T be the coordinates in the orthonormal basis of
eigenvectors. Then

q = zT Dz = λ1z2
1 + λ2z2

2 + · · · + λnz2
n.

This is a linear combination of squares.
Now suppose that all the eigenvalues are positive. Then we can

conclude that, for all z, q ≥ 0, and also that q = 0 only when z is
the zero-vector. But because of the way in which x and z are related
(x = Pz and z = PTx), x = 0 if and only if z = 0. Therefore, if all
the eigenvalues are positive, the quadratic form is positive definite. Con-
versely, assume the quadratic form is positive definite, so that xT Ax > 0
for all x 
= 0. If ui is a unit eigenvector corresponding to the eigenvalue
λi , then

uT
i Aui = uT

i λi ui = λi u
T
i ui = λi ||ui ||2 = λi > 0.

So the eigenvalues of A are positive. Therefore, we have the first part
of the following result. (The other parts arise from similar reasoning.)

Theorem 11.27 Suppose that the quadratic form q(x) has matrix rep-
resentation q(x) = xT Ax. Then:

� q is positive definite if and only if all eigenvalues of A are positive,
� q is positive semi-definite if and only if all eigenvalues of A are

non-negative,
� q is negative definite if and only if all eigenvalues of A are negative,
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� q is negative semi-definite if and only if all eigenvalues of A are
non-positive,

� q is indefinite if and only if some eigenvalues of A are negative, and
some are positive.

Activity 11.28 Assume an n × n matrix A has 0 as one of its eigenval-
ues and that all other eigenvalues are non-negative. Show that q = xT Ax
is positive semi-definite but not positive definite.

We say that a symmetric matrix A is positive definite if the corre-
sponding quadratic form q = xT Ax is positive definite (and, similarly,
we speak of negative definite, positive semi-definite, negative semi-
definite, and indefinite matrices).

As a consequence of Theorem 11.27, in order to establish if a matrix
is positive definite or negative definite, we only need to know the signs
of the eigenvalues and not their values. It is possible to obtain this
information directly from the matrix A.

We first examine the case where A is a symmetric 2 × 2 matrix,

A =
(

a c
c b

)
.

Let λ1 and λ2 be the eigenvalues of a matrix A whose characteristic
equation is

|A − λI | =
∣∣∣∣ a − λ c

c b − λ

∣∣∣∣ = λ2 − (a + b)λ + (ab − c2) = 0.

Since the eigenvalues λ1 and λ2 are the roots of the characteristic
equation, we have

|A − λI | = (λ − λ1)(λ − λ2) = λ2 − (λ1 + λ2)λ + λ1λ2 = 0.

Comparing terms of these two polynomials in λ, we have

λ1λ2 = ab − c2 and λ1 + λ2 = a + b.

These observations are, in fact, simply special cases of Theorem 8.11
and Theorem 8.15: namely, that the determinant of A is the product of
the eigenvalues (explicitly, in this case, ab − c2 = λ1λ2); and that the
trace of A is the sum of the eigenvalues (a + b = λ1 + λ2).

If |A| = ab − c2 > 0, then both eigenvalues λ1, λ2 have the same
sign (since their product, which is equal to |A|, is positive). Since also
a and b must have the same sign in this case (since ab > c2 ≥ 0), we
can deduce the signs of the eigenvalues from the sign of a.

Consider the following example:
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Example 11.29 Let A be the following matrix:

A =
(

9 −2
−2 6

)
.

Then (because it is symmetric) A has real eigenvalues λ1, λ2 which
must satisfy the following equations:

λ1λ2 = |A| = 9(6) − (−2)(−2) = 50, and λ1 + λ2 = 9 + 6 = 15.

Since λ1λ2 > 0, the eigenvalues are non-zero and have the same sign.
Since λ1 + λ2 > 0, both must be positive. Therefore, the matrix A is
positive definite. (In fact, the eigenvalues are 5 and 10, but we do not
need to do the extra work of finding them explicitly if we only want to
know about their signs.)

In a similar way, if |A| = ab − c2 < 0, then the eigenvalues have
opposite signs and the form is therefore indefinite. So we can
conclude:

� If |A| > 0 and a > 0, then λ1 > 0, λ2 > 0 and A is positive definite.
� If |A| > 0 and a < 0, then λ1 < 0, λ2 < 0 and A is negative definite.
� If |A| < 0, then λ1 and λ2 have opposite signs and A is indefinite.

If |A| = 0, we conclude that one of the eigenvalues is 0.
This kind of test on the matrix can be generalised to an n × n

symmetric matrix A. But first we need a definition.

Definition 11.30 If A is an n × n matrix, the principal minors of A are
the n determinants formed from the first r rows and the first r columns
of A, for r = 1, 2, . . . , n; that is,

a11,

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ ,
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ , . . . ,

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ .
Notice that the n × n principal minor is just the determinant of A. If,
for example,

A =
⎛⎝ 5 2 1

2 10 −3
1 −3 2

⎞⎠ ,

then the principal minors are

a11 = 5,

∣∣∣∣ 5 2
2 10

∣∣∣∣ = 46, |A| = 25.

Activity 11.31 Check these determinant calculations.
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Notice that all three principal minors are positive. In fact, this is
enough to show that A is positive definite, as stated in the following
result.

Theorem 11.32 Suppose that A is an n × n symmetric matrix. Then A
is positive definite if and only if all its principal minors are positive.

We will prove this result in the next section. For now, let’s assume it is
true and look at some of the consequences.

Theorem 11.32 gives us a test to see if a matrix is positive definite.
What about the other possibilities?

A matrix A is negative definite if and only if its negative, −A, is
positive definite. (You can see this by noting that the quadratic form
determined by −A is the negative of that determined by A.) Now, if Ar

is any r × r matrix, then | − Ar | = (−1)r |A|.
Activity 11.33 Show this using properties of the determinant.

So if r is even, the r × r principal minor of A (the principal minor
of order r ) and that of −A have the same sign, and if r is odd, they
have opposite signs. If −A is positive definite, Theorem 11.32 tells us
that all of its principal minors are positive. So we have the following
characterisation of a negative definite matrix.

Theorem 11.34 Suppose that A is an n × n symmetric matrix. Then A
is negative definite if and only if its principal minors of even order are
positive and its principal minors of odd order are negative.

Another way of stating this is: the symmetric n × n matrix A is negative
definite if and only if its principal minors alternate in sign, with the first
one negative.

Activity 11.35 Convince yourself that these two statements are
equivalent.

If A is an n × n symmetric matrix which is neither positive nor negative
definite, and if |A| 
= 0, then A is indefinite because we can conclude
that A has both positive and negative eigenvalues. If |A| = 0, the only
thing we can conclude is that one of the eigenvalues is 0. These state-
ments follow from Theorem 8.11, which states that if A has eigenvalues
λ1, λ2, · · · , λn, then

|A| = λ1λ2 · · · λn.

Activity 11.36 Explain why Theorem 8.11 establishes the following: if
A is an n × n symmetric matrix and |A| = 0, then one of the eigenvalues



346 Orthogonal diagonalisation and its applications

is 0; and if A is neither positive nor negative definite and |A| 
= 0, then
A has both positive and negative eigenvalues and is therefore indefinite.

It should be noted that there is no test quite as simple as those of
Theorem 11.32 and Theorem 11.34 to check whether a matrix is positive
or negative semi-definite. Consider the following example.

Example 11.37 Let A be the matrix

A =
⎛⎝ 1 1 0

1 1 0
0 0 t

⎞⎠ .

Solving |A − λI | = 0, we find that the eigenvalues are 0, 2, t . The
principal minors of A are

a11 = 1,

∣∣∣∣ 1 1
1 1

∣∣∣∣ = 0, |A| = 0.

But t can be any real number, either positive or negative. So in this case
the principal minors are no indication of the signs of the eigenvalues.

11.2.3 The characterisation of positive-definiteness

Before we embark on this proof, there are two general results which we
will need, so we state them and prove them now. The first is really an
observation:

If D is an n × n diagonal matrix with positive entries on the diag-
onal, then D is positive definite.

Activity 11.38 Prove this.

The second we will state as a theorem.

Theorem 11.39 If A and B are any n × n symmetric matrices such
that E AET = B for an invertible matrix E, then A is positive definite
if and only if B is positive definite.

Proof: To see this, assume B is positive definite. Let x ∈ Rn and let
y = (ET)−1x (or, equivalently, x = ETy). Then x = 0 if and only if
y = 0. Since B is positive definite, we have, for all x 
= 0,

xT Ax = (ETy)T A(ETy) = yT E AETy = yT By > 0,

so A is also positive definite. The converse follows immediately by
noting that

A = E−1 B(ET)−1 = E−1 B(E−1)T = F B FT, where F = E−1,

so if A is positive definite then so is B. �
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Proof of Theorem 11.32 To prove this, we (once again) need to use an
inductive proof on the size n of an n × n symmetric matrix A. We have
already shown that the result is true for a 2 × 2 matrix by looking at
the trace and the determinant of the matrix. We will prove this again in
a different way so that we can extend the proof to n × n matrices. You
can safely omit this proof. However, we include it for completeness and
because it uses ideas from earlier chapters, namely row operations and
elementary matrices.

We want to show that a symmetric matrix A is positive definite if
and only if all its principal minors are positive.

We will first prove the difficult part of the ‘if and only if’ statement:
assuming that all the principal minors of the matrix A are positive,
we will show that A is positive definite. First, we do this for a 2 × 2
matrix, and then we show how this implies the statement for a 3 × 3
matrix. After that, assuming that the result is true for (n − 1) × (n − 1)
matrices, it is not difficult to show it is true for n × n matrices. The
main idea in this proof is to use carefully chosen row (and column)
operations to diagonalise the matrix A.

Let A be a 2 × 2 symmetric matrix,

A =
(

a c
c b

)
, a, b, c ∈ R

with positive principal minors. Then a > 0 and |A| > 0. We perform
the following row operation on A by multiplying it on the left by an
elementary matrix:

E A =
(

1 0
−(c/a) 1

)(
a c
c b

)
=
(

a c
0 b − (c2/a)

)
=
(

a c
0 |A|/a

)
.

We then perform the analogous column operation on this, by multiplying
on the right by the matrix ET:

E AET =
(

a c
0 |A|/a

)(
1 −(c/a)
0 1

)
=
(

a 0
0 |A|/a

)
= D.

It turns out that the diagonal matrix E AET = D has the same principal
minors as the matrix A. For the first principal minor of D (which is just
the (1, 1) entry) is equal to a, since this was unchanged; and the 2 × 2
principal minor of D is |D|, where

|D| = |E AET| = |E | |A| |ET| = |A|, since |E | = |ET| = 1.

Note that, as a consequence of our method, the diagonal entries of
D = (di j ) are

d11 = a and d22 = |A|
a

.
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So D = E AET is a diagonal matrix with all its diagonal entries positive.
Therefore, D is positive definite, and by Theorem 11.39, A is positive
definite.

In order to continue, we introduce some notation. If A is an n × n
matrix, let Ar×r denote the r × r matrix consisting of the first r rows
and r columns of A. Then the principal minors of A are

a11 = |A1×1|, |A2×2|, |A3×3|, . . . , |An×n| = |A|.
The idea of this proof is to reduce the n × n matrix A to a diagonal
matrix in the same way as we did for the 2 × 2 matrix, using only row
operations which add a multiple of one row to another (and also by
using corresponding column operations). An elementary matrix which
corresponds to this type of row operation is, of course, invertible, and,
most importantly, it has determinant equal to 1.

Let Ei1 denote the elementary matrix that performs the row opera-
tion: ‘row i – (ai1/a11) row 1’, where the size of this elementary matrix
will depend on the size of the matrix on which the row operation is
being performed. For example, if A is a 2 × 2 matrix, then E21 is just
the matrix E we used above.

If A is a 3 × 3 matrix, then, for instance, E21 A is⎛⎝ 1 0 0
−(a21/a11) 1 0

0 0 1

⎞⎠⎛⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎠

=
⎛⎝ a11 a12 a13

0 a22 − (a21a12/a11) ∗
a31 a32 a33

⎞⎠ ,

where we have written ∗ to indicate the (2, 3) entry in E21 A. Notice that
the (2, 2) entry of E21 A is already equal to the determinant of the 2 × 2
principal minor of A divided by the entry a11, so the 2 × 2 principal
minors of the matrices E21 A and A are the same.

We now show how the 2 × 2 result implies that the theorem is
also true for a 3 × 3 matrix. We apply the elementary row and column
operations (as indicated above) to A to reduce the 2 × 2 principal minor
to diagonal form:

E21 AET
21 =

⎛⎝ a11 0 ∗
0 d22 ∗
∗ ∗ ∗

⎞⎠ ,

so that the first two principal minors of the matrix A and the matrix
E21 AET

21 are equal. Then d22 = |A2×2|/a11. We now continue reduc-
ing the matrix to diagonal form using the same type of elementary row
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operations (adding a multiple of one row to another) and the correspond-
ing column operations. All of the elementary matrices which perform
this type of operation have determinant equal to 1. We have

E32 E31 E21 AET
21 ET

31 ET
32 =

⎛⎝ a11 0 0
0 d22 0
0 0 d33

⎞⎠ = D,

where E32 is the elementary matrix that performs the (obvious) row
operation needed to complete the diagonalisation. Now we already
know that the first two principal minors of these matrices are equal, and
since

|D| = |E32 E31 E21 AET
21 ET

31 ET
32|

= |E32||E31||E21||A||ET
21||ET

31||ET
32| = |A|,

all the principal minors are equal.
In addition, since each principal minor of D is just the product of

the diagonal entries, we can deduce that the entries of D are

d11 = a11, d22 = |A2×2|
a11

, d33 = |A3×3|
|A2×2| .

For we know from above that d11 = a11 and d22 = |A2×2|/a11; and the
fact that d33 takes the value indicated then follows directly from the
observation that

|D| = d11d22d33 = |A| = |A3×3|.
Since the diagonal entries of D are positive, we conclude as earlier that
D is positive definite, and therefore A is positive definite.

We are now ready to consider an n × n symmetric matrix A,
assuming the result is true for any (n − 1) × (n − 1) matrix. We
apply the elementary row and column operations to A to reduce the
(n − 1) × (n − 1) principal minor to diagonal form, and then continue
to reduce the matrix A so that we obtain a matrix

E AET = diag(d11, d22, . . . , dnn),

where we used E to denote the product of the elementary matrices which
achieve this diagonalisation. All of these elementary matrices have
determinant equal to 1, and therefore so does E . The method ensures
(by the underlying assumption about the (n − 1) × (n − 1) case) that
the first n − 1 principal minors of the matrices A and D are the same. It
only remains to show that |A| = |D|, which follows immediately from

|D| = |E AET| = |E ||A||ET| = |A|.
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Therefore, using the same arguments as earlier, D is a diagonal matrix
with positive entries along the diagonal. Therefore D is positive definite,
and so therefore is A.

To complete the proof, we show that if the quadratic form is pos-
itive definite, then all the principal minors are positive. Recall that the
principal minors of A are

a11 = |A1×1|, |A2×2|, |A3×3|, . . . , |An×n| = |A|,

where Ar×r denotes the r × r matrix consisting of the first r rows and
r columns of A. We will prove that Ar×r is a positive definite r × r
matrix for r = 1, 2, . . . , n − 1. We already know this to be the case for
r = n. It will then follow, by Theorem 11.27, that the eigenvalues of
Ar×r are all positive. Then Theorem 8.11 will tell us that |Ar×r | is the
product of these positive eigenvalues, and is therefore positive. So, let’s
show that Ar×r is positive definite, using the fact that A is.

We know that, for all y ∈ Rn, yT Ay > 0, unless y = 0. Fix r , a
number between 1 and n − 1. Let x = (x1, x2, . . . , xr )T ∈ Rr and let
xr = (x1, x2, . . . , xr , 0, 0, . . . , 0)T ∈ Rn be the n-vector with first r
entries the same as x, and all other entries zero.

Suppose x is a non-zero vector. Then so is xr and we must have
xT

r Axr > 0. But

xT
r Axr = (x1 · · · xr 0 · · · 0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1r · · ·
a21 a22 · · · a2r · · ·
a31 a32 · · · a3r · · ·
...

...
. . .

... · · ·
ar1 ar2 · · · arr · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...

xr

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Think about how this product evaluates. It is a 1 × 1 matrix. Because
of the zero entries in xr , and because of the way in which matrix
multiplication works, we have, for x = (x1, x2, . . . , xr )T ∈ Rr ,

xT
r Axr = xT Ar×r x.

So, since A is positive definite, for all x ∈ Rr , with x 
= 0

xT Ar×r x = xT
r Axr > 0.

So, indeed, Ar×r is positive definite, as required. �
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Figure 11.1 The
graphs of (left)
x2 − 2y2 = 2 and
(right) y2 − 2x2 = 2

11.2.4 Quadratic forms in R2: conic sections

Conic sections are traditionally described as curves which can be
obtained as the intersection of a plane and a double cone, such as a
circle, ellipse, parabola or hyperbola. It is more common, however, to
think of them as defined by certain types of equation and here there
is a very useful link to quadratic forms. The technique of orthogonal
diagonalisation enables us to determine what type of conic section we
have, and to sketch them accurately.

If A is a 2 × 2 symmetric matrix, the equation xT Ax = k, where k
is a constant, represents a curve whose graph in the xy-plane is a conic
section. For example, the equation

x2

a2
+ y2

b2
= 1

represents an ellipse which intersects the x axis at (−a, 0) and (a, 0),
and intersects the y axis at (0, b) and (0,−b). If a = b, this is a circle
of radius a. These curves are said to be in standard position relative to
the coordinate axes (meaning that their axes of symmetry are the x axis
and the y axis), as are the two hyperbolas whose graphs are shown in
Figure 11.1.

The graphs of each of the hyperbolas x2 −2y2 = 2 and y2 −2x2 = 2
are shown in this figure, together with the two straight lines which are
the asymptotes of the hyperbola. From each equation, we see that if
x is large, then y must also be large, so that the difference in the
squared terms remains constant. For example, for the first hyperbola,
x2 − 2y2 = 2, the asymptotes can be easily found by rewriting this
equation as

y2

x2
= 1

2
− 1

x2
.
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Figure 11.2 The
ellipse x2+ 2y2 = 2

As x gets very large, 1/x2 → 0, so the points on the hyperbola approach
the lines given by y2 = x2/2. The asymptotes are therefore

y = 1√
2

x and y = − 1√
2

x .

Activity 11.40 Find the equations of the asymptotes for the hyper-
bola y2 − 2x2 = 2.

On the other hand, in the equation of an ellipse, such as

x2 + 2y2 = 2,

the values of x and y are constrained by the equation: the largest value
that x can obtain is when y = 0.

If A is a diagonal matrix, so that the equation xT Ax = k has no
xy term, then this equation represents a conic section in standard
position and it is straightforward to sketch its graph. For example,
if A = diag(1, −2), then the graph of xT Ax = x2 − 2y2 = 2 is the
hyperbola shown on the left in Figure 11.1, whereas if A = diag(1, 2),
then the graph of xT Ax = x2 + 2y2 = 2 is an ellipse which intersects
the x axis at x = ±√

2 and the y axis at y = ±1. This is shown in
Figure 11.2.

But how do we sketch the graph if A is not diagonal? To achieve this,
we can use orthogonal diagonalisation. We illustrate the method using
the following example (which you have seen before as Example 7.40).

Example 11.41 Consider the curve C with equation

5x2 − 6xy + 5y2 = 2.

In matrix form, this equation is

xT Ax = ( x y )
(

5 −3
−3 5

)(
x
y

)
= 2,

where A is symmetric. We orthogonally diagonalised the matrix A in
Example 11.4. We found that the eigenvalues are λ1 = 2 and λ2 = 8,
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with corresponding eigenvectors

v1 =
(

1
1

)
, v2 =

(−1
1

)
.

Now, if P is the matrix

P =
( 1√

2
− 1√

2
1√
2

1√
2

)
,

then

P−1 AP = PT AP = D = diag(2, 8).

Activity 11.42 Check these calculations.

We set x = Pz, and interpret P both as a change of basis and as a
linear transformation. The matrix P is the transition matrix from the
(orthonormal) basis B of eigenvectors, B = {v1, v2}, to the (orthonor-
mal) standard basis. If we let z = (X, Y )T, then, as we saw earlier,
the quadratic form – and hence the curve C – can be expressed in the
coordinates of the basis of eigenvectors as

xT Ax = zT Dz = 2X2 + 8Y 2 = 2;

that is, as X2 + 4Y 2 = 1. This is an ellipse in standard position with
respect to the X and Y axes.

But how do we sketch this? We first need to find the positions
of the X and Y axes in our xy-plane. If we think of P as defining a
linear transformation T which maps R2 onto itself, with T (x) = Px,
then the X and Y axes are the images of the x and y axes under the
linear transformation T . Why? The positive x axis is described as all
positive multiples of the vector e1 = (1, 0)T, and the positive y axis as
all positive multiples of e2 = (0, 1)T. The images of these vectors are

T (e1) = v1 and T (e2) = v2.

Analogous descriptions of the X and Y axes are that the positive X
axis is described as all positive multiples of the vector [1, 0]B and the
positive Y axis as positive multiples of [0, 1]B . But these are just the
coordinates in the basis B of the vectors v1 and v2, respectively.

This allows us to draw the new X and Y axes in the xy-plane as the
lines in the directions of the vectors v1 and v2.

In this example, the new X, Y axes are a rotation (anticlockwise) of
the old x, y axes by π/4 radians. We looked at rotations in Section 7.1.3,
where we showed that the matrix representing a rotation anticlockwise
by an angle θ is given by(

cos θ − sin θ

sin θ cos θ

)
.
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Figure 11.3 The
ellipse
5x2 −6xy +5y2 = 2

In fact, in this example we carefully chose the column positions of the
eigenvectors so that P would define a rotation anticlockwise, and it is
always possible to do so. Why is that? Well, an orthonormal basis of R2

consists of two unit vectors which are orthogonal. Suppose one of the
vectors is u1 = (u1, u2)T with u1 > 0 and u2 > 0, then the other vector
must be either u2 = (−u2, u1)T or −u2, and we can choose u2. If

P =
(

u1 −u2

u2 u1

)
,

then P is the matrix of a rotation anticlockwise, since it is possible to
find an angle θ such that cos θ = u1 and sin θ = u2.

Activity 11.43 Think about why these two assertions are true: why is
u2 (or −u2) the second vector in the orthonormal basis, and why is it
possible to find such an an angle θ?

By choosing to write the unit eigenvectors as the columns of P in
this way, it is easy to find the positions of the new axes because we
can recognise the linear transformation as a rotation anticlockwise.
However, any choice of P would still enable us to sketch this graph (see
Exercise 11.8).

Continuing our example, we are now in a position to sketch the
graph of C in the xy-plane. First draw the usual x and y axes. The
positive X axis is in the direction of the vector (1, 1)T and the positive
Y axis is along the direction of the vector (−1, 1)T. These new X, Y
axes are a rotation of π/4 radians anticlockwise of the old x, y axes.
So we draw the X and Y axes along the lines y = x and y = −x . We
now sketch the ellipse X 2 + 4Y 2 = 1 in standard position with respect
to the X and Y axes. It intersects the X axis at X = ±1 and the Y axis
at Y = ±1/2. See Figure 11.3.

Activity 11.44 Where does the curve C intersect the x and y axes?
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You should be asking another question about this method. How do we
know that the linear transformation defined by P did not change the
shape of the curve?

It turns out that a linear transformation given by an orthogonal
matrix P , P(x) = Px, is a rigid motion of the plane: nothing changes
shape because the linear transformation preserves both lengths and
angles. Such a linear transformation is called an isometry. In order to
prove this assertion, note that both the length of a vector v and the angle
between two vectors v, w are defined in Rn by the inner product,

‖v‖ = √〈v, v〉 cos θ =
√〈v, v〉
||v|| ||w|| .

So we only need to show that P preserves the inner product. We have
the following general result:

Theorem 11.45 The linear transformation defined by an orthogonal
matrix P preserves the standard inner product on Rn.

Proof: If the linear transformation defined by P is denoted by
T : Rn → Rn, then T (x) = Px. Let v, w ∈ Rn. Then, taking the inner
product of the images, we have

〈Pv, Pw〉 = (Pv)T(Pw) = vT PT Pw = vTw = 〈v, w〉.
The inner product between two vectors is equal to the inner product
between their images under P . �

Therefore, length and angle are preserved by such a linear transforma-
tion, and hence so also is the shape of any curve. This validates our
method.

11.3 Learning outcomes

You should now be able to:

� know what is meant by orthogonal diagonalisation
� explain why an n × n matrix can be orthogonally diagonalised if

and only if it possesses an orthonormal set of n eigenvectors
� orthogonally diagonalise a symmetric matrix and know that only

symmetric matrices can be orthogonally diagonalised
� know what is meant by a quadratic form and what it means to say

that a quadratic form or a symmetric matrix is positive definite,
positive semi-definite, negative definite, negative semi-definite and
indefinite; and be able to determine which of these is the case

� use orthogonal diagonalisation to analyse conic sections.
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11.4 Comments on activities

Activity 11.11 Check that the inner product of any two vectors is equal
to 0.

Activity 11.13 You should obtain that PT P = I .

Activity 11.16 The reduced row echelon form shows that a basis of the
row space of B − I is given by the vector v3 = (1, 1, 1)T. Since the
row space and the null space of a matrix are orthogonal, this vector v3

is orthogonal to every vector in the null space of B − I , which is the
eigenspace of λ = 1. Therefore, v3 must be an eigenvector for the third
eigenvalue, λ = 4, and this can be easily checked by finding Bv3.

Activity 11.17 You should check that u2 ⊥ u1. You should also check
that u2 ⊥ u3 to show that it is in the eigenspace for λ = 1.

Activity 11.18 Let A be a 2 × 2 symmetric matrix. Then by Theo-
rem 11.7, A has real eigenvalues. Let λ1 be an eigenvalue of A, and let
v1 by a corresponding unit eigenvector, so Av1 = λ1v1 and ‖v1‖ = 1.
Extend {v1} to a basis {v1, x2} of R2, then using Gram–Schmidt (start-
ing with v1 which is a unit vector) make this into an orthonormal
basis B = {v1, v2} of R2. Let P be the matrix whose columns are
the vectors in B. Then P is the transition matrix from B coordinates
to standard coordinates, and P is orthogonal by Theorem 10.18. By
Theorem 7.37, the matrix P−1 AP = PT AP represents the linear trans-
formation T (x) = Ax in the basis B. By Theorem 7.36, the first column
of PT AP will be the coordinate vector of T (v1) with respect to the basis
B. Now, T (v1) = Av1 = λ1v1, so this coordinate vector is[

λ1

0

]
B

.

Then

PT AP =
(

λ1 a1

0 a2

)
.

But the matrix PT AP is symmetric, since

(PT AP)T = PT AT P = PT AP,

so it must be of the form

PT AP =
(

λ1 0
0 a2

)
= D.

Therefore, A can be orthogonally diagonalised.
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Activity 11.20 For example, let

B =
(

a 2c
0 b

)
.

Activity 11.25 q(x, y, z) = 3x2 + 7y2 − 5z2 + 4xy − 2xz + 8yz.

Activity 11.28 Let the eigenvalues of A be λ1 = 0, λ2, . . . , λn, λi ≥ 0,
and let v1 be an eigenvector corresponding to λ1 = 0. Then vT

1 Av1 = 0
so xT Ax is not positive definite. But

xT Ax = zT Dz = λ2z2
2 + · · · + λr z2

n ≥ 0,

since it is the sum of non-negative numbers, so xT Ax is positive semi-
definite.

Activity 11.33 If a row (or column) of a matrix A is multiplied by a
constant, then the determinant of A is multiplied by that constant. Since
the r th principal minor has r rows and each is multiplied by −1 to form
| − Ar |, we have | − Ar | = (−1)r |Ar |.

Activity 11.36 We have |A| = λ1λ2 · · · λn. If |A| = 0, one of these
factors (that is, one of the eigenvalues) must be 0. On the other hand,
if |A| 
= 0, then none of these factors is 0. If A is neither positive nor
negative definite, then A must have some positive eigenvalues and some
negative eigenvalues, so A must be indefinite.

Activity 11.38 Let y ∈ Rn . Then yT Dy is a sum of squares with positive
coefficients, therefore yT Dy > 0 for all y 
= 0, and yT Dy = 0 if and
only if y = 0.

Activity 11.40 These are y = ±√
2x .

Activity 11.43 Certainly 〈u1, u2〉 = 0, and each is a unit vector, so
{u1, u2} is an orthonormal basis of R2. (You can show that any vector
a = (a, b)T such that u1a + u2b = 0 must be a scalar multiple of u2

and there are only two such unit vectors, namely ±u2.)
The angle θ is defined by the two equations, cos θ = u1 and sin θ =

u2. This works since

cos2 θ + sin2 θ = u2
1 + u2

2 = 1.
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Activity 11.44 These points are found using the original equation,
5x2 − 6xy + 5y2 = 2. If x = 0, y = ±√

2/5, and, similarly, if y = 0,
x = ±√

2/5.

11.5 Exercises

Exercise 11.1 Orthogonally diagonalise the matrix

A =
⎛⎝ 7 0 9

0 2 0
9 0 7

⎞⎠ .

Why do you know this can be done before even attempting to do it?

Exercise 11.2 Let

A =
⎛⎝ 2 1 −2

1 2 2
−2 2 −1

⎞⎠ , v1 =
⎛⎝ 1

1
0

⎞⎠ .

Show that v1 is an eigenvector of A and find its corresponding eigen-
value. Find a basis of the eigenspace corresponding to this eigenvalue.

Orthogonally diagonalise the matrix A.

Exercise 11.3 Prove that the following quadratic form

q(x, y, z) = 6xy − 4yz + 2xz − 4x2 − 2y2 − 4z2

is neither positive definite nor negative definite. Is it indefinite?
Determine whether the quadratic form

f (x, y, z) = 2xy − 4yz + 6xz − 4x2 − 2y2 − 4z2

is positive definite, negative definite or indefinite.

Exercise 11.4 Consider again the matrix A in Exercise 11.1. Express
the quadratic form f (x, y, z) = xT Ax as a function of the variables x ,
y and z. Write down a matrix Q so that if x = Qz with z = (X, Y, Z )T,
then

f (x, y, z) = zT Dz = λ1 X2 + λ2Y 2 + λ3 Z2, where λ1 ≥ λ2 ≥ λ3.

Is the quadratic form f (x, y, z) positive definite, negative definite or
indefinite?

Find, if possible, a vector a = (a, b, c) such that f (a, b, c) = −8.

Exercise 11.5 Prove that the diagonal entries of a positive definite
n × n matrix A must be positive numbers. (Do this by considering
eT

i Aei , where {e1, e2, . . . , en} is the standard basis in Rn .)
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Give an example to show that the converse statement is not true; that is,
write down a symmetric matrix which has positive numbers along the
diagonal but which is not positive definite.

Exercise 11.6 Let B be an m × k matrix with full column rank (mean-
ing rank(B) = k). Show that the matrix BT B is a positive definite
symmetric matrix.

Show also BT B is invertible, by proving that any positive definite
matrix is invertible.

Exercise 11.7 Consider the quadratic form

f (x, y, z) = x2 − 4xy + 5y2 − 2xz + 6yz + 2z2.

Write down a symmetric matrix A such that f (x, y, z) = xT Ax for
x = (x, y, z)T. Is the matrix A negative definite, positive definite or
indefinite?

Is there a vector a = (a, b, c)T such that f (a, b, c) < 0? Investigate
carefully and justify your answer. Write down such a vector if one exists.

Exercise 11.8 Sketch the curve: 5x2 − 6xy + 5y2 = 2, by reworking
Example 11.41, this time choosing Q to be the orthogonal matrix

Q =
(− 1√

2
1√
2

1√
2

1√
2

)
.

Exercise 11.9 Express the quadratic form 9x2 + 4xy + 6y2 as xT Ax,
where A is a symmetric 2 × 2 matrix, and find the eigenvalues of A.
Deduce whether the quadratic form is positive definite or otherwise,
and determine what type of conic section is given by the equation.

9x2 + 4xy + 6y2 = 10.

Orthogonally diagonalise the matrix A and use this information to
sketch the curve 9x2 + 4xy + 6y2 = 10 in the xy-plane.

Exercise 11.10 Show that the vectors v1 = (1, 1)T and v2 = (−1, 1)T

are eigenvectors of the symmetric matrix

A =
(

a b
b a

)
a, b ∈ R.

What are the corresponding eigenvalues?

Exercise 11.11 Sketch the curve x2 + y2 + 6xy = 4 in the xy-plane.
Find the points of intersection with the old and new axes.
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11.6 Problems

Problem 11.1 Find the eigenvalues and corresponding eigenvectors of
the matrix

A =
(

3 5
5 3

)
.

Find an orthogonal matrix P and a diagonal matrix D such that
PT AP = D.

Problem 11.2 Consider the matrix B and the vector v1, where

B =
⎛⎝ 1 1 0

1 4 3
0 3 1

⎞⎠ , v1 =
⎛⎝ 1

5
3

⎞⎠ .

Show that v1 is an eigenvector of B and find its corresponding eigen-
value.

Orthogonally diagonalise the matrix B.

Problem 11.3 Let

A =
⎛⎝ 1 −4 2

−4 1 −2
2 −2 −2

⎞⎠ .

Find the eigenvalues of A and for each eigenvalue find an orthonormal
basis for the corresponding eigenspace.

Hence find an orthogonal matrix P such that

PT AP = P−1 AP = D.

Write down D and check that PT AP = D.

Problem 11.4 Consider the matrix A and the vector v1, where

A =
⎛⎝ 3 −2 1

−2 6 −2
1 −2 3

⎞⎠ , v1 =
⎛⎝−1

0
1.

⎞⎠
(a) Show that v is an eigenvector of A and find its corresponding

eigenvalue.
Given that λ = 8 is the only other eigenvalue of A, how do you

know that the matrix A can be diagonalised before attempting to
do so?

Diagonalise the matrix A; that is, find an invertible matrix P
and a diagonal matrix D such that P−1 AP = D.

Then orthogonally diagonalise A; that is, find an orthogonal
matrix Q such that QT AQ = D.
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(b) Write out an expression for the quadratic form

f (x, y, z) = xT Ax , where x =
⎛⎝ x

y
z

⎞⎠ ,

in terms of x, y and z. Is the quadratic form f positive definite,
negative definite or indefinite?

Write down a basis B, and numbers λ1, λ2, λ3 such that f can
be expressed as

f (x, y, z) = λ1 X2 + λ2Y 2 + λ3 Z2,

where X, Y, Z are coordinates in the basis B Write down the
transition matrix from coordinates in this basis B to standard
coordinates.

Evaluate f (x, y, z) at one unit eigenvector corresponding to
each eigenvalue.

Problem 11.5 Suppose xT Ax is a quadratic form, and λ is an eigenvalue
of A. If u is a unit eigenvector corresponding to λ, show that

uT Au = λ.

Problem 11.6 Consider the following matrix A and vector v:

A =
⎛⎝−5 1 2

1 −5 2
2 2 −2

⎞⎠ , v =
⎛⎝−1

1
0

⎞⎠ .

Find a basis of the null space of A, N (A). For this matrix A, why is
the row space equal to the column space, RS(A) = C S(A)? Show that
C S(A) is a plane in R3, and find its Cartesian equation.

Show that v is an eigenvector of A and find the corresponding
eigenvalue λ. Find all eigenvectors corresponding to this eigenvalue.
Orthogonally diagonalise A.

What is the relationship between the column space of A and the
eigenspace corresponding to the eigenvalue of multiplicity 2? Why
does this happen for this particular matrix A?

Problem 11.7 Determine whether either of the following quadratic
forms is positive definite:

F(x, y) = 3x2 − 8xy + 3y2, G(x, y) = 43x2 − 48xy + 57y2.

Find, if possible, points (ai , bi ), (i = 1, 2, 3, 4), such that

F(a1, b1) > 0, F(a2, b2) < 0, G(a3, b3) > 0, G(a4, b4) < 0.



362 Orthogonal diagonalisation and its applications

Problem 11.8

(a) Express the following quadratic form as xT Ax where A is a sym-
metric matrix:

f (x, y, z) = 6yz − x2 + 2xy − 4y2 − 6z2.

Determine whether the quadratic form is positive definite, negative
definite or indefinite.

(b) Do the same for the quadratic form

g(x, y, z) = 6yz − x2 + 2xy − 4y2.

Problem 11.9 Find a symmetric matrix A such that the quadratic form

f (x, y, z) = 3x2 + 4xy + 2y2 + 5z2 − 2xz + 2yz

can be expressed as xT Ax. Determine the signs of the eigenvalues of A.

Problem 11.10 Let A be a positive definite symmetric n × n matrix.
Show that the mapping from pairs of vectors x, y ∈ Rn to the real
numbers defined by

〈x, y〉 = xT Ay

defines an inner product on Rn , where the 1 × 1 matrix xT Ay is inter-
preted as the real number which is its only entry.

Problem 11.11 Let λ be a constant and let

B =
⎛⎝ 1 −3

−1 3
2 λ

⎞⎠ .

For what value(s) of λ will the matrix BT B be invertible? For what
value(s) of λ will the matrix BT B be positive definite? Justify your
answers.

Problem 11.12 If A is an m × k matrix, show that the matrix AT A can
never be negative definite.

Problem 11.13 Orthogonally diagonalize the matrix

A =
(

1 2
2 1

)
,

and use this to sketch the curve xT Ax = 3 in the xy-plane.
Find the points of intersection of the curve with the old and the new

axes.

Problem 11.14 Let C be the curve defined by

3x2 + 2
√

3xy + 5y2 = 6.
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Find a symmetric matrix A such that C is given by xT Ax = 6.
Find an orthogonal matrix P and a diagonal matrix D, such that

PT AP = D, and such that the linear transformation T : R2 → R2

defined by T (x) = Px is an anti-clockwise rotation. Use this to sketch
the curve in the xy-plane, showing the old and new axes on your
diagram. Compare this with Problem 7.11, where the same curve was
sketched using a different linear transformation.

Problem 11.15 Sketch the curve

3x2 + 4xy + 6y2 = 14

in the xy-plane.
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Direct sums and projections

In this chapter, we meet several important new ideas: direct sum, orthog-
onal complement and projection. These are useful in the theoretical
study of linear algebra, but they also lead us to a very useful practical
solution to a real-life problem, namely that of finding the ‘best fit’ of a
particular type to a set of data.

12.1 The direct sum of two subspaces

A very useful idea is the sum of two subspaces of a vector space. A
special case of this, a direct sum, is of particular importance.

12.1.1 The sum of two subspaces

For subspaces U and W of a vector space V , the sum of U and W ,
written U + W , is simply the set of all vectors in V which are obtained
by adding together a vector in U and a vector in W .

Definition 12.1 If U and W are subspaces of a vector space V , then
the sum of U and W , denoted by U + W , is the set

U + W = {u + w | u ∈ U, w ∈ W }.
The sum U + W is also a subspace of V .

Activity 12.2 Prove that U + W is a subspace of V .

Note the difference between U + W and U ∪ W , which is the set that
contains all vectors that are in U or in W . The set U ∪ W is not
generally a subspace, since if, say, u ∈ U , u /∈ W and w ∈ W , w /∈ U ,
then u + w /∈ U ∪ W ; in which case it is not closed under addition (see
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Exercise 5.6). The subspace U + W contains both U and W , but is
generally much larger.

In fact, U + W is the ‘smallest’ subspace of V that contains both
U and W . By this, we mean that if S is a subspace of V and we have
both U ⊆ S and W ⊆ S, then U + W ⊆ S. To see this, we can simply
note that for any u ∈ U and any w ∈ W , we will have u ∈ S and w ∈ S
and so, because S is a subspace, u + w ∈ S. This shows that any vector
of the form u + w is in S, which means that U + W ⊆ S.

Activity 12.3 Suppose that u, w ∈ Rn. Prove that

Lin{u} + Lin{w} = Lin{u, w}.

12.1.2 Direct sums

A sum of two subspaces is sometimes a direct sum.

Definition 12.4 A sum of two subspaces U + W is said to be a direct
sum if U ∩ W = {0}.
That is, the sum is direct if the intersection of U and W is as small as
it can be. (Since both are subspaces, they will both contain 0; the sum
is direct if that is all they have in common.) When a sum of subspaces
is direct, we use the special notation U ⊕ W to mean U + W . So the
notation means the sum of the subspaces, and the use of the special
symbol signifies that the sum is direct.

It turns out that there is another, often very useful, way of charac-
terising when a sum of subspaces is direct, as the following theorem
shows:

Theorem 12.5 Suppose U and W are subspaces of a vector space.
Then the sum of U and W is direct if and only if every vector z in the
sum can be written uniquely (that is, in one way only) as z = u + w,

where u ∈ U and w ∈ W . Explicitly, the sum is direct if and only if
whenever u, u′ ∈ U and w, w′ ∈ W and u + w = u′ + w′, then u = u′

and w = w′.

Proof: There are two things we need to prove to establish the theorem.
First, we need to show that if the sum is direct, then any element in the
sum has a unique expression as a sum of a vector in U and a vector
in W . Secondly, we need to show that, conversely, if it’s the case that
any vector in the sum can be expressed in such a way uniquely, then it
follows that the sum is direct (that is, U ∩ W = {0}).
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Suppose first that the sum is direct, so that U ∩ W = {0}. Now
suppose that u, u′ ∈ U and w, w′ ∈ W and that u + w = u′ + w′. Then
we may rearrange this as follows:

u − u′ = w′ − w.

Now, the vector on the left-hand side is in U , because u and u′ are and
because U is a subspace. Similarly, the vector on the right is in W . So the
vector v = u − u′ = w′ − w is in both U and W . But U ∩ W = {0}, so
v = 0, which means u − u′ = 0 = w′ − w and so u = u′ and w = w′.

Now suppose that every vector z in the sum can be written uniquely
as z = u + w. We want to show that this means U ∩ W = {0}. Now,
suppose that z ∈ U ∩ W . Then we can write z as z = z + 0, where
z ∈ U and 0 ∈ W and we can also write z = 0 + z, where 0 ∈ U and
z ∈ W . But z can be expressed in only one way as a sum of a vector
in U and a vector in W . So it must be the case that z = 0. Otherwise,
these two expressions are different ways of expressing z as a vector in
U plus a vector in W . Here, we assumed z was any member of U ∩ W
and we showed that z = 0. It follows that U ∩ W = {0} and the sum is
direct. �

This theorem shows that there are really two equivalent definitions of
what it means for a sum of subspaces to be direct, and it is useful to be
able to work with either one. A sum of subspaces U and W is direct if
either of the following equivalent conditions holds:

� U ∩ W = {0}.
� Any vector in U + W can be written uniquely in the form u + w

with u ∈ U and w ∈ W .

Example 12.6 Suppose that u, w ∈ Rn and that u and w are linearly
independent. Then the sum Lin{u} + Lin{w} is direct. In other words,

Lin{u, w} = Lin{u} ⊕ Lin{w}.
(We saw in Activity 12.3 that Lin{u, w} = Lin{u} + Lin{w}; what’s new
here is that the sum is direct.)

To show the sum is direct, we can verify that if U = Lin{u}
and W = Lin{w}, then U ∩ W = {0}. So suppose z ∈ U ∩ W . Then
z ∈ Lin{u} and z ∈ Lin{w}, so there are scalars α, β such that z = αu
and z = βw. If z 
= 0, then we must have α 
= 0 and β 
= 0. So αu = βw
and therefore u = (β/α)w. But this can’t be, since u and w are linearly
independent. So we can only have z = 0. This shows that the only vector
in both U and W is the zero vector. And, clearly, 0 ∈ U ∩ W because,
since U and W are subspaces, 0 belongs to both of them.
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12.2 Orthogonal complements

For a subspace S of a vector space V with an inner product, there is a
particularly important direct sum involving S. This involves a subspace
known as the orthogonal complement of S.

12.2.1 The orthogonal complement of a subspace

Suppose that V is a vector space with an inner product, denoted as
〈x, y〉 for x, y ∈ V . Given a subset S of V , we define the following set,
denoted by S⊥.

Definition 12.7 (Orthogonal complement) The orthogonal comple-
ment of a subset S of a vector space V with inner product 〈x, y〉 is

S⊥ = {v ∈ V | for all s ∈ S, 〈v, s〉 = 0}
= {v ∈ V | for all s ∈ S, v ⊥ s}.

In other words, S⊥ is the set of vectors that are orthogonal to every
vector in S.

It turns out that S⊥ is a subspace (and not merely a subset) of V . (This
is true for any set S: S itself need not be a subspace.)

Theorem 12.8 For any subset S of V , S⊥ is a subspace of V .

Activity 12.9 Prove Theorem 12.8.

Example 12.10 Suppose that V = R3 with the standard inner product
and suppose that S = Lin{u}, where u = (1, 2, −1)T. Then S⊥ is the
set of all vectors v such that, for all s ∈ S, 〈v, s〉 = 0. Now, any member
of S is of the form αu. We have 〈v, αu〉 = α〈v, u〉, so v = (x, y, z)T is
in S⊥ precisely when, for all α, α〈v, u〉 = 0, which means 〈v, u〉 = 0.
So we see that

S⊥ =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ x + 2y − z = 0

⎫⎬⎭ .

That is, S is the line through the origin in the direction of u and S⊥

is the plane through the origin perpendicular to this line; that is, with
normal vector u.

Example 12.11 Suppose again that V = R3 with the standard
inner product and this time suppose that S = Lin{u, w}, where
u = (1, 2, −1)T and w = (1, 0, 1)T. Then what is S⊥? Considering
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Example 12.10, you might expect that since S is a plane through the
origin, then S⊥ is the normal line to the plane through the origin, and
indeed this is the case, but let us see precisely why.

The typical element of S is of the form αu + βw. Suppose z ∈ S⊥.
Then z is orthogonal to every member of S. In particular, since u ∈ S
and w ∈ S, z ⊥ u and z ⊥ w. Conversely, if z ⊥ u and z ⊥ w, then for
any α, β

〈z, αu + βw〉 = α〈z, u〉 + β〈z, w〉 = 0 + 0 = 0,

so z is orthogonal to every vector in S. So we see that S⊥ is exactly the
set of vectors z orthogonal to both u and w. Now, for z = (x, y, z)T,
this means we must have both

x + 2y − z = 0 and x + z = 0.

Solving this system, we see that

S⊥ =
⎧⎨⎩
⎛⎝ r

−r
−r

⎞⎠ = r

⎛⎝ 1
−1
−1

⎞⎠ ∣∣∣∣∣ r ∈ R

⎫⎬⎭ ,

which is a line through the origin. So, here, S is a plane through the
origin and S⊥ is the line through the origin that is perpendicular to the
plane S.

Activity 12.12 Can you think of another way of finding S⊥?

If V is a finite-dimensional inner product space (such as Rn), and S is
a subspace of V , then an important fact is that every element of V can
be written uniquely as the sum of a vector in S and a vector in S⊥. In
other words, we have the following theorem:

Theorem 12.13 For any subspace S of a finite-dimensional inner prod-
uct space V , V = S ⊕ S⊥.

Proof: Suppose z ∈ S ∩ S⊥. Then z ∈ S and z ⊥ s for all s ∈ S. So
z ⊥ z, which means 〈z, z〉 = 0. So ‖z‖2 = 0 and hence z = 0.
This shows that S ∩ S⊥ ⊆ {0}. On the other hand, 0 ∈ S ∩ S⊥, so
{0} ⊆ S ∩ S⊥. It follows that S ∩ S⊥ = {0}.

Next, we show V = S + S⊥. The cases in which S = {0} or S = V
are easily dealt with. So suppose S 
= {0} and S 
= V .

Let dim(V ) = n and let {e1, e2, . . . , er } be an orthonormal basis
of the subspace S. Such a basis exists by the Gram–Schmidt
orthonormalisation process. We can extend this to an orthornormal
basis of V ,

{e1, . . . , er , er+1, . . . , en},
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again using the Gram–Schmidt process if necessary. We will show that
S⊥ = Lin{er+1, . . . , en}. If we can do this, then since any v ∈ V can be
written as

v =
n∑

i=1

αi ei = (α1e1 + · · · + αr er ) + (αr+1er+1 + · · · + αnen),

the quantity in the first parentheses will be in S and the quantity in the
second in S⊥, showing that V = S + S⊥.

So suppose v ∈ Lin{er+1, . . . , en}. Then, for some αr+1, . . . , αn,

v = αr+1er+1 + · · · + αnen.

Any s ∈ S can be written in the form

α1e1 + · · · + αr er .

So

〈v, s〉 = 〈αr+1er+1 + · · · + αnen , α1e1 + · · · + αr er 〉.
When you expand this inner product, all the terms are of the form
αiα j 〈ei , e j 〉 with i 
= j . But these are all 0, by orthonormality. So
v ⊥ s for all s ∈ S and hence v ∈ S⊥. Conversely, suppose that v ∈ S⊥.
Because {e1, . . . , en} is a basis of V , there are α1, . . . , αn with v =∑n

i=1 αi ei . Now, e1, e2, . . . , er ∈ S and v ∈ S⊥, so 〈v, ei 〉 = 0 for i =
1, . . . , r . But 〈v, ei 〉 = αi . So α1 = α2 = · · · = αr = 0 and hence v is a
linear combination of er+1, . . . , en only; that is, v ∈ Lin{er+1, . . . , en}.

Because S ∩ S⊥ = {0}, the sum S + S⊥ is direct and therefore V =
S ⊕ S⊥. �

Another useful result is the following:

Theorem 12.14 If S is a subspace of a finite-dimensional inner product
space V, then (S⊥)⊥ = S.

You will be able to prove this result yourself when you have worked
through the exercises at the end of this chapter.

12.2.2 Orthogonal complements of null spaces and ranges

There are four important subspaces associated with a matrix: the null
space and the range of A, and the null space and range of AT. If A is
an m × n real matrix, then N (A) = {x ∈ Rn | Ax = 0} is a subspace of
Rn, R(A) = {Ax | x ∈ Rn} is a subspace of Rm , N (AT) is a subspace
of Rm and R(AT) is a subspace of Rn. In fact, R(AT) is just the row
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space of A, which we met earlier in Section 5.3.1, since the rows of A
are the columns of AT.

It’s quite natural, therefore, for us to ask what the orthogonal com-
plements of these subspaces are. The following result answers these
questions: the orthogonal complements of the null space and range
of any matrix are the range and null space of the transpose matrix,
respectively.

Theorem 12.15 Suppose that A is an m × n real matrix. Then R(A)⊥ =
N (AT) and N (A)⊥ = R(AT).

Proof: We prove that R(A)⊥ = N (AT). The other result then follows
by substituting AT for A, obtaining R(AT)⊥ = N (A) and then, taking
orthogonal complements,

R(AT) = (R(AT)⊥)⊥ = N (A)⊥.

The easiest way to show that R(A)⊥ = N (AT) is to show that R(A)⊥ ⊆
N (AT) and that N (AT) ⊆ R(A)⊥. The key fact we’re going to use in
this proof is that for any matrix A and any vectors x ∈ Rn, y ∈ Rm ,

〈y, Ax〉 = 〈ATy, x〉,
even though y, Ax ∈ Rm and ATy, x ∈ Rn . This is because the inner
product is a scalar given by 〈a, b〉 = aTb, and so

〈ATy, x〉 = (ATy)Tx = yT(AT)Tx = yT Ax = yT(Ax) = 〈y, Ax〉.
Suppose z ∈ R(A)⊥. This means that for all y ∈ R(A), 〈z, y〉 = 0. Every
y ∈ R(A) is of the form Ax, by definition of R(A), so if z ∈ R(A)⊥, then
for all x, 〈z, Ax〉 = 0, which means 〈ATz, x〉 = 0 for all x. If we take
x = ATz, we see that ‖ATz‖2 = 〈ATz, ATz〉 = 0, so we have ATz = 0.
This shows that z ∈ N (AT). Hence R(A)⊥ ⊆ N (AT).

Now suppose z ∈ N (AT). Then ATz = 0. So, for all x ∈ Rn,
〈ATz, x〉 = 0 and hence 〈z, Ax〉 = 0, for all x. But this means 〈z, y〉 = 0
for all y ∈ R(A), and so z ∈ R(A)⊥. This shows that N (AT) ⊆ R(A)⊥.

�

Example 12.16 Suppose again that V = R3 with the standard inner
product and suppose that S = Lin{u, w}, where u = (1, 2, −1)T and
w = (1, 0, 1)T. Then what is S⊥? Earlier, in Example 12.11, we found
that

S⊥ =
⎧⎨⎩
⎛⎝ r

−r
−r

⎞⎠ ∣∣∣∣∣ r ∈ R

⎫⎬⎭
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by obtaining the solution x of the homogeneous system of equations
given by 〈u, x〉 = 0 and 〈w, x〉 = 0.

We now have another way to confirm this, by using Theorem 12.15.
For S = R(A) where

A =
⎛⎝ 1 1

2 0
−1 1

⎞⎠ .

By Theorem 12.15, S⊥ = (R(A))⊥ = N (AT). Now,

AT =
(

1 2 −1
1 0 1

)
.

If we determine N (AT), we find S⊥. Since AT is precisely the coefficient
matrix of the homogeneous system of equations we had before, we get
exactly the same answer.

The result that R(AT) = N (A)⊥ for an m × n matrix A is just another
way of looking at familiar results concerning a linear system of homo-
geneous equations in light of what we now know about orthogonal
complements. The subspace R(AT) is the linear span of the columns
of AT, so it is the linear span of the rows of A. We denoted this sub-
space by RS(A) in Section 5.3.1. If v is any solution of Ax = 0, then
since Av = 0 we must have 〈ri , v〉 = 0 for each row ri , i = 1, . . . , m
of A. Therefore, any and every vector v in N (A) is orthogonal to any
and every vector in RS(A) = Lin{r1, . . . , rn}, so these subspaces are
orthogonal. In particular, the only vector which is in both subspaces is
the zero vector, 0, since such a vector will be orthogonal to itself. But
now we have additional information. We know by Theorem 12.15 that
the row space and the null space are orthogonal complements, so Rn is
the direct sum of these two subspaces.

As a direct consequence of this observation, we can prove the fol-
lowing useful fact.

� If A is an m × n matrix of rank n, then AT A is invertible.

You have already proved this in Exercise 6.13 and again in Exercise 11.6,
but let’s look at it once again using Theorem 12.15. Since A is m × n
and AT is n × m, the matrix AT A is a square n × n matrix. We will show
that the only solution of the system AT Ax = 0 is the trivial solution, so
by Theorem 4.5 this will prove that AT A is invertible.

Let v ∈ Rn be any solution of AT Ax = 0, so AT Av = 0. Then the
vector Av ∈ Rm is in the null space of AT since AT(Av) = 0 and, also
Av is in the range of A. But N (AT) = R(A)⊥, so N (AT) ∩ R(A) = {0}.
Therefore we must have Av = 0. But A has full column rank, so the
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columns of A are linearly independent and the only solution of this
system is the trivial solution v = 0. This completes the argument.

12.3 Projections

12.3.1 The definition of a projection

Suppose that a vector space V can be written as a direct sum of two
subspaces, U and W , so V = U ⊕ W . This means that for each v ∈ V
there is a unique u ∈ U and a unique w ∈ W such that v = u + w. We
can use this fact to define two functions PU : V → U and PW : V → W
as follows.

Definition 12.17 Suppose that the vector space V is such that V =
U ⊕ W where U and W are subspaces of V . Define the functions PU :
V → U and PW : V → W as follows: for each v ∈ V , if v = u + w
where u ∈ U and w ∈ W (these being unique, since the sum is direct),
then let PU (v) = u and PW (v) = w. The mapping PU is called the
projection of V onto U, parallel to W . The mapping PW is called the
projection of V onto W , parallel to U .

Activity 12.18 Why does the sum V = U ⊕ W have to be direct for us
to be able to define PU and PW ?

Each of the projections PU and PW is a linear transformation. For,
suppose that v1, v2 ∈ V and α1, α2 are scalars, and suppose PU (v1) =
u1, PW (v1) = w1, PU (v2) = u2, and PW (v2) = w2. This means that
v1 = u1 + w1 and that v2 = u2 + w2 (and also that there are no other
ways of writing v1 and v2 in the form u + w, where u ∈ U and w ∈ W ).
Now,

α1v1 + α2v2 = α1(u1 + w1) + α2(u2 + w2)

= (α1u1 + α2u2)︸ ︷︷ ︸
in U

+ (α1w1 + α2w2)︸ ︷︷ ︸
in W

.

So, α1v1 + α2v2 = u′ + w′, where u′ = α1u1 + α2u2 ∈ U and
w′ = α1w1 + α2w2 ∈ W . Therefore, we must have

PU (α1v1 + α2v2) = u′ = α1u1 + α2u2 = α1 PU (v1) + α2 PU (v2)

and

PW (α1v1 + α2v2) = w′ = α1w1 + α2w2 = α1 PW (v1) + α2 PW (v2).
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12.3.2 An example

Example 12.19 Suppose that V = R3 with the standard inner
product and suppose that U = Lin{(1, 2, −1)T, (1, 0, 1)T}. We saw in
Examples 12.11 and 12.16 that

U⊥ = Lin{(1,−1, −1)T} =
⎧⎨⎩
⎛⎝ r

−r
−r

⎞⎠ ∣∣∣∣∣ r ∈ R

⎫⎬⎭ .

Theorem 12.13 tells us that if we let W = U⊥, then R3 = U ⊕ W .
What is the projection PU of R3 onto U , parallel to W ? Well, we’ll find
a general way of answering such questions later, but let’s see if we can
do it directly in this particular case. The fact that the sum of U and
W is direct means that for each x = (x, y, z)T ∈ R3 there are unique
members u of U and w of W so that x = u + w. In this case, this means
there are unique α, β, γ such that⎛⎝ x

y
z

⎞⎠ = α

⎛⎝ 1
2

−1

⎞⎠+ β

⎛⎝ 1
0
1

⎞⎠
︸ ︷︷ ︸

in U

+ γ

⎛⎝ 1
−1
−1

⎞⎠
︸ ︷︷ ︸

in W

.

This means that α, β, γ satisfy the linear system

α + β + γ = x

2α − γ = y

−α + β − γ = z,

which has solution

α = x

6
+ y

3
− z

6
, β = x

2
+ z

2
, γ = x

3
− y

3
− z

3
.

So the projection PU is given by

PU (x) = α

⎛⎝ 1
2

−1

⎞⎠+ β

⎛⎝ 1
0
1

⎞⎠ =

⎛⎜⎜⎝
2
3 x + 1

3 y + 1
3 z

1
3 x + 2

3 y − 1
3 z

1
3 x − 1

3 y + 2
3 z

⎞⎟⎟⎠ .

There must be an easier way! Well, as we’ll see soon, there is.

Activity 12.20 Check this solution.
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12.3.3 Orthogonal projections

Example 12.19 concerns a special type of projection. It is the projection
onto S parallel to S⊥ (for a particular subspace S). Not all projections
are of this form (because, generally, there are many ways to write
V = U ⊕ W where W is not U⊥), but this type of projection is called
an orthogonal projection.

Definition 12.21 For a subspace S of any finite-dimensional inner prod-
uct space V (such as Rn), the orthogonal projection of V onto S is the
projection onto S parallel to S⊥.

12.4 Characterising projections and orthogonal
projections

12.4.1 Projections are idempotents

Projections have some important properties. We’ve already seen that
they are linear. Another important property is that any projection P
(onto some subspace U , parallel to another, W , such that V = U ⊕ W )
satisfies P2 = P . Such a linear transformation is said to be idempotent
(or we say it is an idempotent).

Definition 12.22 The linear transformation T is said to be idempotent
if T 2 = T .

This term also applies to the matrix representing an idempotent linear
transformation when V = Rn or any finite-dimensional vector space.

Definition 12.23 The matrix A is said to be idempotent if A2 = A.

Activity 12.24 As an exercise, show that the only eigenvalues of an
idempotent matrix A are 0 and 1.

Theorem 12.25 Any projection is idempotent.

Proof: This is quite easy to see. Let us take any v ∈ V and write v as
v = u + w where u ∈ U and w ∈ W . Then PU (v) = u. What we need
to show is that P2(v) = P(v); in other words, P(P(v)) = P(v), which
means P(u) = u. But, of course, P(u) = u because the way u is written
as a vector in U plus a vector in W is u = u + 0. �

The fact that P2 = P means that, for any n, Pn = P . For example,
P3 = P2 P = P P = P2 = P . This is where the name ‘idempotent’
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comes from: ‘idem-potent’ means all powers are equal (‘idem’ signifies
equal, and ‘potent’ power).

In fact, if we have any linear transformation P that satisfies P2 = P ,
then it turns out to be a projection. In other words, a linear transformation
is a projection if and only if it is an idempotent.

Theorem 12.26 A linear transformation is a projection if and only if it
is an idempotent.

Proof: We’ve already seen that any projection is idempotent. Suppose
now that we have an idempotent linear transformation, P . So, P2 = P .
Let us define U to be R(P) = {P(x) | x ∈ V } and let

W = N (P) = {v | P(v) = 0}.
We’ll show two things: (i) that V = U ⊕ W and that (ii) P is the
projection onto U parallel to W .

For (i), we observe that for any x ∈ V , x = P(x) + (x − P(x)).
Now, P(x) ∈ R(P) and, because

P(x − P(x)) = P(x) − P2(x) = P(x) − P(x) = 0,

we see that x − P(x) ∈ N (P). So any x in V can be expressed as the
sum of a vector in R(P) and a vector in N (P) and therefore

V = R(P) + N (P).

We need to show that the sum is direct. So suppose that z ∈ R(P) ∩
N (P). Then, for some y, we have z = P(y) and, furthermore, P(z) = 0.
But this implies that P(P(y)) = 0. This means P2(y) = 0. But P2 = P ,
so P(y) = 0. Thus, z = P(y) = 0. On the other hand, since, certainly,
0 ∈ R(P) ∩ N (P), we have R(P) ∩ N (P) = {0} and the sum is direct.

We now need to establish (ii). Suppose that v ∈ V and that v =
u + w, where u ∈ U = R(P) and w ∈ W = N (P). Because u ∈ R(P),
there is some x such that u = P(x) and, therefore, since P2 = P ,

P(u) = P(P(x)) = P2(x) = P(x) = u.

Therefore,

P(v) = P(u + w) = P(u) + P(w) = u + 0 = u.

This completes the proof. �

Note that, for a projection P onto U parallel to W , Px = 0 if and only
if x takes the form x = 0 + w for some w ∈ W . So, N (P) = W . We
summarise this in the following statement.

� If P is a projection from V onto a subspace U parallel to a subspace
W , then U = R(P) and W = N (P).

There is a similar characterisation of orthogonal projections.
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Theorem 12.27 If V is a finite-dimensional inner product space and
P is a linear transformation, P : V → V , then P is an orthogonal
projection if and only if the matrix representing P is idempotent and
symmetric.

Proof: For simplicity, let P denote both the linear transformation and
the matrix representing it, and suppose that P is not just idempotent, but
also symmetric (P = PT). Then we know, because it’s an idempotent,
that P is the projection onto R(P) parallel to N (P). Now, because
P = PT, N (P) = N (PT) = (R(P))⊥. So P projects onto R(P) parallel
to (R(P))⊥ and is therefore an orthogonal projection.

Conversely, it’s true that any orthogonal projection will be both
idempotent and symmetric. We already know that it must be idempotent,
so we now have to show it is symmetric. Well, suppose that P is the
orthogonal projection onto U (parallel to U⊥). Any x ∈ V can be written
uniquely as x = u + u′, where u ∈ U and u′ ∈ U⊥, and the projection
P is such that Px = u ∈ U . Note, too, that

(I − P)x = x − Px = (u + u′) − u = u′ ∈ U⊥.

So, it follows that, for any v, w ∈ V , Pv ∈ U and (I − P)w ∈ U⊥ and
hence 〈Pv, (I − P)w〉 = 0. That is, (Pv)T(I − P)w = 0, which means
vT PT(I − P)w = 0. Now, the fact that this is true for all v, w means
that the matrix PT(I − P) must be the zero matrix. For, if ei denotes,
as usual, the i th standard basis vector of Rn, then eT

i PT(I − P)e j is
simply the (i, j)th entry of the matrix PT(I − P). So all entries of that
matrix are 0. The fact that PT(I − P) = 0 means that PT = PT P and
we therefore have

P = (PT)T = (PT P)T = PT(PT)T = PT P = PT.

In other words, P is symmetric. Admittedly, this is a rather sneaky
proof, but it works! Notice, by the way, that it also follows immediately
(though we already know this) that P is idempotent, for

P2 = P P = PT P = P.
�

12.5 Orthogonal projection onto the range
of a matrix

Let’s start with a simple observation. Suppose that A is an m × n real
matrix of rank n. Then the matrix AT A is an n × n matrix, and (as we
have seen in Section 12.2.2) AT A is invertible.
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Therefore, we can compute the matrix

P = A(AT A)−1 AT.

It turns out that this matrix P has a very useful property.

Theorem 12.28 Suppose A is an m × n real matrix of rank n. Then the
matrix P = A(AT A)−1 AT represents the orthogonal projection of Rm

onto the range R(A) of A.

Proof: We show three things: (i) P is idempotent, (ii) P is symmetric,
(iii) R(P) = R(A). Then, (i) and (ii) establish that P is the orthogo-
nal projection onto R(P) and, with (iii), it is therefore the orthogonal
projection onto R(A).

First,

P2 = (A(AT A)−1 AT)(A(AT A)−1 AT)

= A(AT A)−1(AT A)(AT A)−1 AT

= A(AT A)−1 AT

= P.

Next,

PT = (A(AT A)−1 AT)T

= (AT)T
(

(AT A)−1
)T

AT

= A
(

(AT A)T
)−1

AT

= A(AT A)−1 AT

= P.

Now, clearly, since

Px = A(AT A)−1 ATx = A
(

(AT A)−1 ATx
)

,

any vector of the form Px is also of the form Ay for some y. That is,
R(P) ⊆ R(A). What we need to do, therefore, to show that R(P) =
R(A) is to prove that R(A) ⊆ R(P). So, suppose z ∈ R(A), so z = Ax
for some x. Now,

Pz = P Ax =
[

A(AT A)−1 AT
]

Ax = A(AT A)−1(AT A)x = Ax = z,

so z = Pz ∈ R(P). This shows that R(A) ⊆ R(P), and we are
done. �

Example 12.29 In Example 12.19, we determined the orthogonal pro-
jection of R3 onto U = Lin{(1, 2, −1)T, (1, 0, 1)T}. We found that this
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is given by

P(x) =

⎛⎜⎜⎝
2
3 x + 1

3 y + 1
3 z

1
3 x + 2

3 y − 1
3 z

1
3 x − 1

3 y + 2
3 z

⎞⎟⎟⎠ .

The calculation we performed there was quite laborious, but Theo-
rem 12.28 makes life easier. What we want is the orthogonal projection
of R3 onto R(A), where A is the matrix (of rank 2)

A =
⎛⎝ 1 1

2 0
−1 1

⎞⎠ .

By Theorem 12.28, this projection is represented by the matrix
P = A(AT A)−1 AT. Now,

AT A =
(

6 0
0 2

)
,

so

P = A(AT A)−1 AT

=
⎛⎝ 1 1

2 0
−1 1

⎞⎠ 1

6

(
1 0
0 3

)(
1 2 −1
1 0 1

)

= 1

6

⎛⎝ 1 1
2 0

−1 1

⎞⎠( 1 2 −1
3 0 3

)

= 1

6

⎛⎝ 4 2 2
2 4 −2
2 −2 4

⎞⎠

= 1

3

⎛⎝ 2 1 1
1 2 −1
1 −1 2

⎞⎠ .

So the projection is given by

Px = 1

3

⎛⎝ 2 1 1
1 2 −1
1 −1 2

⎞⎠⎛⎝ x
y
z

⎞⎠ ,

which is exactly the same as we determined earlier.
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12.6 Minimising the distance to a subspace

Suppose that U is a subspace of Rm and suppose that v ∈ Rm . What is
the smallest distance between v and any member of U? Well, obviously,
if v ∈ U, then this smallest distance is 0, since v has distance 0 from
itself. But, generally, for v 
∈ U , the problem is to find u ∈ U such that
the distance ‖v − u‖ is as small as possible, over all choices of u from
U . You are probably familiar with the fact that if you have a line in
two dimensions and a point p not on the line, then the point on the line
closest to p is obtained by ‘taking a perpendicular’ to the line through
p. Where that perpendicular hits the line is the point on the line closest
to p. Well, essentially, this is true in general. If we want to find the point
of U closest to v, it will be Pv where P is the orthogonal projection of
Rm onto U . Let’s prove this.

Theorem 12.30 Suppose U is a subspace of Rm, that v ∈ Rm, and that
P is the orthogonal projection of Rm onto U. Then for all u ∈ U,

‖v − u‖ ≥ ‖v − Pv‖.

That is, Pv is the closest point in U to v.

Proof: For any u ∈ U , we have

‖u − v‖ = ‖(u − Pv) + (Pv − v)‖.

Now,

P(Pv − v) = P2v − Pv = Pv − Pv = 0,

so Pv − v ∈ N (P) = U⊥. Also, u − Pv ∈ U because Pv ∈ U and U
is a subspace. So the vectors u − Pv and Pv − v are orthogonal. By
the generalised Pythagoras theorem,

‖u − v‖2 = ‖u − Pv‖2 + ‖Pv − v‖2.

Since ‖u − Pv‖2 ≥ 0, this implies

‖u − v‖2 ≥ ‖Pv − v‖2,

as required. �
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12.7 Fitting functions to data: least squares
approximation

12.7.1 The idea

Suppose we want to find an equation that models the relationship
between two quantities X and Y , of the form Y = f (X ). In the simplest
case, we might try to model the relationship by assuming that Y is
related to X linearly, so that, for some constants a and b, Y = a + bX .
Now, suppose we have some data which provides pairs of values of X
and Y . So we have, say, m pairs

(X1, Y1), (X2, Y2), . . . , (Xm, Ym).

For, what we want is to find a, b so that, for each i , Yi = a + bXi .
But this might not be possible. It could be that there is some ‘noise’
or measurement errors in some of the Xi and Yi values. Or it could be
that the true relationship between them is more complex. In any case,
suppose we still want to find a linear relationship that is approximately
correct. That is, we want to find a, b so that Y = a + bX fits the data
as well as possible.

Usually, the appropriate way to measure how good a fit a given
model Y = a + bX will give can be obtained by measuring the error,∑m

i=1(Yi − (a + bXi ))2. If this is small, then the fit is good. And what
we want to do is find a and b for which this measure of error is as small
as it can be. Such values of a and b are called a least squares solution.
(They give the least value of the error, which depends on the squares
of how far Yi is from a + bXi .)

There are a number of approaches to finding the least squares solu-
tion. In statistics, you might come across formulas that you learn. We
can often also find the least squares solution using calculus. But what
we want to do here is use the linear algebra we’ve developed to show
how to find a least squares solution. (The method we present can also
be adapted to handle more complicated ‘fitting’ problems.)

12.7.2 A linear algebra view

The equations Yi = a + bXi for i = 1 to m can be written in matrix
form as ⎛⎜⎜⎜⎝

1 X1

1 X2
...

...
1 Xm

⎞⎟⎟⎟⎠
(

a
b

)
=

⎛⎜⎜⎜⎝
Y1

Y2
...

Ym

⎞⎟⎟⎟⎠ .
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This can be written Az = b. As noted, this might not have a solution.

What we want to do instead is find z =
(

a
b

)
so that the least squares

measure of error is as small as possible. Now, the least squares error is

m∑
i=1

(Yi − (a + bXi ))
2,

which is the same as

‖b − Az‖2.

So what we need is for Az to be the closest point of the form Ay to b.
That is, Az has to be the closest point in R(A) to b. But we know from
Theorem 12.30 that this closest point in R(A) is Pb, where P is the
orthogonal projection onto R(A). Assuming that A has rank 2, we also
know, from Theorem 12.28, that P = A(AT A)−1 AT. So what we want
is

Az = Pb = A(AT A)−1 ATb.

One solution to this (and there may be others) is

z = (AT A)−1 ATb.

This is therefore a least squares solution.

12.7.3 Examples

Example 12.31 Suppose we want to find the best fit (in the least squares
sense) relationship of the form Y = a + bX to the following data:

X 0 3 6
Y 1 4 5

In matrix form, what we want is a least squares solution to the system

a = 1
a + 3b = 4
a + 6b = 5.

(You can easily see no exact solution exists.) This system is Az = b,

where

A =
⎛⎝ 1 0

1 3
1 6

⎞⎠ , z =
(

a
b

)
, b =

⎛⎝ 1
4
5

⎞⎠ .
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So a least squares solution is

z = (AT A)−1 ATb =
(

4/3
2/3

)
.

(We’ve omitted the calculations, but you can check this.) So a best-fit
linear relationship is

Y = 4

3
+ 2

3
X.

Activity 12.32 Check the calculation in this example.

In principle, the least squares method can be used to fit many types of
model to data. Here’s another example.

Example 12.33 Quantities X, Y are related by a rule of the form

Y = m

X
+ c

for some constants m and c. Use the following data to estimate m and
c by the least squares method:

X 1/5 1/4 1/3 1/2 1
Y 4 3 2 2 1

.

This is not a linear relationship between X and Y , but when we use the
given values of X and Y we do still get a linear system for m and c. For,
what we need is the least squares solution to the system

m

1/5
+ c = 4

m

1/4
+ c = 3

m

1/3
+ c = 2

m

1/2
+ c = 2

m

1
+ c = 1.

In matrix form, this is Az = b, where

A =

⎛⎜⎜⎜⎜⎜⎝
5 1
4 1
3 1
2 1
1 1

⎞⎟⎟⎟⎟⎟⎠ , z =
(

m
c

)
, b =

⎛⎜⎜⎜⎜⎜⎝
4
3
2
2
1

⎞⎟⎟⎟⎟⎟⎠ .
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So a least squares solution is

z = (AT A)−1 ATb =
(

7/10
3/10

)
.

Therefore, the best fit is

Y = 0.7

X
+ 0.3.

More complex relationships can also be examined. Suppose, for
instance, that we believe that X and Y are related by

Y = a + bX + cX2,

for some constants a, b, c. Suppose we have m data pairs (Xi , Yi ). Then
what we want are values of a, b and c which are the best fit to the system

a + bX1 + cX2
1 = Y1

...
...

a + bXm + cX2
m = Ym .

In matrix form, this is Az = b, where

A =

⎛⎜⎜⎜⎝
1 X1 X2

1
1 X2 X2

2
...

...
...

1 Xm X2
m

⎞⎟⎟⎟⎠ , z =
⎛⎝ a

b
c

⎞⎠ , b =
⎛⎜⎝ Y1

...
Ym

⎞⎟⎠ .

Then, assuming A has rank 3, the theory above tells us that a least
squares solution will be z = (AT A)−1 ATb.

12.8 Learning outcomes

You should now be able to:

� explain what is meant by the sum of two subspaces of a vector space
� explain what it means to say that a sum of two subspaces is a direct

sum
� demonstrate that you know how to prove that a sum is direct
� show that a sum of subspaces is direct
� state the definition of the orthogonal complement of a subspace and

be able to prove properties of the orthogonal complement
� determine the orthogonal complement of a subspace
� demonstrate that you know that, for a matrix A, R(A)⊥ = N (AT)

and N (A)⊥ = R(AT); be able to use these results
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� state precisely what is meant by a projection and an orthogonal
projection

� show that projections are linear transformations; show that a matrix
represents a projection if and only if it is idempotent; and that
a matrix represents an orthogonal projection if and only if it is
symmetric and idempotent

� show that the matrix of an orthogonal projection onto R(A), for a
given m × n matrix A of rank n, is P = A(AT A)−1 AT, and be able
to use this to determine such projections

� demonstrate an understanding of the rationale behind least squares
approximation

� explain why a least squares solution to Az = b when A is an m × n
matrix of rank n is z = (AT A)−1 ATb; and use this in numerical
examples to determine a least squares solution.

12.9 Comments on activities

Activity 12.2 Since 0 ∈ U and 0 ∈ W , we have 0 = 0 + 0 ∈ U + W
and hence U + W 
= ∅. Suppose that v, v′ ∈ U + W , so for some
u, u′ ∈ U and w, w′ ∈ W , v = u + w and v′ = u′ + w′. For scalars α, β,
we have

αv + βv′ = α(u + w) + β(u′ + w′) = (αu + βu′)︸ ︷︷ ︸
∈U

+ (αw + βw′)︸ ︷︷ ︸
∈W

,

which is in U + W .

Activity 12.3 Since Lin{u} is the set of all vectors of the form αu and
since Lin{w} is the set of all vectors of the form βw, it follows that

Lin{u} + Lin{w} = {x + y | x ∈ Lin{u}, y ∈ Lin{w}}
= {αu + βw | α, β ∈ R}
= Lin{u, w}.

Activity 12.9 We have S⊥ 
= ∅ because 〈0, s〉 = 0 for all s ∈ S and
hence 0 ∈ S⊥. Suppose u, v ∈ S⊥. So, for all s ∈ S, 〈u, s〉 = 〈v, s〉 = 0.
Then, for scalars α, β, for all s ∈ S,

〈αu + βv, s〉 = α〈u, s〉 + β〈v, s〉 = α0 + β0 = 0,

so αu + βv ∈ S⊥.
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Activity 12.12 You could find the equation of the plane using∣∣∣∣∣∣
1 1 x
2 0 y

−1 1 z

∣∣∣∣∣∣ = 2x − 2y − 2z = 0.

So the plane has Cartesian equation, x − y − z = 0 with a normal
vector n = (1, −1, −1)T as a basis of S⊥.

Activity 12.18 If the sum is not direct, then it won’t be the case that
every vector can be written uniquely in the form u + w. If

v = u + w = u′ + w′

are two different such expressions for v, then it is not possible to define
PU (v) without ambiguity: is it u or u′? The definition does not make
sense in this case.

Activity 12.24 If λ is an eigenvalue of A, then Av = λv, where v 
= 0
is a corresponding eigenvector of A. If A is idempotent, then also
Av = A2v = A(λv) = λ(Av) = λ(λv) = λ2v, so we have λ2v = λv or
(λ2 − λ)v = 0. Since v 
= 0, we conclude that λ2 − λ = λ(λ − 1) = 0
with λ = 0 or λ = 1 as the only solutions.

12.10 Exercises

Exercise 12.1 Suppose S is a subspace of Rn. Prove that

dim(S) + dim(S⊥) = n.

Exercise 12.2 Suppose S is a subspace of Rn. Prove that S ⊆ (S⊥)⊥.
Prove also that dim(S) = dim((S⊥)⊥). (You may assume the result of
the previous exercise.) Hence, deduce that (S⊥)⊥ = S.

Exercise 12.3 What is the orthogonal projection of R4 onto the sub-
space spanned by the vectors (1, 0, 1, 0)T and (1, 2, 1, 2)T?

Exercise 12.4 Let A be an n × n idempotent matrix which is diago-
nalisable. Show that R(A), the range of A, is equal to the eigenspace
corresponding to the eigenvalue λ = 1.

Exercise 12.5 Consider the matrix

A =
⎛⎝ 5 −8 −4

3 −5 −3
−1 2 2

⎞⎠ ,

which you diagonalised in Exercise 9.10. Show that A is idempotent.
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Let T denote the linear transformation T : R3 → R3 given by
T (x) = Ax. Deduce that T is a projection. Show that T is the
projection from R3 onto the eigenspace corresponding to the eigen-
value λ = 1, parallel to the eigenspace corresponding to λ = 0. Is this
an orthogonal projection?

Exercise 12.6 Find a least squares fit by a function of the form
Y = a + bX to the following data:

X −1 0 1 2
Y 0 1 3 9

.

Exercise 12.7 Suppose we want to model the relationship between X
and Y by

Y = a + bX + cX2

for some constants a, b, c. Find a least squares solution for a, b, c given
the following data:

X 0 1 2 3
Y 3 2 4 4

.

12.11 Problems

Problem 12.1 Suppose that

X = Lin

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ and Y = Lin

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

0
1
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
0
1

−1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Is the sum X + Y direct? If so, why, and if not, why not? Find a basis
for X + Y .

Problem 12.2 Let

Y = Lin

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
3

−1
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
4
0
2

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ⊂ R4.

Find a basis of Y ⊥.

Problem 12.3 Let U and V be subspaces of an inner product space X,
and let U⊥ and V ⊥ be their orthogonal complements. Prove that

(U + V )⊥ = U⊥ ∩ V ⊥.
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Problem 12.4 Suppose that u, w ∈ R2 are the vectors

u =
(−1

2

)
, w =

(−3
5

)
.

Using the definition of a direct sum, show that R2 = Lin{u} ⊕ Lin{w}.
(a) Find the projection P of R2 onto U = Lin{u} parallel to W =

Lin{w}. Find the image P(e1) of the vector e1 = (1, 0)T.
(b) Find the orthogonal projection T from R2 onto Lin{u}. Then find

the image of e1 = (1, 0)T under this linear transformation.

Problem 12.5 Suppose p ≥ 1 and that the n × n real matrix A satisfies
Ap+1 = Ap. Prove that A j = Ap for all j ≥ p and that

Rn = R(Ap) ⊕ N (Ap).

Problem 12.6 Let x ∈ Rn and let S be the subspace Lin{x} spanned by
x. Show that the orthogonal projection matrix P of Rn onto S is

P = 1

‖x‖2
xxT.

Problem 12.7 If z = (2, −3, 2, −1)T, find the matrix of the orthogonal
projection of R4 onto Lin{z}.
Problem 12.8 Let X be the subspace of R3 spanned by the vectors
(0, 1, 1)T and (2, 1, −1)T. Find a basis of X⊥.

Find the matrix P representing the orthogonal projection of R3 onto
X . Is P diagonalisable?

Find an eigenvector of P corresponding to the eigenvalue 0 and an
eigenvector corresponding to the eigenvalue 1.

Problem 12.9 Show that the matrix

P = 1

9

⎛⎜⎜⎝
1 2 −2 0
2 7 −1 3

−2 −1 7 3
0 3 3 3

⎞⎟⎟⎠
is idempotent. Why can you conclude that P represents an orthogonal
projection from R4 to a subspace Y of R4?

State what is meant by an orthogonal projection. Find subspaces Y
and Y ⊥ such that P is the orthogonal projection of R4 onto Y . (Write
down a basis for each subspace.)

Problem 12.10 Suppose A is an n × n diagonalisable matrix and that
the only eigenvalues of A are 0 and 1. Show that A is idempotent.
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Deduce that the linear transformation defined by T (x) = Ax is a pro-
jection from Rn onto the eigenspace corresponding to the eigenvalue
λ = 1 parallel to the eigenspace corresponding to λ = 0.

Problem 12.11 Let U be the plane in R3 given by

U =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ 2x − y − 2z = 0

⎫⎬⎭ .

Find the nearest point (position vector) in U to the point whose position
vector is p = (1, 1, 2)T.

Problem 12.12 Quantities x, y are known to be related by a rule of the
form y = ax + b for some constants a and b. Readings are taken of y
at various values of x , resulting in the following measurements:

x 2 4 5 6
y 13 17 22 25

Find the least squares estimate of a and b.

Problem 12.13 Suppose we want to find the least-squares line y =
m∗x + c∗ through the data points (x1, y1), (x2, y2), . . . , (xn, yn). Show
that the parameters m∗ and c∗ of the least-squares line are as follows:

m∗ = n
∑n

i=1 xi yi −∑n
i=1 xi

∑n
i=1 yi

n
∑n

i=1 x2
i − (∑n

i=1 xi
)2 ,

c∗ =
∑n

i=1 yi
∑n

i=1 x2
i −∑n

i=1 xi
∑n

i=1 xi yi

n
∑n

i=1 x2
i − (∑n

i=1 xi
)2 .

(These formulae might be familiar from statistics courses.)
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Complex matrices and
vector spaces

A complex matrix is a matrix whose entries are complex numbers. A
complex vector space is one for which the scalars are complex numbers.
We shall see that many of the results we have established for real
matrices and real vector spaces carry over immediately to complex
ones, but there are also some significant differences.

In this chapter, we explore these similarities and differences. We
look at eigenvalues and eigenvectors of a complex matrix and investi-
gate unitary diagonalisation, the complex analogue of orthogonal diag-
onalisation. Certain results for real matrices and vector spaces (such as
the result that the eigenvalues of a symmetric matrix are real) are easily
seen as special cases of their complex counterparts.

We begin with a careful review of complex numbers.

13.1 Complex numbers

Consider the two quadratic polynomials, p(x) = x2 − 3x + 2 and
q(x) = x2 + x + 1. If you sketch the graph of p(x), you will find
that the graph intersects the x axis at the two real solutions (or
roots) of the equation p(x) = 0, and that the polynomial factorises
into two linear factors: p(x) = x2 − 3x + 2 = (x − 1)(x − 2). Sketch-
ing the graph of q(x), you will find that it does not intersect the x
axis. The equation q(x) = 0 has no solution in the real numbers, and
it cannot be factorised over the reals. Such a polynomial is said to be
irreducible. In order to solve this equation, we need to use complex
numbers.
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13.1.1 Complex numbers

We begin by defining an imaginary number, which we denote by the
letter i and which has the property that i2 = −1. The term ‘imaginary’
is historical, and not an indication that this is a figment of someone’s
imagination.

Definition 13.1 A complex number is a number of the form z = a + ib,
where a and b are real numbers, and i2 = −1. The set of all such
numbers is

C = {a + ib | a, b ∈ R} .

If z = a + ib is a complex number, then the real number a is known as
the real part of z, denoted Re(z), and the real number b is the imaginary
part of z, denoted Im(z). Note that Im(z) is a real number.

If b = 0, then z = a + ib is just the real number a, so R ⊆ C. If
a = 0, then z = ib is said to be purely imaginary.

The quadratic polynomial q(z) = x2 + x + 1 can be factorised over
the complex numbers, because the equation q(z) = 0 has two complex
solutions. Solving in the usual way, we have

x = −1 ± √−3

2
.

We write
√−3 = √

(−1)3 = √−1
√

3 = i
√

3, so that the solutions are

w = −1

2
+ i

√
3

2
and w = −1

2
− i

√
3

2
.

Notice the form of these two solutions. They are what is called a con-
jugate pair. We have the following definition:

Definition 13.2 (Complex conjugate) If z = a + ib is a complex num-
ber, then the complex conjugate of z is the complex number z = a − ib.

We can see by the application of the quadratic formula that the roots of
an irreducible quadratic polynomial with real coefficients will always
be a conjugate pair of complex numbers.

13.1.2 Algebra of complex numbers

Addition and multiplication of complex numbers are defined by treating
the numbers as polynomials in i , and using i2 = −1.



13.1 Complex numbers 391

Example 13.3 If z = (1 + i) and w = (4 − 2i), then

z + w = (1 + i) + (4 − 2i) = (1 + 4) + i(1 − 2) = 5 − i

and

zw = (1 + i)(4 − 2i) = 4 + 4i − 2i − 2i2 = 6 + 2i.

If z ∈ C, then zz is a real number:

zz = (a + ib)(a − ib) = a2 + b2.

Activity 13.4 Carry out the multiplication to verify that zz̄ = a2 + b2.

Division of complex numbers is then defined by

z

w
= zw

ww
,

noting that ww is real.

Example 13.5

1 + i

4 − 2i
= (1 + i)(4 + 2i)

(4 − 2i)(4 + 2i)
= 2 + 6i

16 + 4
= 1

10
+ 3

10
i.

We now look at some properties of the complex conjugate. A complex
number is real if and only if z = z. Indeed, if z = a + ib, then z = z if
and only if b = 0.

The complex conjugate of a complex number satisfies the following
properties:

� z + z = 2 Re(z) is real,
� z − z = 2i Im(z) is purely imaginary,
� z = z,
� z + w = z + w,
� zw = z w,

�

( z

w

)
= z

w
.

Activity 13.6 Let z = a + ib, w = c + id and verify all of the above
properties.

13.1.3 Roots of polynomials

The Fundamental Theorem of Algebra asserts that a polynomial of
degree n with complex coefficients has n complex roots (not necessar-
ily distinct), and can therefore be factorised into n linear factors. If the
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coefficients are restricted to real numbers, the polynomial can be fac-
torised into a product of linear and irreducible quadratic factors over R

and into a product of linear factors over C. The proof of the Funda-
mental Theorem of Algebra is beyond the scope of this text. However,
we note the following useful result:

Theorem 13.7 Complex roots of polynomials with real coefficients
appear in conjugate pairs.

Proof: Let P(x) = a0 + a1x + · · · + anxn, ai ∈ R, be a polynomial
of degree n. We shall show that if z is a root of P(x), then so is z.

Let z be a complex number such that P(z) = 0, then

a0 + a1z + a2z2, + · · · + anzn = 0.

Conjugating both sides of this equation,

a0 + a1z + a2z2 + · · · + anzn = 0 = 0.

Since 0 is a real number, it is equal to its complex conjugate. We
now use the following properties of the complex conjugate: that
the complex conjugate of the sum is the sum of the conjugates, and
the complex conjugate of a product is the product of the conjugates. We
have

a0 + a1z + a2z2 + · · · + anzn = 0,

and

a0 + a1z + a2z2 + · · · + anzn = 0.

Since the coefficients ai are real numbers, this becomes

a0 + a1z + a2z2 + · · · + anzn = 0.

That is, P(z) = 0, so the number z is also a root of P(x). �

Example 13.8 Let us consider the polynomial

x3 − 2x2 − 2x − 3 = (x − 3)(x2 + x + 1).

If

w = −1

2
+ i

√
3

2
,

then

x3 − 2x2 − 2x − 3 = (x − 3)(x − w)(x − w).

Activity 13.9 Multiply out the last two factors above to check that
their product is the irreducible quadratic x2 + x + 1.
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i

0 1

z = a + ib

θ

Figure 13.1
Complex plane or
Argand diagram

13.1.4 The complex plane

The following theorem shows that a complex number is uniquely deter-
mined by its real and imaginary parts.

Theorem 13.10 Two complex numbers are equal if and only if their
real and imaginary parts are equal.

Proof: Two complex numbers with the same real parts and the same
imaginary parts are clearly the same complex number, so we only need
to prove this statement in one direction. Let z = a + ib and w = c + id .
If z = w, we will show that their real and imaginary parts are equal. We
have a + ib = c + id , therefore a − c = i(d − b). Squaring both sides,
we obtain (a − c)2 = i2(d − b)2 = −(d − b)2. But a − c and (d − b)
are real numbers, so their squares are non-negative. The only way in
which this equality can hold is if we have a − c = d − b = 0; that is,
a = c and b = d. �

As a result of this theorem, we can think of the complex numbers geo-
metrically, as points in a plane. For, we can associate the vector (a, b)T

uniquely to each complex number z = a + ib, and all the properties of a
two-dimensional real vector space apply. A complex number z = a + ib
is represented as a point (a, b) in the complex plane: we draw two axes,
a horizontal axis to represent the real parts of complex numbers and a
vertical axis to represent the imaginary parts of complex numbers, as in
Figure 13.1. Points on the horizontal axis represent real numbers, and
points on the vertical axis represent purely imaginary numbers.

Activity 13.11 Plot z = 2 + 2i and w = 1 − i
√

3 in the complex
plane.

13.1.5 Polar form

If the complex number z = a + ib is plotted as a point (a, b) in the
complex plane, then we can determine the polar coordinates of this
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point. We have

a = r cos θ, b = r sin θ,

where r = √
a2 + b2 is the length of the line joining the origin to the

point (a, b), and θ is the angle measured anticlockwise from the real
(horizontal) axis to the line joining the origin to the point (a, b). Then
we can write z = a + ib = r cos θ + i r sin θ .

Definition 13.12 The polar form of the complex number z is

z = r (cos θ + i sin θ ).

The length r = √
a2 + b2 is called the modulus of z, denoted |z|, and

the angle θ is called the argument of z.

Note the following properties:

� z and z are reflections in the real axis. If θ is the argument of z, then
−θ is the argument of z.

� |z|2 = zz.
� θ and θ + 2nπ give the same complex number.

We define the principal argument of z to be the argument in the range
−π < θ ≤ π , and it is often denoted Arg(z).

Activity 13.13 Express z = 2 + 2i , w = 1 − i
√

3 in polar form.

Activity 13.14 Describe the following sets of complex numbers:

(a) {z | |z| = 3},
(b) {z | Arg(z) = π/4}.
Multiplication and division using polar coordinates gives

zw = r (cos θ + i sin θ ) · ρ(cos φ + i sin φ)
= rρ(cos(θ + φ) + i sin(θ + φ))

z

w
= r

ρ
( cos(θ − φ) + i sin(θ − φ)).

Activity 13.15 Show these by performing the multiplication and the
division as defined earlier, and by using the facts (trigonometric iden-
tities) that cos(θ + φ) = cos θ cos φ − sin θ sin φ and sin(θ + φ) =
sin θ cos φ + cos θ sin φ.

We consider explicitly a special case of the multiplication result above,
in which w = z. Suppose that z = r (cos θ + i sin θ ). If we apply the
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above multiplication rule to determine z2 = zz, we have

z2 = zz

= (r (cos θ + i sin θ ))(r (cos θ + i sin θ ))

= r2(cos2 θ + i2 sin2 θ + 2i sin θ cos θ )

= r2(cos2 θ − sin2 θ + 2i sin θ cos θ )

= r2(cos 2θ + i sin 2θ ).

Here we have used the double angle formulae for cos 2θ and sin 2θ .
Applying the product rule n times, where n is a positive integer, we

have

zn = z · · · z︸ ︷︷ ︸
n times

= (r (cos θ + i sin θ ))n

= rn
(

cos(θ + · · · + θ︸ ︷︷ ︸
n times

) + i sin(θ + · · · + θ︸ ︷︷ ︸
n times

)
)
.

From the two expressions on the right, we conclude DeMoivre’s formula
(or theorem).

Theorem 13.16 (DeMoivre’s theorem)

(cos θ + i sin θ )n = cos nθ + i sin nθ.

13.1.6 Exponential form and Euler’s formula

You may be aware that standard functions of a real variable can often
be defined by power series (or Taylor or Maclaurin expansions). These
power series definitions can also be used when the variable is complex.
In particular, we have

ez = 1 + z + z2

2!
+ z3

3!
+ · · ·

sin z = z − z3

3!
+ z5

5!
− · · ·

cos z = 1 − z2

2!
+ z4

4!
− · · ·
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If we use the expansion for ez to expand eiθ , and then factor out the real
and imaginary parts, we find:

eiθ = 1 + (iθ ) + (iθ )2

2!
+ (iθ )3

3!
+ (iθ )4

4!
+ (iθ )5

5!
+ · · ·

= 1 + iθ − θ2

2!
− i

θ3

3!
+ θ4

4!
+ i

θ5

5!
− · · ·

=
(

1 − θ2

2!
+ θ4

4!
− · · ·

)
+ i

(
θ − θ3

3!
+ θ5

5!
− · · ·

)
.

From this, we may conclude Euler’s formula, which is as follows:

eiθ = cos θ + i sin θ.

Using this result, we obtain the exponential form of a complex number.

Definition 13.17 The exponential form of a complex number z = a + ib
is

z = reiθ ,

where r = |z| is the modulus of z and θ is the argument of z.

Example 13.18 Using the exponential form, we can write

eiπ + 1 = 0,

which combines the numbers e, π and i in a single expression.

If z = reiθ , then its complex conjugate is given by z = re−iθ . This is
because, if z = reiθ = r (cos θ + i sin θ ), then

z = r (cos θ − i sin θ ) = r (cos(−θ ) + i sin(−θ)) = re−iθ .

We can use either the exponential form, z = reiθ , or the standard form,
z = a + ib, according to the application or computation we are doing.
For example, addition is simplest in the form z = a + ib, but multi-
plication and division are simpler when working with the exponential
form. To change a complex number between reiθ and a + ib, we use
Euler’s formula and the complex plane (polar form).

Example 13.19 Here are two examples of converting from exponential
form to standard form:

ei2π/3 = cos
(

2π

3

)
+ i sin

(
2π

3

)
= −1

2
+ i

√
3

2
.

e2+i
√

3 = e2ei
√

3 = e2 cos
√

3 + ie2 sin
√

3.
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Activity 13.20 Write each of the following complex numbers in the
form a + ib:

eiπ/2, ei3π/2, ei5π/4, ei11π/6, e2−i , e−3.

Example 13.21 Let z = 2 + 2i = 2
√

2 ei π
4 and w = 1 − i

√
3 =

2e−i π
3 . Then

w6 = (1 − i
√

3)6 = (2e−i π
3 )6 = 26e−i2π = 64,

zw = (2
√

2ei π
4 )(2e−i π

3 ) = 4
√

2e−i π
12 ,

z

w
=

√
2ei 7π

12 .

You can see that these calculations are relatively straightforward using
the exponential form of the complex numbers, but they would be quite
involved if we used the standard form.

Notice that in Example 13.21, we are using certain properties of the
complex exponential function, specifically that, if z, w ∈ C, then

ez+w = ezew and (ez)n = enz for n = 1, 2, 3, . . . .

This last property is, in fact, DeMoivre’s theorem, and it is easily gen-
eralised to include all integers.

Use of the exponential form sometimes makes solving equations
easier, as the following example shows:

Example 13.22 We solve the equation z6 = −1 to find the 6th roots
of −1.

Writing z = reiθ , we have z6 = (reiθ )6 = r6ei6θ , and

−1 = eiπ = ei(π+2nπ ) for n ∈ Z.

So we need to solve

r6ei6θ = ei(π+2nπ ).

Using the fact that r is a real positive number, we have r = 1 and
6θ = π + 2nπ , so

θ = π

6
+ 2nπ

6
.

This will give the six complex roots by taking n = 0, 1, 2, 3, 4, 5.

Activity 13.23 Show this. Write down the sixth roots of −1 and show
that any one raised to the power 6 is equal to −1. Show that n = 6 gives
the same root as n = 0. Use this to factor the polynomial x6 + 1 into
linear factors over the complex numbers, and into irreducible quadratics
over the real numbers.



398 Complex matrices and vector spaces

13.2 Complex vector spaces

A vector space where the scalars are complex numbers is called a com-
plex vector space. The following definition is the same as Definition 5.1
except that the scalars are complex numbers.

Definition 13.24 (Complex vector space) A complex vector space V
is a non-empty set of objects, called vectors, equipped with an addition
operation and a scalar multiplication operation such that for all α, β ∈ C

and all u, v, w ∈ V :

1. u + v ∈ V (closure under addition).
2. u + v = v + u (the commutative law for addition).
3. u + (v + w) = (u + v) + w (the associative law for addition).
4. There is a single member 0 of V , called the zero vector, such that

for all v ∈ V , v + 0 = v.

5. For every v ∈ V, there is an element w ∈ V (usually written as
−v), called the negative of v, such that v + w = 0.

6. αv ∈ V (closure under scalar multiplication).
7. α(u + v) = αu + αv (distributive law).
8. (α + β)v = αv + βv (distributive law).
9. α(βv) = (αβ)v (associative law).

10. 1v = v.

Example 13.25 The set Cn of n-tuples of complex numbers is a com-
plex vector space. Just as in Rn, we will write a vector as a column,

v =

⎛⎜⎜⎜⎝
v1

v2
...
vn

⎞⎟⎟⎟⎠ vi ∈ C.

Addition and scalar multiplication are defined component-wise, exactly
as in Rn .

Example 13.26 The set M2(C) of 2 × 2 matrices with complex entries
is a complex vector space under matrix addition and scalar multiplica-
tion.

Most of the results established in Chapter 3 for real vector spaces carry
over immediately to a complex vector space V . All that is necessary
is to change any reference from real numbers to complex numbers.
A linear combination of vectors has the same meaning, except that
the coefficients are complex numbers. That is, w ∈ V is a linear



13.3 Complex matrices 399

combination of v1, v2, . . . , vk ∈ V if

w = a1v1 + a2v2 + · · · + akvk ai ∈ C.

The concepts of subspace, linear span, linear independence, basis and
dimension carry over in the same way. Theorems about Rn continue to
hold with Rn changed to Cn.

Example 13.27 Suppose that, for i = 1, 2, . . . , n, the vector ei has
every entry equal to 0 except for the i th, which is 1. Then the vectors
e1, e2, . . . , en form a basis of Cn . For any z = (z1, z2, . . . , zn)T ∈ Cn,

z = z1e1 + z2e2 + · · · + znen.

The basis {e1, e2, . . . , en} is called the standard basis of Cn, and Cn is
an n-dimensional complex vector space.

Activity 13.28 Cn can also be considered as a 2n-dimensional real
vector space. Why? What is a basis for this space?

13.3 Complex matrices

We will refer to a matrix whose entries are complex numbers as a
complex matrix for short, as opposed to a real matrix (one whose entries
are real numbers). Sometimes, we will just use the term matrix for either,
when this will not cause any confusion. If A is an m × n complex
matrix, then we denote by A the m × n matrix whose (i, j) entry is the
complex conjugate of the (i, j) entry of A. That is, if A = (ai j ), then
A = (ai j ).

We can use row reduction to solve a system of equations Ax = b,

where A is an m × n complex matrix, x ∈ Cn and b ∈ Cm . Results
concerning the range and null space of a matrix which we estab-
lished in previous chapters carry over immediately to complex matri-
ces with the appropriate modifications. The null space is a subspace
of Cn and the range, or column space, of the matrix is a subspace
of Cm .

The concepts of eigenvector and eigenvalue are the same for com-
plex matrices as for real ones, and the same method is used to find them.
In particular, by working in Cn rather than Rn we can now sometimes
diagonalise real matrices with complex eigenvalues, as the following
example shows:
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Example 13.29 We find the eigenvalues and corresponding eigenvec-
tors for the matrix

A =
(

0 1
−1 0

)
.

The characteristic equation is

|A − λI | =
∣∣∣∣−λ 1
−1 −λ

∣∣∣∣ = λ2 + 1 = 0,

with complex roots λ = ±i . We now find the corresponding eigenvec-
tors.

For λ1 = i , we solve (A − i I )x = 0 by row reducing the coefficient
matrix,

(A − i I ) =
(−i 1

−1 −i

)
−→

(
1 i
0 0

)
, so that v1 =

(−i
1

)
.

In the same way, for λ2 = −i ,

(A + i I ) =
(

i 1
−1 i

)
−→

(
1 −i
0 0

)
, so that v2 =

(
i
1

)
.

We can check that these eigenvectors are correct by showing that Av1 =
iv1 and Av2 = −iv2.

Activity 13.30 Check that Av1 = iv1 and Av2 = −iv2.

Can we now diagonalise the matrix A in the same way as for real
matrices? The answer is yes. If P is the matrix whose columns are the
eigenvectors, and D is the diagonal matrix of corresponding eigenval-
ues, we will show that P−1 AP = D. We set

P =
(−i i

1 1

)
, D =

(
i 0
0 −i

)
and find P−1 exactly as with real matrices. We have |P| = −2i , so that

P−1 = − 1

2i

(
1 −i

−1 −i

)
.

Then

P−1 AP = 1

2i

(−1 i
1 i

)(
0 1

−1 0

)(−i i
1 1

)
= 1

2i

(−1 i
1 i

)(
1 1
i −i

)
= 1

2i

(−2 0
0 2

)
= 1

i

(−1 0
0 1

)
=
(

i 0
0 −i

)
= D.

Activity 13.31 Work through all the calculations in this example.
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You may have noticed in this example that the eigenvectors of the
complex conjugate eigenvalues, λ1 = i and λ2 = λ1 = −i are complex
conjugate vectors, v2 = v1. This is true in general for real matrices.

Theorem 13.32 If A is an n × n matrix with real entries and if λ is
a complex eigenvalue with corresponding eigenvector v, then λ is also
an eigenvalue of A with corresponding eigenvector v.

Proof: Since A is a real matrix, the characteristic equation of A is a
polynomial of degree n with real coefficients, and hence any complex
roots occur in conjugate pairs. This means that if λ is an eigenvalue of
A, then so is λ. If λ is an eigenvalue with corresponding eigenvector v,
then Av = λv. Taking the complex conjugate of both sides, Av = λv,
which, since A is real, yields Av = λv. This says that v is an eigenvector
corresponding to λ. �

13.4 Complex inner product spaces

13.4.1 The inner product on Cn

The standard inner product of two vectors x, y in Rn is the real number
〈x, y〉 given by

〈x, y〉 = xTy = x1 y1 + x2 y2 + · · · + xn yn.

The norm of a vector x is given in terms of this inner product by
‖x‖ = √〈x, x〉. This definition of inner product will not work in Cn. For
example, if x = (1, 0, i)T ∈ C3, then clearly x 
= 0, but we would have

‖x‖2 = x2
1 + x2

2 + x2
3 = 12 + 0 + i2 = 1 − 1 = 0.

It seems we need to alter this definition to make it work in a complex
vector space. A good guide to what should be done comes from the
modulus of a complex number. If z = a + ib, then |z|2 = zz = a2 + b2

is a real non-negative number, and |z| = 0 only for z = 0.

Definition 13.33 For x, y ∈ Cn, the standard complex inner product is
defined to be the complex number 〈x, y〉 given by

〈x, y〉 = x1 y1 + x2 y2 + · · · + xn yn.

Example 13.34 If x = (1, 4i, 3 + i)T and y = (i, −3, 1 − 2i)T, then

〈x, y〉 = 1(−i) + 4i(−3) + (3 + i)(1 + 2i) = −i − 12i + (1 + 7i)

= 1 − 6i.
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Since

〈x, x〉 = x1x1 + x2x2 + · · · + xnxn = |x1|2 + |x2|2 + · · · + |xn|2

is the sum of the squares of the moduli of the components of the vector
x, the inner product of a complex vector with itself is a non-negative real
number. Then, the norm of the vector is ‖x‖ = √〈x, x〉, and ‖x‖ = 0
if and only if x is the zero vector. This last statement is part of the
following theorem:

Theorem 13.35 The standard complex inner product

〈x, y〉 = x1 y1 + x2 y2 + · · · + xn yn (x, y ∈ Cn)

satisfies the following for all x, y, z ∈ Cn and for all α, β ∈ C:

(i) 〈x, y〉 = 〈y, x〉
(ii) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉

(iii) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.

Proof: We have

〈x, y〉 = x1 y1 + x2 y2 + · · · + xn yn

= y1x1 + y2x2 + · · · + ynxn

= y1x1 + y2x2 + · · · + ynxn

= y1x1 + y2x2 + · · · + ynxn

= 〈y, x〉,
which proves (i). We leave the proof of (ii) as an exercise. For (iii), note
that if x j = a j + ib j is the j th component of x, then

〈x, x〉 = |x1|2 + |x2|2 + · · · + |xn|2
= a2

1 + b2
1 + a2

2 + b2
2 + · · · + a2

n + b2
n

is a sum of squares of real numbers, so 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and
only if each term a2

j and b2
j is equal to 0; that is, if and only if x is the

zero vector, x = 0. �

Activity 13.36 Prove property (ii).

Activity 13.37 Calculate the norm of the vector x = (1, 0, i)T ∈ C3.

13.4.2 Complex inner product in general

As with real vector spaces, there is a general notion of inner product on
complex vector spaces.
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Definition 13.38 (Complex inner product) Let V be a vector space
over the complex numbers. An inner product on V is a mapping from
(or operation on) pairs of vectors x, y to the complex numbers, the
result of which is a complex number denoted 〈x, y〉, which satisfies the
following properties:

(i) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .
(ii) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 for all x, y, z ∈ V and all

α, β ∈ C.
(iii) 〈x, x〉 ≥ 0 is a real number for all x ∈ V , and 〈x, x〉 = 0 if and

only if x = 0, the zero vector of the vector space V .

A vector space with a complex inner product is called a complex inner
product space. From any complex inner product, we can define a norm
by

‖x‖ = √〈x, x〉.
The inner product defined on Cn in the previous section is clearly an
inner product under this general definition.

Two further properties, which follow directly from this definition,
are:

� 〈x, αy〉 = α〈x, y〉 for all x, y ∈ V and all α ∈ C.
� 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 for all x, y, z ∈ V .

Activity 13.39 Use the definition to prove these two additional
properties.

Example 13.40 (This is a complex version of Example 10.3.) Suppose
that V is the vector space consisting of all complex polynomial functions
of degree at most n; that is, V consists of all functions p : x �→ p(x)
of the form

p(x) = a0 + a1x + a2x2 + · · · + anxn, a0, a1, . . . , an ∈ C.

The addition and scalar multiplication are, as before, defined pointwise.
Let x1, x2, . . . , xn+1 be n + 1 fixed, different, complex numbers, and
define, for p, q ∈ V ,

〈p, q〉 =
n+1∑
i=1

p(xi )q(xi ).

Then this is an inner product. To see this, we check the properties in
the definition of an inner product. Property (i) follows from properties
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of complex numbers and the complex conjugate:

〈p, q〉 =
n+1∑
i=1

p(xi )q(xi ) =
n+1∑
i=1

q(xi )p(xi ) =
n+1∑
i=1

q(xi )p(xi ) = 〈q, p〉.

For (iii), we have

〈p, p〉 =
n+1∑
i=1

p(xi )p(xi ) =
n+1∑
i=1

|p(xi )|2 ≥ 0,

since it is the sum of squares of real numbers. The rest of the argument
proceeds in exactly the same way as before. If p is the zero vector of the
vector space (which is the identically-zero function), then 〈p, p〉 = 0. To
complete the verification of (iii), we need to check that, if 〈p, p〉 = 0,

then p must be the zero function. Now, 〈p, p〉 = 0 must mean that
p(xi ) = 0 for i = 1, 2, . . . , n + 1, so p(x) has n + 1 different roots.
But p(x) has degree no more than n, so p must be the identically-zero
function. (The fact that a non-zero polynomial of degree n has no more
than n distinct roots is just as true for complex numbers as it is for real
numbers.) As before, part (ii) is left to you.

13.4.3 Orthogonal vectors

The definition of orthogonal vectors for real inner product spaces carries
over exactly to complex ones:

Definition 13.41 Two vectors x, y in a complex inner product space
are said to be orthogonal if

〈x, y〉 = 0.

We write x ⊥ y.

A set of vectors {v1, v2, . . . , vn} in a complex inner product space V is
orthogonal if 〈vi , v j 〉 = 0 for i 
= j . It is orthonormal if each vector is
also a unit vector; that is, 〈vi , vi 〉 = 1.

Just as in Rn , an orthogonal set of non-zero vectors in Cn is linearly
independent. The proof is essentially the same as the one given for
Theorem 10.14, but we state and prove it for a complex inner product
space to illustrate the modifications. Notice that it is useful to think
ahead about the order in which we choose to place the vectors in the
inner product so that the proof is as straightforward as possible.
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Theorem 13.42 Suppose that V is a complex inner product space and
that vectors v1, v2, . . . , vk ∈ V are pairwise orthogonal (〈vi , v j 〉 = 0
for i 
= j ), and none is the zero-vector. Then {v1, v2, . . . , vk} is a linearly
independent set of vectors.

Proof: We need to show that if

α1v1 + α2v2 + · · · + αkvk = 0, αi ∈ C,

then α1 = α2 = · · · = αk = 0. Let i be any integer between 1 and k.
Then

〈α1v1 + α2v2 + · · · + αkvk, vi 〉 = 〈0, vi 〉 = 0.

But

〈α1v1 + · · · + αkvk, vi 〉
= α1〈v1, vi 〉 + · · · + αi−1〈vi−1, vi 〉 + αi 〈vi , vi 〉

+ αi+1〈vi+1, vi 〉 + · · · + αk〈vk, vi 〉.
Since 〈vi , v j 〉 = 0 for j 
= i , this equals αi 〈vi , vi 〉, which is αi‖vi‖2. So
we have αi‖vi‖2 = 0. Since vi 
= 0, ‖vi‖2 
= 0 and hence αi = 0. But i
was any integer in the range 1 to k, so we deduce that

α1 = α2 = · · · = αk = 0,

as required. �

Example 13.43 The vectors

v1 = 1√
2

(
1
i

)
, v2 = 1√

2

(
i
1

)
,

form an orthonormal basis of C2. To show this, we calculate the inner
products. They are orthogonal since

〈v1, v2〉 = 1

2

〈(
1
i

)
,

(
i
1

)〉
= 1

2
(1(−i) + i(1)) = 0

and the norm of each vector is 1 since we have

〈v1, v1〉 = 1

2

〈(
1
i

)
,

(
1
i

)〉
= 1

2
(1(1) + (i)(−i)) = 1

and 〈v2, v2〉 = 1

2

〈(
i
1

)
,

(
i
1

)〉
= 1

2
((i)(−i) + 1(1)) = 1.

It is a basis of C2 since they are linearly independent and C2 has
dimension 2.

If {v1, v2, . . . , vk} is a basis of a complex inner product space V , then,
just as for a real vector space, we can apply the Gram–Schmidt orthonor-
malisation process to obtain an orthonormal basis of V .
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Example 13.44 Let V be the linear span, V = Lin{v1, v2}, of the vec-
tors v1, v2 in Cn, where

v1 =
⎛⎝ 1

i
0

⎞⎠ , v2 =
⎛⎝ 1

2
1 + i

⎞⎠ .

We will find an orthonormal basis for V . First, we find a unit vector par-
allel to v1. Since 〈v1, v1〉 = 1(1) + i(−i) = 2, we set u1 = (1/

√
2)v1.

Then we set

w2 =
⎛⎝ 1

2
1 + i

⎞⎠−
〈⎛⎝ 1

2
1 + i

⎞⎠ ,
1√
2

⎛⎝ 1
i
0

⎞⎠〉 1√
2

⎛⎝ 1
i
0

⎞⎠ .

Calculating the inner product, we have

w2 =
⎛⎝ 1

2
1 + i

⎞⎠− 1 − 2i

2

⎛⎝ 1
i
0

⎞⎠
=
⎛⎝ 1

2
1 + i

⎞⎠−
⎛⎝ 1

2 − i
1 + 1

2 i
0

⎞⎠ =
⎛⎝ 1

2 + i
1 − 1

2 i
1 + i

⎞⎠ .

We need a unit vector in this direction. To make calculations easier, we
use the parallel vector

ŵ2 =
⎛⎝ 1 + 2i

2 − i
2 + 2i

⎞⎠ ,

and check that ŵ2 ⊥ v1:

〈ŵ2, v1〉 = (1 + 2i)(1) + (2 − i)(−i) + (2 + 2i)(0) = 0.

We find ‖ŵ2‖ = √
18, so that

u1 = 1√
2

⎛⎝ 1
i
0

⎞⎠ , u2 = 1

3
√

2

⎛⎝ 1 + 2i
2 − i
2 + 2i

⎞⎠
form an orthonormal basis of V .

Suppose we now wish to find the coordinates of v2 in this new basis.
As in Rn (see Theorem 10.20), the coordinates ai of any vector v ∈ V
with respect to the orthonormal basis {u1, u2} are given by ai = 〈v, ui 〉.
Here the order is important, because 〈ui , v〉 = ai . We have

a1 =
〈⎛⎝ 1

2
1 + i

⎞⎠ ,
1√
2

⎛⎝ 1
i
0

⎞⎠〉 = 1 − 2i√
2

a2 =
〈⎛⎝ 1

2
1 + i

⎞⎠ ,
1

3
√

2

⎛⎝ 1 + 2i
2 − i

2 + 2i

⎞⎠〉 = 9

3
√

2
= 3√

2
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so that

v2 = 1 − 2i√
2

u1 + 3√
2

u2.

Activity 13.45 Check all the calculations in this example.

13.5 Hermitian conjugates

13.5.1 The Hermitian conjugate

If A is a complex matrix, the Hermitian conjugate, which we denote by
A∗, is the matrix A

T
, the result of taking the complex conjugate of every

entry of A and then transposing the matrix. Whereas the transpose of a
real matrix played an important role in the orthogonal diagonalisation
of real matrices, we shall see that it is the Hermitian conjugate which
we need for complex matrices.

Definition 13.46 (Hermitian conjugate) If A is an m × n matrix with
complex entries, then the Hermitian conjugate of A, denoted by A∗, is
defined by

A∗ = A
T
.

That is, if A = (ai j ), then A = (ai j ) and A∗ = A
T = (a ji ).

Example 13.47

If A =
(

i 5 − 3i 2 + i
3 1 + 2i 4 − 9i

)
, then A∗ =

⎛⎝ −i 3
5 + 3i 1 − 2i
2 − i 4 + 9i

⎞⎠ .

If x, y are vectors in Cn, then we can express the standard complex
inner product in terms of matrix multiplication as

〈x, y〉= x1 y1 + x2 y2 + · · · + xn yn = y1x1 + y2x2 + · · · + ynxn = y∗x.

Unfortunately, this is not quite as neat as the corresponding expres-
sion for the inner product on Rn as a matrix product. (How are they
different?) However, we do have.

〈x, x〉 = x∗x = ‖x‖2.

Compare these properties of the Hermitian conjugate of a matrix with
those of the transpose of a real matrix:

(A∗)∗ = A, (A + B)∗ = A∗ + B∗, (AB)∗ = B∗ A∗.

Because the two operations involved in forming a Hermitian conjugate –
taking the conjugate and taking the transpose – commute with each other
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(meaning it doesn’t matter in which order you perform the operations),
the first two properties follow immediately from the definition of the
Hermitian conjugate. Let us look more closely at the last property.

We will prove that (AB)∗ = B∗ A∗ by showing that the entries are
the same. If A = (ai j ) and B = (bi j ), the (i, j) entry of AB is

ai1b1 j + ai2b2 j + · · · + ainbnj ,

so the ( j, i) entry of (AB)∗ is

ai1b1 j + ai2b2 j + · · · + ainbnj .

Now look at the ( j, i) entry of B∗ A∗, which is the matrix product of the
j th row of B∗ with the i th column of A∗. The j th row of B∗ is given
by the complex conjugate of the j th column of B, (b1 j , b2 j , . . . , bnj ),
and the i th column of A∗ is the complex conjugate of the i th row of A,
which is (ai1, ai2, . . . , ain)T. Thus, the ( j, i) entry of B∗ A∗ is

b1 j ai1 + b2 j ai2 + · · · + bnj ain,

which is equal to the expression we obtained for the ( j, i) entry of
(AB)∗.

If A is a matrix with real entries, then A∗ = A
T = AT. Therefore,

the proof we have just given includes the familiar result for real matrices
A and B, that (AB)T = BT AT.

Activity 13.48 Show that for any complex matrix A and any complex
number k,

(k A)∗ = k A∗.

What is the analogous result for real matrices and real numbers?

Often, the term adjoint is used instead of Hermitian conjugate. But we
have already used that terminology for something completely different
in Chapter 3 (in the context of finding the inverse of a matrix), so we
will avoid it: but we wanted to let you know, to avoid confusion.

13.5.2 Hermitian matrices

Recall that a real matrix A is symmetric if A = AT. The complex
analogue is a Hermitian matrix.

Definition 13.49 (Hermitian matrix) An n × n complex matrix A is
Hermitian if and only if

A = A∗.
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A Hermitian matrix with real entries is a symmetric matrix, since A =
A∗ = AT. So what does a Hermitian matrix look like? If A = (ai j ) is
equal to A∗ = (a ji ), then the diagonal entries must be real numbers,
since they satisfy aii = aii . The corresponding entries across the main
diagonal must be complex conjugates of one another.

Example 13.50 The matrix

A =
⎛⎝ 1 1 + 2i 4 − i

1 − 2i −3 i
4 + i −i 2

⎞⎠
is a Hermitian matrix.

Activity 13.51 Check that A∗ = A
T = A.

When we looked at orthogonal diagonalisation of symmetric matrices,
we stated (in the proof of Theorem 11.5) that the eigenvalues of a
symmetric matrix are real. We can now prove this. The result is a
corollary of the following theorem:

Theorem 13.52 If A is a Hermitian matrix, then the eigenvalues of A
are real.

Proof: Suppose λ is an eigenvalue of A with corresponding eigenvector
v. Then Av = λv and v 
= 0. We multiply this equality on the left by
the Hermitian conjugate of v, obtaining

v∗ Av = v∗λv = λv∗v = λ‖v‖2,

where the norm of v is a positive real number. On the other hand, taking
the complex conjugate transpose of both sides of Av = λv, we have

(Av)∗ = (λv)∗,

which gives

v∗ A∗ = λv∗.

We then multiply this last equality on the right by v to get

v∗ A∗v = λv∗v = λ‖v‖2.

Since A is Hermitian, v∗ Av = v∗ A∗v, and therefore it follows that

λ‖v‖2 = λ‖v‖2.

Since ‖v‖2 
= 0, we conclude that λ = λ; that is, λ is real. �

This has as an immediate consequence the following important
fact that we used in Chapter 11 to prove the Spectral theorem
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(Theorem 11.5); that is, Theorem 11.7 is the following corollary of
Theorem 13.52:

Corollary 13.53 If A is a real symmetric matrix, then the eigenvalues
of A are real.

As with real symmetric matrices, it is also true for Hermitian
matrices that eigenvectors corresponding to different eigenvalues are
orthogonal.

Theorem 13.54 If the matrix A is Hermitian, then eigenvectors corre-
sponding to distinct eigenvalues are orthogonal.

Activity 13.55 Prove this theorem. Look at the proof of Theorem 11.8
and rework it for the complex case.

13.5.3 Unitary matrices

The counterpart for complex matrices to an orthogonal matrix is a
unitary matrix.

Definition 13.56 An n × n complex matrix P is said to be unitary if
and only if P P∗ = P∗ P = I ; that is, if P has inverse P∗.

Example 13.57 The matrix

P =
(

1/
√

2 i/
√

2
i/

√
2 1/

√
2

)
is a unitary matrix,

Activity 13.58 Check this.

An immediate consequence of this definition is that if P is a unitary
matrix, then so is P∗.

Activity 13.59 Show this. Show, also, that if A and B are unitary
matrices, then so is their product AB.

A unitary matrix P with real entries is an orthogonal matrix, since then
P∗ = PT. Recall that a matrix is orthogonal if and only if its columns
are an orthonormal basis of Rn. We prove the analogous result for
unitary matrices.

Theorem 13.60 The n × n matrix P is unitary if and only if the columns
of P are an orthonormal basis of Cn.
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Proof: The proof of this theorem follows the same argument as the
proof of Theorem 10.21. It is an ‘if and only if’ statement, so we must
prove it in both directions.

Let x1, x2, . . . , xn be the columns of the matrix P . Then the rows
of P∗ are the complex conjugate transposes of these vectors.

If I = P∗ P, we have⎛⎜⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x∗

1
x∗

2
...

x∗
n

⎞⎟⎟⎟⎠ (x1 x2 · · · xn)

=

⎛⎜⎜⎜⎝
x∗

1x1 x∗
1x2 · · · x∗

1xn

x∗
2x1 x∗

2x2 · · · x∗
2xn

...
...

. . .
...

x∗
nx1 x∗

nx2 · · · x∗
nxn

⎞⎟⎟⎟⎠ .

Equating the entries of these matrices, we have x∗
i x j = 〈x j , xi 〉 = 0 if

i 
= j and x∗
i xi = 〈xi , xi 〉 = 1 if i = j , which means precisely that the

columns {x1, x2, . . . , xn} are an orthonormal set of vectors. They are
therefore linearly independent, and since there are n of them, they are
a basis of Cn.

Conversely, if the columns of P are an orthonormal basis of Cn , then
the matrix product P∗ P as shown above must be the identity matrix, so
that P∗ P = I . This says that P∗ = P−1, so also P P∗ = I . �

Since P∗ is also unitary, this result applies to the rows of the matrix P .
Just as for an orthogonal matrix, the linear transformation defined

by a unitary matrix P is an isometry, meaning that it preserves the inner
product, and therefore the length of any vector. In fact, this characterises
a unitary matrix, as the following theorem shows:

Theorem 13.61 The matrix P is unitary if and only if the linear trans-
formation defined by P preserves the standard complex inner product;
that is, 〈Px, Py〉 = 〈x, y〉 for all x, y ∈ Cn.

Proof: If P is a unitary matrix, then

〈Px, Py〉 = (Py)∗(Px) = y∗ P∗ Px = y∗ I x = y∗x = 〈x, y〉,
so P preserves the inner product.

Conversely, assume we have a matrix P for which

〈Px, Py〉 = 〈x, y〉
for all x, y ∈ Cn. Let {e1, e2, . . . , en} denote (as usual) the standard
basis on Cn. Then Pei = vi , where v1, v2, . . . , vn are the columns
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of P . We have

〈vi , v j 〉 = 〈Pei , Pe j 〉 = 〈ei , e j 〉,
from which we deduce that the columns of P are an orthonormal basis
of Cn, and therefore P is a unitary matrix. �

13.6 Unitary diagonalisation and normal matrices

Recalling the definition of orthogonal diagonalisation (Section 11.1),
the following definition will come as no surprise:

Definition 13.62 A matrix A is said to be unitarily diagonalisable if
there is a unitary matrix P such that P∗ AP = D, where D is a diagonal
matrix.

Suppose the matrix A can be unitarily diagonalised, with P∗ AP = D.
Since the matrix P diagonalises A, the columns of P are a basis of Cn

consisting of eigenvectors of A. Since P is unitary, the columns of P
are an orthonormal basis of Cn . That is, if P unitarily diagonalises A,
then the columns of P are an orthonormal basis of Cn consisting of
eigenvectors of A.

Conversely, if the eigenvectors of A are an orthonormal basis of
Cn, then the matrix P whose columns are these basis vectors is unitary.
Since the vectors are eigenvectors of A, we have AP = P D, where
D is the diagonal matrix of corresponding eigenvalues. Since P−1 =
P∗, we have P∗ AP = D, so that A is unitarily diagonalised. This is
summarised in the following theorem:

Theorem 13.63 The matrix A can be unitarily diagonalised if and only
if there is an orthonormal basis of Cn consisting of eigenvectors of A.

For real matrices, only a symmetric matrix can be orthogonally
diagonalised. Considering what we have done so far, it is natural to ask
if there is an analogous result for complex matrices, but the result for
complex matrices is quite different. Whereas it is true that a Hermitian
matrix can be unitarily diagonalised, these are not the only matrices for
which this is true. There is a much larger class of complex matrices
which can be unitarily diagonalised. These are the normal matrices.

Definition 13.64 (Normal matrix) An n × n complex matrix A is
called normal if

AA∗ = A∗ A.
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Every Hermitian matrix is normal since AA∗ = AA = A∗ A. Also,
every unitary matrix is normal since AA∗ = I = A∗ A.

Furthermore, every diagonal matrix is normal. To see this, let D =
diag(d1, . . . , dn), meaning di is the entry in the (i, i) position and all
other entries are zero. Then D∗ is the diagonal matrix with di in the
(i, i) position and zeros elsewhere. Therefore,

DD∗ = diag(|d1|2, |d2|2, . . . , |dn|2) = D∗D.

This shows that D is normal, and also that the entries of the diagonal
matrix DD∗ are real. Diagonal matrices provide some simple examples
of matrices that are normal, but neither Hermitian nor unitary.

Activity 13.65 Write down a diagonal matrix which is not Hermitian
and not unitary.

We state the following important result:

Theorem 13.66 The matrix A is unitarily diagonalisable if and only if
A is normal.

We will prove this theorem in one direction only: if A is unitarily
diagonalisable, then A is normal. This means that only normal matrices
can be unitarily diagonalised. The proof that if A is normal then A
can be unitarily diagonalised requires additional theory and will not be
given in this book.

Proof: [that only normal matrices can be unitarily diagonalised.] Sup-
pose A can be unitarily diagonalised. Then there is a unitary matrix P
and a diagonal matrix D such that P∗ AP = D. Solving for A, we have
A = P D P∗. Then

AA∗ = (P D P∗)(P D P∗)∗ = (P D P∗)(P D∗ P∗) = P D(P∗ P)D∗ P∗

= P(DD∗)P∗.

In the same way,

A∗ A = (P D P∗)∗(P D P∗) = (P D∗ P∗)(P D P∗) = P D∗(P∗ P)D P∗

= P(D∗D)P.

Since D is diagonal, it is normal, so that P(DD∗)P∗ = P(D∗D)P ,
from which we conclude that A is normal. �

How do we unitarily diagonalise a normal matrix A? We carry out
the same steps as for orthogonal diagonalisation. First, we solve the
characteristic equation of A to find the eigenvalues. For each eigenvalue
λ, we find an orthonormal basis for the corresponding eigenspace, using
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Gram–Schmidt if necessary. Then the set of all such eigenvectors is an
orthonormal basis of Cn. That this is always possible is the content of
the above theorem. We form the matrix P with these eigenvectors as the
columns. Then P is unitary, and P∗ AP = D, where D is the diagonal
matrix of corresponding eigenvalues.

All the examples you have seen of orthogonal diagonalisation are
examples of unitary diagonalisation in the case where A is a real sym-
metric matrix (Section 11.1). We now give an example for a complex
matrix.

Example 13.67 The matrix

A =
(

1 2 + i
2 − i 5

)
is Hermitian and can therefore be unitarily diagonalised. The eigenval-
ues are given by

|A − λI | =
∣∣∣∣ 1 − λ 2 + i

2 − i 5 − λ

∣∣∣∣ = λ2 − 6λ + 5 − 5 = 0.

So the eigenvalues are 0 and 6. (As expected, these are real numbers.) We
now find the corresponding eigenvectors by row reducing the matrices
(A − λI ).

For λ1 = 0,

A =
(

1 2 + i
2 − i 5

)
−→

(
1 2 + i
0 0

)
,

so we let

v1 =
(

2 + i
−1

)
.

For λ2 = 6,

A − 6I =
( −5 2 + i

2 − i −1

)
−→

(
1 −(2 + i)/5
0 0

)
,

so we may take

v2 =
(

2 + i
5

)
as an eigenvector. These two eigenvectors are orthogonal. The vector
v1 has ‖v1‖2 = 6. The vector v2 has norm equal to

√
30. If we set

P =
(

(2 + i)/
√

6 (2 + i)/
√

30
−1/

√
6 5/

√
30

)
and D =

(
0 0
0 6

)
,

then P∗ AP = P−1 AP = D.

Activity 13.68 Check all the calculations in this example.
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We have already seen that all Hermitian matrices are normal. We also
know that the eigenvalues of a Hermitian matrix are real. So all Hermi-
tian matrices are normal, with real eigenvalues. We can now prove the
converse; namely, that if a normal matrix has real eigenvalues, then it
is Hermitian.

Theorem 13.69 Let A be a normal matrix. If all of the eigenvalues of
A are real, then A is Hermitian.

Proof: Since A is normal, it can be unitarily diagonalised. Let P be a
unitary matrix such that P∗ AP = D, where D is the diagonal matrix
of eigenvalues of A. Since A has real eigenvalues, D∗ = D. Then
A = P D P∗ and

A∗ = (P D P∗)∗ = P D∗ P∗ = P D P∗ = A,

which shows that A is Hermitian. �

13.7 Spectral decomposition

We will now look at the unitary diagonalisation of a matrix A in a
different way. Let P be a unitary matrix such that P∗ AP = D, where
D is the diagonal matrix of eigenvalues of A, and the columns of P are
the corresponding eigenvectors, x1, x2, . . . , xn. Since P is unitary, we
have P∗ P = P P∗ = I . We used the equality P∗ P = I in the proof of
Theorem 13.60 to show that the column vectors of P are an orthonormal
basis of Cn. That is,

I = P∗ P =

⎛⎜⎜⎜⎝
x∗

1
x∗

2
...

x∗
n

⎞⎟⎟⎟⎠ (x1 x2 · · · xn) =

⎛⎜⎜⎜⎝
x∗

1x1 x∗
1x2 · · · x∗

1xn

x∗
2x1 x∗

2x2 · · · x∗
2xn

...
...

. . .
...

x∗
nx1 x∗

nx2 · · · x∗
nxn

⎞⎟⎟⎟⎠ ,

where the entry x∗
i x j = 〈x j , xi 〉 is a complex number (either 1 or 0 in

this case). But what information can we derive from the other product,
P P∗ = I in terms of the column vectors? Carrying out the matrix
multiplication, we have

I = P P∗ = (x1 x2 · · · xn)

⎛⎜⎜⎜⎝
x∗

1
x∗

2
...

x∗
n

⎞⎟⎟⎟⎠ = x1x∗
1 + x2x∗

2 + · · · + xnx∗
n,

where this time Ei = xi x∗
i is an n × n matrix. It is the matrix product

of the n × 1 column vector xi with the 1 × n row vector x∗
i . Using the
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matrices Ei , the above equality can be written as

I = E1 + E2 + · · · + En.

This result is true for any unitary matrix P , but it is most interest-
ing when the columns of P are the eigenvectors of a matrix A. The
connection with the matrix A is the following theorem:

Theorem 13.70 (Spectral decomposition) Let A be a normal matrix
and let {x1, x2, . . . , xn} be an orthonormal set of eigenvectors of A with
corresponding eigenvalues λ1, λ2, . . . , λn. Then

A = λ1x1x∗
1 + λ2x2x∗

2 + · · · + λnxnx∗
n.

Proof: If P is the unitary matrix whose columns are the eigenvectors
of A, then, as we have seen, we can write

I = x1x∗
1 + x2x∗

2 + · · · + xnx∗
n.

Multiplying both sides of this equality by the matrix A, we have

A = AI = A(x1x∗
1 + x2x∗

2 + · · · + xnx∗
n)

= Ax1x∗
1 + Ax2x∗

2 + · · · + Axnx∗
n

= λ1x1x∗
1 + λ2x2x∗

2 + · · · + λnxnx∗
n.

�

The spectral decomposition of A is the formula

A = λ1 E1 + λ2 E2 + · · · + λn En,

where Ei = xi x∗
i .

Example 13.71 In Example 13.67, we unitarily diagonalised the matrix

A =
(

1 2 + i
2 − i 5

)
.

We found P∗ AP = P−1 AP = D for the matrices

P =
(

(2 + i)/
√

6 (2 + i)/
√

30
−1/

√
6 5/

√
30

)
and D =

(
0 0
0 6

)
.

Therefore, the spectral decomposition of A is A = 0E1 + 6E2. Clearly,
we only need to calculate the matrix E2 = x2x∗

2. We have

A = 6
1

30

(
2 + i

5

)
( 2 − i 5 ) = 1

5

(
5 5(2 + i)

5(2 − i) 25

)
=
(

1 2 + i
2 − i 5

)
,
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as expected. So the spectral decomposition of this matrix is just the
matrix A itself.

Example 13.72 In Example 11.14, we orthogonally diagonalised the
matrix

B =
⎛⎝ 2 1 1

1 2 1
1 1 2

⎞⎠ .

If we let

P =
⎛⎜⎝− 1√

6
− 1√

2
1√
3

− 1√
6

1√
2

1√
3

2√
6

0 1√
3

⎞⎟⎠ and D =
⎛⎜⎝ 1 0 0

0 1 0
0 0 4

⎞⎟⎠ ,

then PT = P−1 and PT B P = D.
The spectral decomposition of B is B = 1E1 + 1E2 + 4E3, where

the matrices Ei = xi x∗
i are obtained from the orthonormal eigenvectors

of B (which are the columns of P). We have,

E1 =
(

1√
6

)2
⎛⎝−1

−1
2

⎞⎠ ( −1 −1 2 ) = 1

6

⎛⎝ 1 1 −2
1 1 −2

−2 −2 4

⎞⎠
and, similarly,

E2 = 1

2

⎛⎝ 1 −1 0
−1 1 0
0 0 0

⎞⎠ , E3 = 1

3

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ .

The spectral decomposition of B is

B = 1

6

⎛⎝ 1 1 −2
1 1 −2

−2 −2 4

⎞⎠+ 1

2

⎛⎝ 1 −1 0
−1 1 0
0 0 0

⎞⎠+ 4

3

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ .

Activity 13.73 Check all the calculations for this example.

Let’s take a closer look at the matrices Ei . As the following theorem
shows, we will find that they are Hermitian, they are idempotent and
they satisfy Ei E j = 0 if i 
= j (where 0 denotes the zero matrix).

Theorem 13.74 If {x1, x2, . . . , xn} is an orthonormal basis of Cn, then
the matrices Ei = xi x∗

i have the following properties:
(i) E∗

i = Ei .

(ii) E2
i = Ei .

(iii) Ei E j = 0 if i 
= j .
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Proof: We will prove (ii), and leave properties (i) and (iii) for you to
verify. The matrices are idempotent since

E2
i = Ei Ei = (xi x

∗
i )(xi x

∗
i ) = xi (x

∗
i xi )x

∗
i = xi 〈xi , xi 〉x∗

i

= xi · 1 · x∗
i = Ei .

The other two proofs are equally straightforward. �

Activity 13.75 Show that (i) Ei is Hermitian and that (iii) Ei E j = 0
if i 
= j .

The fact that each Ei is an idempotent matrix means that it represents
a projection (just as for real matrices). To see what this projection is,
look at its action on the orthonormal basis vectors

Ei xi = (xi x
∗
i )xi = xi (x

∗
i xi ) = xi 〈xi , xi 〉 = xi · 1 = xi

and

Ei x j = (xi x
∗
i )x j = xi (x

∗
i x j ) = xi · 0 = 0.

If v is any vector in Cn , v can be written as a unique linear combination
v = a1x1 + a2x2 + · · · + anxn. Then

Ei v = Ei (a1x1 + a2x2 + · · · + anxn)

= a1 Ei x1 + a2 Ei x2 + · · · + ai−1 Ei xi−1 + ai Ei xi

+ ai+1 Ei xi+1 + · · · + an Ei xn = ai xi .

Ei is the orthogonal projection of Cn onto the subspace spanned by the
vector xi .

Activity 13.76 Look at the previous example and write down the
orthogonal projection of Cn onto the subspace Lin{(1, 1, 1)T}.
Matrices which satisfy properties (ii) and (iii) of Theorem 13.74 have
an interesting application. Suppose E1, E2, E3 are three such matrices;
that is,

Ei E j =
{

Ei for i = j
0 for i 
= j

for i = 1, 2, 3. Then for any real numbers α1, α2, α3, and any positive
integer n, we will show that

(α1 E1 + α2 E2 + α3 E3)n = αn
1 E1 + αn

2 E2 + αn
3 E3.
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To establish this result, we will use an inductive argument. For n = 2,
observe that

(α1 E1 + α2 E2 + α3 E3)2

= (α1 E1 + α2 E2 + α3 E3)(α1 E1 + α2 E2 + α3 E3)

= α2
1 E1 E1 + α2

2 E2 E2 + α2
3 E3 E3 (since Ei E j = 0 for i 
= j)

= α2
1 E1 + α2

2 E2 + α2
3 E3 (since Ei Ei = Ei ).

Now assume that the result holds for n,

(α1 E1 + α2 E2 + α3 E3)n = αn
1 E1 + αn

2 E2 + αn
3 E3.

We will show that it therefore also holds for n + 1. In this way, the result
for n = 2 above will imply the result is also true for n = 3, and so on.
We have

(α1 E1 + α2 E2 + α3 E3)n+1

= (α1 E1 + α2 E2 + α3 E3)n(α1 E1 + α2 E2 + α3 E3)

= (αn
1 E1 + αn

2 E2 + αn
3 E3)(α1 E1 + α2 E2 + α3 E3)

= αn+1
1 E1 E1 + αn+1

2 E2 E2 + αn+1
3 E3 E3

(since Ei E j = 0 for i 
= j)

= αn+1
1 E1 + αn+1

2 E2 + αn+1
3 E3

(since Ei Ei = Ei ).

Example 13.77 Continuing with the Example 13.72, for the matrix

B =
⎛⎝ 2 1 1

1 2 1
1 1 2

⎞⎠ ,

we have the spectral decomposition B = E1 + E2 + 4E3, given by

B = 1

6

⎛⎝ 1 1 −2
1 1 −2

−2 −2 4

⎞⎠+ 1

2

⎛⎝ 1 −1 0
−1 1 0
0 0 0

⎞⎠+ 4

3

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ .

Suppose we wish to find a matrix C such that C2 = B. According
to this result, if we set C = α1 E1 + α2 E2 + α3 E3, for some constants
α1, α2, α3 to be determined, then

C2 = α2
1 E1 + α2

2 E2 + α2
3 E3 = B = E1 + E2 + 4E3.
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The constants α1 = 1, α2 = 1 and α3 = 2 will give an appropriate
matrix C :

C = 1

6

⎛⎝ 1 1 −2
1 1 −2

−2 −2 4

⎞⎠+ 1

2

⎛⎝ 1 −1 0
−1 1 0
0 0 0

⎞⎠+ 2

3

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ .

Activity 13.78 Calculate C and show that C2 = B.

13.8 Learning outcomes

You should now be able to:

� use complex numbers, understand the three forms of a complex
number and know how to use them

� explain what is meant by a complex matrix, a complex vector space, a
complex inner product, a complex inner product space and translate
results between real ones and complex ones

� diagonalise a complex matrix
� find an orthonormal basis of a complex vector space by applying

the Gram–Schmidt process if necessary
� state what is meant by the Hermitian conjugate of a complex matrix,

a Hermitian matrix and a unitary matrix
� show that a Hermitian matrix has real eigenvalues, and that eigen-

vectors of a Hermitian matrix corresponding to distinct eigenvalues
are orthogonal

� demonstrate that you know how to show that a matrix is unitary
if and only if its columns are an orthonormal basis of Cn and if
and only if the linear transformation it defines preserves the inner
product

� state what it means to unitarily diagonalise a matrix
� state what is meant by a normal matrix and show that Hermitian,

unitary and diagonal matrices are normal
� unitarily diagonalise a normal matrix and show that only normal

matrices can be unitarily diagonalised
� explain what is meant by the spectral decomposition of a normal

matrix and find the spectral decomposition of a given normal matrix
� demonstrate that you know the properties of the matrices Ei in a

spectral decomposition, and that you can use them to obtain an
orthogonal projection from Cn onto a subspace, or to find a matrix
B such that Bn = A (n = 2, 3, . . .) for a given normal matrix A.
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13.9 Comments on activities

Activity 13.9 We have

(x − w)(x − w) = x2 − (w + w)x + ww.

Now, w + w = 2 Re(w) = 2(− 1
2 ) and ww = 1

4 + 3
4 so the product of

the last two factors is x2 + x + 1.

Activity 13.11 The points plotted in the complex plane are as follows:

0

i

1

• z = 2 + 2i2i

2

−i

−2i
• w = 1 − i

√
3

Activity 13.13 Draw the line from the origin to the point z in the
diagram above. Do the same for w. For z, |z| = 2

√
2 and θ = π

4 , so

z = 2
√

2( cos(π
4 ) + i sin(π

4 )). The modulus of w is |w| = 2 and the
argument is −π

3 , so that

w = 2
(

cos
(

− π

3

)
+ i sin

(
− π

3

))
= 2

(
cos
(

π

3

)
− i sin

(
π

3

))
.

Activity 13.14 The set (a) consisting of z such that |z| = 3 is the circle
of radius 3 centered at the origin. The set (b), for which the principal
argument of z is π/4, is the half line from the origin through the point
(1, 1).

Activity 13.20 We have

eiπ/2 = i, ei3π/2 = −i, ei5π/4 = − 1√
2

− i
1√
2
,

ei(11π/6) = e−i(π/6) =
√

3

2
− i

1

2
,

e2−i = e2e−i = e2 cos(1) − i e2 sin(1).

Finally, e−3 is real, so it is already in the form a + ib.
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Activity 13.23 The roots are:

z1 = ei π
6 , z2 = ei 3π

6 , z3 = ei 5π
6 ,

z4 = ei 7π
6 , z5 = ei 9π

6 , z6 = ei 11π
6 .

These roots are in conjugate pairs, and ei 13π
6 = ei π

6 :

z4 = z3 = e−i 5π
6 , z5 = z2 = e−i π

2 , z6 = z1 = e−i π
6 .

The polynomial factors as

x6 + 1 = (x − z1)(x − z1)(x − z2)(x − z2)(x − z3)(x − z3).

Using the a + ib form of each complex number, for example, z1 =√
3

2 + i 1
2 , you can carry out the multiplication of the linear terms pair-

wise (complex conjugate pairs) to obtain x6 + 1 as a product of irre-
ducible quadratics with real coefficients,

x6 + 1 = (x2 −
√

3 x + 1)(x2 +
√

3 x + 1)(x2 + 1).

Activity 13.28 Any vector v ∈ Cn can be separated into real and imagi-
nary parts and written as v = a + ib, where a, b ∈ Rn . By only allow-
ing real numbers as scalars, this space has a basis consisting of the n
vectors {e1, e2, . . . , en} together with n vectors {u1, u2, . . . , un}, where
u j is the vector with every entry equal to 0, except for the j th entry
which is equal to the purely imaginary number i . Hence, as a real vector
space, Cn has dimension 2n.

Activity 13.30 We check Av1 = iv1 and Av2 = −iv2:(
0 1

−1 0

)(−i
1

)
=
(

1
i

)
= i

(−i
1

)
and (

0 1
−1 0

)(
i
1

)
=
(

1
−i

)
= −i

(
i
1

)
.

Activity 13.36 We have

〈αx + βy, z〉 = (αx1 + βy1)z1 + (αx2 + βy2)z2 + · · · + (αxn + βyn)zn

= α(x1z1 + x2z2 + · · · + xnzn) + β(y1z1 + y2z2 + · · · + ynzn)

= α〈x, z〉 + β〈y, z〉.

Activity 13.37 The norm of x = (1, 0, i)T is
√

2 because

‖x‖2 = 〈x, x〉 = 1(1) + 0 + (i)(−i) = 2.
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Activity 13.39 To show that 〈x, αy〉 = α〈x, y〉 for all x, y ∈ V and all
α ∈ C, we use properties (i) and (ii) of the definition,

〈x, αy〉 = 〈αy, x〉 = α〈y, x〉 = α〈y, x〉 = α〈x, y〉.
That 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 for all x, y, z ∈ V is proved in a similar
way using properties (i) and (ii) of the definition. We have

〈x, y + z〉 = 〈y + z, x〉 = 〈y, x〉 + 〈z, x〉 = 〈y, x〉 + 〈z, x〉
= 〈x, y〉 + 〈x, z〉.

Activity 13.48 If A = (ai j ), then

(k A)∗ = (ka ji ) = (ka ji ) = k(a ji ) = k A∗.

The analogous result for a real matrix A and a real number k, is simply
(k A)T = k AT.

Activity 13.55 Suppose that λ and μ are any two different eigenvalues
of A and that x, y are corresponding eigenvectors. Then Ax = λx and
Ay = μy. Then

y∗ Ax = y∗λx = 〈λx, y〉 = λ〈x, y〉.
On the other hand, since A = A∗

y∗ Ax = y∗ A∗x = (Ay)∗x = (μy)∗x = μy∗x = μ〈x, y〉.
But the eigenvalues of a Hermitian matrix are real (Theorem 13.52), so
μ = μ, and we can conclude from these two expressions for y∗ Ax that
λ〈x, y〉 = μ〈x, y〉, or

(λ − μ)〈x, y〉 = 0.

Since λ 
= μ, we deduce that 〈x, y〉 = 0. That is, x and y are orthogonal.

Activity 13.59 From the definition, P P∗ = P∗ P = I . Since (P∗)∗ =
P , we have (P∗)∗ P∗ = P∗(P∗)∗ = I so P∗ is unitary.

If A and B are unitary matrices, then

(AB)(AB)∗ = AB B∗ A∗ = AA∗ = I,

and, similarly, (AB)∗(AB) = I, which shows that AB is unitary.

Activity 13.65 The matrix (
2 0
0 i

)
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(which is normal since it is diagonal) is not Hermitian since the diagonal
entries are not real, and it is not unitary since AA∗ 
= I .

Activity 13.75 To prove (i) E∗
i = Ei , we have

E∗
i = (xi x

∗
i )∗ = (x∗

i )∗x∗
i = xi x

∗
i = Ei .

For (iii), if i 
= j , then

Ei E j = (xi x
∗
i )(x j x

∗
j ) = xi (x

∗
i x j )x

∗
j = xi 〈x j , xi 〉x∗

j = xi · 0 · x∗
j = 0.

Activity 13.76 The orthogonal projection is given by the matrix
E3 = x3x∗

3, where x3 is the unit vector parallel to (1, 1, 1)T. That is,
P : C3 → Lin{(1, 1, 1)T} is given by P(v) = E3v, where

E3 = 1

3

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ .

Compare this with the method you learned in the previous chapter,
which will, of course, give you the same solution.

Activity 13.78 The matrix C is

C = 1

3

⎛⎝ 4 1 1
1 4 1
1 1 4

⎞⎠ .

The calculation of C2 is straightforward, and C2 = B.

13.10 Exercises

Exercise 13.1 Find the four complex roots of the equation z4 = −4
and express them in the form a + ib. Use these to write z4 + 4 as a
product of quadratic factors with real coefficients.

Exercise 13.2 Suppose the complex matrix A and vector b are as
follows:

A =
(

1 i
1 + i −1

)
, b =

(
1
i

)
.

Calculate the determinant of A, |A|. Find the solution of the system of
equations Ax = b.

Exercise 13.3 Consider the real vector space M2(R) of 2 × 2 matrices
with real entries and the complex vector space M2(C) of 2 × 2 matrices
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with complex entries, and the subsets W1 ⊂ M2(R) and W2 ⊂ M2(C):

W1 =
{(

a2 0
0 b2

) ∣∣ a, b ∈ R

}
, W2 =

{(
a2 0
0 b2

) ∣∣ a, b ∈ C

}
.

Show that W1 is not a subspace of M2(R), but that W2 is a subspace of
M2(C).

Find a basis and state the dimension of the subspace Lin(S) in
M2(R) and in M2(C), where

S =
{(

2 1
0 2

)
,

(
1 2
0 1

)
,

(
3 3
0 3

)
,

(−1 −1
0 −1

) }
.

Exercise 13.4 Find the eigenvalues of the matrix

A =
(

1 i
1 + i −1

)
.

Express each of the eigenvalues in the form a + ib.

Exercise 13.5 Diagonalise the matrix

A =
(

3 −1
2 1

)
.

Exercise 13.6 Let

A =
⎛⎝ 5 5 −5

3 3 −5
4 0 −2

⎞⎠ and v =
⎛⎝ 0

1
1

⎞⎠ .

(a) Show that v is an eigenvector of A and find the corresponding
eigenvalue.
(b) Show that λ = 4 + 2i is an eigenvalue of A and find a corresponding
eigenvector.
(c) Deduce a third eigenvalue and corresponding eigenvector of A.
Hence write down an invertible matrix P and a diagonal matrix D such
that P−1 AP = D.

Is it possible to unitarily diagonalise the matrix A? Do this if it is
possible, or explain why it is not possible.

Exercise 13.7 Show that the vectors

v1 = 1√
2

⎛⎝ 1
i
0

⎞⎠ and v2 = 1

3
√

2

⎛⎝ 1 + 2i
2 − i

2 + 2i

⎞⎠
form an orthonormal set, S = {v1, v2}.

Extend S to an orthonormal basis of C3.
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Exercise 13.8 What is a unitary matrix? What does it mean to say
that a matrix is unitarily diagonalisable? Prove that if A is unitarily
diagonalisable, then AA∗ = A∗ A.

Exercise 13.9 Prove that if A is a unitary matrix, then all eigenvalues
of A have a modulus equal to 1.

Exercise 13.10 Let

A =
⎛⎝ 7 0 9

0 2 0
9 0 7

⎞⎠ .

Express A in the form

A = λ1 E1 + λ2 E2 + λ3 E3,

where λ1, λ2, λ3 are the eigenvalues of A, and E1, E2, E3 are symmetric
idempotent matrices such that if i 
= j, then Ei E j is the zero matrix.

Determine a matrix B such that B3 = A.

Exercise 13.11 (a) If A is any m × k complex matrix, prove that the
matrix A∗ A is Hermitian and normal.
(b) Prove that, for any m × k matrix A of rank k, the matrix A∗ A is
positive definite, meaning that v∗(A∗ A)v > 0 for all v ∈ Cn, v 
= 0.
Prove also that A∗ A is invertible.

Exercise 13.12 Explain why you know that the matrix

B =
⎛⎝ 1 i 0

i 1 0
0 0 1

⎞⎠
can be unitarily diagonalised before finding any eigenvalues and eigen-
vectors.

Then find a unitary matrix P and a diagonal matrix D such that
P∗B P = D.

Write down the spectral decomposition of B.

13.11 Problems

Problem 13.1 Consider the complex numbers

z =
√

3 − i, w = 1 + i, q = (
√

3 − i)6

(1 + i)10
.

Plot z and w as points in the complex plane. Express them in exponential
form and hence evaluate q. Express q in the form a + ib.
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Problem 13.2 Write each of the following complex numbers in the
form a + ib:

e−i 3π
2 , ei 3π

4 , ei 11π
3 , e1+i , e−1, e−3+i 2

√
5, 4ei 7π

6 .

Problem 13.3 Find the roots w and w̄ of the equation x2 − 4x + 7 = 0.

For these values of w and w̄, find the real and imaginary parts of
the following functions,

f (t) = ewt , t ∈ R ; g(t) = wt , t ∈ Z+.

Problem 13.4 Let y(t) be the function

y(t) = Aeλt + Beλt ,

where A, B ∈ C are constants and λ = a + ib. Show that y(t) can be
written in the alternative forms

y(t) = eat (Aeibt + Be−ibt ) = eat ( Â cos bt + B̂ sin bt),

where Â = A + B and B̂ = i(A − B). How can A and B be chosen so
that Â and B̂ are real? For Â and B̂ real, show that y(t) can be written
as

y(t) = eat ( Â cos bt + B̂ sin bt) = Ceat cos(bt − φ),

where C =
√

Â2 + B̂2 = 2
√

AB and φ satisfies tan φ = (B̂/ Â).

Problem 13.5 Show that for any z ∈ C, the expressions ezt + ez̄t ,
t ∈ R, and zt + z̄t , t ∈ Z+, are both real.

Problem 13.6 Find the three complex roots of the equation z3 = −1.
Illustrate the roots as points in the complex plane.

Find the roots of z4 = −1 and illustrate them on another graph of
the complex plane. Without actually solving the equations, illustrate the
roots of x5 = −1 and x6 = 64 as points in the complex plane.

Problem 13.7 Let

C =
(

1 −1
1 1

)
.

(a) Find the eigenvalues of the matrix C .
Diagonalise C by finding complex matrices P (invertible) and D
(diagonal) such that P−1C P = D.

(b) Let y1(t), y2(t) be functions of the real variable t which satisfy the
system of differential equations, y′ = Cy with y = (y1, y2)T:

y′
1(t) = y1(t) − y2(t)

y′
2(t) = y1(t) + y2(t)
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and the initial conditions y1(0) = 0 and y2(0) = 1.
Set y = Pz and use the diagonalisation from part (a) to find the

solutions y1(t), y2(t) in complex form.
Simplify your solutions using Euler’s formula to express y1(t)

and y2(t) as real functions of t .

Problem 13.8 Consider the following subspaces of C3:

U = Lin

⎧⎨⎩
⎛⎝ 1

0
i

⎞⎠ ,

⎛⎝ 0
−i
−1

⎞⎠⎫⎬⎭ , W = Lin

⎧⎨⎩
⎛⎝ 0

i
−1

⎞⎠ ,

⎛⎝ 1
0
−i

⎞⎠⎫⎬⎭ .

Find vectors x, y, z in C3 which satisfy all of the following:

(i) the vector x is in both subspaces U and W ; that is, x ∈ U ∩ W ;
(ii) the set {x, y} is an orthonormal basis of U ;

(iii) the set {x, z} is an orthonormal basis of W .

Is your set {x, y, z} a basis of C3? Is it an orthonormal basis of C3?
Justify your answers.

Problem 13.9 Show that the vectors

v1 =
⎛⎝ 1

i
1

⎞⎠ and v2 =
⎛⎝ 0

2 − i
1 + 2i

⎞⎠
are orthogonal in C3 with the standard inner product. Write down
an orthonormal basis {u1, u2} for the linear span of these vectors,
Lin{v1, v2}.

Extend this to an orthonormal basis B of C3, by finding an appro-
priate vector u3. (Try this two ways: a Gram–Schmidt process, solving
a system of linear equations.)

Express the vector a = (1, 1, i)T as a linear combination of
u1, u2, u3.

Find the matrix of the orthogonal projection of C3 onto Lin{u1}.
Call this matrix E1. Show that E1 is both Hermitian and idempotent.
Find E1a.

Find the matrices E2 and E3 of the orthogonal projections of C3

onto Lin{u2} and Lin{u3} respectively. Then express the identity matrix
I as a linear combination of the matrices E1, E2 and E3.

Problem 13.10 Find an orthonormal basis of C3 consisting of eigen-
vectors of the matrix

A =
⎛⎝ 2 1 + i 0

1 − i 3 0
0 0 5

⎞⎠ .

Is the matrix A Hermitian? Is A normal? (Justify your answers.)
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Problem 13.11 What does it mean to say that a complex matrix A is
normal? Write down the equations that a, b, c, d must satisfy for the
2 × 2 real matrix (

a b
c d

)
, a, b, c, d ∈ R,

to be normal. Show that every 2 × 2 real normal matrix is either sym-
metric or a multiple of an orthogonal matrix.

Problem 13.12 Show that the matrix

A =
(

2 1
−1 2

)
.

is normal, but that it is not Hermitian.
Find the eigenvalues and corresponding eigenvectors of A. Find a

unitary matrix P and a diagonal matrix D such that P∗ AP = D.
Write down the spectral decomposition of A.

Problem 13.13 Consider the following matrix A, where z is a complex
number:

A =
(

0 i
1 z

)
.

For which values of z is the matrix A unitary? For which values of z is
A normal?

Problem 13.14 Unitarily diagonalise the matrix

A =
⎛⎝ 2 i 0

−i 2 0
0 0 5i

⎞⎠ .

Is the matrix A Hermitian? Is A normal? (Justify your answers.)

Problem 13.15 A complex matrix A is called skew-Hermitian if
A∗ = −A. Prove the following three statements about skew-Hermitian
matrices:

(1) The non-zero eigenvalues of a skew-Hermitian matrix are all
purely imaginary.

(2) If A is skew-Hermitian, then eigenvectors corresponding to dis-
tinct eigenvalues are mutually orthogonal.

(3) Skew-Hermitian matrices are normal.

Problem 13.16 Show that the matrix

A =
⎛⎝ i 1 0

−1 0 −1
0 1 i

⎞⎠
is skew-Hermitian. (See Problem 13.15.)
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Find the spectral decomposition of A and deduce the spectral
decomposition of A∗.

Problem 13.17 Let A be a normal n × n matrix and let P be a unitary
matrix such that P∗ AP = D, where D = diag(λ1, λ2, . . . , λn) and the
columns of P are the corresponding eigenvectors, x1, x2, . . . , xn. Show
that for a positive integer k

Ak = λk
1 E1 + λk

2 E2 + · · · + λk
n En = P Dk P∗,

where Ei = xx∗.
Find the spectral decomposition of the following matrix A. (See

Problem 13.10.)

A =
⎛⎝ 2 1 + i 0

1 − i 3 0
0 0 5

⎞⎠ .

Deduce the spectral decomposition of A3, and use it to find the
matrix A3.
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Chapter 1 exercises

Exercise 1.1 (a) Ad =
(

4
−3

)
.

(b) AB is (2 × 3)(3 × 3) giving a 2 × 3 matrix. C is a 3 × 2 matrix, so
AB + C is not defined.

(c) A + CT =
(

1 3 5
−1 1 0

)
+
(

1 3 −1
1 2 4

)
=
(

2 6 4
0 3 4

)
.

(d) CTC =
(

1 3 −1
1 2 4

)⎛⎝ 1 1
3 2

−1 4

⎞⎠ =
(

11 3
3 21

)
.

(e) BC =
⎛⎝ 1 0 1

2 1 1
1 1 −1

⎞⎠⎛⎝ 1 1
3 2

−1 4

⎞⎠ =
⎛⎝ 0 5

4 8
5 −1

⎞⎠.

(f) dT B = ( 2 −1 1 )

⎛⎝ 1 0 1
2 1 1
1 1 −1

⎞⎠ = ( 1 0 0 ).

(g) Cd is not defined.

(h) dTd = ( 2 −1 1 )

⎛⎝ 2
−1
1

⎞⎠ = (6).

(i) ddT =
⎛⎝ 2

−1
1

⎞⎠ ( 2 −1 1 ) =
⎛⎝ 4 −2 2

−2 1 −1
2 −1 1

⎞⎠ .

Exercise 1.2 The matrix A must be 2 × 2. Let A =
(

a b
c d

)
. Then the

equation ⎛⎝ 1 7
5 0
9 3

⎞⎠( a b
c d

)
=
⎛⎝−4 14

15 0
24 x

⎞⎠
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holds if and only if

a + 7c = −4, 5a = 15, and 9a + 3c = 24

and

b + 7d = 14, 5b = 0, and 9b + 3d = x .

Solving the first two equations for a and c, we have a = 3 and c =
−1. This solution also satisfies the third equation, 9a + 3c = 9(3) =
3(−1) = 24, so the matrix A does exist. Solving the second set of
equations for b and d, we find b = 0 and d = 2, therefore x = 9b +
3d = 6. The matrix A is

A =
(

3 0
−1 2

)
.

Exercise 1.3 By definition, to prove that the matrix AB is invertible
you have to show that there exists a matrix, C , such that

(AB)C = C(AB) = I.

You are given that C = B−1 A−1. Since both A and B are invertible
matrices, you know that both A−1 and B−1 exist and both are n × n,
so the matrix product B−1 A−1 is defined. So all you need to do is to
show that if you multiply AB on the left or on the right by the matrix
B−1 A−1, then you will obtain the identity matrix, I .

(AB)(B−1 A−1) = A(B B−1)A−1 (matrix multiplication is associative)
= AI A−1 (by the definition of B−1)
= AA−1 (since AI = A for any matrix A)
= I (by the definition of A−1).

In the same way,

(B−1 A−1)(AB) = (B−1)(A−1 A)(B) = B−1 I B = B−1 B = I.

Hence B−1 A−1 is the inverse of the matrix AB.

Exercise 1.4 Use the method shown on page 19 to find the inverse
matrix. Then solve for A and you should obtain

A =
(

1 0
1
2 −2

)
.

Exercise 1.5 Begin by taking the inverse of both sides of this equation
and then use A−1. A is square, since it is invertible. If A is n × n, then
B must also be n × n for AB to be defined and invertible. Simplifying
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the equation, you can deduce that B = 1
2 I , where I is the n × n identity

matrix.

Exercise 1.6 Since BT is a k × m matrix, BT B is k × k. Furthermore,
(BT B)T = BT(BT)T = BT B, which shows that it is symmetric.

Exercise 1.7 The expression (AT A)−1 AT(B−1 AT)T BT B2 B−1 simplifies
to B. Be careful how you do this: you cannot assume the existence of a
matrix A−1; indeed, if m 
= n, such a matrix cannot exist.

Exercise 1.8 (a) A vector equation of the line in R2 is

x =
(

x
y

)
=
(

3
1

)
+ t
(

5
−3

)
, t ∈ R.

(b) A vector equation of the line in R5 is

x =

⎛⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
3
1

−1
2
5

⎞⎟⎟⎟⎟⎟⎠+ t

⎛⎜⎜⎜⎜⎜⎝
5

−3
−1
1
4

⎞⎟⎟⎟⎟⎟⎠ , t ∈ R.

The point (4, 3, 2, 1, 4) is not on this line as there is no value of t for
which ⎛⎜⎜⎜⎜⎜⎝

4
3
2
1
4

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
3
1

−1
2
5

⎞⎟⎟⎟⎟⎟⎠+ t

⎛⎜⎜⎜⎜⎜⎝
5

−3
−1
1
4

⎞⎟⎟⎟⎟⎟⎠ .

For example, in order to have x4 = 1, then t = −1, and none of the
other components corresponds to this value of t .

Exercise 1.9 To obtain the vector equation of the line, set

t = x − 1

3
= y + 2 = 5 − z

4

and solve for x, y, z. You should easily obtain x = 1 + 3t , y = t − 2
and z = 5 − 4t , so the equation is⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 1

−2
5

⎞⎠+ t

⎛⎝ 3
1

−4

⎞⎠ , t ∈ R.
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Exercise 1.10 The vector equations of the three lines are

L1 : x =
⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 1

3
2

⎞⎠+ t

⎛⎝−1
5
4

⎞⎠ , t ∈ R,

L2 : x =
⎛⎝ 8

0
−3

⎞⎠+ s

⎛⎝ 6
2

−1

⎞⎠ , s ∈ R,

L3 : x =
⎛⎝ 9

3
1

⎞⎠+ q

⎛⎝ 2
−10
−8

⎞⎠ , q ∈ R,

taking (9, 3, 1)T − (7, 13, 9)T = (2, −10,−8)T as the direction vector.
The lines L1 and L3 are parallel, since their directions vectors

are scalar multiples, −2(−1, 5, 4)T = (2, −10,−8)T. The lines are not
coincident since the point (9, 3, 1) does not lie on L1 (check this).

The lines L1 and L2 either intersect or are skew. They will intersect
if there are constants s, t ∈ R satisfying the following equations:

1 − t = 8 + 6s

3 + 5t = 2s

2 + 4t = −3 − s

⎫⎪⎪⎬⎪⎪⎭ ⇐⇒
6s + t = −7

2s − 5t = 3

s + 4t = −5

⎫⎪⎪⎬⎪⎪⎭ .

Use two of these equations to solve for s and t , then check the solution
in the third equation. The three equations have the solution s = −1 and
t = −1, so the two lines intersect in the point (2,−2, −2). The angle
of intersection is the acute angle between their direction vectors. Since

〈⎛⎝−1
5
4

⎞⎠ ,

⎛⎝ 6
2

−1

⎞⎠〉 = 0,

the angle between them is
π

2
and the two lines are perpendicular.

The lines L2 and L3 are skew. To show this, you need to show that
there is no solution, q, s ∈ R, to the system of equations

9 + 2q = 8 + 6s

3 − 10q = 2s

1 − 8q = −3 − s

⎫⎪⎪⎬⎪⎪⎭ ⇐⇒
6s − 2q = 1

2s + 10q = 3

s − 8q = −4

⎫⎪⎪⎬⎪⎪⎭ .

Solving the first two equations, you obtain q = 1
4 and s = 1

4 , but this
solution does not satisfy the third equation, so the lines do not intersect
and are skew.
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Exercise 1.11 The plane which contains the two parallel lines contains
the points (1, 3, 2) and (9, 3, 1) and the direction vector of the two lines,
v = (−1, 5, 4)T. So it also contains the line through the two points,
which has direction w = (8, 0, −1)T. Therefore, a vector equation of
the plane is

x=
⎛⎝ x

y
z

⎞⎠=
⎛⎝ 1

3
2

⎞⎠+ s

⎛⎝−1
5
4

⎞⎠+ t

⎛⎝ 8
0

−1

⎞⎠= p + sv + tw, s, t ∈ R.

There are two ways to obtain the Cartesian equation from this. You can
find a normal vector n = (a, b, c)T by solving the two linear equations
obtained from 〈n, v〉 = 0 and 〈n, w〉 = 0, namely

−a + 5b + 4c = 0 and 8a − c = 0.

There will be infinitely many solutions, and you can just choose one.
Or, you can write down the three component equations resulting

from the vector equation and eliminate s and t . This last method is
more easily accomplished by first finding the Cartesian equation of a
parallel plane through the origin:⎛⎝ x

y
z

⎞⎠ = s

⎛⎝−1
5
4

⎞⎠+ t

⎛⎝ 8
0

−1

⎞⎠ ⇐⇒
x = −s + 8t

y = 5s

z = 4s − t

⎫⎪⎪⎬⎪⎪⎭ .

Eliminating s and t from these equations yields

5x − 31y + 40z = 0,

and you should check that this is correct by showing that the vec-
tor n = (5, −31, 40)T is orthogonal to both v and w. Then, since
5(1) − 31(3) + 40(2) = −8, a Cartesian equation of the plane is

5x − 31y + 40z = −8.

Again, you can check that the point (9, 3, 1) also satisfies this equation.
You should try both methods.

Exercise 1.12 The normal to the plane is orthogonal to the direction of
the line, as 〈⎛⎝ 2

0
1

⎞⎠ ,

⎛⎝−1
4
2

⎞⎠〉 = 0.

Since the point (2, 3, 1) on the line does not satisfy the equation of
the plane, the line is parallel to the plane. Therefore, it makes sense to
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ask for the distance of the line from the plane. This can be found by
dropping a perpendicular from the line to the plane and measuring its
length. A method for doing this is given in the question.

The line through (2, 3, 1) and parallel to the normal to the plane is
perpendicular to the plane. A vector equation of the line is⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 2

3
1

⎞⎠+ t

⎛⎝ 2
0
1

⎞⎠ , t ∈ R.

Equating components, we have x = 2 + 2t , y = 3, and z = 1 + t . At
the point of intersection of the line with the plane, these components
will satisfy the equation of the plane, so that

2x + z = 9 =⇒ 2(2 + 2t) + (1 + t) = 9 ⇒ 5 + 5t = 9,

or t = 4
5 . Then putting this value for t in the line, we find the point of

intersection is

p =
⎛⎝ 2

3
1

⎞⎠+ 4

5

⎛⎝ 2
0
1

⎞⎠ .

The distance between the line and the plane is the distance between this
point and the point (2, 3, 1), which is given by the length of the vector

v = p −
⎛⎝ 2

3
1

⎞⎠ = 4

5

⎛⎝ 2
0
1

⎞⎠ ,

so the distance is
4
√

5

5
.

Chapter 2 exercises

Exercise 2.1 For this solution, we’ll indicate the row operations.

(a) (A|b) =
⎛⎝ 1 −1 1 −3

−3 4 −1 2
1 −3 −2 7

⎞⎠ R2+3R1−→
R3−R1

⎛⎝ 1 −1 1 −3
0 1 2 −7
0 −2 −3 10

⎞⎠
R3+2R2−→

⎛⎝ 1 −1 1 −3
0 1 2 −7
0 0 1 −4

⎞⎠ R1−R3−→
R2−2R3

⎛⎝ 1 −1 0 1
0 1 0 1
0 0 1 −4

⎞⎠

R1+R2−→
⎛⎝ 1 0 0 2

0 1 0 1
0 0 1 −4

⎞⎠ ,
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from which it follows that⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 2

1
−4

⎞⎠ .

This system has a unique solution. The three planes intersect in one
point.

(b) (A|b) =
⎛⎝ 2 −1 3 4

1 1 −1 1
5 2 0 7

⎞⎠ R1�R2−→
⎛⎝ 1 1 −1 1

2 −1 3 4
5 2 0 7

⎞⎠
R2−2R1−→
R3−5R1

⎛⎝ 1 1 −1 1
0 −3 5 2
0 −3 5 2

⎞⎠ R3−R2−→
⎛⎝ 1 1 −1 1

0 −3 5 2
0 0 0 0

⎞⎠
− 1

3 R2−→
⎛⎝ 1 1 −1 1

0 1 −5
3 −2

3
0 0 0 0

⎞⎠ R1−R2−→
⎛⎝ 1 0 2

3
5
3

0 1 −5
3 −2

3
0 0 0 0

⎞⎠ .

Set z = t and then solve for x and y in terms of t . There are infinitely
many solutions:⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 5

3 − 2
3 t

−2
3 + 5

3 t
t

⎞⎠ =
⎛⎝ 5

3

−2
3

0

⎞⎠+ t

⎛⎝−2
3

5
3
1

⎞⎠ , t ∈ R .

The three planes intersect in a line. If you set z = 3s, then this line of
solutions can be written as⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 5

3

−2
3

0

⎞⎠+ s

⎛⎝−2
5
3

⎞⎠ , s ∈ R.

Exercise 2.2 The system of equations in part (a) is the associated
homogeneous system of part (b), so to solve both you can row reduce
the augmented matrix and then interpret the solutions of each system.
Doing this,

(A|b) =
⎛⎝−1 1 −3 6

3 −2 10 −10
−2 3 −5 9

⎞⎠ −→
⎛⎝ 1 −1 3 −6

0 1 1 8
0 1 1 −3

⎞⎠
from which you can already see that the system is inconsistent
since y + z = 8 and y + z = −3 is impossible. However, the homo-
geneous system is always consistent, so continuing the reduction of the
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matrix A,

A −→
⎛⎝ 1 −1 3

0 1 1
0 0 0

⎞⎠ −→
⎛⎝ 1 0 4

0 1 1
0 0 0

⎞⎠ .

So the answers are:

(a) x = t

⎛⎝−4
−1
1

⎞⎠ , t ∈ R, and

(b) no solutions.

Exercise 2.3 Solve the first two equations simultaneously using Gaus-
sian elimination. The general solution takes the form x = p + sw,
s ∈ R, where p = (1, 0, 0)T and w = (0, −1, 1)T, which is the equa-
tion of the line of intersection of the two planes.

The third plane intersects the first two in the same line. You can
determine this by solving the linear system of three equations using
Gaussian elimination. Alternatively, you can notice that the line of
intersection of the first two planes is in the third plane (since its direction
is perpendicular to the normal, and the point v satisfies the Cartesian
equation of the plane), so this must be the intersection of all three
planes.

Exercise 2.4 To solve the system of equations Ax = b, where

A =
⎛⎝ 2 3 1 1

1 2 0 −1
3 4 2 4

⎞⎠ , b =
⎛⎝ 4

1
9

⎞⎠ ,

using Gaussian elimination, put the augmented matrix into reduced row
echelon form:

(A|b) =
⎛⎝ 2 3 1 1 4

1 2 0 −1 1
3 4 2 4 9

⎞⎠ −→
⎛⎝ 1 2 0 −1 1

2 3 1 1 4
3 4 2 4 9

⎞⎠

−→
⎛⎝ 1 2 0 −1 1

0 −1 1 3 2
0 −2 2 7 6

⎞⎠ −→
⎛⎝ 1 2 0 −1 1

0 1 −1 −3 −2
0 0 0 1 2

⎞⎠

−→
⎛⎝ 1 2 0 0 3

0 1 −1 0 4
0 0 0 1 2

⎞⎠ −→
⎛⎝ 1 0 2 0 −5

0 1 −1 0 4
0 0 0 1 2

⎞⎠ .
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There is one non-leading variable. If x = (x, y, z, w)T, then set z = t .
Reading from the matrix (starting from the bottom row), a general
solution is

x =

⎛⎜⎜⎝
x
y
z
w

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−5 − 2t

4 + t
t
2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−5
4
0
2

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
−2
1
1
0

⎞⎟⎟⎠ = p + tv, t ∈ R.

Checking the solution by multiplying the matrices, you should find
Ap = b and Av = 0. If your solution is not correct, then you will now
know it, in which case you should go back and correct it.

Ap =
⎛⎝ 2 3 1 1

1 2 0 −1
3 4 2 4

⎞⎠
⎛⎜⎜⎝

−5
4
0
2

⎞⎟⎟⎠ =
⎛⎝ 4

1
9

⎞⎠ ,

Av =
⎛⎝ 2 3 1 1

1 2 0 −1
3 4 2 4

⎞⎠
⎛⎜⎜⎝

−2
1
1
0

⎞⎟⎟⎠ =
⎛⎝ 0

0
0

⎞⎠ .

The reduced row echelon form of the matrix A consists of the first four
columns of the reduced row echelon form of the augmented matrix
above, that is ⎛⎝ 1 0 2 0

0 1 −1 0
0 0 0 1

⎞⎠ .

(i) No, there is no vector d for which the system is inconsistent. Since
there is a leading one in every row of the reduced row echelon form of
A, the system of equations Ax = d is consistent for all d ∈ R3.
(ii) No, there is no vector d for which the system has a unique solution.
The system of equations Ax = d has infinitely many solutions for all
d ∈ R3 since there will always be a free variable. There is no leading
one in the third column.

Exercise 2.5 Reducing the matrix C to reduced row echelon form,
beginning with

C =
⎛⎝ 1 2 −1 3 8

−3 −1 8 6 1
−1 0 3 1 −2

⎞⎠ −→
⎛⎝ 1 2 −1 3 8

0 5 5 15 25
0 2 2 4 6

⎞⎠ ,
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you should eventually obtain (after four more steps)

−→ · · · −→
⎛⎝ 1 0 −3 0 4

0 1 1 0 −1
0 0 0 1 2

⎞⎠ .

(a) If C is the augmented matrix of a system of equations Ax = b,
so that C = (A|b), then there is one non-leading variable in the third
column, so the solutions are

x =

⎛⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
4 + 3t
−1 − t

t
2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
4

−1
0
2

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
3

−1
1
0

⎞⎟⎟⎠ , t ∈ R.

These solutions are in R4.
(b) If C is the coefficient matrix of a homogeneous system of equations,
Cx = 0, then there are two non-leading variables, one in column three
and one in column five. Set x3 = s and x5 = t . Then the solutions are

x =

⎛⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
3s − 4t
−s + t

s
−2t

t

⎞⎟⎟⎟⎟⎟⎠ = s

⎛⎜⎜⎜⎜⎜⎝
3

−1
1
0
0

⎞⎟⎟⎟⎟⎟⎠+ t

⎛⎜⎜⎜⎜⎜⎝
−4
1
0

−2
1

⎞⎟⎟⎟⎟⎟⎠ , s, t ∈ R.

These solutions are in R5.
(c) To find d,

Cw =
⎛⎝ 1 2 −1 3 8

−3 −1 8 6 1
−1 0 3 1 −2

⎞⎠
⎛⎜⎜⎜⎜⎜⎝

1
0
1
1
1

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎝ 11

12
1

⎞⎠ .

To find all solutions of Cx = d, there is no need to use Gaussian
elimination again. You know that Cw = d and from part (b) you have the
solutions of the associated homogeneous system. So using the Principle
of Linearity, a general solution of Cx = d is given by

x =

⎛⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
0
1
1
1

⎞⎟⎟⎟⎟⎟⎠+ s

⎛⎜⎜⎜⎜⎜⎝
3

−1
1
0
0

⎞⎟⎟⎟⎟⎟⎠+ t

⎛⎜⎜⎜⎜⎜⎝
−4
1
0

−2
1

⎞⎟⎟⎟⎟⎟⎠ , s, t ∈ R.
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Exercise 2.6 Using row operations on the matrix B, you should obtain
the reduced row echelon form,

B −→ · · · −→

⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1
0 0 0

⎞⎟⎟⎠ .

Therefore, the only solution of Bx = 0 is the trivial solution, x = 0. So
the null space is the set containing only the zero vector, {0} ⊂ R3.

The vector d = c1 + 2c2 − c3 =

⎛⎜⎜⎝
0
4

−5
−8

⎞⎟⎟⎠.

To find all solutions of Bx = d, you just need to find one particular
solution. Using the expression of a matrix product

Bx = x1c1 + x2c2 + x3c3

(see Theorem 1.38), you can deduce that

x =
⎛⎝ 1

2
−1

⎞⎠
is one solution. Since the null space consists of only the zero vector,
this solution is the only solution.

Chapter 3 exercises

Exercise 3.1 We begin with A, by row reducing (A|I ).

(A|I ) =
⎛⎝ 1 2 −1 1 0 0

0 1 2 0 1 0
3 8 1 0 0 1

⎞⎠
R3−3R1−→

⎛⎝ 1 2 −1 1 0 0
0 1 2 0 1 0
0 2 4 −3 0 1

⎞⎠ .

The next step, R3 − 2R2, will yield a row of zeros in the row echelon
form of A, and therefore the matrix A is not invertible.

For the matrix B,

(B|I ) =
⎛⎝−1 2 1 1 0 0

0 1 2 0 1 0
3 1 4 0 0 1

⎞⎠
−R1−→

⎛⎝ 1 −2 −1 −1 0 0
0 1 2 0 1 0
3 1 4 0 0 1

⎞⎠
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R3−3R1−→
⎛⎝ 1 −2 −1 −1 0 0

0 1 2 0 1 0
0 7 7 3 0 1

⎞⎠
R3−7R2−→

⎛⎝ 1 −2 −1 −1 0 0
0 1 2 0 1 0
0 0 −7 3 −7 1

⎞⎠
− 1

7 R3−→
⎛⎝ 1 −2 −1 −1 0 0

0 1 2 0 1 0
0 0 1 −3

7 1 −1
7

⎞⎠

R1+R3−→
R2−2R3

⎛⎜⎝ 1 −2 0 −10
7 1 −1

7

0 1 0 6
7 −1 2

7

0 0 1 −3
7 1 −1

7

⎞⎟⎠

R1+2R2−→
⎛⎜⎝ 1 0 0 2

7 −1 3
7

0 1 0 6
7 −1 2

7

0 0 1 −3
7 1 −1

7

⎞⎟⎠ .

This final matrix shows that

B−1 = 1

7

⎛⎝ 2 −7 3
6 −7 2

−3 7 −1

⎞⎠ .

Next, check this is correct by multiplying B B−1,

B B−1 =
⎛⎝−1 2 1

0 1 2
3 1 4

⎞⎠ 1

7

⎛⎝ 2 −7 3
6 −7 2

−3 7 −1

⎞⎠ = 1

7

⎛⎝ 7 0 0
0 7 0
0 0 7

⎞⎠ = I.

We’ll answer the next part of the question for the matrix B first. To
solve Bx = b, we can use this inverse matrix. The unique solution is
x = B−1b,

x =
⎛⎜⎝

2
7 −1 3

7
6
7 −1 2

7

−3
7 1 −1

7

⎞⎟⎠
⎛⎜⎝ 1

1

5

⎞⎟⎠ =
⎛⎜⎝

10
7
9
7

−1
7

⎞⎟⎠ .

Check that this is correct by multiplying Bx to get b.
Since the matrix B is invertible, by Theorem 3.8 we know that

Bx = d is consistent for all d ∈ R3.
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For the matrix A, to solve Ax = b we need to try Gaussian elimi-
nation. Row reducing the augmented matrix,

(A|b) =
⎛⎝ 1 2 −1 1

0 1 2 1
3 8 1 5

⎞⎠ −→
⎛⎝ 1 2 −1 1

0 1 2 1
0 2 4 2

⎞⎠

−→
⎛⎝ 1 0 −5 −1

0 1 2 1
0 0 0 0

⎞⎠ .

This system is consistent with infinitely many solutions. Setting the
non-leading variable equal to t , the solutions are

x =
⎛⎝−1 + 5t

1 − 2t
t

⎞⎠ =
⎛⎝−1

1
0

⎞⎠+ t

⎛⎝ 5
−2
1

⎞⎠ , t ∈ R.

Since the matrix A is not invertible, there will be vectors d ∈ R3 for
which the system is inconsistent. Looking at the row reduction above,
an easy choice is d = (1, 1, 4)T, for then

(A|d) =
⎛⎝ 1 2 −1 1

0 1 2 1
3 8 1 4

⎞⎠ −→
⎛⎝ 1 2 −1 1

0 1 2 1
0 2 4 1

⎞⎠

−→
⎛⎝ 1 2 −1 1

0 1 2 1
0 0 0 1

⎞⎠ ,

which shows that the system Ax = d is inconsistent.

Exercise 3.2 Note the row operations as you reduce A to reduced row
echelon form,

A =
⎛⎝ 1 0 2

0 1 −1
1 4 −1

⎞⎠ R3−R1−→
⎛⎝ 1 0 2

0 1 −1
0 4 −3

⎞⎠ R3−4R2−→
⎛⎝ 1 0 2

0 1 −1
0 0 1

⎞⎠

R2+R3−→
⎛⎝ 1 0 2

0 1 0
0 0 1

⎞⎠ R1−2R3−→
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠ = I.

There were four row operations required to do this, so express this as
E4 E3 E2 E1 A = I . Then A = (E1)−1(E2)−1(E3)−1(E4)−1, where, for
example, the last row operation, R1 − 2R3, is given by the elementary
matrix E4 so the inverse elementary matrix E4

−1 performs the operation
R1 + 2R3.
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Then the matrix A is given by

A =
⎛⎝ 1 0 0

0 1 0
1 0 1

⎞⎠⎛⎝ 1 0 0
0 1 0
0 4 1

⎞⎠⎛⎝ 1 0 0
0 1 −1
0 0 1

⎞⎠⎛⎝ 1 0 2
0 1 0
0 0 1

⎞⎠ .

You should multiply out this product to check that you do obtain A.
Then using the fact that the determinant of the product is equal to

the product of the determinants,

|A| = |(E1)−1| |(E2)−1| |(E3)−1| |(E4)−1|.
Each of the above elementary matrices represents a row operation RO3,
adding a multiple of one row to another, which does not change the value
of the determinant. So for each i = 1, 2, 3, 4, |E−1

i | = 1. Therefore,
|A| = 1.

To check this, we’ll use the cofactor expansion by row 1,

|A| =
∣∣∣∣∣∣
1 0 2
0 1 −1
1 4 −1

∣∣∣∣∣∣ = 1(−1 + 4) + 2(0 − 1) = 1.

Exercise 3.3 (a) Expanding the first determinant using row 1,∣∣∣∣∣∣
5 2 −4

−3 1 1
−1 7 2

∣∣∣∣∣∣ = 5(2 − 7) − 2(−6 + 1) − 4(−21 + 1)

= −25 + 10 + 80 = 65.

You should check this by expanding by a different row or column.
(b) The obvious cofactor expansion for this determinant should be using
column 3.∣∣∣∣∣∣∣∣
1 23 6 −15
2 5 0 1
1 4 0 3
0 1 0 1

∣∣∣∣∣∣∣∣ = 6

∣∣∣∣∣∣
2 5 1
1 4 3
0 1 1

∣∣∣∣∣∣ = 6[2(4 − 3) − 1(5 − 1) = −12.

Exercise 3.4 You will make fewer errors when there is an unknown
constant present if you expand by a row or column containing the
unknown. So, for example, expanding by column 1:

|B| =
∣∣∣∣∣∣
2 1 w

3 4 −1
1 −2 7

∣∣∣∣∣∣ = w(−10) + 1(−5) + 7(5) = −10w + 30.

Therefore, |B| = 0 if and only if w = 3.
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Exercise 3.5 Ideally, you want to obtain a leading one as the (1, 1) entry
of the determinant. This can be accomplished by initially doing a row
operation which will put either a 1 or −1 at the start of one of the rows.
There are several choices for this; we will do R2 − R3 to replace row 2.∣∣∣∣∣∣∣∣

5 2 −4 −2
−3 1 5 1
−4 3 1 3
2 1 −1 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

5 2 −4 −2
1 −2 4 −2

−4 3 1 3
2 1 −1 1

∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣
1 −2 4 −2
5 2 −4 −2

−4 3 1 3
2 1 −1 1

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 −2 4 −2
0 12 −24 8
0 −5 17 −5
0 5 −9 5

∣∣∣∣∣∣∣∣

= −4

∣∣∣∣∣∣∣∣
1 −2 4 −2
0 3 −6 2
0 0 8 0
0 5 −9 5

∣∣∣∣∣∣∣∣ = −4

∣∣∣∣∣∣
3 −6 2
0 8 0
5 −9 5

∣∣∣∣∣∣
= −32

∣∣∣∣ 3 2
5 5

∣∣∣∣ = −160
∣∣∣∣ 3 2
1 1

∣∣∣∣ = −160(1) = −160.

The question asks you to check this result by evaluating the determinant
using column operations. Staring at the determinant, you might notice
that the second and fourth columns have all their lower entries equal,
so begin by replacing column 2 with C2 − C4, which will not change
the value of the determinant, and then expand by column 2.∣∣∣∣∣∣∣∣

5 2 −4 −2
−3 1 5 1
−4 3 1 3
2 1 −1 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

5 4 −4 −2
−3 0 5 1
−4 0 1 3
2 0 −1 1

∣∣∣∣∣∣∣∣
= −4

∣∣∣∣∣∣
−3 5 1
−4 1 3
2 −1 1

∣∣∣∣∣∣
= −4(40) = −160,

where the 3 × 3 determinant was evaluated using a cofactor expansion.

Exercise 3.6 To answer this question, find the determinant of A,

|A| =
∣∣∣∣ 7 − λ −15

2 −4 − λ

∣∣∣∣ = (7 − λ)(−4 − λ) + 30

= λ2 − 3λ + 2 = (λ − 1)(λ − 2).

Therefore, A−1 does not exist ⇐⇒ |A| = 0 ⇐⇒ λ = 1 or λ = 2.
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Exercise 3.7 Given that A is 3 × 3 and |A| = 7,

|2A| = 23|A| = 56,

|A2| = |A| |A| = 49,

|2A−1| = 23|A−1| = 23

|A| = 8

7
,

|(2A)−1| = 1

|2A| = 1

56
.

Exercise 3.8 The first thing you should do for each matrix is evaluate
its determinant to see if it is invertible (B is the same matrix as in
Exercise 3.1, so you can compare this method of finding the inverse
matrix to the method using row operations.)

|B| =
∣∣∣∣∣∣
−1 2 1
0 1 2
3 1 4

∣∣∣∣∣∣ = 0 + 1(−4 − 3) − 2(−1 − 6) = 7,

so B−1 exists.
Next find the cofactors,

C11 =
∣∣∣∣ 1 2
1 4

∣∣∣∣ = 2 C12 = −
∣∣∣∣ 0 2
3 4

∣∣∣∣ = −(−6)

C13 =
∣∣∣∣ 0 1
3 1

∣∣∣∣ = −3

C21 = −
∣∣∣∣ 2 1
1 4

∣∣∣∣ = −(7) C22 =
∣∣∣∣−1 1

3 4

∣∣∣∣ = −7

C23 = −
∣∣∣∣−1 2

3 1

∣∣∣∣ = −(−7)

C31 =
∣∣∣∣ 2 1
1 2

∣∣∣∣ = 3 C32 = −
∣∣∣∣−1 1

0 2

∣∣∣∣ = −(−2)

C33 =
∣∣∣∣−1 2

0 1

∣∣∣∣ = −1.

Then,

B−1 = 1

7

⎛⎝ 2 −7 3
6 −7 2

−3 7 −1

⎞⎠ .
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Check that B B−1 = I. For the matrix C , expanding by column 1,

|C | =
∣∣∣∣∣∣
5 2 −1
1 3 4
6 5 3

∣∣∣∣∣∣ = 5(−11) − 2(−21) − 1(−13) = 0,

so C is not invertible.

Exercise 3.9 The system of equations is

−x + 2y + z = 1

y + 2z = 1

3x + y + 4z = 5 .

This has as its coefficient matrix the matrix B of Exercise 3.1. We
know from the previous exercise that |B| = 7. Since the determinant is
non-zero, we can use Cramer’s rule. Then

x = 1

|B|

∣∣∣∣∣∣
1 2 1
1 1 2
5 1 4

∣∣∣∣∣∣ = 1(2) − 2(−6) + 1(−4)

|B| = 10

7
,

y = 1

|B|

∣∣∣∣∣∣
−1 1 1
0 1 2
3 5 4

∣∣∣∣∣∣ = 0 + 1(−7) − 2(−8)

|B| = 9

7
,

z = 1

|B|

∣∣∣∣∣∣
−1 2 1
0 1 1
3 1 5

∣∣∣∣∣∣ = 0 + 1(−8) − 1(−7)

|B| = −1

7
.

which, of course, agrees with the result in Exercise 3.1.

Exercise 3.10 (a) Electricity is industry i2, so column 2 gives the
amounts of each industry needed to produce $1 of electicity:

c12 ↔ $0.30 water, c22 ↔ $0.10 electricity, c32 ↔ 0 gas.

(b) To solve (I − C)x = d, you can either use Gaussian elimination
or the inverse matrix or Cramer’s rule. We will find the inverse matrix
using the cofactors method.

(I − C) =
⎛⎝ 0.8 −0.3 −0.2

−0.4 0.9 −0.2
0 0 0.9

⎞⎠

=⇒ (I − C)−1 = 1

0.54

⎛⎝ 0.81 0.27 0.24
0.36 0.72 0.24

0 0 0.6

⎞⎠ .
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Then the solution is given by

x =
⎛⎝ x1

x2

x3

⎞⎠ = 1

0.54

⎛⎝ 0.81 0.27 0.24
0.36 0.72 0.24

0 0 0.6

⎞⎠⎛⎝ 40, 000
100, 000
72, 000

⎞⎠
=
⎛⎝ 142, 000

192, 000
80, 000

⎞⎠ .

The weekly production should be $142,000 water, $192,000 electricity
and $80,000 gas.

Exercise 3.11 (a) The cross product u × v is

w = u × v =
∣∣∣∣∣∣
e1 e2 e3

1 2 3
2 −5 4

∣∣∣∣∣∣ = 23e1 + 2e2 − 9e3 =
⎛⎝ 23

2
−9

⎞⎠ .

This vector is perpendicular to both u and v since〈⎛⎝ 23
2

−9

⎞⎠ ,

⎛⎝ 1
2
3

⎞⎠〉 = 23 + 4 − 27 = 0,

〈⎛⎝ 23
2

−9

⎞⎠ ,

⎛⎝ 2
−5
4

⎞⎠〉 = 46 − 10 − 36 = 0.

(b) You are being asked to show that the inner product of a vector
a ∈ R3 with the cross product of two vectors b, c ∈ R3 is given by the
determinant with these three vectors as its rows. To show this, start with
an expression for b × c

b × c =
∣∣∣∣∣∣
e1 e2 e3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ =
∣∣∣∣ b2 b3

c2 c3

∣∣∣∣ e1 −
∣∣∣∣ b1 b3

c1 c3

∣∣∣∣ e2 +
∣∣∣∣ b1 b2

c1 c2

∣∣∣∣ e3

and then take the inner product with a:

〈a, b × c〉 =
∣∣∣∣ b2 b3

c2 c3

∣∣∣∣ a1 −
∣∣∣∣ b1 b3

c1 c3

∣∣∣∣ a2 +
∣∣∣∣ b1 b2

c1 c2

∣∣∣∣ a3

=
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ .
This shows that the inner product is equal to the given 3 × 3 determinant
(as it is equal to its expansion by row 1).

To show that b × c is orthogonal to both b and c, we just calculate
the inner products 〈b, b × c〉 and 〈c, b × c〉 using the above determinant
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expression and show that each is equal to 0:

〈b, b × c〉 =
∣∣∣∣∣∣
b1 b2 b3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = 0 and

〈c, b × c〉 =
∣∣∣∣∣∣
c1 c2 c3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = 0,

since each of these determinants has two equal rows. Hence the vector
b × c is perpendicular to both b and c.

(c) Therefore, the vector b × c = n is orthogonal to all linear com-
binations of the vectors b and c and so to the plane determined by these
vectors; that is, b × c is a normal vector to the plane containing the
vectors b and c.

If 〈a, b × c〉 = 〈a, n〉 = 0, then a must be in this plane; the three
vectors are coplanar.

All these statements are reversible.
The given vectors are coplanar when∣∣∣∣∣∣

3 −1 2
t 5 1

−2 3 1

∣∣∣∣∣∣ = 0,

so if and only if t = −4.

Chapter 4 exercises

Exercise 4.1 Write down the augmented matrix and put it into reduced
row echelon form,

(A|b) =
⎛⎝ 1 5 3 7 1 2

2 10 3 8 5 −5
1 5 1 3 3 −4

⎞⎠ R2−2R1−→
R3−R1−→

⎛⎝ 1 5 3 7 1 2
0 0 −3 −6 3 −9
0 0 −2 −4 2 −6

⎞⎠

− 1
3 R2−→
⎛⎝ 1 5 3 7 1 2

0 0 1 2 −1 3
0 0 −2 −4 2 −6

⎞⎠ R3+2R2−→
⎛⎝ 1 5 3 7 1 2

0 0 1 2 −1 3
0 0 0 0 0 0

⎞⎠

R1−3R2−→
⎛⎝ 1 5 0 1 4 −7

0 0 1 2 −1 3
0 0 0 0 0 0

⎞⎠ .

Set the non-leading variables to arbitrary constants, say, x2 = s, x4 = t ,
and x5 = u, and solve for the leading variables in terms of these
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parameters. Starting with the bottom row, write down the vector
solution:

x =

⎛⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
−7 − 5s − t − 4u

s
3 − 2t + u

t
u

⎞⎟⎟⎟⎟⎟⎠

x =

⎛⎜⎜⎜⎜⎜⎝
−7
0
3
0
0

⎞⎟⎟⎟⎟⎟⎠+ s

⎛⎜⎜⎜⎜⎜⎝
−5
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠+ t

⎛⎜⎜⎜⎜⎜⎝
−1
0

−2
1
0

⎞⎟⎟⎟⎟⎟⎠+ u

⎛⎜⎜⎜⎜⎜⎝
−4
0
1
0
1

⎞⎟⎟⎟⎟⎟⎠
= p + sv1 + tv2 + uv3.

The rank of A is 2 since there are two leading ones. The matrix A has
five columns, so there are n − r = 5 − 2 = 3 vectors vi . The solution
is in the form required by the question.

Verify the solution as asked by performing the matrix multiplication.
Do actually carry this out. We will show the first two.

Ap =
⎛⎝ 1 5 3 7 1

2 10 3 8 5
1 5 1 3 3

⎞⎠
⎛⎜⎜⎜⎜⎜⎝

−7
0
3
0
0

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎝ −7 + 9

−14 + 9
−7 + 3

⎞⎠ =
⎛⎝ 2

−5
−4

⎞⎠ .

Av1 =
⎛⎝ 1 5 3 7 1

2 10 3 8 5
1 5 1 3 3

⎞⎠
⎛⎜⎜⎜⎜⎜⎝

−5
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎝ −5 + 3

−10 + 10
−5 + 5

⎞⎠ =
⎛⎝ 0

0
0

⎞⎠ .

You can use any solution x (so any values of s, t, u ∈ R) to write b as a
linear combination of the columns of A, so this can be done in infinitely
many ways. In particular, taking x = p, and letting ci indicate column
i of the coefficient matrix A,

Ap = −7c1 + 3c3.

You should write this out in detail and check that the sum of the vectors
does add to the vector b. Notice that this combination uses only the
columns corresponding to the leading variables:

−7

⎛⎝ 1
2
1

⎞⎠+ 3

⎛⎝ 3
3
1

⎞⎠ =
⎛⎝ 2

−5
−4

⎞⎠ .
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Similarly, since Av1 = 0, Av2 = 0 and Av3 = 0, any linear combination
of these three vectors will give a vector w = sv1 + tv2 + uv3 for which
Aw = 0, and you can rewrite Aw as a linear combination of the columns
of A. For example, taking v1 (so s = 1, t = u = 0),

−5c1 + c2 = −5

⎛⎝ 1
2
1

⎞⎠+
⎛⎝ 5

10
5

⎞⎠ =
⎛⎝ 0

0
0

⎞⎠ .

Exercise 4.2 Using row operations, the matrix A reduces to echelon
form

A −→ · · · −→

⎛⎜⎜⎝
1 0 1 0 2
0 1 −1 1 −1
0 0 1 −1 3
0 0 0 0 0

⎞⎟⎟⎠ .

There are three nonzero rows (three leading ones), so the rank of A
is 3.

To find N (A), we need to solve Ax = 0, which is a system of four
equations in five unknowns. Call them x1, x2, x3, x4, x5. Continuing to
reduced echelon form,

A −→ · · · −→

⎛⎜⎜⎝
1 0 0 1 −1
0 1 0 0 2
0 0 1 −1 3
0 0 0 0 0

⎞⎟⎟⎠ .

The leading variables are x1, x2, and x3. Set the non-leading variables
x4 = s and x5 = t . Then the solution is⎛⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
−s + t
−2t

s − 3t
s
t

⎞⎟⎟⎟⎟⎟⎠ = s

⎛⎜⎜⎜⎜⎜⎝
−1
0
1
1
0

⎞⎟⎟⎟⎟⎟⎠ + t

⎛⎜⎜⎜⎜⎜⎝
1

−2
−3
0
1

⎞⎟⎟⎟⎟⎟⎠ , s, t ∈ R.

So the null space consists of all vectors of the form x = sv1 + tv2,
where v1 and v2 are the vectors displayed above. It is a subset
of R5.

The range of A can be described as the set of all linear combinations
of the columns of A,

R(A) = {α1c1 + α2c2 + α3c3 + α4c4 + α5c5 | αi ∈ R, i = 1, . . . , 5},
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where

c1 =

⎛⎜⎜⎝
1
2
1
0

⎞⎟⎟⎠ , c2 =

⎛⎜⎜⎝
0
1
3
3

⎞⎟⎟⎠ , c3 =

⎛⎜⎜⎝
1
1

−1
−2

⎞⎟⎟⎠ , c4 =

⎛⎜⎜⎝
0
1
2
2

⎞⎟⎟⎠ , c5 =

⎛⎜⎜⎝
2
3
2
0

⎞⎟⎟⎠ .

This is a subset of R4. We will find a better way to describe this set
when we look at the column space of a matrix in the next two chapters.

Exercise 4.3 |A| = 3λ − 9.
(a) If |A| 
= 0, that is if λ 
= 3, then the system will have a unique
solution. In this case, using Cramer’s rule, z = (3 − 3μ)/(λ − 3).

To answer (b) and (c), reduce the augmented matrix to echelon form
with λ = 3

(A|b) =
⎛⎝ 1 2 0 2

5 1 3 7
1 −1 1 μ

⎞⎠ −→
⎛⎝ 1 2 0 2

0 −9 3 −3
0 −3 1 μ − 2

⎞⎠

−→
⎛⎝ 1 2 0 2

0 3 −1 1
0 −3 1 μ − 2

⎞⎠ −→
⎛⎝ 1 2 0 2

0 3 −1 1
0 0 0 μ − 1

⎞⎠ .

So if λ = 3, this system will be inconsistent if μ 
= 1, which answers
part (b).

If λ = 3 and μ = 1, we have (c) infinitely many solutions. Setting
μ = 1 and continuing to reduced echelon form,

(A|b) −→ · · · −→
⎛⎝ 1 2 0 2

0 1 −1
3

1
3

0 0 0 0

⎞⎠ −→
⎛⎝ 1 0 2

3
4
3

0 1 −1
3

1
3

0 0 0 0

⎞⎠ .

The solution can now be read from the matrix. Setting the non-leading
variable z equal to t ,⎛⎝ x

y
z

⎞⎠ =
⎛⎝ 4

3 − 2
3 t

1
3 + 1

3 t
t

⎞⎠ =
⎛⎝ 4

3
1
3
0

⎞⎠+ t

⎛⎝−2
3

1
3
1

⎞⎠ = p + tv, t ∈ R.

Exercise 4.4 The matrix B must be 3 × 4 since the solutions are in R4

and c1 ∈ R3. Let

B =
⎛⎝ 1

1 c2 c3 c4

2

⎞⎠ .
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The solution is of the form x = p + sv1 + tv2, where v1, v2 are in N (B);
therefore, you know that Bp = d, Bv1 = 0 and Bv2 = 0. Regarding the
matrix products as linear combinations of the column vectors of B, we
obtain

Bp = c1 + 2c3 = d Bv1 = −3c1 + c2 = 0

Bv2 = c1 − c3 + c4 = 0.

Knowing c1, you just need to solve these for the other three columns:

2c3 =
⎛⎝ 3

5
−2

⎞⎠−
⎛⎝ 1

1
2

⎞⎠ =
⎛⎝ 2

4
−4

⎞⎠ =⇒ c3 =
⎛⎝ 1

2
−2

⎞⎠ ,

c2 = 3

⎛⎝ 1
1
2

⎞⎠ =
⎛⎝ 3

3
6

⎞⎠ ,

c4 = c3 − c1 =
⎛⎝ 1

2
−2

⎞⎠−
⎛⎝ 1

1
2

⎞⎠ =
⎛⎝ 0

1
−4

⎞⎠ .

The matrix B is

B =
⎛⎝ 1 3 1 0

1 3 2 1
2 6 −2 −4

⎞⎠ .

You can check your answer by row reducing the augmented matrix
(B|d) to obtain the solution of Bx = d, and matching it to the solution
given.

Exercise 4.5 You might have noticed that this is the same coefficient
matrix A as we encountered in Example 4.7 on page 135. You can easily
tackle this question by forming the augmented matrix and reducing it
using row operations:

(A|b) =
⎛⎝ 1 2 1 a

2 3 0 b
3 5 1 c

⎞⎠ →
⎛⎝ 1 2 1 a

0 −1 −2 b − 2a
0 −1 −2 c − 3a

⎞⎠ .

After this first step, it is clear that the system will be consistent if and
only if

b − 2a = c − 3a, or a + b − c = 0.

Hence, the vector y = (x, y, z)T is in R(A) if and only if x + y − z = 0.
This is the Cartesian equation of a plane in R3.
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The vector d = (1, 5, 6)T is in R(A), since its components satisfy
the equation. This follows from Example 4.7, because the system there
was seen to be consistent. The vector (1, 5, 4)T, for which the system is
inconsistent, is not in the plane R(A). (Look at Example 4.9 to see that
the augmented matrix in this case has an echelon form which indicates
that the system is inconsistent.)

For Activity 4.8 on page 135, you found a general solution of the
system of equations Ax = d to be

x =
⎛⎝ 7

−3
0

⎞⎠+ t

⎛⎝ 3
−2
1

⎞⎠ , t ∈ R.

Any solution x will enable you to write d as a linear combination of
the columns of A. For example, taking first t = 0 and then t = −1,
d = 7c1 − 3c2 or d = 4c1 − c2 − c3; that is,⎛⎝ 1

5
6

⎞⎠ = 7

⎛⎝ 1
2
3

⎞⎠− 3

⎛⎝ 2
3
5

⎞⎠ or

⎛⎝ 1
5
6

⎞⎠ = 4

⎛⎝ 1
2
3

⎞⎠−
⎛⎝ 2

3
5

⎞⎠−
⎛⎝ 1

0
1

⎞⎠ .

Exercise 4.6 You need to put the matrix into row echelon form to
answer the first question, and into reduced row echelon form for the
second,

A =

⎛⎜⎜⎝
1 1 1
0 1 −2
2 −1 8
3 1 7

⎞⎟⎟⎠ −→ · · · −→

⎛⎜⎜⎝
1 0 3
0 1 −2
0 0 0
0 0 0

⎞⎟⎟⎠ .

The rank of A is 2. There is one non-leading variable. If you write
x = (x, y, z)T, then setting z = t , you will obtain the solution

x = t

⎛⎝−3
2
1

⎞⎠ , t ∈ R.

Since there are non-trivial solutions of Ax = 0, it is possible to express 0
as a linear combination of the columns of A with non-zero coefficients.
A non-trivial linear combination of the column vectors which is equal
to the zero vector is given by any non-zero vector in the null space. For
example, using t = 1, the product Ax yields

−3c1 + 2c2 + c3 = −3

⎛⎜⎜⎝
1
0
2
3

⎞⎟⎟⎠+ 2

⎛⎜⎜⎝
1
1

−1
1

⎞⎟⎟⎠+

⎛⎜⎜⎝
1

−2
8
7

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ = 0.



Comments on exercises 455

The vector b is in R(A) if b is a linear combination of the column
vectors of A, which is exactly when Ax = b is consistent. Notice that
the matrix A has rank 2, so the augmented matrix must also have
rank 2. Reducing (A|b) using row operations,⎛⎜⎜⎝

1 1 1 4
0 1 −2 1
2 −1 8 a
3 1 7 b

⎞⎟⎟⎠→

⎛⎜⎜⎝
1 1 1 4
0 1 −2 1
0 −3 6 a − 8
0 −2 4 b − 12

⎞⎟⎟⎠

→

⎛⎜⎜⎝
1 1 1 4
0 1 −2 1
0 0 0 a − 5
0 0 0 b − 10

⎞⎟⎟⎠ .

Therefore, Ax = b is consistent if and only if a = 5 and b = 10. In that
case, continuing to reduced echelon form,⎛⎜⎜⎝

1 1 1 4
0 1 −2 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ →

⎛⎜⎜⎝
1 0 3 3
0 1 −2 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ .

Therefore, a general solution is

x =
⎛⎝ 3

1
0

⎞⎠+ t

⎛⎝−3
2
1

⎞⎠ t ∈ R.

(b) Using row operations,

|B| =

∣∣∣∣∣∣∣∣
−2 3 −2 5
3 −6 9 −6

−2 9 −1 9
5 −6 9 −4

∣∣∣∣∣∣∣∣ = (−3)

∣∣∣∣∣∣∣∣
1 −2 3 −2

−2 3 −2 5
−2 9 −1 9
5 −6 9 −4

∣∣∣∣∣∣∣∣
= (−3)

∣∣∣∣∣∣∣∣
1 −2 3 −2
0 −1 4 1
0 5 5 5
0 4 −6 6

∣∣∣∣∣∣∣∣

= (30)

∣∣∣∣∣∣∣∣
1 −2 3 −2
0 1 1 1
0 −1 4 1
0 2 −3 3

∣∣∣∣∣∣∣∣ = (30)

∣∣∣∣∣∣∣∣
1 −2 3 −2
0 1 1 1
0 0 5 2
0 0 −5 1

∣∣∣∣∣∣∣∣ = 450.

Since det(B) 
= 0, the rank of B is 4. Therefore, the main theorem
(Theorem 4.1.2) tells us that Bx = 0 has only the trivial solution.
Therefore, there is no way to write 0 as a linear combination of the
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column vectors of B except the trivial way, with all coefficients equal
to 0.

Also, using this theorem, Bx = b has a unique solution for all
b ∈ R4. Therefore, R(B) = R4. That is, a and b can be any real num-
bers, the system Bx = b is always consistent.

Chapter 5 exercises

Exercise 5.1 The set S1 is a subspace. We have⎛⎝ x
y
z

⎞⎠ ∈ S1 ⇐⇒ z = y = 3x ⇐⇒
⎛⎝ x

y
z

⎞⎠=
⎛⎝ x

3x
3x

⎞⎠ = x

⎛⎝ 1
3
3

⎞⎠, x ∈ R.

So, the set S1 is the linear span of the vector v = (1, 3, 3)T and is
therefore a subspace of R3. (This is the line through the origin in the
direction of the vector v = (1, 3, 3)T.)

The set S2 is a subspace. Since

S2 =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ z + y = 3x

⎫⎬⎭ =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ z + y − 3x = 0

⎫⎬⎭ ,

it is a plane through the origin in R3, and you have shown that a plane
through the origin is a subspace (see Activity 5.38). You can also show
directly that the set is non-empty and closed under addition and scalar
multiplication.

The set S3 is not a subspace. 0 ∈ S3, but S3 is not closed under
addition. For example,⎛⎝ 1

1
3

⎞⎠ ∈ S3,

⎛⎝ 1
3
1

⎞⎠ ∈ S3, but

⎛⎝ 1
1
3

⎞⎠+
⎛⎝ 1

3
1

⎞⎠ =
⎛⎝ 2

4
4

⎞⎠ /∈ S3

since it does not satisfy the condition zy = 3x .
The set S4 is not a subspace because it is not closed under addition.

For example,⎛⎝ 1
1
0

⎞⎠ ∈ S4,

⎛⎝ 0
0
1

⎞⎠ ∈ S4, but

⎛⎝ 1
1
0

⎞⎠+
⎛⎝ 0

0
1

⎞⎠ =
⎛⎝ 1

1
1

⎞⎠ /∈ S4.

What is S4? For a vector x to be in S4, either x = 0, y = 0 or z = 0.
So this set consists of the xy-plane (if z = 0), the xz-plane, and the
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yz-plane. But any vector in R3 which is not on one of these planes is
not in S4.

Exercise 5.2 If A is an n × n matrix, then all vectors x for which Ax is
defined must be n × 1 vectors, so the set

S = {x | Ax = λx}, some λ ∈ R,

is a subset of Rn . To show it is a subspace, you have to show it is
non-empty and closed under addition and scalar multiplication.

Since A0 = λ0 = 0, the vector 0 ∈ S, so S is non-empty. (In fact,
depending on λ, S may well be the vector space which contains only
the zero vector; more on this is found in Chapter 8.)

Let u, v ∈ S and a ∈ R. Then you know that Au = λu and Av = λv.
Therefore,

A(u + v) = Au + Av = λu + λv = λ(u + v)

and

A(au) = a(Au) = a(λu) = λ(au)

so u + v ∈ S and au ∈ S. Therefore, S is a subspace of Rn.

Exercise 5.3 We are given the vectors

v1 =
⎛⎝−1

0
1

⎞⎠ , v2 =
⎛⎝ 1

2
3

⎞⎠ , and u =
⎛⎝−1

2
5

⎞⎠ , w =
⎛⎝ 1

2
5

⎞⎠ .

(a) The vector u can be expressed as a linear combination of v1 and v2

if you can find constants s, t such that u = sv1 + tv2. Now,

⎛⎝−1
2
5

⎞⎠ = s

⎛⎝−1
0
1

⎞⎠+ t

⎛⎝ 1
2
3

⎞⎠ ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
−1 = −s + t

2 = 2t

5 = s + 2t.

From the middle component equation, we find t = 1, and substituting
this into the top equation yields s = 2. Substituting these values for s
and t in the bottom component equation gives 5 = 2 + 3(1), which is
correct, so u = 2v1 + v2. You can check this using the vectors,

2

⎛⎝−1
0
1

⎞⎠+
⎛⎝ 1

2
3

⎞⎠ =
⎛⎝−1

2
5

⎞⎠ .
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Attempting this for the vector w,

⎛⎝ 1
2
5

⎞⎠ = s

⎛⎝−1
0
1

⎞⎠+ t

⎛⎝ 1
2
3

⎞⎠ ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
1 = −s + t

2 = 2t

5 = s + 2t .

This time the top two component equations yield t = 1 and s = 0, and
these values do not satisfy the bottom equation, 5 = s + 3t , so no solu-
tion exists. The vector w cannot be expressed as a linear combination
of v1 and v2.

(b) Since u = 2v1 + v2, u ∈ Lin{v1, v2}. Therefore, Lin{v1, v2, u}
and Lin{v1, v2} are the same subspace. Any vector x = av1 + bv2 + cu
can be expressed as a linear combination of just v1 and v2 by just
substituting 2v1 + v2 for u. Therefore, this is the linear span of two
non-parallel vectors in R3, so it is a plane in R3.

Since w /∈ Lin{v1, v2}, the subspace Lin{v1, v2, w} must be bigger
than just the plane, so it must be all of R3. To show that Lin{v1, v2, w} =
R3, you can establish that any b ∈ R3 can be expressed as a linear
combination, b = av1 + bv2 + cw, or equivalently that the system of
equations Ax = b has a solution where A is the matrix whose columns
are the vectors v1, v2 and w. You can show this by reducing A to row
echelon form, or by finding the determinant. Since

|A| =
∣∣∣∣∣∣
−1 1 1
0 2 2
1 3 5

∣∣∣∣∣∣ = −4 
= 0,

you know from the main theorem (Theorem 4.5) that Ax = b has a
unique solution for all b ∈ R3.

(c) You know from part (b) that {v1, v2, w} spans R3, and therefore
so does {v1, v2, u, w}. But more efficiently, you can take the same
approach as in part (b) to show that {v1, v2, u, w} spans R3, and at the
same time show that any vector b ∈ R3 can be expressed as a linear
combination of v1, v2, u, w in infinitely many ways. If B is the matrix
with these four vectors as its columns, then the solutions, x, of Bx = b
will determine the possible linear combinations of the vectors. We put
the coefficient matrix B into row echelon form (steps not shown),

B =
⎛⎝−1 1 −1 1

0 2 2 2
1 3 5 5

⎞⎠ −→ · · · −→
⎛⎝ 1 −1 1 −1

0 1 1 1
0 0 0 1

⎞⎠ .
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Since there is a leading one in every row, the system Bx = b is
always consistent, so every vector b ∈ R3 can be expressed as a linear
combination of v1, v2, u, w. Since there is a free variable (in column
three), there are infinitely many solutions to Bx = b.

Exercise 5.4 For v, w ∈ Rn, the set A = {v, w} contains precisely the
two vectors, v and w. The set B = Lin{v, w} contains infinitely many
vectors, namely all possible linear combinations of v and w.

Exercise 5.5 Clearly, Pn 
= ∅. We need to show that for any α ∈ R and
f, g ∈ Pn, α f ∈ Pn and f + g ∈ Pn. Suppose that

f (x) = a0 + a1x + a2x2 + · · · + anxn,

g(x) = b0 + b1x + b2x2 + · · · + bnxn.

Then

( f + g)(x) = f (x) + g(x)

= (a0 + b0) + (a1 + b1)x + · · · + (an + bn)xn,

so f + g is also a polynomial of degree at most n and therefore f + g ∈
Pn. Similarly,

(α f )(x) = α f (x) = (αa0) + (αa1)x + · · · + (αan)xn,

so α f ∈ Pn also. It can be seen that the set of functions
{1, x, x2, . . . , xn} spans Pn, where 1 denotes the function that is iden-
tically equal to 1 (that is, the function f with f (x) = 1 for all x).

(Note that the requirement that the polynomials are of degree at
most n is important. If you consider the set of polynomials of degree
exactly n, then this set is not closed under addition. For example, if
f (x) = 1 + · · · + 3xn and g(x) = 2 + · · · − 3xn, then ( f + g)(x) =
f (x) + g(x) is a polynomial of degree at most n − 1.

However, if n = 1, then the set of constant functions is a subspace.
0 ∈ U and U is closed under addition and scalar multiplication.)

Exercise 5.6 If U and W are subspaces of a vector space V , then the
set

U ∩ W = {x | x ∈ U and x ∈ W }
is a subspace. It is non-empty because 0 ∈ U and 0 ∈ W , so 0 ∈ U ∩ W .
Let x, y ∈ U ∩ W , α ∈ R. Then since U is a subspace and x, y ∈ U ,
both x + y and αx are in U , and the same is true with regard to W .
Therefore, both x + y and αx are in U ∩ W , so this is a subspace.
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Now look at the set

U ∪ W = {x | x ∈ U or x ∈ W }.

If U ⊆ W , then U ∪ W is equal to W , which is a subspace. If W ⊆ U ,
then U ∪ W = U , and this is a subspace.

Now suppose that U 
⊆ W and W 
⊆ U . Then there is a vector x ∈ U
which is not in W , and a vector y ∈ W with y /∈ U . Both of these vectors
are in U ∪ W , but the vector x + y = z is not. Why? You need to show
that z is not in U and not in W . If z ∈ U , then z − x ∈ U since U is a
subspace. But z − x = y, which contradicts the assumption that y /∈ U .
A similar argument shows that z /∈ W , so z /∈ U ∪ W . Therefore, the
set U ∪ W is not closed under addition and is not a subspace.

An example of this is to consider the xz-plane (vectors (x, y, z)T

with y = 0) and the yz-plane (vectors with x = 0) in R3. Each of these
sets is a plane through the origin, so each is a subspace of R3. Their
intersection is the z axis, which is a line through the origin, and therefore
a subspace of R3. Their set theoretic union is just the set of all vectors
which are on either plane. For example, the vector u = (1, 0, 0) is on
the xz-plane and the vector v = (0, 1, 0)T is on the yz-plane, but their
sum u + v = (1, 1, 0)T is not on either plane.

Chapter 6 exercises

Exercise 6.1 To show that the vectors x1, x2, x3 are linearly independent,
you can show that the matrix A = (x1 x2 x3) has rank 3 using row
operations, or by showing |A| 
= 0. Either method will show that the
only solution of Ax = 0 is the trivial solution.

However, since the question also asks you to express the vector v as
a linear combination of the first three, you will need to solve Ax = v. So
you can answer the entire question by reducing the augmented matrix,
(A|v), to reduced echelon form. Then the first three columns will be
the reduced row echelon form of A, which will be the identity matrix,
showing that the vectors are linearly independent, and you should obtain
the unique solution x = (2, −1, 3)T. So

⎛⎝−5
7

−2

⎞⎠ = 2

⎛⎝ 2
1

−1

⎞⎠−
⎛⎝ 3

4
6

⎞⎠+ 3

⎛⎝−2
3
2

⎞⎠ .
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Exercise 6.2 There are many ways of solving this problem, and there
are infinitely many possible such vectors x3. We can solve it by guessing
an appropriate vector x3 and then showing that the matrix (x1 x2 x3) has
rank 3.

A better approach is to answer the second part of the question first,
determine what vectors v form a linearly dependent set with x1 and x2

(find the condition on a, b, c as asked) and then write down any vector
whose components do not satisfy the condition.

We write the three vectors as the columns of a matrix and row
reduce it. We take the matrix to be

A =
⎛⎝ 1 2 a

1 3 b
2 5 c

⎞⎠ .

Notice that you can choose to order x1 and x2 so that the row reduction
will be easier since it makes no difference in this question. The vectors
{x1, x2, v} will be linearly dependent if the row echelon form of A has
a row of zeros.

A =
⎛⎝ 1 2 a

1 3 b
2 5 c

⎞⎠ R2−R1−→
R3−2R1−→

⎛⎝ 1 2 a
0 1 b − a
0 1 c − 2a

⎞⎠
R3−R2−→

⎛⎝ 1 2 a
0 1 b − a
0 0 c − a − b

⎞⎠ .

So the vectors will be linearly dependent if and only if the components
of v satisfy

a + b − c = 0.

So, choose any vector for x3 which does not satisfy this equation, such
as x3 = (1, 0, 0)T.

Note that this condition is the equation of a plane in R3 determined
by the vectors x1 and x2. The set {x1, x2, v} is linearly dependent if and
only if v is the position vector of a point in this plane.

Exercise 6.3 Suppose that S is a linearly independent set of vectors.
Then the only linear combination of vectors in S that can equal the zero
vector is the trivial linear combination (in which all the coefficients
are 0). Now, suppose R = {x1, x2, . . . , xr } is some subset of S and
suppose that

α1x1 + α2x2 + · · · + αr xr = 0.
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The xi for i = 1, 2, . . . , r are some of the vectors in S. So S will
contain these vectors and some others (let’s say k others); that is, for
some vectors xr+1, . . . , xr+k , S is the set {x1, . . . , xr , xr+1, . . . , xk+r }.
So we can in fact consider the left-hand side of the equation to be a
linear combination of all the vectors in S and we have

α1x1 + α2x2 + · · · + αr xr + 0xr+1 + · · · + 0xr+k = 0.

By linear independence of S, it follows that all the coefficients are 0
and, in particular,

α1 = α2 = · · · = αr = 0.

It follows that R is a linearly independent set of vectors.

Exercise 6.4 This question is testing your understanding of some of the
theory you have seen in this chapter. The vector equation

a1v1 + a2v2 + · · · + anvn = 0

is equivalent to the matrix equation Ax = 0 with x = (a1, a2, . . . , an)T

since Ax = a1v1 + a2v2 + · · · + anvn (Theorem 1.38). Therefore,
a1v1 + a2v2 + · · · + anvn = 0 has only the trivial solution if and only
if Ax = 0 has only the trivial solution. But we know that Ax = 0 has
only the trivial solution if and only if |A| 
= 0 (by Theorem 4.5).

Exercise 6.5 Let

A =

⎛⎜⎜⎝
1 0 4 9
2 −1 −11 2
1 3 5 1
2 4 −1 −3

⎞⎟⎟⎠ ,

the matrix with columns equal to the given vectors. If we only needed
to show that the vectors were linearly dependent, it would suffice to
show, using row operations, that rank(A) < 4. But we’re asked for
more: we have to find an explicit non-trivial linear combination that
equals the zero vector. So we need to find a non-trivial solution of
Ax = 0. To do this, put the matrix A into reduced row echelon form,
and then write down the general solution of Ax = 0. (You should use
row operations to find this. The details are omitted here.) One solution
is x = (5, −3, 1, −1)T. This means that

5

⎛⎜⎜⎝
1
2
1
2

⎞⎟⎟⎠− 3

⎛⎜⎜⎝
0

−1
3
4

⎞⎟⎟⎠+

⎛⎜⎜⎝
4

−11
5

−1

⎞⎟⎟⎠−

⎛⎜⎜⎝
9
2
1

−3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ .
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Exercise 6.6 You are being asked to show this directly, using what you
have learned in this chapter. Let {v1, v2, . . . , vn} ⊂ Rm be any set of
vectors in Rm and let A be the m × n matrix whose columns are these
vectors. Then the reduced row echelon form of A will have at most
m leading ones, so it will have at least n − m ≥ 1 columns without a
leading one. Therefore, the system of equations Ax = 0 will have non-
trivial solutions, and the column vectors of A will be linearly dependent.

Exercise 6.7 To prove that {v1, v2} is linearly independent, assume that
α1 and α2 are scalars such that

α1v1 + α2v2 = 0. (∗).

Then A(α1v1 + α2v2) = 0
α1 Av1 + α2 Av2 = 0

α1(2v1) + α2(5v2) = 0
2α1v1 + 5α2v2 = 0.

Add this last equation to −2 times equation (∗) to obtain 3α2v2 = 0.
Since v2 
= 0, we must have α2 = 0. Substituting back into either equa-
tion gives α1v1 = 0, so that α1 = 0 since v1 
= 0. This shows that
v1, v2 are linearly independent.

Generalisation 1: The same proof works for any constants, Av1 = κv1,
Av2 = λv2 provided κ 
= λ.

Generalisation 2: It also extends to three (or more) non-zero vectors:
say, Av1 = κv1, Av2 = λv2, Av3 = μv3 with κ, λ, μ distinct constants
(that is, no two are equal).

Exercise 6.8 Observe that each set of vectors contains at least two
linearly independent vectors since no vector in either set is a scalar
multiple of another vector in the set. Write the vectors of each set as
the columns of a matrix:

B =
⎛⎝−1 1 −1

0 2 2
1 3 5

⎞⎠ , A =
⎛⎝−1 1 1

0 2 2
1 3 5

⎞⎠ .

|A| 
= 0, so W is a basis of R3 and Lin(W ) = R3. (Therefore, another
basis of Lin(W ) is the standard basis, {e1, e2, e3}.)

|B| = 0, so the set U is linearly dependent and one of the vectors
is a linear combination of the other two. Since any two vectors of U are
linearly independent, we know that we will need two vectors for a basis
and Lin(U ) is a two-dimensional subspace of R3, which is a plane. So
we can take the first two vectors in U to be a basis of Lin(U ).
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There are two ways you can find the Cartesian equation of the plane.
A vector equation is given by

x =
⎛⎝ x

y
z

⎞⎠ = s

⎛⎝−1
0
1

⎞⎠+ t

⎛⎝ 1
2
3

⎞⎠ , s, t ∈ R,

and you can find the Cartesian equation by equating components to
obtain three equations in the two unknowns s and t . Eliminating s and t
between the three equations, you will obtain a single equation relating
x, y, and z. Explicitly, we have x = −s + t, y = 2t, z = s + 3t, so

t = y

2
, s = t − x = y

2
− x and so z = s + 3t =

(
y

2
− x

)
+ 3

2
y.

Therefore, x − 2y + z = 0 is a Cartesian equation of the plane.
Alternatively, you could write the two basis vectors and the vector

x as the columns of a matrix M and, using the fact that |M | = 0 if and
only if the columns of M are linearly dependent, you have the equation∣∣∣∣∣∣

−1 1 x
0 2 y
1 3 z

∣∣∣∣∣∣ = −2x + 4y − 2z = 0.

Exercise 6.9 The xz-plane is the set of all vectors of the form (x, 0, z)T,
so the set of vectors {e1, e3} is a basis.

Exercise 6.10 The first thing you should do is write the vectors in B as
the columns of a matrix, call it P , and evaluate the determinant. Since
|P| = −2 
= 0, the vectors form a basis of R3. Since you need to find
the coordinates of two different vectors, you need to solve two systems
of equations, namely Px = w and Px = e1, to find the coefficients in
the basis B. One efficient method is to find P−1 and use this to solve
the equations as x = P−1w and x = P−1e1.

If P =
⎛⎝ 1 −4 3

1 0 5
0 3 1

⎞⎠ , then P−1 = −1

2

⎛⎝−15 13 −20
−1 1 −2
3 −3 4

⎞⎠ .

You should find that

[w]B =
⎡⎣−3

1
2

⎤⎦ and [e1]B = −1

2

⎡⎣−15
−1
3

⎤⎦ ,

and check your result.



Comments on exercises 465

Exercise 6.11 Let

u = u1v1 + u2v2 + · · · + unvn and w = w1v1 + w2v2 + · · · + wnvn,

so that

[u]B =

⎡⎢⎢⎢⎣
u1

u2
...

un

⎤⎥⎥⎥⎦
B

, [w]B =

⎡⎢⎢⎢⎣
w1

w2
...

wn

⎤⎥⎥⎥⎦
B

.

Then

αu + βw = α(u1v1 + u2v2 + · · · + unvn)

+ β(w1v1 + w2v2 + · · · + wnvn)

= (αu1 + βw1)v1 + (αu2 + βw2)v2 + · · · + (αun + βwn)vn.

Then,

[αu + βw]B =

⎡⎢⎢⎢⎣
αu1 + βw1

αu2 + βw2
...

αun + βwn

⎤⎥⎥⎥⎦
B

= α

⎡⎢⎢⎢⎣
u1

u2
...

un

⎤⎥⎥⎥⎦
B

+ β

⎡⎢⎢⎢⎣
w1

w2
...

wn

⎤⎥⎥⎥⎦
B

= α[u]B + β[w]B .

Exercise 6.12 We will give a detailed answer to this question. To begin,
put the matrix A into reduced row echelon form.

A =
⎛⎝ 1 2 −1 3

2 3 0 1
−4 −5 −2 3

⎞⎠ → · · · →
⎛⎝ 1 0 3 −7

0 1 −2 5
0 0 0 0

⎞⎠ .

A basis of row space consists of the non-zero rows of the reduced row
echelon form (written as vectors), so

a basis of RS(A) is

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0
3

−7

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1

−2
5

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

A basis of the column space, C S(A) is given by the vectors of the matrix
A which correspond to the columns with the leading ones in the reduced
row echelon form of A, so these are the first two columns. Therefore,

a basis of C S(A) is

⎧⎨⎩
⎛⎝ 1

2
−4

⎞⎠ ,

⎛⎝ 2
3

−5

⎞⎠⎫⎬⎭ .
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Since the C S(A) has a basis consisting of two vectors, it is a two-
dimensional subspace of R3, which is a plane. To find a Cartesian
equation of this plane, you can use∣∣∣∣∣∣

1 2 x
2 3 y

−4 −5 z

∣∣∣∣∣∣ = 0.

(Why does this give you the equation of the plane? Because if the
vector x = (x, y, z)T is in the plane, then it is a linear combination of
the basis vectors, so the three vectors are linearly dependent and the
matrix whose columns are these three vectors must have determinant
equal to 0.) Expanding the determinant by the last column is easiest,
and you should obtain the equation

2x − 3y − z = 0.

(Note that this must be an equation: don’t leave off the ‘= 0’ part. This
is the equation of a plane through the origin, which is a subspace of R3.)
The next thing you should do is check that your solution is correct. The
components of all the column vectors of A should satisfy this equation.
For example, 2(1) − 3(2) − (−4) = 0 and 2(2) − 3(3) − (−5) = 0. The
equation is also satisfied by the last two columns, (−1, 0, −2)T and
(3, 1, 3)T as you can easily check.

You are asked to state the rank–nullity theorem for matrices, ensur-
ing that you define each term and use it to determine the dimension of
the null space, N (A). The theorem can be stated either as

rank(A) + nullity(A) = n

or

dim(R(A)) + dim(N (A)) = n,

where n is the number of columns in the matrix A. If you used the terms
rank and nullity, then you must say what these terms mean: rank(A) =
dim(R(A)) and nullity(A) = dim(N (A)). Since dim(C S(A)) = 2 and
n = 4, this theorem tells us that dim(N (A)) = 2.

You are now asked for what real values of a the vector

b(a) =
⎛⎝−1

a
a2

⎞⎠
is in the range of A, R(A). The range of A is equal to the column space
of A, and you already know that this subspace of R3 is a plane with
Cartesian equation

2x − 3y − z = 0.
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The vector (−1, a, a2)T ∈ R(A) if and only if its components satisfy
this equation. Substituting, you obtain a quadratic equation in a,

2(−1) − 3(a) − (a2) = 0 or a2 + 3a + 2 = 0,

which factors: a2 + 3a + 2 = (a + 2)(a + 1) = 0. Therefore, the only
solutions are a = −1 and a = −2. The corresponding vectors are

b(−1) =
⎛⎝−1

−1
1

⎞⎠ and b(−2) =
⎛⎝−1

−2
4

⎞⎠ .

You might notice that the second vector listed above is equal to −1
times the first column of the matrix A.

There are other ways to obtain this result, but they take longer. For
example, you could write⎛⎝−1

a
a2

⎞⎠ = s

⎛⎝ 1
2

−4

⎞⎠+ t

⎛⎝ 2
3

−5

⎞⎠ ,

giving three equations, one for each component of the vector equation,
and eliminate s and t to obtain the same quadratic equation in a.

Exercise 6.13 You have already shown that AT A is symmetric as an
exercise in Chapter 1 (Exercise 1.6). To show it is invertible, we will
show that (AT A)v = 0 has only the trivial solution, v = 0, which implies
that AT A is invertible by Theorem 4.5. To do this, we first need to show
that (AT A)v = 0 implies that Av = 0. This is the difficult part. Then
we can deduce from Av = 0 that v = 0, since A has rank k.

We will give two arguments to show that Av = 0. The first is a bit
tricky. We multiply AT Av = 0 on the left by vT to get vT AT Av = 0.
Now, vT AT Av = (Av)T(Av) = 0. But for any vector w ∈ Rn, wTw =
〈w, w〉 = ‖w‖2, so we have ||Av||2 = 0, which implies that Av = 0.

Alternatively, we can show Av = 0 by asking what AT Av =
AT(Av) = 0 implies about the vector Av; that is, in what two subspaces
associated with the matrix AT is it? Since AT(Av) = 0, Av ∈ N (AT).
Also, the vector Av is a linear combination of the columns of A, hence
it is a linear combination of the rows of AT, so Av ∈ RS(AT). But
we have seen that the only vector which is in both the null space and
the row space of a matrix is the zero vector, since these subspaces are
orthogonal subspaces (of Rm for AT). Hence the vector Av = 0.

So Av = 0. But the columns of A are linearly independent (A
has full column rank), so Av = 0 has only the trivial solution v = 0.
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Therefore, AT Av = 0 has only the trivial solution and the matrix AT A
is invertible.

The columns of the 3 × 2 matrix M are linearly independent, since
they are not scalar multiples of one another. The 2 × 2 matrix MT M is

MT M =
(

1 3 1
−2 0 1

)⎛⎝ 1 −2
3 0
1 1

⎞⎠ =
(

11 −1
−1 5

)
,

which is symmetric and invertible since |MT M | = 54 
= 0.

Exercise 6.14 From the given information, you can determine that
k = 3, since the rows of B (written as vectors) must be in R3. You
cannot determine m, but you can say that m ≥ 2 because you know that
B has rank 2, since its row space is a plane.

Can you determine the null space of B? Yes, because the row
space and the null space are orthogonal subspaces of R3, or simply
because you know that the null space consists of all vectors for which
Bx = 0, so all vectors such that 〈ri , x〉 = 0 for each row, ri of B.
Therefore, the null space must consist of all vectors on the line through
the origin in the direction of the normal vector to the plane. So a
basis of this space is given by n = (4, −5, 3)T and a general solution
of Bx = 0 is

x = t

⎛⎝ 4
−5
3

⎞⎠ , t ∈ R.

Exercise 6.15 The subspace W has a basis consisting of the three
sequences,

y1 = {1, 0, 0, 0, 0 . . .}, y2 = {0, 1, 0, 0, 0 . . .},
y3 = {0, 0, 1, 0, 0 . . .},

so it has dimension 3.

Chapter 7 exercises

Exercise 7.1 The matrix AT and its reduced row echelon form are

AT =
⎛⎝ 1 1 2

1 0 1
2 1 3

⎞⎠ −→ · · · −→
⎛⎝ 1 0 1

0 1 1
0 0 0

⎞⎠ .
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A basis for the null space is {(−1, −1, 1)T}, and a basis for the range is⎧⎨⎩
⎛⎝ 1

1
2

⎞⎠ ,

⎛⎝ 1
0
1

⎞⎠⎫⎬⎭ .

There are other possible answers. To verify the rank–nullity theorem,

rank(T ) + nullity(T ) = 2 + 1 = 3 = dim(R3).

This linear transformation is not invertible, as A−1
T does not exist.

Exercise 7.2 To sketch the effect of S on the unit square, mark off a unit
square on a set of axes. Mark the unit vector in the x direction, e1, in
one colour, and the unit vector in the y direction, e2, in another colour
(or differentiate between them by single and double arrowheads). Now
draw the vector images of these, S(e1) and S(e2), in the same colours,
and complete the image of the unit square with these vectors as its two
corresponding sides. Do the same for T .

The linear transformation S is reflection in the line y = x . The
transformation T is a rotation clockwise by an angle π

2 radians (or a
rotation anticlockwise by 3π

2 ).
ST means first do T and then do S, so this will place the unit

square in the second quadrant with ST (e1) = (0, −1)T and e2 back in
its original position.

T S means reflect and then rotate, after which the unit square will
be in the fourth quadrant, with T S(e2) = (0, −1)T and e1 back in its
original place.

Their matrices are

AST = AS AT =
(

0 1
1 0

)(
0 1

−1 0

)
=
(−1 0

0 1

)
and

AT S = AT AS =
(

1 0
0 −1

)
.

These matrices are not equal, AST 
= AT S. The columns of AST are
ST (e1) and ST (e2), and these do match the sketch. Check the columns
of T S.

Exercise 7.3 Write the vectors vi as the columns of a matrix,

PB =
⎛⎝ 1 −1 0

0 1 1
1 2 5

⎞⎠ .
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Since |PB | = 2 
= 0, the columns are linearly independent and hence
form a basis of R3. PB is the transition matrix from B coordinates to
standard coordinates, v = PB[v]B . Finding P−1

B by the cofactor method,
or otherwise, the B coordinates of u are

[u]B = P−1
B u = 1

2

⎛⎝ 3 5 −1
1 5 −1

−1 −3 1

⎞⎠⎛⎝ 1
2
3

⎞⎠ =
⎡⎣ 5

4
−2

⎤⎦
B

.

Hence u = 5v1 + 4v2 − 2v3.
Using properties of linear transformations,

S(u) = S(5v1 + 4v2 − 2v3)

= 5S(v1) + 4S(v2) − 2S(v3)

= 5e1 + 4e2 − 2e3

=
⎛⎝ 5

4
−2

⎞⎠ .

Since R(S) is spanned by {e1, e2, e3}, R(S) = R3 and N (S) = {0}. The
linear transformation S is the inverse of the linear transformation T
with T (e1) = v1, T (e2) = v2, T (e3) = v1, which has matrix PB , so the
matrix AS is P−1

B .

Exercise 7.4 If we had such a linear transformation, T : R3 → R2, then

N (T ) =
⎧⎨⎩
⎛⎝ x

y
z

⎞⎠ ∣∣∣∣∣ x = y = z

⎫⎬⎭ =
⎧⎨⎩s

⎛⎝ 1
1
1

⎞⎠ ∣∣∣∣∣ s ∈ R

⎫⎬⎭ ,

so that a basis of N (T ) is the vector (1, 1, 1)T. The rank–nullity theorem
states that the dimension of the range plus the dimension of the null
space is equal to the dimension of the domain, R3. We have nullity(T ) =
1 and rank(T ) = 2 since R(T ) = R2. That is, rank(T ) + nullity(T ) =
2 + 1 = 3, so the theorem would be satisfied. Note that this does not
guarantee the existence of T , but if it did not hold, then we would know
for sure that such a T could not exist.

Since T : R3 → R2, we are looking for a 2 × 3 matrix A such that
T (x) = Ax. Given that T (e1) and T (e2) are the standard basis vectors
of R2, we know that the first two columns of A should be these two
vectors. What about the third column? We can obtain this column from
the basis of the null space since we already have the first two. If c1, c2, c3
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denote the columns of A, then c1 + c2 + c3 = 0, and therefore

T (x) = AT x =
(

1 0 −1
0 1 −1

)⎛⎝ x
y
z

⎞⎠ =
(

x − z
y − z

)
.

Exercise 7.5 Only the linear transformation T S is defined, with AT S =
AT AS,

AT S =
(

1 0 −1
0 1 −1

)
1

2

⎛⎝ 3 5 −1
1 5 −1

−1 −3 1

⎞⎠ =
(

2 4 −1
1 4 −1

)
.

Exercise 7.6 The linear transformation T is given by T (x) = Ax, where
A is a 3 × 4 matrix. The simplest way to answer the questions is to
construct the matrix whose columns are the images of the standard
basis vectors, T (ei ),

A =
⎛⎝ 1 2 5 x

0 1 1 y
−1 2 −1 z

⎞⎠ .

In order to consider the two possibilities in parts (i) and (ii), row reduce
this matrix, beginning with R3 + R1,

A −→
⎛⎝ 1 2 5 x

0 1 1 y
0 4 4 z + x

⎞⎠ −→
⎛⎝ 1 2 5 x

0 1 1 y
0 0 0 z + x − 4y

⎞⎠ .

(i) By the rank–nullity theorem, dim(R(T )) + dim(N (T )) = dimV , and
since T : R4 → R3, n = 4. So for the dimensions of R(T ) and N (T )
to be equal, the subspaces must both have dimension 2. Looking at the
reduced form of the matrix, we see that this will happen if

x − 4y + z = 0.

If the vector x satisfies this condition, then a basis of R(T ) is given by
the columns of A corresponding to the leading ones in the row echelon
form, which will be the first two columns. So a basis of R(T ) is {v1, v2}.

You could also approach this question by first deducing from the
rank–nullity theorem that dim(R(T )) = 2 as above, so R(T ) is a plane
in R3. Therefore, {v1, v2} is a basis, and the Cartesian equation of the
plane is given by ∣∣∣∣∣∣

1 2 x
0 1 y

−1 2 z

∣∣∣∣∣∣ = x − 4y + z = 0.

The components of the vector v3 satisfy this equation, and this is the
condition that the components of x must satisfy.
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(ii) If the linear transformation has dim(N (T )) = 1, then by the
rank–nullity theorem, you know that dim(R(T )) = 3 (and therefore
R(T ) = R3), so the echelon form of the matrix A needs to have three
leading ones. Therefore, the condition that the components of x must
satisfy is

x − 4y + z 
= 0.

Now you can continue with row reducing the matrix A to obtain a basis
for N (T ). The row echelon form of A will have a leading one in the last
column (first multiply the last row by 1/(x − 4y + z) to get this leading
one, then continue to reduced echelon form),

A −→ · · · −→
⎛⎝ 1 2 5 x

0 1 1 y
0 0 0 1

⎞⎠ −→
⎛⎝ 1 2 5 0

0 1 1 0
0 0 0 1

⎞⎠
−→

⎛⎝ 1 0 3 0
0 1 1 0
0 0 0 1

⎞⎠ .

So a basis of ker(T ) is given by the vector w = (−3, −1, 1, 0)T.

Exercise 7.7 The easiest method to determine the required values of λ

is to evaluate the determinant of the matrix whose columns are these
vectors, and then find for what values of λ the determinant is zero:∣∣∣∣∣∣

1 1 2
3 −1 0

−5 1 λ

∣∣∣∣∣∣ = −4 − 4λ = 0.

So you can conclude that the set of vectors is a basis for all values of λ

except λ = −1.
Therefore, each of the sets B and S is a basis of R3. There are two

methods you can use to find the transition matrix P from S coordinates
to B coordinates. One way is to write down the transition matrix PB

from B coordinates to standard, and the transition matrix PS from S
coordinates to standard, and then calculate P = P−1

B PS. Alternatively,
you can use the fact that the columns of P are the B coordinates of the
basis S vectors. Since the first two vectors of each basis are the same,
we will do the latter. We have,

[v1]B =
⎡⎣ 1

0
0

⎤⎦
B

and [v2]B =
⎡⎣ 0

1
0

⎤⎦
B

,

so it only remains to find [s]B . This can be done by Gaussian elimi-
nation. To find constants a, b, c, such that s = av1 + bv2 + cb = Ax,
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we reduce the augmented matrix:⎛⎝ 1 1 2 2
3 −1 0 0

−5 1 1 3

⎞⎠ −→ · · · −→
⎛⎝ 1 0 0 −1

2

0 1 0 −3
2

0 0 1 2

⎞⎠ .

It follows that

[s]B =
⎡⎣−1

2

−3
2

2

⎤⎦ .

(You should carry out this row reduction and all the omitted calcu-
lations.) Therefore, the transition matrix P from S coordinates to B
coordinates is

P = ([v1]B, [v2]B, [s]B) =
⎛⎝ 1 0 −1

2

0 1 −3
2

0 0 2

⎞⎠ .

Then, if [w]S =
⎡⎣ 1

2
2

⎤⎦
S

,

[w]B = P[w]S =
⎛⎝ 1 0 −1

2

0 1 −3
2

0 0 2

⎞⎠⎡⎣ 1
2
2

⎤⎦
S

=
⎡⎣ 0

−1
4

⎤⎦
B

.

You can check this result by finding the standard coordinates of w
from each of these. (You will find w = (7, 1, 3)T.)

Exercise 7.8 To show that each of the vectors in the sets S and B are
in W , you just need to substitute the components of each vector into
the equation of the plane and show that the equation is satisfied. For
example, x − 2y + 3z = (2) − 2(1) + 3(0) = 0. Each set contains two
linearly independent vectors (neither is a scalar multiple of the other),
and you know that a plane is a two-dimensional subspace of R3. Two
linearly independent vectors in a vector space of dimension 2 are a
basis, so each of the sets S and B is a basis of W .

Since x − 2y + 3z = (5) − 2(7) + 3(3) = 0, v ∈ W . Its coordi-
nates in the basis S are easily found (because of the zeros and ones
in the basis vectors),⎛⎝ 5

7
3

⎞⎠ = a

⎛⎝ 2
1
0

⎞⎠+ b

⎛⎝−3
0
1

⎞⎠ =⇒ a = 7, b = 3,

=⇒ [v]S =
[

7
3

]
S
.
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To find the transition matrix M from B to S, you can use the fact that
M = ([b1]S, [b2]S), where B = {b1, b2}. As we just saw for the vector
v, because of the zeros and ones in the basis S, we must have,

[b1]S =
[

1
1

]
S

and [b2]S =
[

2
1

]
S
.

Then the required transition matrix M is

M =
(

1 2
1 1

)
,

so [x]S = M[x]B for all x ∈ W . The matrix M is much easier to calculate
directly than its inverse matrix, which is why the question was posed
this way. However, you need to use the matrix M−1 to change from S
coordinates to B coordinates.

M−1 =
(−1 2

1 −1

)
, so [v]B =

(−1 2
1 −1

) [
7
3

]
S

=
[−1

4

]
B

,

which is easily checked (by calculating v = −b1 + 4b2).

Exercise 7.9 The answer, using the notation in Section 7.4, is A[B,B ′] =
P−1

B ′ APB , where T (x) = Ax for all x ∈ R3. Now,

A =
⎛⎝ 0 1

−5 13
−7 16

⎞⎠ , PB =
(

3 5
1 2

)

and

P−1
B ′ =

⎛⎜⎝ 1 −1 0
0 2 1

−1 2 2

⎞⎟⎠
−1

=
⎛⎜⎝

2
3

2
3 −1

3
−1

3
2
3 −1

3
2
3 −1

3
2
3

⎞⎟⎠ ,

where we have omitted the details of the calculation of this inverse. It
then follows that

A[B,B ′] = P−1
B ′ APB =

⎛⎝ 1 3
0 1

−2 −1

⎞⎠ .

Exercise 7.10 C∞(R) is not empty; for example, the zero function is in
this set, and so is ex . By standard results of calculus, the sum of two
differentiable functions is again differentiable; and a scalar multiple
of a differentiable function is differentiable. Thus, if f, g ∈ C∞(R),
then their sum f + g is also differentiable arbitrarily often, and the
same is true of α f for any α ∈ R. So C∞(R) is closed under scalar
multiplication.
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The function D is a mapping D : C∞(R) → C∞(R) since D( f ) =
f ′ where f ′ : x �→ f ′(x) and f ′ can also be differentiated arbitrarily
often. To show D is a linear operator, you only need to show that it is a
linear function. We have:

D( f + g) = ( f + g)′ = f ′ + g′ = D( f ) + D(g)

and

D(α f ) = (α f )′ = α f ′ = αD( f ).

These are just the rules of differentiation which you encounter in cal-
culus; that is, the derivative of the sum of two functions is the sum of
the derivatives, and the derivative of a scalar multiple of a function is
the scalar multiple of the derivative.

Chapter 8 exercises

Exercise 8.1 To diagonalise the matrix A, first find the characteristic
equation and solve for the eigenvalues.

|A − λI | =
∣∣∣∣ 4 − λ 5

−1 −2 − λ

∣∣∣∣ = λ2 − 2λ − 3 = (λ − 3)(λ + 1) = 0.

The eigenvalues are λ = 3 and λ = −1. Next find a corresponding
eigenvector for each eigenvalue:

λ1 = −1 : A + I =
(

5 5
−1 −1

)
→
(

1 1
0 0

)
=⇒ v1 =

(−1
1

)
.

λ2 = 3 : A − 3I =
(

1 5
−1 −5

)
→
(

1 5
0 0

)
=⇒ v2 =

(−5
1

)
.

Then you can choose

P =
(−1 −5

1 1

)
, then D =

(−1 0
0 3

)
, and P−1 AP = D.

Check that your eigenvectors are correct by calculating AP ,

AP =
(

4 5
−1 −2

)(−1 −5
1 1

)
=
(

1 −15
−1 3

)
= ( − 1v1 3v2) = P D.

This checks that Av1 = (−1)v1 and Av2 = 3v1. You can also check
your answer by finding P−1 and calculating P−1 AP:

P−1 AP = 1

4

(
1 5

−1 −1

)(
1 −15

−1 3

)
=
(−1 0

0 3

)
= D.
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Exercise 8.2 We’ll provide an answer to this question, but leave the
calculations to you. If you have carried out the steps carefully and
checked that AP = P D, you should have a correct answer.

The characteristic polynomial is −λ3 + 14λ2 − 48λ, which is easily
factorised as −λ(λ − 6)(λ − 8). So the eigenvalues are 0 , 6 , 8. Corre-
sponding eigenvectors, respectively, are calculated to be non-zero scalar
multiples of ⎛⎝ 1

−1
2

⎞⎠ ,

⎛⎝ 1
2
2

⎞⎠ ,

⎛⎝ 1
4
0

⎞⎠ .

We may therefore take

P =
⎛⎝ 1 1 1

−1 2 4
2 2 0

⎞⎠ D = diag(0, 6, 8),

and then P−1 AP = D. Your answer is correct as long as AP = P D
and your eigenvectors are scalar multiples of the ones given (taken in
any order as the columns of P , as long as D matches).

Exercise 8.3 The matrix A has only one eigenvalue, λ = 1. The corre-
sponding eigenvectors are all the non-zero scalar multiples of (1, 0)T,
so there cannot be two linearly independent eigenvectors, and hence the
matrix is not diagonalisable.

The eigenvalues of the matrix B are 0 and 2. Since this matrix has
distinct eigenvalues, it can be diagonalised.

Exercise 8.4 If M is an n × n matrix and λ is a real number such that
Mv = λv for some non-zero vector v, then λ is an eigenvalue of M
with corresponding eigenvector v.

Exercise 8.5 We will give this solution in some detail. We have

Av =
⎛⎝ 6 13 −8

2 5 −2
7 17 −9

⎞⎠⎛⎝ 1
0
1

⎞⎠ =
⎛⎝−2

0
−2

⎞⎠ = −2

⎛⎝ 1
0
1

⎞⎠ ,

which shows that v is an eigenvector of A corresponding to the eigen-
value λ1 = −2.

The fact that T (x) = Ax = x for some non-zero vector x, tells us
that x is an eigenvector of A corresponding to the eigenvalue λ2 = 1.
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To find the eigenvector x, we solve (A − I )x = 0,⎛⎝ 5 13 −8
2 4 −2
7 17 −10

⎞⎠ −→
⎛⎝ 1 2 −1

5 13 −8
7 17 −10

⎞⎠ −→
⎛⎝ 1 2 −1

0 3 −3
0 3 −3

⎞⎠

−→
⎛⎝ 1 2 −1

0 1 −1
0 0 0

⎞⎠ −→
⎛⎝ 1 0 1

0 1 −1
0 0 0

⎞⎠ .

So a suitable eigenvector is

v2 =
⎛⎝−1

1
1

⎞⎠ .

To check this,

Av =
⎛⎝ 6 13 −8

2 5 −2
7 17 −9

⎞⎠⎛⎝−1
1
1

⎞⎠ =
⎛⎝−1

1
1

⎞⎠ .

To diagonalise A, we need to find the remaining eigenvalue and
eigenvector. You can do this by finding the characteristic equation
|A − λI | = 0 and solving for λ. But there is an easier way using |A|.
Evaluating the determinant – say, by using the cofactor expansion by
row 1 – you should find that |A| = −6. Since the determinant is the
product of the eigenvalues, and since we already have λ1 = −2 and
λ2 = 1, we can deduce that the third eigenvalue is λ3 = 3. Then a
corresponding eigenvector is obtained from solving (A − 3I )v = 0,

A − 3I =
⎛⎝ 3 13 −8

2 2 −2
7 17 −12

⎞⎠ −→ · · · −→
⎛⎝ 1 0 −1

2

0 1 −1
2

0 0 0

⎞⎠ .

So we can let

v3 =
⎛⎝ 1

1
2

⎞⎠ .

Then take P to be the matrix whose columns are these three eigen-
vectors (in any order) and take D to be the diagonal matrix with the
corresponding eigenvalues in corresponding columns. For example, if
you let

P =
⎛⎝ 1 −1 1

0 1 1
1 1 2

⎞⎠ , then D =
⎛⎝−2 0 0

0 1 0
0 0 3

⎞⎠ .
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We have already checked the first two eigenvectors, so we should now
check the last one, either by calculating AP , or just multiplying,

Av3 =
⎛⎝ 6 13 −8

2 5 −2
7 17 −9

⎞⎠⎛⎝ 1
1
2

⎞⎠ =
⎛⎝ 3

3
6

⎞⎠ = 3v3.

Then we know that P−1 AP = D.
The linear transformation T (x) = Ax can be described as: T is a

stretch by a factor of three along the line x = tv3, t ∈ R; a stretch by a
factor of two and reversal of direction for any vector on the line x = tv1;
and T fixes every vector on the line x = tv2, t ∈ R.

Exercise 8.6 We have

Ax =
⎛⎝−1 1 2

−6 2 6
0 1 1

⎞⎠⎛⎝ 1
1
1

⎞⎠ =
⎛⎝ 2

2
2

⎞⎠ = 2

⎛⎝ 1
1
1

⎞⎠ = 2x,

so x is an eigenvector with corresponding eigenvalue λ = 2. The char-
acteristic polynomial of A is p(λ) = −λ3 + 2λ2 + λ − 2. Since λ = 2
is a root, we know that (λ − 2) is a factor. Factorising, we obtain

p(λ) = (λ − 2)(−λ2 + 1) = −(λ − 2)(λ − 1)(λ + 1),

so the other eigenvalues are λ = 1, −1. Corresponding eigenvectors
are, respectively, (1, 0, 1)T and (0,−2, 1)T. We may therefore take

P =
⎛⎝ 1 1 0

0 1 −2
1 1 1

⎞⎠ , D = diag(1, 2, −1).

Check that AP = ((1)v1 2v2 (−1)v3) = P D.

Exercise 8.7 Expanding the characteristic equation∣∣∣∣∣∣
−λ 0 −2
1 2 − λ 1
1 0 3 − λ

∣∣∣∣∣∣ = 0

by the first row, you should find that (λ − 2) is a common factor in
the two terms, so we can keep things simple, factor this out and not
have to grapple with a cubic polynomial. The matrix A does not have
three distinct eigenvalues. The eigenvalues turn out to be λ1 = 2, with
multiplicity 2, and λ3 = 1. So we first check that we can find two linearly
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independent eigenvectors for λ1 = 2. We solve (A − 2I )v = 0.

A − 2I =
⎛⎝−2 0 −2

1 0 1
1 0 1

⎞⎠ −→
⎛⎝ 1 0 1

0 0 0
0 0 0

⎞⎠ .

Since the matrix (A − 2I ) clearly has rank 1, it is also clear that
dim(N (A − 2I )) = 2 ; the eigenspace has dimension 2. The solutions
are

x = s

⎛⎝ 0
1
0

⎞⎠+ t

⎛⎝−1
0
1

⎞⎠ , s, t ∈ R.

Let

v1 =
⎛⎝ 0

1
0

⎞⎠ , v2 =
⎛⎝−1

0
1

⎞⎠ .

An eigenvector for λ3 = 1 is v3 = (−2, 1, 1)T. These three vectors form
a linearly independent set. Therefore, we may take

P =
⎛⎝−2 −1 0

1 0 1
1 1 0

⎞⎠ , D = diag(1, 2, 2).

You should check your result by calculating AP .
The eigenspace for λ = 2 is two-dimensional and has a basis con-

sisting of (−1, 0, 1)T and (0, 1, 0)T. It is a plane in R3. The eigenspace
for λ3 = 1 is a line in R3 with basis (−2, 1, 1)T.

Exercise 8.8 If 0 is an eigenvalue of A, then, by definition, there is an
eigenvector x corresponding to eigenvalue 0. That means x 
= 0 and that
Ax = 0x = 0. So Ax = 0 has the non-trivial solution x. Conversely, if
there is some non-trivial solution to Ax = 0, then we have a non-
zero x with Ax = 0x, which means that 0 is an eigenvalue (and x a
corresponding eigenvector).

Exercise 8.9 Let v1, v2 be two eigenvectors of a matrix A corresponding
to eigenvalues λ1 and λ2 respectively, with λ1 
= λ2. Then v1, v2 are
linearly independent. To show this, let

a1v1 + a2v2 = 0

be a linear combination which is equal to the zero vector. If we can show
that this equation only has the trivial solution, a1 = a2 = 0, then the
vectors are linearly independent. Multiply this equation through, first
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by λ2 and then by A. Since Av1 = λ1v1 and Av2 = λ2v2, we obtain,

a1λ2v1 + a2λ2v2 = 0

and

a1 Av1 + a2 Av2 = a1λ1v1 + a2λ2v2 = 0.

Now, subtracting the first equation from the last equation in the line
above, we have

a1(λ1 − λ2)v1 = 0.

But v1 
= 0 since it is an eigenvector, and (λ1 − λ2) 
= 0 since λ1 
=
λ2. Therefore, a1 = 0. Returning to the equation a1v1 + a2v2 = 0, we
conclude that a2v2 = 0. But again, v2 
= 0 since it is an eigenvector, so
a2 = 0 and we are done.

To use an inductive argument, we now assume that the statement is
true for n − 1 eigenvectors and show that this implies it is true for n
eigenvectors. In this way, n = 2 =⇒ n = 3 =⇒ n = 4 =⇒ · · · and
so on.

So assume the statement that ‘eigenvectors corresponding to n − 1
different eigenvalues are linearly independent’ is true, and assume we
have n eigenvectors, vi , corresponding to n different eigenvalues, λi .
Let

a1v1 + a2v2 + · · · + an−1vn−1 + anvn = 0

be a linear combination which is equal to the zero vector. Multiply this
equation through, first by λn and then by A. Since Avi = λi vi for each
i , we have

a1λnv1 + a2λnv2 + · · · + an−1λnvn−1 + anλnvn = 0

and

a1 Av1 + a2 Av2 + · · · + an−1 Avn−1 + an Avn

= a1λ1v1 + a2λ2v2 + · · · + an−1λn−1vn−1 + anλnvn = 0.

Subtracting the the first equation from the last equation in the lines
above, we have

a1(λ1 − λn)v1 + a2(λ2 − λn)v2 + · · · + an−1(λn−1 − λn)vn−1 = 0.

But we have assumed that n − 1 eigenvectors corresponding to distinct
eigenvalues are linearly independent, so all the coefficients are zero.
Since, also, (λi − λn) 
= 0 for i = 1, . . . , n − 1, we can conclude that
a1 = a2 = · · · = an−1 = 0. This leaves us with anvn = 0, from which
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we conclude that an = 0. Therefore, the n eigenvectors are linearly
independent.

Exercise 8.10 Since A can be diagonalised, we have P−1 AP = D for
some P , where D = diag(λ1, . . . , λn), these entries being the eigenval-
ues of A. It is given that all λi ≥ 0. We have A = P D P−1.

If B2 = A, we must have

D = P−1 AP = P−1 B2 P = P−1 B P P−1 B P = (P−1 B P)2.

Therefore, let

B = Pdiag(
√

λ1,
√

λ2, . . . ,
√

λn)P−1.

Then reversing the above steps,

B2 = P diag(
√

λ1,
√

λ2, . . . ,
√

λn)P−1 Pdiag(
√

λ1,
√

λ2, . . . ,
√

λn)P−1

= P diag(
√

λ1
2
,
√

λ2
2
, . . . ,

√
λn

2
)P−1

= P D P−1 = A,

and we are done.

Chapter 9 exercises

Exercise 9.1 You diagonalised this matrix in Exercise 8.1. If

P =
(−1 −5

1 1

)
, and D =

(−1 0
0 3

)
,

then P−1 AP = D. Therefore, the matrix An is given by

An = P Dn P−1 =
(−1 −5

1 1

)(
(−1)n 0

0 3n

)
1

4

(
1 5

−1 −1

)
= 1

4

(−(−1)n + 5(3n) −5(−1)n + 5(3n)
(−1)n − 3n 5(−1)n − 3n

)
.

Incidentally, since the matrix A contains only integer entries, any power
of A will also contain only integer entries. Therefore, each of the entries
in the expression for An is an integer; in particular,

(−1)n − 3n

4

is an integer. (Try this for some number n, say n = 5.)

Exercise 9.2 We solve this using matrix powers. We could, of course,
use a change of variable instead. Notice that the system can be written
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as

xt+1 =
(

1 4
1
2 0

)
xt , where xt =

(
xt

yt

)
.

This is xt+1 = Axt , where A is the matrix whose powers we calculated
in Example 9.4. The solution (using the result from Example 9.4) is

xt = At x0

= 1

6

(
2(−1)t + 4(2t ) −8(−1)t + 8(2t )
−(−1)t + 2t 4(−1)t + 2(2t )

)(
1000
1000

)
=
(−1000(−1)t + 2000(2t )

500(−1)t + 500(2t )

)
.

That is,

xt = −1000(−1)t + 2000(2t ), yt = 500(−1)t + 500(2t ).

Exercise 9.3 The system of difference equations can be expressed as
xt+1 = Axt , where

A =
⎛⎝ 7 0 −3

1 6 5
5 0 −1

⎞⎠ , xt =
⎛⎝ xt

yt

zt

⎞⎠ .

You need to diagonalise A. Expanding the determinant by column two,

|A − λI | =
∣∣∣∣∣∣
7 − λ 0 −3

1 6 − λ 5
5 0 −1 − λ

∣∣∣∣∣∣ = (6 − λ)(λ2 − 6λ + 8),

so the eigenvalues are λ = 6, 4, 2. Next find an eigenvector for each
eigenvalue. You should find that if, for example, you set

P =
⎛⎝ 1 0 3

−3 1 −7
1 0 5

⎞⎠ and D =
⎛⎝ 4 0 0

0 6 0
0 0 2

⎞⎠ , then P−1 AP = D.

Then the solution to the system of difference equations is given by
xt = P Dt P−1x0, so it only remains to find P−1 and then multiply the
matrices. But before that, you should check that AP = P D so that you
know that your eigenvalues and eigenvectors are correct!

AP =
⎛⎝ 7 0 −3

1 6 5
5 0 −1

⎞⎠⎛⎝ 1 0 3
−3 1 −7
1 0 5

⎞⎠

=
⎛⎝ 4 0 6

−12 6 −14
4 0 10

⎞⎠ = (4v1 6v2 2v3).
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Since the eigenvalues are distinct, you know that your eigenvectors
are linearly independent (as long as you have chosen one eigenvector
for each eigenvalue). Then P will be invertible, and using either row
operations or the cofactor method,

P−1 = 1

2

⎛⎝ 5 0 −3
8 2 −2

−1 0 1

⎞⎠ ,

so P−1x0 = 1

2

⎛⎝ 5 0 −3
8 2 −2

−1 0 1

⎞⎠⎛⎝−1
2
1

⎞⎠ =
⎛⎝−4

−3
1

⎞⎠ .

Then xt = P Dt P−1x0,⎛⎝ xt

yt

zt

⎞⎠ =
⎛⎝ 1 0 3

−3 1 −7
1 0 5

⎞⎠⎛⎝ 4t 0 0
0 6t 0
0 0 2t

⎞⎠⎛⎝−4
−3
1

⎞⎠

=
⎛⎝ 1 0 3

−3 1 −7
1 0 5

⎞⎠⎛⎝−4(4t )
−3(6t )
1(2t )

⎞⎠ .

Therefore, the required sequences are

xt = −4(4t ) + 3(2t )

yt = 12(4t ) − 3(6t ) − 7(2t )

zt = −4(4t ) + 5(2t )

for t ∈ Z, t ≥ 0.

Notice that you will get the same answer even if you used a different
(correct) matrix P and corresponding matrix D.

To check your result, first see that the initial conditions are satisfied.
Substituting t = 0 into the equations, we get x0 = −1, y0 = 2, z0 = 1
as required. Next look at x1. Using the original difference equations,

x1 = Ax0 =
⎛⎝ 7 0 −3

1 6 5
5 0 −1

⎞⎠⎛⎝−1
2
1

⎞⎠ =
⎛⎝−10

16
−6

⎞⎠ .

From the solutions,

x1 = −4(4) + 3(2) = −10, y1 = 12(4) − 3(6) − 7(2) = 16,

z1 = −4(4) + 5(2) = −6.

Exercise 9.4 Eigenvectors are given, so there is no need to determine
the characteristic polynomial to find the eigenvalues. Simply multiply
A times the given eigenvectors in turn (or you can do all three at once
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by multiplying AP). For example,

Av1 = A

⎛⎝ 1
−1
1

⎞⎠ =
⎛⎝−3

3
−3

⎞⎠ = −3

⎛⎝ 1
−1
1

⎞⎠ ,

so −3 is an eigenvalue and v1 is a corresponding eigenvector. The
other two are eigenvectors for eigenvalue 3. Since v2 and v3 are clearly
linearly independent (neither being a scalar multiple of the other), if

P =
⎛⎝ 1 −3 −1

−1 0 1
1 1 0

⎞⎠ ,

then

P−1 AP = diag(−3, 3, 3) = D.

The system of difference equations is xt+1 = Axt . Let ut = (ut , vt , wt )T

be given by ut = P−1xt . Then the system is equivalent to ut+1 = Dut ,
which is

ut+1 = −3ut , vt+1 = 3vt , wt+1 = 3wt .

This has solutions

ut = (−3)t u0, vt = 3tv0, wt = 3tw0, .

We have to find u0, v0, w0. Now u0 = (u0, v0, w0)T = P−1x0, and (as
can be determined by the usual methods),

P−1 =
⎛⎝ 1/3 1/3 1

−1/3 −1/3 0
1/3 4/3 1

⎞⎠ ,

so

z0 = P−1x0 =
⎛⎝ 1/3 1/3 1

−1/3 −1/3 0
1/3 4/3 1

⎞⎠⎛⎝ 1
1
0

⎞⎠ =
⎛⎝ 2/3

−2/3
5/3

⎞⎠ .

The solution xt is therefore

xt = Pzt =
⎛⎝ 1 −3 −1

−1 0 1
1 1 0

⎞⎠⎛⎝ (2/3)(−3)t

(−2/3)3t

(5/3)3t

⎞⎠

=
⎛⎝ (2/3)(−3)t + (1/3)3t

−(2/3)(−3)t + (5/3)3t

(2/3)(−3)t − (2/3)3t

⎞⎠ .

The term x5 = (2/3)(−3)5 + (1/3)35 = 2(−81) + (81) = −81.
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Exercise 9.5 This is a Markov process, as it consists of a total population
distributed into two states, and the matrix A satisfies the criteria to be
a transition matrix: (1) the entries are positive and (2) the sum of the
entries in each column is 1.

Interpreting the system, each year 40% of those living by the sea
move to the oasis (60% remain) and 20% of those living in the oasis
move to the sea.

To solve the system, we need to diagonalise the matrix A. First find
the eigenvalues:

|A − λI | =
∣∣∣∣ 0.6 − λ 0.2

0.4 0.8 − λ

∣∣∣∣
= 0.48 − 1.4λ + λ2 − 0.08

= λ2 − 1.4λ + 0.4

= (λ − 1)(λ − 0.4) = 0,

so λ = 1 and λ = 0.4 are the eigenvalues.
We find corresponding eigenvectors by solving (A − λI )v = 0:

λ1 = 1 : A − I =
(−0.4 0.2

0.4 −0.2

)
→
(

1 −1
2

0 0

)
=⇒ v1 =

(
1
2

)

λ2 = 0.4 : A − 0.4I =
(

0.2 0.2
0.4 0.4

)
→
(

1 1
0 0

)
=⇒ v2 =

(−1
1

)
.

Then xt = P Dt P−1x0. The initial distribution is x0 = (0.5, 0.5)T,(
xt

yt

)
=
(

1 −1
2 1

)(
1t 0
0 (0.4)t

)
1

3

(
1 1

−2 1

)(
0.5
0.5

)
=
(

1 −1
2 1

)(
1t 0
0 (0.4)t

)( 1
3

−1
6

)
= 1

3

(
1
2

)
− 1

6
(0.4)t

(−1
1

)
.

The expressions for xt and yt are

xt = 1

3
+ 1

6
(0.4)t , yt = 2

3
− 1

6
(0.4)t .

As t → ∞, xt → (1/3, 2/3)T. In terms of the original total population
of 210 inhabitants, we multiply xt by 210, so the long-term population
distribution is 70 inhabitants living by the sea and 140 inhabitants living
in the oasis.

Exercise 9.6 (a) The matrix B is a scalar multiple of A, B = 10 A.
Let λ be an eigenvalue of B with corresponding eigenvector v, so

that Bv = λv. Then substituting 10A for B, we have 10Av = λv and
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so

Av = λ

10
v.

Therefore, A and B have the same eigenvectors, v, and λ/10 is the
corresponding eigenvalue of A.

The matrix A is the transition matrix of a Markov chain because:

1. All the entries are non-negative (ai j ≥ 0).
2. The sum of the entries in each column is 1.

Since λ = 1 is an eigenvalue of a Markov chain, we can deduce that
10λ = 10 is an eigenvalue of B.
(b) To find an eigenvector for λ = 10, solve (B − 10I )x = 0 by reduc-
ing B − 10I :⎛⎝−3 2 2

0 −8 4
3 6 −6

⎞⎠ −→
⎛⎝ 1 2 −2

−3 2 2
0 −2 1

⎞⎠ −→ · · · −→
⎛⎝ 1 0 −1

0 1 −1
2

0 0 0

⎞⎠.

So an eigenvector for λ = 10 is v1 =
⎛⎝ 2

1
2

⎞⎠.

To find the other eigenvalues, we find the characteristic equation.
Expanding the determinant by the first column,

|B − λI | =
∣∣∣∣∣∣
7 − λ 2 2

0 2 − λ 4
3 6 4 − λ

∣∣∣∣∣∣
= (7 − λ)(λ2 − 6λ − 16) + 3(2λ + 4) = 0.

Factoring the quadratic, there is a common factor of λ + 2 in the two
terms, which can be factored out, avoiding a cubic equation. We have

|B − λI | = −(λ + 2)[(λ − 7)(λ − 8) − 6]

= −(λ + 2)(λ2 − 15λ + 50)

= −(λ + 2)(λ − 10)(λ − 5).

So the eigenvalues are λ = 10, 5, −2.
We then find the corresponding eigenvectors. Solving (B − 5I )v =

0, by reducing B − 5I ,⎛⎝ 2 2 2
0 −3 4
3 6 −1

⎞⎠ −→ · · · −→
⎛⎝ 1 1 1

0 3 −4
0 0 0

⎞⎠
−→ · · · −→

⎛⎝ 1 0 7
3

0 1 −4
3

0 0 0

⎞⎠ .
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So an eigenvector for λ = 5 is v2 =
⎛⎝−7

4
3

⎞⎠.

For λ = −2, we have

(B + 2I ) =
⎛⎝ 9 2 2

0 4 4
3 6 6

⎞⎠−→ · · · −→
⎛⎝ 1 2 2

0 1 1
0 0 0

⎞⎠−→
⎛⎝ 1 0 0

0 1 1
0 0 0

⎞⎠ .

So an eigenvector for λ = −2 is v3 =
⎛⎝ 0

−1
1

⎞⎠.

If

P =
⎛⎝ 2 −7 0

1 4 −1
2 3 1

⎞⎠ and D =
⎛⎝ 10 0 0

0 5 0
0 0 −2

⎞⎠ ,

then P−1 B P = D. The eigenvectors and eigenvalues must be listed in
corresponding columns.

To check,

B P =
⎛⎝ 7 2 2

0 2 4
3 6 4

⎞⎠⎛⎝ 2 −7 0
1 4 −1
2 3 1

⎞⎠ =
⎛⎝ 20 −35 0

10 20 2
20 15 −2

⎞⎠ = P D.

Why are you being asked to check? So that you know you do have the
correct eigenvalues and eigenvectors. This gives you an opportunity to
look for and correct any minor mistakes you may have made.

By part (a), the eigenvalues and corresponding eigenvectors of A
are λ = 1 with eigenvector v1, λ = 0.5 with corresponding eigenvector
v2 and λ = −0.2 with corresponding eigenvector v3.
(c) The long-term distribution of a Markov chain is given by the eigen-
vector for λ = 1. Therefore, the distribution is proportional to the entries
of the vector v1:

1

5

⎛⎝ 2
1
2

⎞⎠ 1000 =
⎛⎝ 400

200
400

⎞⎠ .

That is, 400 will be employed full-time, 200 will be employed part-
time and 400 will remain unemployed. So a total of 600 will be
employed.

Notice that you did not need to use the initial conditions and you did
not need to find the solution to xt = Axt−1 to answer this question. This
would have been a perfectly acceptable method, but one which would
take much more time. You only needed to know that since (0.5)t → 0
and (−0.2)t → 0 as t → ∞, the eigenvector corresponding to λ = 1
will give the long-term distribution. It must be a distribution vector;
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that is, the components of the column vector must sum to 1, which is
why we needed the factor 1/5. When multiplied by the total population
of 1,000, this gives the distribution of workers.

Exercise 9.7 We can express the system of differential equations in
matrix form as y′ = Ay, where

A =
(

4 5
−1 −2

)
, y =

(
y1(t)
y2(t)

)
.

This is the matrix you diagonalised in Exercise 8.1 (and used in Exer-
cise 9.1). If

P =
(−1 −5

1 1

)
and D =

(−1 0
0 3

)
, then P−1 AP = D.

To solve y′ = Ay, you set y = Pz to define new functions z =
(z1(t), z2(t))T. Then y′ = (Pz)′ = Pz′ and Ay = A(Pz) = APz,
so that

y′ = Ay ⇐⇒ Pz′ = APz ⇐⇒ z′ = P−1 APz = Dz.

The system z′ = Dz is uncoupled; the equations are

z′
1 = −z1. z′

2 = 3z2

with solutions

z1(t) = z1(0)e−t , z2(t) = z2(0)e3t .

To find z1(0), z2(0), we use z = P−1y. Since y1(0) = 2, y2(0) = 6, we
have (

z1(0)
z2(0)

)
= 1

4

(
1 5

−1 −1

)(
2
6

)
=
(

8
−2

)
.

So the solution of the original system is

y = Pz =
(−1 −5

1 1

)(
8e−t

−2e3t

)
;

that is,

y1(t) = −8e−t + 10e3t

y2(t) = 8e−t − 2e3t .

To check the solution, we first note that the initial conditions are satisfied
by substituting t = 0 into the equations,

y1(0) = −8(1) + 10(1) = 2 and y2(0) = 8(1) − 2(1) = 6.
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Next check that you obtain the same values for y′(0) from both the
original equations and the derivatives of the solutions. From the original
system, (

y′
1(0)

y′
2(0)

)
=
(

4 5
−1 −2

)(
2
6

)
=
(

38
−14

)
.

Differentiating the solution functions:

y′
1(t) = 8e−t + 30e3t

y′
2(t) = −8e−t − 6e3t

=⇒
{

y′
1(0) = 38

y′
2(0) = −14

.

Exercise 9.8 This system of differential equations can be expressed as
y′ = Ay, where

A =
⎛⎝−1 1 2

−6 2 6
0 1 1

⎞⎠ , y =
⎛⎝ y1

y2

y3

⎞⎠ .

You diagonalised this matrix in Exercise 8.6. Using this result, if

P =
⎛⎝ 1 1 0

0 1 −2
1 1 1

⎞⎠ and D =
⎛⎝ 1 0 0

0 2 0
0 0 −1

⎞⎠ ,

then P−1 AP = D. To find the general solution of the system of differ-
ential equations, we define new functions z = (z1(t), z2(t), z3(t))T by
setting y = Pz. Then substituting into y′ = Ay, we have

y′ = (Pz)′ = Pz′ = Ay = A(Pz) = APz

and hence

z′ = P−1 APz = Dz.

The general solution of z′ = Dz is⎛⎝ z1

z2

z3

⎞⎠ =
⎛⎝ αet

βe2t

γ e−t

⎞⎠ ,

so the general solution of the original system is given by

y =
⎛⎝ y1

y2

y3

⎞⎠ = Pz =
⎛⎝ 1 1 0

0 1 −2
1 1 1

⎞⎠⎛⎝ αet

βe2t

γ e−t

⎞⎠ ;
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that is,

y1(t) = αet + βe2t

y2(t) = βe2t − 2γ e−t

y3(t) = αet + βe2t + γ e−t

for arbitrary constants α, β, γ ∈ R.

Exercise 9.9 The system of differential equations is y′ = Ay, where A
is the matrix

A =
⎛⎝ 4 0 4

0 4 4
4 4 8

⎞⎠ .

This is the matrix we used in the example of Section 9.2.5 (and which
we diagonalised in Example 8.23), so we have already done most of
the work for this solution. Using the same matrices P and D as we did
there, we set y = Pz to define new functions z = (z1(t), z2(t), z3(t))T,
and then find the solutions to z′ = Dz. We have⎛⎝ z′

1
z′

2
z′

3

⎞⎠ =
⎛⎝ 4 0 0

0 0 0
0 0 12

⎞⎠⎛⎝ z1

z2

z3

⎞⎠
with solutions:

z1(t) = z1(0)e4t , z2(t) = z2(0)e0t = z2(0), z3(t) = z3(0)e12t .

Since the initial conditions are essentially the same, z(0) = P−1y(0),
so ⎛⎝ z1(0)

z2(0)
z3(0)

⎞⎠ = 1

6

⎛⎝−3 3 0
−2 −2 2
1 1 2

⎞⎠⎛⎝ 6
12
12

⎞⎠ =
⎛⎝ 3

−2
7

⎞⎠
and the solutions are given by

y =
⎛⎝ y1

y2

y3

⎞⎠ = Pz =
⎛⎝−1 −1 1

1 −1 1
0 1 2

⎞⎠⎛⎝ 3e4t

−2
7e12t

⎞⎠ , t ∈ R;

that is,

y1(t) = −3e4t + 2 + 7e12t

y2(t) = 3e4t + 2 + 7e12t

y3(t) = −2 + 14e12t .

Notice that the eigenvalue λ = 0 causes no problems here. You can
check the result using y(0) and y′(0).
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Exercise 9.10 To answer the first question, put A into reduced row
echelon form,

A =
⎛⎝ 5 −8 −4

3 −5 −3
−1 2 2

⎞⎠ −→ · · · −→
⎛⎝ 1 0 4

0 1 3
0 0 0

⎞⎠ .

Setting the non-leading variable z to be equal to t , a general solution of
the system of equations Ax = 0 is

x =
⎛⎝−4t

−3t
t

⎞⎠ = t

⎛⎝−4
−3
1

⎞⎠ = tv3, t ∈ R.

So a basis of N (A) is {v3}.
To show that v1 is an eigenvector of A,

Av1 =
⎛⎝ 5 −8 −4

3 −5 −3
−1 2 2

⎞⎠⎛⎝ 2
1
0

⎞⎠ =
⎛⎝ 2

1
0

⎞⎠ = v1,

so v1 is an eigenvector with corresponding eigenvalue λ = 1.
Next find all the eigenvectors of A which correspond to λ = 1 by

solving (A − I )v = 0:

A − I =
⎛⎝ 4 −8 −4

3 −6 −3
−1 2 1

⎞⎠ −→
⎛⎝ 1 −2 −1

0 0 0
0 0 0

⎞⎠ ,

with solution⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 2s + t

s
t

⎞⎠ = s

⎛⎝ 2
1
0

⎞⎠+ t

⎛⎝ 1
0
1

⎞⎠ = sv1 + tv2, s, t ∈ R.

Therefore, the matrix A has an eigenvalue λ = 1 of multiplicity 2 with
two linearly independent eigenvectors. Since Ax = 0 has a non-trivial
solution, we know that λ = 0 is the third eigenvalue of A, with corre-
sponding eigenvector v3. Then an invertible matrix P and a diagonal
matrix D such that P−1 AP = D are given by

P =
⎛⎝ 2 1 −4

1 0 −3
0 1 1

⎞⎠ , D =
⎛⎝ 1 0 0

0 1 0
0 0 0

⎞⎠ .

You should now check that the eigenvectors are correct by showing
AP = P D.

Using this diagonalisation, A = P D P−1, so that An = P Dn P−1.
But Dn = D for n ≥ 1, since the entries on the diagonal are either 1 or 0.
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Therefore,

An = P Dn P−1 = P D P−1 = A.

A matrix with the property that An = A for all n ≥ 1 is said to be
idempotent (meaning the same for all powers). We shall see more about
these in Chapter 12.

The solution to the system of difference equations given by xt+1 =
Axt is xt = At x0. So for all t ≥ 1, this is just xt = Ax0. Given the initial
conditions, we have

xt = Ax0 =
⎛⎝ 5 −8 −4

3 −5 −3
−1 2 2

⎞⎠⎛⎝ 1
1
1

⎞⎠ =
⎛⎝−7

−5
3

⎞⎠ , t ≥ 1.

Therefore, the sequences are:

xt : {1, −7, −7, −7, . . .}, yt : {1, −5, −5, −5, . . .},
zt : {1, 3, 3, 3, . . .}.

Chapter 10 exercises

Exercise 10.1 Property (iii) of the definition of inner product follows
from the fact that

〈A, A〉 =
m∑

i=1

n∑
j=1

a2
i j ≥ 0

is the sum of positive numbers and this sum equals 0 if and only if for
every i and every j , ai j = 0, which means that A is the zero matrix,
which in this vector space is the zero vector. Property (i) is easy to
verify, as also is (ii).

Exercise 10.2 We have:

‖x + y‖2 + ‖x − y‖2 = 〈x + y, x + y〉 + 〈x − y, x − y〉
= 〈x, x〉 + 2〈x, y〉 + 〈y, y〉 + 〈x, x〉 − 2〈x, y〉 + 〈y, y〉
= 2〈x, x〉 + 2〈y, y〉
= 2‖x‖2 + 2‖y‖2.

Exercise 10.3 The set W 
= ∅ because 0 ∈ W since 〈0, v〉 = 0. Sup-
pose x, y ∈ W and α, β ∈ R. Because x ⊥ v and y ⊥ v, we have (by
definition) 〈x, v〉 = 〈y, v〉 = 0. Therefore,

〈αx + βy, v〉 = α〈x, v〉 + β〈y, v〉 = α(0) + β(0) = 0,



Comments on exercises 493

and hence αx + βy ⊥ v; that is, αx + βy ∈ W . Therefore, W is a sub-
space. In fact, W is the set {x | 〈x, v〉 = 0}, which is the hyperplane
through the origin with normal vector v.

The proof that S⊥ is a subspace is similar. The vector 0 is in S⊥

since 〈0, v〉 = 0 for all v ∈ S, so S⊥ is non-empty. If x, y ∈ S⊥ and
α, β ∈ R, then x and y are each orthogonal to all the vectors in S; that
is, if v ∈ S, then 〈x, v〉 = 〈y, v〉 = 0. Therefore,

〈αx + βy, v〉 = α〈x, v〉 + β〈y, v〉 = α(0) + β(0) = 0 for all v ∈ S.

Therefore, αx + βy ∈ S⊥, so S⊥ is a subspace of Rn. The subspace
S⊥ is known as the orthogonal complement of S.

Exercise 10.4 If P is an orthogonal matrix, then PT P = I . Using the
fact that the product of two n × n determinants is the determinant of
the product, we have

det(PT) det(P) = det(PT P) = det(I ) = 1.

But det(PT) = det(P), so this becomes ( det(P))2 = 1, which implies
that det(P) = ±1.

Exercise 10.5 To show this is an inner product, we need to show it
satisfies each of the three properties in the definition.
(i) You can show that 〈x, y〉 = 〈y, x〉 for all x, y ∈ R2 by letting x =
(x1, x2)T, y = (y1, y2)T, multiplying out the matrix product xT Ay and
using properties of real numbers. But there is an easier way. The given
matrix A is symmetric, so AT = A. Since xT Ay is a 1 × 1 matrix, it is
also symmetric. Therefore,

〈x, y〉 = xT Ay = (xT Ay)T = yT ATx = yT Ax = 〈y, x〉.

(ii) We next show that 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 for all x, y, z ∈
R2 and all α, β ∈ R. This follows from the rules of matrix algebra:

〈αx + βy, z〉 = (αx + βy)T Az = (αxT + βyT)Az

= αxT Az + βyT Az = α〈x, z〉 + β〈y, z〉.

(iii) Finally, we need to show that 〈x, x〉 ≥ 0 for all x ∈ R2, and 〈x, x〉 =
0 if and only if x = 0. If x = 0, then 〈x, x〉 = 0T A0 = 0, so it just
remains to show that 〈x, x〉 > 0 if x 
= 0.
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Assume x = (x1, x2) is any non-zero vector in R2. If x2 = 0, then
x1 
= 0 (otherwise, we would have the zero vector), and

〈x, x〉 = ( x1 0 )
(

5 2
2 1

)(
x1

0

)
= 5x2

1 > 0.

If x2 
= 0, then

〈x, x〉 = ( x1 x2 )
(

5 2
2 1

)(
x1

x2

)
= 5x2

1 + 4x1x2 + x2
2

= x2
2

(
5

x2
1

x2
2

+ 4
x1

x2
+ 1

)
= x2

2 (5t2 + 4t + 1), for t ∈ R.

Now f (t) = 5t2 + 4t + 1 is a quadratic function whose graph is a
parabola. To see if it crosses the x axis, we look for the solutions
of 5t2 + 4t + 1 = 0, which are given by the quadratic formula: t =
(−4 ± √

16 − 4(5)(1))/10. So there are no real solutions, therefore
5t2 + 4t + 1 is either always strictly positive or strictly negative, and if
t = 1, for example, it is positive, so we can conclude that

〈x, x〉 = x2
2 (5t2 + 4t + 1) > 0 for all x 
= 0 ∈ R2.

Therefore, this is an inner product on R2.
(a) Using this inner product, for the given vectors v and w,

〈v, w〉 = ( 1 1 )
(

5 2
2 1

)(−1
2

)
= ( 7 3 )

(−1
2

)
= −1.

(b) The norm of v satisfies

‖v‖2 = 〈v, v〉 = ( 1 1 )
(

5 2
2 1

)(
1
1

)
= ( 7 3 )

(
1
1

)
= 10,

so ‖v‖ = √
10.

(c) You need to find the set of all vectors x = (x, y)T for which 〈v, x〉 =
0; that is,

〈v, x〉 = ( 1 1 )
(

5 2
2 1

)(
x
y

)
= ( 7 3 )

(
x
y

)
= 7x + 3y = 0.

Therefore,

S⊥ =
{(

x
y

) ∣∣∣∣ 7x + 3y = 0
}

.

A basis of S⊥ is {(−3
7

)}
.

(d) A basis of S = Lin(v) is the vector v. Therefore, you need to express
w as a linear combination of v and the basis vector n = (−3, 7)T of S⊥.
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That is, find a, b such that(−1
2

)
= a

(
1
1

)
+ b

(−3
7

)
.

You can solve this directly by writing out the equations and solving
them simultaneously, or by using an inverse matrix,(

a
b

)
= 1

10

(
7 3

−1 1

)(−1
2

)
= 1

10

(−1
3

)
.

Check your answer:(−1
2

)
= − 1

10

(
1
1

)
+ 3

10

(−3
7

)
.

(e) The linearly independent vectors v and n are orthogonal under this
inner product, so all you need to do is to normalise them. You already
know the length of v; the length of n is given by

‖n‖2 = 〈n, n〉 = (−3 7 )
(

5 2
2 1

)(−3
7

)
= ( −1 −1 )

(−3
7

)
= 10,

so ‖n‖ = √
10. Therefore,

u1 = 1√
10

(
1
1

)
, u2 = 1√

10

(−3
7

)
form an orthonormal basis of R2 with the given inner product.

Exercise 10.6 To start with,

u1 = v1/‖v1‖ = (1/
√

2)(1, 0, 1, 0)T.

Then we let

w2 = v2 − 〈v2, u1〉u1 =

⎛⎜⎜⎝
1
2
1
1

⎞⎟⎟⎠− 2√
2

1√
2

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
2
0
1

⎞⎟⎟⎠ .

Now check that w2 ⊥ u1 by calculating 〈w2, u1〉 = 0. Then

u2 = w2

‖w2‖ = 1√
5

⎛⎜⎜⎝
0
2
0
1

⎞⎟⎟⎠ .

Next (and you should fill in the missing steps),

w3 = v3 − 〈v3, u2〉u2 − 〈v3, u1〉u1 = · · · =

⎛⎜⎜⎝
−1

−1/5
1

2/5

⎞⎟⎟⎠ .
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Now let w′
3 = (−5, −1, 5, 2)T (for ease of calculation) and check that

w′
3 is perpendicular to both u1 and u2.

Normalising w3, we obtain

u3 = 1√
55

(−5, −1, 5, 2)T.

The required basis is {u1, u2, u3} .

Exercise 10.7 Choose two linearly independent vectors in the plane as
a basis. (This is most easily done by choosing one of the components to
be 0, another to be equal to 1, say, and then solving the equation for the
third. By choosing the zeros differently, you obtain linearly independent
vectors.) For example, let

v1 =
⎛⎝ 2

1
0

⎞⎠ , v2 =
⎛⎝ 3

0
−1

⎞⎠ .

Then {v1, v2} is a basis of W . Now use Gram–Schmidt orthonormali-
sation. Set u1 = (2/

√
5, 1/

√
5, 0)T and

w =
⎛⎝ 3

0
−1

⎞⎠−
〈⎛⎝ 3

0
−1

⎞⎠ ,

⎛⎜⎝
2√
5

1√
5

0

⎞⎟⎠〉
⎛⎜⎝

2√
5

1√
5

0

⎞⎟⎠
=
⎛⎝ 3

0
−1

⎞⎠−
⎛⎝ 12

5
6
5
0

⎞⎠ =
⎛⎝ 3

5

−6
5−1

⎞⎠ .

The vector w2 = (3, −6, −5)T is parallel to w. (This is a good
time to check that w2 ⊥ u1 and also that w2 ∈ W .) Now set u2 =
(3/

√
70, −6/

√
70, −5/

√
70)T. The set {u1, u2} is an orthonormal

basis of W .
To extend this to an orthonormal basis of R3, note that W is a

plane with normal vector n = (1, −2, 3)T, so n is perpendicular to
every vector in W . If you set u3 = (1/

√
14, −2/

√
14, 3/

√
14)T, then

{u1, u2, u3} is an orthonormal basis of R3 as required.

Chapter 11 exercises

Exercise 11.1 A can be orthogonally diagonalised because it is sym-
metric. The characteristic polynomial of A is

|A − λI | =
∣∣∣∣∣∣
7 − λ 0 9

0 2 − λ 0
9 0 7 − λ

∣∣∣∣∣∣
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= (2 − λ)[(7 − λ)(7 − λ) − 81]

= (2 − λ)(λ2 − 14λ − 32)

= (2 − λ)(λ − 16)(λ + 2),

where we have expanded the determinant using the middle row. So
the eigenvalues are 2, 16, −2. An eigenvector for λ = 2 is given by
reducing the matrix A − 2I :

(A − 2I ) =
⎛⎝ 5 0 9

0 0 0
9 0 5

⎞⎠ · · · −→ · · ·
⎛⎝ 1 0 0

0 0 1
0 0 0

⎞⎠ .

This means x = z = 0. So we may take (0, 1, 0)T. This already has
length 1 so there is no need to normalise it. (Recall that we need
three eigenvectors which are of length 1.) For λ = −2, we find that an
eigenvector is (−1, 0, 1)T (or some multiple of this). To normalise (that
is, to make of length 1), we divide by its length, which is

√
2, obtaining

(1/
√

2)(−1, 0, 1)T. For λ = 16, we find a normalised eigenvector is
(1/

√
2)(1, 0, 1). It follows that if we let

P =
⎛⎝ 0 −1/

√
2 1/

√
2

1 0 0
0 1/

√
2 1/

√
2

⎞⎠ ,

then P is orthogonal and PT AP = D = diag(2,−2, 16). Check this!

Exercise 11.2 To show that v1 is an eigenvector of A, find Av1.

Av1 =
⎛⎝ 2 1 −2

1 2 2
−2 2 −1

⎞⎠⎛⎝ 1
1
0

⎞⎠ =
⎛⎝ 3

3
0

⎞⎠ = 3v1,

so v1 is an eigenvector corresponding to λ1 = 3.
For the eigenvectors,

A − 3I =
⎛⎝−1 1 −2

1 −1 2
−2 2 −4

⎞⎠ −→
⎛⎝ 1 −1 2

0 0 0
0 0 0

⎞⎠ ,

with solutions

x =
⎛⎝ s − 2t

s
t

⎞⎠ = s

⎛⎝ 1
1
0

⎞⎠+ t

⎛⎝−2
0
1

⎞⎠ = sv1 + tv2, s, t ∈ R.

Therefore, a basis of the eigenspace is {v1, v2}.
To orthogonally diagonalise this matrix, you need to make this

basis into an orthonormal basis of the eigenspace, and you need to find
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another eigenvalue and corresponding eigenvalue. You have choices
available to you as to how to do each one.

You can find the remaining eigenvalue by finding the characteristic
equation, |A − λI | = 0, and then find the corresponding eigenvector.
Alternatively, you know that the eigenspace of λ1 = 3 is a plane in
R3, and you can deduce the normal to this plane from the reduced
row echelon form of A − 3I to be the vector v3 = (1, −1, 2)T, so this
must be the third eigenvector. Then you can find the corresponding
eigenvalue by

Av3 =
⎛⎝ 2 1 −2

1 2 2
−2 2 −1

⎞⎠⎛⎝ 1
−1
2

⎞⎠ =
⎛⎝−3

3
−6

⎞⎠ = −3v3.

So λ3 = −3. You still need to obtain an orthonormal basis for the
eigenspace of λ1 = 3. Using Gram–Schmidt, set u1 = ( 1√

2
, 1√

2
, 0)T,

then

w =
⎛⎝−2

0
1

⎞⎠−
〈⎛⎝−2

0
1

⎞⎠ ,

⎛⎜⎝
1√
2

1√
2

0

⎞⎟⎠〉
⎛⎜⎝

1√
2

1√
2

0

⎞⎟⎠

=
⎛⎝−2

0
1

⎞⎠+ 2√
2

⎛⎜⎝
1√
2

1√
2

0

⎞⎟⎠ =
⎛⎝−1

1
1

⎞⎠ .

Now check that w is indeed orthogonal to the other two eigenvectors.
Taking the unit eigenvectors, you can set

P =
⎛⎜⎝

1√
2

− 1√
3

1√
6

1√
2

1√
3

− 1√
6

0 1√
3

2√
6

⎞⎟⎠ and D =
⎛⎝ 3 0 0

0 3 0
0 0 −3

⎞⎠ .

Then PT = P−1 (P is an orthogonal matrix) and

PT AP = P−1 AP = D.

Exercise 11.3 The matrix representing the quadratic form q(x, y, z) is

A =
⎛⎝−4 3 1

3 −2 −2
1 −2 −4

⎞⎠ .

The first two principal minors are

a11 = −4 and
∣∣∣∣−4 3

3 −2

∣∣∣∣ = −1.
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The first is negative and the second negative. If the matrix (and the
quadratic form) were positive definite, both should be positive. If it were
negative definite, the first should be negative and the second positive.
So it is neither. Since |A| = 10 
= 0, the quadratic form is indefinite.

For the second quadratic form, f (x, y, z) = xT Bx, the matrix is

B =
⎛⎝−4 1 3

1 −2 −2
3 −2 −4

⎞⎠ .

For this matrix, the principal minors are

b11 = −4,

∣∣∣∣−4 1
1 −2

∣∣∣∣ = 7, |B| = −6.

Therefore, this quadratic form is negative definite.

Exercise 11.4 We found an orthogonal matrix P for which D =
diag(2, −2, 16). Changing the order of the columns to satisfy the
condition λ1 ≥ λ2 ≥ λ3, let Q = (u1, u2, u3) be the matrix

Q =
⎛⎝ 1/

√
2 0 −1/

√
2

0 1 0
1/

√
2 0 1/

√
2

⎞⎠ , so that D =
⎛⎝ 16 0 0

0 2 0
0 0 −1

⎞⎠ .

Then, if x = Qz, with x = (x, y, z)T and z = (X, Y, Z )T, we have

f (x, y, z) = xT Ax = zT Dz = 16X2 + 2Y 2 − 2Z2.

Since A has both positive and negative eigenvalues, the quadratic form
is indefinite.

To find a = (a, b, c) such that f (a, b, c) = −8, look at the expres-
sion for f (x, y, z) in the coordinates with respect to the basis B of
eigenvectors of A, which are the columns of Q. The unit eigenvector
u1 = (−1/

√
2, 0, 1/

√
2)T has B coordinates, [0, 0, 1]B and will there-

fore give the value f (x, y, z) = −2Z2 = −2. So to obtain the value
f (x, y, z) = −8, we can take the vector [0, 0, 2]B , which in standard
coordinates is 2u3. You can check by substituting these values into f
that, indeed, f (−2/

√
2, 0, 2/

√
2) = −8.

Exercise 11.5 If e1, e2, . . . , en are the standard basis vectors in Rn, then
ei has 1 as its i th component and 0 elsewhere. Then, if A is positive
definite,

eT
i Aei = aii > 0,

since A is positive definite.
The converse of this statement, however, is far from true. There are

many matrices with positive numbers on the main diagonal which are
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not positive definite. For example, the matrix

A =
(

1 2
2 1

)
has eigenvalues λ = 3, −1, so it is indefinite.

Exercise 11.6 The matrix BT B is a k × k symmetric matrix since
(BT B)T = BT(BT)T = BT B. To show it is a positive definite matrix, we
need to show that xT BT Bx ≥ 0 for any vector x ∈ Rn, and xT BT Bx = 0
if and only if x = 0. We have, for all x ∈ Rn,

xT BT Bx = (Bx)T(Bx) = 〈Bx, Bx〉 = ||Bx||2,
which is positive for all Bx 
= 0; and ||Bx||2 = 0 if and only if Bx = 0.

Since rank(B) = k, the reduced row echelon form of B will have a
leading one in every column, so the only solution of Bx = 0 is x = 0.
Therefore, xT(BT B)x > 0 for all x 
= 0, and xT(BT B)x = 0 if and only
if x = 0. Hence the matrix BT B is positive definite.

If an n × n symmetric A is positive definite, then all of its eigenval-
ues are positive, so 0 is not an eigenvalue of A. Therefore, the system
of equations Ax = 0 has no non-trivial solution, and so A is invertible.

Exercise 11.7 The matrix A is

A =
⎛⎝ 1 −2 −1

−2 5 3
−1 3 2

⎞⎠ .

To determine if A is positive definite, negative definite or indefinite, we
consider the principal minors:

(a11) = 1 > 0,

∣∣∣∣ 1 −2
−2 5

∣∣∣∣ = 1 > 0

|A| = 1(10 − 9) + 2(−4 + 3) − 1(−6 + 5) = 0.

Since a11 = 1 > 0, the matrix A is not negative definite. Since |A| = 0,
one of the eigenvalues of A is 0, so A is not positive definite.

To determine if A is indefinite, we need to find the eigenvalues.
Expanding the characteristic equation,

|A − λI | =
∣∣∣∣∣∣
1 − λ −2 −1
−2 5 − λ 3
−1 3 2 − λ

∣∣∣∣∣∣
= −λ3 + 8λ2 − 3λ = −λ(λ2 − 8λ + 3).

The roots are λ = 0 and, using the quadratic formula,

λ = 8 ± √
64 − 12

2
.
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So both roots of the quadratic equation are positive. Therefore, the
matrix is not indefinite, it is positive semi-definite. Therefore, there is
no point (a, b, c) for which f (a, b, c) < 0.

Exercise 11.8 We have q(x, y) = xT Ax = 5x2 − 6xy + 5y2 = 2. This
time we orthogonally diagonalise the matrix

A =
(

5 −3
−3 5

)
using Q = (w1, w2), where

Q =
(− 1√

2
1√
2

1√
2

1√
2

)
.

Then

QT AQ = D =
(

8 0
0 2

)
,

since Aw1 = 8w1 and Aw2 = 2w2. Then, if x = Qz, in the new coor-
dinates, z = (X, Y )T, the equation becomes

xT Ax = zT Dz = 8X2 + 2Y 2 = 2,

or 4X2 + Y 2 = 1. To sketch this, we first need to find the positions
of the new X and Y axes. This time we must rely only on the eigen-
vectors. The new X axis is in the direction of the vector w1, and the
new Y axis is in the direction of w2. (So this linear transformation
is actually a reflection about a line through the origin.) We first draw
these new axes, and then sketch the ellipse in the usual way. This time
it intersects the X axis in X = ±(1/2) and the Y axis in Y = ±1,
as shown below. Notice that this is exactly the same ellipse as in
Example 11.41 (as it should be!); we merely used a different change of
basis to sketch it.

y

x

X Y

1
2

–

1
2

–1

1
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Exercise 11.9 The matrix A is

A =
(

9 2
2 6

)
.

Its eigenvalues are 5 and 10. Since these are both positive, the quadratic
form is positive definite. This also indicates that there is an orthogonal
matrix P such that PT AP = D = diag(5, 10), and so that xT Ax = 10
is an ellipse.

The vectors v1 = (−1, 2)T and v2 = (2, 1)T are eigenvectors of A
corresponding to the eigenvalues 5 and 10, respectively. If

P =
( 2√

5
− 1√

5
1√
5

2√
5

)
and D =

(
10 0
0 5

)
,

then PT AP = D. Set x = Pz with x = (x, y)T, z = (X, Y )T. Then the
curve xT Ax = 10 becomes

xT Ax = zT Dx = 10X2 + 5Y 2 = 10,

which is an ellipse. The linear transformation defined by P is a rotation,
but not by an angle which we recognise. Therefore, the images of the x
and y axes under P are found by looking at the images of the standard
basis vectors under the linear transformation defined by P . Thus, the
direction of the positive X axis is given by v2 = (2, 1)T and the direction
of the positive Y axis is given by the vector v1 = (−1, 2)T. We now
sketch the ellipse in standard position on the X and Y axes.

y

x

Y

–1

1 X

−√
2

√
2

It intersects the X axis at X = ±1 and the Y axis at Y = ±√
2.
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Exercise 11.10 The vectors v1 = (1, 1)T and v2 = (−1, 1)T are eigen-
vectors of A since

Av1 =
(

a b
b a

)(
1
1

)
=
(

a + b
b + a

)
= (a + b)v1

and

Av2 =
(

a b
b a

)(−1
1

)
=
(−a + b

−b + a

)
= (a − b)v2.

So the eigenvalues are λ1 = a + b and λ2 = a − b, respectively.

Exercise 11.11 To sketch the curve x2 + y2 + 6xy = 4 in the xy-plane,
we write

x2 + y2 + 6xy = xT Ax with A =
(

1 3
3 1

)
,

and orthogonally diagonalise A. The eigenvalues of A are λ1 = 4
and λ2 = −2, with corresponding eigenvectors v1 = (1, 1)T and v2 =
(−1, 1)T. Therefore, we can take

P =
( 1√

2
− 1√

2
1√
2

1√
2

)
, D =

(
4 0
0 −2

)
,

so that P−1 AP = PT AP = D and P defines a rotation anticlockwise
by π/4 radians. Then setting x = Pz, with z = (X, Y )T,

x2 + y2 + 6xy = xT Ax = zT Dz = 4X2 − 2Y 2 = 4.

So we need to sketch the hyperbola 2X2 − Y 2 = 2 on the new X, Y
axes. This intersects only the X axis at X = ±1. However, sketching
the hyperbola is more difficult than sketching an ellipse: we also need
to sketch the asymptotes so we know its shape. The asymptotes are
Y = ±√

2X . You can find the equations of these asymptotes in the
standard x, y coordinates using z = PTx to substitute for X and Y in
the two equations, Y = √

2X and Y = −√
2X , and then sketch the two

lines in x, y coordinates. But we are only required to do a sketch, so you
can reason as follows. The line Y = √

2X has a steeper slope than the
line Y = X , and because we have rotated by π/4 radians anticlockwise,
the line Y = X is just the (old) y axis. Using this idea, you can sketch
the asymptotes. and then the hyperbola.

Knowing the points of intersection with the old axes helps here.
We have the points of intersection with the new X axis are X = ±1.
The points of intersection with the old x and y axes are given
by setting, respectively, y = 0 and x = 0 in the original equation,
x2 + y2 + 6xy = 4. These are x = ±2 and y = ±2. Here is the sketch.
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Chapter 12 exercises

Exercise 12.1 Suppose dim(S) = r . (Let us assume that 0 < r < n, the
cases r = 0 and r = n being easy to deal with separately.) The proof
of Theorem 12.13 shows us that there is an orthonormal basis of Rn of
the form {e1, e2, . . . , er , er+1, . . . , en}, where {e1, . . . , er } is a basis of
S and {er+1, . . . , en} is a basis of S⊥. Make sure you understand why.
So this means that dim(S⊥) = n − r = n − dim(S).

Exercise 12.2 If z ∈ S⊥, then, for all s ∈ S, 〈z, s〉 = 0. Now, let s ∈ S.
Then, for any z ∈ S⊥, we have 〈z, s〉 = 0. So, for all z ∈ S⊥, we have
〈s, z〉 = 0. But this shows that s is orthogonal to every member of S⊥.
That is, s ∈ (S⊥)⊥. Hence, S ⊆ (S⊥)⊥. Now, by the previous exercise,

dim((S⊥)⊥) = n − dim(S⊥) = n − (n − dim(S)) = dim(S).

So S ⊆ (S⊥)⊥, and both are subspaces of the same dimension. Hence
S = (S⊥)⊥.

Exercise 12.3 The orthogonal projection of R4 onto the subspace
spanned by the vectors (1, 0, 1, 0)T and (1, 2, 1, 2)T is the same as
the orthogonal projection onto R(A), where A is the rank 2 matrix

A =

⎛⎜⎜⎝
1 1
0 2
1 1
0 2

⎞⎟⎟⎠ .
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The projection is therefore represented by the matrix

P = A(AT A)−1 AT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 1

2 0

0 1
2 0 1

2

1
2 0 1

2 0

0 1
2 0 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(Check this!) That is, for x = (x, y, z, w)T ∈ R4, the orthogonal pro-
jection of x onto the subspace is given by

x �→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
x + 1

2
z

1

2
y + 1

2
w

1

2
x + 1

2
z

1

2
y + 1

2
w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Exercise 12.4 You have already shown in Activity 12.24 that the only
eigenvalues of an idempotent matrix are λ = 1 and λ = 0. Since A
can be diagonalised, there is an invertible matrix P and a diago-
nal matrix D = diag(1, . . . , 1, 0, . . . , 0) such that P−1 AP = D. Let
v1, v2, . . . , vn denote the column vectors of P with v1, . . . , vi being
eigenvectors for λ = 1 and vi+1, . . . , vn eigenvectors for λ = 0. Then
B = {v1, v2, . . . , vn} is a basis of Rn and {v1, . . . , vi} is a basis of the
eigenspace, E(1), for eigenvalue λ = 1.

If y ∈ R(A), then y = Ax for some x ∈ Rn . Now, x can be writ-
ten as a unique linear combination x = a1v1 + a2v2 + · · · + anvn. We
therefore have

y = Ax = A(a1v1 + a2v2 + · · · + anvn)

= a1 Av1 + a2 Av2 + · · · + an Avn

= a1v1 + a2v2 + · · · + ai vi

since Av j = v j for j = 1, · · · , i and Av j = 0 for j = i + 1, · · · , n.
Therefore, y ∈ E(1), so R(A) ⊆ E(1). Now let y ∈ E(1). Then y ∈ Rn

and Ay = y, so y ∈ R(A). This completes the proof.
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Exercise 12.5 You can show directly that A2 = A by multiplying the
matrices. Alternatively, you can use the diagonalisation. An invertible
matrix P and a diagonal matrix D such that P−1 AP = D are

P =
⎛⎝ 2 1 −4

1 0 −3
0 1 1

⎞⎠ , D =
⎛⎝ 1 0 0

0 1 0
0 0 0

⎞⎠ .

Then D2 = D, and since A = P D P−1,

A2 = P D P−1 P D P−1 = P D2 P−1 = P D P−1 = A,

so A is idempotent.
Because A is idempotent, the linear transformation given by

T (x) = Ax is idempotent, and is therefore a projection from R3 onto
the subspace U = R(T ) parallel to the subspace W = N (T ); that is,
U = R(A) and W = N (A). It is not an orthogonal projection because
A is not symmetric.

The null space of A, namely N (A), is the same as the eigenspace
corresponding to the eigenvalue λ = 0. Since A is idempotent, by
Exercise 12.4, R(A) is the eigenspace corresponding to the eigenvalue
λ = 1.

Exercise 12.6 In matrix form, we want the least squares solution to
Az = b, where

A =

⎛⎜⎜⎝
1 −1
1 0
1 1
1 2

⎞⎟⎟⎠ , z =
(

a
b

)
, b =

⎛⎜⎜⎝
0
1
3
9

⎞⎟⎟⎠ .

So a least squares solution is

z = (AT A)−1 ATb =
(

1.8
2.9

)
.

(We’ve omitted the calculations, but you can check this.) So a best-fit
linear relationship is

Y = 1.8 + 2.9X.

Exercise 12.7 In matrix form, this is Az = b, where

A =

⎛⎜⎜⎝
1 0 0
1 1 1
1 2 4
1 3 9

⎞⎟⎟⎠ , z =
⎛⎝ a

b
c

⎞⎠ , b =

⎛⎜⎜⎝
3
2
4
4

⎞⎟⎟⎠ .
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Here, A has rank 3, and the theory above tells us that a least squares
solution will be

z = (AT A)−1 ATb =
⎛⎝ 2.75

−0.25
0.25

⎞⎠ .

(Details of the calculation are omitted.) So the best-fit model of this
type is Y = 2.75 − 0.25X + 0.25X2.

Chapter 13 exercises

Exercise 13.1 To solve z4 = −4, write z = reiθ and

−4 = 4eiπ = 4ei(π+2nπ ).

Then z4 = (reiθ )4 = 4ei(π+2nπ ), so that r4 = 4 and 4θ = π + 2nπ .
Therefore, r = √

2 and θ = π
4 , 3π

4 , 5π
4 , 7π

4 will give the four com-
plex roots. These are:

z1 =
√

2eiπ/4 =
√

2
1√
2

+ i
√

2
1√
2

= 1 + i,

z2 =
√

2ei3π/4 = −
√

2
1√
2

+ i
√

2
1√
2

= −1 + i,

z3 =
√

2ei5π/4 = −1 − i = z̄2,

z4 =
√

2ei7π/4 = 1 − i = z̄1.

To factorise z4 + 4 into a product of quadratic factors with real coeffi-
cients, write the polynomial as a product of linear factors in conjugate
pairs. For the first conjugate pair,

(z − z1)(z − z̄1) = z2 − 2Re(z1)z + z1 z̄1 = z2 − 2z + 2.

In the same way, (z − z2)(z − z̄2) = z2 + 2z + 2, so that

z4 + 4 = (z2 − 2z + 2)(z2 + 2z + 2).

Exercise 13.2 The determinant of a complex matrix is calculated in the
same way as for a real matrix. You should find that

|A| =
∣∣∣∣ 1 i
1 + i −1

∣∣∣∣ = −1 − (i)(i + 1) = −1 − i2 − i = −i.
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You can solve the system using row reduction, or by finding A−1 (exactly
as you do for a 2 × 2 real matrix). Then, x = A−1b. We have

A−1 = −1

i

( −1 −i
−1 − i 1

)
= 1

i

(
1 i

1 + i −1

)
so that

x = 1

i

(
1 i

1 + i −1

)(
1
i

)
= 1

i

(
0
1

)
=
(

0
−i

)
.

Exercise 13.3 The set W1 is not a subspace of M2(R) since(
1 0
0 1

)
∈ W1 but (−1)

(
1 0
0 1

)
/∈ W1.

But W2 is a subspace of M2(C). It is closed under addition and under
scalar multiplication since any complex number w can be written as
w = z2 for some complex number z.

Lin(S) denotes a subspace of M2(R) consisting of all real linear
combinations of the matrices, and Lin(S) denotes a subspace of M2(C)
consisting of the much larger set of all complex linear combinations of
the matrices. These are very different sets; however, the basis will be
the same in each.

To find a basis, we need to eliminate any ‘vectors’ which are linear
combinations of the other vectors in the spanning set. Note that(

2 1
0 2

)
+
(

1 2
0 1

)
=
(

3 3
0 3

)
and

(−1 −1
0 −1

)
= −1

3

(
3 3
0 3

)
,

so that a basis (a linearly independent spanning set) of Lin(S) consists
of the first two matrices; that is,{(

2 1
0 2

)
,

(
1 2
0 1

)}
.

Hence Lin(S) is two-dimensional, considered either as a subspace of
M2(R) or of M2(C).

Exercise 13.4 The eigenvalues of a complex matrix are calculated in
the same way as for a real matrix. The characteristic equation is

|A − λI | =
∣∣∣∣ 1 − λ i

1 + i −1 − λ

∣∣∣∣ = λ2 − 1 − i − i2 = λ2 − i = 0.

So the eigenvalues are the solutions of the equation λ2 = i . To solve
this, write λ = reiθ . Then one solution is obtained by setting

λ2 = (reiθ )2 = r2ei2θ = i = eiπ/2.
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Equating the moduli and arguments, we obtain r = 1 and θ = π/4, so
that

λ1 = eiπ/4 = cos
(

π

4

)
+ i sin

(
π

4

)
= 1√

2
+ i

1√
2
.

The other eigenvalue can be obtained by realising that λ2 = −λ1 (or
using another expression for i , such as λ2 = (reiθ )2 = i = e5π/2). The

other eigenvalue is λ2 = −λ1 = − 1√
2

− i
1√
2
.

Exercise 13.5 The eigenvalues of A are 2 ± i . If

P =
(

1 + i 1 − i
2 2

)
and D =

(
2 + i 0

0 2 − i

)
,

then P−1 AP = D.

Exercise 13.6 (a) To show that v is an eigenvector, calculate Av,

Av =
⎛⎝ 5 5 −5

3 3 −5
4 0 −2

⎞⎠⎛⎝ 0
1
1

⎞⎠ =
⎛⎝ 0

−2
−2

⎞⎠ .

Hence v is an eigenvector with corresponding eigenvalue λ = −2.
(b) Solve (A − λI )v = 0 for λ = 4 + 2i to see if it is an eigenvalue and
to find a corresponding eigenvector.

(A − λI ) =
⎛⎝ 1 − 2i 5 −5

3 −1 − 2i −5
4 0 −6 − 2i

⎞⎠

→ · · · →
⎛⎝ 1 0 −3

2 − 1
2 i

0 5 −5
2 − 5

2 i
0 0 0

⎞⎠ .

Hence x = (3 + i, 1 + i, 2)T is an eigenvector corresponding to the
eigenvalue λ = 4 + 2i .
(c) Since the matrix A is real, complex eigenvalues appear in con-
jugate pairs, so that 4 − 2i is also an eigenvalue with corresponding
eigenvector x = (3 − i, 1 − i, 2)T. If

P =
⎛⎝ 3 + i 3 − i 0

1 + i 1 − i 1
2 2 1

⎞⎠ and D =
⎛⎝ 4 + 2i 0 0

0 4 − 2i 0
0 0 −2

⎞⎠ ,

then P−1 AP = D.
A cannot be unitarily diagonalised. To show this, either show that

A is not normal (show A∗ A 
= AA∗), or show that it is not possible to
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form an orthonormal basis of eigenvectors of A. For example, 〈x, v〉 =
v∗x = 3 + i 
= 0.

Exercise 13.7 Calculate 〈v1, v2〉 to show that the vectors are orthogonal.
Then check that each vector has unit length.

Extend this to an orthonormal basis of C3 by taking any vector not
in Lin(S) and using Gram–Schmidt. For example, use (1, 0, 0)T and
set

w =
⎛⎝ 1

0
0

⎞⎠−
〈⎛⎝ 1

0
0

⎞⎠ ,

⎛⎝ 1
i
0

⎞⎠〉 1

2

⎛⎝ 1
i
0

⎞⎠

−
〈⎛⎝ 1

0
0

⎞⎠ ,

⎛⎝ 1 + 2i
2 − i
2 + 2i

⎞⎠〉 1

18

⎛⎝ 1 + 2i
2 − i

2 + 2i

⎞⎠
to obtain

w = 1

9

⎛⎜⎝ 2
−2i

−3 + i

⎞⎟⎠ .

Then, if

v3 = 1

3
√

2

⎛⎝ 2
−2i

−3 + i

⎞⎠ ,

the vectors {v1, v2, v3} are an orthonormal basis of C3. (You should
check that v3 is orthogonal to the other two vectors.)

Exercise 13.8 The answers to these questions are contained in the text.

Exercise 13.9 Let λ be an eigenvalue of A and let x be an eigenvector
corresponding to λ, so that Ax = λx. As A is unitary, AA∗ = A∗ A = I ,
so that x∗ A∗ Ax = x∗ I x = x∗x. Also,

x∗ A∗ Ax = (Ax)∗(Ax) = (λx)∗(λx) = λ∗λx∗x = |λ|2x∗x.

Equating the two expressions for x∗ A∗ Ax, we have x∗x = |λ|2x∗x, from
which we obtain,

(1 − |λ|2)x∗x = 0.

As x is an eigenvector, x∗x = ‖x‖2 
= 0, so we can conclude that |λ|2 =
1 and so |λ| = 1 (since the modulus of a complex number is a real
non-negative number).
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Exercise 13.10 The eigenvalues of the real symmetric matrix A are
2, −2, 16. You diagonalised this matrix in Exercise 11.1. An orthogonal
matrix P and a diagonal matrix D which orthogonally diagonalise A
are

P = 1√
2

⎛⎝ 0 −1 1√
2 0 0

0 1 1

⎞⎠ , D =
⎛⎝ 2 0 0

0 −2 0
0 0 16

⎞⎠ ,

so that PT AP = D.
Then A = 2E1 − 2E2 + 16E3, where

E1 =
⎛⎝ 0 0 0

0 1 0
0 0 0

⎞⎠ , E2 = 1

2

⎛⎝ 1 0 −1
0 0 0

−1 0 1

⎞⎠ ,

E3 = 1

2

⎛⎝ 1 0 1
0 0 0
1 0 1

⎞⎠ .

A quick calculation should convince you that these matrices have the
required properties.

Since the matrices E1, E2, E3 have these properties, then for any
real numbers α1, α2, α3, and any positive integer n, we can conclude
that (α1 E1 + α2 E2 + α3 E3)n = αn

1 E1 + αn
2 E2 + αn

3 E3. In particular, if
B = α1 E1 + α2 E2 + α3 E3 and B3 = A, then to find a matrix B as
required, we use

B = 21/3 E1 + (−2)1/3 E2 + 161/3 E3,

which (after simplification) gives us

B = 2−2/3

⎛⎝ 1 0 3
0 2 0
3 0 1

⎞⎠ .

You should check all this.

Exercise 13.11 (a) The proof that A∗ A is Hermitian is straight-
forward: (A∗ A)∗ = A∗(A∗)∗ = A∗ A, so A∗ A is Hermitian. Every
Hermitian matrix is normal, so A∗ A is normal. (This can also be proved
directly.)
(b) We have

v∗(A∗ A)v = (Av)∗(Av) = 〈Av, Av〉 ≥ 0

and v∗(A∗ A)v = 0 only if Av = 0 by properties of the inner product.
Since A has full column rank, Av = 0 has only the trivial solution
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v = 0. So v∗(A∗ A)v > 0 for all v ∈ Cn, v 
= 0, which shows that A∗ A
is positive definite.

Similarly, if A∗ Av = 0, then multiplying both sides of this equality
on the left by v∗ we can conclude that Av = 0, and hence that v = 0.
That is, A∗ Av = 0 has only the trivial solution v = 0, which implies
that A∗ A is invertible.

Exercise 13.12 The matrix B is not Hermitian, but you can easily
check that it is normal and can therefore be unitarily diagonalised.
To diagonalise, we see immediately from the matrix B that λ = 1 is
an eigenvalue with corresponding eigenvector x1 = (0, 0, 1)T. Solving
the characteristic equation, you should find that the other two eigen-
values are λ2 = 1 + i and λ3 = 1 − i with corresponding eigenvec-
tors x2 = (1, 1, 0)T and x3 = (1, −1, 0)T, respectively. Note that these
eigenvectors are mutually orthogonal. Normalising, we have,

P = 1√
2

⎛⎝ 1 1 0
1 −1 0
0 0

√
2

⎞⎠ = (u1u2u3)

and

D =
⎛⎝ 1 + i 0 0

0 1 − i 0
0 0 1

⎞⎠ .

Then B = (1 + i)E1 + (1 − i)E2 + E3, where Ei = ui u∗
i , i = 1, 2, 3.

We find

E1 = 1

2

⎛⎝ 1 1 0
1 1 0
0 0 0

⎞⎠ , E2 = 1

2

⎛⎝ 1 −1 0
−1 1 0
0 0 0

⎞⎠ ,

E3 =
⎛⎝ 0 0 0

0 0 0
0 0 1

⎞⎠ .

Therefore,

B = 1 + i

2

⎛⎝ 1 1 0
1 1 0
0 0 0

⎞⎠+ 1 − i

2

⎛⎝ 1 −1 0
−1 1 0
0 0 0

⎞⎠+
⎛⎝ 0 0 0

0 0 0
0 0 1

⎞⎠ .
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addition of matrices, 11
adjoint, 114
adjugate, 114
affine subset, 156, 159

plane, 163
algebra of matrices, 14–16
algebraic multiplicity, 269–272

and geometric multiplicity, 269
definition, 269

angle between vectors, 30
argument, 394
associated homogeneous system, 78
augmented matrix, 63

basis, 181–185
change of, 225
definition, 181
extending, 190
of column space, 194
of null space, 193
of row space, 192
standard, 177

Cauchy–Schwarz inequality, 315
change of basis, 225, 230, 261

as transformation, 226
change of coordinates, 223–229
change of variable

difference equations, 286
differential equations, 299

characteristic equation, 248
characteristic polynomial

definition, 248
of similar matrices, 262

coefficient matrix, 61
coefficients, 59
cofactors, 99

and inverse, 116
expansion, 100
matrix of, 114

collinear, 57
column space, 140, 161, 191
column vector, 23
complex conjugate, 390

complex conjugate of matrix, 399
complex inner product, 401–404

definition, 403
complex inner product space, 403
complex matrices, 399–420
complex matrix, 399

column space, 399
eigenvalue, 399
eigenvector, 399
null space, 399
range, 399

complex number
imaginary part, 390
real part, 390

complex numbers, 389–397
addition, 390
algebra of, 390–391
argument, 394
DeMoivre’s theorem, 395
division, 391
Euler’s theorem, 396
exponential form, 396
modulus, 394
multiplication, 390
polar form, 394
principal argument, 394
viewed geometrically, 393

complex plane, 393
complex vector space, 398–399
composition of transformations, 217
conic sections, 232, 351–355
conjugate pairs, 392
consistent linear system, 69
consumption matrix, 120
coordinates, 185–186

change of, 225
coplanar, 127
Cramer’s rule, 117
cross product, see vector product

definiteness
and eigenavalues, 342
and principal minors, 345, 346
test, 345, 346

demand vector, 121
DeMoivre’s theorem, 395
determinant, 18, 98–113

2 × 2, 18
as sum of signed products, 103
effect of row operations, 110
of a product, 112
through cofactors, 99
through row operations, 106

diagonal of a matrix, 11
diagonalisable

characterisation, 271
diagonalisable matrix, 256
diagonalisation

and change of basis, 261
and eigenvectors, 257–260
and matrix powers, 280
definition, 256
geometrical view, 260–262
orthogonal, 329
unitary, 412

difference equations, 282
system, 282–290

differential equations, 296–303
linear system, 297

dimension, 186–191
definition, 188

dimension theorem
matrices, 198
transformations, 222

direct sum, 365
and orthogonal complement, 368

distribution vector, 292
dot product, 25

echelon form, 66
eigenspace, 252
eigenvalues, 247–256

and definiteness, 342
and determinant, 253
and trace, 254
definition, 247
distinct, 265
finding, 247–252



514 Index

eigenvalues (cont.)
of complex matrix, 399
of Hermitian matrix, 409
of similar matrices, 263
of symmetric matrix, 332

eigenvectors, 247–256
definition, 247
finding, 247–252
of complex matrix, 399
of similar matrices, 263
of symmetric matrix, 332

elementary matrix
definition, 92

elementary product, 103
elementary row operations, 64
ellipse, 232
equivalence relation, 94
Euler’s formula, 396
exponential form of complex number,

396

full column rank, 372
functions

pointwise addition, 150
pointwise scalar multiplication, 150

Fundamental Theorem of Algebra, 391

Gauss–Jordan elimination, 64
Gaussian elimination, 64–78, 133–139

leading variables, 72
non-leading variables, 72

geometric multiplicity, 269–272
and algebraic multiplicity, 269
definition, 269

geometry of vectors, 27–33
Gram–Schmidt process, 321–323

Hermitian conjugate, 407
Hermitian matrix, 408

has real eigenvalues, 409
orthogonal eigenvectors, 410

homogeneous system, 75
associated, 78

homogeneous systems
are consistent, 75

hyperplane, 47, 164, 188

idempotent, 374
identity matrix, 15
identity transformation, 216
imaginary number, see complex

numbers
imaginary part

complex number, 390
indefinite quadratic form, 341
initial condition, 282, 284, 297
inner product, 24, 312–314

and angle, 30, 316

and length, 30, 315
and norm, 315, 403
and orthogonality, 32, 404
and unitary matrix, 411
Cauchy–Schwarz inequality, 315
complex, 403
definition, 313
Euclidean, 312
geometrical interpretation, 30–32
properties, 25
standard, 24, 312

inner product space, 313
complex, 403

input–output analysis, 119
inverse

of linear transformation, 218
inverse matrix, 16–20, 94–98,

113–118
2 × 2, 18
by cofactors, 116
definition, 17
is unique, 17

inverse of product, 20
invertible matrix, 18
isometry, 355

kernel
of linear transformation, 220
of matrix, 78

leading variables, 72
least squares solution, 380–383
length of a vector, 29
Leontief input–output analysis, 119
linear combination, 24, 140, 153, 160

closure under, 158
non-trivial, 172
uniqueness, 175

linear dependence, 172–181
linear equations, see linear system
linear function, see linear transformation
linear independence, 172–181

test, 175–179
linear mapping, 210
linear operator, 210
linear span, 160
linear system, 59–78

augmented matrix for, 63
coefficient matrix, 61
coefficients, 59
consistent, 69
general solution, 73
geometrical interpretation, 69
homogeneous, 75
infinitely many solutions, 73
of difference equations, 282–290
of differential equations, 297
particular solution, 73

Principle of Linearity, 79
rank, 135–139
row operations, 64
solution of, 60
solution set, 74
vector form of solution, 73
vector solution, 138

linear transformation, 210–223
and matrices, 212–216, 220
change of basis, 230
composition, 217
corresponding to matrix, 212
definition, 210
dimension theorem, 222
examples, 211–212
idempotent, 374
identity, 216
inverse, 218
kernel, 220
matrix of, 213, 220, 230
null space, 220
range, 220
rank, 221
rank–nullity theorem, 222
rotation, 215
zero, 216

lines, 33–39, 162, 188
Cartesian equation, 33, 37
coincident, 37
coplanar, 38
skew, 38
vector equation, 33–36

long-term distribution, 293

Markov chain, 290–296
distribution vector, 292
long-term distribution, 293
regular, 294
state vector, 292
transition matrix, 292

Markov process, 291
matrix, 10

addition, 11
additive identity, 15
associative, 14
commutative, 14

algebra, 14–16
associativity, 14
distributivity, 15

characteristic polynomial, 248
cofactors, 99
column space, 161, 191
complex conjugate, 399
corresponding transformation, 212
definition of, 10
determinant, see determinant
diagonalisable, 256
dimension theorem, 198
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eigenvalues of, 247
eigenvectors of, 247
elementary, 92
entry, 10
equality, 11
Hermitian, 408
Hermitian conjugate, 407
idempotent, 374
identity, 15
ill-conditioned, 89
inverse, 16–20, 94–98, 113–118

2 × 2, 18
definition, 17
is unique, 17
of product, 20

invertible, 18
kernel of, 78
minor, 99
multiplication, 12–14

associative, 14
mutiplicative identity, 15
non-commutative, 13

multiplication by a scalar, 11
non-invertible, 18
non-singular, 18
normal, 412
null space, 78, 158, 191, 220
nullity, 195
of cofactors, 114
of linear transformation, 213, 220
of quadratic form, 340
of rotation, 215
orthogonal, 319
range, 139, 220
rank, 132, 195
rank–nullity theorem, 198
row equivalence, 94
row space, 161, 191
singular, 18
size, 10
skew symmetric, 56
skew-Hermitian, 429
square, 11
stochastic, 295
symmetric, 22
trace, 254
transpose, 20

definition, 21
properties, 21–22

unitary, 410
zero, 15

matrix diagonal, 11
matrix inverse

of product, 20
matrix power, 279
matrix powers, 20

and spectral decomposition, 418
via diagonalisation, 280

minor, 99
principal, 344

modulus, 394
multiplication of matrices, 12–14
multiplicity

algebraic, 269
geometric, 269

negative definite, 341
negative semi-definite, 341
non-diagonalisable matrices, 264
non-invertible matrix, 18
non-leading variables, 72
non-singular matrix, 18
non-trivial linear combination, 172
norm

definition, 315, 403
normal matrix, 412
normal vector, 41
normalisation, 315
null space, 191

matrix, 158
of linear transformation, 220
of matrix, 78, 220
orthogonal complement, 370

nullity
of matrix, 195

orthogonal
vectors, 32, 317, 404

orthogonal complement, 367–372
and direct sum, 368
definition, 367
is a subspace, 367
of null space, 370
or range, 370

orthogonal diagonalisation, 329
of symmetric matrices, 329–339
Spectral theorem, 331

orthogonal matrix
definition, 319
has orthonormal columns, 321

orthogonal projection, 374
idempotent and symmetric, 376
onto range, 377

orthogonality, 316–320
and inner product, 32, 404
and linear independence, 318

orthonormal basis, 320
orthonormal set

and orthogonal matrix, 321
and unitary matrix, 410
definition, 320, 404

orthonormalisation, 321–323

permutation, 102
inversion, 102

planes, 39–46, 162, 188

affine subsets, 163
as subspaces, 162
Cartesian equation, 41–46, 184
normal vector to, 41
parametric equation, 39
vector equation, 39

polar form of complex number, 394
portfolio, 88

arbitrage, 89
riskless, 88

positive definite, 341
positive semi-definite, 341
power of a matrix, 20
powers of a matrix, 279–281

and difference equations, 284–286
definition, 279

principal argument, 394
principal minor, 344

and definiteness, 345, 346
Principle of Linearity, 79
production vector, 119
projection, 372–378

definition, 372
idempotent, 375
orthogonal, 374

Pythagoras’ theorem
generalised, 317

quadratic form
definition, 340
indefinite, 341
negative definite, 341
negative semi-definite, 341
positive definite, 341
positive semi-definite, 341

quadratic forms, 339–355

range
and column space, 162
of linear transformation, 220
of matrix, 139, 220
orthogonal complement, 370

rank
and linear system, 135–139
full column, 372
of matrix, 132, 195
of transformation, 221

rank–nullity theorem
matrices, 198
transformations, 222

real part
complex number, 390

RREF, 67
reduced row echelon form, 67
regular Markov chain, 294
rigid motion, 355
rotation, 215, 353
row echelon form, 66
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row equivalence, 94
row operations, 62–64

and determinants, 110
row space, 161, 191
row vector, 23

scalar, 11
scalar product, 25
scalar triple product, 127
signed elementary product, 103
similarity, 231–235, 256

and characteristic polynomial, 262
and eigenvalues, 263
and eigenvectors, 263

simultaneous equations, 60
singular matrix, 18
size of a matrix, 10
skew symmetric matrix, 56
solution set of linear system, 74
spectral decomposition, 415–420

and matrix powers, 418
Spectral theorem, 331

proof, 337–339
square matrix, 11
standard basis, 177, 182
state price, 89
state vector, 292
stochastic matrix, 295
subspace

definition, 154
direct sum, 365

examples, 155–157
planes, 162
spanned by a set, 160
sum, 364
test for, 157

sum of subspaces, 364
symmetric matrix, 22

and quadratic form, 340
eigenvalues, 332
eigenvectors, 332
orthogonal diagonalisation, 329–339

system
of equations, see linear system

technology matrix, 120
test of definiteness, 345, 346
trace, 254
transition matrix

of basis, 225
or Markov chain, 292

transpose, 20
definition, 21
properties, 21–22

triangle inequality, 317
trivial solution, 75

unit vector, 30
unitary diagonalisation, 412
unitary matrix, 410

and inner product, 411
has orthonormal columns, 410

vector, 23
addition, 23
column, 23
components of, 23
definition, 23
direction of, 30
dot product, 25
entries of, 23
geometrical interpretation, 27–33
inner product, 24
length of, 29
linear combination, 24
orthogonal, 32, 317, 404
parallel, 30
perpendicular, 32
row, 23
scalar multiplication, 23
scalar product, 25
zero, 24

vector product, 127
vector space

axioms, 150
definition, 150
examples of, 151
finite-dimensional, 188
infinite-dimensional, 188
subspace, 154

zero matrix, 15
zero transformation, 216
zero vector, 24
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