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Preface

There are many excellent books for students introducing them to classical complex
analysis of one variable, but only a few that cover several complex variables. Thus
we were motivated to write such a book, intended as a textbook for beginning
graduate students and as a source book for lectures and seminars. We have developed
the main ideas of several complex variables in the context of, but without entering
into too many technical details of, a very simple geometry, known as Reinhardt
domains. Though many students may know little about this topic, we think it is a
good start for beginners in several complex variables. Using this as a base, we add
to all topics a selection of remarks and hints relating the discussion to the general
theory. Some of the chapters or sections, those marked with a star (*), are more
developed than others and can be skipped in a first reading. Moreover, we present
some topics that have never appeared in a textbook or are new findings. We hope
that these new ideas will motivate the student studying this book to become more
deeply involved in the use of several complex variables. Further toward that end,
we include in the Bibliography both direct references and a list of monographs and
textbooks in complex analysis, thus providing a source for expansion on topics in
our book and extensions to new studies.

The book contains many exercises that the reader is asked to work on when
encountered, before proceeding with further topics. There are also many points
in the proofs that we have marked Exercise. By this we mean that the reader
should write out the argument in more detail than we have done, to assure mastery
of those details in preparation for what is to come. We believe that the study and
understanding of mathematics requires continuous interaction between the reader
and the text, and this cannot be achieved by passive reading. From time to time we
pose open problems (marked by ? … ? ) that to the best of our knowledge have
not yet been solved. We encourage the reader to try to solve them and would be
most grateful to hear about such attempts, both successes and interesting failures.

Note that at many places, in order to simplify formulations, some obvious as-
sumptions that guarantee that the considered objects are non-empty are not stated.
For example, if we write “LetD � Cn be a Reinhardt domain…”, then we always
automatically assume that D ¤ ¿. We think that the reader will easily be able
to complete the missing assumptions. In the interest of consistency of form and
notation, we sometimes send the reader to [Jar-Pfl 1993] or [Jar-Pfl 2000] instead of
quoting the original research paper. We nevertheless encourage the reader to seek
out those original works in their further studies.

During the process of proofreading we detected some gaps and misprints. Our
thanks go especially to Dr. P. Zapałowski who helped us during that process. Nev-
ertheless, according to our experience with former books, we are sure that a number
of errors remain about which we would be happy to be informed.
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We would be pleased if the reader would send any comments or remarks to one
of the following e-mail addresses

� Marek.Jarnicki@im.uj.edu.pl
� pflug@mathematik.uni-oldenburg.de
We thank the following institutions:
– Committee of Scientific Research (KBN), Warsaw (No. 1PO3A 005 28) and

Deutsche Forschungsgemeinschaft (No. 227/8-1,2) for their financial support with-
out that this project would have been not possible,

– the RiP-programm at Oberwolfach for the excellent working atmosphere there,
– our universities for their continuous support.
We deeply thank Dr. M. Karbe for having encouraged us to write this book and

for all his support during the recent years.

Kraków and Oldenburg, February 2008 Marek Jarnicki
Peter Pflug
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Chapter 1

Reinhardt domains

1.1 Introduction

The notion of a holomorphic function of one complex variable can be based on
the notion of a power series – a function f W ˝ ! C (where ˝ � C is open)
is holomorphic (f 2 O.˝/) if for every a 2 ˝ there exist a power seriesP1
kD0 ck.z � a/k centered at a and a neighborhood Ua � ˝ of a such that

f .z/ D
1X
kD0

ck.z � a/k; z 2 Ua: 1

It is well known that the domain of convergence of an arbitrary power series

1X
kD0

bk.z � a/k

is the discK.a;R/ WD fz 2 C W jz�aj < Rg with the radius (radius of convergence)

R D 1

lim sup
k!C1

k
pjbkj 2 Œ0;C1�

(where K.a; 0/ D ¿, K.a;C1/ D C). Moreover, if R > 0, then the function

f .z/ WD
1X
kD0

bk.z � a/k; z 2 K.a;R/;

is holomorphic.
If f 2 O.˝/ and f .z/ D P1

kD0 ck.z � a/k , z 2 Ua � ˝, then the radius
of convergence of the series

P1
kD0 ck.z � a/k is not smaller than the Euclidean

distanced˝.a/ of the pointa to @˝ (dC.a/ W� C1) andf .z/ D P1
kD0 ck.z�a/k ,

z 2 K.a; d˝.a//.
The most elementary is the case where ˝ D K.a; r/, which, of course, may

be reduced to the case ˝ D D D the unit disc. Recall the following well-known

1Equivalently: f is differentiable in the complex sense at every point a 2 ˝, i.e. the function f
has at every a 2 ˝ the complex derivative

f 0.a/ WD lim
Cnf0g3h!0

f .aC h/� f .a/
h

:
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issues, whose analogues will be considered in the sequel in a much more general
context:

� The structure of the group Aut.D/ of holomorphic automorphisms of D. It is
well known that

Aut.D/ D
n
D 3 z 7! �

z � a
1 � Naz 2 D W � 2 T ; a 2 D

o
;

where T WD @D. In particular (cf. Exercise 2.1.5 (b)), Aut.D/ acts transitively
on D.

� The holomorphic geometry of D. In particular, the theory of holomorphically
invariant distances, i.e. those distances d W D � D ! RC, for which

d.f .z/; f .w// � d.z; w/; z; w 2 D; f 2 O.D;D/; (1.1.1)

where O.D;D/ denotes the set of all holomorphic functions f W D ! D. The
above condition means in particular that any f 2 Aut.D/ is an isometry of the
metric space .D; d /. Typical examples are:

m.z; w/ WD
ˇ̌̌ z � w
1 � z xw

ˇ̌̌
.Möbius distance/;

p.z; w/ WD 1

2
log

1C m.z; w/

1 � m.z; w/
.Poincaré distance/I

cf. [Jar-Pfl 1993], Chapter 1.

Exercise 1.1.1. (a) Check (1.1.1) for d 2 fm;pg.
(b) Prove that m and p are distances on D.
(c) Prove that p.0; b/ D p.0; a/C p.a; b/, 0 < a < b < 1.

In the next step we substitute power series by Laurent series

1X
kD�1

bk.z � a/k

and, consequently, discs K.a; r/ by annuli

A.a; r�; rC/ WD fz 2 C W r� < jz�aj< rCg; �1 � r� < rC � C1; rC >0:

Note that if r� < 0, then

A.a; r�; rC/ D K.a; rC/ and A.a; 0; rC/ D K.a; rC/ n fag DW K�.a; rC/:

A Laurent series with b�k D 0, k D 1; 2; : : : , will be always identified with the
power series

P1
kD0 bk.z � a/k . The domain of convergence of a Laurent series is
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an annulus A.a;R�; RC/ with

RC WD 1

lim sup
k!C1

k
pjbkj ; R� WD

8<:lim sup
k!C1

k
pjb�kj if 9k2N W b�k ¤ 0;

�1 if 8k2N W b�k D 0;

(1.1.2)

provided that R� < RC. The function

f .z/ WD
1X

kD�1
bk.z � a/k; z 2 A.a;R�; RC/;

is holomorphic. Moreover, for every compact K � A.a;R�; RC/ there exist
C > 0, � 2 .0; 1/ such that jbk.z � a/kj � C� jkj, z 2 K, k 2 Z.

Conversely, every function f holomorphic in an annulus A.a; r�; rC/ has a
unique representation by a Laurent series. We may always assume that a D 0.
Notice that for A WD A.0; 1=R;R/ (R > 1) we have

Aut.A/ D fA 3 z 7! �z 2 A W � 2 T g [ fA 3 z 7! �=z 2 A W � 2 T g:
In particular, the group Aut.A/ does not act transitively; cf. Exercise 2.1.5 (c). The
holomorphic geometry of an annulus is much more complicated than the one of D;
cf. [Jar-Pfl 1993], Chapter 5.

Notice that for domains (a subset D of a topological space X is said to be a
domain if D is open and connected) D � C the following three notions coincide:

� D is a domain of convergence of a Laurent series centered at 0;
� D is a domain invariant under rotations, i.e. for any z 2 D and � 2 T the point
�z also belongs to D;

� D is a disc or an annulus centered at 0.

The notion of a power series generalizes in a natural way to the case of several
complex variables. By an .n-fold/ power series (centered at 0 2 Cn) we mean any
series of the form X

˛2Zn
C

a˛z
˛ .z 2 Cn/;

where .a˛/˛2Zn
C

� C, ZnC WD f˛ 2 Zn W ˛ � 0g, z˛ WD z
˛1

1 	 	 	 z˛n
n (00 WD 1); see

§ 1.3. The domain of convergence D of a power series (Definition 1.3.3) has the
following important properties:

� For any a D .a1; : : : ; an/ 2 D, the closed polydisc

f.z1; : : : ; zn/ 2 Cn W jzj j � jaj j; j D 1; : : : ; ng
is contained in D, i.e. D is a complete Reinhardt .n-circled/ domain (Defini-
tion 1.3.8).
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� The set

log D WD f.log jz1j; : : : ; log jznj/ W .z1; : : : ; zn/ 2 D; z1 	 	 	 zn ¤ 0g
is convex in the geometric sense, i.e. D is logarithmically convex (Defini-
tion 1.5.5, Proposition 1.5.16).

� The series is locally geometrically summable in D, i.e. for any compactK � D

there exist C > 0, � 2 .0; 1/ such that ja˛z˛j � C� j˛j, z 2 K, ˛ 2 ZnC, where
j˛j WD ˛1 C 	 	 	 C ˛n (Remark 1.3.5 (f)).
In the case n D 1 the only complete Reinhardt domains are discsK.r/ and they
are always logarithmically convex. In the case n � 2 the situation is more com-
plicated. There are infinitely many types of complete Reinhardt domains which
are not biholomorphically equivalent (e.g. Euclidean balls B.r/ and polydiscs
P.r/; cf. Theorem 2.1.17). Moreover, there are complete Reinhardt domains
D � Cn (n � 2) which are not logarithmically convex, e.g.

D WD f.z1; z2/ 2 D2 W minfjz1j; jz2jg < rg .r 2 .0; 1//:
The function f .z/ WD P

˛2Zn
C
a˛z

˛ , z 2 D, is holomorphic. Conversely, ev-

ery function f holomorphic in a complete Reinhardt domain D � Cn has a
“global” expansion into a power seriesf .z/ D P

˛2Zn
C
a˛z

˛ , z 2 D (cf. Propo-
sition 1.7.15 (c), (d)).

The notion of a Laurent series extends to the notion of an .n-fold/ Laurent series
(centered at 0) X

˛2Zn

a˛z
˛I

see § 1.6. The domain of convergence D of a Laurent series (Definition 1.6.1) has
the following properties:

� For any a D .a1; : : : ; an/ 2 D, the torus

f.z1; : : : ; zn/ 2 Cn W jzj j D jaj j; j D 1; : : : ; ng
is contained in D, i.e. D is a Reinhardt .n-circled/ domain (Definition 1.5.2).

� D is logarithmically convex (Proposition 1.6.5 (d)).
� For every j 2 f1; : : : ; ng, if D \ Vj ¤ ¿, 2 where

Vj WD f.z1; : : : ; zn/ 2 Cn W zj D 0g;
then for every a D .a1; : : : ; an/ 2 D, the disc

f.a1; : : : ; aj�1; zj ; ajC1; : : : ; an/ W jzj j � jaj jg
is contained in D (Proposition 1.6.5 (c)).

2Observe that in the case of a power series we have 0 2 D and, consequently, D \ Vj ¤ ¿
for any j .
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� The Laurent series is locally geometrically summable in D, i.e. for any compact
set K � D there exist C > 0, � 2 .0; 1/ such that ja˛z˛j � C� j˛j, z 2 K,
˛ 2 Zn, where j˛j WD j˛1j C 	 	 	 C j˛nj (Proposition 1.6.5 (a), Lemma 1.6.3).

In the case n D 1 the only Reinhardt domains are discs K.r/ and annuli
A.r�; rC/; 3 they are always logarithmically convex.

Every function given by a Laurent series is holomorphic. Conversely, every
function f holomorphic in a Reinhardt domain D � Cn has a “global” expansion
into a Laurent series f .z/ D P

˛2Zn a˛z
˛ , z 2 D (Proposition 1.7.15 (c)).

As always, from the point of view of the theory of holomorphic functions, most
important are domains of holomorphy, i.e. those domains D which are “maximal”
in the sense that all holomorphic functions inD cannot be simultaneously extended
through a boundary point of D (Definition 1.11.1); let us mention that for n � 2

there are even pairs of domainsD   zD � Cn such that every function f 2 O.D/

extends holomorphically to zD. It turns out that in the category of Reinhardt domains
the following conditions are equivalent (Theorem 1.11.13):

� D is a domain of holomorphy;
� D is logarithmically convex and relatively complete, that is, for every j 2

f1; : : : ; ng, if D \ Vj ¤ ¿, then for every a D .a1; : : : ; an/ 2 D, the disc

f.a1; : : : ; aj�1; zj ; ajC1; : : : ; an/ W jzj j � jaj jg
is contained in D;

� D D D� nM , where

D� WD int
\

.˛;c/2Rn�RW
D�D˛;c

D˛;c ; M WD
[

j2f1;:::;ngW
D\Vj D¿

Vj ;

D˛;c WD f.z1; : : : ; zn/ W jz1j˛1 	 	 	 jznj˛n < ecgI
D˛;c is called an elementary Reinhardt domain.

In particular, the domain of convergence of a Laurent series is always a domain of
holomorphy. Such a simple geometric characterization of domains of holomorphy
does not occur in any other category of domains.

The notion of a domain of holomorphy extends in a natural way to an F -domain
of holomorphy, when we are only interested in the extendibility of functions from
a family F � O.D/ (Definition 1.11.1). If D is not an F -domain of holomorphy,
then one can ask whether there exists the maximal domain zD � Cn (the F -envelope
of holomorphy of D) such that every function f 2 F extends holomorphically
to zD. The answer is negative in general, even for F D O.D/ – the F -envelope of
holomorphy ofD may be non-univalent, i.e. it is a non-univalent Riemann domain

3A.r�; rC/ WD A.0; r�; rC/.
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spread over Cn. In the category of Reinhardt domains the situation is simpler,
namely: For an arbitrary Reinhardt domain D � Cn and an arbitrary rotation-
invariant family of functions F � O.D/, the F -envelope of holomorphy of D is
again a Reinhardt domain (Theorem 1.12.4).

The above results permit us to reduce many problems concerning Reinhardt
domains of holomorphy to the case of elementary Reinhardt domains. We will
see that many holomorphic properties of D are encoded in geometric properties
of logD. In particular, we will discuss the following problem. Given a Reinhardt
domain of holomorphyD � Cn and a family F   O.D/, find geometric conditions
under which D is a domain of holomorphy with respect to the family F . For
example, we consider as F the following spaces:

� H 1.D/ D the space of bounded holomorphic functions,
� L

p

h
.D/ D the space of p-integrable holomorphic functions,

� Ak.D/ D the space of all functions f 2 O.D/ whose derivatives D˛f extend
continuously to xD for all j˛j � k.

Various geometric characterizations of domains of holomorphy with respect to
special families of functions will be presented in Chapter 3.

Chapter 2 is devoted to a presentation of different aspects of the problem of
biholomorphic equivalence of Reinhardt domains.

Finally, Chapter 4 presents a thorough study of the theory of holomorphically
invariant functions and pseudometrics on Reinhardt domains.

1.2 Summable families

The aim of this auxiliary section is to recall some basic notions related to summable
families (cf. for instance [Sch 1967] or [Hér 1982]).

Let us fix an arbitrary set ¿ ¤ Z � Cn and let I ¤ ¿ be an arbitrary set of
indices. Let F.I / be the set of all non-empty finite subsets of I . Consider a family
f D .fi /i2I of functions fi W Z ! C.

For example (cf. §§ 1.3, 1.6): I � Zn, f˛.z/ WD a˛z
˛ , z 2 Z � Cn, ˛ 2 I ,

where .a˛/˛2I � C and the setZ is such that all the powers z˛ , ˛ 2 I , are defined
on Z.

In the case where Z D fag, instead of a family of functions, we rather should
think of a family of complex numbers .fi .a//i2I .

For A 2 F.I / put fA WD P
i2A fi . Let, moreover, f¿ WD 0.

Definition 1.2.1. We say that the family f is uniformly summable on Z (equiva-
lently: the series

P
i2I fi is uniformly summable on Z) if there exists a function

fI W Z ! C such that

8">0 9S."/DS.I;"/2F.I / 8A2F.I /W S."/�A 8z2Z W jfA.z/ � fI .z/j � ": (1.2.1)



1.2. Summable families 7

Notice that the case where I is finite is trivial (we take S.I; "/ WD I for any
" > 0).

In the case where #Z D 1 we simply say that the family f (considered as a
family of complex numbers) is summable or that the series

P
i2I fi is summable.

It is clear (Exercise) that the function fI is uniquely determined. We write
fI D P

i2I fi and we say that fI is the sum of the family f .
Let S.I;CZ/ be the set of all families f D .fi /i2I that are uniformly summable

on Z. More generally, for T � C, let S.I; T Z/ be the set of all uniformly
summable families f D .fi /i2I with fi W Z ! T , i 2 I .

Exercise 1.2.2. Let .fk/k2N 2 S.N;CZ/. Prove that the series
P1
kD1 f�.k/ is

uniformly convergent in the classical sense for every bijection � W N ! N.

Exercise 1.2.3. Let I WD N. Find a convergent (in the classical sense) seriesP1
kD1 fk of real numbers such that the family .fk/k2N is not summable in the

sense of Definition 1.2.1 (cf. Theorem 1.2.12).

Remark 1.2.4. (a) (Exercise) If f D .fi /i2I , g D .gi /i2I 2 S.I;CZ/, ˛; ˇ 2
C, then ˛f Cˇg WD . f̨i Cˇgi /i2I 2 S.I;CZ/ and .˛f Cˇg/I D ˛fI CˇgI .
In particular, S.I;CZ/ is a complex vector space and the mapping

S.I;CZ/ 3 f 7! fI 2 CZ

is C-linear.
(b) (Exercise) A family f is uniformly summable iff the families Re f WD

.Re fi /i2I and Im f WD .Im fi /i2I are uniformly summable. Moreover, Re.fI / D

.Re f /I and Im.fI / D .Im f /I .
(c) If f 2 S.I;CZ/ and all the mappings fi W Z ! C are bounded, then the

family of functions ffA W A 2 Fg is uniformly bounded.
Indeed, let S WD S.I; 1/ 2 F.I / be associated to " D 1 according to (1.2.1). It

suffices to prove that the set ffA W A 2 F.I n S/g is uniformly bounded. Fix an
A 2 F.I nS/. Then we have jfAj D jfA[S�fS j � jfA[S�fI jCjfS�fI j � 2.

(d) If f 2 S.I;CZ/, then the set fi 2 I W fi 6� 0g is at most countable.
Consequently, the most important is the case where I is countable.

Indeed, it suffices to show that for every " > 0,

fi 2 I W 9z2Z W jfi .z/j > 2"g � S."/;

where S."/ is chosen according to (1.2.1). Fix " > 0 and i 2 I n S."/. Then

jfi j D jffig[S."/ � fS."/j � jffig[S."/ � fI j C jfS."/ � fI j � 2":

Proposition 1.2.5 (Cauchy criterion).

f 2 S.I;CZ/ ” 8">0 9C."/2F.I /8A2F.InC."// W jfAj � ": (1.2.2)
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Notice that the Cauchy condition (1.2.2) permits us to verify the summability
of f without determining fI .

Proof. ()): Let f 2 S.I;CZ/. Take an " > 0 and let S.I; "=2/ be associated to
"=2 according to (1.2.1). Put C."/ WD S.I; "=2/. Then for any A 2 F.I n C."//
we have

jfAj D jfA[C."/ � fC."/j � jfA[C."/ � fI j C jfC."/ � fI j � ":

((): Suppose that (1.2.2) is fulfilled. Let C� WD C.1=�/, F� WD fC�
, � 2 N.

Then we have

jF�Ck � F� j D jfC�CknC�
� fC�nC�Ck

j � 1

�
C 1

� C k
; �; k 2 N:

Consequently, .F�/1�D1 satisfies the uniform Cauchy condition onZ and, therefore,
there exists a function F0 W Z ! C such that F� ! F0 uniformly on Z. If
k ! C1, the above inequality implies that

jF� � F0j � 1

�
; � 2 N:

Now, let A 2 F.I /, Cn � A. Then we get

jfA � F0j � jfA � fCn
j C jFn � F0j � jfAnCn

j C 1

n
� 2

n
;

which shows that f is uniformly summable and fI D F0. �

Corollary 1.2.6. If .fi /i2I 2 S.I;CZ/, then for any non-empty set J � I we have
.fi /i2J 2 S.J;CZ/. In particular, we may define fJ WD P

i2J fi ,¿ ¤ J � I .

Theorem 1.2.7. Let I D S
j2J I.j /, I.j / ¤ ¿ and I.j /\ I.k/ D ¿ for j ¤ k.

If .fi /i2I 2 S.I;CZ/, then .fI.j //j2J 2 S.J;CZ/ andX
j2J

fI.j / D fI ; i.e.
X
j2J

� X
i2I.j /

fi

�
D
X
i2I

fi :

Notice that the converse theorem is not true: take for instance #Z D 1, I D
J WD N, I.j / WD f2j � 1; 2j g, fi WD .�1/i . Then fI.j / D 0, j 2 N, but the
family .fi /i2N is not summable.

Proof. Take an " > 0, let S WD S.I; "=2/ be taken as in (1.2.1), and let

T WD fj 2 J W I.j / \ S ¤ ¿g:
Observe that T 2 F.J /. We are going to show that T D S.J; "/ (with respect to
the family .fI.j //j2J ). Take a B 2 F.J / with T � B . Put N WD #B . For any
j 2 J let Sj WD S.I.j /; "

2N
/. We may assume that S \ I.j / � Sj , j 2 J .
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Let A WD S
j2B Sj 2 F.I /. Observe that S � A. Hence, jfA � fI j � "=2

and, finally, we getˇ̌̌
fI �

X
j2B

fI.j /

ˇ̌̌
�
ˇ̌̌
fI �

X
j2B

fSj

ˇ̌̌
C
X
j2B

jfSj
� fI.j /j � jfI � fAj C "=2 � ":

�

Definition 1.2.8. (a) We say that f is absolutely uniformly summable on Z if the
family jf j WD .jfi j/i2I is uniformly summable on Z, i.e. jf j 2 S.I;RZC/. In the
case where #Z D 1, then we simply say that f is an absolutely summable family.

(b) We say that f is normally summable onZ if all the functions fi are bounded
on Z and the family of numbers .supZ jfi j/i2I is summable.

(c) We say that f is locally uniformly summable (resp. locally normally sum-
mable) onZ if every point a 2 Z has an open neighborhoodU such that the family
.fi jZ\U /i2I is uniformly summable (resp. normally summable) on Z \ U .

In any of the above cases, instead of the family f , we can say that the seriesP
i2I fi is absolutely uniformly summable, normally summable, etc.

Remark 1.2.9 (Exercise). (a) Observe that if jfi j � gi , i 2 I , and .gi /i2I 2
S.I;RZC/, then, by the Cauchy criterion, f 2 S.I;CZ/. In particular, if jf j 2
S.I;RZC/, then f 2 S.I;CZ/. Moreover, jfI j � jf jI , i.e. jPi2I fi j � P

i2I jfi j.
We will see in Theorem 1.2.12 that the converse implication is also true, i.e. if

f 2 S.I;CZ/, then jf j 2 S.I;RZC/.
(b) Using the Cauchy criterion, we conclude that every normally summable

family is absolutely uniformly summable. The converse implication is not true as
the following standard example shows.

Let Z WD Œ0; 1�, I WD N, gk W Œ0; 1� ! R,

gk.x/ WD

8̂<̂
:
1 � 1

k
if 0 � x � 1

kC1 ;
1
2

� 1
k

C kC1
2
x if 1

kC1 � x � 1
k
;

1 � 1
2k

if 1
k

� x � 1;

fk WD gk � gk�1, k 2 N, with g0 WD 0. Then the family .fk/k2N is uniformly
summable but is not normally summable (Exercise).

Proposition 1.2.10. For every family f D .fi /i2I � C the following conditions
are equivalent:

(i) f 2 S.I;C/, i.e. f is summable;

(ii) the set ffJ W J 2 F.I /g � C is bounded;

(iii) .jfi j/i2I 2 S.I;RC/, i.e. f is absolutely summable.

Proof. The implication (i) ) (ii) follows from Remark 1.2.4 (c).
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(ii) ) (iii): Taking Re f and Im f instead of f , we may assume that the
numbers fi are real. In the case where fi � 0, i 2 I , one can easily prove that the
number fI WD supffJ W J 2 F.I /g satisfies condition (1.2.1), which implies that
f is (absolutely) summable. In the general case put

f C
i WD

(
fi if fi � 0;

0 if fi < 0;
f �
i WD

(
0 if fi � 0;

�fi if fi < 0;

and observe that ff C
J W J 2 F.I /g [ f�f �

J W J 2 F.I /g � ffJ W J 2
F.I /g. Consequently, .f C

i /i2I 2 S.I;RC/ and .f �
i /i2I 2 S.I;RC/. Since

jfi j D f C
i C f �

i , i 2 I , we conclude that the family .jfi j/i2I is also summable.
The implication (iii) ) (i) is obvious. �

Theorem 1.2.11. If .fi /i2I 2 S.I;CZ/, .gj /j2J 2 S.J;CZ/ and all the functions
fi W Z ! C, gj W Z ! C are bounded, then

.figj /.i;j /2I�J 2 S.I � J;CZ/ and
X

.i;j /2I�J
figj D fIgJ :

Proof. Recall that .jgj j/j2J 2 S.J;RZC/ (Theorem 1.2.12) and all the functions
fA, A 2 F.I /, jgjB , B 2 F.J /, are uniformly bounded (Remark 1.2.4 (c)). Let
M > 0 be such that jfAj � M , A 2 F.I /, and jgjB � M , B 2 F.J /. In
particular, jfI j � M and jgjJ � M .

Fix an " > 0. Let S."/ D S.I; "/ 2 F.I / be such that for any A 2 F.I / with
S."/ � A we have jfA � fI j � ". The Cauchy criterion implies that there exists a
C."/ D C.J; "/ 2 F.J / such that for everyB 2 F.J nC."//we have jgjB � ". Let
K 2 F.I�J / be such thatS."/�C."/ � K. DefineK.j / WD fi 2 I W .i; j / 2 Kg,
j 2 J . Observe that S."/ � K.j / for j 2 C."/. We have� X

.i;j /2K
figj

�
� fIgJ D

X
j2J

.fK.j / � fI /gj :

Henceˇ̌̌� X
.i;j /2K

figj

�
� fIgJ

ˇ̌̌
�

X
j2C."/

jfK.j / � fI jjgj j C
X

j…C."/
jfK.j / � fI jjgj j

� "
X
j2J

jgj j C 2M
X

j…C."/
jgj j � 3M": �

Theorem 1.2.12 ([Sie 1910]). Assume that I is .infinite/ countable. For every
family f D .fi /i2I 2 CZ the following conditions are equivalent:

(i) f 2 S.I;CZ/;
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(ii) for every bijection � W N ! I , the series
P1
�D1 f�.�/ is uniformly convergent

on Z .and fI D P1
�D1 f�.�//;

(iii) jf j 2 S.I;RZC/.4

Notice that (ii) may be used as an alternative definition of the uniform summa-
bility.

Proof. (i) ) (ii): Fix a bijection � W N ! I and " > 0. Let N0 2 N be such that
S."/ � f�.1/; : : : ; �.N0/g, where S."/ D S.I; "/ is chosen according to (1.2.1).
Then, for every N � N0, we have S."/ � f�.1/; : : : ; �.N /g, which implies that
jPN

�D1 f�.�/ � fI j � ".
(ii) ) (iii): We may assume that fi W Z ! R, i 2 I . Suppose that for

some "0 > 0 the family .jfi j/i2I does not satisfy the Cauchy condition. Fix an
i0 2 I . The set C."0/ WD fi0g does not satisfy (1.2.2). Hence, there exists a set
G.1/ 2 F.I n fi0g/ such that

sup
z2Z

X
i2G.1/

jfi .z/j > "0:

Let z1 2 Z be such that
P
i2G.1/ jfi .z1/j > "0. The set G.1/ may be divided into

two disjoint parts

GC.1/ WD fi 2 G.1/ W fi .z1/ � 0g; G�.1/ WD G.1/ nGC.1/:

Obviously, jfGC.1/.z1/j > "0=2 or jfG�.1/.z1/j > "0=2. Suppose that the first
case holds and put F.1/ WD GC.1/. Then jfF.1/.z1/j > "0=2.

The set F.1/ also is not good. Repeating the above argument, we find a set
F.2/ 2 F.I n F.1// such that supz2Z jfF.2/.z/j > "0=2.

Now, we take F.1/[F.2/ and we find F.3/ 2 F.I n .F.1/[F.2/// such that
supz2Z jfF.3/.z/j > "0=2.

Finally, we find a sequence .F.k//1
kD1 � F.I /, F.k/ D fik;1; : : : ; ik;n.k/g, of

pairwise disjoint sets such that supz2Z jfF.k/.z/j > "0=2, k 2 N.
Put F.0/ WD I n S1

kD1 F.k/. If F.0/ is finite, F.0/ D fi0;1; : : : ; i0;n.0/g (if
F.0/ D ¿, then we put n.0/ WD 0), we define a bijection � W N ! I via the
following sequence:

i0;1; : : : ; i0;n.0/; i1;1; : : : ; i1;n.1/; i2;1; : : : ; i2;n.2/; : : : :

4Let us mention the following general Dvoretzky–Rogers theorem [Dvo-Rog 1950].

Theorem. Let .E; k k/ be a Banach space. Then the following conditions are equivalent:
(i) for every sequence .fk/

1
kD1

� E the following two notions are equivalent:
� P1

kD1 kfkk < C1 .i.e. the series
P1

kD1 fk is absolutely convergent/,
� for every permutation � W N ! N, the series

P1
kD1 f�.k/ is convergent .i.e. the seriesP1

kD1 fk is unconditionally convergent/;
(ii) dimE < 1.
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Let S� WD P�
kD1 f�.k/, � 2 N. We get

Sn.0/C���Cn.k/ � Sn.0/C���Cn.k�1/ D fF.k/; k 2 N:

Consequently, the sequence .S�/1�D1 does not satisfy the uniform Cauchy condition,
which contradicts (ii).

IfF.0/ is infinite,F.0/ D fi0;1; i0;2; : : : g, then we define a bijection � W N ! I

via the following sequence:

i0;1; i1;1; : : : ; i1;n.1/; i0;2; i2;1; : : : ; i2;n.2/; : : : :

In this case we get

Sn.1/C���Cn.k/Ck � Sn.1/C���Cn.k�1/Ck D fF.k/; k 2 N;

which also contradicts (ii).
The implication (iii) ) (i) is obvious. �

Corollary 1.2.13. Assume that I is countable and let f D .fi /i2I 2 S.I;CZ/.
(a) Let z0 2 Z be fixed. If each fi is continuous at z0, then fI is continuous

at z0.
(b) If Z is Lebesgue measurable, �2n.Z/ < C1,5 and each fi is Lebesgue

integrable onZ, then .
R
Z
fid�2n/i2I 2 S.I;C/, fI is Lebesgue integrable onZ,

and Z
Z

fI d�2n D
X
i2I

Z
Z

fi d�2n:

Proof. Exercise. �

Using induction and Theorem 1.2.11 one gets the following corollary (Exer-
cise).

Corollary 1.2.14. (a) The geometric series

X
˛2Zn

C

z˛

r˛
D

X
˛2Zn

C

�z1
r1

�˛1

: : :
�zn
rn

�˛n D
nY

jD1

1X
kD0

�zj
rj

�k
;

where r D .r1; : : : ; rn/ 2 Rn>0,
6 is locally normally summable in P.r/ 7 to the

function

P.r/ 3 .z1; : : : ; zn/ 7!
nY

jD1

1

1 � zj =rj :

5�k denotes the Lebesgue measure in Rk .
6A>0 WD fa 2 A W a > 0g. To simplify notation we write Rn

>0 instead of .R>0/
n.

7P.a; r/ WD K.a1; r1/�� � ��K.an; rn/,K.a; r/ WD fz 2 C W jz�aj < rg, P.r/ WD P.0; r/,
K.r/ WD K.0; r/.
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(b) The seriesX
˛2Zn

�z1
r1

�j˛1j
: : :
�zn
rn

�j˛nj D
nY

jD1

1X
kD�1

�zj
rj

�jkj
;

where r D .r1; : : : ; rn/ 2 Rn>0, is locally normally summable in P.r/ to the function

P.r/ 3 .z1; : : : ; zn/ 7!
nY

jD1

1C zj =rj

1 � zj =rj :

1.3 Domains of convergence of power series

Definition 1.3.1. Any series of the formX
˛2Zn

C

a˛.z � a/˛ .z 2 Cn/;

where .a˛/˛2Zn
C

� C, a 2 Cn (w˛ WD w
˛1

1 	 	 	w˛n
n ), is called an .n-fold/ power

series with center at a.

Fix a power series (centered at 0):

S D
X
˛2Zn

C

a˛z
˛:

Remark 1.3.2 (Abel’s lemma). Assume that

ja˛jr˛ � C; ˛ 2 ZnC;

where r 2 Rn>0. Then for every 0 < � < 1 we have

ja˛z˛j � C� j˛j; z 2 P.� r/; ˛ 2 ZnC (Exercise).

In particular, the series
P
˛2Zn

C
a˛z

˛ is locally normally summable in P.r/.

Definition 1.3.3. Given a power series S , put

B D BS ´
n
z 2 Cn W sup

˛2Zn
C

ja˛z˛j < C1
o
;

C D CS ´
n
z 2 Cn W the series

X
˛2Zn

C

a˛z
˛ is summable

o
;

D D DS ´ int C:

Clearly D � C � B. The set D is traditionally called the domain of convergence
of the power series S .
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Exercise 1.3.4. Determine BS , CS , and DS for the following power series:

(a)
P
�2ZC

	Šz
�
1 z2;

(b)
P
�2ZC

z
�
1 z2;

(c)
P
�;�2ZC

z
�
1 z

�
2 ;

(d)
P
�;�2ZC

	Šz
�
1 z

�
2 ;

(e)
P
�2ZC

.z1z2/
�;

(f)
P
�;�2N

�
�Š
z
�
1 z

�
2 ;

(g)
P
�;�2N

.�C�/Š
�Š�Š

z
�
1 z

�
2 .

Remark 1.3.5. (a) If n D 1 and ¿ ¤ D ¤ C, then xB D xC D xD D xK.R/, where
R is the radius of convergence of S .

(b) If S WD P
�2ZC

	Šz
�
1 z2, then C D .C�f0g/[.f0g�C/ D V0 and D D ¿.

In particular, for n � 2 we may have xC 6� xD.
(c) For every point a D .a1; : : : ; an/ 2 B (resp. C) the closed polydisc

xP..ja1j; : : : ; janj// D f.z1; : : : ; zn/ 2 Cn W jzj j � jaj j; j D 1; : : : ; ng
is contained in B (resp. C).

(d) D D int B D int xB. In particular, D is fat. (An open set ˝ � Rk is said
to be fat if ˝ D int x̋ .)

Indeed, fix an a D .a1; : : : ; an/ 2 int xB. Observe that for small " > 0 the point
b D .b1; : : : ; bn/, with

bj WD
(
aj .1C "/ if aj ¤ 0;

" if aj D 0;
j D 1; : : : ; n;

also belongs to int xB. Let c D .c1; : : : ; cn/ 2 B be such that

jcj � bj j <
(

jaj j" if aj ¤ 0;

" if aj D 0;
j D 1; : : : ; n:

Consequently,

rj WD jcj j � jbj j � jcj � bj j >
(

jaj j.1C "/ � jaj j" if aj ¤ 0

" � " if aj D 0

)
D jaj j;

j D 1; : : : ; n:

Thus a 2 P.r/. Now, by Abel’s lemma, we conclude that a 2 P.r/ � D.
(e) In view of (d), xP..ja1j; : : : ; janj// � D for every a D .a1; : : : ; an/ 2 D.

Observe that any closed polydisc xP..ja1j; : : : ; janj// is obviously connected. In
particular, D is connected and so, D is really a domain.
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(f) For every compact K � D there exist C > 0 and 0 < � < 1 such that

ja˛z˛j � C� j˛j; z 2 K; ˛ 2 ZnC:

Consequently, the series S is locally normally summable in D. In particular, the
function f .z/ WD P

˛2Zn
C
a˛z

˛ , z 2 D, is continuous (Corollary 1.2.13 (a)).

Indeed, take a point a 2 D and let r 2 Rn>0 \ B and 0 < � < 1 be such that
a 2 P.� r/. Next use Abel’s lemma (Exercise).

Exercise 1.3.6. Let

f .z/ WD
X
˛2Zn

C

a˛z
˛; z 2 DS :

Prove that for every P.a; r/ � DS there exists a power series
P
�2Zn

C
b� .z � a/�

centered at a such that

f .z/ D
X
�2Zn

C

b� .z � a/� ; z 2 P.a; r/

(cf. Step 3 of the proof of Proposition 1.3.12).

Exercise 1.3.7. Check whether there exists a power series S such that

DS D f.z1; z2/ 2 D2 W either jz1j < r1 or jz2j < r2g
with 0 < r1; r2 < 1 (cf. Fig. 1.5.2).

We are led to the very important notion of a complete Reinhardt set.

Definition 1.3.8. We say that a setA � Cn is complete Reinhardt .n-circled/ if for
every point a D .a1; : : : ; an/ 2 A and for every � D .�1; : : : ; �n/ 2 xDn, the point
� 	 a D .�1a1; : : : ; �nan/ belongs to A; equivalently,

A D
[

aD.a1;:::;an/2A
xP..ja1j; : : : ; janj//:

Exercise 1.3.9. (a) The domain of convergence of a power series is a complete
Reinhardt domain.

(b) If A � Cn is complete Reinhardt, then A is arcwise connected.
(c) If A � Cn is complete Reinhardt, then xA and intA are complete Reinhardt.

Exercise 1.3.10. Let S D P
˛2Zn

C
a˛z

˛ , T D P
ˇ2Zn

C
bˇz

ˇ be arbitrary power
series. Using Theorem 1.2.7, prove thatX

˛; ˇ2Zn
C

a˛bˇz
˛Cˇ D

X
�2Zn

C

c�z
� ; z 2 DS \ DT ;
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where
c� WD

X
˛2Zn

C
W ˛��

a˛b��˛; 
 2 ZnC:

The power series on the right-hand side is called the Cauchy product of the series
S and T .

We are going to study the function f .z/ WD P
˛2Zn

C
a˛z

˛ , z 2 DS , defined by
the series S . First we need some notation.

Let˝ � Cn be open. We say that a functiong W ˝ ! C is Fréchet differentiable
in the complex .resp. real/ sense at a point a 2 ˝ if one of the following two
equivalent conditions is satisfied (details are left to the reader as an Exercise):

(i) there exists a C-linear (resp. R-linear) mapping L W Cn ! C such that

g.aC h/ D g.a/C L.h/C o.khk/ when h ! 0I
(ii) there exist a C-linear (resp. R-linear) mapping L W Cn ! C and functions

g1; : : : ; gn W ˝ � a ! C, continuous at 0, with g1.0/ D 	 	 	 D gn.0/ D 0,
such that

g.aC h/ D g.a/C L.h/C
nX

jD1
gj .h/hj ; h D .h1; : : : ; hn/ 2 ˝ � a: 8

Obviously, the above operator L is uniquely determined; we write g0.a/ D
g0

C.a/ WD L (resp. g0
R.a/ WD L) and we say that g0

C.a/ .resp. g0
R.a// is the complex

(resp. real/ Fréchet differential of g at a.

Exercise 1.3.11. Find a function g W C ! C such that g0
R.0/ exists, but g0

C.0/ does
not exist.

It is clear that if g0
C.a/ exists, then g0

R.a/ exists and g0
R.a/ D g0

C.a/. If g0
R.a/

exists, then g is continuous at a. If g0
C.a/ (resp. g0

R.a/) exists, then g has at a all
complex .resp. real/ partial derivatives

@g

@zj
.a/ W D lim

C�3h!0

g.aC hej / � g.a/
h

; 9

.resp.
@g

@xj
.a/ W D lim

R�3h!0

g.aC hej / � g.a/
h

;

@g

@yj
.a/ W D lim

R�3h!0

g.aC ihej / � g.a/
h

/; j D 1; : : : ; n;

8The implication (ii) ) (i) is elementary. If (i) is satisfied, then we put

gj .h/ WD Nhj

khk2

�
g.aC h/� g.a/�L.h/�:

9If A � Ck , then A� WD A n f0g.
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where .e1; : : : ; en/ is the canonical basis of Cn. Moreover,

g0
C.a/.h/ D

nX
jD1

@g

@zj
.a/hj

.resp. g0
R.a/.h/ D

nX
jD1

@g

@zj
.a/hj C

nX
jD1

@g

@ Nzj .a/
Nhj /; h D .h1; : : : ; hn/ 2 Cn;

where
@g

@zj
.a/ WD 1

2

�
@g

@xj
.a/ � i @g

@yj
.a/

�
;

@g

@ Nzj .a/ WD 1

2

�
@g

@xj
.a/C i

@g

@yj
.a/

�
denote the formal partial derivatives of g at a.10 If g0

R.a/ exists, then the following
conditions are equivalent (Exercise):

(i) g0
C.a/ exists;

(ii) g0
R.a/ is C-linear;

(iii) @g
@ Nzj .a/ D 0, j D 1; : : : ; n;

(iv) the complex partial derivatives @g
@zj
.a/, j D 1; : : : ; n, exist.

The above result frequently permits us to transport theorems from real analysis
to the complex case.

The notion of the Fréchet differentiability extends in a standard way (compo-
nentwise) to mappings g W ˝ ! Cm. Then the complex Fréchet differential of g
at a is a C-linear mapping g0.a/ W Cn ! Cm, which may be identified with an
m� n-dimensional matrix. In view of the above identification, one can define k-th
complex Fréchet differentials g.k/.a/ and k-th order complex partial derivatives

@kg

@zjk
: : : @zj1

.a/ WD @

@zjk

�
@k�1g

@zjk�1
: : : @zj1

�
.a/;

1 � j1; : : : ; jk � n;

k D 2; 3; : : : :

One can prove that if g.k/.a/ exists, then g has at a all complex partial derivatives
of order k, the derivatives are independent of the order of differentiation, and

g.k/.a/.h/ D
X

˛2Zn
C

W j˛jDk

kŠ

˛Š
D˛g.a/h˛; h 2 Cn; 11

where

D˛g.a/ D
� @

@z1

�̨
1 B 	 	 	 B

� @

@zn

�̨
n

g.a/:

10The reader should always decipher from the context whether @g

@zj
.a/ denotes the complex or formal

partial derivative!
11˛Š WD ˛1Š � � �˛nŠ,˛ D .˛1; : : : ; ˛n/ 2 Zn

C; notice that formallyg.k/.a/ is ak-linear symmetric

mapping .Cn/k ! C, which is, as always, identified with the homogeneous polynomial Cn ! C of
degree k.
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If g.k/.a/ exists for every k 2 N, then we define the Taylor series of g at a as the
power series

Tag.z/ WD
X
˛2Zn

C

1

˛Š
D˛g.a/.z � a/˛:

The number

d.Tag/ WD supfr � 0 W Tag is uniformly summable in xP.a; r/g 2 Œ0;C1�

is called the radius of convergence of Tag. Observe that

Tag.z/ D
1X
kD0

1

kŠ
g.k/.a/.z � a/:

Proposition 1.3.12. Assume that DS ¤ ¿ and let

f .z/ WD
X
˛2Zn

C

a˛z
˛; z 2 DS :

For ˇ 2 ZnC letDˇS denote the power seriesX
˛2Zn

C
W ˛	ˇ

�
˛
ˇ

�
ˇŠ a˛ z

˛�ˇ : 12

Then f has all complex Fréchet differentials in DS ,13 DS � DDˇS , and

Dˇf .z/ D
X

˛2Zn
C

W ˛	ˇ

�
˛
ˇ

�
ˇŠ a˛ z

˛�ˇ ; z 2 DS ; ˇ 2 ZnC: (1.3.1)

In particular, f .z/ D T0f .z/, z 2 DS .

Notice the following difference between one and several variables. For n D 1

the radius of convergence of S is equal to the radius of convergence of the series of
derivatives. This is no longer true for n � 2, for instance if S is the power series

1X
�D0

z�1 C
1X
�D0

z�2 ;

then DS D D � D, but D @S
@z1

D D � C.14

12
�

˛

ˇ

� WD �
˛1

ˇ1

� � � � �˛n

ˇn

�
, ˛ D .˛1; : : : ; ˛n/, ˇ D .ˇ1; : : : ; ˇn/ 2 Zn

C, ˇ � ˛.
13In fact, f is holomorphic – cf. Theorem 1.7.19.
14 @S

@z1
D P1

�D1 �z
��1
1 .
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Proof. Step 1. First observe that, for every j 2 f1; : : : ; ng, the series

@S

@zj
D

X
˛2Zn

C
W ˛	ej

j̨a˛ z
˛�ej

is locally normally summable in DS . It is sufficient to prove that ifR 2 Rn>0\BS ,
then the series @S

@zj
is locally normally summable in P.R/. Let C > 0 be such that

ja˛jR˛ � C , ˛ 2 ZnC. Then for any 0 < � < 1 we have

X
˛2Zn

C
W ˛	ej

sup
P.�R/

j j̨a˛ z
˛�ej j � C

�Rj

X
˛2Zn

C
W ˛	ej

j̨ �
j˛j;

which gives the normal summability in P.�R/.
In particular, the function Fj defined by the series @S

@zj
is continuous on DS ,

j D 1; : : : ; n (Corollary 1.2.13 (a)).
Step 2. We have

f .h/ D f .0/C
nX

jD1
aej hj C

nX
jD1

fj .h/hj ; h D .h1; : : : ; hn/ 2 DS ;

where

f1.h/ WD
X

j˛j	2; ˛	e1

a˛h
˛�e1 ; f2.h/ WD

X
j˛j	2; ˛	e2

˛1D0

a˛h
˛�e2 ; : : : ;

fn�1.h/ WD
X

j˛j	2; ˛	en�1
˛1D���D˛n�2D0

a˛h
˛�en�1 ; fn.h/ WD

X
j˛j	2; ˛	en

˛1D���D˛n�1D0

a˛h
˛�en :

Observe that all the above series are normally summable in a neighborhood U of 0
(Exercise). In particular, the functions f1; : : : ; fn are continuous in U . Note
that f1.0/ D 	 	 	 D fn.0/ D 0. Thus f 0.0/ exists and @f

@zj
.0/ D aej D Fj .0/,

j D 1; : : : ; n.
Step 3. If P.a; r/ bDS , then the seriesX

˛;�2Zn
C

˛	�

a˛
�
˛
�

�
.z � a/�a˛��

is normally summable in P.a; r/.
Indeed, let R 2 BS \ Rn>0 and � 2 .0; 1/ be such that jaj j C rj � �Rj ,
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j D 1; : : : ; n, and let ja˛jR˛ � C , ˛ 2 ZnC. Then

X
˛;�2Zn

C
˛	�

ja˛j�˛
�

�
sup

z2P.a;r/

j.z � a/�a˛�� j �
X
˛2Zn

C

ja˛j sup
z2P.a;r/

nY
jD1

.jzj � aj j C jaj j/ j̨

�
X
˛2Zn

C

ja˛j.�R/˛ � C
X
˛2Zn

C

� j˛j < C1:

Step 4. Fix P.a; r/ bDS . By Step 3 and Theorem 1.2.7, we have

f .z/ D
X
˛2Zn

C

a˛.z C a � a/˛ D
X
˛2Zn

C

a˛
X
��˛

�
˛
�

�
.z � a/�a˛��

D
X
�2Zn

C

�X
˛	�

a˛
�
˛
�

�
a˛���.z � a/� DW

X
�2Zn

C

b� .z � a/� ; z 2 P.a; r/:

Hence, by Step 2, the function P.r/ 3 z
g7! f .a C z/ is Fréchet differentiable

at 0 and @g
@zj
.0/ D bej , j D 1; : : : ; n. Consequently, f is differentiable at a and

@f
@zj
.a/ D @g

@zj
.0/ D bej D Fj .a/, j D 1; : : : ; n.

Step 5. Iterating the above procedure shows that f has all complex Fréchet
differentials and (1.3.1) holds for arbitrary ˇ (Exercise). �

Exercise* 1.3.13. Assume that DS ¤ ¿,

f .z/ WD
X
˛2Zn

C

a˛z
˛; z 2 DS ;

and f .0/ D a0 ¤ 0. Find a power series
P
ˇ2Zn

C
bˇz

ˇ such that

1

f .z/
D

X
ˇ2Zn

C

bˇz
ˇ

for z in a neighborhood of 0.

1.4 Maximal affine subspace of a convex set I

As we have already mentioned in the Introduction, the logarithmic image X WD
logD � Rn of a Reinhardt domain D � Cn will play an important role in various
characterizations of the structure of holomorphic functions on D. In all essential
cases the domain X will be convex. For the convenience of the reader we collect
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below some basic properties of convex domains in Rn which will be used in the
sequel.

Recall that a set X � Rn is said to be convex if for every a; b 2 X , the segment
Œa; b� WD f.1 � t /aC tb W t 2 Œ0; 1�g is contained in X .

Remark 1.4.1 (Properties of convex sets; the reader is asked to complete details).
(a) For any family .Xi /i2I � Rn of convex sets, the set

T
i2I Xi is convex.

In particular, for any set A � Rn, there exists the smallest convex set convA
containing A.

(b) If A;B � Rn are convex, then

conv.A [ B/ D f.1 � t /aC tb W a 2 A; b 2 B; t 2 Œ0; 1�g DW X:
(c) If X � Rn is convex, then xX is convex.
(d) If X � Rn is convex, then intX is convex. In particular, for any family

.Xi /i2I � Rn of convex sets, the set int
T
i2I Xi is a convex domain.

(e) For every ˛ 2 .Rn/�, c 2 R, the open halfspace

H˛;c WD fx 2 Rn W hx; ˛i < cg;
where hx; yi WD Pn

jD1 xjyj is the standard scalar product in Rn, is convex. More-

over, we put H0;c WD
n

Rn if c > 0
¿ if c � 0 : Notice that H˛;c is fat.

(f) If
¿ ¤ X WD int

\
.˛;c/2A

H˛;c ; A � .Rn/� � R;

then we may always assume that the representation ofX is minimal in the following
sense: for every .˛; c/ 2 A we have @X \ @H˛;c ¤ ¿, i.e. H˛;c D H a

˛ for some
a 2 @X , where

H a
˛ WD fx 2 Rn W hx � a; ˛i < 0g:

Indeed, we proceed in two steps:
– Define

B WD prRn.A/; 15 c.˛/ WD supfhx; ˛i W x 2 Xg; ˛ 2 B:
We have got a function c W B ! R. Observe that c.˛/ � inffc W .˛; c/ 2 Ag. Then
X D int

T
˛2B H˛;c.˛/.

– Let B0 WD f˛ 2 B W @X \ @H˛;c.˛/ ¤ ¿g. Then X D int
T
˛2B0

H˛;c.˛/.
We only need to show that if ˛0 2 B n B0, then

X D int
\

˛2Bnf˛0g
H˛;c.˛/ DW X0:

15prX W X � Y ! X , prX .x; y/ WD x. Notice that the same notation will be also used in the case
where a vector space V is a direct sum of subspacesX and Y , V D X C Y , and then prX W V ! X ,
prX .x C y/ WD x. In the sequel, the context will indicate which of the above cases occurs.



22 Chapter 1. Reinhardt domains

Suppose that x0 2 X0 n X , i.e. x0 2 X0 n H˛0;c.˛0/. Take a y0 2 X and let
z0 2 Œx0; y0� \ @H˛0;c.˛0/. Let U � X0 be a convex neighborhood of z0. Then
U \ H˛0;c.˛0/ � X and, therefore, z0 2 @X \ @H˛0;c.˛0/; a contradiction.

(g) If X   Rn is a convex domain, then for every a 2 @X there exists an ˛ 2
.Rn/� such that X � H a

˛ . In particular, there exists a mapping ‚ W @X ! .Rn/�
such that X D int

T
a2@X H a

‚.a/
.

(h) If X D int
T
i2I Xi , where each Xi is a fat domain, then X is fat. In

particular, any convex domain is fat.
(i) If X is a closed convex set, intX ¤ ¿, then for any a 2 intX and b 2 X

we have Œa; b/ WD f.1 � t /aC tb W t 2 Œ0; 1/g � intX . In particular, X D intX .

For any set A � Rn, we define its orthogonal complement A? by the formula

A? WD fx 2 Rn W 8a2A W hx; ai D 0g:
For any vector subspaceF of Rn let prF W Rn ! F denote the orthogonal projection
onto F . For A � Rn, let ŒA� or spanA denote the vector subspace of Rn spanned
by A.

The rest of this section is based on [Jar-Pfl 1985] and [Jar-Pfl 1987].

Remark 1.4.2. LetX   Rn be a convex domain and let F � Rn be a vector space.
Then the following conditions are equivalent:

(i) X C F D X ;
(ii) there exists a point x0 2 xX such that x0 C F � xX ;

(iii) xX C F D xX ;
(iv) .@X/C F D @X ;
(v) X D FCY , whereY is a convex domain inF? (observe thatY D prF?.X/).

In fact, it is trivial that (i) ) (ii). To prove that (ii) ) (iii), observe that

.1 � 1
k
/x C 1

k
.x0 C ky/ �����!

k!C1
x C y; x 2 xX; y 2 F:

To prove that (iii) ) (i), observe that by Remark 1.4.1 (i), for every y 2 F we
get

X C y D int.X C y/ � int xX D X:

Now it is clear that (i) C (iii) ) (iv). Obviously (iv) ) (ii). The implication
(v) ) (i) is obvious. To prove the converse implication, define Y WD prF?.X/.
Obviously, X � F C Y . Take y 2 F and x00 D prF?.x/ with x 2 X . Let
x0 WD prF .x/. Then y C x00 D .y � x0/C x 2 F CX D X . Thus F C Y � X .

Definition 1.4.3. A vector subspace F of Rn is of rational type, if F is generated
by F \ Qn, i.e. F D ŒF \ Qn�. Otherwise, we say that F is of irrational type.
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Remark 1.4.4. Let F � Rn be a vector space, d WD dimF .

(a) F is of rational type iff F D ŒF \ Zn�.

(b) LetL 2 GL.n;Q/.16 Then F is of rational type iffL.F / is of rational type.

(c) The following conditions are equivalent:

(i) F is of rational type;
(ii) F? is of rational type;

(iii) there exist ˛1; : : : ; ˛n�d 2 Zn such that F D f˛1; : : : ; ˛n�d g?;
(iv) there exists a family B � Qn such that F D B?;
(v) dim.F? \ Qn/? D dimF ;

(vi) there exists a non-singular matrix L 2 M.n � n;Z/ such that F D
L.Rd � f0gn�d / and F? D L.f0gd � Rn�d /.

Indeed, to see that (i) , (ii), let ˛1; : : : ; ˛d 2 Qn be a basis of F . Then
F? D f˛1; : : : ; ˛d g?. To simplify notation, suppose that

� WD detŒ˛j
k
�j;kD1;:::;d ¤ 0:

Then, using Cramer’s formulas, we conclude that the space F? is spanned by the
rational vectors

vk WD .�1;k=�; : : : ; �d;k=�; 0; : : : ; 0; �1
k-th place

; 0; : : : ; 0/;

k D d C 1; : : : ; n;
(1.4.1)

where

�j;k WD det

264 ˛11 : : : ˛1j�1 ˛1
k

˛1jC1 : : : ˛1
d

:::
:::

˛d1 : : : ˛dj�1 ˛d
k

˛djC1 : : : ˛d
d

375 ;
j D 1; : : : ; d; k D d C 1; : : : ; n:

(1.4.2)

The implications (ii) ) (iii) ) (iv) ) (i) are obvious.
(ii) , (v): Observe that always we have .F? \ Qn/? 
 F . Hence it holds

that dim.F? \ Qn/? D dimF , .F? \ Qn/? D F , ŒF? \ Qn� D F?.
(i) ) (vi): We only need to take

L D

26664
˛11 : : : ˛n1
˛12 : : : ˛n2
:::

:::

˛1n : : : ˛nn

37775 ;
16GL.n;F / WD fL 2 M.n� nI F / W detL ¤ 0g, F 2 fQ;R;Cg.
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where ˛1; : : : ; ˛d 2 Zn is a basis of F and ˛dC1; : : : ; ˛n 2 Zn is a basis of F?.
The implication (vi) ) (i) is obvious.

(d) Let F D f˛1; : : : ; ˛d g?, where ˛1; : : : ; ˛d 2 .Rn/� and

d D rankŒ˛1; : : : ; ˛d � .1 � d � n � 1/:
Assume that� WD detŒ˛ij �i;jD1;:::;d ¤ 0. ThenF is of rational type iff�j;k=� 2 Q
(where �j;k is as in (1.4.2)), j D 1; : : : ; d; k D d C 1; : : : ; n.

Indeed, we already know that by Cramer’s formulas, the vectors vdC1, …, vn

(as in (1.4.1)) form a basis of F . Thus, if all the numbers�j;k=� are rational, then
vdC1, …, vn is a basis of F \ Qn. Conversely, if F is of rational type, then there
exists a non-singular matrix L D ŒLi;j � 2 M..n � d/ � .n � d/;R/ such that the
vectors Li;1vdC1 C 	 	 	 CLi;n�dvn, i D 1; : : : ; n� d , give a basis of F \ Qn. In
particular,

�Li;j�d D Li;1v
dC1
j C	 	 	CLi;n�dvnj 2 Q; i D 1; : : : ; n�d; j D dC1; : : : ; n:

Hence L 2 M..n � d/ � .n � d/;Q/ and, consequently, vdC1; : : : ; vn 2 Qn.

(e) If F D T
i2I Fi , where Fi is of rational type, then F is of rational type. In

particular, for every subspace F � Rn there exists the smallest subspace of rational
type K .F / with F � K .F /.

Indeed, we only need to use (c)(iv).

Definition 1.4.5. Let ¿ ¤ X � Rn be a convex domain. We denote by E.X/ a
vector subspace of Rn such that:

(a) X C E.X/ D X ,
(b) for any vector subspace F � Rn with X C F D X we have dimF �

dim E.X/.17

The definition extends in an obvious way to the case whereX is a convex domain
of a vector subspace H � Rn and we are interested in the maximal vector space
F � H such that X C F D X – in this case we write EH .X/.

Exercise 1.4.6. Prove that E.X/ D f0g , X does not contain an affine line.

Remark 1.4.7. Let X � Rn be a convex domain.
(a) If F1; F2 � Rn are vector subspaces such that X C F1 D X C F2 D X ,

then X C .F1 C F2/ D X . In particular,
� the space E.X/ is uniquely determined,
� if F is a vector subspace of Rn such that X C F D X , then F � E.X/.
(b) If X � Y (Y is another convex domain), then E.X/ � E.Y /. For any

y0 2 Rn we have E.X C y0/ D E.X/. If L W Rn ! Rn is a linear isomorphism,
then E.L.X// D L.E.X//.

17Below, in Remark 1.4.7 (a), we will see that E .X/ is uniquely determined.
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(c) E.H˛;c/ D ˛?.
(d) dim E.X/ D n iff X D Rn.
(e) If X D int

T
i2I Xi , where each Xi is a convex domain, then E.X/ DT

i2I E.Xi /. In particular, if X D int
T
.˛;c/2A H˛;c , where A � Rn � R, then

E.X/ D B?, where B WD prRn.A/.
Indeed, the inclusion E.X/ � T

i2I E.Xi / DW F is obvious. We have

X C F �
�\
i2I

Xi

�
C F �

\
i2I
.Xi C F / D

\
i2I

Xi :

Since the set X C F is open, we get X C F � int
T
i2I Xi D X , which proves

that F � E.X/.
(f) X D E.X/C Y , where Y WD prE .X/?.X/ is a convex domain in E.X/?

with EE .X/?.Y / D f0g.
In particular, there exists an L 2 GL.n;R/ such that

L.E.X// D Rd � f0gn�d ; L.E.X/?/ D f0gd � Rn�d ; L.X/ D Rd � Y;
where d WD dim E.X/ and Y � Rn�d is a convex domain with E.Y / D f0g.

Definition 1.4.8. A convex domain X � Rn is of rational (resp. irrational) type if
E.X/ is of rational (resp. irrational) type.

Exercise 1.4.9. Let

X WD f.x1; x2/ 2 R2 W c C 	x1 < x2 < d C 	x1g .c; d; 	 2 R/:

Decide when X is of rational type.

Remark 1.4.10. IfX D int
T
i2I Xi , where eachXi is a convex domain of rational

type, then X is of rational type. In particular, for every convex domain X � Rn

there exists the smallest convex domain of rational type K .X/ with X � K .X/.

Lemma 1.4.11. Assume that X   Rn, n � 2, is a convex domain. Then the
following conditions are equivalent:

(i) E.X/ is of rational type;

(ii) there exists a non-singularmatrixL 2 M.n�n;Z/ such thatX D L.Rd�Y /,
where d WD dim E.X/ and Y � Rn�d is a convex domain with E.Y / D f0g;

(iii) for every x0 … xX there exists an open set U � E.X/? such that X �T
ˇ2U Hx0

ˇ
; in particular, there exists a basis ˛1; : : : ; ˛n�d 2 E.X/? \ Zn

of E.X/? such that X � Tn�d
jD1 H x0

˛j ;

(iv) X D int
T
.˛;c/2A H˛;c , where A � Zn � R.
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Proof. The implications (iii) ) (iv) ) (i) , (ii) are elementary. To prove that (ii)
) (iii) we may assume that E.X/ D f0g (Exercise). Fix an x0 … xX . We may
assume that x0 D 0. Let C denote the open convex cone (with vertex at 0 2 Rn)
generated by X (C WD ftx W t > 0; x 2 Xg). Observe that E.C / D f0g.

Indeed, suppose that C C L � C , where L � Rn is a real line. Consider any
two-dimensional real space P � Rn with L � P and X 0 WD X \ P ¤ ¿. We
have EP .X

0/ D f0g. Let C 0 be the open cone in P generated by X 0. Obviously,
C 0 D C \ P . Hence C 0 C L � C 0 and the proof is reduced to the case n D 2. In
the case n D 2 we only need to observe that if E.X/ D f0g, then there exist two
different half-planes H˛1;0;H˛2;0 with X � H˛1;0 \ H˛2;0; a contradiction.

Consequently, there exists a ˇ0 2 .Rn/� such that

xC \ fx 2 Rn W hx; ˇ0i D 0g D f0g:
Indeed, we use induction on n. The case n D 2 is obvious. In the general case,
take any ˛ 2 Rn, k˛k D 1, with xC � fx 2 Rn W hx; ˛i � 0g. Put

P WD fx 2 Rn W hx; ˛i D 0g
and define X 0 WD X \ P , C 0 WD C \ P D ftx0 W t > 0; x0 2 X 0g. Note
that EP .X

0/ D f0g. Hence, by the inductive assumption, there exists an .n � 2/-
dimensional vector subspaceV ofP such that xC 0\V D f0g. Fix au 2 P\V ? with
hu; ˛i � 0 and kuk D 1. We are going to prove that xC \ fx 2 Rn W hx; ˛ � "ui D
0g D f0g for sufficiently small " > 0. Suppose that for each " > 0 there exists an
x" 2 xC , kx"k D 1, with hx"; ˛ C "ui D 0. Write x" D v" C t"uC �"˛. We have
0 D hx"; ˛ � "ui D �" � "t". Hence �" D "t". Moreover, t" D hx"; ˛i � 0 and
1 D kx"k2 D kv"k2 C t2" .1C "2/. Take "k ! 0. We may assume that v"k ! v0

and t"k
! t0 � 0. We have x"k ! v0 C t0u 2 xC 0 and t0 D �p1 � kv0k2. Since

v0 D .v0 C t0u/ C .�t0/u 2 V \ xC 0, we conclude that t0 D 0 and v0 D 0 –
contradiction.

It follows that xC \ fx 2 Rn W hx; ˇi D 0g D f0g for ˇ from an open neighbor-
hood of ˇ0, which directly implies (iii). Indeed, suppose that ˇ� ! ˇ0 is such that
hy� ; ˇ�i D 0 for some y� 2 xC , y� ¤ 0, � D 1; 2; : : : . Since xC is a cone, we may
assume that ky�k D 1, � D 1; 2; : : : , and next that y� ! y0 2 xC , y0 ¤ 0. Then
hy0; ˇ0i D 0 – contradiction. �

Lemma 1.4.12. Let X � Rn be a convex domain. Then the following conditions
are equivalent:

(i) E.X/ D f0g;
(ii) there exist a non-singular matrix A WD

�
˛1

:::
˛n

	
2 M.n � n;Z/ and a vector

c D .c1; : : : ; cn/ 2 Rn such that X � H˛1;c1
\ 	 	 	 \ H˛n;cn

;
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(iii) there exist a matrix A 2 GL.n;Z/ WD fA 2 M.n � nI Z/ W j detAj D 1g
and a vector c 2 Rn such that X � H˛1;c1

\ 	 	 	 \ H˛n;cn
.

Proof. By Lemma 1.4.11, we only need to prove that (ii) ) (iii). Let A and c be
as in (ii),

X � H˛1;c1
\ 	 	 	 \ H˛n;cn

DW H.A; c/:
Suppose that j detAj > 1. Put

S.A; c/ WD fˇ 2 Zn W 9dDdˇ2R W H.A; c/ � Hˇ;d g:
Then S.A; c/ D Zn \ .QC˛1 C 	 	 	 C QC˛n/.

Indeed, obviously the set on the right-hand side is contained on the left-hand one.
Now take a ˇ 2 S.A; c/. Then there exists a d 2 R such that H.A; c/ � Hˇ;d .
Write ˇ D Pn

jD1 tj˛j D ..tA/1; : : : ; .tA/n/, where t WD .t1; : : : ; tn/. Then
t D ˇA�1, i.e. all the tj ’s are rational numbers. It remains to show that all of them
are non-negative. Observe that the linear map

L W Rn ! Rn; L.x/ WD .hx; ˛1i; : : : ; hx; ˛ni/;
gives an isomorphism satisfying

fy 2 Rn W yj < cj ; j D 1; : : : ; ng D L.H.A; c//

� L.Hˇ;d / D fy 2 Rn W ht; yi < dg:
Hence, t 2 RnC (Exercise). Note that the set

Q.A; c/ WD Zn \ �
.Œ0; 1/ \ Q/˛1 C 	 	 	 C .Œ0; 1/ \ Q/˛n

� [ f˛1; : : : ; ˛ng
is finite. Therefore,

Q.A; c/ D
n nX
jD1

pk;j

qk;j
˛j W k D 1; : : : ; N

o
;

where pj;k 2 ZC, qj;k 2 N and the pairs pj;k , qj;k are relatively prime. Then we
denote by s D s.A; c/ the least common multiple of all denominators qj;k .

Let x 2 Qn with xA 2 Zn. Write xj D uj C vj , where uj WD xj � vj 2
Œ0; 1/ \ Q and vj WD bxj c 2 Z. Here bxc WD maxfk 2 Z W k � xg D the integer
part of x 2 R. Then vA 2 Zn and .x � v/A D Pn

jD1.xj � vj /˛
j 2 Q.A; c/.

Thus, s.x � v/ 2 Zn. Hence, sx 2 Zn.
Let r D r.A; c/ be the smallest number in N such that if xA 2 Zn for an

x 2 Qn, then rx 2 Zn. Comparing with the former paragraph it follows that
r � s.

Let Q̨ j denote the j -th row of the inverse matrix A�1 of A. Note that Q̨ j 2 Q
and Q̨ jA 2 Zn. Therefore, r Q̨ j 2 Zn and so rA�1 2 M.n� nI Z/. Consequently,
rn D det.rA�1/ detA, i.e. j detAj divides r .
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Observe that 1 < j detAj � r � s. Therefore there exists a vector Ǫ 2
Q.A; c/ n f˛1; : : : ; ˛ng; in particular, Ǫ1 2 Zn. So we may assume that there
exists a � 2 RnC, �1 2 .0; 1/, such that Ǫ D Pn

jD1 �j˛j 2 S.A; c/. Moreover, if OA
denotes the matrix with rows Ǫ1; ˛2; : : : ; ˛n, then j det OAj D �n1 j detAj < j detAj.

If j det OAj D 1, then we are done. If not, repeating the above procedure the
proof will be finished after a finite number of steps. �

Lemma 1.4.13. Let X � Rn be a convex domain. Then the following conditions
are equivalent:

(i) there exists a sequence .xk/1kD1 � X such that the sequences .xk;j /1kD1,
j D 1; : : : ; n � 1, are bounded and xk;n ! �1;

(ii) X C R� 	 en D X .

Proof. The implication (ii) ) (i) is trivial. Conversely, take an arbitrary x0 2 X

and t < 0. Put "k WD t=xk;n, k � 1. We may assume that 0 < "k < 1. Obviously,
"k ! 0. Since X is convex, we get yk WD .1 � "k/x0 C "kxk 2 Œx0; xk� � X .
Moreover, yk ! x0C ten. Hence x0CR� 	en � xX . Consequently,XCR� 	en �
int xX D X . �

Definition 1.4.14. Let X � Rn be a domain which is starlike with respect to 0,
i.e. Œ0; x� � X for every x 2 X . Then the function hX W Rn ! RC defined by the
formula

hX .x/ WD infft > 0 W x=t 2 Xg; x 2 Rn;

is called the Minkowski function of X .

Remark 1.4.15. Before we continue, let us recall the following important notion
of semicontinuity.

Let X be a topological space. We say that a function u W X ! xR is upper
semicontinuous (u 2 C".X/) if for every t 2 R the set fx 2 X W u.x/ < tg is open.
We say that u is lower semicontinuous (u 2 C#.X/) if �u 2 C".X/.

Directly from the definition we get the following properties (Exercise):

� u 2 C#.X/ iff for every t 2 R the set fx 2 X W u.x/ > tg is open.
� C.X; xR/ D C".X/ \ C#.X/.
� u 2 C".X/; f 2 C.Y;X/ ) u B f 2 C".Y /.
� R>0 	 C".X/ D C".X/.
� If u; v 2 C".X/ and u.x/C v.x/ is well defined for every x 2 X , then uC v 2

C".X/.
� u; v 2 C".X/ ) maxfu; vg 2 C".X/.
� .u˛/˛2A � C".X/ ) inffu˛ W ˛ 2 Ag 2 C".X/. In particular, if C".X/ 3
u� & u pointwise on X , then u 2 C".X/.

� If C".X;R/ 3 u� ! u locally uniformly in X , then u 2 C".X/.
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� If .X; / is a metric space, then u 2 C".X/ , 8a2X W lim supx!a u.x/ D
u.a/.

� (Weierstrass theorem) If .X; / is a compact space and u 2 C".X;R�1/, then
there exists a point x0 2 X such that u.x0/ D supu.X/.

� (Baire theorem; cf. [Łoj 1988]) If .X; / is a metric space, then for every u 2
C".X/, there exists a sequence .u�/1�D1 � C.X; xR/ such that u� & u pointwise
onX . Moreover, if u 2 C".X;R�1/, then the sequence .u�/1�D1 may be chosen
in C.X;R/.

Exercise 1.4.16. LetX � Rn be a domain which is starlike with respect to 0. Prove
the following properties of the Minkowski function:

(a) hX .tx/ D thX .x/, t � 0, x 2 Rn.
(b) X D fx 2 X W hX .x/ < 1g.
(c) hX is uniquely determined by (a) and (b).
(d) hX is upper semicontinuous.
(e) X is convex iff hX satisfies the triangle inequality:

hX .x C y/ � hX .x/C hX .y/; x; y 2 Rn:

(f) If X is convex, then hX is continuous.
(g) IfX is convex and symmetric with respect to 0, thenhX is a seminorm, i.e.hX

is absolutely homogeneous (hX .tx/ D jt jhX .x/, t 2 R, x 2 Rn) and satisfies the
triangle inequality.

Lemma 1.4.17. Let X � Rn be an unbounded convex domain which is contained

in
n

X
jD1.�1; R/ for a certain number R. Then, for any point a 2 X , there exist a

vector v 2 Rn� nf0g and a neighborhood V D V.a/ � X such that V CRCv � X .

Proof. We may assume thata D 0. Then the continuity of the Minkowski functionh
ofX (cf. Exercise 1.4.16) and the unboundedness ofX lead to a vector v on the unit
sphere with h.v/ D 0. Obviously, v 2 Rn� n f0g and RCv � X . Finally, using the
convexity of X , we see that for any open ball V � X with center 0 the following
inclusion holds: V C RCv � X . �

1.5 Reinhardt domains

We collect here some basic definitions related to the class of Reinhardt domains
which is a natural generalization of the class of complete Reinhardt domains from
Definition 1.3.8.

For any � D .�1; : : : ; �n/ 2 T n, let T� W Cn ! Cn be the n-rotation given by
the formula T�.z/ D T�.z1; : : : ; zn/ WD � 	 z D .�1z1; : : : ; �nzn/.

Remark 1.5.1. T��� D T� B T� D T� B T� D T���; T1 D idCn ; .T�/
�1 D

T��1 , where 1 WD .1; : : : ; 1/ 2 T n and ��1 D .��1
1 ; : : : ; �

�1
n /.



30 Chapter 1. Reinhardt domains

Definition 1.5.2. A set A � Cn is called Reinhardt .n-circled/ if T�.A/ D A for
every � 2 T n.

Let R W Cn ! RnC, R.z1; : : : ; zn/ WD .jz1j; : : : ; jznj/.
Remark 1.5.3. (a) A setA � Cn is Reinhardt iffA D R�1.R.A//. Consequently,
any Reinhardt setA � Cn is completely determined by its absolute image R.A/ D
A \ RnC.

(b) The mapping R W Cn ! RnC is open (Exercise). Consequently, if˝ � Cn

is Reinhardt, then˝ is open in Cn iff R.˝/ is open in RnC (in the induced topology).
(c) If a set B � RnC is connected, then so is R�1.B/.
Indeed, to see that A WD R�1.B/ is connected for connected B � RnC we

may argue as follows. Suppose that A D U [ V , where U; V are open in A,
disjoint, and non-empty. Since T n is connected, we conclude that U , V must be
Reinhardt (Exercise). Consequently, if we put U 0 WD R.U / and V 0 WD R.V /,
then B D U 0 [V 0, U 0, V 0 are open in B , disjoint, and non-empty; a contradiction.

(d) LetD � Cn be Reinhardt. ThenD is a domain in Cn iff R.D/ is a domain
in RnC (in the induced topology). Observe that a relatively open set U � RnC is
connected iff it is arcwise connected.

(e) If A � Cn is Reinhardt, then xA and intA are Reinhardt.

For any Reinhardt set A � Cn, let

OA.j / WD f� 	 z W � 2 f1gj�1 � xD � f1gn�j ; z 2 Ag; j D 1; : : : ; n;

OA WD f� 	 z W � 2 xDn; z 2 Ag D .: : : . OA.1//b.2/ : : : /b.n/:
Obviously, A � OA.j / � OA.

Remark 1.5.4. (a) Let A � Cn be Reinhardt. Then A is complete Reinhardt iff
A D OA.

(b) If D is a Reinhardt domain, then so are yD.1/, …, yD.n/, and OD.

For every Reinhardt set A � Cn put

logA WD fx 2 Rn W ex 2 Ag D f.log jz1j; : : : ; log jznj/ W .z1; : : : ; zn/ 2 A \ Cn�g;
where ex WD .ex1 ; : : : ; exn/. The set logA is called the logarithmic image of A.

For any set B � Rn let expB be the unique Reinhardt subset of Cn� such that
log.expB/ D B , i.e.

expB D f.z1; : : : ; zn/ 2 Cn� W .log jz1j; : : : ; log jznj/ 2 Bg:
Observe that R.expB/ D fex W x 2 Bg. Moreover, for every Reinhardt set
A � Cn we have exp.logA/ D A \ Cn�.
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Definition 1.5.5. We say that a Reinhardt setA is logarithmically convex .log-con-
vex/ if the set logA is convex.

jz1j1

jz2j

1

1
2

log jz1j
log jz2j

� log 2

Figure 1.5.1. An example of a log-convex non-complete Reinhardt domain: D WD
f.z1; z2/ 2 D2 W 1

2
jz1j2 < jz2j < jz1j2g.

jz1j1r1

jz2j

1

r2

log jz1jlog r1

log jz2j

log r2

Figure 1.5.2. An example of a complete Reinhardt domain that is not log-convex.

Define

Vj D V n
j WD f.z1; : : : ; zn/ 2 Cn W zj D 0g D Cj�1 � f0g � Cn�j

for j D 1; : : : ; n, and

V0 D V n
0 WD V1 [ 	 	 	 [ Vn D f.z1; : : : ; zn/ 2 Cn W z1 	 	 	 zn D 0g:
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Remark 1.5.6. (All details are left as Exercise.) (a) Let A be a Reinhardt set.
Then

int.logA/ D log.intA/; log xA D logA:

Consequently, for any set B � Rn, we have

log.int expB/ D int.log expB/ D int log.expB/ D int xB:
In particular, if X � Rn is a fat domain (e.g. if X is a convex domain), then
D WD int expX is a fat Reinhardt domain with logD D X . Conversely, if G is a
Reinhardt domain with logG D X , then int xG D D. In fact, if logG D X , then
G n V0 D expX . Hence, xG D expX , and finally, int xG D D.

(b) A Reinhardt set A � Cn is logarithmically convex iff

.x1�t
1 yt1; : : : ; x

1�t
n ytn/ 2 A; .x1; : : : ; xn/; .y1; : : : ; yn/ 2 A \ Rn>0; t 2 Œ0; 1�:

(c) If D � Cn is a Reinhardt domain, then D n V0 is a domain.
Indeed, it suffices to show that for any domain D � Cn, the set D n Vj is

connected, j D 1; : : : ; n. Assume that j D n. We only need to observe that, for
every a D .a1; : : : ; an/ 2 D \ Vn, if P.a; r/ � D, then

P.a; r/ n Vn D K.a1; r/ � 	 	 	 �K.an�1; r/ � .K.an; r/ n f0g/
is obviously connected (cf. the proof of Proposition 1.9.7).

(d) If˝ is an open Reinhardt set such that˝ n V0 is connected, then˝ itself is
connected. In particular, if ˝ is log-convex, then ˝ is a domain.

(e) Let X � Rn be a fat domain and let D WD int expX (cf. (a)). Then:

� 0 2 D iff there exists an x0 2 X such that x0 C Rn� � X .
� D is complete iff X C Rn� D X .

For ˛ D .˛1; : : : ; ˛n/ 2 Rn define

Cn.˛/ D C.˛1/ � 	 	 	 � C.˛n/;

where

C.x/ WD
(

C if x � 0;

C� if x < 0:

Note that Cn.˛/ D Cn..sgn ˛1; : : : ; sgn ˛n//. Let Cn.†/ WD T
˛2† Cn.˛/ where

† � Rn. Observe that the function

Cn.˛/ 3 z 7! jz˛j WD jz1j˛1 	 	 	 jznj˛n 2 RnC
is well defined (here 00 WD 1). Notice that in the case where ˛ 2 Zn, jz˛j coincides
with the absolute value of z˛ . Let

D˛;c WD fz 2 Cn.˛/ W jz˛j < ecg; ˛ 2 Rn; c 2 R: 18 (1.5.1)
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Observe that D˛;c is a Reinhardt domain (Exercise). It is called an elementary
Reinhardt domain. We put D˛ WD D˛;0. Observe that D˛;c D Dˇ;d iff .ˇ; d/ D
	.˛; c/ for some 	 > 0.

jz1j

jz2j

jz1j

jz2j

Figure 1.5.3. D.1;1/ and D.�1;�1/.

jz1j

jz2j

jz1j

jz2j

Figure 1.5.4. D.2;�1/ and D.�2;1/.

Remark 1.5.7. (a) Let ˛ D .˛1; : : : ; ˛n/ 2 .Rn/�. For every j 2 f1; : : : ; ng we
have:

.D˛;c/b.j / D D˛;c ” D˛;c \ Vj ¤ ¿” j̨ � 0:

18Note that D0;c D
(

Cn if c > 0;

¿; if c � 0:
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jz1j

jz2j

ec=˛2

jz1j

jz2j

ec=˛2

Figure 1.5.5. Elementary domains D˛;c with (˛1 D 0; ˛2 > 0) and (˛1 D 0; ˛2 < 0).

In particular, D˛;c is complete iff ˛ 2 RnC.
(b) Suppose that ¿ ¤ D D int

T
.˛;c/2A D˛;c , where A � Rn � R. Let

B WD f˛ 2 Rn W 9c2R W .˛; c/ 2 Ag:
Then, for every j 2 f1; : : : ; ng, we have:

yD.j / D D ” D \ Vj ¤ ¿” 8˛2B W j̨ � 0:

Indeed, in view of (a), we only need to observe that if j̨ � 0 for every ˛ 2 B ,
then yD.j / D D. In fact,

yD.j / � int
\

.˛;c/2A
bD˛;c.j / D int

\
.˛;c/2A

D˛;c D D:

(c) log D˛;c D H˛;c (cf. Remark 1.4.1 (e)).
(d) If ˛ 2 Rs>0 � Rn�s

<0 with 0 � s � n. Then

D˛;c D f.z1; : : : ; zn/ 2 Cn W jz1j˛1 	 	 	 jzsj˛s < ecjzsC1j�˛sC1 	 	 	 jznj�˛ng: 19

Consequently,

D˛;c D f.z1; : : : ; zn/ 2 Cn W jz1j˛1 	 	 	 jzsj˛s � ecjzsC1j�˛sC1 	 	 	 jznj�˛ng
D fz 2 Cn.˛/ W jz˛j � ecg [ fz 2 V0 W z1 	 	 	 zs D zsC1 	 	 	 zn D 0g (1.5.2)

(observe that if s D 0, then D˛;c � Cn.˛/). In particular, D˛;c is fat for any
.˛; c/ 2 Rn � R.

19If s D 0, then D˛;c D f.z1; : : : ; zn/ 2 Cn W 1 < ec jz1j�˛1 � � � jznj�˛n g.
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Indeed, to prove (1.5.2) fix a point b D .b1; : : : ; bn/ 2 Cn with

jb1j˛1 	 	 	 jbsj˛s D ecjbsC1j�˛sC1 	 	 	 jbnj�˛n :

We consider the following three cases:

� s � n � 1 and bsC1 	 	 	 bn ¤ 0. Put a.u/ WD .b1; : : : ; bs; ubsC1; : : : ; ubn/,
u > 0. Then limu!1 a.u/ D b, a.u/ 2 Cn.˛/, a.u/ 2 D˛;c for u > 1, and
a.u/ … D˛;c for 0 < u < 1.

� s � 1 and b1 	 	 	 bs ¤ 0. Put a.t/ WD .tb1; : : : ; tbs; bsC1; : : : ; bn/, t > 0. Then
limt!1 a.t/ D b, a.t/ 2 Cn.˛/, a.t/ 2 D˛;c for 0 < t < 1, and a.t/ … D˛;c
for t > 1.

� 1 � s � n�1 and b1 	 	 	 bs D bsC1 	 	 	 bn D 0. We may assume that b1 	 	 	 bk ¤
0, bkC1 D 	 	 	 D bs D 0 (0 � k � s�1), bsC1 	 	 	 b` ¤ 0, b`C1 D 	 	 	 D bn D 0

(s C 1 � ` � n � 1). Put

a.t; u/ WD .b1; : : : ; bk; t; : : : ; t; bsC1; : : : ; b`; u; : : : ; u/; t; u > 0:

Then limt;u!0 a.t; u/ D b, a.t; u/ 2 Cn.˛/, a.t; u/ 2 D˛;c if t � u, and
a.t; u/ … D˛;c if u � t .

(e) If D D int
T
.˛;c/2A D˛;c , where A � Rn � R, then

logD D int
\

.˛;c/2A
H˛;c

and D is fat. In particular, D is log-convex.
Indeed, by (c) and Remark 1.5.6 (a), we get

logD D int
\

.˛;c/2A
log D˛;c D int

\
.˛;c/2A

H˛;c :

Moreover, by (d), we have

int xD � int
\

.˛;c/2A
D˛;c � int

\
.˛;c/2A

D˛;c

20 � int
\

.˛;c/2A
int D˛;c D int

\
.˛;c/2A

D˛;c D D:

For any Reinhardt domain D � Cn define its fat hull D� as

D� WD int xD D intD n V0 D int exp logD: (1.5.3)

20int
T

i Ai � int.
T

i intAi /.
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Remark 1.5.8. Let D � Cn be a log-convex Reinhardt domain.
(a) We already know (cf. Remark 1.5.6 (a)) thatD� is a fat log-convex Reinhardt

domain with logD� D logD. In particular, D� nD � V0.
(b) If logD D int

T
.˛;c/2A H˛;c , where A � Rn � R, then

D� D int
\

.˛;c/2A
D˛;c :

(c) If D� \ Vj ¤ ¿, then .D�/b.j / D D� (cf. Remark 1.5.7 (b)).
(d) If D \ Vj ¤ ¿, then for every point a D .a0; aj ; a00/ 2 D � Cj�1� � C �

Cn�j� , we have .a0; �aj ; a00/ 2 D, � 2 Dnf0g (use (c) and (a)). Note that the result
may be not true for an arbitrary a 2 D – cf. Figure 1.5.6.

jz1j11=3 2=3

jz2j

1

D

jz1j1

jz2j

1

D� D B2

Figure 1.5.6. D WD B2 n f.z1; 0/ W 1=3 � jz1j � 2=3g. If D is a log-convex Reinhardt
domain, then D� nD � V0.

Remark 1.5.9. Frequently we will consider Reinhardt domainsD ¤ ¿ of the form

D D int
\

.˛;c/2A
D˛;c ;

where A � .Rn/� � R. Similarly as in Remark 1.4.1, we may always find the
following minimal representation of D. Put

B WD prRn.A/; c.˛/ WD supflog jz˛j W z 2 Dg; ˛ 2 B:
Note that c.˛/ � inffc W .˛; c/ 2 Ag, ˛ 2 B . Since each D˛;c is fat (Re-
mark 1.5.7 (d)), we get

D D int
\
˛2B

D˛;c.˛/:
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jz1j11=3 2=3

jz2j

1

1=3

D

jz1j1

jz2j

1

D� D B2

Figure 1.5.7. D WD B2 n f.z1; z2/ W 1=3 � jz1j � 2=3; jz2j D 1=3g. If D is an arbitrary
Reinhardt domain, then it may happen that D� nD 6� V0.

Put B0 WD f˛ 2 B W @D \ @D˛;c.˛/ \ Cn� ¤ ¿g. Then

D D int
\
˛2B0

D˛;c.˛/ DW D0:

Indeed, since D and D0 are fat, we only need to show that D \ Cn� D D0 \ Cn�,
which follows directly from Remark 1.4.1.

Definition 1.5.10. We say that a Reinhardt domain D satisfies the Fu condition
(cf. [Fu 1994]) if for every j 2 f1; : : : ; ng we have

.@D/ \ Vj ¤ ¿ H) D \ Vj ¤ ¿:
Remark 1.5.11. (a)D satisfies the Fu condition iff for every j 2 f1; : : : ; ng, either
D \ Vj ¤ ¿ or xD \ Vj D ¿. Consequently, after a permutation of variables, we
may always assume that there exists k D F.D/ 2 f0; : : : ; ng with D \ Vj ¤ ¿,
j D 1; : : : ; k, xD \ Vj D ¿, j D k C 1; : : : ; n.

(b) The elementary Reinhardt domain D˛;c satisfies the Fu condition iff ˛ 2 RnC
or ˛ 2 Rn�.

(c) The Reinhardt domain

T� WD f.z1; z2/ 2 D � D W jz1j� < jz2jg; � > 0;

does not satisfy the Fu condition.
In particular, the Hartogs triangle

T D T1 D f.z1; z2/ 2 D � D W jz1j < jz2jg
does not satisfy the Fu condition.
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jz1j1

jz2j
1

T1=2

jz1j1

jz2j
1

T1

jz1j1

jz2j
1

T2

Figure 1.5.8. The Reinhardt domain T� WD f.z1; z2/ 2 D2 W jz1j� < jz2jg, � > 0, does not
satisfy the Fu condition.

(c) One can prove (cf. [Fu 1994]) that the Fu condition is satisfied whenever @D
is C1, i.e. for every a 2 @D there exist a neighborhood U of a and a C1 function
 W U ! R such that:

� U \D D fz 2 U W .z/ < 0g,
� U n xD D fz 2 U W .z/ > 0g,
� grad  ¤ 0 on U (cf. Definition 1.18.1).

Indeed, suppose that a 2 .@D/ \ Vj , but D \ Vj D ¿. We may assume that
j D n. Let U WD P.a; r/ and  be as above. Write z D .z0; zn/ 2 Cn�1 � C,
U D P.a0; r/ � K.r/ D U 0 � Un. Since .U 0 � f0g/ \ D D ¿, we conclude
that .z0; 0/ � 0, z0 2 U 0. Hence, since .a0; 0/ D 0, we get @	

@zj
.a/ D 0,

j D 1; : : : ; n � 1. Thus @	
@zn
.a/ ¤ 0.

First consider the case @	
@xn
.a/ ¤ 0, where zn D xn C iyn. We may assume

that @	
@xn
.a/ < 0 (Exercise). Then .a0; t / < 0 for 0 < t < t0. Since D is

Reinhardt, we conclude that .a0;�t / < 0 for 0 < t < t0. Finally, @	
@xn
.a0; 0/ D 0;

a contradiction.
The case where @	

@yn
.a/ ¤ 0 is similar – Exercise.

(d) Notice that the Fu condition is not invariant under biholomorphic mappings.
For example, D� and C n xD (Exercise).

Definition 1.5.12 (Algebraic mappings). For a matrix A D
�
˛1

:::
˛n

	
2 GL.n;Z/21

and a D .a1; : : : ; an/ 2 Cn�, let

˚a;A W Cn.A/ ! Cn; ˚a;A.z/ WD .a1z
˛1

; : : : ; anz
˛n

/;

where Cn.A/ WD Cn.˛1/\ 	 	 	 \ Cn.˛n/. We put ˚A WD ˚1;A. Any mapping of
the form ˚a;A is called an algebraic mapping. We say that two Reinhardt domains

21GL.n;Z/ WD fA 2 M.n� nI Z/ W j detAj D 1g.
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are algebraically equivalent (D
alg' G) if there exists an algebraic mapping ˚a;A

such that D � Cn.A/ and ˚a;A maps bijectively D onto G.

Remark 1.5.13. Observe that:
(a) For any A;B 2 GL.n;Z/ and a; b 2 Rn, we have ˚a;A B ˚b;B D ˚c;C on

Cn�, where C WD AB and c WD ˚a;A.b/.
(b) ˚a;AjCn

�
W Cn� ! Cn� is bijective and .˚a;AjCn

�
/�1 D ˚b;A�1 jCn

�
, where

˚a;A.b/ D 1.
(c) Notice that in general ˚a;A.Cn.A// 6� Cn.A�1/. Take for example A WD


1 1
3 4

� 2 GL.2;Z/. Then C2.A/ D C2, A�1 D 

4 �1�3 1

�
, C2.A�1/ D C2�, and

˚A.C2/ D C2� [ f.0; 0/g.

Directly from Lemma 1.4.12 we get

Lemma 1.5.14. LetD � Cn be a log-convexReinhardt domain. Then the following
conditions are equivalent:

(i) E.logD/ D f0g .cf. Definition 1.4.5/;

(ii) there exist a non-singular matrix A D
�
˛1

:::
˛n

	
2 M.n � n;Z/ and a vector

c D .c1; : : : ; cn/ 2 Rn such thatD n V0 � D˛1;c1
\ 	 	 	 \ D˛n;cn

;22

(iii) there exists a matrix A 2 GL.n;Z/ such that D � Cn.A/ and ˚A.D/ is
bounded.

Lemma 1.5.15. Let D � Cn D Cn�1 � C be a log-convex Reinhardt domain.
Then the following conditions are equivalent:

(i) there exists a point .b0; 0/ 2 xD \ .Cn�1� � f0g/;
(ii) for any point .a0; an/ 2 D \ Cn� we have f.a0; �an/ W 0 < j�j � 1g � D.

Observe that the lemma implies Remark 1.5.8 (d).

Proof. The implication (i) ) (ii) follows directly from Lemma 1.4.13. The con-
verse implication is obvious. �

We come back to characterizations of the domain of convergence of a power
series

S D
X
˛2Zn

C

a˛z
˛

from § 1.3. There we have defined three sets B, C, and D (Definition 1.3.3) and
observed that the sets B, C, and D are complete Reinhardt.

22In particular,D � Cn.˛1/\ � � � \ Cn.˛n/.
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Proposition 1.5.16. The set B is log-convex. Consequently, since

log D D log int B D int.log B/;

the domain of convergence D is also log-convex.

Proof. Take x; y 2 B \ Rn>0. Let C > 0 be such that ja˛x˛j � C , ja˛y˛j � C ,
˛ 2 ZnC. Then for every t 2 Œ0; 1�, we have

ja˛.xt1y1�t
1 /˛1 	 	 	 .xtny1�t

n /˛n j � ja˛x˛jt ja˛y˛j1�t � C; ˛ 2 ZnC: �

Example 1.5.17. There exists a power series S such that DS D Bn � Cn. We
will see later in Proposition 1.11.11 that, using some Baire category argument, one
can prove that there exist many power series S with DS D Bn. Here the problem
is to find a concrete one.

Indeed, let f�1; �2; : : : g � @Bn be an arbitrary countable set which is dense in
@Bn (Exercise: find such a set). Define

S WD
X

�2.Zn
C
/�

j�jŠ N��j�j
�Š

z� :

Notice that S is obtained from the series
1X
kD1

hz; �kik D
1X
kD1

� nX
jD1

zj N�k;j
�k D

1X
kD1

X
�2Zn

C
W j�jDk

kŠ

�Š
N��kz� :

To prove that Bn � DS , observe thatˇ̌̌̌ j�jŠ N��j�j
�Š

z�

ˇ̌̌̌
� hR.z/;R.�j�j/ij�j � kzkj�j; z 2 Bn; � 2 .ZnC/�:

Since DS is fat (Remark 1.3.5 (d)), we only need to show that DS � xBn.
Suppose that DS n xBn ¤ ¿. Then there exist k0 and t > 1 such that a WD t�k0

2
DS . Let C > 0 be such thatˇ̌̌̌ j�jŠ N��j�j

�Š
a�

ˇ̌̌̌
� C; � 2 .ZnC/�:

Put N.k/ WD #f� 2 ZnC W j�j D kg D �
kCn
n

�
. Then

jh�k; �k0
ikj �

X
�2Zn

C
W j�jDk

kŠ

�Š
R.�k/

�R.�k0
/� � N.k/

C

tk
; k 2 N:

Hence

1 D lim sup
k!C1

jh�k; �k0
ij � lim

k!C1
.N.k/C /1=k

1

t
D 1

t
< 1I

a contradiction.
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Exercise* 1.5.18. Given a complex norm N W Cn ! RC such that N.z/ D
N.R.z//, z 2 Cn, decide whether there exists a power series S such that DS D
fz 2 Cn W N.z/ < 1g.

1.6 Domains of convergence of Laurent series

Consider an .n-fold/ Laurent series

S D
X
˛2Zn

a˛z
˛ .z 2 Cn/;

where .a˛/˛2Zn � C. Put†.S/ WD f˛ 2 Zn W a˛ ¤ 0g. Observe that in the case
where †.S/ � ZnC, the series S reduces to a power series (cf. § 1.3). Similarly as
in the case of power series we introduce the following sets.

Definition 1.6.1. Given a Laurent series S , put

B D BS WD
n
z 2 Cn.†.S// W sup

˛2†.S/
ja˛z˛j < C1

o
;

C D CS WD
n
z 2 Cn.†.S// W

X
˛2†.S/

ja˛z˛j < C1
o
; 23

D D DS WD int C:

Clearly D � C � B. The set D is traditionally called the domain of convergence
of the Laurent series S .24

It is clear that DS is an open Reinhardt set 25. Put

B1 WD fa 2 Cn W 9U�Cn.†.S//
a 2 U - open

9C>0 W ka˛z˛kU � C; ˛ 2 †.S/g;

B2 WD fa 2 Cn W 9 U�Cn

a 2 U - open
9C>0 W ja˛j � C

r˛
; r 2 Rn>0 \ R.U /; ˛ 2 Zng;

B3 WD fa 2 Cn W 9U�Cn.†.S//
a 2 U - open

9C>0 9�2.0;1/ W ka˛z˛kU � C� j˛j; ˛ 2 †.S/g;

where k'kA WD supfj'.z/j W z 2 Ag. It is clear that int B 
 B1 D B2 
 B3 �
int C D D � int B.

23That is, sup
nP

˛2A ja˛z
˛j W A � †.S/; #A < C1

o
< C1. Observe that, by Proposi-

tion 1.2.10, CS WD fz 2 Cn.†/ W the series
P

˛2†.S/ a˛z
˛ is absolutely summableg.

24If†.S/ D ¿, then we put B D C WD Cn.
25Proposition 1.6.5 (d) will show that DS is connected and, therefore, DS is really a domain.
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Lemma 1.6.2. Let K � Cn be a Reinhardt compact set and let r > 0. Put

K.r/ WD
[
a2K

xP.a; r/

and observe thatK.r/ is also a Reinhardt compact .Exercise/. Then there exists a
� 2 .0; 1/ such that for every ˛ 2 Rn with K.r/ � Cn.˛/ we have

max
z2K jz˛j � � j˛j max

z2K.r/
jz˛j;

where j˛j WD j˛1j C 	 	 	 C j˛nj.
Proof. Observe that if z D .z1; : : : ; zn/ 2 K and j̨0

< 0, then jzj0
j > r .

Moreover, there exists 0 < � < 1 such that jzj j=� � jzj j C r , j D 1; : : : ; n, for
any z D .z1; : : : ; zn/ 2 K (Exercise). Consequently, for z 2 K, we have

.1=�/j˛jjz˛j D
Y

j W j̨ 	0
.jzj j=�/ j̨

Y
j W j̨<0

.jzj j�/ j̨

�
Y

j W j̨ 	0
.jzj j C r/ j̨

Y
j W j̨<0

.jzj j � r/ j̨ � sup
w2K.r/

jw˛j: �

Lemma 1.6.3. B1 D B2 D B3 D int B D D.

Proof. To prove that B1 D B2 D B3 we only need to show that B1 � B3. Let a,
U , and C be as in the definition of B1. We may assume that U is Reinhardt. Let
V b U be a Reinhardt neighborhood of a and let r > 0 be such that xV .r/ � U .
Now, we apply Lemma 1.6.2 with K WD xV .r/.

It remains to show that int B � B1. Fix an a D .a1; : : : ; an/ 2 int B and small
" 2 .0; 1/. For � D .�1; : : : ; �n/ 2 f�1; 1gn define

b.�/ D .b1.�/; : : : ; bn.�//;

where

bj .�/ WD

8̂<̂
:
.1C "/aj if aj ¤ 0 and �j D 1;

.1 � "/aj if aj ¤ 0 and �j D �1;
" if aj D 0;

j D 1; : : : ; n:

Taking sufficiently small " 2 .0; 1/, we may assume that b.�/ 2 B for any � . Let
C > 0 be such that ja˛.b.�//˛j � C , ˛ 2 †.S/, � 2 f�1; 1gn. Put U.�/ WD
U1.�/ � 	 	 	 � Un.�/, where

Uj .�/ WD

8̂<̂
:
K..1C "/jaj j/ if aj ¤ 0 and �j D 1;

C n xK.1 � "/jaj j/ if aj ¤ 0 and �j D �1;
K."/ if aj D 0;

j D 1; : : : ; n:
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Observe that U WD T
�2f�1;1gn U.�/ is a neighborhood of a. We will show that

ja˛z˛j � C , z 2 U , ˛ 2 †.S/. Take such z and ˛ D .˛1; : : : ; ˛n/ and let

� WD .�1; : : : ; �n/ with �j WD
�
1 if j̨ � 0
�1 if j̨ < 0

. Then ja˛z˛j � ja˛.b.�//˛j � C .

�

Remark 1.6.4. Notice that in contrast to the case of power series, the domain of
convergence of a Laurent series need not be fat. For example, if S D P1

kD1 1
kŠ

1

zk ,
then DS D C�.

Proposition 1.6.5. Assume DS ¤ ¿. Then:
(a) The series S is locally normally summable in DS . In particular, the function

f .z/ WD
X
˛2Zn

a˛z
˛; z 2 DS ;

is well defined and continuous.26

(b) a˛ D 1

.2�i/n

Z
@0P.r/

f .�/

�˛C1
d�; ˛ 2 Zn; r 2 DS \ Rn>0,

where @0P.a; r/ WD @K.a1; r1/ � 	 	 	 � @K.an; rn/, 1 WD .1; : : : ; 1/ 2 Nn, andZ
@0P.r/

'.�/d� WD in
Z
Œ0;2
�n

'.r 	 ei� / r1ei�1 	 	 	 rnei�nd�n.�/:

Hence,

ja˛j � kf k@0P.r/

r˛
; ˛ 2 Zn; r 2 DS \ Rn>0:

Consequently, for any Reinhardt domainU bDS we have the Cauchy inequalities

ja˛j � kf kU
r˛

; ˛ 2 Zn; r 2 U \ Rn>0: (1.6.1)

(c) If DS \ Vj0
¤ ¿, then †.S/ � Zj0�1 � ZC � Zn�j0 and DS D bDS

.j0/.

Consequently, if DS \ Vj ¤ ¿, j D 1; : : : ; n, then †.S/ � ZnC and DS D bDS ,
i.e. DS is a complete Reinhardt domain. In particular, if 0 2 DS , then DS is a
complete Reinhardt domain.

(d) DS is log-convex. In particular, DS is connected.

Proof. (a) follows from Lemma 1.6.3.
(b) Since the series S is locally uniformly summable, we get

1

.2�i/n

Z
@0P.r/

f .�/

�˛C1
d� D

X
ˇ2Zn

aˇ
1

.2�i/n

Z
@0P.r/

�ˇ�˛�1 d� D a˛:

26Notice that, in fact, f is holomorphic – cf. Theorem 1.7.19.
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(c) To simplify notation assume that j0 D n. Fix an a 2 DS \ Vn and let
U bDS be a Reinhardt neighborhood of a. By (1.6.1) we have

ja˛j � kf kU
r 0˛0 r

�˛n
n ;

˛ D .˛0; ˛n/ 2 Zn�1 � Z; r D .r 0; rn/ 2 U \ Rn>0 � Rn�1 � R:

Letting rn ! 0, we conclude that a˛ D 0 if ˛n < 0. Moreover,

ka˛z˛k yU .n/ D ka˛z˛kU ; ˛ 2 †.S/;

which implies that bDS
.n/ � DS .

(d) Take x D .x1; : : : ; xn/, y D .y1; : : : ; yn/ 2 log DS . Let

a WD .ex1 ; : : : ; exn/; b WD .ey1 ; : : : ; eyn/ 2 DS \ Rn>0

and let Ua; Ub b DS \ Cn� be neighborhoods of a and b, respectively. By
Lemma 1.6.3, there exist C > 0 and 0 < � < 1 such that

ka˛z˛kUa[Ub
� C� j˛j; ˛ 2 Zn (Exercise):

Define

U W D f.ei�1 jz1j1�t jw1jt ; : : : ; ei�n jznj1�t jwnjt / W
.z1; : : : ; zn/ 2 Ua; .w1; : : : ; wn/ 2 Ub; .�1; : : : ; �n/ 2 Rn; t 2 Œ0; 1�g � Cn�:

One can easily check that U is open and

ka˛z˛kU � C� j˛j; ˛ 2 Zn:

Consequently,U � DS . Since Œx; y� � logU , we conclude that DS is log-convex.
�

Proposition 1.6.6. Let ˛ 2 .Rn/�, c 2 R, r 2 Rn>0 be such that r˛ D ec . Then
the elementary Reinhardt domain D˛;c is the domain of convergence of the Laurent
series

S D
X
�2Zn

N.�/

r�
z� ;

where

N.�/ WD #fk 2 ZC W bk˛c D �g; bk˛c WD .bk˛1c; : : : ; bk˛nc/ 2 Zn:

Observe that:

� S is obtained by grouping terms in the series
P1
kD0 z

bk˛c

rbk˛c .
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� Cn.bk˛c/ D Cn.˛/, k 2 ZC; in particular, †.S/ D Cn.˛/.
� If ˛ 2 .RnC/�, then S is a power series.

� If ˛ 2 Zn, then S D P1
kD0 1

rk˛ z
k˛ .

Proof. We may assume that ˛ 2 Rn�. Moreover, using the biholomorphism Cn 3
.z1; : : : ; zn/ 7! .z1=r1; : : : ; zn=rn/ we may reduce the proof to the case where
r1 D 	 	 	 D rn D 1 (c D 0). Notice that

lim
k!C1

bk˛c
k

D ˛:

Hence the classical Cauchy criterion implies that the series
P1
kD0 zbk˛c is absolute-

ly convergent in D˛ . Using Theorem 1.2.7, we conclude that D˛ � int CS D DS .
Conversely, let U b DS be an arbitrary Reinhardt domain. By Lemma 1.6.3,

there exist C > 0, � 2 .0; 1/ such that

N.�/jz� j � C� j�j; z 2 U; � 2 Zn:

Therefore,

jzbk˛c=kj � .N.bk˛c/jzbk˛cj/1=k � .C� jbk˛cj/1=k; z 2 U; k 2 N:

Letting k ! C1 we get jz˛j � � j˛j < 1, z 2 U , and, consequently, U � D˛ .
�

Proposition 1.6.7. Let Sj D P
˛2Zn a

j
˛z
˛ be a Laurent series, j D 1; : : : ; m,

such that DS1
\ 	 	 	 \ DSm

¤ ¿.27 For � D .�1; : : : ; �m/ 2 Cm, define

S.�/ D �1S1 C 	 	 	 C �mSm WD
X
˛2Zn

.�1a
1
˛ C 	 	 	 C �ma

m
˛ /z

˛:

Then there exists a set C � Cn such that

(*) C is the union of a countable family of complex .m� 1/-dimensional vector
subspaces of Cm and

DS1
\ 	 	 	 \ DSm

(L)� DS.�/

(R)� int xDS1
\ 	 	 	 \ int xDSm

; � 2 Cm n C:
In particular, if DSj

is fat .e.g. Sj is a power series – cf. Remark 1.3.5 (d)),
j D 1; : : : ; m, then

DS.�/ D DS1
\ 	 	 	 \ DSm

; � 2 Cm n C:
27Note that:

� By Proposition 1.6.5 (d), DS1
\ � � � \ DSm

is log-convex and, consequently, it is a domain.

� IfSj is a power series with DSj
¤ ¿, j D 1; : : : ;m, then obviously0 2 DS1

\� � �\DSm
¤ ¿.
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Proof. First observe that the inclusion (L) holds for every � 2 Cm.
To prove that there exists a set C � Cm with (*) such that (R) is true for

� 2 Cm n C , it suffices to show that there exists a set C with (*) such that

DS.�/ \ Q2n� � DS1
\ 	 	 	 \ DSm

; � 2 Cm n C;

or equivalently,

Q2n� n .DS1
\ 	 	 	 \ DSm

/ � Cn n DS.�/; � 2 Cm n C:

We only need to show that for every b 2 Cn� n .DS1
\ 	 	 	 \ DSm

/ the vector space

V.b/ WD f� 2 Cm W b 2 DS.�/g

has dimension � m � 1. To prove that dim V.b/ � m � 1, suppose that for a
b 2 Cn� n .DS1

\ 	 	 	 \ DSm
/ there exist �1; : : : ; �m 2 V.b/ such that the matrix

P WD Œ�
j

k
� is non-singular. Let U b Cn� \ DS.�1/ \ 	 	 	 \ DS.�m/ be a Reinhardt

neighborhood of b. By Remark 1.3.5 (d), there exist C > 0, � 2 .0; 1/ such that
jAj .z/j � C� j˛j, where

Aj .z/ WD �
j
1a
1
˛z
˛ C 	 	 	 C �jma

m
˛ z

˛; z 2 U; ˛ 2 Zn; j D 1; : : : ; m:

Hence, by the Cramer formulas, we have

aj˛z
˛ D q

j
1A

1.z/C 	 	 	 C qjmA
m.z/; j D 1; : : : ; m;

where Q D Œq
j

k
� WD P�1. Consequently, there exists a C 0 > 0 such that

jaj˛z˛j � C 0� j˛j; z 2 U; ˛ 2 Zn; j D 1; : : : ; m;

which implies that b 2 DS1
\ 	 	 	 \ DSm

; a contradiction. �

From Propositions 1.6.6 and 1.6.7 one immediately obtains the following

Corollary 1.6.8. For any ˛j 2 .Rn/� .resp. .RnC/�/, cj 2 R, j D 1; : : : ; m, there
exists a Laurent .resp. power/ series whose domain of convergence coincides with
D˛1;c1

\ 	 	 	 \ D˛m;cm
.

Exercise 1.6.9. Find (effectively) a power series whose domain of convergence
equals

f.z1; z2/ 2 D2 W 2jz1z2j < 1g:
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1.7 Holomorphic functions

Definition 1.7.1. Let ˝ � Cn be open. A continuous mapping f W ˝ ! Cm is
holomorphic on ˝ (f 2 O.˝;Cm/) if f is separately holomorphic, i.e. for any
point a D .a1; : : : ; an/ 2 ˝ and for any k 2 f1; : : : ; ng, the mapping

� 7! f .a1; : : : ; ak�1; �; akC1; : : : ; an/

is holomorphic near ak; equivalently, the complex partial derivatives

@fj

@zk
.z/; j D 1; : : : ; m; k D 1; : : : ; n;

exist at any point z 2 ˝. Notice that in fact the continuity of f follows from the
separate holomorphy – cf. Theorem 1.7.13. Put O.˝/ WD O.˝;C/ D the space
of all holomorphic functions on˝. Functions holomorphic on Cn are called entire
holomorphic functions.

Exercise 1.7.2. (a) O.˝/ is a complex algebra.
(b) Let a D .a0; a00/ 2 ˝ � Ck � Cn�k , ˝ 0 WD fz0 2 Ck W .z0; a00/ 2 ˝g. If

f 2 O.˝/, then f . 	 ; a00/ 2 O.˝ 0/.
(c) Every polynomial of n complex variables is an entire function, i.e. P .Cn/ �

O.Cn/.

Proposition 1.7.3 (Cauchy integral formula). If f 2 O.P.a; r//\C.xP.a; r// with
a D .a1; : : : ; an/ 2 Cn and r D .r1; : : : ; rn/ 2 Rn>0, then

f .z/ D 1

.2�i/n

Z
@K.a1;r1/

�
: : :

�Z
@K.an;rn/

f .�1; : : : ; �n/

.�1 � z1/ : : : .�n � zn/ d�n
�
: : :

�
d�1

D 1

.2�i/n

Z
@0P.a;r/

f .�/

� � z d�; z D .z1; : : : ; zn/ 2 P.a; r/: (1.7.1)

Notice that for z D .z1; : : : ; zn/ 2 P.a; r/, the function

@K.a1; r1/ � 	 	 	 � @K.an; rn/ 3 .�1; : : : ; �n/ 7! f .�1; : : : ; �n/

.�1 � z1/ : : : .�n � zn/
is continuous and, therefore, by the Fubini theorem, the above integral is indepen-
dent of the order of integration.

Proof. We apply induction on n. For n D 1 the result reduces to the classical
Cauchy integral formula (cf. [Con 1973], Chapter IV, Theorem 5.4).

n � 1 n: We may assume that a D 0. Fix a z D .z0; zn/ 2 P.r 0/ � K.rn/
(r D .r 0; rn/). We have

f .z/ D f .z0; zn/ D 1

.2�i/n�1

Z
@0P.r 0/

f .�0; zn/
�0 � z0 d�0: (1.7.2)
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Observe that f .�0; 	 / 2 O.K.rn// \ C. xK.rn// for any �0 2 @0P.r 0/.
Indeed, fix a �0 2 @0P.r 0/ and let P.r 0/ 3 �0

� ! �0. Then

O.K.rn// 3 f .�0
� ; 	 / ! f .�0; 	 /

uniformly on K.rn/. Hence, by the Weierstrass theorem (cf. [Con 1973], Ch. VII,
Theorem 2.1), f .�0; 	 / 2 O.K.rn//.

Consequently, by the classical Cauchy formula,

f .�0; zn/ D 1

2�i

Z
@K.rn/

f .�0; �n/
�n � zn d�n;

which together with (1.7.2) gives (1.7.1). �

Exercise 1.7.4 (Cauchy integral formula). Observe that the following slightly gen-
eralized Cauchy integral formula is true (with the same proof).

LetDj � C be a bounded domain whose boundary is a finite union of piecewise
C1 Jordan curves with positive orientation with respect to Dj , j D 1; : : : ; n. Put
D WD D1 � 	 	 	 �Dn and let f 2 O.D/ \ C. xD/. Then

f .z/ D 1

.2�i/n

Z
@D1

: : :

Z
@Dn

f .�1; : : : ; �n/

.�1 � z1/ : : : .�n � zn/ d�1 : : : d�n;
z D .z1; : : : ; zn/ 2 D:

Exercise 1.7.5. Let T be the Hartogs triangle (Remark 1.5.11 (c)) and let f 2
O.T /\ C. xT /, f .z; w/ WD z2=w. Prove that f is not a uniform limit of a sequence
of functions fk 2 O.Dk/, where Dk is a neighborhood of xT , k D 1; 2; : : : .

Compare this result with the theorem of Mergelyan in classical one-variable
complex analysis (cf. [Rud 1974], Chapter 20). For more information see
[Bed-For 1978].

Theorem 1.7.6. Let ˝ � Cn be open and let f 2 O.˝/. Then:

� f has all complex derivatives in ˝.

� For any point a 2 ˝ and a polydisc P.a; r/ b ˝ .r D .r1; : : : ; rn//, we have

D˛f .z/ D ˛Š

.2�i/n

Z
@0P.a;r/

f .�/

.� � z/˛C1
d�; z 2 P.a; r/; ˛ 2 ZnC;

the Taylor series Taf is locally uniformly summable in P.a; r/, and

f .z/ D Taf .z/; z 2 P.a; r/;

d.Taf / � d˝.a/ WD supf� > 0 W P.a; �/ � ˝g; a 2 ˝:
� For a function g W ˝ ! C the following conditions are equivalent:
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(i) g 2 O.˝/;

(ii) for every point a 2 ˝ there exist a power series
P
˛2Zn

C
a˛.z � a/˛ and

a polydisc P.a; r/ � ˝ such that the power series is locally uniformly
summable in P.a; r/ and

g.z/ D
X
˛2Zn

C

a˛.z � a/˛; z 2 P.a; r/:

Proof. We may assume that a D 0 and P.r/ b ˝. Observe that for .�; z/ 2
@0P.r/ � P.r/,

1

� � z D
X
˛2Zn

C

z˛

�˛C1
;

and the series is locally normally summable. Hence, by the Cauchy integral formula
(Proposition 1.7.3), we get

f .z/ D 1

.2�i/n

Z
@0P.r/

f .�/

� � z d� D
X
˛2Zn

C

�
1

.2�i/n

Z
@0P.r/

f .�/

�˛C1
d�

�
z˛;

z 2 P.r/:

It remains to apply Proposition 1.3.12. �

Lemma 1.7.7. Let f 2 O.˝/ with P.a0; r 0/ � @0P.a00; r 00/ � ˝ (r D .r 0; r 00/ 2
Rk>0 � Rn�k

>0 , a D .a0; a00/ 2 Ck � Cn�k). Define

g.z/ WD 1

.2�i/n�k

Z
@0P.a00;r 00/

f .z0; �/
� � z00 d�; z D .z0; z00/ 2 P.a; r/: (1.7.3)

Then g 2 O.P.a; r//.

Proof. It is obvious that g is continuous. Let

F.z; �/ WD f .z0; �/
� � z00 ; z D .z0; z00/ 2 P.a; r/; � 2 @0P.a00; r 00/:

Observe that

@F

@zj
.z; �/ D

8<:
@f
@zj

.z0;�/

��z00 if j D 1; : : : ; k;
f .z0;�/

.��z00/
ej C1 if j D k C 1; : : : ; n:

In particular, the function

P.a; r/ � @0P.a00; r 00/ 3 .z; �/ 7! @F

@zj
.z; �/



50 Chapter 1. Reinhardt domains

is continuous, j D 1; : : : ; n. Consequently,

@g

@zj
.z/ D 1

.2�i/n�k

Z
@0P.a00;r 00/

@F

@zj
.z; �/ d�; z 2 P.a; r/; j D 1; : : : ; n;

exist. �

Exercise 1.7.8. Try to generalize Lemma 1.7.7 and find “optimal” assumptions for
a continuous function f W P.a0; r 0/�@0P.a00; r 00/ ! C under which the function g
given by (1.7.3) is holomorphic on P.a; r/.

Exercise 1.7.9. (a) Holomorphic functions are infinitely differentiable in the com-
plex sense.

(b) If f 2 O.˝/, then D˛f 2 O.˝/ for arbitrary ˛ 2 ZnC.

Proposition 1.7.10 (Identity principle). Let f; g 2 O.D/, where D � Cn is a
domain. Then the following conditions are equivalent:

(i) f � g;

(ii) there exists an a 2 D such that Taf D Tag;

(iii) intfz 2 D W f .z/ D g.z/g ¤ ¿.

Proof. Clearly (i) ) (ii) , (iii). Since D is connected, to prove the implication
(ii) ) (i) it is sufficient to note that the set D0 WD fz 2 D W Tzf D Tzgg is
non-empty open and closed in D. �

Exercise 1.7.11. (a) Let D � Cn be a domain such that D \ Rn ¤ ¿. Show that
if f 2 O.D/ is such that f D 0 in D \ Rn, then f � 0.

(b) Let D � Cn be a domain and let G WD fNz W z 2 Dg. Assume that
f 2 O.D �G/ is such that f .z; Nz/ D 0 for z in a neighborhood of a point a 2 D.
Prove that f � 0.

Proposition 1.7.12. Let f W ˝ ! C. The following conditions are equivalent:

(i) f 2 O.˝/;

(ii) f is differentiable in the complex sense at any point of˝;

(iii) (Osgood theorem) f is locally bounded and separately holomorphic in ˝
.cf. Theorem 1.7.13/.

Proof. It is clear that (i) , (ii) ) (iii) (cf. Proposition 1.3.12 and Theorem 1.7.6).
(iii) ) (ii): Suppose that jf j � C in P.a; r/ b ˝. Then, by the Schwarz

lemma (cf. [Con 1973], Chapter VI, Lemma 2.1), we obtain

jf .z/ � f .a/j � jf .z1; z2; : : : ; zn/ � f .a1; z2; : : : ; zn/j C 	 	 	
	 	 	 C jf .a1; : : : ; an�1; zn/ � f .a1; : : : ; an�1; an/j

� 2C

r
.jz1 � a1j C 	 	 	 C jzn � anj/; z 2 P.a; r/; (1.7.4)

which shows that f is continuous. �
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The following result illustrates the essential difference between real and complex
analysis.

Theorem* 1.7.13 (Hartogs’ theorem on separate holomorphy, cf. [Kra 1992]). Let
˝ � Cn be open and let f W ˝ ! C be separately holomorphic, i.e. the partial
complex derivative @f

@zj
.z/ exists for all z 2 ˝ and j D 1; : : : ; n. Then f 2 O.˝/.

Proposition 1.7.12 (ii) implies also

Proposition 1.7.14. The composition of holomorphic mappings is holomorphic.

Proposition 1.7.15. Let D � Cn be a Reinhardt domain and let f 2 O.D/.
Define

a˛.f; r/ WD 1

.2�i/n

Z
@0P.r/

f .�/

�˛C1
d�; ˛ 2 Zn; r 2 D \ Rn>0:

Then:

(a) For any ˛ 2 Zn, the number a˛.f; r/ is independent of r 2 D \ Rn>0. In

particular, we define a˛ D a
f
˛ D a˛.f / WD a˛.f; r/.

(b) Consequently, D � Df , where Df denotes the domain of convergence of
the Laurent series

P
˛2Zn a˛z

˛; cf. Proposition 1.6.5 (b).

.c/ f .z/ D
X
˛2Zn

a˛z
˛; z 2 D:

(d) IfD \ Vj ¤ ¿, j D 1; : : : ; n .in particular, if 0 2 D, e.g.D is complete/,
then a˛ D 0 for all ˛ 2 Zn n ZnC .cf. Proposition 1.6.5 (c)). Consequently, if
0 2 D, then f .z/ D T0f .z/, z 2 D.

Proof. We apply induction on n. For n D 1 the result is well known (cf. [Con 1973],
Chapter V). Assume that it is true for n � 1.

(a) SinceD is connected, it suffices to show that any pointa 2 D has a Reinhardt
neighborhood U such that a˛.f; r/ is independent of r 2 U \ Rn>0.

Let U D An.r�; rC/ � D be an arbitrary annulus centered at 0 28 and let r D
.r 0; rn/, s D .s0; sn/ 2 U \.Rn�1

>0 �R>0/, ˛ 2 Zn. Write z D .z0; zn/ 2 Cn�1�C.

28An.r�; rC/ WD A.r�
1 ; r

C
1 / � � � � � A.r�

n ; r
C
n /, r� D .r�

1 ; : : : ; r
�
n /, r

C D .r
C
1 ; : : : ; r

C
n /,

�1 � r�
j
< r

C
j

� C1, rC
j
> 0, A.r�

j
; r

C
j
/ WD fz 2 C W r�

j
< jzj < rC

j
g, j D 1; : : : ; n.
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Then, using the inductive assumption, we get

a˛.f; s/ D 1

.2�i/n

Z
@0Pn.s/

f .�/

�˛C1
d�

D 1

2�i

Z
@K.sn/

�
1

.2�i/n�1

Z
@0Pn�1.s0/

f .�0; �n/
�0˛0C1

d�0
�
d�n

�
˛nC1
n

D 1

2�i

Z
@K.sn/

a˛0.f . 	 ; �n/; s0/
d�n

�
˛nC1
n

D 1

2�i

Z
@K.sn/

a˛0.f . 	 ; �n/; r 0/
d�n

�
˛nC1
n

D a˛.f; .r
0; sn//:

The same argument with respect to the last variable shows that

a˛.f; .r
0; sn// D a˛.f; r/:

(c) Fix U WD An.r�; rC/ � D. By the inductive assumption, using Theo-
rem 1.2.7, for every z D .z0; zn/ 2 U � Cn�1 � C, we get:

f .z/ D
X
˛n2Z

a˛n
.f .z0; 	 //z˛n

n D
X
˛n2Z

� 1

2�i

Z
@K.rn/

f .z0; �n/
�
˛nC1
n

d�n

�
z˛n
n

D
X
˛n2Z

� 1

2�i

Z
@K.rn/

1

�
˛nC1
n

� X
˛02Zn�1

a˛0.f . 	 ; �n//z0˛0
�
d�n

�
z˛n
n

D
X
˛2Zn

� 1

2�i

Z
@K.rn/

a˛0.f . 	 ; �n//
�
˛nC1
n

d�n

�
z˛ D

X
˛2Zn

a˛.f /z
˛: �

Corollary 1.7.16 (Cauchy inequalities). If f 2 O.P.a; r// \ C.xP.a; r//, then

jD˛f .a/j � ˛Š

r˛
kf k@0P.a;r/; ˛ 2 ZnC:

Similarly as in the case of one complex variable, the following results are easy
consequences of the Cauchy inequalities (Exercise).

Proposition 1.7.17 (Liouville theorem). Let f 2 O.Cn/, k 2 ZC. Then the
following conditions are equivalent:

(i) f is a polynomial of degree � k;

(ii) 9C;R0>0 W jf .z/j � Ckzkk for kzk � R0.

Corollary 1.7.18. For an arbitrary compact K � ˝ and a polyradius r such that
K.r/ � ˝ we have

kD˛f kK � ˛Š

r˛
kf kK.r/ ; f 2 O.˝/; ˛ 2 ZnC;

where K.r/ WD S
a2K xP.a; r/.
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Hence, using Proposition 1.7.12, we get

Theorem 1.7.19 (Weierstrass theorem). If O.˝/ 3 f� ! f locally uniformly
on˝, then f 2 O.˝/ andD˛f� ! D˛f locally uniformly on˝ for any ˛ 2 ZnC.

Proposition 1.7.20. Let D � Cn be a domain and let f 2 O.D/, f 6� const.
Then f is an open mapping.

Proof. Fix an a 2 D. By the identity principle, there exists an X 2 Cn such that
the function

S 3 � g7! f .aC �X/

is not constant, where S denotes the connected component of the set

f� 2 C W aC �X 2 Dg
that contains 0. Then g is an open mapping (cf. [Con 1973], Chapter IV, Theo-
rem 7.5) and, consequently, f .U / is open for any open neighborhood U of a.

�

The above proposition implies in particular the following

Proposition 1.7.21 (Maximum principle). Let D � Cn be a domain and let f 2
O.D/, f 6� const. Then:

(a) jf j does not attain local maxima inD.
(b) If, moreover,D is bounded, then

jf .z/j < supflim sup
D3z!�

jf .z/j W � 2 @Dg; z 2 D:

Lemma 1.7.22. For any compactK � ˝ and r D .r1; : : : ; rn/ such thatK.r/ � ˝

we have

kf kK � 1

.�r21 / : : : .�r
2
n/

Z
K.r/

jf j d�2n; f 2 O.˝/:

Observe that .�r21 / : : : .�r
2
n/ D �2n.P.r//.

Proof. Fix an f 2 O.˝/. It suffices to prove that

f .a/ D 1

.�r21 / : : : .�r
2
n/

Z
P.a;r/

f d�2n; a 2 K:

By the Cauchy integral formula, for every a 2 K we have

.1
2
r21 / : : : .

1
2
r2n/f .a/

D
�Z

Œ0;r�

�1 d�n.�/

��
1

.2�/n

Z
Œ0;2
�n

f .aC � 	 ei� /d�n.�/
�

D 1

.2�/n

Z
P.a;r/

f d�2n: �
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Lemma 1.7.23. Assume that a family F � O.˝/ is locally uniformly bounded
in ˝. Then F is equicontinuous.

Proof. Fix a P.a; r/ b ˝. Set C WD supf 2F kf kP.a;r/. Now, using (1.7.4), we
get

jf .z/ � f .a/j � 2C

r
.jz1 � a1j C 	 	 	 C jzn � anj/; f 2 F ; z 2 P.a; r/: �

Having Lemma 1.7.23, the reader is asked to repeat the proof of the classical
(one-dimensional) Montel theorem (cf. [Con 1973], Chapter VII, theorem 2.9) to
obtain

Theorem 1.7.24 (Montel theorem). Let F � O.˝/ be a family locally uniformly
bounded in ˝. Then for arbitrary sequence .f�/1�D1 � F there exists a subse-
quence which converges locally uniformly to a holomorphic function on˝.

Theorem 1.7.25 (Vitali theorem). Let D � Cn be a domain and let a sequence
.f�/

1
�D1 � O.D/ be locally uniformly bounded and pointwise convergent on a

non-empty open subset U � D. Then the sequence .f�/1�D1 is convergent locally
uniformly inD.

Proof. (The reader is asked to complete details.) Similarly as in the case of one
complex variable (cf. [Con 1973], Chapter VII), the main difficulty is to show that
the sequence .f�/1�D1 is pointwise convergent in all of D. Let

D0 WD fa 2 D W .f�/1�D1 is pointwise convergent in a neighborhood of ag:
The set D0 is non-empty and open. It is sufficient to show that it is closed in D.
Fix an accumulation point b 2 D of D0. Let P.b; r/ � D. For a 2 D0 \ P.b; r/
and X 2 Cn, X ¤ 0, let Sa;X be the connected component of

D \ faC �X W � 2 Cg
with 0 2 Sa;X . By the classical one-dimensional Vitali theorem, the sequence
.f�/

1
�D1 is pointwise convergent in Sa;X and, consequently, in

S
a2D0\P.b;r/
X2.Cn/�

Sa;X .
It remains to observe that the latter set is a neighborhood of b. �

A bijective holomorphic mapping f W ˝ ! ˝ 0 (where ˝ and ˝ 0 are open in
Cn) is called biholomorphic (f 2 Bih.˝;˝ 0/) if f �1 is also holomorphic.

Using the classical inverse mapping theorem (in R2n) and Exercise 1.3.11, we
get

Theorem 1.7.26 (Inverse mapping theorem). Let f D .f1; : : : ; fn/ W ˝ ! Cn be
a holomorphic mapping with

Jf .a/ WD det
�
@fj

@zk
.a/

	
j;kD1;:::;n

¤ 0
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for some a 2 ˝. Then there exists an open neighborhood U of a .U � ˝/ such
that f .U / is an open set and f jU W U ! f .U / is biholomorphic.

Recall (cf. [Con 1973]) that in the case n D 1, for a holomorphic mapping
f W ˝ ! C, the following conditions are equivalent:

� f .˝/ is open and f W ˝ ! f .˝/ is biholomorphic (conformal);
� f is injective and f 0.z/ ¤ 0, z 2 ˝;
� f is injective.

Notice that the result remains true for n � 2 (with a much more difficult proof).

Theorem* 1.7.27 (Cf. [Nar 1971], p. 86). Let ˝ � Cn be open and let f D
.f1; : : : ; fn/ W ˝ ! Cn be holomorphic. Then the following conditions are equiv-
alent:

(i) f .˝/ is open and f W ˝ ! f .˝/ is biholomorphic;

(ii) f is injective and Jf .z/ ¤ 0, z 2 ˝;

(iii) f is injective.

Theorem 1.7.28 (Hurwitz-type theorem). Let ˝ � Cn be open, a 2 ˝, and let
f; fk W ˝ ! Cn, k 2 N, be holomorphic mappings with fk ! f uniformly on˝.
Assume that f .a/ D 0 and det f 0.a/ ¤ 0. Then there exist an open neighborhood
U � ˝ of a and a k0 2 N such that 0 2 fk.U /, k � k0.

Proof. (The reader is asked to complete details.) First observe that the proof of the
inverse mapping theorem (in the real case) implies the following:

Let g W ˝ ! Cn be a holomorphic mapping with det g0.a/ ¤ 0 and let r > 0

be such that

det g0.z/ ¤ 0; kg0.z/ � g0.a/k � 1

2

1

k.g0.a//�1k ; z 2 xB.a; r/ � ˝:

Then B.g.a/; / � g.B.a; r// with

 WD r

2

1

kg0.a/k :

Using the above remark and the Weierstrass Theorem 1.7.19, we find r; s > 0, and
k0 2 N such that B.g.a/; s/ � g.B.a; r// for g 2 ff; fk0C1; fk0C2; : : : g. Since
0 D kf .a/k < s, we may assume that kfk.a/k < s for k � k0, which shows that
0 2 B.fk.a/; s/ � f .B.a; r// for k � k0. �

1.8 Balanced domains

Sometimes it is convenient to consider a wider class of domains than complete
Reinhardt ones.
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Definition 1.8.1. We say that a domain D � Cn is balanced .complete circular/
if �z 2 D for every z 2 D and � 2 xD.

Observe that every balanced domain is starlike. Let hD denote the Minkowski
function of D (cf. Definition 1.4.14).

Exercise 1.8.2. (a) (Cf. Exercise 1.4.16.) Let D � Cn be a balanced domain and
let h W Cn ! RC. Then the following conditions are equivalent:

(i) h D hD;
(ii) h is upper semicontinuous, D D fz 2 Cn W h.z/ < 1g, and

h.�z/ D j�jh.z/; z 2 Cn; � 2 CI

(b) Let q W Cn ! RC be a C-seminorm (cf. § 1.10) and let B WD fz 2 Cn W
q.z/ < 1g. Then hB D q.

Lemma 1.8.3. LetD � Cn be a complete Reinhardt domain.29 Then

hD.� 	 z/ � hD.z/; z 2 Cn; � 2 xDn (1.8.1)

.in particular, hD.� 	 z/ D hD.z/, z 2 Cn, � 2 T n/ and hD is continuous.
Consequently, if h W Cn ! RC is an upper semicontinuous function such that

� h.�z/ D j�jh.z/, z 2 Cn, � 2 C,

� h.� 	 z/ � h.z/, z 2 Cn, � 2 xDn,
then h must be continuous.

Proof. The proof of (1.8.1) is left as an Exercise. To prove that hD is continuous
it suffices to show that hD is lower semicontinuous at any point a 2 Cn such that
hD.a/ > 0. Fix such an a D .a1; : : : ; an/. We may assume that a1 	 	 	 as ¤ 0,
asC1 D 	 	 	 D an D 0 for some 1 � s � n. Fix a z D .z1; : : : ; zn/ 2 Cn, put
m WD minfjzj =aj j W j D 1; : : : ; sg, and let �j 2 xD be such that �j zj =aj D m,
j D 1; : : : ; s. Then

mhD.a/ D hD.ma1; : : : ; mas; 0; : : : ; 0/

D hD.�1z1; : : : ; �szs; 0zsC1; : : : ; 0zn/ � hD.z/:

Consequently,

minfjzj =aj j W j D 1; : : : ; sg 	 hD.a/ � hD.z/; z 2 Cn;

which implies that lim infz!a hD.z/ D hD.a/. �
29In particular,D is balanced.
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Proposition 1.8.4. LetD � Cn be a balanced domain and let f 2 O.D/. Then

f .z/ D
1X
kD0

Qk.z/; z 2 D; (1.8.2)

where

Qk.z/ WD 1

kŠ
f .k/.0/.z/ D

X
˛2Zn

C
W j˛jDk

1

˛Š
D˛f .0/z˛; z 2 CnI

observe that Qk W Cn ! C is a homogeneous polynomial of degree k. Moreover,
for any compact K � D there exist C > 0 and � 2 .0; 1/ such that

kQkkK � C�k; k 2 ZC:

In particular, the series converges locally normally inD.

Proof. Take an a 2 D n f0g. The function

K.1=hD.a// 3 � 'a7�! f .�a/ 30

is holomorphic. Hence

f .a/ D 'a.1/ D
1X
kD0

1

kŠ
'.k/a .0/ D

1X
kD0

Qk.a/:

Thus the formula (1.8.2) is true (and the series is pointwise convergent in D). It
remains to prove the estimate.

Take a compact K � D. Let � 2 .0; 1/ be such that

L WD f�z W j�j � 1=�; z 2 Kg � D:

Then, for any a 2 K, by the one-dimensional Cauchy inequalities, we get

jQk.a/j D 1

kŠ
j'.k/a .0/j � k'akK.1=�/�k � kf kL�k; k 2 ZC: �

Exercise 1.8.5. Let f 2 O.Cn/ be such that f .a0; 	 / is a polynomial for every
a0 2 Cn�1. Prove that f is a polynomial.

Hint. Writef .z/ D P1
kD0 Pk.z/, z 2 Cn, wherePk is a homogeneous polynomial

of degree k. We have to show that there exists a k0 such that intP�1
k
.0/ ¤ ¿ for

k � k0. Define A0
k

WD fa0 2 Cn�1 W 8`	k W P`.a
0; 	 / � 0g. Then A0

k
is closed

andA0
k

% Cn�1. Hence, by Baire’s theorem,31 there exists a k0 with intA0
k0

¤ ¿.

30K.1=0/ WD C.
31Theorem (Baire). Let .X; 	/ be a complete metric space. Assume that X D S1

kD1Ak . Then
there exists a k0 such that int xAk0

¤ ¿.
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1.9 Extension of holomorphic functions

We move to problems related to extendibility of holomorphic function.

Theorem 1.9.1 (Hartogs extension theorem). Let D � Cn be a domain, n � 2,
and letK � D be a compact set such thatD nK is connected. Then O.D nK/ D
O.D/jDnK , i.e. any function f 2 O.D nK/ extends holomorphically toD.

Notice that the above result does not hold for n D 1, e.g. f .z/ WD 1=z, z 2 C�.

Proof. First consider a special case where D D D0 � K.r/. Suppose that K �
K 0 � xK.�0r/, whereK 0 b D0 and 0 < �0 < 1. Fix a function f 2 O.D nK/ and
define

Qf .z/ WD 1

2�i

Z
@K.�r/

f .z0; �/
� � zn d�; z D .z0; zn/ 2 D0 �K.�r/; �0 < � < 1:

By the Cauchy theorem (cf. [Con 1973], Chapter IV, Theorem 5.7), Qf .z/ is inde-
pendent of � 2 .�0; 1/ with zn 2 K.�r/. By Lemma 1.7.7, Qf 2 O.D/. Observe
that Qf .z0; zn/ D f .z0; zn/ if z0 2 D0 nK 0. Hence, by the identity principle, Qf D f

in D nK.
Sketch of the general case (details are left to the reader, cf. e.g. [Sob 2003]):

Fix an f 2 O.D nK/. Consider the family F of all pairs .C;˝/, where

� C b prCn�1.D/ is a convex domain.
� ˝ D G1 [ 	 	 	 [ GN � C is an open subset being a finite union of domains

such that @Gj is a finite union of Jordan C1-curves with positive orientation with
respect to Gj (cf. Remark 1.7.4), j D 1; : : : ; N , and xGj \ xGk D ¿ for j ¤ k.

� K \ .C � C/ � C �˝ b D. Define

QfC;˝.z/ WD 1

2�i

Z
@˝

f .z0; �/
� � zn d�; z D .z0; zn/ 2 C �˝ 2 F:

Then QfC;˝ 2 O.C � ˝/ and QfC;˝ D f jC�˝ if C � p.D/ n p.K/. It is
clear that

S
.C;˝/2F C � ˝ D D n K. It remains to observe that the family

.fC;˝/.C;˝/2F defines one function in D nK. �

See [Jar-Pfl2000], Theorem 2.6.6, for a different proof based on the N@-techniques.

Corollary 1.9.2. For n � 2 the zeros of holomorphic functions are not isolated.

Proof. Suppose that f 2 O.P.a; r//, n � 2, f .a/ D 0, and f .z/ ¤ 0 for
z ¤ a. Then, by Hartogs’ extension theorem, the function 1=f would extend
holomorphically onto P.a; r/; a contradiction. �
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Notice the fundamental difference between the cases n D 1 and n � 2. This
is one of the main reasons why the theory of several complex variables is not a
straightforward generalization of the one-dimensional case.

Definition 1.9.3. A setM � Cn is called thin if for every point a 2 M there exist
a polydisc P.a; r/ and a function ' 2 O.P.a; r//, ' 6� 0, such thatM \ P.a; r/ �
'�1.0/.

Remark 1.9.4. (a) If M is thin, then intM D ¿.
(b) If M is thin and N � M , then N is thin.
(c) If M1, M2 are thin, then M1 [M2 is thin.
(d) If ' 2 O.D/, ' 6� 0, where D � Cn is a domain, then '�1.0/ is thin. In

particular, V0, V1, …, Vn are thin.
(e) If M is thin, then M � Cm is thin.

Lemma 1.9.5. Let ' 2 O.P.r//, '.0/ D 0, ' 6� 0. Then, after a suitable linear
change of coordinates, we have '.00; 	 / 6� 0.

Proof. By Theorem 1.7.6, the function ' may be expanded into a series of homo-
geneous polynomials

'.z/ D T0'.z/ D
1X
jD0

� X
j˛jDj

1

˛Š
D˛'.0/z˛

�
D

1X
jDk

Qj .z/; z 2 P.r/;

with Qk 6� 0 (see also Proposition 1.8.4). In particular, the set V WD Q�1
k
.0/ is

thin. Observe that for every X … V , kXk D 1, the function

K.r/ 3 � ˚X7��! '.�X/

is not identically zero. Consequently, after a linear change of coordinatesL W Cn !
Cn such that L.en/ D X , we have .' B L/.00; zn/ D '.L.znen// D '.znX/ D
˚X .zn/. �

Exercise 1.9.6. Let 'k 2 O.P.r//, 'k.0/ D 0, 'k 6� 0, k 2 N. Then, after a
suitable linear change of coordinates, we have 'k.00; 	 / 6� 0, k 2 N.

Hint. Use Baire’s theorem.

Proposition 1.9.7. Let D � Cn be a domain and let M � D be a thin set. Then
the setD nM is connected.

Proof. First observe that it suffices to prove that every point a 2 D has a convex
neighborhoodUa � D such thatUanM is arcwise connected (cf. Remark 1.5.6 (c)).

Indeed, suppose for a moment that this is true and take arbitrary two different
points a; b 2 D n M . Let 
 W Œ0; 1� ! D be an arbitrary curve with 
.0/ D a,
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.1/ D b. For every t 2 Œ0; 1� the point 
.t/ has a convex neighborhood U�.t/
such that U�.t/ n M is connected. One can select a chain of neighborhoods
U�.t0/; : : : ; U�.tN /, 0 D t0 < 	 	 	 < tN D 1, U�.ti�1/ \ U�.ti / ¤ ¿, i D 1; : : : ; N .
Fix arbitrary points ci 2 U�.ti�1/ \ U�.ti / nM , i D 1; : : : ; N . Now we connect a
with c1 in U�.t0/ nM . Next, we connect c1 with c2 in U�.t1/ nM , etc. Finally, we
connect cN with b in U�.tN / nM .

Fix an a 2 D. We may assume that a D 0 and that P.r/\M � '�1.0/, where
P.r/ b D,' 2 O.xP.r//,' 6� 0. Using Lemma 1.9.5, we easily reduce the situation
(Exercise) to the case where '.00; 	 / 6� 0, '.00; zn/ ¤ 0 for 0 < jznj � rn, and
'.z0; zn/ ¤ 0 for z0 2 xP.r 0/, sn � jznj � rn for some 0 < sn < rn.

Observe that for every z0 2 P.r 0/, the function '.z0; 	 / has a finite number of
zeros in K.rn/ and, consequently, the fiber Fz0 WD fzn 2 K.rn/ W .z0; zn/ … M g is
connected. Fix � 2 A.sn; rn/.

Take two points u D .u0; un/, v D .v0; vn/ 2 P.r/ n M . First we connect
u D .u0; un/ with .u0; �/ in the fiber Fu0 . Next, we connect .u0; �/ with .v0; �/ by a
segment (which is obviously contained in P.r/nM ), and finally, we connect .v0; �/
with v D .v0; vn/ in the fiber Fv0 . �

The classical Riemann theorem on removable singularities (cf. [Con 1973],
Chapter V, Theorem 3.8) generalizes to several complex variables as follows.

Theorem 1.9.8 (Riemann removable singularities theorem). LetD be a domain in
Cn and letM � D be thin and closed inD. Then every function f 2 O.D nM/

which is locally bounded inD .i.e. every point a 2 D has a neighborhood Ua such
that f is bounded in Ua nM/ extends holomorphically toD.

Proof. Fix a function f 2 O.DnM/ such that f is locally bounded onD. Observe
that the problem of continuation across M is local.

In fact, if every point a 2 D admits a convex neighborhood Ua and a function
Qfa 2 O.Ua/ such that Qfa D f in Ua nM , then by Remark 1.9.4 (a), the function
Qf defined as Qf WD Qfa in Ua gives the required extension.

Fix an a 2 D. We may assume (cf. the proof of Proposition 1.9.7) that a D 0 2
M and M \ P.r/ � '�1.0/, where P.r/ b D, ' 2 O.xP.r//, and '.00; zn/ ¤ 0,
0 < jznj � rn. Suppose that '.00; 	 / has zero of order p at zn D 0 (p 2 N).

Let " WD minfj'.00; zn/j W jznj D rng. Shrinking r 0 (with fixed rn) we may
assume that j'.z0; zn/ � '.00; zn/j < " for z0 2 P.r 0/, jznj D rn. Now, by the
Rouché theorem (cf. [Con 1973], Chapter V, Theorem 3.8), for every z0 2 P.r 0/ the
function '.z0; 	 / has exactly p zeros (counted with multiplicities) in the discK.rn/,
say �1.z0/; : : : ; �p.z0/. Note that '.z0; zn/ ¤ 0, zn 2 @K.rn/. In particular, for
every z0 2 P.r 0/ the function f .z0; 	 / is holomorphic in xK.rn/nf�1.z0/; : : : ; �p.z0/g
and locally bounded inK.rn/. Hence, by the classical (one-dimensional) Riemann
theorem on removable singularities, f .z0; 	 / extends holomorphically to a functionBf .z0; 	 / 2 O.K.rn//. Let Qf .z0; zn/ WD Bf .z0; 	 /.zn/, .z0; zn/ 2 P.r/. By the
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Cauchy integral formula, we have

Qf .z0; zn/ D 1

2�i

Z
@K.rn/

f .z0; �/
� � zn d�; .z0; zn/ 2 P.r/:

By Lemma 1.7.7, Qf 2 O.P.r//. It is clear that Qf D f in P.r/ nM . �

Corollary 1.9.9. Suppose that D � Cn is a log-convex Reinhardt domain. Then
H 1.D�/jD D H 1.D/ .cf. (1.5.3)/, where H 1.˝/ denotes the space of all
bounded holomorphic functions on ˝ .it is a Banach algebra with the supremum
norm – cf. Example 1.10.7 (c)). More precisely, the restriction mapping

H 1.D�/ 3 f 7! f jD 2 H 1.D/

is an algebraic and topological isomorphism .cf. Proposition 1.9.12/.

Exercise 1.9.10. Observe that the above Riemann theorem gives an alternative
proof of Proposition 1.9.7 for the case where M is relatively closed.

The next results present a class of thin sets M � D such that every function
holomorphic in D nM extends to D.

Proposition 1.9.11. Let D � Cn, n � 2, be a domain and let M � D be closed
inD. Assume that for every a 2 M there exist an open neighborhood U � D and
'1; '2 2 O.U / for whichM \ U � '�1.0/ \ '�1

2 .0/ and

rank
h@'j
@zk

.z/
i
jD1;2; kD1;:::;n D 2; z 2 U: 32

Then every function f 2 O.D nM/ extends holomorphically toD.

Proof. As in the Riemann theorem, it suffices to extend f locally. Fix an a 2 M

and let U , '1, '2 be as above. We may assume that a D 0 and

det
�
@'j

@zk
.0/

	
j;kD1;2

¤ 0:

Consider the mapping

U 3 z ˚7�! .'1.z/; '2.z/; z3; : : : ; zn/:

Then J˚.0/ ¤ 0 and, consequently, by the inverse mapping theorem (Theo-
rem 1.7.26), we may assume (shrinking U if necessary) that ˚ W U ! ˚.U / DW V
is biholomorphic. Put

N WD fw 2 V W w1 D w2 D 0g; g WD f B ˚�1jV nN :
32For example,M � Vj \ Vk with j ¤ k.
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We only need to extend g to V . The case n D 2 follows directly from the Hartogs
extension theorem (Theorem 1.9.1).

Thus we may assume thatn � 3,U D P.r/ b D, 'j .z/ D zj , z 2 U , j D 1; 2.
Write z D .z0; z00/ 2 C2 � Cn�2. For each z00 2 P.r 00/, the function f . 	 ; z00/ is
holomorphic in P.r 0/ n f00g. By the Hartogs extension theorem, f . 	 ; z00/ extends

to a function Bf . 	 ; z00/ 2 O.P.r 0//. Put Qf .z/ WD Bf . 	 ; z00/.z0/, z D .z0; z00/ 2 P.r/.
It remains to prove that Qf 2 O.P.r//. Observe that

Qf .z/ D 1

.2�i/2

Z
@0P.r 0/

f .�; z00/
� � z0 d�; z D .z0; z00/ 2 P.r/:

Hence, by Lemma 1.7.7, Qf 2 O.P.r//. �

Now, Corollary 1.9.9 may be extended to the following more general result.

Proposition 1.9.12. Let D � Cn be a log-convex Reinhardt domain. Put M WD
D� n D � V0. Define M r to be the set of all a D .a1; : : : ; an/ 2 M such that
there exists exactly one j 2 f1; : : : ; ng with aj D 0. Let f 2 O.D/ be a function
of slow growth near M r , i.e. every point a 2 M r has an open neighborhood Ua
such that Ua n V0 � D and

.dist.z; @D//N jf .z/j � C; z 2 Ua n V0
33

for some constants 0 � N < 1 and C > 0, which may depend on f and a. Then
f extends holomorphically toD� .cf. Corollary 1.11.4/.

Proof. Fix a 2 M r , Ua, N , and C as above. We may assume that an D 0,
Ua D U 0 � Un � Cn�1� � C, and dist.z; @D/ � jznj, z D .z0; zn/ 2 Ua, zn ¤ 0.
Write

f .z0; zn/ D
1X

kD�1
fk.z

0/zkn ; z D .z0; zn/ 2 Ua D U 0 � Un; zn ¤ 0:

By the Cauchy inequalities we get jfk.z0/j � C jznj�N�k , .z0; zn/ 2 Ua, zn ¤ 0.
Letting zn ! 0, we conclude that fk � 0 for k < 0. Thus, for every z0 2 U 0, the
function f .z0; 	 / extends holomorphically to Un D K.rn/. By the Cauchy integral
formula, the extension is given by the formula

Qf .z/ D 1

2�i

Z
@K.sn/

f .z0; �/
� � zn d�; z D .z0; zn/ 2 U 0 �K.sn/; 0 < sn < rn:

Using Lemma 1.7.7, we conclude that Qf is holomorphic in Ua.
Consequently, f extends holomorphically to the domain D� n M s , where

M s WD M nM r . Now, by Proposition 1.9.11, we conclude that f extends holo-
morphically to D�. �

33dist.z;A/ WD inffkz � �k W � 2 Ag, z 2 Cn 
 A.
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Remark* 1.9.13. Proposition 1.9.11 remains true in a much more general context,
namely for analytic sets M � D with dimM � n � 2.

A set M � ˝ is an analytic subset of ˝ if for any point a 2 ˝ there exist
a neighborhood Ua � ˝ and a finite family Fa � O.Ua/ such that M \ Ua DT
f 2Fa

f �1.0/. Note that M is closed in ˝ (Exercise).
A point a 2 M is regular (a 2 Reg.M/) if there exists a neighborhood Ua � ˝

such thatM \Ua is a complex manifold.34 Points from Sing.M/ WD M n Reg.M/

are called singular. Observe that if n D 1, then Sing.M/ D ¿.
Obviously, the set Reg.M/ is open inM and Sing.M/ is closed in˝. One can

prove that (all details may be found e.g. in [Chi 1989]):

� dimM D 0 iff M is discrete.
� The set Reg.M/ is dense in M and, consequently, the set Sing.M/ is nowhere

dense in M . Thus, we can define the dimension of M at a point a 2 M :
dimaM WD lim supReg.M/3z!a dimzM and the (global) dimension of M :
dimM WD maxa2M dimaM:

� Sing.M/ is an analytic subset of˝ and dimz Sing.M/< dimzM , z 2 Sing.M/.

Now, we come back to a generalization of Proposition 1.9.11.

Proposition* 1.9.14. LetM be an analytic subset of a domainD � Cn such that
dimM � n � 2. Then O.D nM/ D O.D/jDnM .

Proof. By Proposition 1.9.11 any functionf 2 O.DnM/ extends holomorphically
to D n Sing.M/. Repeating the same procedure gives a holomorphic extension to
D n Sing.Sing.M//. Since dim Sing.M/ < dimM , the procedure leads after a
finite number of steps to a holomorphic extension to D n N with dimN � 0. If
N ¤ ¿, then N is discrete and we apply (locally) the Hartogs extension theorem
(Theorem 1.9.1). �

1.10 Natural Fréchet spaces

First, let us recall the following general definitions.
Let F be a complex vector space. A mapping q W F ! RC is a seminorm

(C-seminorm) if:

� q.0/ D 0,

34A relatively closed subsetN of an open set U � Cn is a complex manifold if:

� either N is an open subset of U (and, consequently, N is the union of a family of connected
components of U ; in this case we put dimaN WD n, a 2 N ),

� or every point a 2 N has a neighborhood Va � U such that N \ Va D '�1.0/, where ' 2
O.Va;Cn�d / and rank


 @'j

@zk
.z/

�
j D1;:::;n�d

kD1;:::;n

D n � d , z 2 Va (in particular, in this case N is

thin; we put dimaN WD d ).

Moreover, we put dim ¿ WD �1.
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� q.�f / D j�jq.f /, � 2 C, f 2 F ,
� q.f C g/ � q.f /C q.g/, f; g 2 F .

Notice, any C-norm k kW F ! RC is obviously a C-seminorm.
Observe that for any finite family I of seminorms on F , the function

max I WD maxfq W q 2 I g
is also a seminorm. For any seminorm q let

Bq.f0; r/ WD ff 2 F W q.f � f0/ < rg
be the open ball centered at f0 2 F with radius r > 0.

Given a non-empty familyQ of seminorms on F , we introduce on F a topology
generated by Q. Namely, we say that a set U � F is open if for every f0 2 U

there exist a finite set I � Q and an r > 0 such that

Bmax I .f0; r/ � U:

Directly from the above definition it follows that the family T .Q/ of all open sets
is a topology on F (Exercise).

We say that two families of seminormsQ1,Q2 on F are equivalent if T .Q1/ D
T .Q2/.

Below we collect (in form of an exercise) some basic properties of T .Q/

(cf. [Sch 1970], [Trè 1967]).

Exercise 1.10.1. (a) For an arbitrary finite set I � Q, f0 2 F , and r > 0, the
open ball Bmax I .f0; r/ is open in T .Q/.

(b) Let X be a topological space. A mapping ' W X ! F is continuous at a
point x0 2 X iff for any q 2 Q and " > 0 there exists a neighborhood V � X of
x0 such that '.V / � Bq.'.x0/; "/.

(c) Any seminorm q 2 Q is continuous in the topology T .Q/.
(d) The addition F � F 3 .f; g/ 7! f C g 2 F and multiplication C � F 3

.�; f / 7! �f 2 F are continuous.
(e) Let Fi be a complex vector space endowed with a topology Ti D T .Qi /

generated by a family Qi of seminorms on Fi , i D 1; 2. Let L W F1 ! F2 be a
C-linear mapping. Then L is continuous iff

8q2Q2
9I�Q1
I finite

9C>0 W q B L � C max I:

(f) Two families of seminorms Q1, Q2 on F are equivalent iff

8q2Qi
9I�Q3�i
I finite

9C>0 W q � C max I; i D 1; 2:

(g) Any family Q of seminorms is equivalent to the family

fmax I W I � Q; I finiteg:
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(h) For any countable family of seminorms there exists an equivalent countable
family of seminorms fqk W k D 1; 2; : : : g such that qk � qkC1, k D 1; 2; : : : .

(i) Any family Q of seminorms is equivalent to the following maximal family:

Qmax WD fq W q is a continuous seminorm on F in the sense of T .Q/g:
(j) The topology T .Q/ is Hausdorff iff

T
q2Q q�1.0/ D f0g.

(k) If Q D fqk W k D 1; 2; : : : g is a countable family of seminorms withT1
kD1 q�1

k
.0/ D f0g, then the topology T .Q/ is given by the distance

.f; g/ D Q.f; g/ WD
1X
kD1

1

2k
qk.f � g/

1C qk.f � g/ ; f; g 2 F : (1.10.1)

(l) If Q is as in (k), then a sequence .f�/1�D1 � F is a Cauchy sequence in
.F ; / (where  is given by (1.10.1)) iff

8">0 8k2N 9�02N 8�;�	�0
W qk.f� � f�/ � ":

In particular, .f�/1�D1 � F remains a Cauchy sequence in .F ; 0/, where 0 is the
distance corresponding to a sequence Q0 D fq0

k
W k D 1; 2; : : : g with T .Q/ D

T .Q0/.
(m)* The topology T .Q/ is metrizable iff there exists an equivalent countable

family of seminorms Q0 such that
T
q2Q0

q�1.0/ D f0g.

Definition1.10.2. Let F be a complex vector space endowed with the topology gen-
erated by a countable family of seminormsQ D fq1; q2; : : : g with

T1
kD1 q�1

k
.0/ D

f0g. We say that F is a Fréchet space if the metric space .F ; Q/ is complete
(cf. Exercise 1.10.1 (k,`)).

Definition 1.10.3. Let F be a Fréchet space with the topology T D T .Q/. A set
A � F is said to be bounded if the set q.A/ � RC is bounded for any q 2 Q.35

The following property of Fréchet spaces will play an important role in the
sequel.

Theorem 1.10.4 (Banach theorem, cf. [Gof-Ped 1965], § 5.8). Let F1;F2 be Fré-
chet spaces and let L W F1 ! F2 be an injective continuous linear mapping. Then
either L is surjective .and then L�1 is also continuous/ or the image L.F1/ is of
the first Baire category in F2.36

We will be only interested in special Fréchet spaces F � O.˝/, where˝ � Cn

is open (cf. Chapter 3).

35Notice that this property is independent of the familyQ with T D T .Q/.
36A subset A of a topological space X is said to be of the first Baire category if A D S1

kD1Ak ,
where each set Ak is nowhere dense, i.e. int xAk D ¿.
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Definition 1.10.5. Let F � O.˝/ be a vector subspace endowed with a Fréchet
space topology T D T .Q/. We say that F is a natural Fréchet space if for any
sequence .fk/1kD1 � F and f0 2 F ,

if fk ! f0 in the sense of T , then fk ! f0 locally uniformly in ˝ (1.10.2)

(see also (1.10.4)). In the case where F is a Banach (resp. Hilbert) space, we say
that F is a natural Banach .resp. Hilbert/ space.

Remark 1.10.6. (a) Let F � O.˝/ be a vector subspace endowed with a Fréchet
space topology T D T .Q/. Then F is a natural Fréchet space iff if for any
sequence .fk/1kD1 � F and f0 2 F ,

if fk ! f0 in the sense of T , then fk ! f0 pointwise in ˝. (1.10.3)

Indeed, suppose that (1.10.3) is satisfied. Let T 0 D T .Q0/ denote the topology
generated by the family Q0 WD Q [ Q00, where Q00 stands for the family of all
seminorms of the form

F 3 f 7! kf kK WD sup
K

jf j; K b ˝I

cf. Example 1.10.7 (a). In other words, fk ! f0 in T 0 iff fk ! f0 in T and
fk ! f0 locally uniformly in ˝. Condition (1.10.3) guarantees that .F ; T 0/
is a Fréchet space. The identity operator id W .F ; T 0/ ! .F ; T / is obviously a
continuous bijection. Now, the Banach Theorem 1.10.4 implies that its inverse is
continuous, which gives (1.10.2).

(b) ? Surprisingly, we do not know any example of a Fréchet space .F ; T /
with F � O.˝/ such that F is not natural. ?

Many classical spaces of holomorphic functions have structures of natural
Fréchet spaces.

Example 1.10.7 (Natural Fréchet spaces). The reader is asked to complete all
details.

(a) The whole space O.˝/ endowed with the topology �˝ of locally uniform
convergence is a natural Fréchet space (cf. Theorem 1.7.19). More precisely, �˝ WD
T .Q/, where Q is the following family of seminorms

O.˝/ 3 f 7! kf kK WD sup
K

jf j; K b ˝:

Observe that Q is equivalent to every family .k kKj
/1jD1, where .Kj /1jD1 is an

arbitrary sequence of compact subsets of ˝ with Kj � intKjC1,
S1
jD1Kj D ˝.

Notice that condition (1.10.2) means that the inclusion operator

.F ; T / ! .O.˝/; �˝/ (1.10.4)

is continuous.
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(b)The space H 1.˝/of allboundedholomorphic functions on˝ endowed with
the topology of uniform convergence (i.e. the topology induced by the supremum
norm k k˝) is a natural Banach space. Notice that in fact H 1.˝/ is a Banach
algebra.

(c) The space Lp
h
.˝/ WD O.˝/ \ Lp.˝/ of all p-integrable holomorphic

functions on ˝ endowed with the Lp-topology (i.e. the topology induced by the
Lp-norm k kLp.˝/) is a natural Banach space, where Lp.˝/ is taken w.r.t. the
Lebesgue measure �2n in Cn (1 � p � C1). Obviously, L1

h
.˝/ D H 1.˝/.

To prove that Lp
h
.˝/ is a natural Banach space we only need to show that the

topology induced by Lp.˝/ on Lp
h
.˝/ is stronger than the topology of locally

uniform convergence. By Lemma 1.7.22, we get

kf kK � 1

.�r2/n

Z
K.r/

jf j d�2n; f 2 O.˝/; K b ˝; 0 < r < d˝.K/:

(1.10.5)

Hence, by the Hölder inequality,

kf kK � �
1=q
2n .K

.r//

.�r2/n
kf kLp.˝/; f 2 Lp

h
.˝/; K b ˝; 0 < r < d˝.K/;

where 1=p C 1=q D 1.
� If D is a Reinhardt domain, f 2 Lp

h
.D/, f .z/ D P

˛2Zn a
f
˛ z

˛ , then

fz˛ W ˛ 2 †.f /g � L
p

h
.D/; kaf˛ z˛kLp.D/ � kf kLp.D/; ˛ 2 †.f /;

where †.f / WD f˛ 2 Zn W af˛ ¤ 0g. Indeed,Z
D

jaf˛ z˛jp d�2n.z/
Prop. 1.7.15D .2�/n

Z
R.D/

ˇ̌̌̌
1

.2�i/n

Z
@0P.r/

f .�/

�˛C1
d�

ˇ̌̌̌p
rp˛C1 d�n.r/

� .2�/n.1�p/
Z

R.D/

�Z
Œ0;2
�n

jf .r 	 ei� /j d�n.�/
�p
r1 d�n.r/

Hölder ineq.�
Z

R.D/

Z
Œ0;2
�n

jf .r 	 ei� /jp d�n.�/r1 d�n.r/

D
Z
D

jf jp d�2n; ˛ 2 †.f /:

� The space L2
h
.˝/ with the scalar product

L2.˝/ � L2.˝/ 3 .f; g/ 7! hf; giL2.˝/ WD
Z
˝

f Ng d�2n
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is a natural Hilbert space. Moreover, if D � Cn is a Reinhardt domain, then:
– The functions fz˛ W ˛ 2 Zn; z˛ 2 L2

h
.D/g are pairwise orthogonal inL2

h
.D/.

– If f 2 L2
h
.D/, f .z/ D P

˛2Zn a
f
˛ z

˛ , then

kf k2
L2.D/

D
X

˛2†.f /
ka˛z˛k2

L2.D/
:

Indeed, if z˛; zˇ 2 L2
h
.D/, then, using polar coordinates, we get

hz˛; zˇ iL2.D/ D
Z
D

z˛ Nzˇd�2n.z/

D
Z

R.D/

r˛CˇC1d�n.r/ 	
Z
Œ0;2
�n

eih˛�ˇ;�id�n.�/

D
Z

R.D/

r˛CˇC1d�n.r/ 	
(
0 if ˛ ¤ ˇ;

.2�/n if ˛ D ˇ:

Recall that the Laurent series
P
˛2Zn a

f
˛ z

˛ is locally uniformly summable inD.
Hence

kf k2
L2.D/

D sup
UbD

U is a Reinhardt domain

Z
U

X
˛;ˇ2†.f /

af˛ Naf
ˇ
z˛ Nzˇd�2n.z/

D sup
UbD

U is a Reinhardt domain

X
˛;ˇ2†.f /

af˛ Naf
ˇ

Z
U

z˛ Nzˇd�2n.z/

D sup
UbD

U is a Reinhardt domain

X
˛2†.f /

kaf˛ z˛k2
L2.U /

D
X

˛2†.f /
kaf˛ z˛k2

L2.D/
:

(d) The space A.˝/ WD O.˝/ \ C. x̋/ with the topology generated by the
seminorms

A.˝/ 3 f 7! kf kK ; K b x̋ ;
is a natural Fréchet space.

We only need to observe that the above family of seminorms is equivalent to
every family .k k x̋\Kj

/1jD1, where .Kj /1jD1 is an arbitrary sequence of compact

subsets of Cn with Kj � intKjC1,
S1
jD1Kj D Cn.

Observe that if ˝ is bounded, then A.˝/ is a natural Banach space; in fact, in
this case, A.˝/ is a closed subalgebra of H 1.˝/.

(e) The space

H 1
loc.˝/ WD ff 2 O.˝/ W 8Kb x̋ W kf kK\˝ < C1g

endowed with the seminorms

H 1
loc.˝/ 3 f 7! kf kK\˝ ; K b x̋ ;

is a natural Fréchet space.
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Exercise. H 1
loc.˝/ D ff 2 O.˝/ W 8r>0 W kf kB.r/\˝ < C1g and

the Fréchet topology of H 1
loc.˝/ is given by the seminorms H 1

loc.˝/ 3 f 7!
kf kB.r/\˝ , r > 0.

Observe that A.˝/ is a closed subalgebra of H 1
loc.˝/. Moreover, if ˝ is

bounded, then H 1
loc.˝/ D H 1.˝/.

(f) The space

O.k/.˝; ı/ WD ff 2 O.˝/ W kıkf k˝ < C1g .k � 0/

of all ı-tempered holomorphic functions on ˝ of degree � k with the norm

O.k/.˝; ı/ 3 f 7! kıkf k˝
is a natural Banach space, where the weight ı W ˝ ! .0; 1� is an arbitrary continuous
function. Note that O.0/.˝; ı/ D H 1.˝/ and O.k/.˝; ı/ � O.k0/.˝; ı/, k � k0.
From a certain point of view, the most important is the weight function ı D ı˝
given by the formula

ı˝.z/ WD min

�
˝.z/;

1p
1C kzk2


; z 2 ˝;

where ˝.a/ WD supfr > 0 W B.a; r/ � ˝g, a 2 ˝, denotes the Euclidean
distance function to @˝; Cn � C1, ıCn D 1p

1Ck k2
DW ı0. Functions from the

space O.k/.˝/ WD O.k/.˝; ı˝/ are called holomorphic functions with polynomial
growth of degree � k. By the Liouville theorem, Proposition 1.7.17, the space
O.k/.Cn/ coincides with the space Pbkc.Cn/ of all complex polynomials of degree
� bkc.

(g) Let ı W ˝ ! .0; 1� be a function such that:

� ı � ˝ ,
� jı.z0/� ı.z00/j � kz0 � z00k, z0 2 ˝, z00 2 B.z0; ˝.z0// (for example, ı D ı˝).

Then

kı.kC2n/=pf k˝ � const.n; k; p/

�Z
˝

jf jpık d�2n
�1=p

;

k � 0; p � 1; f 2 O.˝/:

In particular, L2
h
.˝/ � O.n/.˝; ı/.

Indeed, fix k, p, f , and a 2 ˝. By (1.10.5) with K WD fag and r WD ı.a/

2
p
n

�
1
2
d˝.a/, we get

jf .a/j � �
1=q
2n .P.a; r//

.�r2/n

�Z
P.a;r/

jf jp d�2n
�1=p

;
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where 1=pC 1=q D 1. Observe that ı.z/ � ı.a/� kz � ak � 1
2
ı.a/, z 2 P.a; r/.

Consequently,

ı.kC2n/=p.a/jf .a/j �
�
ıkC2n.a/

1

.�r2/n

Z
P.a;r/

jf jp d�2n
�1=p

�
�
2k

1

.�. 1

2
p
n
/2/n

Z
P.a;r/

jf jpık d�2n
�1=p

�
�
2kC2n.n=�/n

Z
˝

jf jpık d�2n
�1=p

:

(h) Let .Fi /i2I be a countable family of natural Fréchet spaces in O.˝/. Let
T .Qi / denote the topology of Fi generated by a family Qi of seminorms, i 2 I .
Put

F WD
\
i2I

Fi :

Then F endowed with the topology T .Q/, where Q WD S
i2I Qi jF , is a natural

Fréchet space.
In particular, we introduce the following natural Fréchet spaces:

L˘
h.˝/ W D

\
1�p�C1

L
p

h
.˝/; 37

O.0C/.˝; ı/ W D
\
k>0

O.k/.˝; ı/ D
1\
�D1

O.1=�/.˝; ı/;

O.0C/.˝/ W D O.0C/.˝; ı˝/:

Note that:
� L˘

h
.˝/ D H 1.˝/ iff �2n.˝/ < C1.

� H 1.˝/ � O.0C/.˝; ı/ and the inclusion H 1.˝/ ! O.0C/.˝; ı/ is
continuous.

(i) Let A � ZnC, 0 2 A, and let .F˛/˛2A be a family of natural Fréchet spaces
in O.˝/. Let T .Q˛/ denote the topology of F˛ generated by a family Q˛ of
seminorms, ˛ 2 A. Define

F D FA WD ff 2 F0 W D˛f 2 F˛; ˛ 2 Ag:
37Observe thatL˘

h
.˝/ D L1

h
.˝/\ H 1.˝/. In fact, if f 2 L1

h
.˝/\ H 1.˝/, then for every

1 < p < 1 we getZ
˝

jf jpd�2n � kf kp�1

˝

Z
˝

jf jd�2n � .maxfkf kL1.˝/; kf k˝g/p:
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Then F endowed with the topology generated by the seminorms

F 3 f 7! q.D˛f /; q 2 Q˛; ˛ 2 A;
is a natural Fréchet space. In particular, for k 2 ZC [ f1g, we define:

H 1;k.˝/ W D ff 2 O.˝/ W 8˛2Zn
C

Wj˛j�k W D˛f 2 H 1.˝/g;
L
p;k

h
.˝/ W D ff 2 O.˝/ W 8˛2Zn

C
W j˛j�k W D˛f 2 Lp

h
.˝/g;

Ak.˝/ W D ff 2 O.˝/ W 8˛2Zn
C

W j˛j�k W D˛f 2 A.˝/g;
H

1;k
loc .˝/ W D ff 2 O.˝/ W 8˛2Zn

C
W j˛j�k W D˛f 2 H 1

loc.˝/g;
L

˘;k
h
.˝/ W D ff 2 O.˝/ W 8˛2Zn

C
W j˛j�k W D˛f 2 L˘

h.˝/g:
Moreover, let

H 1;S .˝/ WD ff 2 O.˝/ W 8˛2S W D˛f 2 H 1.˝/g; ¿ ¤ S � ZnC:

Observe that: H 1;k.˝/ D L
1;k
h

.˝/, H 1;0.˝/ D H 1.˝/, Lp;0
h
.˝/ D

L
p

h
.˝/, A0.˝/ D A.˝/, H

1;0
loc .˝/ D H 1

loc.˝/, L
˘;0
h
.˝/ D L˘

h
.˝/.

(j) The space S WD H 1;k.˝/ endowed with the norm

kf kS D kf kH1;k.˝/ WD 2k maxfkD˛f k˝ W j˛j � kg
is a natural Banach algebra.

Indeed, for f; g 2 S , using the Leibniz formula, we have:

kfgkS D 2k max
j˛j�k

kD˛.fg/k˝ � 2k max
j˛j�k

X
ˇ�˛

�
˛
ˇ

�kDˇf k˝kD˛�ˇgk˝

� kf kSkgkS

1

2k
max
j˛j�k

X
ˇ�˛

�
˛
ˇ

� Exercise� kf kSkgkS :

(k) Let .S ; k kS / be a natural Banach algebra in O.˝/. Then S � H 1.˝/
and kf k˝ � kf kS , f 2 S .

Indeed, since the identity operator .S ; k kS / ! .O.˝/; �˝/ is continuous
(cf. (a)), for every compact K � ˝ there exists a constant CK such that

kf kK � CKkf kS ; f 2 S :

Since .S ; k kS / is a Banach algebra, we get kf kkK D kf kkK � CKkf kkS �
kf kk

S
, f 2 S , k 2 N. Consequently, kf kK � .CK/

1=kkf kS , f 2 S , k 2 N.
Letting k ! C1, we conclude that kf kK � kf kS , f 2 S , which directly implies
the required result.
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1.11 Domains of holomorphy

We already know that there exist pairs of domains D   zD � Cn such that
O. zD/jD D O.D/ (cf. the Hartogs extension theorem) or H 1. zD/jD D H 1.D/
(cf. Riemann Theorem 1.9.8). In the first case D is not a domain of existence with
respect to O.D/, in the second – with respect to H 1.D/.

More generally, let D � Cn be a domain and let ¿ ¤ S � O.D/. We are
interested in the characterization of those domains D which are maximal domains
of existence of functions from S (cf. [Jar-Pfl 2000], § 1.7).

Definition 1.11.1. We say that D is an S-domain of holomorphy if

dD.a/ D inffd.Taf / W f 2 Sg; a 2 DI 38

equivalently, for any r > dD.a/ there exists an f 2 S such that d.Taf / < r .
Note that the whole space Cn is an S-domain of holomorphy for any¿ ¤ S �

O.Cn/.
If S D ff g, then we say that D is a domain of existence of f .
If S D O.D/, then we say that D is a domain of holomorphy.
Suppose that we have assigned to each domain D a family F .D/ � O.D/

(e.g. D ! H 1.D/, D ! L
p

h
.D/). Then, instead of saying that D is an F .D/-

domain of holomorphy, we shortly say that D is an F -domain of holomorphy
(e.g. H 1-domain of holomorphy, Lp

h
-domain of holomorphy).

Obviously, if D is an S-domain of holomorphy, then D is a T -domain of
holomorphy for any family T with S � T � O.D/. In particular, any S-domain
of holomorphy is a domain of holomorphy.

Proposition 1.11.2. Let D � Cn be a domain and let ¿ ¤ S � O.D/. Then D
is an S-domain of holomorphy iff

(*) there are no domains D0, zD � Cn with ¿ ¤ D0 � D \ zD, zD 6� D, such
that for each f 2 S there exists an Qf 2 O. zD/ with Qf D f onD0.39

Proof. Suppose that (*) is satisfied, butD is not an S-domain of holomorphy. Then
there exist a 2 D and r > dD.a/ DW r0 such that d.Taf / � r for any f 2 S . Put
D0 WD P.a; r0/, zD WD P.a; r/, and Qf .z/ WD Taf .z/, z 2 zD; a contradiction.

Conversely, suppose that D is an S-domain of holomorphy, but (*) is not ful-
filled. Let D0, zD be as in (*). By the identity principle (Proposition 1.7.10) we
may assume that D0 is a connected component of D \ zD. Then there exists an
a 2 D0 such that dD.a/ < d zD.a/ (Exercise). Consequently, for any f 2 S we
get d.Taf / D d.Ta Qf / � d zD.a/ > dD.a/; a contradiction. �

38Recall that d.Taf / 	 dD.a/, a 2 D, f 2 O.D/ (Theorem 1.7.6).
39Notice that ifD is fat, then zD 6� xD.
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D

eD
D0

Figure 1.11.1. For each f 2 S there exists an Qf 2 O. zD/ with Qf D f on D0.

Remark 1.11.3. (a) LetD0, zD be as in Proposition 1.11.2 (*). First observe that Qf
is uniquely determined by f . Put zS WD f Qf W f 2 Sg. Then the extension operator

S 3 f 7! Qf 2 zS
is bijective. Observe that:

� A.	f / D 	 Qf , provided that f; 	f 2 S (	 2 C),
� Af C g D Qf C Qg, provided that f; g; f C g 2 S ,
� eD˛f D D˛ Qf , provided that f;D˛f 2 S (˛ 2 ZnC).
In particular,
� if S is a vector space (resp. an algebra), then so is zS and the above extension

operator is an algebraic isomorphism,
� if S is stable under differentiation (i.e. f 2 S ) @f

@z1
; : : : ; @f

@zn
2 S), then

so is zS .
(b) Let D0; zD be as in Proposition 1.11.2 (*). Observe that we do not require

Qf D f on zD \ D but only on D0. It may happen that Qf 6� f on the whole of
zD\D. Take for exampleD WD Cn.�1; 0� and S WD fLogg, where Log stands for

the principal branch of the logarithm (Log 1 D 0). Put zD WD fz 2 C W Re z < 0g,
D0 WD fz 2 C W Re z < 0; Im z > 0g. Then the function Log extends to an
Qf 2 O. zD/ with Qf D Log on D0 but not on zD \D (Exercise), which leads to a

non-univalent extension.
It is natural to ask whether such an example is possible in the case where S

contains more functions, in particular, S D O.D/. Below we will see that for
n D 1 such an example with S D O.D/ is impossible. However, for n � 2 there
are such situations (cf. [Jar-Pfl 2000], p. 1).
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Theorem 1.12.4 will show that if D is a Reinhardt domain and S is invariant
under rotations of variables, then Qf D f on the whole of zD \ D. Thus, in the
category of Reinhardt domains the above phenomena do not occur.

(c) Any domain D   C1 is an S-domain of holomorphy, where

S WD
n
D 3 z 7! 1

z � a W a … D
o
:

(d) Any fat domain D   C1 is an S-domain of holomorphy, where

S WD
n
D 3 z 7! 1

z � a W a … xD
o
:

In particular, any fat domain D � C1 is an H 1.D/\ O. xD/-domain of holomor-
phy.40

(e) Let Di be an Si -domain of holomorphy, i 2 I , and let D be a connected
component of int

T
i2I Di . Then D is an S-domain of holomorphy with

S WD
[
i2I

Si jD:

In particular, ifDi is a domain of holomorphy for every i 2 I , thenD is a domain
of holomorphy.

Indeed,

dD.a/ D inffdDi
.a/ W i 2 I g D inf

˚
inffd.Taf / W f 2 Sig W i 2 I�

D inffd.Taf / W f 2 Sg; a 2 D:

(f) Let Dj � Cnj be an Sj -domain of holomorphy, j D 1; : : : ; N . Then
D WD D1 � 	 	 	 �DN is an S-domain of holomorphy with

S WD ff B prDj
W f 2 Sj ; j D 1; : : : ; N g;

where prDj
W D1 � 	 	 	 �DN ! Dj is the standard projection, j D 1; : : : ; N . In

particular, ifDj � Cnj is a domain of holomorphy, j D 1; : : : ; N , thenD1�	 	 	�
DN is a domain of holomorphy.

Indeed,

dD.a/ D minfdDj
.aj / W j D 1; : : : ; N g

D min
˚

inffd.Taj
f / W f 2 Sj g W j D 1; : : : ; N

�
D inffd.T.a1;:::;aN /f / W f 2 Sg; a D .a1; : : : ; aN / 2 D:

40Recall that O. xD/ WD S
xD�U �C

U open
O.U /jD .
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(g) Let D be a domain of holomorphy, let f D .f1; : : : ; fN / 2 O.D;CN /,
and let G be a connected component of the set

f �1.DN / D fz 2 D W jfj .z/j < 1; j D 1; : : : ; N g:
Then G is a domain of holomorphy.

Indeed, take an a 2 G. If dG.a/ D dD.a/, then

dG.a/ D dD.a/ D inffd.Taf / W f 2 O.D/g
� inffd.Taf / W f 2 O.G/g � dG.a/:

If r WD dG.a/ < dD.a/, then there exists a point b 2 @G\@P.a; r/. Consequently,
there exists a j 2 f1; : : : ; N g with jfj .b/j D 1. Hence the function g WD 1=.fj �
fj .b// is holomorphic in G and d.Tag/ D r .

(h) Let D be a domain of holomorphy and let f0 2 O.D/, f0 6� 0. Then
G WD D n f �1

0 .0/ is a domain of holomorphy.41 In particular, if D � Cn is a
domain of holomorphy, then D n .Vi1 [ 	 	 	 [ Vik / is a domain of holomorphy for
any 1 � i1 < 	 	 	 < ik � n.

Indeed, take an a 2 G. The case dG.a/ D dD.a/ is the same as in (g). If
r WD dG.a/ < dD.a/, then there exists a b 2 f �1

0 .0/\@P.a; r/. Thus the function
g WD 1=f0 is holomorphic in G and d.Tag/ D r .

(i) Observe that if G WD D n F , where F ¤ ¿ is a closed thin subset of D,
then, by the Riemann removable singularity theorem (Theorem 1.9.8), H 1.G/ D
H 1.D/jG and, consequently, G is not an H 1.G/-domain of holomorphy.

(j) Assume that D is not a domain of holomorphy and let zD be as in Proposi-
tion 1.11.2 (*) with S D O.D/. Then Qf . zD/ � f .D/, f 2 O.D/.

Indeed, suppose that there exists a b 2 Qf . zD/ n f .D/. Then the function
g WD 1=.f � b/ is holomorphic in D and g 	 .f � b/ � 1. Hence, by the identity
principle, Qg 	 . Qf � b/ � 1; a contradiction.

(k) Assume that D is not an H1-domain of holomorphy and let D0, zD be as
in Proposition 1.11.2 (*) with S D H 1.D/. Then k Qf k zD � kf kD , f 2 H 1.D/
(Exercise).

(l) Let D be a domain in Cn. Assume that for any point a 2 @D there exists
a function fa 2 O.D;D/ with limD3z!a jfa.z/j D 1. Then D is an H 1.D/
domain of holomorphy.

Indeed, suppose thatD is not an H 1-domain of holomorphy and letD0 and zD
be as in Proposition 1.11.2 (*). We may assume that D0 is a connected component
of D \ zD. Take an a 2 zD \ @D0 and let fa be as above. Then, j Qfaj � 1 in zD
(cf. (k)) and j Qfa.a/j D limD03z!a jfa.z/j D 1. Consequently, by the maximum
principle, j Qfaj � 1. In particular, jfaj D 1 on D0; a contradiction.

(m) Any convex domain D � Cn is an H 1-domain of holomorphy.

41Recall that, by Proposition 1.9.7,G is connected.
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Indeed, take a convex domain D   Cn and fix an a 2 @D. Since D is convex,
there exists an affine function ` W Cn ! R such that ` < 0 on D and `.a/ D 0.
Suppose that `.z/ D b0CPn

jD1.bjxjCcjyj /, z D .x1Ciy1; : : : ; xnCiyn/, where
b0; : : : ; bn, c1; : : : ; cn 2 R. Define L.z/ WD b0 C Pn

jD1.bj � icj /zj . Obviously

` D ReL. Let f0 WD eL. Then jf0j D eReL D e` < 1 on D and jf0.a/j D 1. It
remains to apply (l).

(n) Suppose that S is a natural Fréchet space (cf. Definition 1.10.5). Let T .Q/

be the topology of F generated by a family Q of seminorms.
Assume that D is not an S-domain of holomorphy and let D0, zD be as in

Proposition 1.11.2 (*). Let zS WD f Qf W f 2 Sg � O. zD/. We endow the space zS
with a topology T . zQ/ generated by the following family zQ of seminorms:

zS 3 Qf 7! q.f /; q 2 Q;
zS 3 Qf 7! k Qf k zK ; zK b zD:

Notice that Qf� ! Qf in the sense of T . zQ/ iff Qf� ! Qf locally uniformly on zD and
f� ! f in the sense of T .Q/. Observe that zS is a Fréchet space.

Indeed, if . Qf�/1�D1 is a Cauchy sequence in zS , then .f�/1�D1 is a Cauchy sequence
in S and . Qf�/1�D1 is a Cauchy sequence in O. zD/ in the topology of locally uniform
convergence. Hence there exist functions f0 2 S and g0 2 O. zD/ such that
f� ! f0 in S and Qf� ! g0 locally uniformly in zD. Since S is a natural Fréchet
space, we conclude that f� ! f0 locally uniformly on D. In particular, f0 D g0
on D0. Thus g0 D Qf0 and, finally, Qf� ! Qf0 in zS .

The mapping zS 3 Qf ! f 2 S is obviously continuous. Since zS is a Fréchet
space, the Banach theorem (Theorem 1.10.4) implies that the above operator is
a topological isomorphism, i.e. for each compact zK � zD there exist a finite set
I � Q and c > 0 such that

k Qf k zK � cmax I.f /; f 2 S :

In particular, if S is a natural Banach space with a norm k kS , then for every
compact zK � zD there exists a constant c > 0 such that

k Qf k zK � ckf kS ; f 2 S :

In the special case where S is a natural Banach algebra, we get more. Namely,
k Qf k zD � kf kS , f 2 S (Exercise — cf. Example 1.10.7 (k)).

(o) Let S , D0, zD be as above. By virtue of (n), if S is a closed subspace of
O.D/ (in the topology of locally uniform convergence inD), then for each compact
zK � zD there exist a compact K � D and a constant c > 0 such that

k Qf k zK � ckf kK ; f 2 S :
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(p) Let S , D0, zD be as above. In the special case, if S is a closed subalgebra
of O.D/, then for each compact zK � zD there exists a compact K � D such that

k Qf k zK � kf kK ; g 2 S (Exercise).

Proposition 1.9.12 implies the following result.

Corollary 1.11.4. (a) If a Reinhardt domain D � Cn is an H 1
loc.D/-domain of

holomorphy, thenD is fat.
(b) If a Reinhardt domain D � Cn is an O.N/-domain of holomorphy with

0 � N < 1, thenD is fat.

Remark 1.11.5. Let T� WD f.z1; z2/ 2 D � D W jz1j� < jz2jg, � D p=q 2 Q>0.
(a) First observe that T� is an H 1-domain of holomorphy. Although it follows

from the general results (Theorem 3.4.1), here we give a direct elementary proof.
Suppose that D0, zD are as in Proposition 1.11.2 (*) with D D T� and S D

H 1.T� /. Since D � D is obviously an H 1-domain of holomorphy, we conclude
that zD � D � D. Let f .z/ WD z

p
1 =z

q
2 , z D .z1; z2/ 2 T� . Then f 2 H 1.T� /

and, therefore, there exists an Qf 2 O. zD/ such that Qf D f on D0 and k Qf k zD �
kf kT�

� 1 (Remark 1.11.3 (k)). Consequently, zq2 Qf .z/ D z
p
1 , z D .z1; z2/ 2 zD.

Let b D .b1; b2/ 2 @T� \ zD. If b2 ¤ 0, then Qf .z/ D z
p
1 =z

q
2 for z D .z1; z2/

in an open neighborhood U � zD of b. Then jzp1 =zq2 j � 1 in U and, by the
maximum principle, U � T� ; a contradiction. If b D 0, then Qf is holomorphic
in a small polydisc P.r/ � zD, Qf .z/ D P1

j;kD0 aj;kz
j
1 z
k
2 , z D .z1; z2/ 2 P.r/.

Consequently,
P1
j;kD0 aj;kz

j
1 z
kCq
2 D z

p
1 , .z1; z2/ 2 P.r/, which is impossible.

(b) The mapping C � C� 3 .z1; z2/ 7! .z1; z1=z2/ 2 C � C maps biholo-
morphically the Hartogs triangle T onto D � D�. Observe that D � D� is not
an H 1-domain of holomorphy. In particular, the notion of an H 1-domain of
holomorphy is not invariant under biholomorphic mappings.

Proposition 1.11.6. LetD D DS ¤ ¿ be the domain of convergence of a Laurent
series

S D
X
˛2Zn

a˛z
˛:

ThenD is a domain of holomorphy.

Proof. Suppose that zD, D0 are as in Proposition 1.11.2 (*) with S D O.D/.
Put f˛.z/ WD a˛z

˛ , z 2 D, with ˛ 2 †.S/�. Observe that zD � Cn.†.S//

and Qf˛.z/ D a˛z
˛ , z 2 zD.

Indeed, by Remark 1.11.3 (c), (f), Cn.†.S// is a domain of holomorphy. Ob-
viously, O.Cn.†.S///jD � O.D/. Hence zD � Cn.†.S//.

To get a contradiction we are going to show that zD � DS D D. Suppose
that there exists an a 2 zD nD and let zK WD xB.a; r/ � zD. By Remark 1.11.3 (p)
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with S D O.D/, there exists a compact K � D such that k Qf k zK � kf kK for any
f 2 O.D/. By Lemma 1.6.3, there exist C > 0 and � 2 .0; 1/ such that

ka˛z˛kK � C� j˛j; ˛ 2 †.S/:
Consequently,

ka˛z˛k zK � C� j˛j; ˛ 2 †.S/:
Thus int zK � DS D D; a contradiction. �

Proposition 1.11.7. For any ˛ 2 .Rn/� and c 2 R, the elementary Reinhardt
domain

D˛;c D fz 2 Cn.˛/ W jz˛j < ecg
is a domain of holomorphy.

Proof. Use Propositions 1.6.6 and 1.11.6. �

Remark 1.11.8. (a) Observe that it is much easier to prove that D˛;c is locally a
domain of holomorphy, i.e. every a D .a1; : : : ; an/ 2 @D˛;c has an open neighbor-
hoodU such that each connected component ofU\D˛;c is a domain of holomorphy.

Indeed, if a 2 Cn� \ @D˛;c , then let U WD P.a; r/ � Cn� and let f .z/ WD
f1.z1/ 	 	 	fn.zn/, z D .z1; : : : ; zn/ 2 U , wherefj 2 O.K.aj ; r// is a holomorphic
branch of the j̨ -power, j D 1; : : : ; n. Then U \ D˛;c D fz 2 U W jf .z/j < ecg
and we may apply Remark 1.11.3 (g).

If a 2 V0 \ @D˛;c , then let U WD P.a; r/ � Cn be arbitrary. Suppose that a
connected componentD ofU \D˛;c is not a domain of holomorphy. LetD0, zD be
as in Proposition 1.11.2 (*) with S D O.D/. Since U is a domain of holomorphy,
we have zD � U . We may assume that D0 is a connected component of D \ zD.
The first part of the proof shows that @D0 \ zD � V0.

Thus, it suffices to show that for any point b 2 V0 \ @D˛;c there exists a
function f 2 O.D˛;c/ which cannot be continued through b. We may assume that
˛1; : : : ; ˛s > 0, ˛sC1; : : : ; ˛n < 0, 1 � s � n � 1, b1 	 	 	 bs D bsC1 	 	 	 bn D 0,
bn D 0 (cf. Remark 1.5.7 (d)). Consequently, one can take f .z/ WD 1=zn.

(b) One should mention the following general result which will follow from
Theorems 1.15.5 (viii) and 1.16.1.

Theorem* 1.11.9. LetD � Cn be a domain. ThenD is a domain of holomorphy
iffD is locally a domain of holomorphy, i.e. every point a 2 @D has a neighborhood
U such that each connected component of U \D is a domain of holomorphy.

Lemma 1.11.10. D is an S-domain of holomorphy iff there exists a dense subset
A � D such that dD.a/ D inffd.Taf / W f 2 Sg, a 2 A.

Proof. Let a 2 D and let r > r0 > dD.a/. Suppose that d.Taf / � r for
any f 2 S . Then there exists an open neighborhood U � D of a such that
d.Tbf / � r0 > dD.b/ for all f 2 S and b 2 U ; a contradiction. �
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Proposition 1.11.11. LetS � O.D/be a natural Fréchet space .Definition 1.10.5/.
Then the following conditions are equivalent:

(i) D is an S-domain of holomorphy;

(ii) the set S n N.S/, where

N.S/ WD ff 2 S W D is the domain of existence of f g;
is of the first Baire category in S;42

(iii) N.S/ ¤ ¿.

Proof. Obviously, (ii) ) (iii) ) (i).
(i) ) (ii): For a 2 D and r > 0 let Sa;r WD ff 2 S W d.Taf / � rg. It is clear

that Sa;r is a vector subspace of S . Let T .Q/ be the topology of S . We endow
the space Sa;r with a topology T .Qa;r/, where Qa;r is the following family of
seminorms:

Sa;r 3 f 7! q.f /; q 2 Q;
Sa;r 3 f 7! kTaf kK ; K b P.a; r/:

One can easily verify that Sa;r endowed with this topology is a Fréchet space
(cf. Remark 1.11.3 (n)).

The inclusion Sa;r ! S is obviously continuous. Hence, by the Banach theo-
rem (Theorem 1.10.4), either Sa;r D S or Sa;r is of the first Baire category in S .
Since D is an S-domain of holomorphy, Sa;r is of the first category if r > dD.a/.

Now let A � D be countable and dense in D. Put

S0 WD
[

a2A;k2N

Sa;dD.a/C1=k :

Then S0 is of the first Baire category in S . Finally, by Lemma 1.11.10, we get
S n N.S/ D S0. �

Exercise 1.11.12. LetDj � Cn be a domain of existence of a functionfj 2 O.Dj /,
j D 1; : : : ; N . Assume that G is a connected component of D1 \ 	 	 	 \DN ¤ ¿.
For � D .�1; : : : ; �N / 2 CN let F� WD �1f1jG C 	 	 	 C �NfN jG 2 O.G/. Prove
that there exists a �0 2 CN such that G is the domain of holomorphy of F�0

.

Hint. Let S WD fF� W � 2 CN g � O.G/. Observe that G is an S-domain of
holomorphy and S is a natural Fréchet space in O.G/. Next use Proposition 1.11.11.

The following result gives the full geometric characterization of Reinhardt do-
mains of holomorphy.

42Roughly speaking, ifD is an S-domain of holomorphy, then “almost all” functions f 2 S are not
holomorphically continuable beyondD.
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Theorem 1.11.13. Let D � Cn be a Reinhardt domain. Then the following con-
ditions are equivalent:

(i) D is a domain of holomorphy;

(ii) D satisfies the following two geometric conditions:

(ii)1 logD is convex,

(ii)2 D is relatively complete, i.e. for every j 2 f1; : : : ; ng, ifD \ Vj ¤ ¿,
then yD.j / � D;43

(iii) D satisfies the following two geometric conditions:

(iii)1 logD is convex,

(iii)2 D is weakly relatively complete, that is, for every j 2 f1; : : : ; ng,
if D \ Vj ¤ ¿, then .a0; 0; a00/ 2 D for any .a0; aj ; a00/ 2 D �
Cj�1 � C � Cn�j ;

(iv) D is log-convex andD D D� nM , whereD� was defined in (1.5.3) and

M D M.D/ WD
[

j2f1;:::;ngW
D\Vj D¿

Vj :
44

In particular:

� IfD is a Reinhardt domain of holomorphy such thatD\ Vj ¤ ¿, j D 1; : : : ; n

.e.g. 0 2 D/, thenD must be a complete Reinhardt domain.

� D is a fat domain of holomorphy iffD is log-convex andD D D�.

jz1j1r1

jz2j
1

r2

jz1j1r1

jz2j
1

jz1jr1

jz2j
r2

Figure 1.11.2. Which of the above domains are relatively complete ?

Proof. (i) ) (ii): Let f 2 O.D/, f .z/ D P
˛2Zn a˛z

˛ , z 2 D, be such that
D is the domain of existence of f (cf. Proposition 1.11.11). Then D D Df ,

43Consequently, if D is a Reinhardt domain of holomorphy, then for any j 2 f1; : : : ; ng we have:
D \ Vj ¤ ¿ ” yD.j / D D. Observe that condition (ii)2 is automatically satisfied if D � Cn

�

or ifD is complete.
44Recall thatD� is log-convex and relatively complete (Remark 1.5.8).
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jz1j11=3 2=3

jz2j

1

1=3

2=3

Figure 1.11.3. The domain D WD D2 n .xA.1=3; 2=3/ � xA.1=3; 2=3// is weakly relatively
complete, but not relatively complete.

where Df denotes the domain of convergence of the Laurent series
P
˛2Zn a˛z

˛ .
Consequently, the result follows directly from Proposition 1.6.5 (c), (d).

The implication (ii) ) (iii) is trivial.
(iii) ) (iv): SinceD� nD � V0 (Remark 1.5.8 (a)), we only need to show that

D� nM � D. Take a point a D .a1; : : : ; an/ 2 D� nM . SinceD� nV0 D D nV0,
we may assume that a 2 V0 nM , say a1 D 	 	 	 D as D 0, asC1 	 	 	 an ¤ 0 for some
1 � s � n. Since a … M , we conclude that D \ Vj ¤ ¿, j D 1; : : : ; s. It is clear
that for sufficiently small " > 0 the point b D ."; : : : ; "; asC1; : : : ; an/ belongs to
D� n V0 D D n V0. Now, using (iii)2 (with respect to all j 2 f1; : : : ; sg), we see
that a D .0; : : : ; 0; asC1; : : : ; an/ 2 D.

(iv) ) (i): Since logD is convex, there exists a family A � Rn � R such that
logD D int

T
.˛;c/2A H˛;c . ThenD� WD int

T
.˛;c/2A D˛;c (Remark 1.5.8 (b)). By

Proposition 1.11.7, each domain D˛;c is a domain of holomorphy. Consequently,
D� is a domain of holomorphy (cf. Remark 1.11.3 (e)). Now, we may use Re-
mark 1.11.3 (h). �

Corollary1.11.14. IfD is aReinhardt domainof holomorphywith theFucondition,
thenD is fat .cf. Remark 1.13.11 (b)/.

Note that the Hartogs triangle is a fat Reinhardt domain of holomorphy without
the Fu condition.

Corollary 1.11.15. If .Dk/1kD1 is a sequence of Reinhardt domains of holomorphy
withDk � DkC1, thenD WD S1

kD1Dk is a Reinhardt domain of holomorphy.



82 Chapter 1. Reinhardt domains

Corollary 1.11.16. Let D � Ck � Cn�k be a Reinhardt domain of holomorphy.
Then:

(a) prCk .D/ is a Reinhardt domain of holomorphy in Ck .
(b) For any .a; b/ 2 D � Ck � Cn�k the set D0 WD fz 2 Ck W .z; b/ 2 Dg is

a Reinhardt domain of holomorphy.

Proof. (a) Use Theorem 1.11.13 (ii) (Exercise).
(b) It is clear thatD0 is k-circled and relatively complete. It remains to show that

D0 is log-convex (then D0 must be a domain). This is clear if b 2 Cn�k� . Suppose
that b D .bkC1; : : : ; bs; 0; : : : ; 0/ with k C 1 � s � n� 1, where bkC1 	 	 	 bs ¤ 0.
Take p D .p1; : : : ; pk/; q D .q1; : : : ; qk/ 2 D0 \Rk>0 and let � be the hyperbolic
segment between p and q,

� WD f.p1�t
1 qt1; : : : ; p

1�t
k qtk/ W t 2 Œ0; 1�g:

We want to show that � � fbg � D. Let

Up D U 1p � 	 	 	 � U sp � Pn�s."/; Uq D U 1q � 	 	 	 � U sq � Pn�s."/ � D

be Reinhardt neighborhoods of .p; b/ and .q; b/, respectively. Then

� � f.bkC1; : : : ; bs/g �K�."/ � 	 	 	 �K�."/ � D:

Consequently, the relative completeness of D implies that � � fbg � D. �

Remark 1.11.17. Notice that for a general domain of holomorphy D � Cn, the
projection prCk .D/ need not be a domain of holomorphy – cf. e.g. [Pfl1978],
[Kas 1980], [Shc 1982], [Joi 2000].

Proposition 1.11.18. Let D � Cn be a Reinhardt domain. Then the following
conditions are equivalent:

(i) D is a domain of holomorphy;

(ii) for any a D .a1; : : : ; an/ 2 Rn>0, ˛ D .˛1; : : : ; ˛n/ 2 .Rn/�, and ˇ D
.ˇ1; : : : ; ˇn/ 2 fe1; : : : ; eng � ZnC, the set

Da;˛;ˇ WD f.�; 	/ 2 .C.˛1/ \ 	 	 	 \ C.˛n// � C W
.a1j�j˛1 j	jˇ1 ; : : : ; anj�j˛n j	jˇn/ 2 Dg

is a Reinhardt domain of holomorphy .provided thatDa;˛;ˇ ¤ ¿/.
Notice the special role played by two-dimensional Reinhardt domains (cf. Propo-

sition 1.15.9).

Proof. Define ˚a;˛;ˇ W .C.˛1/ \ 	 	 	 \ C.˛n// � C ! Cn,

˚a;˛;ˇ .�; 	/ WD .a1j�j˛1 j	jˇ1 ; : : : ; anj�j˛n j	jˇn/:
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First observe that Da;˛;ˇ D ˚�1
a;˛;ˇ

.D/ is a Reinhardt open set and

logDa;˛;ˇ D f.t; u/ 2 R2 W log aC t˛ C uˇ 2 logDg:

It is clear that D is log-convex iff each Da;˛;ˇ is log-convex.
It remains to discuss the relative completeness. First assume that eachDa;˛;ˇ is

relatively complete. We will prove that D is weakly relatively complete. Suppose
thatD\Vj ¤ ¿. We may assume that j D n. Fix a b D .b0; 0/ 2 D\.Rn�1

>0 �f0g/.
Take a point c D .c0; cn/ 2 D \ RnC, c0 ¤ b0, cn > 0. We want to prove that
.c0; 0/ 2 D. We may assume that c0 D .0; : : : ; 0„ ƒ‚ …

s

; csC1; : : : ; cn�1/ with csC1; : : : ;
cn�1 > 0 for some 0 � s � n � 1.

First, consider the case s D 0. Define

a WD .b0; cn/; j̨ WD log.cj =bj /

log 2
; j D 1; : : : ; n � 1;

˛ WD .˛0; 0/ 2 Rn; ˇ WD en:

Since ˚a;˛;ˇ .1; 0/ D b and ˚a;˛;ˇ .2; 1/ D c, we conclude that .1; 0/; .2; 1/ 2
Da;˛;ˇ . Thus .2; 0/ 2 Da;˛;ˇ and, consequently, .c0; 0/ D ˚a;˛;ˇ .2; 0/ 2 D.

Now, let s > 0 and suppose that .c0; 0/ … D. Define

a WD .1; : : : ; 1„ ƒ‚ …
s

; csC1; : : : ; cn/; ˛ WD .1; : : : ; 1„ ƒ‚ …
s

; 0; : : : ; 0/; ˇ WD en:

Then ˚a;˛;ˇ .0; 1/ D c 2 D, ˚a;˛;ˇ .0; 0/ D .c0; 0/ … D. Thus .0; 1/ 2 Da;˛;ˇ
and .0; 0/ … Da;˛;ˇ . By the first part of the proof we know that ˚a;˛;ˇ ."; 0/ D
."; : : : ; "„ ƒ‚ …

s

; csC1; : : : ; cn�1; 0/ 2 D for 0 < " � 1. So ."; 0/ 2 Da;˛;ˇ for 0 <

" � 1. Consequently, since Da;˛;ˇ is a domain of holomorphy, we conclude
(cf. Theorem 1.11.13) that .0; 0/ 2 Da;˛;ˇ ; a contradiction.

Conversely, assume that D is relatively complete. We will prove that each
Da;˛;ˇ is weakly relatively complete. Suppose that .�0; 0/; .�1; 	1/ 2 Da;˛;ˇ
with 	1 ¤ 0. We want to show that .�1; 0/ 2 Da;˛;ˇ . After a permutation of
variables, we may assume that ˇ D en. The points

b WD ˚a;˛;ˇ .�0; 0/ D .a1j�0j˛1 ; : : : ; an�1j�0j˛n�1 ; 0/;

c WD ˚a;˛;ˇ .�1; 	1/ D .a1j�1j˛1 ; : : : ; an�1j�1j˛n�1 ; anj�1j˛n j	1j/

belong toD. Hence .a1j�1j˛1 ; : : : ; an�1j�1j˛n�1 ; 0/ D ˚a;˛;ˇ .�1; 0/ 2 D, which
means that .�1; 0/ 2 Da;˛;ˇ .

Now suppose that .0; 	0/; .�1; 	1/ 2 Da;˛;ˇ with �1 ¤ 0. We want to
show that .0; 	1/ 2 Da;˛;ˇ . Observe that ˛1; : : : ; ˛n � 0. We may assume
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that ˛1; : : : ; ˛s > 0, ˛sC1 D 	 	 	 D ˛n D 0, 1 � s � n. Thus the points

b WD ˚a;˛;ˇ .0; 	0/ D .0; : : : ; 0; asC1j	0jˇsC1 ; : : : ; anj	0jˇn/;

c WD ˚a;˛;ˇ .�1; 	1/

D .a1j�1j˛1 j	1jˇ1 ; : : : ; asj�1j˛s j	1jˇs ; asC1j	1jˇsC1 ; : : : ; anj	1jˇn/

belong to D. The relative completeness of D implies that

˚a;˛;ˇ .0; 	1/ D .0; : : : ; 0; asC1j	1jˇsC1 ; : : : ; anj	1jˇn/ 2 D:
Thus .0; 	1/ 2 Da;˛;ˇ . �

Remark 1.11.19. In [Lan-Spi 1995] the reader may find another geometric char-
acterization of Reinhardt domains of holomorphy in C2.

1.12 Envelopes of holomorphy

As we already mentioned in § 1.11, there exist pairs of domainsD   zD � Cn such
that O. zD/jD D O.D/ or H 1. zD/jD D H 1.D/. So far we were concentrated
on characterization of those (Reinhardt) domains D � Cn which are domains of
existence with respect to the family O.D/ of all functions holomorphic onD. In the
present section we make a step further and answer a more general question whether
for a given (Reinhardt) domainD � Cn and a family¿ ¤ S � O.D/ there exists a
maximal domain zD � Cn such that every function from S extends holomorphically
to zD (cf. [Jar-Pfl 2000], § 1.7, for the general theory of holomorphic extension).

Definition 1.12.1. LetD � Cn be a domain and let¿ ¤ S � O.D/. We say that
a domain zD � Cn is an S-envelope of holomorphy if

� D � zD,
� for any f 2 S there exists an Qf 2 O. zD/ with Qf D f on D (notice that Qf is

uniquely determined by f ),
� zD is an zS-domain of holomorphy with zS WD f Qf W f 2 Sg (cf. Definition 1.11.1).

In the case S D O.D/ we say that zD is an envelope of holomorphy.

Remark 1.12.2. (a) If D1 � D2 � Cn are domains and zDj is an Sj -envelope of
holomorphy with respect to a family Sj � O.Dj /, j D 1; 2, with S2jD1

� S1,
then zD1 � zD2.

In particular, the S-envelope of holomorphy zD is uniquely determined. We
write zD D E.D;S/. Let E.D/ WD E.D;O.D//.

Indeed, we know that Dj � zDj and for every fj 2 Sj there exists an Qfj 2
O. zDj /with Qfj D fj onDj . Moreover, zDj is an zSj -domain of holomorphy, where
zSj WD f Qfj W fj 2 Sj g, j D 1; 2. Suppose that zD1 6� zD2. Then every function
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Qf2 2 zS2 extends holomorphically to zD1 (to .f2jD1
/1e ) with .f2jD1

/1eD f2jD1
D

Qf2 on D1 � zD1 \ zD2. Consequently, zD2 is not an zS2-domain of holomorphy; a
contradiction.

(b) In general, the S-envelope of holomorphy (in the sense of the above defini-
tion) need not exist; take, for example, D WD D, S WD fLog.z C 1/g (Exercise).

(c) There are also examples of domains D � Cn (n � 2) such that E.D/ does
not exist (see e.g. the Shabat example in [Jar-Pfl 2000], p. 1). The interested reader
may consult also [Vla 1966] (to find relations between envelopes of holomorphy
and theoretical physics) and [Jup 2006].

(d) Let D � Cn be a starlike domain (i.e. tz 2 D for every z 2 D and
t 2 Œ0; 1�) and let S � O.D/ be such that, for any f 2 S and t 2 .0; 1�, the
function D 3 z 7! f .tz/ belongs to S . Then E.D;S/ exists and is a starlike
domain in Cn (cf. [Jar-Pfl 2000], Remark 1.9.6 (a)).

(e) Let D � Cn be a balanced domain and let S � O.D/ be such that, for any
f 2 S and � 2 xDnf0g, the functionD 3 z 7! f .�z/ belongs to S . Then E.D;S/

exists and is a balanced domain in Cn (cf. [Jar-Pfl 2000], Remark 1.9.6 (f)).
(f) There exists a circular domain D � C2 (i.e. �z 2 D for every z 2 D and

� 2 T ) such that E.D/ does not exist (cf. [Cas-Tra 1991], see also [Jar-Pfl 2000],
Example 3.1.20).

Remark 1.12.3. Notice that for an arbitrary domain D � Cn and S � O.D/,
the S envelope of holomorphy always exists in the category of Riemann domains –
cf. [Jar-Pfl 2000].

In the case of Reinhardt domains we have the following existence theorem.

Theorem 1.12.4. LetD � Cn be a Reinhardt domain and let S � O.D/ be such
that

ff B T� W f 2 S ; � 2 T ng D S : (1.12.1)

Let zD WD int
T
f 2S Df , where Df denotes the domain of convergence of the

Laurent series off .observe that zD is aReinhardt log-convex open set; in particular,
by Remark 1.5.6 (d), zD is connected/. Then zD D E.D;S/. If D \ Vj ¤ ¿,
j D 1; : : : ; n .e.g. 0 2 D/, then E.D;S/ is a complete Reinhardt domain.

Observe that all classical spaces of holomorphic functions (e.g. H 1;k.D/,
Ak.D/, Lp;k

h
.D/, O.k/.D/) satisfy (1.12.1). In the case where S does not sat-

isfy (1.12.1), it is possible that the envelope E.D;S/ exists, but is not a Reinhardt
domain, e.g. D D D, S WD f1=.z � 1/g.

Proof. For an arbitrary function f 2 S consider its Laurent expansion

f .z/ D
X
˛2Zn

af˛ z
˛; z 2 D
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(cf. Proposition 1.7.15 (c)). Obviously, af BT�
˛ D a

f
˛ �

˛ and †.f B T�/ D †.f /,
� 2 T n. The function Qf .z/ WD P

˛2Zn a
f
˛ z

˛ , z 2 Df , gives a holomorphic

extension of f to Df . Observe that Df BT�
D Df and Bf B T� D Qf B T�, � 2 T n.

Thus, every function f 2 S has a holomorphic extension Qf j zD to zD. Notice that
if D \ Vj ¤ ¿, j D 1; : : : ; n, then each Df is complete and, consequently, zD
is a complete Reinhardt domain. It remains to show that zD is an zS-domain of
holomorphy. Observe that in the case where S D O.D/, the result follows directly
from Proposition 1.11.6 and Remark 1.11.3 (e).

Suppose that a 2 zD is such that d.Ta Qf / � s > d zD.a/ DW r for any f 2 S .
Define a new Reinhardt domain

G WD
[
�2T n

T�.P.a; s// D
[
�2T n

P.� 	 a; s/:

For f 2 S let Of .z/ WD Ta Qf .z/, z 2 P.a; s/. Notice that .2f B T�/ B T�1
�

D Qf on
P.� 	 a; r/. Moreover,

.2f B T�/ B T�1
� D .2f B T�/ B T�1

� on P.� 	 a; s/ \ P.	 	 a; s/; �; 	 2 T n:

Indeed, first observe that P.� 	a; s/\P.	 	a; s/ is convex and, therefore, connected.
� If P.� 	 a; r/ \ P.	 	 a; r/ ¤ ¿, then the equality follows easily from the

identity principle.
� If P.� 	 a; s/ \ P.	 	 a; s/ ¤ ¿ but P.� 	 a; r/ \ P.	 	 a; r/ D ¿, then we

proceed as follows.
For each k 2 f1; : : : ; ng, take �j

k
(j D 1; : : : ; N ) on the shorter arc of T

determined by �k and 	k in such a way that �1
k

D �k , �N
k

D 	k , and

j�j
k

� �jC1
k

jjakj < 2r; j D 1; : : : ; N � 1:

Then
ˇ̌
�kC�k

2
ak � �j

k
ak
ˇ̌ � j�k��k j

2
jakj < s and consequently,

�C 	

2
	 a 2

N\
jD1

P.�j 	 a; s/:

Thus, we have found �1; : : : ; �N 2 T n such that
� �1 D �, �N D 	,
� P.�j 	 a; r/ \ P.�jC1 	 a; r/ ¤ ¿, j D 1; : : : ; N � 1,
� TN

jD1 P.�j 	 a; s/ ¤ ¿,
which permits us to apply successively the previous case and the identity principle.

Consequently, the function QQf W G ! C defined by the formula

QQf .z/ WD .2f B T�/ B T�1
� .z/; z 2 P.� 	 a; s/;
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is well defined. Since QQf D Qf in P.a; r/, the Laurent series of QQf in G coincides
with

P
˛2Zn a

f
˛ z

˛ (Exercise), which implies that G � zD; a contradiction. �

Corollary 1.12.5. Let D � Cn be a bounded Reinhardt domain of holomorphy
and letU be any domain of holomorphy with xD � U . Then there exists a Reinhardt
domain of holomorphyD0 such that xD � D0 � U .

In particular, if xD has a neighborhood basis consisting of domains of holo-
morphy, then xD has a neighborhood basis consisting of Reinhardt domains of
holomorphy.

Proof. Let 2r WD dU . xD/ > 0. Then

G WD
[
z2D

P.z; r/

is a Reinhardt domain with xD � G � U . Let D0 WD E.G/ be the envelope of
holomorphy ofG. ThenG is a Reinhardt domain of holomorphy (Theorem 1.12.4)
and xD � G � D0 � E.U / D U (Remark 1.12.2 (a)). �

Proposition 1.12.6. LetD � Cn be a Reinhardt domain and let S � O.D/ satisfy
(1.12.1).

(a) IfD is an S-domain of holomorphy, then

D D int
\
f 2S

Df ;

where Df denotes the domain of convergence of the Laurent series of f .
(b) Let ¿ ¤ S � H 1.D/ be such that S D R>0 	 S . If D is an S-domain of

holomorphy, then

D D int
\

f 2S; kf kDD1
˛2†.f /�

fz 2 Cn.˛/ W jaf˛ z˛j < 1g;

where

f .z/ D
X
˛2Zn

af˛ z
˛; z 2 D; †.f / D f˛ 2 Zn W af˛ ¤ 0g:

(c)

E.D;H 1.D// D int
\

f 2H1.D/; kf kDD1
˛2†.f /�

fz 2 Cn.˛/ W jaf˛ z˛j < 1g:
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Proof. (a) follows directly from the proof of Theorem 1.12.4.
(b) By Proposition 1.6.5 (b), for every f 2 H 1.D/, we have:

D � int
\

˛2†.f /�
fz 2 Cn.˛/ W jaf˛ z˛j < kf kDg � Df :

Hence, using Theorem 1.12.4, we get

D � int
\

f 2S; kf kDD1
int

\
˛2†.f /�

fz 2 Cn.˛/ W jaf˛ z˛j < 1g

� int
\

f 2S; kf kDD1
Df D D (Exercise):

(c) The proof of Theorem 1.12.4 shows that

zD WD E.D;H 1.D// D int
\

f 2H1.D/
kf kDD1

Df :

Let Qf denote the holomorphic extension of f to zD. Recall that k Qf k zD D kf kD ,
f 2 H 1.D/ (Remark 1.11.3 (k)). Hence, by (b), we have

zD D int
\

Qf 2H1. zD/; k Qf k zD
D1

˛2†. Qf /�

fz 2 Cn.˛/ W ja Qf
˛ z

˛j < 1g

D int
\

f 2H1.D/; kf kDD1
˛2†.f /�

fz 2 Cn.˛/ W jaf˛ z˛j < 1g: �

Remark 1.12.7. Let D � Cn be a log-convex Reinhardt domain. Then

E.D/ D D� nM.D/: 45

Indeed, Theorem 1.11.13 and Remark 1.11.3 (h) show that D� n M.D/ is a
domain of holomorphy containing D. Consequently, G WD E.D/ � D� nM.D/.
Using once again Theorem 1.11.13 (iv), we get G D G� nM.G/ 
 D� nM.D/.
Proposition 1.12.8. Let F W G ! D be a biholomorphic mapping between two
domainsD;G � Cn. Assume that zG WD E.G/ and zD WD E.D/ exist .e.g.G andD

are Reinhardt domains/. ThenF extends to a biholomorphic mapping zF W zG ! zD.

45Cf. Theorem 1.11.13 (iv).
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Proof. Let zF W zG ! Cn denote the holomorphic extension of F . Observe that
det zF 0 D Adet F 0. In particular, by Remark 1.11.3 (j), det zF 0.z/ ¤ 0, z 2 zG, which
shows that zF is locally biholomorphic. We only need to show that zF . zG/ � zD
(then eF �1 B zF D id zD , where eF �1 denotes the holomorphic extension of F �1 to zD
and, consequently, exchanging the roles of G and D finishes the proof). Suppose
that zF . zG/ 6� zD and let b 2 zG be such that zF .b/ … zD. Let ˝ be the connected

component of zF �1. zD/ containing G. Then, by the identity principle, eF �1 B zF D
id˝ . Fix an a 2 G and let 
 W Œ0; 1� ! zG be a curve with 
.0/ D a, 
.1/ D b. Let
t0 D supft 2 Œ0; 1� W 
.Œ0; t �/ � ˝g, c WD 
.t0/. Observe that zF .c/ 2 @ zD. Since
zF is locally biholomorphic, there exists a connected open neighborhood U � zG of
c such that zF jU W U ! zF .U / DW V is biholomorphic. Take an arbitrary function
g 2 O. zD/. Then the function g B F is holomorphic on G and, therefore, extends
to Ag B F 2 O. zG/. Observe that, by the identity principle, Ag B F D g B zF on ˝
(because we have equality on G). Define Qg WD Ag B F B . zF jU /�1 2 O.V /. Then
for w D zF .z/ 2 zF .U \˝/ � V \ zD we get

Qg.w/ D Qg B zF .z/ D Ag B F B . zF jU /�1 B zF .z/ D Ag B F .z/ D g B zF .z/ D g.w/:

Consequently, zD is not a domain of holomorphy; a contradiction. �

1.13 Holomorphic convexity

The idea of holomorphic convexity has its roots in the following well-known char-
acterization of convex domains in Rm, namely, an open set U � Rm is convex iff
for every compact K � U the set

fx 2 U W 8a2Rm W hx; ai � max
y2Khy; aig D fx 2 U W 8LWRm!R

L is linear
W L.x/ � max

K
Lg

is compact.

Definition 1.13.1. LetD � Cn be a domain and let¿ ¤ S � O.D/. We say that
D is S-convex if for every compact K � D the set

yKS WD fz 2 D W 8f 2S W jf .z/j � kf kKg
is compact. In the case where S D O.D/ we say that D is holomorphically
convex. Suppose that we have assigned to each domainD a family F .D/ � O.D/

(e.g. D ! H 1.D/). Then, instead of saying that D is F .D/-convex, we shortly
say that D is F -convex (e.g. H 1-convex).

Exercise 1.13.2. Prove the following:
(a) If K1 � K2 b D and S1 � S2, then . �K1/S2

� . �K2/S1
.

(b) The set yKS is closed in D.
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(c) If z1; : : : ; zn 2 S , then yKS is bounded.

(d) kf k yKS
D kf kK , f 2 S . In particular, yKS if is compact, then .byKS /S D yKS .

(e) yKS D yKG , where G denotes the closure in O.D/ of the family

faf k W a 2 C; f 2 S ; k 2 Ng:
(f) If F W D ! D0 is biholomorphic, then 1F.K/O.D0/ D F. yKO.D// for any

compactK � D. In particular,D is holomorphically convex iffD0 is holomorphi-
cally convex.

Remark 1.13.3. (a) By Proposition 1.7.15 and Exercise 1.13.2 (e), if D is a Rein-
hardt domain, then yKO.D/ D yKS , where

S WD
n
f 2 O.D/ W f .z/ D

X
˛2Zn

af˛ z
˛; z 2 D; #†.f / < 1

o
;

where †.f / WD f˛ 2 Zn W af˛ ¤ 0g. In particular, if D is a complete Reinhardt
domain, then yKO.D/ D yKP .Cn/jD . See also Proposition 1.13.7.

(b)D is S-convex iff there exists a sequence .K�/1�D1 of compact subsets ofD

such that b.K�/S D K� � intK�C1 for any � and D D S1
�D1K� .

Indeed, the implication (() is obvious. To prove ()), let .Lj /1jD1 be an
arbitrary sequence of compact sets such that Lj � intLjC1 and D D S1

jD1Lj .

Put K1 WD b.L1/S . Since D D S1
jD1 intLj , there exists a j2 > 1 such that

K1 � intLj2
. Put K2 WD 1.Lj2

/S . Now take a j3 > j2 such that K2 � intLj3
etc.

Exercise 1.13.4. Let .Kj /1jD1 be an arbitrary sequence of compact subsets of a
domain D � Cn such that Kj � intKjC1 and D D S1

jD1Kj . Let A � D be
an infinite set without accumulation points in D. Prove that there exist sequences
.ak/

1
kD1 � A and .jk/1kD1 � N, jk < jkC1, such that ak 2 KjkC1

nKjk
, k 2 N.

Theorem 1.13.5 (Holomorphic convexity). Let D � Cn. Then the following
conditions are equivalent:

(i) D is a domain of holomorphy;

(ii) D is holomorphically convex;

(iii) dD. yKO.D// D dD.K/ for every compact set K � D, where dD.A/ WD
inffdD.z/ W z 2 Ag, A � D;

(iv) dD. yKO.D// > 0 for every compact set K � D;

(v) For every infinite subset A � D without accumulation points in D, there
exists a function f 2 O.D/ such that supA jf j D C1.

Proof. The implications (ii) , (iv), (iii) ) (iv) are elementary (Exercise). The
implication (v) ) (i) follows from Remark 1.11.3 (p) (Exercise).
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(ii) ) (v): By Remark 1.13.3 (b) there exists a sequence .K�/1�D1 of compact

subsets of D such that b.K�/O.D/ D K� � intK�C1 and
S1
�D1K� D D. Using

Exercise 1.13.4, we may assume that there is a sequence .a�/1�D1 � A such that
a� 2 K�C1nK� , � � 1. Sincea1 … K1 andK1 D y.K1/O.D/, there exists a function
f1 2 S such that jf1.a1/j > kf1kK1

. Replacing f1 by .af1/N with suitable a > 0
and N 2 N, we may assume that jf1.a1/j � 1, and kf1kK1

� 1=2. Repeating the
above argument for the remaining a�’s, we find a sequence .f�/1�D1 � O.D/ such
that jf�.a�/j � �CP��1

�D1 jf�.a�/j and kf�kK�
� 1=2� . Now putf WD P1

�D1 f� .
The series is locally normally convergent in D. Hence f 2 O.D/. Moreover,
jf .a�/j � � for every � (Exercise).

(i) ) (iii): Suppose that for some a 2 yKO.D/ we have dD.a/ < dD.K/ DW r .
Let 0 < s < r . By the Cauchy inequalities we obtain

kD˛f kK � ˛Š

sj˛j kf kK.s/ ; f 2 O.D/:

Hence we get

jD˛f .a/j � ˛Š

sj˛j kf kK.s/ ; f 2 O.D/:

In particular, d.Taf / � s and hence d.Taf / � r , f 2 O.D/. Finally, since D is
a domain of holomorphy, we conclude that P.a; r/ � D; a contradiction. �

Exercise* 1.13.6. Let D � Cn be holomorphically convex and let A � D be an
infinite set without accumulation points inD. Prove that there exists an f 2 O.D/,
f 6� 0, such that supforda f W a 2 Ag D C1, where ordaf denotes the order of
zero of f at a.

Hint. Try to find f as an infinite product.

Proposition 1.13.7. LetD � Cn be a Reinhardt domain. Then for every Reinhardt
compact set K � D we have yKO.D/ D yKS , where

S WD fz˛jD W ˛ 2 Zn is such thatD � Cn.˛/g:
Observe that ifD is a complete Reinhardt domain, then S D fz˛jD W ˛ 2 ZnCg.
Proof. We already know (Remark 1.13.3 (a)) that yKO.D/ D yKS0

, where

S0 WD
n X
˛2Zn

j˛j�N

a˛z
˛jD W N 2 N; a˛ ¤ 0 ) D � Cn.˛/

o
:

We only need to show that yKS � yKS0
. To this aim, fix a pointa 2 yKS and a function

f D P
˛2Zn

j˛j�N
a
f
˛ z

˛jD 2 S0. The Cauchy inequalities imply that kaf˛ z˛kK �
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kf kK , ˛ 2 †.f /. Put C.N/ WD #f˛ 2 Zn W j˛j � N g. Then

jf .a/j � C.N/ max
˛2†.f /

jaf˛ a˛j � C.N/ max
˛2†.f /

kaf˛ z˛kK � C.N/kf kK :

Putting f k instead of f gives

jf k.a/j � C.kN/kf kkK ; k 2 N:

Hence,
jf .a/j � .C.kN//1=kkf kK :

It remains to observe that .C.kN//1=k ! 1 when k ! C1 (Exercise). �

Exercise 1.13.8. Prove that C.N/ D Pn
kD0

�
n
k

��
NCn�k

n

�
.

Exercise 1.13.9. Let D � Cn be a balanced domain (Definition 1.8.1). Using
Proposition 1.8.4 prove that for every balanced compact set K � D we have
yKO.D/ D yKS , where

S WD fQjD W Q 2 P .Cn/; Q is a homogeneous polynomialg:
Definition 1.13.10. We say that a Reinhardt domainD � Cn satisfies the weak Fu
condition if for every j 2 f1; : : : ; ng the following implication holds:

xD \ Vj n � [
k¤j

Vk
� ¤ ¿ H) D \ Vj ¤ ¿:

Remark 1.13.11. (a) It is clear that ifD satisfies the Fu condition, thenD satisfies
the weak Fu condition. The domain

T� D f.z1; z2/ 2 D � D W jz1j� < jz2jg; � > 0;

satisfies the weak Fu condition but does not satisfy the Fu condition.
(b) If a Reinhardt domain of holomorphyD � Cn satisfies the weak Fu condi-

tion, then D is fat (cf. Corollary 1.11.14).
Indeed, it follows from Theorem 1.11.13 that D D D� n M , where M WDS

j2I Vj , I WD fj W Vj \D D ¿g. It remains to observe that M \D� ¤ ¿,
9j2I W D� \ Vj nSk¤j Vk ¤ ¿.

Remark 1.13.12. Let D � Cn be a domain and let ¿ ¤ S � O.D/. It is natural
to ask whether D is an S-domain of holomorphy iff D is S-convex.

Consider, for example, the case where S D H 1.D/.
(a) If D � C is a bounded domain, then D is an H 1-domain of holomorphy

iff D is H 1-convex (cf. [Ahe-Sch 1975], see also [Jar-Pfl 2000], Theorem 4.1.1).
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(b) Let T� WD f.z1; z2/ 2 D2 W jz1j� < jz2jg, � D p=q 2 Q>0. Recall T� is an
H 1-domain of holomorphy (Remark 1.11.5 (a)). Moreover, T� is not H 1-convex
(also for arbitrary � > 0).

Indeed, let
K WD f.0; z2/ W jz2j D 1=2g � T� :

Then, using the one-dimensional Riemann theorem on removable singularities,
we get f.0; z2/ W 0 < jz2j � 1=2g � yKH1.T� / (Exercise), which implies that
yKH1.T� / is not compact.

Observe that for any compact K � T� we have yKH1.T� / \ @T� � f.0; 0/g.
For, let f .z1; z2/ WD z

p
1 =z

q
2 , f 2 H 1.T� /. Suppose that there exists a

sequence yKH1.T� / 3 bk ! b 2 .@T� / n f.0; 0/g. If jb2j D 1, then 1 D
limk!C1 jbk;2j � kz2kK < 1; a contradiction. If jb1j� D jb2j < 1, then
1 D limk!C1 jf .bk/j � kf kK < 1; a contradiction.

(c) N. Sibony in [Sib 1975] constructed an example of a fat domainD   D � D
such thatD is H 1-convex, but H 1.D/ D H 1.D � D/jD; in particular, D is not
an H 1-domain of holomorphy.

(d) LetD � Cn be a Reinhardt H 1-convex domain. ThenD satisfies the weak
Fu condition (in particular, D is fat).

Indeed, suppose that xD\Vj nSk¤j Vk ¤ ¿ andD\Vj D ¿. We may assume
that j D n. Then, by Lemma 1.5.15, for every a D .a0; an/ 2 D \ Cn�, the set
fa0g � . xK."/ n f0g/ is contained in D for an " > 0. Let K WD fa0g � @K."/ b D.
Then (cf. (b)) fa0g �K�."/ � yKH1.D/ b D; 46 a contradiction.

Proposition 1.13.13. LetD � Cn be a log-convex Reinhardt domain.
(a) IfD is L2

h
-convex, thenD satisfies the weak Fu condition .in particular,D

is fat/.
(b) If L2

h
.D/ ¤ f0g .in particular, if D is L2

h
-convex/, then E.logD/ D f0g

.cf. Lemma 1.5.14/.

We need the following two lemmas.

Lemma 1.13.14. Let D � Cn and G � Cm be arbitrary domains, and let
f 2 Lp

h
.D �G/ .1 � p < C1/. Then f .z; 	 / 2 Lp

h
.G/ for every z 2 D.

Proof. Take a z0 2 D and let P.z0; r/ b D. Then, by Lemma 1.7.22 (with
K WD fz0g) in the case where p 2 N, or by Proposition 1.14.14 (with u WD jf jp)
in the general case, we get

jf .z0; w/jp � 1

.�r2/n

Z
P.z0;r/

jf .z; w/jp d�2n.z/

� 1

.�r2/n

Z
D

jf .z; w/jp d�2n.z/; w 2 G:
46Recall thatK�.r/ D K.r/ n f0g.
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Consequently, by the Fubini theorem,Z
G

jf .z0; w/jp d�2m.w/ � 1

.�r2/n

Z
G

�Z
D

jf .z; w/jp d�2n.z/
�
d�2m.w/

D 1

.�r2/n

Z
D�G

jf .z; w/jp d�2.nCm/.z; w/;

i.e. f .z0; 	 / 2 Lp
h
.G/. �

Lemma 1.13.15. Let f 2 L2
h
.D�/. Then f extends holomorphically to D.

Proof. Write f .z/ D P1
kD�1 akz

k , z 2 D�. Then, by Example 1.10.7 (c), we get

2�jakj2
Z 1

0

r2kC1dr D kakzkk2
L2.D�/

� kf k2
L2.D�/

; k 2 †.f /:

Consequently, †.f / � ZC. �

Proof of Proposition 1.13.13. (a) We argue as in Remark 1.13.12 (d). Suppose that
xD \ .Cn�1� � f0g/ ¤ ¿ and D \ Vn D ¿. By Lemma 1.5.15, for every a D
.a0; an/ 2 D\ Cn� there exists an " > 0 so small that P.a0; "/� . xK."/ n f0g/ � D.
By Lemma 1.13.14, f .a0; 	 / 2 L2

h
.K�."//. Put K WD fa0g � @K."/ � D. Then,

by Lemma 1.13.15, fa0g �K�."/ � yKL2
h
.D/ b D; a contradiction.

(b) PutX WD logD. Suppose thatF WD E.X/ ¤ f0g. Letf 2 L2
h
.D/, f 6� 0,

f .z/ D P
˛2Zn a

f
˛ z

˛ . By Example 1.10.7 (c), there exists an ˛0 2 †.f / such

that z˛
0 2 L2

h
.D/. Recall (Remark 1.4.7 (f)) that X D Y C F , where Y � F?.

Write Rn 3 x D x0 C x00 2 F? C F . Then, using the Fubini theorem, we obtain

kz˛0k2
L2.D/

D
Z
D

jz˛0 j2d�2n.z/

D .2�/n
Z

R.D/

r2˛
0C1d�n.r/

rDexD .2�/n
Z
X

ehx;2˛0C2id�n.x/

D .2�/n
Z
Y

ehx0;2˛0C2id�F?.x0/
Z
F

ehx00;2˛0C2id�F .x00/

D .2�/n
Z
Y

ehx0;2˛0C2id�F?.x0/ 	 .C1/ D C1I

a contradiction. �

Example 1.13.16. Let T� WD f.z1; z2/ 2 D2 W jz1j� < jz2jg, � 2 Q>0. Then
T� is Lp

h
-convex iff 1 � p < 2.1C 1=�/. In particular, the Hartogs triangle T is

L
p

h
-convex iff 1 � p < 4.
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Indeed, since H 1.T� / � L
p

h
.T� /, Remark 1.13.12 (b) implies that yKLp

h
.T� /

\
@T� � f.0; 0/g for any compact K � T� .

To simplify notation put � WD 1=� . First we will find a criterion for the function
z˛ (˛ 2 Z2) to be in the space Lp

h
.T� /. We haveZ

T�

jz˛jpd�4.z/ D .2�/2
Z

R.T� /

rp˛C1d�2.r/

D .2�/2
Z 1

0

�Z r�
2

0

r
p˛1C1
1 dr1

�
r
p˛2C1
2 dr2

.if p˛1 C 1 > �1/ D .2�/2
Z 1

0

r
.p˛1C2/
2

p˛1 C 2
r
p˛2C1
2 dr2

.if .p˛1 C 2/� C p˛2 C 1 > �1/ D .2�/2

.p˛1 C 2/� C p˛2 C 2
:

Thus z˛ 2 L
p

h
.T� / , ˛1 > �2=p; p.˛1 C ˛2/ > �2.1 C �/. In particular,

1=z2 2 Lp
h
.T� / , p < 2.1C�/. Observe that the function 1=z2 explodes at zero.

Hence T� is Lp
h
.T� /-convex for all 1 � p < 2.1C �/.

Suppose thatT� isL2.1C/
h

-convex. To get a contradiction it suffices to prove that

for every function f 2 L2.1C/
h

.T� /, the function f .0; 	 / extends holomorphically
to D. Write f .z/ D P

˛2Z2 a˛z
˛ , z 2 T� . By Example 1.10.7 (c) and the above

criterion (with p D 2.1C �/), we know that

†.f / � f˛ 2 Z2 W ˛1 > �1=.1C �/; ˛1 C ˛2 > �1g
D f˛ 2 ZC � Z W ˛1 C ˛2 � 0g:

Hence
f .0; z2/ D

X
˛22ZC

a0;˛2
z
˛2

2 ; z2 2 D�;

which implies that the function f .0; 	 / extends holomorphically to D.

Remark 1.13.17. (a) Proposition 1.13.13 and Theorem 3.6.4 will show that every
L2
h
-convex Reinhardt domainD � Cn is an L2

h
-domain of holomorphy.

(b) Notice that the following general result is true (cf. [Irg 2002], Theorem IV.1):
Any bounded L2

h
-convex domainD � Cn is an L2

h
-domain of holomorphy.

Proposition 1.13.18 ([Pfl 1984]). Let D � Cn be an arbitrary domain and let
a 2 D. Put

Fa.D/ WD ff 2 O.D;D/ W f .a/ D 0g:
Then the following conditions are equivalent:
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(i) for any infinite set A � D without accumulation points inD we have

supfjf .b/j W f 2 Fa.D/; b 2 Ag D 1I
(ii) for any infinite set A � D without accumulation points in D, there exists a

function f0 2 Fa.D/ such that supfjf0.b/j W b 2 Ag D 1.

Observe that (ii) implies that D is H 1-convex. Indeed, suppose that A �
yKH1.D/ has no accumulation points and let f0 be as in (ii). Then supfjf0.b/j W
b 2 Ag � kf0kK < 1; a contradiction.

Proof. (i) ) (ii): Take sequences .bk/1
kD1 � A and .fk/1kD1 � Fa.D/ such that

fk.b
k/ � 1 � 1=22k , k D 1; 2; : : : . Put

gk WD 1C fk

1 � fk :

Then gk 2 O.D;HC/ and gk.a/ D 1, where HC WD f� 2 C W Re� > 0g. Let

g WD
1X
kD1

1

2k
gk :

Let
MD.z/ WD supfjf .z/j W f 2 Fa.D/g

(cf. Example 4.2.3). Observe that, by Lemma 1.7.23,MD is continuous, and by the
Montel theorem (Theorem 1.7.24), MD < 1. Hence, for any compact set K � D

there exists � D �.K/ < 1 such that kfkkK � � , k D 1; 2; : : : . Consequently,
kgkkK � 2=.1 � �/, k D 1; 2; : : : . It follows that the series is convergent locally
uniformly in D and so g 2 O.D;HC/. Note that g.a/ D 1. We have

jg.bk/j � j Re g.bk/j � 1

2k
gk.b

k/ � 2k ! C1:

Now, put
f WD g � 1

g C 1
:

Then f 2 Fa.D/ and

jf .bk/j � jg.bk/j � 1
jg.bk/j C 1

� 2k � 1
2k C 1

! 1: �

Theorem 1.13.19 ([Pfl 1984], [Fu 1994]). Let D � Cn be a bounded Reinhardt
domain of holomorphy satisfying the Fu condition. Then for any points a 2 D,
b 2 @D and for any sequence D 3 bk ! b, there exists a sequence .fk/1kD1 �
O.D;D/ such that fk.a/ D 0 and jfk.bk/j ! 1.

In particular, by the remark after Proposition 1.13.18,D is H 1-convex.
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Proof. We may assume that D � Dn. Since D satisfies the Fu condition, we may
assume that D \ V

j
¤ ¿, j D 1; : : : ; s, and xD \ Vj D ¿, j D s C 1; : : : ; n, for

some 0 � s � n. Thus there exists an �0 2 .0; 1/ such that

D � G WD fz 2 Dn W jzj j > �0; j D s C 1; : : : ; ng:
Fix a 2 D, b 2 @D, and a sequence D 3 bk ! b.

First consider the case where b 2 Cn�. We may assume that b 2 Rn>0. Let

U WD fz 2 Cn� W j log jzj jj < 2j log bj j; j D 1; : : : ; ngI
U is an open neighborhood of b. We may assume that bk 2 U , k 2 N.

First observe that it suffices to prove that

(*) there exists a sequence .'k/1kD1 � O.D;D/ such that j'k.bk/j ! 1 and
supfj'k.a/j W k 2 Ng � 1=2.

Indeed, suppose that we have found such a sequence. For c 2 D let

hc.�/ WD � � c
1 � Nc�; � 2 C n f1= NcgI

hcjD is a Möbius automorphism of D with hc.c/ D 0. Define fk WD h'k.a/ B 'k .
Then, obviously, fk 2 O.D;D/ and fk.a/ D 0. To show that jfk.bk/j ! 1, take
an arbitrary convergent subsequence jfk`

.bk`/j ! t0 2 Œ0; 1�. We may assume
that 'k`

.bk`/ ! c0 2 @D, 'k`
.a/ ! c1 2 D. Then

t0 D lim
`!C1

jfk`
.bk`/j D lim

`!C1

ˇ̌̌̌
'k`

.bk`/ � 'k`
.a/

1 � 'k`
.a/ 	 'k`

.bk`/

ˇ̌̌̌
D
ˇ̌̌̌
c0 � c1
1 � Nc1c0

ˇ̌̌̌
D 1:

Since X WD logD is convex and x0 WD .log jb1j; : : : ; log jbnj/ 2 @X , there
exists a vector ˛ 2 .Rn/� such that X � H

x0
˛ . Put c WD hx0; ˛i. Observe that

D � D˛;c . Since D \ Vj ¤ ¿, j D 1; : : : ; s, we conclude that ˛1; : : : ; ˛s � 0

(Exercise). We may assume that˛1 D 	 	 	 D ˛t D 0,˛tC1; : : : ; ˛s > 0, 0 � t � s.
Take an arbitrary " > 0. By the Kronecker theorem,47 there exist sequences

.p�;j /
1
�D1 � Z, j D 1; : : : ; n, .q�/1�D1 � N such that

jp�;j � q� j̨ j � "; sgnp�;j D sgn j̨ ; j D 1; : : : ; n; q� ! C1:

47There are the following two equivalent formulations of the Kronecker theorem (cf. [Har-Wri 1979],
Theorems 442 and 444).

Theorem. Assume that ˛1; : : : ; ˛n; 1 are linearly independent over Q. Let �1; : : : ; �n 2 R, " > 0
andC > 0 be arbitrary. Then there existp1; : : : ; pn; q 2 Z such thatq 	 C and jq j̨ �pj ��j j �
", j D 1; : : : ; n.

In particular, the set

f.q˛1 � bq˛1c; : : : ; q˛n � bq˛nc/ W q 2 Ng
is dense in Œ0; 1�n.

For example, the set fei`˛2� W ` 2 Ng is dense in T when ˛ 2 R n Q.
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Put
 ";�.z/ WD e�q�cz

p�;1

1 	 	 	 zp�;n
n ; z D .z1; : : : ; zn/ 2 Cn.˛/:

Then

log j ";�.z/j D q�

�
� c C

nX
jDtC1

j̨ log jzj j
�

C
nX

jDtC1
.p�;j � q� j̨ / log jzj j;

z 2 Ct � Cn�t� :

In particular, if z 2 U , then

log j ";�.z/j � q�

�
� c C

nX
jDtC1

j̨ log jzj j
�

� "Mb;

whereMb WD 2
Pn
jDtC1 j log bj j (note thatMb depends only on b). In other words,

j ";�.z/j � .e�cjz˛j/q�e�"Mb ; z 2 U:
Consequently, letting D \ U 3 z ! b, we conclude that k ";�kD � e�"Mb . Let
'";� WD  ";�=k ";�kD . To estimate '";�.a/ we argue as follows. There are two
cases.

� There exists a j0 2 ft C 1; : : : ; sg such that aj0
D 0: Then, obviously,

'";�.a/ D 0.
� atC1 	 	 	 as ¤ 0: Then a 2 Ct � Cn�t� and

log j ";�.a/j � q�

�
� c C

nX
jDtC1

j̨ log jaj j
�

C "Ma;

where Ma WD Pn
jDtC1 j log jaj jj (Ma depends only on a). Thus

j ";�.a/j � .e�cja˛j/q�e"Ma

and hence
j'";�.a/j � .e�cja˛j/q�e".MaCMb/:

Theorem. Assume that ˛1; : : : ; ˛n are linearly independent over Q. Let �1; : : : ; �n 2 R, " >
0 and C > 0 be arbitrary. Then there exist p1; : : : ; pn 2 Z, q 2 R, such that q 	 C and
jq j̨ � pj ��j j � ", j D 1; : : : ; n.

In the case �1 D � � � D �n D 0, as a direct consequence one obtains the following approximation
theorem (Exercise).

Theorem. Let ˛1; : : : ; ˛n 2 R, " > 0 and C > 0 be arbitrary. Then there exist p1; : : : ; pn; q 2 Z
such that q 	 C and jq j̨ � pj j � ", sgnpj D sgn j̨ , j D 1; : : : ; n.
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Recall that q� ! C1. Consequently, we may assume that j'";�.a/j � 1=2, � 2 N.
Now, we are going to estimate k ";�kD from above. There are two cases:
� t < s: Then we have

log j ";�.z/j �
nX

jDtC1
"j log jzj jj � "..s � t /j log �j C .n � s/j log �0j/ DW "M�;

z 2 A� \ .Ct � Cn�t� /;

where

A� WD fz 2 G \ D˛;c W jzj j � �; j D t C 1; : : : ; sg
and 0 < � < 1 is so small that fz 2 G W jzj j < �; j D t C 1; : : : ; sg b D˛;c . The
maximum principle implies that j ";� j � e"M� on G \ D˛;c 
 D.

� t D s: Then

log j ";�.z/j � ".n � s/j log �0j; z 2 D \ .Ct � Cn�t� /:

Thus,
j ";�.z/j � e"M0 ; z 2 D;

where M0 is independent of " and �. Consequently, if z 2 U , then

j'";�.z/j � .e�cjz˛j/q�e�".MbCM0/; � D 1; 2; : : : :

Suppose that (*) is not true, i.e. there exists a � 2 .0; 1/ such that

supfj'.bk/j W ' 2 O.D;D/; j'.a/j � 1=2g � �; k D 1; 2; : : : :

Then
.e�cj.bk/˛j/q�e�".MbCM0/ � �; " > 0; �; k D 1; 2; : : : :

Fixing " and �, and next letting k ! C1, we get

e�".MbCM0/ � �; " > 0I
a contradiction.

Now, consider the case where b1 : : : bn D 0. Observe that the case b D 0 is ex-
cluded – then s D n and, consequently,D is complete, which gives a contradiction
(because b 2 @D).

We may assume that b1 D 	 	 	 D br D 0, brC1 : : : bn ¤ 0, 1 � r � s.
Let D0 WD fz0 2 Cn�r W .0; : : : ; 0; z0/ 2 Dg D �.D/, where � W Cn ! Cn�r ,
�.z/ WD .zrC1; : : : ; zn/. Observe that D0 is a bounded Reinhardt domain of holo-
morphy with the Fu condition and �.b/ 2 @D0. We repeat the above argument with
�.a/; �.b/; �.bk/. We get a sequence f 0

k
2 O.D0;D/, k 2 N, with f 0

k
.�.a// D 0,

jf 0
k
.�.bk//j ! 1. Now we only need to define fk WD f 0

k
B � , k 2 N. �
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Remark 1.13.20. Let us summarize what we have proved so far. For a Reinhardt
domain of holomorphy D � Cn, consider the following conditions:

(1) D is bounded.
(2) D is fat.
(3) D satisfies the weak Fu condition.
(4) D satisfies the Fu condition.
(5) E.logD/ D f0g.
(6) D is H 1-convex.
(7) D is L2

h
-convex.

Then:
� .1/C .6/ ) (7).
� (1) ) (5).
� (4) ) (3) ) (2) (Remark 1.13.11 (b)).
� (6) ) (3) (Remark 1.13.12 (d)).
� (7) ) .3/C .5/ (Proposition 1.13.13).
� .1/C .4/ ) (6) (Theorem 1.13.19).
� .1/C .3/C .7/ 6) (6) (D WD T ; Remark 1.13.12 (b), Example 1.13.16).
� ? .1/C .3/ ) (7). ?

1.14 Plurisubharmonic functions

Our experiences so far have shown that complex analysis has some relations to con-
vex analysis in the real sense. Convex functions of one real variable may be under-
stood as “sub-affine” functions. Affine functions of one real variable are solutions
of the equation u00 D 0. This equation in the case of several real variables corre-
sponds to the Laplace equation �u D 0. Consequently, the harmonic functions of
n real variables correspond in some sense to the affine functions of one real variable.
Thus, it is natural to introduce subharmonic functions and, finally, plurisubharmonic
functions of n complex variables (as those functions that are subharmonic on ev-
ery complex affine line) (cf. [Rad 1937], [Vla 1966], [Hay-Ken 1976], [Kli 1991],
[Ran 1995], [Jar-Pfl 2000]). We assume that the reader is familiar with basic prop-
erties of subharmonic functions .in C/.

Let ˝ � Cn be open. For u W ˝ ! R�1, a 2 ˝, and X 2 Cn, we define

˝a;X WD f� 2 C W aC �X 2 ˝g; ˝a;X 3 � ua;X7���! u.aC �X/:

Definition 1.14.1. A function u W ˝ ! R�1 is called plurisubharmonic (briefly
psh; u 2 PSH.˝/) if

� u is upper semicontinuous on ˝ (u 2 C".˝/) (cf. p. 28),
� for every a 2 ˝ and X 2 Cn the function ua;X is subharmonic in a

neighborhood of zero.
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We say that a function u W ˝ ! RC is logarithmically plurisubharmonic .log-
psh/ if logu 2 PSH.˝/.

Exercise 1.14.2. (a) Let L W Cn ! R be an R-linear mapping. Decide whether
L 2 PSH.Cn/.

(b) Prove that every complex seminorm q W Cn ! RC is plurisubharmonic.

Remark 1.14.3. Directly from the theory of subharmonic functions one gets the
following properties of psh functions (Exercise).

(a) For an upper semicontinuous function u W ˝ ! R�1 the following condi-
tions are equivalent:

(i) u 2 PSH.˝/;
(ii) 8a2˝ 8X2CnW kXk1D1 90<R�d˝ .a/:

u.a/ � 1

2�

Z 2


0

u.aC rei�X/ d�; 0 < r < RI

(iii) 8a2˝ 8X2CnW kXk1D1 90<R�d˝ .a/:

u.a/ � 1

�r2

Z
K.r/

u.aC �X/ d�2.�/; 0 < r < RI

(iv) 8a2˝ 8X2CnW kXk1D1 90<R�d˝ .a/80<r<R 8f 2P .C/:48 ifu.aC�X/ �
Re f .�/ for j�j D r , then u.a/ � Re f .0/;

(v) 8a2˝ 8X2CnW kXk1D1 90<R�d˝ .a/ 80<r<R 8h2H.K.r//\C. xK.r//: if
ua;X .�/ � h.�/ for j�j D r , then u.a/ � h.0/ (H .U / denotes the
space of all real-valued harmonic functions on U );

(vi) for any a 2 ˝ and X 2 Cn the function ua;X is subharmonic in ˝a;X .

(b) PSH.˝/C PSH.˝/ D PSH.˝/, R>0 	 PSH.˝/ D PSH.˝/.

(c) jf j is log-psh on ˝ for any f 2 O.˝/.

(d) If .u�/1�D1 � PSH.˝/ and u� & u pointwise on ˝, then u 2 PSH.˝/.

In particular, if .u�/1�D1 � PSH.˝/ and u� � 0, � 2 N, then
P1
�D1 u� 2

PSH.˝/.

(e) If .u�/1�D1 � PSH.˝;R/ and u� ! u locally uniformly in ˝, then
u 2 PSH.˝/.

(f) If u1; : : : ; uN 2 PSH.˝/, then maxfu1; : : : ; uN g 2 PSH.˝/.

(g) (Liouville type theorem) If u 2 PSH.Cn/ and supCn u < C1, then
u � const.

(h) Let I � R be an open interval and let ' W I ! R be convex and increasing.
Then ' B u 2 PSH.˝/ for every u 2 PSH.˝/ with u.˝/ � I . Consequently:

48Recall that P .C/ denotes the space of all complex polynomials of one complex variable.
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� If u 2 PSH.˝/, then eu 2 PSH.˝/ (in particular, any log-psh function
is psh).

� If u 2 PSH.˝;RC/, then up 2 PSH.˝/ for every p � 1.

(i) If u1, u2 are log-psh, then u1 C u2 is log-psh.

Proposition 1.14.4 (Maximum principle). Let D � Cn be a domain and let u 2
PSH.D/. If u � u.a/ for some a 2 D, then u � u.a/.

In particular, if D � Cn is a bounded domain, u 2 PSH.D/, and u 6� const,
then

u.z/ < sup
˚

lim sup
D3w!�

u.w/ W � 2 @D�; z 2 D:

Proof. Let D0 WD fx 2 D W u.x/ D u.a/g. Observe that the set

D nD0 D fx 2 D W u.x/ < u.a/g
is open and, therefore, D0 is closed in D. Let z0 2 D0. Applying the maxi-
mum principle (for subharmonic functions) to each of the functions uz0;X with
kXk1 D 1, we conclude that P.z0; dD.z0// � D0. ThusD0 is open and therefore
D D D0. �

If u W ˝ ! R is twice R-differentiable at a point a 2 ˝, then we define the Levi
form of u at a:

Lu.aIX/ WD
nX

j;kD1

@2u

@zj @ Nzk .a/Xj
xXk; X D .X1; : : : ; Xn/ 2 Cn: (1.14.1)

Notice that L.k k2/.aIX/ D kXk2 for any a;X 2 Cn. Observe that

Lu.aIX/ D @2ua;X

@�@ N� .0/:

Consequently, we have the following result:

Proposition 1.14.5. Let u 2 C2.˝;R/. Then

u 2 PSH.˝/ ” 8a2˝; X2Cn W Lu.aIX/ � 0:

Exercise 1.14.6. Assume that I � R is an open interval, u 2 C2.˝;R/, u.˝/ � I ,
and ' 2 C2.I;R/. Prove that

L.' B u/.aIX/ D '00.u.a//
ˇ̌̌ nX
jD1

@u

@zj
.a/Xj

ˇ̌̌2 C '0.u.a//Lu.aIX/

for a 2 ˝, X 2 Cn.
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Notice that the above formula and Proposition 1.14.5 give a direct proof of
Remark 1.14.3 (h) for the case where u and ' are of class C2.

Exercise 1.14.7. Let F W ˝ 0 ! ˝ be holomorphic, where ˝ 0 � Cm is open.
Prove that for u 2 C2.˝;R/ we have

L.u B F /.bIY / D Lu.F.b/IF 0.b/.Y //; b 2 ˝ 0; Y 2 Cm:

Consequently, if u 2 PSH.˝/ \ C2.˝;R/, then u B F 2 PSH.˝ 0/; cf. Proposi-
tion 1.14.34.

Definition 1.14.8. A function u 2 C2.˝;R/ is called strictly plurisubharmonic if

Lu.aIX/ > 0; a 2 ˝; X 2 .Cn/�:

The following proposition gives a very useful tool for constructing new psh
functions.

Proposition 1.14.9. Let G � ˝ � Cn be open and let v 2 PSH.G/, u 2
PSH.˝/. Assume that

lim sup
G3z!�

v.z/ � u.�/; � 2 ˝ \ @G:

Put

Qu.z/ WD
(

maxfv.z/; u.z/g for z 2 G;
u.z/ for z 2 ˝ nG:

Then Qu 2 PSH.˝/.

Proof. It is clear that Qu 2 C".˝/. Obviously Qu is psh on ˝ n @G. Take a point
a 2 ˝ \ @G, a vector X 2 Cn with kXk1 D 1, and 0 < r < d˝.a/. Then

Qu.a/ D u.a/ � 1

2�

Z 2


0

ua;X .re
i� / d� � 1

2�

Z 2


0

Qua;X .rei� / d�

and we apply Remark 1.14.3 (a). �

Exercise 1.14.10 ([Hay 1989]). Let H� WD f� 2 C W Re� < 0g, b < 0, and
M < 0. Moreover, let u 2 SH.H�/, u < 0, and u.�/ � M for all � with
Re � D b. Then u � M on f� 2 C W Re� � bg.

Hint: Use Proposition 1.14.9 and Remark 1.14.3 (g).

Our next aim is to find some characterizations of psh functions in terms of mean
value inequalities. Let a D .a1; : : : ; an/ 2 Cn, r D .r1; : : : ; rn/ 2 Rn>0.
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If u W @0P.a; r/ ! R�149 is bounded from above and measurable,50 then we
define

P.uI a; r I z/

WD 1

.2�/n

Z
Œ0;2
�n

� nY
jD1

r2j � jzj � aj j2
jrj ei�j � .zj � aj /j2

�
u.aC r 	 ei� / d�n.�/;

z D .z1; : : : ; zn/ 2 P.a; r/;

J .uI a; r/ WD P.uI a; r I a/ D 1

.2�/n

Z
Œ0;2
�n

u.aC r 	 ei� / d�n.�/:

If u W P.a; r/ ! R�1 is bounded from above and measurable, then we define

A.uI a; r/ WD 1

.�r21 / : : : .�r
2
n/

Z
P.a;r/

u d�2n D 1

�n

Z
Dn

u.aC r 	 w/ d�2n.w/:

Exercise 1.14.11. Let ˝ � Cn be open and let u W ˝ ! R�1 be upper semicon-
tinuous.

(a) Prove that the functions

f.z; r/ 2 ˝ � Rn>0 W @0P.z; r/ � ˝g 3 .z; r/ 7! J .uI z; r/;
f.z; r/ 2 ˝ � Rn>0 W xP.z; r/ � ˝g 3 .z; r/ 7! A.uI z; r/;

f.z; r; X/ 2 ˝ � R>0 � Cn W z C rT 	X � ˝g 3 .z; r; X/

7! 1

2�

Z 2


0

u.z C rei�X/ d�

are upper semicontinuous (in particular, measurable).

Hint. Use Fatou’s lemma.

(b) Prove that

A.uI a; r/ D 2

r21
: : :

2

r2n

Z r1

0

: : :

Z rn

0

J .uI a; .�1; : : : ; �n//�1 : : : �nd�1 : : : d�n

D 2n
Z 1

0

: : :

Z 1

0

J .uI a; .�1r1; : : : ; �nrn//�1 : : : �n d�1 : : : d�n:

Proposition 1.14.12. Let ˝ � Cn be open and let u 2 PSH.˝/, a 2 ˝. Then

J .uI a; r/ & u.a/ when r & 0; A.uI a; r/ & u.a/ when r & 0:

49Recall that @0P.a; r/ WD @K.a1; r1/� � � � � @K.an; rn/.
50That is, the function Œ0; 2
/n 3 � 7! u.aC r � ei� / is Lebesgue measurable.
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Proof. By Exercise 1.14.11 (b) it is enough to consider only J .uI a; 	 /. First, we
prove that J .uI a; r 0/ � J .uI a; r 00/ for r 0 D .r 0

1; : : : ; r
0
n/, r

00 D .r 00
1 ; : : : ; r

00
n/,

0 < r 0
j � r 00

j < dD.a/, j D 1; : : : ; n.
The case n D 1 is well known (cf. [Vla 1966], Chapter 2, § 8). Hence

J .u.z0; 	; z00/I aj ; r 0
j / � J .u.z0; 	; z00/I aj ; r 00

j /; .z0; aj ; z00/ 2 P.a; dD.a//;

j D 1; : : : ; n:

Consequently, using a finite induction, one can easily get the required inequality.
By Fatou’s lemma we have

u.a/ � lim
r!0

J .uI a; r/ � 1

.2�/n

Z
Œ0;2
�n

lim sup
r!0

u.aC r 	 ei� / d� � u.a/;

which proves that J .uI a; r/ & u.a/ when r & 0. �

Proposition 1.14.13. Let u1; u2 2 PSH.˝/. If u1 D u2 �2n-almost everywhere
in ˝, then u1 � u2.

Proof. Fix an a 2 ˝. Since u1 D u2 �2n-almost everywhere, we get

A.u1I a; r/ D A.u2I a; r/; 0 < r < dD.a/:

Hence, by Proposition 1.14.12, u1.a/ D u2.a/. �

Proposition 1.14.14. Let˝ � Cn be open, let u 2 PSH.˝/, and let xP.a; r/ � ˝

.r D .r1; : : : ; rn/ 2 Rn>0/. Then

u.z/ � P.uI a; r I z/; z 2 P.a; r/; (1.14.2)

u.a/ � J .uI a; r/; (1.14.3)

u.a/ � A.uI a; r/: (1.14.4)

Proof. Inequality (1.14.2) is well known for n D 1. In particular,

u.w0; zj ; w00/ � P.u.w0; 	; w00/I aj ; rj I zj /; .w0; zj ; w00/ 2 P.a; r/;

j D 1; : : : ; n:

Hence, after finite induction, we get (1.14.2).
Inequality (1.14.3) follows directly from (1.14.2).
Inequality (1.14.4) follows from (1.14.3) and Exercise 1.14.11 (b). �

Proposition 1.14.15. Let D � Cn be a domain. If u 2 PSH.D/ and u 6� �1,
then u 2 L1.D; loc/; in particular, �2n.u�1.�1// D 0.
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Proof. Suppose that there exists a point a 2 D such that
R
U
u d�2n D �1 for

every neighborhoodU of a. Let 2r WD dD.a/. Observe that
R

P.z;r/ u d�2n D �1
for any z 2 P.a; r/. Consequently,

u.z/ � A.uI z; r/ D �1; z 2 P.a; r/:

Hence u D �1 in P.a; r/. Let

D0 WD fz 2 D W u D �1 in a neighborhood of zg:
We have proved that D0 ¤ ¿. The same method of proof shows that D0 is closed
in D. Thus D0 D D – a contradiction. �

Proposition 1.14.16. If a family .ui /i2I � PSH.˝/ is locally bounded from
above, then the function u WD .supi2I ui /� is psh in ˝.

Here v� denotes the upper semicontinuous regularization of the function v,
v�.z/ WD lim supw!z v.w/, z 2 ˝.51

Proof. Take a 2 ˝, X 2 Cn, kXk1 D 1, and let xP.a; 2r/ � ˝. Then we have

sup
i2I

ui .z/ � sup
i2I

1

2�

Z 2


0

ui .z C rei�X/ d� � 1

2�

Z 2


0

u.z C rei�X/ d�;

z 2 P.a; r/:

By Exercise 1.14.11 (a), the right-hand side is an upper semicontinuous function
of z. In particular,

u.a/ � 1

2�

Z 2


0

u.aC rei�X/ d�: �

Proposition 1.14.17. If a sequence .u�/1�D1 � PSH.˝/ is locally bounded from
above, then the function u WD .lim sup�!1 u�/

� is psh on ˝.

Proof. Use the same method as in the proof of Proposition 1.14.16 (Exercise).
�

Definition 1.14.18. A set M � Cn is called pluripolar if any point a 2 M has
a connected neighborhood Ua and a function va 2 PSH.Ua/ with va 6� �1,
M \ Ua � v�1

a .�1/.
We say that a pluripolar set M � Cn is locally complete if any point a 2 M

has a connected neighborhood Ua and a function va 2 PSH.Ua/ with va 6� �1,
M \ Ua D v�1

a .�1/.

51Notice that in general v� W ˝ ! Œ�1;C1� is upper semicontinuous on ˝. If v is locally
bounded from above, then v� W ˝ ! R�1 and

v� D inff' W ' 2 C".˝;R/; v � 'g D inff' W ' 2 C.˝;R/; v � 'g:
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By Proposition 1.14.15, if M is pluripolar, then �2n.M/ D 0. It is clear that
any thin set M � ˝ (Definition 1.14.5) is pluripolar.

The problem of whether an arbitrary pluripolar set can be described by one
global psh function (cf. [Lel 1957]) was open during many years and was finally
solved by B. Josefson in 1978.

Theorem* 1.14.19 (Josefson theorem; cf. [Jos 1978], see also [Jar-Pfl 2000], Theo-
rem 2.1.39). IfM � Cn is pluripolar, then there exists a v 2 PSH.Cn/, v 6� �1,
such thatM � v�1.�1/.

In the case of locally complete pluripolar sets an analogous result was proved
by M. Coltoiu in 1990.

Theorem* 1.14.20 ([Col 1990]). LetD � Cn be a domain of holomorphy and let
M � D be a relatively closed locally complete pluripolar set. Then there exists a
v 2 PSH.D/, v 6� �1, such thatM D v�1.�1/.

Example 1.14.21 ([Wie 2000]). Let M WD T � f0g. Then M is pluripolar (Exer-
cise), but M is not complete pluripolar.

Indeed, suppose thatM is complete pluripolar and letv 2 PSH.C2/be such that
M D v�1.�1/, v 6� �1 (Theorem 1.14.20). Then T � fz 2 C W v.z; 0/ D 1g.
Hence v. 	 ; 0/ � �1 (Exercise) and so C � f0g � v�1.�1/; a contradiction.

Proposition 1.14.22. Let Mj � Cn be pluripolar, j 2 N. Then M WD S1
jD1Mj

is pluripolar.

Proof. By Josefson’s theorem (Theorem 1.14.19), for each j 2 N there exists a
vj 2 PSH.Cn/, vj 6� �1, such that Mj � v�1

j .�1/. Since, for each j the set
v�1
j .�1/ is of zero measure, there exists a point b 2 Dn such that vj .b/ > �1

for all j . We may assume that vj � 0 on P.j / and vj .b/ � �2�j , j 2 N.52

Define v WD P1
jD1 vj . Then v 2 PSH.Cn/ (cf. Remark 1.14.3 (d)), v.b/ � �1,

and M � v�1.�1/. �

Proposition 1.14.23. Let˝ � Cn be open and let a sequence .u�/�2N � PSH.˝/

be locally bounded from above.
(a) Put u WD sup�2N u� . Then the set fz 2 ˝ W u.x/ < u�.x/g is of zero

measure.53

(b) Put u WD lim sup�!C1 u� . Then the set fz 2 ˝ W u.z/ < u�.z/g is of zero
measure.

52It suffices to substitute vj by a function of the form "j .vj � cj / with cj WD supP.j / vj and an
appropriate "j > 0.

53The result remains true in the case where u WD supi2I ui (with arbitrary I ) and .ui /i2I �
PSH.˝/ is locally bounded from above – cf. [Jar-Pfl 2000], Prop. 2.1.38(a).
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Proof. (a) Observe that the function u is measurable. To prove that u D u� a.e., it
suffices to show that A.uI a; r/ D A.u�I a; r/ for any a 2 ˝ and 0 < r < d˝.a/.
Fix a and r as above. We have

u.z/ � P.uI a; � I z/; z 2 P.a; �/; 0 < � < r:

Hence

u�.z/ � P.uI a; � I z/; z 2 P.a; �/; 0 < � < r:

Observe that

P.P.uI a; � I 	 /I a; � 0I z/ D P.uI a; � I z/; z 2 P.a; � 0/; 0 < � 0 < � < r:
Thus

P.u�I a; � I z/ � P.uI a; �; z/; z 2 P.a; �/; 0 < � < r:

In particular, J .u�I a; �/ � J .uI a; �/, 0 < � < r . Consequently, A.uI a; r/ D
A.u�I a; r/.

(b) Let vk WD sup�	k u� , k 2 N. Then vk & u and

fz 2 ˝ W u.z/ < u�.z/g �
1[
kD1

fz 2 ˝ W vk.z/ < v�
k.z/g

and we apply (a). �

In fact the following more general result is true.

Theorem* 1.14.24 (Bedford–Taylor theorem; cf. [Kli 1991], Theorem 4.7.6).
(a) Assume that a family .ui /i2I � PSH.˝/ is locally bounded from above.

Put u WD supi2I ui . Then the set fz 2 ˝ W u.z/ < u�.z/g is pluripolar.
(b) Assume that a sequence .u�/1�D1 � PSH.˝/ is locally bounded from above.

Put u WD lim sup�!C1 u� . Then the set fz 2 ˝ W u.z/ < u�.z/g is pluripolar.

Proposition 1.14.25 (Removable singularities of psh functions). LetM be a closed
pluripolar subset of ˝.

(a) Let u 2 PSH.˝ nM/ be locally bounded from above in ˝.54 Define

Qu.z/ WD lim sup
˝nM3w!z

u.w/; z 2 ˝

.notice that Qu is well defined/. Then Qu 2 PSH.˝/.
(b) For every function u 2 PSH.˝/ we have

u.z/ D lim sup
˝nM3w!z

u.w/; z 2 ˝:

(c) If ˝ is a domain, then the set ˝ nM is connected.

54That is every point a 2 ˝ has a neighborhood Va such that u is bounded from above in Va nM .
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Proof. (a) The result has a local character. Thus we may assume ˝ D D is
connected, u � 0 in D n M , and M � v�1.�1/ with v 2 PSH.D/, v � 0,
v 6� �1. Put

u� WD
(
uC .1=�/v on D nM;
�1 on M;

� 2 N:

Then u� 2 PSH.D/, � 2 N (Exercise). Put u0 D sup�2N u� . Observe that
u0 D u on D n P and u0 D �1 on P , where P WD v�1.�1/ (P is pluripolar).
By Proposition 1.14.16, .u0/� 2 PSH.D/. By Proposition 1.14.23 (a), the set
A WD fz 2 D W u0.z/ � .u0/

�.z/g is of zero measure. Then .u0/� D u0 D u on
D n .P [ A/. Hence, by Proposition 1.14.13, .u0/� D u on D nM .

It remains to prove that .u0/� D Qu. Obviously, .u0/� D u D Qu on D n M .
Take an a 2 M . Then

Qu.a/ D lim sup
DnM3z!a

u.z/ D lim sup
DnM3z!a

.u0/
�.z/ � lim sup

z!a
.u0/

�.z/ D .u0/
�.a/

D lim sup
z!a

u0.z/ � lim sup
DnP3z!a

u0.z/ D lim sup
DnP3z!a

u.z/

� lim sup
DnM3z!a

u.z/ D Qu.a/:

(b) Let
Qu.z/ WD lim sup

˝nM3w!z

u.w/; z 2 ˝:

By (a), Qu 2 PSH.˝/. Moreover, Qu D u on ˝ nM . Now, since �2n.M/ D 0, we
use Proposition 1.14.13.

(c) Suppose that ˝ n M D U1 [ U2, where U1 and U2 are disjoint and non–
empty open sets. Then, in view of (a), the function u.z/ WD j for z 2 Uj would
extend to a psh function on ˝, which contradicts the maximum principle. �

Definition 1.14.26. Let ˝ be an open subset of Cn. A function u 2 C2.˝;R/ is
pluriharmonic on ˝ (u 2 PH.˝/) if

@2u

@zj @ Nzk .z/ D 0; z 2 ˝; j; k D 1; : : : ; n: (1.14.5)

Remark 1.14.27. (a) If n D 1, then PH.˝/ D H .˝/.
(b) PH.˝/ is a vector space; PH.˝/ � PSH.˝/.
(c) For a function u 2 C2.˝;R/ the following conditions are equivalent:

(i) u 2 PH.˝/;
(ii) ua;X 2 H .˝a;X / for any a 2 ˝ and X 2 Cn;

(iii) Lu.aIX/ D 0 for any a 2 ˝ and X 2 Cn.
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(d) Condition (1.14.5) is equivalent to the following system of equations

@2u

@xj @yk
.z/ D @2u

@xk@yj
.z/;

@2u

@xj @xk
.z/C @2u

@yj @yk
.z/ D 0;

z 2 ˝; j; k D 1; : : : ; n:

(1.14.6)

In particular,

@2u

@x2j
.z/C @2u

@y2j
.z/ D 0; z 2 ˝; j D 1; : : : ; n;

which shows that PH.˝/ � H .˝/ � C1.˝/.
(e) If f D uC iv 2 O.˝/, then u 2 PH.˝/.

Proposition 1.14.28. IfD � Cn is a starlike domain with respect to a point a 2 D,
then for any u 2 PH.D/ there exists an f 2 O.D/ such that u D Re f .

In particular, any pluriharmonic function is locally the real part of a holomor-
phic function.

Proof. (Cf. Remark 1.19.8.) We may assume that a D 0. Define

v.z/ WD �i
Z 1

0

nX
jD1

�
zj
@u

@zj
.tz/ � Nzj @u

@ Nzj .tz/
�
dt; z 2 D:

Then f WD uC iv 2 C1.D/ and using (1.14.5) we get

@f

@ Nzk .z/ D @u

@ Nzk C
Z 1

0

� nX
jD1

�
zj

@2u

@ Nzk@zj .tz/t � Nzj @2u

@ Nzk@ Nzj .tz/t
�

� @u

@ Nzk .tz/
�
dt

D @u

@ Nzk �
Z 1

0

�
t

nX
jD1

�
zj

@2u

@zj @ Nzk .tz/C Nzj @2u

@ Nzj @ Nzk .tz/
�

C @u

@ Nzk .tz/
�
dt

D @u

@ Nzk .z/ �
Z 1

0

d

dt

�
t
@u

@ Nzk .tz/
�
dt D 0; k D 1; : : : ; n: �

Corollary 1.14.29. Let j̋ � Cnj be open, j D 1; 2, and let F 2 O.˝1; ˝2/.
Then u B F 2 PH.˝1/ for any u 2 PH.˝2/.

Proposition 1.14.25 implies the following important corollary.

Corollary 1.14.30. LetM be a closed pluripolar subset of ˝.
(a) Let u 2 PH.˝ n M/ be locally bounded in ˝. Then u extends plurihar-

monically to ˝.
(b) Let f 2 O.˝ nM/ be locally bounded in˝. Then f extends holomorphi-

cally to ˝.
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Proof. Since u 2 PSH.˝ nM/ and u is locally bounded from above in˝, Propo-
sition 1.14.25 implies that u extends to a function QuC 2 PSH.˝/. We can repeat
the same for the function �u. Thus �u extends to a function Qu� 2 PSH.˝/.
Then QuC C Qu� 2 PSH.˝/ and QuC C Qu� D u C .�u/ D 0 on ˝ n M . Hence,
by Proposition 1.14.13, QuC C Qu� � 0, which implies that u extends to a function
Qu 2 C.˝/.

By Proposition 1.14.14, for any a 2 M and 0 < r < d˝.a/, we get Qu.z/ D
P. QuI a; r I z/, z 2 P.a; r/. In particular, Qu is of class C1 in ˝. Since the interior
of M is empty, we see that Qu must be pluriharmonic in ˝.

(b) follows from (a) – Exercise. �

Proposition 1.14.31 (Hartogs lemma). Let .u�/1�D1 � PSH.˝/ be a sequence
locally bounded from above. Assume that for some m 2 R,

lim sup
�!C1

u� � m:

Then for every compact subset K � ˝ and for every " > 0, there exists a �0 such
that

max
K
u� � mC "; � � �0:

Notice that the above result gives a tool to prove Theorem 1.7.13.

Proof. Take an " > 0. It is sufficient to show that for every a 2 ˝ there exist
ı.a/ > 0 and �.a/ such that u� � m C " in P.a; ı.a// for � � �.a/. Fix a and
0 < R < d˝.a/=2. We may assume that u� � 0 in xP.a; 2R/ for any � � 1, and
m < 0. Let 0 < ı < R=2. Then

lim sup
�!C1

sup
z2P.a;ı/

u�.z/ � lim sup
�!C1

sup
z2P.a;ı/

A.u� I z;RC ı/

� lim sup
�!C1

R2n

.RC ı/2n
A.u� I a;R/

� R2n

.RC ı/2n
A.lim sup

�!C1
u� I a;R/

� R2n

.RC ı/2n
A.mI a;R/ � R2n

.RC ı/2n
m < mC ";

provided that ı is sufficiently small. �

Recall that smooth psh functions may be easily described by properties of their
Levi forms (Proposition 1.14.5). Thus it is important to be able to approximate (at
least locally) a given psh function by smooth psh functions. The required approxi-
mation may be given by the following procedure.
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Let ˚.z1; : : : ; zn/ WD �.z1/ 	 	 	�.zn/, z D .z1; : : : ; zn/ 2 Cn, where � 2
C1
0 .C;RC/ is such that:

� supp� D xD,
� �.z/ D �.jzj/, z 2 C,
� R

� d�2 D 1.

Exercise 1.14.32. Find an effective formula for a � with the above properties.

Put

˚".z/ WD 1

"2n
˚
�z
"

�
; z 2 Cn; " > 0:

Notice that:
� ˚" 2 C1

0 .C
n;RC/,

� supp˚" D xP."/,
� ˚" B T� D ˚", � 2 T n,
� R

Cn ˚" d�2n D 1.
Let

˝" WD fz 2 ˝ W d˝.z/ > "g; " > 0:

For every function u 2 L1.˝; loc/, define

u".z/ W D
Z
˝

u.w/˚".z � w/ d�2n.w/

D
Z

Dn

u.z C "w/˚.w/ d�2n.w/; z 2 ˝": (1.14.7)

The function u" is called the "-regularization of u.

Proposition 1.14.33. If u 2 PSH.˝/, u 6� �1, then u" 2 PSH.˝"/ \ C1.˝"/
and u" & u pointwise in ˝ when " & 0.

Proof. It is clear that u" 2 C1.˝"/. Take an a 2 ˝". By the second part of
(1.14.7) we get

u".a/ D .2�/n
Z 1

0

: : :

Z 1

0

J .uI a; ".�1; : : : ; �n//˚.�1; : : : ; �n/�1 : : : �n d�1 : : : d�n:

Consequently, by Proposition 1.14.12, u" & u. It remains to prove that u" is
psh. We will apply Remark 1.14.3 (a). Fix a 2 ˝", X 2 Cn, kXk1 D 1, and
0 < r < d˝"

.a/. Then

1

2�

Z 2


0

u".aC rei�X/ d�

D
Z

Dn

�
1

2�

Z 2


0

u.aC rei�X C "w/ d�

�
˚.w/ d�2n.w/

�
Z

Dn

u.aC "w/˚.w/ d�2n.w/ D u".a/: �
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Proposition 1.14.34. Let˝ 0 � Cn be open and let F 2 O.˝ 0; ˝/. Then u B F 2
PSH.˝ 0/ for any u 2 PSH.˝/.

Proof. We may assume that u 2 L1.˝; loc/. We already know that the result holds
if u 2 C2.˝/ (Exercise 1.14.7).

Let u" denote the "-regularization of u. Put ˝ 0
" WD F �1.˝"/. Then u" B F 2

PSH.˝ 0
"/ and u" B F & u B F . Consequently, u B F 2 PSH.˝/. �

Corollary 1.14.35. Let u W ˝ ! R�1 be upper semicontinuous. Then u is psh on
˝ iff for any analytic disc ' W D ! ˝ the function u B ' is subharmonic in D.

Lemma 1.14.36. Let ˝ � Cn be open and let u 2 PSH.˝/, u � 0. Then u is
log-psh iff for any a 2 C and j 2 f1; : : : ; ng the function

˝ 3 z va;j7���! jeazj ju.z/
is psh.

Proof. We only need to prove that if va;j is psh (for any a and j ), then logu is psh.
By definition, we have to check that for any z0 2 ˝ and X 2 .Cn/�, the function
� 7! logu.z0C�X/ is subharmonic (in the region where it is defined), equivalently
(cf. [Vla 1966], Chapter 2, § 15), we have to prove that for anyw0 2 C, the function

�
'7��! jew0�ju.z0 C �X/

is subharmonic. Let k be such that Xk ¤ 0. Put a WD w0=Xk . Then '.�/ D
je�az0;k jva;k.z0 C �X/. Thus ' is subharmonic provided va;k is psh. �

Proposition 1.14.37. (a) Any C-seminorm q W Cn ! RC is log-psh.
(b) Let h W Cn ! RC be such that

h.�z/ D j�jh.z/; � 2 C; z 2 Cn:

Then h is psh iff h is log-psh.

Proof. (a) By Exercise 1.14.2 (b) we have q 2 PSH.Cn/. Now we can apply
Lemma 1.14.36 because jeazj jq.z/ D q.eazj z/ and the right-hand side is psh by
Proposition 1.14.34.

(b) follows from the proof of (a). �

Exercise 1.14.38. Let ˝ � Cn be open and let u 2 C2.˝;R/. Prove that

4Lu..x C iy/I .aC ib// D Hu..x; y/I .a; b//C Hu..x; y/I .b;�a//;
x C iy 2 ˝; aC ib 2 Cn D Rn C iRn;
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where H denotes the real Hessian: if U � RN is open and v 2 C2.U;R/, then

Hv.xI �/ WD
NX

j;kD1

@2v

@xj @xk
.x/�j �k; x 2 U; � D .�1; : : : ; �N / 2 RN : (1.14.8)

Proposition 1.14.39. Let U be a domain in Rn and let v W U ! R�1. Define

zU WD U C iRn � Cn; Qv.x C iy/ WD v.x/; x C iy 2 zU :

Then Qv 2 PSH. zU/ iff v is convex on U .55

Proof. First consider the case where v is of class C2. By Exercise 1.14.38 we get

4L Qv.x C iyI aC ib/ D Hv.xI a/C Hv.xI b/;

which, of course, implies the required result.
In the general case, assume that Qv is psh and let . Qv/" denote the "-regularization

of Qv. Observe that . zU/" C iRn D . zU/". Hence . zU/" D U " C iRn for an open set
U " � Rn (Exercise). Moreover,

. Qv/".z C i t/ D
Z

Dn

Qv.z C i t C "w/˚.w/ d�2n.w/

D
Z

Dn

Qv.z C "w/˚.w/ d�2n.w/ D . Qv/".z/; z 2 . zU/"; t 2 Rn:

Hence, . Qv/".x C iy/ D v".x/, x C iy 2 . zU/", where v" W U " ! R. Note that
v" & v. By the first part of the proof, v" is convex in U " for any " > 0. Conse-
quently, v is convex (Exercise).

Conversely, assume that v is convex and let v" be the "-regularization of v
(in Rn):

v".x/ WD
Z

B.1/
v.x C "y/‚.y/ d�n.y/; x 2 U" WD fx 2 U W B.x; "/ � U g;

where ‚ is a “regularization” function in Rn.56 Put �U" WD U" C iRn � Cn,
zv".xC iy/ WD v".x/, xC iy 2 �U". Note that zv" & Qv. By the first part of the proof,
zv" is psh in �U" for any " > 0. Consequently, Qv is psh in zU . �

55That is, if Œx; y� � U , then v.tx C .1 � t/y/ � tv.x/ C .1 � t/v.y/, t 2 Œ0; 1�. If
v 2 C2.U;R/, then v is convex iff Hv.xI �/ 	 0 for any x 2 U and � 2 Rn.

56That is‚ 2 C1
0 .U;RC/, supp‚ D xB.1/, RB.1/‚ d�n D 1, and‚.x/ D ‚.jx1j; : : : ; jxnj/

for any x D .x1; : : : ; xn/ 2 Rn. It is known that if v is convex in U , then v" is convex in U",
v" 2 C1.U"/, and v" & v.
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Proposition 1.14.40. Let D � Cn be a Reinhardt domain and let u W D ! R�1
be such that

u.z1; : : : ; zn/ D u.jz1j; : : : ; jznj/; .z1; : : : ; zn/ 2 D:

Put

Qu.r1; : : : ; rn/ WD u.r1; : : : ; rn/; .r1; : : : ; rn/ 2 R.D/;

QQu.x/ WD u.ex/; x 2 logD:

For any I D .i1; : : : ; ik/ with 1 � i1 < 	 	 	 < ik � n .0 � k � n � 1/, let DI
denote the intersection ofD with the .n�k/-dimensional subspace fzij D 0 W j D
1; : : : ; kg. We identify DI with a Reinhardt open set in Cn�k . Let uI denote the
restriction of u toDI .

(a) In the case whereD � Cn� we get: u 2 PSH.D/ iff QQu is convex.
(b) In the general case, u 2 PSH.D/ iff

(i) Qu is upper semicontinuous on R.D/,

(ii) for anyk D 0; : : : ; n�1 and I D .i1; : : : ; ik/with 1 � i1 < 	 	 	 < ik � n,
the function ��uI is convex on logDI ,

(iii) for any j D 1; : : : ; n, if

f.r01 ; : : : ; r0j�1/g � Œ0; ıj / � f.r0jC1; : : : ; r0n/g � R.D/;

then the function

Œ0; ıj / 3 rj 7! Qu.r01 ; : : : ; r0j�1; rj ; r0jC1; : : : ; r0n/

is increasing.

Proof. (a) First assume that u 2 C2.D;R/. Recall that u.z/ D u.ei� 	 z/ for any
z 2 D and � 2 Rn. Hence Lu.zIX/ D Lu.ei� 	zI ei� 	X/ for any z 2 D, � 2 Rn,
and X 2 Cn. Consequently, for any z 2 D and � 2 Rn we get:

8X2Cn W Lu.zIX/ � 0 ” 8X2Cn W Lu..jz1j; : : : ; jznj/IX/ � 0:

One easily checks that

4Lu.zIX/ D
nX

j;kD1

@2 Qu
@rj @rk

.r/
Nzj
rj

zk

rk
Xj xXk C

nX
jD1

@ Qu
@rj

.r/
1

rj
jXj j2;

z D .z1; : : : ; zn/ 2 D; r D .r1; : : : ; rn/ WD .jz1j; : : : ; jznj/:
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In particular,

4Lu.exIX/ D 4Re.Lu.exIX//

D
nX

j;kD1

@2 Qu
@rj @rk

.ex/Re.Xj xXk/C
nX

jD1

@ Qu
@rj

.ex/e�xj jXj j2

D
nX

j;kD1

@2 Qu
@rj @rk

.ex/.ajak C bj bk/C
nX

jD1

@ Qu
@rj

.ex/e�xj .a2j C b2j /;

x 2 logD; X D aC ib 2 Cn:

On the other hand,

H QQu.xI �/ D
nX

j;kD1

@2 Qu
@rj @rk

.ex/exj exk�j �k C
nX

jD1

@ Qu
@rj

.ex/exj �2j ;

x 2 logD; � 2 Rn:

Finally,

4Lu.exI aC ib/ D H QQu.x; e�x 	 a/C H QQu.x; e�x 	 b/;
x 2 logD; X D aC ib 2 Cn;

which implies the required relation.
Now, let u be arbitrary and assume that u is psh. Let u" denote the "-regulari-

zation of u (u" is psh and u" & u). Observe that D" is Reinhardt and for any
z 2 D" and � 2 Rn we get

u".e
i� 	 z/ D

Z
Dn

u.ei� 	 z C "w/˚.w/ d�2n.w/

D
Z

Dn

u.ei� 	 z C "ei� 	 w/˚.w/ d�2n.w/

D
Z

Dn

u.z C "w/˚.w/ d�2n.w/ D u".z/:

Thus u".z1; : : : ; zn/ D u".jz1j; : : : ; jznj/ for any .z1; : : : ; zn/ 2 D". By the first
part of the proof, ��u" is convex in log.D"/. Since ��u" & QQu, we conclude that QQu is
convex.

Conversely, assume that v WD QQu is convex in G WD logD. Let v" denote the
standard "-regularization of v:

v".x/ WD
Z

B.1/
v.x C "y/‚.y/ d�n.y/; x 2 G" WD fx 2 G W B.x; "/ � Gg
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(v" is convex in G" and v" & v). Define

D" WD f.z1; : : : ; zn/ 2 Cn W .log jz1j; : : : ; log jznj/ 2 G"g;
u".z/ WD v".log jz1j; : : : ; log jznj/; .z1; : : : ; zn/ 2 D":

Observe thatD" % D and u" & u. By the first part of the proof, u" 2 PSH.D"/.
Hence u 2 PSH.D/.

(b) First assume that u 2 PSH.D/. Then it is clear that (i) is satisfied. Observe
that logD D log.D \ Cn�/. Hence, by (a), condition (ii) is satisfied for k D 0.
For k D 1; : : : ; n � 1, the function uI is psh on DI . Consequently, we can repeat
the above argument and so (ii) is satisfied for any k. To prove (iii) observe that the
function

K.ıj / 3 � v7! u.r01 ; : : : ; r
0
j�1; �; r0jC1; : : : ; r0n/

is well defined, radial, and subharmonic. In particular, the function

Œ0; ıj / 3 rj 7! J .vI 0; rj / D Qu.r01 ; : : : ; r0j�1; rj ; r0jC1; : : : ; r0n/

is increasing. Now, assume that (i), (ii), and (iii) are satisfied. Then obviously u is
upper continuous onD. Moreover, by (a), u is psh onD\Cn� and, more generally,
each function uI is psh in DI \ Cn�k� , I D .i1; : : : ; ik/.

Take ana D .a1; : : : ; an/ 2 Dwitha1 	 	 	 an D 0 andX D .X1; : : : ; Xn/ 2 Cn

with kXk1 D 1. We want to prove that

u.a/ � 1

2�

Z 2


0

u.aC rei�X/ d�

for sufficiently small r > 0. We may assume that a1 	 	 	 a` ¤ 0, a`C1 D 	 	 	 D
an D 0 with 0 � ` � n � 1. Let 0 < r < dD.a/ be so small that z1 	 	 	 z` ¤ 0

for .z1; : : : ; zn/ 2 a C r xDX . Take I WD .` C 1; : : : ; n/. Recall that uI is psh in
DI \ .C�/` (if ` � 1). Hence, using (iii), we get

u.a/ � 1

2�

Z 2


0

u.a1 C rei�X1; : : : ; a` C rei�X`; 0; : : : ; 0/ d�

� 1

2�

Z 2


0

u.a1 C rei�X1; : : : ; a` C rei�X`; re
i�X`C1; : : : ; rei�Xn/ d�

D 1

2�

Z 2


0

u.aC rei�X/ d�: �

1.15 Pseudoconvexity

As we said at the beginning of § 1.14, plurisubharmonic functions may be consid-
ered as a counterpart of convex functions. Recall that a domain D � Rk is convex
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iff the function � log dist. 	 ; @D/ is convex (cf. [Vla 1966], Chapter 2, § 13). This
suggests that we consider the class of those domainsD � Cn for which the function
� log dist. 	 ; @D/ is plurisubharmonic. We are led to the following definition.

Definition 1.15.1. An open set ˝ � Cn is called pseudoconvex if

� log d˝ 2 PSH.˝/: 57

Notice that Cn is pseudoconvex (because � log dCn � �1). Moreover, ˝ is
pseudoconvex iff each of its connected components is pseudoconvex.

Remark 1.15.2. (a) Every domain D � C is pseudoconvex.
Indeed, if D   C, then dD.z/ D inffjz � �j W � … Dg, z 2 D. Hence

� log dD. 	 / D sup
�

log

ˇ̌̌̌
1

	 � �
ˇ̌̌̌

W � … D


2 SH.D/

(cf. Remark 1.14.3 (c) and Proposition 1.14.16).
(b) If .Di /i2I is a family of pseudoconvex open subsets of Cn, then the open

set ˝ WD int
T
i2I Di is pseudoconvex.

Indeed, we have d˝.z/ D inffdDi
.z/ W i 2 I g, z 2 ˝ (Exercise). Hence, by

Proposition 1.14.16, � log d˝ 2 PSH.˝/.
(c) If .Dk/1kD1 is a sequence of pseudoconvex domains in Cn such that Dk �

DkC1, k 2 N, then D WD S1
kD1Dk is pseudoconvex.

Indeed, since � log dDk
& � log dD , we only need to use Remark 1.14.3 (d).

(d) If Dj is a pseudoconvex subset of Cnj , j D 1; : : : ; N , then

D WD D1 � 	 	 	 �DN
is pseudoconvex in Cn1C���CnN . In particular, for any domains D1; : : : ;Dn � C,
the domain D WD D1 � 	 	 	 �Dn is pseudoconvex in Cn.

Indeed, we have

dD.z1; : : : ; zn/ D minfdDj
.zj / W j D 1; : : : ; N g; .z1; : : : ; zn/ 2 D:

Hence, by Remark 1.14.3 (f), � log dD 2 PSH.D/.

For a domain D � Cn, put

ıD;X .a/ WD supfr > 0 W aCK.r/ 	X � Dg; a 2 D; X 2 Cn:

Observe that:

� If n D 1, then ıD;X .z/ D dD.z/=jX j, z 2 D.
� ıD;X .aC�X/ D dDa;X

.�/,� 2 Da;X , whereDa;X WD f� 2 C W aC�X 2 Dg.

57Observe that the function d˝ is continuous.
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Exercise 1.15.3. The function

D � Cn 3 .a;X/ 7! ıD;X .a/ 2 .0;C1�

is lower semicontinuous.

Given a C-norm q W Cn ! RC, define

dD;q.a/ WD supfr > 0 W Bq.a; r/ � Dg; a 2 D;

where Bq.a; r/ WD fz 2 Cn W q.z � a/ < rg. Obviously, dD;k k1
D dD . Notice

that the function dD;q is continuous.

Exercise 1.15.4. dD;q D inffıD;X W X 2 Cn; q.X/ D 1g.

For a compact K � D and a family S � PSH.D/ let

zKS WD fz 2 D W 8u2S W u.z/ � max
K
ug:

By Remark 1.14.3 (c), zKPSH.D/ � yKO.D/. Moreover, the set zKPSH.D/\C.D/

is relatively closed in D.
A function u W D ! R is called an exhaustion function if for any t 2 R the set

fz 2 D W u.z/ � tg is relatively compact in D.
The next result contains various equivalent descriptions of pseudoconvexity.

Theorem 1.15.5. Let D be an open subset of Cn. Then the following conditions
are equivalent:

(i) � log ıD;X 2 PSH.D/ for every X 2 Cn;

(ii) � log dD;q 2 PSH.D/ for every C-norm q;

(iii) D is pseudoconvex;

(iv) there exists an exhaustion function u 2 PSH.D/ \ C.D/;

(v) there exists an exhaustion function u 2 PSH.D/;

(vi) zKPSH.D/\C.D/ is compact inD for every compact K � D;

(vii) zKPSH.D/ is relatively compact inD for every compact K � D;

(viii) every point a 2 @D has an open neighborhood Ua such that Ua \ D is
pseudoconvex, i.e.D is locally pseudoconvex;

(ix) (Kontinuitätssatz) for every sequence 'k 2 C.xD;D/ \ O.D;Cn/, k D
1; 2; : : : , if

S1
kD1 'k.T / b D, then

S1
kD1 'k.xD/ b D;

(x) (Kontinuitätssatz) for every continuous mapping ' W Œ0; 1� � xD ! Cn, if
'.t; 	 / 2 O.D;Cn/, t 2 Œ0; 1/, and '..Œ0; 1/ � xD/ [ .f1g � T // � D, then
'.f1g � xD/ � D.
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Proof. The case D D Cn is elementary. Thus we may assume that D   Cn.
(i) ) (ii) follows from Exercise 1.15.4 and Proposition 1.14.16.
The implication (ii) ) (iii) is trivial.
For the proof of (iii) ) (iv) take u.z/ WD maxf� log dD.z/; kzkg, z 2 D.
The implications (iv) ) (v) and (vi) ) (vii) are trivial.
(v) ) (vii): If u is as in (v), then

zKPSH.D/ � fz 2 D W u.z/ � max
K
ug b D:

In the same way we check that (iv) ) (vi).
(vii) ) (i): (This is the main part of the proof.) Fix a 2 D, X; Y 2 .Cn/�. We

want to show that the function

Da;Y 3 � ! � log ıD;X .aC �Y /

is subharmonic.
First consider the case where X and Y are linearly dependent. We may as-

sume that X D Y . Since ıD;X .a C �X/ D dDa;X
.�/, � 2 Da;X , we can use

Remark 1.15.2 (a).
Now assume thatX; Y are linearly independent. It is sufficient to prove (cf. Re-

mark 1.14.3 (a) (iv)) that if xK.r/ � Da;Y , and if p 2 P .C/ is such that

� log ıD;X .aC �Y / � Rep.�/; � 2 @K.r/;
then the same inequality holds for all � 2 K.r/. In other words, if

ıD;X .aC �Y / � e� Rep.�/; � 2 @K.r/;
then the same is true for all � 2 K.r/. Thus we have to show that if

aC �Y CK.je�p.�/j/ 	X � D; � 2 @K.r/;
then the same inclusion holds for all � 2 K.r/.

For 0 � � < 1 let

K� WD faC �Y C xK.� je�p.�/j/ 	X W � 2 @K.r/g;
M� WD faC �Y C xK.� je�p.�/j/ 	X W � 2 xK.r/g:

Observe that K� and M� are compact and K� 0 � K� 00 , M� 0 � M� 00 for 0 �
� 0 < � 00 < 1. Our problem is to show that if K� � D for all 0 � � < 1, then
M� � D for all 0 � � < 1. Thus assume that K� � D for all 0 � � < 1 and let
I0 WD f� 2 Œ0; 1/ W M� � Dg.

Notice that M0 D a C xK.r/Y � D. Hence I0 ¤ ¿. Suppose that �0 2 I0.
SinceM�0

is compact, there exists a � 2 .�0; 1/ such thatM� � D. Consequently,
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I0 is open. It remains to prove that I0 is closed in Œ0; 1/, i.e. if M� � D for
0 < � < �0 < 1, then M�0

� D.
Fix 0 < � < �0. Observe that

M� D faC �Y C �e�p.�/X W j�j � r; j�j � �g b D:
Take a u 2 PSH.D/ and define

v� .�/ WD u.aC �Y C �e�p.�/X/; � 2 xK.�/; � 2 xK.r/:
Then v� is subharmonic and, therefore, the maximum principle gives

v� .�/ � max
@K.r/

v� � max
K�

u � max
K�0

u; � 2 xK.r/:

Consequently,M� � . �K�0
/PSH.D/ b D for any 0 < � < �0 and henceM�0

� D.
The implication (iii) ) (viii) is trivial.
(viii) ) (iv): For an a 2 @D let Ua be a neighborhood of a such that Ua \D

is pseudoconvex. Clearly, there exists a smaller neighborhood Va � Ua such that
dD D dUa\D in Va \ D (Exercise). In particular, � log dD 2 PSH.Va \ D/.
Consequently, there exists a closed set F � Cn such that F � D and � log dD 2
PSH.D n F /. Let

'0.t/ WD maxf� log dD.z/ W z 2 F; kzk � tg; t 2 R

(with max¿ D �1). One can easily prove (Exercise) that there exists an in-
creasing convex function ' W R ! RC such that '.t/ > maxft; '0.t/g, t 2 R.
Put

u.z/ WD maxf� log dD.z/; '.kzk/g; z 2 D:
The function u is obviously continuous. Since '.kzk/ > � log dD.z/ for z in a
neighborhood ofF , the functionu is plurisubharmonic inD (cf. Remark 1.14.3 (h)).
Moreover,

fz 2 D W u.z/ � tg � fz 2 D W dD.z/ � e�t ; kzk � tg b D; t 2 R:

(vii) ) (ix): Put K WD S1
kD1 'k.T /. It suffices to show that 'k.xD/ �

zKPSH.D/, k D 1; 2; : : : . Let u 2 PSH.D/. Then, for every k, the function
u B 'k is subharmonic in D (Proposition 1.14.34) and upper semicontinuous on xD.
In particular, by the maximum principle we have

max
'k.xD/

u D maxxD
u B 'k D max

T
u B 'k D max

'k.T /
u � max

K
u; k D 1; 2; : : : :

(ix) ) (x): Since ' is continuous and '.f1g�T / � D, there exists a � 2 .0; 1/
such that K WD '.Œ�; 1� � T / b D. Take � � tk % 1 and let 'k.�/ WD '.tk; �/,
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� 2 xD. Then 'k 2 C.xD;D/ \ O.D;Cn/, k D 1; 2; : : : , and
S1
kD1 'k.T / � K b

D. Consequently, by (ix), we conclude thatL WD S1
kD1 'k.xD/ b D. In particular,

'.f1g � T / � xL � D.
(x) ) (iii): We keep all the notations from the proof of the implication (vii) )

(i). Recall that the only problem is to show that the set I0 is closed in Œ0; 1/. Suppose
that Œ0; �0/ � I0. Fix a � 2 xD, and define

'.t; �/ WD aC r�Y C t�0�e
�p.r�/X; t 2 Œ0; 1�; � 2 C:

To prove that M�0
� D, we have to show that '.f1g � xD/ � D. Observe that

' is continuous, '.t; 	 / is holomorphic, '.Œ0; 1/ � xD/ � S
�2Œ0;�0/

M� � D, and

'.f1g � T / � K�0
� D. Thus, by (x), '.f1g � xD/ � D, which finishes the proof.

�

Corollary 1.15.6. Let F W D ! D0 be biholomorphic. Then D is pseudoconvex
iffD0 is pseudoconvex.

Proof. Use Theorem 1.15.5 (v) and Proposition 1.14.34. �

Corollary 1.15.7. Any holomorphically convex domainD � Cn is pseudoconvex.
In particular, any convex domain is pseudoconvex.

It is natural to ask whether the converse implication is also true. This is the
famous Levi Problem, which will be discussed in § 1.16.

Corollary 1.15.8. If a domain D � Cn is pseudoconvex, then for any complex
affine subspace H � Cn, the open set D \ H .which is identified with an open
subset of Ck , k D dimH/ is pseudoconvex.

Proposition 1.15.9. A domain D � Cn is pseudoconvex iff for arbitrary a 2 D,
X; Y 2 Cn, the open set

Da;X;Y WD f.	; �/ 2 C2 W aC 	X C �Y 2 Dg
is pseudoconvex.

Proof. By Corollary 1.15.8,Da;X;Y is pseudoconvex providedD is pseudoconvex.
Assume that each Da;X;Y is pseudoconvex, i.e. � log ıDa;X;Y ; � is plurisubhar-

monic in Da;X;Y for any a, X , Y , and � 2 C2. Observe that

ıD;X .aC �Y / D ıDa;X;Y ; .1;0/.0; �/;

which implies that � log ıD;X is plurisubharmonic in D for any X . �

Corollary 1.15.10. LetD � Cn be a pseudoconvex domain and let u 2 PSH.D/.
Then the open set ˝ WD fx 2 D W u.x/ < 0g is pseudoconvex.



1.15. Pseudoconvexity 123

Proof. First assume that u is additionally continuous. Let K � ˝ be a compact
set and let " > 0 be such that u � �" on K. Then

zKPSH.˝/ � fz 2 D W u.z/ � �"g \ zKPSH.D/ b ˝:

Now, let u be arbitrary. Let u" denote the "-regularization of u (cf. Proposi-
tion 1.14.33). By the first part of the proof (applied to the function � log dDC log ")
the open set

D" D fz 2 D W dD.z/ > "g D fz 2 D W � log dD.z/C log " < 0g
is pseudoconvex. Further, for each ", the open set ˝" WD fz 2 D" W u".z/ < 0g
is pseudoconvex. Observe that ˝" % ˝ when " & 0. It remains to use Re-
mark 1.15.2 (c). �

Proposition 1.15.11. Let D � Cn be a balanced domain and let h D hD be
its Minkowski function. Then D is pseudoconvex iff h 2 PSH.Cn/ iff log h 2
PSH.Cn/ .cf. Proposition 1.14.37 (b)).

Proof. If log h 2 PSH.Cn/, then D is pseudoconvex by Corollary 1.15.10. Ob-
serve that

ıD;X .0/ D 1=h.X/; X 2 Cn:

Consequently, if D is pseudoconvex, then logh is psh by Theorem 1.15.5 (i). �

Proposition 1.15.12 (Siciak’s example – cf. [Sic 1982]). For any n � 2 there exists
a psh function h W Cn ! RC, h 6� 0, with h.�z/ D j�jh.z/, � 2 C, z 2 Cn,58

such that the set h�1.0/ is dense in Cn.

In particular, the balanced domainD WD fz 2 Cn W h.z/C kzk < 1g � Bn is a
pseudoconvex domain with irregular Minkowski function.

Proof. We write Q2n�2 D frj W j 2 Ng � Cn�1 and we define the linear func-
tionals Lj W Cn ! C by Lj .z/ WD hz; .1; rj /i. Put Vj WD L�1

j .0/, V WD S1
jD1 Vj .

Then we define a sequence of psh functions by

hj WD
� jL1 	 	 	Lj j

kL1 	 	 	Lj kBn

�1=j
:

Observe that

hj � 0; hj .�z/ D j�jhj .z/; � 2 C; z 2 Cn; hj jV1[���[Vj
� 0:

Moreover, by the maximum principle, there are points zj 2 @Bn such thathj .zj /D1.
By the Hartogs Lemma for psh functions (Proposition 1.14.31), it turns out that there

58Notice that, by Proposition 1.14.37 (b), logh 2 PSH.Cn/.
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is a point z�, kz�k < 2, with lim supj!1 hj .z
�/ � 2=3. So taking an appropriate

subsequence .hj�
/� � .hj /j with hj�

.z�/ � 1=2 and defining

h.z/ WD
1Y
�D1

.hj�
.z//2

�� D exp
� 1X
�D1

1

2�
log jhj�

.z/j
�
; z 2 Cn;

we obtain a psh function on Cn (Exercise) with

hjV D 0; h.z�/ � 1

2
; h.�z/ D j�jh.z/; � 2 C; z 2 Cn: �

The following lemma will be used in the proofs of the next propositions.

Lemma 1.15.13. Let ¿ ¤ † � .Rn/� and let .c˛/˛2† � R>0 be such that

supfc1=j˛j
˛ W ˛ 2 †g < C1: 59 (1.15.1)

Define
u.z/ WD supfjc˛z˛j1=j˛j W ˛ 2 †g; z 2 Cn.†/:

In the case where the set † � Zn is unbounded put

v.z/ WD lim sup
j˛j!C1

jc˛z˛j1=j˛j; z 2 Cn.†/:

Then:

(a) the family .jc˛z˛j1=j˛j/˛2† is locally bounded in Cn.†/;

(b) u�, v� 2 PSH.Cn.†//;

(c) u�, v� are invariant with respect to n-rotations;60

(d) u, v 2 C.Cn�/;
(e) Du� WD fz 2 Cn.†/ W u�.z/ < 1g D int

T
˛2†fz 2 Cn.†/ W c˛jz˛j < 1g;

(f) Dv� WD fz 2 Cn.†/ W v�.z/ < 1g D S1
�D1.int

T
˛2†j˛j	�

fz 2 Cn.†/ W
c˛jz˛j < 1g/;

(g) ifDu� ¤ ¿, then xDu� \ Cn� D fz 2 Cn� W u.z/ � 1g;
(h) ifDv� ¤ ¿, then xDv� \ Cn� D fz 2 Cn� W v.z/ � 1g;
59Observe that (1.15.1) is satisfied if

D WD int
\

˛2†

fz 2 Cn.†/ W c˛jz˛j < 1g ¤ ¿:

Indeed, take an a D .a1; : : : ; an/ 2 D n V0 and letC WD maxfjaj j; 1=jaj j W j D 1; : : : ; ng. Then

c
1=j˛j
˛ � ja�˛j1=j˛j � 1=C , ˛ 2 †.

60That is, ' B T	 D ', � 2 T n, ' 2 fu�; v�g.
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(i) if † � RnC, then for h 2 fu�; v�g we have

h.�z/ D j�jh.z/; � 2 C; z 2 Cn; (1.15.2)

h.� 	 z/ � h.z/; � 2 xDn; z 2 CnI (1.15.3)

in particular, by Lemma 1.8.3, u� D hDu� , v� D hDv� .

Proof. To simplify notation assume that Cn.†/ D Cs�Cn�s� for some 0 � s � n.

In particular, † � RsC � Rn�s . Assume that c1=j˛j
˛ � C0, ˛ 2 †.

(a) If z D .z1; : : : ; zn/ 2 Cn.†/ and jzj j � C , j D 1; : : : ; n, jzj j � 1=C ,
j D s C 1; : : : ; n, then jc˛z˛j1=j˛j � C0C , ˛ 2 †.

(b) follows from Propositions 1.14.16 and 1.14.17.
(c) is obvious.
(d) Fix a point a 2 Cn� and let P.a; r/ b Cn�. Let f˛ 2 O.P.a; r// be an

arbitrary branch of the function c1=j˛j
˛ z

˛1=j˛j
1 	 	 	 z˛n=j˛j

n , ˛ 2 †. Then the family
.f˛/˛2† is uniformly bounded in P.a; r/ and, consequently, it is equicontinuous
(Lemma 1.7.23). In particular, the family .jc˛z˛j1=j˛j/˛2† is equicontinuous in
P.a; r/. Hence the functions u and v are continuous in P.a; r/ (Exercise).

(e) If u�.a/ < 1, then there exist a Reinhardt neighborhood U � Cn.†/ of a
and 0 < � < 1 such that jc˛z˛j1=j˛j < � , z 2 U , ˛ 2 †. Consequently,

U � int
\
˛2†

fz 2 Cn.†/ W c˛jz˛j < 1g:

Conversely, ifU is a Reinhardt neighborhood of a such that c˛jz˛j < 1, z 2 U ,
˛ 2 †, then take a Reinhardt neighborhood V b U of a and an r > 0 such that
xV .r/ � U .61 By Lemma 1.6.2, there exists 0 < � < 1 such that

c˛ sup
z2V

jzj˛ � � j˛jc˛ max
z2 xV .r/

jzj˛ � � j˛jc˛ sup
z2U

jzj˛ � � j˛j; ˛ 2 †;

which implies that u�.a/ � � < 1.
(f) Put

G WD
1[
�D1

�
int

\
˛2†; j˛j	�

fz 2 Cn.†/ W c˛jz˛j < 1g
�
:

If a 2 G, then there exist a Reinhardt neighborhood U � Cn.†/ of a and �0 2 N
such that c˛jz˛j < 1, z 2 U , ˛ 2 †, j˛j � �0. Consequently, by (e), w�.a/ < 1,
where w.z/ WD supfjc˛z˛j1=j˛j W ˛ 2 †; j˛j � �0g, z 2 Cn.†/. Hence v�.a/ �
w�.a/ < 1.

Conversely, assume that v�.a/ < � 0 < � < 1 for some a 2 Cn.†/ and let
V b U b Cn.†/ be neighborhoods of a with v.z/ < � 0, z 2 U . Then, by the

61Recall that A.r/ WD S
a2A

xP.a; r/.
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Hartogs lemma (Proposition 1.14.31), there exists a �0 2 N such that jc˛z˛j1=j˛j <
� , z 2 V , ˛ 2 †, j˛j � �0. Consequently, V � G.

(g) The only problem is to show that if b 2 Rn>0 is such that u.b/ D 1, then b 2
xDu� . Fix an a 2 Du� \ Rn>0. Put z.t/ WD .a1�t

1 bt1; : : : ; a
1�t
n btn/, '.t/ WD u.z.t//,

t 2 Œ0; 1�. Then ' is continuous, '.0/ D u.a/ < � < 1 and '.1/ D u.b/ D 1.
We only need to prove that '.t/ < 1, t 2 .0; 1/. Suppose that '.t0/ D 1 for some
t0 2 .0; 1/. Take 0 < " < 1� �1�t0 and let ˛ 2 † be such that .c˛.z.t0//˛/1=j˛j >
1 � ". Thus �

.c˛a
˛/1=j˛j�1�t0�

.c˛b
˛/1=j˛j�t0 > 1 � ":

Since .c˛a˛/1=j˛j < � , we conclude that

�1�t0
�
.c˛b

˛/1=j˛j�t0 > 1 � " > �1�t0 :

Hence, u.b/ � .c˛b
˛/1=j˛j > 1; a contradiction.

(h) Take a b 2 Rn>0 such that v.b/ D 1. Fix an a 2 Dv� \ Rn>0. Put z.t/ WD
.a1�t
1 bt1; : : : ; a

1�t
n btn/, '.t/ WD v.z.t//, t 2 Œ0; 1�; ' is continuous, '.0/ D v.a/ <

� < 1 and '.1/ D v.b/ D 1. We want to prove that '.t/ < 1, t 2 .0; 1/. Suppose
that '.t0/ D 1 for some t0 2 .0; 1/. Take 0 < " < 1 � �1�t0 . Then there exists a
sequence .˛.k//1

kD1 � † such that j˛.k/j ! C1 and .c˛.k/.z.t0//˛.k//1=j˛.k/j >
1 � ". Thus�

.c˛.k/a
˛.k//1=j˛.k/j

�1�t0�
.c˛.k/b

˛.k//1=j˛.k/j
�t0

> 1 � "; k 2 N:

Since lim supk!C1.c˛.k/a˛.k//1=j˛.k/j < � , k 2 N, we conclude that there exists
a k0 2 N such that

�1�t0
�
.c˛.k/b

˛.k//1=j˛.k/j
�t0

> 1 � " > �1�t0 ; k � k0:

Hence, v.b/ � ..1 � "/� t0�1/1=t0 > 1; a contradiction.
(i) We have s D n, i.e. Cn.†/ D Cn. It is obvious that u and v satisfy (1.15.2)

and (1.15.3). Moreover, v.z/ � u.z/ � C0kzk1, z 2 Cn. In particular, u and v
are continuous at 0 and u�.0/ D v�.0/ D 0. To prove that u� (resp. v�) satisfies
(1.15.2) and (1.15.3) we need the following general observation.

If a function h W Cn ! RC with h.z/ � C0kzk1, z 2 Cn, satisfies (1.15.2)
and (1.15.3), then so does h�.

Condition (1.15.2) with � ¤ 0 and condition (1.15.3) with � 2 xDn n V0 are
elementary. It remains to check (1.15.3) with � 2 .xDn \ V0/�. Fix such a �. We
may assume that �1 	 	 	�r ¤ 0, �rC1 D 	 	 	 D �n D 0 with 1 � r � n� 1. Fix an
a 2 .Cn/�. We may assume that arC1 D 	 	 	 D at D 0 and atC1 	 	 	 an ¤ 0 with
r � t � n. Observe that if Cn 3 z ! � 	 a, then z D 	.z/ 	 w.z/, where

w.z/ WD .z1=�1; : : : ; zr=�r ; zrC1; : : : ; zt ; atC1; : : : ; an/ ! a;
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	.z/ WD .�1; : : : ; �r ; 1; : : : ; 1;ztC1=atC1; : : : ; zn=an/
! 	0 WD .�1; : : : ; �r ; 1; : : : ; 1; 0; : : : ; 0/:

In particular, 	.z/ 2 xDn for z near � 	 a. Consequently,

h�.� 	 a/ D lim sup
z!��a

h.z/ � lim sup
w!axDn3�!�0

h.	 	 w/ � lim sup
w!a

h.w/ D h�.a/: �

Remark 1.15.14. (a) The functions u, v need not be continuous on the whole
Cn.†/. For example:

� n WD 2, † WD f.t; 1 � t / W t 2 .0; 1/g, c˛ WD 1, ˛ 2 †. Then C2.†/ D C2

and u.z1; z2/ D
n
0 if z1z2 D 0
maxfjz1j; jz2jg if z1z2 ¤ 0

:

� n WD 2, † WD N2, c˛ WD 1, ˛ 2 †. Then v coincides with the above u.
(b) If Du� D ¿ (resp. Dv� D ¿), then the formula in (g) (resp. (h)) need not

be true. For example:
� n WD 1, † WD f�1; 1g, c˛ WD 1, ˛ 2 †. Then C.†/ D C� and u.z/ D

maxfjzj, 1=jzjg. Hence Du� D ¿, but fz 2 C� W u�.z/ � 1g D T .
� n WD 1, † WD Z�, c˛ WD 1, ˛ 2 †. Then v coincides with the above u.

Proposition 1.15.15. Consider a Laurent series f .z/ D P
˛2Zn a˛z

˛ whose do-
main of convergence D is non-empty and the set † WD f˛ 2 Zn W a˛ ¤ 0g is
unbounded.62 Put

v.z/ WD lim sup
j˛j!C1

ja˛z˛j1=j˛j; z 2 Cn.†�/: 63

Then D D fz 2 Cn.†�/ W v�.z/ < 1g DW D0.
Moreover, if the function f .z/ WD P

˛2Zn a˛z
˛ , z 2 D, is bounded and

kf kD � 1, then D D fz 2 Cn.†�/ W u�.z/ < 1g DW D1, where

u.z/ WD supfja˛z˛j1=j˛j W ˛ 2 †�g; z 2 Cn.†�/:

Proof. D � D0: For every open set U b D there exist C > 0 and 0 < � < 1

such that ka˛z˛kU � C� j˛j, ˛ 2 † (Proposition 1.6.5 (d)). Hence v � � on U ,
and therefore v� � � on U . Thus D � D0.

D0 � D: First observe that the family .ja˛z˛j1=j˛j/˛2†� � PSH.Cn.†�// is
locally bounded (Exercise – use Lemma 1.15.13 (a)).

By Lemma 1.15.13 (f), every point a 2 D0 has a neighborhood U b Cn.†/

for which there exist 0 < � < 1 and �0 2 N such that ka˛z˛k1=j˛j
U � � , ˛ 2 †,

j˛j � k0. Then U � D, and finally, D0 � D.

Since v � u, we get D1 � D0 D D. By the Cauchy inequalities, we have
ka˛z˛kD � kf kD � 1, ˛ 2 †. Hence, by Lemma 1.6.2, D � D1. �

62Notice that† is finite iff f .z/ D P.z/=z
 , where P is a polynomial and � 2 Zn
C.

63Note that if n D 1, then v.z/ D maxfjzj=RC;R�=jzjg, whereR� andRC are given by (1.1.2).
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Proposition 1.15.16. Let¿ ¤ D   Cn be aReinhardt domain. Then the following
conditions are equivalent:

(i) D is a fat domain of holomorphy;

(ii) there exist † � .Rn/� and a family .c˛/˛2† � R>0 with (1.15.1) such that

D D fz 2 Cn.†/ W u�.z/ < 1g;
where u.z/ WD supfjc˛z˛j1=j˛j W ˛ 2 †g, z 2 Cn.†/;

(ii0) there exist † � .Rn/� and a family .c˛/˛2† � R>0 such that

D D int
\
˛2†

fz 2 Cn.†/ W c˛jz˛j < 1g:

Proof. The equivalence (ii) , (ii0) follows from Lemma 1.15.13 (e). The equiva-
lence (ii0) , (i) is a consequence of Remark 1.5.8 (b), Theorem 1.11.13, and the
footnote in (1.15.1). �

1.16 Levi problem

Recall that in Corollary 1.15.7 a necessary geometric condition is given for a domain
D � Cn to be a domain of holomorphy. This was already observed by E. E. Levi at
the beginning of the last century. He even asked whether the converse implication
remains true. This is the famous Levi problem which waited a long time for its
answer. In the middle of the last century Oka proved the converse. In the meantime,
different proofs for this fact have been given based on sheaf and cohomology theory,
on the N@-problem, or on integral representation formulas for holomorphic functions.
For more details the reader is referred to the books quoted at the end of this book
(e.g. [Gra-Fri 2002], [Hör 1990], [Kra 1992], [Ran 1986]).

Theorem* 1.16.1. LetD � Cn be an arbitrary domain. ThenD is pseudoconvex
iffD is a domain of holomorphy.

Here we restrict our discussion to the case of Reinhardt domains.

Exercise 1.16.2. Prove that the complete Reinhardt domain

D WD f.z1; z2/ 2 C2 W jz1j C jz2j1=4 < 1g
is pseudoconvex and a domain of holomorphy (without Theorem 1.16.1 and Propo-
sition 1.16.3). Notice that D is not convex (cf. Exercise 1.18.7).

Proposition 1.16.3. Any pseudoconvex Reinhardt domain D � Cn is logarithmi-
cally convex.



1.16. Levi problem 129

Proof. Note that the function dD satisfies the following conditions
� dD.z/ D dD.� 	 z/ D dD.jz1j; : : : ; jznj/, z 2 D, � 2 T n,
� lim dD.z/ D 0 if D 3 z ! z0, z0 2 @D.
Put u W logD ! R,

u.x/ WD � log dD.e
x/:

Then, in virtue of Proposition 1.14.40, u is a convex function with u.x/ ! 1 if
logD 3 x ! x0 2 @.logD/.

Now let us assume that logD is not convex. So we may fix two points a; b 2
logD with Œa; b� 6� logD. Recall that logD is connected. Therefore, we may
choose a continuous curve 
 W Œ0; 1� ! logD with 
.0/ D a, 
.1/ D b. Put

t0 WD supft 2 Œ0; 1� W Œa; 
.t/� � logDg:
Then t0 2 .0; 1/ and Œa; 
.t0/� 6� logD. Fix a point x0 2 Œa; 
.t0/� n logD.
Obviously, x0 2 @.logD/. Let .0; t0/ 3 tj % t0. Then by construction there exist
points xj 2 Œa; 
.tj /� � logD such that xj ! x0. Hence, u.xj / ! 1.

On the other hand, uj�.Œ0;1�/ � c for a suitable c 2 R. Applying that u is convex
we see that u.xj / � c, j 2 N; a contradiction. �

Now we pass to the solution of the Levi problem for the class of Reinhardt
domains.

Theorem 1.16.4. Any pseudoconvex Reinhardt domain D � Cn is a domain of
holomorphy.

Proof. Because of the former Proposition 1.16.3 it remains only to prove thatD is
weakly relatively complete (see Theorem 1.11.13). Assume the contrary. Without
loss of generality we may suppose that V1 \ D ¤ ¿ and there exists a point
z0 D .z01 ; Qz0/ 2 D with .0; Qz0/ … D.

For a moment let us assume that z02 	 	 	 z0n ¤ 0. Then z01 ¤ 0. By assumption
there is a point a D .a1; Qa/ 2 D n V0 such that Da1 � fQag � D. Then we
may connect the points z0 and a in D n V0, i.e. we choose a continuous curve

 D .
1; Q
/ W Œ0; 1� ! D n V0 with 
.0/ D a and 
.1/ D z0. Applying that D is
logarithmically convex we get D�
1.t/ � f Q
.t/g � D. Put

t0 WD supft 2 Œ0; 1� W .0; Q
.t// 2 Dg 2 .0; 1�:
Hence, .0; Q
.t0// 2 @D. Note that � log dD.
.t// � c for a suitable c 2 RC, t 2
Œ0; 1�. Therefore, in virtue of the maximum principle for subharmonic functions, it
follows that � log dD.0; Q
.t// � c which contradicts the fact that dD.0; Q
.t// ! 0

if t % t0.
So it remains to discuss z0 with z02 D 	 	 	 D z0

k
D 0 for a suitable k, 2 � k � n,

and z0
kC1 	 	 	 z0n ¤ 0. We have Vj \D ¤ ¿, 1 � j � k.
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Put
D0 WD f.w1; yw/ 2 C � Cn�k W .w1; 0; : : : ; 0; yw/ 2 Dg:

Obviously, D0 is an open Reinhardt set.
We claim first that D0 is connected. Indeed, fix two points a D .a1; Oa/; b D

.b1; Ob/ 2 D0 \ Cn�kC1� . It suffices to connect these points in D0 (Exercise). Let
s 2 .0; 1/ be such that a� WD .a1; s; : : : ; s; Oa/ 2 D and b� WD .b1; s; : : : ; s; Ob/ 2 D.
Choose a curve 
 W Œ0; 1� ! D n V0 with 
.0/ D a� and 
.1/ D b�. Then
.
1; 0; : : : ; 0; O
/ connects .a1; 0; : : : ; 0; Oa/ and .b1; 0; : : : ; 0; Ob/ in D. Otherwise,
there is a t0 2 .0; 1/ such that

.
1; 0; : : : ; 0; O
/.t/ 2 D; 0 � t < t0; and .
1; 0; : : : ; 0; O
/.t0/ 2 @D:
Observe that � log dDj�.Œ0;1�/ � c for a suitable c 2 RC. Moreover, using succes-
sively the logarithmic convexity, there is an r 2 .0; 1/,

r < minfinffj
j .t/j W t 2 Œ0; 1�g W 2 � j � kg;
such that

f
1.t/g �K�.r/ � 	 	 	 �K�.r/ � f O
.t/g � D; 0 � t < t0:

Hence, by the maximum principle for psh functions,

� log dD.
1.t/; 0; : : : ; 0; O
.t// � c; 0 � t < t0;

which contradicts the property of t0. In particular, .
1; O
/ connects a and b in D0.
By assumption,D is pseudoconvex. Therefore, there exists an exhausting func-

tion u 2 PSH.D/. Put u0 W D0 ! R�1, u0.w1; yw/ WD u.w1; 0; : : : ; 0; yw/. Ob-
viously, u0 2 PSH.D0/ and u0 is an exhausting function of D0. Hence, D0 is
pseudoconvex. So we may apply the previous case in order to conclude that with
.z01 ; z

0
kC1; : : : ; z

0
n/ DW .z01 ; Oz0/ 2 D0 it follows that .0; Oz0/ 2 D0 or .0; Qz0/ 2 D; a

contradiction. �

1.17 Hyperconvexity

The following class of open sets with “good” psh exhaustion functions will be useful
in the sequel.

Definition 1.17.1. We say that an open set ˝ � Cn is hyperconvex if there exists
a function u 2 PSH.˝/, u < 0, such that

fz 2 ˝ W u.z/ < tg b ˝; t < 0: (1.17.1)
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Let ˝ � Cn be open and let N � ˝. Define the relative extremal function

hN;˝ WD supfu W u 2 PSH.˝/; u � 1 on ˝; u � 0 on N g:
The function h�

N;˝ is called the regularized relative extremal function or plurisub-
harmonic measure of N relative to ˝. Observe that 0 � hN;˝ � h�

N;˝ � 1 and
h�
N;˝ 2 PSH.˝/ (cf. Proposition 1.14.16). It is clear that h�

N;˝ D 0 on intN .

Example 1.17.2. The Hartogs triangle T WD fz 2 C2 W jz1j < jz2j < 1g (see
Remark 1.5.11) is not hyperconvex.

In fact, suppose the contrary. Then there exists a u 2 PSH.T /, u � 0 satisfying
(1.17.1). Then u.0; 	 / is negative subharmonic on D�. Therefore, in virtue of
Proposition 1.14.25, it extends to a subharmonic function on the whole D. Applying
the maximum principle for subharmonic functions we get

u.0; z2/ � supfu.0; �/ W j�j D 1=2g DW t0 < 0; 0 < jz2j < 1=2:
Fix a t1 2 .t0; 0/. Then

f0g �K�.1=2/ � fz 2 T W u.z/ < t1g b T;
which contradicts (1.17.1).

Exercise 1.17.3. Let

T�1;�2
WD f.z1; z2/ 2 D2 W jz1j�1 < jz2j < jz1j�2g; �1 > �2 � 0:

Check whether T�1;�2
is hyperconvex.

Proposition 1.17.4. Let D � Cn be a domain. Then D is hyperconvex iff there
exists a continuous function u 2 PSH.D;R�/ with (1.17.1).

Proof. (Cf. [Zah 1974].) Let u W D ! Œ�1; 0/ be a psh function with (1.17.1).
We will construct a continuous psh function v0 W D ! .�1; 0/ with (1.17.1). Fix
a ball K WD xB.a; r/ � D and let v WD h�

K;D . Recall that v 2 PSH.D/ and v D 0

in B.a; r/. The maximum principle implies that v.z/ < 1 for any z 2 D.
By the Oka theorem for subharmonic functions (cf. [Vla 1966], Chapter 2, § 9),

for any point b 2 @B.a; r/ we get v.b/ D limŒ0;1/3t!1 v.aC t .b � a// D 0. Thus
v D 0 on K.

Fix a t0 > 0 such that u � �t0 on K and put u0 WD .1=t0/u C 1. Then
u0 2 PSH.D/, u0 � 1, and u0 � 0 on K. Hence u0 � hK;D � v. Consequently,
the function v0 WD v � 1 satisfies (1.17.1). We will show that v is continuous (then
v0 satisfies all the required conditions).

For ˛ 2 .0; 1/ let D˛ WD fz 2 D W v.z/ < ˛g. Notice that K � D˛ b D and
D˛ % D when ˛ % 1. Moreover, h�

K;D˛
D 0 on K (use the same argument as
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above). Observe that ˛h�
K;D˛

� v on D˛ . Indeed, define

h WD
(

maxf˛h�
K;D˛

; vg on D˛;

v on D nD˛:
Then

lim sup
D˛3z!�

˛h�
K;D.z/ � ˛ � v.�/; � 2 D \ @D˛:

Hence, by Proposition 1.14.9, h 2 PSH.D/. Obviously h � 1 on D and h D 0

on K. Thus h � hK;D � v. In particular, ˛h�
K;D˛

� h � v on D˛ .
Fix a point z0 2 D. We want to prove that v is continuous at z0. Let ˇ.˛/ WD

max SD˛
v. Observe that ˛ � ˇ.˛/ < 1. In particular, ˇ.˛/ ! 1 when ˛ ! 1. Fix

an � > 0 and let ˛ D ˛.�/ 2 .0; 1/ be such that z0 2 D˛ and ˇ.˛/=˛� 1 � �. Let
.v"/0<"�"0

be a family of C1 psh functions defined in a neighborhood ˝ of SD˛ ,
˝ � D, such that v" & v on˝ when " & 0 (Proposition 1.14.33). Take an " > 0
such that for w WD v" 2 PSH.˝/ \ C1.˝/ we have w � v on ˝, w � � on K,
and w � ˇ.˛/C � on SD˛ . Consequently,

.w � �/=ˇ.˛/ � h�
K;D˛

on D˛:

Hence,

0 � w � v � ˇ.˛/h�
K;D˛

C � � v
� .ˇ.˛/=˛ � 1/v C � � ˇ.˛/=˛ � 1C � � 2� on D˛:

Now, by the continuity of w, there exists a neighborhood U of z0, U � D˛ , such
that jw.z/ � w.z0/j � � for z 2 U . Finally, jv.z/ � v.z0/j � 5� for z 2 U . �

There is the following localization result for hyperconvexity.

Theorem 1.17.5. Let D � Cn be a domain. Then the following conditions are
equivalent:

(i) D is hyperconvex;

(ii) for any boundary point a 2 @D .including a D 1 when D is unbounded/
there exists a u 2 PSH.D/, u < 0, such that limD3z!a u.z/ D 0.

Every function u as in (ii) is called a weak psh barrier for a.

Proof. (i) ) (ii) is trivial.
(ii) ) (i): FixK WD xB.a0; r/ � D and put u WD h�

K;D�1. Then u 2 PSH.D/,
u < 0 (see the proof for Theorem 1.17.4). Assume that (1.17.1) is not fulfilled.
Then there are a 2 @D, t < 0, and a sequence of points .zj /j � D with zj ! a and
u.zj / � t . Choose a weak psh barrier functionv 2 PSH.D/, v < 0, withv.z/ ! 0

if D 3 z ! a. In particular, v.zj / ! 0. Note that supfv.z/ W z 2 Kg DW �� < 0.
Then Qv WD v


C 1 2 PSH.D/, Qv � 1, QvjK � 0, and Qv.zj / ! 1. Hence,

Qv � h�
K;D D uC 1. Therefore, t � u.zj / � Qv.zj /� 1 ! 0; a contradiction. �
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In the case of a Reinhardt domain an even stronger version of Theorem 1.17.5
is true.

Proposition 1.17.6. Let D � Cn be a pseudoconvex Reinhardt domain. Assume
that for any a 2 @D \ V0

64 .including a D 1 if D is unbounded/ there exists a
weak psh barrier function. ThenD is hyperconvex.

Proof. Let a 2 @D n V0. Put � WD log a. Then � is a boundary point of the
convex domain logD. Therefore, we may take a real linear functionalL W Rn ! R,
L.x/ D Pn

jD1 j̨xj , such that L.x/ < L.�/, x 2 logD. Put u W Cn� ! R,
u.z/ WD Pn

jD1 j̨ log jzj j. Then v WD u � u.a/ 2 PSH.Cn�/ \ C.Cn�/, v < 0 on
D \ Cn�, such that limD3z!a v.z/ D 0. Observe that v is locally bounded from
above on D n V0. In virtue of Theorem 1.14.25, v extends to a psh function on D,
which is everywhere negative (use the maximum principle). Hence this extension
gives a weakly psh barrier at a.

Hence, using the assumption, Theorem 1.17.5 completes the proof. �

In the general theory, hyperconvex domains do not contain non-trivial entire
holomorphic curves.

Definition 1.17.7. A domain D � Cn is called Brody hyperbolic if any ' 2
O.C;D/ is identically constant.

Exercise 1.17.8. Observe that any elementary Reinhardt domain D˛;c is not Brody
hyperbolic.

Proposition 1.17.9. Let D � Cn be a hyperconvex domain. Then D is Brody
hyperbolic.

Proof. Let u 2 PSH.D/ denote the negative exhaustion function from the defini-
tion of hyperconvexity. If ' 2 O.C;D/, then v WD u B ' 2 SH.C/ and v � 0.
Hence, in virtue of the Liouville theorem for subharmonic functions (see 1.14.3 (g)),
v � c 2 R. Applying (1.17.1) implies that '.C/ is bounded and therefore, ' is
a constant function according to the classical Liouville theorem for holomorphic
functions. �

In the case of Reinhardt domains there are the following results for Brody
hyperbolic domains. We begin with a direct consequence of Lemma 1.5.14 (iii).

Lemma 1.17.10. Let D � Cn be a Brody hyperbolic Reinhardt domain of holo-

morphy. Then there exist a matrix A WD
�
˛1

:::
˛n

	
2 GL.n;Z/ and a vector c 2 Rn

such thatD � D˛1;c1
\ 	 	 	 \ D˛n;cn

.

64Recall that V0 D f.z1; : : : ; zn/ 2 Cn W z1 � � � zn D 0g.
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Proof. We only need to observe that an affine lineL D aCRb, b ¤ 0, is contained
in logD iff the entire curve

C 3 � 7! .ea1e�b1 ; : : : ; eane�bn/

has its image in D. �

Theorem 1.17.11. Let D � Cn be a Brody hyperbolic Reinhardt domain of
holomorphy. Then D is algebraically equivalent to a bounded domain .cf. Def-

inition 1.5.12/, i.e. there exists a matrix A WD
�
˛1

:::
˛n

	
2 GL.n;Z/ such that

D � Cn.A/ and ˚A maps biholomorphically D onto a bounded Reinhardt do-
main of holomorphy, where

˚A W D ! Cn; ˚A.z/ WD .z˛
1

; : : : ; z˛
n

/; z 2 D:
Proof. The proof is done by induction. For n D 1 the only unbounded Reinhardt
domains in C are C, C�, and A.r;1/ with r > 0. The first two are not Brody
hyperbolic. The annulus can be algebraically mapped by z 7! 1=z onto a bounded
Reinhardt domain.

Now let n > 1 and assume that the theorem is true for all lower dimensions. If
D � Cn�, then Remark 1.5.13 (b) and Lemma 1.17.10 apply.65

In order to discuss the remaining case let us assume, without loss of generality,
that D \ Vn ¤ ¿. Then, in virtue of Corollary 1.11.16, zD WD prCn�1.D/ D
prCn�1.D \ Vn/ is a Reinhardt domain of holomorphy in Cn�1. Moreover, it is
easily seen that zD is Brody hyperbolic. Applying the induction hypothesis we find
a matrix QA 2 GL.n � 1;Z/ with the same properties as above. So ˚ QA is defined
on zD and maps zD biholomorphically onto its image ˚ QA. zD/, a bounded Reinhardt
domain of holomorphy. Now put

A WD
� QA 0

0 1

	
:

Then A 2 GL.n;Z/ and ˚A maps D biholomorphically onto a Brody hyperbolic
Reinhardt domain of holomorphy ˚A.D/ which is contained in Pn�1.r/ � C (Ex-
ercise).

Therefore, we may assume from the very beginning that D satisfies

D \ Vn ¤ ¿; D � Pn�1.r/ � C

for some r > 0. Without loss of generality let

D \ Vj ¤ ¿; j D 1; : : : ; k; D \ Vj D ¿; j D k C 1; : : : ; n � 1;
where k 2 f0; : : : ; n � 1g.

65Notice that, in general, ifA is as in Lemma 1.17.10, then .˚A/jD need not be biholomorphic. For
example, if A is as in Remark 1.5.13 (c), then D2 � fjz1z2j < 1; jz3

1z
4
2 j < 1g, but ˚A.0; 0/ D

.0; 0/ … Cn.A�1/.
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Then we find an ˛ D .˛1; : : : ; ˛n/ D .0; ˛00/ 2 Zk � Zn�k , ˛n ¤ 0, and an
m 2 RC such that

jz˛j � m; z 2 D \ .Cn�1 � C�/:

Indeed, if k D 0, then Lemma 1.17.10 applies directly (we take ˛ WD ˛j , where
j is such that ˛jn ¤ 0). Now let k � 1. Put

D00 WD prCn�k .D/ D prCn�k

�
D \

k\
jD1

Vj

�
I

recall that D is relatively complete. Then D00 is a Brody hyperbolic Reinhardt
domain of holomorphy. In virtue of Lemma 1.17.10, we find ˛00 D .˛kC1,…,
˛n/ 2 Zn�k , ˛n ¤ 0, and m 2 RC such that

j.z00/˛00 j � m; z00 2 D00; zn ¤ 0:

Then, setting ˛ WD .0; : : : ; 0; ˛00/ completes the argument.
In a last step put

ˇ WD .ˇ1; : : : ; ˇn�1/; ǰ WD
(
0 if j � k;

b j̨

j˛njc C 1 if k < j < n:

Note that sj WD ǰ j˛nj � j̨ � 0, j D k C 1; : : : ; n � 1.
Then, for z D .z0; z00/ 2 D, zn ¤ 0, we get

jzˇ j � j.z00/˛00 j1=j˛njjzkC1jskC1 : : : jzn�1jsn�1 � m1=j˛njrn�k�1:

By continuity, this estimate remains true on D. Finally, we introduce

A WD
�
In�1 0

ˇ 1

	
2 M.n � nI Z/: 66

Note that detA D 1, ˚A is defined on D with a non-vanishing Jacobian, and ˚A
is injective on D. Hence, ˚A gives an algebraic biholomorphic mapping from D

onto its image ˚A.D/ which is a bounded Reinhardt domain of holomorphy. �

Based on the former theorem we have the following result for Brody hyperbolic
Reinhardt domains of holomorphy.

Proposition 1.17.12. Let D � Cn be a Brody hyperbolic Reinhardt domain of
holomorphy. Then the following conditions are equivalent:

66Ik denotes the .k � k/-dimensional unit matrix.
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(i) D is algebraically equivalent to an unbounded Reinhardt domain of holo-
morphy;

(ii) D is algebraically equivalent to a bounded Reinhardt domain of holomor-
phy G which does not satisfy the Fu condition.

Proof. (ii) ) (i): We may assume that D is bounded and does not satisfy the Fu
condition. Therefore, Vj \D D ¿ and xD \ Vj ¤ ¿ for a certain j . Take simply
the following map

F W D ! Cn; F .z/ WD .z1; : : : ; zj�1; 1zj ; zjC1; : : : ; zn/:

Then G WD F.D/ is an unbounded Reinhardt domain of holomorphy and F is an
algebraic biholomorphism from D onto G.

(i) ) (ii): Without loss of generality, we assume that D is unbounded. In
virtue of Theorem 1.17.11 there are a matrix A D Œaj;k�1�j;k�n 2 GL.n;Z/ and a
bounded Reinhardt domainG such that˚A W G ! D is biholomorphic. Obviously,
G is a Reinhardt domain of holomorphy.

Suppose that G does satisfy the Fu condition. So we may assume that

Vj \G ¤ ¿; j D 1; : : : ; k; and xG \ Vj D ¿; j D k C 1; : : : ; n;

where k is a suitable number in f0; : : : ; ng. Therefore, ar;j � 0 if j 2 f1; : : : ; kg
and 1 � r � n. Moreover, there is an m > 0 such that jzj j � m if z 2 G and
j D k C 1; : : : ; n. Denote now by ar the r-th row of A. Then

j.˚A.z//r j D jzar j D jzar;1

1 	 	 	 zar;n
n j � m0 if z 2 G; 1 � r � n;

where m0 is a suitable real number. So, ˚A.G/ D D is bounded; a contradiction.
�

Now we are able to present a complete description of hyperconvex Reinhardt do-
mains. Before presenting the result we need an additional definition which sharpens
the notion of hyperconvexity.

Definition 1.17.13. A domain (resp. a Reinhardt domain) D � Cn is said to be
strictly hyperconvex (resp. strictlyR-hyperconvex) if there exist a domain (resp. Rein-
hardt domain) D0 and a function u 2 PSH.D0/ \ C.D0/ (resp. u 2 PSH.D0/ \
C.D0/ with u.z/ D u.jz1j; : : : ; jznj/, z 2 D0) such that

� D � D0, u < 1 on D0,
� D D fz 2 D0 W u.z/ < 0g,
� Dt WD fz 2 D0 W u.z/ < tg b D0 and Dt is connected, 0 < t < 1.

Obviously, every strictly R-hyperconvex Reinhardt domain is strictly hyper-
convex.
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Remark 1.17.14. Let D, D0, and u be as in Definition 1.17.13.
(a) Then D, Dt , and D0 are pseudoconvex domains (see Theorem 1.15.5) with

D b Dt b D0, 0 < t < 1.
(b)D is fat. Otherwise there exists a point a 2 int xD nD; in particular, a 2 @D.

Hence, u.a/ D 0. On the other hand, there is an r > 0 such that P.a; r/ � xD
and, therefore, u � 0 on P.a; r/ (use that u is continuous). Then the maximum
principle leads to ujP.a;r/ D 0. So, P.a; r/ � @D; a contradiction.

(c) xD has a Stein neighborhood basis.67 Indeed, let U be an open set contain-
ing xD. Choose another open set V with xD � V b U \D0. Put

t0 WD inffu.z/ W z 2 D0 n V g 2 .0; 1/:
Then Dt0 is pseudoconvex with Dt0 � V . Applying the solution of the general
Levi problem, Dt0 is a domain of holomorphy.68

(d) If D is even strictly R-hyperconvex, then xD has a neighborhood basis of
Reinhardt domains of holomorphy. Observe that here the Dt ’s are pseudoconvex
Reinhardt domains and therefore domains of holomorphy (see Theorem 1.16.4).

(e) Using Corollary 1.12.5 and (c) we see if D is a strictly hyperconvex Rein-
hardt domain, then xD has a neighborhood basis consisting of Reinhardt domains
of holomorphy.

Exercise 1.17.15. Prove that xT (T is the Hartogs triangle) has no Stein neighbor-
hood basis. Recall that T is fat and does not satisfy the Fu condition

Now we are in the position to present the full characterization of hyperconvex
Reinhardt domains (cf. [HDT 2003], [Zwo 2000]).

Theorem 1.17.16. Let D � Cn be a Reinhardt domain. Then the following con-
ditions are equivalent:

(i) D is hyperconvex;

(ii) D is bounded, pseudoconvex, and satisfies the Fu condition;

(iii) D is strictly R-hyperconvex;

(iv) D is bounded, fat, and xD has a neighborhood basis of Reinhardt domains of
holomorphy;

(v) D is H 1-convex.

Proof. First note that (iii) ) (iv) has been shown in Remark 1.17.14 and (ii) )
(v) follows from Theorem 1.13.19.

67A compact set K � Cn has a Stein neighborhood basis if any open set U , K � U , contains a
domain of holomorphy G with K � G. Domains of holomorphy are often called Stein domains in
honor of Karl Stein.

68Let us emphasize that here we have used the general solution of the Levi problem (Theorem 1.16.1)
although this has not and will not be proved in this book.
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(i) ) (ii): Suppose the contrary. Then eitherD is unbounded orD is bounded
and does not satisfy the Fu condition. Recall thatD is Brody hyperbolic, since it is
hyperconvex (see Proposition 1.17.9). IfD is unbounded, thenD is biholomorphic
to a bounded Reinhardt domain of holomorphy that does not fulfill the Fu condition
(use Proposition 1.17.12). So, without loss of generality, we may assume from the
very beginning that D is bounded and does not satisfy the Fu condition. We may
also assume that there are k; ` 2 N, 1 � k � ` � n, such that

xD \ Vj ¤ ¿; D \ Vj D ¿; 1 � j � k;

xD \ Vj D ¿; k C 1 � j � `; D \ Vj ¤ ¿; `C 1 � j � n:

Assume that ` < n. Put zD WD fz 2 C` W .z; 0; : : : ; 0/ 2 Dg. Then zD is
a hyperconvex bounded Reinhardt domain of holomorphy not satisfying the Fu
condition. Hence for the further argument we may assume that ` D n. Therefore,
D � Cn�. Moreover, we may assume that 1 2 D. Recall that logD is convex,
unbounded, and logD � fx 2 Rn W xj < r; j D 1; : : : ; ng for a suitable r 2 R>0.
Thus we find a sequence of points xj 2 logD with kxj k ! 1. Let h D hlogD

be the Minkowski function of logD (Definition 1.4.14). Then h.xj / < 1, j 2 N.
Therefore, h. x

j

kxj k / <
1

kxj k ! 0. Using the compactness of the unit sphere we find

a vector v, kvk D 1, with h.v/ D 0which implies that RCv � logD. In particular,
vj � 0, 1 � j � n. Put ˛ WD �v. Then

.et ; et˛2 ; : : : ; et˛n/ 2 D; t < 0:

In particular,

f.e�; e�˛2 ; : : : ; e�˛` ; 1; : : : ; 1/ W � 2 C; Re� < 0g � D:

Now, let u 2 PSH.D/, u < 0, be a psh exhaustion function forD according to the
definition of hyperconvexity. Put Ou W D ! Œ�1; 0/,

Ou.z/ WD supfu.ei�1z1; : : : ; e
i�nzn/ W �j 2 R; j D 1; : : : ; ng:

Using the compactness of the n-dimensional torus it turns out that Ou is semicon-
tinuous from above on D, Ou 2 PSH.D/, Ou < 0, and satisfies (1.17.1) (Exercise).
Finally, define Qu W D� ! Œ�1; 0/,

Qu.�/ WD Ou.j�j; j�j˛2 ; : : : ; j�j˛n/:

Note that the functions D� 3 � 7! � j̨ are locally holomorphic. Therefore, Qu is
subharmonic on D� and negative. Hence, it extends to a subharmonic function u�
on D. Applying property (1.17.1) leads to u�.0/ D 0. Then, by the maximum
principle, Qu is identically 0; a contradiction.
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(ii) ) (iii): Without loss of generality we may assume that the point 1 D
.1; : : : ; 1/ 2 D, D \ Vj ¤ ¿, 1 � j � k, and D \ Vj D ¿, k C 1 � j � n

with a k 2 f0; : : : ; ng. Since D satisfies the Fu condition we have D b zD WD
Cn nSn

jDkC1 Vj . Moreover, zD is a Reinhardt domain of holomorphy.
By assumption,D is a Reinhardt domain of holomorphy. Thus, logD is convex

and 0 2 logD (recall that 1 2 D). Let h D hlogD . Then h is continuous and
convex (Exercise 1.4.16). Applying Theorem 1.14.40, the function u W Cn� ! R,
u.z/ WD h.log jz1j; : : : ; log jznj/� 1, belongs to PSH.Cn�/\ C.Cn�/. In particular,
u is defined on zD n V0

If k D 0, then zD D Cn�. So u 2 PSH. zD/ \ C. zD/, D D fz 2 zD W u.z/ < 0g,
and Dt WD fz 2 zD W u.z/ < tg b zD is a Reinhardt domain for all t > 0. Taking
D0 WD D1 shows that D is strictly R-hyperconvex.

Now assume that k ¤ 0. We like to show that u extends to a psh function on zD.
In virtue of Theorem 1.14.25, it suffices to show that u is locally bounded from
above on zD. Indeed, let a 2 zD \ V0. Without loss of generality, let a D .0; a00/ 2
Cs�Cn�s� , s 2 f1; : : : ; kg. Then yDs WD prCn�s .D/ is again a Reinhardt domain of
holomorphy containing 1n�s , and thus a neighborhood of 1n�s . Therefore, log yDs
is a convex domain in Rn�s . Moreover, we find an ` 2 N such that

1
`
.log jasC1j; : : : ; log janj/ 2 log yDs:

Put bj WD jaj j1=` > 0, j D s C 1; : : : ; n. Hence, we conclude that b00 WD
.bsC1; : : : ; bn/ 2 yDs , which means there is a point c0 2 Cs with .c0; b00/ 2 D.
Now we use thatD cuts all the first k axes and get .0; b00/ 2 D. Therefore, we find
a positive " such that

U WD Ps."/ � An�s.r�; rC/ � D;

where

r� WD .1C "/�1=`.bsC1; : : : ; bn/; rC WD .1C "/1=`.bsC1; : : : ; bn/:

Obviously,
V WD Ps."

`/ � An�s.�; C/;

where

� WD .1C "/�`.jasC1j; : : : ; janj/; C WD .1C "/`.jasC1j; : : : ; janj/;
is a neighborhood of a. Take a z 2 V n V0 and put � WD .log jz1j; : : : ; log jznj/.
Then, by construction, �=` 2 logU � D. Therefore, u.z/ D h.�/ � 1 � ` � 1.
Hence, u is bounded on V n V0. Since the point a was arbitrary, we know that u
extends to a psh function Qu on zD.
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It remains to show that Qu is continuous at all points in zD \ V0. Without loss
of generality fix as above an a D .0; a00/ 2 D0 \ V0 \ .Cs � Cn�s� / with an
s 2 f1; : : : ; kg. Repeating the previous argument we conclude that

Qu.a/ � Qh.log jasC1j; : : : ; log janj/ � 1;
where Qh WD hlog.prCn�s .D//. It suffices to show that Qu is lower semicontinuous at

a. Suppose that there is a constant c < Qu.a/ and a sequence of points zj 2 zD
with zj ! a such that Qu.zj / � c. Without loss of generality we may assume that
zj 2 D \ Cn�. Hence

Qh.log jzjsC1j; : : : ; log jzjn j/ � h.log jzj1 j; : : : ; log jzjn j/ D u.zj /C 1

< c C 1 < Qu.a/C 1 � Qh.log jasC1j; : : : ; log janj/:

Using the continuity of Qh leads to a contradiction. So Qu is continuous in a. Since
the point a was arbitrarily chosen, we have shown that Qu is continuous on the whole
of zD.

Note that D n V0 D fz 2 zD n V0 W u.z/ < 1g. Therefore, using the maximum
principle, we have Qu < 0 on D. Moreover, the continuity of Qu implies D D fz 2
zD W Qu.z/ < 0g.

For t > 0 put zDt WD fz 2 zD W Qu.z/ < tg. Note that zDt is a Reinhardt open set,
zDt b zD, and zDt n V0 is connected. Applying Remark 1.5.6 (d) we conclude that
zDt is connected. With D0 WD zD1 it follows that D is strictly R-hyperconvex also

in the case k ¤ 0.
(iv) ) (i): Observe that xD has a Stein neighborhood basis andD is fat. There-

fore, D D int xD D int
T
Dj for a certain decreasing sequence of Reinhardt do-

mains of holomorphy Dj . Hence, D is a domain of holomorphy.
Now, in view of Proposition 1.17.6, we will study boundary points of D which

belong to V0. So let a 2 @D \ V0. First assume that 0 2 @D. Fix a point
b D .r; : : : ; r/ 2 D with a certain positive r . Note that 0 2 Dj , j 2 N. Therefore,
P.r/ � Dj , j 2 N. Recall that D is fat. So P.r/ � int xD D D; a contradiction.

Therefore, we may assume that a D .0; a00/ 2 Ck � Cn�k� with a suitable k,
1 � k < n. Denote by D00 the projection of D to Cn�k , i.e.

D00 WD prCn�k .D/:

Clearly,D00 is a Reinhardt domain of holomorphy in Cn�k (see Corollary 1.11.16).
Assume for a moment that a00 2 @D00 \ Cn�k . Then, using the proof of Proposi-
tion 1.17.6, there is a weak psh barrier function u 2 PSH.D00/ for a00, i.e. u < 0

and u.z00/ ! 0 if D00 3 z00 ! a00. In such a case, the function v W D ! Œ�1; 0/,
v.z0; z00/ WD u.z00/, delivers a weak psh barrier function for a.

To see that a00 2 @D00 \ Cn�k it remains to verify that D does not contain any
point “over” a00, i.e. D0 WD fz0 2 Ck W .z0; a00/ 2 Dg D ¿.
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Suppose the contrary i.e. D0 ¤ ¿. Then we choose a point b D .b0; a00/ 2
D
T

Cn� and a small positive number " with fb0g � Pn�k.a00; "/ � D. Note that
Dj \ Vs ¤ ¿, 1 � s � k. Therefore, applying the relative completeness ofDj , we
have P WD Pk.r/� Pn�k.a00; "/ � Dj , j 2 N, where r WD minfjb`j W 1 � ` � kg.
Hence, P � int xD D D. In particular, a 2 D; a contradiction.

(v) ) (ii): We only have to note that any H 1-convex domain is Brody hyper-
bolic (use Liouville’s theorem). Then one may follow the argument in the proof
before as follows: fix an f 2 H 1.D/ and put u WD jf j on D. Using the nota-
tion from before, Qu extends to a psh function on D. Therefore, by the maximum
principle, ˇ̌

f .j�j; j�j˛2 ; : : : ; j�j˛n/
ˇ̌ � Qu.�/ � sup

j� jD1=2
Qu.�/

� sup
z2@0P.r/

jf .z/j; 0 < j�j � 1=2;

where r WD .2�1; 2�˛2 ; : : : ; 2�˛n/; a contradiction. �

In connection with the Montel theorem there is the following notion.

Definition 1.17.17. A domain D � Cn is called taut if any sequence .fj /j2N �
O.D;D/ allows a subsequence .fjk

/k , which diverges compactly (i.e. for any com-
pact sets K � D and L � D there is a jK;L such fj .L/ \K D ¿, j � jK;L), or
a subsequence .fj`

/` with fj`
! f 2 O.D;D/ locally uniformly on D.

Exercise 1.17.18. When is a planar domain D � C taut ?

Example 1.17.19. The Hartogs triangle T is taut.
Indeed, let 'k D .'k;1; 'k;2/ W D ! T , 'k ! '0 locally uniformly in D

with '0 D .'0;1; '0;2/ 2 O.D; xT /, 'k;1='k;2 !  locally uniformly in D with
 2 O.D; xD/. Note that '0;1 �  	 '0;2. By the Hurwitz theorem (cf. [Con 1973],
Chapter VI, Theorem 2.5), either '0;2 � 0 or '0;2 has no zeroes. In the first case
'0.D/ D f.0; 0/g � @T . In the second case, either '0;2.D/ \ T ¤ ¿ (and then
'0.D/ � @T ), or '0;2.D/ � D. In the latter case, either  .D/ \ T ¤ ¿ (and then
'0.D/ � @T ), or '0.D/ � T .

Exercise 1.17.20. Decide whether the domain

T� WD f.z1; z2/ 2 D2 W jz1j� < jz2jg .� > 0/

is taut.

Hint. Use the maximum principle for subharmonic functions.

Using Theorem 1.15.5(x) it is easy to solve the following exercise.

Exercise 1.17.21. Prove that any taut domain is pseudoconvex.
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On the other hand it turns out that hyperconvexity implies tautness.

Theorem 1.17.22. Any hyperconvex bounded domainD � Cn is taut.

Proof. Let us start with a sequence .fj /j � O.D;D/. By the Montel theorem we
may assume that fj ! f 2 O.D;Cn/ locally uniformly. We have to show that
f 2 O.D;D/. Otherwise, f .�0/ 2 @D for a �0 2 D. Note that all values of f are
in xD.

By assumption there is a continuous function u 2 PSH.D/, u < 0, satisfying
(1.17.1). Puttingu WD 0on@D, we extend continuouslyu to xD. ThenuBfj ! uBf
locally uniformly on D. Hence, u B f 2 PSH.D/ with u � 1. Observe that
u B f .�0/ D 1. Therefore the maximum principle gives the contradiction. �

For Reinhardt domains of holomorphy we even have the following characteri-
zation of taut domains.

Theorem 1.17.23. LetD � Cn be a taut Reinhardt domain of holomorphy. ThenD
is algebraically equivalent to a bounded domain.

Remark 1.17.24. It has to be pointed out that the converse statement is also true;
its proof will be given later in Theorem 4.7.2.

The proof of Theorem 1.17.23 will use the following lemma.

Lemma 1.17.25. Any taut domainD � Cn is Brody hyperbolic.

Proof. Otherwise there exists ' 2 O.C;D/ which is not identically constant. Put
'j W D ! D, 'j .�/ WD '.j�/. Since 'j .0/ D '.0/, no subsequence diverges
locally uniformly. Assume there is a subsequence .'jk

/k with'jk
! f 2 O.D;D/

locally uniformly. Then j'jk
.�/ � f .�/j � 1, j�j � 1=2, if k � k0. Therefore,

j'jk
.�/j � jf .�/jCj'jk

.�/�f .�/j � kf k.1=2/DC1 DW C; j�j � 1=2; k � k0:

Hence, ' is bounded and so identically constant; a contradiction. �

Proof of Theorem 1.17.23. The proof follows directly from Lemma 1.17.25 and
Theorem 1.17.11. �

1.18� Smooth pseudoconvex domains

This section collects terminology and basic results related to the pseudoconvexity
of smooth domains (proofs and details may be found e.g. in [Jar-Pfl 2000], § 2.2).
The reader may skip this section during the first reading.
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Definition 1.18.1. Let D � Cn be a bounded domain. We say that @D is smooth
of class Ck (or Ck-smooth) in a neighborhood of a point a 2 @D if there exist an
open neighborhood U of a and a function u 2 Ck.U;R/ such that

D \ U D fz 2 U W u.z/ < 0g; (1.18.1)

U n xD D fz 2 U W u.z/ > 0g; (1.18.2)

grad u.z/ ¤ 0 for z 2 U \ @DI (1.18.3)

here k 2 N [ f1g [ f!g, where u 2 C! means that u is real analytic.
The function u is called a local defining function forD.
Observe that if u 2 Ck.U;R/ satisfies (1.18.1) and grad u.z/ ¤ 0 for all z 2 U ,

then u satisfies (1.18.2) in a sufficiently small neighborhood of a, i.e. u is a local
defining function in a suitable neighborhood of a.

We say that D is Ck-smooth or has a Ck-smooth boundary if @D is Ck-smooth
at any point a 2 @D.

Put

T C
b .@D/ WD

n
X 2 Cn W

nX
jD1

@u

@zj
.b/Xj D 0

o
; b 2 U \ @D:

The complex space T C
b
.@D/ is called the complex tangent space to @D at b; notice

that the condition
nX

jD1

@u

@zj
.z/Xj D 0

means that X ? grad u.b/ in the sense of the Hermitian scalar product in Cn.
The definition of T C

b
.@D/ is independent of u (this will follow from Proposi-

tion 1.18.2 (b)). Observe that if n D 1, then T C
b
.@D/ D f0g.

Proposition* 1.18.2 ([Jar-Pfl 2000], Proposition 2.2.3). LetD � Cn be a bounded
domain, a 2 @D, and let U be an open neighborhood of a.

(a) Let u1; u2 2 Ck.U;R/ be two local defining functions .k 2 N [ f1g/.
Then u2 D vu1 with v 2 Ck�1.U;R>0/.

(b) The space T C
b
.@D/ is independent of the local defining function

u 2 C1.U;R/, b 2 U \ @D.
(c) Let u1; u2 2 Ck.U;R/, k � 2, be two local defining functions with

u2 D vu1, where v 2 Ck�1.U;R>0/ is as in (a). Then

Lu2.bIX/ D v.b/Lu1.bIX/; b 2 U \ @D; X 2 T C
b .@D/;

where L denotes the Levi form .cf. .1.14.1//.
(d) Let k 2 N [ f1g. Then the following conditions are equivalent:

(i) D is Ck-smooth;
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(ii) there exists a functionu 2 Ck.Cn;R/ satisfying (1.18.1), (1.18.2), (1.18.3)
with U WD Cn.

The above function u is called a global defining function forD.

Proposition*1.18.3 ([Jar-Pfl 2000], Proposition 2.2.23). LetD � Cn beabounded
C2-smooth domain. Then D is pseudoconvex iff for any local defining function
u 2 C2.V;R/ we have:

Lu.bIX/ � 0; b 2 V \ @D; X 2 T C
b .@D/ .Levi condition/.

Notice that by Proposition 1.18.2 (c), the Levi condition is independent of u.

Definition 1.18.4. Let D � Cn be a bounded domain. We say that @D is strongly
pseudoconvex in a neighborhood of a point a 2 @D if there exist an open neigh-
borhood U of a and a local defining function u 2 C2.U;R/ such that

Lu.bIX/ > 0; b 2 U \ @D; X 2 .T C
b .@D//�: (1.18.4)

Observe that by Proposition 1.18.2 (c), the definition is independent of u.
We say that D is strongly pseudoconvex if @D is strongly pseudoconvex at any

point a 2 @D.

Remark 1.18.5. (a) Obviously, if n D 1, then any C2-smooth domain D b C is
strongly pseudoconvex.

(b) The notion of the strong pseudoconvexity is invariant under local biholo-
morphic mappings (Exercise).

(c) We will see (Proposition 1.18.8 (a)) that any strongly pseudoconvex domain
is hyperconvex and, consequently, pseudoconvex.

(d) Recall that a bounded domain D � Cn is said to be strongly convex at
a point a 2 @D if there exist an open neighborhood U of a and a local defining
function u 2 C2.U;R/ for D such that

Hu.zI �/ > 0; z 2 U \ @D; � 2 .T R
z .@D//�;

where H denotes the real Hessian (cf. (1.14.8)) and T R
z .@D/ is the real .2n � 1/-

dimensional tangent space to @D at z. The definition is independent of u.
In particular, any strongly convex domain D � Cn is strongly pseudoconvex

(Exercise).

Proposition* 1.18.6 ([Jar-Pfl 2000], Proposition 2.2.5). LetD � Cn be a bounded
domain.

(a) Assume that @D is C2-smooth at a 2 @D. Let U be an open neighborhood
of a and let u 2 C2.U;R/ be strictly psh with (1.18.1) and (1.18.2). Then u satisfies
(1.18.3). In particular, u is a local defining function.
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(b) Let U be an open neighborhood of @D and let u 2 Ck.U;R/, k � 2, be a
local defining function with (1.18.4). Then there exists a c > 0 such that for the
function uc WD 1

c
.ecu � 1/ we have:

Luc.bIX/ > 0; b 2 @D; X 2 .Cn/�:

In particular, uc is strictly psh in a neighborhood of @D .notice that uc is a local
Ck-defining function/.

(c) For k � 2, the following conditions are equivalent:

(i) D is Ck-smooth and strongly pseudoconvex;

(ii) there exist an open neighborhood U of @D and a strictly psh function
u 2 Ck.U;R/ with (1.18.1) and (1.18.2).

With respect to (b) and (c) compare [For 1979] and [Beh 1985] for the case of
general pseudoconvex domains.

Exercise 1.18.7 (Complex ellipsoids; cf. [Jar-Pfl 1993], § 8.4). For n � 2, p D
.p1; : : : ; pn/ 2 Rn>0, define the complex ellipsoid

Ep WD
n
.z1; : : : ; zn/ 2 Cn W

nX
jD1

jzj j2pj < 1
o
: (1.18.5)

Obviously E1 D Bn. Prove the following properties of Ep .

(a) Ep � Dn is a complete Reinhardt domain of holomorphy (use Theo-
rem 1.11.13).

(b) Ep is convex iff p1; : : : ; pn � 1=2.

(c) Ep is geometrically strictly convex 69 if and only if p1; : : : ; pn � 1=2 and
#fj W pj D 1=2g � 1.

(d) @Ep is C!-smooth and strongly pseudoconvex at all points z 2 @Ep \ Cn�.

(e) If p1; : : : ; pn > 1=2, then Ep is strongly convex at all points z 2 @Ep \ Cn�.

(f) Ep is C1-smooth iff p1; : : : ; pn > 1=2.

(g) Ep is C2-smooth iff p1; : : : ; pn � 1.

(h) For p1; : : : ; pn � 1 the following conditions are equivalent:

(i) Ep is strongly convex;
(ii) Ep is strongly pseudoconvex;

(iii) Ep D Bn (i.e. p1 D 	 	 	 D pn D 1).

Determine the interrelations between regularity of the Minkowski function hEp

(cf. Definition 1.8.1) and p.

69That is, if a; b 2 @Ep , a ¤ b, then faC t.b � a/ W 0 < t < 1g � Ep .
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Proposition* 1.18.8 ([Jar-Pfl 2000], Proposition 2.2.25). LetD � Cn be a strongly
pseudoconvex domain.

(a) If D is Ck-smooth .k � 2/, then there exist an open neighborhood U of
xD and a strictly psh defining function u 2 Ck.U;R/. In particular, any strongly
pseudoconvex open set is hyperconvex.

(b) For any open neighborhood U of xD there exists a strongly pseudoconvex
C1-smooth open setD0 such that xD � D0 � U .

1.19� Complete Kähler metrics

Following H. Grauert [Gra 1956], we will study complete Kähler metrics on a
Reinhardt domain D in Cn and interrelations between the existence of such a
metric and holomorphic convexity ofD. Before explaining details let us introduce
the notion of a Hermitian metric on D.

Definition 1.19.1. Let D � Cn be a domain. A system g D .g�;�/1��;��n of
continuous functions g�;� W D ! C is a Hermitian metric (resp. pseudometric) on
D if g�;� D g�;� for all �; 	 and

g.zIX/ WD
nX

�;�D1
g�;�.z/X� xX� > 0 (resp. � 0/; z 2 D; X 2 Cn; X ¤ 0:

If X D 0, then g.zIX/ D 0. Observe that g.zIX/ D g.zIX/.
Given a Hermitian pseudometric g on D as above and a piecewise C1-curve


 W Œ0; 1� ! D. Then the g-length Lg.
/ of 
 is defined as

Lg.
/ WD
Z 1

0

p
g.
.t/I 
 0.t//dt:

Having the notion of the g-length of a curve we introduce the g-pseudodistance
dg

70 between two points of D. Namely, we put

dg.z1; z2/ WD inffLg.
/ W 
 2 yC 1.Œ0; 1�;D/; 
.0/ D z1; 
.1/ D z2g;
z1; z2 2 D; 71

where yC 1.Œ0; 1�;D/ denotes the set of all piecewise C1-curves in D.

70A pseudodistance d on D is a function d W D �D ! RC such that d.z; z/ D 0, d.z;w/ D
d.w; z/, and d.z;w/ � d.z; u/Cd.u;w/ for arbitrary z;w;u 2 D. It is a distance if, in addition,
d.z;w/ > 0 for z ¤ w .

71Note that any two points inD can be connected even by a C1-curve inD. Moreover, observe that
dg.z1; z2/ D inffLg.�/g, where the infimum is taken over all C1-curves in D connecting z1; z2

(Exercise).
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If g is a Hermitian metric on D, then dg is a distance (Exercise). We say
that g is a complete Hermitian metric on D iff g is a Hermitian metric on D and
Bg.a; r/ WD Bdg

.a; r/ D fz 2 D W dg.a; z/ < rg b D for any a 2 D and any
positive r 2 R. This definition means that boundary points of D have “infinite
distance” from inner points of D.

In the sequel we deal with special Hermitian metrics, the so-called Kähler met-
rics.

Definition 1.19.2. Let g D .g�;�/ be a C1-Hermitian metric (resp. pseudometric)
on D, i.e. all the g�;� 2 C1.D/.

(a) g is said to be a Kähler metric (resp. pseudometric) if the functions g�;�
fulfill the following relations:

@g�;�

@zj
D @gj;�

@z�
(and then also

@g�;�

@ Nzj D @g�;j

@ Nz� /; 1 � j; �; 	 � n:

(b) g is a C!-Kähler metric if g is Kähler and g�;� 2 C!.D/, 1 � �; 	 � n.
(c) g is said to be a complete Kähler metric if it is a complete Hermitian one.

Example 1.19.3. (a) Let D � Cn be a domain. Assume that u W D ! R is a
Ck-function, k 2 f1; !g, which is strictly psh on D. Then g�;� WD @2u

@z�@ Nz�
gives

a Ck-Kähler metric on D (Exercise).
(b) Put g�;� WD ı�;�.72 Then g WD .g�;�/ gives the Euclidean metric on Cn; it

is a complete Kähler metric on Cn.

Let f D .f1; : : : ; fm/ W G ! D, G � Cn, D � Cm, be a holomorphic
mapping. Assume that g D .g�;�/ is a Kähler metric on D. Define for z 2 G:

Qg�;�.z/ WD
mX

k;jD1
gk;j .f .z//

@fk

@z�
.z/

@ Nfj
@ Nz� .z/; 1 � �; 	 � n;

i.e. Qg.zIX/ D g.f .z/If 0.z/X/. Then it is easily seen that Qg WD . Qg�;�/ is a
Kähler pseudometric on D (Exercise). We write f �1.g/ WD Qg and say that Qg is
the pullback of g via f .

Moreover, let 
 W Œ0; 1� ! G be a piecewise C1-curve. Then f B 
 gives a
piecewise C1-curve in D and Lg.f B 
/ D Lf �1.g/.
/ and therefore,

df �1.g/.a; b/ � dg.f .a/; f .b//; a; b 2 G:
There is the following equivalent description for a C1-Hermitian metric g to

be Kähler.

Theorem 1.19.4. Let D � Cn be as above and g a C1-Hermitian metric on D.
Then the following properties are equivalent:

72As usual, ı�;� means the Kronecker symbol.
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(i) g is Kähler;

(ii) for any point a 2 D there exist a polydisc P D P.a; r/ � D and a strictly
psh function U 2 C1.P;R/ such that

g�;�.z/ D @2U

@z�@ Nz� .z/; z 2 P; 1 � �; 	 � n:

The function U in Theorem 1.19.4 is a local potential of g.
The proof of Theorem 1.19.4 needs some preparations. First, we recall the

Poincaré lemma from an analysis course.

Lemma 1.19.5. Let G � RN be a convex domain and let .fi;j /1�i<j�N �
C1.G;R/ .resp. .fj /1�j�N � C1.G;R//. Assume the following integrability
conditions

@fk;`

@xj
� @fj;`

@xk
C @fj;k

@x`
D 0; 1 � j < k < ` � N

.resp.
@fj

@xk
D @fk

@xj
; 1 � j; k � N/

on G. Then there are C1.G;R/-functions gj , 1 � j � N , .resp. a C1.G;R/-
function g/ with

@gk

@xj
� @gj

@xk
D fj;k; 1 � j < k � N .resp.

@g

@xj
D fj , 1 � j � N/.

Note that this result is often formulated in the language of differential forms,
e.g. if the 2-form ˛ WD P

1�i<j�n fi;jdxi ^ dxj is d -closed, i.e. d˛ D 0, then
there exists a 1-form ˇ D Pn

jD1 gjdxj with dˇ D ˛. The reader is asked to recall
or to study the meaning of differential forms.

Moreover, there are similar results for the complex case. We only formulate
that one which is needed in the sequel.

Lemma 1.19.6. Let a 2 Cn, r 2 .0;1/, and j̨ 2 C1.P.a; r//, 1 � j � n.
Assume the following integrability conditions on P.a; r/:

@ j̨

@ Nzk D @˛k

@ Nzj ; 1 � j; k � n:

Then, for any r 0 2 .0; r/, there is a function f 2 C1.P.a; r 0// such that

@f

@ Nzj D j̨ on P.a; r 0/; 1 � j � n:
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Proof. To prove the lemma we slightly reformulate its statement as follows.
For m D 1; : : : ; nC 1, the following is true:
./m given positive numbers r 0 < r and j̨ 2 C1.P.a; r//, j D 1; : : : ; n,

with ˛m D 	 	 	 D ˛n D 0 such that the integrability conditions are satisfied, then
there exists an f 2 C1.P.a; r 0// with @f

@ Nzj D j̨ on P.a; r 0/, 1 � j � n.

Note that ./nC1 is exactly the statement of the lemma.
To prove this new formulation we proceed by induction onm. We may assume

a D 0 (Exercise). The casem D 1 is obviously true; take just the function f D 0.
Now let us assume that ./m is true for some m � n. Fix positive numbers

r 0 < r and functions j̨ 2 C1.P.r//, 1 � j � n, with ˛mC1 D 	 	 	 D ˛n D 0,
such that the integrability conditions are satisfied. Choose numbers r1; r2 with
r 0 < r1 < r2 < r and a cut-off function � 2 C1.C/ such that �jK.r1/ � 1 and
�.�/ D 0 if j�j � r2.

For z D .z0; zm; z00/ 2 P.r/ � Cm�1 � C � Cn�m, the function

C 3 � 7!
(
�.�/˛m.z

0; �; z00/ if j�j < r;
0 if j�j � r

is in C1.C/ and has a compact support. Therefore,

g W P.r/ ! C; g.z/ WD � 1
�

Z
C
�.�/

˛m.z
0; �; z00/

� � zm d�d�; � D � C i�;

belongs to C1.P.r//. Moreover, we have
� @g

@ Nzm
D �.zm/˛m.z/ D ˛m.z/, when z 2 P.r1/,73

� @g
@ Nzj .z/ D 0, when z 2 P.r/ and j > m (use the assumption and the

integrability conditions).
Instead of dealing with j̨ we are going to study the functions

Q̨j WD j̨ � @g

@ Nzj 2 C1.P.r//; 1 � j � n:

Note that this new system of functions fulfills the conditions of ./m on P.r1/.
Therefore, by the induction hypothesis, there exists an Qf 2 C1.P.r 0// such that

@ Qf
@ Nzj D Q̨j ; 1 � j � n

on P.r 0/. Setting f WD Qf C g on P.r 0/ leads to a function solving all required
differential equations. �

73Recall from a one complex variable course that if h 2 C1
0 .C/, then the function v.�/ WD

� 1
�

R
C

h.	/

��	
d�d�, � D � C i�, belongs to C1.C/ and satisfies @v

@ N�
D h on C (Exercise).
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Remark 1.19.7. In fact, the above lemma is still true for r 0 D r . In this strong
form the result is due to Dolbeault; it is Dolbeault’s lemma (see e.g. [Hör 1990]).
As before, it is mostly formulated with the help of a differential form. So we repeat
our suggestion from above for the interested reader to study differential forms.

Proof of Theorem 1.19.4. Obviously, we only have to prove (i) ) (ii). Write

g�;� D ˛�;� C iˇ�;�

with real-valued functions ˛�;� and ˇ�;�. Note that j̨;k D ˛k;j and ǰ;k D �ˇk;j .
Now fix an a 2 D and a polydisc P.a; r/ � D. Then we introduce the following
system of functions .fj;k/1�j<k�2n � C1.D;R/, where

fj;k WD

8̂<̂
:

� ǰ;k if 1 � j < k � n;

� ǰ�n;k�n if nC 1 � j < k � nC n;

j̨;k�n if 1 � j � n; nC 1 � k � nC n:

Then the integrability conditions in Lemma 1.19.5 (with N D 2n) are satisfied.
Indeed, we have to show the following four equations.

(i)
@˛k;`

@xj
� @ j̨;`

@xk
� @ ǰ;k

@y`
D 0; 1 � j < k � n; 1 � ` � n;

(ii)
@ j̨;`

@yk
� @ j̨;k

@y`
C @ˇk;`

@xj
D 0; 1 � j � n; 1 � k < ` � n;

(iii)
@ˇk;`

@xj
� @ ǰ;`

@xk
C @ ǰ;k

@x`
D 0; 1 � j < k < ` � n;

(iv)
@ˇk;`

@yj
� @ ǰ;`

@yk
C @ ǰ;k

@y`
D 0; 1 � j < k < ` � n:

To do so recall the Kähler conditions from Definition 1.19.2. Separating them into
the real and imaginary parts we have

.k0
j;�;�/

@ j̨;�

@x�
C @ ǰ;�

@y�
�
�@˛�;�
@xj

C @ˇ�;�

@yj

�
D 0; 1 � j; �; 	 � n;

.k00
j;�;�/ �@ j̨;�

@y�
C @ ǰ;�

@x�
�
�@ˇ�;�
@xj

� @˛�;�

@yj

�
D 0; 1 � j; �; 	 � n:

Inserting (k0
k;`;j

) into (i) (resp. (k00
k;`;j

) into (ii)) we see that equation (i) (resp. (ii))
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is the same as (iv) (resp. (iii)). So what remains is to verify (iii) and (iv). Note that

0 D @˛k;`

@xj
C @ˇk;`

@yj
�
�
@ j̨;`

@xk
C @ ǰ;`

@yk

�
�
�
@˛k;j

@x`
C @ˇk;j

@y`
�
�
@˛`;j

@xk
C @ˇ`;j

@yk

��
C @ j̨;k

@x`
C @ ǰ;k

@y`
�
�
@˛`;k

@xj
C @ˇ`;k

@yj

�
D 2

�
@ˇk;`

@yj
C @ ǰ;k

@y`
� @ ǰ;`

@yk

�
:

Hence (iv) is true. In the same way the reader may verify (iii).
By Lemma 1.19.5 there exist 2n functions 'j ;  j 2 C1.P.a; r// satisfying the

following equations:

@'k

@xj
� @'j

@xk
D fj;k D � ǰ;k; 1 � j < k � n;

@ k

@yj
� @ j

@yk
D fn�j;n�k D � ǰ;k; 1 � j < k � n;

@ j

@xk
� @'k

@yj
D fk;nCj D ˛k;j ; 1 � j; k � n:

Put gj WD 'j C i j 2 C1.P.a; r/;C/, 1 � j � n. Then .gj /1�j�n satisfies the
integrability criterion in Lemma 1.19.6. Indeed, we have

2
@gk

@ Nzj � 2@gj
@ Nzk

D @'k

@xj
� @ k

@yj
� @'j

@xk
C @ j

@yk
C i

�
@ k

@xj
C @'k

@yj
� @'j

@yk
� @ j

@xk

�
D 0;

1 � j < k � n:

Now fix an r 0 2 .0; r/. Then, in virtue of Lemma 1.19.6, we find a function
h 2 C1.P.a; r 0/;C/ satisfying

@h

@ Nzj D gj D 'j C i j ; 1 � j � n:

Writing h D h1 C ih2 we have

2'j D @h1

@xj
� @h2

@yj
and 2 j D @h2

@xj
� @h1

@yj
; 1 � j � n:

Combining the facts we collected so far, we get

ǰ;k D @'j

@xk
� @'k

@xj
D 1

4

�
@2

@xj @yk
� @2

@xk@yj

�
.2h2/; 1 � j < k � n;
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and

j̨;k D 1

4

�
@2

@xj @xk
C @2

@yk@yj

�
.2h2/; 1 � j; k � n:

Summarizing, the function U WD 2h2 2 C1.P.a; r 0/;R/ fulfills

@2U

@zj @ Nzk D gj;k; 1 � j; k � nI

Hence U is a local potential around the point a. �

Remark 1.19.8. Another application of the Poincaré lemma deals with plurihar-
monic functions (cf. Definition 1.14.26). Namely, using Lemma 1.19.5, we give
another proof of Proposition 1.14.28.

Suppose that D � Cn is a convex domain and u 2 PH.D/. Then there exists
an f 2 O.D/ with Re f D u.

Proof. First, recall that u is a harmonic function and therefore u 2 C1.D/. Obvi-
ously, the system .fj /1�j�2n with

fj WD
(� @u

@yj
if 1 � j � n;

@u
@xj �n

if nC 1 � j � 2n;

satisfies the integrability conditions from Lemma 1.19.5 (cf. (1.14.6)). Therefore,
in virtue of Lemma 1.19.5, we find a v 2 C1.D;R/ such that

@v

@xj
D � @u

@yj
;

@v

@yj
D @u

@xj
; 1 � j � n:

Putting f WD uC iv gives a C1.D/-function which satisfies the Cauchy–Riemann
equations. Hence f is the holomorphic function whose existence is claimed in the
theorem. �

The following result connects the notion of holomorphic convexity with the one
of a complete Kähler metric.

Theorem 1.19.9 ([Gra 1956]). Every holomorphically convex domain D in Cn

carries a complete C!-Kähler metric.

Proof. By Remark 1.13.3 (b), there exists a sequence .Lj /1jD1 of holomorphically
convex compact subsets ofD such that Lj � intLjC1 andD D S1

jD1Lj . Fix an
index j . Then, for any point z 2 @LjC1 one may choose a function fz 2 O.D/

satisfying kfzkLj
< 1 < jfz.z/j.74 Since @LjC1 is compact there are points

zk 2 @LjC1, k D 1; : : : ; k.j /, and open neighborhoods Vj;k D Vj;k.zk/ � D

74Use that Lj is holomorphically convex.



1.19�. Complete Kähler metrics 153

such that @LjC1 � Sk.j /

kD1 Vj;k and infVj;k
jfj;kj > 1, k D 1; : : : ; k.j /, where

fj;k WD fzk
. Since kfj;kkLj

< 1, we may choose an exponent ~j 2 N such that

k Qfj;kk2Lj
< 1

2j k.j /
, where Qfj;k WD jf

~j

j;k
. In a next step we discuss the series

u WD
1X
jD1

� k.j /X
kD1

Qfj;k Qfj;k
�
:

In virtue of the above construction it is clear that this series converges locally
uniformly on D. Reading this sequence on D � xD as

u.z; w/ D
1X
jD1

� k.j /X
kD1

Qfj;k.z/ Qfj;k. xw/
�

shows that the series, in fact, gives a holomorphic function on D � xD. In virtue of
the Weierstrass theorem (Theorem 1.7.19), we finally obtain

g�;�.z/ WD @2u

@z�@ Nz� .z; Nz/ D
1X
jD1

� k.j /X
kD1

@ Qfj;k.z/
@z�

@ Qfj;k.z/
@ Nz�

�
:

Observe that the g�;�’s are real analytic functions on D which define a Hermitian
pseudometric g. Put Og�;�.z/ WD g�;�.z/Cı�;�. Then the Og�;�’s define a C!-Kähler
metric Og on D, i.e. Og.zIX/ D g.zIX/C kXk2.

What remains is to show that this metric is a complete one on D. Note that
dg � d Og . Therefore, B Og.a; r/ � Bg.a; r/, a 2 D, r > 0. Hence, it suffices to
show that Bg.a; r/ lies relatively compact in D.

In fact, fix a 2 D and r > 0. We may assume that a 2 intL1. Assume now that
there is a point b 2 B.a; r/ nLsC1. Take an arbitrary C1-curve 
 W Œ0; 1� ! D with

.0/ D a, 
.1/ D b. Then there exists a t0 2 .0; 1/ with the following properties:

.t/ 2 intLsC1, 0 � t < t0, and 
.t0/ 2 @LsC1. We find an index jb , 1 � jb �
k.s/, such that 
.t0/ 2 Vs;jb

. Therefore, jfs;jb
.
.t0//j > 1. Thus, by definition,

j Qfs;jb
.
.t0//j > s. On the other hand, recall that j Qfs;jb

.
.0//j <
q

1
2k.1/

DW const.

Thus, Q
 WD Qfs;jb
B 
 W Œ0; t0� ! C defines a C1-curve in the complex plane; in

particular, Z t0

0

ˇ̌̌̌
d Q
.t/
dt

ˇ̌̌̌
dt � j Q
.t0/ � Q
.0/j � s � const :

It remains to estimate Lg.
/ from below. In fact, we have

Lg.
/ �
Z t0

0

p
g.
.t/I 
 0.t//dt �

Z t0

0

k Qf 0
s;jb

.
.t//
 0.t/k �
Z t0

0

ˇ̌̌̌
d Q
.t/
dt

ˇ̌̌̌
dt:
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Hence, dg.a; b/ � s�const ! 1 when s ! 1. Therefore,Bg.a; r/ is contained
in some L� ; in particular, it is a relatively compact subset of D.

Hence the proof is completed. �

In virtue of Theorem 1.13.5 we have the following consequence.

Corollary 1.19.10. Any Reinhardt domain of holomorphy carries a complete
C!-Kähler metric.

In a next step we discuss some examples of domains carrying a complete C!-
Kähler metric.

Lemma 1.19.11. LetD WD .Cn/�. ThenD carries a complete C!-Kähler metric.

Proof. Put u W .0;1/ ! R, u.t/ WD t�1
t log t . Then u is a real analytic function

satisfying the following properties (Exercise):

� u.t/ > 0, t 2 .0;1/,

� R 1
0
tu2.t/dt DW d 2 RC,

� R 1
0
u.t/dt D 1.

Moreover, put v.t/ WD R t
0
�u2.�/d� , t 2 .0;1/, and let U be a primitive

of � 7! v./


on .0;1/. Finally, set h W D ! R, h.z/ WD U.kzk2/, and define

g�;� WD @2h
@z�@ Nz�

. Then the g�;� are real analytic functions on D and they give a
Kähler pseudometric g D .g�;�/1��;��n.

Indeed,

g�;�.z/ D U 00.kzk2/z� Nz� C U 0.kzk2/ı�;�; z 2 D; �; 	 D 1; : : : ; n:

Therefore, applying the Schwarz inequality,

g.zIX/ D
�
u2.kzk2/ � v.kzk2/

kzk2
�ˇ̌̌ nX
�D1

Nz�X�
ˇ̌̌2 C v.kzk2/

kzk2 kXk2 � 0;

z 2 D; X 2 Cn:

It remains to modify g to obtain a Kähler metric on D. We simply set Qg D
. Qg�;�/, where Qg�;� WD g�;� C ı�;�.

With respect to Qg we have d Qg.a; b/ � ka�bk, a; b 2 D. Hence, Qg is “complete
at infinity”. To discuss the behavior of Qg near the origin, fix points a; b 2 D with
kbk < 1 < kak. Let 
 W Œ0; 1� ! D be a C1-curve in D with 
.1/ D b and

.0/ D a. Since 
 has to pass @B, it suffices to consider a 
 satisfying k
.0/k D 1
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and k
.t/k � 1, 0 � t � 1. Then

L Qg.
/ � Lg.
/ �
Z 1

0

u.k
.t/k2/
ˇ̌̌ nX
�;�D1

N
�.t/
 0
�.t/

ˇ̌̌
dt

� 1

2

ˇ̌̌̌ Z 1

0

u.k
.t/k2/2Re
� nX
�;�D1

N
�.t/
 0
�.t/

�
dt

ˇ̌̌̌

� 1

2

Z k�.0/k2

k�.1/k2

u.t/dt � 1

2

Z 1

kbk2

u.t/dt:

So we obtain

d Qg.a; b/ � 1

2

Z 1

kbk2

u.t/dt ���!
b!0

1:

Hence, Og is a complete Kähler metric on D. �

Using the metric we found in Lemma 1.19.11, it is possible to generalize
Lemma 1.19.11 in the following form.

Theorem 1.19.12. Let D � Cn be a holomorphically convex domain and let
f1; : : : ; fk 2 O.D/. Define A WD fz 2 D W f1.z/ D 	 	 	 D fk.z/ D 0g. Then
D n A carries a complete C!-Kähler metric.

Proof. Observe that f D .f1; : : : ; fk/ W D nA ! Ck n f0g defines a holomorphic
mapping. Therefore, we have the Kähler pseudometric Qg WD f �1.g/, where g

denotes the complete Kähler metric on Ck� from Lemma 1.19.11. In virtue of
Theorem 1.19.9, we may take a complete Kähler metric Og on D. Then h�;� WD
Qg�;� C Og�;� leads to the Kähler metric h D .h�;�/ on D n A we are looking for.

In fact, recall that dh.a; b/ � d Qg.a; b/ � dg.f .a/; f .b//, a; b 2 D n A.
Suppose that there is a point z0 2 D n A and a sequence .aj /j � D n A

that converges to a boundary point a of D n A. In case that a 2 @D we have
dh.z

0; aj / � d Og.z0; aj / ! 1 when j ! 1. Or we have that a 2 A and then
dh.z

0; aj / � dg.f .z
0/; f .aj // ! 1. Hence, h is a complete Kähler metric on

D n A. �

Remark 1.19.13. (a) Recall that D WD .Cn/�, n � 2, is not holomorphically
convex (Exercise). Nevertheless, Lemma 1.19.11 shows thatD carries a complete
Kähler metric. Therefore, the converse of the statement in Theorem 1.19.9 is, in
general, not true.

(b) In the case of a Reinhardt domain D of holomorphy we know that D and
also D n V0 carry complete Kähler metrics.

(c) In [Gra 1956] it is shown that for any domain of holomorphy D � Cn and
any analytic subset A of D,75 the domain D nA carries a complete Kähler metric.

75For a definition see Remark 1.9.13.
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Moreover, ifD has a C!-boundary, then we have the following characterization:
D is a domain of holomorphy if and only if there is a complete Kähler metric onD.

(d) In [Ohs 1980a], T. Ohsawa has generalized the above result by H. Grauert
for domains with C1-boundary. Hence, in the category of domains with a C1-
boundary, there is a complete description of domains of holomorphy in terms of
complete Kähler metrics.

We start to discuss the consequences of the existence of a complete Kähler
metric in case of Reinhardt domains.

Theorem 1.19.14. Let D be a Reinhardt domain in Cn. Assume that there is a
complete Kähler metric onD. ThenD is logarithmically convex.

Proof. Take a complete Kähler metric g D .g�;�/ on D. Put

Qg�;�.z/ WD
�
1

2�

�n Z 2


0

	 	 	
Z 2


0

g�;�.e
i�1z1; : : : ; e

i�nzn/e
i.�����/d�1 : : : d�n;

z 2 D:
An easy calculation shows that Qg WD . Qg�;�/ is again a Kähler metric on D (Exer-
cise).

Now let 
 W Œ0; 1� ! D be a C1-curve. Then

L Qg.
/ D
Z 1

0

p
Qg.
.t/I 
 0.t//dt

D
Z 1

0

��
1

2�

�nZ 2


0

	 	 	
Z 2


0

g.
� .t/I 
 0
� .t//d�1 : : : d�n

�1=2
dt

�
�
1

2�

�n Z 2


0

	 	 	
Z 2


0

Z 1

0

q
g.
� .t/I 
 0

�
.t//dtd�1 : : : d�n

�
�
1

2�

�n Z 2


0

	 	 	
Z 2


0

Lg.
� /d�1 : : : d�n

� inffdg.z; w/ W z 2 T�.0/; w 2 T�.1/g D dg.T�.0/;T�.1//;

where Ta WD f.�1a1; : : : ; �nan/ W �1; : : : ; �n 2 T g denotes the n-dimensional torus
through a 2 Cn and


� .t/ WD .
�;1; : : : ; 
�;n/.t/ WD .ei�1
1.t/; : : : ; e
i�n
n.t//:

76

Using the last inequality we continue proving that Qg is complete on D. Fix
points a; aj 2 D with aj ! @D (or aj ! 1 (if possible)). Then d Qg.a; aj / �

76(a) Observe that � 7! Lg.�� / is continuous. (b) The first inequality is a consequence of the
Schwarz inequality (Exercise).
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dg.Ta;Taj
/ for any j . Thus, for suitable bj 2 Ta and cj 2 Taj

, it follows that
d Qg.a; aj / C 1 � dg.bj ; cj /. We may assume that cj ! @D (or cj ! 1) and
d Qg.a; aj / � dg.a; cj /� dg.bj ; a/� 1 � dg.a; cj /�M for a suitable number M
(observe that dg.a; 	 / is continuous on the compact torus Ta). Therefore, applying
that g is complete, we get d Qg.a; aj / ! 1, i.e. Qg is a complete Kähler metric onD.

Now, take the pullback h of Qg via the holomorphic mapping

˚ W T WD logD C iRn ! D; ˚.w/ WD .ew1 ; : : : ; ewn/;

i.e. h WD ˚�1. Qg/ D .h�;�/. In particular, h�;�.w/ D Qg�;�.˚.w//ew�e xw� D
h�;�.u/whenw D uCiv 2 T , i.e. the functionsh�;� depend only on the variableu.

Exploiting the Kähler conditions for h we see that @h�;�

@uj
D @hj;�

@u�
on T . So we

obtain n closed one-forms on logD,77 namely ˛� WD Pn
�D1 h�;�du� , 1 � 	 � n

(cf. Lemma 1.19.5).
Suppose now that logD is not convex. Then one may choose points u0; u00 2

logD such that their connecting segment Œu0; u00� is not contained in logD. Ap-
plying that logD is connected there is a C1-curve 
 W Œ0; 1� ! logD connecting u0
with u00. Then there exists t0 2 .0; 1� such that Œu0; 
.t/� � logD, 0 � t < t0, but
Œu0; 
.t0/� 6� logD. Take an s0 2 .0; 1/with 
t0.s/ WD u0 C s.
.t0/�u0/ 2 logD,
0 � s < s0, and 
t0.s0/ 2 @ logD. Observe that ˚.
t0.s0// 2 @D. Then, setting
X WD 
 0

t0
.0/, the Hölder inequality leads to

nX
�D1

X�

Z
�t0

jŒ0;s�

˛� � �
Lh.
t0 jŒ0;s�

�2
� dh.
t0.0/; 
t0.s//

2 � d Qg.˚.
t0.0//; ˚.
t0.s///2 �!
s%s0

1;

since Qg is a complete metric on D.
For 0 � t < t0, put 
t W Œ0; 1� ! logD, 
t .s/ WD u0 C s.
.t/ � u0/ and

X.t/ WD 
.t/ � u0. Note that jPn
�D1

R
� jŒ0;t0�

˛�j � M , M > 2.

Now, choose s 2 Œ0; s0/ near s0 such that
Pn
�D1X�

R
�t0

jŒ0;s�
˛� � 2M C 1.

77A one-form (or a Pfaffian form) ˛ on a domain˝ � Rn can be thought as an n-tuple .f1; : : : ; fn/
of continuous functions fj W ˝ ! C written in the form ˛ D Pn

j D1 fjdxj . Such one-forms can be
integrated along C1-curves � W Œa; b� ! ˝ defining

Z



˛ WD
Z b

a

nX
j D1

fj .�.t//�
0
j .t/dt:

In case that all fj 2 C1.˝/, ˛ is called closed if
@fj

@xk
D @fk

@xj
, 1 � j; k � n.
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Then, for a t , t < t0, sufficiently near t0, it follows that

2M �
nX

�D1
X�

Z
�t0

jŒ0;s�

˛� � 1 �
nX

�D1
X�.t/

Z
�t jŒ0;s�

˛� D Lh.
t jŒ0;s�/

� Lh.
t / D
nX

�D1
X�.t/

Z
�t

˛�
.�/D
ˇ̌̌ nX
�D1

X�.t/

Z
� jŒ0;t�

˛�

ˇ̌̌
� M C 1I

a contradiction. Observe that equality ./ is a consequence of the fact that the
curves 
t and 
 jŒ0;t� are homotopic (Exercise) and the one-forms ˛� are closed.
Hence, the Stokes theorem applies and gives .). �

Thus Theorem 1.19.14 shows that a Reinhardt domain with a complete Kähler
metric is almost holomorphically convex. Hence, by Remark 1.12.7, we get

Corollary 1.19.15. Let D be a Reinhardt domain in Cn. Assume that there is a
complete Kähler metric on D. Then D� n M.D/ is the envelope of holomorphy
ofD.

In fact a stronger result holds. In order to be able to formulate it we need the
following definition.

Definition 1.19.16. For a Reinhardt domainD � Cn, let yD be the set of all points
a 2 Cn such that there is a neighborhood U D U.a/ with

U n
[

Vi1
\���\Vik

\DD¿;
1�i1<���<ik�n;

2�k�n

Vi1 \ 	 	 	 \ Vik � D:

Exercise 1.19.17. (a) yD is a Reinhardt domain containing D.
(b) yD � D� nM.D/.
(c) Find a log-convex Reinhardt domain D � C2 such that yD   D� nM.D/.
With this notion in mind there is the following result which we present here

without giving a proof.

Theorem*1.19.18 ([Gra 1956]). LetD � Cn be aReinhardt domainwhich carries
a complete Kähler metric. Then yD is holomorphically convex. Consequently,
yD D D� nM.D/.

In particular, if D � C2 is a Reinhardt domain with a complete Kähler metric,
then D or D [ f0g is a domain of holomorphy.

We like to mention that one main step of the proof of Theorem 1.19.18 consists
in proving the following intermediate result:
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Suppose thatD � Cn is a Reinhardt domain carrying a completeKählermetric.
Assume further that Vj \ D ¤ ¿. Then .a0; 0; a00/ 2 D for every .a0; aj ; a00/ in
D \ .Cj�1� � C � Cn�j� /.78

Remark 1.19.19. (a) Theorem 1.19.18 can be thought as a special case of the fol-
lowing general result (cf. [Die-Pfl 1981]): Let D � Cn be a domain that carries a
complete Kähler metric. Moreover assume that D is locally a domain of holomor-
phy at any point a 2 A WD int xD nD.79 Then D is a domain of holomorphy.

As in the Reinhardt case this result shows that the obstruction for D to be a
domain of holomorphy lies in the nature of a certain thin complement int xD nD.

(b) In [Ohs 1980a], T. Ohsawa proved the following result: Let D � Cn be a
domain and A � D a closed real C1-submanifold of D of real dimension 2n � 2.
Assume that D n A carries a complete Kähler metric. Then A is necessarily a
complex submanifold. In particular, the real dimension of A is even. Observe that
here the real codimension d WD 2n � .2n � 2/ of A is by assumption exactly 2.

(c) For the higher codimensional case, the following modification of the former
theorem is due to [Die-For 1982]: Let D and A be as in (b). Moreover, assume
that A is now a real analytic closed submanifold of dimension 2n� d , d � 3, such
that D n A has a complete Kähler metric. Then A is an analytic set. In particular,
A has an even real dimension.

(d) Surprisingly, the condition on A to be real analytic cannot be weakened,
for example, to be only of type C1. In fact, there is the following result (see
[Die-For 1982]): There is a closed C1-submanifold A of Bn of real dimension
2n � d , d � 3, which is not an analytic set but, nevertheless, D n A allows a
complete Kähler metric.

(e) Observe that for a real closed C1-submanifold A in a domain D of real
dimension 2n � 2 the following is true: A is analytic if and only if A is nowhere
linearly generated (for a point a 2 A, A is called linearly generated at a if the
smallest complex linear subspace of Cn containing the real tangent space of A at a
coincides with Cn). This observation allows the following generalization of (b) (cf.
[Die-For 1984]): Let A be a closed real C1-submanifold of a domain D � Cn of
real dimension 2n � d , d � 3, such that D n A admits a complete Kähler metric.
Then A is nowhere linearly generated.

78Compare the notion of weak relative completeness (cf. Theorem 1.11.13).
79That is, there is a neighborhood U D U.a/ such that any connected component of D \ U is a

domain of holomorphy.



Chapter 2

Biholomorphisms of Reinhardt domains

2.1 Introduction

Let G;D � Cn be domains. Recall that Bih.G;D/ denotes the set of all biholo-
morphic mappings F W G ! D. For a 2 G, b 2 D, put

Biha;b.G;D/ WD fF 2 Bih.G;D/ W F.a/ D bg:
Define

Aut.G/ WD Bih.G;G/; Auta;b.G/ WD Biha;b.G;G/; Auta.G/ WD Auta;a.G/:

Recall that Aut.G/ with the operation

Aut.G/ � Aut.G/ 3 .˚; �/ ! � B ˚ 2 Aut.G/

is a group and Auta.G/ is a subgroup of Aut.G/. Observe that if F 2 Bih.G;D/,
then the mapping

Aut.G/ 3 ˚ �F��! F B ˚ B F �1 2 Aut.D/

is a group isomorphism. Moreover, if F 2 Biha;b.G;D/, then �F .Auta.G// D
Autb.D/.

From the point of view of the theory of holomorphic functions, domains which

are biholomorphic (G
bih' D) may be identified – thus it is important to know when

Bih.G;D/ ¤ ¿ or (more precisely) when Biha;b.G;D/ ¤ ¿.
On the other hand, the group Aut.G/ characterizes the holomorphic geome-

try of G and, therefore, it is important to describe the structures of Aut.G/ and
Auta;b.G/.

Definition 2.1.1. We say that a domainG is homogeneous if the group Aut.G/ acts
transitively on G, which means that Auta;b.G/ ¤ ¿ for any a; b 2 G, i.e. for any
a; b 2 G there exists a ˚ 2 Aut.G/ with ˚.a/ D b.

We say that a domain G is symmetric at a point a 2 G if there exists a ˚ 2
Auta.G/ such that ˚2 D id and a is an isolated point of the fixed point set

Fix.˚/ WD fz 2 G W ˚.z/ D zg:
We say that G is symmetric if G is symmetric at every point a 2 G.
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Remark 2.1.2. (a) G is homogeneous iff there exists a point a0 2 G such that
Auta0;b.G/ ¤ ¿ for every b 2 G.

(b) The notion of a homogeneous (resp. symmetric) domain is invariant under
biholomorphic mappings.

Indeed, let F 2 Bih.G;D/ and assume that D is homogeneous. Fix a; b 2 G.
Let ˚ 2 AutF.a/;F .b/.D/. Then F �1 B ˚ B F 2 Auta;b.G/.

In the case where D is symmetric, a 2 G, and ˚ 2 AutF.a/.D/ is such that
˚2 D id and the point F.a/ is isolated in Fix.˚/, then � WD F �1 B ˚ B F 2
Auta.G/, �2 D id, and the point a is isolated in F �1.Fix.˚// D Fix.�/.

(c) If Gj � Cnj is homogeneous (resp. symmetric), j D 1; 2, then G1 �G2 is
homogeneous (resp. symmetric).

(d) IfG is homogeneous and symmetric at a point a0 2 G, thenG is symmetric.
Indeed, let ˚ 2 Auta0

.G/ be such that ˚2 D id and a0 is an isolated point of
the set Fix.˚/. Take a b 2 G and let F 2 Auta0;b.G/. Put � WD F B ˚ B F �1 2
Autb.G/. Then �2 D id and Fix.�/ D F.Fix.˚//.

(e) LetG be a homogeneous domain with 0 2 G. By (d), ifG is symmetric with
respect to 0 in the geometric sense (i.e. z 2 G ) �z 2 G), then G is symmetric
in the sense of Definition 2.1.1.

(f) If G is homogeneous and Bih.G;D/ ¤ ¿, then Biha;b.G;D/ ¤ ¿ for all
points a 2 G, b 2 D.

Theorem 2.1.3. Let D � Cn be a bounded homogeneous domain. Then D is a
domain of holomorphy.

Proof. Suppose D0 and zD to be as in Proposition 1.11.2 (*) with S D O.D/.
We may assume that D0 is a connected component of D \ zD. Fix points a 2 D0,
b 2 .@D0/\ zD. Let .bk/1kD1 � D0 be such that bk ! b. SinceD is homogeneous,
there exists a ˚k 2 Auta;bk

.D/, k 2 N. Since D is bounded, we may assume that
˚k ! ˚ locally uniformly in D, where ˚ W D ! xD is a holomorphic mapping
with ˚.a/ D b. We are going to show that J˚.a/ ¤ 0.

Indeed, put �k WD ˚�1
k

2 Autbk ;a.D/. Let z�k W zD ! Cn be the holomorphic

extension of �k with z�k D �k on D0, k 2 N. Since D is bounded, we may
assume that �k ! � locally uniformly inD, where � W D ! xD is a holomorphic
mapping. Let z� be the holomorphic extensions of � . Since the extension operator
is continuous (cf. Remark 1.11.3 (p)), we conclude that z�k ! z� locally uniformly
in zD. Let U b D0 be a connected neighborhood of a such that ˚.U / b zD. We
may assume that˚k.U / � zD, k 2 N. Thus˚k.U / is a domain contained inD\ zD
with bk D ˚k.a/ 2 ˚k.U /. Hence ˚k.U / � D0. Consequently, for z 2 U , we
obtain

z D �k.˚k.z// D z�k.˚k.z// ! z�.˚.z//
and, therefore, J˚.z/ ¤ 0, z 2 U . Hence, we may assume that ˚ jU W U ! V is
biholomorphic, where V WD ˚.U / is an open neighborhood of b.
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Recall that V � xD. If D is fat, then we have a contradiction. In the general
case we argue as follows. Take a Euclidean ball B b U centered at a. For a
compact K � Cn let .b;K/ WD inffkb � wk W w 2 Kg. Since b … ˚k. xB/, we
get .b; ˚k.@B// D .b; ˚k. xB//, k 2 N (Exercise). Then

0 < .b; @˚. xB// D .b; ˚.@B// D lim
k!C1

.b; ˚k.@B//

D lim
k!C1

.b; ˚k. xB// D .b; ˚. xB// D 0I

a contradiction. �

Exercise 2.1.4. Prove that .C2/� is homogeneous, but is not a domain of holo-
morphy.

Exercise 2.1.5 (Examples of groups of automorphisms of planar domains).

(a) Aut.C/ D fC 3 z 7! az C b 2 C W .a; b/ 2 C� � Cg,

Aut0.C/ D fC 3 z 7! az 2 C W a 2 C�g.

In particular:
� Aut.C/ acts transitively on C;
� Aut.C/ depends on 4 real parameters;
� Aut0.C/ depends on 2 real parameters.

(b) Given an a 2 D, put

ha.z/ WD z � a
1 � Naz ; z 2 C n f1= Nag 
 xD: (2.1.1)

Observe that ha 2 Aut.D/, ha.a/ D 0, and h�1
a D h�a. Then:

Aut.D/ D f�ha W � 2 T ; a 2 Dg;
Aut0.D/ D f�h0 W � 2 T g:

In particular:
� Aut.D/ acts transitively on D;
� Aut.D/ depends on 3 real parameters;
� Aut0.D/ depends on 1 real parameter.

(c) Let A D A.R/ WD fz 2 C W 1=R < jzj < Rg. Observe that every annulus
fz 2 C W r1 < jzj < r2g with 0 < r1 < r2 < C1 is biholomorphic to A.R/ with
R WD p

r2=r1. Then

Aut.A/ D fA 3 z 7! �z 2 A W � 2 T g [ fA 3 z 7! �=z 2 A W � 2 T g:
In particular:

� Aut.A/ does not act transitively on A;
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� Aut.A/ depends on 1 real parameter.1

(d) Aut.C� � C�/: The following mappings F W C2� ! C2� are biholomorphic:

� F.z1; z2/ WD .z1e
n2f .z

n1
1
z

n2
2
/; z2e

�n1f .z
n1
1
z

n2
2
//, where n1; n2 2 Z and

f 2 O.C�/;
� F.z1; z2/ WD .z

a1;1

1 z
a1;2

2 ; z
a2;1

1 z
a2;2

2 /, where aj;k 2 Z with a1;1a2;2 �
a1;2a2;1 D ˙1;

� F.z1; z2/ WD .c1z1; c2z2/, where c1; c2 2 C�.
The full description of Aut.C2�/ seems to be not known; ? it is conjectured

that the mappings above generate Aut.C2�/. ?

(e) Aut.C � C�/: Due to [Nis 1986] the following theorem is true.
Let F 2 Aut.C2/ with F2. 	 ; 0/ D 0 .in particular, F jC�C� 2 Aut.C � C�//

and det F 0 D c 2 C. Then

F.z1; z2/ D .cz1e
�˛.z1z2;z2/ C ˇ.z1z2; z2/; z2e

˛.z1z2;z2//;

where ˛; ˇ 2 O.C2/.
? According to our knowledge the full description of Aut.C � C�/ remains

still open. ?

(f) Aut.C2/: Recall that the set of holomorphic automorphisms of C is quite
simple. In contrast, for n > 1 the situation for Aut.Cn/ is much more complicated.
There are, for example, automorphisms F of the following types:

� F.z1; z2/ WD .z1; z2Cf .z1//, where f 2 O.C/; mappings of this type are
usually called shears;

� F.z1; z2/ WD .z1; e
h.z1/z2 C f .z2//, where f; h 2 O.C/; mappings of this

type are the so–called overshears;
� F.z1; z2/ WD .z1e

z1z2 ; z2e
z1z2/.

It is known that mappings of the third type do not belong to the group of auto-
morphisms generated by the overshears.

Moreover, the following result shows how complicated Aut.Cn/ may be.

Theorem 2.1.6 ([FMV 2006]). Let n; k 2 N, n � 2 and let a1; : : : ; ak 2 Cn be
pairwise distinct points. Then there is a polynomial automorphism F 2 Aut.Cn/

such that Fix.F / D faj W j D 1; : : : ; kg.
Proof. (Details are left to the reader as an Exercise.) Let aj D .a0

j ; a
00
j / 2

C � Cn�1. One may assume that the numbers a0
j are all distinct (take a suit-

able invertible linear transformation). Denote by fj W C ! C the Lagrange inter-
polation polynomial for a0

1; : : : ; a
0
k

and a00
1;j ; : : : ; a

00
k;j

, j D 2; : : : ; n; i.e. f WD
1The description of Aut.A/ in the case where A WD fz 2 C W r1 < jzj < r2g is a degenerated

annulus (i.e. r1 D 0 or/and r2 D C1) is left for the reader. In particular,

Aut.C�/ D fC� 3 z 7! az 2 C� W a 2 C�g [ fC� 3 z 7! a=z 2 C� W a 2 C�g:
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.f2; : : : ; fn/ is a polynomial mapping with f .a0
j / D a00

j . Then zF W Cn ! Cn,
zF .z/ D zF .z1; z0/ WD .z1; z

0 C f .z1//, is a polynomial automorphism of Cn with
zF .a0

j ; 0/ D aj .
In a second step, consider the polynomial automorphism G W Cn ! Cn

G.z/ WD .z1Cz2C.z1�a0
1/ 	 	 	 .z1�a0

k/; z2C.z1�a0
1/ 	 	 	 .z1�a0

k/; iz3; : : : ; izn/:

Then Fix.G/ D f.a0
1; 0/; : : : ; .a

0
k
; 0/g. Finally, put F WD zF BG B zF �1 and observe

that F has all the required properties. �

From now on we will be concentrated on bounded domains in Cn.

Theorem 2.1.7 (Cartan). Let G � Cn be a bounded domain, let a 2 G, and let
˚ W G ! G be a holomorphic mapping such that˚.a/ D a and˚ 0.a/ D id. Then
˚ D id.

Notice that the assumption that G is bounded is essential – take for instance
G WD C, a WD 0, ˚.z/ WD z.1 � z/.
Proof. We may assume that a D 0. Suppose that ˚ 6� id. Fix r; R > 0 such that
P.r/ � D � P.R/. We have

˚.z/ D
1X
kD0

Qk.z/; z 2 P.r/;

whereQk W Cn ! Cn is a homogeneous polynomial mapping of degree k (cf. Pro-
position 1.8.4). We know that Q0 D 0 and Q1 D id. Let k0 � 2 be such that
Q2 D 	 	 	 D Qk0�1 D 0, Qk0

6� 0. Denote by ˚� the �-th iterate of the mapping
˚ , i.e. ˚0 WD id, ˚�C1 WD ˚� B ˚ . Then

˚�.z/ D z C �Qk0
.z/C

1X
kDk0C1

Q�;k.z/; z 2 P.r/;

where Q�;k W Cn ! Cn is a homogeneous polynomial of degree k. To prove this
formula use induction on �. Suppose that the formula is true for a � � 1. Let ı > 0
be such that ˚.P.ı// � P.r/. Then for z 2 P.ı/ we get (Exercise)

˚�C1.z/ D ˚�.˚.z// D ˚.z/C �Qk0
.˚.z//C

1X
kDk0C1

Q�;k.˚.z//

D z C
1X

kDk0

Qk.z/C �Qk0
.z C higher order terms/

C
1X

kDk0C1
Q�;k.z C higher order terms/
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D z C .� C 1/Qk0
.z/C

1X
kDk0C1

Q�C1;k.z/:

It remains to use the identity principle to conclude that the formula holds on the
whole of P.r/.

Hence, by the Cauchy inequalities, for any z 2 P.r/ we get

j�.Qk0
/j .z/j � maxfj.˚�/j .�z/j W � 2 T g � R; j D 1; : : : ; n:

Letting � ! C1, we obtain Qk0
� 0; a contradiction. �

Proposition 2.1.8 (Cartan). Let G;D � Cn be circular domains2 with 0 2 G,
0 2 D, such that G is bounded, and let F 2 Bih0;0.G;D/. Then F is a linear
isomorphism.

Notice that the assumption that G is bounded is essential – take for instance
G D D D C2, F.z1; z2/ WD .z1 C f .z2/; z2/, where f 2 O.C/ is a nonlinear
entire function with f .0/ D 0; cf. Example 2.1.5 (f).

Proof. For � 2 T put H� .z/ WD F �1..1=�/F.�z//, z 2 G. Then H� 2 Aut0.G/
and H 0

�
.0/ D id. Therefore, by Theorem 2.1.7, H� D id, i.e. F.�z/ D �F.z/,

z 2 G, � 2 T . Expand F into a series of homogeneous polynomials in a polydisc
P.r/ � G:

F.z/ D
1X
kD1

Qk.z/; z 2 P.r/:

Then

F.z/ D
1X
kD1

�k�1Qk.z/; z 2 P.r/; � 2 T :

This means that Qk D 0 in P.r/ for k � 2 (Exercise), and so, by the identity
principle, F � Q1. Therefore F is a linear mapping. Since F is biholomorphic,
it must be a linear isomorphism. �

Proposition 2.1.9. Let k kj be a C-norm in Cnj , let

Bj WD fz 2 Cnj W kzkj < 1g; j D 1; 2;

and let F W B1 ! B2 be a holomorphic mapping with F.0/ D 0. Then kF.z/k2 �
kzk1, z 2 B1.

In particular, if F 2 Bih0;0.B1; B2/, then F is a linear isomorphism .Propo-
sition 2.1.8/ and kF.z/k2 D kzk1, z 2 B1.

2Recall that a domainG � Cn is circular if �z 2 G for every z 2 G and � 2 T . Obviously, any
Reinhardt domain is circular.
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Proof. We may assume that F 6� 0. Fix a z0 2 .B1/� with b WD F.z0/ ¤ 0. Let
L W Cn2 ! C be a C-linear mapping with

jL.b/j D kbk2; jL.w/j � kwk2; w 2 Cn2 : 3

Consider the holomorphic mapping '.�/ WD L.F.�z0//, j�j < 1=kz0k1. Then,
by the classical Schwarz lemma, we obtain j'.�/j � j�jkz0k1, j�j < 1=kz0k1. In
particular, for � D 1, we get kF.z0/k2 � kz0k1. �

Remark 2.1.2 (f) and the above proposition imply immediately the following

Corollary 2.1.10. Let k kj be a C-norm in Cn and let

Bj WD fz 2 Cn W kzkj < 1g; j D 1; 2:

Assume that B1 is homogeneous. Then Bih.B1; B2/ ¤ ¿ iff there exists a
C-linear isomorphism F W Cn ! Cn with kF.z/k2 D kzk1, z 2 Cn .equivalently,
F.B1/ D B2/.

Notice that the following general result is true.

Theorem* 2.1.11 ([Kau-Upm 1976]). Let D1;D2 � Cn be arbitrary bounded
balanced pseudoconvex domains such that Bih.D1;D2/ ¤ ¿. Then there exists
an F 2 Bih.D1;D2/ with F.0/ D 0.

The proof of the above result is based on techniques from Lie groups, i.e. it is
beyond of the scope of our book, so we have to skip it. ? Is there a more direct
proof which is based on techniques presented so far? ?

Example 2.1.12 (Elementary homogeneous domains in Cn). (All details are left
to the reader as an Exercise.)

(a) Unit polydisc Dn.

Aut.Dn/ D fDn 3 z 7! .�1ha1
.z�.1//; : : : ; �nhan

.z�.n/// 2 Dn W
�j 2 T ; aj 2 D; j D 1; : : : ; n; � 2 Sng DW G;

Aut0.D
n/ D fDn 3 z 7! .�1z�.1/; : : : ; �nz�.n// 2 Dn W

�j 2 T ; j D 1; : : : ; n; � 2 Sng DW G0;

where Sn denotes the group of all permutations of n-elements. In particular:
� the group Aut.Dn/ acts transitively on Dn; Dn is homogeneous and sym-

metric (Remark 2.1.2 (e));
3Let V WD Cb � Cn2 and letL0 W V ! C be given by the formulaL0.�b/ WD �kbk2, � 2 C.

Observe that L0.b/ D kbk and jL.w/j D kwk2, w 2 V . Let P W Cn2 ! V be the orthogonal
projection with respect to the standard Hermitian scalar product in Cn2 . PutL WD L0 BP W Cn2 ! C.
Observe that L is a C-linear mapping with L.b/ D L0.b/ D kbk and jL.w/j D jL0.P.w//j D
kP.w/k2 � kwk2, w 2 Cn2 .
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� the group Aut.Dn/ depends on d.n/ WD 3n real parameters;
� the group Aut0.Dn/ depends on d0.n/ WD n real parameters.
Indeed, it is easy to see that G is a subgroup of Aut.Dn/, G0 is a subgroup of

Aut0.Dn/, and G acts transitively on Dn. We only need to show that Aut0.Dn/ �
G0. By Propositions 2.1.8, 2.1.9, any automorphism ˚ 2 Aut0.Dn/ is a linear
isomorphism with k˚.z/k1 D kzk1, z 2 Cn. Let Œ j̊;k�j;kD1;:::;n 2 GL.n;C/
denote the matrix representation of ˚ . We have

max
nˇ̌̌ nX
kD1

j̊;kzk

ˇ̌̌
W j D 1; : : : ; n

o
D kzk1; z D .z1; : : : ; zn/ 2 Cn:

In particular,

maxfj˚1;kj; : : : ; j˚n;kjg D 1; k D 1; : : : ; n;

j j̊;1j C 	 	 	 C j j̊;nj � 1; j D 1; : : : ; n:

Thus the matrix Œ j̊;k� has in each row, and each column, exactly one nonzero
element (which must have absolute value 1). This means that ˚ 2 G0.

(b) Unit Euclidean ball Bn. For a 2 .Bn/�, let

ha.z/ W D 1

kak2
p
1 � kak2.kak2z � hz; aia/ � kak2aC hz; aia

1 � hz; ai ;

z 2 Cn n fhz; ai D 1g 
 xBn;
where h	; 	i denotes the standard Hermitian complex scalar product in Cn. Let,
moreover, h0 WD id. Observe that in the case where n D 1 the above definition
of ha agrees with that from (2.1.1). Denote by U.n/ the group of all unitary
automorphisms of Cn.4 Under above notation we have:

Aut.Bn/ D fU B ha W U 2 U.n/; a 2 Bng;
Aut0.Bn/ D U.n/:

In particular:
� the group Aut.Bn/ acts transitively on Bn; Bn is homogeneous and symmet-

ric;
� the group Aut.Bn/ depends on b.n/ WD n2 C 2n real parameters;
� the group Aut0.Bn/ depends on b0.n/ WD n2 real parameters.

4A C-linear mapping L W Cn ! Cn is unitary if one of the following equivalent conditions is
satisfied:

� hL.z0/;L.z00/i D hz0; z00i, z0; z00 2 Cn;
� kL.z/k D kzk, z 2 Cn;
� LL� D L�L D In (L is identified with its matrix representation; L� WD xLt ).
The group U.n/ depends on n2 real parameters.
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Indeed, the fact that Aut0.Bn/ D U.n/ follows immediately from Proposi-
tions 2.1.8 and 2.1.9. Since ha.a/ D 0, we only need to prove that ha 2 Aut.Bn/.
Fix an a 2 .Bn/�. Direct calculations show that

1 � hha.z/; ha.w/i D .1 � ha; ai/.1 � hz; wi/
.1 � hz; ai/.1 � ha;wi/ ; z; w 2 xBn:

Taking w D z, we conclude that ha.Bn/ � Bn and ha.@Bn/ � @Bn. In partic-
ular, ha B h�a is well defined in a neighborhood of xBn. Using once again direct
calculations, we prove that ha B h�a D id. Hence ha 2 Aut.Bn/ and h�1

a D h�a.

(c) Unit Lie ball Ln. Let

Ln WD fz 2 Cn W Ln.z/ < 1g D fz 2 Bn W 2kzk2 � jhz; Nzij2 < 1g;
where

Ln.z/ W D .kzk2 C
p

kzk4 � jhz; Nzij2/1=2
D .kxk2 C kyk2 C 2

p
kxk2kyk2 � hx; yi2/1=2;

z D x C iy 2 Rn C iRn ' Cn:

The Lie norm Ln is the maximal C-norm q W Cn ! RC with q.x/ D kxk for all
x 2 Rn ' Rn C i0 5 (cf. Exercise 2.1.14). Observe that:

� L1 D D.

� L2 D f.z1; z2/ 2 C2 W jz1 C iz2j < 1; jz1 � iz2j < 1g bih' D2.
� For n � 2 the ball Ln is not Reinhardt.
One can prove that for any a 2 Ln there exists an ha 2 Aut.Ln/ such that

ha.a/ D 0 (cf. [Hua 1963], p. 86–87; for n � 3 the proof is heavily “technical”
and, therefore, we skip it); in the case where n D 1 the above mapping ha agrees
with that in (2.1.1).

Under the above notation we have:

Aut.Ln/ D f�A B ha W A 2 O.n/; � 2 T ; a 2 Lng;
Aut0.Ln/ D f�A W � 2 T ; A 2 O.n/g DW G0;

where O.n/ WD the group of all orthogonal6 isomorphismsA W Rn ! Rn acting on
Cn according to the formula Cn 3 x C iy 7! A.x/C iA.y/ 2 Cn.

5Recall that k k stands for the Euclidean norm.
6An R-linear mapping A W Rn ! Rn is orthogonal if one of the following equivalent conditions is

satisfied:
� hA.x0/;A.x00/i D hx0; x00i, x0; x00 2 Rn;
� kA.x/k D kxk, x 2 Rn;
� AAt D AtA D In (A is identified with its matrix representation).
The group O.n/ depends on

�
n

2

�
real parameters.
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In particular:
� the group Aut.Ln/ acts transitively on Ln; Ln is homogeneous and sym-

metric;
� the group Aut.Ln/ depends on `.n/ WD �

n
2

�C 2nC 1 real parameters;
� the group Aut0.Ln/ depends on `0.n/ WD �

n
2

�C 1 real parameters.
Indeed, since G0 is obviously contained in Aut0.Ln/, we only need to prove

that any automorphism ˚ 2 Aut0.Ln/ belongs to G0. We already know that ˚ is
C-linear and Ln B ˚ � Ln (Proposition 2.1.9). As always, we identify ˚ with its
matrix representation. Write ˚ D AC iB , where A;B 2 M.n � n;R/. Then the
identity Ln B ˚ � Ln implies that

kAx � Byk2 C kAy C Bxk2
C 2

p
kAx � Byk2kAy C Bxk2 � hAx � By;Ay C Bxi2

D kxk2 C kyk2 C 2
p

kxk2kyk2 � hx; yi2; x C iy 2 Cn:

(2.1.2)

Suppose that we already know that A;B are R-linearly dependent. Then we
write AC iB D �P with � 2 T and P 2 M.n � n;R/. Putting in (2.1.2) y D 0,
we get kPxk D kxk, x 2 Rn, which shows that P 2 O.n/.

Thus, it suffices to show that A;B are R-linearly dependent. We may assume
that A ¤ 0 and B ¤ 0. Put U WD KerA, V WD KerB . Suppose that U and V are
non-zero. Then identity (2.1.2) implies that

kAy C Bxk2 D kxk2 C kyk2 C 2
p

kxk2kyk2 � hx; yi2; .x; y/ 2 U � V:
In particular, if y D 0, we get kBxk D kxk, x 2 U . Similarly, kAyk D kyk,
y 2 V . Consequently,

hAy;Bxi D
p

kxk2kyk2 � hx; yi2; .x; y/ 2 U � V:
Since the left-hand side is bilinear, we conclude that either U or V is trivial.

Suppose, for instance, that A is non-singular.
Observe that for x C iy ¤ 0, the right-hand side of (2.1.2) is differentiable iff

kxk2kyk2 ¤ hx; yi2, i.e. x and y are R-linearly independent. Consequently, for
x C iy ¤ 0 we get: x and y are R-linearly dependent iff Ax � By and Ay C Bx

are R-linearly dependent.
Take an arbitrary x 2 .Rn/� and let y WD ˛x with ˛ 2 R. Suppose that

Ax �By D ˇ.AyCBx/ for some ˇ 2 R. Hence .1�˛ˇ/Ax D .˛Cˇ/Bx, and
consequently, Ax and Bx must be R-linearly dependent.

In the remaining case we have Bx D �˛Ax.
Thus Ax and Bx are R-linearly dependent for any x 2 Rn. Put C WD A�1B .

We only need to show that there exists a 
 2 R such thatC D 
In. Fixx; y 2 .Rn/�
and let 
.x/; 
.y/ 2 R be such that Cx D 
.x/x, Cy D 
.y/y. We want to prove
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that 
.x/ D 
.y/. If x and y are R-linearly independent, then x C y ¤ 0 and
C.xCy/ D 
.xCy/.xCy/, which directly implies that 
.x/ D 
.y/ D 
.xCy/.
If x and y are R-linearly dependent, then the result is obvious.

(d) Observe that

d.1/ D `.1/ D b.1/ D 3; d.2/ D `.2/ D 6 < 8 D b.2/;

d.n/ < `.n/ < b.n/; n � 3;

d0.1/ D `0.1/ D b0.1/ D 1; d0.2/ D `0.2/ D 2 < 4 D b0.2/;

d0.n/ < `0.n/ < b0.n/; n � 3:

Consequently, it is intuitively clear that Bih.Dn;Bn/ D ¿ for n � 2 and that
Bih.Dn;Ln/ D Bih.Bn;Ln/ D ¿ for n � 3.

A precise proof will be presented in Theorem 2.1.17.

Exercise 2.1.13. Let N W Cn ! RC be an arbitrary complex norm, n � 2, and let
B WD fz 2 Cn W N.z/ < 1g, B.r/ WD fz 2 B W N.z/ < rg and A D A.r/ WD
fz 2 B W r < N.z/g, 0 < r < 1.

(a) Using Hartogs Theorem 1.9.1 prove that

Aut.A/ D f˚ jA W ˚ 2 Aut.B/ W ˚.B.r// D B.r/g:

(b) Using Example 2.1.12 (a), (b) prove that in the case whereN 2 fk k; k k1g
we have

Aut.A/ D f˚ jA W ˚ 2 Aut0.B/g
(notice that the above relation holds in fact for an arbitrary norm N – cf. Exam-
ple 4.2.43).

Exercise 2.1.14 (Maximal norm). Let

Fmax WD fq W q W Cn ! RC is a C-norm; 8x2Rn W q.x/ D kxkg:

Then

Ln D supfq W q 2 Fmaxg: (2.1.3)

Complete the following sketch of the proof of (2.1.3) based on [Dru 1974].
Step 1. Define

k kmax WD supfq W q 2 Fmaxg:
Then k kmax 2 Fmax and

kx C iyk � kzkmax � kxk C kyk; z D x C iy 2 Cn:
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Step 2. Let ˚.x/ WD ha; xi C ihb; xi, x 2 Rn, where a; b 2 Rn. Then, using
Lagrange’s multipliers, we get

k˚k W D supfj˚.x/j W x 2 Rn; kxk D 1g
D supfj˚.x/j W x 2 RaC Rb; kxk D 1g

D
�
1

2

�
AC C C

p
.A � C/2 C 4B2

��1=2
;

where A WD kak2, B WD ha; bi, C WD kbk2.
Step 3. In virtue of the Hahn–Banach theorem, we have

kzkmax D supfj z̊.z/j W z̊ W Cn ! C is C-linear; k z̊jRnk � 1g
D supfj˚.x/C i˚.y/j W ˚ W Rn ! C is R-linear; k˚k D 1g

for z D x C iy 2 Cn.
Step 4. Using Steps 2, 3, and the Lagrange’s multipliers method, we get

kzk2max D supfjha; xi C ihb; xi C i.ha; yi C ihb; yi/j2 W
a; b 2 Rn; AC C C

p
.A � C/2 C 4B2 D 2g

D supf.ha; xi � hb; yi/2 C .ha; yi C hb; xi/2 W
a; b 2 Rx C Ry; AC C C

p
.A � C/2 C 4B2 D 2g

for z D x C iy 2 Cn, where A;B;C are as in Step 2.
Step 5. The function

Ln.z/ D .kxk2 C kyk2 C 2
p

kxk2kyk2 � hx; yi2/1=2; z D x C iy 2 Cn;

has the following properties:
� Ln.�z/ D j�jLn.z/, z 2 Cn, � 2 C,
� Ln.x/ D kxk, x 2 Rn,
� if hx; yi D 0, then Ln.x C iy/ D kxk C kyk.
Step 6. Every z D x C iy 2 Cn may be written in the form z D �.x0 C iy0/,

where � 2 T and hx0; y0i D 0.
Step 7. Using Steps 5 and 6, we conclude that the proof reduces to the equality

kxCiykmax D kxkCkyk for all x; y 2 Rn with hx; yi D 0. Fix such x; y. We may
assume that x; y are linearly independent. Observe that, in fact, we have to prove
that kx C iykmax � kxk C kyk. Define a WD x=kxk, b WD �y=kyk. Obviously,
a; b 2 RxC Ry andA D C D 1, B D 0. ThusACC Cp

.A � C/2 C 4B2 D 2.
Consequently,

kx C iyk2max � jha; xi C ihb; xi C i.ha; yi C ihb; yi/j2 D .kxk C kyk/2:
The proof of (2.1.3) is completed.
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Exercise 2.1.15 (Minimal norm). Let

Fmin WD fq 2 Fmax W 8z2Cn W q.z/ � kzkg;
where Fmax is as in Exercise 2.1.14. Then the minimal norm

kzkmin WD inffq W q 2 Fming
is well defined, k kmin 2 Fmin, and

kzkmin D 1p
2

p
kzk2 C jhz; Nzij2

D
�
1

2

�
kxk2 C kyk2 C

p
.kxk2 � kyk2/2 C 4hx; yi2

��1=2
;

D maxfjhz; aij W a 2 Rn; kak D 1g; z D x C iy 2 Cn:

Notice that an analogous result is true for the complexification HC of a real
Hilbert space HR – [Ava 1997].

Complete the following sketch of the proof based on [Hah-Pfl 1988].
Step 1. kzkmin � maxfkxk; kykg, z D x C iy 2 Cn.
Let q 2 Fmin, z D x C iy. The case where x and y are linearly dependent is

elementary. Thus assume that x and y are linearly independent. Define

p.�; �/ WD q

�
�
x

kxk C i�
y

kyk
�
; .�; �/ 2 R2:

Then p W R2 ! RC is an R-norm, p.˙t; 0/ D p.0;˙t / D t , t > 0, and

p.�; �/ �
����� x

kxk C i�
y

kyk
���� D

p
�2 C �2; .�; �/ 2 R2:

In particular,

D � f.�; �/ 2 R2 W p.�; �/ < 1g DW B;
B \ f� D 0g D .�1; 1/ � f0g; B \ f� D 0g D f0g � .�1; 1/:

HenceB � .�1; 1/�.�1; 1/. Consequently, p.�; �/ � maxfj�j; j�jg, .�; �/ 2 R2.
In particular,

q.x C iy/ D p.kxk; kyk/ � maxfkxk; kykg:
Step 2.

kzkmin D maxfkx sin � C y cos �k W � 2 Œ0; 2��g; z D x C iy 2 Cn:
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The right-hand side defines a norm from the family Fmin, which gives the in-
equality ‘�’. To prove the opposite inequality, take any q 2 Fmin. Then, by Step 1,
we get

q.x C iy/ D q.ei� .x C iy// D q.x cos � � y sin � C i.x sin � C y cos �//

� kx sin � C y cos �k:
Step 3. By Step 2,

kzk2min D minfkyk2 C .kxk2 � kyk2/ sin2 � C hx; yi sin.2�/ W � 2 Œ0; 2��g
D 1

2

�
kxk2 C kyk2 C

p
.kxk2 � kyk2/2 C 4hx; yi2

�
; z D x C iy 2 Cn:

Step 4. Using Lagrange’s multipliers gives

maxfjhz; aij W a 2 Rn; kak D 1g D kzkmin; z D x C iy 2 Cn:

Remark 2.1.16. Notice that:
� maxfkxk; kykg � kzkmin � kzk, z D x C iy 2 Cn.
� kzkmin D kzk iff x; y are linearly dependent. In particular, if n D 1, then

kzkmin D jzj, z 2 C.
� kzkmin D maxfkxk; kykg iff hx; yi D 0.
� inffq W q 2 Fmaxg is not a norm.
Indeed, let q".z/ WD .1� "/jz1 C iz2j C "jz1 � iz2j, z D .z1; z2/ 2 C2. Then

q" 2 Fmax, but q".1; i/ D 2" ! 0 (cf. [Hah-Pfl 1988]).
� The minimal ball Mn WD fz 2 Cn W kzkmin < 1g is not a Reinhardt domain

for n � 2.
� If n D 2, then

kzkmin D
ˇ̌̌z1 � iz2

2

ˇ̌̌
C
ˇ̌̌z1 C iz2

2

ˇ̌̌
; z D .z1; z2/ 2 C2:

In particular, M2 is biholomorphic to the domain fw 2 C2 W jw1j C jw2j < 1g.
� Aut.Mn/ D f�A W � 2 T ; A 2 O.n/g (cf. [Kim 1991], [Zwo 1996]).

In particular, Mn is neither homogeneous nor symmetric. The group depends on�
n
2

�C 1 real parameters. Consequently, Bih.Mn;D/ D ¿ for D 2 fDn;Bn;Lng,
n � 2.

The following theorem is a generalization of the famous Poincaré theorem say-
ing that Bih.Bn;Dn/ D ¿ for n � 2.

Theorem 2.1.17. Let 2 � n D n1C	 	 	Cnk D m1C	 	 	Cm`, B� 2 fBn�
;Ln�

g,
	 D 1; : : : ; k, B 0

� 2 fBm�
;Lm�

g, � D 1; : : : ; `. Assume that if B� D Ln�

.resp. B 0
� D Lm�

/, then n� � 3 .resp. m� � 3/ – cf. Example 2.1.12 (c). Then

Bih.B1 � 	 	 	 � Bk; B 0
1 � 	 	 	 � B 0

`/ ¤ ¿
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iff ` D k and there exists a permutation � 2 Sk such that m�.�/ D n� and
B 0
�.�/

D B�, 	 D 1; : : : ; k.
Moreover, every biholomorphic mapping F W B1 � 	 	 	 � Bk ! B 0

1 � 	 	 	 � B 0
k

is, up to a permutation of B 0
1; : : : ; B

0
k
, of the form

F.z/ D .F1.z1/; : : : ; Fk.zk//; z D .z1; : : : ; zk/ 2 B1 � 	 	 	 � Bk;
where F� 2 Aut.B�/, 	 D 1; : : : ; k.

Remark 2.1.18. (a) In the case where B� D Bn�
, 	 D 1; : : : ; k, B 0

� D Bm�
,

� D 1; : : : ; `, Theorem 2.1.17 shows that Bih.Bn1
�	 	 	�Bnk

;Bm1
�	 	 	�Bm`

/ ¤ ¿
iff ` D k and there exists a permutation � 2 Sk with m�.�/ D n�, 	 D 1; : : : ; k.

(b) In particular, in the case where k D 1,B1 D Bn, ` D n � 2, Theorem 2.1.17
reduces to the Poincaré theorem.

(c) In the case k D ` D n, Theorem 2.1.17 reduces to the description of Aut.Dn/
given in Example 2.1.12 (a).

(d) In the case k D 1, B1 D Ln, B 0
� D Bm�

, � D 1; : : : ; `, Theorem 2.1.17
shows that Bih.Ln;Bm1

� 	 	 	 � Bm`
/ D ¿ for n � 3 (cf. Example 2.1.12 (c)).

Proof of Theorem 2.1.17. (The main idea of the proof is due to W. Jarnicki.) Since
B� is homogeneous, 	 D 1; : : : ; k, Remark 2.1.2 (c) implies that the domain B1 �
	 	 	 �Bk is also homogeneous. Now, by Corollary 2.1.10, Bih.B1 � 	 	 	 �Bk; B 0

1 �
	 	 	 � B 0

`
/ ¤ ¿ iff there exists a C-linear isomorphism F D .F1; : : : ; F`/ W Cn !

Cn D Cm1 � 	 	 	 � Cm` such that

maxfkF1.z/k0
1; : : : ; kF`.z/k0

`g D maxfkz1k1; : : : ; kzkkkg;
z D .z1; : : : ; zk/ 2 Cn1 � 	 	 	 � Cnk ;

where

k k� WD
(

k k D Euclidean norm if B� D Bn�
;

Ln�
D Lie norm if B� D Ln�

;
	 D 1; : : : ; k;

k k0
� WD

(
k k D Euclidean norm if B 0

� D Bm�
;

Lm�
D Lie norm if B 0

� D Lm�
;

� D 1; : : : ; `:

First consider the set Ap � Cp , p � 3, on which the Lie norm Lp is not real
analytic, i.e.

Ap WD fw 2 Cp W kwk4 D jhw; xwij2g
D fw D .w1; : : : ; wp/ 2 Cp W wi xwj 2 R; i; j D 1; : : : ; pg (Exercise):

Observe that Ap is closed and .Ap/� D Sp
iD1Mi , where Mi WD  i .C� � Rp�1/,

 i .�; t1; : : : ; tp�1/ WD .t1= N�; : : : ; ti�1= N�; �; ti= N�; : : : ; tp= N�/I
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 i is a real analytic mapping. In particular, HpC1. i .K// < C1 for every
compactK � C� � Rp�1, where HpC1 denotes the .pC1/-Hausdorff measure in
R2p (Exercise). Note that pC1 < 2p�1. Consequently,Ap is a countable union
of compact sets with finite .p C 1/-dimensional Hausdorff measure ([Fed 1969],
§ 2.10) and therefore Cp n Ap is connected (see [Rud 1980], Theorem 14.4.5,
[Jar-Pfl 2000], p. 226).

Now, let C WD f.z; w/ 2 Cp � Cq W N1.z/ D N2.w/g, where N1 (resp. N2)
stands for the Euclidean or Lie norm in Cp (resp. Cq). If N1 (resp. N2) is the Lie
norm, then we assume that p � 3 (resp. q � 3). Then C is nowhere dense.

Indeed, define S1 � Cp , S2 � Cq ,

S1 WD
(

f0g if N1 D k k;
Ap if N1 D Lp;

S2 WD
(

f0g if N2 D k k;
Aq if N2 D Lq :

Then S WD .S1 � Cq/ [ .Cp � S2/ is a closed set being a countable union of
compact sets with finite t -dimensional Hausdorff measure where t < 2.pCq/�1.
Hence Cp � Cq n S is connected. Suppose that intC ¤ ¿. Then, by the identity
principle for real analytic functions, Cp � Cq n S � C . Therefore, by continuity,
C D Cp � Cq; a contradiction.

Thus, for every 	0 ¤ 	00 and �0 ¤ �00, the sets

f.z1; : : : ; zk/ 2 Cn1 � 	 	 	 � Cnk W kz�0k�0 D kz�00k�00g;
f.w1; : : : ; w`/ 2 Cm1 � 	 	 	 � Cm` W kw�0k0

�0 D kw�00k0
�00g

are nowhere dense. Consequently, since F is homeomorphic, the set[
�0¤�00

fz 2 Cn W kF�0.z/k0
�0 D kF�00.z/k0

�00g[
[

�0¤�00

fz 2 Cn W kz�0k�0 D kz�00k�00g

is nowhere dense. In particular, for every j 2 f1; : : : ; kg there exist a non-empty
open set j̋ � Cn and an s 2 f1; : : : ; `g such that

kFs.z/k0
s D kzj kj ; z 2 j̋ :

Let

T1 WD
(

f0g if k kj D k k;
Anj

if k kj D Lnj
;

T2 WD
(

f0g if k k0
s D k k;

Ams
if k k0

s D Lms
:

Then

T WD .Cn1 � 	 	 	 � Cnj �1 � T1 � Cnj C1 � 	 	 	 � Cnk /

[ F �1.Cm1 � 	 	 	 � Cms�1 � T2 � CmsC1 � 	 	 	 � Cm`/
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is a closed set being a countable union of compact sets with finite t -dimensional
Hausdorff measure where t < 2n � 1. Hence Cn n S is connected and, by the
identity principle for real analytic functions, we conclude that

kFs.z/k0
s D kzj kj ; z 2 Cn: (2.1.4)

In particular, s DW �.j / is uniquely determined. Moreover, �.j 0/ ¤ �.j 00/ for
j 0 ¤ j 00. Hence k � `.

Since the Euclidean norm in Cp is real analytic on .Cp/�, but the Lie norm is
real analytic only on Cp n Ap , we conclude that both norms k kj and k k0

s must
be of the same type (i.e. both must be Euclidean or both must be Lie). Moreover,
n �ms D dim Ker Fs D n � nj , which implies that ms D nj and B 0

s D Bj . It is
also clear that Fs depends only on zj , i.e. Fs.z/ D Uj .zj /, whereUj W Cnj ! Cnj

is a linear isomorphism. Condition (2.1.4) guarantees that Uj 2 Aut.Bj /. Finally,
k D ` because m�.1/ C 	 	 	 Cm�.k/ D n1 C 	 	 	 C nk D n. �

Exercise 2.1.19. Let B1; : : : ; Bk be as in Theorem 2.1.17. Find a generalization
of Example 2.1.12 (a) and characterize the group Aut.B1 � 	 	 	 � Bk/ in terms of
Aut.B1/; : : : ;Aut.Bk/.

The phenomenon described in Theorem 2.1.17 appears also under other assump-
tions. Recall, for example, the following classical general result.

Theorem* 2.1.20 ([Nar 1971], p. 77). Let Dj , Gj be bounded domains in Cnj

such that there is no non-constant holomorphic curve ' W D ! @Gj , j D 1; : : : ; k.
Then any biholomorphic mapping

� W D1 � 	 	 	 �Dk ! G1 � 	 	 	 �Gk
is, up to a permutation of G1; : : : ; Gk , of the form

�.z1; : : : ; zk/ D . z�1.z1/; : : : ; z�k.zk//; .z1; : : : ; zk/ 2 D1 � 	 	 	 �Dk;
where z�j 2 Bih.Dj ; Gj /, j D 1; : : : ; k.

Notice that the above theorem applies for instance to complex ellipsoids (in par-
ticular, to Euclidean balls), which is a direct consequence of the following lemma.

Lemma 2.1.21. If p 2 Nn, then there is no non-constant holomorphic curve
' W D ! @Ep .

Proof. Suppose that ' D .'1; : : : ; 'n/ W D ! @Ep is holomorphic.
First consider the case p D 1. Then k'k � 1. Obviously, j'j j � 1, j D

1; : : : ; n. Composing ' with a rotation we may assume that '.0/ D .1; 0; : : : ; 0/.
Then, by the maximum principle, '1 � 1. Consequently, 'j � 0, j D 2; : : : ; n.

For arbitrary p we only need to observe that .'p1

1 ; : : : ; '
pn
n / W D ! @Bn. �
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Remark 2.1.22. On the other hand, the Lie ball Ln, n � 2, does not satisfy the
condition from Theorem 2.1.20.

Indeed,
D 3 � 7! .1

2
.�C 1/; 1

2i
.� � 1/; 0; : : : ; 0/ 2 @Ln:

In particular, Theorem 2.1.20 does not imply Theorem 2.1.17.

2.2� Cartan theory

Summarizing, the previous results show that for n � 3 we have the following
bounded homogeneous domains (which are not biholomorphically equivalent).

n domain

1 D

2 B2, D2

3 B3, D3, D � B2, L3

Theorem* 2.2.1 ([Car 1935]). If n � 3, then any bounded homogeneous domain
G � Cn is biholomorphic to one of the above canonical homogeneous domains.
In particular, any bounded homogeneous domainG � Cn with n � 3 is symmetric
.Remark 2.1.2 (c), Example 2.1.12/.

The first example of a 4-dimensional homogeneous non-symmetric bounded
domain was given by I. Piatetsky-Shapiro in [Pia-Sha 1959].

Theorem* 2.2.2 ([Car 1935]). Every bounded symmetric domain is homogeneous.
Moreover, every bounded symmetric domainG � Cn is biholomorphic to a Carte-
sian product of canonical symmetric domains belonging to the following six Cartan
types:

� n D pq, 1 � p � q, Ip;q WD fZ 2 M.p � q;C/ W Ip � ZZ� > 0g;7 observe
that I1;n ' Bn;

� n D �
p
2

�
, p � 2, IIp WD fZ 2 M.p � p;C/ W Zt D �Z; Ip �ZZ� > 0g;

� n D �
pC1
2

�
, p � 1, IIIp WD fZ 2 M.p � p;C/ W Zt D Z; Ip �ZZ� > 0g;

� IVn WD Ln.

The domains of types I–IV are called classical. They are balanced – cf. Defi-
nition 1.4.14.

� n D 16, an exceptional domain V16;

� n D 27, an exceptional domain VI27.

7For A 2 M.m � m;C/, “A > 0” means that A is positive definite, i.e. X tA xX DPm
j;kD1 aj;kXj

xXk > 0 for allX 2 .Cm/�.



178 Chapter 2. Biholomorphisms of Reinhardt domains

The above Cartan domains are not biholomorphically equivalent except for the
following cases:

(a) I2;2
bih' L4,

(b) II2 ' D, II3
bih' B3, II4

bih' L6; thus type II is essential only for p � 5,

(c) III1 ' D, III2
bih' L3; thus type III is essential only for p � 2,

(d) L1 D D, L2
bih' D2; thus type IV is essential only for n � 5.

Let  .n/ denote the number of biholomorphically non-equivalent canonical
bounded symmetric domains G � Cn .from the above list/ and let �.n/ be the
number of non-equivalent bounded symmetric domainsG � Cn .which are biholo-
morphic to Cartesian products of canonical symmetric domains/. The following
table describes the situation for 1 � n � 30.

n  .n/ I II III IV V =VI �.n/

1 1 D .II2 'D/ .III1 DD/ .L1 DD/ 1

2 1 B2 .L2 'D2/ 2

3 2 B3 .II3 'B3/ III2 .L3 'III2/ 4

4 2 B4;I2;2 .L4 'I2;2/ 7

5 2 B5 L5 11

6 4 B6;I2;3 .II4 'L6/ III3 L6 21

7 2 B7 L7 31

8 3 B8;I2;4 L8 51

9 3 B9;I3;3 L9 80

10 5 B10;I2;5 II5 III4 L10 126

11 2 B11 L11 187

12 4 B12;I2;6;I3;4 L12 292

13 2 B13 L13 427

14 3 B14;I2;7 L14 638

15 5 B15;I3;5 II6 III5 L15 935

16 5 B16;I2;8;I4;4 L16 V16 1371

17 2 B17 L17 1960

18 4 B18;I2;9;I3;6 L18 2843

19 2 B19 L19 4024

20 4 B20;I2;10;I4;5 L20 5724

21 5 B21;I3;7 II7 III6 L21 8046

22 3 B22;I2;11 L22 11303

23 2 B23 L23 15687
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n  .n/ I II III IV V =VI �.n/

24 5 B24;I2;12;I3;8;I4;6 L24 21840

25 3 B25;I5;5 L25 30058

26 3 B26;I2;13 L26 41366

27 4 B27;I3;9 L27 VI27 56525

28 6 B28;I2;14;I4;7 II8 III7 L28 77126

29 2 B29 L29 104490

30 5 B30;I2;15;I3;10;I5;6 L30 141526

Remark 2.2.3. The biholomorphisms in (a)–(c) are given by the following formu-
las:

(a)

L4 3 .z1; z2; z3; z4/ 7!
h
z1 C iz4 iz2 C z3

iz2 � z3 z1 � iz4

i
2 I2;2 .Exercise/:

(b)

B3 3 .z1; z2; z3/ 7!
"
0 z1 z2

�z1 0 z3

�z2 �z3 0

#
2 II3 .Exercise/;

and (cf. [Mor 1956])

L6 3 .z1; : : : ; z6/ 7!
24 0 z1 C iz2 z3 C iz4 z5 C iz6

�.z1 C iz2/ 0 z5 � iz6 �z3 C iz4

�.z3 C iz4/ �.z5 � iz6/ 0 z1 � iz2

�.z5 C iz6/ �.�z3 C iz4/ �.z1 � iz2/ 0

352 II4:

(c)
L3 3 .z1; z2; z3/ 7!

h
z1 C iz3 z2

z2 z1 � iz3

i
2 III2:

Exercise 2.2.4. Find a formula for �.n/.

Remark 2.2.5. Let us mention the following two results related to various charac-
terizations of a bounded domain D � Cn by its automorphism group Aut.D/.

(a) Assume that b 2 @D is a point such that @D is strongly pseudoconvex at
b (such a point always exists if @D 2 C2). Moreover, assume that there exist a
compact K � D and sequences .ak/1kD1 � K, .˚k/1kD1 � Aut.D/ such that

˚k.ak/ ! b. Then D
bih' Bn ([Ros 1979]).

(b) We say that a bounded domainD � Cn has piecewise Ck-boundary if @D is
a topological .2n�1/-dimensional manifold, and there exist an open neighborhood
U of @D and  2 Ck.U;Rm/ (with somem) such that 1 	 	 	 m D 0 on @D and for
every 1 � j1 < 	 	 	 < j` � m (1 � ` � m) we have dj1

^ 	 	 	 ^ dj`
.z/ ¤ 0 for

all z 2 U with j1
.z/ D 	 	 	 D j`

.z/ D 0.
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LetD � Cn be a bounded homogeneous domain with piecewise C2-boundary.

ThenD
bih' Bn1

�	 	 	�Bnp
([Pin 1982]). In particular, every bounded homogeneous

domain D � Cn with smooth boundary is biholomorphically equivalent to Bn.
(c) In virtue of Theorem 2.1.17 (and Remark 2.1.18), the above result implies

that the boundary of Ln (n � 3) is not piecewise C2.

Exercise* 2.2.6. Prove directly (without using Remark 2.2.5 (c)) that the boundary
of Ln (n � 3) is not piecewise C2.

2.3 Biholomorphisms of bounded complete Reinhardt
domains in C2

Let us look more thoroughly into the problem of biholomorphic classification of
bounded Reinhardt domains D � C2 with Vj \ D ¤ ¿, j D 1; 2. The case
where D1;D2 � C2 are bounded convex complete Reinhardt domains was first
considered by K. Reinhardt in [Rei 1921]. The general case was completely solved
by P. Thullen in [Thu 1931] (see also [Car 1931]).

Observe that, by Proposition 1.12.8, we may always assume that D1;D2 are
bounded complete Reinhardt domains of holomorphy. By rescaling variables, we
may reduce the situation to the case where Dj is normalized, i.e.

fz 2 C W .z1; 0/ 2 Dj g D fz2 2 C W .0; z2/ 2 Dj g D D; j D 1; 2: (2.3.1)

In particular, D � D2.

Lemma 2.3.1. Let D � C2 be a normalized complete Reinhardt domain of holo-
morphy. Then

D D f.z1; z2/ 2 D2 W jz1j < R.jz2j/g;
where R D RD W Œ0; 1/ ! .0; 1� is a continuous function with R.0/ D 1.

Proof. Since logD is convex, we conclude (Exercise) that for every u 2 .0; 1/

there exists exactly one t DW R.u/ 2 .0; 1/ such that .t; u/ 2 @R.D/ (recall that
R.D/ WD f.jz1j; jz2j/ W .z1; z2/ 2 Dg). It remains to observe that the function
R W Œ0; 1/ ! .0; 1� is continuous (Exercise). �

Example 2.3.2. Let

Ep D f.z1; z2/ 2 C2 W jz1j2p1 C jz2j2p2 < 1g; p D .p1; p2/ 2 R2>0;

be a complex ellipsoid; cf. (1.18.5). If (p1 D 1, p2 ¤ 1) or (p1 ¤ 1, p2 D 1),
then Ep is traditionally called a Thullen domain.

The domain Ep is a normalized complete Reinhardt domain of holomorphy
(cf. Exercise 1.18.7). Notice that

REp
.t/ WD .1 � t2p2/1=.2p1/; t 2 Œ0; 1/:
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Exercise 2.3.3. Determine the function RD for the domain

D WD f.z1; z2/ 2 D2 W jz1j˛1 jz2j˛2 < �g;
where ˛1; ˛2 > 0, 0 < � < 1.

Recall that for � D .�1; �2/ 2 T 2, we have put T� .z/ D � 	 z D .�1z1; �2z2/,
z D .z1; z2/ 2 C2. Let S .z1; z2/ WD .z2; z1/, T �

�
WD T� B S .

The following three results due to P. Thullen [Thu 1931] give the full character-
ization of biholomorphic equivalence of bounded normalized complete Reinhardt
domains of holomorphy in C2.

Theorem 2.3.4. Let ˛ > 0, ˛ ¤ 1. Then the group Aut.E.˛;1// coincides with the
set of all mappings of the form

E.˛;1/ 3 z �c;	7���!
�
�1z1

�
1 � jcj2
.1 � Ncz2/2

� 1
2˛

; �2hc.z2/

�
2 E.˛;1/; (2.3.2)

where c 2 D, .�1; �2/ 2 T 2, and the branch of the power . /1=.2˛/may be arbitrarily
chosen.

In particular, E.˛;1/, ˛ ¤ 1, is not homogeneous. Observe that Aut.E.˛;1//
(˛ ¤ 1) depends on four real parameters (cf. Example 2.1.12 (d)).

Theorem 2.3.5. LetD � C2 be a normalized bounded complete Reinhardt domain
of holomorphy.

(a) The following conditions are equivalent:

(i) Aut.D/ acts transitively onD;

(ii) either D D D2 or D D B2 .cf. Example 2.1.12 (a), (b), (d), Theo-
rem 2.1.17/.

(b) Assume thatD … fD2;B2g. Then the following conditions are equivalent:

(i) there exist b 2 D� and ˚b 2 Aut.D/ such that

˚b.z/ D .z1fb.z2/;mb.z2//; z D .z1; z2/ 2 D;
wherefb 2 O�.D/ 8 andmb 2 Aut.D/,mb.b/ D 0 .note that˚b.0; b/ D
.0; 0//;

(ii) for every c 2 D there exists a ˚c 2 Aut.D/ such that

˚c.z/ D .z1fc.z2/;mc.z2//; z D .z1; z2/ 2 D;
where fc 2 O�.D/ and mc 2 Aut.D/, mc.c/ D 0 (˚c.0; c/ D .0; 0/);

8O�.G/ WD ff 2 O.G/ W f .z/ ¤ 0; z 2 Gg.
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(iii) D D E.˛;1/ for some ˛ ¤ 1.

(c) The following conditions are equivalent:

(i) there exists an a 2 D such that Aut.D/ D Auta.D/;
(ii) Aut.D/ D Aut0.D/;

(iii) any automorphism˚ 2 Aut.D/ is of the form T� or T �
�

with � 2 T 2 .the
second case is possible only if S .D/ D D.

Obviously, (b) may be formulated also with respect to the second variable.

Theorem 2.3.6. Let D1;D2 � C2 be normalized bounded complete Reinhardt
domains of holomorphy and let F 2 Bih.D1;D2/. Then we have the following
possibilities:

� D1 D D2 D D2;

� D1 D D2 D B2;

� D1 D D2 D E.˛;1/ with ˛ ¤ 1 and F D �c;� for some c 2 D and � 2 T 2,
where �c;� is as in (2.3.2);

� D1 D E.˛;1/, D2 D E.1;˛/ with ˛ ¤ 1 and F D S B �c;� , for some c 2 D and
� 2 T 2, where �c;� is as in (2.3.2);

� D1 D D2 D E.1;˛/ with ˛ ¤ 1 and F D S B �c;� B S for some c 2 D and
� 2 T 2, where �c;� is as in (2.3.2);

� in all remaining cases, either D2 D D1 and F D T� with � 2 T 2, or D2 D
S .D1/ and F D T �

�
with � 2 T 2; in particular, F 2 Bih0;0.D1;D2/.

Our method of proof of the Thullen theorems needs the notion of the so-calledWu
ellipsoid introduced by H. Wu in [Wu 1993], see also [Joh 1948] and [Jar-Pfl 2005],
§ 1.2.6.

Exercise 2.3.7. Let L;L1; L2 2 GL.n;C/. Then:

(a) L�1.Bn/ D fz 2 Cn W ztM Nz < 1g, where M WD Lt xL, and therefore,
L�1.Bn/ is given by the Hermitian scalar product .z; w/ 7! ztM xw.

(b) �2n.L�1.Bn// D �2n.Bn/

j detLj2 .

(c) L�1.Bn/ is a Reinhardt domain iff L�1.Bn/ D fz 2 Cn W r 	 z 2 Bng for
some r 2 Rn>0.

(d) L�1
1 .Bn/ D L�1

2 .Bn/ iff L2 B L�1
1 2 U.n/.

Lemma 2.3.8. For every bounded domain ¿ ¤ D � Cn, the family

fL�1.Bn/ W L 2 GL.n;C/; D � L�1.Bn/g 9

contains exactly one domain .the Wu ellipsoid/ E.D/ with minimal volume.

9Observe that the family is not empty becauseD is bounded.
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Proof. Let F .D/ WD fL 2 GL.n;C/ W D � L�1.Bn/g. By Exercise 2.3.7 (b),
we want to maximize the function F .D/ 3 L 7! j detLj. Let B be the smallest
balanced domain containing D, B D int

T
G
D

G is balanced
G. Then B � L�1.Bn/ for

every L 2 F .D/. Hence kL.z/k � hB.z/, z 2 Cn, where hB stands for the
Minkowski function of B . In particular, the set F .D/ is bounded in M.n� n;C/.
Consequently, there exists anL0 2 F .D/ such that j detL0j D C WD supfj detLj W
L 2 F .D/g (Exercise).

Let F0.D/ WD fL 2 F .D/ W j detLj D C g. We have to show that M WD
L2 B L�1

1 2 U.n/ for any L1; L2 2 F0.D/ (Exercise 2.3.7 (d)). We may assume
that detL1 D detL2 D C . Suppose that the Hermitian matrix M t xM ¤ In. Then
we can write M t xM D P�P�1, where P 2 U.n/ and � is a diagonal matrix with
elements d1; : : : ; dn > 0. Since detM D 1, we have d1 	 	 	 dn D 1. Moreover,
since M t xM ¤ In, we conclude that dj ¤ 1 for at least one j . Observe that

1

2
zt .Lt1

xL1 C Lt2
xL2/ Nz D 1

2
.kL1.z/k2 C kL2.z/k2/

� 1

2
.h2B.z/C h2B.z// D h2B.z/; z 2 Cn:

Write 1
2
.Lt1

xL1 CLt2
xL2/ D Lt xL with L 2 GL.n;C/. The above inequality shows

that L 2 F .D/. Thus j detLj � C . On the other hand we have

j detLj2 D 1

2n
det.Lt1 xL1 C Lt2

xL2/

D 1

2n
det.Lt1/ det.In C .Lt1/

�1Lt2 xL2.xL1/�1/ det.xL1/

D 1

2n
C 2 det.In CM t xM/

D 1

2n
C 2 det.P / det.In C P�1M t xMP/ det.P�1/

D 1

2n
C 2 det.In C�/ D C 2

1C d1

2
	 	 	 1C dn

2
> C 2

p
d1 : : : dn D C 2I

a contradiction. �

Remark 2.3.9. (a) If A 2 GL.n;C/, then for every bounded domainD � Cn we
have A.E.D// D E.A.D//. In particular, if A.D/ D D, then A.E.D// D E.D/.

(b) If D is a bounded Reinhardt domain, then E.D/ D fz 2 Cn W r 	 z 2 Bng
for some r 2 Rn>0.

Lemma 2.3.10. LetD1;D2 � Cn be bounded Reinhardt domains with 0 2 D1 \
D2. Let F 2 Bih0;0.D1;D2/. Then

F.z/ D �1 	 U.r 	 z/;
where U 2 U.n/, r;  2 Rn>0, and �1 WD .1=1; : : : ; 1=n/.
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Proof. By Remark 2.3.9 (b),

E.D1/ D fz 2 Cn W r 	 z 2 Bng; E.D2/ D fz 2 Cn W  	 z 2 Bng;
for some r;  2 Rn>0.

By Proposition 2.1.8, F 2 GL.n;C/. By Remark 2.3.9 (a), F.E.D1// D
E.D2/. Consequently, the linear isomorphism

Cn 3 z U7�!  	 F.r�1 	 z/ 2 Cn

maps Bn onto Bn, and therefore, it belongs to U.n/. �

Proposition 2.3.11. Let D1;D2 � C2 be bounded complete Reinhardt domains
of holomorphy and let F 2 Bih0;0.D1;D2/. Then:

� eitherDj D E.Dj /, j D 1; 2, and F has the form from Lemma 2.3.10, or
� Dj   E.Dj /, j D 1; 2, and F.z1; z2/ D .r1�1z�.1/; r2�2z�.2//, where

.r1; r2/ 2 R2>0, .�1; �2/ 2 T 2, � 2 S2.

Proof. Using Remark 2.3.9 (b) and Lemma 2.3.10, we may assume that, after rescal-
ing variables, we have Dj   E.Dj / D B2, j D 1; 2, and F 2 U.n/. Next, by
permuting and rotating variables, we may also assume that

F.z1; z2/ D .z1 cos˛ C z2 sin ˛;�z1 sin ˛ C z2 cos˛/

with ˛ 2 Œ0; �=2/ (Exercise). We have to prove that ˛ D 0. Suppose that
˛ 2 .0; �=2/ and consider the following construction.

Take a point x0 D .r cos �; r sin �/ 2 R2C \ @D1 (r > 0, 0 � � � �=2). Fix
an arbitrary ' D .'1; '2/ 2 R2 and consider the point

.ei'1F1.x
0/; ei'2F2.x

0// 2 @D2:
Put

.y1.'/; y2.'// WD F �1.ei'1F1.x
0/; ei'2F2.x

0// 2 @D1
and, finally, let

�.'/ D .�1.'/; �2.'// WD .jy1.'/j; jy2.'/j/ 2 R2C \ @D1:
Direct calculations give

�1.'/ D r

r
cos2 � C 1

2
sin 2.� � ˛/ 	 sin 2˛ 	 .1 � cos.'1 � '2//;

�2.'/ D r

r
sin2 � � 1

2
sin 2.� � ˛/ 	 sin 2˛ 	 .1 � cos.'1 � '2//:
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Put d.�/ WD sin 2.� � ˛/ 	 sin 2˛ 2 .�1; 1/. We have proved that for any point
x0 D .r cos �; r sin �/ 2 R2C \ @D1, the points

x.t/ WD
�
r

q
cos2 � C d.�/t ; r

q
sin2 � � d.�/t

�
; 0 � t � 1;

belong to R2C \ @D1. Observe that x.0/ D x0 and kx.t/k D r D kx0k. Conse-
quently, if � ¤ ˛, then the boundary of R2C \D1 contains the arc

I.x0/ WD fx.t/ W 0 � t � 1g:
Thus, there exist r�; rC > 0 such that

f. cos ;  sin / W . D r�; 0 �  < ˛/ or . D rC; ˛ <  � �=2/g
� R2C \ @D1:

Finally, using the completeness of D1, we get D1 D B2 – a contradiction. �

Corollary 2.3.12. Let D1;D2 � C2 be normalized bounded complete Reinhardt
domains of holomorphy and let F 2 Bih0;0.D1;D2/. Then eitherD1 D D2 D B2
or F D T� .andD2 D D1/ or F D T �

�
.andD2 D S .D1// for some � 2 T 2.

Proof. The result follows from Proposition 2.3.11 and the fact that Dj D E.Dj /
iff Dj D B2 (because Dj is normalized), j D 1; 2. �

Proposition 2.3.13. Let D1;D2 � C2 be normalized bounded complete Rein-
hardt domains of holomorphy, D2 ¤ B2, and let F 2 Bih.D1;D2/ be such that
F.0; b/ D .0; 0/ with b ¤ 0. Then either

F.z/ D .z1f .z2/;m.z2//; z D .z1; z2/ 2 D1; (2.3.3)

or

F.z/ D .m.z2/; z1f .z2//; z D .z1; z2/ 2 D1; (2.3.4)

where m 2 Aut.D/, m.b/ D 0, and f 2 O�.D/.

Proof. For an arbitrary � 2 T , let F� WD F B T.�;1/ B F �1 2 Aut0.D2/. By
Corollary 2.3.12, there exists a �.�/ 2 T 2 such that either F� D T�.�/ or F� D
T �
�.�/

.

� The case where F� D T�.�/ for uncountably many � 2 T . We have

F.�z1; z2/ D .�1.�/F1.z/; �2.�/F2.z//; z 2 D1; � 2 I � T ;

where I is uncountable. Observe that if �.�/ D .1; 1/, then F.�z1; z2/ D F.z/,
z 2 D1, which implies that � D 1. Thus at least one of the sets

I1 WD f� 2 I W �1.�/ ¤ 1g; I2 WD f� 2 I W �1.�/ D 1; �2.�/ ¤ 1g
is uncountable.
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Case 1. I1 is uncountable. We have

.F1.0; z2/; F2.0; z2// D .�1.�/F1.0; z2/; �2.�/F2.0; z2//; z2 2 D; � 2 I1:
Hence F1.0; 	 / � 0, i.e. F1.z/ D z1G1.z/ with G1 2 O.D1/. Since F1.0; 	 / � 0

and F is a biholomorphism, we conclude that F2.0; 	 / D m 2 Aut.D/, m.b/ D 0.
Consequently, F2.z/ �m.z2/ D z1G2.z/ with G2 2 O.D1/. Thus

.�z1G1.�z1; z2/; �z1G2.�z1; z2/Cm.z2//

D .�1.�/z1G1.z/; �2.�/z1G2.z/C �2.�/m.z2//; z D .z1; z2/ 2 D1; � 2 I1:
Taking z1 D 0, we get m � �2.�/m, so �2.�/ D 1 for � 2 I1. Hence

�G1.�z1; z2/ D �1.�/G1.z/; �G2.�z1; z2/ D G2.z/:

First consider the second equation. In terms of the power series expansion of G2
we get

1X
j;kD0

G2;j;k.�
jC1 � 1/zj1 zk2 D 0; z D .z1; z2/ 2 D1; � 2 I1:

Since I1 is uncountable, there exists a � 2 I1 with �jC1 ¤ 1, j D 0; 1; 2; : : : .
Hence G2 � 0.

Now we come back to the first equation. We have

0 ¤ det

"
@F1

@z1

@F1

@z2
@F2

@z1

@F2

@z2

#
.0; z2/ D det

�
G1.0; z2/ 0

0 m0.z2/

	
D G1.0; z2/m

0.z2/:

Hence G1.0; z2/ ¤ 0, z2 2 D. We have �G1.0; z2/ D �1.�/G1.0; z2/. Hence
�1.�/ D �, � 2 I1. Therefore, G1.�z1; z2/ D G1.z/, z D .z1; z2/ 2 D1, � 2 I1.
By a power series argument we see that G1 depends only on z2. Finally,

F.z/ D .z1f .z2/;m.z2//; z D .z1; z2/ 2 D1;
where f 2 O�.D/ and m 2 Aut.D/, m.b/ D 0.

Case 2. I2 is uncountable. We have F1.�z1; z2/ D F1.z/, z D .z1; z2/ 2
D1, � 2 I2, which implies that F1 depends only on z2. Hence F1.z/ D m.z2/

with m.b/ D 0. Furthermore, F2.0; z2/ D �2.�/F2.0; z2/, which implies that
F2.0; 	 / � 0. Consequently, m 2 Aut.D/ and F2.z/ D z1G2.z/ with G2 2
O.D1/. Moreover,

0 ¤ det

"
@F1

@z1

@F1

@z2
@F2

@z1

@F2

@z2

#
.0; z2/ D det

�
0 m0.z2/

G2.0; z2/ 0

	
D �G2.0; z2/m0.z2/;
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which says that G2.0; z2/ ¤ 0, z2 2 D. Since �G2.0; z2/ D �2.�/G2.0; z2/, we
get �2.�/ D �, � 2 I2. Therefore, G2.�z1; z2/ D G2.z/, z D .z1; z2/ 2 D1,
� 2 I2. Hence G2 depends only on z2. Finally,

F.z/ D .m.z2/; z1f .z2//; z D .z1; z2/ 2 D1;
where f 2 O�.D/ and m 2 Aut.D/, m.b/ D 0.

� The case where F� D T �
�.�/

for uncountably many � 2 T . We have

F.�z1; z2/ D .�1.�/F2.z/; �2.�/F1.z//; z 2 D1; � 2 I � T ;

where I is uncountable. In particular,

F1.0; z2/ D �1.�/F2.0; z2/; F2.0; z2/ D �2.�/F1.0; z2/:

Observe that F1.0; 	 / 6� 0 (even more, if F1.0; c/ D 0 for some c 2 D, then
F2.0; c/ D 0 and henceF.0; c/ D .0; 0/, which implies that c D b). Consequently,
�2.�/�1.�/ D 1. We get

F1.�z1; z2/ D �1.�/F2.z1; z2/ D �1.�/�2.�/F1..1=�/z1; z2/ D F1..1=�/z1; z2/;

.z1; z2/ 2 D1; � 2 I:
Thus F1 and F2 depend only on z2 – a contradiction. �

Proposition 2.3.14. Let D � C2 be a normalized bounded complete Reinhardt
domain of holomorphy.

(a) Assume that for a b 2 D� there exists a ˚b 2 Aut.D/ of the form

˚b.z/ D .z1fb.z2/;mb.z2//; z D .z1; z2/ 2 D; (2.3.5)

where mb 2 Aut.D/, m.b/ D 0, and fb 2 O�.D/. Then for any c 2 D there exists
a ˚c 2 Aut.D/ of the form

˚c.z/ D .z1fc.z2/;mc.z2//; z D .z1; z2/ 2 D;
where mc 2 Aut.D/, m.c/ D 0, and fc 2 O�.D/.

Moreover, eitherD D D2 orD D B2 orD D E.˛;1/ with ˛ ¤ 1 and

˚b.z1; z2/ D
�
�1z1

�
1 � jbj2
.1 � Nbz2/2

� 1
2˛

; �2hb.z2/

�
; z D .z1; z2/ 2 E.˛;1/;

where .�1; �2/ 2 T 2.
(b) Assume that for a b 2 D� there exists a ˚b 2 Aut.D/ of the form

˚b.z/ D .mb.z2/; z1fb.z2//; z D .z1; z2/ 2 D; (2.3.6)
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wheremb 2 Aut.D/,mb.b/ D 0, and fb 2 O�.D/. Then there exist a point a 2 D�
and an automorphism ˚�

a 2 Aut.D/ of the form

˚�
a .z/ D .m�

a.z1/; z2f
�
a .z1//; z D .z1; z2/ 2 D;

where m�
a 2 Aut.D/, m�

a.a/ D 0, f �
a 2 O�.D/. Consequently, after permutation

of variables, we are in the situation as in (a).

Proof. (a) Step 1. Let � WD ˚�1
b

. Observe that �.z/ D .z1g.z2/; k.z2//, z D
.z1; z2/ 2 D, where k D m�1

b
2 Aut.D/, k.0/ D b, and g D 1=fb B k 2 O�.D/.

Define ��;� WD T.1;�/ B ˚b B T.1;�/ B � 2 Aut.D/, �; � 2 T . Observe that the
required ˚c exists for every c 2 D such that there exist �; � 2 T with ��;� .0; 0/ D
.0; c/, and then

˚c.z1; z2/ WD ��1
�;�.z1; z2/ D ˚b B T.1;1=�/ B � B T.1;1=�/.z1; z2/

D ˚b B T.1;1=�/ B �.z1; .1=�/z2/
D ˚b B T.1;1=�/.z1g..1=�/z2/; k..1=�/z2//

D ˚b.z1g..1=�/z2/; .1=�/k..1=�/z2//

D .z1g..1=�/z2/fb..1=�/k..1=�/z2//;mb..1=�/k..1=�/z2///

DW .z1fc.z2/;mc.z2//; .z1; z2/ 2 D:

Thus, every point c 2 D such that there exists a � 2 T with jcj D jm.�b/j is
“accessible”. Direct calculations show (Exercise) that

fjmb.�b/j W � 2 T g D
�
0;

2jbj
1C jbj2

�
DW .0; r1/:

Observe that r1 > jbj.
Repeating the above procedure with ˚b substituted by ˚c with 0 < jcj < r1

leads to a new set of accessible points of the form fd 2 D W 0 < jd j < r2g
with r2 WD 2r1

1Cr2
1

> r1. Let rnC1 WD 2rn
1Cr2

n

. It remains to observe that rn % 1

(Exercise).
Step 2. Write

D D f.z1; z1/ 2 D2 W jz1j < R.jz2j/g;
where R W Œ0; 1/ ! .0; 1� is a continuous function with R.0/ D 1 (Lemma 2.3.1).
Let z0 D .z01 ; z

0
2/ 2 @D \ .xD � D/, jz01 j D R.jz02 j/. Let ˚c be as in Step 1. Then

˚c.z
0/ 2 @D \ .xD � D/ and therefore jz01fc.z02/j D R.jhc.z02/j/, which gives the

equation

R.jz2j/jfc.z2/j D R.jhc.z2/j/; z2; c 2 D: (2.3.7)



2.3. Biholomorphisms of bounded complete Reinhardt domains in C2 189

Take c D rei� , z2 D rei.tC�/. Observe that the function

R 3 t 'r7�! R

�
r

ˇ̌̌̌
eit � 1
1 � r2eit

ˇ̌̌̌�
D R.r/jfc.rei.tC�//j

is of class C1. Consequently, R is C1 on .0; 1/.
Indeed, write

'r.t/ D R B  r.cos t /; t 2 R;

where

 r.u/ WD r

�
2 � 2u

1C r4 � 2r2u
�1=2

; u 2 .�1; 1/:

A short calculation shows that  0
r.u/ < 0, u 2 .�1; 1/. Moreover,

 r..�1; 1// D
�
0;

2r

1C r2

�
WD Ir :

Consequently, R is C1.Ir/. Letting r % 1, we conclude that R 2 C1.0; 1/.
Step 3. Put

U.t/ WD logR.t/; Q.t/ WD U 00.t/C .1=t/U 0.t/; t 2 .0; 1/:
We have

Q.jzj/ D �U.jzj/; z 2 D�;

where� WD @2

@x2 C @2

@y2 (Exercise). Moreover, since log jfcj is a harmonic function
([Con 1973], Chapter X), we get

Q.jzj/ D � logR.jzj/C� log jfc.z/j D � logR.jhc.z/j/
D
ˇ̌̌̌
1 � jcj2
.1 � Ncz/2

ˇ̌̌̌2
Q
�ˇ̌̌ z � c
1 � Ncz

ˇ̌̌�
; z 2 D�; c 2 D n fzg (Exercise):

(2.3.8)

We are going to determine the function R.
� First consider the special case Q � 0. Then the equation

U 00.t/C .1=t/U 0.t/ D 0

gives U.t/ D C0 log t C logC1, and hence R.t/ D C1t
C0 , 0 < t < 1. The

continuity of R and condition R.0/ D 1 imply that C0 D 0, C1 D 1, i.e. R � 1.
Consequently, in this case we get D D D2.

� Now, consider the case where Q 6� 0. Observe that if Q.t0/ ¤ 0, then for
every t 2 .0; 1/ there exists a c 2 D such that jhc.t0/j D t . Hence, using (2.3.8),
we conclude that Q.t/ ¤ 0.
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Observe that if Q1;Q2 are two functions of this type, then, using (2.3.8), we
get

Q1.t/

Q2.t/
D Q1.j z�c

1� Ncz j/
Q2.j z�c

1� Ncz j/ ; t D jzj 2 .0; 1/; c 2 D n fzg:

Fix a t0 2 .0; 1/. We have already observed that for any t 2 .0; 1/ there exists a c 2
D such that jhc.t0/j D t . Then Q1.t0/=Q2.t0/ D Q1.t/=Q2.t/. Consequently,
Q1=Q2 D const.

Step 4. The domain D WD E.˛;1/ satisfies the assumption of (a).
Indeed, for any b 2 D and .�1; �2/ 2 T 2, the mapping

F.z1; z2/ D
�
�1z1

�
1 � jbj2
.1 � Nbz2/2

� 1
2˛

; �2hb.z2/

�
;

is an automorphism of E.˛;1/ with F.0; b/ D .0; 0/ (Exercise).
Direct calculations show that, for R.t/ D .1 � t2/1=.2˛/, the corresponding

function Q has the form

Q.t/ D � 2

˛.1 � t2/2 (Exercise):

Step 5. By Steps 3 and 4, for any domain with Q 6� 0 we have

Q.t/ D � 2

C.1 � t2/2 ;

where C 2 R� is a constant. Hence U.t/ D 1
2C

log.1 � t2/ C logC1, and so
R.t/ D C1.1 � t2/1=.2C/, 0 < t < 1. The condition R.0/ D 1 implies that
C1 D 1. Since D is bounded, we have C � 0. Thus D D E.C;1/.

Step 6. Observe that if D D E.˛;1/ with ˛ ¤ 1, then

˚b.z1; z2/ D
�
�1z1

�
1 � jbj2
.1 � Nbz2/2

� 1
2˛

; �2hb.z2/

�
; z D .z1; z2/ 2 E.˛;1/;

where .�1; �2/ 2 T 2.
Indeed, since

1 � jhb.z2/j2 D .1 � jbj2/.1 � jz2j2/
j1 � Nbz2j2

; z2 2 D; (2.3.9)

we get (cf. (2.3.7))

jfb.z2/j D R.jhb.z2/j/
R.jz2j/ D

�
1 � jhb.z2/j2
1 � jz2j2

� 1
2˛

D
�
1 � jbj2

j1 � Nbz2j2
� 1

2˛

; z2 2 D:
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(b) Let � WD ˚�1
b

. Observe that �.z/ D .z2g.z1/; k.z1//, z D .z1; z2/ 2 D,
where k D m�1

b
2 Aut.D/, k.0/ D b, and g 2 O�.D/. Fix � 2 T n f1g and put

a WD mb.�b/ 2 D�. Then

˚b B T.1;1=�/ B �.a; 0/ D ˚b B T.1;1=�/.0; k.a//

D ˚b B T.1;1=�/.0; �b/ D ˚b.0; b/ D .0; 0/:

Moreover,

˚�
a .z1; z2/ WD ˚b B T.1;1=�/ B �.z1; z2/ D ˚b B T.1;1=�/.z2g.z1/; k.z1//

D ˚b.z2g.z1/; .1=�/k.z1//

D .mb..1=�/k.z1//; z2g.z1/f ..1=�/k.z1///

DW .m�
a.z1/; z2f

�
a .z1//; .z1; z2/ 2 D: �

Proof of Theorem 2.3.4. We already know (cf. the proof of Proposition 2.3.14 (a),
Steps 4 and 6) that

Aut.E.˛;1// 

�
E.˛;1/ 3 z �c;	7���!

�
�1z1

�
1 � jcj2
.1 � Ncz2/2

� 1
2˛

; �2hc.z2/

�
2 E.˛;1/ W

c 2 D; .�1; �2/ 2 T 2


D f˚ 2 Aut.E.˛;1// W ˚ has form (2.3.5)g DW G:

Moreover, G is a subgroup of Aut.E.˛;1// (Exercise).
Fix a ˚ 2 Aut.E.˛;1//. If ˚.0; 0/ D .0; 0/, then, by Corollary 2.3.12, either

˚ D T� or˚ D T �
�

. The second case is impossible because E.˛;1/ is not symmetric.
Hence ˚ 2 G .

Now, assume that ˚.0; 0/ D .a; b/ ¤ .0; 0/. Then F WD �b;1 B ˚ 2
Aut.E.˛;1// and F.0; 0/ D .c; 0/ for some c 2 D. If c D 0, then F 2 G and
hence ˚ 2 G .

Suppose that c ¤ 0. Put G WD S B F �1 B S 2 Aut.E.1;˛//. By Proposi-
tion 2.3.13, G is either of the form (2.3.5) or (2.3.6). In the first case Proposi-
tion 2.3.14 (a) implies that E.1;˛/ D E.ˇ;1/, which is impossible. In the second
case, since G.@E.1;˛// D @E.1;˛/, we get

jhc.z2/j2 C .1 � jz2j2˛/˛jfc.z2/j2˛ � 1; z2 2 D:

Hence

jfc.z/j2˛ D 1 � jhc.z/j2
.1 � jzj2˛/˛

.2.3.9/D 1 � jcj2
j1 � Nczj2

1 � jzj2
.1 � jzj2˛/˛ ; z 2 D:

Consequently, ˛ D 1; a contradiction.
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Indeed, suppose that 0 < ˛ < 1. Then for every � 2 T we get

lim
z!�

jfc.z/j2˛ D 1 � jcj2
j1 � Nc�j2 lim

t!1�
1 � t

.1 � t˛/˛ D 0:

Hence, by the maximum principle, fc � 0; a contradiction. If ˛ > 1, then

lim
z!�

1

jfc.z/j2˛ D j1 � Nc�j2
1 � jcj2 lim

t!1�
.1 � t˛/˛
1 � t D 0

and we have again a contradiction. �

Proof of Theorem 2.3.5. (a) Assume that D is homogeneous and D ¤ B2. In
particular, for any b 2 D� there exists a ˚b 2 Aut.D/ such that ˚b.0; b/ D
.0; 0/. By Proposition 2.3.13, ˚b is either of the form (2.3.5) or (2.3.6). Now, by
Proposition 2.3.14, either D D D2 or D D E.˛;1/ or D D E.1;˛/ with ˛ ¤ 1. By
Theorem 2.3.4, the only homogeneous case is D D D2.

(b) follows from Proposition 2.3.14 (a) and Theorem 2.3.4.
(c) follows from Corollary 2.3.12 with D1 D D2 D D. �

Proposition 2.3.15. Let D � C2 be a normalized bounded complete Reinhardt
domain of holomorphy and let ˚ 2 Aut.D/ be such that ˚.0; 0/ D .a; b/ with
ab ¤ 0. Then there exists a � 2 Aut.D/ such that �.0; c/ D .0; 0/ or �.c; 0/ D
.0; 0/ for some c 2 D�.

Proof. Put V0 WD f.z1; z2/ 2 D W z1z2 D 0g D .D � f0g/ [ .f0g � D/, V� WD
V0 n f.0; 0/g D .D� � f0g/ [ .f0g � D�/. Suppose that the result is not true, i.e.

(*) F.0; 0/ … V� for every F 2 Aut.D/
(equivalently, .0; 0/ … �.V�/ for every � 2 Aut.D/).
Define

�� WD ˚�1 B T� B ˚ 2 Aut.D/; � 2 T 2; P.�/ WD �� .0; 0/;

M WD fT�.P.�// W �; � 2 T 2g; S.�/ WD ��1
� .V0/; � 2 T 2:

Note that P.�/ … V0 for all � 2 T 2 n f.1; 1/g. Indeed, in view of (*), P.�/ 2 V0 iff
�� .0; 0/ D .0; 0/, which means that T� B ˚.0; 0/ D ˚.0; 0/ and hence � D .1; 1/.

Moreover, M \ S.�/ D fP.�/g.
Indeed, it is clear that P.�/ 2 M \ S.�/. Fix �; � 2 T 2 and suppose that

T�.P.�// 2 S.�/, i.e. ��1
�
.T�.P.�/// D ��1

�
B T� B ��.0; 0/ 2 V0. By (*) we

get ��1
�
.T�.P.�/// D .0; 0/. Thus T�.P.�// D P.�/.

We are going to show that

(**) there exists a point P.�/ which lies on a smooth 3-dimensional surface
N � M .
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Assume for a moment that (**) is already proved. Then the intersectionN\S.�/
cannot be a point, which leads to a contradiction.

Indeed, N 0 WD �� .N / is also a smooth 3-dimensional surface. It suffices to
prove that N 0 \ V0 ¤ f.0; 0/g. Assume that

N 0 D f.x1; y1; x2; '.x1; y1; x2// W .x1; y1; x2/ 2 U 3g;
where U � R is an open neighborhood of 0 and ' is a smooth function in U . Then
N 0 \ V0 contains the curve f.0; 0; x2; '.0; 0; x2// W x2 2 U g. All other cases are
similar (Exercise).

We come back to (**). Consider the mapping

.0; 2�/ � .0; 2�/ 3 ˛ f7! .j.P.ei˛//1j; j.P.ei˛//2j/ 2 R2>0:

Put W WD f ..0; 2�/ � .0; 2�//. Observe that if W contains a smooth curve, then
M contains a smooth 3-dimensional 2-circled surface.

Indeed, suppose that W contains a graph u D '.t/, t 2 U , where U � R>0 is
open, ' is smooth in U and '.t/ > 0, t 2 U . Then M contains the set

M 0 WD f.eiˇ t; ei�'.t// W t 2 U; ˇ; 
 2 Rg:
Consider the mapping

U�R2 3 .t; ˇ; 
/ g7�! .eiˇ t; ei�'.t//D .t cosˇ; t sin ˇ; '.t/ cos 
; '.t/ sin 
/ 2 R4

and calculate g0.t; ˇ; 
/:

g0.t; ˇ; 
/ D

2664
cosˇ �t sin ˇ 0

sin ˇ t cosˇ 0

'0.t/ cos 
 0 �'.t/ sin 

'0.t/ sin 
 0 '.t/ cos 


3775 :
Then rank g0.t; ˇ; 
/ D 3 (Exercise), which implies that M 0 locally contains a
smooth 3-dimensional surface.

Now we prove thatW contains a smooth curve. The mapping f is real analytic
(Exercise). If there exists an ˛ with rank f 0.˛/ D 2, thenW contains an open set
and, therefore, a curve. Thus we may assume that rank f 0.˛/ � 1, ˛ 2 .0; 2�/ �
.0; 2�/. Obviously, if rank f 0.˛/ D 1 on a non-empty open set, thenW contains a
curve. It remains to exclude the case where rank f 0 � 0 on .0; 2�/�.0; 2�/. Then
f is constant. Thus jP.�/1j D c1 > 0, jP.�/2j D c2 > 0, � 2 .T n f1g/2. By
continuity, .0; 0/ D .jP..1; 1//1j; jP..1; 1//2j/ D .c1; c2/; a contradiction. �

Proof of Theorem 2.3.6. Since F 2 Bih.D1;D2/, we see thatD1 is homogeneous
iff D2 is homogeneous. Thus, by Theorem 2.3.5 (a), D1 2 fD2;B2g iff D2 2
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fD2;B2g. By the Poincaré Theorem 2.1.17, the only possible cases are D1 D
D2 D D2 and D1 D D2 D B2.

Assume that Dj is not homogeneous, j D 1; 2. If there exists an a 2 D1
such that Aut.D1/ D Auta.D1/, then Aut.D2/ D AutF.a/.D2/. Consequently,
by Theorem 2.3.5 (c), a D F.a/ D 0 and by Corollary 2.3.12, F D T� (and
D2 D D1) or F D T �

�
(and D2 D S .D1/) for some � 2 T 2.

It remains to consider the case where Dj is not homogeneous and Aut.Dj / ¤
Auta.Dj / for any a 2 Dj , j D 1; 2. Then, by Theorem 2.3.5 and Proposi-
tion 2.3.15, D1 D Ep , D2 D Eq for some

p; q 2 .f1g � .R>0 n f1g// [ ..R>0 n f1g/ � f1g/:
In view of Theorem 2.3.4, we only need to prove that p D q or p D S .q/.

The case F.0; 0/ D .0; 0/ follows from Corollary 2.3.12, so assume that
F.0; 0/ ¤ .0; 0/.

In the case where F.0; b/ D .0; 0/ for some b 2 D� we use Proposition 2.3.13
and we conclude that F is either of the form (2.3.3) or (2.3.4). In fact, substituting
D2 by S .D2/, if necessary, we may assume that

F.z/ D .z1fb.z2/;mb.z2//; z D .z1; z2/ 2 D1;
where fb 2 O�.D/ and mb 2 Aut.D/, mb.b/ D 0. Recall that

Dj D f.z1; z2/ 2 D2 W jz1j < Rj .jz2j/g; j D 1; 2;

where

R1.t/ WD .1 � t2p2/1=.2p1/; R2.t/ WD .1 � t2q2/1=.2q1/; t 2 Œ0; 1/:
Since F.@D1 \ .xD � D// D @D2 \ .xD � D/, we get

R1.jz2j/jfb.z2/j D R2.jhb.z2/j/; z2 2 D;

i.e.
.1 � jzj2p2/1=.2p1/jfb.z/j D .1 � jhb.z/j2q2/1=.2q1/; z 2 D;

and, consequently,

jfb.z/j D .1 � jhb.z/j2q2/1=.2q1/

.1 � jzj2p2/1=.2p1/
; z 2 D:

We have to consider the following three cases:
� F 2 Bih.E.˛;1/;E.ˇ;1//. Then we have

jfb.z/j D
�
1 � jbj2
j1 � Nbzj2

� 1
2ˇ

.1 � jzj2/ 1
2ˇ

� 1
2˛ ; z 2 D:
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Since fb 2 O�.D/, letting jzj ! 1, we conclude that ˛ D ˇ.
� F 2 Bih.E.˛;1/;E.1;ˇ//. Then we have

jfb.z/j D
�
1 � jhb.z/j2ˇ
1 � jhb.z/j2

�1=2�
1 � jbj2
j1 � Nbzj2

�1=2
.1 � jzj2/ 1

2 � 1
2˛ ; z 2 D:

Consequently, ˛ D 1; a contradiction.
� F 2 Bih.E.1;˛/;E.1;ˇ//. Then we have

jfb.z/j D
�
1 � jhb.z/j2ˇ
1 � jzj2˛

�1=2
D
�
1 � jhb.z/j2ˇ
1 � jhb.z/j2

1 � jhb.z/j2
1 � jzj2

1 � jzj2
1 � jzj2˛

�1=2
D
�
1 � jhb.z/j2ˇ
1 � jhb.z/j2

1 � jbj2
j1 � Nbzj2

1 � jzj2
1 � jzj2˛

�1=2
; z 2 D:

Letting z ! � 2 T , we conclude that

lim
z!�

jfb.z/j D
�
ˇ
1 � jbj2
j1 � Nb�j2

1

˛

�1=2
D const

j1 � Nb�j ; � 2 T :

Hence, by the identity principle, we get

fb.z/ D �

1 � Nbz ; z 2 D;

with � 2 C�. We have

j�j2 1 � jzj2˛
j1 � Nbzj2 D 1 � jhb.z/j2ˇ ; z 2 D:

Since both sides of the above equality are real analytic functions on C n f1= Nbg, we
get

j�j2 1 � jzj2˛
j1 � Nbzj2 D 1 � jhb.z/j2ˇ ; z 2 C n f1= Nbg:

Letting z ! 1= Nb, we conclude that ˇ D 1 (Exercise); a contradiction.
The case where F.a; 0/ D .0; 0/ for some a 2 D� is analogous.
In the case where F.a; b/ D .0; 0/ for ab ¤ 0 we may assume that D1 D

E.˛;1/. Then �b;1.a; b/ D .a�; 0/ (�b;1 is as in Theorem 2.3.4). Consequently,
F B ��1

b;1
.a�; 0/ D .0; 0/. Thus the problem is reduced to the previous situation,

which implies that D2 D E.˛;1/ and F B ��1
b;1

D �a�;� for some � 2 T 2. Finally,
F D �b;1 B �a�;� 2 Aut.E.˛;1//. �
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2.4 Biholomorphisms of complete elementary Reinhardt
domains in C2

Recall that a Reinhardt domain of the form

D˛;c D fz 2 C2 W jz1j˛1 jz2j˛2 < ecg; ˛ D .˛1; ˛2/ 2 .R2C/�; c 2 R;

is a so-called elementary Reinhardt domain. Because of the restriction on the
exponent ˛ it is complete; moreover, it is a domain of holomorphy.

Remark 2.4.1. Observe that D˛;c is algebraically equivalent (cf. Definition 1.5.12)
to D˛ D D˛;0 (Exercise). Therefore, we will only study domains of type D˛ ,
˛ 2 .R2C/�. In fact, we will only consider the following three types of normalized
elementary Reinhardt domains, namely:

� ˛1˛2 D 0: then either D˛ D D.1;0/ D D � C or D˛ D D.0;1/ D C � D
(obviously, both domains are biholomorphically equivalent);

� ˛1˛2 ¤ 0 and ˛1=˛2 D p=q with p; q 2 N, p; q relatively prime: then
D˛ D fz 2 C2 W jz1jpjz2jq < 1g;

� ˛1˛2 ¤ 0 and ˛1=˛2 … Q: then D˛ D D.t;1/ with t WD ˛1=˛2 2 R>0 n Q.

Definition 2.4.2 (Cf. Definition 1.4.8). Let ˛ D .˛1; ˛2/ 2 .R2C/�.
(a) If ˛1˛2 D 0 or ˛1; ˛2 2 N, ˛1; ˛2 relatively prime, then the domain

D˛ WD fz 2 C2 W jz1j˛1 jz2j˛2 < 1g is called an elementary Reinhardt domain of
rational type.

(b) If ˛1˛2 ¤ 0 and ˛1 … Q, ˛2 D 1, then D˛ D fz 2 C2 W jz1j˛1 jz2j < 1g is
called an elementary Reinhardt domain of irrational type.

Remark 2.4.3. Let D˛ be an elementary Reinhardt domain. Then its logarithmic
image contains the straight line L WD f.�1; �2/ 2 R2 W ˛1�1 C ˛2�2 D tg, t < 0, if
˛1˛2 ¤ 0, or f.�1; �2/ W �2 2 Rg, �1 < 0, if ˛ D .1; 0/. Conversely, any unbounded
complete Reinhardt domain of holomorphy D   C2 whose logarithmic image
contains a straight line is of the form D D D˛;c (Exercise) and so biholomorphic
to D˛ .

Exercise 2.4.4. Let D˛ , ˛ 2 N2 (˛1, ˛2 relatively prime). For an f 2 O�.D/
put gf ,

gf .z/ WD .z1.f .z
˛//�˛2 ; z2.f .z

˛//˛1/; z 2 D˛:

Prove that g WD fgf W f 2 O�.D/g is a subgroup of Aut.D˛/.

In the following theorem all automorphisms of an elementary Reinhardt domain,
normalized as before, are described.

Theorem 2.4.5 ([Shi 1991], [Shi 1992]). Let D˛ be a complete elementary Rein-
hardt domain.
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(a) If D˛ D D.1;0/, then

Aut.D˛/ D fD˛ 3 z 7! .m.z1/; f .z1/z2 C g.z1// W
m 2 Aut.D/; f 2 O�.D/; g 2 O.D/g:

(a0) If D˛ D D.0;1/, then

Aut.D/ D S B Aut.D.1;0// B S : 10

(b) If D˛ is of rational type with ˛1; ˛2 2 N, relatively prime, then

Aut.D˛/ D fT� B gf B � W f 2 O�.D/; � 2 T 2; � 2 G .D˛/g;
where

G .D˛/ WD
(

fS ; idg if ˛1 D ˛2 D 1;

fidg if ˛1˛2 ¤ 1:

(c) If D˛ is of irrational type .i.e. ˛ D .˛1; 1/, ˛1 … Q/, then

Aut.D˛/ D fD˛ 3 z 7! T� .ı
�1z1; ı˛1z2/ W � 2 T 2; ı > 0g:

Exercise 2.4.6. Let D˛ be as in (b). Prove that F 2 Aut.D˛/ iff there exist
� 2 T , f 2 O�.D/, and A 2 GL.2;Z/ \ M.2 � 2;ZC/ with ˛A D ˛ such that
F D T.�;1/ B gf B ˚A (for the definition of ˚A WD ˚1;A see Definition 1.5.12).

Moreover, the following equivalence result will be discussed.

Theorem 2.4.7 ([Shi 1991], [Shi 1992]). Let D˛ and Dˇ be normalized complete
elementary Reinhardt domains .in the sense of Remark 2.4.1/.

(a) If D˛ is of rational and Dˇ of irrational type, then D˛ is not biholomorphically
equivalent to Dˇ .

(b) D.1;0/ and D˛ , ˛ D .˛1; ˛2/ 2 N2, ˛1; ˛2 relatively prime, are not biholo-
morphically equivalent.

(c) If D˛ and Dˇ are biholomorphically equivalent, then either D˛ D Dˇ or
D˛ D S .Dˇ /.

The proof will be based on the following notion of a Liouville foliation.

Definition 2.4.8. LetD � Cn be a domain. A system .F�/�2A (A a suitable index
set) of sets F� � D is called a holomorphic (resp. psh) Liouville foliation of D if
the following conditions are fulfilled:

� F�1
\ F�2

D ¿ if �1 ¤ �2,
� D D S

�2A F� ,

10Recall that S .z;w/ D .w; z/.
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� if u 2 H 1.D/ (resp. u 2 PSH.D/, bounded from above), then ujF�
is

identically constant, � 2 A,
� for �1; �2 2 A, �1 ¤ �2, there exists au 2 H 1.D/ (resp. an upper bounded

u 2 PSH.D/) such that ujF�1
¤ ujF�2

.

Example 2.4.9 (A holomorphic Liouville foliation). Let D D D˛ � C2 be an
elementary Reinhardt domain of rational type.

If ˛ D .1; 0/, put F� WD f�g � C, � 2 D. Then .F� /�2D is a holomorphic
Liouville foliation ofD. In fact, ifu 2 H 1.D/, then, for � 2 D,u.�; 	 / 2 H 1.C/.
Hence, in virtue of the Liouville Theorem, it follows that ujF	

is constant. Finally,
observe that the function D 3 z 7! z1 is a bounded holomorphic function on D
which separates the fibers F� .

If ˛1˛2 ¤ 0, put F� WD fz 2 D W z˛ D �g, � 2 D. Then, again, .F� /�2D is
a holomorphic Liouville foliation of D. In fact, we mention that for � 2 D n f0g
the map '� W C� ! D, '� .�/ WD .��˛2 ; �˛1 Q�/, where Q�a2 D �, is holomorphic.
Therefore, if u 2 H 1.D/, then u B '� 2 H 1.C�/. Note that '� .C�/ D F� .
Applying the Riemann removable singularity theorem and then the Liouville theo-
rem, we conclude that ujF	

is identically constant. In case of � D 0 the fiber F0
equals .f0g � C/ [ .C � f0g/. By the same reasoning as above it is easily seen
that if u 2 H 1.D/, then ujF0

is a constant function. Moreover, the bounded
holomorphic function g W D ! C, g.z/ WD z˛ , separates the different fibers.

In order to be able to present an elementary Reinhardt domain of irrational type
as an example of a psh Liouville foliation we will need the following result due to
Kronecker (cf. [Har-Wri 1979], see also p. 97).

Lemma 2.4.10. Let c 2 R n Q, b 2 C. Moreover, put

Lc;b WD fz 2 C2 W cz1 C z2 D bg
and ˚ W C2 ! C2�, ˚.z/ WD .e2
z1 ; e2
z2/.

Then ˚.Lc;b/ is a dense subset of F WD fz 2 C2 W jz1jcjz2j D e2
 Re bg.
Proof. Take a point z 2 Lc;b . Then c Re z1 C Re z2 D Re b, hence ˚.Lc;b/ � F .
On the other hand fix a point z0 2 F . Then choose an ! 2 C with e2
! D z02 .
Setting � WD .b�!/=c we have that .�; !/ 2 Lc;b and so .�C i t; !� ict/ 2 Lc;b ,
t 2 R. Then˚.�; !/ D .z01e

is; z02/ for a suitable s 2 R. Moreover, it is well known
(recall that the number c is irrational) that the set

f˚.� C i t; ! � ict/ W t 2 Rg D f.z01ei.sCt/; z02e�ict / W t 2 Rg
is dense in F . �

Example 2.4.11 (A psh Liouville foliation). Let D D D˛ � C2 (˛ D .˛1; 1/)
be a normalized complete elementary Reinhardt domain of irrational type. Put
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Ft WD fz 2 D W jz1j˛1 jz2j D tg, t 2 Œ0; 1/. Then .Ft /t2Œ0;1/ is a psh Liouville
foliation.

In fact, if t D 0, then F0 is as in Example 2.4.9. Therefore, if u 2 PSH.D/

is bounded from above, then u.0; 	 / 2 SH.C/ and u. 	 ; 0/ 2 SH.C/ are upper
bounded and so, in virtue of the Liouville theorem for psh functions (see Re-
mark 1.14.3 (g)), identically constant. Hence, ujF0

is a constant function.
Now let t 2 .0; 1/. Fix a u 2 PSH.D/ bounded from above. Using the

holomorphic mapping˚ W C2 ! C2�, ˚.z/ WD .e2
z1 ; e2
z2/, we see that˚ maps
the domain˝ WD fz 2 C2 W ˛1 Re z1C Re z2 < 0g holomorphically ontoD\ C2�.
Thus u B ˚ is a psh function on ˝ which is bounded from above. Fixing a point
b D .e2
ˇ1 ; e2
ˇ2/ 2 Ft we define

L˛1;
1

2� log t WD f.�; !/ 2 C2 W ˛1� C ! D 1
2


log tg � ˝:

Then C 3 � 7! u B ˚.�; 1
2


log t � ˛1�/ is an upper bounded subharmonic func-
tion and therefore identically constant. Hence, u is constant on the ˚ -image of
L˛1;

1
2� log t that is dense in Ft . Applying that u is upper semicontinuous we con-

clude that u.b/ � u.p/ for any p 2 Ft . Changing the role of b and p we see that
ujFt

is identically constant.
Finally, it remains to mention that u W D ! R, u.z/ WD jz1j˛1 jjz2j, is bounded

psh and separates different fibers.

In the sequel the following observation will serve as a basic argument.

Lemma 2.4.12. Let � W D ! D0 be a biholomorphic mapping between domains
D;D0 � Cn. Assume that .F˛/˛2A .resp. .F 0

ˇ
/ˇ2B/ is a holomorphic Liouville

foliation of D .resp. D0/. Then there exists a bijective map � W A ! B such that
�.F˛/ D F 0

.˛/
, ˛ 2 A. The same result is true for psh Liouville foliations.

Proof. We restrict ourselves to proving this lemma for holomorphic foliations. The
analogous argument in the case of psh foliations is left as an Exercise.

In a first step we assumeD D D0 and � D idD . Observe that if F˛ \F 0
ˇ

¤ ¿,
thenF˛ D F 0

ˇ
. Indeed, suppose that both fibers are different. Then we may assume

that F˛ n F 0
ˇ

¤ ¿. Fix points p 2 F˛ \ F 0
ˇ

and q 2 F˛ n F 0
ˇ

. In view of the
last condition in Definition 2.4.8 there is a bounded holomorphic function h on
D with h.p/ ¤ h.q/. On the other hand, p; q 2 F˛ , therefore, h.p/ D h.q/; a
contradiction. The remaining properties of Definition 2.4.8 then prove the lemma.

Now let D and D0 be arbitrary. We have only to observe that .�.F˛//˛2A
defines a holomorphic Liouville foliation of D0 (Exercise). Then the first step
completes the proof. �

Proof of Theorem 2.4.5 (a) and (a0). The proof will be based on the holomorphic
foliation .F� /�2D, where F� WD f�g � C (see Example 2.4.9). Let ' 2 Aut.D˛/.
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In virtue of Lemma 2.4.12, there is a bijective mapping � W D ! D such that
'.F� / D F.�/, � 2 D. Therefore, ' may be written in the form

'.z/ D .'1.z/; '2.z// D .�.z1/; '2.z//:

Therefore, � � '1. 	 ; 0/ is a biholomorphic map from D to D.
What remains is to describe the second component function. Let us fix a�0 2 D;

then '2.�0; 	 / is a biholomorphic map from C to C, i.e. '2.�0; w/ D 
.�0/w C
ı.�0/, w 2 C, where 
.�0/ 2 C�, ı.z0/ 2 C. Now, we write '2 as its Hartogs
series '2.z/ D P1

jD0 
j .z1/z
j
2 , where 
j 2 O.D/.11 Then 
j .�0/ D 0, j � 2.

Since �0 was arbitrarily chosen, we get '2.z/ D 
0.z1/C 
1.z1/z2. Observe that

1 2 O�.D/.

Obviously, any mapping given in the lemma is an automorphism of D˛ .
It remains to mention that S gives a biholomorphic mapping between D˛ and

C � D. �

To be able to continue the proof of Theorem 2.4.5, it is necessary to study another
automorphism group.

The automorphism group of D�
˛ . Let ˛ D .˛1; ˛2/ 2 Z2, ˛ ¤ .0; 0/, ˛1; ˛2

relatively prime in the case where ˛1˛2 ¤ 0. We set

D�̨ WD fz 2 C2� W jz1j˛1 jz2j˛2 < 1g D D˛ n V0:

An automorphism of D�̨ is called an algebraic one if it is the restriction of an
algebraic mapping ˚a;A (cf. Definition 1.5.12).

Then we obtain the following automorphism groups.

Lemma 2.4.13.

Aut.D�
.1;0// D Aut.D� � C�/

D fD�
.1;0/ 3 z 7! .�z1; f .z1/z

"
2/ W � 2 T ; f 2 O�.D�/; " D ˙1g:

Proof. Put F� WD f�g � C�, � 2 D�. Then .F� /�2D�
is a holomorphic Liouville

foliation of D�
.1;0/

(Exercise). Let ' 2 Aut.D�
.1;0/

/. In virtue of Lemma 2.4.12
there exists a bijective map � W D� ! D� such that'.F� / D F.�/, � 2 D�. Observe
that '1.z1; 	 / is a bounded holomorphic function on the whole plane and, therefore,
identically �.z1/, i.e. '.z/ D .�.z1/; '2.z//. Since '1.z1; 0/ D �.z1/, z1 2 D�,
the function � is holomorphic and hence a biholomorphic map from D� onto D�.
Therefore, � is a rotation of D�, i.e. �.z1/ D �z1, where j�j D 1.

Using Laurent expansion we may write '2.z/ D P1
jD�1 cj .z1/z

j
2 , where

cj 2 O.D�/. In virtue of Lemma 2.4.12, '2.z1; 	 / is a biholomorphic mapping

11Recall that �j .z1/ D 1
2�i

R
@K.r/

f .z1;	/

	j C1 d� , z1 2 D.
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from C� onto itself. Hence, '2.z/ D f .z1/z
˙1
2 , f .z1/ ¤ 0. Then the uniqueness

of the Laurent expansion leads to cj D 0, j ¤ ˙1, and c�1 D f , c1 D 0 or
c�1 D 0, c1 D f , z1 2 D�. So we are led to the following shape of '2, namely
'2.z/ D f .z1/z

˙1
2 , z 2 D�

.1;0/
, where f 2 O�.D�/. �

In order to continue we observe that any domain D�̨, ˛ 2 Z2�, ˛1; ˛2 relatively
prime, is biholomorphically equivalent to D�

.1;0/
. In fact, choose integers c; d such

that ˛1d � ˛2c D 1 and define the following mapping ' W C2� ! C2�, '.z/ D
.z˛; zc1z

d
2 /. Then ' gives a biholomorphic mapping from D�̨ onto D�

.1;0/
.

Corollary 2.4.14. Let D�̨, D�
ˇ

, ˛; ˇ 2 Z2�, where ˛1; ˛2, respectively ˇ1; ˇ2, are
assumed to be relatively prime. Then D�̨ and D�

ˇ
are biholomorphically equivalent

and a biholomorphic mapping is given by˚C , where C 2 GL.2;Z/ and ˇC D ˛.

Proof. Choose c; d; Qc; Qd 2 Z with ˛1d � ˛2c D ˇ1 Qd � ˇ2 Qc D 1. Recall that ˚A
and˚B induces biholomorphic mappings from D�̨ to D�

.1;0/
and from D�

ˇ
to D�

.1;0/
,

where A WD 
 ˛1 ˛2

c d

�
and B WD

h
ˇ1 ˇ2

Qc Qd
i
, respectively. Then set C WD B�1A. �

In the case where ˛ 2 Z2�, ˛1˛2 ¤ 0, ˛1, ˛2 relatively prime, we have the
following description of the automorphism group of D�̨.

Lemma 2.4.15. Let ˛ D .˛1; ˛2/ 2 Z2� such that ˛1, ˛2 are relatively prime. Then

Aut.D�̨/ D
n
T� B gf B ˚P jD�

˛
W � 2 T 2; f 2 O�.D�/;

P 2 GL.2;Z/ with ˛P D ˛g: 12

Proof. Let� W D�̨ ! D�
.1;0/

be the biholomorphic mapping from above, i.e.�.z/ D
˚A.z/ D .z˛; zc1z

d
2 /, where c; d 2 Z with ˛1d �˛2c D 1. Observe that ��1.z/ D

.zd1 z
�˛2

2 ; z�c
1 z

˛1

2 /. Then any automorphism ' of D�̨ can be written in the form
' D ��1 B B�, where  2 Aut.D�

.1;0/
/. What remains is to apply Lemma 2.4.13

(Exercise).
Conversely, any map given in Lemma 2.4.15 belongs to Aut.D�̨/ (Exercise).

�

Now we turn to the irrational case, i.e. ˛ D .˛1; 1/, ˛1 2 R n Q. Here the
method of proof has to be changed; one has to use a covering argument.

Lemma 2.4.16. Let ˛ D .˛1; 1/, ˛1 2 R n Q. Then

Aut.D�̨/ D f˚�;A W � 2 C2�; A 2 GL.2;Z/ such that ˚�;A 2 Aut.D�̨/g;
where ˚�;A.z/ WD .�1z

a1;1

1 z
a1;2

2 ; �2z
a2;1

1 z
a2;2

2 /. In particular, any automorphism
of D�̨ is an algebraic one.

12Recall that ˚P .z/ D .z
p

1 z
q

2 ; z
r
1z

s
2/. Moreover, note that gf is defined on D�

˛ , ˛ 2 Z2.
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In order to prove Lemma 2.4.16 we need the following auxiliary considerations.
Put ˝˛ WD f� 2 R2 W ˛1�1 C �2 < 0g and T˛ WD ˝˛ C iR2. Then we study the
following holomorphic mapping

˚ W T˛ ! D�̨; ˚.�/ WD .e2
�1 ; e2
�2/:

Observe that (Exercise) ˚ is a covering map, i.e. for any point z 2 D�̨ there is
a suitable open neighborhood Uz � D�̨ such that ˚�1.Uz/ is a union of pairwise
disjoint open sets Vj , j 2 Z, such that ˚ jVj

is a biholomorphic mapping from Vj
ontoUa. Moreover, it is easily seen that˝˛ and hence T˛ is convex; in particular, it
is simply connected. Therefore, T˛ is the universal covering of D�̨ (cf. [For 1981]).

Recall a few properties of the universal covering ˚ W T˛ ! D�̨:
� For any simply connected domain D � C2, any holomorphic mapping

f W D ! D˛ , any point z0 2 D, and any pointw0 2 T˛ with˚.w0/ D f .z0/ there
exists a uniquely determined holomorphic function Qf W D ! T˛ with Qf .z0/ D w0

such that˚ B Qf D f . Qf is called the lifting of f . We advise the reader to look into
general books on topology for this result.

� In particular, for any pair of pointsw0; w00 2 T˛ with˚.w0/ D ˚.w00/ there
is an Of 2 Aut.T˛/ such that ˚ B Of D ˚ and Of .w0/ D w00; Of is uniquely defined.

In fact, Of is uniquely defined since it is the lifting of˚ W T˛ ! D˛ . In virtue of
the former property of the universal covering we find a holomorphic map Of W T˛ !
T˛ with Of .w0/ D w00 such that ˚ B Of D ˚ . We have to show that Of 2 Aut.T˛/.
Changing the role of w0 and w00 we also have a holomorphic Og W T˛ ! T˛ with
Og.w00/ D w0 such that ˚ D ˚ B Og. Then ˚ B . Of B Og/ D ˚ , ˚ B . Og B Of / D ˚ ,
Og B Of .w0/ D w0, and Of B Og.w00/ D w00. Using again the first property of the
universal covering we conclude that Of B Og D id jT˛

and Og B Of D id jT˛
. Therefore,

Of 2 Aut.T˛/.
Moreover, it is easily seen that

Aut˚ .T˛/ WD f 2 Aut.T˛/ W ˚ B  D ˚g D f�� W � 2 Z2g;
where ��.z/ WD z C i�, z 2 T˛ .

Now we are going to apply the above lifting properties for a given ' 2 Aut.D�̨/.
Then there is a lifting Q' 2 Aut.T˛/ such that ˚ B Q' D ' B ˚ (Exercise).

Moreover, for a fixed � 2 Z2, Q' B �� B Q'�1 2 Aut˚ .T˛/. Therefore, we find an
�0 2 Z2 such that Q' B Q�� D ��0 B Q'. It is easily seen that the mapping � ! �0 leads
to a group isomorphism of Z2. Therefore, there exists a matrix P 2 GL.2;Z/
such that Q' B �� D ��P B Q', � 2 Z2.

So we are led to study the group of automorphisms of the domain T˛ . We get
the following lemma.

Lemma 2.4.17. Let ' 2 Aut.D�̨/. Assume that its lifting Q' W T˛ ! T˛ is a
complex affine transformation, i.e. Q'.�/ D �A C ˇ, where A 2 GL.2;C/ and
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ˇ 2 C2. Then ' is of the form '.z/ D .a1z
a1;1

1 z
a1;2

2 ; a2z
a2;1

1 z
a2;2

2 / D ˚a;A.z/,
where A 2 GL.2;Z/, a D .a1; a2/ 2 C2�, i.e. ' is an algebraic automorphism
of D�̨.

Proof. From the discussion before we get

Q' B ��.�/ D ��P B Q'.�/; � 2 T˛; � 2 Z2:

Using the form of Q' it follows that A D P . Finally, the equality ' B ˚ D ˚ B Q'
leads to the form of ' claimed in the lemma. �

After all these preparations we proceed with the proof of Lemma 2.4.16.

Proof of Lemma 2.4.16. Let ' 2 Aut.D�̨/ and Q' 2 Aut.T˛/ be its lifting. In virtue
of Lemma 2.4.17 we have to show that Q' is a complex affine transformation. In
a first step we will show that there are a � 2 Aut.H�/, an f 2 O�.H�/, and an
h 2 O.H�/ (H� WD fz 2 C W Re z < 0g) such that

Q'.�/ D �
f .��/�1 C h.��/; �.��/ � ˛1.f .��/C h.��/

�
;

where � D .�1; �2/ 2 T˛ and (to simplify notation) �� WD ˛1�1 C �2.
In fact, put  W C2 ! C2,  .�/ WD .�1; �

�/. Obviously,  is a biholomorphic
mapping and jT˛

maps T˛ biholomorphically onto C�H�. Its inverse mapping is
given by  �1.z; w/ D .z; w�˛1z/. Thus, Aut.T˛/ D  �1 B Aut.C � H�/ B .13

Moreover, let g W H� ! D be any biholomorphic map. Then

Qg W C � H� ! C � D; Qg.z; w/ WD .z; g.w//;

is also biholomorphic. So Aut.T˛/ D  �1 B Qg�1 B Aut.C � D/ B Qg B  . Then,
in virtue of Theorem 2.4.5 (a), there are Qf 2 O�.D/, Qh 2 O.D/, and m 2 Aut.D/
such that for � 2 T˛ we get

Q'.�/ D  �1 B Qg�1� Qf B g.��/�1 C Qh B g.��/; m B g.��/
�
;

and therefore, for � 2 T˛ ,

Q'.�/ D � Qf Bg.��/�1C QhBg.��/; g�1BmBg.��/�˛1. Qf Bg.��/�1C QhBg.��//
�
;

which proves the above claim with f WD Qf B g, h WD Qh B g, and � WD g�1 Bm B g.
In virtue of Lemma 2.4.17 it remains to verify that Q' is a complex affine mapping.
Indeed, in virtue of the properties of the covering mappings we have a matrix

P D Œ p qr s � 2 GL.2;Z/ such that for all pairs .k; `/ 2 Z2 the following identities
are true:

Q'.�1 C ik; �2 C i`/ D Q'.�/C i.k; `/P; � 2 T˛:
13To be precise  should be understood as  jT˛

.
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In particular,

f .�� C i.˛1k C `//.�1 C ik/C h.�� C i.˛1k C `//

D f .��/�1 C h.��/C i.kp C `r/; �.�� C i.˛1k C `//

� ˛1.f .�� C i.˛1k C `//.�1 C ik/C h.�� C i.˛2k C `//

D �.��/ � ˛1.f .��/�1 C h.��//C i.kq C `s/:

From these identities we deduce that f is a constant function.
In fact, fix a point w0 2 H�. Then, applying the first of the above identities for

points .�1; w0 � a1�1/ 2 T˛ , gives

f .w0 C i.˛1k C `//.�1 C ik/C h.w0 C i.˛1k C `//

D f .w0/�1 C h.w0/C i.kp C `r/; �1 2 C:

Hence, f .w0 C i.˛1k C `// D f .w0/ DW �0 ¤ 0, k; ` 2 Z. Recall that the
number ˛1 is an irrational one. So the set fw0 C i.˛1k C `// W k; j 2 Zg has an
accumulation point in the plane. Then, in virtue of the identity theorem, it follows
that f � �0.

Applying the first of the above identities, we claim that h is a complex linear
function.

Indeed, the above identity implies that

i�0k C h.Z C i.˛1k C `// D h.Z/C i.kp C `r/

for all Z D �� 2 H�. Differentiation in direction of Z leads to

h0.Z C i.˛1k C `// D h0.Z/:

Fixing someZ D Z0 2 H� we have h0.Z0C i.˛1kC `// D h0.Z0/ WD 	1. So h0
is constant, i.e. h.Z/ D 	1Z C 	0 for a suitable 	0.

It remains to show that � is a complex affine mapping.
In fact, using the second identity, we arrive at the following equality:

�.Z C i.˛1k C `// � a1.�0.�1 C ik/C 	1.Z C i.˛1k C `//C 	0/

D �.Z/ � ˛1.�0�1 C 	1Z C 	0/C i.kq C `s/; Z 2 H�:

Again differentiation gives � 0.Z C i.˛1k C `// D � 0.Z/, Z 2 H�:As above,
fixingZ D Z0 and using the identity theorem, we arrive at � 0 � � 0.Z0/ DW �1 ¤ 0

(recall that � is a biholomorphic mapping). As a consequence we conclude that
�.Z/ D �1Z C �0 for a suitable �0.

Finally, rewriting Q', we see that

Q'.�/ D .�0�1 C 	1.�
�/C 	0; �1.�

�/C �0 � ˛1.�0�1 C 	1.�
�/C 	0//;
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or

Q'.�/ D �

�
�0 C ˛1	1 ˛1.�1 � �0 � 	1˛1/

	1 �1 � ˛1	1
	

C .	0; �0 � ˛1	0/:

Obviously, the matrix is a non-singular one, and therefore, Q' is complex affine.
Hence, Lemma 2.4.17 gives the end of the proof. �

Now we return to the proof of Theorem 2.4.5.

Proof of Theorem 2.4.5 (b). Obviously, any of the given mappings belongs to
Aut.D˛/. To prove the converse we will use the holomorphic Liouville foliation
.F� /�2D, where F� WD fz 2 C2 W z˛ D �g. Fix a ' 2 Aut.D˛/. Then, applying
Lemma 2.4.12, there exists a bijective mapping � W D ! D such that'.F� / D F.�/,
� 2 D. Observe that the fiber F0 is the only one with a “singularity”. So one con-
cludes that �.0/ D 0 (Exercise) which means that 'jD�

˛
defines an automorphism

of D�̨. Using Lemma 2.4.15 shows that

'.z/ D .�1.f .z
˛//�˛2z

p
1 z

q
2 ; �2.f .z

˛//˛1zr1z
s
2/; z 2 D�̨;

where � D .�1; �2/ 2 T 2, f 2 O�.D�/, and P D Œ p qr s � 2 GL.2;Z/ with
˛P D ˛. Since j̨ 2 ZC, one concludes that P D I2 if ˛1˛2 ¤ 1, and (P D I2
or p D s D 0; q D r D 1) if ˛1 D ˛2 D 1, which gives the description of � .

We will only discuss the case when � D id (the case when � D S may
be taken as an Exercise). Observe that K WD 1

2
D� � f1g b D˛ . Therefore,

'2.z1; 1/ D �2.f .z
˛1

1 //
˛1 , z1 2 1

2
D�, is bounded. Applying the Riemann theorem

of removable singularities we see that f extends holomorphically to D. Taking into
account that ' is bijective, it even follows that f 2 O�.D/. Finally, a continuity
argument leads to the description of ' on the whole of D˛ . �

Finally, we discuss the case of normalized elementary Reinhardt domains of
irrational type.

Proof of Theorem 2.4.5 (c). Here we use the psh Liouville foliation .Ft /t2Œ0;1/ from
Example 2.4.11. Let ' 2 Aut.D˛/. Then there is a bijection � W Œ0; 1/ ! Œ0; 1/

such that '.Ft / D F.t/, t 2 Œ0; 1/. In particular, F0 is homeomorphic to F.0/,
which implies that �.0/ D 0. So 'jD�

˛
2 Aut.D�̨/. Applying Lemma 2.4.16, 'jD�

˛

is of the form

'.z/ D .�1z
a1;1

1 z
a1;2

2 ; �2z
a2;1

1 z
a2;2

2 /; z 2 D�̨;

where A D 
 a1;1 a1;2
a2;1 a2;2

� 2 GL.2;Z/. Observing that the coordinate axes belong
to D˛ , it follows that ai;j 2 ZC and, therefore A D I2, which implies Theo-
rem 2.4.5 (c) (Exercise). �
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Summarizing, Theorem 2.4.5 has been completely proved.

Now we turn to the proof of Theorem 2.4.7. We start with the discussion of
bounded holomorphic functions on elementary Reinhardt domains. First, recall that
an elementary Reinhardt domain D˛ of rational type carries at least one bounded
holomorphic function that is not identically constant. On the other hand, we have

Lemma 2.4.18. Any bounded holomorphic function on an elementary Reinhardt
domain of irrational type is identically constant.

Proof. Take an f 2 H 1.D˛/. Then jf j 2 PSH.D˛/. Therefore, in virtue
of Example 2.4.11, f jFt

is identically equal to a constant st , where .Ft /t2Œ0;1/
denotes the psh Liouville foliation from that example. Recall that

Ft D fz 2 D˛ W jz1j˛1 jz2j D tg:
In particular, f .z1; 1/ D st whenever jz1j˛1 D t . Applying the identity theorem,
it follows that st D s, t 2 Œ0; 1/. Hence, f � s on D˛ . �

Proof of Theorem 2.4.7. (a). In virtue of Lemma 2.4.18 and the remark before, it
is clear that D˛ and Dˇ are not biholomorphically equivalent.

(b) Suppose that there is a biholomorphic map ' W D.0;1/ ! D˛ . Then, using the
holomorphic Liouville foliation .F� /�2D of D˛ and .F 0

�
/�2D of D.1;0/, respectively

(see Example 2.4.9), there is a bijection � W D ! D such that '.F� / D F 0
.�/

, � 2 D.
In particular, 'jF	0 D F 0

0. Using thatF 0
0 has a singularity at .0; 0/we get, as before,

a contradiction.
(c) Assume that D˛ and Dˇ are biholomorphically equivalent. In virtue of (a)

there are two cases.
Case 1: Assume that D˛ and Dˇ are of rational type. Suppose that ˛ D .1; 0/,

thenˇ D .1; 0/orˇ D .0; 1/ and a biholomorphic map is given either by the identity
or by S . Therefore we only have to discuss the case where ˛1˛2 ¤ 0 ¤ ˇ1ˇ2,
˛1; ˛2, resp. ˇ1; ˇ2, relatively prime. Take a biholomorphic map ' W D˛ ! Dˇ .
As in the proof before using holomorphic Liouville foliations we conclude that
'jD�

˛
2 Aut.D�̨/. Following Corollary 2.4.14 there is a biholomorphic mapping

 W D�
ˇ

! D�̨ of the form  D ˚A, A 2 GL.2;Z/ with detA D 1 and ˛A D ˇ.

Hence, O WD ' B  2 Aut.D�
ˇ
/. In virtue of Lemma 2.4.15, O may be written as

O .z/ D T� B gf B ˚P .z/; z 2 D�
ˇ :

Therefore,
'jD�

˛
D T� B gf B ˚P B ˚A�1 D T� B gf B ˚PA�1

and ˇPA�1 D ˛. Thus,

T �1
� B '.z/ D ..f .zˇ //�ˇ2z

p
1 z

q
2 ; .f .z

ˇ //˛1zr1z
s
2/; z 2 D�̨;
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where PA�1 DW Œ p qr s �. Observe that T �1
�

B ' defines a biholomorphic mapping
from D˛ onto Dˇ .

Recall that the left-hand side is holomorphic on D˛ . In particular, the functions
D� 3 � 7! .f .�ˇ1Cˇ2//�ˇ2�pCq and D� 3 � 7! .f .�ˇ1Cˇ2//ˇ1�rCs extend
holomorphically to D. Therefore, f has a pole at 0, i.e. f .�/ D �k Qf .�/, � 2 D�,
where Qf 2 O�.D/ and k 2 Z. Hence,

T �1
� B '.z/ D �

. Qf .zˇ //�ˇ2z
p�kˇ1ˇ2

1 z
q�kˇ2

2

2 ;

. Qf .zˇ //ˇ1z
rCkˇ2

1

1 z
sCkˇ1ˇ2

2

�
; z 2 D�̨:

Finally, we define an automorphism of Dˇ , namely,

�.z/ WD g Qf .z/; z 2 Dˇ :

Then, for z 2 D�̨, we get

� B T� B '.z/ D .z
p�kˇ1ˇ2

1 z
q�kˇ2

2

2 ; z
rCkˇ2

1

1 z
sCkˇ1ˇ2

2 /:

Taking into account that the mapping on the left-hand side is holomorphic on D˛ , it
is easily seen that O� WD �BT� B' D id jD˛

or O� D S jD˛
. Hence, Case 1 is verified.

Case 2: Assume that D˛ and Dˇ are of irrational type, i.e. ˛ D .˛1; 1/, ˇ D
.ˇ1; 1/, where ˛1; ˇ1 2 RC n Q. Applying psh Liouville foliations, one gets that
'jD�

˛
W D�̨ ! D�

ˇ
is a biholomorphic map. Following the proof of Lemma 2.4.16,

one may show (Exercise) that 'jD�
˛

D ˚�;AjD�
˛

. Applying now that the left
mapping is holomorphic on D˛ , it follows that either '.z/ D T� .z/ or '.z/ D
T� B S .z/ whenever z 2 D˛ .

In the first case observe that j�1jˇ1 j�2jˇ2 D 1. Then ˚Q�;I2
jDˇ

2 Aut.Dˇ /,

where Q� WD .��1
1 ; ��1

2 /. Hence ˚Q�;I2
B ' D id on D˛ . A similar argument for the

second case is left to the reader (Exercise). �

Remark 2.4.19. An independent proof of Theorem 2.4.7 may be found in [Edi-Zwo
1999].

2.5� Miscellanea

Besides the problem of biholomorphic equivalence of Reinhardt domainsD1,D2 �
Cn, one can try, for instance, to characterize all proper holomorphic mappings
F W D1 ! D2.14 In the remaining part of this chapter we collect several results
related to this area of problems. More precisely:

14Recall that a mapping f W X ! Y is proper if f �1.K/ is compact for every compact K � Y .
Every homeomorphism is proper.
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� § 2.5.1 Biholomorphic equivalence of Reinhardt domains.
� § 2.5.2 Automorphisms of Reinhardt domains.
� § 2.5.3 Proper mappings.
� § 2.5.4 Non-compact automorphism groups.
In general, the methods of proofs of the presented results (based, for example, on

the Lie theory or rescaling methods) are beyond the scope of the book. Nevertheless,
we decided to put them here as illustrations of various streams of research. The
results in this section may be also a starting point for further studies of the reader.

2.5.1 Biholomorphic equivalence of Reinhardt domains

It seems that in the category of Reinhardt domains one has

D1
bih' D2 ” D1

alg' D2

(cf. Definition 1.5.12, Theorems 2.3.6, 2.4.7). Several particular cases are known
(they were proved by methods based on the Lie theory). ? We like to point out
that, unfortunately, we do not know any alternative methods of proof (without the
Lie theory). ?

Theorem* 2.5.1 ([Sun 1978]). LetDj � Cn be a bounded Reinhardt domain with

0 2 Dj , j D 1; 2. ThenD1
bih' D2 iff there exist r1; : : : ; rn > 0 and a permutation

� 2 Sn such that

D2 D f.r1z�.1/; : : : ; rnz�.n// W .z1; : : : ; zn/ 2 D1g:

In particular,D1
bih' D2 , D1

alg' D2.

Observe that the case n D 2 was already discussed in Theorem 2.3.6.

Definition 2.5.2. For k D .k1; : : : ; ks/ 2 Ns and p D .p1; : : : ; ps/ 2 Rs>0, let

Ek;p WD
n
.z1; : : : ; zs/ 2 Ck1 � 	 	 	 � Cks W

sX
jD1

kzj k2pj < 1
o

be the generalized complex ellipsoid.
In the case where k1 D 	 	 	 D ks D 1 the generalized complex ellipsoid reduces

to the standard complex ellipsoid Ep; cf. (1.18.5).

Theorem 2.5.1 implies the following classification theorem for generalized com-
plex ellipsoids (the case where p 2 Ns , q 2 Nt was solved in [Naru 1968]).
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Theorem 2.5.3. Let Ek;p , E`;q � Cn be two generalized complex ellipsoids with:
� k D .k1; : : : ; ks/ 2 Ns , ` D .`1; : : : ; `t / 2 Nt ,
� n D k1 C 	 	 	 C ks D `1 C 	 	 	 C `t ,
� p1 � 	 	 	 � ps , q1 � 	 	 	 � qt ,
� #fi 2 f1; : : : ; sg W pi D 1g � 1, #fi 2 f1; : : : ; tg W qi D 1g � 1.

Then Ek;p
bih' E`;q iff s D t , k D `, and p D q. In particular, Ep

bih' Eq iff
p D q up to a permutation .cf. also [Jar-Pfl 1993], Theorem 8.5.1).

Proof. Use Theorem 2.5.1 – Exercise. �

LetD � Cn be a Reinhardt domain satisfying the Fu condition. Recall (cf. Re-
mark 1.5.11 (a)) that, after a permutation of variables, we may always assume that:

(*) there exists k D F.D/ 2 f0; : : : ; ng with D \ Vj ¤ ¿, j D 1; : : : ; k,
xD \ Vj D ¿, j D k C 1; : : : ; n.

Observe that if 0 2 D, then F.D/ D n.

Exercise 2.5.4. Let T WD f.z1; z2/ 2 D2 W jz1j < jz2jg be the Hartogs triangle
and let T � WD T n .f0g � D/ D f.z1; z2/ 2 D2 W 0 < jz1j < jz2jg. Observe
that F.T / D 1 and F.T �/ D 0. Prove that T and T � are not biholomorphically
equivalent.

Hint: Observe that T
bih' D � D� and T � bih' D� � D�.

Theorem* 2.5.5 ([Bar 1984]). Let D1;D2 � Cn be bounded Reinhardt domains

satisfying the Fu condition with (*). Then D1
bih' D2 iff F.D1/ D F.D2/ DW k

andD1;D2 are algebraically equivalent via a biholomorphism ˚r;A such that

ai;j D

8̂<̂
:
1 if i � k and j D �.i/;

0 if i � k and j ¤ �.i/;

0 if i > k;

i D 1; : : : ; n; j D 1; : : : ; k;

where � 2 Sk .

Observe that if F.D1/ D F.D2/ D n, then A.z/ D .z�.1/; : : : ; z�.n// for a
� 2 Sn. Thus the above result generalizes Theorem 2.5.1.

Theorem* 2.5.6 ([Shi 1988]). Two bounded Reinhardt domainsD1;D2 � Cn are
biholomorphically equivalent iff they are algebraically equivalent.

Theorem* 2.5.7 ([Kru 1988]). Two hyperbolic .cf. § 4.7) Reinhardt domains
D1;D2 � Cn are biholomorphically equivalent iff they are algebraically equiva-
lent.

Notice that any hyperbolic Reinhardt domain of holomorphy is algebraically
equivalent to a bounded domain (see Theorem 4.7.2), so, in fact, Theorem 2.5.7
follows from Theorem 2.5.6.
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Theorem* 2.5.8 ([Sol 2002]). Two Reinhardt domains D1;D2 � C2 are biholo-
morphically equivalent iff they are algebraically equivalent.

? We do not know whether Theorem 2.5.8 remains true for n � 3. ?

2.5.2 Automorphisms of Reinhardt domains

Theorem* 2.5.9 ([Naru 1968]). If p 2 Ns
2, then Aut.Ek;p/ ' T n.

Theorem* 2.5.10 ([Lan 1984]). Assume that 0 � k � n � 2, p 2 f1gk � Nn�k
2 .

Then

Aut.Ep/ D fFH;� W H 2 Aut.Bk/; � 2 T n�kg; (2.5.1)

where

FH;� .z/

WD
�
H.z0/; �kC1zkC1

�
1 � ka0k2

.1 � hz0; a0i/2
� 1

2pkC1

; : : : ; �nzn

�
1 � ka0k2

.1 � hz0; a0i/2
� 1

2pn
�
;

z D .z0; zkC1; : : : ; zn/ 2 Ep � Ck � Cn�k , and a0 WD H�1.00/.
In particular, the group Aut.Ep/ depends on k2CkCn real parameters .cf. Ex-

ample 2.1.12 (b)); if k D 0, then Aut.Ep/ ' T n .cf. Theorem 2.5.9/.

Remark 2.5.11. Notice that in general, for arbitrary pkC1; : : : ; pn 2 R>0 n f1g,
the set fFH;� W H 2 Aut.Bk/; � 2 T n�kg is a subgroup of Aut.Ep/ (Exer-
cise); cf. [Jar-Pfl 1993], Lemma 8.5.2. ? We do not know whether (2.5.1) remains
true. ?

Theorems 2.5.10, 2.1.20 and Lemma 2.1.21 imply the following

Example 2.5.12. Let n D n1 C 	 	 	 C nk , 0 � mj � nj , pj 2 f1gmj � N
nj �mj

2 ,
j D 1; : : : ; k. Assume that if nj D 1, then mj D 1. Then the group

Aut.Ep1 � 	 	 	 � Epk /

depends on d D nCPk
jD1mj .mj C1/ real parameters. For instance, for arbitrary

p1, p2, p3, p4, p0
1, p0

2 2 N2, we have:
n D 2:

d k D 1 k D 2

2 E.p1;p2/

4 E.1;p2/

6 D2

8 B2
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n D 3:

d k D 1 k D 2 k D 3

3 E.p1;p2;p3/

5 E.1;p2;p3/ D � E.p1;p2/

7 D � E.1;p2/

9 E.1;1;p3/ D3

11 D � B2

15 B3

n D 4:

d k D 1 k D 2 k D 3 k D 4

4 E.p1;p2;p3;p4/ E.p1;p2/ � E.p0
1;p0

2/

6 E.1;p2;p3;p4/ D � E.p1;p2;p3/, E.p1;p2/ � E.p0
1;p0

2/

8 D � E.1;p2;p3/, E.1;p2/ � E.1;p0
2/ D2 � E.p1;p2/

10 E.1;1;p3;p4/ E.p1;p2/ � B2 D2 � E.1;p2/

12 D � E.1;1;p3/, E.1;p2/ � B2 D4

14 D2 � B2

16 E.1;1;1;p4/ B2 � B2

18 D � B3

24 B4

Remark 2.5.13. LetD � Cn be a hyperbolic Reinhardt domain such that Aut.D/
depends ond real parameters. Recall that the group Aut.Bn/depends onn2C2n real
parameters. There are the following general results (cf. [GIK 2000], [Isa 2007]):

� If d > n2 C 2, then D D Bn up to rescaling of variables.
� If D 6' Bn, then d 2 Œn; n2 C 2� and d is of the same parity as n.
� d D n2C2 iffD D D � Bn�1 up to permutation and rescaling of variables.
� If d D n2, then D is algebraically equivalent to one of the following do-

mains:

(i) fz 2 Cn W r < kzk < Rg, 0 � r < R < C1 (cf. Exercise 2.1.13);
(ii) D3 (n D 3);
(iii) B2 � B2 (n D 4);
(iv) E.1;:::;1;pn/, pn ¤ 1 (cf. Theorem 2.5.10);
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(v) f.z0; zn/ 2 Bn�1 � C W r.1 � kz0k2/˛ < jznj < R.1 � kz0k2/˛g, 0 < r <

R � C1, ˛ 2 R;
(vi) f.z0; zn/ 2 Cn�1 � C W re˛kz0k2

< jznj < Re˛kz0k2g, 0 < r < R � C1,
˛ 2 R� and (R D C1 ) ˛ > 0).

Some intermediate cases where n2 < d < n2C2 are also discussed in [GIK 2000]
and [Isa 2007].

Forp D .p1; : : : ; pn/ 2 Rn>0 and 1 � s � n�1, define the generalized Hartogs
triangle

Fp;s WD
n
.z1; : : : ; zn/ 2 Cn W

sX
jD1

jzj j2pj <

nX
jDsC1

jzj j2pj < 1
o
:

If n D 2, then F.1;1/;1 is the standard Hartogs triangle (cf. Remark 1.5.11 (c)).

Theorem* 2.5.14 ([Lan 1989]). Let 0 � k � n � 1, p 2 f1gk � Nn�k
2 . Then

Aut.Fp;n�1/ D fFH;� W H 2 Aut.Bk/; � 2 T n�kg; (2.5.2)

where, for z D .z0; zkC1; : : : ; zn/ 2 Fp;n�1 � Ck � Cn�k and a0 WD H�1.00/, we
put

FH;� .z/ WD
�
zpn
n H.z0=zpn

n /; �kC1zkC1
�

1 � ka0k2
.1 � hz0=zpn

n ; a0i/2
� 1

2pkC1

; : : : ;

�n�1zn�1
�

1 � ka0k2
.1 � hz0=zpn

n ; a0i/2
� 1

2pn�1

; �nzn

�
:

In particular, the group Aut.Fp;n�1/ depends on k2 C k C n real parameters.

Remark 2.5.15. (a) To prove that FH;� .Fp;n�1/ � Fp;n�1, note that

j.FH;� /n.z/j�2pn

n�1X
jD1

j.FH;� /j .z/j2pj

D jznj�2pn

�
jz2pn
n jkH.z0=zpn

n /k2 C 1 � ka0k2
j1 � hz0=zpn

n ; a0ij2
n�1X

jDkC1
jzj j2pj

�

D 1 � .1 � ka0k2/.1 � kz0=zpn
n k2/

j1 � hz0=zpn
n ; a0ij2 C jznj�2pn

1 � ka0k2
j1 � hz0=zpn

n ; a0ij2
n�1X

jDkC1
jzj j2pj

D 1 � 1 � ka0k2
j1 � hz0=zpn

n ; a0ij2
�
1 � jznj�2pn

�
kz0k2 C

n�1X
jDkC1

jzj j2pj

��
:
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(b) Observe that in general, for arbitrary pkC1; : : : ; pn�1 2 R>0 n f1g, the set

fFH;� W H 2 Aut.Bk/; � 2 T n�kg
is a subgroup of Aut.Fp;n�1/ (Exercise). ? We do not know whether (2.5.2)
remains true. ?

Theorem* 2.5.16 ([Che-Xu 2002]). Let 2 � s � n� 2, 0 � k � s, 0 � ` � n� s,
p 2 f1gk � Ns�k

2 � f1g` � Nn�s�`
2 . Then

Aut.Fp;s/ D fFH 0;H 00;� W H 0 2 U.k/; H 00 2 U.`/; � 2 T n�k�`g; (2.5.3)

where, for z D .z0; zkC1; : : : ; zs; z00; zsC`C1; : : : ; zn/ 2 Fp;s � Ck � Cs�k � C`�
Cn�s�`, we put

FH 0;H 00;� .z/ WD �
H 0.z0/; �kC1zkC1; : : : ; �szs;H 00.z00/; �sC`C1zsC`C1; : : : ; �nzn

�
:

In particular, the group Aut.Fp;s/ depends on k2C `2Cn�k� ` real parameters.

Remark 2.5.17. Observe that in general, for arbitrary pkC1; : : : ; ps , psC`C1, …,
pn 2 R>0 n f1g, the set

fFH;� W H 2 Aut.Bk/; � 2 T n�kg
is a subgroup of Aut.Fp;s/ (Exercise). ? We do not know whether (2.5.3) remains
true. ?

2.5.3 Proper mappings

Theorem* 2.5.18 ([Bar 1984]). LetD1;D2 � Cn be bounded Reinhardt domains
satisfying the Fu condition. Then any proper holomorphic mapping F W D1 ! D2
extends holomorphically to a neighborhood of xD1.
Theorem* 2.5.19 ([Lan 1984]). Assume that n � 2. For arbitrary p; q 2 Nn the
following conditions are equivalent:

(i) there exists a proper holomorphic mapping F W Ep ! Eq;

(ii) .p1=q1; : : : ; pn=qn/ 2 Nn.

Moreover, any proper holomorphic mapping F W Ep ! Eq is, up to an auto-
morphism of Eq , of the form

F.z/ D .z
p1=q1

1 ; : : : ; zpn=qn
n /; z D .z1; : : : ; zn/ 2 Ep:

In particular, any proper holomorphic mapping F W Ep ! Ep is an automor-
phism .see [Ale 1977] for the case Ep D Bn/.
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Remark 2.5.20. The implication (ii) ) (i) is obvious and remains true for arbitrary
p; q 2 Rn>0. ? We do not know whether the implication (i) ) (ii) remains true. ?

Theorem* 2.5.21 ([Lan 1989]). (a) If n � 3, then for arbitrary p; q 2 Nn the
following conditions are equivalent:

(i) there exists a proper holomorphic mapping F W Fp;n�1 ! Fq;n�1;
(ii) A WD f` 2 N W sj WD .`qn � pn/=qj 2 Z W j D 1; : : : ; n � 1g ¤ ¿ and

rj WD pj =qj 2 N, j D 1; : : : ; n � 1.
Moreover, any proper holomorphic mapping F W Fp;n�1 ! Fq;n�1 is, up to an

automorphism of Fq;n�1, of the form

F.z/ D .z
r1
1 z

s1
n ; : : : ; z

rn�1

n�1 z
sn�1
n ; z`n/; ` 2 A:

(b) If n D 2, then for arbitrary p; q 2 N2 the following conditions are equiva-
lent:

(i) F W Fp;1 ! Fq;1 is a proper holomorphic mapping;

(ii) F.z1; z2/

D

8̂<̂
:
.�1z

`q2=q1�kp2=p1

2 zk1 ; �2z
`
2/ if p2=p1 … N;

`q2=q1 � kp2=p1 2 Z;

.�1z
`q2=q1

2 B.z1z
�p2=p1

2 /; �2z
`
2/ if p2=p1 2 N; `q2=q1 2 N;

where �1; �2 2 T ; k; ` 2 N, and B is a finite Blaschke product.

Remark 2.5.22. (a) In the case n � 3 the implication (ii) ) (i) is elementary and
remains true for arbitrary p; q 2 Rn>0. Indeed

jFn.z/j�2qn

n�1X
jD1

jFj .z/j2qj D jznj�2`qn

n�1X
jD1

jznj2sj qj jzj j2rj qj

D
n�1X
jD1

jznj2.`qn=qj �pn=qj /qj �2`qn jzj j2pj D jznj�2pn

n�1X
jD1

jzj j2pj :

Observe that F is biholomorphic iff ` D r1 D 	 	 	 D rn�1 D 1 iff pj D qj ,
j D 1; : : : ; n � 1, and .pn � qn/=pj 2 Z, j D 1; : : : ; n � 1. In particular,
there are p; q 2 Nn such that Fp;n�1 ¤ Fq;n�1 but Fp;n�1 ' Fq;n�1. Take for
instance pj D qj , j D 1; : : : ; n � 1, and pn ¤ qn such that .pn � qn/=pj 2 Z,
j D 1; : : : ; n � 1.

? We do not know whether the implication (i) ) (ii) remains true. ?

(b) In the case n D 2 the implication (ii) ) (i) is elementary and remains true
for arbitrary p; q 2 R2>0. Indeed

jF2.z/j�2q2 jF1.z/j2q1 D
(
.jz1jjz2j�p2=p1/2kq1 if p2=p1 … N;

jB.z1z�p2=p1

2 /j2q1 if p2=p1 2 N:
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Observe that F is biholomorphic iff(
` D k D 1, q2=q � p2=p1 2 Z if p2=p1 … N;

` D 1, B 2 Aut.D/, q2=q1 2 N if p2=p1 2 N:

? We do not know whether the implication (i) ) (ii) remains true. ?

Theorem* 2.5.23. Assume that p 2 Nn, 2 � s � n � 2.
(a) ([Che-Xu 2001]) The following conditions are equivalent:

(i) there exists a proper holomorphic mapping F W Fp;s ! Fp;s;

(ii) there exist permutations � 2 Ss and ı 2 Sn�s such that p�.j /=pj 2 N,
j D 1; : : : ; s, psCı.k/=psCk 2 N, k D 1; : : : ; n � s.

(b) ([Che-Xu 2002]) Any proper holomorphic mapping F W Fp;s ! Fp;s is an
automorphism .cf. Theorem 2.5.16/.

Let ' 2 C1.Œ0; 1�;RC/ be such that there exists an h 2 .0; 1/ for which
� 'jŒ0;h� � 0,
� '.1/ D 1,
� '0 � 0 and '00 � 0 on Œ0; 1�,
� '0 > 0 and '00 > 0 on .h; 1/.
Define

D';h WD f.z1; z2/ 2 D2 W jz1j2 C '.jz2j2/ < 1g:
Exercise 2.5.24. (a) D';h is a normalized (cf. (2.3.1)) bounded pseudoconvex
complete Reinhardt domain with .@D/ � .hxD/ � @D';h.

(b) D';h … fD2; E.1;˛/;E.˛;1/; ˛ > 0g. Consequently, by the Thullen The-
orem 2.3.6, every biholomorphic mapping F W D'1;h1

! D'2;h2
is of the form

F D T� for some � 2 T 2. Hence, D'1;h1

bih' D'2;h2
iff h1 D h2 and '1 D '2.

(c) D';h is strongly pseudoconvex at a boundary point a D .a1; a2/ 2 @D';h
iff ja2j > h (cf. § 1.18�). In particular, the set of weakly pseudoconvex boundary
points is not contained in V0.

Theorem* 2.5.25 ([Lan-Pat 1993]). The following conditions are equivalent:

(i) there exists a proper holomorphic mapping F W D'1;h1
! D'2;h2

;

(ii) there exist m 2 N and �1; �2 2 T such that:
� h2 D hm1 , '1.t/ D '2.t

m/, t 2 Œ0; 1�,
� F.z/ D .�1z1; �2z

m
2 /, z D .z1; z2/ 2 D'1;h1

.

Theorem* 2.5.26 ([Lan 1994]). Let D � C2 be a bounded smooth pseudocon-
vex complete Reinhardt domain whose weakly pseudoconvex boundary points are
contained in V0. Then any proper holomorphic mapping F W D ! D is an auto-
morphism.
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Theorem* 2.5.27 ([Lan-Pin 1995]). LetD1, D2 � C2 be bounded pseudoconvex
complete Reinhardt domains such that there exist a complex analytic varietyW and
an open neighborhood U of a point a 2 @D1 such that W \ U � @D1. Then any
proper holomorphic mapping F D .F1; F2/ W D1 ! D2 is such that F1 and F2
depend only on one variable.

Moreover, ifD1 D D2 is not a bidisc, then F has the form

F.z1; z2/ D .�1z�.1/; �2z�.2//;

where �1; �2 2 T , � 2 S2.

Theorem* 2.5.28 ([Ber-Pin 1995], [Lan-Spi 1996], [Spi 1998]). LetD1,D2 � C2

be bounded complete Reinhardt domains such that at least one of them is neither a
bidisc nor a complex ellipsoid. Then any proper holomorphic mapping F W D1 !
D2 has the form

F.z1; z2/ D .c1z
m1

�.1/
; c2z

m2

�.2/
/;

where cj 2 C, mj 2 N, j D 1; 2, � 2 S2.
Moreover, ifD1 D D2, then F has the form

F.z1; z2/ D .�1z�.1/; �2z�.2//;

where �1; �2 2 T , � 2 S2.

Remark 2.5.29. The full description of proper holomorphic mappings F W D1 !
D2, where D1;D2 � C2 are bounded Reinhardt domains, may be found in
[Isa-Kru 2006].

For the case of proper holomorphic mappings between unbounded Reinhardt
domains we mention the following result.

Theorem* 2.5.30 ([Edi-Zwo 1999]). Let ˛; ˇ 2 Z2C and let

C2 
 D˛
F�! Dˇ � C2

be a proper holomorphic mapping. Then

F.z/ D .H 1=ˇ1.z˛/z
k1

1 ; �z
k2

2 H
�1=ˇ2.z˛//;

or
F.z/ D .H 1=ˇ1.z˛/z

`1

2 ; �z
`2

1 H
�1=ˇ2.z˛//;

whereH 2 O.D;C�/, � 2 T , and k1; k2; `1; `2 2 ZC are such that

˛2ˇ1k1 D ˛1ˇ2k2; ˛1ˇ1`1 D ˛2ˇ2`2I
compare with Theorems 2.4.5, 2.4.7.
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Theorem* 2.5.31 ([Din-Pri 1987]). Let D � Cn be a Reinhardt domain and let
F W D ! Ep be a polynomial proper mapping with p 2 Nn. Then F.z/ D
.z
d1

1 ; : : : ; z
dn
n /with d1; : : : ; dn 2 N, up to action of T n onD and an automorphism

of Ep .15 Moreover,D
bih' Eq with qj WD djpj , j D 1; : : : ; n.

Theorem* 2.5.32 ([Din-Pri 1988]). Let D � Cn be a Reinhardt domain with
0 2 D and let p 2 Nn. Then the following conditions are equivalent:

(i) there exists a proper holomorphic mapping F W D ! Ep;

(ii) there exists a proper polynomial mapping F W D ! Ep .

Theorem* 2.5.33 ([Din-Pri 1989]). Let D1 � Cn be a Reinhardt domain and
let D2 � Cn be a bounded simply connected strictly pseudoconvex domain with
C1 boundary. Then any proper holomorphic map F W D1 ! D2 is, up to an
automorphism ofD2, of the form F.z/ D .z

d1

1 ; : : : ; z
dn
n / with d1; : : : ; dn 2 N.

Remark 2.5.34. For ˛ D .˛1; ˛2/ 2 .R2/� and 0 < r� < rC < C1 let

D˛;r�;rC WD f.z1; z2/ 2 C2.˛/ W r� < jz˛j < rCg:
Recently Ł. Kosiński [Kos 2007] gave the full characterization of all proper holo-
morphic mappings F W D˛;r�;rC ! Dˇ;R�;RC . More precisely, let

Pr WD A.1=r; r/; D�;r WD f.z1; z2/ 2 C2 W 1=r < jz1jjz2j� < rg;

 2 R n Q; r > 1:

One may prove (Exercise) that D˛;r�;rC is algebraically equivalent to a domain
of one of the following three types:

Pr � C; if ˛1˛2 D 0;

Pr � C�; if ˛2=˛1 2 Q�; (2.5.4)

D�;r ; if 
 WD ˛2=˛1 … Q:

If D1, D2 are of type (2.5.4), then there are no proper holomorphic mappings
F W D1 ! D2 except for the following four cases:

(1) D1 D Pr�C,D2 D Prm �C (m 2 N),F.z/ D .�z"m1 ; P.z//, where � 2 T ,
" 2 f�1; 1g, P.z/ D PN

jD0 Pj .z1/z
j
2 , N 2 N, P0; : : : ; PN 2 O.Pr/,

P.z1; 	 / 6� const, z1 2 Pr .
(2) D1 D Pr � C�,D2 D Prm � C (m 2 N), F.z/ D .�z"m1 ; z�k

2 P.z//, where
� 2 T , " 2 f�1; 1g, P.z/ D PN

jD0 Pj .z1/z
j
2 , k;N 2 N, 0 < k < N ,

P0; : : : ; PN 2 O.Pr/,
Pk�1
jD0 jPj .z1/j > 0,

PN
jDkC1 jPj .z1/j > 0, z1 2 Pr .

15That is, there exist � 2 T n and ˚ 2 Aut.Ep/ such that ˚ B F B T	.z/ D .z
d1

1 ; : : : ; z
dn
n /,

z 2 D.
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(3) D1 D Pr � C�,D2 D Prm � C� (m 2 N), F.z/ D .�z"m1 ; zk2g.z1//, where
� 2 T , " 2 f�1; 1g, k 2 Z�, g 2 O�.Pr/.

(4) D1 D D�;r , D2 D Dı;R with

logR

log r
D k1 C `1ı; 


logR

log r
D k2 C `2ı

for some k D .k1; k2/; ` D .`1; `2/ 2 Z2, F.z/ D .az"k; bz"`/, " 2
f�1; 1g, a; b 2 C, jajjbjı D 1.

2.5.4 Non-compact automorphism groups

Theorem* 2.5.35 ([Bed-Pin 1998] (see also [Bed-Pin 1988])). Let D � C2 be a
bounded domain with real analytic boundary such that Aut.D/ is non-compact.16

Then

D
bih' E.1;m/ D f.z1; z2/ 2 C2 W jz1j2 C jz2j2m < 1g;

where m 2 N. In particular,D admits a proper holomorphic mapping onto B2.

We say that a bounded domain D � Cn with smooth boundary is of finite type
if there exists an m 2 N such that for every point a 2 @D and for every complex
one-dimensional manifold V passing through a, the order of contact of @D and V
does not exceed m, i.e. for any a 2 @D and ' 2 O.D;Cn/ with '.0/ D a we
have ord0.u B '/ � m for any local defining function u W U ! R defined in a
neighborhood U of a with '.D/ � U .

Notice that Theorem 2.5.35 remains true if D is a pseudoconvex domain with
smooth boundary of finite type.

Theorem* 2.5.36 ([Bed-Pin 1991]). Let D � CnC1 be a bounded pseudoconvex
domain with smooth boundary of finite type such that Aut.D/ is non-compact.
Assume that the Levi form of a defining function of D has rank at least n � 1 at
each boundary point. Then

D
bih' E.1;:::;1;m/ D

n
.z1; : : : ; zn; w/ 2 Cn � C W jwj2m C

nX
jD1

jzj j2 < 1
o
;

where m 2 N.

Theorem* 2.5.37 ([Bed-Pin 1994]). LetD � CnC1 be a convex bounded domain
with smooth boundary of finite type such that Aut.D/ is non-compact. Then there
exist m1; : : : ; mn 2 N and a˛;ˇ D Naˇ;˛ 2 C such that

D
bih'
n
.z; w/ 2 Cn � C W jwj2 C

X
a˛;ˇz

˛ Nzˇ < 1
o
;

16That is, there exist a point a 2 D and a sequence .˚�/
1
�D1 � Aut.D/ such that ˚�.a/ ! @D.
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where the sum is taken over all ˛; ˇ 2 ZnC with ˛1=m1 C 	 	 	 C ˛n=mn D 1 and
ˇ1=m1 C 	 	 	 C ˇn=mn D 1.

Theorem* 2.5.38 ([FIK 1996a]). LetD � CnC1 be a bounded Reinhardt domain
with C1-smooth boundary such that Aut.D/ is non-compact. Then

D
bih' f.z; w/ 2 Cn � C W jwj2 C P.jz1j; : : : ; jznj/ < 1g;

up to permutation and rescaling of variables, whereP is a non-negative polynomial
with real coefficients.

The case where @D is only of class Ck was solved in [Isa-Kra 1997] – in this
case P is a non-negative Ck-function.

Theorem* 2.5.39 ([Isa-Kra 1998])). Let D � C2 be a hyperbolic Reinhardt do-
main with Ck-smooth boundary .k � 1/ such that D \ V0 ¤ ¿ and Aut.D/ is
non-compact. ThenD is algebraically equivalent to one of the following three types
of domains:

� f.z1; z2/ 2 C2 W jz1j2 C jz2j2m < 1g, where m < 0 or m > k or m 2 N;

�
n
.z1; z2/ 2 D � C W 1

.1�jz1j2/˛ < jz2j < R
.1�jz1j2/˛

o
, where 1 < R � C1,

˛ > 0;

� f.z1; z2/ 2 C2 W exp.ˇjz1j2/ < jz2j < R exp.ˇjz1j2/g, where 1 < R �
C1, ˇ 2 R� and .R D C1 ) ˇ > 0/.

Remark 2.5.40. (a) Some of the above results may give the impression that every
domain with non-compact automorphism group is biholomorphic to a Reinhardt do-
main. This is not true – the following bounded pseudoconvex circular domain with
real analytic boundary and non-compact automorphism group is not biholomorphic
to any Reinhardt domain ([FIK 1996b]):

f.z1; z2; z3/ 2 C3 W jz1j2 C jz2j4 C jz3j4 C . Nz2z3 C Nz3z2/2 < 1g:
(b) In [KKS 2005] the reader may find a characterization of those “analytic

polyhedra” in C2 whose automorphism groups are not compact.
(c) For general domains with non-compact automorphism groups the reader

may contact the survey article [Isa-Kra 1999].



Chapter 3

Reinhardt domains of existence of special classes of
holomorphic functions

3.1 General theory

LetD be a Reinhardt domain of holomorphy and let S � O.D/ be a natural Fréchet
space (cf. § 1.10), e.g. S D H 1;k.D/, Ak.D/, Lp;k

h
.D/, O.N/.D/, O.0C/.D/;

cf. Example 1.10.7. Our aim is to find geometric characterizations of those Rein-
hardt domains D which are S-domains of holomorphy. We like to point out that
such geometric characterizations are not known for more general classes of do-
mains (e.g. balanced domains of holomorphy). Except for § 3.1, all results pre-
sented in this chapter are more elaborated and detailed versions of some results
from [Jar-Pfl 2000], § 4.1.

Remark 3.1.1. Consider the case where S D O.N/.D/ (Example 1.10.7 (f)).
(a) First recall some known general results. Let G � Cn be a domain of

holomorphy (Reinhardt or not). Then:
� ([Jar-Pfl 2000], Corollary 4.3.9.) G is an O.2nC"/.G/-domain of holomor-

phy for any " > 0.
� ([Jar-Pfl 2000], Corollary 4.3.9.) If G is a bounded domain, then G is an

O.nC"/.G/-domain of holomorphy for any " > 0.
� ([Jar-Pfl 2000], Theorem 4.2.7.) If G is bounded and fat, then G is an

L2
h
.G/-domain of holomorphy; in particular, in this case G is an O.n/.G/-domain

of holomorphy (cf. Example 1.10.7 (c), (f), (g)).
? We do not know whether the above results are optimal, e.g. whether there

exists a	 < n such that every bounded fat domain of holomorphy is an O.�/-domain
of holomorphy. ?

(b) In contrast to the above general situation, in the case whereD is a Reinhardt
domain of holomorphy, we are able to show that:

� D is an O.1/-domain of holomorphy (Theorem 3.4.4).
� If D is fat, then D is an O."/-domain of holomorphy for any " > 0 (Theo-

rem 3.4.3).

The following notion will be useful in the sequel.

Definition 3.1.2. LetD � Cn be a Reinhardt domain. We say that a natural Fréchet
space S � O.D/ is regular if for every function f 2 S with the Laurent expansion

f .z/ D
X
˛2Zn

af˛ z
˛; z 2 D;
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we have:
� z˛ 2 S , ˛ 2 †.f / D f˛ 2 Zn W af˛ ¤ 0g,
� the set faf˛ z˛ W ˛ 2 †.f /g is bounded in S (cf. Definition 1.10.3).

Remark 3.1.3. Observe that there are natural Fréchet spaces which are not regular.
For example, S WD C 	 f , where f 2 O.D/ is not a “monomial” of the form cz˛ .

Example 3.1.4 (Examples of regular natural Fréchet spaces). (a) S D O.D/.
Indeed, by the Cauchy inequalities, for any Reinhardt compact set K � D we

have kaf˛ z˛kK � kf kK , ˛ 2 †.f /.
(b) S D H 1

loc.D/.

Indeed, by the Cauchy inequalities, we have kaf˛ z˛kB.r/\D � kf kB.r/\D ,
˛ 2 †.f /, r > 0.

(c) S D H 1.D/.
Indeed, by the Cauchy inequalities we have kaf˛ z˛kD � kf kD , ˛ 2 †.f /.
(d) S D O.N/.D/ (N > 0).
Indeed, the function ıD is invariant under n-rotations. Hence, using once again

the Cauchy inequalities, for r 2 D \ Rn>0, ˛ 2 †.f /, we get

ıND .r/jaf˛ r˛j � ıND .r/kf k@0P.r/ D kıND f k@0P.r/ � kıND f kD:

Thus kıND af˛ z˛kD � kıND f kD , ˛ 2 †.f /.
(e) S D L

p

h
.D/ (1 � p < C1) (cf. Example 1.10.7 (c)).

(f) S D A.D/ in the case where D satisfies the Fu condition.
Indeed, in virtue of (b), we only need to observe that z˛ 2 C. xD/, ˛ 2 †.f /

(Exercise).

Remark 3.1.5. (a) Let Sj be a natural Fréchet space in O.D/ with the topology
T .Qj / generated by a countable family Qj of seminorms, j 2 N. Consider the
space S WD T

j2N Sj with the topology generated by the family
S1
jD1Qj jS . We

know that S is also a natural Fréchet space in O.D/ (Remark 1.10.7 (h)).
Observe that if each space Sj is regular, then S is regular.
In particular, the spaces L˘

h
.D/, O.0C/.D/ are regular.

(b) Let A � ZnC, 0 2 A, and suppose that S� is a natural Fréchet space in
O.D/ with the topology T .Q�/ given by a countable family of seminorms Q� ,
� 2 A. Define SA WD ff 2 O.D/ W D�f 2 S� ; � 2 Ag. We know that SA is
a natural Fréchet space with the topology generated by the family of seminorms
SA 3 f 7! q.D�f /, � 2 A, q 2 Q� (Remark 1.10.7 (i)).

Observe that if each space S� is regular, then SA is regular.
Indeed, if f .z/ D P

˛2Zn a
f
˛ z

˛ , z 2 D, then

D�f .z/ D
X

˛2†.f /
D�.af˛ z

˛/ D
X

˛2†.f /; .˛
�/¤0

�Š
�
˛
�

�
af˛ z

˛�� ; z 2 D:



222 Chapter 3. Reinhardt domains of existence

Hence, for every � 2 A, the set fD�.a
f
˛ z

˛/ W ˛ 2 †.f /g is bounded in S� , which
implies that the set faf˛ z˛ W ˛ 2 †.f /g is bounded in SA.

In particular, the natural Fréchet spaces H 1;k.D/, H
1;k
loc .D/, Lp;k

h
.D/ and

L
˘;k
h
.D/ (k 2 N [ f1g) are regular. Moreover, the space Ak.D/ is regular

provided that D satisfies the Fu condition.

Proposition 3.1.6. Let¿ ¤ D   Cn be a fat Reinhardt domain and let S � O.D/

be a regular Fréchet space. Then the following conditions are equivalent:

(i) D is an S-domain of holomorphy;

(ii) there exists an f 2 S , f .z/ D P
˛2Zn a

f
˛ z

˛ , z 2 D, such that the set†.f /
is unbounded and

D D fz 2 Cn.†.f // W v�.z/ < 1g;

where v.z/ WD lim sup
j˛j!C1

jaf˛ z˛j1=j˛j, z 2 Cn.†.f //;

(ii0) there exists an f 2 S , f .z/ D P
˛2Zn a

f
˛ z

˛ , z 2 D, such that the set†.f /
is unbounded and

D D
1[
�D1

�
int

\
˛2†.f /W j˛j	�

fz 2 Cn.†.f // W jaf˛ z˛j < 1g
�
I

(iii) there exist an unbounded set † � .Zn/� .† � .ZnC/� if 0 2 D/ and
.c˛/˛2† � R>0 with (1.15.1)1 such that:

– D D fz 2 Cn.†/ W v�.z/ < 1g, where v.z/ WD lim sup
j˛j!C1

jc˛z˛j1=j˛j,
z 2 Cn.†/,

– z˛ 2 S , ˛ 2 †, and the set fc˛z˛ W ˛ 2 †g is bounded in S;

(iii0) there exist an unbounded set † � .Zn/� .† � .ZnC/� if 0 2 D/ and
.c˛/˛2† � R>0 with (1.15.1) such that:
–D D S1

�D1
�

int
T
˛2†W j˛j	�fz 2 Cn.†/ W c˛jz˛j < 1g�,

– z˛ 2 S , ˛ 2 †, and the set fc˛z˛ W ˛ 2 †g is bounded in S;

(iv) for every point a 2 Cn� n xD there exist sequences .˛.k//1
kD1 � .Zn/�

..˛.k//1
kD1 � .ZnC/� if 0 2 D/ and .d.k//1

kD1 � R>0 such that:

– j˛.k/j ! C1,

– D � Cn.†/, where † WD f˛.k/ W k 2 Ng,
– z˛.k/ 2 S , k 2 N, and the set fd.k/z˛.k/ W k 2 Ng is bounded in S ,

– d.k/ja˛.k/j ! C1.

1That is, supfc1=j˛j
˛ W ˛ 2 †g < C1.
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Observe that condition (iii0) gives an effective geometric characterization of
S-domains of holomorphy. Notice that the result need not be true for non-regular
natural Fréchet spaces (cf. Remark 3.1.3).

Proof. The equivalences (ii) , (ii0) and (iii) , (iii0) follow from Lemma 1.15.13.
(i) ) (ii): By Proposition 1.11.11, there exists an f 2 S such that D is the

domain of existence of f . Let f .z/ D P
˛2Zn a

f
˛ z

˛ , z 2 D, be the Laurent
expansion of f . By Proposition 1.11.6 the domain of convergence Df of the above
series is a domain of holomorphy. ThusD D Df . In the case where†.f / is finite
we have Df D Cn.†.f //, which contradicts our assumption that D   Cn is fat.
Now, it remains to use Proposition 1.15.15.

(ii) ) (iii): Put † WD †.f /�, c˛ WD jaf˛ j. The regularity of S implies that the
set faf˛ z˛ W ˛ 2 †g is bounded in S .

(iii) ) (iv): Fix a point a 2 Cn� n xD. By Lemma 1.15.13 (h), v.a/ D v�.a/ >
� > 1. Thus, there exists a sequence .˛.k//1

kD1 � † such that j˛.k/j ! C1 and
c˛.k/ja˛.k/j � �j˛.k/j ! C1, k ! C1.

(iv) ) (i): Suppose that D is not an S-domain of holomorphy and let D0,
zD be as in Proposition 1.11.2 (*). Since D is fat, we may assume that zD � Cn�

and that there exists a point a 2 zD n xD. Let Q D fqi W i 2 Ng be a countable
family of seminorms generating the topology of S with qi � qiC1, i 2 N. Since
S is a natural Fréchet space, the extension operator S 3 g 7! Qg 2 O. zD/ is
continuous (Remark 1.11.3 (n)). In particular, there exist C > 0 and i0 2 N such
that j Qg.a/j � Cqi0.g/, g 2 S . Since the set fd.k/z˛.k/ W k 2 Ng is bounded in S ,
there exists a constantM > 0 such that qi0.d.k/z

˛.k// � M , k 2 N. In particular,
d.k/ja˛.k/j � CM , k 2 N; a contradiction. �

Proposition 3.1.7. Let¿ ¤ D   Cn be a Reinhardt domain and let S � H 1.D/
be a natural Banach algebra which is moreover regular .e.g. S D H 1;k.D/ with
the norm kf kS WD 2k maxfkD�f kD W j�j � kg; cf. Example 1.10.7 (j)). Then the
following conditions are equivalent:

(i) D is an S-domain of holomorphy;

(ii) there exists an f 2 S , kf kS � 1, kf kD � 1, f .z/ D P
˛2Zn a

f
˛ z

˛ , z 2 D,
such that the set †.f / is unbounded and

D D fz 2 Cn.†.f // W u�.z/ < 1g;
where u.z/ WD supfjaf˛ z˛j1=j˛j W ˛ 2 †.f /�g, z 2 Cn.†.f //;

(ii0) there exists an f 2 S , kf kS � 1, kf kD � 1, f .z/ D P
˛2Zn a

f
˛ z

˛ , z 2 D,
such that the set †.f / is unbounded and

D D int
\

˛2†.f /
fz 2 Cn.†.f // W jaf˛ z˛j < 1gI
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(iii) there exist † � .Zn/� .† � .ZnC/� if 0 2 D/ and .c˛/˛2† � R>0 with
(1.15.1) such that:
� D D fz 2 Cn.†/ W u�.z/ < 1g, where u.z/ WD supfjc˛z˛j1=j˛j W ˛ 2
†g, z 2 Cn.†/,
� z˛ 2 S and kc˛z˛kS � 1, ˛ 2 †;

(iii0) there exist † � .Zn/� .† � .ZnC/� if 0 2 D/ and .c˛/˛2† � R>0 with
(1.15.1) such that:
� D D int

T
˛2†fz 2 Cn.†/ W c˛jz˛j < 1g,

� z˛ 2 S and kc˛z˛kS � 1, ˛ 2 †.

Proof. The equivalences (ii) , (ii0) and (iii) , (iii0) follow from Lemma 1.15.13.
(i) ) (ii): There exists an f 2 S such that D is the domain of existence of

f (Proposition 1.11.11). We may assume that kf kS � 1, kf kD � 1. Since
f is not holomorphically continuable beyond D, D coincides with the domain
of convergence of the Laurent series

P
˛2Zn a

f
˛ z

˛ of f . Observe that †.f / is
unbounded (because D is fat (cf. Corollary 1.11.4 (a))). It remains to apply the
second part of Proposition 1.15.15.

The implication (ii) ) (iii) follows from the regularity of S (cf. the proof of
Proposition 3.1.6).

(iii) ) (i): Notice that, by (iii0), D must be fat. Suppose that D is not an
S-domain of holomorphy and let D0 and zD be as usual. We may assume that
zD � Cn.†/. Since S is a natural Banach algebra, we have k Qgk zD � kgkS , g 2 S

(Remark 1.11.3 (n)). In particular, kc˛z˛k1=j˛j
zD � 1, ˛ 2 †. Hence u� � 1 on zD.

Since¿ ¤ D0 � D \ zD, the maximum principle implies that u� < 1 on zD. Thus
zD � D; a contradiction. �

Corollary 3.1.8. Let D   Cn be a Reinhardt domain and let k 2 ZC. Then the
following conditions are equivalent:

(i) D is an H 1;k-domain of holomorphy;

(ii)

D D int
\
˛2†

D˛;c.˛/;

where † � .Zn/�, c W † ! R, and

2kˇŠ
ˇ̌�
˛
ˇ

�ˇ̌
e�c.˛/kz˛�ˇkD � 1; ˛ 2 †; jˇj � k;

�
˛
ˇ

� ¤ 0:

In particular, D˛;c .˛ ¤ 0/ is an H 1;k-domain of holomorphy iff k D 0 and
˛ 2 R 	 Zn.

Exercise 3.1.9. Prove that H 1;k.D˛;c/ ' C for k � 1.
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3.2 Elementary Reinhardt domains

This section is devoted to the most elementary case where D D D˛;c is an ele-
mentary Reinhardt domain. The reader should consider the results below as an
illustration of problems we will meet in the sequel.

Theorem 3.2.1 ([Jar-Pfl 1987]). Let D WD D˛;c be an elementary Reinhardt do-
main with ˛ 2 .Rn/�.2 Then:

(a) For any N > 0 the domainD is an O.N/-domain of holomorphy.

(b) For every k 2 ZC the domainD is an Ak-domain of holomorphy.

(c) The following conditions are equivalent:

(i) D is an H 1-domain of holomorphy;

(ii) D is an O.0C/-domain of holomorphy;

(iii) ˛ 2 R 	 Zn.

(d) If ˛ … R 	 Zn, then H 1.D/ ' C.

(e) If ˛ D .˛1; : : : ; ˛n/ 2 Zn and ˛1; : : : ; ˛n are relatively prime, then the
operator

H 1.D/ 3 g 7! Og 2 H 1.D/;

where Og.z/ WD g.e�cz˛/, z 2 D, defines a Banach algebra isomorphism

H 1.D/ ��! H 1.D/:

(f) If ˛ 2 R 	 Zn, then H 1.D/   O.0C/.D/ and, consequently, H 1.D/ is of
the first Baire category in O.0C/.D/.

(g) Lp
h
.D/ D f0g, soD is never an Lp

h
-domain of holomorphy, 1 � p < C1.

Observe that the only problem in (e) is to prove that � is surjective. Indeed,
since D� � fe�cz˛ W z 2 Dg, we see that k OgkD D kgkD.

Proof. We may assume that ˛ 2 Rn� (Exercise). Moreover, we may assume that
˛1, …, ˛s > 0, ˛sC1; : : : ; ˛n < 0 for some 0 � s � n.

(a) Fix an N > 0 and suppose that D is not an O.N/-domain of holomorphy.
Let D0; zD be as in Proposition 1.11.2 (*) with S D O.N/.D/. Since D is fat, we
may assume that zD � Cn�.

Put " WD N=.3n/. By the Kronecker theorem (cf. p. 97), there exist sequences

.pj;�/
1
�D1 � N; j D 1; : : : ; n; .q�/

1
�D1 � N

such that
jpj;� � q� j j̨ jj � "; j D 1; : : : ; n; q� ! C1:

2That is,D   Cn. Recall thatD is a fat log-convex domain with logD D H˛;c .
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We may assume that q� � ".1=˛1 C 	 	 	 C 1=˛s/, � D 1; 2; : : : . Put

g�.z/ WD e�q�cz
p1;�

1 	 	 	 zps;�
s 	 z�psC1;�

sC1 	 	 	 z�pn;�
n ; z 2 Cn.˛/:

Observe that

jg�.z/j1=q� ! e�cjz˛j DW �.z/; z 2 Cn.˛/ D Cs � Cn�s� :

Suppose for a moment that we already know that ıND jg� j � 1, � D 1; 2; : : : .
Then, by Remark 1.11.3 (n) (with S D O.N/.D/), for every compact zK � zD there
exists a constant C zK > 0 such that kg�k zK � C zK , � D 1; 2; : : : . Hence �.z/ � 1

for z 2 zK and, consequently, �.z/ � 1 for z 2 zD. The maximum principle for
the plurisubharmonic function � gives � < 1 on zD, which implies that zD � D; a
contradiction.

We move to the proof of the estimate ıND .z/jg�.z/j � 1, z 2 D, � D 1; 2; : : : .
Fix an a 2 D. We may assume that a … V0 (Exercise). Let � WD �.a/ 2 .0; 1/.
For j 2 f1; : : : ; ng, put �j WD .a1; : : : ; aj�1; ��1= j̨ aj ; ajC1; : : : ; an/ 2 @D.
Consequently,

D.a/ � ka � �j k D j1 � ��1= j̨ jjaj j:
Put I WD fj 2 f1; : : : ; ng W jaj j � 1g. For � 2 N we have

jg�.a/j D �q�
jg�.a/j
�q�

D �q�

Qs
jD1 jaj jpj;��q� j̨Qn
jDsC1 jaj jpj;�Cq� j̨

� �q�

 Q
j2I jaj jQ
j…I jaj j

!"

Finally,

ıND .a/jg�.a/j � ı2n"0 .a/n"D .a/jg�.a/j

� �q�

 
ı2n0 .a/

 nY
jD1

j1 � ��1= j̨ jjaj j
!Q

j2I jaj jQ
j…I jaj j

!"
3 � �q�

�
��.1=˛1C���C1=˛s/ı2n0 .a/

Y
j2I

jaj j2
�"

� �q��.1=˛1C���C1=˛s/" � 1; � D 1; 2; : : : ;

which finishes the proof of the estimate.
(b) Fix a k 2 ZC and suppose that D is not an Ak-domain of holomorphy.

Let D0; zD be as in Proposition 1.11.2 (*) with S D Ak.D/. We may assume that
zD � Cn�. Take an " > 0 so small that zD 6� D˛;cC" DW G. By (a) (applied to

D˛;cC") and Proposition 1.11.11, there exists an f 2 O.1/.G/ such that G is the
domain of existence of f . We are going to show that z.3kC3/1f 2 Ak.D/, which
obviously will contradict the fact that f is not continuable beyond G.

3We have j1���1= j̨ j � ��1= j̨ for j D 1; : : : ; s, and j1���1= j̨ j � 1 for j D sC1; : : : ; n.
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It suffices to prove that if 1 � s � n � 1, then

limxD\Cn.˛/3z!a

z.3kC3/1��Df .z/ D 0; a 2 .@D/ n Cn.˛/; 4 j� j C j� j � k:

(3.2.1)

First observe that there exists a neighborhood U of the set .@D/ n Cn.˛/ such
that

dG.z/ � jz2j; z 2 U \ xD \ Cn.˛/: (3.2.2)

Indeed, fix an a D .a1; : : : ; an/ 2 .@D/ n Cn.˛/. Note that a1 	 	 	 as D
asC1 	 	 	 an D 0. We only need to prove that there exists a neighborhood U of
a such that P.z; jz2j/ � G for any z 2 U \ D n V0 (Exercise). Let U be a
neighborhood of a such that jz2�ej j < 1, z 2 U , j D 1; : : : ; n, and

sY
jD1

.1C jz2�ej j/ j̨

nY
jDsC1

.1 � jz2�ej j/ j̨ < e"; z 2 U:

Then
sY

jD1
.jzj j C jz2j/ j̨

nY
jDsC1

.jzj j � jz2j/ j̨

D jz1j˛1 	 	 	 jznj˛n

sY
jD1

.1C jz2�ej j/ j̨

nY
jDsC1

.1 � jz2�ej j/ j̨ < ecC";

z 2 U \ D˛ , which shows that P.z; jz2j/ � G, z 2 U \D n V0.

We need the following lemma.

Lemma 3.2.2. Let˝ � Cn be open and let ı W ˝ ! .0; 1� be a function such that
� ı � ˝ ,
� jı.z0/ � ı.z00/j � kz0 � z00k, z0 2 ˝, z00 2 B.z0; ˝.z0// .cf. Exam-

ple 1.10.7 (g)).
Then

kıNCj jDgk˝ � �Š.
p
n/j j2NCj jkıNgk˝ ; N � 0; � 2 ZnC; g 2 O.˝/:

Proof of Lemma 3.2.2. Fix N , � , g, and a 2 ˝. Let r WD ı.a/

2
p
n

� 1
2
d˝.a/.

Observe that ı.z/ � 1
2
ı.a/, z 2 P.a; r/. By the Cauchy inequalities we get

ıNCj j.a/jDg.a/j � ıNCj j.a/
�Š

r j j kgkP.a;r/ � �Š.2
p
n/j jıN .a/kgkP.a;r/

� �Š.2
p
n/j j2N kıNgkP.a;r/ � �Š.

p
n/j j2NCj jkıNgk˝ ;

which finishes the proof of the lemma. �
4If a 2 .@D/\Cn.˛/, then a 2 G and, consequently, the function z.3kC3/1��D�f is obviously

continuous at a. Observe that .@D/ n Cn.˛/ � xG n Cn.˛/ � @G.
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We come back to (3.2.1).
Fix an a 2 .@D/ n Cn.˛/. By Lemma 3.2.2, we get

ı1Ck
G jDf j � c0 on G; j� j � k;

where c0 is a constant. Consequently, for z 2 U \ xD \ Cn.˛/, z near a (z should
be so near a that ıG.z/ D G.z/), using (3.2.2) we get

jz.3kC3/1��Df .z/j � c0jz.3kC3/1�� jı�.1Ck/
G .z/ � c1jz.3kC3/1�� jd�.1Ck/

G .z/

� c1jz.3kC3/1���2.1Ck/1j D c1jz.kC1/1�� j ���!
z!a

0;

where c1 is independent of z, which proves (3.2.1).
(c) The equivalence (i) , (iii) follows from Corollary 3.1.8. The implication

(i) ) (ii) is obvious. It remains to show that (ii) ) (iii).
Suppose that ˛ … R 	 Zn. Take an f 2 O.0C/.D/,

f .z/ D
X

�2†.f /
af� z

� ; z 2 D:

To get a contradiction we will show that f � const.
Suppose that there exists a � 2 †.f /�. Let w 2 Rn be such that w ? ˛,

kwk D 1, and s WD hw; �i > 0. Fix 0 < N < s and x0 2 H˛;c . Note that
x0 C tw 2 H˛;c , t 2 R. Put r.t/ WD ex

0Ctw , t 2 R. Since r.t/ 2 D, the Cauchy
inequalities imply (cf. Example 3.1.4 (d)):

jaf� j � kf k@0P.r.t//

r.t/�
� kıND f k@0P.r.t//

r.t/�ıND .r.t//

D e�hx0;�i kıND f kD
.ets=N ıD.r.t///N

� e�hx0;�i kıND f kD
MN

;

where M WD supfıD.r.t//ets=N W t 2 Rg. It suffices to show that M D C1.
Suppose thatM < C1. Put T WD ft 2 R>0 W D.r.t// > ı0.r.t//g. If t 2 T ,

then

e�2ts=N C
nX

jD1
e
2.x0

j
Ctwj �ts=N/ � M�2:

Consequently, T is bounded. Therefore, ıD.r.t// D D.r.t// for t � t0. Now, we
estimate D .

Let d WD dist.x0 C Rw; @H˛;c/ D dist.x0; @H˛;c/. Fix a t 2 R and z 2
.@D/ n V0 such that D.r.t// � 1

2
kz � r.t/k. Write jzj j D rj .t/e

uj (uj 2 R),
j D 1; : : : ; n. Note that kuk � d . Fix a j D j.t/ such that juj j � d=

p
n. Then

we obtain

D.r.t// � 1
2
jzj � rj .t/j � 1

2
jjzj j � rj .t/j D 1

2
rj .t/jeuj � 1j � d0rj .t/;
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where d0 WD 1
2
.1 � e�d=pn/. Finally, choose j0 such that there is a sequence

.tk/
1
kD1 � Œt0;C1/ with j.tk/ D j0 for all k and limk!1 tk D 1. Then

M � D.r.tk//e
tks=N � d0e

x0
j0

Ctkwj0
Ctkhw;�i=N ����!

k!1
1I

a contradiction.
(d) Let f 2 H 1.D/, f .z/ D P

�2Zn a
f
� z

� , z 2 D. In view of Proposi-
tion 1.6.5 (b), for � 2 †.f /, we have

H˛;c � H�;c.�/; c.�/ WD log
kf kD
jaf� j

:

Consequently,†.f / � .RC 	˛/\Zn. In particular, if ˛ 62 R 	Zn, then f � const.
(e) For f D P

ˇ2Zn a
f

ˇ
zˇ 2 H 1.D/ define

g.�/ WD
1X
kD0

a
f

k˛
ekc�k; � 2 D:

Since D� � fe�cz˛ W z 2 Dg � D, for every � 2 D� there exists a z 2 D such
that � D e�cz˛ . We know that †.f / � .RC 	 ˛/ \ Zn. Observe that in fact
†.f / � ZC 	 ˛ (because ˛1; : : : ; ˛n are relatively prime). Thus

1X
kD0

jaf
k˛
ekc�kj D

1X
kD0

jaf
k˛
ekc.e�cz˛/kj D

X
ˇ2Zn

jaf
ˇ
zˇ j < C1

and, therefore, g is well defined, g 2 O.D/, and Og.z/ D g.e�cz˛/ D f .z/, z 2 D.
Hence, g 2 H 1.D/ and �.g/ D f .

(f) Recall (Example 1.10.7 (j)) that the inclusion H 1.D/ ! O.0C/.D/ is con-
tinuous. Consequently, by the Banach theorem (Theorem 1.10.4), either H 1.D/ D
O.0C/.D/ or H 1.D/ is of first Baire category in the Fréchet space O.0C/.D/.

Define

f .z/ WD Log
1

1 � e�cz˛
; z 2 D;

where Log stands for the principal branch of the logarithm. Obviously, f is holo-
morphic and unbounded. We are going to prove that f 2 O.0C/.D/. Fix anN > 0.
Then

jf .z/j � � C log
1

1 � �.z/ ; z 2 D;

where �.z/ WD e�cjz˛j, z 2 D. In particular,

ıND .z/jf .z/j � � C log 2 if �.z/ � 1=2:
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Recall (cf. the proof of (a)) that

D.z/ � j1 � ��1=˛n.z/jjznj; z 2 D:
Suppose that 1=2 < �.z/ < 1. Then

D.z/ � 2� .1 � �� .z//jznj;
where 
 WD 1=j˛nj. Finally,

ı2D.z/jf .z/j2=N � ı0.z/2
� .1 � �� .z//jznj

�
� C log

1

1 � �.z/
�2=N

� 2� .1 � �� .z//
�
� C log

1

1 � �.z/
�2=N

:

Since

lim
�!1�

.1 � �� /
�
� C log

1

1 � �
�2=N

D 0 (Exercise);

we conclude that ıND f is bounded.
(g) Suppose that Lp

h
.D/ ¤ f0g for some 1 � p < C1. Then, by Exam-

ple 3.1.4 (e), there exists a � 2 .Zn/� such that z� 2 L
p

h
.D/. On the other hand

we have Z
D

jz� jp d�2n.z/ D .2�/n
Z

R.D/

rp�C1 d�n.r/

D .2�/n
Z

H˛;c

ehx;p�C2i d�n.x/:

We may assume that ˛n ¤ 0. Changing the variables

H˛;c 3 x D .x0; xn/ 7! .x0; h˛; xi/ 2 Rn�1 � .�1; c/

and, next, applying the Fubini theorem shows that the latter integral is infinite
(Exercise); a contradiction. �

3.3 Maximal affine subspace of a convex set II

The present section is a continuation of § 1.4.

Definition 3.3.1. A log-convex Reinhardt domainD � Cn is of rational (resp. ir-
rational) type if E.logD/ is of rational (resp. irrational) type.

Exercise 3.3.2 (Cf. Exercise 1.4.9). Let

D WD f.z1; z2/ 2 C2 W cjz1j� < jz2j < d jz1j�g .c; d; 	 > 0/:

Decide when D is of rational type.
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Remark 3.3.3. Let D � Cn be a fat log-convex Reinhardt domain. Then D is of
rational type iffD D int

T
.˛;c/2A D˛;c , whereA � Zn�R (cf. Lemma 1.4.11 (iv),

Remarks 1.5.7 (e), 1.5.8 (b)).

Definition 3.3.4. Let X � Rn be a convex domain. Define

F .X/ WD .E.X/? \ Qn/?; Z .X/ WD X C F .X/;

K0.X/ WD X; Kj .X/ WD Z .Kj�1.X//; j D 1; 2; : : : ;

K1.X/ WD
1[
jD0

Kj .X/; M .X/ WD E.K1.X//:

Remark 3.3.5. (a) Recall that E.X/ � F .X/ and E.X/ D F .X/ iff X is of
rational type (Remark 1.4.4 (c) (v)).

(b) Z .X/ is a convex domain, X � Z .X/, and F .X/ � E.Z .X//.In particu-

lar,

K0.X/ � K1.X/ � K2.X/ � 	 	 	 ;
E.K0.X// � F .K0.X// � E.K1.X// � F .K1.X// � E.K2.X// � 	 	 	 :

(c) Kj .X/ D X C F .Kj�1.X//, j D 1; 2; : : : .

(d) Kp.X/   KpC1.X/ , F .Kp�1.X//   E.Kp.X//   F .Kp.X//. In
particular, if Kp.X/ D KpC1.X/, then:

� Kp.X/ is of rational type,
� Kp.X/ D Kj .X/ for every j � p C 1,
� K1.X/ D Kp.X/.

(e) If K0.X/   K1.X/   	 	 	   Kp.X/, then

f0g   E.K0.X//   F .K0.X//   	 	 	   E.Kp�1.X//   F .Kp�1.X//:

Consequently, dim E.X/ � 1 and p � bn�dim E .X/C1
2

c � bn
2
c.

(f) If X � Y , then Z .X/ � Z .Y / and, consequently, K1.X/ � K1.Y /.
(g) K1.X/ D K .X/ D the smallest convex domain of rational type containing

X (cf. Remark 1.4.10).
Indeed, since K1.X/ is of rational type, the definition of K .X/ implies that

K .X/ � K1.X/. On the other hand, since X � K .X/, we get K1.X/ �
K1.K .X// D K .X/.

Example 3.3.6 (W. Jarnicki). There exists a convex domain X � Rn such that
K0.X/   K1.X/   	 	 	   Kp.X/ with p D bn

2
c.
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Indeed, let r WD p
2, s WD p

3. Consider the following basis .b1; : : : ; bn/ of Rn:

b1 WD .r; 1; : : : ; 1„ ƒ‚ …
n�1

/;

b2k WD .0; : : : ; 0„ ƒ‚ …
2k�1

; 1; : : : ; 1„ ƒ‚ …
n�2kC1

/; k D 1; 2; : : : ;
jn
2

k
;

b2kC1 WD .0; : : : ; 0„ ƒ‚ …
2k�1

; r; s; 1; : : : ; 1„ ƒ‚ …
n�2k�1

/; k D 1; 2; : : : ;
jn � 1

2

k
:

Put

X WD
� nX
jD1

tj b
j W

� jt2j C1j< t2j ; j D 1; 2; : : : ; k � 1; jt2k j < 1; when n D 2k;

jt2j C1j< t2j ; j D 1; 2; : : : ; k; when n D 2k C 1


:

Observe that X is convex. The equality p D bn
2
c follows directly from the

identities below.

.1/`: K`.X/ D X CP2`C1
jD1 Rbj , ` D 0; 1; 2; : : : ;

j
n�1
2

k
,

.2/`: E.K`.X// D P2`C1
jD1 Rbj , ` D 0; 1; 2; : : : ;

j
n�1
2

k
,

.3/`: F .K`.X// D P2`C2
jD1 Rbj , ` D 0; 1; 2; : : : ;

j
n�2
2

k
.

Since Rb1 � X , we get .1/0. We will use induction: .1/` ) .2/` ) .3/` )
.1/`C1.

.1/` ) .2/`: The inclusion “
” in .2/` follows trivially from .1/`. Fix an
a D Pn

jD1 tj bj 2 E.K`.X//. Suppose that there exists a j > 2` C 1 with
tj ¤ 0. Let j0 be the smallest of such j ’s. We may assume that tj0

D �1.
Put x WD b2 C b4 C b6 C 	 	 	 C b2q D Pn

jD1 xj bj , where q WD bn�1
2

c. Then
x 2 X � K`.X/. Consider the vector x C a 2 K`.X/. Using .1/`, write
x C a D z C c with z D Pn

jD1 zj bj 2 X and c D P2`C1
jD1 cj b

j . Observe that
zj D zj C cj D xj C aj , j D 2`C 2; : : : ; j0. In each of the following three cases
we get a contradiction with the definition of X :

� j0 is odd: Then zj0
D aj0

D �1, zj0�1 D xj0�1 D 1;
� j0 < n and j0 is even: Then zj0

D 1 � 1 D 0;
� j0 D n and j0 is even: Then zj0

D an D �1.

.2/` ) .3/`: It suffices to observe that .2/` implies

E.K`.X//
? \ Qn D fa D .a1; : : : ; an/ 2 Qn W ha; b1i D 	 	 	 D ha; b2`C1i D 0g

D
�
a 2 Qn W

� a1r C a2 C 	 	 	 C an D 0
a2k C 	 	 	 C an D 0 if k � `C 1=2
a2kr C a2kC1s C a2kC2 C 	 	 	 C an D 0 if k � `


D fa 2 Qn W a1 D 	 	 	 D a2`C1 D 0; a2`C2 C a2`C3 C 	 	 	 C an D 0g:
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.3/` ) .1/`C1: The inclusion “�” in .1/`C1 follows trivially from .3/`. To
prove the opposite inclusion, take x D Pn

jD1 xj bj 2 X and t D P2`C3
jD1 tj b

j .
Define

Qx WD x1b
1 C

`C1X
jD1

..jx2j j C jt2jC1j/b2j

C .x2jC1 C t2jC1/b2jC1/C
nX

jD2`C4
xj b

j 2 X;

Qt WD x1b
1 C

`C1X
jD1

.x2j � jx2j j C t2j � jt2jC1j/b2j 2 F .K`.X//:

Since x C t D Qx C Qt , we conclude that x C t 2 X C F .K`.X// � K`.X/ C
F .K`.X// D K`C1.X/.

Exercise 3.3.7. LetX be the domain from the above example. WriteX in the form

X D H˛1;c1
\ 	 	 	 \ H˛2p ;c2p

; p D
jn
2

k
;

so that

K`.X/ D H˛2`C1;c2`C1
\ 	 	 	 \ H˛2p ;c2p

; ` D 0; 1; 2; : : : ;
jn � 1

2

k
:

Hint. It suffices to choose ˛j , cj , j D 1; : : : ; 2p, so that for every x D Pn
jD1 tj bj

we have

hx; ˛2j�1i < c2j�1 , t2jC1 < t2j ; j D 1; 2; : : : ;
jn � 1

2

k
;

hx; ˛2j i < c2j , t2jC1 > �t2j ; j D 1; 2; : : : ;
jn � 1

2

k
;

hx; ˛n�1i < cn�1 , tn < 1; n D 2p;

hx; ˛ni < cn , tn > �1; n D 2p:

Proposition 3.3.8. Let X D H˛1;c1
\ 	 	 	 \ H˛N ;cN

, where ˛1; : : : ; ˛N 2 .Rn/�
and let r WD rankŒ˛1; : : : ; ˛N �. Further, let

I WDfI D .i1; : : : ; ir/ W 1 � i1 < 	 	 	 < ir � N; rankŒ˛i1 ; : : : ; ˛ir � D rg;
AI WDZn \ .RC˛i1 C 	 	 	 C RC˛ir /; I 2 I;

MI WDfv 2 Rn W hv; ˛i D 0; ˛ 2 AI g D A?
I ; I 2 I;

M WD
\
I2I

MI D
�[
I2I

AI

�?
:
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Then M .X/ D M and, consequently, K .X/ D XCM . In particular, K .X/ D Rn

iff AI D f0g, I 2 I.

Proof. Observe that for every I D .i1; : : : ; ir/ 2 I there exists an xI 2 Rn such
that

H˛ik ;cik

D fx 2 Rn W hx � xI ; ˛ik i < 0g D HxI

˛ik
; k D 1; : : : ; r:

Put

YI WD int
\
˛2AI

HxI

˛ ; XI WD
r\
kD1

H˛ik ;cik

; I D .i1; : : : ; ir/ 2 I:

Obviously, YI is of rational type. Moreover, X � XI � YI and E.YI / D MI .
Thus M .X/ � M .YI / D MI , I 2 I, which implies that M .X/ � M .

Now assume that M .X/   Rn and let

K .X/ D int
\

.ˇ;c/2B
Hˇ;c ;

where B � .Zn/� � R. Then

M .X/ D fv 2 Rn W hv; ˇi D 0; ˇ 2 prRn.B/g:

To continue we need the following lemma.

Lemma 3.3.9. Let Xj WD H˛j ;cj
� Rn, ˛j 2 .Rn/�, cj 2 R, j D 0; : : : ; N ,

r WD rankŒ˛1,…,˛N �, and ¿ ¤ X1 \ 	 	 	 \ XN � X0. Then there exist 1 � i1 <

	 	 	 < ir � N such that r D rankŒ˛i1 ; : : : ; ˛ir � and Xi1 \ 	 	 	 \Xir � X0.

Proof of Lemma 3.3.9. We use induction on n. The case n D 1 is trivial. Assume
that the result is true in R; : : : ;Rn�1 (n � 2). We may assume that N � 2 and\

j2f1;:::;k�1;kC1;:::;N g
Xj 6� X0; k D 1; : : : ; N: 5 (3.3.1)

It suffices to prove that r D N . Consider the following two cases:
Case 1. r < n (e.g. N � n � 1): Let F WD R 	 ˛1 C 	 	 	 C R 	 ˛N . Observe

that dimF D r and ˛0 2 F (because X1 \ 	 	 	 \XN � X0). We may assume that
F D Rr �f0gn�r . Let ˛j D .ˇj ; 0/ 2 Rr �f0gn�r , j D 0; : : : ; N . Consequently,

5Note that, after rejecting “superfluous” halfspaces, the rank of the new system of ˛’s may be
smaller. Nevertheless, if we find 1 � i1 < � � � < is � N , s < r , with s D rankŒ˛i1 ; : : : ; ˛is � and
Xi1

\� � �\Xis
� X0, then it suffices to take arbitrary˛isC1 ; : : : ; ˛ir so that rankŒ˛i1 ; : : : ; ˛ir � D r .
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Xj D Yj�Rn�r , whereYj is an open halfspace in Rr withˇj ? @Yj , j D 0; : : : ; N .
Clearly, r D rankŒˇ1; : : : ; ˇN �. Moreover,\

j2f1;:::;k�1;kC1;:::;N g
Yj 6� Y0; k D 1; : : : ; N:

Hence, by the inductive assumption, r D N .
Case 2. r D n: We may assume that X0 D fxn < 0g and .˛N1 ; : : : ; ˛

N
n�1/ ¤ 0.

Let ˛j D .ˇj ; ˛
j
n/, j D 0; : : : ; N . Observe that ˇN ¤ 0. Let

Yj WD fy 2 Rn�1 W .y; 0/ 2 Xj g D fy 2 Rn�1 W hy; ˇj i < cj g; j D 1; : : : ; N;

Y0 WD fy 2 Rn�1 W .y; 0/ … xXN g D fy 2 Rn�1 W hy;�ˇN i < �cN g:
Observe that

¿ ¤
N�1\
jD1

Yj � Y0:
6

Let s WD rankŒˇ1; : : : ; ˇN�1�. By the inductive assumption, there exist 1 � i1 <

	 	 	 < is � N�1 such thatYi1\	 	 	\Yis � Y0. Consequently,Xi1\	 	 	\Xis \XN �
X0.7 HenceN D sC 1. On the other hand s � n� 1 D r � 1. Thus r D N . �

Fix a .ˇ; c/ 2 B . Since X � Hˇ;c , Lemma 3.3.9 implies that there is an
I D .i1; : : : ; ir/ 2 I such that XI � Hˇ;c . Hence ˇ 2 E.Hˇ;c/

? � E.XI /
? D

R˛i1 C 	 	 	 C R˛ir . Consequently, ˇ D �1˛
i1 C 	 	 	 C �r˛

ir , � WD .�1; : : : ; �r/ 2
.Rr/�. It remains to show that � 2 RrC (then prRn.B/ � S

I2I AI , which implies
that M � M .X/).

Let L W Rn ! Rr be given by

L.x/ WD .hx; ˛i1i; : : : ; hx; ˛ir i/; x 2 Rn:

Then

L.XI / D f� D .�1; : : : ; �r/ 2 Rr W �k < hxI ; ˛ik i; k D 1; : : : ; rg
and

L.Hˇ;c/ D f� 2 Rr W h�; �i < 0g:
Now, the inclusion L.X/ � L.Hˇ;c/ implies that � 2 RrC (Exercise). �

6If Y1 \ � � � \ YN �1 D ¿, then .X1 \ � � � \ XN �1/ \ fxn D 0g D ¿, which implies that
X1 \ � � � \ XN �1 � X0; a contradiction. If y 2 Y1 \ � � � \ YN �1, then .y; 0/ 2 .X1 \ � � � \
XN �1/ \ fxn D 0g. Consequently, .y; 0/ … XN . Thus Y1 \ � � � \ YN �1 � xY0, and finally,
Y1 \ � � � \ YN �1 � Y0.

7.Xi1
\ � � � \Xis

\XN /\ fxn D 0g D Yi1
\ � � � \ Yis

\ .Rn�1 n xYN / D ¿.
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The following examples illustrate Proposition 3.3.8.

Example 3.3.10. Let ˛1 WD .ˇ; ˇ C 1; 0/; ˛2 WD ˛1 C 1 D .ˇ C 1; ˇ C 2; 1/,
where ˇ 2 R>0 n Q. Put

X WD H˛1;0 \ H˛2;0 D f.x1; x2; x3/ 2 R3 W ˇx1 C .ˇ C 1/x2 < 0;

.ˇ C 1/x1 C .ˇ C 2/x2 C x3 < 0g:
Then K .X/ D R3.

Indeed, rankŒ˛1; ˛2� D 2 and A.1;2/ D Z3 \ .RC 	 ˛1 C RC 	 ˛2/ D f0g.

Exercise 3.3.11. Let

˛1 WD .˛1; ˛2; ˛3/; ˛2 WD 1 � ˛1 D .1 � ˛1; 1 � ˛2; 1 � ˛3/;
where 0 < j̨ < 1, j D 1; 2; 3, ˛1 ¤ ˛2, .˛1 � ˛3/=.˛1 � ˛2/ … Q. Put

X WD H˛1;0 \ H˛2;0 D f.x1; x2; x3/ 2 R3 W ˛1x1 C ˛2x2 C ˛3x3 < 0;

.1 � ˛1/x1 C .1 � ˛2/x2 C .1 � ˛3/x3 < 0g:
Then

K .X/ D f.x1; x2; x3/ 2 R3 W x1 C x2 C x3 < 0g:

3.4 H 1-domains of holomorphy

In this section we characterize the most important class of special Reinhardt domains
of holomorphy, namely H 1-domains of holomorphy (cf. [Jar-Pfl 2000], § 4.1, for
the general theory). Recall that we already presented a general characterization in
Proposition 3.1.7.

Theorem 3.4.1 ([Jar-Pfl 1987]). Let D   Cn be a Reinhardt domain. Then the
following conditions are equivalent:

(i) D is an H 1-domain of holomorphy;

(ii) D is an O.0C/-domain of holomorphy;

(iii) D is a fat domain of holomorphy of rational type;

(iv) D D int
T
.˛;c/2A D˛;c for some A � .Zn/� � R.

Proof. The implication (i) ) (ii) is trivial. The equivalence (iii) , (iv) follows
from Lemma 1.4.11. The implication (iv) ) (i) follows from Theorem 3.2.1 (c)
and Remark 1.11.3 (e). So, we only need to prove that (ii) ) (iii).

It is clear thatD is fat (cf. Proposition 1.9.12). PutX WD logD andF WD F .X/

(cf. Definition 3.3.4). Assume that E.X/ is not of rational type. Then dimF >

dim E.X/. Let f 2 O.0C/.D/,

f .z/ D
X

�2†.f /
a�z

� ; z 2 D:
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We will show that

†.f / � E.X/?: (3.4.1)

Suppose for the moment that (3.4.1) is true. Then for x 2 X , v 2 F we getX
�2†.f /

a�e
hxCv;�i D

X
�2†.f /

a�e
hx;�i:

Consequently, the series is summable in the domain exp.X C F /. Since D is an
O.0C/-domain of holomorphy, exp.X C F / � D, and hence, X C F � X ; a
contradiction.

Now we are going to prove (3.4.1). Take a � … E.X/?. Choose w 2 E.X/,
kwk D 1, such that s WD hw; �i > 0. Fix 0 < N < s and x0 2 X . Put r.t/ WD
ex

0Ctw , t 2 R. Now, we continue exactly as in the proof of Theorem 3.2.1 (c).
�

Proposition 3.4.2. LetD   Cn be a Reinhardt domain that is an H 1-domain of
holomorphy. Then H 1.D/   O.0C/.D/.

Proof. In view of the proof of Theorem 3.2.1 (f), we only need to prove that there
exist an a 2 .@D/ \ Cn� and a ˛ 2 .Zn/� such that D � D˛;c with c WD log ja˛j.

Indeed, by Theorem 3.4.1, D D int
T
.˛;c/2A D˛;c with A � .Zn/� � R. It

remains to use Remark 1.5.9. �

Theorem 3.4.3. Let D   Cn be a fat Reinhardt domain of holomorphy and let

N > 0. ThenD is an O.N/-domain of holomorphy.

Proof. Since D D int
T
.˛;c/2A D˛;c , where A � .Rn/� � R, and[
.˛;c/2A

O.N/.D˛;c/jD � O.N/.D/;

we only need to use Theorem 3.2.1 (a) and Remark 1.11.3 (e). �

Theorem 3.4.4 ([HDT 2003]). Every Reinhardt domain of holomorphy D � Cn

is an O.1/-domain of holomorphy .cf. Theorem 3.4.3/.

Proof. By Theorem 1.11.13,D D D�nM , whereD� is a fat domain of holomorphy
and M WD S

j W Vj \DD¿ Vj . Suppose that D0, zD are as in Proposition 1.11.2 (*)

with S D O.1/.D/. We may assume thatD0 is a connected component ofD \ zD.
Letb 2 zD\@D0. Ifb 2 @D�, then, byTheorem 3.4.3, zD � D�. Thusb 2 D�\M ,
say b 2 Vj . Then the function f .z/ WD 1=zj belongs to O.1/.D/ (recall that
Vj \D D ¿). Since f does not extend through b, we get a contradiction. �
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Remark 3.4.5. Observe that if D is a non-fat Reinhardt domain of holomorphy,
then by Proposition 1.9.12,D is not an O.N/-domain of holomorphy for0 � N < 1.

Theorem 3.4.6 ([Jar-Pfl 1987]). Let D � Cn be a Reinhardt log-convex domain.
Then

E.D;H 1.D// D int exp K .logD//

.cf. Definition 1.12.1/.

Proof. Put G` WD E.D;H 1.D//, Gr WD int exp.K .logD//. Recall that

K .logD/ D K .logGr/

is the smallest convex domain of rational type that contains X WD logD. Note
that both domains G` and Gr are fat and of rational type. Obviously, Gr � G`. It
remains to show that H 1.D/ � O.Gr/. Fix an f 2 H 1.D/,

f .z/ D
X

˛2E .X/?\Zn

af˛ z
˛; z 2 D:

Looking at the definition of Z .X/ and the form of the series it is clear that f extends
to a bounded holomorphic function on exp.Z .X//.8 Repeating this argument leads
to a bounded extension of f on exp.K .X//. Finally, the Riemann theorem on
removable singularities gives the extension to Gr . �

Example 3.4.7 (Cf. Example 3.3.10). For ˇ 2 R>0 n Q, let ˛1 WD .ˇ; ˇ C 1; 0/

and ˛2 WD .ˇ C 1; ˇ C 2; 1/. Put

D WD D˛1 \ D˛2

D f.z1; z2; z3/ 2 C3 W jz1jˇ jz2jˇC1 < 1; jz1jˇC1jz2jˇC2jz3j < 1g:
Then H 1.D/ ' C.

Exercise 3.4.8 (Cf. Exercise 3.3.11). Let

˛1 WD .˛1; ˛2; ˛3/; ˛2 WD .1 � ˛1; 1 � ˛2; 1 � ˛3/;
where 0 < j̨ < 1, j D 1; 2; 3, ˛1 ¤ ˛2, .˛1 � ˛3/=.˛1 � ˛2/ … Q. Put

D WD D˛1 \ D˛2

D f.z1; z2; z3/ 2 C3 W jz1j˛1 jz2j˛2 jz3j˛3 <1; jz1j1�˛1 jz2j1�˛2 jz3j1�˛3 <1g:
Then

E.D;H 1.D// D f.z1; z2; z3/ 2 C3 W jz1z2z3j < 1g:
8For x0 2 X , v 2 F .X/, and ˛ 2 †.f /, we have jaf

˛ j.ex0Cv/˛ D jaf
˛ jehx0Cv;˛i D

jaf
˛ jehx0;˛i.
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3.5 Ak-domains of holomorphy

The next important space after the space H 1.D/ is the space Ak.D/, 0 � k �
C1. We begin with the case where k 2 ZC.

Theorem 3.5.1 ([Jar-Pfl 1997]). Let D � Cn be a Reinhardt domain of holomor-
phy. Then the following conditions are equivalent:

(i) D is an Ak-domain of holomorphy for every k 2 ZC;

(ii) D is an H
1;k
loc -domain of holomorphy for every k 2 ZC;

(iii) D is an H 1
loc-domain of holomorphy;

(iv) D is fat.

In particular, if D is an H 1-domain of holomorphy, then D is an Ak-domain
of holomorphy, k 2 ZC.

Proof. The implications (i) ) (ii) ) (iii) are obvious. The implication (iii) )
(iv) follows from Corollary 1.11.4 (a). The implication (iv) ) (i) follows from
Remark 1.11.3 (e) and Theorem 3.2.1 (b). �

We move to the case where k D C1.

Theorem 3.5.2 ([Jar-Pfl 1997]). Let D � Cn be a Reinhardt domain of holomor-
phy. Then the following conditions are equivalent:

(i) D is fat and satisfies the Fu condition;

(ii) D is an H
1;1
loc -domain of holomorphy;

(iii) D is an A1-domain of holomorphy;

(iv) D is an O. xD/-domain of holomorphy.

Moreover, if D is an H 1-domain of holomorphy, then each of the above con-
ditions is equivalent to the following one:

(v) D is an H 1.D/ \ O. xD/-domain of holomorphy.

We need the following two lemmas.

Lemma 3.5.3. LetD   Cn be a Reinhardt domain, S 2 O.D/, and k 2 N. Then
the following conditions are equivalent:

(i) D is an S-domain of holomorphy;

(ii) D is an F -domain of holomorphy, where F WD fDˇf W f 2 S ; ˇ 2 Skg,
where Sk WD fˇ 2 ZnC W jˇj D kg.

Proof. The implication (ii) ) (i) is obvious (Remark 1.11.3 (a)).
(i) ) (ii): Suppose that D is not an F -domain of holomorphy. Let a 2 D and

r > dD.a/ be such that each derivative Dˇf extends holomorphically to P.a; r/,
ˇ 2 Sk .
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Observe that if g 2 O.D/ is such that each derivative @g
@zj

extends to a function
gj 2 O.P.a; r//, j D 1; : : : ; n, then the function g itself extends holomorphically
to P.a; r/. Indeed, the extension may be given by the formula

Qg.z/ D g.a/C
nX

jD1
.zj �aj /

Z 1

0

gj .aC t .z�a// dt; z 2 P.a; r/ (Exercise):

Consequently, using the above remark inductively, we easily conclude that every
function f 2 S extends holomorphically to P.a; r/; a contradiction. �

Lemma 3.5.4. Let D   Cn be a Reinhardt domain. Assume that D is an H 1;S -
domain of holomorphy,9 where S is such that there exists a k0 2 ZC such that
Sk0

� S . Then

D D int
\

f 2H1;S .D/
˛2†.f /; ˇ2S
˛¤ˇ;

�
˛
ˇ

�
¤0

˚
z 2 Cn.˛/ W ˇ̌af˛ ˇŠ�˛ˇ�z˛�ˇ ˇ̌ < kDˇf kD

�
:

Moreover, if S D .ZnC/�, thenD satisfies the Fu condition.

Proof. By Lemma 3.5.3, D is an F WD fDˇf W f 2 H 1;S .D/; ˇ 2 Sg-domain
of holomorphy. Observe that F � H 1.D/ is invariant under n-rotations (in the
sense of (1.12.1)). Thus we may apply Proposition 1.12.6 (b) (Exercise).

Now, assume thatS D .ZnC/� and let .@D/\Vj0
¤ ¿ for some j0 2 f1; : : : ; ng.

By Remark 1.5.7 (e), to prove that yD.j0/ D Dwe only need to show that j̨0
� ǰ0

�
0 for any ˛ 2 †.f /, ˇ 2 S with ˛ ¤ ˇ,

�
˛
ˇ

� ¤ 0.

Suppose that there exists f 2 H 1;S .D/ and ˛ 2 †.f / with j̨0
< 0. Put

ˇ D .ˇ1; : : : ; ˇn/, ˇ� WD maxf0; ˛�g, � D 1; : : : ; n. Then ˇ ¤ ˛, and
�
˛
ˇ

� ¤ 0.
Therefore

z˛�ˇ D
Y

�2f1;:::;ng
˛�<0

z˛�
�

is bounded onD. Consequently, j̨0
� 0 because of .@D/\ Vj0

¤ ¿; a contradic-
tion. �

Now we are able to verify Theorem 3.5.2.

Proof of Theorem 3.5.2. We may assume that D   Cn. The implications (v) )
(iv) ) (iii) ) (ii) are evident.

(ii) ) (i): Recall that D is fat (Corollary 1.11.4). Suppose that @D \ Vj0
¤ ¿

for some j0 2 f1; : : : ; ng. Observe that for any r > 0 the open setDr WD D\P.r/

9Recall that H 1;S .D/ WD ff 2 O.D/ W 8˛2S W D˛f 2 H 1.˝/g, ¿ ¤ S � Zn
C.
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is fat and log-convex. We know that Dr is an H 1;Zn
C-domain of holomorphy

(cf. Remark 1.11.3 (e)). Hence, by Lemma 3.5.4, if xDr \ Vj0
¤ ¿, then yD.j0/

r D
Dr . Consequently, yD.j0/ D D.

(i) ) (iv) (resp. (i) ) (v) if D is an H 1-domain of holomorphy)): Suppose
that D is not an O. xD/-domain of holomorphy (resp. H 1.D/ \ O. xD/-domain
of holomorphy). Let D0, zD be as in Proposition 1.11.2 (*) with S D O. xD/
(resp. S D H 1.D/ \ O. xD/). Recall (cf. Theorem 1.11.13 (b) (resp. 3.4.1 (iv)))
that D can be written as

D D int
\

.˛;c/2A
D˛;c ;

where A � .Rn/� � R (resp. A � .Zn/� � R). Fix .˛; c/ 2 A and " > 0 such that
D � D˛;c � D˛;cC" and zD 6� D˛;cC". Since D˛;cC" is a domain of holomorphy
(resp. an H 1.D˛;cC"/-domain of holomorphy), we only need to observe that, by
Remark 1.5.11 (b), we have xD � D˛;c � D˛;cC"; a contradiction. �

Example 3.5.5 ([Sib 1975]). Let T D f.z1; z2/ 2 D � D� W jz1j < jz2jg be the
Hartogs triangle. Then:

(a) T is an Ak-domain of holomorphy for arbitrary k 2 ZC (cf. Theorem 3.5.1).
(b) T is not an A1-domain of holomorphy (cf. Theorem 3.5.2).

Exercise 3.5.6. Complete the following direct proof showing that T is an Ak.T /-
domain of holomorphy for every k 2 ZC.

Fix a k 2 ZC and let D0, zD be as always with D D T and S D Ak.T /. We
may assume that zD 6� xT . Let a D .a1; a2/ 2 . zD n V0/ n xT . We have the following
two cases:

� ja1j > 1: Then the function f .z1; z2/ WD 1=.z1 � a1/ belongs to O. xT / �
Ak.T / and is not extendible to zD; a contradiction.

� ja2j < ja1j � 1: Then the function f .z1; z2/ WD zkC2
1 =.a1z2 � a2z1/ belongs

to Ak.T / and is not extendible to zD; a contradiction.

Exercise 3.5.7. Find a power series f .z/ D P1
kD0 akzk , z 2 D, such that f 2

A1.D/ n O.xD/.

3.6 L
p

h
-domains of holomorphy

Our aim in this section is to discuss the problem of geometric characterization of
Reinhardt S-domains of holomorphyD � Cnwith S � L

p

h
.D/. Recall the general

Proposition 3.1.6 and Theorem 3.2.1 (g) for the elementary Reinhardt domains.
The following lemma, which will be used in the proof of Theorem 3.6.4, is of

independent interest.
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Lemma 3.6.1. Let D � Cn be a Reinhardt domain. Then H 1;S1.D/ � A.D/.
Consequently, H 1;k.D/ � Ak�1.D/ for k 2 N. In particular, H 1;1.D/ �
A1.D/.

Exercise 3.6.2. Find a fat domain D � C n .�1; 0� such that

Log 2 H 1;S1.D/ n A.D/;

where Log stands for the principal branch of logarithm.

Before presenting the proof we recall a few well known facts from the theory of
metric spaces. Let .X; / be an arcwise connected metric space. For a continuous
curve 
 W Œa; b� ! X define its -length L	.
/ 2 Œ0;C1� by the formula

L	.
/ WD sup
n NX
jD1

.
.tj�1/; 
.tj // W a D t0 < 	 	 	 < tN D b; N 2 N
o
:

Obviously, .
.a/; 
.b// � L	.
/. One can easily prove (Exercise) that

L	.
/ D L	.
 jŒa;c�/C L	.
 jŒc;b�/; a < c < b:

We define the inner metric i associated to  by the formula

i .x; y/ WD inffL	.
/ W 
 2 C.Œa; b�; X/; 
.a/ D x; 
.b/ D yg; x; y 2 X:
Clearly,  � i . One can easily prove (Exercise) that i is a metric.

In the case whereX is a subdomain ofE, where .E; k k/ is a normed space, with
.x; y/ D kx � yk, x; y 2 X , we have i .x; y/ D kx � yk D .x; y/ provided
that the segment Œx; y� is contained in X . In particular, if B.x0; r/ D fx 2 E W
kx � x0k < rg � X , then

fx 2 X W i .x0; x/ < rg D B.x0; r/ (Exercise):

Nevertheless, one can easily find (Exercise) a bounded domain X � E such that
the metric i is unbounded.

One can prove (Exercise) that if X is a subdomain of Rm, f W X ! C is
Fréchet differentiable, and kf 0.x/k � C , x 2 X , then

jf .x/ � f .y/j � Ci .x; y/; x; y 2 X:
Proof of Lemma 3.6.1. Since D has a univalent envelope of holomorphy (cf. The-
orem 1.12.4), we may assume that D is a domain of holomorphy.10 Since the

10Let zD be the envelope of holomorphy of D. Then, by Lemma 3.5.3, H 1;S1. zD/jD D
H 1;S1.D/. Moreover, A. zD/jD � A.D/.
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case D D Cn is trivial, we may assume that D   Cn. Fix an f 2 H 1;S1.D/.
Obviously,

jf .z0/ � f .z00/j � �
max
˛2S1

kD˛f kD
�
�D.z

0; z00/; z0; z00 2 D;

where �D denotes the arc-length distance on D with respect to the `1-norm k k1.
To show that f extends continuously to xD it suffices (Exercise) to prove that for
any a 2 @D there are a constant c > 0 and a neighborhood Ua of a such that

�D.z
0; z00/ � c.kz0 � z00k C kpJ .z0/k C kpJ .z00/k/; z0; z00 2 D \ Ua;

where

J WD .j1; : : : ; js/; 1 � j1 < 	 	 	 < js � n;

fj1; : : : ; jsg D fj 2 f1; : : : ; ng W aj D 0g;
pJ W Cn ! Cs; pJ .z1; : : : ; zn/ WD .zj1

; : : : ; zjs
/; p¿ WD 0:

Fix a point a 2 @D. We may assume that J D ¿ or J D .1; : : : ; s/ (1 � s � n).
Take z0; z00 2 D.

If J D ¿, then put w0 WD z0, w00 WD z00.
If J ¤ ¿, then put

w0 WD .jz0
1j; : : : ; jz0

sj; z0
sC1; : : : ; z0

n/; w00 WD .jz00
1 j; : : : ; jz00

s j; z00
sC1; : : : ; z00

n/ 2 D:

Obviously,

�D.z
0; w0/ � 2�.jz0

1j C 	 	 	 C jz0
sj/; �D.z

00; w00/ � 2�.jz00
1 j C 	 	 	 C jz00

s j/:

It remains to show that there is a constant c0 > 0 and a neighborhood Ua such
that

�D.w
0; w00/ � c0kz0 � z00k; z0; z00 2 D \ Ua:

Using continuity it suffices to consider only the case where 0 ¤ jz0
j j ¤ jz00

j j ¤ 0,
j D 1; : : : ; n. Let L1 D 	 	 	 D Ls D Log be the principal branch of the loga-
rithm and let LsC1; : : : ; Ln be arbitrary branches of the logarithm defined in small
neighborhoods of asC1; : : : ; an, respectively. Define


 D .
1; : : : ; 
n/ W Œ0; 1� ! Cn; 
j .t/ WD e
.1�t/Lj .w

0
j
/CtLj .w

00
j
/
; j D 1; : : : ; n:

Since D is logarithmically convex, 
.Œ0; 1�/ � D. What is left to be shown is
that for each j there is a c0

j > 0 such that the length j̀ of 
j is estimated by
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j̀ � c0
j jz0

j � z00
j j provided that z0; z00 are near a. We have

j̀ D
Z 1

0

j
 0
j .t/j dt D

Z 1

0

jw0
j j1�t jw00

j jt jLj .w0
j / � Lj .w00

j /j dt

D jLj .w0
j / � Lj .w00

j /j
j log jw0

j j � log jw00
j jj jjw

0
j j � jw00

j jj

�
˚

jz0
j � z00

j j if j � s;
jjz0

j
j�jz00

j
jj

j log jz0
j

j�log jz00
j

jj jLj .z0
j / � Lj .z00

j /j if j � s C 1:

The case j � s is trivial. If j � s C 1, then we only need to observe that

jLj .z0
j / � Lj .z00

j /j � c00
j jz0

j � z00
j j

in a small neighborhood of aj and

lim
u;v!jaj j
0<u¤v>0

ju � vj
j logu � log vj D jaj j;

so the term
jjz0

j
j�jz00

j
jj

j log jz0
j

j�log jz00
j

jj remains bounded near aj .

The proof is completed. �

Remark 3.6.3. (a) Recall that if D is a bounded (Reinhardt or not) domain, then
Ak.D/ � H 1;k.D/. Consequently, if D is a bounded Reinhardt domain, then,
by Lemma 3.6.1, H 1;k.D/ � Ak�1.D/ � H 1;k�1.D/, k 2 N. In particular, if
D is a bounded Reinhardt domain, then H 1;1.D/ D A1.D/.

(b) Let

D D T D f.z1; z2/ 2 D � D W jz1j < jz2jg;

fk.z/ WD z2k1

zk2
; z D .z1; z2/ 2 D; k 2 N:

Then
fk 2 H 1;k.D/ n Ak.D/ � Ak�1.D/ n Ak.D/:

Indeed,

@pCqfk
@z
p
1 @z

q
2

.z1; z2/ D pŠ
�
2k
p

�
qŠ
��k
q

�z2k�p
1

z
kCq
2

DW c.k; p; q/z
2k�p
1

z
kCq
2

:

Consequently, if p C q � k, thenˇ̌̌̌
@pCqfk
@z
p
1 @z

q
2

.z1; z2/

ˇ̌̌̌
� jc.k; p; q/jjzk�.pCq/

1 j � jc.k; p; q/j; .z1; z2/ 2 D;
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and so fk 2 H 1;k.D/. Moreover, if p C q D k, then

@pCqfk
@z
p
1 @z

q
2

.z1; z2/ D c.k; p; q/

�
z1

z2

�2k�p
;

which shows that @
pCqfk

@z
p
1
@z

q
2

… C. xD/.
(c) In the case whereD is an unbounded Reinhardt domain, Lemma 3.6.1 implies

that H
1;S1

loc .D/ � A.D/ if D satisfies the following condition:

(*) for every point a 2 @D there exists a bounded Reinhardt neighborhood Ua
of a such that D \ Ua has a finite number of components.

In fact, take f 2 H
1;S1

loc .D/ and a 2 @D. Let Ua be as in (*). If S is a connected
component of D \ Ua, then Lemma 3.6.1 shows that f 2 A.S/. Suppose that
D \ Ua has a finite number of connected components, D \ Ua D S1 [ 	 	 	 [ Sk .
Fix a0 2 D and aj 2 Sj , j D 1; : : : ; k. Let 
 W Œ0; 1� ! D be a curve connecting
a0, a1,…, ak and let r > 0 be so big that 
.Œ0; 1�/ [ .D \ Ua/ � P.r/. Then
D \ Ua is contained in one connected component S of D \ P.r/. Hence, by the
first part of the proof, f 2 A.S/ � A.D \ Ua/.

In particular, if D satisfies (*), then H
1;k
loc .D/ � Ak�1.D/, k 2 N.

Observe that (*) is satisfied if D is log-convex – we take Ua D P.ra/ with
sufficiently large ra > 0 and observe that D \ P.ra/ is log-convex and therefore
connected (cf. Remark 1.5.6 (d)).

? We do not know whether the inclusion H
1;S1

loc .D/ � A.D/ is true for
arbitrary (unbounded) Reinhardt domains. ?

Theorem 3.6.4 ([Jar-Pfl 1997]). Let D   Cn be a Reinhardt domain of holomor-
phy. Then the following conditions are equivalent:

(i) for each k 2 ZC the domainD is an L˘;k
h

-domain of holomorphy;11

(ii) D is fat and there exists a p 2 Œ1;1/ such that Lp
h
.D/ ¤ f0g;

(iii) D is fat and E.logD/ D f0g;12

(iv) for each k 2 ZC the domainD is an L˘;k
h

\ Ak-domain of holomorphy;

(v) D is fat and for every a … xD [ V0 there exist sequences .cj /1jD1 � R>0,

.ˇj /1jD1 � Zn (.ˇj /1jD1 � ZnC provided thatD is complete) such that

D � Cn.ˇj /; kcj zˇj kL2.D/ � 1; j 2 N; lim
j!1 cj jaˇj j D C1:

Proof. The implications (v) ) (ii) and (iv) ) (i) ) (ii) are obvious. The impli-
cation (i) ) (iv) follows directly from Lemma 3.6.1.

11Recall that L˘;k
h
.D/ D L1;k

h
.D/\ H 1;k.D/ (cf. Example 1.10.7 (h)).

12Recall that E .logD/ D f0g for any bounded Reinhardt domain.
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(iii) ) (v): Fix a … xD [ V0 and j 2 N. Put X WD logD and let

x0 WD .log ja1j; : : : ; log janj/:
Note that x0 … xX . Since E.X/ D f0g, there exist linearly independent vectors ˛1,
…, ˛n 2 Zn (˛1; : : : ; ˛n 2 ZnC provided that D is complete) such that

X �
n\
iD1

Hx0

˛i DW X0I

cf. Lemma 1.4.11 (iii). Let A WD Œ˛i
k
�i;kD1;:::;n 2 GL.n;C/. We may assume that

j detAj � j 2�nja1 	 	 	 anj2. Put ˇj DW ˛1 C 	 	 	 C ˛n � 1,

X1 WD f� 2 Rn W �i < hx0; ˛i i; i D 1; : : : ; ng:
Then we get

kzˇj k2
L2.D/

D .2�/n
Z

R.D/

r2ˇ
j C1 d�n.r/ D .2�/n

Z
X

ehx;2.ˇj C1/i d�n.x/

� .2�/n
Z
X0

ehx;2.ˇj C1/i d�n.x/ D .2�/n
Z
X0

ehx;2.˛1C���C˛n/i d�n.x/

D .2�/n

j detAj
Z
X1

e2h�;1id�n.�/ D �n

j detAje
2hx0;˛1C���C˛ni

D �n

j detAj ja
˛1C���C˛n j2 � .1=j /2jaˇj j2:

Let cj WD j ja�ˇj j. Then

kcj zˇj kL2.D/ � 1 and cj jaˇj j D j:

SinceD is fat, we haveD � Tn
iD1 D˛i ;h˛i ;x0i � Tn

iD1 Cn.˛i / � Cn.ˇj / (Exer-
cise), which finishes the proof of (v).

(ii) ) (iii): We argue as in the proof of Proposition 1.13.13 (b) (using Re-
mark 3.1.4 (e) instead of Example 1.10.7 (c)) – Exercise.

(iii) ) (i): Fix a k 2 ZC and suppose that D is not an L˘;k
h

-domain of

holomorphy. Then we find domainsD0, zD such that¿ ¤ D0 � D \ zD, zD 6� D,
and for any f 2 L˘;k

h
.D/ there exists an Qf 2 O. zD/ with Qf D f onD0. SinceD

is fat, zD 6� xD. Moreover, we may assume that zD \ V0 D ¿.
Since E.logD/ D f0g and D is fat, there are linearly independent vectors ˛1,

…, ˛n 2 Zn, c1; : : : ; cn 2 R, and " > 0 such that

D � G0 WD
n\

jD1
D˛j ;cj

�
n\

jD1
D˛j ;cj C" DW G1;
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and zD 6� G1. Using the fact that the ˛j ’s are linearly independent, we may assume
that c1 D 	 	 	 D cn D 0.13

Now, we fix an a 2 zD nG1 and then a j0 such that ja˛j0 j � e". Moreover, we
set ˛ WD ˛1 C 	 	 	 C ˛n. For N 2 N we define

fN .z/ WD zN˛

z˛
j0 � a˛j0

; z 2 G1:

Obviously, fN 2 O.G1/. Observe that if fN 2 L˘;k
h
.D/, then

QfN .z/.z˛j0 � a˛j0
/ D zN˛ on zD

and we have a contradiction.
Consequently, it remains to prove that fN 2 L

˘;k
h
.D/. Observe that DˇfN

with ˇ 2 ZnC, jˇj � k, is a finite sum of terms of the form (Exercise)

d
zN˛C`˛j0 �ˇ

.z˛
j0 � a˛j0 /`C1

;

where d 2 Z, ` 2 f0; : : : ; kg. Thus it suffices to find an N such that

kzN˛�ˇkLp.G0/ � 1; jˇj � k; p 2 f1;C1g:

Let A WD Œ˛
j

`
�j;`D1;:::;n 2 GL.n;C/, B WD A�1. Put

Tj .x/ WD
nX
`D1

B`;jx`; x D .x1; : : : ; xn/ 2 Rn; j D 1; : : : ; n:

If p D 1 and � 2 Zn, then we haveZ
G0

jz� j d�2n.z/ D .2�/n
Z

logG0

ehx;�C2i d�n.x/

D .2�/n
Z

f�1<0;:::;�n<0g
ehB�;�C2ij detBj d�n.�/

D .2�/n

j detAjT1.� C 2/ 	 	 	Tn.� C 2/

provided that Tj .� C 2/ > 0, j D 1; : : : ; n. In particular, if

Tj .�/ � 2�

j detAj1=n � Tj .2/; j D 1; : : : ; n;

13Use the biholomorphic mapping Cn 3 .z1; : : : ; zn/ 7! .r1z1; : : : ; rnzn/ 2 Cn, where

r1; : : : ; rn > 0 are such that r
˛

j
1

1 � � � r˛
j
n

n D e�cj , j D 1; : : : ; n.
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then kz�kL1.D0/
� 1. Hence, if � D N˛ � ˇ and if

N � Tj .ˇ/C max
n
0;

2�

j detAj1=n � Tj .2/ W j D 1; : : : ; n; jˇj � k
o
;

then kzN˛�ˇkL1.G0/
� 1 for arbitrary jˇj � k.

It remains to prove that kzN˛�ˇkH1.G0/ � 1 for all jˇj � k. Fix such a ˇ.
Write N˛ � ˇ D �1˛

1 C 	 	 	 C �n˛
n, �1; : : : ; �n 2 R. Then �j D Tj .N˛ � ˇ/ D

N � Tj .ˇ/ � 0, j D 1; : : : ; n. Consequently, kzN˛�ˇkH1.G0/ � 1. �

Remark 3.6.5. Notice that the following general result holds. If D � Cn is a
bounded domain of holomorphy, thenD is anL2

h
-domain of holomorphy iff U nD

is not pluripolar (Definition 1.14.18) for any open set U such that U \ D ¤ ¿
(cf. [Pfl-Zwo 2002]).

Exercise 3.6.6. Using the above remark prove that every bounded fat Reinhardt
domain of holomorphy is an L2

h
-domain of holomorphy.

Proposition 3.6.7 ([Jar-Pfl 1997]). Let D � Cn be a Reinhardt domain of holo-
morphy. Then the following conditions are equivalent:

(i) D is fat and there exist 0 � m � n and a permutation of coordinates such
thatD D D0 � Cn�m with E.logD0/ D f0g;

(ii) D is an H 1;1-domain of holomorphy;

(iii) D is an H 1;k-domain of holomorphy for any k 2 ZC.

Proof. (i) ) (iii) follows from Theorem 3.6.4. The implication (iii) ) (ii) is trivial.
(ii) ) (i): Let F WD E.logD/ and m WD dimF?. We may assume that

e1; : : : ; es 2 F?, esC1; : : : ; en … F? for some 0 � s � m.
The cases m D 0 and m D n are trivial. Assume 1 � m � n � 1. Since D is

an H 1;1-domain of holomorphy, Proposition 1.12.6 (b) implies that

D D int
\

f 2H1;1.D/; kf kDD1
˛2†.f /�

fz 2 Cn.˛/ W jaf˛ z˛j < 1g:

Thus
F? D spanf˛ W 9f 2H1;1.D/ W ˛ 2 †.f /�g:

By Proposition 1.6.5 (b) we get

D � int
\

f 2H1;1.D/;
˛2†.f /; j2f1;:::;ng

˛¤ej ; j̨ ¤0

�
z 2 Cn.˛/ W jaf˛ j̨ z

˛�ej j <
���� @f
@zj

����
D


:



3.6. Lp

h
-domains of holomorphy 249

Hence

F? 
 f˛ � ej W 9f 2H1;1.D/ 9j2f1;:::;ng W ˛ 2 †.f /; ˛ ¤ ej ; j̨ ¤ 0g:

Take an f 2 H 1;1.D/. If ˛ 2 †.f / is such that ˛ ¤ ej and j̨ ¤ 0, then
˛; ˛ � ej 2 F? and, consequently, ej 2 F?. Thus,

†.f / � fesC1; : : : ; eng [ .Zs � f0gn�s/

and, therefore, the Laurent expansion of f has the form

f .z/ D
� X
ˇ2Zs

a
f

.ˇ;0/
z0ˇ�C afesC1

zsC1 C 	 	 	 C afen
zn;

z D .z0; zsC1; : : : ; zn/ 2 D � Cs � Cn�s:

SinceD is the domain of existence of H 1;1.D/, we conclude thatD D D0 �Cn�s .
Clearly, F D E.logD0/ � Rn�s . Hence s D m and therefore E.logD/ D f0g.

�

Proposition 3.6.8 ([Jar-Pfl 1997]). LetD   Cn be a Reinhardt domain. Then the
following conditions are equivalent:

(i) D is an H 1;S1-domain of holomorphy;

(ii) there exist A � .Zn/� and functions c1; : : : ; cn W A ! R such that

D D int
\

˛2A; j2f1;:::;ng
˛¤ej ; j̨ ¤0

fz 2 Cn.˛/ W jz˛�ej j < ecj .˛/g: (3.6.1)

Proof. The implication (i) ) (ii) follows from Lemma 3.5.4. To prove that any
domain D of the form (3.6.1) is an H 1;S1-domain of holomorphy, observe that

D D int
\
˛2A

int
\

j2f1;:::;ng
˛¤ej ; j̨ ¤0

fz 2 Cn.˛/ W jz˛�ej j < ecj .˛/g DW int
\
˛2A

G˛:

Thus, it suffices to consider only the case where

G˛ D
\

j2f1;:::;ng
˛¤ej ; j̨ ¤0

fz 2 Cn.˛/ W jz˛�ej j < ecj .˛/g:

We may assume that j̨ ¤ 0, j D 1; : : : ; n (otherwise G˛ ' G 0̨ � Ck and we
consider a lower dimensional case). In particular, ˛ ¤ ej , j D 1; : : : ; n. SinceG˛
is fat, it is enough to prove that for any point a … xG˛ [ V0 there exists a function
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f 2 H 1;S1.D/ such that f cannot be continued across a. Fix such an a and let
j0 2 f1; : : : ; ng be such that ı WD ecj0

.˛/ � ja˛�ej0 j > 0. Then the function

f .z/ WD z˛

z˛�ej0 � a˛�ej0
; z 2 G˛;

belongs to H 1;S1.G˛/ and evidently cannot be continued across a. Indeed,

@f

@zj
.z/ D j̨ z

˛�ej
z˛�ej0 � a˛�ej0

� .˛ � ej0
/j z

˛�ej z˛�ej0

.z˛�ej0 � a˛�ej0 /2
; z 2 G˛;

and so ���� @f
@zj

����
G˛

D j̨ e
cj .˛/

ı
C .˛ � ej0

/j e
cj .˛/Ccj0

.˛/

ı2
: �

Remark 3.6.9. There exists an ˛ 2 .Zn/� such that H 1;S1.G˛/ 6� H 1.G˛/.
For example ˛ WD .1;�1/, c1.˛/ D c2.˛/ D 0. Then

G˛ D f.z1; z2/ 2 C2 W jz2j > 1; jz1j < jz2j2g;
and the unbounded function f .z/ WD z1=z2, z D .z1; z2/ 2 G˛ , belongs to
H 1;S1.G˛/ (Exercise).

? The problem of characterizing circular (in particular, balanced) F -domains
of holomorphy is still open for many of the natural Fréchet spaces F we discussed
so far. ? (Cf. [Sib 1975], [Sic 1982], [Sic 1984], [Sic 1985], [Jar-Pfl 1996] for pos-
itive results.)



Chapter 4

Holomorphically contractible families on
Reinhardt domains

4.1 Introduction

Recall from Chapter 2 that Bih.Dn;Bn/ D Bih.Bn;Ln/ D ¿ for n � 2 and
Bih.Dn;Ln/ D ¿ for n � 3 (see Theorem 2.1.17). In this chapter we will study
other methods which may be useful to decide whether two given domains in Cn

are not biholomorphically equivalent. The idea here is that two biholomorphically
equivalent domains should have the same amount of functions of a special class
(e.g. bounded holomorphic functions or psh functions with specific singularities)
or geometric data (e.g. analytic discs through corresponding pairs of points). To
give a rough idea of what we are going to deal with let us discuss again whether Dn

and Bn are biholomorphically equivalent domains.
We introduce the following function:

ymD W D ! Œ0;1/; ymD.z/ WD supfjf .z/j W f 2 O.D;D/; f .0/ D 0g;

where D is a domain in Cn with 0 2 D.
LetD � Cn and G � Cm be domains, both containing the origin. Note that if

F 2 O.G;D/, F.0/ D 0, then (Exercise)

ymD.F.z// � ymG.z/; z 2 G: (4.1.1)

In particular, if F is biholomorphic, then ymD B F D ymG .
In the case where D 2 fDn;Bng we get

ymD.z/ D qD.z/; z 2 D; (4.1.2)

where

qD.z/ WD
(

kzk1 if D D Dn;

kzk if D D Bn;
z 2 Cn:

Indeed, let f 2 O.D;D/, f .0/ D 0. Then, in virtue of Proposition 2.1.9, it
follows that jf .z/j � qD.z/, z 2 D. Hence, ymD � qD , D 2 fDn;Bng.

On the other hand, in the case of D D Dn and z 2 Dn n f0g put

gz W Dn ! D; gz.w/ WD wj ;
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when qDn.z/ D jzj j. Therefore, ymDn.z/ � jgz.z/j D qDn.z/. Now let D D Bn
and z 2 Bn n f0g. Choose a rotation Az such that Azz D . Qz1; 0/; in particular,
kzk D kAzzk D jQz1j. Put

gz W Bn ! D; gz.w/ WD .Azw/1:

Obviously, gz 2 O.Bn;D/, gz.0/ D 0; hence ymBn
.z/ � jgz.z/j D kzk D qBn

.z/.
So the above equations are verified.

Exercise 4.1.1. Prove formula (4.1.2) for an arbitrary norm ball in Cn.

Now let F W Bn ! Dn be a biholomorphic mapping, n � 2. Using a Möbius
transform ' W Dn ! Dn,

'.z/ WD
�
F1.z/ � F1.0/
1 � F1.0/F1.z/

; : : : ;
Fn.z/ � Fn.0/
1 � Fn.0/Fn.z/

�
; z 2 Dn;

we may even assume that F.0/ D 0.
Then, by (4.1.1),

ymDn.F.z// D ymBn
.z/; z 2 Bn:

Therefore, we get the following equation:

kF �1.t; 1=2; : : : ; 1=2/k D maxft; 1=2g; t 2 .0; 1/:
Note that the left function is differentiable on .0; 1/, but, obviously, the right one is
not; a contradiction.

Observe that in the above argument the number of bounded holomorphic func-
tions on Dn and Bn is compared and this strategy finally has led to the result that
both domains cannot be biholomorphically equivalent.

Instead of dealing with the function ymD , i.e. with the family of bounded holo-
morphic functions, we may take all analytic discs ' 2 O.D;D/ in D through two
given points, where D is a domain in Cn with 0 2 D. We define

OkD.z/ WD inffr 2 Œ0; 1/ W 9'2O.D;D/ W '.0/ D 0; '.r/ D zg; z 2 D: 1

Remark 4.1.2. Let G � Cm, D � Cn be domains both containing the origin. If
F 2 O.G;D/, F.0/ D 0, then (Exercise)

OkD B F � OkG I (4.1.3)

see (4.1.1). In particular, if F is biholomorphic, then OkD B F D OkG .

1Note that OkD.0/ D 0.
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We claim that OkD D qD , where D 2 fDn;Bng.
Indeed, fix a z 2 D n f0g. Then '.�/ WD � z

qD.z/
gives a function ' 2 O.D;D/

with '.0/ D 0 and '.qD.z// D z. Therefore, OkD.z/ � qD.z/.
On the other hand, let ' 2 O.D;D/ with '.0/ D 0 and '.r/ D z, r > 0. If

D D Dn, then using the Schwarz lemma for 'j we get that jzj j D j'j .r/j � r ,
j D 1; : : : ; n. Therefore, qDn.z/ � OkDn.z/. In the case when ' 2 O.D;Bn/ with
'.0/ D 0 and '.r/ D z we see that qBn

.z/ D qBn
.'.r// D rqBn

. Q'.r//, where
'.�/ D � Q'.�/, � 2 D, and Q' 2 O.D;Cn/. Observe that qBn

. Q'.�// � 1=j�j,
� 2 Dnf0g. Applying the maximum principle for the subharmonic function qBn

B Q'
we obtain that Q' 2 O.D; xBn/. Hence, qBn

.z/ � r and since r was arbitrarily chosen,
we have qBn

.z/ � OkBn
.z/.

Observe that we may also use this geometric function to disprove the biholo-
morphic equivalence of Dn and Bn (Exercise).

Let us summarize what we have done so far. We have introduced a family

. OdD/02D�Cn; n2N

of functions OdD W D ! Œ0;1/ ( OdD 2 f ymD; OkDg) satisfying the following property:
(*) for any domains G � Cm, 0 2 G, D � Cn, 0 2 D, and for any

F 2 O.G;D/, F.0/ D 0, we have OdD.F.z// � OdG.z/, z 2 G.
In particular, OdD.F.z// D OdG.z/, z 2 G, if F 2 Bih0;0.G;D/. Moreover,

these functions were explicitly described in terms of the geometry of D.

4.2 Holomorphically contractible families of functions

Let us begin with the following definition of a holomorphically contractible family
which puts the functions of the introduction in a general context. The interested
reader is referred to [Jar-Pfl 1993] and [Jar-Pfl 2005] for more information than is
given in this chapter.

Definition 4.2.1. A family .dD/D of functions dD W D �D ! RC, where D runs
over all domains D � Cn (with arbitrary n 2 N), is said to be holomorphically
contractible if the following two conditions are satisfied:

(A) dD.a; z/ D m.a; z/ D j z�a
1� Naz j; a; z 2 D (m is the Möbius distance),

(B) for arbitrary domains G � Cm, D � Cn, any F 2 O.G;D/ works as a
contraction with respect to dG and dD , i.e.

dD.F.a/; F.z// � dG.a; z/; a; z 2 G: (4.2.1)

(Compare condition (B) and (*) from Section 4.1.)
Notice that there is another version of the definition of a holomorphically con-

tractible family in which the normalization condition (A) is replaced by the condition
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(A0) dD D p, where p D 1
2

log 1Cm
1�m

is the Poincaré distance on D.

Both definitions are obviously equivalent in the sense that .dD/D fulfills (A) and (B)
iff the family .tanh�1 dD/D satisfies (A0) and (B). In our opinion the normalization
condition (A) is more handy in calculations.

Remark 4.2.2. (a) Recall that m and p are distances on D.
(b) If F 2 Bih.G;D/, then F �1 2 O.D;G/. Therefore,

dD.F.a/; F.z// D dG.a; z/; a; z 2 G:
In particular, if F 2 Aut.D/, then dD.a; z/ D dD.F.a/; F.z//, a; z 2 D.

(c) Moreover, if Dj � Cnj , j D 1; 2, are domains, then

dD1�D2
..a1; a2/; .b1; b2// � maxfdD1

.a1; b1/; dD2
.a2; b2/g; (4.2.2)

whenever .a1; a2/; .b1; b2/ 2 D1 � D2 (Exercise, use (4.2.1) for the projection
maps).

If in (4.2.2) always equality holds, then we say that .dD/D satisfies the product
property.

The following holomorphically contractible families of functions seem to be the
most interesting ones.

Example 4.2.3 (Möbius pseudodistance).

mD.a; z/ W D supfm.f .a/; f .z// W f 2 O.D;D/g
D supfjf .z/j W f 2 O.D;D/; f .a/ D 0g; .a; z/ 2 D �DI

the function cD WD tanh�1 mD is called the Carathéodory pseudodistance.
Indeed, to prove (B) it suffices to note that for F 2 O.G;D/ and f 2 O.D;D/

one has f B F 2 O.G;D/. Moreover, the fact that

m.a; z/ D m.f .a/; f .z//; f 2 Aut.D/; a; z 2 D;

gives the second equality in the definition of mD . To obtain condition (A) it suffices
to observe that mD.0; 	 / D m.0; 	 /. And this equation follows immediately by using
the Schwarz lemma.

Observe that mD (resp. cD) is positive semidefinite, symmetric and it satisfies
the triangle inequality (Exercise). So mD and cD are, in fact, pseudodistances
on D. For D D C, Liouville’s theorem immediately gives that mC D 0; thus, in
general, mD (resp. cD) is not a distance.

Example 4.2.4 (Möbius function of higher order).

m
.k/
D .a; z/ WD supfjf .z/j1=k W f 2 O.D;D/; ordaf � kg;

.a; z/ 2 D �D; k 2 N;
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where ordaf denotes the order of zero of f at a.
Indeed, in order to see (B) it suffices to observe that for a; z 2 D, F 2 O.G;D/

and f 2 O.D;D/, ordF.a/ f � k, one has f BF 2 O.G;D/ and orda f BF � k.

In particular, m.k/D .a; z/ D m
.k/
D .F.a/; F.z// if F 2 Aut.D/. Therefore, to see

(A) it suffices to show m
.k/
D .0; z/ D m.0; z/ which is a simple consequence of the

Schwarz lemma.

Remark 4.2.5. Note that, in virtue of Montel’s theorem (see Theorem 1.7.24),
there exist extremal functions for m

.k/
D , i.e. for any domain D � Cn, any pair

.a; z/ 2 D � D, and any k 2 N there exists an f 2 O.D;D/ with orda f � k

such that m
.k/
D .a; z/ D jf .z/j1=k .

Example 4.2.6 (Pluricomplex Green function).

gD.a; z/ WD supfu.z/ W u W D ! Œ0; 1/; logu 2 PSH.D/; 2

9CDC.u;a/>0 8w2D W u.w/ � Ckw � akg; .a; z/ 2 D �D: 3

The point a is called the pole of the pluricomplex Green function.4

Indeed, to see (B) let F 2 O.G;D/, whereD � Cn andG � Cm are arbitrary
domains. Fix an a 2 G. If u W D ! Œ0; 1/ is log-psh satisfying u � Ck 	 �F.a/k
on D, then logu B F 2 PSH.G/ and

.u B F /.z/ D u.F.z// � CkF.z/ � F.a/k � zCkz � ak; z 2 B.a; r/ b G;

where zC and r are suitably chosen. Therefore, u B F � gG.a; z/. Since u was
arbitrarily chosen, it follows that gD.F.a/; F. 	 // � gG.a; 	 /.

In the case where D D D we fix a u W D ! Œ0; 1/ such that logu is psh and
u.�/ � C j�j. Observe that then u=j idD j 2 SH.D�/ and that this function is
locally bounded in D. Therefore, it extends to a sh function on the whole of D. By
the maximum principle it follows that u � j idD j. Hence we have that u D j idD j,
i.e. gD.0; 	 / D m.0; 	 /. The situation for a general pole follows immediately using
(B) and a Möbius transformation.

While .dD/D , dD 2 fmD;m
.k/
D ;gDg, are based on families of functions we

turn now to families defined by geometric conditions, namely by a set of analytic
discs.

2Recall that PSH.D/ denotes the family of all functions plurisubharmonic onD.
3Note that it suffices to have u.z/ � zCkz�ak for all z 2 B.a; r/nfag when r > 0 is sufficiently

small. Moreover, u.a/ D 0 (Exercise).
4For relations between the pluricomplex and the classical Green functions in the unit ball see

[Car 1997]. For a different pluricomplex Green function see [Ceg 1995], [Edi-Zwo 1998].
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Example 4.2.7 (Lempert function).

zk�
D.a; z/ WD inffm.�; 	/ W �;	 2 D; 9'2O.D;D/ W '.�/ D a; '.	/ D zg

D inff	 2 Œ0; 1/ W 9'2O.D;D/ W '.0/ D a; '.	/ D zg
D inff	 2 .0; 1/ W 9'2O.D;D/ W '.0/ D a; '.	/ D zg;

where .a; z/ 2 D �D. Put zkD WD tanh�1 zk�
D .

Indeed, first we have to show that the above definition makes sense. So let us fix
points a; z 2 D. Connect them by a continuous curve, i.e. take a 
 2 C.Œ0; 1�;D/

with 
.0/ D a and 
.1/ D z. In virtue of the Weierstrass approximation theorem,
we may approximate 
 uniformly by a sequence of polynomial mappings .pj /j .
Taking a sufficiently large j we may assume that

4kpj � 
kŒ0;1� < dist.
.Œ0; 1�/; @D/:

Put p WD pj and then

Op.�/ WD p.�/C .a � p.0//.1 � �/C �.z � p.1//; � 2 C:

Note that Op.Œ0; 1�/ � D, Op.0/ D a, and Op.1/ D z. Then Op maps even a simply
connected domain U , Œ0; 1� � U , into D (Exercise). Applying the Riemann
mapping theorem leads to a  2 O.D; U / with  .0/ D 0 and  .	/ D 1 for a
suitable 	 2 D. Hence, ' WD Op B  gives an analytic disc through the points a
and z.5

Observe that if F 2 O.G;D/, a; z 2 G, and ' 2 O.D; G/, '.0/ D a and
'.	/ D z for some 	 2 Œ0; 1/, then F B ' 2 O.D;D/ with F B '.0/ D F.a/ and
F B '.	/ D F.z/. Hence (B) is fulfilled. To prove (A) use the Schwarz lemma
in order to see that Qk�

D.0; z/ � jzj D m.0; z/, z 2 D n f0g. To get the inverse
inequality take simply ' 2 O.D;D/, '.�/ WD � z

jzj .

Exercise 4.2.8. Prove that

zk�
D.a; z/ D inffj	j W 	 2 D; 9'2O.xD;D/ W '.0/ D a; '.	/ D zg; a; z 2 D:
For many purposes it is important to know whether the infimum in the definition

of the Lempert function is taken by some analytic disc.

Definition 4.2.9. Let D � Cn and a; b 2 D. A mapping ' 2 O.D;D/ is called
a zk�

D-geodesic for the pair .a; b/ 6 if there are �1; �2 2 D such that '.�1/ D a,
'.�2/ D b, and zk�

D.a; b/ D m.�1; �2/.

5Note that the same remains true in the case when D is a connected complex manifold (see
[Win 2005]).

6We also say that ' is an extremal disc through a and b.
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Remark 4.2.10. In general such a geodesic need not exist. For example, take
D WD B2 n f.1=2; 0/g. Observe that D is a non-taut domain. Fix now the points
a WD .0; 0/ and b WD .1=4; 0/ from D. For R 2 .0; 1/ put 'R 2 O.D;D/,
'R.�/ WD .R�; s.R/�.��1=.4R///, where s.R/ � 1. Then zk�

D.a; b/ � 1=.4R/.
Since R was arbitrarily chosen, we have zk�

D.a; b/ � 1=4.
Suppose now that there exists a zk�

D-geodesic  D . 1;  2/ 2 O.D;D/ for
.a; b/ with  .�1/ D a,  .�2/ D b, and zk�

D.a; b/ D m.�1; �2/. Using Aut.D/
we may assume that  .0/ D a,  .	/ D b, and 	 D zk�

D.a; b/. Note that  1 2
O.D;D/with 1.0/ D 0. The Schwarz lemma gives 1=4 � zk�

D.a; b/ and therefore,
 1 D idD. Then, taking into account that  maps D into B2 leads to the fact that
 2 � 0 (use the maximum principle). And therefore,  .1=2/ D .1=2; 0/; a
contradiction.

In the case of taut domains we always know that such geodesics exist.

Proposition 4.2.11. Let a; b be two points of a taut domain D � Cn. Then there
exists a zk�

D-geodesic for .a; b/.

Proof. By definition we have a sequence .'/j � O.D;D/ such that 'j .0/ D a,
'.�j / D b with �j 2 .0; 1/, and �j & zk�

D.a; b/. By assumption, D is taut and
'j .0/ D a, j 2 N. Therefore, we may choose a subsequence .'jk

/ such that
'jk

! ' 2 O.D;D/ locally uniformly. Then '.0/ D a and '.zk�
D.a; b// D b

(Exercise), i.e. ' is a geodesic we were looking for. �

Exercise 4.2.12. (a) Let D � Cn be a domain and let a; b 2 D. A map ' 2
O.D;D/ is an mD-geodesic for the pair .a; b/ if there exist �1; �2 2 D such that
'.�1/ D a, '.�2/ D b, and mD.a; b/ D m.�1; �2/.

Prove that any mD-geodesic for .a; b/ is a zk�
D-geodesic for .a; b/.

(b) Let ' 2 O.D;D/ be an mD-geodesic for .'.�1/; '.�2//, where �1 ¤ �2.
Prove that mD.'.�

0/; '.�00// D m.�0; �00/, �0; �00 2 D, i.e. ' is an mD-geodesic
for all pairs .'.�0/; '.�00//. Sometimes such a ' is simply called an mD-geodesic.

Hint. Study the function D n f�1g 3 � 7! mD.'.�1/;'.�//
m.�1;�/

and use properties of
subharmonic functions.

(c) Prove that any complex mD-geodesic ' 2 O.D;D/ is a proper injective
mapping.

The next example relies on the normalization (A0).

Example 4.2.13 (Kobayashi pseudodistance).

kD.a; z/ WD supfd.a; z/ W dD a pseudodistance on D; d � zkDg
DW tanh�1 k�

D.a; z/; a; z 2 D:
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Indeed, let F 2 O.G;D/ be as in (4.2.1). To any pseudodistance dD � zkD
on D � D we associate a new pseudodistance QdG on G � G by QdG.w0; w00/ WD
dD.F.w

0/; F .w00//. Then

QdG.w0; w00/ � zkD.F.w0/; F .w00// � zkG.w0; w00/:

Therefore, dD.F.w0/; F .w00// � zkG.w0; w00/,w0; w00 2 G. Since dD was arbitrar-
ily chosen we end up with (4.2.1). For the normalization (A0) it suffices to mention
that p is a distance.

Remark 4.2.14. Note that (Exercise):
(a) kD is the largest pseudodistance on D below of zkD;
(b) cD � kD;
(c) kD and zk�

D are symmetric functions;

(d) kD.a; z/ D inffPN
jD1 zkD.zj�1; zj / W N 2 N; a D z0; : : : ; zN D z 2 Dg,

a; z 2 D.

To any pseudodistance dD 2 fcD;kDg,D � Cn, one associates the dD-length
of a curve ˛ W Œ0; 1� ! D as

LdD
.˛/ WD sup

n NX
jD1

dD.˛.tj�1/; ˛.tj // W N 2 N; 0 D t0 < 	 	 	 < tN D 1
o
: 7

Exercise 4.2.15. Calculate Lp.Œ0; s�/,8 where s 2 .0; 1/. Here Œ0; s� is just an
abbreviation for the curve ˛ W Œ0; 1� ! D, ˛.t/ WD ts.

It is clear (use (4.2.1)) thatLdD
.F B˛/ � LdG

.˛/whenever F 2 O.G;D/ and
˛ W Œ0; 1� ! G. Moreover, by the triangle inequality, dD.˛.0/; ˛.1// � LdD

.˛/.
A more precise result is true in case of the Kobayashi pseudodistance.

Proposition 4.2.16. LetD � Cn and a; b 2 D. Then

kD.a; b/ D inffLkD
.˛/ W ˛ W Œ0; 1� ! D continuous and k 	 k-rectifiable,

˛.0/ D a; ˛.1/ D bg:
Proof. By Remark 4.2.14 (d) it is clear that kD.a; b/ is less than or equal to the
right-hand side. Now fix an " > 0. By definition we find points sj 2 Œ0; 1/ and
analytic discs 'j 2 O.D;D/, j D 1; : : : ; k, such that

'j .0/ D a; 'j .sj / D 'jC1.0/; 1 � j < k; 'k.sk/ D b;

kX
jD1

p.0; sj / < kD.a; b/C ":

7By Corollary 4.2.25, the length is finite if the curve ˛ is assumed to be k � k-rectifiable, i.e. there
exists anM > 0 such that

PN
j D1 k˛.tj /�˛.tj �1/k <M wheneverN 2 N, 0 D t0 < t1 < � � � <

tN D 1 (Exercise).
8Note that p is a distance on D. So Lp is defined in the same way as LdD

before.
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Obviously, we may assume that all the sj ’s are positive. Put

˛.t/ WD 'j ..t � j�1
k
/ksj /; if t 2 Œ j�1

k
; j
k
� and j D 1; : : : ; k:

Then ˛ is a piecewise real analytic curve inD connecting the points a; b. Therefore,
we have

LkD
.˛/ �

kX
jD1

LkD
.˛j

Œ j �1
k
; j

k
�
/

�
kX

jD1
LkD.Œ0; sj �/ �

kX
jD1

p.0; sj / < kD.a; b/C ":

Since the choice of " was arbitrary, the proof is finished. �

Looking at the proof of Proposition 4.2.16, one easily concludes the following
corollary (Exercise).

Corollary 4.2.17. LetD � Cn and a; b 2 D. Then

kD.a; b/ D inffLkD
.˛/ W ˛ W Œ0; 1� ! D piecewise real analytic,

˛.0/ D a; ˛.1/ D bg:
Remark 4.2.18. We have to point out that for the Carathéodory pseudodistance
Proposition 4.2.16 is no longer true. Already for the very simple domain D D
A.1=R;R/ a counterexample can be given. For more details see [Jar-Pfl 1993],
Example 2.5.7.

Lemma 4.2.19. For any domainD � Cn the following inequalities are true:

mD D m
.1/
D � m

.k/
D � gG � zk�

D; cD � kD � zkD;
and for any holomorphically contractible family .dD/D we have

mD � dD � zk�
D; (4.2.3)

i.e. the Möbius family is minimal and the Lempert family is maximal.

Proof. Fix an a 2 D. Let f 2 O.D;D/ with f .a/ D 0. Then f k 2 O.D;D/

with orda f k � k. Therefore, jf .z/j D jf k.z/j1=k � m
.k/
D .a; z/, z 2 D. Since

f is arbitrarily chosen we end up with mD.a; 	 / � m
.k/
D .a; 	 /.

Now let f 2 O.D;D/ with orda f � k. Put u WD jf j1=k . Then logu is
psh and u.z/ � Ckz � ak and so jf .z/j1=k D u.z/ � gD.a; z/, z 2 D. Hence
m.k/.a; 	 / � gG.a; 	 /.
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Fix a z0 2 D. Let u W D ! Œ0; 1/ be such that logu 2 PSH.D/ and u.z/ �
Ckz � ak, z 2 D, and let ' 2 O.D;D/ with '.0/ D a and '.	/ D z0 for a
certain 	 2 Œ0; 1/. Then u B ' 2 PSH.D/, u B '.0/ D 0. Therefore, applying the
Schwarz lemma for psh functions, we get u B '.�/ � j�j, � 2 D. In particular,
u.z0/ D uB'.	/ � 	. Sinceu and' were arbitrarily chosen, we have gD.a; z

0/ �
zk�
D.a; z

0/.
Now let .dD/D be an arbitrary holomorphically contractible family. Fix a do-

main D � Cn and points a; z 2 D. Let now f 2 O.D;D/ with f .a/ D 0. Then
dD.a; z/ � dD.0; f .z// D m.0; f .z// D jf .z/j. Hence, dD.a; z/ � mD.a; z/.

Finally, let ' 2 O.D;D/ with '.0/ D a and '.	/ D z for a certain 	 2
Œ0; 1/. Then dD.a; z/ D dD.'.0/; '.	// � dD.0; 	/ D m.0; 	/ D 	. And so
dD.a; z/ � Qk�

D.a; z/. �

Remark4.2.20. (a) Observe that zkC D 0 on C�C (Exercise). Then also zkC� D 0

via (4.2.1). Therefore, kD is, in general, not a distance.
(b) Moreover, the following result is true (see [Jar-Nik 2002], [Nik 2002]): Let

Fj � C be a closed subset, j D 1; : : : ; n, n � 2, such that F1 ¤ C ¤ F2. Put
D WD Cn n .F1 � 	 	 	 � Fn/. Then zkD D 0 on D �D. In fact, for any two points
a; b 2 D there exists a ' 2 O.C;D/ such that '.0/ D a and '.1/ D b.

For balanced domains we have the following formulas.

Proposition 4.2.21. LetD � Cn be a balanced domain given as

D D fz 2 Cn W h.z/ < 1g;
where h D hD is the associated Minkowski function. Then:

(a) zk�
D.0; 	 / � hjD .

(b) If, in addition,D is pseudoconvex, then

gD.0; 	 / D zk�
D.0; 	 / D h onD:

(c) Even more, ifD is a convex domain, then

mD.0; 	 / D m
.k/
D .0; 	 / D gD.0; 	 / D zk�

D.0; 	 / D hjD: 9

Proof. (a) Fix a z0 2 D. If h.z0/ D 0, then Cz0 � D. Therefore, using the
holomorphic contractibility, zk�

D.0; z
0/ � zk�

C.0; 1/ D 0 D h.z0/. So we may
assume that h.z0/ ¤ 0. Then '.�/ WD �

h.z0/
z0, � 2 D, gives a ' 2 O.D;D/ with

'.0/ D 0 and '.h.z0// D z0. Hence, zk�
D.0; z

0/ � h.z0/.

9Recall that a convex (pseudoconvex) complete Reinhardt domain is in particular a convex (pseudo-
convex) balanced domain.
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(b) Recall that by assumption logh 2 PSH.Cn/ (see Proposition 1.15.11) and
h.z/ � kzkh. zkzk / � Ckzk, z 2 .Cn/� (use that h is upper semicontinuous and
therefore bounded on @B). Since 0 � h < 1 on D it follows that h � gD.0; 	 /.

(c) In the last case just apply the Hahn–Banach theorem to get hjD � mD.0; 	 /.
�

In particular, (b) implies the following result for biholomorphic mappings.

Corollary 4.2.22. Let Dj D fz 2 Cn W hj .z/ < 1g be a pseudoconvex balanced
domain, j D 1; 2. If F 2 Bih.D1;D2/ with F.0/ D 0, then h2 B F D h1 onD1.

Remark 4.2.23. In fact, much more is true, namely if Bih.D1;D2/ ¤ ¿, then
Bih0;0.D1;D2/ ¤ ¿ (see [Kau-Upm 1976], [Kau-Vig 1990]), where Dj are
pseudoconvex balanced bounded domains in Cn. Later we will even see that if
Bih.D1;D2/ ¤ ¿, then D1 is linearly equivalent to D2 (see Proposition 2.1.9 in
the case of norm balls).

Moreover, we have the following explicit formulas.

Corollary 4.2.24. Let a; z 2 Bn. Then

mBn
.a; z/ D zk�

Bn
.a; z/ D k�

Bn
.a; z/ D

�
1 � .1 � kak2/.1 � kzk2/

j1 � hz; aij2
�1=2

;

where kBn
D tanh�1 k�

Bn
. In particular, all functions introduced so far coincide

on Bn.

Proof. For a 2 Bn n f0g, apply ha 2 Aut.Bn/,

ha.z/ D
p
1 � kak2�z � hz;ai

kak2 a
� � aC hz;ai

kak2 a

1 � hz; ai ; z 2 Bn

(cf. Example 2.1.12 (b)), and the above proposition. �

Corollary 4.2.25. LetD � Cn be a domain and B.a; r/ � D. Then

zk�
D.a; z/ � kz � ak

r
; z 2 B.a; r/:

In particular, zk�
D is locally bounded from above by the Euclidean norm.

Proof. Fix a z 2 B.a; r/ � D. Then

zk�
D.a; z/ � zk�

B.a;r/.a; z/ D zk�
B.r/.0; z � a/ D kz � ak=r;

since hB.r/.�/ D k�k=r . �
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Remark 4.2.26. (a) Put D WD C2� [ �
.f0g � D/ [ .D � f0g/�. Then D is a

balanced domain which is not pseudoconvex (Exercise). ForR > 1 put 'R.�/ WD
.�.R��1/; R

2
�/,� 2 D. Then'R 2 O.D;D/with'R.0/ D .0; 0/ and'R.1=R/ D

.0; 1=2/. Therefore zk�
D..0; 0/; .0; 1=2// D 0 < hD.0; 1=2/.

(b) Let D WD fz 2 C2 W jz1j < 1; jz2j < 1; jz1z2j < rg, where 0 < r <

1=4. Obviously, D is a pseudoconvex complete Reinhardt domain (in particular, a
balanced domain) which is not convex. Its Minkowski function is given by h.z/ WD
maxfjz1j; jz2j;

p
r�1jz1z2jg. Therefore, zk�

D.0; .t; t// D tp
r

, r < t <
p
r . Then

kD.0; .t; t// � kD.0; .t; 0//C kD..0; t/; .t; t//

� tanh�1.m.0; t//C tanh�1.mK.r=t/.0; t//

D tanh�1.t/C tanh�1.t2=r/ D 1

2
log

�
1C t

1 � t 	 r C t2

r � t2
�

<
1

2
log

p
r C tp
r � t D zkD.0; .t; t//;

when t is sufficiently near r . In the second inequality we have used that the above
functions are holomorphically contractible.

Note that this example shows:
� kD is not identically equal to tanh�1 BhjD .
� mD is not equal hjD .
� zkD does not satisfy the triangle inequality. Hence the introduction of the

Kobayashi pseudodistance is justified.

Corollary 4.2.27. LetD � Cn be a domain and a 2 D. Then

gD.a; 	 / W D ! Œ0; 1/

is log-psh satisfying gD.a; z/ � Ckz � ak, z 2 D.

Proof. Set u WD gD.a; 	 /. Then u�, its upper semicontinuous regularization, is
log-psh. Moreover, if B.a; r/ � D, then

u.z/ D gD.a; z/ � gB.a;r/.a; z/ � kz�ak
r
; z 2 B.a; r/:

In virtue of the maximum principle, we get u� < 1 on D. Therefore, u� D gD.a; 	 /,
which obviously implies the corollary. �

Remark 4.2.28. There exists a pseudoconvex bounded balanced domain D �
Cn, n � 2, such that its Minkowski function h is not continuous (see Proposi-
tion 1.15.12). Therefore, gD.0; 	 / D zk�

D.0; 	 / is not continuous.

Applying Corollary 4.2.24 we get
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Proposition 4.2.29. LetD � Cn. Then:
(a) The functions mD , kD are continuous.

(b) The functions m
.k/
D and zk�

D are upper semicontinuous.

(c) If, in addition,D is assumed to be taut, then zk�
D is continuous.

(d) For a 2 D, m
.k/
D .a; 	 / is continuous.

Proof. (a) Fix points a; a0; b; b0 2 D and let dD 2 fkD;mDg. Then

jdD.a; b/ � dD.a0; b0/j � dD.a; a
0/C dD.b; b

0/:

Therefore it suffices to apply Corollary 4.2.24 and the fact that mD � k�
D .

(b) The case m
.k/
D : Let D 3 aj ! a and D 3 bj ! b. According to the

remark concerning extremal functions there are fj 2 O.D;D/ with ordaj
fj � k

and jfj .bj /j1=k D m
.k/
D .aj ; bj /, j 2 N. Using a Montel argument gives an

f 2 O.D;D/ with orda f � k and

m
.k/
D .aj�

; bj�
/ D jfj�

.bj�
/j1=k ! jf .b/j1=k � m

.k/
D .a; b/

for a suitable subsequence, i.e. m
.k/
D is upper semicontinuous.

The case zk�
D: For an arbitrary " > 0 choose an analytic disc ' 2 O.xD;D/

with '.0/ D a, '.	/ D b, and .0; 1/ 3 	 � zk�
D.a; b/ C ". Then '.xD/ is

compact and therefore, dist.'.xD/; @D/ DW r > 0. Fix a0 2 B.a; 	r=6/ � D and
b0 2 B.b; 	r=2/ � D. Now we define a new analytic disc  2 O.D;D/ by

 .�/ WD '.�/C 1
�
..	 � �/.a0 � a/C �.b0 � b//; � 2 D:

Therefore, zk�
D.a

0; b0/ � 	 � zk�
D.a; b/C ".

(c) Assume that zk�
D is not lower semicontinuous at .a; b/ 2 D � D. Then

zk�
D.a; b/ > 0 and there are sequences .aj /j ; .bj /j � D with aj ! a and bj ! b

such that for all j ,

zk�
D.aj ; bj / � zk�

D.a; b/ � " 2 .0;1/

for a suitable " > 0. Choose a 'j 2 O.D;D/ with 'j .0/ D aj , '.	j / D bj ,
where Œ0; 1/ 3 	j < zk�

D.aj ; bj / � "=2. Applying tautness we may assume that
	j ! 	 2 Œ0; 1/ and 'j ! ' 2 O.D;D/ locally uniformly in D. Then '.0/ D a

and '.	/ D b. Therefore, zk�
D.a; b/ � 	 � zk�

D.a; b/ � "=2; a contradiction.
(d) is left as an Exercise. �

All the functions introduced so far in this section behave well under union of
domains; to be precise we have the following result.
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Lemma 4.2.30. LetD D S1
jD1Dj � Cn,Dj � DjC1, be the increasing union of

the domainsDj , j 2 N. Then dDj
! dD if j ! 1, where d 2 fm.k/;g; zk�;kg.

Proof. We restrict ourselves to prove this lemma only for d D zk�; the remaining
cases are left as an Exercise for the reader.

Obviously, we have

zk�
Dj

� zk�
Dj C1

� zk�
D; j 2 N:

In particular, we have lim
j!1

zk�
Dj

� zk�
D . Now fix points a; z 2 D and choose a j0

such that a; z 2 Dj , j � j0. Suppose that  WD lim
j!1

zk�
Dj
.a; z/ > zk�

D.a; z/. Then

there exist an analytic disc' 2 O.D;D/ and a number r 2 .0; / such that'.0/ D a

and '.r/ D z. Select an " > 0 such that .1C "/r < . Put Q'.�/ WD '.�=.1C "//,
� 2 D. Then Q' 2 O.D;D/, Q'.0/ D a, and Q'.r.1C "// D z. Note that Q'.D/ b D.
Therefore, Q' 2 O.D;Dj /, j � 1, which implies that zk�

Dj
.a; z/ � .1C "/r < ;

a contradiction. �

Recall that the pluricomplex Green function gD.a; 	 / D h, a 2 D, need not be
continuous (see Remark 4.2.28), whereD D Dh denotes a pseudoconvex balanced
domain with Minkowski function h. With the help of Lemma 4.2.30 we get the
following continuity result for the pluricomplex Green function.

Proposition 4.2.31. LetD � Cn be a domain. Then gD is upper semicontinuous
onD �D.

Proof. In view of Lemma 4.2.30 we may restrict ourselves to study only a bounded
domain D. To be able to continue we need the following lemma.

Lemma 4.2.32. LetD � Cn be bounded, assume that B.a; r/ � D, and let " > 0.
Then there exists a ı 2 .0; r/ such that

.gD.z; w//
1C" � gD.a; w/; z 2 B.a; ı/; w 2 D n B.a; r/:

Proof. Put s WD r=3 and R WD diamD. Then, by (4.2.1) and Proposition 4.2.21,

gD.z; w/ � gB.z;2s/.z; w/ � kz � wk
2s

; z; w 2 B.a; s/:

Now fix an " > 0 and choose a positive ı 2 .0; s=3/ such that�
3ı

2s

�1C"
<
ı

R
:

Fix b 2 B.a; ı/. Put

u.z/ WD
( kz�ak

R
if z 2 xB.a; 2ı/;

max
n
.gD.b; z//

1C"; kz�ak
R

o
if z 2 D n xB.a; 2ı/:
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Note that .gD.b; z//1C" < kz�ak
R

for z 2 @B.a; 2ı/. Therefore, u is log-psh onD.
Moreover, it fulfills all other conditions to be a competitor in the definition of the
pluricomplex Green function with pole at a. Thus,

.gD.b; w//
1C" � u.w/ � gD.a; w/; w 2 D n xB.a; 2ı/:

It remains to mention that D n B.a; r/ � D n xB.a; 2ı/. �

Obviously, gD is continuous at points .a; a/ 2 D �D (Exercise). So without
loss of generality, let .a; b/ 2 D � D with a ¤ b. Choose an r > 0 such that
b … xB.a; r/ � D. Assume now that gD.a; b/ < ˛ < ˇ < 1. Then fix an " < 0

such that ˛ < ˇ1C". Taking the corresponding ı from Lemma 4.2.32 we see that

gD.z; w/ � .gD.a; w//
1=.1C"/; z 2 B.a; ı/; w 2 D n B.a; r/:

Recall that gD.a; 	 / 2 PSH.D/; in particular, gD.a; 	 / is upper semicontinuous
in b. Therefore, gD.a; w/ � ˛, when w 2 B.b; �/ � D n B.a; r/ for a sufficiently
small � > 0. Hence, gD.z; w/ � ˛1=.1C"/ < ˇ, z 2 B.a; ı/, w 2 B.b; �/, which
proves the upper semicontinuity. �

Exercise 4.2.33. Prove the following slight generalization of Lemma 4.2.32.
(a) Let D, a, r , and " be as in Lemma 4.2.32. Then there is a ı 2 .0; r/ such

that

.gD.z; w//
1C" � gD.z

0; w/; z; z0 2 B.a; ı/; w 2 D n B.a; r/:

(b) Show (using (a)) that for a bounded domainD � Cn the function gD. 	 ; w/
is continuous if w 2 D is fixed.

Moreover, we have the following deep result due to Demailly (cf. [Dem 1987];
see also [Kli 1991]) which we will not prove in this book.

Theorem* 4.2.34. Let D � Cn be a bounded hyperconvex domain. Then the
function gD is continuous onD � xD, where gjD�@D WD 1.

To get explicit formulas for the “invariant” objects on Cartesian products we
discuss the following result which is extremely useful.

Proposition 4.2.35. The family .zk�
D/D satisfies the product property, i.e. for all

pairs of domains Dj � Cnj , j D 1; 2, and points .a1; a2/; .b1; b2/ 2 D1 � D2
one has

zk�
D1�D2

..a1; a2/; .b1; b2// D maxfzk�
D1
.a1; b1/; zk�

D2
.a2; b2/g:
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Proof. Because of (4.2.2) only the remaining inequality has to be verified. Suppose
that

 WD zk�
D1�D2

..a1; a2/; .b1; b2// � r
> maxfzk�

D1
.a1; b1/; zk�

D2
.a2; b2/g D zk�

D1
.a1; b1/

for some r > 0. We find analytic discs 'j 2 O.D;Dj / with 'j .0/ D aj and
'j .	j / D bj , where zk�

D1
.a1; b1/ � 	1 <  and 	2 2 .0; 	1/. Put

'.�/ WD .'1.�/; '2.
�2

�1
�//; � 2 D:

Then ' 2 O.D;D1 � D2/, '.0/ D .a1; a2/, and '.	1/ D .b1; b2/. Hence,
 � zk�

D1�D2
..a1; a2/; .b1; b2//; a contradiction. �

Exercise 4.2.36. Use Proposition 4.2.35 and Corollary 4.2.24 to prove that Dn�Bm
is not biholomorphically equivalent to BmCn.

Remark 4.2.37. Note that also the family of Möbius pseudodistances (resp. of
pluricomplex Green functions) fulfills the product property; for details see
[Jar-Pfl 2005] (resp. [Jar-Pfl 1995], [Edi 1999], and [Edi 2001]). Obviously, if the
product property holds one can get new formulas for the invariant functions for
Cartesian products.

Proposition 4.2.38. LetDj � Cn be a domain, j D 1; 2, and let F 2 O.D1;D2/

be such that

8a2D2
8b2D1; F .b/Da 8'2O.D;D2/; '.0/Da 9 2O.D;D1/ W  .0/ D b; F B  D ':

(4.2.4)

Then, for points a1; a2 2 D2 and b1 2 D1 with F.b1/ D a1, one has

zk�
D2
.a1; a2/ D inffzk�

D1
.b1; b2/ W b2 2 D1; F .b2/ D a2gI (4.2.5)

kD2
.a1; a2/ D inffkD1

.b1; b2/ W b2 2 D1; F .b2/ D a2g: (4.2.6)

Remark 4.2.39. (a) Recall the following definition: an F 2 O.D1;D2/, D1;D2
domains in Cn, is said to be a holomorphic covering if for any z 2 D2 there exists
a neighborhood V D V.z/ � D2 such that F �1.V / D S

j2J Uj , where Uj is an
open subset of D1, such that F jUj

W Uj ! V is biholomorphic, j 2 J .
Any holomorphic coveringF W D1 ! D2 satisfies (4.2.4). The reader is referred

to [Con 1995]. Even more is true: for any b 2 D1, � 2 D, and ' 2 O.D;D2/
with '.�/ D F.b/ there exists a unique  2 O.D;D1/ such that  .�/ D b and
F B  D ';  is called the lifting of ' with respect to F .

(b) Recall that for any plane domainD � C there is a simply connected domain
D0 2 fC;Dg and a mapping F 2 O.D0;D/ with the property (4.2.4). D0 is the
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universal covering domain of D (cf. the uniformization theorem in the classical
complex analysis of one complex variable).

(c) In Example 4.4.16 (see [Zwo 1998]), an example will be given where the
infimum in equation (4.2.5) is not attained. This gives a negative answer to a long
standing question asked by S. Kobayashi.

Proof of Proposition 4.2.38. In view of (4.2.1) we obviously have

zk�
D2
.a1; a2/ � inffzk�

D1
.b1; b2/ W b2 2 D1; F .b2/ D a2g:

Assume that the above inequality is a strict one. Then there exists an analytic disc
' 2 O.D;D2/ with '.0/ D a1 and '.	/ D a2, where

inffzk�
D1
.b1; b2/ W b2 2 D1; F .b2/ D a2g > 	 � zk�

D2
.a1; a2/:

Applying property (4.2.4), we find an analytic disc  2 O.D;D1/ with  .0/ D b1
and F B  D '. Therefore,

	 � zk�
D1
.b1;  .	// � inffzk�

D1
.b1; b2/ W b2 2 D1; F .b2/ D a2g > 	I

a contradiction. Hence (4.2.5) has been verified. The equality (4.2.6) could be
proved in a similar way. Its proof is left as an exercise for the reader. �

Exercise 4.2.40. Find the formula for zk�
HC , where HC WD f� 2 C W Re� > 0g.

One of the most important results in the theory of invariant functions is the
following one due to Lempert. Its proof is beyond the scope of this book. Therefore,
the reader is referred to [Jar-Pfl 1993].

Theorem*4.2.41 (Lempert theorem). (a) LetD � Cn be a bounded convex domain
and let a; b 2 D. Then there exists a complex mD-geodesic ' 2 O.D;D/ such
that a; b 2 '.D/. In particular, cD D zkD onD �D.

(b) Assume thatD � Cn is a domain which can be exhausted by an increasing
sequence .Dj /j of domains Dj � Cn, where each of them is biholomorphically
equivalent to a convex domain. Then cD D zkD onD �D.

Note that (b) is a simple consequence of (a) and general properties of the Möbius
and the Lempert functions (Exercise).

As an application for pseudoconvex Reinhardt domains we have

Theorem 4.2.42. LetD � Cn� be a pseudoconvex Reinhardt domain. Then

kD D zkD onD �D:
In particular, zkD is continuous.
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Proof. Recall that the logarithmic image logD is convex. Hence the tube domain
TD WD logD C iRn is convex. Therefore, by the Lempert theorem, we have
kTD

D zkTD
on TD � TD .

On the other hand, observe that the mapping F W TD ! D, F.z/ WD ez , is a
holomorphic covering. Therefore, Proposition 4.2.38 immediately gives the proof
of the equality in the theorem. �

Recall from Remark 4.2.26 that for a general pseudoconvex Reinhardt domain
D the Kobayashi pseudodistance kD and the Lempert function zkD are, in general,
different.

Example 4.2.43. Another application of Theorem 4.2.41 gives the following result
(see Exercise 2.1.13).

LetN be a complex norm on Cn, n � 2. Recall that B D fz 2 Cn W N.z/ < 1g,
B.r/ D fz 2 Cn W N.z/ < rg, and A D A.r/ D fz 2 B W r < N.z/ < 1g. Then

Aut.A/ D f˚ jA W ˚ 2 Aut0.B/g:
Indeed, let F 2 Aut.A/. Then there exists a ˚ 2 Aut.B/ such that ˚ jA D F and
N.˚.z// D r whenever N.z/ D r (Exercise, cf. Exercise 2.1.13).

Let a 2 B.r/ be such that ˚.a/ D 0. Take a complex geodesic ' 2 O.D;B/
such that '.0/ D 0 and '.˛/ D a for some ˛ 2 D \ Œ0; 1/ (Exercise). Since ' is
proper (see Exercise 4.2.12 (c)), we find a ˇ 2 .˛; 1/ such that N.'.ˇ// D r . Put
w WD '.ˇ/. Then, in virtue of Exercises 1.1.1 (c) and 4.2.12 (b),

p.0; ˇ/ D cB.0; ˚.w// D cB.a; w/ D p.˛; ˇ/ D p.0; ˇ/ � p.0; ˛/:

Therefore, 0 D p.0; ˛/ D cB.0; a/, i.e. a D 0. Hence, ˚ 2 Aut0.B/.

Remark 4.2.44. (a) We mention that recently a domain G2 in C2 has been found for
which mG2

D zk�
G2

, but which does not fulfill the assumption of Theorem 4.2.41 (b).
Here we only give the definition of G2,

G2 WD fz 2 C2 W jz1 � Nz1z2j C jz2j2 < 1g:
Let � W C2 ! C2, �.z1; z2/ WD .z1C z2; z1z2/. Then G2 D �.D2/ and � W D2 !
G2 is proper (Exercise).

For more details and other sources the reader may contact [Jar-Pfl 2005]. This
is, at least at the moment, the only known example (up to simple modifications)
with these properties.

(b) The notion of a holomorphically contractible family .dD/D (Definition 4.2.1)
can be extended to the case whereD runs through all connected complex manifolds,
complex analytic sets, or even complex spaces. In particular, one can define the
Möbius pseudodistance mM , the Lempert function zk�

M (defined as 1 for pairs of
points for which there is no analytic disc passing through them), and the Kobayashi
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pseudodistance kM for an arbitrary connected complex analytic set M . For recent
results in case of the Neil parabola M WD fz 2 C2 W z21 D z32g see, for example,
[Kne 2007], [Nik-Pfl 2007], [Zap 2007].

4.3� Hahn function

Note that in Definition 4.2.1 one can also consider conditions that are weaker than
(B), for instance:

(B0) Condition (4.2.1) holds for every injective holomorphic mappingF W G ! D.

Example 4.3.1 (Hahn function).

H�
D.a; z/ WD inffm.�; 	/ W 9'2O.D;D/ W ' is injective; '.�/ D a; '.	/ D zg

D inffj	j W 9'2O.D;D/ W ' is injective; '.0/ D a; '.	/ D zg;
where .a; z/ 2 D �D, satisfies (A) and (B0).10

Remark 4.3.2. Observe that the infimum in the above definition is taken over a
non-empty set. Indeed, fix points a; b 2 D, a ¤ b. Then there is an injective
C1-curve ˛ W Œ0; 1� ! D connecting a and b such that ˛0.t/ ¤ 0, t 2 Œ0; 1�. By
the Weierstrass approximation theorem, we find a sequence .pj /j2N of polynomial
mappings pj W C ! Cn such that

pj .0/ D a; pj .1/ D b; kp.k/j � ˛.k/kŒ0;1� ! 0; k D 0; 1;

and

pj .Œ0; 1�/ � D; j 2 N:

If j � 1, then pj jŒ0;1� is injective. Indeed, suppose the contrary, i.e. there exist
t 0j ; t 00j 2 Œ0; 1�, t 0j ¤ t 00j , with pj .t 0j / D pj .t

00
j /, j 2 N. By the compactness of Œ0; 1�

we may assume that t 0j ! t 0 and t 00j ! t 00. Then the uniform convergence of .pj /j
implies that ˛.t 0/ D ˛.t 00/. Applying the fact that ˛ is injective gives t 0 D t 00.
Therefore,

0 D kpj .t 0j / � pj .t 00j /k2 D
nX
kD1

jp0
j;k.�j;k/j2jt 0j � t 00j j2

�
nX
kD1

jj˛0
k.�j;k/j � jp0

j;k.�j;k/ � ˛0.�j;k/jj2jt 0j � t 00j j2

� 1
2
k˛0k2Œ0;1�jt 0j � t 00j j2; if j � 1;

where �j;k is between t 0j and t 00j . Hence t 0j D t 00j for j � 1; a contradiction.

10Observe that the definition ofH�
D is similar to the one of zk�

D .
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Fix a j such that pj is injective on Œ0; 1�. Then there exists a simply connected
domain G � C with Œ0; 1� � G, pj .G/ � D, and pj jG injective (Exercise).
Arguing as in the case of the Lempert function we end up with an injective analytic
disc in D passing through a and b.

Remark 4.3.3. Obviously, zk�
D � H�

D . But zk�
C�

� 0 6� H�
C�

.
Indeed, fix two different points a; b 2 C�. Let ' 2 O.D;C�/ be injective with

'.0/ D a, '.	/ D b for a suitable 	 2 D. Applying the Koebe distortion theorem
(see [Pom 1992], Theorem 1.3 and Corollary 1.4) we have

jb � aj D j'.	/ � '.0/j � j'0.0/j j	j
.1 � j	j/2 � 4 dist.a; @f .D//

j	j
.1 � j	j/2 :

Taking into account that f .D/ is simply connected we get

jb � aj � 4jaj j	j
.1 � j	j/2 :

Hence H�
C�
.a; b/ > 0.

On the other hand, the following result for n � 3 is due to M. Overholt.

Theorem 4.3.4 ([Ove 1995]). If D � Cn, n � 3, is a domain, thenek�
D D H�

D on
D �D.

Proof. Fix a; b 2 D, a ¤ b. Without loss of generality, we may assume that
a D 0 2 D (Exercise). Let " > 0. Then there is an analytic disc ' 2 O.D;D/
with '.0/ D 0, '.	/ D b for a suitable	 2 D such that 0 < j	j < zk�

D.0; b/C"=2.
We choose an R 2 .0; 1/ such that 	=R 2 D and j	=Rj < zk�

D.0; b/ C ". Put
'R.�/ WD '.R�/, j�j < 1=R. Obviously, 'RjD 2 O.D;D/ with 'R.0/ D 0 and
'R.	=R/ D b. Since 'R is continuous on xD, we have dist.'R.xD/; @D/ DW 2s > 0.

Now we take a polynomial mapping Qp W C ! Cn coming from the power series
expansion of 'R such that dist. Qp.xD/; @D/ < s=2 and����'R�	R

�
� Qp

�
	

R

����� < 	s

2R
:

Finally, put

p.�/ WD Qp.�/C R�

	

�
'R

�	
R

�
� Qp

�	
R

��
; � 2 C:

Hence pjD 2 O.D;D/ with p.0/ D 0 and p.	=R/ D b. Observe that p D
.p1; : : : ; pn/ is a polynomial mapping with

pj .�/ D
mX
kD1

aj;k�
k; � 2 C; j D 1; : : : ; n;
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where m � n is sufficiently large. Put A WD Œaj;k�1�j�n; 2�k�m.
Now we will try to modify the coefficients aj;k a little bit such that the new

polynomial mapping

Op.�/ WD
� mX
kD1

Oaj;k�k
�
1�j�n; � 2 C;

gives an injective mapping from D toD with Op.0/ D 0 and Op. O	/ D b, O	 WD 	=R,
i.e. Oaj;1 has to satisfy the equation

Oaj;1 D
�
bj �

mX
kD2

Oaj;k O	k
�
= O	; j D 1; : : : ; n:

Assume that Op is not injective. Then Op.�1/ D Op.�2/ for certain �1; �2 2 C,
�1 ¤ �2. Therefore,

mX
kD1

Oaj;k�k1 D
mX
kD1

Oaj;k�k2 ; j D 1; : : : ; n:

Or, after dividing by �1 � �2,

�Oaj;1 D
mX
kD2

Oaj;k
� k�1X
sD0

�s1�
k�1�s
2

�
; j D 1; : : : ; n:

Now, for an arbitrary n � .m � 1/ matrix QA D Œ Qaj;k�1�j�n;
2�k�m

, put

M. QA/ WD
n
.z2; : : : ; zm/ 2 Cm�1 W

mX
kD2

Qaj;kzk D �Qaj;1; j D 1; : : : ; n
o
;

where

Qaj;1 WD
�
bj �

mX
kD2

Qaj;k O	k
�ı O	; j D 1; : : : ; n:

Observe that M. QA/ is an .m � 1 � rank QA/-dimensional affine subspace of Cm�1.
Therefore, there is a dense subset of matrices QA in M.n� .m� 1/I C/ such that the
corresponding affine subspace M. QA/ has dimension m � 1 � n � m � 1 � 3.

Moreover, define

S WD
n� lX

sD0
ws1w

l�s
2

�
1�l�m�1 2 Cm�1 W w D .w1; w2/ 2 C2; w1 ¤ w2

o
:
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Note that the map

˚.w1; w2/ WD
� lX
sD0

ws1w
l�s
2

�
1�l�m�1 2 Cm�1; w1 ¤ w2;

is a regular holomorphic mapping onto S with ˚.w1; w2/ D ˚. zw1; zw2/ if and
only if .w1; w2/ D . zw1; zw2/ or .w1; w2/ D . zw2; zw1/. Hence, S is a 2-dimensional
complex submanifold in Cm�1.

It suffices to find a sequence of matrices . QA.`//` � M.n � .m � 1/I C/ such
that QA.`/ ! A when ` ! 1 such that S \M. QA.`// D ¿. �

So the dimension 2 is left in the general comparison of the Lempert function
and the Hahn function. Here we present an answer to what happens with the Hahn
function for the product of two plane domains. It shows that both functions can be
different also in the 2-dimensional case.

Before stating this result we ask the reader to solve the following exercise which
will be important in the proof of the following proposition.

Exercise 4.3.5. Let D � Cn be a domain. Then the following properties are
equivalent:

(a) zk�
D D H�

D;
(b) for any ' 2 O.D;D/, 0 < ˛ < ı < 1 with '.0/ ¤ '.˛/, there exists an

injective  2 O.D;D/ with  .0/ D '.0/ and  .ı/ D '.˛/.

Theorem 4.3.6 ([JarW 2001]). LetDj � C be a domain, j D 1; 2.

(a) If at least one of theDj ’s is simply connected, then zk�
D1�D2

D H�
D1�D2

.

(b) If at least one of the Dj ’s is biholomorphically equivalent to C�, then
zk�
D1�D2

D H�
D1�D2

.

(c) Otherwise, zk�
D1�D2

6� H�
D1�D2

.

The proof of (c) will be based on the following nice lemma from classical
complex analysis and the uniformization theorem.

Lemma 4.3.7. LetDj � C be a non-simply connected domain that is not biholo-
morphically equivalent to C�, j D 1; 2. Denote by pj W D ! Dj the universal
covering mapping.11 Then there are two different points q1; q2 2 D and automor-
phisms fj 2 Aut.D/, j D 1; 2, such that pj .fj .q1// D pj .fj .q2//, j D 1; 2,
and

det

�
.p1 B f1/0.q1/ .p1 B f1/0.q2/
.p2 B f2/0.q1/ .p2 B f2/0.q2/

	
¤ 0:

11Note that, in virtue of the uniformization result, the universal covering of Dj is given by the unit
disc.
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Proof. By assumption the map pj is not injective, j D 1; 2. Therefore, there exists
 j 2 Aut.D/ n fidDg such that pj B j D pj , j D 1; 2; in particular,  j is a lifting
of pj . Note that  j has no fixed points in D (otherwise, applying the uniqueness
of the lifting, it would be equal to idD). Therefore, it has one or two fixed points
on @D (see Exercise 2.1.4 (b)). Fix �0 2 @D with  j .�0/ ¤ �0 for j D 1; 2. Then
m.t�0;  j .t�0// ! 1 when t % 1, j D 1; 2. Hence we find z1; z2 2 D with

m.z1;  1.z1// D m.z2;  2.z2// 2 .0; 1/:
Let d 2 .0; 1/ with m.�d; d/ D m.z1;  1.z1//. Then, by Exercise 2.1.4(b), there
exist hj 2 Aut.D/ with

hj .�d/ D zj ; hj .d/ D  j .zj /; j D 1; 2:

Assume that .pj B hj /0.�d/ ¤ ˙.pj B hj /0.d/ for at least one of the j ’s, say for
j D 1. Then one of the following determinants does not vanish:

det

�
.p1 B h1/0.�d/ .p1 B h1/0.d/
.p2 B h2/0.�d/ .p2 B h2/0.d/

	
;

det

�
.p1 B h1 B .� idD//

0.�d/ .p1 B h1 B .� idD//
0.d/

.p2 B h2/0.�d/ .p2 B h2/0.d/
	
:

(Exercise, use that .p2 B h2/0.d/ ¤ 0.)
So we may put f1 D h1, f2 D h2 (resp. f1 D h1 B .� idD/, f2 D h2) and

q1 D �d , q2 D d .
Now, for the remaining part of the proof we may assume that�

.pj B hj /0.d/
�2 D �

.pj B hj /0.�d/
�2
; j D 1; 2: (4.3.1)

Put Q j WD h�1
j B  j B hj and Qpj WD pj B hj , j D 1; 2. Then Q j .�d/ D d

and Qpj 0.�d/ D . Qpj B Q j /0.�d/ D Qpj 0. Q j .�d// Q 0
j .�d/. Taking squares on

both sides we get
� Q 0
j .�d/

�2 D 1 (see (4.3.1)). Therefore, either Q j .�d/ D d ,
Q 0
j .�d/ D �1 or Q j .�d/ D d , Q 0

j .�d/ D 1.
Applying Exercise 2.1.5 (b) to ' D � idD (in case of �) or ' D hc and the fact

that Q j has no fixed points in D, it follows that

 WD Q 1 D Q 2 D hc with c WD �2d
1C d2

:

Now fix an a 2 D and choose ' 2 Aut.D/ such that '.a/ D  .a/ and '. .a// D a

(see Exercise 2.1.4 (b)). Note that such a ' exists.
Suppose that '0.a/ D  0.a/. By Exercise 2.1.4 (b), ' D  and therefore

 B .a/ D a. So  B has a fixed point in D and, therefore, none on @D. On the
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other hand,  is without fixed points on D. So it has at least one fixed point on @D,
say b 2 @D. Then  B  .b/ D b; a contradiction.

Fix an a0 2 D \ R. Let ' 2 Aut.D/ with '.a0/ D  .a0/ and '. .a0// D a0.
Then ' D h�a0

B .� idD/ Bhha0
. .a0// Bha0

. By a direct calculation it follows that
'0.a0/ ¤ � 0.a0/.

Summarizing, we know that if ' 2 Aut.D/ is such that '.a0/ D  .a0/ and
'. .a0// D a0, then '0.a0/ ¤ ˙ 0.a0/. Then, by Exercise 2.1.4 (b), ' B' D idD

(note that ' B ' has two fixed points in D) and so '0. .a0// D 1
'0.a0/

.
Finally, we put q1 WD a0, q2 WD  .a0/, f1 WD h1, and f2 WD h2 B '. Then

p1.f1.q2// D .p1 B h1/. .a0//
D .p1 B  1/.h1.a0// D .p1 B h1/.q1/ D .p1 B f1/.q1/;

p2.f2.q2// D .p2 B h2/.'. .a0/// D .p2 B h2/.a0/ D .p2 B  2/.h2.a0//
D .p2 B h2/. .a0// D .p2 B .h2 B '//.a0/ D .p2 B f2/.q1/:

Moreover, we have

det

�
.p1 B f1/0.q1/ .p1 B f1/0.q2/
.p2 B f2/0.q1/ .p2 B f2/0.q2/

	
D det

�
.p1 B h1/0.a0/ .p1 B h1/0. .a0//

.p2 B h2/0.'.a0//'0.a0/ .p2 B h2/0.'. .a0///'0. .a0//

	
D det

�
.p1 B h1/0. .a0// 0.a0/ .p1 B h1/0. .a0//
.p2 B h2/0. .a0//'0.a0/ .p2 B h2/0. .a0//='0.a0/

	
D .p1 B h1/0. .a0//.p2 B h2/0. .a0// det

�
 0.a0/ 1

'0.a0/  0.a0/='0.a0/

	
¤ 0:

Hence this lemma is proved. �

Proof of Theorem 4.3.6. (a) Without loss of generality, we may assume that D1 is
simply connected (Exercise). Our task is to apply Exercise 4.3.5. So let ' D
.'1; '2/ 2 O.D;D1 �D2/ and 0 < ˛ < ı < 1 with '.0/ ¤ '.˛/.

Assume that '1.0/ ¤ '1.˛/. Recall that zk�
D1

D H�
D1

. Hence there exists an

injective Q 1 2 O.D;D1/ with Q 1.0/ D '1.0/ and Q 1.ı/ D '1.˛/. Put

 .�/ WD . Q 1.�/; '2.˛ı �//; � 2 D:

Then  2 O.D;D1 � D2/,  is injective, and one obtains  .0/ D '.0/ and
 .ı/ D '.˛/.

Now let '1.0/ D '1.˛/ and '2.0/ ¤ '2.˛/. Take a d 2 .0; dist.'1.0/; @D1//
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and put

h.�/ WD '2.
˛
ı
�/ � '2.0/

'2.˛/ � '2.0/ ; (4.3.2)

 1.�/ WD '1.0/C ıd

Mı C 1

�
h.�/ � �

ı

�
; � 2 D; (4.3.3)

where M WD khkxD. Observe that  1 2 O.D;D1/. Finally, define  .�/ WD
. 1.�/; '2.

˛
ı
�//, � 2 D. Then  2 O.D;D1 � D2/ with  .0/ D '.0/ and

 .ı/ D '.˛/. Moreover, one easily sees that  is an injective analytic disc.
Hence, (a) is proved.

(b) We may assume that D1 D C� and D2 ¤ C (Exercise). Let, as in (a),
' D .'1; '2/ 2 O.D;D1 � D2/, 0 < ˛ < ı < 1, and '.0/ ¤ '.˛/. Moreover,
applying a suitable automorphism of C� we may even assume that '1.0/ D 1

(Exercise).
In the case where '2.0/ D '2.˛/ define zD2 WD '2.0/ C dist.'2.0/; @D2/D.

Obviously, zD2 is a simply connected domain, Q' D .'1; Q'2/ 2 O.D;D1 � zD2/,
where Q'2.�/ WD '2.0/, � 2 D. In virtue of (a), there exists an injective analytic
disc  2 O.D;D1 � zD2/ with  .0/ D '.0/,  .ı/ D Q'.˛/ D '.˛/.

Next, we discuss the situation when'2.0/ ¤ '2.˛/. For the moment we assume,
in addition, that '1.˛/ D 1C ı. Put

 .�/ WD .1C �; '2.
˛
ı
�//; � 2 D:

Then 2 O.D;C� �D2/ is injective and satisfies .0/ D '.0/ and .ı/ D '.˛/.
Now we turn to the remaining case '1.˛/ ¤ 1Cı. Then, for k 2 N, we choose

numbers dk 2 C n f1g such that dk
k

D '1.˛/
1Cı and Arg.dk/ ! 0 when k ! 1.

Note that dk ! 1.
Put

ck WD '2.˛/ � '2.0/
1 � dk ; k 2 N:

Since jckj ! 1 we choose a k0 such that jck0
j > M WD supfj'1.�/j W j�j � ˛

ı
g.

Define
 .�/ WD ..1C �/hk0.�/; '2.

˛
ı
�//; � 2 D;

where

h.�/ WD '2.
˛
ı
�/ � ck0

'2.0/ � ck0

; � 2 D:

Then h 2 O.D;C�/ and so  2 O.D;D1 �D2/ with  .0/ D .1; '2.0// D '.0/.
Moreover, a short calculation leads to  .ı/ D '.˛/.

If  .�0/ D  .�00/, then h.�0/ D h.�00/, and therefore, �0 D �00, i.e.  is also
injective. Hence, the proof of (b) is complete.
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(c) Recall that the universal covering ofDj is D and that the covering mapping
pj W D ! Dj is locally biholomorphic and surjective, but both are not injective,
j D 1; 2. Applying Lemma 4.3.7 we find a point q D .q1; q2/ 2 D2, q1 ¤ q2, and
automorphisms fj 2 Aut.D/, j D 1; 2, such that with Qpj WD pj B fj , j D 1; 2,
the following is true:

Qpj .q1/ D Qpj .q2/; j D 1; 2; and det

� Qp0
1.q1/ Qp0

1.q2/

Qp0
2.q1/ Qp0

2.q2/

	
¤ 0:

Moreover, choose an r 2 .0; 1/ such that both mappings Qpj are injective onK.r/ and
put a WD .a1; a2/ D . Qp1.0/; Qp2.0//, b WD .b1; b2/ D . Qp1.r/; Qp2.r// 2 D1 �D2.
Note that aj ¤ bj , j D 1; 2.

Then, in virtue of Proposition 4.2.35, Proposition 4.2.38, and the choice of r ,
we have

zk�
D1�D2

.a; b/ D maxfzk�
D1
.a1; b1/; zk�

D2
.a2; b2/g D r:

Assume now that zk�
D1�D2

D H�
D1�D2

; in particular, r D zk�
D1�D2

.a; b/ D
H�
D1�D2

.a; b/. Then there exist a sequence of analytic discs .'j /j � O.D;D1 �
D2/ and a sequence of numbers . j̨ /j � .1; 1=

p
r/with j̨ & 1 such that 'j .0/ D

a and 'j . j̨ r/ D b for all j .
Then, applying Exercise 4.3.5, we find  j D . j;1;  j;2/ 2 O.D;D1 � D2/

injective such that  j .0/ D a and  j .˛2j r/ D b, j 2 N.
Recall that Qpj are covering mappings. Therefore, we can lift the functions

 j;k , k D 1; 2, i.e. there are holomorphic mappings Q j;k 2 O.D;D/ such that
Qpk B Q j;k D  j;k and Q j;k.0/ D 0. Note that . Qpk B Q j;k/.˛2j r/ D Qpk.r/. Recall

that Qpk is injective on xK.r/ and therefore injective onK.rC"/, where " 2 .0; 1�r/
is sufficiently small (Exercise). Then, for large j , we have that Q j;k.˛2j r/ D r ,
k D 1; 2.

By the Montel theorem we may assume that Q j;k ! Q k 2 O.D; xD/ locally
uniformly, k D 1; 2. Since Q .0/ D 0 it follows that, in fact, Q 2 O.D;D2/.
Moreover, because of the previous remark, Q k.r/ D r , k D 1; 2. Then, by the
Schwarz lemma, we have Q k D idD, k D 1; 2.

Put g D .g1; g2/ W D2 ! C2, gk.�; 	/ WD Qpk.�/ � Qpk.	/. Note that
g.q/ D 0 with q WD .q1; q2/ and det g0.q/ ¤ 0. Hence we find neighborhoods
U D K.q1; s/ � K.q2; s/ � D2 of q and V D V.0/ � C2 such that g maps U
biholomorphically to V and K.q1; s/ \K.q2; s/ D ¿.12

Let now gj W D2 ! C2, j 2 N,

gj .�; 	/ WD . j;1.�/ �  j;1.	/;  j;2.�/ �  j;2.	// .�; 	/ 2 D2:

By the result before we conclude that gj ! g uniformly on U . Then, in virtue of
Theorem 1.7.28, there exists a large index j0 such that gj0

vanishes in at least one

12Recall that q1 ¤ q2.
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point .t1; t2/ 2 U , i.e.  j0
.t1/ D  j0

.t2/, which contradicts the injectivity of  j0
.
�

4.4 Examples I – elementary Reinhardt domains

In this section we will establish effective formulas for dD˛
, ˛ 2 Rn�, where

dD˛
2 fmD˛

; m
.k/
D˛
;gD˛

; zk�
D˛
;k�

D˛
g

and
D˛ D fz 2 Cn.˛/ W jzj˛ < 1g;

is an elementary Reinhardt domain. Note that D˛;c ´ fz 2 Cn.˛/ W jzj˛ < ecg and
D˛ are biholomorphically equivalent; so it suffices to study only D˛ . Generalizing
Definition 3.3.1 we say that D˛ is of rational type if ˛ 2 R 	 Zn and of irrational
type if it is not of rational type.

Note that if n D 1 and ˛ > 0, then D˛ D D and all the invariant functions
coincide with m on D � D. If n D 1 and ˛ < 0, then D˛ D C n xD. Thus D˛ is
biholomorphically equivalent to D�. Then it is easy to prove that m D mD� D gD�

on D� � D� (Exercise). Moreover, applying Proposition 4.2.38, we are able, at
least in principle, to calculate zk�

D�
. Firstly, we give the formula for the Lempert

function even for an arbitrary annulus.

Theorem 4.4.1. For R > 1 put A D A.1=R;R/. If a 2 .1=R;R/, then

zk�
A.a; z/ D

�
x2 C 1 � 2x cos.�.s � t //
x2 C 1 � 2x cos.�.s C t //

�1=2
;

z D jzjei�.z/ 2 A;
�� < �.z/ � �;

where a D R1�2s , jzj D R1�2t , and x D exp
�

�.z/
2 logR

�
.

Proof. Note that

A 3 � ! �=a 2 Q WD fw 2 C W r1 < jwj < r2g;
where r1 WD .Ra/�1 and r2 WD R=a, is a biholomorphic mapping. Therefore,
zk�

A.a; z/ D zk�
Q.1; z=a/, z 2 A.

Put S WD fz 2 C W log r1 < Re z < log r2g. Note that 1 2 Q and that
exp jS W S ! Q is a holomorphic covering. Moreover, observe that

S 3 w 7! e
i

.w�log r1/�

log.r2=r1/ � i
e
i

.w�log r1/�

log.r2=r1/ C i

D e˛w � eiˇ
e˛w C eiˇ

DW zH.w/ 2 D;

where

˛ WD i�

log.r2=r1/
and ˇ WD �

�
1
2

C log r1
log.r2=r1/

�
;
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gives a biholomorphic mapping zH W S ! D. Note that zH.0/ D 1�eiˇ

1Ceiˇ . Then, after
a suitable Möbius transformation, we get the following biholomorphic mapping
H W S ! D,

H.w/ D e˛w � 1
e˛w � �0 ; w 2 S;

with H.0/ D 0, where �0 WD e
i

2� log r1
log.r2=r1/ . Hence, h WD exp jS B H�1 W D ! Q

is a holomorphic covering with h.0/ D 1 (Exercise). Consequently, by Proposi-
tion 4.2.38, we get

zk�
Q.1; �/ D inffj�j W � 2 h�1.�/g D inffjH.w/j W w 2 S; exp.w/ D �g

D inffjH.log j�j C i.� C 2�k//j W k 2 Zg;

where � D j�jei� with �� < � � � . Calculating the last term leads to the function

f .t/ WD
ˇ̌̌̌
etei' � 1
etei' � ei 

ˇ̌̌̌2
; t 2 R;

where

' WD �
log j�j

log.r2=r1/
and  WD 2�

log r1
log.r2=r1/

:

Note that f .t/ D f .�t /. A simple calculation shows that f 0j.0;1/ > 0, i.e. f jRC

is strictly monotonically increasing (Exercise).
Note that t in f corresponds to � 


log.r2=r1/
.� C 2k�/, k 2 Z. Therefore, we

have the following possibilities:
(a) if � D 0, then zk�

Q.1; �/ D jH.log j�j C i0/j;
(b) if � 2 .0; ��, then

zk�
Q.1; �/ D minfjH.log j�j C i�/j; jH.log j�j C i.� � 2�//jgI

(c) if � 2 .��; 0/, then

zk�
Q.1; �/ D minfjH.log j�j C i�/j; jH.log j�j C i.� C 2�//jg:

Observe that f .t/ > f .t C x/ iff .1 � ex/.e2tCx � 1/ > 0. In (b) (resp.
in (c)) we have t D � 


log.r2=r1/
� < 0, x D 


log.r2=r1/
2� , and so 2t C x � 0

(resp. t D � 

log.r2=r1/

� > 0, x D � 

log.r2=r1/

2� , and so 2t C x < 0). We get
zk�
Q.1; �/ D jH.log j�j C i�/j. Hence,

zk�
A.a; z/ D

ˇ̌̌
H
�

log
ˇ̌̌z
a

ˇ̌̌
C i Arg

�z
a

��ˇ̌̌
;

where the argument is chosen in .��; ��. What remains is to evaluate the right-hand
side which is left as an Exercise for the reader. �



4.4. Examples I – elementary Reinhardt domains 279

Corollary 4.4.2. For any a 2 .0; 1/ we have

zk�
D�
.a; z/ D

�
�2.z/C .log jzj � log a/2

�2.z/C .log jzj C log a/2

�1=2
;

whenever z D jzjei�.z/ 2 D� and �� < �.z/ � � .

Proof. Use either a covering argument as in the proof of the former theorem or
Lemma 4.2.30 (Exercise). �

As an immediate consequence of Corollary 4.4.2 we get the following identities.

Corollary 4.4.3. (a) If a 2 .0; 1/ and k 2 N, then

zk�
D�
.ak; zk/ D minfzk�

D�
.a; ze

2`�
k
i / W 0 � ` � k � 1g; z 2 D�:

(b) If a; b 2 .0; 1/ and t 2 R, then

zk�
D�
.at ; bt / D zk�

D�
.a; b/:

Proof. The proof is left as an Exercise. �

If D D D˛ � Ck , then (Exercise)

dD..a
0; b0/; .a00; b00// D dD˛

.a0; a00/; a0; a00 2 D˛; b0; b00 2 Ck :

Hence for the remaining part of this section we will always assume that:
� n � 2;
� ˛1; : : : ; ˛s < 0 and ˛sC1; : : : ; ˛n > 0 for an s D s.˛/ 2 f0; 1; : : : ; ng;
� if s < n, then t D t .˛/ WD minf˛sC1; : : : ; ˛ng;
� a D .a1; : : : ; an/ 2 D˛ , a1 	 	 	 ak ¤ 0, akC1 D 	 	 	 D an D 0 for a

k D k.a/ 2 fs; : : : ; ng;
� if k < n, then r D r.a/ D r˛.a/ WD ˛kC1 C 	 	 	 C ˛n; if k D n (in

particular, if s D n), then r D r.a/ D r˛.a/ WD 1; observe that if ˛ 2 Zn, then
r.a/ D orda.z˛ � a˛/;

� if D˛ is of rational type, then ˛ 2 Zn and ˛1; : : : ; ˛n relatively prime;
� if D˛ is of irrational type and s < n, then t .˛/ D 1.

We are able to describe effectively some holomorphically contractible functions
of D˛ – the following formulas are known and will be discussed in the sequel.

Theorem 4.4.4. Under the above assumptions we have:

˛ m
.`/
D˛
.a; z/ gD˛

.a; z/

Rational type .m.a˛; z˛//
1
`

d `
r e .m.a˛; z˛//1=r

Irrational type, k < n 0 jz˛j1=r
Irrational type, k D n 0 0
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˛ zk�
D˛
.a; z/ k�

D˛
.a; z/

Rational, s < n

8̂<̂
:

min
a˛D� t

1

z˛D� t
2

fm.�1; �2/g; k D n; z … V0

jz˛j1=r ; k < n

min
a˛D� t

1

z˛D� t
2

fm.�1; �2/g

Rational, s D n k�
D�
.a˛; z˛/ k�

D�
.a˛; z˛/

Irrational, s < n

(
m.ja˛j; jz˛j/; k D n; z … V0

jz˛j1=r ; k < n
m.ja˛j; jz˛j/

Irrational, s D n k�
D�
.ja˛j; jz˛j/ k�

D�
.ja˛j; jz˛j/

Note that, in fact, the above formulas cover all possible cases.

Before we start to prove this theorem we present some applications.

Remark4.4.5. (a) If D˛ � Cn (resp. Dˇ � Cn) is an elementary Reinhardt domain
of rational (resp. irrational) type, then these domains are not biholomorphically
equivalent (Exercise).

(b) If D˛ � Cn, n � 2, is an elementary Reinhardt domain of rational type with
0 2 D˛ (i.e. s.˛/ D 0) and if ` � 2, then

m
.`/
D˛
.0; z/ D .m.0; z˛//

1
`

d `j˛j e D jz˛j
1
`

d `j˛j e
; z 2 D˛ n V0:

Observe that 1
`
d `

j˛je < 1. Therefore,

m
.`/
D˛
.z; 0/ D m.z˛; 0/ D jz˛j < m

.`/
D˛
.0; z/; z 2 D˛ n V0:

Hence we conclude that, in general, the function m
.`/
D is not symmetric.

(c) Let D˛ be as in (b). Fix a b 2 D˛ n V0 and a sequence .aj /j � D˛ n V0
which converges to 0. Then

m
.`/
D˛
.aj ; b/ D m.a˛j ; b

˛/ ! m.0; b˛/ D jb˛j < m
.`/
D˛
.0; b/:

Hence, the function m
.`/
D˛
. 	 ; b/ is not continuous, ` � 2.

(d) Let D˛ � Cn be as in (b). Then

gD˛
.0; b/ D .m.0; b˛//1=j˛j > jb˛j D m.b; 0/ D gD˛

.b; 0/; b 2 D˛ n V0:

This shows that, in general, the pluricomplex Green function is not symmetric.
(e) Let D˛ be as in (b). Fix a b 2 D˛ n V0 and a sequence .aj /j 2 D˛ n V0 with

aj ! 0. Then

gD˛
.aj ; b/ D m.a˛j ; b

˛/ ! m.0; b˛/ < .m.0; b˛//1=j˛j D gD˛
.0; b/:
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Therefore, in general, gD. 	 ; b/ need not be continuous. Recall that also gD.a; 	 /
is not necessarily continuous.

Using the formulas for the pluricomplex Green function for elementary Rein-
hardt domains, we get the following result (see Lemma 2.4.12).

Lemma 4.4.6. Let D˛ , Dˇ be elementary Reinhardt domains in Cn, n � 2, of
rational type with s.˛/ D s.ˇ/ D 0, i.e. 0 2 D˛ \ Dˇ , and let F 2 O.D˛;Dˇ /.
Then there exists a ' 2 O.D;D/ with

F.V .D˛; �// � V .Dˇ ; '.�//; � 2 D;

where V .D˛; �/ WD fz 2 D˛ W z˛ D �g.
Proof. Fix a � 2 D. Put

a D a.�/ WD .1; : : : ; 1; �1=˛n/;

where �1=˛n is a certain root of �. Obviously, a 2 V .D˛; �/ and k D k.a/ D n.
Set

'.�/ WD F
ˇ1

1 .a/ 	 	 	F ˇn
n .a/ D F ˇ .a/ 2 D:

Then F.a/ 2 V .Dˇ ; '.�//.
Now take another point z in V .D˛; �/. Then

0 D
ˇ̌̌̌
a˛ � z˛
1 � a˛z˛

ˇ̌̌̌1=r˛.a/
D gD˛

.a; z/

� gDˇ
.F.a/; F.z// D

ˇ̌̌̌
F ˇ .a/ � F ˇ .z/
1 � F ˇ .a/F ˇ .z/

ˇ̌̌̌1=rˇ.F .a//
:

Therefore, F.z/ 2 V .Dˇ ; '.�//.
Note that by taking locally a holomorphic root �1=˛n in D� it follows directly

from its definition that ' is holomorphic in D�. Hence it extends holomorphically
to the whole of D and this extension coincides with '.0/ D lim

t!0CF
ˇ .a.t// D

lim
t!0C'.t/. So ' 2 O.D;D/. �

Corollary 4.4.7. Let D˛ and Dˇ be as in the previous lemma. Assume now that
F 2 O.D˛;Dˇ / is even biholomorphic. Then there is a ' 2 Aut.D/ with

F.V .D˛; �// D V .Dˇ ; '.�//; � 2 D:

To show how to use invariant functions like the pluricomplex Green function
we are going to prove the following result [Edi-Zwo 1999] (see also Section 2.3).

Theorem 4.4.8. Two elementary Reinhardt domains D˛;Dˇ � Cn, s.˛/ D
s.ˇ/ D 0, are biholomorphically equivalent if and only if there exist a permu-
tation � of f1; : : : ; ng and a t > 0 such that j̨ D tˇ�.j /, j D 1; : : : ; n.
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Proof. From the very beginning we may assume that n � 2 and that both domains
are either of rational or of irrational type.

In the first case we know by Lemma 4.4.6 thatF.V0/ D V .Dˇ ; 	/
13 for a certain

	 2 D. Observe that if	 2 D�, then the latter set is an analytic set with only regular
points, but V0 has 0 as an irregular point. Therefore, 	 D 0, or F.V0/ D V0.

Now let both domains be of irrational type. Suppose that F.V0/ 6� V0, i.e. there
is an a 2 V0 with F.a/ … V0. By Theorem 4.4.4 we conclude that

0 6� gD˛
.a; 	 / D gDˇ

.F.a/; 	 / � 0I
a contradiction. So, F.V0/ D V0 also in this case.

Hence, there is a permutation � of f1; : : : ; ng such that F.Vj / D V�.j /, j D
1; : : : ; n. In particular, F.0/ D 0. Applying the formulas for the pluricomplex
Green function it follows that�jz1j˛1 	 	 	 jznj˛n

�1=.˛1C���C˛n/ D gD˛
.0; z/ D gDˇ

.0; F.z//

D �jF1.z/jˇ1 	 	 	 jFn.z/jˇn
�1=.ˇ1C���Cˇn/

; z 2 D˛:

Moreover, for the points dj D .1; : : : ; 1; 0; 1; : : : ; 1/ 2 Vj we have that F.dj / is
contained in V�.j / nSn

`D1; `¤�.j / V̀ . Therefore,

jz˛j1= j̨ D gD˛
.dj ; z/ D gDˇ

.F.dj /; F .z// D jF ˇ .z/j1=ˇ�.j / ; z 2 D˛:

Combining the last equalities gives

˛1 C 	 	 	 C ˛n

ˇ1 C 	 	 	 C ˇn
D j̨

ˇ�.j /
; j D 1; : : : ; n;

which finishes the proof. �

Now we come back to prove almost all of the formulas stated in Theorem 4.4.4.

Proof of Theorem 4.4.4. The proof will be given in several steps.

Proof for m
.`/
D˛

– the rational case. Define

f .w/ WD
�
w˛ � a˛
1 � Na˛w˛

�˙ `
r

�
; w 2 D˛:

Then f 2 O.D˛;D/ with orda f D r
˙
`
r

� � `. Hence m
.`/
D˛
.a; z/ � jf .z/j1=`,

which implies that m
.`/
D˛
.a; z/ � .m.a˛; z˛//

1
`

˙
`
r

�
.

13Note that V0 � D˛ \ Dˇ .
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Now let f 2 O.D˛;D/with ords f � `. Put˚.w/ WD w˛ ,w 2 D˛ . Applying
Theorem 3.2.1 (e), we get f D ' B˚ , where ' 2 O.D;D/ and orda f D r orda˛ '.

Hence, orda˛ ' � d `
r
e and therefore, jf .z/j1=` � .m.a˛; z˛//

1
`

d `
r

e, which proves
the remaining inequality. �

Proof for m
.`/
D˛

– the irrational case. According to Theorem 3.2.1 (d) we know that
H 1.D˛/ ' C, which immediately proves the claimed formula. �

Proof for gD˛
– the rational case. Let ˇ WD .j˛1j; : : : ; j˛sj; ˛sC1; : : : ; ˛n/. Ob-

serve that D˛ and D0
ˇ

WD Dˇ \ Cn� are biholomorphically equivalent via the fol-
lowing mapping

F W Cn.˛/ ! Cn.˛/; z 7! .z�1
1 ; : : : ; z�1

s ; zsC1; : : : ; zn/:

Hence gD˛
.a; z/ D gD0

ˇ
.F.a/; F.z//, z 2 D˛ . In virtue of Proposition 1.14.25,

we even know that gD0
ˇ
.F.a/; 	 / D gDˇ

.F.a/; 	 / (Exercise).14 Therefore, from

now on we assume that s D 0.
Using the equation for mD˛

from above, we know that

gD˛
.a; z/ � mD˛

.a; z/ D �
m.a˛; z˛/

�1=r
:

To get the converse inequality letu W D˛ ! Œ0; 1/be a log-psh function satisfying
u.z/ � Ckz � ak, z 2 D˛; in particular, u.a/ D 0.

Fix a 	 2 D� with 	˛n D �. Then

 W Cn�1� ! D˛;  .w1; : : : ; wn�1/ WD
�
w
˛n

1 ; : : : ; w
˛n

n�1;
	

w
˛1

1 	 	 	w˛n�1

n�1

�
;

is a holomorphic mapping onto V .D˛; �/ (Exercise15). So uB 2 PSH.Cn�1� / is
bounded. By Proposition 1.14.25 we conclude that this function is, in fact, psh on
the whole of Cn�1. Moreover, it is bounded from above. Therefore, the Liouville
type theorem for psh functions gives that u B  �W v.�/ 2 D�. So we have
constructed a function v W D� ! D� such that

ujV .D˛ ;�/ � v.�/; � 2 D�:

v is sh on D�. Indeed, fix �0 2 D� and  > 0 with K.�0; / � D�. Choose a
holomorphic ˛n-th root of idK.�0;	/, i.e. a g 2 O.K.�0; /;D/ with g˛n.�/ D �,
� 2 K.�0; /. Then

v.�/ D u.1; : : : ; 1; g.�//; � 2 K.�0; /:
14Note that Dˇ n V0 D D0

ˇ
.

15Use the assumption that ˛1; : : : ; ˛n are relatively prime and therefore Z D ˛1Z C � � � C ˛nZ.
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Hence, v is locally log-sh on D� and therefore log-sh on D�. As above, v extends
to a log-sh function Ov on D.

First we discuss the case k < n, i.e. a˛ D 0. Recall that r D ˛kC1 C 	 	 	 C ˛n.
For � 2 D� we have

Ov.�/ D v.�/ D u.a1; : : : ; ak; �
1=r ; : : : ; �1=r ; �1=r.a

˛1

1 	 	 	 a˛k

k
/�1=˛n/

� Ck.�1=r ; : : : ; �1=r ; �1=r.a˛1

1 	 	 	 a˛k

k
/�1=˛n/k � zC j�j1=r ;

where zC is a suitable number. Hence, Ovr � gD.0; 	 /. In particular, if z 2 V .D˛; �/,
� 2 D�, then

u.z/ D v.z˛/ � .gD.0; z
˛//1=r D jz˛j1=r :

Therefore, gD˛
.a; z/ � jz˛j1=r D .m.a˛; z˛//1=r on D˛ n V0. If z 2 D˛ \

V0, then the mean value inequality for psh functions leads to gD˛
.a; z/ D 0 D

.m.a˛; z˛//1=r .
Now let k D n, i.e. a˛ ¤ 0. Then we get for � 2 D� near �0 WD a˛

Ov.�/ D u
�
a1; : : : ; an�1; �1=˛n.a

˛1

1 	 	 	 a˛n�1

n�1 /
�1=˛n

�
� C

ˇ̌̌̌
�1=˛n

a
˛1=˛n

1 	 	 	 a˛n�1=˛n

n�1
� an

ˇ̌̌̌
� zC j�1=˛n � �1=˛n

0 j � yC j� � �0j;

which implies Ov.�/ � gD.a
˛; �/ D m.�0; �/, � 2 D. Hence, u.z/ D v.z˛/ �

m.a˛; z˛/, z 2 D˛ \ Cn�. By the same reasoning as above it follows that the above
inequality holds also on D˛ (Exercise). �

For further purpose we add the following observation.

Lemma 4.4.9. If s D 0 and k < n, then gD˛
.a; z/ � jz˛j1=r , z 2 D˛ .

Proof. Note that the function u W D˛ ! Œ0; 1/, u.z/ WD jz˛j1=r , is log-psh. For
z 2 D˛ , z near a, one has

u.z/ � �jz1j˛1 : : : jzkj˛k
�1=r�jzkC1 � 0j˛kC1 : : : jzn � 0j˛n

�1=r
� Ck.zk; : : : ; zn/ � .0; : : : ; 0/k � Ckz � ak:

Hence, u � gD˛
.a; 	 / on D˛ . �

Before we will be able to discuss the pluricomplex Green function for the irra-
tional type we have to find the formulas for the Lempert function.

Recall that Ta D f.�1a1; : : : ; �nan/ W �j 2 T ; j D 1; : : : ; ng, where a 2 Cn�.
Then Ta is a group with the following multiplication:

.�1a1; : : : ; �nan/ B .�1a1; : : : ; �nan/ WD .�1�1a1; : : : ; �n�nan/:
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Let ˛ 2 Rn�. Define Ta.˛/ to be the subgroup of Ta that is generated by the set

n
.e
i

j̨1

˛1
2k1


a1; : : : ; e
i

j̨n

˛n
2kn


an/ W 1 � j1; : : : ; jn � n; k1; : : : ; kn 2 Z
o
:

Note that if ˛ is of rational type, then

Ta.˛/ D f."1a1; : : : ; "nan/ W " j̨

j D 1; 1 � j � ng;

i.e. Ta.˛/ is finite. If ˛ is of irrational type, then STa.˛/ D Ta (cf. p. 97).
To get some information on the Lempert function we need the following result

on analytic discs.

Lemma 4.4.10. Let a; z 2 D˛ , z 2 Rn�, and Qz 2 Tz.˛/. Then for any ' 2
O.D;D˛/ with '.�1/ D a, '.�2/ D z, �1 ¤ �2, �j 2 D, j D 1; 2, there is a
Q' 2 O.D;D˛/ such that Q'.�1/ D a and Q'.�2/ D Qz.

In particular, zk�
D˛
.a; z/ D zk�

D˛
.a; Qz/.

Proof. First recall that the strip H WD f� 2 C W �1 < Re� < 1g is biholo-
morphically equivalent to D (use the Riemann mapping theorem). Therefore, it
suffices to prove the lemma when we substitute D by H . So we may assume that
' 2 O.H;D˛/ with '.0/ D a and '.i�/ D z for a certain � > 0.

For kn 2 Z and j 2 f1; : : : ; ng, let Q' W H ! D˛ be defined as

Q'.�/ WD
�
'1.�/; : : : ; 'n�2.�/; e�2kn


�
 'n�1.�/; e

j̨ 2kn
�

˛n 'n.�/
�
:

Then Q' 2 O.H;D˛/, Q'.0/ D a, and Q'.i�/ D .z1; : : : ; zn�1; e
i

j̨

˛n
2kn


zn/.
Now we continue modifying the other coordinates in the same way as above

which finishes the proof. �

In the same spirit is the following lemma.

Lemma 4.4.11. Let L1; L2 b D, L b C�, and ˛ 2 Rn�. Assume that

m.L1; L2/ D inffm.�1; �2/ W �j 2 Lj ; j D 1; 2g � ı > 0:

Then there exists a set zL b C�, L � zL, such that for any z1; z2 2 L and �j 2 Lj ,
j D 1; 2, there is a 2 O.D;C�/ such that .�j / D zj , j D 1; 2, and .D/ � zL.

Moreover, there is a set zK b C� such that for any z1; : : : ; zn 2 Lwith jz˛j D 1

and any w1; : : : ; wk 2 L, k < n, there are functions  j 2 O.D;C�/ such that
 j .D/ � zK,  j .�1/ D zj , j D 1; : : : ; n, and  j .�2/ D wj , j D 1; : : : ; k, and
 
˛1

1 .�/ 	 	 	 ˛n
n .�/ D ei� , � 2 D.
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Proof. Without loss of generality we may assume that L1 D f�1 D 0g and L2 D
f�2 D ıg.16 Put

yL WD exp�1.L/ \ .R C i Œ0; 2�//:

Then yL � .log "1; log "2/C i Œ0; 2�/, where 0 < "1 < "2 and the "j ’s depend only
on L. Set

zL WD fea�Cb W � 2 D; a; b 2 C such that a�j C b 2 yL; j D 1; 2g:

Then zL b C�. What remains is to choose  WD eh, where h is an appropriate
function of the form as it appears in the definition of zL.

To prove the last part of the lemma we take, in addition, wkC1; : : : ; wn�1 2 L
in an arbitrary way. For the pairs zj ; wj we fix functions  j 2 O.D;C�/ with

 j .D/ � zL;  j .�1/ D zj ;  j .�2/ D wj ; j D 1; : : : ; n � 1:
Put

 n.�/ WD ei�
�
 
˛1

1 .�/ 	 	 	 ˛n�1

n�1 .�/
��1=˛n

; � 2 D;

where the branches of the powers are chosen arbitrarily and � is taken such that
 n.�n/ D zn. �

Exercise 4.4.12. Prove the following statement using the ideas from the proof of
Lemma 4.4.11.

(a) Let a 2 C�,X 2 C, and � 2 D be given. Then there exists a 2 O.D;C�/
such that  .�/ D a and  0.�/ D X .

(b) Moreover, if � 2 D, a 2 Cn�, X 2 Ck , where k < n, and ˛ 2 Rn� with
ja˛j D 1, then there is a  D . 1; : : : ;  n/ 2 O.D;Cn�/ such that

 .�/ D a; . 0
1.�/; : : : ;  

0
k.�// D X;  

˛1

1 	 	 	 ˛n
n D ei� idD :

Applying the previous lemmas in the case of elementary Reinhardt domains
leads to the following results.

Lemma 4.4.13. Let D˛ be of irrational type and a; z 2 D˛ \ Cn�. Then

zk�
D˛
.a; z/ D zk�

D˛
.a0; z0/; a0 2 Ta; z

0 2 Tz :

Proof. Note that it is enough to prove that zk�
D˛
.a; z/ D zk�

D˛
.a; z0/ (use the sym-

metry), whenever z0 2 Tz .
Suppose the contrary, i.e. there are points z0; z00 2 Tz with

zk�
D˛
.a; z0/ < zk�

D˛
.a; z00/ DW `:

16To get the general case, recall that if m.�1; �2/ 	 ı D m.0; ı/, then there is a ' 2 O.D;D/
with '.�1/ D 0 and '.�2/ D ı .
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In virtue of Lemma 4.4.10, we have zk�
D˛
.a; Qz/ D `, Qz 2 Tz00.˛/. Observe that

z0 2 Tz D Tz00 D STz00.˛/. Therefore, z0 is an accumulation point of Tz00.˛/,
which contradicts the upper semicontinuity of zk�

D˛
.a; 	 /. �

Corollary 4.4.14. Let a 2 D˛ \ Cn�, where D˛ is of irrational type. Then

zk�
D˛
.a; z/ D 0; z 2 Ta:

Proof for zk�
D˛

– the case k < n. In virtue of Lemma 4.4.9, we know that

zk�
D˛
.a; z/ � gD˛

.a; z/ � jz˛j1=r :
In order to prove the converse inequality for a z 2 D˛ n V0, put � WD jz˛j1=r .

Then all the points z1; : : : ; zk;
zkC1


; : : : ; zn


belong to C� with

� kY
jD1

jzj j j̨

�� nY
jDkC1

j zj


j j̨

�
D 1:

Moreover, a1; : : : ; ak 2 C�. Then, in virtue of Lemma 4.4.11, we find functions
 j 2 O.D;C�/ such that

nY
jD1

 j̨

j .�/ D ei� ; � 2 D;

 j .�/ D zj ; j D 1; : : : ; k;

 j .�/ D zj

; j D k C 1; : : : ; n;

 j .0/ D aj ; j D 1; : : : ; k:

Put
'.�/ WD . 1.�/; : : : ;  k.�/; � kC1.�/; : : : ; � n.�//; � 2 D:

Then ' 2 O.D;D˛/ with '.0/ D a and '.�/ D z. Hence, zk�
D˛
.a; z/ � � , i.e. the

proof is complete.
Now we discuss the remaining case when z 2 D˛ \ V0. Note that necessarily

we have zj ¤ 0, j � s.
First suppose that there is a coordinate zj D 0 with j � k C 1. Then the

holomorphic mapping

Cs� � Cn�s�1 3w D .w1; : : : ; wj�1; wjC1; : : : ; wn/
7! .w1; : : : ; wj�1; 0; wjC1; : : : ; wn/ 2 D˛

leads to the following inequality

zk�
D˛
.a; z/ � zk�

Cs
��Cn�s�1. Qa; Qz/ D 0; 17

17Recall that one can map C onto C� via the exponential map.
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where Qa WD .a1; : : : ; aj�1; ajC1; : : : ; an/ and Qz WD .z1; : : : ; zj�1; zjC1; : : : ; zn/.
What remains is the case where jzj j C jaj j ¤ 0 for all j ’s. For ˇ 2 .0; 1/ we

are going to define a ' D .'1; : : : ; 'n/ 2 O.D;D˛/, where

'j .�/ WD

‚
��ˇ
1�ˇ� j .�/ if aj D 0;

�Cˇ
1Cˇ� j .�/ if zj D 0;

 j .�/ if aj zj ¤ 0;

� 2 D:

The  j 2 O.D;C�/ have to be chosen in a correct way.
We need that the  j ’s satisfy

Qn
jD1  

j̨

j � ei� on D and that '.ˇ/ D a, and

'.�ˇ/ D z. Note that then we would get zk�
D˛
.a; z/ � m.ˇ;�ˇ/ ! 0 if ˇ ! 0.

Fix some j1 such that aj1
D 0 . Then we would like the functions  j to attain

the following values in C�:

 j .ˇ/ D

�
aj if aj zj ¤ 0;
aj .1Cˇ2/

2ˇ
if zj D 0 ¤ aj ;

1 if aj D 0 ¤ zj ; j ¤ j1;

 j1
.ˇ/ D

� Y
aj zj ¤0

j j .ˇ/j j̨

Y
zj D0

j j .ˇ/j j̨

��= j̨1
:

Moreover, at �ˇ we only need to have

 j .�ˇ/ D
(
zj if aj zj ¤ 0;
zj .1�ˇ2/

�2ˇ if aj D 0 ¤ zj :

Note that there are fewer than n values we want to specify at �ˇ. Therefore,
Lemma 4.4.11 works and gives such a mapping  2 O.D;Cn�/ which completes
the proof. �

The remaining case, i.e. s D n or k D n, for elementary Reinhardt domains
will be discussed later in this section. First we establish the formulas for the
pluricomplex Green function in the irrational case.

Proof for gD˛
– the irrational case. As in the proof of Theorem 4.4.4 we may as-

sume that s D s.˛/ D 0.
In the case where k D nwe have gD˛

.a; z/ D 0, z 2 Ta (see Corollary 4.4.14).
Then the maximum principle for psh functions implies that gD˛

.a; 	 / D 0 on
P.0; .ja1j; : : : ; janj//. Recall that log gD˛

.a; 	 / 2 PSH.D˛/ and that either
log gD˛

.a; 	 / � �1 or the level set fz 2 D˛ W log gD˛
.a; z/ D �1g is a

pluripolar set. Thus, gD˛
.a; 	 / � 0 on D˛ .
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If k < n, then, by the formula for zk�
D˛

in that case, we know that

gD˛
.a; z/ � zk�

D˛
.a; z/ D jz˛j1=r :

To conclude the proof apply Lemma 4.4.9. �

The last part in this proof is devoted to prove some of the remaining formulas
for the Lempert function.

Lemma 4.4.15. If a; z 2 D D D1 \ V0 (1 D .1; : : : ; 1/), then

zk�
D1
.a; z/ D 0:

If a 2 D1 \ Cn�, z 2 D1, then

zk�
D1
.a; z/ D .m.a1 	 	 	 an; z1 	 	 	 zn//1= ;

where � WD maxf#fj W zj D 0g; 1g.
Proof. The first formula is a direct consequence of the one for zk� which has been
proved before.

Now we will discuss the case where a; z 2 Cn�. In a first step suppose that
	 WD a1 	 	 	 an D z1 	 	 	 zn. Then the holomorphic mapping

Cn�1 3 .w1; : : : ; wn�1/
F7�! .ew1 ; : : : ; ewn�1 ; 	e�w1�����wn�1/ 2 D1

is onto V .D1; 	/, i.e. F.w0/ D a and F.w00/ D z for certain w0; w00 2 Cn�1.
Hence,

zk�
D1
.a; z/ � zk�

Cn�1.w
0; w00/ D 0:

So we may assume that, from now on, a1 	 	 	 an ¤ z1 	 	 	 zn. Put

�1 WD a1 	 	 	 an 2 D; �2 WD z1 	 	 	 zn 2 D:

Applying Lemma 4.4.11 we find a  j 2 O.D;C�/ such that

 j .�1/ D aj ;  j .�2/ D zj ; j D 1; : : : ; n � 1;  n.�1/ D .a1 	 	 	 an�1/�1;

and  1 	 	 	 n � ei� on D1. Put

'.�/ WD . 1.�/; : : : ;  n�1.�/; e�i�� n.�//; � 2 D:

Then ' 2 O.D;D1/ such that '.�1/ D a,  .�2/ D z. Hence,

m.a1 	 	 	 an; z1 	 	 	 zn/ � zk�
D1
.a; z/ � m.a1 	 	 	 an; z1 	 	 	 zn/;

where the last inequality is a consequence of the property of holomorphic con-
tractibility.

It remains the case that a 2 Cn� and z 2 V0. Then again Lemma 4.4.11 gives
the desired formula. �
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What we have just discussed is the simplest case of an elementary Reinhardt
domain of rational type. The proof of the formula in case s < n needs deep results
on geodesics which are beyond the scope of this book. Therefore we skip its proof.
Details may be found in [Pfl-Zwo 1998] and [Zwo 2000]. Note that the case k < n
is contained in Theorem 4.4.4. So the difficult case is the one with k D n.

Now we turn to the irrational case for s < n.

Proof for zk�
D˛

– the irrational case with s < n. The case k < n was already veri-
fied. So we assume that k D n and z … V0. Recall that

zk�
D˛
.a; z/ D zk�

D˛
..ja1j; : : : ; janj/; .jz1j; : : : ; jznj//

(see Lemma 4.4.13). Now we approximate the j̨ ’s by rational vectors. We choose
a sequence .˛.j //j � Qn� such that

˛.j / ! ˛; t.˛.j // D 1; ˛
.j /
1 ; : : : ; ˛.j /s < 0; ˛

.j /
sC1; : : : ; ˛

.j /
n > 0; j 2 N:

Applying Theorem 4.4.4 for points x; y 2 D˛.j / \ RnC we get

zk�
D

˛.j /
.x; y/ D m

�
x
˛

.j /
1

1 	 	 	 x˛.j /
n
n ; y

˛
.j /
1

1 	 	 	y˛.j /
n
n

�
; j 2 N: 18 (4.4.1)

By employing a biholomorphic reordering of the coordinates we may assume that
1 D t .˛/ D ˛n.

Now suppose that
zk�

D˛
.a; z/ < m

�ja˛j; jz˛j�:
Then there exist an analytic disc ' 2 O.xD;D˛/ and �1; �2 2 D such that '.�1/ D
.ja1j; : : : ; janj/, '.�2/ D .jz1j; : : : ; jznj/, and

m.�1; �2/ < m
�ja˛j; jz˛j�:

Since '.xD/ is a compact subset of D˛ we can choose a large j0 such that 'jD 2
O.D;D˛.j0//. Therefore,

m.�1; �2/ < m
�ja1j˛.j0/

1 	 	 	 janj˛.j0/
n ; jz1j˛

.j0/

1 : : : jznj˛.j0/
n

�I
a contradiction to (4.4.1).

On the other hand put �1 WD ja˛j, �2 WD jz˛j. If �1 ¤ �2, then we find
analytic discs j D ehj 2 O.D;C�/withhj .�1/ D log jaj j andhj .�2/ D log jzj j,
j D 1; : : : ; n � 1 (use Lemma 4.4.11). Moreover, define

 n.�/ WD exp.�˛1h1.�// � 	 	 	 � ˛n�1hn�1.�//; � 2 D:

18Note thatm.x; ei�y/ 	 m.x; y/, � 2 R, when x; y 2 Œ0; 1/ (Exercise).



4.4. Examples I – elementary Reinhardt domains 291

Then �1 n.�1/ D janj. Put

'.�/ WD . 1.�/; : : : ;  n�1.�/; � n.�//; � 2 D:

Then 'n.�1/ D janj and 'n.�2/ D jznj. Hence,

zk�
D˛
.a; z/ � m

�ja˛j; jz˛j�:
If �1 D �2, put Q�" WD �2 C " 2 D, " > 0 small. Put

h".�/ D � � �1
1 � �1� 	 � � Q�"

1 � �"�; � 2 D:

Thenh" 2 O.D;D/withh".�1/ D h".�"/ D 0. Then, using an appropriate Möbius
transformation, we find an Qh" 2 O.D;D/ such that Qh".�1/ D Qh".�"/ D �1.

As in the case before there are  j 2 O.D;C�/ with  j .�1/ D jaj j and
 j .�"/ D jzj j, j D 1; : : : ; n � 1. Put now

'.�/ WD �
 1.�/; : : : ;  n�1.�/; Qh".�/. ˛1

1 .�/ : : :  
˛n�1

n�1 .�//
�1�; � 2 D:

Then ' 2 O.D;D˛/, '.�1/ D .ja1j; : : : ; janj/, and '.�"/ D .jz1j; : : : ; jznj/. Tak-
ing into account that "may be taken arbitrarily small, we end up with zk�

D˛
.a; z/ D 0,

which finishes the proof. �

In a last step we discuss the case when s D n, i.e. j̨ < 0 for all j .

Proof for zk�
D˛

– the case s D n. First observe that the map F W Cn�1� D� ! D˛ ,

F.�1; : : : ; �n/ WD .e�1˛n ; : : : ; e�n�1˛n ; ��1
n e

��1˛1������n�1˛n�1/;

is a holomorphic covering. Note that F.�/ D w iff

�j D 1

˛n

�
log jwj j C i.Argwj C 2lj�/

�
; j D 1; : : : ; n � 1;

1

�n
D wn

� n�1Y
jD1

jwj j j̨

�1=˛n

e
i

˛n

Pn�1
j D1 j̨ .Argaj C2lj
/;

where l1; : : : ; ln�1 2 Z. Applying Propositions 4.2.38 and 4.2.35 we are led to

zk�
D˛
.a; z/ D inf

˚zk�
D�

�ja˛j�1=˛ne� i
˛n

Pn�1
j D1 j̨ Argaj ;

jz˛j�1=˛ne� i
˛n

Pn�1
j D1 j̨ .Arg zj C2lj
/� W l1; : : : ; ln�1 2 Z

�
:

In the rational case we apply Corollary 4.4.3 and get zk�
D˛
.a; z/ D zk�

D�
.a˛; z˛/.
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In the irrational case we conclude via the Kronecker theorem that

zk�
D˛
.a; z/ D zk�

D�

�ja˛j�˛n ; jz˛j�˛n
�
:

It just remains to mention that zk�
D�
.x; y/ D zk�

D�
.xt ; yt / for t > 0. Applying this

remark with t D �˛n gives the desired formula. �

In a final step we discuss the Kobayashi pseudodistance in the case of elementary
Reinhardt domains with s < n, which so far we have not mentioned.

Proof for k�
D˛

– the case s < n. In the rational case it is easy to see that

D˛ � D˛ 3 .z; w/ 7! .minfp.�1; �2/ W �1; �2 2 D; a˛ D �t1; z
˛ D �t2g/

DW d.z; w/

satisfies the triangle inequality and is majorized by zkD˛
. Hence it follows that

kD˛
� d and both are equal outside of the axes. Then the continuity of the

Kobayashi pseudodistance gives the desired result.
In the irrational case the reasoning is analogous to the one before and therefore

left to the reader as an Exercise. �

Proof for k�
D˛

– the case s D n. This step is left as an Exercise. � �

In particular, the effective formulas from above make it possible to give a neg-
ative answer to the following old question asked by S. Kobayashi (see [Kob 1970],
p. 48), namely: is the infimum in Proposition 4.2.38 taken by a certain point in the
holomorphic covering.

Example 4.4.16 ([Zwo 1998]). Let D D D.�p
2;�1/ and  W C � D� ! D,

 .�1; �2/ WD
�
e��1 ;

1

�2
e

p
2�1

�
;

be a holomorphic covering. Take a WD .r; r/ 2 D with r > 0 and z WD .r; ir/.
Then kD.a; z/ D 0. Fix the following preimage .� log r; r�1�p

2/ of the point a.
Then

0 D inf
k2Z

kC�D�

�
.� log r; r�1�p

2/;

.� log r C 2�ik;
�i
r

exp.
p
2.� log r C 2�ik///

�
D inf
k2Z

kD�

�
r�1�p

2;
�i
r

exp.
p
2.� log r C 2�ik//

�
:
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Suppose that there is a k0 2 Z such that

kD�

�
r�1�p

2;
�i
r

exp
�p
2.� log r C 2�ik0/

�� D 0:

Then 1=2C k0p2 2 Z; 19 a contradiction.

4.5 Holomorphically contractible families of pseudometrics

Recall from classical analysis that the Euclidean distance between two points x; y 2
G D Rn can be also given by the “minimal” length of all piecewise C1-curves in
G connecting these points. Let 
 W Œ0; 1� ! G be such a curve. Then the length of

 is given by L.
/ D R 1

0
k
 0.t/kdt , i.e. along the curve the lengths of its tangent

vectors k
 0.t/k, t 2 Œ0; 1�, are summed up. Hence we have an assignment

G � Rn 3 .x;X/ 7! ˛G.xIX/ WD lim
R�3t!0

kx � .x C tX/k
jt j ;

with the following property: ˛.xI sX/ D jsj˛.xIX/, x 2 G, s 2 R, and X 2 Rn.
This procedure will be transformed into the context of families of holomorphi-

cally contractible families of functions .dD/D .
Let us start with a general definition.

Definition 4.5.1. A family .ıD/D of pseudometrics ıD W D � Cn ! RC, D a
domain in Cn, i.e.

ıD.zI�X/ D j�jıD.zIX/; z 2 D; � 2 C; X 2 Cn; (4.5.1)

is said to be holomorphically contractible if the following two conditions are satis-
fied:

(zA)

ıD.aIX/ D �.aIX/ WD jX j
1 � jaj2 ; a 2 D; X 2 C; (4.5.2)

(zB) for arbitrary domains G � Cm, D � Cn, any F 2 O.G;D/ works as a
contraction with respect to ıG and ıD , i.e.

ıD.F.a/IF 0.a/X/ � ıG.aIX/; a 2 G; X 2 Cm: (4.5.3)

Note that the Hermitian pseudometrics discussed in Section 1.19 are pseudo-
metrics in the sense of Definition 4.5.1.

In the following we will discuss the most important holomorphically contractible
families of pseudometrics.

19Note that m.�;�/ D k�
D.�;�/ � k�

D�
.�;�/ D 0 implies that � D �, when �;� 2 D�.
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Example 4.5.2 (Carathéodory–Reiffen pseudometric).

�D.aIX/ WD supfjf 0.a/X j W f 2 O.D;D/; f .a/ D 0g; a 2 D; X 2 Cn;

(4.5.4)

where D � Cn is a domain.
Indeed, the properties (4.5.1) and (zB) are obvious. To prove (zA) letF 2 O.D;D/

with F.a/ D 0 and X 2 C. Put

g.�/ WD F

�
�C a

1C Na�
�
; � 2 D:

Then g 2 O.D;D/ with g.0/ D 0. By the Schwarz–Pick lemma it follows that
1 � jg0.0/j D jF 0.a/j.1� jaj2/; hence, �.aIX/ � �D.aIX/. To get the converse
inequality just take the function F.�/ WD ��a

1� Na� , � 2 D.

We begin by stating some simple properties of the Carathéodory–Reiffen pseu-
dometric (details are left as an Exercise):

� �D.aI 	 / is a seminorm on Cn.
� By the Montel theorem, there exists an f 2 O.D;D/ with f .a/ D 0 and

jf 0.a/X j D �D.aIX/ (such an f is called an extremal function for �D.aIX/).
� Put MD.a/ WD fjf j W f 2 O.D;D/; f .a/ D 0g. Then

�D.aIX/ D sup
�

lim
C�3�!0

u.aC �X/

j�j W u 2 MD.a/


; a 2 D; X 2 Cn:

(4.5.5)

Note that any function u 2 MD.a/ satisfies: u W D ! Œ0; 1/, logu is psh, and
u.z/ � Ckz � ak, when z 2 B.a; r/ � D for certain C; r > 0.

� If D D S1
jD1Dj � Cn, where Dj � DjC1, j 2 N, are domains, then

(use Montel)
�D.aIX/ D lim

j!1 �Dj
.aIX/:

� For a balanced domain Dh we have �D.0I 	 / � h.
Indeed, suppose first that h.X/ D 0. Then C 3 � 7! �X 2 Dh is a well-

defined holomorphic mapping. By (4.5.3), �Dh
.0IX/ � �C.0I 1/ D 0 D h.X/.20

Now assume that h.X/ > 0. Then D 3 � 7! �
h.X/

X 2 Dh is holomorphic and,
therefore, �Dh

.0IX/ � �.0I h.X// D h.X/.
� In particular,

�D.aIX/ � �B.a;r/.aIX/ D �B.r/.0IX/ � kXk
r
; a 2 D � Cn; X 2 Cn:

It turns out that the Carathéodory–Reiffen pseudometric is given as a derivative
of the Möbius pseudodistance, even in a strong sense (see Lemma 4.5.3 (b)).

20Use the Liouville theorem.
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Lemma 4.5.3. LetD � Cn be a domain. Then:
(a) For any compact K � D and for any " > 0 there is a ı > 0 such that

jmD.z
0; z00/ � �D.aI z0 � z00/j � "kz0 � z00k; a 2 K; z0; z00 2 B.a; ı/ � D:

(b) For .aIX/ 2 D � Cn, kXk D 1, one has

mD.z
0; z00/

kz0 � z00k ! �D.aIX/; when z0; z00 ! a; z0 ¤ z00;
z0 � z00

kz0 � z00k ! X:

(c) In particular,

�D.aIX/ D lim
C�3�!0

mD.a; aC �X/

j�j ; a 2 D; X 2 Cn:

Proof. (a) Fix an r 2 R>0 such that B.b; 4r/ � D, b 2 K. Now, take a 2 K,
z0; z00 2 B.a; r/, and X 2 Cn. We may assume that �D.z

0IX/ � �D.z
00IX/.

Choose an extremal function f 2 O.D;D/ for �D.z
0IX/, i.e. f .z0/ D 0 and

jf 0.z0/X j D �D.z
0IX/. Then

j�D.z0IX/ � �D.z
00IX/j D jf 0.z0/X j � �D.z

00IX/ � jf 0.z0/X j � jf 0.z00/X j
� jf 0.z0/X � f 0.z00/X j � kf 0.z0/ � f 0.z00/kkXk
� maxfkf 00.z/k W z 2 Œz0; z00�gkz0 � z00kkXk
� 1

2r2
kz0 � z00kkXk: (*)

Using (*) it follows that

jmD.z
0; z00/ � �D.aI z0 � z00/j

� jmD.z
0; z00/ � �D.z

0I z0 � z00/j C j�D.z0I z0 � z00/ � �D.aI z0 � z00/j
� jmD.z

0; z00/ � �D.z
0I z0 � z00/j C 1

2r2
kz0 � akkz0 � z00k:

It remains to estimate the first term on the right-hand side. We may assume that
mD.z

0; z00/ � �D.z
0I z00 � z0/ (the other case follows in a similar way (Exercise)).

So let f 2 O.D;D/, f .z0/ D 0, and f .z00/ D mD.z
0; z00/, i.e. f is an extremal

function for mD . Then, by the Cauchy inequalities, we get with Y WD z00 � z0
(kY k � 2r)

jmD.z
0; z00/ � �D.z

0IY /j � jf .z0 C Y / � f 0.z0/Y j �
1X
kD2

1

kŠ
kf .k/.z0/kkY kk

�
1X
kD2

�kY k
3r

�k
� 1

3r2
kY k2:
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Hence,

jmD.z
0; z00/ � �D.aI z0 � z00/j �

�kz0 � z00k
3r2

C 1

2r2
kz0 � ak

�
kz0 � z00k;

which proves (a).
(b) and (c) are easy consequences of (a) and therefore, the proof is left as an

Exercise to the reader. �

Corollary 4.5.4. The function �D is locally Lipschitz onD � Cn.

Proof. Use (*) from the proof of (a) in the previous lemma. �

Remark 4.5.5. Lemma 4.5.3 is also true when we substitute mD by cD (Exercise).

Example 4.5.6 (k-th Reiffen pseudometric).

�
.k/
D .aIX/ WD sup

nˇ̌̌ X
j˛jDk

1

˛Š
D˛f .a/X˛

ˇ̌̌1=k W f 2 O.D;D/; orda f � k
o
;

a 2 D; X 2 Cn;

where k 2 N and D � Cn is a domain. Note that �D D �
.1/
D .

The proof of the fact that .�.k/D /D is a holomorphically contractible family of
pseudometrics is left to the reader (Exercise).

First, let us state some simple properties of the k-th Reiffen pseudometric (Ex-
ercise):

� There exists an f 2 O.D;D/, orda f � k, such that

�
.k/
D .aIX/ D

ˇ̌̌ X
j˛jDk

1

˛Š
D˛f .a/X˛

ˇ̌̌1=k
(use the Montel theorem); such an f is called an extremal function for �

.k/
D .aIX/.

� Put M
.k/
D .a/ WD fjf j1=k W f 2 O.D;D/; orda f � kg. Then

�
.k/
D .aIX/ D sup

n
lim

C�3�!0

u.aC �X/

j�j W u 2 M
.k/
D .a/

o
; a 2 D; X 2 Cn:

(4.5.6)

Note that any function u 2 M
.k/
D .a/ satisfies: u W D ! Œ0; 1/, logu is psh, and

u.z/ � Ckz � ak, when z 2 B.a; r/ � D for certain C; r > 0.
� If D D S1

jD1Dj � Cn, Dj � DjC1, then �
.k/
Dj
.aIX/ & �

.k/
D .aIX/ (use

Montel’s theorem).

Moreover, we have the following results.
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Lemma 4.5.7. Let a 2 D � Cn,D a domain. Then:
(a) �

.k/
D .aIX/ D lim

C�3�!0

1
j�jm

.k/
D .a; aC �X/, X 2 Cn.

(b) �
.k/
D .aI 	 / is continuous and �

.k/
D is upper semicontinuous.

(c) If we additionally assume that D is bounded and kXk D 1, then �
.k/
D is

continuous onD � Cn and

m
.k/
D .z0; z00/

kz0 � z00k ! �
.k/
D .aIX/; when z0; z00 ! a; z0 ¤ z00;

z0 � z00

kz0 � z00k ! X:

Proof. It is obvious that the left-hand side is majorized by the right-hand side.
Now let C� 3 �� ! 0. Choose extremal functionsf� 2 O.D;D/, orda f� � k,

such that

m
.k/
D .a; aC ��X/ D

ˇ̌̌ X
j˛jDk

1

˛Š
D˛f .a/.aC ��X/

˛
ˇ̌̌1=k

:

By the Montel argument we get f��
! f locally uniformly on D. Note that

orda f � k and f 2 O.D;D/. Then

�
.k/
D .aIX/ �

ˇ̌̌ X
j˛jDk

1

˛Š
D˛f .a/X˛

ˇ̌̌1=k D lim
�!1

1

j���
j jf��

.aC ���
X/j1=k

D lim
�!1

1

j���
jm

.k/
D .a; aC ���

X/:

The proof of the remaining points are left to the reader as an Exercise. �

What we saw up to now is that the Möbius functions have led via (4.5.5) or
(4.5.6) to holomorphically contractible families of pseudometrics.

In the case of the pluricomplex Green function we put

KD.a/ WD fu W D ! Œ0; 1/ W logu 2 PSH.D/;

9M;r>0 W u.z/ � Mkz � ak; z 2 B.a; r/ � Dg;
where D is a domain in Cn and a 2 D.21 Recall from Corollary 4.2.27 that

gD.a; 	 / 2 KD.a/. Moreover, for any X 2 Cn the limit

lim sup
C�3�!0

1

j�ju.aC �X/

always exists. Thus we can define

21Note that M.k/

D .a/ � KD.a/.
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Example 4.5.8 (Azukawa pseudometric).

AD.aIX/ W D sup
n

lim sup
C�3�!0

1

j�ju.aC �X/ W u 2 KD.a/
o

(4.5.7)

D lim sup
C�3�!0

1

j�jgD.a; aC �X/; a 2 D; X 2 Cn: (4.5.8)

Indeed, for D D D we have

lim sup
C�3�!0

1

j�jgD.a; aC �X/ D lim sup
C�3�!0

1

j�jm.a; aC �X/ D �.aIX/:

Note that u B F 2 KG.a/ whenever F 2 O.G;D/ and u 2 KD.F.a//. Hence,
property (4.5.3) follows.

Lemma 4.5.9. LetD be as before. Then AD is upper semicontinuous.

Proof. Fix a 2 B.a; 2r/ � D and X0 2 Cn. Suppose that AD.aIX0/ < M 0 <
M . Then 1

j�jgD.a; a C �X0/ � M 0 when 0 < j�j � 2" for a certain positive

" < r
2.kX0kC1/ . In particular, 1

j�jgD.a; aC �X0/ � "M 0, j�j D ". Then, applying
the upper semicontinuity of gD , there is a positive ı < r such that

gD.b; b C �X/ < "M 0; b 2 B.a; ı/; kX �X0k < ı; j�j D ":

Observe that for such an X the function

� 7!
(
1

j�jgD.b; b C �X/ if 0 < j�j � 2";

AD.bIX/ if � D 0;

is psh on K.2"/. Hence the maximum principle leads to AD.bIX/ < M for all
b;X as above, which proves that AD is upper semicontinuous at .a;X0/. �

Example 4.5.10. Let D D Dh ´ fz 2 Cn W h.z/ < 1g be a pseudoconvex
balanced domain. Then AD.0I 	 / D h on Cn. In particular, AD.0I 	 / need not be
continuous and is not necessarily a seminorm.

Indeed, we only have to recall that gD.0; 	 / D h.

The following example ([Zwo 2000a]) shows that, in general, the “lim sup” in
the definition of the Azukawa pseudometric cannot be substituted by “lim”.

Example 4.5.11. Let h W C2 ! RC be the function from Proposition 1.15.12.
Recall that log h 2 PSH.C2/, h.�z/ D j�jh.z/, h�1.0/ is dense in C2, and h 6� 0.
Choose a 2 C2� with h.a/ ¤ 0. Then Qh.z/ D 1

h.a/
h.z1a1; z2a2/ satisfies the same
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properties as h but now Qh.1; 1/ D 1. Finally, define Oh.z/ WD maxf Qh.z/; kzk
10

g. Note

that Oh is not continuous at the point .1; 1/. Then

D D fz 2 C2 W Oh.z/ < 1g
is a bounded pseudoconvex balanced domain.

Since Qh�1.0/ is dense we choose a sequence .zj /j with zj ! .1; 1/ and Qh.zj / D
0. Therefore, Oh.zj / � 1=5 for large j and so Oh.1; zj2=zj1 / � 1=4 for j � 1. Then
there is a sequence . j̨ /j � C, j̨ ! 0, such that e j̨ D z

j
2=z

j
1 . Using a similar

argument we find another zero sequence . ǰ /j � C satisfying Oh.1; e ǰ / ! 1

(Exercise22).
Let F 2 Aut.C2/, F.z/ WD .z1; z2 exp.�z1//. By Corollary 1.15.6, D0 WD

F �1.D/ is a bounded pseudoconvex domain in C2. In virtue of Proposition 4.2.21
it follows that

1

ak
gD0.0; .ak; ak// D 1

ak
gD.0; .ak; ak exp.ak///

D 1

ak
Oh.ak; ak exp.ak// D Oh.1; exp.ak// < 1=4;

when k ! 1. In a similar way, we get gD0.0; .bk; bk// ! 1, when k ! 1.
Hence, this different behavior of 1

j�jgD0.0; �.1; 1//, when � ! 0, verifies that we
cannot take the limit in (4.5.8).

Exercise 4.5.12. Try to construct a simpler example of a bounded pseudoconvex
balanced domain in C2 with the same phenomenon as above.

Nevertheless, in the case when D is bounded and hyperconvex the “limsup” in
the definition of the Azukawa pseudometric can be substituted by just taking the
limit ([Zwo 2000a]).

Proposition 4.5.13. IfD is a bounded hyperconvex domain in Cn, then:

(a) AD is continuous,

(b) AD.aIX/ D lim
C�3�!0

1
j�jgD.a; aC �X/; .a;X/ 2 D � Cn.

We should mention that there are similar results even under weaker hypotheses;
for more details see [Zwo 2000a].

The proof of the above proposition needs some preparation which will be dis-
cussed first. Let D be as in the proposition and a 2 D. Put

D" WD D".a/ WD fz 2 D W gD.a; z/ < e
�"g;

where " 2 R>0. Obviously,D" is open, a 2 D", and, by Theorem 4.2.34,D" b D.
Even more is true.

22Use the mean value inequality for psh functions.
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Lemma 4.5.14. Under the above conditions,D" is a domain.

Proof. Suppose the contrary, i.e. thatD" has a connected componentU with a … U .
We know that gD < e�" on U and gD.a; z/ � e�", z 2 @U \D. Consequently,
the function

v.z/ WD
(
e�" if z 2 U;
gD.a; z/ if z 2 D n U;

is psh on D (Exercise). Noting that a … U we have v � gD.a; 	 / on D. In
particular, gD.a; 	 /jU � e�"; a contradiction. �

Lemma 4.5.15. Let a;D;D" be as before. Then

gD"
.a; z/ D gD.a; z/ 	 e"; z 2 D"I (4.5.9)

AD"
.aIX/ D AD.aIX/ 	 e"; z 2 D"; X 2 Cn: (4.5.10)

Proof. Note that gD.a; 	 /e" < 1 on D". Thus, gD.a; z/e
" � gD"

.a; z/, z 2 D".
On the other hand, gD.a; z/ � e�" when z 2 @D". Therefore, the function

v.z/ WD
(

gD"
.a; z/ 	 e�" if z 2 D";

gD.a; z/ if z 2 D nD";
is psh onD. Hence, v � gD.a; 	 / onD, which finally gives (4.5.9). The remaining
equation is a simple consequence of the definition of the Azukawa pseudometric.

�

Proof of Proposition 4.5.13. (a) Fix .a;X/ 2 D � Cn with AD.aIX/ ¤ 0; 23 in
particular, X ¤ 0. Suppose that there is a numberM > AD.aIX/ and a sequence
..aj ; Xj //j 2 D � .Cn n f0g/ converging to .a;X/ such that AD.aj IXj / � M ,
j 2 N. Fix then " 2 R>0 such that M > AD.aIX/ 	 e".

Put "0 WD 2". Then D"0.a/ b D".a/ (note that gD is continuous on D � xD,
where gD D 0 on D � @D).

Now we choose affine isomorphisms Fj 2 Aut.Cn/ (j � 1) such that

Fj .aj / D a; F 0
j .aj /Xj D X;

D"0.a/ b Fj .D".aj //; j 2 N large enough:

Then, by (4.5.10),

AD.aj IXj / 	 e" D AD".aj /.aj IXj / D AFj .D".aj //.Fj .aj /IF 0
j .aj /Xj /

D AFj .D".aj //.aIX/ � AD"0 .a/.aIX/ D AD.aIX/ 	 e"0

;

i.e. AD.aj IXj / � AD.aIX/ 	 e" < M ; a contradiction. Hence, AD is continuous.

23Note that AD is upper semicontinuous.



4.5. Holomorphically contractible families of pseudometrics 301

(b) Without loss of generality we may assume that a D 0 and AD.0IX/ > 0

(Exercise); in particular,X ¤ 0. Suppose now that there is a sequence .�j /j � C�,
�j ! 0, such that

1

j�j jgD.0; 0C �jX/ < AD.0IX/e�2"; j 2 N:

Since D" D D".0/ b D, we find a �0 2 .0; �/ such that ei�D" b D, j� j < �0.
Moreover, we may assume that �jX 2 D", j 2 N. Then

1

j�j jgD.0; e
i��jX/ � 1

j�j jgei�D"
.0; ei��jX/ D 1

j�j jgD"
.0; �jX/

D 1

j�j jgD.0; �jX/ 	 e" < AD.aIX/e�"; j� j < �0; j 2 N:

Fix r > 0 such that B.rkXk/ � D. Put

u.�/ WD
(
1

j� jgD.0; �X/ if � 2 K�.r/;
AD.0IX/ if � D 0:

Then logu 2 SH.K.r//.
By the upper semicontinuity of u there is a j0 such that �j 2 K.r/, j � j0, and

u.ei��j / < u.0/e
2�0"

2��2�0 DW u.0/e Q"; � 2 Œ��; ��:
On the other hand we already know that

u.ei��j / < u.0/e
�"; j 2 N; j� j < �0:

Applying the mean value inequality for the subharmonic function u yields for
large j ,

2�u.0/ �
Z 


�

logu.ei��j /d�

<

Z
j� j<�0

.logu.0/ � "/d� C
Z

	j� j>�0

logu.ei��j /d�

< 2�0.u.0/ � "/C .2� � 2�0/.u.0/C Q"/ D 2�u.0/I
a contradiction. �

Remark 4.5.16. Using the former argument one can even prove (Exercise) the
following sharper version of Proposition 4.5.13 whenD is a bounded hyperconvex
domain in Cn (cf. [Zwo 2000a]).

AD.aIX/ D lim
z0;z00!a
z0¤z00

z0�z00

kz0�z00k
!X

gD.z
0; z00/

kz0 � z00k ; .a; X/ 2 D � Cn; kXk D 1:
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Example 4.5.17 (Kobayashi–Royden pseudometric).

~D.aIX/ WD infft � 0 W 9'2O.D;D/ W '.0/ D a; t'0.0/ D Xg; 24 (4.5.11)

where D � Cn is a domain and .a;X/ 2 D � Cn.
Indeed, it is easily seen that ~D is a pseudometric. Now, let D D D 3 a. If

' 2 O.D;D/ is such that '.0/ D a and t'0.0/ D X 2 C�, t � 0, then

D 3 �  7�! '.�/ � a
1 � Na'.�/

belongs to O.D;D/,  .0/ D 0. Therefore, by the Schwarz lemma, we have 1 �
j 0.0/j D j'0.0/j

1�jaj2 , and so t D jX j=j'0.0/j � jX j=.1 � jaj2/. Hence, ~D.aIX/ �
�.aIX/. To get the converse inequality forX D 1 it suffices to take '.�/ D �Ca

1C Na� ,
� 2 D.

The proof of (4.5.3) is simple and therefore left as an Exercise.

First we collect a few simple properties of the Kobayashi–Royden pseudometric.

Exercise 4.5.18. Prove the following statements:
(a) ~D.aIX/ WD infft > 0 W 9'2O.xD;D/ W '.0/ D a; t'0.0/ D Xg.
(b) If .ıD/D is a holomorphically contractible family of pseudometrics, then

�D � ıD � ~D ,D � Cn a domain, i.e. .�D/D (resp. .~D/D) is the minimal (resp.
maximal) holomorphically contractible family of pseudometrics.

(c) If Dj % D and .a;X/ 2 D � Cn, then ~Dj
.aIX/ & ~D.aIX/ when

j ! 1.
(d) If D is taut and .a;X/ 2 D � Cn, then there exists an extremal analytic

disc ' 2 O.D;D/, i.e. '.0/ D a and ~D.aIX/'0.0/ D X . Such a ' is called a
~D-geodesic for .a;X/.

(e) LetD;G � Cn be domains and let F W G ! D be a holomorphic covering.
Assume that . Qz;X/ 2 G � Cn. Then ~G. QzIX/ D ~D.F. Qz/IF 0. Qz/X/. (See
Proposition 4.2.38.)

Moreover, we have:

Lemma 4.5.19. (a) If D D Dh � Cn is a pseudoconvex balanced domain with
Minkowski function h, then

~D.0IX/ D h.X/; X 2 Cn:

In particular, ~D.aI 	 / need not be continuous.
(b) ~D W D � Cn ! RC is upper semicontinuous.
(c) IfD is taut, then ~D is continuous onD � C.

24Note that the infimum is taken over a non-empty set of analytic discs.
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Proof. (a) By Example 4.5.10, ~D.0IX/ � AD.0IX/ D h.X/, X 2 Cn.
To discuss the converse inequality assume first that h.X/ ¤ 0. Then D 3

�
'7�! �X=h.X/ gives an analytic disc in D with '.0/ D 0 and h.X/'0.0/ D X ,

i.e. ~D.0IX/ � h.X/. If h.X/ D 0, then D 3 �
 k7��! �kX , k 2 N, gives an

analytic disc in D with 1
k
 0
k
.0/ D X , i.e. ~D.0IX/ D 0.

(b) Fix a point .a;X/ 2 D � Cn and assume that ~D.aIX/ < A for a certain
real number A. By Exercise 4.5.18 (d), there is an analytic disc ' 2 O.xD;D/ such
that '.0/ D a and t'0.0/ D X , where R>0 3 t < A is suitably chosen. Then '.xD/
is a compact subset ofD. In particular, a full "-neighborhood of '.xD/ is contained
in D. Now take z 2 B.a; "=4/ and Y 2 Cn with .1=t/kY �Xk < "=4. Then

 .�/ WD '.�/C .z � a/C .�=t/.Y �X/
leads to a  2 O.D;D/,  0.0/ D z and t 0.0/ D t'0.0/ C Y � X D Y ,
i.e. ~D.zIY / � t < A.

(c) is left as an Exercise. �

As a direct application we get

Corollary 4.5.20. Let Dj D Dhj
� Cn be balanced pseudoconvex domains,

j D 1; 2. If F 2 Bih0;0.D1;D2/, then F 0.0/ W D1 ! D2 is a linear isomorphism.

Proof. Let X 2 D1. Then

h2.F
0.0/X/ D ~D2

.0IF 0.0/X/ D ~D1
.0IX/ D h1.X/;

which immediately gives the proof. �

Remark 4.5.21. LetDj be bounded balanced pseudoconvex domains in Cn. By a
deep result of Kaup–Upmeier (see [Kau-Upm 1976], [Kau-Vig 1990]) it is known
that if Bih.D1;D2/ ¤ ¿, then Bih0;0.D1;D2/ ¤ ¿. In particular, if D1 is
biholomorphically equivalent to D2, then D1 is linearly equivalent to D2.

Exercise 4.5.22. Applying Lemma 4.5.19, prove:

(a) �Bn
.aIX/ D ~Bn

.aIX/ D
� kXk2

1�kak2 C jha;Xij2
.1�kak2/2

�1=2
: 25

(b) Bn is not biholomorphically equivalent to Dn, n � 2.
(c) Decide whether B3 and the domainD WD fz 2 C3 W jz1j4Cjz2j4Cjz3j4 < 1g

are biholomorphically equivalent (use Remark 4.5.21).

There is also another way to define the Kobayashi–Royden pseudometric which
will be important in the proof of Proposition 4.5.25.

25To get the equation for � use the fact that B is convex.
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Proposition 4.5.23. Let .a;X/ 2 D � Cn, X ¤ 0, where D is a domain in Cn.
Then

~D.aIX/D infft 2 R>0 W 9F 2O.Bn;D/ W F.0/D a; t
@F

@z1
.0/DX; det F 0.0/¤ 0g:

Proof. Only during this proof we will denote the right-hand side by z~D.aIX/.
Obviously, any mapping F in the formula for z~D.aIX/ induces an analytic disc
' 2 O.D;D/ by '.�/ D F.�; 0; : : : ; 0/. Hence, ~D.aIX/ � z~D.aIX/.

Now suppose that ~D.aIX/ < m < z~D.aIX/. Then there exist a t 2
.~D.aIX/;m/ and a ' 2 O.D;D/ such that '.0/ D a and t'0.0/ D X . Put

F".z/ WD .'1.z1/; '2.z1/C "z2; : : : ; 'n.z1/C "zn/; z 2 D � Cn�1; " > 0:

Obviously, det F 0
".0/ ¤ 0,F". 	 ; 0; : : : ; 0/ D ' on D, t @F"

@z1
.0/ D X . Now fix r < 1,

near 1. Then F1.r xD; 0; : : : ; 0/ is a compact subset in D. Thus we can choose a ı
small enough such that F1.r xD � ıD � 	 	 	 � ıD/ b D. Hence, if " is sufficiently
small, F" 2 O.Bn.r/;D/. Finally, define zF .z/ WD F".z=r/, z 2 Bn, which gives
the desired contradiction for r very near to 1. �

Lemma 4.5.24. Let a; z 2 Bn and let ' 2 O.D;Bn/, '.�0
0/ D a, '.�00

0/ D z,
and �0

0 ¤ �00
0 such that zk�

Bn
.a; z/ D zk�

Bn
.'.�0

0/; '.�
00
0// D m.�0

0; �
00
0/. Then

~Bn
.'.�/I'0.�// D �.�I 1/, � 2 D.
In particular, ' is a ~Bn

-geodesic for .'.�/; '0.�//, � 2 D.

Proof. Observe that zk�
Bn

D mBn
and ~Bn

D �Bn
(Exercise). Put

u.�/ WD mBn
.a; '.�//

m.�0
0; �/

; � 2 D n f�0
0g:

Recall that mBn
.a; 	 / is continuous; so, by its definition, it is log-psh. Therefore,

u is sh, u � 1, and u.�00
0/ D 1. Then, by the maximum principle, it follows that

u � 1 on D n f�00
0g. So

mBn
.a; '.�// D m.�0

0; �/; � 2 D:

Now we can repeat the same argument w.r.t. the first variable to get finally

mBn
.'.�0/; '.�00// D m.�0; �00/; �0; �00 2 D:

Fix �0 2 D. Then, by Lemma 4.5.3, we have

�.�0I 1/ D lim
�0¤�!�0

m.�0; �/

j�0 � �j
D lim
�0¤�!�0

mBn
.'.�0/; '.�//

j�0 � �j D �Bn
.'.�0/I'0.�0//: �
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Note that the definition of the Kobayashi–Royden pseudometric is of different
type than the ones of the previous pseudometrics. Nevertheless, if the domainD is
taut, then we have the following result (see [Pan 1994]).

Proposition 4.5.25. LetD b Cn be a taut domain. Then

~D.aIX/ D lim
C�3�!0

1

j�j
zkD.a; aC �X/

D lim
C�3�!0

1

j�j
zk�
D.a; aC �X/; .a;X/ 2 D � Cn:

? We do not know any example of a non-taut domain for which this result
becomes false although such an example seems very probable. ?

Proof. Note that it suffices to prove only the second formula. Suppose it is not true.
Then there are a point .a;X/ 2 D � Cn, X ¤ 0, and a sequence C� 3 �j ! 0

such that ˇ̌̌̌
1

j�j j
zk�
D.a; aC �jX/ � ~D.aIX/

ˇ̌̌̌
� "0 > 0 (4.5.12)

for some "0. Applying Proposition 4.2.11, we may choose zk�
D-geodesics 'j for

.a; a C �jX/, i.e. 'j 2 O.D;D/, 'j .0/ D a, 'j .tj / D a C �jX , and tj D
zk�
D.a; aC �jX/ > 0 (recall that D is bounded). Moreover, D is taut, so we may,

without loss of generality, assume that 'j ! ' 2 O.D;D/, '.0/ D a, locally
uniformly.

Fix B.a; r/ � D. Then, if j is sufficiently large,

1 D
zk�
D.a; aC �jX/

tj
�

zk�
B.a;r/.'j .0/; 'j .tj //

tj

� 1

r

k'j .0/ � 'j .tj /k
tj

! 1

r
k'0.0/k:

Hence, '0.0/ ¤ 0.
Fix an " 2 R>0. Then, by Proposition 4.5.23, we find an F 2 O.Bn;D/ and a

t > 0 such that F.0/ D a, det F 0.0/ ¤ 0, t @F
@z1
.0/ D '0.0/, and

0 < ~D.aI'0.0// � t � ~D.aI'0.0//C ":

Now we choose open neighborhoods U D U.0/ � Bn and V D V.a/ � D

such that F jU W U ! V is a biholomorphic mapping. Moreover, fix j0 such that
aC �jX 2 V and define qj WD .F jU /�1.aC �jX/, j � j0. Note that Bn is taut.
Hence we have zk�

Bn
-geodesics for all pairs .0; qj /, i.e. there exist  j 2 O.D;Bn/,

 j .0/ D 0,  j .�j / D qj , and zk�
Bn
.0; qj / D �j , j � j0.
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In virtue of Lemma 4.5.24, we conclude that ~Bn
.0I 0

j .0// D 1, j � j0.
Applying again that Bn is taut we may assume (without loss of generality) that

 j !  2 O.D;Bn/ locally uniformly. Obviously,  .0/ D 0. Then, because of
Lemma 4.5.19, we obtain

1 D ~Bn
.0I 0

j .0// ! ~Bn
.0I 0.0// D 1;

i.e.  is a ~Bn
-geodesic for the pair .0;  0.0//.

Note that

qj � 0
tj

D .F jU /�1.aC �jX/ � .F jU /�1.a/
tj

D .F jU /�1.'j .tj // � .F jU /�1.'j .0//
tj

! .F �1 B '/0.0/:

In particular, this limit exists and it is different from zero.
Observe that

F B  j .0/ D F.0/ D a D 'j .0/;

F B  j .�j / D F.qj / D aC �jX D 'j .tj /:

Therefore,

tj D zk�
D.a; aC �jX/ D zk�

D.F. j .0//; F. j .�j /// � zk�
Bn
. j .0/;  j .�j // D �j

for j � j0. In particular, 1 � j
tj

.
Recall that

lim
j!1

F B  j .�j / � F B  j .0/
�j

D .F B  /0.0/ ¤ 0

and

0 ¤ '0.0/ D lim
j!1

'j .tj / � 'j .0/
tj

D lim
j!1

aC �jX � a
tj

D lim
j!1

F B  j .�j / � F B  j .0/
�j

�j

tj
:

Hence, lim j
tj

DW A � 1 exists. Moreover, we have

'0.0/ D A.F B  /0.0/ D AF 0.0/ 0.0/:

Taking into account that t @F
@z1
.0/ D '0.0/ finally leads to A 0.0/ D te1 D

t .1; 0; : : : ; 0/. Then

1 D ~Bn
.0I 0.0// D t

A
~Bn

.0I e1/ D t

A
;
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i.e. A D t and, therefore, 1 � A D t � ~D.aI'0.0// C ". Then, letting " & 0,
gives 1 � ~D.aI'0.0// � 1. Hence, ' is a ~D-geodesic for the pair .a; '0.0//.

Note that

'0.0/ D lim
j!1

'j .tj / � 'j .0/
tj

D lim
j!1

aC �jX � a
tj

D X lim
j!1

�j

tj
:

So we conclude

lim
j!1

zk�
D.a; aC �jX/

j�j j D ~D.aI'0.0// lim
j!1

tj

j�j j D ~D.0IX/I

a contradiction to (4.5.12). �

Working with the Kobayashi pseudometric we always have

Proposition 4.5.26. LetD � Cn be a domain and .a;X/ 2 D � Cn. Then

lim sup
C�3�!0

1

j�jkD.a; aC �X/ � ~D.aIX/:

Proof. If " > 0 is given, then we find an analytic disc ' 2 O.D;D/ with the
following properties:

'.0/ D a; t'0.0/ D X; 0 < t < ~D.aIX/C ":

Then ' can be written as

'.�/ D aC �

t
X C �2 Q'.�/; � 2 D;

where Q' 2 O.D;Cn/. Fix B.a; r/ � D and then take only such � 2 C� with
j�jt < 1 and aC �X 2 B.a; r/. Hence,

1

j�jkD.a; aC �X/ � 1

j�jkD.a; '.t�//C 1

j�jkD.'.t�/; aC �X/

� 1

j�jkD.'.0/; '.t�//C 1

r j�jkt
2�2 Q'.t�/k

� 1

j�jp.0; t�/C t2j�j
r

k Q'.t�/k:

Letting � ! 0 leads to

lim
C�3�!0

1

j�jkD.a; aC �X/ � t � ~D.aIX/C ":

Since " was arbitrarily small, the proposition is verified. �
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But even if one sharpens the notion of the “derivative” of kD there is, in general,
no equality with the Kobayashi–Royden pseudometric as the following example
shows.

Example 4.5.27. Put

D WD fz 2 D2 W jz1z2j < r2g; where 0 < r < 1=2:

Fix points z0; z00 2 D2, jz0
j j < r2, jz00

j j < r2, j D 1; 2. Then

kD.z
0; z00/ � kD.z

0; .z00
1 ; z

0
2//C kD..z

00
1 ; z

0
2/; z

00/ � p.z0
1; z

00
1/C p.z0

2; z
00
2/:

(Exercise). If we discuss the following general differential quotient at 0 in direction
of .r; r/, then by the former inequality we obtain

lim sup
a!0

X!.r;r/
C�3�!0

1

j�jkD.a; aC �X/

� lim sup
a!0

X!.r;r/
C�3�!0

1

j�jp.a1; a1 C �X1/C lim sup
a!0

X!.r;r/
C�3�!0

1

j�jp.a2; a2 C �X2/ D 2r:

On the other hand, ~D.0I .r; r// D 1 (use Lemma 4.5.19), i.e. the “differential
quotient” of the Kobayashi distance is different from the Kobayashi–Royden pseu-
dometric.

The defect shown in the example has led S. Kobayashi to introduce a new
pseudometric (see [Kob 1990]).

Example 4.5.28 (Kobayashi–Busemann pseudometric).

y~D.aI 	 / WD supfq W q a C–seminorm; q � ~D.aI 	 /g; a 2 D; (4.5.13)

where D � Cn is a domain.
Indeed, in the case whereD D D we know that ~D.aI 	 / D �C.aI 	 / is a norm.

Hence, y~D D � . To see (4.5.3) let F 2 O.G;D/ and a 2 G. Take a seminorm q

with q � ~D.F.a/I 	 /. Then

q.F 0.a/X/ � ~D.F.a/IF 0.a/X/ � ~G.aIX/:
In particular, Qq WD q.F 0.a/ 	 / is a seminorm below of ~G.aI 	 /. Therefore, Qq �
y~G.aI 	 /. Since q was an arbitrary seminorm, we have (4.5.3).

Note that, by definition, y~D.aI 	 / is a seminorm.
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Exercise 4.5.29. LetD D Dh � Cn be a pseudoconvex balanced domain. Give a
formula for y~D.0IX/, X 2 Cn.

Finally, we mention the following result by M. Kobayashi (see [Kob 2000]) that
makes it possible to think of the Kobayashi–Busemann pseudometric as a derivative
of the Kobayashi pseudodistance.

Proposition 4.5.30. LetD b Cn be a taut domain. Then

y~D.aIX/ D lim
.b;Y /!.a;X/

C�3�!0

1

j�jkD.b; b C �Y /; .a;X/ 2 D � Cn:

What we have seen is that sometimes the pseudometrics introduced here are in
a strong relation with certain pseudodistances, i.e. they might be thought of as a
derivative of the corresponding pseudodistances. Conversely, one may associate to
a pseudometric its so-called integrated form to get either a new pseudodistance or
even the one we start from. Here we will restrict ourselves only to the case of the
Kobayashi–Royden pseudometric. For further information the reader is referred to
[Jar-Pfl 1993] or [Jar-Pfl 2005].

Let D � Cn. Note that ~D is upper semicontinuous. Hence, if ˛ W Œ0; 1� ! D

is a piecewise C1-curve, then the integral L~D
.˛/ WD R 1

0
~D.˛.t/I˛0.t//dt exists.

We call the number L~D
.˛/ the ~D-length of the curve ˛. Using this notion we

define.

Definition 4.5.31. Let D be as above. Put
R

~D W D �D ! RC as

.s ~D/.a; b/ WD inffL~D
.˛/ W ˛ 2 yC 1.Œ0; 1�;D/; ˛.0/ D a; ˛.1/ D bg;

a; b 2 D:
s ~D is called the integrated form of ~D .

Note that .s ~D/D is a holomorphically contractible family of pseudodistances
(Exercise). Therefore, s ~D � kD . Even more is true, namely the integrated form
leads back to the Kobayashi pseudodistance.

Proposition 4.5.32. IfD � Cn, then s ~D D kD .

Proof. It remains to show that kD � s ~D . Suppose that the opposite is true,
i.e. there are points a; b 2 D and a piecewise C1-curve ˛ W Œ0; 1� ! D connecting
a and b such that L~D

.˛/ < kD.a; b/. Observe that there are numbers 1 D
s0 < s1 < 	 	 	 < sN D 1 such that all j̨ WD ˛jŒsj �1;sj � are C1-curves. Then

L~D
.˛/ D PN

jD1L~D
. j̨ / <

PN
jD1 kD.˛.sj�1/; j̨ /. Therefore, without loss of

generality, we may assume that ˛ is a C1-curve.
Put f .t/ WD kD.a; ˛.t//, t 2 Œ0; 1�.
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Fix a t0 2 Œ0; 1� and B.˛.t0/; 2r/ � D. Then, if ı is sufficiently small, we
conclude that ˛.t/ 2 B.˛.t0/; r/ whenever jt � t0j < ı and t 2 Œ0; 1�.

If now t; s 2 Œ0; 1� \ .t0 � ı; t0 C ı/, then

jf .s/ � f .t/j D jkD.a; ˛.s// � kD.a; ˛.t//j
� kD.˛.s/; ˛.t// � Ct0k˛.s/ � ˛.t/k � zCt0 js � t j;

i.e. the function f is locally Lipschitz. Therefore, f is almost everywhere differ-
entiable and

kD.a; b/ D
Z 1

0

f 0.t/dt:

What remains is to estimate f 0:

jf 0.t/j � lim
h!0C

jf .t C h/ � f .t/j
h

� lim sup
h!0C

kD.˛.t C h/; ˛.t//

h

� lim sup
h!0C

kD.˛.t/; ˛.t/C h˛0.t//
h

C lim sup
h!0C

kD.˛.t C h/; ˛.t/C h˛0.t//
h

� ~D.˛.t/I˛0.t//C lim sup
h!0C

Ctk˛.t/C h˛0.t/ � ˛.t C h/k
h

D ~D.˛.t/I˛0.t//

for almost all t 2 Œ0; 1/. Here we have used Proposition 4.5.26 in the last line.
Hence, kD.a; b/ � L~D

.˛/; a contradiction. �

Exercise 4.5.33. Formulate what is meant by s y~D and prove that kD D s y~D .

4.6 Examples II – elementary Reinhardt domains

In this section we briefly discuss the formulas for some families of holomorphically
contractible pseudometrics with respect to the elementary Reinhardt domains.

In the one-dimensional case we have

Proposition 4.6.1. (a) Let A D A.1=R;R/, where R > 1, and a 2 A \ RC. Put
a D R1�2s . Then

~A.aI 1/ D �

4a logR sin.�s/
:

(b) Let a 2 D� \ RC, then ~D�.aI 1/ D �1
2a loga .

Proof. Note that A and D� are taut domains (Exercise). Hence the formulas follow
directly from Theorem 4.4.1, Corollary 4.4.2, and Proposition 4.5.25. �
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Observe that �D� D �D, AD� D AD on D� � C.
Now we turn to the discussion of elementary Reinhardt domains D˛ in higher

dimensions. Let D˛ � Cn be given and fix a pair .a;X/ 2 D˛ � Cn. For the
remaining part of this section we will always assume that (see Section 4.4):

� n � 2;
� ˛1; : : : ; ˛s < 0 and ˛sC1; : : : ; ˛n > 0 for an s D s.˛/ 2 f0; 1; : : : ; ng;
� if s < n, then t D t .˛/ WD minf˛sC1; : : : ; ˛ng;
� a D .a1; : : : ; an/ 2 D˛ , a1 	 	 	 ak ¤ 0, akC1 D 	 	 	 D an D 0 for a

k D k.a/ 2 fs; : : : ; ng;
� if k < n, then r D r.a/ D r˛.a/ WD ˛kC1 C 	 	 	 C ˛n; if k D n (in

particular, if s D n), then r D r.a/ D r˛.a/ WD 1; observe that if ˛ 2 Zn, then
r.a/ D orda.z˛ � a˛/;

� if D˛ is of rational type, then ˛ 2 Zn and ˛1; : : : ; ˛n relatively prime;
� if D˛ is of irrational type and s < n, then t .˛/ D 1.

The following effective formulas for holomorphically contractible pseudomet-
rics for D˛ are known ([Jar-Pfl 1993], [Pfl-Zwo 1998], and [Zwo 2000]).

Theorem 4.6.2. Under the above assumptions we have:

˛ �D˛
.aIX/ AD˛

.aIX/
Rational type �.a˛I a˛Pn

jD1 j̨Xj

aj
/ .�.a˛IF.r/.a/.X///1=r

Irrational type, k < n 0 .
Qk
jD1 jaj j j̨

Qn
jDkC1 jXj j j̨ /1=r

Irrational type, k D n 0 0

where F.z/ WD z˛ and F.r/.a/.X/ WD P
jˇ jDr 1

ˇŠ
DˇF.a/Xˇ .

˛ ~D˛
.aIX/

Rational type, s < n

(
�..a˛/1=t I .a˛/1=t 1

t

Pn
jD1 j̨Xj

aj
/; k D n

.ja1j˛1 	 	 	 jakj˛k jXkC1j˛kC1 	 	 	 jXnj˛n/1=r ; k < n

Rational type, s D n ~D�.a
˛I a˛Pn

jD1 j̨Xj

aj
/

Irrational type, s < n

(
�.ja˛jI ja˛jPn

jD1 j̨Xj

aj
/; k D n

.ja1j˛1 	 	 	 jakj˛k jXkC1j˛kC1 	 	 	 jXnj˛n/1=r ; k < n

Irrational type, s D n ~D�.ja˛jI ja˛jPn
jD1 j̨Xj

aj
/

Proof. In the case of the Carathéodory–Reiffen (resp. the Azukawa) pseudometric
use Theorem 4.4.4 and Lemma 4.5.3 (c) (resp. (4.5.8)).
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To prove the corresponding formulas for ~ we will need several steps.

Proof for ~D˛
– the case k < n. The estimate from below follows immediately by

applying ~D˛
.aIX/ � AD˛

.aIX/ and the formula for AD˛
. So the upper estimate

remains.
In a first step assume that XkC1 	 	 	Xn ¤ 0. Put

� WD �ja1j˛1 	 	 	 jakj˛k jXkC1j˛kC1 	 	 	 jXnj˛n
�1=r

> 0:

In virtue of Exercise 4.4.12, we find functions  D . 1; : : : ;  n/ 2 O.D;Cn�/
satisfying

 j .0/ D aj ;  
0
j .0/ D Xj =�; j D 1; : : : ; k;  j .0/ D Xj =�; j D kC 1; : : : ; n;

and  ˛1

1 	 	 	 ˛n
n D ei� idD for some � . Then the holomorphic mapping

D 3 � 7! '.�/ WD . 1.�/; : : : ;  k.�/; � kC1.�/; : : : ; � n.�// 2 D˛

fulfills the following properties: '.0/D a and �'0.0/DX . Hence, ~D˛
.aIX/� � .

IfXj0
D 0 for some j0 2 fkC1; : : : ; ng, then we have the holomorphic mapping

Ck� � Cn�k�1 3 .z1; : : : ; zj0�1; zj0C1; : : : ; zn/
7! .z1; : : : ; zj0�1; 0; zj0C1; : : : ; zn/ 2 D˛:

Therefore,

0 D ~Ck
��Cn�k�1

�
.a1; : : : ; aj0�1; aj0C1; : : : ; an/I
.X1; 	 	 	 ; Xj0�1; Xj0C1; : : : ; Xn/

� � ~D˛
.aIX/;

which proves the remaining case. �

Lemma 4.6.3. Let a 2 D˛ \ Cn� and X 2 Cn such that
Pn
jD1 j̨Xj

aj
D 0. Then

~D˛
.aIX/ D 0.

Proof. Observe that for 	 2 D� the mapping F� W Cn�1 ! Cn,

F�.z1; : : : ; zn�1/ WD .e˛nz1 ; : : : ; e˛nzn�1 ; 	e�˛1z1�����˛n�1zn�1/;

belongs to O.Cn�1;D˛/. Then there are a 	0 2 D� and a Qz D .z1; : : : ; zn�1/ 2
Cn�1 such that F�0

. Qz/ D a and F 0
�0
. Qz/Y D X , where Y D .X1; : : : ; Xn�1/.

Hence,

0 D ~Cn�1. QzIY / � ~D˛
.aIX/;

i.e. the proof is finished. �
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Proof for ~D˛
– the case s < n D k. First we recall that (Proposition 4.5.26)

~D˛
.aIX/ � lim sup

C�3�!0

kD˛
.a; aC �X/

j�j :

Evaluating the right-hand side leads (by a trivial calculation) to the claimed formula
for ~D˛

.aIX/. Hence the estimate from below is verified.
We continue with the estimate from above. In virtue of Lemma 4.6.3, we may

assume that
Pn
jD1 j̨Xj

aj
¤ 0 and t D ˛n (recall that t D 1 in the irrational case).

By the symmetry of D˛ we also assume that aj > 0, j D 1; : : : ; n.

Now put �0 WD .a˛/1=˛n 2 D \ .0; 1/ and � WD �0
Pn
jD1 j̨Xj

aj
. In virtue of

Exercise 4.4.12, we find a ' 2 O.D;D˛/ such that

'.�0/ D a; �'0.�0/ D X:

Hence, � � ~D˛
, which gives the desired estimate from above. �

Proof for ~D˛
– the case s D n. We leave this last case as an Exercise for the

reader. Use the ideas of the corresponding case for the Lempert function and
Exercise 4.5.18 (e). � �

4.7 Hyperbolic Reinhardt domains

We know that, in general, cD (resp. kD) need not be distances. We define

Definition 4.7.1. Let D � Cn be a domain and let dD 2 fcD;kD; zk�
Dg. D is said

to be d -hyperbolic if dD.a; b/ D 0, a; b 2 D, implies that a D b.

In particular, D is c- (resp. k-) hyperbolic if and only if cD (resp. kD) is a
distance on D (in the sense of metric spaces).

Note that (Exercise)
� any bounded domain is c-hyperbolic;
� any c-hyperbolic domain is k-hyperbolic;
� any k-hyperbolic domain is zk-hyperbolic.
In the class of pseudoconvex Reinhardt domains we have a complete description

of those domains which are hyperbolic.

Theorem 4.7.2 ([Zwo 1999]). LetD � Cn be a pseudoconvex Reinhardt domain.
Then the following properties are equivalent:

(i) D is c-hyperbolic;

(ii) D is k-hyperbolic;

(iii) D is zk-hyperbolic;

(iv) D is Brody hyperbolic;
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(v) there exists A D Œaj;k�1�j;k�n 2 GL.n;Z/, such that D � Tn
jD1 Cn. j̨ /,

where j̨ WD .aj;1; : : : ; aj;n/, and ˚A W D ! Cn,

˚A.z/ WD .z˛1 ; : : : ; z˛n/; z 2 D;
maps D biholomorphically onto its image ˚A.D/ which is a bounded Rein-
hardt domain of holomorphy.

Proof. Obviously, (i) ) (ii), (ii) ) (iii), and (v) ) (i).
Now assume (iii). Suppose D is not Brody hyperbolic. Then we find a ' 2

O.C;D/, ' 6� c. Therefore, zkD.'.�/; '.0// � zkC.�; 0/ D 0, � 2 C. Since D is
zk-hyperbolic, it follows that ' is the constant function '.0/; a contradiction.

Recall that (iv) ) (v) follows directly from Theorem 1.17.11. �

Consequently, this result allows us to speak only of hyperbolic pseudoconvex
Reinhardt domains.

In the general situation there is a reformulation of k-hyperbolicity in terms of
the Kobayashi–Royden pseudometric. More precisely, the following statement is
true.

Lemma 4.7.3. For a domainD � Cn the following properties are equivalent:

(i) D is k-hyperbolic;

(ii) for any point a 2 D and any neighborhood U D U.a/ � D there exist
neighborhoods zU D zU.a/ � U and V D V.0/ � D such that if ' 2
O.D;D/, '.0/ 2 zU , then '.V / � U .

(iii) D is ~-hyperbolic, i.e. 8a2D 9UDU.a/�D 9c>0 W ~D.zIX/ � ckXk; z 2
U; X 2 Cn.

Proof. (i) ) (ii): Fixa andU as in (ii) and choose an r > 0 such that B.a; 2r/ � U .
Then kD.a; z/ > 0 whenever z 2 @B.a; r/. By assumption, kD.a; 	 / � c > 0 on
@B.a; r/ (recall that kD.a; 	 / is continuous).

Now take a point z 2 D n B.a; r/ and a piecewise C1-curve ˛ W Œ0; 1� ! D,
which connects a and z. Then

L~D
.˛/ �

Z t0

0

~D.˛.t/I˛0.t//dt � kD.a; '.t0// � c;

where ˛.t/ 2 B.a; r/, t 2 Œ0; t0/, and ˛.t0/ 2 @B.a; r/. Therefore, kD.a; z/ � c.
Hence we have shown that the kD-ball BkD

.a; c/ � B.a; r/ � U .26 Put zU WD
BkD

.a; c=2/ and V WD BkD.0; c=2/ � D. Now let ' 2 O.D;D/ with '.0/ 2 zU .
If � 2 V , then

kD.a; '.�// � kD.a; '.0//C kD.'.0/; '.�// � c=2C kD.0; �/ � c:

26Recall that Bd .a; r/ WD fx 2 X W d.x; a/ < rg.
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Hence, '.V / � U .
(ii) ) (iii): Fix an a 2 D and put U WD B.a; r/ b D. Then choose V D

V.0/ � D and zU D zU.a/ � U according to the assumption in (ii). If now
' 2 O.D;D/ with '.0/ 2 zU and t'0.0/ D X , then '.V / � U .

Fix an s > 0 such thatK.s/ � V . Then we conclude that 'jK.s/ 2 O.K.s/; U /.
Put Q'.�/ WD '.s�/. Then Q' 2 O.D; U / satisfying Q'.0/ D '.0/ and t

s
Q'0.0/ D X .

Hence

~D.zIX/ � s~U .zIX/ � ckXk; z 2 zU ; X 2 Cn;

where c is a certain positive number.
(iii) ) (i): Fix two different points a; b 2 D. By assumption, we may choose

a neighborhood U D U.a/ � D such that ~D.zIX/ � ckXk for a certain c > 0,
z 2 U . Fix now an r > 0 such that b … B.a; 2r/ � U .

Let ˛ W Œ0; 1� ! D be a piecewise C1-curve in D which connects a and b. Let
t0 be that time such that ˛.t/ 2 B.a; r/ for all t 2 Œ0; t0/ and ˛.t0/ 2 @B.a; r/.
Then

L~D
.˛/ � L~D

.˛jŒ0;t0�/ � c

Z t0

0

k˛0.t/kdt � cr > 0:

Hence, kD.a; b/ � cr ; in particular, D is k-hyperbolic. �

Exercise 4.7.4. (a) Prove that a domain D is k-hyperbolic iff topD D top kD .
Here topD means the standard topology onD, where top kD is the topology onD
that is induced by the Kobayashi pseudodistance.

(b) Prove the following generalization of Cartan’s theorem (see Theorem 2.1.7):

Let D � Cn be a k-hyperbolic domain, let a 2 D, and let ˚ W D ! D be a
holomorphic mapping such that ˚.a/ D a and ˚ 0.a/ D id. Then ˚ D id.

Use (a) to get the bounded situation.

Moreover, we have

Proposition 4.7.5. Any taut domainD � Cn is k-hyperbolic.

Proof. Suppose thatD is not k-hyperbolic. Then, in virtue of Lemma 4.7.3 (ii), we
find a z0 2 D, a neighborhood U D U.z0/ � D, a sequence �j ! 0 in D, and a
sequence .'j /j � O.D;D/ such that 'j .0/ ! z0, but 'j .�j / … U , j 2 N. Since
'j .0/ ! z0, there is no subsequence which is locally uniformly divergent. And
because of 'j .�j / … U , j 2 N, there is no subsequence tending locally uniformly
to a ' 2 O.D;D/; a contradiction. �

To get another large class of k-hyperbolic domains we prove the following result
which is due to [DDT-Tho 1998].
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Proposition 4.7.6. Let u W D ! Œ�1;1/ be upper semicontinuous and locally
bounded from below. Then

D WD fz 2 D � C W jz2jeu.z1/ < 1g
is a k-hyperbolic domain.

Proof. In virtue of Lemma 4.7.3 it suffices to show that ~D is locally positive
definite, i.e. for any point z0 2 D there exist U D U.z0/ � D and c > 0 such that
~D.zIX/ � ckXk, z 2 U , X 2 C2.

By assumption we have

g.r/ WD inffu.�/ W j�j � rg > �1; r 2 .0; 1/:
Fix s 2 .0; 1/, z0 2 .sD � C/ \D, and X 2 C2, X ¤ 0. Now choose an analytic
disc ' D .'1; '2/ 2 O.D;D/ such that '.0/ D z0 and t'0.0/ D X for a certain
t 2 .0; 1/. In virtue of the Schwarz lemma we have j'0

1.0/j � 1 � jz0
1j2 � 1.

Put s0 WD 1C2s
2Cs . Note that s0 < 1. Suppose j'1.�0/j � s0 for a �0 2 D. Then

the Schwarz lemma implies that

j�0j �
ˇ̌̌̌
'1.�0/ � z0

1

1 � z0
1'1.�0/

ˇ̌̌̌
� j'1.�0/j � jz0

1j
1 � j'1.�0/jjz0

1j
� s0 � jz0

1j
1 � s0jz0

1j
� s0 � s
1 � s0s D 1

2
:

Put ˝ WD f� 2 D W j'1.�/j < s0g. Then j'2.�/j � e�g.s0/, � 2 ˝, and
K.1=2/ � ˝. Thus, j'0

2.0/j � 2e�g.s0/ (Schwarz lemma). Hence

t � max
�
jX1j; jX2j

se�g.s0/


� 1p

2
min

�
1;

1

2e�g.s0/


kXk DW t .s/kXk:

Since ' was arbitrarily chosen we have

~D.zIX/ � t .s/kXk; .z; X/ 2 �.sD � C/ \D� � C2:

Hence, D is k-hyperbolic. �

The result allows us to present a k-hyperbolic pseudoconvex domain which is
not c-hyperbolic. Thus the general situation is more complicated than the one inside
the class of pseudoconvex Reinhardt domains.

Example 4.7.7 ([Sib 1981]). Choose a sequence .aj /j � D of pairwise different
points aj such that any boundary point � 2 @D is the nontangential limit of a
subsequence of .aj /j . The reader is asked (Exercise) to construct such a sequence.
Moreover, we choose natural numbers mj and nj , j 2 N, such that

� nj < mj , j 2 N,

� P1
jD1 1

nj
log jaj j

2
< �1,
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� K.aj ; 3e
�jmj / \K.ak; e�kmk / D ¿, j ¤ k,

� K.aj ; 3e
�jmj / � D.

Finally, we define

u.�/ WD
1X
jD1

1

nj
max

�
� jmj ; log

j� � aj j
2


; � 2 D:

Then u 2 C.D/ \ SH.D/ (Exercise). In particular, u is locally bounded from
below. Therefore, by Proposition 4.7.6, we see that

D WD fz 2 D � C W jz2jeu.z1/ < 1g
is a k-hyperbolic domain. Observe that D is even pseudoconvex (Exercise).

On the other hand, let f 2 H1.D/. Then f .z/ D P1
jD1 hj .z1/z

j
2 , where the

hj ’s are holomorphic on D. Then, using the Cauchy inequalities and the maximum
principle for holomorphic functions leads to hj D 0, j � 1. So f depends only on
the variable z1. In particular, cD..z1; z2/; .z1; 0// D 0whenever z D .z1; z2/ 2 D.
Hence, D is not c-hyperbolic.

4.8 Carathéodory (resp. Kobayashi) complete Reinhardt
domains

Let D � Cn be a bounded domain. Then we know that .D; cD/ (resp. .D;kD/)
are metric spaces in the usual sense. In general, let dD 2 fcD;kDg. We define

Definition 4.8.1. Let D � Cn be a given domain.
(a) D is said to be d -complete if it is d -hyperbolic and any dD-Cauchy

sequence .zj /j2N � D converges in the standard topology to a point z� 2 D,
i.e. kzj � z�k ! 0.

(b)D is said to be d -finitely compact27 if it is d -hyperbolic and if for any a 2 D
and any r > 0 the dD-ball BdD

.a; r/ is relatively compact in D in sense of the
standard topology of D.

Remark 4.8.2. (a) Observe that if D is d -finitely compact, then D is d -complete
(use that dD is continuous).

(b) Any c-complete domain is d -complete.
(c) Any c-complete domain is a domain of holomorphy (Exercise).
(d) Recall that if D is k-hyperbolic, then topD D top kD . Therefore one may

formulate k-complete (resp. k-finitely compact) by using top kD instead of topD.
Note that in case of c there are examples showing that the topologies top cD and
topD are different (see [Jar-Pfl 1993]).

27This notion is taken from standard differential geometry; see the theorem of Hopf–Rinow.



318 Chapter 4. Holomorphically contractible families on Reinhardt domains

(e) For a c-hyperbolic plane domain D we have: D is c-complete iff D
is c-finitely compact. This result is due to [Sel 1974] and [Sib 1975] (see also
[Jar-Pfl 1993], Theorem 7.4.7).

(f) ? In the case of a domainD in Cn, n � 2, it is still an open question, whether
c-completeness implies c-finitely compactness. ? On the other hand, in the class
of general complex spaces there are counterexamples; see [Jar-Pfl-Vig 1993].

(g) IfF 2 Bih.D1;D2/ and ifD1 is d -complete, thenD2 is d -complete, where
d 2 fc;kg.

Dealing with the Kobayashi distance we have that both notions are the same.

Proposition* 4.8.3. Let D be a k-hyperbolic domain in Cn. Then the following
properties are equivalent:

(i) D is k-complete;

(ii) D is k-finitely compact.

Here we will not present a proof of this result. But we mention that the former
result is a particular case of a result where one deals with continuous inner distances
(note that kD satisfies these properties). The main idea is taken from differential
geometry. Details may be found in [Jar-Pfl 1993], Theorem 7.3.2.

Next we mention the following necessary conditions for a domain to be k-com-
plete.

Lemma 4.8.4. Any k-complete domain is taut. In particular, it is a domain of
holomorphy .use Exercise 1.17.21 and the solution of the Levi problem/.

Proof. Take a sequence .'j /j2N � O.D;D/. Suppose that this sequence is not
locally uniformly divergent. So we find compact setsK � D andL � D such that,
without loss of generality, 'j .�j / 2 L, where �j 2 K. Fix a point a 2 L and an
r 2 .0; 1/ such that K � K.r/. Then, for any � 2 K.r/, we have

kD.'j .�/; a/ � kD.'j .�/; 'j .�j //C kD.'j .�j /; a/

� p.�; �j /C supfkD.z; a/ W z 2 Lg � C.r/:

Hence, [
j2N

'j .K.r// � BkD
.a; C.r// b D:

What remains is to apply Montel’s theorem. �

In case of Reinhardt domains even the following converse statement is true.

Theorem 4.8.5. Any hyperbolic pseudoconvex Reinhardt domains D � Cn is
k-complete.
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In order to be able to prove Theorem 4.8.5 we need the following localization
result due to Eastwood (see [Jar-Pfl 1993], Theorem 7.7.5).

Lemma 4.8.6. Let D � Cn be a bounded domain. Assume that for any b 2 @D

there exists a bounded neighborhood U D U.b/ of b such that any connected
component U 0 of D \ U satisfies the following condition: if a 2 U 0 and U 0 3
bk ! b, then kU 0.a; bk/ ! 1. ThenD is k-complete.

Proof. Suppose the contrary. Then we find a b 2 @D and a kD-Cauchy sequence
.zj /j2N � D such that zj ! b 2 @D. Let U D U.b/ be the neighborhood
whose existence is known from the assumption. ChooseR > 0 such that U [D �
Bn.R/ DW V . By Exercise 4.7.4, U is open in top kV , i.e. BkV

.b; 2s/ � U for a
certain positive s.

Then we find a j0 2 N such that

kD.z
j ; z`/ < s=3 and zj 2 BkV

.b; s=3/; j; ` � j0:

Fix a j � j0. Then there exist k 2 N, '� 2 O.D;D/, and �� 2 D, � D 1; : : : ; k,
such that

'1.0/ D zj0 ; '�.��/ D '�C1.0/; � D 1; : : : ; k � 1;

'k.�k/ D zj ;

kX
�D1

p.0; ��/ < s=3:

Let � 2 Bp.0; s/ � D and 1 � � � k. Then

kV .'�.�/; b/ � kV .'�.�/; '�.0//C kV .'�.0/; z
j /C kV .z

j ; b/

� p.�; 0/C
kX

�D�
kV .'�.0/; '�.��//C s=3

< s C
kX

�D1
p.0; ��/C s=3 � 2s;

i.e. '�.Bp.0; s// � U , � D 1; : : : ; k.
Note thatBp.0; s/ is a disc with center 0. We choose a biholomorphic dilatation


 W D ! Bp.0; s/ and put Q'� WD '� B 
 2 O.D;D \ U/. Observe that

Q'1.0/ D zj0 ; Q'�.
�1.��// D Q'�C1.0/; 	 D 1; : : : ; k � 1;
Q'k.
�1.�k// D zj ;

and
Pk
�D1 p.0; 
�1.��// � c

Pk
�D1 p.0; ��/ < cs for some c > 0 which is

independent of j . Note that, by construction, the points zj , j � j0, belong to
one connected component U 0 of D \ U . Hence, kU 0.zj0 ; zj / � cs, j � j0; a
contradiction. �
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Proof of Theorem 4.8.5. By the hyperbolicity condition we may assume that D is
bounded and D � Dn. The proof is done by induction. The one-dimensional case
is obvious (use the explicit formulas from Section 4.4). Now let D � Cn, n � 2,
and assume that the theorem is true for all smaller dimensions. We will show thatD
fulfills the condition in Lemma 4.8.6.

So let us fix a b 2 @D. There are different cases to discuss.
Case b 2 Cn�: Let us choose a polycylinder P.b; r/ b Cn�. Put

V WD fz 2 Cn W jjzkj � jbkjj < r; k D 1; : : : ; ng:
Then V is a Reinhardt neighborhood of b. Denote by V 0 a connected component
of D \ V . Then V 0 is a Reinhardt domain of holomorphy and fulfills the Fu
condition. Fix an a 2 V 0 and a sequence V 0 3 bk ! b (if it exists). In virtue
of Theorem 1.13.19, there is a function f 2 O.V 0;D/ such that f .a/ D 0 and
jf .bk/j ! 1. Therefore,

kV 0.a; bk/ � tanh�1 mV 0.a; bk/ � tanh�1 jf .bk/j ! 1;

i.e. b fulfills the condition in Lemma 4.8.6.
Case b 2 V0 n f0g: We may assume that b D .b1; : : : ; bk; 0; : : : ; 0/ D .b0; 0/ 2

Ck� � Cn�k , where 1 � k � n � 1.
First assume that D \ Vj ¤ ¿, k C 1 � j � n. Then, by Corollary 1.11.16,

prCk .D/ DW D0 � Ck is a Reinhardt domain of holomorphy and b0 2 @D0. Fix
a 2 D and D 3 bk ! b. Then prCk .bk/ ! b0. By induction hypothesis,

kD.a; b
k/ � kD0.prCk .a/; prCk .bk// ! 1;

i.e. b satisfies the condition in Lemma 4.8.6 with U D Cn.
Assume that there is a j0 2 fk C 1; : : : ; ng with D \ Vj0

D ¿; without
loss of generality, let j0 D n. Then D 3 z 7! zn defines a holomorphic map
F 2 O.D;C�/ and F.D/ is bounded. Therefore, F.D/ � K�.r/. Note that
K�.r/ is k-complete. Hence, if a 2 D and D 3 bk ! b, then

kD.a; b
k/ � kK�.r/.F.a/; F.b

k// ! 1;

i.e. b fulfills the condition in Lemma 4.8.6 with U D U.b/ D Cn.
Case b D 0: If D \ Vj0

D ¿ for a j0, then one argues as just before. On the
other hand,D \ Vj ¤ ¿ for all j D 1; : : : ; n is impossible, sinceD is a Reinhardt
domain of holomorphy. �

In case of Carathéodory finitely compactness we have the following reformula-
tion in terms of bounded holomorphic functions.

Lemma 4.8.7. Let D be a c-hyperbolic domain in Cn. Then the following prop-
erties are equivalent:
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(i) D is c-finitely compact;

(ii) for any a 2 D and any sequence .zj /j2N � D without accumulation points
in D there exists an f 2 O.D;D/ with f .a/ D 0 and supfjf .zj /j W j 2
Ng D 1.

In particular, any c-finitely compact domain is H1-convex.

Proof. Obviously, (ii) implies (i). For (i) ) (ii) just apply Proposition 1.13.18. �

Remark 4.8.8. According to this result one can conclude that a lot of smooth
pseudoconvex domains whose boundary points are general peak points are c-finitely
compact. For example, any strongly pseudoconvex domain is c-finitely compact.
Recall that a boundary point a of a domain D is said to be a general peak point if
for any sequence .zj /j2N � D, zj ! a, there exists an f 2 O.D;D/ such that
supfjf .zj /j W j 2 Ng D 1.

In case of Reinhardt domains the following geometric characterization is true
(see [Fu 1994] and [Zwo 2000b]).

Theorem 4.8.9. LetD be a pseudoconvex Reinhardt domain in Cn.

(a) IfD is hyperbolic, thenD is Kobayashi complete.

(b) The following properties are equivalent:

(i) D is c-finitely compact;

(ii) D is c-complete;

(iii) there is no sequence .zj /j � D having no accumulation points in D
such that

P1
jD1 gD.zj ; zjC1/ < 1;

(iv) D is bounded and satisfies the Fu condition.

Proof. (a) Note thatD is biholomorphically equivalent to a bounded pseudoconvex
Reinhardt domain. Hence, from the very beginning we may assume that D is
bounded.

Suppose that D is not k-finitely compact, i.e. there exist a point a 2 D \ Cn�,
an R > 0, and a sequence .zj /j2N � D such that

kD.a; zj / � R; j 2 N; and zj ! z� 2 @D:
Assume for a moment that z� 2 Cn�. Without loss of generality, we may assume
that z� D 1 2 @D. Then, because of Remark 1.4.1, we find an ˛ 2 Rn n f0g
such that D � D˛ and 1 2 @D˛ . Again, without loss of generality, let ˛ be of the
following form: ˛1 	 	 	˛k ¤ 0 and ˛kC1 D 	 	 	 D ˛n D 0, where 1 � k � n.
Thus we have D˛ D D.˛1;:::;˛k/ � Cn�k . Applying the product property for the
Kobayashi distance we get

kD.a; zj / � kD˛
.a; zj / D kD.˛1;:::;˛k/

. Qa; Qzj / DW rj ;
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where Qa WD .a1; : : : ; ak/ and Qzj WD .zj;1; : : : ; zj;k/, j 2 N. Because of the
formulas of the Kobayashi pseudodistance for elementary Reinhardt domains this
yields that rj ! 1; a contradiction.

Therefore we conclude that z� is lying on some of the axes. Assume, without
loss of generality, that z�

1 	 	 	 z�
k

¤ 0 and z�
kC1 D 	 	 	 D z�

n D 0 for a certain
k 2 f0; : : : ; n � 1g. There are two cases to discuss, namely:

(i) 9`2fkC1;:::;ng W V̀ \D D ¿;
(ii) 8`DkC1;:::;n W V̀ \D ¤ ¿.
Assume first (i). Let D0 be defined as the projection of D in `-th direction.

Hence D0 is a bounded domain in C and z�
`

2 @ zD. In particular,

D0 � K.z�
` ;

zR/ n fz�
` g for a certain zR > 0:

Therefore, using Theorem 4.2.42 and Corollary 4.4.2, we get

kD.a; zj / � kD0.a`; zj;`/ ! 1I
a contradiction.

In the case (ii), if k D 0, then z� D 0 2 D; a contradiction. So we only have
to discuss the case when k > 0. Then

kD.a; zj / � kpr
Ck .D/.prCk .a/; prCk .zj //:

Note that prCk .zj / ! prCk .z�/ 2 @.prCk .D// and the limit has no vanishing
coordinates. This means we are back in the situation we started with; a contradiction.

(b) The implication (i) ) (ii) is trivial, (ii) ) (iii) is a consequence of mD � gD ,
the triangle inequality for cD , and the growth of tanh�1 at 0. Finally (iv) )(i)
follows directly from Theorem 1.13.19 and Lemma 4.8.7.

So it remains to prove (iii) ) (iv). Suppose (iv) is not true. In case that D is
not bounded we know thatD is an unbounded hyperbolic pseudoconvex Reinhardt
domain. Then, in virtue of Proposition 1.17.12, we conclude thatD is algebraically
equivalent to a bounded pseudoconvex Reinhardt domain that does not satisfy the
Fu condition. Hence for the rest of the proof we may assume that D is bounded
and does not fulfill the Fu condition. So, without loss of generality, it suffices to
deal with the following situation:

xD \ Vj ¤ ¿; D \ Vj D ¿; 1 � j � k;

xD \ Vj D ¿; k C 1 � j � `;

D \ Vj ¤ ¿; `C 1 � j � n;

where 1 � k � ` � n. In case when ` < n we can even simplify the situation.
Namely, put zD WD fz 2 C` W .z; 0/ 2 Dg. Obviously, zD is bounded and does not
fulfill the Fu condition. Moreover, note that zD has property (iii).
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Summarizing we may assume, without loss of generality, that

xD \ Vj ¤ ¿; D \ Vj D ¿; 1 � j � k;

xD \ Vj D ¿; k C 1 � j � n;

where 1 � k � n. In particular, D � Cn�. If necessary use a dilatation to obtain,
in addition, that 1 2 D.

Note that logD remains bounded in all positive directions and in the last n� k
negative directions, but it is unbounded in the first k negative directions. Hence,
by Lemma 1.4.17, we find V D .�r; r/n � logD and v 2 Rn� n f0g such that
V C RCv 2 logD. Note that vj D 0, j D k C 1; : : : ; n.

Without loss of generality, we may assume that vj < 0, j D 1; : : : ; ` � k,
v1 D �1, and vj D 0, `C 1 � j � n. Hence

.ex1e�t ; ex2etv2 ; : : : ; ex`etv` ; ex`C1 ; : : : ; exn/ 2 D; t > 0; x 2 V:
Put ˛ WD �v. Then there exists an " > 0 such that

.e�; 	2e
�˛2 ; : : : ; 	`e

�˛` ; 1 : : : ; 1/ 2 D;
�; 	j 2 C; Re� < 0; e�" < j	j j < e"; j D 2; : : : ; `:

Put

A WD f	 D .	2; : : : ; 	`/ 2 C`�1 W e�" < j	j j < e"; j D 2; : : : ; `g;
HR WD f� 2 C W Re� < Rg; R � 0;

F W C � A ! C`; F .�; 	/ WD .e�; 	2e
�˛2 ; : : : ; 	`e

�˛`/:

Note that F is a locally biholomorphic mapping and DR WD F.HR � A/ is a
pseudoconvex Reinhardt domain (Exercise). Moreover, we have DR % D1 WD
F.C � A/ � C`�, when R ! 1, and D1 is a pseudoconvex Reinhardt domain.

Hence, we get

zkD1.F.�1; 1; : : : ; 1/; F .�; 1; : : : ; 1// � zkC.�1; �/ D 0; � 2 C:

In virtue of Theorem 4.2.42 we know that zkD1 is continuous. Therefore,

zkD1.F.�1; ; 1; : : : ; 1/; z/ D 0; z 2 D1 \ F.C � f.1; : : : ; 1/g/ DW M:
Note that D0 � f1g � D but .0; : : : ; 0; 1/ … D, where 1 2 Cn�`.

Choose positive numbers rj such that
P1
jD1 rj < 1. To get a contradiction to

(iii) it remains to find points zj 2 D0, j 2 N, such that zj ! 0 and

gD..zj ; 1/; .zjC1; 1// � gD0
.zj ; zjC1/ � rj ; j 2 N:
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Recall that zkDR
is continuous on DR �DR and that

zkDR
.F.�1; 1; : : : ; 1/; z/ &

R!1
zkD1.F.�1; 1; : : : ; 1/; z/ D 0; z 2 M:

Then, by Dini’s theorem, we conclude that this convergence is locally uniform.
Hence we find a sequence .Rj /j , 0 < Rj % 1, such that

zk�
DRj

.F.�1; 1; : : : ; 1/; F .�; 1; : : : ; 1// < rj ; �2 � Re� � �1:
Now note that the mapping  R W D0 ! DR,

 R.z/ WD .z1e
R; z2e

˛2R; : : : ; z`e
˛`R/;

is biholomorphic. Therefore,

zk�
D0
.F.�1 �Rj ; 1; : : : ; 1/; F .�; 1; : : : ; 1//

D zk�
DRj

.F.�1; 1; : : : ; 1/; F .�CRj ; 1; : : : ; 1// < rj ;

� 2 �Rj � Re� � �1 �Rj :
Put

uj .�/ WD log gD0
.F.�1 �Rj ; 1; : : : ; 1/; .F.�; 1; : : : ; 1//; � 2 H0:

Then uj 2 SH.H0/. By Exercise 1.14.10, we conclude that

uj .�/ < log rj ; Re� � �1 �Rj :
Therefore, we may take zj WD F.�1�Rj ; 1; : : : ; 1/ as the points we were looking
for. Hence the proof is complete. �

Corollary 4.8.10. LetDj � Cn, j D 1; 2, be biholomorphically equivalent Rein-
hardt domains. IfD1 is bounded and satisfies the Fu condition, thenD2 is bounded
and it satisfies the Fu condition.

Remark 4.8.11. Moreover, for a pseudoconvex Reinhardt domainD the following
properties are equivalent: (i) D is c-complete, (ii) D is ci -complete, where ciD
denotes the so-called associated inner distance, i.e.

ciD.a; z/ WD inffLcD
.˛/ W ˛ W Œ0; 1� ! D continuous

and k 	 k-rectifiable; ˛.0/ D a; ˛.1/ D zg; a; z 2 D;
where

LcD
.˛/ WD sup

n NX
jD1

cD.˛.tj�1/; ˛.tj // W N 2 N; 0 D t0 < t1 < 	 	 	 < tN D 1
o
:

See [Zwo 2001].
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We conclude with a few remarks on completeness for pseudoconvex balanced
domains.

Remark 4.8.12. Let D D Dh be a bounded pseudoconvex balanced domain in
Cn. Then:

� If D is k-complete, then h is continuous.
� For any n � 3 there exists a bounded pseudoconvex balanced domain with

continuous h which is not k-complete.
� ? Whether such an example does exist in dimension 2 is open. ?

� ? It is also an open problem whether there exists a characterization of a
c- (resp.k-) complete pseudoconvex balanced domains D D Dh in terms of prop-
erties of the Minkowski function h. ?

For more details see [Jar-Pfl 1993].

4.9� The Bergman completeness of Reinhardt domains

In the last section of this book we briefly introduce the Bergman metric for bounded
domains in Cn and present (without proofs) a full characterization of Bergman-
complete bounded Reinhardt domains due to Zwonek ([Zwo 1999a], [Zwo 2000]).
For more details on the Bergman metric we refer the reader also to [Jar-Pfl 1993],
[Jar-Pfl 2005].

Let D � Cn be a domain. Then L2
h
.D/ is a Hilbert space with the scalar

product hf; giL2
h
.D/ WD R

D
f .z/ Ng.z/d�2n.z/ (cf. Example 1.10.7 (c)). Recall

that the mapping L2
h
.D/ 3 f 7! f .a/ 2 C is a continuous linear functional.

Therefore, by the Riesz representation theorem, there exists a uniquely defined
KD. 	 ; a/ 2 L2

h
.D/ such that

hf;KD. 	 ; a/iL2
h
.D/ D

Z
D

f .z/KD.z; a/d�2n.z/ D f .a/; f 2 L2h.D/:

The function KD W D �D ! C is the Bergman function for D. Recall from
the Hilbert space theory that there is another description of the Bergman function
via a complete orthonormal system .'j /j2N � L2

h
.D/, where N � N.28 Namely,

we have
KD.z; w/ D

X
j2N

'j .z/ N'j .w/; .z; w/ 2 D �D;

where the convergence here is meant as the one in the Hilbert space L2
h
.D/.

In the case of a Reinhardt domain D � Cn there is a complete description of
those monomials z˛ which belong toL2

h
.D/. To be able to formulate this result we

28Note that L2
h
.D/ is a separable Hilbert space; therefore, it has a countable complete orthonormal

system.
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have to introduce some terminology. Let a 2 D \ Cn�. Put

C.D; a/ WD fv 2 Rn W log aC RCv 2 logDg:
Observe that C.D; a/ D C.D; b/ whenever b 2 D \ Cn�. Hence we are allowed

to set
C.D/ WD C.D; a/; when a 2 D \ Cn�:

Lemma* 4.9.1. Let D � Cn be a pseudoconvex Reinhardt domain. Then for an
˛ 2 Zn the following conditions are equivalent:

(i) z˛ 2 L2
h
.D/;

(ii) h˛ C 1; vi < 0, v 2 C.D/ n f0g.
Therefore, for a pseudoconvex Reinhardt domain its Bergman function can be

written as
KD.z; w/ D

X
a˛z

˛ xw˛;
where the sum is taken over all ˛ 2 Zn such that h˛ C 1; vi < 0, v 2 C.D/ n f0g,
and the a˛’s have to be determined.

Remark 4.9.2. Note that there exist domains Dk � C2, not pseudoconvex, such
that dimL2

h
.Dk/ D k, k 2 N (see [Wie 1984]). ? It is not known whether

dimL2
h
.D/ D 1 for any pseudoconvex domain D in C2 with L2

h
.D/ ¤ f0g. ?

The above equation immediately leads to KD.z; w/ D KD.w; z/, .z; w/ 2
D �D. Moreover, it can be understood in the sense that

Pk
jD1 'j .z/ N'j . xw/ con-

verges toKD.z; xw/ locally uniformly (in the case whenN D N) (Exercise). Note
that this partial sum is a function which is holomorphic onD� xD. Therefore, by the
Osgood theorem, D � xD 3 .z; w/ 7! KD.z; xw/ is holomorphic. In other words,
we may say thatKD is holomorphic in the first variable and antiholomorphic in the
second variable on D.

Remark 4.9.3. There are effective formulas for the Bergman kernel for standard
domains like the Euclidean ball, the polydisc, or the minimal ball; for more details
see [Jar-Pfl 1993] and [Jar-Pfl 2005]:

KBn
.z; w/ D nŠ

�

�
1 � hz; wi��1; z; w 2 BnI

KDn.z; w/ D 1

�n

nY
jD1

.1 � zj xwj /�1; z; w 2 Dn:

The following result describes the behavior of the Bergman kernel under bi-
holomorphic mappings.
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Proposition* 4.9.4. Let F W D ! G be a biholomorphic mapping. Then

KG.F.z/; F.w// det F 0.z/det F 0.w/ D KD.z; w/; z; w 2 D:
Remark 4.9.5. It should be mentioned that there is a similar formula in case when
the mapping F is not biholomorphic but proper holomorphic (see [Bel 1982] or
[Jar-Pfl 1993]).

Exercise 4.9.6. CalculateKT , where T is the Hartogs triangle, i.e. T D fz 2 D2 W
jz1j < jz2jg.

In the following we put kD.z/ WD KD.z; z/; note that log kD 2 PSH.D/. kD
is called the Bergman kernel ofD. In case thatL2

h
.D/ ¤ f0g one has an alternative

description of the Bergman kernel, namely

kD.z/ D sup
� jf .z/j2

kf k2
L2

h
.D/

W f 2 L2h.D/ n f0g

; z 2 D:

From this equality it follows that kG jD � kD if D � G � Cn.
In the study of the Bergman kernel it is important to know its boundary behavior.

Definition 4.9.7. Let D be a domain in Cn and let z0 2 @D. D is said to be
Bergman exhaustive at z0 if lim

D3z!z0
kD.z/ D 1.

There is a vast literature on conditions which are sufficient for Bergman exhaus-
tiveness. Here we only mention the following one which combines properties of the
Green function and Bergman exhaustiveness (compare [Che 1999], [Her 1999]).

Theorem* 4.9.8. LetD be a bounded pseudoconvex domain in Cn and let z0 2 @D.
Put Az.D/ WD f� 2 D W gD.z; �/ � e�1g, where z 2 D. If

lim
D3z!z0

�2n.Az.D// D 0;

then D is Bergman exhaustive at z0. In particular, any bounded hyperconvex
domain is Bergman exhaustive.

In what follows we will always assume that kD is positive on D, i.e. for any
point a 2 D we can find an f 2 L2

h
.D/ with f .a/ ¤ 0. Note that this condition

is always true if D is bounded. Put

ˇD.zIX/ WD
� nX
j;kD1

@2 log kD
@zj @ Nzk .z/Xj xXk

�1=2
; z 2 D; X 2 Cn:

Then ˇD gives a Hermitian metric on D. ˇD is called the Bergman pseudometric
on D.



328 Chapter 4. Holomorphically contractible families on Reinhardt domains

Example 4.9.9. Here we present effective formulas of ˇD for the standard domains
D D Bn and D D Dn :

ˇBn
.zIX/ D p

nC 1 �Bn
.zIX/; .z; X/ 2 Bn � CnI

ˇDn.zIX/ D p
2

vuut nX
jD1

�
�.zj IXj /

�2
; z 2 Dn; X D .X1; : : : ; Xn/ 2 Cn:

Observe that ˇD D p
2� .

Moreover, we have

Lemma* 4.9.10. Let F 2 Bih.D;G/. Then ˇG.F.z/IF 0.z/X// D ˇD.zIX/,
z 2 D, X 2 Cn.

Hence, in the class of domains we are discussing, we have a family .ˇD/D
of pseudometrics bD which are invariant under biholomorphic mappings such that
ˇD D p

2 � . Observe that this family is not holomorphically contractible as the
following example shows.

Example 4.9.11. Put F W D2 ! D2, F.z/ WD .z1; z1/ and X WD .1; 0/. Then

ˇD2.F.0/IF 0.0/X/ D 2 >
p
2 D ˇD2.0IX/ (Exercise):

We mention that there is also a different way to describe ˇD which is often very
useful.

Lemma* 4.9.12. LetD � Cn with kD > 0 onD. Then

ˇD.zIX/D 1p
kD.z/

supfjf 0.z/X j W f 2 L2h.D/; kf kL2
h
.D/ D 1; f .z/ D 0g;

z 2 D; X 2 Cn:

With ˇD we can measure the length of all tangential vector X 2 Cn at any
point z 2 D. Therefore, we introduce a new pseudodistance on D, the Bergman
pseudodistance bD , defining

bD.z; w/ WD inf

� Z 1

0

ˇD.˛.t/I˛0.t//dt W ˛ 2 C1.Œ0; 1�;D/;

˛.0/ D z; ˛.1/ D w


; z; w 2 D:

It is easy to check that bD is a pseudodistance on D and that bG.F.z/; F.w// D
bD.z; w/, z; w 2 D, whenever F 2 Bih.D;G/, i.e. the Bergman pseudodistance
is invariant under biholomorphic mappings.
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Exercise 4.9.13. Prove that the sequence ..0; 1
2j
//j2N is a bT -Cauchy sequence,

where T is the Hartogs triangle. In particular, T is not Bergman complete (see
Definition 4.9.15).

In comparison to the objects we have discussed before we have the following
result (see [Jar-Pfl 1993]).

Lemma* 4.9.14. LetD � Cn be such that kD.z/ > 0, z 2 D. Then
(a) �D � ˇD;
(b) cD � ciD � bD .

We should mention that there is no comparison between the Bergman pseudo-
metric and the Kobayashi pseudometric.

Now we start to discuss the notion of Bergman complete domains. To be more
precise we set

Definition 4.9.15. Let D � Cn such that kD > 0. D is said to be Bergman
complete if

� bD is a distance,
� any bD-Cauchy sequence .zj /j � D (i.e. bD.zj ; zk/ ! 0 if j; k ! 1)

converges to a point a in D (i.e. lim
j!1 zj D a in the topology of D).

There is a long history of studying Bergman complete domains. An old result
by Bremermann shows that any Bergman complete bounded domain is necessarily
pseudoconvex (see [Jar-Pfl 1993]).

Proposition 4.9.16. IfD � Cn is a bounded Bergman complete domain, then it is
a domain of holomorphy.

Proof. Suppose the contrary. Then there are a point a 2 D and positive numbers
r < R such that

� Pn.a; r/ � D,
� Pn.a;R/ 6� D,
� 8f 2O.D/ 9 Of 2O.Pn.a;R//

W Of jPn.a;r/ D f jPn.a;r/. In particular, by the Har-
togs theorem, the Bergman kernel functionKD extends to Pn.a;R/� Pn.a;R/, or
more precisely, there exists an f W Pn.a;R/ � Pn.a;R/ ! C such that

� f jPn.a;r/�Pn.a;r/ D KDjPn.a;r/�Pn.a;r/,
� Pn.a;R/ � xPn.a;R/ 3 .z; w/ 7! f .z; xw/ is holomorphic.
By construction we find a point b 2 Pn.a;R/\@D such that Œa; b/ � D. Apply-

ing that log kD.z/ D logf .z; z/, z near Œa; b/, leads to the fact that
ˇD.aC t .b � a/I b � a/ is bounded on .0; 1/. Hence, .aC .1 � 1=j /.b � a//j is
a bD-Cauchy sequence tending to the boundary point b; a contradiction. �

Therefore, in order to characterize the Bergman complete domains it suffices to
restrict on domains of holomorphy.
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The most useful sufficient criteria for being Bergman complete is that of Koba-
yashi (see [Jar-Pfl 1993], [Bło 2003], and [Bło 2005]).

Proposition* 4.9.17. LetD b Cn be a bounded domain.
(a) If

lim
D3z!@D

jf .z/jp
kD.z/

< kf kL2
h
.D/; f 2 L2h.D/ n f0g;

thenD is Bergman complete.
(b) Assume for a dense subspaceH � L2

h
.D/ that for any sequence .zj /j � D,

zj ! z0 2 @D, and any f 2 H there exists a subsequence .zjk
/k such that

lim
k!1

jf .zjk
/jp

kD.zjk
/

D 0:

ThenD is Bergman complete.

After a long development the following result was found (see [Bło-Pfl 1998],
[Her 1999]).

Theorem* 4.9.18. Any bounded hyperconvex domain is Bergman complete.

But conversely, there are a lot of Bergman complete domains which are not
hyperconvex; examples will be given later.

In the class of bounded pseudoconvex Reinhardt domains there is a complete
characterization of Bergman complete domains in geometric terms due to Zwonek
(see [Zwo 1999a], [Zwo 2000]). To do so we have to introduce the set

zC.D/ WD fv 2 C.D/ W exp.aC RCv/ � Dg;
where a 2 D \ Cn�. Then we have the following result.

Theorem* 4.9.19. LetD be a bounded pseudoconvex Reinhardt domain. Then the
following conditions are equivalent:

(i) D is Bergman complete;

(ii) C0.D/ \ Qn D ¿, where C0.D/ WD C.D/ n zC.D/.
We conclude this discussion presenting two examples.

Example 4.9.20. (a) Put

D1 WD fz 2 C2 W jz1j2=2 < jz2j < 2jz1j2; jz1j < 1g:
Then D is a bounded pseudoconvex Reinhardt domain. Note that

C0.D1/ D R>0 	 .�1;�2/:
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In particular, C0.D/ contains the rational vector .�1;�2/. Hence, D1 is not
Bergman complete.

We add also a direct proof which may give some idea of how to prove (i) ) (ii)
in Theorem 4.9.19. Recall that z˛ 2 L2

h
.D1/ iff h˛C1; .�1;�1/i < 0. Therefore,

KD1
.z; w/ D

X
˛2Zn

v2C.D/nf0g
h˛C1;vi<0

a˛z
˛ xw˛ D

X
˛2Zn

�3<˛1C2˛2

a˛z
˛ xw˛; z; w 2 D:

Put '.�/ WD .�; �2/, � 2 D�. Then ' 2 O.D�;D1/ and

kD1
B '.�/ D

X
�3<˛1C2˛2

a˛j�j2˛1C4˛2 D
X
j	j0

bj j�jj ; � 2 D�

where j0 > �3 and bj0
¤ 0. Therefore,

ˇ2.'.�/I'0.�// D @2

@�@ N�
�

log
X
j	j0

bj j�j2.j�j0/
�
; � 2 D�;

meaning that ˇD1
.'.t/I'0.t// is bounded on .0; 1=2/. Note that limt&0 '.t/ 2

@D1. Hence, bD1
.'.1=2/; '.t// is bounded on .0; 1=2/ which implies that D1 is

not Bergman complete.
(b) Put

D2 WD fz 2 C2 W jz1j
p
2=2 < jz2j < 2jz1j

p
2; jz1j < 1g:

Obviously, D2 is a bounded pseudoconvex Reinhardt domain. Calculation then
leads to C0.D/ D R>0 	 .�1;�p

2/, i.e. C0.D/ does not contain any rational vector.
Hence, D2 is Bergman complete. It is easy to see that D2 is not hyperconvex.

Exercise 4.9.21. PutD3 WD fz 2 D� � C W jz2j2e�1=jz1j2 < 1g. Calculate logD3,
C.D3/, and decide whether D3 is Bergman complete. Is D3 hyperconvex?

Note that Dj , j D 1; 2; 3, does not fulfil the Fu condition, hence it is not
c-complete.
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Symbols

General symbols

N WD the set of natural numbers, 0 … N; N0 WD N[f0g; Nk WD fn 2 N W n � kg;
Z WD the ring of integer numbers;
Q WD the field of rational numbers;
R WD the field of real numbers;
R�1 WD f�1g [ R, RC1 WD R [ fC1g;
C WD the field of complex numbers;
bxc WD maxfk 2 Z W k � xg D the integer part of x 2 R;
dxe WD minfk 2 Z W k � xg, x 2 R;
Re z WD the real part of z 2 C, Im z WD the imaginary part of z 2 C;
Nz WD x � iy D the conjugate of z D x C iy;
jzj WD p

x2 C y2 D the modulus of a complex number z D x C iy;
An WD the Cartesian product of n copies of the set A, e.g. Cn;
M.m� nIA/ D the set of all .m� n/-dimensional matrices with entries from a set
A � C;
In WD the .n � n/-dimensional unit matrix;
GL.n; F / WD fL 2 M.n � nI F / W detL ¤ 0g, F 2 fQ;R;Cg;
GL.n;Z/ WD fL 2 M.n � nI Z/ W j detLj D 1g;
x � y W, xj � yj ; j D 1; : : : ; n, x D .x1; : : : ; xn/; y D .y1; : : : ; yn/ 2 Rn;
A� WD A n f0g, e.g. C�; .Cn/�; An� WD .A�/n, e.g. Cn�;
AC WD fa 2 A W a � 0g, e.g. ZC, RC; AnC WD .AC/n, e.g. ZnC, RnC;
A� WD fa 2 A W a � 0g;
A>0 WD fa 2 A W a > 0g, e.g. R>0; An>0 WD .A>0/

n, e.g. Rn>0;
A<0 WD fa 2 A W a < 0g;
AC B WD faC b W a 2 A; b 2 Bg, aC B WD fag C B , A;B � X , a 2 X , X is
a vector space;
A 	 B WD fa 	 b W a 2 A; b 2 Bg, A � C; B � Cn;

ıj;k WD
(
0; if j ¤ k

1; if j D k
D the Kronecker symbol;

e D .e1; : : : ; en/ WD the canonical basis in Cn, ej WD .ıj;1; : : : ; ıj;n/, j D 1; : : : ; n;
1 D 1n WD .1; : : : ; 1/ 2 Nn; 2 WD 2 	 1 D .2; : : : ; 2/ 2 Nn;
hz; wi WD Pn

jD1 zj xwj D the Hermitian scalar product in Cn;
xw WD . xw1; : : : ; xwn/, w D .w1; : : : ; wn/ 2 Cn;
z 	 w WD .z1w1; : : : ; znwn/, z D .z1; : : : ; zn/, w D .w1; : : : ; wn/ 2 Cn;
ez WD .ez1 ; : : : ; ezn/, z D .z1; : : : ; zn/ 2 Cn;

kzk WD hz; zi1=2 D �Pn
jD1 jzj j2�1=2 D the Euclidean norm in Cn;

kzk1 WD maxfjz1j; : : : ; jznjg D the maximum norm in Cn;
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kzk1 WD jz1j C 	 	 	 C jznj D the `1-norm in Cn;
idA;X W A ! X , idA;X .x/ WD x, x 2 A;
idA WD idA;X if A D X or it is clear what the outer space X is;
#A WD the number of elements of A;
diamA WD the diameter of the set A � Cn with respect to the Euclidean distance;
convA WD the convex hull of the set A;
A b X W” A is relatively compact in X ;
prX W X � Y ! X , prX .x; y/ WD x, or prX W X ˚ Y ! X , prX .x C y/ WD x;
Bd .a; r/ WD fx 2 X W d.a; x/ < rg, a 2 X , r > 0 (.X; d/ is a pseudometric space;
d W X �X ! RC, d.x; x/ D 0, d.x; y/ D d.y; x/, d.x; y/ � d.x; z/C d.z; y/);
Bq.a; r/ WD fx 2 E W q.x � a/ < rg, a 2 E, r > 0 (.E; q/ is seminormed space;
q W E ! RC, q.0/ D 0, q.�x/ D j�jq.x/, q.x C y/ � q.x/C q.y/);

Euclidean balls

B.a; r/ D Bn.a; r/ WD fz 2 Cn W kz � ak < rg D the open Euclidean ball in Cn

with center a 2 Cn and radius r > 0; Bn.a; 0/ WD ¿; B.a;C1/ WD Cn;
xB.a; r/ D xBn.a; r/ WD Bn.a; r/ D fz 2 Cn W kz�ak � rg D the closed Euclidean
ball in Cn with center a 2 Cn and radius r > 0; xBn.a; 0/ WD fag;
B.r/ D Bn.r/ WD Bn.0; r/; xB.r/ D xBn.r/ WD xBn.0; r/;
B D Bn WD Bn.1/ D the unit Euclidean ball in Cn;
K.a; r/ WD B1.a; r/; K.r/ WD K.0; r/;
xK.a; r/ WD xB1.a; r/; xK.r/ WD xK.0; r/;
K�.a; r/ WD K.a; r/ n fag; K�.r/ WD K�.0; r/;
D WD K.1/ D f� 2 C W j�j < 1g D the unit disc;
T WD @D;
Ta WD f�	a W � 2 T ng D f.�1a1; : : : ; �nan/ W �1; : : : ; �n 2 T g,a D .a1; : : : ; an/ 2
Cn;

Polydiscs

P.a; r/ D Pn.a; r/ WD fz 2 Cn W kz � ak1 < rg D the polydisc with center
a 2 Cn and radius r > 0; Pn.a;C1/ WD Cn;
xP.a; r/ D xPn.a; r/ WD Pn.a; r/; xPn.a; 0/ WD fag;
P.r/ D Pn.r/ WD Pn.0; r/;
Pn WD Pn.1/ D Dn D the unit polydisc in Cn;
P.a; r/ D Pn.a; r/ WD K.a1; r1/ � 	 	 	 � K.an; rn/ D the polydisc with cen-
ter a 2 Cn and multiradius (polyradius) r D .r1; : : : ; rn/ 2 Rn>0; notice that
P.a; r/ D P.a; r 	 1/; to simplify notation we will frequently write Pn.a; r/ in-
stead of Pn.a; r/ (in particular, in all the cases where it clearly follows from the
context that r is a multiradius);
P.r/ D Pn.r/ WD Pn.0; r/;
@0P.a; r/ WD @K.a1; r1/ � 	 	 	 � @K.an; rn/ D the distinguished boundary of
P.a; r/;
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Annuli

A.a; r�; rC/ WD fz 2 C W r� < jz � aj < rCg, a 2 C, �1 � r� < rC � C1,
rC > 0; if r� < 0, then A.a; r�; rC/ D K.a; rC/; A.a; 0; rC/ D K.a; rC/ n fag;
An.a; r�; rC/ WD A.a1; r�

1 ; r
C
1 / � 	 	 	 � A.an; r�

n ; r
C
n /, a D .a1; : : : ; an/ 2 Cn,

r� D .r�
1 ; : : : ; r

�
n /, r

C D .rC
1 ; : : : ; r

C
n /, �1 � r�

j < rC
j � C1, rC

j > 0,
j D 1; : : : ; n;
An.r�; rC/ WD An.0; r�; rC/;

Laurent series

z˛ WD z
˛1

1 	 	 	 z˛n
n ; z D .z1; : : : ; zn/ 2 Cn, ˛ D .˛1; : : : ; ˛n/ 2 Zn (00 WD 1);

˛Š WD ˛1Š 	 	 	˛nŠ, ˛ D .˛1; : : : ; ˛n/ 2 ZnC;
j˛j WD j˛1j C 	 	 	 C j˛nj, ˛ D .˛1; : : : ; ˛n/ 2 Rn;�
˛
ˇ

� WD ˛.˛�1/���.˛�ˇC1/
ˇŠ

, ˛ 2 Z, ˇ 2 ZC;�
˛
ˇ

� WD �
˛1

ˇ1

� 	 	 	 �˛n

ˇn

�
, ˛ D .˛1; : : : ; ˛n/ 2 Zn; ˇ D .ˇ1; : : : ; ˇn/ 2 ZnC;

Functions

kf kA WD supfjf .a/j W a 2 Ag, f W A ! C;
suppf WD fx W f .x/ ¤ 0g D the support of f ;
P .Cn/ WD the space of all polynomials f W Cn ! C;
Pd .C

n/ WD fF 2 P .Cn/ W degF � dg;
C".˝/ WD the set of all upper semicontinuous functions u W ˝ ! R�1;
@f
@zj
.a/ WD 1

2

�
@f
@xj
.a/ � i @f

@yj
.a/
�

, @f
@ Nzj .a/ WD 1

2

�
@f
@xj
.a/C i @f

@yj
.a/
�

D the formal

partial derivatives of f at a;
grad u.a/ WD . @u

@ Nz1
.a/; : : : ; @u

@ Nzn
.a// D the gradient of u at a;

D˛;ˇ WD . @
@z1
/˛1 B 	 	 	 B . @

@zn
/˛n B . @

@ Nz1
/ˇ1 B 	 	 	 B . @

@ Nzn
/ˇn ;

Ck.X; Y / WD the space of all Ck-mappings f W X ! Y , k 2 ZC [ f1g [ f!g (!
stands for the real analytic case);
Ck.˝/ WD Ck.˝;C/;
Ck0.˝/ WD ff 2 Ck.˝/ W suppf b ˝g;
yC 1.Œa; b�; Y / WD the space of all piecewise C1-mappings ˛ W Œa; b� ! Y ;
�N WD Lebesgue measure in RN ;
Lp.˝/ WD the space of all p-integrable functions on ˝; k kLp.˝/ WD the norm
in Lp.˝/;
Lp.˝; loc/ WD the space of all locally p-integrable functions on ˝;
O.X; Y / WD the space of all holomorphic mappings f W X ! Y ;
O.˝/ WD O.˝;C/ D the space of all holomorphic functions f W ˝ ! C;
f .k/.a/ WD the k-th complex Fréchet differential of f W ˝ ! Cm at a;
@f
@zj
.a/ WD lim

C�3h!0

f .aChej /�f .a/
h

D the j -th complex partial derivative of f at a;

Jf .a/ WD det
h
@fj

@zk
.a/
i
j;kD1;:::;n, f D .f1; : : : ; fn/ W ˝ ! Cn;
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D˛ WD . @
@z1
/˛1 B 	 	 	 B . @

@zn
/˛n D ˛-th partial complex derivative;

Taf .z/ WD P
˛2Zn

C

1
˛Š
D˛f .a/.z � a/˛ D the Taylor series of f at a;

d.Taf / WD supfr � 0 W Taf .z/ is uniformly summable for z 2 xP.a; r/g D the
radius of convergence of the Taylor series Taf ;
L
p

h
.˝/ WD O.˝/\Lp.˝/ D the space of all p-integrable holomorphic functions

on ˝;
O.k/.˝; ı/ WD ff 2 O.˝/ W kıkf k˝ < C1g;
O.A/ WD S

U
A
U open in Cn

O.U /jA;

H 1.˝/ WD the space of all bounded holomorphic functions on ˝;
Ak.˝/ WD ff 2 O.˝/ W 8˛2Zn

C
; j˛j�k W D˛f 2 C. x̋/g;

Aut.˝/ WD the group of all holomorphic automorphisms of ˝;
Auta.˝/ WD fh 2 Aut.˝/ W h.a/ D ag;
SH.˝/ WD the set of all subharmonic functions on ˝, ˝ � C;
PSH.˝/ WD the set of all plurisubharmonic functions on ˝;
Lu.aIX/ WD Pn

j;kD1 @2u
@zj @ Nzk

.a/Xj xXk D the Levi form of u at a.
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fI WD P
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C
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