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Preface 

Classical econometrics - which plunges its roots in economic theory 
with simultaneous equations models (SEM) as offshoots - and time series 
econometrics - which stems from economic data with vector autoregres-
sive (VAR) models as offsprings - scour, like the Janus's facing heads, the 
flowing of economic variables so as to bring to the fore their autonomous 
and non-autonomous dynamics. It is up to the so-called final form of a dy­
namic SEM, on the one hand, and to the so-called representation theorems 
of (unit-root) VAR models, on the other, to provide informative closed 
form expressions for the trajectories, or time paths, of the economic vari­
ables of interest. 

Should we look at the issues just put forward from a mathematical 
standpoint, the emblematic models of both classical and time series 
econometrics would turn out to be difference equation systems with ad hoc 
characteristics, whose solutions are attained via a final form or a represen­
tation theorem approach. The final form solution - algebraic technicalities 
apart - arises in the wake of classical difference equation theory, display­
ing besides a transitory autonomous component, an exogenous one along 
with a stochastic nuisance term. This follows from a properly defined ma­
trix function inversion admitting a Taylor expansion in the lag operator be­
cause of the assumptions regarding the roots of a determinant equation pe­
culiar to SEM specifications. 

Such was the state of the art when, after Granger's seminal work, time 
series econometrics came into the limelight and (co)integration burst onto 
the stage. While opening up new horizons to the modelling of economic 
dynamics, this nevertheless demanded a somewhat sophisticated analytical 
apparatus to bridge the unit-root gap between SEM and VAR models. 

Over the past two decades econometric literature has by and large given 
preferential treatment to the role and content of time series econometrics as 
such and as compared with classical econometrics. Meanwhile, a fascinat­
ing - although at time cumbersome - algebraic toolkit has taken shape in a 
sort of osmotic relationship with (co)integration theory advancements. 

The picture just outlined, where lights and shadows - although not ex­
plicitly mentioned - still share out the scene, spurs us on to seek a deeper 
insight into several facets of dynamic model analysis, whence the idea of 
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this monograph devoted to representation theorems and their analytical 
foundations. 

The book is organised as follows. 
Chapter 1 is designed to provide the reader with a self-contained treat­

ment of matrix theory aimed at paving the way to a rigorous derivation of 
representation theorems later on. It brings together several results on gen­
eralized inverses, orthogonal complements, partitioned inversion rules 
(some of them new) and investigates the issue of matrix polynomial inver­
sion about a pole (in its relationships with difference equation theory) via 
Laurent expansions in matrix form, with the notion of Schur complement 
and a newly found partitioned inversion formula playing a crucial role in 
the determination of coefficients. 

Chapter 2 deals with statistical setting problems tailored to the special 
needs of this monograph . In particular, it covers the basic concepts on sto­
chastic processes - both stationary and integrated - with a glimpse at 
cointegration in view of a deeper insight to be provided in the next chapter. 

Chapter 3, after outlining a common frame of reference for classical and 
time series econometrics bridging the unit-root gap between structural and 
vector autoregressive models, tackles the issue of VAR specification and 
resulting processes, with the integration orders of the latters drawn from 
the rank characteristics of the formers. Having outlined the general setting, 
the central topic of representation theorems is dealt with, in the wake of 
time series econometrics tradition named after Granger and Johansen (to 
quote only the forerunner and the leading figure par excellence), and fur­
ther developed along innovating directions thanks to the effective analyti­
cal toolkit set forth in Chapter 1. 

The book is obviously not free from external influences and acknowl­
edgement must be given to the authors, quoted in the reference list, whose 
works have inspired and stimulated the writing of this book. 

We should like to express our gratitude to Siegfried Schaible for his en­
couragement about the publication of this monograph. 

Our greatest debt is to Giorgio Pederzoli, who read the whole manu­
script and made detailed comments and insightful suggestions. 

We are also indebted to Wendy Farrar for her peerless checking of the 
text. 

Finally we would like to thank Daniele Clarizia for his painstaking typ­
ing of the manuscript. 

Milan, March 2005 
Mario Faliva and Maria Grazia Zoia 
Istituto di Econometria e Matematica 

Universita Cattolica, Milano 
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1 The Algebraic Framework of Unit-Root 
Econometrics 

Time series econometrics is centred around the representation theorems 
from which one can evict the integration and cointegration characteristics 
of the solutions for the vector autoregressive (VAR) models. 

Such theorems, along the path established by Engle and Granger and by 
Johansen and his school, have promoted the parallel development of an 
"ad hoc" analytical implement - although not always fully settled. 

The present chapter, by reworking and expanding some recent contribu­
tions due to Faliva and Zoia, provides in an organic fashion an algebraic 
setting based upon several interesting results on inversion by parts and on 
Laurent series expansion for the reciprocal of a matrix polynomial in a de­
leted neighbourhood of a unitary root. Rigorous and efficient, such a tech­
nique allows for a quick and new reformulation of the representation theo­
rems as it will become clear in Chapter 3. 

1.1 Generalized Inverses and Orthogonal Complements 

We begin by giving some definitions and theorems on generalized in­
verses. For these and related results see Rao and Mitra (1971), Pringle and 
Rayner (1971), S.R. Searle (1982). 

Definition 1 

A generalized inverse of a matrix A of order m x n is a matrix A of or­
der nxm such that 

AAA=A (1) 

The matrix A is not unique unless A is a square non-singular matrix. 

We will adopt the following conventions 

B=A (2) 

to indicate that fi is a generalized inverse of A; 
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A=B (3) 

to indicate that one possible choice for the generalized inverse of A is 
given by the matrix B. 

Definiton 2 

The Moore-Penrose generalized inverse of a matrix A of order m x n is a 
matrix A^ of order nxm such that 

AA'A=A (4) 

A'AA' = A' (5) 

(AAy=AA' (6) 

(A'AY = A'A (7) 

where A' stands for the transpose of A. The matrix A^ is unique. 

Definition 3 

A right inverse of a matrix A of order mx n and full row-rank is a ma­
trix A~ of order nxm such that 

AA; = I (8) 

Tiieorem 1 

The general expression of A~ is 

A; =H'(AHy (9) 

where H is an arbitrary matrix of order mxn such that 

det(AH')itO (10) 

Proof 

For a proof see Rao and Mitra (1971, Theorem 2.1.1). 
D 
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Remark 

By taking ̂  = A, we obtain 

A; =A'{AAy^A\ (11) 

a particularly useful form of right inverse. 

Definition 4 

A left inverse of a matrix A of order mxn and full column-rank is a ma­
trix A~ of order nxm such that 

A;A=I (12) 

Thieorem 2 

The general expression of A~ is 

A; =(JCAyK' (13) 

where /iT is an arbitrary matrix of order mxn such that 

det(K'A)^0 (14) 

Proof 

For a proof see Rao and Mitra (1971, Theorem 2.1.1). 
D 

Remarl( 

By letting liT = A, we obtain 

A; =(A'AyA' ^A' (15) 

a particularly useful form of left inverse. 

We will now introduce the notion of rank factorization. 

Thieorem 3 

Any matrix A of order mxn and rank r may be factored as follows 

A=BC (16) 
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where B is of order m x r, C is of order nx r, and both B and C have rank 
equal to r. 

Such a representation is known as a rank factorization of A. 

Proof 

For a proof see Searle (1982, p. 194). 
D 

Theorem 4 

Let a matrix A of order mxn and rank r be factored as in (16). Then A 
can be factored as 

A= (CX B- (17) 

with the noteworthy relationship 

CAB = I (18) 

as a by-product. 
In particular, the Moore-Penrose inverse A^ can be factored as 

A' = (CJB' = C (CC)-' (BB)' B' (19) 

Proof 

The proofs of both (17) and (18) are simple and are omitted. For a proof 
of (19) see Greville (1960). 

D 
We shall now introduce some further definitions and establish several 

results on orthogonal complements. For these and related results see Thrall 
and Tomheim (1957), Lancaster and Tismenetsky (1985), Lutkepohl 
(1996) and the already quoted references. 

Definition 5 

The row kernel, or null row space, of a matrix A of order mxn and rank 
r is the space of dimension (m - r) of all solutions x of jc' A' = 0\ 
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Definition 6 

An orthogonal complement of a matrix A of order mxn and full col­
umn-rank is a matrix A± of order mx(m-n) and full column-rank such 
that 

A[A = 0 (20) 

Remarl^ 

The matrix A± is not unique. Indeed the columns of A_L form not only a 
spanning set, but even a basis for the rovŝ  kernel of A and the other way 
around. In light of the foregoing, a general representation of the orthogonal 
complement of a matrix A is given by 

A^=AV (21) 

where A is a particular orthogonal complement of A and V is an arbitrary 
square non-singular matrix connecting the reference basis (namely, the 
m-n columns of A) to an another (namely, the m-n columns of AV) . 
The matrix V is usually referred to as a transition matrix between bases 
(cf. Lancaster and Tismenetsky, 1985, p. 98). 

We shall adopt the following conventions: 

A = A^ (22) 

to indicate that A is an orthogonal complement of A; 

A^=A (23) 

to indicate that one possible choice for the orthogonal complement of A is 
given by the matrix A, 

The equality 

(Ai)^=A (24) 

reads accordingly. 

We now prove the following in variance theorem 

Ttieorem 5 

The expressions 

A^iH'A^r (25) 
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C^(B[KC^rB[ (26) 

and the rank of the partitioned matrix 

J B^ 

C[ 0 
(27) 

are invariant for any choice of Ax, B± and Cj., where A, B and C are full 
column-rank matrices of order m x n, H is an arbitrary full column-rank 
matrix of order mx{m-n) such that 

det{H'Aj_)^0 (28) 

and both / and K, of order m, are arbitrary matrices, except that 

det(B[KCjL)^0 (29) 

Proof 

To prove the invariance of the matrix (25) we check that 

A ,̂ (H'A^y - A^, {H'A^,r = 0 (30) 

where A ĵ and A^^ are two choices of the orthogonal complement of A. 

After the arguments put forward to arrive at (21), the matrices A^^ and 

Â 2 ^r^ linked by the relation 

A,,^A^,V (31) 

for a suitable choice of the transition matrix F. 
Substituting A ĵ V for A^^ in the left-hand side of (30) yields 

A,, {HA,,r - A„ V{H'A,yy = A„ iHA,,r 

-A,,W\H'A^,y = 0 

which proves the asserted invariance. 
The proof of the invariance of the matrix (26) follows along the same 

lines as above by repeating for B± and C± the reasoning used for Ax. 
The proof of the invariance of the rank of the matrix (27) follows upon 

noticing that 
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/ fix 12 

<̂ l2 0 

^ r 
= r 

BuVr 

/ 2 ^ 1 1 -ly 

= r 
/ 0 

0 v: 

J B I 0 

0 V i j y 

= r 
J B 

V L ^ i i 

(33) 

where V ^^^ V ^^e suitable choices of transition matrices. 
D 

The following theorem provides explicit expressions for orthogonal 
complements of matrix products, which find considerable use in the text. 

Theorem 6 

Let A and B be full column-rank matrices of order I x m and m x n re­
spectively. Then the orthogonal complement of the matrix product AB can 
be expressed as 

(AB)^ = [(AyB^,AjJ (34) 

In particular if / = m, then the following holds 

(AB)^ = (AyB^ (35) 

Moreover, if C is any non-singular matrix of order m, then we can write 

(BC)^ = B^ (36) 

Proof 

Observe that 

(ABy[(AyB^,An = 0 

and that the block matrix 

[(AyB,_,A^,AB] 

(37) 

(38) 

is square and of full rank. Hence the matrix [(Ay B±, A±\ provides an ex­
plicit expression for the orthogonal complement of AJB, according to Defi­
nition 6 (see also Faliva and Zoia, 2003). 

The result (35) is established by straightforward computation. 
The result (36) is easily proved and rests on the arguments underlying 

the representation (21) of orthogonal complements, 
D 
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The next three theorems provide expressions for generalized and regular 
inverses of block matrices and related results of major interest for our analysis. 

Theorem 7 

Suppose that A and B are as in Theorem 6. Then 

[(A'yflx,Ax]-= 
BIA' 

Ai 
(39) 

[(AyB^,AJ = 
((A'YBJ 

Af 
(40) 

Proof 

The results follow from Definitions 1 and 2 by applying Theorems 3.1 
and 3.4, Corollary 4, in Pringle and Rayner (1971) p. 38. 

D 

Theorem 8 

The inverse of the composite matrix [A, A^_] can be written as follows 

[A,AjJ' = 
Ai 

which, in turns, leads to the noteworthy identity 

AA' + A^Al =1 

(41) 

(42) 

Proof 

The proof is a by-product of Theorem 3.4, Corollary 4, in Pringle and 
Rayner (1971), and the identity (42) ensues from the commutative property 
of the inverse. 

D 

The following theorem provides a useful generalization of the identity 
(42). 
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Theorem 9 

Let A and B be full column-rank matrices of order mxn and mx(m-n) 
respectively, such that the composite matrix [A, B] is non singular. Then, 
the following identity 

A(B[A)'B[ + BiA[ByA[ = I (43) 

holds true. 

Proof 

Observe that insofar as the square matrix [A, B] is non-singular, both 
B[A and A[ B are non-singular matrices also. 

Furthermore, verify that 

This show ŝ that 

(A;B)-'A:J 

{A[BrA[ 

[A, B]= 
In 0 

0 L.. 
(44) 

is the inverse of [A, B]. Hence the iden­

tity (43) follows from the commutative property of the inverse. 
D 

Let us now quote a few identities which can easily be proved because of 
Theorems 4 and 8 

AA' = BB' 

A'A = (Cy C 

I^-AA' = I^-BB^ = BABJ={B'J B[ 

I- A'A = / - (CO* c' = (C[y c[ = c^icj 

where A, B and C are as in Theorem 3. 

(45) 

(46) 

(47) 

(48) 

To conclude this section, let us observe that an alternative definition of 
orthogonal complement - which differs slightly from that of Definition 6 -
may be more conveniently adopted for square singular matrices as indi­
cated in the next definition. 
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Definition 7 

Let A be a square matrix of order n and rank r<n. A left-orthogonal 
complement of A is a square matrix of order n and rank n - r, denoted by 
A/", such that 

A^A = 0 (49) 

r([A;^,A])=:n (50) 

Analogously, a right-orthogonal complement of A is a square matrix of 
order n and rank n-r, denoted by A^, such that 

AA^=0 (51) 

r([A,A^])^n (52) 

Suitable choices for the matrices A^ and A^ turn out to be the idempo-
tent matrices (see, e.g., Rao, 1973) 

A^=I-AA' (53) 

A^=I-A'A (54) 

which will henceforth simply be denoted by A^ and A^, respectively, 
unless otherwise stated. 

1.2 Partitioned Inversion: Classical and Newly Found Results 

This section, after recalling classic results on partitioned inversion, pre­
sents newly found (see, in this regard, Faliva and Zoia, 2002a) inversion 
formulas which, like Pandora's box, provide the keys to an elegant and 
rigorous approach to unit-root econometrics main theorems, as shown in 
Chapter 3. 

To begin with we recall the following classical result: 

Ttieorem 1 

Let A and D be square matrices of order m and n, respectively, and let B 
and C be full column-rank matrices of order mxn. 
Consider the partitioned matrix 
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P = 
A B 

C D 
(1) 

Then anyone of the following sets of conditions is sufficient for the ex­
istence of P"̂  
a) Both A and its Schur complement E = D- CA~^B are non-singular ma­

trices. 
b) Both D and its Schur complement F =A- BD^C are non-singular ma­

trices. 
Moreover the results listed below hold true: 
/) Under a), the partitioned inverse of P can be written as 

r = 
A" +A'BE'CA' -A'BE' 

-^ECA' E' 

ii) Under b), the partitioned inverse of P can be written as 

F' -F'BD' 

-D'CF' D' +D'CF'BD' 
r' = 

(2) 

(3) 

Proof 

The matrix P"* exists insofar as (see Rao, 1973, p. 32) 

\det{A)det{E) ^ 0, under a) 

[det(D)det(F) i^ 0, under b) 
detiP) = l (4) 

The partitioned inversion formulas (2) and (3), under the assumptions a) 
and b), respectively, are standard results of the algebraic tool-kit of econo-
metricians (see, e.g., Goldberger, 1964; Theil, 1971; Faliva, 1987). 

D 

We shall now establish the main result (see also Faliva and Zoia, 
2002 a). 

Theorem 2 

Consider the block matrix 
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P = 
A B 

C 0 

where A, B and C are as in Theorem 1. 
The condition 

det{B'^AC^)itQ 

is necessary and sufficient for the existence oiR\ 
Further, the following representations of P"̂  hold 

where 

and 

where 

r'= 

r'= 

H (I-HA)iCy 

B'{I-AH) B'{AHA-A){Cy_ 

H KiC'K)' 

{KB) k' -{KB) k'AKiC'KY 

K={A'B^)^ 

^=(ACx)i 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Proof 

Condition (6) follows from the rank identity (see Marsaglia and Styan, 
1974, Theorem 19) 

r{P) = r{B) + r{Q + r [{I-BB')A {I-{CJC)] 
= n + n + r[{B'jB[A Ci(Cx)*] = 2n + r{B[ACA_) 

where use has been made of the identities (47) and (48) of Section 1.1. 
To prove (7), let the inverse of P be 

(12) 

r' = 
p p 

P P 
(13) 
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where the blocks in R^ are of the same order as the corresponding blocks 
in P. Then, in order to express the blocks of the former in terms of the 
blocks of the latter, write R^P = / and PR^ -I'm partitioned form 

Pi P2 

A P* 

A B] 

c o\ 

\\A B 

\[c 0 

\Pi Pz 

U 4̂. 

K 
0 

K 
0 

and equate block to block as follows 
r 

< 

I 

r 

L 

P,A + P,C' = I„ 

P^B = 0 

P,A + P,C' = 0 

P.B = I„ 

AP,+BP,=I„ 

AP^ + BP^=0 

C'P^=0 

c%=i„ 

From (16) and (16') we get 

0 

h_ 

0' 

h_ 

p, = {cj- p, A {cy = {i- p^) {cy 

P^ = B' -B'AP^ = BU I- AP,) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(160 

(17') 

(18') 

(19') 

(20) 

(21) 

respectively. 
From (170, in Ught of (20) we can write 

P, = - B'AP^ = -B'A [(CJ - P,A (CJ] = B' [AP^A -A](Cy (22) 

Consider now the equation (17). Solving for P^ gives 

P , = V B : (23) 

for some V. Substituting the right-hand side of (23) for P^ in (16) and 
postmultiplying both sides by C± we get 
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VB[AC^ = C^ (24) 

which solved for V yields 

V=C^(B[ACJ-' (25) 

in view of (6). 
Substituting the right-hand side of (25) for V in (23) we obtain 

P^ = C^(B[ACd'B[ (26) 

Hence, substituting the right-hand side of (26) for P^ in (20), (21) and 
(22) the expressions of the other blocks are easily found. 

The proof of (9) follows as a by-product of (7), in light of identity (43) 
of Section 1.1, upon noticing that, on the one hand 

I-AH = I-(ACd(B[(AC^)rB[ = B((ACX)B\ACX 
= B(tB)'K' 

whereas, on the other hand, 

I-^HA=K(CK)'C (28) 

D 
The following corollaries provide further results whose usefulness will 

soon become apparent. 

Corollary 2,1 

Should both assumptions a) and b) of Theorem 1 hold, then the follow­
ing equality 

(A ~ BD'cy = A-' + A'B (D - CAByCA' (29) 

ensues. 

Proof 

Result (29) arises from equating the upper diagonal blocks of the right-
hand sides of (2) and (3). 

D 

Corollary 2,2 

Should both assumption a) of Theorem 1 with D = 0, and assumption (6) 
of Theorem 2 hold, then the equality 
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Ci (fil ACx)' B'^ = A ' - A'B (C'A'B)'CA (30) 

ensues. 

Proof 

Result (30) arises from equating the upper diagonal blocks of the right-
hand sides of (2) and (7) for D = 0. 

D 

Corollary 2.3 

By taking D--7J, let both assumption b) of Theorem 1 in a deleted 
neighbourhood of A< = 0, and assumption (6) of Theorem 2 hold. Then the 
following equality 

Ci (B'^ACsj'B[ = lim{X(M+BCy-'} ^^l) 

ensues as X -^ 0. 

Proof 

To prove (31) observe that X'^ (AA+ JSC) plays the role of Schur com­
plement of D = - A/ in the partitioned matrix 

A B 

C -XI 

whence 

(32) 

{xaA+Bcv}= [i, o] 
A B 

C -U 

Taking the limit as ^ —> 0 of both sides of (33) yields 

lim{xOA+BCy}= [l, O] 
A B 

C 0 

which eventually leads to (31) in view of (7). 

(33) 

(34) 

D 



16 1 The Algebraic Framework of Unit-Root Econometrics 

1.3 Matrix Polynomials: Preliminaries 

We start by introducing the following definitions 

Definition 1 

A matrix polynomial of degree K in the scalar argument z is an expres­
sion of the form 

K 

A(z)= X 4 ^ ' ' ^K^O (1) 

In the following we assume, unless otherwise stated, that AQ,AP . . . , A ^ 
are square matrices of order n. 

When ^ = I the matrix polynomial is said to be linear. 

Definition 2 

The scalar polynomial 

n(z) = detA(z) (2) 

is referred to as the characteristic polynomial of A (z). 

Definition 3 

The algebraic equation 

n(z) = 0 (3) 

is referred to as the characteristic equation of the matrix polynomial A (z). 

Expanding the matrix polynomial A(z) about z = 1 yields 

A(z)=A(l)+X(l-z)^(-l/^A^^^(l) (4) 

where 

'''Mil*- <» 
The dot matrix notation A (z), A (z), A (z) will be adopted for 

k= 1, 2, 3. For simplicity of notation. A, A, A, A will henceforth be 
written instead of A (1), A (1), A (1), A (1). 
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The following truncated expansions of (4) 

A(z)=A + (l~z)Q(z) (6) 

A (z) = A -(1 -z) A + (l-zfViz) (7) 

where 

Q(z)=f^(l-zr'(-iy^A'\l), Q(l) = -A (8) 

Y(z)=Z(l-z)'-' (-1)^-i-A^MX ^(l) = ~ e ( l ) = | A (9) 

are of special interest for the subsequent analysis. 
We prove the following classical result. 

Theorem 1 

The characteristic polynomial detA (z) has a possibly multiple unit-root 
z = 1 if and only if 

detA=0 (10) 

Proof 

According to (6) the characteristic equation (3) can be exhibited in the form 

det[(l-z)Q(z)+A] = 0 (11) 

which for z = 1 entails 

det(A) = 0^r(A)<n (12) 

and the other way around. 
D 

The next result sheds more light on the characteristic polynomial roots. 

Theorem 2 

We distinguish two possibilities 
i) z= 1 is a simple root of the characteristic polynomial detA(z) if and 

only if 

detA = 0 (13) 
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tr{A\l)A):^0 (14) 

where A'^(l) denotes the adjoint matrix A*(z) of A (z) evaluated at z = 1; 

ii)z= 1 is a root of multiplicity two of the characteristic polynomial 
det A (z) if and only if 

detA = 0 

tr(A\l)A) = 0 

tr(A*(l)A -i-A*(l)A)^0 

(15) 

(16) 

(17) 

where A* (l) denotes the derivative of A^ (z) with respect to z evaluated at 
z = l . 

Proof 

Expanding detA (z) about z = 1 yields 

ddetAiz) 
detA (z) = det A-(I- z) 

dz 
+ (l-zY 

d'detAjz) 

dz' 

+ terms of higher powers o/(l - z) 

= detA-(l-z)tr(A\l)A) + (l-zftr(A^il)A + (A\l)A) 

+ terms of higher powers of (I - z) 

by virtue of 

(18) 

ddetAiz) 

d^ 

ddetAiz) 

dvecAiz) 

dvecAiz) 

d̂  

= {veciA*iz)y}vecAiz) = tr {A\z) A (z)} 

d^detAiz) 

dz' 
^dtr{A\z)Aiz)}^ tr(A*iz)A^iz)+AXz)Aiz)) 

dz 

(19) 

(20) 

where use has been made of matrix differentiation rules and vec vs. trace 
relationships (see, e.g., Faliva, 1975, 1987; Magnus and Neudecker, 1999). 

In view of (18) both statements i) and ii) clearly hold true. 
• 
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1.4 Matrix Polynomial Inversion by Laurent Expansion 

In this section the reader will find the essentials of matrix polynomial 
inversion about a pole, a topic whose technicalities will extend over the 
forthcoming sections, to duly cover analytical demands of dynamic model 
econometrics in Chapter 3. 

Theorem 1 

Let the roots of the characteristic polynomial 

K(z) = detA(z) (1) 

lie either outside or on the unit circle and, in the latter case, be equal to 
one. Then the inverse of the matrix polynomial A(z) admits the Laurent 
expansion 

H<K 1 

A-\z)= I^7{—^^J ^ILz'M, (2) 
7=1 ^ ^^ /=0 

principal part regular part 

in a deleted neighbourhood of z =1, where the coefficient matrices M. of 
the regular part consist of exponentially decreasing entries, and the coeffi­
cient matrices N. of the principal part vanish if A is of full rank. 

Proof 

The statement of the theorem can be read as a matrix extension of clas­
sical results of Laurent series theory (see, e.g., Jeffrey, 1992; Markusce-
vich, 1965). A deeper insight into the subject will be gained through Theo­
rem 4 at the end of this section. 

D 
For further analysis we will need the following 

Definition 1 

An isolated point ZQ of a (matrix) function A~\z) such that the Euclidian 

norm p^~ (̂̂ ) -^ <» as z = ẑ  is called a pole of A~\z), 

If z = ZQ is not a pole of A" (̂z), the function A~\z) is olomorphic (analyti­
cal) in a neighbourhood of the point ZQ. 
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Definition 2 

The point ZQ is a pole of order H of the (matrix) function A~\z) if and 
only if the principal part of the Laurent expansion of A~\z) about ZQ con­
tains a finite number of terms forming a polynomial of degree // in (ẑ  - z)~\ 
i.e. if and only if A'^z) admits the Laurent expansion 

in a deleted neighbourhood of ẑ . 
When // = 1 the pole located at ẑ  is referred to as a simple pole. 
Observe that, if (3) holds true, then both the matrix function (ẑ  - zfA'Xz) 

and its derivatives have finite limits as z tends to ZQ, the former iV^ being a 
non null matrix. 

Definition 3 

The point ZQ is a zero of order H of the matrix polynomial A(z) if and 
only if ZQ is a pole of order / / of the meromorphic matrix function A'Xz) 
(see also Theorem 2 of Section 1.3). 

The simplest form of the Laurent expansion (2) is 

A-\z)=-^N,+ M(z) (4) 

(1-z) 

which corresponds to the case of a simple pole at z = 1 where 

Ar,= lim[(l~-z)A-^(z)] (5) 

z-^i dz 

and M (z) stands for ^ z ' M. 
/ = 0 

Thieorem 2 

The matrix Â^ is singular. 
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Proof 

Since the equalities 

A{z) A-\z) = / ̂  [(1 - z) e fe) + ̂ ] [ 7 7 ^ ^ & M{z)] = / (7) 

A-\z) A{z) = / « [77^A^,+ M(z)] [(1 - z ) g (z) + A]= / (8) 

hold true in a deleted neighbourhood of z= 1, the term containing the 
negative power of (1 - z) in the left-hand sides of (7) and (8) must vanish. 
This occurs as long as Â^ satisfies the tvv̂ in conditions 

AN, = 0 (9) 

N,A^O (10) 

which, in turn, entails the singularity of Â^ (we rule out the case of a null 
A), 

U 
Another case of the Laurent expansion (2) which turns out to be of 

prominent interest is 

A-\z)=j;^-^^N^ + Miz) 
7=1 

which corresponds to a second order pole at z = 1, where 

A ,̂= lim[(l-z)'A-^(z)] ' 2 

(11) 

(12) 

^_^^mt^A^H^ (13) 
z-^1 d z 

1 j.^d^[(l-z)^A-^(z)] 
2 .^1 dz' 

M(l) = - lim ^' ; , ^ ^ (14) 

In this connection we have the following 

Theorem 3 

The matrix N^ is singular 
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Proof 

Since the equalities 

A(z)A-\z) = I^ 

« [ ( l - z m z ) - ( l - z ) A + A ] [ - i — A ^ , + - ^ (̂ ^^ 
(1-z) (1-z) 

A-Xz)A(z) = I<=> 

(1-z)' ^ (1-z)^ 
^ [ 7 T - ^ ^ 2 + 77—7^1+^fe)] [ (1 -^ ) 'P (^ ) - (1 -^ )^+^] =^ 

hold true in a deleted neighbourhood of z= 1, the terms containing the 
negative powers of (1 - z) in the left-hand sides of (15) and (16) must van­
ish. This occurs provided N^ and A ,̂satisfy the following set of conditions 

AN, = 0 (17) 

N,A = 0 (18) 

AN,=AN^ (19) 

N^A = N^A (20) 

Equalities (17) and (18), in turn, entail the singularity of Â2-

D 
Finally, the next result leads to a deeper insight as far as the algebraic 

premises of expansion (2) are concerned. 

Theorem 4 

Under the assumptions of Theorem 1 about the roots of the characteris­
tic polynomial detA(z), in a deleted neighbourhood of z= 1 the matrix 
function A~\z) admits the expansion 

A-\z)=t-^N^ + M(z) (21) 

where // is a non negative integer and 

M(z)= Y^z' M. (22) 

with the entries of the coefficient matrices M. decreasing exponentially. 
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Proof 

First of all observe that, on the one hand, the factorization 

detA(z) = k(l-zrn.(l--) (23) 

holds for detA{z), where a is a non negative integer, the z]s denote the 

roots lying outside the unit circle ( z J > 1) and /: is a suitably chosen sca­

lar. On the other hand, the partial fraction expansion 

{detA (z)}-' = y X, -^— + Ylii —!— 
; r (1-^)' 7 1 - A (24) 

holds for the reciprocal of detA(z) accordingly, v^here the X'.s and the \ijS 

are properly chosen coefficients, under the assumption that the roots z'jS 

are real and simple for algebraic convenience. Should some roots be com­
plex and/or repeated, the expansion still holds w îth the addition of rational 
terms w ĥose numerators are linear in z whereas the denominators are 
higher order polynomials in z (see, e.g. Jeffrey, 1992, p. 382). This, apart 
from algebraic burdening, does not ultimately affect the conclusions drawn 
in the theorem. 

Insofar as z J > 1, a power expansion of the form 

Z- . 
^ZiZjT'z' (25) 

holds for I z| < 1. 

This together with (24) lead to the conclusion that {detA(z)} ^ can be 
written in the form 

[detAiz)V=±X, J7~r + ll\^j t(^jr'z 

r \ J "-' (26) 

where the r\[ s are exponentially decreasing weights depending on the |i^ s 

and the z' s. 
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Now, provided A~\z) exists in a deleted neighbourhood of z = 1, it can 
be expressed in the form 

A-\z)={detA(z)r'AXz) (27) 

where the adjoint matrix A''(z) can be expanded about z = 1 yielding 

AXz) = A'^(l) - A"" (1) (1 - z) + terms of higher powers of (I - z) (28) 

Substituting the right-hand sides of (26) and (28) for [detA{z)Y^ and 
A^(z) respectively into (27), we can eventually express A~\z) in the form 
(21), where the exponentially decay property of the regular part matrices 
M. is a by-product of the aforesaid property of the coefficients r|̂  s. 

U 

1.5 Matrix Polynomials and Difference Equation Systems 

Insofar as the algebra of polynomial functions of the complex variable z 
and the algebra of polynomial functions of the lag operator L are isomor­
phic (see, e.g., Dhrymes, 1971, p. 23), the arguments developed in the pre­
vious sections provide an analytical tool-kit paving the way to find elegant 
closed-form solutions to finite difference equation systems which are of 
prominent interest in econometrics. 

Indeed, a non homogeneous linear system of difference equations with 
constant coefficients can be conveniently written in operator form as fol­
lows 

A{L)y=g, (1) 

where g^ is a given real valued function commonly called forcing function 
in mathematical physics (see, e.g., Vladimirov, 1984, p. 38), L is the lag 
operator defined by the relations 

Ly,=y..„ L'y=y„ L'^y.=y.., (2) 

with K denoting an arbitrary integer and A(L) is a matrix polynomial in the 
argument L, defined as 

A(z)=t\L' (3) 

where A ,̂ A^,..., A^ are matrices of constant coefficients. 
By replacing g^ by 0 we obtain the homogeneous equation correspond­

ing to (1), otherwise known as reduced equation. 
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Any solution of the nonhomogeneous equation (1) will be referred to as 
a particular solution, whereas the general solution of the reduced equation 
will be referred to as the complementary solution. The latter turns out to 
depend on the roots z. of the characteristic equation 

detA(z) = 0 (4) 

via the solutions h. of the generalized eigenvector problem 

A(Zj)h. = 0 (5) 

Before further investigating the issue of how to handle equation (1) 
some special purpose analytical tooling is needed. 

As pointed out in Section 1.4, the following Laurent expansions hold for 
the meromorphic matrix function A~\z) in a deleted neighbourhood of 
z = l 

A-\z)=-^N,+ M(z) (6) 

(l-z) (1-z) 

under the case of a simple pole and a second order pole, located at z = 1, 
respectively. 

Thanks to the said isomorphism, by replacing 1 by the identity operator 
/ and z by the lag operator L, we obtain the counterparts of the expansions 
(6) and (7) in operator form, namely 

A-\L)=--^N,+ M(D (8) 
(i L) 

A-\L) = —^—j N,+ — ^ Â +̂ M(L) (9) 

Let us now introduce a few operators related to L which play a crucial 
role in the study of the difference equations we are primarily interested in. 
For these and related results see Elaydi (1996) and Mickens (1990). 

Definition 1 - Baclcward difference operator 

The backward difference operator, denoted by V, is defined by the rela­
tion 

V = / - L (10) 
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Higher order operators V^ are defined as follows: 

^ = (1-1)^ K=2,3 ... (11) 

whereas V̂  = /. 

Definition 2 - Antidifference or indefinite sum operator 

The antidifference operator, denoted by V"̂  - otherwise known as in­
definite sum operator and written as X - is defined as the operator such that 
the identity 

(/-L)V-'jc, = Jc, (12) 

holds true for arbitrary x^, which is tantamount to saying that V"̂  acts as a 
right inverse of / - L. 

Higher order operators, V ^ are defined accordingly, i.e. 

(I-LfV-'' = I (13) 

In light of the identities (12) and (13), insofar as a J^-order difference 
operator annihilates a ( ^ - l)-degree polynomial, the following hold 

V'0 = c (14) 

V'0=ct + d (15) 

where c and d are arbitrary. 

We now state without proof the well-known result of 

Thieorem 1 

The general solution of the nonhomogeneous equation (1) consists of 
the sum of any particular solution of the given equation and of the com­
plementary solution. 

Because of the foregoing arguments, we are able to establish the follow­
ing elegant results. 

Thieorem 2 

A particular solution of the nonhomogeneous equation (1) can be ex­
pressed in operator form as 

J. = A-U)g, (16) 

In particular, the following hold true 
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i) y. = N, V-'g, + M{L)g, = iV, Y.S. + M (L) g, ^^^^ 

if z = 1 is a simple pole of A~\z); 

ii) y, = N, V \ + N, V-'g, + M{Dg, 

= N, 2 ( / + l-T)g, + iV, Y.g^+M{L)g, 

(18) 

i:<t 

- 1 / if z = 1 is a second order pole of A (z). 

Proof 

Clearly, the right-hand side of (16) is a solution provided A\L) is a 
meaningful operator. Indeed, this is the case for A'XL) as defined in (8) 
and in (9) for a simple and a second order pole at z = 1, respectively. 

To prove the second part of the theorem observe first that in view of 
Definitions 1 and 2, the following operator identities hold 

1 

1-L ^ i _L ^ ^ ^ 

•=v-^=ZS^7r-W--ZZ-^ 

where x^ is arbitrary. Further, simple sum-calculus rules show that 

(19) 

(20) 

(21) 

Thus, in view of expansions (8) and (9) and the foregoing identities, 
statements i) and ii) are easily established. 

D 

Theorem 3 

The solution of the reduced equation 

A(L)z, = 0 (22) 

corresponding to the unit root z = 1 can be written in operator form as 



28 1 The Algebraic Framework of Unit-Root Econometrics 

z,^A'\L)0 (23) 

where the operator A~^ (L) is defined as in (8) or in (9), depending upon the 
order (first vs, second, respectively) of the pole of A"̂ (z) at z = 1. 

Finally, the following closed-form expressions of the solution hold 

z,^N,c (24) 

z, = N,ct + N,d + N^c (25) 

for a first and a second order pole respectively, with c and d arbitrary vec­
tors. 

Proof 

The proof follows from arguments similar to those of Theorem 2 by 
making use of results (14) and (15) above. 

D 

Theorem 4 

The solution of the reduced equation 

A(L)z, = 0 (26) 

corresponding to unit-roots is a polynomial of the same degree as the or­
der, reduced by one, of the pole of A~̂  (̂ ) at z = 1. 

Proof 

Should z = 1 be either a simple or a second order pole of A~^ (z), then 
Theorem 3 trivially applies. The proof for a higher order pole follows 
along the same lines. 

D 
Two additional results, whose role will become apparent later on, are 

worth stating. 

Theorem 5 

Let z = 1 be a simple pole of A~̂  (z) and 

N,=FG' (27) 

a rank factorization of Â ,̂ Then the following hold 

F[y = F[M{L)g^ (28) 
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F[z=0 (29) 

where j ^ and z^ are as determined by (17) and (24) of Theorems 2 and 3, re­
spectively. 

Proof 

The proof is simple and is omitted. 
D 

Theorem 6 

Let z = 1 be a second order pole of A~\z) and 

N, = HK' (30) 

a rank factorization of Â2- Then the following hold 

Ky = H',N,Y^g,+ H',M{L)g, (31) 

H[z,= H[N^c (32) 

where J, and z, are as determined by (18) and (25) of Theorem 2 and 3, re­
spectively. 

Besides, should [N^, A Ĵ not be of full row-rank and 

[N„N,]=JL' (33) 

represent a rank factorization of the same, then the following hold 

J[y,= J[M(L)g, (34) 

J[z, = 0 (35) 

where y^ and z, are as above. 

Proof 

The proof is simple and is omitted. 

D 
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1.6 Matrix Coefficient Rank Properties vs. Pole Order in 
IVIatrix Polynomial Inversion 

This section will be devoted to presenting several relationships between 
rank characteristics of the matrices in the Taylor expansion of a matrix 
polynomial, A(z), about z= 1, and the order of the poles inherent in the 
Laurent expansion of its inverse, A~\z), in a deleted neighbourhood of 
z = l . 

Basically, references will be made to Sections 1.3 and 1.4 for notational 
purposes as well as for relevant expansions. 

Theorem 1 

The inverse A~\z) of the matrix polynomial A(z) is an analytical (ma­
trix) function about z = 1 if and only if 

detAitQ (1) 

Under (1), the point z = 1 is neither a pole of A~̂ (z) nor a zero of A(z). 

Proof 

The theorem mirrors the concluding remark of the statement in Theo­
rem 1 of Section 1.4. See also Theorem 1 of Section 1.3. 

D 

Theorem 2 

The inverse, A~\z), of the matrix polynomial A{z) has a simple pole at 
z = 1 provided the following conditions are satisfied 

i) detA^Q, A^O (2) 

ii) det 
-A B 

C 0 
^0 (3) 

where B and C are full column-rank matrices obtained by rank factoriza­
tion of A, i.e. 

A=BC\ r{A) = r{B) = r{C) (4) 
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Proof 

From (6) of Section 1.3 and (4) above, it follows that 

^ A{z)=^:^[{\-z)Q{z) + BC'] 
(1-z) (1-z) 

(5) 

where Q {z) is as defined in (8) of Section 1.3. 
We notice now that the right-hand side of (5) corresponds to the Schur 

complement of the lower diagonal block, (z - 1) /, in the partitioned matrix 

P{z) = 
Qiz) B 1 

. C (z-l)/J 
Hence, by (3) of Theorem 1 of Section 1.2, the following holds 

(6) 

{l-z)A-\z) = [I 0] 
Qiz) B 

C {z-\)I 
(7) 

provided £?e/P (2)5^0. 
By virtue of condition ii), by taking the limit of both sides of (7) as z 

tends to 1, the outcome would be 

lim[(l-z)A-'(z)] = [/0] 
Z->1 

"fid) B 

I C" 0 

-1 7 

\o_ 
= {I0] 

'-A B' 

C 0 

-1 f 

0 
(8) 

which, in view of Definition (2), together with (5), of Section 1.4 leads to 
conclude that z = 1 is a simple pole of A"'(z). 

D 

Corollary 2.1 

The following statements are equivalent to condition ii) 

a) det{B',ACx)*Q 

( 
b) 

A A 

A 0 
= n + r(A) 

(9) 

(10) 
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Proof 

Equivalence of ii) and a) follows from Theorem 2 of Section 1.2. 
Equivalence of ii) and b) is easily proved upon noticing that 

det 
-A B 

C 0 

/ r 

jtO'^r 

Indeed the following hold 

-A B 

C 0 

\ 1̂ 

= r 
-I 

0 

-A B 

C 0 

'-A B 

C 0 

\ 
= n + r(Q = n + r{A) 

0 

-C 

^ f\ 
= r 

- 1 / 

A A 

A 0 J/ 

= r(A) + r{A) + r({I-AA')A (I-A'A)) = r{A) + r(B) 
+ r (Bl A Cx) = r(A) + r(B) + r(Bi) = r(A) + n 

(11) 

(12) 

in light of Theorem 19 in Marsaglia and Sty an, 1974, and identities (47) 
and (48) of Section 1.1. 

D 

Theorem 3 

The inverse A'\z) of the matrix polynomial A (z) has a second order 
pole at z = 1 provided the following conditions are satisfied 

i) 

ii) 

detA = 0, A^O (13) 

(14) 

where B and C are full column-rank matrices obtained by rank factoriza­
tion (4) of A. 

iii) det 
A (B,R,)^ 

(QSx)l 0 
^0 (15) 

where R and 5 are full column-rank matrices obtained by rank factoriza­
tion of B'^A Cx, i.e. 

B[AC^ = RS\ r{B[AC±) = r(S) = r(R) 

and A is the matrix 

(16) 
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A = -A-AA'A 
2 

(17) 

Proof 

From (7) of Section 1.3 and (4) above, it follows that 

1 1 
,̂ -A(z)=—^[(l-zy'i'iz)-(l-z)A + BC] (18) 

(1 -z) (1 - z) 

where *F (z) is as defined in (9) of Section 1.3. 
Pre and postmultiplying A by (BYB' + (B[yB[ = I and by 

C (C)* + Ci (Ci )* = / (cf. identity (42) of Section 1.1) yields 

A = {B'JB[ A Ci (CJ + {B'JB'^ A (CJ C + BB'A 

= (B[y RS'(Cj_y + (/ - BB') A (cy c+BB' A 

where use has been made of (16) above. 
Substituting the right-hand side of (19) for A into (18) and putting 

(19) 

F=[{B[yR, B, AiCJ], G' = c 
B'A 

(20) 

Viz) = 

(1 -z ) / 0 0 

0 -I-{\-z)B'A{C'y (1 -z ) / 

0 (1 -z ) / 0 

(21) 

A(z) = (l-z)V-'(z) = 

(1-z) / 0 0 

0 0 (1-z) / 

0 (1 -z) / (l-z)B'A(C'y+I 

we can rewrite (18) in the form 

^ A(z) = — ^ [(1 - zf'i'iz) - FV (z) G'] 

(22) 

a-z) a-zy 
(23) 
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We notice that the right-hand side of (23) corresponds to the Schur 
complement of the lower diagonal block, A(z), of the partitioned matrix 

P(z) = 
'^(z) F 

_ G' A(z)_ 

Hence, by (3) of Theorem 1 in Section 1.2, the following holds 

(l-zfA-\z) = [I 0] 
G' A(z) 

provided det P (z) ^ 0. 
Further, observe that 

P ( l ) = 
^(1) F 

G' A(l) 

1 •; 

Y(l) (^1)*^ B 

s'ci 

c 

B'A 

0 

0 

0 

0 

Aic'y 

0 

0 

-A (B^Rj^ ; A{cy 

B'A 0 : 1 

in light of (9) of Section 1.3 and equalities 

[{B'JR, B] = (fix/fi)± 

[{CJS, C] = (Cx5x)x 

as per Theorem 6, recalling Theorem 5, of Section 1.1. 
Now, since the matrix 

J = 
1A 
2 

_(C^5Jl 0 

A(cy 
0 

[B'A 0] 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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^A-AA'A (B^RJ, 

(CxSx)l 0 

corresponds to the Schur complement of the lower diagonal block / of the 
partitioned matrix on the right-hand side of (26), it follows that 

det (P (1)) = det (J) det (I) = det {J) 

which, in turn, entails that 

det(P(l))^0 

(30) 

(31) 

by virtue of assumption iii). 
In view of the foregoing, should we take the limit of both sides of (25) 

as z tends to 1, we would obtain 

lim[(l-z)'A-'(z)] = [/ 0] 
U F 
2 
G' A(l) 

= [/ 0: O] 

-A (B,Rj, : A(cy 

(C.SJl 0 0 

(32) 

{BYA 0 I 

whence, in view of (3) of Theorem 1 in Section 1.2, we get 

71 
lim[{l-zYA-\z)] = [I 0]r 
Z - ^ l 

= [/ 0] 
^A-AA'A {B^RJ, 

0 
n-1 

(C,5J1 0 

(33) 

This, in view of Definition 2 together with (12) of Section 1.4, leads to 
conclude that z = 1 is a second order pole of A~\z). 

D 



36 I The Algebraic Framework of Unit-Root Econometrics 

Corollary 3.1 

The following statements are equivalent to condition iii) 

a) detiR'^B'^AC^S^_)*0 

b) r 
A^AA^'+A 

A^AAt+A 0 
= n + r(A) + r(Af AA^) 

(34) 

(35) 

j y 

where A/" and A^ are as defined in (53) and (54) of Section 1.1. 

Proof 

Equivalence of iii) and a) follows from Theorem 2 of Section 1.2 given 
that Theorem 5 of Section 1.1 applies, bearing in mind (24) of Section 1.1. 

Equivalence of iii) and b) is easily proved following an argument simi­
lar to that of Corollary 2.1, by observing that 

r 
det 

A {B^RJ^ A 

.(CxSx)'x 0 (36) 

= n + r(Cj.Sdi 

Indeed, the following hold: 

= r(CiSi)j. + r(5ii?x)± 

J / 
(37) 

A (B^RJ^ 

,_(C,5Jl 0 

+ r {[I-(B^RDL ( B , / ? J I ] A [ / - ( (CA)lr(Cx5,) ' J} 

= r (C^.Sdi + r {BJti)^ + r(R'^B[A Cs.Sjd 

= r (Cs.Sdx + r (B^R^i + r {BJt^) = r (C^S^h + n 

in light of Theorem 19 in Marsaglia and Styan, 1974, identities (47) and 
(48) of Section 1.1; 

r(C^Sdx = r((B^Rdx(C,Sj,) = r((B'JRS'Ci + A) 

= r(A^ AA^ + A) = r{Al- A A^^) + r(A) 
(38) 

in light of (16), (27) and (28) above, (47), (48), (53) and (54) of Section 
1.1 together with Theorem 14 in Marsaglia and Styan, 1974, and 
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^ (C .SJ l 0 \) 

I 0 ~][ A (B^RJ^\I 0 

0 (B,RJ,\[(C,SJ^ 0 \[o (CA)1. 

A (B,RJ,(C^SJ, 

(B^RJAC^SJ^ 0 

A (B[yRS'Cl+A 

(ByRS'Ci+A 0 

= r 

= r 

VL 

= r 
A^AA^+A 

A^AA^+A 

(39) 

whence (35), because of (37) and (38). 

1.7 Closed-Forms of Laurent Expansion Coefficient 
[\/latrices 

n 

In this section closed-form expressions for the matrices of Laurent ex­
pansions of matrix polynomial inverse about a simple and a second order 
pole, are derived. 

We also present a collection of useful properties and worthwhile rela­
tionships, as by-products of the main results, which pave the way to ob­
taining special expansions with either truncated or annihilated principal 
parts via pole order-reduction or removal. 

Notation and matrix qualifications of the previous section apply unless 
otherwise stated. 

The simple pole case is dealt with in the following theorem 

Theorem 1 

Let the inverse, A~\z), of the matrix polynomial 

A{z) = (l-z)Q(z)+A (1) 
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have a simple pole at the point z= 1, as per Theorem 2 of Section 1.6, and 
suppose the Laurent expansion 

A-\z)=-^N,+M(z) 
(1-z) 

(2) 

holds accordingly, in a deleted neighbourhood of z = L 
Then the following closed-form representations hold for Â^ and M( l ) 

respectively: 

N,=P, = -CAB[ACd'B[ (3) 

M(l) = - - P , AP^+P^P^ = --N, A N,+ (I + N^A) A\I + AN;) (4) 

where 

P P 

P P 

-A B 

C 0 
(5) 

Proof 

In view of (5) of Section 1.4, the matrix N^ is given by 

iV,= lim[(l-z)A-^(z)] .gx 

which, by virtue of (8) of Section 1.6, can be written as 

N, = [I 0] 
- A B 

C 0 

-1 7" 
0 

=p. (7) 

whence, according to the partitioned inversion (7) of Theorem 2, Section 
1.2, the elegant closed-form solution 

N^ = -C^(B[AC^yB[ 

ensues. 
In view of (6) of Section 1.4 the matrix M (1) is given by 

M(l) = -lim^[^i=5>^i:M 
z^i dz 

which, in light of (7) of Section 1.6 can be rewritten as 

(8) 

(9) 
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M ( l ) = - l i m — [I 0] 
Q(z) B 

C (z-1) / 
(10) 

Differentiating, taking the limit as z tends to 1 and making use of the 
aforementioned partitioned inversion formula, simple computations lead to 

= -lim 
Z->1 

[- /O] 

M ( l ) = 

C (z-l)/l 0 I 
Qiz) B 

C (z-1)/ 

= [/ 0] 
-A B 

C 0 

= [P„ P,] 

2 
0 I 

--A 0 
2 

-A B 

C 0 

= [N„ (/ + iV,A)(C'/] 
--A 0 

2 B'(I + AN,) 

]_ 

2 
=--A^, AN, + iI + N^A)A' (I + AN^) 

which completes the proof. 

(11) 

D 

Corollary 1.1 

The following results are true for the n x « matrix N^ 

i) r (A ,̂) = n-r 

where r is written instead of r (A) for notational convenience. 

(12) 

ii) The null row-space of N^ is spanned by the r linearly independent col­
umns of the matrix C of the rank factorization A = BC. 
As a by-product of ii) we have the following pole free expansion 

CA-\z) = CM(z) (13) 
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Proof 

The proof of i) rests on the rank equalities 

r (Â )̂ = r (Ci) = n ~ r (Q = n - r (A) = n - r (14) 

which ensue from rank factorization and orthogonal complement rank 
properties. 

To prove ii) observe that, in view of (8), the null row-spaces of N^ and 
Cj_ are the same. Hence, insofar as the r columns of C form a basis for the 
null row-space of Ci, they span the null row-space of Â^ as claimed. 

Finally, expansion (13) follows by premultiplying the right-hand side of 
(2) by C in light of (8). Given that C is orthogonal to N^ the term in (1 - z)~' 
vanishes, thus removing the pole once located at z= 1, and the matrix 
function CA'Xz) is analytical about z = 1. 

D 

Corollary 1,2 

The following statements hold 

i) tr{N,A) = r-n (15) 

ii) N,AN, = -N,^ A = -N; (16) 

iii) 

;v,Aiv,= 

M{\)B = 

C'M(l) 

= -A^,^ A = -

{I + N,A){Cy 

= B'{I + AN^)--

N; 

= A 

= ^ 3 

(17) 

iv) AM(l)A=A=>M(l)=A' (18) 

Proof 

Proof of i) follows by checking that 

tr(N^A) = -tr (Cx(K ^^x)"'K ^ ) 

= - r r ( ( B ; A Cx)-'(Bl A Cx)) = -tr (/_,) = r-n 
(19) 

Proof of ii) follows from (3) by simple computation and from Definition 
1 of Section 1.1. 

Proof of iii) follows from (4) by simple computation in view of (19) of 
Section 1.1. 
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Proof of iv) follows from (4), in view of (3), by straightforward compu­
tations. 

D 
The next theorem deals with the case of a second order pole. 

Theorem 2 

Let the inverse, A~\z), of the matrix polynomial 

A (z) = (l-zf^iz)-(l-z)A+A (20) 

have a second order pole at the point z = 1, as per Theorem 3 of Section 
L6, and assume that the Laurent expansion 

^"(^^=7r-V^2+ - T ^ i V , + M ( z ) (21) 
(l-z) (1-z) 

holds accordingly, in a deleted neighbourhood of z = 1. 
Then, the following closed-form representations hold for N^ and iV, 

N, = P, = Cs.Sd /?: B[ A CxSx)-' i?l B[ (22) 

Â , = P, A P,+ PjUfi'AP^ + P, A {CfV^ P3 - PjU^ U[P^ 

= [N„ I-N,A] 
A AA' 

A'A -C^iB'^ACJ'B' I-AN, 

(23) 

where 

A= -A- AA'A 
2 

A=-A-AA'AA'A 
6 

(24) 

(25) 

P P 

P P 

A (B^RJ^ 

.(C.SJl 0 
(26) 

Here (B±/?i)x and (Ci5i)x stand for [iB[yR, B] and [(Cl)'5, C], 
rspectively, and 
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u,= 

are selection matrices such that 

' / 

0 
, u.= 

0 

I 
=u, 

(Bs.RdxU, = ( K YR^ (B^R±)±U, = B 

(27) 

(28) 

Proof 

In view of (12) of Section 1.4, the matrix N^ is given by 

N = lim[(l-zfA-'(z)] 

which , in hght of (33) of Section 1.6, can be expressed as 

N=[I 0] 
-A-AA'A {B^RJ^ 

(CA) ' i 0 

(29) 

(30) 

whence, according to the partitioned inversion formula (7), Theorem 2, 
Section 1.2, the elegant closed form 

ensues. 
In view of (13) of Section 1.4, the matrix Â^ is given by: 

ẑ i dz 

which, in light of (23) and (25) of Section 1.6, can be written as 

<\[{\-zf'¥{z)-FV{z)GV 

(31) 

(32) 

iV, =- l im 
z-^l 

= - lim — 
z-̂ i dz 

[/ 0] 

dz 

»P(z) F • 

G' A(z) 

(33) 
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Before differentiating and taking tlie limit, some notational short cuts 
are introduced in order to simplify the computations. In particular, by de­
noting [{B'J'R, B] and [(C'J'S, C] by (fii^x)i and (CiSJ i respec­
tively, with {/, and U^ as defined in (27), the matrix in the right-hand side 
of (33) can be written as follows 

=[/ 0 ; 0] 

[I 0] 
"Viz) F 

. G' A(z) 

(C,5Jl {l-z)U,U: 

B'A a-z)u' 

A{cy' 

a-z)u. 

@(z) 

-1 

"/" 

0 

0 

(34) 

where 

Q(z) = (l-z)B'A(Cy + I (35) 

and the dotted lines indicate convenient partitionings of the matrices 
above. 

Since 0(z) is non-singular in a neighbourhood of z = 1, partitioned in­
version formula (3) of Theorem 1, Section 1.2, applies and, referring to 
(25) of Section 1.6, it follows that 

(l-zyA-\z) = [I 0] 

A(cy 
a-z)U, 

(CA)'x a-z)u,u: 
I 

0 
0-'(z)[fiM il-zW',] 

= [I 0] {Q„(z) + (l-z) Q,(z) + (1 -z) ' "2(2)} 

= [/ o]a-\z) 
0 

(36) 

where 
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Q (z) = a, iz) + (1 - z) Q,(z) + (1 - zf ^,(z) 

«„(z) = 

^,(z) = 
0 -A(Cy0-'(z)t/f 

^-U,e-\z)B'A UJJ[ 

Q.(z) = 
0 0 

0 -u,e-\z)u',_ 
In particular, we have 

Q(l )=Qo(l) = 
A (B^RJ,' 

_(C,S,)1 0 

(37) 

(38) 

(39) 

(40) 

(41) 

Differentiating both sides of (36) yields 

d[(l-z)^A-'(z)] 
'•=-[1 0]Q'\z)i^iz)a-\z) 

dz 

Now, observe that 

Q.(z) = Q„(z) - Q,(^) + f^rms in (1 - z) e (1 - z) 

and therefore by simple computations it follows that 

Q(1)=Q„(1)-Q,(1) = 

because of 

A A{CyU' 

U.B'A -U,U[ 

4 ' ( 1 ) = - A 
6 

0"'(1) = -0 ' ' (1 )0(1)0- ' (1 ) = -0 (1)=B*A(C ' )* 

(42) 

(43) 

(44) 

(45) 

(46) 

where the symbols ClJ^l), *i'(l), 0(1) indicate the derivative of the ma­
trices ClJ^z), 4* (z) and 0 (z) evaluated at z = 1. 
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Combining (32) with (42) and making use of (41) and (44), the matrix 
N^ turns out to be expressible in the following way 

N=[I 0] 

A (B^RJ^ 

Now, one can verify that 

A A(CyU' 

U^B'A •u,u: 

[I 0] = [N, (I-N,A)(C,SJ'l] 

= [N, I-N,A] 
I 0 

0 {C^SJl 

(47) 

(48) 

A (B^RJ^ N. 

{B,RJl(I-AN,)_ 

I 0 

0 (B^RJi, I-AN, 

(49) 

in view of the partitioned inversion formula (7) of Theorem 2, Section 1.2. 
Besides, by virtue of (40) of Section 1.1, the following results are easy to 
verify 

((c^sji yu, = (cy, v, (B^RJI = r 

((c.sji)% u[ (B.Rji = (5- ci y (( B; yRy 

(50) 

(51) 

Indeed, the matrix (S'Ciy, bearing in mind (42) of Section 1.1, can be 
expressed as 

(S' c'j =( c[ y s [S' ci (c; ysv 
= Cx( C[ CJ-'S [S'( C[ Ci)"'S]"' (52) 

= cA(sys'+ Sx SI ](c[ c^_ys [sx c; Ci)"'s]"' 
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= CAsy+ Cj^s^ SI (c[ c^y's [s\ c[ o'sV 

and ((B[ fRf can be likewise expressed as 

((B[ YRf = R'B[+ [R\ B[ Bj)'R]'R\ B[ BJR^ R^ B[ 

This together with 

(I-N,A)Ci.Sj_ = 0 

yield the equality 

{I-N,A)(S'Ciy = (I-N,A)CASy 

as well as the equality 

{{B'jRni- AN,) = R'B[{I- AN,) 

(520 

(53) 

(54) 

(55) 

In view of the foregoing, after proper substitutions and some computa­
tions, the following closed-form expression for N^ is obtained 

N, = [N,, I-N,A] 
N. 

I-AN, 
(56) 

A AA' 

[A'A -C^(SyR'B[\ 

which eventually leads to the right-hand side of (23), upon noting that 

Ci_(SyR' B[ = Ci.(RSy B[ = Cx( B ; A CJ B[ (57) 

by (19) of Section 1.1 and (16) of Section 1.6. The preceding closed-form 
of iV. can be drawn from (47) in liaht of (26). 

D 

by (ly) ot Section 1.1 and (16) ot Section 1. 
of iV, can be drawn from (47) in light of (26). 

Corollary 2.1 

The following results hold for the n matrix N, 

i) r(N,) = n-r,-r, (58) 

where r, and r, are written instead of r (A) and r (fi^ A C±) respectively, 
for notational convenience. 

ii) The row-kernel of N, is spanned by the r, + r, linearly independent col­
umns of an arbitrary orthogonal complement of Ci5i, say 
(Ci_Sdi = [(€[)% CI 
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As a by-product of ii) the following expansion about the simple pole 
z = 1 can be obtained 

(C,5JlA"(z)= — ^ (C^SXN,+ iC^Sj,M(z) (59) 
(1-^) 

Proof 

The proof of i) rests on the rank equalities 

r(N,) = r{C^Sd = r(Sd = r(CJ-r(B[AC,_) = n-r^-r, (60) 

after a reasoning similar to that in the proof of Corollary 1.1. 
To prove ii) observe that, in view of (31), the r^ + r^ columns of (Ci5x)i 

form a basis for the null row-space of Â *̂ ^^^ ^s long as [(C^ f S, C] is a 

possible choice of (Cj.5i)x, its columns span the row-kernel of Â2 ^̂  
claimed. 

Finally, expansion (59) follows by premultiplying the right-hand side of 
(21) by {C^SJ^ in light of (31). Given that {C^Sj^ is orthogonal to Â .̂ 

the term in (1 -z)~^ of {C^SJ'^A~\z) vanishes, a pole order-reduction oc­

curs and the matrix function {C^SJ\A~\z) exhibits a simple pole at z = 1. 

D 

Corollary 2,2 

The following results hold 

i) r[N,,N,]^n-r^ + r^ (61) 

where r^ stands for r {B' A Cj.Si) to simplify the notation, and r^ is as in 
Corollary 2.1. 

ii) Should 

r,<r, (62) 

hold true and 

VW = B'AC^S^, r{V) = r(W) = r^ (63) 

be a rank factorization of B^AC±S±, then the row-kernel of [A^j'^J ^̂  
spanned by the r̂  - r^ columns of the matrix CV±. 

Under ii) we have the following pole free expansion 

V[CA-\z)=r^CM(z) (64) 



48 1 The Algebraic Framework of Unit-Root Econometrics 

Proof 

The proof of i) rests on several rank relationships given here below, 
which can be established by applying onward and backward, in turn. Theo­
rem 19 of Marsaglia and Sty an, 1974. 

First, observe that, by onward application of the said theorem, we can 
write 

r [N„ AT,] =r (N,) + r{{I-N,A) N,) (65) 

upon noting that A is a generalized inverse of N^ as a straightforward 
computation shows. 

Next, refer to (56) and check that 

(I-N,A)N, = [0, I-N,A] 
A AA' 

A'A C^iSyR'B[ 

= (I-N^A)K 

iV, 

I-AN. (66) 

where 

K = A'AN^ + C^.(Sy R' B[il-A N;) (67) 

This and (65), by backward application of the said theorem, yield 

r [N„ NJ = r (N,) + r({I-N,A )iV,) = r ([N„ K]) (68) 

Now, refer to (31) and observe that 

I-AN^ = I-ACxSi(/?; B ; A CiSi) ' i?l B ; 

= (B^RL)±{ [AC^SJ,(B,RJ, }-' [AC,5J1 
(69) 

in view of (43) of Section 1.1. 
When Theorem 6 of Section 1.1 is applied to the right-hand side of (69), 

we can choose 

(B,_Rj_)i = [(B[yR, B] (70) 

which, after proper substitutions in (67) and some simple computations, 
yields 

where 

K = A'A C^SiJ +[Ci_{Sy, 0] ^ 

T={R'^B[ACs^Sxy'R[B[ 

(71) 

(72) 
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d = {[AC^Sj,iB,RJ, }-' [AC,5Jl 

are full row-rank matrices. 
In turn, this together with (68) lead to the relations below 

r [N^,N,] = r {{CSJ', A'A C^S^T + [C^SJ, 0] d]) 
= r ([CS^, A'A CSu [Cx(5'/, 0]] H) 

=r([Cx5x,A*ACxSx,Cx(5'/]) 
= r ([CASi, S (S'Sy'l A'A C^SJ) 

= r ([Cx, A' A CsS^] S) = r ([Cx, A' A C^S^]) 

where 

(73) 

(74) 

H = 

T 0 

0 T 

0 ^ 

[ŝ , sis'sy 
0 

'] 0 

I 

(75) 

(76) 

are full row-rank matrices. 
In light of what we have seen so far, by onward application of the above 

mentioned theorem once more, we eventually arrive at 

r(iV„A^.) = r([Cx,A^ACx5x]) 
= r(Cd + r([I-(C^Ci)]A'ACs.S^) 

= r (Cx) + r(A'A Cx5x) = n-riA) +riA'A Cs.S^) 
= n-r(A) + r(B'ACs_S^) 

by taking into account that 

(I-C^Cl)A'=A' 

ill) 

(78) 

in view of (48) of Section 1.1. 
To prove ii) observe that, by (17) and (19) of Section 1.4, the following 

hold 

CN^ = 0 

C% = B'BCN, = B'AN, =B'AN, 

(79) 

(80) 

whence 



50 1 The Algebraic Framework of Unit-Root Econometrics 

r(CN,) = r(B'AN,) (81) 

together with the rank factorization (63) as a by-product, under the rank 
condition (62). 

The foregoing, in turn, entails that 

V[C[N,,N,] = [0,0] (82) 

which is tantamount to saying that the r^ - r^ columns of CV± form a span­
ning set, and more precisely a basis, for the row kernel of the block matrix 

Because of (82) the terms in (1 -z)"' and in (1 - z)"' of V'j_C'A~\z) van­
ish, thus removing the pole located at z = 1 and making the matrix function 
V[ C'A'\z) analytical about z = 1. 

D 

Corollary 2.3 

The following statements hold true 

i) tr(N,A) = 0 (83) 

ii) N,AN, = N^ => A= N- (84) 

iii) (C,SJ, N,(B,_R^h = -U,V[ (85) 

where £/, is as defined in (27) and (CxSx)± and (Bx^i)i denote 
{{C'JS, C]md{{B'JR, B] respectively. 

iv) AN^A = 0 (86) 

V) AM(1)A=A +AiV.A (87) 

vi) A{M{\)-N^NIN,)A=A^M{\)-N^NIN^=A' (88) 

Proof 

Point i): the proof follows by checking that 

tr{N,A) = tr(C^S^(/?! B[ ACs.Sd''K K ^ (39) 

= tr ((tC^ B ; A CxSiY' R[ Bl A Ci5x) 
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= tri{R[B'^A C^_S±y lt,RS'S±) = tr (0) = 0 

in light of (16) of Section 1.6 (cf. also Theorem 2 of Section 1.3). 
Point ii): the proof ensues from (31) after elementary computations. The 

implication concerning the generaUzed inverse is trivial. 
Point iii): the result follows from (47) upon noting that 

(C.sjAi 0] = [0 / ] 
A (B^RJ^ 

.(C.SJl 0 
(90) 

iB^R±)i = 
A (B,R,)^ 

(C .SJ l 0 
(91) 

Point iv): the result is obvious in view of (18) and (19) of Section 1.4. 
To prove the result v), first observe that the following identity 

A(z)A-\z)A(z)=A{z) (92) 

is trivially satisfied in a deleted neighbourhood of z = 1. 
Then, substituting the right-hand side of (20) and (21) for A (z) and 

A~'(z) in (92), making use of (17), (18) , (19) and (20) of Section 1.4 to­
gether with (86) above , after simple computations we obtain 

-AN^A + AM (z) A + terms in positive powers of{l-z) 
= A-(l-z) A +(l-z) '»F(z) 

Expanding M (z) about z = 1, that is to say 

M (z) = M (1) + terms in positive powers 0/(1 - z) 

(93) 

(94) 

and substituting the right-hand side of (94) for M (z) in (93), collecting like 
powers and equating term by term, we at the end get for the constant terms 
the equality 

-AN,A +AMil)A=A (95) 

Point vi): Because of (19) and (20) of Section 1.4, identity (87) can be 
restated as follows 

AM(l)A=A+ AN^N'^N^A =A+AN^NIN^ 

which, rearranging terms, eventually leads to (88). 

(96) 

D 



2 The Statistical Setting 

This chapter introduces the basic notions regarding the multivariate sto­
chastic processes. In particular, the reader will find the definitions of sta-
tionarity and of integration which are of special interest for the subsequent 
developments. The second part deals with principle stationary processes. 
The third section shows the way to integrated processes and takes a glance 
at cointegration. The last section deals with integrated and cointegrated 
processes and related topics of major interest. An appendix on the role of 
cointegration completes this chapter. 

2.1 Stochastic Processes: Preliminaries 

The notion of stochastic process is a dynamic extension of the notion of 
random variable. Broadly speaking a random process is a process running 
along in time and controlled by probabilistic laws. It can be properly de­
fined as a family, an ordered sequence, of random variables y^, where the 

order is given by the (discrete) time variable t. 
As a mirror image of the foregoing reading key, we can look at a sto­

chastic process as a complex of like mechanisms, whose outcomes - to be 
identified with the notion of time series - exhibit distinguishing features 
and discrepancies which can be explained on a statistical basis. 

By a multivariate stochastic process we mean a random vector, say 

(1, n) 

whose elements are scalar random processes. 
In order to properly specify a stochastic process, the distribution func­

tions of its elements, pairs of elements, ..., A:-ples of elements, for any k, 
should be given and satisfy the so-called symmetry and compatibility con­
ditions (see, e.g., Yaglom, 1962). 

In practise, a short cut simplification is usually adopted and reference is 
made to the lower-order moments of the process, basically the mean and 
autocovariance functions that we are going to introduce. 
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Denoting by E the averaging operator, otherwise known as expectation 
operator, the (unconditional) mean vector of the process is defined as 

E(y) (2) 

while the autocovariance matrices are defined as 

E[{y-E(y))(y^-Eiy^)y] (3) 

It is evident that formula (3) describes a family of functions when the 
pair of indices t and T varies. 

Restricting the attention to the principal moments, namely the mean 
vector and the autocovariance matrices, paves the way to the various no­
tions of stationarity which enjoy prominent interest in econometrics. 

In this connection, let us give the following definitions 

Definition 1 

A stochastic process is called stationary insofar as - at least to some ex­
tent - it exhibits characteristics of permanence and satisfies statistical 
properties which are not affected by a shift in the time origin, which in turn 
grants some sort of temporal homogeneity (see, e.g., Blanc-Lapierre and 
Fortet, 1953; Papoulis, 1965). 

The notion of stationary can actually assumes a plurality of facets: the 
ones reported below are of particular interest for the subsequent analysis. 

Definition 2 

A process y^ is said to be stationary in mean if 

E(y)^\i (4) 

where |Ll is a time-invariant vector. 

Remarii 

If a process y^ is stationary in mean, the difference process Vŷ  is itself a 
stationary process, whose mean is a null vector and vice versa. 

Definition 3 

A process y^ is said to be covariance stationary if (3) depends only on 
the temporal lag T - r of the argument processes. 
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Definition 4 

A process y^ is said to be stationary in the wide sense, or weakly station­
ary, when both stationary in mean and in covariance. 

For a covariance stationary n-dimensionai process the matrix 

^ w = £{O,- lx)0 ' , , , -^ l ) '} (5) 

represents the autocovariance matrix of order h. It easy to see that for real 
processes the following holds 

(6) 

! matrix defined as fol-

(7) 

D = (8) 

Y{-h)=r{h) 

The autocorrelation matrix P (h) of order h is the 
lows 

P(h)=D-'T(h)D-' 

where D is the diagonal matrix 

\ylyJo) 0 0 0 " 

0 ^|yJO) 0 0 

0 0 ••. 0 

. 0 0 0 / U O ) ^ 

whose diagonal entries are the standard error of the elements of the vector 

The foregoing covers what really matters about stationarity for our pur­
poses. Moving to non stationary processes, we are mainly interested in the 
class of so-called integrated processes, which we are going to define. 

Definition 5 

An integrated process of order d - written as I (d) - where rf is a posi­
tive integer, is a process C,^ such that it must be differenced d times in order 
to recover stationarity. 

As a by-product of the operator identity 

V' = / (9) 

a process / (0) is trivially stationary. 
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2.2 Principal l\/lu[tivariate Stationary Processes 

This section displays the outline of principle stochastic processes and 
derives the closed-forms of their first and second moments. 

We give the following definitions 

Definition 1 

A white noise of dimension n, written as WN̂ ^̂ , is a process ê  with 

E(e) = 0 (1) 

£(£ ,£ : ) = 5,_.Z (2) 

where Z denotes a positive definite time-invariant dispersion matrix, and 5̂  
is the (discrete) unitary function, that is to say 

(3) 
[5̂  = 1 ifv = 0 

[b^ = 0 otherwise 

The autocovariance matrices of the process turn out to be given by 

r,(h) = 5,2 (4) 

with the corollary that the following noteworthy relation holds for the auto­
covariance matrix of composite vectors (cf. Faliva and Zoia, 1999, p. 23) 

E = l^t+h > ̂ t-l+h ' ••• ' ^t-q+h J =A®2: (5) 

where Z), is a matrix given by 

f̂ ,̂ '/ h = 0 

IJ' if \<h<q 
D.= 

iff if -q<h<-\ 
(6) 

0 q+l if \h\>q 
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Here / denotes the first unitary super diagonal matrix (of order ^ + 1), 
defined as 

J = [/ ], with / = <̂  
(̂ +u+i) [0 ifm^n + l 

(7) 

while J^ and ( /0 \ stand for, respectively, the unitary super and sub diago­
nal matrices of order /i = 1, 2,.... 

Definition 2 

A vector moving-average process of order q, denoted by VMA {q), is a 
multivariate process specified as follows 

y,=\y+Y.^j^,_, ^r^^in (8) 
(n,l) 7=0 

where \l and Af̂ ,M ,̂ ..., M^ are, respectively, a constant vector and con­
stant matrices. 

In operator form this process can be expressed as 

7=0 

(9) 

where L is the lag operator. 
A VMA(^) process is weakly stationary, as the following formulas show 

r{h) = 

E(y) = \i 

JM.ZM; if h=o 

(10) 

X M . Z M ; , if \<h<q 
j = 0 (11) 

M S M ; ./ - ^ < ; i < - i 
7=0 

0 if \h\>q 

The proof of (10) is straightforward in view of the properties of the ex­
pectation operator and of (1) above. 

The proof of (11) can easily be obtained upon noting that 
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j ; , = ^+[M„,M„. . . ,M] 

which in view of (5) and (6) leads to 

e. 

r Qi) = E [Mo,M,,...,MJ 
£,-1 

L^f+Zi' ^?- l+ / i ' •••» ^f-fl+^il 

= [M„,M„...,M,]£ 
e,-i 

i-^r+/i» ^ f - l + / i ' •••> ^f-a+/i J 

K 

= [M„,A/.,...,M,](D,®S) 

M' 

(12) 

(13) 

whence (11). 
It is also worth mentioning the staked version of the autocovariance ma­

trix of order zero, namely 

vec z, (14) 
j=o 

The first and second differences of a white noise process happen to play 
some role in time series econometrics and as such are worth mentioning 
here. 
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Actually, such processes can be viewed as special cases of VMA proc­
esses, and enjoy the weak stationarity property accordingly, as the follow­
ing definitions show. 

Definition 3 

Let the process j ^ be specified as a VMA(l) as follows 

y^ = Me^-ME^_^ (15) 

or, equivalently, as a first difference of a WN^^^ process, namely 

y^ = MVE^ (16) 

The following hold for the first and second moments of j , 

E(y) = 0 (17) 

r(/i) = 

2MZM' ifh = 0 

-MLM' if\h\ = l (18) 

0 otherwise 

as a by-product of (10) and (11) above. 
Such a process can be referred to as an / (- 1) process upon the operator 

identity 

V = V-̂ -̂ ^ (19) 

Definition 4 

Let the process y^ be specified as a VMA(2) as follows 

y^ = ME^^2ME^_^+Me^_^ (20) 

or, equivalently, as a second difference of a WN^^^ process, namely 

y, = MW\ (21) 

The following hold for the first and second moments of j , 

E(y) = 0 (22) 
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T(h) = 

6MIM' ifh = 0 

-4M1M' if\h\ = l 

MIM' if\h\ = 2 

0 otherwise 

again as a by-product of (10) and (11) above. 
Such a process can be read as an / (~ 2) process upon the operator iden­

tity 

V' = V"'-'' (24) 

Remark 

Should q tends to ©o, the VMA(^) process as defined by (8) is referred to 
as an infinite causal - i.e. unidirectional from the present backward to the 
past - moving average, (10) and (14) are still meaningful expressions, and 

stationarity is maintained accordingly provided both lim^M. and 

lim^M. ®M. exist as matrices with finite entries. 

/=0 

^-^ /=n 

Definition 5 

A vector autoregressive process of order /?, written as VAR (/?), is a 
multivariate process 3̂^ specified as follows 

(n,l) y=i 

where r| and A ,̂ A ,̂ ..., A^, are a constant vector and constant matrices, re­
spectively. 

Such a process can be rewritten in operator form as follows 

p (26) 

and it turns out to be stationary provided all roots of the characteristic 
equation 
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detA(z) = 0 (27) 

lie outside the unit circle (see, e.g., Lutkepohl, 1991). In this circumstance, 
the polynomial matrix A~\z) is an analytical (matrix) function about z = 1 
according to Theorem 1 of Section 1.6, and the process admits a causal 
VMA (oo) representation, namely 

Ĵ , = CO+XC, €^_, (28) 

where the matrices C^ are polynomials in the matrices A and the vector CO 
depends on both the vector T| and the matrices Cy. Indeed the following 
hold 

A-\L) = C(L)=Y.C,U (29) 
T=0 

(0 = A - ' ( L ) ^ = ( S C J T 1 (30) 
T=0 

and the expressions of the matrices Cr can be obtained, by virtue of the 
isomorphism between polynomials in the lag operator L and in a complex 
variable z, from the identity 

/ = (C, + C,z + C/ + ...) (I-A^z + ... - A / ) 
= C, + (C,-C^,)z + (C,-C^,-C^,)z....+ 

which implies the relashionship 

U — v^2 ' ^l^'^^l 0 2 

The following recursive equations ensue as a by-product 

7 = 1 

(31) 

(32) 

(33) 

The case p= I, which we are going to examine in some details, is of 
special interest not so much in itself but because of the isomorphic rela­
tionship between polynomial matrices aiid companion matrices (see, e.g.. 
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Banjeree et al., 1993; Lancaster and Tismenesky, 1985) which paves the 
way to bringing a VAR model of arbitrary order back to an equivalent first 
order VAR model, after a proper reparametrization. 

With this premise, consider a first order VAR model specified as fol­
lows 

Ĵ . = tl+Aj,_, + E, e,-WN^„) (34) 

where A stands for A .̂ 
The stationarity condition in this case entails that the matrix A is stable, 

i.e. all its eigenvalues lie inside the unit circle. 

The noteworthy expansion (see, e.g., Faliva, 1987, p. 77) 

(I-Ar=I+j:A' (35) 

holds accordingly, and the related expansions 

{I-Azr = / + J A * z* « (I-ALT' = / + XA* L" (36) 

[ / „ . - A ® A r = / „ . + XA*®A* (37) 
h = l 

where | z I < 1, ensue as by-products. 
By virtue of (36) the VMA (oo) representation of the process (34) takes 

the form 

j , = a) + E,+ XA^8,_, (38) 

i; = l 

where 

(0 = (/~A)-^r| (39) 
and the principle moments of the process may be derived accordingly. For 
what concerns the mean vector, taking expectations of both sides of (38) 
yields 

E(y) = (0 (40) 

As far as the autocovariances are concerned, observe first that the fol­
lowing remarkable staked form of the autocovariance of order zero 
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vec r (0) = (/^, -A ®Ay vec L (41) 

holds true because of (37) as a special case of (14) once M^ is replaced by 
/, and M. is replaced by A respectively, and we let q tend to <». 

Bearing in mind (11) and letting q tend to oo, simple computations lead 
to find the following expressions for the higher order autocovariance ma­
trices 

r( / i) = r(0)(AO' forh>0 (42) 

r ( / z ) = A ' ' ' r ( 0 ) forh<0 (43) 

whence the recursive formulas 

r(h) = r(h-l)A' forh>0 (44) 

r(h)=Ar(h-l) forh<0 (45) 

follow as a by-product. 
The extensions of the conclusions just drawn to higher order VAR proc­

esses, rest on the aforementioned companion-form analogue. 
The stationary condition on the roots of the characteristic polynomial 

quoted for a VAR model has a mirror image in the so-called invertibility 
condition of a VMA model. In this connection we give the following defi­
nition 

Definition 6 

A VMA process is invertible if all roots of the characteristic equation 

detM(z) = 0 (46) 

lie outside the unit circle. In this case the matrix lMr\z) is an analytical ma­
trix function about z = 1 by Theorem 1 of Section 1.6, and therefore the 
process admits a (unique) representation as a function of its past, in the 
form of a VAR model. 

Emblematic examples of non invertible VMA processes are given in 
Definitions 3 and 4 above. 

One should be aware of the fact that it is immaterial to draw a distinc­
tion between invertible and non invertible processes for what concerns sta-
tionarity. 

The property of invertibility is clearly related to the possibility of mak­
ing predictions since it allows the process j ^ to be specified as a convergent 
function of past random variables. 
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Should a VMA process be invertible according to Definition 6 above, 
the following VMA vs. VAR representation holds 

where 

y.=v-+Y.^j £<-; ^ ^ (^'>y.=V+£-
j=0 

V=M-\L)\L 

(47) 

(48) 

G(L)=j;^G,n=M-\D (49) 
T=0 

The matrices Gx may be obtained through the recursive equations 

G. = M,-XG,. ,Af. , G, = M, = I (50) 
7 = 1 

which are the mirror image of the recursive equations (33) and can be ob­
tained in a similar manner. 

Taking ^ = 1 in formula (8) yields a VMA (1) model specified as 

(n) (51) 

where M stands for M,. 
The following hold for the first and second moments in light of (10) 

and (11) 

T{h) = 

E(y) = Vi 

\L + MUI' ifh = 0 

EM' ifh = l 

ML ifh = -\ 

0 ifh>\ 

(52) 

(53) 

The invertibilty condition in this case entails that the matrix M is stable, 
that is to say all its eigenvalues lie inside the unit circle. 

The following noteworthy expansions 
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(/ + Af)-'=/+£(-iyM^ (54) 

(/+Mz)"'=/ + £(-iyM^z^ o (/+ML)-'=1+ £(-iyM^r (55) 
1 = 1 T = l 

where | z | < 1, hold for the same arguments as (35) and (36) above. 
As a consequence of (55), the VAR representation of the process (51) 

takes the form 

>̂ .+ Z ( - l ) ' ^ X . = v + e, (56) 

w ĥere 

v = (I + M)~'\i (57) 

Let us now introduce VARMA models which engender processes com­
bining the characteristics of both VMA and VAR specifications. 

Definition 7 

A vector autoregressive moving-average process of orders p and q 
(where p is the order of the autoregressive component and q is the order of 
the moving-average component) - written as VARMA(/?, ^) - is a multi­
variate process j^^ specified as follows 

J, = Tl + X^y y^-j + Z ^ y ^t-P e. - WŴn) (58) 
(n, 1) j = \ j = 0 

where T|, A. and M. are a constant vector and constant matrices, respec­
tively. 

In operator form the process can be written as follows 

A(L)y^ = n-^M(DE, A(L)=I^-f^AjL\ M{L)^f^M.n (59) 
y = i 7 = 0 

The process is stationary if all roots of the characteristic equation of its 
autoregressive part, i.e. 

detA{z) = 0 (60) 
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lie outside the unit circle. When this is the case, the matrix A~\z) is an ana­
lytical function in a neighbourhood of z = 1 by Theorem 1 in Section 1.6 
and the process admits a causal VMA (oo) representation, namely 

j , = a ) + £ c , 8 , _ , (61) 
1=0 

where the matrices Ĉ  are polynomials in the matrices A. and M while the 
vector CD depends on both the vector T| and the matrices A., Indeed, the fol­
lowing hold 

(0 = A-\L)r\ (62) 

C ( L ) = X C , L ^ = A-U)M(L) (63) 
T = 0 

which, in turn, leads to the recursive formulas 

C , = M , + X A , C , . , , C „ = M„ = / (64) 

7 = 1 

As far as the invertibility property is concerned, reference must be made 
to the VMA component of the process. The process is invertible if all roots 
of the characteristic equation 

detM(z) = 0 (65) 

lie outside the unit circle. Then again the matrix M'XL) is an analytical 
function in a neighbourhood of z = 1 by Theorem 1 in Section 1.6, and the 
VARMA process admits a VAR (oo) representation such as 

G(L) j , = v + £, (66) 

where 

\=Ar\L)y\ (67) 

G{L)=Y.G.L' = Mr\L)A{L) (68) 
1 = 0 

and the matrices Gx may be computed through the recursive equations 

G, = M,+A,-f^M^_.a, G, = M^=I (69) 
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Taking p = q= I in formula (58) yields a VARMA(1,1) specified in 
this way 

y^=:i]+Ay^_^ + E^ + Me^_^, A^-M (70) 

where A and M stand for A^ and M^ respectively, and the parameter re­
quirement A ^ - M is introduced in order to rule out the degenerate case of 
a first order dynamic model collapsing into that of order zero. 

In this case the stationary condition is equivalent to assuming that the 
matrix A is stable whereas the invertibilty condition requires the stability 
of matrix M. 

Under stationarity, the following holds 

3̂ , = (/-A)-^Tl + ( / + £ A ^ r ) ( / + ML)E, (71) 

which tallies with the VMA (<») representation (61) once we put 

(72) 

\I if x = 0 

C^=\A + M if T = l 

[A'-\A + M) if T>1 

Under invertibility, the following holds 

(/ + MLy'iy^ - Ay^_ ,) = (/ + Mf'^ + e. 

which tallies with the VAR(oo) representation (66) once we put 

V = / + £(_iyM^ Tl 

(73) 

(74) 

(75) 

G.= 

/ (/• T = 0 

-M-A if T = l 

-{-\y-'M'-\M + A) if T>1 

(76) 

In order to derive the autocovariance matrices of a general n-di-
mensional VARMA (p, q) one may transform the model in a n (p + ̂ )-di-
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mensional VAR(l) by virtue of the already mentioned companion form 
analogue. 

So far we have considered only VAR and VARMA models, whose 
characteristic polynomial roots lie outside the unit circle. 

Nevertheless, the case of a possibly repeated unit-root is worth consider­
ing also. As a matter of fact, this proves to stand as a gateway bridging the 
gap between stationarity and integrated processes as the next section will 
clarify. 

2.3 The Source of Integration and the Seeds of 
Cointegration 

In this section we set out two theorems which bring to the fore the link 
between the unit-roots of a VAR model and the integration order of the 
engendered process and disclose the two-faced nature of the model solu­
tion with cointegration finally appearing on stage. 

Theorem 1 

The order of integration of the process y^ generated by a VAR model 

A(L) j , = Tl + 8, (1) 

whose characteristic polynomial has a possibly repeated unit-root, is the 
same as the degree of the principal part, i.e. the order of the pole, in the 
Laurent expansion for A"̂ (z) in a deleted neighbourhood of z = 1. 

Proof 

A particular solution of the operational equation (1) is given by 

y^ = A-\L)(^^ + ̂ ) (2) 

By virtue of the isomorphism existing between the polynomials in the 
lag operator L and in a complex variable z (see, e.g., Dhrymes, 1971, p. 
23), the following holds 

A-\z)^A-\L) (3) 

and the paired expansions 

y——N.+ Yz' M.^ y — — N . - ^ ^ Y L M . (A^ 
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where K stands for the order of the pole of A"̂ (z) at z = 1, are also true. 
Because of (4) and by making use of sum-calculus identities such as 

( / - L r = V-̂  7 = 0 ,1 ,2 , . . . (5) 

where 

(6) 

the right-hand side of (2) can be given the infonnative expression 

A-'(L)(e,+Ti) = (iVy+iV3^^+... +iV,V"+| ;M. L (̂e,+Ti) 
J = 0 

=iV,Xe,+A^,S ZeT + -"+Z^;e,.^+^.Z^ (7) 
x<t ^<t T<T> y = 0 x<t 

x<t 7 = 0 

By inspection of (7) the conclusion is easily drawn that the process en­
gendered by the VAR model (1) is composed - stationary components 
apart - of integrated processes of progressive order. 

Hence, the overall effect is that the solution y^ turns out to be an inte­
grated process itself, whose order is the same as the order of the pole of 
A~\z), that is to say 

y^JiK) (8) 

D 

Theorem 2 

Let z = 1 be a possibly repeated root of the characteristic polynomial 
detA (z) of the VAR model 

A(L)3^, = Tl + £, (9) 

and its solutiony^be, correspondingly, an integrated process, sayy^-1(d) 
for some J > 0. 

Furthermore, let 

A=BC (10) 

be a rank factorization of the singular matrix A (1) = A. 
Then the following decomposition holds 
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y= {CyC'.y, + {CyC'y, (11) 

maintained integrated degenerate integrated 
component component 

where the maintained and degenerate components enjoy the integration 
properties 

iCyC^y, -I{d) (12) 

( C 0 ' C y - / ( 6 ) , 5 < r f - l (13) 

respectively. 
The notion of cointegration fits with the process 3̂^ accordingly. 

Proof 

In light of (6) of Section 1.3 and of isomorphism between polynomials 
in a complex variable z and in the lag operator L, the VAR model (9) can 
be rewritten in the more convenient form 

Q{L)Vy^ + BCy^ = \\ + z^ (14) 

where Q (z) is as defined by (8) of Section 1.3, and B and C are defined in 
(10). 

Upon noting that 

y^-I{d)^Vy^-I{d-\):=>Q{L)Vy^-I{h\h<d-\ (15) 

the conclusion 

Cy- / (6 )« (n 'Cy^ / (5 ) (16) 
is easily drawn, given that 

BCy^ = - fi {L)Vy^ ̂ ^ + ^<^Cy=-B'Q {L)Vy^ + B'x\ + B% (17) 

by (14) and the integration order of -B^ Q {L)Vy^ + B^r\ + B% is at most 
that of Q (L)Vy^, namely 5 < J - 1. 

Insofar as a drop of integration order occurs when moving from the par­
ent process y^ to its component (Cy C'y^, the latter is a degenerate process 
with respect to the former. 

The analysis of the degenerate component (Cy C'y^ being accom­
plished, let us examine the complementary component {C[y C[y^. 

To this end, observe that by virtue of (42) of Section 1.1, the following 
identity 
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i^{cy c^+{cyc (i8) 
holds true and, in turn, leads us to split y^ into two components, as shown 
in (11). 

Since the following integration properties 

y,-I{d) (19) 

{CyCy^-I{h) (20) 

hold in light of the foregoing, the conclusion that the component 
{Cj^ C[y^ maintains the integration order inherent in the parent process j ^ , 
that is to say 

(CyC[y^-I(d) (21) 

is eventually drawn. 
Finally, in light of (20) and (21), with (19) as a benchmark, the seeds of 

the concept of cointegration - whose notion and role will come to the fore 
in the next section and in Chapter 3 - are sown. 

D 

2.4 A Glance at Integrated and Cointegrated Processes 

We will introduce the basic notions concerning both integrated and 
cointegrated processes along with some related results. 

Definition 1 

A n-dimensional random-walk is a multivariate 7(1) process ^̂  defined 
after the property 

The following representations 

(1) 

(2) 

t 

= ̂ +Ze. (20 



72 2 The Statistical Setting 

hold accordingly, where ^ stands for an initial condition vector, independ­
ent from 8̂ , t>0, and assumed to have zero mean and finite second mo­
ments (see, e.g., Hatanaka, 1996). 

The process, while stationary in mean, namely 

Ei^) = 0 (3) 

is not covariance stationary, because of 

E(^,^:) = E(^%l) + r,(0)t (4) 
as a simple computation shows. 

Definition 2 

A random walk with drift is a multivariate 7(1) process ^̂  defined as fol­
lows 

V^, = ^ + £, e,~WN^„^ (5) 

where )X is a drift vector. 
The following representations 

,̂ = /:H + |If+2e, 
(6) 

= ^ + ^?+2e. (60 
t = l 

hold true, where k and ^ are a scalar and a random vector, respectively, 
depending on the initial condition and independent from 8̂ , ^>0. More­
over, ^ is assumed to have finite first and second moments. 

The process is neither stationary in mean nor covariance stationary, as 
simple computations show. In fact 

Ei^) = E(^) + \it (7) 

V(^)= F ( g + r,(0)r (8) 

where V stands for covariance matrix. 

The notion of random walk can be generalized to cover processes whose 
/:-order difference, ^ > 1, leads back to a white noise process. 

In this connection, we give the following definition (see also Hansen 
andJohansen, 1998, p. 110). 
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Definition 3 

By a cumulated random walk we mean a multivariate / (2) process de­
fined after the property 

V\ = t, 8,~W îV,̂  (9) 

The following representations 

.̂= ZZ^^ (10) 

= X(̂  + l-'c)e, (100 

= X(^+l)e<-x (10") 

hold true, and the analysis of the process can be carried out along the same 
line as in Definition 1. 

Cumulated random walks with drift can be likewise defined along the 
lines traced in Definition 2. 

Inasmuch as an analogue signal vs. noise (in system theory) and trend 
vs. disturbances (in time series analysis) is established and noise as well as 
disturbances stand for non systematic nuisance components, the term sig­
nal or trend fits in with any component which exhibits either a regular time 
path or evolving stochastic swings. Whence the notions of deterministic 
and stochastic trends which follow. 

Definition 4 

The term deterministic trend will be henceforth used to indicate poly­
nomial functions in the time variable, namely 

f^ = at + bt'+,,.+df (11) 

where r is a positive integer and a,b ...y d denote parameters. 
Linear and quadratic deterministic trends turn out to be of major interest 

for time series econometrics owing to their connection with random walks 
with drifts. 

Definition 5 

By a stochastic trend we mean a vector (p̂  defined as follows 
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(p,= Ze . ' e,~WW,„, (12) 
X = l 

Upon noting that 

Vcp̂  = e, (13) 
the notion of stochastic trend turns out to mirror that of random walk. 

Remark 

If reference is made to a cumulated random walk, as specified by (9), 
we can analogously define a second order stochastic trend in this manner 

9.= Z Z ^ . ' ^rWN^n, (14) 
d = l x = l 

Should a drift enter the underlying random-walk specification, a trend 
mixing stochastic and deterministic features would occur. 

The foregoing offers a first glance at integrated processes and related 
topics. 

A deeper insight into the subject matter, resting on VAR models with 
unit-roots, will be gained in next chapter, especially Sections 3.4 and 3.5 
which are devoted to the so-called representation theorems. 

When dealing with several integrated processes, the question may be 
raised as to whether it would be possible to recover stationarity - besides 
trivially differencing the said processes - by some sort of a clearing-house-like 
mechanism, able to lead non stationarities to balance each others out, at 
least to some extent. 

This idea is at the root of cointegration theory which looks for those lin­
ear forms of stochastic processes with preassigned integration orders 
which turn out to be more stationary - possibly, stationary tout court -
than the original ones. 

Here below we will give a few basic notions about cointegration, post­
poning a closer scrutiny of this fascinating topic to Chapter 3. 

Definition 6 

The components of a multivariate integrated process y^ form a cointe-
grated system of order {d, b) - with d and b non negative integer numbers 
such that d>b- and we write 

yrCi{d,b) (15) 
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if the following conditions are fulfilled 
i) the n scalar random processes which represent the elements of the vec­

tor j ^ are integrated of order d, which is tantamount to saying that 

(n,l) 

ii) there exist one or more (linearly independent) vectors a neither null nor 
proportional to an elementary vector, such that the linear form 

(1,1) 

is integrated of order d-b, i.e. 

x^-I(d--b) (18) 

The vectors a are called cointegration vectors. The number of cointe-
gration vectors, which are linearly independent, identifies the so-called 
cointegration rank for the process j ^ . 

The basic idea of cointegration is that of describing the stable relations 
of the economy through linear relations which are more stationary than the 
variables under consideration. 

Observe, in particular, that the class of CI (1, 1) processes is that of / (1) 
processes which by cointegration give rise to stationary processes. 

Definition (6) can be extended to the case of a possibly different order 
of integration for the components of the vector j ^ (see, e.g., Charenza and 
Deadman, 1992). 

In practice, conditions i) and ii) can be reformulated in this way 
i) the variables y^^, y^^, ..., y,̂ , which represent the elements of the vector j ^ , 

are integrated of (possibly) different orders Ĵ  {h = 1, 2,..., A), with 
d^>d^, ...,> dj^>b, and these orders are, at least, equal pairwise. By de­
fining the integration order of a vector as the highest integration order of 
its components, we will simply write 

yr^d,) (19) 

ii) For every subset of (two or more) elements of the vector j ^ , integrated of 
the same order, there exists al least one cointegration vector by which 
we obtain - through a linear combination of the previous ones - a vari­
able that is integrated of an order corresponding to that of another subset 
of (two or more) elements ofy^. 
As a result there will exist one or more linearly independent vectors a 

(encompassing the weights of the said linear combinations), neither null 
nor proportional to an elementary vector, such that the linear form 



76 2 The Statistical Setting 

^t-^yt (20) 
(1,1) 

is integrated of order d^ ~ b, i.e. 

x^-I{d,~b) (21) 

Let us finally introduce the notion of polynomial cointegration (see, e.g., 
Johansen, 1995). 

Definition 7 

The components of a multivariate stochastic process y^ integrated of or­
der d>2 form a polynomially cointegrated system of order {d, b), where b 
is a non negative integer satisfying the condition b<d, and we write 

y^-PCKd^b) (22) 

if there exist vectors a and ^,^(l<k<d-b+ l ) - a t least one of them, be­
sides a, neither null nor proportional to an elementary vector - such that 
the linear form in levels and differences 

d-b+l 

^t =«y+ ly^^'yt (23) 
(1,1) k=\ 

is an integrated process of order d-b, i.e. 

z,-I(d-b) (24) 
Observe, in particular, that the class of PCI (2, 2) processes is that of 

/ (2) processes which by polynomial cointegration give rise to stationary 
processes. 

Cointegration is actually a cornerstone of time series eeconometrics as 
the next chapter will show. A quick glance at the role of cointegration, in 
connection with the notion of stochastic trends, will be cast in the appendix 
of this chapter. 



Appendix. Integrated Processes, Stochastic Trends and Cointegration 77 

Appendix. Integrated Processes, Stochastic Trends and 
Role of Cointegration 

Let 

^. = 
(2,1) ^2 

1(1) (Al) 

be a bivariate process integrated of order 1, specified as follows 

^, = Ad, + ll, (A2) 

where d, is a vector of stochastic trends 

d, = ±e,, e, - WiV,, (A3) 
(2,1) x = l 

and T|̂  is a bivariate process which is covariance stationary with a null 
mean, which is tantamount to saying that 

r\, ~IiO) (A4) 
(2, 1) 

Let us suppose that the matrix A = [a.j\ is such that a.. ^ 0 for ij = 1,2 
and let us assume this matrix to be singular, i.e. 

r ( A ) = l (A5) 

Then it follows that 
/) the matrix has a null eigenvalue associated with a (left) eigenvector p^ 

such that 

p'A = 0' (A6) 

ii) the matrix can be factored into two non-null vectors, in terms of the rep­
resentation 

(2,1) (1,2) ^ ' 

Now, according to (A7), formula (A2) can be rewritten as 

^^ = bc% + ̂ ^ (A8) 

where 
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c ' i» ,- / ( l ) (A9) 

Then, by premultiplying both sides of (A8) hyp' we get 

p% =p'bc'^^ +p\ =p\ ~ / (0) (AlO) 

since from formulas (A6) and (A7) it follows that 

p'b = 0^p'bc'^^ = 0 (All) 

Finally, by virtue of (Al) and (AlO) the conclusion that 

^ , ~ C / ( 1 , 1) (A12) 

is easily drawn. 
Considering the above results we realize that 

i) the process ^̂  is integrated of first order owing to the presence of a sto­
chastic trend via the process c''&^, which plays the role of a common 
trend (cf. Stock and Watson, 1988) and turns out to influence both the 
components of ^̂  through the (non-null) elements of b; 

ii)the vector/; (left eigenvector associated with the null eigenvalue of the 
matrix A) is a cointegration vector for h,^ sincep'^^ is stationary; 

iii) the cointegrability of ^̂  relies crucially on the annihilation of (common) 
trends, according to (Al 1) above. 
The very meaning of cointegration is thus that of making immaterial or 

at least weakening the role of the non stationary components. 



3 Econometric Dynamic l\/lodels: from Classical 
Econometrics to Time Series Econometrics 

3.1 Macroeconometrlc Structural Models Versus VAR 
Models 

According to the so-called time series econometrics, the typical assump­
tion of classical econometrics about the determinant role played by eco­
nomic theory in model specification is refuted. Therefore, the core of 
econometric modelling rests crucially on VAR specifications with the ad­
dition of integration and cointegration analysis to overcome the problem of 
non stationary variables and detect possibly stable economic relationships 
from available data. 

This implies that the conceptual frame based upon the interaction among 
economic theory, mathematics and empirical evidence - provided with the 
pertinent statistical reading key ~ which characterizes classical economet­
rics, leads to a mirror reinterpretation within the time series econometrics. 
The implication is essentially an overturning between the specific role of 
empirical evidence and the guide role of economic theory. 

Thus, whereas the empirical evidence plays a complementary role in 
comparison with economic theory within classical econometrics - about 
which a iuris tantum presumption of a priori reliability does indeed exist, 
although not explicitly expressed - in time series econometrics the per­
spective is in a certain way overturned. Here are the data - that is the em­
pirical evidence - to outline the frame of reference, while economic theory 
intervenes with an ancillary role to check a posteriori the coherence of the 
results obtained through statistical methods, according to principles ac­
cepted by economic theory. 

In light of these brief considerations, it is possible to single out the 
common aspects as well as the distinctive features of the above mentioned 
approaches to econometric modelling. One could then understand the mo­
dus operandi of econometric research within both perspectives, when the 
common denominators are provided by economic theory and by empirical 
evidence, even though with different hierarchical roles. 
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Given these preliminaries, the reader will find in this section a compari­
son - restricted to the essentials features - between the dynamic specifica­
tion in the context of VAR modelling and in that of structural economet­
rics, with a characterization which rests on the assumption that the roots of 
the characteristic polynomial associated with the model lie inside or on the 
unitary circle, and with the reduced form as a unifying frame of reference. 

Whereas, on the one hand, the reference to the reduced form (as an ele­
ment of connection) could lead to a restrictive reading key of VAR mod­
els, in subordinate terms with respect to structural models, this meaning is 
no longer applicable when the comparison is made about the nature and 
the role of the roots of the relative characteristic polynomial. 

As a starting point it may be convenient to consider the following gen­
eral primary form for the model 

(1) 
(n,l) 

K 

y, =Ty, + Y\L)y, + A*{L)x, + t, 

where 

T*{D=YT,L' (2) 

and 

A\L)=±\U (3) 
r = 0 

The notation reflects the one currently used in econometric literature 
(see, e.g., Faliva, 1987). Here the vectors y and x denote the endogenous 
and the exogenous variables respectively, £ represents a white noise vector 
of disturbances, whereas F, T^ and A^ stand for matrices of parameters. 

Next, we consider first the point of view of classical econometrics and 
then that of time series econometrics. 

The distinctive features of structural models are 

i) r * / = 0, (4) 

where the symbol * denotes the Hadamard product for matrices (see, 
e.g., Faliva, 1987, p.86). 

ii)r, r^ {k = 1, 2,..., K) and A^ (r = 0, 1,..., R) are sparse matrices, speci­
fied according to the economic theory, ex ante with respect to model es­
timation and validation. 
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While formula (1) expresses the so-called structural form of the model, 
which arises from the transposition of the economic theory into a model, 
the secondary (reduced) form of the model is given by 

where 

with 

y^ = P{L)y^ + Il{L)x^ + \l^ (5) 

,̂ = (/-rr8, (6) 

k=i 

n(L)=fn,r (8) 
r = 0 

p, = (/,-r)"T„/^=i,2,...,/r (9) 

n = ( / , - r ) " ^ A ^ , r = 0,1,...,/? (10) 

In a more compact form model (5) may be written as follows 

A(L)y^=n(L)x^ + li^ (11) 

with A(L) defined as 

A(L)=I-P(L) (12) 

The spectrum of the characteristic polynomial 

\A(z)\ = det[I-P(z)] (13) 

plays a crucial role in the analysis. As a matter of fact, the assumption that 
all its roots lie outside the unitary circle is indeed a main feature of struc­
tural models. 

Starting from the reduced form in formula (11), it is possible to obtain, 
through suitable computations (cf. Faliva, 1987, p. 167), the so-called/?na/ 
form of the model, namely 

y^ = H^ + [A (L)] -̂  n (L) X, + [A (L)]-' |Li, (14) 

Here V'̂  denotes the vector 
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X" = 
(nK, 1) 

K. 

(15) 

whose elements are the t-th powers of the solutions X^, X^,..., X^^ (which 
are all assumed to be distinct, in order to simplify the formulas) of the 
equation 

det{X'l„-YX''P,) = ^ (16) 

and H is a matrix whose columns h^ are the non trivial solutions of the ho­
mogeneous systems 

( ^ f / ~ X r P , - . . . - \ . P , _ , - P , ) / i , . = 0„ / = l , 2 , . . . , n i r (17) 

The term H%^'\ in the right side of (14), reflects the dynamics of the en­
dogenous variables of inside origin (so-called autonomous component), 
not due to exogenous or casual factors, which corresponds to the general 
solution of the homogeneous equation 

A{L)y=0 (18) 

The last two terms in the second member of (14) represent a particular 
solution of the non-homogeneous equation (11). 

The term 

[A{L)rU{L)x = Y'^,x,_, (19) 

reflects the deterministic dynamics, due to exogenous factors (so-called 
exogenous component), while the term 

[A(L)rH,= XCA-. (20) 

reflects the dynamics induced by casual factors (so-called stochastic com­
ponent), which assumes the form of a causal moving average VMA (oo) of a 
multivariate white noise, namely a stationary process. 

The complete reading key of (14) is illustrated in the following scheme 
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y. = Hk''+[I-P(L)rUiL)x. + [/-i»(L)rV, 

autonomous 
component 

< • 
complementary 

solution 

exogeneous 
component 

VMA component 
(stationary process) 

< • 
particular solution 

general solution of the non-homogeneous equation 

(21) 

It is worth mentioning that, in this context, the autonomous component 
assumes a transitory character which is uninfluential in the long run. This 
is because the scalars \ , \ , ..., \ ^ are the reciprocals of the roots of the 
characteristic polynomial (13) and as such lie inside the unit circle. As a 
result, the component HX^'^ may be neglected when t is quite high, leading 
to a more concise representation 

y,= [I^P(L)rU(L)x, + [/-P(L)rV 

exogeneous 
component 

VMA component 
(stationary process) 

< • 

(22) 

What we have seen so far are the salient points in the analysis of linear 
dynamic models from the viewpoint of classical econometrics. 

As far as time series econometrics is concerned, the distinctive features 
of the VAR model are 

i) r = 0 : ^ r = p , , k = hx,„,K (23) 

ii) r^ (^ = 1,2,..., K), are full matrices, in absence of an economic informa­
tive theory, ex ante with respect to model estimation and validation. 

iii) A*(L) = 0=>A^ = n^ = 0, r = 0,l,.. . ,/? (24) 

As long as the distinction between endogenous and exogenous variables 
is no longer drawn, all relevant variables - de facto - turn out to be treated 
as endogenous. 

Here the primary and secondary forms are the same: the model in fact is 
automatically specified in reduced form, in light of (23) and of (24), i.e. 

y^ =P(L)y^ + E^ 
(n,l) 

(25) 

where 
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P (L) = r* (L) (26) 

with the further qualification 

n(L)=A*(L) = 0 (27) 

The specification of the VAR model, according to (25) and in view of 
(7), assumes the form 

K 

J, = Z^* •>',-, + £, (28) 

k = \ 

According to (12) the following representation holds 

A(L) j , = £, (29) 
The solution of the operational equation (29) - which is the counterpart 

to the notion of final form of classical econometrics - is the object of the 
so-called representation theorems, and can be given a form such as 

y=Hr + K + k^t + N,'Y,{t + \-x)z^+N,Y,z,+±M,z,_, (30) 
x<t x<t / = 0 

whose rationale will become clear from the subsequent Sections 3.4 and 
3.5, which are concerned with specifications of prominent interest for 
econometrics involving processes integrated up to the second order. 

In formula (30) the term HX^'\ analogously to what was pointed out for 
(14), represents the autonomous component which is of transitory charac­
ter and corresponds to the solution of the homogeneous equation 

A(L)y^ = 0 (31) 

inherent to the roots of the characteristic polynomial which lie outside the 
unitary circle. Conversely, the term k^ + k^t represents the autonomous 
component (so-called deterministic trend) which has permanent character 
insofar as it is inherent to unitary roots. 

The other terms represent a particular solution of the non- homogeneous 

equation (29). Specifically, the term ^M.£^_. is a causal moving-average 
/ = 0 

process - whose analogy with (20) is evident -associated with the regular 
part of Laurent expansion of A~̂ (z) in a deleted neighbourhood of z = 1. 

The term 
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iV,X(̂  + l-T)e,+iV,X^, (32) 

on the other hand, reflects the (random) dynamics, i.e. the stochastic trend 
or integrated component associated with the principal part of the Laurent 
expansion of A~\z) in a deleted neighbourhood of z= 1, where z= 1 is 
meant to be a second order pole of A~\z). 

As it will become evident in Sections 3.4 and 3.5, the cointegration rela­
tions of the model turn out to be associated with the left eigenvectors cor­
responding to the null eigenvalues of Â2 ^^^ ^ r 

The complete reading key of (30) is illustrated in the following scheme 

autonomous 
transitory 

component 

autonomous 
permanent 

component: 
determinist 

trend 

complementary 
solution 

Integrated component: 
stochastic trend 

particular solution 

^ ^ • ^ ' • • - ~ 

general solution of the non-homogeneous equation 

VIVIA 
component 
(stationary 
process) 

^ 

(33) 

3.2 Basic VAR Specifications and Engendered Processes 

The validity of VAR specifications to actually grasp the dynamics of 
economic variables rests on ad hoc rank qualifications of the parameter 
matrices in the reference model. 
Before going into the matter in due depth and eventually tackling the ma­
jor issues of representation theorems content and meaning, let us get an in­
sight into the general setting of unit-root econometrics. 

Definition 1 

A vector autoregressive (VAR) model 

A(L) j ^ = ê  + n , E^WN^^ 
(n,n) (rt, 1) (n , 1) (n,l) 

(1) 

where T| is a vector of constants (drift vector) and 
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A(L)=±A,L\ A, = 1,A,^0 (2) 

is a matrix polynomial whose characteristic polynomial 

Ti {z) = det A iz) (3) 

can be factored as 

7l(z) = ( l -Z r7C(z ) (4) 

where oc > 0 is a non negative integer and n (z) has all roots outside the 
unit circle, will be referred to as a basic VAR model of order K and dimen­
sion n. 

Definition 2 

VAR models can also be specified in terms of both levels and differ­
ences by resorting to representations such as 

e (L )Vj , + Aj, = E, + Tl (5) 

^ (L) V'y^-A Vy^ + Ay^ = z^ + y\ (6) 

where the symbols have the same meaning as in (8) and (9) of Section 1.3. 
Such representations are referred to as error-correction models (ECM ). 

The following propositions summarize the fundamental features of 
VAR-based econometric modelling. Here the proofs, when not derived as 
by-products of the results presented in Chapters 1 and 2, are justified by 
material to be found in later sections. 

Proposition 1 

A basic VAR model, as per Definition 1, engenders a stationary process, 
i.e. 

y^KO) (7) 

whenever 

r(A) = n (8) 

or, otherwise stated, whenever 

a = 0 (9) 
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Proof 

The proposition ensues from Theorem 1 of Section 1.6 together with 
Theorem 1 of Section 2.3, after the arguments developed therein. 

Thereafter the matrix A, even if singular, will always be assumed to be 
non null. 

• 

Proposition 2 

A basic VAR model, as per Definition 1, engenders an integrated proc­
ess, i.e. 

y^nd) (10) 

where J is a positive integer, whenever 

r{A)<n (11) 

or, otherwise stated, whenever 

a > 0 (12) 

Proof 

The proof follows the same line as the proof of Proposition 1. 
D 

Proposition 3 

A basic VAR model, as per Definition 1, engenders a first order inte­
grated process, i.e. 

y^nX) (13) 

if 

det{A) = 0 (14) 

det{B'^AC^)^0 (15) 

where B^. and Ci denote the orthogonal complements of the matrices B 
and C of the rank factorization 

A^BC (16) 
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Proof 

The statement ensues jointly from Theorem 2, in view of Corollary 2.1, 
of Section 1.6 as well as Theorem 1 of Section 2.3, after the arguments de­
veloped therein. 

D 

Proposition 4 

Under the assumptions of Proposition 3, the twin processes C'^y^ and 

Cy^ are integrated of first order and stationary respectively, i.e. 

0 , ~ / ( l ) (17) 

C y ~ / ( 0 ) (18) 

which, in turn, entails the cointegration property 

3^,-C/(l, 1) (19) 

to hold true for the process j^^. 

Proof 

The proposition mirrors the twin statements (12) and (13) of Theorem 2 
in Section 2.3 once we take d=\ and 5 = J - 1 = 0. Indeed, writing the 
VAR model in the ECM form (5), making use of (16) and rearranging 
term, we get 

BCy^^z^ + y\-Q{L)Vy^ (20) 

Insofar as j ^ - / (1), the following holds true 

e ( L ) V j , ^ / ( 0 ) (21) 

which, in turn, entails 

BCy^-I{G)^Cy^-I{Q) (22) 

in view of (20). 
For what concerns (17), the result is an outcome of the representation 

theorem for 7(1) processes to which Section 3.4 will thereinafter be de­
voted. After (17) and (18), the conclusion about the cointegrated nature of 
y^, as per (19), is trivially drawn. 

D 
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Proposition 5 

A basic VAR model, as per Definition 1, engenders a second order inte­
grated process, i.e. 

y,-I(2) (23) 

if 

det(A) = 0 (24) 

det(B[ A C J = 0, ( B ; A Cx) ^ 0 (25) 

det(R[B[ACi_SA.)itO (26) 

where the matrices B± and Ci have the same meaning as in Proposition 3, 
the matrices R± and S± denote the orthogonal complements of R and S in 
the rank factorization 

B[ A Ci =RS' (27) 

and the matrix A is given by 

A=-A-AA'A (28) 

Proof 

The proposition ensues jointly from Theorem 3, in view of Corollary 
3.1, of Section 1.6 and Theorem 1 of Section 2.3, in accordance with the 
arguments developed therein. 

D 

Proposition 6 

Under the assumptions of Proposition 5, the twin processes S[ C[y^ and 

(C_^Sj_y_^y^ are integrated of the second and first order, respectively, i.e. 

S[C[y,~I(2) (29) 

(C^Sj,y,~I(l) (30) 

which in turn entails the cointegration property 
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J , - C / ( 2 , 1) (31) 

to hold true for the process j ^ . 
The stronger cointegration property 

y^-CI (2,0) (32) 

may also holds true, under the circumstances of Corollary 2.2 of Section 
1.7. 

Proof 

An analogy - although partial - between this proposition and Theorem 2 
in Section 2.3 can be drawn bearing in mind the representation (28), Sec­
tion 1.6, of the orthogonal complement of the product C_iS±. 

Actually, results (29) and (30) are spin-offs of the representation theo­
rem for / (2) processes to which Section 3.5 will thereinafter be devoted. 

After (29) and (30), the conclusion about the cointegrated nature of j^^, as 
per (31), is trivially drawn. The proof of the second part of the theorem 
rests on the Corollary 2.2 of Section 1.7 as well as the arguments of the 
subsequent Section 3.5. 

D 

3.3 A Sequential Rank Criterion for the Integration Order 
of a VAR Solution 

The following theorem provides a chain rule for the integration order of 
a process generated by a VAR model on the basis of the rank characteris­
tics of its matrix coefficients. 

Theorem 1 

Consider a basic VAR model, as per Definition 1 of Section 3.2 

A(L)y^ = E^ e^-WN^^^ (1) 

where the symbols have the same meaning as in the said section, the ma­
trices r , r and A are defined as follows 

~A;-AAy 
r = [A;-AA^ A], r = 

A 
(2) 
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A = ( /~rr )A( / -n f ) (3) 

and A/" and A^ are as in Definition 7 of Section LI. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

The following results hold true 
i)if 

then 

whereas if 

then 

r (A) = n 

y.~HO) 

r{A)<n 

y,~Iid), d>0 

ii) Under rank condition (6), if 

then 

whereas if 

then 

r([A,A]) = n 

y,~I{d), d>l 

r([A,A])<n 

y,~I{d), d>2 

iii)Under rank condition (8), if 

then 

whereas if 

then 

r(r) = n 

y,~Hi) 

r(r)<n 

y,~I{d), d>l 

iv)Under rank condition (14), if 
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then 

whereas if 

then 

r([A,r]) = n 

y,~I{d), d>2 

r{[A,T\)<n 

y,~I{d), d>3 

v) Under rank condition (16) if 

r([A, n ) = n 

then 

J ,~ / (2 ) 

whereas if 

r([A, r ] ) < n 

then 

y,~Iid), d>2 

Proof 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

To prove i) refer back to Theorem 1 of Section 1.6 and Theorem 1 of 
Section 2.3 (compare also with Propositions 1 and 2 of the foregoing sec­
tion). 

To prove point ii) refer back to Theorem 2 and 3, as well as to Corollary 
2.1 of Section 1.6, and also to Theorem 1 of Section 2.3 (compare also 
with Propositions 3 and 5 of the foregoing section). Then, observe that 

n -A B 

y.C 0^^ 

\ 

=r 
-I 0 

0 B 

whence 
/I 

-A B 

C 0 
= n + r{A)<^r 

-A B 

C 0 

A A 

A 0 

I 0 

0 -C 

/ r 

=r 
A A 

A 0 

•w 

(24) 

= n + r{A)^r{[A,A\) = n (25) 
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but not necessarily the other way around. 
Hence, d is possibly equal to one, as per (9), under (8), whereas this is 

no longer possible, as per (11), under (10). 
The proof of iii) rests on Theorems 14 and 19 in Marsaglia and Sty an 

(1974), Definition 7 of Section 1.1, yielding the rank equalities 

-A B 

C 0 
- r 

A A 

A 0 (26) 
= r(A) + r(A) + r ((I-AA')A(I-A'A)) 

= r (A) + r (A) + riA^-AA^) = r(A) + r (F) 

Hence, after (12) the following holds 

r 
- A B 

C 0 
-n + r{A) (27) 

and (13) follows accordingly, in view of the theorems quoted in proving 
ii), whereas the circumstance (15) occurs under (14). 

To prove iv) refer, on the one hand, back to Theorem 3 - along with its 
corollary - of Section 1.6 and Theorem 1 of Section 2.3 (compare also 
with Proposition 5 of the foregoing section) and, on the other hand, to the 
proof of ii), by replacing 

(28) 
"-/ o' 

0 B 
9 

-A B' 

C 0 
9 

7 
0 

0 ' 

-c 

1 0 0' 

0 (ByR 0 

0 0 B 

V 

with 

A {B'JR B 

S'iCJ 0 0 

C 0 0 

respectively, after the equalities 

{B^RJi = [{B'JR,B] 

(CxSxk = [ (Cl /5 ,C] 

(B'JRS'(C^_y=AtAA^ 

I 

0 

0 

0 

s'icy 
0 

0 

0 

c 
(29) 

(30) 

(31) 

(32) 
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VL Jy 

because of (27) and (28) of Section 1.6 and the pairs (47)-(53) and (48)-(54) 
of Section 1.1. 

Next observe that 

A (ByR Bfl 0 0 

= r\\u (iS\)K uwS'iCy 0 olo S'iCy 0\\ (33) 

c 0 ol_o 0 c 
A r " 

f 0 

I 

0 

0 

0 O] 

iB[yR o\ 

0 B\ 

1 \ 

-• / 

= r 

whence 

0 
j y 

<t=>r 

= n + A-((Cx5x)i)« 

= n + r((Cj.5x)i)=>r([A r]) = n 

(34) 

A 

A r' 

f 0 

but not necessarily the other way around, given that 

r ( r ) = r ( f ) = r(CxSx)i 

Hence d is possibly equal to two, as per (17), under (16) whereas this is no 
longer possible, as per (19) under (18). 

The proof of point v) proceeds along the same lines as the proof of point iii) 

by replacing A^, A, Af, A respectively, with (/ - f« f ) , A , (/ - FT), T. 
In this connection, observe that 

(35) 

A (B^RJ^ ̂ ^ f 
= r 

J / 

A r 

f 0 

~i\ 

(36) 

= r(r} + r(r) + r({i-rr)A(i-rf)) 
= r(D + r([A ri) 

Hence, after (20) the following holds 
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.(C,5,)l 0 

1 \ 

= n + r(C^S,_)^ (37) 
Jy 

and (21) ensues accordingly, in view of the theorems quoted in proving 
iv), whereas the circumstances (23) occurs under (22). 

n 
The sequential procedure for integration order identification inherent in 

the theorem can be given an enlightening visualization via the decision 
chart of the next page. 
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3.4 Representation Theorems for Processes /(1) 

Representation theorems - whose role in unit-root econometrics mirrors 
that of the final form for the dynamic models of structural econometrics -
are concerned with the closed form solutions of VAR models in presence 
of unit-roots, with the inherent reading keys in terms of integrated vs. sta­
tionary components of the solutions and cointegration effects as possible 
offsprings. Such theorems, after Granger's seminal work and the major 
contributions due to the school named after Johansen, stand as a milestone 
of the so-called time series econometrics. 

Even if the way is, by and large, paved, the underlying analytical setting 
still presents some subtle facets, which have actually hindered, in some re­
spects, a fully satisfactory treatment of the whole matter. 

The remaining of this chapter will be expressly devoted to representa­
tion theorems with the aim of shedding proper light on the subject after the 
arguments developed so far. The clarity of the statements and the fluent 
structure of the proofs are indebted to the innovative as well as rigorous 
algebraic apparatus drawn up in the first chapter. Hence, an elegant reap­
praisal of classical results is combined with original contributions, widen­
ing and enriching both the content and the significance of the theorems 
presented. 

This section concentrates on / ( I ) processes, while the next covers 1(2) 
processes. 

Theorem 1 

Consider a VAR model specified as follows 

(1) 
A{L)y, = e, + % e,~WN^„^ 

(n,n) 

where r| is a drift vector and 

A{L)=f^AjL\ A, = I,A,^0 (2) 
y = o 

is a matrix polynomial whose characteristic polynomial detA(z) is as­
sumed to have a possibly repeated unit-root with all other roots lying out­
side the unit circle. 

Let 
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det 
-A B 

C 0 
*0 

where B and C are defined as per the rank factorization 

A=BC 

of the singular matrix A (l)=A^O. 
Moreover define 

P P 

P P 
. 3 ' 4 . 

-A B 

C 0 

(3) 

(4) 

(5) 

Then, the following representation holds for the process engendered by 
the model (1) above 

where 

y, = K + k,t + N^Y.^^+M(L)e, 

N,=P, = -C^{B'^AC^rB'^ 

(6) 

(7) 

M{L)=Y,M,V, M ( 1 ) = £ M , (8) 

M{\) = --P'AP,+PT=--N/AN, 
V / 2 • ' ^ 3 2 ' ' (9) 

+ (/ + iv,A)A*(/+ AN;) 

k^ = Ny+M{\)^ = Ci,\ + M{\)y\ (10) 

^,=iV,Tl (11) 

Mg, Af,,..., are coefficient matrices whose entries decrease at an exponen­
tial rate, and both v and v denote arbitrary vectors. 

Solution (6) represents an integrated process which is inherently cointe-
grated. Indeed, the following results hold true 

i) j , ~ / ( l ) . z > V j , ~ / ( 0 ) (12) 
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ii) Cyrno)^yrCi(hi) (13) 

Proof 

The relationship (1) is nothing but a linear difference equation whose 
general solution can be represented as (see Theorem 1, Section 1.5) 

{complementary] \ particular solution of the 1 
'̂ "̂~ 1 solution J ] non-homogeneous equation \ ^ ^ 

As far as the complementary solution, i.e. the (general) solution of the 
reduced equation 

A(L)y, = 0 (15) 

is concerned, we have to distinguish between a permanent component as­
sociated with a (possibly repeated) unit-root and a transitory component 
associated with the other roots of the characteristic polynomial 

\A(Z)\ =detA(z) (16) 

By referring back to Theorem 3 of Section 1.5, the permanent compo­
nent can be expressed as follows 

C = Â ,v (17) 

or, in view of (7), as 

C = CxV (18) 

by taking 

v = - ( f l lACx)- 'B;v (19) 

The transitory component of the complementary solution can be ex­
pressed as follows 

C,=iyr (20) 

where the symbols have the same meaning as in (14)-(17) of Section 3.1 
and reference should be made to all roots of the characteristic equation 

detA(z) = 0 (21) 

except for the unit-roots. 
Given that the elements of X^'^ decrease at an exponential rate, the con­

tribution of component ^̂  turns out to be ultimately immaterial, and as 
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such it is ignored by the closed-form solution of equation (1) in the right-
hand side of (6). 

As far as the search for a particular solution for the non-homogeneous 
equation (1) in the statement of the theorem is concerned, we can refer 
back to the proof of Theorem 1 of Section 2.3 and write 

y, = A-\L)(r\ + e) (22) 

accordingly. 
Since, by virtue of hypothesis (3), A~\z) has a simple pole in z = 1 (see 

Theorem 2 of Section 1.6), in light of (4) of Section 1.4 and of the isomor­
phism between matrix polynomials in a complex variable z and in the lag 
operator L, the following Laurent expansion holds 

A-\L)=—^N,+MiL) (23) 
(i L) 

which implies 

y, = 77777^1 (^ + ^)+M (L) (ri + e) (24) 
(/ L) 

with N^ given by (3) in Theorem 1 of Section 1.7. 
Because of the formal relationships (see (5) and (6) of Section 2.3) 

-TT='^"=Z il-L) - (25) 

we derive from (24) the elegant closed-form solution 

where M (1) is given by (4) in Theorem 1 of Section 1.7. 
Combining the particular solution, in the right-hand side of (26) of the 

non-homogeneous equation (1) with the permanent component in the right-
hand sides of either (17) or (18), of the complementary solution, we even­
tually get for the process y^ the representation 

J, = C + M (1) Ti + N;r\t + N^ ^ ^ x + E ^ y ^H (27) 
x<t j=0 

which tallies with (6), by virtue of (10) and (11). 

With respect to results /) and //), their proofs rest on the following con­
siderations. 
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Result 0 - By inspection of (6) we deduce that y^ is the resultant of a 
drift component k^, of a deterministic linear trend component k^t, of a first 
order stochastic trend component Â i ^ e ^ , and of a VMA (oo) component 

in the white noise argument £̂ . Therefore, the solution y^ displays the con­
notation of a first order integrated process, and consequently Vŷ  qualifies 
as a stationary process. 

Result //) - It ensues from (6), in view of (7), through premultiplication 
of both sides by C^ Because of the orthogonality of C with N^ and in view 
of (11), the terms of C'y^ involving both deterministic and stochastic 
trends, namely C'k^t and C W ^ ^ e ^ , disappear. The non stationary terms 

being annihilated, the resulting process C'y^ turns out to be stationary. 
As long as j^^ ~ / (1) and also C'y^ ~ / (0), the solution process 3̂^ turns out 

to be cointegrated and we can write3?^ ~ C/ (1, 1), accordingly. 
D 

The following corollaries highlight some interesting results about the 
stationary processes Vy and Cy^ associated with the integrated process y^, 
i.e. the solution of the VAR model (1). To pave the way to deriving the in­
tended results, we will first define the partitioned matrices 

P{z) = 
PAz) P2iz) 

P,(z) P,(z)_ 

'Q(z) B' 

C' 0 
(28) 

n(z) = 
n.cz) n,iz) 

n,(z) n,(z) 

Q(z) B 

C -{\-z)I 
(29) 

Both (28) and (29) are meaningful expressions and the matrix func­
tions P{z) and n (z) are matrix polynomials themselves thanks to the 
Cayley-Hamilton theorem (see, e.g., Rao and Mitra, 1971) provided the 
inverses in the right-hand sides of (28) and (29) exist, which actually oc­
curs in a neighbourhood of z = 1 under the assumptions of Theorem 1 
above. 

Now, let us prove the following 
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Lemma 

The following relation holds among the blocks of the matrices 11 (z) and 

P(z) 

"n,(z) n.cz)! 

n,(z) n,(z)\ 
P,{z)+il-z)PAz)[I-(l-z)P,iz)]-'P,{z) P,iz)[I-il-z)P,{z)r 

[I-il-Z)PAz)rPiz) '' '' .M».-xn-.: [I-{\-z)P,iz)rP,{z)^ 

In particular, we have 

n ( l ) = P ( l ) 

(30) 

(31) 

Proof 

Upon noting that 

'Qiz) B 

C -{\-z)I 

Qiz) B 

C 0 
( l - z ) / [ 0 , /] 

straightforward application of result (29) of Section 1.2 implies that 

^—I-[0, lf{z\ 
\-z 

U{z)=P{z)+P{z) 

which is tantamount to saying that 

•n,(z) n,{z) 

u,{z) n,(z)_ 
P,{z) Piiz) 

Psiz) P,{Z\ 

+ (l-z) {I-il-z)PXz)r\PAz), Piz)] 
>2(^)1 

A(z)\ 
Now, a simple computation shows that 

n,(z)=p,iz) + {i-z) pjiz) [/- (1 - z) nz)r'P,iz) 

(32) 

[0, / ] P(z) (33) 

(34) 

(35) 

= / ' 3 ( z ) + { / - [ / - ( l - z ) P i z ) ] } [ / - ( l - z ) P i z ) r ' P , ( z ) 
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= P^iz) + [/ - (1 - z) PM'n^) - P,(z) = [/ - (1 - z) PM)Vn^) 

and, in a similar fashion, that 

n , ( z ) = P , ( z ) [ / - ( l - z ) P , ( z ) r (36) 

n / z ) = [/ ~ (1 ~ z) PSz)V P,(z) = P,(z) [/ - (1 - z) P,(z)]-^ (37) 

The expression for the leading diagonal block 

n,(z) = P,(z) + (1 - z) P,(z) [/ - (1 - z) P,(z)]-^P3(z) (38) 

is easily obtained. 
Then, in light of the foregoing, equality (30) is verified. 
Proof of (31) is trivial. 

D 

We now present the aforementioned corollaries. 

Corollary 1,1 

Alternative VMA representations of the stationary process Vy^ are 

Vy^ = n,(L) (Ti + £,) = N,r\ + n / L ) 8, (39) 

= 6 + S(L)e, (390 

where Il^(L) is obtained from the leading diagonal block of (29) by replac­
ing z with L, while 6 and H (L) are given by 

8 = iV,r| (40) 

S ( L ) = X S L ^ = M ( L ) V + iV, (41) 

j=o 

The operator relationship 

M(L)W = n,(L)-N, (42) 
holds accordingly. 

Furthermore the following statements are true 
i) the matrix polynomial S (z) has a simple zero at z = 1; 
ii) Vŷ  is a non invertible VMA process; 

iii) E(Vy) = N,r\ (43) 
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Proof 

From (7) of Section 1.6, because of the isomorphism between matrix 
polynomials in a complex variables z and in the lag operator L, this note­
worthy relationship holds true 

A-^(L)V = [/, 0] 
Q(L) B 

c -v/ 
(44) 

whence, in view of (22) and by virtue of (29), the following VMA repre­
sentation of Vy, 

Vj,= [/, 0] (Tl + e,) = n,(L)(Ti + e,) 
(45) 

(46) 

Q{L) B T [I 

_ C -VI\ [o 

is obtained in a straightforward manner, upon noting that 

n,(i)=iv, 

according to (31). 
The VMA representation (39') follows from (6) by elementary computa­

tions. 
The equality (42) is shown to be true by comparing the right-hand sides 

of (39) and (39') in light of (41). 
For what concerns results i)-iii), their proofs rest on the following con­

siderations: 

Result i) - The matrix polynomial 

S(z) = ( l - z ) M ( z ) + iV, (47) 

has a simple zero at z = 1, according to Definition 3 of Section 1.4 and by 
virtue of Theorem 2, along with Corollary 2.1, of Section 1.6. Indeed the 
following hold 

Sil)=N,=>detEil) = 0 

H(l) = - M ( l ) 

det (Z)l E (1) i^i) 9i 0 <=> det 
-2(1) D 

E' 0 
9^0 

(48) 

(49) 

(50) 
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recalling (18) of Section 1.7, and taking 

D^ = -C, E^ = B (51) 

where D and E are defined as per a rank factorization of Â ,̂ namely 

N,=DE' (52) 

D = -C^{B[AC^)\ E = B^ (53) 

Result ii) - The conclusion is easily drawn by inspection of (390 be­
cause of i) above. 

Result iii) - The proof is straightforward by taking the expected value of 
both sides of (390 in light of (40). 

n 

Corollary 1,2 

Alternative VMA and VARMA representations, respectively, of the sta­
tionary process 

X = C'y, (54) 

are 

a) X = n3(L) m + 8,) = ̂ 3(1) Ti + n,(L) e, (55) 

= CM(l)r\ + CM(L)E^ (550 

b) (- P,(L) V + /) X = ^3(1) Ti + P,(L) E, (56) 

where, Il^(L), PJ,L) and P/L) stand for the homologous blocks of (28) and 
(29) with z replaced by L. 

The following relationships 

P3(l) = r M ( l ) (57) 

P^(L) = CM(L) (58) 

hold as by-products. 
Furthermore, one can establish the equality 

E {%} = CM (1) r| = B%I + A Â ,) r| (59) 

Proof 

Proof of a) - Because of 
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C [I, 0] = V0, /] 
'Q(L) B ' 

C -VI 
+ VI[0, I] 

the following conclusion 

C'A 

= VI[0, /] 

-\L) V = C [i 

'Q{L) B ' 

C -VI 

I, 

-1 

0] 

[/] 
\o\ 

\Q(L) B ' 

[ C -VI 

= n,{L)V^ 

-'rr 

C'A' iL) = n,(L) 

(60) 

(61) 

is easily drawn in light of (44) and (29). Hence, the VMA representation 
(55) follows, also bearing in mind (31). 

The VMA representation (55') follows from (6) by elementary compu­
tations in view of the orthogonality of C with N^. 

Proof of b) - In view of (35), by replacing z with L and (1 - z) with V as 
usual, the VMA representation (54) can be rewritten as 

X={I-P^(L)WP,(L)m + e) (62) 

Then, premultiplying both sides of (62) by the operator / - P/L) V the 
desired representation (56) is easily established. 

Eventually, equalities (57) and (58) are proven to be true by comparing 
the right-hand sides of (55) and (550-

Finally, as far as (59) is concerned, the proof is straightforward by tak­
ing the expected value of both sides of (550 and by making use of (17) of 
Section 1.7. 

D 

What is claimed in Theorem 1 and in its corollaries, both reflect and ex­
tend the content of the basic representation theorem of time series econo­
metrics. 

This theorem can likewise be given a dual version (see, e.g., Banjeree et 
al. 1993; Johansen, 1995), which originates from a VMA model for the 
difference process Vj^, which in turn underlies a VAR model for the parent 
process y^ whose integration and cointegration properties can be eventually 
gathered. 
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Theorem 2 

Consider two stochastic processes ^̂  and y^, being the former defined as 
the finite difference of the latter, i.e. 

^' " ^^^ (63) 
inA) 

Let ^̂  be stationary and assume a VMA(oo) representation such as 

^, = H(L)(Tl + 8,) (64) 

whose parent matrix polynomial S (z) = S^ + ^ 3 . z in the complex argu-
i = \ 

ment z is characterized by a first order zero at z = 1 and by coefficient ma­
trices H. with exponentially decreasing entries. 

Then the companion process 3̂^ admits a VAR generating model, namely 

A(Dy^ = ^+^^ (65) 

whose parent matrix polynomial A (z) in the complex argument z has a 
first order zero at z = 1 and whose characteristic polynomial detA(z) has, 
besides a (possibly multiple) unit-root, all other roots lying outside the unit 
circle. 

The engendered process y^ enjoys the integration and cointegration 
properties 

where C^ is defined as per a rank factorization of A = A (1), such as 

A=BC (67) 

Proof 

In view of (6) and (8) of Section 1.3 and of the isomorphism between 
polynomials in a complex variable z and in the lag operator L, we obtain 
the paired expansions 

H ( l ) = 0 ( z ) ( l - z ) + S ( l ) « H ( L ) = 0(L)V + S(1) (68) 

where 



108 3 Dynamic Models: from Classical to Time Series Econometrics 

O (z) =X(-1)* (1 -zr'-^S'«(l) « 0 (L) =X(-1)^ -̂ Ŝ ĈDV*-' (69) 
k>l 

k\ 

0 ( 1 ) = -H(1) 

it! 

(70) 

Then, in light of Definition 3 of Section 1.4 and by virtue of Theorem 2 
and Corollary 2.1 of Section 1.6, the following hold true 

det 

VL 

-3(1) B 

C' 0 

det 3 (1) = 0 

¥:0<^det(B[Sil)CJ^O 

(71) 

(72) 
J / 

where B and C are defined by a rank factorization of S (1), namely 

E(l)=B C' (73) 

Given this premise, expansion (4) of Section 1.4 holds for H"'(z) in a de­
leted neighbourhood of the simple pole z =1 and we can accordingly write 

S-'(z) = 
1 

(1-z) 
N, + M iz) ^ S"'(L) = iV, V"' + M (L) 

where 

iV, = - C , ( B l H ( l ) C J - ' f i l 

M ( l ) = - i iV, S(l)iV, + (/ + iV, H(l)) H'(l) ( /+S( l ) iV , ) 

in view of Theorem 1 of Section 1.7. 
Applying the operator S"'(^) to both sides of (64) yields 

H-'(L) ^, = 11 + e, ̂  A (L) J, = Ti + e, 

namely the VAR representation (65), whose parent matrix polynomial 

A (z) = H"'(z) (1 - z) = (1 - z) M (z) + iV, 

turns out to have a first order zero at z = 1. 
This is because of 

(74) 

(75) 

(76) 

(77) 

(78) 

i) A = N,=i>detA=0 (79) 
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whence the rank factorization 

A = BC (80) 

where B and C can conveniently be chosen as 

J? = -C^(B1S(1)CJ- ' , C=B^ (81) 

ii)The matrices Bj_ and C±,, in light of (81), can therefore be chosen as 

B^_=C, C^= B (82) 

iii) 

iv) 

A = - M(l) 

fv 
det(B[ACj_)j!^0'^det 

-A B 

C 0 
^0 

(83) 

(84) 

upon noting that, according to (82) and (83) above and (18) of Section 1.7, 
the following identity holds 

B ; A C I = - C ' M ( 1 ) B = - / (85) 

The proof of what has been claimed about the roots of the characteristic 
polynomial det A{z) rests on the arguments of Theorem 4 of Section 1.4. 

Finally, insofar as A (z) has a first order zero at z = 1 in light of (79) and 
(84) above, A~\z) has a first order pole at z = 1. 

Hence, by Theorem 1 of Section 2.3 the VAR model (65) engenders an 
integrated process y, of the first order, i.e. y,-1{\). 

Indeed, according to (78), the following Laurent expansions holds 

A (L)-' = 
1 

-N,+M{L) = a{L)V'' = ^ S ( 1 ) + 0 ( L ) (86) 
( / - L ) {I-D 

Then, in light of (65), (73) and (86) the following holds true 

y=A (L)-' (Ti + e,) = [S (1) V-' + O (L)] (ti + e,) 

(87) 

where fc is a drift vector. 

Moreover, because of representation (87), the matrix B^=C plays the 
role of matrix of the cointegration vectors since 
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^ > . = C y - / ( 0 ) (88) 

Finally, the cointegration property, j ^ ~ C/ (1, 1), holds as a by-product. 
D 

3.5 Representation Theorems for Processes / (2) 

Following the same lines of reasoning as in the previous section, we will 
provide a neat and rigorous formulation of the representation theorem for 
/ (2) processes, to be followed - as corollaries - by some noteworthy re­
lated results. 

To conclude we will show how to derive the dual form of this theorem. 

Theorem 1 

Consider a VAR model specified as follows 

A(L)3^, = 8, + ii, ErWN^^ 
(n,n) 

where T| is a drift vector and 

A{L)=Y^A.L, A, = I,A,^0 

(1) 

(2) 

is a matrix polynomial whose characteristic polynomial detA (z) is as­
sumed to have a multiple unit-root with all other roots lying outside the 
unit circle. 

Let 

a) det 
-A B 

C 0 
= 0 

where B and C are defined as per the rank factorization 

A=BC 

of the singular matrix A{\)^A^O\ 

A {B,R,\ 
b) det ^0 

(3) 

(4) 

(5) 
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where 

A=^A-AA'A 
2 

and R and S are defined as per the rank factorization 

(6) 

(7) 

of the singular matrix B[ AC±^0 with (B±R±)± and {C±S±)± standing for 

[(B[yR, B]md[{C[yS, C], respectively. 
Further, define 

Ji J2 

J3 J4 
(8) 

^A ; (B,Rj^ A(cy 

p p 

P P (c,5,)i ; 

B'A ': 

0 

0 

0 

I 

(9) 

Then, the following representation holds for the process engendered by 
the model (1) above 

y, = k, + k,t + k/ + N,Y,^,+N,Y,it+i-'cK+t.M^E^_^ (10) 

where 

x<t x<t i = 0 

N =P 
^^2 •* 1 

= /, = C,.SA K K ^ C,.Sj_r R[ B[ 

(11) 

(110 

N = -P,AP,+P,AP, 
' 6 

(12) 
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= [Â „ I-N,A] 

where 

A AA' 

A«A -CJB'^ACJ^Bf^ 

A = A ( 1 ) - A ( 0 ) 

Â . 

I-AN. 

A=-A- A A'A A'A 
6 

M{L)=Y.M,L, M ( 1 ) = £ M , 

(12') 

(13) 

(14) 

(15) 

k^ = Ny + N^ + M (1) T| 

A:,=iV,11+Ar,(v+-Tl) 

k,= -N,y\ 

(16) 

(17) 

(18) 

A(z) is as defined in (22) of Section 1.6, M^,M^,..., are coefficient matri­
ces whose entries decrease at an exponential rate, v and w are arbitrary 
vectors. 

The solution (10) represents an integrated process which is inherently 
cointegrated. Indeed, the following results hold true 

72 i) j , ~ / ( 2 ) z ^ V y - / ( 0 ) 

ii) {C^Sj,y,~Ii\)^y,~CIi2,\) 

iii) B'A{CJCyy -Cy,~I{Q»^y,~PCI{2,2) 

iv) V[Cy,~ I {0)^y,~ CI {2,2) 

provided that 

r{B'ACi_Si)<r{B) 

with the rank factorization 

(19) 

(20) 

(21) 

(22) 

(23) 
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B 'ACiSi = FW' (24) 

as a by-product. 

Proof 

The structure of the proof mirrors that of the representation theorem 
stated in the previous section. 

Once again relationship (1) reads as a linear difference equation, whose 
general solution can be partitioned as (see Theorem 1 of Section 1.5). 

{complementary] I particular solution of the 1 
'̂ '̂" 1 solution J ] non-homogeneous equation \ ^ ^ 

As usual, for what concerns the complementary solution, i.e. the (gen­
eral) solution of the reduced equation 

A{L)y, = 0 (26) 

we have to distinguish between a permanent component associated with 
the unit-roots and a transitory component associated with the roots of the 
characteristic polynomial 

detA(z) = 0 (27) 

lying outside the unit circle. 
According to Theorem 3 of Section 1.5, the permanent component turns 

out to take the form 

^^ = N,v + N,w + N,vt (28) 

where v and w are arbitrary vectors, whereas the transitory component 
takes the same form as in formula (20) of Section 3.4 and is likewise ig­
nored by the closed-form solution of equation (1) in the right-hand side of 
(10). 

When searching for a particular solution for the non-homogeneous 
equation (1) in the statement of the theorem, by resorting to Theorem 1 of 
Section 2.3 we get 

y^ = A-\L)m+E) (29) 

Since, by virtue of the hypotheses (3) and (5), A~\z) has a second order 
pole in z = 1 (see Theorem 3, together with Corollary 3.1, of Section 1.6), 
in light of (3) and (11) of Section 1.4 and of the isomorphism between ma­
trix polynomials in a complex variable z and in the lag operator L, the fol­
lowing Laurent expansion holds 
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1 AT 1 

(I-Lf (I~L) 

which implies the solution 

1 ^7 / ^ 1 

(I-Lf ' ' (I-L) 

A-' (L) = 7^—^iV^ + 77-77^1 + ̂  (^) (30) 

y^ = 77-7Tr ^2 (^ + e.) + 7r-77 ̂ i (^ + e.) + ̂  (L) (^ + ̂ ) (31) 

For what concerns the expressions of the coefficient matrices N^ and Â ,̂ 
as given by ( l l ) - ( i r ) and (12)-(120 respectively, their rationale rests on 
the following arguments. 

Equality (11) follows from (32) of Section 1.6 in light of (29) of Section 
1.7 because of (9) above, whereas equality (IT) mirrors (22) in Theorem 2 
of Section 1.7 with J^ written for P^. 

To prove equality (12) reference must be made, on the one hand, to (33) 
of Section 1.7 and, on the other, to result (49) of the lemma hereinafter es­
tablished, bearing in mind (9) above as well as (42), (43) and (47) below. 

Conversely, equality (120 tallies with (23) in Theorem 2 of Section 1.7. 
By virtue of sum-calculus identities (see (5) and (6) of Section 2.3) 

^=V-'=I,^=V-'=2:S=Z(-l-) (32) 
^ ^ x<t ^ ^ •b<t\<-b x<t 

we get from (30) the elegant closed-form solution 

y, = M (l)Ti + (N, + ^N,W +^N,^e + iV, ̂ e . 

(33) 
+ iV,X(^ + l-T)e,+ |;M,e,_,. 

x<t i=0 

Combining the particular solution in the right-hand side of (33) of the 
non-homogeneous equation (1), with the permanent component in the 
right-hand side of (28) of the complementary solution, we eventually get 
for the process j^^ the representation 

(34) 

which tallies with (10), in view of (16), (17) and (18). 



3.5 Representation Theorems for Processes I (2) 115 

As far as results /)-/v) are concerned, their proofs rest on the following 
considerations. 

Result /) - By inspection of (10) we deduce that y^ is the resultant of a 
drift component k^, of deterministic linear and quadratic trend components, 
k^t and k/ respectively, of first and second order stochastic trend compo­
nents, N^^E^ and N^^{t + \-x)E^ respectively, and of a VMA(oo) 

x<t x<t 

component in the white noise argument 8̂ . The overall effect is that of a 
second order integrated process y^ whence V^y^ qualifies as a stationary 
process as a by-product. 

Result //) - It ensues from (10), in view of (1T), through premultiplica-
tion on both sides by (C^S^)l. Because of the orthogonality of (C^S^)l 
with N^ and in view of (18), the terms of (C^Sj^)l Ĵ  involving quadratic de­
terministic as well as second order stochastic trends, namely k/ and 
N^^(t-{-l-x)e^, cancel out. The higher order non stationary components 

x<t 

being annihilated, the integration order of the resulting process lessens, 

t ha t i s (CA) l3 ' . ~ / ( l ) . 
Since y^-I{2) and (C^S^)^j,~/(l), the cointegration property 

y^-CI(2, 1) holds true. 

Result ///) - To prove (21) observe that 

a) on the one hand, premultiplying both sides of (10) by C yields 

Cy^ = C% + CN.^t + CNy-\ + CM (L) Ê  (35) 

because of the orthogonality of C with N^ and in view of (17) and (18). 
b) On the other hand, differencing both sides of (10) gives 

Vy, = A:, - Jt̂  + N^^t + N,E^ + N.T'e^ + M (L) VE, (36) 

By inspection of the right-hand sides of (35) and (36) it is apparent that 
both Cy^ and Vŷ  are / ( I ) processes, since both expressions contains first 
order stochastic as well as deterministic trends. This suggests the possibil­
ity of arriving at a stationary process by a linear combination of the said 
processes whose non stationary component balance out. 

Now, let Z) be a matrix of the same dimension as C and consider the 
linear form 

Cy, + DVy, = (CW, + DN,) nt + (C% + DN,} V\ .37. 
+ drifts and stationary components 
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The deterministic and stochastic trends in the right side of (37) vanish 
provided the following equality holds 

C%+DN, = 0 (38) 

which occurs, in Ught of (80) of Section 1.7, if 

D = -B'A (39) 

or likewise if 

D = -B'A{C[yC[ (40) 

thanks to the identity 

(C[yC[N, = N, (41) 

Hence both Cy-B'AVy^ and Cy^-B'A(C[yC[Vy^ are free of non 
stationary components, ///) holds accordingly and the parent process y^, so­
lution of the VAR model (1), turns out to be polynomially cointegrated. 

Result iv) - This can be deduced from (10) through a premultiplication 
of both sides by V[ C\ under the rank condition (23), after the arguments 
put forward in Corollary 2.2 of Section 1.7. 

Insofar as V[ C turns out to be orthogonal with both N^ and N^ as per 
(82) of Section 1.7, the terms of V[Cy^ involving both deterministic and 
stochastic trends of second as well as first order, namely A:/, k/, 

N^^{t-^\-x)z^ and A^^^e^ disappear. The non stationary terms being 

annihilated, the resulting process V[ Cy^ turns out to be stationary. 

Thus, on the one hand, we havey^-I(2), on the other, under the rank 
condition (23) and the rank factorization (24), we get V[Cy^ -I (0). Hence 

the sharper cointegration property y^ ~ CI (2, 2) holds true. 
n 

The corollaries which follow provide an insight into the stationary proc­
esses obtained either by differencing or cointegrating the solution of the 
VAR model (1) of Theorem 1. 

Let us first introduce the partitioned matrices 

P(z) = 
PM) P2(Z) 

P,(z) P,{z) 

Y(z) F 

_ G' A(l). 
(42) 
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n(z) = 
n,(z) n,(z) "Viz) F 

G' A(z) 
(43) 

where *? (z), F, G and A (z) are as defined by (9) of Section 1.3 and by 
(20) and (22) of Section 1.6. 

Both (42) and (43) are meaningful expressions and the matrix functions 

P (z) and n (z) are matrix polynomials themselves thanks to the Cayley-
Hamilton theorem (see, e.g., Rao and Mitra, 1971) provided the inverses in 
the right-hand sides of (42) and (43) exist, which actually occurs in a 
neighbourhood of z = 1 on the basis of the arguments of Theorem 1 above. 

Further, matrix A (z) can be expressed as follows 

A(z) = A ( l ) - ( l - z ) A 

where A is as defined by (13), and enjoys the properties 

det A (0)TtO 

det(A)^0 

(44) 

(45) 

(46) 

as simple computations show. 
The following lemma proves useful in paving the way to the representa­

tion theorem we are interested in. 

Lemma 

The following relation holds among the blocks of the matrices 11 (z) and 

P(z) 

•n,(z) n,(z)' 

n,iz) n,(z) 
P,(z) + XP,(z)A[/-AP,(z)ArP3(z) P,(z)[/-XAP,(z)r 

[I-W,(z)ArP,(z) 

where X is written for 1 - z. 
In particular we have 

P.izni-XAP.iz)]-' 

(47) 

n ( i ) = P ( i ) (48) 
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n , ( l ) = - P , ( l ) A P , ( l ) - F / l ) A P 3 ( l ) (49) 
6 

where Di (1) denotes the derivative of n,(z), evaluated at z = 1 

Proof 

The proof of (47) follows along the same lines as the proof of (30) of 
Section 3.4, upon noting that 

• ^ ( z ) F • 

G' A(z) 

•»P(z) F • 

G' A(l) 
( l - z ) A [ 0 /] (50) 

In view of (46) and of the non singularity of P (z) in a neighbourhood of 
z = 1, inversion formula (29) of Section 1.2 applies and we can therefore 
write 

n(z)=P(z)+P(z) 1 x-i 
(1-z) 

A-'-[0 /]P(z) [0 I\P{z) (51) 

whence in particular, by simple computation, we get 

n,(z) = Plz) + (1 - z) Plz) A [/ - (1 - z) P,(z) A VPi,z) (52) 

(53) 

n,(z) = Plz) + (1 - z) P,(z) A^[/ - (1 - z) P/z) A Vflz) 
= P3(z) + { / - [ / - ( l - z )P , ( z )A]} [ / - ( l - z )P , ( z )Ar 'P3 (z ) 

= P,{z) + [/ - (1 - z) P,(z) A rP,{z) - P,(z) 
= [I-(l-z)Pjiz)AVP,{z) 

In a similar fashion, we get the expressions for the remaining blocks, i.e. 

n,(z) = P,(z) [/ - (1 - z) A P,(z)]-' (54) 

n,(z) = [ / - (1 -z)P,(z) A]-'P,(z) = P,(z) [ / - (1 - z ) AP,(z)]-' (55) 

The proof of (48) is straightforward in light of (47). 
For what concerns (49), taking the derivative with respect to z of both 

sides of (52) yields 

n,(z) = F , (z ) -P , (z )A[ / - ( l -z)P,(z)ArP3(z) (56) 
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+ ( l -e) 
d{p,(z)A[I - (1 - z)P,(z)Ar P,{z)} 

dz 

which eventually leads to (49) by replacing z with 1, given that 

'"Viz) F 

P,iz) = [I 0] 
G' A(l) 

= - [ / 0] 

= - [ / 0] 

and that 

P,(z) P^iz) 

P,iz) P,(z) 

'P^(Z) P,{Z) 

P^iz) P,iz) 

dz 

*P(z) F • 

G' A(l) 

dz 

"Viz) 0 

0 0 

= -PXz)'i'(z)PXz) 

P,(z) P,{z) 

P,(z) P,(z) 

P,(z) P,iz) 

Psiz) P,{Z\ 

4 ' ( 1 ) = - A 
6 

according to (45) of Section 1.7. 

We will now establish the aforementioned corollaries. 

(57) 

(58) 

D 

Corollary 1.1 

Alternative VMA representations of the stationary process V j ' , are 

V'y, = n,(L) (Tl + e,) = AT.Ti + n,(L) e, (59) 

= 6 + S(L)e, (590 

where n,(L) is obtained from the leading diagonal block of (43) by replac­
ing z with L, while 6 and S (L) are given by 

^ = N^^ (60) 

H (L) = f ]H . L' = M (L) V + iV,V + N^ (61) 
;=o 
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Moreover, the operator relationship 

M (L) V = n^L) ~ Ny - Â , (62) 

holds. 
Furthermore, the following statements are true 

i) the matrix polynomial S (L) has a second order zero at z = 1; 
ii) V 3̂^ is a non invertible VMA process; 
iii) E(V'y)=N,n 

Proof 

The proof is similar to that of Corollary 1.1 of Section 3.4. 
Thanks to (25) of Section 1.6 and by virtue of the isomorphism between 

polynomials in a complex variable z and in the lag operator L, the follow­
ing equality proves to be true 

A-\L)V' = [I 0] 
^ ( L ) F 

G' A(L) 
(63) 

This, in view of (29) and by virtue of (43), leads to the intended repre­
sentation for V j ^ , namely 

Vy=[ / 0] 

upon noting that 

T(L) F 

G' A{L) 

.rj. 

0 
(T1 + e,) = n,(L)(Ti + e,) 

= A ,̂il + n.(L)e, 

n,(i) = M 

(64) 

(65) 

in light of (29) of Section 1.7. 
The VMA representation (59'), as well as (60) and (61), follows from 

(10) by elementary computations. 
The equality (62) proves true by comparing the right-hand sides of (59) 

and (59') in view of (61). 
As far as statements i)-iii), are concerned, their proofs rest on the argu­

ments developed here below. 

Result i) - The matrix polynomial 

S (z) = (l-zfM(z) + (\-z)N,+N, (66) 
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has a second order zero at z = 1, according to Definition 3 of Section 1.4 
and by virtue of Theorem 3, along with Corollary 3.1, of Section 1.6. In­
deed the following hold 

Eil)=N,^detE(l) = 0 (67) 

S ( l ) = -iV,, H ( 1 ) = ^ M , (68) 

det(D[ E(1)E^) = 0<^det 
-S(l) D 

E' 0 
= 0 (69) 

det(U[ D[ E(1)E^UJ ^0 (70) 

where 
a) the matrices D and E are defined as per a rank factorization of S (1), 
namely 

E(l)=N, = DE\ D = Cx5i( /?;f i lACxSi) \ E = BJt^ (71) 

and thus the matrices Di and E^. can be chosen as 

/>i = (CiSx)i, E^iB^RJ^ (72) 

b) The matrix U is defined as per a rank factorization of D[ S(l)£j_, 
namely 

D[E(l)E^ = UU' (73) 

In light of (85) of Corollary 2.3, Section 1.7, the matrix U coincides 
with the selection matrix U^ of (27) of the same section, whence the fol­
lowing holds 

D^U^ = C, EJJ^^B (74) 

by virtue of (28) of Section 1.7. 

c) The matrix 3 is defined as follows 

E=^E{\)-E{\)E\\)E{\)^M{\)-N,NIN, (75) 

and consequently 

D ; £/; S(1)EJJ^ = C\M{\)-N,N^N,)B=I (76) 
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by virtue of (88) of Section 1.7. 

Result ii) - The assertion simply follows from representation (590, tak­
ing into account i) above. 

Result iii) - The proof is straightforward, taking the expected value of 
both sides of (590 in light of (60). 

Corollary 1.2 

VMA and VARMA representations, respectively, of the stationary proc­

ess 

X = 

s'civ 

B'A(cycy-c 

cv 
y^ (77) 

are given by 

a) X = n3(L) (Ti + £,) = ̂ 3(1) 11 + n,(L) E, 

b) (-F,(L)AV + / ) x = P3a)Tl+P3(^)e, 

(78) 

(79) 

where, HJ^L), PJ,L) and PJ^L) stand for the homologous blocks of (42) and 
(43) with z replaced by L. 

Further, we have 

E{x}=P,(l)^ (80) 

Proof 

The proof is analogous to the proof of Corollary 1.2 of the previous sec­
tion. 

To begin with, observe how the claimed stationarity of the process ^ as 
defined by (77) is nothing but a by-product of what has been pointed out in 
Theorem 1 about the integration and cointegration properties of the proc­
ess y^ (see statements /) and //) with {C±S±)± replaced by [(C[ fS, C]). 

Proof of a) - Since 

G'[I 0] = [0 I] 
^ ( z ) F 

G' A(z) 
A(z)[0 I] (81) 
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the following result is easily established - thanks to the isomorphism be­
tween matrix polynomials in z and in L - in view of (63) and (43) above 
and by virtue of (22) of Section 1.6 

G'A-\L)V'^G[I 0] 

= -A(L)[0 / ] 

0] 
_ G' A(L) 

"*F(L) F ' 

_ G' A(L)_ 

-1 r 

• 1 - 1 

7" 

0 

i' 

0 
(82) 

= - A (L) n,(L) ^ V (L) G'A-\L) = 11^(1) 

Hence, the VMA representation (78) is easily established by recalling 
(48) and observing that 

y,= V(L)G'y, (83) 

Proof of (b) - In light of (53), by replacing z with L and (1 - z) with V 
as usual, the VMA representation (78) can be rewritten as 

X={/-P,(L)AVrP3(L)(Ti + e) (84) 

whence, premultiplying both sides by the operator / - PJ,L) A V, the in­
tended representation (79) is easily established. 

The proof of (80) is trivial because of (78). 
D 

Also for the representation theorem established in this section there ex­
ists a dual version. It originates from a specification of a stationary second 
difference process V j^^ through a VMA model characterized so as to be the 
mirror image of a VAR model whose solution is the parent process y^ 
which enjoys particular integration and cointegration properties. 

Theorem 2 

Consider two stochastic processes ^t and j ^ , the former being defined as 
the second difference of the latter, i.e. 

,̂ =vy 
(n,l) 

(85) 

Let ^, be stationary and assume a VMA(oo) representation such as 

^ = Z(L)(n + e) (86) 
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whose parent matrix polynomial H (z) = Ĥ  + ^ 3 . z in the complex argu-
i = l 

ment z is characterized by a second order zero at z = 1 and by coefficient 
matrices S. with exponentially decreasing entries. 

Then the companion process y^ admits a VAR generating model, namely 

A(L)j;, = Ti+£, (87) 

whose parent matrix polynomial A (z) in the complex argument z has a 
second order zero at z = 1 and whose characteristic polynomial detA (z) 
has, besides a repeated unit-root, all other roots lying outside the unit cir­
cle. 

The engendered process y^ enjoys the following major integration and 
cointegration properties 

3^.-/(2) 1 
=z>3^,~C/(2, 1) (88) 

{C,Sj,y,-ia)] 
where C and S are defined through rank factorizations of A (1) = A and 
B'^ A Ci respectively, namely 

A=BC (89) 

B[AC^ = RS' (90) 

Proof 

In light of (7) and (9) of Section 1.3 together with the isomorphism be­
tween polynomials in a complex variable z and in the lag operator L, we 
obtain the paired expansions 

S(z)=4^(zXl-z)-S(lXl-z)+H(l)«S(L)=*(L)V'-S(l)V+S(l) (91) 

where 

, • (92) 
**4>(L) = X(-1)*-^S'«(1)V^-^ 

k>2 

with 
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' F ( l ) = ^ H ( l ) (93) 

Then, in view of Definition 3 of Section 1.4 and by virtue of Theorem 3 
and Corollary 3.1 of Section 1.6, the following hold true 

det 
-S(l) B 

C' 0 

detE{\) = Q 

= Q<^det{B'^t{\)CJ = 0 

(94) 

(95) 

det ^0 <=> det (R[ B[E C^ SJ *0 (96) 

where B and C, on the one hand, and R and 5 on the other, are defined 

through rank factorizations of S (1) and B^ S(l)Cj^, respectively, that is 

to say 

S ( l ) = f i C ' (97) 

and where 

fil3(l)C^= RS' 

H = l s ( l ) - S ( l ) f f ( l ) H ( l ) 

(98) 

(99) 

Given this premise, expansion (11) of Section 1.4 holds for S''(z) in a 
deleted neighbourhood of the second order pole z = 1 and hence we can 
write 

where 

S-'(z) = —^—Y N, + - i — N^ + M (z) ^ 

a-zY (i-z) ' 
^ S"'(L) = Â2 V"' + iV, V"'+ M (L) 

(100) 

(101) 

(102) 
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H S(1)H"(1) 

'(1)3(1) -C,(£flS(l)CJ*Bl, 

M 

/ -S iV, 

i=^H(i)-[S(i)ff(i)rs(i) 
6 

(103) 

in view of Theorem 2 of Section 1.7. 
Applying the operator S"̂ (L) to both sides of (86) yields 

E-\L)^^ = r\ + E^^A(L)y^ = i\ + E^ (104) 

that is the VAR representation (87), whose parent matrix polynomial 

A (z) = E-\z) (1 - z Y = (1 -z fMiz ) + (l-z)N,+ N, (105) 

is characterized by a second-order zero at z = 1. 
Indeed, the following results hold true: 

i) A= N^=>detA = 0 (106) 

whence the rank factorization (89), with B and C which can be conven­
iently chosen as 

(107) B = Cj_ Sj_ { Kj^ B^ 5 C^ Sj^j , C = B^ K^ 

ii) The matrices Bx and C±_ can be accordingly chosen as 

fii = ( Q S J x = [ ( C l ) ^ 5 , C], C^ = {B^RJ^ = {{B'JR, B] (108) 

iii) A = -N, (109) 

whence, in light of (108) and (109) and by virtue of (85) of Section 1.7, the 
following proves to be true 

B{AC^= (C^SJ^ N,(B, R,)^ = f/,U; (110) 

where I/, is as defined in (27) of Section 1.7. 
iv) In light of (110) the matrix B[ A C± is singular, whence the rank fac­
torization (90) occurs with R = S = U, and we can choose R±= S± = U^ ac­
cordingly, where U^ is as defined in (27) of Section 1.7. 

V) A = 2M(1) (111) 
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A=^A-AA'A = M ( l ) - N, N', N, (112) 

because of (105), (106) and (109). 
vi) The matrix R"^ B[ A C±S± is non-singular. In fact the following holds 

It^B^ACs^S^ 

= U',{CjjAM(l)-N,N',N,)(B^RJ^U, (113) 

= C\M(l)- N,N',N,)B =1 

in view of (28) and (88) of Section 1.7. 
The proof of what has been claimed about the roots of the characteristic 

polynomial detA (z) relies upon the arguments of Theorem 4 of Section 1.4. 
Now, note that, insofar as A (z) has a second order zero at z = 1, A~\z) 

has a second order pole at z = 1. According to (105) the following Laurent 
expansions holds 

~^SJ-^y (114) 

= ' i ' ( L ) - S ( l ) F ' + H(l)V"' 

Then, from (87) and (114) it follows that 

j , = A(L)-'(e, + ii) = ( f ' ( L ) - S ( l ) V ' + S(l)V-')(e,+Ti) 

t i t (115) 

where k^, k^ and k^ are vectors of constants. 

Looking at (115) it is easy to realize that premultiplication by B[ leads 
to the elimination of both quadratic deterministic trends and cumulated 
random walks, which is tantamount to saying that 

B[y^-ni)^y^-CI(2A) (116) 

with B^ = (C^ U^j_ = (C_^Sj)j_ playing the role of matrix of the cointegrating 
vectors. 

D 
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3.6 A Unified Representation Theorem 

By following the path already established in the foregoing sections we 
proceed now to establish a unified representation theorem which will shed 
extra light on VAR modelling offsprings, by bridging the virtual gap be­
tween representation theorems tailored on / (1) and / (2) processes, respec­
tively, 

Theorem 

Let 

A{L)y^ = r\ + E^ 
(n,n) 

(1) 

be a VAR model whose characteristic polynomial has all roots lying out­
side the unit circle, except possibly for one or more unit-roots, and whose 
parametric specification is based upon the following rank factorizations 
and properties 

A = BC,A^O (2) 

B'^ACx = RS' (3) 

B'ACxS^ = VW' (4) 

r{R[B'^{-A- AA'A) C^.S^} =n~r(A)-r(B[ ACi) (5) 

Then the solution j ' , of model (1) enjoys the integration property 

y,~I{d), 0<d<2 (6) 

where 

a) d = 0 ifdetAi^Q (7) 

b) d=\ ifdetA = 0 but delis'^ ACj_)jtO (g) 

c) d = 2 ifdet{B'^AC^) = 0 (9) 

The process J, enjoys the cointegration properties 

i) Cy, ~I(d-\) under (b) and (c) (10) 
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ii) S'Cly,-1(1) under (c) (11) 

iii) (B' A iC[ycy- C)y,~I(0) under (c) (12) 

iv) V; C>, ~ / (0) under (c) (13) 

Finally, 3̂ , engendered by the VAR model (1) has the representation 

y, = k, + k,t + k/ + iV, Xe . + A 2̂Z(̂  +1 -'^)e. + Z ^ - £.-. (14) 
/ = 0 

with 

0 otherwise 

(15) 

(150 

N,= 

-C^{B[ACJ'B[+K(N^) underic) (16) 

~C^(B[ACJ'B[ under (b) (160 

0 under(a) (16^0 

and 

K(N,) = N^AN, + (I-N^A)A'AN^ + N,AA\I^ AN,) 
+ N,AC^(B[ACJB[+C^(B[ACJB[AN, (17) 

- Â Â Ci(fi; A CA)'B[ AN, 

with A and A as defined in (24) and (25) of Section 1.7, 

Proof 
The proof of a) rests on Theorem 1 of Section 1.6, from the algebraic 

standpoint, on a by-product of Theorem 1 of Section 2.3 and eventually on 
Proposition 1 of Section 3.2, from the econometric standpoint. 

The proof of b) rests on Theorem 2, along with the Corollary 2.1, of 
Section 1.6, from the algebraic standpoint, and on Theorem 1 of Section 
2.3 as well as Proposition 3 of Section 3.2, from the econometric stand­
point. 

The proof of c), bearing the rank hypothesis (5) in mind, rests on Theo­
rem 3, along with Corollary 3.1, of Section 1.6, from the algebraic stand-
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point, and on Theorem 1 of Section 2.3 and eventually Proposition 5 of 
Section 3.2, from the econometric standpoint. 

As far as the proofs of statements i)-iv) are concerned, we will proceed 
in this way. 

To prove (10), first refer back, to one hand, to Result ii) in Corollary 1.1 
and to Result ii) in Corollary 2.1 of Section 1.7 for the algebraic rationale; 
and then refer to Propositions 4 and 6 of Section 3.2 for the econometric 
reading key we are primarily interested in. 

To prove (11), reference must be made again to Result ii) in Corollary 
2.1 of Section 1.7, on the one hand, and to Proposition 6 of Section 3.2 on 
the other. 

Statements (12) and (13) coincide with statements (21) and (22) in 
Theorem 1 of Section 3.5 and are proved accordingly. 

Moving to representation (14) its proof hinges on Theorems 2 and 3 of 
Section 1.5 and follows the lines traced in establishing (10) in Theorem 1 
of the previous section. 

For what concerns the two-fold form of N^, notice how the closed-form 
(15) mirrors (22) of Section 1.7 as well as (IT) of Section 3.5 and its va­
lidity relies upon the reasoning put forward therein under the condition (5). 
Here N^ becomes a null matrix, according to (150, under the circumstances 
b) and a) insofar as either the pair R±, S± or both the pairs B±, C± and 
R±, S± respectively, turn out to be made of empty matrices (see the Appen­
dix at the end of the chapter in this connection). References to Theorems 1 
and 2 of Section 1.6 as well as to their econometric mirror images repre­
sented by Propositions 1 and 3 of Section 3.2, can likewise be appropriate 
in this connection. 

Finally, for the three-fold form of Â^ observe that 
- The closed-form (16) is nothing but an algebraic rearrangement of (23) 

in Section 1.7, as well as of (12') in Section 3.5, and its validity rests on 
the arguments advanced therein under the condition (5). 

- The closed-form (160 mirrors (3) in Section 1.7, as well as (7) in Sec­
tion 3.4, its validity being supported by the arguments developed therein 
under the assumption (3). Indeed, the expression (160 reads as a special 
form of (16) occurring insofar as the pair R±, S± is made up of empty 
matrices, Â2 becomes a null matrix accordingly, and J5̂  A C± is non-
singular, whence the identity 

(B[ACJ = (B[AC^r (18) 

- The matrix Â^ degenerates to a null matrix under the circumstance a) in­
sofar as both the pairs /?_L, S± and Bj_, C± turn out to be made up of 
empty matrices. 
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References to Theorems 1 and 2 of Section 1.6, as well to their econo­
metric counterparts given by Propositions 1 and 3 of Section 3.2, are like­
wise appropriate in this connection. 

D 

Appendix. Empty Matrices 

By an empty matrix we mean a matrix whose number of rows or of col-
unms is equal to zero (see, e.g., Chipman and Rao, 1964). 

Some formal rules proves useful when operating with empty matrices. 
Let B and C be empty matrices of order nxO and Oxp, respectively, 

and A be a matrix of order m x n. 
We then assume the following formal rules of calculus 

i) AB = D , namely an empty matrix 
(m,0) 

ii) BC = 0 , namely a null matrix 
(n,p) 

(Al) 

(A2) 

iii) B'B = (B'Bf = 0 , namely the empty null matrix /^^^ 
(0,0) ^ ^ 

iv) B'=^B' (A4) 

v) r(B) = 0 (A5) 

The notion of empty matrix paves the way to some noteworthy exten­
sions of the algebra of orthogonal complement. 

Let B be an empty matrix of order nxO and A be a non-singular matrix 
of order n. Then, we will agree upon the following formal relationships 

a) Bj. = A, namely an arbitrary non-singular matrix (A6) 

b) A_L = B, namely an empty matrix. (A7) 
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Notational Conventions, Symbols and Acronyms 

The following notational conventions will be used throughout the text: 

- Bold lower case letters (Roman or Greek) indicate vectors. 
- Bold upper case letters (Roman or Greek) indicate matrices. 
- Both notations [A B] and [A , B] will be used, depending on conven­

ience, for column-wise partitioned matrices 
A 

C 

B' 

D 
and 

A 

C 

B' 

D 
- Both notations 

convenience, for block matrices 

Symbols and Acronyms 

will be used, depending on 

^A-^^^ ^ 
A' 
A' 
A; 

A; 
det (A) 
r{A) 
A i 

At 
K 
A{z) 

A{z\A{z\Mz) 

A, A, A, A 

trA 
A' 
vecA 
L 

Meaning 
generalized inverse of A 
transpose of A 
Moore-Penrose inverse of A 
right inverse of A 

left inverse of A 

determinant of A 
rank of A 
orthogonal complement of A 
left orthogonal complement of A 

right orthogonal complement of A 

matrix polynomial in the scalar 
argument z 
dot notation for derivatives 

short notation for 

A(1),A(1),A(1),A(1) 

trace of A 
adjoint of A 
staked form of A 
lag operator 

Section 
^\A (Definition 1) 

1.1 
LI (Definition 2) 
1.1 (Definitions) 

1.1 (Definition 4) 

1.1 
1.1 
1.1 (Definition 6) 
1.1 (Definition 7) 

1.1 (ibid.) 

1.3 (Definition 1) 

1.3 

1.3 

1.3 
1.3 
1.3 
1.5 
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V 

v-̂  
2 
E 
T{h) 
1(d) 

1(0) 

^K. 
e,-WV 
6, 
(8) 
VMA (q) 

YAR(p) 

VARMA (p, q) 

CI(d,b) 

PCI(d,b) 

backward difference operator 
antidifference operator 
indefinite sum operator 
expectation operator 
autocovariance matrix of order h 
integrated process of order d 
(d positive integer) 
stationary process 
n-dimensional white noise 
e, is a white noise 
discrete unitary function 
Kronecker matrix product 
vector moving average process 
of order q 
vector autoregressive process of 
order/7 
vector autoregressive moving av­
erage process of order (p, q) 
cointegrated system of order 
(d,b) 
polynomially cointegrated sys­
tem of order (d, b) 

1.5 (Definition 1) 
1.5 (Definition 2) 
1.5 (ibid.) 
2.1 
2.1 
2.1 (Definition 5) 

2.1 
2.2 (Definition 1) 

2.2 
2.2 
2.2 (Definition 2) 

2.2 (Definition 5) 

2.2 (Definition 7) 

2.4 (Definition 6) 

2.4 (Definition 7) 
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