

Trigonometry

TENTH EDITION

This page intentionally left blank

Trigonometry TENTH EDITION

Margaret L. Lial
American River College

John Hornsby
University of New Orleans
David I. Schneider
University of Maryland
Callie J. Daniels
St. Charles Community College

PEARSON

Editor-in-Chief: Anne Kelly
Executive Content Editor: Christine O'Brien
Editorial Assistant: Judith Garber
Senior Managing Editor: Karen Wernholm
Senior Production Project Manager: Kathleen A. Manley
Digital Assets Manager: Marianne Groth
Associate Media Producer: Stephanie Green
Software Development: Kristina Evans, MathXL; Mary Durnwald, TestGen
Marketing Manager: Peggy Sue Lucas
Marketing Assistant: Justine Goulart
Senior Author Support/Technology Specialist: Joe Vetere
Rights and Permissions Advisor: Michael Joyce
Image Manager: Rachel Youdelman
Procurement Manager: Evelyn Beaton
Procurement Specialist: Debbie Rossi
Media Procurement Specialist: Ginny Michaud
Associate Director of Design: Andrea Nix
Senior Designer: Beth Paquin
Text Design, Production Coordination, Composition: Cenveo Publisher Services/Nesbitt Graphics, Inc.
Illustrations: Cenveo Publisher Services/Nesbitt Graphics, Inc., Laserwords, Network Graphics
Cover Design: Jenny Willingham
Cover Image: Andriy Dykun/Fotolia
For permission to use copyrighted material, grateful acknowledgment is made to the copyrightholders on page $\mathrm{C}-1$, which is hereby made part of this copyright page.Many of the designations used by manufacturers and sellers to distinguish their products are claimedas trademarks. Where those designations appear in this book, and Pearson Education was aware of atrademark claim, the designations have been printed in initial caps or all caps.
Library of Congress Cataloging-in-Publication Data
Trigonometry/Margaret L. Lial ... [et al.]. - 10th ed.
p. cm.
Previous ed. by Margaret L. Lial, John Hornsby, and David Schneider.
Includes index.
ISBN-13: 978-0-321-67177-6
ISBN-10: 0-321-67177-5

1. Trigonometry. I. Lial, Margaret L. Trigonometry. II. Title
QA531.L5 2013
516.24 -dc23 2011013314
Copyright © 2013, 2009, 2005, 2001 Pearson Education, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,without the prior written permission of the publisher. Printed in the United States of America. Forinformation on obtaining permission for use of material in this work, please submit a written request toPearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA02116, fax your request to 617-671-3447, or e-mail at http://www.pearsoned.com/legal/permissions.htm.
123456789 10—CRK—1615141312
PEARSON

To my friend Joe Long, with thanks from all of your fans for the music and the memories-you are our favorite Season
E.J.H.

To my parents, James and Patricia Harmon
C.J.D.

This page intentionally left blank

Contents

Preface xiii
Supplements Guide xvii

1 Trigonometric Functions 1

1.1 Angles 2

Basic Terminology \quad Degree Measure \quad Standard Position
Coterminal Angles
1.2 Angle Relationships and Similar Triangles 10

Geometric Properties Triangles
Chapter 1 Quiz (Sections 1.1-1.2) 21

1.3 Trigonometric Functions 21

Trigonometric Functions Quadrantal Angles

1.4 Using the Definitions of the Trigonometric Functions 28

Reciprocal Identities \quad Signs and Ranges of Function Values
Pythagorean Identities Quotient Identities
Test Prep 38 Review Exercises 40 Test 43

2 Acute Angles and Right Triangles 45

2.1 Trigonometric Functions of Acute Angles 46

Right-Triangle-Based Definitions of the Trigonometric Functions
Cofunctions \quad Trigonometric Function Values of Special Angles

2.2 Trigonometric Functions of Non-Acute Angles
 54

Reference Angles Special Angles as Reference Angles Finding Angle Measures with Special Angles
2.3 Finding Trigonometric Function Values Using a Calculator 61
Finding Function Values Using a Calculator \quad Finding Angle Measures Using a Calculator
Chapter 2 Quiz (Sections 2.1-2.3) 67
2.4 Solving Right Triangles 68
Significant Digits \quad Solving Triangles Angles of Elevation or Depression
2.5 Further Applications of Right Triangles 77
Bearing Further Applications
Test Prep 86 Review Exercises 88
3 Radian Measure and the Unit Circle 93
3.1 Radian Measure 94
Radian Measure Converting between Degrees and Radians \quad Finding Function Values for Angles in Radians
3.2 Applications of Radian Measure 100
Arc Length on a Circle Area of a Sector of a Circle
3.3 The Unit Circle and Circular Functions 110
Circular Functions \quad Finding Values of Circular Functions Determining a Number with a Given Circular Function Value Applying Circular Functions Expressing Function Values as Lengths of Line Segments
Chapter 3 Quiz (Sections 3.1-3.3) 120
3.4 Linear and Angular Speed 120
Linear Speed Angular Speed
Test Prep 126 Review Exercises 128 Test 131
4 Graphs of the Circular Functions 133
4.1 Graphs of the Sine and Cosine Functions 134
Periodic Functions Graph of the Sine Function Graph of the Cosine Function Graphing Techniques, Amplitude, and Period © Connecting Graphs with Equations Using a Trigonometric Model
4.2 Translations of the Graphs of the Sine and Cosine Functions 148
Horizontal Translations Vertical Translations Combinations of Translations \quad Determining a Trigonometric Model
Chapter 4 Quiz (Sections 4.1-4.2) 159
4.3 Graphs of the Tangent and Cotangent Functions 159
Graph of the Tangent Function Graph of the Cotangent Function Graphing Techniques Connecting Graphs with Equations
4.4 Graphs of the Secant and Cosecant Functions 168
Graph of the Secant Function Graph of the Cosecant Function Graphing Techniques © Connecting Graphs with Equations Addition of Ordinates
Summary Exercises on Graphing Circular Functions 176
4.5 Harmonic Motion 176
Simple Harmonic Motion Damped Oscillatory Motion
Test Prep 181 Review Exercises 183 Test 187
5 Trigonometric Identities 189
5.1 Fundamental Identities 190
Fundamental Identities \square Using the Fundamental Identities
5.2 Verifying Trigonometric Identities 196
Strategies \square Verifying Identities by Working with One Side \square Verifying Identities by Working with Both Sides
5.3 Sum and Difference Identities for Cosine 205
Difference Identity for Cosine - Sum Identity for Cosine Cofunction Identities Applying the Sum and Difference Identities Verifying an Identity
5.4 Sum and Difference Identities for Sine and Tangent 215
Sum and Difference Identities for Sine \quad Sum and Difference Identities for Tangent applying the Sum and Difference Identities Verifying an Identity
Chapter 5 Quiz (Sections 5.1-5.4) 224
5.5 Double-Angle Identities 224
Double-Angle Identities An Application Product-to-Sum and Sum-to-Product Identities
5.6 Half-Angle Identities 232
Half-Angle Identities Applying the Half-Angle Identities Verifying an Identity
Summary Exercises on Verifying Trigonometric Identities 239
Test Prep 240 Review Exercises 242 Test 244
6 Inverse Circular Functions and Trigonometric Equations 245
6.1 Inverse Circular Functions 246
Inverse Functions Inverse Sine Function Inverse Cosine Function Inverse Tangent Function Remaining Inverse Circular Functions Inverse Function Values
6.2 Trigonometric Equations I 262
Solving by Linear Methods \quad Solving by Factoring Solving by Quadratic Methods \quad Solving by Using Trigonometric Identities
6.3 Trigonometric Equations II 269
Equations with Half-Angles Equations with Multiple Angles
Chapter 6 Quiz (Sections 6.1-6.3) 276
6.4 Equations Involving Inverse Trigonometric Functions 276
Solving for x in Terms of y Using Inverse Functions \quad Solving Inverse Trigonometric Equations
Test Prep 282 Review Exercises 284 Test 287
7 Applications of Trigonometry and Vectors 289
7.1 Oblique Triangles and the Law of Sines 290
Congruency and Oblique Triangles Derivation of the Law of Sines Solving SAA and ASA Triangles (Case 1) Area of a Triangle
7.2 The Ambiguous Case of the Law of Sines 300
Description of the Ambiguous Case © Solving SSA Triangles (Case 2) Analyzing Data for Possible Number of Triangles
7.3 The Law of Cosines 306
Derivation of the Law of Cosines \quad Solving SAS and SSS Triangles (Cases 3 and 4) Heron's Formula for the Area of a Triangle Derivation of Heron's Formula
Chapter 7 Quiz (Sections 7.1-7.3) 319
7.4 Vectors, Operations, and the Dot Product 320
Basic Terminology algebraic Interpretation of Vectors Operations with Vectors Dot Product and the Angle between Vectors
7.5 Applications of Vectors 331
The Equilibrant Incline Applications Navigation Applications
Summary Exercises on Applications of Trigonometry and Vectors 338
Test Prep 340 Review Exercises $\mathbf{3 4 3}$ Test 347
8 Complex Numbers, Polar Equations, and Parametric Equations 349
8.1 Complex Numbers 350
Basic Concepts of Complex Numbers Complex Solutions of Equations Operations on Complex Numbers
8.2 Trigonometric (Polar) Form of Complex Numbers 359
The Complex Plane and Vector Representation \quad Trigonometric (Polar) Form Converting between Rectangular and Trigonometric (Polar) Forms An Application of Complex Numbers to Fractals
8.3 The Product and Quotient Theorems 366
Products of Complex Numbers in Trigonometric Form Quotients of Complex Numbers in Trigonometric Form
8.4 De Moivre's Theorem; Powers and Roots of Complex Numbers 371
Powers of Complex Numbers (De Moivre's Theorem) Roots of ComplexNumbers
Chapter 8 Quiz (Sections 8.1-8.4) 379
8.5 Polar Equations and Graphs 379
Polar Coordinate System Graphs of Polar Equations Converting from Polar to Rectangular Equations Classifying Polar Equations
8.6 Parametric Equations, Graphs, and Applications 392
Basic Concepts Parametric Graphs and Their Rectangular Equivalents The Cycloid Applications of Parametric Equations
Test Prep 401 Review Exercises 404 Test 406
Appendices 409
Appendix A Equations and Inequalities 409
Equations Solving Linear Equations Solving Quadratic Equations Inequalities Solving Linear Inequalities and Using Interval Notation Solving Three-Part Inequalities
Appendix B Graphs of Equations 418
The Rectangular Coordinate System The Pythagorean Theorem and theDistance Formula - The Midpoint Formula Graphing EquationsCircles
Appendix C Functions 426
Relations and Functions Domain and Range Determining Whether Relations Are Functions Function Notation Increasing, Decreasing, and Constant Functions
Appendix D Graphing Techniques 436
Stretching and Shrinking Reflecting Symmetry Translations
Glossary 449
Solutions to Selected Exercises S-1
Answers to Selected Exercises A-1
Photo Credits C-1
Index of Applications I-1
Index I-3

This page intentionally left blank

WELCOME TO THE 10th EDITION

As authors, we have called upon our classroom experiences, use of MyMathLab, suggestions from users and reviewers, and many years of writing to provide tools that will support learning and teaching. This new edition of Trigonometry continues our effort to provide a sound pedagogical approach through logical development of the subject matter. This approach forms the basis for all of the Lial team's instructional materials available from Pearson Education, in both print and technology forms.

Our goal is to produce a textbook that will be an integral component of the student's experience in learning trigonometry. With this in mind, we have provided a textbook that students can read more easily, which is often a difficult task, given the nature of mathematical language. We have also improved page layouts for better flow, provided additional side comments, and updated many figures.

We realize that today's classroom experience is evolving and that technologybased teaching and learning aids have become essential to address the ever-changing needs of instructors and students. As a result, we've worked to provide support for all classroom types-traditional, hybrid, and online. In the 10th edition, text and online materials are more tightly integrated than ever before. This enhances flexibility and ease of use for instructors and increases success for students. See pages xvii-xix for descriptions of these materials.

NEW TO THE 10th EDITION

- In Chapter 1 we begin our effort in using more side comments in Examples and providing better pairing of even and odd exercises in our exercise sets. In Section 1.4, we have provided a better visual in the figure (Figure 34) accompanying the explanation of the ranges of the sine and cosine functions (ratios) in conjunction with right triangles.
- In Chapter 2 we have added new exercises for evaluating trigonometric expressions with function values of special angles (Section 2.2, Exercises 45-52). We have updated the discussion on using inverse trigonometric functions to find angle measures using a calculator (Section 2.3 throughout), and we have updated examples of solving right triangles to prepare students for the more challenging exercises in the Exercise sets (Sections 2.4 and 2.5).

■ In Chapter 3 we have added a figure (Figure 2) clarifying the concept of radian measure. In Section 3.2 there are new exercises involving application of the formula for the area of a circle (Exercises 61-64). Section 3.3 now includes an expanded explanation of what values a calculator returns for inverse trigonometric functions. We have added a new figure in Example 4 explaining how to use the concept of inverse functions. There is a new subhead "Expressing Function Values as Lengths of Line Segments" along with a new example (Example 6) and exercises (Exercises 87 and 88).

- In Chapter 4 we have an updated figure and discussion relating the sine function to the unit circle (Section 4.1, Figure 4, and discussion). We have expanded the discussion of sketching graphs of translated trigonometric functions and have updated the guidelines for these sketches (Section 4.2). We have included new examples of connecting graphs with equations (Section 4.1, Example 6 and Section 4.3, Example 6), and have included new exercises of this type in the exercise sets and chapter review exercises.
- In Chapter 5 we have rewritten the solution of Example 4 in Section 5.3 to illustrate how this standard type of problem can be solved by either using the Pythagorean identities or using angles in standard position. In Exercises $73-84$ of Section 5.6 , we now discuss the rarely-studied exact function values of 18° and 72° angles.
- In Chapter 6 we have updated the discussion on finding inverse function values using a calculator (Section 6.1). We have included updated examples and many more exercises in which trigonometric equations are solved for all solutions in both degrees and radians. Several new figures are included relating solutions of trigonometric equations with angle measures and arc lengths on the unit circle (Sections 6.2 and 6.3). For equations involving inverse trigonometric functions that are solved for a specified variable, restrictions are now given so that each equation provides a one-to-one correspondence, and a new figure is given to provide conceptual understanding (Section 6.4).
- In Chapter 7 we have updated and improved many of the illustrations in the examples and exercises. In Section 7.4 the new Figures 35 and 37 illustrate operations with vectors geometrically, and we have also included the justification for the geometric interpretation of the dot product. Section 7.5 now includes a new example (Example 5) illustrating vectors applied to a navigation problem. This type of problem is always troublesome for students.
- In Chapter 8 we have rewritten the introduction to the set of complex numbers and have included a new diagram illustrating the relationships among its subsets. Polar graphs now include underlying grids for easier placement of polar coordinates.
- For visual learners, numbered Figure and Example references within the text are set using the same typeface as the figure and bold print for the example. This makes it easier for the students to identify and connect them. We also have increased our use of a "drop down" style, when appropriate, to distinguish between simplifying expressions and solving equations, and we have added many more explanatory side comments. Interactive figures with accompanying exercises and explorations are now available and assignable in MyMathLab.

■ Enhancing the already well-respected exercises, hundreds are new or modified, and many present updated real-life data. In addition, the MyMathLab course has expanded coverage of all exercise types appearing in the exercise sets, as well as the mid-chapter Quizzes and Summary Exercises.

FEATURES OF THIS TEXT

SUPPORT FOR LEARNING CONCEPTS

We provide a variety of features to support students' learning of the essential topics of trigonometry. Explanations that are written in understandable terms, figures and graphs that illustrate examples and concepts, graphing technology that supports and enhances algebraic manipulations, and real-life applications that enrich the topics with meaning all provide opportunities for students to deepen their understanding of mathematics. These features help students make mathematical connections and expand their own knowledge base.

- Examples Numbered examples that illustrate the techniques for working exercises are found in every section. We use traditional explanations, side comments, and pointers to describe the steps taken-and to warn students about common pitfalls. Some examples provide additional graphing calculator solutions, although these can be omitted if desired.

■ Now Try Exercises Following each numbered example, the student is directed to try a corresponding odd-numbered exercise (or exercises). This feature allows for quick feedback to determine whether the student has understood the principles illustrated in the example.

- Real-Life Applications We have included hundreds of real-life applications, many with data updated from the previous edition. They come from fields such as astronomy, meteorology, environmental studies, construction, biology and life sciences, music, and physics.
- Function Boxes Beginning in Chapter 4, special function boxes (for example, see page 135) offer a comprehensive, visual introduction to each type of function and also serve as an excellent resource for reference and review. Each function box includes a table of values, traditional and calculatorgenerated graphs, the domain, the range, and other special information about the function. These boxes are now assignable in MyMathLab.
- Figures and Photos Today's students are more visually oriented than ever before, and we have updated the figures in this edition to a greater extent than in our previous few editions. Interactive figures with accompanying exercises and explorations are now available and assignable in MyMathLab.
- Use of Graphing Technology We have integrated the use of graphing calculators where appropriate, although this technology is completely optional and can be omitted without loss of continuity. We continue to stress that graphing calculators support understanding but that students must first master the underlying mathematical concepts. Exercises that require their use are marked with an icon *.
- Cautions and Notes Text that is marked CAUTION warns students of common errors, and NOTE comments point out explanations that should receive particular attention.
- Looking Ahead to Calculus These margin notes offer glimpses of how the topics currently being studied are used in calculus.

SUPPORT FOR PRACTICING CONCEPTS

This text offers a wide variety of exercises to help students master trigonometry. The extensive exercise sets provide ample opportunity for practice, and the exercise problems increase in difficulty so that students at every level of understanding are challenged. The variety of exercise types promotes understanding of the concepts and reduces the need for rote memorization.

- Exercise Sets We have revised many drill and application exercises for better pairing of corresponding even and odd exercises, and answers to the odd exercises are provided in the Student Edition. In addition to these, we include writing exercises choice, matching, true/false, and completion exercises. Those marked Concept Check focus on conceptual thinking. Connecting Graphs with Equations exercises challenge students to write equations that correspond to given graphs. Finally, MyMathLab offers Pencast solutions for selected Connecting Graphs with Equations problems.
- Relating Concepts Exercises Appearing in selected exercise sets, these groups of exercises are designed so that students who work them in numerical order will follow a line of reasoning that leads to an understanding of how various topics and concepts are related. All answers to these exercises appear in the student answer section, and these exercises are now assignable in MyMathLab.
- Complete Solutions to Selected Exercises Exercise numbers marked indicate that a full worked-out solution appears at the back of the text. These are often exercises that extend the skills and concepts presented in the numbered examples.

SUPPORT FOR REVIEW AND TEST PREP

Ample opportunities for review are found within the chapters and at the ends of chapters. Quizzes that are interspersed within chapters provide a quick assessment of students' understanding of the material presented up to that point in the chapter. Chapter "Test Preps" provide comprehensive study aids to help students prepare for tests.

- Quizzes Students can periodically check their progress with in-chapter quizzes that appear in all chapters. All answers, with corresponding section references, appear in the student answer section. These quizzes are now assignable in MyMathLab.
- Summary Exercises These sets of in-chapter exercises give students the all-important opportunity to work mixed review exercises, requiring them to synthesize concepts and select appropriate solution methods. The summary exercises are now assignable in MyMathLab.
- End-of-Chapter Test Prep Following the final numbered section in each chapter, the Test Prep provides a list of Key Terms, a list of New Symbols (if applicable), and a two-column Quick Review that includes a section-bysection summary of concepts and examples. This feature concludes with a comprehensive set of Review Exercises and a Chapter Test. The Test Prep, Review Exercises, and Chapter Test are assignable in MyMathLab.
- Glossary A comprehensive glossary of important terms drawn from the entire book follows Appendix D.

Student Supplements

Instructor Supplements

Student's Solutions Manual

By Beverly Fusfield

- Provides detailed solutions to all odd-numbered text exercises

ISBN: 0-321-79153-3 \& 978-0-321-79153-5

Video Lectures with Optional Captioning

- Feature Quick Reviews and Example Solutions: Quick Reviews cover key definitions and procedures from each section.
Example Solutions walk students through the detailed solution process for every example in the textbook.
- Ideal for distance learning or supplemental instruction at home or on campus
- Include optional text captioning

Available in MyMathLab ${ }^{\circledR}$

Additional Skill and Drill Manual

By Cathy Ferrer, Valencia Community College

- Provides additional practice and test preparation for students

ISBN: 0-321-53052-7 \& 978-0-321-53052-3

MyNotes

- Available in MyMathLab and offer structure for student reading and understanding of the textbook
- Include textbook examples along with ample space for students to write solutions and notes
- Include key concepts along with prompts for students to read, write, and reflect on what they have just learned
- Customizable so that instructors can add their own examples or remove examples that are not covered in their courses

MyClassroomExamples

- Available in MyMathLab and offer structure for classroom lecture
- Include Classroom Examples along with ample space for students to write solutions and notes
- Include key concepts along with fill in the blank opportunities to keep students engaged
- Customizable so that instructors can add their own examples or remove Classroom Examples that are not covered in their courses

Annotated Instructor's Edition

- Provides answers in the margins to almost all text exercises, as well as helpful Teaching Tips and Classroom Examples
- Includes sample homework assignments indicated by problem numbers underlined in blue within each end-of-section exercise set
- Sample homework problems assignable in MyMathLab

ISBN: 0-321-78605-X \& 978-0-321-78605-0

Online Instructor's Solutions Manual

By Beverly Fusfield

- Provides complete solutions to all text exercises
- Available in MyMathLab or downloadable from Pearson Education's online catalog

Online Instructor's Testing Manual
By Christopher Mason, Community College of Vermont

- Includes diagnostic pretests, chapter tests, final exams, and additional test items, grouped by section, with answers provided
- Available in MyMathLab or downloadable from Pearson Education's online catalog

TestGen ${ }^{\circledR}$

- Enables instructors to build, edit, print, and administer tests
- Features a computerized bank of questions developed to cover all text objectives
- Available in MyMathLab or downloadable from Pearson Education's online catalog

Online PowerPoint Presentation, Active Learning Questions, and Classroom Example PowerPoints

- Written and designed specifically for this text
- Include figures and examples from the text
- Provide active learning questions for use with classroom response systems, including multiplechoice questions to review lecture material (available in MyMathLab only)
- Provide Classroom Example PowerPoints that include full worked-out solutions to all Classroom Examples
- Available in MyMathLab or downloadable from Pearson Education's online catalog

MEDIA RESOURCES

MyMathLab ${ }^{\circ}$ Online Course (access code required)

MyMathLab delivers proven results in helping individual students succeed.

- MyMathLab has a consistently positive impact on the quality of learning in higher education math instruction. MyMathLab can be successfully implemented in any environment-lab-based, hybrid, fully online, or traditionaland demonstrates the quantifiable effect that integrated usage has on student retention, subsequent success, and overall achievement.
- MyMathLab's comprehensive online gradebook automatically tracks students' results on tests, quizzes, and homework and in the study plan. The gradebook can be used to quickly intervene if students have trouble or to provide positive feedback on a job well done. The data within MyMathLab are easily exported to a variety of spreadsheet programs, such as Microsoft Excel. Instructors can determine which points of data they want to export, and then analyze the results to determine student success.

MyMathLab provides engaging experiences that personalize, stimulate, and measure learning for each student.

- Tutorial Exercises Homework and practice exercises in MyMathLab are correlated with the exercises in the textbook, and they regenerate algorithmically to give students unlimited opportunities for practice and mastery. The software offers immediate, helpful feedback when students enter incorrect answers.

■ Multimedia Learning Aids Exercises include guided solutions, sample problems, animations, videos, and eText clips for extra help at point-of-use.

- Expert Tutoring Although many students describe MyMathLab itself as "like having your own personal tutor," students using MyMathLab have access to live tutoring from Pearson, in the form of qualified math instructors who provide tutoring sessions for students via MyMathLab.
And MyMathLab comes from a trusted partner with educational expertise and an eye on the future.

Using a Pearson product means using quality content. This means that our eTexts are accurate, our assessment tools work, and that our exercises and answers are carefully checked. And whether instructors are just getting started with MyMathLab or have a question along the way, we're here to help them learn about our technologies and how to incorporate them into their courses.

To learn more about how MyMathLab combines proven learning applications with powerful assessment, visit www.mymathlab.com or contact your Pearson representative.

MyMathLab ${ }^{\circ}$ Ready to Go Course (access code required)

These new Ready to Go courses provide students with all the same great MyMathLab features that they are used to, but the courses make it easier for instructors to get started. Each course includes preassigned homework and quizzes to make creating a course even simpler. Ask your Pearson representative about the details for this particular course, or request a copy of the course.

MyMathLab ${ }^{\text {® }}$ Plus

MyLabsPlus combines proven results and engaging experiences from MyMathLab® with convenient management tools and a dedicated service team. Designed to support growing math and statistics programs, it includes additional features such as

- Batch Enrollment Schools can create the login name and password for every student and instructor so that everyone can be ready to start class on the first day. Automation of this process is also possible through integration with the school's Student Information System.
- Login From Your Campus Portal Instructors and their students can link directly from their campus portal into their MyLabsPlus courses. A Pearson service team works with the institution to create a single sign-on experience for instructors and students.
- Advanced Reporting MyLabsPlus's advanced reporting enables instructors to review and analyze students' strengths and weaknesses by tracking their performance on tests, assignments, and tutorials. Administrators can review grades and assignments across all courses on a MyLabsPlus campus for a broad overview of program performance.
- 24/7 Support Students and instructors receive 24/7 support, 365 days a year, by phone, email, or online chat.

MyLabsPlus is available to qualified adopters. For more information, visit our website at www.mylabsplus.com or contact your Pearson representative.

Math LL° Online Course (access code required)

MathXL ${ }^{\circledR}$ is the homework and assessment engine that runs MyMathLab. (MyMathLab is MathXL plus a learning management system.) With MathXL, instructors can

- Create, edit, and assign online homework and tests using algorithmically generated exercises correlated at the objective level with the textbook.
- Create and assign their own online exercises and import TestGen tests for added flexibility.
- Maintain records of all student work tracked in MathXL's online gradebook.

With MathXL, students can

- Take chapter tests in MathXL and receive personalized study plans and/or personalized homework assignments based on their test results.
- Use the study plan and/or the homework to link directly to tutorial exercises for the objectives they need to study.
- Access supplemental animations and video clips directly from selected exercises.

MathXL is available to qualified adopters. For more information, visit our website at www.mathxl.com or contact your Pearson representative.

ACKNOWLEDGMENTS

We wish to thank the following individuals who provided valuable input into this edition of the text.

$$
\begin{aligned}
& \text { Mark Burtch - Austin Community College - Rio Grande } \\
& \text { Tilak De Alwis - Southeastern Louisiana University } \\
& \text { Richard G. Goldthwait - Youngstown State University } \\
& \text { Rene Lumampao - Austin Community College - Rio Grande } \\
& \text { Lucia Riderer - Citrus College } \\
& \text { Mayada Shahrokhi - Lonestar College - CyFair } \\
& \text { Magdalena Toda - Texas Tech University }
\end{aligned}
$$

Our sincere thanks to those individuals at Pearson Education who have supported us throughout this revision: Greg Tobin, Anne Kelly, Kathy Manley, and Christine O'Brien. Terry McGinnis continues to provide behind-the-scenes guidance for both content and production. We have come to rely on her expertise during all phases of the revision process. Marilyn Dwyer of Nesbitt Graphics, Inc., with the assistance of Carol Merrigan, provided excellent production work. Special thanks go out to Abby Tanenbaum for updating data in applications, and to Chris Heeren and Paul Lorczak for their excellent accuracy-checking. We thank Lucie Haskins, who provided an accurate index, and Becky Troutman, who revised our Index of Applications. A special thank you goes out to Dr. Mohammed Alaimia, KFUPM, Saudi Arabia, who provided assistance in revising many of the exercises in Chapter 6.

As an author team, we are committed to providing the best possible trigonometry course to help instructors teach and students succeed. As we continue to work toward this goal, we welcome any comments or suggestions you might send, via e-mail, to math@pearson.com.

1.1 Angles

Basic Terminology
Degree Measure

- Standard Position
- Coterminal Angles
$\xrightarrow[A]{\longrightarrow}$ B

Figure 1

Figure 2

A complete rotation of a ray gives an angle whose measure is 360°. $\frac{1}{360}$ of a complete rotation gives an angle whose measure is 1°.

Figure 4

Basic Terminology Two distinct points A and B determine a line called line $\boldsymbol{A B}$. The portion of the line between A and B, including points A and B themselves, is line segment $\boldsymbol{A B}$, or simply segment $\boldsymbol{A B}$. The portion of line $A B$ that starts at A and continues through B, and on past B, is the ray $\boldsymbol{A} \boldsymbol{B}$. Point A is the endpoint of the ray. See Figure 1.

In trigonometry, an angle consists of two rays in a plane with a common endpoint, or two line segments with a common endpoint. These two rays (or segments) are the sides of the angle, and the common endpoint is the vertex of the angle. Associated with an angle is its measure, generated by a rotation about the vertex. See Figure 2. This measure is determined by rotating a ray starting at one side of the angle, the initial side, to the position of the other side, the terminal side. A counterclockwise rotation generates a positive measure, and a clockwise rotation generates a negative measure. The rotation can consist of more than one complete revolution.

Figure 3 shows two angles, one positive and one negative.

Figure 3

An angle can be named by using the name of its vertex. For example, the angle on the right in Figure 3 can be named angle C. Alternatively, an angle can be named using three letters, with the vertex letter in the middle. Thus, the angle on the right also could be named angle $A C B$ or angle $B C A$.

Degree Measure The most common unit for measuring angles is the degree. Degree measure was developed by the Babylonians 4000 yr ago. To use degree measure, we assign 360 degrees to a complete rotation of a ray.* In Figure 4, notice that the terminal side of the angle corresponds to its initial side when it makes a complete rotation.

One degree, written 1°, represents $\frac{1}{360}$ of a rotation.
Therefore, 90° represents $\frac{90}{360}=\frac{1}{4}$ of a complete rotation, and 180° represents $\frac{180}{360}=\frac{1}{2}$ of a complete rotation.

An angle measuring between 0° and 90° is an acute angle. An angle measuring exactly 90° is a right angle. The symbol 7 is often used at the vertex of a right angle to denote the 90° measure. An angle measuring more than 90° but less than 180° is an obtuse angle, and an angle of exactly 180° is a straight angle.

[^0]In Figure 5, we use the Greek letter $\boldsymbol{\theta}$ (theta)* to name each angle.

Acute angle $0^{\circ}<\theta<90^{\circ}$

Obtuse angle $90^{\circ}<\theta<180^{\circ}$

Straight angle $\theta=180^{\circ}$
Figure 5

If the sum of the measures of two positive angles is 90°, the angles are complementary and the angles are complements of each other. Two positive angles with measures whose sum is 180° are supplementary, and the angles are supplements.

EXAMPLE 1 Finding the Complement and the Supplement of an Angle

For an angle measuring 40°, find the measure of (a) its complement and (b) its supplement.

SOLUTION

(a) To find the measure of its complement, subtract the measure of the angle from 90°.

$$
90^{\circ}-40^{\circ}=50^{\circ} \quad \text { Complement of } 40^{\circ}
$$

(b) To find the measure of its supplement, subtract the measure of the angle from 180°.

$$
180^{\circ}-40^{\circ}=140^{\circ} \quad \text { Supplement of } 40^{\circ}
$$

Now Try Exercise 1.

(a)

(b)

Figure 6

EXAMPLE 2 Finding Measures of Complementary and Supplementary Angles

Find the measure of each marked angle in Figure 6.

SOLUTION

(a) Since the two angles in Figure 6(a) form a right angle, they are complementary angles.

$$
\begin{aligned}
6 x+3 x & =90 \quad \text { Complementary angles sum to } 90^{\circ} . \\
9 x & =90 \quad \text { Combine like terms. }
\end{aligned}
$$

Don't stop here. $x=10$ Divide by 9. (Appendix A)
Be sure to determine the measure of each angle by substituting 10 for x. The two angles have measures of $6(10)=60^{\circ}$ and $3(10)=30^{\circ}$.
(b) The angles in Figure 6(b) are supplementary, so their sum must be 180°.

$$
\begin{aligned}
4 x+6 x & =180 & & \text { Supplementary angles sum to } 180^{\circ} . \\
10 x & =180 & & \text { Combine like terms. } \\
x & =18 & & \text { Divide by } 10 .
\end{aligned}
$$

These angle measures are $4(18)=72^{\circ}$ and $6(18)=108^{\circ}$.
Now Try Exercises 13 and 15.

[^1]

Figure 7

The measure of angle A in Figure 7 is 35°. This measure is often expressed by saying that $\boldsymbol{m}($ angle $\boldsymbol{A})$ is 35°, where $m($ angle $A)$ is read "the measure of angle \boldsymbol{A}." It is convenient, however, to abbreviate the symbolism $m($ angle $A)=35^{\circ}$ as $A=35^{\circ}$.

Traditionally, portions of a degree have been measured with minutes and seconds. One minute, written $\mathbf{1}^{\prime}$, is $\frac{1}{60}$ of a degree.

$$
1^{\prime}=\frac{1}{60}^{\circ} \quad \text { or } \quad 60^{\prime}=1^{\circ}
$$

One second, $\mathbf{1}^{\prime \prime}$, is $\frac{1}{60}$ of a minute.

$$
1^{\prime \prime}=\frac{1}{60}^{\prime}=\frac{1}{3600}^{\circ} \quad \text { or } \quad 60^{\prime \prime}=1^{\prime}
$$

The measure $12^{\circ} 42^{\prime} 38^{\prime \prime}$ represents 12 degrees, 42 minutes, 38 seconds.

EXAMPLE 3 Calculating with Degrees, Minutes, and Seconds

Perform each calculation.
(a) $51^{\circ} 29^{\prime}+32^{\circ} 46^{\prime}$
(b) $90^{\circ}-73^{\circ} 12^{\prime}$

SOLUTION

(a) $51^{\circ} 29^{\prime}$
$+32^{\circ} 46^{\prime}$ Add degrees and minutes separately.
$83^{\circ} 75^{\prime}$
The sum $83^{\circ} 75^{\prime}$ can be rewritten as follows.

$$
\begin{aligned}
83^{\circ} 75^{\prime} & =83^{\circ}+1^{\circ} 15^{\prime} & & 75^{\prime}=60^{\prime}+15^{\prime}=1^{\circ} 15^{\prime} \\
& =84^{\circ} 15^{\prime} & & \text { Add. }
\end{aligned}
$$

(b) $89^{\circ} 60^{\prime}$ Write 90° as $89^{\circ} 60^{\prime}$.

$$
\frac{-73^{\circ} 12^{\prime}}{16^{\circ} 48^{\prime}}
$$

Now Try Exercises 37 and 41.

Because calculators are so prevalent, angles are commonly measured in decimal degrees. For example, 12.4238° represents

$$
12.4238^{\circ}=12{\frac{4238^{\circ}}{10,000}}^{\circ}
$$

EXAMPLE 4 Converting between Decimal Degrees and Degrees, Minutes, and Seconds

(a) Convert $74^{\circ} 08^{\prime} 14^{\prime \prime}$ to decimal degrees to the nearest thousandth.
(b) Convert 34.817° to degrees, minutes, and seconds to the nearest second.

SOLUTION

(a) $74^{\circ} 08^{\prime} 14^{\prime \prime}=74^{\circ}+{\frac{8^{\circ}}{60}}^{\circ}+\frac{14}{3600}^{\circ} \quad 1^{\prime}=\frac{1}{60}^{\circ}$ and $1^{\prime \prime}=\frac{1}{3600}^{\circ}$
$\approx 74^{\circ}+0.1333^{\circ}+0.0039^{\circ}$
$\approx 74.137^{\circ} \quad$ Add and round to the nearest thousandth.

A graphing calculator per-
forms the conversions in Example 4 as shown above. The - DMS option is found in the ANGLE Menu of the TI-83/84 Plus calculator.
(b) $34.817^{\circ}=34^{\circ}+0.817^{\circ} \quad$ Write as a sum.

$$
\begin{array}{ll}
=34^{\circ}+0.817\left(60^{\prime}\right) & \\
=60^{\circ}= \\
=34^{\circ}+49.02^{\prime} & \\
\text { Multiply }
\end{array}
$$

$$
=34^{\circ}+49^{\prime}+0.02^{\prime} \quad \text { Write as a sum. }
$$

$$
=34^{\circ}+49^{\prime}+0.02\left(60^{\prime \prime}\right) \quad 1^{\prime}=60^{\prime \prime}
$$

$$
=34^{\circ}+49^{\prime}+1.2^{\prime \prime} \quad \text { Write as a sum. }
$$

$$
\approx 34^{\circ} 49^{\prime} 01^{\prime \prime} \quad \text { Approximate to the nearest second. }
$$

Now Try Exercises 53 and 63.

Standard Position An angle is in standard position if its vertex is at the origin and its initial side lies on the positive x-axis. The angles in Figures 8(a) and 8(b) are in standard position. An angle in standard position is said to lie in the quadrant in which its terminal side lies. An acute angle is in quadrant I (Figure 8(a)) and an obtuse angle is in quadrant II (Figure 8(b)). Figure 8(c) shows ranges of angle measures for each quadrant when $0^{\circ}<\theta<360^{\circ}$.

Figure 8

Quadrantal Angles

Angles in standard position whose terminal sides lie on the x-axis or y-axis, such as angles with measures $90^{\circ}, 180^{\circ}, 270^{\circ}$, and so on, are quadrantal angles.

Coterminal Angles A complete rotation of a ray results in an angle measuring 360°. By continuing the rotation, angles of measure larger than 360° can be produced. The angles in Figure 9 with measures 60° and 420° have the same initial side and the same terminal side, but different amounts of rotation. Such angles are coterminal angles. Their measures differ by a multiple of 360°. As shown in Figure 10, angles with measures 110° and 830° are coterminal.

Figure 9

Figure 10

EXAMPLE 5 Finding Measures of Coterminal Angles

Find the angles of least positive measure that are coterminal with each angle.
(a) 908°
(b) -75°
(c) -800°

SOLUTION

(a) Subtract 360° as many times as needed to obtain an angle with measure greater than 0° but less than 360°. Since

$$
908^{\circ}-2 \cdot 360^{\circ}=188^{\circ},
$$

an angle of 188° is coterminal with an angle of 908°. See Figure 11.

Figure 11

Figure 12
(b) See Figure 12. Use a rotation of

$$
360^{\circ}+\left(-75^{\circ}\right)=285^{\circ}
$$

(c) The least integer multiple of 360° greater than 800° is

$$
360^{\circ} \cdot 3=1080^{\circ}
$$

Add 1080° to -800° to obtain

$$
1080^{\circ}+\left(-800^{\circ}\right)=280^{\circ}
$$

Now Try Exercises 77, 87, and 91.

Sometimes it is necessary to find an expression that will generate all angles coterminal with a given angle. For example, we can obtain any angle coterminal with 60° by adding an integer multiple of 360° to 60°. Let n represent any integer. Then the following expression represents all such coterminal angles.

$$
60^{\circ}+\boldsymbol{n} \cdot \mathbf{3 6 0}^{\circ} \quad \text { Angles coterminal with } 60^{\circ}
$$

The table below shows a few possibilities.

Examples of Coterminal

 Quadrantal Angles| Quadrantal
 Angle $\boldsymbol{\theta}$ | Coterminal
 with $\boldsymbol{\theta}$ |
| :---: | :---: |
| 0° | $\pm 360^{\circ}, \pm 720^{\circ}$ |
| 90° | $-630^{\circ},-270^{\circ}, 450^{\circ}$ |
| 180° | $-180^{\circ}, 540^{\circ}, 900^{\circ}$ |
| 270° | $-450^{\circ},-90^{\circ}, 630^{\circ}$ |

Value of \boldsymbol{n}	Angle Coterminal with $\mathbf{6 0}{ }^{\circ}$
2	$60^{\circ}+2 \cdot 360^{\circ}=780^{\circ}$
1	$60^{\circ}+1 \cdot 360^{\circ}=420^{\circ}$
0	$60^{\circ}+0 \cdot 360^{\circ}=60^{\circ}$ (the angle itself)
-1	$60^{\circ}+(-1) \cdot 360^{\circ}=-300^{\circ}$

The table in the margin shows some examples of coterminal quadrantal angles.

EXAMPLE 6 Analyzing the Revolutions of a CD Player

CD players always spin at the same speed. Suppose a player makes 480 revolutions per min. Through how many degrees will a point on the edge of a CD move in 2 sec ?
SOLUTION The player revolves 480 times in 1 min , or $\frac{480}{60}$ times $=8$ times per \sec (since $60 \mathrm{sec}=1 \mathrm{~min}$). In 2 sec , the player will revolve $2 \cdot 8=16$ times. Each revolution is 360°, so in 2 sec a point on the edge of the CD will revolve

$$
16 \cdot 360^{\circ}=5760^{\circ}
$$

A unit analysis expression can also be used.

$$
\frac{480 \mathrm{rev}}{1 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \times \frac{360^{\circ}}{1 \mathrm{rev}} \times 2 \mathrm{sec}=5760^{\circ} \quad \text { Divide out common units. }
$$

1.1 Exercises

Find (a) the complement and (b) the supplement of an angle with the given measure. See Examples 1 and 3.

1. 30°
2. 60°
3. 45°
4. 18°
5. 54°
6. 89°
7. 1°
8. 10°
9. $14^{\circ} 20^{\prime}$
10. $39^{\circ} 50^{\prime}$
11. $20^{\circ} 10^{\prime} 30^{\prime \prime}$
12. $50^{\circ} 40^{\prime} 50^{\prime \prime}$

Find the measure of each unknown angle in Exercises 13-22. See Example 2.
13.

14.

15.

16.

17.

18.

19. supplementary angles with measures $10 x+7$ and $7 x+3$ degrees
20. supplementary angles with measures $6 x-4$ and $8 x-12$ degrees
21. complementary angles with measures $9 x+6$ and $3 x$ degrees
22. complementary angles with measures $3 x-5$ and $6 x-40$ degrees
23. Concept Check What is the measure of an angle that is its own complement?
24. Concept Check What is the measure of an angle that is its own supplement?

Find the measure of the smaller angle formed by the hands of a clock at the following times.
25.

27. 3:15
28. 9:45
26.

29. 8:20
30. 6:10

Concept Check Answer each question.
31. If an angle measures x°, how can we represent its complement?
32. If an angle measures x°, how can we represent its supplement?
33. If a positive angle has measure x° between 0° and 60°, how can we represent the first negative angle coterminal with it?
34. If a negative angle has measure x° between 0° and -60°, how can we represent the first positive angle coterminal with it?

Perform each calculation. See Example 3.

35. $62^{\circ} 18^{\prime}+21^{\circ} 41^{\prime}$
36. $75^{\circ} 15^{\prime}+83^{\circ} 32^{\prime}$
37. $97^{\circ} 42^{\prime}+81^{\circ} 37^{\prime}$
38. $110^{\circ} 25^{\prime}+32^{\circ} 55^{\prime}$
39. $71^{\circ} 18^{\prime}-47^{\circ} 29^{\prime}$
40. $47^{\circ} 23^{\prime}-73^{\circ} 48^{\prime}$
41. $90^{\circ}-51^{\circ} 28^{\prime}$
42. $90^{\circ}-17^{\circ} 13^{\prime}$
43. $180^{\circ}-119^{\circ} 26^{\prime}$
44. $180^{\circ}-124^{\circ} 51^{\prime}$
45. $26^{\circ} 20^{\prime}+18^{\circ} 17^{\prime}-14^{\circ} 10^{\prime}$
46. $55^{\circ} 30^{\prime}+12^{\circ} 44^{\prime}-8^{\circ} 15^{\prime}$
47. $90^{\circ}-72^{\circ} 58^{\prime} 11^{\prime \prime}$
48. $90^{\circ}-36^{\circ} 18^{\prime} 47^{\prime \prime}$

Convert each angle measure to decimal degrees. If applicable, round to the nearest thousandth of a degree. See Example 4(a).
49. $35^{\circ} 30^{\prime}$
50. $82^{\circ} 30^{\prime}$
51. $112^{\circ} 15^{\prime}$
52. $133^{\circ} 45^{\prime}$
53. $-60^{\circ} 12^{\prime}$
54. $-70^{\circ} 48^{\prime}$
55. $20^{\circ} 54^{\prime} 00^{\prime \prime}$
56. $38^{\circ} 42^{\prime} 00^{\prime \prime}$
57. $91^{\circ} 35^{\prime} 54^{\prime \prime}$
58. $34^{\circ} 51^{\prime} 35^{\prime \prime}$
59. $274^{\circ} 18^{\prime} 59^{\prime \prime}$
60. $165^{\circ} 51^{\prime} 09^{\prime \prime}$

Convert each angle measure to degrees, minutes, and seconds. Round answers to the nearest second, if applicable. See Example 4(b).
61. 39.25°
62. 46.75°
63. 126.76°
64. 174.255°
65. -18.515°
66. -25.485°
67. 31.4296°
68. 59.0854°
69. 89.9004°
70. 102.3771°
71. 178.5994°
72. 122.6853°

Find the angle of least positive measure (not equal to the given measure) that is coterminal with each angle. See Example 5.
73. 32°
74. 86°
75. $26^{\circ} 30^{\prime}$
76. $58^{\circ} 40^{\prime}$
77. -40°
78. -98°
79. -125°
80. -203°
81. 361°
82. 541°
83. -361°
84. -541°
85. 539°
86. 699°
87. 850°
88. 1000°
89. 5280°
90. 8440°
91. -5280°
92. -8440°

Give two positive and two negative angles that are coterminal with the given quadrantal angle.
93. 90°
94. 180°
95. 0°
96. 270°

Give an expression that generates all angles coterminal with each angle. Let n represent any integer.
97. 30°
98. 45°
99. 135°
100. 225°
101. -90°
102. -180°
103. 0°
104. 360°
105. Explain why the answers to Exercises 103 and 104 give the same set of angles.
106. Concept Check Which two of the following are not coterminal with r° ?
A. $360^{\circ}+r^{\circ}$
B. $r^{\circ}-360^{\circ}$
C. $360^{\circ}-r^{\circ}$
D. $r^{\circ}+180^{\circ}$

Concept Check Sketch each angle in standard position. Draw an arrow representing the correct amount of rotation. Find the measure of two other angles, one positive and one negative, that are coterminal with the given angle. Give the quadrant of each angle, if applicable.
107. 75°
108. 89°
109. 174°
110. 234°
111. 300°
112. 512°
113. -61°
114. -159°
115. 90°
116. 180°
117. -90°
118. -180°

Concept Check Locate each point in a coordinate system. Draw a ray from the origin through the given point. Indicate with an arrow the angle in standard position having least positive measure. Then find the distance r from the origin to the point, using the distance formula of Appendix B.
119. $(-3,-3)$
120. $(4,-4)$
121. $(-3,-5)$
122. $(-5,2)$
123. $(\sqrt{2},-\sqrt{2})$
124. $(-2 \sqrt{2}, 2 \sqrt{2})$
125. $(-1, \sqrt{3})$
126. $(\sqrt{3}, 1)$
127. $(-2,2 \sqrt{3})$
128. $(4 \sqrt{3},-4)$
129. $(0,-4)$
130. $(0,2)$

Solve each problem. See Example 6.
131. Revolutions of a Turntable A turntable in a shop makes 45 revolutions per min. How many revolutions does it make per second?
132. Revolutions of a Windmill A windmill makes 90 revolutions per min. How many revolutions does it make per second?
133. Rotating Tire A tire is rotating 600 times per min. Through how many degrees does a point on the edge of the tire move in $\frac{1}{2} \mathrm{sec}$?

134. Rotating Airplane Propeller An airplane propeller rotates 1000 times per min. Find the number of degrees that a point on the edge of the propeller will rotate in 1 sec .
135. Rotating Pulley A pulley rotates through 75° in 1 min . How many rotations does the pulley make in an hour?
136. Surveying One student in a surveying class measures an angle as 74.25°, while another student measures the same angle as $74^{\circ} 20^{\prime}$. Find the difference between these measurements, both to the nearest minute and to the nearest hundredth of a degree.

137. Viewing Field of a Telescope As a consequence of Earth's rotation, celestial objects such as the moon and the stars appear to move across the sky, rising in the east and setting in the west. As a result, if a telescope on Earth remains stationary while viewing a celestial object, the object will slowly move outside the viewing field of the telescope. For this reason, a motor is often attached to telescopes so that the telescope rotates at the same rate as Earth. Determine how long it should take the motor to turn the telescope through an angle of 1 min in a direction perpendicular to Earth's axis.
138. Angle Measure of a Star on the American Flag Determine the measure of the angle in each point of the five-pointed star appearing on the American flag. (Hint: Inscribe the star in a circle, and use the following theorem from geometry: An angle whose vertex lies on the circumference of a circle is equal to half the central angle that cuts off the same arc. See the figure.)

1.2 Angle Relationships and Similar Triangles

- Geometric Properties
- Triangles

Vertical angles
Figure 13

Geometric Properties In Figure 13, we extended the sides of angle $N M P$ to form another angle, $R M Q$. The pair of angles $N M P$ and $R M Q$ are vertical angles. Another pair of vertical angles, $N M Q$ and $P M R$, are also formed. Vertical angles have the following important property.

Vertical Angles

Vertical angles have equal measures.

Parallel lines are lines that lie in the same plane and do not intersect. Figure 14 shows parallel lines m and n. When a line q intersects two parallel lines, q is called a transversal. In Figure 14, the transversal intersecting the parallel lines forms eight angles, indicated by numbers.

Figure 14

We learn in geometry that the degree measures of angles 1 through 8 in Figure 14 possess some special properties. The following chart gives the names of these angles and rules about their measures.

Name	Sketch	Rule
Alternate interior angles		Angle measures are equal.
Alternate exterior angles		Angle measures are equal.
Interior angles on same side of transversal		Angle measures add to 180°.
Corresponding angles		Angle measures are equal.

Figure 15

EXAMPLE 1 Finding Angle Measures

Find the measures of angles $1,2,3$, and 4 in Figure 15, given that lines m and n are parallel.

SOLUTION Angles 1 and 4 are alternate exterior angles, so they are equal.

$$
\begin{aligned}
3 x+2 & =5 x-40 & & \text { Alternate exterior angles have equal measures. } \\
42 & =2 x & & \text { Subtract } 3 x \text { and add } 40 . \text { (Appendix A) } \\
21 & =x & & \text { Divide by } 2 .
\end{aligned}
$$

Angle 1 has measure

$$
\begin{aligned}
3 x+2 & =3 \cdot 21+2 & & \text { Substitute } 21 \text { for } x . \\
& =65^{\circ}, & & \text { Multiply, and then add. }
\end{aligned}
$$

and angle 4 has measure

$$
\begin{aligned}
5 x-40 & =5 \cdot 21-40 & & \text { Substitute } 21 \text { for } x . \\
& =65^{\circ} . & & \text { Multiply, and then subtract. }
\end{aligned}
$$

Angle 2 is the supplement of a 65° angle, so it has measure

$$
180^{\circ}-65^{\circ}=115^{\circ}
$$

Angle 3 is a vertical angle to angle 1 , so its measure is 65°. (There are other ways to determine these measures.)

Figure 16

Figure 17

Triangles An important property of triangles, first proved by Greek geometers, deals with the sum of the measures of the angles of any triangle.

Angle Sum of a Triangle

The sum of the measures of the angles of any triangle is 180°.

Although it is not an actual proof, we give a rather convincing argument for the truth of this statement, using any size triangle cut from a piece of paper. Tear each corner from the triangle, as suggested in Figure 16(a). You should be able to rearrange the pieces so that the three angles form a straight angle, which has measure 180°, as shown in Figure 16(b). (See also Exercise 39.)

EXAMPLE 2 Applying the Angle Sum of a Triangle Property

The measures of two of the angles of a triangle are 48° and 61°. See Figure 17. Find the measure of the third angle, x.

SOLUTION

$$
\begin{array}{rlrl}
48^{\circ}+61^{\circ}+x & =180^{\circ} & \text { The sum of the angles is } 180^{\circ} . \\
109^{\circ}+x & =180^{\circ} & & \text { Add. } \\
x & =71^{\circ} & & \text { Subtract } 109^{\circ} .
\end{array}
$$

The third angle of the triangle measures 71°.
Now Try Exercises 5 and 15.

We classify triangles according to angles and sides, as shown below.

Types of Triangles

Angles

Similar triangles are triangles of exactly the same shape but not necessarily the same size. Figure 18 shows three pairs of similar triangles. The two triangles in Figure $\mathbf{1 8 (c)}$ have not only the same shape but also the same size. Triangles that are both the same size and the same shape are called congruent triangles.

If two triangles are congruent, then it is possible to pick one of them up and place it on top of the other so that they coincide. If two triangles are congruent, then they must be similar. However, two similar triangles need not be congruent.

Figure 18

The triangular supports for a child's swing set are congruent (and thus similar) triangles, machine-produced with exactly the same dimensions each time. These supports are just one example of similar triangles. The supports of a long bridge, all the same shape but increasing in size toward the center of the bridge, are examples of similar (but not congruent) figures. See the photo.

Suppose a correspondence between two triangles $A B C$ and $D E F$ is set up as shown in Figure 19.

Angle A corresponds to angle D.
Angle B corresponds to angle E.

Angle C corresponds to angle F.
Side $A B$ corresponds to side $D E$.
Side $B C$ corresponds to side $E F$.
Side $A C$ corresponds to side $D F$.
The small arcs found at the angles in Figure 19 denote the corresponding angles in the triangles.

Figure 19

Conditions for Similar Triangles

For triangle $A B C$ to be similar to triangle $D E F$, the following conditions must hold.

1. Corresponding angles must have the same measure.
2. Corresponding sides must be proportional. (That is, the ratios of their corresponding sides must be equal.)

EXAMPLE 3 Finding Angle Measures in Similar Triangles

In Figure 20, triangles $A B C$ and $N M P$ are similar. Find the measures of angles B and C.
SOLUTION Since the triangles are similar, corresponding angles have the same measure. Since C corresponds to P and P measures 104°, angle C also measures 104°. Since angles B and M correspond, B measures 31°.

Figure 20

EXAMPLE 4 Finding Side Lengths in Similar Triangles

Given that triangle $A B C$ and triangle $D F E$ in Figure 21 are similar, find the lengths of the unknown sides of triangle $D F E$.

SOLUTION Similar triangles have correspond-
 ing sides in proportion. Use this fact to find the unknown side lengths in triangle $D F E$.

Figure 21
Side $D F$ of triangle $D F E$ corresponds to side $A B$ of triangle $A B C$, and sides $D E$ and $A C$ correspond. This leads to the following proportion.

$$
\frac{8}{16}=\frac{D F}{24}
$$

Recall this property of proportions from algebra.

$$
\text { If } \frac{a}{b}=\frac{c}{d}, \quad \text { then } \quad a d=b c
$$

We use this property to solve the equation for $D F$.

$$
\begin{aligned}
\frac{8}{16} & =\frac{D F}{24} & & \\
8 \cdot 24 & =16 \cdot D F & & \text { Property of proportions } \\
192 & =16 \cdot D F & & \text { Multiply. } \\
12 & =D F & & \text { Divide by } 16 .
\end{aligned}
$$

Side $D F$ has length 12 .
Side $E F$ corresponds to $C B$. This leads to another proportion.

$$
\begin{aligned}
\frac{8}{16} & =\frac{E F}{32} & & \\
8 \cdot 32 & =16 \cdot E F & & \text { Property of proportions } \\
16 & =E F & & \text { Solve for } E F .
\end{aligned}
$$

Side $E F$ has length 16 .
Now Try Exercise 53.

EXAMPLE 5 Finding the Height of a Flagpole

Workers at the Morganza Spillway Station need to measure the height of the station flagpole. They find that at the instant when the shadow of the station is 18 m long, the shadow of the flagpole is 99 ft long. The station is 10 m high. Find the height of the flagpole.

SOLUTION Figure 22 shows the information given in the problem. The two triangles are similar, so corresponding sides are in proportion.

Figure 22

$$
\begin{aligned}
\frac{M N}{10} & =\frac{99}{18} & & \text { Corresponding sides are proportional. } \\
\frac{M N}{10} & =\frac{11}{2} & & \text { Write in lowest terms. } \\
M N \cdot 2 & =10 \cdot 11 & & \text { Property of proportions } \\
M N & =55 & & \text { Solve for } M N .
\end{aligned}
$$

The flagpole is 55 ft high.

1. Concept Check Use the given figure to find the measures of the numbered angles, given that lines m and n are parallel.

2. In the figure here, if the measure of one of the angles is known, explain how the remaining measures can be found.

Find the measure of each marked angle. In Exercises 11-14, m and n are parallel. See Examples 1 and 2.

5.

7.

9.

11.

4.

6.

8.

10.

12.

13.

14.

The measures of two angles of a triangle are given. Find the measure of the third angle. See Example 2.
15. $37^{\circ}, 52^{\circ}$
16. $29^{\circ}, 104^{\circ}$
17. $147^{\circ} 12^{\prime}, 30^{\circ} 19^{\prime}$
18. $136^{\circ} 50^{\prime}, 41^{\circ} 38^{\prime}$
19. $74.2^{\circ}, 80.4^{\circ}$
20. $29.6^{\circ}, 49.7^{\circ}$
21. $51^{\circ} 20^{\prime} 14^{\prime \prime}, 106^{\circ} 10^{\prime} 12^{\prime \prime}$
22. $17^{\circ} 41^{\prime} 13^{\prime \prime}, 96^{\circ} 12^{\prime} 10^{\prime \prime}$
23. Can a triangle have angles of measures 85° and 100° ? Explain.
24. Can a triangle have two obtuse angles? Explain.

Concept Check Classify each triangle in Exercises 25-36 as acute, right, or obtuse. Also classify each as equilateral, isosceles, or scalene. See the discussion following Example 2.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37. Write a definition of isosceles right triangle.38. Explain why the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.
39. Use this figure to discuss why the measures of the angles of a triangle must add up to the same sum as the measure of a straight angle.

40. Carpentry Technique The following technique is used by carpenters to draw a 60° angle with a straightedge and a pair of compasses. Explain why this technique works. (Source: Hamilton, J. E. and M. S. Hamilton, Math to Build On, Construction Trades Press.)

"Draw a straight line segment, and mark a point near the midpoint. Now place the tip on the marked point, and draw a semicircle. Without changing the setting of the pair of compasses, place the tip at the right intersection of the line and the semicircle, and then mark a small arc across the semicircle. Finally, draw a line segment from the marked point on the original segment to the point where the arc crosses the semicircle. This will form a 60° angle with the original segment."

Concept Check Name the corresponding angles and the corresponding sides of each pair of similar triangles. See the discussion preceding Example 3.
41. B

42.

43. ($E A$ is parallel to $C D$.)

44. ($H K$ is parallel to $E F$.)

Find all unknown angle measures in each pair of similar triangles. See Example 3.
45.

47.

49.

50.

Find the unknown side lengths labeled with a variable in each pair of similar triangles. See Example 4.
51.

52.

53.

54.

55.

56.

Solve each problem. See Example 5.
57. Height of a Tree A tree casts a shadow 45 m long. At the same time, the shadow cast by a vertical $2-\mathrm{m}$ stick is 3 m long. Find the height of the tree.
58. Height of a Lookout Tower A forest fire lookout tower casts a shadow 180 ft long at the same time that the shadow of a $9-\mathrm{ft}$ truck is 15 ft long. Find the height of the tower.
59. Lengths of Sides of a Triangle On a photograph of a triangular piece of land, the lengths of the three sides are $4 \mathrm{~cm}, 5 \mathrm{~cm}$, and 7 cm , respectively. The shortest side of the actual piece of land is 400 m long. Find the lengths of the other two sides.
60. Height of a Lighthouse The Biloxi lighthouse in the figure casts a shadow 28 m long at 7 p.m. At the same time, the shadow of the lighthouse keeper, who is 1.75 m tall, is 3.5 m long. How tall is the lighthouse?

61. Height of a Building A house is 15 ft tall. Its shadow is 40 ft long at the same time that the shadow of a nearby building is 300 ft long. Find the height of the building.
62. Height of a Carving of Lincoln Assume that Lincoln was $6 \frac{1}{3} \mathrm{ft}$ tall and his head $\frac{3}{4} \mathrm{ft}$ long. Knowing that the carved head of Lincoln at Mt. Rushmore is 60 ft tall, find how tall his entire body would be if it were carved into the mountain.

In each diagram, there are two similar triangles. Find the unknown measurement. (Hint: In the sketch for Exercise 63, the side of length 100 in the small triangle corresponds to the side of length $100+120=220$ in the large triangle.)
63.

64.

65.

66.

Solve each problem.
67. Solar Eclipse on Earth The sun has a diameter of about $865,000 \mathrm{mi}$ with a maximum distance from Earth's surface of about $94,500,000 \mathrm{mi}$. The moon has a smaller diameter of 2159 mi . For a total solar eclipse to occur, the moon must pass between Earth and the sun. The moon must also be close enough to Earth for
 the moon's umbra (shadow) to reach the surface of Earth. (Source: Karttunen, H., P. Kröger, H. Oja, M. Putannen, and K. Donners, Editors, Fundamental Astronomy, Fourth Edition, Springer-Verlag.)
(a) Calculate the maximum distance that the moon can be from Earth and still have a total solar eclipse occur. (Hint: Use similar triangles.)
(b) The closest approach of the moon to Earth's surface was $225,745 \mathrm{mi}$ and the farthest was 251,978 mi. (Source: World Almanac and Book of Facts.) Can a total solar eclipse occur every time the moon is between Earth and the sun?
68. Solar Eclipse on Neptune (Refer to Exercise 67.) The sun's distance from Neptune is approximately $2,800,000,000 \mathrm{mi}(2.8$ billion mi). The largest moon of Neptune is Triton, with a diameter of approximately 1680 mi . (Source: World Almanac and Book of Facts.)
(a) Calculate the maximum distance that Triton can be from Neptune for a total eclipse of the sun to occur on Neptune. (Hint: Use similar triangles.)
(b) Triton is approximately $220,000 \mathrm{mi}$ from Neptune. Is it possible for Triton to cause a total eclipse on Neptune?
69. Solar Eclipse on Mars (Refer to Exercise 67.) The sun's distance from the surface of Mars is approximately $142,000,000 \mathrm{mi}$. One of Mars' two moons, Phobos, has a maximum diameter of 17.4 mi. (Source: World Almanac and Book of Facts.)
(a) Calculate the maximum distance that the moon Phobos can be from Mars for a total eclipse of the sun to occur on Mars.
(b) Phobos is approximately 5800 mi from Mars. Is it possible for Phobos to cause a total eclipse on Mars?
70. Solar Eclipse on Jupiter (Refer to Exercise 67.) The sun's distance from the surface of Jupiter is approximately $484,000,000 \mathrm{mi}$. One of Jupiter's moons, Ganymede, has a diameter of 3270 mi. (Source: World Almanac and Book of Facts.)
(a) Calculate the maximum distance that the moon Ganymede can be from Jupiter for a total eclipse of the sun to occur on Jupiter.

(b) Ganymede is approximately $665,000 \mathrm{mi}$ from Jupiter. Is it possible for Ganymede to cause a total eclipse on Jupiter?
71. Sizes and Distances in the Sky Astronomers use degrees, minutes, and seconds to measure sizes and distances in the sky along an arc from the horizon to the zenith point directly overhead. An adult observer on Earth can judge distances in the sky using his or her hand at arm's length. An outstretched hand will be about 20 arc degrees wide from the tip of
 the thumb to the tip of the little finger. A clenched fist at arm's length measures about 10 arc degrees, and a thumb corresponds to about 2 arc degrees. (Source: Levy, D. H., Skywatching, The Nature Company.)
(a) The apparent size of the moon is about 31 arc minutes. What part of your thumb would cover the moon?
(b) If an outstretched hand plus a fist cover the distance between two bright stars, about how far apart in arc degrees are the stars?
72. Estimates of Heights There is a relatively simple way to make a reasonable estimate of a vertical height. Hold a $1-\mathrm{ft}$ ruler vertically at arm's length as you approach the object to be measured. Stop when one end of the ruler lines up with the top of the object and the other end with its base. Now pace off the distance to the object, taking normal strides. The number of paces will be the approximate height of the object in feet.

Furnish the reasons in parts (a)-(d), which refer to the figure. (Assume that the length of one pace is $E F$.) Then answer the question in part (e).

Reasons
(a) Step $1 C G=\frac{C G}{1}=\frac{A G}{A D}$
(b) Step $2 \frac{A G}{A D}=\frac{E G}{B D}$
(c) Step $3 \frac{E G}{E F}=\frac{E G}{B D}=\frac{E G}{1}$
(d) Step $4 C G \mathrm{ft}=E G$ paces
(e) What is the height of the tree in feet?

Chapter 1
 Quiz (Sections 1.1-1.2)

1. For an angle measuring 19°, give the measure of (a) its complement and (b) its supplement.

Find the measure of each unknown angle.
2.

3.

4.

m and n are parallel.
6. Perform each indicated conversion.
(a) $77^{\circ} 12^{\prime} 09^{\prime \prime}$ to decimal degrees
(b) 22.0250° to degrees, minutes, seconds
7. Find the angle of least positive measure (not equal to the given angle) coterminal with each angle.
(a) 410°
(b) -60°
(c) 890°
(d) 57°
8. Rotating Flywheel A flywheel rotates 300 times per min. Through how many degrees does a point on the edge of the flywheel move in 1 sec ?
9. Length of a Shadow If a vertical antenna 45 ft tall casts a shadow 15 ft long, how long would the shadow of a 30 -ft pole be at the same time and place?
10. Find the values of x and y.
(a)

(b)

1.3 Trigonometric Functions

- Trigonometric Functions
- Quadrantal Angles

Trigonometric Functions To define the six trigonometric functions, we start with an angle θ in standard position and choose any point P having coordinates (x, y) on the terminal side of angle θ. (The point P must not be the vertex of the angle.) See Figure 23. A perpendicular from P to the x-axis at point Q determines a right triangle, having vertices at O, P, and Q. We find the distance r from $P(x, y)$ to the origin, $(0,0)$, using the distance formula.

$$
\begin{aligned}
r & =\sqrt{(x-0)^{2}+(y-0)^{2}} \quad(\text { Appendix B) } \\
r & =\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Notice that $r>0$ since this is the undirected distance.

Figure 23

Figure 23 (repeated)

The six trigonometric functions of angle θ are sine, cosine, tangent, cotangent, secant, and cosecant, abbreviated sin, cos, tan, cot, sec, and csc.

Trigonometric Functions

Let (x, y) be a point other than the origin on the terminal side of an angle θ in standard position. The distance from the point to the origin is $r=\sqrt{x^{2}+y^{2}}$. The six trigonometric functions of θ are defined as follows.

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta=\frac{y}{x} \quad(x \neq 0) \\
\csc \theta=\frac{r}{y} \quad(y \neq 0) & \sec \theta=\frac{r}{x} \quad(x \neq 0) & \cot \theta=\frac{x}{y} \quad(y \neq 0)
\end{array}
$$

EXAMPLE 1 Finding Function Values of an Angle

The terminal side of an angle θ in standard position passes through the point $(8,15)$. Find the values of the six trigonometric functions of angle θ.

SOLUTION Figure 24 shows angle θ and the triangle formed by dropping a perpendicular from the point $(8,15)$ to the x-axis. The point $(8,15)$ is 8 units to the right of the y-axis and 15 units above the x-axis, so $x=8$ and $y=15$. Now use $r=\sqrt{x^{2}+y^{2}}$.

$$
r=\sqrt{8^{2}+15^{2}}=\sqrt{64+225}=\sqrt{289}=17
$$

Figure 24

We can now find the values of the six trigonometric functions of angle θ.

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r}=\frac{15}{17} & \cos \theta=\frac{x}{r}=\frac{8}{17} & \tan \theta=\frac{y}{x}=\frac{15}{8} \\
\csc \theta=\frac{r}{y}=\frac{17}{15} & \sec \theta=\frac{r}{x}=\frac{17}{8} & \cot \theta=\frac{x}{y}=\frac{8}{15}
\end{array}
$$

Now Try Exercise 5.

EXAMPLE 2 Finding Function Values of an Angle

The terminal side of an angle θ in standard position passes through the point $(-3,-4)$. Find the values of the six trigonometric functions of angle θ.

SOLUTION As shown in Figure 25, $x=-3$ and $y=-4$.

$$
\begin{array}{ll}
r=\sqrt{(-3)^{2}+(-4)^{2}} & r=\sqrt{x^{2}+y^{2}} \\
r=\sqrt{25} & \text { Simplify the radicand. } \\
r=5 & r>0
\end{array}
$$

Figure 25

Now use the definitions of the trigonometric functions.

$$
\begin{array}{lll}
\sin \theta=\frac{-4}{5}=-\frac{4}{5} & \cos \theta=\frac{-3}{5}=-\frac{3}{5} & \tan \theta=\frac{-4}{-3}=\frac{4}{3} \\
\csc \theta=\frac{5}{-4}=-\frac{5}{4} & \sec \theta=\frac{5}{-3}=-\frac{5}{3} & \cot \theta=\frac{-3}{-4}=\frac{3}{4}
\end{array}
$$

Figure 26

Figure 27

We can find the six trigonometric functions using any point other than the origin on the terminal side of an angle. To see why any point can be used, refer to Figure 26, which shows an angle θ and two distinct points on its terminal side. Point P has coordinates (x, y), and point \boldsymbol{P}^{\prime} (read " \boldsymbol{P}-prime") has coordinates $\left(x^{\prime}, y^{\prime}\right)$. Let r be the length of the hypotenuse of triangle $O P Q$, and let r^{\prime} be the length of the hypotenuse of triangle $O P^{\prime} Q^{\prime}$. Since corresponding sides of similar triangles are proportional,

$$
\frac{y}{r}=\frac{y^{\prime}}{r^{\prime}}, \quad(\text { Section 1.2) }
$$

so $\sin \theta=\frac{y}{r}$ is the same no matter which point is used to find it. A similar result holds for the other five trigonometric functions.

We can also find the trigonometric function values of an angle if we know the equation of the line coinciding with the terminal ray. Recall from algebra that the graph of the equation

$$
A x+B y=0 \quad \text { (Appendix B) }
$$

is a line that passes through the origin. If we restrict x to have only nonpositive or only nonnegative values, we obtain as the graph a ray with endpoint at the origin. For example, the graph of $x+2 y=0, x \geq 0$, shown in Figure 27, is a ray that can serve as the terminal side of an angle θ in standard position. By choosing a point on the ray, we can find the trigonometric function values of the angle.

EXAMPLE 3 Finding Function Values of an Angle

Find the six trigonometric function values of the angle θ in standard position, if the terminal side of θ is defined by $x+2 y=0, x \geq 0$.

SOLUTION The angle is shown in Figure 28. We can use any point except $(0,0)$ on the terminal side of θ to find the trigonometric function values. We choose $x=2$ and find the corresponding y-value.

$$
\begin{aligned}
x+2 y & =0, \quad x \geq 0 & & \\
2+2 y & =0 & & \text { Let } x=2 . \\
2 y & =-2 & & \text { Subtract 2. (Appendix A) } \\
y & =-1 & & \text { Divide by } 2 .
\end{aligned}
$$

Figure 28

The point $(2,-1)$ lies on the terminal side, and the corresponding value of r is $r=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5}$. Now we use the definitions of the trigonometric functions.

$$
\begin{aligned}
& \sin \theta=\frac{y}{r}=\frac{-1}{\sqrt{5}}=\frac{-1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=-\frac{\sqrt{5}}{5} \quad \text { Multiply by } \frac{\sqrt{5}}{\sqrt{5}}, \text { which equals } 1, \\
& \cos \theta=\frac{x}{r}=\frac{2}{\sqrt{5}}=\frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{2 \sqrt{5}}{5} \quad \text { to rationalize the denominators. } \\
& \tan \theta=\frac{y}{x}=\frac{-1}{2}=-\frac{1}{2} \\
& \csc \theta=\frac{r}{y}=\frac{\sqrt{5}}{-1}=-\sqrt{5} \quad \sec \theta=\frac{r}{x}=\frac{\sqrt{5}}{2} \quad \cot \theta=\frac{x}{y}=\frac{2}{-1}=-2
\end{aligned}
$$

Recall that when the equation of a line is written in slope-intercept form

$$
y=m x+b
$$

the coefficient m of x is the slope of the line. In Example 3, the equation $x+2 y=0$ can be written as $y=-\frac{1}{2} x$, so the slope is $-\frac{1}{2}$. Notice that $\tan \theta=-\frac{1}{2}$.

$$
\text { In general, it is true that } m=\tan \theta
$$

NOTE The trigonometric function values we found in Examples 1-3 are exact. If we were to use a calculator to approximate these values, the decimal results would not be acceptable if exact values were required.

Figure 29

A calculator in degree mode returns the correct values for $\sin 90^{\circ}$ and $\cos 90^{\circ}$. The second screen shows an ERROR message for $\tan 90^{\circ}$, because 90° is not in the domain of the tangent function.

Quadrantal Angles If the terminal side of an angle in standard position lies along the y-axis, any point on this terminal side has x-coordinate 0 . Similarly, an angle with terminal side on the x-axis has y-coordinate 0 for any point on the terminal side. Since the values of x and y appear in the denominators of some trigonometric functions, and since a fraction is undefined if its denominator is 0 , some trigonometric function values of quadrantal angles (i.e., those with terminal side on an axis) are undefined.

When determining trigonometric function values of quadrantal angles, Figure 29 can help find the ratios. Because any point on the terminal side can be used, it is convenient to choose the point one unit from the origin, with $r=1$. (In Chapter 3 we extend this idea to the unit circle.)

To find the function values of a quadrantal angle, determine the position of the terminal side, choose the one of these four points that lies on this terminal side, and then use the definitions involving x, y, and r.

EXAMPLE 4 Finding Function Values of Quadrantal Angles

Find the values of the six trigonometric functions for each angle.
(a) an angle of 90°
(b) an angle θ in standard position with terminal side through $(-3,0)$

SOLUTION

(a) Figure 30 shows that the terminal side passes through $(0,1)$. So $x=0, y=1$, and $r=1$. Thus, we have the following.

$$
\begin{array}{lll}
\sin 90^{\circ}=\frac{1}{1}=1 & \cos 90^{\circ}=\frac{0}{1}=0 & \tan 90^{\circ}=\frac{1}{0} \quad(\text { undefined }) \\
\csc 90^{\circ}=\frac{1}{1}=1 & \sec 90^{\circ}=\frac{1}{0} \quad \text { (undefined) } & \cot 90^{\circ}=\frac{0}{1}=0
\end{array}
$$

Figure 30

Figure 31
(b) Figure 31 shows the angle. Here, $x=-3, y=0$, and $r=3$, so the trigonometric functions have the following values.

$$
\left.\begin{array}{lll}
\sin \theta=\frac{0}{3}=0 & \cos \theta=\frac{-3}{3}=-1 & \tan \theta=\frac{0}{-3}=0 \\
\csc \theta=\frac{3}{0} & \text { (undefined) } & \sec \theta=\frac{3}{-3}=-1
\end{array} \cot \theta=\frac{-3}{0} \quad \text { (undefined) }\right)
$$

Verify that these values can also be found by using the point $(-1,0)$.
Now Try Exercises 13, 59, 61, 65, and 67.

The conditions under which the trigonometric function values of quadrantal angles are undefined are summarized here.

Conditions for Undefined Function Values

Identify the terminal side of a quadrantal angle.

- If the terminal side of the quadrantal angle lies along the y-axis, then the tangent and secant functions are undefined.
- If the terminal side of the quadrantal angle lies along the x-axis, then the cotangent and cosecant functions are undefined.

The function values of some commonly used quadrantal angles, $0^{\circ}, 90^{\circ}$, $180^{\circ}, 270^{\circ}$, and 360°, are summarized in the table. They can be determined when needed by using Figure 29 and the method of Example 4(a).

For other quadrantal angles such as $-90^{\circ},-270^{\circ}$, and 450°, first determine the coterminal angle that lies between 0° and 360°, and then refer to the table entries for that particular angle. For example, the function values of a -90° angle would correspond to those of a 270° angle.

Function Values of Quadrantal Angles

$\boldsymbol{\theta}$	$\sin \boldsymbol{\theta}$	$\cos \boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	$\boldsymbol{\operatorname { c o t } \boldsymbol { \theta }}$	$\sec \boldsymbol{\theta}$	$\csc \boldsymbol{\theta}$
$\mathbf{0}^{\circ}$	0	1	0	Undefined	1	Undefined
$\mathbf{9 0}^{\circ}$	1	0	Undefined	0	Undefined	1
$\mathbf{1 8 0}^{\circ}$	0	-1	0	Undefined	-1	Undefined
$\mathbf{2 7 0}^{\circ}$	-1	0	Undefined	0	Undefined	-1
$\mathbf{3 6 0}^{\circ}$	0	1	0	Undefined	1	Undefined

The values given in this table can be found with a calculator that has trigonometric function keys. Make sure the calculator is set in degree mode.

CAUTION One of the most common errors involving calculators in trigonometry occurs when the calculator is set for radian measure, rather than degree measure. (Radian measure of angles is discussed in Chapter 3.) Be sure you know how to set your calculator in degree mode. See Figure 32, which illustrates degree mode for TI-83/84 Plus calculators.

Concept Check Sketch an angle θ in standard position such that θ has the least positive measure, and the given point is on the terminal side of θ. Then find the values of the six trigonometric functions for each angle. Rationalize denominators when applicable. See Examples 1, 2, and 4.

1. $(5,-12)$
2. $(-12,-5)$
3. $(-3,4)$
4. $(-4,-3)$
5. $(-8,15)$
6. $(15,-8)$
7. $(7,-24)$
8. $(-24,-7)$
9. $(0,2)$
10. $(0,5)$
11. $(-4,0)$
12. $(-5,0)$
13. $(0,-4)$
14. $(0,-3)$
15. $(1, \sqrt{3})$
16. $(-1, \sqrt{3})$
17. $(\sqrt{2}, \sqrt{2})$
18. $(-\sqrt{2},-\sqrt{2})$
19. $(-2 \sqrt{3},-2)$
20. $(-2 \sqrt{3}, 2)$
21. For any nonquadrantal angle $\theta, \sin \theta$ and $\csc \theta$ will have the same sign. Explain why.
22. Concept Check How is the value of r interpreted geometrically in the definitions of the sine, cosine, secant, and cosecant functions?
23. Concept Check If $\cot \theta$ is undefined, what is the value of $\tan \theta$?
24. Concept Check If the terminal side of an angle θ is in quadrant III, what is the sign of each of the trigonometric function values of θ ?

Concept Check Suppose that the point (x, y) is in the indicated quadrant. Decide whether the given ratio is positive or negative. Recall that $r=\sqrt{x^{2}+y^{2}}$. (Hint: Drawing a sketch may help.)
25. II, $\frac{x}{r}$
26. III, $\frac{y}{r}$
27. IV, $\frac{y}{x}$
28. IV, $\frac{x}{y}$
29. II, $\frac{y}{r}$
30. III, $\frac{x}{r}$
31. IV, $\frac{x}{r}$
32. IV, $\frac{y}{r}$
33. II, $\frac{x}{y}$
34. II, $\frac{y}{x}$
35. III, $\frac{y}{x}$
36. III, $\frac{x}{y}$
37. III, $\frac{r}{x}$
38. III, $\frac{r}{y}$
39. I, $\frac{x}{y}$
40. I, $\frac{y}{x}$
41. I, $\frac{y}{r}$
42. I, $\frac{x}{r}$
43. $\mathrm{I}, \frac{r}{x}$
44. $\mathrm{I}, \frac{r}{y}$

In Exercises 45-56, an equation of the terminal side of an angle θ in standard position is given with a restriction on x. Sketch the least positive such angle θ, and find the values of the six trigonometric functions of θ. See Example 3.
45. $2 x+y=0, x \geq 0$
46. $3 x+5 y=0, x \geq 0$
47. $-6 x-y=0, x \leq 0$
49. $-4 x+7 y=0, x \leq 0$
51. $x+y=0, x \geq 0$
53. $-\sqrt{3} x+y=0, x \leq 0$
55. $x=0, y \geq 0$
48. $-5 x-3 y=0, x \leq 0$
50. $6 x-5 y=0, x \geq 0$
52. $x-y=0, x \geq 0$
54. $\sqrt{3} x+y=0, x \leq 0$
56. $y=0, x \leq 0$

To work Exercises 57-77, begin by reproducing the graph in Figure 29. Keep in mind that for each of the four points labeled in the figure, $r=1$. For each quadrantal angle, identify the appropriate values of x, y, and r to find the indicated function value. If it is undefined, say so. See Example 4.
57. $\cos 90^{\circ}$
58. $\sin 90^{\circ}$
59. $\tan 180^{\circ}$
60. $\cot 90^{\circ}$
61. $\sec 180^{\circ}$
62. $\csc 270^{\circ}$
63. $\sin \left(-270^{\circ}\right)$
64. $\cos \left(-90^{\circ}\right)$
65. $\cot 540^{\circ}$
66. $\tan 450^{\circ}$
67. $\csc \left(-450^{\circ}\right)$
68. $\sec \left(-540^{\circ}\right)$
69. $\sin 1800^{\circ}$
70. $\cos 1800^{\circ}$
71. $\csc 1800^{\circ}$
72. $\cot 1800^{\circ}$
73. $\sec 1800^{\circ}$
74. $\tan 1800^{\circ}$
75. $\cos \left(-900^{\circ}\right)$
76. $\sin \left(-900^{\circ}\right)$
77. $\tan \left(-900^{\circ}\right)$
78. Explain how the answer to Exercise 77 can be given once the answers to Exercises 75 and 76 have been determined.

Use the trigonometric function values of quadrantal angles given in this section to evaluate each expression. An expression such as $\cot ^{2} 90^{\circ}$ means $\left(\cot 90^{\circ}\right)^{2}$, which is equal to $0^{2}=0$.
79. $\cos 90^{\circ}+3 \sin 270^{\circ}$
80. $\tan 0^{\circ}-6 \sin 90^{\circ}$
81. $3 \sec 180^{\circ}-5 \tan 360^{\circ}$
82. $4 \csc 270^{\circ}+3 \cos 180^{\circ}$
83. $\tan 360^{\circ}+4 \sin 180^{\circ}+5 \cos ^{2} 180^{\circ}$
84. $2 \sec 0^{\circ}+4 \cot ^{2} 90^{\circ}+\cos 360^{\circ}$
85. $\sin ^{2} 180^{\circ}+\cos ^{2} 180^{\circ}$
86. $\sin ^{2} 360^{\circ}+\cos ^{2} 360^{\circ}$
87. $\sec ^{2} 180^{\circ}-3 \sin ^{2} 360^{\circ}+\cos 180^{\circ}$
88. $5 \sin ^{2} 90^{\circ}+2 \cos ^{2} 270^{\circ}-\tan 360^{\circ}$
89. $-2 \sin ^{4} 0^{\circ}+3 \tan ^{2} 0^{\circ}$
90. $-3 \sin ^{4} 90^{\circ}+4 \cos ^{3} 180^{\circ}$
91. $\sin ^{2}\left(-90^{\circ}\right)+\cos ^{2}\left(-90^{\circ}\right)$
92. $\cos ^{2}\left(-180^{\circ}\right)+\sin ^{2}\left(-180^{\circ}\right)$

If n is an integer, $n \cdot 180^{\circ}$ represents an integer multiple of $180^{\circ},(2 n+1) \cdot 90^{\circ}$ represents an odd integer multiple of 90°, and so on. Decide whether each expression is equal to 0,1 , or -1 or is undefined.
93. $\cos \left[(2 n+1) \cdot 90^{\circ}\right]$
94. $\sin \left[n \cdot 180^{\circ}\right]$
95. $\tan \left[n \cdot 180^{\circ}\right]$
96. $\tan \left[(2 n+1) \cdot 90^{\circ}\right]$
97. $\sin \left[270^{\circ}+n \cdot 360^{\circ}\right]$
98. $\cot \left[n \cdot 180^{\circ}\right]$
99. $\cot \left[(2 n+1) \cdot 90^{\circ}\right]$
100. $\cos \left[n \cdot 360^{\circ}\right]$
101. $\sec \left[(2 n+1) \cdot 90^{\circ}\right]$
102. $\csc \left[n \cdot 180^{\circ}\right]$

Concept Check In later chapters we will study trigonometric functions of angles other than quadrantal angles, such as $15^{\circ}, 30^{\circ}, 60^{\circ}, 75^{\circ}$, and so on. To prepare for some important concepts, provide conjectures in Exercises 103-106. Be sure that your calculator is in degree mode.
103. The angles 15° and 75° are complementary. With your calculator determine $\sin 15^{\circ}$ and $\cos 75^{\circ}$. Make a conjecture about the sines and cosines of complementary angles, and test your hypothesis with other pairs of complementary angles. (Note: This relationship will be discussed in detail in Section 2.1.)
104. The angles 25° and 65° are complementary. With your calculator determine $\tan 25^{\circ}$ and $\cot 65^{\circ}$. Make a conjecture about the tangents and cotangents of complementary angles, and test your hypothesis with other pairs of complementary angles. (Note: This relationship will be discussed in detail in Section 2.1.)
105. With your calculator determine $\sin 10^{\circ}$ and $\sin \left(-10^{\circ}\right)$. Make a conjecture about the sines of an angle and its negative, and test your hypothesis with other angles. (Note: This relationship will be discussed in detail in Section 5.1.)
106. With your calculator determine $\cos 20^{\circ}$ and $\cos \left(-20^{\circ}\right)$. Make a conjecture about the cosines of an angle and its negative, and test your hypothesis with other angles. (Note: This relationship will be discussed in detail in Section 5.1.)

In Exercises 107-112, set your TI graphing calculator in parametric and degree modes. Set the window and functions (see the third screen) as shown here, and graph. A circle of radius 1 will appear on the screen. Trace to move a short distance around the circle. In the screen, the point on the circle corresponds to an angle $\mathrm{T}=25^{\circ}$. Since $r=1, \cos 25^{\circ}$ is $\mathrm{X}=0.90630779$, and $\sin 25^{\circ}$ is $\mathrm{Y}=0.42261826$.

107. Use the right- and left-arrow keys to move to the point corresponding to 20° $(\mathrm{T}=20)$. What are $\cos 20^{\circ}$ and $\sin 20^{\circ}$?
108. For what angle $\mathrm{T}, 0^{\circ} \leq \mathrm{T} \leq 90^{\circ}$, is $\cos \mathrm{T} \approx 0.766$?
109. For what angle $\mathrm{T}, 0^{\circ} \leq \mathrm{T} \leq 90^{\circ}$, is $\sin \mathrm{T} \approx 0.574$?
110. For what angle $T, 0^{\circ} \leq T \leq 90^{\circ}$, does $\cos T$ equal $\sin T$?
111. As T increases from 0° to 90°, does the cosine increase or decrease? What about the sine?
112. As T increases from 90° to 180°, does the cosine increase or decrease? What about the sine?

1.4 Using the Definitions of the Trigonometric Functions

- Reciprocal Identities
- Signs and Ranges of Function Values
- Pythagorean Identities
- Quotient Identities

Identities are equations that are true for all values of the variables for which all expressions are defined. Identities are studied in more detail in Chapter 5.

$$
(x+y)^{2}=x^{2}+2 x y+y^{2} \quad 2(x+3)=2 x+6 \quad \text { Identities (Appendix A) }
$$

Reciprocal Identities Recall the definition of a reciprocal: the reciprocal of the nonzero number x is $\frac{1}{x}$. For example, the reciprocal of 2 is $\frac{1}{2}$, and the reciprocal of $\frac{8}{11}$ is $\frac{11}{8}$. There is no reciprocal for 0 . Scientific calculators have a reciprocal key, usually labeled $\sqrt[1 / x]{ }$ or x^{-1}. Using this key gives the reciprocal of any nonzero number entered in the display.

The definitions of the trigonometric functions in the previous section were written so that functions in the same column were reciprocals of each other. Since $\sin \theta=\frac{y}{r}$ and $\csc \theta=\frac{r}{y}$,

$$
\sin \theta=\frac{1}{\csc \theta} \quad \text { and } \quad \csc \theta=\frac{1}{\sin \theta}, \quad \text { provided } \sin \theta \neq 0
$$

Also, $\cos \theta$ and $\sec \theta$ are reciprocals, as are $\tan \theta$ and $\cot \theta$. The reciprocal identities hold for any angle θ that does not lead to a 0 denominator.

Reciprocal Identities

For all angles θ for which both functions are defined, the following identities hold.

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

The screens in Figures 33(a) and (b) show how to find $\csc 90^{\circ}$, sec 180°, and $\csc \left(-270^{\circ}\right)$, using the appropriate reciprocal identities and the reciprocal key of a graphing calculator in degree mode. Attempting to find sec 90° by entering $\frac{1}{\cos 90^{\circ}}$ produces an ERROR message, indicating that the reciprocal is undefined. See Figure $\mathbf{3 3}(\mathrm{c})$. Compare these results with the ones found in the table of quadrantal angle function values in Section 1.3.

Figure 33

CAUTION Be sure not to use the inverse trigonometric function keys to find reciprocal function values. For example,

$$
\sin ^{-1}\left(90^{\circ}\right) \neq \frac{1}{\sin \left(90^{\circ}\right)} .
$$

Inverse trigonometric functions are covered in Section 2.3.

The reciprocal identities can be written in different forms. For example,
$\sin \theta=\frac{1}{\csc \theta} \quad$ can be written $\csc \theta=\frac{1}{\sin \theta}, \quad$ or $\quad(\sin \theta)(\csc \theta)=1$.

EXAMPLE 1 Using the Reciprocal Identities

Find each function value.
(a) $\cos \theta$, given that $\sec \theta=\frac{5}{3}$
(b) $\sin \theta$, given that $\csc \theta=-\frac{\sqrt{12}}{2}$

SOLUTION
(a) Since $\cos \theta$ is the reciprocal of $\sec \theta$,

$$
\cos \theta=\frac{1}{\sec \theta}=\frac{1}{\frac{5}{3}}=1 \div \frac{5}{3}=1 \cdot \frac{3}{5}=\frac{3}{5} . \quad \text { Simplify the complex fraction. }
$$

$$
\text { (b) } \begin{array}{rlrl}
\sin \theta & =\frac{1}{-\frac{\sqrt{12}}{2}} & & \sin \theta=\frac{1}{\csc \theta} \text { and } \csc \theta=-\frac{\sqrt{12}}{2} \\
& =-\frac{2}{\sqrt{12}} & & \text { Simplify the complex fraction as in part (a). } \\
& =-\frac{2}{2 \sqrt{3}} & & \sqrt{12}=\sqrt{4 \cdot 3}=2 \sqrt{3} \\
& =-\frac{1}{\sqrt{3}} & & \text { Divide out the common factor } 2 . \\
& =-\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} & \text { Rationalize the denominator. } \\
& =-\frac{\sqrt{3}}{3} & & \text { Multiply. }
\end{array}
$$

Now Try Exercises 1 and 9.

Signs and Ranges of Function Values In the definitions of the trigonometric functions, r is the distance from the origin to the point (x, y). This distance is undirected, so $r>0$. If we choose a point (x, y) in quadrant I , then both x and y will be positive, and the values of all six functions will be positive.

A point (x, y) in quadrant II satisfies $x<0$ and $y>0$. This makes the values of sine and cosecant positive for quadrant II angles, while the other four functions take on negative values. Similar results can be obtained for the other quadrants.

This important information is summarized here.

Signs of Function Values

θ in Quadrant	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$	$\sec \theta$	$\csc \theta$
I	+	+	+	+	+	+
II	+	-	-	-	-	+
III	-	-	+	+	-	-
IV	-	+	-	-	+	-

EXAMPLE 2 Determining Signs of Functions of Nonquadrantal Angles

Determine the signs of the trigonometric functions of an angle in standard position with the given measure.
(a) 87°
(b) 300°
(c) -200°

SOLUTION

(a) An angle of 87° is in the first quadrant, with x, y, and r all positive, so all of its trigonometric function values are positive.
(b) A 300° angle is in quadrant IV, so the cosine and secant are positive, while the sine, cosecant, tangent, and cotangent are negative.
(c) $\mathrm{A}-200^{\circ}$ angle is in quadrant II. The sine and cosecant are positive, and all other function values are negative.

NOTE Because numbers that are reciprocals always have the same sign, the sign of a function value automatically determines the sign of the reciprocal function value.

EXAMPLE 3 Identifying the Quadrant of an Angle

Identify the quadrant (or possible quadrants) of an angle θ that satisfies the given conditions.
(a) $\sin \theta>0, \tan \theta<0$
(b) $\cos \theta<0, \sec \theta<0$

SOLUTION

(a) Since $\sin \theta>0$ in quadrants I and II and $\tan \theta<0$ in quadrants II and IV, both conditions are met only in quadrant II.
(b) The cosine and secant functions are both negative in quadrants II and III, so in this case θ could be in either of these two quadrants.

Now Try Exercises 35 and 41.

Figure 34(a) shows an angle θ as it increases in measure from near 0° toward 90°. In each case, the value of r is the same. As the measure of the angle increases, y increases but never exceeds r, so $y \leq r$. Dividing both sides by the positive number r gives $\frac{y}{r} \leq 1$.

(a)

(b)

Figure 34

In a similar way, angles in quadrant IV as in Figure 34(b) suggest that

So

$$
-1 \leq \frac{y}{r}
$$

$$
-1 \leq \frac{y}{r} \leq 1
$$

and $\quad \mathbf{- 1} \leq \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta} \leq \mathbf{1} . \quad \frac{y}{r}=\sin \theta$ for any angle θ. (Section 1.3)

$$
\text { Similarly, } \quad-1 \leq \cos \theta \leq 1
$$

The tangent of an angle is defined as $\frac{y}{x}$. It is possible that $x<y, x=y$, or $x>y$. Thus, $\frac{y}{x}$ can take any value, so $\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$ can be any real number, as can $\cot \boldsymbol{\theta}$.

The functions sec θ and $\csc \theta$ are reciprocals of the functions $\cos \theta$ and $\sin \theta$, respectively, making

```
\boldsymbol{sec}\boldsymbol{0}\leq-1\quad\mathrm{ or }\quad\boldsymbol{\operatorname{sec}0}\geq1\quad\mathrm{ and }\quad\boldsymbol{\operatorname{csc}}\boldsymbol{0}\leq-1}\quad\mathrm{ or }\quad\boldsymbol{\operatorname{csc}}\boldsymbol{0}\geq1
```

In summary, the ranges of the trigonometric functions are as follows.

Ranges of Trigonometric Functions

Trigonometric Function of $\boldsymbol{\theta}$	Range (Set-Builder Notation)	Range (Interval Notation)
$\sin \theta, \cos \theta$	$\{y\|\|y\| \leq 1\}$	$[-1,1]$
$\tan \theta, \cot \theta$	$\{y \mid y$ is a real number $\}$	$(-\infty, \infty)$
$\sec \theta, \csc \theta$	$\{y\|\|y\| \geq 1\}$	$(-\infty,-1] \cup[1, \infty)$

EXAMPLE 4 Deciding Whether a Value Is in the Range of a Trigonometric Function

Decide whether each statement is possible or impossible.
(a) $\sin \theta=2.5$
(b) $\tan \theta=110.47$
(c) $\sec \theta=0.6$

SOLUTION
(a) For any value of θ, we know that $-1 \leq \sin \theta \leq 1$. Since $2.5>1$, it is impossible to find a value of θ that satisfies $\sin \theta=2.5$.
(b) The tangent function can take on any real number value. Thus, $\tan \theta=110.47$ is possible.
(c) Since $|\sec \theta| \geq 1$ for all θ for which the secant is defined, the statement $\sec \theta=0.6$ is impossible.

Now Try Exercises 45, 49, and 51.

The six trigonometric functions are defined in terms of x, y, and r, where the Pythagorean theorem shows that $r^{2}=x^{2}+y^{2}$ and $r>0$. With these relationships, knowing the value of only one function and the quadrant in which the angle lies makes it possible to find the values of the other trigonometric functions.

EXAMPLE 5 Finding All Function Values Given One Value and the Quadrant

Suppose that angle θ is in quadrant II and $\sin \theta=\frac{2}{3}$. Find the values of the other five trigonometric functions.

SOLUTION Choose any point on the terminal side of angle θ. For simplicity, since $\sin \theta=\frac{y}{r}$, choose the point with $r=3$.

$$
\begin{aligned}
\sin \theta & =\frac{2}{3} \quad \text { Given value } \\
\frac{y}{r} & =\frac{2}{3} \quad \text { Substitute } \frac{y}{r} \text { for } \sin \theta .
\end{aligned}
$$

Since $\frac{y}{r}=\frac{2}{3}$ and $r=3$, then $y=2$. To find x, use the equation $x^{2}+y^{2}=r^{2}$.

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& x^{2}+2^{2}=3^{2} \quad \text { Substitute } . \\
& x^{2}+4=9 \quad \text { Apply exponents. } \\
& x^{2}=5 \quad \text { Subtract 4. (Appendix A) } \\
& \text { Remember both roots. } x=\sqrt{5} \text { or } x=-\sqrt{5} \text { Square root property (Appendix A) }
\end{aligned}
$$

Figure 35

Since θ is in quadrant II, x must be negative. Choose $x=-\sqrt{5}$ so that the point $(-\sqrt{5}, 2)$ is on the terminal side of θ. See Figure 35 . Now we can find the values of the remaining trigonometric functions.

$$
\begin{aligned}
& \cos \theta=\frac{x}{r}=\frac{-\sqrt{5}}{3}=-\frac{\sqrt{5}}{3} \\
& \sec \theta=\frac{r}{x}=\frac{3}{-\sqrt{5}}=-\frac{3}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=-\frac{3 \sqrt{5}}{5}=\begin{array}{c}
\text { These have } \\
\text { rationalized } \\
\text { denominators. }
\end{array} \\
& \tan \theta=\frac{y}{x}=\frac{2}{-\sqrt{5}}=-\frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=-\frac{2 \sqrt{5}}{5} \\
& \cot \theta=\frac{x}{y}=\frac{-\sqrt{5}}{2}=-\frac{\sqrt{5}}{2} \\
& \csc \theta=\frac{r}{y}=\frac{3}{2}
\end{aligned}
$$

Now Try Exercise 71.

Pythagorean Identities We derive three new identities from the relationship

 $x^{2}+y^{2}=r^{2}$.$$
\begin{aligned}
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}} & =\frac{r^{2}}{r^{2}} & & \text { Divide by } r^{2} . \\
\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2} & =1 & & \text { Power rule for exponents; } \frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m} \\
(\cos \theta)^{2}+(\sin \theta)^{2} & =1 & & \cos \theta=\frac{x}{r}, \sin \theta=\frac{y}{r} \text { (Section 1.3) } \\
\sin ^{2} \boldsymbol{\theta}+\cos ^{2} \boldsymbol{\theta} & =\mathbf{1} & & \text { Apply exponents; commutative property }
\end{aligned}
$$

Starting again with $x^{2}+y^{2}=r^{2}$ and dividing through by x^{2} gives the following.

$$
\begin{aligned}
\frac{x^{2}}{x^{2}}+\frac{y^{2}}{x^{2}} & =\frac{r^{2}}{x^{2}} & & \text { Divide by } x^{2} . \\
1+\left(\frac{y}{x}\right)^{2} & =\left(\frac{r}{x}\right)^{2} & & \text { Power rule for exponents } \\
1+(\tan \theta)^{2} & =(\sec \theta)^{2} & & \tan \theta=\frac{y}{x}, \sec \theta=\frac{r}{x} \text { (Section 1.3) } \\
\tan ^{2} \boldsymbol{\theta}+\mathbf{1} & =\sec ^{2} \boldsymbol{\theta} & & \text { Apply exponents; commutative property }
\end{aligned}
$$

Similarly, dividing through by y^{2} leads to another identity.

$$
1+\cot ^{2} \theta=\csc ^{2} \theta
$$

These three identities are the Pythagorean identities since the original equation that led to them, $x^{2}+y^{2}=r^{2}$, comes from the Pythagorean theorem.

Pythagorean Identities

For all angles θ for which the function values are defined, the following identities hold.

$$
\sin ^{2} \theta+\cos ^{2} \theta=1 \quad \tan ^{2} \theta+1=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta
$$

LOOKING AHEAD TO CALCULUS
The reciprocal, Pythagorean, and quotient identities are used in calculus to find derivatives and integrals of trigonometric functions. A standard technique of integration called trigonometric substitution relies on the Pythagorean identities.

As before, we have given only one form of each identity. However, algebraic transformations produce equivalent identities. For example, by subtracting $\sin ^{2} \theta$ from both sides of $\sin ^{2} \theta+\cos ^{2} \theta=1$, we obtain an equivalent identity.

$$
\cos ^{2} \theta=1-\sin ^{2} \theta \quad \text { Alternative form }
$$

It is important to be able to transform these identities quickly and also to recognize their equivalent forms.

Quotient Identities Consider the quotient of $\sin \theta$ and $\cos \theta$, for $\cos \theta \neq 0$.

$$
\frac{\sin \theta}{\cos \theta}=\frac{\frac{y}{r}}{\frac{x}{r}}=\frac{y}{r} \div \frac{x}{r}=\frac{y}{r} \cdot \frac{r}{x}=\frac{y}{x}=\tan \theta
$$

Similarly, $\frac{\cos \theta}{\sin \theta}=\cot \theta$, for $\sin \theta \neq 0$. Thus, we have the quotient identities.

Quotient Identities

For all angles θ for which the denominators are not zero, the following identities hold.

$$
\frac{\sin \theta}{\cos \theta}=\tan \theta \quad \frac{\cos \theta}{\sin \theta}=\cot \theta
$$

EXAMPLE 6 Using Identities to Find Function Values

Find $\sin \theta$ and $\tan \theta$, given that $\cos \theta=-\frac{\sqrt{3}}{4}$ and $\sin \theta>0$.
SOLUTION Start with $\sin ^{2} \theta+\cos ^{2} \theta=1$.

$$
\begin{array}{rlr}
\sin ^{2} \theta+\left(-\frac{\sqrt{3}}{4}\right)^{2} & =1 & \text { Replace } \cos \theta \text { with }-\frac{\sqrt{3}}{4} . \\
\sin ^{2} \theta+\frac{3}{16} & =1 & \text { Square }-\frac{\sqrt{3}}{4} . \\
\sin ^{2} \theta & =\frac{13}{16} & \text { Subtract } \frac{3}{16} . \\
\sin \theta & = \pm \frac{\sqrt{13}}{4} & \begin{array}{l}
\text { Take square roots. } \\
\begin{array}{c}
\text { Choose the correct } \\
\text { sign here. }
\end{array} \\
\sin \theta
\end{array} \\
\hline \frac{\sqrt{13}}{4} & \begin{array}{l}
\text { Choose the positive square } \\
\text { sin } \theta \text { is positive. }
\end{array}
\end{array}
$$

To find $\tan \theta$, use the quotient identity $\tan \theta=\frac{\sin \theta}{\cos \theta}$.

$$
\begin{aligned}
\tan \theta & =\frac{\sin \theta}{\cos \theta}=\frac{\frac{\sqrt{13}}{4}}{-\frac{\sqrt{3}}{4}}=\frac{\sqrt{13}}{4}\left(-\frac{4}{\sqrt{3}}\right)=-\frac{\sqrt{13}}{\sqrt{3}} \\
& =-\frac{\sqrt{13}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=-\frac{\sqrt{39}}{3} \quad \text { Rationalize the denominator. }
\end{aligned}
$$

CAUTION In exercises like those of Examples 5 and 6, be careful to choose the correct sign when square roots are taken. You may wish to refer back to the diagrams preceding Example 2. They summarize the signs of the functions in the four quadrants.

EXAMPLE 7 Using Identities to Find Function Values

Find $\sin \theta$ and $\cos \theta$, given that $\tan \theta=\frac{4}{3}$ and θ is in quadrant III.
SOLUTION Since θ is in quadrant III, $\sin \theta$ and $\cos \theta$ will both be negative. It is tempting to say that since $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\tan \theta=\frac{4}{3}$, then $\sin \theta=-4$ and $\cos \theta=-3$. This is incorrect, however, since both $\sin \theta$ and $\cos \theta$ must be in the interval $[-1,1]$.

We use the Pythagorean identity $\tan ^{2} \theta+1=\sec ^{2} \theta$ to find $\sec \theta$, and then the reciprocal identity $\cos \theta=\frac{1}{\sec \theta}$ to find $\cos \theta$.

$$
\begin{array}{rlr}
\tan ^{2} \theta+1 & =\sec ^{2} \theta & \text { Pythagorean identity } \\
\left(\frac{4}{3}\right)^{2}+1 & =\sec ^{2} \theta & \tan \theta=\frac{4}{3} \\
\frac{16}{9}+1 & =\sec ^{2} \theta & \text { Square } \frac{4}{3} .
\end{array}
$$

Since $\sin ^{2} \theta=1-\cos ^{2} \theta$,

$$
\begin{array}{ll}
\sin ^{2} \theta=1-\left(-\frac{3}{5}\right)^{2} & \cos \theta=-\frac{3}{5} \\
\sin ^{2} \theta=1-\frac{9}{25} & \text { Square }-\frac{3}{5}
\end{array}
$$

$$
\sin ^{2} \theta=\frac{16}{25} \quad \text { Subtract. }
$$

Again, be careful.

$$
\sin \theta=-\frac{4}{5}
$$

Choose the negative square root.

Figure 36

NOTE Example 7 can also be worked by sketching θ in standard position in quadrant III, finding r to be 5 , and then using the definitions of $\sin \theta$ and $\cos \theta$ in terms of x, y, and r. See Figure 36.

When using this method, be sure to choose the correct signs for x and y as determined by the quadrant in which the terminal side of θ lies. This is analogous to choosing the correct signs after applying the Pythagorean identities.

Use the appropriate reciprocal identity to find each function value. Rationalize denominators when applicable. See Example 1.

1. $\sec \theta$, given that $\cos \theta=\frac{2}{3}$
2. $\csc \theta$, given that $\sin \theta=-\frac{3}{7}$
3. $\cot \theta$, given that $\tan \theta=5$
4. $\cos \theta$, given that $\sec \theta=-\frac{5}{2}$
5. $\sin \theta$, given that $\csc \theta=\frac{\sqrt{8}}{2}$
6. $\tan \theta$, given that $\cot \theta=-2.5$
7. $\sin \theta$, given that $\csc \theta=1.42716321$
8. $\sec \theta$, given that $\cos \theta=\frac{5}{8}$
9. $\csc \theta$, given that $\sin \theta=-\frac{8}{43}$
10. $\cot \theta$, given that $\tan \theta=18$
11. $\cos \theta$, given that $\sec \theta=-\frac{11}{7}$
12. $\sin \theta$, given that $\csc \theta=\frac{\sqrt{24}}{3}$
13. $\tan \theta$, given that $\cot \theta=-0.01$
14. $\cos \theta$, given that $\sec \theta=9.80425133$
15. Can a given angle θ satisfy both $\sin \theta>0$ and $\csc \theta<0$? Explain.
16. Explain what is wrong with the following item that appears on a trigonometry test:

$$
\text { "Find } \sec \theta \text {, given that } \cos \theta=\frac{3}{2} . "
$$

17. Concept Check What is wrong with the following statement: $\tan 90^{\circ}=\frac{1}{\cot 90^{\circ}}$?
18. Concept Check One form of a particular reciprocal identity is $\tan \theta=\frac{1}{\cot \theta}$. Give two other, equivalent forms of this identity.

Determine the signs of the trigonometric functions of an angle in standard position with the given measure. See Example 2.
19. 74°
20. 84°
21. 218°
22. 195°
23. 178°
24. 125°
25. -80°
26. -15°
27. 855°
28. 1005°
29. -345°
30. -640°

Identify the quadrant (or possible quadrants) of an angle θ that satisfies the given conditions. See Example 3.
31. $\sin \theta>0, \csc \theta>0$
32. $\cos \theta>0, \sec \theta>0$
33. $\cos \theta>0, \sin \theta>0$
34. $\sin \theta>0, \tan \theta>0$
35. $\tan \theta<0, \cos \theta<0$
36. $\cos \theta<0, \sin \theta<0$
37. $\sec \theta>0, \csc \theta>0$
38. $\csc \theta>0, \cot \theta>0$
39. $\sec \theta<0, \csc \theta<0$
40. $\cot \theta<0, \sec \theta<0$
41. $\sin \theta<0, \csc \theta<0$
42. $\tan \theta<0, \cot \theta<0$
43. Explain why the answers to Exercises 33 and 37 are the same.
44. Explain why there is no angle θ that satisfies $\tan \theta>0, \cot \theta<0$.

Decide whether each statement is possible or impossible for some angle θ. See Example 4.
45. $\sin \theta=2$
46. $\sin \theta=3$
47. $\cos \theta=-0.96$
48. $\cos \theta=-0.56$
49. $\tan \theta=0.93$
50. $\cot \theta=0.93$
51. $\sec \theta=-0.3$
52. $\sec \theta=-0.9$
53. $\csc \theta=100$
54. $\csc \theta=-100$
55. $\cot \theta=-4$
56. $\cot \theta=-6$

Concept Check Determine whether each statement is possible or impossible for some angle θ.
57. $\sin \theta=\frac{1}{2}, \csc \theta=2$
58. $\tan \theta=2, \cot \theta=-2$
59. $\cos \theta=-2, \sec \theta=\frac{1}{2}$
60. Explain why there is no angle θ that satisfies $\cos \theta=\frac{1}{2}$ and $\sec \theta=-2$.

Use identities to solve each of the following. See Examples 5-7.

61. Find $\cos \theta$, given that $\sin \theta=\frac{3}{5}$ and θ is in quadrant II.
62. Find $\sin \theta$, given that $\cos \theta=\frac{4}{5}$ and θ is in quadrant IV.
63. Find $\csc \theta$, given that $\cot \theta=-\frac{1}{2}$ and θ is in quadrant IV.
64. Find $\sec \theta$, given that $\tan \theta=\frac{\sqrt{7}}{3}$ and θ is in quadrant III.
65. Find $\tan \theta$, given that $\sin \theta=\frac{1}{2}$ and θ is in quadrant II.
66. Find $\cot \theta$, given that $\csc \theta=-2$ and θ is in quadrant III.
67. Find $\cot \theta$, given that $\csc \theta=-3.5891420$ and θ is in quadrant III.
68. Find $\tan \theta$, given that $\sin \theta=0.49268329$ and θ is in quadrant II.

Find the five remaining trigonometric function values for each angle θ. See Examples 5-7.
69. $\tan \theta=-\frac{15}{8}$, and θ is in quadrant II 70. $\cos \theta=-\frac{3}{5}$, and θ is in quadrant III
71. $\sin \theta=\frac{\sqrt{5}}{7}$, and θ is in quadrant I
72. $\tan \theta=\sqrt{3}$, and θ is in quadrant III
73. $\cot \theta=\frac{\sqrt{3}}{8}$, and θ is in quadrant I
74. $\csc \theta=2$, and θ is in quadrant II
75. $\sin \theta=\frac{\sqrt{2}}{6}$, and $\cos \theta<0$
76. $\cos \theta=\frac{\sqrt{5}}{8}$, and $\tan \theta<0$
77. $\sec \theta=-4$, and $\sin \theta>0$
78. $\csc \theta=-3$, and $\cos \theta>0$
79. $\sin \theta=0.164215$, and θ is in quadrant II
80. $\cot \theta=-1.49586$, and θ is in quadrant IV

Work each problem.

81. Derive the identity $1+\cot ^{2} \theta=\csc ^{2} \theta$ by dividing $x^{2}+y^{2}=r^{2}$ by y^{2}.
82. Using a method similar to the one given in this section showing that $\frac{\sin \theta}{\cos \theta}=\tan \theta$, show that $\frac{\cos \theta}{\sin \theta}=\cot \theta$.
83. Concept Check True or false: For all angles $\theta, \sin \theta+\cos \theta=1$. If the statement is false, give an example showing why.
84. Concept Check True or false: Since $\cot \theta=\frac{\cos \theta}{\sin \theta}$, if $\cot \theta=\frac{1}{2}$ with θ in quadrant I, then $\cos \theta=1$ and $\sin \theta=2$. If the statement is false, give an explanation showing why.

Concept Check Suppose that $90^{\circ}<\theta<180^{\circ}$. Find the sign of each function value.
85. $\sin 2 \theta$
86. $\csc 2 \theta$
87. $\tan \frac{\theta}{2}$
88. $\cot \frac{\theta}{2}$
89. $\cot \left(\theta+180^{\circ}\right)$
90. $\tan \left(\theta+180^{\circ}\right)$
91. $\cos (-\theta)$
92. $\sec (-\theta)$

Concept Check Suppose that $-90^{\circ}<\theta<90^{\circ}$. Find the sign of each function value.
93. $\cos \frac{\theta}{2}$
94. $\sec \frac{\theta}{2}$
95. $\sec \left(\theta+180^{\circ}\right)$
96. $\cos \left(\theta+180^{\circ}\right)$
97. $\sec (-\theta)$
98. $\cos (-\theta)$
99. $\cos \left(\theta-180^{\circ}\right)$
100. $\sec \left(\theta-180^{\circ}\right)$

Concept Check Find a value of each variable.

101. $\tan \left(3 \theta-4^{\circ}\right)=\frac{1}{\cot \left(5 \theta-8^{\circ}\right)}$
102. $\cos \left(6 \theta+5^{\circ}\right)=\frac{1}{\sec \left(4 \theta+15^{\circ}\right)}$
103. $\sin \left(4 \theta+2^{\circ}\right) \csc \left(3 \theta+5^{\circ}\right)=1$
104. $\sec \left(2 \theta+6^{\circ}\right) \cos \left(5 \theta+3^{\circ}\right)=1$
105. Concept Check The screen below was obtained with the calculator in degree mode. How can we use it to justify that an angle of $14,879^{\circ}$ is a quadrant II angle?
```
cos(14879)
in<148748096202
sin(14879)
    .8746197071
```

106. Concept Check The screen below was obtained with the calculator in degree mode. In which quadrant does a 1294° angle lie?

Chapter 1 Test Prep

Key Terms

1.1 line
line segment (or segment) ray endpoint of a ray angle side of an angle vertex of an angle initial side terminal side positive angle
negative angle degree acute angle right angle obtuse angle straight angle complementary angles (complements) supplementary angles (supplements) minute
second angle in standard position quadrantal angle coterminal angles
1.2 vertical angles parallel lines transversal similar triangles congruent triangles
1.3 sine (\sin) cosine (cos) tangent (tan) cotangent (\cot) secant (sec) cosecant (csc) degree mode
1.4 reciprocal

New Symbols

ᄀ right angle symbol (for a right triangle)
$\boldsymbol{\theta}$ Greek letter theta

- degree
, minute
" second

Ouick Review

Concepts

1.1 Angles

Types of Angles

Two angles with a sum of 90° are complementary angles, and two angles with a sum of 180° are supplementary angles.

$$
\begin{aligned}
& 1 \text { degree }=60 \text { minutes }\left(1^{\circ}=60^{\prime}\right) \\
& 1 \text { minute }=60 \text { seconds }\left(1^{\prime}=60^{\prime \prime}\right)
\end{aligned}
$$

Coterminal angles have measures that differ by a multiple of 360°. Their terminal sides coincide when in standard position.

Examples

70° and $90^{\circ}-70^{\circ}=20^{\circ}$ are complementary.
70° and $180^{\circ}-70^{\circ}=110^{\circ}$ are supplementary.

$$
\begin{aligned}
15^{\circ} 30^{\prime} 45^{\prime \prime} & =15^{\circ}+\frac{30^{\circ}}{60}+\frac{45^{\circ}}{3600} \\
& =15.5125^{\circ}
\end{aligned}
$$

Decimal degrees
The acute angle θ in the figure is in standard position. If θ measures 46°, find the measure of a negative coterminal angle.

$$
46^{\circ}-360^{\circ}=-314^{\circ}
$$

Concepts

Examples

1.2 Angle Relationships and Similar Triangles

Vertical angles have equal measures.
The sum of the measures of the angles of any triangle is 180°.

When a transversal intersects parallel lines, the following angles formed have equal measure: alternate interior angles, alternate exterior angles, and corresponding angles. Interior angles on the same side of the transversal are supplementary.

Similar triangles have corresponding angles with the same measures and have corresponding sides proportional.

Congruent triangles are the same size and the same shape.

$$
\text { Also, } \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F} \text {. }
$$

interior angles, so they are equal. Angles 4 and 8 are alternate exterior angles, so they are equal. Angles 4 and 7 are nate exterior angles, so they are equal. Angles 4 and 7 are
corresponding angles, so they are equal. Angles 6 and 7 are interior angles on the same side of the transversal, so they are supplementary.

Corresponding angles as marked in triangles $A B C$ and $D E F$ are equal.
Vertical angles 4 and 5 are equal.
The sum of angles 1,2 , and 3 is 180°.
Refer to the diagram above. Angles 5 and 7 are alternate interior angles, so they are equal. Angles 4 and 8 are alter-

Corresponding angles are equal, and corresponding sides are equal.

1.3 Trigonometric Functions

Definitions of the Trigonometric Functions
Let (x, y) be a point other than the origin on the terminal side of an angle θ in standard position. Let $r=\sqrt{x^{2}+y^{2}}$ represent the distance from the origin to (x, y). Then

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta=\frac{y}{x}(x \neq 0) \\
\csc \theta=\frac{r}{y}(y \neq 0) & \sec \theta=\frac{r}{x}(x \neq 0) & \cot \theta=\frac{x}{y}(y \neq 0) .
\end{array}
$$

See the summary table of trigonometric function values for quadrantal angles in Section 1.3.

If the point $(-2,3)$ is on the terminal side of angle θ in standard position, then $x=-2, y=3$, and

$$
r=\sqrt{(-2)^{2}+3^{2}}=\sqrt{4+9}=\sqrt{13}
$$

Then
$\sin \theta=\frac{3 \sqrt{13}}{13}, \quad \cos \theta=-\frac{2 \sqrt{13}}{13}, \quad \tan \theta=-\frac{3}{2}$,
$\csc \theta=\frac{\sqrt{13}}{3}, \quad \sec \theta=-\frac{\sqrt{13}}{2}, \quad \cot \theta=-\frac{2}{3}$.

1.4 Using the Definitions of the Trigonometric Functions

Reciprocal Identities

$\sin \theta=\frac{1}{\csc \theta} \quad \cos \theta=\frac{1}{\sec \theta} \quad \tan \theta=\frac{1}{\cot \theta}$
$\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}$

If $\cot \theta=-\frac{2}{3}$, find $\tan \theta$.

$$
\tan \theta=\frac{1}{\cot \theta}=\frac{1}{-\frac{2}{3}}=-\frac{3}{2}
$$

Concepts

Pythagorean Identities

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \quad \tan ^{2} \theta+1=\sec ^{2} \theta \\
1+\cot ^{2} \theta=\csc ^{2} \theta
\end{gathered}
$$

Quotient Identities

$$
\frac{\sin \theta}{\cos \theta}=\tan \theta \quad \frac{\cos \theta}{\sin \theta}=\cot \theta
$$

Signs of the Trigonometric Functions

$x<0, y>0, r>0$	$y>0, y>0, r>0$
III Sine and cosecant positive	All functions positive
$x<0, y<0, r>0$	0$x>0, y<0, r>0$
III	IV
Tangent and cotangent positive	Cosine and secant positive

Examples

Use the function values for the example from Section 1.3 to illustrate the Pythagorean identities.

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =\left(\frac{3 \sqrt{13}}{13}\right)^{2}+\left(-\frac{2 \sqrt{13}}{13}\right)^{2}=\frac{9}{13}+\frac{4}{13}=1 \\
\tan ^{2} \theta+1 & =\left(-\frac{3}{2}\right)^{2}+1=\frac{13}{4}=\left(-\frac{\sqrt{13}}{2}\right)^{2}=\sec ^{2} \theta \\
1+\cot ^{2} \theta & =1+\left(-\frac{2}{3}\right)^{2}=\frac{13}{9}=\left(\frac{\sqrt{13}}{3}\right)^{2}=\csc ^{2} \theta
\end{aligned}
$$

Use the function values for the example from Section 1.3 to illustrate $\frac{\sin \theta}{\cos \theta}=\tan \theta$.

$$
\frac{\sin \theta}{\cos \theta}=\frac{\frac{3 \sqrt{13}}{13}}{-\frac{2 \sqrt{13}}{13}}=\frac{3 \sqrt{13}}{13}\left(-\frac{13}{2 \sqrt{13}}\right)=-\frac{3}{2}=\tan \theta
$$

Identify the quadrant(s) of any angle θ that satisfies $\sin \theta<0, \tan \theta>0$.

Since $\sin \theta<0$ in quadrants III and IV, and $\tan \theta>0$ in quadrants I and III, both conditions are met only in quadrant III.

Chapter 1 Review Exercises

1. Give the measures of the complement and the supplement of an angle measuring 35°.

Find the angle of least positive measure that is coterminal with each angle.
2. -51°
3. -174°
4. 792°
5. Find the measure of each marked angle.

Work each problem.

6. Rotating Pulley A pulley is rotating 320 times per min. Through how many degrees does a point on the edge of the pulley move in $\frac{2}{3} \mathrm{sec}$?
7. Rotating Propeller The propeller of a speedboat rotates 650 times per min. Through how many degrees does a point on the edge of the propeller rotate in 2.4 sec ?

Convert decimal degrees to degrees, minutes, seconds, and convert degrees, minutes, seconds to decimal degrees. Round to the nearest second or the nearest thousandth of a degree, as appropriate. Use a calculator as necessary.
8. $47^{\circ} 25^{\prime} 11^{\prime \prime}$
9. $119^{\circ} 08^{\prime} 03^{\prime \prime}$
10. -61.5034°
11. 275.1005°

Find the measure of each marked angle.
12.

13.

14. Express θ in terms of α and β.

15. Length of a Road The flight path $C P$ of a satellite carrying a camera with its lens at C is shown in the figure. Length $P C$ represents the distance from the lens to the film $P Q$, and $B A$ represents a straight road on the ground. Use the measurements given in the figure to find the length of the road. (Source: Kastner, B., Space Mathematics, NASA.)

Find all unknown angle measures in each pair of similar triangles.
16.

17. P

Find the unknown side lengths in each pair of similar triangles.
18.

19.

Find the unknown measurement. There are two similar triangles in each figure.
20.

21.

22. Concept Check Complete the following statement: If two triangles are similar, then their corresponding sides are \qquad and the measures of their corresponding angles are \qquad _.
23. Length of a Shadow If a tree 20 ft tall casts a shadow 8 ft long, how long would the shadow of a $30-\mathrm{ft}$ tree be at the same time and place?

Find the six trigonometric function values for each angle. If a value is undefined, say so.
24.

25.

26.

Find the values of the six trigonometric functions for an angle in standard position having each given point on its terminal side.
27. $(3,-4)$
28. $(9,-2)$
29. $(-8,15)$
30. $(1,-5)$
31. $(6 \sqrt{3},-6)$
32. $(-2 \sqrt{2}, 2 \sqrt{2})$
33. Concept Check If the terminal side of a quadrantal angle lies along the y-axis, which of its trigonometric functions are undefined?
34. Find the values of all six trigonometric functions for an angle in standard position having its terminal side defined by the equation $5 x-3 y=0, x \geq 0$.

In Exercises 35 and 36, consider an angle θ in standard position whose terminal side has the equation $y=-5 x$, with $x \leq 0$.
35. Sketch θ and use an arrow to show the rotation if $0^{\circ} \leq \theta<360^{\circ}$.
36. Find the exact values of $\sin \theta, \cos \theta, \tan \theta, \cot \theta, \sec \theta$, and $\csc \theta$.

Complete the table with the appropriate function values of the given quadrantal angles. If the value is undefined, say so.

37. $\boldsymbol{\theta}$	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$	$\sec \theta$	$\csc \theta$
180°						
38. -90°						

39. Decide whether each statement is possible or impossible for some angle θ.
(a) $\sec \theta=-\frac{2}{3}$
(b) $\tan \theta=1.4$
(c) $\cos \theta=5$

Find all six trigonometric function values for each angle θ. Rationalize denominators when applicable.
40. $\sin \theta=\frac{\sqrt{3}}{5}$, and $\cos \theta<0$
41. $\cos \theta=-\frac{5}{8}$, and θ is in quadrant III
42. $\tan \theta=2$, and θ is in quadrant III
43. $\sec \theta=-\sqrt{5}$, and θ is in quadrant II
44. $\sin \theta=-\frac{2}{5}$, and θ is in quadrant III
45. $\sec \theta=\frac{5}{4}$, and θ is in quadrant IV
46. Concept Check If, for some particular angle $\theta, \sin \theta<0$ and $\cos \theta>0$, in what quadrant must θ lie? What is the sign of $\tan \theta$?

Solve each problem.
47. Swimmer in Distress A lifeguard located 20 yd from the water spots a swimmer in distress. The swimmer is 30 yd from shore and 100 yd east of the lifeguard. Suppose the lifeguard runs and then swims to the swimmer in a direct line, as shown in the figure. How far east from his original position will he enter the water? (Hint: Find the value of x in the sketch.)

48. Angle through Which the Celestial North Pole Moves At present, the north star Polaris is located very near the celestial north pole. However, because Earth is inclined 23.5°, the moon's gravitational pull on Earth is uneven. As a result, Earth slowly precesses (moves in) like a spinning top, and the direction of the celestial north pole traces out a circular path once every $26,000 \mathrm{yr}$. See the figure. For example, in approximately A.D. 14,000 the star Vega-not the star Polaris-will be located at the celestial north pole. As viewed from the center C of this circular path,
 calculate the angle (to the nearest second) through which the celestial north pole moves each year. (Source: Zeilik, M., S. Gregory, and E. Smith, Introductory Astronomy and Astrophysics, Second Edition, Saunders College Publishers.)
49. Depth of a Crater on the Moon The depths of unknown craters on the moon can be approximated by comparing the lengths of their shadows to the shadows of nearby craters with known depths. The crater Aristillus is $11,000 \mathrm{ft}$ deep, and its shadow was measured as 1.5 mm on a photograph. Its companion crater, Autolycus, had a shadow of 1.3 mm on the same photograph. Use similar triangles to determine the depth of the crater Autolycus. (Source: Webb, T., Celestial Objects for Common Telescopes, Dover Publications.)
50. Height of a Lunar Peak The lunar mountain peak Huygens has a height of $21,000 \mathrm{ft}$. The shadow of Huygens on a photograph was 2.8 mm , while the nearby mountain Bradley had a shadow of 1.8 mm on the same photograph. Calculate the height of Bradley. (Source: Webb, T., Celestial Objects for Common Telescopes, Dover Publications.)

Test

1. For an angle measuring 67°, give the measure of
(a) its complement
(b) its supplement.

Find the measure of each unknown angle.
2.

3.
$\overbrace{(-8 x+30)^{\circ}}^{(-3 x+5)^{\circ}}$
4.

Perform each conversion.
8. $74^{\circ} 18^{\prime} 36^{\prime \prime}$ to decimal degrees
9. 45.2025° to degrees, minutes, seconds
10. Find the least positive measure of an angle that is coterminal with an angle of the given measure.
(a) 390°
(b) -80°
(c) 810°
11. Rotating Tire A tire rotates 450 times per min. Through how many degrees does a point on the edge of the tire move in 1 sec ?
12. Length of a Shadow If a vertical pole 30 ft tall casts a shadow 8 ft long, how long would the shadow of a $40-\mathrm{ft}$ pole be at the same time and place?
13. Find the unknown side lengths x and y in this pair of similar triangles.

Draw a sketch of an angle in standard position having the given point on its terminal side. Indicate the angle of least positive measure θ, and give the values of $\sin \theta, \cos \theta$, $\tan \theta, \cot \theta, \sec \theta$, and $\csc \theta$. If any of these are undefined, say so.
14. $(2,-7)$
15. $(0,-2)$
16. Draw a sketch of an angle in standard position having the equation $3 x-4 y=0$, $x \leq 0$, as its terminal side. Indicate the angle of least positive measure θ, and give the values of $\sin \theta, \cos \theta, \tan \theta, \cot \theta, \sec \theta$, and $\csc \theta$.
17. Complete the table with the appropriate function values of the given quadrantal angles. If the value is undefined, say so.

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n } \theta}$	$\boldsymbol{\operatorname { c o s } \theta}$	$\boldsymbol{\operatorname { t a n } \theta}$	$\boldsymbol{\operatorname { c o t } \theta}$	$\sec \theta$	$\boldsymbol{\operatorname { c s c } \theta}$
90°						
-360°						
630°						

18. If the terminal side of a quadrantal angle lies along the negative x-axis, which two of its trigonometric function values are undefined?
19. Identify the possible quadrant(s) in which θ must lie under the given conditions.
(a) $\cos \theta>0, \tan \theta>0$
(b) $\sin \theta<0, \csc \theta<0$
(c) $\cot \theta>0, \cos \theta<0$
20. Decide whether each statement is possible or impossible for some angle θ.
(a) $\sin \theta=1.5$
(b) $\sec \theta=4$
(c) $\tan \theta=10,000$
21. Find the value of $\sec \theta$ if $\cos \theta=-\frac{7}{12}$.
22. Find the five remaining trigonometric function values of θ if $\sin \theta=\frac{3}{7}$ and θ is in quadrant II.

Acute Angles and Right Triangles

Trigonometry is used in safe roadway design to provide sufficient visibility around curves as well as a smoothflowing, comfortable ride.
2.1 Trigonometric Functions of Acute Angles
2.2 Trigonometric Functions of Non-Acute Angles
2.3 Finding Trigonometric Function Values Using a Calculator

Chapter 2 Quiz
2.4 Solving Right Triangles
2.5 Further Applications of Right Triangles

2.1 Trigonometric Functions of Acute Angles

- Right-Triangle-Based Definitions of the Trigonometric Functions
- Cofunctions
- Trigonometric Function Values of Special Angles

Figure 1

Right-Triangle-Based Definitions of the Trigonometric Functions
We used angles in standard position to define the trigonometric functions in Section 1.3. There is another way to approach them:

As ratios of the lengths of the sides of right triangles.
Figure 1 shows an acute angle A in standard position. The definitions of the trigonometric function values of angle A require x, y, and r. As drawn in Figure 1, x and y are the lengths of the two legs of the right triangle $A B C$, and r is the length of the hypotenuse.

The side of length y is called the side opposite angle A, and the side of length x is called the side adjacent to angle A. We use the lengths of these sides to replace x and y in the definitions of the trigonometric functions, and the length of the hypotenuse to replace r, to get the following right-triangle-based definitions.

Right-Triangle-Based Definitions of Trigonometric Functions

Let A represent any acute angle in standard position.

$$
\begin{array}{ll}
\sin A=\frac{y}{r}=\frac{\text { side opposite } A}{\text { hypotenuse }} & \csc A=\frac{r}{y}=\frac{\text { hypotenuse }}{\text { side opposite } A} \\
\cos A=\frac{x}{r}=\frac{\text { side adjacent to } A}{\text { hypotenuse }} & \sec A=\frac{r}{x}=\frac{\text { hypotenuse }}{\text { side adjacent to } A} \\
\tan A=\frac{y}{x}=\frac{\text { side opposite } A}{\text { side adjacent to } A} & \cot A=\frac{x}{y}=\frac{\text { side adjacent to } A}{\text { side opposite } A}
\end{array}
$$

NOTE We will sometimes shorten wording like "side opposite A " to just
"side opposite" when the meaning is obvious.

EXAMPLE 1 Finding Trigonometric Function Values of an Acute Angle

Find the sine, cosine, and tangent values for angles A and B in the right triangle in Figure 2.
SOLUTION The length of the side opposite angle A is 7 , the length of the side adjacent to angle A is 24 , and the length of the hypotenuse is 25 .

$$
\sin A=\frac{\text { side opposite }}{\text { hypotenuse }}=\frac{7}{25} \quad \cos A=\frac{\text { side adjacent }}{\text { hypotenuse }}=\frac{24}{25} \quad \tan A=\frac{\text { side opposite }}{\text { side adjacent }}=\frac{7}{24}
$$

The length of the side opposite angle B is 24 , and the length of the side adjacent to B is 7 .

$$
\sin B=\frac{24}{25} \quad \cos B=\frac{7}{25} \quad \tan B=\frac{24}{7} \quad \begin{aligned}
& \text { Use the relationships } \\
& \text { given in the box. }
\end{aligned}
$$

Whenever we use A, B, and C to name angles in a right triangle, C will be the right angle.

Figure 3

NOTE Because the cosecant, secant, and cotangent ratios are the reciprocals of the sine, cosine, and tangent values, respectively, in Example 1,

$$
\begin{gathered}
\csc A=\frac{25}{7}, \quad \sec A=\frac{25}{24}, \quad \cot A=\frac{24}{7}, \quad \csc B=\frac{25}{24} \\
\sec B=\frac{25}{7}, \quad \text { and } \quad \cot B=\frac{7}{24} .
\end{gathered}
$$

Cofunctions In Example 1, notice that $\sin A=\cos B$ and $\cos A=\sin B$. Such relationships are always true for the two acute angles of a right triangle.

Figure 3 shows a right triangle with acute angles A and B and a right angle at C. The length of the side opposite angle A is a, and the length of the side opposite angle B is b. The length of the hypotenuse is c.

By the preceding definitions, $\sin A=\frac{a}{c}$. Also, $\cos B=\frac{a}{c}$. Thus,

$$
\sin A=\frac{a}{c}=\cos B
$$

Similarly, $\quad \tan A=\frac{\boldsymbol{a}}{\boldsymbol{b}}=\cot \boldsymbol{B} \quad$ and $\quad \sec \boldsymbol{A}=\frac{\boldsymbol{c}}{\boldsymbol{b}}=\csc \boldsymbol{B}$.
Since the sum of the three angles in any triangle is 180° and angle C equals 90°, angles A and B must have a sum of $180^{\circ}-90^{\circ}=90^{\circ}$. As mentioned in Section 1.1, angles with a sum of 90° are complementary angles. Since angles A and B are complementary and $\sin A=\cos B$, the functions sine and cosine are cofunctions. Tangent and cotangent are also cofunctions, as are secant and cosecant. And since the angles A and B are complementary, $A+B=90^{\circ}$, or $B=90^{\circ}-A$, giving the following.

$$
\sin A=\cos B=\cos \left(90^{\circ}-A\right)
$$

Similar cofunction identities are true for the other trigonometric functions.

Cofunction Identities

For any acute angle A, cofunction values of complementary angles are equal.

$$
\begin{aligned}
& \sin A=\cos \left(90^{\circ}-A\right) \sec A=\csc \left(90^{\circ}-A\right) \tan A=\cot \left(90^{\circ}-A\right) \\
& \cos A=\sin \left(90^{\circ}-A\right) \quad \csc A=\sec \left(90^{\circ}-A\right) \quad \cot A=\tan \left(90^{\circ}-A\right)
\end{aligned}
$$

EXAMPLE 2 Writing Functions in Terms of Cofunctions

Write each function in terms of its cofunction.
(a) $\cos 52^{\circ}$
(b) $\tan 71^{\circ}$
(c) $\sec 24^{\circ}$

SOLUTION

(a)

(b) $\tan 71^{\circ}=\cot \left(90^{\circ}-71^{\circ}\right)=\cot 19^{\circ}$
(c) $\sec 24^{\circ}=\csc 66^{\circ}$

EXAMPLE 3 Solving Equations Using Cofunction Identities

Find one solution for each equation. Assume all angles involved are acute angles.
(a) $\cos \left(\theta+4^{\circ}\right)=\sin \left(3 \theta+2^{\circ}\right)$
(b) $\tan \left(2 \theta-18^{\circ}\right)=\cot \left(\theta+18^{\circ}\right)$

SOLUTION

(a) Since sine and cosine are cofunctions, $\cos \left(\theta+4^{\circ}\right)=\sin \left(3 \theta+2^{\circ}\right)$ is true if the sum of the angles is 90°.

$$
\begin{aligned}
\left(\theta+4^{\circ}\right)+\left(3 \theta+2^{\circ}\right) & =90^{\circ} & & \text { Complementary angles (Section 1.1) } \\
4 \theta+6^{\circ} & =90^{\circ} & & \text { Combine like terms. } \\
4 \theta & =84^{\circ} & & \text { Subtract } 6^{\circ} \text { from each side. (Appendix A) } \\
\theta & =21^{\circ} & & \text { Divide by } 4 .
\end{aligned}
$$

(b) Tangent and cotangent are cofunctions.

$$
\begin{aligned}
\left(2 \theta-18^{\circ}\right)+\left(\theta+18^{\circ}\right) & =90^{\circ} & & \text { Complementary angles } \\
3 \theta & =90^{\circ} & & \text { Combine like terms. } \\
\theta & =30^{\circ} & & \text { Divide by } 3 .
\end{aligned}
$$

Now Try Exercises 31 and 33.

Figure 4 shows three right triangles. From left to right, the length of each hypotenuse is the same, but angle A increases in measure. As angle A increases in measure from 0° to 90°, the length of the side opposite angle A also increases.

As A increases, y increases. Since r is fixed, $\sin A$ increases.
Figure 4

Since

$$
\sin A=\frac{\text { side opposite }}{\text { hypotenuse }}=\frac{y}{r},
$$

as angle A increases, the numerator of this fraction also increases, while the denominator is fixed. Therefore, sin A increases as A increases from 0° to 90°.

As angle A increases from 0° to 90°, the length of the side adjacent to A decreases. Since r is fixed, the ratio $\frac{x}{r}$ decreases. This ratio gives $\cos A$, showing that the values of cosine decrease as the angle measure changes from 0° to 90°. Finally, increasing A from 0° to 90° causes y to increase and x to decrease, making the values of $\frac{y}{x}=\tan A$ increase.

A similar discussion shows that as A increases from 0° to 90°, the values of $\sec A$ increase, while the values of $\cot A$ and $\csc A$ decrease.

EXAMPLE 4 Comparing Function Values of Acute Angles

Determine whether each statement is true or false.
(a) $\sin 21^{\circ}>\sin 18^{\circ}$
(b) $\sec 56^{\circ} \leq \sec 49^{\circ}$

SOLUTION

(a) In the interval from 0° to 90°, as the angle increases, so does the sine of the angle, which makes $\sin 21^{\circ}>\sin 18^{\circ}$ a true statement.
(b) For fixed r, increasing an angle from 0° to 90° causes x to decrease. Therefore, $\sec \theta=\frac{r}{x}$ increases. The given statement, $\sec 56^{\circ} \leq \sec 49^{\circ}$, is false.

Now Try Exercises 41 and 47.

Equilateral triangle
(a)

(b)

Figure 5

Figure 6

Trigonometric Function Values of Special Angles Certain special angles, such as $30^{\circ}, 45^{\circ}$, and 60°, occur so often in trigonometry and in more advanced mathematics that they deserve special study. We start with an equilateral triangle, a triangle with all sides of equal length. Each angle of such a triangle measures 60°. Although the results we will obtain are independent of the length, for convenience we choose the length of each side to be 2 units. See Figure 5(a).

Bisecting one angle of this equilateral triangle leads to two right triangles, each of which has angles of $30^{\circ}, 60^{\circ}$, and 90°, as shown in Figure 5(b). An angle bisector of an equilateral triangle also bisects the opposite side; therefore, the shorter leg has length 1 . Let x represent the length of the longer leg.

$$
\begin{array}{rlrl}
2^{2} & =1^{2}+x^{2} & & \text { Pythagorean theorem (Appendix B) } \\
4 & =1+x^{2} & & \text { Apply the exponents. } \\
3 & =x^{2} & & \text { Subtract } 1 \text { from each side. } \\
\sqrt{3} & =x & & \text { Square root property (Appendix A); } \\
& & \text { choose the positive root. }
\end{array}
$$

Figure 6 summarizes our results using a $30^{\circ}-60^{\circ}$ right triangle. As shown in the figure, the side opposite the 30° angle has length 1 ; that is, for the 30° angle,

$$
\text { hypotenuse }=2, \quad \text { side opposite }=1, \quad \text { side adjacent }=\sqrt{3} .
$$

Now we use the definitions of the trigonometric functions.

$$
\begin{aligned}
& \sin 30^{\circ}=\frac{\text { side opposite }}{\text { hypotenuse }}=\frac{1}{2} \\
& \cos 30^{\circ}=\frac{\text { side adjacent }}{\text { hypotenuse }}=\frac{\sqrt{3}}{2} \\
& \tan 30^{\circ}=\frac{\text { side opposite }}{\text { side adjacent }}=\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\
& \csc 30^{\circ}=\frac{2}{1}=2 \\
& \sec 30^{\circ}=\frac{2}{\sqrt{3}}=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} \\
& \cot 30^{\circ}=\frac{\sqrt{3}}{1}=\sqrt{3}
\end{aligned}
$$

Figure 6 (repeated)

$45^{\circ}-45^{\circ}$ right triangle
Figure 7

EXAMPLE 5 Finding Trigonometric Function Values for 60°

Find the six trigonometric function values for a 60° angle.
SOLUTION Refer to Figure 6 to find the following ratios.

$$
\begin{array}{lll}
\sin 60^{\circ}=\frac{\sqrt{3}}{2} & \cos 60^{\circ}=\frac{1}{2} & \tan 60^{\circ}=\frac{\sqrt{3}}{1}=\sqrt{3} \\
\csc 60^{\circ}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} & \sec 60^{\circ}=\frac{2}{1}=2 & \cot 60^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}
\end{array}
$$

Now Try Exercises 49, 51, and 53.

NOTE The results in Example 5 can also be found using the fact that cofunction values of complementary angles are equal.

We find the values of the trigonometric functions for 45° by starting with a $45^{\circ}-45^{\circ}$ right triangle, as shown in Figure 7. This triangle is isosceles. For simplicity, we choose the lengths of the equal sides to be 1 unit. (As before, the results are independent of the length of the equal sides.) If r represents the length of the hypotenuse, then we can find its value using the Pythagorean theorem.

$$
\begin{aligned}
1^{2}+1^{2} & =r^{2} & & \text { Pythagorean theorem } \\
2 & =r^{2} & & \text { Simplify. } \\
\sqrt{2} & =r & & \text { Choose the positive root. }
\end{aligned}
$$

Now we use the measures indicated on the $45^{\circ}-45^{\circ}$ right triangle in Figure 7.

$$
\begin{array}{ll}
\sin 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} & \cos 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}
\end{array} \quad \tan 45^{\circ}=\frac{1}{1}=1 .
$$

Function values for $30^{\circ}, 45^{\circ}$, and 60° are summarized in the table that follows.

Function Values of Special Angles

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$	$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	$\boldsymbol{\operatorname { c o t }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { s e c } \theta}$	$\boldsymbol{\operatorname { c s c } \theta}$
$\mathbf{3 0}^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2
$\mathbf{4 5}^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
$\mathbf{6 0}^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$

NOTE You will be able to reproduce this table quickly if you learn the values of $\sin 30^{\circ}, \sin 45^{\circ}$, and $\sin 60^{\circ}$. Then you can complete the rest of the table using the reciprocal, cofunction, and quotient identities.

$\begin{array}{\|rr} \tan (30) \\ \sin (36) \\ \cos (36) & .5 \\ .8660254038 \end{array}$	

Figure 9

Since a calculator finds trigonometric function values at the touch of a key, why do we spend so much time finding values for special angles? We do this because a calculator gives only approximate values in most cases instead of exact values. A scientific calculator gives the following approximation for $\tan 30^{\circ}$.

$$
\tan 30^{\circ} \approx 0.57735027 \approx \text { means "is approximately equal to." }
$$

Earlier, however, we found the exact value.

$$
\tan 30^{\circ}=\frac{\sqrt{3}}{3} \quad \text { Exact value }
$$

Figure 8 on the previous page shows the mode display screens for TI graphing calculators. Figure 9 shows the output when evaluating the tangent, sine, and cosine of 30°. (The calculator must be in degree mode for the angle measure to be entered in degrees.)

2.1 Exercises

Find exact values or expressions for $\sin A, \cos A$, and $\tan A$. See Example 1.
1.

3.

4.

Concept Check For each trigonometric function in Column I, choose its value from Column II.

II
5. $\sin 30^{\circ}$
6. $\cos 45^{\circ}$
A. $\sqrt{3}$
B. 1
C. $\frac{1}{2}$
7. $\tan 45^{\circ}$
8. $\sec 60^{\circ}$
D. $\frac{\sqrt{3}}{2}$
E. $\frac{2 \sqrt{3}}{3}$
F. $\frac{\sqrt{3}}{3}$
9. $\csc 60^{\circ}$
10. $\cot 30^{\circ}$
G. 2
H. $\frac{\sqrt{2}}{2}$
I. $\sqrt{2}$

Suppose $A B C$ is a right triangle with sides of lengths a, b, and c and right angle at C. (See Figure 3.) Find the unknown side length using the Pythagorean theorem (Appendix B), and then find the values of the six trigonometric functions for angle B. Rationalize denominators when applicable.
11. $a=5, b=12$
12. $a=3, b=4$
13. $a=6, c=7$
14. $b=7, c=12$
15. $a=3, c=10$
16. $b=8, c=11$
17. $a=1, c=2$
18. $a=\sqrt{2}, c=2$
19. $b=2, c=5$
20. Concept Check Give a summary of the six cofunction relationships.

Write each function in terms of its cofunction. Assume that all angles in which an unknown appears are acute angles. See Example 2.
21. $\cos 30^{\circ}$
22. $\sin 45^{\circ}$
23. $\csc 60^{\circ}$
24. $\cot 73^{\circ}$
25. $\sec 39^{\circ}$
26. $\tan 25.4^{\circ}$
27. $\sin 38.7^{\circ}$
28. $\cos \left(\theta+20^{\circ}\right)$
29. $\sec \left(\theta+15^{\circ}\right)$
30. With a calculator, evaluate $\sin \left(90^{\circ}-\theta\right)$ and $\cos \theta$ for various values of θ. (Include values greater than 90° and less than 0°.) What do you find?

Find one solution for each equation. Assume that all angles in which an unknown appears are acute angles. See Example 3.
31. $\tan \alpha=\cot \left(\alpha+10^{\circ}\right)$
32. $\cos \theta=\sin \left(2 \theta-30^{\circ}\right)$
33. $\sin \left(2 \theta+10^{\circ}\right)=\cos \left(3 \theta-20^{\circ}\right)$
34. $\sec \left(\beta+10^{\circ}\right)=\csc \left(2 \beta+20^{\circ}\right)$
35. $\tan \left(3 B+4^{\circ}\right)=\cot \left(5 B-10^{\circ}\right)$
36. $\cot \left(5 \theta+2^{\circ}\right)=\tan \left(2 \theta+4^{\circ}\right)$
37. $\sin \left(\theta-20^{\circ}\right)=\cos \left(2 \theta+5^{\circ}\right)$
38. $\cos \left(2 \theta+50^{\circ}\right)=\sin \left(2 \theta-20^{\circ}\right)$
39. $\sec \left(3 \beta+10^{\circ}\right)=\csc \left(\beta+8^{\circ}\right)$
40. $\csc \left(\beta+40^{\circ}\right)=\sec \left(\beta-20^{\circ}\right)$

Determine whether each statement is true or false. See Example 4.
41. $\sin 50^{\circ}>\sin 40^{\circ}$
42. $\tan 28^{\circ} \leq \tan 40^{\circ}$
43. $\sin 46^{\circ}<\cos 46^{\circ}$
(Hint: $\cos 46^{\circ}=\sin 44^{\circ}$)
45. $\tan 41^{\circ}<\cot 41^{\circ}$
47. $\sec 60^{\circ}>\sec 30^{\circ}$
44. $\cos 28^{\circ}<\sin 28^{\circ}$
(Hint: $\sin 28^{\circ}=\cos 62^{\circ}$)
46. $\cot 30^{\circ}<\tan 40^{\circ}$
48. $\csc 20^{\circ}<\csc 30^{\circ}$

For each expression, give the exact value. See Example 5.
49. $\tan 30^{\circ}$
50. $\cot 30^{\circ}$
51. $\sin 30^{\circ}$
52. $\cos 30^{\circ}$
53. $\sec 30^{\circ}$
54. $\csc 30^{\circ}$
55. $\csc 45^{\circ}$
56. $\sec 45^{\circ}$
57. $\cos 45^{\circ}$
58. $\cot 45^{\circ}$
59. $\tan 45^{\circ}$
60. $\sin 45^{\circ}$
61. $\sin 60^{\circ}$
62. $\cos 60^{\circ}$
63. $\tan 60^{\circ}$
64. $\csc 60^{\circ}$

Relating Concepts

For individual or collaborative investigation (Exercises 65-68)
The figure shows a 45° central angle in a circle with radius 4 units. To find the coordinates of point P on the circle, work Exercises 65-68 in order.
65. Sketch a line segment from P perpendicular to the x-axis.
66. Use the trigonometric ratios for a 45° angle to label the sides of the right triangle you sketched in Exercise 65.

67. Which sides of the right triangle give the coordinates of point P ? What are the coordinates of P ?
68. The figure at the right shows a 60° central angle in a circle of radius 2 units. Follow the same procedure as in Exercises 65-67 to find the coordinates of P in the figure.

69. Concept Check Refer to the table. What trigonometric functions are y_{1} and y_{2} ?

\boldsymbol{x}°	$\boldsymbol{y}_{\mathbf{1}}$	$\boldsymbol{y}_{\mathbf{2}}$
0	0	0
15	0.25882	0.26795
30	0.5	0.57735
45	0.70711	1
60	0.86603	1.7321
75	0.96593	3.7321
90	1	undefined

70. Concept Check Refer to the table. What trigonometric functions are y_{1} and y_{2} ?

\boldsymbol{x}°	$\boldsymbol{y}_{\mathbf{1}}$	$\boldsymbol{y}_{\mathbf{2}}$
0	1	undefined
15	0.96593	3.8637
30	0.86603	2
45	0.70711	1.4142
60	0.5	1.1547
75	0.25882	1.0353
90	0	1

71. Concept Check What value of A between 0° and 90° will produce the output shown on the graphing calculator screen?
72. A student was asked to give the exact value of $\sin 45^{\circ}$. Using a calculator, he gave the answer 0.7071067812 . The teacher did not give him credit. What was the teacher's reason for this?
73. With a graphing calculator, find the coordinates of the point of intersection of $y=x$ and $y=\sqrt{1-x^{2}}$. These coordinates are the cosine and sine of what angle between 0° and 90° ?

Concept Check Work each problem.

74. Find the equation of the line that passes through the origin and makes a 60° angle with the x-axis.
75. Find the equation of the line that passes through the origin and makes a 30° angle with the x-axis.
76. What angle does the line $y=\frac{\sqrt{3}}{3} x$ make with the positive x-axis?
77. What angle does the line $y=\sqrt{3} x$ make with the positive x-axis?
78. Construct a square with each side of length k.
(a) Draw a diagonal of the square. What is the measure of each angle formed by a side of the square and this diagonal?
(b) What is the length of the diagonal?
(c) From the results of parts (a) and (b), complete the following statement: In a $45^{\circ}-45^{\circ}$ right triangle, the hypotenuse has a length that is \qquad times as long as either leg.
79. Construct an equilateral triangle with each side having length $2 k$.
(a) What is the measure of each angle?
(b) Label one angle A. Drop a perpendicular from A to the side opposite A. Two 30° angles are formed at A, and two right triangles are formed. What is the length of the sides opposite the 30° angles?
(c) What is the length of the perpendicular in part (b)?
(d) From the results of parts (a) - (c), complete the following statement: In a $30^{\circ}-60^{\circ}$ right triangle, the hypotenuse is always \qquad times as long as the shorter leg, and the longer leg has a length that is \qquad times as long as that of the shorter leg. Also, the shorter leg is opposite the \qquad angle, and the longer leg is opposite the \qquad angle.

Find the exact value of each part labeled with a variable in each figure.
80.

81.

82.

83.

Find a formula for the area of each figure in terms of s.
84.

85.

86. Concept Check Suppose you know the length of one side and one acute angle of a right triangle. Is it possible to determine the measures of all the sides and angles of the triangle?

2.2 Trigonometric Functions of Non-Acute Angles

Reference Angles
Special Angles as Reference Angles

- Finding Angle Measures with Special Angles

Reference Angles Associated with every nonquadrantal angle in standard position is a positive acute angle called its reference angle. A reference angle for an angle θ, written θ^{\prime}, is the positive acute angle made by the terminal side of angle θ and the x-axis.

Figure 10 shows several angles θ (each less than one complete counterclockwise revolution) in quadrants II, III, and IV, respectively, with the reference angle θ^{\prime} also shown. In quadrant I, θ and θ^{\prime} are the same. If an angle θ is negative or has measure greater than 360°, its reference angle is found by first finding its coterminal angle that is between 0° and 360°, and then using the diagrams in Figure 10

θ in quadrant II

θ in quadrant III

θ in quadrant IV

CAUTION A common error is to find the reference angle by using the terminal side of θ and the y-axis. The reference angle is always found with reference to the x-axis.

EXAMPLE 1 Finding Reference Angles

Find the reference angle for each angle.
(a) 218°
(b) 1387°

SOLUTION

(a) As shown in Figure 11(a), the positive acute angle made by the terminal side of this angle and the x-axis is

$$
218^{\circ}-180^{\circ}=38^{\circ}
$$

For $\theta=218^{\circ}$, the reference angle $\theta^{\prime}=38^{\circ}$.
(b) First find a coterminal angle between 0° and 360°. Divide 1387° by 360° to get a quotient of about 3.9. Begin by subtracting 360° three times (because of the whole number 3 in 3.9).

$$
\begin{aligned}
1387^{\circ}-3 \cdot 360^{\circ} & =1387^{\circ}-1080^{\circ} & & \text { Multiply. (Section 1.1) } \\
& =307^{\circ} & & \text { Subtract. }
\end{aligned}
$$

The reference angle for 307° (and thus for 1387°) is $360^{\circ}-307^{\circ}=53^{\circ}$. See Figure 11(b).

Now Try Exercises 1 and 5.

The preceding example suggests the following table for finding the reference angle θ^{\prime} for any angle θ between 0° and 360°.

[^2]

Figure 12

Special Angles as Reference Angles We can now find exact trigonometric function values of angles with reference angles of $30^{\circ}, 45^{\circ}$, or 60°.

EXAMPLE 2 Finding Trigonometric Function Values of a Quadrant III Angle

Find the values of the six trigonometric functions for 210°.
SOLUTION An angle of 210° is shown in Figure 12. The reference angle is

$$
210^{\circ}-180^{\circ}=30^{\circ}
$$

To find the trigonometric function values of 210°, choose point P on the terminal side of the angle so that the distance from the origin O to P is 2 . By the results from $30^{\circ}-60^{\circ}$ right triangles, the coordinates of point P become $(-\sqrt{3},-1)$, with $x=-\sqrt{3}, y=-1$, and $r=2$. Then, by the definitions of the trigonometric functions in Section 2.1, we obtain the following.

$$
\begin{array}{ll}
\sin 210^{\circ}=\frac{-1}{2}=-\frac{1}{2} & \csc 210^{\circ}=\frac{2}{-1}=-2 \\
\cos 210^{\circ}=\frac{-\sqrt{3}}{2}=-\frac{\sqrt{3}}{2} & \sec 210^{\circ}=\frac{2}{-\sqrt{3}}=-\frac{2 \sqrt{3}}{3}
\end{array} \begin{aligned}
& \begin{array}{l}
\text { Rationalize } \\
\text { denominators } \\
\text { as needed. }
\end{array} \\
& \tan 210^{\circ}=\frac{-1}{-\sqrt{3}}=\frac{\sqrt{3}}{3}
\end{aligned} \quad \cot 210^{\circ}=\frac{-\sqrt{3}}{-1}=\sqrt{3} \quad l
$$

Now Try Exercise 19.

Notice in Example 2 that the trigonometric function values of 210° correspond in absolute value to those of its reference angle 30°. The signs are different for the sine, cosine, secant, and cosecant functions because 210° is a quadrant III angle. These results suggest a shortcut for finding the trigonometric function values of a non-acute angle, using the reference angle. In Example 2, the reference angle for 210° is 30°. Using the trigonometric function values of 30°, and choosing the correct signs for a quadrant III angle, we obtain the same results.

We determine the values of the trigonometric functions for any nonquadrantal angle θ as follows.

Finding Trigonometric Function Values for Any Nonquadrantal Angle $\boldsymbol{\theta}$

Step 1 If $\theta>360^{\circ}$, or if $\theta<0^{\circ}$, then find a coterminal angle by adding or subtracting 360° as many times as needed to get an angle greater than 0° but less than 360°.

Step 2 Find the reference angle θ^{\prime}.
Step 3 Find the trigonometric function values for reference angle θ^{\prime}.
Step 4 Determine the correct signs for the values found in Step 3. (Use the table of signs in Section 1.4, if necessary.) This gives the values of the trigonometric functions for angle θ.

NOTE To avoid sign errors when finding the trigonometric function values of an angle, sketch it in standard position. Include a reference triangle complete with appropriate values for x, y, and r as done in Figure 12.

(a)

(b)

EXAMPLE 3 Finding Trigonometric Function Values Using Reference Angles

Find the exact value of each expression.
(a) $\cos \left(-240^{\circ}\right)$
(b) $\tan 675^{\circ}$

SOLUTION

(a) Since an angle of -240° is coterminal with an angle of

$$
-240^{\circ}+360^{\circ}=120^{\circ}, \quad(\text { Section } 1.1)
$$

the reference angle is $180^{\circ}-120^{\circ}=60^{\circ}$, as shown in Figure 13(a). Since the cosine is negative in quadrant II,

$$
\cos \left(-240^{\circ}\right)=\underset{\substack{\text { Coterminal } \\ \text { angle } \\ \cos \\ 120^{\circ}}}{\cos 60^{\circ}}=-\frac{1}{2} .
$$

(b) Begin by subtracting 360° to get a coterminal angle between 0° and 360°.

$$
675^{\circ}-360^{\circ}=315^{\circ}
$$

As shown in Figure 13(b), the reference angle is $360^{\circ}-315^{\circ}=45^{\circ}$. An angle of 315° is in quadrant IV, so the tangent will be negative.

$$
\begin{aligned}
\tan 675^{\circ} & =\tan 315^{\circ} & & \text { Coterminal angle } \\
& =-\tan 45^{\circ} & & \text { Reference angle; quadrant-based sign choice } \\
& =-1 & & \text { Evaluate. }
\end{aligned}
$$

Now Try Exercises 37 and 39.

EXAMPLE 4 Evaluating an Expression with Function Values of Special Angles

Evaluate $\cos 120^{\circ}+2 \sin ^{2} 60^{\circ}-\tan ^{2} 30^{\circ}$.
SOLUTION Use the values $\cos 120^{\circ}=-\frac{1}{2}, \sin 60^{\circ}=\frac{\sqrt{3}}{2}$, and $\tan 30^{\circ}=\frac{\sqrt{3}}{3}$.

$$
\begin{aligned}
\cos 120^{\circ}+2 \sin ^{2} 60^{\circ}-\tan ^{2} 30^{\circ} & =-\frac{1}{2}+2\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{\sqrt{3}}{3}\right)^{2} \begin{array}{l}
\text { Substitute } \\
\text { values. }
\end{array} \\
& =-\frac{1}{2}+2\left(\frac{3}{4}\right)-\frac{3}{9}, \quad \text { or } \quad \frac{2}{3} \quad \text { Simplify. }
\end{aligned}
$$

Now Try Exercise 47.

EXAMPLE 5 Using Coterminal Angles to Find Function Values

Evaluate each function by first expressing in terms of a function of an angle between 0° and 360°.
(a) $\cos 780^{\circ}$
(b) $\cot \left(-405^{\circ}\right)$

SOLUTION

(a) Subtract 360° as many times as necessary to get an angle between 0° and 360°, which gives the following.

$$
\begin{array}{rlrl}
\cos 780^{\circ} & =\cos \left(780^{\circ}-2 \cdot 360^{\circ}\right) & & \text { Subtract } 720^{\circ} \text {, which is } 2 \cdot 360^{\circ} . \\
& =\cos 60^{\circ}, \quad \text { or } \frac{1}{2} & \text { Multiply first, subtract, and evaluate. }
\end{array}
$$

(b) Add 360° twice to get $-405^{\circ}+2\left(360^{\circ}\right)=315^{\circ}$. This angle is located in quadrant IV, and its reference angle is 45°. The cotangent function is negative in quadrant IV.

$$
\cot \left(-405^{\circ}\right)=\cot 315^{\circ}=-\cot 45^{\circ}=-1
$$

Now Try Exercises 27 and 31.

Finding Angle Measures with Special Angles The ideas discussed in this section can also be used to find the measures of certain angles, given a trigonometric function value and an interval in which the angle must lie. We are most often interested in the interval $\left[0^{\circ}, 360^{\circ}\right)$.

EXAMPLE 6 Finding Angle Measures Given an Interval and a Function Value

Find all values of θ, if θ is in the interval $\left[0^{\circ}, 360^{\circ}\right)$ and $\cos \theta=-\frac{\sqrt{2}}{2}$.
SOLUTION Since $\cos \theta$ is negative, θ must lie in quadrant II or III. Since the absolute value of $\cos \theta$ is $\frac{\sqrt{2}}{2}$, the reference angle θ^{\prime} must be 45°. The two possible angles θ are sketched in Figure 14.

$$
\begin{array}{ll}
180^{\circ}-45^{\circ}=135^{\circ} & \text { Quadrant II angle } \theta \\
180^{\circ}+45^{\circ}=225^{\circ} & \text { Quadrant III angle } \theta
\end{array}
$$

Figure 14
Now Try Exercise 79.

2.2

Match each angle in Column I with its reference angle in Column II. Choices may be used once, more than once, or not at all. See Example 1.

II

1. 98°
2. 212°
A. 45°
B. 60°
3. -135°
4. -60°
C. 82°
D. 30°
5. 750°
6. 480°
E. 38°
F. 32°

Give a short explanation in Exercises 7-10.
7. In Example 2, why was 2 a good choice for r ? Could any other positive number have been used?
8. Explain how the reference angle is used to find values of the trigonometric functions for an angle in quadrant III.
9. Explain why two coterminal angles have the same values for their trigonometric functions.
10. Explain the process for determining the sign of the sine, cosine, and tangent functions of an angle with terminal side in quadrant II.

Complete the table with exact trigonometric function values. Do not use a calculator. See Examples 2 and 3.
11.

$\boldsymbol{\theta}$	$\sin \boldsymbol{\theta}$	$\cos \boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	$\boldsymbol{\operatorname { c o t } \theta}$	$\sec \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c s c } \boldsymbol { \theta }}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$			$\frac{2 \sqrt{3}}{3}$	2
45°			1	1		
60°		$\frac{1}{2}$	$\sqrt{3}$		2	
120°	$\frac{\sqrt{3}}{2}$		$-\sqrt{3}$			$\frac{2 \sqrt{3}}{3}$
135°	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$			$-\sqrt{2}$	$\sqrt{2}$
150°	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$			2	
210°	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\sqrt{3}$		-2	
240°	$-\frac{1}{2}$			-2	$-\frac{2 \sqrt{3}}{3}$	

Find exact values of the six trigonometric functions for each angle. Rationalize denominators when applicable. See Examples 2, 3, and 5.
19. 300°
20. 315°
21. 405°
22. 420°
23. 480°
24. 495°
25. 570°
26. 750°
27. 1305°
28. 1500°
29. -300°
30. -390°
31. -510°
32. -1020°
33. -1290°
34. -855°
35. -1860°
36. -2205°

Find the exact value of each expression. See Example 3.
37. $\sin 1305^{\circ}$
38. $\sin 1500^{\circ}$
39. $\cos \left(-510^{\circ}\right)$
40. $\tan \left(-1020^{\circ}\right)$
41. $\csc \left(-855^{\circ}\right)$
42. $\sec \left(-495^{\circ}\right)$
43. $\tan 3015^{\circ}$
44. $\cot 2280^{\circ}$

Evaluate each of the following. See Example 4.

45. $\sin ^{2} 120^{\circ}+\cos ^{2} 120^{\circ}$
46. $\sin ^{2} 225^{\circ}+\cos ^{2} 225^{\circ}$
47. $2 \tan ^{2} 120^{\circ}+3 \sin ^{2} 150^{\circ}-\cos ^{2} 180^{\circ}$
48. $\cot ^{2} 135^{\circ}-\sin 30^{\circ}+4 \tan 45^{\circ}$
49. $\sin ^{2} 225^{\circ}-\cos ^{2} 270^{\circ}+\tan ^{2} 60^{\circ}$
50. $\cot ^{2} 90^{\circ}-\sec ^{2} 180^{\circ}+\csc ^{2} 135^{\circ}$
51. $\cos ^{2} 60^{\circ}+\sec ^{2} 150^{\circ}-\csc ^{2} 210^{\circ}$
52. $\cot ^{2} 135^{\circ}+\tan ^{4} 60^{\circ}-\sin ^{4} 180^{\circ}$

Determine whether each statement is true or false. If false, tell why. See Example 4.
53. $\cos \left(30^{\circ}+60^{\circ}\right)=\cos 30^{\circ}+\cos 60^{\circ}$
54. $\sin 30^{\circ}+\sin 60^{\circ}=\sin \left(30^{\circ}+60^{\circ}\right)$
55. $\cos 60^{\circ}=2 \cos 30^{\circ}$
56. $\cos 60^{\circ}=2 \cos ^{2} 30^{\circ}-1$
57. $\sin ^{2} 45^{\circ}+\cos ^{2} 45^{\circ}=1$
58. $\tan ^{2} 60^{\circ}+1=\sec ^{2} 60^{\circ}$
59. $\cos \left(2 \cdot 45^{\circ}\right)=2 \cos 45^{\circ}$
60. $\sin \left(2 \cdot 30^{\circ}\right)=2 \sin 30^{\circ} \cdot \cos 30^{\circ}$

Concept Check Find the coordinates of the point P on the circumference of each circle. (Hint: Sketch x - and y-axes, and interpret so that the angle is in standard position.)
61.

62.

63. Concept Check Does there exist an angle θ with the function values $\cos \theta=0.6$ and $\sin \theta=-0.8$?
64. Concept Check Does there exist an angle θ with the function values $\cos \theta=\frac{2}{3}$ and $\sin \theta=\frac{3}{4} ?$

Suppose θ is in the interval $\left(90^{\circ}, 180^{\circ}\right)$. Find the sign of each of the following.
65. $\cos \frac{\theta}{2}$
66. $\sin \frac{\theta}{2}$
67. $\sec \left(\theta+180^{\circ}\right)$
68. $\cot \left(\theta+180^{\circ}\right)$
69. $\sin (-\theta)$
70. $\cos (-\theta)$
71. Explain why $\sin \theta=\sin \left(\theta+n \cdot 360^{\circ}\right)$ is true for any angle θ and any integer n.
72. Explain why $\cos \theta=\cos \left(\theta+n \cdot 360^{\circ}\right)$ is true for any angle θ and any integer n.
73. Explain why $\tan \theta=\tan \left(\theta+n \cdot 180^{\circ}\right)$ is true for any angle θ and any integer n.

Concept Check Work Exercises 74-77.

74. Without using a calculator, determine which of the following numbers is closest to $\cos 115^{\circ}:-0.6,-0.4,0,0.4$, or 0.6 .
75. Without using a calculator, determine which of the following numbers is closest to $\sin 115^{\circ}:-0.9,-0.1,0,0.1$, or 0.9 .
76. For what angles θ between 0° and 360° is $\cos \theta=-\sin \theta$ true?
77. For what angles θ between 0° and 360° is $\cos \theta=\sin \theta$ true?
78. (Modeling) Length of a Sag Curve When a highway goes downhill and then uphill, it is said to have a sag curve. Sag curves are designed so that at night, headlights shine sufficiently far down the road to allow a safe stopping distance. See the figure.

The minimum length L of a sag curve is determined by the height h of the car's headlights above the pavement, the downhill grade $\theta_{1}<0^{\circ}$, the uphill grade $\theta_{2}>0^{\circ}$, and the safe stopping distance S for a given speed limit. In addition, L is dependent on the vertical alignment of the headlights. Headlights are usually pointed upward at a slight angle α above the horizontal of the car. Using these quantities, for a 55 mph speed limit, L can be modeled by the formula

$$
L=\frac{\left(\theta_{2}-\theta_{1}\right) S^{2}}{200(h+S \tan \alpha)}
$$

where $S<L$. (Source: Mannering, F. and W. Kilareski, Principles of Highway Engineering and Traffic Analysis, Second Edition, John Wiley and Sons.)
(a) Compute L if $h=1.9 \mathrm{ft}, \alpha=0.9^{\circ}, \theta_{1}=-3^{\circ}, \theta_{2}=4^{\circ}$, and $S=336 \mathrm{ft}$.
(b) Repeat part (a) with $\alpha=1.5^{\circ}$.
(c) How does the alignment of the headlights affect the value of L ?

Find all values of θ, if θ is in the interval $\left[0^{\circ}, 360^{\circ}\right)$ and has the given function value. See Example 6.
79. $\sin \theta=\frac{1}{2}$
80. $\cos \theta=\frac{\sqrt{3}}{2}$
81. $\tan \theta=-\sqrt{3}$
82. $\sec \theta=-\sqrt{2}$
83. $\cos \theta=\frac{\sqrt{2}}{2}$
84. $\cot \theta=-\frac{\sqrt{3}}{3}$
85. $\csc \theta=-2$
86. $\sin \theta=-\frac{\sqrt{3}}{2}$
87. $\tan \theta=\frac{\sqrt{3}}{3}$
88. $\cos \theta=-\frac{1}{2}$
89. $\csc \theta=-\sqrt{2}$
90. $\cot \theta=-1$

2.3 Finding Trigonometric Function Values Using a Calculator

- Finding Function Values Using a Calculator
- Finding Angle Measures Using a Calculator

Degree mode
Figure 15

These screens support the results of Example 1. We entered the angle measure in degrees and minutes for part (a).

Finding Function Values Using a Calculator Calculators are capable of finding trigonometric function values. For example, the values of $\cos \left(-240^{\circ}\right)$ and $\tan 675^{\circ}$ in Example 3 of Section 2.2 are found with a calculator as shown in Figure 15.

CAUTION When evaluating trigonometric functions of angles given in

 degrees, remember that the calculator must be set in degree mode. Get in the habit of always starting work by entering $\sin 90$. If the displayed answer is 1 , then the calculator is set for degree measure. Remember that most calculator values of trigonometric functions are approximations.
EXAMPLE 1 Finding Function Values with a Calculator

Approximate the value of each expression.
(a) $\sin 49^{\circ} 12^{\prime}$
(b) $\sec 97.977^{\circ}$
(c) $\frac{1}{\cot 51.4283^{\circ}}$
(d) $\sin \left(-246^{\circ}\right)$

SOLUTION

(a) $49^{\circ} 12^{\prime}=49 \frac{12^{\circ}}{60}=49.2^{\circ}$

Convert $49^{\circ} 12^{\prime}$ to decimal
degrees. (Section 1.1)
$\sin 49^{\circ} 12^{\prime}=\sin 49.2^{\circ} \approx 0.75699506$ To eight decimal places
(b) Calculators do not have secant keys. However, $\sec \theta=\frac{1}{\cos \theta}$ for all angles θ where $\cos \theta \neq 0$. Therefore, we use the reciprocal of the cosine function to evaluate the secant function.

$$
\sec 97.977^{\circ}=\frac{1}{\cos 97.977^{\circ}} \approx-7.20587921
$$

(c) Use the reciprocal identity $\tan \theta=\frac{1}{\cot \theta}$ to simplify the expression first.

$$
\frac{1}{\cot 51.4283^{\circ}}=\tan 51.4283^{\circ} \approx 1.25394815
$$

(d) $\sin \left(-246^{\circ}\right) \approx 0.91354546$

Figure 16

Figure 17

Finding Angle Measures Using a Calculator To find the measure of an angle having a certain trigonometric function value, graphing calculators have three inverse functions (denoted $\boldsymbol{\operatorname { s i n }}^{-1}, \cos ^{-1}$, and $\boldsymbol{\operatorname { t a n }}^{-1}$). If \boldsymbol{x} is an appropriate number, then $\sin ^{-1} x, \cos ^{-1} x$, or $\tan ^{-1} x$ gives the measure of an angle whose sine, cosine, or tangent, respectively, is \boldsymbol{x}. For applications in this chapter, these functions will return angles in quadrant I.

EXAMPLE 2 Using Inverse Trigonometric Functions to Find Angles

Use a calculator to find an angle θ in the interval $\left[0^{\circ}, 90^{\circ}\right]$ that satisfies each condition.
(a) $\sin \theta \approx 0.96770915$
(b) $\sec \theta \approx 1.0545829$

SOLUTION

(a) Using degree mode and the inverse sine function, we find that an angle θ having sine value 0.96770915 is about 75.399995°. (There are infinitely many such angles, but the calculator gives only this one.)

$$
\theta \approx \sin ^{-1} 0.96770915 \approx 75.399995^{\circ}
$$

See Figure 16.
(b) Use the identity $\cos \theta=\frac{1}{\sec \theta}$. If $\sec \theta \approx 1.0545829$, then

$$
\cos \theta \approx \frac{1}{1.0545829}
$$

Now, find θ using the inverse cosine function. See Figure 16.

$$
\theta \approx \cos ^{-1}\left(\frac{1}{1.0545829}\right) \approx 18.514704^{\circ}
$$

Now Try Exercises 25 and 29.

CAUTION Compare Examples 1(b) and 2(b). To determine the secant of an angle, as in Example 1(b), we find the reciprocal of the cosine of the angle. To determine an angle with a given secant value, as in Example 2(b), we find the inverse cosine of the reciprocal of the value.

EXAMPLE 3 Finding Grade Resistance

When an automobile travels uphill or downhill on a highway, it experiences a force due to gravity. This force F in pounds is the grade resistance and is modeled by the equation

$$
F=W \sin \theta
$$

where θ is the grade and W is the weight of the automobile. If the automobile is moving uphill, then $\theta>0^{\circ}$; if downhill, then $\theta<0^{\circ}$. See Figure 17. (Source: Mannering, F. and W. Kilareski, Principles of Highway Engineering and Traffic Analysis, Second Edition, John Wiley and Sons.)
(a) Calculate F to the nearest 10 lb for a $2500-\mathrm{lb}$ car traveling an uphill grade with $\theta=2.5^{\circ}$.
(b) Calculate F to the nearest 10 lb for a 5000-lb truck traveling a downhill grade with $\theta=-6.1^{\circ}$.
(c) Calculate F for $\theta=0^{\circ}$ and $\theta=90^{\circ}$. Do these answers agree with your intuition?

SOLUTION

(a) $F=W \sin \theta=2500 \sin 2.5^{\circ} \approx 110 \mathrm{lb}$
(b) $F=W \sin \theta=5000 \sin \left(-6.1^{\circ}\right) \approx-530 \mathrm{lb}$ F is negative because the truck is moving downhill.
(c) $F=W \sin \theta=W \sin 0^{\circ}=W(0)=0 \mathrm{lb}$ $F=W \sin \theta=W \sin 90^{\circ}=W(1)=W \mathrm{lb}$

This agrees with intuition because if $\theta=0^{\circ}$, then there is level ground and gravity does not cause the vehicle to roll. If θ were 90°, the road would be vertical and the full weight of the vehicle would be pulled downward by gravity, so $F=W$.

Now Try Exercises 59 and 61.

2.3 Exercises

Concept Check Fill in the blanks to complete each statement.

1. The CAUTION at the beginning of this section suggests verifying that a calculator is in degree mode by finding
($\sin / \cos / \mathrm{tan}$)
then the display should be \qquad _.
2. When a scientific or graphing calculator is used to find a trigonometric function value, in most cases the result is an
(exact/approximate)
3. To find values of the cotangent, secant, and cosecant functions with a calculator, it is necessary to find the \qquad of the \qquad function value.
4. To determine the cosecant of an angle, we find the reciprocal of the \qquad of the angle, but to determine the angle with a given cosecant value, we find the
\qquad sine of the reciprocal of the value.

Use a calculator to find a decimal approximation for each value. Give as many digits as your calculator displays. In Exercises 15-22, simplify the expression before using the calculator. See Example 1.
5. $\sin 38^{\circ} 42^{\prime}$
6. $\cos 41^{\circ} 24^{\prime}$
7. $\sec 13^{\circ} 15^{\prime}$
8. $\csc 145^{\circ} 45^{\prime}$
9. $\cot 183^{\circ} 48^{\prime}$
10. $\tan 421^{\circ} 30^{\prime}$
11. $\sin \left(-312^{\circ} 12^{\prime}\right)$
12. $\tan \left(-80^{\circ} 06^{\prime}\right)$
13. $\csc \left(-317^{\circ} 36^{\prime}\right)$
14. $\cot \left(-512^{\circ} 20^{\prime}\right)$
15. $\frac{1}{\cot 23.4^{\circ}}$
16. $\frac{1}{\sec 14.8^{\circ}}$
17. $\frac{\cos 77^{\circ}}{\sin 77^{\circ}}$
18. $\frac{\sin 33^{\circ}}{\cos 33^{\circ}}$
19. $\cot \left(90^{\circ}-4.72^{\circ}\right)$
20. $\cos \left(90^{\circ}-3.69^{\circ}\right)$
21. $\frac{1}{\csc \left(90^{\circ}-51^{\circ}\right)}$
22. $\frac{1}{\tan \left(90^{\circ}-22^{\circ}\right)}$

Find a value of θ in the interval $\left[0^{\circ}, 90^{\circ}\right]$ that satisfies each statement. Write each answer in decimal degrees to six decimal places as needed. See Example 2.
23. $\tan \theta=1.4739716$
24. $\tan \theta=6.4358841$
25. $\sin \theta=0.27843196$
26. $\sin \theta=0.84802194$
27. $\cot \theta=1.2575516$
28. $\csc \theta=1.3861147$
29. $\sec \theta=2.7496222$
30. $\sec \theta=1.1606249$
31. $\cos \theta=0.70058013$
32. $\cos \theta=0.85536428$
33. $\csc \theta=4.7216543$
34. $\cot \theta=0.21563481$
35. A student, wishing to use a calculator to verify the value of $\sin 30^{\circ}$, enters the information correctly but gets a display of -0.98803162 . He knows that the display should be 0.5 , and he also knows that his calculator is in good working order. What do you think is the problem?36. At one time, a certain make of calculator did not allow the input of angles outside of a particular interval when finding trigonometric function values. For example, trying to find $\cos 2000^{\circ}$ using the methods of this section gave an error message, despite the fact that $\cos 2000^{\circ}$ can be evaluated. Explain how you would use this calculator to find $\cos 2000^{\circ}$.
37. What value of A between 0° and 90° will produce the output in the graphing calculator screen?
$\operatorname{t.an}(\mathrm{A})$
1.482560969
38. What value of A will produce the output (in degrees) in the graphing calculator screen?

Use a calculator to evaluate each expression.
39. $\sin 35^{\circ} \cos 55^{\circ}+\cos 35^{\circ} \sin 55^{\circ}$
41. $\sin ^{2} 36^{\circ}+\cos ^{2} 36^{\circ}$
43. $\cos 75^{\circ} 29^{\prime} \cos 14^{\circ} 31^{\prime}-\sin 75^{\circ} 29^{\prime} \sin 14^{\circ} 31^{\prime}$
44. $\sin 28^{\circ} 14^{\prime} \cos 61^{\circ} 46^{\prime}+\cos 28^{\circ} 14^{\prime} \sin 61^{\circ} 46^{\prime}$

Work each problem.

45. Measuring Speed by Radar Any offset between a stationary radar gun and a moving target creates a "cosine effect" that reduces the radar reading by the cosine of the angle between the gun and the vehicle. That is, the radar speed reading is the product of the actual speed and the cosine of the angle. Find the radar readings, to the nearest hundredth, for Auto A and Auto B shown in the figure. (Source: Fischetti, M., "Working Knowledge," Scientific American.)

46. Measuring Speed by Radar In Exercise 45, we saw that the speed reported by a radar gun is reduced by the cosine of angle θ, shown in the figure. In the figure, r represents reduced speed and a represents the actual speed. Use the figure to show why this "cosine effect" occurs.

Use a calculator to decide whether each statement is true or false. It may be that a true statement will lead to results that differ in the last decimal place due to rounding error.
47. $\sin 10^{\circ}+\sin 10^{\circ}=\sin 20^{\circ}$
48. $\cos 40^{\circ}=2 \cos 20^{\circ}$
49. $\sin 50^{\circ}=2 \sin 25^{\circ} \cos 25^{\circ}$
50. $\cos 70^{\circ}=2 \cos ^{2} 35^{\circ}-1$
51. $\cos 40^{\circ}=1-2 \sin ^{2} 80^{\circ}$
52. $2 \cos 38^{\circ} 22^{\prime}=\cos 76^{\circ} 44^{\prime}$
53. $\sin 39^{\circ} 48^{\prime}+\cos 39^{\circ} 48^{\prime}=1$
55. $1+\cot ^{2} 42.5^{\circ}=\csc ^{2} 42.5^{\circ}$
54. $\frac{1}{2} \sin 40^{\circ}=\sin \left[\frac{1}{2}\left(40^{\circ}\right)\right]$
56. $\tan ^{2} 72^{\circ} 25^{\prime}+1=\sec ^{2} 72^{\circ} 25^{\prime}$
57. $\cos \left(30^{\circ}+20^{\circ}\right)=\cos 30^{\circ} \cos 20^{\circ}-\sin 30^{\circ} \sin 20^{\circ}$
58. $\cos \left(30^{\circ}+20^{\circ}\right)=\cos 30^{\circ}+\cos 20^{\circ}$

(Modeling) Grade Resistance See Example 3 to work Exercises 59-65.

59. Find the grade resistance, to the nearest ten pounds, for a $2100-\mathrm{lb}$ car traveling on a 1.8° uphill grade.
60. Find the grade resistance, to the nearest ten pounds, for a $2400-\mathrm{lb}$ car traveling on a -2.4° downhill grade.
61. A $2600-\mathrm{lb}$ car traveling downhill has a grade resistance of -130 lb . Find the angle of the grade to the nearest tenth of a degree.
62. A $3000-\mathrm{lb}$ car traveling uphill has a grade resistance of 150 lb . Find the angle of the grade to the nearest tenth of a degree.
63. A car traveling on a 2.7° uphill grade has a grade resistance of 120 lb . Determine the weight of the car to the nearest hundred pounds.
64. A car traveling on a -3° downhill grade has a grade resistance of -145 lb . Determine the weight of the car to the nearest hundred pounds.
65. Which has the greater grade resistance: a $2200-\mathrm{lb}$ car on a 2° uphill grade or a $2000-\mathrm{lb}$ car on a 2.2° uphill grade?
66. Highway Grades Complete the table for the values of $\sin \theta, \tan \theta$, and $\frac{\pi \theta}{180}$ to four decimal places.

θ	0°	0.5°	1°	1.5°	2°	2.5°	3°	3.5°	4°
$\sin \theta$									
$\tan \theta$									
$\frac{\pi \theta}{180}$									

(a) How do $\sin \theta, \tan \theta$, and $\frac{\pi \theta}{180}$ compare for small grades θ ?
(b) Highway grades are usually small. Give two approximations of the grade resistance $F=W \sin \theta$ that do not use the sine function.
(c) A stretch of highway has a 4-ft vertical rise for every 100 ft of horizontal run. Use an approximation from part (b) to estimate the grade resistance, to the nearest pound, for a $2000-\mathrm{lb}$ car on this stretch of highway.
(d) Without evaluating a trigonometric function, estimate the grade resistance, to the nearest nearest pound, for an $1800-\mathrm{lb}$ car on a stretch of highway that has a 3.75° grade.

(Modeling) Solve each problem.

67. Design of Highway Curves When highway curves are designed, the outside of the curve is often slightly elevated or inclined above the inside of the curve. See the figure. This inclination is the superelevation. For safety reasons, it is important that both the curve's radius and superelevation be correct for a given speed limit. If an automobile is traveling at velocity V (in feet per second), the safe radius R for a curve with superelevation θ is modeled by the formula

$$
R=\frac{V^{2}}{g(f+\tan \theta)},
$$

where f and g are constants. (Source: Mannering, F. and W. Kilareski, Principles of Highway Engineering and Traffic Analysis, Second Edition, John Wiley and Sons.)

(a) A roadway is being designed for automobiles traveling at 45 mph . If $\theta=3^{\circ}$, $g=32.2$, and $f=0.14$, calculate R to the nearest foot. (Hint: $45 \mathrm{mph}=66 \mathrm{ft}$ per sec)
(b) Determine the radius of the curve, to the nearest foot, if the speed in part (a) is increased to 70 mph .
(c) How would increasing the angle θ affect the results? Verify your answer by repeating parts (a) and (b) with $\theta=4^{\circ}$.
68. Speed Limit on a Curve Refer to Exercise 67 and use the same values for f and g. A highway curve has radius $R=1150 \mathrm{ft}$ and a superelevation of $\theta=2.1^{\circ}$. What should the speed limit (in miles per hour) be for this curve?
(Modeling) Speed of Light When a light ray travels from one medium, such as air, to another medium, such as water or glass, the speed of the light changes, and the light ray is bent, or refracted, at the boundary between the two media. (This is why objects under water appear to be in a different position from where they really are.) It can be shown in physics that these changes are related by Snell's law

$$
\frac{c_{1}}{c_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}}
$$

where c_{1} is the speed of light in the first medium, c_{2} is the speed of light in the second medium, and θ_{1} and θ_{2} are the angles shown in the figure. In Exercises 69 and 70, assume that $c_{1}=3 \times 10^{8} \mathrm{~m}$ per sec.
69. Find the speed of light in the second medium for each of the following.
(a) $\theta_{1}=46^{\circ}, \theta_{2}=31^{\circ}$
(b) $\theta_{1}=39^{\circ}, \theta_{2}=28^{\circ}$
70. Find θ_{2} for each of the following values of θ_{1} and c_{2}. Round to the nearest degree.
(a) $\theta_{1}=40^{\circ}, c_{2}=1.5 \times 10^{8} \mathrm{~m}$ per sec
(b) $\theta_{1}=62^{\circ}, c_{2}=2.6 \times 10^{8} \mathrm{~m}$ per sec
(Modeling) Fish's View of the World The figure in the margin shows a fish's view of the world above the surface of the water. (Source: Walker, J., "The Amateur Scientist," Scientific American.) Suppose that a light ray comes from the horizon, enters the water, and strikes the fish's eye.
71. Assume that this ray gives a value of 90° for angle θ_{1} in the formula for Snell's law. (In a practical situation, this angle would probably be a little less than 90°.) The speed of light in water is about $2.254 \times 10^{8} \mathrm{~m}$ per sec. Find angle θ_{2} to the nearest tenth.
72. Refer to Exercise 71. Suppose an object is located at a true angle of 29.6° above the horizon. Find the apparent angle above the horizon to a fish.
73. (Modeling) Braking Distance If aerodynamic resistance is ignored, the braking distance D (in feet) for an automobile to change its velocity from V_{1} to V_{2} (feet per second) can be modeled using the following equation.

$$
D=\frac{1.05\left(V_{1}^{2}-V_{2}^{2}\right)}{64.4\left(K_{1}+K_{2}+\sin \theta\right)}
$$

K_{1} is a constant determined by the efficiency of the brakes and tires, K_{2} is a constant determined by the rolling resistance of the automobile, and θ is the grade of the highway. (Source: Mannering, F. and W. Kilareski, Principles of Highway Engineering and Traffic Analysis, Second Edition, John Wiley and Sons.)
(a) Compute the number of feet required to slow a car from 55 mph to 30 mph while traveling uphill with a grade of $\theta=3.5^{\circ}$. Let $K_{1}=0.4$ and $K_{2}=0.02$. (Hint: Change miles per hour to feet per second.)
(b) Repeat part (a) with $\theta=-2^{\circ}$.
(c) How is braking distance affected by grade θ ? Does this agree with your driving experience?
74. (Modeling) Car's Speed at Collision Refer to Exercise 73. An automobile is traveling at 90 mph on a highway with a downhill grade of $\theta=-3.5^{\circ}$. The driver sees a stalled truck in the road 200 ft away and immediately applies the brakes. Assuming that a collision cannot be avoided, how fast (in miles per hour) is the car traveling when it hits the truck? (Use the same values for K_{1} and K_{2} as in Exercise 73.)

Quiz (Sections 2.1-2.3)

1. Find the exact values of the six trigonometric functions for angle A in the figure.

2. Find exact values of the trigonometric functions to complete the table.

$\boldsymbol{\theta}$	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$	$\sec \theta$	$\csc \theta$
30°						
45°						
60°						

3. Find the exact value of each variable in the figure.

4. Area of a Solar Cell A solar cell converts the energy of sunlight directly into electrical energy. The amount of energy a cell produces depends on its area. Suppose a solar cell is hexagonal, as shown in the figure on the left below. Express its area \mathscr{A} in terms of $\sin \theta$ and any side x. (Hint: Consider one of the six equilateral triangles from the hexagon. See the figure on the right below.) (Source: Kastner, B., Space Mathematics, NASA.)

Find exact values of the six trigonometric functions for each angle. Rationalize denominators when applicable.
5. 135°
6. -150°
7. 1020°

Find all values of θ in the interval $\left[0^{\circ}, 360^{\circ}\right)$ that have the given function value.
8. $\sin \theta=\frac{\sqrt{3}}{2}$
9. $\sec \theta=-\sqrt{2}$

Use a calculator to approximate each value. Give as many digits as your calculator displays.
10. $\sin 42^{\circ} 18^{\prime}$
11. $\sec \left(-212^{\circ} 12^{\prime}\right)$

Use a calculator to find the value of θ in the interval $\left[0^{\circ}, 90^{\circ}\right]$ that satisfies each statement. Write each answer in decimal degrees to six decimal places as needed.
12. $\tan \theta=2.6743210$
13. $\csc \theta=2.3861147$

Determine whether each statement is true or false.
14. $\sin \left(60^{\circ}+30^{\circ}\right)=\sin 60^{\circ}+\sin 30^{\circ}$
15. $\tan \left(90^{\circ}-35^{\circ}\right)=\cot 35^{\circ}$

2.4 Solving Right Triangles

- Significant Digits
- Solving Triangles
- Angles of Elevation or Depression

Figure 18

Significant Digits A number that represents the result of counting, or a number that results from theoretical work and is not the result of measurement, is an exact number. There are 50 states in the United States. In this statement, 50 is an exact number.

Most values obtained for trigonometric applications are measured values that are not exact. Suppose we quickly measure a room as 15 ft by 18 ft . See Figure 18. To calculate the length of a diagonal of the room, we can use the Pythagorean theorem.

$$
\begin{aligned}
d^{2} & =15^{2}+18^{2} & & (\text { Appendix B) } \\
d^{2} & =549 & & \text { Apply the exponents and add. } \\
d & =\sqrt{549} & & \text { Square root property (Appendix A); } \\
d & \approx 23.430749 & & \text { choose the positive root. }
\end{aligned}
$$

Should this answer be given as the length of the diagonal of the room? Of course not. The number 23.430749 contains six decimal places, while the original data of 15 ft and 18 ft are accurate only to the nearest foot. In practice, the results of a calculation can be no more accurate than the least accurate number in the calculation. Thus, we should indicate that the diagonal of the 15 -by-18-ft room is approximately 23 ft .

If a wall measured to the nearest foot is 18 ft long, this actually means that the wall has length between 17.5 ft and 18.5 ft . If the wall is measured more accurately as 18.3 ft long, then its length is really between 18.25 ft and 18.35 ft . The results of physical measurement are only approximately accurate and depend on the precision of the measuring instrument as well as the aptness of the observer. The digits obtained by actual measurement are called significant digits. The measurement 18 ft is said to have two significant digits; 18.3 ft has three significant digits.

In the following numbers, the significant digits are identified in color.

$$
\begin{array}{lllllll}
408 & 21.5 & 18.00 & 6.700 & 0.0025 & 0.09810 & 7300
\end{array}
$$

Figure 19

Figure 20

Notice that 18.00 has four significant digits. The zeros in this number represent measured digits accurate to the nearest hundredth. The number 0.0025 has only two significant digits, 2 and 5, because the zeros here are used only to locate the decimal point. The number 7300 causes some confusion because it is impossible to determine whether the zeros are measured values. The number 7300 may have two, three, or four significant digits. When presented with this situation, we assume that the zeros are not significant, unless the context of the problem indicates otherwise.

To determine the number of significant digits for answers in applications of angle measure, use the following table.

Angle Measure to Nearest	Examples	Answer to Number of Significant Digits
Degree	$62^{\circ}, 36^{\circ}$	two
Ten minutes, or nearest tenth of a degree	$52^{\circ} 30^{\prime}, 60.4^{\circ}$	three
Minute, or nearest hundredth of a degree	$81^{\circ} 48^{\prime}, 71.25^{\circ}$	four
Ten seconds, or nearest thousandth of a degree	$10^{\circ} 52^{\prime} 20^{\prime \prime}, 21.264^{\circ}$	five

To perform calculations with measured numbers, start by identifying the number with the least number of significant digits. Round your final answer to the same number of significant digits as this number. Remember that your answer is no more accurate than the least accurate number in your calculation.

Solving Triangles To solve a triangle means to find the measures of all the angles and sides of the triangle. As shown in Figure 19, we use a to represent the length of the side opposite angle A, b for the length of the side opposite angle B, and so on. In a right triangle, the letter c is reserved for the hypotenuse.

EXAMPLE 1 Solving a Right Triangle Given an Angle and a Side

Solve right triangle $A B C$, if $A=34^{\circ} 30^{\prime}$ and $c=12.7 \mathrm{in}$. See Figure 20.
SOLUTION To solve the triangle, find the measures of the remaining sides and angles. To find the value of a, use a trigonometric function involving the known values of angle A and side c. Since the sine of angle A is given by the quotient of the side opposite A and the hypotenuse, use $\sin A$.

$$
\begin{aligned}
\sin A & =\frac{a}{c} & & \sin A=\frac{\text { side opposite }}{\text { hypotenuse }}(\text { Section 2.1) } \\
\sin 34^{\circ} 30^{\prime} & =\frac{a}{12.7} & & A=34^{\circ} 30^{\prime}, c=12.7 \\
a & =12.7 \sin 34^{\circ} 30^{\prime} & & \text { Multiply by } 12.7 \text { and rewrite. } \\
a & =12.7 \sin 34.5^{\circ} & & \text { Convert to decimal degrees. (Section 1.1) } \\
a & \approx 12.7(0.56640624) & & \text { Use a calculator. } \\
a & \approx 7.19 \mathrm{in} . & & \text { Three significant digits }
\end{aligned}
$$

Assuming that $34^{\circ} 30^{\prime}$ is given to the nearest ten minutes, we rounded the answer to three significant digits.

To find the value of b, we could substitute the value of a just calculated and the given value of c in the Pythagorean theorem. It is better, however, to use the information given in the problem rather than a result just calculated.

LOOKING AHEAD TO CALCULUS

The derivatives of the parametric equations $x=f(t)$ and $y=g(t)$ often represent the rate of change of physical quantities, such as velocities. When x and y are related by an equation, the derivatives are related rates because a change in one causes a related change in the other. Determining these rates in calculus often requires solving a right triangle.

If an error is made in finding a, then b also would be incorrect. And, rounding more than once may cause the result to be less accurate. To find b, use $\cos A$.

$$
\begin{aligned}
\cos A & =\frac{b}{c} & & \cos A=\frac{\text { side adjacent }}{\text { hypotenuse }} \text { (Section 2.1) } \\
\cos 34^{\circ} 30^{\prime} & =\frac{b}{12.7} & & A=34^{\circ} 30^{\prime}, c=12.7 \\
b & =12.7 \cos 34^{\circ} 30^{\prime} & & \text { Multiply by } 12.7 \text { and rewrite. } \\
b & \approx 10.5 \mathrm{in} . & & \text { Three significant digits }
\end{aligned}
$$

Once b is found, the Pythagorean theorem can be used to verify the results. All that remains to solve triangle $A B C$ is to find the measure of angle B.

$$
\begin{array}{ll}
B=90^{\circ}-A & \begin{array}{l}
\text { Use } A+B=90^{\circ}, \text { solved for } B . \\
\\
\text { (Section 1.1) }
\end{array} \\
B=89^{\circ} 60^{\prime}-34^{\circ} 30^{\prime} & \text { Rewrite } 90^{\circ} . \text { Substitute } 34^{\circ} 30^{\prime} \text { for } A . \\
B=55^{\circ} 30^{\prime} & \text { Subtract degrees and minutes separately. }
\end{array}
$$

Now Try Exercise 21.

NOTE In Example 1, we could have found the measure of angle B first and then used the trigonometric function values of B to find the unknown sides. A right triangle can usually be solved in several ways, each producing the correct answer. To maintain accuracy, always use given information as much as possible, and avoid rounding in intermediate steps.

EXAMPLE 2 Solving a Right Triangle Given Two Sides

Solve right triangle $A B C$, if $a=29.43 \mathrm{~cm}$ and $c=53.58 \mathrm{~cm}$.
SOLUTION We draw a sketch showing the given information, as in Figure 21. One way to begin is to find angle A by using the sine function.

$$
\begin{aligned}
\sin A & =\frac{a}{c} & & \sin A=\frac{\text { side opposite }}{\text { hypotenuse }} \\
\sin A & =\frac{29.43}{53.58} & & a=29.43, c=53.58 \\
\sin A & \approx 0.5492721165 & & \text { Use a calculator. } \\
A & \approx \sin ^{-1}(0.5492721165) & & \text { Use the inverse sine function. (Section 2.3) } \\
A & \approx 33.32^{\circ}, \quad \text { or } 33^{\circ} 19^{\prime} & & \text { Four significant digits }
\end{aligned}
$$

The measure of B is approximately

$$
90^{\circ}-33^{\circ} 19^{\prime}=56^{\circ} 41^{\prime} . \quad 90^{\circ}=89^{\circ} 60^{\prime} \text { (Section 1.1) }
$$

We now find b from the Pythagorean theorem.

$$
\begin{array}{rlrl}
b^{2} & =c^{2}-a^{2} & & \text { Pythagorean theorem solved for } b^{2} \text { (Appendix B) } \\
b^{2} & =53.58^{2}-29.43^{2} & c=53.58, a=29.43 \\
b & =\sqrt{2004.6915} & & \text { Simplify on the right; square root property } \\
b & \approx 44.77 \mathrm{~cm} & \begin{array}{cc}
\text { Choose the } \\
\text { positive square root. }
\end{array} &
\end{array}
$$

George Polya (1887-1985)
Polya, a native of Budapest, Hungary, wrote more than 250 papers and a number of books. He proposed a general outline for solving applied problems in his classic book How to Solve It.

Figure 23

Angles of Elevation or Depression In applications of right triangles, the angle of elevation from point X to point Y (above X) is the acute angle formed by ray $X Y$ and a horizontal ray with endpoint at X. See Figure 22(a). The angle of depression from point X to point Y (below X) is the acute angle formed by ray $X Y$ and a horizontal ray with endpoint X. See Figure 22(b).

(a)

(b)

Figure 22

CAUTION Be careful when interpreting the angle of depression. Both the angle of elevation and the angle of depression are measured between the line of sight and a horizontal line.

To solve applied trigonometry problems, follow the same procedure as solving a triangle. Drawing a sketch and labeling it correctly in Step 1 is crucial.

Solving an Applied Trigonometry Problem

Step 1 Draw a sketch, and label it with the given information. Label the quantity to be found with a variable.
Step 2 Use the sketch to write an equation relating the given quantities to the variable.
Step 3 Solve the equation, and check that your answer makes sense.

EXAMPLE 3 Finding a Length Given the Angle of Elevation

Pat Porterfield knows that when she stands 123 ft from the base of a flagpole, the angle of elevation to the top of the flagpole is $26^{\circ} 40^{\prime}$. If her eyes are 5.30 ft above the ground, find the height of the flagpole.

SOLUTION

Step 1 The length of the side adjacent to Pat is known, and the length of the side opposite her must be found. See Figure 23.

Step 2 The tangent ratio involves the given values. Write an equation.

$$
\begin{aligned}
\tan A & =\frac{\text { side opposite }}{\text { side adjacent }} & & \text { Tangent ratio (Section 2.1) } \\
\tan 26^{\circ} 40^{\prime} & =\frac{a}{123} & & A=26^{\circ} 40^{\prime} \text {, side adjacent }=123 \\
a & =123 \tan 26^{\circ} 40^{\prime} & & \text { Multiply by } 123 \text { and rewrite. } \\
a & \approx 123(0.50221888) & & \text { Use a calculator. } \\
a & \approx 61.8 \mathrm{ft} & & \text { Three significant digits }
\end{aligned}
$$

The height of the flagpole is
$61.8+5.30=67.1 \mathrm{ft} . \quad$ Pat's eyes are 5.30 ft above the ground.

EXAMPLE 4 Finding an Angle of Depression

From the top of a $210-\mathrm{ft}$ cliff, David observes a lighthouse that is 430 ft offshore. Find the angle of depression from the top of the cliff to the base of the lighthouse.

SOLUTION As shown Figure 24, the angle of depression is measured from a horizontal line down to the base of the lighthouse. The angle of depression and angle B, in the right triangle shown, are alternate interior angles whose measures are equal. We use the tangent ratio to solve for angle B.

Figure 24

$$
\tan B=\frac{210}{430}, \quad \text { so } \quad B=\tan ^{-1} \frac{210}{430} \approx 26^{\circ} \quad \text { Angle of depression }
$$

Now Try Exercise 53.

2.4 Exercises

Concept Check Refer to the discussion of accuracy and significant digits in this section to work Exercises 1-8.

1. Leading NFL Receiver As of the end of the 2009 National Football League season, Jerry Rice was the leading career receiver with 22,895 yd. State the range represented by this number. (Source: www.nfl.com)
2. Height of Mt. Everest When Mt. Everest was first surveyed, the surveyors obtained a height of $29,000 \mathrm{ft}$ to the nearest foot. State the range represented by this number. (The surveyors thought no one would believe a measurement of 29,000 ft, so they reported it as 29,002 .) (Source: Dunham, W., The Mathematical Universe, John Wiley and Sons.)
3. Longest Vehicular Tunnel The E. Johnson Memorial Tunnel in Colorado, which measures 8959 ft , is one of the longest land vehicular tunnels in the United States. What is the range of this number? (Source: World Almanac and Book of Facts.)
4. Top WNBA Scorer Women's National Basketball Association player Cappie Pondexter of the New York Liberty received the 2010 award for most points scored, 729. Is it appropriate to consider this number as between 728.5 and 729.5? Why or why not? (Source: www.wnba.com)
5. Circumference of a Circle The formula for the circumference of a circle is $C=2 \pi r$. Suppose you use the π key on your calculator to find the circumference of a circle with radius 54.98 cm , and get 345.44953 . Since 2 has only one significant digit, should the answer be given as 3×10^{2}, or 300 cm ? If not, explain how the answer should be given.
6. Explain the distinction between a measurement of 23.0 ft and a measurement of 23.00 ft .
7. If h is the actual height of a building and the height is measured as 58.6 ft , then $|h-58.6| \leq$ \qquad —.
8. If w is the actual weight of a car and the weight is measured as 1542 lb , then $|w-1542| \leq$ \qquad _.

Solve each right triangle. When two sides are given, give angles in degrees and minutes. See Examples 1 and 2.
9.

11.

13.

15.

10.

12.

14.

16.

17. Can a right triangle be solved if we are given measures of its two acute angles and no side lengths? Explain.
18. Concept Check If we are given an acute angle and a side in a right triangle, what unknown part of the triangle requires the least work to find?
19. Explain why you can always solve a right triangle if you know the measures of one side and one acute angle.
20. Explain why you can always solve a right triangle if you know the lengths of two sides.

Solve each right triangle. In each case, $C=90^{\circ}$. If angle information is given in degrees and minutes, give answers in the same way. If angle information is given in decimal degrees, do likewise in answers. When two sides are given, give angles in degrees and minutes. See Examples 1 and 2.
21. $A=28.0^{\circ}, c=17.4 \mathrm{ft}$
23. $B=73.0^{\circ}, b=128 \mathrm{in}$.
25. $A=61.0^{\circ}, b=39.2 \mathrm{~cm}$
27. $a=13 \mathrm{~m}, c=22 \mathrm{~m}$
29. $a=76.4 \mathrm{yd}, b=39.3 \mathrm{yd}$
31. $a=18.9 \mathrm{~cm}, c=46.3 \mathrm{~cm}$
33. $A=53^{\circ} 24^{\prime}, c=387.1 \mathrm{ft}$
35. $B=39^{\circ} 09^{\prime}, c=0.6231 \mathrm{~m}$
22. $B=46.0^{\circ}, c=29.7 \mathrm{~m}$
24. $A=62.5^{\circ}, a=12.7 \mathrm{~m}$
26. $B=51.7^{\circ}, a=28.1 \mathrm{ft}$
28. $b=32 \mathrm{ft}, c=51 \mathrm{ft}$
30. $a=958 \mathrm{~m}, b=489 \mathrm{~m}$
32. $b=219 \mathrm{~m}, c=647 \mathrm{~m}$
34. $A=13^{\circ} 47^{\prime}, c=1285 \mathrm{~m}$
36. $B=82^{\circ} 51^{\prime}, c=4.825 \mathrm{~cm}$
37. Explain the meaning of the term angle of elevation.
38. Concept Check Can an angle of elevation be more than 90° ?
39. Explain why the angle of depression $D A B$ has the same measure as the angle of elevation $A B C$ in the figure.

$A D$ is parallel to $B C$.
40. Why is angle CAB not an angle of depression in the figure for Exercise 39?

Solve each problem involving triangles. See Examples 1-4.
41. Height of a Ladder on a Wall A 13.5-m fire truck ladder is leaning against a wall. Find the distance d the ladder goes up the wall (above the top of the fire truck) if the ladder makes an angle of $43^{\circ} 50^{\prime}$ with the horizontal.

42. Distance across a Lake To find the distance $R S$ across a lake, a surveyor lays off length $R T=53.1 \mathrm{~m}$, so that angle $T=32^{\circ} 10^{\prime}$ and angle $S=57^{\circ} 50^{\prime}$. Find length $R S$.

43. Height of a Building From a window 30.0 ft above the street, the angle of elevation to the top of the building across the street is 50.0° and the angle of depression to the base of this building is 20.0°. Find the height of the building across the street.

44. Diameter of the Sun To determine the diameter of the sun, an astronomer might sight with a transit (a device used by surveyors for measuring angles) first to one edge of the sun and then to the other, estimating that the included angle equals 32^{\prime}. Assuming that the distance d from Earth to the sun is $92,919,800 \mathrm{mi}$, approximate the diameter of the sun.

45. Side Lengths of a Triangle The length of the base of an isosceles triangle is 42.36 in . Each base angle is 38.12°. Find the length of each of the two equal sides of the triangle. (Hint: Divide the triangle into two right triangles.)
46. Altitude of a Triangle Find the altitude of an isosceles triangle having base 184.2 cm if the angle opposite the base is $68^{\circ} 44^{\prime}$.

Solve each problem involving an angle of elevation or depression. See Examples 3 and 4.
47. Angle of Elevation of the Pyramid of the Sun The Pyramid of the Sun in the ancient Mexican city of Teotihuacan was the largest and most important structure in the city. The base is a square with sides about 700 ft long, and the height of the pyramid is about 200 ft . Find the angle of elevation of the edge indicated in the figure to two significant digits. (Hint: The base of the triangle in the figure is half the diagonal of the square base of the pyramid.) (Source: www.britannica.com)

48. Cloud Ceiling The U.S. Weather Bureau defines a cloud ceiling as the altitude of the lowest clouds that cover more than half the sky. To determine a cloud ceiling, a powerful searchlight projects a circle of light vertically on the bottom of the cloud. An observer sights the circle of light in the crosshairs of a tube called a clinometer. A pendant hanging vertically from the tube and resting on a protractor gives the angle of elevation. Find the cloud ceiling if the searchlight is located 1000 ft from the observer and the angle of elevation is 30.0° as measured with a clinometer at eye-height 6 ft . (Assume three significant digits.)

49. Height of a Tower The shadow of a vertical tower is 40.6 m long when the angle of elevation of the sun is 34.6°. Find the height of the tower.
50. Distance from the Ground to the Top of a Building The angle of depression from the top of a building to a point on the ground is $32^{\circ} 30^{\prime}$. How far is the point on the ground from the top of the building if the building is 252 m high?
51. Length of a Shadow Suppose that the angle of elevation of the sun is 23.4°. Find the length of the shadow cast by Dot Peterson, who is 5.75 ft tall.

52. Airplane Distance An airplane is flying $10,500 \mathrm{ft}$ above level ground. The angle of depression from the plane to the base of a tree is $13^{\circ} 50^{\prime}$. How far horizontally must the plane fly to be directly over the tree?

53. Angle of Depression of a Light A company safety committee has recommended that a floodlight be mounted in a parking lot so as to illuminate the employee exit. Find the angle of depression of the light to the nearest minute.

54. Height of a Building The angle of elevation from the top of a small building to the top of a nearby taller building is $46^{\circ} 40^{\prime}$, and the angle of depression to the bottom is $14^{\circ} 10^{\prime}$. If the shorter building is 28.0 m high, find the height of the taller building.

55. Angle of Elevation of the Sun The length of the shadow of a building 34.09 m tall is 37.62 m . Find the angle of elevation of the sun to the nearest hundredth of a degree.
56. Angle of Elevation of the Sun The length of the shadow of a flagpole 55.20 ft tall is 27.65 ft . Find the angle of elevation of the sun to the nearest hundredth of a degree.
57. Height of Mt. Everest The highest mountain peak in the world is Mt. Everest, located in the Himalayas. The height of this enormous mountain was determined in 1856 by surveyors using trigonometry long before it was first climbed in 1953. This difficult measurement had to be done from a great distance. At an altitude of $14,545 \mathrm{ft}$ on a different mountain, the straight-line distance to the peak of Mt. Everest is 27.0134 mi and its angle of elevation is $\theta=5.82^{\circ}$. (Source: Dunham, W., The Mathematical Universe, John Wiley and Sons.)

(a) Approximate the height (in feet) of Mt. Everest.
(b) In the actual measurement, Mt. Everest was over 100 mi away and the curvature of Earth had to be taken into account. Would the curvature of Earth make the peak appear taller or shorter than it actually is?
58. Error in Measurement A degree may seem like a very small unit, but an error of one degree in measuring an angle may be very significant. For example, suppose a laser beam directed toward the visible center of the moon misses its assigned target by 30 sec . How far is it (in miles) from its assigned target? Take the distance from the surface of Earth to that of the moon to be 234,000 mi. (Source: A Sourcebook of Applications of School Mathematics by Donald Bushaw et al.)

2.5 Further Applications of Right Triangles

Bearing

- Further Applications

Bearing Other applications of right triangles involve bearing, an important concept in navigation. There are two methods for expressing bearing.

Method 1 When a single angle is given, such as 164°, it is understood that the bearing is measured in a clockwise direction from due north.

Several sample bearings using Method 1 are shown in Figure 25.

Figure 25

EXAMPLE 1 Solving a Problem Involving Bearing (Method 1)

Radar stations A and B are on an east-west line, 3.7 km apart. Station A detects a plane at C, on a bearing of 61°. Station B simultaneously detects the same plane, on a bearing of 331°. Find the distance from A to C.

SOLUTION Draw a sketch showing the given information, as in Figure 26. Since a line drawn due north is perpendicular to an east-west line, right angles are formed at A and B, so angles $C A B$ and $C B A$ can be found as shown in Figure 26. Angle C is a right angle because angles $C A B$ and $C B A$ are complementary.

Figure 26
Find distance b by using the cosine function for angle A.

$$
\begin{aligned}
\cos 29^{\circ} & =\frac{b}{3.7} & & \text { Cosine ratio } \\
3.7 \cos 29^{\circ} & =b & & \text { Multiply by 3.7. } \\
b & \approx 3.2 \mathrm{~km} & & \text { Use a calculator and round to the nearest tenth. }
\end{aligned}
$$

Now Try Exercise 19.

CAUTION A correctly labeled sketch is crucial when solving applications like that in Example 1. Some of the necessary information is often not directly stated in the problem and can be determined only from the sketch.

Method 2 The second method for expressing bearing starts with a northsouth line and uses an acute angle to show the direction, either east or west, from this line.

Figure 27 shows several sample bearings using this method. Either N or S always comes first, followed by an acute angle, and then E or W.

Figure 27

EXAMPLE 2 Solving a Problem Involving Bearing (Method 2)

A ship leaves port and sails on a bearing of $\mathrm{N} 47^{\circ} \mathrm{E}$ for 3.5 hr . It then turns and sails on a bearing of $\mathrm{S} 43^{\circ} \mathrm{E}$ for 4.0 hr . If the ship's rate of speed is 22 knots (nautical miles per hour), find the distance that the ship is from port.

SOLUTION Draw a sketch as in Figure 28. Choose a point C on a bearing of $\mathrm{N} 47^{\circ} \mathrm{E}$ from port at point A. Then choose a point B on a bearing of $\mathrm{S} 43^{\circ} \mathrm{E}$ from point C. Because north-south lines are parallel, angle $A C D$ is 47° by alternate interior angles. The measure of angle $A C B$ is

$$
47^{\circ}+43^{\circ}=90^{\circ}
$$

making triangle $A B C$ a right triangle.

Figure 28

Next, use the formula relating distance, rate, and time to find the distances from A to C and from C to B.

$$
\begin{aligned}
& b=22 \times 3.5=77 \text { nautical mi } \\
& a=22 \times 4.0=88 \text { nautical mi }
\end{aligned}
$$

Now find c, the distance from port at point A to the ship at point B.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean theorem (Appendix B) } \\
88^{2}+77^{2} & =c^{2} & & a=88, b=77 \\
c & =\sqrt{88^{2}+77^{2}} & & \text { Use the square root property. (Appendix A) } \\
c & \approx 120 \text { nautical mi } & & \text { Two significant digits (Section 2.4) }
\end{aligned}
$$

Further Applications

EXAMPLE 3 Using Trigonometry to Measure a Distance

The subtense bar method is a method that surveyors use to determine a small distance d between two points P and Q. The subtense bar with length b is centered at Q and situated perpendicular to the line of sight between P and Q. See Figure 29. Angle θ is measured, and then the distance d can be determined.

Figure 29
(a) Find d when $\theta=1^{\circ} 23^{\prime} 12^{\prime \prime}$ and $b=2.0000 \mathrm{~cm}$.
(b) How much change would there be in the value of d if θ measured $1^{\prime \prime}$ larger?

SOLUTION

(a) From Figure 29, we obtain the following.

$$
\begin{aligned}
\cot \frac{\theta}{2} & =\frac{d}{\frac{b}{2}} & \text { Cotangent ratio } \\
d & =\frac{b}{2} \cot \frac{\theta}{2} & \text { Multiply and rewrite. }
\end{aligned}
$$

Let $b=2$. To evaluate $\frac{\theta}{2}$, we change θ to decimal degrees.

Then

$$
\begin{aligned}
& 1^{\circ} 23^{\prime} 12^{\prime \prime} \approx 1.386666667^{\circ} \\
& d=\frac{2}{2} \cot \frac{1.386666667^{\circ}}{2} \approx 82.634110 \mathrm{~cm} .
\end{aligned}
$$

(b) Since θ is $1^{\prime \prime}$ larger, use $\theta=1^{\circ} 23^{\prime} 13^{\prime \prime} \approx 1.386944444^{\circ}$.

$$
d=\frac{2}{2} \cot \frac{1.386944444^{\circ}}{2} \approx 82.617558 \mathrm{~cm}
$$

The difference is $82.634110-82.617558=0.016552 \mathrm{~cm}$.
Now Try Exercise 37.

EXAMPLE 4 Solving a Problem Involving Angles of Elevation

Francisco needs to know the height of a tree. From a given point on the ground, he finds that the angle of elevation to the top of the tree is 36.7°. He then moves back 50 ft . From the second point, the angle of elevation to the top of the tree is 22.2°. See Figure 30. Find the height of the tree to the nearest foot.

Figure 30

ALGEBRAIC SOLUTION

Figure 30 on the preceding page shows two unknowns: x, the distance from the center of the trunk of the tree to the point where the first observation was made, and h, the height of the tree. See Figure 31 in the Graphing Calculator Solution. Since nothing is given about the length of the hypotenuse of either triangle $A B C$ or triangle $B C D$, use a ratio that does not involve the hypotenuse - namely, the tangent.

In triangle $A B C, \quad \tan 36.7^{\circ}=\frac{h}{x} \quad$ or $\quad h=x \tan 36.7^{\circ}$.

In triangle $B C D, \quad \tan 22.2^{\circ}=\frac{h}{50+x} \quad$ or $\quad h=(50+x) \tan 22.2^{\circ}$.
Each expression equals h, so the expressions must be equal.

$$
\begin{aligned}
x \tan 36.7^{\circ}= & (50+x) \tan 22.2^{\circ} \\
& \text { Equate expressions for } h . \\
x \tan 36.7^{\circ}= & 50 \tan 22.2^{\circ}+x \tan 22.2^{\circ} \\
& \text { Distributive property }
\end{aligned}
$$

$x \tan 36.7^{\circ}-x \tan 22.2^{\circ}=50 \tan 22.2^{\circ}$
Write the x-terms on one side.
$x\left(\tan 36.7^{\circ}-\tan 22.2^{\circ}\right)=50 \tan 22.2^{\circ}$
Factor out x.

$$
x=\frac{50 \tan 22.2^{\circ}}{\tan 36.7^{\circ}-\tan 22.2^{\circ}}
$$

Divide by the coefficient of x.
We saw above that $h=x \tan 36.7^{\circ}$. Substitute for x.

$$
h=\left(\frac{50 \tan 22.2^{\circ}}{\tan 36.7^{\circ}-\tan 22.2^{\circ}}\right) \tan 36.7^{\circ}
$$

Use a calculator.

$$
\tan 36.7^{\circ}=0.74537703 \text { and } \tan 22.2^{\circ}=0.40809244
$$

Thus,

$$
\tan 36.7^{\circ}-\tan 22.2^{\circ}=0.74537703-0.40809244=0.33728459
$$

and

$$
h=\left(\frac{50(0.40809244)}{0.33728459}\right) 0.74537703 \approx 45 .
$$

The height of the tree is approximately 45 ft .

GRAPHING CALCULATOR SOLUTION*

In Figure 31, we have superimposed Figure 30 on coordinate axes with the origin at D. By definition, the tangent of the angle between the x-axis and the graph of a line with equation $y=m x+b$ is the slope of the line, m. For line $D B, m=\tan 22.2^{\circ}$. Since b equals 0 , the equation of line $D B$ is

$$
y_{1}=\left(\tan 22.2^{\circ}\right) x
$$

The equation of line $A B$ is

$$
y_{2}=\left(\tan 36.7^{\circ}\right) x+b
$$

Since $b \neq 0$ here, we use the point $A(50,0)$ and the point-slope form to find the equation.

$$
\begin{aligned}
y_{2}-y_{1} & =m\left(x-x_{1}\right) \quad \text { Point-slope form } \\
y_{2}-0 & =m(x-50) \quad x_{1}=50, y_{1}=0 \\
y_{2} & =\tan 36.7^{\circ}(x-50)
\end{aligned}
$$

Lines y_{1} and y_{2} are graphed in Figure 32. The y-coordinate of the point of intersection of the graphs gives the length of $B C$, or h. Thus, $h \approx 45$.

Figure 31

Figure 32
Now Try Exercise 31.

NOTE In practice, we usually do not write down intermediate calculator approximation steps. We did in Example 4 so that you could follow the steps more easily.

Concept Check Give a short written answer to each question.

1. When bearing is given as a single angle measure, how is the angle represented in a sketch?
2. When bearing is given as N (or S), then an acute angle measure, and then E (or W), how is the angle represented in a sketch?
3. Why is it important to draw a sketch before solving trigonometric problems like those in the last two sections of this chapter?
4. How should the angle of elevation (or depression) from a point X to a point Y be represented?

Concept Check An observer for a radar station is located at the origin of a coordinate system. For each of the points in Exercises 5-12, find the bearing of an airplane located at that point. Express the bearing using both methods.
5. $(-4,0)$
6. $(5,0)$
7. $(0,4)$
8. $(0,-2)$
9. $(-5,5)$
10. $(-3,-3)$
11. $(2,-2)$
12. $(2,2)$
13. The ray $y=x, x \geq 0$, contains the origin and all points in the coordinate system whose bearing is 45°. Determine the equation of a ray consisting of the origin and all points whose bearing is 240°.
14. Repeat Exercise $\mathbf{1 3}$ for a bearing of 150°.

Work each problem. In these exercises, assume the course of a plane or ship is on the indicated bearing. See Examples 1 and 2.
15. Distance Flown by a Plane A plane flies 1.3 hr at 110 mph on a bearing of 38°. It then turns and flies 1.5 hr at the same speed on a bearing of 128°. How far is the plane from its starting point?

16. Distance Traveled by a Ship A ship travels 55 km on a bearing of 27° and then travels on a bearing of 117° for 140 km . Find the distance from the starting point to the ending point.

17. Distance between Two Ships Two ships leave a port at the same time. The first ship sails on a bearing of 40° at 18 knots (nautical miles per hour) and the second on a bearing of 130° at 26 knots. How far apart are they after 1.5 hr ?
18. Distance between Two Ships Two ships leave a port at the same time. The first ship sails on a bearing of 52° at 17 knots and the second on a bearing of 322° at 22 knots. How far apart are they after 2.5 hr ?
19. Distance between Two Docks Two docks are located on an east-west line 2587 ft apart. From dock A, the bearing of a coral reef is $58^{\circ} 22^{\prime}$. From dock B, the bearing of the coral reef is $328^{\circ} 22^{\prime}$. Find the distance from dock A to the coral reef.
20. Distance between Two Lighthouses Two lighthouses are located on a north-south line. From lighthouse A, the bearing of a ship 3742 m away is $129^{\circ} 43^{\prime}$. From lighthouse B, the bearing of the ship is $39^{\circ} 43^{\prime}$. Find the distance between the lighthouses.
21. Distance between Two Ships A ship leaves its home port and sails on a bearing of $\mathrm{S} 61^{\circ} 50^{\prime} \mathrm{E}$. Another ship leaves the same port at the same time and sails on a bearing of $\mathrm{N} 28^{\circ} 10^{\prime} \mathrm{E}$. If the first ship sails at 24.0 mph and the second sails at 28.0 mph , find the distance between the two ships after 4 hr .

22. Distance between Transmitters Radio direction finders are set up at two points A and B, which are 2.50 mi apart on an east-west line. From A, it is found that the bearing of a signal from a radio transmitter is $\mathrm{N} 36^{\circ} 20^{\prime} \mathrm{E}$, and from B the bearing of the same signal is $\mathrm{N} 53^{\circ} 40^{\prime} \mathrm{W}$. Find the distance of the transmitter from B.

23. Flying Distance The bearing from A to C is $S 52^{\circ} \mathrm{E}$. The bearing from A to B is $\mathrm{N} 84^{\circ} \mathrm{E}$. The bearing from B to C is $\mathrm{S} 38^{\circ} \mathrm{W}$. A plane flying at 250 mph takes 2.4 hr to go from A to B. Find the distance from A to C.
24. Flying Distance The bearing from A to C is $\mathrm{N} 64^{\circ} \mathrm{W}$. The bearing from A to B is $\mathrm{S} 82^{\circ} \mathrm{W}$. The bearing from B to C is $\mathrm{N} 26^{\circ} \mathrm{E}$. A plane flying at 350 mph takes 1.8 hr to go from A to B. Find the distance from B to C.
25. Distance between Two Cities The bearing from Winston-Salem, North Carolina, to Danville, Virginia, is N 42° E. The bearing from Danville to Goldsboro, North Carolina, is $\mathrm{S} 48^{\circ} \mathrm{E}$. A car driven by Ellen Winchell, traveling at 65 mph , takes 1.1 hr to go from Winston-Salem to Danville and 1.8 hr to go from Danville to Goldsboro. Find the distance from Winston-Salem to Goldsboro.
26. Distance between Two Cities The bearing from Atlanta to Macon is $\mathrm{S} 27^{\circ} \mathrm{E}$, and the bearing from Macon to Augusta is $\mathrm{N} 63^{\circ} \mathrm{E}$. An automobile traveling at 62 mph needs $1 \frac{1}{4} \mathrm{hr}$ to go from Atlanta to Macon and $1 \frac{3}{4}$ hr to go from Macon to Augusta. Find the distance from Atlanta to Augusta.
27. Solve the equation $a x=b+c x$ for x in terms of a, b, and c. (Note: This is essentially the calculation carried out in Example 4.)
28. Explain why the line $y=(\tan \theta)(x-a)$ passes through the point $(a, 0)$ and makes an angle θ with the x-axis.
29. Find the equation of the line passing through the point $(25,0)$ that makes an angle of 35° with the x-axis.
30. Find the equation of the line passing through the point $(5,0)$ that makes an angle of 15° with the x-axis.

In Exercises 31-36, use the method of Example 4.
31. Find h as indicated in the figure.
32. Find h as indicated in the figure.

33. Height of a Pyramid The angle of elevation from a point on the ground to the top of a pyramid is $35^{\circ} 30^{\prime}$. The angle of elevation from a point 135 ft farther back to the top of the pyramid is $21^{\circ} 10^{\prime}$. Find the height of the pyramid.

34. Distance between a Whale and a Lighthouse Debbie Glockner-Ferrari, a whale researcher, is watching a whale approach directly toward a lighthouse as she observes from the top of this lighthouse. When she first begins watching the whale, the angle of depression to the whale is $15^{\circ} 50^{\prime}$. Just as the whale turns away from the lighthouse, the angle of depression is $35^{\circ} 40^{\prime}$. If the height of the lighthouse is 68.7 m , find the distance traveled by the whale as it approached the lighthouse.

35. Height of an Antenna A scanner antenna is on top of the center of a house. The angle of elevation from a point 28.0 m from the center of the house to the top of the antenna is $27^{\circ} 10^{\prime}$, and the angle of elevation to the bottom of the antenna is $18^{\circ} 10^{\prime}$. Find the height of the antenna.
36. Height of Mt. Whitney The angle of elevation from Lone Pine to the top of Mt . Whitney is $10^{\circ} 50^{\prime}$. Van Dong Le, traveling 7.00 km from Lone Pine along a straight, level road toward Mt. Whitney, finds the angle of elevation to be $22^{\circ} 40^{\prime}$. Find the height of the top of Mt. Whitney above the level of the road.

Solve each problem.
37. (Modeling) Distance between Two Points Refer to Example 3. A variation of the subtense bar method that surveyors use to determine larger distances d between two points P and Q is shown in the figure. In this case the subtense bar with length b is placed between the points P and Q so that the bar is centered on and perpendicular to the line of sight connecting P and Q. The angles α and β are measured from points P and Q, respectively. (Source: Mueller, I. and K. Ramsayer, Introduction to Surveying, Frederick Ungar Publishing Co.)

(a) Find a formula for d involving α, β, and b.
(b) Use your formula to determine d if $\alpha=37^{\prime} 48^{\prime \prime}, \beta=42^{\prime} 03^{\prime \prime}$, and $b=2.000 \mathrm{~cm}$.
38. Height of a Plane above Earth Find the minimum height h above the surface of Earth so that a pilot at point A in the figure can see an object on the horizon at C, 125 mi away. Assume that the radius of Earth is $4.00 \times 10^{3} \mathrm{mi}$.

39. Distance of a Plant from a Fence In one area, the lowest angle of elevation of the sun in winter is $23^{\circ} 20^{\prime}$. Find the minimum distance x that a plant needing full sun can be placed from a fence 4.65 ft high.

40. Distance through a Tunnel A tunnel is to be built from A to B. Both A and B are visible from C. If $A C$ is 1.4923 mi and $B C$ is 1.0837 mi , and if C is 90°, find the measures of angles A and B.

41. (Modeling) Highway Curves A basic highway curve connecting two straight sections of road is often circular. In the figure, the points P and S mark the beginning and end of the curve. Let Q be the point of intersection where the two straight sections of highway leading into the curve would meet if extended. The radius of the curve is R, and the central angle θ denotes how many degrees the curve turns. (Source: Mannering, F. and W. Kilareski, Principles of Highway Engineering and
 Traffic Analysis, Second Edition, John Wiley and Sons.)
(a) If $R=965 \mathrm{ft}$ and $\theta=37^{\circ}$, find the distance d between P and Q.
(b) Find an expression in terms of R and θ for the distance between points M and N.

42. Length of a Side of a Piece of Land A piece of land has the shape shown in the figure at the left. Find the length x.
43. (Modeling) Stopping Distance on a Curve Refer to Exercise 41. When an automobile travels along a circular curve, objects like trees and buildings situated on the inside of the curve can obstruct the driver's vision. These obstructions prevent the driver from seeing sufficiently far down the highway to ensure a safe stopping distance. In the figure, the minimum distance d that should be cleared on the inside of the highway is modeled by the equation

$$
d=R\left(1-\cos \frac{\theta}{2}\right)
$$

(Source: Mannering, F. and W. Kilareski, Principles of Highway Engineering and Traffic Analysis, Second Edition, John Wiley and Sons.)

(a) It can be shown that if θ is measured in degrees, then $\theta \approx \frac{57.3 S}{R}$, where S is the safe stopping distance for the given speed limit. Compute d to the nearest foot for a 55 mph speed limit if $S=336 \mathrm{ft}$ and $R=600 \mathrm{ft}$.
(b) Compute d to the nearest foot for a 65 mph speed limit given $S=485 \mathrm{ft}$ and $R=600 \mathrm{ft}$.
(c) How does the speed limit affect the amount of land that should be cleared on the inside of the curve?
44. (Modeling) Distance of a Shot Put A shot-putter trying to improve performance may wonder whether there is an optimal angle to aim for, or whether the velocity (speed) at which the ball is thrown is more important. The figure shows the path of a steel ball thrown by a shot-putter. The distance D depends on initial velocity v, height h, and angle θ when the ball is released.

One model developed for this situation gives D as

$$
D=\frac{v^{2} \sin \theta \cos \theta+v \cos \theta \sqrt{(v \sin \theta)^{2}+64 h}}{32} .
$$

Typical ranges for the variables are $v: 33-46 \mathrm{ft}$ per sec; h : 6-8 ft; and $\theta: 40^{\circ}-45^{\circ}$. (Source: Kreighbaum, E. and K. Barthels, Biomechanics, Allyn \& Bacon.)
(a) To see how angle θ affects distance D, let $v=44 \mathrm{ft}$ per sec and $h=7 \mathrm{ft}$. Calculate D, to the nearest hundredth, for $\theta=40^{\circ}, 42^{\circ}$, and 45°. How does distance D change as θ increases?
(b) To see how velocity v affects distance D, let $h=7$ and $\theta=42^{\circ}$. Calculate D, to the nearest hundredth, for $v=43,44$, and 45 ft per sec. How does distance D change as v increases?
(c) Which affects distance D more, v or θ ? What should the shot-putter do to improve performance?

Chapter 2 Test Prep

Key Terms

2.1 side opposite side adjacent cofunctions
> 2.2 reference angle
> 2.4 exact number significant digits
angle of elevation angle of depression
2.5 bearing

Ouick Review

Concepts

Examples

2.1 Trigonometric Functions of Acute Angles

Right-Triangle-Based Definitions of the Trigonometric

Functions

Let A represent any acute angle in standard position.
$\sin A=\frac{y}{r}=\frac{\text { side opposite }}{\text { hypotenuse }} \csc A=\frac{r}{y}=\frac{\text { hypotenuse }}{\text { side opposite }}$
$\cos A=\frac{x}{r}=\frac{\text { side adjacent }}{\text { hypotenuse }} \sec A=\frac{r}{x}=\frac{\text { hypotenuse }}{\text { side adjacent }}$
$\tan A=\frac{y}{x}=\frac{\text { side opposite }}{\text { side adjacent }} \cot A=\frac{x}{y}=\frac{\text { side adjacent }}{\text { side opposite }}$

Cofunction Identities

For any acute angle A, cofunction values of complementary angles are equal.

$$
\begin{array}{ll}
\sin A=\cos \left(90^{\circ}-A\right) & \cos A=\sin \left(90^{\circ}-A\right) \\
\sec A=\csc \left(90^{\circ}-A\right) & \csc A=\sec \left(90^{\circ}-A\right) \\
\tan A=\cot \left(90^{\circ}-A\right) & \cot A=\tan \left(90^{\circ}-A\right)
\end{array}
$$

$\sin A=\frac{7}{25} \quad \cos A=\frac{24}{25} \quad \tan A=\frac{7}{24}$ $\csc A=\frac{25}{7} \quad \sec A=\frac{25}{24} \quad \cot A=\frac{24}{7}$
$\sin 55^{\circ}=\cos \left(90^{\circ}-55^{\circ}\right)=\cos 35^{\circ}$
$\sec 48^{\circ}=\csc \left(90^{\circ}-48^{\circ}\right)=\csc 42^{\circ}$
$\tan 72^{\circ}=\cot \left(90^{\circ}-72^{\circ}\right)=\cot 18^{\circ}$

Function Values of Special Angles

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o s } \theta}$	$\boldsymbol{\operatorname { t a n } \theta}$	$\boldsymbol{\operatorname { c o t }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { s e c } \theta}$	$\boldsymbol{\operatorname { c s c } \theta}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$

Concepts

Examples

2.2 Trigonometric Functions of Non-Acute Angles

Reference Angle θ^{\prime} for $\boldsymbol{\theta}$ in $\left(0^{\circ}, \mathbf{3 6 0}^{\circ}\right)$

$\boldsymbol{\theta}$ in Quadrant	I	II	III	IV
$\boldsymbol{\theta}^{\prime}$ is	θ	$180^{\circ}-\theta$	$\theta-180^{\circ}$	$360^{\circ}-\theta$

See the figure in Section $\mathbf{2 . 2}$ for illustrations of reference angles.

Finding Trigonometric Function Values for Any Nonquadrantal Angle

Step 1 Add or subtract 360° as many times as needed to get an angle greater than 0° but less than 360°.
Step 2 Find the reference angle θ^{\prime}.
Step 3 Find the trigonometric function values for θ^{\prime}.
Step 4 Determine the correct signs for the values found in Step 3.

Quadrant I: \quad For $\theta=25^{\circ}, \theta^{\prime}=25^{\circ}$
Quadrant II: For $\theta=152^{\circ}, \theta^{\prime}=28^{\circ}$
Quadrant III: For $\theta=200^{\circ}, \theta^{\prime}=20^{\circ}$
Quadrant IV: For $\theta=320^{\circ}, \theta^{\prime}=40^{\circ}$

Find $\sin 1050^{\circ}$.

$$
\begin{aligned}
1050^{\circ}-2\left(360^{\circ}\right)=330^{\circ} & \begin{array}{l}
\text { Coterminal angle } \\
\\
\text { in quadrant IV }
\end{array}
\end{aligned}
$$

Thus, $\theta^{\prime}=30^{\circ}$.

$$
\begin{array}{rlr}
\sin 1050^{\circ} & =-\sin 30^{\circ} \quad \text { Reference angle } \\
& =-\frac{1}{2} &
\end{array}
$$

2.3 Finding Trigonometric Function Values Using a Calculator

To approximate a trigonometric function value of an angle in degrees, make sure your calculator is in degree mode.

To find the corresponding angle measure given a trigonometric function value, use an appropriate inverse function.

2.4 Solving Right Triangles

Solving an Applied Trigonometry Problem

Step 1 Draw a sketch, and label it with the given information. Label the quantity to be found with a variable.

Approximate each value.
$\cos 50^{\circ} 15^{\prime}=\cos 50.25^{\circ} \approx 0.63943900$

$$
\csc 32.5^{\circ}=\frac{1}{\sin 32.5^{\circ}} \approx 1.86115900 \quad \csc \theta=\frac{1}{\sin \theta}
$$

Find an angle θ in the interval $\left[0^{\circ}, 90^{\circ}\right]$ that satisfies each condition in color.

$$
\begin{aligned}
\cos \theta & \approx 0.73677482 \\
\theta & \approx \cos ^{-1}(0.73677482) \\
\theta & \approx 42.542600^{\circ} \\
\csc \theta & \approx 1.04766792 \\
\sin \theta & \approx \frac{1}{1.04766792} \quad \sin \theta=\frac{1}{\csc \theta} \\
\theta & \approx \sin ^{-1}\left(\frac{1}{1.04766792}\right) \\
\theta & \approx 72.65^{\circ}
\end{aligned}
$$

Find the angle of elevation of the sun if a 48.6-ft flagpole casts a shadow 63.1 ft long.
Step 1 See the sketch. We must find θ.

Concepts

Step 2 Use the sketch to write an equation relating the given quantities to the variable.

Step 3 Solve the equation, and check that your answer makes sense.

Examples

Step $2 \tan \theta=\frac{48.6}{63.1} \approx 0.770206$
Step $3 \quad \theta=\tan ^{-1} 0.770206 \approx 37.6^{\circ}$
The angle of elevation rounded to three significant digits is 37.6°, or $37^{\circ} 40^{\prime}$.

Example: 220°

Example: $\quad \mathrm{S} 40^{\circ} \mathrm{W}$

Chapter 2 Review Exercises

Find the values of the six trigonometric functions for each angle A.

Find one solution for each equation. Assume that all angles are acute angles.
3. $\sin 4 \beta=\cos 5 \beta$
4. $\sec \left(2 \theta+10^{\circ}\right)=\csc \left(4 \theta+20^{\circ}\right)$
5. $\tan \left(5 x+11^{\circ}\right)=\cot \left(6 x+2^{\circ}\right)$
6. $\cos \left(\frac{3 \theta}{5}+11^{\circ}\right)=\sin \left(\frac{7 \theta}{10}+40^{\circ}\right)$

Tell whether each statement is true or false. If false, tell why.
7. $\sin 46^{\circ}<\sin 58^{\circ}$
8. $\cos 47^{\circ}<\cos 58^{\circ}$
9. $\tan 60^{\circ} \geq \cot 40^{\circ}$
10. $\csc 22^{\circ} \leq \csc 68^{\circ}$
11. Explain why, in the figure, the cosine of angle A is equal to the sine of angle B.

12. Concept Check Which one of the following cannot be exactly determined using the methods of this chapter?
A. $\cos 135^{\circ}$
B. $\cot \left(-45^{\circ}\right)$
C. $\sin 300^{\circ}$
D. $\tan 140^{\circ}$

Find exact values of the six trigonometric functions for each angle. Do not use a calculator. Rationalize denominators when applicable.
13. 1020°
14. 120°
15. -1470°
16. -225°

Find all values of θ, if θ is in the interval $\left[0^{\circ}, 360^{\circ}\right)$ and θ has the given function value.
17. $\cos \theta=-\frac{1}{2}$
18. $\sin \theta=-\frac{1}{2}$
19. $\sec \theta=-\frac{2 \sqrt{3}}{3}$
20. $\cot \theta=-1$

Evaluate each expression. Give exact values.
21. $\tan ^{2} 120^{\circ}-2 \cot 240^{\circ}$
22. $\cos 60^{\circ}+2 \sin ^{2} 30^{\circ}$
23. $\sec ^{2} 300^{\circ}-2 \cos ^{2} 150^{\circ}+\tan 45^{\circ}$
24. Find the sine, cosine, and tangent function values for each angle.
(a)

(b)

Use a calculator to find each value.
25. $\sec 222^{\circ} 30^{\prime}$
26. $\sin 72^{\circ} 30^{\prime}$
27. $\csc 78^{\circ} 21^{\prime}$
28. $\cot 305.6^{\circ}$
29. $\tan 11.7689^{\circ}$
30. $\sec 58.9041^{\circ}$

Use a calculator to find each value of θ, where θ is in the interval $\left[0^{\circ}, 90^{\circ}\right)$. Give answers in decimal degrees.
31. $\sin \theta=0.82584121$
32. $\cot \theta=1.1249386$
33. $\cos \theta=0.97540415$
34. $\sec \theta=1.2637891$
35. $\tan \theta=1.9633124$
36. $\csc \theta=9.5670466$

Find two angles in the interval $\left[0^{\circ}, 360^{\circ}\right)$ that satisfy each of the following. Leave answers in decimal degrees rounded to the nearest tenth.
37. $\sin \theta=0.73254290$
38. $\tan \theta=1.3865342$

Determine whether each statement is true or false. If false, tell why. Use a calculator for Exercises 39 and 42.
39. $\sin 50^{\circ}+\sin 40^{\circ}=\sin 90^{\circ}$
40. $1+\tan ^{2} 60^{\circ}=\sec ^{2} 60^{\circ}$
41. $\sin 240^{\circ}=2 \sin 120^{\circ} \cdot \cos 120^{\circ}$
42. $\sin 42^{\circ}+\sin 42^{\circ}=\sin 84^{\circ}$
43. A student wants to use a calculator to find the value of $\cot 25^{\circ}$. However, instead of entering $\frac{1}{\tan 25}$, he enters $\tan ^{-1} 25$. Assuming the calculator is in degree mode, will this produce the correct answer? Explain.
44. Explain the process for using a calculator to find $\sec ^{-1} 10$.

For each angle θ, use a calculator to find $\cos \theta$ and $\sin \theta$. Use your results to decide in which quadrant the angle lies.
45. $\theta=1997^{\circ}$
46. $\theta=2976^{\circ}$
47. $\theta=-3485^{\circ}$
48. $\theta=4000^{\circ}$

Solve each right triangle. In Exercise 50, give angles to the nearest minute. In Exercises 51 and 52, label the triangle $A B C$ as in Exercises 49 and 50.
49.

51. $A=39.72^{\circ}, b=38.97 \mathrm{~m}$
50.

52. $B=47^{\circ} 53^{\prime}, b=298.6 \mathrm{~m}$

Solve each problem. (Source for Exercises 53 and 54: Parker, M., Editor, She Does Math, Mathematical Association of America.)
53. Height of a Tree A civil engineer must determine the vertical height of the tree shown in the figure. The given angle was measured with a clinometer. Find the height of the leaning tree to the nearest whole number.

This is a picture of one type of clinometer, called an Abney hand level and clinometer. (Courtesy of Keuffel \& Esser Co.)

54. (Modeling) Double Vision To correct mild double vision, a small amount of prism is added to a patient's eyeglasses. The amount of light shift this causes is measured in prism diopters. A patient needs 12 prism diopters horizontally and 5 prism diopters vertically. A prism that corrects for both requirements should have length r and be set at angle θ. Find the values of r and θ in the figure.

55. Height of a Tower The angle of elevation from a point 93.2 ft from the base of a tower to the top of the tower is $38^{\circ} 20^{\prime}$. Find the height of the tower.

56. Height of a Tower The angle of depression from a television tower to a point on the ground 36.0 m from the bottom of the tower is 29.5°. Find the height of the tower.

36.0 m
57. Length of a Diagonal One side of a rectangle measures 15.24 cm . The angle between the diagonal and that side is 35.65°. Find the length of the diagonal.
58. Length of Sides of an Isosceles Triangle An isosceles triangle has a base of length 49.28 m . The angle opposite the base is 58.746°. Find the length of each of the two equal sides.
59. Distance between Two Points The bearing of point B from point C is 254°. The bearing of point A from point C is 344°. The bearing of point A from point B is 32°. If the distance from A to C is 780 m , find the distance from A to B.
60. Distance a Ship Sails The bearing from point A to point B is $\mathrm{S} 55^{\circ} \mathrm{E}$, and the bearing from point B to point C is $\mathrm{N} 35^{\circ} \mathrm{E}$. If a ship sails from A to B, a distance of 81 km , and then from B to C, a distance of 74 km , how far is it from A to C ?
61. Distance between Two Points Two cars leave an intersection at the same time. One heads due south at 55 mph . The other travels due west. After 2 hr , the bearing of the car headed west from the car headed south is 324°. How far apart are they at that time?
62. Find a formula for h in terms of k, A, and B. Assume $A<B$.

63. Create a right triangle problem whose solution is $3 \tan 25^{\circ}$.
64. Create a right triangle problem whose solution is found from $\sin \theta=\frac{3}{4}$.
65. (Modeling) Height of a Satellite Artificial satellites that orbit Earth often use VHF signals to communicate with the ground. VHF signals travel in straight lines. The height h of the satellite above Earth and the time T that the satellite can communicate with a fixed location on the ground are related by the model

$$
h=R\left(\frac{1}{\cos \frac{180 T}{P}}-1\right)
$$

where $R=3955 \mathrm{mi}$ is the radius of Earth and P is the period for the satellite to orbit Earth. (Source: Schlosser, W., T. Schmidt-Kaler, and E. Milone, Challenges of Astronomy, Springer-Verlag.)
(a) Find h to the nearest mile when $T=25 \mathrm{~min}$ and $P=140 \mathrm{~min}$. (Evaluate the cosine function in degree mode.)
(b) What is the value of h to the nearest mile if T is increased to 30 min ?
66. (Modeling) Fundamental Surveying Problem The first fundamental problem of surveying is to determine the coordinates of a point Q given the coordinates of a point P, the distance between P and Q, and the bearing θ from P to Q. See the figure. (Source: Mueller, I. and K. Ramsayer, Introduction to Surveying, Frederick Ungar Publishing Co.)

(a) Find a formula for the coordinates $\left(x_{Q}, y_{Q}\right)$ of the point Q given θ, the coordinates $\left(x_{P}, y_{P}\right)$ of P, and the distance d between P and Q.
(b) Use your formula to determine $\left(x_{Q}, y_{Q}\right)$ if $\left(x_{P}, y_{P}\right)=(123.62,337.95)$, $\theta=17^{\circ} 19^{\prime} 22^{\prime \prime}$, and $d=193.86 \mathrm{ft}$.

Chapter 2

Test

1. Give the six trigonometric function values of angle A.

2. Find the exact value of each part labeled with a letter.

3. Find a solution for $\sin \left(\theta+15^{\circ}\right)=\cos \left(2 \theta+30^{\circ}\right)$.
4. Determine whether each statement is true or false. If false, tell why.
(a) $\sin 24^{\circ}<\sin 48^{\circ}$
(b) $\cos 24^{\circ}<\cos 48^{\circ}$
(c) $\cos \left(60^{\circ}+30^{\circ}\right)=\cos 60^{\circ} \cdot \cos 30^{\circ}-\sin 60^{\circ} \cdot \sin 30^{\circ}$

Find the exact values of the six trigonometric functions for each angle. Rationalize denominators when applicable.
5. 240°
6. -135°
7. 990°

Find all values of θ in the interval $\left[0^{\circ}, 360^{\circ}\right)$ that have the given function value.
8. $\cos \theta=-\frac{\sqrt{2}}{2}$
9. $\csc \theta=-\frac{2 \sqrt{3}}{3}$
10. $\tan \theta=1$
11. How would you find $\cot \theta$ using a calculator, if $\tan \theta=1.6778490$? Give $\cot \theta$.
12. Use a calculator to approximate each value.
(a) $\sin 78^{\circ} 21^{\prime}$
(b) $\tan 117.689^{\circ}$
(c) $\sec 58.9041^{\circ}$
13. Find a value of θ in the interval $\left[0^{\circ}, 90^{\circ}\right.$) in decimal degrees, if

$$
\sin \theta=0.27843196 .
$$

14. Solve the triangle.

15. Antenna Mast Guy Wire A guy wire 77.4 m long is attached to the top of an antenna mast that is 71.3 m high. Find the angle that the wire makes with the ground.
16. Height of a Flagpole To measure the height of a flagpole, Amado Carillo found that the angle of elevation from a point 24.7 ft from the base to the top is $32^{\circ} 10^{\prime}$. What is the height of the flagpole?
17. Altitude of a Mountain The highest point in Texas is Guadalupe Peak. The angle of depression from the top of this peak to a small miner's cabin at an approximate elevation of 2000 ft is 26°. The cabin is located $14,000 \mathrm{ft}$ horizontally from a point directly under the top of the mountain. Find the altitude of the top of the mountain to the nearest hundred feet.
18. Distance between Two Points Two ships leave a port at the same time. The first ship sails on a bearing of 32° at 16 knots (nautical miles per hour) and the second on a bearing of 122° at 24 knots. How far apart are they after 2.5 hr ?
19. Distance of a Ship from a Pier A ship leaves a pier on a bearing of $\mathrm{S} 62^{\circ} \mathrm{E}$ and travels for 75 km . It then turns and continues on a bearing of $\mathrm{N} 28^{\circ} \mathrm{E}$ for 53 km . How far is the ship from the pier?
20. Find h as indicated in the figure.

Radian Measure and the Unit Circle

The speed of a planet revolving around its sun can be measured in linear and angular speed, both of which are discussed in this chapter covering radian measure of angles.
3.1 Radian Measure
3.2 Applications of Radian Measure
3.3 The Unit Circle and Circular Functions

Chapter 3 Quiz
3.4 Linear and Angular Speed

3.1 Radian Measure

- Radian Measure
- Converting between Degrees and Radians
- Finding Function Values for Angles in Radians

Figure 1

Radian Measure We have seen that angles can be measured in degrees. In more theoretical work in mathematics, radian measure of angles is preferred. Radian measure enables us to treat the trigonometric functions as functions with domains of real numbers, rather than angles.

Figure 1 shows an angle θ in standard position, along with a circle of radius r. The vertex of θ is at the center of the circle. Because angle θ intercepts an arc on the circle equal in length to the radius of the circle, we say that angle θ has a measure of 1 radian.

Radian

An angle with its vertex at the center of a circle that intercepts an arc on the circle equal in length to the radius of the circle has a measure of $\mathbf{1}$ radian.

It follows that an angle of measure 2 radians intercepts an arc equal in length to twice the radius of the circle, an angle of measure $\frac{1}{2}$ radian intercepts an arc equal in length to half the radius of the circle, and so on. In general, if $\boldsymbol{\theta}$ is a central angle of a circle of radius r, and θ intercepts an arc of length s, then the radian measure of $\boldsymbol{\theta}$ is $\frac{s}{r}$. See Figure 2.

Figure 2

The ratio $\frac{s}{r}$ is a pure number, where s and r are expressed in the same units. Thus, "radians" is not a unit of measure like feet or centimeters.

Converting between Degrees and Radians The circumference of a circlethe distance around the circle-is given by $C=2 \pi r$, where r is the radius of the circle. The formula $C=2 \pi r$ shows that the radius can be measured off 2π times around a circle. Therefore, an angle of 360°, which corresponds to a complete circle, intercepts an arc equal in length to 2π times the radius of the circle. Thus, an angle of 360° has a measure of 2π radians.

$$
360^{\circ}=2 \pi \text { radians }
$$

An angle of 180° is half the size of an angle of 360°, so an angle of 180° has half the radian measure of an angle of 360°.

$$
18 \mathbf{0}^{\circ}=\frac{\mathbf{1}}{\mathbf{2}}(\mathbf{2} \pi) \text { radians }=\boldsymbol{\pi} \text { radians } \quad \text { Degree/radian relationship }
$$

45
 -2796.7853981634
 $249.8^{-4.71236898}$
 4.359832471

This radian mode screen shows TI-83/84 Plus conversions for Example 1. Verify that the first two results are approximations for the exact values of $\frac{\pi}{4}$ and $-\frac{3 \pi}{2}$.

This degree mode screen shows how a TI-83/84 Plus calculator converts the radian measures in Example 2 to degree measures.

We can use the relationship $180^{\circ}=\pi$ radians to develop a method for converting between degrees and radians as follows.

$$
180^{\circ}=\pi \text { radians }
$$

$\mathbf{1}^{\circ}=\frac{\boldsymbol{\pi}}{\mathbf{1 8 0}}$ radian \quad Divide by $180 . \quad$ or $\quad \mathbf{1}$ radian $=\frac{\mathbf{1 8 0}^{\circ}}{\boldsymbol{\pi}} \quad$ Divide by π.

Converting between Degrees and Radians

1. Multiply a degree measure by $\frac{\pi}{180}$ radian and simplify to convert to radians.
2. Multiply a radian measure by $\frac{180^{\circ}}{\pi}$ and simplify to convert to degrees.

EXAMPLE 1 Converting Degrees to Radians

Convert each degree measure to radians.
(a) 45°
(b) -270°
(c) 249.8°

SOLUTION
(a) $45^{\circ}=45\left(\frac{\pi}{180}\right.$ radian $)=\frac{\pi}{4}$ radian Multiply by $\frac{\pi}{180}$ radian.
(b) $-270^{\circ}=-270\left(\frac{\pi}{180}\right.$ radian $) \quad$ Multiply by $\frac{\pi}{180}$ radian.

$$
\begin{aligned}
& =-\frac{270 \pi}{180} \text { radians } \\
& =-\frac{3 \pi}{2} \text { radians } \quad \text { Write in lowest terms. }
\end{aligned}
$$

(c) $249.8^{\circ}=249.8\left(\frac{\pi}{180}\right.$ radian $) \approx 4.360$ radians \quad Nearest thousandth

Now Try Exercises 7, 13, and 47.

EXAMPLE 2 Converting Radians to Degrees

Convert each radian measure to degrees.
(a) $\frac{9 \pi}{4}$
(b) $-\frac{5 \pi}{6}$
(c) 4.25

SOLUTION
(a) $\frac{9 \pi}{4}$ radians $=\frac{9 \pi}{4}\left(\frac{180^{\circ}}{\pi}\right)=405^{\circ} \quad$ Multiply by $\frac{180^{\circ}}{\pi}$.
(b) $-\frac{5 \pi}{6}$ radians $=-\frac{5 \pi}{6}\left(\frac{180^{\circ}}{\pi}\right)=-150^{\circ} \quad$ Multiply by $\frac{180^{\circ}}{\pi}$.
(c) 4.25 radians $=4.25\left(\frac{180^{\circ}}{\pi}\right)$

$$
\approx 243.5^{\circ}, \text { or } 243^{\circ} 30^{\prime} \quad 0.50706\left(60^{\prime}\right) \approx 30^{\prime}
$$

NOTE Another way to convert a radian measure that is a rational multiple of π, such as $\frac{9 \pi}{4}$, to degrees is to just substitute 180° for π. In Example 2(a), this would be

$$
\frac{9\left(180^{\circ}\right)}{4}=405^{\circ}
$$

One of the most important facts to remember when working with angles and their measures is summarized in the following statement.

Agreement on Angle Measurement Units

If no unit of angle measure is specified, then the angle is understood to be measured in radians.

For example, Figure 3(a) shows an angle of 30°, and Figure 3(b) shows an angle of 30 (which means 30 radians).

Note the difference between an angle of 30 degrees and an angle of 30 radians.

Figure 3

The following table and Figure 4 on the next page give some equivalent angle measures in degrees and radians. Keep in mind that

$$
180^{\circ}=\pi \text { radians. }
$$

Degrees	Radians		Degrees	Radians	
	Exact	Approximate		Exact	Approximate
0°	0	0	90°	$\frac{\pi}{2}$	1.57
30°	$\frac{\pi}{6}$	0.52	180°	π	3.14
45°	$\frac{\pi}{4}$	0.79	270°	$\frac{3 \pi}{2}$	4.71
60°	$\frac{\pi}{3}$	1.05	360°	2π	6.28

LOOKING AHEAD TO CALCULUS

In calculus, radian measure is much easier to work with than degree measure. If x is measured in radians, then the derivative of $f(x)=\sin x$ is

$$
f^{\prime}(x)=\cos x
$$

However, if x is measured in degrees, then the derivative of $f(x)=\sin x$ is

$$
f^{\prime}(x)=\frac{\pi}{180} \cos x
$$

Figure 4
The angles marked in Figure 4 are extremely important in the study of trigonometry. You should learn these equivalences. They will appear often in the chapters to follow.

Finding Function Values for Angles in Radians Trigonometric function values for angles measured in radians can be found by first converting radian measure to degrees. (Try to skip this intermediate step as soon as possible, however, and find the function values directly from radian measure.)

EXAMPLE 3 Finding Function Values of Angles in Radian Measure

Find each function value.
(a) $\tan \frac{2 \pi}{3}$
(b) $\sin \frac{3 \pi}{2}$
(c) $\cos \left(-\frac{4 \pi}{3}\right)$

SOLUTION

(a) First convert $\frac{2 \pi}{3}$ radians to degrees.

$$
\begin{aligned}
\tan \frac{2 \pi}{3} & =\tan \left(\frac{2 \pi}{3} \cdot \frac{180^{\circ}}{\pi}\right) & & \text { Multiply by } \frac{180^{\circ}}{\pi} \\
& =\tan 120^{\circ} & & \text { Multiply. } \\
& =-\sqrt{3} & & \text { (Section 2.2) }
\end{aligned}
$$

(b) From our earlier observations, $\frac{3 \pi}{2}$ radians $=270^{\circ}$.

$$
\sin \frac{3 \pi}{2}=\sin 270^{\circ}=-1
$$

(c) $\cos \left(-\frac{4 \pi}{3}\right)=\cos \left(-\frac{4 \pi}{3} \cdot \frac{180^{\circ}}{\pi}\right)$ Convert radians to degrees.

Write in terms
of the reference
angle.

(Section 2.2)

$$
\cos 60^{\circ}=\frac{1}{2}
$$

3.1 Exercises

Concept Check In Exercises 1-6, each angle θ is an integer (e.g., $0, \pm 1, \pm 2, \ldots$) when measured in radians. Give the radian measure of the angle. (It helps to remember that $\pi \approx 3$.)
1.

2.

3.

4.

5.

6.

Convert each degree measure to radians. Leave answers as multiples of π. See Examples 1(a) and 1(b).
7. 60°
8. 30°
9. 90°
10. 120°
11. 150°
12. 270°
13. -300°
14. -315°
15. 450°
16. 480°
17. 1800°
18. 3600°
19. 0°
20. 180°
21. -900°
22. -1800°

Give a short explanation in Exercises 23-28.
23. Explain how to convert degree measure to radian measure.
24. Explain how to convert radian measure to degree measure.
25. Explain the meaning of radian measure.
26. Explain the difference between degree measure and radian measure.
27. Use an example to show that you can convert from radian measure to degree measure by multiplying by $\frac{180^{\circ}}{\pi}$.
28. Explain why an angle of radian measure t in standard position intercepts an arc of length t on a circle of radius 1 .

Convert each radian measure to degrees. See Examples 2(a) and 2(b).
29. $\frac{\pi}{3}$
30. $\frac{8 \pi}{3}$
31. $\frac{7 \pi}{4}$
32. $\frac{2 \pi}{3}$
33. $\frac{11 \pi}{6}$
34. $\frac{15 \pi}{4}$
35. $-\frac{\pi}{6}$
36. $-\frac{8 \pi}{5}$
37. $\frac{7 \pi}{10}$
38. $\frac{11 \pi}{15}$
39. $-\frac{4 \pi}{15}$
40. $-\frac{7 \pi}{20}$
41. $\frac{17 \pi}{20}$
42. $\frac{11 \pi}{30}$
43. -5π
44. 15π

Convert each degree measure to radians. See Example 1(c).
45. 39°
46. 74°
47. 42.5°
48. 264.9°
49. $139^{\circ} 10^{\prime}$
50. $174^{\circ} 50^{\prime}$
51. 64.29°
52. 85.04°
53. $56^{\circ} 25^{\prime}$
54. $122^{\circ} 37^{\prime}$
55. -47.6925°
56. -23.0143°

Convert each radian measure to degrees. Write answers to the nearest minute. See Example 2(c).
57. 2
58. 5
59. 1.74
60. 3.06
61. 0.3417
62. 9.84763
63. -5.01095
64. -3.47189
65. Concept Check The value of $\sin 30$ is not $\frac{1}{2}$. Why is this true?
66. Explain what is meant by an angle of one radian.

Find the exact value of each expression without using a calculator. See Example 3.
67. $\sin \frac{\pi}{3}$
68. $\cos \frac{\pi}{6}$
69. $\tan \frac{\pi}{4}$
70. $\cot \frac{\pi}{3}$
71. $\sec \frac{\pi}{6}$
72. $\csc \frac{\pi}{4}$
73. $\sin \frac{\pi}{2}$
74. $\csc \frac{\pi}{2}$
75. $\tan \frac{5 \pi}{3}$
76. $\cot \frac{2 \pi}{3}$
77. $\sin \frac{5 \pi}{6}$
78. $\tan \frac{5 \pi}{6}$
79. $\cos 3 \pi$
80. $\sec \pi$
81. $\sin \left(-\frac{8 \pi}{3}\right)$
82. $\cot \left(-\frac{2 \pi}{3}\right)$
83. $\sin \left(-\frac{7 \pi}{6}\right)$
84. $\cos \left(-\frac{\pi}{6}\right)$
85. $\tan \left(-\frac{14 \pi}{3}\right)$
86. $\csc \left(-\frac{13 \pi}{3}\right)$
87. Concept Check The figure shows the same angles measured in both degrees and radians. Complete the missing measures.

88. Concept Check What would be the exact radian measure of an angle that measures π degrees?

Solve each problem.
89. Rotating Hour Hand on a Clock Through how many radians does the hour hand on a clock rotate in (a) 24 hr and (b) 4 hr ?
90. Rotating Minute Hand on a Clock Through how many radians does the minute hand on a clock rotate in (a) 12 hr and (b) 3 hr ?
91. Orbits of a Space Vehicle A space vehicle is orbiting Earth in a circular orbit. What radian measure corresponds to (a) 2.5 orbits and (b) $\frac{4}{3}$ orbit?
92. Rotating Pulley A circular pulley is rotating about its center. Through how many radians does it turn in (a) 8 rotations and (b) 30 rotations?
93. Revolutions of a Carousel A stationary horse on a carousel makes 12 complete revolutions. Through what radian measure angle does the horse revolve?

94. Railroad Engineering The term grade has several different meanings in construction work. Some engineers use the term grade to represent $\frac{1}{100}$ of a right angle and express grade as a percent. For instance, an angle of 0.9° would be referred to as a 1\% grade. (Source: Hay, W., Railroad Engineering, John Wiley and Sons.)
(a) By what number should you multiply a grade (disregarding the $\%$ symbol) to convert it to radians?
(b) In a rapid-transit rail system, the maximum grade allowed between two stations is 3.5%. Express this angle in degrees and radians.

3.2 Applications of Radian Measure

- Arc Length on a Circle
- Area of a Sector of a Circle

Figure 5

Arc Length on a Circle The formula for finding the length of an arc of a circle follows directly from the definition of an angle θ in radians, where $\theta=\frac{s}{r}$.

In Figure 5, we see that angle $Q O P$ has measure 1 radian and intercepts an arc of length r on the circle. Angle ROT has measure θ radians and intercepts an arc of length s on the circle. From plane geometry, we know that the lengths of the arcs are proportional to the measures of their central angles.

$$
\frac{s}{r}=\frac{\theta}{1} \quad \text { Set up a proportion. }
$$

Multiplying each side by r gives

$$
s=r \theta . \quad \text { Solve for } s
$$

Arc Length

The length s of the arc intercepted on a circle of radius r by a central angle of measure θ radians is given by the product of the radius and the radian measure of the angle.

$$
s=r \theta, \quad \text { where } \theta \text { is in radians }
$$

CAUTION When the formula $s=r \theta$ is applied, the value of θ MUST be expressed in radians, not degrees.

EXAMPLE 1 Finding Arc Length Using $\boldsymbol{s}=\boldsymbol{r} \boldsymbol{\theta}$

A circle has radius 18.20 cm . Find the length of the arc intercepted by a central angle having each of the following measures.
(a) $\frac{3 \pi}{8}$ radians
(b) 144°

SOLUTION
(a) As shown in Figure 6, $r=18.20 \mathrm{~cm}$ and $\theta=\frac{3 \pi}{8}$.

$$
\begin{array}{ll}
s=r \theta & \text { Arc length formula } \\
s=18.20\left(\frac{3 \pi}{8}\right) \mathrm{cm} & \text { Substitute for } r \text { and } \theta . \\
s \approx 21.44 \mathrm{~cm} & \text { Use a calculator. }
\end{array}
$$

Figure 6
(b) The formula $s=r \theta$ requires that θ be measured in radians. First, convert θ to radians by multiplying 144° by $\frac{\pi}{180}$ radian.

$$
144^{\circ}=144\left(\frac{\pi}{180}\right)=\frac{4 \pi}{5} \text { radians } \begin{aligned}
& \text { Convert from degrees to radians } . \\
& (\text { Section 3.1) }
\end{aligned}
$$

The length s is found by using $s=r \theta$.

$$
\begin{aligned}
& \quad s=r \theta=18.20\left(\frac{4 \pi}{5}\right) \approx 45.74 \mathrm{~cm} \quad \text { Let } r=18.20 \mathrm{~cm} \text { and } \theta=\frac{4 \pi}{5} . \\
& \begin{array}{l}
\text { Be sure to use radians } \\
\text { for } \theta \text { in } s=r \theta .
\end{array} \\
& \text { Now Try Exercises 1, 11, and } 15 .
\end{aligned}
$$

EXAMPLE 2 Finding the Distance between Two Cities

Latitude gives the measure of a central angle with vertex at Earth's center whose initial side goes through the equator and whose terminal side goes through the given location. Reno, Nevada, is approximately due north of Los Angeles. The latitude of Reno is $40^{\circ} \mathrm{N}$, and that of Los Angeles is $34^{\circ} \mathrm{N}$. (The N in $34^{\circ} \mathrm{N}$ means north of the equator.) The radius of Earth is 6400 km . Find the north-south distance between the two cities.

SOLUTION As shown in Figure 7, the central angle between Reno and Los Angeles is

$$
40^{\circ}-34^{\circ}=6^{\circ}
$$

The distance between the two cities can be found by the formula $s=r \theta$, after 6° is converted to radians.

$$
6^{\circ}=6\left(\frac{\pi}{180}\right)=\frac{\pi}{30} \text { radian }
$$

The distance between the two cities is given by s.

$$
s=r \theta=6400\left(\frac{\pi}{30}\right) \approx 670 \mathrm{~km} \quad \text { Let } r=6400 \text { and } \theta=\frac{\pi}{30}
$$

Figure 8

Figure 9

EXAMPLE 3 Finding a Length Using $\boldsymbol{s}=\boldsymbol{r} \boldsymbol{\theta}$

A rope is being wound around a drum with radius 0.8725 ft . (See Figure 8.) How much rope will be wound around the drum if the drum is rotated through an angle of 39.72° ?

SOLUTION The length of rope wound around the drum is the arc length for a circle of radius 0.8725 ft and a central angle of 39.72°. Use the formula $s=r \theta$, with the angle converted to radian measure. The length of the rope wound around the drum is approximated by s.

$$
s=r \theta=0.8725\left[39.72\left(\frac{\pi}{180}\right)\right] \approx 0.6049 \mathrm{ft}
$$

Now Try Exercise 33(a).

EXAMPLE 4 Finding an Angle Measure Using $\boldsymbol{s}=\boldsymbol{r} \boldsymbol{\theta}$

Two gears are adjusted so that the smaller gear drives the larger one, as shown in Figure 9. If the smaller gear rotates through an angle of 225°, through how many degrees will the larger gear rotate?

SOLUTION First find the radian measure of the angle of rotation for the smaller gear, and then find the arc length on the smaller gear. This arc length will correspond to the arc length of the motion of the larger gear. Since $225^{\circ}=\frac{5 \pi}{4}$ radians, for the smaller gear,

$$
s=r \theta=2.5\left(\frac{5 \pi}{4}\right)=\frac{12.5 \pi}{4}=\frac{25 \pi}{8} \mathrm{~cm} .
$$

The tips of the two mating gear teeth must move at the same linear speed, or the teeth will break. So we must have "equal arc lengths in equal times." An arc with this length s on the larger gear corresponds to an angle measure θ, in radians, where $s=r \theta$.

$$
\begin{aligned}
s & =r \theta \\
\frac{25 \pi}{8} & =4.8 \theta \quad \text { Substitute } \frac{25 \pi}{8} \text { for } s \text { and } 4.8 \text { for } r \text { (for the larger gear). } \\
\frac{125 \pi}{192} & =\theta \quad 4.8=\frac{48}{10}=\frac{24}{5} . \text { Multiply by } \frac{5}{24} \text { to solve for } \theta .
\end{aligned}
$$

Converting θ back to degrees shows that the larger gear rotates through

$$
\frac{125 \pi}{192}\left(\frac{180^{\circ}}{\pi}\right) \approx 117^{\circ} . \quad \text { Convert } \theta=\frac{125 \pi}{192} \text { to degrees. }
$$

Now Try Exercise 27.

Figure 10

Area of a Sector of a Circle A sector of a circle is the portion of the interior of a circle intercepted by a central angle. Think of it as a "piece of pie." See Figure 10. A complete circle can be thought of as an angle with measure 2π radians. If a central angle for a sector has measure θ radians, then the sector makes up the fraction $\frac{\theta}{2 \pi}$ of a complete circle. The area \mathscr{A} of a complete circle with radius r is $\mathscr{A}=\pi r^{2}$. Therefore, we have the following.

Area \mathscr{A} of a sector $=\frac{\theta}{2 \pi}\left(\pi r^{2}\right)=\frac{1}{2} r^{2} \theta, \quad$ where θ is in radians.
This discussion can be summarized.

Area of a Sector

The area \mathscr{A} of a sector of a circle of radius r and central angle θ is given by the following formula.

$$
\mathscr{A}=\frac{1}{2} r^{2} \theta, \quad \text { where } \theta \text { is in radians }
$$

CAUTION As in the formula for arc length, the value of θ must be in radians when this formula is used for the area of a sector.

EXAMPLE 5 Finding the Area of a Sector-Shaped Field

Center-pivot irrigation system

A center-pivot irrigation system provides water to a sector-shaped field with the measures shown in Figure 11. Find the area of the field.

SOLUTION First, convert 15° to radians.

$$
15^{\circ}=15\left(\frac{\pi}{180}\right)=\frac{\pi}{12} \text { radian Convert to radians. }
$$

Now use the formula to find the area of a sector of a circle with radius $r=321$.

Figure 11

$$
\begin{aligned}
& \mathscr{A}=\frac{1}{2} r^{2} \theta \\
& \mathscr{A}=\frac{1}{2}(321)^{2}\left(\frac{\pi}{12}\right) \quad \text { Substitute for } r \text { and } \theta . \\
& \mathscr{A} \approx 13,500 \mathrm{~m}^{2} \quad \text { Multiply. }
\end{aligned}
$$

Now Try Exercise 61.

Concept Check Find the exact length of each arc intercepted by the given central angle.
1.

2.

3.

Concept Check Find the radius of each circle.
4.

5.

6.

Concept Check Find the measure of each central angle (in radians).

7.

8.

9.

10. Explain how to find the degree measure of a central angle in a circle if both the radius and the length of the intercepted arc are known.

Unless otherwise directed, give calculator approximations in your answers in the rest of this exercise set.

Find the length to three significant digits of each arc intercepted by a central angle θ in a circle of radius r. See Example 1.
11. $r=12.3 \mathrm{~cm}, \theta=\frac{2 \pi}{3}$ radians
12. $r=0.892 \mathrm{~cm}, \theta=\frac{11 \pi}{10}$ radians
13. $r=1.38 \mathrm{ft}, \theta=\frac{5 \pi}{6}$ radians
14. $r=3.24 \mathrm{mi}, \theta=\frac{7 \pi}{6}$ radians
15. $r=4.82 \mathrm{~m}, \theta=60^{\circ}$
16. $r=71.9 \mathrm{~cm}, \theta=135^{\circ}$
17. $r=15.1$ in., $\theta=210^{\circ}$
18. $r=12.4 \mathrm{ft}, \theta=330^{\circ}$
19. Concept Check If the radius of a circle is doubled, how is the length of the arc intercepted by a fixed central angle changed?
20. Concept Check Radian measure simplifies many formulas, such as the formula for arc length, $s=r \theta$. Give the corresponding formula when θ is measured in degrees instead of radians.

Distance between Cities Find the distance in kilometers between each pair of cities, assuming they lie on the same north-south line. Use $r=6400 \mathrm{~km}$ for the radius of Earth. See Example 2.
21. Panama City, Panama, $9^{\circ} \mathrm{N}$, and Pittsburgh, Pennsylvania, $40^{\circ} \mathrm{N}$
22. Farmersville, California, $36^{\circ} \mathrm{N}$, and Penticton, British Columbia, $49^{\circ} \mathrm{N}$
23. New York City, New York, $41^{\circ} \mathrm{N}$, and Lima, Peru, $12^{\circ} \mathrm{S}$
24. Halifax, Nova Scotia, $45^{\circ} \mathrm{N}$, and Buenos Aires, Argentina, $34^{\circ} \mathrm{S}$
25. Latitude of Madison Madison, South Dakota, and Dallas, Texas, are 1200 km apart and lie on the same north-south line. The latitude of Dallas is $33^{\circ} \mathrm{N}$. What is the latitude of Madison?
26. Latitude of Toronto Charleston, South Carolina, and Toronto, Canada, are 1100 km apart and lie on the same north-south line. The latitude of Charleston is $33^{\circ} \mathrm{N}$. What is the latitude of Toronto?

Work each problem. See Examples 3 and 4.

27. Gear Movement Two gears are adjusted so that the smaller gear drives the larger one, as shown in the figure. If the smaller gear rotates through an angle of 300°, through how many degrees does the larger gear rotate?
28. Gear Movement Repeat Exercise 27 for gear radii of 4.8 in . and 7.1 in . and for an angle of 315° for the
 smaller gear.
29. Rotating Wheels The rotation of the smaller wheel in the figure causes the larger wheel to rotate. Through how many degrees does the larger wheel rotate if the smaller one rotates through 60.0° ?
30. Rotating Wheels Repeat Exercise 29 for wheel radii of 6.84 in . and 12.46 in . and an angle of 150° for the smaller wheel.
31. Rotating Wheels Find the radius of the larger wheel in the figure if the smaller wheel rotates 80.0° when the larger wheel rotates 50.0°.
32. Rotating Wheels Repeat Exercise 31 if the smaller wheel of radius 14.6 in . rotates 120° when the larger wheel rotates 60°.

33. Pulley Raising a Weight Refer to the figure.
(a) How many inches will the weight in the figure rise if the pulley is rotated through an angle of $71^{\circ} 50^{\prime}$?
(b) Through what angle, to the nearest minute, must the pulley be rotated to raise the weight 6 in.?
34. Pulley Raising a Weight Find the radius of the pulley in the figure if a rotation of 51.6° raises the weight 11.4 cm .

35. Bicycle Chain Drive The figure shows the chain drive of a bicycle. How far will the bicycle move if the pedals are rotated through 180° ? Assume the radius of the bicycle wheel is 13.6 in .

36. Car Speedometer The speedometer of Terry's Honda CR-V is designed to be accurate with tires of radius 14 in .
(a) Find the number of rotations of a tire in 1 hr if the car is driven at 55 mph .
(b) Suppose that oversize tires of radius 16 in. are placed on the car. If the car is now driven for 1 hr with the speedometer reading 55 mph , how far has the car gone? If the speed limit is 55 mph , does Terry deserve a speeding ticket?

Suppose the tip of the minute hand of a clock is 3 in . from the center of the clock. For each duration, determine the distance traveled by the tip of the minute hand.
37. 30 min
38. 40 min
39. 4.5 hr
40. $6 \frac{1}{2} \mathrm{hr}$

If a central angle is very small, there is little difference in length between an arc and the inscribed chord. See the figure. Approximate each of the following lengths by finding the necessary arc length. (Note: When a central angle intercepts an arc, the arc is said to subtend the angle.)

Arc length \approx length of inscribed chord

41. Length of a Train A railroad track in the desert is 3.5 km away. A train on the track subtends (horizontally) an angle of $3^{\circ} 20^{\prime}$. Find the length of the train.
42. Distance to a Boat The mast of Brent Simon's boat is 32 ft high. If it subtends an angle of $2^{\circ} 10^{\prime}$, how far away is it?

Concept Check Find the area of each sector.

43.

44.

45.

46.

Concept Check Find the measure (in degrees) of each central angle. The number inside the sector is the area.
47.

48.

Concept Check Find the measure (in radians) of each central angle. The number inside the sector is the area.
49.

50.

Find the area of a sector of a circle having radius r and central angle θ. Express answers to the nearest tenth. See Example 5.
51. $r=29.2 \mathrm{~m}, \theta=\frac{5 \pi}{6}$ radians
52. $r=59.8 \mathrm{~km}, \theta=\frac{2 \pi}{3}$ radians
53. $r=30.0 \mathrm{ft}, \theta=\frac{\pi}{2}$ radians
54. $r=90.0 \mathrm{yd}, \theta=\frac{5 \pi}{6}$ radians
55. $r=12.7 \mathrm{~cm}, \theta=81^{\circ}$
56. $r=18.3 \mathrm{~m}, \theta=125^{\circ}$
57. $r=40.0 \mathrm{mi}, \theta=135^{\circ}$
58. $r=90.0 \mathrm{~km}, \theta=270^{\circ}$

Work each problem. See Example 5.

59. Angle Measure Find the measure (in radians) of a central angle of a sector of area 16 in. ${ }^{2}$ in a circle of radius 3.0 in .
60. Radius Length Find the radius of a circle in which a central angle of $\frac{\pi}{6}$ radian determines a sector of area $64 \mathrm{~m}^{2}$.
61. Irrigation Area A center-pivot irrigation system provides water to a sector-shaped field as shown in the figure. Find the area of the field if $\theta=40.0^{\circ}$ and $r=152 \mathrm{yd}$.
62. Irrigation Area Suppose that in Exercise 61 the angle is halved and the radius length is doubled. How does the new area compare to the original area? Does this result hold in general for any values of
 θ and r ?
63. Arc Length A circular sector has an area of 50 in. ${ }^{2}$. The radius of the circle is 5 in . What is the arc length of the sector?
64. Angle Measure In a circle, a sector has an area of $16 \mathrm{~cm}^{2}$ and an arc length of 6.0 cm . What is the measure of the central angle in degrees?
65. Measures of a Structure The figure illustrates Medicine Wheel, a Native American structure in northern Wyoming. There are 27 aboriginal spokes in the wheel, all equally spaced.

(a) Find the measure of each central angle in degrees and in radians.
(b) If the radius of the wheel is 76.0 ft , find the circumference.
(c) Find the length of each arc intercepted by consecutive pairs of spokes.
(d) Find the area of each sector formed by consecutive spokes.
66. Area Cleaned by a Windshield Wiper The Ford Model A, built from 1928 to 1931, had a single windshield wiper on the driver's side. The total arm and blade was 10 in . long and rotated back and forth through an angle of 95°. The shaded region in the figure is the portion of the windshield cleaned by the $7-\mathrm{in}$. wiper blade. What is the area
 of the region cleaned?
67. Circular Railroad Curves In the United States, circular railroad curves are designated by the degree of curvature, the central angle subtended by a chord of 100 ft . Suppose a portion of track has curvature 42.0°. (Source: Hay, W., Railroad Engineering, John Wiley and Sons.)
(a) What is the radius of the curve?
(b) What is the length of the arc determined by the 100 -ft chord?
(c) What is the area of the portion of the circle bounded by the arc and the $100-\mathrm{ft}$ chord?
68. Land Required for a Solar-Power Plant A 300-megawatt solar-power plant requires approximately $950,000 \mathrm{~m}^{2}$ of land area to collect the required amount of energy from sunlight. If this land area is circular, what is its radius? If this land area is a 35° sector of a circle, what is its radius?
69. Area of a Lot A frequent problem in surveying city lots and rural lands adjacent to curves of highways and railways is that of finding the area when one or more of the boundary lines is the arc of a circle. Find the area (to two significant digits) of the lot shown in the figure. (Source: Anderson, J. and E. Michael, Introduction to Surveying, McGraw-Hill.)

70. Nautical Miles Nautical miles are used by ships and airplanes. They are different from statute miles, which equal 5280 ft . A nautical mile is defined to be the arc length along the equator intercepted by a central angle $A O B$ of 1 min , as illustrated in the figure. If the equatorial radius of Earth is 3963 mi , use the arc length formula to approximate the number of statute miles in 1 nautical mile. Round your answer to two decimal places.
71. Circumference of Earth The first accurate estimate of the distance around Earth was done by the Greek astronomer Eratosthenes (276195 b.c.), who noted that the noontime position of the sun at the summer solstice in the city of Syene differed by $7^{\circ} 12^{\prime}$ from its noontime position in the city of Alexandria. (See the figure.) The distance between these two cities is 496 mi . Use the arc length formula to estimate the radius of Earth. Then find the
 circumference of Earth. (Source: Zeilik, M., Introductory Astronomy and Astrophysics, Third Edition, Saunders College Publishers.)

72. Longitude Longitude is the angular distance (expressed in degrees) East or West of the prime meridian, which goes from the North Pole to the South Pole through Greenwich, England. Arcs of 1° longitude are 110 km apart at the equator, and therefore 15° arcs subtend $15(110) \mathrm{km}$, or 1650 km , at the equator.

Because Earth rotates 15° per hr, longitude is found by taking the difference between time zones multiplied by 15°. For example, if it is 12 noon where you are (in the United States) and 5 P.m. in Greenwich, you are located at longitude $5\left(15^{\circ}\right)$, or $75^{\circ} \mathrm{W}$.
(a) What is the longitude at Greenwich, England?
(b) Use time zones to determine the longitude where you live.
73. Concept Check If the radius of a circle is doubled and the central angle of a sector is unchanged, how is the area of the sector changed?
74. Concept Check Give the formula for the area of a sector when the angle is measured in degrees.

Volume of a Solid Multiply the area of the base by the height to find a formula for the volume V of each solid.
75.

76.

Relating Concepts

For individual or collaborative investigation (Exercises 77-80)
(Modeling) Measuring Paper Curl Manufacturers of paper determine its quality by its curl. The curl of a sheet of paper is measured by holding it at the center of one edge and comparing the arc formed by the free end to arcs on a chart lying flat on a table. Each arc in the chart corresponds to a number d that gives the depth of the arc. See the figure. (Source: Tabakovic, H., J. Paullet, and R. Bertram, "Measuring the Curl of Paper," The College Mathematics Journal, Vol. 30, No. 4.)

To produce the chart, it is necessary to find a function that relates d to the length of arc L. Work Exercises 77-80 in order, to determine that function. Refer to the figure on the right.
77. Express L in terms of r and θ, and then solve for r.
78. Use a right triangle to relate r, h, and θ. Solve for h.
79. Express d in terms of r and h. Then substitute your answer from Exercise 78 for h. Factor out r.
80. Use your answer from Exercise 77 to substitute for r in the result from Exercise 79. This result is a formula that gives d for specific values of θ.

3.3 The Unit Circle and Circular Functions

- Circular Functions
- Finding Values of Circular Functions
- Determining a Number with a Given Circular Function Value
- Applying Circular Functions
- Expressing Function Values as Lengths of Line Segments

The unit circle $x^{2}+y^{2}=1$
Figure 12

LOOKING AHEAD TO CALCULUS

If you plan to study calculus, you must become very familiar with radian measure. In calculus, the trigonometric or circular functions are always understood to have real number domains.

In Section 1.3, we defined the six trigonometric functions in such a way that the domain of each function was a set of angles in standard position. These angles can be measured in degrees or in radians. In advanced courses, such as calculus, it is necessary to modify the trigonometric functions so that their domains consist of real numbers rather than angles. We do this by using the relationship between an angle θ and an arc of length s on a circle.

Circular Functions In Figure 12, we start at the point $(1,0)$ and measure an arc of length s along the circle. If $s>0$, then the arc is measured in a counterclockwise direction, and if $s<0$, then the direction is clockwise. (If $s=0$, then no arc is measured.) Let the endpoint of this arc be at the point (x, y). The circle in Figure 12 is the unit circle-it has center at the origin and radius 1 unit (hence the name unit circle). Recall from algebra that the equation of this circle is

$$
x^{2}+y^{2}=1 . \quad(\text { Appendix B) }
$$

The radian measure of θ is related to the arc length s. For θ measured in radians, we know that $s=r \theta$. Here $r=1$, so s, which is measured in linear units such as inches or centimeters, is equal to θ, measured in radians. Thus, the trigonometric functions of angle θ in radians found by choosing a point (x, y) on the unit circle can be rewritten as functions of the arc length s, a real number. When interpreted this way, they are called circular functions.

Circular Functions

For any real number s represented by a directed arc on the unit circle,

$$
\begin{array}{lll}
\sin s=y & \cos s=x & \tan s=\frac{y}{x} \quad(x \neq 0) \\
\csc s=\frac{1}{y} \quad(y \neq 0) & \sec s=\frac{1}{x} \quad(x \neq 0) & \cot s=\frac{x}{y} \quad(y \neq 0)
\end{array}
$$

Since x represents the cosine of s and y represents the sine of s, and because of the discussion in Section 3.1 on converting between degrees and radians, we can summarize a great deal of information in a concise manner, as seen in Figure 13 on the next page.*

The unit circle is symmetric with respect to the x-axis, the y-axis, and the origin. (See Appendix D.) Thus, if a point (a, b) lies on the unit circle, so do $(a,-b),(-a, b)$, and $(-a,-b)$. Furthermore, each of these points has a reference arc of equal magnitude. For a point on the unit circle, its reference arc is the shortest arc from the point itself to the nearest point on the x-axis. (This concept is analogous to the reference angle concept introduced in Chapter 2.) Using the concept of symmetry makes determining sines and cosines of the real numbers identified in Figure 13 a relatively simple procedure if we know the coordinates of the points labeled in quadrant I.

[^3]

The unit circle $x^{2}+y^{2}=1$
Figure 13
For example, the quadrant I real number $\frac{\pi}{3}$ is associated with the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ on the unit circle. Therefore, we can use symmetry to identify the coordinates of the points associated with

The following chart summarizes this information.

s	Quadrant of s	Symmetry Type and Corresponding Point	$\cos s$	$\sin s$
$\frac{\boldsymbol{\pi}}{\mathbf{3}}$	I	not applicable; $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\pi-\frac{\pi}{3}=\frac{\mathbf{2 \pi}}{\mathbf{3}}$	II	y-axis; $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\pi+\frac{\pi}{3}=\frac{\mathbf{4 \pi}}{\mathbf{3}}$	III	origin; $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
$2 \pi-\frac{\pi}{3}=\frac{\mathbf{5 \pi}}{\mathbf{3}}$	IV	x-axis; $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$

NOTE Because $\cos s=x$ and $\sin s=y$, we can replace x and y in the equation of the unit circle $x^{2}+y^{2}=1$ and obtain the following.

$$
\cos ^{2} s+\sin ^{2} s=1
$$

Pythagorean identity (Section 1.4)

The ordered pair (x, y) represents a point on the unit circle, and therefore

$$
\begin{aligned}
& -1 \leq x \leq 1 \quad \text { and } \quad-1 \leq y \leq 1 \\
& -\mathbf{1} \leq \cos \boldsymbol{s} \leq \mathbf{1} \quad \text { and } \quad-\mathbf{1} \leq \sin s \leq \mathbf{1}
\end{aligned}
$$

For any value of s, both $\sin s$ and $\cos s$ exist, so the domain of these functions is the set of all real numbers.

For $\tan s$, defined as $\frac{y}{x}, x$ must not equal 0 . The only way x can equal 0 is when the arc length s is $\frac{\pi}{2},-\frac{\pi}{2}, \frac{3 \pi}{2},-\frac{3 \pi}{2}$, and so on. To avoid a 0 denominator, the domain of the tangent function must be restricted to those values of s that satisfy

$$
s \neq(2 n+1) \frac{\pi}{2}, \quad \text { where } n \text { is any integer. }
$$

The definition of secant also has x in the denominator, so the domain of secant is the same as the domain of tangent. Both cotangent and cosecant are defined with a denominator of y. To guarantee that $y \neq 0$, the domain of these functions must be the set of all values of s that satisfy

$$
s \neq n \pi, \quad \text { where } n \text { is any integer. }
$$

Domains of the Circular Functions

The domains of the circular functions are as follows.
Sine and Cosine Functions: ($-\infty, \infty$)
Tangent and Secant Functions:

$$
\left\{s \left\lvert\, s \neq(2 n+1) \frac{\pi}{2}\right., \quad \text { where } n \text { is any integer }\right\}
$$

Cotangent and Cosecant Functions:

$$
\{s \mid s \neq n \pi, \quad \text { where } n \text { is any integer }\}
$$

Figure 14

Finding Values of Circular Functions The circular functions of real numbers correspond to the trigonometric functions of angles measured in radians. Let us assume that angle θ is in standard position, superimposed on the unit circle. See Figure 14. Suppose that θ is the radian measure of this angle. Using the arc length formula

$$
s=r \theta \quad \text { with } r=1, \quad \text { we have } \quad s=\theta
$$

Thus, the length of the intercepted arc is the real number that corresponds to the radian measure of θ. Use the trigonometric function definitions from Section 1.3 to obtain the following.

$$
\sin \theta=\frac{y}{r}=\frac{y}{1}=y=\sin s, \quad \cos \theta=\frac{x}{r}=\frac{x}{1}=x=\cos s, \quad \text { and so on. }
$$

As shown here, the trigonometric functions and the circular functions lead to the same function values, provided that we think of the angles as being in radian measure. This leads to the following important result.

Evaluating a Circular Function

Circular function values of real numbers are obtained in the same manner as trigonometric function values of angles measured in radians. This applies both to methods of finding exact values (such as reference angle analysis) and to calculator approximations. Calculators must be in radian mode when finding circular function values.

EXAMPLE 1 Finding Exact Circular Function Values

Find the exact values of $\sin \frac{3 \pi}{2}, \cos \frac{3 \pi}{2}$, and $\tan \frac{3 \pi}{2}$.

SOLUTION Evaluating a circular function at the real number $\frac{3 \pi}{2}$ is equivalent to evaluating it at $\frac{3 \pi}{2}$ radians. An angle of $\frac{3 \pi}{2}$ radians intersects the unit circle at the point $(0,-1)$, as shown in
Figure 15. Since

$$
\sin s=y, \quad \cos s=x, \quad \text { and } \quad \tan s=\frac{y}{x}
$$

Figure 15
it follows that
$\sin \frac{3 \pi}{2}=-1, \quad \cos \frac{3 \pi}{2}=0, \quad$ and $\quad \tan \frac{3 \pi}{2}$ is undefined.
Now Try Exercises 1 and 3.

EXAMPLE 2 Finding Exact Circular Function Values

Find each exact value using the specified method.
(a) Use Figure 13 to find the exact values of $\cos \frac{7 \pi}{4}$ and $\sin \frac{7 \pi}{4}$.
(b) Use Figure 13 and the definition of the tangent to find the exact value of $\tan \left(-\frac{5 \pi}{3}\right)$.
(c) Use reference angles and radian-to-degree conversion to find the exact value of $\cos \frac{2 \pi}{3}$.

SOLUTION

(a) In Figure 13, we see that the real number $\frac{7 \pi}{4}$ corresponds to the unit circle point $\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$.

$$
\cos \frac{7 \pi}{4}=\frac{\sqrt{2}}{2} \quad \text { and } \quad \sin \frac{7 \pi}{4}=-\frac{\sqrt{2}}{2}
$$

(b) Moving around the unit circle $\frac{5 \pi}{3}$ units in the negative direction yields the same ending point as moving around $\frac{\pi}{3}$ units in the positive direction. Thus, $-\frac{5 \pi}{3}$ corresponds to $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

$$
\tan \left(-\frac{5 \pi}{3}\right)=\tan \frac{\pi}{3}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\frac{\sqrt{3}}{2} \div \frac{1}{2}=\frac{\sqrt{3}}{2} \cdot \frac{2}{1}=\sqrt{3}
$$

(c) An angle of $\frac{2 \pi}{3}$ radians corresponds to an angle of 120°. In standard position, 120° lies in quadrant II with a reference angle of 60°.

$$
\cos \frac{2 \pi}{3}=\cos 120^{\circ}=-\cos 60^{\circ}=-\frac{1}{2}
$$

Radian mode
This is how the TI-83/84 Plus calculator displays the result of Example 3(a), fixed to four decimal digits.

EXAMPLE 3 Approximating Circular Function Values

Find a calculator approximation for each circular function value.
(a) $\cos 1.85$
(b) $\cos 0.5149$
(c) $\cot 1.3209$
(d) $\sec (-2.9234)$

SOLUTION

(a) $\cos 1.85 \approx-0.2756$ Use a calculator in radian mode.
(b) $\cos 0.5149 \approx 0.8703$ Use a calculator in radian mode.
(c) As before, to find cotangent, secant, and cosecant function values, we must use the appropriate reciprocal functions. To find cot 1.3209, first find $\tan 1.3209$ and then find the reciprocal.

$$
\cot 1.3209=\frac{1}{\tan 1.3209} \approx 0.2552 \quad \text { Tangent and cotangent are reciprocals. }
$$

(d) $\sec (-2.9234)=\frac{1}{\cos (-2.9234)} \approx-1.0243 \quad$ Cosine and secant are reciprocals.

Now Try Exercises 23, 29, and 33.

CAUTION A common error is using a calculator in degree mode when radian mode should be used. Remember, when finding a circular function value of a real number, the calculator must be in radian mode.

Determining a Number with a Given Circular Function Value Recall from Section 2.3 how we used a calculator to determine an angle measure, given a trigonometric function value of the angle. Remember that the keys marked $\sin ^{-1}, \cos ^{-1}$, and $\tan ^{-1}$ do not represent reciprocal functions. They enable us to find inverse function values.

For reasons explained in Chapter 6, the following statements are true.

- For all x in $[-1,1]$, a calculator in radian mode returns a single value in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ for $\sin ^{-1} x$.
- For all x in $[-1,1]$, a calculator in radian mode returns a single value in $[0, \pi]$ for $\cos ^{-1} x$.
- For all real numbers x, a calculator in radian mode returns a single value in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for $\tan ^{-1} x$.

EXAMPLE 4 Finding a Number Given Its Circular Function Value

Find each value as specified.
(a) Approximate the value of s in the interval $\left[0, \frac{\pi}{2}\right]$ if $\cos s=0.9685$.
(b) Find the exact value of s in the interval $\left[\pi, \frac{3 \pi}{2}\right]$ if $\tan s=1$.

SOLUTION

(a) Since we are given a cosine value and want to determine the real number in $\left[0, \frac{\pi}{2}\right]$ that has this cosine value, we use the inverse cosine function of a calculator. With the calculator in radian mode, we find

$$
\cos ^{-1}(0.9685) \approx 0.2517 . \quad(\text { Section } 2.3)
$$

Figure 17

This screen supports the result in Example 4(b) with calculator approximations.

See Figure 16. The screen indicates that the real number in $\left[0, \frac{\pi}{2}\right]$ whose cosine is 0.9685 is 0.2517 .

00s-1(.9685)
.2517

Radian mode
Figure 16
(b) Recall that $\tan \frac{\pi}{4}=1$, and in quadrant III $\tan s$ is positive.

$$
\tan \left(\pi+\frac{\pi}{4}\right)=\tan \frac{5 \pi}{4}=1
$$

Thus, $s=\frac{5 \pi}{4}$. See Figure 17.
Now Try Exercises 55 and 65.

Applying Circular Functions

EXAMPLE 5 Modeling the Angle of Elevation of the Sun

The angle of elevation θ of the sun in the sky at any latitude L is calculated with the formula

$$
\sin \theta=\cos D \cos L \cos \omega+\sin D \sin L
$$

where $\theta=0$ corresponds to sunrise and $\theta=\frac{\pi}{2}$ occurs if the sun is directly overhead. ω (the Greek letter omega) is the number of radians that Earth has rotated through since noon, when $\omega=0 . D$ is the declination of the sun, which varies because Earth is tilted on its axis. (Source: Winter, C., R. Sizmann, and L. L. Vant-Hull, Editors, Solar Power Plants, Springer-Verlag.)

Sacramento, California, has latitude $L=38.5^{\circ}$, or 0.6720 radian. Find the angle of elevation θ of the sun at 3 P.M. on February 29, 2012, where at that time $D \approx-0.1425$ and $\omega \approx 0.7854$.

SOLUTION Use the given formula for $\sin \theta$.

$$
\begin{aligned}
\sin \theta & =\cos D \cos L \cos \omega+\sin D \sin L \\
& =\cos (-0.1425) \cos (0.6720) \cos (0.7854)+\sin (-0.1425) \sin (0.6720) \\
& \approx 0.4593426188
\end{aligned}
$$

Thus, $\theta \approx 0.4773$ radian, or 27.3°. Use inverse sine.
Now Try Exercise 83.

Expressing Function Values as Lengths of Line Segments The diagram shown in Figure 18 illustrates a correspondence that ties together the right triangle ratio definitions of the trigonometric functions introduced in Chapter 2 and the unit circle interpretation. The arc $S R$ is the first-quadrant portion of the unit circle, and the standard-position angle $P O Q$ is designated θ. By definition, the coordinates of P are $(\cos \theta, \sin \theta)$. The six trigonometric functions of θ can be interpreted as lengths of line segments found in Figure 18.

For $\cos \theta$ and $\sin \theta$, use right triangle $P O Q$ and right triangle ratios.

$$
\begin{aligned}
& \boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}=\frac{\text { side adjacent to } \theta}{\text { hypotenuse }}=\frac{O Q}{O P}=\frac{O Q}{1}=\boldsymbol{O Q} \\
& \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}=\frac{\text { side opposite } \theta}{\text { hypotenuse }}=\frac{P Q}{O P}=\frac{P Q}{1}=\boldsymbol{P Q}
\end{aligned}
$$

For $\tan \theta$ and $\sec \theta$, use right triangle $V O R$ in Figure 18 and right triangle ratios.

$$
\begin{aligned}
& \boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}=\frac{\text { side opposite } \theta}{\text { side adjacent to } \theta}=\frac{V R}{O R}=\frac{V R}{1}=\boldsymbol{V} \boldsymbol{R} \\
& \boldsymbol{\operatorname { s e c }} \boldsymbol{\theta}=\frac{\text { hypotenuse }}{\text { side adjacent to } \theta}=\frac{O V}{O R}=\frac{O V}{1}=\boldsymbol{O V}
\end{aligned}
$$

For $\csc \theta$ and $\cot \theta$, first note that $U S$ and $O R$ are parallel. Thus angle $S U O$ is equal to θ because it is an alternate interior angle to angle $P O Q$, which is equal to θ. Use right triangle $U S O$ and right triangle ratios.

$$
\begin{aligned}
& \csc S U O=\csc \boldsymbol{\theta}=\frac{\text { hypotenuse }}{\text { side opposite } \theta}=\frac{O U}{O S}=\frac{O U}{1}=\boldsymbol{O U} \\
& \cot S U O=\cot \boldsymbol{\theta}=\frac{\text { side adjacent to } \theta}{\text { side opposite } \theta}=\frac{U S}{O S}=\frac{U S}{1}=\boldsymbol{U S}
\end{aligned}
$$

Figure 19 uses color to illustrate the results found above.

Figure 19

EXAMPLE 6 Finding Lengths of Line Segments

Figure 18 is repeated in the margin. Suppose that angle $T V U$ measures 60°. Find the exact lengths of segments $O Q, P Q, V R, O V, O U$, and $U S$.
SOLUTION Angle TVU has the same measure as angle $O V R$ because they are vertical angles. Therefore, angle $O V R$ measures 60°. Because it is one of the acute angles in right triangle VOR, θ must be its complement, measuring 30°. Now use the equations found in Figure 19, with $\theta=30^{\circ}$.

$$
\begin{array}{ll}
O Q=\cos 30^{\circ}=\frac{\sqrt{3}}{2} & O V=\sec 30^{\circ}=\frac{2 \sqrt{3}}{3} \\
P Q=\sin 30^{\circ}=\frac{1}{2} & O U=\csc 30^{\circ}=2 \\
V R=\tan 30^{\circ}=\frac{\sqrt{3}}{3} & U S=\cot 30^{\circ}=\sqrt{3}
\end{array}
$$

For each value of the real number s, find (a) $\sin s$, (b) $\cos s$, and (c) tan s. See Example 1.

1. $s=\frac{\pi}{2}$
2. $s=\pi$
3. $s=2 \pi$
4. $s=3 \pi$
5. $s=-\pi$
6. $s=-\frac{3 \pi}{2}$

Find the exact circular function value for each of the following. See Example 2.
7. $\sin \frac{7 \pi}{6}$
8. $\cos \frac{5 \pi}{3}$
9. $\tan \frac{3 \pi}{4}$
10. $\sec \frac{2 \pi}{3}$
11. $\csc \frac{11 \pi}{6}$
12. $\cot \frac{5 \pi}{6}$
13. $\cos \left(-\frac{4 \pi}{3}\right)$
14. $\tan \left(-\frac{17 \pi}{3}\right)$
15. $\cos \frac{7 \pi}{4}$
16. $\sec \frac{5 \pi}{4}$
17. $\sin \left(-\frac{4 \pi}{3}\right)$
18. $\sin \left(-\frac{5 \pi}{6}\right)$
19. $\sec \frac{23 \pi}{6}$
20. $\csc \frac{13 \pi}{3}$
21. $\tan \frac{5 \pi}{6}$
22. $\cos \frac{3 \pi}{4}$

Find a calculator approximation for each circular function value. See Example 3.
23. $\sin 0.6109$
24. $\sin 0.8203$
25. $\cos (-1.1519)$
26. $\cos (-5.2825)$
27. $\tan 4.0203$
28. $\tan 6.4752$
29. $\csc (-9.4946)$
30. $\csc 1.3875$
31. $\sec 2.8440$
32. $\sec (-8.3429)$
33. $\cot 6.0301$
34. $\cot 3.8426$

Concept Check The figure displays a unit circle and an angle of 1 radian. The tick marks on the circle are spaced at every two-tenths radian. Use the figure to estimate each value.

35. $\cos 0.8$
36. $\cos 0.6$
37. $\sin 2$
38. $\sin 4$
39. $\sin 3.8$
40. $\cos 3.2$
41. a positive angle whose cosine is -0.65
42. a positive angle whose sine is -0.95
43. a positive angle whose sine is 0.7
44. a positive angle whose cosine is 0.3

Concept Check Without using a calculator, decide whether each function value is positive or negative. (Hint: Consider the radian measures of the quadrantal angles, and remember that $\pi \approx 3.14$.)
45. $\cos 2$
46. $\sin (-1)$
47. $\sin 5$
48. $\cos 6$
49. $\tan 6.29$
50. $\tan (-6.29)$

Concept Check Each figure in Exercises 51-54 shows an angle θ in standard position with its terminal side intersecting the unit circle. Evaluate the six circular function values of θ.
51.

52.

53.

54.

Find the value of s in the interval $\left[0, \frac{\pi}{2}\right]$ that makes each statement true. See Example 4(a).
55. $\tan s=0.2126$
56. $\cos s=0.7826$
57. $\sin s=0.9918$
58. $\cot s=0.2994$
59. $\sec s=1.0806$
60. $\csc s=1.0219$

Find the exact value of s in the given interval that has the given circular function value. Do not use a calculator. See Example 4(b).
61. $\left[\frac{\pi}{2}, \pi\right] ; \quad \sin s=\frac{1}{2}$
62. $\left[\frac{\pi}{2}, \pi\right] ; \quad \cos s=-\frac{1}{2}$
63. $\left[\pi, \frac{3 \pi}{2}\right] ; \quad \tan s=\sqrt{3}$
64. $\left[\pi, \frac{3 \pi}{2}\right] ; \quad \sin s=-\frac{1}{2}$
65. $\left[\frac{3 \pi}{2}, 2 \pi\right] ; \quad \tan s=-1$
66. $\left[\frac{3 \pi}{2}, 2 \pi\right] ; \quad \cos s=\frac{\sqrt{3}}{2}$

Find the exact values of s in the given interval that satisfy the given condition.
67. $[0,2 \pi) ; \quad \sin s=-\frac{\sqrt{3}}{2}$
68. $[0,2 \pi) ; \quad \cos s=-\frac{1}{2}$
69. $[0,2 \pi) ; \quad \cos ^{2} s=\frac{1}{2}$
70. $[0,2 \pi) ; \quad \tan ^{2} s=3$
71. $[-2 \pi, \pi) ; \quad 3 \tan ^{2} s=1$
72. $[-\pi, \pi) ; \quad \sin ^{2} s=\frac{1}{2}$

Suppose an arc of length slies on the unit circle $x^{2}+y^{2}=1$, starting at the point $(1,0)$ and terminating at the point (x, y). (See Figure 12.) Use a calculator to find the approximate coordinates for (x, y). (Hint: $x=\cos s$ and $y=\sin s$.)
73. $s=2.5$
74. $s=3.4$
75. $s=-7.4$
76. $s=-3.9$

Concept Check For each value of s, use a calculator to find sin s and $\cos s$, and then use the results to decide in which quadrant an angle of s radians lies.
77. $s=51$
78. $s=49$
79. $s=65$
80. $s=79$

Concept Check In Exercises 81 and 82, each graphing calculator screen shows a point on the unit circle. What is the length of the shortest arc of the circle from $(1,0)$ to the point?
81.

82.

(Modeling) Solve each problem. See Example 5.
83. Elevation of the Sun Refer to Example 5.
(a) Repeat the example for New Orleans, which has latitude $L=30^{\circ}$.
(b) Compare your answers. Do they agree with your intuition?
84. Length of a Day The number of daylight hours H at any location can be calculated using the formula

$$
\cos (0.1309 H)=-\tan D \tan L
$$

where D and L are defined in Example 5. Use this trigonometric equation to calculate the shortest and longest days in Minneapolis, Minnesota, if its latitude $L=44.88^{\circ}$, the shortest day occurs when $D=-23.44^{\circ}$, and the longest day occurs when $D=23.44^{\circ}$. Remember to convert degrees to radians. (Source: Winter, C., R. Sizmann, and L. L. Vant-Hull, Editors, Solar Power Plants, Springer-Verlag.)
85. Maximum Temperatures Because the values of the circular functions repeat every 2π, they are used to describe things that repeat periodically. For example, the maximum afternoon temperature in a given city might be modeled by

$$
t=60-30 \cos \left(\frac{\pi}{6} x\right)
$$

where t represents the maximum afternoon temperature in month x, with $x=0$ representing January, $x=1$ representing February, and so on. Find the maximum afternoon temperature for each of the following months.
(a) January
(b) April
(c) May
(d) June
(e) August
(f) October
86. Temperature in Fairbanks Suppose the temperature in Fairbanks is modeled by

$$
T(x)=37 \sin \left[\frac{2 \pi}{365}(x-101)\right]+25
$$

where $T(x)$ is the temperature in degrees Fahrenheit on day x, with $x=1$ corresponding to January 1 and $x=365$ corresponding to December 31. Use a calculator to estimate the temperature on the following days. (Source: Lando, B. and C. Lando, "Is the Graph of Temperature Variation a Sine Curve?," The Mathematics Teacher, vol. 70.)
(a) March 1 (day 60)
(b) April 1 (day 91)
(c) Day 150
(d) June 15
(e) September 1
(f) October 31

In Exercises 87 and 88, see Example 6.

87. Refer to Figures 18 and 19. Suppose that angle θ measures 60°. Find the exact length of each segment.
(a) $O Q$
(b) $P Q$
(c) $V R$
(d) $O V$
(e) $O U$
(f) $U S$
88. Refer to Figures $\mathbf{1 8}$ and 19. Repeat Exercise $\mathbf{8 7}$ for $\theta=38^{\circ}$, but give lengths as approximations to four significant digits.

Chapter 3 Ouiz (Sections 3.1-3.3)

Convert each degree measure to radians.

1. 225°
2. -330°

Convert each radian measure to degrees.
3. $\frac{5 \pi}{3}$
4. $-\frac{7 \pi}{6}$

A central angle of a circle with radius 300 in. intercepts an arc of 450 in. (These measures are accurate to the nearest inch.) Find each measure.
5. the radian measure of the angle
6. the area of the sector

Find each circular function value. Give exact values.
7. $\cos \frac{7 \pi}{4}$
8. $\sin \left(-\frac{5 \pi}{6}\right)$
9. $\tan 3 \pi$
10. Find the exact value of s in the interval $\left[\frac{\pi}{2}, \pi\right]$ if $\sin s=\frac{\sqrt{3}}{2}$.

3.4 Linear and Angular Speed

- Linear Speed
- Angular Speed

Figure 20

Linear Speed There are situations when we need to know how fast a point on a circular disk is moving or how fast the central angle of such a disk is changing. Some examples occur with machinery involving gears or pulleys or the speed of a car around a curved portion of highway.

Suppose that point P moves at a constant speed along a circle of radius r and center O. See Figure 20. The measure of how fast the position of P is changing is the linear speed. If v represents linear speed, then

$$
\text { speed }=\frac{\text { distance }}{\text { time }}, \quad \text { or } \quad v=\frac{s}{t}
$$

where s is the length of the arc traced by point P at time t. (This formula is just a restatement of $r=\frac{d}{t}$ with s as distance, v as rate (speed), and t as time.)

Angular Speed Refer to Figure 20 at the bottom of the preceding page. As point P in the figure moves along the circle, ray $O P$ rotates around the origin. Since ray $O P$ is the terminal side of angle $P O B$, the measure of the angle changes as P moves along the circle. The measure of how fast angle $P O B$ is changing is its angular speed. Angular speed, symbolized ω, is given as

$$
\omega=\frac{\theta}{t}, \quad \text { where } \theta \text { is in radians. }
$$

Here θ is the measure of angle $P O B$ at time t. As with earlier formulas in this chapter, θ must be measured in radians, with ω expressed in radians per unit of time.

In Section 3.2, the length s of the arc intercepted on a circle of radius r by a central angle of measure θ radians was found to be $s=r \theta$. Using this formula, the formula for linear speed, $v=\frac{s}{t}$, becomes

$$
\begin{aligned}
v & =\frac{s}{t} \quad \text { Formula for linear speed } \\
& =\frac{r \theta}{t} \quad s=r \theta \\
& =r \cdot \frac{\theta}{t} \\
\nu & =r \omega . \quad \omega=\frac{\theta}{t}
\end{aligned}
$$

The formulas for angular and linear speed are summarized in the table.

Angular Speed ω	Linear Speed v
$\boldsymbol{\omega}=\frac{\boldsymbol{\theta}}{\boldsymbol{t}}$	$v=\frac{s}{t}$
$(\omega$ in radians per unit time t, θ in radians $)$	$v=\frac{r \boldsymbol{\theta}}{\boldsymbol{t}}$
$\boldsymbol{v}=r \boldsymbol{\omega}$	

As an example of linear and angular speeds, consider the following. The human joint that can be flexed the fastest is the wrist, which can rotate through 90°, or $\frac{\pi}{2}$ radians, in 0.045 sec while holding a tennis racket. The angular speed of a human wrist swinging a tennis racket is

$$
\begin{aligned}
\omega & =\frac{\theta}{t} & & \text { Formula for angular speed } \\
& =\frac{\frac{\pi}{2}}{0.045} & & \text { Substitute. } \\
\omega & \approx 35 \text { radians per sec. } & & \text { Use a calculator. }
\end{aligned}
$$

If the radius (distance) from the tip of the racket to the wrist joint is 2 ft , then the speed at the tip of the racket is

$$
\begin{aligned}
v & =r \omega & & \text { Formula for linear speed } \\
& \approx 2(35) & & \text { Substitute. } \\
v & =70 \mathrm{ft} \text { per sec, or } \quad \text { about } 48 \mathrm{mph} . & & \text { Use a calculator. }
\end{aligned}
$$

In a tennis serve the arm rotates at the shoulder, so the final speed of the racket is considerably greater. (Source: Cooper, J. and R. Glassow, Kinesiology, Second Edition, C.V. Mosby.)

EXAMPLE 1 Using Linear and Angular Speed Formulas

Suppose that point P is on a circle with radius 10 cm , and ray $O P$ is rotating with angular speed $\frac{\pi}{18}$ radian per sec.
(a) Find the angle generated by P in 6 sec .
(b) Find the distance traveled by P along the circle in 6 sec .
(c) Find the linear speed of P in centimeters per second.

SOLUTION

(a) The speed of ray $O P$ is $\omega=\frac{\pi}{18}$ radian per sec. Use $\omega=\frac{\theta}{t}$ and $t=6 \mathrm{sec}$.

$$
\begin{array}{rlrl}
\frac{\pi}{18} & =\frac{\theta}{6} & & \begin{array}{l}
\text { Let } \omega=\frac{\pi}{18} \text { and } t=6 \text { in the } \\
\text { angular speed formula. }
\end{array} \\
\theta & =\frac{6 \pi}{18}, \quad \text { or } \quad \frac{\pi}{3} \text { radians } & \text { Solve for } \theta .
\end{array}
$$

(b) From part (a), P generates an angle of $\frac{\pi}{3}$ radians in 6 sec . The distance traveled by P along the circle is found as follows.

$$
s=r \theta=10\left(\frac{\pi}{3}\right)=\frac{10 \pi}{3} \mathrm{~cm} \quad \text { (Section 3.2) }
$$

(c) From part (b), $s=\frac{10 \pi}{3} \mathrm{~cm}$ for 6 sec , so for 1 sec we divide by 6 .

$$
v=\frac{s}{t}=\frac{\frac{10 \pi}{3}}{6}=\frac{10 \pi}{3} \div 6=\frac{10 \pi}{3} \cdot \frac{1}{6}=\frac{5 \pi}{9} \mathrm{~cm} \text { per sec }
$$

Figure 21

EXAMPLE 2 Finding Angular Speed of a Pulley and Linear Speed of a Belt

A belt runs a pulley of radius 6 cm at 80 revolutions per min. See Figure 21.
(a) Find the angular speed of the pulley in radians per second.
(b) Find the linear speed of the belt in centimeters per second.

SOLUTION

(a) In 1 min , the pulley makes 80 revolutions. Each revolution is 2π radians.

$$
80(2 \pi)=160 \pi \text { radians per min }
$$

Since there are 60 sec in 1 min , we find ω, the angular speed in radians per second, by dividing 160π by 60 .

$$
\omega=\frac{160 \pi}{60}=\frac{8 \pi}{3} \text { radians per sec }
$$

(b) The linear speed v of the belt will be the same as that of a point on the circumference of the pulley.

$$
\begin{aligned}
v=r \omega & =6\left(\frac{8 \pi}{3}\right) & & \text { Let } r=6 \text { and } \omega=\frac{8 \pi}{3} . \\
& =16 \pi & & \text { Multiply. } \\
& \approx 50 \mathrm{~cm} \text { per sec } & & \text { Approximate. }
\end{aligned}
$$

EXAMPLE 3 Finding Linear Speed and Distance Traveled by a Satellite

A satellite traveling in a circular orbit 1600 km above the surface of Earth takes 2 hr to make an orbit. The radius of Earth is approximately 6400 km. See Figure 22.
(a) Approximate the linear speed of the satellite in kilometers per hour.
(b) Approximate the distance the satellite travels in 4.5 hr .

Figure 22

SOLUTION

(a) The distance of the satellite from the center of Earth is approximately

$$
r=1600+6400=8000 \mathrm{~km} .
$$

For one orbit, $\theta=2 \pi$, and

$$
s=r \theta=8000(2 \pi) \mathrm{km} . \quad \text { Let } r=8000
$$

Since it takes 2 hr to complete an orbit, the linear speed is approximated as follows.

$$
\begin{array}{ll}
v=\frac{s}{t} & \\
v=\frac{8000(2 \pi)}{2} & \text { Let } s=8000(2 \pi) \text { and } t=2 . \\
v=8000 \pi & \text { Simplify. } \\
v \approx 25,000 \mathrm{~km} \text { per hr } & \text { Approximate. }
\end{array}
$$

(b) To approximate the distance traveled by the satellite, we use $s=v t$, which is similar to the distance formula $d=r t$.

$$
\begin{array}{ll}
s=v t & \\
s=8000 \pi(4.5) & \text { Let } v=8000 \pi \text { and } t=4.5 . \\
s=36,000 \pi & \text { Multiply. } \\
s \approx 110,000 \mathrm{~km} & \text { Approximate. }
\end{array}
$$

3.4 Exercises

Concept Check Refer to the figure and answer Exercises 1 and 2.

1. If the point P moves around the circumference of the unit circle at an angular velocity of 1 radian per sec, how long will it take for P to move around the entire circle?
2. If the point P moves around the circumference of the unit circle at a speed of 1 unit per sec, how long will it take for P to move around the entire circle?

Suppose that point P is on a circle with radius r, and ray $O P$ is rotating with angular speed ω. For the given values of r, ω, and t, find each of the following. See Example 1.
(a) the angle generated by P in time t
(b) the distance traveled by P along the circle in time t
(c) the linear speed of P
3. $r=20 \mathrm{~cm}, \omega=\frac{\pi}{12}$ radian per sec, $t=6 \mathrm{sec}$
4. $r=30 \mathrm{~cm}, \omega=\frac{\pi}{10}$ radian per $\sec , t=4 \mathrm{sec}$

Use the formula $\omega=\frac{\theta}{t}$ to find the value of the missing variable.
5. $\omega=\frac{2 \pi}{3}$ radians per sec, $t=3 \mathrm{sec}$
6. $\omega=\frac{\pi}{4}$ radian per $\mathrm{min}, t=5 \mathrm{~min}$
7. $\theta=\frac{3 \pi}{4}$ radians, $t=8 \mathrm{sec}$
8. $\theta=\frac{2 \pi}{5}$ radians, $t=10 \mathrm{sec}$
9. $\theta=\frac{2 \pi}{9}$ radian, $\omega=\frac{5 \pi}{27}$ radian per min
10. $\theta=\frac{3 \pi}{8}$ radians, $\omega=\frac{\pi}{24}$ radian per min
11. $\theta=3.871$ radians, $t=21.47 \mathrm{sec}$
12. $\theta=5.225$ radians, $t=2.515 \mathrm{sec}$
13. $\omega=0.9067$ radian per $\mathrm{min}, t=11.88 \mathrm{~min}$
14. $\omega=4.316$ radians per $\mathrm{min}, t=4.752 \mathrm{~min}$

Use the formula $v=r \omega$ to find the value of the missing variable.
15. $r=12 \mathrm{~m}, \omega=\frac{2 \pi}{3}$ radians per sec
16. $r=8 \mathrm{~cm}, \omega=\frac{9 \pi}{5}$ radians per sec
17. $v=9 \mathrm{~m} \mathrm{per} \mathrm{sec}, r=5 \mathrm{~m}$
18. $v=18 \mathrm{ft}$ per sec, $r=3 \mathrm{ft}$
19. $v=107.7 \mathrm{~m}$ per sec, $r=58.74 \mathrm{~m}$
20. $r=24.93 \mathrm{~cm}, \omega=0.3729$ radian per sec

The formula $\omega=\frac{\theta}{t}$ can be rewritten as $\theta=\omega t$. Substituting ωt for θ converts $s=r \theta$ to $s=r \omega t$. Use the formula $s=r \omega t$ to find the value of the missing variable.
21. $r=6 \mathrm{~cm}, \omega=\frac{\pi}{3}$ radians per sec, $t=9 \mathrm{sec}$
22. $r=9 \mathrm{yd}, \omega=\frac{2 \pi}{5}$ radians per sec, $t=12 \mathrm{sec}$
23. $s=6 \pi \mathrm{~cm}, r=2 \mathrm{~cm}, \omega=\frac{\pi}{4}$ radian per sec
24. $s=\frac{12 \pi}{5} \mathrm{~m}, r=\frac{3}{2} \mathrm{~m}, \omega=\frac{2 \pi}{5}$ radians per sec
25. $s=\frac{3 \pi}{4} \mathrm{~km}, r=2 \mathrm{~km}, t=4 \mathrm{sec}$
26. $s=\frac{8 \pi}{9} \mathrm{~m}, r=\frac{4}{3} \mathrm{~m}, t=12 \mathrm{sec}$

Find the angular speed ω for each of the following.
27. the hour hand of a clock
28. the second hand of a clock
29. the minute hand of a clock
30. a line from the center to the edge of a CD revolving 300 times per min

Find the linear speed v for each of the following.
31. the tip of the minute hand of a clock, if the hand is 7 cm long
32. the tip of the second hand of a clock, if the hand is 28 mm long
33. a point on the edge of a flywheel of radius 2 m , rotating 42 times per min
34. a point on the tread of a tire of radius 18 cm , rotating 35 times per min
35. the tip of a propeller 3 m long, rotating 500 times per min (Hint: $r=1.5 \mathrm{~m}$)
36. a point on the edge of a gyroscope of radius 83 cm , rotating 680 times per min

Solve each problem. See Examples 1-3.

37. Speed of a Bicycle The tires of a bicycle have radius 13.0 in . and are turning at the rate of 215 revolutions per min. See the figure. How fast is the bicycle traveling in miles per hour? (Hint: $5280 \mathrm{ft}=1 \mathrm{mi}$)

38. Hours in a Martian Day Mars rotates on its axis at the rate of about 0.2552 radian per hr . Approximately how many hours are in a Martian day (or sol)? (Source: World Almanac and Book of Facts.)

Opposite sides of Mars
39. Angular and Linear Speeds of Earth The orbit of Earth about the sun is almost circular. Assume that the orbit is a circle with radius $93,000,000 \mathrm{mi}$. Its angular and linear speeds are used in designing solar-power facilities.
(a) Assume that a year is 365 days, and find the angle formed by Earth's movement in one day.
(b) Give the angular speed in radians per hour.

(c) Find the linear speed of Earth in miles per hour.
40. Angular and Linear Speeds of Earth Earth revolves on its axis once every 24 hr . Assuming that Earth's radius is 6400 km , find the following.
(a) angular speed of Earth in radians per day and radians per hour
(b) linear speed at the North Pole or South Pole
(c) linear speed at Quito, Ecuador, a city on the equator
(d) linear speed at Salem, Oregon (halfway from the equator to the North Pole)
41. Speeds of a Pulley and a Belt The pulley shown has a radius of 12.96 cm . Suppose it takes 18 sec for 56 cm of belt to go around the pulley.
(a) Find the linear speed of the belt in centimeters per second.
(b) Find the angular speed of the pulley in radians per second.

42. Angular Speeds of Pulleys The two pulleys in the figure have radii of 15 cm and 8 cm , respectively. The larger pulley rotates 25 times in 36 sec . Find the angular speed of each pulley in radians per second.

43. Radius of a Spool of Thread A thread is being pulled off a spool at the rate of 59.4 cm per sec. Find the radius of the spool if it makes 152 revolutions per min.
44. Time to Move along a Railroad Track A railroad track is laid along the arc of a circle of radius 1800 ft . The circular part of the track subtends a central angle of 40°. How long (in seconds) will it take a point on the front of a train traveling 30.0 mph to go around this portion of the track?
45. Angular Speed of a Motor Propeller The propeller of a 90 -horsepower outboard motor at full throttle rotates at exactly 5000 revolutions per min. Find the angular speed of the propeller in radians per second.
46. Linear Speed of a Golf Club The shoulder joint can rotate at 25.0 radians per sec. If a golfer's arm is straight and the distance from the shoulder to the club head is 5.00 ft , find the linear speed of the club head from shoulder rotation. (Source: Cooper, J. and R. Glassow, Kinesiology, Second Edition, C.V. Mosby.)

Chapter 3 Test Prep

Key Terms

3.1 radian subtend circumference
3.2 latitude sector of a circle longitude
degree of curvature nautical mile statute mile
3.3 unit circle circular functions reference arc

3.4 linear speed v angular speed ω

Ouick Review
Concepts Examples

3.1 Radian Measure

An angle with its vertex at the center of a circle that intercepts an arc on the circle equal in length to the radius of the circle has a measure of $\mathbf{1}$ radian.

Degree/Radian Relationship $\quad 180^{\circ}=\pi$ radians

Converting between Degrees and Radians

1. Multiply a degree measure by $\frac{\pi}{180}$ radian and simplify to convert to radians.
2. Multiply a radian measure by $\frac{180^{\circ}}{\pi}$ and simplify to convert to degrees.

Convert 135° to radians.

$$
135^{\circ}=135\left(\frac{\pi}{180} \text { radian }\right)=\frac{3 \pi}{4} \text { radians }
$$

Convert $-\frac{5 \pi}{3}$ radians to degrees.

$$
-\frac{5 \pi}{3} \text { radians }=-\frac{5 \pi}{3}\left(\frac{180^{\circ}}{\pi}\right)=-300^{\circ}
$$

Concepts

3.2 Applications of Radian Measure

Arc Length

The length s of the arc intercepted on a circle of radius r by a central angle of measure θ radians is given by the product of the radius and the radian measure of the angle.

$$
s=r \theta, \quad \text { where } \theta \text { is in radians }
$$

Area of a Sector

The area \mathscr{A} of a sector of a circle of radius r and central angle θ is given by the following formula.

$$
\mathscr{A}=\frac{1}{2} r^{2} \theta, \quad \text { where } \theta \text { is in radians }
$$

3.3 The Unit Circle and Circular Functions

Circular Functions

Start at the point $(1,0)$ on the unit circle $x^{2}+y^{2}=1$ and measure off an arc of length $|s|$ along the circle, going counterclockwise if s is positive and clockwise if s is negative. Let the endpoint of the arc be at the point (x, y). The six circular functions of s are defined as follows. (Assume that no denominators are 0 .)

$$
\begin{array}{lll}
\sin s=y & \cos s=x & \tan s=\frac{y}{x} \\
\csc s=\frac{1}{y} & \sec s=\frac{1}{x} & \cot s=\frac{x}{y}
\end{array}
$$

The Unit Circle

The unit circle $x^{2}+y^{2}=1$

Examples

Find the central angle θ in the figure.

$$
\theta=\frac{s}{r}=\frac{3}{4} \text { radian }
$$

Find the area \mathscr{A} of the sector in the figure above.

$$
\mathscr{A}=\frac{1}{2}(4)^{2}\left(\frac{3}{4}\right)=6 \text { sq units }
$$

Use the unit circle to find each value.

$$
\begin{aligned}
& \sin \frac{5 \pi}{6}=\frac{1}{2} \\
& \cos \frac{3 \pi}{2}=0 \\
& \tan \frac{\pi}{4}=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1 \\
& \csc \frac{7 \pi}{4}=\frac{1}{-\frac{\sqrt{2}}{2}}=-\sqrt{2} \\
& \sec \frac{7 \pi}{6}=\frac{1}{-\frac{\sqrt{3}}{2}}=-\frac{2 \sqrt{3}}{3} \\
& \cot \frac{\pi}{3}=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{\sqrt{3}}{3} \\
& \sin 0=0 \\
& \cos \frac{\pi}{2}=0
\end{aligned}
$$

Find the value of s in $\left[0, \frac{\pi}{2}\right]$ that makes $\cos s=\frac{\sqrt{3}}{2}$ true. In $\left[0, \frac{\pi}{2}\right]$, the arc length $s=\frac{\pi}{6}$ is associated with the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. The first coordinate is

$$
\cos s=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}
$$

so $s=\frac{\pi}{6}$ makes the statement true.

Concepts

3.4 Linear and Angular Speed

Formulas for Angular and Linear Speed

Angular Speed ω	Linear Speed \boldsymbol{v}
$\omega=\frac{\boldsymbol{\theta}}{t}$	$v=\frac{s}{t}$
$(\omega$ in radians per unit time t, θ in radians)	$v=\frac{r \boldsymbol{\theta}}{\boldsymbol{t}}$
	$v=r \boldsymbol{\omega}$

Examples

A belt runs a machine pulley of radius 8 in. at 60 revolutions per min. Find each of the following.
(a) the angular speed ω in radians per minute

$$
\begin{aligned}
\omega & =60(2 \pi) \\
& =120 \pi \text { radians per min }
\end{aligned}
$$

(b) the linear speed v of the belt in inches per minute

$$
\begin{aligned}
v & =r \omega \\
& =8(120 \pi) \\
& =960 \pi \text { in. per } \min
\end{aligned}
$$

Chapter 3
 Review Exercises

1. Concept Check What is the meaning of "an angle with measure 2 radians"?
2. Concept Check Consider each angle in standard position having the given radian measure. In what quadrant does the terminal side lie?
(a) 3
(b) 4
(c) -2
(d) 7
3. Find three angles coterminal with an angle of 1 radian.
4. Give an expression that generates all angles coterminal with an angle of $\frac{\pi}{6}$ radian. Let n represent any integer.

Convert each degree measure to radians. Leave answers as multiples of π.
5. 45°
6. 120°
7. 175°
8. 330°
9. 800°
10. 1020°

Convert each radian measure to degrees.
11. $\frac{5 \pi}{4}$
12. $\frac{9 \pi}{10}$
13. $\frac{8 \pi}{3}$
14. $\frac{6 \pi}{5}$
15. $-\frac{11 \pi}{18}$
16. $-\frac{21 \pi}{5}$

Suppose the tip of the minute hand of a clock is 2 in . from the center of the clock. For each duration, determine the distance traveled by the tip of the minute hand.
17. 15 min
18. 20 min
19. 3 hr

Solve each problem. Use a calculator as necessary.
20. Diameter of the Moon The distance to the moon is approximately $238,900 \mathrm{mi}$. Use the arc length formula to estimate the diameter d of the moon if angle θ in the figure is measured to be 0.5170°.

21. Arc Length The radius of a circle is 15.2 cm . Find the length of an arc of the circle intercepted by a central angle of $\frac{3 \pi}{4}$ radians.
22. Arc Length Find the length of an arc intercepted by a central angle of 0.769 radian on a circle with radius 11.4 cm .
23. Angle Measure Find the measure (in degrees) of a central angle that intercepts an arc of length 7.683 cm in a circle of radius 8.973 cm .
24. Area of a Sector A central angle of $\frac{7 \pi}{4}$ radians forms a sector of a circle. Find the area of the sector if the radius of the circle is 28.69 in .
25. Area of a Sector Find the area of a sector of a circle having a central angle of $21^{\circ} 40^{\prime}$ in a circle of radius 38.0 m .
26. Concept Check Use the formulas $s=r \theta$ and $\mathscr{A}=\frac{1}{2} r^{2} \theta$ to express \mathscr{A} in terms of s and θ.

Distance between Cities Assume that the radius of Earth is 6400 km .

27. Find the distance in kilometers between cities on a north-south line that are on latitudes $28^{\circ} \mathrm{N}$ and $12^{\circ} \mathrm{S}$, respectively.
28. Two cities on the equator have longitudes of $72^{\circ} \mathrm{E}$ and $35^{\circ} \mathrm{W}$, respectively. Find the distance between the cities.

Concept Check Find the measure of the central angle θ (in radians) and the area of the sector.
29.

30.

31. Concept Check The hour hand of a wall clock measures 6 in . from its tip to the center of the clock.
(a) Through what angle (in radians) does the hour hand pass between 1 o'clock and 3 o'clock?
(b) What distance does the tip of the hour hand travel during the time period from 1 o'clock to 3 o' clock?
32. Describe what would happen to the central angle for a given arc length of a circle if the circle's radius were doubled. (Assume everything else is unchanged.)

Find each exact function value. Do not use a calculator.
33. $\tan \frac{\pi}{3}$
34. $\cos \frac{2 \pi}{3}$
35. $\sin \left(-\frac{5 \pi}{6}\right)$
36. $\tan \left(-\frac{7 \pi}{3}\right)$
37. $\csc \left(-\frac{11 \pi}{6}\right)$
38. $\cot (-13 \pi)$

Without using a calculator, determine which of the following is greater.
39. $\tan 1$ or $\tan 2$
40. $\sin 1$ or $\tan 1$
41. $\cos 2$ or $\sin 2$
42. Concept Check Match each domain in Column II with the appropriate circular function pair in Column I.

I

II

(a) sine and cosine
A. $(-\infty, \infty)$
(b) tangent and secant
B. $\{s \mid s \neq n \pi$, where n is any integer $\}$
(c) cotangent and cosecant
C. $\left\{s \left\lvert\, s \neq(2 n+1) \frac{\pi}{2}\right.\right.$, where n is any integer $\}$

Use a calculator to find an approximation for each circular function value. Be sure your calculator is set in radian mode.
43. $\sin 1.0472$
44. $\tan 1.2275$
45. $\cos (-0.2443)$
46. $\cot 3.0543$
47. $\sec 7.3159$
48. $\csc 4.8386$

Find the value of s in the interval $\left[0, \frac{\pi}{2}\right]$ that makes each statement true.
49. $\cos s=0.9250$
50. $\tan s=4.0112$
51. $\sin s=0.4924$
52. $\csc s=1.2361$
53. $\cot s=0.5022$
54. $\sec s=4.5600$

Find the exact value of s in the given interval that has the given circular function value. Do not use a calculator.
55. $\left[0, \frac{\pi}{2}\right] ; \quad \cos s=\frac{\sqrt{2}}{2}$
56. $\left[\frac{\pi}{2}, \pi\right] ; \quad \tan s=-\sqrt{3}$
57. $\left[\pi, \frac{3 \pi}{2}\right] ; \quad \sec s=-\frac{2 \sqrt{3}}{3}$
58. $\left[\frac{3 \pi}{2}, 2 \pi\right] ; \quad \sin s=-\frac{1}{2}$

Solve each problem, where t, ω, θ, and s are as defined in Section 3.4.
59. Find t if $\theta=\frac{5 \pi}{12}$ radians and $\omega=\frac{8 \pi}{9}$ radians per sec.
60. Find θ if $t=12 \mathrm{sec}$ and $\omega=9$ radians per sec.
61. Find ω if $t=8 \mathrm{sec}$ and $\theta=\frac{2 \pi}{5}$ radians.
62. Find s if $r=11.46 \mathrm{~cm}, \omega=4.283$ radians per sec, and $t=5.813 \mathrm{sec}$.

Solve each problem.
63. Linear Speed of a Flywheel Find the linear speed of a point on the edge of a flywheel of radius 7 cm if the flywheel is rotating 90 times per sec.
64. Angular Speed of a Ferris Wheel A Ferris wheel has radius 25 ft . If it takes 30 sec for the wheel to turn $\frac{5 \pi}{6}$ radians, what is the angular speed of the wheel?

65. (Modeling) Archaeology An archaeology professor believes that an unearthed fragment is a piece of the edge of a circular ceremonial plate and uses a formula that will give the radius of the original plate using measurements from the fragment, shown in Figure A. Measurements are in inches.

Figure A

Figure \mathbf{B}

In Figure B, a is $\frac{1}{2}$ the length of chord $N P$, and b is the distance from the midpoint of chord $N P$ to the circle. According to the formula, the radius r of the circle, $O R$, is given by

$$
r=\frac{a^{2}+b^{2}}{2 b}
$$

What is the radius of the original plate from which the fragment came?
66. (Modeling) Phase Angle of the Moon Because the moon orbits Earth, we observe different phases of the moon during the period of a month. In the figure, t is the phase angle.

The phase F of the moon is modeled by

$$
F(t)=\frac{1}{2}(1-\cos t)
$$

and gives the fraction of the moon's face that is illuminated by the sun. (Source: Duffet-Smith, P., Practical Astronomy with Your Calculator, Cambridge University Press.) Evaluate each expression and interpret the result.
(a) $F(0)$
(b) $F\left(\frac{\pi}{2}\right)$
(c) $F(\pi)$
(d) $F\left(\frac{3 \pi}{2}\right)$

Test

Convert each degree measure to radians.

1. 120°
2. -45°
3. 5° (to the nearest hundredth)

Convert each radian measure to degrees.
4. $\frac{3 \pi}{4}$
5. $-\frac{7 \pi}{6}$
6. 4 (to the nearest hundredth)
7. A central angle of a circle with radius 150 cm intercepts an arc of 200 cm . Find each measure.
(a) the radian measure of the angle
(b) the area of a sector with that central angle
8. Rotation of Gas Gauge Arrow The arrow on a car's gasoline gauge is $\frac{1}{2} \mathrm{in}$. long. See the figure. Through what angle does the arrow rotate when it moves 1 in . on the gauge?

Find each circular function value.
9. $\sin \frac{3 \pi}{4}$
10. $\cos \left(-\frac{7 \pi}{6}\right)$
11. $\tan \frac{3 \pi}{2}$
12. $\sec \frac{8 \pi}{3}$
13. $\tan \pi$
14. $\cos \frac{3 \pi}{2}$
15. Determine the six exact circular function values of s in the figure.

16. Give the domains of the six circular functions.
17. (a) Use a calculator to approximate s in the interval $\left[0, \frac{\pi}{2}\right]$ if $\sin s=0.8258$.
(b) Find the exact value of s in the interval $\left[0, \frac{\pi}{2}\right]$ if $\cos s=\frac{1}{2}$.
18. Angular and Linear Speed of a Point Suppose that point P is on a circle with radius 60 cm , and ray $O P$ is rotating with angular speed $\frac{\pi}{12}$ radian per sec.
(a) Find the angle generated by P in 8 sec .
(b) Find the distance traveled by P along the circle in 8 sec .
(c) Find the linear speed of P.
19. Orbital Speed of Jupiter It takes Jupiter 11.86 yr to complete one orbit around the sun. See the figure. If Jupiter's average distance from the sun is $483,800,000 \mathrm{mi}$, find its orbital speed (speed along its orbital path) in miles per second. (Source: World Almanac and Book of Facts.)

20. Ferris Wheel A Ferris wheel has radius 50.0 ft . A person takes a seat and then the wheel turns $\frac{2 \pi}{3}$ radians.
(a) How far is the person above the ground?
(b) If it takes 30 sec for the wheel to turn $\frac{2 \pi}{3}$ radians, what is the angular speed of the wheel?

4
 Graphs of the Circular Functions

Phenomena that repeat in a regular pattern, such as average monthly temperature, rotation of a planet on its axis, and high and low tides, can be modeled by periodic functions.

4.1 Graphs of the Sine and Cosine Functions

4.2 Translations of the Graphs of the Sine and Cosine Functions

Chapter 4 Quiz
4.3 Graphs of the Tangent and Cotangent Functions
4.4 Graphs of the Secant and Cosecant Functions

Summary Exercises on Graphing
Circular Functions

4.5 Harmonic Motion

4.1 Graphs of the Sine and Cosine Functions

- Periodic Functions
- Graph of the Sine Function
- Graph of the Cosine Function
- Graphing Techniques, Amplitude, and Period
- Connecting Graphs with Equations
- Using a Trigonometric Model

Periodic Functions Many things in daily life repeat with a predictable pattern, such as weather, tides, and hours of daylight. Because the sine and cosine functions repeat their values in a regular pattern, they are periodic functions. Figure 1 shows a periodic graph that represents a normal heartbeat.

Figure 1

Periodic Function

A periodic function is a function f such that

$$
f(x)=f(x+n p)
$$

for every real number x in the domain of f, every integer n, and some positive real number p. The least possible positive value of p is the period of the function.

The circumference of the unit circle is 2π, so the least value of p for which the sine and cosine functions repeat is 2π. Therefore, the sine and cosine functions are periodic functions with period $\mathbf{2 \pi}$, and the following statements are true for every integer n.

$$
\sin x=\sin (x+n \cdot 2 \pi) \quad \text { and } \quad \cos x=\cos (x+n \cdot 2 \pi)
$$

Graph of the Sine Function In Section 3.3 we saw that for a real number s, the point on the unit circle corresponding to s has coordinates $(\cos s, \sin s)$. See Figure 2. Trace along the circle to verify the results shown in the table.

As \boldsymbol{s} Increases from	$\sin \boldsymbol{s}$	$\cos \boldsymbol{s}$
0 to $\frac{\pi}{2}$	Increases from 0 to 1	Decreases from 1 to 0
$\frac{\pi}{2}$ to π	Decreases from 1 to 0	Decreases from 0 to -1
π to $\frac{3 \pi}{2}$	Decreases from 0 to -1	Increases from -1 to 0
$\frac{3 \pi}{2}$ to 2π	Increases from -1 to 0	Increases from 0 to 1

To avoid confusion when graphing the sine function, we use x rather than s; this corresponds to the letters in the $x y$-coordinate system. Selecting key values of x and finding the corresponding values of $\sin x$ leads to the table in Figure 3.

To obtain the traditional graph in Figure 3, we plot the points from the table, use symmetry, and join them with a smooth curve. Since $y=\sin x$ is periodic with period 2π and has domain $(-\infty, \infty)$, the graph continues in the same pattern in both directions. This graph is called a sine wave, or sinusoid.

Sine Function $f(x)=\sin x$
Domain: $(-\infty, \infty) \quad$ Range: $[-1,1]$

\boldsymbol{x}	\boldsymbol{y}
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1
π	0
$\frac{3 \pi}{2}$	-1
2π	0

Figure 3

- The graph is continuous over its entire domain, $(-\infty, \infty)$.
- Its x-intercepts are of the form $n \pi$, where n is an integer.
- Its period is 2π.
- The graph is symmetric with respect to the origin, so the function is an odd function. For all x in the domain, $\sin (-x)=-\sin x$.

NOTE A function f is an odd function if for all x in the domain of f,

$$
f(-x)=-f(x) . \quad \text { (Appendix } D \text {) }
$$

The graph of an odd function is symmetric with respect to the origin. This means that if (x, y) belongs to the function, then $(-x,-y)$ also belongs to the function. For example, $\left(\frac{\pi}{2}, 1\right)$ and $\left(-\frac{\pi}{2},-1\right)$ are points on the graph of $y=\sin x$, illustrating the property $\sin (-x)=-\sin x$.

The sine function is closely related to the unit circle. Its domain consists of real numbers corresponding to angle measures (or arc lengths) of the unit circle, and its range corresponds to the y-coordinates (or sine values) of the unit circle.

Consider the unit circle in Figure 2 and assume that the line from the origin to some point on the circle is part of the pedal of a bicycle, with a foot placed on the circle itself. As the pedal is rotated from 0 radians on the horizontal axis through various angles, the angle (or arc length) giving the pedal's location and its corresponding height from the horizontal axis given by $\sin x$ are used to create points on the sine graph. See Figure 4 on the next page.

Figure 4

LOOKING AHEAD TO CALCULUS

The discussion of the derivative of a function in calculus shows that for the sine function, the slope of the tangent line at any point x is given by $\cos x$. For example, look at the graph of $y=\sin x$ and notice that a tangent line at $x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots$ will be horizontal and thus have slope 0 . Now look at the graph of $y=\cos x$ and see that for these values, $\cos x=0$.

Graph of the Cosine Function The graph of $y=\cos x$ in Figure 5 has the same shape as the graph of $y=\sin x$. The graph of the cosine function is, in fact, the graph of the sine function shifted, or translated, $\frac{\pi}{2}$ units to the left.

Cosine Function $f(x)=\cos x$

$$
\text { Domain: }(-\infty, \infty) \quad \text { Range: }[-1,1]
$$

\boldsymbol{x}	\boldsymbol{y}
0	1
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	0
π	-1
$\frac{3 \pi}{2}$	0
2π	1

Figure 5

- The graph is continuous over its entire domain, $(-\infty, \infty)$.
- Its x-intercepts are of the form $(2 n+1) \frac{\pi}{2}$, where n is an integer.
- Its period is 2π.
- The graph is symmetric with respect to the y-axis, so the function is an even function. For all x in the domain, $\cos (-x)=\cos x$.

NOTE A function f is an even function if for all x in the domain of f,

$$
f(-x)=f(x) . \quad \text { (Appendix D) }
$$

The graph of an even function is symmetric with respect to the y-axis. This means that if (x, y) belongs to the function, then $(-x, y)$ also belongs to the function. For example, $\left(\frac{\pi}{2}, 0\right)$ and $\left(-\frac{\pi}{2}, 0\right)$ are points on the graph of $y=\cos x$, illustrating the property $\cos (-x)=\cos x$.

The thick graph style represents the function $y=2 \sin x$ in Example 1.

The calculator graphs of $f(x)=\sin x$ in Figure 3 and $f(x)=\cos x$ in Figure 5 are graphed in the window approximately $[-2 \pi, 2 \pi]$ by $[-4,4]$, with $\mathrm{Xscl}=\frac{\pi}{2}$ and $\mathrm{Yscl}=1$. This is the trig viewing window. (Your model may use a different "standard" trig window. Consult your owner's manual.)

Graphing Techniques, Amplitude, and Period The examples that follow show graphs that are "stretched" or "compressed" (shrunk) either vertically, horizontally, or both when compared with the graphs of $y=\sin x$ or $y=\cos x$.

EXAMPLE 1 Graphing $\boldsymbol{y}=\boldsymbol{a} \sin \boldsymbol{x}$

Graph $y=2 \sin x$, and compare to the graph of $y=\sin x$.
SOLUTION For a given value of x, the value of y is twice what it would be for $y=\sin x$, as shown in the table of values. The only change in the graph is the range, which becomes $[-2,2]$. See Figure 6, which includes a graph of $y=\sin x$ for comparison.

\boldsymbol{x}	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\sin x$	0	1	0	-1	0
$2 \sin x$	0	2	0	-2	0

Figure 6
The amplitude of a periodic function is half the difference between the maximum and minimum values. It describes the height of the graph both above and below a horizontal line passing through the "middle" of the graph. Thus, for the basic sine function $y=\sin x$ (and also for the basic cosine function $y=\cos x$) the amplitude is computed as follows.

$$
\frac{1}{2}[1-(-1)]=\frac{1}{2}(2)=1 \quad \text { Amplitude of } y=\sin x
$$

For $y=2 \sin x$, the amplitude is

$$
\frac{1}{2}[2-(-2)]=\frac{1}{2}(4)=2 . \quad \text { Amplitude of } y=2 \sin x
$$

We can think of the graph of $y=a \sin x$ as a vertical stretching of the graph of $y=\sin x$ when $a>1$ and a vertical shrinking when $0<a<1$.

Now Try Exercise 15.
Generalizing from Example 1 gives the following.

Amplitude

The graph of $\boldsymbol{y}=\boldsymbol{a} \sin \boldsymbol{x}$ or $\boldsymbol{y}=\boldsymbol{a} \cos \boldsymbol{x}$, with $a \neq 0$, will have the same shape as the graph of $y=\sin x$ or $y=\cos x$, respectively, except with range $[-|a|,|a|]$. The amplitude is $|a|$.

While the coefficient a in $y=a \sin x$ or $y=a \cos x$ affects the amplitude of the graph, the coefficient of x in the argument affects the period. Consider $y=\sin 2 x$. We can complete a table of values for the interval $[0,2 \pi]$.

\boldsymbol{x}	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
$\sin 2 \boldsymbol{x}$	0	1	0	-1	0	1	0	-1	0

Note that one complete cycle occurs in π units, not 2π units. Therefore, the period here is π, which equals $\frac{2 \pi}{2}$. Now consider $y=\sin 4 x$. Look at the next table.

\boldsymbol{x}	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3 \pi}{8}$	$\frac{\pi}{2}$	$\frac{5 \pi}{8}$	$\frac{3 \pi}{4}$	$\frac{7 \pi}{8}$	π
$\sin 4 \boldsymbol{x}$	0	1	0	-1	0	1	0	-1	0

These values suggest that one complete cycle is achieved in $\frac{\pi}{2}$ or $\frac{2 \pi}{4}$ units, which is reasonable since

$$
\sin \left(4 \cdot \frac{\pi}{2}\right)=\sin 2 \pi=0
$$

In general, the graph of a function of the form $y=\sin b x$ or $y=\cos b x$, for $b>0$, will have a period different from 2π when $b \neq 1$. To see why this is so, remember that the values of $\sin b x$ or $\cos b x$ will take on all possible values as $b x$ ranges from 0 to 2π. Therefore, to find the period of either of these functions, we must solve the following three-part inequality.

$$
\begin{array}{ll}
0 \leq b x \leq 2 \pi & \text { (Appendix A) } \\
0 \leq x \leq \frac{2 \pi}{b} & \begin{array}{l}
\text { Divide each part by the } \\
\text { positive number } b
\end{array}
\end{array}
$$

Thus, the period is $\frac{2 \pi}{b}$. By dividing the interval $\left[0, \frac{2 \pi}{b}\right]$ into four equal parts, we obtain the values for which $\sin b x$ or $\cos b x$ is $-1,0$, or 1 . These values will give minimum points, x-intercepts, and maximum points on the graph. Once these points are determined, we can sketch the graph by joining the points with a smooth sinusoidal curve. (If a function has $b<0$, then the identities of the next chapter can be used to rewrite the function so that $b>0$.)

NOTE One method to divide an interval into four equal parts is as follows.
Step 1 Find the midpoint of the interval by adding the x-values of the endpoints and dividing by 2. (See Appendix B.)
Step 2 Find the quarter points (the midpoints of the two intervals found in Step 1) using the same procedure.

EXAMPLE2 Graphing $\boldsymbol{y}=\boldsymbol{\operatorname { s i n }} \boldsymbol{b x}$

Graph $y=\sin 2 x$, and compare to the graph of $y=\sin x$.
SOLUTION In this function the coefficient of x is 2 , so $b=2$ and the period is $\frac{2 \pi}{2}=\pi$. Therefore, the graph will complete one period over the interval $[0, \pi]$.

We can divide the interval $[0, \pi]$ into four equal parts by first finding its midpoint: $\frac{1}{2}(0+\pi)=\frac{\pi}{2}$. The quarter points are found next by determining the midpoints of the two intervals $\left[0, \frac{\pi}{2}\right]$ and $\left[\frac{\pi}{2}, \pi\right]$.

$$
\frac{1}{2}\left(0+\frac{\pi}{2}\right)=\frac{\pi}{4} \quad \text { and } \quad \frac{1}{2}\left(\frac{\pi}{2}+\pi\right)=\frac{3 \pi}{4} \quad \text { Quarter points }
$$

The interval $[0, \pi]$ is divided into four equal parts using these x-values.

We plot the points from the table of values given at the top of the previous page, and join them with a smooth sinusoidal curve. More of the graph can be sketched by repeating this cycle, as shown in Figure 7. The amplitude is not changed.

Figure 7
We can think of the graph of $y=\sin b x$ as a horizontal stretching of the graph of $y=\sin x$ when $0<b<1$ and as a horizontal shrinking when $b>1$.

Now Try Exercise 27.

Period

For $b>0$, the graph of $\boldsymbol{y}=\sin \boldsymbol{b} \boldsymbol{x}$ will resemble that of $y=\sin x$, but with period $\frac{2 \pi}{b}$. Also, the graph of $\boldsymbol{y}=\boldsymbol{\operatorname { c o s }} \boldsymbol{b} \boldsymbol{x}$ will resemble that of $y=\cos x$, but with period $\frac{2 \pi}{b}$.

EXAMPLE 3 Graphing $\boldsymbol{y}=\boldsymbol{\operatorname { c o s }} \boldsymbol{b x}$

Graph $y=\cos \frac{2}{3} x$ over one period.
SOLUTION The period is

$$
\frac{2 \pi}{\frac{2}{3}}=2 \pi \div \frac{2}{3}=2 \pi \cdot \frac{3}{2}=3 \pi . \quad \begin{aligned}
& \text { To divide by a number, } \\
& \text { multiply by its reciprocal. }
\end{aligned}
$$

We divide the interval $[0,3 \pi]$ into four equal parts to get the x-values $0, \frac{3 \pi}{4}$, $\frac{3 \pi}{2}, \frac{9 \pi}{4}$, and 3π that yield minimum points, maximum points, and x-intercepts. We use these values to obtain a table of key points for one period.

x	0	$\frac{3 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{9 \pi}{4}$	3π
$\frac{2}{3} x$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\cos \frac{2}{3} x$	1	0	-1	0	1

Figure 8
The amplitude is 1 because the maximum value is 1 , the minimum value is -1 , and $\frac{1}{2}[1-(-1)]=\frac{1}{2}(2)=1$. We plot these points and join them with a smooth curve. The graph is shown in Figure 8.

NOTE Look back at the middle row of the table in Example 3. Dividing the interval $\left[0, \frac{2 \pi}{b}\right]$ into four equal parts will always give the values $0, \frac{\pi}{2}$, $\pi, \frac{3 \pi}{2}$, and 2π for this row, in this case resulting in values of $-1,0$, or 1 . These values lead to key points on the graph, which can then be easily sketched.

Guidelines for Sketching Graphs of Sine and Cosine Functions

To graph $\boldsymbol{y}=\boldsymbol{a} \sin \boldsymbol{b} \boldsymbol{x}$ or $\boldsymbol{y}=\boldsymbol{a} \cos \boldsymbol{b} \boldsymbol{x}$, with $b>0$, follow these steps.
 $\frac{2 \pi}{b}$.
Step 2 Divide the interval into four equal parts. (See the Note preceding Example 2.)
Step 3 Evaluate the function for each of the five x-values resulting from Step 2. The points will be maximum points, minimum points, and x-intercepts.
Step 4 Plot the points found in Step 3, and join them with a sinusoidal curve having amplitude $|a|$.
Step 5 Draw the graph over additional periods as needed.

EXAMPLE 4 Graphing $\boldsymbol{y}=\boldsymbol{a} \sin \boldsymbol{b} \boldsymbol{x}$

Graph $y=-2 \sin 3 x$ over one period using the preceding guidelines.

SOLUTION

Step 1 For this function, $b=3$, so the period is $\frac{2 \pi}{3}$. The function will be graphed over the interval $\left[0, \frac{2 \pi}{3}\right]$.
Step 2 Divide the interval $\left[0, \frac{2 \pi}{3}\right]$ into four equal parts to get the x-values $0, \frac{\pi}{6}$, $\frac{\pi}{3}, \frac{\pi}{2}$, and $\frac{2 \pi}{3}$.
Step 3 Make a table of values determined by the x-values from Step 2.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$
$3 x$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\sin 3 x$	0	1	0	-1	0
$-2 \sin 3 x$	0	-2	0	2	0

Figure 9
Step 4 Plot the points $(0,0),\left(\frac{\pi}{6},-2\right),\left(\frac{\pi}{3}, 0\right),\left(\frac{\pi}{2}, 2\right)$, and $\left(\frac{2 \pi}{3}, 0\right)$, and join them with a sinusoidal curve with amplitude 2. See Figure 9.
Step 5 The graph can be extended by repeating the cycle.
Notice that when a is negative, the graph of $y=a \sin b x$ is the reflection across the x-axis of the graph of $y=|a| \sin b x$.

EXAMPLE 5 Graphing $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{\operatorname { c o s }} \boldsymbol{b x}$ for \boldsymbol{b} That Is a Multiple of $\boldsymbol{\pi}$

Graph $y=-3 \cos \pi x$ over one period.

SOLUTION

Step 1 Since $b=\pi$, the period is $\frac{2 \pi}{\pi}=2$, so we will graph the function over the interval $[0,2]$.
Step 2 Dividing [0,2] into four equal parts yields the x-values $0, \frac{1}{2}, 1, \frac{3}{2}$, and 2 .
Step 3 Make a table using these x-values.

x	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
$\boldsymbol{\pi} \boldsymbol{x}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\cos \boldsymbol{\pi} \boldsymbol{x}$	1	0	-1	0	1
$-3 \cos \pi x$	-3	0	3	0	-3

Step 4 Plot the points $(0,-3),\left(\frac{1}{2}, 0\right),(1,3),\left(\frac{3}{2}, 0\right)$, and $(2,-3)$, and join them with a sinusoidal curve having amplitude $|-3|=3$. See Figure 10.
Step 5 The graph can be extended by repeating the cycle.
Notice that when b is an integer multiple of π, the x-intercepts of the graph are rational numbers.

Connecting Graphs with Equations

EXAMPLE 6 Determining an Equation for a Graph

Determine an equation of the form $y=a \cos b x$ or $y=a \sin b x$, where $b>0$, for the given graph.

SOLUTION This graph is that of a cosine function that is reflected across its horizontal axis, the x-axis. The amplitude is half the distance
 between the maximum and minimum values.

$$
\frac{1}{2}[2-(-2)]=\frac{1}{2}(4)=2 \quad \text { The amplitude }|a| \text { is } 2 .
$$

Because the graph completes a cycle on the interval $[0,4 \pi]$, the period is 4π. We use this fact to solve for b.

$$
\begin{aligned}
4 \pi & =\frac{2 \pi}{b} & & \text { Period }=\frac{2 \pi}{b} \\
4 \pi b & =2 \pi & & \text { Multiply each side by } b . \text { (Appendix A) } \\
b & =\frac{1}{2} & & \text { Divide each side by } 4 \pi .
\end{aligned}
$$

An equation for the graph is

Using a Trigonometric Model Sine and cosine functions may be used to model many real-life phenomena that repeat their values in a cyclical, or periodic, manner. Average temperature in a certain geographic location is one such example.

EXAMPLE 7 Interpreting a Sine Function Model

The average temperature (in ${ }^{\circ} \mathrm{F}$) at Mould Bay, Canada, can be approximated by the function

$$
f(x)=34 \sin \left[\frac{\pi}{6}(x-4.3)\right]
$$

where x is the month and $x=1$ corresponds to January, $x=2$ to February, and so on.
(a) To observe the graph over a two-year interval and to see the maximum and minimum points, graph f in the window $[0,25]$ by $[-45,45]$.
(b) According to this model, what is the average temperature during the month of May?
(c) What would be an approximation for the average yearly temperature at Mould Bay?

SOLUTION

(a) The graph of $f(x)=34 \sin \left[\frac{\pi}{6}(x-4.3)\right]$ is shown in Figure 11. Its amplitude is 34 , and the period is

$$
\frac{2 \pi}{\frac{\pi}{6}}=2 \pi \div \frac{\pi}{6}=2 \pi \cdot \frac{6}{\pi}=12 . \quad \text { Simplify the complex fraction. }
$$

The function f has a period of 12 months, or 1 year, which agrees with the changing of the seasons.

Figure 11
(b) May is the fifth month, so the average temperature during May is

$$
\left.f(5)=34 \sin \left[\frac{\pi}{6}(5-4.3)\right] \approx 12^{\circ} \mathrm{F} . \quad \text { Let } x=5 . \text { (Appendix } \mathrm{C}\right)
$$

See the display at the bottom of the screen in Figure 11.
(c) From the graph, it appears that the average yearly temperature is about $0^{\circ} \mathrm{F}$ since the graph is centered vertically about the line $y=0$.

Concept Check In Exercises 1-8, match each function with its graph in choices A-I. (One choice will not be used.)

1. $y=\sin x$
2. $y=\cos x$
3. $y=-\sin x$
4. $y=-\cos x$
5. $y=\sin 2 x$
6. $y=\cos 2 x$
7. $y=2 \sin x$
8. $y=2 \cos x$
A.

B.

C.

D.

E.

F.

G.

H.

I.

Concept Check In Exercises 9-12, match each function with its calculator graph.
9. $y=\sin 3 x$
10. $y=\cos 3 x$
11. $y=3 \cos x$
12. $y=3 \sin x$
A.

B.

C.

D.

Graph each function over the interval $[-2 \pi, 2 \pi]$. Give the amplitude. See Example 1.
13. $y=2 \cos x$
14. $y=3 \sin x$
15. $y=\frac{2}{3} \sin x$
16. $y=\frac{3}{4} \cos x$
17. $y=-\cos x$
18. $y=-\sin x$
19. $y=-2 \sin x$
20. $y=-3 \cos x$
21. $y=\sin (-x)$
22. Concept Check In Exercise 21, why is the graph the same as that of $y=-\sin x$?

Graph each function over a two-period interval. Give the period and amplitude. See Examples 2-5.
23. $y=\sin \frac{1}{2} x$
24. $y=\sin \frac{2}{3} x$
25. $y=\cos \frac{3}{4} x$
26. $y=\cos \frac{1}{3} x$
27. $y=\sin 3 x$
28. $y=\cos 2 x$
29. $y=2 \sin \frac{1}{4} x$
30. $y=3 \sin 2 x$
31. $y=-2 \cos 3 x$
32. $y=-5 \cos 2 x$
33. $y=\cos \pi x$
34. $y=-\sin \pi x$
35. $y=-2 \sin 2 \pi x$
36. $y=3 \cos 2 \pi x$
37. $y=\frac{1}{2} \cos \frac{\pi}{2} x$
38. $y=-\frac{2}{3} \sin \frac{\pi}{4} x$
39. $y=\pi \sin \pi x$
40. $y=-\pi \cos \pi x$

Connecting Graphs with Equations Each function graphed is of the form $y=a \sin b x$ or $y=a \cos b x$, where $b>0$. Determine the equation of the graph. See Example 6.
41.

42.

43.

44.

45.

46.

(Modeling) Solve each problem.
47. Average Annual Temperature Scientists believe that the average annual temperature in a given location is periodic. The average temperature at a given place during a given season fluctuates as time goes on, from colder to warmer, and back to colder. The graph shows an idealized description of the temperature (in ${ }^{\circ} \mathrm{F}$) for approximately the last 150 thousand years of a location at the same latitude as Anchorage, Alaska.

Years ago
(a) Find the highest and lowest temperatures recorded.
(b) Use these two numbers to find the amplitude.
(c) Find the period of the function.
(d) What is the trend of the temperature now?
48. Blood Pressure Variation The graph gives the variation in blood pressure for a typical person. Systolic and diastolic pressures are the upper and lower limits of the periodic changes in pressure that produce the pulse. The length of time between peaks is called the period of the pulse.

(a) Find the systolic and diastolic pressures.
(b) Find the amplitude of the graph.
(c) Find the pulse rate (the number of pulse beats in 1 min) for this person.

Tides for Kahului Harbor The chart shows the tides for Kahului Harbor (on the island of Maui, Hawaii). To identify high and low tides and times for other Maui areas, the following adjustments must be made.

$$
\begin{array}{llr}
\text { Hana: } & \text { High, }+40 \mathrm{~min},+0.1 \mathrm{ft} ; & \text { Makena: } \begin{array}{l}
\text { High, }+1: 21,-0.5 \mathrm{ft} ; \\
\\
\text { Low, }+18 \mathrm{~min},-0.2 \mathrm{ft}
\end{array} \\
\text { Low, }+1: 09,-0.2 \mathrm{ft} \\
\text { Maalaea: } & \text { High, }+1: 52,-0.1 \mathrm{ft} ; & \text { Lahaina: } \begin{array}{l}
\text { High, }+1: 18,-0.2 \mathrm{ft} ; \\
\\
\text { Low, }+1: 19,-0.2 \mathrm{ft}
\end{array} \\
\text { Low, }+1: 01,-0.1 \mathrm{ft}
\end{array}
$$

JANUARY

Source: Maui News. Original chart prepared by Edward K. Noda and Associates.

Use the graph to work Exercises 49-53.
49. The graph is an example of a periodic function. What is the period (in hours)?
50. What is the amplitude?
51. At what time on January 20 was low tide at Kahului? What was the height then?

52. Repeat Exercise $\mathbf{5 1}$ for Maalaea.

53. At what time on January 22 was high tide at Lahaina? What was the height then?
54. Activity of a Nocturnal Animal Many of the activities of living organisms are periodic. For example, the graph at the right shows the time that a certain nocturnal animal begins its evening activity.
(a) Find the amplitude of this graph.
(b) Find the period.

55. Voltage of an Electrical Circuit The voltage E in an electrical circuit is modeled by

$$
E=5 \cos 120 \pi t
$$

where t is time measured in seconds.
(a) Find the amplitude and the period.
(b) How many cycles are completed in 1 sec? (The number of cycles, or periods, completed in 1 sec is the frequency of the function.)
(c) Find E when $t=0,0.03,0.06,0.09,0.12$.
(d) Graph E for $0 \leq t \leq \frac{1}{30}$.
56. Voltage of an Electrical Circuit For another electrical circuit, the voltage E is modeled by

$$
E=3.8 \cos 40 \pi t
$$

where t is time measured in seconds.
(a) Find the amplitude and the period.
(b) Find the frequency. See Exercise 55(b).
(c) Find E when $t=0.02,0.04,0.08,0.12,0.14$.
(d) Graph one period of E.
57. Atmospheric Carbon Dioxide At Mauna Loa, Hawaii, atmospheric carbon dioxide levels in parts per million (ppm) were measured regularly from 1958 to 2004. The function

$$
L(x)=0.022 x^{2}+0.55 x+316+3.5 \sin 2 \pi x
$$

can be used to model these levels, where x is in years and $x=0$ corresponds to 1960. (Source: Nilsson, A., Greenhouse Earth, John Wiley and Sons.)

(a) Graph L in the window $[15,45]$ by $[325,385]$.
(b) When do the seasonal maximum and minimum carbon dioxide levels occur?
(c) L is the sum of a quadratic function and a sine function. What is the significance of each of these functions? Discuss what physical phenomena may be responsible for each function.
58. Atmospheric Carbon Dioxide Refer to Exercise 57. The carbon dioxide content in the atmosphere at Barrow, Alaska, in parts per million (ppm) can be modeled using the function

$$
C(x)=0.04 x^{2}+0.6 x+330+7.5 \sin 2 \pi x
$$

where $x=0$ corresponds to 1970. (Source: Zeilik, M. and S. Gregory, Introductory Astronomy and Astrophysics, Brooks/Cole.)
(a) Graph C in the window $[5,40]$ by $[320,420]$.
(b) Discuss possible reasons why the amplitude of the oscillations in the graph of C is larger than the amplitude of the oscillations in the graph of L in Exercise 57, which models Hawaii.
(c) Define a new function C that is valid if x represents the actual year, where $1970 \leq x \leq 2010$. (See horizontal translations in Appendix D.)
59. Average Daily Temperature The temperature in Anchorage, Alaska, is modeled by

$$
T(x)=37+21 \sin \left[\frac{2 \pi}{365}(x-91)\right]
$$

where $T(x)$ is the temperature in degrees Fahrenheit on day x, with $x=1$ corresponding to January 1 and $x=365$ corresponding to December 31. Use a calculator to estimate the temperature on the following days. (Source: World Almanac and Book of Facts.)
(a) March 15 (day 74)
(b) April 5 (day 95)
(c) Day 200
(d) June 25
(e) October 1
(f) December 31
60. Fluctuation in the Solar Constant The solar constant S is the amount of energy per unit area that reaches Earth's atmosphere from the sun. It is equal to 1367 watts per m^{2} but varies slightly throughout the seasons. This fluctuation ΔS in S can be calculated using the formula

$$
\Delta S=0.034 S \sin \left[\frac{2 \pi(82.5-N)}{365.25}\right]
$$

In this formula, N is the day number covering a four-year period, where $N=1$ corresponds to January 1 of a leap year and $N=1461$ corresponds to December 31 of the fourth year. (Source: Winter, C., R. Sizmann, and L. L.Vant-Hull, Editors, Solar Power Plants, Springer-Verlag.)
(a) Calculate ΔS for $N=80$, which is the spring equinox in the first year.
(b) Calculate ΔS for $N=1268$, which is the summer solstice in the fourth year.
(c) What is the maximum value of ΔS ?
(d) Find a value for N where ΔS is equal to 0 .

Musical Sound Waves Pure sounds produce single sine waves on an oscilloscope. Find the amplitude and period of each sine wave graph in Exercises 61 and 62. On the vertical scale, each square represents 0.5 ; on the horizontal scale, each square represents 30° or $\frac{\pi}{6}$.
61.

62.

63. Compare the graphs of $y=\sin 2 x$ and $y=2 \sin x$ over the interval [$0,2 \pi]$. Can we say that, in general, $\sin b x=b \sin x$? Explain.
64. Compare the graphs of $y=\cos 3 x$ and $y=3 \cos x$ over the interval [$0,2 \pi]$. Can we say that, in general, $\cos b x=b \cos x$? Explain.

Relating Concepts

For individual or collaborative investigation (Exercises 65-68)
Connecting the Unit Circle and Sine Graph Using a TI-83/84 Plus calculator, adjust the settings to correspond to the following screens.

Graph the two equations (which are in parametric form), and watch as the unit circle and the sine function are graphed simultaneously. Press the TRACE key once to get the screen shown on the left below, and then press the up-arrow key to get the screen shown on the right below. The screen on the left gives a unit circle interpretation of $\cos 0=1$ and $\sin 0=0$. The screen on the right gives a rectangular coordinate graph interpretation of $\sin 0=0$.

65. On the unit circle graph, let $T=2$. Find X and Y, and interpret their values.
66. On the sine graph, let $T=2$. What values of X and Y are displayed? Interpret these values with an equation in X and Y .
67. Now go back and redefine $Y_{2 T}$ as $\cos (T)$. Graph both equations. On the cosine graph, let $\mathrm{T}=2$. What values of X and Y are displayed? Interpret these values with an equation in X and Y .
68. Explain the relationship between the coordinates of the unit circle and the coordinates of the sine and cosine graphs.

4.2 Translations of the Graphs of the Sine and Cosine Functions

- Horizontal Translations
- Vertical Translations
- Combinations of Translations
- Determining a Trigonometric Model

Horizontal Translations

The graph of the function

$$
y=f(x-d)
$$

is translated horizontally compared to the graph of $y=f(x)$. The translation is d units to the right if $d>0$ and is $|d|$ units to the left if $d<0$. See Figure 12 on the next page.

With circular functions, a horizontal translation is called a phase shift. In the function $y=f(x-d)$, the expression $x-d$ is the argument.

Horizontal translations of $y=f(x)$
(Appendix D)
Figure 12

In Examples 1-3, we give two methods that can be used to sketch the graph of a circular function involving a phase shift.

EXAMPLE 1 Graphing $\boldsymbol{y}=\boldsymbol{\operatorname { s i n }}(\boldsymbol{x}-\boldsymbol{d})$

Graph $y=\sin \left(x-\frac{\pi}{3}\right)$ over one period.
SOLUTION Method 1 For the argument $x-\frac{\pi}{3}$ to result in all possible values throughout one period, it must take on all values between 0 and 2π, inclusive. To find an interval of one period, we solve the following three-part inequality.

$$
\begin{array}{ll}
0 \leq x-\frac{\pi}{3} \leq 2 \pi & \text { (Appendix A) } \\
\frac{\pi}{3} \leq x \leq \frac{7 \pi}{3} & \text { Add } \frac{\pi}{3} \text { to each part. }
\end{array}
$$

Use the method described in the Note preceding Example 2 in Section 4.1 to divide the interval $\left[\frac{\pi}{3}, \frac{7 \pi}{3}\right]$ into four equal parts, obtaining the following x-values.

$$
\frac{\pi}{3}, \frac{5 \pi}{6}, \frac{4 \pi}{3}, \frac{11 \pi}{6}, \frac{7 \pi}{3}<\begin{gathered}
\text { These are key } \\
x \text {-values. }
\end{gathered}
$$

A table of values using these x-values follows.

Figure 13

x	$\frac{\pi}{3}$	$\frac{5 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{11 \pi}{6}$	$\frac{7 \pi}{3}$
$x-\frac{\pi}{3}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\sin \left(x-\frac{\pi}{3}\right)$	0	1	0	-1	0

We join the corresponding points with a smooth curve to get the solid blue graph shown in Figure 13. The period is 2π, and the amplitude is 1 .

Method 2 We can also graph $y=\sin \left(x-\frac{\pi}{3}\right)$ by using a horizontal translation of the graph of $y=\sin x$. The argument $x-\frac{\pi}{3}$ indicates that the graph will be translated $\frac{\pi}{3}$ units to the right (the phase shift) compared to the graph of $y=\sin x$. See Figure 13.

Therefore, to graph a function using this method, first graph the basic circular function, and then graph the desired function by using the appropriate translation.

Now Try Exercise 35.

NOTE The graph in Figure 13 of Example 1 can be extended through additional periods by repeating the given portion of the graph, as necessary.

Figure 14

EXAMPLE 2 Graphing $\boldsymbol{y}=\boldsymbol{a} \cos (\boldsymbol{x}-\boldsymbol{d})$

Graph $y=3 \cos \left(x+\frac{\pi}{4}\right)$ over one period.
SOLUTION Method 1 First solve the following three-part inequality.

$$
\begin{aligned}
& 0 \leq x+\frac{\pi}{4} \\
& \leq 2 \pi \\
&-\frac{\pi}{4} \leq x \quad \leq \frac{7 \pi}{4} \quad \text { Subtract } \frac{\pi}{4} \text { from each part. }
\end{aligned}
$$

Dividing this interval into four equal parts gives these x-values.

$$
-\frac{\pi}{4}, \quad \frac{\pi}{4}, \quad \frac{3 \pi}{4}, \quad \frac{5 \pi}{4}, \quad \frac{7 \pi}{4} \quad \text { Key } x \text {-values }
$$

Use these x-values to make a table of points.

x	$-\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{4}$	$\frac{7 \pi}{4}$
$\boldsymbol{x}+\frac{\pi}{4}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\cos \left(x+\frac{\pi}{4}\right)$	1	0	-1	0	1
$3 \cos \left(x+\frac{\pi}{4}\right)$	3	0	-3	0	3

These x-values lead to maximum points, minimum points, and x-intercepts.

We join the corresponding points with a smooth curve to get the solid blue graph shown in Figure 14. The period is 2π, and the amplitude is 3 .

Method 2 Write $y=3 \cos \left(x+\frac{\pi}{4}\right)$ in the form $y=a \cos (x-d)$.

$$
y=3 \cos \left(x+\frac{\pi}{4}\right), \quad \text { or } \quad y=3 \cos \left[x-\left(-\frac{\pi}{4}\right)\right] \quad \text { Rewrite to subtract }-\frac{\pi}{4} .
$$

This result shows that $d=-\frac{\pi}{4}$. Since $-\frac{\pi}{4}$ is negative, the phase shift is $\left|-\frac{\pi}{4}\right|=\frac{\pi}{4}$ unit to the left. The graph is the same as that of $y=3 \cos x$ (the thinlined graph in the margin calculator screen), except that it is translated $\frac{\pi}{4}$ unit to the left (the thick-lined graph).

Now Try Exercise 37.

EXAMPLE 3 Graphing $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{\operatorname { c o s }}[\boldsymbol{b}(\boldsymbol{x}-\boldsymbol{d})]$

Graph $y=-2 \cos (3 x+\pi)$ over two periods.
SOLUTION Method 1 The function can be sketched over one period by solving the three-part inequality

$$
0 \leq 3 x+\pi \leq 2 \pi
$$

to find the interval $\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$. Divide this interval into four equal parts to find the points $\left(-\frac{\pi}{3},-2\right),\left(-\frac{\pi}{6}, 0\right),(0,2),\left(\frac{\pi}{6}, 0\right)$, and $\left(\frac{\pi}{3},-2\right)$. Plot these points and join them with a smooth curve. By graphing an additional half period to the left and to the right, we obtain the graph shown in Figure 15.

Method 2 First write the equation in the form $y=a \cos [b(x-d)]$.

$$
y=-2 \cos (3 x+\pi), \quad \text { or } \quad y=-2 \cos \left[3\left(x+\frac{\pi}{3}\right)\right] \quad \begin{aligned}
& \text { Rewrite by } \\
& \text { factoring out } 3
\end{aligned}
$$

Then $a=-2, b=3$, and $d=-\frac{\pi}{3}$. The amplitude is $|-2|=2$, and the period is $\frac{2 \pi}{3}$ (since the value of b is 3). The phase shift is $\left|-\frac{\pi}{3}\right|=\frac{\pi}{3}$ units to the left compared to the graph of $y=-2 \cos 3 x$. Again, see Figure 15.

Figure 15

Vertical Translations

The graph of a function of the form

$$
y=c+f(x)
$$

is translated vertically compared to the graph of $y=f(x)$. See Figure 16. The translation is c units up if $c>0$ and is $|c|$ units down if $c<0$.

Vertical translations of $y=f(x)$
(Appendix D)
Figure 16

EXAMPLE 4 Graphing $\boldsymbol{y}=\boldsymbol{c}+\boldsymbol{a} \cos \boldsymbol{b} \boldsymbol{x}$

Graph $y=3-2 \cos 3 x$ over two periods.
SOLUTION The values of y will be 3 greater than the corresponding values of y in $y=-2 \cos 3 x$. This means that the graph of $y=3-2 \cos 3 x$ is the same as the graph of $y=-2 \cos 3 x$, vertically translated 3 units up. Since the period of $y=-2 \cos 3 x$ is $\frac{2 \pi}{3}$, the key points have these x-values.

$$
0, \quad \frac{\pi}{6}, \quad \frac{\pi}{3}, \quad \frac{\pi}{2}, \quad \frac{2 \pi}{3} \quad \text { Key } x \text {-values }
$$

Use these x-values to make a table of points.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$
$\cos \mathbf{3 x}$	1	0	-1	0	1
$\mathbf{2} \cos \mathbf{3} \boldsymbol{x}$	2	0	-2	0	2
$\mathbf{3 - 2} \cos 3 x$	1	3	5	3	1

The key points are shown on the graph in Figure 17, along with more of the graph, which is sketched using the fact that the function is periodic.

The function in Example 4 is shown using the thick graph style. Notice also the thin graph style for $y=-2 \cos 3 x$.

Figure 17

Combinations of Translations

$y=c+a \sin [b(x-d)] \quad$ or $\quad y=c+a \cos [b(x-d)], \quad$ where $b>0$,
which involves stretching, shrinking, and translating, can be graphed according to the following guidelines.

Further Guidelines for Sketching Graphs of Sine and Cosine Functions

Method 1 Follow these steps.
Step 1 Find an interval whose length is one period $\frac{2 \pi}{b}$ by solving the threepart inequality $0 \leq b(x-d) \leq 2 \pi$. (See Appendix A.)
Step 2 Divide the interval into four equal parts. (See the Note preceding Example 2 in Section 4.1.)
Step 3 Evaluate the function for each of the five x-values resulting from Step 2. The points will be maximum points, minimum points, and points that intersect the line $y=c$ ("middle" points of the wave).

Step 4 Plot the points found in Step 3, and join them with a sinusoidal curve having amplitude $|a|$.
Step 5 Draw the graph over additional periods, as needed.
Method 2 Follow these steps.
Step 1 Graph $y=a \sin b x$ or $y=a \cos b x$. The amplitude of the function is $|a|$, and the period is $\frac{2 \pi}{b}$.
Step 2 Use translations to graph the desired function. The vertical translation is c units up if $c>0$ and is $|c|$ units down if $c<0$. The horizontal translation (phase shift) is d units to the right if $d>0$ and is $|d|$ units to the left if $d<0$.

EXAMPLE 5 Graphing $y=c+a \sin [b(x-d)]$

Graph $y=-1+2 \sin (4 x+\pi)$ over two periods.
SOLUTION We use Method 1. First write the expression on the right side of the equation in the form $c+a \sin [b(x-d)]$.

$$
y=-1+2 \sin (4 x+\pi), \quad \text { or } \quad y=-1+2 \sin \left[4\left(x+\frac{\pi}{4}\right)\right] \quad \begin{aligned}
& \text { Rewrite by } \\
& \text { factoring out } 4 .
\end{aligned}
$$

Step 1 Find an interval whose length is one period.

$$
\left.\begin{array}{rl}
0 & \leq 4\left(x+\frac{\pi}{4}\right)
\end{array}\right) \leq 2 \pi .\left\{\begin{aligned}
0 & \leq x+\frac{\pi}{4}
\end{aligned} \begin{array}{rl}
& \leq \frac{\pi}{2} \quad \text { Divide each part by } 4 \\
-\frac{\pi}{4} & \leq x \quad
\end{array}\right.
$$

Step 2 Divide the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ into four equal parts to get these x-values.

$$
-\frac{\pi}{4}, \quad-\frac{\pi}{8}, \quad 0, \quad \frac{\pi}{8}, \quad \frac{\pi}{4} \quad \text { Key } x \text {-values }
$$

$y=-1+2 \sin (4 x+\pi)$
Figure 18

Step 3 Make a table of values.

x	$-\frac{\pi}{4}$	$-\frac{\pi}{8}$	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$
$\boldsymbol{x}+\frac{\pi}{4}$	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3 \pi}{8}$	$\frac{\pi}{2}$
$\mathbf{4}\left(x+\frac{\pi}{4}\right)$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\sin \left[4\left(x+\frac{\pi}{4}\right)\right]$	0	1	0	-1	0
$\mathbf{2 \operatorname { s i n } [4 (x + \frac { \pi } { 4 })]}$	0	2	0	-2	0
$-1+2 \sin (4 x+\pi)$	-1	1	-1	-3	-1

Steps 4 and 5 Plot the points found in the table and join them with a sinusoidal curve. Figure 18 shows the graph, extended to the right and left to include two full periods.

Now Try Exercise 53.

Determining a Trigonometric Model A sinusoidal function is often a good approximation of a set of real data points.

EXAMPLE 6 Modeling Temperature with a Sine Function

The maximum average monthly temperature in New Orleans is $83^{\circ} \mathrm{F}$, and the minimum is $53^{\circ} \mathrm{F}$. The table shows the average monthly temperatures. The scatter diagram for a two-year interval in Figure 19 strongly suggests that the temperatures can be modeled with a sine curve.

Month	${ }^{\circ} \mathbf{F}$	Month	${ }^{\circ} \mathbf{F}$
Jan	53	July	83
Feb	56	Aug	83
Mar	62	Sept	79
Apr	68	Oct	70
May	76	Nov	61
June	81	Dec	55

Figure 19

Source: World Almanac and Book of Facts.
(a) Using only the maximum and minimum temperatures, determine a function of the form

$$
f(x)=a \sin [b(x-d)]+c, \quad \text { where } a, b, c, \text { and } d \text { are constants, }
$$

that models the average monthly temperature in New Orleans. Let x represent the month, with January corresponding to $x=1$.
(b) On the same coordinate axes, graph f for a two-year period together with the actual data values found in the table.
(c) Use the sine regression feature of a graphing calculator to determine a second model for these data.

SOLUTION

(a) We use the maximum and minimum average monthly temperatures to find the amplitude a.

$$
a=\frac{83-53}{2}=15 \quad \text { Amplitude }
$$

The average of the maximum and minimum temperatures is a good choice for c. The average is

$$
\frac{83+53}{2}=68 . \quad \text { Vertical translation }
$$

Since temperatures repeat every 12 months, b can be found as follows.

$$
\begin{aligned}
12 & =\frac{2 \pi}{b} & & \text { Period }=\frac{2 \pi}{b} \\
b & =\frac{\pi}{6} & & \text { Solve for } b . \text { (Appendix A) }
\end{aligned}
$$

The coldest month is January, when $x=1$, and the hottest month is July, when $x=7$. A good choice for d is 4 because April, when $x=4$, is located at the midpoint between January and July. Also, notice that the average monthly temperature in April is $68^{\circ} \mathrm{F}$, which is the value of the vertical translation, c. The average monthly temperature in New Orleans is modeled closely by the following equation.

$$
\begin{aligned}
& f(x)=a \sin [b(x-d)]+c \\
& f(x)=15 \sin \left[\frac{\pi}{6}(x-4)\right]+68 \quad \text { Substitute. }
\end{aligned}
$$

(b) Figure 20 shows the data points from the table, along with the graph of $y=15 \sin \left[\frac{\pi}{6}(x-4)\right]+68$ and the graph of $y=15 \sin \frac{\pi}{6} x+68$ for comparison.

Figure 21
(c) We used the given data for a two-year period and the sine regression capability of a graphing calculator to produce the model

$$
f(x)=15.35 \sin (0.52 x-2.13)+68.89
$$

described in Figure 21(a). Its graph along with the data points is shown in Figure 21(b).

Concept Check In Exercises 1-8, match each function with its graph in choices A-I. (One choice will not be used.)

1. $y=\sin \left(x-\frac{\pi}{4}\right)$
2. $y=\sin \left(x+\frac{\pi}{4}\right)$
3. $y=\cos \left(x-\frac{\pi}{4}\right)$
4. $y=\cos \left(x+\frac{\pi}{4}\right)$
5. $y=1+\sin x$
6. $y=-1+\sin x$
7. $y=1+\cos x$
8. $y=-1+\cos x$
A.

B.

C.

D.

E.

F.

G.

H.

I.

Concept Check In Exercises 9-12, match each function with its calculator graph in the standard trig window in choices $A-D$.
9. $y=\cos \left(x-\frac{\pi}{4}\right)$
10. $y=\sin \left(x-\frac{\pi}{4}\right)$
11. $y=1+\sin x$
12. $y=-1+\cos x$
A.

B.

C.

D.

13. The graphs of $y=\sin x+1$ and $y=\sin (x+1)$ are NOT the same. Explain why this is so.
14. Concept Check Refer to Exercise 13. Which one of the two graphs is the same as that of $y=1+\sin x$?

Concept Check Match each function in Column I with the appropriate description in Column II.

I
15. $y=3 \sin (2 x-4)$
A. amplitude $=2$, period $=\frac{\pi}{2}$, phase shift $=\frac{3}{4}$
16. $y=2 \sin (3 x-4)$
B. amplitude $=3$, period $=\pi$, phase shift $=2$
17. $y=-4 \sin (3 x-2)$
C. amplitude $=4$, period $=\frac{2 \pi}{3}$, phase shift $=\frac{2}{3}$
18. $y=-2 \sin (4 x-3)$
D. amplitude $=2$, period $=\frac{2 \pi}{3}$, phase shift $=\frac{4}{3}$

Concept Check In Exercises 19 and 20, fill in the blanks with the word right or the word left.
19. If the graph of $y=\cos x$ is translated $\frac{\pi}{2}$ units horizontally to the \qquad , it will coincide with the graph of $y=\sin x$.
20. If the graph of $y=\sin x$ is translated $\frac{\pi}{2}$ units horizontally to the \qquad , it will coincide with the graph of $y=\cos x$.

Connecting Graphs with Equations Each function graphed in Exercises 21-24 is of the form $y=c+\cos x, y=c+\sin x, y=\cos (x-d)$, or $y=\sin (x-d)$, where d is the least possible positive value. Determine the equation of the graph.
21.

22.

23.

24.

Find the amplitude, the period, any vertical translation, and any phase shift of the graph of each function. See Examples 1-5.
25. $y=2 \sin (x+\pi)$
27. $y=-\frac{1}{4} \cos \left(\frac{1}{2} x+\frac{\pi}{2}\right)$
29. $y=3 \cos \left[\frac{\pi}{2}\left(x-\frac{1}{2}\right)\right]$
31. $y=2-\sin \left(3 x-\frac{\pi}{5}\right)$
26. $y=3 \sin \left(x+\frac{\pi}{2}\right)$
28. $y=-\frac{1}{2} \sin \left(\frac{1}{2} x+\pi\right)$
30. $y=-\cos \left[\pi\left(x-\frac{1}{3}\right)\right]$
32. $y=-1+\frac{1}{2} \cos (2 x-3 \pi)$

Graph each function over a two-period interval. See Examples 1 and 2.
33. $y=\cos \left(x-\frac{\pi}{2}\right)$
34. $y=\sin \left(x-\frac{\pi}{4}\right)$
35. $y=\sin \left(x+\frac{\pi}{4}\right)$
36. $y=\cos \left(x+\frac{\pi}{3}\right)$
37. $y=2 \cos \left(x-\frac{\pi}{3}\right)$
38. $y=3 \sin \left(x-\frac{3 \pi}{2}\right)$

Graph each function over a one-period interval. See Example 3.
39. $y=\frac{3}{2} \sin \left[2\left(x+\frac{\pi}{4}\right)\right]$
40. $y=-\frac{1}{2} \cos \left[4\left(x+\frac{\pi}{2}\right)\right]$
41. $y=-4 \sin (2 x-\pi)$
42. $y=3 \cos (4 x+\pi)$
43. $y=\frac{1}{2} \cos \left(\frac{1}{2} x-\frac{\pi}{4}\right)$
44. $y=-\frac{1}{4} \sin \left(\frac{3}{4} x+\frac{\pi}{8}\right)$

Graph each function over a two-period interval. See Example 4.
45. $y=-3+2 \sin x$
46. $y=2-3 \cos x$
47. $y=-1-2 \cos 5 x$
48. $y=1-\frac{2}{3} \sin \frac{3}{4} x$
49. $y=1-2 \cos \frac{1}{2} x$
50. $y=-3+3 \sin \frac{1}{2} x$
51. $y=-2+\frac{1}{2} \sin 3 x$
52. $y=1+\frac{2}{3} \cos \frac{1}{2} x$

Graph each function over a one-period interval. See Example 5.

53. $y=-3+2 \sin \left(x+\frac{\pi}{2}\right)$
54. $y=4-3 \cos (x-\pi)$
55. $y=\frac{1}{2}+\sin \left[2\left(x+\frac{\pi}{4}\right)\right]$
56. $y=-\frac{5}{2}+\cos \left[3\left(x-\frac{\pi}{6}\right)\right]$
(Modeling) Solve each problem. See Example 6.
57. Average Monthly Temperature The average monthly temperature (in ${ }^{\circ} \mathrm{F}$) in Seattle, Washington, is shown in the table.
(a) Plot the average monthly temperature over a two-year period, letting $x=1$ correspond to January during the first year. Do the data seem to indicate a translated sine graph?
(b) The highest average monthly temperature is $66^{\circ} \mathrm{F}$ in August, and the lowest average monthly temperature is $41^{\circ} \mathrm{F}$ in January. Their average is $53.5^{\circ} \mathrm{F}$. Graph the data together with the line $y=53.5$. What does this line represent with

Month	${ }^{\circ} \mathbf{F}$	Month	${ }^{\circ} \mathbf{F}$
Jan	41	July	65
Feb	43	Aug	66
Mar	46	Sept	61
Apr	50	Oct	53
May	56	Nov	45
June	61	Dec	41

Source: World Almanac and Book of Facts. regard to temperature in Seattle?
(c) Approximate the amplitude, period, and phase shift of the translated sine wave.
(d) Determine a function of the form $f(x)=a \sin [b(x-d)]+c$, where a, b, c, and d are constants, that models the data.
(e) Graph f together with the data on the same coordinate axes. How well does f model the given data?
(f) Use the sine regression capability of a graphing calculator to find the equation of a sine curve that fits these data.
58. Average Monthly Temperature The average monthly temperature (in ${ }^{\circ} \mathrm{F}$) in Phoenix, Arizona, is shown in the table.
(a) Predict the average yearly temperature.
(b) Plot the average monthly temperature over a two-year period, letting $x=1$ correspond to January of the first year.
(c) Determine a function of the form $f(x)=$ $a \cos [b(x-d)]+c$, where a, b, c, and d are constants, that models the data.
(d) Graph f together with the data on the same coordinate axes. How well does f model the data?
(e) Use the sine regression capability of a graph-

Month	${ }^{\circ} \mathbf{F}$	Month	${ }^{\circ} \mathbf{F}$
Jan	54	July	93
Feb	58	Aug	91
Mar	63	Sept	86
Apr	70	Oct	75
May	79	Nov	62
June	89	Dec	54

Source: World Almanac and Book of Facts. ing calculator to find the equation of a sine curve that fits these data (two years).
(Modeling) Utility Bills In an article entitled "I Found Sinusoids in My Gas Bill" (Mathematics Teacher, January 2000), Cathy G. Schloemer presents the following graph* that accompanied her gas bill.

Notice that two sinusoids are suggested here: one for the behavior of the average monthly temperature and another for gas use in MCF (thousands of cubic feet). Use this information in Exercises 59 and 60.
59. If January 1997 is represented by $x=1$, the data of estimated ordered pairs (month, temperature) are given in the list shown on the two graphing calculator screens below.

Use the sine regression feature of a graphing calculator to find a sine function that fits these data points. Then make a scatter diagram, and graph the function.
60. If January 1997 is again represented by $x=1$, the data of estimated ordered pairs (month, gas use in thousands of cubic feet (MCF)) are given in the list shown on the two graphing calculator screens below.

Use the sine regression feature of a graphing calculator to find a sine function that fits these data points. Then make a scatter diagram, and graph the function.

Chapter 4

Quiz (Sections 4.1-4.2)

1. Give the amplitude, period, vertical translation, and phase shift of the function $y=3-4 \sin \left(2 x+\frac{\pi}{2}\right)$.

Graph each function over a two-period interval. Give the period and amplitude.
2. $y=-4 \sin x$
3. $y=-\frac{1}{2} \cos 2 x$
4. $y=3 \sin \pi x$
5. $y=-2 \cos \left(x+\frac{\pi}{4}\right)$
6. $y=2+\sin (2 x-\pi)$
7. $y=-1+\frac{1}{2} \sin x$

Connecting Graphs with Equations Each function graphed is of the form $y=a \cos b x$ or $y=a \sin b x$, where $b>0$. Determine the equation of the graph.
8.

9.

10.

Average Monthly Temperature The average temperature (in ${ }^{\circ} \mathrm{F}$) at a certain location can be approximated by the function

$$
f(x)=12 \sin \left[\frac{\pi}{6}(x-3.9)\right]+72
$$

where $x=1$ represents January, $x=2$ represents February, and so on.
11. What is the average temperature in April?
12. What is the lowest average monthly temperature? What is the highest?

4.3 Graphs of the Tangent and Cotangent Functions

- Graph of the Tangent Function
- Graph of the Cotangent Function
- Graphing Techniques
- Connecting Graphs with Equations

Graph of the Tangent Function Consider the table of selected points accompanying the graph of the tangent function in Figure 22 on the next page. These points include special values between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$. The tangent function is undefined for odd multiples of $\frac{\pi}{2}$ and, thus, has vertical asymptotes for such values. A vertical asymptote is a vertical line that the graph approaches but does not intersect. As the x-values get closer and closer to the line, the function values increase or decrease without bound. Furthermore, since

$$
\tan (-x)=-\tan x, \quad(\text { See Exercise } 45 .)
$$

the graph of the tangent function is symmetric with respect to the origin.

Figure 23

\boldsymbol{x}	$\boldsymbol{y}=\boldsymbol{\operatorname { t a n }} \boldsymbol{x}$
$-\frac{\pi}{3}$	$-\sqrt{3} \approx-1.7$
$-\frac{\pi}{4}$	-1
$-\frac{\pi}{6}$	$-\frac{\sqrt{3}}{3} \approx-0.6$
0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{3} \approx 0.6$
$\frac{\pi}{4}$	1
$\frac{\pi}{3}$	$\sqrt{3} \approx 1.7$

Figure 22

The tangent function has period π. Because $\tan x=\frac{\sin x}{\cos x}$, tangent values are 0 when sine values are 0 , and are undefined when cosine values are 0 . As x-values increase from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, tangent values range from $-\infty$ to ∞ and increase throughout the interval. Those same values are repeated as x increases from $\frac{\pi}{2}$ to $\frac{3 \pi}{2}$, from $\frac{3 \pi}{2}$ to $\frac{5 \pi}{2}$, and so on. The graph of $y=\tan x$ from $-\frac{3 \pi}{2}$ to $\frac{3 \pi}{2}$ is shown in Figure 23. The graph continues in this pattern.

Tangent Function $f(x)=\tan x$

Domain: $\left\{x \left\lvert\, x \neq(2 n+1) \frac{\pi}{2}\right.\right.$, where n is any integer $\} \quad$ Range: $(-\infty, \infty)$

\boldsymbol{x}	\boldsymbol{y}
$-\frac{\pi}{2}$	undefined
$-\frac{\pi}{4}$	-1
0	0
$\frac{\pi}{4}$	1
$\frac{\pi}{2}$	undefined

$f(x)=\tan x,-\frac{\pi}{2}<x<\frac{\pi}{2}$

Figure 24

- The graph is discontinuous at values of x of the form $x=(2 n+1) \frac{\pi}{2}$ and has vertical asymptotes at these values.
- Its x-intercepts are of the form $x=n \pi$.
- Its period is π.
- Its graph has no amplitude, since there are no minimum or maximum values.
- The graph is symmetric with respect to the origin, so the function is an odd function. For all x in the domain, $\tan (-x)=-\tan x$.

Graph of the Cotangent Function A similar analysis for selected points between 0 and π for the graph of the cotangent function yields the graph in Figure 25 on the next page. Here the vertical asymptotes are at x-values that are integer multiples of π. Because

$$
\cot (-x)=-\cot x, \quad(\text { See Exercise 46.) }
$$

this graph is also symmetric with respect to the origin. (This can be seen when more of the graph is plotted.)

Figure 26

\boldsymbol{x}	$\boldsymbol{y}=\boldsymbol{\operatorname { c o t } \boldsymbol { x }}$
$\frac{\pi}{6}$	$\sqrt{3} \approx 1.7$
$\frac{\pi}{4}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{3} \approx 0.6$
$\frac{\pi}{2}$	0
$\frac{2 \pi}{3}$	$-\frac{\sqrt{3}}{3} \approx-0.6$
$\frac{3 \pi}{4}$	-1
$\frac{5 \pi}{6}$	$-\sqrt{3} \approx-1.7$

Figure 25

The cotangent function also has period π. Cotangent values are 0 when cosine values are 0 , and are undefined when sine values are 0 . As x-values increase from 0 to π, cotangent values range from ∞ to $-\infty$ and decrease throughout the interval. Those same values are repeated as x increases from π to 2π, from 2π to 3π, and so on. The graph of $y=\cot x$ from $-\pi$ to π is shown in Figure 26. The graph continues in this pattern.

Cotangent Function $\boldsymbol{f}(\mathbf{x})=\cot \mathbf{x}$

Domain: $\{x \mid x \neq n \pi$, where n is any integer $\} \quad$ Range: $(-\infty, \infty)$

\boldsymbol{x}	\boldsymbol{y}
0	undefined
$\frac{\pi}{4}$	1
$\frac{\pi}{2}$	0
$\frac{3 \pi}{4}$	-1
$\boldsymbol{\pi}$	undefined

Figure 27

- The graph is discontinuous at values of x of the form $x=n \pi$ and has vertical asymptotes at these values.
- Its x-intercepts are of the form $x=(2 n+1) \frac{\pi}{2}$.
- Its period is π.
- Its graph has no amplitude, since there are no minimum or maximum values.
- The graph is symmetric with respect to the origin, so the function is an odd function. For all x in the domain, $\cot (-x)=-\cot x$.

The tangent function can be graphed directly with a graphing calculator, using the tangent key. To graph the cotangent function, however, we must use one of the identities

$$
\cot x=\frac{1}{\tan x} \quad \text { or } \quad \cot x=\frac{\cos x}{\sin x},
$$

because graphing calculators generally do not have cotangent keys.

Graphing Techniques

Guidelines for Sketching Graphs of Tangent and Cotangent Functions

To graph $\boldsymbol{y}=\boldsymbol{a} \tan \boldsymbol{b} \boldsymbol{x}$ or $\boldsymbol{y}=\boldsymbol{a} \cot \boldsymbol{b} \boldsymbol{x}$, with $b>0$, follow these steps.
Step 1 Determine the period, $\frac{\pi}{b}$. To locate two adjacent vertical asymptotes, solve the following equations for x :
For $y=a \tan b x: \quad b x=-\frac{\pi}{2} \quad$ and $\quad b x=\frac{\pi}{2}$.
For $y=a \cot b x: \quad b x=0 \quad$ and $\quad b x=\pi$.
Step 2 Sketch the two vertical asymptotes found in Step 1.
Step 3 Divide the interval formed by the vertical asymptotes into four equal parts.
Step 4 Evaluate the function for the first-quarter point, midpoint, and thirdquarter point, using the x-values found in Step 3.
Step 5 Join the points with a smooth curve, approaching the vertical asymptotes. Indicate additional asymptotes and periods of the graph as necessary.

EXAMPLE 1 Graphing $\boldsymbol{y}=\boldsymbol{\operatorname { t a n }} \boldsymbol{b x}$

Graph $y=\tan 2 x$.

SOLUTION

Step 1 The period of this function is $\frac{\pi}{2}$. To locate two adjacent vertical asymptotes, solve $2 x=-\frac{\pi}{2}$ and $2 x=\frac{\pi}{2}$ (because this is a tangent function). The two asymptotes have equations $x=-\frac{\pi}{4}$ and $x=\frac{\pi}{4}$.
Step 2 Sketch the two vertical asymptotes $x= \pm \frac{\pi}{4}$, as shown in Figure 28.
Step 3 Divide the interval $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ into four equal parts. This gives the following key x-values.
first-quarter value: $-\frac{\pi}{8}$, middle value: 0 , third-quarter value: $\frac{\pi}{8} \quad$ Key x-values
Step 4 Evaluate the function for the x-values found in Step 3 .

\boldsymbol{x}	$-\frac{\pi}{8}$	0	$\frac{\pi}{8}$
$\mathbf{2 x}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$
$\tan 2 \boldsymbol{x}$	-1	0	1

Figure 28
Step 5 Join these points with a smooth curve, approaching the vertical asymptotes. See Figure 28. Another period has been graphed, one half period to the left and one half period to the right.

Figure 29

EXAMPLE 2 Graphing $\boldsymbol{y}=\boldsymbol{a} \tan \boldsymbol{b x}$

Graph $y=-3 \tan \frac{1}{2} x$.
SOLUTION The period is $\frac{\pi}{\frac{1}{2}}=\pi \div \frac{1}{2}=\pi \cdot \frac{2}{1}=2 \pi$. Adjacent asymptotes are at $x=-\pi$ and $x=\pi$. Dividing the interval $(-\pi, \pi)$ into four equal parts gives key x-values of $-\frac{\pi}{2}, 0$, and $\frac{\pi}{2}$. Evaluating the function at these x-values gives the following key points.

$$
\left(-\frac{\pi}{2}, 3\right), \quad(0,0), \quad\left(\frac{\pi}{2},-3\right) \quad \text { Key points }
$$

By plotting these points and joining them with a smooth curve, we obtain the graph shown in Figure 29. Because the coefficient -3 is negative, the graph is reflected across the x-axis compared to the graph of $y=3 \tan \frac{1}{2} x$.

Now Try Exercise 15.

NOTE The function $y=-3 \tan \frac{1}{2} x$ in Example 2, graphed in Figure 29, has a graph that compares to the graph of $y=\tan x$ as follows.

1. The period is larger because $b=\frac{1}{2}$, and $\frac{1}{2}<1$.
2. The graph is "stretched" vertically because $a=-3$, and $|-3|>1$.
3. Each branch of the graph falls from left to right (that is, the function decreases) between each pair of adjacent asymptotes because $a=-3$, and $-3<0$. When $a<0$, the graph is reflected across the x-axis compared to the graph of $y=|a| \tan b x$.

EXAMPLE 3 Graphing $\boldsymbol{y}=\boldsymbol{a} \cot \boldsymbol{b} \boldsymbol{x}$

Graph $y=\frac{1}{2} \cot 2 x$.
SOLUTION Because this function involves the cotangent, we can locate two adjacent asymptotes by solving the equations $2 x=0$ and $2 x=\pi$. The lines $x=0$ (the y-axis) and $x=\frac{\pi}{2}$ are two such asymptotes. We divide the interval $\left(0, \frac{\pi}{2}\right)$ into four equal parts, getting key x-values of $\frac{\pi}{8}, \frac{\pi}{4}$, and $\frac{3 \pi}{8}$. Evaluating the function at these x-values gives the key points $\left(\frac{\pi}{8}, \frac{1}{2}\right),\left(\frac{\pi}{4}, 0\right),\left(\frac{3 \pi}{8},-\frac{1}{2}\right)$. We plot these points and join them with a smooth curve approaching the asymptotes to obtain the graph shown in Figure 30.

Figure 30

Now Try Exercise 17.

Like the other circular functions, the graphs of the tangent and cotangent functions may be translated horizontally and vertically.

EXAMPLE 4 Graphing $\boldsymbol{y}=\boldsymbol{c}+\boldsymbol{\operatorname { t a n }} \boldsymbol{x}$

Graph $y=2+\tan x$.

ANALYTIC SOLUTION

Every value of y for this function will be 2 units more than the corresponding value of y in $y=\tan x$, causing the graph of $y=2+\tan x$ to be translated 2 units up compared to the graph of $y=\tan x$. See Figure 31.

Figure 31

Three periods of the function are shown in Figure 31. Because the period of $y=2+\tan x$ is π, additional asymptotes and periods of the function can be drawn by repeating the basic graph every π units on the x-axis to the left or to the right of the graph shown.

GRAPHING CALCULATOR SOLUTION

To see the vertical translation, observe the coordinates displayed at the bottoms of the screens in Figures 32 and 33. For $X=\frac{\pi}{4} \approx 0.78539816$,

$$
\mathrm{Y}_{1}=\tan \mathrm{X}=1
$$

while for the same X -value,

$$
Y_{2}=2+\tan X=2+1=3
$$

Figure 32

Figure 33

Now Try Exercise 23.

EXAMPLE 5 Graphing $\boldsymbol{y}=\boldsymbol{c}+\boldsymbol{a} \cot (\boldsymbol{x}-\boldsymbol{d})$

Graph $y=-2-\cot \left(x-\frac{\pi}{4}\right)$.
SOLUTION Here $b=1$, so the period is π. The negative sign in front of the cotangent will cause the graph to be reflected across the x-axis, and the argument $\left(x-\frac{\pi}{4}\right)$ indicates a phase shift (horizontal shift) $\frac{\pi}{4}$ unit to the right. Because $c=-2$, the graph will then be translated down 2 units. To locate adjacent asymptotes, since this function involves the cotangent, we solve the following equations.

$$
\begin{array}{rlrlrl}
x-\frac{\pi}{4} & =0 & \text { and } & x-\frac{\pi}{4} & =\pi \\
x & =\frac{\pi}{4} & \text { and } & x & =\frac{5 \pi}{4} & \text { Add } \frac{\pi}{4} .
\end{array}
$$

Dividing the interval $\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)$ into four equal parts and evaluating the function at the three key x-values within the interval give these points.

$$
\left(\frac{\pi}{2},-3\right), \quad\left(\frac{3 \pi}{4},-2\right), \quad(\pi,-1) \quad \text { Key points }
$$

We join these points with a smooth curve. This period of the graph, along with the one in the domain interval $\left(-\frac{3 \pi}{4}, \frac{\pi}{4}\right)$, is shown in Figure 34 on the next page.

Figure 34
Now Try Exercise 31.

Connecting Graphs with Equations

EXAMPLE 6 Determining an Equation for a Graph

Determine an equation for each graph.
(a)

(b)

SOLUTION

(a) This graph is that of $y=\tan x$ but reflected across the x-axis and stretched vertically by a factor of 2 . Therefore, an equation for this graph is

$$
\begin{aligned}
& y=\frac{-2 \tan x .}{\uparrow} \text { Vertical stretch }
\end{aligned}
$$

x-axis reflection
(b) This is the graph of a cotangent function, but the period is $\frac{\pi}{2}$ rather than π. Therefore, the coefficient of x is 2 . This graph is vertically translated 1 unit down compared to the graph of $y=\cot 2 x$. An equation for this graph is

Now Try Exercises 33 and 37.

NOTE Because the circular functions are periodic, there are infinitely many equations that correspond to each graph in Example 6. Confirm that both

$$
y=-1-\cot (-2 x) \quad \text { and } \quad y=-1-\tan \left(2 x-\frac{\pi}{2}\right)
$$

are equations for the graph in Example $\mathbf{6}(\mathbf{b})$. When writing the equation from a graph, it is practical to write the simplest form. Therefore, we choose values of b where $b>0$ and write the function without a phase shift when possible.

Concept Check In Exercises 1-6, match each function with its graph from choices A-F.

1. $y=-\tan x$
2. $y=-\cot x$
3. $y=\tan \left(x-\frac{\pi}{4}\right)$
4. $y=\cot \left(x-\frac{\pi}{4}\right)$
5. $y=\cot \left(x+\frac{\pi}{4}\right)$
6. $y=\tan \left(x+\frac{\pi}{4}\right)$
A.

B.

C.

D.

E.

F.

Graph each function over a one-period interval. See Examples 1-3.
7. $y=\tan 4 x$
8. $y=\tan \frac{1}{2} x$
9. $y=2 \tan x$
10. $y=2 \cot x$
11. $y=2 \tan \frac{1}{4} x$
12. $y=\frac{1}{2} \cot x$
13. $y=\cot 3 x$
14. $y=-\cot \frac{1}{2} x$
15. $y=-2 \tan \frac{1}{4} x$
16. $y=3 \tan \frac{1}{2} x$
17. $y=\frac{1}{2} \cot 4 x$
18. $y=-\frac{1}{2} \cot 2 x$

Graph each function over a two-period interval. See Examples 4 and 5.
19. $y=\tan (2 x-\pi)$
20. $y=\tan \left(\frac{x}{2}+\pi\right)$
21. $y=\cot \left(3 x+\frac{\pi}{4}\right)$
22. $y=\cot \left(2 x-\frac{3 \pi}{2}\right)$
23. $y=1+\tan x$
24. $y=1-\tan x$
25. $y=1-\cot x$
26. $y=-2-\cot x$
27. $y=-1+2 \tan x$
28. $y=3+\frac{1}{2} \tan x$
29. $y=-1+\frac{1}{2} \cot (2 x-3 \pi)$
30. $y=-2+3 \tan (4 x+\pi)$
31. $y=1-2 \cot \left[2\left(x+\frac{\pi}{2}\right)\right]$
32. $y=-2+\frac{2}{3} \tan \left(\frac{3}{4} x-\pi\right)$

Connecting Graphs with Equations Determine the simplest form of an equation for each graph. Choose $b>0$, and include no phase shifts. (Midpoints and quarter-points are identified by dots.) See Example 6.
33.

35.

37.

34.

36.

38.

Concept Check In Exercises 39-42, tell whether each statement is true or false. If false, tell why.
39. The least positive number k for which $x=k$ is an asymptote for the tangent function is $\frac{\pi}{2}$.
40. The least positive number k for which $x=k$ is an asymptote for the cotangent function is $\frac{\pi}{2}$.
41. The graph of $y=\tan x$ in Figure 23 suggests that $\tan (-x)=\tan x$ for all x in the domain of $\tan x$.
42. The graph of $y=\cot x$ in Figure 26 suggests that $\cot (-x)=-\cot x$ for all x in the domain of $\cot x$.

Work each exercise.

43. Concept Check If c is any number, then how many solutions does the equation $c=\tan x$ have in the interval $(-2 \pi, 2 \pi]$?
44. Concept Check Consider the function defined by $f(x)=-4 \tan (2 x+\pi)$. What is the domain of f ? What is its range?
45. Show that $\tan (-x)=-\tan x$ by writing $\tan (-x)$ as $\frac{\sin (-x)}{\cos (-x)}$ and then using the relationships for $\sin (-x)$ and $\cos (-x)$.
46. Show that $\cot (-x)=-\cot x$ by writing $\cot (-x)$ as $\frac{\cos (-x)}{\sin (-x)}$ and then using the relationships for $\cos (-x)$ and $\sin (-x)$.
47. (Modeling) Distance of a Rotating Beacon A rotating beacon is located at point A next to a long wall. The beacon is 4 m from the wall. The distance d is given by

$$
d=4 \tan 2 \pi t
$$

where t is time measured in seconds since the beacon started rotating. (When $t=0$, the beacon is aimed at point R. When the beacon is aimed to the right of R, the value of d is positive; d is negative when the beacon is aimed to the left of R.) Find d for each time.
(a) $t=0$
(b) $t=0.4$
(c) $t=0.8$
(d) $t=1.2$
(e) Why is 0.25 a meaningless value for t ?

48. Simultaneously graph $y=\tan x$ and $y=x$ in the window $[-1,1]$ by $[-1,1]$ with a graphing calculator. Write a short description of the relationship between $\tan x$ and x for small x-values.

Relating Concepts

For individual or collaborative investigation (Exercises 49-54)
Consider the following function from Example 5. Work these exercises in order.

$$
y=-2-\cot \left(x-\frac{\pi}{4}\right)
$$

49. What is the least positive number for which $y=\cot x$ is undefined?
50. Let k represent the number you found in Exercise 49. Set $x-\frac{\pi}{4}$ equal to k, and solve to find a positive number for which $\cot \left(x-\frac{\pi}{4}\right)$ is undefined.
51. Based on your answer in Exercise 50 and the fact that the cotangent function has period π, give the general form of the equations of the asymptotes of the graph of $y=-2-\cot \left(x-\frac{\pi}{4}\right)$. Let n represent any integer.
52. Use the capabilities of your calculator to find the least positive x-intercept of the graph of this function.
53. Use the fact that the period of this function is π to find the next positive x-intercept.
54. Give the solution set of the equation $-2-\cot \left(x-\frac{\pi}{4}\right)=0$ over all real numbers. Let n represent any integer.

4.4 Graphs of the Secant and Cosecant Functions

- Graph of the Secant Function
- Graph of the Cosecant Function
- Graphing Techniques
- Connecting Graphs with Equations
- Addition of Ordinates

Graph of the Secant Function Consider the table of selected points accompanying the graph of the secant function in Figure 35 on the next page. These points include special values from $-\pi$ to π. The secant function is undefined for odd multiples of $\frac{\pi}{2}$ and thus, like the tangent function, has vertical asymptotes for such values. Furthermore, since

$$
\sec (-x)=\sec x, \quad(\text { See Exercise 31.) }
$$

the graph of the secant function is symmetric with respect to the y-axis.

Figure 36

x	$y=\sec x$
0	1
$\pm \frac{\pi}{6}$	$\frac{2 \sqrt{3}}{3} \approx 1.2$
$\pm \frac{\pi}{4}$	$\sqrt{2} \approx 1.4$
$\pm \frac{\pi}{3}$	2
$\pm \frac{2 \pi}{3}$	-2
$\pm \frac{3 \pi}{4}$	$-\sqrt{2} \approx-1.4$
$\pm \frac{5 \pi}{6}$	$-\frac{2 \sqrt{3}}{3} \approx-1.2$
$\pm \pi$	-1

Figure 35

Because secant values are reciprocals of corresponding cosine values, the period of the secant function is 2π, the same as for $y=\cos x$. When $\cos x=1$, the value of $\sec x$ is also 1 . Likewise, when $\cos x=-1, \sec x=-1$. For all x, $-1 \leq \cos x \leq 1$, and thus, $|\sec x| \geq 1$ for all x in its domain. Figure 36 shows how the graphs of $y=\cos x$ and $y=\sec x$ are related.

Secant Function $f(x)=\sec x$

Domain: $\left\{x \left\lvert\, x \neq(2 n+1) \frac{\pi}{2}\right.\right.$,
Range: $(-\infty,-1] \cup[1, \infty)$
where n is any integer $\}$

Figure 37

- The graph is discontinuous at values of x of the form $x=(2 n+1) \frac{\pi}{2}$ and has vertical asymptotes at these values.
- There are no x-intercepts.
- Its period is 2π.
- Its graph has no amplitude, since there are no minimum or maximum values.
- The graph is symmetric with respect to the y-axis, so the function is an even function. For all x in the domain, $\sec (-x)=\sec x$.

Figure 39

Graph of the Cosecant Function A similar analysis for selected points between $-\pi$ and π for the graph of the cosecant function yields the graph in Figure 38. The vertical asymptotes are at x-values that are integer multiples of π. Because

$$
\csc (-x)=-\csc x, \quad(\text { See Exercise 32.) }
$$

this graph is symmetric with respect to the origin.

\boldsymbol{x}	$\boldsymbol{y}=\csc \boldsymbol{x}$	\boldsymbol{x}	$\boldsymbol{y}=\mathbf{c s c} \boldsymbol{x}$
$\frac{\pi}{6}$	2	$-\frac{\pi}{6}$	-2
$\frac{\pi}{4}$	$\sqrt{2} \approx 1.4$	$-\frac{\pi}{4}$	$-\sqrt{2} \approx-1.4$
$\frac{\pi}{3}$	$\frac{2 \sqrt{3}}{3} \approx 1.2$	$-\frac{\pi}{3}$	$-\frac{2 \sqrt{3}}{3} \approx-1.2$
$\frac{\pi}{2}$	1	$-\frac{\pi}{2}$	-1
$\frac{2 \pi}{3}$	$\frac{2 \sqrt{3}}{3} \approx 1.2$	$-\frac{2 \pi}{3}$	$-\frac{2 \sqrt{3}}{3} \approx-1.2$
$\frac{3 \pi}{4}$	$\sqrt{2} \approx 1.4$	$-\frac{3 \pi}{4}$	$-\sqrt{2} \approx-1.4$
$\frac{5 \pi}{6}$	2	$-\frac{5 \pi}{6}$	-2

Figure 38

Because cosecant values are reciprocals of corresponding sine values, the period of the cosecant function is 2π, the same as for $y=\sin x$. When $\sin x=1$, the value of $\csc x$ is also 1 . Likewise, when $\sin x=-1, \csc x=-1$. For all $x,-1 \leq \sin x \leq 1$, and thus $|\csc x| \geq 1$ for all x in its domain. Figure 39 shows how the graphs of $y=\sin x$ and $y=\csc x$ are related.

Cosecant Function $f(x)=\csc x$

Domain: $\{x \mid x \neq n \pi$,
Range: $(-\infty,-1] \cup[1, \infty)$
where n is any integer $\}$

Figure 40

- The graph is discontinuous at values of x of the form $x=n \pi$ and has vertical asymptotes at these values.
- There are no x-intercepts.
- Its period is 2π.
- Its graph has no amplitude, since there are no minimum or maximum values.
- The graph is symmetric with respect to the origin, so the function is an odd function. For all x in the domain, $\csc (-x)=-\csc x$.

Typically, calculators do not have keys for the cosecant and secant functions. To graph $y=\csc x$ with a graphing calculator, use

$$
\csc x=\frac{1}{\sin x} . \quad \text { Reciprocal identity }
$$

Figure 41 shows the graph of $\mathrm{Y}_{1}=\sin \mathrm{X}$ as a thin graph and that of $\mathrm{Y}_{2}=\csc \mathrm{X}$ as a thick graph. Although this calculator screen does not show the vertical asymptotes, they occur at each x-intercept of the guide function $\mathrm{Y}_{1}=\sin \mathrm{X}$.
Figure 42 shows the graph of the secant function, graphed in a similar manner, using the identity

$$
\sec x=\frac{1}{\cos x} . \quad \text { Reciprocal identity }
$$

Figure 41

Figure 42

Graphing Techniques In the previous section, we gave guidelines for sketching graphs of tangent and cotangent functions. We now present similar guidelines for graphing cosecant and secant functions.

Guidelines for Sketching Graphs of Cosecant and Secant Functions

To graph $\boldsymbol{y}=\boldsymbol{a} \csc \boldsymbol{b} \boldsymbol{x}$ or $\boldsymbol{y}=\boldsymbol{a} \sec \boldsymbol{b} \boldsymbol{x}$, with $b>0$, follow these steps.
Step 1 Graph the corresponding reciprocal function as a guide, using a dashed curve.

To Graph	Use as a Guide
$y=a \csc b x$	$y=a \sin b x$
$y=a \sec b x$	$y=a \cos b x$

Step 2 Sketch the vertical asymptotes. They will have equations of the form $x=k$, where k is an x-intercept of the graph of the guide function.
Step 3 Sketch the graph of the desired function by drawing the typical U-shaped branches between the adjacent asymptotes. The branches will be above the graph of the guide function when the guide function values are positive and below the graph of the guide function when the guide function values are negative. The graph will resemble those in Figures 37 and 40 in the function boxes given earlier in this section.

Like graphs of the sine and cosine functions, graphs of the secant and cosecant functions may be translated vertically and horizontally. The period of both basic functions is 2π.

EXAMPLE 1 Graphing $\boldsymbol{y}=\boldsymbol{a} \sec \boldsymbol{b} \boldsymbol{x}$

Graph $y=2 \sec \frac{1}{2} x$.

SOLUTION

Step 1 This function involves the secant, so the corresponding reciprocal function will involve the cosine. The guide function to graph is

$$
y=2 \cos \frac{1}{2} x
$$

Using the guidelines of Section 4.1, we find that this guide function has amplitude 2 and that one period of the graph lies along the interval that satisfies the following inequality.

$$
\begin{aligned}
& 0 \leq \frac{1}{2} x \leq 2 \pi \\
& 0 \leq x \leq 4 \pi, \quad \text { or } \quad[0,4 \pi] \quad \text { (Appendix A) }
\end{aligned}
$$

Dividing this interval into four equal parts gives these key points.

$$
(0,2), \quad(\pi, 0), \quad(2 \pi,-2), \quad(3 \pi, 0), \quad(4 \pi, 2) \quad \text { Key points }
$$

These points are plotted and joined with a dashed red curve to indicate that this graph is only a guide. An additional period is graphed as shown in Figure 43(a).

(a)

(b)

This is a calculator graph of the function in Example 1.

Figure 43
Step 2 Sketch the vertical asymptotes as shown in Figure 43(a). These occur at x-values for which the guide function equals 0 , such as

$$
x=-3 \pi, \quad x=-\pi, \quad x=\pi, \quad x=3 \pi .
$$

Step 3 Sketch the graph of $y=2 \sec \frac{1}{2} x$ by drawing the typical U-shaped branches, approaching the asymptotes. See the solid blue graph in Figure 43(b).

Now Try Exercise 5.

EXAMPLE 2 Graphing $\boldsymbol{y}=\boldsymbol{a} \csc (x-d)$

Graph $y=\frac{3}{2} \csc \left(x-\frac{\pi}{2}\right)$.

SOLUTION

Step 1 Use the guidelines of Section 4.2 to graph the corresponding reciprocal function defined by

$$
y=\frac{3}{2} \sin \left(x-\frac{\pi}{2}\right)
$$

shown as a red dashed curve in Figure 44 on the next page.

This is a calculator graph of the function in Example 2.

Step 2 Sketch the vertical asymptotes through the x-intercepts of the graph of $y=\frac{3}{2} \sin \left(x-\frac{\pi}{2}\right)$. These have the form $x=(2 n+1) \frac{\pi}{2}$, where n is any integer. See the black dashed lines in Figure 44.

Step 3 Sketch the graph of $y=\frac{3}{2} \csc \left(x-\frac{\pi}{2}\right)$ by drawing the typical U-shaped branches between adjacent asymptotes. See the solid blue graph in Figure 44.

Figure 44
Now Try Exercise 7.

Connecting Graphs with Equations

EXAMPLE 3 Determining an Equation for a Graph

Determine an equation for each graph.
(a)

(b)

SOLUTION

(a) This graph is that of a cosecant function that is stretched horizontally having period 4π. Therefore, if $y=\csc b x$, where $b>0$, we must have $b=\frac{1}{2}$. An equation for this graph is

$$
\begin{aligned}
& y=\csc \frac{1}{2} x \\
& \uparrow \\
& \text { Horizontal stretch }
\end{aligned}
$$

(b) This is the graph of $y=\sec x$, translated 1 unit upward. An equation is

Addition of Ordinates New functions can be formed by adding or subtracting other functions. A function formed by combining two other functions, such as

$$
y=\cos x+\sin x
$$

has historically been graphed using a method known as addition of ordinates. (The x-value of a point is sometimes called its abscissa, while its y-value is called its ordinate.)

To apply this method to this function, we graph the functions $y=\cos x$ and $y=\sin x$. Then, for selected values of x, we add $\cos x$ and $\sin x$, and plot the points $(x, \cos x+\sin x)$. Joining the resulting points with a sinusoidal curve gives the graph of the desired function. Although this method illustrates some valuable concepts involving the arithmetic of functions, it is time-consuming.

This technique is easily illustrated with graphing calculators. Consider $Y_{1}=\cos X, Y_{2}=\sin X$, and $Y_{3}=Y_{1}+Y_{2}$. Figure 45 shows the result when Y_{1} and Y_{2} are graphed in thin graph style, and $Y_{3}=\cos X+\sin X$ is graphed in thick graph style. Notice that for $\mathrm{X}=\frac{\pi}{6} \approx 0.52359878, \mathrm{Y}_{1}+\mathrm{Y}_{2}=\mathrm{Y}_{3}$.

Figure 45

4.4
 Exercises

Concept Check In Exercises 1-4, match each function with its graph from choices A-D.

1. $y=-\csc x$
2. $y=-\sec x$
3. $y=\sec \left(x-\frac{\pi}{2}\right)$
4. $y=\csc \left(x+\frac{\pi}{2}\right)$
A.

B.

C.

D.

Graph each function over a one-period interval. See Examples 1 and 2.
5. $y=3 \sec \frac{1}{4} x$
6. $y=-2 \sec \frac{1}{2} x$
7. $y=-\frac{1}{2} \csc \left(x+\frac{\pi}{2}\right)$
8. $y=\frac{1}{2} \csc \left(x-\frac{\pi}{2}\right)$
9. $y=\csc \left(x-\frac{\pi}{4}\right)$
10. $y=\sec \left(x+\frac{3 \pi}{4}\right)$
11. $y=\sec \left(x+\frac{\pi}{4}\right)$
12. $y=\csc \left(x+\frac{\pi}{3}\right)$
13. $y=\csc \left(\frac{1}{2} x-\frac{\pi}{4}\right)$
14. $y=\sec \left(\frac{1}{2} x+\frac{\pi}{3}\right)$
15. $y=2+3 \sec (2 x-\pi)$
16. $y=1-2 \csc \left(x+\frac{\pi}{2}\right)$
17. $y=1-\frac{1}{2} \csc \left(x-\frac{3 \pi}{4}\right)$
18. $y=2+\frac{1}{4} \sec \left(\frac{1}{2} x-\pi\right)$

Connecting Graphs with Equations Determine an equation for each graph. See Example 3.
19.

20.

21.

24.

Concept Check In Exercises 25-28, tell whether each statement is true or false. If false, tell why.
25. The tangent and secant functions are undefined for the same values.
26. The secant and cosecant functions are undefined for the same values.
27. The graph of $y=\sec x$ in Figure 37 suggests that $\sec (-x)=\sec x$ for all x in the domain of $\sec x$.
28. The graph of $y=\csc x$ in Figure 40 suggests that $\csc (-x)=-\csc x$ for all x in the domain of $\csc x$.

Work each exercise.

29. Concept Check If c is any number such that $-1<c<1$, then how many solutions does the equation $c=\sec x$ have over the entire domain of the secant function?
30. Concept Check Consider the function $g(x)=-2 \csc (4 x+\pi)$. What is the domain of g ? What is its range?
31. Show that $\sec (-x)=\sec x$ by writing $\sec (-x)$ as $\frac{1}{\cos (-x)}$ and then using the relationship between $\cos (-x)$ and $\cos x$.
32. Show that $\csc (-x)=-\csc x$ by writing $\csc (-x)$ as $\frac{1}{\sin (-x)}$ and then using the relationship between $\sin (-x)$ and $\sin x$.
33. (Modeling) Distance of a Rotating Beacon In the figure for Exercise 47 in Section 4.3, the distance a is given by

$$
a=4|\sec 2 \pi t| .
$$

Find a for each time.
(a) $t=0$
(b) $t=0.86$
(c) $t=1.24$
34. Between each pair of successive asymptotes, a portion of the graph of $y=\sec x$ or $y=\csc x$ resembles a parabola. Can each of these portions actually be a parabola? Explain.

Use a graphing calculator to graph $\mathrm{Y}_{1}, \mathrm{Y}_{2}$, and $\mathrm{Y}_{1}+\mathrm{Y}_{2}$ on the same screen. Evaluate each of the three functions at $\mathrm{X}=\frac{\pi}{6}$, and verify that $\mathrm{Y}_{1}\left(\frac{\pi}{6}\right)+\mathrm{Y}_{2}\left(\frac{\pi}{6}\right)=\left(\mathrm{Y}_{1}+\mathrm{Y}_{2}\right)\left(\frac{\pi}{6}\right)$. See the discussion on addition of ordinates.
35. $\mathrm{Y}_{1}=\sin \mathrm{X}, \quad \mathrm{Y}_{2}=\sin 2 \mathrm{X}$
36. $Y_{1}=\cos X, \quad Y_{2}=\sec X$

Summary Exercises on Graphing Circular Functions

These summary exercises provide practice with the various graphing techniques presented in this chapter. Graph each function over a one-period interval.

1. $y=2 \sin \pi x$
2. $y=4 \cos \frac{3}{2} x$
3. $y=-2+\frac{1}{2} \cos \frac{\pi}{4} x$
4. $y=3 \sec \frac{\pi}{2} x$
5. $y=-4 \csc \frac{1}{2} x$
6. $y=3 \tan \left(\frac{\pi}{2} x+\pi\right)$

Graph each function over a two-period interval.
7. $y=-5 \sin \frac{x}{3}$
8. $y=10 \cos \left(\frac{x}{4}+\frac{\pi}{2}\right)$
9. $y=3-4 \sin \left(\frac{5}{2} x+\pi\right)$
10. $y=2-\sec [\pi(x-3)]$

4.5 Harmonic Motion

- Simple Harmonic Motion
- Damped Oscillatory Motion

Simple Harmonic Motion In part A of Figure 46, a spring with a weight attached to its free end is in equilibrium (or rest) position. If the weight is pulled down a units and released (part B of the figure), the spring's elasticity causes the weight to rise a units $(a>0)$ above the equilibrium position, as seen in part C , and then to oscillate about the equilibrium position.

If friction is neglected, this oscillatory motion is described mathematically by a sinusoid. Other applications of this type of motion include sound, electric current, and electromagnetic waves.

Figure 46

Figure 47

To develop a general equation for such motion, consider Figure 47. Suppose the point $P(x, y)$ moves around the circle counterclockwise at a uniform angular speed ω. Assume that at time $t=0, P$ is at $(a, 0)$. The angle swept out by ray $O P$ at time t is given by $\theta=\omega t$. The coordinates of point P at time t are

$$
x=a \cos \theta=a \cos \omega t \quad \text { and } \quad y=a \sin \theta=a \sin \omega t .
$$

As P moves around the circle from the point $(a, 0)$, the point $Q(0, y)$ oscillates back and forth along the y-axis between the points $(0, a)$ and $(0,-a)$. Similarly, the point $R(x, 0)$ oscillates back and forth between $(a, 0)$ and $(-a, 0)$. This oscillatory motion is called simple harmonic motion.

The amplitude of the motion is $|a|$, and the period is $\frac{2 \pi}{\omega}$. The moving points P and Q or P and R complete one oscillation or cycle per period. The number of cycles per unit of time, called the frequency, is the reciprocal of the period, $\frac{\omega}{2 \pi}$, where $\omega>0$.

Simple Harmonic Motion

The position of a point oscillating about an equilibrium position at time t is modeled by either

$$
s(t)=a \cos \omega t \quad \text { or } \quad s(t)=a \sin \omega t
$$

where a and ω are constants, with $\omega>0$. The amplitude of the motion is $|a|$, the period is $\frac{2 \pi}{\omega}$, and the frequency is $\frac{\omega}{2 \pi}$ oscillations per time unit.

EXAMPLE 1 Modeling the Motion of a Spring

Suppose that an object is attached to a coiled spring such as the one in Figure 46 on the preceding page. It is pulled down a distance of 5 in . from its equilibrium position and then released. The time for one complete oscillation is 4 sec .
(a) Give an equation that models the position of the object at time t.
(b) Determine the position at $t=1.5 \mathrm{sec}$.
(c) Find the frequency.

SOLUTION

(a) When the object is released at $t=0$, the distance of the object from the equilibrium position is 5 in . below equilibrium. If $s(t)$ is to model the motion, then $s(0)$ must equal -5 . We use

$$
s(t)=a \cos \omega t, \quad \text { with } a=-5 .
$$

We choose the cosine function because $\cos \omega(0)=\cos 0=1$, and $-5 \cdot 1=-5$. (Had we chosen the sine function, a phase shift would have been required.) Use the fact that the period is 4 to solve for ω.

$$
\begin{aligned}
\frac{2 \pi}{\omega}=4 & \text { The period is } \frac{2 \pi}{\omega} . \\
\omega=\frac{\pi}{2} & \text { Solve for } \omega . \text { (Appendix A) }
\end{aligned}
$$

Thus, the motion is modeled by

$$
s(t)=-5 \cos \frac{\pi}{2} t .
$$

(b) $s(1.5)=-5 \cos \left[\frac{\pi}{2}(1.5)\right] \quad \begin{aligned} & \text { Let } t=1.5 \text { in the equation from part (a). } \\ & \text { (Appendix C) }\end{aligned}$

$$
\approx 3.54 \mathrm{in}
$$

Because $3.54>0$, the object is above the equilibrium position.
(c) The frequency is the reciprocal of the period, or $\frac{1}{4}$ oscillation per sec.

Now Try Exercise 9.

EXAMPLE 2 Analyzing Harmonic Motion

Suppose that an object oscillates according to the model

$$
s(t)=8 \sin 3 t
$$

where t is in seconds and $s(t)$ is in feet. Analyze the motion.
SOLUTION The motion is harmonic because the model is $s(t)=a \sin \omega t$. Because $a=8$, the object oscillates 8 ft in either direction from its starting point. The period $\frac{2 \pi}{3} \approx 2.1$ is the time, in seconds, it takes for one complete oscillation. The frequency is the reciprocal of the period, so the object completes $\frac{3}{2 \pi} \approx 0.48$ oscillation per sec.

Now Try Exercise 17.

Damped Oscillatory Motion In the example of the stretched spring, we disregard the effect of friction. Friction causes the amplitude of the motion to diminish gradually until the weight comes to rest. In this situation, we say that the motion has been damped by the force of friction. Most oscillatory motions are damped, and the decrease in amplitude follows the pattern of exponential decay. An example of damped oscillatory motion is provided by the function

$$
s(t)=e^{-t} \sin t
$$

(The number $e \approx 2.718$ is the base of the natural logarithmic function, first studied in college algebra courses.) Figure 48 shows how the graph of $y_{3}=e^{-x} \sin x$ is bounded above by the graph of $y_{1}=e^{-x}$ and below by the graph of $y_{2}=-e^{-x}$. The damped motion curve dips below the x-axis at $x=\pi$ but stays above the graph of y_{2}. Figure 49 shows a traditional graph of $s(t)=e^{-t} \sin t$, along with the graph of $y=\sin t$.

Figure 49

Shock absorbers are put on an automobile in order to damp oscillatory motion. Instead of the car oscillating up and down for a long while after hitting a bump or pothole, the oscillations of the car are quickly damped out for a smoother ride.
(Modeling) Springs A weight on a spring has initial position $s(0)$ and period P.
(a) Find a function s given by $s(t)=a \cos \omega t$ that models the displacement of the weight.
(b) Evaluate $s(1)$. Is the weight moving upward, downward, or neither when $t=1$? Support your results graphically or numerically.

1. $s(0)=2 \mathrm{in}$.; $P=0.5 \mathrm{sec}$
2. $s(0)=5 \mathrm{in}$.; $P=1.5 \mathrm{sec}$
3. $s(0)=-3 \mathrm{in} . ; P=0.8 \mathrm{sec}$
4. $s(0)=-4 \mathrm{in} . ; P=1.2 \mathrm{sec}$
(Modeling) Music A note on the piano has given frequency F. Suppose the maximum displacement at the center of the piano wire is given by $s(0)$. Find constants a and ω so that the equation

$$
s(t)=a \cos \omega t
$$

models this displacement. Graph s in the viewing window $[0,0.05]$ by $[-0.3,0.3]$.
5. $F=27.5 ; s(0)=0.21$
6. $F=110 ; s(0)=0.11$
7. $F=55 ; s(0)=0.14$
8. $F=220 ; s(0)=0.06$

(Modeling) Solve each problem. See Examples 1 and 2.

9. Spring Motion An object is attached to a coiled spring, as in Figure 46. It is pulled down a distance of 4 units from its equilibrium position and then released. The time for one complete oscillation is 3 sec .
(a) Give an equation that models the position of the object at time t.
(b) Determine the position at $t=1.25 \mathrm{sec}$.
(c) Find the frequency.
10. Spring Motion Repeat Exercise 9, but assume that the object is pulled down 6 units and that the time for one complete oscillation is 4 sec .
11. Particle Movement Write the equation and then determine the amplitude, period, and frequency of the simple harmonic motion of a particle moving uniformly around a circle of radius 2 units, with the given angular speed.
(a) 2 radians per sec
(b) 4 radians per sec
12. Spring Motion The height attained by a weight attached to a spring set in motion is

$$
s(t)=-4 \cos 8 \pi t \text { inches after } t \text { seconds. }
$$

(a) Find the maximum height that the weight rises above the equilibrium position of $s(t)=0$.
(b) When does the weight first reach its maximum height if $t \geq 0$?
(c) What are the frequency and the period?
13. Pendulum Motion What are the period P and frequency T of oscillation of a pendulum of length $\frac{1}{2} \mathrm{ft}$? (Hint: $P=2 \pi \sqrt{\frac{L}{32}}$, where L is the length of the pendulum in feet and the period P is in seconds.)
14. Pendulum Motion In Exercise 13, how long should the pendulum be to have a period of 1 sec ?

15. Spring Motion The formula for the up and down motion of a weight on a spring is given by

$$
s(t)=a \sin \sqrt{\frac{k}{m}} t
$$

If the spring constant k is 4 , what mass m must be used to produce a period of 1 sec ?
16. Spring Motion (See Exercise 15.) A spring with spring constant $k=2$ and a 1 -unit mass m attached to it is stretched and then allowed to come to rest.
(a) If the spring is stretched $\frac{1}{2} \mathrm{ft}$ and released, what are the amplitude, period, and frequency of the resulting oscillatory motion?
(b) What is the equation of the motion?
17. Spring Motion The position of a weight attached to a spring is

$$
s(t)=-5 \cos 4 \pi t \text { inches after } t \text { seconds. }
$$

(a) What is the maximum height that the weight rises above the equilibrium position?
(b) What are the frequency and period?
(c) When does the weight first reach its maximum height?
(d) Calculate and interpret $s(1.3)$.
18. Spring Motion The position of a weight attached to a spring is

$$
s(t)=-4 \cos 10 t \text { inches after } t \text { seconds. }
$$

(a) What is the maximum height that the weight rises above the equilibrium position?
(b) What are the frequency and period?
(c) When does the weight first reach its maximum height?
(d) Calculate and interpret $s(1.466)$.
19. Spring Motion A weight attached to a spring is pulled down 3 in. below the equilibrium position.
(a) Assuming that the frequency is $\frac{6}{\pi}$ cycles per sec, determine a model that gives the position of the weight at time t seconds.
(b) What is the period?
20. Spring Motion A weight attached to a spring is pulled down 2 in . below the equilibrium position.
(a) Assuming that the period is $\frac{1}{3} \mathrm{sec}$, determine a model that gives the position of the weight at time t seconds.
(b) What is the frequency?

Damped Oscillatory Motion Use a graphing calculator to graph

$$
y_{1}=e^{-t} \sin t, \quad y_{2}=e^{-t}, \quad \text { and } \quad y_{3}=-e^{-t}
$$

in the viewing window $[0, \pi]$ by $[-0.5,0.5]$.
21. Find the t-intercepts of the graph of y_{1}. Explain the relationship of these intercepts to the x-intercepts of the graph of $y=\sin x$.
22. Find any points of intersection of y_{1} and y_{2} or y_{1} and y_{3}. How are these points related to the graph of $y=\sin x$?

Chapter 4 Test Prep

Key Terms

4.1 periodic function period sine wave (sinusoid) amplitude
4.2 phase shift
argument
4.3 vertical asymptote
4.4 addition of ordinates
4.5 simple harmonic motion
frequency
damped oscillatory motion

Quick Review

Concepts

Examples

4.1 Graphs of the Sine and Cosine Functions

4.2 Translations of the Graphs of the Sine and Cosine Functions

Sine and Cosine Functions

Domain: $(-\infty, \infty)$
Range: $[-1,1]$
Amplitude: 1
Period: 2π

Domain: $(-\infty, \infty)$
Range: $[-1,1]$
Amplitude: 1
Period: 2π

The graph of
$y=c+a \sin [b(x-d)]$ or $y=c+a \cos [b(x-d)]$, with $b>0$, has the following characteristics.

1. amplitude $|a|$
2. period $\frac{2 \pi}{b}$
3. vertical translation c units up if $c>0$ or $|c|$ units down if $c<0$
4. phase shift d units to the right if $d>0$ or $|d|$ units to the left if $d<0$

See Sections 4.1 and 4.2 for a summary of graphing techniques.

Graph $y=1+\sin 3 x$.

amplitude: 1
domain: $(-\infty, \infty)$
period: $\frac{2 \pi}{3}$
range: $[0,2]$
vertical translation: 1 unit up
Graph $y=-2 \cos \left(x+\frac{\pi}{2}\right)$.

amplitude: 2
domain: $(-\infty, \infty)$
period: 2π
range: $[-2,2]$
phase shift: $\frac{\pi}{2}$ left

Concepts

Examples

4.3 Graphs of the Tangent and Cotangent Functions

Tangent and Cotangent Functions

Domain: $\left\{x \left\lvert\, x \neq(2 n+1) \frac{\pi}{2}\right.\right.$, where n is any integer $\}$
Range: $(-\infty, \infty)$
Period: π

Domain: $\{x \mid x \neq n \pi$, where n is any integer $\}$
Range: $(-\infty, \infty)$
Period: π

See Section 4.3 for a summary of graphing techniques.

Graph one period of $y=2 \tan x$.

$$
y=2 \tan x
$$

period: π
domain: $\left\{x \left\lvert\, x \neq(2 n+1) \frac{\pi}{2}\right.\right.$,
where n is any integer $\}$
range: $(-\infty, \infty)$

4.4 Graphs of the Secant and Cosecant Functions

Secant and Cosecant Functions

Domain: $\left\{x \left\lvert\, x \neq(2 n+1) \frac{\pi}{2}\right., \quad\right.$ Domain: $\{x \mid x \neq n \pi$, where n is any integer $\}$ where n is any integer $\}$
Range: $(-\infty,-1] \cup[1, \infty) \quad$ Range:
Period: 2π

$$
(-\infty,-1] \cup[1, \infty)
$$

Period: 2π
See Section 4.4 for a summary of graphing techniques.

4.5 Harmonic Motion

Simple Harmonic Motion

The position of a point oscillating about an equilibrium position at time t is modeled by either

$$
s(t)=a \cos \omega t \quad \text { or } \quad s(t)=a \sin \omega t
$$

where a and ω are constants, with $\omega>0$. The amplitude of the motion is $|a|$, the period is $\frac{2 \pi}{\omega}$, and the frequency is $\frac{\omega}{2 \pi}$ oscillations per time unit.

Graph one period of $y=\sec \left(x+\frac{\pi}{4}\right)$.

$$
y=\sec \left(x+\frac{\pi}{4}\right)
$$

period: 2π
phase shift: $\frac{\pi}{4}$ left
domain: $\left\{x \left\lvert\, x \neq \frac{\pi}{4}+n \pi\right.\right.$,
where n is any integer $\}$
range: $(-\infty,-1] \cup[1, \infty)$

A spring oscillates according to

$$
s(t)=-5 \cos 6 t
$$

where t is in seconds and $s(t)$ is in inches. Find the amplitude, period, and frequency.
amplitude $=|-5|=5 \mathrm{in} . \quad$ period $=\frac{2 \pi}{6}=\frac{\pi}{3} \mathrm{sec}$
frequency $=\frac{3}{\pi}$ oscillation per sec

Chapter 4
 Review Exercises

1. Concept Check Which one of the following is true about the graph of $y=4 \sin 2 x$?
A. It has amplitude 2 and period $\frac{\pi}{2}$.
B. It has amplitude 4 and period π.
C. Its range is $[0,4]$.
D. Its range is $[-4,0]$.
2. Concept Check Which one of the following is false about the graph of $y=-3 \cos \frac{1}{2} x$?
A. Its range is $[-3,3]$.
B. Its domain is $(-\infty, \infty)$.
C. Its amplitude is 3 , and its period is 4π.
D. Its amplitude is -3 , and its period is π.
3. Concept Check Which of the basic circular functions can have y-value $\frac{1}{2}$?
4. Concept Check Which of the basic circular functions can have y-value 2 ?

For each function, give the amplitude, period, vertical translation, and phase shift, as applicable.
5. $y=2 \sin x$
6. $y=\tan 3 x$
7. $y=-\frac{1}{2} \cos 3 x$
8. $y=2 \sin 5 x$
9. $y=1+2 \sin \frac{1}{4} x$
10. $y=3-\frac{1}{4} \cos \frac{2}{3} x$
11. $y=3 \cos \left(x+\frac{\pi}{2}\right)$
12. $y=-\sin \left(x-\frac{3 \pi}{4}\right)$
13. $y=\frac{1}{2} \csc \left(2 x-\frac{\pi}{4}\right)$
14. $y=2 \sec (\pi x-2 \pi)$
15. $y=\frac{1}{3} \tan \left(3 x-\frac{\pi}{3}\right)$
16. $y=\cot \left(\frac{x}{2}+\frac{3 \pi}{4}\right)$

Concept Check Identify the circular function that satisfies each description.
17. period is π, x-intercepts are of the form $n \pi$, where n is any integer
18. period is 2π, graph passes through the origin
19. period is 2π, graph passes through the point $\left(\frac{\pi}{2}, 0\right)$
20. period is 2π, domain is $\{x \mid x \neq n \pi$, where n is any integer $\}$
21. period is π, function is decreasing on the interval $(0, \pi)$
22. period is 2π, has vertical asymptotes of the form $x=(2 n+1) \frac{\pi}{2}$, where n is any integer
23. Suppose that f is a sine function with period 10 and $f(5)=2$. Explain why $f(25)=2$.
24. Suppose that f is a sine function with period π and $f\left(\frac{6 \pi}{5}\right)=1$. Explain why $f\left(-\frac{4 \pi}{5}\right)=1$.

Graph each function over a one-period interval.
25. $y=3 \sin x$
26. $y=\frac{1}{2} \sec x$
27. $y=-\tan x$
28. $y=-2 \cos x$
29. $y=2+\cot x$
30. $y=-1+\csc x$
31. $y=\sin 2 x$
32. $y=\tan 3 x$
33. $y=3 \cos 2 x$
34. $y=\frac{1}{2} \cot 3 x$
35. $y=\cos \left(x-\frac{\pi}{4}\right)$
36. $y=\tan \left(x-\frac{\pi}{2}\right)$
37. $y=\sec \left(2 x+\frac{\pi}{3}\right)$
38. $y=\sin \left(3 x+\frac{\pi}{2}\right)$
39. $y=1+2 \cos 3 x$
40. $y=-1-3 \sin 2 x$
41. $y=2 \sin \pi x$
42. $y=-\frac{1}{2} \cos (\pi x-\pi)$
43. Concept Check Determine the range of a function of the form $f(x)=2 \sin (b x+c)$.
44. Concept Check Determine the range of a function of the form $f(x)=2 \csc (b x+c)$.

Connecting Graphs with Equations Determine the simplest form of an equation for each graph. Choose $b>0$, and include no phase shifts.
45.

46.

47.

48.

Solve each problem.
49. Viewing Angle to an Object Let a person whose eyes are h_{1} feet from the ground stand d feet from an object h_{2} feet tall, where $h_{2}>h_{1}$. Let θ be the angle of elevation to the top of the object. See the figure.

(a) Show that $d=\left(h_{2}-h_{1}\right) \cot \theta$.
(b) Let $h_{2}=55$ and $h_{1}=5$. Graph d for the interval $0<\theta \leq \frac{\pi}{2}$.
50. (Modeling) Tides The figure shows a function f that models the tides in feet at Clearwater Beach, Florida, x hours after midnight. (Source: Pentcheff, D., WWW Tide and Current Predictor.)

(a) Find the time between high tides.
(b) What is the difference in water levels between high tide and low tide?
(c) The tides can be modeled by

$$
f(x)=0.6 \cos [0.511(x-2.4)]+2 .
$$

Estimate the tides when $x=10$.
51. (Modeling) Maximum Temperatures The maximum afternoon temperature (in ${ }^{\circ} \mathrm{F}$) in a given city might be modeled by

$$
t=60-30 \cos \frac{x \pi}{6}
$$

where t represents the maximum afternoon temperature in month x, with $x=0$ representing January, $x=1$ representing February, and so on. Find the maximum afternoon temperature to the nearest degree for each month.
(a) January
(b) April
(c) May
(d) June
(e) August
(f) October
52. (Modeling) Average Monthly Temperature The average monthly temperature (in ${ }^{\circ} \mathrm{F}$) in Chicago, Illinois, is shown in the table.

Month	${ }^{\circ} \mathbf{F}$	Month	${ }^{\circ} \mathbf{F}$
Jan	22	July	73
Feb	27	Aug	72
Mar	37	Sept	64
Apr	48	Oct	52
May	59	Nov	39
June	68	Dec	27
Soure: Wold			

Source: World Almanac and Book of Facts.
(a) Plot the average monthly temperature over a two-year period. Let $x=1$ correspond to January of the first year.
(b) Determine a model function of the form $f(x)=a \sin [b(x-d)]+c$, where a, b, c, and d are constants.
(c) Explain the significance of each constant.
(d) Graph f together with the data on the same coordinate axes. How well does f model the data?
(e) Use the sine regression capability of a graphing calculator to find the equation of a sine curve that fits these data.
53. (Modeling) Pollution Trends The amount of pollution in the air is lower after heavy spring rains and higher after periods of little rain. In addition to this seasonal fluctuation, the long-term trend is upward. An idealized graph of this situation is shown in the figure.

Circular functions can be used to model the fluctuating part of the pollution levels. Powers of the number $e(e$ is the base of the natural logarithm; $e \approx 2.718282$) can be used to model long-term growth. The pollution level in a certain area might be given by

$$
y=7(1-\cos 2 \pi x)(x+10)+100 e^{0.2 x}
$$

where x is the time in years, with $x=0$ representing January 1 of the base year. July 1 of the same year would be represented by $x=0.5$, October 1 of the following year would be represented by $x=1.75$, and so on. Find the pollution levels on each date.
(a) January 1, base year
(b) July 1, base year
(c) January 1, following year
(d) July 1, following year
54. (Modeling) Lynx and Hare Populations The figure shows the populations of lynx and hares in Canada for the years 1847-1903. The hares are food for the lynx. An increase in hare population causes an increase in lynx population some time later. The increasing lynx population then causes a decline in hare population. The two graphs have the same period.

(a) Estimate the length of one period.
(b) Estimate the maximum and minimum hare populations.

An object in simple harmonic motion has position function $s(t)$ inches from an equilibrium point, where t is the time in seconds. Find the amplitude, period, and frequency.
55. $s(t)=4 \sin \pi t$
56. $s(t)=3 \cos 2 t$
57. In Exercise 55, what does the frequency represent? Find the position of the object relative to the equilibrium point at $1.5 \mathrm{sec}, 2 \mathrm{sec}$, and 3.25 sec .
58. In Exercise 56, what does the period represent? What does the amplitude represent?

Chapter 4

Test

1. Identify each of the following basic circular function graphs.
(a)

(b)

(c)

(d)

(e)

(f)

2. Connecting Graphs with Equations Determine the simplest form of an equation for each graph. Choose $b>0$, and include no phase shifts.
(a)

(b)

3. Give a short answer to each of the following.
(a) What is the domain of the cosine function?
(b) What is the range of the sine function?
(c) What is the least positive value for which the tangent function is undefined?
(d) What is the range of the secant function?
4. Consider the function $y=3-6 \sin \left(2 x+\frac{\pi}{2}\right)$.
(a) What is its period?
(b) What is the amplitude of its graph?
(c) What is its range?
(d) What is the y-intercept of its graph?
(e) What is its phase shift?

Graph each function over a two-period interval. Identify asymptotes when applicable.
5. $y=\sin (2 x+\pi)$
6. $y=-\cos 2 x$
7. $y=2+\cos x$
8. $y=-1+2 \sin (x+\pi)$
9. $y=\tan \left(x-\frac{\pi}{2}\right)$
10. $y=-2-\cot \left(x-\frac{\pi}{2}\right)$
11. $y=-\csc 2 x$
12. $y=3 \csc \pi x$
(Modeling) Solve each problem.
13. Average Monthly Temperature The average monthly temperature (in ${ }^{\circ} \mathrm{F}$) in San Antonio, Texas, can be modeled using the circular function

$$
f(x)=16.5 \sin \left[\frac{\pi}{6}(x-4)\right]+67.5
$$

where x is the month and $x=1$ corresponds to January. (Source: World Almanac and Book of Facts.)
(a) Graph f in the window $[0,25]$ by $[40,90]$.
(b) Determine the amplitude, period, phase shift, and vertical translation of f.
(c) What is the average monthly temperature for the month of December?
(d) Determine the minimum and maximum average monthly temperatures and the months when they occur.
(e) What would be an approximation for the average yearly temperature in San Antonio? How is this related to the vertical translation of the sine function in the formula for f ?
14. Spring Motion The height of a weight attached to a spring is

$$
s(t)=-4 \cos 8 \pi t \text { inches after } t \text { seconds. }
$$

(a) Find the maximum height that the weight rises above the equilibrium position of $s(t)=0$.
(b) When does the weight first reach its maximum height if $t \geq 0$?
(c) What are the frequency and period?
15. Explain why the domains of the tangent and secant functions are the same, and then give a similar explanation for the cotangent and cosecant functions.

Trigonometric Identities

5.1 Fundamental Identities

- Fundamental Identities
- Using the Fundamental Identities

Fundamental Identities As suggested by the circle in Figure 1, an angle θ having the point (x, y) on its terminal side has a corresponding angle $-\theta$ with the point $(x,-y)$ on its terminal side.

$$
\sin (-\theta)=-\frac{y}{r}=-\sin \theta
$$

Figure 1
From the definition of sine,

$$
\sin (-\theta)=\frac{-y}{r} \quad \text { and } \quad \sin \theta=\frac{y}{r}
$$

so $\sin (-\theta)$ and $\sin \theta$ are negatives of each other.

$$
\sin (-\theta)=-\sin \theta
$$

This is an example of an identity, an equation that is satisfied by every value in the domain of its variable. (See Appendix A.) Examples from algebra are

$$
\begin{array}{rlrl}
x^{2}-y^{2} & =(x+y)(x-y), \\
x(x+y) & =x^{2}+x y, & \quad \text { Identities }
\end{array}
$$

and

$$
x^{2}+2 x y+y^{2}=(x+y)^{2} .
$$

Figure 1 shows an angle θ in quadrant II, but the same result holds for θ in any quadrant. The figure also suggests the following identity.

$$
\begin{gathered}
\cos (-\theta)=\frac{x}{r} \quad \text { and } \quad \cos \theta=\frac{x}{r} \quad(\text { Section 1.3) } \\
\cos (-\boldsymbol{\theta})=\cos \theta
\end{gathered}
$$

We use the identities for $\sin (-\theta)$ and $\cos (-\theta)$ to find $\tan (-\theta)$ in terms of $\tan \theta$.

$$
\begin{aligned}
\tan (-\theta)=\frac{\sin (-\theta)}{\cos (-\theta)}=\frac{-\sin \theta}{\cos \theta}=-\frac{\sin \theta}{\cos \theta} \\
\tan (-\theta)=-\tan \theta
\end{aligned}
$$

Similar reasoning gives the remaining three negative-angle or negativenumber identities, which, together with the reciprocal, quotient, and Pythagorean identities from Chapter 1, make up the fundamental identities. For reference, we summarize these identities in the box at the top of the next page.

NOTE In trigonometric identities, θ can be an angle in degrees, a real number, or a variable.

Fundamental Identities

Reciprocal Identities

$$
\cot \theta=\frac{1}{\tan \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta}
$$

Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Pythagorean Identities

$$
\sin ^{2} \theta+\cos ^{2} \theta=1 \quad \tan ^{2} \theta+1=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta
$$

Negative-Angle Identities

$$
\begin{array}{lll}
\sin (-\theta)=-\sin \theta & \cos (-\theta)=\cos \theta & \tan (-\theta)=-\tan \theta \\
\csc (-\theta)=-\csc \theta & \sec (-\theta)=\sec \theta & \cot (-\theta)=-\cot \theta
\end{array}
$$

NOTE We will also use alternative forms of the fundamental identities.
For example, two other forms of $\sin ^{2} \theta+\cos ^{2} \theta=1$ are

$$
\sin ^{2} \theta=1-\cos ^{2} \theta \text { and } \cos ^{2} \theta=1-\sin ^{2} \theta
$$

Using the Fundamental Identities We can use these identities to find the val-

 ues of other trigonometric functions from the value of a given trigonometric function.
EXAMPLE 1 Finding Trigonometric Function Values Given One Value and the Quadrant

If $\tan \theta=-\frac{5}{3}$ and θ is in quadrant II, find each function value.
(a) $\sec \theta$
(b) $\sin \theta$
(c) $\cot (-\theta)$

SOLUTION

(a) We use an identity that relates the tangent and secant functions. Remember that $\sec \theta$ will be negative because θ is in quadrant II.

$$
\begin{array}{cl}
\tan ^{2} \theta+1=\sec ^{2} \theta & \text { Pythagorean identity } \\
\left(-\frac{5}{3}\right)^{2}+1=\sec ^{2} \theta & \tan \theta=-\frac{5}{3}
\end{array}
$$

$$
\frac{25}{9}+1=\sec ^{2} \theta \quad \text { Square }-\frac{5}{3}
$$

$$
\frac{34}{9}=\sec ^{2} \theta \quad \text { Add; } 1=\frac{9}{9}
$$

$$
\begin{array}{ll}
-\sqrt{\frac{34}{9}}=\sec \theta & \text { Take the negative square root. (Appendix A) } \\
\begin{array}{l}
\text { Cooose the } \\
\text { correct sign. }
\end{array} \\
-\frac{\sqrt{34}}{3}=\sec \theta & \text { Simplify the radical: }-\sqrt{\frac{34}{9}}=-\frac{\sqrt{34}}{\sqrt{9}}=-\frac{\sqrt{34}}{3} .
\end{array}
$$

(b)

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \text { Quotient identity } \\
& \cos \theta \tan \theta=\sin \theta \quad \text { Multiply each side by } \cos \theta \text {. } \\
& \left(\frac{1}{\sec \theta}\right) \tan \theta=\sin \theta \quad \text { Reciprocal identity } \\
& \left(-\frac{3 \sqrt{34}}{34}\right)\left(-\frac{5}{3}\right)=\sin \theta \\
& \sin \theta=\frac{5 \sqrt{34}}{34} \quad \begin{array}{l}
\tan \theta=-\frac{5}{3}, \text { as given } \\
\text { Multiply and rewrite. }
\end{array} \\
& \cot (-\theta)=\frac{1}{\tan (-\theta)} \quad \text { Reciprocal identity } \\
& \cot (-\theta)=\frac{1}{-\tan \theta} \quad \text { Negative-angle identity } \\
& \cot (-\theta)=\frac{1}{-\left(-\frac{5}{3}\right)}=\frac{3}{5} \quad \begin{array}{l}
\text { Use } \tan \theta=-\frac{5}{3}, \text { and simplify the } \\
\text { complex fraction. }
\end{array} \\
& \text { Now Try Exercises 7, 15, and } 31 .
\end{aligned}
$$

(c)

CAUTION To avoid a common error, when taking the square root, be sure to choose the sign based on the quadrant of θ and the function being evaluated.

EXAMPLE 2 Writing One Trigonometric Function in Terms of Another

Write $\cos x$ in terms of $\tan x$.
SOLUTION Since $\sec x$ is related to both $\cos x$ and $\tan x$ by identities, we start with $1+\tan ^{2} x=\sec ^{2} x$.

Remember both the positive and negative roots.

Figure 2

$$
\begin{array}{ll}
1+\tan ^{2} x=\sec ^{2} x & \text { Pythagorean identity } \\
\frac{1}{1+\tan ^{2} x}=\frac{1}{\sec ^{2} x} & \text { Take reciprocals } \\
\frac{1}{1+\tan ^{2} x}=\cos ^{2} x & \text { The reciprocal of } \sec ^{2} x \text { is } \cos ^{2} x
\end{array}
$$

$\pm \sqrt{\frac{1}{1+\tan ^{2} x}}=\cos x$

$$
\begin{array}{ll}
\cos x=\frac{ \pm 1}{\sqrt{1+\tan ^{2} x}} & \begin{array}{l}
\text { Quotient rule for radicals: } \\
\text { rewrite. }
\end{array} \\
\cos x=\frac{ \pm \sqrt{1+\tan ^{2} x}}{1+\tan ^{2} x} & \text { Rationalize the denominator. }
\end{array}
$$

The choice of the $+\operatorname{sign}$ or the $-\operatorname{sign}$ is made depending on the quadrant of x.
Now Try Exercise 53.

We can use a graphing calculator to decide whether two functions are identical. See Figure 2, which supports the identity $\sin ^{2} x+\cos ^{2} x=1 . Y_{1}$ is defined as $\sin ^{2} x+\cos ^{2} x$, and Y_{2} is defined as 1 . With an identity, you should see no difference between the two graphs.

Each of the functions $\tan \theta, \cot \theta, \sec \theta$, and $\csc \theta$ can easily be expressed in terms of $\sin \theta, \cos \theta$, or both. We often make such substitutions in an expression to simplify it.

EXAMPLE 3 Rewriting an Expression in Terms of Sine and Cosine

Write $\frac{1+\cot ^{2} \theta}{1-\csc ^{2} \theta}$ in terms of $\sin \theta$ and $\cos \theta$, and then simplify the expression so that no quotients appear.

SOLUTION

The graph supports the result in Example 3. The graphs of y_{1} and y_{2} coincide.

$$
\begin{aligned}
& \frac{1+\cot ^{2} \theta}{1-\csc ^{2} \theta} \\
&=\frac{1+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}{1-\frac{1}{\sin ^{2} \theta}} \\
& \text { Quotient identities } \\
&=\frac{\left(1+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}\right) \sin ^{2} \theta}{\left(1-\frac{1}{\sin ^{2} \theta}\right) \sin ^{2} \theta} \\
&=\frac{\begin{array}{l}
\text { Simplify the complex fraction by } \\
\text { multiplying both numerator and } \\
\text { denominator by the LCD. }
\end{array}}{\sin ^{2} \theta-1} \begin{array}{l}
\text { Distributive property: } \\
a(b+c)=a b+a c
\end{array} \\
&=\frac{1}{-\cos ^{2} \theta} \begin{array}{l}
\text { Pythagorean identities }
\end{array} \\
&=-\sec ^{2} \theta \text { Reciprocal identity }
\end{aligned}
$$

Now Try Exercise 65.

CAUTION When working with trigonometric expressions and identities,

 be sure to write the argument of the function. For example, we would not write $\sin ^{2}+\cos ^{2}=1$. An argument such as θ is necessary in this identity.
5.1 Exercises

Concept Check In Exercises 1-6, use identities to fill in the blanks.

1. If $\tan \theta=2.6$, then $\tan (-\theta)=$ \qquad —.
2. If $\cos \theta=-0.65$, then $\cos (-\theta)=$ \qquad .
3. If $\tan \theta=1.6$, then $\cot \theta=$ \qquad .
4. If $\cos \theta=0.8$ and $\sin \theta=0.6$, then $\tan (-\theta)=$ \qquad -.
5. If $\sin \theta=\frac{2}{3}$, then $-\sin (-\theta)=$ \qquad —.
6. If $\cos \theta=-\frac{1}{5}$, then $-\cos (-\theta)=$ \qquad
Find $\sin \theta$. See Example 1.
7. $\cos \theta=\frac{3}{4}, \theta$ in quadrant I
8. $\cos \theta=\frac{5}{6}, \theta$ in quadrant I
9. $\cot \theta=-\frac{1}{5}, \theta$ in quadrant IV
10. $\cot \theta=-\frac{1}{3}, \theta$ in quadrant IV
11. $\cos (-\theta)=\frac{\sqrt{5}}{5}, \tan \theta<0$
12. $\cos (-\theta)=\frac{\sqrt{3}}{6}, \cot \theta<0$
13. $\tan \theta=-\frac{\sqrt{6}}{2}, \cos \theta>0$
14. $\tan \theta=-\frac{\sqrt{7}}{2}, \sec \theta>0$
15. $\sec \theta=\frac{11}{4}, \cot \theta<0$
16. $\sec \theta=\frac{7}{2}, \tan \theta<0$
17. $\csc \theta=-\frac{9}{4}$
18. $\csc \theta=-\frac{8}{5}$
19. Why is it unnecessary to give the quadrant of θ in Exercises 17 and $\mathbf{1 8}$?
20. Concept Check What is WRONG with the statement of this problem?

$$
\text { Find } \cos (-\theta) \text { if } \cos \theta=3
$$

Relating Concepts

For individual or collaborative investigation (Exercises 21-26)
A function is an even function if $f(-x)=f(x)$ for all x in the domain of f. Similarly, a function is an odd function if $f(-x)=-f(x)$ for all x in the domain of f. Work Exercises 21-26 in order, to see the connection between the negative-angle identities and even and odd functions.
21. Complete the statement: $\sin (-x)=$ \qquad _.
22. Is the function $f(x)=\sin x$ even or odd?
23. Complete the statement: $\cos (-x)=$ \qquad
24. Is the function $f(x)=\cos x$ even or odd?
25. Complete the statement: $\tan (-x)=$ \qquad
26. Is the function $f(x)=\tan x$ even or odd?

Concept Check For each graph of a circular function $y=f(x)$, determine whether $f(-x)=f(x)$ or $f(-x)=-f(x)$ is true.
27.

28.

29.

30.

Find the remaining five trigonometric functions of θ. See Example 1.
31. $\sin \theta=\frac{2}{3}, \theta$ in quadrant II
33. $\tan \theta=-\frac{1}{4}, \theta$ in quadrant IV
35. $\cot \theta=\frac{4}{3}, \sin \theta>0$
37. $\sec \theta=\frac{4}{3}, \sin \theta<0$
32. $\cos \theta=\frac{1}{5}, \theta$ in quadrant I
34. $\csc \theta=-\frac{5}{2}, \theta$ in quadrant III
36. $\sin \theta=-\frac{4}{5}, \cos \theta<0$
38. $\cos \theta=-\frac{1}{4}, \sin \theta>0$

Concept Check For each expression in Column I, choose the expression from Column II that completes an identity.

I
39. $\frac{\cos x}{\sin x}=$
40. $\tan x=$ \qquad
41. $\cos (-x)=$ \qquad

II
A. $\sin ^{2} x+\cos ^{2} x$
B. $\cot x$
42. $\tan ^{2} x+1=$ \qquad
C. $\sec ^{2} x$
D. $\frac{\sin x}{\cos x}$
43. $1=$ \qquad

Concept Check For each expression in Column I, choose the expression from Column II that completes an identity. You may have to rewrite one or both expressions.

I
II
44. $-\tan x \cos x=$ \qquad
A. $\frac{\sin ^{2} x}{\cos ^{2} x}$
45. $\sec ^{2} x-1=$ \qquad
B. $\frac{1}{\sec ^{2} x}$
46. $\frac{\sec x}{\csc x}=$ \qquad C. $\sin (-x)$
47. $1+\sin ^{2} x=$ \qquad D. $\csc ^{2} x-\cot ^{2} x+\sin ^{2} x$
48. $\cos ^{2} x=$ \qquad E. $\tan x$
49. A student writes " $1+\cot ^{2}=\csc ^{2}$." Comment on this student's work.
50. A student makes the following claim: "Since $\sin ^{2} \theta+\cos ^{2} \theta=1$, I should be able to also say that $\sin \theta+\cos \theta=1$ if I take the square root of each side." Comment on this student's statement.
51. Concept Check Suppose that $\cos \theta=\frac{x}{x+1}$. Find an expression in x for $\sin \theta$.
52. Concept Check Suppose that $\sec \theta=\frac{x+4}{x}$. Find an expression in x for $\tan \theta$.

Perform each transformation. See Example 2.
53. Write $\sin x$ in terms of $\cos x$.
55. Write $\tan x$ in terms of $\sec x$.
57. Write $\csc x$ in terms of $\cos x$.
54. Write $\cot x$ in terms of $\sin x$.
56. Write $\cot x$ in terms of $\csc x$.
58. Write $\sec x$ in terms of $\sin x$.

Write each expression in terms of sine and cosine, and simplify so that no quotients appear in the final expression and all functions are of θ only. See Example 3.
59. $\cot \theta \sin \theta$
60. $\tan \theta \cos \theta$
61. $\sec \theta \cot \theta \sin \theta$
62. $\csc \theta \cos \theta \tan \theta$
63. $\cos \theta \csc \theta$
64. $\sin \theta \sec \theta$
65. $\sin ^{2} \theta\left(\csc ^{2} \theta-1\right)$
66. $\cot ^{2} \theta\left(1+\tan ^{2} \theta\right)$
67. $(1-\cos \theta)(1+\sec \theta)$
68. $(\sec \theta-1)(\sec \theta+1)$
69. $\frac{1+\tan (-\theta)}{\tan (-\theta)}$
70. $\frac{1+\cot \theta}{\cot \theta}$
71. $\frac{1-\cos ^{2}(-\theta)}{1+\tan ^{2}(-\theta)}$
72. $\frac{1-\sin ^{2}(-\theta)}{1+\cot ^{2}(-\theta)}$
73. $\sec \theta-\cos \theta$
74. $\csc \theta-\sin \theta$
75. $(\sec \theta+\csc \theta)(\cos \theta-\sin \theta)$
76. $(\sin \theta-\cos \theta)(\csc \theta+\sec \theta)$
77. $\sin \theta(\csc \theta-\sin \theta)$
78. $\cos \theta(\cos \theta-\sec \theta)$
79. $\frac{1+\tan ^{2} \theta}{1+\cot ^{2} \theta}$
80. $\frac{\sec ^{2} \theta-1}{\csc ^{2} \theta-1}$
81. $\sin ^{2}(-\theta)+\tan ^{2}(-\theta)+\cos ^{2}(-\theta)$
82. $-\sec ^{2}(-\theta)+\sin ^{2}(-\theta)+\cos ^{2}(-\theta)$
83. $\frac{\csc \theta}{\cot (-\theta)}$
84. $\frac{\tan (-\theta)}{\sec \theta}$

Work each problem.
85. Let $\cos x=\frac{1}{5}$. Find all possible values of $\frac{\sec x-\tan x}{\sin x}$.
86. Let $\csc x=-3$. Find all possible values of $\frac{\sin x+\cos x}{\sec x}$.

Relating Concepts

For individual or collaborative investigation (Exercises 87-92)
In Chapter 4 we graphed functions defined by

$$
y=c+a \cdot f[b(x-d)]
$$

with the assumption that $b>0$. To see what happens when $b<0$, work Exercises 87-92 in order.
87. Use a negative-angle identity to write $y=\sin (-2 x)$ as a function of $2 x$.
88. How is your answer to Exercise 87 related to $y=\sin (2 x)$?
89. Use a negative-angle identity to write $y=\cos (-4 x)$ as a function of $4 x$.
90. How is your answer to Exercise 89 related to $y=\cos (4 x)$?
91. Use your results from Exercises $\mathbf{8 7 - 9 0}$ to rewrite the following with a positive value of b.
(a) $y=\sin (-4 x)$
(b) $y=\cos (-2 x)$
(c) $y=-5 \sin (-3 x)$
92. Write a short response to this statement, which is often used by one of the authors of this text in trigonometry classes: Students who tend to ignore negative signs should enjoy graphing functions involving the cosine and the secant.

Use a graphing calculator to make a conjecture about whether each equation is an identity.
93. $\cos 2 x=1-2 \sin ^{2} x$
94. $2 \sin x=\sin 2 x$
95. $\sin x=\sqrt{1-\cos ^{2} x}$
96. $\cos 2 x=\cos ^{2} x-\sin ^{2} x$

5.2 Verifying Trigonometric Identities

- Strategies
- Verifying Identities by Working with One Side
- Verifying Identities by Working with Both Sides

Strategies One of the skills required for more advanced work in mathematics, especially in calculus, is the ability to use identities to write expressions in alternative forms. We develop this skill by using the fundamental identities to verify that a trigonometric equation is an identity (for those values of the variable for which it is defined). Here are some helpful hints.

LOOKING AHEAD TO CALCULUS

Trigonometric identities are used in calculus to simplify trigonometric expressions, determine derivatives of trigonometric functions, and change the form of some integrals.

Hints for Verifying Identities

1. Learn the fundamental identities given in Section 5.1. Whenever you see either side of a fundamental identity, the other side should come to mind. Also, be aware of equivalent forms of the fundamental identities. For example,
$\sin ^{2} \theta=1-\cos ^{2} \theta \quad$ is an alternative form of $\sin ^{2} \theta+\cos ^{2} \theta=1$.
2. Try to rewrite the more complicated side of the equation so that it is identical to the simpler side.
3. It is sometimes helpful to express all trigonometric functions in the equation in terms of sine and cosine and then simplify the result.
4. Usually, any factoring or indicated algebraic operations should be performed. These algebraic identities are often used in verifying trigonometric identities.

$$
\begin{array}{rlrl}
(a+b)^{2} & =a^{2}+2 a b+b^{2} & (a-b)^{2} & =a^{2}-2 a b+b^{2} \\
a^{3}-b^{3} & =(a-b)\left(a^{2}+a b+b^{2}\right) & a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
a^{2}-b^{2} & =(a+b)(a-b) & &
\end{array}
$$

For example, the expression

$$
\sin ^{2} x+2 \sin x+1 \quad \text { can be factored as } \quad(\sin x+1)^{2}
$$

The sum or difference of two trigonometric expressions can be found in the same way as any other rational expression. For example,

$$
\begin{aligned}
\frac{1}{\sin \theta}+\frac{1}{\cos \theta} & =\frac{1 \cdot \cos \theta}{\sin \theta \cos \theta}+\frac{1 \cdot \sin \theta}{\cos \theta \sin \theta} & \text { Write with the LCD. } \\
& =\frac{\cos \theta+\sin \theta}{\sin \theta \cos \theta} . & \frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}
\end{aligned}
$$

5. As you select substitutions, keep in mind the side you are not changing, because it represents your goal. For example, to verify the identity

$$
\tan ^{2} x+1=\frac{1}{\cos ^{2} x}
$$

try to think of an identity that relates $\tan x$ to $\cos x$. In this case, since $\sec x=\frac{1}{\cos x}$ and $\sec ^{2} x=\tan ^{2} x+1$, the secant function is the best link between the two sides.
6. If an expression contains $1+\sin x$, multiplying both numerator and denominator by $1-\sin x$ would give $1-\sin ^{2} x$, which could be replaced with $\cos ^{2} x$. Similar procedures apply for $1-\sin x, 1+\cos x$, and $1-\cos x$.

CAUTION The procedure for verifying identities is not the same as that of solving equations. Techniques used in solving equations, such as adding the same term to each side, and multiplying each side by the same term, should not be used when working with identities.

Verifying Identities by Working with One Side To avoid the temptation to use algebraic properties of equations to verify identities, one strategy is to work with only one side and rewrite it to match the other side.

The graphs coincide, which supports the conclusion in Example 1.

The screen supports the conclusion in Example 2.

EXAMPLE 1 Verifying an Identity (Working with One Side)

Verify that the following equation is an identity.

$$
\cot \theta+1=\csc \theta(\cos \theta+\sin \theta)
$$

SOLUTION We use the fundamental identities from Section 5.1 to rewrite one side of the equation so that it is identical to the other side. Since the right side is more complicated, we work with it, as suggested in Hint 2, and use Hint 3 to change all functions to expressions involving sine or cosine.

Steps

Reasons

Right side of
given equation

$$
\begin{array}{rlr}
\overbrace{\csc \theta(\cos \theta+\sin \theta)} & =\frac{1}{\sin \theta}(\cos \theta+\sin \theta) & \csc \theta=\frac{1}{\sin \theta} \\
& =\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\sin \theta} & \begin{array}{l}
\text { Distributive property: } \\
a(b+c)=a b+a c
\end{array} \\
& =\underbrace{\cot \theta+1}_{\begin{array}{c}
\text { Left side of } \\
\text { given equation }
\end{array}} & \frac{\cos \theta}{\sin \theta}=\cot \theta ; \frac{\sin \theta}{\sin \theta}=1
\end{array}
$$

The given equation is an identity. The right side of the equation is identical to the left side.

Now Try Exercise 35.

EXAMPLE 2 Verifying an Identity (Working with One Side)

Verify that the following equation is an identity.

$$
\tan ^{2} x\left(1+\cot ^{2} x\right)=\frac{1}{1-\sin ^{2} x}
$$

SOLUTION We work with the more complicated left side, as suggested in Hint 2. Again, we use the fundamental identities from Section 5.1.

$$
\begin{aligned}
& \text { Left side of } \\
& \text { given equation } \\
& \tan ^{2} x\left(1+\cot ^{2} x\right)=\tan ^{2} x+\tan ^{2} x \cot ^{2} x \quad \text { Distributive property } \\
& =\tan ^{2} x+\tan ^{2} x \cdot \frac{1}{\tan ^{2} x} \quad \cot ^{2} x=\frac{1}{\tan ^{2} x} \\
& =\tan ^{2} x+1 \quad \tan ^{2} x \cdot \frac{1}{\tan ^{2} x}=1 \\
& =\sec ^{2} x \quad \text { Pythagorean identity } \\
& =\frac{1}{\cos ^{2} x} \quad \sec ^{2} x=\frac{1}{\cos ^{2} x} \\
& =\frac{1}{1-\sin ^{2} x} \quad \text { Pythagorean identity } \\
& \text { Right side of } \\
& \text { given equation }
\end{aligned}
$$

Since the left side of the equation is identical to the right side, the given equation is an identity.

EXAMPLE 3 Verifying an Identity (Working with One Side)

Verify that the following equation is an identity.

$$
\frac{\tan t-\cot t}{\sin t \cos t}=\sec ^{2} t-\csc ^{2} t
$$

SOLUTION We transform the more complicated left side to match the right side.

$$
\begin{array}{rlrl}
\frac{\tan t-\cot t}{\sin t \cos t} & =\frac{\tan t}{\sin t \cos t}-\frac{\cot t}{\sin t \cos t} & \frac{a-b}{c}=\frac{a}{c}-\frac{b}{c} \\
& =\tan t \cdot \frac{1}{\sin t \cos t}-\cot t \cdot \frac{1}{\sin t \cos t} & \frac{a}{b}=a \cdot \frac{1}{b} \\
& =\frac{\sin t}{\cos t} \cdot \frac{1}{\sin t \cos t}-\frac{\cos t}{\sin t} \cdot \frac{1}{\sin t \cos t} & \tan t=\frac{\sin t}{\cos t} ; \cot t=\frac{\cos t}{\sin t} \\
& =\frac{1}{\cos ^{2} t}-\frac{1}{\sin ^{2} t} & & \text { Multiply. } \\
& =\sec ^{2} t-\csc ^{2} t & \frac{1}{\cos ^{2} t}=\sec ^{2} t ; \frac{1}{\sin ^{2} t}=\csc
\end{array}
$$

Hint 3 about writing all trigonometric functions in terms of sine and cosine was used in the third line of the solution.

Now Try Exercise 43.

EXAMPLE 4 Verifying an Identity (Working with One Side)

Verify that the following equation is an identity.

$$
\frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x}
$$

SOLUTION We work on the right side, using Hint 6 in the list given earlier to multiply the numerator and denominator on the right by $1-\sin x$.

$$
\begin{aligned}
\frac{1+\sin x}{\cos x} & =\frac{(1+\sin x)(1-\sin x)}{\cos x(1-\sin x)} & & \text { Multiply by } 1 \text { in the form } \frac{1-\sin x}{1-\sin x} . \\
& =\frac{1-\sin ^{2} x}{\cos x(1-\sin x)} & & (x+y)(x-y)=x^{2}-y^{2} \\
& =\frac{\cos ^{2} x}{\cos x(1-\sin x)} & & 1-\sin ^{2} x=\cos ^{2} x \\
& =\frac{\cos x \cdot \cos x}{\cos x(1-\sin x)} & & a^{2}=a \cdot a \\
& =\frac{\cos x}{1-\sin x} & & \text { Write in lowest terms. }
\end{aligned}
$$ dently on the left side and on the right side, until each side is changed into some common third result. Each step, on each side, must be reversible. With all steps reversible, the procedure is as shown in the margin. The left side leads to a common third expression, which leads back to the right side.

NOTE Working with both sides is often a good alternative for identities that are difficult. In practice, if working with one side does not seem to be effective, switch to the other side. Somewhere along the way it may happen that the same expression occurs on both sides.

EXAMPLE 5 Verifying an Identity (Working with Both Sides)

Verify that the following equation is an identity.

$$
\frac{\sec \alpha+\tan \alpha}{\sec \alpha-\tan \alpha}=\frac{1+2 \sin \alpha+\sin ^{2} \alpha}{\cos ^{2} \alpha}
$$

SOLUTION Both sides appear equally complex, so we verify the identity by changing each side into a common third expression. We work first on the left, multiplying the numerator and denominator by $\cos \alpha$.

$$
\begin{aligned}
\underbrace{\frac{\sec \alpha+\tan \alpha}{\sec \alpha-\tan \alpha}}_{\begin{array}{c}
\text { Left side of } \\
\text { given equation }
\end{array}} & =\frac{(\sec \alpha+\tan \alpha) \cos \alpha}{(\sec \alpha-\tan \alpha) \cos \alpha} & & \text { Multiply by } 1 \text { in the form } \frac{\cos \alpha}{\sec \alpha} . \\
& =\frac{1+\tan \alpha \cos \alpha}{1-\tan \alpha \cos \alpha-\tan \alpha \cos \alpha} & & \text { Distributive property } \\
& =\frac{1+\frac{\sin \alpha}{\cos \alpha} \cdot \cos \alpha}{1-\frac{\sin \alpha}{\cos \alpha} \cdot \cos \alpha} & & \sec \alpha \cos \alpha=1 \\
& =\frac{1+\sin \alpha}{1-\sin \alpha} & & \text { Simplify. }
\end{aligned}
$$

On the right side of the original equation, begin by factoring.

$$
\begin{array}{rlrl}
\frac{1+2 \sin \alpha+\sin ^{2} \alpha}{\cos ^{2} \alpha} & =\frac{(1+\sin \alpha)^{2}}{\cos ^{2} \alpha} & \begin{array}{l}
\text { Factor the numerator; } \\
x^{2}+2 x y+y^{2}=(x+y)^{2} . \\
\text { Right side of equation }
\end{array} & =\frac{(1+\sin \alpha)^{2}}{1-\sin ^{2} \alpha} \\
& =\frac{(1+\sin \alpha)^{2}}{(1+\sin \alpha)(1-\sin \alpha)} & \begin{array}{l}
\cos ^{2} \alpha=1-\sin ^{2} \alpha \\
x^{2}-y^{2}=(x+y)(x-y)
\end{array} \\
& =\frac{1+\sin \alpha}{1-\sin \alpha} & \text { Write in lowest terms. }
\end{array}
$$

We have shown that

$\overbrace{\frac{\sec \alpha+\tan \alpha}{\sec \alpha-\tan \alpha}}^{$| Left side of |
| :---: |
| given equation |$}=\overbrace{\frac{1+\sin \alpha}{1-\sin \alpha}}^{$| Common third |
| :---: |
| expression |$}=\overbrace{\frac{1+2 \sin \alpha+\sin ^{2} \alpha}{\cos ^{2} \alpha}}^{$| Right side of |
| :---: |
| given equation |$}$,

and thus have verified that the given equation is an identity.

An Inductor and a Capacitor
Figure 3

CAUTION Use the method of Example 5 only if the steps are reversible.

There are usually several ways to verify a given identity. For instance, another way to begin verifying the identity in Example 5 is to work on the left as follows.

$$
\begin{array}{rlrl}
\frac{\sec \alpha+\tan \alpha}{\sec \alpha-\tan \alpha} & =\frac{\frac{1}{\cos \alpha}+\frac{\sin \alpha}{\cos \alpha}}{\begin{array}{c}
\text { Left side of } \\
\text { given equation } \\
\text { in Example 5 }
\end{array}} & & \text { Fundamental identities (Section 5.1) } \\
& =\frac{\frac{1+\sin \alpha}{\cos \alpha}-\frac{\sin \alpha}{\cos \alpha}}{\frac{1-\sin \alpha}{\cos \alpha}} & & \text { Add and subtract fractions. } \\
& =\frac{1+\sin \alpha}{\cos \alpha} \div \frac{1-\sin \alpha}{\cos \alpha} & \begin{array}{l}
\text { Simplify the complex fraction. } \\
\text { Use the definition of division. }
\end{array} \\
& =\frac{1+\sin \alpha}{\cos \alpha} \cdot \frac{\cos \alpha}{1-\sin \alpha} & \text { Multiply by the reciprocal. } \\
& =\frac{1+\sin \alpha}{1-\sin \alpha} & \text { Multiply and write in lowest terms. }
\end{array}
$$

Compare this with the result shown in Example 5 for the right side to see that the two sides indeed agree.

EXAMPLE 6 Applying a Pythagorean Identity to Electronics

Tuners in radios select a radio station by adjusting the frequency. A tuner may contain an inductor L and a capacitor C, as illustrated in Figure 3. The energy stored in the inductor at time t is given by

$$
L(t)=k \sin ^{2}(2 \pi F t)
$$

and the energy stored in the capacitor is given by

$$
C(t)=k \cos ^{2}(2 \pi F t)
$$

where F is the frequency of the radio station and k is a constant. The total energy E in the circuit is given by

$$
E(t)=L(t)+C(t)
$$

Show that E is a constant function. (Source: Weidner, R. and R. Sells, Elementary Classical Physics, Vol. 2, Allyn \& Bacon.)
SOLUTION

$$
\begin{aligned}
E(t) & =L(t)+C(t) & & \text { Given equation } \\
& =k \sin ^{2}(2 \pi F t)+k \cos ^{2}(2 \pi F t) & & \text { Substitute. } \\
& =k\left[\sin ^{2}(2 \pi F t)+\cos ^{2}(2 \pi F t)\right] & & \text { Factor out } k . \\
& =k(1) & & \sin ^{2} \theta+\cos ^{2} \theta=1(\text { Here } \theta=2 \pi F t .) \\
& =k & & \text { Identity property }
\end{aligned}
$$

Since k is a constant, $E(t)$ is a constant function.

To the student: Exercises 1-34 are designed for practice in applying algebraic techniques to trigonometric expressions. These techniques are essential in verifying the identities that follow.

Perform each indicated operation and simplify the result so that there are no quotients.

1. $\cot \theta+\frac{1}{\cot \theta}$
2. $\frac{\sec x}{\csc x}+\frac{\csc x}{\sec x}$
3. $\tan x(\cot x+\csc x)$
4. $\cos \beta(\sec \beta+\csc \beta)$
5. $\frac{1}{\csc ^{2} \theta}+\frac{1}{\sec ^{2} \theta}$
6. $\frac{\cos x}{\sec x}+\frac{\sin x}{\csc x}$
7. $(\sin \alpha-\cos \alpha)^{2}$
8. $(\tan x+\cot x)^{2}$
9. $(1+\sin t)^{2}+\cos ^{2} t$
10. $(1+\tan \theta)^{2}-2 \tan \theta$
11. $\frac{1}{1+\cos x}-\frac{1}{1-\cos x}$
12. $\frac{1}{\sin \alpha-1}-\frac{1}{\sin \alpha+1}$

Factor each trigonometric expression.
13. $\sin ^{2} \theta-1$
14. $\sec ^{2} \theta-1$
15. $(\sin x+1)^{2}-(\sin x-1)^{2}$
16. $(\tan x+\cot x)^{2}-(\tan x-\cot x)^{2}$
17. $2 \sin ^{2} x+3 \sin x+1$
18. $4 \tan ^{2} \beta+\tan \beta-3$
19. $\cos ^{4} x+2 \cos ^{2} x+1$
20. $\cot ^{4} x+3 \cot ^{2} x+2$
21. $\sin ^{3} x-\cos ^{3} x$
22. $\sin ^{3} \alpha+\cos ^{3} \alpha$

Each expression simplifies to a constant, a single function, or a power of a function. Use fundamental identities to simplify each expression.
23. $\tan \theta \cos \theta$
24. $\cot \alpha \sin \alpha$
25. $\sec r \cos r$
26. $\cot t \tan t$
27. $\frac{\sin \beta \tan \beta}{\cos \beta}$
28. $\frac{\csc \theta \sec \theta}{\cot \theta}$
29. $\sec ^{2} x-1$
30. $\csc ^{2} t-1$
31. $\frac{\sin ^{2} x}{\cos ^{2} x}+\sin x \csc x$
32. $\frac{1}{\tan ^{2} \alpha}+\cot \alpha \tan \alpha$
33. $1-\frac{1}{\csc ^{2} x}$
34. $1-\frac{1}{\sec ^{2} x}$

In Exercises 35-78, verify that each trigonometric equation is an identity. See Examples 1-5.
35. $\frac{\cot \theta}{\csc \theta}=\cos \theta$
36. $\frac{\tan \alpha}{\sec \alpha}=\sin \alpha$
37. $\frac{1-\sin ^{2} \beta}{\cos \beta}=\cos \beta$
38. $\frac{\tan ^{2} \alpha+1}{\sec \alpha}=\sec \alpha$
39. $\cos ^{2} \theta\left(\tan ^{2} \theta+1\right)=1$
40. $\sin ^{2} \beta\left(1+\cot ^{2} \beta\right)=1$
41. $\cot \theta+\tan \theta=\sec \theta \csc \theta$
42. $\sin ^{2} \alpha+\tan ^{2} \alpha+\cos ^{2} \alpha=\sec ^{2} \alpha$
43. $\frac{\cos \alpha}{\sec \alpha}+\frac{\sin \alpha}{\csc \alpha}=\sec ^{2} \alpha-\tan ^{2} \alpha$
44. $\frac{\sin ^{2} \theta}{\cos \theta}=\sec \theta-\cos \theta$
45. $\sin ^{4} \theta-\cos ^{4} \theta=2 \sin ^{2} \theta-1$
46. $\sec ^{4} x-\sec ^{2} x=\tan ^{4} x+\tan ^{2} x$
47. $\frac{1-\cos x}{1+\cos x}=(\cot x-\csc x)^{2}$
48. $(\sec \alpha-\tan \alpha)^{2}=\frac{1-\sin \alpha}{1+\sin \alpha}$
49. $\frac{\cos \theta+1}{\tan ^{2} \theta}=\frac{\cos \theta}{\sec \theta-1}$
50. $\frac{(\sec \theta-\tan \theta)^{2}+1}{\sec \theta \csc \theta-\tan \theta \csc \theta}=2 \tan \theta$
51. $\frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}=2 \sec ^{2} \theta$
52. $\frac{1}{\sec \alpha-\tan \alpha}=\sec \alpha+\tan \alpha$
53. $\frac{\cot \alpha+1}{\cot \alpha-1}=\frac{1+\tan \alpha}{1-\tan \alpha}$
54. $\frac{\csc \theta+\cot \theta}{\tan \theta+\sin \theta}=\cot \theta \csc \theta$
55. $\frac{\cos \theta}{\sin \theta \cot \theta}=1$
56. $\sin ^{2} \theta\left(1+\cot ^{2} \theta\right)-1=0$
57. $\frac{\sec ^{4} \theta-\tan ^{4} \theta}{\sec ^{2} \theta+\tan ^{2} \theta}=\sec ^{2} \theta-\tan ^{2} \theta$
58. $\frac{\sin ^{4} \alpha-\cos ^{4} \alpha}{\sin ^{2} \alpha-\cos ^{2} \alpha}=1$
59. $\frac{\tan ^{2} t-1}{\sec ^{2} t}=\frac{\tan t-\cot t}{\tan t+\cot t}$
60. $\frac{\cot ^{2} t-1}{1+\cot ^{2} t}=1-2 \sin ^{2} t$
61. $\sin ^{2} \alpha \sec ^{2} \alpha+\sin ^{2} \alpha \csc ^{2} \alpha=\sec ^{2} \alpha$
62. $\tan ^{2} \alpha \sin ^{2} \alpha=\tan ^{2} \alpha+\cos ^{2} \alpha-1$
63. $\frac{\tan x}{1+\cos x}+\frac{\sin x}{1-\cos x}=\cot x+\sec x \csc x$
64. $\frac{\sin \theta}{1-\cos \theta}-\frac{\sin \theta \cos \theta}{1+\cos \theta}=\csc \theta\left(1+\cos ^{2} \theta\right)$
65. $\frac{1+\cos x}{1-\cos x}-\frac{1-\cos x}{1+\cos x}=4 \cot x \csc x$
66. $\frac{1+\sin \theta}{1-\sin \theta}-\frac{1-\sin \theta}{1+\sin \theta}=4 \tan \theta \sec \theta$
67. $\frac{1-\sin \theta}{1+\sin \theta}=\sec ^{2} \theta-2 \sec \theta \tan \theta+\tan ^{2} \theta$
68. $\sin \theta+\cos \theta=\frac{\sin \theta}{1-\cot \theta}+\frac{\cos \theta}{1-\tan \theta}$
69. $\frac{-1}{\tan \alpha-\sec \alpha}+\frac{-1}{\tan \alpha+\sec \alpha}=2 \tan \alpha$
70. $(1+\sin x+\cos x)^{2}=2(1+\sin x)(1+\cos x)$
71. $\left(1-\cos ^{2} \alpha\right)\left(1+\cos ^{2} \alpha\right)=2 \sin ^{2} \alpha-\sin ^{4} \alpha$
72. $(\sec \alpha+\csc \alpha)(\cos \alpha-\sin \alpha)=\cot \alpha-\tan \alpha$
73. $\frac{1-\cos x}{1+\cos x}=\csc ^{2} x-2 \csc x \cot x+\cot ^{2} x$
74. $\frac{1-\cos \theta}{1+\cos \theta}=2 \csc ^{2} \theta-2 \csc \theta \cot \theta-1$
75. $(2 \sin x+\cos x)^{2}+(2 \cos x-\sin x)^{2}=5$
76. $\sin ^{2} x(1+\cot x)+\cos ^{2} x(1-\tan x)+\cot ^{2} x=\csc ^{2} x$
77. $\sec x-\cos x+\csc x-\sin x-\sin x \tan x=\cos x \cot x$
78. $\sin ^{3} \theta+\cos ^{3} \theta=(\cos \theta+\sin \theta)(1-\cos \theta \sin \theta)$

Graph each expression and use the graph to make a conjecture, predicting what might be an identity. Then verify your conjecture algebraically.
79. $(\sec \theta+\tan \theta)(1-\sin \theta)$
80. $(\csc \theta+\cot \theta)(\sec \theta-1)$
81. $\frac{\cos \theta+1}{\sin \theta+\tan \theta}$
82. $\tan \theta \sin \theta+\cos \theta$

Graph the expressions on each side of the equals symbol to determine whether the equation might be an identity. (Note: Use a domain whose length is at least 2π.) If the equation looks like an identity, verify it algebraically. See Example 1.
83. $\frac{2+5 \cos x}{\sin x}=2 \csc x+5 \cot x$
84. $1+\cot ^{2} x=\frac{\sec ^{2} x}{\sec ^{2} x-1}$
85. $\frac{\tan x-\cot x}{\tan x+\cot x}=2 \sin ^{2} x$
86. $\frac{1}{1+\sin x}+\frac{1}{1-\sin x}=\sec ^{2} x$

By substituting a number for t, show that the equation is not an identity.
87. $\sin (\csc t)=1$
88. $\sqrt{\cos ^{2} t}=\cos t$
89. $\csc t=\sqrt{1+\cot ^{2} t}$
90. $\cos t=\sqrt{1-\sin ^{2} t}$
91. Concept Check When is $\sin x=-\sqrt{1-\cos ^{2} x}$ a true statement?
92. Concept Check When is $\cos x=-\sqrt{1-\sin ^{2} x}$ a true statement?
(Modeling) Work each problem.
93. Intensity of a Lamp According to Lambert's law, the intensity of light from a single source on a flat surface at point P is given by

$$
I=k \cos ^{2} \theta
$$

where k is a constant. (Source: Winter, C., Solar Power Plants, Springer-Verlag.)
(a) Write I in terms of the sine function.
(b) Why does the maximum value of I occur when $\theta=0$?

94. Oscillating Spring The distance or displacement y of a weight attached to an oscillating spring from its natural position is modeled by

$$
y=4 \cos (2 \pi t)
$$

where t is time in seconds. Potential energy is the energy of position and is given by

$$
P=k y^{2},
$$

where k is a constant. The weight has the greatest potential energy when the spring is stretched the most. (Source: Weidner, R. and R. Sells, Elementary Classical Physics, Vol. 2, Allyn \& Bacon.)
(a) Write an expression for P that involves the cosine function.
(b) Use a fundamental identity to write P in terms of $\sin (2 \pi t)$.
95. Radio Tuners Refer to Example 6. Let the energy stored in the inductor be given by

$$
L(t)=3 \cos ^{2}(6,000,000 t)
$$

and let the energy in the capacitor be given by

$$
C(t)=3 \sin ^{2}(6,000,000 t)
$$

where t is time in seconds. The total energy E in the circuit is given by $E(t)=L(t)+C(t)$.
(a) Graph L, C, and E in the window $\left[0,10^{-6}\right]$ by $[-1,4]$, with $\mathrm{Xscl}=10^{-7}$ and Yscl $=1$. Interpret the graph.
(b) Make a table of values for L, C, and E starting at $t=0$, incrementing by 10^{-7}. Interpret your results.
(c) Use a fundamental identity to derive a simplified expression for $E(t)$.

5.3 Sum and Difference Identities for Cosine

- Difference Identity for Cosine
- Sum Identity for Cosine
- Cofunction Identities
- Applying the Sum and Difference Identities
- Verifying an Identity

Difference Identity for Cosine Several examples presented earlier should have convinced you by now that

$$
\cos (A-B) \quad \text { does not equal } \quad \cos A-\cos B
$$

For example, if $A=\frac{\pi}{2}$ and $B=0$, then

$$
\cos (A-B)=\cos \left(\frac{\pi}{2}-0\right)=\cos \frac{\pi}{2}=0
$$

while

$$
\cos A-\cos B=\cos \frac{\pi}{2}-\cos 0=0-1=-1
$$

To derive a formula for $\cos (A-B)$, we start by locating angles A and B in standard position on a unit circle, with $B<A$. Let S and Q be the points where the terminal sides of angles A and B, respectively, intersect the circle. Let P be the point $(1,0)$, and locate point R on the unit circle so that angle $P O R$ equals the difference $A-B$. See Figure 4.

Figure 4

Because point Q is on the unit circle, the x-coordinate of Q is the cosine of angle B, while the y-coordinate of Q is the sine of angle B.

$$
Q \text { has coordinates }(\cos B, \sin B)
$$

In the same way,

$$
S \text { has coordinates }(\cos A, \sin A)
$$

and $\quad R$ has coordinates $(\cos (A-B), \sin (A-B))$.
Angle $S O Q$ also equals $A-B$. Since the central angles $S O Q$ and $P O R$ are equal, chords $P R$ and $S Q$ are equal. By the distance formula, since $P R=S Q$,

$$
\begin{aligned}
& \sqrt{[\cos (A-B)-1]^{2}+[\sin (A-B)-0]^{2}} \\
&=\sqrt{(\cos A-\cos B)^{2}+(\sin A-\sin B)^{2}} . \quad \text { (Appendix B) }
\end{aligned}
$$

Square each side and clear parentheses.

$$
\begin{aligned}
\cos ^{2}(A & -B)-2 \cos (A-B)+1+\sin ^{2}(A-B) \\
& =\cos ^{2} A-2 \cos A \cos B+\cos ^{2} B+\sin ^{2} A-2 \sin A \sin B+\sin ^{2} B
\end{aligned}
$$

Since $\sin ^{2} x+\cos ^{2} x=1$ for any value of x, we can rewrite the equation, as shown on the next page.

$$
\begin{aligned}
2-2 \cos (A-B)=2-2 \cos A \cos B-2 \sin A \sin B & \begin{array}{l}
\text { Use } \sin ^{2} x+\cos ^{2} x=1 \\
\text { three times and add like } \\
\text { terms. }
\end{array} \\
\cos (\boldsymbol{A}-\boldsymbol{B})=\cos \boldsymbol{A} \cos \boldsymbol{B}+\sin \boldsymbol{A} \sin \boldsymbol{B} & \begin{array}{l}
\text { Subtract } 2 \text { and divide } \\
\text { by }-2 .
\end{array}
\end{aligned}
$$

This is the identity for $\cos (A-B)$. Although Figure 4 shows angles A and B in the second and first quadrants, respectively, this result is the same for any values of these angles.

Sum Identity for Cosine To find a similar expression for $\cos (A+B)$, rewrite $A+B$ as $A-(-B)$ and use the identity for $\cos (A-B)$.

$$
\begin{array}{rlrl}
\cos (A+B) & =\cos [A-(-B)] & & \text { Definition of subtraction } \\
& =\cos A \cos (-B)+\sin A \sin (-B) & & \text { Cosine difference identity } \\
& =\cos A \cos B+\sin A(-\sin B) & & \text { Negative-angle identities } \\
& & \text { (Section 5.1) }
\end{array}
$$

$\cos (A+B)=\cos A \cos B-\sin A \sin B \quad$ Multiply.

Cosine of a Sum or Difference

$$
\begin{aligned}
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B
\end{aligned}
$$

These identities are important in calculus and useful in certain applications. For example, the method shown in Example 1 can be applied to find an exact value for $\cos 15^{\circ}$.

EXAMPLE 1 Finding Exact Cosine Function Values

Find the exact value of each expression.
(a) $\cos 15^{\circ}$
(b) $\cos \frac{5 \pi}{12}$
(c) $\cos 87^{\circ} \cos 93^{\circ}-\sin 87^{\circ} \sin 93^{\circ}$

SOLUTION

(a) To find $\cos 15^{\circ}$, we write 15° as the sum or difference of two angles with known function values, such as 45° and 30°, since

$$
15^{\circ}=45^{\circ}-30^{\circ}
$$

(We could also use $60^{\circ}-45^{\circ}$.) Then we use the cosine difference identity.

$$
\begin{array}{rlrl}
\cos & 15^{\circ} & \\
& =\cos \left(45^{\circ}-30^{\circ}\right) & 15^{\circ}=45^{\circ}-30^{\circ} \\
& =\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ} & \text { Cosine difference identity } \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2} & & \begin{array}{l}
\text { Substitute known values. } \\
\\
=
\end{array} \\
\text { (Section 2.1) } \\
4 & & \text { Multiply and then add fractions. }
\end{array}
$$

```
cos(5\pi/12)
.2588190451
(\sqrt{}{6}-\sqrt{}{2}})/
    .2588190451
```

This screen supports the solution in Example 1(b) by showing that the decimal approximations for
$\cos \frac{5 \pi}{12}$ and $\frac{\sqrt{6}-\sqrt{2}}{4}$ agree.
(b) $\cos \frac{5 \pi}{12}$

$$
\begin{array}{ll}
=\cos \left(\frac{\pi}{6}+\frac{\pi}{4}\right) & \frac{\pi}{6}=\frac{2 \pi}{12} \text { and } \frac{\pi}{4}=\frac{3 \pi}{12} \\
=\cos \frac{\pi}{6} \cos \frac{\pi}{4}-\sin \frac{\pi}{6} \sin \frac{\pi}{4} & \\
\text { Cosine sum identity } \\
=\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}-\frac{1}{2} \cdot \frac{\sqrt{2}}{2} & \begin{array}{l}
\text { Substitute known values. } \\
\text { (Section 3.1) }
\end{array} \\
=\frac{\sqrt{6}-\sqrt{2}}{4} &
\end{array}
$$

(c) $\cos 87^{\circ} \cos 93^{\circ}-\sin 87^{\circ} \sin 93^{\circ}$

$$
\begin{array}{lrl}
=\cos \left(87^{\circ}+93^{\circ}\right) & & \text { Cosine sum identity } \\
=\cos 180^{\circ} & & \text { Add. } \\
=-1 & & (\text { Section 1.3) }
\end{array}
$$

Now Try Exercises 7, 11, and 15.

Cofunction Identities We can use the identity for the cosine of the difference of two angles and the fundamental identities to derive cofunction identities, presented originally in Section 2.1 for values of θ in the interval [$0^{\circ}, 90^{\circ}$].

Cofunction Identities

The following identities hold for any angle θ for which the functions are defined.

$$
\left.\begin{array}{rl}
\cos \left(90^{\circ}-\theta\right) & =\sin \theta
\end{array} \begin{array}{ll}
\cot \left(90^{\circ}-\theta\right)=\tan \theta \\
\sin \left(90^{\circ}-\theta\right) & =\cos \theta \\
\sec \left(90^{\circ}-\theta\right)=\csc \theta \\
\tan \left(90^{\circ}-\theta\right) & =\cot \theta
\end{array} \quad \csc \left(90^{\circ}-\theta\right)=\sec \theta\right)
$$

The same identities can be obtained for a real number domain by replacing 90° with $\frac{\pi}{2}$.

Substituting 90° for A and θ for B in the identity for $\cos (A-B)$ gives the following.

$$
\begin{aligned}
\cos \left(90^{\circ}-\theta\right) & =\cos 90^{\circ} \cos \theta+\sin 90^{\circ} \sin \theta & & \text { Cosine difference identity } \\
& =0 \cdot \cos \theta+1 \cdot \sin \theta & & \text { Substitute. } \\
& =\sin \theta & & \text { Simplify. }
\end{aligned}
$$

This result is true for any value of θ since the identity for $\cos (A-B)$ is true for any values of A and B.

NOTE Because trigonometric (circular) functions are periodic, the solutions that follow in Example 2 on the next page are not unique. We give only one of infinitely many possibilities.

EXAMPLE 2 Using Cofunction Identities to Find $\boldsymbol{\theta}$

Find one value of θ or x that satisfies each of the following.
(a) $\cot \theta=\tan 25^{\circ}$
(b) $\sin \theta=\cos \left(-30^{\circ}\right)$
(c) $\csc \frac{3 \pi}{4}=\sec x$

SOLUTION

(a) Since tangent and cotangent are cofunctions, $\tan \left(90^{\circ}-\theta\right)=\cot \theta$.

$$
\begin{array}{rlrl}
\cot \theta & =\tan 25^{\circ} & \\
\tan \left(90^{\circ}-\theta\right) & =\tan 25^{\circ} & & \text { Cofunction identity } \\
90^{\circ}-\theta & =25^{\circ} & & \text { Set angle measures equal. } \\
\theta & =65^{\circ} & & \text { Solve for } \theta .
\end{array}
$$

(b)

$$
\begin{aligned}
\sin \theta & =\cos \left(-30^{\circ}\right) & & \\
\cos \left(90^{\circ}-\theta\right) & =\cos \left(-30^{\circ}\right) & & \text { Cofunction identity } \\
90^{\circ}-\theta & =-30^{\circ} & & \text { Set angle measures equal. } \\
\theta & =120^{\circ} & & \text { Solve for } \theta .
\end{aligned}
$$

(c) $\csc \frac{3 \pi}{4}=\sec x$

$$
\begin{aligned}
\csc \frac{3 \pi}{4} & =\csc \left(\frac{\pi}{2}-x\right) & & \text { Cofunction identity } \\
\frac{3 \pi}{4} & =\frac{\pi}{2}-x & & \text { Set angle measures equal. } \\
x & =-\frac{\pi}{4} & & \text { Solve for } x ; \frac{\pi}{2}-\frac{3 \pi}{4}=\frac{2 \pi}{4}-\frac{3 \pi}{4}=-\frac{\pi}{4}
\end{aligned}
$$

Now Try Exercises 37 and 41.

Applying the Sum and Difference Identities If either angle A or angle B in the identities for $\cos (A+B)$ and $\cos (A-B)$ is a quadrantal angle, then the identity allows us to write the expression in terms of a single function of A or B.

EXAMPLE 3 Reducing $\cos (\boldsymbol{A}-\boldsymbol{B})$ to a Function of a Single Variable

Write $\cos \left(180^{\circ}-\theta\right)$ as a trigonometric function of θ alone.
SOLUTION

$$
\begin{array}{rll}
\cos & \left(180^{\circ}-\theta\right) & \\
\quad=\cos 180^{\circ} \cos \theta+\sin 180^{\circ} \sin \theta & \text { Cosine difference identity } \\
=(-1) \cos \theta+(0) \sin \theta & \text { (Section 1.3) } \\
=-\cos \theta & \text { Simplify. }
\end{array}
$$

Now Try Exercise 49.

A standard problem in trigonometry involves being given information about two angles (or numbers) -say s and t-and being asked to find a function value of their sum $s+t$ or their difference $s-t$. These problems can be solved either by using angles in standard position or by using the Pythagorean identities. In Example 4, we show both methods.

EXAMPLE 4 Finding $\cos (s+t)$ Given Information about \boldsymbol{s} and \boldsymbol{t}

Suppose that $\sin s=\frac{3}{5}, \cos t=-\frac{12}{13}$, and both s and t are in quadrant II. Find $\cos (s+t)$.

SOLUTION By the cosine sum identity,

$$
\cos (s+t)=\cos s \cos t-\sin s \sin t
$$

The values of $\sin s$ and $\cos t$ are given, so we can find $\cos (s+t)$ if we know the values of $\cos s$ and $\sin t$.

Method 1 We use angles in standard position. To find $\cos s$ and $\sin t$, we sketch two reference triangles in the second quadrant, one with $\sin s=\frac{3}{5}$ and the other with $\cos t=-\frac{12}{13}$. Be sure to include any negative signs when labeling the sides of the reference triangles. Notice that for angle t, we use -12 to denote the length of the side that lies along the x-axis. See Figure 5.

Figure 5
In Figure 5(a), $y=3$ and $r=5$. We find x using the Pythagorean theorem.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \quad(\text { Appendix B) } \\
x^{2}+3^{2} & =5^{2} \quad \text { Substitute. } \\
x^{2} & =16 \\
x & =-4
\end{aligned}
$$

Thus, $\cos s=\frac{x}{r}=-\frac{4}{5}$.
In Figure 5 (b), $x=-12$ and $r=13$. We must find y.

$$
\begin{array}{rlrl}
x^{2}+y^{2} & =r^{2} & \text { Pythagorean theorem } \\
(-12)^{2}+y^{2} & =13^{2} & & \text { Substitute. } \\
y^{2} & =25 & \\
y & =5 & \begin{array}{c}
\text { Choose the positive } \\
\text { square root here. }
\end{array}
\end{array}
$$

Thus, $\sin t=\frac{y}{r}=\frac{5}{13}$.
Now we can find $\cos (s+t)$.

$$
\begin{aligned}
\cos (s+t) & =\cos s \cos t-\sin s \sin t & & \text { Cosine sum identity (1) } \\
& =-\frac{4}{5}\left(-\frac{12}{13}\right)-\frac{3}{5} \cdot \frac{5}{13} & & \text { Substitute. } \\
& =\frac{48}{65}-\frac{15}{65} & & \text { Multiply. } \\
& =\frac{33}{65} & & \text { Subtract. }
\end{aligned}
$$

Method 2 We use Pythagorean identities here. To find $\cos s$, recall that $\sin ^{2} s+\cos ^{2} s=1$, where s is in quadrant II.

$$
\begin{array}{rlrl}
\left(\frac{3}{5}\right)^{2}+\cos ^{2} s & =1 \quad \sin s=\frac{3}{5} \\
\frac{9}{25}+\cos ^{2} s & =1 \quad \text { Square. } \\
\cos ^{2} s & =\frac{16}{25} \quad \text { Subtract } \frac{9}{25} . \\
\cos s & =-\frac{4}{5} & \begin{array}{c}
\cos s<0 \text { because } s \\
\text { is in quadrant II. }
\end{array}
\end{array}
$$

To find $\sin t$, we use $\sin ^{2} t+\cos ^{2} t=1$, where t is in quadrant II.

$$
\begin{array}{rlrl}
\sin ^{2} t+\left(-\frac{12}{13}\right)^{2} & =1 & & \cos t=-\frac{12}{13} \\
\sin ^{2} t+\frac{144}{169} & =1 & \text { Square. } \\
\sin ^{2} t & =\frac{25}{169} & \text { Subtract } \frac{144}{169} . \\
\sin t & =\frac{5}{13} & \begin{array}{c}
\sin t>0 \text { because } t \\
\text { is in quadrant II. }
\end{array}
\end{array}
$$

From this point, the problem is solved by using the same steps beginning with the equation marked (1) in Method 1 on the previous page. The result is

$$
\cos (s+t)=\frac{33}{65} . \quad \text { Same result as in Method } 1
$$

Now Try Exercise 51.

EXAMPLE 5 Applying the Cosine Difference Identity to Voltage

Common household electric current is called alternating current because the current alternates direction within the wires. The voltage V in a typical 115-volt outlet can be expressed by the function

$$
V(t)=163 \sin \omega t
$$

where ω is the angular speed (in radians per second) of the rotating generator at the electrical plant and t is time measured in seconds. (Source: Bell, D., Fundamentals of Electric Circuits, Fourth Edition, Prentice-Hall.)
(a) It is essential for electric generators to rotate at precisely 60 cycles per sec so household appliances and computers will function properly. Determine ω for these electric generators.
(b) Graph V in the window $[0,0.05]$ by $[-200,200]$.
(c) Determine a value of ϕ so that the graph of

$$
V(t)=163 \cos (\omega t-\phi)
$$

is the same as the graph of $V(t)=163 \sin \omega t$.

SOLUTION

(a) Each cycle is 2π radians at 60 cycles per sec, so the angular speed is

$$
\omega=60(2 \pi)=120 \pi \text { radians per sec. }
$$

(b)

$$
\begin{aligned}
& V(t)=163 \sin \omega t \\
& V(t)=163 \sin 120 \pi t \quad \text { From part (a), } \omega=120 \pi \text { radians per sec. }
\end{aligned}
$$

Because the amplitude of the function $V(t)$ is 163 (from Section 4.1), $[-200,200]$ is an appropriate interval for the range, as shown in the graph in Figure 6.

Figure 6
(c) Using the negative-angle identity for cosine and a cofunction identity gives

$$
\cos \left(x-\frac{\pi}{2}\right)=\cos \left[-\left(\frac{\pi}{2}-x\right)\right]=\cos \left(\frac{\pi}{2}-x\right)=\sin x
$$

Therefore, if $\phi=\frac{\pi}{2}$, then

$$
V(t)=163 \cos (\omega t-\phi)=163 \cos \left(\omega t-\frac{\pi}{2}\right)=163 \sin \omega t
$$

Now Try Exercise 75.

Verifying an Identity

EXAMPLE 6 Verifying an Identity

Verify that the following equation is an identity.

$$
\sec \left(\frac{3 \pi}{2}-x\right)=-\csc x
$$

SOLUTION We work with the more complicated left side.

$$
\begin{array}{rlrl}
\sec \left(\frac{3 \pi}{2}-x\right) & =\frac{1}{\cos \left(\frac{3 \pi}{2}-x\right)} & & \text { Reciprocal identity } \\
& =\frac{1}{\cos \frac{3 \pi}{2} \cos x+\sin \frac{3 \pi}{2} \sin x} & & \text { Cosine difference identity } \\
& =\frac{1}{0 \cdot \cos x+(-1) \sin x} & & \cos \frac{3 \pi}{2}=0 \text { and } \sin \frac{3 \pi}{2}=-1 \\
& =\frac{1}{-\sin x} & & \text { Simplify. } \\
& =-\csc x & \text { Reciprocal identity }
\end{array}
$$

The left side is identical to the right side, so the given equation is an identity.

5.3 Exercises

Concept Check Match each expression in Column I with the correct expression in Column II to form an identity. Choices may be used once, more than once, or not at all.

I

1. $\cos (x+y)=$ \qquad
2. $\cos (x-y)=$ \qquad
3. $\cos \left(\frac{\pi}{2}-x\right)=$ \qquad
\qquad
\qquad
\qquad
4. $\sin \left(\frac{\pi}{2}-x\right)=$
5. $\sin \left(x-\frac{\pi}{2}\right)=$,

II

B. $\cos x$
C. $-\cos x$
D. $-\sin x$
E. $\sin x$
A. $\cos x \cos y+\sin x \sin y$
F. $\cos x \cos y-\sin x \sin y$

Use identities to find each exact value. (Do not use a calculator.) See Example 1.
7. $\cos 75^{\circ}$
8. $\cos \left(-15^{\circ}\right)$
9. $\cos \left(-105^{\circ}\right)$
10. $\cos 105^{\circ}$
(Hint: $\left.-105^{\circ}=-60^{\circ}+\left(-45^{\circ}\right)\right)$
(Hint: $105^{\circ}=60^{\circ}+45^{\circ}$)
11. $\cos \frac{7 \pi}{12}$
12. $\cos \left(\frac{\pi}{12}\right)$
13. $\cos \left(-\frac{\pi}{12}\right)$
14. $\cos \left(-\frac{7 \pi}{12}\right)$
15. $\cos 40^{\circ} \cos 50^{\circ}-\sin 40^{\circ} \sin 50^{\circ}$
16. $\cos \frac{7 \pi}{9} \cos \frac{2 \pi}{9}-\sin \frac{7 \pi}{9} \sin \frac{2 \pi}{9}$

Use a graphing or scientific calculator to support your answer for each of the following. See Example 1.

17. Exercise 15

18. Exercise 16

Write each function value in terms of the cofunction of a complementary angle. See Example 2.
19. $\tan 87^{\circ}$
20. $\sin 15^{\circ}$
21. $\cos \frac{\pi}{12}$
22. $\sin \frac{2 \pi}{5}$
23. $\csc \left(14^{\circ} 24^{\prime}\right)$
24. $\sin 142^{\circ} 14^{\prime}$
25. $\sin \frac{5 \pi}{8}$
26. $\cot \frac{9 \pi}{10}$
27. $\sec 146^{\circ} 42^{\prime}$
28. $\tan 174^{\circ} 03^{\prime}$
29. $\cot 176.9814^{\circ}$
30. $\sin 98.0142^{\circ}$

Use identities to fill in each blank with the appropriate trigonometric function name. See Example 2.
31. $\cot \frac{\pi}{3}=$ \qquad
32. $\sin \frac{2 \pi}{3}=$ \qquad
33. $\quad 33^{\circ}=\sin 57^{\circ}$
34. \qquad $72^{\circ}=\cot 18^{\circ}$
35. $\cos 70^{\circ}=\frac{1}{-\quad 20^{\circ}}$
36. $\tan 24^{\circ}=\frac{1}{-66^{\circ}}$

Find one angle θ that satisfies each of the following. See Example 2.
37. $\tan \theta=\cot \left(45^{\circ}+2 \theta\right)$
38. $\sin \theta=\cos \left(2 \theta+30^{\circ}\right)$
39. $\sec \theta=\csc \left(\frac{\theta}{2}+20^{\circ}\right)$
40. $\cos \theta=\sin \left(\frac{\theta}{4}+3^{\circ}\right)$
41. $\sin \left(3 \theta-15^{\circ}\right)=\cos \left(\theta+25^{\circ}\right)$
42. $\cot \left(\theta-10^{\circ}\right)=\tan \left(2 \theta-20^{\circ}\right)$

Use the identities for the cosine of a sum or difference to write each expression as a function of θ. See Example 3.
43. $\cos \left(0^{\circ}-\theta\right)$
44. $\cos \left(90^{\circ}-\theta\right)$
45. $\cos \left(\theta-180^{\circ}\right)$
46. $\cos \left(\theta-270^{\circ}\right)$
47. $\cos \left(0^{\circ}+\theta\right)$
48. $\cos \left(90^{\circ}+\theta\right)$
49. $\cos \left(180^{\circ}+\theta\right)$
50. $\cos \left(270^{\circ}+\theta\right)$

Find $\cos (s+t)$ and $\cos (s-t)$. See Example 4.
51. $\sin s=\frac{3}{5}$ and $\sin t=-\frac{12}{13}, s$ in quadrant I and t in quadrant III
52. $\cos s=-\frac{8}{17}$ and $\cos t=-\frac{3}{5}, s$ and t in quadrant III
53. $\cos s=-\frac{1}{5}$ and $\sin t=\frac{3}{5}, s$ and t in quadrant II
54. $\sin s=\frac{2}{3}$ and $\sin t=-\frac{1}{3}, s$ in quadrant II and t in quadrant IV
55. $\sin s=\frac{\sqrt{5}}{7}$ and $\sin t=\frac{\sqrt{6}}{8}, s$ and t in quadrant I
56. $\cos s=\frac{\sqrt{2}}{4}$ and $\sin t=-\frac{\sqrt{5}}{6}, s$ and t in quadrant IV

Concept Check Determine whether each statement is true or false.
57. $\cos 42^{\circ}=\cos \left(30^{\circ}+12^{\circ}\right)$
58. $\cos \left(-24^{\circ}\right)=\cos 16^{\circ}-\cos 40^{\circ}$
59. $\cos 74^{\circ}=\cos 60^{\circ} \cos 14^{\circ}+\sin 60^{\circ} \sin 14^{\circ}$
60. $\cos 140^{\circ}=\cos 60^{\circ} \cos 80^{\circ}-\sin 60^{\circ} \sin 80^{\circ}$
61. $\cos \frac{\pi}{3}=\cos \frac{\pi}{12} \cos \frac{\pi}{4}-\sin \frac{\pi}{12} \sin \frac{\pi}{4}$
62. $\cos \frac{2 \pi}{3}=\cos \frac{11 \pi}{12} \cos \frac{\pi}{4}+\sin \frac{11 \pi}{12} \sin \frac{\pi}{4}$
63. $\cos 70^{\circ} \cos 20^{\circ}-\sin 70^{\circ} \sin 20^{\circ}=0$
64. $\cos 85^{\circ} \cos 40^{\circ}+\sin 85^{\circ} \sin 40^{\circ}=\frac{\sqrt{2}}{2}$
65. $\tan \left(x-\frac{\pi}{2}\right)=\cot x$
66. $\sin \left(x-\frac{\pi}{2}\right)=\cos x$

Verify that each equation is an identity. See Example 6.
67. $\cos \left(\frac{\pi}{2}+x\right)=-\sin x$
68. $\sec (\pi-x)=-\sec x$
69. $\cos 2 x=\cos ^{2} x-\sin ^{2} x \quad$ (Hint: $\cos 2 x=\cos (x+x)$.)
70. $1+\cos 2 x-\cos ^{2} x=\cos ^{2} x \quad$ (Hint: Use the result from Exercise 69.)

Relating Concepts

For individual or collaborative investigation (Exercises 71-74)
The identities for $\cos (A+B)$ and $\cos (A-B)$ can be used to find exact values of expressions like $\cos 195^{\circ}$ and $\cos 255^{\circ}$, where the angle is not in the first quadrant. Work Exercises 71-74 in order, to see how this is done.
71. By writing 195° as $180^{\circ}+15^{\circ}$, use the identity for $\cos (A+B)$ to express $\cos 195^{\circ}$ as $-\cos 15^{\circ}$.
72. Use the identity for $\cos (A-B)$ to find $-\cos 15^{\circ}$.
73. By the results of Exercises 71 and 72, $\cos 195^{\circ}=$ \qquad -.
74. Find each exact value using the method shown in Exercises 71-73.
(a) $\cos 255^{\circ}$
(b) $\cos \frac{11 \pi}{12}$
(Modeling) Solve each problem. See Example 5.
75. Electric Current Refer to Example 5.
(a) How many times does the current oscillate in 0.05 sec ?
(b) What are the maximum and minimum voltages in this outlet? Is the voltage always equal to 115 volts?
76. Sound Waves Sound is a result of waves applying pressure to a person's eardrum. For a pure sound wave radiating outward in a spherical shape, the trigonometric function

$$
P=\frac{a}{r} \cos \left(\frac{2 \pi r}{\lambda}-c t\right)
$$

can be used to model the sound pressure at a radius of r feet from the source, where t is time in seconds, λ is length of the sound wave in feet,
 c is speed of sound in feet per second, and a is maximum sound pressure at the source measured in pounds per square foot. (Source: Beranek, L., Noise and Vibration Control, Institute of Noise Control Engineering, Washington, D.C.) Let $\lambda=4.9 \mathrm{ft}$ and $c=1026 \mathrm{ft}$ per sec.
(a) Let $a=0.4 \mathrm{lb}$ per ft^{2}. Graph the sound pressure at distance $r=10 \mathrm{ft}$ from its source in the window $[0,0.05]$ by $[-0.05,0.05]$. Describe P at this distance.
(b) Now let $a=3$ and $t=10$. Graph the sound pressure in the window $[0,20]$ by $[-2,2]$. What happens to pressure P as radius r increases?
(c) Suppose a person stands at a radius r so that $r=n \lambda$, where n is a positive integer. Use the difference identity for cosine to simplify P in this situation.

Relating Concepts

For individual or collaborative investigation (Exercises 77-82)
(This discussion applies to functions of both angles and real numbers.) The result of Example 3 in this section can be written as an identity.

$$
\cos \left(180^{\circ}-\theta\right)=-\cos \theta
$$

This is an example of a reduction formula, which is an identity that reduces a function of a quadrantal angle plus or minus θ to a function of θ alone. Another example of a reduction formula is

$$
\cos \left(270^{\circ}+\theta\right)=\sin \theta
$$

Here is an interesting method for quickly determining a reduction formula for a trigonometric function f of the form $f(Q \pm \theta)$, where Q is a quadrantal angle. There are two cases to consider, and in each case, think of θ as a small positive angle in order to determine the quadrant in which $Q \pm \theta$ will lie.

Case 1 Suppose that Q is a quadrantal angle whose terminal side lies along the x-axis. Determine the quadrant in which $Q \pm \theta$ will lie for a small positive angle θ. If the given function f is positive in that quadrant, use a + sign on the reduced form. If f is negative in that quadrant, use $\mathrm{a}-$ sign. The reduced form will have that sign, f as the function, and θ as the argument. For example:

Case 2 Suppose that Q is a quadrantal angle whose terminal side lies along the y-axis. Determine the quadrant in which $Q \pm \theta$ will lie for a small positive angle θ. If the given function f is positive in that quadrant, use a + sign on the reduced form. If f is negative in that quadrant, use $\mathrm{a}-$ sign. The reduced form will have that sign, the cofunction of \boldsymbol{f} as the function, and θ as the argument. For example:

Use these ideas to write reduction formulas for the following. (Those involving sine and tangent can be verified after the introduction of the identities in Section 5.4.)
77. $\cos \left(90^{\circ}+\theta\right)$
78. $\cos \left(270^{\circ}-\theta\right)$
79. $\cos \left(180^{\circ}+\theta\right)$
80. $\cos \left(270^{\circ}+\theta\right)$
81. $\sin \left(180^{\circ}+\theta\right)$
82. $\tan \left(270^{\circ}-\theta\right)$

5.4 Sum and Difference Identities for Sine and Tangent

- Sum and Difference Identities for Sine
- Sum and Difference Identities for Tangent
- Applying the Sum and Difference Identities
- Verifying an Identity

Sum and Difference Identities for Sine We can use the cosine sum and difference identities from the previous section to derive similar identities for sine and tangent. In $\sin \theta=\cos \left(90^{\circ}-\theta\right)$, replace θ with $A+B$.

$$
\begin{array}{rlrl}
\sin (A+B) & =\cos \left[90^{\circ}-(A+B)\right] & & \text { Cofunction identity (Section 5.3) } \\
& =\cos \left[\left(90^{\circ}-A\right)-B\right] & & \text { Distribute negative sign and regroup. } \\
& =\cos \left(90^{\circ}-A\right) \cos B+\sin \left(90^{\circ}-A\right) \sin B \\
\sin (\boldsymbol{A}+\boldsymbol{B}) & & \sin \boldsymbol{A} \cos \boldsymbol{B}+\cos \boldsymbol{A} \sin \boldsymbol{B} & \text { Cosine difference identity (Section 5.3) } \\
\text { Cofunction identities }
\end{array}
$$

Now we write $\sin (A-B)$ as $\sin [A+(-B)]$ and use the identity just found for $\sin (A+B)$.

$$
\begin{array}{rlrl}
\sin (A-B) & =\sin [A+(-B)] & & \text { Definition of subtraction } \\
& =\sin A \cos (-B)+\cos A \sin (-B) & & \text { Sine sum identity } \\
\sin (\boldsymbol{A}-\boldsymbol{B}) & =\sin \boldsymbol{A} \cos \boldsymbol{B}-\cos \boldsymbol{A} \sin \boldsymbol{B} & & \text { Negative-angle identities } \\
\text { (Section 5.1) }
\end{array}
$$

Sine of a Sum or Difference

$$
\begin{aligned}
\sin (A+B) & =\sin A \cos B+\cos A \sin B \\
\sin (A-B) & =\sin A \cos B-\cos A \sin B
\end{aligned}
$$

Sum and Difference Identities for Tangent We can now derive the identity for $\tan (A+B)$ as follows.

$$
\tan (A+B)=\frac{\sin (A+B)}{\cos (A+B)} \quad \begin{align*}
& \text { Fundamental identity } \tag{Section5.1}\\
& (\text { Section } 5.1)
\end{align*}
$$

$$
\begin{aligned}
& \begin{array}{c}
\begin{array}{c}
\text { We express this } \\
\text { result in terms of the } \\
\text { tangent function. }
\end{array} \quad=\frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B-\sin A \sin B} \quad \text { Sum identities }
\end{array} \\
& =\frac{\frac{\sin A \cos B+\cos A \sin B}{1}}{\frac{\cos A \cos B-\sin A \sin B}{1}} \cdot \frac{\frac{1}{\cos A \cos B}}{\frac{1}{\cos A \cos B}} \quad \begin{array}{l}
\text { Multiply by 1, where } \\
1=\frac{\frac{1}{\cos A \cos B}}{\frac{1}{\cos A \cos B}} .
\end{array} \\
& =\frac{\frac{\sin A \cos B}{\cos A \cos B}+\frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B}-\frac{\sin A \sin B}{\cos A \cos B}} \quad \begin{array}{c}
\text { Multiply numerators and } \\
\text { multiply denominators. }
\end{array} \\
& =\frac{\frac{\sin A}{\cos A}+\frac{\sin B}{\cos B}}{1-\frac{\sin A}{\cos A} \cdot \frac{\sin B}{\cos B}} \\
& \text { Simplify. } \\
& \boldsymbol{\operatorname { t a n }}(\boldsymbol{A}+\boldsymbol{B})=\frac{\boldsymbol{\operatorname { t a n } \boldsymbol { A } + \boldsymbol { \operatorname { t a n } } \boldsymbol { B }}}{\boldsymbol{1}-\boldsymbol{\operatorname { t a n } \boldsymbol { A } \operatorname { t a n } \boldsymbol { B }}} \quad \frac{\sin \theta}{\cos \theta}=\tan \theta
\end{aligned}
$$

We can replace B with $-B$ and use the fact that $\tan (-B)=-\tan B$ to obtain the identity for the tangent of the difference of two angles, as seen below.

Tangent of a Sum or Difference

$$
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \quad \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
$$

Applying the Sum and Difference Identities

EXAMPLE 1 Finding Exact Sine and Tangent Function Values

Find the exact value of each expression.
(a) $\sin 75^{\circ}$
(b) $\tan \frac{7 \pi}{12}$
(c) $\sin 40^{\circ} \cos 160^{\circ}-\cos 40^{\circ} \sin 160^{\circ}$

SOLUTION

(a) $\sin 75^{\circ}$

$$
\begin{array}{ll}
=\sin \left(45^{\circ}+30^{\circ}\right) & 75^{\circ}=45^{\circ}+30^{\circ} \\
=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ} & \\
\text { Sine sum identity } \\
=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2} & \\
=\frac{\sqrt{6}+\sqrt{2}}{4} & \\
\text { (Substitute known values. } \\
= & \text { Multiply and then add fractions. }
\end{array}
$$

(b) $\tan \frac{7 \pi}{12}$

$$
\begin{array}{ll}
=\tan \left(\frac{\pi}{3}+\frac{\pi}{4}\right) & \frac{\pi}{3}=\frac{4 \pi}{12} \text { and } \frac{\pi}{4}=\frac{3 \pi}{12} \\
=\frac{\tan \frac{\pi}{3}+\tan \frac{\pi}{4}}{1-\tan \frac{\pi}{3} \tan \frac{\pi}{4}} & \text { Tangent sum identity }
\end{array}
$$

$$
=\frac{\sqrt{3}+1}{1-\sqrt{3} \cdot 1} \quad \begin{aligned}
& \text { Substitute known values. } \\
& (\text { Section 3.1) }
\end{aligned}
$$

$$
=\frac{\sqrt{3}+1}{1-\sqrt{3}} \cdot \frac{1+\sqrt{3}}{1+\sqrt{3}} \quad \text { Rationalize the denominator. }
$$

$$
=\frac{\sqrt{3}+3+1+\sqrt{3}}{1-3} \quad \begin{aligned}
& (a+b)(c+d)=a c+a d+b c+b d \\
& (a-b)(a+b)=a^{2}-b^{2}
\end{aligned}
$$

$$
=\frac{4+2 \sqrt{3}}{-2} \quad \text { Combine like terms. }
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Factor first. Then } \\
\text { divide out the } \\
\text { common factor. }
\end{array}
\end{gathered} \quad=\frac{2(2+\sqrt{3})}{2(-1)} \quad \text { Factor out } 2 \text {. }
$$

$$
=-2-\sqrt{3} \quad \text { Write in lowest terms. }
$$

(c) $\sin 40^{\circ} \cos 160^{\circ}-\cos 40^{\circ} \sin 160^{\circ}$

$$
\begin{array}{ll}
=\sin \left(40^{\circ}-160^{\circ}\right) & \\
=\operatorname{Sine~difference~identity~} \\
=\sin \left(-120^{\circ}\right) & \\
=-\operatorname{subtract.} \\
=-\frac{\sqrt{3}}{2} & \\
\text { Negative-angle identity } \\
& \\
\text { (Section } 2.2)
\end{array}
$$

EXAMPLE 2 Writing Functions as Expressions Involving Functions of $\boldsymbol{\theta}$

Write each function as an expression involving functions of θ.
(a) $\sin \left(30^{\circ}+\theta\right)$
(b) $\tan \left(45^{\circ}-\theta\right)$
(c) $\sin \left(180^{\circ}-\theta\right)$

SOLUTION

(a) $\sin \left(30^{\circ}+\theta\right)$

$$
\begin{array}{ll}
=\sin 30^{\circ} \cos \theta+\cos 30^{\circ} \sin \theta & \text { Sine sum identity } \\
=\frac{1}{2} \cos \theta+\frac{\sqrt{3}}{2} \sin \theta & \sin 30^{\circ}=\frac{1}{2} \text { and } \cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
=\frac{\cos \theta+\sqrt{3} \sin \theta}{2} & \text { Add. }
\end{array}
$$

(b) $\tan \left(45^{\circ}-\theta\right)$

$$
\begin{array}{ll}
=\frac{\tan 45^{\circ}-\tan \theta}{1+\tan 45^{\circ} \tan \theta} & \text { Tangent difference identity } \\
=\frac{1-\tan \theta}{1+1 \cdot \tan \theta} & \tan 45^{\circ}=1 \\
=\frac{1-\tan \theta}{1+\tan \theta} & \text { Multiply. }
\end{array}
$$

(c) $\sin \left(180^{\circ}-\theta\right)$

$$
\begin{array}{ll}
=\sin 180^{\circ} \cos \theta-\cos 180^{\circ} \sin \theta & \\
\text { Sine difference identity } \\
=0 \cdot \cos \theta-(-1) \sin \theta & \sin 180^{\circ}=0 \text { and } \cos 180^{\circ}=-1 \\
=\sin \theta & \text { Simplify. }
\end{array}
$$

Now Try Exercises 27, 33, and 37.

EXAMPLE 3 Finding Function Values and the Quadrant of $\boldsymbol{A}+\boldsymbol{B}$

Suppose that A and B are angles in standard position, with $\sin A=\frac{4}{5}$, $\frac{\pi}{2}<A<\pi$, and $\cos B=-\frac{5}{13}, \pi<B<\frac{3 \pi}{2}$. Find each of the following.
(a) $\sin (A+B)$
(b) $\tan (A+B)$
(c) the quadrant of $A+B$

SOLUTION
(a) The identity for $\sin (A+B)$ involves $\sin A, \cos A$, $\sin B$, and $\cos B$. We are given values of $\sin A$ and $\cos B$. We must find values of $\cos A$ and $\sin B$.

$$
\begin{array}{rlrl}
\sin ^{2} A+\cos ^{2} A & =1 & \text { Fundamental identity (Section 5.1) } \\
\left(\frac{4}{5}\right)^{2}+\cos ^{2} A & =1 & \sin A=\frac{4}{5} \\
\frac{16}{25}+\cos ^{2} A & =1 & \text { Square. } \\
\cos ^{2} A & =\frac{9}{25} & \text { Subtract } \frac{16}{25} . \\
\begin{array}{c}
\text { Pay attention } \\
\text { to signs. }
\end{array} & \cos A & =-\frac{3}{5} & \begin{array}{l}
\text { Take square roots (Appendix A). Since } \\
A
\end{array} \text { is in quadrant II, } \cos A<0 .
\end{array}
$$

In the same way, $\sin B=-\frac{12}{13}$. Now find $\sin (A+B)$.

$$
\begin{array}{rlrl}
\sin (A+B) & =\sin A \cos B+\cos A \sin B & & \text { Sine sum identity } \\
& =\frac{4}{5}\left(-\frac{5}{13}\right)+\left(-\frac{3}{5}\right)\left(-\frac{12}{13}\right) & \begin{array}{l}
\text { Substitute the given values for } \\
\sin A \text { and } \cos B \text { and the values } \\
\text { found for } \cos A \text { and } \sin B
\end{array} \\
& =-\frac{20}{65}+\frac{36}{65} & & \text { Multiply. } \\
\sin (A+B) & =\frac{16}{65} & & \text { Add. }
\end{array}
$$

(b) To find $\tan (A+B)$, use the values of sine and cosine from part (a), $\sin A=\frac{4}{5}$, $\cos A=-\frac{3}{5}, \sin B=-\frac{12}{13}$, and $\cos B=-\frac{5}{13}$, to get $\tan A$ and $\tan B$.

$$
\begin{array}{rlrl}
\tan A & =\frac{\sin A}{\cos A} & \tan B & =\frac{\sin B}{\cos B} \\
& =\frac{\frac{4}{5}}{-\frac{3}{5}} & =\frac{-\frac{12}{13}}{-\frac{5}{13}} \\
& =\frac{4}{5} \div\left(-\frac{3}{5}\right) & & =-\frac{12}{13} \div\left(-\frac{5}{13}\right) \\
\tan A & =\frac{4}{5} \cdot\left(-\frac{5}{3}\right), \quad \text { or } \quad-\frac{4}{3} & \tan B & =-\frac{12}{13} \cdot\left(-\frac{13}{5}\right), \quad \text { or } \frac{12}{5}
\end{array}
$$

Now use the identity for $\tan (A+B)$.

$$
\begin{aligned}
\tan (A+B) & =\frac{\tan A+\tan B}{1-\tan A \tan B} & & \text { Tangent sum identity } \\
& =\frac{\left(-\frac{4}{3}\right)+\frac{12}{5}}{1-\left(-\frac{4}{3}\right)\left(\frac{12}{5}\right)} & & \text { Substitute. } \\
& =\frac{\frac{16}{15}}{1+\frac{48}{15}} & & \text { Perform the indicated operations. } \\
& =\frac{\frac{16}{15}}{\frac{63}{15}} & & \text { Add terms in the denominator. } \\
& =\frac{16}{15} \div \frac{63}{15} & & \text { Simplify the complex fraction. } \\
& =\frac{16}{15} \cdot \frac{15}{63} & & \text { Definition of division } \\
\tan (A+B) & =\frac{16}{63} & & \text { Multiply. }
\end{aligned}
$$

(c) From parts (a) and (b),

$$
\sin (A+B)=\frac{16}{65} \text { and } \tan (A+B)=\frac{16}{63}
$$

and thus both are positive. Therefore, $A+B$ must be in quadrant I , since it is the only quadrant in which both sine and tangent are positive.

Verifying an Identity

EXAMPLE 4 Verifying an Identity Using Sum and Difference Identities

Verify that the equation is an identity.

$$
\sin \left(\frac{\pi}{6}+\theta\right)+\cos \left(\frac{\pi}{3}+\theta\right)=\cos \theta
$$

SOLUTION Work on the left side, using the sum identities for $\sin (A+B)$ and $\cos (A+B)$.

$$
\begin{aligned}
& \sin \left(\frac{\pi}{6}+\theta\right)+\cos \left(\frac{\pi}{3}+\theta\right) \\
& \quad=\left(\sin \frac{\pi}{6} \cos \theta+\cos \frac{\pi}{6} \sin \theta\right)+\left(\cos \frac{\pi}{3} \cos \theta-\sin \frac{\pi}{3} \sin \theta\right) \\
& \quad \text { Sine sum identity; cosine sum identity (Section 5.3) } \\
& \\
& =\left(\frac{1}{2} \cos \theta+\frac{\sqrt{3}}{2} \sin \theta\right)+\left(\frac{1}{2} \cos \theta-\frac{\sqrt{3}}{2} \sin \theta\right) \\
& \\
& =\frac{\sin \frac{\pi}{6}=\frac{1}{2} ; \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} ; \cos \frac{\pi}{3}=\frac{1}{2} ; \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}}{} \begin{array}{ll}
& =\cos \theta \quad \text { Add. }
\end{array} \quad . \quad \text { Simplify. }
\end{aligned}
$$

5.4

Concept Check Match each expression in Column I with its value in Column II. See Example 1.

I II

1. $\sin 15^{\circ}$
2. $\sin 105^{\circ}$
A. $\frac{\sqrt{6}+\sqrt{2}}{4}$
B. $\frac{-\sqrt{6}-\sqrt{2}}{4}$
3. $\tan 15^{\circ}$
4. $\tan 105^{\circ}$
C. $\frac{\sqrt{6}-\sqrt{2}}{4}$
D. $2+\sqrt{3}$
5. $\sin \left(-105^{\circ}\right)$
6. $\tan \left(-105^{\circ}\right)$
E. $2-\sqrt{3}$
F. $-2-\sqrt{3}$
7. Compare the formulas for $\sin (A-B)$ and $\sin (A+B)$. How do they differ? How are they alike?
8. Compare the formulas for $\tan (A-B)$ and $\tan (A+B)$. How do they differ? How are they alike?

Use identities to find each exact value. See Example 1.
9. $\sin \frac{5 \pi}{12}$
10. $\sin \frac{13 \pi}{12}$
11. $\tan \frac{\pi}{12}$
12. $\tan \frac{5 \pi}{12}$
13. $\sin \frac{7 \pi}{12}$
14. $\sin \frac{\pi}{12}$
15. $\sin \left(-\frac{7 \pi}{12}\right)$
16. $\sin \left(-\frac{5 \pi}{12}\right)$
17. $\tan \left(-\frac{5 \pi}{12}\right)$
18. $\tan \left(-\frac{7 \pi}{12}\right)$
19. $\sin 76^{\circ} \cos 31^{\circ}-\cos 76^{\circ} \sin 31^{\circ}$
20. $\sin 40^{\circ} \cos 50^{\circ}+\cos 40^{\circ} \sin 50^{\circ}$
21. $\frac{\tan 80^{\circ}+\tan 55^{\circ}}{1-\tan 80^{\circ} \tan 55^{\circ}}$
22. $\frac{\tan 80^{\circ}-\tan \left(-55^{\circ}\right)}{1+\tan 80^{\circ} \tan \left(-55^{\circ}\right)}$
23. $\frac{\tan 100^{\circ}+\tan 80^{\circ}}{1-\tan 100^{\circ} \tan 80^{\circ}}$
24. $\frac{\tan \frac{5 \pi}{12}+\tan \frac{\pi}{4}}{1-\tan \frac{5 \pi}{12} \tan \frac{\pi}{4}}$
25. $\sin \frac{\pi}{5} \cos \frac{3 \pi}{10}+\cos \frac{\pi}{5} \sin \frac{3 \pi}{10}$
26. $\sin 100^{\circ} \cos 10^{\circ}-\cos 100^{\circ} \sin 10^{\circ}$

Use identities to write each expression as a single function of x or θ. See Example 2.
27. $\cos \left(30^{\circ}+\theta\right)$
28. $\cos \left(\theta-30^{\circ}\right)$
29. $\cos \left(60^{\circ}+\theta\right)$
30. $\cos \left(45^{\circ}-\theta\right)$
31. $\cos \left(\frac{3 \pi}{4}-x\right)$
32. $\sin \left(45^{\circ}+\theta\right)$
33. $\tan \left(\theta+30^{\circ}\right)$
34. $\tan \left(\frac{\pi}{4}+x\right)$
35. $\sin \left(\frac{\pi}{4}+x\right)$
36. $\sin \left(\frac{3 \pi}{4}-x\right)$
37. $\sin \left(270^{\circ}-\theta\right)$
38. $\tan \left(180^{\circ}+\theta\right)$
39. $\tan (2 \pi-x)$
40. $\sin (\pi+x)$
41. $\tan (\pi-x)$
42. Why is it not possible to use the method of Example 2 to find a formula for $\tan \left(270^{\circ}-\theta\right) ?$
43. Why is it that standard trigonometry texts usually do not develop formulas for the cotangent, secant, and cosecant of the sum and difference of two numbers or angles?
44. Show that if A, B, and C are the angles of a triangle, then

$$
\sin (A+B+C)=0
$$

Use the given information to find (a) $\sin (s+t)$, (b) $\tan (s+t)$, and (c) the quadrant of $s+t$. See Example 3.
45. $\cos s=\frac{3}{5}$ and $\sin t=\frac{5}{13}, s$ and t in quadrant I
46. $\sin s=\frac{3}{5}$ and $\sin t=-\frac{12}{13}$, s in quadrant I and t in quadrant III
47. $\cos s=-\frac{8}{17}$ and $\cos t=-\frac{3}{5}, s$ and t in quadrant III
48. $\cos s=-\frac{15}{17}$ and $\sin t=\frac{4}{5}, s$ in quadrant II and t in quadrant I
49. $\sin s=\frac{2}{3}$ and $\sin t=-\frac{1}{3}, s$ in quadrant II and t in quadrant IV
50. $\cos s=-\frac{1}{5}$ and $\sin t=\frac{3}{5}, s$ and t in quadrant II

Find each exact value. Use an appropriate sum or difference identity.
51. $\sin 165^{\circ}$
52. $\sin 255^{\circ}$
53. $\tan 165^{\circ}$
54. $\tan 285^{\circ}$
55. $\tan \frac{11 \pi}{12}$
56. $\sin \left(-\frac{13 \pi}{12}\right)$

Graph each expression and use the graph to make a conjecture, predicting what might be an identity. Then verify your conjecture algebraically.
57. $\sin \left(\frac{\pi}{2}+\theta\right)$
58. $\sin \left(\frac{3 \pi}{2}+\theta\right)$
59. $\tan \left(\frac{\pi}{2}+\theta\right)$
60. $\tan \left(\frac{\pi}{2}-\theta\right)$

Verify that each equation is an identity. See Example 4.
61. $\sin 2 x=2 \sin x \cos x \quad$ (Hint: $\sin 2 x=\sin (x+x)$)
62. $\sin (x+y)+\sin (x-y)=2 \sin x \cos y$
63. $\sin \left(\frac{7 \pi}{6}+x\right)-\cos \left(\frac{2 \pi}{3}+x\right)=0$
64. $\tan (x-y)-\tan (y-x)=\frac{2(\tan x-\tan y)}{1+\tan x \tan y}$
65. $\frac{\cos (\alpha-\beta)}{\cos \alpha \sin \beta}=\tan \alpha+\cot \beta$
66. $\frac{\sin (s+t)}{\cos s \cos t}=\tan s+\tan t$
67. $\frac{\sin (x-y)}{\sin (x+y)}=\frac{\tan x-\tan y}{\tan x+\tan y}$
68. $\frac{\sin (x+y)}{\cos (x-y)}=\frac{\cot x+\cot y}{1+\cot x \cot y}$
69. $\frac{\sin (s-t)}{\sin t}+\frac{\cos (s-t)}{\cos t}=\frac{\sin s}{\sin t \cos t}$
70. $\frac{\tan (\alpha+\beta)-\tan \beta}{1+\tan (\alpha+\beta) \tan \beta}=\tan \alpha$

Relating Concepts

For individual or collaborative investigation (Exercises 71-76)

Refer to the figure on the left below. By the definition of $\tan \theta$,
$m=\tan \theta, \quad$ where m is the slope and θ is the angle of inclination of the line.
The following exercises, which depend on properties of triangles, refer to triangle ABC in the figure on the right below. Work Exercises 71-76 in order. Assume that all angles are measured in degrees.

71. In terms of β, what is the measure of angle $A B C$?
72. Use the fact that the sum of the angles in a triangle is 180° to express θ in terms of α and β.
73. Apply the formula for $\tan (A-B)$ to obtain an expression for $\tan \theta$ in terms of $\tan \alpha$ and $\tan \beta$.
74. Replace $\tan \alpha$ with m_{1} and $\tan \beta$ with m_{2} to obtain

$$
\tan \theta=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}} .
$$

In Exercises 75 and 76, use the result from Exercise 74 to find the acute angle between each pair of lines. (Note that the tangent of the angle will be positive.) Use a calculator and round to the nearest tenth of a degree.
75. $x+y=9, \quad 2 x+y=-1$
76. $5 x-2 y+4=0, \quad 3 x+5 y=6$
(Modeling) Solve each problem.
77. Back Stress If a person bends at the waist with a straight back making an angle of θ degrees with the horizontal, then the force F exerted on the back muscles can be modeled by the equation

$$
F=\frac{0.6 W \sin \left(\theta+90^{\circ}\right)}{\sin 12^{\circ}}
$$

where W is the weight of the person. (Source: Metcalf, H., Topics in Classical Biophysics, Prentice-Hall.)
(a) Calculate force F for $W=170 \mathrm{lb}$ and $\theta=30^{\circ}$.
(b) Use an identity to show that F is approximately equal to $2.9 W \cos \theta$.
(c) For what value of θ is F maximum?
78. Back Stress Refer to Exercise 77.
(a) Suppose a $200-\mathrm{lb}$ person bends at the waist so that $\theta=45^{\circ}$. Estimate the force exerted on the person's back muscles.
(b) Approximate graphically the value of θ that results in the back muscles exerting a force of 400 lb .
79. Voltage A coil of wire rotating in a magnetic field induces a voltage

$$
E=20 \sin \left(\frac{\pi t}{4}-\frac{\pi}{2}\right)
$$

Use an identity from this section to express this in terms of $\cos \frac{\pi t}{4}$.
80. Voltage of a Circuit When the two voltages

$$
V_{1}=30 \sin 120 \pi t \text { and } V_{2}=40 \cos 120 \pi t
$$

are applied to the same circuit, the resulting voltage V will be equal to their sum. (Source: Bell, D., Fundamentals of Electric Circuits, Second Edition, Reston Publishing Company.)
(a) Graph the sum in the window $[0,0.05]$ by $[-60,60]$.
(b) Use the graph to estimate values for a and ϕ so that $V=a \sin (120 \pi t+\phi)$.
(c) Use identities to verify that your expression for V is valid.
(Modeling) Roll of a Spacecraft The figure on the left below shows the three quantities that determine the motion of a spacecraft. A conventional three-dimensional spacecraft coordinate system is shown on the right.

Angle $Y O Q=\theta$ and $O Q=r$. The coordinates of Q are (x, y, z), where

$$
y=r \cos \theta \quad \text { and } \quad z=r \sin \theta
$$

When the spacecraft performs a rotation, it is necessary to find the coordinates in the spacecraft system after the rotation takes place. For example, suppose the spacecraft undergoes roll through angle R. The coordinates (x, y, z) of point Q become ($x^{\prime}, y^{\prime}, z^{\prime}$), the coordinates of the corresponding point Q^{\prime}. In the new reference system, $O Q^{\prime}=r$ and, since the roll is around the x-axis and angle $Y^{\prime} O Q^{\prime}=Y O Q=\theta$,

$$
x^{\prime}=x, \quad y^{\prime}=r \cos (\theta+R), \quad \text { and } \quad z^{\prime}=r \sin (\theta+R) .
$$

(Source: Kastner, B., Space Mathematics, NASA.)
81. Write y^{\prime} in terms of y, R, and z.
82. Write z^{\prime} in terms of y, R, and z.

Chapter 5 Ouiz (Sections 5.1-5.4)

1. If $\sin \theta=-\frac{7}{25}$ and θ is in quadrant IV, find the remaining five trigonometric function values of θ.
2. Express $\cot ^{2} x+\csc ^{2} x$ in terms of $\sin x$ and $\cos x$, and simplify.
3. Find the exact value of $\sin \left(-\frac{7 \pi}{12}\right)$.
4. Express $\cos \left(180^{\circ}-\theta\right)$ as a function of θ alone.
5. If $\cos A=\frac{3}{5}, \sin B=-\frac{5}{13}, 0<A<\frac{\pi}{2}$, and $\pi<B<\frac{3 \pi}{2}$, find each of the following.
(a) $\cos (A+B)$
(b) $\sin (A+B)$
(c) the quadrant of $A+B$
6. Express $\tan \left(\frac{3 \pi}{4}+x\right)$ as a function of x alone.

Verify each identity.
7. $\frac{1+\sin \theta}{\cot ^{2} \theta}=\frac{\sin \theta}{\csc \theta-1}$
8. $\sin \left(\frac{\pi}{3}+\theta\right)-\sin \left(\frac{\pi}{3}-\theta\right)=\sin \theta$
9. $\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin ^{4} \theta-\cos ^{4} \theta}=1$
10. $\frac{\cos (x+y)+\cos (x-y)}{\sin (x-y)+\sin (x+y)}=\cot x$

5.5 Double-Angle Identities

- Double-Angle Identities
- An Application
- Product-to-Sum and Sum-to-Product Identities

Double-Angle Identities When $A=B$ in the identities for the sum of two angles, the double-angle identities result. To derive an expression for $\cos 2 A$, we let $B=A$ in the identity $\cos (A+B)=\cos A \cos B-\sin A \sin B$.

$$
\begin{aligned}
\cos 2 A & =\cos (A+A) & & \\
& =\cos A \cos A-\sin A \sin A & & \text { Cosine sum identity (Section 5.3) } \\
\cos 2 \boldsymbol{A} & =\cos ^{2} \boldsymbol{A}-\sin ^{2} \boldsymbol{A} & & a \cdot a=a^{2}
\end{aligned}
$$

Two other useful forms of this identity can be obtained by substituting either $\cos ^{2} A=1-\sin ^{2} A$ or $\sin ^{2} A=1-\cos ^{2} A$. Replacing $\cos ^{2} A$ with the expression $1-\sin ^{2} A$ gives the following.

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A & & \text { From above } \\
& =\left(1-\sin ^{2} A\right)-\sin ^{2} A & & \text { Fundamental identity (Section 5.1) } \\
\cos \mathbf{2 A} & =\mathbf{1}-\mathbf{2} \sin ^{2} \boldsymbol{A} & & \text { Subtract. }
\end{aligned}
$$

LOOKING AHEAD TO CALCULUS

The identities

$$
\begin{aligned}
\cos 2 A & =1-2 \sin ^{2} A \\
\text { and } \quad \cos 2 A & =2 \cos ^{2} A-1
\end{aligned}
$$

can be rewritten as

$$
\begin{aligned}
\sin ^{2} A & =\frac{1}{2}(1-\cos 2 A) \\
\text { and } \quad \cos ^{2} A & =\frac{1}{2}(1+\cos 2 A)
\end{aligned}
$$

These identities are used to integrate the functions $f(A)=\sin ^{2} A$ and $g(A)=\cos ^{2} A$.

Replacing $\sin ^{2} A$ with $1-\cos ^{2} A$ gives a third form.

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A & & \\
& =\cos ^{2} A-\left(1-\cos ^{2} A\right) & & \text { Fundamental identity } \\
& =\cos ^{2} A-1+\cos ^{2} A & & \text { Distributive property } \\
\cos \mathbf{2 A} & =\mathbf{2} \cos ^{2} \boldsymbol{A}-\mathbf{1} & & \text { Add. }
\end{aligned}
$$

We find $\sin 2 A$ using $\sin (A+B)=\sin A \cos B+\cos A \sin B$, with $B=A$.

$$
\begin{aligned}
\sin 2 A & =\sin (A+A) & & \\
& =\sin A \cos A+\cos A \sin A & & \text { Sine sum identity (Section 5.4) } \\
\sin \mathbf{2 A} & =\mathbf{2} \sin \boldsymbol{A} \cos \boldsymbol{A} & & \text { Add. }
\end{aligned}
$$

Using the identity for $\tan (A+B)$, we find $\tan 2 A$.

$$
\begin{aligned}
\tan 2 A & =\tan (A+A) \\
& =\frac{\tan A+\tan A}{1-\tan A \tan A} \quad \text { Tangent sum identity (Section 5.4) } \\
\tan \mathbf{2 A} & =\frac{\mathbf{2} \tan \boldsymbol{A}}{\mathbf{1}-\tan ^{2} \boldsymbol{A}} \quad \text { Simplify. }
\end{aligned}
$$

NOTE In general, for a trigonometric function f,

$$
f(2 A) \neq 2 f(A)
$$

Double-Angle Identities

$$
\begin{array}{cc}
\cos 2 A=\cos ^{2} A-\sin ^{2} A & \cos 2 A=1-2 \sin ^{2} A \\
\cos 2 A=2 \cos ^{2} A-1 & \sin 2 A=2 \sin A \cos A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{array}
$$

EXAMPLE 1 Finding Function Values of $2 \boldsymbol{\theta}$ Given Information about $\boldsymbol{\theta}$

Given $\cos \theta=\frac{3}{5}$ and $\sin \theta<0$, find $\sin 2 \theta, \cos 2 \theta$, and $\tan 2 \theta$.
SOLUTION To find $\sin 2 \theta$, we must first find the value of $\sin \theta$.

$$
\begin{aligned}
\sin ^{2} \theta+\left(\frac{3}{5}\right)^{2} & =1 \\
\sin ^{2} \theta & =\frac{16}{25} \quad\left(\frac{3}{5}\right)^{2}=\frac{9}{25} ; \text { subtract } \frac{9}{25} .
\end{aligned}
$$

Pay attention
to signs here.
:---
negative square root $\operatorname{since} \sin \theta<0$.

Now use the double-angle identity for sine.

$$
\sin 2 \theta=2 \sin \theta \cos \theta=2\left(-\frac{4}{5}\right)\left(\frac{3}{5}\right)=-\frac{24}{25} \quad \sin \theta=-\frac{4}{5} \text { and } \cos \theta=\frac{3}{5}
$$

Now we find $\cos 2 \theta$, using the first of the double-angle identities for cosine.
$\left.\begin{array}{c}\text { Any of the three } \\ \text { forms may be used. }\end{array}\right) \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=\frac{9}{25}-\frac{16}{25}=-\frac{7}{25} \quad \cos \theta=\frac{3}{5}$ and $\sin \theta=-\frac{4}{5}$

The value of $\tan 2 \theta$ can be found in either of two ways. We can use the doubleangle identity and the fact that $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{-\frac{4}{5}}{\frac{3}{5}}=-\frac{4}{5} \div \frac{3}{5}=-\frac{4}{5} \cdot \frac{5}{3}=-\frac{4}{3}$.

$$
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{2\left(-\frac{4}{3}\right)}{1-\left(-\frac{4}{3}\right)^{2}}=\frac{-\frac{8}{3}}{-\frac{7}{9}}=\frac{24}{7}
$$

Alternatively, we can find $\tan 2 \theta$ by finding the quotient of $\sin 2 \theta$ and $\cos 2 \theta$.

$$
\tan 2 \theta=\frac{\sin 2 \theta}{\cos 2 \theta}=\frac{-\frac{24}{25}}{-\frac{7}{25}}=\frac{24}{7}
$$

Same result as above
Now Try Exercise 11.

EXAMPLE 2 Finding Function Values of $\boldsymbol{\theta}$ Given Information about $2 \boldsymbol{\theta}$

Find the values of the six trigonometric functions of θ if $\cos 2 \theta=\frac{4}{5}$ and $90^{\circ}<\theta<180^{\circ}$.

SOLUTION We must obtain a trigonometric function value of θ alone.

$$
\begin{array}{rlrl}
\cos 2 \theta & =1-2 \sin ^{2} \theta & & \text { Double-angle identity } \\
\frac{4}{5} & =1-2 \sin ^{2} \theta & & \cos 2 \theta=\frac{4}{5} \\
-\frac{1}{5} & =-2 \sin ^{2} \theta & & \text { Subtract } 1 \text { from each side. } \\
\frac{1}{10} & =\sin ^{2} \theta & & \text { Multiply by }-\frac{1}{2} . \\
\sin \theta & =\sqrt{\frac{1}{10}} & \begin{array}{l}
\text { Take square roots and choose } \\
\text { the positive square root since } \theta \\
\text { terminates in quadrant II. }
\end{array} \\
\sin \theta & =\frac{1}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}} & \begin{array}{l}
\text { Use the quotient rule and } \\
\text { rationalize the denominator. }
\end{array} \\
\sin \theta & =\frac{\sqrt{10}}{10} & & \sqrt{a} \cdot \sqrt{a}=a
\end{array}
$$

Figure 7

Now find values of $\cos \theta$ and $\tan \theta$ by sketching and labeling a right triangle in quadrant II. Since $\sin \theta=\frac{1}{\sqrt{10}}$, the triangle in Figure 7 is labeled accordingly. The Pythagorean theorem is used to find the remaining leg. Now,

$$
\begin{equation*}
\cos \theta=\frac{-3}{\sqrt{10}}=-\frac{3 \sqrt{10}}{10}, \quad \text { and } \quad \tan \theta=\frac{1}{-3}=-\frac{1}{3} . \tag{Section1.3}
\end{equation*}
$$

Find the other three functions using reciprocals.

$$
\csc \theta=\frac{1}{\sin \theta}=\sqrt{10}, \quad \sec \theta=\frac{1}{\cos \theta}=-\frac{\sqrt{10}}{3}, \quad \cot \theta=\frac{1}{\tan \theta}=-3
$$

EXAMPLE 3 Verifying a Double-Angle Identity

Verify that the following equation is an identity.

$$
\cot x \sin 2 x=1+\cos 2 x
$$

SOLUTION We start by working on the left side, using Hint 3 from Section 5.2 about writing all functions in terms of sine and cosine.

EXAMPLE 4 Simplifying Expressions Using Double-Angle Identities

Simplify each expression.
(a) $\cos ^{2} 7 x-\sin ^{2} 7 x$
(b) $\sin 15^{\circ} \cos 15^{\circ}$

SOLUTION

(a) This expression suggests one of the double-angle identities for cosine: $\cos 2 A=\cos ^{2} A-\sin ^{2} A$. Substitute $7 x$ for A.

$$
\cos ^{2} 7 x-\sin ^{2} 7 x=\cos 2(7 x)=\cos 14 x
$$

(b) If the expression $\sin 15^{\circ} \cos 15^{\circ}$ were

$$
2 \sin 15^{\circ} \cos 15^{\circ}
$$

we could apply the identity for $\sin 2 A$ directly because $\sin 2 A=2 \sin A \cos A$.

Now Try Exercises 37 and 39.

Identities involving larger multiples of the variable can be derived by repeated use of the double-angle identities and other identities.

EXAMPLE 5 Deriving a Multiple-Angle Identity

Write $\sin 3 x$ in terms of $\sin x$.

SOLUTION

$$
\begin{array}{rlr}
\sin 3 x & & \\
=\sin (2 x+x) & \begin{aligned}
\text { Use the simple fact } \\
\text { that } 3=2+1 \text { here. }
\end{aligned} & \\
=\sin 2 x \cos x+\cos 2 x \sin x & \begin{array}{l}
\text { Sine sum identity } \\
\text { (Section 5.4) }
\end{array} \\
=(2 \sin x \cos x) \cos x+\left(\cos ^{2} x-\sin ^{2} x\right) \sin x & & \text { Double-angle identitio } \\
=2 \sin x \cos ^{2} x+\cos ^{2} x \sin x-\sin ^{3} x & & \text { Multiply. } \\
=2 \sin x\left(1-\sin ^{2} x\right)+\left(1-\sin ^{2} x\right) \sin x-\sin ^{3} x & & \cos ^{2} x=1-\sin ^{2} x \\
=2 \sin x-2 \sin ^{3} x+\sin x-\sin ^{3} x-\sin ^{3} x & & \text { Distributive property } \\
=3 \sin x-4 \sin ^{3} x & & \text { Combine like terms. }
\end{array}
$$

Now Try Exercise 49.

An Application

EXAMPLE 6 Determining Wattage Consumption

If a toaster is plugged into a common household outlet, the wattage consumed is not constant. Instead, it varies at a high frequency according to the model

$$
W=\frac{V^{2}}{R}
$$

where V is the voltage and R is a constant that measures the resistance of the toaster in ohms. (Source: Bell, D., Fundamentals of Electric Circuits, Fourth Edition, Prentice-Hall.) Graph the wattage W consumed by a typical toaster

For $x=t$,

Figure 8 with $R=15$ and $V=163 \sin 120 \pi t$ in the window $[0,0.05]$ by $[-500,2000]$. How many oscillations are there?
SOLUTION Substituting the given values into the wattage equation gives

$$
W=\frac{V^{2}}{R}=\frac{(163 \sin 120 \pi t)^{2}}{15}
$$

To determine the range of W, we note that $\sin 120 \pi t$ has maximum value 1 , so the expression for W has maximum value $\frac{163^{2}}{15} \approx 1771$. The minimum value is 0 . The graph in Figure 8 shows that there are six oscillations.

Now Try Exercise 69.

Product-to-Sum and Sum-to-Product Identities We can add the identities for $\cos (A+B)$ and $\cos (A-B)$ to derive an identity useful in calculus.

$$
\begin{aligned}
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\cos (A-B) & =\cos A \cos B+\sin A \sin B \\
\hline \cos (A+B)+\cos (A-B) & =2 \cos A \cos B \\
\cos A \cos \boldsymbol{B} & =\frac{\mathbf{1}}{\mathbf{2}}[\cos (\boldsymbol{A}+\boldsymbol{B})+\cos (\boldsymbol{A}-\boldsymbol{B})]
\end{aligned}
$$

or

LOOKING AHEAD TO CALCULUS

The product-to-sum identities are used in calculus to find integrals of functions that are products of trigonometric functions. The classic calculus text by Earl Swokowski includes the following example:

Evaluate $\int \cos 5 x \cos 3 x d x$
The first solution line reads:
"We may write
$\cos 5 x \cos 3 x=\frac{1}{2}[\cos 8 x+\cos 2 x] .$,

Similarly, subtracting $\cos (A+B)$ from $\cos (A-B)$ gives

$$
\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]
$$

Using the identities for $\sin (A+B)$ and $\sin (A-B)$ in the same way, we obtain two more identities. Those and the previous ones are now summarized.

Product-to-Sum Identities

$$
\begin{aligned}
\cos A \cos B & =\frac{1}{2}[\cos (A+B)+\cos (A-B)] \\
\sin A \sin B & =\frac{1}{2}[\cos (A-B)-\cos (A+B)] \\
\sin A \cos B & =\frac{1}{2}[\sin (A+B)+\sin (A-B)] \\
\cos A \sin B & =\frac{1}{2}[\sin (A+B)-\sin (A-B)]
\end{aligned}
$$

EXAMPLE 7 Using a Product-to-Sum Identity

Write $4 \cos 75^{\circ} \sin 25^{\circ}$ as the sum or difference of two functions.

SOLUTION

$$
\begin{aligned}
& 4 \cos 75^{\circ} \sin 25^{\circ} \\
& \quad=4\left[\frac{1}{2}\left(\sin \left(75^{\circ}+25^{\circ}\right)-\sin \left(75^{\circ}-25^{\circ}\right)\right)\right] \begin{array}{l}
\text { Use the identity for } \cos A \sin B, \\
\text { with } A=75^{\circ} \text { and } B=25^{\circ} .
\end{array} \\
& =2 \sin 100^{\circ}-2 \sin 50^{\circ}
\end{aligned} \begin{aligned}
& \text { Simplify. }
\end{aligned}
$$

Now Try Exercise 57.

We can convert the product-to-sum identities into equivalent useful forms that enable us to write sums as products.

Sum-to-Product Identities

$$
\begin{aligned}
& \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
& \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) \\
& \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
& \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)
\end{aligned}
$$

EXAMPLE 8 Using a Sum-to-Product Identity

Write $\sin 2 \theta-\sin 4 \theta$ as a product of two functions.

SOLUTION

$$
\begin{array}{rlr}
\sin & 2 \theta-\sin 4 \theta & \\
=2 \cos \left(\frac{2 \theta+4 \theta}{2}\right) \sin \left(\frac{2 \theta-4 \theta}{2}\right) & \begin{array}{l}
\text { Use the identity for } \sin A-\sin B, \\
\text { with } A=2 \theta \text { and } B=4 \theta .
\end{array} \\
=2 \cos \frac{6 \theta}{2} \sin \left(\frac{-2 \theta}{2}\right) & \text { Simplify the numerators. } \\
=2 \cos 3 \theta \sin (-\theta) & \text { Divide. } \\
=-2 \cos 3 \theta \sin \theta & \sin (-\theta)=-\sin \theta \text { (Section 5.1) } \\
\checkmark \text { Now Try Exercise 63. }
\end{array}
$$

5.5 Exercises

Concept Check Match each expression in Column I with its value in Column II.
I

II

1. $2 \cos ^{2} 15^{\circ}-1$
2. $\frac{2 \tan 15^{\circ}}{1-\tan ^{2} 15^{\circ}}$
A. $\frac{1}{2}$
B. $\frac{\sqrt{2}}{2}$
3. $2 \sin 22.5^{\circ} \cos 22.5^{\circ}$
4. $\cos ^{2} \frac{\pi}{6}-\sin ^{2} \frac{\pi}{6}$
C. $\frac{\sqrt{3}}{2}$
D. $-\sqrt{3}$
5. $4 \sin \frac{\pi}{3} \cos \frac{\pi}{3}$
6. $\frac{2 \tan \frac{\pi}{3}}{1-\tan ^{2} \frac{\pi}{3}}$
E. $\frac{\sqrt{3}}{3}$
F. $\sqrt{3}$

Use identities to find values of the sine and cosine functions for each angle measure. See Examples 1 and 2.
7. 2θ, given $\sin \theta=\frac{2}{5}$ and $\cos \theta<0$
8. 2θ, given $\cos \theta=-\frac{12}{13}$ and $\sin \theta>0$
9. $2 x$, given $\tan x=2$ and $\cos x>0$
10. $2 x$, given $\tan x=\frac{5}{3}$ and $\sin x<0$
11. 2θ, given $\sin \theta=-\frac{\sqrt{5}}{7}$ and $\cos \theta>0$
12. 2θ, given $\cos \theta=\frac{\sqrt{3}}{5}$ and $\sin \theta>0$
13. θ, given $\cos 2 \theta=\frac{3}{5}$ and θ terminates in quadrant I
14. θ, given $\cos 2 \theta=\frac{3}{4}$ and θ terminates in quadrant III
15. θ, given $\cos 2 \theta=-\frac{5}{12}$ and $90^{\circ}<\theta<180^{\circ}$
16. θ, given $\cos 2 \theta=\frac{2}{3}$ and $90^{\circ}<\theta<180^{\circ}$

Verify that each equation is an identity. See Example 3.
17. $(\sin x+\cos x)^{2}=\sin 2 x+1$
18. $\sec 2 x=\frac{\sec ^{2} x+\sec ^{4} x}{2+\sec ^{2} x-\sec ^{4} x}$
19. $(\cos 2 x+\sin 2 x)^{2}=1+\sin 4 x$
20. $(\cos 2 x-\sin 2 x)^{2}=1-\sin 4 x$
21. $\tan 8 \theta-\tan 8 \theta \tan ^{2} 4 \theta=2 \tan 4 \theta$
22. $\sin 2 x=\frac{2 \tan x}{1+\tan ^{2} x}$
23. $\cos 2 \theta=\frac{2-\sec ^{2} \theta}{\sec ^{2} \theta}$
24. $\tan 2 \theta=\frac{-2 \tan \theta}{\sec ^{2} \theta-2}$
25. $\sin 4 x=4 \sin x \cos x \cos 2 x$
27. $\frac{2 \cos 2 \theta}{\sin 2 \theta}=\cot \theta-\tan \theta$
29. $\tan x+\cot x=2 \csc 2 x$
26. $\frac{1+\cos 2 x}{\sin 2 x}=\cot x$
28. $\cot 4 \theta=\frac{1-\tan ^{2} 2 \theta}{2 \tan 2 \theta}$
30. $\cos 2 x=\frac{1-\tan ^{2} x}{1+\tan ^{2} x}$
31. $1+\tan x \tan 2 x=\sec 2 x$
32. $\frac{\cot A-\tan A}{\cot A+\tan A}=\cos 2 A$
33. $\sin 2 A \cos 2 A=\sin 2 A-4 \sin ^{3} A \cos A$
34. $\sin 4 x=4 \sin x \cos x-8 \sin ^{3} x \cos x$
35. $\tan \left(\theta-45^{\circ}\right)+\tan \left(\theta+45^{\circ}\right)=2 \tan 2 \theta$
36. $\cot \theta \tan (\theta+\pi)-\sin (\pi-\theta) \cos \left(\frac{\pi}{2}-\theta\right)=\cos ^{2} \theta$

Use an identity to write each expression as a single trigonometric function value or as a single number. See Example 4.
37. $\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}$
38. $\frac{2 \tan 15^{\circ}}{1-\tan ^{2} 15^{\circ}}$
39. $1-2 \sin ^{2} 15^{\circ}$
40. $1-2 \sin ^{2} 22 \frac{1}{2}^{\circ}$
41. $2 \cos ^{2} 67 \frac{1}{2}^{\circ}-1$
42. $\cos ^{2} \frac{\pi}{8}-\frac{1}{2}$
43. $\frac{\tan 51^{\circ}}{1-\tan ^{2} 51^{\circ}}$
44. $\frac{\tan 34^{\circ}}{2\left(1-\tan ^{2} 34^{\circ}\right)}$
45. $\frac{1}{4}-\frac{1}{2} \sin ^{2} 47.1^{\circ}$
46. $\frac{1}{8} \sin 29.5^{\circ} \cos 29.5^{\circ}$
47. $\sin ^{2} \frac{2 \pi}{5}-\cos ^{2} \frac{2 \pi}{5}$
48. $\cos ^{2} 2 x-\sin ^{2} 2 x$

Express each function as a trigonometric function of x. See Example 5.
49. $\sin 4 x$
50. $\cos 3 x$
51. $\tan 3 x$
52. $\cos 4 x$

Graph each expression and use the graph to make a conjecture, predicting what might be an identity. Then verify your conjecture algebraically.
53. $\cos ^{4} x-\sin ^{4} x$
54. $\frac{4 \tan x \cos ^{2} x-2 \tan x}{1-\tan ^{2} x}$
55. $\frac{2 \tan x}{2-\sec ^{2} x}$
56. $\frac{\cot ^{2} x-1}{2 \cot x}$

Write each expression as a sum or difference of trigonometric functions. See Example 7.
57. $2 \sin 58^{\circ} \cos 102^{\circ}$
58. $2 \cos 85^{\circ} \sin 140^{\circ}$
59. $2 \sin \frac{\pi}{6} \cos \frac{\pi}{3}$
60. $5 \cos 3 x \cos 2 x$
61. $6 \sin 4 x \sin 5 x$
62. $8 \sin 7 x \sin 9 x$

Write each expression as a product of trigonometric functions. See Example 8.
63. $\cos 4 x-\cos 2 x$
64. $\cos 5 x+\cos 8 x$
65. $\sin 25^{\circ}+\sin \left(-48^{\circ}\right)$
66. $\sin 102^{\circ}-\sin 95^{\circ}$
67. $\cos 4 x+\cos 8 x$
68. $\sin 9 x-\sin 3 x$

(Modeling) Solve each problem. See Example 6.

69. Wattage Consumption Use an identity to determine values of a, c, and ω in Example 6 so that

$$
W=a \cos (\omega t)+c
$$

Check your answer by graphing both expressions for W on the same coordinate axes.
70. Amperage, Wattage, and Voltage Amperage is a measure of the amount of electricity that is moving through a circuit, whereas voltage is a measure of the force pushing the electricity. The wattage W consumed by an electrical device can be determined by calculating the product of the amperage I and voltage V. (Source: Wilcox, G. and C. Hesselberth, Electricity for Engineering Technology, Allyn \& Bacon.)

(a) A household circuit has voltage

$$
V=163 \sin 120 \pi t
$$

when an incandescent light bulb is turned on with amperage

$$
I=1.23 \sin 120 \pi t
$$

Graph the wattage $W=V I$ consumed by the light bulb in the window $[0,0.05]$ by $[-50,300]$.
(b) Determine the maximum and minimum wattages used by the light bulb.
(c) Use identities to determine values for a, c, and ω so that $W=a \cos (\omega t)+c$.
(d) Check your answer by graphing both expressions for W on the same coordinate axes.
(e) Use the graph to estimate the average wattage used by the light. For how many watts (to the nearest integer) do you think this incandescent light bulb is rated?

5.6 Half-Angle Identities

■ Half-Angle Identities

- Applying the Half-Angle Identities
- Verifying an Identity

Half-Angle Identities From the alternative forms of the identity for $\cos 2 A$, we derive identities for $\sin \frac{A}{2}, \cos \frac{A}{2}$, and $\tan \frac{A}{2}$. These are known as half-angle identities.

We derive the identity for $\sin \frac{A}{2}$ as follows.

$\cos 2 x=1-2 \sin ^{2} x$	Cosine double-angle identity (Section 5.5)	
Remember both the positive and negative square roots. $2 \sin ^{2} x=1-\cos 2 x$	Add $2 \sin ^{2} x$ and subtract $\cos 2 x$. $\sin x$$= \pm \sqrt{\frac{1-\cos 2 x}{2}}$	Divide by 2 and take square roots. (Appendix A)
$\sin \frac{\boldsymbol{A}}{\mathbf{2}}= \pm \sqrt{\frac{\mathbf{1 - \operatorname { c o s } \boldsymbol { A }}}{\mathbf{2}}}$	Let $2 x=A$, so $x=\frac{A}{2}$.	

The \pm sign in this identity indicates that the appropriate sign is chosen depending on the quadrant of $\frac{A}{2}$. For example, if $\frac{A}{2}$ is a quadrant III angle, we choose the negative sign because the sine function is negative in quadrant III.

We derive the identity for $\cos \frac{A}{2}$ using another double-angle identity.

$$
\begin{aligned}
\cos 2 x & =2 \cos ^{2} x-1 & & \begin{array}{l}
\text { Cosine double-angle identity } \\
\text { (Section 5.5) }
\end{array} \\
1+\cos 2 x & =2 \cos ^{2} x & & \text { Add 1. } \\
\cos ^{2} x & =\frac{1+\cos 2 x}{2} & & \text { Rewrite and divide by } 2 . \\
\cos x & = \pm \sqrt{\frac{1+\cos 2 x}{2}} & & \text { Take square roots. } \\
\cos \frac{\boldsymbol{A}}{2} & = \pm \sqrt{\frac{\mathbf{1 + \operatorname { c o s } \boldsymbol { A }}}{\mathbf{2}}} & & \text { Replace } x \text { with } \frac{A}{2} .
\end{aligned}
$$

An identity for $\tan \frac{A}{2}$ comes from the identities for $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$.

$$
\tan \frac{\boldsymbol{A}}{2}=\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}=\frac{ \pm \sqrt{\frac{1-\cos A}{2}}}{ \pm \sqrt{\frac{1+\cos A}{2}}}= \pm \sqrt{\frac{1-\cos A}{1+\cos A}}
$$

We derive an alternative identity for $\tan \frac{A}{2}$ using double-angle identities.

$$
\begin{aligned}
\tan \frac{A}{2} & =\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}=\frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{2 \cos ^{2} \frac{A}{2}} & & \begin{array}{l}
\text { Multiply by } 2 \cos \frac{A}{2} \text { in numerator } \\
\text { and denominator. }
\end{array} \\
& =\frac{\sin 2\left(\frac{A}{2}\right)}{1+\cos 2\left(\frac{A}{2}\right)} & & \begin{array}{l}
\text { Double-angle identities } \\
\text { (Section 5.5) }
\end{array} \\
\tan \frac{\boldsymbol{A}}{\mathbf{2}} & =\frac{\sin \boldsymbol{A}}{\mathbf{1}+\cos \boldsymbol{A}} & & \text { Simplify. }
\end{aligned}
$$

From the identity $\tan \frac{A}{2}=\frac{\sin A}{1+\cos A}$, we can also derive an equivalent identity.

$$
\tan \frac{A}{2}=\frac{1-\cos A}{\sin A}
$$

Half-Angle Identities

In the following identities, the symbol \pm indicates that the sign is chosen based on the function under consideration and the quadrant of $\frac{A}{2}$.

$$
\begin{gathered}
\cos \frac{A}{2}= \pm \sqrt{\frac{1+\cos A}{2}} \quad \sin \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{2}} \\
\tan \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{1+\cos A}} \quad \tan \frac{A}{2}=\frac{\sin A}{1+\cos A} \quad \tan \frac{A}{2}=\frac{1-\cos A}{\sin A}
\end{gathered}
$$

The final two identities for $\tan \frac{A}{2}$ do not require a sign choice. When using the other half-angle identities, select the plus or minus sign according to the quadrant in which $\frac{A}{2}$ terminates. For example, if an angle $A=324^{\circ}$, then $\frac{A}{2}=162^{\circ}$, which lies in quadrant II. So when $A=324^{\circ}, \cos \frac{A}{2}$ and $\tan \frac{A}{2}$ are negative, and $\sin \frac{A}{2}$ is positive.

Applying the Half-Angle Identities

EXAMPLE 1 Using a Half-Angle Identity to Find an Exact Value

Find the exact value of $\cos 15^{\circ}$ using the half-angle identity for cosine.

SOLUTION

$$
\begin{aligned}
& \cos 15^{\circ}= \cos \frac{1}{2}\left(30^{\circ}\right)=\sqrt{\frac{1+\cos 30^{\circ}}{2}} \\
& \text { Choose the positive square root. } \\
&=\sqrt{\frac{1+\frac{\sqrt{3}}{2}}{2}}=\sqrt{\frac{\left(1+\frac{\sqrt{3}}{2}\right) \cdot 2}{2 \cdot 2}}=\frac{\sqrt{2+\sqrt{3}}}{2} \\
& \text { Simplify the radicals. }
\end{aligned}
$$

Now Try Exercise 11.

EXAMPLE 2 Using a Half-Angle Identity to Find an Exact Value

Find the exact value of $\tan 22.5^{\circ}$ using the identity $\tan \frac{A}{2}=\frac{\sin A}{1+\cos A}$.
SOLUTION Since $22.5^{\circ}=\frac{1}{2}\left(45^{\circ}\right)$, replace A with 45°.

$$
\begin{aligned}
\tan 22.5^{\circ} & =\tan \frac{45^{\circ}}{2}=\frac{\sin 45^{\circ}}{1+\cos 45^{\circ}}=\frac{\frac{\sqrt{2}}{2}}{1+\frac{\sqrt{2}}{2}}=\frac{\frac{\sqrt{2}}{2}}{1+\frac{\sqrt{2}}{2}} \cdot \frac{2}{2} \\
& =\frac{\sqrt{2}}{2+\sqrt{2}}=\frac{\sqrt{2}}{2+\sqrt{2}} \cdot \frac{2-\sqrt{2}}{2-\sqrt{2}}=\frac{2 \sqrt{2}-2}{2} \quad \begin{array}{l}
\text { Rationalize the } \\
\text { denominator. }
\end{array} \\
& =\frac{2(\sqrt{2}-1)}{\int_{2}}=\sqrt{2}-1 \\
\begin{array}{l}
\text { Factor first, and then divide } \\
\text { out the common factor. }
\end{array} & \quad \text { Now Try Exercise } 13 .
\end{aligned}
$$

$\sin \frac{s}{2}=\sqrt{\frac{1-\frac{2}{3}}{2}}=\sqrt{\frac{1}{6}}=\frac{\sqrt{1}}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}=\frac{\sqrt{6}}{6}$

$$
\cos \frac{s}{2}=-\sqrt{\frac{1+\frac{2}{3}}{2}}=-\sqrt{\frac{5}{6}}=-\frac{\sqrt{5}}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}=-\frac{\sqrt{30}}{6}
$$

$$
\tan \frac{s}{2}=\frac{\sin \frac{s}{2}}{\cos \frac{s}{2}}=\frac{\frac{\sqrt{6}}{6}}{-\frac{\sqrt{30}}{6}}=\frac{\sqrt{6}}{-\sqrt{30}}=-\frac{\sqrt{6}}{\sqrt{30}} \cdot \frac{\sqrt{30}}{\sqrt{30}}=-\frac{\sqrt{180}}{30}=-\frac{6 \sqrt{5}}{6 \cdot 5}=-\frac{\sqrt{5}}{5}
$$

Notice that it is not necessary to use a half-angle identity for $\tan \frac{s}{2}$ once we find $\sin \frac{s}{2}$ and $\cos \frac{s}{2}$. However, using this identity provides an excellent check.

EXAMPLE 4 Simplifying Expressions Using the Half-Angle Identities

Simplify each expression.
(a) $\pm \sqrt{\frac{1+\cos 12 x}{2}}$
(b) $\frac{1-\cos 5 \alpha}{\sin 5 \alpha}$

SOLUTION
(a) This matches part of the identity for $\cos \frac{A}{2}$. Replace A with $12 x$ to get

$$
\cos \frac{A}{2}= \pm \sqrt{\frac{1+\cos A}{2}}= \pm \sqrt{\frac{1+\cos 12 x}{2}}=\cos \frac{12 x}{2}=\cos 6 x
$$

(b) Use the third identity for $\tan \frac{A}{2}$ given earlier with $A=5 \alpha$ to get

$$
\frac{1-\cos 5 \alpha}{\sin 5 \alpha}=\tan \frac{5 \alpha}{2}
$$

Now Try Exercises 37 and 39.

Verifying an Identity

EXAMPLE 5 Verifying an Identity

Verify that the following equation is an identity.

$$
\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}=1+\sin x
$$

SOLUTION We work on the more complicated left side.

$$
\begin{array}{rlr}
\left(\begin{array}{rl}
\left.\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2} & \begin{array}{c}
\text { Remember the term } \\
\text { 2ab when squaring } \\
\text { a binomial. }
\end{array} \\
& =\sin ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}+\cos ^{2} \frac{x}{2} \\
(a+b)^{2}=a^{2}+2 a b+b^{2} \\
& =1+2 \sin \frac{x}{2} \cos \frac{x}{2}
\end{array}\right. & \sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}=1 \\
& =1+\sin 2\left(\frac{x}{2}\right) & \text { Multiply. } \frac{x}{2} \cos \frac{x}{2}=\sin 2\left(\frac{x}{2}\right)
\end{array}
$$

Concept Check Determine whether the positive or the negative square root should be selected.

1. $\sin 195^{\circ}= \pm \sqrt{\frac{1-\cos 390^{\circ}}{2}}$
2. $\cos 58^{\circ}= \pm \sqrt{\frac{1+\cos 116^{\circ}}{2}}$
3. $\tan 225^{\circ}= \pm \sqrt{\frac{1-\cos 450^{\circ}}{1+\cos 450^{\circ}}}$
4. $\sin \left(-10^{\circ}\right)= \pm \sqrt{\frac{1-\cos \left(-20^{\circ}\right)}{2}}$

Match each expression in Column I with its value in Column II. See Examples 1 and 2.

I

II
5. $\sin 15^{\circ}$
6. $\tan 15^{\circ}$
A. $2-\sqrt{3}$
B. $\frac{\sqrt{2-\sqrt{2}}}{2}$
7. $\cos \frac{\pi}{8}$
8. $\tan \left(-\frac{\pi}{8}\right)$
C. $\frac{\sqrt{2-\sqrt{3}}}{2}$
D. $\frac{\sqrt{2+\sqrt{2}}}{2}$
9. $\tan 67.5^{\circ}$
10. $\cos 67.5^{\circ}$
E. $1-\sqrt{2}$
F. $1+\sqrt{2}$

Use a half-angle identity to find each exact value. See Examples 1 and 2.
11. $\sin 67.5^{\circ}$
12. $\sin 195^{\circ}$
13. $\tan 195^{\circ}$
14. $\cos 195^{\circ}$
15. $\cos 165^{\circ}$
16. $\sin 165^{\circ}$
17. Explain how you can use an identity of this section to find the exact value of $\sin 7.5^{\circ}$. (Hint: $7.5=\frac{1}{2}\left(\frac{1}{2}\right)(30)$.)
18. The half-angle identity

$$
\tan \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{1+\cos A}}
$$

can be used to find $\tan 22.5^{\circ}=\sqrt{3-2 \sqrt{2}}$, and the half-angle identity

$$
\tan \frac{A}{2}=\frac{\sin A}{1+\cos A}
$$

can be used to find $\tan 22.5^{\circ}=\sqrt{2}-1$. Show that these answers are the same, without using a calculator. (Hint: If $a>0$ and $b>0$ and $a^{2}=b^{2}$, then $a=b$.)

Find each of the following. See Example 3.

19. $\cos \frac{x}{2}$, given $\cos x=\frac{1}{4}$, with $0<x<\frac{\pi}{2}$
20. $\sin \frac{x}{2}$, given $\cos x=-\frac{5}{8}$, with $\frac{\pi}{2}<x<\pi$
21. $\tan \frac{\theta}{2}$, given $\sin \theta=\frac{3}{5}$, with $90^{\circ}<\theta<180^{\circ}$
22. $\cos \frac{\theta}{2}$, given $\sin \theta=-\frac{4}{5}$, with $180^{\circ}<\theta<270^{\circ}$
23. $\sin \frac{x}{2}$, given $\tan x=2$, with $0<x<\frac{\pi}{2}$
24. $\cos \frac{x}{2}$, given $\cot x=-3$, with $\frac{\pi}{2}<x<\pi$
25. $\tan \frac{\theta}{2}$, given $\tan \theta=\frac{\sqrt{7}}{3}$, with $180^{\circ}<\theta<270^{\circ}$
26. $\cot \frac{\theta}{2}$, given $\tan \theta=-\frac{\sqrt{5}}{2}$, with $90^{\circ}<\theta<180^{\circ}$
27. $\sin \theta$, given $\cos 2 \theta=\frac{3}{5}$ and θ terminates in quadrant I
28. $\cos \theta$, given $\cos 2 \theta=\frac{1}{2}$ and θ terminates in quadrant II
29. $\cos x$, given $\cos 2 x=-\frac{5}{12}$, with $\frac{\pi}{2}<x<\pi$
30. $\sin x$, given $\cos 2 x=\frac{2}{3}$, with $\pi<x<\frac{3 \pi}{2}$
31. Concept Check If $\cos x \approx 0.9682$ and $\sin x=0.25$, then $\tan \frac{x}{2} \approx$ \qquad
32. Concept Check If $\cos x=-0.75$ and $\sin x \approx 0.6614$, then $\tan \frac{x}{2} \approx$ \qquad
Use an identity to write each expression as a single trigonometric function. See Example 4.
33. $\sqrt{\frac{1-\cos 40^{\circ}}{2}}$
34. $\sqrt{\frac{1+\cos 76^{\circ}}{2}}$
35. $\sqrt{\frac{1-\cos 147^{\circ}}{1+\cos 147^{\circ}}}$
36. $\sqrt{\frac{1+\cos 165^{\circ}}{1-\cos 165^{\circ}}}$
37. $\frac{1-\cos 59.74^{\circ}}{\sin 59.74^{\circ}}$
38. $\frac{\sin 158.2^{\circ}}{1+\cos 158.2^{\circ}}$
39. $\pm \sqrt{\frac{1+\cos 18 x}{2}}$
40. $\pm \sqrt{\frac{1+\cos 20 \alpha}{2}}$
41. $\pm \sqrt{\frac{1-\cos 8 \theta}{1+\cos 8 \theta}}$
42. $\pm \sqrt{\frac{1-\cos 5 A}{1+\cos 5 A}}$
43. $\pm \sqrt{\frac{1+\cos \frac{x}{4}}{2}}$
44. $\pm \sqrt{\frac{1-\cos \frac{3 \theta}{5}}{2}}$

Verify that each equation is an identity. See Example 5.
45. $\sec ^{2} \frac{x}{2}=\frac{2}{1+\cos x}$
46. $\cot ^{2} \frac{x}{2}=\frac{(1+\cos x)^{2}}{\sin ^{2} x}$
47. $\sin ^{2} \frac{x}{2}=\frac{\tan x-\sin x}{2 \tan x}$
48. $\frac{\sin 2 x}{2 \sin x}=\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}$
49. $\frac{2}{1+\cos x}-\tan ^{2} \frac{x}{2}=1$
50. $\tan \frac{\theta}{2}=\csc \theta-\cot \theta$
51. $1-\tan ^{2} \frac{\theta}{2}=\frac{2 \cos \theta}{1+\cos \theta}$
52. $\cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$
53. Use the half-angle identity

$$
\tan \frac{A}{2}=\frac{\sin A}{1+\cos A}
$$

to derive the equivalent identity

$$
\tan \frac{A}{2}=\frac{1-\cos A}{\sin A}
$$

by multiplying both the numerator and the denominator by $1-\cos A$.
54. Use the identity $\tan \frac{A}{2}=\frac{\sin A}{1+\cos A}$ to determine an identity for $\cot \frac{A}{2}$.

Graph each expression and use the graph to make a conjecture, predicting what might be an identity. Then verify your conjecture algebraically.
55. $\frac{\sin x}{1+\cos x}$
56. $\frac{1-\cos x}{\sin x}$
57. $\frac{\tan \frac{x}{2}+\cot \frac{x}{2}}{\cot \frac{x}{2}-\tan \frac{x}{2}}$
58. $1-8 \sin ^{2} \frac{x}{2} \cos ^{2} \frac{x}{2}$
(Modeling) Mach Number An airplane flying faster than sound sends out sound waves that form a cone, as shown in the figure. The cone intersects the ground to form a hyperbola. As this hyperbola passes over a particular point on the ground, a sonic boom is heard at that point. If θ is the angle at the vertex of the cone, then

$$
\sin \frac{\theta}{2}=\frac{1}{m},
$$

where m is the Mach number for the speed of the plane. (We assume $m>1$.) The Mach number is the ratio of the speed of the plane to the speed of sound. Thus, a speed of Mach 1.4 means that the plane is flying at 1.4 times the speed of sound. In Exercises 59-62, one of the values θ or m is given. Find the other value.
59. $m=\frac{5}{4}$
60. $m=\frac{3}{2}$
61. $\theta=60^{\circ}$
62. $\theta=30^{\circ}$
63. (Modeling) Railroad Curves In the United States, circular railroad curves are designated by the degree of curvature, the central angle subtended by a chord of 100 ft . See the figure. (Source: Hay, W. W., Railroad Engineering, John Wiley and Sons.)

(a) Use the figure to write an expression for $\cos \frac{\theta}{2}$.

(b) Use the result of part (a) and the third half-angle identity for tangent to write an expression for $\tan \frac{\theta}{4}$.
64. In Exercise 63, if $b=12$, what is the measure of angle θ to the nearest degree?

Relating Concepts

For individual or collaborative investigation (Exercises 65-72)
These exercises use results from plane geometry to obtain exact values of the trigonometric functions of 15°. Start with a right triangle ACB having a 60° angle at A and a 30° angle at B. Let the hypotenuse of this triangle have length 2. Extend side $B C$ and draw a semicircle with diameter along BC extended, center at B, and radius $A B$. Draw segment $A E$. (See the figure.) Since any angle inscribed in a semicircle is a right angle, triangle EAD is a right triangle. Work Exercises 65-72 in order.

65. Why is $A B=B D$ true? Conclude that triangle $A B D$ is isosceles.
66. Why does angle $A B D$ have measure 150° ?
67. Why do angles $D A B$ and $A D B$ both have measures of 15° ?
68. What is the length $D C$?
69. Use the Pythagorean theorem to show that the length $A D$ is $\sqrt{6}+\sqrt{2}$.
70. Use angle $A D B$ of triangle $E A D$ to find $\cos 15^{\circ}$.
71. Show that $A E$ has length $\sqrt{6}-\sqrt{2}$ and find $\sin 15^{\circ}$.
72. Use triangle $A C D$ to find $\tan 15^{\circ}$.

Advanced methods of trigonometry can be used to find the following exact value. (See, for example, Hobson's A Treatise on Plane Trigonometry.)

$$
\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}
$$

Use this exact value and identities to find each exact value. Support your answers with calculator approximations if you wish.
73. $\cos 18^{\circ}$
74. $\tan 18^{\circ}$
75. $\cot 18^{\circ}$
76. $\sec 18^{\circ}$
77. $\csc 18^{\circ}$
78. $\cos 72^{\circ}$
79. $\sin 72^{\circ}$
80. $\tan 72^{\circ}$
81. $\cot 72^{\circ}$
82. $\csc 72^{\circ}$
83. $\sec 72^{\circ}$
84. $\sin 162^{\circ}$

Summary Exercises on Verifying Trigonometric Identities

These summary exercises provide practice with the various types of trigonometric identities presented in this chapter. Verify that each equation is an identity.

1. $\tan \theta+\cot \theta=\sec \theta \csc \theta$
2. $\csc \theta \cos ^{2} \theta+\sin \theta=\csc \theta$
3. $\tan \frac{x}{2}=\csc x-\cot x$
4. $\sec (\pi-x)=-\sec x$
5. $\frac{\sin t}{1+\cos t}=\frac{1-\cos t}{\sin t}$
6. $\frac{1-\sin t}{\cos t}=\frac{1}{\sec t+\tan t}$
7. $\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
8. $\frac{2}{1+\cos x}-\tan ^{2} \frac{x}{2}=1$
9. $\cot \theta-\tan \theta=\frac{2 \cos ^{2} \theta-1}{\sin \theta \cos \theta}$
10. $\frac{1}{\sec t-1}+\frac{1}{\sec t+1}=2 \cot t \csc t$
11. $\frac{\sin (x+y)}{\cos (x-y)}=\frac{\cot x+\cot y}{1+\cot x \cot y}$
12. $1-\tan ^{2} \frac{\theta}{2}=\frac{2 \cos \theta}{1+\cos \theta}$
13. $\frac{\sin \theta+\tan \theta}{1+\cos \theta}=\tan \theta$
14. $\csc ^{4} x-\cot ^{4} x=\frac{1+\cos ^{2} x}{1-\cos ^{2} x}$
15. $\cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$
16. $\cos 2 x=\frac{2-\sec ^{2} x}{\sec ^{2} x}$
17. $\frac{\tan ^{2} t+1}{\tan t \csc ^{2} t}=\tan t$
18. $\frac{\sin s}{1+\cos s}+\frac{1+\cos s}{\sin s}=2 \csc s$
19. $\tan 4 \theta=\frac{2 \tan 2 \theta}{2-\sec ^{2} 2 \theta}$
20. $\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)=\sec x+\tan x$
21. $\frac{\cot s-\tan s}{\cos s+\sin s}=\frac{\cos s-\sin s}{\sin s \cos s}$
22. $\frac{\tan \theta-\cot \theta}{\tan \theta+\cot \theta}=1-2 \cos ^{2} \theta$
23. $\frac{\tan (x+y)-\tan y}{1+\tan (x+y) \tan y}=\tan x$
24. $2 \cos ^{2} \frac{x}{2} \tan x=\tan x+\sin x$
25. $\frac{\cos ^{4} x-\sin ^{4} x}{\cos ^{2} x}=1-\tan ^{2} x$
26. $\frac{\csc t+1}{\csc t-1}=(\sec t+\tan t)^{2}$
27. $\frac{2\left(\sin x-\sin ^{3} x\right)}{\cos x}=\sin 2 x$
28. $\sin \left(60^{\circ}+x\right)+\sin \left(60^{\circ}-x\right)=\sqrt{3} \cos x$
29. $\sin \left(60^{\circ}-x\right)-\sin \left(60^{\circ}+x\right)=-\sin x$
30. $\frac{\cos (x+y)+\cos (y-x)}{\sin (x+y)-\sin (y-x)}=\cot x$
31. $\sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x$
32. $\sin ^{3} \theta+\cos ^{3} \theta+\sin \theta \cos ^{2} \theta+\sin ^{2} \theta \cos \theta=\sin \theta+\cos \theta$
33. $\frac{\cos x+\sin x}{\cos x-\sin x}-\frac{\cos x-\sin x}{\cos x+\sin x}=2 \tan 2 x$

Chapter 5 Test Prep

Ouick Review

Concepts

Examples

5.1 Fundamental Identities

Reciprocal Identities

$$
\cot \theta=\frac{1}{\tan \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta}
$$

Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Pythagorean Identities

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \quad \tan ^{2} \theta+1=\sec ^{2} \theta \\
1+\cot ^{2} \theta=\csc ^{2} \theta
\end{gathered}
$$

Negative-Angle Identities

$\sin (-\theta)=-\sin \theta \quad \cos (-\theta)=\cos \theta \quad \tan (-\theta)=-\tan \theta$
$\csc (-\theta)=-\csc \theta \quad \sec (-\theta)=\sec \theta \quad \cot (-\theta)=-\cot \theta$

If θ is in quadrant IV and $\sin \theta=-\frac{3}{5}$, find $\csc \theta, \cos \theta$, and $\sin (-\theta)$.

$$
\csc \theta=\frac{1}{\sin \theta}=\frac{1}{-\frac{3}{5}}=-\frac{5}{3} \quad \begin{aligned}
& \text { Reciprocal } \\
& \text { identity }
\end{aligned}
$$

$\sin ^{2} \theta+\cos ^{2} \theta=1 \quad$ Pythagorean identity

$$
\left(-\frac{3}{5}\right)^{2}+\cos ^{2} \theta=1 \quad \text { Substitute. }
$$

$$
\cos ^{2} \theta=1-\frac{9}{25}=\frac{16}{25} \quad \text { Subtract } \frac{9}{25} .
$$

$$
\cos \theta=+\sqrt{\frac{16}{25}}=\frac{4}{5} \quad \begin{aligned}
& \cos \theta \text { is positive } \\
& \text { in quadrant IV }
\end{aligned}
$$

$$
\sin (-\theta)=-\sin \theta=-\left(-\frac{3}{5}\right)=\frac{3}{5}
$$

Negative angle identity

5.2 Verifying Trigonometric Identities

See the box titled Hints for Verifying Identities in Section 5.2.

5.3 Sum and Difference Identities for Cosine

5.4 Sum and Difference Identities for Sine and Tangent

Cofunction Identities

$$
\begin{array}{ll}
\cos \left(90^{\circ}-\theta\right)=\sin \theta & \cot \left(90^{\circ}-\theta\right)=\tan \theta \\
\sin \left(90^{\circ}-\theta\right)=\cos \theta & \sec \left(90^{\circ}-\theta\right)=\csc \theta \\
\tan \left(90^{\circ}-\theta\right)=\cot \theta & \csc \left(90^{\circ}-\theta\right)=\sec \theta
\end{array}
$$

Sum and Difference Identities

$$
\begin{aligned}
\cos (A-B) & =\cos A \cos B+\sin A \sin B \\
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\sin (A+B) & =\sin A \cos B+\cos A \sin B \\
\sin (A-B) & =\sin A \cos B-\cos A \sin B \\
\tan (A+B) & =\frac{\tan A+\tan B}{1-\tan A \tan B} \\
\tan (A-B) & =\frac{\tan A-\tan B}{1+\tan A \tan B}
\end{aligned}
$$

Find one value of θ such that $\tan \theta=\cot 78^{\circ}$.

$$
\begin{aligned}
\tan \theta & =\cot 78^{\circ} & & \\
\cot \left(90^{\circ}-\theta\right) & =\cot 78^{\circ} & & \text { Cofunction identity } \\
90^{\circ}-\theta & =78^{\circ} & & \text { Set angles equal. } \\
\theta & =12^{\circ} & & \text { Solve for } \theta .
\end{aligned}
$$

Find the exact value of $\cos \left(-15^{\circ}\right)$.

$$
\begin{aligned}
\cos (& \left.-15^{\circ}\right) \\
= & \cos \left(30^{\circ}-45^{\circ}\right) \\
= & \cos 30^{\circ} \cos 45^{\circ}+ \\
& \sin 30^{\circ} \sin 45^{\circ} \\
& \text { Cosine difference identity } \\
= & \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}+\frac{1}{2} \cdot \frac{\sqrt{2}}{2} \quad \text { Substitute values. } \\
= & \frac{\sqrt{6}+\sqrt{2}}{4} \quad \text { Simplify. }
\end{aligned}
$$

Concepts

Examples

Write $\tan \left(\frac{\pi}{4}+\theta\right)$ in terms of $\tan \theta$.
$\tan \left(\frac{\pi}{4}+\theta\right)=\frac{\tan \frac{\pi}{4}+\tan \theta}{1-\tan \frac{\pi}{4} \tan \theta}=\frac{1+\tan \theta}{1-\tan \theta} \quad \tan \frac{\pi}{4}=1$

5.5 Double-Angle Identities

Double-Angle Identities

$$
\begin{array}{ll}
\cos 2 A=\cos ^{2} A-\sin ^{2} A & \cos 2 A=1-2 \sin ^{2} A \\
\cos 2 A=2 \cos ^{2} A-1 & \sin 2 A=2 \sin A \cos A
\end{array}
$$

$$
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
$$

Product-to-Sum Identities

$$
\begin{aligned}
\cos A \cos B & =\frac{1}{2}[\cos (A+B)+\cos (A-B)] \\
\sin A \sin B & =\frac{1}{2}[\cos (A-B)-\cos (A+B)] \\
\sin A \cos B & =\frac{1}{2}[\sin (A+B)+\sin (A-B)] \\
\cos A \sin B & =\frac{1}{2}[\sin (A+B)-\sin (A-B)]
\end{aligned}
$$

Sum-to-Product Identities

$$
\begin{aligned}
& \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
& \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) \\
& \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
& \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)
\end{aligned}
$$

5.6 Half-Angle Identities

Half-Angle Identities

$$
\begin{gathered}
\cos \frac{A}{2}= \pm \sqrt{\frac{1+\cos A}{2}} \quad \sin \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{2}} \\
\tan \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{1+\cos A}} \quad \tan \frac{A}{2}=\frac{\sin A}{1+\cos A} \\
\tan \frac{A}{2}=\frac{1-\cos A}{\sin A}
\end{gathered}
$$

(In the identities involving radicals, the sign is chosen on the basis of the function under consideration and the quadrant of $\frac{A}{2}$.)

Given $\cos \theta=-\frac{5}{13}$ and $\sin \theta>0$, find $\sin 2 \theta$.
Sketch a triangle in quadrant II since $\cos \theta<0$ and $\sin \theta>0$. Use it to find that $\sin \theta=\frac{12}{13}$.

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
& =2\left(\frac{12}{13}\right)\left(-\frac{5}{13}\right) \\
& =-\frac{120}{169}
\end{aligned}
$$

Write $\sin (-\theta) \sin 2 \theta$ as the difference of two functions.

$$
\begin{aligned}
\sin & (-\theta) \sin 2 \theta \\
& =\frac{1}{2}[\cos (-\theta-2 \theta)-\cos (-\theta+2 \theta)] \\
& =\frac{1}{2}[\cos (-3 \theta)-\cos \theta] \\
& =\frac{1}{2} \cos (-3 \theta)-\frac{1}{2} \cos \theta \\
& =\frac{1}{2} \cos 3 \theta-\frac{1}{2} \cos \theta
\end{aligned}
$$

Write $\cos \theta+\cos 3 \theta$ as a product of two functions.
$\cos \theta+\cos 3 \theta$

$$
\begin{aligned}
& =2 \cos \left(\frac{\theta+3 \theta}{2}\right) \cos \left(\frac{\theta-3 \theta}{2}\right) \\
& =2 \cos \left(\frac{4 \theta}{2}\right) \cos \left(\frac{-2 \theta}{2}\right) \\
& =2 \cos 2 \theta \cos (-\theta) \\
& =2 \cos 2 \theta \cos \theta
\end{aligned}
$$

Find the exact value of $\tan 67.5^{\circ}$.
We choose the last form with $A=135^{\circ}$.

$$
\begin{aligned}
& \tan 67.5^{\circ}=\tan \frac{135^{\circ}}{2}=\frac{1-\cos 135^{\circ}}{\sin 135^{\circ}}=\frac{1-\left(-\frac{\sqrt{2}}{2}\right)}{\frac{\sqrt{2}}{2}} \\
&=\frac{1+\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} \cdot \frac{2}{2}=\frac{2+\sqrt{2}}{\sqrt{2}}, \text { or } \sqrt{2}+1 \\
& \text { Rationalize the denominator and simplify. }
\end{aligned}
$$

Chapter 5 Review Exercises

Concept Check For each expression in Column I, choose the expression from Column II that completes an identity.
I
II

1. $\sec x=$ \qquad 2. $\csc x=$ \qquad A. $\frac{1}{\sin x}$
B. $\frac{1}{\cos x}$
2. $\tan x=$ \qquad
3. $\cot x=$ \qquad
C. $\frac{\sin x}{\cos x}$
D. $\frac{1}{\cot ^{2} x}$
4. $\tan ^{2} x=$ \qquad
5. $\sec ^{2} x=$ \qquad
E. $\frac{1}{\cos ^{2} x}$
F. $\frac{\cos x}{\sin x}$

Use identities to write each expression in terms of $\sin \theta$ and $\cos \theta$, and simplify.
7. $\sec ^{2} \theta-\tan ^{2} \theta$
8. $\frac{\cot \theta}{\sec \theta}$
9. $\tan ^{2} \theta\left(1+\cot ^{2} \theta\right)$
10. $\csc \theta+\cot \theta$
11. $\tan \theta-\sec \theta \csc \theta$
12. $\csc ^{2} \theta+\sec ^{2} \theta$
13. Use the trigonometric identities to find $\sin x, \tan x$, and $\cot (-x)$, given $\cos x=\frac{3}{5}$ and x in quadrant IV.
14. Given $\tan x=-\frac{5}{4}$, where $\frac{\pi}{2}<x<\pi$, use the trigonometric identities to find $\cot x$, $\csc x$, and $\sec x$.
15. Find the exact values of the six trigonometric functions of 165°.
16. Find the exact values of $\sin x, \cos x$, and $\tan x$, for $x=\frac{\pi}{12}$, using
(a) difference identities
(b) half-angle identities.

Concept Check For each expression in Column I, use an identity to choose an expression from Column II with the same value. Choices may be used once, more than once, or not at all.

I

II

17. $\cos 210^{\circ}$
18. $\sin 35^{\circ}$
A. $\sin \left(-35^{\circ}\right)$
B. $\cos 55^{\circ}$
19. $\tan \left(-35^{\circ}\right)$
20. $-\sin 35^{\circ}$
C. $\sqrt{\frac{1+\cos 150^{\circ}}{2}}$
D. $2 \sin 150^{\circ} \cos 150^{\circ}$
21. $\cos 35^{\circ}$
22. $\cos 75^{\circ}$
E. $\cot \left(-35^{\circ}\right)$
F. $\cos ^{2} 150^{\circ}-\sin ^{2} 150^{\circ}$
23. $\sin 75^{\circ}$
24. $\sin 300^{\circ}$
G. $\cos \left(-35^{\circ}\right)$
H. $\cot 125^{\circ}$
25. $\cos 300^{\circ}$
26. $\cos \left(-55^{\circ}\right)$
I. $\cos 150^{\circ} \cos 60^{\circ}-\sin 150^{\circ} \sin 60^{\circ}$
J. $\sin 15^{\circ} \cos 60^{\circ}+\cos 15^{\circ} \sin 60^{\circ}$

For each of the following, find $\sin (x+y), \cos (x-y), \tan (x+y)$, and the quadrant of $x+y$.
27. $\sin x=-\frac{3}{5}, \cos y=-\frac{7}{25}, x$ and y in quadrant III
28. $\sin x=\frac{3}{5}, \cos y=\frac{24}{25}, x$ in quadrant I, y in quadrant IV
29. $\sin x=-\frac{1}{2}, \cos y=-\frac{2}{5}, x$ and y in quadrant III
30. $\sin y=-\frac{2}{3}, \cos x=-\frac{1}{5}, x$ in quadrant II, y in quadrant III
31. $\sin x=\frac{1}{10}, \cos y=\frac{4}{5}, x$ in quadrant I, y in quadrant IV
32. $\cos x=\frac{2}{9}, \sin y=-\frac{1}{2}, x$ in quadrant IV, y in quadrant III

Find sine and cosine of each of the following.
33. θ, given $\cos 2 \theta=-\frac{3}{4}, 90^{\circ}<2 \theta<180^{\circ}$
34. B, given $\cos 2 B=\frac{1}{8}, 540^{\circ}<2 B<720^{\circ}$
35. $2 x$, given $\tan x=3, \sin x<0$
36. $2 y$, given $\sec y=-\frac{5}{3}, \sin y>0$

Find each of the following.
37. $\cos \frac{\theta}{2}$, given $\cos \theta=-\frac{1}{2}, 90^{\circ}<\theta<180^{\circ}$
38. $\sin \frac{A}{2}$, given $\cos A=-\frac{3}{4}, 90^{\circ}<A<180^{\circ}$
39. $\tan x$, given $\tan 2 x=2, \pi<x<\frac{3 \pi}{2}$
40. $\sin y$, given $\cos 2 y=-\frac{1}{3}, \frac{\pi}{2}<y<\pi$
41. $\tan \frac{x}{2}$, given $\sin x=0.8,0<x<\frac{\pi}{2}$
42. $\sin 2 x$, given $\sin x=0.6, \frac{\pi}{2}<x<\pi$

Graph each expression and use the graph to make a conjecture, predicting what might be an identity. Then verify your conjecture algebraically.
43. $-\frac{\sin 2 x+\sin x}{\cos 2 x-\cos x}$
44. $\frac{1-\cos 2 x}{\sin 2 x}$
45. $\frac{\sin x}{1-\cos x}$
46. $\frac{\cos x \sin 2 x}{1+\cos 2 x}$
47. $\frac{2\left(\sin x-\sin ^{3} x\right)}{\cos x}$
48. $\csc x-\cot x$

Verify that each equation is an identity.
49. $\sin ^{2} x-\sin ^{2} y=\cos ^{2} y-\cos ^{2} x$
50. $2 \cos ^{3} x-\cos x=\frac{\cos ^{2} x-\sin ^{2} x}{\sec x}$
51. $\frac{\sin ^{2} x}{2-2 \cos x}=\cos ^{2} \frac{x}{2}$
52. $\frac{\sin 2 x}{\sin x}=\frac{2}{\sec x}$
53. $2 \cos A-\sec A=\cos A-\frac{\tan A}{\csc A}$
54. $\frac{2 \tan B}{\sin 2 B}=\sec ^{2} B$
55. $1+\tan ^{2} \alpha=2 \tan \alpha \csc 2 \alpha$
57. $\tan \theta \sin 2 \theta=2-2 \cos ^{2} \theta$
59. $2 \tan x \csc 2 x-\tan ^{2} x=1$
61. $\tan \theta \cos ^{2} \theta=\frac{2 \tan \theta \cos ^{2} \theta-\tan \theta}{1-\tan ^{2} \theta}$
63. $\frac{\sin ^{2} x-\cos ^{2} x}{\csc x}=2 \sin ^{3} x-\sin x$
64. $\sin ^{3} \theta=\sin \theta-\cos ^{2} \theta \sin \theta$
65. $\tan 4 \theta=\frac{2 \tan 2 \theta}{2-\sec ^{2} 2 \theta}$
66. $2 \cos ^{2} \frac{x}{2} \tan x=\tan x+\sin x$
67. $\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)=\sec x+\tan x$
69. $-\cot \frac{x}{2}=\frac{\sin 2 x+\sin x}{\cos 2 x-\cos x}$
68. $\frac{1}{2} \cot \frac{x}{2}-\frac{1}{2} \tan \frac{x}{2}=\cot x$
70. $\frac{\sin 3 t+\sin 2 t}{\sin 3 t-\sin 2 t}=\frac{\tan \frac{5 t}{2}}{\tan \frac{t}{2}}$

(Modeling) Solve each problem.

71. Distance Traveled by a Stone The distance D of an object thrown (or projected) from height h (feet) at angle θ with initial velocity v is modeled by the formula

$$
D=\frac{v^{2} \sin \theta \cos \theta+v \cos \theta \sqrt{(v \sin \theta)^{2}+64 h}}{32}
$$

See the figure. (Source: Kreighbaum, E. and K. Barthels, Biomechanics, Allyn \& Bacon.)
(a) Find D when $h=0$-that is, when the object is projected from the ground.
(b) Suppose a car driving over loose gravel kicks up a small stone at a velocity of 36 ft per sec (about 25 mph) and an angle $\theta=30^{\circ}$. How far will the stone travel?
72. Amperage, Wattage, and Voltage Suppose that for an electric heater, voltage is given by $V=a \sin 2 \pi \omega t$ and amperage by $I=b \sin 2 \pi \omega t$, where t is time in seconds.
(a) Find the period of the graph for the voltage.
(b) Show that the graph of the wattage $W=V I$ will have half the period of the voltage. Interpret this result.

Chapter 5

Test

1. If $\cos \theta=\frac{24}{25}$ and θ is in quadrant IV, find the five remaining trigonometric function values of θ.
2. Express $\sec \theta-\sin \theta \tan \theta$ as a single function of θ.
3. Express $\tan ^{2} x-\sec ^{2} x$ in terms of $\sin x$ and $\cos x$, and simplify.
4. Find the exact value of $\cos \frac{5 \pi}{12}$.
5. Express as a function of x alone.
(a) $\cos \left(270^{\circ}-x\right)$
(b) $\tan (\pi+x)$
6. Use a half-angle identity to find the exact value of $\sin \left(-22.5^{\circ}\right)$.
7. Graph $y=\cot \frac{1}{2} x-\cot x$, and use the graph to make a conjecture, predicting what might be an identity. Then verify your conjecture algebraically.
8. Given that $\sin A=\frac{5}{13}, \cos B=-\frac{3}{5}, A$ is a quadrant I angle, and B is a quadrant II angle, find each of the following.
(a) $\sin (A+B)$
(b) $\cos (A+B)$
(c) $\tan (A-B)$
(d) the quadrant of $A+B$
9. Given that $\cos \theta=-\frac{3}{5}$ and $90^{\circ}<\theta<180^{\circ}$, find each of the following.
(a) $\cos 2 \theta$
(b) $\sin 2 \theta$
(c) $\tan 2 \theta$
(d) $\cos \frac{\theta}{2}$
(e) $\tan \frac{\theta}{2}$

Verify each identity.

10. $\sec ^{2} B=\frac{1}{1-\sin ^{2} B}$
11. $\cos 2 A=\frac{\cot A-\tan A}{\csc A \sec A}$
12. $\frac{\sin 2 x}{\cos 2 x+1}=\tan x$
13. $\tan ^{2} x-\sin ^{2} x=(\tan x \sin x)^{2}$
14. $\frac{\tan x-\cot x}{\tan x+\cot x}=2 \sin ^{2} x-1$
15. (Modeling) Voltage The voltage in common household current is expressed as $V=163 \sin \omega t$, where ω is the angular speed (in radians per second) of the generator at the electrical plant and t is time (in seconds).
(a) Use an identity to express V in terms of cosine.
(b) If $\omega=120 \pi$, what is the maximum voltage? Give the least positive value of t when the maximum voltage occurs.

Inverse Circular Functions and Trigonometric Equations

Sound waves, such as those initiated by musical instruments, travel in sinusoidal patterns that can be graphed as sine or cosine functions and described by trigonometric equations.

6.1 Inverse Circular Functions

6.2 Trigonometric Equations I
6.3 Trigonometric Equations II

Chapter 6 Quiz

6.4 Equations Involving Inverse Trigonometric Functions

6.1 Inverse Circular Functions

- Inverse Functions
- Inverse Sine Function
- Inverse Cosine Function
- Inverse Tangent Function
- Remaining Inverse

Circular Functions

- Inverse Function Values

$f(x)=x^{3}$ is a one-to-one function. It satisfies the conditions of the horizontal line test.

$g(x)=x^{2}$ is not one-to-one. It does not satisfy the conditions of the horizontal line test.

Figure 1

Inverse Functions Recall that for a function f, every element x in the domain corresponds to one and only one element y, or $f(x)$, in the range. (See Appendix C.) This means the following:

1. If point (a, b) lies on the graph of f, then there is no other point on the graph that has a as first coordinate.
2. Other points may have b as second coordinate, however, since the definition of function allows range elements to be used more than once.

If a function is defined so that each range element is used only once, then it is called a one-to-one function. For example, the function

$$
f(x)=x^{3} \text { is a one-to-one function }
$$

because every real number has exactly one real cube root. However,

$$
g(x)=x^{2} \text { is not a one-to-one function }
$$

because $g(2)=4$ and $g(-2)=4$. There are two domain elements, 2 and -2 , that correspond to the range element 4.

The horizontal line test helps determine graphically whether a function is one-to-one.

Horizontal Line Test

A function is one-to-one if every horizontal line intersects the graph of the function at most once.

This test is applied to the graphs of $f(x)=x^{3}$ and $g(x)=x^{2}$ in Figure 1.
By interchanging the components of the ordered pairs of a one-to-one function f, we obtain a new set of ordered pairs that satisfies the definition of a function. This new function is called the inverse function, or inverse, of f.

Inverse Function

The inverse function of the one-to-one function f is defined as follows.

$$
f^{-1}=\{(y, x) \mid(x, y) \text { belongs to } f\}
$$

The special notation used for inverse functions is \boldsymbol{f}^{-1} (read " \boldsymbol{f}-inverse"). In simple terms, it represents the function created by interchanging the input (domain) and the output (range) of a one-to-one function.

CAUTION Do not confuse the -1 in f^{-1} with a negative exponent. The symbol $f^{-1}(x)$ does not represent $\frac{1}{f(x)}$. It represents the inverse function of f.

The following statements summarize the concepts of inverse functions.

Summary of Inverse Functions

1. In a one-to-one function, each x-value corresponds to only one y-value and each y-value corresponds to only one x-value.
2. If a function f is one-to-one, then f has an inverse function f^{-1}.
3. The domain of f is the range of f^{-1}, and the range of f is the domain of f^{-1}. That is, if the point (a, b) is on the graph of f, then (b, a) is on the graph of f^{-1}.
4. The graphs of f and f^{-1} are reflections of each other across the line $y=x$.
5. To find $f^{-1}(x)$ from $f(x)$, follow these steps.

Step 1 Replace $f(x)$ with y and interchange x and y.
Step 2 Solve for y.
Step 3 Replace y with $f^{-1}(x)$.

Figure 2 illustrates some of these concepts.

(b, a) is the reflection of (a, b) across the line $y=x$.

The graph of f^{-1} is the reflection of the graph of f across the line $y=x$.

Figure 2
We often restrict the domain of a function that is not one-to-one to make it one-to-one, without changing the range. For example, we saw in Figure 1 that $g(x)=x^{2}$, with its natural domain $(-\infty, \infty)$, is not one-to-one. However, if we restrict its domain to the set of nonnegative numbers $[0, \infty)$, we obtain a new function f that is one-to-one and has the same range as $g,[0, \infty)$. See Figure 3.

NOTE We could have chosen to restrict the domain of $g(x)=x^{2}$ to $(-\infty, 0]$ to obtain a different one-to-one function. For the trigonometric functions, such choices are made based on general agreement by mathematicians.

Inverse Sine Function Refer to the graph of the sine function in Figure 4 on the next page. Applying the horizontal line test, we see that $y=\sin x$ does not define a one-to-one function. If we restrict the domain to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, which is the part of the graph in Figure 4 shown in color, this restricted function is one-to-one and has an inverse function. The range of $y=\sin x$ is $[-1,1]$, so the domain of the inverse function will be $[-1,1]$, and its range will be $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Figure 4

Reflecting the graph of $y=\sin x$ on the restricted domain, shown in Figure 5(a), across the line $y=x$ gives the graph of the inverse function, shown in Figure $\mathbf{5 (b)}$. Some key points are labeled on the graph. The equation of the inverse of $y=\sin x$ is found by interchanging x and y to get

$$
x=\sin y .
$$

This equation is solved for y by writing

$$
y=\sin ^{-1} x \quad \text { (read "inverse sine of } x \text { "). }
$$

As Figure 5(b) shows, the domain of $y=\sin ^{-1} x$ is $[-1,1]$, while the restricted domain of $y=\sin x,\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, is the range of $y=\sin ^{-1} x$. An alternative notation for $\sin ^{-1} x$ is $\arcsin x$.

(a)

(b)

Figure 5

Inverse Sine Function

$$
\boldsymbol{y}=\sin ^{-1} \boldsymbol{x} \text { or } \boldsymbol{y}=\arcsin \boldsymbol{x} \text { means that } x=\sin y, \text { for }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

We can think of $y=\sin ^{-1} x$ or $y=\arcsin x$ as " y is the number (angle) in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is x."
Thus, we can write $y=\sin ^{-1} x$ as $\sin y=x$ to evaluate it. We must pay close attention to the domain and range intervals.

EXAMPLE 1 Finding Inverse Sine Values

Find y in each equation.
(a) $y=\arcsin \frac{1}{2}$
(b) $y=\sin ^{-1}(-1)$
(c) $y=\sin ^{-1}(-2)$

ALGEBRAIC SOLUTION

(a) The graph of the function defined by $y=\arcsin x$ (Figure $5(b)$) includes the point $\left(\frac{1}{2}, \frac{\pi}{6}\right)$. Therefore, $\arcsin \frac{1}{2}=\frac{\pi}{6}$.

Alternatively, we can think of $y=\arcsin \frac{1}{2}$ as " y is the number in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is $\frac{1}{2}$." Then we can write the given equation as $\sin y=\frac{1}{2}$. Since $\sin \frac{\pi}{6}=\frac{1}{2}$ and $\frac{\pi}{6}$ is in the range of the arcsine function, $y=\frac{\pi}{6}$.
(b) Writing the equation $y=\sin ^{-1}(-1)$ in the form $\sin y=-1$ shows that $y=-\frac{\pi}{2}$. Notice that the point $\left(-1,-\frac{\pi}{2}\right)$ is on the graph of $y=\sin ^{-1} x$.
(c) Because -2 is not in the domain of the inverse sine function, $\sin ^{-1}(-2)$ does not exist.

GRAPHING CALCULATOR SOLUTION

We graph the equation $Y_{1}=\sin ^{-1} X$ and find the points with X -values $\frac{1}{2}=0.5$ and -1 . For these two X-values, Figure 6 indicates that $Y=\frac{\pi}{6} \approx 0.52359878$ and $Y=-\frac{\pi}{2} \approx-1.570796$.

Figure 6
Since $\sin ^{-1}(-2)$ does not exist, a calculator will give an error message for this input.

Now Try Exercises 13, 21, and 25.

CAUTION In Example 1(b), it is tempting to give the value of $\sin ^{-1}(-1)$ as $\frac{3 \pi}{2}$, since $\sin \frac{3 \pi}{2}=-1$. Notice, however, that $\frac{3 \pi}{2}$ is not in the range of the inverse sine function. Be certain that the number given for an inverse function value is in the range of the particular inverse function being considered.

We summarize this discussion about the inverse sine function as follows.

Inverse Sine Function $y=\sin ^{-1} x$ or $y=\arcsin x$

$$
\text { Domain: }[-1,1] \quad \text { Range: }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

\boldsymbol{x}	\boldsymbol{y}
-1	$-\frac{\pi}{2}$
$-\frac{\sqrt{2}}{2}$	$-\frac{\pi}{4}$
0	0
$\frac{\sqrt{2}}{2}$	$\frac{\pi}{4}$
1	$\frac{\pi}{2}$

Figure 7

- The inverse sine function is increasing and continuous on its domain $[-1,1]$.
- Its x-intercept is 0 , and its y-intercept is 0 .
- Its graph is symmetric with respect to the origin, so the function is an odd function. For all x in the domain, $\sin ^{-1}(-x)=-\sin ^{-1} x$.

Inverse Cosine Function The function

$$
y=\cos ^{-1} x \quad(\text { or } y=\arccos x)
$$

is defined by restricting the domain of the function $y=\cos x$ to the interval $[0, \pi]$ as in Figure 8. This restricted function, which is the part of the graph in Figure 8 shown in color, is one-to-one and has an inverse function. The inverse function, $y=\cos ^{-1} x$, is found by interchanging the roles of x and y. Reflecting the graph of $y=\cos x$ across the line $y=x$ gives the graph of the inverse function shown in Figure 9. Some key points are shown on the graph.

Figure 8

Figure 9

Inverse Cosine Function

$$
y=\cos ^{-1} x \text { or } y=\arccos x \text { means that } x=\cos y, \text { for } 0 \leq y \leq \pi
$$

We can think of $y=\cos ^{-1} x$ or $y=\arccos x$ as " y is the number (angle) in the interval $[0, \pi]$ whose cosine is x."

EXAMPLE 2 Finding Inverse Cosine Values

Find y in each equation.
(a) $y=\arccos 1$
(b) $y=\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$

SOLUTION

(a) Since the point $(1,0)$ lies on the graph of $y=\arccos x$ in Figure 9, the value of y, or $\arccos 1$, is 0 . Alternatively, we can think of $y=\arccos 1$ as
" y is the number in $[0, \pi]$ whose cosine is $1, "$ or $\cos y=1$.
Thus, $y=0$, since $\cos 0=1$ and 0 is in the range of the arccosine function.
(b) We must find the value of y that satisfies

$$
\cos y=-\frac{\sqrt{2}}{2}, \quad \text { where } y \text { is in the interval }[0, \pi]
$$

which is the range of the function $y=\cos ^{-1} x$. The only value for y that satisfies these conditions is $\frac{3 \pi}{4}$. Again, this can be verified from the graph in Figure 9.

Our observations about the inverse cosine function lead to the following generalizations.

Inverse Cosine Function $y=\cos ^{-1} x$ or $y=\arccos x$

$$
\text { Domain: }[-1,1] \quad \text { Range: }[0, \pi]
$$

\boldsymbol{x}	\boldsymbol{y}
-1	π
$-\frac{\sqrt{2}}{2}$	$\frac{3 \pi}{4}$
0	$\frac{\pi}{2}$
$\frac{\sqrt{2}}{2}$	$\frac{\pi}{4}$
1	0

Figure 10

- The inverse cosine function is decreasing and continuous on its domain $[-1,1]$.
- Its x-intercept is 1 , and its y-intercept is $\frac{\pi}{2}$.
- Its graph is not symmetric with respect to either the y-axis or the origin.

Inverse Tangent Function Restricting the domain of the function $y=\tan x$ to the open interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ yields a one-to-one function. By interchanging the roles of x and y, we obtain the inverse tangent function given by $y=\tan ^{-1} x$ or $y=\arctan x$. Figure 11 shows the graph of the restricted tangent function. Figure 12 gives the graph of $y=\tan ^{-1} x$.

Figure 11

Figure 12

Inverse Tangent Function

$$
\boldsymbol{y}=\tan ^{-1} \boldsymbol{x} \text { or } \boldsymbol{y}=\arctan \boldsymbol{x} \text { means that } x=\tan y, \text { for }-\frac{\pi}{2}<y<\frac{\pi}{2} .
$$

We can think of $y=\tan ^{-1} x$ or $y=\arctan x$ as " y is the number (angle) in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is x."

We summarize this discussion about the inverse tangent function as follows.

Inverse Tangent Function $y=\tan ^{-1} x$ or $y=\arctan x$

$$
\text { Domain: }(-\infty, \infty) \quad \text { Range: }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

\boldsymbol{x}	\boldsymbol{y}
-1	$-\frac{\pi}{4}$
$-\frac{\sqrt{3}}{3}$	$-\frac{\pi}{6}$
0	0
$\frac{\sqrt{3}}{3}$	$\frac{\pi}{6}$
1	$\frac{\pi}{4}$

Figure 13

- The inverse tangent function is increasing and continuous on its domain $(-\infty, \infty)$.
- Its x-intercept is 0 , and its y-intercept is 0 .
- Its graph is symmetric with respect to the origin so the function is an odd function. For all x in the domain, $\tan ^{-1}(-x)=-\tan ^{-1} x$.
- The lines $y=\frac{\pi}{2}$ and $y=-\frac{\pi}{2}$ are horizontal asymptotes.

Remaining Inverse Circular Functions The remaining three inverse trigonometric functions are defined similarly. Their graphs are shown in Figure 14.

Figure 14

Inverse Cotangent, Secant, and Cosecant Functions*

$$
\begin{aligned}
y= & \cot ^{-1} x \text { or } y=\operatorname{arccot} x \text { means that } x=\cot y, \text { for } 0<y<\pi . \\
y= & \sec ^{-1} x \text { or } y=\operatorname{arcsec} x \text { means that } x=\sec y, \text { for } 0 \leq y \leq \pi, y \neq \frac{\pi}{2} . \\
y= & \csc ^{-1} x \\
& y \neq 0 \text { or } y=\operatorname{arccsc} x \text { means that } x=\csc y, \text { for }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2},
\end{aligned}
$$

[^4]The table gives all six inverse trigonometric functions with their domains and ranges.

Inverse Function\quad Domain	Range		
	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	Quadrants of the Unit Circle
$y=\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$	I and IV
$y=\tan ^{-1} x$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	I and IV
$y=\cot ^{-1} x$	$(-\infty, \infty)$	$(0, \pi)$	I and II
$y=\sec ^{-1} x$	$(-\infty,-1] \cup[1, \infty)$	$\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$	I and II
$y=\csc ^{-1} x$	$(-\infty,-1] \cup[1, \infty)$	$\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$	I and IV

Inverse Function Values The inverse circular functions are formally defined with real number ranges. However, there are times when it may be convenient to find degree-measured angles equivalent to these real number values. It is also often convenient to think in terms of the unit circle and choose the inverse function values on the basis of the quadrants given in the preceding table.

EXAMPLE 3 Finding Inverse Function Values (Degree-Measured Angles)

Find the degree measure of θ in the following.
(a) $\theta=\arctan 1$
(b) $\theta=\sec ^{-1} 2$

SOLUTION

(a) Here θ must be in $\left(-90^{\circ}, 90^{\circ}\right)$, but since 1 is positive, θ must be in quadrant I . The alternative statement, $\tan \theta=1$, leads to $\theta=45^{\circ}$.
(b) Write the equation as $\sec \theta=2$. For $\sec ^{-1} x, \theta$ is in quadrant I or II. Because 2 is positive, θ is in quadrant I and $\theta=60^{\circ}$, since $\sec 60^{\circ}=2$. Note that 60° (the degree equivalent of $\frac{\pi}{3}$) is in the range of the inverse secant function.

Now Try Exercises 37 and 45.

The inverse trigonometric function keys on a calculator give correct results for the inverse sine, inverse cosine, and inverse tangent functions.

$$
\begin{aligned}
\sin ^{-1} 0.5 & =30^{\circ}, \quad \begin{aligned}
\sin ^{-1}(-0.5) & =-30^{\circ}, \quad \text { Degree mode } \\
\tan ^{-1}(-1) & =-45^{\circ}, \quad \text { and } \quad \cos ^{-1}(-0.5)
\end{aligned}=120^{\circ}
\end{aligned}
$$

However, finding $\cot ^{-1} x, \sec ^{-1} x$, and $\csc ^{-1} x$ with a calculator is not as straightforward, because these functions must first be expressed in terms of $\tan ^{-1} x, \cos ^{-1} x$, and $\sin ^{-1} x$, respectively. If $y=\sec ^{-1} x$, for example, then $\sec y=x$, which must be written in terms of cosine as follows.

$$
\text { If } \sec y=x, \quad \text { then } \quad \frac{1}{\cos y}=x, \quad \text { or } \quad \cos y=\frac{1}{x}, \quad \text { and } \quad y=\cos ^{-1} \frac{1}{x}
$$

$-.3398369095$

Figure 15

Use the following to evaluate these inverse trigonometric functions on a calculator.

$$
\begin{aligned}
& \sec ^{-1} x \text { can be evaluated as } \cos ^{-1} \frac{1}{x} ; \quad \csc ^{-1} x \text { can be evaluated as } \sin ^{-1} \frac{1}{x} \\
& \cot ^{-1} x \text { can be evaluated as }\left\{\begin{array}{ll}
\tan ^{-1} \frac{1}{x} & \text { if } x>0 \\
180^{\circ}+\tan ^{-1} \frac{1}{x} & \text { if } x<0
\end{array}\right. \text { Degree mode }
\end{aligned}
$$

EXAMPLE 4 Finding Inverse Function Values with a Calculator

Use a calculator to give each value.
(a) Find y in radians if $y=\csc ^{-1}(-3)$.
(b) Find θ in degrees if $\theta=\operatorname{arccot}(-0.3541)$.

SOLUTION

(a) With the calculator in radian mode, enter $\csc ^{-1}(-3)$ as $\sin ^{-1}\left(\frac{1}{-3}\right)$ to get $y \approx-0.3398369095$. See Figure 15.
(b) Now set the calculator to degree mode. A calculator gives the inverse tangent value of a negative number as a quadrant IV angle. The restriction on the range of arccotangent implies that θ must be in quadrant II, so enter

$$
\operatorname{arccot}(-0.3541) \quad \text { as } \quad \tan ^{-1}\left(\frac{1}{-0.3541}\right)+180^{\circ}
$$

As shown in Figure 15,

$$
\theta \approx 109.4990544^{\circ}
$$

Now Try Exercises 53 and 65.

CAUTION Be careful when using your calculator to evaluate the inverse cotangent of a negative quantity. To do this, we must enter the inverse tangent of the reciprocal of the negative quantity, which returns an angle in quadrant IV. Since inverse cotangent is negative in quadrant II, adjust your calculator result by adding 180° or π accordingly. Note that $\cot ^{-1} 0=\frac{\pi}{2}$.

EXAMPLE 5 Finding Function Values Using Definitions of the Trigonometric Functions

Evaluate each expression without using a calculator.
(a) $\sin \left(\tan ^{-1} \frac{3}{2}\right)$
(b) $\tan \left(\cos ^{-1}\left(-\frac{5}{13}\right)\right)$

SOLUTION

(a) Let $\theta=\tan ^{-1} \frac{3}{2}$, so $\tan \theta=\frac{3}{2}$. The inverse tangent function yields values only in quadrants I and IV, and since $\frac{3}{2}$ is positive, θ is in quadrant I. Sketch θ in quadrant I , and label a triangle, as shown in Figure 16 on the next page. By the Pythagorean theorem, the hypotenuse is $\sqrt{13}$. The value of sine is the quotient of the side opposite and the hypotenuse.

$$
\sin \left(\tan ^{-1} \frac{3}{2}\right)=\sin \theta=\frac{3}{\sqrt{13}}=\frac{3}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}}=\frac{3 \sqrt{13}}{13}
$$

Figure 16

Figure 17
(b) Let $A=\cos ^{-1}\left(-\frac{5}{13}\right)$. Then, $\cos A=-\frac{5}{13}$. Since $\cos ^{-1} x$ for a negative value of x is in quadrant II, sketch A in quadrant II, as shown in Figure 17.

$$
\tan \left(\cos ^{-1}\left(-\frac{5}{13}\right)\right)=\tan A=-\frac{12}{5}
$$

Now Try Exercises 79 and 81.

EXAMPLE 6 Finding Function Values Using Identities

Evaluate each expression without using a calculator.
(a) $\cos \left(\arctan \sqrt{3}+\arcsin \frac{1}{3}\right)$
(b) $\tan \left(2 \arcsin \frac{2}{5}\right)$

SOLUTION

(a) Let $A=\arctan \sqrt{3}$ and $B=\arcsin \frac{1}{3}$, so $\tan A=\sqrt{3}$ and $\sin B=\frac{1}{3}$. Sketch both A and B in quadrant I , as shown in Figure 18, and use the Pythagorean theorem to find the unknown side in each triangle. Then, use the cosine sum identity.

Figure 18

$$
\begin{array}{ll}
\cos \left(\arctan \sqrt{3}+\arcsin \frac{1}{3}\right) & \\
=\cos (A+B) & \text { Let } A=\arctan \sqrt{3} \text { and } B=\arcsin \frac{1}{3} . \\
=\cos A \cos B-\sin A \sin B & \text { Cosine sum identity (Section 5.3) } \\
=\frac{1}{2} \cdot \frac{2 \sqrt{2}}{3}-\frac{\sqrt{3}}{2} \cdot \frac{1}{3} & \text { Substitute values using Figure 18. } \\
=\frac{2 \sqrt{2}-\sqrt{3}}{6} & \text { Multiply and write as a single fraction. }
\end{array}
$$

Figure 19

Figure 20
(b) Let $B=\arcsin \frac{2}{5}$, so that $\sin B=\frac{2}{5}$. Sketch angle B in quadrant I , and find the length of the third side of the triangle. Then, use the double-angle tangent identity $\tan 2 B=\frac{2 \tan B}{1-\tan ^{2} B}$.

$$
\begin{aligned}
\tan \left(2 \arcsin \frac{2}{5}\right) & \\
& =\frac{2\left(\frac{2}{\sqrt{21}}\right)}{1-\left(\frac{2}{\sqrt{21}}\right)^{2}}
\end{aligned} \quad \begin{array}{ll}
\tan B=\frac{2}{\sqrt{21}} \text { from Figure 19. } \\
& =\frac{\frac{4}{\sqrt{21}}}{1-\frac{4}{21}} \\
& \text { Multiply and apply the exponent. } \\
& =\frac{\frac{4}{\sqrt{21}} \cdot \frac{\sqrt{21}}{\sqrt{21}}}{\frac{17}{21}}
\end{array} \begin{aligned}
& \text { Rationalize in the numerator. } \\
& \text { Subtract in the denominator. }
\end{aligned} \quad \begin{array}{ll}
\frac{\frac{4 \sqrt{21}}{21}}{\frac{17}{21}} & \text { Multiply in the numerator. } \\
=\frac{4 \sqrt{21}}{17} & \text { Divide; } \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c} .
\end{array}
$$

While the work shown in Examples 5 and 6 does not rely on a calculator, we can support our algebraic work with one. By entering $\cos \left(\arctan \sqrt{3}+\arcsin \frac{1}{3}\right)$ from Example 6(a) into a calculator, we get the approximation 0.1827293862, the same approximation as when we enter $\frac{2 \sqrt{2}-\sqrt{3}}{6}$ (the exact value we obtained algebraically). Similarly, we obtain the same approximation when we evaluate $\tan \left(2 \arcsin \frac{2}{5}\right)$ and $\frac{4 \sqrt{21}}{17}$, supporting our answer in Example 6(b).

EXAMPLE 7 Writing Function Values in Terms of u

Write each trigonometric expression as an algebraic expression in u.
(a) $\sin \left(\tan ^{-1} u\right)$
(b) $\cos \left(2 \sin ^{-1} u\right)$

SOLUTION

(a) Let $\theta=\tan ^{-1} u$, so $\tan \theta=u$. Here, u may be positive or negative. Since $-\frac{\pi}{2}<\tan ^{-1} u<\frac{\pi}{2}$, sketch θ in quadrants I and IV and label two triangles, as shown in Figure 20. Because sine is given by the quotient of the side opposite and the hypotenuse, we have the following.

$$
\sin \left(\tan ^{-1} u\right)=\sin \theta=\frac{u}{\sqrt{u^{2}+1}}=\frac{u}{\sqrt{u^{2}+1}} \cdot \frac{\sqrt{u^{2}+1}}{\sqrt{u^{2}+1}}=\frac{u \sqrt{u^{2}+1}}{u^{2}+1}
$$

The result is positive when u is positive and negative when u is negative.
(b) Let $\theta=\sin ^{-1} u$, so $\sin \theta=u$. To find $\cos 2 \theta$, use the double-angle identity $\cos 2 \theta=1-2 \sin ^{2} \theta$.

$$
\cos \left(2 \sin ^{-1} u\right)=\cos 2 \theta=1-2 \sin ^{2} \theta=1-2 u^{2} \quad \text { (Section 5.5) }
$$

Now Try Exercises 99 and 103.

EXAMPLE 8 Finding the Optimal Angle of Elevation of a Shot Put

The optimal angle of elevation θ that a shot-putter should aim for in order to throw the greatest distance depends on the velocity v of the throw and the initial height h of the shot. See Figure 21. One model for θ that achieves this greatest distance is

$$
\theta=\arcsin \left(\sqrt{\frac{v^{2}}{2 v^{2}+64 h}}\right)
$$

(Source: Townend, M. S., Mathematics in Sport, Chichester, Ellis Horwood Limited.)

Figure 21
Suppose a shot-putter can consistently throw the steel ball with $h=6.6 \mathrm{ft}$ and $v=42 \mathrm{ft}$ per sec. At what angle should he release the ball to maximize distance?

SOLUTION To find this angle, substitute and use a calculator in degree mode.

$$
\theta=\arcsin \left(\sqrt{\frac{42^{2}}{2\left(42^{2}\right)+64(6.6)}}\right) \approx 42^{\circ} \quad h=6.6, v=42
$$

Now Try Exercise 109.

6.1 Exercises

Concept Check Complete each statement, or answer the question.

1. For a function to have an inverse, it must be \qquad .
2. The domain of $y=\arcsin x$ equals the \qquad of $y=\sin x$.
3. $y=\cos ^{-1} x$ means that $x=$ \qquad for $0 \leq y \leq \pi$.
4. The point $\left(\frac{\pi}{4}, 1\right)$ lies on the graph of $y=\tan x$. Therefore, the point \qquad lies on the graph of \qquad -.
5. If a function f has an inverse and $f(\pi)=-1$, then $f^{-1}(-1)=$ \qquad -.
6. How can the graph of f^{-1} be sketched if the graph of f is known?

Concept Check In Exercises 7-10, write short answers.

7. Consider the inverse sine function, defined by $y=\sin ^{-1} x$ or $y=\arcsin x$.
(a) What is its domain?
(b) What is its range?
(c) Is this function increasing or decreasing?
(d) Why is $\arcsin (-2)$ not defined?
8. Consider the inverse cosine function, defined by $y=\cos ^{-1} x$, or $y=\arccos x$.
(a) What is its domain?
(b) What is its range?
(c) Is this function increasing or decreasing?
(d) $\arccos \left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$. Why is $\arccos \left(-\frac{1}{2}\right)$ not equal to $-\frac{4 \pi}{3}$?
9. Consider the inverse tangent function, defined by $y=\tan ^{-1} x$, or $y=\arctan x$.
(a) What is its domain?
(b) What is its range?
(c) Is this function increasing or decreasing?
(d) Is there any real number x for which $\arctan x$ is not defined? If so, what is it (or what are they)?
10. Give the domain and range of each inverse trigonometric function, as defined in this section.
(a) inverse cosecant function
(b) inverse secant function
(c) inverse cotangent function
11. Concept Check Is $\sec ^{-1} a$ calculated as $\cos ^{-1} \frac{1}{a}$ or as $\frac{1}{\cos ^{-1} a}$?
12. Concept Check For positive values of $a, \cot ^{-1} a$ is calculated as $\tan ^{-1} \frac{1}{a}$. How is $\cot ^{-1} a$ calculated for negative values of a ?

Find the exact value of each real number y if it exists. Do not use a calculator. See Examples 1 and 2.
13. $y=\sin ^{-1} 0$
14. $y=\sin ^{-1}(-1)$
15. $y=\cos ^{-1}(-1)$
16. $y=\arccos 0$
17. $y=\tan ^{-1} 1$
18. $y=\arctan (-1)$
19. $y=\arctan 0$
20. $y=\tan ^{-1}(-1)$
21. $y=\arcsin \left(-\frac{\sqrt{3}}{2}\right)$
22. $y=\sin ^{-1} \frac{\sqrt{2}}{2}$
23. $y=\arccos \left(-\frac{\sqrt{3}}{2}\right)$
24. $y=\cos ^{-1}\left(-\frac{1}{2}\right)$
25. $y=\sin ^{-1} \sqrt{3}$
26. $y=\arcsin (-\sqrt{2})$
27. $y=\cot ^{-1}(-1)$
28. $y=\operatorname{arccot}(-\sqrt{3})$
29. $y=\csc ^{-1}(-2)$
30. $y=\csc ^{-1} \sqrt{2}$
31. $y=\operatorname{arcsec} \frac{2 \sqrt{3}}{3}$
32. $y=\sec ^{-1}(-\sqrt{2})$
33. $y=\sec ^{-1} 1$
34. $y=\sec ^{-1} 0$
35. $y=\csc ^{-1} \frac{\sqrt{2}}{2}$
36. $y=\operatorname{arccsc}\left(-\frac{1}{2}\right)$

Give the degree measure of θ if it exists. Do not use a calculator. See Example 3.
37. $\theta=\arctan (-1)$
38. $\theta=\tan ^{-1} \sqrt{3}$
39. $\theta=\arcsin \left(-\frac{\sqrt{3}}{2}\right)$
40. $\theta=\arcsin \left(-\frac{\sqrt{2}}{2}\right)$
41. $\theta=\arccos \left(-\frac{1}{2}\right)$
42. $\theta=\sec ^{-1}(-2)$
43. $\theta=\cot ^{-1}\left(-\frac{\sqrt{3}}{3}\right)$
44. $\theta=\cot ^{-1} \frac{\sqrt{3}}{3}$
45. $\theta=\csc ^{-1}(-2)$
46. $\theta=\csc ^{-1}(-1)$
47. $\theta=\sin ^{-1} 2$
48. $\theta=\cos ^{-1}(-2)$

Use a calculator to give each value in decimal degrees. See Example 4.
49. $\theta=\sin ^{-1}(-0.13349122)$
50. $\theta=\arcsin 0.77900016$
51. $\theta=\arccos (-0.39876459)$
52. $\theta=\cos ^{-1}(-0.13348816)$
53. $\theta=\csc ^{-1} 1.9422833$
54. $\theta=\cot ^{-1} 1.7670492$
55. $\theta=\cot ^{-1}(-0.60724226)$
56. $\theta=\cot ^{-1}(-2.7733744)$
57. $\theta=\tan ^{-1}(-7.7828641)$
58. $\theta=\sec ^{-1}(-5.1180378)$

Use a calculator to give each real number value. (Be sure the calculator is in radian mode.) See Example 4.
59. $y=\arcsin 0.92837781$
60. $y=\arcsin 0.81926439$
61. $y=\cos ^{-1}(-0.32647891)$
62. $y=\arccos 0.44624593$
63. $y=\arctan 1.1111111$
64. $y=\cot ^{-1} 1.0036571$
65. $y=\cot ^{-1}(-0.92170128)$
66. $y=\cot ^{-1}(-36.874610)$
67. $y=\sec ^{-1}(-1.2871684)$
68. $y=\sec ^{-1} 4.7963825$

The screen here shows how to define the inverse secant, cosecant, and cotangent functions in order to graph them using a TI-83/84 Plus graphing calculator.

Use this information to graph each inverse circular function and compare your graphs to those in Figure 14.
69. $y=\sec ^{-1} x$
70. $y=\csc ^{-1} x$
71. $y=\cot ^{-1} x$

Graph each inverse circular function by hand.
72. $y=\operatorname{arccsc} 2 x$
73. $y=\operatorname{arcsec} \frac{1}{2} x$
74. $y=2 \cot ^{-1} x$
75. Concept Check Explain why attempting to find $\sin ^{-1} 1.003$ on your calculator will result in an error message.

Relating Concepts

For individual or collaborative investigation (Exercises 76-78)*
76. Consider the function

$$
f(x)=3 x-2 \quad \text { and its inverse } \quad f^{-1}(x)=\frac{1}{3} x+\frac{2}{3}
$$

Simplify $f\left(f^{-1}(x)\right)$ and $f^{-1}(f(x))$. What do you notice in each case? What would the graph look like in each case?
77. Use a graphing calculator to graph $y=\tan \left(\tan ^{-1} x\right)$ in the standard viewing window, using radian mode. How does this compare to the graph you described in Exercise 76?
78. Use a graphing calculator to graph $y=\tan ^{-1}(\tan x)$ in the standard viewing window, using radian and dot modes. Why does this graph not agree with the graph you found in Exercise 77?

[^5]Give the exact value of each expression without using a calculator. See Examples 5 and 6.
79. $\tan \left(\arccos \frac{3}{4}\right)$
80. $\sin \left(\arccos \frac{1}{4}\right)$
81. $\cos \left(\tan ^{-1}(-2)\right)$
82. $\sec \left(\sin ^{-1}\left(-\frac{1}{5}\right)\right)$
83. $\sin \left(2 \tan ^{-1} \frac{12}{5}\right)$
84. $\cos \left(2 \sin ^{-1} \frac{1}{4}\right)$
85. $\cos \left(2 \arctan \frac{4}{3}\right)$
86. $\tan \left(2 \cos ^{-1} \frac{1}{4}\right)$
87. $\sin \left(2 \cos ^{-1} \frac{1}{5}\right)$
88. $\cos \left(2 \tan ^{-1}(-2)\right)$
89. $\sec \left(\sec ^{-1} 2\right)$
90. $\csc \left(\csc ^{-1} \sqrt{2}\right)$
91. $\cos \left(\tan ^{-1} \frac{5}{12}-\tan ^{-1} \frac{3}{4}\right)$
92. $\cos \left(\sin ^{-1} \frac{3}{5}+\cos ^{-1} \frac{5}{13}\right)$
93. $\sin \left(\sin ^{-1} \frac{1}{2}+\tan ^{-1}(-3)\right)$
94. $\tan \left(\cos ^{-1} \frac{\sqrt{3}}{2}-\sin ^{-1}\left(-\frac{3}{5}\right)\right)$

Use a calculator to find each value. Give answers as real numbers.
95. $\cos \left(\tan ^{-1} 0.5\right)$
96. $\sin \left(\cos ^{-1} 0.25\right)$
97. $\tan (\arcsin 0.12251014)$
98. $\cot (\arccos 0.58236841)$

Write each expression as an algebraic (nontrigonometric) expression in u, for $u>0$. See Example 7.
99. $\sin (\arccos u)$
100. $\tan (\arccos u)$
101. $\cos (\arcsin u)$
102. $\cot (\arcsin u)$
103. $\sin \left(2 \sec ^{-1} \frac{u}{2}\right)$
104. $\cos \left(2 \tan ^{-1} \frac{3}{u}\right)$
105. $\tan \left(\sin ^{-1} \frac{u}{\sqrt{u^{2}+2}}\right)$
106. $\sec \left(\cos ^{-1} \frac{u}{\sqrt{u^{2}+5}}\right)$
107. $\sec \left(\operatorname{arccot} \frac{\sqrt{4-u^{2}}}{u}\right)$
108. $\csc \left(\arctan \frac{\sqrt{9-u^{2}}}{u}\right)$
(Modeling) Solve each problem.
109. Angle of Elevation of a Shot Put Refer to Example 8. Suppose a shot-putter can consistently release the steel ball with velocity v of 32 ft per sec from an initial height h of 5.0 ft . What angle, to the nearest degree, will maximize the distance?
110. Angle of Elevation of a Shot Put Refer to Example 8.
(a) What is the optimal angle, to the nearest degree, when $h=0$?
(b) Fix h at 6 ft and regard θ as a function of v. As v increases without bound, the graph approaches an asymptote. Find the equation of that asymptote.
111. Observation of a Painting A painting 1 m high and 3 m from the floor will cut off an angle θ to an observer, where

$$
\theta=\tan ^{-1}\left(\frac{x}{x^{2}+2}\right)
$$

assuming that the observer is x meters from the wall where the painting is displayed and that the eyes of the observer are 2 m above the ground. (See the figure.) Find the value of θ for the following values of x. Round to the nearest degree.
(a) 1
(b) 2
(c) 3
(d) Derive the formula given above. (Hint: Use the identity for $\tan (\theta+\alpha)$. Use right triangles.)
(e) Graph the function for θ with a graphing calculator, and determine the distance that maximizes the angle.

(f) The concept in part (e) was first investigated in 1471 by the astronomer Regiomontanus. (Source: Maor, E., Trigonometric Delights, Princeton University Press.) If the bottom of the picture is a meters above eye level and the top of the picture is b meters above eye level, then the optimum value of x is $\sqrt{a b}$ meters. Use this result to find the exact answer to part (e).
112. Landscaping Formula A shrub is planted in a 100 -ft-wide space between buildings measuring 75 ft and 150 ft tall. The location of the shrub determines how much sun it receives each day. Show that if θ is the angle in the figure and x is the distance of the shrub from the taller building, then the value of θ (in radians) is given by

$$
\theta=\pi-\arctan \left(\frac{75}{100-x}\right)-\arctan \left(\frac{150}{x}\right)
$$

113. Communications Satellite Coverage The figure shows a stationary communications satellite positioned $20,000 \mathrm{mi}$ above the equator. What percent, to the nearest tenth, of the equator can be seen from the satellite? The diameter of Earth is 7927 mi at the equator.

114. Oil in a Storage Tank The level of oil in a storage tank buried in the ground can be found in much the same way as a dipstick is used to determine the oil level in an automobile crankcase. Suppose the ends of the cylindrical storage tank in the figure are circles of radius 3 ft and the cylinder is 20 ft long. Determine the volume of oil in the tank to the nearest cubic foot if the rod shows a depth of 2 ft . (Hint: The volume will be 20 times the area of the shaded segment of the circle shown in the figure on the right.)

6.2 Trigonometric Equations I

■ Solving by Linear Methods

- Solving by Factoring
- Solving by Quadratic Methods
- Solving by Using

Trigonometric Identities

In Chapter 5, we studied trigonometric equations that were identities. We now consider trigonometric equations that are conditional. These equations are satisfied by some values but not others. (See Appendix A.)

Solving by Linear Methods The most basic trigonometric equations are solved by first using properties of equality to isolate a trigonometric expression on one side of the equation.

EXAMPLE 1 Solving a Trigonometric Equation by Linear Methods

Solve the equation $2 \sin \theta+1=0$
(a) over the interval $\left[0^{\circ}, 360^{\circ}\right)$, and
(b) for all solutions.

ALGEBRAIC SOLUTION

(a) Because $\sin \theta$ is to the first power, we use the same method as we would to solve the linear equation $2 x+1=0$.

$$
\begin{aligned}
2 \sin \theta+1 & =0 & & \text { Original equation } \\
2 \sin \theta & =-1 & & \text { Subtract 1. (Appendix A) } \\
\sin \theta & =-\frac{1}{2} & & \text { Divide by } 2 .
\end{aligned}
$$

To find values of θ that satisfy $\sin \theta=-\frac{1}{2}$, we observe that θ must be in either quadrant III or quadrant IV because the sine function is negative only in these two quadrants. Furthermore, the reference angle must be 30°. The graph of the unit circle in Figure 22 shows the two possible values of θ. The solution set is $\left\{210^{\circ}, 330^{\circ}\right\}$.

Figure 22
(b) To find all solutions, we add integer multiples of the period of the sine function, 360°, to each solution found in part (a). The solution set is written as follows.

$$
\left\{210^{\circ}+360^{\circ} n, 330^{\circ}+360^{\circ} n\right.
$$

where n is any integer $\}$

GRAPHING CALCULATOR SOLUTION

(a) Consider the original equation.

$$
2 \sin \theta+1=0
$$

We can find the solution set of this equation by graphing the function

$$
Y_{1}=2 \sin X+1
$$

and then determining its x-intercepts, or zeros. Since we are finding solutions over the interval [$0^{\circ}, 360^{\circ}$), we use degree mode and choose this interval of values for the input X on the graph.

The screen in Figure 23(a) indicates that one solution is 210°, and the screen in Figure 23(b) indicates that the other solution is 330°. The solution set is $\left\{210^{\circ}, 330^{\circ}\right\}$, which agrees with the algebraic solution.

Figure 23
(b) Because the graph of

$$
\mathrm{Y}_{1}=2 \sin \mathrm{X}+1
$$

repeats the same y-values every 360°, all solutions are found by adding integer multiples of 360° to the solutions found in part (a). See the algebraic solution.

Figure 24

The solutions shown in blue represent angle measures, in radians, and their intercepted arc lengths on the unit circle.

Figure 25

Solving by Factoring

EXAMPLE 2 Solving a Trigonometric Equation by Factoring

Solve $\sin \theta \tan \theta=\sin \theta$ over the interval $\left[0^{\circ}, 360^{\circ}\right)$.

SOLUTION
$\sin \theta \tan \theta=\sin \theta$
$\sin \theta \tan \theta-\sin \theta=0$
$\sin \theta(\tan \theta-1)=0$
$\sin \theta=0 \quad$ or $\quad \tan \theta-1=0$
$\tan \theta=1$
$\theta=0^{\circ}$ or $\theta=180^{\circ}$

$$
\theta=45^{\circ} \text { or } \theta=225^{\circ}
$$

Apply the inverse function.
(Section 6.1)

See Figure 24. The solution set is $\left\{0^{\circ}, 45^{\circ}, 180^{\circ}, 225^{\circ}\right\}$.
Now Try Exercise 31.

CAUTION Trying to solve the equation in Example 2 by dividing each side by $\sin \theta$ would lead to $\tan \theta=1$, which would give $\theta=45^{\circ}$ or $\theta=225^{\circ}$. The missing two solutions are the ones that make the divisor, $\sin \theta$, equal 0 . For this reason, we avoid dividing by a variable expression.

Solving by Quadratic Methods The equation $a u^{2}+b u+c=0$, where u is an algebraic expression, is solved by quadratic methods. The expression u may be a trigonometric function, as in the next example.

EXAMPLE 3 Solving a Trigonometric Equation by Factoring

Solve $\tan ^{2} x+\tan x-2=0$ over the interval $[0,2 \pi)$.
SOLUTION $\tan ^{2} x+\tan x-2=0$ This equation is quadratic in form.

$$
\begin{array}{rlrl}
(\tan x-1)(\tan x+2) & =0 & \text { Factor. } \\
\tan x-1=0 & \text { or } & \tan x+2=0 & \text { Zero-factor property } \\
\tan x=1 & \text { or } & \tan x & =-2
\end{array} \text { Solve each equation. }
$$

The solutions for $\tan x=1$ over the interval $[0,2 \pi)$ are $x=\frac{\pi}{4}$ and $x=\frac{5 \pi}{4}$.
To solve $\tan x=-2$ over that interval, we use a scientific calculator set in radian mode. We find that $\tan ^{-1}(-2) \approx-1.1071487$. This is a quadrant IV number, based on the range of the inverse tangent function. However, since we want solutions over the interval $[0,2 \pi)$, we must first add π to -1.1071487 , and then add 2π. See Figure 25.

$$
\begin{aligned}
& x \approx-1.1071487+\pi \approx 2.0344439 \\
& x \approx-1.1071487+2 \pi \approx 5.1760366
\end{aligned}
$$

The solutions over the required interval form the following solution set.

$$
\{\underbrace{\frac{\pi}{4}, \quad \frac{5 \pi}{4},}_{\begin{array}{c}
\text { Exact } \\
\text { values }
\end{array}} \quad \underbrace{2.0344, \quad 5.1760}_{\begin{array}{c}
\text { Approximate values to } \\
\text { four decimal places }
\end{array}}\}
$$

EXAMPLE 4 Solving a Trigonometric Equation Using the Quadratic Formula

Find all solutions of $\cot x(\cot x+3)=1$. Write the solution set.
SOLUTION We multiply the factors on the left and subtract 1 to write the equation in standard quadratic form.

$$
\begin{aligned}
\cot x(\cot x+3) & =1 \quad \text { Original equation } \\
\cot ^{2} x+3 \cot x-1 & =0 \quad \text { (Appendix A) }
\end{aligned}
$$

This equation is quadratic in form, but cannot be solved by factoring. Therefore, we use the quadratic formula, with $a=1, b=3, c=-1$, and $\cot x$ as the variable.

$$
\begin{aligned}
& \begin{array}{ll}
\cot x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \begin{array}{l}
\text { Quadratic formula } \\
\text { (Appendix A) }
\end{array}
\end{array} \\
& =\frac{-3 \pm \sqrt{3^{2}-4(1)(-1)}}{2(1)} \quad a=1, b=3, c=-1 \\
& =\frac{-3 \pm \sqrt{9+4}}{2} \quad \text { Simplify. } \\
& =\frac{-3 \pm \sqrt{13}}{2} \\
& \text { Add. } \\
& \cot x \approx-3.302775638 \\
& x \approx \cot ^{-1}(-3.302775638) \\
& x \approx \tan ^{-1}\left(\frac{1}{-3.302775638}\right)+\pi \quad \text { or } \quad x \approx \tan ^{-1}\left(\frac{1}{0.3027756377}\right) \\
& \text { Reciprocal identity: } \tan x=\frac{1}{\cot x} \\
& \text { (Section 1.4) } \\
& x \approx-0.2940013018+\pi \quad \text { or } \quad x \approx \begin{array}{l}
1.276795025 \\
\text { Use a calculator in radian mode } .
\end{array} \\
& x \approx 2.847591352 \\
& \text { or } \quad \cot x \approx 0.3027756377 \\
& \text { Use a calculator. (Section 2.3) } \\
& \text { or } \quad x \approx \cot ^{-1}(0.3027756377) \\
& \text { Definition of inverse cotangent }
\end{aligned}
$$

To find all solutions, we add integer multiples of the period of the tangent function, which is π, to each solution found previously. Although not unique, a common form of the solution set of the equation, written using the least possible nonnegative angle measures, is given as follows.
$\{2.8476+n \pi, 1.2768+n \pi$, where n is any integer $\}$
Round to four decimal places.
Now Try Exercise 53.

Solving by Using Trigonometric Identities Recall that squaring each side of an equation, such as

$$
\sqrt{x+4}=x+2
$$

will yield all solutions but may also give extraneous solutions-solutions that satisfy the final equation but not the original equation. As a result, all proposed solutions must be checked in the original equation as shown in Example 5.

Radian mode
The graph shows that on the interval $[0,2 \pi)$, the only x-intercept of the graph of $Y=\tan X+\sqrt{3}-\sec X$ is 5.7595865, which is an approximation for $\frac{11 \pi}{6}$, the solution found in Example 5.

LOOKING AHEAD TO CALCULUS

There are many instances in calculus where it is necessary to solve trigonometric equations. Examples include solving related-rates problems and optimization problems.

EXAMPLE 5 Solving a Trigonometric Equation by Squaring

Solve $\tan x+\sqrt{3}=\sec x$ over the interval $[0,2 \pi)$.
SOLUTION Our first goal is to rewrite the equation in terms of a single trigonometric function. Since the tangent and secant functions are related by the identity $1+\tan ^{2} x=\sec ^{2} x$, square each side and express $\sec ^{2} x$ in terms of $\tan ^{2} x$.

$$
(\tan x+\sqrt{3})^{2}=(\sec x)^{2} \quad \text { Square each side }
$$

Don't forget the

 middle term.$$
\begin{array}{ll}
\tan ^{2} x+2 \sqrt{3} \tan x+3=\sec ^{2} x & (x+y)^{2}=x^{2}+2 x y+y^{2} \\
\tan ^{2} x+2 \sqrt{3} \tan x+3=1+\tan ^{2} x & \text { Pythagorean identity }
\end{array}
$$

(Section 1.4)

$$
2 \sqrt{3} \tan x=-2
$$

$$
\tan x=-\frac{1}{\sqrt{3}}, \quad \text { or } \quad-\frac{\sqrt{3}}{3} \quad \begin{aligned}
& \text { Divide by } 2 \sqrt{3} \text {. Rationalize } \\
& \text { the denominator. }
\end{aligned}
$$

Solutions of $\tan x=-\frac{\sqrt{3}}{3}$ over $[0,2 \pi)$ are $\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$. These possible, or proposed, solutions must be checked to determine whether they are also solutions of the original equation.

CHECK

$$
\tan x+\sqrt{3}=\sec x \quad \text { Original equation }
$$

$$
\begin{array}{c|c}
\tan \left(\frac{5 \pi}{6}\right)+\sqrt{3} \stackrel{?}{=} \sec \left(\frac{5 \pi}{6}\right) & \tan \left(\frac{11 \pi}{6}\right)+\sqrt{3} \stackrel{?}{=} \sec \left(\frac{11 \pi}{6}\right) \\
-\frac{\sqrt{3}}{3}+\frac{3 \sqrt{3}}{3} \stackrel{?}{=}-\frac{2 \sqrt{3}}{3} & -\frac{\sqrt{3}}{3}+\frac{3 \sqrt{3}}{3} \stackrel{?}{=} \frac{2 \sqrt{3}}{3} \\
\frac{2 \sqrt{3}}{3}=-\frac{2 \sqrt{3}}{3} \text { Fet } x=\frac{5 \pi}{6} . & \frac{2 \sqrt{3}}{3}=\frac{2 \sqrt{3}}{3} \checkmark \text { True }
\end{array}
$$

As the check shows, only $\frac{11 \pi}{6}$ is a solution, so the solution set is $\left\{\frac{11 \pi}{6}\right\}$.

Now Try Exercise 41.

Methods for solving trigonometric equations can be summarized as follows.

Solving a Trigonometric Equation

1. Decide whether the equation is linear or quadratic in form, so that you can determine the solution method.
2. If only one trigonometric function is present, solve the equation for that function.
3. If more than one trigonometric function is present, rearrange the equation so that one side equals 0 . Then try to factor and set each factor equal to 0 to solve.
4. If the equation is quadratic in form, but not factorable, use the quadratic formula. Check that solutions are in the desired interval.
5. Try using identities to change the form of the equation. It may be helpful to square each side of the equation first. In this case, check for extraneous solutions.

EXAMPLE 6 Describing a Musical Tone from a Graph

A basic component of music is a pure tone. The graph in Figure $\mathbf{2 6}$ models the sinusoidal pressure $y=P$ in pounds per square foot from a pure tone at time $x=t$ in seconds.
(a) The frequency of a pure tone is often measured in hertz. One hertz is equal to one cycle per second and is abbreviated Hz . What is the frequency f, in hertz, of the pure tone shown in the graph?
(b) The time for the tone to produce one complete cycle is called the period. Approximate the period T, in seconds, of the pure tone.
(c) An equation for the graph is $y=0.004 \sin 300 \pi x$. Use a calculator to estimate all solutions to the equation that make $y=0.004$ over the interval [0, 0.02].

SOLUTION

(a) From the graph in Figure 26, we see that there are 6 cycles in 0.04 sec . This is equivalent to $\frac{6}{0.04}=150$ cycles per sec. The pure tone has a frequency of $f=150 \mathrm{~Hz}$.

Figure 26

Figure 27
(b) Six periods cover a time interval of 0.04 sec . One period would be equal to $T=\frac{0.04}{6}=\frac{1}{150}$, or $0.00 \overline{6} \mathrm{sec}$.
(c) If we reproduce the graph in Figure 26 on a calculator as Y_{1} and also graph a second function as $\mathrm{Y}_{2}=0.004$, we can determine that the approximate values of x at the points of intersection of the graphs over the interval [$0,0.02$] are

$$
0.0017,0.0083, \text { and } 0.015
$$

The first value is shown in Figure 27. These values represent time in seconds.
Now Try Exercise 61.

6.2 Exercises

Concept Check Refer to the summary box on solving a trigonometric equation following Example 5. Decide on the appropriate technique to begin the solution of each equation. Do not solve the equation.

1. $2 \cot x+1=-1$
2. $\sin x+2=3$
3. $5 \sec ^{2} x=6 \sec x$
4. $2 \cos ^{2} x-\cos x=1$
5. $9 \sin ^{2} x-5 \sin x=1$
6. $\tan ^{2} x-4 \tan x+2=0$
7. $\tan x-\cot x=0$
8. $\cos ^{2} x=\sin ^{2} x+1$
9. Suppose that in solving an equation over the interval $\left[0^{\circ}, 360^{\circ}\right)$, you reach the step $\sin \theta=-\frac{1}{2}$. Why is -30° not a correct answer?
10. Lindsay solved the equation $\sin x=1-\cos x$ by squaring each side to get

$$
\sin ^{2} x=1-2 \cos x+\cos ^{2} x
$$

Several steps later, using correct algebra, she concluded that the solution set for solutions over the interval $[0,2 \pi)$ is $\left\{0, \frac{\pi}{2}, \frac{3 \pi}{2}\right\}$. Explain why this is not the correct solution set.

Solve each equation for exact solutions over the interval $[0,2 \pi)$. See Examples 1-3.
11. $2 \cot x+1=-1$
12. $\sin x+2=3$
13. $2 \sin x+3=4$
14. $2 \sec x+1=\sec x+3$
15. $\tan ^{2} x+3=0$
16. $\sec ^{2} x+2=-1$
17. $(\cot x-1)(\sqrt{3} \cot x+1)=0$
18. $(\csc x+2)(\csc x-\sqrt{2})=0$
19. $\cos ^{2} x+2 \cos x+1=0$
20. $2 \cos ^{2} x-\sqrt{3} \cos x=0$
21. $-2 \sin ^{2} x=3 \sin x+1$
22. $2 \cos ^{2} x-\cos x=1$

Solve each equation for solutions over the interval $\left[0^{\circ}, 360^{\circ}\right)$. Give solutions to the nearest tenth as appropriate. See Examples 2-5.
23. $(\cot \theta-\sqrt{3})(2 \sin \theta+\sqrt{3})=0$
24. $(\tan \theta-1)(\cos \theta-1)=0$
25. $2 \sin \theta-1=\csc \theta$
26. $\tan \theta+1=\sqrt{3}+\sqrt{3} \cot \theta$
27. $\tan \theta-\cot \theta=0$
28. $\cos ^{2} \theta=\sin ^{2} \theta+1$
29. $\csc ^{2} \theta-2 \cot \theta=0$
30. $\sin ^{2} \theta \cos \theta=\cos \theta$
31. $2 \tan ^{2} \theta \sin \theta-\tan ^{2} \theta=0$
32. $\sin ^{2} \theta \cos ^{2} \theta=0$
33. $\sec ^{2} \theta \tan \theta=2 \tan \theta$
34. $\cos ^{2} \theta-\sin ^{2} \theta=0$
35. $9 \sin ^{2} \theta-6 \sin \theta=1$
36. $4 \cos ^{2} \theta+4 \cos \theta=1$
37. $\tan ^{2} \theta+4 \tan \theta+2=0$
38. $3 \cot ^{2} \theta-3 \cot \theta-1=0$
39. $\sin ^{2} \theta-2 \sin \theta+3=0$
40. $2 \cos ^{2} \theta+2 \cos \theta+1=0$
41. $\cot \theta+2 \csc \theta=3$
42. $2 \sin \theta=1-2 \cos \theta$

Solve each equation (x in radians and θ in degrees) for all exact solutions where appropriate. Round approximate answers in radians to four decimal places and approximate answers in degrees to the nearest tenth. Write answers using the least possible nonnegative angle measures. See Examples 1-5.
43. $\cos \theta+1=0$
44. $\tan \theta+1=0$
45. $3 \csc x-2 \sqrt{3}=0$
46. $\cot x+\sqrt{3}=0$
47. $6 \sin ^{2} \theta+\sin \theta=1$
48. $3 \sin ^{2} \theta-\sin \theta=2$
49. $2 \cos ^{2} x+\cos x-1=0$
50. $4 \cos ^{2} x-1=0$
51. $\sin \theta \cos \theta-\sin \theta=0$
52. $\tan \theta \csc \theta-\sqrt{3} \csc \theta=0$
53. $\sin x(3 \sin x-1)=1$
54. $\tan x(\tan x-2)=5$
55. $5+5 \tan ^{2} \theta=6 \sec \theta$
56. $\sec ^{2} \theta=2 \tan \theta+4$
57. $\frac{2 \tan \theta}{3-\tan ^{2} \theta}=1$
58. $\frac{2 \cot ^{2} \theta}{\cot \theta+3}=1$

The following equations cannot be solved by algebraic methods. Use a graphing calculator to find all solutions over the interval $[0,2 \pi)$. Express solutions to four decimal places.
59. $x^{2}+\sin x-x^{3}-\cos x=0$
60. $x^{3}-\cos ^{2} x=\frac{1}{2} x-1$
(Modeling) Solve each problem.
61. Pressure on the Eardrum See Example 6. No musical instrument can generate a true pure tone. A pure tone has a unique, constant frequency and amplitude that sounds rather dull and uninteresting. The pressures caused by pure tones on the eardrum are sinusoidal. The change in pressure P in pounds per square foot on a person's eardrum from a pure tone at time t in seconds can be modeled using the equation

$$
P=A \sin (2 \pi f t+\phi)
$$

where f is the frequency in cycles per second, and ϕ is the phase angle. When P is positive, there is an increase in pressure and the eardrum is pushed inward. When P is negative, there is a decrease in pressure and the eardrum is pushed outward. (Source: Roederer, J., Introduction to the Physics and Psychophysics of Music, Second Edition, Springer-Verlag.) A graph of the tone middle C is shown in the figure.
(a) Determine algebraically the values of t for which $P=0$ over [$0,0.005$].
(b) From the graph and your answer in part (a), determine the interval for which $P \leq 0$ over $[0,0.005]$.
(c) Would an eardrum hearing this tone be vibrating outward or inward when $P<0$?

62. Accident Reconstruction The model

$$
0.342 D \cos \theta+h \cos ^{2} \theta=\frac{16 D^{2}}{V_{0}^{2}}
$$

is used to reconstruct accidents in which a vehicle vaults into the air after hitting an obstruction. V_{0} is velocity in feet per second of the vehicle when it hits the obstruction, D is distance (in feet) from the obstruction to the landing point, and h is the difference in height (in feet) between landing point and takeoff point. Angle θ is the takeoff angle, the angle between the horizontal and the path of the vehicle. Find θ to the nearest degree if $V_{0}=60, D=80$, and $h=2$.
63. Electromotive Force In an electric circuit, suppose that

$$
V=\cos 2 \pi t
$$

models the electromotive force in volts at t seconds. Find the least value of t where $0 \leq t \leq \frac{1}{2}$ for each value of V.
(a) $V=0$
(b) $V=0.5$
(c) $V=0.25$
64. Voltage Induced by a Coil of Wire A coil of wire rotating in a magnetic field induces a voltage modeled by

$$
E=20 \sin \left(\frac{\pi t}{4}-\frac{\pi}{2}\right)
$$

where t is time in seconds. Find the least positive time to produce each voltage.
(a) 0
(b) $10 \sqrt{3}$
65. Movement of a Particle A particle moves along a straight line. The distance of the particle from the origin at time t is modeled by

$$
s(t)=\sin t+2 \cos t
$$

Find a value of t that satisfies each equation.
(a) $s(t)=\frac{2+\sqrt{3}}{2}$
(b) $s(t)=\frac{3 \sqrt{2}}{2}$
66. Explain what is WRONG with the following solution of the trigonometric equation $\sin ^{2} x-\sin x=0$ for all x over the interval $[0,2 \pi)$.

$$
\begin{aligned}
\sin ^{2} x-\sin x & =0 & & \text { Original equation } \\
\sin x-1 & =0 & & \text { Divide by } \sin x \\
\sin x & =1 & & \text { Add } 1 \\
x & =\frac{\pi}{2} & & \text { Definition of inverse sine }
\end{aligned}
$$

The solution set is $\left\{\frac{\pi}{2}\right\}$.

6.3 Trigonometric Equations II

- Equations with Half-Angles
- Equations with Multiple Angles

In this section, we discuss trigonometric equations that involve functions of half-angles and multiple angles. Solving these equations often requires adjusting solution intervals to fit given domains.

Equations with Half-Angles

EXAMPLE 1 Solving an Equation with a Half-Angle

Solve the equation $2 \sin \frac{x}{2}=1$
(a) over the interval $[0,2 \pi)$, and
(b) for all solutions.

SOLUTION

(a) Write the interval $[0,2 \pi)$ as the inequality

$$
0 \leq x<2 \pi
$$

The corresponding interval for $\frac{x}{2}$ is

$$
0 \leq \frac{x}{2}<\pi . \quad \text { Divide by 2. (Appendix A) }
$$

To find all values of $\frac{x}{2}$ over the interval $[0, \pi)$ that satisfy the given equation, first solve for $\sin \frac{x}{2}$.

$$
\begin{aligned}
2 \sin \frac{x}{2} & =1 & & \text { Original equation } \\
\sin \frac{x}{2} & =\frac{1}{2} & & \text { Divide by } 2
\end{aligned}
$$

The two numbers over the interval $[0, \pi)$ with sine value $\frac{1}{2}$ are $\frac{\pi}{6}$ and $\frac{5 \pi}{6}$, so

$$
\begin{aligned}
\frac{x}{2} & =\frac{\pi}{6} \quad \text { or } \quad \frac{x}{2}=\frac{5 \pi}{6} & & \begin{array}{l}
\text { Definition of inverse sine } \\
(\text { Section 6.1) }
\end{array} \\
x & =\frac{\pi}{3} \quad \text { or } \quad x=\frac{5 \pi}{3} & & \text { Multiply by } 2 .
\end{aligned}
$$

The solution set over the given interval is $\left\{\frac{\pi}{3}, \frac{5 \pi}{3}\right\}$.
(b) Because this is a sine function with period 4π, all solutions are found by adding integer multiples of 4π.

$$
\left\{\frac{\pi}{3}+4 n \pi, \frac{5 \pi}{3}+4 n \pi, \text { where } n \text { is any integer }\right\}
$$

Now Try Exercises 15 and 29.

Equations with Multiple Angles

EXAMPLE 2 Solving an Equation Using a Double Angle Identity

Solve $\cos 2 x=\cos x$ over the interval $[0,2 \pi)$.
SOLUTION First change $\cos 2 x$ to a trigonometric function of x. Use the identity $\cos 2 x=2 \cos ^{2} x-1$ so that the equation involves only $\cos x$. Then factor.

$\cos 2 x$	$=\cos x$		Original equation
$2 \cos ^{2} x-1=\cos x$		Cosine double-angle identity	
		(Section 5.5)	
$2 \cos ^{2} x-\cos x-1=0$		Subtract $\cos x$.	
$(2 \cos x+1)(\cos x-1)=0$		Factor.	
$2 \cos x+1=0$	or	$\cos x-1=0$	
Zero-factor property			
$\cos x=-\frac{1}{2}$	or	$\cos x=1$	
(Appendix A)			

Cosine is $-\frac{1}{2}$ in quadrants II and III with reference angle $\frac{\pi}{3}$, and it has a value of 1 at 0 radians. We can use Figure 28 to determine that solutions over the required interval are as follows.

$$
x=\frac{2 \pi}{3} \quad \text { or } \quad x=\frac{4 \pi}{3} \quad \text { or } \quad x=0 .
$$

The solution set is $\left\{0, \frac{2 \pi}{3}, \frac{4 \pi}{3}\right\}$.

CAUTION In Example 2, because 2 is not a factor of $\cos 2 x, \frac{\cos 2 x}{2} \neq \cos x$. The only way to change $\cos 2 x$ to a trigonometric function of x is by using one of the identities for $\cos 2 x$.

EXAMPLE 3 Solving an Equation Using a Multiple-Angle Identity

Solve the equation $4 \sin \theta \cos \theta=\sqrt{3}$
(a) over the interval $\left[0^{\circ}, 360^{\circ}\right)$, and
(b) for all solutions.

SOLUTION

(a) The identity $2 \sin \theta \cos \theta=\sin 2 \theta$ is useful here.

$$
\begin{array}{rlrl}
4 \sin \theta \cos \theta & =\sqrt{3} & & \text { Original equation } \\
2(2 \sin \theta \cos \theta) & =\sqrt{3} & & 4=2 \cdot 2 \\
2 \sin 2 \theta & =\sqrt{3} & 2 \sin \theta \cos \theta=\sin 2 \theta \text { (Section 5.5) } \\
\sin 2 \theta & =\frac{\sqrt{3}}{2} & \text { Divide by } 2 .
\end{array}
$$

The screa shows The screen shows that one solution is approximately 2.3089. An advantage of using a graphing calculator is that extraneous values do not appear.

From the given interval $0^{\circ} \leq \theta<360^{\circ}$, the corresponding interval for 2θ is $0^{\circ} \leq 2 \theta<720^{\circ}$. Because the sine is positive in quadrants I and II, solutions over this interval are as follows.

$$
\text { or } \quad \theta=30^{\circ}, 60^{\circ}, 210^{\circ}, 240^{\circ} \quad \text { Divide by } 2 .
$$

The final two solutions for 2θ were found by adding 360° to 60° and 120°, respectively, which gives the solution set $\left\{30^{\circ}, 60^{\circ}, 210^{\circ}, 240^{\circ}\right\}$.
(b) All angles 2θ that are solutions of the equation $\sin 2 \theta=\frac{\sqrt{3}}{2}$ are found by adding integer multiples of 360° to the basic solution angles, 60° and 120°.

$$
\begin{array}{rlll}
2 \theta=60^{\circ}+360^{\circ} n & \text { and } 2 \theta=120^{\circ}+360^{\circ} n & \begin{array}{l}
\text { Add integer multiples } \\
\text { of } 360^{\circ} .
\end{array} \\
\theta=30^{\circ}+180^{\circ} n & \text { and } \theta=60^{\circ}+180^{\circ} n & \text { Divide by } 2 .
\end{array}
$$

All solutions are given by the following set, where 180° represents the period of $\sin 2 \theta$.
$\left\{30^{\circ}+180^{\circ} n, 60^{\circ}+180^{\circ} n\right.$, where n is any integer $\}$
Now Try Exercises 13 and 37.

EXAMPLE 4 Solving an Equation with a Multiple Angle

Solve $\tan 3 x+\sec 3 x=2$ over the interval $[0,2 \pi)$.
SOLUTION Since the tangent and secant functions are related by the identity $1+\tan ^{2} \theta=\sec ^{2} \theta$, one way to begin is to express everything in terms of secant.

$$
\begin{array}{rlrl}
\tan 3 x+\sec 3 x & =2 \\
\tan 3 x & =2-\sec 3 x & \begin{array}{l}
\text { Don't forget the } \\
\text { middle term. }
\end{array} \\
\tan ^{2} 3 x & =4-4 \sec 3 x+\sec ^{2} 3 x & \begin{array}{l}
\text { Subtract sec } 3 x . \\
\text { Square each side. } \\
(x-y)^{2}=x^{2}-2 x y+y^{2}
\end{array} \\
\sec ^{2} 3 x-1 & =4-4 \sec 3 x+\sec ^{2} 3 x & \begin{array}{l}
\text { Replace } \tan ^{2} 3 x \text { with } \sec ^{2} 3 x-1 . \\
\text { (Section } 5.1)
\end{array} \\
4 \sec 3 x & =5 & & \begin{array}{l}
\text { Simplify. }
\end{array} \\
\sec 3 x & =\frac{5}{4} & & \text { Divide by } 4 . \\
\frac{1}{\operatorname{ses} 3 x} & =\frac{5}{4} & & \text { sec } \theta=\frac{1}{\cos \theta}(\text { Section 1.4) }
\end{array}
$$

Multiply each term of the inequality $0 \leq x<2 \pi$ by 3 to find the interval for $3 x$: $[0,6 \pi)$. Use a calculator and the fact that cosine is positive in quadrants I and IV.

$$
\begin{aligned}
3 x \approx 0.6435,5.6397,6.9267,11.9229,13.2099,18.2061 & \begin{array}{l}
\text { Definition of } \\
\text { inverse cosine }
\end{array} \\
x \approx 0.2145,1.8799,2.3089,3.9743,4.4033,6.0687 & \text { Divide by } 3
\end{aligned}
$$

Since both sides of the equation were squared, each proposed solution must be checked. Verify by substitution in the given equation that the solution set is $\{0.2145,2.3089,4.4033\}$.

Figure 30
A piano string can vibrate at more than one frequency when it is struck. It produces a complex wave that can mathematically be modeled by a sum of several pure tones. When a piano key with a frequency of f_{1} is played, the corresponding string vibrates not only at f_{1} but also at the higher frequencies of $2 f_{1}, 3 f_{1}, 4 f_{1}, \ldots, n f_{1} . f_{1}$ is the fundamental frequency of the string, and higher frequencies are the upper harmonics. The human ear will hear the sum of these frequencies as one complex tone. (Source: Roederer, J., Introduction to the Physics and Psychophysics of Music, Second Edition, Springer-Verlag.)

EXAMPLE 5 Analyzing Pressures of Upper Harmonics

Suppose that the A key above middle C is played on a piano. Its fundamental frequency is $f_{1}=440 \mathrm{~Hz}$, and its associated pressure is expressed as

$$
P_{1}=0.002 \sin 880 \pi t
$$

The string will also vibrate at

$$
f_{2}=880, f_{3}=1320, f_{4}=1760, f_{5}=2200, \ldots \mathrm{~Hz}
$$

The corresponding pressures of these upper harmonics are as follows.

$$
\begin{gathered}
P_{2}=\frac{0.002}{2} \sin 1760 \pi t, \quad P_{3}=\frac{0.002}{3} \sin 2640 \pi t, \\
P_{4}=\frac{0.002}{4} \sin 3520 \pi t, \quad \text { and } \quad P_{5}=\frac{0.002}{5} \sin 4400 \pi t
\end{gathered}
$$

The graph of

$$
P=P_{1}+P_{2}+P_{3}+P_{4}+P_{5}
$$

shown in Figure 29, is "saw-toothed."

Figure 29
(a) What is the maximum value of P ?
(b) At what values of $t=x$ does this maximum occur over the interval $[0,0.01]$?

SOLUTION

(a) A graphing calculator shows that the maximum value of P is approximately 0.00317 . See Figure 30.
(b) The maximum occurs at

$$
t=x \approx 0.000191,0.00246,0.00474,0.00701, \text { and } 0.00928
$$

Figure $\mathbf{3 0}$ shows how the second value is found. The other values are found similarly.

Now Try Exercise 47.

Concept Check Answer each question.

1. Suppose you are solving a trigonometric equation for solutions over the interval $[0,2 \pi)$, and your work leads to $2 x=\frac{2 \pi}{3}, 2 \pi, \frac{8 \pi}{3}$. What are the corresponding values of x ?
2. Suppose you are solving a trigonometric equation for solutions over the interval $[0,2 \pi)$, and your work leads to $\frac{1}{2} x=\frac{\pi}{16}, \frac{5 \pi}{12}, \frac{5 \pi}{8}$. What are the corresponding values of x ?
3. Suppose you are solving a trigonometric equation for solutions over the interval $\left[0^{\circ}, 360^{\circ}\right)$, and your work leads to $3 \theta=180^{\circ}, 630^{\circ}, 720^{\circ}, 930^{\circ}$. What are the corresponding values of θ ?
4. Suppose you are solving a trigonometric equation for solutions over the interval $\left[0^{\circ}, 360^{\circ}\right.$), and your work leads to $\frac{1}{3} \theta=45^{\circ}, 60^{\circ}, 75^{\circ}, 90^{\circ}$. What are the corresponding values of θ ?
5. Explain what is WRONG with the following solution.

Solve $\tan 2 \theta=2$ over the interval $[0,2 \pi)$.

$$
\begin{array}{rlrl}
\tan 2 \theta & =2 & & \text { Original equation } \\
\frac{\tan 2 \theta}{2} & =\frac{2}{2} & & \text { Divide by } 2 . \\
\tan \theta & =1 & & \text { Perform the division. } \\
\theta=\frac{\pi}{4} & \text { or } & \theta=\frac{5 \pi}{4} & \\
\text { Definition of inverse tangent }
\end{array}
$$

The solution set is $\left\{\frac{\pi}{4}, \frac{5 \pi}{4}\right\}$.
6. The equation $\cot \frac{x}{2}-\csc \frac{x}{2}-1=0$ has no solution over the interval $[0,2 \pi)$. Using this information, what can we say about the graph of

$$
y=\cot \frac{x}{2}-\csc \frac{x}{2}-1
$$

over this interval? Confirm your answer by graphing the function over the interval.
Solve each equation in x for exact solutions over the interval $[0,2 \pi)$ and each equation in θ for exact solutions over the interval $\left[0^{\circ}, 360^{\circ}\right)$. See Examples 1-4.
7. $\cos 2 x=\frac{\sqrt{3}}{2}$
8. $\cos 2 x=-\frac{1}{2}$
9. $\sin 3 \theta=-1$
10. $\sin 3 \theta=0$
11. $3 \tan 3 x=\sqrt{3}$
12. $\cot 3 x=\sqrt{3}$
13. $\sqrt{2} \cos 2 \theta=-1$
14. $2 \sqrt{3} \sin 2 \theta=\sqrt{3}$
15. $\sin \frac{x}{2}=\sqrt{2}-\sin \frac{x}{2}$
16. $\tan 4 x=0$
17. $\sin x=\sin 2 x$
18. $\cos 2 x-\cos x=0$
19. $8 \sec ^{2} \frac{x}{2}=4$
20. $\sin ^{2} \frac{x}{2}-2=0$
21. $\sin \frac{\theta}{2}=\csc \frac{\theta}{2}$
22. $\sec \frac{\theta}{2}=\cos \frac{\theta}{2}$
23. $\cos 2 x+\cos x=0$
24. $\sin x \cos x=\frac{1}{4}$

Solve each equation (x in radians and θ in degrees) for all exact solutions where appropriate. Round approximate answers in radians to four decimal places and approximate answers in degrees to the nearest tenth. Write answers using the least possible nonnegative angle measures. See Examples 1-4.
25. $\sqrt{2} \sin 3 x-1=0$
26. $-2 \cos 2 x=\sqrt{3}$
27. $\cos \frac{\theta}{2}=1$
28. $\sin \frac{\theta}{2}=1$
29. $2 \sqrt{3} \sin \frac{x}{2}=3$
30. $2 \sqrt{3} \cos \frac{x}{2}=-3$
31. $2 \sin \theta=2 \cos 2 \theta$
32. $\cos \theta-1=\cos 2 \theta$
33. $1-\sin x=\cos 2 x$
34. $\sin 2 x=2 \cos ^{2} x$
35. $3 \csc ^{2} \frac{x}{2}=2 \sec x$
36. $\cos x=\sin ^{2} \frac{x}{2}$
37. $2-\sin 2 \theta=4 \sin 2 \theta$
38. $4 \cos 2 \theta=8 \sin \theta \cos \theta$
39. $2 \cos ^{2} 2 \theta=1-\cos 2 \theta$
40. $\sin \theta-\sin 2 \theta=0$

Solve each equation for solutions over the interval $[0,2 \pi)$. Write solutions as exact values or to four decimal places, as appropriate. See Example 4.
41. $\sin \frac{x}{2}-\cos \frac{x}{2}=0$
42. $\sin \frac{x}{2}+\cos \frac{x}{2}=1$
43. $\tan 2 x+\sec 2 x=3$
44. $\tan 2 x-\sec 2 x=2$

The following equations cannot be solved by algebraic methods. Use a graphing calculator to find all solutions over the interval $[0,2 \pi)$. Express solutions to four decimal places.
45. $2 \sin 2 x-x^{3}+1=0$
46. $3 \cos \frac{x}{2}+\sqrt{x}-2=-\frac{1}{2} x+2$
(Modeling) Solve each problem. See Example 5.
47. Pressure of a Plucked String If a string with a fundamental frequency of 110 Hz is plucked in the middle, it will vibrate at the odd harmonics of $110,330,550, \ldots \mathrm{~Hz}$ but not at the even harmonics of $220,440,660, \ldots \mathrm{~Hz}$. The resulting pressure P caused by the string can be modeled by the equation

$$
P=0.003 \sin 220 \pi t+\frac{0.003}{3} \sin 660 \pi t+\frac{0.003}{5} \sin 1100 \pi t+\frac{0.003}{7} \sin 1540 \pi t .
$$

(Source: Benade, A., Fundamentals of Musical Acoustics, Dover Publications. Roederer, J., Introduction to the Physics and Psychophysics of Music, Second Edition, Springer-Verlag.)
(a) Graph P in the viewing window $[0,0.03]$ by $[-0.005,0.005]$.
(b) Use the graph to describe the shape of the sound wave that is produced.
(c) Refer to Section 6.2, Exercise 61. At lower frequencies, the inner ear will hear a tone only when the eardrum is moving outward. Determine the times over the interval $[0,0.03]$ when this will occur.

48. Hearing Beats in Music Musicians sometimes tune instruments by playing the same tone on two different instruments and listening for a phenomenon known as beats. Beats occur when two tones vary in frequency by only a few hertz. When the two instruments are in tune, the beats disappear. The ear hears beats because the pressure slowly rises and falls as a result of this slight variation in the frequency. This phenomenon can be seen using a graphing calculator. (Source: Pierce, J., The Science of Musical Sound, Scientific American Books.)
(a) Consider the two tones with frequencies of 220 Hz and 223 Hz and pressures $P_{1}=0.005 \sin 440 \pi t$ and $P_{2}=0.005 \sin 446 \pi t$, respectively. Graph the pressure $P=P_{1}+P_{2}$ felt by an eardrum over the 1 -sec interval $[0.15,1.15]$. How many beats are there in 1 sec ?
(b) Repeat part (a) with frequencies of 220 and 216 Hz .
(c) Determine a simple way to find the number of beats per second if the frequency of each tone is given.
49. Hearing Difference Tones When a musical instrument creates a tone of 110 Hz , it also creates tones at $220,330,440,550,660, \ldots$ Hz. A small speaker cannot reproduce the $110-\mathrm{Hz}$ vibration but it can reproduce the higher frequencies, which are the upper harmonics. The low tones can still be heard because the speaker produces difference tones of the upper harmonics. The difference between consecutive frequencies is 110 Hz , and this difference tone will be heard by a listener. (Source: Benade, A., Fundamentals of Musical Acoustics, Dover Publications.)
(a) We can model this phenomenon using a graphing calculator. In the window $[0,0.03]$ by $[-1,1]$, graph the upper harmonics represented by the pressure

$$
P=\frac{1}{2} \sin [2 \pi(220) t]+\frac{1}{3} \sin [2 \pi(330) t]+\frac{1}{4} \sin [2 \pi(440) t] .
$$

(b) Estimate all t-coordinates where P is maximum.
(c) What does a person hear in addition to the frequencies of 220, 330, and 440 Hz ?
(d) Graph the pressure produced by a speaker that can vibrate at 110 Hz and above.
50. Daylight Hours in New Orleans The seasonal variation in length of daylight can be modeled by a sine function. For example, the daily number of hours of daylight in New Orleans is given by

$$
h=\frac{35}{3}+\frac{7}{3} \sin \frac{2 \pi x}{365},
$$

where x is the number of days after March 21 (disregarding leap year). (Source: Bushaw, D., et al., A Sourcebook of Applications of School Mathematics, Mathematical Association of America.)
(a) On what date will there be about 14 hr of daylight?
(b) What date has the least number of hours of daylight?
(c) When will there be about 10 hr of daylight?
51. Average Monthly Temperature in Vancouver The following function approximates average monthly temperature y (in ${ }^{\circ} \mathrm{F}$) in Vancouver, Canada. Here x represents the month, where $x=1$ corresponds to January, $x=2$ corresponds to February, and so on. (Source: www.weather.com)

$$
f(x)=14 \sin \left[\frac{\pi}{6}(x-4)\right]+50
$$

When is the average monthly temperature

$\begin{array}{ll}\text { (a) } 64^{\circ} \mathrm{F} & \text { (b) } 39^{\circ} \mathrm{F} \text { ? }\end{array}$
52. Average Monthly Temperature in Phoenix The following function approximates average monthly temperature y (in ${ }^{\circ} \mathrm{F}$) in Phoenix, Arizona. Here x represents the month, where $x=1$ corresponds to January, $x=2$ corresponds to February, and so on. (Source: www.weather.com)

$$
f(x)=19.5 \cos \left[\frac{\pi}{6}(x-7)\right]+70.5
$$

When is the average monthly temperature (a) $70.5^{\circ} \mathrm{F}$ (b) $55^{\circ} \mathrm{F}$?
(Modeling) Alternating Electric Current The study of alternating electric current requires the solutions of equations of the form

$$
i=I_{\max } \sin 2 \pi f t
$$

for time t in seconds, where i is instantaneous current in amperes, $I_{\max }$ is maximum current in amperes, and fis the number of cycles per second. (Source: Hannon, R. H., Basic Technical Mathematics with Calculus, W. B. Saunders Company.) Find the least positive value of t, given the following data.
53. $i=40, I_{\text {max }}=100, f=60$
54. $i=50, I_{\max }=100, f=120$
55. $i=I_{\text {max }}, f=60$
56. $i=\frac{1}{2} I_{\text {max }}, f=60$

Chapter 6 Quiz (Sections 6.1-6.3)

1. Graph $y=\cos ^{-1} x$, and indicate the coordinates of three points on the graph. Give the domain and range.
2. Find the exact value of each real number y.
(a) $y=\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$
(b) $y=\tan ^{-1} \sqrt{3}$
(c) $y=\sec ^{-1}\left(-\frac{2 \sqrt{3}}{3}\right)$
3. Use a calculator to give each value in decimal degrees.
(a) $\theta=\arccos 0.92341853$
(b) $\theta=\cot ^{-1}(-1.0886767)$
4. Give the exact value of each expression without using a calculator.
(a) $\cos \left(\tan ^{-1} \frac{4}{5}\right)$
(b) $\sin \left(\cos ^{-1}\left(-\frac{1}{2}\right)+\tan ^{-1}(-\sqrt{3})\right)$

Solve each equation for exact solutions over the interval $\left[0^{\circ}, 360^{\circ}\right)$.
5. $2 \sin \theta-\sqrt{3}=0$
6. $\cos \theta+1=2 \sin ^{2} \theta$

Solve each equation for solutions over the interval $[0,2 \pi)$.
7. $\tan ^{2} x-5 \tan x+3=0$
8. $3 \cot 2 x-\sqrt{3}=0$
9. Solve $\cos \frac{x}{2}+\sqrt{3}=-\cos \frac{x}{2}$, giving all solutions in radians.
10. (Modeling) Electromotive Force In an electric circuit, suppose that

$$
V=\cos 2 \pi t
$$

models the electromotive force in volts at t seconds. Find the least value of t where $0 \leq t \leq \frac{1}{2}$ for each value of V.
(a) $V=1$
(b) $V=0.30$

6.4 Equations Involving Inverse Trigonometric Functions

- Solving for x in Terms of y Using Inverse Functions
- Solving Inverse Trigonometric Equations

Solving for x in Terms of y Using Inverse Functions

EXAMPLE 1 Solving an Equation for a Specified Variable

Solve $y=3 \cos 2 x$ for x, where x is restricted to the interval $\left[0, \frac{\pi}{2}\right]$.
SOLUTION We want $\cos 2 x$ alone on one side of the equation so that we can solve for $2 x$, and then for x.

$$
\begin{array}{ll}
y=3 \cos 2 x & \text { Our goal is to isolate } x . \\
\frac{y}{3}=\cos 2 x & \text { Divide by 3. (Appendix A) } \\
2 x=\arccos \frac{y}{3} & \text { Definition of arccosine (Section 6.1) } \\
x=\frac{1}{2} \arccos \frac{y}{3} & \text { Multiply by } \frac{1}{2} .
\end{array}
$$

Figure 31

An equivalent form of this answer is $x=\frac{1}{2} \cos ^{-1} \frac{y}{3}$.
Because the function $y=3 \cos 2 x$ is periodic, with period π, there are infinitely many domain values (x-values) that will result in a given range value (y-value). For example, the x-values 0 and π both correspond to the y-value 3 . See Figure 31. The restriction $0 \leq x \leq \frac{\pi}{2}$ given in the original problem ensures that this function is one-to-one, and, correspondingly, that

$$
x=\frac{1}{2} \arccos \frac{y}{3}
$$

has a one-to-one relationship. Thus, each y-value in $[-3,3]$ substituted into this equation will lead to a single x-value.

Now Try Exercise 9.

Solving Inverse Trigonometric Equations

EXAMPLE 2 Solving an Equation Involving an Inverse Trigonometric Function

Solve $2 \arcsin x=\pi$.
SOLUTION First solve for $\arcsin x$, and then for x.

$$
\begin{array}{ll}
2 \arcsin x=\pi & \text { Original equation } \\
\arcsin x=\frac{\pi}{2} & \text { Divide by } 2 . \\
x=\sin \frac{\pi}{2} & \text { Definition of arcsine (Section 6.1) } \\
x=1 & \text { (Section 3.3) } \\
\text { CHECK } \quad \begin{array}{rll}
2 \arcsin x & =\pi & \text { Original equation } \\
2 \arcsin 1 & \stackrel{?}{=} \pi & \text { Let } x=1 . \\
2\left(\frac{\pi}{2}\right) & \stackrel{?}{=} \pi & \text { Substitute the inverse value. } \\
\pi & =\pi \quad \text { True }
\end{array}
\end{array}
$$

The solution set is $\{1\}$.
Now Try Exercise 25.

EXAMPLE 3 Solving an Equation Involving Inverse Trigonometric Functions

Solve $\cos ^{-1} x=\sin ^{-1} \frac{1}{2}$.
SOLUTION Let $\sin ^{-1} \frac{1}{2}=u$. Then $\sin u=\frac{1}{2}$, and for u in quadrant I we have the following.

$$
\begin{aligned}
\cos ^{-1} x & =\sin ^{-1} \frac{1}{2} & & \text { Original equation } \\
\cos ^{-1} x & =u & & \text { Substitute. } \\
\cos u & =x & & \text { Alternative form (Section 6.1) }
\end{aligned}
$$

Sketch a triangle and label it using the facts that u is in quadrant I and $\sin u=\frac{1}{2}$. See Figure 32. Since $x=\cos u, x=\frac{\sqrt{3}}{2}$, and the solution set is $\left\{\frac{\sqrt{3}}{2}\right\}$. Check.

EXAMPLE 4 Solving an Inverse Trigonometric Equation Using an Identity

Solve $\arcsin x-\arccos x=\frac{\pi}{6}$.
SOLUTION Isolate one inverse function on one side of the equation.

$$
\begin{aligned}
\arcsin x-\arccos x & =\frac{\pi}{6} & & \text { Original equation } \\
\arcsin x & =\arccos x+\frac{\pi}{6} & & \text { Add } \arccos x
\end{aligned}
$$

Let $u=\arccos x$. The arccosine function yields angles in quadrants I and II, so $0 \leq u \leq \pi$ by definition.

$$
\begin{array}{ll}
x=\sin \left(u+\frac{\pi}{6}\right) & \text { Substitute. } \\
x=\sin u \cos \frac{\pi}{6}+\cos u \sin \frac{\pi}{6} & \text { Sine sum identity (Section 5.4) } \tag{2}
\end{array}
$$

From equation (1) and by the definition of the arcsine function,

$$
\begin{aligned}
-\frac{\pi}{2} & \leq \arccos x+\frac{\pi}{6} \leq \frac{\pi}{2} \quad \text { Range of arcsine is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] . \\
-\frac{2 \pi}{3} & \leq \arccos x \leq \frac{\pi}{3} . \quad \text { Subtract } \frac{\pi}{6} \text { from each part. (Appendix A) }
\end{aligned}
$$

Since $0 \leq \arccos x \leq \pi$ and $-\frac{2 \pi}{3} \leq \arccos x \leq \frac{\pi}{3}$, the intersection yields $0 \leq \arccos x \leq \frac{\pi}{3}$. This places u in quadrant I , and we can sketch the triangle in Figure 33. From this triangle we find that $\sin u=\sqrt{1-x^{2}}$. Now substitute into equation (2) using $\sin u=\sqrt{1-x^{2}}, \sin \frac{\pi}{6}=\frac{1}{2}, \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$, and $\cos u=x$.
Figure 33

CHECK

$$
\begin{aligned}
& \arcsin x-\arccos x=\frac{\pi}{6} \quad \text { Original equation } \\
& \arcsin \frac{\sqrt{3}}{2}-\arccos \frac{\sqrt{3}}{2} \stackrel{?}{=} \frac{\pi}{6} \quad \text { Let } x=\frac{\sqrt{3}}{2} . \\
& \frac{\pi}{3}-\frac{\pi}{6} \stackrel{?}{=} \frac{\pi}{6} \quad \text { Substitute inverse values. } \\
& \frac{\pi}{6}=\frac{\pi}{6} \checkmark \text { True }
\end{aligned}
$$

The solution set is $\left\{\frac{\sqrt{3}}{2}\right\}$.

Concept Check Answer each question.

1. Which one of the following equations has solution 0 ?
A. $\arctan 1=x$
B. $\arccos 0=x$
C. $\arcsin 0=x$
2. Which one of the following equations has solution $\frac{\pi}{4}$?
A. $\arcsin \frac{\sqrt{2}}{2}=x$
B. $\arccos \left(-\frac{\sqrt{2}}{2}\right)=x$
C. $\arctan \frac{\sqrt{3}}{3}=x$
3. Which one of the following equations has solution $\frac{3 \pi}{4}$?
A. $\arctan 1=x$
B. $\arcsin \frac{\sqrt{2}}{2}=x$
C. $\arccos \left(-\frac{\sqrt{2}}{2}\right)=x$
4. Which one of the following equations has solution $-\frac{\pi}{6}$?
A. $\arctan \frac{\sqrt{3}}{3}=x$
B. $\arccos \left(-\frac{1}{2}\right)=x$
C. $\arcsin \left(-\frac{1}{2}\right)=x$

Solve each equation for x, where x is restricted to the given interval. See Example 1.
5. $y=5 \cos x$, for x in $[0, \pi]$
6. $y=\frac{1}{4} \sin x$, for x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
7. $y=\frac{1}{2} \cot 3 x$, for x in $\left(0, \frac{\pi}{3}\right)$
8. $y=\frac{1}{12} \sec x$, for x in $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$
9. $y=3 \tan 2 x$, for x in $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
10. $y=3 \sin \frac{x}{2}$, for x in $[-\pi, \pi]$
11. $y=6 \cos \frac{x}{4}$, for x in $[0,4 \pi]$
12. $y=-\sin \frac{x}{3}$, for x in $\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right]$
13. $y=-2 \cos 5 x$, for x in $\left[0, \frac{\pi}{5}\right]$
14. $y=3 \cot 5 x$, for x in $\left(0, \frac{\pi}{5}\right)$
15. $y=\cos (x+3)$, for x in $[-3, \pi-3]$
16. $y=\tan (2 x-1)$, for x in $\left(\frac{1}{2}-\frac{\pi}{4}, \frac{1}{2}+\frac{\pi}{4}\right)$
17. $y=\sin x-2$, for x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
18. $y=\cot x+1$, for x in $(0, \pi)$
19. $y=-4+2 \sin x$, for x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
20. $y=4+3 \cos x$, for x in $[0, \pi]$
21. $y=\sqrt{2}+3 \sec 2 x$, for x in $\left[0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{4}, \frac{\pi}{2}\right]$
22. $y=-\sqrt{3}+2 \csc \frac{x}{2}$, for x in $[-\pi, 0) \cup(0, \pi]$
23. Refer to Exercise 17. A student attempting to solve this equation wrote as the first step $y=\sin (x-2)$, inserting parentheses as shown. Explain why this is incorrect.
24. Explain why the equation $\sin ^{-1} x=\cos ^{-1} 2$ cannot have a solution. (No work is required.)

Solve each equation for exact solutions. See Examples 2 and 3.
25. $-4 \arcsin x=\pi$
26. $6 \arccos x=5 \pi$
27. $\frac{4}{3} \cos ^{-1} \frac{x}{4}=\pi$
28. $4 \pi+4 \tan ^{-1} x=\pi$
29. $2 \arccos \left(\frac{x-\pi}{3}\right)=2 \pi$
30. $\arccos \left(x-\frac{\pi}{3}\right)=\frac{\pi}{6}$
31. $\arcsin x=\arctan \frac{3}{4}$
32. $\arctan x=\arccos \frac{5}{13}$
33. $\cos ^{-1} x=\sin ^{-1} \frac{3}{5}$
34. $\cot ^{-1} x=\tan ^{-1} \frac{4}{3}$

Solve each equation for exact solutions. See Example 4.
35. $\sin ^{-1} x-\tan ^{-1} 1=-\frac{\pi}{4}$
36. $\sin ^{-1} x+\tan ^{-1} \sqrt{3}=\frac{2 \pi}{3}$
37. $\arccos x+2 \arcsin \frac{\sqrt{3}}{2}=\pi$
38. $\arccos x+2 \arcsin \frac{\sqrt{3}}{2}=\frac{\pi}{3}$
39. $\arcsin 2 x+\arccos x=\frac{\pi}{6}$
40. $\arcsin 2 x+\arcsin x=\frac{\pi}{2}$
41. $\cos ^{-1} x+\tan ^{-1} x=\frac{\pi}{2}$
42. $\sin ^{-1} x+\tan ^{-1} x=0$43. Provide graphical support for the solution in Example 4 by showing that the graph of

$$
y=\arcsin x-\arccos x-\frac{\pi}{6} \text { has } x \text {-intercept } \frac{\sqrt{3}}{2} \approx 0.8660254
$$

44. Provide graphical support for the solution in Example 4 by showing that the x-coordinate of the point of intersection of the graphs of

$$
\mathrm{Y}_{1}=\arcsin \mathrm{X}-\arccos \mathrm{X} \quad \text { and } \quad \mathrm{Y}_{2}=\frac{\pi}{6} \quad \text { is } \quad \frac{\sqrt{3}}{2} \approx 0.8660254
$$

The following equations cannot be solved by algebraic methods. Use a graphing calculator to find all solutions over the interval $[0,6]$. Express solutions to four decimal places.
45. $(\arctan x)^{3}-x+2=0$
46. $\pi \sin ^{-1}(0.2 x)-3=-\sqrt{x}$
(Modeling) Solve each problem.
47. Tone Heard by a Listener When two sources located at different positions produce the same pure tone, the human ear will often hear one sound that is equal to the sum of the individual tones. Since the sources are at different locations, they will have different phase angles ϕ. If two speakers located at different positions produce pure tones $P_{1}=A_{1} \sin \left(2 \pi f t+\phi_{1}\right)$ and $P_{2}=A_{2} \sin \left(2 \pi f t+\phi_{2}\right)$, where $-\frac{\pi}{4} \leq \phi_{1}, \phi_{2} \leq \frac{\pi}{4}$, then the resulting tone heard by a listener can be written as $P=A \sin (2 \pi f t+\phi)$, where

$$
\begin{aligned}
A & =\sqrt{\left(A_{1} \cos \phi_{1}+A_{2} \cos \phi_{2}\right)^{2}+\left(A_{1} \sin \phi_{1}+A_{2} \sin \phi_{2}\right)^{2}} \\
\text { and } \quad \phi & =\arctan \left(\frac{A_{1} \sin \phi_{1}+A_{2} \sin \phi_{2}}{A_{1} \cos \phi_{1}+A_{2} \cos \phi_{2}}\right) .
\end{aligned}
$$

(Source: Fletcher, N. and T. Rossing, The Physics of Musical Instruments, Second Edition, Springer-Verlag.)
(a) Calculate A and ϕ if $A_{1}=0.0012, \phi_{1}=0.052, A_{2}=0.004$, and $\phi_{2}=0.61$. Also find an expression for $P=A \sin (2 \pi f t+\phi)$ if $f=220$.
(b) Graph $\mathrm{Y}_{1}=P$ and $\mathrm{Y}_{2}=P_{1}+P_{2}$ on the same coordinate axes over the interval [$0,0.01]$. Are the two graphs the same?
48. Tone Heard by a Listener Repeat Exercise 47. Use $A_{1}=0.0025, \phi_{1}=\frac{\pi}{7}, A_{2}=0.001$, $\phi_{2}=\frac{\pi}{6}$, and $f=300$.
49. Depth of Field When a large-view camera is used to take a picture of an object that is not parallel to the film, the lens board should be tilted so that the planes containing the subject, the lens board, and the film intersect in a line. This gives the best "depth of field." See the figure. (Source: Bushaw, D., et al., A Sourcebook of Applications of School Mathematics, Mathematical Association of America.)
(a) Write two equations, one relating α, x, and z,
 and the other relating β, x, y, and z.
(b) Eliminate z from the equations in part (a) to get one equation relating α, β, x, and y.
(c) Solve the equation from part (b) for α.
(d) Solve the equation from part (b) for β.
50. Programming Language for Inverse Functions In Visual Basic, a widely used programming language for PCs, the only inverse trigonometric function available is arctangent. The other inverse trigonometric functions can be expressed in terms of arctangent as follows.
(a) Let $u=\arcsin x$. Solve the equation for x in terms of u.
(b) Use the result of part (a) to label the three sides of
 the triangle in the figure in terms of x.
(c) Use the triangle from part (b) to write an equation for $\tan u$ in terms of x.
(d) Solve the equation from part (c) for u.
51. Alternating Electric Current In the study of alternating electric current, instantaneous voltage is modeled by

$$
E=E_{\max } \sin 2 \pi f t,
$$

where f is the number of cycles per second, $E_{\max }$ is the maximum voltage, and t is time in seconds.
(a) Solve the equation for t.
(b) Find the least positive value of t if $E_{\max }=12, E=5$, and $f=100$. Use a calculator.
52. Viewing Angle of an Observer While visiting a museum, Marsha Langlois views a painting that is 3 ft high and hangs 6 ft above the ground. See the figure. Assume her eyes are 5 ft above the ground, and let x be the distance from the spot where she is standing to the wall displaying the painting.

(a) Show that θ, the viewing angle subtended by the painting, is given by

$$
\theta=\tan ^{-1}\left(\frac{4}{x}\right)-\tan ^{-1}\left(\frac{1}{x}\right)
$$

(b) Find the value of x to the nearest hundredth for each value of θ.
(i) $\theta=\frac{\pi}{6}$
(ii) $\theta=\frac{\pi}{8}$
(c) Find the value of θ to the nearest hundredth for each value of x.
(i) $x=4$
(ii) $x=3$
53. Movement of an Arm In the equation below, t is time (in seconds) and y is the angle formed by a rhythmically moving arm.

$$
y=\frac{1}{3} \sin \frac{4 \pi t}{3}
$$

(a) Solve the equation for t.
(b) At what time, to the nearest hundredth of a second, does the arm first form an angle of 0.3 radian?
54. The function $y=\sec ^{-1} x$ is not found on graphing calculators. However, with some models it can be graphed as

$$
y=\frac{\pi}{2}-((x>0)-(x<0))\left(\frac{\pi}{2}-\tan ^{-1}\left(\sqrt{\left(x^{2}-1\right)}\right)\right) .
$$

Use the formula to obtain the graph of $y=\sec ^{-1} x$ in the window $[-4,4]$ by $[0, \pi]$.

Chapter 6 Test Prep

Key Terms

6.1 one-to-one function inverse function

New Symbols

f^{-1}
$\sin ^{-1} x(\arcsin x)$
$\cos ^{-1} x(\arccos x)$
$\tan ^{-1} x(\arctan x)$
inverse of function f
inverse sine of x inverse cosine of x inverse tangent of x

$$
\begin{array}{ll}
\cot ^{-1} x(\operatorname{arccot} x) & \text { inverse cotangent of } x \\
\sec ^{-1} x(\operatorname{arcsec} x) & \text { inverse secant of } x \\
\csc ^{-1} x(\operatorname{arccsc} x) & \text { inverse cosecant of } x
\end{array}
$$

Ouick Review

Concepts

6.1 Inverse Circular Functions

Inverse Function	Domain		
		Interval	Quadrants of the Unit Circle
$y=\sin ^{-1} x$	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	I and IV
$y=\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$	I and II
$y=\tan ^{-1} x$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	I and IV
$y=\cot ^{-1} x$	$(-\infty, \infty)$	$(0, \pi)$	I and II
$y=\sec ^{-1} x$	$(-\infty,-1] \cup[1, \infty)$	$\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$	I and II
$y=\csc ^{-1} x$	$(-\infty,-1] \cup[1, \infty)$	$\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$	I and IV

See Section 6.1 for graphs of the other inverse circular (trigonometric) functions.

Examples

Evaluate $y=\cos ^{-1} 0$.
Write $y=\cos ^{-1} 0$ as $\cos y=0$. Then

$$
y=\frac{\pi}{2}
$$

because $\cos \frac{\pi}{2}=0$ and $\frac{\pi}{2}$ is in the range of $\cos ^{-1} x$.

Use a calculator to find y in radians if $y=\sec ^{-1}(-3)$.
With the calculator in radian mode, enter $\sec ^{-1}(-3)$ as $\cos ^{-1}\left(\frac{1}{-3}\right)$ to get

$$
y \approx 1.9106332
$$

Evaluate $\sin \left(\tan ^{-1}\left(-\frac{3}{4}\right)\right)$.
Let $u=\tan ^{-1}\left(-\frac{3}{4}\right)$. Then $\tan u=-\frac{3}{4}$. Since $\tan u$ is negative when u is in quadrant IV, sketch a triangle as shown.

We want $\sin \left(\tan ^{-1}\left(-\frac{3}{4}\right)\right)=\sin u$. From the triangle,

$$
\sin u=-\frac{3}{5}
$$

Solve $\tan \theta+\sqrt{3}=2 \sqrt{3}$ over the interval $\left[0^{\circ}, 360^{\circ}\right)$. Use a linear method.

$$
\begin{aligned}
\tan \theta+\sqrt{3} & =2 \sqrt{3} & & \text { Original equation } \\
\tan \theta & =\sqrt{3} & & \text { Subtract } \sqrt{3} . \\
\theta & =60^{\circ} & & \text { Definition of inverse tangent }
\end{aligned}
$$

Another solution over $\left[0^{\circ}, 360^{\circ}\right)$ is

$$
\theta=60^{\circ}+180^{\circ}=240^{\circ} .
$$

The solution set is $\left\{60^{\circ}, 240^{\circ}\right\}$.

Concepts

Examples

Solve $2 \cos ^{2} x=1$ for all solutions, using a double-angle identity.

$$
\begin{aligned}
2 \cos ^{2} x=1 & \text { Original equation } \\
2 \cos ^{2} x-1=0 & \text { Subtract } 1 . \\
\cos 2 x=0 & \text { Cosine double-angle identity } \\
2 x=\frac{\pi}{2}+2 n \pi & \text { and } \quad 2 x=\frac{3 \pi}{2}+2 n \pi \\
& \text { Add integer multiples of } 2 \pi . \\
x=\frac{\pi}{4}+n \pi & \text { and } \quad x=\frac{3 \pi}{4}+n \pi
\end{aligned}
$$

Divide by 2 .
All solutions are given by the following set, where π represents the period of $\cos 2 x$.

$$
\left\{\frac{\pi}{4}+n \pi, \frac{3 \pi}{4}+n \pi, \quad \text { where } n \text { is any integer }\right\}
$$

6.4 Equations Involving Inverse Trigonometric Functions

We solve equations of the form $y=f(x)$, where $f(x)$ is a trigonometric function, using inverse trigonometric functions.

Techniques introduced in this section also show how to solve equations that involve inverse functions.

Solve $y=2 \sin 3 x$ for x, where x is restricted to the interval $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$.

$$
\begin{aligned}
y & =2 \sin 3 x & & \text { Original equation } \\
\frac{y}{2} & =\sin 3 x & & \text { Divide by } 2 . \\
3 x & =\arcsin \frac{y}{2} & & \text { Definition of arcsine } \\
x & =\frac{1}{3} \arcsin \frac{y}{2} & & \text { Multiply by } \frac{1}{3} .
\end{aligned}
$$

Solve.

$$
\begin{aligned}
4 \tan ^{-1} x & =\pi & & \text { Original equation } \\
\tan ^{-1} x & =\frac{\pi}{4} & & \text { Divide by } 4 \\
x & =\tan \frac{\pi}{4}=1 & & \text { Definition of arctangent }
\end{aligned}
$$

The solution set is $\{1\}$.

Chapter 6

Review Exercises

1. Graph the inverse sine, cosine, and tangent functions, indicating three points on each graph. Give the domain and range for each.

Concept Check Determine whether each statement is true or false. If false, tell why.
2. The ranges of the inverse tangent and inverse cotangent functions are the same.
3. It is true that $\sin \frac{11 \pi}{6}=-\frac{1}{2}$, and therefore $\arcsin \left(-\frac{1}{2}\right)=\frac{11 \pi}{6}$.
4. For all $x, \tan \left(\tan ^{-1} x\right)=x$.

Give the exact real number value of y. Do not use a calculator.
5. $y=\sin ^{-1} \frac{\sqrt{2}}{2}$
6. $y=\arccos \left(-\frac{1}{2}\right)$
7. $y=\tan ^{-1}(-\sqrt{3})$
8. $y=\arcsin (-1)$
9. $y=\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$
10. $y=\arctan \frac{\sqrt{3}}{3}$
11. $y=\sec ^{-1}(-2)$
12. $y=\operatorname{arccsc} \frac{2 \sqrt{3}}{3}$
13. $y=\operatorname{arccot}(-1)$

Give the degree measure of θ. Do not use a calculator.
14. $\theta=\arccos \frac{1}{2}$
15. $\theta=\arcsin \left(-\frac{\sqrt{3}}{2}\right)$
16. $\theta=\tan ^{-1} 0$

Use a calculator to give the degree measure of θ to the nearest hundredth.
17. $\theta=\arctan 1.7804675$
18. $\theta=\sin ^{-1}(-0.66045320)$
19. $\theta=\cos ^{-1} 0.80396577$
20. $\theta=\cot ^{-1} 4.5046388$
21. $\theta=\operatorname{arcsec} 3.4723155$
22. $\theta=\csc ^{-1} 7.4890096$

Evaluate the following without using a calculator.
23. $\cos (\arccos (-1))$
24. $\sin \left(\arcsin \left(-\frac{\sqrt{3}}{2}\right)\right)$
25. $\arccos \left(\cos \frac{3 \pi}{4}\right)$
26. $\operatorname{arcsec}(\sec \pi)$
27. $\tan ^{-1}\left(\tan \frac{\pi}{4}\right)$
28. $\cos ^{-1}(\cos 0)$
29. $\sin \left(\arccos \frac{3}{4}\right)$
30. $\cos (\arctan 3)$
31. $\cos \left(\csc ^{-1}(-2)\right)$
32. $\sec \left(2 \sin ^{-1}\left(-\frac{1}{3}\right)\right)$
33. $\tan \left(\arcsin \frac{3}{5}+\arccos \frac{5}{7}\right)$

Write each of the following as an algebraic (nontrigonometric) expression in $u, u>0$.
34. $\cos \left(\arctan \frac{u}{\sqrt{1-u^{2}}}\right)$
35. $\tan \left(\operatorname{arcsec} \frac{\sqrt{u^{2}+1}}{u}\right)$

Solve each equation for exact solutions over the interval $[0,2 \pi)$ where appropriate. Round approximate solutions to four decimal places.
36. $\sin ^{2} x=1$
37. $2 \tan x-1=0$
38. $3 \sin ^{2} x-5 \sin x+2=0$
39. $\tan x=\cot x$
40. $\sec ^{2} 2 x=2$
41. $\tan ^{2} 2 x-1=0$

Give all exact solutions, in radians, for each equation.
42. $\sec \frac{x}{2}=\cos \frac{x}{2}$
43. $\cos 2 x+\cos x=0$
44. $4 \sin x \cos x=\sqrt{3}$

Solve each equation for exact solutions over the interval $\left[0^{\circ}, 360^{\circ}\right)$ where appropriate. Round approximate solutions to the nearest tenth of a degree.
45. $\sin ^{2} \theta+3 \sin \theta+2=0$
46. $2 \tan ^{2} \theta=\tan \theta+1$
47. $\sin 2 \theta=\cos 2 \theta+1$
48. $2 \sin 2 \theta=1$
49. $3 \cos ^{2} \theta+2 \cos \theta-1=0$
50. $5 \cot ^{2} \theta-\cot \theta-2=0$

Give all exact solutions, in degrees, for each equation.
51. $2 \sqrt{3} \cos \frac{\theta}{2}=-3$
52. $\sin \theta-\cos 2 \theta=0$
53. $\tan \theta-\sec \theta=1$

Solve each equation for x. In Exercises 58-61, x is restricted to the given interval.
54. $4 \pi-4 \cot ^{-1} x=\pi$
55. $\frac{4}{3} \arctan \frac{x}{2}=\pi$
56. $\arccos x=\arcsin \frac{2}{7}$
57. $\arccos x+\arctan 1=\frac{11 \pi}{12}$
58. $y=3 \cos \frac{x}{2}$, for x in $[0,2 \pi]$
59. $y=\frac{1}{2} \sin x$, for x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
60. $y=\frac{4}{5} \sin x-\frac{3}{5}$, for x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
61. $y=\frac{1}{2} \tan (3 x+2)$, for x in $\left(-\frac{2}{3}-\frac{\pi}{6},-\frac{2}{3}+\frac{\pi}{6}\right)$
62. Solve $d=550+450 \cos \left(\frac{\pi}{50} t\right)$ for t, where t is in the interval $[0,50]$.
(Modeling) Solve each problem.
63. Viewing Angle of an Observer A 10-ft-wide chalkboard is situated 5 ft from the left wall of a classroom. See the figure. A student sitting next to the wall x feet from the front of the classroom has a viewing angle of θ radians.
(a) Show that the value of θ is given by the function

$$
f(x)=\arctan \left(\frac{15}{x}\right)-\arctan \left(\frac{5}{x}\right) .
$$

(b) Graph $f(x)$ with a graphing calculator to estimate the value of x that maximizes the viewing angle.
64. Snell's Law Recall Snell's law from Exercises 69 and 70 of Section 2.3:

$$
\frac{c_{1}}{c_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}},
$$

where c_{1} is the speed of light in one medium, c_{2} is the speed of light in a second medium, and θ_{1} and θ_{2} are the angles shown in the figure.
 Suppose a light is shining up through water into the air as in the figure. As θ_{1} increases, θ_{2} approaches 90°, at which point no light will emerge from the water. Assume the ratio $\frac{c_{1}}{c_{2}}$ in this case is 0.752 . For what value of θ_{1} does $\theta_{2}=90^{\circ}$? This value of θ_{1} is the critical angle for water.
65. Snell's Law Refer to Exercise 64. What happens when θ_{1} is greater than the critical angle?
66. British Nautical Mile The British nautical mile is defined as the length of a minute of arc of a meridian. Since Earth is flat at its poles, the nautical mile, in feet, is given by

$$
L=6077-31 \cos 2 \theta,
$$

A nautical mile is the length on any of the meridians cut by a central angle of measure 1 minute.
 where θ is the latitude in degrees. See the figure. (Source: Bushaw, D., et al., A Sourcebook of Applications of School Mathematics, Mathematical Association of America.)
(a) Find the latitude between 0° and 90° at which the nautical mile is 6074 ft .
(b) At what latitude between 0° and 180° is the nautical mile 6108 ft ?
(c) In the United States, the nautical mile is defined everywhere as 6080.2 ft . At what latitude between 0° and 90° does this agree with the British nautical mile?
67. The function $y=\csc ^{-1} x$ is not found on graphing calculators. However, with some models it can be graphed as follows.

$$
y=((x>0)-(x<0))\left(\frac{\pi}{2}-\tan ^{-1}\left(\sqrt{\left(x^{2}-1\right)}\right)\right)
$$

Use the formula to obtain the graph of $y=\csc ^{-1} x$ in the window $[-4,4]$ by $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.68. (a) Use the graph of $y=\sin ^{-1} x$ to approximate $\sin ^{-1} 0.4$.
(b) Use the inverse sine key of a graphing calculator to approximate $\sin ^{-1} 0.4$.

Chapter 6

Test

1. Graph $y=\sin ^{-1} x$, and indicate the coordinates of three points on the graph. Give the domain and range.
2. Find the exact value of y for each equation.
(a) $y=\arccos \left(-\frac{1}{2}\right)$
(b) $y=\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
(c) $y=\tan ^{-1} 0$
(d) $y=\operatorname{arcsec}(-2)$
3. Give the degree measure of θ.
(a) $\theta=\arccos \frac{\sqrt{3}}{2}$
(b) $\theta=\tan ^{-1}(-1)$
(c) $\theta=\cot ^{-1}(-1)$
(d) $\theta=\csc ^{-1}\left(-\frac{2 \sqrt{3}}{3}\right)$
4. Use a calculator to give each value in decimal degrees to the nearest hundredth.
(a) $\sin ^{-1} 0.67610476$
(b) $\mathrm{sec}^{-1} 1.0840880$
(c) $\cot ^{-1}(-0.7125586)$
5. Find each exact value.
(a) $\cos \left(\arcsin \frac{2}{3}\right)$
(b) $\sin \left(2 \cos ^{-1} \frac{1}{3}\right)$
6. Explain why $\sin ^{-1} 3$ is not defined.
7. Explain why $\arcsin \left(\sin \frac{5 \pi}{6}\right) \neq \frac{5 \pi}{6}$.
8. Write $\tan (\arcsin u)$ as an algebraic (nontrigonometric) expression in $u, u>0$.

Solve each equation for exact solutions over the interval $\left[0^{\circ}, 360^{\circ}\right)$ where appropriate. Round approximate solutions to the nearest tenth of a degree.
9. $-3 \sec \theta+2 \sqrt{3}=0$
10. $\sin ^{2} \theta=\cos ^{2} \theta+1$
11. $\csc ^{2} \theta-2 \cot \theta=4$

Solve each equation for exact solutions over the interval $[0,2 \pi)$ where appropriate. Round approximate solutions to four decimal places.
12. $\cos x=\cos 2 x$
13. $\sqrt{2} \cos 3 x-1=0$
14. $\sin x \cos x=\frac{1}{3}$

Solve each equation for all exact solutions in radians (for x) or in degrees (for θ). Write answers using the least possible nonnegative angle measures.
15. $\sin ^{2} \theta=-\cos 2 \theta$
16. $2 \sqrt{3} \sin \frac{x}{2}=3$
17. $\csc x-\cot x=1$
18. Solve each equation for x, where x is restricted to the given interval.
(a) $y=\cos 3 x$, for x in $\left[0, \frac{\pi}{3}\right]$
(b) $y=4+3 \cot x$, for x in $(0, \pi)$
19. Solve each equation for exact solutions.
(a) $\arcsin x=\arctan \frac{4}{3}$
(b) $\operatorname{arccot} x+2 \arcsin \frac{\sqrt{3}}{2}=\pi$
20. (Modeling) Movement of a Runner's Arm A runner's arm swings rhythmically according to the model

$$
y=\frac{\pi}{8} \cos \left[\pi\left(t-\frac{1}{3}\right)\right]
$$

where y represents the angle between the actual position of the upper arm and the downward vertical position, and t represents time in seconds. At what times over the interval $[0,3)$ is the angle y equal to 0 ?

7
 Applications of Trigonometry and Vectors

 triangulation to measure distances when direct measurements cannot be made due to obstructions in the line of sight.

7.1 Oblique Triangles and the Law of Sines

- Congruency and Oblique Triangles
- Derivation of the Law of Sines
- Solving SAA and ASA Triangles (Case 1)
- Area of a Triangle

Congruency and Oblique Triangles The concepts of solving triangles developed in Chapter 2 can be extended to all triangles. The following axioms from geometry enable us to prove that two triangles are congruent (that is, their corresponding sides and angles are equal).

Congruence Axioms

Side-Angle-Side (SAS)

Angle-Side-Angle (ASA)

Side-Side-Side (SSS)

If two sides and the included angle of one triangle are equal, respectively, to two sides and the included angle of a second triangle, then the triangles are congruent.
If two angles and the included side of one triangle are equal, respectively, to two angles and the included side of a second triangle, then the triangles are congruent.
If three sides of one triangle are equal, respectively, to three sides of a second triangle, then the triangles are congruent.

If a side and any two angles are given (SAA), the third angle is easily determined by the angle sum formula $\left(\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C}=\mathbf{1 8 0}^{\circ}\right)$, and then the ASA axiom can be applied. Keep in mind that whenever SAS, ASA, or SSS is given, the triangle is unique.

A triangle that is not a right triangle is called an oblique triangle. The measures of the three sides and the three angles of a triangle can be found if at least one side and any other two measures are known. There are four possible cases.

Data Required for Solving Oblique Triangles

Case 1 One side and two angles are known (SAA or ASA).
Case 2 Two sides and one angle not included between the two sides are known (SSA). This case may lead to more than one triangle.
Case 3 Two sides and the angle included between the two sides are known (SAS).

Case 4 Three sides are known (SSS).

NOTE If we know three angles of a triangle, we cannot find unique side lengths since AAA assures us only of similarity, not congruence. For example, there are infinitely many triangles $A B C$ of different sizes with $A=35^{\circ}, B=65^{\circ}$, and $C=80^{\circ}$.

Case 1, discussed in this section, and Case 2, discussed in Section 7.2, require the law of sines. Cases 3 and 4, discussed in Section 7.3, require the law of cosines.

(a)

(b)

We label oblique triangles as we did right triangles: side a opposite angle A, side b opposite angle B, and side c opposite angle C.

Figure 1

Derivation of the Law of Sines To derive the law of sines, we start with an oblique triangle, such as the acute triangle in Figure 1(a) or the obtuse triangle in Figure 1(b). This discussion applies to both triangles. First, construct the perpendicular from B to side $A C$ (or its extension). Let h be the length of this perpendicular. Then c is the hypotenuse of right triangle $A D B$, and a is the hypotenuse of right triangle $B D C$.

$$
\begin{aligned}
& \text { In triangle } A D B, \quad \sin A=\frac{h}{c}, \quad \text { or } \quad h=c \sin A . \\
& \text { In triangle } B D C, \quad \sin C=\frac{h}{a}, \quad \text { or } \quad h=a \sin C
\end{aligned}
$$

Since $h=c \sin A$ and $h=a \sin C$, we set these two expressions equal.

$$
a \sin C=c \sin A
$$

$$
\frac{\boldsymbol{a}}{\boldsymbol{\operatorname { s i n }} \boldsymbol{A}}=\frac{\boldsymbol{c}}{\boldsymbol{\operatorname { s i n }} \boldsymbol{C}} \quad \text { Divide each side by } \sin A \sin C
$$

In a similar way, by constructing perpendicular lines from the other vertices, we can show that these two equations are also true.

$$
\frac{a}{\sin A}=\frac{b}{\sin B} \quad \text { and } \quad \frac{b}{\sin B}=\frac{c}{\sin C}
$$

This discussion proves the following theorem.

Law of Sines

In any triangle $A B C$, with sides a, b, and c,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}, \quad \frac{a}{\sin A}=\frac{c}{\sin C}, \quad \text { and } \quad \frac{b}{\sin B}=\frac{c}{\sin C}
$$

This can be written in compact form as follows.

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

That is, according to the law of sines, the lengths of the sides in a triangle are proportional to the sines of the measures of the angles opposite them.

In practice we can also use an alternative form of the law of sines.

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \quad \text { Alternative form }
$$

NOTE When using the law of sines, a good strategy is to select an equation so that the unknown variable is in the numerator and all other variables are known. This makes computation easier.

Solving SAA and ASA Triangles (Case 1) If two angles and one side of a triangle are known (Case 1, SAA or ASA), then the law of sines can be used to solve the triangle.

Figure 2

Figure 3

EXAMPLE 1 Applying the Law of Sines (SAA)

Solve triangle $A B C$ if $A=32.0^{\circ}, B=81.8^{\circ}$, and $a=42.9 \mathrm{~cm}$.
SOLUTION Start by drawing a triangle, roughly to scale, and labeling the given parts as in Figure 2. Since the values of A, B, and a are known, use the form of the law of sines that involves these variables, and then solve for b.

To find C, use the fact that the sum of the angles of any triangle is 180°.

$$
\begin{aligned}
A+B+C & =180^{\circ} & & \text { Angle sum formula (Section 1.2) } \\
C & =180^{\circ}-A-B & & \text { Solve for } C . \\
C & =180^{\circ}-32.0^{\circ}-81.8^{\circ} & & \text { Substitute. } \\
C & =66.2^{\circ} & & \text { Subtract. }
\end{aligned}
$$

Now use the law of sines to find c. (The Pythagorean theorem does not apply because this is not a right triangle.)

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{c}{\sin C} & & \text { Law of sines } \\
\frac{42.9}{\sin 32.0^{\circ}} & =\frac{c}{\sin 66.2^{\circ}} & & \text { Substitute known values. } \\
c & =\frac{42.9 \sin 66.2^{\circ}}{\sin 32.0^{\circ}} & & \text { Multiply by } \sin 66.2^{\circ} \text { and rewrite. } \\
c & \approx 74.1 \mathrm{~cm} & & \text { Approximate with a calculator. }
\end{aligned}
$$

Now Try Exercise 9.

CAUTION Whenever possible, use the given values in solving triangles, rather than values obtained in intermediate steps, to avoid rounding errors.

EXAMPLE 2 Applying the Law of Sines (ASA)

Kurt Daniels wishes to measure the distance across the Gasconade River. See Figure 3. He determines that $C=112.90^{\circ}, A=31.10^{\circ}$, and $b=347.6 \mathrm{ft}$. Find the distance a across the river.

SOLUTION To use the law of sines, one side and the angle opposite it must be known. Since b is the only side whose length is given, angle B must be found before the law of sines can be used.

$$
\begin{array}{ll}
B=180^{\circ}-A-C & \text { Angle sum formula, solved for } B \\
B=180^{\circ}-31.10^{\circ}-112.90^{\circ} & \text { Substitute the given values. } \\
B=36.00^{\circ} & \text { Subtract. }
\end{array}
$$

Now use the form of the law of sines involving A, B, and b to find a.

$$
\begin{array}{rlrl}
\text { Solve for } a . & & \text { Law of sines } \\
\frac{a}{\sin A} & =\frac{b}{\sin B} & & \text { Substitute known values. } \\
a & =\frac{347.6}{\sin 36.00^{\circ}} & & \text { S47.6 } \sin 31.10^{\circ} \\
\sin 36.00^{\circ} & & \text { Multiply by } \sin 31.10^{\circ} . \\
a & \approx 305.5 \mathrm{ft} & & \text { Use a calculator. }
\end{array}
$$

Now Try Exercise 25.

The next example involves the concept of bearing, first discussed in Chapter 2.

EXAMPLE 3 Applying the Law of Sines (ASA)

Two ranger stations are on an east-west line 110 mi apart. A forest fire is located on a bearing of $\mathrm{N} 42^{\circ} \mathrm{E}$ from the western station at A and a bearing of $\mathrm{N} 15^{\circ} \mathrm{E}$ from the eastern station at B. To the nearest ten miles, how far is the fire from the western station?

Figure 4

SOLUTION Figure 4 shows the two stations at points A and B and the fire at point C. Angle $B A C=90^{\circ}-42^{\circ}=48^{\circ}$, the obtuse angle at B measures $90^{\circ}+15^{\circ}=105^{\circ}$, and the third angle, C, measures $180^{\circ}-105^{\circ}-48^{\circ}=27^{\circ}$. We use the law of sines to find side b.

$$
\begin{array}{rlrl}
\text { Solve for } b . & & \text { Law of sines } \\
\frac{b}{\sin B} & =\frac{c}{\sin C} & =\frac{110}{\sin 27^{\circ}} & \\
\text { Substitute known values. } \\
b & =\frac{110 \sin 105^{\circ}}{\sin 27^{\circ}} & & \text { Multiply by sin } 105^{\circ} . \\
b & \approx 230 \mathrm{mi} & & \begin{array}{l}
\text { Use a calculator and give two } \\
\text { significant digits. }
\end{array}
\end{array}
$$

Now Try Exercise 27.

NOTE There is another method for describing bearing and it was first introduced in Method 1 in Chapter 2. It involves measuring clockwise from due north, using a single degree measure between 0° and 360°.

Area of a Triangle The method used to derive the law of sines can also be used to derive a formula to find the area of a triangle. A familiar formula for the area of a triangle is

$$
\mathscr{A}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{b} \boldsymbol{h}, \quad \text { where } \mathscr{A} \text { represents area, } b \text { base, and } h \text { height. }
$$

This formula cannot always be used easily because in practice, h is often unknown. To find another formula, refer to acute triangle $A B C$ in Figure 5(a) or obtuse triangle $A B C$ in Figure 5(b), shown on the next page.

Figure 5
A perpendicular has been drawn from B to the base of the triangle (or the extension of the base). Consider right triangle $A D B$ in either figure.

$$
\sin A=\frac{h}{c}, \quad \text { or } \quad h=c \sin A
$$

Substitute into the formula for the area of a triangle.

$$
\mathscr{A}=\frac{1}{2} b h=\frac{1}{2} b c \sin A
$$

Any other pair of sides and the angle between them could have been used.

Area of a Triangle (SAS)

In any triangle $A B C$, the area \mathscr{A} is given by the following formulas.

$$
\mathscr{A}=\frac{1}{2} b c \sin A, \quad \mathscr{A}=\frac{1}{2} a b \sin C, \quad \text { and } \quad \mathscr{A}=\frac{1}{2} a c \sin B
$$

That is, the area is half the product of the lengths of two sides and the sine of the angle included between them.

NOTE If the included angle measures 90°, its sine is 1 and the formula becomes the familiar $\mathscr{A}=\frac{1}{2} b h$.

EXAMPLE 4 Finding the Area of a Triangle (SAS)

Figure 6

Find the area of triangle $A B C$ in Figure 6.
SOLUTION Substitute $B=55^{\circ} 10^{\prime}, a=34.0 \mathrm{ft}$, and $c=42.0 \mathrm{ft}$ into the area formula.

$$
\mathscr{A}=\frac{1}{2} a c \sin B=\frac{1}{2}(34.0)(42.0) \sin 55^{\circ} 10^{\prime} \approx 586 \mathrm{ft}^{2}
$$

Now Try Exercise 43.

EXAMPLE 5 Finding the Area of a Triangle (ASA)

Find the area of triangle $A B C$ in Figure 7.

Figure 7

SOLUTION Before the area formula can be used, we must find either a or c. Begin by using the fact that the sum of the measures of the angles of any triangle is 180°.

$$
\begin{aligned}
180^{\circ} & =A+B+C & & \text { Angle sum formula } \\
B & =180^{\circ}-24^{\circ} 40^{\prime}-52^{\circ} 40^{\prime} & & \text { Substitute and solve for } B . \\
B & =102^{\circ} 40^{\prime} & & \text { Subtract. }
\end{aligned}
$$

Next use the law of sines to find a.

$$
\begin{array}{rlrl}
\text { Solve for } a . & & \text { Law of sines } \\
\frac{a}{\sin A} & =\frac{b}{\sin B} & =\frac{27.3}{\sin 24^{\circ} 40^{\prime}} 102^{\circ} 40^{\prime} &
\end{array}
$$

Now that we know two sides, a and b, and their included angle C, we find the area.

$$
=\frac{1}{2}(11.7)(27.3) \sin 52^{\circ} 40^{\prime} \approx 127 \mathrm{~cm}^{2}
$$

Now Try Exercise 49.

7.1 Exercises

1. Concept Check Consider the oblique triangle $A B C$. Which one of the following proportions is not valid?
A. $\frac{a}{b}=\frac{\sin A}{\sin B}$
B. $\frac{a}{\sin A}=\frac{b}{\sin B}$
C. $\frac{\sin A}{a}=\frac{b}{\sin B}$
D. $\frac{\sin A}{a}=\frac{\sin B}{b}$

2. Concept Check Which two of the following situations do not provide sufficient information for solving a triangle by the law of sines?
A. We are given two angles and the side included between them.
B. We are given two angles and a side opposite one of them.
C. We are given two sides and the angle included between them.
D. We are given three sides.

Find the length of each side a. Do not use a calculator.
3.

4.

Determine the remaining sides and angles of each triangle ABC. See Example 1.
5.

6.

7.

9. $A=68.41^{\circ}, B=54.23^{\circ}, a=12.75 \mathrm{ft}$
11. $A=87.2^{\circ}, b=75.9 \mathrm{yd}, C=74.3^{\circ}$
13. $B=20^{\circ} 50^{\prime}, C=103^{\circ} 10^{\prime}, A C=132 \mathrm{ft}$
14. $A=35.3^{\circ}, B=52.8^{\circ}, A C=675 \mathrm{ft}$
15. $A=39.70^{\circ}, C=30.35^{\circ}, b=39.74 \mathrm{~m}$
16. $C=71.83^{\circ}, B=42.57^{\circ}, a=2.614 \mathrm{~cm}$
17. $B=42.88^{\circ}, C=102.40^{\circ}, b=3974 \mathrm{ft}$
18. $C=50.15^{\circ}, A=106.1^{\circ}, c=3726 \mathrm{yd}$
19. $A=39^{\circ} 54^{\prime}, a=268.7 \mathrm{~m}, B=42^{\circ} 32^{\prime}$
20. $C=79^{\circ} 18^{\prime}, c=39.81 \mathrm{~mm}, A=32^{\circ} 57^{\prime}$
21. Explain why we cannot use the law of sines to solve a triangle if we are given only the lengths of the three sides of the triangle.
22. Suppose that we are solving Example 1 and we begin (as seen there) by solving for b and C. Explain why it is a better idea to solve for c using a and $\sin A$ rather than using b and $\sin B$.
23. Eli Maor, a perceptive trigonometry student, makes this statement: "If we know any two angles and one side of a triangle, then the triangle is uniquely determined." Explain why this is true, referring to the congruence axioms given in this section.
24. Concept Check If a is twice as long as b, is A necessarily twice as large as B ?

Solve each problem. See Examples 2 and 3.

25. Distance across a River To find the distance $A B$ across a river, a surveyor laid off a distance $B C=354 \mathrm{~m}$ on one side of the river. It is found that $B=112^{\circ} 10^{\prime}$ and $C=15^{\circ} 20^{\prime}$. Find $A B$. See the figure.

26. Distance across a Canyon To determine the distance $R S$ across a deep canyon, Rhonda lays off a distance $T R=582 \mathrm{yd}$. She then finds that $T=32^{\circ} 50^{\prime}$ and $R=102^{\circ} 20^{\prime}$. Find $R S$.

27. Distance a Ship Travels A ship is sailing due north. At a certain point the bearing of a lighthouse 12.5 km away is $\mathrm{N} 38.8^{\circ} \mathrm{E}$. Later on, the captain notices that the bearing of the lighthouse has become $\mathrm{S} 44.2^{\circ} \mathrm{E}$. How far did the ship travel between the two observations of the lighthouse?
28. Distance between Radio Direction Finders Radio direction finders are placed at points A and B, which are 3.46 mi apart on an east-west line, with A west of B. From A the bearing of a certain radio transmitter is 47.7°, and from B the bearing is 302.5°. Find the distance of the transmitter from A.
29. Distance between a Ship and a Lighthouse The bearing of a lighthouse from a ship was found to be $\mathrm{N} 37^{\circ} \mathrm{E}$. After the ship sailed 2.5 mi due south, the new bearing was $\mathrm{N} 25^{\circ}$ E. Find the distance between the ship and the lighthouse at each location.
30. Distance across a River Standing on one bank of a river flowing north, Mark notices a tree on the opposite bank at a bearing of 115.45°. Lisa is on the same bank as Mark, but 428.3 m away. She notices that the bearing of the tree is 45.47°. The two banks are parallel. What is the distance across the river?
31. Height of a Balloon A balloonist is directly above a straight road 1.5 mi long that joins two villages. She finds that the town closer to her is at an angle of depression of 35°, and the farther town is at an angle of depression of 31°. How high above the ground is the balloon?

32. Measurement of a Folding Chair A folding chair is to have a seat 12.0 in. deep with angles as shown in the figure. How far down from the seat should the crossing legs be joined? (Find length x in the figure.)

33. Angle Formed by Radii of Gears Three gears are arranged as shown in the figure. Find angle θ.

34. Distance between Atoms Three atoms with atomic radii of $2.0,3.0$, and 4.5 are arranged as in the figure. Find the distance between the centers of atoms A and C.

35. Distance to the Moon Since the moon is a relatively close celestial object, its distance can be measured directly by taking two different photographs at precisely the same time from two different locations. The moon will have a different angle of elevation at each location. On April 29, 1976, at 11:35 A.M., the lunar angles of elevation during a partial solar eclipse at Bochum in upper Germany and at Donaue-
 schingen in lower Germany were measured as 52.6997° and 52.7430°, respectively. The two cities are 398 km apart. Calculate the distance to the moon from Bochum on this day, and compare it with the actual value of $406,000 \mathrm{~km}$. Disregard the curvature of Earth in this calculation. (Source: Scholosser, W., T. Schmidt-Kaler, and E. Milone, Challenges of Astronomy, Springer-Verlag.)
36. Ground Distances Measured by Aerial Photography The distance covered by an aerial photograph is determined by both the focal length of the camera and the tilt of the camera from the perpendicular to the ground. A camera lens with a $12-\mathrm{in}$. focal length will have an angular coverage of 60°. If an aerial photograph is taken with
 this camera tilted $\theta=35^{\circ}$ at an altitude of 5000 ft , calculate to the nearest foot the ground distance d that will be shown in this photograph. (Source: Brooks, R. and D. Johannes, Phytoarchaeology, Dioscorides Press.)
37. Ground Distances Measured by Aerial Photography Refer to Exercise 36. A camera lens with a $6-\mathrm{in}$. focal length has an angular coverage of 86°. Suppose an aerial photograph is taken vertically with no tilt at an altitude of 3500 ft over ground with an increasing slope of 5°, as shown in the figure. Calculate the ground distance $C B$ that will
 appear in the resulting photograph. (Source: Moffitt, F. and E. Mikhail, Photogrammetry, Third Edition, Harper \& Row.)
38. Ground Distances Measured by Aerial Photography Repeat Exercise 37 if the camera lens has an $8.25-\mathrm{in}$. focal length with an angular coverage of 72°.

Find the area of each triangle using the formula $\mathscr{A}=\frac{1}{2} b h$, and then verify that the formula $\mathscr{A}=\frac{1}{2} a b \sin C$ gives the same result.
39.

41.

40.

42.

Find the area of each triangle ABC. See Examples 4 and 5.
43. $A=42.5^{\circ}, b=13.6 \mathrm{~m}, c=10.1 \mathrm{~m}$
44. $C=72.2^{\circ}, b=43.8 \mathrm{ft}, a=35.1 \mathrm{ft}$
45. $B=124.5^{\circ}, a=30.4 \mathrm{~cm}, c=28.4 \mathrm{~cm}$
46. $C=142.7^{\circ}, a=21.9 \mathrm{~km}, b=24.6 \mathrm{~km}$
47. $A=56.80^{\circ}, b=32.67$ in., $c=52.89$ in. 48. $A=34.97^{\circ}, b=35.29 \mathrm{~m}, c=28.67 \mathrm{~m}$
49. $A=30.50^{\circ}, b=13.00 \mathrm{~cm}, C=112.60^{\circ}$ 50. $A=59.80^{\circ}, b=15.00 \mathrm{~m}, C=53.10^{\circ}$

Solve each problem.
51. Area of a Metal Plate A painter is going to apply a special coating to a triangular metal plate on a new building. Two sides measure 16.1 m and 15.2 m . She knows that the angle between these sides is 125°. What is the area of the surface she plans to cover with the coating?
52. Area of a Triangular Lot A real estate agent wants to find the area of a triangular lot. A surveyor takes measurements and finds that two sides are 52.1 m and 21.3 m , and the angle between them is 42.2°. What is the area of the triangular lot?
53. Triangle Inscribed in a Circle For a triangle inscribed in a circle of radius r, the law of sines ratios $\frac{a}{\sin A}, \frac{b}{\sin B}$, and $\frac{c}{\sin C}$ have value $2 r$. The circle in the figure has diameter 1 . What are the values of a, b, and c ? (Note: This result provides an alternative way to define the sine function for angles between 0° and 180°. It was used nearly 2000 years ago by the mathematician Ptolemy to construct one of the
 earliest trigonometric tables.)
54. Theorem of Ptolemy The following theorem is also attributed to Ptolemy: In a quadrilateral inscribed in a circle, the product of the diagonals is equal to the sum of the products of the opposite sides. (Source: Eves, H., An Introduction to the History of Mathematics, Sixth Edition, Saunders College Publishing.) The circle in the figure has diameter 1. Explain why the lengths of the line segments are as shown, and then apply Ptolemy's theorem to derive the formula for the sine of the sum of two angles.
55. Law of Sines Several of the exercises on right triangle applications involved a figure similar to the one shown here, in which angles α and β and the length of line segment $A B$ are known, and the length of side $C D$ is to be determined. Use the law of sines to obtain x in terms of α, β, and d.

56. Aerial Photography Aerial photographs can be used to provide coordinates of ordered pairs to determine distances on the ground. Suppose we assign coordinates as shown in the figure. If an object's photographic coordinates are (x, y), then its ground coordinates (X, Y) in feet can be computed using the following formulas.
$X=\frac{(a-h) x}{f \sec \theta-y \sin \theta}, \quad Y=\frac{(a-h) y \cos \theta}{f \sec \theta-y \sin \theta}$
Here, f is focal length of the camera in inches,
 a is altitude in feet of the airplane, and h is elevation in feet of the object. Suppose that a house has photographic coordinates $\left(x_{H}, y_{H}\right)=(0.9,3.5)$ with elevation 150 ft , and a nearby forest fire has photographic coordinates $\left(x_{F}, y_{F}\right)=(2.1,-2.4)$ and is at elevation 690 ft . Also suppose the photograph was taken at 7400 ft by a camera with focal length 6 in . and tilt angle $\theta=4.1^{\circ}$. (Source: Moffitt, F. and E. Mikhail, Photogrammetry, Third Edition, Harper \& Row.)
(a) Use the formulas to find the ground coordinates of the house and the fire to the nearest tenth of a foot.
(b) Use the distance formula given in Appendix B to find the distance on the ground between the house and the fire to the nearest tenth of a foot.

7.2 The Ambiguous Case of the Law of Sines

- Description of the Ambiguous Case
- Solving SSA Triangles (Case 2)
- Analyzing Data for Possible Number of Triangles

B lies along this side if a triangle exists.

Figure 8

Description of the Ambiguous Case We used the law of sines to solve triangles involving Case 1, SAA or ASA, in Section 7.1. If we are given the lengths of two sides and the angle opposite one of them (Case 2, SSA), then zero, one, or two such triangles may exist. (There is no SSA congruence axiom.)

Suppose we know the measure of acute angle A of triangle $A B C$, the length of side a, and the length of side b, as shown in Figure 8. Now we must draw the side of length a opposite angle A. The table shows possible outcomes. This situation (SSA) is called the ambiguous case of the law of sines.

As shown in the table, if angle A is acute, there are four possible outcomes. If A is obtuse, there are two possible outcomes.

Angle A is	Possible Number of Triangles	Sketch	Applying Law of Sines Leads to
Acute	0		$\sin B>1, a<h<b$
Acute	1		$\sin B=1, a=h<b$
Acute	1		$0<\sin B<1, a \geq b$
Acute	2		$\begin{aligned} & 0<\sin B_{1}<1, h<a<b \\ & A+B_{2}<180^{\circ} \end{aligned}$
Obtuse	0		$\sin B \geq 1, a \leq b$
Obtuse	1		$0<\sin B<1, a>b$

The following basic facts help determine which situation applies.

Applying the Law of Sines

1. For any angle θ of a triangle, $0<\sin \theta \leq 1$. If $\sin \theta=1$, then $\theta=90^{\circ}$ and the triangle is a right triangle.
2. $\sin \theta=\sin \left(180^{\circ}-\theta\right)$ (Supplementary angles have the same sine value.)
3. The smallest angle is opposite the shortest side, the largest angle is opposite the longest side, and the middle-valued angle is opposite the intermediate side (assuming the triangle has sides that are all of different lengths).

Solving SSA Triangles (Case 2)

EXAMPLE 1 Solving the Ambiguous Case (No Such Triangle)

Solve triangle $A B C$ if $B=55^{\circ} 40^{\prime}, b=8.94 \mathrm{~m}$, and $a=25.1 \mathrm{~m}$.
SOLUTION We are given B, b, and a, so we can use the law of sines to find A.

Figure 9
Because $\sin A$ cannot be greater than 1, there can be no such angle A-and thus no triangle with the given information. An attempt to sketch such a triangle leads to the situation shown in Figure 9.

Now Try Exercise 17.

NOTE In the ambiguous case, we are given two sides and an angle opposite one of the sides (SSA). For example, suppose b, c, and angle C are given. This situation represents the ambiguous case because angle C is opposite side c.

EXAMPLE 2 Solving the Ambiguous Case (Two Triangles)

Solve triangle $A B C$ if $A=55.3^{\circ}, a=22.8 \mathrm{ft}$, and $b=24.9 \mathrm{ft}$.
SOLUTION To begin, use the law of sines to find angle B.

$$
\begin{array}{rlr}
\frac{\sin A}{a} & =\frac{\sin B}{b} \approx \text { Solve for } \sin B . \\
\frac{\sin 55.3^{\circ}}{22.8} & =\frac{\sin B}{24.9} & \text { Substitute the given values. } \\
\sin B & =\frac{24.9 \sin 55.3^{\circ}}{22.8} & \text { Multiply by } 24.9 \text { and rewrite. } \\
\sin B & \approx 0.8978678 & \text { Use a calculator. }
\end{array}
$$

There are two angles B between 0° and 180° that satisfy this condition. Since $\sin B \approx 0.8978678$, to the nearest tenth one value of B is

$$
B_{1}=63.9^{\circ} \text {. Use the inverse sine function. (Section 6.1) }
$$

Supplementary angles have the same sine value, so another possible value of B is

$$
B_{2}=180^{\circ}-63.9^{\circ}=116.1^{\circ} . \quad(\text { Section 1.1) }
$$

To see whether $B_{2}=116.1^{\circ}$ is a valid possibility, add 116.1° to the measure of $A, 55.3^{\circ}$. Since $116.1^{\circ}+55.3^{\circ}=171.4^{\circ}$, and this sum is less than 180°, it is a valid angle measure for this triangle.

Figure 10

Now separately solve triangles $A B_{1} C_{1}$ and $A B_{2} C_{2}$ shown in Figure 10. Begin with $A B_{1} C_{1}$. Find C_{1} first.

$$
\begin{array}{ll}
C_{1}=180^{\circ}-A-B_{1} & \text { Angle sum formula (Section 1.2) } \\
C_{1}=180^{\circ}-55.3^{\circ}-63.9^{\circ} & \text { Substitute. } \\
C_{1}=60.8^{\circ} & \text { Subtract. }
\end{array}
$$

Now, use the law of sines to find c_{1}.

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{c_{1}}{\sin C_{1}} \text { Solve for } c_{1} . \\
\frac{22.8}{\sin 55.3^{\circ}} & =\frac{c_{1}}{\sin 60.8^{\circ}} \quad \text { Substitute. } \\
c_{1} & =\frac{22.8 \sin 60.8^{\circ}}{\sin 55.3^{\circ}} \quad \text { Multiply by } \sin 60.8^{\circ} . \\
c_{1} & \approx 24.2 \mathrm{ft} \quad \text { Use a calculator. }
\end{aligned}
$$

To solve triangle $A B_{2} C_{2}$, first find C_{2}.

$$
\begin{array}{ll}
C_{2}=180^{\circ}-A-B_{2} & \text { Angle sum formula } \\
C_{2}=180^{\circ}-55.3^{\circ}-116.1^{\circ} & \text { Substitute. } \\
C_{2}=8.6^{\circ} & \text { Subtract. }
\end{array}
$$

Use the law of sines to find c_{2}.

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{c_{2}}{\sin C_{2}} \text { Solve for } c_{2} . \\
\frac{22.8}{\sin 55.3^{\circ}} & =\frac{c_{2}}{\sin 8.6^{\circ}} \quad \text { Substitute. } \\
c_{2} & =\frac{22.8 \sin 8.6^{\circ}}{\sin 55.3^{\circ}} \quad \text { Multiply by } \sin 8.6^{\circ} . \\
c_{2} & \approx 4.15 \mathrm{ft} \quad \text { Use a calculator. }
\end{aligned}
$$

Now Try Exercise 25.

The ambiguous case results in zero, one, or two triangles. The following guidelines can be used to determine how many triangles there are.

Number of Triangles Satisfying the Ambiguous Case (SSA)

Let sides a and b and angle A be given in triangle $A B C$. (The law of sines can be used to calculate the value of $\sin B$.)

1. If applying the law of sines results in an equation having $\sin B>1$, then no triangle satisfies the given conditions.
2. If $\sin B=1$, then one triangle satisfies the given conditions and $B=90^{\circ}$.
3. If $0<\sin B<1$, then either one or two triangles satisfy the given conditions.
(a) If $\sin B=k$, then let $B_{1}=\sin ^{-1} k$ and use B_{1} for B in the first triangle.
(b) Let $B_{2}=180^{\circ}-B_{1}$. If $A+B_{2}<180^{\circ}$, then a second triangle exists. In this case, use B_{2} for B in the second triangle.

Figure 11

EXAMPLE 3 Solving the Ambiguous Case (One Triangle)

Solve triangle $A B C$, given $A=43.5^{\circ}, a=10.7$ in., and $c=7.2 \mathrm{in}$.
SOLUTION To find angle C, use an alternative form of the law of sines.

$$
\begin{aligned}
\frac{\sin C}{c} & =\frac{\sin A}{a} & & \text { Law of sines } \\
\frac{\sin C}{7.2} & =\frac{\sin 43.5^{\circ}}{10.7} & & \text { Substitute the given values. } \\
\sin C & =\frac{7.2 \sin 43.5^{\circ}}{10.7} & & \text { Multiply by } 7.2 . \\
\sin C & \approx 0.46319186 & & \text { Use a calculator. } \\
C & \approx 27.6^{\circ} & & \text { Use the inverse sine function. }
\end{aligned}
$$

There is another angle C that has sine value 0.46319186 . It is

$$
C=180^{\circ}-27.6^{\circ}=152.4^{\circ}
$$

However, notice in the given information that $c<a$, meaning that in the triangle, angle C must have measure less than angle A. Notice also that when we add this obtuse value to the given angle $A=43.5^{\circ}$, we obtain

$$
152.4^{\circ}+43.5^{\circ}=195.9^{\circ}
$$

which is greater than 180°. Thus either of these approaches shows that there can be only one triangle. See Figure 11. Then

$$
\begin{array}{ll}
B=180^{\circ}-27.6^{\circ}-43.5^{\circ} & \text { Substitute. } \\
B=108.9^{\circ}, & \text { Subtract. }
\end{array}
$$

and we can find side b with the law of sines.

$$
\begin{aligned}
\frac{b}{\sin B} & =\frac{a}{\sin A} & & \text { Law of sines } \\
\frac{b}{\sin 108.9^{\circ}} & =\frac{10.7}{\sin 43.5^{\circ}} & & \text { Substitute known values. } \\
b & =\frac{10.7 \sin 108.9^{\circ}}{\sin 43.5^{\circ}} & & \text { Multiply by } \sin 108.9^{\circ} . \\
b & \approx 14.7 \mathrm{in.} & & \text { Use a calculator. }
\end{aligned}
$$

Now Try Exercise 21.

Analyzing Data for Possible Number of Triangles

EXAMPLE 4 Analyzing Data Involving an Obtuse Angle

Without using the law of sines, explain why $A=104^{\circ}, a=26.8 \mathrm{~m}$, and $b=31.3 \mathrm{~m}$ cannot be valid for a triangle $A B C$.

SOLUTION Since A is an obtuse angle, it is the largest angle, and so the longest side of the triangle must be a. However, we are given $b>a$.

Thus, $B>A$, which is impossible if A is obtuse.
Therefore, no such triangle $A B C$ exists.

1. Concept Check Which one of the following sets of data does not determine a unique triangle?
A. $A=40^{\circ}, B=60^{\circ}, C=80^{\circ}$
B. $a=5, b=12, c=13$
C. $a=3, b=7, C=50^{\circ}$
D. $a=2, b=2, c=2$
2. Concept Check Which one of the following sets of data determines a unique triangle?
A. $A=50^{\circ}, B=50^{\circ}, C=80^{\circ}$
B. $a=3, b=5, c=20$
C. $A=40^{\circ}, B=20^{\circ}, C=30^{\circ}$
D. $a=7, b=24, c=25$

Concept Check In each figure, a line segment of length L is to be drawn from the given point to the positive x-axis in order to form a triangle. For what value(s) of L can you draw the following?
(a) two triangles
(b) exactly one triangle
(c) no triangle
3.

4.

Determine the number of triangles ABC possible with the given parts. See Examples 1-4.
5. $a=50, b=26, A=95^{\circ}$
6. $a=35, b=30, A=40^{\circ}$
7. $a=31, b=26, B=48^{\circ}$
8. $B=54^{\circ}, c=28, b=23$
9. $a=50, b=61, A=58^{\circ}$
10. $b=60, a=82, B=100^{\circ}$

Find each angle B. Do not use a calculator.
11.

12.

Find the unknown angles in triangle ABC for each triangle that exists. See Examples 1-3.
13. $A=29.7^{\circ}, b=41.5 \mathrm{ft}, a=27.2 \mathrm{ft}$
14. $B=48.2^{\circ}, a=890 \mathrm{~cm}, b=697 \mathrm{~cm}$
15. $C=41^{\circ} 20^{\prime}, b=25.9 \mathrm{~m}, c=38.4 \mathrm{~m}$
16. $B=48^{\circ} 50^{\prime}, a=3850$ in., $b=4730$ in.
17. $B=74.3^{\circ}, a=859 \mathrm{~m}, b=783 \mathrm{~m}$
18. $C=82.2^{\circ}, a=10.9 \mathrm{~km}, c=7.62 \mathrm{~km}$
19. $A=142.13^{\circ}, b=5.432 \mathrm{ft}, a=7.297 \mathrm{ft}$
20. $B=113.72^{\circ}, a=189.6 \mathrm{yd}, b=243.8 \mathrm{yd}$

Solve each triangle ABC that exists. See Examples 1-3.
21. $A=42.5^{\circ}, a=15.6 \mathrm{ft}, b=8.14 \mathrm{ft}$
22. $C=52.3^{\circ}, a=32.5 \mathrm{yd}, c=59.8 \mathrm{yd}$
23. $B=72.2^{\circ}, b=78.3 \mathrm{~m}, c=145 \mathrm{~m}$
24. $C=68.5^{\circ}, c=258 \mathrm{~cm}, b=386 \mathrm{~cm}$
25. $A=38^{\circ} 40^{\prime}, a=9.72 \mathrm{~m}, b=11.8 \mathrm{~m}$
26. $C=29^{\circ} 50^{\prime}, a=8.61 \mathrm{~m}, c=5.21 \mathrm{~m}$
27. $A=96.80^{\circ}, b=3.589 \mathrm{ft}, a=5.818 \mathrm{ft}$
28. $C=88.70^{\circ}, b=56.87 \mathrm{~m}, c=112.4 \mathrm{~m}$
29. $B=39.68^{\circ}, a=29.81 \mathrm{~m}, b=23.76 \mathrm{~m}$
30. $A=51.20^{\circ}, c=7986 \mathrm{~cm}, a=7208 \mathrm{~cm}$
31. Apply the law of sines to the following: $a=\sqrt{5}, c=2 \sqrt{5}, A=30^{\circ}$. What is the value of $\sin C$? What is the measure of C ? Based on its angle measures, what kind of triangle is triangle $A B C$?
32. Explain the condition that must exist to determine that there is no triangle satisfying the given values of a, b, and B, once the value of $\sin A$ is found.
33. Without using the law of sines, explain why no triangle $A B C$ exists satisfying $A=103^{\circ} 20^{\prime}, a=14.6 \mathrm{ft}, b=20.4 \mathrm{ft}$.
34. Apply the law of sines to the data given in Example 4. Describe what happens when you try to find the measure of angle B using a calculator.

Use the law of sines to solve each problem.
35. Distance between Inaccessible Points To find the distance between a point X and an inaccessible point Z, a line segment $X Y$ is constructed. It is found that $X Y=960 \mathrm{~m}$, angle $X Y Z=43^{\circ} 30^{\prime}$, and angle $Y Z X=95^{\circ} 30^{\prime}$. Find the distance between X and Z to the nearest meter.

36. Height of an Antenna Tower The angle of elevation from the top of a building 45.0 ft high to the top of a nearby antenna tower is $15^{\circ} 20^{\prime}$. From the base of the building, the angle of elevation of the tower is $29^{\circ} 30^{\prime}$. Find the height of the tower.

37. Height of a Building A flagpole 95.0 ft tall is on the top of a building. From a point on level ground, the angle of elevation of the top of the flagpole is 35.0°, and the angle of elevation of the bottom of the flagpole is 26.0°. Find the height of the building.
38. Flight Path of a Plane A pilot flies her plane on a heading of $35^{\circ} 00^{\prime}$ from point X to point Y, which is 400 mi from X. Then she turns and flies on a heading of $145^{\circ} 00^{\prime}$ to point Z, which is 400 mi from her starting point X. What is the heading of Z from X, and what is the distance $Y Z$?

Use the law of sines to prove that each statement is true for any triangle $A B C$, with corresponding sides a, b, and c.
39. $\frac{a+b}{b}=\frac{\sin A+\sin B}{\sin B}$
40. $\frac{a-b}{a+b}=\frac{\sin A-\sin B}{\sin A+\sin B}$

Relating Concepts

For individual or collaborative investigation. (Exercises 41-44)
Colors of the U.S. Flag The flag of the United States includes the colors red, white, and blue. Which color is predominant? Clearly the answer is either red or white. (It can be shown that only 18.73\% of the total area is blue.) (Source: Banks, R., Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics, Princeton University Press.) Work Exercises 41-44 in order to determine the answer to this question.
41. Let R denote the radius of the circumscribing circle of a five-pointed star appearing on the American flag. The star can be decomposed
 into ten congruent triangles. In the figure, r is the radius of the circumscribing circle of the pentagon in the interior of the star. Show that the area of a star is

$$
\mathscr{A}=\left[5 \frac{\sin A \sin B}{\sin (A+B)}\right] R^{2} .
$$

(Hint: $\sin C=\sin \left[180^{\circ}-(A+B)\right]=\sin (A+B)$.)

42. Angles A and B have values 18° and 36°, respectively. Express the area \mathscr{A} of a star in terms of its radius, R.
43. To determine whether red or white is predominant, we must know the measurements of the flag. Consider a flag of width 10 in ., length 19 in ., length of each upper stripe 11.4 in ., and radius R of the circumscribing circle of each star 0.308 in . The thirteen stripes consist of six matching pairs of red and white stripes and one additional red, upper stripe. Therefore, we must compare the area of a red, upper stripe with the total area of the 50 white stars.
(a) Compute the area of the red, upper stripe.
(b) Compute the total area of the 50 white stars.
44. Which color occupies the greatest area on the flag?

7.3 The Law of Cosines

- Derivation of the Law of Cosines
- Solving SAS and SSS Triangles (Cases 3 and 4)
- Heron's Formula for the Area of a Triangle
- Derivation of Heron's Formula

As mentioned in Section 7.1, if we are given two sides and the included angle (Case 3) or three sides (Case 4) of a triangle, then a unique triangle is determined. These are the SAS and SSS cases, respectively. Both cases require using the law of cosines.

The property of triangles given at the top of the next page is important when applying the law of cosines to solve a triangle.

No triangle is formed.
Figure 12

Figure 13

Triangle Side Length Restriction

In any triangle, the sum of the lengths of any two sides must be greater than the length of the remaining side.

For example, it would be impossible to construct a triangle with sides of lengths 3,4 , and 10. See Figure 12.

Derivation of the Law of Cosines To derive the law of cosines, let $A B C$ be any oblique triangle. Choose a coordinate system so that vertex B is at the origin and side $B C$ is along the positive x-axis. See Figure 13.

Let (x, y) be the coordinates of vertex A of the triangle. Then the following are true for angle B, whether obtuse or acute.

$$
\begin{array}{rlrlrl}
\sin B & =\frac{y}{c} & \text { and } & \cos B & =\frac{x}{c} & \\
\text { (Section 2.2) } \\
y & =c \sin B & \text { and } & x & =c \cos B & \\
\text { Here } x \text { is negative } \\
& & & & \text { when } B \text { is obtuse. }
\end{array}
$$

Thus, the coordinates of point A become $(c \cos B, c \sin B)$.
Point C in Figure 13 has coordinates $(a, 0), A C$ has length b, and point A has coordinates $(c \cos B, c \sin B)$. We can use the distance formula to write an equation.

$$
\begin{array}{rlrl}
b & =\sqrt{(c \cos B-a)^{2}+(c \sin B-0)^{2}} & & \text { (Appendix B) } \\
b^{2} & =(c \cos B-a)^{2}+(c \sin B)^{2} & & \text { Square each side. } \\
& =\left(c^{2} \cos ^{2} B-2 a c \cos B+a^{2}\right)+c^{2} \sin ^{2} B & & \text { Multiply; } \\
& & (x-y)^{2}=x^{2}-2 x y+y^{2}
\end{array}
$$

$$
\begin{aligned}
& =a^{2}+c^{2}\left(\cos ^{2} B+\sin ^{2} B\right)-2 a c \cos B \\
& =a^{2}+c^{2}(1)-2 a c \cos B \\
b^{2} & =a^{2}+c^{2}-2 a c \cos B
\end{aligned}
$$

Properties of real numbers
Fundamental identity (Section 5.1)

This result is one form of the law of cosines. In our work, we could just as easily have placed A or C at the origin. This would have given the same result, but with the variables rearranged.

Law of Cosines

In any triangle $A B C$, with sides a, b, and c, the following hold.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

That is, according to the law of cosines, the square of a side of a triangle is equal to the sum of the squares of the other two sides, minus twice the product of those two sides and the cosine of the angle included between them.

Figure 14

Figure 15

NOTE If we let $C=90^{\circ}$ in the third form of the law of cosines, then $\cos C=\cos 90^{\circ}=0$, and the formula becomes $c^{2}=a^{2}+b^{2}$, the Pythagorean theorem (Appendix B). The Pythagorean theorem is a special case of the law of cosines.

Solving SAS and SSS Triangles (Cases 3 and 4)

EXAMPLE 1 Applying the Law of Cosines (SAS)

A surveyor wishes to find the distance between two inaccessible points A and B on opposite sides of a lake. While standing at point C, she finds that $b=259 \mathrm{~m}$, $a=423 \mathrm{~m}$, and angle $A C B$ measures $132^{\circ} 40^{\prime}$. Find the distance c. See Figure 14.

SOLUTION We can use the law of cosines here because we know the lengths of two sides of the triangle and the measure of the included angle.

$$
\begin{array}{ll}
c^{2}=a^{2}+b^{2}-2 a b \cos C & \text { Law of cosines } \\
c^{2}=423^{2}+259^{2}-2(423)(259) \cos 132^{\circ} 40^{\prime} & \text { Substitute. } \\
c^{2} \approx 394,510.6 & \text { Use a calculator. } \\
c \approx 628 & \\
& \text { Take the square root of each side. } \\
& \text { Choose the positive root. }
\end{array}
$$

The distance between the points is approximately 628 m .
Now Try Exercise 39.

EXAMPLE 2 Applying the Law of Cosines (SAS)

Solve triangle $A B C$ if $A=42.3^{\circ}, b=12.9 \mathrm{~m}$, and $c=15.4 \mathrm{~m}$.
SOLUTION See Figure 15. We start by finding a with the law of cosines.

$$
\begin{array}{rlrl}
a^{2} & =b^{2}+c^{2}-2 b c \cos A & & \text { Law of cosines } \\
a^{2} & =12.9^{2}+15.4^{2}-2(12.9)(15.4) \cos 42.3^{\circ} & & \text { Substitute. } \\
a^{2} & \approx 109.7 & & \text { Use a calculator. } \\
a & \approx 10.47 \mathrm{~m} & & \text { Take square roots and } \\
& & \text { choose the positive root. }
\end{array}
$$

Of the two remaining angles B and C, B must be the smaller since it is opposite the shorter of the two sides b and c. Therefore, B cannot be obtuse.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} & & \text { Law of sines (alternative form) (Section 7.1) } \\
\frac{\sin 42.3^{\circ}}{10.47} & =\frac{\sin B}{12.9} & & \text { Substitute. } \\
\sin B & =\frac{12.9 \sin 42.3^{\circ}}{10.47} & & \text { Multiply by } 12.9 \text { and rewrite. } \\
B & \approx 56.0^{\circ} & & \text { Use the inverse sine function. (Section 6.1) }
\end{aligned}
$$

The easiest way to find C is to subtract the measures of A and B from 180°.

$$
\begin{array}{ll}
C=180^{\circ}-A-B & \text { Angle sum formula (Section 1.2), solved for } C \\
C \approx 180^{\circ}-42.3^{\circ}-56.0^{\circ} & \text { Substitute. } \\
C \approx 81.7^{\circ} & \text { Subtract. }
\end{array}
$$

CAUTION Had we used the law of sines to find C rather than B in Example 2, we would not have known whether C was equal to 81.7° or its supplement, 98.3°.

EXAMPLE 3 Applying the Law of Cosines (SSS)

Solve triangle $A B C$ if $a=9.47 \mathrm{ft}, b=15.9 \mathrm{ft}$, and $c=21.1 \mathrm{ft}$.
SOLUTION We can use the law of cosines to solve for any angle of the triangle. We solve for C, the largest angle. We will know that C is obtuse if $\cos C<0$.

$$
\begin{array}{rlrl}
c^{2} & =a^{2}+b^{2}-2 a b \cos C & & \text { Law of cosines } \\
\cos C & =\frac{a^{2}+b^{2}-c^{2}}{2 a b} & & \text { Solve for } \cos C . \\
\cos C & =\frac{9.47^{2}+15.9^{2}-21.1^{2}}{2(9.47)(15.9)} & & \text { Substitute. } \\
\cos C & \approx-0.34109402 & & \text { Use a calculator. } \\
C & \approx 109.9^{\circ} & & \text { Use the inverse cosine function. } \\
& \text { (Section 6.1) }
\end{array}
$$

Now use the law of sines to find B.

$$
\begin{aligned}
\frac{\sin C}{c} & =\frac{\sin B}{b} & & \text { Law of sines (alternative form) } \\
\frac{\sin 109.9^{\circ}}{21.1} & =\frac{\sin B}{15.9} & & \text { Substitute. } \\
\sin B & =\frac{15.9 \sin 109.9^{\circ}}{21.1} & & \text { Multiply by } 15.9 \text { and rewrite. } \\
B & \approx 45.1^{\circ} & & \text { Use the inverse sine function. }
\end{aligned}
$$

Since $A=180^{\circ}-B-C$, we have $A \approx 180^{\circ}-45.1^{\circ}-109.9^{\circ} \approx 25.0^{\circ}$.

Trusses are frequently used to support roofs on buildings, as illustrated in Figure 16. The simplest type of roof truss is a triangle, as shown in Figure 17. (Source: Riley, W., L. Sturges, and D. Morris, Statics and Mechanics of Materials, John Wiley and Sons.)

EXAMPLE 4 Designing a Roof Truss (SSS)

Find angle B to the nearest degree for the truss shown in Figure 17.

SOLUTION

$$
\begin{aligned}
b^{2} & =a^{2}+c^{2}-2 a c \cos B & & \text { Law of cosines } \\
\cos B & =\frac{a^{2}+c^{2}-b^{2}}{2 a c} & & \text { Solve for } \cos B . \\
\cos B & =\frac{11^{2}+9^{2}-6^{2}}{2(11)(9)} & & \text { Let } a=11, b=6, \text { and } c=9 . \\
\cos B & \approx 0.83838384 & & \text { Use a calculator. } \\
B & \approx 33^{\circ} & & \text { Use the inverse cosine function. }
\end{aligned}
$$

Four possible cases can occur when we solve an oblique triangle. They are summarized in the following table. In all four cases, it is assumed that the given information actually produces a triangle.

Oblique Triangle	Suggested Procedure for Solving
Case 1: One side and two angles are known. (SAA or ASA)	Step 1 Find the remaining angle using the angle sum formula $\left(A+B+C=180^{\circ}\right)$. Step 2 Find the remaining sides using the law of sines.
Case 2: Two sides and one angle (not included between the two sides) are known. (SSA)	This is the ambiguous case. There may be no triangle, one triangle, or two triangles. Step 1 Find an angle using the law of sines. Step 2 Find the remaining angle using the angle sum formula. Step 3 Find the remaining side using the law of sines. If two triangles exist, repeat Steps 2 and 3.
Case 3: Two sides and the included angle are known. (SAS)	Step 1 Find the third side using the law of cosines. Step 2 Find the smaller of the two remaining angles using the law of sines. Step 3 Find the remaining angle using the angle sum formula.
Case 4: Three sides are known. (SSS)	Step 1 Find the largest angle using the law of cosines. Step 2 Find either remaining angle using the law of sines. Step 3 Find the remaining angle using the angle sum formula.

Heron's Formula for the Area of a Triangle A formula for finding the area of a triangle given the lengths of the three sides, known as Heron's formula, is named after the Greek mathematician Heron of Alexandria, who lived around A.D. 75. It is found in his work Metrica. Heron's formula can be used for the case SSS.

Heron's Area Formula (SSS)

If a triangle has sides of lengths a, b, and c, with semiperimeter

$$
s=\frac{1}{2}(a+b+c)
$$

then the area \mathscr{A} of the triangle is given by the following formula.

$$
\mathscr{A}=\sqrt{s(s-a)(s-b)(s-c)}
$$

That is, according to Heron's formula, the area of a triangle is the square root of the product of four factors: (1) the semiperimeter, (2) the semiperimeter minus the first side, (3) the semiperimeter minus the second side, and (4) the semiperimeter minus the third side.

A derivation of Heron's formula is given at the end of this section.

EXAMPLE 5 Using Heron's Formula to Find an Area (SSS)

The distance "as the crow flies" from Los Angeles to New York is 2451 mi, from New York to Montreal is 331 mi , and from Montreal to Los Angeles is 2427 mi . What is the area of the triangular region having these three cities as vertices? (Ignore the curvature of Earth.)

SOLUTION In Figure 18, we let $a=2451, b=331$, and $c=2427$.

Figure 18

Here,

$$
\begin{array}{ll}
s=\frac{1}{2}(2451+331+2427) & \\
\text { Semiperimeter } \\
s=2604.5 . & \text { Add, and then multiply. }
\end{array}
$$

Now use Heron's formula to find the area \mathscr{A}.

Don't forget the

$$
\mathscr{A}=\sqrt{s(s-a)(s-b)(s-c)}
$$

factor s.

$$
\begin{aligned}
& \mathscr{A}=\sqrt{2604.5(2604.5-2451)(2604.5-331)(2604.5-2427)} \\
& \mathscr{A} \approx 401,700 \mathrm{mi}^{2} \quad \text { Use a calculator. }
\end{aligned}
$$

Derivation of Heron's Formula A trigonometric derivation of Heron's formula illustrates some ingenious manipulation involving the law of cosines, algebraic techniques, double-angle identities, and the area formula $\mathscr{A}=\frac{1}{2} b c \sin A$.

Let triangle $A B C$ have sides of lengths a, b, and c. Apply the law of cosines.

$$
\begin{align*}
a^{2} & =b^{2}+c^{2}-2 b c \cos A & \text { Law of cosines } \\
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} & \text { Solve for } \cos A . \tag{1}
\end{align*}
$$

The perimeter of the triangle is $a+b+c$, so half of the perimeter (the semiperimeter) is given by the formula in equation (2) below.

$$
\begin{aligned}
s & =\frac{1}{2}(a+b+c) \\
2 s & =a+b+c \\
b+c-a & =2 s-2 a \\
b+c-a & =2(s-a)
\end{aligned}
$$

$$
2 s=a+b+c \quad \text { Multiply by } 2 .
$$

$$
\text { Subtract } 2 a \text { from each side and rewrite. }
$$

Subtract $2 b$ and $2 c$ in a similar way in equation (3) to obtain equations (5) and (6).

$$
\begin{align*}
& a-b+c=2(s-b) \tag{5}\\
& a+b-c=2(s-c) \tag{6}
\end{align*}
$$

Now we obtain an expression for $1-\cos A$.

$$
\begin{align*}
& 1-\cos A=1-\underbrace{\frac{b^{2}+c^{2}-a^{2}}{2 b c}}_{\cos A, \text { from }(1)} \\
& =\frac{2 b c+a^{2}-b^{2}-c^{2}}{2 b c} \\
& \begin{aligned}
&=\frac{a^{2}-\left(b^{2}-2 b c+c^{2}\right)}{2 b c} \\
& \begin{array}{c}
\text { Pay attention } \\
\text { to signs. }
\end{array} \\
&= \frac{a^{2}-(b-c)^{2}}{2 b c}
\end{aligned} \\
& =\frac{[a-(b-c)][a+(b-c)]}{2 b c} \quad \begin{array}{l}
\text { Factor the difference } \\
\text { of squares. }
\end{array} \\
& =\frac{(a-b+c)(a+b-c)}{2 b c} \quad \text { Distributive property } \\
& =\frac{2(s-b) \cdot 2(s-c)}{2 b c} \quad \text { From (5) and (6) } \\
& 1-\cos A=\frac{2(s-b)(s-c)}{b c} \quad \text { Lowest terms } \tag{7}\\
& \text { Find a common } \\
& \text { denominator, and } \\
& \text { distribute the }- \text { sign. } \\
& \text { Regroup. } \\
& \text { Factor the perfect } \\
& \text { square trinomial. } \\
& \text { Factor the difference } \\
& \text { of squares. }
\end{align*}
$$

Similarly, it can be shown that

$$
\begin{equation*}
1+\cos A=\frac{2 s(s-a)}{b c} \tag{8}
\end{equation*}
$$

Recall the double-angle identities for $\cos 2 \theta$ from Section 5.5.

$$
\begin{align*}
& \cos 2 \theta=2 \cos ^{2} \theta-1 \\
& \cos A=2 \cos ^{2}\left(\frac{A}{2}\right)-1 \quad \text { Let } \theta=\frac{A}{2} . \\
& 1+\cos A=2 \cos ^{2}\left(\frac{A}{2}\right) \quad \text { Add } 1 . \\
& \underbrace{\frac{2 s(s-a)}{b c}}=2 \cos ^{2}\left(\frac{A}{2}\right) \quad \text { Substitute. } \\
& \text { From (8) } \\
& \frac{s(s-a)}{b c}=\cos ^{2}\left(\frac{A}{2}\right) \quad \text { Divide by } 2 . \\
& \cos \left(\frac{A}{2}\right)=\sqrt{\frac{s(s-a)}{b c}} \tag{9}\\
& \cos 2 \theta=1-2 \sin ^{2} \theta \\
& \cos A=1-2 \sin ^{2}\left(\frac{A}{2}\right) \quad \text { Let } \theta=\frac{A}{2} . \\
& 1-\cos A=2 \sin ^{2}\left(\frac{A}{2}\right) \quad \begin{array}{l}
\text { Subtract } 1 . \\
\text { Multiply by }-1 .
\end{array} \\
& \underbrace{\frac{2(s-b)(s-c)}{b c}}_{\text {From (7) }}=2 \sin ^{2}\left(\frac{A}{2}\right) \quad \text { Substitute. } \\
& \frac{(s-b)(s-c)}{b c}=\sin ^{2}\left(\frac{A}{2}\right) \quad \text { Divide by } 2 . \\
& \sin \left(\frac{A}{2}\right)=\sqrt{\frac{(s-b)(s-c)}{b c}} \tag{10}
\end{align*}
$$

The area of triangle $A B C$ can be expressed as follows.

$$
\begin{align*}
\mathscr{A} & =\frac{1}{2} b c \sin A & & (\text { Section 7.2) } \\
2 \mathscr{A} & =b c \sin A & & \text { Multiply by } 2 . \\
\frac{2 \mathscr{A}}{b c} & =\sin A & & \text { Divide by } b c . \tag{11}
\end{align*}
$$

Recall the double-angle identity for $\sin 2 \theta$.

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta & & \text { (Section 5.5) } \\
\sin A & =2 \sin \left(\frac{A}{2}\right) \cos \left(\frac{A}{2}\right) & & \text { Let } \theta=\frac{A}{2} . \\
\frac{2 \mathscr{A}}{b c} & =2 \sin \left(\frac{A}{2}\right) \cos \left(\frac{A}{2}\right) & & \text { Use equation (11). } \\
\frac{2 \mathscr{A}}{b c} & =2 \sqrt{\frac{(s-b)(s-c)}{b c}} \cdot \sqrt{\frac{s(s-a)}{b c}} & & \text { Use equations (9) and (10). } \\
\frac{2 \mathscr{A}}{b c} & =2 \sqrt{\frac{s(s-a)(s-b)(s-c)}{b^{2} c^{2}}} & & \text { Multiply. } \\
\frac{2 \mathscr{A}}{b c} & =\frac{2 \sqrt{s(s-a)(s-b)(s-c)}}{b c} & & \text { Simplify the denominator. } \\
\mathscr{A} & =\sqrt{s(s-\boldsymbol{a})(s-\boldsymbol{b})(s-c)} & & \text { Heron's formula }
\end{aligned}
$$

Concept Check Assume a triangle ABC has standard labeling.
(a) Determine whether SAA, ASA, SSA, SAS, or SSS is given.
(b) Decide whether the law of sines or the law of cosines should be used to begin solving the triangle.

1. a, b, and C
2. A, C, and c
3. a, b, and A
4. a, B, and C
5. A, B, and c
6. a, c, and A
7. a, b, and c
8. b, c, and A

Find the length of the remaining side of each triangle. Do not use a calculator.
9.

10.

Find the measure of θ in each triangle. Do not use a calculator.
11.

12.

Solve each triangle. Approximate values to the nearest tenth.
13. C

14.

15.

17.

16.

18.

Solve each triangle. See Examples 2 and 3.
19. $A=41.4^{\circ}, b=2.78 \mathrm{yd}, c=3.92 \mathrm{yd}$
20. $C=28.3^{\circ}, b=5.71 \mathrm{in}$., $a=4.21 \mathrm{in}$.
21. $C=45.6^{\circ}, b=8.94 \mathrm{~m}, a=7.23 \mathrm{~m}$
22. $A=67.3^{\circ}, b=37.9 \mathrm{~km}, c=40.8 \mathrm{~km}$
23. $a=9.3 \mathrm{~cm}, b=5.7 \mathrm{~cm}, c=8.2 \mathrm{~cm}$
24. $a=28 \mathrm{ft}, b=47 \mathrm{ft}, c=58 \mathrm{ft}$
25. $a=42.9 \mathrm{~m}, b=37.6 \mathrm{~m}, c=62.7 \mathrm{~m}$
26. $a=189 \mathrm{yd}, b=214 \mathrm{yd}, c=325 \mathrm{yd}$
27. $a=965 \mathrm{ft}, b=876 \mathrm{ft}, c=1240 \mathrm{ft}$
28. $a=324 \mathrm{~m}, b=421 \mathrm{~m}, c=298 \mathrm{~m}$
29. $A=80^{\circ} 40^{\prime}, b=143 \mathrm{~cm}, c=89.6 \mathrm{~cm}$
30. $C=72^{\circ} 40^{\prime}, a=327 \mathrm{ft}, b=251 \mathrm{ft}$
31. $B=74.8^{\circ}, a=8.92$ in., $c=6.43 \mathrm{in}$.
32. $C=59.7^{\circ}, a=3.73 \mathrm{mi}, b=4.70 \mathrm{mi}$
33. $A=112.8^{\circ}, b=6.28 \mathrm{~m}, c=12.2 \mathrm{~m}$
34. $B=168.2^{\circ}, a=15.1 \mathrm{~cm}, c=19.2 \mathrm{~cm}$
35. $a=3.0 \mathrm{ft}, b=5.0 \mathrm{ft}, c=6.0 \mathrm{ft}$
36. $a=4.0 \mathrm{ft}, b=5.0 \mathrm{ft}, c=8.0 \mathrm{ft}$
37. Refer to Figure 12. If you attempt to find any angle of a triangle with the values $a=3, b=4$, and $c=10$ by using the law of cosines, what happens?
38. "The shortest distance between two points is a straight line." Explain how this is related to the geometric property that states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.

Solve each problem. See Examples 1-4.

39. Distance across a River Points A and B are on opposite sides of False River. From a third point, C, the angle between the lines of sight to A and B is 46.3°. If $A C$ is 350 m long and $B C$ is 286 m long, find $A B$.
40. Distance across a Ravine Points X and Y are on opposite sides of a ravine. From a third point Z, the angle between the lines of sight to X and Y is 37.7°. If $X Z$ is 153 m long and $Y Z$ is 103 m long, find $X Y$.
41. Angle in a Parallelogram A parallelogram has sides of length 25.9 cm and 32.5 cm . The longer diagonal has length 57.8 cm . Find the measure of the angle opposite the longer diagonal.
42. Diagonals of a Parallelogram The sides of a parallelogram are 4.0 cm and 6.0 cm . One angle is 58° while another is 122°. Find the lengths of the diagonals of the parallelogram.
43. Flight Distance Airports A and B are 450 km apart, on an east-west line. Tom flies in a northeast direction from A to airport C. From C he flies 359 km on a bearing of $128^{\circ} 40^{\prime}$ to B. How far is C from A ?
44. Distance Traveled by a Plane An airplane flies 180 mi from point X at a bearing of 125°, and then turns and flies at a bearing of 230° for 100 mi . How far is the plane from point X ?
45. Distance between Ends of the Vietnam Memorial The Vietnam Veterans Memorial in Washington, D.C., is V-shaped with equal sides of length 246.75 ft . The angle between these sides measures $125^{\circ} 12^{\prime}$. Find the distance between the ends of the two sides. (Source: Pamphlet obtained at Vietnam Veterans Memorial.)

46. Distance between Two Ships Two ships leave a harbor together, traveling on courses that have an angle of $135^{\circ} 40^{\prime}$ between them. If each travels 402 mi , how far apart are they?

47. Distance between a Ship and a Rock A ship is sailing east. At one point, the bearing of a submerged rock is $45^{\circ} 20^{\prime}$. After the ship has sailed 15.2 mi , the bearing of the rock has become $308^{\circ} 40^{\prime}$. Find the distance of the ship from the rock at the latter point.

48. Distance between a Ship and a Submarine From an airplane flying over the ocean, the angle of depression to a submarine lying under the surface is $24^{\circ} 10^{\prime}$. At the same moment, the angle of depression from the airplane to a battleship is $17^{\circ} 30^{\prime}$. See the figure. The distance from the airplane to the battleship is 5120 ft . Find the distance between the battleship and the submarine. (Assume the airplane, submarine, and battleship are in a vertical plane.)

49. Truss Construction A triangular truss is shown in the figure. Find angle θ.
50. Truss Construction Find angle β in the truss shown in the figure.

20 ft
51. Distance between a Beam and Cables A weight is supported by cables attached to both ends of a balance beam, as shown in the figure. What angles are formed between the beam and the cables?

52. Distance between Points on a Crane A crane with a counterweight is shown in the figure. Find the horizontal distance between points A and B to the nearest foot.

53. Distance on a Baseball Diamond A baseball diamond is a square, 90.0 ft on a side, with home plate and the three bases as vertices. The pitcher's position is 60.5 ft from home plate. Find the distance from the pitcher's position to each of the bases.

54. Distance on a Softball Diamond A softball diamond is a square, 60.0 ft on a side, with home plate and the three bases as vertices. The pitcher's position is 46.0 ft from home plate. Find the distance from the pitcher's position to each of the bases.

55. Distance between a Ship and a Point Starting at point A, a ship sails 18.5 km on a bearing of 189°, then turns and sails 47.8 km on a bearing of 317°. Find the distance of the ship from point A.
56. Distance between Two Factories Two factories blow their whistles at exactly 5:00. A man hears the two blasts at 3 sec and 6 sec after 5:00, respectively. The angle between his lines of sight to the two factories is 42.2°. If sound travels 344 m per sec, how far apart are the factories?
57. Measurement Using Triangulation Surveyors are often confronted with obstacles, such as trees, when measuring the boundary of a lot. One technique used to obtain an accurate measurement is the so-called triangulation method. In this technique, a triangle is constructed around the obstacle and one angle and two sides of the triangle are measured. Use this technique to find the length of the property line (the straight line between the two markers) in the figure. (Source: Kavanagh, B., Surveying Principles and Applications, Sixth Edition, Prentice-Hall.)

58. Path of a Ship A ship sailing due east in the North Atlantic has been warned to change course to avoid icebergs. The captain turns and sails on a bearing of 62°, then changes course again to a bearing of 115° until the ship reaches its original course. See the figure. How much farther did the ship have to travel to avoid the icebergs?

59. Length of a Tunnel To measure the distance through a mountain for a proposed tunnel, a point C is chosen that can be reached from each end of the tunnel. See the figure. If $A C=3800 \mathrm{~m}, B C=2900 \mathrm{~m}$, and angle $C=110^{\circ}$, find the length of the tunnel.

60. Distance between an Airplane and a Mountain A person in a plane flying straight north observes a mountain at a bearing of 24.1°. At that time, the plane is 7.92 km from the mountain. A short time later, the bearing to the mountain becomes 32.7°. How far is the airplane from the mountain when the second bearing is taken?

Find the measure of each angle θ to two decimal places.
61.

62.

Find the exact area of each triangle using the formula $\mathscr{A}=\frac{1}{2} b h$, and then verify that Heron's formula gives the same result.
63.

64.

Find the area of each triangle ABC. See Example 5.
65. $a=12 \mathrm{~m}, b=16 \mathrm{~m}, c=25 \mathrm{~m}$
66. $a=22$ in., $b=45$ in., $c=31 \mathrm{in}$.
67. $a=154 \mathrm{~cm}, b=179 \mathrm{~cm}, c=183 \mathrm{~cm}$
68. $a=25.4 \mathrm{yd}, b=38.2 \mathrm{yd}, c=19.8 \mathrm{yd}$
69. $a=76.3 \mathrm{ft}, b=109 \mathrm{ft}, c=98.8 \mathrm{ft}$
70. $a=15.89 \mathrm{~m}, b=21.74 \mathrm{~m}, c=10.92 \mathrm{~m}$

Solve each problem. See Example 5.

71. Perfect Triangles A perfect triangle is a triangle whose sides have whole number lengths and whose area is numerically equal to its perimeter. Show that the triangle with sides of length 9,10 , and 17 is perfect.
72. Heron Triangles A Heron triangle is a triangle having integer sides and area. Show that each of the following is a Heron triangle.
(a) $a=11, b=13, c=20$
(b) $a=13, b=14, c=15$
(c) $a=7, b=15, c=20$
(d) $a=9, b=10, c=17$
73. Area of the Bermuda Triangle Find the area of the Bermuda Triangle if the sides of the triangle have approximate lengths $850 \mathrm{mi}, 925 \mathrm{mi}$, and 1300 mi .
74. Required Amount of Paint A painter needs to cover a triangular region 75 m by 68 m by 85 m . A can of paint covers $75 \mathrm{~m}^{2}$ of area. How many cans (to the next higher number of cans) will be needed?
75. Consider triangle $A B C$ shown here.
(a) Use the law of sines to find candidates for the value of angle C.

Round angle measures to the nearest tenth of a degree.
(b) Rework part (a) using the law of cosines.
(c) Why is the law of cosines a better method in this case?

76. Show that the measure of angle A is twice the measure of angle B. (Hint: Use the law of cosines to find $\cos A$ and $\cos B$, and then show that $\cos A=2 \cos ^{2} B-1$.)

Relating Concepts

For individual or collaborative investigation (Exercises 77-80)

We have introduced two new formulas for the area of a triangle in this chapter. You should now be able to find the area \mathscr{A} of a triangle using one of three formulas.
(a) $\mathscr{A}=\frac{1}{2} b h$
(b) $\mathscr{A}=\frac{1}{2} a b \sin C \quad\left(\right.$ or $\mathscr{A}=\frac{1}{2} a c \sin B$ or $\left.\mathscr{A}=\frac{1}{2} b c \sin A\right)$
(c) $\mathscr{A}=\sqrt{s(s-a)(s-b)(s-c)}$ (Heron's formula)

Another area formula can be used when the coordinates of the vertices of a triangle are given. If the vertices are the ordered pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$, then the following is valid.
(d) $\mathscr{A}=\frac{1}{2}\left|\left(x_{1} y_{2}-y_{1} x_{2}+x_{2} y_{3}-y_{2} x_{3}+x_{3} y_{1}-y_{3} x_{1}\right)\right|$

Work Exercises 77-80 in order, showing that the various formulas all lead to the same area.
77. Draw a triangle with vertices $A(2,5), B(-1,3)$, and $C(4,0)$, and use the distance formula to find the lengths of the sides a, b, and c.
78. Find the area of triangle $A B C$ using formula (b). (First use the law of cosines to find the measure of an angle.)
79. Find the area of triangle $A B C$ using formula (c)-that is, Heron's formula.
80. Find the area of triangle $A B C$ using new formula (d).

Ouiz (Sections 7.1-7.3)

Find the indicated part of each triangle $A B C$.

1. Find A if $B=30.6^{\circ}, b=7.42$ in., and $c=4.54$ in.
2. Find a if $A=144^{\circ}, c=135 \mathrm{~m}$, and $b=75.0 \mathrm{~m}$.
3. Find C if $a=28.4 \mathrm{ft}, b=16.9 \mathrm{ft}$, and $c=21.2 \mathrm{ft}$.
4. Find the area of the triangle shown here.

5. Find the area of triangle $A B C$ if $a=19.5 \mathrm{~km}, b=21.0 \mathrm{~km}$, and $c=22.5 \mathrm{~km}$.
6. For triangle $A B C$ with $c=345, a=534$, and $C=25.4^{\circ}$, there are two possible values for angle A. What are they?
7. Solve triangle $A B C$ if $c=326, A=111^{\circ}$, and $B=41.0^{\circ}$.
8. Height of a Balloon The angles of elevation of a hot air balloon from two observation points X and Y on level ground are $42^{\circ} 10^{\prime}$ and $23^{\circ} 30^{\prime}$, respectively. As shown in the figure, points X, Y, and Z are in the same vertical plane and points X and Y are 12.2 mi apart. Approximate the height of the
 balloon to the nearest tenth of a mile.
9. Volcano Movement To help predict eruptions from the volcano Mauna Loa on the island of Hawaii, scientists keep track of the volcano's movement by using a "super triangle" with vertices on the three volcanoes shown on the map at the right. Find $B C$ given that $A B=22.47928 \mathrm{mi}, A C=28.14276 \mathrm{mi}$, and $A=58.56989^{\circ}$.

10. Distance between Two Towns To find the distance between two small towns, an electronic distance measuring (EDM) instrument is placed on a hill from which both towns are visible. The distance to each town from the EDM and the angle between the two lines of sight are
 measured. See the figure. Find the distance between the towns.

7.4 Vectors, Operations, and the Dot Product

- Basic Terminology
- Algebraic Interpretation of Vectors
- Operations with Vectors
- Dot Product and the Angle between Vectors

Basic Terminology Quantities that involve magnitudes, such as 45 lb or 60 mph , can be represented by real numbers called scalars. Other quantities, called vector quantities, involve both magnitude and direction. Typical vector quantities are velocity, acceleration, and force. For example, traveling 50 mph east represents a vector quantity.

A vector quantity can be represented with a directed line segment (a segment that uses an arrowhead to indicate direction) called a vector. The length of the vector represents the magnitude of the vector quantity. The direction of the vector, indicated by the arrowhead, represents the direction of the quantity. See Figure 19.

This vector represents a force of 10 lb applied at an angle 30° above the horizontal.

Figure 19

Vectors may be named with one lowercase or uppercase letter or with two uppercase letters.

Figure 20

When we indicate vectors in print, it is customary to use boldface type or an arrow over the letter or letters. Thus, OP and $\overrightarrow{\mathrm{OP}}$ both represent the vector $\mathbf{O P}$. When two letters name a vector, the first indicates the initial point and the second indicates the terminal point of the vector. Knowing these points gives the direction of the vector. For example, vectors OP and PO in Figure 20 are not the same vector. They have the same magnitude but opposite directions. The magnitude of vector OP is written $|\mathbf{O P}|$.

Two vectors are equal if and only if they have the same direction and the same magnitude. In Figure 21, vectors \mathbf{A} and \mathbf{B} are equal, as are vectors \mathbf{C} and D. As Figure 21 shows, equal vectors need not coincide, but they must be parallel and in the same direction. Vectors \mathbf{A} and \mathbf{E} are unequal because they do not have the same direction, while $\mathbf{A} \neq \mathbf{F}$ because they have different magnitudes.

Figure 21

The sum of two vectors is also a vector. There are two ways to find the sum of two vectors \mathbf{A} and \mathbf{B} geometrically.

1. Place the initial point of vector \mathbf{B} at the terminal point of vector \mathbf{A}, as shown in Figure 22(a). The vector with the same initial point as \mathbf{A} and the same terminal point as \mathbf{B} is the sum $\mathbf{A}+\mathbf{B}$.

Figure 22
2. Use the parallelogram rule. Place vectors \mathbf{A} and \mathbf{B} so that their initial points coincide, as in Figure 22(b). Then, complete a parallelogram that has \mathbf{A} and \mathbf{B} as two sides. The diagonal of the parallelogram with the same initial point as \mathbf{A} and \mathbf{B} is the sum $\mathbf{A}+\mathbf{B}$.

Parallelograms can be used to show that vector $\mathbf{B}+\mathbf{A}$ is the same as vector $\mathbf{A}+\mathbf{B}$, or that $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$, so vector addition is commutative. The vector $\operatorname{sum} \mathbf{A}+\mathbf{B}$ is the resultant of vectors \mathbf{A} and \mathbf{B}.

For every vector \mathbf{v} there is a vector $-\mathbf{v}$ that has the same magnitude as \mathbf{v} but opposite direction. Vector $-\mathbf{v}$ is the opposite of \mathbf{v}. See Figure 23. The sum of \mathbf{v} and $-\mathbf{v}$ has magnitude 0 and is the zero vector. As with real numbers, to subtract vector \mathbf{B} from vector \mathbf{A}, find the vector sum $\mathbf{A}+(-\mathbf{B})$. See Figure 24.

Figure 24

Figure 25

The product of a real number (or scalar) k and a vector \mathbf{u} is the vector $k \cdot \mathbf{u}$, which has magnitude $|k|$ times the magnitude of \mathbf{u}. As suggested by Figure 25, the vector $k \cdot \mathbf{u}$ has the same direction as \mathbf{u} if $k>0$, and has the opposite direction if $k<0$.

LOOKING AHEAD TO CALCULUS

In addition to two-dimensional vectors in a plane, calculus courses introduce three-dimensional vectors in space. The magnitude of the two-dimensional vector $\langle a, b\rangle$ is given by $\sqrt{a^{2}+b^{2}}$. If we extend this to the three-dimensional vector $\langle a, b, c\rangle$, the expression becomes $\sqrt{a^{2}+b^{2}+c^{2}}$. Similar extensions are made for other concepts.

ALGEBRAIC SOLUTION

The magnitude is $|\mathbf{u}|=\sqrt{3^{2}+(-2)^{2}}=\sqrt{13}$. To find the direction angle θ, start with $\tan \theta=\frac{b}{a}=$ $\frac{-2}{3}=-\frac{2}{3}$. Vector \mathbf{u} has a positive horizontal component and a negative vertical component, placing the position vector in quadrant IV. A calculator gives $\tan ^{-1}\left(-\frac{2}{3}\right) \approx-33.7^{\circ}$. Adding 360° yields the direction angle $\theta \approx 326.3^{\circ}$. See Figure 27.

Figure 27

Algebraic Interpretation of Vectors A vector with its initial point at the origin in a rectangular coordinate system is called a position vector. A position vector \mathbf{u} with its endpoint at the point (a, b) is written $\langle a, b\rangle$, so

$$
\mathbf{u}=\langle a, b\rangle
$$

This means that every vector in the real plane corresponds to an ordered pair of real numbers. Thus, geometrically a vector is a directed line segment while

Figure 26 algebraically it is an ordered pair. The numbers a and b are the horizontal component and the vertical component, respectively, of vector \mathbf{u}.

Figure 26 shows the vector $\mathbf{u}=\langle a, b\rangle$. The positive angle between the x-axis and a position vector is the direction angle for the vector. In Figure $\mathbf{2 6}, \theta$ is the direction angle for vector \mathbf{u}.

From Figure 26, we can see that the magnitude and direction of a vector are related to its horizontal and vertical components.

Magnitude and Direction Angle of a Vector $\langle a, b\rangle$

The magnitude (length) of vector $\mathbf{u}=\langle a, b\rangle$ is given by the following.

$$
|\mathrm{u}|=\sqrt{a^{2}+b^{2}}
$$

The direction angle θ satisfies $\tan \theta=\frac{b}{a}$, where $a \neq 0$.

EXAMPLE 1 Finding Magnitude and Direction Angle

Find the magnitude and direction angle for $\mathbf{u}=\langle 3,-2\rangle$.

Figure 29

Horizontal and Vertical Components

The horizontal and vertical components, respectively, of a vector \mathbf{u} having magnitude $|\mathbf{u}|$ and direction angle θ are the following.

$$
\boldsymbol{a}=|\mathbf{u}| \cos \theta \quad \text { and } \quad \boldsymbol{b}=|\mathbf{u}| \sin \theta
$$

That is, $\mathbf{u}=\langle a, b\rangle=\langle | \mathbf{u}|\cos \theta,|\mathbf{u}| \sin \theta\rangle$.

EXAMPLE 2 Finding Horizontal and Vertical Components

Vector \mathbf{w} in Figure 29 has magnitude 25.0 and direction angle 41.7°. Find the horizontal and vertical components.

ALGEBRAIC SOLUTION

Use the two formulas in the box, with $|\mathbf{w}|=25.0$ and $\theta=41.7^{\circ}$.

$$
\begin{array}{l|l}
a=25.0 \cos 41.7^{\circ} & b=25.0 \sin 41.7^{\circ} \\
a \approx 18.7 & b \approx 16.6
\end{array}
$$

Therefore, $\mathbf{w}=\langle 18.7,16.6\rangle$. The horizontal component is 18.7 , and the vertical component is 16.6 (rounded to the nearest tenth).

GRAPHING CALCULATOR SOLUTION

See Figure 30. The results support the algebraic solution.

Figure 30

Figure 31

EXAMPLE 3 Writing Vectors in the Form $\langle\boldsymbol{a}, \boldsymbol{b}\rangle$

Write each vector in Figure 31 in the form $\langle a, b\rangle$.
SOLUTION

$$
\begin{aligned}
& \mathbf{u}=\left\langle 5 \cos 60^{\circ}, 5 \sin 60^{\circ}\right\rangle=\left\langle 5 \cdot \frac{1}{2}, 5 \cdot \frac{\sqrt{3}}{2}\right\rangle=\left\langle\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right\rangle \\
& \mathbf{v}=\left\langle 2 \cos 180^{\circ}, 2 \sin 180^{\circ}\right\rangle=\langle 2(-1), 2(0)\rangle=\langle-2,0\rangle \\
& \mathbf{w}=\left\langle 6 \cos 280^{\circ}, 6 \sin 280^{\circ}\right\rangle \approx\langle 1.0419,-5.9088\rangle \quad \text { Use a calculator. }
\end{aligned}
$$

Now Try Exercises 43 and 45.

The following geometric properties of parallelograms are helpful when studying applications of vectors.

Properties of Parallelograms

1. A parallelogram is a quadrilateral whose opposite sides are parallel.
2. The opposite sides and opposite angles of a parallelogram are equal, and adjacent angles of a parallelogram are supplementary.
3. The diagonals of a parallelogram bisect each other, but they do not necessarily bisect the angles of the parallelogram.

EXAMPLE 4 Finding the Magnitude of a Resultant

Two forces of 15 and 22 newtons act on a point in the plane. (A newton is a unit of force that equals 0.225 lb .) If the angle between the forces is 100°, find the magnitude of the resultant force.

SOLUTION As shown in Figure 32, a parallelogram that has the forces as adjacent sides can be formed. The angles of the parallelogram adjacent to angle P measure 80°, since adjacent angles of a parallelogram are supplementary. Opposite sides of the parallelogram are equal in length. The resultant force divides the parallelogram into

Figure 32 two triangles. Use the law of cosines with either triangle.

$$
\begin{array}{rlrl}
|\mathbf{v}|^{2} & =15^{2}+22^{2}-2(15)(22) \cos 80^{\circ} & & \text { Law of cosines (Section 7.3) } \\
& \approx 225+484-115 & & \text { Evaluate powers and multiply. } \\
|\mathbf{v}|^{2} & \approx 594 & & \text { Add and subtract. } \\
|\mathbf{v}| & \approx 24 & & \text { Take the positive square root. } \\
& & \text { (Appendix A) }
\end{array}
$$

To the nearest unit, the magnitude of the resultant force is 24 newtons.
Now Try Exercise 49.

Figure 33

Operations with Vectors As shown in Figure 33, $\mathbf{m}=\langle a, b\rangle, \mathbf{n}=\langle c, d\rangle$, and $\mathbf{p}=\langle a+c, b+d\rangle$. Using geometry, we can show that the endpoints of the three vectors and the origin form a parallelogram. Since a diagonal of this parallelogram gives the resultant of \mathbf{m} and \mathbf{n}, we have $\mathbf{p}=\mathbf{m}+\mathbf{n}$ or

$$
\langle a+c, b+d\rangle=\langle a, b\rangle+\langle c, d\rangle .
$$

Similarly, we can verify the following vector operations.

Vector Operations

Let a, b, c, d, and k represent real numbers.

$$
\begin{gathered}
\langle a, b\rangle+\langle c, d\rangle=\langle a+c, b+d\rangle \\
k \cdot\langle a, b\rangle=\langle k a, k b\rangle \\
\text { If } \mathbf{u}=\left\langle a_{1}, a_{2}\right\rangle, \text { then }-\mathbf{u}=\left\langle-a_{1},-a_{2}\right\rangle \\
\langle a, b\rangle-\langle c, d\rangle=\langle a, b\rangle+(-\langle c, d\rangle)=\langle a-c, b-d\rangle
\end{gathered}
$$

EXAMPLE 5 Performing Vector Operations

Let $\mathbf{u}=\langle-2,1\rangle$ and $\mathbf{v}=\langle 4,3\rangle$. See Figure 34. Find and illustrate each of the following.
(a) $\mathbf{u}+\mathbf{v}$
(b) $-2 \mathbf{u}$
(c) $3 \mathbf{u}-2 \mathbf{v}$

Figure 34
(a)

$$
\begin{aligned}
\mathbf{u}+\mathbf{v} & =\langle-2,1\rangle+\langle 4,3\rangle \\
& =\langle-2+4,1+3\rangle \\
& =\langle 2,4\rangle
\end{aligned}
$$

(a)

$$
\text { (b) } \begin{aligned}
-2 \mathbf{u} & =-2 \cdot\langle-2,1\rangle \\
& =\langle-2(-2),-2(1)\rangle \\
& =\langle 4,-2\rangle
\end{aligned}
$$

(c) $3 \mathbf{u}-2 \mathbf{v}=3 \cdot\langle-2,1\rangle-2 \cdot\langle 4,3\rangle$

$$
\begin{aligned}
& =\langle-6,3\rangle-\langle 8,6\rangle \\
& =\langle-6-8,3-6\rangle \\
& =\langle-14,-3\rangle
\end{aligned}
$$

(b)

(c)

Figure 35
Now Try Exercises 59, 61, and 63.

A unit vector is a vector that has magnitude 1 . Two very useful unit vectors are defined as follows and shown in Figure 36(a).

$$
\mathbf{i}=\langle 1,0\rangle \quad \mathbf{j}=\langle 0,1\rangle
$$

(a)

(b)

Figure 36

With the unit vectors \mathbf{i} and \mathbf{j}, we can express any other vector $\langle a, b\rangle$ in the form $a \mathbf{i}+b \mathbf{j}$, as shown in Figure $\mathbf{3 6 (b)}$, where $\langle 3,4\rangle=3 \mathbf{i}+4 \mathbf{j}$. The vector operations previously given can be restated, using $a \mathbf{i}+b \mathbf{j}$ notation.

i, j Form for Vectors

If $\mathbf{v}=\langle a, b\rangle$, then

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j}, \quad \text { where } \mathbf{i}=\langle 1,0\rangle \text { and } \mathbf{j}=\langle 0,1\rangle .
$$

Dot Product

The dot product of the two vectors $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$ is denoted $\mathbf{u} \cdot \mathbf{v}$, read "u dot \mathbf{v}," and given by the following.

$$
\mathbf{u} \cdot \mathbf{v}=a c+b d
$$

That is, the dot product of two vectors is the sum of the product of their first components and the product of their second components.

EXAMPLE 6 Finding Dot Products

Find each dot product.
(a) $\langle 2,3\rangle \cdot\langle 4,-1\rangle$
(b) $\langle 6,4\rangle \cdot\langle-2,3\rangle$

SOLUTION

(a) $\langle 2,3\rangle \cdot\langle 4,-1\rangle=2(4)+3(-1)$
(b) $\langle 6,4\rangle \cdot\langle-2,3\rangle=6(-2)+4(3)$
$=5$

$$
=0
$$

Now Try Exercises 71 and 73.

The following properties of dot products can be verified by using the definitions presented so far.

Properties of the Dot Product

For all vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} and real numbers k, the following hold.
(a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(b) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
(c) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
(d) $(k \mathbf{u}) \cdot \mathbf{v}=k(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(k \mathbf{v})$
(e) $\mathbf{0} \cdot \mathrm{u}=\mathbf{0}$
(f) $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$

For example, to prove the first part of (d), we let $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$.

$$
\begin{aligned}
(k \mathbf{u}) \cdot \mathbf{v} & =(k\langle a, b\rangle) \cdot\langle c, d\rangle & & \text { Substitute. } \\
& =\langle k a, k b\rangle \cdot\langle c, d\rangle & & \text { Multiply by scalar } k . \\
& =k a c+k b d & & \text { Dot product } \\
& =k(a c+b d) & & \text { Distributive property } \\
& =k(\langle a, b\rangle \cdot\langle c, d\rangle) & & \text { Dot product } \\
& =k(\mathbf{u} \cdot \mathbf{v}) & & \text { Substitute. }
\end{aligned}
$$

The proofs of the remaining properties are similar.
The dot product of two vectors can be positive, 0 , or negative. A geometric interpretation of the dot product explains when each of these cases occurs. This interpretation involves the angle between the two vectors. Consider the vectors $\mathbf{u}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{v}=\left\langle b_{1}, b_{2}\right\rangle$, as shown in Figure 37. The angle $\boldsymbol{\theta}$ between \mathbf{u} and \mathbf{v} is defined to be the angle having the two vectors as its sides for which $0^{\circ} \leq \theta \leq 180^{\circ}$.

We can use the law of cosines to develop a formula to find angle θ in Figure 37.

$$
\begin{array}{rlrl}
|\mathbf{u}-\mathbf{v}|^{2} & =|\mathbf{u}|^{2}+|\mathbf{v}|^{2}-2|\mathbf{u}||\mathbf{v}| \cos \theta \\
& \begin{array}{l}
\text { Law of cosines applied to } \\
\text { Figure 37 (Section 7.3) }
\end{array} \\
\left(\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}}\right)^{2} & =\left(\sqrt{a_{1}^{2}+a_{2}^{2}}\right)^{2}+\begin{array}{l}
\left(\sqrt{b_{1}^{2}+b_{2}^{2}}\right)^{2} \\
\text { Magnitude of a vector }
\end{array} \\
& -2|\mathbf{u}||\mathbf{v}| \cos \theta & \\
a_{1}^{2}-2 a_{1} b_{1}+b_{1}^{2}+a_{2}^{2}-2 a_{2} b_{2}+b_{2}^{2} & & \text { Square. } \\
& =a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}-2|\mathbf{u}||\mathbf{v}| \cos \theta \\
-2 a_{1} b_{1}-2 a_{2} b_{2} & =-2|\mathbf{u}||\mathbf{v}| \cos \theta & \begin{array}{l}
\text { Subtract like terms from } \\
\text { each side. }
\end{array} \\
a_{1} b_{1}+a_{2} b_{2} & =|\mathbf{u}||\mathbf{v}| \cos \theta & \begin{array}{l}
\text { Divide by }-2 .
\end{array} \\
\mathbf{u} \cdot \mathbf{v} & =|\mathbf{u}||\mathbf{v}| \cos \theta & \begin{array}{l}
\text { Definition of dot product }
\end{array} \\
\cos \theta & =\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} & \begin{array}{l}
\text { Divide by }|\mathbf{u}||\mathbf{v}| \text { and } \\
\text { rewrite. }
\end{array}
\end{array}
$$

Geometric Interpretation of Dot Product

If θ is the angle between the two nonzero vectors \mathbf{u} and \mathbf{v}, where $0^{\circ} \leq \theta \leq 180^{\circ}$, then the following holds.

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}
$$

EXAMPLE 7 Finding the Angle between Two Vectors

Find the angle θ between the two vectors.
(a) $\mathbf{u}=\langle 3,4\rangle$ and $\mathbf{v}=\langle 2,1\rangle$
(b) $\mathbf{u}=\langle 2,-6\rangle$ and $\mathbf{v}=\langle 6,2\rangle$

SOLUTION
(a)

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}=\frac{\langle 3,4\rangle \cdot\langle 2,1\rangle}{|\langle 3,4\rangle||\langle 2,1\rangle|} & & \text { Substitute values. } \\
& =\frac{3(2)+4(1)}{\sqrt{9+16} \cdot \sqrt{4+1}} & & \text { Use the definitions. } \\
& =\frac{10}{5 \sqrt{5}} \approx 0.894427191 & & \text { Use a calculator. }
\end{aligned}
$$

Therefore, $\quad \theta \approx \cos ^{-1} 0.894427191 \approx 26.57^{\circ}$.
Use the inverse cosine function. (Section 6.1)
(b) $\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}=\frac{\langle 2,-6\rangle \cdot\langle 6,2\rangle}{|\langle 2,-6\rangle||\langle 6,2\rangle|} \quad$ Substitute values.

$$
\begin{aligned}
& =\frac{2(6)+(-6)(2)}{\sqrt{4+36} \cdot \sqrt{36+4}} & & \text { Use the definitions. } \\
& =\frac{0}{40}=0 & & \text { Evaluate. } \\
\theta & =\cos ^{-1} 0=90^{\circ} & & \cos ^{-1} 0=90^{\circ}
\end{aligned}
$$

Orthogonal vectors
Figure 38

For angles θ between 0° and 180°, $\cos \theta$ is positive, 0 , or negative when θ is less than, equal to, or greater than 90°, respectively. Therefore, the dot product of nonzero vectors is positive, 0 , or negative according to this table.

Dot Product	Angle between Vectors
Positive	Acute
0	Right
Negative	Obtuse

Thus, in Example 7 on the preceding page, the vectors in part (a) form an acute angle, and those in part (b) form a right angle. If $\mathbf{u} \cdot \mathbf{v}=0$ for two nonzero vectors \mathbf{u} and \mathbf{v}, then $\cos \theta=0$ and $\theta=90^{\circ}$. Thus, \mathbf{u} and \mathbf{v} are perpendicular vectors, also called orthogonal vectors. See Figure 38.

7.4 Exercises

Concept Check Exercises 1-4 refer to the vectors \mathbf{m} through \mathbf{t} at the right.

1. Name all pairs of vectors that appear to be equal.
2. Name all pairs of vectors that are opposites.
3. Name all pairs of vectors where the first
 is a scalar multiple of the other, with the scalar positive.
4. Name all pairs of vectors where the first is a scalar multiple of the other, with the scalar negative.

Concept Check Refer to vectors \mathbf{a} through \mathbf{h} below. Make a copy or a sketch of each vector, and then draw a sketch to represent each vector in Exercises 5-16. For example, find $\mathbf{a}+\mathbf{e}$ by placing \mathbf{a} and \mathbf{e} so that their initial points coincide. Then use the parallelogram rule to find the resultant, as shown in the figure on the right.

5. -b
6. -g
7. 2c
8. $2 h$
9. $\mathbf{a}+\mathbf{b}$
10. $h+g$
11. $\mathbf{a}-\mathrm{c}$
12. $\mathbf{d}-\mathrm{e}$
13. $\mathbf{a}+(\mathbf{b}+\mathbf{c})$
14. $(\mathbf{a}+\mathbf{b})+\mathbf{c}$
15. $\mathbf{c}+\mathrm{d}$
16. $\mathbf{d}+\mathrm{c}$
17. From the results of Exercises 13 and 14, does it appear that vector addition is associative?
18. From the results of Exercises $\mathbf{1 5}$ and 16, does it appear that vector addition is commutative?

In Exercises 19-24, use the figure to find each vector: (a) $\mathbf{u}+\mathbf{v}$ (b) $\mathbf{u}-\mathbf{v}(\mathbf{c})-\mathbf{u}$. Use vector notation as in Example 3.
19.

20.

21.

22.

23.

24.

Given vectors \mathbf{u} and \mathbf{v}, find: (a) $2 \mathbf{u}$ (b) $2 \mathbf{u}+3 \mathbf{v}$ (c) $\mathbf{v}-3 \mathbf{u}$.
25. $\mathbf{u}=2 \mathbf{i}, \mathbf{v}=\mathbf{i}+\mathbf{j}$
26. $\mathbf{u}=-\mathbf{i}+2 \mathbf{j}, \mathbf{v}=\mathbf{i}-\mathbf{j}$
27. $\mathbf{u}=\langle-1,2\rangle, \mathbf{v}=\langle 3,0\rangle$
28. $\mathbf{u}=\langle-2,-1\rangle, \mathbf{v}=\langle-3,2\rangle$

For each pair of vectors \mathbf{u} and \mathbf{v} with angle θ between them, sketch the resultant.
29. $|\mathbf{u}|=12,|\mathbf{v}|=20, \theta=27^{\circ}$
30. $|\mathbf{u}|=8,|\mathbf{v}|=12, \theta=20^{\circ}$
31. $|\mathbf{u}|=20,|\mathbf{v}|=30, \theta=30^{\circ}$
32. $|\mathbf{u}|=50,|\mathbf{v}|=70, \theta=40^{\circ}$

Find the magnitude and direction angle for each vector. See Example 1.
33. $\langle 15,-8\rangle$
34. $\langle-7,24\rangle$
35. $\langle-4,4 \sqrt{3}\rangle$
36. $\langle 8 \sqrt{2},-8 \sqrt{2}\rangle$

For each of the following, vector \mathbf{v} has the given direction and magnitude. Find the magnitudes of the horizontal and vertical components of \mathbf{v}, if θ is the direction angle of \mathbf{v} from the horizontal. See Example 2.
37. $\theta=20^{\circ},|\mathbf{v}|=50$
38. $\theta=50^{\circ},|\mathbf{v}|=26$
39. $\theta=35^{\circ} 50^{\prime},|\mathbf{v}|=47.8$
40. $\theta=27^{\circ} 30^{\prime},|\mathbf{v}|=15.4$
41. $\theta=128.5^{\circ},|\mathbf{v}|=198$
42. $\theta=146.3^{\circ},|\mathbf{v}|=238$

Write each vector in the form $\langle a, b\rangle$. See Example 3.
43.

44.

45.

46.

47.

48.

Two forces act at a point in the plane. The angle between the two forces is given. Find the magnitude of the resultant force. See Example 4.
49. forces of 250 and 450 newtons, forming an angle of 85°
50. forces of 19 and 32 newtons, forming an angle of 118°
51. forces of 116 and 139 lb , forming an angle of $140^{\circ} 50^{\prime}$
52. forces of 37.8 and 53.7 lb , forming an angle of 68.5°

Use the parallelogram rule to find the magnitude of the resultant force for the two forces shown in each figure. Round answers to the nearest tenth.
53.

54.

55.

56.

57. Concept Check If $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$, what is the vector notation for $\mathbf{u}+\mathbf{v}$?
58. Explain how to add vectors.

Given $\mathbf{u}=\langle-2,5\rangle$ and $\mathbf{v}=\langle 4,3\rangle$, find each of the following. See Example 5.
59. $\mathbf{u}-\mathrm{v}$
60. $v-u$
61. -4 u
62. -5 v
63. $3 u-6 v$
64. $-2 \mathbf{u}+4 \mathbf{v}$
65. $\mathbf{u}+\mathbf{v}-3 \mathbf{u}$
66. $2 \mathbf{u}+\mathbf{v}-6 \mathbf{v}$

Write each vector in the form $a \mathbf{i}+b \mathbf{j}$. See Figure 36(b).
67. $\langle-5,8\rangle$
68. $\langle 6,-3\rangle$
69. $\langle 2,0\rangle$
70. $\langle 0,-4\rangle$

Find the dot product for each pair of vectors. See Example 6.
71. $\langle 6,-1\rangle,\langle 2,5\rangle$
72. $\langle-3,8\rangle,\langle 7,-5\rangle$
73. $\langle 5,2\rangle,\langle-4,10\rangle$
74. $\langle 7,-2\rangle,\langle 4,14\rangle$
75. $4 \mathbf{i}, 5 \mathbf{i}-9 \mathbf{j}$
76. $2 \mathbf{i}+4 \mathbf{j},-\mathbf{j}$

Find the angle between each pair of vectors. See Example 7.
77. $\langle 2,1\rangle,\langle-3,1\rangle$
78. $\langle 1,7\rangle,\langle 1,1\rangle$
79. $\langle 1,2\rangle,\langle-6,3\rangle$
80. $\langle 4,0\rangle,\langle 2,2\rangle$
81. $3 \mathbf{i}+4 \mathbf{j}, \mathbf{j}$
82. $-5 \mathbf{i}+12 \mathbf{j}, 3 \mathbf{i}+2 \mathbf{j}$

Let $\mathbf{u}=\langle-2,1\rangle, \mathbf{v}=\langle 3,4\rangle$, and $\mathbf{w}=\langle-5,12\rangle$. Evaluate each expression.
83. $(3 \mathbf{u}) \cdot v$
84. u•(3v)
85. $\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{w}$
86. $\mathbf{u} \cdot(\mathbf{v}-\mathbf{w})$

Determine whether each pair of vectors is orthogonal. See Example 7(b).
87. $\langle 1,2\rangle,\langle-6,3\rangle$
88. $\langle 1,1\rangle,\langle 1,-1\rangle$
89. $\langle 1,0\rangle,\langle\sqrt{2}, 0\rangle$
90. $\langle 3,4\rangle,\langle 6,8\rangle$
91. $\sqrt{5} \mathbf{i}-2 \mathbf{j},-5 \mathbf{i}+2 \sqrt{5} \mathbf{j}$
92. $-4 \mathbf{i}+3 \mathbf{j}, 8 \mathbf{i}-6 \mathbf{j}$

Relating Concepts

For individual or collaborative investigation (Exercises 93-98)
Consider the two vectors \mathbf{u} and \mathbf{v} shown. Assume all values are exact. Work Exercises 93-98 in order.
93. Use trigonometry alone (without using vector notation) to find the magnitude and direction angle of $\mathbf{u}+\mathbf{v}$. Use the law of cosines and the law of sines in your work.
94. Find the horizontal and vertical components of \mathbf{u}, using your calculator.
95. Find the horizontal and vertical components of \mathbf{v}, using your calculator.

96. Find the horizontal and vertical components of $\mathbf{u}+\mathbf{v}$ by adding the results you obtained in Exercises 94 and 95.
97. Use your calculator to find the magnitude and direction angle of the vector $\mathbf{u}+\mathbf{v}$.
98. Compare your answers in Exercises 93 and 97. What do you notice? Which method of solution do you prefer?

7.5 Applications of Vectors

- The Equilibrant
- Incline Applications
- Navigation Applications

The Equilibrant The previous section covered methods for finding the resultant of two vectors. Sometimes it is necessary to find a vector that will counterbalance the resultant. This opposite vector is called the equilibrant. That is, the equilibrant of vector \mathbf{u} is the vector $-\mathbf{u}$.

EXAMPLE 1 Finding the Magnitude and Direction of an Equilibrant

Find the magnitude of the equilibrant of forces of 48 newtons and 60 newtons acting on a point A, if the angle between the forces is 50°. Then find the angle between the equilibrant and the 48-newton force.

SOLUTION

Figure 39
In Figure 39, the equilibrant is $-\mathbf{v}$. The magnitude of \mathbf{v}, and hence of $-\mathbf{v}$, is found by using triangle $A B C$ and the law of cosines.

$$
\begin{array}{rlrl}
|\mathbf{v}|^{2} & =48^{2}+60^{2}-2(48)(60) \cos 130^{\circ} & & \text { Law of cosines (Section 7.3) } \\
|\mathbf{v}|^{2} \approx 9606.5 & & \text { Use a calculator. } \\
|\mathbf{v}| & \approx 98 \text { newtons } & \text { Two significant digits (Section 2.4) }
\end{array}
$$

The required angle, labeled α in Figure 39, can be found by subtracting angle $C A B$ from 180°. Use the law of sines to find angle $C A B$.

$$
\begin{aligned}
\frac{\sin C A B}{60} & =\frac{\sin 130^{\circ}}{98} & & \text { Law of sines (alternative form) (Section 7.1) } \\
\sin C A B & \approx 0.46900680 & & \text { Multiply by } 60 \text { and use a calculator. } \\
C A B & \approx 28^{\circ} & & \text { Use the inverse sine function. (Section 6.1) }
\end{aligned}
$$

Finally, $\alpha \approx 180^{\circ}-28^{\circ}=152^{\circ}$.

Figure 40

Incline Applications We can use vectors to solve incline problems.

EXAMPLE 2 Finding a Required Force

Find the force required to keep a $50-\mathrm{lb}$ wagon from sliding down a ramp inclined at 20° to the horizontal. (Assume there is no friction.)

SOLUTION In Figure 40, the vertical 50-lb force BA represents the force of gravity. It is the sum of vectors $\mathbf{B C}$ and $-\mathbf{A C}$. The vector $\mathbf{B C}$ represents the force with which the weight pushes against the ramp. The vector $\mathbf{B F}$ represents the force that would pull the weight up the ramp. Since vectors $\mathbf{B F}$ and $\mathbf{A C}$ are equal, $|\mathbf{A C}|$ gives the magnitude of the required force.

Vectors BF and AC are parallel, so angle $E B D$ equals angle A. Since angle $B D E$ and angle C are right angles, triangles $C B A$ and $D E B$ have two corresponding angles equal and, thus, are similar triangles. Therefore, angle $A B C$ equals angle E, which is 20°. From right triangle $A B C$, we have the following.

$$
\begin{aligned}
\sin 20^{\circ} & =\frac{|\mathbf{A C}|}{50} & & (\text { Section 2.1) } \\
|\mathbf{A C}| & =50 \sin 20^{\circ} & & \text { Multiply by } 50 \text { and rewrite. } \\
|\mathbf{A C}| & \approx 17 & & \text { Use a calculator. }
\end{aligned}
$$

A force of approximately 17 lb will keep the wagon from sliding down the ramp.

Figure 41

EXAMPLE 3 Finding an Incline Angle

A force of 16.0 lb is required to hold a 40.0-lb lawn mower on an incline. What angle does the incline make with the horizontal?

SOLUTION Figure 41 illustrates the situation. Consider right triangle $A B C$. Angle B equals angle θ, the magnitude of vector $\mathbf{B A}$ represents the weight of the mower, and vector $\mathbf{A C}$ equals vector $\mathbf{B E}$, which represents the force required to hold the mower on the incline.

$$
\begin{aligned}
\sin B & =\frac{16.0}{40.0} & & \sin B=\frac{\text { side opposite } B}{\text { hypotenuse }} \text { (Section 2.1) } \\
\sin B & =0.4 & & \text { Simplify. } \\
B & \approx 23.6^{\circ} & & \text { Use the inverse sine function. }
\end{aligned}
$$

Therefore, the hill makes an angle of about 23.6° with the horizontal.
Now Try Exercise 11.

Navigation Applications Problems involving bearing (defined in Section 2.5) can also be worked with vectors.

EXAMPLE 4 Applying Vectors to a Navigation Problem

A ship leaves port on a bearing of 28.0° and travels 8.20 mi . The ship then turns due east and travels 4.30 mi . How far is the ship from port? What is its bearing from port?
SOLUTION In Figure 42, vectors PA and AE represent the ship's path. The magnitude and bearing of the resultant PE can be found as follows. Triangle $P N A$ is a right triangle, so

$$
\text { angle } N A P=90^{\circ}-28.0^{\circ}=62.0^{\circ}
$$

and angle $P A E=180^{\circ}-62.0^{\circ}=118.0^{\circ}$.
Use the law of cosines to find $|\mathbf{P E}|$, the magnitude of vector $\mathbf{P E}$.

$$
\begin{array}{ll}
|\mathbf{P E}|^{2}=8.20^{2}+4.30^{2}-2(8.20)(4.30) \cos 118.0^{\circ} & \text { Law of cosines } \\
|\mathbf{P E}|^{2} \approx 118.84 & \text { Evaluate. } \\
|\mathbf{P E}| \approx 10.9 & \begin{array}{l}
\text { Square root property } \\
\\
\end{array} \text { (Appendix A) }
\end{array}
$$

The ship is about 10.9 mi from port.
To find the bearing of the ship from port, first find angle $A P E$. Use the law of sines.

$$
\begin{aligned}
\frac{\sin A P E}{4.30} & =\frac{\sin 118.0^{\circ}}{10.9} & \text { Law of sines } \\
\sin A P E & =\frac{4.30 \sin 118.0^{\circ}}{10.9} & \text { Multiply by 4.30. } \\
A P E \approx 20.4^{\circ} & & \text { Use the inverse sine function. }
\end{aligned}
$$

Now add 20.4° to 28.0° to find that the bearing is 48.4°.

Figure 43

In air navigation, the airspeed of a plane is its speed relative to the air, and the ground speed is its speed relative to the ground. Because of wind, these two speeds are usually different. The ground speed of the plane is represented by the vector sum of the airspeed and windspeed vectors. See Figure 43.

EXAMPLE 5 Applying Vectors to a Navigation Problem

An airplane that is following a bearing of 239° at an airspeed of 425 mph encounters a wind blowing at 36.0 mph from a direction of 115°. Find the resulting bearing and ground speed of the plane.
SOLUTION An accurate sketch is essential to the solution of this problem. We have included two sets of geographical axes, which enable us to determine measures of necessary angles. Analyze Figure 44 carefully.

Figure 44

Vector \mathbf{c} represents the airspeed and bearing of the plane, and vector a represents the speed and direction of the wind. Angle $A B C$ has as its measure the sum of angle $A B \mathrm{~N}_{1}$ and angle $\mathrm{N}_{1} B C$.

- Angle SAB measures $239^{\circ}-180^{\circ}=59^{\circ}$. Because angle $A B \mathrm{~N}_{1}$ is an alternate interior angle to it, $A B \mathrm{~N}_{1}=59^{\circ}$.
- Angle $\mathrm{E}_{1} B F$ measures $115^{\circ}-90^{\circ}=25^{\circ}$. Thus, angle $C B \mathrm{~W}_{1}$ also measures 25° because it is a vertical angle. Angle $\mathrm{N}_{1} B C$ is the complement of 25°, which is

$$
90^{\circ}-25^{\circ}=65^{\circ}
$$

By these results,

$$
\text { angle } A B C=59^{\circ}+65^{\circ}=124^{\circ}
$$

To find $|\mathbf{b}|$, we use the law of cosines.

To find the resulting bearing of \mathbf{b}, we must find the measure of angle α in Figure 44 and then add it to 239°. To find α, we use the law of sines.

$$
\begin{aligned}
& \frac{\sin \alpha}{36.0}=\frac{\sin 124^{\circ}}{446} \\
& \sin \alpha=\frac{36.0 \sin 124^{\circ}}{446} \\
& \begin{array}{c}
\text { To maintain accuracy, use } \\
\text { all the significant digits that } \\
\text { your calculator allows. }
\end{array} \\
& \alpha=\sin ^{-1}\left(\frac{36.0 \sin 124^{\circ}}{446}\right) \\
& \alpha \text { Multiply by 36.0. } \\
& \alpha \text { Use the inverse sine function. } \\
& \text { Use a calculator. }
\end{aligned}
$$

Add 4° to 239° to find the resulting bearing of 243°.

Solve each problem. See Examples 1-3.

1. Direction and Magnitude of an Equilibrant Two tugboats are pulling a disabled speedboat into port with forces of 1240 lb and 1480 lb . The angle between these forces is 28.2°. Find the direction and magnitude of the equilibrant.
2. Direction and Magnitude of an Equilibrant Two rescue vessels are pulling a broken-down motorboat toward a boathouse with forces of 840 lb and 960 lb . The angle between these forces is 24.5°. Find the direction and magnitude of the equilibrant.
3. Angle between Forces Two forces of 692 newtons and 423 newtons act at a point. The resultant force is 786 newtons. Find the angle between the forces.
4. Angle between Forces Two forces of 128 lb and 253 lb act at a point. The resultant force is 320 lb . Find the angle between the forces.
5. Magnitudes of Forces A force of 176 lb makes an angle of $78^{\circ} 50^{\prime}$ with a second force. The resultant of the two forces makes an angle of $41^{\circ} 10^{\prime}$ with the first force. Find the magnitudes of the second force and of the resultant.

6. Magnitudes of Forces A force of 28.7 lb makes an angle of $42^{\circ} 10^{\prime}$ with a second force. The resultant of the two forces makes an angle of $32^{\circ} 40^{\prime}$ with the first force. Find the magnitudes of the second force and of the resultant.

7. Angle of a Hill Slope A force of 25 lb is required to hold an $80-\mathrm{lb}$ crate on a hill. What angle does the hill make with the horizontal?
8. Force Needed to Keep a Car Parked Find the force required to keep a $3000-\mathrm{lb}$ car parked on a hill that makes an angle of 15° with the horizontal.

9. Force Needed for a Monolith To build the pyramids in Egypt, it is believed that giant causeways were constructed to transport the building materials to the site. One such causeway is said to have been 3000 ft long, with a slope of about 2.3°. How much force would be required to hold a 60 -ton monolith on this causeway?

10. Force Needed for a Monolith If the causeway in Exercise 9 were 500 ft longer and the monolith weighed 10 tons more, how much force would be required?
11. Incline Angle A force of 18.0 lb is required to hold a $60.0-\mathrm{lb}$ stump grinder on an incline. What angle does the incline make with the horizontal?
12. Incline Angle A force of 30.0 lb is required to hold an $80.0-\mathrm{lb}$ pressure washer on an incline. What angle does the incline make with the horizontal?
13. Weight of a Box Two people are carrying a box. One person exerts a force of 150 lb at an angle of 62.4° with the horizontal. The other person exerts a force of 114 lb at an angle of 54.9°. Find the weight of the box.

14. Weight of a Crate and Tension of a Rope A crate is supported by two ropes. One rope makes an angle of $46^{\circ} 20^{\prime}$ with the horizontal and has a tension of 89.6 lb on it. The other rope is horizontal. Find the weight of the crate and the tension in the horizontal rope.

Solve each problem. See Examples 4 and 5.

15. Distance and Bearing of a Ship A ship leaves port on a bearing of 34.0° and travels 10.4 mi . The ship then turns due east and travels 4.6 mi . How far is the ship from port, and what is its bearing from port?
16. Distance and Bearing of a Luxury Liner A luxury liner leaves port on a bearing of 110.0° and travels 8.8 mi . It then turns due west and travels 2.4 mi . How far is the liner from port, and what is its bearing from port?
17. Distance of a Ship from Its Starting Point Starting at point A, a ship sails 18.5 km on a bearing of 189°, then turns and sails 47.8 km on a bearing of 317°. Find the distance of the ship from point A.
18. Distance of a Ship from Its Starting Point Starting at point X, a ship sails 15.5 km on a bearing of 200°, then turns and sails 2.4 km on a bearing of 320°. Find the distance of the ship from point X.
19. Distance and Direction of a Motorboat A motorboat sets out in the direction $\mathrm{N} 80^{\circ} 00^{\prime} \mathrm{E}$. The speed of the boat in still water is 20.0 mph . If the current is flowing directly south, and the actual direction of the motorboat is due east, find the speed of the current and the actual speed of the motorboat.

20. Movement of a Motorboat Suppose you would like to cross a 132 -ft-wide river in a motorboat. Assume that the motorboat can travel at 7.0 mph relative to the water and that the current is flowing west at the rate of 3.0 mph . The bearing θ is chosen so that the motorboat will land at a point exactly across from the starting point.
(a) At what speed will the motorboat be traveling relative to the banks?
(b) How long will it take for the motorboat to make the crossing?
(c) What is the measure of angle θ ?

21. Bearing and Ground Speed of a Plane An airline route from San Francisco to Honolulu is on a bearing of 233.0°. A jet flying at 450 mph on that bearing encounters a wind blowing at 39.0 mph from a direction of 114.0°. Find the resulting bearing and ground speed of the plane.
22. Path Traveled by a Plane The aircraft carrier Tallahassee is traveling at sea on a steady course with a bearing of 30° at 32 mph . Patrol planes on the carrier have enough fuel for 2.6 hr of flight when traveling at a speed of 520 mph . One of the pilots takes off on a bearing of 338° and then turns and heads in a straight line, so as to be able to catch the carrier and land on the deck at the exact instant that his fuel runs out. If the pilot left at 2 P.m., at what time did he turn to head for the carrier?

23. Airspeed and Ground Speed A pilot wants to fly on a bearing of 74.9°. By flying due east, he finds that a $42.0-\mathrm{mph}$ wind, blowing from the south, puts him on course. Find the airspeed and the ground speed.
24. Bearing of a Plane A plane flies 650 mph on a bearing of 175.3°. A $25-\mathrm{mph}$ wind, from a direction of 266.6°, blows against the plane. Find the resulting bearing of the plane.
25. Bearing and Ground Speed of a Plane A pilot is flying at 190.0 mph . He wants his flight path to be on a bearing of $64^{\circ} 30^{\prime}$. A wind is blowing from the south at 35.0 mph . Find the bearing he should fly, and find the plane's ground speed.
26. Bearing and Ground Speed of a Plane A pilot is flying at 168 mph . She wants her flight path to be on a bearing of $57^{\circ} 40^{\prime}$. A wind is blowing from the south at 27.1 mph . Find the bearing the pilot should fly, and find the plane's ground speed.
27. Bearing and Airspeed of a Plane What bearing and airspeed are required for a plane to fly 400 mi due north in 2.5 hr if the wind is blowing from a direction of 328° at 11 mph ?
28. Ground Speed and Bearing of a Plane A plane is headed due south with an airspeed of 192 mph . A wind from a direction of 78.0° is blowing at 23.0 mph . Find the ground speed and resulting bearing of the plane.
29. Ground Speed and Bearing of a Plane An airplane is headed on a bearing of 174° at an airspeed of 240 km per hr. A $30-\mathrm{km}$-per-hr wind is blowing from a direction of 245°. Find the ground speed and resulting bearing of the plane.
30. Velocity of a Star The space velocity \mathbf{v} of a star relative to the sun can be expressed as the resultant vector of two perpendicular vectors-the radial velocity \mathbf{v}_{r} and the tangential velocity \mathbf{v}_{t}, where $\mathbf{v}=\mathbf{v}_{r}+\mathbf{v}_{t}$. If a star is located near the sun and its space velocity is large, then its motion across the sky will also be large. Barnard's Star is a relatively close star with a distance of 35 trillion mi from the sun. It moves across the sky through an angle of $10.34^{\prime \prime}$ per year, which is the largest motion of any known star. Its radial velocity is $\mathbf{v}_{r}=67 \mathrm{mi}$ per sec toward the sun. (Sources: Zeilik,

Not to scale M., S. Gregory, and E. Smith, Introductory Astronomy and Astrophysics, Second Edition, Saunders College Publishing; Acker, A. and C. Jaschek, Astronomical Methods and Calculations, John Wiley and Sons.)
(a) Approximate the tangential velocity \mathbf{v}_{t} of Barnard's Star. (Hint: Use the arc length formula $s=r \theta$ from Section 3.2.)
(b) Compute the magnitude of \mathbf{v}.
31. (Modeling) Measuring Rainfall Suppose that vector \mathbf{R} models the amount of rainfall in inches and the direction it falls, and vector \mathbf{A} models the area in square inches and the orientation of the opening of a rain gauge, as illustrated in the figure. The total volume V of water collected in the rain gauge is given by $V=|\mathbf{R} \cdot \mathbf{A}|$. This formula calculates the volume of water collected even if the wind is blowing the rain in a slanted direction or the rain gauge is not exactly vertical. Let $\mathbf{R}=\mathbf{i}-2 \mathbf{j}$ and $\mathbf{A}=0.5 \mathbf{i}+\mathbf{j}$.
(a) Find $|\mathbf{R}|$ and $|\mathbf{A}|$. Interpret your results.
(b) Calculate V and interpret this result.
32. Concept Check In Exercise 31, for the rain gauge to collect the maximum amount of water, what should be true about vectors \mathbf{R} and \mathbf{A} ?

Summary Exercises on Applications of Trigonometry and Vectors

These summary exercises provide practice with applications that involve solving triangles and using vectors.

1. Wires Supporting a Flagpole A flagpole stands vertically on a hillside that makes an angle of 20° with the horizontal. Two supporting wires are attached as shown in the figure. What are the lengths of the supporting wires?

2. Distance between a Pin and a Rod A slider crank mechanism is shown in the figure. Find the distance between the wrist pin W and the connecting rod center C.

3. Distance between Two Lighthouses Two lighthouses are located on a northsouth line. From lighthouse A, the bearing of a ship 3742 m away is $129^{\circ} 43^{\prime}$. From lighthouse B, the bearing of a ship is $39^{\circ} 43^{\prime}$. Find the distance between the lighthouses.
4. Hot-Air Balloon A hot-air balloon is rising straight up at the speed of 15.0 ft per sec . Then a wind starts blowing horizontally at 5.00 ft per sec. What will the new speed of the balloon be and what angle with the horizontal will the balloon's path make?
5. Playing on a Swing Mary is playing with her daughter Brittany on a swing. Starting from rest, Mary pulls the swing through an angle of 40° and holds it briefly before releasing the swing. If Brittany weighs 50 lb , what horizontal force, to the nearest pound, must Mary apply while holding the swing?

6. Height of an Airplane Two observation points A and B are 950 ft apart. From these points the angles of elevation of an airplane are 52° and 57°. See the figure. Find the height of the airplane.

7. Wind and Vectors A wind can be described by $\mathbf{v}=6 \mathbf{i}+8 \mathbf{j}$, where vector \mathbf{j} points north and represents a south wind of 1 mph .
(a) What is the speed of the wind?
(b) Find $3 \mathbf{v}$ and interpret the result.
(c) Interpret the direction and speed of the wind if it changes to $\mathbf{u}=-8 \mathbf{i}+8 \mathbf{j}$.
8. Ground Speed and Bearing A plane with an airspeed of 355 mph is on a bearing of 62°. A wind is blowing from west to east at 28.5 mph . Find the ground speed and the actual bearing of the plane.
9. Property Survey A surveyor reported the following data about a piece of property: "The property is triangular in shape, with dimensions as shown in the figure." Use the law of sines to see whether such a piece of property could exist.

Can such a triangle exist?
10. Property Survey A triangular piece of property has the dimensions shown. It turns out that the surveyor did not consider every possible case. Use the law of sines to show why.

Chapter 7 Test Prep

Key Terms

7.1 Side-Angle-Side (SAS)
Angle-Side-Angle (ASA)
Side-Side-Side (SSS) oblique triangle Side-Angle-Angle (SAA)
7.2 ambiguous case
7.3 semiperimeter
7.4 scalar
vector quantity
vector
magnitude
initial point
terminal point
parallelogram rule resultant
opposite (of a vector) zero vector position vector horizontal component vertical component direction angle unit vector
dot product inner product angle between two vectors orthogonal vectors
7.5 equilibrant airspeed ground speed

New Symbols

OP or $\overrightarrow{\mathbf{O P}}$
|OP|
vector OP
magnitude of vector OP
$\langle\boldsymbol{a}, \boldsymbol{b}\rangle \quad$ position vector
$\mathbf{i}, \mathbf{j} \quad$ unit vectors

Quick Review

Concepts

Examples

7.1 Oblique Triangles and the Law of Sines

Law of Sines

In any triangle $A B C$, with sides a, b, and c, the following holds.

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Area of a Triangle

In any triangle $A B C$, the area is half the product of the lengths of two sides and the sine of the angle between them. $\mathscr{A}=\frac{1}{2} b c \sin A, \quad \mathscr{A}=\frac{1}{2} a b \sin C, \quad \mathscr{A}=\frac{1}{2} a c \sin B$

In triangle $A B C$, find c, to the nearest hundredth, if $A=44^{\circ}, C=62^{\circ}$, and $a=12.00$ units. Then find its area.

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{c}{\sin C} & & \text { Law of sines } \\
\frac{12.00}{\sin 44^{\circ}} & =\frac{c}{\sin 62^{\circ}} & & \text { Substitute. } \\
c & =\frac{12.00 \sin 62^{\circ}}{\sin 44^{\circ}} & & \begin{array}{l}
\text { Multiply by } \sin 62^{\circ} \\
\text { and rewrite. }
\end{array} \\
c & \approx 15.25 \text { units } & & \text { Use a calculator. }
\end{aligned}
$$

For triangle $A B C$ above, apply the appropriate area formula.

$$
\begin{aligned}
\mathscr{A} & =\frac{1}{2} a c \sin B & & \text { Area formula } \\
& =\frac{1}{2}(12.00)(15.25) \sin 74^{\circ} & & B=180^{\circ}-44^{\circ}-62^{\circ} \\
& \approx 87.96 \text { sq units } & & \text { Use a calculator. }
\end{aligned}
$$

Concepts

Examples

7.2 The Ambiguous Case of the Law of Sines

Ambiguous Case

If we are given the lengths of two sides and the angle opposite one of them (for example, A, a, and b in triangle $A B C$), then it is possible that zero, one, or two such triangles exist. If A is acute, h is the altitude from C, and

- $a<h<b$, then there is no triangle.
- $\quad a=h$ and $h<b$, then there is one triangle (a right triangle).
- $\quad a \geq b$, then there is one triangle.
- $h<a<b$, then there are two triangles.

If A is obtuse and

- $a \leq b$, then there is no triangle.
- $a>b$, then there is one triangle.

See the guidelines in Section 7.2 that illustrate the possible outcomes.

7.3 The Law of Cosines

Law of Cosines

In any triangle $A B C$, with sides a, b, and c, the following hold.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

Heron's Area Formula

If a triangle has sides of lengths a, b, and c, with semiperimeter

$$
s=\frac{1}{2}(a+b+c)
$$

then the area \mathscr{A} of the triangle is given by the following.

$$
\mathscr{A}=\sqrt{s(s-a)(s-b)(s-c)}
$$

Solve triangle $A B C$, given $A=44.5^{\circ}, a=11.0 \mathrm{in}$., and $c=7.0 \mathrm{in}$.
Find angle C.

$$
\begin{aligned}
\frac{\sin C}{7.0} & =\frac{\sin 44.5^{\circ}}{11.0} & & \text { Law of sines } \\
\sin C & \approx 0.4460 & & \text { Solve for sin } C \\
C & \approx 26.5^{\circ} & & \text { Use inverse sine. }
\end{aligned}
$$

Another angle with this sine value is

$$
180^{\circ}-26.5^{\circ} \approx 153.5^{\circ}
$$

However, $153.5^{\circ}+44.5^{\circ}>180^{\circ}$, so there is only one triangle.

$$
\begin{array}{ll}
B \approx 180^{\circ}-44.5^{\circ}-26.5^{\circ} & \text { Angle sum formula } \\
B \approx 109^{\circ} & \text { Subtract. }
\end{array}
$$

Use the law of sines again to solve for b.

$$
b \approx 14.8 \mathrm{in}
$$

In triangle $A B C$, find C if $a=11$ units, $b=13$ units, and $c=20$ units. Then find its area.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& \text { Law of cosines } \\
& 20^{2}=11^{2}+13^{2}-2(11)(13) \cos C \\
& \text { Substitute. } \\
& 400=121+169-286 \cos C \\
& \text { Square and multiply. } \\
& \frac{400-121-169}{-286}=\cos C \quad \text { Solve for cos } C \\
& C=\cos ^{-1}\left(\frac{400-121-169}{-286}\right) \\
& C \approx 113^{\circ}
\end{aligned}
$$

The semiperimeter s is

$$
s=\frac{1}{2}(11+13+20)=22
$$

so
$\mathscr{A}=\sqrt{22(22-11)(22-13)(22-20)}=66$ sq units.

Concepts

Examples

7.4 Vectors, Operations, and the Dot Product

Magnitude and Direction Angle of a Vector

The magnitude (length) of vector $\mathbf{u}=\langle a, b\rangle$ is given by the following.

$$
|\mathbf{u}|=\sqrt{a^{2}+b^{2}}
$$

The direction angle θ satisfies $\tan \theta=\frac{b}{a}$, where $a \neq 0$.

Vector Operations

Let a, b, c, d, and k represent real numbers.

$$
\begin{gathered}
\langle a, b\rangle+\langle c, d\rangle=\langle a+c, b+d\rangle \\
k \cdot\langle a, b\rangle=\langle k a, k b\rangle
\end{gathered}
$$

If $\mathbf{u}=\left\langle a_{1}, a_{2}\right\rangle$, then $-\mathbf{u}=\left\langle-a_{1},-a_{2}\right\rangle$.
$\langle a, b\rangle-\langle c, d\rangle=\langle a, b\rangle+(-\langle c, d\rangle)=\langle a-c, b-d\rangle$
If $\mathbf{u}=\langle a, b\rangle$ has direction angle θ, then

$$
\mathbf{u}=\langle | \mathbf{u}|\cos \theta,|\mathbf{u}| \sin \theta\rangle .
$$

i, j Form for Vectors

If $\mathbf{v}=\langle a, b\rangle$, then

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j}, \quad \text { where } \mathbf{i}=\langle 1,0\rangle \text { and } \mathbf{j}=\langle 0,1\rangle .
$$

Dot Product

The dot product of the two vectors $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$, denoted $\mathbf{u} \cdot \mathbf{v}$, is given by the following.

$$
\mathbf{u} \cdot \mathbf{v}=a c+b d
$$

If θ is the angle between \mathbf{u} and \mathbf{v}, where $0^{\circ} \leq \theta \leq 180^{\circ}$, then the following holds.

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}
$$

$$
|\mathbf{u}|=\sqrt{(2 \sqrt{3})^{2}+2^{2}}=\sqrt{16}=4
$$

Since $\tan \theta=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$, it follows that $\theta=30^{\circ}$.

$$
\begin{aligned}
\langle 4,6\rangle+\langle-8,3\rangle & =\langle-4,9\rangle \\
5\langle-2,1\rangle & =\langle-10,5\rangle \\
-\langle-9,6\rangle & =\langle 9,-6\rangle \\
\langle 4,6\rangle-\langle-8,3\rangle & =\langle 12,3\rangle
\end{aligned}
$$

For \mathbf{u} defined at the top of the column,

$$
\begin{aligned}
& \mathbf{u}=\left\langle 4 \cos 30^{\circ}, 4 \sin 30^{\circ}\right\rangle \\
&=\langle 2 \sqrt{3}, 2\rangle \quad \\
& \cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
& \sin 30^{\circ}=\frac{1}{2}
\end{aligned}
$$

and

$$
\mathbf{u}=2 \sqrt{3} \mathbf{i}+2 \mathbf{j} .
$$

$$
\langle 2,1\rangle \cdot\langle 5,-2\rangle=2 \cdot 5+1(-2)=8
$$

Find the angle θ between $\mathbf{u}=\langle 3,1\rangle$ and $\mathbf{v}=\langle 2,-3\rangle$.

$$
\begin{aligned}
\cos \theta & =\frac{\langle 3,1\rangle \cdot\langle 2,-3\rangle}{\sqrt{3^{2}+1^{2}} \cdot \sqrt{2^{2}+(-3)^{2}}} \\
\cos \theta & =\frac{6+(-3)}{\sqrt{10} \cdot \sqrt{13}} \\
\cos \theta & =\frac{3}{\sqrt{130}} \\
\theta & =\cos ^{-1} \frac{3}{\sqrt{130}} \\
\theta & \approx 74.7^{\circ}
\end{aligned}
$$

Chapter 7 Review Exercises

Use the law of sines to find the indicated part of each triangle $A B C$.

1. Find b if $C=74.2^{\circ}, c=96.3 \mathrm{~m}, B=39.5^{\circ}$.
2. Find B if $A=129.7^{\circ}, a=127 \mathrm{ft}, b=69.8 \mathrm{ft}$.
3. Find B if $C=51.3^{\circ}, c=68.3 \mathrm{~m}, b=58.2 \mathrm{~m}$.
4. Find b if $a=165 \mathrm{~m}, A=100.2^{\circ}, B=25.0^{\circ}$.
5. Find A if $B=39^{\circ} 50^{\prime}, b=268 \mathrm{~m}, a=340 \mathrm{~m}$.
6. Find A if $C=79^{\circ} 20^{\prime}, c=97.4 \mathrm{~mm}, a=75.3 \mathrm{~mm}$.
7. If we are given a, A, and C in a triangle $A B C$, does the possibility of the ambiguous case exist? If not, explain why.
8. Can triangle $A B C$ exist if $a=4.7, b=2.3$, and $c=7.0$? If not, explain why. Answer this question without using trigonometry.
9. Given $a=10$ and $B=30^{\circ}$, determine the values of b for which A has
(a) exactly one value
(b) two possible values
(c) no value.
10. Explain why there can be no triangle $A B C$ satisfying $A=140^{\circ}, a=5$, and $b=7$.

Use the law of cosines to find the indicated part of each triangle ABC.
11. Find A if $a=86.14$ in., $b=253.2$ in., $c=241.9$ in.
12. Find b if $B=120.7^{\circ}, a=127 \mathrm{ft}, c=69.8 \mathrm{ft}$.
13. Find a if $A=51^{\circ} 20^{\prime}, c=68.3 \mathrm{~m}, b=58.2 \mathrm{~m}$.
14. Find B if $a=14.8 \mathrm{~m}, b=19.7 \mathrm{~m}, c=31.8 \mathrm{~m}$.
15. Find a if $A=60^{\circ}, b=5.0 \mathrm{~cm}, c=21 \mathrm{~cm}$.
16. Find A if $a=13 \mathrm{ft}, b=17 \mathrm{ft}, c=8 \mathrm{ft}$.

Solve each triangle $A B C$ having the given information.
17. $A=25.2^{\circ}, a=6.92 \mathrm{yd}, b=4.82 \mathrm{yd}$
18. $A=61.7^{\circ}, a=78.9 \mathrm{~m}, b=86.4 \mathrm{~m}$
19. $a=27.6 \mathrm{~cm}, b=19.8 \mathrm{~cm}, C=42^{\circ} 30^{\prime}$
20. $a=94.6 \mathrm{yd}, b=123 \mathrm{yd}, c=109 \mathrm{yd}$

Find the area of each triangle $A B C$ with the given information.
21. $b=840.6 \mathrm{~m}, c=715.9 \mathrm{~m}, A=149.3^{\circ}$
22. $a=6.90 \mathrm{ft}, b=10.2 \mathrm{ft}, C=35^{\circ} 10^{\prime}$
23. $a=0.913 \mathrm{~km}, b=0.816 \mathrm{~km}, c=0.582 \mathrm{~km}$
24. $a=43 \mathrm{~m}, b=32 \mathrm{~m}, c=51 \mathrm{~m}$

Solve each problem.
25. Distance across a Canyon To measure the distance $A B$ across a canyon for a power line, a surveyor measures angles B and C and the distance $B C$, as shown in the figure. What is the distance from A to B ?

26. Length of a Brace A banner on an $8.0-\mathrm{ft}$ pole is to be mounted on a building at an angle of 115°, as shown in the figure. Find the length of the brace.

27. Height of a Tree A tree leans at an angle of 8.0° from the vertical. From a point 7.0 m from the bottom of the tree, the angle of elevation to the top of the tree is 68°. How tall is the leaning tree?

28. Hanging Sculpture A hanging sculpture is to be hung in an art gallery with two wires of lengths 15.0 ft and 12.2 ft so that the angle between them is 70.3°. How far apart should the ends of the wire be placed on the ceiling?

29. Height of a Tree A hill makes an angle of 14.3° with the horizontal. From the base of the hill, the angle of elevation to the top of a tree on top of the hill is 27.2°. The distance along the hill from the base to the tree is 212 ft . Find the height of the tree.
30. Pipeline Position A pipeline is to run between points A and B, which are separated by a protected wetlands area. To avoid the wetlands, the pipe will run from point A to C and then to B. The distances involved are $A B=150 \mathrm{~km}, A C=102 \mathrm{~km}$, and $B C=135 \mathrm{~km}$. What angle should be used at point C ?
31. Distance between Two Boats Two boats leave a dock together. Each travels in a straight line. The angle between their courses measures $54^{\circ} 10^{\prime}$. One boat travels 36.2 km per hr , and the other travels 45.6 km per hr. How far apart will they be after 3 hr ?

32. Distance from a Ship to a Lighthouse A ship sailing parallel to shore sights a lighthouse at an angle of 30° from its direction of travel. After the ship travels 2.0 mi farther, the angle has increased to 55°. At that time, how far is the ship from the lighthouse?

33. Area of a Triangle Find the area of the triangle shown in the figure using Heron's area formula.

34. Show that the triangle in Exercise 33 is a right triangle. Then use the formula $\mathscr{A}=\frac{1}{2} a c \sin B$, with $B=90^{\circ}$, to find the area.

Use the given vectors to sketch each of the following.
35. a-b
36. $\mathbf{a}+3 \mathbf{c}$

Given two forces and the angle between them, find the magnitude of the resultant force.
37.

38. two forces of 142 and 215 newtons, forming an angle of 112°

Vector \mathbf{v} has the given magnitude and direction angle. Find the magnitudes of the horizontal and vertical components of \mathbf{v}.
39. $|\mathbf{v}|=964, \theta=154^{\circ} 20^{\prime}$
40. $|\mathbf{v}|=50, \theta=45^{\circ}$
(Give exact values.)

Find the magnitude and direction angle for \mathbf{u} rounded to the nearest tenth.
41. $\mathbf{u}=\langle-9,12\rangle$
42. $\mathbf{u}=\langle 21,-20\rangle$
43. Let $\mathbf{v}=2 \mathbf{i}-\mathbf{j}$ and $\mathbf{u}=-3 \mathbf{i}+2 \mathbf{j}$. Express each in terms of \mathbf{i} and \mathbf{j}.
(a) $2 \mathbf{v}+\mathbf{u}$
(b) 2 v
(c) $\mathbf{v}-3 \mathbf{u}$

Find the angle between the vectors. Round to the nearest tenth of a degree. If the vectors are orthogonal, say so.
44. $\langle 3,-2\rangle,\langle-1,3\rangle$
45. $\langle 5,-3\rangle,\langle 3,5\rangle$
46. $\langle 0,4\rangle,\langle-4,4\rangle$

Solve each problem.

47. Weight of a Sled and Passenger Paula and Steve are pulling their daughter Jessie on a sled. Steve pulls with a force of 18 lb at an angle of 10°. Paula pulls with a force of 12 lb at an angle of 15°. Find the magnitude of the resultant force on Jessie and the sled.

48. Force Placed on a Barge One boat pulls a barge with a force of 100 newtons. Another boat pulls the barge at an angle of 45° to the first force, with a force of 200 newtons. Find the resultant force acting on the barge, to the nearest unit, and the angle between the resultant and the first boat, to the nearest tenth.
49. Direction and Speed of a Plane A plane has an airspeed of 520 mph . The pilot wishes to fly on a bearing of 310°. A wind of 37 mph is blowing from a bearing of 212°. In what direction should the pilot fly, and what will be her ground speed?
50. Angle of a Hill A 186-lb force is required to hold a $2800-\mathrm{lb}$ car on a hill. What angle does the hill make with the horizontal?
51. Incline Force Find the force required to keep a $75-\mathrm{lb}$ sled from sliding down an incline that makes an angle of 27° with the horizontal. (Assume there is no friction.)
52. Speed and Direction of a Boat A boat travels 15 km per hr in still water. The boat is traveling across a large river, on a bearing of 130°. The current in the river, coming from the west, has a speed of 7 km per hr. Find the resulting speed of the boat and its resulting direction of travel.

Other Formulas from Trigonometry The following identities involve all six parts of a triangle $A B C$ and are thus useful for checking answers.

$$
\begin{array}{ll}
\frac{a+b}{c}=\frac{\cos \frac{1}{2}(A-B)}{\sin \frac{1}{2} C} & \text { Newton's formula } \\
\frac{a-b}{c}=\frac{\sin \frac{1}{2}(A-B)}{\cos \frac{1}{2} C} & \text { Mollweide's formula }
\end{array}
$$

53. Apply Newton's formula to the given triangle to verify the accuracy of the information.
54. Apply Mollweide's formula to the given triangle to verify the accuracy of the information.
55. Law of Tangents In addition to the law of sines and the law of cosines, there is a law of tangents. In any triangle $A B C$,

$$
\frac{\tan \frac{1}{2}(A-B)}{\tan \frac{1}{2}(A+B)}=\frac{a-b}{a+b}
$$

Verify this law for the triangle $A B C$ with $a=2, b=2 \sqrt{3}, A=30^{\circ}$, and $B=60^{\circ}$.

Chapter 7
 Test

Find the indicated part of each triangle $A B C$.

1. Find C if $A=25.2^{\circ}, a=6.92 \mathrm{yd}$, and $b=4.82 \mathrm{yd}$.
2. Find c if $C=118^{\circ}, a=75.0 \mathrm{~km}$, and $b=131 \mathrm{~km}$.
3. Find B if $a=17.3 \mathrm{ft}, b=22.6 \mathrm{ft}, c=29.8 \mathrm{ft}$.
4. Find the area of triangle $A B C$ if $a=14, b=30$, and $c=40$.
5. Find the area of triangle $X Y Z$ shown here.

6. Given $a=10$ and $B=150^{\circ}$ in triangle $A B C$, determine the values of b for which A has
(a) exactly one value
(b) two possible values
(c) no value.

Solve each triangle $A B C$.
7. $A=60^{\circ}, b=30 \mathrm{~m}, c=45 \mathrm{~m}$
8. $b=1075$ in., $c=785$ in., $C=38^{\circ} 30^{\prime}$
9. Find the magnitude and the direction angle for the vector shown in the figure.

10. Use the given vectors to sketch $\mathbf{a}+\mathbf{b}$.

11. For the vectors $\mathbf{u}=\langle-1,3\rangle$ and $\mathbf{v}=\langle 2,-6\rangle$, find each of the following.
(a) $\mathbf{u}+\mathbf{v}$
(b) $-3 \mathbf{v}$
(c) $\mathbf{u} \cdot \mathbf{v}$
(d) $|\mathbf{u}|$
12. Find the measure of the angle θ between $\mathbf{u}=\langle 4,3\rangle$ and $\mathbf{v}=\langle 1,5\rangle$.
13. Show that the vectors $\mathbf{u}=\langle-4,7\rangle$ and $\mathbf{v}=\langle-14,-8\rangle$ are orthogonal vectors.

Solve each problem.
14. Height of a Balloon The angles of elevation of a balloon from two points A and B on level ground are $24^{\circ} 50^{\prime}$ and $47^{\circ} 20^{\prime}$, respectively. As shown in the figure, points A, B, and C are in the same vertical plane and points A and B are 8.4 mi apart. Approximate the height of the balloon above the ground to the nearest tenth of a mile.

15. Horizontal and Vertical Components Find the horizontal and vertical components of the vector with magnitude 569 and direction angle 127.5° from the horizontal. Give your answer in the form $\langle a, b\rangle$.
16. Radio Direction Finders Radio direction finders are placed at points A and B, which are 3.46 mi apart on an east-west line, with A west of B. From A, the bearing of a certain illegal pirate radio transmitter is 48°, and from B the bearing is 302°. Find the distance between the transmitter and A to the nearest hundredth of a mile.
17. Height of a Tree A tree leans at an angle of 8.0° from the vertical, as shown in the figure. From a point 8.0 m from the bottom of the tree, the angle of elevation to the top of the tree is 66°. Find the height of the leaning tree.

18. Walking Dogs on Leashes While Michael is walking his two dogs, Duke and Prince, they reach a corner and must wait for a WALK sign. Michael is holding the two leashes in the same hand, and the dogs are pulling on their leashes at the angles and forces shown in the figure. Find the magnitude of the equilibrant force (to the nearest tenth of a pound) that Michael must apply to restrain the dogs.

19. Bearing and Airspeed Find the bearing and airspeed required for a plane to fly 630 mi due north in 3.0 hr if the wind is blowing from a direction of 318° at 15 mph . Approximate the bearing to the nearest degree and the airspeed to the nearest 10 mph .
20. Incline Angle A force of 16.0 lb is required to hold a $50.0-\mathrm{lb}$ wheelbarrow on an incline. What angle does the incline make with the horizontal?

8
 Complex Numbers, Polar Equations, and Parametric Equations

8.1 Complex Numbers

- Basic Concepts of Complex Numbers
- Complex Solutions of Equations
- Operations on Complex Numbers

Looking ahead to calculus

The letters j and k are also used to represent $\sqrt{-1}$ in calculus and some applications (electronics, for example).

The calculator is in complex number mode. The top screen supports the definition of i. The bottom screen shows how the calculator returns the real and imaginary parts of the complex number $7+2 i$.

Basic Concepts of Complex Numbers The set of real numbers does not include all the numbers needed in algebra. For example, there is no real number solution of the equation

$$
x^{2}=-1
$$

since no real number, when squared, gives -1 . To extend the real number system to include solutions of equations of this type, the number i is defined to have the following property.

The Imaginary Unit \boldsymbol{i}

$$
i=\sqrt{-1}, \quad \text { and therefore } i^{2}=-1
$$

(Note that $-i$ is also a square root of -1 .)

Square roots of negative numbers were not incorporated into an integrated number system until the 16th century. They were then used as solutions of equations and later (in the 18th century) in surveying. Today, such numbers are used extensively in science and engineering.

Complex numbers are formed by adding real numbers and multiples of i.

Complex Number

If a and b are real numbers, then any number of the form $\boldsymbol{a}+\boldsymbol{b i}$ is a complex number. In the complex number $a+b i, a$ is the real part and b is the imaginary part.*

Two complex numbers $a+b i$ and $c+d i$ are equal provided that their real parts are equal and their imaginary parts are equal; that is, they are equal if and only if $a=c$ and $b=d$.

Some graphing calculators, such as the TI-83/84 Plus, are capable of working with complex numbers, as seen in Figure 1.

For a complex number $a+b i$, if $b=0$, then $a+b i=a$, which is a real number. Thus, the set of real numbers is a subset of the set of complex numbers. If $a=0$ and $b \neq 0$, the complex number is said to be a pure imaginary number. For example, $3 i$ is a pure imaginary number. A pure imaginary number, or a number such as $7+2 i$ with $a \neq 0$ and $b \neq 0$, is a nonreal complex number. A complex number written in the form $a+b i$ (or $a+i b$) is in standard form. (The form $a+i b$ is used to write expressions such as $i \sqrt{5}$, since $\sqrt{5} i$ could be mistaken for $\sqrt{5 i}$.)

The relationships among the subsets of the complex numbers are shown in Figure 2 on the next page.

[^6]
Complex Numbers $a+b i$, for a and b Real

Figure 2
For a positive real number a, the expression $\sqrt{-a}$ is defined as follows.

The Expression $\sqrt{-a}$

$$
\text { If } a>0 \text {, then } \quad \sqrt{-a}=i \sqrt{a}
$$

EXAMPLE 1 Writing $\sqrt{-a}$ as $i \sqrt{a}$

Write as the product of a real number and i, using the definition of $\sqrt{-a}$.
(a) $\sqrt{-16}$
(b) $\sqrt{-70}$
(c) $\sqrt{-48}$

SOLUTION
(a) $\sqrt{-16}=i \sqrt{16}=4 i$
(b) $\sqrt{-70}=i \sqrt{70}$
(c) $\sqrt{-48}=i \sqrt{48}=i \sqrt{16 \cdot 3}=4 i \sqrt{3}$
Product rule for radicals: $\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$

Now Try Exercises 17, 19, and 21.

Complex Solutions of Equations

EXAMPLE 2 Solving Quadratic Equations for Complex Solutions

Solve each equation.
(a) $x^{2}=-9$
(b) $x^{2}+24=0$

SOLUTION

(a) Take the square root on each side, remembering that we must find both roots, which is indicated by the \pm sign.

$$
x^{2}=-9
$$

The solution set is $\{ \pm 3 i\}$.
(b)

$$
\begin{aligned}
x^{2}+24 & =0 & & \\
x^{2} & =-24 & & \text { Subtract } 24 . \\
x & = \pm \sqrt{-24} & & \text { Square root property } \\
x & = \pm i \sqrt{24} & & \sqrt{-a}=i \sqrt{a} \\
x & = \pm i \sqrt{4} \cdot \sqrt{6} & & \text { Product rule for radic } \\
x & = \pm 2 i \sqrt{6} & & \sqrt{4}=2
\end{aligned}
$$

The solution set is $\{ \pm 2 i \sqrt{6}\}$.
Now Try Exercises 25 and 27.

EXAMPLE 3 Solving a Quadratic Equation (Complex Solutions)

Solve $9 x^{2}+5=6 x$.
SOLUTION Write the equation in standard form. Then use the quadratic formula.

Written in standard form, the solution set is $\left\{\frac{1}{3} \pm \frac{2}{3} i\right\}$.

Operations on Complex Numbers Products or quotients with negative radicands

 are simplified by first rewriting $\sqrt{-a}$ as $i \sqrt{a}$ for a positive number a. Then the properties of real numbers and the fact that $i^{2}=-1$ are applied.CAUTION When working with negative radicands, use the definition $\sqrt{-a}=i \sqrt{a}$ before using any of the other rules for radicals. In particular, the rule $\sqrt{c} \cdot \sqrt{d}=\sqrt{c d}$ is valid only when c and d are not both negative.
For example,

$$
\sqrt{-4} \cdot \sqrt{-9}=2 i \cdot 3 i=6 i^{2}=-6 \quad \text { is correct, }
$$

whereas $\quad \sqrt{-4} \cdot \sqrt{-9}=\sqrt{(-4)(-9)}=\sqrt{36}=6 \quad$ is incorrect.

EXAMPLE 4 Finding Products and Quotients Involving $\sqrt{-a}$

Multiply or divide, as indicated. Simplify each answer.
(a) $\sqrt{-7} \cdot \sqrt{-7}$
(b) $\sqrt{-6} \cdot \sqrt{-10}$
(c) $\frac{\sqrt{-20}}{\sqrt{-2}}$
(d) $\frac{\sqrt{-48}}{\sqrt{24}}$

SOLUTION
(a) $\sqrt{-7} \cdot \sqrt{-7}=i \sqrt{7} \cdot i \sqrt{7}$
(b) $\sqrt{-6} \cdot \sqrt{-10}=i \sqrt{6} \cdot i \sqrt{10}$
First write all square $=i^{2} \cdot(\sqrt{7})^{2}$
$=-1 \cdot 7$ $i^{2}=-1$
$=i^{2} \cdot \sqrt{60}$
$=-1 \sqrt{4 \cdot 15}$
$=-7$
$=-1 \cdot 2 \sqrt{15}$
$=-2 \sqrt{15}$
(c) $\frac{\sqrt{-20}}{\sqrt{-2}}=\frac{i \sqrt{20}}{i \sqrt{2}}=\sqrt{\frac{20}{2}}=\sqrt{10}$
Quotient rule for radicals: $\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}$
(d) $\frac{\sqrt{-48}}{\sqrt{24}}=\frac{i \sqrt{48}}{\sqrt{24}}=i \sqrt{\frac{48}{24}}=i \sqrt{2}$
Quotient rule for radicals

Now Try Exercises 37, 39, 41, and 43.

EXAMPLE 5 Simplifying a Quotient Involving $\sqrt{-a}$

Write $\frac{-8+\sqrt{-128}}{4}$ in standard form $a+b i$.

SOLUTION

$$
\begin{aligned}
\frac{-8+\sqrt{-128}}{4} & =\frac{-8+\sqrt{-64 \cdot 2}}{4} \\
& =\frac{-8+8 i \sqrt{2}}{4} \\
& =\frac{4(-2+2 i \sqrt{2})}{4} \\
& =-2+2 i \sqrt{2} \\
\begin{array}{l}
\text { Be sure to factor } \\
\text { before simplifying. }
\end{array} & \text { Factor. } \\
& \quad \text { Lowest terms }
\end{aligned}
$$

Now Try Exercise 49.

With the definitions $i^{2}=-1$ and $\sqrt{-a}=i \sqrt{a}$ for $a>0$, all properties of real numbers are extended to complex numbers.

Addition and Subtraction of Complex Numbers

For complex numbers $a+b i$ and $c+d i$,

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

and

$$
(a+b i)-(c+d i)=(a-c)+(b-d) i
$$

That is, to add or subtract complex numbers, add or subtract the real parts, and add or subtract the imaginary parts.

EXAMPLE 6 Adding and Subtracting Complex Numbers

Find each sum or difference.
(a) $(3-4 i)+(-2+6 i)$
(b) $(-4+3 i)-(6-7 i)$

SOLUTION

(a) \begin{tabular}{rl}
$(3-4 i)+(-2+6 i)$ \& $=\overbrace{[3+(-2)]}^{\text {parts. }}+\overbrace{[-4+6]}^{\text {Add real }} i$

\& $=1+2 i$

\quad

Add imaginary

parts.

\quad

Commutative, associa-

tive and distributive
\end{tabular}

(b) $(-4+3 i)-(6-7 i)=(-4-6)+[3-(-7)] i$

$$
=-10+10 i
$$

(c) $(-1-6 i)+(8+3 i)-(7-3 i)=(-1+8-7)+[-6+3-(-3)] i$

$$
=0+0 i, \quad \text { or } 0
$$

Now Try Exercises 55, 57, and 59.

The product of two complex numbers is found by multiplying as though the numbers were binomials and using the fact that $i^{2}=-1$, as follows.

$$
\begin{aligned}
(a+b i)(c+d i) & =a c+a d i+b i c+b i d i & & \text { FOIL (Multiply First, Outer, } \\
& =a c+a d i+b c i+b d i^{2} & & \text { Inner, Last terms.) } \\
& =a c+(a d+b c) i+b d(-1) & & \text { Distributive property; } i^{2}=-1 \\
& =(a c-b d)+(a d+b c) i & & \text { Group like terms. }
\end{aligned}
$$

Multiplication of Complex Numbers

For complex numbers $a+b i$ and $c+d i$,

$$
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i .
$$

This definition is not practical in routine calculations. To find a given product, it is easier just to multiply as with binomials.

EXAMPLE 7 Multiplying Complex Numbers

Find each product.
(a) $(2-3 i)(3+4 i)$
(b) $(4+3 i)^{2}$
(c) $(6+5 i)(6-5 i)$

SOLUTION
(a) $(2-3 i)(3+4 i)=2(3)+2(4 i)-3 i(3)-3 i(4 i) \quad$ FOIL

$$
=6+8 i-9 i-12 i^{2} \quad \text { Multiply }
$$

$$
=6-i-12(-1) \quad \text { Combine like terms; }
$$

$$
=18-i \quad \text { Standard form }
$$

Example 7(c) showed that $(6+5 i)(6-5 i)=61$. The numbers $6+5 i$ and $6-5 i$ differ only in the sign of their imaginary parts and are called complex conjugates. The product of a complex number and its conjugate is always a real number. This product is the sum of the squares of the real and imaginary parts.

Property of Complex Conjugates

For real numbers a and b,

$$
(a+b i)(a-b i)=a^{2}+b^{2}
$$

To find the quotient of two complex numbers in standard form, we multiply both the numerator and the denominator by the complex conjugate of the denominator.

EXAMPLE 8 Dividing Complex Numbers

Write each quotient in standard form $a+b i$.
(a) $\frac{3+2 i}{5-i}$
(b) $\frac{3}{i}$

SOLUTION

(a) $\frac{3+2 i}{5-i}=\frac{(3+2 i)(5+i)}{(5-i)(5+i)}$

Multiply by the complex conjugate of the denominator in both the numerator and the denominator.

$$
=\frac{15+3 i+10 i+2 i^{2}}{25-i^{2}} \quad \text { Multiply. }
$$

$$
=\frac{13+13 i}{26} \quad \text { Combine like terms; } i^{2}=-1 .
$$

$$
=\frac{13}{26}+\frac{13 i}{26} \quad \frac{a+b i}{c}=\frac{a}{c}+\frac{b i}{c}
$$

$$
=\frac{1}{2}+\frac{1}{2} i \quad \text { Write in lowest terms and standard form. }
$$

CHECK $\quad\left(\frac{1}{2}+\frac{1}{2} i\right)(5-i)=3+2 i \quad \checkmark \quad$ Quotient \times Divisor $=$ Dividend

This screen supports the results in Example 8.

i. 2	-1
i. 2	- i.
i. 4	1

Powers of i can be found on the TI-83/84 Plus calculator.
(b) $\frac{3}{i}=\frac{3(-i)}{i(-i)} \quad-i$ is the conjugate of i.

$$
\begin{array}{ll}
=\frac{-3 i}{-i^{2}} & \text { Multiply. } \\
=\frac{-3 i}{1} & \\
=-3 i, \quad \text { or } \quad 0-3 i & \text { Standard form }
\end{array}
$$

Now Try Exercises 81 and 87.

Powers of i can be simplified using the facts

$$
i^{2}=-1 \quad \text { and } \quad i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1
$$

Consider the following powers of i.

$$
\begin{array}{ll}
i^{1}=i & i^{5}=i^{4} \cdot i=1 \cdot i=i \\
i^{2}=-1 & i^{6}=i^{4} \cdot i^{2}=1(-1)=-1 \\
i^{3}=i^{2} \cdot i=(-1) \cdot i=-i & i^{7}=i^{4} \cdot i^{3}=1 \cdot(-i)=-i \\
i^{4}=i^{2} \cdot i^{2}=(-1)(-1)=1 & i^{8}=i^{4} \cdot i^{4}=1 \cdot 1=1 \text { and so on. }
\end{array}
$$

Powers of i cycle through the same four outcomes $\left(i,-1,-i\right.$, and 1) since i^{4} has the same multiplicative property as 1. Also, any power of i with an exponent that is a multiple of 4 has value 1.

EXAMPLE 9 Simplifying Powers of \boldsymbol{i}

Simplify each power of i.
(a) i^{15}
(b) i^{-3}

SOLUTION

(a) Since $i^{4}=1$, write the given power as a product involving i^{4}.

$$
i^{15}=i^{12} \cdot i^{3}=\left(i^{4}\right)^{3} \cdot i^{3}=1^{3}(-i)=-i
$$

(b) Multiply i^{-3} by 1 in the form of i^{4} to create the least positive exponent for i.

$$
i^{-3}=i^{-3} \cdot 1=i^{-3} \cdot i^{4}=i \quad i^{4}=1
$$

Now Try Exercises 93 and 101.

8.1 Exercises

Concept Check Determine whether each statement is true or false. If it is false, tell why.

1. Every real number is a complex number.
2. No real number is a pure imaginary number.
3. Every pure imaginary number is a complex number.
4. A number can be both real and complex.
5. There is no real number that is a complex number.
6. A complex number might not be a pure imaginary number.

Identify each number as real, complex, pure imaginary, or nonreal complex. (More than one of these descriptions will apply.)
7. -4
8. 0
9. $13 i$
10. $-7 i$
11. $5+i$
12. $-6-2 i$
13. π
14. $\sqrt{24}$
15. $\sqrt{-25}$
16. $\sqrt{-36}$

Write each number as the product of a real number and i. See Example 1.
17. $\sqrt{-25}$
18. $\sqrt{-36}$
19. $\sqrt{-10}$
20. $\sqrt{-15}$
21. $\sqrt{-288}$
22. $\sqrt{-500}$
23. $-\sqrt{-18}$
24. $-\sqrt{-80}$

Solve each quadratic equation and express all nonreal complex solutions in terms of i. See Examples 2 and 3.
25. $x^{2}=-16$
26. $x^{2}=-36$
27. $x^{2}+12=0$
28. $x^{2}+48=0$
29. $3 x^{2}+2=-4 x$
30. $2 x^{2}+3 x=-2$
31. $x^{2}-6 x+14=0$
32. $x^{2}+4 x+11=0$
33. $4\left(x^{2}-x\right)=-7$
34. $3\left(3 x^{2}-2 x\right)=-7$
35. $x^{2}+1=-x$
36. $x^{2}+2=2 x$

Multiply or divide, as indicated. Simplify each answer. See Example 4.
37. $\sqrt{-13} \cdot \sqrt{-13}$
38. $\sqrt{-17} \cdot \sqrt{-17}$
39. $\sqrt{-3} \cdot \sqrt{-8}$
40. $\sqrt{-5} \cdot \sqrt{-15}$
41. $\frac{\sqrt{-30}}{\sqrt{-10}}$
42. $\frac{\sqrt{-70}}{\sqrt{-7}}$
43. $\frac{\sqrt{-24}}{\sqrt{8}}$
44. $\frac{\sqrt{-54}}{\sqrt{27}}$
45. $\frac{\sqrt{-10}}{\sqrt{-40}}$
46. $\frac{\sqrt{-8}}{\sqrt{-72}}$
47. $\frac{\sqrt{-6} \cdot \sqrt{-2}}{\sqrt{3}}$
48. $\frac{\sqrt{-12} \cdot \sqrt{-6}}{\sqrt{8}}$

Write each number in standard form $a+$ bi. See Example 5.
49. $\frac{-6-\sqrt{-24}}{2}$
50. $\frac{-9-\sqrt{-18}}{3}$
51. $\frac{10+\sqrt{-200}}{5}$
52. $\frac{20+\sqrt{-8}}{2}$
53. $\frac{-3+\sqrt{-18}}{24}$
54. $\frac{-5+\sqrt{-50}}{10}$

Find each sum or difference. Write the answer in standard form. See Example 6.
55. $(3+2 i)+(9-3 i)$
56. $(4-i)+(8+5 i)$
57. $(-2+4 i)-(-4+4 i)$
58. $(-3+2 i)-(-4+2 i)$
59. $(2-5 i)-(3+4 i)-(-1-9 i)$
60. $(-4-i)-(2+3 i)+(6+4 i)$
61. $-i \sqrt{2}-2-(6-4 i \sqrt{2})-(5-i \sqrt{2})$
62. $3 \sqrt{7}-(4 \sqrt{7}-i)-4 i+(-2 \sqrt{7}+5 i)$

Find each product. Write the answer in standard form. See Example 7.
63. $(2+i)(3-2 i)$
64. $(-2+3 i)(4-2 i)$
65. $(2+4 i)(-1+3 i)$
66. $(1+3 i)(2-5 i)$
67. $(3-2 i)^{2}$
68. $(2+i)^{2}$
69. $(3+i)(3-i)$
70. $(5+i)(5-i)$
71. $(-2-3 i)(-2+3 i)$
72. $(6-4 i)(6+4 i)$
73. $(\sqrt{6}+i)(\sqrt{6}-i)$
74. $(\sqrt{2}-4 i)(\sqrt{2}+4 i)$
75. $i(3-4 i)(3+4 i)$
76. $i(2+7 i)(2-7 i)$
77. $3 i(2-i)^{2}$
78. $-5 i(4-3 i)^{2}$
79. $(2+i)(2-i)(4+3 i)$
80. $(3-i)(3+i)(2-6 i)$

Find each quotient. Write the answer in standard form a bi. See Example 8.
81. $\frac{6+2 i}{1+2 i}$
82. $\frac{14+5 i}{3+2 i}$
83. $\frac{2-i}{2+i}$
84. $\frac{4-3 i}{4+3 i}$
85. $\frac{1-3 i}{1+i}$
86. $\frac{-3+4 i}{2-i}$
87. $\frac{-5}{i}$
88. $\frac{-6}{i}$
89. $\frac{8}{-i}$
90. $\frac{12}{-i}$
91. $\frac{2}{3 i}$
92. $\frac{5}{9 i}$

Simplify each power of i. See Example 9.

93. i^{25}
94. i^{29}
95. i^{22}
96. i^{26}
97. i^{23}
98. i^{27}
99. i^{32}
100. i^{40}
101. i^{-13}
102. i^{-14}
103. $\frac{1}{i^{-11}}$
104. $\frac{1}{i^{-12}}$
105. Suppose that your friend, Kathy Strautz, tells you that she has discovered a method of simplifying a positive power of i. "Just divide the exponent by 2 . Your answer is then the simplified form of i^{2} raised to the quotient times i raised to the remainder." Explain why her method works.
106. Explain why the following method of simplifying i^{-42} works.

$$
i^{-42}=\frac{1}{i^{42}}=\frac{1}{\left(i^{2}\right)^{21}}=\frac{1}{(-1)^{21}}=\frac{1}{-1}=-1
$$

107. Show that $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$ is a square root of i.
108. Show that $\frac{\sqrt{3}}{2}+\frac{1}{2} i$ is a cube root of i.
109. Show that $-2+i$ is a solution of the equation $x^{2}+4 x+5=0$.
110. Show that $-3+4 i$ is a solution of the equation $x^{2}+6 x+25=0$.
(Modeling) Alternating Current Complex numbers are used to describe current, I, voltage, E, and impedance, Z (the opposition to current). These three quantities are related by the equation $E=I Z$. Thus, if any two of these quantities are known, the third can be found. In each exercise, solve the equation $E=I Z$ for the missing variable.
111. $I=8+6 i, \quad Z=6+3 i$
112. $I=10+6 i, \quad Z=8+5 i$
113. $I=7+5 i, \quad E=28+54 i$
114. $E=35+55 i, \quad Z=6+4 i$
(Modeling) Impedance Impedance is a measure of the opposition to the flow of alternating electrical current found in common electrical outlets. It consists of two parts, resistance and reactance. Resistance occurs when a light bulb is turned on, while reactance is produced when electricity passes through a coil of wire like that found in electric motors. Impedance Z in ohms (Ω) can be expressed as a complex number, where the real part represents resistance and the imaginary part represents reactance.

For example, if the resistive part is 3 ohms and the reactive part is 4 ohms, then the impedance could be described by the complex number $Z=3+4 i$. In the series circuit shown in the figure, the total impedance will be the sum of the individual impedances. (Source: Wilcox, G. and C. Hesselberth, Electricity for Engineering Technology, Allyn \& Bacon.)
115. The circuit contains two light bulbs and two electric motors. Assuming that the light bulbs are pure resistive and the motors are pure reactive, find the total impedance in this circuit and express it in the form $Z=a+b i$.
116. The phase angle θ measures the phase difference between the voltage and the current in an electrical circuit. θ (in degrees) can be determined by
 the equation $\tan \theta=\frac{b}{a}$. Find θ for this circuit.

8.2 Trigonometric (Polar) Form of Complex Numbers

- The Complex Plane and Vector Representation
- Trigonometric (Polar) Form
- Converting between Rectangular and Trigonometric (Polar) Forms
- An Application of Complex Numbers to Fractals

The Complex Plane and Vector Representation Unlike real numbers, complex numbers cannot be ordered. One way to organize and illustrate them is by using a graph.

To graph a complex number such as $2-3 i$, we modify the familiar coordinate system by calling the horizontal axis the real axis and the vertical axis the imaginary axis. Then complex numbers can be graphed in this complex plane, as shown in Figure 3. Each complex number a + bi determines a unique position vector with initial point $(0,0)$ and terminal point (a, b).

Figure 3

NOTE This geometric representation is the reason that $a+b i$ is called the rectangular form of a complex number. (Rectangular form is also called standard form.)

Recall that the sum of the two complex numbers $4+i$ and $1+3 i$ is

$$
(4+i)+(1+3 i)=5+4 i . \quad \text { (Section 8.1) }
$$

Graphically, the sum of two complex numbers is represented by the vector that is the resultant of the vectors corresponding to the two numbers, as shown in Figure 4.

Figure 4

EXAMPLE 1 Expressing the Sum of Complex Numbers Graphically

Find the sum of $6-2 i$ and $-4-3 i$. Graph both complex numbers and their resultant.

SOLUTION The sum is found by adding the two numbers.

$$
(6-2 i)+(-4-3 i)=2-5 i \quad \text { Add real parts, and add imaginary parts. }
$$

The graphs are shown in Figure 5.

Figure 5
Now Try Exercise 13.

Figure 6

Trigonometric (Polar) Form Figure 6 shows the complex number $x+y i$ that corresponds to a vector OP with direction angle θ and magnitude r. The following relationships among x, y, r, and θ can be verified from Figure 6.

Relationships among x, y, r, and θ

$$
\begin{aligned}
x & =r \cos \theta & y & =r \sin \theta \\
r & =\sqrt{x^{2}+y^{2}} & \tan \theta & =\frac{y}{x}, \quad \text { if } x \neq 0
\end{aligned}
$$

Substituting $x=r \cos \theta$ and $y=r \sin \theta$ into $x+y i$ gives the following.

$$
\begin{aligned}
x+y i & =r \cos \theta+(r \sin \theta) i & & \text { Substitute. } \\
& =r(\cos \theta+i \sin \theta) & & \text { Factor out } r .
\end{aligned}
$$

Trigonometric (Polar) Form of a Complex Number

The expression

$$
r(\cos \theta+i \sin \theta)
$$

is the trigonometric form (or polar form) of the complex number $x+y i$. The expression $\cos \theta+i \sin \theta$ is sometimes abbreviated cis $\boldsymbol{\theta}$. Using this notation, $\boldsymbol{r}(\boldsymbol{\operatorname { c o s } \theta}+\boldsymbol{i} \sin \boldsymbol{\theta})$ is written $\boldsymbol{r} \boldsymbol{\operatorname { c i s } \theta} \boldsymbol{\theta}$.

The number r is the absolute value (or modulus) of $x+y i$, and θ is the argument of $x+y i$. In this section, we choose the value of θ in the interval $\left[0^{\circ}, 360^{\circ}\right)$. However, any angle coterminal with θ also could serve as the argument.

EXAMPLE 2 Converting from Trigonometric Form to Rectangular Form

Express $2\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)$ in rectangular form.

ALGEBRAIC SOLUTION

$$
\begin{aligned}
& 2\left(\cos 300^{\circ}+i \sin 300^{\circ}\right) \\
& \quad=2\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right) \\
& \quad=1-i \sqrt{3}
\end{aligned}
$$

Note that the real part is positive and the imaginary part is negative. This is consistent with 300° being a quadrant IV angle.

GRAPHING CALCULATOR SOLUTION

We use a calculator in degree mode to confirm the algebraic solution. See Figure 7.

The imaginary part is an approximation for $-\sqrt{3}$.

Figure 7

Converting from Rectangular to Trigonometric Form

Step 1 Sketch a graph of the number $x+y i$ in the complex plane.
Step 2 Find r by using the equation $r=\sqrt{x^{2}+y^{2}}$.
Step 3 Find θ by using the equation $\tan \theta=\frac{y}{x}$, where $x \neq 0$, choosing the quadrant indicated in Step 1.

CAUTION Errors often occur in Step 3. Be sure to choose the correct quadrant for $\boldsymbol{\theta}$ by referring to the graph sketched in Step 1.

$\operatorname{RrPr}(-\sqrt{3}, 1)$
R.Pe($-\sqrt{3}, 1$)
2.617993878
$\frac{5 \pi}{6}$
2.617993878

Choices 5 and 6 in the top screen show how to convert from rectangular (x, y) form to trigonometric form. The calculator is in radian mode. The results agree with our algebraic results in Example 3(a).

EXAMPLE 3 Converting from Rectangular to Trigonometric Form

Write each complex number in trigonometric form.
(a) $-\sqrt{3}+i$ (Use radian measure.)
(b) $-3 i$ (Use degree measure.)

SOLUTION

(a) We start by sketching the graph of $-\sqrt{3}+i$ in the complex plane, as shown in Figure 8. Next, we use $x=-\sqrt{3}$ and $y=1$ to find r and θ.
and

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}=\sqrt{(-\sqrt{3})^{2}+1^{2}}=\sqrt{3+1}=2 \\
& \tan \theta=\frac{y}{x}=\frac{1}{-\sqrt{3}}=-\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=-\frac{\sqrt{3}}{3} \\
& \text { Rationalize the denominator. }
\end{aligned}
$$

Since $\tan \theta=-\frac{\sqrt{3}}{3}$, the reference angle for θ in radians is $\frac{\pi}{6}$. From the graph, we see that θ is in quadrant II, so $\theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$. Therefore,

Figure 8

Figure 9
(b) See Figure 9. Since $-3 i=0-3 i$, we have $x=0$ and $y=-3$.

$$
r=\sqrt{0^{2}+(-3)^{2}}=\sqrt{0+9}=\sqrt{9}=3 \quad \text { Substitute. }
$$

We cannot find θ by using $\tan \theta=\frac{y}{x}$, because $x=0$. However, the graph suggests that the value for θ is 270°.

$$
-3 i=3\left(\cos 270^{\circ}+i \sin 270^{\circ}\right), \quad \text { or } 3 \operatorname{cis} 270^{\circ} \quad \text { Trigonometric form }
$$

Now Try Exercises 41 and 47.

EXAMPLE 4 Converting between Trigonometric and Rectangular Forms Using Calculator Approximations

Write each complex number in its alternative form, using calculator approximations as necessary.
(a) $6\left(\cos 115^{\circ}+i \sin 115^{\circ}\right)$
(b) $5-4 i$

SOLUTION

(a) Since 115° does not have a special angle as a reference angle, we cannot find exact values for $\cos 115^{\circ}$ and $\sin 115^{\circ}$. Use a calculator set in degree mode.

$$
\begin{array}{ll}
6\left(\cos 115^{\circ}+i \sin 115^{\circ}\right) & \\
\quad \approx 6(-0.4226182617+0.906307787 i) & \text { Use a calculator. } \\
\quad \approx-2.5357+5.4378 i & \text { Four decimal places }
\end{array}
$$

Figure 10
(b) A sketch of $5-4 i$ shows that θ must be in quadrant IV. See Figure 10.

$$
r=\sqrt{5^{2}+(-4)^{2}}=\sqrt{41} \quad \text { and } \quad \tan \theta=-\frac{4}{5}
$$

Use a calculator to find that one measure of θ is -38.66°. In order to express θ in the interval $\left[0,360^{\circ}\right)$, we find $\theta=360^{\circ}-38.66^{\circ}=321.34^{\circ}$.

$$
5-4 i=\sqrt{41} \operatorname{cis} 321.34^{\circ}
$$

Now Try Exercises 53 and 57.

An Application of Complex Numbers to Fractals At its basic level, a fractal is a unique, enchanting geometric figure with an endless self-similarity property. A fractal image repeats itself infinitely with ever-decreasing dimensions. If we look at smaller and smaller portions of a fractal image, we will continue to see the whole-it is much like looking into two parallel mirrors that are facing each other.

EXAMPLE 5 Deciding Whether a Complex Number Is in the Julia Set

The fractal called the Julia set is shown in Figure 11. To determine whether a complex number $z=a+b i$ is in this Julia set, perform the following sequence of calculations.

$$
z^{2}-1, \quad\left(z^{2}-1\right)^{2}-1, \quad\left[\left(z^{2}-1\right)^{2}-1\right]^{2}-1, \quad \ldots
$$

If the absolute values of any of the resulting complex numbers exceed 2, then the complex number z is not in the Julia set. Otherwise z is part of this set and the point (a, b) should be shaded in the graph.

Figure 11
Determine whether each number belongs to the Julia set.
(a) $z=0+0 i$
(b) $z=1+1 i$

SOLUTION

(a) Here

$$
\begin{aligned}
z & =0+0 i=0, \\
z^{2}-1 & =0^{2}-1=-1, \\
\left(z^{2}-1\right)^{2}-1 & =(-1)^{2}-1=0, \\
{\left[\left(z^{2}-1\right)^{2}-1\right]^{2}-1 } & =0^{2}-1=-1, \quad \text { and so on. }
\end{aligned}
$$

We see that the calculations repeat as $0,-1,0,-1$, and so on. The absolute values are either 0 or 1 , which do not exceed 2 , so $0+0 i$ is in the Julia set and the point $(0,0)$ is part of the graph.
(b) For $z=1+1 i$, we have the following.

$$
\begin{array}{rlrl}
z^{2}-1 & =(1+i)^{2}-1 & & \text { Substitute for } z ; 1+1 i=1+i . \\
& =\left(1+2 i+i^{2}\right)-1 & \begin{array}{l}
\text { Square the binomial; } \\
(x+y)^{2}=x^{2}+2 x y+y^{2} .
\end{array} \\
& =-1+2 i & & i^{2}=-1
\end{array}
$$

The absolute value is

$$
\sqrt{(-1)^{2}+2^{2}}=\sqrt{5} .
$$

Since $\sqrt{5}$ is greater than 2 , the number $1+1 i$ is not in the Julia set and $(1,1)$ is not part of the graph.

Now Try Exercise 63.

1. Concept Check The absolute value (or modulus) of a complex number represents the \qquad of the vector representing it in the complex plane.
2. Concept Check What is the geometric interpretation of the argument of a complex number?

Graph each complex number. See Example 1.

3. $-3+2 i$
4. $6-5 i$
5. $\sqrt{2}+\sqrt{2} i$
6. $2-2 i \sqrt{3}$
7. $-4 i$
8. $3 i$
9. -8
10. 2

Concept Check Give the rectangular form of the complex number shown.

11.

12.

Find the sum of each pair of complex numbers. In Exercises 13-16, graph both complex numbers and their resultant. See Example 1.
13. $4-3 i,-1+2 i$
14. $2+3 i,-4-i$
15. $5-6 i,-5+3 i$
16. $7-3 i,-4+3 i$
17. $-3,3 i$
18. $6,-2 i$
19. $-5-8 i,-1$
20. $4-2 i, 5$
21. $7+6 i, 3 i$
22. $2+6 i,-2 i$
23. $\frac{1}{2}+\frac{2}{3} i, \frac{2}{3}+\frac{1}{2} i$
24. $-\frac{1}{5}+\frac{2}{7} i, \frac{3}{7}-\frac{3}{4} i$

Write each complex number in rectangular form. See Example 2.
25. $2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$
26. $4\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
27. $10\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$
28. $8\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$
29. $4\left(\cos 240^{\circ}+i \sin 240^{\circ}\right)$
30. $2\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)$
31. $3 \operatorname{cis} 150^{\circ}$
32. 2 cis 30°
33. $5 \operatorname{cis} 300^{\circ}$
34. 6 cis 135°
35. $\sqrt{2}$ cis 225°
36. $\sqrt{3} \operatorname{cis} 315^{\circ}$
37. $4\left(\cos \left(-30^{\circ}\right)+i \sin \left(-30^{\circ}\right)\right)$
38. $\sqrt{2}\left(\cos \left(-60^{\circ}\right)+i \sin \left(-60^{\circ}\right)\right)$

Write each complex number in trigonometric form $r(\cos \theta+i \sin \theta)$, with θ in the inter$\operatorname{val}\left[0^{\circ}, 360^{\circ}\right)$. See Example 3.
39. $-3-3 i \sqrt{ } 3$
40. $1+i \sqrt{3}$
41. $\sqrt{3}-i$
42. $4 \sqrt{3}+4 i$
43. $-5-5 i$
44. $-2+2 i$
45. $2+2 i$
46. $4+4 i$
47. $5 i$
48. $-2 i$
49. -4
50. 7

Perform each conversion, using a calculator to approximate answers as necessary. See Example 4.

Rectangular Form Trigonometric Form
51. $2+3 i$
52. \qquad $\cos 35^{\circ}+i \sin 35^{\circ}$
53. \qquad $3\left(\cos 250^{\circ}+i \sin 250^{\circ}\right)$
54.
$-4+i$ \qquad
55.
$12 i$
56. \qquad 3 cis 180°
57.

$$
3+5 i
$$

58. \qquad cis 110.5°

Concept Check The complex number z, where $z=x+y i$, can be graphed in the plane as (x, y). Describe the graphs of all complex numbers z satisfying the conditions in Exercises 59-62.
59. The absolute value of z is 1 .
60. The real and imaginary parts of z are equal.
61. The real part of z is 1 .
62. The imaginary part of z is 1 .

Julia Set Refer to Example 5 to solve Exercises 63 and 64.
63. Is $z=-0.2 i$ in the Julia set?
64. The graph of the Julia set in Figure 11 appears to be symmetric with respect to both the x-axis and the y-axis. Complete the following to show that this is true.
(a) Show that complex conjugates have the same absolute value.
(b) Compute $z_{1}{ }^{2}-1$ and $z_{2}{ }^{2}-1$, where $z_{1}=a+b i$ and $z_{2}=a-b i$.
(c) Discuss why if (a, b) is in the Julia set, then so is $(a,-b)$.
(d) Conclude that the graph of the Julia set must be symmetric with respect to the x-axis.
(e) Using a similar argument, show that the Julia set must also be symmetric with respect to the y-axis.

In Exercises 65 and 66, suppose $z=r(\cos \theta+i \sin \theta)$.
65. Use vectors to show that the conjugate of z is

$$
r\left[\cos \left(360^{\circ}-\theta\right)+i \sin \left(360^{\circ}-\theta\right)\right], \quad \text { or } \quad r(\cos \theta-i \sin \theta) .
$$

66. Use vectors to show that

$$
-z=r[\cos (\theta+\pi)+i \sin (\theta+\pi)]
$$

Concept Check In Exercises 67-69, identify the geometric condition (A, B, or C) that implies the situation.
A. The corresponding vectors have opposite directions.
B. The terminal points of the vectors corresponding to $a+b i$ and $c+$ di lie on a horizontal line.
C. The corresponding vectors have the same direction.
67. The difference between two nonreal complex numbers $a+b i$ and $c+d i$ is a real number.
68. The absolute value of the sum of two complex numbers $a+b i$ and $c+d i$ is equal to the sum of their absolute values.
69. The absolute value of the difference of two complex numbers $a+b i$ and $c+d i$ is equal to the sum of their absolute values.
70. Show that z and $i z$ have the same absolute value. How are the graphs of these two numbers related?

8.3 The Product and Quotient Theorems

- Products of Complex

Numbers in
Trigonometric Form

- Quotients of Complex

Numbers in
Trigonometric Form
angle($1+\sqrt{3} \mathrm{i})$ $|1+\sqrt{3} i$.

With the TI-83/84 Plus calculator in complex and degree modes, the MATH menu can be used to find the angle and the magnitude (absolute value) of the vector that corresponds to a given complex number.

Products of Complex Numbers in Trigonometric Form Using the FOIL method

 to multiply complex numbers in rectangular form, we find the product of $1+i \sqrt{3}$ and $-2 \sqrt{3}+2 i$ as follows.$$
\begin{aligned}
(1 & +i \sqrt{3})(-2 \sqrt{3}+2 i) & & \\
& =-2 \sqrt{3}+2 i-2 i(3)+2 i^{2} \sqrt{3} & & \text { FOIL } \\
& =-2 \sqrt{3}+2 i-6 i-2 \sqrt{3} & & i^{2}=-1 \text { (Section 8.1) } \\
& =-4 \sqrt{3}-4 i & & \text { Combine like terms. }
\end{aligned}
$$

We can also find this same product by first converting the complex numbers $1+i \sqrt{3}$ and $-2 \sqrt{3}+2 i$ to trigonometric form.

$$
1+i \sqrt{3}=2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)
$$

and

$$
\begin{equation*}
-2 \sqrt{3}+2 i=4\left(\cos 150^{\circ}+i \sin 150^{\circ}\right) \tag{Section8.2}
\end{equation*}
$$

If we multiply the trigonometric forms and use identities for the cosine and the sine of the sum of two angles, then the result is as follows.

$$
\begin{array}{rlrl}
{[} & \left.2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)\right]\left[4\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)\right] & & \\
& =2 \cdot 4\left(\cos 60^{\circ} \cdot \cos 150^{\circ}+i \sin 60^{\circ} \cdot \cos 150^{\circ}\right. & & \text { Multiply the absolute values } \\
& \left.+i \cos 60^{\circ} \cdot \sin 150^{\circ}+i^{2} \sin 60^{\circ} \cdot \sin 150^{\circ}\right) & & \text { and FOIL. } \\
=8\left[\left(\cos 60^{\circ} \cdot \cos 150^{\circ}-\sin 60^{\circ} \cdot \sin 150^{\circ}\right)\right. & & i^{2}=-1 ; \text { Factor out } i . \\
& \left.+i\left(\sin 60^{\circ} \cdot \cos 150^{\circ}+\cos 60^{\circ} \cdot \sin 150^{\circ}\right)\right] & & \\
=8\left[\cos \left(60^{\circ}+150^{\circ}\right)+i \sin \left(60^{\circ}+150^{\circ}\right)\right] & & \text { Use identities for } \cos (A+B) \\
=8\left(\cos 210^{\circ}+i \sin 210^{\circ}\right) & & \text { and } \sin (A+B) \cdot(\text { Section 5.3) }
\end{array}
$$

The absolute value of the product, 8 , is equal to the product of the absolute values of the factors, $2 \cdot 4$, and the argument of the product, 210°, is equal to the sum of the arguments of the factors, $60^{\circ}+150^{\circ}$.

The product obtained when multiplying by the first method is the rectangular form of the product obtained when multiplying by the second method.

$$
\begin{aligned}
& 8\left(\cos 210^{\circ}+i \sin 210^{\circ}\right) \\
& \quad=8\left(-\frac{\sqrt{3}}{2}-\frac{1}{2} i\right) \\
& \quad \begin{array}{ll}
\cos 210^{\circ}=-\frac{\sqrt{3}}{2} ; \sin 210^{\circ}=-\frac{1}{2} \\
(\text { Section 2.2) }
\end{array} \\
& =-4 \sqrt{3}-4 i
\end{aligned} \quad \text { Rectangular form } \quad l
$$

We can generalize this work in the product theorem.

Product Theorem

If $r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ are any two complex numbers, then the following holds.

$$
\begin{aligned}
& {\left[r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\right] \cdot\left[r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)\right]} \\
& \quad=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]
\end{aligned}
$$

In compact form, this is written

$$
\left(r_{1} \operatorname{cis} \theta_{1}\right)\left(r_{2} \operatorname{cis} \theta_{2}\right)=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
$$

That is, to multiply complex numbers in trigonometric form, multiply their absolute values and add their arguments.

EXAMPLE 1 Using the Product Theorem

Find the product of $3\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$ and $2\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)$. Write the result in rectangular form.

SOLUTION

$\left[3\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)\right]\left[2\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)\right]$

$$
\begin{array}{ll}
=3 \cdot 2\left[\cos \left(45^{\circ}+135^{\circ}\right)+i \sin \left(45^{\circ}+135^{\circ}\right)\right] & \\
=6\left(\cos 180^{\circ}+i \sin 180^{\circ}\right) & \\
=6(-1+i \cdot 0) & \\
=6(-1), \text { or } 180^{\circ}=-1 ; \sin 180^{\circ}=0 \\
=6 & \\
\text { (Section theorem } \\
=6 \text { Rectangular form }
\end{array}
$$

Now Try Exercise 7.

Quotients of Complex Numbers in Trigonometric Form The rectangular form

 of the quotient of $1+i \sqrt{3}$ and $-2 \sqrt{3}+2 i$ is found as follows.$$
\begin{array}{rll}
\frac{1}{-2} \sqrt{3}+2 i \sqrt{3} \\
= & \frac{(1+i \sqrt{3})(-2 \sqrt{3}-2 i)}{(-2 \sqrt{3}+2 i)(-2 \sqrt{3}-2 i)} & \begin{array}{l}
\text { Multiply both numerator and denominator } \\
\text { by the conjugate of the denominator. } \\
\text { (Section 8.1) }
\end{array} \\
=\frac{-2 \sqrt{3}-2 i-6 i-2 i^{2} \sqrt{3}}{12-4 i^{2}} & \text { FOIL; }(x+y)(x-y)=x^{2}-y^{2} \\
=\frac{-8 i}{16}, \text { or }-\frac{1}{2} i & \text { Simplify. }
\end{array}
$$

Writing $1+i \sqrt{3},-2 \sqrt{3}+2 i$, and $-\frac{1}{2} i$ in trigonometric form gives

$$
\begin{array}{rlrl}
1+i \sqrt{3} & =2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right), & & \\
-2 \sqrt{3}+2 i & =4\left(\cos 150^{\circ}+i \sin 150^{\circ}\right), & & \text { Use } r=\sqrt{x^{2}+y^{2}} \text { and } \\
\tan \theta=\frac{y}{x} .(\text { Section 8.2) }
\end{array}
$$

and

Here, the absolute value of the quotient, $\frac{1}{2}$, is the quotient of the two absolute values, $\frac{2}{4}=\frac{1}{2}$. The argument of the quotient, -90°, is the difference of the two arguments,

$$
60^{\circ}-150^{\circ}=-90^{\circ}
$$

Generalizing this work leads to the quotient theorem.

Quotient Theorem

If $r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ are any two complex numbers, where $r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \neq 0$, then the following holds.

$$
\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]
$$

In compact form, this is written

$$
\frac{r_{1} \operatorname{cis} \theta_{1}}{r_{2} \operatorname{cis} \theta_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
$$

That is, to divide complex numbers in trigonometric form, divide their absolute values and subtract their arguments.

EXAMPLE 2 Using the Quotient Theorem

Find the quotient $\frac{10 \operatorname{cis}\left(-60^{\circ}\right)}{5 \operatorname{cis} 150^{\circ}}$. Write the result in rectangular form.
SOLUTION

$$
\begin{array}{ll}
\frac{10}{10} \operatorname{cis}\left(-60^{\circ}\right) \\
& =\frac{10}{5} \operatorname{cis} 150^{\circ} \\
=2 \operatorname{cis}\left(-60^{\circ}-150^{\circ}\right) & \text { Quotient theorem } \\
=2\left[\cos \left(-210^{\circ}\right)+i \sin \left(-210^{\circ}\right)\right] & \text { Rewrite. } \\
=2\left[-\frac{\sqrt{3}}{2}+i\left(\frac{1}{2}\right)\right] & \begin{array}{l}
\cos \left(-210^{\circ}\right)=-\frac{\sqrt{3}}{2} ; \\
=-\sqrt{3}+i
\end{array} \\
\begin{array}{ll}
\sin \left(-210^{\circ}\right)=\frac{1}{2} \text { (Section 2.2) } \\
& \text { Rectangular form }
\end{array}
\end{array}
$$

EXAMPLE 3 Using the Product and Quotient Theorems with a Calculator

Use a calculator to find the following. Write the results in rectangular form.
(a) $\left(9.3 \operatorname{cis} 125.2^{\circ}\right)\left(2.7 \operatorname{cis} 49.8^{\circ}\right)$
(b) $\frac{10.42\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)}{5.21\left(\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right)}$

SOLUTION

(a)
$\left(9.3 \operatorname{cis} 125.2^{\circ}\right)\left(2.7 \operatorname{cis} 49.8^{\circ}\right)$

$$
=9.3(2.7) \operatorname{cis}\left(125.2^{\circ}+49.8^{\circ}\right) \quad \text { Product theorem }
$$

Multiply the absolute values and add the arguments.	$=25.11 \operatorname{cis} 175^{\circ}$		
	$=25.11\left(\cos 175^{\circ}+i \sin 175^{\circ}\right)$		Equivalent form
	$\approx 25.11[-0.99619470+i(0.08715574)]$		Use a calculator.
	$\approx-25.0144+2.1885 i$		Rectangular form

(b)

$$
\frac{10.42\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)}{5.21\left(\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right)}
$$

$$
=\frac{10.42}{5.21}\left[\cos \left(\frac{3 \pi}{4}-\frac{\pi}{5}\right)+i \sin \left(\frac{3 \pi}{4}-\frac{\pi}{5}\right)\right] \quad \text { Quotient theorem }
$$

Divide the absolute values and subtract the arguments.	$=2\left(\cos \frac{11 \pi}{20}+i \sin \frac{11 \pi}{20}\right)$	$\frac{3 \pi}{4}=\frac{15 \pi}{20} ; \frac{\pi}{5}=\frac{4 \pi}{20}$
	$\approx-0.3129+1.9754 i$	Rectangular form

8.3 Exercises

Concept Check Fill in the blanks with the correct responses.

1. When multiplying two complex numbers in trigonometric form, we \qquad their absolute values and \qquad their arguments.
2. When dividing two complex numbers in trigonometric form, we \qquad their absolute values and \qquad their arguments.

Find each product and write it in rectangular form. See Example 1.
3. $\left[3\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)\right]\left[2\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)\right]$
4. $\left[4\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)\right]\left[5\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)\right]$
5. $\left[4\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)\right]\left[6\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)\right]$
6. $\left[8\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)\right]\left[5\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)\right]$
7. $\left[2\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)\right]\left[2\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)\right]$
8. $\left[8\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)\right]\left[2\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)\right]$
9. $\left(\sqrt{3} \operatorname{cis} 45^{\circ}\right)\left(\sqrt{3} \operatorname{cis} 225^{\circ}\right)$
10. $\left(\sqrt{6} \operatorname{cis} 120^{\circ}\right)\left[\sqrt{6} \operatorname{cis}\left(-30^{\circ}\right)\right]$
11. $\left(5 \operatorname{cis} 90^{\circ}\right)\left(3 \operatorname{cis} 45^{\circ}\right)$
12. $\left(3 \operatorname{cis} 300^{\circ}\right)\left(7 \operatorname{cis} 270^{\circ}\right)$

Find each quotient and write it in rectangular form. In Exercises 19-24, first convert the numerator and the denominator to trigonometric form. See Example 2.
13. $\frac{4\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)}{2\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)}$
14. $\frac{24\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)}{2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)}$
15. $\frac{10\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)}{5\left(\cos 230^{\circ}+i \sin 230^{\circ}\right)}$
16. $\frac{12\left(\cos 23^{\circ}+i \sin 23^{\circ}\right)}{6\left(\cos 293^{\circ}+i \sin 293^{\circ}\right)}$
17. $\frac{3 \operatorname{cis} 305^{\circ}}{9 \operatorname{cis} 65^{\circ}}$
18. $\frac{16 \operatorname{cis} 310^{\circ}}{8 \operatorname{cis} 70^{\circ}}$
19. $\frac{8}{\sqrt{3}+i}$
20. $\frac{2 i}{-1-i \sqrt{3}}$
21. $\frac{-i}{1+i}$
22. $\frac{1}{2-2 i}$
23. $\frac{2 \sqrt{6}-2 i \sqrt{2}}{\sqrt{2}-i \sqrt{6}}$
24. $\frac{-3 \sqrt{2}+3 i \sqrt{6}}{\sqrt{6}+i \sqrt{2}}$

Use a calculator to perform the indicated operations. Give answers in rectangular form, expressing real and imaginary parts to four decimal places. See Example 3.
25. $\left[2.5\left(\cos 35^{\circ}+i \sin 35^{\circ}\right)\right]\left[3.0\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)\right]$
26. $\left[4.6\left(\cos 12^{\circ}+i \sin 12^{\circ}\right)\right]\left[2.0\left(\cos 13^{\circ}+i \sin 13^{\circ}\right)\right]$
27. $\left(12 \operatorname{cis} 18.5^{\circ}\right)\left(3 \operatorname{cis} 12.5^{\circ}\right)$
29. $\frac{45\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)}{22.5\left(\cos \frac{3 \pi}{5}+i \sin \frac{3 \pi}{5}\right)}$
31. $\left[2 \operatorname{cis} \frac{5 \pi}{9}\right]^{2}$
28. $\left(4\right.$ cis $\left.19.25^{\circ}\right)\left(7 \operatorname{cis} 41.75^{\circ}\right)$
30. $\frac{30\left(\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}\right)}{10\left(\cos \frac{\pi}{7}+i \sin \frac{\pi}{7}\right)}$
32. $\left[24.3 \operatorname{cis} \frac{7 \pi}{12}\right]^{2}$

Relating Concepts

For individual or collaborative investigation (Exercises 33-39)
Consider the following complex numbers, and work Exercises 33-39 in order.

$$
w=-1+i \quad \text { and } \quad z=-1-i
$$

33. Multiply w and z using their rectangular forms and the FOIL method from Section 8.1. Leave the product in rectangular form.
34. Find the trigonometric forms of w and z.
35. Multiply w and z using their trigonometric forms and the method described in this section.
36. Use the result of Exercise $\mathbf{3 5}$ to find the rectangular form of $w z$. How does this compare to your result in Exercise 33?
37. Find the quotient $\frac{w}{z}$ using their rectangular forms and multiplying both the numerator and the denominator by the conjugate of the denominator. Leave the quotient in rectangular form.
38. Use the trigonometric forms of w and z, found in Exercise 34, to divide w by z using the method described in this section.
39. Use the result of Exercise 38 to find the rectangular form of $\frac{w}{z}$. How does this compare to your result in Exercise 37?
40. Note that $(r \operatorname{cis} \theta)^{2}=(r \operatorname{cis} \theta)(r \operatorname{cis} \theta)=r^{2} \operatorname{cis}(\theta+\theta)=r^{2} \operatorname{cis} 2 \theta$. Explain how we can square a complex number in trigonometric form. (In the next section, we will develop this idea more fully.)
41. Without actually performing the operations, state why the following products are the same.
and

$$
\begin{aligned}
& \quad\left[2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)\right] \cdot\left[5\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)\right] \\
& {\left[2\left[\cos \left(-315^{\circ}\right)+i \sin \left(-315^{\circ}\right)\right]\right] \cdot\left[5\left[\cos \left(-270^{\circ}\right)+i \sin \left(-270^{\circ}\right)\right]\right]}
\end{aligned}
$$

42. Show that $\frac{1}{z}=\frac{1}{r}(\cos \theta-i \sin \theta)$, where $z=r(\cos \theta+i \sin \theta)$.
(Modeling) Solve each problem.
43. Electrical Current The alternating current in an electric inductor is $I=\frac{E}{Z}$ amperes, where E is voltage and $Z=R+X_{L} i$ is impedance. If $E=8\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)$, $R=6$, and $X_{L}=3$, find the current. Give the answer in rectangular form, with real and imaginary parts to the nearest hundredth.
44. Electrical Current The current I in a circuit with voltage E, resistance R, capacitive reactance X_{c}, and inductive reactance X_{L} is

$$
I=\frac{E}{R+\left(X_{L}-X_{c}\right) i}
$$

Find I if $E=12\left(\cos 25^{\circ}+i \sin 25^{\circ}\right), R=3, X_{L}=4$, and $X_{c}=6$. Give the answer in rectangular form, with real and imaginary parts to the nearest tenth.
(Modeling) Impedance In the parallel electrical circuit shown in the figure, the impedance Z can be calculated using the equation

$$
Z=\frac{1}{\frac{1}{Z_{1}}+\frac{1}{Z_{2}}}
$$

where Z_{1} and Z_{2} are the impedances for the branches of the circuit.
45. If $Z_{1}=50+25 i$ and $Z_{2}=60+20 i$, calculate Z.
46. Determine the angle θ for the value of Z found in Exercise 45.

8.4 De Moivre's Theorem; Powers and Roots of Complex Numbers

- Powers of Complex Numbers (De Moivre's Theorem)
- Roots of Complex Numbers

Powers of Complex Numbers (De Moivre's Theorem) Because raising a number to a positive integer power is a repeated application of the product rule, it would seem likely that a theorem for finding powers of complex numbers exists. Consider the following.

$$
\begin{array}{lll}
{[r} & (\cos \theta+i \sin \theta)]^{2} & \\
\quad & =[r(\cos \theta+i \sin \theta)][r(\cos \theta+i \sin \theta)] & \\
\quad & a^{2}=a \cdot a \\
& =r \cdot r[\cos (\theta+\theta)+i \sin (\theta+\theta)] & \\
\quad & \text { Product theorem (Section 8.3) } \\
& =r^{2}(\cos 2 \theta+i \sin 2 \theta) & \\
\text { Multiply and add. }
\end{array}
$$

Abraham De Moivre

(1667-1754)
Named after this French expatriate friend of Isaac Newton, De Moivre's theorem relates complex numbers and trigonometry.

In the same way,

$$
[r(\cos \theta+i \sin \theta)]^{3} \quad \text { is equivalent to } \quad r^{3}(\cos 3 \theta+i \sin 3 \theta)
$$

These results suggest the following theorem for positive integer values of n. Although the theorem is stated and can be proved for all n, we use it only for positive integer values of n and their reciprocals.

De Moivre's Theorem

If $r(\cos \theta+i \sin \theta)$ is a complex number, and if n is any real number, then the following holds.

$$
[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

In compact form, this is written

$$
[r \operatorname{cis} \theta]^{n}=r^{n}(\operatorname{cis} n \theta)
$$

EXAMPLE 1 Finding a Power of a Complex Number

Find $(1+i \sqrt{3})^{8}$ and express the result in rectangular form.
SOLUTION First write $1+i \sqrt{3}$ in trigonometric form as

$$
2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right) . \quad(\text { Section } 8.2)
$$

Now, apply De Moivre's theorem.

$$
\begin{aligned}
(1 & +i \sqrt{3})^{8} & & \\
& =\left[2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)\right]^{8} & & \\
& =2^{8}\left[\cos \left(8 \cdot 60^{\circ}\right)+i \sin \left(8 \cdot 60^{\circ}\right)\right] & & \text { De Moivre's theorem } \\
& =256\left(\cos 480^{\circ}+i \sin 480^{\circ}\right) & & \text { Apply the exponent and multiply. } \\
& =256\left(\cos 120^{\circ}+i \sin 120^{\circ}\right) & & \begin{array}{l}
480^{\circ} \text { and } 120^{\circ} \text { are coterminal. } \\
(\text { Section } 1.1)
\end{array} \\
& =256\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) & & \begin{array}{l}
\cos 120^{\circ}=-\frac{1}{2} ; \sin 120^{\circ}=\frac{\sqrt{3}}{2} \\
\text { (Section 2.2) }
\end{array} \\
& =-128+128 i \sqrt{3} & & \text { Rectangular form }
\end{aligned}
$$

Now Try Exercise 7.

Roots of Complex Numbers Every nonzero complex number has exactly n distinct complex nth roots. De Moivre's theorem can be extended to find all nth roots of a complex number.

nth Root

For a positive integer n, the complex number $a+b i$ is an \boldsymbol{n} th root of the complex number $x+y i$ if

$$
(a+b i)^{n}=x+y i
$$

To find the three complex cube roots of $8\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)$, for example, look for a complex number, say $r(\cos \alpha+i \sin \alpha)$, that will satisfy

$$
[r(\cos \alpha+i \sin \alpha)]^{3}=8\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)
$$

By De Moivre's theorem, this equation becomes

$$
r^{3}(\cos 3 \alpha+i \sin 3 \alpha)=8\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)
$$

Set $r^{3}=8$ and $\cos 3 \alpha+i \sin 3 \alpha=\cos 135^{\circ}+i \sin 135^{\circ}$, to satisfy this equation. The first of these conditions implies that $r=2$, and the second implies that

$$
\cos 3 \alpha=\cos 135^{\circ} \quad \text { and } \quad \sin 3 \alpha=\sin 135^{\circ}
$$

For these equations to be satisfied, 3α must represent an angle that is coterminal with 135°. Therefore, we must have
or

$$
\begin{aligned}
3 \alpha & =135^{\circ}+360^{\circ} \cdot k,
\end{aligned} \quad k \text { any integer } .
$$

Now, let k take on the integer values 0,1 , and 2 .

$$
\begin{aligned}
& \text { If } k=0 \text {, then } \quad \alpha=\frac{135^{\circ}+360^{\circ} \cdot 0}{3}=45^{\circ} . \\
& \text { If } k=1 \text {, then } \quad \alpha=\frac{135^{\circ}+360^{\circ} \cdot 1}{3}=\frac{495^{\circ}}{3}=165^{\circ} . \\
& \text { If } k=2 \text {, then } \quad \alpha=\frac{135^{\circ}+360^{\circ} \cdot 2}{3}=\frac{855^{\circ}}{3}=285^{\circ} .
\end{aligned}
$$

In the same way, $\alpha=405^{\circ}$ when $k=3$. But note that $405^{\circ}=45^{\circ}+360^{\circ}$, so $\sin 405^{\circ}=\sin 45^{\circ}$ and $\cos 405^{\circ}=\cos 45^{\circ}$. Similarly, if $k=4$, then $\alpha=525^{\circ}$, which has the same sine and cosine values as 165°. Continuing with larger values of k would repeat solutions already found. Therefore, all of the cube roots (three of them) can be found by letting $k=0,1$, and 2 , respectively.

$$
\begin{aligned}
& \text { When } k=0 \text {, the root is } \quad 2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right) \\
& \text { When } k=1 \text {, the root is } \quad 2\left(\cos 165^{\circ}+i \sin 165^{\circ}\right) . \\
& \text { When } k=2 \text {, the root is } \quad 2\left(\cos 285^{\circ}+i \sin 285^{\circ}\right) .
\end{aligned}
$$

In summary, we see that $2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right), 2\left(\cos 165^{\circ}+i \sin 165^{\circ}\right)$, and $2\left(\cos 285^{\circ}+i \sin 285^{\circ}\right)$ are the three cube roots of $8\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)$.

nth Root Theorem

If n is any positive integer, r is a positive real number, and θ is in degrees, then the nonzero complex number $r(\cos \theta+i \sin \theta)$ has exactly n distinct nth roots, given by the following.

$$
\sqrt[n]{r}(\cos \alpha+i \sin \alpha) \quad \text { or } \quad \sqrt[n]{r} \operatorname{cis} \alpha
$$

where

$$
\alpha=\frac{\boldsymbol{\theta}+\mathbf{3 6 0 ^ { \circ } \cdot \boldsymbol { k }}}{\boldsymbol{n}}, \quad \text { or } \quad \boldsymbol{\alpha}=\frac{\boldsymbol{\theta}}{\boldsymbol{n}}+\frac{\mathbf{3 6 0 ^ { \circ } \cdot \boldsymbol { k }}}{\boldsymbol{n}}, \quad k=0,1,2, \ldots, n-1
$$

If θ is in radians, then

$$
\alpha=\frac{\boldsymbol{\theta}+2 \pi k}{n}, \quad \text { or } \quad \alpha=\frac{\boldsymbol{\theta}}{\mathbf{n}}+\frac{\mathbf{2} \pi \boldsymbol{k}}{\boldsymbol{n}}, \quad k=0,1,2, \ldots, n-1
$$

This screen confirms the result of Example 2.

EXAMPLE 2 Finding Complex Roots

Find the two square roots of $4 i$. Write the roots in rectangular form.
SOLUTION First write $4 i$ in trigonometric form.

$$
4\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) \quad \text { Trigonometric form }
$$

Here $r=4$ and $\theta=\frac{\pi}{2}$. The square roots have absolute value $\sqrt{4}=2$ and arguments as follows.

$$
\alpha=\frac{\frac{\pi}{2}}{2}+\frac{2 \pi k}{2}=\frac{\pi}{4}+\pi k>\begin{gathered}
\text { Be careful } \\
\text { simplifying here. }
\end{gathered}
$$

Since there are two square roots, let $k=0$ and 1 .

$$
\begin{aligned}
& \text { If } k=0 \text {, then } \quad \alpha=\frac{\pi}{4}+\pi \cdot 0=\frac{\pi}{4} . \\
& \text { If } k=1, \text { then } \quad \alpha=\frac{\pi}{4}+\pi \cdot 1=\frac{5 \pi}{4} .
\end{aligned}
$$

Using these values for α, the square roots are $2 \operatorname{cis} \frac{\pi}{4}$ and $2 \operatorname{cis} \frac{5 \pi}{4}$, which can be written in rectangular form as

$$
\sqrt{2}+i \sqrt{2} \quad \text { and }-\sqrt{2}-i \sqrt{2}
$$

Now Try Exercise 17(a).

EXAMPLE 3 Finding Complex Roots

Find all fourth roots of $-8+8 i \sqrt{3}$. Write the roots in rectangular form.
SOLUTION $\quad-8+8 i \sqrt{3}=16$ cis $120^{\circ} \quad$ Write in trigonometric form.
Here $r=16$ and $\theta=120^{\circ}$. The fourth roots of this number have absolute value $\sqrt[4]{16}=2$ and arguments as follows.

$$
\alpha=\frac{120^{\circ}}{4}+\frac{360^{\circ} \cdot k}{4}=30^{\circ}+90^{\circ} \cdot k
$$

Since there are four fourth roots, let $k=0,1,2$, and 3 .

$$
\begin{aligned}
& \text { If } k=0 \text {, then } \quad \alpha=30^{\circ}+90^{\circ} \cdot 0=30^{\circ} . \\
& \text { If } k=1 \text {, then } \quad \alpha=30^{\circ}+90^{\circ} \cdot 1=120^{\circ} . \\
& \text { If } k=2 \text {, then } \quad \alpha=30^{\circ}+90^{\circ} \cdot 2=210^{\circ} . \\
& \text { If } k=3 \text {, then } \quad \alpha=30^{\circ}+90^{\circ} \cdot 3=300^{\circ} .
\end{aligned}
$$

Using these angles, the fourth roots are

$$
2 \operatorname{cis} 30^{\circ}, \quad 2 \operatorname{cis} 120^{\circ}, \quad 2 \operatorname{cis} 210^{\circ}, \quad \text { and } 2 \operatorname{cis} 300^{\circ}
$$

These four roots can be written in rectangular form as

$$
\sqrt{3}+i, \quad-1+i \sqrt{3}, \quad-\sqrt{3}-i, \quad \text { and } \quad 1-i \sqrt{3} .
$$

The graphs of these roots lie on a circle with center at the origin and radius 2 . See Figure 12. The roots are equally spaced about the circle, 90° apart.

Figure 12
Now Try Exercises 23(a) and (b).

EXAMPLE 4 Solving an Equation (Complex Roots)

Find all complex number solutions of $x^{5}-1=0$. Graph them as vectors in the complex plane.

SOLUTION Write the equation as

$$
x^{5}-1=0, \quad \text { or } \quad x^{5}=1 .
$$

There is only one real number solution, 1 , but there are five complex number solutions. To find these solutions, first write 1 in trigonometric form.

$$
1=1+0 i=1\left(\cos 0^{\circ}+i \sin 0^{\circ}\right) \quad \text { Trigonometric form }
$$

The absolute value of the fifth roots is $\sqrt[5]{1}=1$. The arguments are given by

$$
0^{\circ}+72^{\circ} \cdot k, \quad k=0,1,2,3, \text { and } 4 .
$$

By using these arguments, we find that the fifth roots are as follows.

$$
\begin{array}{ll}
1\left(\cos 0^{\circ}+i \sin 0^{\circ}\right), & k=0 \\
1\left(\cos 72^{\circ}+i \sin 72^{\circ}\right), & k=1 \\
1\left(\cos 144^{\circ}+i \sin 144^{\circ}\right), & k=2 \\
1\left(\cos 216^{\circ}+i \sin 216^{\circ}\right), & k=3 \\
1\left(\cos 288^{\circ}+i \sin 288^{\circ}\right) & k=4
\end{array}
$$

The solution set of the equation can be written as

$$
\left\{\operatorname{cis} 0^{\circ}, \operatorname{cis} 72^{\circ}, \operatorname{cis} 144^{\circ} \text {, cis } 216^{\circ} \text {, cis } 288^{\circ}\right\} .
$$

The first of these roots equals 1 . The others cannot easily be expressed in rectangular form but can be approximated with a calculator.

The tips of the arrows representing the five fifth roots all lie on a unit circle and are equally spaced around it every 72°, as shown in Figure 13 on the next page.

Figure 13

Find each power. Write each answer in rectangular form. See Example 1.

1. $\left[3\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)\right]^{3}$
2. $\left[2\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)\right]^{4}$
3. $\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)^{8}$
4. $\left[2\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)\right]^{3}$
5. $\left[3 \operatorname{cis} 100^{\circ}\right]^{3}$
6. $\left[3 \operatorname{cis} 40^{\circ}\right]^{3}$
7. $(\sqrt{3}+i)^{5}$
8. $(2-2 i \sqrt{3})^{4}$
9. $(2 \sqrt{2}-2 i \sqrt{2})^{6}$
10. $\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right)^{8}$
11. $(-2-2 i)^{5}$
12. $(-1+i)^{7}$

In Exercises 13-24, (a) find all cube roots of each complex number. Leave answers in trigonometric form. (b) Graph each cube root as a vector in the complex plane. See Examples 2 and 3.
13. $\cos 0^{\circ}+i \sin 0^{\circ}$
14. $\cos 90^{\circ}+i \sin 90^{\circ}$
15. 8 cis 60°
16. 27 cis 300°
17. $-8 i$
18. $27 i$
19. -64
20. 27
21. $1+i \sqrt{3}$
22. $2-2 i \sqrt{3}$
23. $-2 \sqrt{3}+2 i$
24. $\sqrt{3}-i$

Find and graph all specified roots of 1.
25. second (square)
26. fourth
27. sixth

Find and graph all specified roots of i.
28. second (square)
29. third (cube)
30. fourth

Find all complex number solutions of each equation. Leave answers in trigonometric form. See Example 4.
31. $x^{3}-1=0$
32. $x^{3}+1=0$
33. $x^{3}+i=0$
34. $x^{4}+i=0$
35. $x^{3}-8=0$
36. $x^{3}+27=0$
37. $x^{4}+1=0$
38. $x^{4}+16=0$
39. $x^{4}-i=0$
40. $x^{5}-i=0$
41. $x^{3}-(4+4 i \sqrt{3})=0$
42. $x^{4}-(8+8 i \sqrt{3})=0$
43. Solve the cubic equation

$$
x^{3}-1=0
$$

by factoring the left side as the difference of two cubes and setting each factor equal to 0 . Apply the quadratic formula as needed. Then compare your solutions to those of Exercise 31.
44. Solve the cubic equation

$$
x^{3}+27=0
$$

by factoring the left side as the sum of two cubes and setting each factor equal to 0 . Apply the quadratic formula as needed. Then compare your solutions to those of Exercise 36.

Relating Concepts

For individual or collaborative investigation (Exercises 45-48)

In Chapter 5 we derived identities, or formulas, for $\cos 2 \theta$ and $\sin 2 \theta$. These identities can also be derived using De Moivre's theorem. Work Exercises 45-48 in order, to see how this is done.
45. De Moivre's theorem states that $(\cos \theta+i \sin \theta)^{2}=$ \qquad
46. Expand the left side of the equation in Exercise $\mathbf{4 5}$ as a binomial and collect terms to write the left side in the form $a+b i$.
47. Use the result of Exercise 46 to obtain the double-angle formula for cosine.
48. Repeat Exercise 47, but find the double-angle formula for sine.

Solve each problem.
49. Mandelbrot Set The fractal known as the Mandelbrot set is shown in the figure. To determine if a complex number $z=a+b i$ is in this set, perform the following sequence of calculations. Repeatedly compute

$$
\begin{aligned}
& z, \quad z^{2}+z, \quad\left(z^{2}+z\right)^{2}+z \\
& {\left[\left(z^{2}+z\right)^{2}+z\right]^{2}+z, \ldots}
\end{aligned}
$$

In a manner analogous to the Julia set, the
 complex number z does not belong to the Mandelbrot set if any of the resulting absolute values exceeds 2 . Otherwise z is in the set and the point (a, b) should be shaded in the graph. Determine whether or not the following numbers belong to the Mandelbrot set. (Source: Lauwerier, H., Fractals, Princeton University Press.)
(a) $z=0+0 i$
(b) $z=1-1 i$
(c) $z=-0.5 i$
50. Basins of Attraction The fractal shown in the figure is the solution to Cayley's problem of determining the basins of attraction for the cube roots of unity. The three cube roots of unity are

$$
\begin{aligned}
& \quad w_{1}=1, \quad w_{2}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i, \\
& \text { and } \quad w_{3}=-\frac{1}{2}-\frac{\sqrt{3}}{2} i .
\end{aligned}
$$

This fractal can be generated by repeatedly evaluating the function

$$
f(z)=\frac{2 z^{3}+1}{3 z^{2}}
$$

where z is a complex number. One begins by picking $z_{1}=a+b i$ and then successively computing $z_{2}=f\left(z_{1}\right), z_{3}=f\left(z_{2}\right), z_{4}=f\left(z_{3}\right), \ldots$ If the resulting values of $f(z)$ approach w_{1}, color the pixel at (a, b) red. If they approach w_{2}, color it blue, and if they approach w_{3}, color it yellow. If this process continues for a large number of different z_{1}, the fractal in the figure will appear. Determine the appropriate color of the pixel for each value of z_{1}. (Source: Crownover, R., Introduction to Fractals and Chaos, Jones and Bartlett Publishers.)
(a) $z_{1}=i$
(b) $z_{1}=2+i$
(c) $z_{1}=-1-i$
51. The screens here illustrate how a pentagon can be graphed using a graphing calculator. Note that a pentagon has five sides, and the T-step is $\frac{360}{5}=72$. The display at the bottom of the graph screen indicates that one fifth root of 1 is $1+0 i=1$. Use this technique to find all fifth roots of 1 , and express the real and imaginary parts in decimal form.
 previous screen.

The calculator is in parametric, degree, and connected graph modes.
52. Use the method of Exercise 51 to find the first three of the ten 10th roots of 1.
53. One of the three cube roots of a complex number is $2+2 i \sqrt{3}$. Determine the rectangular form of its other two cube roots.

Use a calculator to find all solutions of each equation in rectangular form.
54. $x^{2}+2-i=0$
55. $x^{2}-3+2 i=0$
56. $x^{3}+4-5 i=0$
57. $x^{5}+2+3 i=0$
58. Concept Check How many complex 64th roots does 1 have? How many are real? How many are not?
59. Concept Check True or false: Every real number must have two distinct real square roots.
60. Concept Check True or false: Some real numbers have three real cube roots.
61. Show that if z is an nth root of 1 , then so is $\frac{1}{z}$.
62. Explain why a real number can have only one real cube root.
63. Explain why the $n n$th roots of 1 are equally spaced around the unit circle.
64. Refer to Figure 13. A regular pentagon can be created by joining the tips of the arrows. Explain how you can use this principle to create a regular octagon.

Chapter 8
 Quiz (Sections 8.1-8.4)

1. Multiply or divide as indicated. Simplify each answer.
(a) $\sqrt{-24} \cdot \sqrt{-3}$
(b) $\frac{\sqrt{-8}}{\sqrt{72}}$
2. Write each of the following in rectangular form for the complex numbers

$$
w=3+5 i \quad \text { and } \quad z=-4+i
$$

(a) $w+z$ (and give a geometric representation)
(b) $w-z$
(c) $w z$
(d) $\frac{w}{z}$
3. Express each of the following in rectangular form.
(a) $(1-i)^{3}$
(b) i^{33}
4. Solve $3 x^{2}-x+4=0$ over the complex number system.
5. Write each complex number in trigonometric (polar) form, where $0^{\circ} \leq \theta<360^{\circ}$.
(a) $-4 i$
(b) $1-i \sqrt{3}$
(c) $-3-i$
6. Write each complex number in rectangular form.
(a) $4\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
(b) $5 \operatorname{cis} 130^{\circ}$
(c) $7\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$
(d) $2 \operatorname{cis} 0^{\circ}$
7. Write each of the following in the form specified for the complex numbers

$$
w=12\left(\cos 80^{\circ}+i \sin 80^{\circ}\right) \quad \text { and } \quad z=3\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)
$$

(a) $w z$ (trigonometric form)
(b) $\frac{w}{z}$ (rectangular form)
(c) z^{3} (rectangular form)
(d) w^{3} (rectangular form)
8. Find the four complex fourth roots of -16 . Express them in both trigonometric and rectangular forms.

8.5 Polar Equations and Graphs

- Polar Coordinate System
- Graphs of Polar Equations
- Converting from Polar to Rectangular Equations
- Classifying Polar Equations

Polar Coordinate System Previously we have used the rectangular coordinate system to graph points and equations. In the rectangular coordinate system, each point in the plane is specified by giving two numbers (x, y). These represent the directed distances from a pair of perpendicular axes, the x-axis and the y-axis.

Now we consider the polar coordinate system which is based on a point, called the pole, and a ray, called the polar axis. The polar axis is usually drawn in the direction of the positive x-axis, as shown in Figure 14.

Polar axis
Figure 14

In Figure 15 the pole has been placed at the origin of a rectangular coordinate system so that the polar axis coincides with the positive x-axis. Point P has rectangular coordinates (x, y). Point P can also be located by giving the directed angle θ from the positive x-axis to ray $O P$ and the directed distance r from the pole to point P. The ordered pair (r, θ) gives the polar coordinates of point P. If $r>0$ then point P lies on the terminal side of θ, and if $r<0$ then point P lies on the ray pointing in the opposite direction of the terminal side of θ, a distance $|r|$ from the pole. Figure 16 shows rectangular axes superimposed on a polar coordinate grid.

Figure 15

Figure 16

Rectangular and Polar Coordinates

If a point has rectangular coordinates (x, y) and polar coordinates (r, θ), then these coordinates are related as follows.

$$
\begin{aligned}
x & =r \cos \theta & y & =r \sin \theta \\
r^{2} & =x^{2}+y^{2} & \tan \theta & =\frac{y}{x}, \quad \text { if } x \neq 0
\end{aligned}
$$

EXAMPLE 1 Plotting Points with Polar Coordinates

Plot each point by hand in the polar coordinate system. Then determine the rectangular coordinates of each point.
(a) $P\left(2,30^{\circ}\right)$
(b) $Q\left(-4, \frac{2 \pi}{3}\right)$
(c) $R\left(5,-\frac{\pi}{4}\right)$

SOLUTION

Figure 17
(a) In the point $P\left(2,30^{\circ}\right), r=2$ and $\theta=30^{\circ}$, so P is located 2 units from the origin in the positive direction on a ray making a 30° angle with the polar axis, as shown in Figure 17.

We find the rectangular coordinates as follows.

$$
\begin{array}{l|ll}
x=r \cos \theta & y=r \sin \theta & \text { Conversion equations } \\
x=2 \cos 30^{\circ} & y=2 \sin 30^{\circ} & \text { Substitute. } \\
x=2\left(\frac{\sqrt{3}}{2}\right) & y=2\left(\frac{1}{2}\right) & \text { (Section 2.1) } \\
x=\sqrt{3} & y=1 & \text { Multiply. }
\end{array}
$$

The rectangular coordinates are $(\sqrt{3}, 1)$.

Figure 18

Figure 19

LOOKING AHEAD TO CALCULUS

Techniques studied in calculus associated with derivatives and integrals provide methods of finding slopes of tangent lines to polar curves, areas bounded by such curves, and lengths of their arcs.
(b) In the point $Q\left(-4, \frac{2 \pi}{3}\right), r$ is negative, so Q is 4 units in the opposite direction from the pole on an extension of the $\frac{2 \pi}{3}$ ray. See Figure 18. The rectangular coordinates are
and

$$
\begin{aligned}
& x=-4 \cos \frac{2 \pi}{3}=-4\left(-\frac{1}{2}\right)=2 \\
& y=-4 \sin \frac{2 \pi}{3}=-4\left(\frac{\sqrt{3}}{2}\right)=-2 \sqrt{3}
\end{aligned}
$$

(c) Point $R\left(5,-\frac{\pi}{4}\right)$ is shown in Figure 19. Since θ is negative, the angle is measured in the clockwise direction.

$$
\begin{array}{r}
x=5 \cos \left(-\frac{\pi}{4}\right)=\frac{5 \sqrt{2}}{2} \text { and } y=5 \sin \left(-\frac{\pi}{4}\right)=-\frac{5 \sqrt{2}}{2} \\
\checkmark \text { Now Try Exercises 3(a), (c), 5(a), (c), and 11(a), (c). }
\end{array}
$$

While a given point in the plane can have only one pair of rectangular coordinates, this same point can have an infinite number of pairs of polar coordinates. For example, $\left(2,30^{\circ}\right)$ locates the same point as

$$
\left(2,390^{\circ}\right), \quad\left(2,-330^{\circ}\right), \quad \text { and } \quad\left(-2,210^{\circ}\right)
$$

EXAMPLE 2 Giving Alternative Forms for Coordinates of a Point

(a) Give three other pairs of polar coordinates for the point $P\left(3,140^{\circ}\right)$.
(b) Determine two pairs of polar coordinates for the point with rectangular coordinates $(-1,1)$.

SOLUTION

(a) Three pairs that could be used for the point are $\left(3,-220^{\circ}\right),\left(-3,320^{\circ}\right)$, and $\left(-3,-40^{\circ}\right)$. See Figure 20.

Figure 20

Figure 21
(b) As shown in Figure 21, the point $(-1,1)$ lies in the second quadrant. Since $\tan \theta=\frac{1}{-1}=-1$, one possible value for θ is 135°. Also,

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}
$$

Two pairs of polar coordinates are $\left(\sqrt{2}, 135^{\circ}\right)$ and $\left(-\sqrt{2}, 315^{\circ}\right)$.
Now Try Exercises 3(b), 5(b), 11(b), and 15.

Graphs of Polar Equations Equations in x and y are rectangular (or Cartesian) equations. An equation in which r and θ are the variables instead of x and y is a polar equation.

$$
r=3 \sin \theta, \quad r=2+\cos \theta, \quad r=\theta \quad \text { Polar equations }
$$

Although the rectangular forms of lines and circles are the ones most often encountered, they can also be defined in terms of polar coordinates. The polar equation of the line $a x+b y=c$ can be derived as follows.

Line:

$$
a x+b y=c \quad \text { Rectangular equation of a line }
$$

$a(r \cos \theta)+b(r \sin \theta)=c \quad$ Convert to polar coordinates.
$r(a \cos \theta+b \sin \theta)=c \quad$ Factor out r.

For the circle $x^{2}+y^{2}=a^{2}$, the polar equation can be found in a similar manner.
Circle:

$$
x^{2}+y^{2}=a^{2} \quad \text { Rectangular equation of a circle }
$$

$$
r^{2}=a^{2} \quad x^{2}+y^{2}=r^{2}
$$

We use these forms in the next example.

EXAMPLE 3 Finding Polar Equations of Lines and Circles

For each rectangular equation, give the equivalent polar equation and sketch its graph.
(a) $y=x-3$
(b) $x^{2}+y^{2}=4$

SOLUTION

(a) This is the equation of a line.

$$
\begin{array}{rlrl}
y & =x-3 & & \\
x-y & =3 & & \text { Write in standard form, } \\
r \cos \theta-r \sin \theta & =3 \\
r(\cos \theta-\sin \theta) & =3 & & \text { Substitute for } x \text { and } y . \\
r & =\frac{3}{\cos \theta-\sin \theta} & & \text { Divide by } \cos \theta-\sin \theta .
\end{array}
$$

A traditional graph is shown in Figure 22(a), and a calculator graph is shown in Figure 22(b).
(b) The graph of $x^{2}+y^{2}=4$ is a circle with center at the origin and radius 2 .

$$
\begin{aligned}
x^{2}+y^{2}=4 & \text { (Appendix B) } \\
r^{2}=4 & x^{2}+y^{2}=r^{2} \\
r=2 & \text { or } \quad r=-2
\end{aligned}
$$

The graphs of $r=2$ and $r=-2$ coincide. See Figure 23 on the next page.

Figure 23
Now Try Exercises 27 and 29.

To graph polar equations, evaluate r for various values of θ until a pattern appears, and then join the points with a smooth curve.

EXAMPLE 4 Graphing a Polar Equation (Cardioid)

Graph $r=1+\cos \theta$.

ALGEBRAIC SOLUTION

To graph this equation, find some ordered pairs (as in the table). Once the pattern of values of r becomes clear, it is not necessary to find more ordered pairs. The table includes approximated values for $\cos \theta$ and r.

$\boldsymbol{\theta}$	$\cos \boldsymbol{\theta}$	$\boldsymbol{r}=\mathbf{1}+\cos \boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\cos \boldsymbol{\theta}$	$\boldsymbol{r}=\mathbf{1}+\cos \boldsymbol{\theta}$
0°	1	2	135°	-0.7	0.3
30°	0.9	1.9	150°	-0.9	0.1
45°	0.7	1.7	180°	-1	0
60°	0.5	1.5	270°	0	1
90°	0	1	315°	0.7	1.7
120°	-0.5	0.5	330°	0.9	1.9

Connect the points in order-from $\left(2,0^{\circ}\right)$ to $\left(1.9,30^{\circ}\right)$ to $\left(1.7,45^{\circ}\right)$ and so on. See Figure 24. This curve is called a cardioid because of its heart shape. The curve has been graphed on a polar grid.

Figure 24

GRAPHING CALCULATOR SOLUTION

We choose degree mode and graph values of θ in the interval $\left[0^{\circ}, 360^{\circ}\right.$]. The screens in Figure 25(a) show the choices needed to generate the graph in Figure 25(b).

This is a continuation of the previous screen.
(a)

(b)

Figure 25
Now Try Exercise 45.

EXAMPLE 5 Graphing a Polar Equation (Rose)

Graph $r=3 \cos 2 \theta$.
SOLUTION Because the argument is 2θ, the graph requires a greater number of points than when the argument is just θ. We complete the table using selected angle measures through 360° in order to see the pattern of the graph. Approximate values in the table have been rounded to the nearest tenth.

$\boldsymbol{\theta}$	$\mathbf{2 \theta}$	$\cos \mathbf{2 \theta}$	$\boldsymbol{r}=\mathbf{3} \cos \mathbf{2 \theta}$	$\boldsymbol{\theta}$	$\mathbf{2 \theta}$	$\cos \mathbf{2 \theta}$	$\boldsymbol{r}=\mathbf{3} \cos \mathbf{2 \theta}$
0°	0°	1	3	120°	240°	-0.5	-1.5
15°	30°	0.9	2.6	135°	270°	0	0
30°	60°	0.5	1.5	180°	360°	1	3
45°	90°	0	0	225°	450°	0	0
60°	120°	-0.5	-1.5	270°	540°	-1	-3
75°	150°	-0.9	-2.6	315°	630°	0	0
90°	180°	-1	-3	360°	720°	1	3

Plotting the points from the table in order gives the graph of a four-leaved rose. Note in Figure 26(a) how the graph is developed with a continuous curve, beginning with the upper half of the right horizontal leaf and ending with the lower half of that leaf. As the graph is traced, the curve goes through the pole four times. This can actually be seen as a calculator graphs the curve. See Figure 26(b).

Figure 26
Now Try Exercise 49.

NOTE To sketch the graph of $r=3 \cos 2 \theta$ in polar coordinates, it may be helpful to first sketch the graph of $y=3 \cos 2 x$ in rectangular coordinates. The minimum and maximum values of this function may be used to determine the location of the tips of the rose petals, and the x-intercepts of this function may be used to determine where the polar graph passes through the pole.

The equation $r=3 \cos 2 \theta$ in Example 5 has a graph that belongs to a family of curves called roses. The graphs of

$$
r=a \sin n \theta \quad \text { and } \quad r=a \cos n \theta
$$

are roses, with n leaves if n is odd, and $2 n$ leaves if n is even. The absolute value of a determines the length of the leaves.

EXAMPLE 6 Graphing a Polar Equation (Lemniscate)

Graph $r^{2}=\cos 2 \theta$.

ALGEBRAIC SOLUTION

Complete a table of ordered pairs, and sketch the graph, as in Figure 27. The point $\left(-1,0^{\circ}\right)$, with r negative, may be plotted as $\left(1,180^{\circ}\right)$. Also, $\left(-0.7,30^{\circ}\right)$ may be plotted as $\left(0.7,210^{\circ}\right)$, and so on.

Values of θ for $45^{\circ}<\theta<135^{\circ}$ are not included in the table because the corresponding values of $\cos 2 \theta$ are negative (quadrants II and III) and so do not have real square roots. Values of θ larger than 180° give 2θ larger than 360° and would repeat the points already found. This curve is called a lemniscate.

$\boldsymbol{\theta}$	0°	30°	45°	135°	150°	180°
$\mathbf{2 \theta}$	0°	60°	90°	270°	300°	360°
$\cos 2 \boldsymbol{\theta}$	1	0.5	0	0	0.5	1
$\boldsymbol{r}= \pm \sqrt{\cos 2 \boldsymbol{\theta}}$	± 1	± 0.7	0	0	± 0.7	± 1

Figure 27

GRAPHING CALCULATOR SOLUTION

To graph $r^{2}=\cos 2 \theta$ with a graphing calculator, first solve for r by considering both square roots. Enter the two polar equations as

$$
r_{1}=\sqrt{\cos 2 \theta}
$$

and

$$
r_{2}=-\sqrt{\cos 2 \theta}
$$

See Figures 28(a) and (b).

(a)

(b)

Figure 28

Now Try Exercise 51.

EXAMPLE 7 Graphing a Polar Equation (Spiral of Archimedes)

Graph $r=2 \theta$ (with θ measured in radians).
SOLUTION Some ordered pairs are shown in the table. Since $r=2 \theta$ rather than a trigonometric function of θ, we must also consider negative values of θ. Radian measures have been rounded. The graph in Figure 29(a) on the next page is a spiral of Archimedes. Figure 29(b) shows a calculator graph of this spiral.

$\boldsymbol{\theta}$ (radians)	$\boldsymbol{r}=\mathbf{2 \theta}$	$\boldsymbol{\theta}$ (radians)	$\boldsymbol{r}=\mathbf{2 \theta}$
$-\pi$	-6.3	$\frac{\pi}{3}$	2.1
$-\frac{\pi}{2}$	-3.1	$\frac{\pi}{2}$	3.1
$-\frac{\pi}{4}$	-1.6	π	6.3
0	0	$\frac{3 \pi}{2}$	9.4
$\frac{\pi}{6}$	1	2π	12.6

Figure 29
Now Try Exercise 67.

Figure 30

Converting from Polar to Rectangular Equations In Example 3 we converted rectangular equations to polar equations. We conclude with an example that converts a polar equation to a rectangular one.

EXAMPLE 8 Converting a Polar Equation to a Rectangular Equation

Convert the equation $r=\frac{4}{1+\sin \theta}$ to rectangular coordinates, and graph.
SOLUTION

$$
\begin{aligned}
r & =\frac{4}{1+\sin \theta} & & \text { Polar equation } \\
r(1+\sin \theta) & =4 & & \text { Multiply by } 1+\sin \theta . \\
r+r \sin \theta & =4 & & \text { Distributive property } \\
\sqrt{x^{2}+y^{2}}+y & =4 & & \text { Let } r=\sqrt{x^{2}+y^{2}} \text { and } r \sin \theta=y . \\
\sqrt{x^{2}+y^{2}} & =4-y & & \text { Subtract } y . \\
x^{2}+y^{2} & =(4-y)^{2} & & \text { Square each side. } \\
x^{2}+y^{2} & =16-8 y+y^{2} & & \text { Expand the right side. } \\
x^{2} & =-8 y+16 & & \text { Subtract } y^{2} . \\
x^{2} & =-8(y-2) & & \text { Rectangular equation }
\end{aligned}
$$

The final equation represents a parabola and is graphed in Figure $\mathbf{3 0}$.
Now Try Exercise 59.

The conversion in Example 8 is not necessary when one is using a graphing calculator. Figure 31 shows the graph of $r=\frac{4}{1+\sin \theta}$, graphed directly with the calculator in polar mode.

Classifying Polar Equations The table on the next page summarizes common polar graphs and forms of their equations. (In addition to circles, lemniscates, and roses, we include limaçons. Cardioids are a special case of limaçons, where $\left|\frac{a}{b}\right|=1$.)

NOTE Some other polar curves are the cissoid, kappa curve, conchoid, trisectrix, cruciform, strophoid, and lituus. Refer to older textbooks on analytic geometry or the Internet to investigate them.

8.5 Exercises

1. Concept Check For each point given in polar coordinates, state the quadrant in which the point lies if it is graphed in a rectangular coordinate system.
(a) $\left(5,135^{\circ}\right)$
(b) $\left(2,60^{\circ}\right)$
(c) $\left(6,-30^{\circ}\right)$
(d) $\left(4.6,213^{\circ}\right)$
2. Concept Check For each point given in polar coordinates, state the axis on which the point lies if it is graphed in a rectangular coordinate system. Also state whether it is on the positive portion or the negative portion of the axis. (For example, $\left(5,0^{\circ}\right)$ lies on the positive x-axis.)
(a) $\left(7,360^{\circ}\right)$
(b) $\left(4,180^{\circ}\right)$
(c) $\left(2,-90^{\circ}\right)$
(d) $\left(8,450^{\circ}\right)$

For each pair of polar coordinates, (a) plot the point, (b) give two other pairs of polar coordinates for the point, and (c) give the rectangular coordinates for the point. See Examples 1 and 2.
3. $\left(1,45^{\circ}\right)$
4. $\left(3,120^{\circ}\right)$
5. $\left(-2,135^{\circ}\right)$
6. $\left(-4,30^{\circ}\right)$
7. $\left(5,-60^{\circ}\right)$
8. $\left(2,-45^{\circ}\right)$
9. $\left(-3,-210^{\circ}\right)$
10. $\left(-1,-120^{\circ}\right)$
11. $\left(3, \frac{5 \pi}{3}\right)$
12. $\left(4, \frac{3 \pi}{2}\right)$
13. $\left(-2, \frac{\pi}{3}\right)$
14. $\left(-5, \frac{5 \pi}{6}\right)$

For each pair of rectangular coordinates, (a) plot the point and (b) give two pairs of polar coordinates for the point, where $0^{\circ} \leq \theta<360^{\circ}$. See Example 2(b).
15. $(1,-1)$
16. $(1,1)$
17. $(0,3)$
18. $(0,-3)$
19. $(\sqrt{2}, \sqrt{2})$
20. $(-\sqrt{2}, \sqrt{2})$
21. $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$
22. $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
23. $(3,0)$
24. $(-2,0)$
25. $\left(-\frac{3}{2},-\frac{3 \sqrt{3}}{2}\right)$
26. $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$

For each rectangular equation, give its equivalent polar equation and sketch its graph. See Example 3.
27. $x-y=4$
28. $x+y=-7$
29. $x^{2}+y^{2}=16$
30. $x^{2}+y^{2}=9$
31. $2 x+y=5$
32. $3 x-2 y=6$

Relating Concepts

For individual or collaborative investigation (Exercises 33-40)
In rectangular coordinates, the graph of

$$
a x+b y=c
$$

is a horizontal line if $a=0$ or a vertical line if $b=0$. Work Exercises 33-40 in order, to determine the general forms of polar equations for horizontal and vertical lines.
33. Begin with the equation $y=k$, whose graph is a horizontal line. Make a trigonometric substitution for y using r and θ.
34. Solve the equation in Exercise 33 for r.
35. Rewrite the equation in Exercise 34 using the appropriate reciprocal function.
36. Sketch the graph of the equation

$$
r=3 \csc \theta .
$$

What is the corresponding rectangular equation?
37. Begin with the equation $x=k$, whose graph is a vertical line. Make a trigonometric substitution for x using r and θ.
38. Solve the equation in Exercise 37 for r.
39. Rewrite the equation in Exercise 38 using the appropriate reciprocal function.
40. Sketch the graph of $r=3 \sec \theta$. What is the corresponding rectangular equation?

Concept Check In Exercises 41-44, match each equation with its polar graph from choices $A-D$.
41. $r=3$
42. $r=\cos 3 \theta$
43. $r=\cos 2 \theta$
44. $r=\frac{2}{\cos \theta+\sin \theta}$
A.

C.

B.

D.

Give a complete graph of each polar equation. In Exercises 45-54, also identify the type of polar graph. See Examples 4-6.
45. $r=2+2 \cos \theta$
46. $r=8+6 \cos \theta$
47. $r=3+\cos \theta$
48. $r=2-\cos \theta$
49. $r=4 \cos 2 \theta$
50. $r=3 \cos 5 \theta$
51. $r^{2}=4 \cos 2 \theta$
52. $r^{2}=4 \sin 2 \theta$
53. $r=4-4 \cos \theta$
54. $r=6-3 \cos \theta$
55. $r=2 \sin \theta \tan \theta$
(This is a cissoid.)
56. $r=\frac{\cos 2 \theta}{\cos \theta}$
(This is a cissoid with a loop.)
For each equation, find an equivalent equation in rectangular coordinates, and graph. See Example 8.
57. $r=2 \sin \theta$
58. $r=2 \cos \theta$
59. $r=\frac{2}{1-\cos \theta}$
60. $r=\frac{3}{1-\sin \theta}$
61. $r=-2 \cos \theta-2 \sin \theta$
62. $r=\frac{3}{4 \cos \theta-\sin \theta}$
63. $r=2 \sec \theta$
64. $r=-5 \csc \theta$
65. $r=\frac{2}{\cos \theta+\sin \theta}$
66. $r=\frac{2}{2 \cos \theta+\sin \theta}$
67. Graph $r=\theta$, a spiral of Archimedes. (See Example 7.) Use both positive and nonpositive values for θ.
68. Use a graphing calculator window of $[-1250,1250]$ by $[-1250,1250]$, in degree mode, to graph more of

$$
r=2 \theta \text { (a spiral of Archimedes) }
$$

than what is shown in Figure 29. Use $-1250^{\circ} \leq \theta \leq 1250^{\circ}$.
69. Find the polar equation of the line that passes through the points $\left(1,0^{\circ}\right)$ and $\left(2,90^{\circ}\right)$.
70. Explain how to plot a point (r, θ) in polar coordinates, if $r<0$.

Concept Check The polar graphs in this section exhibit symmetry. (See Appendix D.) Visualize an xy-plane superimposed on the polar coordinate system, with the pole at the origin and the polar axis on the positive x-axis. Then a polar graph may be symmetric with respect to the x-axis (the polar axis), the y-axis (the line $\theta=\frac{\pi}{2}$), or the origin (the pole). Use this information to work Exercises 71 and 72.
71. Complete the missing ordered pairs in the graphs below.
(a)

72. Based on your results in Exercise 71, fill in the blanks with the correct responses.
(a) The graph of $r=f(\theta)$ is symmetric with respect to the polar axis if substitution of \qquad for θ leads to an equivalent equation.
(b) The graph of $r=f(\theta)$ is symmetric with respect to the vertical line $\theta=\frac{\pi}{2}$ if substitution of \qquad for θ leads to an equivalent equation.
(c) Alternatively, the graph of $r=f(\theta)$ is symmetric with respect to the vertical line $\theta=\frac{\pi}{2}$ if substitution of \qquad for r and \qquad for θ leads to an equivalent equation.
(d) The graph of $r=f(\theta)$ is symmetric with respect to the pole if substitution of
\qquad for r leads to an equivalent equation.
(e) Alternatively, the graph of $r=f(\theta)$ is symmetric with respect to the pole if substitution of \qquad for θ leads to an equivalent equation.
(f) In general, the completed statements in parts (a)-(e) mean that the graphs of polar equations of the form $r=a \pm b \cos \theta$ (where a may be 0) are symmetric with respect to \qquad —.
(g) In general, the completed statements in parts (a)-(e) mean that the graphs of polar equations of the form $r=a \pm b \sin \theta$ (where a may be 0) are symmetric with respect to \qquad -.

The graph of $r=a \theta$ in polar coordinates is an example of the spiral of Archimedes. With your calculator set to radian mode, use the given value of a and interval of θ to graph the spiral in the window specified.
73. $a=1,0 \leq \theta \leq 4 \pi,[-15,15]$ by $[-15,15]$
74. $a=2,-4 \pi \leq \theta \leq 4 \pi$, $[-30,30]$ by $[-30,30]$
75. $a=1.5,-4 \pi \leq \theta \leq 4 \pi$, $[-20,20]$ by $[-20,20]$
76. $a=-1,0 \leq \theta \leq 12 \pi,[-40,40]$ by $[-40,40]$

Find the polar coordinates of the points of intersection of the given curves for the specified interval of θ.
77. $r=4 \sin \theta, r=1+2 \sin \theta ; 0 \leq \theta<2 \pi$
78. $r=3, r=2+2 \cos \theta ; 0^{\circ} \leq \theta<360^{\circ}$
79. $r=2+\sin \theta, r=2+\cos \theta ; 0 \leq \theta<2 \pi$
80. $r=\sin 2 \theta, r=\sqrt{2} \cos \theta ; 0 \leq \theta<\pi$

(Modeling) Solve each problem.

81. Orbits of Satellites The polar equation

$$
r=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta}
$$

can be used to graph the orbits of the satellites of our sun, where a is the average distance in astronomical units from the sun and e is a constant called the eccentricity. The sun will be located at the pole. The table lists the values of a and e.

Satellite	\boldsymbol{a}	\boldsymbol{e}
Mercury	0.39	0.206
Venus	0.78	0.007
Earth	1.00	0.017
Mars	1.52	0.093
Jupiter	5.20	0.048
Saturn	9.54	0.056
Uranus	19.20	0.047
Neptune	30.10	0.009
Pluto	39.40	0.249

Source: Karttunen, H., P. Kröger, H. Oja, M. Putannen, and K.

Donners (Editors), Fundamental Astronomy, 4th edition, SpringerVerlag. Zeilik, M., S. Gregory, and E. Smith, Introductory Astronomy and Astrophysics, Saunders College Publishers.
(a) Graph the orbits of the four closest satellites on the same polar grid. Choose a viewing window that results in a graph with nearly circular orbits.
(b) Plot the orbits of Earth, Jupiter, Uranus, and Pluto on the same polar grid. How does Earth's distance from the sun compare to the others' distances from the sun?
(c) Use graphing to determine whether or not Pluto is always farthest from the sun.
82. Radio Towers and Broadcasting Patterns Many times radio stations do not broadcast in all directions with the same intensity. To avoid interference with an existing station to the north, a new station may be licensed to broadcast only east and west. To create an east-west signal, two radio towers are sometimes used, as illustrated in the figure. Locations where the radio signal is received correspond to the interior of the curve

$$
r^{2}=40,000 \cos 2 \theta
$$

where the polar axis (or positive x-axis) points east.

(a) Graph $r^{2}=40,000 \cos 2 \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$, where distances are in miles. Assuming the radio towers are located near the pole, use the graph to describe the regions where the signal can be received and where the signal cannot be received.
(b) Suppose a radio signal pattern is given by

$$
r^{2}=22,500 \sin 2 \theta
$$

Graph this pattern and interpret the results.

8.6 Parametric Equations, Graphs, and Applications

- Basic Concepts
- Parametric Graphs and Their Rectangular Equivalents
- The Cycloid
- Applications of Parametric Equations

Basic Concepts Throughout this text, we have graphed sets of ordered pairs of real numbers that correspond to a function of the form $y=f(x)$ or $r=g(\theta)$. Another way to determine a set of ordered pairs involves two functions f and g defined by $x=f(t)$ and $y=g(t)$, where t is a real number in some interval I. Each value of t leads to a corresponding x-value and a corresponding y-value, and thus to an ordered pair (x, y).

Parametric Equations of a Plane Curve

A plane curve is a set of points (x, y) such that $x=f(t), y=g(t)$, and f and g are both defined on an interval I. The equations $x=f(t)$ and $y=g(t)$ are parametric equations with parameter t.

Graphing calculators are capable of graphing plane curves defined by parametric equations. The calculator must be set in parametric mode, and the window requires intervals for the parameter t, as well as for x and y.

Parametric Graphs and Their Rectangular Equivalents

EXAMPLE 1 Graphing a Plane Curve Defined Parametrically

Let $x=t^{2}$ and $y=2 t+3$, for t in $[-3,3]$. Graph the set of ordered pairs (x, y).

ALGEBRAIC SOLUTION

Make a table of corresponding values of t, x, and y over the domain of t. Plot the points as shown in Figure 32. The graph is a portion of a parabola with horizontal axis $y=3$. The arrowheads indicate the direction the curve traces as t increases.

Figure 32

GRAPHING CALCULATOR SOLUTION

We set the parameters of the TI-83/84 Plus as shown in the top two screens to obtain the bottom screen in
Figure 33.

This is a continuation of the previous screen.

Figure 33

EXAMPLE 2 Finding an Equivalent Rectangular Equation

Find a rectangular equation for the plane curve of Example 1 defined as follows:

$$
x=t^{2}, \quad y=2 t+3, \quad \text { for } t \text { in }[-3,3] .
$$

SOLUTION To eliminate the parameter t, first solve either equation for t. Here, only the second equation, $y=2 t+3$, leads to a unique solution for t, so we choose it.

$$
\begin{array}{rlrl}
y & =2 t+3 & & \text { Choose the simpler equation. } \\
2 t & =y-3 & \text { Subtract } 3 \text { and rewrite. (Appendix A) } \\
t & =\frac{y-3}{2} & \text { Divide by } 2 .
\end{array}
$$

Now substitute this result into the first equation to eliminate the parameter t.

$$
\begin{aligned}
& x=t^{2} \\
& x=\left(\frac{y-3}{2}\right)^{2} \\
& \text { Substitute for } t \\
& x=\frac{(y-3)^{2}}{4} \\
& 4 x\left(\frac{a}{b}\right)^{2}=\frac{a^{2}}{b^{2}} \\
&4-3)^{2} \text { Multiply by } 4
\end{aligned}
$$

This is the equation of a horizontal parabola opening to the right, which agrees with the graph given in Figure 32. Because t is in $[-3,3], x$ is in $[0,9]$ and y is in $[-3,9]$. The rectangular equation must be given with its restricted domain as

$$
4 x=(y-3)^{2}, \quad \text { for } x \text { in }[0,9]
$$

Now Try Exercise 5(b).

EXAMPLE 3 Graphing a Plane Curve Defined Parametrically

Graph the plane curve defined by $x=2 \sin t, y=3 \cos t$, for t in $[0,2 \pi]$.
SOLUTION To convert to a rectangular equation, it is not productive here to solve either equation for t. Instead, we use the fact that $\sin ^{2} t+\cos ^{2} t=1$ to apply another approach. Square both sides of each equation; solve one for $\sin ^{2} t$, the other for $\cos ^{2} t$.

$$
\begin{array}{c|cl}
x=2 \sin t & y=3 \cos t & \\
\text { Given equations } \\
x^{2}=4 \sin ^{2} t & y^{2}=9 \cos ^{2} t & \text { Square each side. } \\
\frac{x^{2}}{4}=\sin ^{2} t & \frac{y^{2}}{9}=\cos ^{2} t & \text { Divide. }
\end{array}
$$

Now add corresponding sides of the two equations.

$$
\begin{aligned}
& \frac{x^{2}}{4}+\frac{y^{2}}{9}=\sin ^{2} t+\cos ^{2} t \\
& \frac{x^{2}}{4}+\frac{y^{2}}{9}=1
\end{aligned}
$$

$$
\sin ^{2} t+\cos ^{2} t=1 \text { (Section 5.1) }
$$

This is an equation of an ellipse. See Figure 34 on the next page for traditional and calculator graphs. (Ellipses are covered in more detail in college algebra courses.)

$$
\left.\begin{array}{l}
x=2 \sin t \\
y=3 \cos t
\end{array}\right\} \begin{aligned}
& \text { for } \\
& t \text { in }[0,2 \pi]
\end{aligned}
$$

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1
$$

Parametric graphing mode

Figure 34

Now Try Exercise 27.
Parametric representations of a curve are not unique. In fact, there are infinitely many parametric representations of a given curve. If the curve can be described by a rectangular equation $y=f(x)$, with domain X, then one simple parametric representation is

$$
x=t, \quad y=f(t), \quad \text { for } t \text { in } X
$$

EXAMPLE 4 Finding Alternative Parametric Equation Forms

Give two parametric representations for the equation of the parabola.

$$
y=(x-2)^{2}+1
$$

SOLUTION The simplest choice is to let

$$
x=t, \quad y=(t-2)^{2}+1, \quad \text { for } t \text { in }(-\infty, \infty)
$$

Another choice, which leads to a simpler equation for y, is

$$
x=t+2, \quad y=t^{2}+1, \quad \text { for } t \text { in }(-\infty, \infty)
$$

Now Try Exercise 29.

NOTE Sometimes trigonometric functions are desirable. One choice in Example 4 might be

$$
x=2+\tan t, \quad y=\sec ^{2} t, \quad \text { for } t \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

The Cycloid The cycloid is a special case of the trochoid—a curve traced out by a point at a given distance from the center of a circle as the circle rolls along a straight line. If the given point is on the circumference of the circle, then the path traced as the circle rolls along a straight line is a cycloid, which is defined parametrically as follows.

$$
x=a t-a \sin t, \quad y=a-a \cos t, \quad \text { for } t \text { in }(-\infty, \infty)
$$

Other curves related to trochoids are hypotrochoids and epitrochoids, which are traced out by a point that is a given distance from the center of a circle that rolls not on a straight line, but on the inside or outside, respectively, of another circle. The classic Spirograph toy can be used to draw these curves.

EXAMPLE 5 Graphing a Cycloid

Graph the cycloid.

$$
x=t-\sin t, \quad y=1-\cos t, \quad \text { for } t \text { in }[0,2 \pi]
$$

ALGEBRAIC SOLUTION

There is no simple way to find a rectangular equation for the cycloid from its parametric equations. Instead, begin with a table using selected values for t in $[0,2 \pi]$. Approximate values have been rounded as necessary.

\boldsymbol{t}	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\boldsymbol{x}	0	0.08	0.6	π	5.7	2π
\boldsymbol{y}	0	0.3	1	2	1	0

Figure 35

Plotting the ordered pairs (x, y) from the table of values leads to the portion of the graph in Figure 35 from 0 to 2π.

GRAPHING CALCULATOR SOLUTION

It is easier to graph a cycloid with a graphing calculator in parametric mode than with traditional methods. See Figure 36.

Figure 36

Using a larger interval for t would show that the cycloid repeats the pattern shown here every 2π units.

Now Try Exercise 33.

Figure 37

The cycloid has an interesting physical property. If a flexible cord or wire goes through points P and Q as in Figure 37, and a bead is allowed to slide due to the force of gravity without friction along this path from P to Q, the path that requires the shortest time takes the shape of the graph of an inverted cycloid.

LOOKING AHEAD TO CALCULUS

At any time t, the velocity of an object is given by the vector $\mathbf{v}=\left\langle f^{\prime}(t), g^{\prime}(t)\right\rangle$. The object's speed at time t is

$$
|\mathbf{v}|=\sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}}
$$

Applications of Parametric Equations Parametric equations are used to simulate motion. If a ball is thrown with a velocity of v feet per second at an angle θ with the horizontal, its flight can be modeled by the parametric equations

$$
x=(v \cos \theta) t \quad \text { and } \quad y=(v \sin \theta) t-16 t^{2}+h
$$

where t is in seconds and h is the ball's initial height in feet above the ground. Here, x gives the horizontal position information and y gives the vertical position information. The term $-16 t^{2}$ occurs because gravity is pulling downward. See Figure 38. These equations ignore air resistance.

Figure 38

EXAMPLE 6 Simulating Motion with Parametric Equations

Three golf balls are hit simultaneously into the air at 132 ft per sec $(90 \mathrm{mph})$ at angles of $30^{\circ}, 50^{\circ}$, and 70° with the horizontal.
(a) Assuming the ground is level, determine graphically which ball travels the greatest distance. Estimate this distance.
(b) Which ball reaches the greatest height? Estimate this height.

SOLUTION

(a) Use the following parametric equations to model the flight of the golf balls.

$$
x=(v \cos \theta) t \quad \text { and } \quad y=(v \sin \theta) t-16 t^{2}+h
$$

Substitute $h=0, v=132 \mathrm{ft}$ per sec, and $\theta=30^{\circ}, 50^{\circ}$, and 70° to write three sets of parametric equations.

$$
\begin{array}{ll}
x_{1}=\left(132 \cos 30^{\circ}\right) t, & y_{1}=\left(132 \sin 30^{\circ}\right) t-16 t^{2} \\
x_{2}=\left(132 \cos 50^{\circ}\right) t, & y_{2}=\left(132 \sin 50^{\circ}\right) t-16 t^{2} \\
x_{3}=\left(132 \cos 70^{\circ}\right) t, & y_{3}=\left(132 \sin 70^{\circ}\right) t-16 t^{2}
\end{array}
$$

The graphs of the three sets of parametric equations are shown in Figure 39(a), where $0 \leq t \leq 9$. From the graph in Figure 39(b), we can see that the ball hit at 50° travels the greatest distance. Using the TRACE feature of the TI-83/84 Plus, we estimate this distance to be about 540 ft .
(b) Again, use the TRACE feature to find that the ball hit at 70° reaches the greatest height, about 240 ft .

Now Try Exercise 39.

NOTE The TI-83/84 Plus graphing calculator allows the user to view the graphing of more than one equation either sequentially or simultaneously. By choosing the latter, one can view the three golf balls in Figure 39 in flight at the same time.

EXAMPLE 7 Examining Parametric Equations of Flight

Jack Lukas launches a small rocket from a table that is 3.36 ft above the ground. Its initial velocity is 64 ft per sec, and it is launched at an angle of 30° with respect to the ground. Find the rectangular equation that models its path. What type of path does the rocket follow?
SOLUTION The path of the rocket is defined by the parametric equations

$$
x=\left(64 \cos 30^{\circ}\right) t \quad \text { and } \quad y=\left(64 \sin 30^{\circ}\right) t-16 t^{2}+3.36
$$

or, equivalently,

$$
x=32 \sqrt{3} t \quad \text { and } \quad y=-16 t^{2}+32 t+3.36
$$

From $x=32 \sqrt{3} t$, we solve for t to obtain

$$
t=\frac{x}{32 \sqrt{3}} . \quad \text { Divide by } 32 \sqrt{3} .
$$

Substituting for t in the other parametric equation yields the following.

$$
\begin{array}{ll}
y=-16 t^{2}+32 t+3.36 & \\
y=-16\left(\frac{x}{32 \sqrt{3}}\right)^{2}+32\left(\frac{x}{32 \sqrt{3}}\right)+3.36 & \text { Let } t=\frac{x}{32 \sqrt{3}} . \\
y=-\frac{1}{192} x^{2}+\frac{\sqrt{3}}{3} x+3.36 & \text { Simplify. }
\end{array}
$$

Because this equation defines a parabola, we can conclude that the rocket follows a parabolic path.

Now Try Exercise 43(a).

EXAMPLE 8 Analyzing the Path of a Projectile

Determine the total flight time and the horizontal distance traveled by the rocket in Example 7.

ALGEBRAIC SOLUTION

The equation $y=-16 t^{2}+32 t+3.36$ tells the vertical position of the rocket at time t. We need to determine those values of t for which $y=0$ since these values correspond to the rocket at ground level. This yields

$$
0=-16 t^{2}+32 t+3.36
$$

Using the quadratic formula, the solutions are $t=-0.1$ or $t=2.1$. Since t represents time, $t=-0.1$ is an unacceptable answer. Therefore, the flight time is 2.1 sec .

The rocket was in the air for 2.1 sec , so we can use $t=2.1$ and the parametric equation that models the horizontal position, $x=32 \sqrt{3} t$, to obtain

$$
x=32 \sqrt{3}(2.1) \approx 116.4 \mathrm{ft}
$$

GRAPHING CALCULATOR SOLUTION

Figure 40 shows that when $\mathrm{T}=2.1$, the horizontal distance X covered is approximately 116.4 ft , which agrees with the algebraic solution.

Figure 40

Now Try Exercise 43(b).

8.6
 Exercises

Concept Check Match the ordered pair from Column II with the pair of parametric equations in Column I on whose graph the point lies. In each case, consider the given value of t.

I
II

1. $x=3 t+6, y=-2 t+4 ; \quad t=2$
A. $(5,25)$
2. $x=\cos t, y=\sin t ; \quad t=\frac{\pi}{4}$
B. $(7,2)$
3. $x=t, y=t^{2} ; \quad t=5$
C. $(12,0)$
4. $x=t^{2}+3, y=t^{2}-2 ; \quad t=2$
D. $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

For each plane curve, (a) graph the curve, and (b) find a rectangular equation for the curve. See Examples 1 and 2.
5. $x=t+2, y=t^{2}$,
for t in $[-1,1]$
7. $x=\sqrt{t}, y=3 t-4$,
for t in $[0,4]$
9. $x=t^{3}+1, y=t^{3}-1$, for t in $(-\infty, \infty)$
11. $x=2 \sin t, y=2 \cos t$, for t in $[0,2 \pi]$
13. $x=3 \tan t, y=2 \sec t$, for t in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
15. $x=\sin t, y=\csc t$, for t in $(0, \pi)$
17. $x=t, y=\sqrt{t^{2}+2}$, for t in $(-\infty, \infty)$
19. $x=2+\sin t, y=1+\cos t$, for t in $[0,2 \pi]$
21. $x=t+2, y=\frac{1}{t+2}$, for $t \neq-2$
23. $x=t+2, y=t-4$, for t in $(-\infty, \infty)$
6. $x=2 t, y=t+1$, for t in $[-2,3]$
8. $x=t^{2}, y=\sqrt{t}$, for t in $[0,4]$
10. $x=2 t-1, y=t^{2}+2$, for t in $(-\infty, \infty)$
12. $x=\sqrt{5} \sin t, y=\sqrt{3} \cos t$, for t in $[0,2 \pi]$
14. $x=\cot t, y=\csc t$, for t in $(0, \pi)$
16. $x=\tan t, y=\cot t$, for t in $\left(0, \frac{\pi}{2}\right)$
18. $x=\sqrt{t}, y=t^{2}-1$, for t in $[0, \infty)$
20. $x=1+2 \sin t, y=2+3 \cos t$, for t in $[0,2 \pi]$
22. $x=t-3, y=\frac{2}{t-3}$,
for $t \neq 3$
24. $x=t^{2}+2, y=t^{2}-4$, for t in $(-\infty, \infty)$

Graph each plane curve defined by the parametric equations for t in $[0,2 \pi]$. Then find a rectangular equation for the plane curve. See Example 3.
25. $x=3 \cos t, y=3 \sin t$
26. $x=2 \cos t, y=2 \sin t$
27. $x=3 \sin t, y=2 \cos t$
28. $x=4 \sin t, y=3 \cos t$

Give two parametric representations for the equation of each parabola. See Example 4.
29. $y=(x+3)^{2}-1$
30. $y=(x+4)^{2}+2$
31. $y=x^{2}-2 x+3$
32. $y=x^{2}-4 x+6$

Graph each cycloid defined by the given equations for t in the specified interval. See Example 5.
33. $x=2 t-2 \sin t, y=2-2 \cos t$, for t in $[0,4 \pi]$
34. $x=t-\sin t, y=1-\cos t$, for t in $[0,4 \pi]$

Lissajous Figures The screen shown here is an example of a Lissajous figure. Lissajous figures occur in electronics and may be used to find the frequency of an unknown voltage. Graph each Lissajous figure for t in $[0,6.5]$ in the window $[-6,6]$ by $[-4,4]$.
35. $x=2 \cos t, y=3 \sin 2 t$
36. $x=3 \cos 2 t, y=3 \sin 3 t$

37. $x=3 \sin 4 t, y=3 \cos 3 t$
38. $x=4 \sin 4 t, y=3 \sin 5 t$
(Modeling) In Exercises 39-42, do the following. See Examples 6-8.
(a) Determine the parametric equations that model the path of the projectile.
(b) Determine the rectangular equation that models the path of the projectile.
(c) Determine approximately how long the projectile is in flight and the horizontal distance covered.
39. Flight of a Model Rocket A model rocket is launched from the ground with velocity 48 ft per sec at an angle of 60° with respect to the ground.
40. Flight of a Golf Ball Tyler is playing golf. He hits a golf ball from the ground at an angle of 60° with respect to the ground at velocity 150 ft per sec.

41. Flight of a Softball Sally hits a softball when it is 2 ft above the ground. The ball leaves her bat at an angle of 20° with respect to the ground at velocity 88 ft per sec.
42. Flight of a Baseball Carlos hits a baseball when it is 2.5 ft above the ground. The ball leaves his bat at an angle of 29° from the horizontal with velocity 136 ft per sec.

(Modeling) Solve each problem. See Examples 7 and 8.
43. Path of a Rocket A rocket is launched from the top of an 8 - ft ladder. Its initial velocity is 128 ft per sec, and it is launched at an angle of 60° with respect to the ground.
(a) Find the rectangular equation that models its path. What type of path does the rocket follow?
(b) Determine the total flight time and the horizontal distance the rocket travels.
44. Simulating Gravity on the Moon If an object is thrown on the moon, then the parametric equations of flight are

$$
x=(v \cos \theta) t \quad \text { and } \quad y=(v \sin \theta) t-2.66 t^{2}+h
$$

Estimate the distance that a golf ball hit at 88 ft per sec (60 mph) at an angle of 45° with the horizontal travels on the moon if the moon's surface is level.
45. Flight of a Baseball A baseball is hit from a height of 3 ft at a 60° angle above the horizontal. Its initial velocity is 64 ft per sec.
(a) Write parametric equations that model the flight of the baseball.
(b) Determine the horizontal distance traveled by the ball in the air. Assume that the ground is level.
(c) What is the maximum height of the baseball? At that time, how far has the ball traveled horizontally?
(d) Would the ball clear a 5 - ft -high fence that is 100 ft from the batter?
(Modeling) Path of a Projectile In Exercises 46 and 47, a projectile has been launched from the ground with initial velocity 88 ft per sec. The parametric equations modeling the path of the projectile are supplied.
(a) Graph the parametric equations.
(b) Approximate θ, the angle the projectile makes with the horizontal at launch, to the nearest tenth of a degree.
(c) Based on your answer to part (b), write parametric equations for the projectile using the cosine and sine functions.
46. $x=82.69295063 t, y=-16 t^{2}+30.09777261 t$
47. $x=56.56530965 t, y=-16 t^{2}+67.41191099 t$
48. Give two parametric representations of the line through the point $\left(x_{1}, y_{1}\right)$ with slope m.
49. Give two parametric representations of the parabola $y=a(x-h)^{2}+k$.
50. Give a parametric representation of the rectangular equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
51. Give a parametric representation of the rectangular equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
52. The spiral of Archimedes has polar equation $r=a \theta$, where $r^{2}=x^{2}+y^{2}$. Show that a parametric representation of the spiral of Archimedes is

$$
x=a \theta \cos \theta, \quad y=a \theta \sin \theta, \quad \text { for } \theta \text { in }(-\infty, \infty) .
$$

53. Show that the hyperbolic spiral $r \theta=a$, where $r^{2}=x^{2}+y^{2}$, is given parametrically by

$$
x=\frac{a \cos \theta}{\theta}, \quad y=\frac{a \sin \theta}{\theta}, \quad \text { for } \theta \text { in }(-\infty, 0) \cup(0, \infty) .
$$

54. The parametric equations $x=\cos t, y=\sin t$, for t in $[0,2 \pi]$ and the parametric equations $x=\cos t, y=-\sin t$, for t in $[0,2 \pi]$ both have the unit circle as their graph. However, in one case the circle is traced out clockwise (as t moves from 0 to 2π), and in the other case the circle is traced out counterclockwise. For which pair of equations is the circle traced out in the clockwise direction?

Concept Check Consider the parametric equations $x=f(t), y=g(t)$, for t in $[a, b]$, with $c>0, d>0$.
55. How is the graph affected if the equation $x=f(t)$ is replaced by $x=c+f(t)$?
56. How is the graph affected if the equation $y=g(t)$ is replaced by $y=d+g(t)$?

Chapter 8 Test Prep

Key Terms

8.1 imaginary unit complex number real part imaginary part pure imaginary number nonreal complex number standard form complex conjugates
8.2 real axis imaginary axis
complex plane
rectangular form of a complex number trigonometric (polar) form of a complex number
absolute value (modulus)
argument
$8.4 n$th root of a complex number
8.5 polar coordinate system pole polar axis polar coordinates rectangular (Cartesian) equation polar equation cardioid polar grid
rose curve lemniscate spiral of Archimedes limaçon
8.6 plane curve parametric equations of a plane curve parameter cycloid

New Symbols

\boldsymbol{i} imaginary unit
$a+b i \quad$ complex number

Ouick Review

Concepts

8.1 Complex Numbers

Definition of \boldsymbol{i}

$$
i=\sqrt{-1} \text { and } i^{2}=-1
$$

Definition of Complex Number

Definition of $\sqrt{-a}$
For $a>0, \quad \sqrt{-a}=i \sqrt{a}$.

Adding and Subtracting Complex Numbers

Add or subtract the real parts, and add or subtract the imaginary parts.

Multiplying and Dividing Complex Numbers

Multiply complex numbers as with binomials, and use the fact that $i^{2}=-1$.

Divide complex numbers by multiplying the numerator and denominator by the complex conjugate of the denominator.

Examples

In the complex number $3-4 i$, the real part is 3 and the imaginary part is -4 .

Simplify.

$$
\begin{gathered}
\sqrt{-4}=2 i \\
\sqrt{-12}=i \sqrt{12}=2 i \sqrt{3} \\
(2+3 i)+(3+i)-(2-i) \\
=(2+3-2)+(3+1+1) i \\
=3+5 i \\
(6+i)(3-2 i)=18-12 i+3 i-2 i^{2} \quad \text { FOIL } \\
=(18+2)+(-12+3) i \quad i^{2}=-1 \\
=20-9 i \\
\frac{3+i}{1+i}=\frac{(3+i)(1-i)}{(1+i)(1-i)}=\frac{3-3 i+i-i^{2}}{1-i^{2}} \\
=\frac{4-2 i}{2}=\frac{2(2-i)}{2}=2-i
\end{gathered}
$$

Concepts

Examples

8.2 Trigonometric (Polar) Form of Complex Numbers

Trigonometric (Polar) Form of Complex Numbers

Let the complex number $x+y i$ correspond to the vector with direction angle θ and magnitude r.

$$
\begin{aligned}
x & =r \cos \theta & y & =r \sin \theta \\
r & =\sqrt{x^{2}+y^{2}} & \tan \theta & =\frac{y}{x}, \quad \text { if } x \neq 0
\end{aligned}
$$

The expression

$$
r(\cos \theta+i \sin \theta) \quad \text { or } \quad r \operatorname{cis} \theta
$$

is the trigonometric form (or polar form) of $x+y i$.

8.3 The Product and Quotient Theorems

Product and Quotient Theorems

For any two complex numbers $r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$, the following hold.

$$
\begin{aligned}
& {\left[r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\right] \cdot\left[r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)\right]} \\
& \quad=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)} \\
& \quad=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]
\end{aligned}
$$

where r_{2} cis $\theta_{2} \neq 0$

Write $2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$ in rectangular form.

$$
\begin{aligned}
2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right) & =2\left(\frac{1}{2}+i \cdot \frac{\sqrt{3}}{2}\right) \\
& =1+i \sqrt{3}
\end{aligned}
$$

Write $-\sqrt{2}+i \sqrt{2}$ in trigonometric form.

$$
r=\sqrt{(-\sqrt{2})^{2}+(\sqrt{2})^{2}}=2
$$

$\tan \theta=-1$ and θ is in quadrant II,
so $\theta=180^{\circ}-45^{\circ}=135^{\circ}$.
Therefore,

$$
-\sqrt{2}+i \sqrt{2}=2 \operatorname{cis} 135^{\circ} .
$$

Let $\quad z_{1}=4\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)$
and $\quad z_{2}=2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$.

$$
\begin{aligned}
z_{1} z_{2} & =8\left(\cos 180^{\circ}+i \sin 180^{\circ}\right) \\
& =8(-1+i \cdot 0) \\
& =-8 \\
\frac{z_{1}}{z_{2}} & =2\left(\cos 90^{\circ}+i \sin 90^{\circ}\right) \\
& =2(0+i \cdot 1) \\
& =2 i
\end{aligned}
$$

8.4 De Moivre's Theorem; Powers and Roots of Complex Numbers

De Moivre's Theorem

$$
[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

nth Root Theorem

If n is any positive integer, r is a positive real number, and θ is in degrees, then the nonzero complex number $r(\cos \theta+i \sin \theta)$ has exactly n distinct nth roots, given by the following.

$$
\sqrt[n]{r}(\cos \alpha+i \sin \alpha), \quad \text { or } \quad \sqrt[n]{r} \operatorname{cis} \alpha
$$

where

$$
\boldsymbol{\alpha}=\frac{\boldsymbol{\theta}+\mathbf{3 6 0}^{\circ} \cdot \boldsymbol{k}}{\boldsymbol{n}}, \quad k=0,1,2, \ldots, n-1
$$

If θ is in radians, then

$$
\boldsymbol{\alpha}=\frac{\boldsymbol{\theta}+2 \pi k}{\boldsymbol{n}}, \quad k=0,1,2, \ldots, n-1 .
$$

Let $z=4\left(\cos 180^{\circ}+i \sin 180^{\circ}\right)$. Find z^{3} and the square roots of z.

$$
\begin{aligned}
z^{3} & =4^{3}\left(\cos 3 \cdot 180^{\circ}+i \sin 3 \cdot 180^{\circ}\right) \\
& =64\left(\cos 540^{\circ}+i \sin 540^{\circ}\right) \\
& =64(-1+i \cdot 0) \\
& =-64
\end{aligned}
$$

For the given $z, r=4$ and $\theta=180^{\circ}$. Its square roots are

$$
\begin{aligned}
\sqrt{4}\left(\cos \frac{180^{\circ}}{2}+i \sin \frac{180^{\circ}}{2}\right) & =2(0+i \cdot 1) \\
& =2 i \\
\text { and } \sqrt{4}\left(\cos \frac{180^{\circ}+360^{\circ}}{2}+i \sin \right. & \left.\frac{180^{\circ}+360^{\circ}}{2}\right) \\
& =2(0+i(-1)) \\
& =-2 i
\end{aligned}
$$

Concepts

8.5 Polar Equations and Graphs

Rectangular and Polar Coordinates

The following relationships hold between the point (x, y) in the rectangular coordinate plane and the same point (r, θ) in the polar coordinate plane.

$$
\begin{aligned}
x & =r \cos \theta & y & =r \sin \theta \\
r^{2} & =x^{2}+y^{2} & \tan \theta & =\frac{y}{x}, \quad \text { if } x \neq 0
\end{aligned}
$$

Polar Equations and Graphs

$r=a \cos \theta$
$\boldsymbol{r}=\boldsymbol{a} \sin \boldsymbol{\theta}\}$ Circles
$r^{2}=a^{2} \sin 2 \theta$
$r^{2}=a^{2} \cos 2 \theta$
$r=a \pm b \sin \theta$
$\boldsymbol{r}=\boldsymbol{a} \pm \boldsymbol{b} \cos \boldsymbol{\theta}\}$ Limaçons
$\left.\begin{array}{l}\boldsymbol{r}=\boldsymbol{a} \sin \boldsymbol{n} \boldsymbol{\theta} \\ \boldsymbol{r}=\boldsymbol{a} \cos \boldsymbol{n} \boldsymbol{\theta}\end{array}\right\}$ Rose curves

Examples

Find the rectangular coordinates for the point $\left(5,60^{\circ}\right)$ in polar coordinates.

$$
\begin{aligned}
& x=5 \cos 60^{\circ}=5\left(\frac{1}{2}\right)=\frac{5}{2} \\
& y=5 \sin 60^{\circ}=5\left(\frac{\sqrt{3}}{2}\right)=\frac{5 \sqrt{3}}{2}
\end{aligned}
$$

The rectangular coordinates are $\left(\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)$.
Find polar coordinates for $(-1,-1)$ in rectangular coordinates.

$$
r=\sqrt{(-1)^{2}+(-1)^{2}}=\sqrt{2}
$$

$\tan \theta=1$ and θ is in quadrant III, so $\theta=225^{\circ}$.
One pair of polar coordinates for

$$
(-1,-1) \text { is }\left(\sqrt{2}, 225^{\circ}\right)
$$

Graph $r=4 \cos 2 \theta$.

$$
r=4 \cos 2 \theta
$$

8.6 Parametric Equations, Graphs, and Applications

Plane Curve

A plane curve is a set of points (x, y) such that $x=f(t)$, $y=g(t)$, and f and g are both defined on an interval I. The equations

$$
x=f(t) \quad \text { and } \quad y=g(t)
$$

are parametric equations with parameter t.

Flight of an Object

If an object has initial velocity v, has initial height h, and travels such that its initial angle of elevation is θ, then its flight after t seconds is modeled by the following parametric equations.

$$
x=(v \cos \theta) t \quad \text { and } \quad y=(v \sin \theta) t-16 t^{2}+h
$$

Graph $x=2-\sin t, y=\cos t-1$, for $0 \leq t \leq 2 \pi$.

Joe kicks a football from the ground at an angle of 45° with a velocity of 48 ft per sec. Give the parametric equations that model the path of the football and the distance it travels before hitting the ground.

$$
\begin{aligned}
& x=\left(48 \cos 45^{\circ}\right) t=24 \sqrt{2} t \\
& y=\left(48 \sin 45^{\circ}\right) t-16 t^{2}=24 \sqrt{2} t-16 t^{2}
\end{aligned}
$$

When the ball hits the ground, $y=0$.

$$
\begin{array}{ll}
24 \sqrt{2} t-16 t^{2}=0 & \text { Substitute } y=0 \\
8 t(3 \sqrt{2}-2 t)=0 & \text { Factor. } \\
\begin{array}{l}
t=0 \quad \text { or } \quad t=\frac{3 \sqrt{2}}{2} \\
\text { (Reject) }
\end{array} & \text { Zero-factor property }
\end{array}
$$

The distance it travels is $x=24 \sqrt{2}\left(\frac{3 \sqrt{2}}{2}\right)=72 \mathrm{ft}$.

Chapter 8 Review Exercises

Write each number as the product of a real number and i.

1. $\sqrt{-9}$
2. $\sqrt{-12}$

Solve each quadratic equation over the set of complex numbers.
3. $x^{2}=-81$
4. $x(2 x+3)=-4$

Perform each operation. Write answers in rectangular form.
5. $(1-i)-(3+4 i)+2 i$
6. $(2-5 i)+(9-10 i)-3$
7. $(6-5 i)+(2+7 i)-(3-2 i)$
8. $(4-2 i)-(6+5 i)-(3-i)$
9. $(3+5 i)(8-i)$
10. $(4-i)(5+2 i)$
11. $(2+6 i)^{2}$
12. $(6-3 i)^{2}$
13. $(1-i)^{3}$
14. $(2+i)^{3}$
15. $\frac{25-19 i}{5+3 i}$
16. $\frac{2-5 i}{1+i}$
17. $\frac{2+i}{1-5 i}$
18. $\frac{3+2 i}{i}$
19. i^{53}
20. i^{-41}

Perform each operation. Write answers in rectangular form.
21. $\left[5\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)\right]\left[6\left(\cos 180^{\circ}+i \sin 180^{\circ}\right)\right]$
22. $\left[3 \operatorname{cis} 135^{\circ}\right]\left[2 \operatorname{cis} 105^{\circ}\right]$
23. $\frac{2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)}{8\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)}$
24. $\frac{4 \operatorname{cis} 270^{\circ}}{2 \operatorname{cis} 90^{\circ}}$
25. $(\sqrt{3}+i)^{3}$
26. $(2-2 i)^{5}$
27. $\left(\cos 100^{\circ}+i \sin 100^{\circ}\right)^{6}$
28. Concept Check The vector representing a real number will lie on the \qquad -axis in the complex plane.

Graph each complex number as a vector.
29. $5 i$
30. $-4+2 i$
31. $3-3 i \sqrt{3}$
32. Find the sum of $7+3 i$ and $-2+i$. Graph both complex numbers and their resultant.

Perform each conversion, using a calculator to approximate answers as necessary.

Rectangular Form

Trigonometric Form

33. $-2+2 i$
34. \qquad

$$
3\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)
$$

35. \qquad

$$
2\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)
$$

36.

$$
-4+4 i \sqrt{3}
$$

37.

$1-i$
38. \qquad $4 \operatorname{cis} 240^{\circ}$
39.
$-4 i$
40. \qquad $7 \operatorname{cis} 310^{\circ}$

Concept Check The complex number z, where $z=x+y i$, can be graphed in the plane as (x, y). Describe the graph of all complex numbers z satisfying the given conditions.
41. The imaginary part of z is the negative of the real part of z.
42. The absolute value of z is 2 .

Find all roots as indicated. Express them in trigonometric form.
43. the cube roots of $1-i$
44. the fifth roots of $-2+2 i$
45. Concept Check How many real sixth roots does -64 have?
46. Concept Check How many real fifth roots does -32 have?

Solve each equation. Leave answers in trigonometric form.
47. $x^{4}+16=0$
48. $x^{3}+125=0$
49. $x^{2}+i=0$
50. Convert $\left(5,315^{\circ}\right)$ to rectangular coordinates.
51. Convert $(-1, \sqrt{3})$ to polar coordinates, with $0^{\circ} \leq \theta<360^{\circ}$ and $r>0$.
52. Concept Check What will the graph of $r=k$ be, for $k>0$?

Identify and graph each polar equation for θ in $\left[0^{\circ}, 360^{\circ}\right)$.
53. $r=4 \cos \theta$
54. $r=-1+\cos \theta$
55. $r=2 \sin 4 \theta$
56. $r=\frac{2}{2 \cos \theta-\sin \theta}$

Find an equivalent equation in rectangular coordinates.
57. $r=\frac{3}{1+\cos \theta}$
58. $r=\sin \theta+\cos \theta$
59. $r=2$

Find an equivalent equation in polar coordinates.
60. $y=x$
61. $y=x^{2}$
62. $x^{2}+y^{2}=25$

In Exercises 63-66, identify the geometric symmetry (A, B, or C) that the graph will possess.
A. symmetry with respect to the origin
B. symmetry with respect to the y-axis
C. symmetry with respect to the x-axis
63. Whenever (r, θ) is on the graph, so is $(-r,-\theta)$.
64. Whenever (r, θ) is on the graph, so is $(-r, \theta)$.
65. Whenever (r, θ) is on the graph, so is $(r,-\theta)$.
66. Whenever (r, θ) is on the graph, so is $(r, \pi-\theta)$.

In Exercises 67-70, find a polar equation having the given graph.
67.

68.

69.

70.

71. Graph the plane curve defined by the parametric equations $x=t+\cos t, y=\sin t$, for t in $[0,2 \pi]$.
72. Show that the distance between $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ in polar coordinates is given by

$$
d=\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)} .
$$

Find a rectangular equation for each plane curve with the given parametric equations.
73. $x=\sqrt{t-1}, y=\sqrt{t}, \quad$ for t in $[1, \infty)$
74. $x=3 t+2, y=t-1, \quad$ for t in $[-5,5]$
75. $x=5 \tan t, y=3 \sec t, \quad$ for t in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
76. $x=t^{2}+5, y=\frac{1}{t^{2}+1}$, for t in $(-\infty, \infty)$
77. $x=\cos 2 t, y=\sin t, \quad$ for t in $(-\pi, \pi)$
78. Find a pair of parametric equations whose graph is the circle having center $(3,4)$ and passing through the origin.
79. Flight of a Baseball A batter hits a baseball when it is 3.2 ft above the ground. It leaves the bat with velocity 118 ft per sec at an angle of 27° with respect to the ground.
(a) Determine the parametric equations that model the path of the baseball.
(b) Determine the rectangular equation that models the path of the baseball.
(c) Determine approximately how long the projectile is in flight and the horizontal distance it covers.

80. Mandelbrot Set Consider the complex number $z=1+i$. Compute the value of $z^{2}+z$, and show that its absolute value exceeds 2 , indicating that $1+i$ is not in the Mandelbrot set.

Chapter 8

Test

1. Multiply or divide as indicated. Simplify each answer.
(a) $\sqrt{-8} \cdot \sqrt{-6}$
(b) $\frac{\sqrt{-2}}{\sqrt{8}}$
(c) $\frac{\sqrt{-20}}{\sqrt{-180}}$
2. For the complex numbers $w=2-4 i$ and $z=5+i$, find each of the following in rectangular form.
(a) $w+z$ (and give a geometric representation)
(b) $w-z$
(c) $w z$
(d) $\frac{w}{z}$
3. Express each of the following in rectangular form.
(a) i^{15}
(b) $(1+i)^{2}$
4. Solve $2 x^{2}-x+4=0$ over the set of complex numbers.
5. Write each complex number in trigonometric (polar) form, where $0^{\circ} \leq \theta<360^{\circ}$.
(a) $3 i$
(b) $1+2 i$
(c) $-1-i \sqrt{3}$
6. Write each complex number in rectangular form.
(a) $3\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$
(b) $4 \mathrm{cis} 40^{\circ}$
(c) $3\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$
7. For the complex numbers $w=8\left(\cos 40^{\circ}+i \sin 40^{\circ}\right)$ and $z=2\left(\cos 10^{\circ}+i \sin 10^{\circ}\right)$, find each of the following in the form specified.
(a) $w z$ (trigonometric form)
(b) $\frac{w}{z}$ (rectangular form)
(c) z^{3} (rectangular form)
8. Find the four complex fourth roots of $-16 i$. Express them in trigonometric form.
9. Convert the given rectangular coordinates to polar coordinates. Give two pairs of polar coordinates for each point.
(a) $(0,5)$
(b) $(-2,-2)$
10. Convert the given polar coordinates to rectangular coordinates.
(a) $\left(3,315^{\circ}\right)$
(b) $\left(-4,90^{\circ}\right)$

Identify and graph each polar equation for θ in $\left[0^{\circ}, 360^{\circ}\right)$.
11. $r=1-\cos \theta$
12. $r=3 \cos 3 \theta$
13. Convert each polar equation to a rectangular equation, and sketch its graph.
(a) $r=\frac{4}{2 \sin \theta-\cos \theta}$
(b) $r=6$

Graph each pair of parametric equations.

14. $x=4 t-3, y=t^{2}$, for t in $[-3,4]$
15. $x=2 \cos 2 t, y=2 \sin 2 t$, for t in $[0,2 \pi]$
16. Julia Set Consider the complex number $z=-1+i$. Compute the value of $z^{2}-1$, and show that its absolute value exceeds 2 , indicating that $-1+i$ is not in the Julia set.

This page intentionally left blank

Appendices

A Equations and Inequalities

- Equations
- Solving Linear Equations
- Solving Quadratic Equations
- Inequalities
- Solving Linear Inequalities and Using Interval Notation
- Solving Three-Part Inequalities

Equations An equation is a statement that two expressions are equal.

$$
x+2=9, \quad 11 x=5 x+6 x, \quad x^{2}-2 x-1=0 \quad \text { Equations }
$$

To solve an equation means to find all numbers that make the equation a true statement. These numbers are the solutions, or roots, of the equation. A number that is a solution of an equation is said to satisfy the equation, and the solutions of an equation make up its solution set. Equations with the same solution set are equivalent equations. For example,

$$
x=4, \quad x+1=5, \quad \text { and } \quad 6 x+3=27 \text { are equivalent equations }
$$

because they have the same solution set, $\{4\}$. However, the equations

$$
x^{2}=9 \quad \text { and } \quad x=3 \quad \text { are not equivalent, }
$$

since the first has solution set $\{-3,3\}$ while the solution set of the second is $\{3\}$.
One way to solve an equation is to rewrite it as a series of simpler equivalent equations using the addition and multiplication properties of equality. Let a, b, and c represent real numbers.

$$
\begin{gathered}
\text { If } a=b, \text { then } a+c=b+c . \\
\text { If } a=b \text { and } c \neq 0 \text {, then } a c=b c .
\end{gathered}
$$

These properties can be extended: The same number may be subtracted from each side of an equation, and each side may be divided by the same nonzero number, without changing the solution set.

Solving Linear Equations We use the properties of equality to solve linear equations.

Linear Equation in One Variable

A linear equation in one variable is an equation that can be written in the form

$$
a x+b=0
$$

where a and b are real numbers with $a \neq 0$.

A linear equation is a first-degree equation since the greatest degree of the variable is 1 .

$$
\begin{array}{lll}
3 x+\sqrt{2}=0, & \frac{3}{4} x=12, & 0.5(x+3)=2 x-6 \\
\sqrt{x}+2=5, & \frac{1}{x}=-8, & x^{2}+3 x+0.2=0
\end{array} \quad \text { Linear equations } \quad \text { Nonlinear equations }
$$

EXAMPLE 1 Solving a Linear Equation

Solve $3(2 x-4)=7-(x+5)$.
SOLUTION
CHECK

$$
\begin{aligned}
3(2 x-4) & =7-(x+5) & & \text { Be careful with signs. } \\
6 x-12 & =7-x-5 & & \text { Distributive property } \\
6 x-12 & =2-x & & \text { Combine like terms. } \\
6 x-12+x & =2-x+x & & \text { Add } x \text { to each side. } \\
7 x-12 & =2 & & \text { Combine like terms. } \\
7 x-12+12 & =2+12 & & \text { Add } 12 \text { to each side. } \\
7 x & =14 & & \text { Combine like terms. } \\
\frac{7 x}{7} & =\frac{14}{7} & & \text { Divide each side by } 7 . \\
x & =2 & & \\
3(2 x-4) & =7-(x+5) & & \text { Original equation } \\
3(2 \cdot 2-4) & \stackrel{?}{=} 7-(2+5) & & \text { Let } x=2 . \\
3(4-4) & \stackrel{?}{=} 7-(7) & & \text { Work inside the parentheses. } \\
0 & =0 \Omega & & \text { True }
\end{aligned}
$$

Since replacing x with 2 results in a true statement, 2 is a solution of the given equation. The solution set is $\{2\}$.

EXAMPLE 2 Solving a Linear Equation with Fractions

Solve $\frac{2 x+4}{3}+\frac{1}{2} x=\frac{1}{4} x-\frac{7}{3}$.
SOLUTION $\quad \frac{2 x+4}{3}+\frac{1}{2} x=\frac{1}{4} x-\frac{7}{3}$
$\left.\begin{array}{c}\text { Distribute to allterms } \\ \text { within the parentheses. }\end{array}\right) 12\left(\frac{2 x+4}{3}+\frac{1}{2} x\right)=12\left(\frac{1}{4} x-\frac{7}{3}\right)$
Multiply by 12 , the LCD of the fractions.
$12\left(\frac{2 x+4}{3}\right)+12\left(\frac{1}{2} x\right)=12\left(\frac{1}{4} x\right)-12\left(\frac{7}{3}\right) \quad$ Distributive property

$$
4(2 x+4)+6 x=3 x-28 \quad \text { Multiply }
$$

$$
8 x+16+6 x=3 x-28 \quad \text { Distributive property }
$$

$$
14 x+16=3 x-28 \quad \text { Combine like terms. }
$$

$$
11 x=-44 \quad \text { Subtract } 3 x . \text { Subtract } 16
$$

$$
x=-4 \quad \text { Divide each side by } 11
$$

CHECK $\quad \frac{2 x+4}{3}+\frac{1}{2} x=\frac{1}{4} x-\frac{7}{3} \quad$ Original equation

$$
\frac{2(-4)+4}{3}+\frac{1}{2}(-4) \stackrel{?}{=} \frac{1}{4}(-4)-\frac{7}{3} \quad \text { Let } x=-4 .
$$

$$
\begin{aligned}
\frac{-4}{3}+(-2) & \stackrel{?}{=}-1-\frac{7}{3} \\
-\frac{10}{3} & =-\frac{10}{3} \checkmark \quad \text { True }
\end{aligned}
$$

The solution set is $\{-4\}$.
Now Try Exercise 11.

An equation satisfied by every number that is a meaningful replacement for the variable is an identity.

$$
3(x+1)=3 x+3 \quad \text { Identity }
$$

An equation that is satisfied by some numbers but not others is a conditional equation. The equations in Examples 1 and 2 are conditional equations.

$$
2 x=4 \quad \text { Conditional equation }
$$

An equation that has no solution is a contradiction.

$$
x=x+1 \quad \text { Contradiction }
$$

EXAMPLE 3 Identifying Types of Equations

Determine whether each equation is an identity, a conditional equation, or a contradiction. Give the solution set.
(a) $-2(x+4)+3 x=x-8$
(b) $5 x-4=11$
(c) $3(3 x-1)=9 x+7$

SOLUTION
(a) $-2(x+4)+3 x=x-8$

$$
\begin{aligned}
-2 x-8+3 x & =x-8 & & \text { Distributive property } \\
x-8 & =x-8 & & \text { Combine like terms. } \\
0 & =0 & & \text { Subtract } x . \text { Add } 8 .
\end{aligned}
$$

When a true statement such as $0=0$ results, the equation is an identity, and the solution set is \{all real numbers\}.
(b) $5 x-4=11$

$$
\begin{aligned}
5 x & =15 & & \text { Add } 4 \text { to each side. } \\
x & =3 & & \text { Divide each side by } 5 .
\end{aligned}
$$

This is a conditional equation, and its solution set is $\{3\}$.
(c) $3(3 x-1)=9 x+7$

$$
\begin{aligned}
9 x-3 & =9 x+7 & & \text { Distributive property } \\
-3 & =7 & & \text { Subtract } 9 x .
\end{aligned}
$$

When a false statement such as $-3=7$ results, the equation is a contradiction, and the solution set is the empty set, or null set, symbolized \varnothing.

Quadratic Equation in One Variable

An equation that can be written in the form

$$
a x^{2}+b x+c=0
$$

where a, b, and c are real numbers with $a \neq 0$, is a quadratic equation. The given form is called standard form.

A quadratic equation is a second-degree equation-that is, an equation with a squared variable term and no terms of greater degree.

$$
x^{2}=25, \quad 4 x^{2}+4 x-5=0, \quad 3 x^{2}=4 x-8 \quad \text { Quadratic equations }
$$

Factoring, the simplest method of solving a quadratic equation, depends on the zero-factor property.

If a and b are complex numbers with $a b=0$, then $a=0$ or $b=0$ or both equal zero.

EXAMPLE 4 Using the Zero-Factor Property

Solve $6 x^{2}+7 x=3$.
SOLUTION

$$
\text { CHECK } \quad 6 x^{2}+7 x=3 \quad \text { Original equation }
$$

$$
6\left(\frac{1}{3}\right)^{2}+7\left(\frac{1}{3}\right) \stackrel{?}{=} 3 \quad \text { Let } x=\frac{1}{3} \cdot \left\lvert\, 6\left(-\frac{3}{2}\right)^{2}+7\left(-\frac{3}{2}\right) \stackrel{?}{=} 3 \quad\right. \text { Let } x=-\frac{3}{2}
$$

$$
\frac{6}{9}+\frac{7}{3} \stackrel{?}{=} 3 \quad \frac{54}{4}-\frac{21}{2} \stackrel{?}{=} 3
$$

$$
3=3 \checkmark \text { True }
$$

$$
3=3 \checkmark \text { True }
$$

Both values check, since true statements result. The solution set is $\left\{\frac{1}{3},-\frac{3}{2}\right\}$.
Now Try Exercise 35.

A quadratic equation of the form $x^{2}=k$ can be solved by the square root property.

$$
\text { If } x^{2}=k, \quad \text { then } \quad x=\sqrt{k} \quad \text { or } \quad x=-\sqrt{k}
$$

That is, the solution set of $x^{2}=k$ is $\{\sqrt{ } \bar{k},-\sqrt{k}\}$, which may be abbreviated $\{ \pm \sqrt{k}\}$.

$$
\begin{aligned}
& \text { Don't factor out } x \text { here. }-6 x^{2}+7 x=3 \\
& 6 x^{2}+7 x-3=0 \quad \text { Standard form } \\
& (3 x-1)(2 x+3)=0 \quad \text { Factor. } \\
& 3 x-1=0 \quad \text { or } \quad 2 x+3=0 \quad \text { Zero-factor property } \\
& 3 x=1 \quad \text { or } \quad 2 x=-3 \quad \text { Solve each equation. } \\
& x=\frac{1}{3} \quad \text { or } \quad x=-\frac{3}{2}
\end{aligned}
$$

EXAMPLE 5 Using the Square Root Property

Solve each quadratic equation.
(a) $x^{2}=17$
(b) $(x-4)^{2}=12$

SOLUTION
(a) By the square root property, the solution set of $x^{2}=17$ is $\{ \pm \sqrt{17}\}$.
(b)

$$
(x-4)^{2}=12
$$

$$
x-4= \pm \sqrt{12} \quad \text { Generalized square root property }
$$

$$
x=4 \pm \sqrt{12} \quad \text { Add } 4
$$

$$
x=4 \pm 2 \sqrt{3} \quad \sqrt{12}=\sqrt{4 \cdot 3}=2 \sqrt{3}
$$

CHECK $\quad(x-4)^{2}=12 \quad$ Original equation

$$
\begin{array}{rlrl}
(4+2 \sqrt{3}-4)^{2} & \stackrel{?}{=} 12 & \text { Let } x=4+2 \sqrt{3} \cdot & (4-2 \sqrt{3}-4)^{2} \stackrel{?}{=} 12 \\
(2 \sqrt{3})^{2} \stackrel{?}{=} 12 & \text { Let } x=4-2 \sqrt{3} . \\
(-2 \sqrt{3})^{2} \stackrel{?}{=} 12 \\
2^{2} \cdot(\sqrt{3})^{2} \stackrel{?}{=} 12 & (-2)^{2} \cdot(\sqrt{3})^{2} \stackrel{?}{=} 12 \\
12=12 \checkmark \text { True } & 12=12 \quad \checkmark \text { True }
\end{array}
$$

The solution set is $\{4 \pm 2 \sqrt{3}\}$.

Any quadratic equation can be solved by the quadratic formula, which says that the solutions of the quadratic equation $a x^{2}+b x+c=0$, where $a \neq 0$, are given by

$$
x=\frac{-\boldsymbol{b} \pm \sqrt{\boldsymbol{b}^{2}-\mathbf{4 a c}}}{2 \boldsymbol{a}} . \quad \begin{aligned}
& \text { This formula is derived } \\
& \text { in algebra courses }
\end{aligned}
$$

EXAMPLE 6 Using the Quadratic Formula

Solve $x^{2}-4 x=-2$ using the quadratic formula.

SOLUTION	$x^{2}-4 x+2=0$ $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ $x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(2)}}{2(1)}$ The fraction bar in standard form. Here $a=1, ~$ extends under $-b$. $x=\frac{4 \pm \sqrt{16-8}}{2}$ Quadratic formula Substitute $a=1, b=-4$, and $c=2$.
$x=\frac{4 \pm 2 \sqrt{2}}{2}$	Simplify.
$x=\frac{2(2 \pm \sqrt{2})}{2}$	Factor out 2 in the numerator.
Factor first, then divide.	
$x=2 \pm \sqrt{2}$	Lowest terms

The solution set is $\{2 \pm \sqrt{2}\}$.

Inequalities An inequality says that one expression is greater than, greater than or equal to, less than, or less than or equal to another. As with equations, a value of the variable for which the inequality is true is a solution of the inequality, and the set of all solutions is the solution set of the inequality. Two inequalities with the same solution set are equivalent.

Inequalities are solved with the properties of inequality. For real numbers a, b, and c :

1. If $a<b$, then $a+c<b+c$.
2. If $a<b$ and if $c>0$, then $a c<b c$.
3. If $a<b$ and if $c<0$, then $a c>b c$.

Replacing $<$ with $>, \leq$, or \geq results in similar properties. (Restrictions on c remain the same.) Multiplication may be replaced by division in Properties 2 and 3. Always remember to reverse the direction of the inequality symbol when multiplying or dividing by a negative number.

Solving Linear Inequalities and Using Interval Notation The definition of a linear inequality is similar to the definition of a linear equation.

Linear Inequality in One Variable

A linear inequality in one variable is an inequality that can be written in the form

$$
a x+b>0
$$

where a and b are real numbers, with $a \neq 0$. (Any of the symbols $\geq,<$, and \leq may also be used.)

EXAMPLE 7 Solving a Linear Inequality

Solve $-3 x+5>-7$.
SOLUTION $\quad-3 x+5>-7$

$$
-3 x+5-5>-7-5 \quad \text { Subtract } 5
$$

Thus, the original inequality $-3 x+5>-7$ is satisfied by any real number less than 4 . The solution set can be written using set-builder notation as $\{x \mid x<4\}$, which is read "the set of all x such that x is less than 4." A graph of the solution set is shown in Figure 1, where the parenthesis is used to show that 4 itself does not belong to the solution set.

The solution set $\{x \mid x<4\}$ is an example of an interval. We can use interval notation to write intervals. With this notation, we write the interval as

$$
(-\infty, 4) . \quad \text { Interval notation }
$$

The symbol $-\infty$ does not represent an actual number. Rather it is used to show that the interval includes all real numbers less than 4 . The interval $(-\infty, 4)$ is an example of an open interval, since the endpoint, 4, is not part of the interval.

A closed interval includes both endpoints. A square bracket is used to show that a number is part of the graph, and a parenthesis is used to indicate that a number is not part of the graph.

Now Try Exercise 79.

In the table that follows, we assume that $a<b$.

Type of Interval	Set	Interval Notation	Graph
Open interval $\{$	$\begin{aligned} & \{x \mid x>a\} \\ & \{x \mid a<x<b\} \\ & \{x \mid x<b\} \end{aligned}$	$\begin{aligned} & (a, \infty) \\ & (a, b) \\ & (-\infty, b) \end{aligned}$	
$\begin{gathered} \text { Other } \\ \text { intervals } \end{gathered}\{$	$\begin{aligned} & \{x \mid x \geq a\} \\ & \{x \mid a<x \leq b\} \\ & \{x \mid a \leq x<b\} \\ & \{x \mid x \leq b\} \end{aligned}$	$\left[\begin{array}{l} {[a, \infty)} \\ (a, b] \\ {[a, b)} \\ (-\infty, b] \end{array}\right.$	
Closed interval	$\{x \mid a \leq x \leq b\}$	$[a, b]$	$\xrightarrow{\square} \stackrel{\square}{\square}$
Disjoint interval	$\{x \mid x<a$ or $x>b\}$	$(-\infty, a) \cup(b, \infty)$	
All real numbers	$\{x \mid x$ is a real number $\}$	$(-\infty, \infty)$	$\xrightarrow{ }$

Solving Three-Part Inequalities The inequality $-2<5+3 x<20$ says that $5+3 x$ is between -2 and 20. This inequality is solved using an extension of the properties of inequality given earlier, working with all three expressions at the same time.

EXAMPLE 8 Solving a Three-Part Inequality

Solve $-2<5+3 x<20$.

Figure 2

$$
\begin{aligned}
& \text { SOLUTION }-2<5+3 x<20 \\
& -2-5<5+3 x-5<20-5 \text { Subtract } 5 \text { from each part. } \\
& -7<3 x<15 \quad \text { Combine like terms in each part. } \\
& \frac{-7}{3}<\frac{3 x}{3}<\frac{15}{3} \quad \text { Divide each part by } 3 \text {. } \\
& -\frac{7}{3}<\quad<5 \quad \text { Simplify } .
\end{aligned}
$$

The solution set, graphed in Figure 2, is the interval $\left(-\frac{7}{3}, 5\right)$.

Appendix A Exercises

Concept Check In Exercises 1-4, decide whether each statement is true or false.

1. The solution set of $2 x+5=x-3$ is $\{-8\}$.
2. The equation $5(x-8)=5 x-40$ is an example of an identity.
3. The equations $x^{2}=4$ and $x+2=4$ are equivalent equations.
4. It is possible for a linear equation to have exactly two solutions.
5. Concept Check Which one is not a linear equation?
A. $5 x+7(x-1)=-3 x$
B. $9 x^{2}-4 x+3=0$
C. $7 x+8 x=13 x$
D. $0.04 x-0.08 x=0.40$
6. In solving the equation $3(2 x-8)=6 x-24$, a student obtains the result $0=0$ and gives the solution set $\{0\}$. Is this correct? Explain.

Solve each equation. See Examples 1 and 2.
7. $5 x+4=3 x-4$
8. $9 x+11=7 x+1$
9. $6(3 x-1)=8-(10 x-14)$
10. $4(-2 x+1)=6-(2 x-4)$
11. $\frac{5}{6} x-2 x+\frac{4}{3}=\frac{5}{3}$
12. $\frac{7}{4}+\frac{1}{5} x-\frac{3}{2}=\frac{4}{5} x$
13. $3 x+5-5(x+1)=6 x+7$
14. $5(x+3)+4 x-3=-(2 x-4)+2$
15. $2[x-(4+2 x)+3]=2 x+2$
16. $4[2 x-(3-x)+5]=-6 x-28$
17. $\frac{1}{14}(3 x-2)=\frac{x+10}{10}$
18. $\frac{1}{15}(2 x+5)=\frac{x+2}{9}$
19. $0.2 x-0.5=0.1 x+7$
20. $0.01 x+3.1=2.03 x-2.96$
21. $-4(2 x-6)+8 x=5 x+24+x$
22. $-8(3 x+4)+6 x=4(x-8)+4 x$

Determine whether each equation is an identity, a conditional equation, or a contradiction. Give the solution set. See Example 3.
23. $4(2 x+7)=2 x+22+3(2 x+2)$
24. $\frac{1}{2}(6 x+20)=x+4+2(x+3)$
25. $2(x-8)=3 x-16$
26. $-8(x+5)=-8 x-5(x+8)$
27. $4(x+7)=2(x+12)+2(x+1)$
28. $-6(2 x+1)-3(x-4)=-15 x+1$

Concept Check Use choices A-D to answer each question in Exercises 29-32.
A. $3 x^{2}-17 x-6=0$
B. $(2 x+5)^{2}=7$
C. $x^{2}+x=12$
D. $(3 x-1)(x-7)=0$
29. Which equation is set up for direct use of the zero-factor property? Solve it.
30. Which equation is set up for direct use of the square root property? Solve it.
31. Which one or more of these equations can be solved by the quadratic formula?
32. Only one of the equations is set up so that the values of a, b, and c for the quadratic formula can be determined immediately. Which one is it? Solve it.

Solve each equation by the zero-factor property. See Example 4.
33. $x^{2}-5 x+6=0$
34. $x^{2}+2 x-8=0$
35. $5 x^{2}-3 x-2=0$
36. $2 x^{2}-x-15=0$
37. $-4 x^{2}+x=-3$
38. $-6 x^{2}+7 x=-10$
39. $x^{2}-100=0$
40. $x^{2}-64=0$
41. $4 x^{2}-4 x+1=0$
42. $9 x^{2}-12 x+4=0$
43. $25 x^{2}+30 x+9=0$
44. $36 x^{2}+60 x+25=0$

Solve each equation by the square root property. See Example 5.
45. $x^{2}=16$
46. $x^{2}=121$
47. $27-x^{2}=0$
48. $48-x^{2}=0$
49. $(3 x-1)^{2}=12$
50. $(4 x+1)^{2}=20$

Solve each equation by the quadratic formula. See Example 6.
51. $x^{2}-4 x+3=0$
52. $x^{2}-7 x+12=0$
53. $2 x^{2}-x-28=0$
54. $4 x^{2}-3 x-10=0$
55. $x^{2}-2 x-2=0$
56. $x^{2}-10 x+18=0$
57. $2 x^{2}+x=10$
58. $3 x^{2}+2 x=5$
59. $-2 x^{2}+4 x+3=0$
60. $-3 x^{2}+6 x+5=0$
61. $\frac{1}{2} x^{2}+\frac{1}{4} x-3=0$
62. $\frac{2}{3} x^{2}+\frac{1}{4} x=3$
63. $0.2 x^{2}+0.4 x-0.3=0$
64. $0.1 x^{2}-0.1 x=0.3$
65. $(4 x-1)(x+2)=4 x$
66. $(3 x+2)(x-1)=3 x$

Concept Check Match the inequality in each exercise in Column I with its equivalent interval notation in Column II.

I

67. $x<-6$
68. $x \leq 6$
69. $-2<x \leq 6$
70. $x^{2} \geq 0$
71. $x \geq-6$
72. $6 \leq x$
73.

74.

75.

76.

II
A. $(-2,6]$
B. $[-2,6)$
C. $(-\infty,-6]$
D. $[6, \infty)$
E. $(-\infty,-3) \cup(3, \infty)$
F. $(-\infty,-6)$
G. $(0,8)$
H. $(-\infty, \infty)$
I. $[-6, \infty)$
J. $(-\infty, 6]$
77. Explain how to determine whether to use a parenthesis or a square bracket when graphing the solution set of a linear inequality.
78. Concept Check The three-part inequality $a<x<b$ means " a is less than x and x is less than b." Which one of the following inequalities is not satisfied by some real number x ?
A. $-3<x<10$
B. $0<x<6$
C. $-3<x<-1$
D. $-8<x<-10$

Solve each inequality. Write each solution set in interval notation. See Example 7.
79. $-2 x+8 \leq 16$
80. $-3 x-8 \leq 7$
81. $-2 x-2 \leq 1+x$
82. $-4 x+3 \geq-2+x$
83. $3(x+5)+1 \geq 5+3 x$
84. $6 x-(2 x+3) \geq 4 x-5$
85. $8 x-3 x+2<2(x+7)$
86. $2-4 x+5(x-1)<-6(x-2)$
87. $\frac{4 x+7}{-3} \leq 2 x+5$
88. $\frac{2 x-5}{-8} \leq 1-x$
89. $\frac{1}{3} x+\frac{2}{5} x-\frac{1}{2}(x+3) \leq \frac{1}{10}$
90. $-\frac{2}{3} x-\frac{1}{6} x+\frac{2}{3}(x+1) \leq \frac{4}{3}$

Solve each inequality. Write each solution set in interval notation. See Example 8.
91. $-5<5+2 x<11$
92. $-7<2+3 x<5$
93. $10 \leq 2 x+4 \leq 16$
94. $-6 \leq 6 x+3 \leq 21$
95. $-11>-3 x+1>-17$
96. $2>-6 x+3>-3$
97. $-4 \leq \frac{x+1}{2} \leq 5$
98. $-5 \leq \frac{x-3}{3} \leq 1$
99. $-3 \leq \frac{x-4}{-5}<4$
100. $1 \leq \frac{4 x-5}{-2}<9$

B Graphs of Equations

- The Rectangular

Coordinate System

- The Pythagorean Theorem and the Distance Formula
- The Midpoint Formula
- Graphing Equations
- Circles

The Rectangular Coordinate System Each real number corresponds to a point on a number line. This idea is extended to ordered pairs of real numbers by using two perpendicular number lines, one horizontal and one vertical, that intersect at their zero-points. This point of intersection is the origin. The horizontal line is the \boldsymbol{x}-axis, and the vertical line is the \boldsymbol{y}-axis. See Figure1.

The x-axis and y-axis together make up a rectangular coordinate system, or Cartesian coordinate system (named for one of its coinventors, René Descartes. The other coinventor was Pierre de Fermat). The plane into which the coordinate system is introduced is the coordinate plane, or $\boldsymbol{x y}$-plane. See Figure 1. The x-axis and y-axis divide the plane into four regions, or quadrants, labeled as shown. The points on the x-axis and y-axis belong to no quadrant.

Each point P in the $x y$-plane corresponds to a unique ordered pair (a, b) of real numbers. The point P corresponding to the ordered pair (a, b) often is written $P(a, b)$ as in Figure 1 and referred to as "the point (a, b)." The numbers a and b are the coordinates of point P. To locate on the $x y$-plane the point corresponding to the ordered pair $(3,4)$, for example, start at the origin, move 3 units in the positive x-direction, and then move 4 units in the positive y-direction. See Figure 2. Point A corresponds to the ordered pair (3, 4).

Figure 1

Figure 2

The Pythagorean Theorem and the Distance Formula The distance between any two points in a plane can be found by using a formula derived from the Pythagorean theorem.

Pythagorean Theorem

In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

$$
a^{2}+b^{2}=c^{2}
$$

To find the distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, draw the line segment connecting the points, as shown in Figure 3. Complete a right triangle by drawing a line through $\left(x_{1}, y_{1}\right)$ parallel to the x-axis and a line through $\left(x_{2}, y_{2}\right)$ parallel to the y-axis. The ordered pair at the right angle of this triangle is $\left(x_{2}, y_{1}\right)$.

The horizontal side of the right triangle in Figure 3 has length $x_{2}-x_{1}$, while the vertical side has length $y_{2}-y_{1}$. If d represents the distance between the two original points, then by the Pythagorean theorem,

$$
d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} .
$$

Solving for d, we obtain the distance formula.

Distance Formula

Suppose that $P\left(x_{1}, y_{1}\right)$ and $R\left(x_{2}, y_{2}\right)$ are two points in a coordinate plane. The distance between P and R, written $d(P, R)$, is given by the following formula.

$$
d(P, R)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

That is, the distance between two points in a coordinate plane is the square root of the sum of the square of the difference between their x-coordinates and the square of the difference between their y-coordinates.

EXAMPLE 1 Using the Distance Formula

Find the distance between $P(-8,4)$ and $Q(3,-2)$.
SOLUTION Use the distance formula.

$$
\begin{aligned}
d(P, Q) & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \text { Distance formula } \\
& =\sqrt{[3-(-8)]^{2}+(-2-4)^{2}} \quad \begin{array}{c}
x_{1}=-8, y_{1}=4, x_{2}=3, y_{2}=-2 \\
\end{array}=\sqrt{11^{2}+(-6)^{2}} \begin{array}{c}
\text { Be careful when } \\
\text { subtracting a } \\
\text { negative number. }
\end{array} \\
& =\sqrt{121+36} \\
& =\sqrt{157}
\end{aligned}
$$

Figure 4

The Midpoint Formula The midpoint of a line segment is equidistant from the endpoints of the segment. The midpoint formula is used to find the coordinates of the midpoint of a line segment. To develop the midpoint formula, let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ be any two distinct points in a plane. (Although Figure 4 shows $x_{1}<x_{2}$, no particular order is required.) Let (x, y) be the midpoint of the segment joining P and Q. Draw vertical lines from each of the three points to the x-axis, as shown in Figure 4.

Since (x, y) is the midpoint of the line segment joining P and Q, the distance between x and x_{1} equals the distance between x and x_{2}.

$$
\begin{aligned}
x_{2}-x & =x-x_{1} & \\
x_{2}+x_{1} & =2 x & \text { Add } x \text { and } x_{1} . \text { (Appendix A) } \\
x & =\frac{x_{1}+x_{2}}{2} & \text { Divide by } 2 \text { and rewrite. }
\end{aligned}
$$

Similarly, the y-coordinate is $\frac{y_{1}+y_{2}}{2}$, yielding the following formula.

Midpoint Formula

The midpoint M of the line segment with endpoints $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ has the following coordinates.

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

That is, the x-coordinate of the midpoint of a line segment is the average of the x-coordinates of the segment's endpoints, and the y-coordinate is the average of the y-coordinates of the segment's endpoints.

EXAMPLE 2 Using the Midpoint Formula

Find the coordinates of the midpoint M of the segment with endpoints $(8,-4)$ and $(-6,1)$.
SOLUTION The coordinates of M are found using the midpoint formula.

$$
\left(\frac{8+(-6)}{2}, \frac{-4+1}{2}\right)=\left(1,-\frac{3}{2}\right) \quad \text { Substitute in }\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

The coordinates of midpoint M are $\left(1,-\frac{3}{2}\right)$.

Now Try Exercise 9(b).

Graphing Equations Ordered pairs are used to express the solutions of equations in two variables. When an ordered pair represents the solution of an equation with the variables x and y, the x-value is written first. For example, we say that $(1,2)$ is a solution of $2 x-y=0$, since substituting 1 for x and 2 for y in the equation gives a true statement.

$$
\begin{array}{rlrl}
2 x-y & =0 \\
2(1)-2 & & \\
0 & =0 & & \text { Let } x=1 \text { and } y=2 . \\
& & \text { True }
\end{array}
$$

EXAMPLE 3 Finding Ordered-Pair Solutions of Equations

For each equation, find at least three ordered pairs that are solutions.
(a) $y=4 x-1$
(b) $x=\sqrt{y-1}$
(c) $y=x^{2}-4$

SOLUTION
(a) Choose any real number for x or y and substitute in the equation to get the corresponding value of the other variable. For example, let $x=-2$ and then let $y=3$.

$$
\begin{array}{ll|ll}
y=4 x-1 & & y=4 x-1 & \\
y=4(-2)-1 & \text { Let } x=-2 . & 3=4 x-1 & \text { Let } y=3 \\
y=-8-1 & \text { Multiply. } & 4=4 x & \text { Add } 1 . \\
y=-9 & \text { Subtract. } & 1=x & \text { Divide by } 4 .
\end{array}
$$

This gives the ordered pairs $(-2,-9)$ and $(1,3)$. Verify that the ordered pair $(0,-1)$ is also a solution.
(b)

$$
\begin{array}{ll}
x=\sqrt{y-1} & \text { Given equation } \\
1=\sqrt{y-1} & \text { Let } x=1 \\
1=y-1 & \text { Square each side. } \\
2=y & \text { Add } 1 .
\end{array}
$$

One ordered pair is $(1,2)$. Verify that the ordered pairs $(0,1)$ and $(2,5)$ are also solutions of the equation.
(c) A table provides an organized method for determining ordered pairs. Here, we let x equal $-2,-1,0,1$, and 2 in

$$
y=x^{2}-4
$$

and determine the corresponding y-values.

\boldsymbol{x}	\boldsymbol{y}	
-2	0	
-1	$-3)^{2}-4=4-4=0$	
0	-4	$(-1)^{2}-4=1-4=-3$
1	-3	$0^{2}-4=-4$
2	0	$1^{2}-4=-3$
	$2^{2}-4=0$	

Five ordered pairs are $(-2,0),(-1,-3),(0,-4),(1,-3)$, and $(2,0)$.
Now Try Exercises 17(a), 21(a), and 23(a).

The graph of an equation is found by plotting ordered pairs that are solutions of the equation. The intercepts of the graph are good points to plot first. An \boldsymbol{x}-intercept is an x-value where the graph intersects the x-axis. A y-intercept is a y-value where the graph intersects the y-axis. In other words, the x-intercept is the x-coordinate of an ordered pair where $y=0$, and the y-intercept is the y-coordinate of an ordered pair where $x=0$.

A general algebraic approach for graphing an equation using intercepts and point-plotting follows on the next page.

Graphing an Equation by Point Plotting

Step 1 Find the intercepts.
Step 2 Find as many additional ordered pairs as needed.
Step 3 Plot the ordered pairs from Steps 1 and 2.
Step 4 Join the points from Step 3 with a smooth line or curve.

EXAMPLE 4 Graphing Equations

Graph each of the equations here, from Example 3.
(a) $y=4 x-1$
(b) $x=\sqrt{y-1}$
(c) $y=x^{2}-4$

SOLUTION

(a) Step 1 Let $y=0$ to find the x-intercept, and let $x=0$ to find the y-intercept.

$$
\begin{aligned}
y & =4 x-1 \\
0 & =4 x-1 \quad \text { Let } y=0 . \\
1 & =4 x \\
\frac{1}{4} & =x
\end{aligned} \quad x \text {-intercept } *: ~ l
$$

$$
\begin{array}{ll}
y=4 x-1 \\
y & =4(0)-1 \quad \text { Let } x=0 . \\
y=0-1 \\
y=-1 & y \text {-intercept* }
\end{array}
$$

These intercepts lead to the ordered pairs $\left(\frac{1}{4}, 0\right)$ and $(0,-1)$. The y-intercept yields one of the ordered pairs we found in Example 3(a).

Step 2 We use the other ordered pairs from Example 3(a): $(-2,-9)$ and $(1,3)$.

Step 3 Plot the four ordered pairs from Steps 1 and 2 as shown in Figure 5.
Step 4 Join the points plotted in Step 3 with a straight line. This line, shown in Figure 5, is the graph of the equation $y=4 x-1$.

Figure 5

Figure 6
(b) For $x=\sqrt{y-1}$, the y-intercept 1 was found in Example 3(b). Solve

$$
x=\sqrt{0-1} \quad \text { Let } y=0 .
$$

for the x-intercept. Since the quantity under the radical is negative, there is no x-intercept. In fact, $y-1$ must be greater than or equal to 0 , so y must be greater than or equal to 1 .

We start by plotting the ordered pairs from Example 3(b) and then join the points with a smooth curve as in Figure 6. To confirm the direction the curve will take as x increases, we find another solution, $(3,10)$.

[^7]

Figure 7

Figure 8
(c) In Example 3(c), we made a table of five ordered pairs that satisfy the equation $y=x^{2}-4$.

Plotting the points and joining them with a smooth curve gives the graph in Figure 7. This curve is called a parabola.

Now Try Exercises 17(b), 21(b), and 23(b).

Circles By definition, a circle is the set of all points in a plane that lie a given distance from a given point. The given distance is the radius of the circle, and the given point is the center.

We can find the equation of a circle from its definition by using the distance formula. Suppose that the point (h, k) is the center and the circle has radius r, where $r>0$. Let (x, y) represent any point on the circle. See Figure 8.

$$
\begin{aligned}
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=r & \text { Distance formula } \\
\sqrt{(x-h)^{2}+(y-k)^{2}}=r & (h, k)=\left(x_{1}, y_{1}\right) \text { and }(x, y)=\left(x_{2}, y_{2}\right) \\
(\boldsymbol{x}-\boldsymbol{h})^{2}+(\boldsymbol{y}-\boldsymbol{k})^{\mathbf{2}}=\boldsymbol{r}^{\mathbf{2}} & \text { Square each side. }
\end{aligned}
$$

Center-Radius Form of the Equation of a Circle

A circle with center (h, k) and radius r has equation

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

which is the center-radius form of the equation of the circle. As a special case, a circle with center $(0,0)$ and radius r has the following equation.

$$
x^{2}+y^{2}=r^{2}
$$

EXAMPLE 5 Finding the Center-Radius Form

Find the center-radius form of the equation of each circle described.
(a) center at $(-3,4)$, radius 6
(b) center at $(0,0)$, radius 3

SOLUTION
(a)

$$
(x-h)^{2}+(y-k)^{2}=r^{2} \quad \text { Center-radius form }
$$

Watch signs here.

$$
\begin{aligned}
& {[x-(-3)]^{2}+(y-4)^{2}=6^{2}} \\
& \underbrace{[x-}_{(x+3)^{2}+(y-4)^{2}}=36
\end{aligned}
$$

$$
\text { Substitute. Let }(h, k)=(-3,4) \text { and } r=6 \text {. }
$$

Simplify.
(b) The center is the origin and $r=3$.

$$
\begin{array}{ll}
x^{2}+y^{2}=r^{2} & \text { Special case of the center-radius form } \\
x^{2}+y^{2}=3^{2} & \text { Let } r=3 \\
x^{2}+y^{2}=9 & \text { Apply the exponent. }
\end{array}
$$

EXAMPLE 6 Graphing Circles

Graph each circle discussed in Example 5.
(a) $(x+3)^{2}+(y-4)^{2}=36$
(b) $x^{2}+y^{2}=9$

SOLUTION

(a) Writing the given equation in center-radius form

$$
[x-(-3)]^{2}+(y-4)^{2}=6^{2}
$$

gives $(-3,4)$ as the center and 6 as the radius. See Figure 9.

Figure 9

Figure 10
(b) The graph with center $(0,0)$ and radius 3 is shown in Figure 10.

Now Try Exercises 29(b) and 35(b).

Appendix B Exercises

Graph the points on a coordinate system and identify the quadrant or axis for each point.

1. $(3,2)$
2. $(-7,6)$
3. $(-7,-4)$
4. $(8,-5)$
5. $(0,5)$
6. $(-8,0)$
7. $(4.5,7)$
8. $(-7.5,8)$

For the points P and Q, find (a) the distance $d(P, Q)$ and (\boldsymbol{b}) the coordinates of the midpoint of the segment $P Q$. See Examples 1 and 2.
9. $P(8,2), Q(3,5)$
10. $P(-8,4), Q(3,-5)$
11. $P(-6,-5), Q(6,10)$
12. $P(6,-2), Q(4,6)$
13. $P(3 \sqrt{2}, 4 \sqrt{5}), Q(\sqrt{2},-\sqrt{5})$
14. $P(-\sqrt{7}, 8 \sqrt{3}), Q(5 \sqrt{7},-\sqrt{3})$

Solve each problem.
15. Bachelor's Degree Attainment The graph shows a straight line that approximates the percentage of Americans 25 years and older who had earned bachelor's degrees or higher for the years 1990-2008. Use the midpoint formula and the two given points to estimate the percent in 1999. Compare your answer with the actual percent of 25.2.

Source: U.S. Census Bureau.
16. Poverty Level Income Cutoffs The table lists how poverty level income cutoffs (in dollars) for a family of four have changed over time. Use the midpoint formula to approximate the poverty level cutoff in 2006 to the nearest dollar.

Year	Income (in dollars)
1980	8414
1990	13,359
2000	17,604
2004	19,307
2008	22,025
Source: U.S. Census Bureau.	

Source: U.S. Census Bureau.

For each equation, (a) give a table with at least three ordered pairs that are solutions, and (b) graph the equation. See Examples 3 and 4.
17. $y=\frac{1}{2} x-2$
18. $y=-x+3$
19. $2 x+3 y=5$
20. $3 x-2 y=6$
21. $y=x^{2}$
22. $y=x^{2}+2$
23. $y=\sqrt{x-3}$
24. $y=\sqrt{x}-3$
25. $y=|x-2|$
26. $y=-|x+4|$
27. $y=x^{3}$
28. $y=-x^{3}$

In Exercises 29-40, (a) find the center-radius form of the equation of each circle, and (b) graph it. See Examples 5 and 6.
29. center $(0,0)$, radius 6
30. center $(0,0)$, radius 9
31. center $(2,0)$, radius 6
32. center (3,0), radius 3
33. center $(0,4)$, radius 4
34. center $(0,-3)$, radius 7
35. center $(-2,5)$, radius 4
36. center $(4,3)$, radius 5
37. center $(5,-4)$, radius 7
38. center $(-3,-2)$, radius 6
39. center $(\sqrt{2}, \sqrt{2})$, radius $\sqrt{2}$
40. center $(-\sqrt{3},-\sqrt{3})$, radius $\sqrt{3}$

Connecting Graphs with Equations In Exercises 41-44, use each graph to determine the equation of the circle in center-radius form.
41.

42.

43.

44.

C Functions

Relations and Functions

- Domain and Range
- Determining Whether Relations Are Functions
- Function Notation
- Increasing, Decreasing, and Constant Functions

Relations and Functions In algebra, we use ordered pairs to represent related quantities. For example, ($3, \$ 10.50$) might indicate that you pay $\$ 10.50$ for 3 gallons of gas. Since the amount you pay depends on the number of gallons pumped, the amount (in dollars) is called the dependent variable, and the number of gallons pumped is called the independent variable.

Generalizing, if the value of the second component y depends on the value of the first component x, then y is the dependent variable and x is the independent variable.

$$
\begin{aligned}
& \text { Independent variable } \underset{(x, y)}{\downarrow} \downarrow \text { Dependent variable }
\end{aligned}
$$

A set of ordered pairs such as $\{(3,10.50),(8,28.00),(10,35.00)\}$ is a relation. A special kind of relation called a function is very important in mathematics and its applications.

Relation and Function

A relation is a set of ordered pairs. A function is a relation in which, for each distinct value of the first component of the ordered pairs, there is exactly one value of the second component.

EXAMPLE 1 Deciding Whether Relations Define Functions

Decide whether each relation defines a function.

$$
\begin{aligned}
F & =\{(1,2),(-2,4),(3,4)\} \\
G & =\{(1,1),(1,2),(1,3),(2,3)\} \\
H & =\{(-4,1),(-2,1),(-2,0)\}
\end{aligned}
$$

SOLUTION Relation F is a function, because for each distinct x-value there is exactly one y-value. We can show this correspondence as follows.

As the correspondence below shows, relation G is not a function because one first component corresponds to more than one second component.

In relation H the last two ordered pairs have the same x-value paired with two different y-values (-2 is paired with both 1 and 0), so H is a relation but not a function. In a function, no two ordered pairs can have the same first component and different second components.

Relations and functions can also be expressed as a correspondence or mapping from one set to another, as shown in Figure 1 for function F and relation H from Example 1. The arrow from 1 to 2 indicates that the ordered pair $(1,2)$ belongs to F-each first component is paired with exactly one second component. In the mapping for relation H, which is not a function, the first component -2 is paired with two different second components, 1 and 0 .

Since relations and functions are sets of ordered pairs, we can represent them using tables and graphs. A table and graph for function F are shown in Figure 2.

Figure 2

We can describe a relation or function using a rule that tells how to determine the value of the dependent variable for a specific value of the independent variable. The rule may be given in words: for instance, "the dependent variable is twice the independent variable." Usually the rule is an equation, such as the one below.

$$
\text { Dependent variable } \rightarrow y=2 x \leftarrow \text { Independent variable }
$$

In a function, there is exactly one value of the dependent variable, the second component, for each value of the independent variable, the first component.

Domain and Range For every relation there are two important sets of elements called the domain and range.

Domain and Range

In a relation consisting of ordered pairs (x, y), the set of all values of the independent variable (x) is the domain. The set of all values of the dependent variable (y) is the range.

EXAMPLE 2 Finding Domains and Ranges of Relations

Give the domain and range of each relation. Tell whether the relation defines a function.
(a) $\{(3,-1),(4,2),(4,5),(6,8)\}$
(b)

(c)

\boldsymbol{x}	\boldsymbol{y}
-5	2
0	2
5	2

SOLUTION

(a) The domain is the set of x-values, $\{3,4,6\}$. The range is the set of y-values, $\{-1,2,5,8\}$. This relation is not a function because the same x-value, 4 , is paired with two different y-values, 2 and 5 .
(b) The domain is $\{4,6,7,-3\}$ and the range is $\{100,200,300\}$. This mapping defines a function. Each x-value corresponds to exactly one y-value.
(c) This relation is a set of ordered pairs, so the domain is the set of x-values $\{-5,0,5\}$ and the range is the set of y-values $\{2\}$. The table defines a function because each distinct x-value corresponds to exactly one y-value (even though it is the same y-value).

Now Try Exercises 9, 11, and 13.

EXAMPLE 3 Finding Domains and Ranges from Graphs

Give the domain and range of each relation.
(a)

(b)

(c)

(d)

SOLUTION

(a) The domain is the set of x-values,

$$
\{-1,0,1,4\} .
$$

The range is the set of y-values,

$$
\{-3,-1,1,2\} .
$$

(b) The x-values of the points on the graph include all numbers between -4 and 4 , inclusive. The y-values include all numbers between -6 and 6 , inclusive.

$$
\begin{array}{ll}
\text { The domain is }[-4,4] . & \text { Use interval notation. } \\
\text { The range is }[-6,6] . & \text { (Appendix A) }
\end{array}
$$

(c) The arrowheads indicate that the line extends indefinitely left and right, as well as up and down. Therefore, both the domain and the range include all real numbers, which is written

$$
(-\infty, \infty) . \begin{aligned}
& \text { Interval notation for the } \\
& \text { set of real numbers }
\end{aligned}
$$

(d) The arrowheads indicate that the graph extends indefinitely left and right, as well as upward. The domain is $(-\infty, \infty)$. Because there is a least y-value, -3 , the range includes all numbers greater than or equal to -3 , written $[-3, \infty)$.

Determining Whether Relations Are Functions Since each value of x leads to

 only one value of y in a function, any vertical line must intersect the graph in at most one point. This is the vertical line test for a function.
Vertical Line Test

If every vertical line intersects the graph of a relation in no more than one point, then the relation is a function.

The graph in Figure 3(a) represents a function because each vertical line intersects the graph in no more than one point. The graph in Figure 3(b) is not the graph of a function since a vertical line intersects the graph in more than one point.

Figure 3

EXAMPLE 4 Using the Vertical Line Test

Use the vertical line test to determine whether each relation graphed in Example 3 is a function.

SOLUTION We repeat each graph from Example 3, this time with vertical lines drawn through the graphs.
(a)

(b)

(c)

(d)

- The graphs of the relations in parts (a), (c), and (d) pass the vertical line test, since every vertical line intersects each graph no more than once. Thus, these graphs represent functions.
- The graph of the relation in part (b) fails the vertical line test, since the same x-value corresponds to two different y-values. Therefore, it is not the graph of a function.

Now Try Exercises 15 and 17.

The vertical line test is a simple method for identifying a function defined by a graph. Deciding whether a relation defined by an equation or an inequality is a function, as well as determining the domain and range, is more difficult. The next example gives some hints that may help.

Figure 4

Figure 5

Figure 6

EXAMPLE 5 Identifying Functions, Domains, and Ranges

Decide whether each relation defines a function and give the domain and range.
(a) $y=x+4$
(b) $y=\sqrt{2 x-1}$
(c) $y^{2}=x$
(d) $y=\frac{5}{x-1}$

SOLUTION

(a) In the defining equation (or rule), $y=x+4, y$ is always found by adding 4 to x. Thus, each value of x corresponds to just one value of y, and the relation defines a function. The variable x can represent any real number, so the domain is

$$
\{x \mid x \text { is a real number }\}, \text { or }(-\infty, \infty)
$$

Since y is always 4 more than x, y also may be any real number, and so the range is $(-\infty, \infty)$.
(b) For any choice of x in the domain of $y=\sqrt{2 x-1}$, there is exactly one corresponding value for y (the radical is a nonnegative number), so this equation defines a function. Since the equation involves a square root, the quantity under the radical sign cannot be negative.

$$
\begin{aligned}
2 x-1 & \geq 0 \quad \text { Solve the inequality. (Appendix A) } \\
2 x & \geq 1 \quad \text { Add } 1 . \\
x & \geq \frac{1}{2} \quad \text { Divide by } 2 .
\end{aligned}
$$

The domain of the function is $\left[\frac{1}{2}, \infty\right)$. Because the radical must represent a nonnegative number, as x takes values greater than or equal to $\frac{1}{2}$, the range is $\{y \mid y \geq 0\}$, or $[0, \infty)$. See Figure 4.
(c) The ordered pairs $(16,4)$ and $(16,-4)$ both satisfy the equation $y^{2}=x$. Since one value of $x, 16$, corresponds to two values of $y, 4$ and -4 , this equation does not define a function.

Because x is equal to the square of y, the values of x must always be nonnegative. The domain of the relation is $[0, \infty)$. Any real number can be squared, so the range of the relation is $(-\infty, \infty)$. See Figure 5.
(d) Given any value of x in the domain of

$$
y=\frac{5}{x-1}
$$

we find y by subtracting 1 from x, and then dividing the result into 5. This process produces exactly one value of y for each value in the domain, so this equation defines a function.

The domain of $y=\frac{5}{x-1}$ includes all real numbers except those that make the denominator 0 . We find these numbers by setting the denominator equal to 0 and solving for x.

$$
\begin{aligned}
x-1 & =0 \\
x & =1 \quad \text { Add 1. (Appendix A) }
\end{aligned}
$$

Thus, the domain includes all real numbers except 1 , written as the interval $(-\infty, 1) \cup(1, \infty)$. Values of y can be positive or negative, but never 0 , because a fraction cannot equal 0 unless its numerator is 0 . Therefore, the range is the interval $(-\infty, 0) \cup(0, \infty)$, as shown in Figure 6 .

Function Notation When a function f is defined with a rule or an equation using x and y for the independent and dependent variables, we say, " y is a function of $x "$ to emphasize that y depends on x. We use the notation

$$
y=f(x)
$$

called function notation, to express this and read $f(x)$ as " \boldsymbol{f} of \boldsymbol{x}." The letter f is the name given to this function.

For example, if $y=3 x-5$, we can name the function f and write

$$
f(x)=3 x-5
$$

Note that $\boldsymbol{f}(\boldsymbol{x})$ is just another name for the dependent variable y. For example, if $y=f(x)=3 x-5$ and $x=2$, then we find y, or $f(2)$, by replacing x with 2 .

$$
\begin{array}{ll}
f(2)=3 \cdot 2-5 & \text { Let } x=2 \\
f(2)=1 & \text { Multiply, and then subtract. }
\end{array}
$$

The statement "In the function f, if $x=2$, then $y=1$ " represents the ordered pair $(2,1)$ and is abbreviated with function notation as follows.

$$
f(2)=1
$$

The symbol $f(2)$ is read " f of 2 " or " f at 2 ."
These ideas can be illustrated as follows.

EXAMPLE 6 Using Function Notation

Let $f(x)=-x^{2}+5 x-3$ and $g(x)=2 x+3$. Find and simplify each of the following.
(a) $f(2)$
(b) $f(q)$
(c) $g(a+1)$

SOLUTION
(a) $f(x)=-x^{2}+5 x-3$

$$
\begin{aligned}
f(2) & =-2^{2}+5 \cdot 2-3 & & \text { Replace } x \text { with } 2 . \\
& =-4+10-3 & & \text { Apply the exponent and multiply. } \\
& =3 & & \text { Add and subtract. }
\end{aligned}
$$

Thus, $f(2)=3$, and the ordered pair $(2,3)$ belongs to f.
(b) $f(x)=-x^{2}+5 x-3$

$$
f(q)=-q^{2}+5 q-3 \quad \text { Replace } x \text { with } q .
$$

(c) $\quad g(x)=2 x+3$

$$
\begin{aligned}
g(a+1) & =2(a+1)+3 & & \text { Replace } x \text { with } a+1 . \\
& =2 a+2+3 & & \text { Distributive property } \\
& =2 a+5 & & \text { Add. }
\end{aligned}
$$

Now Try Exercises 35, 43, and 49.

Functions can be evaluated in a variety of ways, as shown in Example 7.

Figure 7

EXAMPLE 7 Using Function Notation

For each function, find $f(3)$.
(a) $f(x)=3 x-7$
(b) $f=\{(-3,5),(0,3),(3,1),(6,-1)\}$
(c)

(d)

SOLUTION

(a) $f(x)=3 x-7$
$f(3)=3(3)-7 \quad$ Replace x with 3.
$f(3)=2 \quad$ Simplify.
(b) For $f=\{(-3,5),(0,3),(3,1),(6,-1)\}$, we want $f(3)$, the y-value of the ordered pair where $x=3$. As indicated by the ordered pair $(3,1)$, when $x=3, y=1$, so $f(3)=1$.
(c) In the mapping, the domain element 3 is paired with 5 in the range, so $f(3)=5$.
(d) To evaluate $f(3)$ using the graph, find 3 on the x-axis. See Figure 7. Then move up until the graph of f is reached. Moving horizontally to the y-axis gives 4 for the corresponding y-value. Thus, $f(3)=4$.

Now Try Exercises 51, 53, and 55.

Figure 8

Increasing, Decreasing, and Constant Functions Informally speaking, a function increases on an interval of its domain if its graph rises from left to right on the interval. It decreases on an interval of its domain if its graph falls from left to right on the interval. It is constant on an interval of its domain if its graph is horizontal on the interval.

For example, consider Figure 8. The function increases on the interval $[-2,1]$ because the y-values continue to get larger for x-values in that interval. Similarly, the function is constant on the interval [1,4] because the y-values are always 5 for all x-values there. Finally, the function decreases on the interval $[4,6]$ because there the y-values continuously get smaller. The intervals refer to the x-values where the y-values either increase, decrease, or are constant.

The formal definitions of these concepts follow.

Increasing, Decreasing, and Constant Functions

Suppose that a function f is defined over an interval I and x_{1} and x_{2} are in I.
(a) f increases on I if, whenever $x_{1}<x_{2}, f\left(x_{1}\right)<f\left(x_{2}\right)$.
(b) f decreases on I if, whenever $x_{1}<x_{2}, f\left(x_{1}\right)>f\left(x_{2}\right)$.
(c) f is constant on I if, for every x_{1} and $x_{2}, f\left(x_{1}\right)=f\left(x_{2}\right)$.

Figure 9 illustrates these ideas.

Figure 9

NOTE To decide whether a function is increasing, decreasing, or constant on an interval, ask yourself, "What does y do as x goes from left to right?"

There can be confusion regarding whether endpoints of an interval should be included when determining intervals over which a function is increasing or decreasing. For example, consider the graph of $y=f(x)=x^{2}+4$, shown in Figure 10.

Is f increasing on $[0, \infty)$ or just on $(0, \infty)$?

$$
f(x)=x^{2}+4 \text { increases on }
$$

$[0, \infty)$ and decreases on $(-\infty, 0]$.
Figure 10

The definition of increasing and decreasing allows us to include 0 as a part of the interval I over which this function is increasing, because if we let $x_{1}=0$, then $f(0)<f\left(x_{2}\right)$ whenever $0<x_{2}$. Thus, $f(x)=x^{2}+4$ is increasing on $[0, \infty)$. A similar discussion can be used to show that this function is decreasing on $(-\infty, 0]$. Do not confuse these concepts by saying that f both increases and decreases at the point $(0,0)$.

The concepts of increasing and decreasing functions apply to intervals of the domain, not to individual points.

It is not incorrect to say that $f(x)=x^{2}+4$ is increasing on $(0, \infty)$-there are infinitely many intervals over which it increases. However, we generally give the largest possible interval when determining where a function increases or decreases. (Source: Stewart J., Calculus, Fourth Edition, Brooks/Cole Publishing Company, p. 21.)

EXAMPLE 8

Determining Intervals over Which a Function Is Increasing, Decreasing, or Constant

Figure 11 shows the graph of a function. Determine the intervals over which the function is increasing, decreasing, or constant.

Figure 11
SOLUTION We should ask, "What is happening to the y-values as the x-values are getting larger?" Moving from left to right on the graph, we see the following:

- On the interval $(-\infty, 1)$, the y-values are decreasing.
- On the interval $[1,3]$, the y-values are increasing.
- On the interval $[3, \infty$), the y-values are constant (and equal to 6).

Therefore, the function is decreasing on $(-\infty, 1)$, increasing on $[1,3]$, and constant on $[3, \infty)$.

Now Try Exercise 61.

Appendix C
 Exercises

Decide whether each relation defines a function. See Example 1.

1. $\{(5,1),(3,2),(4,9),(7,8)\}$
2. $\{(8,0),(5,7),(9,3),(3,8)\}$
3. $\{(2,4),(0,2),(2,6)\}$
4. $\{(9,-2),(-3,5),(9,1)\}$
5. $\{(-3,1),(4,1),(-2,7)\}$
6. $\{(-12,5),(-10,3),(8,3)\}$
7. | \boldsymbol{x} | \boldsymbol{y} |
| ---: | :---: |
| 3 | -4 |
| 7 | -4 |
| 10 | -4 |
8.

\boldsymbol{x}	\boldsymbol{y}
-4	$\sqrt{2}$
0	$\sqrt{2}$
4	$\sqrt{2}$

Decide whether each relation defines a function and give the domain and range. See Examples 1-4.
9. $\{(1,1),(1,-1),(0,0),(2,4),(2,-4)\}$
10. $\{(2,5),(3,7),(3,9),(5,11)\}$
11.

12.

13.

\boldsymbol{x}	\boldsymbol{y}
0	0
-1	1
-2	2

14.

\boldsymbol{x}	\boldsymbol{y}
0	0
1	-1
2	-2

15.

16.

17.

18.

19.

20.

Decide whether each relation defines y as a function of x. Give the domain and range. See Example 5.
21. $y=x^{2}$
22. $y=x^{3}$
23. $x=y^{6}$
24. $x=y^{4}$
25. $y=2 x-5$
26. $y=-6 x+4$
27. $y=\sqrt{x}$
28. $y=-\sqrt{x}$
29. $x y=2$
32. $y=\sqrt{7-2 x}$
30. $x y=-6$
31. $y=\sqrt{4 x+1}$
33. $y=\frac{2}{x-3}$
34. $y=\frac{-7}{x-5}$

Let $f(x)=-3 x+4$ and $g(x)=-x^{2}+4 x+1$. Find and simplify each of the following. See Example 6.
35. $f(0)$
36. $f(-3)$
37. $g(-2)$
38. $g(10)$
39. $f\left(\frac{1}{3}\right)$
40. $f\left(-\frac{7}{3}\right)$
41. $g\left(\frac{1}{2}\right)$
42. $g\left(-\frac{1}{4}\right)$
43. $f(p)$
44. $g(k)$
45. $f(-x)$
46. $g(-x)$
47. $f(x+2)$
48. $f(a+4)$
49. $f(2 m-3)$
50. $f(3 t-2)$

For each function, find (a) $f(2)$ and (b) $f(-1)$. See Example 7.
51. $f=\{(-1,3),(4,7),(0,6),(2,2)\}$
52. $f=\{(2,5),(3,9),(-1,11),(5,3)\}$
53.

54.

55.

56.

In Exercises 57-60, use the graph of $y=f(x)$ to find each function value: (a) $f(-2)$, (b) $f(0),(c) f(1)$, and (d) $f(4)$. See Example 7(d).
57.

59.

58.

60.

Determine the intervals of the domain for which each function is (a) increasing, (b) decreasing, and (c) constant. See Example 8.
61.

62.

63.

64.

65.

66.

D Graphing Techniques

- Stretching and Shrinking
- Reflecting
- Symmetry
- Translations

Graphing techniques presented in this section show how to graph functions that are defined by altering the equation of a basic function.

NOTE Recall from algebra that $|a|$ is the absolute value of a number a.

$$
|a|=\left\{\begin{array}{l}
a \text { if } a \text { is positive or } 0 \\
-a \text { if } a \text { is negative }
\end{array}\right.
$$

Thus, $|2|=|2|$ and $|-2|=|2|$.
We use absolute value functions to illustrate many

Graph of the absolute value function of the graphing techniques in this section.

Stretching and Shrinking We begin by considering how the graphs of $y=a f(x)$ and $y=f(a x)$ compare to the graph of $y=f(x)$, where $a>0$.

EXAMPLE 1 Stretching or Shrinking a Graph

Graph each function.
(a) $g(x)=2|x|$
(b) $h(x)=\frac{1}{2}|x|$
(c) $k(x)=|2 x|$

SOLUTION
(a) Comparing the tables of values for $f(x)=|x|$ and $g(x)=2|x|$ in Figure 1, we see that for corresponding x-values, the y-values of g are each twice those of f. The graph of $f(x)=|x|$ is vertically stretched. The graph of $g(x)$, shown in blue in Figure 1, is narrower than that of $f(x)$, shown in red for comparison.

\boldsymbol{x}	$\boldsymbol{f}(x)=\|x\|$	$g(x)=2\|x\|$
-2	2	4
-1	1	2
0	0	0
1	1	2
2	2	4

Figure 1
(b) The graph of $h(x)=\frac{1}{2}|x|$ is also the same general shape as that of $f(x)$, but here the coefficient $\frac{1}{2}$ is between 0 and 1 and causes a vertical shrink. The graph of $h(x)$ is wider than the graph of $f(x)$, as we see by comparing the tables of values. See Figure 2.

\boldsymbol{x}	$\boldsymbol{f}(x)=\|x\|$	$h(x)=\frac{1}{2}\|x\|$
-2	2	1
-1	1	$\frac{1}{2}$
0	0	0
1	1	$\frac{1}{2}$
2	2	1

Figure 2
(c) Use the property of absolute value $|a b|=|a| \cdot|b|$ to rewrite $|2 x|$.

$$
k(x)=|2 x|=|2| \cdot|x|=2|x|
$$

Therefore, the graph of $k(x)=|2 x|$ is the same as the graph of $g(x)=2|x|$ in part (a). This is a horizontal shrink of the graph of $f(x)=|x|$. See Figure 2.

Horizontal stretching $0<a<1$

Horizontal shrinking $a>1$

Figure 4

Vertical Stretching or Shrinking of the Graph of a Function

Suppose that $a>0$. If a point (x, y) lies on the graph of $y=f(x)$, then the point $(x, a y)$ lies on the graph of $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{f}(\boldsymbol{x})$.
(a) If $a>1$, then the graph of $y=a f(x)$ is a vertical stretching of the graph of $y=f(x)$.
(b) If $0<a<1$, then the graph of $y=a f(x)$ is a vertical shrinking of the graph of $y=f(x)$.

Figure 3 shows graphical interpretations of vertical stretching and shrinking. In both cases, the x-intercepts remain the same but the y-intercepts are affected.

Vertical stretching $a>1$

Vertical shrinking
$0<a<1$

Figure 3

Graphs of functions can also be stretched and shrunk horizontally.

Horizontal Stretching or Shrinking of the Graph of a Function

Suppose that $a>0$. If a point (x, y) lies on the graph of $y=f(x)$, then the point $\left(\frac{x}{a}, y\right)$ lies on the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{a x})$.
(a) If $0<a<1$, then the graph of $y=f(a x)$ is a horizontal stretching of the graph of $y=f(x)$.
(b) If $a>1$, then the graph of $y=f(a x)$ is a horizontal shrinking of the graph of $y=f(x)$.

See Figure 4 for graphical interpretations of horizontal stretching and shrinking. In both cases, the y-intercept remains the same but the x-intercepts are affected.

Reflecting Forming the mirror image of a graph across a line is called reflecting the graph across the line.

EXAMPLE 2 Reflecting a Graph across an Axis

Graph each function.
(a) $g(x)=-\sqrt{x}$
(b) $h(x)=\sqrt{-x}$

SOLUTION

(a) The tables of values for $g(x)=-\sqrt{x}$ and $f(x)=\sqrt{x}$ are shown with their graphs in Figure 5 on the next page. As the tables suggest, every y-value of the graph of $g(x)=-\sqrt{x}$ is the negative of the corresponding y-value of $f(x)=\sqrt{x}$. This has the effect of reflecting the graph across the x-axis.

Figure 5
(b) The domain of $h(x)=\sqrt{-x}$ is $(-\infty, 0]$, while the domain of $f(x)=\sqrt{x}$ is $[0, \infty)$. Choosing x-values for $h(x)$ that are negatives of those used for $f(x)$, we see that corresponding y-values are the same. The graph of h is a reflection of the graph of f across the y-axis. See Figure 6.

Figure 6
Now Try Exercises 17 and 23.

The graphs in Example 2 suggest the following generalizations.

y-axis symmetry
(a)

x-axis symmetry
(b)

Figure 7

Reflecting across an Axis

The graph of $\boldsymbol{y}=\boldsymbol{-} \boldsymbol{f}(\boldsymbol{x})$ is the same as the graph of $y=f(x)$ reflected across the x-axis. (If a point (x, y) lies on the graph of $y=f(x)$, then $(x,-y)$ lies on this reflection.)

The graph of $\boldsymbol{y}=\boldsymbol{f}(-\boldsymbol{x})$ is the same as the graph of $y=f(x)$ reflected across the y-axis. (If a point (x, y) lies on the graph of $y=f(x)$, then $(-x, y)$ lies on this reflection.)

Symmetry The graph of f shown in Figure 7(a) is cut in half by the y-axis with each half the mirror image of the other half. Such a graph is symmetric with respect to the y-axis. The point $(-x, y)$ is on the graph whenever the point (x, y) is on the graph.

Similarly, if the graph in Figure 7(b) were folded in half along the x-axis, the portion at the top would exactly match the portion at the bottom. Such a graph is symmetric with respect to the x-axis. The point $(x,-y)$ is on the graph whenever the point (x, y) is on the graph.

Symmetry with Respect to an Axis

The graph of an equation is symmetric with respect to the \boldsymbol{y}-axis if the replacement of x with $-x$ results in an equivalent equation.
The graph of an equation is symmetric with respect to the \boldsymbol{x}-axis if the replacement of y with $-y$ results in an equivalent equation.

EXAMPLE 3 Testing for Symmetry with Respect to an Axis

Test for symmetry with respect to the x-axis and the y-axis.
(a) $y=x^{2}+4$
(b) $x=y^{2}-3$
(c) $x^{2}+y^{2}=16$
(d) $2 x+y=4$

SOLUTION

y-axis symmetry
Figure 8

x-axis symmetry
Figure 9
(a) In $y=x^{2}+4$, replace x with $-x$.

The result is the same as the original equation, so the graph, shown in Figure 8, is symmetric with respect to the y-axis. Substituting $-y$ for y does not result in an equivalent equation, and thus the graph is not symmetric with respect to the x-axis.
(b) In $x=y^{2}-3$, replace y with $-y$.

$$
x=(-y)^{2}-3=y^{2}-3 \quad \text { Same as the original equation }
$$

The graph is symmetric with respect to the x-axis, as shown in Figure 9. It is not symmetric with respect to the y-axis.
(c) Substitute $-x$ for x and then $-y$ for y in $x^{2}+y^{2}=16$.

$$
(-x)^{2}+y^{2}=16 \quad \text { and } \quad x^{2}+(-y)^{2}=16
$$

Both simplify to the original equation, $x^{2}+y^{2}=16$. The graph, a circle of radius 4 centered at the origin, is symmetric with respect to both axes. See Figure 10.

x-axis and y-axis symmetry

No x-axis or y-axis symmetry

Figure 11
(d) In $2 x+y=4$, replace x with $-x$ to get $-2 x+y=4$. Then replace y with $-y$ in the original equation to get $2 x-y=4$. Neither case produces an equivalent equation, so this graph is not symmetric with respect to either axis. See Figure 11.

Another kind of symmetry occurs when a graph can be rotated 180° about the origin, with the result coinciding exactly with the original graph. Symmetry of this type is called symmetry with respect to the origin. The point $(-x,-y)$ is on the graph whenever the point (x, y) is on the graph. See Figure 12.

Origin symmetry
Figure 12

It is true that, for functions with origin symmetry, the origin becomes a midpoint of every line segment passing through the origin that connects two points on the graph of the function.

Symmetry with Respect to the Origin

The graph of an equation is symmetric with respect to the origin if the replacement of both x with $-x$ and y with $-y$ at the same time results in an equivalent equation.

EXAMPLE 4 Testing for Symmetry with Respect to the Origin

Are the following graphs symmetric with respect to the origin?
(a) $x^{2}+y^{2}=16$
(b) $y=x^{3}$

SOLUTION

(a) Replace x with $-x$ and y with $-y$.

The graph, which is the circle shown in Figure 10 in Example 3(c), is symmetric with respect to the origin.
(b) Replace x with $-x$ and y with $-y$.

$$
\begin{aligned}
y & =x^{3} \quad \longleftrightarrow \\
-y & =(-x)^{3} \\
-y & =-x^{3} \\
y & =x^{3} \quad \longleftrightarrow
\end{aligned} \quad \text { Equivalent }
$$

The graph, which is that of the cubing function, is symmetric with respect to the origin and is shown in Figure 13.

Notice the following important concepts regarding symmetry:

- A graph symmetric with respect to both the x - and y-axes is automatically symmetric with respect to the origin. (See Figure 10.)
- A graph symmetric with respect to the origin need not be symmetric with respect to either axis. (See Figure 13.)
- Of the three types of symmetry—with respect to the x-axis, with respect to the y-axis, and with respect to the origin-a graph possessing any two types must also exhibit the third type of symmetry.

Translations The next examples show the results of horizontal and vertical shifts, or translations, of the graph of $f(x)=|x|$.

EXAMPLE 5 Translating a Graph Vertically

Graph $g(x)=|x|-4$.
SOLUTION By comparing the table of values for $g(x)=|x|-4$ and $f(x)=|x|$ shown with Figure 14, we see that for corresponding x-values, the y-values of g are each 4 less than those for f. Thus, the graph of $g(x)=|x|-4$ is the same as that of $f(x)=|x|$, but translated 4 units down. See Figure 14. The lowest point is at $(0,-4)$. The graph is symmetric with respect to the y-axis and is therefore the graph of an even function.

\boldsymbol{x}	$\boldsymbol{f}(x)=\|x\|$	$g(x)=\|x\|-4$
-4	4	0
-1	1	-3
0	0	-4
1	1	-3
4	4	0

Figure 14
Now Try Exercise 49.

The graphs in Example 5 suggest the following generalization.

Figure 15

Vertical Translations

If a function g is defined by $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{c}$, where c is a real number, then for every point (x, y) on the graph of f, there will be a corresponding point $(x, y+c)$ on the graph of g.

The graph of g will be the same as the graph of f, but translated c units up if c is positive or $|c|$ units down if c is negative. The graph of g is called a vertical translation of the graph of f. See Figure 15.

EXAMPLE 6 Translating a Graph Horizontally

Graph $g(x)=|x-4|$.
SOLUTION Comparing the tables of values given with Figure 16 shows that for corresponding y-values, the x-values of g are each 4 more than those for f. The graph of $g(x)=|x-4|$ is the same as that of $f(x)=|x|$, but translated 4 units to the right. The lowest point is at $(4,0)$. As suggested by the graphs in Figure 16, this graph is symmetric with respect to the line $x=4$.

Figure 16
Now Try Exercise 47.

The graphs in Example 6 suggest the following generalization.

Horizontal Translations

If a function g is defined by $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{c})$, where c is a real number, then for every point (x, y) on the graph of f, there will be a corresponding point $(x+c, y)$ on the graph of g.

The graph of g will be the same as the graph of f, but translated c units to the right if c is positive or $|c|$ units to the left if c is negative. The graph of g is called a horizontal translation of the graph of f. See Figure 17.

Vertical and horizontal translations are summarized in the table in the margin, where f is a function, and c is a positive number.

EXAMPLE 7 Using More Than One Transformation

Graph each function.
(a) $f(x)=-|x+3|+1$
(b) $h(x)=|2 x-4|$
(c) $g(x)=-\frac{1}{2} x^{2}+4$

SOLUTION

(a) To graph $f(x)=-|x+3|+1$, the lowest point on the graph of $y=|x|$ is translated 3 units to the left and 1 unit up. The graph opens down because of the negative sign in front of the absolute value expression, making the lowest point now the highest point on the graph, as shown in Figure 18. The graph is symmetric with respect to the line $x=-3$.

Figure 18
(b) To determine the horizontal translation, factor out 2 .

$$
\begin{aligned}
h(x) & =|2 x-4| & & \\
& =|2(x-2)| & & \text { Factor out } 2 . \\
& =|2| \cdot|x-2| & & |a b|=|a| \cdot|b| \\
& =2|x-2| & & |2|=2
\end{aligned}
$$

The graph of h is the graph of $y=|x|$ translated 2 units to the right, and vertically stretched by a factor of 2 . Horizontal shrinking gives the same appearance as vertical stretching for this function. See Figure 19.

Figure 19

Figure 20
(c) The graph of $g(x)=-\frac{1}{2} x^{2}+4$ has the same shape as that of $y=x^{2}$, but it is wider (that is, shrunken vertically), reflected across the x-axis because the coefficient $-\frac{1}{2}$ is negative, and then translated 4 units up. See Figure 20.

Now Try Exercises 53, 55, and 63.

1. Concept Check Match each equation in Column I with a description of its graph from Column II as it relates to the graph of $y=x^{2}$.

I
II
(a) $y=(x-7)^{2}$
A. a translation 7 units to the left
(b) $y=x^{2}-7$
B. a translation 7 units to the right
(c) $y=7 x^{2}$
C. a translation 7 units up
(d) $y=(x+7)^{2}$
D. a translation 7 units down
(e) $y=x^{2}+7$
E. a vertical stretching by a factor of 7
2. Concept Check Match each equation in Column I with a description of its graph from Column II as it relates to the graph of $y=\sqrt[3]{x}$.

I
(a) $y=4 \sqrt[3]{x}$
(b) $y=-\sqrt[3]{x}$
A. a translation 4 units to the right
(c) $y=\sqrt[3]{-x}$
B. a translation 4 units down
(d) $y=\sqrt[3]{x-4}$
(e) $y=\sqrt[3]{x}-4$
C. a reflection across the x-axis
D. a reflection across the y-axis
E. a vertical stretching by a factor of 4
3. Concept Check Match each equation in parts (a)-(i) with the sketch of its graph.
(a) $y=x^{2}+2$
(b) $y=x^{2}-2$
(c) $y=(x+2)^{2}$
(d) $y=(x-2)^{2}$
(e) $y=2 x^{2}$
(f) $y=-x^{2}$
(g) $y=(x-2)^{2}+1$
(h) $y=(x+2)^{2}+1$
(i) $y=(x+2)^{2}-1$
A.

B.

C.

D.

E.

F.

G.

H.

I.

4. Concept Check Match each equation in parts (a)-(i) with the sketch of its graph.
(a) $y=\sqrt{x+3}$
(b) $y=\sqrt{x}-3$
(c) $y=\sqrt{x}+3$
(d) $y=3 \sqrt{x}$
(e) $y=-\sqrt{x}$
(f) $y=\sqrt{x-3}$
(g) $y=\sqrt{x-3}+2$
(h) $y=\sqrt{x+3}+2$
(i) $y=\sqrt{x-3}-2$
A.

B.

C.

D.

E.

F.

G.

H.

I.

5. Concept Check Match each equation in parts (a)-(i) with the sketch of its graph.
(a) $y=|x-2|$
(b) $y=|x|-2$
(c) $y=|x|+2$
(d) $y=2|x|$
(e) $y=-|x|$
(f) $y=|-x|$
(g) $y=-2|x|$
(h) $y=|x-2|+2$
(i) $y=|x+2|-2$
A.

B.

C.

D.

E.

F.

G.

H.

I.

6. (a) Suppose the equation $y=F(x)$ is changed to $y=c \cdot F(x)$, for some constant c. What is the effect on the graph of $y=F(x)$? Discuss the effect depending on whether $c>0$ or $c<0$, and on whether $|c|>1$ or $|c|<1$.
(b) Suppose $y=F(x)$ is changed to $y=F(x+h)$. How are the graphs of these equations related? Is the graph of $y=F(x)+h$ the same as the graph of $y=F(x+h)$? If not, how do they differ?

Graph each function. See Examples 1 and 2.

7. $y=3|x|$
8. $y=4|x|$
9. $y=\frac{2}{3}|x|$
10. $y=\frac{3}{4}|x|$
11. $y=2 x^{2}$
12. $y=3 x^{2}$
13. $y=\frac{1}{2} x^{2}$
14. $y=\frac{1}{3} x^{2}$
15. $y=-\frac{1}{2} x^{2}$
16. $y=-\frac{1}{3} x^{2}$
17. $y=-3|x|$
18. $y=-2|x|$
19. $y=\left|-\frac{1}{2} x\right|$
20. $y=\left|-\frac{1}{3} x\right|$
21. $y=\sqrt{4 x}$
22. $y=\sqrt{9 x}$
23. $y=-\sqrt{-x}$
24. $y=-|-x|$

Concept Check In Exercises 25-28, suppose the point $(8,12)$ is on the graph of $y=f(x)$. Find a point on the graph of each function.
25. (a) $y=f(x+4)$
26. (a) $y=\frac{1}{4} f(x)$
27. (a) $y=f(4 x)$
(b) $y=f(x)+4$
(b) $y=4 f(x)$
(b) $y=f\left(\frac{1}{4} x\right)$
28. (a) the reflection of the graph of $y=f(x)$ across the x-axis
(b) the reflection of the graph of $y=f(x)$ across the y-axis

Concept Check Plot each point, and then plot the points that are symmetric to the given point with respect to the (a) x-axis, (b) y-axis, and (c) origin.
29. $(5,-3)$
30. $(-6,1)$
31. $(-4,-2)$
32. $(-8,0)$

Without graphing, determine whether each equation has a graph that is symmetric with respect to the x-axis, the y-axis, the origin, or none of these. See Examples 3 and 4.
33. $y=x^{2}+5$
34. $y=2 x^{4}-3$
35. $x^{2}+y^{2}=12$
36. $y^{2}-x^{2}=-6$
37. $y=-4 x^{3}+x$
38. $y=x^{3}-x$
39. $y=x^{2}-x+8$
40. $y=x+15$

Graph each function. See Examples 5-7.
41. $y=x^{2}-1$
42. $y=x^{2}-2$
43. $y=x^{2}+2$
44. $y=x^{2}+3$
45. $y=(x-4)^{2}$
46. $y=(x-2)^{2}$
47. $y=(x+2)^{2}$
48. $y=(x+3)^{2}$
49. $y=|x|-1$
50. $y=|x+3|+2$
51. $y=-(x+1)^{3}$
52. $y=-(x-1)^{3}$
53. $y=2 x^{2}-1$
54. $y=3 x^{2}-2$
55. $f(x)=2(x-2)^{2}-4$
56. $f(x)=-3(x-2)^{2}+1$
57. $f(x)=\sqrt{x+2}$
58. $f(x)=\sqrt{x-3}$
59. $f(x)=-\sqrt{x}$
60. $f(x)=\sqrt{x}-2$
61. $f(x)=2 \sqrt{x}+1$
62. $y=3 \sqrt{x}-2$
63. $y=\frac{1}{2} x^{3}-4$
64. $y=\frac{1}{2} x^{3}+2$

Connecting Graphs with Equations Each of the following graphs is obtained from the graph of $f(x)=|x|$ or $g(x)=\sqrt{x}$ by applying several of the transformations discussed in this section. Describe the transformations and give the equation for the graph.

67.

66.

68.

69.

70.

Concept Check Suppose that for a function $f, f(3)=6$. For the given assumptions in Exercises 71-76, find another function value.
71. The graph of $y=f(x)$ is symmetric with respect to the origin.
72. The graph of $y=f(x)$ is symmetric with respect to the y-axis.
73. The graph of $y=f(x)$ is symmetric with respect to the line $x=6$.
74. For all $x, f(-x)=f(x)$.
75. For all $x, f(-x)=-f(x)$.
76. f is an odd function.

Glossary

For a more complete discussion, see the section(s) in parentheses.

abscissa The x-value of a point may be called its abscissa. (Section 4.4)
absolute value (modulus) of a complex number When a complex number is written in trigonometric (or polar) form as $r(\cos \theta+i \sin \theta)$, the number r is the absolute value (or modulus) of the complex number. (Section 8.2)
acute angle An acute angle is an angle measuring between 0° and 90°. (Section 1.1)
addition of ordinates Addition of ordinates is a method for graphing a function that is the sum of two other functions, using addition of the y-values of the two functions at selected x-values. (Section 4.4)
airspeed In air navigation, the airspeed of a plane is its speed relative to the air. (Section 7.5)
ambiguous case The situation in which the lengths of two sides of a triangle and the measure of the angle opposite one of them are given (SSA) is the ambiguous case of the law of sines. Depending on the given measurements, this combination of given parts may result in 0,1 , or 2 possible triangles. (Section 7.2)
amplitude The amplitude of a periodic function is half the difference between the maximum and minimum values of the function. (Section 4.1)
angle An angle is formed by rotating a ray around its endpoint. (Section 1.1)
angle of depression The angle of depression from point X to point Y (below X) is the acute angle formed by ray $X Y$ and a horizontal ray with endpoint at X. (Section 2.4)
angle of elevation The angle of elevation from point X to point Y (above X) is the acute angle formed by ray $X Y$ and a horizontal ray with endpoint at X. (Section 2.4)
Angle-Side-Angle (ASA) The Angle-Side-Angle (ASA) congruence axiom states that if two angles and the included side of one triangle are equal, respectively, to two angles and the included side of a second triangle, then the triangles are congruent. (Section 7.1)
angle in standard position An angle is in standard position if its vertex is at the origin and its initial side is along the positive x-axis. (Section 1.1)
angle between two vectors The angle between two vectors is defined to be the angle θ, for $0^{\circ} \leq \theta \leq 180^{\circ}$, having the two vectors as its sides. (Section 7.4)
angular speed ω Angular speed ω (omega) measures the speed of rotation and is defined by $\omega=\frac{\theta}{t}$, where θ is the angle of rotation in radians and t is time. (Section 3.4)
argument of a complex number When a complex number is written in trigonometric (or polar) form as $r(\cos \theta+i \sin \theta)$, the angle θ is the argument of the complex number. (Section 8.2)
argument of a function The argument of a function is the expression containing the independent variable of the function. For example, in the function $y=f(x-d)$, the expression $x-d$ is the argument. (Section 4.2)

B

bearing Bearing is used to identify angles in navigation. One method for expressing bearing uses a single angle, with bearing measured in a clockwise direction from due north. A second method for expressing bearing starts with a north-south line and uses an acute angle to show the direction, either east or west, from this line. (Sections 2.5, 7.5)

c

cardioid A cardioid is a heart-shaped curve that is the graph of a polar equation of the form $r=a \pm b \sin \theta$ or $r=a \pm b \cos \theta$, where $\left|\frac{a}{b}\right|=1$. (Section 8.5)
center of a circle The center of a circle is the given point that is a given distance from all points on the circle. (Appendix B)
circle A circle is the set of all points in a plane that lie a given distance from a given point. (Appendix B)
circular functions The trigonometric functions of arc lengths, or real numbers, are the circular functions. (Section 3.3)
closed interval A closed interval is an interval that includes both of its endpoints. (Appendix A)
cofunctions The function pairs sine and cosine, tangent and cotangent, and secant and cosecant are cofunctions. (Section 2.1)
complementary angles (complements) Two positive angles are complementary angles (or complements) if the sum of their measures is 90°. (Section 1.1)
complex conjugates The complex conjugate of $a+b i$ is $a-b i$. (Section 8.1)
complex number A complex number is a number of the form $a+b i$, where a and b are real numbers and $i=\sqrt{-1}$. (Section 8.1)
complex plane The complex plane is a two-dimensional representation of the complex numbers in which the horizontal axis is the real axis and the vertical axis is the imaginary axis. (Section 8.2)
conditional equation An equation that is satisfied by some numbers but not by others is a conditional equation. (Section 6.2, Appendix A)
congruent triangles Triangles that are both the same size and the same shape are congruent triangles. (Section 1.2)
constant function A function f is constant on an interval I if, for every x_{1} and x_{2} in $I, f\left(x_{1}\right)=f\left(x_{2}\right)$. (Appendix C)
contradiction An equation that has no solution is a contradiction. (Appendix A) coordinate plane ($x y$-plane) The plane into which the rectangular coordinate system is introduced is the coordinate plane (or $x y$-plane). (Appendix B)
coordinates (in the $x y$-plane) The coordinates of a point in the $x y$-plane are the numbers in the ordered pair that correspond to that point. (Appendix B)
cosecant Let $P(x, y)$ be a point other than the origin on the terminal side of an angle θ in standard position. Let $r=\sqrt{x^{2}+y^{2}}$ represent the distance from the origin to P. Then the cosecant function is defined by $\csc \theta=\frac{r}{y}(y \neq 0)$. (Section 1.3) cosine Let $P(x, y)$ be a point other than the origin on the terminal side of an angle θ in standard position. Let $r=\sqrt{x^{2}+y^{2}}$ represent the distance from the origin to P. Then the cosine function is defined by $\cos \theta=\frac{x}{r}$. (Section 1.3)
cotangent Let $P(x, y)$ be a point other than the origin on the terminal side of an angle θ in standard position.
Let $r=\sqrt{x^{2}+y^{2}}$ represent the distance from the origin to P. Then the cotangent function is defined by $\cot \theta=\frac{x}{y}(y \neq 0)$. (Section 1.3)
coterminal angles Two angles that have the same initial side and the same terminal side, but different measures of rotation, are coterminal angles. The measures of coterminal angles differ by a multiple of 360°. (Section 1.1)
cycloid A cycloid is a curve that represents the path traced by a fixed point on the circumference of a circle rolling along a line. (Section 8.6)

damped oscillatory motion Damped oscillatory motion is oscillatory motion that has been slowed down (damped) by the force of friction. Friction causes the amplitude of the motion to diminish gradually until the weight comes to rest. (Section 4.5)
decreasing function A function f is decreasing on an interval I if, whenever $x_{1}<x_{2}$ in $I, f\left(x_{1}\right)>f\left(x_{2}\right)$.
(Appendix C)
degree The degree is a unit of measure for angles. One degree, written 1°, represents $\frac{1}{360}$ of a rotation. (Section 1.1)
dependent variable If the value of the variable y depends on the value of the variable x, then y is the dependent variable. (Appendix C)
direction angle The positive angle between the x-axis and a position vector is the direction angle for the vector. (Section 7.4)
domain In a relation, the set of all values of the independent variable (x) is the domain. (Appendix C)
dot product The dot product of two vectors is the sum of the product of their first components and the product of their second components. The dot product of the two vectors $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$ is denoted $\mathbf{u} \cdot \mathbf{v}$ and given by $\mathbf{u} \cdot \mathbf{v}=a c+b d$. (Section 7.4)

E

empty set (null set) The empty set (or null set), written \emptyset or $\}$, is the set containing no elements. (Appendix A)
endpoint of a ray In a given ray $A B$, point A is the endpoint of the ray.
(Section 1.1)
equation An equation is a statement that two expressions are equal.
(Appendix A)
equilibrant The opposite vector of the resultant of two vectors is called the equilibrant. (Section 7.5)
even function A function f is an even function if for all x in the domain of f, $f(-x)=f(x)$. The graph of an even function is symmetric with respect to the y-axis. (Section 4.1)
exact number A number that represents the result of counting, or a number that results from theoretical work and is not the result of a measurement, is an exact number. (Section 2.4)

F

four-leaved rose A four-leaved rose is a curve that is the graph of a polar equation of the form $r=a \sin 2 \theta$ or $r=a \cos 2 \theta$. (Section 8.5)
frequency In simple harmonic motion, the frequency is the number of cycles per unit of time, or the reciprocal of the period. (Section 4.5)
function A function is a relation (set of ordered pairs) in which, for each value of the first component of the ordered pairs, there is exactly one value of the second component. (Appendix C)
function notation Function notation $f(x)$ (read " f of x ") represents the y-value of the function f for the indicated x-value. (Appendix C)

G

graph of an equation The graph of an equation is the set of all points that correspond to all of the ordered pairs that satisfy the equation. (Appendix B)
ground speed In air navigation, the ground speed of a plane is its speed relative to the ground. (Section 7.5)

H

horizontal component When a vector \mathbf{u} is expressed as an ordered pair in the form $\mathbf{u}=\langle a, b\rangle$, the number a is the horizontal component of the vector. (Section 7.4)

identity An equation satisfied by every number that is a meaningful replacement for the variable is an identity. (Section 5.1, Appendix A)
imaginary axis In the complex plane, the vertical axis is the imaginary axis. (Section 8.2)
imaginary part In the complex number $a+b i, b$ is the imaginary part. (Section 8.1)
imaginary unit The number i, defined by $i=\sqrt{-1}$ (and thus $i^{2}=-1$), is the imaginary unit. (Section 8.1)
increasing function A function f is increasing on an interval I if, whenever $x_{1}<x_{2}$ in $I, f\left(x_{1}\right)<f\left(x_{2}\right)$.
(Appendix C)
independent variable If the value of the variable y depends on the value of the variable x, then x is the independent variable. (Appendix C)
inequality An inequality says that one expression is greater than, greater than or equal to, less than, or less than or equal to another. (Appendix A)
initial point When two letters are used to name a vector, the first letter indicates the initial (starting) point of the vector. (Section 7.4)
initial side When a ray is rotated around its endpoint to form an angle, the ray in its starting position is the initial side of the angle. (Section 1.1)
interval An interval is a portion of the real number line, which may or may not include its endpoint(s). (Appendix A)
interval notation Interval notation is a simplified notation for writing intervals. It uses parentheses and brackets to show whether the endpoints are included.
(Appendix A)
inverse function The inverse function of the one-to-one function f is defined as $\{(y, x) \mid(x, y)$ belongs to $f\}$.
(Section 6.1)

L

latitude Latitude gives the measure of a central angle with vertex at Earth's center whose initial side goes through the equator and whose terminal side goes through the given location. (Section 3.2)
lemniscate A lemniscate is a figure-eight-shaped curve that is the graph of a polar equation of the form $r^{2}=a^{2} \sin 2 \theta$ or $r^{2}=a^{2} \cos 2 \theta$. (Section 8.5)
limaçon A limaçon is the graph of a polar equation of the form $r=a \pm b \sin \theta$ or $r=a \pm b \cos \theta$. If $\left|\frac{a}{b}\right|=1$, the limaçon is a cardioid. (Section 8.5)
line Two distinct points A and B determine the line $A B$. (Section 1.1)
line segment (segment) Line segment $A B$ is the portion of line $A B$ between A and B, including the endpoints A and B. (Section 1.1)
linear equation (first-degree equation) in one variable A linear equation in one variable is an equation that can be written in the form $a x+b=0$, where a and b are real numbers with $a \neq 0$. (Appendix A)

linear inequality in one variable

A linear inequality in one variable is an inequality that can be written in the form $a x+b>0$, where a and b are real numbers with $a \neq 0$. (Any of the symbols $<, \geq$, and \leq may also be used.)
(Appendix A)
linear speed $\boldsymbol{v} \quad$ Linear speed v measures the distance traveled per unit of time. (Section 3.4)

M

magnitude The length of a vector represents the magnitude of the vector quantity. (Section 7.4)
minute One minute, written 1^{\prime}, is $\frac{1}{60}$ of a degree. (Section 1.1)

N

negative angle A negative angle is an angle that is formed by clockwise rotation around its endpoint. (Section 1.1)
nonreal complex number A complex number $a+b i$ with $b \neq 0$ is a nonreal complex number. (Section 8.1)
\boldsymbol{n} th root of a complex number For a positive integer n, the complex number $a+b i$ is an nth root of the complex number $x+y i$ if $(a+b i)^{n}=x+y i$. (Section 8.4)

(

oblique triangle A triangle that is not a right triangle is an oblique triangle. (Section 7.1)
obtuse angle An obtuse angle is an angle measuring more than 90° but less than 180°. (Section 1.1)
odd function A function f is an odd function if for all x in the domain of f, $f(-x)=-f(x)$. The graph of an odd function is symmetric with respect to the origin. (Section 4.1)
one-to-one function If a function is defined so that each range element is used only once, then it is a one-to-one function. (Section 6.1)
open interval An open interval is an interval that does not include its endpoint(s). (Appendix A)
opposite of a vector The opposite of a vector \mathbf{v} is a vector $-\mathbf{v}$ that has the same magnitude as \mathbf{v} but opposite direction. (Section 7.4)
ordered pair An ordered pair consists of two components, written inside parentheses. Ordered pairs are used to identify points in the rectangular coordinate plane. (Appendix B)
ordinate The y-value of a point may be called its ordinate. (Section 4.4)
origin The point of intersection of the x-axis and the y-axis of a rectangular coordinate system is the origin. (Appendix B)
orthogonal vectors Orthogonal vectors are vectors that are perpendicular, meaning that the angle between the two vectors is 90°. (Section 7.4)

P

parallel lines Parallel lines are lines that lie in the same plane and do not intersect. (Section 1.2)
parallelogram rule The parallelogram rule is a geometric interpretation of the sum of two vectors. If the two vectors are placed so that their initial points coincide and a parallelogram is completed that has these two vectors as two of its sides, then the diagonal vector of the parallelogram that has the same initial point as the two vectors is their sum. (Section 7.4)
parameter A parameter is a variable in terms of which two or more other variables are expressed. In a pair of parametric equations $x=f(t)$ and $y=g(t)$, the variable t is the parameter. (Section 8.6)
parametric equations of a plane curve A pair of equations $x=f(t)$ and $y=g(t)$ are parametric equations of a plane curve. (Section 8.6)
period For a periodic function such that $f(x)=f(x+n p)$, the least possible positive value of p is the period of the function. (Section 4.1)
periodic function A periodic function is a function f such that $f(x)=f(x+n p)$, for every real number x in the domain of f, every integer n, and some positive real number p. (Section 4.1)
phase shift For periodic functions, a horizontal translation is a phase shift. (Section 4.2)
plane curve A plane curve is a set of points (x, y) such that $x=f(t)$ and $y=g(t)$, and f and g are both defined on an interval I. (Section 8.6)
polar axis The polar axis is a specific ray in the polar coordinate system that has the pole as its endpoint. The polar axis is usually drawn in the direction of the positive x-axis.(Section 8.5)
polar coordinates In the polar coordinate system, the ordered pair (r, θ) gives polar coordinates of point P, where r is the directed distance from the pole to P and θ is the directed angle from the positive x-axis to ray $O P$. (Section 8.5)
polar coordinate system The polar coordinate system is a coordinate system based on a point (the pole) and a ray (the polar axis). (Section 8.5)
polar equation A polar equation is an equation that uses polar coordinates. The variables are r and θ. (Section 8.5)
pole The pole is the single fixed point in the polar coordinate system that is the endpoint of the polar axis. The pole is usually placed at the origin of a rectangular coordinate system.
(Section 8.5)
position vector A vector with its initial point at the origin is a position vector. (Section 7.4)
positive angle A positive angle is an angle that is formed by counterclockwise rotation around its endpoint. (Section 1.1)
pure imaginary number A complex number $a+b i$ in which $a=0$ and $b \neq 0$ is a pure imaginary number. (Section 8.1)

Pythagorean theorem The Pythagorean theorem states that in a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse. (Appendix B)
quadrantal angle A quadrantal angle is an angle that, when placed in standard position, has its terminal side along the x-axis or the y-axis. (Section 1.1)
quadrants The quadrants are the four regions into which the x-axis and y-axis divide the coordinate plane. (Appendix B)
quadratic equation (second-degree equation) An equation that can be written in the form $a x^{2}+b x+c=0$, where a, b, and c are real numbers with $a \neq 0$, is a quadratic equation. (Appendix A)
quadratic formula The quadratic
formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ is a general formula that can be used to solve a quadratic equation of the form
$a x^{2}+b x+c=0$. (Appendix A)

R

radian A radian is a unit of measure for angles. An angle with its vertex at the center of a circle that intercepts an arc on the circle equal in length to the radius of the circle has a measure of 1 radian. (Section 3.1)
radius The radius of a circle is the distance between the center and any point on the circle. (Appendix B)
range In a relation, the set of all values of the dependent variable (y) is the range. (Appendix C)
ray The portion of line $A B$ that starts at A and continues through B, and on past B, is ray $A B$. (Section 1.1)
real axis In the complex plane, the horizontal axis is the real axis. (Section 8.2)
real part In the complex number $a+b i, a$ is the real part. (Section 8.1)
reciprocal The reciprocal of a nonzero number x is $\frac{1}{x}$. (Section 1.4)
rectangular (Cartesian) coordinate system The x-axis and y-axis together make up a rectangular (or Cartesian) coordinate system. (Appendix B)
rectangular (Cartesian) equation
A rectangular (or Cartesian) equation is an equation that uses rectangular coordinates. If it is an equation in two variables, the variables are x and y. (Section 8.5)
rectangular form (standard form) of a complex number The rectangular form (or standard form) of a complex number is $a+b i$, where a and b are real numbers. (Section 8.2)
reference angle The reference angle for an angle θ, written θ^{\prime}, is the positive acute angle made by the terminal side of angle θ and the x-axis. (Section 2.2)
reference arc The reference arc for a point on the unit circle is the shortest arc from the point itself to the nearest point on the x-axis. (Section 3.3)
relation A relation is a set of ordered pairs. (Appendix C)
resultant If \mathbf{A} and \mathbf{B} are vectors, then the vector sum $\mathbf{A}+\mathbf{B}$ is the resultant of vectors \mathbf{A} and \mathbf{B}. (Section 7.4)
right angle A right angle is an angle measuring exactly 90°. (Section 1.1)
rose curve A rose curve is a member of a family of curves that resemble flowers. It is the graph of a polar equation of the form $r=a \sin n \theta$ or $r=a \cos n \theta$. (Section 8.5)

8

scalar A scalar is a quantity that involves a magnitude and can be represented by a real number. (Section 7.4)
scalar product The scalar product of a real number (or scalar) k and a vector \mathbf{u} is the vector $k \cdot \mathbf{u}$, which has magnitude $|k|$ times the magnitude of \mathbf{u}. (Section 7.4)
secant Let $P(x, y)$ be a point other than the origin on the terminal side of an angle θ in standard position. Let $r=\sqrt{x^{2}+y^{2}}$ represent the distance from the origin to P. Then the secant function is defined by $\sec \theta=\frac{r}{x}(x \neq 0)$. (Section 1.3)
second One second, written $1^{\prime \prime}$, is $\frac{1}{60}$ of a minute. (Section 1.1)
sector of a circle A sector of a circle is the portion of the interior of a circle intercepted by a central angle. (Section 3.2)
semiperimeter The semiperimeter of a triangle is half the sum of the lengths of the three sides. (Section 7.3)
side of an angle One of the two rays (or line segments) with a common endpoint that form an angle is a side of the angle. (Section 1.1)
Side-Angle-Side (SAS) The Side-AngleSide (SAS) congruence axiom states that if two sides and the included angle of one triangle are equal, respectively, to two sides and the included angle of a second triangle, then the triangles are congruent. (Section 7.1)

Side-Side-Side (SSS) The Side-SideSide (SSS) congruence axiom states that if three sides of one triangle are equal, respectively, to three sides of a second triangle, then the triangles are congruent. (Section 7.1)
significant digit A significant digit is a digit obtained by actual measurement. (Section 2.4)
similar triangles Triangles that are the same shape, but not necessarily the same size, are similar triangles. (Section 1.2)
simple harmonic motion Simple harmonic motion is oscillatory motion about an equilibrium position. If friction is neglected, then this motion can be described by a sinusoid. (Section 4.5)
sine Let $P(x, y)$ be a point other than the origin on the terminal side of an angle θ in standard position. Let $r=\sqrt{x^{2}+y^{2}}$ represent the distance from the origin to P. Then the sine function is defined by $\sin \theta=\frac{y}{r}$. (Section 1.3)
sine wave (sinusoid) The graph of a sine function is called a sine wave (or sinusoid). (Section 4.1)
solution (root) A solution (or root) of an equation is a number that makes the equation a true statement. (Appendix A)
solution set The solution set of an equation is the set of all numbers that satisfy the equation. (Appendix A)
spiral of Archimedes A spiral of Archimedes is an infinite curve that is the graph of a polar equation of the form $r=n \theta$. (Section 8.5)
standard form of a complex number
A complex number written in the form $a+b i($ or $a+i b)$ is in standard form. (Section 8.1)
straight angle A straight angle is an angle measuring exactly 180°. (Section 1.1)
supplementary angles (supplements)
Two positive angles are supplementary angles (or supplements) if the sum of their measures is 180°. (Section 1.1)

T

tangent Let $P(x, y)$ be a point other than the origin on the terminal side of an angle θ in standard position. Let $r=\sqrt{x^{2}+y^{2}}$ represent the distance from the origin to P. Then the tangent function is defined by
$\tan \theta=\frac{y}{x}(x \neq 0)$. (Section 1.3)
terminal point When two letters are used to name a vector, the second letter indicates the terminal (ending) point of the vector. (Section 7.4)
terminal side When a ray is rotated around its endpoint to form an angle, the ray in its location after rotation is the terminal side of the angle. (Section 1.1)
translation A translation is a horizontal or vertical shift of a graph. (Appendix D)
transversal A line that intersects two or more other lines, which may be parallel, is a transversal. (Section 1.2)
trigonometric (polar) form of a complex number The expression $r(\cos \theta+i \sin \theta)$ is the trigonometric form (or polar form) of the complex number $x+y i$. The expression $\cos \theta+i \sin \theta$ is sometimes abbreviated as cis θ. (Section 8.2)

u

unit circle The unit circle is the circle with center at the origin and radius 1 . (Section 3.3)
unit vector A unit vector is a vector that has magnitude 1 . Two important unit vectors are $\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{j}=\langle 0,1\rangle$. (Section 7.4)

v

vector A vector is a directed line segment that represents a vector quantity with direction and magnitude. (Section 7.4)
vector quantities Quantities that involve both magnitude and direction are vector quantities. (Section 7.4)
vertex of an angle The vertex of an angle is the endpoint of the ray that is rotated to form the angle. (Section 1.1)
vertical angles Vertical angles are opposite angles formed by intersecting lines. (Section 1.2)
vertical asymptote A vertical line that a graph approaches, but never touches or intersects, is a vertical asymptote. The line $x=a$ is a vertical asymptote if $|f(x)|$ increases without bound as x approaches a. (Section 4.3)
vertical component When a vector u is expressed as an ordered pair in the form $\mathbf{u}=\langle a, b\rangle$, the number b is the vertical component of the vector. (Section 7.4)

\boldsymbol{x}-axis \quad The horizontal number line in a rectangular coordinate system is the x-axis. (Appendix B)
x-intercept \quad An x-intercept is the x-value of a point where the graph of an equation intersects the x-axis. (Appendix B)

Y

\boldsymbol{y}-axis The vertical number line in a rectangular coordinate system is the y-axis. (Appendix B)
y-intercept A y-intercept is the y-value of a point where the graph of an equation intersects the y-axis. (Appendix B)

Z

zero-factor property The zero-factor property states that if the product of two (or more) complex numbers is 0 , then at least one of the numbers must be 0 . (Appendix A)
zero vector The zero vector is the vector with magnitude 0. (Section 7.4)

This page intentionally left blank

Chapter 1 Trigonometric Functions

1.1 Exercises (pages 7-10)

47. $90^{\circ}-72^{\circ} 58^{\prime} 11^{\prime \prime}$
$89^{\circ} 59^{\prime} 60^{\prime \prime}$ Write 90° as $89^{\circ} 59^{\prime} 60^{\prime \prime}$.
$\frac{-72^{\circ} 58^{\prime} 11^{\prime \prime}}{17^{\circ} 01^{\prime} 49^{\prime \prime}}$
Thus, $90^{\circ}-72^{\circ} 58^{\prime} 11^{\prime \prime}=17^{\circ} 01^{\prime} 49^{\prime \prime}$.
48. 600 rotations per min

$$
\begin{aligned}
& =\frac{600}{60} \text { rotations per sec } \\
& =10 \text { rotations per sec } \\
& =5 \text { rotations per } \frac{1}{2} \mathrm{sec} \\
& =5\left(360^{\circ}\right) \text { per } \frac{1}{2} \mathrm{sec} \\
& =1800^{\circ} \operatorname{per} \frac{1}{2} \mathrm{sec}
\end{aligned}
$$

A point on the edge of the tire will move 1800° in $\frac{1}{2} \mathrm{sec}$.

1.2 Exercises (pages 15-20)

1. Angle 1 and the 55° angle are vertical angles, which are equal, so angle $1=55^{\circ}$. Angle 5 and the 120° angle are interior angles on the same side of the transversal, which means they are supplements, so

$$
\begin{aligned}
\text { angle } 5+120^{\circ} & =180^{\circ} \\
\text { angle } 5 & =60^{\circ} . \quad \text { Subtract } 120^{\circ} .
\end{aligned}
$$

Since angles 3 and 5 are vertical angles, angle $3=60^{\circ}$.

$$
\begin{aligned}
\text { angle } 1+\text { angle } 2+\text { angle } 3 & =180^{\circ} \\
55^{\circ}+\text { angle } 2+60^{\circ} & =180^{\circ}
\end{aligned}
$$

$$
\text { angle } 2=65^{\circ} \quad \text { Subtract } 115^{\circ} .
$$

Since angles 2 and 4 are vertical angles, angle $4=65^{\circ}$. Angle 6 and the 120° angle are vertical angles, so angle $6=120^{\circ}$. Angles 6 and 8 are supplements.

$$
\begin{aligned}
\text { angle } 6+\text { angle } 8 & =180^{\circ} \\
120^{\circ}+\text { angle } 8 & =180^{\circ} \\
\text { angle } 8 & =60^{\circ} \quad \text { Subtract } 120^{\circ} .
\end{aligned}
$$

Since angles 7 and 8 are vertical angles, angle $7=60^{\circ}$. angle $7+$ angle $4+$ angle $10=180^{\circ}$

The sum of the measures of the angles in a triangle is 180°.

$$
60^{\circ}+65^{\circ}+\text { angle } 10=180^{\circ}
$$

$$
\text { angle } 10=55^{\circ} \quad \text { Subtract } 125^{\circ} .
$$

Since angles 9 and 10 are vertical angles, angle $9=55^{\circ}$. Thus, the measures of the angles are $1: 55^{\circ} ; 2: 65^{\circ} ; 3: 60^{\circ}$; 4: $65^{\circ} ; 5: 60^{\circ} ; 6: 120^{\circ} ; 7: 60^{\circ} ; 8: 60^{\circ} ; 9: 55^{\circ} ; 10: 55^{\circ}$.
33. The triangle is obtuse because it has an angle of 96°, which is between 90° and 180°. It is a scalene triangle because no two sides are equal.

1.3 Exercises (pages 26-28)

83. Evaluate $\tan 360^{\circ}+4 \sin 180^{\circ}+5 \cos ^{2} 180^{\circ}$.

$$
\begin{aligned}
& \tan 360^{\circ}=\tan 0^{\circ}=\frac{y}{x}=\frac{0}{1}=0 \\
& \sin 180^{\circ}=\frac{y}{r}=\frac{0}{1}=0 \\
& \cos 180^{\circ}=\frac{x}{r}=\frac{-1}{1}=-1
\end{aligned}
$$

$$
\tan 360^{\circ}+4 \sin 180^{\circ}+5 \cos ^{2} 180^{\circ}=0+4(0)+5(-1)^{2}
$$

$$
\text { Substitute; } \cos ^{2} x=(\cos x)^{2}
$$

$$
=5
$$

1.4 Exercises (pages 36-38)

69. We are given $\tan \theta=-\frac{15}{8}$, with θ in quadrant II.

Draw θ in standard position in quadrant II. Because $\tan \theta=\frac{y}{x}$ and θ is in quadrant II, we can use the values $y=15$ and $x=-8$ for a point on its terminal side.

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}}=\sqrt{(-8)^{2}+15^{2}}=\sqrt{64+225} \\
& =\sqrt{289}=17
\end{aligned}
$$

Use the values of x, y, and r and the definitions of the trigonometric functions to find the six trigonometric function values for θ.
$\sin \theta=\frac{y}{r}=\frac{15}{17}$
$\cos \theta=\frac{x}{r}=\frac{-8}{17}=-\frac{8}{17} \quad \sec \theta=\frac{r}{x}=\frac{17}{-8}=-\frac{17}{8}$
$\tan \theta=\frac{y}{x}=\frac{15}{-8}=-\frac{15}{8} \quad \cot \theta=\frac{x}{y}=\frac{-8}{15}=-\frac{8}{15}$
85. Multiply the compound inequality $90^{\circ}<\theta<180^{\circ}$ by 2 to find that $180^{\circ}<2 \theta<360^{\circ}$. Thus, 2θ must lie in quadrant III or quadrant IV. In both of these quadrants, the sine function is negative, so $\sin 2 \theta$ must be negative.
101. $\tan \left(3 \theta-4^{\circ}\right)=\frac{1}{\cot \left(5 \theta-8^{\circ}\right)} \quad$ Given equation $\tan \left(3 \theta-4^{\circ}\right)=\tan \left(5 \theta-8^{\circ}\right) \quad$ Reciprocal identity
The second equation above will be true if $3 \theta-4^{\circ}=5 \theta-8^{\circ}$, so solving this equation will give a value (but not the only value) for which the given equation is true.

$$
\begin{aligned}
3 \theta-4^{\circ} & =5 \theta-8^{\circ} \\
4^{\circ} & =2 \theta \\
\theta & =2^{\circ}
\end{aligned}
$$

Chapter 2 Acute Angles and Right Triangles

2.1 Exercises (pages 51-54)

77. One point on the line $y=\sqrt{3} x$ is the origin, $(0,0)$. Let (x, y) be any other point on this line. Then, by the definition of slope, $m=\frac{y-0}{x-0}=\frac{y}{x}=\sqrt{3}$, but also, by the definition of tangent, $\tan \theta=\frac{y}{x}$. Thus, $\tan \theta=\sqrt{3}$. Because $\tan 60^{\circ}=\sqrt{3}$, the line $y=\sqrt{3} x$ makes a 60° angle with the positive x-axis. (See Exercise 74.)
78. Apply the relationships among the lengths of the sides of a $30^{\circ}-60^{\circ}$ right triangle first to the triangle on the left to find the values of x and y, and then to the triangle on the right to find the values of z and w. In a $30^{\circ}-60^{\circ}$ right triangle, the side opposite the 30° angle is $\frac{1}{2}$ the length of the hypotenuse. The longer leg is $\sqrt{3}$ times the shorter leg.

Thus,

$$
y=\frac{1}{2}(9)=\frac{9}{2} \quad \text { and } \quad x=y \sqrt{3}=\frac{9 \sqrt{3}}{2} .
$$

Since $y=z \sqrt{3}$,

$$
\begin{aligned}
& \quad z=\frac{y}{\sqrt{3}}=\frac{\frac{9}{2}}{\sqrt{3}}=\frac{9}{2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{9 \sqrt{3}}{6}=\frac{3 \sqrt{3}}{2}, \\
& \text { and } \quad w=2 z=2\left(\frac{3 \sqrt{3}}{2}\right)=3 \sqrt{3} .
\end{aligned}
$$

2.2 Exercises (pages 58-61)

29. To find the reference angle for -300°, sketch this angle in standard position.

The reference angle for -300° is

$$
-300^{\circ}+360^{\circ}=60^{\circ}
$$

Because -300° is in quadrant I, the values of all its trigonometric functions are positive, so these values will be identical to the trigonometric function values for 60°. (See the Function Values of Special Angles table that follows Example 5 in Section 2.1.)

$$
\begin{array}{ll}
\sin \left(-300^{\circ}\right)=\frac{\sqrt{3}}{2} & \csc \left(-300^{\circ}\right)=\frac{2 \sqrt{3}}{3} \\
\cos \left(-300^{\circ}\right)=\frac{1}{2} & \sec \left(-300^{\circ}\right)=2 \\
\tan \left(-300^{\circ}\right)=\sqrt{3} & \cot \left(-300^{\circ}\right)=\frac{\sqrt{3}}{3}
\end{array}
$$

75. The reference angle for 115° is 65°. Since 115° is in quadrant II, the sine is positive. The function $\sin \theta$ decreases on the interval $\left(90^{\circ}, 180^{\circ}\right)$ from 1 to 0 . Therefore, $\sin 115^{\circ}$ is closest to 0.9 .

2.3 Exercises (pages 63-67)

47. $\sin 10^{\circ}+\sin 10^{\circ} \stackrel{?}{=} \sin 20^{\circ}$

Using a calculator, we get

$$
\sin 10^{\circ}+\sin 10^{\circ} \approx 0.34729636
$$

and

$$
\sin 20^{\circ} \approx 0.34202014
$$

Thus, the statement is false.
67. For parts (a) and (b), $\theta=3^{\circ}, g=32.2$, and $f=0.14$.
(a) Use the fact that $45 \mathrm{mph}=66 \mathrm{ft}$ per sec.

$$
\begin{aligned}
R & =\frac{V^{2}}{g(f+\tan \theta)} \\
& =\frac{66^{2}}{32.2\left(0.14+\tan 3^{\circ}\right)} \\
& \approx 703 \mathrm{ft}
\end{aligned}
$$

(b) Use the fact that $70 \mathrm{mph}=\frac{70(5280)}{3600} \mathrm{ft}$ per sec $=$ 102.67 ft per sec.

$$
\begin{aligned}
R & =\frac{V^{2}}{g(f+\tan \theta)} \\
& =\frac{102.67^{2}}{32.2\left(0.14+\tan 3^{\circ}\right)} \\
& \approx 1701 \mathrm{ft}
\end{aligned}
$$

67. (c) Intuitively, increasing θ would make it easier to negotiate the curve at a higher speed much as is done at a race track. Mathematically, a larger value of θ (acute) will lead to a larger value for $\tan \theta$. If $\tan \theta$ increases, then the ratio determining R will decrease. Thus, the radius can be smaller and the curve sharper if θ is increased.

$$
\begin{aligned}
R & =\frac{V^{2}}{g(f+\tan \theta)} \\
& =\frac{66^{2}}{32.2\left(0.14+\tan 4^{\circ}\right)} \\
& \approx 644 \mathrm{ft} \\
R & =\frac{V^{2}}{g(f+\tan \theta)} \\
& =\frac{102.67^{2}}{32.2\left(0.14+\tan 4^{\circ}\right)} \\
& \approx 1559 \mathrm{ft}
\end{aligned}
$$

As predicted, both values are less.

2.4 Exercises (pages 72-76)

23. Solve the right triangle with $B=73.0^{\circ}, b=128$ in., and $C=90^{\circ}$.

$A=90^{\circ}-73.0^{\circ}=17.0^{\circ}$
$\tan 73.0^{\circ}=\frac{128}{a}$
$\tan B=\frac{b}{a}$

$$
\begin{array}{rlrl}
a & =\frac{128}{\tan 73.0^{\circ}} \approx 39.1 \mathrm{in} . & \begin{array}{l}
\text { Three significant } \\
\text { digits }
\end{array} \\
\sin 73.0^{\circ} & =\frac{128}{c} & & \sin B=\frac{b}{c} \\
c & =\frac{128}{\sin 73.0^{\circ}} \approx 134 \mathrm{in} . & \begin{array}{l}
\text { Three significant } \\
\text { digits }
\end{array}
\end{array}
$$

43. Let x represent the horizontal distance between the two buildings and y represent the height of the portion of the building across the street that is higher than the window.

$$
\begin{array}{rlrl}
\tan 20.0^{\circ} & =\frac{30.0}{x} & & \text { Tangent ratio } \\
x & =\frac{30.0}{\tan 20.0^{\circ}} \approx 82.4 & \text { Solve for } x . \\
\tan 50.0^{\circ} & =\frac{y}{x} & & \text { Tangent ratio } \\
y & =x \tan 50.0^{\circ}=\left(\frac{30.0}{\tan 20.0^{\circ}}\right) & \tan 50.0^{\circ} \approx 98.2 \\
& & \text { Solve for } y . \\
\text { height } & =y+30.0=\left(\frac{30.0}{\tan 20.0^{\circ}}\right) & \begin{aligned}
& \tan 50.0^{\circ}+30.0 \approx 128 \\
& \\
& \text { Three significant digits }
\end{aligned}
\end{array}
$$

The height of the building across the street is about 128 ft .
49. Let h represent the height of the tower.

$$
\begin{aligned}
\tan 34.6^{\circ} & =\frac{h}{40.6} \quad \text { Tangent ratio } \\
h & =40.6 \tan 34.6^{\circ} \approx 28.0 \\
& \quad \text { Three significant digits }
\end{aligned}
$$

The height of the tower is about 28.0 m .

2.5 Exercises (pages 81-85)

21. Let $x=$ the distance between the two ships. The angle between the bearings of the ships is
$180^{\circ}-\left(28^{\circ} 10^{\prime}+61^{\circ} 50^{\prime}\right)=90^{\circ}$.
The triangle formed is a right triangle.

Distance traveled at 24.0 mph :

$$
(4 \mathrm{hr})(24.0 \mathrm{mph})=96 \mathrm{mi}
$$

Distance traveled at 28.0 mph :

$$
(4 \mathrm{hr})(28.0 \mathrm{mph})=112 \mathrm{mi}
$$

Applying the Pythagorean theorem gives the following.

$$
\begin{aligned}
x^{2} & =96^{2}+112^{2} \\
x^{2} & =21,760 \\
x & \approx 148
\end{aligned}
$$

The ships are 148 mi apart.
33. Let $x=$ the distance from the closer point on the ground to the base of height h of the pyramid.

In the larger right triangle,

$$
\begin{aligned}
\tan 21^{\circ} 10^{\prime} & =\frac{h}{135+x} \\
h & =(135+x) \tan 21^{\circ} 10^{\prime}
\end{aligned}
$$

In the smaller right triangle,

$$
\begin{aligned}
\tan 35^{\circ} 30^{\prime} & =\frac{h}{x} \\
h & =x \tan 35^{\circ} 30^{\prime} .
\end{aligned}
$$

Substitute for h in this equation, and solve for x.

$$
\begin{aligned}
& (135+x) \tan 21^{\circ} 10^{\prime}=x \tan 35^{\circ} 30^{\prime} \\
& \quad \text { Substitute }(135+x) \tan 21^{\circ} 10^{\prime} \text { for } h .
\end{aligned}
$$

$135 \tan 21^{\circ} 10^{\prime}+x \tan 21^{\circ} 10^{\prime}=x \tan 35^{\circ} 30^{\prime}$
Distributive property
$135 \tan 21^{\circ} 10^{\prime}=x \tan 35^{\circ} 30^{\prime}-x \tan 21^{\circ} 10^{\prime}$
Write the x-terms on one side.
$135 \tan 21^{\circ} 10^{\prime}=x\left(\tan 35^{\circ} 30^{\prime}-\tan 21^{\circ} 10^{\prime}\right)$
Factor out x.
$\frac{135 \tan 21^{\circ} 10^{\prime}}{\tan 35^{\circ} 30^{\prime}-\tan 21^{\circ} 10^{\prime}}=x$
Divide by the coefficient of x.
Then substitute for x in the equation for the smaller triangle.

$$
h=\left(\frac{135 \tan 21^{\circ} 10^{\prime}}{\tan 35^{\circ} 30^{\prime}-\tan 21^{\circ} 10^{\prime}}\right) \tan 35^{\circ} 30^{\prime} \approx 114
$$

The height of the pyramid is about 114 ft .

Chapter 3 Radian Measure and the Unit Circle

3.1 Exercises (pages 98-100)

89. (a) In 24 hr , the hour hand will rotate twice around the clock. Since one complete rotation measures 2π radians, the two rotations will measure

$$
2(2 \pi)=4 \pi \text { radians }
$$

(b) In 4 hr , the hour hand will rotate $\frac{4}{12}=\frac{1}{3}$ of the way around the clock, which will measure

$$
\frac{1}{3}(2 \pi)=\frac{2 \pi}{3} \text { radians. }
$$

3.2 Exercises (pages 103-109)

35. For the large gear and pedal,

$$
s=r \theta=4.72 \pi . \quad 180^{\circ}=\pi \text { radians }
$$

Thus, the chain moves 4.72π in. Find the angle through which the small gear rotates.

$$
\theta=\frac{s}{r}=\frac{4.72 \pi}{1.38} \approx 3.42 \pi
$$

The angle θ for the wheel and for the small gear are the same, so for the wheel,

$$
s=r \theta=13.6(3.42 \pi) \approx 146 \mathrm{in} .
$$

The bicycle will move about 146 in .
67. (a)

The triangle formed by the sides of the central angle and the chord is isosceles. Therefore, the bisector of the central angle is also the perpendicular bisector of the chord and divides the larger triangle into two congruent right triangles.

$$
\begin{aligned}
\sin 21^{\circ} & =\frac{50}{r} \\
r & =\frac{50}{\sin 21^{\circ}} \approx 140 \mathrm{ft}
\end{aligned}
$$

The radius of the curve is about 140 ft .
(b) $r=\frac{50}{\sin 21^{\circ}} ; \quad \theta=42^{\circ}$

$$
\begin{gathered}
42^{\circ}=42\left(\frac{\pi}{180} \text { radian }\right)=\frac{7 \pi}{30} \text { radian } \\
s=r \theta=\frac{50}{\sin 21^{\circ}} \cdot \frac{7 \pi}{30}=\frac{35 \pi}{3 \sin 21^{\circ}} \approx 102 \mathrm{ft}
\end{gathered}
$$

The length of the arc determined by the $100-\mathrm{ft}$ chord is about 102 ft .
(c) The portion of the circle bounded by the arc and the $100-\mathrm{ft}$ chord is the shaded region in the figure below.

The area of the portion of the circle can be found by subtracting the area of the triangle from the area of the sector. From the figure in part (a),

$$
\begin{aligned}
& \tan 21^{\circ}=\frac{50}{h}, \quad \text { so } \quad h=\frac{50}{\tan 21^{\circ}} . \\
& \begin{aligned}
\mathscr{A}_{\text {sector }} & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2}\left(\frac{50}{\sin 21^{\circ}}\right)^{2}\left(\frac{7 \pi}{30}\right) \quad \begin{array}{l}
\text { From part }(\mathrm{b}), \\
42^{\circ}
\end{array}=\frac{7 \pi}{30} . \\
& \approx 7135 \mathrm{ft}^{2}
\end{aligned} \\
& \begin{aligned}
\mathscr{A}_{\text {triangle }} & =\frac{1}{2} b h=\frac{1}{2}(100)\left(\frac{50}{\tan 21^{\circ}}\right) \\
& \approx 6513 \mathrm{ft}^{2} \\
\mathscr{A}_{\text {portion }} & =\mathscr{A}_{\text {sector }}-\mathscr{A}_{\text {triangle }} \\
& \approx 7135 \mathrm{ft}^{2}-6513 \mathrm{ft}^{2} \\
& =622 \mathrm{ft}^{2}
\end{aligned}
\end{aligned}
$$

The area of the portion is about $622 \mathrm{ft}^{2}$.
69. Use the Pythagorean theorem to find the hypotenuse of the right triangle, which is also the radius of the sector of the circle.

$$
\begin{aligned}
r^{2} & =30^{2}+40^{2}=900+1600=2500 \\
r & =\sqrt{2500}=50 \\
\mathscr{A}_{\text {triangle }} & =\frac{1}{2} b h=\frac{1}{2}(30)(40) \\
& =600 \mathrm{yd}^{2} \\
\mathscr{A}_{\text {sector }} & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2}(50)^{2} \cdot \frac{\pi}{3} \quad 60^{\circ}=\frac{\pi}{3} \\
& =\frac{1250 \pi}{3} \mathrm{yd}^{2} \\
\text { Total area } & =\mathscr{A}_{\text {triangle }}+\mathscr{A}_{\text {sector }} \\
& =600 \mathrm{yd}^{2}+\frac{1250 \pi}{3} \mathrm{yd}^{2} \\
& \approx 1900 \mathrm{yd}^{2}
\end{aligned}
$$

The area of the lot is about $1900 \mathrm{yd}^{2}$.

3.3 Exercises (pages 117-120)

45. $\cos 2$
$\frac{\pi}{2} \approx 1.57$ and $\pi \approx 3.14$, so $\frac{\pi}{2}<2<\pi$. Thus, an angle of 2 radians is in quadrant II. (The figure for Exercises 35-44 also shows that 2 radians is in quadrant II.) Because values of the cosine function are negative in quadrant II, $\cos 2$ is negative.
46. $\left[\pi, \frac{3 \pi}{2}\right] ; \tan s=\sqrt{3}$

Recall that $\tan \frac{\pi}{3}=\sqrt{3}$ and that in quadrant III, $\tan s$ is positive.

$$
\tan \left(\pi+\frac{\pi}{3}\right)=\tan \frac{4 \pi}{3}=\sqrt{3}
$$

Thus, $s=\frac{4 \pi}{3}$.

3.4 Exercises (pages 123-126)

27. The hour hand of a clock moves through an angle of 2π radians (one complete revolution) in 12 hr . Find ω as follows.

$$
\omega=\frac{\theta}{t}=\frac{2 \pi}{12}=\frac{\pi}{6} \text { radian per hr }
$$

37. At 215 revolutions per min, the bicycle tire is moving $215(2 \pi)=430 \pi$ radians per min. This is the angular velocity ω. Find v as follows.

$$
v=r \omega=13(430 \pi)=5590 \pi \text { in. per min }
$$

Convert this velocity to miles per hour.
$v=\frac{5590 \pi \mathrm{in} .}{1 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in.}} \cdot \frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \approx 16.6 \mathrm{mph}$

Chapter 4 Graphs of the Circular Functions

4.1 Exercises (pages 143-148)
55. $E=5 \cos 120 \pi t$
(a) The amplitude is $|5|=5$, and the period is $\frac{2 \pi}{120 \pi}=\frac{1}{60}$.
(b) Since the period is $\frac{1}{60}$, one cycle is completed in $\frac{1}{60} \mathrm{sec}$. Therefore, in $1 \mathrm{sec}, 60$ cycles are completed.
(c) For $t=0, E=5 \cos 120 \pi(0)=5 \cos 0=5$.

For $t=0.03, E=5 \cos 120 \pi(0.03) \approx 1.545$.
For $t=0.06, E=5 \cos 120 \pi(0.06) \approx-4.045$.
For $t=0.09, E \approx-4.045$.
For $t=0.12, E \approx 1.545$.
(d)

4.2 Exercises (pages 155-158)

55. $y=\frac{1}{2}+\sin \left[2\left(x+\frac{\pi}{4}\right)\right]$

This equation has the form $y=c+a \sin [b(x-d)]$ with $c=\frac{1}{2}, a=1, b=2$, and $d=-\frac{\pi}{4}$. Start with the graph of $y=\sin x$ and modify it to take into account the amplitude, period, and translations required to obtain the desired graph.
Amplitude: $|a|=1$
Period: $\frac{2 \pi}{b}=\frac{2 \pi}{2}=\pi$
Vertical translation: $\frac{1}{2}$ unit up
Phase shift (horizontal translation): $\frac{\pi}{4}$ unit to the left

4.3 Exercises (pages 166-168)

29. $y=-1+\frac{1}{2} \cot (2 x-3 \pi)$
$y=-1+\frac{1}{2} \cot \left[2\left(x-\frac{3 \pi}{2}\right)\right] \begin{aligned} & \text { Rewrite } 2 x-3 \pi \text { as } \\ & 2\left(x-\frac{3 \pi}{2}\right) .\end{aligned}$
Period: $\frac{\pi}{b}=\frac{\pi}{2}$
Vertical translation: 1 unit down
Phase shift (horizontal translation): $\frac{3 \pi}{2}$ units to the right

Because the function is to be graphed over a twoperiod interval, locate three adjacent vertical asymptotes. Because asymptotes of the graph of $y=\cot x$ occur at multiples of π, the following equations can be solved to locate asymptotes.

$$
\begin{gathered}
2\left(x-\frac{3 \pi}{2}\right)=-2 \pi, \quad 2\left(x-\frac{3 \pi}{2}\right)=-\pi, \quad \text { and } \\
2\left(x-\frac{3 \pi}{2}\right)=0
\end{gathered}
$$

Solve each of these equations.

$$
\begin{aligned}
2\left(x-\frac{3 \pi}{2}\right) & =-2 \pi \\
x-\frac{3 \pi}{2} & =-\pi \quad \text { Divide by } 2 . \\
x & =-\pi+\frac{3 \pi}{2} \quad \text { Add } \frac{3 \pi}{2} . \\
x & =\frac{\pi}{2} \\
2\left(x-\frac{3 \pi}{2}\right) & =-\pi \\
x-\frac{3 \pi}{2} & =-\frac{\pi}{2} \\
x & =-\frac{\pi}{2}+\frac{3 \pi}{2} \\
x & =\frac{2 \pi}{2}, \quad \text { or } \pi \\
2\left(x-\frac{3 \pi}{2}\right) & =0 \\
x-\frac{3 \pi}{2} & =0 \\
x & =\frac{3 \pi}{2}
\end{aligned}
$$

Divide the interval $\left(\frac{\pi}{2}, \pi\right)$ into four equal parts to obtain the following key x-values.
first-quarter value: $\frac{5 \pi}{8}$; middle value: $\frac{3 \pi}{4}$;
third-quarter value: $\frac{7 \pi}{8}$
Evaluating the given function at these three key x-values gives the following points.

$$
\left(\frac{5 \pi}{8},-\frac{1}{2}\right), \quad\left(\frac{3 \pi}{4},-1\right), \quad\left(\frac{7 \pi}{8},-\frac{3}{2}\right)
$$

Connect these points with a smooth curve and continue the graph to approach the asymptotes $x=\frac{\pi}{2}$ and $x=\pi$ to complete one period of the graph. Sketch an identical curve between the asymptotes $x=\pi$ and $x=\frac{3 \pi}{2}$ to complete a second period of the graph.

45. $\tan (-x)=\frac{\sin (-x)}{\cos (-x)} \quad$ Quotient identity

$$
\begin{array}{ll}
=\frac{-\sin x}{\cos x} & \text { Negative-angle identities } \\
=-\frac{\sin x}{\cos x} & \frac{-a}{b}=-\frac{a}{b} \\
=-\tan x & \text { Quotient identity }
\end{array}
$$

4.4 Exercises (pages 174-176)
31. $\sec (-x)=\frac{1}{\cos (-x)} \quad$ Reciprocal identity

$$
\begin{array}{ll}
=\frac{1}{\cos x} & \text { Negative-angle identity } \\
=\sec x & \text { Reciprocal identity }
\end{array}
$$

4.5 Exercises (pages 179-180)

19. (a) We will use a model of the form $s(t)=a \cos \omega t$ with $a=-3$. Since

$$
s(0)=-3 \cos (\omega \cdot 0)=-3 \cos 0=-3 \cdot 1=-3,
$$

using a cosine function rather than a sine function will avoid the need for a phase shift.
The frequency of $\frac{6}{\pi}$ cycles per sec is the reciprocal of the period.

$$
\begin{aligned}
\frac{6}{\pi} & =\frac{\omega}{2 \pi} & & \text { Frequency }=\frac{1}{\text { period }} \\
6 \cdot 2 & =\omega & & \text { Multiply by } 2 \pi . \\
\omega & =12 & & \text { Multiply and rewrite. }
\end{aligned}
$$

Therefore, a model for the position of the weight at time t seconds is

$$
s(t)=-3 \cos 12 t
$$

(b) Period $=\frac{1}{\frac{6}{\pi}}=1 \div \frac{6}{\pi}=1 \cdot \frac{\pi}{6}=\frac{\pi}{6} \mathrm{sec}$

Chapter 5 Trigonometric Identities

5.1 Exercises (pages 193-196)
35. $\cot \theta=\frac{4}{3}, \sin \theta>0$

Because $\cot \theta>0$ and $\sin \theta>0, \theta$ is in quadrant I , so all the function values are positive.
$\tan \theta=\frac{1}{\cot \theta}=\frac{1}{\frac{4}{3}}=\frac{3}{4} \quad$ Reciprocal identity
$\sec ^{2} \theta=\tan ^{2} \theta+1 \quad$ Pythagorean identity
$=\left(\frac{3}{4}\right)^{2}+1=\frac{9}{16}+\frac{16}{16}=\frac{25}{16}$
$\sec \theta=\sqrt{\frac{25}{16}}=\frac{5}{4} \quad \sec \theta>0$
$\cos \theta=\frac{1}{\sec \theta}=\frac{1}{\frac{5}{4}}=\frac{4}{5} \quad$ Reciprocal identity
$\sin ^{2} \theta=1-\cos ^{2} \theta \quad$ Alternative form of
Pythagorean identity

$$
=1-\left(\frac{4}{5}\right)^{2}=\frac{9}{25}
$$

$\sin \theta=\sqrt{\frac{9}{25}}=\frac{3}{5} \quad \sin \theta>0$
$\csc \theta=\frac{1}{\sin \theta}=\frac{1}{\frac{3}{5}}=\frac{5}{3} \quad$ Reciprocal identity
Thus, $\sin \theta=\frac{3}{5}, \cos \theta=\frac{4}{5}, \tan \theta=\frac{3}{4}, \sec \theta=\frac{5}{4}$, and $\csc \theta=\frac{5}{3}$.
57. $\csc x=\frac{1}{\sin x}$

$$
\begin{aligned}
& =\frac{1}{ \pm \sqrt{1-\cos ^{2} x}} \\
& =\frac{ \pm 1}{\sqrt{1-\cos ^{2} x}}
\end{aligned}
$$

Reciprocal identity
Alternative
form of
Pythagorean identity

Redistribute signs.

$$
=\frac{ \pm 1}{\sqrt{1-\cos ^{2} x}} \cdot \frac{\sqrt{1-\cos ^{2} x}}{\sqrt{1-\cos ^{2} x}}
$$

Rationalize the

$$
\csc x=\frac{ \pm \sqrt{1-\cos ^{2} x}}{1-\cos ^{2} x}
$$

73. $\sec \theta-\cos \theta=\frac{1}{\cos \theta}-\cos \theta$

$$
\begin{array}{ll}
=\frac{1}{\cos \theta}-\frac{\cos ^{2} \theta}{\cos \theta} & \begin{array}{l}
\text { Use a common } \\
\text { denominator. }
\end{array} \\
=\frac{1-\cos ^{2} \theta}{\cos \theta} & \text { Subtract fractions. } \\
=\frac{\sin ^{2} \theta}{\cos \theta} & 1-\cos ^{2} \theta=\sin ^{2} \theta \\
=\frac{\sin \theta}{\cos \theta} \cdot \sin \theta & \sin ^{2} \theta=\sin \theta \cdot \sin \theta \\
=\tan \theta \sin \theta & \frac{\sin \theta}{\cos \theta}=\tan \theta
\end{array}
$$

85. Since $\cos x=\frac{1}{5}>0, x$ is in quadrant I or quadrant IV.

$$
\begin{aligned}
\sin x & = \pm \sqrt{1-\cos ^{2} x}= \pm \sqrt{1-\left(\frac{1}{5}\right)^{2}} \\
& = \pm \sqrt{\frac{24}{25}}= \pm \frac{2 \sqrt{6}}{5} \\
\tan x & =\frac{\sin x}{\cos x}=\frac{ \pm \frac{2 \sqrt{6}}{5}}{\frac{1}{5}}= \pm 2 \sqrt{6} \\
\sec x & =\frac{1}{\cos x}=\frac{1}{\frac{1}{5}}=5
\end{aligned}
$$

Quadrant I:

$$
\begin{aligned}
\frac{\sec x-\tan x}{\sin x} & =\frac{5-2 \sqrt{6}}{\frac{2 \sqrt{6}}{5}}=\frac{5(5-2 \sqrt{6})}{2 \sqrt{6}} \\
& =\frac{25-10 \sqrt{6}}{2 \sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}} \\
& =\frac{25 \sqrt{6}-60}{12}
\end{aligned}
$$

Quadrant IV:

$$
\begin{aligned}
\frac{\sec x-\tan x}{\sin x} & =\frac{5-(-2 \sqrt{6})}{-\frac{2 \sqrt{6}}{5}}=\frac{5(5+2 \sqrt{6})}{-2 \sqrt{6}} \\
& =\frac{25+10 \sqrt{6}}{-2 \sqrt{6}} \cdot \frac{-\sqrt{6}}{-\sqrt{6}} \\
& =\frac{-25 \sqrt{6}-60}{12}
\end{aligned}
$$

5.2 Exercises (pages 202-204)

11. $\frac{1}{1+\cos x}-\frac{1}{1-\cos x}=\frac{1(1-\cos x)-1(1+\cos x)}{(1+\cos x)(1-\cos x)}$

$$
\begin{aligned}
& =\frac{1-\cos x-1-\cos x}{1-\cos ^{2} x} \\
& =\frac{-2 \cos x}{\sin ^{2} x} \\
& =-\frac{2 \cos x}{\sin ^{2} x} \\
& =-2\left(\frac{\cos x}{\sin x}\right)\left(\frac{1}{\sin x}\right) \\
& =-2 \cot x \csc x
\end{aligned}
$$

15. $(\sin x+1)^{2}-(\sin x-1)^{2}$
$=[(\sin x+1)+(\sin x-1)][(\sin x+1)-(\sin x-1)]$
Factor the difference of squares.
$=[2 \sin x][\sin x+1-\sin x+1] \quad$ Simplify .
$=[2 \sin x][2] \quad$ Simplify again.
$=4 \sin x \quad$ Multiply.
16. Verify that $\frac{\tan ^{2} t-1}{\sec ^{2} t}=\frac{\tan t-\cot t}{\tan t+\cot t}$ is an identity.

Work with the right hand side.

$$
\begin{aligned}
\frac{\tan t-\cot t}{\tan t+\cot t} & =\frac{\tan t-\frac{1}{\tan t}}{\tan t+\frac{1}{\tan t}} \quad \cot t=\frac{1}{\tan t} \\
& =\frac{\tan t}{\tan t}\left(\frac{\tan t-\frac{1}{\tan t}}{\tan t+\frac{1}{\tan t}}\right)
\end{aligned}
$$

Multiply numerator and denominator of the complex fraction by the LCD, $\tan t$.

$$
\begin{array}{ll}
=\frac{\tan ^{2} t-1}{\tan ^{2} t+1} & \text { Distributive propert } \\
=\frac{\tan ^{2} t-1}{\sec ^{2} t} & \tan ^{2} t+1=\sec ^{2} t
\end{array}
$$

87. Show that $\sin (\csc t)=1$ is not an identity.

We need find only one value for which the statement is false. Let $t=2$. Use a calculator to find that $\sin (\csc 2) \approx 0.891094$, which is not equal to 1 . Thus, $\sin (\csc t)=1$ is not true for all real numbers t, so it is not an identity.
5.3 Exercises (pages 212-215)
39. $\sec \theta=\csc \left(\frac{\theta}{2}+20^{\circ}\right)$

By a cofunction identity, $\sec \theta=\csc \left(90^{\circ}-\theta\right)$.

$$
\csc \left(\frac{\theta}{2}+20^{\circ}\right)=\csc \left(90^{\circ}-\theta\right) \quad \text { Substitute. }
$$

$$
\begin{array}{rlrl}
\frac{\theta}{2}+20^{\circ} & =90^{\circ}-\theta & & \text { Set the angle measures } \\
\frac{3 \theta}{2} & =70^{\circ} & & \text { equal. } \\
\text { Add } \theta \text { and subtract } 20^{\circ} .
\end{array}
$$

$$
\theta=\frac{2}{3}\left(70^{\circ}\right)=\frac{140^{\circ}}{3} \quad \text { Multiply by } \frac{2}{3} .
$$

61. True or false: $\cos \frac{\pi}{3}=\cos \frac{\pi}{12} \cos \frac{\pi}{4}-\sin \frac{\pi}{12} \sin \frac{\pi}{4}$.

Note that $\frac{\pi}{3}=\frac{4 \pi}{12}=\frac{\pi}{12}+\frac{3 \pi}{12}=\frac{\pi}{12}+\frac{\pi}{4}$.

$$
\begin{aligned}
\cos \frac{\pi}{3} & =\cos \left(\frac{\pi}{12}+\frac{\pi}{4}\right) \quad \text { Substitute } \\
& =\cos \frac{\pi}{12} \cos \frac{\pi}{4}-\sin \frac{\pi}{12} \sin \frac{\pi}{4}
\end{aligned}
$$

Cosine sum identity
The given statement is true.

5.4 Exercises (pages 220-224)

47. $\cos s=-\frac{8}{17}$ and $\cos t=-\frac{3}{5}, s$ and t in quadrant III In order to substitute into sum and difference identities, we need to find the values of $\sin s$ and $\sin t$, and also the values of $\tan s$ and $\tan t$. Because s and t are both in quadrant III, the values of $\sin s$ and $\sin t$ will be negative, and $\tan s$ and $\tan t$ will be positive.

$$
\begin{aligned}
\sin s & =-\sqrt{1-\cos ^{2} s}=-\sqrt{1-\left(-\frac{8}{17}\right)^{2}} \\
& =-\sqrt{\frac{225}{289}}=-\frac{15}{17} \\
\sin t & =-\sqrt{1-\cos ^{2} t}=-\sqrt{1-\left(-\frac{3}{5}\right)^{2}} \\
& =-\sqrt{\frac{16}{25}}=-\frac{4}{5} \\
\tan s & =\frac{\sin s}{\cos s}=\frac{-\frac{15}{17}}{-\frac{8}{17}}=\frac{15}{8} \\
\tan t & =\frac{\sin t}{\cos t}=\frac{-\frac{4}{5}}{-\frac{3}{5}}=\frac{4}{3}
\end{aligned}
$$

(a) $\sin (s+t)=\sin s \cos t+\cos s \sin t$

$$
\begin{aligned}
& =\left(-\frac{15}{17}\right)\left(-\frac{3}{5}\right)+\left(-\frac{8}{17}\right)\left(-\frac{4}{5}\right) \\
& =\frac{45}{85}+\frac{32}{85} \\
& =\frac{77}{85}
\end{aligned}
$$

(b) $\tan (s+t)=\frac{\tan s+\tan t}{1-\tan s \tan t}=\frac{\frac{15}{8}+\frac{4}{3}}{1-\left(\frac{15}{8}\right)\left(\frac{4}{3}\right)}$

$$
=\frac{\frac{45}{24}+\frac{32}{24}}{1-\frac{60}{24}}=\frac{\frac{77}{24}}{-\frac{36}{24}}=-\frac{77}{36}
$$

(c) From parts (a) and (b), $\sin (s+t)>0$ and $\tan (s+t)<0$. The only quadrant in which values of sine are positive and values of tangent are negative is quadrant II. Thus, $s+t$ is in quadrant II.
55. $\tan \frac{11 \pi}{12}=\tan \left(\frac{3 \pi}{4}+\frac{\pi}{6}\right)$ $\frac{3 \pi}{4}=\frac{9 \pi}{12} ; \frac{\pi}{6}=\frac{2 \pi}{12}$

$$
\begin{array}{ll}
=\frac{\tan \frac{3 \pi}{4}+\tan \frac{\pi}{6}}{1-\tan \frac{3 \pi}{4} \tan \frac{\pi}{6}} & \begin{array}{l}
\text { Tangent sum } \\
\text { identity }
\end{array} \\
=\frac{-1+\frac{\sqrt{3}}{3}}{1-(-1)\left(\frac{\sqrt{3}}{3}\right)} & \tan \frac{3 \pi}{4}=-1 \text { and } \\
\tan \frac{\pi}{6}=\frac{\sqrt{3}}{3} \\
=\frac{-1+\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}} & \text { Simplify. }
\end{array}
$$

$$
=\frac{-1+\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}} \cdot \frac{3}{3} \quad \begin{aligned}
& \text { Multiply numerator } \\
& \text { and denominator }
\end{aligned}
$$

$$
=\frac{-3+\sqrt{3}}{3+\sqrt{3}} \quad \text { Distributive property }
$$

$$
=\frac{-3+\sqrt{3}}{3+\sqrt{3}} \cdot \frac{3-\sqrt{3}}{3-\sqrt{3}} \quad \begin{aligned}
& \text { Rationalize the } \\
& \text { denominator. }
\end{aligned}
$$

$$
=\frac{-9+6 \sqrt{3}-3}{9-3} \quad \text { FOIL }
$$

$$
=\frac{-12+6 \sqrt{3}}{6} \quad \text { Subtract. }
$$

$$
=\frac{6(-2+\sqrt{3})}{6} \quad \text { Factor the numerator. }
$$

$$
=-2+\sqrt{3} \quad \text { Lowest terms }
$$

67. Verify that $\frac{\sin (x-y)}{\sin (x+y)}=\frac{\tan x-\tan y}{\tan x+\tan y}$ is an identity.

Work with the left hand side.
$\frac{\sin (x-y)}{\sin (x+y)}=\frac{\sin x \cos y-\cos x \sin y}{\sin x \cos y+\cos x \sin y}$
Sine sum and difference identities

$$
\begin{aligned}
=\frac{\frac{\sin x \cos y}{\cos x \cos y}-\frac{\cos x \sin y}{\cos x \cos y}}{\frac{\sin x \cos y}{\cos x \cos y}+\frac{\cos x \sin y}{\cos x \cos y}} & \begin{array}{l}
\text { Divide numerator } \\
\text { and denominator } \\
\text { by } \cos x \cos y .
\end{array} \\
= & \frac{\frac{\sin x}{\cos x} \cdot 1-1 \cdot \frac{\sin y}{\cos y}}{\frac{\sin x}{\cos x} \cdot 1+1 \cdot \frac{\sin y}{\cos y}}
\end{aligned} \quad \text { Divide. } \quad \begin{array}{ll}
\frac{\tan x-\tan y}{\tan x+\tan y} & \text { Tangent quotient } \\
\text { identity }
\end{array}
$$

5.5 Exercises (pages 230-232)

25. Verify that $\sin 4 x=4 \sin x \cos x \cos 2 x$ is an identity. Work with the left hand side.

$$
\begin{aligned}
\sin 4 x & =\sin 2(2 x) & & \text { Factor: } 4=2 \cdot 2 . \\
& =2 \sin 2 x \cos 2 x & & \text { Sine double-angle identity } \\
& =2(2 \sin x \cos x) \cos 2 x & & \text { Sine double-angle identity } \\
& =4 \sin x \cos x \cos 2 x & & \text { Multiply. }
\end{aligned}
$$

45. $\frac{1}{4}-\frac{1}{2} \sin ^{2} 47.1^{\circ}=\frac{1}{4}\left(1-2 \sin ^{2} 47.1^{\circ}\right) \quad$ Factor out $\frac{1}{4}$.

$$
\begin{aligned}
= & \frac{1}{4} \cos 2\left(47.1^{\circ}\right) \\
& \cos 2 A=1-2 \sin ^{2} A \\
= & \frac{1}{4} \cos 94.2^{\circ}
\end{aligned}
$$

51. $\tan 3 x=\tan (2 x+x)$

$$
\begin{array}{ll}
=\frac{\tan 2 x+\tan x}{1-\tan 2 x \tan x} & \begin{array}{l}
\text { Tangent sum } \\
\text { identity }
\end{array} \\
=\frac{\frac{2 \tan x}{1-\tan ^{2} x}+\tan x}{1-\frac{2 \tan x}{1-\tan ^{2} x} \cdot \tan x} & \begin{array}{l}
\text { Tangent double- } \\
\text { angle identity }
\end{array} \\
=\frac{\frac{2 \tan x+\left(1-\tan ^{2} x\right) \tan x}{1-\tan ^{2} x}}{\frac{1-\tan ^{2} x-2 \tan ^{2} x}{1-\tan ^{2} x}} & \begin{array}{l}
\text { Add and subtract } \\
\text { using the common } \\
\text { denominator. }
\end{array}
\end{array}
$$

$$
=\frac{2 \tan x+\tan x-\tan ^{3} x}{1-\tan ^{2} x-2 \tan ^{2} x}
$$

Multiply numerator and denominator by $1-\tan ^{2} x$.

$$
\tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}
$$

Combine like terms.

5.6 Exercises (pages 235-239)

21. Find $\tan \frac{\theta}{2}$, given $\sin \theta=\frac{3}{5}$, with $90^{\circ}<\theta<180^{\circ}$.

To find $\tan \frac{\theta}{2}$, we need the values of $\sin \theta$ and $\cos \theta$.
We know $\sin \theta=\frac{3}{5}$.

$$
\begin{aligned}
\cos \theta & = \pm \sqrt{1-\sin ^{2} \theta} & & \text { Fundamental identity } \\
& = \pm \sqrt{1-\left(\frac{3}{5}\right)^{2}} & & \text { Substitute. } \\
& = \pm \sqrt{\frac{16}{25}} & & \text { Simplify. } \\
\cos \theta & =-\frac{4}{5} & & \theta \text { is in quadrant II. }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\tan \frac{\theta}{2} & =\frac{\sin \theta}{1+\cos \theta} & & \text { Half-angle identity } \\
& =\frac{\frac{3}{5}}{1-\frac{4}{5}} & & \text { Substitute. } \\
& =3 . & & \text { Simplify. }
\end{aligned}
$$

45. Verify that $\sec ^{2} \frac{x}{2}=\frac{2}{1+\cos x}$ is an identity.

Work with the left hand side.

$$
\begin{aligned}
\sec ^{2} \frac{x}{2} & =\frac{1}{\cos ^{2} \frac{x}{2}} & \text { Reciprocal identity } \\
& =\frac{1}{\left(\pm \sqrt{\frac{1+\cos x}{2}}\right)^{2}} & \begin{array}{l}
\text { Cosine half-angle } \\
\text { identity }
\end{array} \\
& =\frac{1}{\frac{1+\cos x}{2}} & \text { Apply the exponent. } \\
& =\frac{2}{1+\cos x} & \text { Divide. }
\end{aligned}
$$

Chapter 6 Inverse Circular Functions and Trigonometric Equations

6.1 Exercises (pages 257-261)

87. $\sin \left(2 \cos ^{-1} \frac{1}{5}\right)$

Let $\theta=\cos ^{-1} \frac{1}{5}$, so $\cos \theta=\frac{1}{5}$. The inverse cosine function yields values only in quadrants I and II, and since $\frac{1}{5}$ is positive, θ is in quadrant I . Sketch θ in quadrant I , and label the sides of a right triangle. By the Pythagorean theorem, the length of the side opposite θ will be

$$
\sqrt{5^{2}-1^{2}}=\sqrt{24}=2 \sqrt{6}
$$

From the figure, $\sin \theta=\frac{2 \sqrt{6}}{5}$.

$$
\begin{aligned}
\sin \left(2 \cos ^{-1} \frac{1}{5}\right)= & \sin 2 \theta \\
= & 2 \sin \theta \cos \theta \\
& \text { Sine double-angle identity } \\
= & 2\left(\frac{2 \sqrt{6}}{5}\right)\left(\frac{1}{5}\right) \\
= & \frac{4 \sqrt{6}}{25}
\end{aligned}
$$

93. $\sin \left(\sin ^{-1} \frac{1}{2}+\tan ^{-1}(-3)\right)$

Let $\sin ^{-1} \frac{1}{2}=A$ and $\tan ^{-1}(-3)=B$. Then $\sin A=\frac{1}{2}$ and $\tan B=-3$. Sketch angle A in quadrant I and angle B in quadrant IV, and use the Pythagorean theorem to find the unknown side in each triangle.

$$
\begin{aligned}
\sin \left(\sin ^{-1} \frac{1}{2}+\tan ^{-1}(-3)\right)= & \sin (A+B) \\
= & \sin A \cos B+\cos A \sin B \\
& \text { Sine sum identity } \\
= & \frac{1}{2} \cdot \frac{1}{\sqrt{10}}+\frac{\sqrt{3}}{2} \cdot \frac{-3}{\sqrt{10}} \\
= & \frac{1-3 \sqrt{3}}{2 \sqrt{10}}, \text { or } \frac{\sqrt{10}-3 \sqrt{30}}{20}
\end{aligned}
$$

6.2 Exercises (pages 266-269)
15. $\tan ^{2} x+3=0$, so $\tan ^{2} x=-3$.

The square of a real number cannot be negative, so this equation has no solution. Solution set: \varnothing
25.

$$
\begin{aligned}
2 \sin \theta-1 & =\csc \theta & & \text { Original equation } \\
2 \sin \theta-1 & =\frac{1}{\sin \theta} & & \text { Reciprocal identity } \\
2 \sin ^{2} \theta-\sin \theta & =1 & & \text { Multiply by } \sin \theta \\
2 \sin ^{2} \theta-\sin \theta-1 & =0 & & \text { Subtract } 1 . \\
(2 \sin \theta+1)(\sin \theta-1) & =0 & & \text { Factor. }
\end{aligned}
$$

$2 \sin \theta+1=0 \quad$ or $\quad \sin \theta-1=0$ Zero-factor property

$$
\sin \theta=-\frac{1}{2} \quad \text { or } \quad \sin \theta=1
$$

Over the interval [$0^{\circ}, 360^{\circ}$), the equation $\sin \theta=-\frac{1}{2}$ has two solutions, the angles in quadrants III and IV that have reference angle 30°. These are 210° and 330°. In the same interval, the only angle θ for which $\sin \theta=1$ is 90°. All three of these check.

Solution set: $\left\{90^{\circ}, 210^{\circ}, 330^{\circ}\right\}$
57. $\frac{2 \tan \theta}{3-\tan ^{2} \theta}=1$

$$
2 \tan \theta=3-\tan ^{2} \theta
$$

$\tan ^{2} \theta+2 \tan \theta-3=0$
$(\tan \theta-1)(\tan \theta+3)=0$
Original equation

Multiply by
$3-\tan ^{2} \theta$.
$\begin{array}{rlrlrl}\tan \theta-1 & =0 & \text { or } & \tan \theta+3 & =0 & \text { Zero-factor property } \\ \tan \theta & =1 & \text { or } & \tan \theta & =-3\end{array}$
$\tan \theta=1 \quad$ or $\quad \tan \theta=-3$
Over the interval $\left[0^{\circ}, 360^{\circ}\right.$), the equation $\tan \theta=1$ has two solutions, 45° and 225°. Over the same interval, the equation $\tan \theta=-3$ has two solutions that are approximately $-71.6^{\circ}+180^{\circ}=108.4^{\circ}$ and $-71.6^{\circ}+360^{\circ}=288.4^{\circ}$. All of these check.

The period of the tangent function is 180°, so the solution set is $\left\{45^{\circ}+180^{\circ} n, 108.4^{\circ}+180^{\circ} n\right.$, where n is any integer $\}$.

6.3 Exercises (pages 273-275)

23. $\cos 2 x+\cos x=0$

We choose the identity for $\cos 2 x$ that involves only the cosine function.

$$
\cos 2 x+\cos x=0 \quad \text { Original equation }
$$

$2 \cos ^{2} x-1+\cos x=0 \quad$ Cosine double-angle identity
$2 \cos ^{2} x+\cos x-1=0 \quad$ Standard quadratic form
$(2 \cos x-1)(\cos x+1)=0 \quad$ Factor.
$2 \cos x-1=0 \quad$ or $\quad \cos x+1=0 \quad$ Zero-factor property
$2 \cos x=1$

$$
\begin{array}{ll}
\cos x=\frac{1}{2} & \text { or }
\end{array} \quad \cos x=-1 \quad \begin{aligned}
& \text { Solve for } \\
& \cos x
\end{aligned}
$$

Over the interval $[0,2 \pi)$, the equation $\cos x=\frac{1}{2}$ has two solutions, $\frac{\pi}{3}$ and $\frac{5 \pi}{3}$. Over the same interval, the equation $\cos x=-1$ has only one solution, π.
Solution set: $\left\{\frac{\pi}{3}, \pi, \frac{5 \pi}{3}\right\}$
31.

$$
\begin{aligned}
2 \sin \theta=2 \cos 2 \theta & \text { Original equation } \\
\sin \theta=\cos 2 \theta & \text { Divide by } 2 . \\
\sin \theta=1-2 \sin ^{2} \theta & \begin{array}{l}
\text { Cosine double- } \\
\text { angle identity }
\end{array} \\
2 \sin ^{2} \theta+\sin \theta-1=0 & \begin{array}{l}
\text { Standard quadratic } \\
\text { form }
\end{array}
\end{aligned}
$$

$(2 \sin \theta-1)(\sin \theta+1)=0 \quad$ Factor.
$\begin{array}{rlll}2 \sin \theta-1=0 & \text { or } & \sin \theta+1=0 & \begin{array}{l}\text { Zero-factor } \\ \text { property }\end{array} \\ \sin \theta=\frac{1}{2} & \text { or } & \sin \theta=-1 & \text { Solve for } \sin \theta .\end{array}$
Over the interval $\left[0^{\circ}, 360^{\circ}\right.$), the equation $\sin \theta=\frac{1}{2}$ has two solutions, 30° and 150°. Over the same interval, the equation $\sin \theta=-1$ has one solution, 270°.

The period of the sine function is 360°, so the solution set is $\left\{30^{\circ}+360^{\circ} n, 150^{\circ}+360^{\circ} n, 270^{\circ}+360^{\circ} n\right.$, where n is any integer $\}$.

6.4 Exercises (pages 279-282)

15. $y=\cos (x+3)$, for x in $[-3, \pi-3]$

Original equation
$x+3=\arccos y \quad$ Definition of arccos
$x=-3+\arccos y \quad$ Subtract 3.
37. $\arccos x+2 \arcsin \frac{\sqrt{3}}{2}=\pi \quad$ Original equation

$$
\arccos x=\pi-2 \arcsin \frac{\sqrt{3}}{2}
$$

Isolate $\arccos x$
$\arccos x=\pi-2\left(\frac{\pi}{3}\right) \quad \arcsin \frac{\sqrt{3}}{2}=\frac{\pi}{3}$
$\arccos x=\pi-\frac{2 \pi}{3} \quad$ Multiply.
$\arccos x=\frac{\pi}{3} \quad$ Subtract.
$x=\cos \frac{\pi}{3} \quad$ Rewrite.
$x=\frac{1}{2} \quad$ Evaluate.
Solution set: $\left\{\frac{1}{2}\right\}$
41. $\cos ^{-1} x+\tan ^{-1} x=\frac{\pi}{2}$

Original equation

$$
\begin{aligned}
\cos ^{-1} x & =\frac{\pi}{2}-\tan ^{-1} x \quad \text { Subtract } \tan ^{-1} x \\
x & =\cos \left(\frac{\pi}{2}-\tan ^{-1} x\right)
\end{aligned}
$$

Definition of $\cos ^{-1} x$

$$
x=\cos \frac{\pi}{2} \cdot \cos \left(\tan ^{-1} x\right)
$$

$$
+\sin \frac{\pi}{2} \cdot \sin \left(\tan ^{-1} x\right)
$$

Cosine difference identity

$$
\begin{aligned}
x= & 0 \cdot \cos \left(\tan ^{-1} x\right)+1 \cdot \sin \left(\tan ^{-1} x\right) \\
& \cos \frac{\pi}{2}=0 \text { and } \sin \frac{\pi}{2}=1 \\
x= & \sin \left(\tan ^{-1} x\right)
\end{aligned}
$$

Let $u=\tan ^{-1} x$, so $\tan u=x$.

From the triangle, we find that $\sin u=\frac{x}{\sqrt{1+x^{2}}}$, so the equation $x=\sin \left(\tan ^{-1} x\right)$ becomes

$$
x=\frac{x}{\sqrt{1+x^{2}}} .
$$

Solve this equation.

$$
\begin{array}{rlrl}
x & =\frac{x}{\sqrt{1+x^{2}}} \\
x \sqrt{1+x^{2}} & =x & & \text { Multiply by } \sqrt{1+x^{2}} . \\
x \sqrt{1+x^{2}}-x & =0 & & \text { Subtract } x . \\
x\left(\sqrt{1+x^{2}}-1\right) & =0 & & \text { Factor. } \\
x=0 \quad \text { or } \quad \sqrt{1+x^{2}}-1 & =0 & & \text { Zero-factor property } \\
\sqrt{1+x^{2}} & =1 & & \text { Isolate the radical. } \\
1+x^{2} & =1 & & \text { Square each side. } \\
x^{2} & =0 & & \text { Subtract 1. } \\
x & =0 & & \text { Take square roots. }
\end{array}
$$

Solution set: $\{0\}$

Chapter 7 Applications of Trigonometry and Vectors

7.1 Exercises (pages 295-299)
33. We cannot find θ directly because the length of the side opposite angle θ is not given. Redraw the triangle shown in the figure, and label the third angle as α.

$\frac{\sin \alpha}{1.6+2.7}=\frac{\sin 38^{\circ}}{1.6+3.6} \quad \begin{aligned} & \text { Alternative form of the } \\ & \text { law of sines }\end{aligned}$

$$
\frac{\sin \alpha}{4.3}=\frac{\sin 38^{\circ}}{5.2} \quad \text { Add in the denominators. }
$$

$$
\sin \alpha=\frac{4.3 \sin 38^{\circ}}{5.2} \approx 0.50910468
$$

$$
\alpha \approx 31^{\circ} \quad \text { Use the inverse sine function. }
$$

Then

$$
\begin{aligned}
& \theta \approx 180^{\circ}-38^{\circ}-31^{\circ} \\
& \theta \approx 111^{\circ}
\end{aligned}
$$

41. To find the area of the triangle, use $\mathscr{A}=\frac{1}{2} b h$, with $b=1$ and $h=\sqrt{2}$.

$$
\mathscr{A}=\frac{1}{2}(1)(\sqrt{2})=\frac{\sqrt{2}}{2}
$$

Now use $\mathscr{A}=\frac{1}{2} a b \sin C$, with $a=2, b=1$, and $C=45^{\circ}$.

$$
\mathscr{A}=\frac{1}{2}(2)(1) \sin 45^{\circ}=\sin 45^{\circ}=\frac{\sqrt{2}}{2}
$$

Both formulas show that the area is $\frac{\sqrt{2}}{2}$ sq unit.
7.2 Exercises (pages 304-306)
11. $\frac{\sin B}{b}=\frac{\sin A}{a}$
$\frac{\sin B}{2}=\frac{\sin 60^{\circ}}{\sqrt{6}}$
$\sin B=\frac{2 \sin 60^{\circ}}{\sqrt{6}}$
Alternative form of the law of sines

Substitute values from the figure.

Multiply by 2.
$\sin B=\frac{2 \cdot \frac{\sqrt{3}}{2}}{\sqrt{6}}$

$$
\sin 60^{\circ}=\frac{\sqrt{3}}{2}
$$

$\sin B=\frac{\sqrt{3}}{\sqrt{6}}=\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}$

$$
B=45^{\circ}
$$

Use the inverse sine function.

There is another angle between 0° and 180° whose sine is $\frac{\sqrt{2}}{2}: 180^{\circ}-45^{\circ}=135^{\circ}$. However, this is too large because $A=60^{\circ}$ and $60^{\circ}+135^{\circ}=195^{\circ}$. Since $195^{\circ}>180^{\circ}$, there is only one solution, $B=45^{\circ}$.
19. $A=142.13^{\circ}, b=5.432 \mathrm{ft}, a=7.297 \mathrm{ft}$
$\frac{\sin B}{b}=\frac{\sin A}{a}$
$\sin B=\frac{b \sin A}{a}$
Alternative form of the law of sines

Multiply by b.
$\sin B=\frac{5.432 \sin 142.13^{\circ}}{7.297}$
$\sin B \approx 0.45697580$

$$
B \approx 27.19^{\circ}
$$

Substitute given values.
Simplify.
Use the inverse sine function.

Because angle A is obtuse, angle B must be acute, so this is the only possible value for B and there is one triangle with the given measurements.
$C=180^{\circ}-A-B \quad$ Angle sum formula, solved for C
$C \approx 180^{\circ}-142.13^{\circ}-27.19^{\circ}$
$C \approx 10.68^{\circ}$
Thus, $B \approx 27.19^{\circ}$ and $C \approx 10.68^{\circ}$.

7.3 Exercises (pages 313-319)

21. $C=45.6^{\circ}, b=8.94 \mathrm{~m}, a=7.23 \mathrm{~m}$

First find c.
$c^{2}=a^{2}+b^{2}-2 a b \cos C \quad$ Law of cosines
$c^{2}=7.23^{2}+8.94^{2}-2(7.23)(8.94) \cos 45.6^{\circ}$
Substitute given values.
$c^{2} \approx 41.7493 \quad$ Use a calculator.
$c \approx 6.46 \quad$ Square root property
Find A next since angle A is smaller than angle B (because $a<b$), and thus angle A must be acute.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} & & \begin{array}{l}
\text { Alternative form of the law of } \\
\text { sines }
\end{array} \\
\sin A & =\frac{a \sin C}{c} & & \text { Multiply by } a . \\
\sin A & =\frac{7.23 \sin 45.6^{\circ}}{6.46} & & \text { Substitute. } \\
\sin A & \approx 0.79963428 & & \text { Simplify. } \\
A & \approx 53.1^{\circ} & & \text { Use the inverse sine function. }
\end{aligned}
$$

Finally, find B.

$$
\begin{aligned}
& B=180^{\circ}-C-A \\
& B \approx 180^{\circ}-45.6^{\circ}-53.1^{\circ} \\
& B \approx 81.3^{\circ}
\end{aligned}
$$

Thus, $c \approx 6.46 \mathrm{~m}, A \approx 53.1^{\circ}$, and $B \approx 81.3^{\circ}$.
43. Find $A C$, or b, in this figure.

Angle $1=180^{\circ}-128^{\circ} 40^{\prime}=51^{\circ} 20^{\prime}$
Angles 1 and 2 are alternate interior angles formed when two parallel lines (the north lines) are cut by a transversal, line $B C$, so angle $2=$ angle $1=51^{\circ} 20^{\prime}$.
angle $A B C=90^{\circ}-$ angle $2=90^{\circ}-51^{\circ} 20^{\prime}=38^{\circ} 40^{\prime}$ Complementary angles
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
Law of cosines
$b^{2}=359^{2}+450^{2}-2(359)(450) \cos 38^{\circ} 40^{\prime}$
Substitute values from the figure.

$$
\begin{aligned}
b^{2} \approx 79,106 & \text { Use a calculator. } \\
b \approx 281 & \text { Square root property }
\end{aligned}
$$

C is about 281 km from A.

7.4 Exercises (pages 328-331)

19. Use the figure to find the components of \mathbf{u} and \mathbf{v} : $\mathbf{u}=\langle-8,8\rangle$ and $\mathbf{v}=\langle 4,8\rangle$.
(a) $\mathbf{u}+\mathbf{v}=\langle-8,8\rangle+\langle 4,8\rangle=\langle-8+4,8+8\rangle$

$$
=\langle-4,16\rangle
$$

(b) $\mathbf{u}-\mathbf{v}=\langle-8,8\rangle-\langle 4,8\rangle=\langle-8-4,8-8\rangle$

$$
=\langle-12,0\rangle
$$

(c) $-\mathbf{u}=-\langle-8,8\rangle=\langle 8,-8\rangle$
47. $\mathbf{v}=\langle a, b\rangle=\left\langle 5 \cos \left(-35^{\circ}\right), 5 \sin \left(-35^{\circ}\right)\right\rangle$

$$
=\langle 4.0958,-2.8679\rangle
$$

81. First write the given vectors in component form.

$$
\begin{aligned}
3 \mathbf{i}+4 \mathbf{j} & =\langle 3,4\rangle ; \quad \mathbf{j}=\langle 0,1\rangle \\
\cos \theta & =\frac{\langle 3,4\rangle \cdot\langle 0,1\rangle}{|\langle 3,4\rangle||\langle 0,1\rangle|} \\
\cos \theta & =\frac{3(0)+4(1)}{\sqrt{9+16} \cdot \sqrt{0+1}}=\frac{4}{5}=0.8 \\
\theta & =\cos ^{-1} 0.8 \approx 36.87^{\circ}
\end{aligned}
$$

7.5 Exercises (pages 335-338)

5. Use the parallelogram rule. In the figure, \mathbf{x} represents the second force and \mathbf{v} is the resultant.

$$
\begin{array}{rlr}
\alpha & =180^{\circ}-78^{\circ} 50^{\prime} \\
& =101^{\circ} 10^{\prime} \\
\beta & =78^{\circ} 50^{\prime}-41^{\circ} 10^{\prime} \\
& =37^{\circ} 40^{\prime} \\
\frac{|\mathbf{x}|}{\sin 41^{\circ} 10^{\prime}} & =\frac{176}{\sin 37^{\circ} 40^{\prime}} \quad \text { Law of sines } \\
|\mathbf{x}| & =\frac{176 \sin 41^{\circ} 10^{\prime}}{\sin 37^{\circ} 40^{\prime}} \approx 190 & \\
\frac{|\mathbf{v}|}{\sin 101^{\circ} 10^{\prime}} & =\frac{176}{\sin 37^{\circ} 40^{\prime}} \quad \text { Law of sines } \\
|\mathbf{v}| & =\frac{176 \sin 101^{\circ} 10^{\prime}}{\sin 37^{\circ} 40^{\prime}} \approx 283
\end{array}
$$

Thus, the magnitude of the second force is about 190 lb , and the magnitude of the resultant is about 283 lb .
27. Let \mathbf{v} represent the airspeed vector. The ground speed is $\frac{400 \mathrm{mi}}{2.5 \mathrm{hr}}=160 \mathrm{mph}$. angle $B A C=328^{\circ}-180^{\circ}=148^{\circ}$

$$
\begin{aligned}
& |\mathbf{v}|^{2}=11^{2}+160^{2}-2(11)(160) \cos 148^{\circ} \\
& |\mathbf{v}|^{2} \approx 28,706 \\
& |\mathbf{v}| \approx 169.4
\end{aligned}
$$

The airspeed must be approximately 170 mph .

$$
\begin{aligned}
\frac{\sin B}{11} & =\frac{\sin 148^{\circ}}{169.4} \quad \text { Law of sines } \\
\sin B & =\frac{11 \sin 148^{\circ}}{169.4} \approx 0.03441034 \\
B & \approx 2^{\circ}
\end{aligned}
$$

The bearing must be approximately $360^{\circ}-2^{\circ}=358^{\circ}$.

Chapter 8 Complex Numbers, Polar Equations, and Parametric Equations

8.1 Exercises (pages 356-359)
61. $-i \sqrt{2}-2-(6-4 i \sqrt{2})-(5-i \sqrt{2})$
$=(-2-6-5)+[-\sqrt{2}-(-4 \sqrt{2})-(-\sqrt{2})] i$
$=-13+4 i \sqrt{2} \quad$ Combine real parts and combine imaginary parts.
79. $(2+i)(2-i)(4+3 i)$

$$
\begin{aligned}
& =[(2+i)(2-i)](4+3 i) \\
& =\left(2^{2}-i^{2}\right)(4+3 i)
\end{aligned}
$$

Associative property
Product of the sum and difference of two terms

$$
=[4-(-1)](4+3 i)
$$

$i^{2}=-1$

$$
=5(4+3 i)
$$

Subtract.

$$
=20+15 i
$$

Distributive property
107. $\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)^{2}$

$$
=\left(\frac{\sqrt{2}}{2}\right)^{2}+2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} i+\left(\frac{\sqrt{2}}{2} i\right)^{2}
$$

$$
=\frac{2}{4}+2 \cdot \frac{2}{4} i+\frac{2}{4} i^{2} \quad \text { Apply exponents and multiply. }
$$

$$
=\frac{1}{2}+i+\frac{1}{2} i^{2}
$$

$$
=\frac{1}{2}+i+\frac{1}{2}(-1) \quad i^{2}=-1
$$

$$
=\frac{1}{2}+i-\frac{1}{2} \quad \text { Multiply. }
$$

$=i \quad$ Combine real parts.
Thus, $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$ is a square root of i.
8.2 Exercises (pages 364-366)
31. 3 cis 150°

$$
\begin{aligned}
& =3\left(\cos 150^{\circ}+i \sin 150^{\circ}\right) \\
& =3\left(-\frac{\sqrt{3}}{2}+i \cdot \frac{1}{2}\right) \quad \begin{array}{l}
\cos 150^{\circ}=-\frac{\sqrt{3}}{2} ; \\
\sin 150^{\circ}=\frac{1}{2}
\end{array} \\
& =-\frac{3 \sqrt{3}}{2}+\frac{3}{2} i \quad \text { Rectangular form }
\end{aligned}
$$

43. $-5-5 i$

Sketch the graph of $-5-5 i$ in the complex plane.

Since $x=-5$ and $y=-5$,
$r=\sqrt{x^{2}+y^{2}}=\sqrt{(-5)^{2}+(-5)^{2}}=\sqrt{50}=5 \sqrt{2}$
and $\quad \tan \theta=\frac{y}{x}=\frac{-5}{-5}=1$.
Since $\tan \theta=1$, the reference angle for θ is 45°. The graph shows that θ is in quadrant III, so

$$
\theta=180^{\circ}+45^{\circ}=225^{\circ}
$$

Use these results.

$$
-5-5 i=5 \sqrt{2}\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)
$$

8.3 Exercises (pages 369-371)
5. $\left[4\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)\right]\left[6\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)\right]$

$$
\begin{aligned}
& =4 \cdot 6\left[\cos \left(60^{\circ}+330^{\circ}\right)+i \sin \left(60^{\circ}+330^{\circ}\right)\right] \\
& =24\left(\cos 390^{\circ}+i \sin 390^{\circ}\right) \\
& =24\left(\cos 30^{\circ}+i \sin 30^{\circ}\right) \\
& =24\left(\frac{\sqrt{3}}{2}+i \cdot \frac{1}{2}\right) \\
& =120^{\circ} \text { and } 30^{\circ} \text { are } \\
& \text { coterminal angles. } \\
& =12 \sqrt{3}+12 i
\end{aligned} \begin{aligned}
& \cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
& \sin 30^{\circ}=\frac{1}{2}
\end{aligned}
$$

21. $\frac{-i}{1+i}$

Numerator: $-i=0-1 i$
$r=\sqrt{0^{2}+(-1)^{2}}=1$
$\theta=270^{\circ}$ since $\cos 270^{\circ}=0$ and $\sin 270^{\circ}=-1$. Thus $-i=1$ cis 270°.
Denominator: $1+i=1+1 i$

$$
\begin{aligned}
r & =\sqrt{1^{2}+1^{2}}=\sqrt{2} \\
\tan \theta & =\frac{y}{x}=\frac{1}{1}=1
\end{aligned}
$$

Since x and y are both positive, θ is in quadrant I , and $\theta=\tan ^{-1} 1=45^{\circ}$. Thus, $1+i=\sqrt{2} \operatorname{cis} 45^{\circ}$.

$$
\begin{aligned}
& \frac{-i}{1+i} \\
&=\frac{1 \operatorname{cis} 270^{\circ}}{\sqrt{2} \operatorname{cis} 45^{\circ}} \\
&=\frac{1}{\sqrt{2}} \operatorname{cis}\left(270^{\circ}-45^{\circ}\right) \\
&=\frac{\sqrt{2}}{2} \operatorname{cis} 225^{\circ} \\
&=\frac{\sqrt{2}}{2}\left(\cos 225^{\circ}+i \sin 225^{\circ}\right) \\
&=\frac{\sqrt{2}}{2}\left(-\frac{\sqrt{2}}{2}-i \cdot \frac{\sqrt{2}}{2}\right) \\
&=-\frac{1}{2}-\frac{1}{2} i
\end{aligned}
$$

Substitute.

Quotient theorem
Rationalize and subtract.

Equivalent form
$\cos 225^{\circ}=-\frac{\sqrt{2}}{2} ;$
$\sin 225^{\circ}=-\frac{\sqrt{2}}{2}$
Rectangular form

8.4 Exercises (pages 376-378)

11. $(-2-2 i)^{5}$

First write $-2-2 i$ in trigonometric form.

$$
\begin{aligned}
r & =\sqrt{(-2)^{2}+(-2)^{2}}=\sqrt{8}=2 \sqrt{2} \\
\tan \theta & =\frac{y}{x}=\frac{-2}{-2}=1
\end{aligned}
$$

Because x and y are both negative, θ is in quadrant III.
Thus $\theta=225^{\circ}$.

$$
\begin{aligned}
&-2-2 i=2 \sqrt{2}\left(\cos 225^{\circ}+i \sin 225^{\circ}\right) \\
&(-2-2 i)^{5}=\left[2 \sqrt{2}\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)\right]^{5} \\
&=(2 \sqrt{2})^{5}\left[\cos \left(5 \cdot 225^{\circ}\right)+i \sin \left(5 \cdot 225^{\circ}\right)\right] \\
& \quad \text { De Moivre's theorem } \\
&=32 \cdot 4 \sqrt{2}\left(\cos 1125^{\circ}+i \sin 1125^{\circ}\right) \\
&=128 \sqrt{2}\left(\cos 1125^{\circ}+i \sin 1125^{\circ}\right) \\
&=128 \sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right) \\
& 1125^{\circ} \text { and } 45^{\circ} \text { are coterminal. } \\
&=128 \sqrt{2}\left(\frac{\sqrt{2}}{2}+i \cdot \frac{\sqrt{2}}{2}\right) \\
&=128+128 i \quad \text { Rectangular form }
\end{aligned}
$$

41. $x^{3}-(4+4 i \sqrt{3})=0$

$$
\begin{aligned}
& x^{3}=4+4 i \sqrt{3} \\
& r=\sqrt{4^{2}+(4 \sqrt{3})^{2}}=\sqrt{16+48}=\sqrt{64}=8 \\
& \tan \theta=\frac{4 \sqrt{3}}{4}=\sqrt{3}
\end{aligned}
$$

θ is in quadrant I , so $\theta=60^{\circ}$.

$$
\begin{aligned}
& x^{3}=4+4 i \sqrt{3} \\
& x^{3}=8\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

$r^{3}(\cos 3 \alpha+i \sin 3 \alpha)=8\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
$r^{3}=8$, so $r=2$.
$\alpha=\frac{60^{\circ}}{3}+\frac{360^{\circ} \cdot k}{3}, k$ any integer nth root theorem
$\alpha=20^{\circ}+120^{\circ} \cdot k, k$ any integer
If $k=0$, then $\alpha=20^{\circ}+0^{\circ}=20^{\circ}$.
If $k=1$, then $\alpha=20^{\circ}+120^{\circ}=140^{\circ}$.
If $k=2$, then $\alpha=20^{\circ}+240^{\circ}=260^{\circ}$.
Solution set: $\left\{2\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)\right.$,
$\left.2\left(\cos 140^{\circ}+i \sin 140^{\circ}\right), 2\left(\cos 260^{\circ}+i \sin 260^{\circ}\right)\right\}$

8.5 Exercises (pages 387-391)

57.

$$
\begin{array}{rlrl}
r & =2 \sin \theta & & \\
r^{2} & =2 r \sin \theta & & \text { Multiply by } r . \\
x^{2}+y^{2} & =2 y & & r^{2}=x^{2}+y^{2}, r \sin \theta=y \\
x^{2}+y^{2}-2 y & =0 & & \text { Subtract } 2 y . \\
x^{2}+y^{2}-2 y+1 & =1 & & \begin{array}{l}
\text { Add 1 to complete the } \\
\text { square on } y .
\end{array} \\
x^{2}+(y-1)^{2}=1 & & \begin{array}{l}
\text { Factor the perfect square } \\
\text { trinomial. }
\end{array}
\end{array}
$$

The graph is a circle with center $(0,1)$ and radius 1 .

63. $r=2 \sec \theta$

$$
r=\frac{2}{\cos \theta} \quad \text { Reciprocal identity }
$$

$$
\begin{aligned}
r \cos \theta & =2 & & \text { Multiply by } \cos \theta . \\
x & =2 & & r \cos \theta=x
\end{aligned}
$$

The graph is the vertical line through $(2,0)$.

8.6 Exercises (pages 397-400)

9. $x=t^{3}+1, y=t^{3}-1$, for t in $(-\infty, \infty)$
(a)

\boldsymbol{t}	\boldsymbol{x}	\boldsymbol{y}
-2	-7	-9
-1	0	-2
0	1	-1
1	2	0
2	9	7
3	28	26

(b) $\quad x=t^{3}+1$

$$
\begin{aligned}
& \frac{y=t^{3}-1}{x-y=2} \quad \text { Subtract equations to eliminate } t \text {. } \\
& y=x-2 \text { Solve for } y \text {. }
\end{aligned}
$$

The rectangular equation is $y=x-2$, for x in $(-\infty, \infty)$. The graph is a line with slope 1 and y-intercept -2 .
13. $x=3 \tan t, y=2 \sec t$, for t in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(a)

\boldsymbol{t}	\boldsymbol{x}	\boldsymbol{y}
$-\frac{\pi}{3}$	$-3 \sqrt{3} \approx-5.2$	4
$-\frac{\pi}{6}$	$-\sqrt{3} \approx-1.7$	$\frac{4 \sqrt{3}}{3} \approx 2.3$
0	0	2
$\frac{\pi}{6}$	$\sqrt{3} \approx 1.7$	$\frac{4 \sqrt{3}}{3} \approx 2.3$
$\frac{\pi}{3}$	$3 \sqrt{3} \approx 5.2$	4

(b) $x=3 \tan t$, so $\frac{x}{3}=\tan t$.

$$
y=2 \sec t, \text { so } \frac{y}{2}=\sec t .
$$

$$
1+\tan ^{2} t=\sec ^{2} t \quad \text { Pythagorean identity }
$$

$$
1+\left(\frac{x}{3}\right)^{2}=\left(\frac{y}{2}\right)^{2} \quad \begin{aligned}
& \text { Substitute expressions for } \\
& \tan t \text { and } \sec t .
\end{aligned}
$$

$$
1+\frac{x^{2}}{9}=\frac{y^{2}}{4} \quad \text { Apply the exponents. }
$$

$$
y^{2}=4\left(1+\frac{x^{2}}{9}\right) \quad \text { Multiply by } 4 . \text { Rewrite. }
$$

$$
y=2 \sqrt{1+\frac{x^{2}}{9}}
$$

Use the positive square root because $y>0$ in the given interval for t.

The rectangular equation is $y=2 \sqrt{1+\frac{x^{2}}{9}}$, for x in $(-\infty, \infty)$. The graph is the upper half of a hyperbola.

Answers to Selected Exercises

To The Student

In this section we provide the answers that we think most students will obtain when they work the exercises using the methods explained in the text. If your answer does not look exactly like the one given here, it is not necessarily wrong. In many cases there are equivalent forms of the answer. For example, if the answer section shows $\frac{3}{4}$ and your answer is 0.75 , you have obtained the correct answer but written it in a different (yet equivalent) form. Unless the directions specify otherwise, 0.75 is just as valid an answer as $\frac{3}{4}$. (In answers with radicals, we give rationalized denominators when appropriate.) In general, if your answer does not agree with the one given in the text, see whether it can be transformed into the other form. If it can, then it is equivalent to the correct answer. If you still have doubts, talk with your instructor. If you need further help with trigonometry, you may want to obtain a copy of the Student's Solution Manual that goes with this book. Your college bookstore either has this manual or can order it for you.

Chapter 1 Trigonometric Functions

1.1 Exercises (pages 7-10)

1. (a) 60°
(b) 150°
2. (a) 45°
(b) 135°
3. (a) 36°
(b) 126°
4. (a) 89°
(b) 179°
5. (a) $75^{\circ} 40^{\prime}$
(b) $165^{\circ} 40^{\prime}$
6. (a) $69^{\circ} 49^{\prime} 30^{\prime \prime}$
(b) $159^{\circ} 49^{\prime} 30^{\prime \prime}$
7. $70^{\circ} ; 110^{\circ}$
8. $30^{\circ} ; 60^{\circ}$
9. $40^{\circ} ; 140^{\circ}$
10. $107^{\circ} ; 73^{\circ}$
11. $69^{\circ} ; 21^{\circ}$
12. 45°
13. 150°
14. $7^{\circ} 30^{\prime}$
15. 130°
16. $(90-x)^{\circ}$
17. $(x-360)$
18. $83^{\circ} 59^{\prime}$
19. $179^{\circ} 19^{\prime}$
20. $23^{\circ} 49^{\prime}$
21. $38^{\circ} 32^{\prime}$
22. $60^{\circ} 34^{\prime}$
23. $30^{\circ} 27^{\prime}$
24. $17^{\circ} 01^{\prime} 49^{\prime \prime}$
25. 35.5°
26. 112.25°
27. -60.2°
28. 20.9°
29. 91.598°
30. 274.316°
31. $39^{\circ} 1$
$15^{\prime} 00^{\prime \prime}$
32. $126^{\circ} 45^{\prime}$
33. $-18^{\circ} 30^{\prime} 54^{\prime \prime}$
34. $31^{\circ} 25^{\prime} 47^{\prime \prime}$
35. $89^{\circ} 54^{\prime} 01^{\prime \prime}$
36. $178^{\circ} 35^{\prime} 58^{\prime \prime}$
37. 392°
38. $386^{\circ} 30^{\prime}$
39. 320
40. 235°
41. 1°
42. 359°
43. 179°
44. 130°
45. 240°
46. 120°

In Exercises 93 and 95, answers may vary.

93. $450^{\circ}, 810^{\circ} ;-270^{\circ},-630^{\circ}$
94. $360^{\circ}, 720^{\circ}$; $-360^{\circ},-720^{\circ}$
95. $30^{\circ}+n \cdot 360^{\circ}$
96. $135^{\circ}+n \cdot 360^{\circ} \quad$ 101. $-90^{\circ}+n \cdot 360^{\circ}$
97. $0^{\circ}+n \cdot 360^{\circ}$, or $n \cdot 360^{\circ}$

Angles other than those given are possible in Exercises 107-117.
107.

111.

115.

119. $3 \sqrt{ } 2$

123. 2

127. 4

131. $\frac{3}{4} \quad$ 133. 1800° 135. 12.5 rotations per hr \quad 137. 4 sec

1.2 Exercises (pages 15-20)

1. Answers are given in numerical order: $55^{\circ} ; 65^{\circ} ; 60^{\circ}$; $65^{\circ} ; 60^{\circ} ; 120^{\circ} ; 60^{\circ} ; 60^{\circ} ; 55^{\circ} ; 55^{\circ}$ 3. $51^{\circ} ; 51^{\circ}$
2. $50^{\circ} ; 60^{\circ} ; 70^{\circ}$
3. $60^{\circ} ; 60^{\circ} ; 60^{\circ}$
4. $45^{\circ} ; 75^{\circ} ; 120^{\circ}$
5. $49^{\circ} ; 49^{\circ}$
6. $48^{\circ} ; 132^{\circ}$
7. 91° 17. $2^{\circ} 29^{\prime}$
8. 25.4°
9. $22^{\circ} 29^{\prime} 34^{\prime \prime}$
10. right; scalene
11. acute; equilateral 29. right; scalene 31. right; isosceles 33. obtuse; scalene 35. acute; isosceles 41. A and $P ; B$ and $Q ; C$ and $R ; A C$ and $P R ; B C$ and $Q R ; A B$ and $P Q$ 43. A and $C ; E$ and $D ; A B E$ and $C B D$; $E B$ and $D B ; A B$ and $C B ; A E$ and $C D$ 45. $Q=42^{\circ}$; $B=R=48^{\circ}$ 47. $B=106^{\circ} ; A=M=44^{\circ}$
12. $X=M=52^{\circ} \quad$ 51. $a=20 ; b=15 \quad$ 53. $a=6$; $b=7.5$ 55. $x=6$ 57. 30 m
13. $500 \mathrm{~m} ; 700 \mathrm{~m}$
14. 112.5 ft 63. $x=110 \quad$ 65. $c \approx 111.1$
15. (a) approximately $236,000 \mathrm{mi}$ (b) no
16. (a) approximately 2900 mi (b) no
17. (a) approximately $\frac{1}{4}$ (b) approximately 30 arc degrees

Chapter 1 Quiz (page 21)
[1.1] 1. (a) 71°
(b) 161°
2. $65^{\circ} ; 115^{\circ}$
3. $26^{\circ} ; 64^{\circ}$
[1.2] 4. $20^{\circ} ; 24^{\circ} ; 136^{\circ}$
5. $130^{\circ} ; 50^{\circ} \quad[1.1]$
6. (a) 77.2025°
(b) $22^{\circ} 01^{\prime} 30^{\prime \prime}$
7. (a) 50°
(b) 300°
(c) 170°
(d) 417°
8. 1800°
1.2] 9. 10 ft
10. (a) $x=12 ; y=10$
(b) $x=5$

1.3 Exercises (pages 26-28)

In Exercises 1-19 and 45-55, we give, in order, sine, cosine, tangent, cotangent, secant, and cosecant.
1.

$-\frac{12}{13} ; \frac{5}{13} ;-\frac{12}{5}$;
$-\frac{5}{12} ; \frac{13}{5} ;-\frac{13}{12}$
5.

$\frac{15}{17} ;-\frac{8}{17} ;-\frac{15}{8}$;
$-\frac{8}{15} ;-\frac{17}{8} ; \frac{17}{15}$
9.

1; 0; undefined;
0 ; undefined; 1
13.

$-1 ; 0$; undefined;
0 ; undefined; -1
$\frac{4}{5} ;-\frac{3}{5} ;-\frac{4}{3}$;
$-\frac{3}{4} ;-\frac{5}{3} ; \frac{5}{4}$
3.

7.

11.

$0 ;-1 ; 0$; undefined; -1 ; undefined
15.

$\frac{\sqrt{3}}{2} ; \frac{1}{2} ; \sqrt{3}$;
$\frac{\sqrt{3}}{3} ; 2 ; \frac{2 \sqrt{3}}{3}$
17.

$\frac{\sqrt{2}}{2} ; \frac{\sqrt{2}}{2} ; 1$;
$1 ; \sqrt{2} ; \sqrt{2}$
19.

$-\frac{1}{2} ;-\frac{\sqrt{3}}{2} ; \frac{\sqrt{3}}{3}$;
$\sqrt{3} ;-\frac{2 \sqrt{3}}{3} ;-2$
23. 0 25. negative
27. negative
29. positive
31. positive
33. negative
35. positive 37. negative
39. positive
41. positive
43. positive
45.

47.

$-\frac{2 \sqrt{5}}{5} ; \frac{\sqrt{5}}{5} ;-2$;
$-\frac{1}{2} ; \sqrt{5} ;-\frac{\sqrt{5}}{2}$
$\frac{6 \sqrt{37}}{37} ;-\frac{\sqrt{37}}{37} ;-6$;
$-\frac{1}{6} ;-\sqrt{37} ; \frac{\sqrt{37}}{6}$
49.

$-\frac{4 \sqrt{65}}{65} ;-\frac{7 \sqrt{65}}{65} ; \frac{4}{7} ;$
$\frac{7}{4} ;-\frac{\sqrt{65}}{7} ;-\frac{\sqrt{65}}{4}$
53.

$-\frac{\sqrt{3}}{2} ;-\frac{1}{2} ; \sqrt{3}$;
$\frac{\sqrt{3}}{3} ;-2 ;-\frac{2 \sqrt{3}}{3}$
$-\frac{\sqrt{2}}{2} ; \frac{\sqrt{2}}{2} ;-1$;
$-1 ; \sqrt{2} ;-\sqrt{2}$
51.

$x+y=0, x \geq 0$
55.

1; 0; undefined; 0 ; undefined; 1
57. 0
59. 0 61. -1
63. 1
65. undefined
67. -1
69. 0
71. undefined
73. 1
75. -1
77. 0
79. -3
81. -3
83. 5
85. 1
87. 0
89. 0
91. 1
93. 0
95. 0
97. -1
99. 0
101. undefined
103. They are
equal. 105. They are negatives of each other.
107. about 0.940 ; about 0.342 109. 35° 111. decrease; increase
1.4 Exercises (pages 36-38)

1. $\frac{3}{2}$ 3. $-\frac{7}{3}$
2. $\frac{1}{5}$
3. $-\frac{2}{5}$
4. $\frac{\sqrt{2}}{2}$
5. -0.4
6. 0.70069071 17. Because $\cot 90^{\circ}=0, \frac{1}{\cot 90^{\circ}}$ and consequently $\tan 90^{\circ}$ are undefined. 19. All are positive.
7. Tangent and cotangent are positive. All others are negative. 23. Sine and cosecant are positive. All others are negative. 25. Cosine and secant are positive. All others are negative. 27. Sine and cosecant are positive. All others are negative.
8. All are positive.
9. I, II
10. I 35. II 37. I 39. III 41. III, IV
11. impossible
12. possible
13. possible
14. impossible
15. possible
16. possible
17. possible
18. impossible
19. $-\frac{4}{5}$
20. $-\frac{\sqrt{5}}{2}$
21. $-\frac{\sqrt{3}}{3}$
22. 3.44701905

In Exercises 69-79, we give, in order, sine, cosine, tangent, cotangent, secant, and cosecant.
69. $\frac{15}{17} ;-\frac{8}{17} ;-\frac{15}{8} ;-\frac{8}{15} ;-\frac{17}{8} ; \frac{17}{15}$
71. $\frac{\sqrt{5}}{7} ; \frac{2 \sqrt{11}}{7} ; \frac{\sqrt{55}}{22} ; \frac{2 \sqrt{55}}{5} ; \frac{7 \sqrt{11}}{22} ; \frac{7 \sqrt{5}}{5}$
73. $\frac{8 \sqrt{67}}{67} ; \frac{\sqrt{201}}{67} ; \frac{8 \sqrt{3}}{3} ; \frac{\sqrt{3}}{8} ; \frac{\sqrt{201}}{3} ; \frac{\sqrt{67}}{8}$
75. $\frac{\sqrt{2}}{6} ;-\frac{\sqrt{34}}{6} ;-\frac{\sqrt{17}}{17} ;-\sqrt{17} ;-\frac{3 \sqrt{34}}{17} ; 3 \sqrt{2}$
77. $\frac{\sqrt{15}}{4} ;-\frac{1}{4} ;-\sqrt{15} ;-\frac{\sqrt{15}}{15} ;-4 ; \frac{4 \sqrt{15}}{15}$
79. $0.164215 ;-0.986425 ;-0.166475 ;-6.00691$;
$-1.01376 ; 6.08958$ 83. This statement is false. For example, $\sin 180^{\circ}+\cos 180^{\circ}=0+(-1)=-1 \neq 1$.
85. negative 87 . positive 89 . negative 91. negative
93. positive
95. negative
97. positive
99. negative
101. 2° 103. 3° 105. Quadrant II is the only quadrant in which the cosine is negative and the sine is positive.

Chapter 1 Review Exercises (pages 40-43)

1. complement: 55°; supplement: 145° 3. 186°
2. $x=30 ; y=30$
3. 9360°
4. 119.134°
5. $275^{\circ} 06^{\prime} 02^{\prime \prime}$
6. $40^{\circ} ; 60^{\circ} ; 80^{\circ}$
7. 0.25 km
8. $N=12^{\circ} ; R=82^{\circ} ; M=86^{\circ}$
9. $p=7 ; q=7$
10. $k=14$
11. 12 ft

In Exercises 25-31, we give, in order, sine, cosine, tangent, cotangent, secant, and cosecant.
25. $-\frac{\sqrt{3}}{2} ; \frac{1}{2} ;-\sqrt{3} ;-\frac{\sqrt{3}}{3} ; 2 ;-\frac{2 \sqrt{3}}{3}$
27. $-\frac{4}{5} ; \frac{3}{5} ;-\frac{4}{3} ;-\frac{3}{4} ; \frac{5}{3} ;-\frac{5}{4}$
29. $\frac{15}{17} ;-\frac{8}{17} ;-\frac{15}{8} ;-\frac{8}{15} ;-\frac{17}{8} ; \frac{17}{15}$
31. $-\frac{1}{2} ; \frac{\sqrt{3}}{2} ;-\frac{\sqrt{3}}{3} ;-\sqrt{3} ; \frac{2 \sqrt{3}}{3} ;-2$
33. tangent and secant
35.

37. $0 ;-1 ; 0$; undefined; -1 ; undefined 39. (a) impossible (b) possible
(c) impossible

In Exercises 41-45, we give, in order, sine, cosine, tangent, cotangent, secant, and cosecant.
41. $-\frac{\sqrt{39}}{8} ;-\frac{5}{8} ; \frac{\sqrt{39}}{5} ; \frac{5 \sqrt{39}}{39} ;-\frac{8}{5} ;-\frac{8 \sqrt{39}}{39}$
43. $\frac{2 \sqrt{5}}{5} ;-\frac{\sqrt{5}}{5} ;-2 ;-\frac{1}{2} ;-\sqrt{5} ; \frac{\sqrt{5}}{2}$
45. $-\frac{3}{5} ; \frac{4}{5} ;-\frac{3}{4} ;-\frac{4}{3} ; \frac{5}{4} ;-\frac{5}{3}$
47. 40 yd 49. approximately 9500 ft

Chapter 1 Test (pages 43-44)

[1.1] 1. (a) 23°
(b) 113°
2. $145^{\circ} ; 35^{\circ}$
3. $20^{\circ} ; 70^{\circ}$
[1.2] 4. $130^{\circ} ; 130^{\circ}$
5. $110^{\circ} ; 110^{\circ}$
6. $20^{\circ} ; 30^{\circ} ; 130^{\circ}$
7. $60^{\circ} ; 40^{\circ} ; 100^{\circ}$
[1.1] 8. 74.31°
9. $45^{\circ} 12^{\prime} 09^{\prime \prime}$
10. (a) 30°
(b) 280°
(c) 90°
11. 2700°
[1.2] 12. $10 \frac{2}{3} \mathrm{ft}$, or $10 \mathrm{ft}, 8$ in. 13. $x=8 ; y=6$
[1.3] 14

$\sin \theta=-\frac{7 \sqrt{53}}{53} ; \cos \theta=\frac{2 \sqrt{53}}{53} ;$
$\tan \theta=-\frac{7}{2} ; \cot \theta=-\frac{2}{7} ;$
$\sec \theta=\frac{\sqrt{53}}{2} ; \csc \theta=-\frac{\sqrt{53}}{7}$

$\sin \theta=-1 ; \cos \theta=0 ;$
$\tan \theta$ is undefined; $\cot \theta=0$; $\sec \theta$ is undefined; $\csc \theta=-1$
16.

$\sin \theta=-\frac{3}{5} ; \cos \theta=-\frac{4}{5} ;$
$\tan \theta=\frac{3}{4} ; \cot \theta=\frac{4}{3} ;$
$\sec \theta=-\frac{5}{4} ; \csc \theta=-\frac{5}{3}$
17. row $1: 1,0$, undefined, 0 , undefined, 1 ; row $2: 0,1,0$, undefined, 1 , undefined; row 3 : $-1,0$, undefined, 0 ,
undefined, -1 18. cosecant and cotangent
[1.4]
19. (a) I
(b) III, IV
(c) III
20. (a) impossible
(b) possible
(c) possible
21. $\sec \theta=-\frac{12}{7}$
22. $\cos \theta=-\frac{2 \sqrt{10}}{7} ; \tan \theta=-\frac{3 \sqrt{10}}{20} ; \cot \theta=-\frac{2 \sqrt{10}}{3}$; $\sec \theta=-\frac{7 \sqrt{10}}{20} ; \csc \theta=\frac{7}{3}$

Chapter 2 Acute Angles and Right Triangles

2.1 Exercises (pages 51-54)

In Exercises 1 and 3, we give, in order, sine, cosine, and tangent.

1. $\frac{21}{29} ; \frac{20}{29} ; \frac{21}{20}$
2. $\frac{n}{p} ; \frac{m}{p} ; \frac{n}{m}$
3. C 7. B
4. E

In Exercises 11-19, we give, in order, the unknown side, sine, cosine, tangent, cotangent, secant, and cosecant.
11. $c=13 ; \frac{12}{13} ; \frac{5}{13} ; \frac{12}{5} ; \frac{5}{12} ; \frac{13}{5} ; \frac{13}{12}$
13. $b=\sqrt{13} ; \frac{\sqrt{13}}{7} ; \frac{6}{7} ; \frac{\sqrt{13}}{6} ; \frac{6 \sqrt{13}}{13} ; \frac{7}{6} ; \frac{7 \sqrt{13}}{13}$
15. $b=\sqrt{91} ; \frac{\sqrt{91}}{10} ; \frac{3}{10} ; \frac{\sqrt{91}}{3} ; \frac{3 \sqrt{91}}{91} ; \frac{10}{3} ; \frac{10 \sqrt{91}}{91}$
17. $b=\sqrt{3} ; \frac{\sqrt{3}}{2} ; \frac{1}{2} ; \sqrt{3} ; \frac{\sqrt{3}}{3} ; 2 ; \frac{2 \sqrt{3}}{3}$
19. $a=\sqrt{21} ; \frac{2}{5} ; \frac{\sqrt{21}}{5} ; \frac{2 \sqrt{21}}{21} ; \frac{\sqrt{21}}{2} ; \frac{5 \sqrt{21}}{21} ; \frac{5}{2}$
$\begin{array}{llll}\text { 21. } \sin 60^{\circ} & \text { 23. } \sec 30^{\circ} & \text { 25. } \csc 51^{\circ} & \text { 27. } \cos 51.3^{\circ}\end{array}$
29. $\csc \left(75^{\circ}-\theta\right)$
31. 40°
33. 20°
35. 12°
37. 35°
39. 18°
41. true
43. false
45. true
47. true
49. $\frac{\sqrt{3}}{3}$
51. $\frac{1}{2}$
53. $\frac{2 \sqrt{3}}{3}$
55. $\sqrt{2}$
57. $\frac{\sqrt{2}}{2}$
59. 1
61. $\frac{\sqrt{3}}{2}$ 63. $\sqrt{3}$
65.

66.

68. $(1, \sqrt{3})$ 69. $\sin x ; \tan x$
67. the legs; $(2 \sqrt{2}, 2 \sqrt{2})$
71. 60°

$$
\text { 73. }\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) ; 45^{\circ}
$$

75. $y=\frac{\sqrt{3}}{3} x \quad$ 77. 60°
76. (a) 60°
(b) k
(c) $k \sqrt{3}$
(d) $2 ; \sqrt{3} ; 30^{\circ} ; 60^{\circ}$
77. $x=\frac{9 \sqrt{3}}{2} ; y=\frac{9}{2} ; z=\frac{3 \sqrt{3}}{2} ; w=3 \sqrt{3}$
78. $p=15 ; r=15 \sqrt{2} ; q=5 \sqrt{6} ; t=10 \sqrt{6}$
79. $\mathscr{A}=\frac{s^{2}}{2}$

2.2 Exercises (pages 58-61)

1. C 3. A
2. D
3. $\frac{\sqrt{3}}{3} ; \sqrt{3}$
4. $\frac{\sqrt{3}}{2} ; \frac{\sqrt{3}}{3} ; \frac{2 \sqrt{3}}{3}$
5. $-1 ;-1$
6. $-\frac{\sqrt{3}}{2} ;-\frac{2 \sqrt{3}}{3}$

In Exercises 19-35, we give, in order, sine, cosine, tangent, cotangent, secant, and cosecant.
19. $-\frac{\sqrt{3}}{2} ; \frac{1}{2} ;-\sqrt{3} ;-\frac{\sqrt{3}}{3} ; 2 ;-\frac{2 \sqrt{3}}{3}$
21. $\frac{\sqrt{2}}{2} ; \frac{\sqrt{2}}{2} ; 1 ; 1 ; \sqrt{2} ; \sqrt{2}$
23. $\frac{\sqrt{3}}{2} ;-\frac{1}{2} ;-\sqrt{3} ;-\frac{\sqrt{3}}{3} ;-2 ; \frac{2 \sqrt{3}}{3}$
25. $-\frac{1}{2} ;-\frac{\sqrt{3}}{2} ; \frac{\sqrt{3}}{3} ; \sqrt{3} ;-\frac{2 \sqrt{3}}{3} ;-2$
27. $-\frac{\sqrt{2}}{2} ;-\frac{\sqrt{2}}{2} ; 1 ; 1 ;-\sqrt{2} ;-\sqrt{2}$
29. $\frac{\sqrt{3}}{2} ; \frac{1}{2} ; \sqrt{3} ; \frac{\sqrt{3}}{3} ; 2 ; \frac{2 \sqrt{3}}{3}$
31. $-\frac{1}{2} ;-\frac{\sqrt{3}}{2} ; \frac{\sqrt{3}}{3} ; \sqrt{3} ;-\frac{2 \sqrt{3}}{3} ;-2$
33. $\frac{1}{2} ;-\frac{\sqrt{3}}{2} ;-\frac{\sqrt{3}}{3} ;-\sqrt{3} ;-\frac{2 \sqrt{3}}{3} ; 2$
35. $-\frac{\sqrt{3}}{2} ; \frac{1}{2} ;-\sqrt{3} ;-\frac{\sqrt{3}}{3} ; 2 ;-\frac{2 \sqrt{3}}{3} \quad$ 37. $-\frac{\sqrt{2}}{2}$
39. $-\frac{\sqrt{3}}{2}$
41. $-\sqrt{2}$
43. -1
45. 1
47. $\frac{23}{4}$
49. 51. $-\frac{29}{12}$
53. false; $0 \neq \frac{\sqrt{3}+1}{2}$
55. false; $\frac{1}{2} \neq \sqrt{3}$ 57. true 59. false; $0 \neq \sqrt{2}$
61. $(-3 \sqrt{3}, 3)$
63. yes
65. positive
67. positive
69. negative
75. 0.9
77. $45^{\circ} ; 225^{\circ}$
79. $30^{\circ} ; 150^{\circ}$
81. $120^{\circ} ; 300^{\circ}$
83. 45°; 315°
85. $210^{\circ} ; 330^{\circ}$
87. $30^{\circ} ; 210^{\circ}$
89. $225^{\circ} ; 315^{\circ}$

2.3 Exercises (pages 63-67)

1. $\sin ; 1$ 3. reciprocal; reciprocal

In Exercises 5-21, the number of decimal places may vary depending on the calculator used.
5. 0.62524266
7. 1.0273488
9. 15.055723
11. 0.74080460
13. 1.4830142
15. $\tan 23.4^{\circ} \approx 0.43273864$
17. $\cot 77^{\circ} \approx 0.23086819$
19. $\tan 4.72^{\circ} \approx 0.08256640$
21. $\cos 51^{\circ} \approx 0.62932039$
23. 55.845496°
25. 16.166641°
27. 38.491580°
29. 68.673241°
31. 45.526434°
33. 12.227282°
37. 56°
39. 1
41. 1 43. 0
45. A: 68.94 mph ;

B: 65.78 mph ;
47. false
49. true
51. false
53. false
55. true
57. true
59. 70 lb
61. -2.9°
63. 2500 lb 65. A $2200-\mathrm{lb}$ car on a 2° uphill grade has greater grade resistance.
67. (a) 703 ft
(b) 1701 ft
(c) R would decrease; $644 \mathrm{ft}, 1559 \mathrm{ft}$
69. (a) $2 \times 10^{8} \mathrm{~m}$ per sec
(b) $2 \times 10^{8} \mathrm{~m}$ per sec
71. 48.7° 73. (a) approximately 155 ft
(b) approximately 194 ft

Chapter 2 Ouiz (pages 67-68)
[2.1] 1. $\sin A=\frac{3}{5} ; \cos A=\frac{4}{5} ; \tan A=\frac{3}{4} ; \cot A=\frac{4}{3}$; $\sec A=\frac{5}{4} ; \quad \csc A=\frac{5}{3}$
2.

$\boldsymbol{\theta}$	$\sin \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$	$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	$\boldsymbol{\operatorname { c o t } \boldsymbol { \theta }}$	$\sec \boldsymbol{\theta}$	$\csc \boldsymbol{\theta}$
$\mathbf{3 0}^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2
$\mathbf{4 5}^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
$\mathbf{6 0}^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$

3. $w=18 ; x=18 \sqrt{3} ; y=18 ; z=18 \sqrt{2}$
4. $\mathscr{A}=3 x^{2} \sin \theta$
[2.2] In Exercises 5-7, we give, in order, sine, cosine, tangent, cotangent, secant, and cosecant.
5. $\frac{\sqrt{2}}{2} ;-\frac{\sqrt{2}}{2} ;-1 ;-1 ;-\sqrt{2} ; \sqrt{2}$
6. $-\frac{1}{2} ;-\frac{\sqrt{3}}{2} ; \frac{\sqrt{3}}{3} ; \sqrt{3} ;-\frac{2 \sqrt{3}}{3} ;-2$
7. $-\frac{\sqrt{3}}{2} ; \frac{1}{2} ;-\sqrt{3} ;-\frac{\sqrt{3}}{3} ; 2 ;-\frac{2 \sqrt{3}}{3}$
8. $60^{\circ} ; 120^{\circ}$ 9. $135^{\circ} ; 225^{\circ} \quad[2.3]$ 10. 0.67301251
9. -1.1817633
10. 69.497888°
11. 24.777233°
[2.1-2.3] 14. false 15. true
2.4 Exercises (pages 72-76)
12. $22,894.5$ to $22,895.5$ 3. 8958.5 to 8959.5 7. 0.05

Note to student: While most of the measures resulting from solving triangles in this chapter are approximations, for convenience we use $=$ rather than \approx.
9. $B=53^{\circ} 40^{\prime} ; a=571 \mathrm{~m} ; b=777 \mathrm{~m}$
11. $M=38.8^{\circ} ; n=154 \mathrm{~m} ; p=198 \mathrm{~m}$
13. $A=47.9108^{\circ} ; c=84.816 \mathrm{~cm} ; a=62.942 \mathrm{~cm}$
15. $A=37^{\circ} 40^{\prime} ; B=52^{\circ} 20^{\prime} ; c=20.5 \mathrm{ft}$
21. $B=62.0^{\circ} ; a=8.17 \mathrm{ft} ; b=15.4 \mathrm{ft}$
23. $A=17.0^{\circ} ; a=39.1 \mathrm{in} . ; c=134 \mathrm{in}$.
25. $B=29.0^{\circ} ; a=70.7 \mathrm{~cm} ; c=80.9 \mathrm{~cm}$
27. $A=36^{\circ} ; B=54^{\circ} ; b=18 \mathrm{~m}$
29. $c=85.9 \mathrm{yd} ; A=62^{\circ} 50^{\prime} ; B=27^{\circ} 10^{\prime}$
31. $b=42.3 \mathrm{~cm} ; A=24^{\circ} 10^{\prime} ; B=65^{\circ} 50^{\prime}$
33. $B=36^{\circ} 36^{\prime} ; a=310.8 \mathrm{ft} ; b=230.8 \mathrm{ft}$
35. $A=50^{\circ} 51^{\prime} ; a=0.4832 \mathrm{~m} ; b=0.3934 \mathrm{~m}$
41. 9.35 m
43. 128 ft
45. 26.92 in.
47. 22°
49. 28.0 m
51. 13.3 ft
53. $37^{\circ} 35^{\prime}$
55. 42.18°
57. (a) $29,000 \mathrm{ft}$ (b) shorter

2.5 Exercises (pages 81-85)

1. It should be shown as an angle measured clockwise from due north. 3. A sketch is important to show the relationships among the given data and the unknowns.
2. 270°; $\mathrm{N} 90^{\circ} \mathrm{W}$, or $\mathrm{S} 90^{\circ} \mathrm{W}$
3. 0°; $\mathrm{N} 0^{\circ} \mathrm{E}$, or
$\mathrm{N} 0^{\circ} \mathrm{W}$
4. 315°; $\mathrm{N} 45^{\circ} \mathrm{W}$
5. $135^{\circ} ; \mathrm{S} 45^{\circ} \mathrm{E}$
6. $y=\frac{\sqrt{3}}{3} x, x \leq 0$
7. 220 mi
8. 47 nautical mi
9. 2203 ft
10. 148 mi
11. 430 mi
12. 140 mi
13. $x=\frac{b}{a-c}$
14. $y=\left(\tan 35^{\circ}\right)(x-25)$
15. 433 ft 33. $114 \mathrm{ft} \quad$ 35. 5.18 m
16. (a) $d=\frac{b}{2}\left(\cot \frac{\alpha}{2}+\cot \frac{\beta}{2}\right)$ (b) $345.4 \mathrm{~cm} \quad$ 39. 10.8 ft
17. (a) $320 \mathrm{ft} \quad$ (b) $R\left(1-\cos \frac{\theta}{2}\right)$
18. (a) 23 ft (b) 48 ft (c) As the speed limit increases, more land needs to be cleared inside the curve.

Chapter 2 Review Exercises (pages 88-91)
In Exercises 1, 13, and 15, we give, in order, sine, cosine, tangent, cotangent, secant, and cosecant.

1. $\frac{60}{61} ; \frac{11}{61} ; \frac{60}{11} ; \frac{11}{60} ; \frac{61}{11} ; \frac{61}{60}$ 3. 10° 5. 7° 7. true 9. true 13. $-\frac{\sqrt{3}}{2} ; \frac{1}{2} ;-\sqrt{3} ;-\frac{\sqrt{3}}{3} ; 2 ;-\frac{2 \sqrt{3}}{3}$
2. $-\frac{1}{2} ; \frac{\sqrt{3}}{2} ;-\frac{\sqrt{3}}{3} ;-\sqrt{3} ; \frac{2 \sqrt{3}}{3} ;-2$
3. $120^{\circ} ; 240^{\circ}$
4. $150^{\circ} ; 210^{\circ}$
5. $3-\frac{2 \sqrt{3}}{3}$
6. $\frac{7}{2}$
7. -1.3563417
8. 1.0210339
9. 0.20834446
10. 55.673870°
11. 12.733938°
12. 63.008286°
13. $47.1^{\circ} ; 132.9^{\circ}$
14. false; $1.4088321 \neq 1$ 41. true 45. III
15. II 49. $B=31^{\circ} 30^{\prime} ; a=638 ; b=391$
16. $B=50.28^{\circ} ; a=32.38 \mathrm{~m} ; c=50.66 \mathrm{~m} \quad$ 53. 137 ft
17. $73.7 \mathrm{ft} \quad$ 57. $18.75 \mathrm{~cm} \quad$ 59. $1200 \mathrm{~m} \quad$ 61. 140 mi
18. (a) 716 mi (b) 1104 mi

Chapter 2 Test (page 92)
[2.1] 1. $\sin A=\frac{12}{13} ; \cos A=\frac{5}{13} ; \tan A=\frac{12}{5} ; \cot A=\frac{5}{12}$; $\sec A=\frac{13}{5} ; \csc A=\frac{13}{12}$
2. $x=4 ; y=4 \sqrt{3} ; z=4 \sqrt{2} ; w=8 \quad$ 3. 15°
[2.1, 2.2] 4. (a) true (b) false; For $0^{\circ} \leq \theta \leq 90^{\circ}$, as the angle increases, $\cos \theta$ decreases. (c) true

In Exercises 5-7, we give, in order, sine, cosine, tangent, cotangent, secant, and cosecant.
[2.2] 5. $-\frac{\sqrt{3}}{2} ;-\frac{1}{2} ; \sqrt{3} ; \frac{\sqrt{3}}{3} ;-2 ;-\frac{2 \sqrt{3}}{3}$
6. $-\frac{\sqrt{2}}{2} ;-\frac{\sqrt{2}}{2} ; 1 ; 1 ;-\sqrt{2} ;-\sqrt{2}$
7. $-1 ; 0$; undefined; 0 ; undefined; -1 8. $135^{\circ} ; 225^{\circ}$
9. $240^{\circ} ; 300^{\circ}$ 10. $45^{\circ} ; 225^{\circ} \quad$ [2.3] 11. Take the reciprocal of $\tan \theta$ to get $\cot \theta=0.59600119$.
12. (a) 0.97939940
(b) -1.9056082
(c) 1.9362132
13. $16.166641^{\circ}[2.4]$ 14. $B=31^{\circ} 30^{\prime} ; c=877$;
$b=458$
15. 67.1°, or $67^{\circ} 10^{\prime}$
16. 15.5 ft 17. 8800 ft
[2.5] 18. 72 nautical mi $\quad \mathbf{1 9 .} 92 \mathrm{~km} \quad$ 20. 448 m

Chapter 3 Radian Measure and the Unit Circle

3.1 Exercises (pages 98-100)

1. 1 3. 3 5. -3
2. $\frac{\pi}{3} \quad 9 . \frac{\pi}{2}$
3. $\frac{5 \pi}{6}$
4. $-\frac{5 \pi}{3}$
$\begin{array}{lllll}\text { 15. } \frac{5 \pi}{2} & \text { 17. } 10 \pi & \text { 19. } 0 & \text { 21. }-5 \pi & \text { 29. } 60^{\circ}\end{array}$
5. 315° 33. 330° 35. -30° 37. 126° 39. -48°
6. 153°
7. -900°
8. 0.68
9. 0.742
10. 2.43
11. 1.122
12. 0.9847
13. -0.832391
14. $114^{\circ} 35^{\prime}$
15. $99^{\circ} 42^{\prime}$ 61. $19^{\circ} 35^{\prime}$ 63. $-287^{\circ} 06^{\prime} \quad$ 65. In the expression " $\sin 30$," 30 means 30 radians; $\sin 30^{\circ}=\frac{1}{2}$, while $\sin 30 \approx-0.9880$. 67. $\frac{\sqrt{3}}{2}$ 69. 1 71. $\frac{2 \sqrt{3}}{3}$ 73. 1
16. $-\sqrt{3}$
17. $\frac{1}{2}$
18. -1
19. $-\frac{\sqrt{3}}{2}$
20. $\frac{1}{2}$
21. $\sqrt{3}$ 87. We begin the answers with the blank next to 30°, and then proceed counterclockwise from there:
$\frac{\pi}{6} ; 45 ; \frac{\pi}{3} ; 120 ; 135 ; \frac{5 \pi}{6} ; \pi ; \frac{7 \pi}{6} ; \frac{5 \pi}{4} ; 240 ; 300 ; \frac{7 \pi}{4} ; \frac{11 \pi}{6}$.
22. (a) 4π
(b) $\frac{2 \pi}{3}$
23. (a) 5π
(b) $\frac{8 \pi}{3}$
24. 24π

3.2 Exercises (pages 103-109)

$\begin{array}{llllll}\text { 1. } 2 \pi & \text { 3. } 20 \pi & \text { 5. } 6 & \text { 7. } 1 & \text { 9. } 2 & \text { 11. } 25.8 \mathrm{~cm}\end{array}$
13. 3.61 ft
15. 5.05 m
17. 55.3 in .
19. The length is doubled.
21. 3500 km
23. 5900 km
25. $44^{\circ} \mathrm{N}$
$\begin{array}{llll}\text { 27. } 156^{\circ} & \text { 29. } 38.5^{\circ} & \text { 31. } 18.7 \mathrm{~cm} & \text { 33. (a) } 11.6 \mathrm{in} \text {. }\end{array}$
(b) $37^{\circ} 05^{\prime}$
35. 146 in .
37. $3 \pi \mathrm{in}$.
39. 27π in.
41. 0.20 km
43. 6π
45. 72π
47. 60° 49. 1.5
51. $1116.1 \mathrm{~m}^{2}$
53. $706.9 \mathrm{ft}^{2}$
55. $114.0 \mathrm{~cm}^{2}$
57. $1885.0 \mathrm{mi}^{2}$
59. 3.6
61. approximately $8060 \mathrm{yd}^{2}$
63. 20 in .
65. (a) $13 \frac{1}{3} ; \frac{2 \pi}{27}$
(b) 478 ft
(c) 17.7 ft
(d) approximately $672 \mathrm{ft}^{2}$
67. (a) 140 ft
(b) 102 ft
(c) $622 \mathrm{ft}^{2}$ 69. $1900 \mathrm{yd}^{2}$
71. radius: 3950 mi ; circumference: $24,800 \mathrm{mi}$
73. The area is quadrupled.
75. $V=\frac{r^{2} \theta h}{2}$ (θ in radians) 77. $r=\frac{L}{\theta}$ 78. $h=r \cos \frac{\theta}{2}$
79. $d=r\left(1-\cos \frac{\theta}{2}\right) \quad$ 80. $d=\frac{L}{\theta}\left(1-\cos \frac{\theta}{2}\right)$

3.3 Exercises (pages 117-120)

1. (a) 1
(b) 0
(c) undefined
2. (a) 0
(b) 1 (c) 0
3. (a) 0
(b) -1
(c) 0
4. $-\frac{1}{2}$
5. -1
6. -2
7. $-\frac{1}{2}$
8. $\frac{\sqrt{2}}{2}$
9. $\frac{\sqrt{3}}{2}$
10. $\frac{2 \sqrt{3}}{3}$
11. $-\frac{\sqrt{3}}{3}$
12. 0.5736
13. 0.4068
14. 1.2065
15. 14.3338
16. -1.0460
17. -3.8665
18. 0.7
19. 0.9
20. -0.6
21. 2.3 or 4.0
22. 0.8 or 2.
23. negative
24. negative
25. positive
26. $\sin \theta=\frac{\sqrt{2}}{2} ; \cos \theta=\frac{\sqrt{2}}{2}$; $\tan \theta=1 ; \cot \theta=1 ; \sec \theta=\sqrt{2} ; \csc \theta=\sqrt{2}$
27. $\sin \theta=-\frac{12}{13} ; \cos \theta=\frac{5}{13} ; \tan \theta=-\frac{12}{5} ; \cot \theta=-\frac{5}{12}$; $\sec \theta=\frac{13}{5} ; \csc \theta=-\frac{13}{12}$
28. 0.2095
29. 1.4426
30. 0.3887
31. $\frac{5 \pi}{6}$
32. $\frac{4 \pi}{3}$
33. $\frac{7 \pi}{4}$
34. $\frac{4 \pi}{3}, \frac{5 \pi}{3}$
35. $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
36. $-\frac{11 \pi}{6},-\frac{7 \pi}{6},-\frac{5 \pi}{6},-\frac{\pi}{6}, \frac{\pi}{6}, \frac{5 \pi}{6}$
37. $(-0.8011,0.5985)$
38. $(0.4385,-0.8987)$
39. I
40. II
41. 0.9846
42. (a)
32.4°
43. (a) 30°
(b) 60°
(c) 75°
(d) 86°
(e) 86°
(f) 60°
44. (a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\sqrt{3}$
(d) 2
(e) $\frac{2 \sqrt{3}}{3}$
(f) $\frac{\sqrt{3}}{3}$

Chapter 3 Quiz (page 120)

[3.1] 1. $\frac{5 \pi}{4}$
2. $-\frac{11 \pi}{6}$
3. 300°
4. -210°
[3.2] 5. 1.5
6. 67,500 in. ${ }^{2}$
[3.3] 7. $\frac{\sqrt{2}}{2}$
8. $-\frac{1}{2}$
9. 0
10. $\frac{2 \pi}{3}$
3.4 Exercises (pages 123-126)

1. $2 \pi \mathrm{sec}$
2. (a) $\frac{\pi}{2}$ radians
(b) $10 \pi \mathrm{~cm}$
(c) $\frac{5 \pi}{3} \mathrm{~cm}$
per sec 5. 2π radians
3. $\frac{3 \pi}{32}$ radian per sec
4. $\frac{6}{5} \mathrm{~min}$ 11. 0.1803 radian per sec
5. 10.77 radians
6. $8 \pi \mathrm{~m}$ per sec 17. $\frac{9}{5}$ radians per sec 19. 1.834 radians per sec
7. $18 \pi \mathrm{~cm}$
8. 12 sec
9. $\frac{3 \pi}{32}$ radian per sec
10. $\frac{\pi}{6}$ radian per hr
11. $\frac{\pi}{30}$ radian per min
12. $\frac{7 \pi}{30} \mathrm{~cm}$ per min
13. $168 \pi \mathrm{~m}$ per min
14. $1500 \pi \mathrm{~m}$ per min
15. 16.6 mph
16. (a) $\frac{2 \pi}{365}$ radian (b) $\frac{\pi}{4380}$ radian per hr (c) about $67,000 \mathrm{mph}$ 41. (a) 3.1 cm per sec (b) 0.24 radian per sec 43. 3.73 cm 45. 523.6 radians per sec

Chapter 3 Review Exercises (pages 128-131)

1. A central angle of a circle that intercepts an arc of length 2 times the radius of the circle has a measure of 2 radians. 3. Three of many possible answers are $1+2 \pi$, $1+4 \pi$, and $1+6 \pi$.
2. $\frac{\pi}{4}$
3. $\frac{35 \pi}{36}$
4. $\frac{40 \pi}{9}$
5. 225°
6. 480°
7. -110°
8. π in.
9. $12 \pi \mathrm{in}$.
10. 35.8 cm
11. 49.06°
12. $273 \mathrm{~m}^{2}$
13. 4500 km
14. $\frac{3}{4} ; 1.5$ sq units
15. (a) $\frac{\pi}{3}$ radians
(b) 2π in.
16. $\sqrt{3}$
17. $-\frac{1}{2}$
18. 2 39. $\tan 1$
19. $\sin 2$
20. 0.8660
21. 0.9703
22. 1.9513
23. 0.3898
24. 0.5148
25. 1.1054
26. $\frac{\pi}{4}$
27. $\frac{7 \pi}{6} \quad$ 59. $\frac{15}{32} \sec \quad$ 61. $\frac{\pi}{20}$ radian per sec
28. $1260 \pi \mathrm{~cm}$ per sec
29. 5 in

Chapter 3 Test (pages 131-132)

[3.1] 1. $\frac{2 \pi}{3} \quad$ 2. $-\frac{\pi}{4} \quad$ 3. 0.09 4. 135°
5. -210° 6. $229.18^{\circ} \quad[3.2] 7$ 7. (a) $\frac{4}{3}$
(b) $15,000 \mathrm{~cm}^{2} \quad$ 8. 2 radians $\quad[3.3]$ 9. $\frac{\sqrt{2}}{2}$
10. $-\frac{\sqrt{3}}{2}$
11. undefined
12. -2 13. 0
14. 0 15. $\sin \frac{7 \pi}{6}=-\frac{1}{2} ; \cos \frac{7 \pi}{6}=-\frac{\sqrt{3}}{2}$;
$\tan \frac{7 \pi}{6}=\frac{\sqrt{3}}{3} ; \csc \frac{7 \pi}{6}=-2 ; \sec \frac{7 \pi}{6}=-\frac{2 \sqrt{3}}{3} ; \cot \frac{7 \pi}{6}=\sqrt{3}$
16. sine and cosine: $(-\infty, \infty)$; tangent and secant:
$\left\{s \left\lvert\, s \neq(2 n+1) \frac{\pi}{2}\right.\right.$, where n is any integer $\}$; cotangent and cosecant: $\{s \mid s \neq n \pi$, where n is any integer $\}$
17. (a) 0.9716
(b) $\frac{\pi}{3}$
[3.4] 18
18. (a) $\frac{2 \pi}{3}$ radians
(b) $40 \pi \mathrm{~cm}$
(c) $5 \pi \mathrm{~cm}$ per sec
19. approximately
8.127 mi per sec
20. (a) 75 ft
(b) $\frac{\pi}{45}$ radian per sec

Chapter 4 Graphs of the Circular Functions

4.1 Exercises (pages 143-148)

1. G 3. E
2. B
3. F 9. D
4. C
5. 2

6. 2

7. 1

8. $\frac{2 \pi}{3} ; 1$
9. $\frac{8 \pi}{3} ; 1$

10. $2 ; 1$
11. $\frac{2 \pi}{3} ; 2$

12. 1; 2

13. 1

14. $4 \pi ; 1$

15. $8 \pi ; 2$

16. $2 ; \pi$

17. $4 ; \frac{1}{2}$
$y=\pi \sin \pi x$
18. $y=2 \cos 2 x$
19. $y=-3 \cos \frac{1}{2} x$
20. $y=3 \sin 4 x$
21. (a) $80^{\circ} \mathrm{F} ; 50^{\circ} \mathrm{F}$
(b) 15
(c) about $35,000 \mathrm{yr}$
(d) downward
22. 24 hr
23. approximately 6:00 P.м.; approximately 0.2 ft 53. approximately $3: 18$ A.M.;
approximately 2.4 ft
24. (a) $5 ; \frac{1}{60}$
(b) 60
(c) $5 ; 1.545 ;-4.045 ;-4.045 ; 1.545$
(d)

25. (a) $L(x)=0.022 x^{2}+0.55 x+316+3.5 \sin 2 \pi x$

(b) maxima: $x=\frac{1}{4}, \frac{5}{4}, \frac{9}{4}, \ldots$; minima: $x=\frac{3}{4}, \frac{7}{4}, \frac{11}{4}, \ldots$
26. (a) $31^{\circ} \mathrm{F}$
(b) $38^{\circ} \mathrm{F}$
(c) $57^{\circ} \mathrm{F}$
(d) $58^{\circ} \mathrm{F}$
(e) $37^{\circ} \mathrm{F}$
(f) $16^{\circ} \mathrm{F} \quad 61.1 ; 240^{\circ}$, or $\frac{4 \pi}{3} \quad$ 65. $\mathrm{X}=-0.4161468$, $\mathrm{Y}=0.90929743 ; \mathrm{X}$ is $\cos 2$ and Y is $\sin 2$.
27. $X=2, Y=0.90929743 ; \sin 2=0.90929743$
28. $X=2, Y=-0.4161468 ; \cos 2=-0.4161468$

4.2 Exercises (pages 155-158)

1. D 3. H
2. B
3. I
4. C
5. A
6. B
7. C 19. right
8. $y=-1+\sin x$
9. $y=\cos \left(x-\frac{\pi}{3}\right)$
10. $2 ; 2 \pi$; none; π to the left
11. $\frac{1}{4} ; 4 \pi$; none; π to the left
12. $3 ; 4$; none; $\frac{1}{2}$ to the right
13. $1 ; \frac{2 \pi}{3}$; up $2 ; \frac{\pi}{15}$ to the right
14.

39.

45.

35.

41.

47.

37.

43.

49.

51.
-
53.

55.

(b) It represents the average yearly temperature.

(c) $12.5 ; 12 ; 4.5$
(d) $f(x)=12.5 \sin \left[\frac{\pi}{6}(x-4.5)\right]+53.5$
(e) The function gives a good model for the given data.

$$
f(x)=12.5 \sin \left[\frac{\pi}{6}(x-4.5)\right]+53.5
$$

(f)

TI-83/84 Plus fixed to the nearest hundredth
59.

T1-83/84 Plus fixed to the nearest hundredth

Chapter 4 Ouiz (page 159)

[4.1, 4.2] 1. $4 ; \pi ; 3 \mathrm{up} ; \frac{\pi}{4}$ to the left
[4.1] 2. $2 \pi ; 4$

[4.2] 5. $2 \pi ; 2$

[4.1] 8. $y=2 \sin x$
10. $y=-\sin x$
9. $y=\cos 2 x$
3. $\pi ; \frac{1}{2}$

6. $\pi ; 1$

12. $60^{\circ} \mathrm{F} ; 84^{\circ} \mathrm{F}$
4. $2 ; 3$

7. $2 \pi ; \frac{1}{2}$

[4.1, 4.2] 11. $73^{\circ} \mathrm{F}$

4.3 Exercises (pages 166-168)

1. C 3. B 5. F
2.

13.

19.

47. (a) 0 m
(b) -2.9 m
(c) -12.3 m
(d) 12.3 m
(e) It leads to $\tan \frac{\pi}{2}$, which is undefined.
49. π
50. $\frac{5 \pi}{4} \quad$ 51. $x=\frac{5 \pi}{4}+n \pi \quad$ 52. approximately
0.3217505544 53. approximately 3.463343208
54. $\{x \mid x=0.3217505544+n \pi\}$
4.4 Exercises (pages 174-176)

1. B 3. D
2.

9.

15.

11.

17.

23.

29.

25.

31.

33. $y=-2 \tan x$
35. $y=\cot 3 x$
37. $y=1+\tan \frac{1}{2} x$
39. true
41. false; $\tan (-x)=-\tan x$ for all x in the domain.
43. four
27.

11.

13.

15.

17.

19. $y=\sec 4 x$
21. $y=-2+\csc x$
23. $y=-1-\sec x$
25. true
27. true
29. none
33. (a) 4 m
(b) 6.3 m
(c) 63.7 m
35. The display is for $Y_{1}+Y_{2}$ at $X=\frac{\pi}{6}$.

Summary Exercises on Graphing Circular Functions (page 176)
1.

4.

7.

10.

4.5 Exercises (pages 179-180)

1. (a) $s(t)=2 \cos 4 \pi t$ (b) $s(1)=2$; The weight is moving neither upward nor downward. At $t=1$, the motion of the weight is changing from up to down.
2. (a) $s(t)=-3 \cos 2.5 \pi t$
(b) $s(1)=0$; upward
3. $s(t)=0.21 \cos 55 \pi t$

4. $s(t)=0.14 \cos 110 \pi t$

5. (a) $s(t)=-4 \cos \frac{2 \pi}{3} t$
(b) 3.46 units
(c) $\frac{1}{3}$ oscillation per sec
6. (a) $s(t)=2 \sin 2 t$;
amplitude: 2 ; period: π; frequency: $\frac{1}{\pi}$ rotation per sec
(b) $s(t)=2 \sin 4 t$; amplitude: 2 ; period: $\frac{\pi}{2}$; frequency: $\frac{2}{\pi}$ rotation per sec 13 . period: $\frac{\pi}{4}$; frequency: $\frac{4}{\pi}$ oscillations per sec
7. $\frac{1}{\pi^{2}}$
8. (a) 5 in.
(b) 2 cycles per $\sec ; \frac{1}{2} \mathrm{sec}$ (c) after $\frac{1}{4} \sec \quad$ (d) approximately 4 ; After 1.3 sec , the weight is about 4 in . above the equilibrium position.
9. (a) $s(t)=-3 \cos 12 t$
(b) $\frac{\pi}{6} \mathrm{sec}$
10. $0 ; \pi$; They are the same.

Chapter 4 Review Exercises (pages 183-186)

1. B 3. sine, cosine, tangent, cotangent 5. $2 ; 2 \pi$; none; none 7. $\frac{1}{2} ; \frac{2 \pi}{3}$; none; none 9. $2 ; 8 \pi ; 1$ up; none 11. $3 ; 2 \pi$; none; $\frac{\pi}{2}$ to the left 13. not applicable; π; none; $\frac{\pi}{8}$ to the right 15 . not applicable; $\frac{\pi}{3}$; none; $\frac{\pi}{9}$ to the right 17. tangent 19. cosine 21. cotangent

$$
25 .
$$

31.

27.

33.

37.

39.

29.

35.

41.

43. $[-2,2]$
45. $y=1-\sin x$
47. $y=2 \tan \frac{1}{2} x$
49. (b)

53. (a) 100
(b) 258
(c) 122
(d) 296
55. amplitude: 4 ; period: 2 ; frequency: $\frac{1}{2}$ cycle per sec
57. The frequency is the number of cycles in one unit of time; $-4 ; 0 ;-2 \sqrt{2}$

Chapter 4 Test (pages 187-188)

[4.1-4.4] 1
(a) $y=\sec x$
(b) $y=\sin x$
(c) $y=\cos x$
(d) $y=\tan x \quad$ (e) $y=\csc x \quad$ (f) $y=\cot x$
2. (a) $y=1+\cos \frac{1}{2} x$
(b) $y=-\frac{1}{2} \cot x$
[4.1, 4.3, 4.4] 3 .
(a) $(-\infty, \infty)$
(b) $[-1,1]$
(c) $\frac{\pi}{2}$
(d) $(-\infty,-1]$
$\cup[1, \infty)$
[4.2] 4. (a) π
(b) 6
(c) $[-3,9]$
(d) -3
(e) $\frac{\pi}{4}$ to the left $\left(\right.$ that is, $\left.-\frac{\pi}{4}\right)$
5.
[4.1] 6.

[4.2] 7.

[4.3] 9.

[4.4] 11.

8.

10.

12.

[4.1, 4.2] 13. (a)

$$
f(x)=16.5 \sin \left[\frac{\pi}{6}(x-4)\right]+67.5
$$

(b) $16.5 ; 12 ; 4$ to the right; 67.5 up
(c) approximately $53^{\circ} \mathrm{F}$
(d) $51^{\circ} \mathrm{F}$ in January; $84^{\circ} \mathrm{F}$ in July
(e) approximately $67.5^{\circ} \mathrm{F}$; This is the vertical translation.
[4.5] 14. (a) 4 in. (b) after $\frac{1}{8} \mathrm{sec}$
(c) 4 cycles per sec; $\frac{1}{4} \mathrm{sec}$

Chapter 5 Trigonometric Identities

5.1 Exercises (pages 193-196)

1. -2.6
2. 0.625
3. $\frac{2}{3}$
4. $\frac{\sqrt{7}}{4}$
5. $-\frac{5 \sqrt{26}}{26}$
6. $-\frac{2 \sqrt{5}}{5}$
7. $-\frac{\sqrt{15}}{5}$
8. $-\frac{\sqrt{105}}{11}$
9. $-\frac{4}{9}$
10. $-\sin x$
11. odd
12. $\cos x$
13. even
14. $-\tan x$
15. odd
16. $f(-x)=f(x)$
17. $f(-x)=-f(x)$
18. $\cos \theta=-\frac{\sqrt{5}}{3} ; \tan \theta=-\frac{2 \sqrt{5}}{5} ; \cot \theta=-\frac{\sqrt{5}}{2}$; $\sec \theta=-\frac{3 \sqrt{5}}{5} ; \csc \theta=\frac{3}{2}$
19. $\sin \theta=-\frac{\sqrt{17}}{17}$;
$\cos \theta=\frac{4 \sqrt{17}}{17} ; \cot \theta=-4 ; \sec \theta=\frac{\sqrt{17}}{4} ; \csc \theta=-\sqrt{17}$
20. $\sin \theta=\frac{3}{5} ; \cos \theta=\frac{4}{5} ; \tan \theta=\frac{3}{4} ; \sec \theta=\frac{5}{4} ; \csc \theta=\frac{5}{3}$
21. $\sin \theta=-\frac{\sqrt{7}}{4} ; \cos \theta=\frac{3}{4} ; \tan \theta=-\frac{\sqrt{7}}{3} ; \cot \theta=-\frac{3 \sqrt{7}}{7} ;$ $\csc \theta=-\frac{4 \sqrt{7}}{7}$
22. B
23. E
24. A
25. A
26. D
27. $\sin \theta=\frac{ \pm \sqrt{2 x+1}}{x+1}$ 53. $\sin x= \pm \sqrt{1-\cos ^{2} x}$
28. $\tan x= \pm \sqrt{\sec ^{2} x-1}$
29. $\csc x=\frac{ \pm \sqrt{1-\cos ^{2} x}}{1-\cos ^{2} x}$

In Exercises 59-83, there may be more than one possible answer.
59. $\cos \theta$ 61. 1 63. $\cot \theta$ 65. $\cos ^{2} \theta$ 67. $\sec \theta-\cos \theta$
69. $-\cot \theta+1$
71. $\sin ^{2} \theta \cos ^{2} \theta$
73. $\tan \theta \sin \theta$
75. $\cot \theta-\tan \theta$
77. $\cos ^{2} \theta$
79. $\tan ^{2} \theta$
81. $\sec ^{2} \theta$
83. $-\sec \theta$
85. $\frac{25 \sqrt{6}-60}{12} ; \frac{-25 \sqrt{6}-60}{12}$
87. $y=-\sin (2 x)$
88. It is the negative of $y=\sin (2 x)$.
89. $y=\cos (4 x)$
90. It is the same function.
91. (a) $y=-\sin (4 x)$
(b) $y=\cos (2 x)$
(c) $y=5 \sin (3 x)$
93. identity
95. not an identity

5.2 Exercises (pages 202-204)

1. $\csc \theta \sec \theta$
2. $1+\sec x$
3. 1 7. $1-2 \sin \alpha \cos \alpha$
4. $2+2 \sin t$
5. $-2 \cot x \csc x$
6. $(\sin \theta+1)(\sin \theta-1)$
7. $4 \sin x$
8. $(2 \sin x+1)(\sin x+1)$
9. $\left(\cos ^{2} x+1\right)^{2}$
10. $(\sin x-\cos x)(1+\sin x \cos x)$
11. $\sin \theta$
12. 1
13. $\tan ^{2} \beta$
14. $\tan ^{2} x$
15. $\sec ^{2} x$
16. $\cos ^{2} x$
17. $(\sec \theta+\tan \theta)(1-\sin \theta)=\cos \theta$
18. $\frac{\cos \theta+1}{\sin \theta+\tan \theta}=\cot \theta$
19. identity
20. not an identity
21. It is true when $\sin x \leq 0$. 93. (a) $I=k\left(1-\sin ^{2} \theta\right)$
(b) For $\theta=2 \pi n$ and all integers $n, \cos ^{2} \theta=1$, its maximum value, and I attains a maximum value of k.
22. (a) The sum of L and C equals 3 .

(b) Let $\mathrm{Y}_{1}=L(t), \mathrm{Y}_{2}=C(t)$, and
(c) $E(t)=3$
$\mathrm{Y}_{3}=E(t) . \mathrm{Y}_{3}=3$ for all inputs.

5.3 Exercises (pages 212-215)

1. F 3. E
2. E 7. $\frac{\sqrt{6}-\sqrt{2}}{4}$
3. $\frac{\sqrt{2}-\sqrt{6}}{4}$
4. $\frac{\sqrt{2}-\sqrt{6}}{4}$
5. $\frac{\sqrt{6}+\sqrt{2}}{4}$
6. 0
7. The calculator gives a value of 0 for the expression. 19. $\cot 3^{\circ}$
8. $\sin \frac{5 \pi}{12}$
9. $\sec 75^{\circ} 36^{\prime}$
10. $\cos \left(-\frac{\pi}{8}\right)$
11. $\csc \left(-56^{\circ} 42^{\prime}\right)$
12. $\tan \left(-86.9814^{\circ}\right)$
13. \tan
14. \cos 35. csc

For Exercises 37-41, other answers are possible. We give the most obvious one.
37. 15°
39. $\frac{140^{\circ}}{3}$
41. 20°
43. $\cos \theta$
45. $-\cos \theta$
47. $\cos \theta$
49. $-\cos \theta$
51. $\frac{16}{65} ;-\frac{56}{65}$
53. $\frac{4-6 \sqrt{6}}{25} ; \frac{4+6 \sqrt{6}}{25}$
55. $\frac{2 \sqrt{638}-\sqrt{30}}{56} ; \frac{2 \sqrt{638}+\sqrt{30}}{56}$
57. true 59. false
61. true
63. true
65. false
72. $\frac{-\sqrt{6}-\sqrt{2}}{4}$
73. $\frac{-\sqrt{6}-\sqrt{2}}{4}$
74. (a) $\frac{\sqrt{2}-\sqrt{6}}{4}$
(b) $\frac{-\sqrt{6}-\sqrt{2}}{4}$
75. (a) 3 (b) 163 and -163 ; no
77. $\cos \left(90^{\circ}+\theta\right)=-\sin \theta$ 78. $\cos \left(270^{\circ}-\theta\right)=-\sin \theta$
79. $\cos \left(180^{\circ}+\theta\right)=-\cos \theta$
80. $\cos \left(270^{\circ}+\theta\right)=\sin \theta$
81. $\sin \left(180^{\circ}+\theta\right)=-\sin \theta$
82. $\tan \left(270^{\circ}-\theta\right)=\cot \theta$

5.4 Exercises (pages 220-224)

1. C 3. E 5. B 9. $\frac{\sqrt{6}+\sqrt{2}}{4}$
2. $2-\sqrt{3}$
3. $\frac{\sqrt{6}+\sqrt{2}}{4}$
4. $\frac{-\sqrt{6}-\sqrt{2}}{4}$
5. $-2-\sqrt{3}$
6. $\frac{\sqrt{2}}{2} \quad$ 21. -1
7. $0 \quad$ 25. 1
8. $\frac{\sqrt{3} \cos \theta-\sin \theta}{2}$
9. $\frac{\cos \theta-\sqrt{3} \sin \theta}{2}$
10. $\frac{\sqrt{2}(\sin x-\cos x)}{2}$
11. $\frac{\sqrt{3} \tan \theta+1}{\sqrt{3}-\tan \theta}$
12. $\frac{\sqrt{2}(\cos x+\sin x)}{2}$
13. $-\cos \theta$
14. $-\tan x$ 41. $-\tan x$
15. (a) $\frac{63}{65}$
(b) $\frac{63}{16}$
(c) I
16. (a) $\frac{77}{85}$
(b) $-\frac{77}{36} \quad$ (c) II
17. (a) $\frac{4 \sqrt{2}+\sqrt{5}}{9}$
(b) $\frac{-\sqrt{5}-\sqrt{2}}{2}$
(c) II 51. $\frac{\sqrt{6}-\sqrt{2}}{4}$
18. $-2+\sqrt{3}$
19. $-2+\sqrt{3}$
20. $\sin \left(\frac{\pi}{2}+\theta\right)=\cos \theta$
21. $\tan \left(\frac{\pi}{2}+\theta\right)=-\cot \theta$
22. $180^{\circ}-\beta$
23. $\theta=\beta-\alpha$
24. $\tan \theta=\frac{\tan \beta-\tan \alpha}{1+\tan \beta \tan \alpha}$
25. 18.4°
26. 80.8°
27. (a) 425 lb
(c) 0°
28. $-20 \cos \frac{\pi t}{4}$
29. $y^{\prime}=y \cos R-z \sin R$

Chapter 5 Ouiz (page 224)
[5.1] 1. $\cos \theta=\frac{24}{25} ; \tan \theta=-\frac{7}{24} ; \cot \theta=-\frac{24}{7} ; \sec \theta=\frac{25}{24}$;
$\begin{array}{llll}\csc \theta=-\frac{25}{7} & \text { 2. } \frac{\cos ^{2} x+1}{\sin ^{2} x} & \text { [5.4] 3. } \frac{-\sqrt{6}-\sqrt{2}}{4}\end{array}$
[5.3] 4. $-\cos \theta \quad[5.3,5.4]$ 5. (a) $-\frac{16}{65} \quad$ (b) $-\frac{63}{65} \quad$ (c) III
[5.4] 6. $\frac{-1+\tan x}{1+\tan x}$

5.5 Exercises (pages 230-232)

1. C
2. B 5. F 7. $\cos 2 \theta=\frac{17}{25} ; \sin 2 \theta=-\frac{4 \sqrt{21}}{25}$
3. $\cos 2 x=-\frac{3}{5} ; \sin 2 x=\frac{4}{5}$
4. $\cos 2 \theta=\frac{39}{49}$;
$\sin 2 \theta=-\frac{4 \sqrt{55}}{49}$
5. $\cos \theta=\frac{2 \sqrt{5}}{5} ; \sin \theta=\frac{\sqrt{5}}{5}$
6. $\cos \theta=-\frac{\sqrt{42}}{12} ; \sin \theta=\frac{\sqrt{102}}{12}$
7. $\frac{\sqrt{3}}{2}$
8. $\frac{\sqrt{3}}{2}$
9. $-\frac{\sqrt{2}}{2}$
10. $\frac{1}{2} \tan 102^{\circ}$
11. $\frac{1}{4} \cos 94.2^{\circ}$
12. $-\cos \frac{4 \pi}{5}$
13. $\sin 4 x=4 \sin x \cos ^{3} x-4 \sin ^{3} x \cos x$
14. $\tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}$
15. $\cos ^{4} x-\sin ^{4} x=\cos 2 x$
16. $\frac{2 \tan x}{2-\sec ^{2} x}=\tan 2 x$ 57. $\sin 160^{\circ}-\sin 44^{\circ}$
17. $\sin \frac{\pi}{2}-\sin \frac{\pi}{6}$
18. $3 \cos x-3 \cos 9 x$
19. $-2 \sin 3 x \sin x$
20. $-2 \sin 11.5^{\circ} \cos 36.5^{\circ}$
21. $2 \cos 6 x \cos 2 x$
22. $a=-885.6 ; c=885.6 ; \omega=240 \pi$
5.6 Exercises (pages 235-239)
23. - 3. + 5. C 7. D 9.F 11. $\frac{\sqrt{2+\sqrt{2}}}{2}$
1. $2-\sqrt{3}$
2. $-\frac{\sqrt{2+\sqrt{3}}}{2}$
3. $\frac{\sqrt{10}}{4}$
4. 3
5. $\frac{\sqrt{50-10 \sqrt{5}}}{10}$
6. $-\sqrt{7}$
7. $\frac{\sqrt{5}}{5}$
8. $-\frac{\sqrt{42}}{12}$
9. 0.127
10. $\sin 20^{\circ}$
11. $\tan 73.5^{\circ}$
12. $\tan 29.87^{\circ}$
13. $\cos 9 x$
14. $\tan 4 \theta$
15. $\cos \frac{x}{8}$
16. $\frac{\sin x}{1+\cos x}=\tan \frac{x}{2}$
17. $\frac{\tan \frac{x}{2}+\cot \frac{x}{2}}{\cot \frac{x}{2}-\tan \frac{x}{2}}=\sec x$
18. 106°
19. 2
20. (a) $\cos \frac{\theta}{2}=\frac{R-b}{R}$
(b) $\tan \frac{\theta}{4}=\frac{b}{50}$
21. They are both radii of the circle. 66. It is the supplement of a 30° angle.
22. Their sum is $180^{\circ}-150^{\circ}=30^{\circ}$, and they are equal.
23. $2+\sqrt{3}$
24. $\frac{\sqrt{6}+\sqrt{2}}{4}$
25. $\frac{\sqrt{6}-\sqrt{2}}{4}$
26. $2-\sqrt{3}$
27. $\frac{\sqrt{10+2 \sqrt{5}}}{4}$
28. $\frac{(\sqrt{10+2 \sqrt{5}})(\sqrt{5}+1)}{4}$
29. $1+\sqrt{5}$
30. $\frac{\sqrt{10+2 \sqrt{5}}}{4}$
31. $\frac{(\sqrt{10+2 \sqrt{5}})(-5+3 \sqrt{5})}{20}$
32. $1+\sqrt{5}$

Chapter 5 Review Exercises (pages 242-244)

1. B 3. C 5. D
2. 1
3. $\frac{1}{\cos ^{2} \theta}$
4. $-\frac{\cos \theta}{\sin \theta}$
5. $\sin x=-\frac{4}{5} ; \tan x=-\frac{4}{3} ; \cot (-x)=\frac{3}{4}$
6. $\sin 165^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4} ; \cos 165^{\circ}=\frac{-\sqrt{6}-\sqrt{2}}{4}$;
$\tan 165^{\circ}=-2+\sqrt{3} ; \csc 165^{\circ}=\sqrt{6}+\sqrt{2} ;$
$\sec 165^{\circ}=-\sqrt{6}+\sqrt{2} ; \cot 165^{\circ}=-2-\sqrt{3}$
$\begin{array}{lllll}\text { 17. I 19. H } & \text { 21. G } & \text { 23. J } & \text { 25. F } & \text { 27. } \frac{117}{125} ; \frac{4}{5} ;-\frac{117}{44} \text {; II }\end{array}$
7. $\frac{2+3 \sqrt{7}}{10} ; \frac{2 \sqrt{3}+\sqrt{21}}{10} ; \frac{-25 \sqrt{3}-8 \sqrt{21}}{9}$; II
8. $\frac{4-9 \sqrt{11}}{50} ; \frac{12 \sqrt{11}-3}{50} ; \frac{\sqrt{11}-16}{21} ;$ IV 33. $\sin \theta=\frac{\sqrt{14}}{4}$; $\cos \theta=\frac{\sqrt{2}}{4}$
9. $\sin 2 x=\frac{3}{5} ; \cos 2 x=-\frac{4}{5}$
10. $\frac{1}{2}$
11. $\frac{\sqrt{5}-1}{2}$
12. 0.5
13. $-\frac{\sin 2 x+\sin x}{\cos 2 x-\cos x}=\cot \frac{x}{2}$
14. $\frac{\sin x}{1-\cos x}=\cot \frac{x}{2}$
15. $\frac{2\left(\sin x-\sin ^{3} x\right)}{\cos x}=\sin 2 x$
16. (a) $D=\frac{v^{2} \sin 2 \theta}{32}$
(b) approximately 35 ft

Chapter 5 Test (page 244)

[5.1] 1. $\sin \theta=-\frac{7}{25} ; \tan \theta=-\frac{7}{24} ; \cot \theta=-\frac{24}{7}$;
$\sec \theta=\frac{25}{24} ; \csc \theta=-\frac{25}{7} \quad$ 2. $\cos \theta \quad$ 3. -1
[5.3] 4. $\frac{\sqrt{6}-\sqrt{2}}{4}$
$[5.3,5.4]$ 5. (a) $-\sin x$
(b) $\tan x$
[5.6] 6. $-\frac{\sqrt{2-\sqrt{2}}}{2}$
7. $\cot \frac{1}{2} x-\cot x=\csc x$
$[5.3,5.4]$ 8. (a) $\frac{33}{65}$
(b) $-\frac{56}{65}$
(c) $\frac{63}{16}$
(d) II
[5.5, 5
5.6] 9. (a) $-\frac{7}{25}$
(b) $-\frac{24}{25}$
(c) $\frac{24}{7}$
(d) $\frac{\sqrt{5}}{5}$
(e) 2
[5.3]
15. (a) $V=163 \cos \left(\frac{\pi}{2}-\omega t\right)$
(b) 163 volts; $\frac{1}{240} \mathrm{sec}$

Chapter 6 Inverse Circular Functions and Trigonometric Equations

6.1 Exercises (pages 257-261)

1. one-to-one
2. $\cos y$
3. π
4. (a) $[-1,1]$
(b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(c) increasing
(d) -2 is not in the domain.
5. (a) $(-\infty, \infty)$
(b) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(c) increasing
(d) no
6. $\cos ^{-1} \frac{1}{a}$
7. 0
8. π 17. $\frac{\pi}{4}$
9. 0
10. $-\frac{\pi}{3}$
$\begin{array}{llll}\text { 23. } \frac{5 \pi}{6} & \text { 25. } \sin ^{-1} \sqrt{3} \text { does not exist. 27. } \frac{3 \pi}{4} & \text { 29. }-\frac{\pi}{6}\end{array}$
11. $\frac{\pi}{6}$
12. 0
13. $\csc ^{-1} \frac{\sqrt{2}}{2}$ does not exist.
14. -45°
15. -60°
16. 120°
17. 120°
18. -30°
19. $\sin ^{-1} 2$ does not exist.
20. -7.6713835°
21. 113.500970°
22. 30.987961°
23. 121.267893°
24. -82.678329°
25. 1.1900238
26. 1.9033723
27. 0.83798122
28. 2.3154725
29. 2.4605221
30.

71.

73.

75. 1.003 is not in the domain of $y=\sin ^{-1} x$. 76. In both cases, the result is x. In each case, the graph is a straight line bisecting quadrants I and III (i.e., the line $y=x$).
77. It is the graph of $y=x$.

78. It does not agree because the range of the inverse tangent function is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, not $(-\infty, \infty)$, as was the case in Exercise 77.

79. $\frac{\sqrt{7}}{3}$
81. $\frac{\sqrt{5}}{5}$
83. $\frac{120}{169}$
85. $-\frac{7}{25}$
87. $\frac{4 \sqrt{6}}{25}$
89. 2
91. $\frac{63}{65}$
93. $\frac{\sqrt{10}-3 \sqrt{30}}{20}$
95. 0.894427191
97. 0.1234399811
99. $\sqrt{1-u^{2}}$
101. $\sqrt{1-u^{2}}$
103. $\frac{4 \sqrt{u^{2}-4}}{u^{2}}$
105. $\frac{u \sqrt{2}}{2}$
107. $\frac{2 \sqrt{4-u^{2}}}{4-u^{2}}$
109. 41°
111. (a) 18°
(b) 18°
(c) 15°
(e) 1.4142151 m (Note: Due to the computational routine, there may be a discrepancy in the last few decimal places.)
(f) $\sqrt{2}$

113. 44.7%

Radian mode

6.2 Exercises (pages 266-269)

1. Solve the linear equation for $\cot x$. 3. Solve the quadratic equation for $\sec x$ by factoring. 5. Solve the quadratic equation for $\sin x$ using the quadratic formula.
2. Use an identity to rewrite as an equation with one trigonometric function.
3. $\left\{\frac{3 \pi}{4}, \frac{7 \pi}{4}\right\}$
4. $\left\{\frac{\pi}{6}, \frac{5 \pi}{6}\right\}$
5. \varnothing 17. $\left\{\frac{\pi}{4}, \frac{2 \pi}{3}, \frac{5 \pi}{4}, \frac{5 \pi}{3}\right\}$
6. $\{\pi\}$
7. $\left\{\frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}\right\}$
8. $\left\{30^{\circ}, 210^{\circ}, 240^{\circ}, 300^{\circ}\right\}$
9. $\left\{90^{\circ}, 210^{\circ}, 330^{\circ}\right\}$
10. $\left\{45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}\right\}$
11. $\left\{45^{\circ}, 225^{\circ}\right\}$
12. $\left\{0^{\circ}, 30^{\circ}, 150^{\circ}, 180^{\circ}\right\}$
13. $\left\{0^{\circ}, 45^{\circ}, 135^{\circ}, 180^{\circ}\right.$,
$\left.225^{\circ}, 315^{\circ}\right\}$ 35. $\left\{53.6^{\circ}, 126.4^{\circ}, 187.9^{\circ}, 352.1^{\circ}\right\}$
14. $\left\{149.6^{\circ}, 329.6^{\circ}, 106.3^{\circ}, 286.3^{\circ}\right\}$ 39. \varnothing
15. $\left\{57.7^{\circ}, 159.2^{\circ}\right\}$
16. $\left\{180^{\circ}+360^{\circ} n\right.$, where n is any
integer $\}$ 45. $\left\{\frac{\pi}{3}+2 n \pi, \frac{2 \pi}{3}+2 n \pi\right.$, where n is any integer $\}$
17. $\left\{19.5^{\circ}+360^{\circ} n, 160.5^{\circ}+360^{\circ} n, 210^{\circ}+360^{\circ} n\right.$, $330^{\circ}+360^{\circ} n$, where n is any integer $\}$
18. $\left\{\frac{\pi}{3}+2 n \pi\right.$, $\pi+2 n \pi, \frac{5 \pi}{3}+2 n \pi$, where n is any integer $\}$
19. $\left\{180^{\circ} n\right.$, where n is any integer $\}$ 53. $\{0.8751+2 n \pi$, $2.2665+2 n \pi, 3.5908+2 n \pi, 5.8340+2 n \pi$, where n is any integer $\}$ 55. $\left\{33.6^{\circ}+360^{\circ} n, 326.4^{\circ}+360^{\circ} n\right.$, where n is any integer $\}$ 57. $\left\{45^{\circ}+180^{\circ} n, 108.4^{\circ}+180^{\circ} n\right.$, where n is any integer $\}$ 59. $\{0.6806,1.4159\}$ 61. (a) 0.00164 and 0.00355
(b) $[0.00164,0.00355]$
(c) outward
20. (a) $\frac{1}{4} \mathrm{sec}$
(b) $\frac{1}{6} \mathrm{sec}$
(c) 0.21 sec
21. (a) One such
value is $\frac{\pi}{3}$. (b) One such value is $\frac{\pi}{4}$.

6.3 Exercises (pages 273-275)

1. $\left\{\frac{\pi}{3}, \pi, \frac{4 \pi}{3}\right\} \quad$ 3. $\left\{60^{\circ}, 210^{\circ}, 240^{\circ}, 310^{\circ}\right\}$
2. $\left\{\frac{\pi}{12}, \frac{11 \pi}{12}, \frac{13 \pi}{12}, \frac{23 \pi}{12}\right\}$
3. $\left\{90^{\circ}, 210^{\circ}, 330^{\circ}\right\}$
4. $\left\{\frac{\pi}{18}, \frac{7 \pi}{18}, \frac{13 \pi}{18}, \frac{19 \pi}{18}, \frac{25 \pi}{18}, \frac{31 \pi}{18}\right\}$
5. $\left\{67.5^{\circ}, 112.5^{\circ}, 247.5^{\circ}, 292.5^{\circ}\right\}$
6. $\left\{\frac{\pi}{2}, \frac{3 \pi}{2}\right\}$
7. $\left\{0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}\right\}$
8. $\emptyset \quad$ 21. $\left\{180^{\circ}\right\}$
9. $\left\{\frac{\pi}{3}, \pi, \frac{5 \pi}{3}\right\}$
10. $\left\{\frac{\pi}{12}+\frac{2 n \pi}{3}, \frac{\pi}{4}+\frac{2 n \pi}{3}\right.$, where n is any integer $\}$
11. $\left\{720^{\circ} n\right.$, where n is any integer $\}$
12. $\left\{\frac{2 \pi}{3}+4 n \pi, \frac{4 \pi}{3}+4 n \pi\right.$, where n is any integer $\}$
13. $\left\{30^{\circ}+360^{\circ} n, 150^{\circ}+360^{\circ} n, 270^{\circ}+360^{\circ} n\right.$, where n is any integer $\}$ 33. $\left\{n \pi, \frac{\pi}{6}+2 n \pi, \frac{5 \pi}{6}+2 n \pi\right.$, where n is any integer $\}$ 35. $\{1.3181+2 n \pi, 4.9651+2 n \pi$, where n is any integer $\}$ 37. $\left\{11.8^{\circ}+180^{\circ} n, 78.2^{\circ}+180^{\circ} n\right.$, where n is any integer $\}$ 39. $\left\{30^{\circ}+180^{\circ} n, 90^{\circ}+180^{\circ} n\right.$, $150^{\circ}+180^{\circ} n$, where n is any integer $\}$ 41. $\left\{\frac{\pi}{2}\right\}$
14. $\{0.4636,3.6052\} \quad$ 45. $\{1.2802\}$
15. (a) For $x=t$,

$$
P(t)=0.003 \sin 220 \pi t+
$$

$\frac{0.003}{3} \sin 660 \pi t+$
$\frac{0.003}{5} \sin 1100 \pi t+$

(b) The graph is periodic, and the wave has "jagged square" tops and bottoms. (c) This will occur when t is in one of these intervals: $(0.0045,0.0091),(0.0136,0.0182)$, (0.0227, 0.0273).
49. (a) For $x=t$,

(b) $0.0007576,0.009847,0.01894,0.02803 \quad$ (c) 110 Hz
(d) For $x=t$, $P(t)=\sin [2 \pi(110) t]+$
51. (a) when $x=7$ (during

July) (b) when $x=2.3$ $\frac{1}{2} \sin [2 \pi(220) t]+\quad$ (during February) and when $\frac{1}{3} \sin [2 \pi(330) t]+x=11.7$ (during November) $\frac{1}{4} \sin [2 \pi(440) t] \quad$ 53. 0.001 sec

55. 0.004 sec

Chapter 6 Quiz (page 276)
[6.1] 1. $[-1,1] ;[0, \pi]$

2. (a) $-\frac{\pi}{4}$
(b) $\frac{\pi}{3}$
(c) $\frac{5 \pi}{6}$
3. (a) 22.568922°
(b) 137.431085°
4. (a) $\frac{5 \sqrt{41}}{41}$
(b) $\frac{\sqrt{3}}{2}$
[6.2] 5. $\left\{60^{\circ}, 120^{\circ}\right\}$
6. $\left\{60^{\circ}, 180^{\circ}, 300^{\circ}\right\}$
7. $\{0.6089,1.3424,3.7505,4.4840\}$
[6.3] 8. $\left\{\frac{\pi}{6}, \frac{2 \pi}{3}, \frac{7 \pi}{6}, \frac{5 \pi}{3}\right\}$
9. $\left\{\frac{5 \pi}{3}+4 n \pi, \frac{7 \pi}{3}+4 n \pi\right.$,
where n is any integer $\}$
[6.2] 10. (a) 0 sec
(b) 0.20 sec

6.4 Exercises (pages 279-282)

1. C
2. C 5. $x=\arccos \frac{y}{5}$
3. $x=\frac{1}{3} \operatorname{arccot} 2 y$
4. $x=\frac{1}{2} \arctan \frac{y}{3}$
5. $x=4 \arccos \frac{y}{6}$
6. $x=\frac{1}{5} \arccos \left(-\frac{y}{2}\right)$
7. $x=-3+\arccos y$
8. $x=\arcsin (y+2)$
9. $x=\arcsin \left(\frac{y+4}{2}\right)$
10. $x=\frac{1}{2} \sec ^{-1}\left(\frac{y-\sqrt{2}}{3}\right)$
11. $\left\{-\frac{\sqrt{2}}{2}\right\}$
12. $\{-2 \sqrt{2}\}$
13. $\{\pi-3\}$
14. $\left\{\frac{3}{5}\right\}$
15. $\left\{\frac{4}{5}\right\}$
16. $\{0\}$
17. $\left\{\frac{1}{2}\right\}$
18. $\left\{-\frac{1}{2}\right\}$
19. $\{0\}$
20. $\mathrm{Y}=\arcsin \mathrm{X}-\arccos \mathrm{X}-\frac{\pi}{6}$

21. $\{4.4622\}$ 47. (a) $A \approx 0.00506, \phi \approx 0.484$;
$P=0.00506 \sin (440 \pi t+0.484)$
(b) The two graphs are the same.

For $x=t$,
$P(t)=0.00506 \sin (440 \pi t+0.484)$
$P_{1}(t)+P_{2}(t)=0.0012 \sin (440 \pi t+0.052)+$
$0.004 \sin (440 \pi t+0.61)$

49. (a) $\tan \alpha=\frac{x}{z} ; \tan \beta=\frac{x+y}{z} \quad$ (b) $\frac{x}{\tan \alpha}=\frac{x+y}{\tan \beta}$
(c) $\alpha=\arctan \left(\frac{x \tan \beta}{x+y}\right)$
(d) $\beta=\arctan \left(\frac{(x+y) \tan \alpha}{x}\right)$
51. (a) $t=\frac{1}{2 \pi f} \arcsin \frac{E}{E_{\text {max }}}$
(b) 0.00068 sec
53. (a) $t=\frac{3}{4 \pi} \arcsin 3 y$
(b) 0.27 sec

Chapter 6 Review Exercises (pages 284-287)

1.

$[-1,1] ;\left[-\frac{\pi}{2}, \frac{\pi}{2}\right][-1,1] ;[0, \pi] \quad(-\infty, \infty) ;\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
3. false; $\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6}$, not $\frac{11 \pi}{6}$.
5. $\frac{\pi}{4} \quad$ 7. $-\frac{\pi}{3}$
9. $\frac{3 \pi}{4}$
11. $\frac{2 \pi}{3}$
13. $\frac{3 \pi}{4}$
15. -60°
17. 60.68°
19. 36.49°
21. 73.26°
23. -1
25. $\frac{3 \pi}{4}$
27. $\frac{\pi}{4}$
29. $\frac{\sqrt{7}}{4}$
31. $\frac{\sqrt{3}}{2}$
33. $\frac{294+125 \sqrt{6}}{92}$
35. $\frac{1}{u}$
37. $\{0.4636,3.6052\}$
39. $\left\{\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\right\}$
41. $\left\{\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{5 \pi}{8}, \frac{7 \pi}{8}, \frac{9 \pi}{8}, \frac{11 \pi}{8}, \frac{13 \pi}{8}, \frac{15 \pi}{8}\right\}$
43. $\left\{\frac{\pi}{3}+2 n \pi, \pi+2 n \pi, \frac{5 \pi}{3}+2 n \pi\right.$, where n is any integer $\}$
45. $\left\{270^{\circ}\right\}$
47. $\left\{45^{\circ}, 90^{\circ}, 225^{\circ}, 270^{\circ}\right\}$
49. $\left\{70.5^{\circ}, 180^{\circ}, 289.5^{\circ}\right\}$
51. $\left\{300^{\circ}+720^{\circ} n\right.$,
$420^{\circ}+720^{\circ} n$, where n is any integer $\}$ 53. $\left\{180^{\circ}+360^{\circ} n\right.$, where n is any integer $\}$
55. \varnothing 57. $\left\{-\frac{1}{2}\right\}$
59. $x=\arcsin 2 y$
61. $x=\left(\frac{1}{3} \arctan 2 y\right)-\frac{2}{3}$
63. (b) 8.6602567 ft ; There may be a discrepancy in the final digits.

65. No light will emerge from the water.
67.

Chapter 6 Test (pages 287-288)
[6.1] 1. $[-1,1] ;\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

2. (a) $\frac{2 \pi}{3}$
(b) $-\frac{\pi}{3}$
(c) 0
(d) $\frac{2 \pi}{3}$
3. (a) 30°
(b) -45°
(c) 135°
(d) -60°
4. (a) 42.54°
(b) 22.72°
(c) 125.47°
5. (a) $\frac{\sqrt{5}}{3}$
(b) $\frac{4 \sqrt{2}}{9}$
8. $\frac{u \sqrt{1-u^{2}}}{1-u^{2}}$
$[6.2,6.3]$ 9. $\left\{30^{\circ}, 330^{\circ}\right\}$ 10. $\left\{90^{\circ}, 270^{\circ}\right\}$
11. $\left\{18.4^{\circ}, 135^{\circ}, 198.4^{\circ}, 315^{\circ}\right\}$
12. $\left\{0, \frac{2 \pi}{3}, \frac{4 \pi}{3}\right\}$
13. $\left\{\frac{\pi}{12}, \frac{7 \pi}{12}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{17 \pi}{12}, \frac{23 \pi}{12}\right\}$
14. $\{0.3649,1.2059,3.5065,4.3475\}$
15. $\left\{90^{\circ}+180^{\circ} n\right.$, where n is any integer $\}$
16. $\left\{\frac{2 \pi}{3}+4 n \pi, \frac{4 \pi}{3}+4 n \pi\right.$, where n is any integer $\}$
17. $\left\{\frac{\pi}{2}+2 n \pi\right.$, where n is any integer $\}$
[6.4] 18. (a) $x=\frac{1}{3} \arccos y$
(b) $x=\operatorname{arccot}\left(\frac{y-4}{3}\right)$
19. (a) $\left\{\frac{4}{5}\right\}$
(b) $\left\{\frac{\sqrt{3}}{3}\right\}$
20. $\frac{5}{6} \sec , \frac{11}{6} \sec , \frac{17}{6} \sec$

Chapter 7 Applications of Trigonometry and Vectors

Note to student: Although most of the measures resulting from solving triangles in this chapter are approximations, for convenience we use $=$ rather than \approx in the answers.

7.1 Exercises (pages 295-299)

1. C 3. $\sqrt{3}$ 5. $C=95^{\circ}, b=13 \mathrm{~m}, a=11 \mathrm{~m}$
2. $B=37.3^{\circ}, a=38.5 \mathrm{ft}, b=51.0 \mathrm{ft} \quad$ 9. $C=57.36^{\circ}$,
$b=11.13 \mathrm{ft}, c=11.55 \mathrm{ft} \quad$ 11. $B=18.5^{\circ}, a=239 \mathrm{yd}$,
$c=230 \mathrm{yd}$ 13. $A=56^{\circ} 00^{\prime}, A B=361 \mathrm{ft}, B C=308 \mathrm{ft}$
3. $B=110.0^{\circ}, a=27.01 \mathrm{~m}, c=21.36 \mathrm{~m}$
4. $A=34.72^{\circ}, a=3326 \mathrm{ft}, c=5704 \mathrm{ft} \quad$ 19. $C=97^{\circ} 34^{\prime}$,
$b=283.2 \mathrm{~m}, c=415.2 \mathrm{~m}$
5. 118 m
6. 17.8 km
7. first location: 5.1 mi ; second location: 7.2 mi
8. 0.49 mi 33. 111° 35. The distance is about
$419,000 \mathrm{~km}$, which compares favorably to the actual value.
9. approximately 6600 ft
10. $\frac{\sqrt{3}}{2}$ sq unit
11. $\frac{\sqrt{2}}{2}$ sq unit
12. $46.4 \mathrm{~m}^{2}$
13. $356 \mathrm{~cm}^{2}$
14. 722.9 in. ${ }^{2}$
15. $65.94 \mathrm{~cm}^{2}$
16. $100 \mathrm{~m}^{2}$
17. $a=\sin A, b=\sin B, c=\sin C$
18. $x=\frac{d \sin \alpha \sin \beta}{\sin (\beta-\alpha)}$

7.2 Exercises (pages 304-306)

1. A
2. (a) $4<L<5$
(b) $L=4$ or $L>5$
(c) $L<4$
$\begin{array}{lllll}\text { 5. } 1 & \text { 7. } 2 & \text { 9. } 0 & \text { 11. } 45^{\circ} & \text { 13. } B_{1}=49.1^{\circ}, C_{1}=101.2^{\circ} \text {, }, \text {, } \text {, }\end{array}$
$B_{2}=130.9^{\circ}, C_{2}=19.4^{\circ} \quad$ 15. $B=26^{\circ} 30^{\prime}, A=112^{\circ} 10^{\prime}$
3. no such triangle 19. $B=27.19^{\circ}, C=10.68^{\circ}$
4. $B=20.6^{\circ}, C=116.9^{\circ}, c=20.6 \mathrm{ft} \quad$ 23. no such
triangle 25. $B_{1}=49^{\circ} 20^{\prime}, C_{1}=92^{\circ} 00^{\prime}, c_{1}=15.5 \mathrm{~m}$;
$B_{2}=130^{\circ} 40^{\prime}, C_{2}=10^{\circ} 40^{\prime}, c_{2}=2.88 \mathrm{~m}$
5. $B=37.77^{\circ}, C=45.43^{\circ}, c=4.174 \mathrm{ft}$
6. $A_{1}=53.23^{\circ}, C_{1}=87.09^{\circ}, c_{1}=37.16 \mathrm{~m} ; A_{2}=126.77^{\circ}$, $C_{2}=13.55^{\circ}, c_{2}=8.719 \mathrm{~m}$ 31. $1 ; 90^{\circ}$; a right triangle
7. 664 m 37. 218 ft 42. $\mathscr{A}=1.12257 R^{2}$
8. (a) $8.77 \mathrm{in}^{2}$
(b) 5.32 in. ${ }^{2}$
9. red

7.3 Exercises (pages 313-319)

1. (a) SAS
(b) law of cosines
2. (a) SSA
(b) law of sines 5. (a) ASA (b) law of sines 7. (a) SSS
(b) law of cosines
3. 5
4. 120° 13. $a=7.0$,
$B=37.6^{\circ}, C=21.4^{\circ}$
5. $A=73.7^{\circ}, B=53.1^{\circ}$,
$C=53.1^{\circ}$ (The angles do not sum to 180° due to rounding.)
6. $b=88.2, A=56.7^{\circ}, C=68.3^{\circ} \quad$ 19. $a=2.60 \mathrm{yd}$,
$B=45.1^{\circ}, C=93.5^{\circ} \quad$ 21. $c=6.46 \mathrm{~m}, A=53.1^{\circ}$,
$B=81.3^{\circ}$ 23. $A=82^{\circ}, B=37^{\circ}, C=61^{\circ}$
7. $C=102^{\circ} 10^{\prime}, B=35^{\circ} 50^{\prime}, A=42^{\circ} 00^{\prime}$
8. $C=84^{\circ} 30^{\prime}, B=44^{\circ} 40^{\prime}, A=50^{\circ} 50^{\prime}$
9. $a=156 \mathrm{~cm}, B=64^{\circ} 50^{\prime}, C=34^{\circ} 30^{\prime}$
10. $b=9.53 \mathrm{in}$., $A=64.6^{\circ}, C=40.6^{\circ}$
11. $a=15.7 \mathrm{~m}, B=21.6^{\circ}, C=45.6^{\circ}$
12. $A=30^{\circ}$, $B=56^{\circ}, C=94^{\circ} \quad$ 37. The value of $\cos \theta$ will be greater than 1 . Your calculator will give you an error message (or a nonreal complex number) when using the inverse cosine function. 39. 257 m 41. 163.5° 43. 281 km
13. $438.14 \mathrm{ft} \quad$ 47. 10.8 mi 49. $40^{\circ} \quad$ 51. 26° and 36°
14. second base: 66.8 ft ; first and third bases: 63.7 ft
15. $39.2 \mathrm{~km} \quad$ 57. $47.5 \mathrm{ft} \quad$ 59. $5500 \mathrm{~m} \quad$ 61. 16.26°
16. $24 \sqrt{3}$ sq units $\quad 65.78 \mathrm{~m}^{2} \quad$ 67. $12,600 \mathrm{~cm}^{2}$
17. $3650 \mathrm{ft}^{2}$ 71. Area and perimeter are both 36 .
18. $390,000 \mathrm{mi}^{2}$ 75. (a) 87.8° and 92.2° both appear possible. (b) 92.2° (c) With the law of cosines we are required to find the inverse cosine of a negative number. Therefore, we know that angle C is greater than 90°.
19.

$$
a=\sqrt{34}, b=\sqrt{29}, c=\sqrt{13}
$$

Chapter 7 Quiz (pages 319-320)

[7.1] 1. $131^{\circ} \quad[7.3]$ 2. $201 \mathrm{~m} \quad$ 3. 48.0°

[7.1] 4. 15.75 sq units [7.3] 5. $189 \mathrm{~km}^{2}$
[7.2] 6. $41.6^{\circ}, 138.4^{\circ} \quad[7.1]$ 7. $a=648, b=456, C=28^{\circ}$
8. $3.6 \mathrm{mi} \quad[7.3]$ 9. 25.24983 mi 10. 3921 m

7.4 Exercises (pages 328-331)

1. \mathbf{m} and $\mathbf{p} ; \mathbf{n}$ and $\mathbf{r} \quad$ 3. \mathbf{m} and \mathbf{p} equal $2 \mathbf{t}$, or \mathbf{t} equals $\frac{1}{2} \mathbf{m}$ and $\frac{1}{2} \mathbf{p}$. Also $\mathbf{m}=1 \mathbf{p}$ and $\mathbf{n}=1 \mathbf{r}$.
2.

9.

13.

7.

11.

15.

17. Yes, it appears that vector addition is associative (and this is true, in general).
19. (a) $\langle-4,16\rangle$
(b) $\langle-12,0\rangle$
(c) $\langle 8,-8\rangle$
21. (a)
$\langle 8,0\rangle$
(b) $\langle 0,16\rangle$
(c) $\langle-4,-8\rangle$
23. (a) $\langle 0,12\rangle$
(b) $\langle-16,-4\rangle$
(c) $\langle 8,-4\rangle$
25. (a) $4 \mathbf{i} \quad$ (b) $7 \mathbf{i}+3 \mathbf{j} \quad$ (c) $-5 \mathbf{i}+\mathbf{j}$
27. (a) $\langle-2,4\rangle$
(b) $\langle 7,4\rangle$
(c) $\langle 6,-6\rangle$
29.

31.

33. $17 ; 331.9^{\circ}$
35. $8 ; 120^{\circ}$
37. 47,17 39. $38.8,28.0$
41. 123,155
43. $\left\langle\frac{5 \sqrt{3}}{2}, \frac{5}{2}\right\rangle$
45. $\langle-3.0642,2.5712\rangle$
47. $\langle 4.0958,-2.8679\rangle$
49. 530 newtons
51. 88.2 lb
53. 94.2 lb
55. 24.4 lb
57. $\langle a+c, b+d\rangle$
59. $\langle-6,2\rangle$
61. $\langle 8,-20\rangle$
63. $\langle-30,-3\rangle$
65. $\langle 8,-7\rangle$
67. $-5 \mathbf{i}+8 \mathbf{j}$
69. $2 \mathbf{i}$, or $2 \mathbf{i}+0 \mathbf{j}$
71. 7 73. $0 \quad$ 75. 20
77. 135° 79. 90°
81. 36.87°
83. -6
85. -24
87. orthogonal 89. not orthogonal 91. not orthogonal

In Exercises 93-97, answers may vary due to rounding.
93. magnitude: 9.5208; direction angle: 119.0647°
94. $\langle-4.1042,11.2763\rangle$
95. $\langle-0.5209,-2.9544\rangle$
96. $\langle-4.6252,8.3219\rangle$ 97. magnitude: 9.5208; direction angle: 119.0647° 98. They are the same. Preference of method is an individual choice.

7.5 Exercises (pages 335-338)

1. 2640 lb at an angle of 167.2° with the $1480-\mathrm{lb}$ force
2. 93.9° 5. 190 lb and 283 lb , respectively 7. 18°
3. 2.4 tons 11. 17.5° 13. $226 \mathrm{lb} \quad$ 15. $13.5 \mathrm{mi} ; 50.4^{\circ}$
4. 39.2 km 19. current: 3.5 mph ; motorboat: 19.7 mph
5. bearing: 237°; ground speed: 470 mph 23. ground speed: 161 mph ; airspeed: 156 mph 25. bearing: 74°; ground speed: 202 mph 27. bearing: 358°; airspeed: 170 mph 29. ground speed: 230 km per hr; bearing: 167°
6. (a) $|\mathbf{R}|=\sqrt{5} \approx 2.2,|\mathbf{A}|=\sqrt{1.25} \approx 1.1$; About 2.2 in . of rain fell. The area of the opening of the rain gauge is about $1.1 \mathrm{in}^{2}{ }^{2}$. (b) $V=1.5$; The volume of rain was 1.5 in. 3.

Summary Exercises on Applications of Trigonometry

 and Vectors (pages 338-339)1. $29 \mathrm{ft} ; 38 \mathrm{ft}$
2. 38.3 cm
3. 5856 m
4. 15.8 ft per sec; $71.6^{\circ} \quad$ 5. 42 lb
5. 7200 ft
6. (a) 10 mph (b) $3 \mathbf{v}=18 \mathbf{i}+24 \mathbf{j}$; This represents a $30-\mathrm{mph}$ wind in the direction of \mathbf{v}. (c) \mathbf{u} represents a southeast wind of $\sqrt{128} \approx 11.3 \mathrm{mph}$. 8. $380 \mathrm{mph} ; 64^{\circ}$ 9. It cannot exist. 10. Other angles can be $36^{\circ} 10^{\prime}$,
$115^{\circ} 40^{\prime}$, third side 40.5 , or other angles can be $143^{\circ} 50^{\prime}, 8^{\circ} 00^{\prime}$, third side 6.25 . (Lengths are in yards.)

Chapter 7 Review Exercises (pages 343-346)

1. $63.7 \mathrm{~m} \quad$ 3. $41.7^{\circ} \quad$ 5. $54^{\circ} 20^{\prime}$ or $125^{\circ} 40^{\prime}$
2. (a) $b=5, b \geq 10$
$\begin{array}{ll}\text { (b) } 5<b<10 & \text { (c) } b<5\end{array}$
3. 19.87°, or $19^{\circ} 52^{\prime}$
4. 55.5 m
5. 19 cm
6. $B=17.3^{\circ}, C=137.5^{\circ}, c=11.0 \mathrm{yd}$ 19. $c=18.7 \mathrm{~cm}$, $A=91^{\circ} 40^{\prime}, B=45^{\circ} 50^{\prime}$
7. $153,600 \mathrm{~m}^{2}$
8. $0.234 \mathrm{~km}^{2}$
9. 58.6 ft
10. 13 m 29. 53.2 ft
11. 115 km
12. 25 sq units
13.

37. 207 lb
39. $869 ; 418$
41. $15 ; 126.9^{\circ}$
43. (a) i
(b) $4 \mathbf{i}-2 \mathbf{j}$
(c) $11 \mathbf{i}-7 \mathbf{j}$
45. 90°; orthogonal
47. 29 lb
49. bearing: 306°; ground speed: 524 mph 51. 34 lb
53. Both expressions equal $\frac{1+\sqrt{3}}{2}$. 55. Both expressions equal $-2+\sqrt{3}$.

Chapter 7 Test (pages 347-348)

[7.1] 1. $137.5^{\circ} \quad[7.3]$ 2. $179 \mathrm{~km} \quad$ 3. $49.0^{\circ} \quad$ 4. 168 sq units
[7.1] 5. 18 sq units
[7.2] 6. (a) $b>10$
(b) none
(c) $b \leq 10 \quad[7.1-7.3] 7 . a=40 \mathrm{~m}, B=41^{\circ}, C=79^{\circ}$
8. $B_{1}=58^{\circ} 30^{\prime}, A_{1}=83^{\circ} 00^{\prime}, a_{1}=1250$ in.; $B_{2}=121^{\circ} 30^{\prime}$, $A_{2}=20^{\circ} 00^{\prime}, a_{2}=431 \mathrm{in}$. [7.4] 9. $|\mathbf{v}|=10 ; \theta=126.9^{\circ}$
10.

11. (a) $\langle 1,-3\rangle$
(b) $\langle-6,18\rangle$
(c) -20
(d) $\sqrt{10}$
12. 41.8°
13. Show that $\mathbf{u} \cdot \mathbf{v}=0$.
[7.1] 14. 2.7 mi
[7.4] 15. $\langle-346,451\rangle \quad[7.5]$ 16. $1.91 \mathrm{mi} \quad$ [7.1] 17. 14 m
[7.5] 18. 30 lb 19. bearing: 357°; airspeed: 220 mph
20. 18.7°

Chapter 8 Complex Numbers, Polar Equations, and Parametric Equations

8.1 Exercises (pages 356-359)

1. true 3. true 5. false; Every real number is a complex number. 7. real, complex 9. pure imaginary, nonreal complex, complex 11. nonreal complex, complex
2. real, complex 15. pure imaginary, nonreal complex, $\begin{array}{lllll}\text { complex } & \text { 17. } 5 i & \text { 19. } i \sqrt{10} & \text { 21. } 12 i \sqrt{2} & \text { 23. }-3 i \sqrt{2}\end{array}$
3. $\{ \pm 4 i\}$
4. $\{ \pm 2 i \sqrt{3}\}$
5. $\left\{-\frac{2}{3} \pm \frac{\sqrt{2}}{3} i\right\}$
6. $\{3 \pm i \sqrt{5}\}$
7. $\left\{\frac{1}{2} \pm \frac{\sqrt{6}}{2} i\right\}$
8. $\left\{-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i\right\}$
9. -13
10. $-2 \sqrt{6}$
11. $\sqrt{3}$
12. $i \sqrt{ } 3$
13. $\frac{1}{2}$
14. -2
15. $-3-i \sqrt{6}$
16. $2+2 i \sqrt{2}$
17. $-\frac{1}{8}+\frac{\sqrt{2}}{8} i$
18. $12-i$
19. 2 59. 0
20. $-13+4 i \sqrt{2}$
21. $8-i$
22. $-14+2 i$
23. $8-i$
24. $5-12 i$
25. 10
26. 13
27. 7
28. $25 i$
29. $12+9 i$
30. $20+15 i$
31. $2-2 i$
32. $\frac{3}{5}-\frac{4}{5} i$
33. $-1-2 i$
34. $5 i$
35. $8 i$
36. $-\frac{2}{3} i$
37. i 95. -1
38. $-i$
39. 1
40. $-i$ 103. $-i$
41. $E=30+60 i$
42. $110+32 i$
43. $Z=\frac{233}{37}+\frac{119}{37} i$

8.2 Exercises (pages 364-366)

1. length (magnitude)
2.

5.

7.

9.

11. $1-4 i$
13. $3-i$

15. $-3 i$

17. $-3+3 i$
19. $-6-8 i$
21. $7+9 i$
23. $\frac{7}{6}+\frac{7}{6} i$
25. $\sqrt{2}+i \sqrt{2}$
27. $10 i$
29. $-2-2 i \sqrt{3}$
31. $-\frac{3 \sqrt{3}}{2}+\frac{3}{2} i$
33. $\frac{5}{2}-\frac{5 \sqrt{3}}{2} i$
35. $-1-i$
37. $2 \sqrt{3}-2 i$
39. $6\left(\cos 240^{\circ}+i \sin 240^{\circ}\right)$
41. $2\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)$
43. $5 \sqrt{2}\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)$
45. $2 \sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$
47. $5\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$
49. $4\left(\cos 180^{\circ}+i \sin 180^{\circ}\right)$
51. $\sqrt{13}\left(\cos 56.31^{\circ}+i \sin 56.31^{\circ}\right)$
53. $-1.0261-2.8191 i$
55. $12\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$
57. $\sqrt{34}\left(\cos 59.04^{\circ}+i \sin 59.04^{\circ}\right)$ 59. It is the circle of radius 1 centered at the origin. 61. It is the vertical line $x=1$. 63. yes 67. B 69. A

8.3 Exercises (pages 369-371)

1. multiply; add 3. $-3 \sqrt{3}+3 i$
2. $12 \sqrt{3}+12 i \quad 7.4$
3. $-3 i$
4. $-\frac{15 \sqrt{2}}{2}+\frac{15 \sqrt{2}}{2} i$
5. $\sqrt{3}+i$
6. -2
7. $-\frac{1}{6}-\frac{\sqrt{3}}{6} i$
8. $2 \sqrt{3}-2 i$
9. $-\frac{1}{2}-\frac{1}{2} i$
10. $\sqrt{3}+i$
11. $0.6537+7.4715 i$
12. $30.8580+18.5414 i$
13. $1.9563+0.4158 i$
14. $-3.7588-1.3681 i$
15. 2
16. $w=\sqrt{2}$ cis 135°;
$z=\sqrt{2} \operatorname{cis} 225^{\circ}$
17. $2 \mathrm{cis} 0^{\circ}$
18. 2 ; It is the same.
19. $-i$ 38. $\operatorname{cis}\left(-90^{\circ}\right)$ 39. $-i$; It is the same.
20. $1.18-0.14 i$ 45. approximately $27.43+11.50 i$
8.4 Exercises (pages 376-378)
21. $27 i$
22. 1 5. $\frac{27}{2}-\frac{27 \sqrt{3}}{2} i$
23. $-16 \sqrt{3}+16 i$
24. $4096 i$
25. $128+128 i$
26. (a) $\cos 0^{\circ}+i \sin 0^{\circ}$,
$\cos 120^{\circ}+i \sin 120^{\circ}$,
$\cos 240^{\circ}+i \sin 240^{\circ}$
(b)

27. (a) $2 \operatorname{cis} 20^{\circ}$, 2 cis 140°, 2 cis 260°
(b)

28. (a) $2\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$, $2\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)$, $2\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)$
29. (a) $4\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$, $4\left(\cos 180^{\circ}+i \sin 180^{\circ}\right)$, $4\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)$
(b)

30. (a) $\sqrt[3]{2}\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)$,
$\sqrt[3]{2}\left(\cos 140^{\circ}+i \sin 140^{\circ}\right)$
$\sqrt[3]{2}\left(\cos 260^{\circ}+i \sin 260^{\circ}\right)$
(b)

31. (a) $\sqrt[3]{4}\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)$, $\sqrt[3]{4}\left(\cos 170^{\circ}+i \sin 170^{\circ}\right)$,
$\sqrt[3]{4}\left(\cos 290^{\circ}+i \sin 290^{\circ}\right)$
(b)

32. $\cos 0^{\circ}+i \sin 0^{\circ}$, $\cos 180^{\circ}+i \sin 180^{\circ}$

33. $\cos 0^{\circ}+i \sin 0^{\circ}$, $\cos 60^{\circ}+i \sin 60^{\circ}$, $\cos 120^{\circ}+i \sin 120^{\circ}$, $\cos 180^{\circ}+i \sin 180^{\circ}$, $\cos 240^{\circ}+i \sin 240^{\circ}$, $\cos 300^{\circ}+i \sin 300^{\circ}$

34. $\cos 30^{\circ}+i \sin 30^{\circ}$, $\cos 150^{\circ}+i \sin 150^{\circ}$, $\cos 270^{\circ}+i \sin 270^{\circ}$

35. $\left\{\cos 0^{\circ}+i \sin 0^{\circ}, \cos 120^{\circ}+i \sin 120^{\circ}\right.$, $\left.\cos 240^{\circ}+i \sin 240^{\circ}\right\}$ 33. $\left\{\cos 90^{\circ}+i \sin 90^{\circ}\right.$, $\left.\cos 210^{\circ}+i \sin 210^{\circ}, \cos 330^{\circ}+i \sin 330^{\circ}\right\}$
36. $\left\{2\left(\cos 0^{\circ}+i \sin 0^{\circ}\right), 2\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)\right.$, $\left.2\left(\cos 240^{\circ}+i \sin 240^{\circ}\right)\right\}$
37. $\left\{\cos 45^{\circ}+i \sin 45^{\circ}\right.$, $\cos 135^{\circ}+i \sin 135^{\circ}, \cos 225^{\circ}+i \sin 225^{\circ}$,
$\left.\cos 315^{\circ}+i \sin 315^{\circ}\right\} \quad$ 39. $\left\{\cos 22.5^{\circ}+i \sin 22.5^{\circ}\right.$, $\cos 112.5^{\circ}+i \sin 112.5^{\circ}, \cos 202.5^{\circ}+i \sin 202.5^{\circ}$, $\left.\cos 292.5^{\circ}+i \sin 292.5^{\circ}\right\}$
38. $\left\{2\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)\right.$, $\left.2\left(\cos 140^{\circ}+i \sin 140^{\circ}\right), 2\left(\cos 260^{\circ}+i \sin 260^{\circ}\right)\right\}$
39. $1,-\frac{1}{2}+\frac{\sqrt{3}}{2} i,-\frac{1}{2}-\frac{\sqrt{3}}{2} i$ 45. $\cos 2 \theta+i \sin 2 \theta$
40. $\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+i(2 \cos \theta \sin \theta)=\cos 2 \theta+i \sin 2 \theta$
41. $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ 48. $\sin 2 \theta=2 \sin \theta \cos \theta$
42. (a) yes (b) no (c) yes 51. $1,0.30901699+$ $0.95105652 i,-0.809017+0.58778525 i$,
$-0.809017-0.5877853 i, 0.30901699-0.9510565 i$
43. $-4,2-2 i \sqrt{3}$ 55. $\{-1.8174+0.5503 i$,
$1.8174-0.5503 i\}$
44. $\{0.8771+0.9492 i$,
$-0.6317+1.1275 i,-1.2675-0.2524 i$,
$-0.1516-1.2835 i, 1.1738-0.5408 i\}$ 59. false
Chapter 8 Quiz (page 379)
[8.1] 1. (a) $-6 \sqrt{2}$ (b) $\frac{1}{3} i$

[8.1, 8.2] 2. (a) $-1+6 i$

(b) $7+4 i$

(c) $-17-17 i$
(d) $-\frac{7}{17}-\frac{23}{17} i$
3. (a) $-2-2 i$
(b) i, or $0+i$
[8.1] 4. $\left\{\frac{1}{6} \pm \frac{\sqrt{47}}{6} i\right\}$
[8.2] 5. (a) $4\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$
(b) $2\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)$
(c) $\sqrt{10}\left(\cos 198.4^{\circ}+i \sin 198.4^{\circ}\right)$
6. (a) $2+2 i \sqrt{3}$
(b) $-3.2139+3.8302 i$
(c) $-7 i$, or $0-7 i$
(d) 2 , or $2+0 i$
[8.3, 8.4] 7. (a) $36\left(\cos 130^{\circ}+i \sin 130^{\circ}\right)$
(b) $2 \sqrt{3}+2 i$
(c) $-\frac{27 \sqrt{3}}{2}+\frac{27}{2} i$
(d) $-864-864 i \sqrt{3}$
[8.4] 8. $2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right), 2\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)$, $2\left(\cos 225^{\circ}+i \sin 225^{\circ}\right), 2\left(\cos 315^{\circ}+i \sin 315^{\circ}\right)$;
$\sqrt{2}+i \sqrt{2},-\sqrt{2}+i \sqrt{2},-\sqrt{2}-i \sqrt{2}, \sqrt{2}-i \sqrt{2}$

8.5 Exercises (pages 387-391)

1. (a) II
(b) I
(c) IV
(d) III

Graphs for Exercises 3(a), 5(a), 7(a), 9(a), 11(a), 13(a)

Answers may vary in Exercises 3(b)-13(b).

3. (b) $\left(1,405^{\circ}\right),\left(-1,225^{\circ}\right)$
(c) $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
4. (b) $\left(-2,495^{\circ}\right),\left(2,315^{\circ}\right)$
(c) $(\sqrt{2},-\sqrt{2})$
5. (b) $\left(5,300^{\circ}\right),\left(-5,120^{\circ}\right)$
(c) $\left(\frac{5}{2},-\frac{5 \sqrt{3}}{2}\right)$
6. (b) $\left(-3,150^{\circ}\right),\left(3,-30^{\circ}\right)$
(c) $\left(\frac{3 \sqrt{3}}{2},-\frac{3}{2}\right)$
7. (b) $\left(3, \frac{11 \pi}{3}\right),\left(-3, \frac{2 \pi}{3}\right)$
(c) $\left(\frac{3}{2},-\frac{3 \sqrt{3}}{2}\right)$
8. (b) $\left(-2, \frac{7 \pi}{3}\right),\left(2, \frac{4 \pi}{3}\right)$
(c) $(-1,-\sqrt{3})$

Graphs for Exercises 15(a), 17(a), 19(a), 21(a), 23(a), 25(a)

Answers may vary in Exercises 15(b)-25(b).
15. (b) $\left(\sqrt{2}, 315^{\circ}\right),\left(-\sqrt{2}, 135^{\circ}\right)$ 17. (b) $\left(3,90^{\circ}\right)$, $\left(-3,270^{\circ}\right)$ 19. (b) $\left(2,45^{\circ}\right),\left(-2,225^{\circ}\right)$
21. (b) $\left(\sqrt{3}, 60^{\circ}\right),\left(-\sqrt{3}, 240^{\circ}\right)$
23. (b) $\left(3,0^{\circ}\right)$,
$\left(-3,180^{\circ}\right)$ 25. (b) $\left(3,240^{\circ}\right),\left(-3,60^{\circ}\right)$
27. $r=\frac{4}{\cos \theta-\sin \theta}$

29. $r=4$ or $r=-4$

31. $r=\frac{5}{2 \cos \theta+\sin \theta}$

33. $r \sin \theta=k$
34. $r=\frac{k}{\sin \theta}$
35. $r=k \csc \theta$
36. $y=3$

37. $r \cos \theta=k$
38. $r=\frac{k}{\cos \theta}$
39. $r=k \sec \theta$
40. $x=3$

41. C
43. A
45. cardioid

49. four-leaved rose

53. cardioid

59. $y^{2}=4(x+1)$

63. $x=2$

67.
$\frac{\pi}{2}$
69. $r=\frac{2}{2 \cos \theta+\sin \theta}$
71. (a) $(r,-\theta)$

(b) $(r, \pi-\theta)$ or $(-r,-\theta)$
(c) $(r, \pi+\theta)$ or $(-r, \theta)$

75. $r=1.5 \theta,-4 \pi \leq \theta \leq 4 \pi$
77. $\left(2, \frac{\pi}{6}\right),\left(2, \frac{5 \pi}{6}\right),(0,0)$
79. $\left(\frac{4+\sqrt{2}}{2}, \frac{\pi}{4}\right),\left(\frac{4-\sqrt{2}}{2}, \frac{5 \pi}{4}\right)$
81. (a)

(c) no
(b)

Earth is closest to the sun.

8.6 Exercises (pages 397-400)

1. C 3. A
2. (a)

(b) $y=x^{2}-4 x+4$, for x in $[1,3]$
3. (a)

(b) $y=x-2$,
for x in $(-\infty, \infty)$
4. (a)

(b) $y=2 \sqrt{1+\frac{x^{2}}{9}}$,
for x in $(-\infty, \infty)$
5. (a)
(b) $y=\sqrt{x^{2}+2}$,
for x in $(-\infty, \infty)$

6. (a)

(b) $y=3 x^{2}-4$, for x in $[0,2]$
7. (a)

(b) $x^{2}+y^{2}=4$, for x in $[-2,2]$
8. (a)

(b) $y=\frac{1}{x}$,
for x in $(0,1$]
9. (a)

(b) $(x-2)^{2}+(y-1)^{2}=1$,
10. (a)

(b) $y=\frac{1}{x}$, for x in $(-\infty, 0) \cup(0, \infty)$
11.

$$
x^{2}+y^{2}=9
$$

23. (a)

(b) $y=x-6$, for x in $(-\infty, \infty)$
24.

$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

Answers may vary for Exercises 29 and 31.

29. $x=t, y=(t+3)^{2}-1$, for t in $(-\infty, \infty) ; x=t-3$, $y=t^{2}-1$, for t in $(-\infty, \infty)$ 31. $x=t, y=t^{2}-2 t+3$, for t in $(-\infty, \infty) ; x=t+1, y=t^{2}+2$, for t in $(-\infty, \infty)$ 33.

30.

$x=2 \cos t, y=3 \sin 2 t$, for t in $[0,6.5]$
37.

$x=3 \sin 4 t, y=3 \cos 3 t$, for t in $[0,6.5]$
39. (a) $x=24 t, y=-16 t^{2}+24 \sqrt{3} t$
(b) $y=-\frac{1}{36} x^{2}+\sqrt{3} x \quad$ (c) $2.6 \mathrm{sec} ; 62 \mathrm{ft}$
41. (a) $x=\left(88 \cos 20^{\circ}\right) t, y=2-16 t^{2}+\left(88 \sin 20^{\circ}\right) t$
(b) $y=2-\frac{x^{2}}{484 \cos ^{2} 20^{\circ}}+\left(\tan 20^{\circ}\right) x$
(c) $1.9 \mathrm{sec} ; 161 \mathrm{ft}$
43. (a) $y=-\frac{1}{256} x^{2}+\sqrt{3} x+8$; parabolic path
(b) approximately 7 sec ; approximately 448 ft
45. (a) $x=32 t, y=32 \sqrt{3} t-16 t^{2}+3$
(b) about 112.6 ft (c) 51 ft maximum height; The ball had traveled horizontally about 55.4 ft .
(d) yes
47. (a)
$x=56.56530965 t$
$y=-16 t^{2}+67.41191099 t$

49. Many answers are possible; for example,
$y=a(t-h)^{2}+k, x=t$ and $y=a t^{2}+k, x=t+h$.
51. Many answers are possible; for example, $x=a \sin t$, $y=b \cos t$ and $x=t, y^{2}=b^{2}\left(1-\frac{t^{2}}{a^{2}}\right)$.
55. The graph is translated c units to the right.

Chapter 8 Review Exercises (pages 404-406)

1. $3 i$
2. $\{ \pm 9 i\}$
3. $-2-3 i$
4. $5+4 i$
5. $29+37 i$
6. $-32+24 i$
7. $-2-2 i$
8. $2-5 i$
9. $-\frac{3}{26}+\frac{11}{26} i$
10. i
11. $-30 i$
12. $-\frac{1}{8}+\frac{\sqrt{3}}{8} i$
13. $8 i$
14. $-\frac{1}{2}-\frac{\sqrt{3}}{2} i$
15.

31.

33. $2 \sqrt{2}\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)$
35. $-\sqrt{2}-i \sqrt{2}$
37. $\sqrt{2}\left(\cos 315^{\circ}+i \sin 315^{\circ}\right)$
39. $4\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$
41. It is the line $y=-x$.
43. $\sqrt[6]{2}\left(\cos 105^{\circ}+i \sin 105^{\circ}\right), \sqrt[6]{2}\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)$,
$\sqrt[6]{2}\left(\cos 345^{\circ}+i \sin 345^{\circ}\right)$
45. none
47. $\left\{2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right), 2\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)\right.$,
$\left.2\left(\cos 225^{\circ}+i \sin 225^{\circ}\right), 2\left(\cos 315^{\circ}+i \sin 315^{\circ}\right)\right\}$
49. $\left\{\cos 135^{\circ}+i \sin 135^{\circ}, \cos 315^{\circ}+i \sin 315^{\circ}\right\}$
51. $\left(2,120^{\circ}\right)$
53. circle

55. eight-leaved rose

$=2 \sin 4 \theta$
57. $y^{2}=-6\left(x-\frac{3}{2}\right)$, or $y^{2}+6 x-9=0$
59. $x^{2}+y^{2}=4$
61. $r=\tan \theta \sec \theta$, or $r=\frac{\tan \theta}{\cos \theta}$
63. B 65. C
67. $r=2 \sec \theta$, or $r=\frac{2}{\cos \theta}$
69. $r=\frac{4}{\cos \theta+2 \sin \theta}$
71.
73. $y=\sqrt{x^{2}+1}$, for x in $[0, \infty)$
$\stackrel{y}{f}\left(\frac{\pi}{2}, 1\right)$
$\left(\frac{\pi}{2}, 1\right),(\pi-1,0)(2 \pi+1,0)$
75. $y=3 \sqrt{1+\frac{x^{2}}{25}}$, for x in $(-\infty, \infty)$
77. $y^{2}=-\frac{1}{2}(x-1)$, or $2 y^{2}+x-1=0$, for x in $[-1,1]$
79. (a) $x=\left(118 \cos 27^{\circ}\right) t, y=3.2-16 t^{2}+\left(118 \sin 27^{\circ}\right) t$ (b) $y=3.2-\frac{4 x^{2}}{3481 \cos ^{2} 27^{\circ}}+\left(\tan 27^{\circ}\right) x$ (c) $3.4 \mathrm{sec} ; 358 \mathrm{ft}$

Chapter 8 Test (pages 406-407)
[8.1] 1. (a) $-4 \sqrt{3}$
(b) $\frac{1}{2} i$
(c) $\frac{1}{3}$
[8.1, 8.2] 2. (a) $7-3 i$
(b) $-3-5 i$

(c) $14-18 i$
(d) $\frac{3}{13}-\frac{11}{13} i$
3. (a) $-i \quad$ (b) $2 i \quad$ [8.1] 4. $\left\{\frac{1}{4} \pm \frac{\sqrt{31}}{4} i\right\}$
[8.2] 5. (a) $3\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$
(b) $\sqrt{5}$ cis 63.43°
(c) $2\left(\cos 240^{\circ}+i \sin 240^{\circ}\right)$
6. (a) $\frac{3 \sqrt{3}}{2}+\frac{3}{2} i$
$\begin{array}{ll}\text { (b) } 3.06+2.57 i & \text { (c) } 3 i\end{array}$
[8.3, 8.4] 7. (a) $16\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)$
(b) $2 \sqrt{3}+2 i$
(c) $4 \sqrt{3}+4 i$
[8.4
8.4] 8. 2 cis $67.5^{\circ}, 2$ cis
157.5°,
2 cis $247.5^{\circ}, 2$ cis 337.5° [8.5] 9. Answers may vary.
(a) $\left(5,90^{\circ}\right),\left(5,-270^{\circ}\right)$
(b) $\left(2 \sqrt{2}, 225^{\circ}\right),\left(2 \sqrt{2},-135^{\circ}\right)$
10. (a) $\left(\frac{3 \sqrt{2}}{2},-\frac{3 \sqrt{2}}{2}\right)$
(b) $(0,-4)$
11. cardioid
12. three-leaved rose

270
$=3 \cos 3 \theta$
13. (a) $x-2 y=-4$
(b) $x^{2}+y^{2}=36$

[8.6] 14.

15.

[8.2] 16. $z^{2}-1=-1-2 i ; r=\sqrt{5}$ and $\sqrt{5}>2$

Appendices

Appendix A Exercises (pages 416-418)

1. true
2. false
3. B
4. $\{-4\}$
5. $\{1\}$
6. $\left\{-\frac{2}{7}\right\}$
7. $\left\{-\frac{7}{8}\right\}$
8. $\{-1\}$
9. $\{10\}$
10. $\{75\}$
11. $\{0\}$
12. identity; $\{$ all real numbers $\}$
13. conditional
equation; $\{0\}$
14. contradiction; \varnothing 29. D; $\left\{\frac{1}{3}, 7\right\}$
15. A, B, C, D
16. $\{2,3\}$
17. $\left\{-\frac{2}{5}, 1\right\}$
18. $\left\{-\frac{3}{4}, 1\right\}$
19. $\{ \pm 10\}$
20. $\left\{\frac{1}{2}\right\}$
21. $\left\{-\frac{3}{5}\right\}$
22. $\{ \pm 4\}$
23. $\{ \pm 3 \sqrt{3}\}$
24. $\left\{\frac{1 \pm 2 \sqrt{3}}{3}\right\}$
25. $\{1,3\}$
26. $\left\{-\frac{7}{2}, 4\right\}$
27. $\{1 \pm \sqrt{3}\}$
28. $\left\{-\frac{5}{2}, 2\right\}$
29. $\left\{\frac{2 \pm \sqrt{10}}{2}\right\}$
30. $\left\{\frac{-1 \pm \sqrt{97}}{4}\right\}$
31. $\left\{\frac{-2 \pm \sqrt{10}}{2}\right\}$
32. $\left\{\frac{-3 \pm \sqrt{41}}{8}\right\}$
33. F
34. A
35. I
36. B 75. E
37. $[-4, \infty)$
38. $[-1, \infty)$
39. $(-\infty, \infty)$
40. $(-\infty, 4)$
41. $\left[-\frac{11}{5}, \infty\right)$
42. $\left(-\infty, \frac{48}{7}\right]$
43. $(-5,3)$
44. $[3,6]$
45. $(4,6)$
46. $[-9,9]$
47. $(-16,19]$

Appendix B Exercises (pages 424-425)
1., 3., 5., 7. I

9. (a) $\sqrt{34}$
(b) $\left(\frac{11}{2}, \frac{7}{2}\right)$
11. (a) $3 \sqrt{41}$
(b) $\left(0, \frac{5}{2}\right)$
13. (a) $\sqrt{133}$
(b) $\left(2 \sqrt{2}, \frac{3 \sqrt{5}}{2}\right)$
15. 25.35%; This is very close to the actual figure of 25.2%.

Other ordered pairs are possible in Exercises 17-27.
17. (a)

\boldsymbol{x}	\boldsymbol{y}
0	-2
4	0
2	-1

(b)

19. (a)

\boldsymbol{x}	\boldsymbol{y}
0	$\frac{5}{3}$
$\frac{5}{2}$	0
4	-1

(b)

21. (a)

\boldsymbol{x}	\boldsymbol{y}
0	0
1	1
-2	4

(b)

23. (a)

\boldsymbol{x}	\boldsymbol{y}
3	0
4	1
7	2

25. (a)

\boldsymbol{x}	\boldsymbol{y}
4	2
-2	4
0	2

(b)

(b)

27. (a)

\boldsymbol{x}	\boldsymbol{y}
0	0
-1	-1
2	8

(b)

29. (a) $x^{2}+y^{2}=36$
(b)

31. (a) $(x-2)^{2}+y^{2}=36$
(b)

33. (a) $x^{2}+(y-4)^{2}=16$
(b)

35. (a) $(x+2)^{2}+(y-5)^{2}=16$
(b)

37. (a) $(x-5)^{2}+(y+4)^{2}=49$
(b)

39. (a) $(x-\sqrt{2})^{2}+(y-\sqrt{2})^{2}=2$
(b)

41. $(x-3)^{2}+(y-1)^{2}=4$
43. $(x+2)^{2}+(y-2)^{2}=4$

Appendix C Exercises (pages 434-436)

1. function
2. not a function
3. function
4. function
5. not a function; domain: $\{0,1,2\}$;
range: $\{-4,-1,0,1,4\}$ 11. function; domain:
$\{2,3,5,11,17\}$; range: $\{1,7,20\}$ 13. function; domain: $\{0,-1,-2\}$; range: $\{0,1,2\}$ 15. function; domain: $(-\infty, \infty)$; range: $(-\infty, \infty)$ 17. not a function; domain: $[3, \infty)$; range: $(-\infty, \infty)$
6. function; domain: $(-\infty, \infty)$;
range: $(-\infty, \infty)$ 21. function; domain: $(-\infty, \infty)$;
range: $[0, \infty)$ 23. not a function; domain: $[0, \infty)$;
range: $(-\infty, \infty)$ 25. function; domain: $(-\infty, \infty)$; range: $(-\infty, \infty)$ 27. function; domain: $[0, \infty)$; range: $[0, \infty)$
7. function; domain: $(-\infty, 0) \cup(0, \infty)$; range: $(-\infty, 0) \cup(0, \infty)$ 31. function; domain: $\left[-\frac{1}{4}, \infty\right)$; range: $[0, \infty)$ 33. function; domain: $(-\infty, 3) \cup(3, \infty)$; range: $(-\infty, 0) \cup(0, \infty) \quad$ 35. 4 37. -11 39. 3
8. $\frac{11}{4}$
9. $-3 p+4$
10. $3 x+4$
11. $-3 x-2$
12. $-6 m+13$
13. (a) 2
(b) 3
14. (a) 15
(b) 10
15. (a) 3
(b) -3
16. (a) 0
(b) 4
(c) 2
(d) 4
17. (a) -3
(b) -2
(c) 0
(d) 2 61. (a) $[4, \infty)$
(b) $(-\infty,-1]$
(c) $[-1,4]$
18. (a) $(-\infty, 4]$
(b) $[4, \infty)$
(c) none
19. (a) none
(b) $(-\infty,-2]$;
$[3, \infty)$
(c) $(-2,3)$

Appendix D Exercises (pages 444-448)

1. (a) B
(b) D
(c) E
(d) A
(e) C
2. (a) B
(b) A
(c) G
(d) C
(e)
(c) H
(d) D
(e) G (f) A
3. (a) F
(b) C
(g) E
(h) I
(i) B
4.

9.

11.

13.

15.

17.

19.

21.

23.

25. (a) $(4,12)$
(b) $(8,16)$
27. (a) $(2,12)$
(b) $(32,12)$
29.

31.

33. y-axis
35. x-axis, y-axis, origin
37. origin
39. none of these
43.

41.

45.

49.

53.

47.

51.

55.

57.

59.

61.

63.

65. It is the graph of $f(x)=|x|$ translated 1 unit to the left, reflected across the x-axis, and translated 3 units up. The equation is $y=-|x+1|+3$. 67. It is the graph of $g(x)=\sqrt{x}$ translated 1 unit to the right and translated 3 units down. The equation is $y=\sqrt{x-1}-3$.
69. It is the graph of $g(x)=\sqrt{x}$ translated 4 units to the left, stretched vertically by a factor of 2 , and translated
4 units down. The equation is $y=2 \sqrt{x+4}-4$.
71. $f(-3)=-6$
73. $f(9)=6$
75. $f(-3)=-6$

Photo Credits

page 1: EdBockStock/Shutterstock page 13: Pinggr/Shutterstock page 20: (sun) Silver Tiger/Shutterstock; (redwoods) Harry Spurling/Corbis page 45: Carroteater/Shutterstock page 64: VladKol/Shutterstock page 67: Manfredxy/ Shutterstock page 71: AP Images page 75: Holbox/Shutterstock page 85: Engine Images/Fotolia page 90: Goodshoot/Thinkstock page 93: Triff/Shutterstock page 100: Joseph Kim/Shutterstock page 103: Comstock/Thinkstock page 121: Pixland/Thinkstock page 125: J. Bell, Cornell University/M. Wolff, Space Science Center/NASA page 130: Trinacria Photo/Shutterstock page 133: Christopher Meder Photography/Shutterstock page 146: TextArt/Fotolia page 153: Natalia Bratslavsky/Shutterstock page 158: Lisa F. Young/Shutterstock page 159: Rob Hainer/Shutterstock page 179: Alexander Sakhatovsky/Shutterstock page 186: Photos/Thinkstock page 189: Photos/Thinkstock page 201: Paul Matthew Photography/Shutterstock page 214: Lifesize/Thinkstock page 223: Iconogenic/iStockphoto page 232: Digital Vision/Thinkstock page 238: Comstock/Thinkstock page 245: Blazej Lyjak/Shutterstock page 257: Engine Images/Fotolia page 272: Ingrid Balabanova/Shutterstock page 274: Alenavlad/Shutterstock page 275: Lijuan Guo/Shutterstock page 288: Pete Saloutos/Shutterstock page 289: Kadmy/Fotolia page 298: Courtesy of Courtney Bolluyt page 306: Shutterstock page 336: (pyramids) Sculpies/Shutterstock; (motorboat) Mypokcik/Shutterstock page 349: Mishan/Shutterstock page 363: Ross Anderson page 373: North Wind Picture Archives/Alamy page 377: (both fractals) Ross Anderson page 391: NatUlrich/Shutterstock page 406: $\mathrm{Xymm} /$ Fotolia page 427: Courtesy of John Hornsby

This page intentionally left blank

Index of Applications

Astronomy

Angle of elevation of the sun, $76,87-88,115,119$
Angular and linear speeds of Earth, 125
Circumference of Earth, 108
Diameter of the moon, 129
Diameter of the sun, 74
Distance to the moon, 297
Fluctuation in the solar constant, 147
Height of a satellite, 91
Orbital speed of Jupiter, 132
Orbits of a space vehicle, 100
Orbits of satellites, 391
Phase angle of the moon, 131
Roll of a spacecraft, 223-224
Satellites, 123
Simulating gravity on the moon, 399
Sizes and distances in the sky, 20
Solar eclipse on a planet, 19, 20
Velocity of a star, 338
Viewing field of a telescope, 10

Automotive

Accident reconstruction, 268
Area cleaned by a windshield wiper, 107
Braking distance, 66-67
Car speedometer, 105
Car's speed at collision, 67
Force needed to keep a car parked, 335
Grade resistance, 62-63, 65
Measuring speed by radar, 64
Rotating tire, 9, 44
Rotation of a gas gauge arrow, 132
Speed limit on a curve, 66
Stopping distance on a curve, 85

Biology and Life Sciences

Activity of a nocturnal animal, 146
Distance between atoms, 297
Fish's view of the world, 66
Lynx and hare populations, 186

Construction

Carpentry technique, 17
Distance between a beam and cables, 316
Distance between a pin and a rod, 338
Distance between points on a crane, 316
Height of a building, 19, 74, 75, 76, 79, 84, 305
Length of a brace, 344
Longest vehicular tunnel, 72
Required amount of paint, 318
Surveying, 10, 79, 91, 339

Truss construction, 309, 316
Wires supporting a flagpole, 338

Energy

Area of a solar cell, 67
Land required for solar-power plant, 107
Utility bills, 158
Wattage consumption, 228, 232

Engineering

Aerial photography, 298, 299
Alternating electric current, 210-211, 275, 281, 358
Altitude of a mountain, 92
Amperage, wattage, and voltage, 232, 244
Angle formed by radii of gears, 297
Angle the celestial North Pole moves, 43
Angular and linear speed of a point, 132
Angular speed of a pulley, 122, 125, 126, 128
Antenna mast guy wire, 92
Communications satellite coverage, 261
Distance across a canyon, 296, 343
Distance across a lake or river, 74, 292-293, 296, 297, 308, 314
Distance across a ravine, 315
Distance between inaccessible points, 305, 308
Distance of a rotating beacon, 168, 175
Distance through a tunnel, 84
Electrical adapters, 210
Electrical current, 214, 371
Electromotive force, 268, 276
Error in measurement, 76
Force needed for a monolith, 336
Gears, 102, 104
Ground distances measured by aerial photography, 298
Height of a mountain, 72, 76, 83
Height of a tree, 14, 18, 71, 79-80, 90, 344, 348
Height of an object or structure, 14, 18, $19,71,75,83,90,92,297,305$
Highway curves, 65-66, 84
Highway grades, 65
Impedance, 359, 371
Latitudes, 104
Length of a sag curve, 60
Length of a tunnel, 317
Linear speed of a belt, 122, 125, 128
Longitude, 108
Measurement using triangulation, 317
Pipeline position, 344
Programming language, 281

Pulley raising a weight, 105
Radio direction finders, 348
Radio towers and broadcasting patterns, 391
Radio tuners, 201, 204
Railroad curves, 107, 238
Railroad engineering, 100
Revolutions, 7, 9
Rope wound around a drum, 102
Rotating pulley, 9, 40, 100
Rotating wheels, 105
Voltage, 146, 223, 244, 268

Environment

Atmospheric carbon dioxide, 146, 147
Average monthly temperature, 275
Forest fire location, 293
Pollution trends, 186

General Interest

Angle of a hill, 335, 346
Bachelor's degree attainment, 424
Basins of attraction, 377-378
Colors of the U.S. flag, 306
Daylight hours in New Orleans, 275
Depth of field, 281
Distance between a whale and a lighthouse, 83
Distance between transmitters, 82
Distance between two factories, 317
Distance from the ground to the top of a building, 75
Distance of a plant from a fence, 84
Estimates of heights, 20
Hanging sculpture, 344
Height of a ladder on a wall, 74
Hours in a Martian day, 125
Irrigation area, 103, 107
Julia set, 363-364, 365, 407
Landscaping formula, 261
Length of a day, 119
Length of a shadow, $21,42,44,75$
Linear speed of a flywheel, 130
Mandelbrot set, 377, 406
Measurement of a folding chair, 297
Measures of a structure, 107
Measuring paper curl, 109
Movement of an arm, 282
Observation of a painting, 260-261
Oil in a storage tank, 261
Poverty level income cutoffs, 425
Rotating hands on a clock, 99, 100
Viewing angle, 184, 282, 286
Walking dogs on leashes, 348
Weight of a box, 336

Geology

Archaeology, 131
Depth of a crater on the moon, 43
Height of a lunar peak, 43
Tides, 145, 185
Volcano movement, 320

Geometry

Altitude of a triangle, 74
Angle in a parallelogram, 315
Angle measure of a star on the American flag, 10
Angle measure, 107, 129
Angle of depression, 72
Angle of elevation, 71, 75, 257, 260
Arc length, 107, 129
Area of a lot, 108
Area of a metal plate, 299
Area of a sector, 129
Area of a triangular shaped object or region, 299, 318, 345
Circumference of a circle, 72
Diagonals of a parallelogram, 315
Distance between ends of the Vietnam Memorial, 315
Height of a pyramid, 83
Heron triangles, 318
Incline angle, 333, 336, 348
Length of a diagonal, 91
Length of a side of a piece of land, 85
Lengths of sides of an isosceles triangle, 91
Perfect triangles, 318
Radius of a spool of thread, 126
Side lengths of a triangle, 18, 74
Theorem of Ptolemy, 299
Triangle inscribed in a circle, 299
Volume of a solid, 109

Medical

Back stress, 223
Blood pressure variation, 145
Double vision, 90
Pressure on the eardrum, 268

Music

Frequency of a note on the piano, 179 Hearing beats in music, 274

Hearing difference tones, 275
Musical sound waves, 147
Musical tone, 266
Pressure of a plucked string, 274
Pressures of upper harmonics, 272
Tone heard by a listener, 281

Physics

Analyzing harmonic motion, 178
Angle between forces, 335
Angle of depression of a light, 76
Damped oscillatory motion, 180
Direction and magnitude of an equilibrant, 332,335
Distance traveled by a stone, 244
Finding a required force, 332
Flight of a model rocket, 396, 399
Force placed on a barge, 346
Incline force, 346
Intensity of a lamp, 204
Magnitude of forces, 324, 332, 335
Oscillating spring, 182, 204
Particle movement, 179, 268
Path of a projectile, 397, 400
Path of a rocket, 396-397, 399
Pendulum motion, 179
Snell's law, 66, 286
Sound waves, 214
Speed of light, 66
Spring motion, 177-178, 179, 180, 188
Weight of a crate and tension of a rope, 336

Sports and Entertainment

Distance on a baseball or softball diamond, 316
Ferris wheel, 130, 132
Flight of a baseball or softball, 399, 406
Golf, 126, 396, 399
Leading NFL receiver, 72
Movement of a runner's arm, 288
Playing on a swing, 339
Revolutions of a carousel, 100
Revolutions of a CD player, 7
Rotating flywheel, 21
Shot put distance or angle of elevation, 85, 257, 260

Swimmer in distress, 43
Swing of a tennis racket, 121
Top WNBA scorer, 72
Weight of a sled and passenger, 346

Travel

Airplane distance, 75, 81, 315
Airspeed of a plane, 337, 348
Angular speed of a motor propeller, 126
Bearing, 77-78, 81, 333, 334-335, 336, 337, 339, 348
Bicycle chain drive, 105
Direction and speed of a plane, 346
Distance and direction of a motorboat, 336
Distance between two cities or towns, 82, 101, 104, 129, 311, 320
Distance between two structures or objects, 82, 293, 297, 315, 316, 317, 338, 344, 345
Distance, 81, 91, 92, 106, 296, 315, 316, 317, 336
Flight path of a plane, 305
Ground speed of a plane, 337, 339
Height of an airplane, 84, 339
Hot-air balloon, 297, 319, 339, 347
Length of a road, 41
Length of a train, 106
Mach number, 237
Movement of a motorboat, 337
Nautical miles, 108, 286
Path of a ship, 317
Path traveled by a plane, 337
Rotating propeller, 9, 40
Speed and direction of a boat, 346
Speed of a bicycle, 125
Time to move along a railroad track, 126

Weather

Average temperature, 142, 144-145, 147, 153-154, 157, 158, 159, 185, 188
Cloud ceiling, 75
Maximum temperatures, 119, 185
Measuring rainfall, 338
Temperature in Fairbanks, 119
Wind and vectors, 339

A

Abscissa, 174
Absolute value
of a complex number, 361
symbol for, 436
Absolute value function, graph of, 436
Acute angles
definition of, 2
trigonometric functions of, 46
Acute triangle, 12, 291

Addition

of complex numbers, 353
of ordinates, 174
property of equality, 409
Adjacent side to an angle, 46
Aerial photography, 299
Airspeed, 334
Alternate exterior angles, 11
Alternate interior angles, 11
Alternating current, 210
Ambiguous case of the law of sines, 300
Amplitude
of cosine function, 137
definition of, 137
of sine function, 137

Angle(s)

acute, 2, 46
adjacent side to an, 46
alternate exterior, 11
alternate interior, 11
complementary, 3
corresponding, 11
coterminal, 5
critical, 286
definition of, 2
of depression, 71
direction angle for vectors, 322
of elevation, 71, 79
of inclination, 333
initial side of, 2
measure of, $2,58,62$
negative, 2
obtuse, 2
opposite side to an, 46
phase, 131
positive, 2
quadrantal, 5
reference, 54-56
right, 2
side adjacent to, 46
side opposite, 46
significant digits for, 68
special, 49, 56, 58
standard position of, 5

straight, 2

subtend an, 106
supplementary, 3
terminal side of, 2
types of, 2
between vectors, 328
vertex of, 2
vertical, 10
Angle-Side-Angle (ASA), 290
Angle sum of a triangle, 12
Angular speed
applications of, 122
definition of, 121
formula for, 121
Applied trigonometry problems, steps to solve, 71
Approximately equal to
definition of, 51
symbol for, 51
$\arccos x, 250$
$\operatorname{arccot} x, 252$
$\operatorname{arccsc} x, 252$
Archimedes, spiral of, 385-386
Arc length, 100
$\operatorname{arcsec} x, 252$
$\arcsin x, 248$
$\arctan x, 251$
Area of a sector, 102-103
Area of a triangle
deriving formula for, 293-294
Heron's formula for, 310
Argument
of a complex number, 361
definition of, 148
of a function, 148, 193
Asymptote, vertical, 159
Axis
horizontal, 359
imaginary, 359
polar, 379
real, 359
reflecting a graph across an, 438-439
symmetry with respect to an,
439-440
vertical, 359
x-, 418
$y-, 418$

B

Bearing, 77-78, 333
Beats, 274
Braking distance, 66
British nautical mile, 286

C

Calculators. See Graphing calculators
Cardioids, 383
Cartesian coordinate system, 418
Cartesian equations, 382

Center of a circle, 423
Center-radius form of the equation of a circle, 423
Circle
arc length of, 100
center of, 423
circumference of, 94
definition of, 423
equation of, 423
graph of, 423
polar form of, 382-383, 387
radius of, 423
sector of, 102
unit, 110
Circular functions
applications of, 115
definition of, 110
domains of, 112
evaluating, 112
finding numbers with a given
circular function value, 114
finding values of, 112
Circumference of a circle, 94
cis $\theta, 361$
Cissoid
graphing, 389
with a loop, 389
Clinometer, 75, 90
Closed interval, 415
Cloud ceiling, 75
Cofunction identities, 47, 207
Cofunctions of trigonometric functions, 47
Complementary angles, 3
Complex conjugates, 355
Complex number(s)
absolute value of, 361
argument of, 361
conjugate of, 355
definition of, 350
De Moivre's theorem for, 372
graph of, 359
imaginary part of, 350
modulus of, 361
nonreal, 350
nth root of, 372
nth root theorem for, 373
operations on, 352
polar form of, 361
powers of, 372
product theorem for, 367
pure imaginary, 350
quotient theorem for, 368
real part of, 350
rectangular form of, 359
roots of, 372
standard form of, 350, 359
trigonometric form of, 361

Complex plane
imaginary axis of, 359
real axis of, 359
vector representation and, 359
Components of a vector
horizontal, 322
vertical, 322
Conditional equation, 411
Conditional trigonometric equations
factoring method for solving, 263
with half-angles, 269
linear methods for solving, 262
with multiple angles, 270-271
satisfying, 262
solving with the quadratic formula, 264
steps to solve algebraically, 265
using trigonometric identities to solve, 264, 265
Congruence axioms, 290
Congruent triangles, 12, 290
Conjugate of a complex number, 355
Constant function, 432-433
Contradiction, 411
Coordinate (xy) plane, 418
Coordinates, photographic, 299
Coordinate system
Cartesian, 418
polar, 134, 379
rectangular, 379, 418
Corresponding angles, 11
Cosecant function
characteristics of, 170
definition of, 22
domain of, 170
graph of, 170
inverse of, 252
period of, 170
range of, 32, 170
steps to graph, 171
Cosine function
amplitude of, 137
characteristics of, 136
definition of, 22
difference identity for, 205-206
domain of, 136
double-angle identity for, 224-225
graph of, 136
half-angle identity for, 233
horizontal translation of, 150
inverse of, 250-251
period of, 136, 139
range of, 32, 136
steps to graph, 140, 152
sum identity for, 206
translating graphs of, 150, 151, 152
vertical translation of, 151
Cosines, law of, 306-307
Cotangent function
characteristics of, 161
definition of, 22
domain of, 161
graph of, 161
horizontal translation of, 164
inverse of, 252
period of, 161
range of, 32,161
steps to graph, 162
vertical translation of, 164

Coterminal angles, 5
Critical angle, 286
Curvature, degree of, 107, 238
Cycloid
graph of, 395
definition of, 394

D

Damped oscillatory motion, 178
Decimal degrees, 4
Decreasing function, 432-433
Degree measure
converting to radian measure, 94-95 definition of, 2
Degree mode, calculators in, 24, 61
Degree of curvature, 107, 238
Degree/radian relationship
converting measures, 94-95
table of, 96
De Moivre, Abraham, 372
De Moivre's theorem, 372
Denominator, rationalizing, 23, 30, 33-34
Dependent variable, 426
Depression, angle of, 71
Derivatives
of parametric equations, 70
of trigonometric functions, 197
Diastolic pressure, 145
Difference identity
application of, 208, 217
for cosine, 205
for sine, 215-216
for tangent, 216
Difference tones, 275
Digits, significant, 68
Direction angle for a vector, 322
Distance formula, 419
Division of complex numbers, 355
Domain(s)
of circular functions, 112
of inverse circular functions, 253
of a relation, 427
Dot product of vectors definition of, 325-326
geometric interpretation of, 327
properties of, 326
Double-angle identities
definition of, 224
for functions, 224-225
simplifying expressions using, 227
verifying, 227

E

Eccentricity $e, 391$
Elevation, angle of, 71, 79
Ellipse, 393
Empty set, 411
Endpoint of a ray, 2
Epitrochoids, 394
Equation(s)
Cartesian, 382
of a circle, 423
with complex solutions, 351-352
conditional, 411
conditional trigonometric. See Conditional trigonometric equations
connecting graphs with, $141,165,173$
definition of, 409
equivalent, 409
first-degree, 409
linear, 409
parametric, 70, 148, 392
polar, 382-386, 387
quadratic, 412
rectangular, 386
second-degree, 412
solution of, 409
solution set of, 409
steps to graph, 422
trigonometric. See Trigonometric equations
types of, 411
Equilateral triangle, 12
Equilibrant vector, 331
Equivalent equations, 409
Even function, 136, 194
Exact number, 68

F

First-degree equation, 409
Four-leaved rose, 384
Fractals, 363
Frequency
definition of, 177
of functions, 146
fundamental, 272
Function(s)
absolute value, 436
argument of, 148, 193
circular. See Circular functions
constant, 432-433
cosecant. See Cosecant function
cosine. See Cosine function
cotangent. See Cotangent function
decreasing, 432-433
definition of, 426
domain of, 427
even, 136, 194
frequency of, 146
horizontal translations of, 443
increasing, 432-433
integrals of, 229
inverse, 246-247
inverse cosecant, 252
inverse cosine, 250-251
inverse cotangent, 252
inverse secant, 252
inverse sine, 248-249
inverse tangent, 251-252
notation, 431
odd, 135, 194
one-to-one, 246
periodic, 134
range of, 427
secant. See Secant function
sine. See Sine function
sinusoidal, 153
tangent. See Tangent function
trigonometric. See Trigonometric functions
vertical line test for, 428
vertical translations of, 442
Fundamental frequency, 272
Fundamental identities, 190-191

G

Grade, 100
Grade resistance, 62
Graph(s)
of complex numbers, 359
compressed, 137
connecting with equations, 141, 165, 173
of cosecant function, 170
of cosine function, 136
of cotangent function, 161
of equations, 421
of inverse cosecant function, 252
of inverse cosine function, 250, 251
of inverse cotangent function, 252
of inverse functions, 247
of inverse secant function, 252
of inverse sine function, 248, 249
of inverse tangent function, 251, 252
parametric, 392
of polar coordinates, 380
of polar equations, 382-386
reflecting, 438
of secant function, 169
shrinking, 437-438
of sine function, 135
stretched, 137
stretching, 437-438
summary of polar, 387
of tangent function, 160
Graphing calculators
analyzing the path of a projectile, 397
converting from trigonometric form
to rectangular form, 361
degree mode in, 24, 61
finding magnitude and direction angle of vectors, 322
finding trigonometric function values with, 61-62
graphing a cycloid, 395
graphing a plane curve defined parametrically, 392
graphing of polar equations, 383-386
graphing tangent function, 164
sine regression feature, 153-154
solving problems involving angles of elevation, 79-80
solving trigonometric equations by linear methods, 262
trig viewing window, 137
Ground speed, 334

H

Half-angle identities
application of, 234
definition of, 232
general statement about, 233
simplifying expressions using, 235
trigonometric equations with, 269-270
verifying, 235
Harmonic motion, 177
Heron of Alexandria, 310
Heron's formula
application of, 311
derivation of, 311-313
statement of, 310
Heron triangles, 318

Horizontal axis, 359
Horizontal component of a vector, 322
Horizontal line test for one-to-one functions, 246
Horizontal shrinking of a graph, 438
Horizontal stretching of a graph, 438
Horizontal translations
of cosine function, 150
of cotangent function, 164
definition of, 443
graphing, 148-149
of sine function, 149
Hyperbola, 237
Hyperbolic spiral, 400
Hypotenuse, 46, 419
Hypotrochoids, 394

I
i
definition of, 350
powers of, 356
simplifying powers of, 356
\mathbf{i}, \mathbf{j} unit vectors, 325
Identities, 190, 411. See also
Trigonometric identities
Imaginary axis, 359
Imaginary numbers, 350
Imaginary part of a complex number, 350
Imaginary unit, 350
Impedance, 359, 371
Inclination, angle of, 333
Increasing function, 432-433
Independent variable, 426
Inequality
definition of, 414
properties of, 414
three-part, 415
Initial point of a vector, 320
Initial side of an angle, 2
Inner product of vectors, 325
Integrals of functions, 229
Intercept(s), 421
Interval, 414
Interval notation, 414
Inverse cosecant function general statement about, 252
graph of, 252
Inverse cosine function
general statement about, 250 graph of, 251
Inverse cotangent function general statement about, 252 graph of, 252
Inverse functions
general statement about, 246
graphs of, 247
notation for, 246
summary of concepts, 247
Inverse secant function general statement about, 252 graph of, 252
Inverse sine function general statement about, 248 graph of, 249
Inverse tangent function general statement about, 251 graph of, 252

Inverse trigonometric equations, 276
Inverse trigonometric functions
domains and ranges of, 253
equations with, 276
graphs of, 248-252
notation for, 246
summary of, 253
Isosceles triangle, 12

J

Julia set, 363

L

Lambert's law, 204
Latitude, 101
Law of cosines
applications of, 308-310
applying to solve a triangle, 306
derivation and statement of, 307
Heron's formula and, 310-313
Law of sines
ambiguous case of, 300
applications of, 292-294
derivation and statement of, 291
Law of tangents, 346
Legs of a right triangle, 419
Lemniscate, 385, 387
Limaçons, 386, 387
Line(s). See also Line segment(s)
definition of, 2
parallel, 10
Linear equation in one variable, 409
Linear inequality in one variable, 414
Linear methods for solving
trigonometric equations, 262
Linear speed
applications of, 121-123
definition of, 120
formula for, 120
Line segment(s)
definition of, 2
expressing function values as lengths of, 115-116
finding lengths of, 116
Lissajous figures, 399
Locating points in a plane, 418
Longitude, 108

M

Mach number, 237
Magnitude of a vector, 320
Mandelbrot set, 377
Measure of an angle, 2, 58, 62
Midpoint formula, 420
Minute, 4
Modulus of a complex number, 361
Mollweide's formula, 346
Multiple-angle identity, deriving, 228
Multiple angles, trigonometric equations with, 270
Multiplication of complex numbers, 354
Multiplication property of equality, 409

N

Nautical mile, 108
Negative angle, 2

Negative-angle identities, 190-191
Negative-number identities, 190-191
Newton, 324
Newton's formula, 346
Nonreal complex number, 350
Notation
function, 431
interval, 414-415
inverse function, 246
nth root of a complex number, 372
nth root theorem for complex numbers, 373
Null set, 411
Number(s)
complex, 350
exact, 68
pure imaginary, 350
0
Oblique triangle
congruency and, 290
data required for solving, 290
definition of, 290
finding area of, 293-295
solving procedures for, 291-293
Obtuse angle, 2
Obtuse triangle, 12, 291
Odd function, 135, 194
One-to-one function
definition of, 246
horizontal line test for, 246
Open interval, 414
Opposite of a vector, 321
Opposite side to an angle, 46
Orbital period of a satellite, 391
Ordered pair, 418
Ordinates, addition of, 174
Origin
definition of, 418
symmetry with respect to the, 441
Orthogonal vectors, 328

P

Parabola, 423
Parallel lines
definition of, 10
transversal intersecting, 10
Parallelogram rule for vectors, 321
Parallelograms, properties of, 323
Parametric equations
definition of, 148, 392
derivatives of, 70
of a plane curve, 392
Path of a projectile, 397
Perfect triangle, 318
Periodic functions
definition of, 134
period of, 134
Phase angle, 131
Phase shift, 148
Photographic coordinates, 299
Pi $(\pi), 94$
Plane curve, 392
Polar axis, 379
Polar coordinates of a point definition of, 134, 379 graph of, 380

Polar coordinate system
definition of, 379
polar axis of, 379
pole of, 379
Polar equations
calculator graphing of, 383-386
classifying, 386-387
converting to rectangular equations, 386
definition of, 382
graphs of, 382-386
Polar form
of a complex number, 361
of lines and circles, 382
Polar grid, 383
Pole of a polar coordinate system, 379
Polya, George, 71
Position vector, 322
Positive angle, 2
Powers
of complex numbers, 372
of $i, 356$
Prism diopters, 90
Product theorem for complex numbers, 367
Product-to-sum identities, 229
Properties of equality, 409
Properties of inequality, 414
Properties of parallelograms, 323
Ptolemy, 299
Pure imaginary numbers, 350
Pythagorean identities, 33, 191
Pythagorean theorem, 419

0

Quadrantal angles, 5
Quadrants, 418
Quadratic equation
definition of, 412
standard form of, 412
Quadratic formula, 413
Quotient identities, 34, 191
Quotient theorem for complex numbers, 368

R

Radian, 94
Radian/degree relationship
converting measures, $94-95$
table of, 96
Radian measure
applications of, 101-102
converting to degree measure, 94-95
definition of, 94
Radius of a circle, 423
Range(s)
of inverse circular functions, 253
of a relation, 427
of trigonometric functions, 32
Ray
definition of, 2
endpoint of, 2
r cis $\theta, 361$
Reactance, 359
Real axis, 359
Real part of a complex number, 350
Reciprocal, 28
Reciprocal identities, 28-29, 191

Rectangular coordinates, converting to and from polar coordinates, 380
Rectangular coordinate system, 418
Rectangular equations
converting to polar equations, 382 definition of, 382
Rectangular form of a complex number converting to trigonometric form, 361
definition of, 359
Reduction formula, 214
Reference angles
definition of, 54
special angles as, 56
table of, 55
Reference arc, 110
Reflecting a graph, 438-439
Refraction of light, 66
Regression, sine, 153
Related rates, 70
Relation
definition of, 426
domain of a, 427
range of a, 427
Resistance
grade, 62
impedance and, 359
Resultant vectors, 321
Right angle, 2
Right triangle(s)
applications of, 77
definition of, 12
hypotenuse of, 46, 419
legs of, 419
solving, 69
Right-triangle-based definitions of trigonometric functions, 46
Root, of an equation, 409
Roots of a complex number, 372, 374
Rose curves, 384, 387

S

Sag curve, 60
Scalars, 320
Scalene triangle, 12
Secant function
characteristics of, 169
definition of, 22
domain of, 169
graph of, 169
inverse of, 252
period of, 169
range of, 32, 169
steps to graph, 171
Second, 4
Second-degree equation, 412
Sector of a circle
area of, 102-103
definition of, 102
Segment of a line. See Line segment(s)
Semiperimeter, 310
Shrinking a graph, 437-438
Side adjacent to an angle, 46
Side-Angle-Angle (SAA) axiom, 290
Side-Angle-Side (SAS) axiom, 290
Side opposite an angle, 46
Side-Side-Side (SSS) axiom, 290
Significant digits, 68

Signs of trigonometric function values, 30
Similar triangles
conditions of, 13
definition of, 12
Simple harmonic motion, 177
Sine function
amplitude of, 137
characteristics of, 135
definition of, 22
difference identity for, 215-216
domain of, 135
double-angle identity for, 225
graph of, 135
half-angle identity for, 233
horizontal translation of, 149
inverse of, 248-249
period of, 135,139
range of, 32, 135
steps to graph, 140, 152
sum identity for, 215-216
translating graphs of, 149, 152
Sine regression, 153
Sines, law of
ambiguous case of, 300
derivation of, 291
Sine wave, 135
Sinusoid, 135
Sinusoidal function, 153
Snell's law, 66, 286
Solar constant, 147
Solution, of an equation, 409
Solution set, 409
Solving triangles, 69, 292-293,
301-303, 308-309
Sound waves, 147, 214
Special angles
finding angle measures with, 58
reference angles as, 56
trigonometric function values of, 49-50
Speed
angular, 121-122
linear, 120-123
Spiral, hyperbolic, 400
Spiral of Archimedes, 385
Square root property, 412
Standard form of a complex number, 350, 359
Standard form of a quadratic equation, 412
Standard position of an angle, 5
Statute mile, 108
Straight angle, 2
Stretching a graph, 437-438
Subtend an angle, 106
Subtense bar method, 79
Subtraction
of complex numbers, 353
of vectors, 321
Sum identity
application of, 208, 217
for cosine, 206
for sine, 215-216
for tangent, 216
Sum-to-product identities, 229
Superelevation, 65
Supplementary angles, 3
Swokowski, Earl, 229

Symmetry, 439-441
Systolic pressure, 145

T

Tangent function
characteristics of, 160
definition of, 22
difference identity for, 216
domain of, 160
double-angle identity for, 225
graph of, 160
half-angle identity for, 233
inverse of, 251-252
period of, 160
range of, 32,160
steps to graph, 162
sum identity for, 216
vertical translation of, 164
Tangents, law of, 346
Terminal point of a vector, 320
Terminal side of an angle, 2
Three-part inequality, 415
Transit, 74
Translations
definition of, 442
horizontal, 148-150, 164, 443
vertical, 151, 164, 442
Transversal
definition of, 10
exterior angles on alternate sides of, 11
interior angles on same side of, 11
Triangle(s)
acute, 12, 291
angle sum of, 12
applications of, 14
area of, 293-295, 310
congruent, 12, 290
equilateral, 12
Heron, 318
isosceles, 12
oblique, 290
obtuse, 12, 291
perfect, 318
properties of, 12
right. See Right triangle(s)
scalene, 12
similar, 13
solving, 69, 292-293, 301-303, 308-309
types of, 12
Triangulation method, 317
Trigonometric equations
conditional, 262
with half-angles, 269
inverse, 276
linear methods for solving, 262
with multiple angles, 270
quadratic methods for solving, 263
solving by factoring, 263
solving by squaring, 265
solving using the quadratic formula, 263
Trigonometric form of a complex number, 361
Trigonometric functions
circular, 110
cofunctions of, 47, 207
combinations of translations of, 152
definitions of, 21-22
derivatives of, in calculus, 197
domains of circular, 112
inverses of, 247-253
ranges of, 32
right-triangle-based definitions of, 46
translations of, 148-153
Trigonometric function values
of acute angles, 22-23, 46
for angles in radians, 97
finding with a calculator, 61-62
of nonquadrantal angles, 56
of quadrantal angles, 24-25
signs of, 30
of special angles, 49-50
undefined, 25
Trigonometric identities
cofunction, 47, 207
difference, 205, 206, 208, 215-217
double-angle, 224-225, 227-228
fundamental, 190-191
half-angle. See Half-angle identities
negative-angle, 190-191
negative-number, 190-191
product-to-sum, 229
Pythagorean, 33, 191
quotient, 34, 191
reciprocal, 28-29, 191
sum, 206, 208, 215-217
sum-to-product, 229
verifying, 197
Trigonometric models, 142, 153
Trigonometric substitution, 34
Trig viewing window, 137
Trochoid, 394

U

Umbra, 19
Unit, imaginary, 350
Unit circle, 110
Unit vector, 325
Upper harmonics, 272, 275

V

Variable
dependent, 426
independent, 426
Vector(s)
algebraic interpretation of, 322
angle between, 327-328
applications of, 331-335
components of, 322
direction angle for, 322
dot product of, 325-326
equilibrant of, 331
horizontal component of, 322
i, j units, 325
initial point of, 320
inner product of, 325
magnitude of, 320
naming practices, 320
operations with, 324
opposite of, 321
orthogonal, 328
parallelogram rule for, 321

Vector(s) (Continued)

position, 322
quantities, 320
resultant of, 321
subtraction of, 321
symbol for, 320
terminal point of, 320
unit, 325
vertical component of, 322
zero, 321
Verifying trigonometric identities, 197
Vertex of an angle, 2
Vertical angles, 10
Vertical asymptote, 159
Vertical axis, 359

Vertical component of a vector, 322
Vertical line test, 428
Vertical shrinking of a graph, 438
Vertical stretching of a graph, 438
Vertical translations
of cosine function, 151
of cotangent function, 164
definition of, 442
graphing, 151

W
Wave
sine, 135
sound, 147, 214

X

x-axis, 418
x-intercept, 421

Y

y-axis, 418
y-intercept, 421
Z
Zero-factor property, 412
Zero vector, 321

MyMathLab ${ }^{\circledR}$ Innovative Technology to Help You Succeed

MyMathLab can improve any learning environment-whether you are taking a lab-based, hybrid, fully online, or a traditional lecture-style course.

INTERACTIVE FIGURES

Math comes alive with new Interactive Figures in MyMathLab! Your instructor may choose to assign assessment questions that are written to accompany each figure. This interaction will lead you to fully understand key mathematical concepts in a hands-on, engaging way.

A HISTORY OF SUCCESS

Results show that you can improve your grade by using the videos, animations, interactive figures, step-by-step examples, and personalized feedback in MyMathLab. To see the growing list of case studies for yourself, visit www.mymathlab.com/success-stories

Providing the Steadfast Support You Need to Succeed

This text is written to engage and support you in your learning process by developing both the conceptual understanding and the analytical skills necessary for success.

SUPPORT FOR LEARNING CONCEPTS

Examples and step-by-step solutions include side comments and section references to previously covered material. Pointers in the examples provide on-the-spot reminders.

Example/Solution videos in MyMathLab offer a detailed solution process for every example in this textbook.

AVAILABLE IN MyMathLab ${ }^{\ominus}$

Tangent Function $f(x)=\tan x$

Domain: $\left\{x \left\lvert\, x \neq(2 n+1) \frac{\pi}{2}\right.\right.$, where n is any integer $\}$ Range: $(-\infty, \infty)$

- The graph is discontinuous at values of x of the form $x=(2 n+1) \frac{\pi}{2}$ and has vertical asymptotes at these values.
- Its x-intercepts are of the form $x=n \pi$.
- Its period is π.
- Its graph has no amplitude, since there are no minimum or maximum values.
- The graph is symmetric with respect to the origin, so the function is an odd function. For all x in the domain, $\tan (-x)=-\tan x$.

Page 160

Real-life applications in the examples and exercises draw from fields such as business, entertainment, sports, life sciences, and environmental studies to show the relevance of algebra to daily life.

EXAMPLE 3 Finding Function Values of Angles in Radian Measure

Find each function value.
(a) $\tan \frac{2 \pi}{3}$
(b) $\sin \frac{3 \pi}{2}$
(c) $\cos \left(-\frac{4 \pi}{3}\right)$

SOLUTION
(a) First convert $\frac{2 \pi}{3}$ radians to degrees.

$$
\begin{aligned}
\tan \frac{2 \pi}{3} & =\tan \left(\frac{2 \pi}{3} \cdot \frac{180^{\circ}}{\pi}\right) & & \text { Multiply by } \frac{180^{\circ}}{\pi} . \\
& =\tan 120^{\circ} & & \text { Multiply. } \\
& =-\sqrt{3} & & \text { (Section 2.2) }
\end{aligned}
$$

(b) From our earlier observations, $\frac{3 \pi}{2}$ radians $=270^{\circ}$.

$$
\sin \frac{3 \pi}{2}=\sin 270^{\circ}=-1
$$

(c) $\cos \left(-\frac{4 \pi}{3}\right)=\cos \left(-\frac{4 \pi}{3} \cdot \frac{180^{\circ}}{\pi}\right)$

\qquad (Section 2.2) | $\begin{array}{c}\text { of the reference } \\ \text { angle. }\end{array}$ |
| :---: |$=-\frac{1}{2}$

Page 97

Function boxes offer a comprehensive, visual introduction to each class of function and also serve as an excellent resource for your reference and review throughout the course. Each function box includes a table of values alongside traditional and calculator graphs, as well as the domain, range, and other specific information about the function.

Interactive animations in MyMathLab explore the connection between plotted points and their graphs, bringing the text's function boxes to life.

Page 153

SUPPORT FOR PRACTICING AND REVIEWING CONCEPTS

Mid-chapter quizzes allow you to periodically check your understanding of the material. Quizzes and cumulative tests in MyMathLab provide unlimited opportunity for practice and mastery.

Chapter 4 Quiz (Sections 4.1-4.2)

1. Give the amplitude, period, vertical translation, and phase shift of the function $y=3-4 \sin \left(2 x+\frac{\pi}{2}\right)$.

Graph each function over a two-period interval. Give the period and amplitude.

2. $y=-4 \sin x$	3. $y=-\frac{1}{2} \cos 2 x$
4. $y=3 \sin \pi x$	5. $y=-2 \cos \left(x+\frac{\pi}{4}\right)$
6. $y=2+\sin (2 x-\pi)$	7. $y=-1+\frac{1}{2} \sin x$

Connecting Graphs with Equations Each function graphed is of the form $y=a \cos b x$ or $y=a \sin b x$, where $b>0$. Determine the equation of the graph.
9.

10.

AVAILABLE IN MyMathLab ${ }^{\circ}$

Page 159

Relating Concepts

For individual or collaborative investigation (Exercises 49-54)
Consider the following function from Example 5. Work these exercises in order.

$$
y=-2-\cot \left(x-\frac{\pi}{4}\right)
$$

49. What is the least positive number for which $y=\cot x$ is undefined?
50. Let k represent the number you found in Exercise 49. Set $x-\frac{\pi}{4}$ equal to k, and solve to find a positive number for which $\cot \left(x-\frac{\pi}{4}\right)$ is undefined.

Relating Concepts Exercises help you tie together topics and develop problem-solving skills as you compare and contrast ideas, identify and describe patterns, and extend concepts to new situations. In-chapter Summary Exercises provide mixed topic review problems.

Chapter Test Prep provides Key Terms, New Symbols, and a Quick Review of important concepts, with corresponding examples. Review Exercises and Chapter Tests are also provided to make test preparation easy.

Quick Review videos in MyMathLab cover key definitions and procedures from each section.

Interactive Chapter Summaries in MyMathLab allow you to quiz yourself via interactive examples, key vocabulary, symbols, and concepts.

AVAILABLE IN MyMathLab ${ }^{\circ}$

Chapter 4 Test Prep

Key Terms			
4.1periodic function period sine wave (sinusoid) amplitude	4.2 phase shift argument vertical asymptote	4.4 addition of ordinates simple harmonic motion	frequency damped oscillatory motion

Quick Review

Concepts

Examples

Graphs of the Sine and Cosine Functions

Translations of the Graphs of the Sine and Cosine Functions Sine and Cosine Functions

Domain: $(-\infty, \infty)$
Range: $[-1,1]$
Amplitude: 1 Amplitude: 1
Period: 2π

Graph $y=1+\sin 3 x$.

amplitude: 1

period: $\frac{2 \pi}{3}$
vertical translation: 1 unit up
domain: $(-\infty, \infty)$
domain: $(-\infty$,
range: $[0,2]$

Page 181

3.1 Conversion of Angular Measure

Degree/Radian Relationship: $\quad 180^{\circ}=\pi$ radians
Conversion Formulas:

From	To	Multiply by
Degrees	Radians	$\frac{\pi}{180}$
Radians	Degrees	$\frac{180^{\circ}}{\pi}$

5.1 Fundamental Identities

$$
\begin{array}{lll}
\cot \theta=\frac{1}{\tan \theta} & \sec \theta=\frac{1}{\cos \theta} & \csc \theta=\frac{1}{\sin \theta} \\
\tan \theta=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{\cos \theta}{\sin \theta} \\
\sin ^{2} \theta+\cos ^{2} \theta=1 & \tan ^{2} \theta+1=\sec ^{2} \theta & 1+\cot ^{2} \theta=\csc ^{2} \theta \\
\sin (-\theta)=-\sin \theta & \cos (-\theta)=\cos \theta & \tan (-\theta)=-\tan \theta \\
\csc (-\theta)=-\csc \theta & \sec (-\theta)=\sec \theta & \cot (-\theta)=-\cot \theta
\end{array}
$$

5.3, 5.4 Sum and Difference Identities

$$
\begin{aligned}
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\cos (A-B) & =\cos A \cos B+\sin A \sin B \\
\sin (A+B) & =\sin A \cos B+\cos A \sin B \\
\sin (A-B) & =\sin A \cos B-\cos A \sin B \\
\tan (A+B) & =\frac{\tan A+\tan B}{1-\tan A \tan B} \\
\tan (A-B) & =\frac{\tan A-\tan B}{1+\tan A \tan B}
\end{aligned}
$$

5.3 Cofunction Identities

$\cos \left(90^{\circ}-\theta\right)=\sin \theta$
$\sin \left(90^{\circ}-\theta\right)=\cos \theta$
$\tan \left(90^{\circ}-\theta\right)=\cot \theta$
$\cot \left(90^{\circ}-\theta\right)=\tan \theta$
$\sec \left(90^{\circ}-\theta\right)=\csc \theta$
$\csc \left(90^{\circ}-\theta\right)=\sec \theta$

3.2 Applications of Radian Measure

Arc Length: $s=r \theta, \quad \theta$ in radians
Area of Sector: $\quad \mathscr{A}=\frac{1}{2} r^{2} \theta, \quad \theta$ in radians
3.4

Angular Speed	Linear Speed
$\omega=\frac{\theta}{t}$	$v=\frac{s}{t}$
$(\omega$ in radians per unit time, θ in radians $)$	$v=\frac{r \theta}{t}$

5.5 Product-to-Sum and Sum-to-Product Identities

$\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]$
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$
$\cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)]$
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$
$\cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$\cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$

5.5, 5.6 Double-Angle and Half-Angle Identities

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A & \cos 2 A & =1-2 \sin ^{2} A \\
\cos 2 A & =2 \cos ^{2} A-1 & \sin 2 A & =2 \sin A \cos A \\
\tan 2 A & =\frac{2 \tan A}{1-\tan ^{2} A} & \cos \frac{A}{2} & = \pm \sqrt{\frac{1+\cos A}{2}} \\
\sin \frac{A}{2} & = \pm \sqrt{\frac{1-\cos A}{2}} & \tan \frac{A}{2} & = \pm \sqrt{\frac{1-\cos A}{1+\cos A}} \\
\tan \frac{A}{2} & =\frac{\sin A}{1+\cos A} & \tan \frac{A}{2} & =\frac{1-\cos A}{\sin A}
\end{aligned}
$$

7.1 Law of Sines

In any triangle $A B C$, with sides a, b, and c,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}, \quad \frac{a}{\sin A}=\frac{c}{\sin C}, \quad \text { and } \quad \frac{b}{\sin B}=\frac{c}{\sin C} .
$$

Area of a Triangle

The area \mathscr{A} of a triangle is given by half the product of the lengths of two sides and the sine of the angle between the two sides.

$$
\mathscr{A}=\frac{1}{2} b c \sin A, \quad \mathscr{A}=\frac{1}{2} a b \sin C, \quad \mathscr{A}=\frac{1}{2} a c \sin B
$$

7.3 Law of Cosines

In any triangle $A B C$, with sides a, b, and c,

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A, \quad b^{2}=a^{2}+c^{2}-2 a c \cos B,
$$

and

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

Heron's Area Formula

If a triangle has sides of lengths a, b, and c, with semiperimeter $s=\frac{1}{2}(a+b+c)$, then the area \mathscr{A} of the triangle is

$$
\mathscr{A}=\sqrt{s(s-a)(s-b)(s-c)} .
$$

4.1-4.4 Trigonometric (Circular) Functions

The graph of $y=c+a \sin [b(x-d)]$ or $y=c+a \cos [b(x-d)]$, where $b>0$, has amplitude $|a|$, period $\frac{2 \pi}{b}$, a vertical translation c units up if $c>0$ or $|c|$ units down if $c<0$, and a phase shift d units to the right if $d>0$ or $|d|$ units to the left if $d<0$. The graph of $y=a \tan b x$ or $y=a \cot b x$ has period $\frac{\pi}{b}$, where $b>0$.

6.1 Inverse Trigonometric (Circular) Functions

[^0]: *The Babylonians were the first to subdivide the circumference of a circle into 360 parts. There are various theories about why the number 360 was chosen. One is that it is approximately the number of days in a year, and it has many divisors, which makes it convenient to work with.

[^1]: *In addition to θ (theta), other Greek letters such as α (alpha) and β (beta) are often used.

[^2]: *The authors would like to thank Bethany Vaughn and Theresa Matick, of Vincennes Lincoln High School, for their suggestions concerning this table.

[^3]: *The authors thank Professor Marvel Townsend of the University of Florida for her suggestion to include Figure 13.

[^4]: *The inverse secant and inverse cosecant functions are sometimes defined with different ranges. We use intervals that match those of the inverse cosine and inverse sine functions, respectively (except for one missing point).

[^5]: *The authors wish to thank Carol Walker of Hinds Community College for making a suggestion on which these exercises are based.

[^6]: *In some texts, the term $b i$ is defined to be the imaginary part.

[^7]: *The intercepts are sometimes defined as ordered pairs, such as $\left(\frac{1}{4}, 0\right)$ and $(0,-1)$ instead of numbers, such as x-intercept $\frac{1}{4}$ and y-intercept -1 . In this text, we define them as numbers.

