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Foreword

Since 2002, FoLLI, the Association for Logic, Language, and Information
(www.folli.org), has awarded an annual prize for an outstanding dissertation
in the fields of logic, language, and information. The prize is named after the
well-known Dutch logician Evert Willem Beth, whose interdisciplinary inter-
ests are in many ways exemplary of the aims of FoLLI. It is sponsored by
the E.W. Beth Foundation. Dissertations submitted for the prize are judged
on technical depth and strength, originality, and impact made in at least two
of the three fields of logic, language, and computation. Every year the com-
petition is strong and the interdisciplinary character of the award stimulates
lively debate in the Beth Prize Committee.

Recipients of the award are offered the opportunity to prepare a book
version of their thesis for publication in the FoLLI Publications on Logic,
Language and Information.

This volume is based on the PhD thesis of Marco Kuhlmann, who was a
joint winner of the E.W. Beth dissertation award in 2008. We wish to quote
here the Committee’s motivation for co-awarding the Beth Prize to him:

Marco Kuhlmann’s thesis on ‘Dependency Structures and Lexicali-
zed Grammars’, in the area of Language and Computation, lays new
theoretical foundations for the study of non-projective dependency
grammars. Such grammars have recently become increasingly impor-
tant for approaches to statistical parsing in computational linguis-
tics that deal with free word order and long-distance dependencies.
Dr. Kuhlmann provides new formal tools to define and understand
dependency grammars, presents two new dependency language hie-
rarchies with polynomial parsing algorithms, establishes the practi-
cal significance of these hierarchies through corpus studies, and links
his work to the phrase-structure grammar tradition through an equi-
valence result with tree-adjoining grammars. Dr. Kuhlmann’s thesis
bridges gaps between linguistics and theoretical computer science,
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between theoretical and empirical approaches in computational lin-
guistics, and between previously disconnected strands of formal lan-
guage research. It is highly original and beautifully presented.

Valentin Goranko
(Chair of the Beth Prize Committee in 2008)

Michael Moortgat
(President of the Association for Logic, Language, and Information)
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their presentation, and provided guidance and advice. I also thank Manfred
Pinkal and Aravind Joshi for accepting to give their expert opinion on this
dissertation, and to Raimund Seidel and Tilman Becker for agreeing to join
my examination committee.

Guido Tack, as my office-mate, had to suffer from my meanderings on a
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1

Introduction

In this book, we develop the formal theory of dependency structures, show
how combining these structures with a regular means of composition yields
infinite hierarchies of ever more powerful dependency languages, and classify
several grammar formalisms with respect to the languages in these hierarchies
that they are able to characterize. Our results show that the generative ca-
pacity and the parsing complexity of lexicalized grammar formalisms can be
systematically related to structural properties of the dependency graphs that
these formalisms can induce.

1.1 Motivation

Syntactic representations based on word-to-word dependencies, dependency
structures, have a long tradition in descriptive linguistics. Since the seminal
work of Tesnière [113], they have become the basis for several linguistic theo-
ries, such as Functional Generative Description [106], Meaning-Text Theory
[77], and Word Grammar [51]. In recent years, they have also been used for a
wide range of computational applications, such as information extraction [14],
textual inference [39], and machine translation [94]. We ascribe the widespread
interest in dependency structures to their intuitive appeal, their conceptual
simplicity, and in particular to the availability of accurate and efficient depen-
dency parsers for a wide range of languages [6, 89].

1.1.1 Dependency Structures

The basic assumptions behind the notion of dependency are summarized in
the following sentences from the seminal work of Tesnière [113], ch. 1, §§ 2–4,
and ch. 2, §§ 1–2:1

1 The English translation (by the author) is based on a German translation [114].

M. Kuhlmann: Dependency Structures and Lexicalized Grammars, LNAI 6270, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

The sentence is an organized whole; its constituent parts are the words.
Every word that functions as part of a sentence is no longer isolated
as in the dictionary: the mind perceives connections between the word
and its neighbours; the totality of these connections forms the scaf-
folding of the sentence. The structural connections establish relations
of dependency among the words. Each such connection in principle
links a superior term and an inferior term. The superior term re-
ceives the name governor (régissant); the inferior term receives the
name dependent (subordonné).

Dan likes fresh fruits

Fig. 1.1. A dependency structure

We can represent the dependency relations among the words of a sen-
tence as a graph. More specifically, the dependency structure for a sentence
�w = w1 · · ·wn is the directed graph on the set of positions of �w that contains
an edge i → j if and only if wj depends on wi. In this way, just like strings
and parse trees, dependency structures can capture information about certain
aspects of the linguistic structure of a sentence. As an example, consider Fi-
gure 1.1. In this graph, the edge between the word likes and the word Dan may
be understood to encode the syntactic information that Dan is the subject of
likes ; similarly, the edge between likes and fruits may be interpreted as saying
that fruits is the direct object. When visualizing dependency structures, we
represent (occurrences of) words by circles, and dependencies among them by
arrows: the source of an arrow marks the governor of the corresponding de-
pendency, the target marks the dependent. Furthermore, following Hays [47],
we use dotted lines (and call them projection lines) to indicate the left-to-right
ordering of the words in the sentence. Note that these lines do not belong to
the graph structure as such.

While there exist both a considerable practical interest in dependency
structures and an extensive linguistic literature, dependency syntax has re-
mained somewhat of an island from a formal point of view. In particular, there
are few results that bridge between dependency syntax and other traditions,
such as phrase-structure or categorial syntax. This makes it hard to gauge
the similarities and differences in how the different paradigms can be used to
model specific phenomena, and hampers the exchange of linguistic resources
and computational methods.



1.1 Motivation 3

1.1.2 Generative Capacity and Non-projectivity

One of the few bridging results for dependency grammar is due to Gaifman
[27], who studied a formalism that we will refer to as Hays-Gaifman gram-
mar, and proved it to be weakly equivalent to context-free phrase-structure
grammar. While this result is of fundamental importance from a theoretical
point of view, its practical usefulness is limited for at least two reasons.

For one thing, it is generally accepted today that context-free grammars
are not adequate for the description of natural language. Independently of
each other, Huybregts [52] and Shieber [107] showed that certain construc-
tions in Swiss German require grammar formalisms that adequately model
these constructions to generate the so-called copy language, which is beyond
the string-generative capacity (and, a forteriori, the tree-generative capacity)
of context-free grammars. If we accept this analysis, then we must conclude
that context-free grammars are too weak, and that we should look out for
more powerful formalisms. Unfortunately, the first class of formal languages
in the Chomsky hierarchy that does contain the copy language, the class of
context-sensitive languages , is too big a leap: it contains many languages that
are considered to be beyond human capacity (such as the set of all prime num-
bers), and while context-free grammars can be parsed in polynomial time, the
parsing problem of context-sensitive grammars is PSPACE-complete. For such
problems, it is widely suspected that they cannot be solved in (deterministic
or non-deterministic) polynomial time.

In search of a class of grammars that extends context-free grammar by
the minimal amount of generative power that is needed to account for natural
language, several so-called mildly context-sensitive grammar formalisms have
been developed; perhaps best-known among these is Tree Adjoining Grammar
(TAG) [54]. The class of string languages generated by TAGs contains the copy
language, but unlike general context-sensitive grammars, TAGs can be parsed
in polynomial time.

A second reason why the usefulness of Hays-Gaifman grammar is limited
is that it is restricted to structures that meet a constraint called projectivity,
which is similar to the ban on discontinuous constituents in phrase-structure
syntax. Specifically, it requires each dependency subtree to cover a contiguous
region of the sentence. Projectivity is interesting because the close relation
between dependency and word order that it enforces can be exploited in par-
sing algorithms [21]. However, in recent literature, there is a growing interest in
non-projective dependency structures, in which a subtree may be spread out
over a discontinuous region of the sentence. Such representations naturally
arise in the syntactic analysis of linguistic phenomena such as topicalization,
and are particularly frequent in syntactic corpora for languages with flexible
word order [44]. Unfortunately, most formal and computational results on non-
projectivity are rather discouraging. In particular, non-projective dependency
parsing is NP-complete [75, 83].
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In search of a balance between the benefit of more expressiveness and
the penalty of increased processing complexity, several authors have proposed
structural constraints that relax the projectivity restriction, but at the same
time ensure that the resulting classes of graphs are computationally well-
behaved [44, 85, 121]. Such constraints identify classes of what we may call
mildly non-projective dependency structures.

Given that Hays-Gaifman grammar is too weak both with respect to its
string-generative capacity and with respect to the class of dependency struc-
tures that it is able to describe, an important problem is to extend Gaifman’s
equivalence result to grammars that can generate non-context-free string lan-
guages, and non-projective dependency trees. In this book, we provide a solu-
tion to this problem. In the next section, we outline the framework in which
we will develop it.

1.2 Lexicalized Grammars Induce Dependency Trees

Grammar formalisms are mathematical devices that are developed to give
explicit descriptions of linguistic theories. One of the fundamental questions
that we can ask about a grammar formalism is, whether it adequately mo-
dels natural language. One way to answer this question is by studying the
generative capacity of the formalism at hand.

To focus the discussion, let us consider the case of context-free grammars.
For these grammars, there are two standard measures of generative capacity:
we can interpret them as generators of strings (string-generative capacity),
or as generators of parse trees (tree-generative capacity). Figure 1.2 shows
a toy context-free grammar together with a parse tree for a simple English
sentence. Strings and parse trees are closely related. In particular, for each
string generated by a context-free grammar, there is at least one parse tree
from which this string can be recovered by reading the leaves of the tree from
left to right. Formally, this reading-off can be described as a homomorphism
from parse trees to strings—a structure-preserving map.

An interesting property of the context-free grammar in Figure 1.2 is that it
is lexicalized : every production of the grammar contains exactly one terminal

s → subj likes obj

subj → Dan
obj → mod fruits
mod → fresh

s

subj likes obj

Dan mod fruits

fresh

Fig. 1.2. A context-free grammar and a parse tree generated by this grammar
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s→ subj likes obj

subj→ Dan obj→ mod fruits

mod→ fresh Dan likes fresh fruits

Fig. 1.3. Lexicalized derivations induce dependency structures

symbol, the anchor of that production (cf. [104]). Lexicalized grammars play a
significant role in contemporary linguistic theories and practical applications.
Crucially, they allow us to give context-free grammars a third interpretation:
as generators of dependency trees.

Consider a derivation d of a terminal string �a by means of a context-free
grammar. A derivation tree for d is a tree in which the nodes are labelled with
(occurrences of) the productions used in d, and the edges indicate how these
productions were combined. To give an example, the left half of Figure 1.3
shows the unique derivation tree of our example grammar. If the underlying
grammar is lexicalized, then there is a one-to-one correspondence between the
nodes in the derivation tree and the positions in the derived string �a: every
production that participates in the derivation contributes exactly one terminal
symbol to this string: its anchor. If we now order the nodes of the derivation
tree according to the string positions of their corresponding anchors, then what
we get is a dependency structure. For our example, this procedure results in
the structure depicted in Figure 1.1. We say that this dependency structure
is induced by the derivation d.

Not all practically relevant dependency structures can be induced by deri-
vations in lexicalized context-free grammars. A classic example is provided by
the structural difference between the verb-argument dependencies in German
and Dutch subordinate clauses, as shown in Figure 1.4: context-free gram-
mar can only characterize the ‘nested’, projective dependencies of German
(top), but not the ‘cross-serial’, non-projective assignments of Dutch (bot-
tom). However, as we will show in this book, these structures can be induced
by the derivation trees of lexicalized Tree Adjoining Grammar (TAG) [53].
More generally, based on the concept of induction that we have outlined here
we will show that there is a systematic relation between structural properties
of dependency trees (such as projectivity) and language-theoretic properties
of grammar formalisms inducing them (such as context-freeness).

The main question that we ask in this book is,

Which grammars induce which sets of dependency structures?

An answer to this question is interesting for at least two reasons. First, it al-
lows us to use dependency structures as the basis of an alternative measure for
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. . . dass Jan Marie Wim lesen helfen sah

. . . omdat Jan Marie Wim zag helpen lezen

Fig. 1.4. Nested and cross-serial dependencies

the generative capacity of a grammar formalism. This is attractive, as depen-
dency structures are more informative than strings, but less formalism-specific
and more intuitively accessible than parse trees (cf. [57]). Second, an answer
to the question allows us to tap the rich resource of formal results about
grammar formalisms and transfer them to work on dependency representa-
tions. In particular, it allows us to import the expertise in developing parsing
algorithms for lexicalized grammar formalisms into the field of dependency
parsing (cf. [75]).

While the connection between the generative capacity of a grammar for-
malism and the structural properties of the dependency graphs that this for-
malism can induce is intuitive, there have been only few results that link the
two dimensions. We believe that a fundamental reason for the lack of such
bridging results is that, while structural constraints on dependency graphs
are internal properties in the sense that they concern the nodes of the graph
and their connections, grammars take an external perspective on the objects
that they manipulate—the internal structure of an object is determined by
the internal structure of its constituent parts and the operations that are used
to combine them. An example for the difference between the two views is gi-
ven by the different perspectives on trees that we find in graph theory and
universal algebra. In graph theory, a tree is a special graph with an internal
structure that meets certain constraints; in algebra, trees are abstract objects
that can be composed and decomposed using certain operations. The develop-
ment of such an algebraic view on dependency trees will provide the technical
key to the results that we present in this book. Once we have it, we will be able
to generalize Gaifman’s [1965] equivalence result from projective dependency
structures and context-free grammars to mildly non-projective structures and
mildly context-sensitive grammar formalisms.
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1.3 Overview of the Book

This book consists of two parts. In the first part, we develop an algebraic
framework within which lexicalized grammars can be compared based on the
structural properties of the dependency graphs that they induce. In the se-
cond part, we derive a natural notion of regular sets of dependency struc-
tures, and use it to study the connection between structural properties such
as projectivity on the one hand, and language-theoretic properties such as
string-generative capacity and parsing complexity on the other.

1.3.1 Dependency Structures

In the first part of the book, we study dependency structures. These struc-
tures clearly separate two relations: the dependency relation, which we call
governance, and the total order on the nodes of the graph, which we call
precedence. We discuss three interesting classes of mildly non-projective de-
pendency structures, compare them to other classes in the literature, and
evaluate their practical relevance using data from dependency treebanks .

Structural Constraints

The first two classes of dependency structures that we consider in this book
have been studied before. Projective dependency structures (Chapter 3), as
already mentioned, are characterized by the structural constraint that each
subtree must form an interval with respect to the total order on the nodes.
As an example, consider the dependency structure depicted in Figure 1.5a:
each of the subtrees forms an interval with respect to the precedence rela-
tion. In dependency structures of bounded degree (Chapter 4), the projectivity
constraint is relaxed in such a way that dependency subtrees can be distribu-
ted over more than one, but still a finite number of intervals. For example, in
the structure depicted in Figure 1.5c, both the subtree rooted at the node 2
and the subtree rooted at the node 3 span two intervals. We call the maximal
number of intervals per subtree the block-degree of the structure, and use it
to quantify the non-projectivity of dependency graphs.

The third class of dependency structures that we investigate, the class
of well-nested dependency structures (Chapter 5), is original to this work.
Well-nestedness is the structural constraint that pairs of disjoint dependency
subtrees must not cross, meaning that there must not be nodes i1, i2 in the
first subtree and nodes j1, j2 in the second such that i1 < j1 < i2 < j2.
The dependency structure depicted in Figure 1.5e is well-nested, while the
structure depicted in Figure 1.5c is not. Well-nested dependency structures
are closely related to several other combinatorial structures, such as non-
crossing partitions and Dyck languages. We discuss an empirical evaluation
that shows that they are also practically relevant: virtually all dependency
analyses in two large and widely-used dependency treebanks obey the well-
nestedness constraint.
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1 2 3 4 5

(a) D1

〈012〉

〈01〉

〈0〉

〈01〉

〈0〉
(b) t1

1 2 3 4 5

(c) D2

〈01212〉

〈0, 1〉

〈0〉

〈0, 1〉

〈0〉
(d) t2

1 2 3 4 5

(e) D3

〈0121〉

〈0, 1〉

〈0〉

〈01〉

〈0〉
(f) t3

Fig. 1.5. A zoo of dependency structures, and their corresponding terms

Algebraic Framework

As we already mentioned, one of the major contributions of this book is an
algebraic framework in which projective, block-restricted and well-nested de-
pendency structures can be understood as the outcome of compositional pro-
cesses. Under this view, structural constraints do not apply to a fully specified
dependency graph, but are inherent in the composition operations by which
the graph is constructed. This provides a bridge between dependency struc-
tures and grammar formalisms. We formalize the algebraic framework in two
steps. In the first step, we show that dependency structures can be encoded
into terms over a certain signature of order annotations in such a way that
the three different classes of dependency structures discussed above stand in
one-to-one correspondence with terms over specific subsets of this signature.
In the second step, we define the concept of a dependency algebra. In these
algebras, order annotations are interpreted as composition operations on de-
pendency structures. We prove that each dependency algebra is isomorphic to
the corresponding term algebra, which means that the composition of depen-
dency structures can be freely simulated by the usual composition operations
on terms, such as substitution.
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To give an intuition for the algebraic framework, the right half of Figure 1.5
shows the terms corresponding to the dependency structures in the left half.
Each order annotation in these terms encodes node-specific information about
the precedence relation. As an example, the symbol 〈0, 1〉 in Figure 1.5d repre-
sents the information that the corresponding subtree in Figure 1.5c consists
of two intervals (the two components of the tuple 〈0, 1〉), with the root node
(represented by the symbol 0) situated in the left interval, and the subtree
rooted at the first child (represented by the symbol 1) in the right interval.
Under this encoding, the block-degree measure corresponds to the maximal
number of components per tuple, and the well-nestedness condition corres-
ponds to the absence of certain ‘forbidden substrings’ in the individual order
annotations, such as the substring 1212 in the term in Figure 1.5d.

Structures and Grammars

In Chapter 6, we apply the algebraic framework to classify the dependency
structures induced by various lexicalized grammar formalisms. The key to this
classification is the insight that the notion of induction can be formalized as
the interpretation of the derivations of a grammar in a suitable dependency
algebra. Based on this formalization, we can generalize Gaifman’s [1965] result
that projective dependency structures correspond to lexicalized context-free
grammars into the realm of the mildly context-sensitive: the classes of block-
restricted dependency structures correspond to Linear Context-Free Rewri-
ting Systems [118, 119], the classes of well-nested block-restricted structures
correspond to Coupled Context-Free Grammar [49]. As a special case, the
class of well-nested dependency structures with a block-degree of at most 2 is
characteristic for derivations in Lexicalized Tree Adjoining Grammar [54].

1.3.2 Dependency Languages

In the second part of the book, we lift our results from individual dependency
structures to sets of such structures, or dependency languages. The key to
this transfer is the formal concept of regular sets of dependency structures
(Chapter 7), which we define as the recognizable subsets of dependency al-
gebras [78]. From this definition, we obtain natural notions of automata and
grammars on the basis of which we can reason about the language-theoretic
properties of regular dependency languages.

Automata and Grammars

Given the isomorphism between dependency algebras and term algebras, we
can derive a natural automaton model for dependency structures from the
concept of a tree automaton [115]. This method in fact applies to all kinds
of data structures that are constructible using a finite set of operations; for
example, successful applications of the approach have previously led to step-
wise tree automata for the data model of XML [8] and feature automata for
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unranked unordered trees [84]. From the notion of an automaton, we are led
to the concept of a regular dependency grammar . By and large, grammars and
automata are two sides of the same coin: we get a grammar from an automaton
by interpreting the transition rules of the automaton as a directed rewriting
system. Using regular dependency grammars, we show a powerful pumping
lemma for regular dependency languages, and prove that these languages are
semilinear [91], which is also characteristic for languages generated by mildly
context-sensitive grammar formalisms.

String-Generative Capacity and Parsing Complexity

In the last technical chapter of the book (Chapter 8), we investigate the
connections between structural constraints, string-generative capacity, and
parsing complexity. We show how the block-degree measure gives rise to an
infinite hierarchy of ever more powerful string languages, and how enforcing
the well-nestedness of the underlying dependency structures leads to a pro-
per decrease of string-generative power on nearly all levels of this hierarchy.
In proving these results, we see how string languages can ‘enforce’ the pre-
sence of structures with certain properties in the corresponding dependency
languages. As an example, for every natural number k, we identify a string
language L(k) that requires every regular set of dependency structures with
block-degree at most k that projects L(k) to contain structures that are not
well-nested. Finally, we show that both the block-degree measure and the
well-nestedness condition have direct implications for the parsing complexity
of regular dependency languages. We prove that, while the parsing problem
of regular dependency languages is polynomial in the length of the input
string, the problem in which we take the grammar to be part of the input is
NP-complete. Interestingly, for well-nested dependency languages, parsing is
polynomial even with the size of the grammar taken into account.

1.3.3 Contributions

In summary, this book makes two main contributions:

1. an algebraic theory of mildly non-projective dependency structures and
regular sets of such structures (dependency languages), and

2. a classification of mildly context-sensitive, lexicalized grammar formalisms
in terms of the dependency structures that these formalisms induce.

The algebraic theory complements previous work on dependency represen-
tations in that it enables us to link structural constraints such as projecti-
vity, block-degree and well-nestedness to language-theoretic properties such as
string-generative capacity and parsing complexity. The classification of gram-
mar formalisms in terms of their ability to induce dependency structures yields
a new, practically useful measure of generative capacity. Both results provide
fundamental insights into the relation between dependency structures and
lexicalized grammars.
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Preliminaries

This chapter provides a compact review of the basic terminology and notation
that we will use in this book. It is thought more as a reference than as a tutorial
presentation. The reader is invited to browse through these preliminaries and
return to them whenever some notation or terminology is unclear.

Our formal toolbox is composed from four main sources: The terminology
for mathematical structures and the relations between these structures come
from universal algebra [16]. The specific formalization of dependency struc-
tures takes an order-theoretic perspective [15], but also alludes to graph theory
[17]. To describe and manipulate structures and sets of structures, we make
use of terms and term languages, and of the usual operations defined on them
[28]. Note that we use the word ‘term’ for the syntactic object, and the word
‘tree’ when referring to the order-theoretic and graph-theoretic structures.

Basic Notations

We write N for the set of non-negative integers. For n ∈ N, we write [n] to
refer to the set {m ∈ N | 1 ≤ m ≤ n }. Note that by this definition, [0] = ∅.
For a set A, we write |A| for the cardinality of A.

We use the notations A∗ and A+ to refer to the sets of all and all non-
empty strings over the set A, respectively. We treat strings as vectors: the
notation ai refers to the ith element of the string �a. The length of a string �a
is denoted by |�a|; the empty string is denoted by ε. The concatenation of two
strings �x and �y is written as �x�y; only where this could create confusion, we
use the alternative notation �x · �y. An alphabet is a finite, non-empty set of
symbols.

Indexed Sets and Sorted Sets

Let I be a non-empty set. An I-indexed set is a total function with domain I.
We use the notation 〈xi | i ∈ I 〉 to refer to an I-indexed set, where xi denotes
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the image of i. We freely identify the set of all indexed sets with index set [n],
n ∈ N, with the set of all n-tuples, and with the set of all strings of length n. An
I-indexed family is an I-indexed set with a set-valued codomain. For indexed
families, the usual set-theoretic operation are defined index-wise. In particular,
if A and B both are I-indexed families, then A×B = 〈Ai ×Bi | i ∈ I 〉.

Let S be a non-empty collection of sorts. An S-sorted set consists of a
non-empty set A and a type assignment typeA: A→ S+. We write SA for the
collection of sorts that underlies A. When the sorted set under consideration
is irrelevant or clear from the context, we write a: �s instead of typeA(a) = �s;
this is to be read as ‘a has type �s in A’. The set of all elements of A with
type �s is denoted by A�s. In the following, let A and B be sorted sets. We write
〈A,B〉 for the sorted set A×B in which 〈a, b〉: typeA(a), for all a ∈ A, b ∈ B.
For an element a: �ss with �s ∈ S∗ and s ∈ S, the length of �s is called the rank
of a, and is denoted by rankA(a). If |S| = 1, the type of an element a ∈ A
is uniquely determined by its rank; in this case, the set A is called a ranked
set, and the set of all elements with rank k is denoted by Ak. We freely treat
S-indexed sets A as S-sorted sets by stipulating that typeA(a) = s if and only
if a ∈ As.

Structures

We now define the notion of a mathematical structure. Let Σ be a sorted set,
now called a signature. A (concrete) Σ-structure is a pair

A = (〈AA
s | s ∈ SΣ 〉, 〈RA

σ | σ ∈ Σ 〉) ,
where the first component is an SΣ-indexed family of non-empty sets, called
the domains of A, and the second component is a Σ-indexed family of rela-
tions over the domains such that RA

σ ⊆ AA
s1

× · · · × AA
sn

, for every symbol
σ: s1 · · · sn. We use the notation dom(A) to refer to the domains of A. For
structures with small signatures over a single sort, we use the compact nota-
tion (AA

s ;RA
1 , . . . , R

A
n ), leaving the signature implicit. A structure is finite, if

both its signature and all of its domains are finite sets.
Given two Σ-structures A and B, a homomorphism from A to B is an

indexed family 〈hs | s ∈ SΣ 〉 in which, for each given sort s ∈ SΣ , the
object hs is a total function hs: dom(A)s → dom(B)s with the property that

(a1, . . . , an) ∈ RA
σ =⇒ (hs(a1), . . . , hs(an)) ∈ RB

σ ,

for every σ: s1 · · · sn, ai ∈ dom(A)si , and i ∈ [n]. The notation h : A → B
refers to a homomorphism between Σ-structures A and B, treating it as a
single mapping rather than as an indexed family of mappings. Furthermore,
to avoid subscript clutter, for s ∈ SΣ and a ∈ dom(A)s, we write h(a) rather
than hs(a) for the image of a under the homomorphism h, assuming that h
keeps type discipline. A homomorphism is called epi or an epimorphism, if
every member function is injective; it is called mono or a monomorphism, if
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every member function is surjective; it is called iso or an isomorphism, if every
member function is bijective. We do not distinguish between structures A
and B for which there exists an isomorphism h : A → B. Specifically, a Σ-
structure is an equivalence class of concreteΣ-structures modulo isomorphism.

Ordered Sets

An ordered set is a structure with a single binary relation that is reflexive,
transitive, and anti-symmetric. Let R = (A ;
) be an ordered set, and let
a, b ∈ A. We write a ≺ b to assert that a 
 b, and a �= b. We say that a
immediately precedes b (with respect to 
) if a 
 b and there is no element
c ∈ A such that a 
 c 
 b. The up-closure and the down-closure of a are
defined as a� := { c ∈ A | a 
 c } and �a� := { c ∈ A | c 
 a }, respectively.
For a given subset B ⊆ A, we say that R is total on B, if a 
 b or b 
 a
holds for all a, b ∈ B. The structure R is called a chain, if it is total on A; it
is called a forest, if it is total on all down-closures; it is called a tree, if it is
a forest and additionally contains an element r, the root node of R, with the
property that r� = A.

Observe that what we call ‘forests’ and ‘trees’ are the reflexive-transitive
closures of the corresponding objects from graph theory. The elements of the
domains of trees are called nodes. We use the symbols u, v and w for variables
that range over nodes. Let T = (V ;�) be a tree. If u � v, we say that u
dominates v. We write u → v if u immediately precedes v with respect to
dominance; this relation corresponds to the edge relation in the formalization
of trees as special directed graphs. We use the standard genealogical termino-
logy to refer to relations between nodes in a tree: If u→ v, then we say that v
is a child of u, and, symmetrically, that u is the parent of v. Distinct children
of the same node are called siblings. We use the term yield as a synonym
for the down-closure of u; notice that u � v if and only if v ∈ u�. The set
of descendants and ancestors of u are defined as �u� − {u} and u� − {u},
respectively. Two nodes u and v are disjoint, if u�∩v� = ∅. Each pair v, w of
disjoint nodes has a greatest common ancestor u; for this situation, we write
v ⊥u w.

For chains, we define the notion of an interval : the interval with end-
points a and b is the set [a, b] := (a� ∩ �b�) ∪ (�a� ∩ b�). We also put
(a, b) := [a, b] − {a, b}. A set is convex, if it is an interval.

Dependency Structures

A dependency structure is a structureD with two binary relations: one relation
forms a tree, the second relation forms a chain on the domain of D. Thus,
dependency structures are trees with a total order on their nodes. They differ
from ordered trees, where the order relation is only defined on the children of
each node, but not on the set of all nodes of the tree.
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The tree relation of a dependency structure is called governance, the total
order is called precedence. Just like in trees, the elements of the domains of
dependency structures are called nodes. Given a dependency structure D, for
nodes u, v ∈ dom(D), we write u � v to assert that u governs v, and u 
 v
to assert that u precedes v in D. To talk about dependency structures, we
import all terminology for trees and chains.

1 2 3 4

Fig. 2.1. A dependency structure

Figure 2.1 shows how we visualize dependency structures. A picture of a
dependency structure contains the nodes of the structure (drawn as circles),
edges (drawn as pointed arrows), and projection lines (drawn as dotted lines).
Specifically, we draw an edge between two nodes u and v if and only if u→ v.
The nodes are ordered from left-to-right; we place u before v if and only if
u ≺ v. The projection lines are used to make the left-to-right order more
explicit.

When discussing algorithms that operate on dependency structures, we
assume a concrete representation of these structures as a collection of objects,
where each object u has access to at least the object representing its parent
node, parent [u], and its position in the precedence order among all the nodes
of the structure, pos [u]. We also make the (reasonable) assumption that both
attributes can be accessed in constant time. With this representation mind, it
is straightforward that the following auxiliary mappings can be constructed in
time linear in the size of the structure: a mapping children [u] that maps each
object u to the set of objects representing the children of u; a mapping node[i]
that maps each position i (where i ranges over the size of the structure) to
the object u for which pos [u] = i. Similarly, it is straightforward that the
following iterations over the nodes in the structure can be supported in linear
time: pre-order, post-order, and left-to-right.

Algebraic Structures and Terms

A Σ-structure A = (〈AA
s | s ∈ SΣ 〉, 〈 fA

σ | σ ∈ Σ 〉) is called algebraic or an
algebra, if for every symbol σ: s1 · · · sms, the relation fA

σ is a total function,
meaning that for every i ∈ [m] and ai ∈ AA

si
, there is exactly one a ∈ AA

s

such that (a1, . . . , am, a) ∈ fA
σ . In the context of algebras, we use the notation

σ: s1 × · · · × sm → s instead of σ: s1 · · · sms, and call m the arity of the
symbol σ and the corresponding function fσ.
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Let Σ be a sorted set. The set of terms over Σ is the smallest SΣ-indexed
family TΣ such that if σ: s1 ×· · ·× sm → s and ti ∈ TΣ,si for all i ∈ [m], then
σ(t1, . . . , tm) ∈ TΣ,s. Let t ∈ TΣ be a term. The set of nodes of t, nod(t), is
the subset of N

∗ that is defined by the equation

nod(σ(t1, . . . , tm)) := {ε} ∪ { i · u | i ∈ [m], u ∈ nod(ti) } .

The empty string ε represents the root node of t, and the string i ·u represents
the ith child of the node u. The subterm of t at node u is denoted by t/u, the
substitution of the term s at node u in t is denoted by t[u← s], and the label
of t at node u is denoted by t(u). We also put alph(t) := { t(u) | u ∈ nod(t) },
which thereby denotes the set of all labels in t. A context over Σ is a pair
(t, u), where t ∈ TΣ is a term, and u is a leaf node in t. We write CΣ for
the set of all contexts over Σ, and make free use of all term-related concepts
even for contexts. Given a context (c, u) ∈ CΣ and a term t ∈ TΣ,s with
s = typeΣ(c(u)), we write c · t for the term obtained as c[u← t].

The term algebra over Σ is the algebra A in which dom(A) = TΣ, and in
which each function fA

σ is interpreted as a term constructor in the obvious way.
We use the notation TΣ for both the set of terms over Σ and the term algebra
over Σ. For every signature Σ and every Σ-algebra A, there is a uniquely
determined homomorphism �·�A: TΣ → A that evaluates terms in TΣ as
values in A.
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Projective Dependency Structures

The exact relation between dependency and word order is a major point of
debate in dependency theory. Over the years, various authors have made pro-
posals for formal constraints to restrict this relation. In this chapter, we study
the best-known of these proposals, projectivity. We start by reviewing three
standard characterizations of projectivity (Section 3.1), and then introduce
a new, algebraic characterization (Section 3.2). This gives rise to an effi-
cient algorithm to test whether a given dependency structure is projective
(Section 3.3). We use this algorithm to evaluate the practical relevance of
projectivity on data from three dependency treebanks (Section 3.4).

3.1 Projectivity

Figure 3.1 shows pictures of five dependency structures. One of these,
Figure 3.1d, is different from the others in that it displays crossing edges—the
edge 1 → 3 crosses the projection line of node 2. The projectivity condition is
often summarized in the slogan that ‘it disallows dependency structures with
pictures that contain crossing edges’. This is a nice mnemonic, but whether
a dependency edge crosses a projection line or not of course mainly is a mat-
ter of how we draw dependency structures, not a property of the structures
themselves. For example, Figure 3.1d can be re-drawn without crossing edges

1 2 3

(a) D1

1 2 3

(b) D2

1 2 3

(c) D3

1 2 3

(d) D4

1 2 3

(e) D5

Fig. 3.1. Five (of nine) dependency structures with three nodes

M. Kuhlmann: Dependency Structures and Lexicalized Grammars, LNAI 6270, pp. 17–32, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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if node 2 is moved to a vertical position below node 1 (see Figure 3.2d), while
Figure 3.1b and Figure 3.1c exhibit crossing edges when modified such that
node 2 is positioned above the root node (see Figure 3.2b and Figure 3.2c).
It is clear then that to obtain a precise characterization of projectivity, we
need a definition that formalizes the idea of crossing edges without referring
to differences in visualization.

1 2 3

(a) D1

1 2 3

(b) D2

1 2 3

(c) D3

1 2 3

(d) D4

1 2 3

(e) D5

Fig. 3.2. Alternative pictures for the dependency structures from Figure 3.1

3.1.1 Projectivity in the Sense of Harper and Hays

A crucial difference between the pictures in Figure 3.1 and the alternative
versions in Figure 3.2 is that in the former, all tree edges point downwards,
while in the latter, some of them also point upwards. Let us call a picture
of a dependency structure canonical , if the vertical position of each node is
chosen according to its level of depth in the tree, with the root node taking
the highest position.

Example 3.1.1. Figure 3.3 shows canonical and non-canonical pictures of the
dependency structures D2 and D4. The horizontal lines visualize the depth
levels. �

In canonical pictures of dependency structures, all tree edges point to the next
level of depth. As a consequence, an edge u→ v can cross the projection line
of a node w only if the vertical position of u is the same as or below the vertical
position of w. To ban crossing edges in canonical pictures, it is sufficient then
to require the node u to govern the node w; this guarantees that the vertical
position of u is strictly above the vertical position of w. The requirement is

1 2 3 1 2 3

(a) D2

1 2 3 1 2 3

(b) D4

Fig. 3.3. Canonical and non-canonical pictures of two dependency structures
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made formal in the following implication, attributed to Kenneth Harper and
David Hays [72]:

u→ v ∧ w ∈ (u, v) =⇒ u � w (3.1)

We introduce some useful terminology: Let u, v, w be witnesses for the pre-
mises of the implication (3.1). We then say that the edge u → v covers the
node w, and call an edge that covers a node but does not govern it a non-pro-
jective edge. A dependency structure is projective if and only if it does not
contain non-projective edges.

Example 3.1.2. The edge 1 → 3 in Figure 3.1d and Figure 3.2d is non-projec-
tive, as it covers the node 2, but does not govern it. All other edges depicted
in Figure 3.1 and Figure 3.2 are projective. �

3.1.2 Projectivity in the Sense of Lecerf and Ihm

The characterization of projectivity in the sense of Harper and Hays links
projectivity to edges. The second characterization that we consider, attributed
to Yves Lecerf and Peter Ihm [72], anchors projectivity at paths :

u � v ∧ w ∈ (u, v) =⇒ u � w (3.2)

Note that the only difference between this requirement and (3.1) is the first
premise of the implication: projectivity in the sense of Lecerf and Ihm requires
not only every edge, but every (directed) path from a node u to a node v to
cover only nodes w that are governed by u. Since every path consists of a
finite sequence of edges, the characterizations of projectivity in the sense of
Harper and Hays and in the sense of Lecerf and Ihm are fully equivalent [72,
chapter 6, Theorem 10].

3.1.3 Projectivity in the Sense of Fitialov

We now present a third characterization of projectivity. This characteriza-
tion formalizes the observation that in a projective dependency analysis, a
word and its (transitive) dependents form a contiguous substring of the full
sentence. It is usually attributed to Sergey Fitialov [72].

u � v1 ∧ u � v2 ∧ w ∈ (v1, v2) =⇒ u � w (3.3)

This condition is equivalent to the preceding two [72, chapter 6, Theorem 11].
Using our terminology for chains, we can rephrase it more succinctly as follows:

Definition 3.1.1. A dependency structure D is called projective, if every
yield in D is convex with respect to precedence. �

This is the formulation that we adopt as our formal definition of projectivity.
We write D1 to refer to the class of all projective dependency structures.
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Example 3.1.3 (continued). In the dependency structure shown in Figure 3.1d,
the yield of the node 1 (the set {1, 3}) does not form a convex set: the node 2
is missing from it. All other yields in Figure 3.1 are convex. Therefore, the
only non-projective dependency structure in Figure 3.1 is structure D4. �

3.1.4 Related Work

While the fundamental intuitions behind projectivity are already inherent in
work on machine translation from the 1950s, the characterizations in the sense
of Harper and Hays and in the sense of Lecerf and Ihm appear to be the first
formal definitions of the condition; they were both published in 1960. Marcus
[72] collects and compares several definitions of projectivity that circulated in
the second half of the 1960s. In particular, he proves the equivalence of the
characterizations of projectivity in the senses of Harper and Hays, Lecerf and
Ihm, and Fitialov.

There are several other equivalent characterizations of projectivity; we only
name two here. The following formulation is due to Robinson [100], p. 260;
it is sometimes referred to as the ‘adjacency principle’, a term that appears
to have been coined by Hudson [50], p. 98: ‘If A depends directly on B and
some element C intervenes between them (in linear order of string), then C
depends directly on A or on B or on some other intervening element.’ Havelka
[43] presents an original edge-centric characterization of projectivity based on
the difference between the depth of the dependent node of a dependency edge
and the material covered by it, and uses it as the basis for an algorithm to
test whether a given dependency structure is projective.

Veselá et al. [117] propose a characterization of projectivity based on ‘for-
bidden elementary configurations’ in a dependency structure, but the condi-
tion that they define still allows some non-projective structures:

forbidden: allowed:

The characterization of projectivity in terms of convex yields sheds some
light on the relation between dependency grammar and phrase-structure
grammar: If one accepts that yields reconstruct the notion of constituents
that is familiar from phrase-structure grammars, then the projectivity condi-
tion amounts to the standard requirement that a constituent should be conti-
guous. In this sense, projective dependency structures are closely related to
standard phrase-structure trees. This correspondence was first investigated by
Hays [46]. The survey by Dikovsky and Modina [18], section 3.2 summarizes
some of the formal results obtained since then.

3.2 Algebraic Framework

We have characterizedprojectivity as a relational property of dependency struc-
tures. The immediate value of this characterization is that it is empirically
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transparent: from a canonical picture of a given dependency structure, we can
immediately see whether it is projective.

What is not clear at this point is how the projectivity constraint can be fit-
ted into a grammatical framework, where a dependency structure is not given
directly, but specified as the outcome of a derivational process. In this section,
we clarify this issue: We equip the class of projective dependency structures
with a set of algebraic operations. Each application of an operation can be un-
derstood as the application of a single production of some grammar. Our setup
guarantees that all operations only yield projective structures, and that all
projective structures can be decomposed into elementary operations. In this
way, every projective dependency structure can be understood as the outcome
of a complete derivation in a grammar with a suitable set of productions.

Table 3.1. Pre-order and post-order traversal of a children-ordered tree

Pre-Order-Collect(u)

1 L← nil
2 L← L · [u]
3 foreach v in children[u]
4 do L← L · Pre-Order-Collect(v)
5 return L

Post-Order-Collect(u)

1 L← nil
2 foreach v in children[u]
3 do L← L · Post-Order-Collect(v)
4 L← L · [u]
5 return L

3.2.1 Tree Traversal Strategies

To convey the basic intuitions behind our algebraic setting, we start this
section by looking at tree traversal strategies. A tree traversal is the process of
systematically visiting all nodes of a tree. Two well-known strategies for tree
traversal are pre-order traversal and post-order traversal of children-ordered
trees. For the sake of concreteness, let us assume that a children-ordered tree is
represented as a collection of nodes, where each node u is annotated with a list
children [u] of its children. We can then specify procedures to collect the nodes
of a tree as in Table 3.1.1 The result of a call to Pre-Order-Collect(u)
or Post-Order-Collect(u) is a list of the nodes in the tree rooted at the
node u; each node of the tree occurs in this list exactly once.

1 The format of our pseudo-code follows Cormen et al. [11]. We write [x] for the
singleton list that contains the element x, and L1 · L2 for the concatenation of
two lists L1 and L2.
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Both Pre-Order-Collect and Post-Order-Collect extend the or-
ders among the children of each node into a global order, defined on all nodes
of the tree. When we impose this global order on the nodes of the tree that was
traversed, we obtain a dependency structure. This observation is formalized
in the following definitions.

Definition 3.2.1. Let T be a tree. A linearization of T is a list of nodes of T
in which each node occurs exactly once. The dependency structure induced
by a linearization �u of T is the structure in which the governance relation is
isomorphic to T , and the precedence relation is isomorphic to �u. �

Example 3.2.1. Figure 3.4a shows a children-ordered tree. The pre-order li-
nearization of this tree yields the node sequence 12345. When we impose this
order on the nodes in the tree, we obtain the dependency structure D6 shown
in Figure 3.4b. In contrast, the post-order linearization of the children-ordered
tree yields the node sequence 43251; this induces the dependency structure D7

shown in Figure 3.4c. �

1

2

3

4

5

(a) tree

1 2 3 4 5

(b) D6 (pre-order traversal)

4 3 2 5 1

(c) D7 (post-order traversal)

Fig. 3.4. Dependency structures obtained by tree traversals of a children-ordered
tree

We now sketch our plan for the remainder of this section: Our first goal is
to find a traversal strategy and a class of order-annotated trees that fully
characterize the class of projective dependency structures—traversals should
only induce projective structures, and every projective structure should be
inducible by some traversal. In a second step, we formalize this framework by
regarding the set of all order annotations as an algebraic signature, order-an-
notated trees as terms over this signature, and tree traversal as the evaluation
of these terms in an algebra over dependency structures.

With this roadmap in mind, let us see how far pre-order and post-order tra-
versal take us. One property that both strategies have in common is that they
visit the nodes in each subtree as a contiguous block. As a consequence, every
dependency structure that is induced by pre-order or post-order traversal is
projective. On the other hand, not every projective dependency structure can
be obtained as the pre-order or post-order interpretation of a children-ordered
tree. Specifically, all structures induced by pre-order traversal are monotonic
in the sense that u � v implies that u 
 v, while all structures obtained
by post-order traversal are anti-monotonic. The fundamental reason for these
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specific properties is that in both pre-order and post-order traversal, the po-
sition of a node relative to its children is hard-wired: it is not specified in the
order annotations, but in the traversal strategy itself.

3.2.2 Traversal of Treelet-Ordered Trees

To overcome the restrictions of pre-order and post-order traversal, we include
the position of a node relative to its children in the order annotations, and
make the traversal strategy sensitive to this information. Let us call the local
tree formed by a node u and its children (if there are any) the treelet rooted
at u, and let us say that a tree is treelet-ordered , if each of its nodes is an-
notated with a total order on the nodes in the treelet rooted at that node.
Table 3.2 gives the pseudo-code of a procedure that traverses a treelet-ordered
tree and returns a list of its nodes. We assume that each node u in the tree
is annotated with a list order [u] that contains the nodes in the treelet rooted
at u in the intended order.

Table 3.2. Traversal of a treelet-ordered tree

Treelet-Order-Collect(u)

1 L← nil
2 foreach v in order [u]
3 do if v = u
4 then L← L · [u]
5 else L← L ·Treelet-Order-Collect(v)
6 return L

Example 3.2.2. Figure 3.5a visualizes a treelet-ordered tree; the sequences at
the ends of the dotted lines represent the annotated orders. The traversal of
this tree according to the procedure in Table 3.2 yields the sequence 24315.
When we impose this order on the nodes in the tree, we obtain the depen-
dency structure D8 shown in Figure 3.5b. Note that this structure is neither
monotonic nor anti-monotonic. �

We now show that treelet-ordered trees and our procedure for their tra-
versal are expressive enough to fully characterize the class of projective
dependency structures. What is more, distinct treelet-ordered trees induce
distinct structures. In our proofs, we use two functions on treelet-ordered
trees: a function lin that maps each tree to its linearization according to
Treelet-Order-Collect, and a function dep that maps each tree T to
the dependency structure induced by lin(T ). We then have

u � v in dep(T ) if and only if u dominates v in T , and
u 
 v in dep(T ) if and only if u precedes v in lin(T ).
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1

2

3

4

5

215

23

43

4

5

(a) tree

2 4 3 1 5

(b) D8 (treelet-order traversal)

Fig. 3.5. A treelet-ordered tree and its corresponding dependency structure

The next three lemmata show that the function dep forms a bijection between
the set of all treelet-ordered trees and the set of all projective dependency
structures.

Lemma 3.2.1. Let T be a treelet-ordered tree. Then dep(T ) is projective. �

Proof. Let T be a treelet-ordered tree, and let u be the root node of T . We
show that every yield of T is convex with respect to the total order on the
nodes of T that is represented by the linearization lin(T ). Our proof proceeds
by induction on the depth d of T .

First, assume that d = 0. In this case, the node u is the only node in T ,
and we have order [u] = [u]. Therefore, lin(T ) = [u], and dep(T ) is the trivial
dependency structure. The yield u�, like all singleton sets, is convex with
respect to lin(T ).

Now, assume that d > 0. In this case, the tree T can be decomposed
into the node u and the collection of subtrees rooted at the children of u.
Let w �= u be a node in T , and let v be the uniquely determined child of u
that dominates w. By the induction hypothesis, we may assume that the
yield w� is convex with respect to the linearization that was computed by
the recursive call Treelet-Order-Collect(v). The result lin(T ) of the call
Treelet-Order-Collect(u) is a concatenation of these linearizations and
the singleton list [u]; thus, the yield w� is convex even with respect to lin(T ).
The yield u�, being the set of all nodes in T , is trivially convex with respect
to lin(T ). �

For the next lemma, we introduce an important auxiliary concept.

Definition 3.2.2. LetD be a dependency structure, and let u be a node inD.
The set of constituents of u is defined as C(u) := {{u}} ∪ { v� | u→ v }. �

Lemma 3.2.2. For every projective dependency structure D, there is a tree-
let-ordered tree T such that D = dep(T ). �

Proof. Let D be a projective dependency structure with root node u. We
show how to construct a treelet-ordered tree T such that D = lin(T ). The
tree structure underlying T is isomorphic to the tree structure underlying D.
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Therefore, it suffices to show that we can find appropriate order annotations
for the nodes in T such that lin(T ) corresponds to the precedence relation inD.
We proceed by induction on the depth d of the tree structure underlying D.

First, assume that d = 0. In this case, we have only one choice to assign an
order annotation to u, order [u] = [u]. With this annotation, we indeed have
lin(T ) = [u].

Now, assume that d > 0. In this case, the node u has an out-degree of
n > 0. The set C(u) of constituents of u forms a partition of the yield u�.
Furthermore, every constituent is convex with respect to the order under-
lying D: the set {u} trivially so, and each set v� because the structure D
is projective. We can also verify that for every constituent C ∈ C(u), the
restriction D|C forms a projective dependency structure on C. Thus, by the
induction hypothesis, we may assume that for every child v of u, we can anno-
tate the subtree T/v such that dep(T/v) = D|�v�. What remains to be shown
is that we can annotate u such that the call Treelet-Order-Collect(u)
arranges the constituents C(u) according to their relative precedence in D.

To construct the order annotation for the node u, let π: u� → u� be the
function that maps u to itself and every other node v ∈ u� to the uniquely
determined child of u that governs v. Now, let L be the list of all nodes in D
in the order of their precedence, and let L′ be the list obtained from L by
replacing each node w with the node π(w) if w ∈ u�, and with the symbol �

if w /∈ u�. Finally, let order [u] be the list obtained from L′ by collapsing all
adjacent occurrences of the same symbol into a single occurrence, and remo-
ving all leading and trailing symbols �. For this order annotation of u, we can
verify that the call Treelet-Order-Traversal(u) returns the constituents
C(u) in the order that they have in D. �

Example 3.2.3 (continued). For the dependency structure D7 shown in Fi-
gure 3.5b, the construction described in the proof yields

for node 1: L = 24315 L′ = 22215 order [1] = 215 ,
for node 2: L = 24315 L′ = 233 �� order [2] = 23 ,
for node 3: L = 24315 L′ = � 43 �� order [3] = 43 ,
for node 4: L = 24315 L′ = � 4 ��� order [4] = 4 ,
for node 5: L = 24315 L′ = ���� 5 order [5] = 5 .

Note that these are the order annotations shown in Figure 3.5a. �

Lemma 3.2.3. For every projective dependency structure D, there is at most
one treelet-ordered tree T such that dep(T ) = D. �

Proof. Let D be a projective dependency structure, and let T be a treelet-
ordered tree such that dep(T ) = D. Now let T ′ be another treelet-ordered
tree, distinct from T , and consider the dependency structure dep(T ′). We
distinguish two cases: If the tree structures underlying T and T ′ are non-
isomorphic, then dep(T ) and dep(T ′) are non-isomorphic as well. Otherwise,
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the tree T ′ differs from T with respect to some order annotation. Then the
call to Treelet-Order-Collect returns a different order for T than for T ′;
hence, dep(T ) and dep(T ′) are non-isomorphic. �

3.2.3 Order Annotations

We now translate our framework into the language of terms: we regard the
list-based order annotations that we used in Treelet-Order-Collect as
a ranked set Ω, and treelet-ordered trees as terms over this set. This allows
us to reinterpret the function dep as a bijection between TΩ and the class of
projective dependency structures.

While our list-based order annotations were sequences of (pointers to)
concrete nodes in a treelet-ordered tree, the ranked set Ω should be defined
independently of any particular term over this set. Therefore, we add a layer
of indirection: each order annotation in Ω refers to nodes not directly, but by
names for these nodes; these names are then resolved given the term struc-
ture. Specifically, let T be a treelet-ordered tree with root node u. We need
two auxiliary sequences: the vector �v = v1 · · · vm obtained from order [u] by
removing the node u, and the string �ı obtained from order [u] by replacing
every child of u by its position in �v, and u itself by the symbol 0. The vector �v
orders the children of u; this order will become the left-to-right order on the
children of u in our term representation. The string �ı provides an ‘abstract’
order annotation that makes use of node names rather than concrete nodes:
the name 0 denotes the root node of the treelet rooted at u, a name i ∈ [m]
denotes the ith node in the sequence �v. The term t(T ) corresponding to T is
then defined recursively as

t(T ) := 〈�ı〉(t(T/v1), . . . , t(T/vm)) .

In this definition, the string 〈�ı〉 is understood as a term constructor of rank m.
We write Ωm for the set of all such constructors, and put Ω :=

⋃
m∈N

Ωm.
Every term over Ω encodes a treelet-ordered tree in the way that we have just
described, and every such tree can be encoded into a term. In this way, we
can view the function dep as a bijection dep: TΩ → D1 in the obvious way.
We put term := dep−1.

Example 3.2.4. Figure 3.6 shows the term for the treelet-ordered tree from
Figure 3.5a. �

3.2.4 Dependency Algebras

Using the ranked set Ω and the bijection dep: TΩ → D1 between terms over Ω
and projective dependency structures, we now give the set D1 an algebraic
structure: with every order annotation, we associate an operation on projective
dependency structures.
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〈102〉

〈01〉

〈10〉

〈0〉

〈0〉

Fig. 3.6. The term for the treelet-ordered tree from Figure 3.5a

Definition 3.2.3. Let m ∈ N, and let ω ∈ Ωm be an order annotation.
The composition operation corresponding to ω is the function fω: Dm

1 → D1

defined as

fω(D1, . . . , Dm) := dep(ω(term(D1), . . . , term(Dm))) . �

Composition operations are well-defined because the function dep is bijective.
Each composition operation fω simulates a single step of the treelet-order
traversal: given a sequence of argument structures, it returns the dependency
structure that is obtained by taking the disjoint union of the arguments,
adding a new root node, and arranging the nodes of the arguments and the
root node in the order specified by ω.

Example 3.2.5. Figure 3.7 shows some examples for the results of composition
operations. The composition of zero arguments, f〈0〉, is the trivial dependency
structure with one node (Figure 3.7a). Starting from this structure, more and
more complex dependency structures can be built (Figures 3.7b–3.7d). �

1

(a) D0

1 2

(b) D9 = f〈01〉(D0)

1 2 3 4

(c) f〈102〉(D9, D0)

1 2 3 4

(d) f〈102〉(D0, D9)

Fig. 3.7. Examples for composition operations

We now have everything we need to define our algebraic setting. In the follo-
wing definition, we use the function dep lifted to sets in the obvious way.

Definition 3.2.4. Let Σ ⊆ Ω be a finite set of order annotations. The depen-
dency algebra over Σ is the Σ-algebra that has dep(TΣ) as its carrier set, and
interprets each symbol ω ∈ Σ by the composition operation corresponding
to ω. �
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By definition, dependency algebras are isomorphic to term algebras:

Theorem 3.2.1. Let Σ ⊆ Ω be a finite set of order annotations. Then the
dependency algebra over Σ is isomorphic to the term algebra over Σ, TΣ. �

Proof. Let D be the dependency algebra over Σ. The restriction h of dep to
the set of all terms over Σ is a bijection between TΣ and the set dep(TΣ), the
carrier of D. Furthermore, from the definition of the composition operations
we see that h forms a Σ-homomorphism between the term algebra TΣ and D:

h(ω(t1, . . . , tm)) = h(ω(h−1(h(t1)), . . . , h−1(h(tm)))) = fω(h(t1), . . . , h(tm)) .

Hence, TΣ and D are isomorphic. �

One convenient consequence of the isomorphism between dependency algebras
and their corresponding term algebras is that we can make use of all the ter-
minology and notations available for terms when reasoning about dependency
structures.

3.3 Algorithmic Problems

We now address three algorithmic problems associated with projectivity: the
problems of encoding a projective dependency structure into its corresponding
term, the symmetric problem of decoding a term into a dependency struc-
ture, and the problem of deciding whether a given dependency structure is
projective.

3.3.1 Encoding and Decoding

The encoding problem for projective dependency structures is to compute, for
a given dependency structure D, the term term(D). Since the tree relation of
a dependency structure and its corresponding term are isomorphic, the crucial
task when encoding a projective structure into a term is to extract the order
annotations for the nodes of the structure. A naïve procedure to solve this task
is inherent in our proof of the result that the function dep is onto (page 25).
This procedure can be implemented to run in time O(n2), where n is the
number of nodes in D. Each order annotation reflects the restriction of the
precedence relation to the nodes in the treelet rooted at u. Consequently, each
list order [u] contains the nodes in the treelet rooted at u in the order in which
they appear in D. It is not hard to see that we can populate all of these lists
in a single iteration over the nodes in the order of their precedence. Pseudo-
code for the procedure is given in Table 3.3. Assuming that all elementary
operations on D take constant time, and that an iteration takes time O(n),
extracting the order annotations and hence encoding can be done in time O(n)
as well.
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Table 3.3. Extracting the order annotations for a projective structure

Extract-Order-Annotations(D)

1 foreach u in D
2 do order [u]← nil
3 foreach u in D � in the order of their precedence in D
4 do if parent [u] �= undefined � u is an inner node
5 then order [parent [u]]← order [parent [u]] · [u]
6 order [u]← order [u] · [u]

Lemma 3.3.1. Let D be a dependency structure with n nodes. Then the term
term(D) can be computed in time O(n). �

The problem of decoding a term t ∈ TΩ into its corresponding dependency
structure is solved by the tree-traversal procedure that we gave in Table 3.2.
Assuming that all elementary operations of that procedure take constant time,
it is clear that the full precedence relation can be constructed in time linear
in the size of the input term.

Lemma 3.3.2. Let t ∈ TΩ be a term with n nodes. Then the projective de-
pendency structure dep(t) can be computed in time O(n). �

3.3.2 Testing whether a Dependency Structure Is Projective

The isomorphism between projective dependency structures and terms over Ω
gives rise to a simple and efficient algorithm for testing whether a given struc-
ture is projective. Note that nothing in our encoding procedure hinges on
the input structure being projective. At the same time, only for projective
structures this encoding produces terms that can be decoded back into the
original structures. Therefore, the following algorithm is a correct test for
projectivity of a given input structure D: encode D into the term term(D),
decode term(D) into the dependency structure D′ := dep(term(D)), and test
whether D′ and D are isomorphic. This test will succeed if and only if D
is projective. Since encoding and decoding are linear-time operations, and
since checking that two dependency structures are isomorphic is a linear-time
operations as well, we obtain the following result:

Lemma 3.3.3. Let D be a dependency structure with n nodes. The question
whether D is projective can be decided in time O(n). �

3.3.3 Related Work

Havelka [43] presents two algorithms for testing whether a given dependency
structure is projective. The first algorithm, very much like ours, makes use
of the one-to-one correspondence between projective dependency structures



30 3 Projective Dependency Structures

and treelet-ordered trees. The second algorithm searches for certain types of
non-projective dependency edges. Both algorithms run in linear time.

Another projectivity test is proposed by Möhl [80]. It uses a post-order
traversal of the input dependency structure to compute, for each node u, a
bit vector representing the yield of u, and afterwards checks whether this bit
vector represents a convex set. The number of bit vector operations used by
this procedure is linear in the size of the input structure. It is difficult however
to compare this machine-dependent measure with the asymptotic runtime that
we have given for our algorithm.

3.4 Empirical Evaluation

In this section, we evaluate the practical relevance of the projectivity condi-
tion. Should it turn out that all interesting dependency structures of natural
language utterances are projective, then that result would indicate that theo-
ries that do not obey the projectivity restriction fail to reflect a deeper truth
about the nature of dependency. Of course, we cannot hope to ever have ac-
cess to ‘all interesting dependency structures’. However, we can estimate the
empirical adequacy of projectivity by looking at representative samples of
practically relevant data.

3.4.1 The Projectivity Hypothesis

Before we describe our experimental setup, we take a brief look at the histo-
rical assessment of projectivity as a constraint on dependency analyses.

Early work on formal dependency grammar shows conviction that projec-
tivity has the status of a linguistic universal. To witness, Marcus [72], p. 230
cites Lecerf, who claimed that ‘almost 100 percent of French strings are pro-
jective. The same seems to be true for German, Italian, Danish, and other
languages’. This rather radical projectivity hypothesis is disputable even wi-
thout empirical evaluation. In particular, one should note that projectivity
is a property of theory-specific analyses of sentences, not of the sentences
themselves. Consequently, not ‘almost 100 percent of French strings’, but at
most all of their dependency analyses can be projective. This fundamental
flaw of the argument may have been varnished over by the supremacy in the
1960s of dependency grammar formalisms that embraced projectivity as a cen-
tral grammatical principle [27, 47]: there simply was no dependency grammar
beyond ‘projective dependency grammar’. In the linguistic schools of Eastern
Europe, where the objects of linguistic description are languages with a word
order far less rigid than English, the status of projectivity as a linguistic uni-
versal was early mistrusted (see e.g. [18, 69, 92]). This assessment eventually
became accepted even in the Western literature, and today, ‘most theoretical
formulations of dependency grammar regard projectivity as the norm, but
also recognize the need for non-projective representations of certain linguistic
constructions, e.g., long-distance dependencies’ [86].
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With the availability of large corpora of dependency analyses, dependency
treebanks , we are able today to complement theoretical considerations concer-
ning projectivity by collecting data on its practical relevance: the data that
we are evaluating forms the basis for many current applications that build on
dependency-based representations, and the degree of projectivity in this data
may have direct consequences for the design of these applications. Further-
more, under the assumption that the treebank data forms a representative
sample of the set of useful dependency structures, these data also provide an
indirect evaluation of the empirical adequacy of projectivity.

3.4.2 Experimental Setup

Our experiments are based on data from the Prague Dependency Treebank
(PDT) [40, 41] and the Danish Dependency Treebank (DDT) [63]. The PDT
was used in two versions: version 1.0 contains 1.5M, version 2.0 contains 1.9M
tokens of newspaper text. Sentences in the PDT are annotated in three layers
according to the theoretical framework of Functional Generative Description
[42]. Our experiments concern only the analytical layer, and are based on the
dedicated training section of the treebank. The DDT comprises 100k words of
text selected from the Danish PAROLE corpus, with annotation of primary
and secondary dependencies based on Discontinuous Grammar [64]. Only pri-
mary dependencies are considered in the experiments, which are based on the
pseudo-randomized training portion of the treebank.2 A total number of 19
analyses in the DDT were excluded because they contained annotation errors.

3.4.3 Results and Discussion

The results of our experiments are given in Table 3.4; we report the num-
ber and percentage of structures in each data set that satisfy or violate the
projectivity condition.

Under the assumption that the three treebanks constitute a representa-
tive sample of the set of practically relevant dependency structures, our ex-
periments clearly show that non-projectivity cannot be ignored without also
ignoring a significant portion of real-world data. For the DDT, we see that
about 15% of all analyses are non-projective; for the PDT, the number is even
higher, around 23% in both versions of the treebank. Neither theoretical fra-
meworks nor practical applications that are confined to projective analyses
can account for these analyses, and hence cannot achieve perfect recall even
as an ideal goal. In a qualification of this interpretation, one should note that
projectivity fares much better under an evaluation metric that is based on the
set of individual edges, rather than on the set of complete analyses: less than

2 Since the DDT does not have a dedicated training section, it is custom practice to
create such a section by splitting the entire data into blocks of 10 analyses each,
and keeping blocks 1 to 8 for training.
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Table 3.4. The number of projective dependency structures in three treebanks

DDT PDT 1.0 PDT 2.0

projective 3 730 84.95% 56 168 76.85% 52 805 77.02%
non-projective 661 15.05% 16 920 23.15% 15 757 22.98%

total 4 391 100.00% 73 088 100.00% 68 562 100.00%

2% of the edges in the PDT data, and just around 1% of the edges in the DDT
data are non-projective [76, 88].

3.4.4 Related Work

Our experiments confirm the findings of recent studies on data-driven parsing
of non-projective dependency grammar [76, 88]. They are particularly similar
in vein to a study presented by Nivre [85]. Nivre’s main objective was to eva-
luate, how large a proportion of the structures found in the DDT and the PDT
can be parsed using several restricted versions of the ‘Fundamental Algorithm’
for dependency parsing [13]. Using a version of that algorithm that only reco-
gnizes projective structures, and employing the treebanks as oracles to resolve
ambiguities, Nivre effectively tested for projectivity. For the PDT part of the
data, our results are identical to his, which in turn agree with counts previously
reported by Zeman [122], p. 95. The minor deviation between our results and
Nivre’s for the DDT part of the data is explained by the 19 analyses that we
excluded because they contained annotation errors. Havelka [44] provides data
on the frequency of non-projective structures in data sets for Arabic, Bulga-
rian, Czech, Danish, Dutch, German, Japanese, Portuguese, Slovene, Spanish,
Swedish, and Turkish. Notice however, that some of these data sets are no de-
pendency treebanks, but result from the automatic conversion of treebanks that
were originally annotated using constituent structures.

A qualitative rather than quantitative approach towards the evaluation of
projectivity was taken by Pericliev and Ilarionov [92]. They used a hand-writ-
ten dependency grammar for Bulgarian to create example sentences for all
non-projective structures with 4 nodes (every larger non-projective structure
contains such a structure) and found that about 85% of these structures could
be instantiated with a grammatical sentence.3 Just as our experiments, this
result indicates that projectivity cannot be used as a language-theoretic uni-
versal. Nevertheless, Pericliev and Ilarionov concede that most non-projective
analyses in Bulgarian correspond to word orders that are stylistically marked.

3 Pericliev and Ilarionov are misled in assuming that ‘the total number of non-
projective situations [in dependency structures with 4 nodes] is 32’ (p. 57): since
the number of unrestricted dependency structures with 4 nodes is 64, and the
corresponding number of projective structures is 30, there are in fact 34 non-
projective dependency structures with four nodes.
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Dependency Structures of Bounded Degree

As we have seen in the previous chapter, the phenomenon of non-projecti-
vity cannot be ignored in practical applications. At the same time, the step
from projectivity to unrestricted non-projectivity is quite a dramatic one. In
this chapter, we study non-projective dependency structures under a gradual
relaxation of projectivity, the block-degree restriction.

Following our program from the previous chapter, we first characterize
the class of dependency structures with restricted block-degree in terms of a
structural constraint (Section 4.1), then build an algebraic framework for this
class (Section 4.2), next present an efficient algorithm that encodes depen-
dency structures into terms (Section 4.3), and finally evaluate the practical
relevance of the block-degree restriction on treebank data (Section 4.4).

4.1 The Block-Degree Measure

In projective dependency structures, each yield forms a set that is convex with
respect to the precedence relation. In non-projective structures, yields may be
discontinuous. In this section, we develop a formal measure that allows us to
classify dependency structures based on their degree of non-projectivity: the
minimal number of convex sets needed to cover all nodes of a yield.

4.1.1 Blocks and Block-Degree

The formal cornerstone of our measure is the notion of a congruence rela-
tion on a chain. In general, congruence relations (or simply: congruences) are
equivalence relations that are compatible with certain properties of the un-
derlying mathematical structure. For chains, a natural notion of congruence
is obtained by requiring each equivalence class to form a convex set.

Definition 4.1.1. Let C = (A ;
) be a chain, and let S ⊆ A be a set. An
equivalence relation on S is called a congruence on S, if each of its classes is
convex with respect to C. �

M. Kuhlmann: Dependency Structures and Lexicalized Grammars, LNAI 6270, pp. 33–49, 2010.
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1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

(a) S1 = {1, 2, 3}

1 2 3 4 5 6

1 2 3 4 5 6

(b) S2 = {2, 3, 6}

1 2 3 4 5 6

(c) S3 = {1, 3, 6}

Fig. 4.1. Examples for congruence relations

Example 4.1.1. Let C6 be the set [6], equipped with the standard order on
natural numbers, and consider the set S1 := {1, 2, 3}. There are four possible
congruence relations on S1. Using shades to mark the elements of S1, and
boxes to mark equivalence classes, these relations can be visualized as in
Figure 4.1a. Similarly, there are two possible congruence relations on the set
S2 := {2, 3, 6} (depicted in Figure 4.1b), and one congruence on the set S3 :=
{1, 3, 6} (Figure 4.1c). �

The quotient of a set S by a congruence relation forms a partition of S in which
every class is convex; we call such partitions convex partitions. Congruences
on the same chain can be compared with respect to the coarseness of their
quotients: given a set S and two partitions Π1, Π2 of S, we say that Π1 is
coarser than Π2 (and that Π2 is finer than Π1), if for every class C2 ∈ Π2,
there is a class C1 ∈ Π1 such that C2 ⊆ C1. The set of convex partitions of
a given set together with the ‘coarser-than’ relation forms a complete lattice.
As a consequence, there is a coarsest congruence on a given set.

Example 4.1.2 (continued). The lowermost congruence relation in Figure 4.1a
is the coarsest congruence on the set S1 in C6 (all other congruence rela-
tions on S1 have more equivalence classes), the topmost relation is the finest
congruence on S1. �

The coarsest congruence relation on a set can also be characterized directly:

Lemma 4.1.1. Let C = (A ;
) be a chain, and let S ⊆ A be a set. Define
a binary relation on S by putting a ≡S b if and only if ∀c ∈ [a, b]. c ∈ S.
Then ≡S is the coarsest congruence relation on S. �

The cardinality of the quotient of a set S modulo the coarsest congruence
relation on S provides us with a way to measure the ‘non-convexity’ of S: the
more convex sets we need to cover all the elements of S, the less convex it is.

Definition 4.1.2. Let C = (A ;
) be a chain, and let S ⊆ A be a set. A block
of S with respect to C is an element of the quotient S/≡S . The block-degree
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of S with respect to C is the cardinality of the set S/≡S , that is, the number
of different blocks of S. �

Example 4.1.3 (continued). In the pictures in Figure 4.1, the blocks of a set
are visualized as contiguous shaded regions, and the block-degree corresponds
to the number of these regions. The block-degree of the set S1 in C6 is 1: the
coarsest congruence relation on S1 has only one block. More generally, every
convex set has block-degree 1. The block-degree of the set S2 is 2: there is no
way to cover S2 with less than 2 blocks. Finally, the block-degree of the set S3

is 3. �

Rather than counting the number of blocks of a set, we can also count the
number of discontinuities or gaps between the blocks. Formally, these concepts
can be defined on the complement of a set relative to its convex hull.

Definition 4.1.3. Let C = (A ;
) be a chain, and let S ⊆ A be a set. The
convex hull of S, H(S), is the smallest convex superset of S. The elements of
the set S := H(S) − S are called holes in S. �

Applying the definition of blocks and block-degree to sets of holes, we say
that a gap in S is a class in the quotient S/≡S , and the gap-degree of S is
the cardinality of the quotient S/≡S . The gap-degree of a set is obtained as
its block-degree, minus 1.

Example 4.1.4 (continued). We return to Figure 4.1, where gaps are visualized
as contiguous non-shaded regions between blocks. The convex hull of the set S1

is the set S1 itself; thus, the set S1 is empty, and there are no gaps in S. The
convex hull of the set S2 is H(S2) = {2, 3, 4, 5, 6}, and the set {4, 5} is the set
of holes in S2. This set also forms a gap in S2, so the gap-degree of S2 is 1.
Finally, for the set S3 we have H(S3) = [6] and S3 = {2, 4, 5}; the gap-degree
of S3 is 2. �

In the following, we usually talk about blocks and block-degree, but all our
results could also be expressed in terms of gaps and the gap-degree measure.

4.1.2 A Hierarchy of Non-projective Dependency Structures

We now apply the block-degree measure to dependency structures. With the
definition of projectivity in mind, the interesting congruences on dependency
structures are the coarsest congruences on their yields: two nodes v1, v2 belong
to the same block of a yield u�, if all nodes between v1 and v2 belong to u�
as well. The maximal number of blocks per yield is a measure for the non-
projectivity of a dependency structure.

Definition 4.1.4. LetD be a dependency structure, and let u be a node ofD.
The set of blocks of u is the set u�/≡�u�, where the congruence relation ≡�u�
is defined relative to the precedence relation underlying D. �
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1 2 3 4 5 6

(a) D1, block-degree 2

1 2 3 4 5 6

(b) D2, block-degree 3

Fig. 4.2. Two non-projective dependency structures

Definition 4.1.5. Let D be a dependency structure. The block-degree of a
node u of D is the number of blocks of u. The block-degree of D is the
maximum among the block-degrees of its nodes. �

Example 4.1.5. Figure 4.2 shows two examples of non-projective dependency
structures. For both structures, consider the yield of the node 2. In struc-
ture D1, the yield 2� falls into two blocks, {2, 3} and {6}. Since this is
also the maximal number of blocks per yield, the block-degree of D1 is 2.
In structure D2, the yield 2� consists of three blocks, {1}, {3}, and {6}; the
block-degree of D2 is 3. �

Let us say that a dependency structure is block k, if its block-degree is at
most k. We write Dk for the class of all dependency structures that are block k.
It is immediate from this definition that the class Dk is a proper subclass of
the class Dk+1, for all k ∈ N. It is also immediate that a dependency structure
is projective if and only if it belongs to the class D1. Thus, the block-degree
measure induces an infinite hierarchy of ever more non-projective dependency
structures, with the class of projective structures at the lowest level of this
hierarchy. This is interesting because it allows us to scale the complexity
of our formal models with the complexity of the data: the transition from
projectivity to full non-projectivity becomes gradual. A crucial question is, of
course, whether block-degree is a useful measure in practice. To answer this
question, we evaluate the practical relevance of the block-degree measure in
Section 4.4.

4.1.3 Related Work

The gap-degree measure (and hence, the block-degree measure) is intima-
tely related to the notion of node-gaps complexity, due to Holan et al. [48].
Node-gaps complexity was originally introduced as a complexity measure for
derivations in a dependency grammar formalism. Later, it was also applied
to the empirically more transparent results of these derivations, objects es-
sentially the same as our dependency structures. In this latter application,
node-gaps complexity and gap-degree are identical. Note however that some
authors [42, 122] use the term ‘gap’ to refer to a node—rather than a set of
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nodes—between two blocks of a yield. This is what we have called a ‘hole’ in
Definition 4.1.3. Havelka [44] defines the ‘gap’ of a dependency edge u→ v as
the set of holes in the set u� ∩ (u, v).

We can view the block-degree of a set as a descriptive complexity measure,
similar to Kolmogorov complexity in algorithmic information theory: Once a
chain (A ;
) is given, a convex subset of A can be represented by a pair of
elements from A, namely the minimal and the maximal element of the set.
In this way, even very large sets can be represented with little information.
However, the higher the block-degree of a set, the more elements of A we
need to represent it, and the less benefit an interval representation has over
an explicit representation.

The block-degree measure quantifies the non-projectivity of a dependency
structure by counting the number of contiguous blocks in the yields of the
structure. A similar measure, based on edges, was introduced by Nivre [85].
For an edge e = u → v in a dependency structure D, let us write Fe for the
forest that results from restricting the governance relation in D to the nodes
in the open interval (u, v). The degree of the edge e (in the sense of Nivre)
is the number of those components in Fe that are not governed by u in D;
the degree of D is the maximum among the degrees of its edges. This degree
measure is incomparable to our block-degree measure. To see this, consider
the two dependency structures depicted in Figure 4.3. The left structure (Fi-
gure 4.3a) has block-degree 3 and edge-degree 1, as the open interval (3, 6)
that corresponds to the edge 3 → 6 contains one component not governed
by 3, and this is the maximal number of components per edge. On the other
hand, the right structure (Figure 4.3b) has block-degree 2 and edge-degree 2,
as the edge interval (2, 5) contains two distinct components not governed by
the node 2.

1 2 3 4 5 6

(a) block degree 3, edge degree 1

1 2 3 4 5 6

(b) block degree 2, edge degree 2

Fig. 4.3. Block degree and edge degree are incomparable

4.2 Algebraic Framework

In this section, we generalize the algebraic framework developed in Section 3.2
to dependency structures with restricted block-degree.
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4.2.1 Traversal of Block-Ordered Trees

One of the essential properties of our procedure for the traversal of tree-
let-ordered trees is that for each node u of the input tree T , the call
Treelet-Order-Collect(u) returns a linearization of the nodes in the
subtree of T that is rooted at u. This property ensures that we can in-
terpret the result of a call as a dependency structure, but at the same
time constrains this structure to be projective. We now develop a procedure
Block-Order-Collect that returns a linearization not of a complete yield,
but only of some given block of that yield. To do so, we allow the procedure to
be called on a node more than once: the ith call on u produces a linearization
of the ith block of u, where blocks are assumed to be numbered in the order
of their precedence.

Figure 4.1 shows pseudo-code for Block-Order-Collect. The imple-
mentation assumes the existence of a global array calls that records for each
node u the number of times that the procedure has been called on u. It further
assumes that each node u is annotated with lists order [u][i] of nodes in the
treelet rooted at u.

Example 4.2.1. Figure 4.4 shows an order-annotated tree and the dependency
structure induced by its traversal according to the procedure in Table 4.1
when called on the root node of that tree. We assume that the array calls is
initialized with all zeros. The tuples at the ends of the dotted lines represent
the annotated orders. Specifically, the list order [u][i] can be found as the ith

Table 4.1. Traversal of a block-ordered tree

Block-Order-Collect(u)

1 L← nil; calls[u]← calls[u] + 1
2 foreach v in order [u][calls [u]]
3 do if v = u
4 then L← L · [u]
5 else L← L ·Block-Order-Collect(v)
6 return L

1

2

3

4

5

〈1252〉

〈23, 3〉

〈4, 3〉

〈4〉

〈4〉

(a) tree

1 2 4 5 3

(b) D3 (block-order traversal)

Fig. 4.4. A block-ordered tree and its corresponding dependency structure
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component of the tuple annotated at the node u. To give an example, the
order annotations for the node 2 are order [2][1] = 23 and order [2][2] = 3. �

Our first aim in this section is to show that suitably annotated trees together
with the procedure Block-Order-Collect are expressive enough to fully
characterize the class of dependency structures with finite block-degree—just
as treelet-ordered trees and our procedure for traversing them are expressive
enough to fully characterize the class of projective structures. More specifi-
cally, we want to show that trees in which no node is annotated with more
than k lists are expressive enough to characterize the class of structures with
block-degree at most k.

For our proofs to go through, we need to be more specific about the exact
form of the order annotations in the inputs to Block-Order-Collect. Wi-
thout further constraints, the procedure may fail to induce dependency struc-
tures:

• Assume that two distinct calls Block-Order-Collect(u) return lists
that contain the node u, or that a single call returns a list that contains the
node u more than once. In both of these cases, the result of the traversal
does not qualify as a linearization of the input tree. A similar situation
arises if none of the calls Block-Order-Collect(u) returns a list that
contains the node u.

• Assume that Block-Order-Collect(u) is called more often than the
number of lists annotated at u. In this case, the results of some of the
calls are undefined. Similarly, if Block-Order-Collect(u) is called less
often than there are lists annotated at u, then the linearization may be
incomplete.

To prevent these problems, we require the inputs to Block-Order-Collect

to be well-typed, in the following sense: For each node u, let k(u) be the
number of lists annotated at u. We require that, in union, these lists contain
exactly one occurrence of the node u, and exactly k(v) occurrences of the
node v, for all children v of u. These restrictions ensure that the mapping from
trees to dependency structures is well-defined. It is not necessarily injective:

• Assume that some list order [u][i] is empty. Then we can modify the order
annotations without altering the induced dependency structure as follows:
delete the list order [u][i], and re-index the remaining annotations at u
accordingly.

• Assume that some list order [u][i] contains two adjacent occurrences of
some child v of u. Then we can modify the order annotations without
altering the induced dependency structure as follows: delete the second
occurrence, append the corresponding order annotation to the annotation
corresponding to the first occurrence, and re-index the remaining order
annotations at v accordingly.
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To prevent these ambiguities, we require that no list order [u][i] is empty, and
that no list order [u][i] contains two or more adjacent occurrences of the same
node v. We call trees that satisfy all of these requirements block-ordered trees .

4.2.2 Segmented Dependency Structures

There is one more thing that we need to take care of. Consider a block-
ordered tree in which the root node is annotated with more than one list
of nodes. When we call Block-Order-Collect on the root node of this
tree, all but the first of these lists are ignored, and hence, the linearization
of the tree is incomplete, and fails to induce a dependency structure. One
way to remedy this problem is to require the root nodes of block-ordered
trees to be annotated with exactly one list; but this would break inductive
arguments like the one that we used in the proof of Lemma 3.2.1. We therefore
opt for another solution, motivated by the following observation: Let T be a
block-ordered tree with root node r, and let u be a non-root node of T .
For notational convenience, put k := k(u). The well-typedness conditions
ensure that the calls to Block-Order-Collect on u can be understood as
a tuple 〈�vi | i ∈ [k] 〉 of lists of nodes, where �vi is the result of the ith call to
Block-Order-Collect(u), for i ∈ [k], and �v1 · · ·�vk forms a linearization of
the subtree rooted at u. Only for the root node r, the procedure is called only
once, independently of the number of annotated lists. In order to do away
with this asymmetry, we stipulate that the call of Block-Order-Collect

on r should return the k(r)-tuple 〈Block-Order-Collect(r)i | i ∈ [k(r)] 〉,
where Block-Order-Collect(r)i stands for the ith call to the node r. Of
course, in order for this to make sense, we need to say what such an output
should mean in the context of dependency structures. This gives rise to the
notion of segmented dependency structures, which essentially are dependency
structures where even the root nodes can have block-degrees greater than one.

Definition 4.2.1. Let D = (V ; �,
) be a dependency structure, and let ≡
be a congruence relation on D. The segmentation of D by ≡ is the structure
D′ := (V ; �,
, R), where R is a new ternary relation on V defined as follows:

(u, v1, v2) ∈ R :⇐⇒ v1 ≡ v2 ∧ ∀w ∈ [v1, v2]. w ∈ u� .
The elements of the set V/≡ are called the segments of D′. �

We write v1 ≡u v2 instead of (u, v1, v2) ∈ R.

Example 4.2.2. Figure 4.5 shows how we visualize segmented dependency
structures: we use boxes to group nodes that belong to the same segment; all
other congruences ≡u are uniquely determined by this choice. As an example,
4 ≡1 3 holds in D4 because both 4 and 3 lie in the same segment of D4, and
all nodes between them are governed by the node 1. At the same time, 4 �≡2 3
holds in D4: while both 4 and 3 belong to the same segment of D4, the node 5,
which is situated between 4 and 3, is not governed by 2. The non-congruence
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1 2 4 5 3

(a) D4
∼= D3

2 4 3

(b) D4/2

4 3

(c) D4/3

4

(d) D4/4

Fig. 4.5. Segmented dependency structures

4 �≡2 3 also holds in the substructure D4/2, this time because 4 and 3 do not
even lie in the same segment. �

For each node u, the relation ≡u is the coarsest congruence on u� that is
finer than ≡. Based on this observation, we adapt our definition of blocks
(Definition 4.1.4):

Definition 4.2.2. Let D be a segmented dependency structure, and let u be
a node of D. The set of blocks of u is the set u�/≡u. �

In segmented dependency structures with just one segment, this definition
coincides with the old one. In other structures, the new definition ensures
that elements from different segments belong to different blocks of all nodes
of the structure.

We call the number of segments of a segmented dependency structure the
sort of that structure, and write D≡

k for the class of all segmented dependency
structures of sort k. By our definition of block-degree, the block-degree of a
segmented dependency structure is at least as high as its sort. The class D≡

1 is
essentially the same as the class D of all dependency structures, and it will be
convenient not to distinguish them to carefully. We now connect segmented
dependency structures to our modified tree traversal.

Definition 4.2.3. Let T be a tree, and let k ∈ N. A linearization of T with k
components is a k-tuple L = 〈 �ui | i ∈ [k] 〉 such that �u := �u1 · · ·�uk is a list
of the nodes of T in which each node occurs exactly once. The segmented
dependency structure induced by a linearization L of T is the structure in
which the governance relation is isomorphic to T , the precedence relation is
isomorphic to �u, and the segments are isomorphic to the tuple components
of L. �

We can now show the correspondents of the Lemmata 3.2.1, 3.2.2, and 3.2.3
for projective structures. To do so, we regard the functions lin and dep as
sorted functions: given a block-ordered tree T in which the root node is an-
notated with k lists, the function lin maps T to the linearization of T with k
components that is computed by the traversal of the input tree according to
Block-Order-Collect, and the function dep maps T to the segmented
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dependency structure of sort k that is induced by lin(T ). Apart from this
change, the proofs carry over without larger modifications. We therefore get
the following Lemma:

Lemma 4.2.1. For every segmented dependency structure D, there exists
exactly one block-ordered tree T such that dep(T ) = D. Furthermore, if T
is a block-ordered tree in which each node is annotated with at most k lists,
for some k ∈ N, then dep(T ) is a segmented dependency structure with block-
degree at most k. �

4.2.3 Order Annotations

Next we take the step from the algorithmic to the algebraic and encode block-
ordered trees as terms over an extended set of order annotations. This enco-
ding is a relatively straightforward generalization of the procedure that we
presented in Section 3.2.3. The major novelty comes from the requirement
that we need to ensure that all decodings of terms satisfy the well-typedness
conditions. To do so, we now understand the set Ω of order annotations as a
sorted set; as sorts, we use the natural numbers.

Let T be a block-ordered tree with root node u, and put k := k(u). We need
the following auxiliary sequences: first, the vector �v = v1 · · · vm obtained from
the concatenation order [u][1] · · · order [u][k] of the list-based order annotations
by removing the node u and all but the first occurrence of each other node;
second, for each j ∈ [k], the string �ıj obtained from the list order [u][j] by
replacing every child of u by its position in �v, and u itself by the symbol 0.
For each j ∈ [m], put kj := k(vj). The term t(T ) corresponding to T is then
defined recursively as

t(T ) := 〈�ı1, . . . ,�ık〉(t(T/v1), . . . , t(T/vm)) .

In this definition, the string 〈�ı1, . . . ,�ık〉 is understood as a term constructor of
type k1 × · · · × km → k. From now on, we use Ω to denote the set of all such
constructors. We define the degree of a symbol ω ∈ Ω, deg(ω), as the maximum
over its input and output sorts, and put Ω(k) := {ω ∈ Ω | deg(ω) ≤ k }. Note
that, by this definition, the set Ω(k) is exactly what we need in order to encode
the set of all block-ordered trees with up to k lists per node, and therefore,
the set of all segmented dependency structures with block-degree at most k.
Specifically, the set Ω(1) is essentially identical to our previous definition of Ω
for projective dependency structures.

Example 4.2.3. For the dependency structure D3 shown in Figure 4.4, the ge-
neric procedure to extract the order annotations from a dependency structure
described in the proof of Lemma 3.2.2 (page 25) yields the following list-based
order annotations:
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〈0121〉

〈01, 1〉

〈1, 0〉

〈0〉

〈0〉

Fig. 4.6. The term for the block-ordered tree from Figure 4.4

for node 1: L = 12453 , L′ = 12252 , order [1] = 1252 ;
for node 2: L = 12453 , L′ = � 23 � 3 , order [2] = 23 � 3 ;
for node 3: L = 12453 , L′ = �� 4 � 3 , order [3] = 4 � 3 ;
for node 4: L = 12453 , L′ = �� 4 �� , order [4] = 4 ;
for node 5: L = 12453 , L′ = ��� 5 � , order [5] = 5 .

If we read the values of the strings order [u] as tuples, where the symbol �

separates tuple components, we obtain the annotations shown in Figure 4.4.
From these, by the construction above, we construct the following order an-
notations:

〈0121〉: 2 × 1 → 1 , 〈01, 1〉: 2 → 2 , 〈1, 0〉: 1 → 1 , 〈0〉: 1 .

Figure 4.6 shows a term built over these constructors; this term encodes the
block-ordered tree from Figure 4.4. �

4.2.4 Dependency Structure Algebras

We have now reached a situation very similar to the situation at the beginning
of Section 3.2.4: we have identified a sorted set Ω and a sorted bijection
dep: TΩ → D≡ between terms over Ω and segmented dependency structures.
This means that we can give the set D≡ an algebraic structure.

Definition 4.2.4. Let ω: k1 × · · · × km → k be an order annotation. The
composition operation corresponding to ω is the map fω: D≡

k1
× · · · ×D≡

km
→

D≡
k defined as

fω(D1, . . . , Dm) := dep(ω(term(D1), . . . , term(Dm))) . �

Each composition operation fω simulates a single step of the block-order tra-
versal: given a sequence of argument structures, it returns the segmented
dependency structure that can be decomposed into the given argument struc-
tures in the way that is specified by the order annotation ω.

Definition 4.2.5. Let Σ ⊆ Ω be a finite set of order annotations. The
dependency algebra over Σ is the Σ-algebra that has the SΣ-indexed set
〈dep(Σi) | i ∈ [k] 〉 as its carrier, and interprets each ω ∈ Σ by the com-
position operation corresponding to ω. �
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Theorem 4.2.1. Let Σ ⊆ Ω be a finite set of order annotations. Then the
dependency structure algebra over Σ is isomorphic to the (many-sorted) term
algebra over Σ. �

4.3 Algorithmic Problems

In this section, paralleling Section 3.3, we address three of the algorithmic
problems related to our algebraic view on non-projective dependency struc-
tures: decoding, encoding, and computing the block-degree for a given depen-
dency structure. The decoding problem is essentially solved by the procedure
Block-Order-Collect that we gave in Table 4.1. The main contribution
of this section is an efficient algorithm to encode a non-projective dependency
structure into a term. The algorithm that computes the block-degree is a
straightforward extension of the encoding algorithm.

4.3.1 Encoding

On page 25, we described a generic procedure to extract the order annotations
from a dependency structure. A naïve implementation of this procedure takes
time quadratic in the number of nodes of the input structure. The algorithm
that we present in this section may perform significantly better; it runs in
time linear in the number of blocks in the input structure, of which there are
at most quadratically many, but often less.

The crucial component of our encoding algorithm is a procedure that trans-
forms the input structure into a certain tree representation called span tree,
from which all order annotations can be easily read off. The span tree T for
a dependency structure D is a labelled, ordered tree in which each node has
one of two types: it can be a block node or an anchor. The block nodes of T
stand in one-to-one correspondence with the blocks of D; the anchors stand
in one-to-one correspondence with the singletons. For a node u of T , we write
S(u) for the set of nodes in D that corresponds to u. The dominance relation
of T represents an inclusion relation in D: u strictly dominates v if and only
if S(u) ⊇ S(v) and either u is a block node and v is an anchor, or both u
and v are block nodes. By this relation, all block nodes are inner nodes, and
all anchors are leaf nodes in T . The precedence relation of T represents a
precedence relation in D: u strictly precedes v if and only if all nodes in S(u)
precede all nodes in S(v).

Example 4.3.1. Figure 4.7 shows the dependency structure from Figure 4.4
and the span tree for this structure. Consider the root node of the structure,
the node a. The yield of a consists of a single block, which contains all the
nodes of the structure, positions 1 to 5 in the precedence order. This informa-
tion is represented in the span tree in that the root node of this tree is labelled
with the triple (a, 1, 5). The block of a decomposes into four components; read
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1 2 3 4 5

a b c d e

(a, 1, 5)

(a, 1, 1)(b, 2, 3)

(b, 2, 2)(e, 3, 3)

(c, 3, 3)

(c, 3, 3)

(d, 4, 4)

(d, 4, 4)

(b, 5, 5)

(e, 5, 5)

(e, 5, 5)

Fig. 4.7. A non-projective structure and the corresponding span tree

in their order of precedence, these are: the singleton {a}, the first block of the
node b, the block of the node d, and the second block of b. Note that, since b
contributes two blocks to the block of a, we find two nodes of the form (b, i, j)
as children of (a, 1, 5) in the span tree. Note furthermore that the precedence
order on the components of the block of a is reflected by the sibling order on
their corresponding nodes in the span tree. �

We now describe the general structure of an algorithm that transforms a
dependency structure into its span tree. We assume that the input structure
is given to us as a collection of nodes, where each node u is equipped with a
set children [u] of its children and an integer pos [u] that represents the position
of u with respect to the precedence relation. Our algorithm can be separated
into two phases:

• In the first phase, we allocate two global data structures: an array right
that will map the left endpoints of blocks to their right endpoints, and
an array sub that will record the component structures of blocks. Each
element of these arrays is initialized to the void value, which we write
as ⊥.

• In the second phase of the algorithm, we perform a post-order traver-
sal of the input structure. For each node u, we compute a set trees[u]
that contains the span trees for the blocks of the yield of u. An ele-
ment of trees[u] is a four-tuple of the form (w, i, j, S), where w is a
node in the treelet rooted at u, the position i is the left endpoint of
the span represented by the tree, the position j is the right endpoint,
and the list S contains the trees for the components in their left-to-
right order. If u is a leaf node, then trees[u] consists of the single tree
(u, pos [u], pos [u], [(u, pos [u], pos [u],nil)]). If u is an inner node, then the
set trees[u] is obtained by exhaustive merging of this trivial tree and the
span trees that were constructed for the children of u. Two trees can be
merged if they correspond to adjacent spans of positions.

In the following, we concentrate on the procedure Step(u) that processes a
single node u during the post-order traversal; pseudo-code for this procedure is
given in Table 4.2. In line 1, we collect the trees for the subblocks of u. In lines
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Table 4.2. Constructing the span tree for a dependency structure

Step(u)

1 T ← ⋃{ trees [v] | v ∈ children [u] } ∪ {(u, pos [u], pos [u], nil)}
2 foreach (w, i, j, S) in T
3 do right [i]← j; sub[i]← if i = pos [u] then [(u, pos[u], pos [u])] else S
4 foreach (w, i, j, S) in T
5 do k← j + 1
6 while right [k] �= ⊥
7 do right [i]← right [k]; sub[i]← sub[i] · sub[k]
8 right [k]← ⊥; sub[k]← ⊥; k ← right [i] + 1
9 foreach (w, i, j, S) in T

10 do if right [i] �= ⊥
11 then trees [u]← trees [u] ∪ {(u, i, right [i], sub[i])}
12 right [i]← ⊥; sub[i]← ⊥

2–3, we register these trees in the global data structures—in particular, for
each tree (w, i, j, S), we register the position j as the right endpoint of a span
that starts at position i. In lines 4–8, we merge the spans of adjacent trees into
larger spans: we try each tree as a trigger to merge all right-adjacent spans
into a new span, removing all traces of the old spans (line 8). The result of a
merger spans the positions from the left endpoint of the trigger to the right
endpoint of the span that was right-adjacent to it. In lines 9–12, we construct
the set trees [u] from the spans that remain after merging, and remove all
traces from the global data structures.

We now look at the asymptotic complexity of the algorithm. The following
invariant is essential for the analysis (and for the correctness proof, which we
will omit):

Every element right [i] that receives a non-void value during a call to
the procedure Step is void again when this call finishes.

This can be seen as follows. The only places in a call to Step where non-void
values are assigned to right are in lines 3 and 7. The assignment in line 3
is witnessed by a tree from the set T , which is not altered after line 1; the
assignment in line 7 merely overwrites a previous assignment. For all trees
in T , it is checked in line 10 whether the element right [i] is assigned, and if
so, the element is made void. Therefore, every element of right is void when a
call to Step finishes. Since every element is void before the first call to Step,
and is not altered in between calls to Step, it is void both before and after
any call to Step. A similar argument holds for the array sub.

Lemma 4.3.1. Let D be a dependency structure with n nodes and g gaps.
Then the span tree corresponding to D can be constructed in time O(n+ g).�

Proof. Let us assume that we can use the algorithm that we have outlined
above to construct the span tree for D. The algorithm breaks down into two
phases: the initialization of the global data structures, and the tree traversal
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with calls to Step. The first phase takes time O(n); the second phase can be
implemented to take time linear in the sum over the times taken by the calls to
Step. We show that each such call can be implemented to take time linear in
the number of subblocks of the visited node. The total number of subblocks is
asymptotically identical to the number of blocks in the input structure, which
is n+ g: each node has one more block than gaps.

Fix some node u of D, and consider the call Step(u). Let m be the number
of subblocks of u; this number is obtained as the number of blocks of the
children of u, plus 1 for the trivial block containing the singleton u. Note
that m = |T |. We now check the runtime of the constructs in Table 4.2:
The assignment in line 1 can be implemented to run in time O(m); all other
elementary operations can be implemented to run in time O(1). Each of the
foreach loops is executed O(m) times. Finally, we analyse the runtime of the
while loop. During each iteration of that loop, one of the elements of right
is made void. Because of the invariant given above, all elements of right are
void before the call Step(u), and since only m fields of right are initialized in
line 3, the while loop cannot make more than m iterations during a single call
to Step. Putting everything together, we see that every call to Step takes
time O(m). �

This finishes our discussion of the transformation of the input dependency
structure into a span tree. We now explain how to read off the order anno-
tations from this tree. This can be done in a single pre-order traversal.1 We
first initialize an array order [u] that maps nodes to their order annotations.
For each non-leaf node (u, i, j, S) in the span tree, we construct a list L that
contains the first components of the children of that node in their left-to-right
order, and add this list to the array order [u]. At the end of the tree traversal,
each list order [u] contains the full order annotation for the node u.

Example 4.3.2 (continued). Consider the root node of the span tree depicted
in Figure 4.7, the node (a, 1, 5). The children of this node are (a, 1, 1), (b, 2, 3),
(d, 4, 4), and (b, 5, 5). The corresponding order annotation is order [a] = 〈abdb〉.
Similarly, for node b, we get order [b] = 〈be, e〉. This yields the order annota-
tions 〈0121〉 and 〈01, 1〉, which can also be found at the corresponding nodes
of the term for the encoded dependency structure (Figure 4.6). �

In conclusion, we get the following result:

Lemma 4.3.2. Let D be a dependency structure with n nodes and g gaps.
Then the term term(D) can be computed in time O(n+ g). �

Note that, in a dependency structure with block-degree k, the number n+ g
of blocks is bounded by the number k · n. Therefore, a coarser bound on the
complexity of our encoding algorithm is O(k · n).
1 Note that, given that the order in the span tree reflects the precedence order of

the blocks in the dependency structure, during a pre-order traversal we visit the
blocks from left-to-right.
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Kuhlmann and Satta [68] present an alternative algorithm for extracting
the order annotations from a dependency tree in time O(n+ g).

4.3.2 Computing the Block-Degree of a Dependency Structure

It is very easy to extend the encoding algorithm into an algorithm that com-
putes the block-degree of a dependency structure. Since there is a direct corres-
pondence between the block-degree of a node u in a dependency structure D
and the degree of the order annotation at u in the term term(D) that en-
codes D (see our discussion on page 42), it suffices to compute the encoding
and count the relevant numbers. This can be done in time O(n + g).

Lemma 4.3.3. Let D be a dependency structure with n nodes and g gaps.
Then the block-degree of D can be computed in time O(n + g). �

It is also possible to parameterize the algorithm that constructs the span tree
for the input structure by a constant k such that it terminates as soon as it
discovers that the tree to be constructed contains at least one node with a
block-degree that exceeds k. In this way, a test whether a given dependency
structure has block-degree k can be carried out in time O(k · n).

4.4 Empirical Evaluation

Using the algorithms developed in the previous section, we now evaluate the
coverage of different block-degrees on treebank data. Specifically, we check
how many and how large a percentage of the structures in the three treebanks
that we used in the experiments reported in Section 3.4 have a block-degree
of exactly k, for increasing values of k. Table 4.3 shows the results of the eva-
luation. The numbers and percentages for block-degree 1 reiterate the results
for projective dependency structures from Table 3.4; the counts for struc-
tures with block-degree greater than 1 partition the figures for non-projective
structures in that table.

Table 4.3. Dependency structures of various block-degrees in three treebanks

block-degree DDT PDT 1.0 PDT 2.0

1 (projective) 3 730 84.95% 56 168 76.85% 52 805 77.02%
2 654 14.89% 16 608 22.72% 15 467 22.56%
3 7 0.16% 307 0.42% 288 0.42%
4 – – 4 0.01% 1 < 0.01%
5 – – 1 < 0.01% 1 < 0.01%

total 4 391 100.00% 73 088 100.00% 68 562 100.00%
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The general impression that we get from the experiments is that even a
small step beyond projectivity suffices to cover virtually all of the data in
the three treebanks. Specifically, it is sufficient to go up to block-degree 2: the
structures with block-degree greater than 2 account for less than half a percent
of the data in any treebank. These findings confirm similar results for other
measures of non-projectivity, such as Nivre’s degree [85] and Havelka’s level
types [44]. Together, they clearly indicate that to contrast only projective and
non-projective structures may be too coarse a distinction, and that it may
be worthwhile to study classes of dependency structures with intermediate
degrees of non-projectivity. The class of dependency structures with block-
degree at most 2 appears to be a promising starting point.

Note that, from a linguistic point of view, block-degree is a measure of the
discontinuity of a syntactic unit. While we have formulated it for dependency
trees, recent work has also evaluated it as a measure for phrase-structure trees
[71].
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Dependency Structures without Crossings

The block-degree of a dependency structure is a quantitative property—it
measures the independence of governance and precedence along an infinite
scale of possible values. In this chapter, we study well-nestedness, a property
related not to the degree, but to the form of non-projectivity in dependency
structures. To motivate the well-nestedness restriction, we first look at another
structural constraint, weak non-projectivity, and investigate its entanglement
with the block-degree measure (Section 5.1). From there we are led to the
relational and the algebraic characterization of well-nestedness, and to an
efficient test for this property (Section 5.2). At the end of the chapter, we
evaluate and compare the empirical adequacy of weak non-projectivity and
well-nestedness (Section 5.3).

5.1 Weakly Non-projective Dependency Structures

Let us go back to our motivation of projectivity in Chapter 3. Recall that
we had to refine the slogan that projectivity should ‘disallow dependency
analyses with pictures that contain crossing edges’ because some pictures of
dependency structures with crossing edges can be ‘fixed’ by changing the
vertical positions of some nodes—to witness, consider the two pictures of the
non-projective structure D1 that are shown in Figures 5.1a and 5.1b. In this

1 2 3 4

(a) D1

1 2 3 4

(b) D1

1 2 3 4

(c) D2

Fig. 5.1. Three pictures of non-projective dependency structures. The structure
shown in pictures (a) and (b) is weakly non-projective; the structure shown in pic-
ture (c) contains overlapping edges.

M. Kuhlmann: Dependency Structures and Lexicalized Grammars, LNAI 6270, pp. 51–62, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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section, we return to our original slogan, and take a closer look at dependency
structures that can be redrawn without crossing edges. We call such structures
weakly non-projective, a term that we borrow from the Russian tradition of
dependency grammar [18].

5.1.1 Definition of Weak Non-projectivity

In Chapter 3, we used the term ‘crossing edge’ to refer to a dependency
edge that crosses a projection line. There is another natural meaning: that a
‘crossing edge’ is a dependency edge that crosses another edge. We formalize
this situation as follows.

Definition 5.1.1. Let C = (A ;
) be a chain. Two C-intervals B and C
overlap, if one of the following holds true:

minB ≺ minC ≺ maxB ≺ maxC (a)
minC ≺ minB ≺ maxC ≺ maxB (b)

We write B � C to assert that B and C overlap.

Definition 5.1.2. Let D be a dependency structure. Two edges v1 → v2,
w1 → w2 in D overlap, if [v1, v2] and [w1, w2] overlap as intervals. �

Definition 5.1.3. A dependency structure D is called weakly non-projective,
if it does not contain overlapping edges. �

Example 5.1.1. The structure D2 depicted in Figure 5.1c is not weakly non-
projective: the edges 1 → 3 and 2 → 4 overlap. On the other hand, the
structure D1 depicted in Figures 5.1a and 5.1b does not contain overlapping
edges; it is weakly non-projective. The difference between the two structures
can be seen more clearly when drawing them with undirected edges as in
Figure 5.2. �

A dependency structure that contains overlapping edges cannot be drawn
without edges that cross a projection line. Conversely, the only non-projective
edges u → v that a weakly non-projective dependency structure can contain
are such that all ancestors of the node u and all nodes governed by these
ancestors, except for the nodes also governed by u, fall into the interval [u, v].
Such structures can be redrawn by moving the material in the gap of the edge
to vertical positions below the node u.

1 2 3 4

(a) D1

1 2 3 4

(b) D2

Fig. 5.2. Alternative pictures for the dependency structures from Figure 5.1
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Example 5.1.2 (continued). The picture in Figure 5.1a contains one edge that
crosses a projection line: the edge 1 → 4. When we take the set of all ancestors
of 1 (the set {2}) and all nodes governed by these ancestors ({1, 2, 3, 4}), minus
the nodes also governed by 1 ({1, 4}), we obtain the set {2, 3}. By moving
these nodes to vertical positions below the node 1, we get to the picture in
Figure 5.1b. �

5.1.2 Relation to the Block-Degree Measure

We now show that, from the perspective of the block-degree measure, weak
non-projectivity is a weak extension of projectivity indeed: it does not even
take us up one step in the block-degree hierarchy. We first prove an auxiliary
lemma.

Lemma 5.1.1. Let D be a weakly non-projective dependency structure. Then
every gap in D contains the root node of D. �

Proof. We show the contrapositive of the statement: If at least one gap in D
does not contain the root node, then D is not weakly non-projective. Let D
be a dependency structure with a gap that does not contain the root node.
We can then choose four pairwise distinct nodes r, u, h, v as follows: Choose r
to be the root node of D. Choose u to be a node such that G is a gap of u
and r /∈ G; since the root node does not have a gap, it is certain that r �= u.
Choose h ∈ G; we then have h /∈ u� and h �= r. Choose v to be a node
governed by u such that h ∈ (u, v); since the root node is governed only by
itself, we have v �= r. Based on the relative precedences of the nodes, we now
distinguish four cases, shown schematically in Figure 5.3. In all four cases,
some edges on the paths from r to h and from u to v overlap. �

Note that the converse of Lemma 5.1.1 does not hold: there are dependency
structures that are not weakly non-projective, but in which all gaps contain the
root node. As an example, consider the structure D2 depicted in Figure 5.1c.

Lemma 5.1.2. Every weakly non-projective dependency structure has a block-
degree of at most 2. Furthermore, there is at least one dependency structure
with block-degree 2 that is not weakly non-projective. �

r u h v r v h u u h v r v h u r

Fig. 5.3. The four cases in the proof of Lemma 5.1.1
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Proof. To see the inclusion, let D be weakly non-projective. By Lemma 5.1.1,
we know that every gap in D contains the root node. Since distinct gaps of
one and the same node are set-wise disjoint, this implies that no node in D
can have more than one gap. Therefore, the structure D has a block-degree
of at most 2. To see that the inclusion is proper, consider again structure D2

in Figure 5.1c: this structure has block-degree 2, but contains overlapping
edges. �

Weak non-projectivity appears like a very interesting constraint at first sight,
as it expresses the intuition that ‘crossing edges are bad’, but still allows
a limited form of non-projectivity. On the other hand, the property stated
in Lemma 5.1.1 seems rather peculiar. To get a better understanding of the
explanatory force of weak non-projectivity, we evaluate its empirical relevance
in Section 5.3.

5.1.3 Algebraic Opaqueness

From the perspective of our algebraic setting, there is a fundamental diffe-
rence between weak non-projectivity and the block-degree restriction. Recall
from Section 4.3.2, that in order to check whether a dependency structure D
has block-degree at most k, it suffices to check whether the corresponding
term term(D) only contains symbols from the sub-signature Ω(k) of order
annotations with degree at most k. In this sense, the block-degree measure is
transparent : it is directly related to the set of composition operations used to
build a structure. The class of weakly non-projective dependency structures
cannot be characterized in the same way. To see this, consider Figure 5.4,
which shows a weakly non-projective structure (D3) and a structure that is
not weakly non-projective (D2). Both of these structures are composed using
the same set of algebraic operations.

5.1.4 Related Work

In the Western literature, weak non-projectivity is more widely known as
planarity [111]. Unfortunately, the latter term clashes with the concept of
planarity known from graph theory, for at least two reasons: First, while a
planar graph is a graph that can be drawn into the plane such that no edges
intersect, a ‘planar’ dependency structure is a graph that is drawn into the
half plane above the words of the sentence. Second, to show that a graph is
planar in the graph-theoretic sense, its nodes may be rearranged on the plane
in any arbitrary way; in the context of dependency structures, the order of
the nodes is fixed. Due to these incompatibilities, it seems wise to avoid the
term ‘planarity’, and use a less biased name instead.

Projectivity and weak non-projectivity are closely related. Some authors in
fact define projectivity by requiring the weak non-projectivity of the structure
that is obtained when the dependency structure proper is extended by an
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(b) D2 (repeated)

Fig. 5.4. Weak non-projectivity is algebraically opaque

artificial root node, preceding all other nodes (see e.g. [76]). In Link Grammar
for example, the artificial root node is called the wall, ‘an invisible word which
the [parser] program inserts at the beginning of every sentence’ [110]. As a
corollary of Lemma 5.1.1, every weakly non-projective dependency structure
in which the root node occupies the leftmost position in the precedence order
is projective. Another way to enforce the projectivity of weakly non-projective
dependency structures is to require that no edge covers the root node [50, 77].

Yli-Jyrä [121] proposes a generalization of weak non-projectivity, and eva-
luates its empirical adequacy using data from the Danish Dependency Tree-
bank. He calls a dependency structure m-planar , if its governance relation can
be partitioned into m sets, called planes, such that each of the substructures
induced by such a plane is weakly non-projective. Since every dependency
structure is m-planar for some sufficiently large m (put each edge onto a
separate plane), an interesting question in the context of multiplanarity is
about the minimal values for m that occur in real-world data. To answer
this question, one not only needs to show that a dependency structure can
be decomposed into m weakly non-projective structures, but also, that this
decomposition is the one with the smallest possible number of planes. Up to
now, no tractable algorithm to find the minimal decomposition has been gi-
ven, so it is not clear how to evaluate the significance of the concept as such.
The evaluation presented by Yli-Jyrä [121] makes use of additional constraints
that are sufficient to make the decomposition unique.

In combinatorics, weakly non-projective dependency structures are known
as non-crossing rooted trees. Their number is given by sequence A001764 in
Sloane [112].1 Using Lemma 5.1.1, we see that every projective dependency
structure can be decomposed into two halves—one with the root node at
the right border, one with the root node at the left—such that each half is
a non-crossing rooted tree. One can then obtain the number of projective
dependency structures as the convolution of sequence A001764 with itself; this
is sequence A006013 in Sloane [112].

1 Sequence A001764 actually gives the number of non-crossing unrooted trees. In
order to get the right numbers for weakly non-projective structures, one has to
read the sequence with an offset of 1.
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5.2 Well-Nested Dependency Structures

In this section, we develop the notion of well-nestedness. Well-nestedness is
similar to weak non-projectivity in that it disallows certain ‘crossings’, but
different in that it is transparent at the level of our algebraic signatures.
Well-nestedness was introduced by Bodirsky, Kuhlmann, and Möhl [3], and
subsequently studied in detail by Möhl [80].

5.2.1 Definition of Well-Nestedness

The definition of well-nestedness specializes the definition of weak non-projec-
tivity in that it bans overlapping edges only if they belong to disjoint subtrees.
Overlapping configurations in which one of the edges governs the other are
allowed.

Definition 5.2.1. A dependency structure D is called well-nested , if the fol-
lowing implication holds for all edges v1 → v2, w1 → w2 in D:

[v1, v2] � [w1, w2] =⇒ v1 � w1 ∨ w1 � v1 .

Dependency structures that are not well-nested are called ill-nested . �

We write Dwn for the class of all well-nested dependency structures. From the
definition, it is straightforward that every weakly non-projective dependency
structure is also well-nested. As the following example shows, the converse
does not hold.

Example 5.2.1. Figure 5.5 shows pictures of two non-projective dependency
structures. Structure D4 is not weakly non-projective, as the edges 1 → 3 and
2 → 5 overlap; however, it is well-nested, as 1 � 2. Structure D5 is not even
well-nested: the spans 2 → 4 and 3 → 5 overlap, but 2 and 3 belong to disjoint
subtrees. �

In contrast to weak non-projectivity, well-nestedness is independent of the
block-degree measure: it is not hard to see that for every block-degree k > 1,
there are both well-nested and ill-nested dependency structures of degree k.
Projective structures are both weakly non-projective and well-nested. In sum-
mary, we obtain the following hierarchy of classes of dependency structures:

projective � weakly non-projective � well-nested � unrestricted .

1 2 3 4 5

(a) D4

1 2 3 4 5

(b) D5

Fig. 5.5. Two dependency structures: one well-nested, the other one ill-nested
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5.2.2 Non-crossing Partitions

Our next aim is to show that well-nestedness is algebraically transparent. To
do so, we develop an alternative relational characterization of well-nestedness
based on the notion of non-crossing partitions.

Definition 5.2.2. Let C = (A ;
) be a chain. A partition Π of A is called
non-crossing, if whenever there exist four elements a1 ≺ b1 ≺ a2 ≺ b2 in A
such that a1 and a2 belong to the same class of Π , and b1 and b2 belong to
the same class of Π , then these two classes coincide. A partition that is not
non-crossing is called crossing. �

Non-crossing partitions enjoy a number of interesting formal properties. In
particular, the number of non-crossing partitions of a chain with n elements
is the Catalan number, Cn = 1

n+1

(
2n
n

)
, and by this property, non-crossing

partitions are connected to a large family of mathematical structures—such
as binary trees, Catalan paths in the plane, pattern-avoiding permutations,
and (most important in the context of this study) well-bracketed strings and
children-ordered trees. Consequently, non-crossing partitions appear in a large
number of mathematical applications. Simion [109] provides a comprehensive
overview.

Example 5.2.2. Consider the following partitions on the chain ([6] ;≤):

Π1 = {{1}, {2, 3, 4}, {5, 6}} , Π2 = {{1}, {2, 3, 6}, {4, 5}} ,
Π3 = {{1}, {2, 4, 6}, {3, 5}} .

Both Π1 and Π2 are non-crossing. Partition Π3 is crossing, as witnessed by
the sequence 2 < 3 < 4 < 5: the elements 2 and 4 and the elements 3 and 5
belong to the same class of Π2, but these two classes do not coincide. �

Example 5.2.3. Let n ∈ N. A neat way to visualize a partition Π on the
canonical chain ([n] ;≤) goes as follows: Consider a regular n-gon inscribed
into a circle, and assume that the points where the n-gon touches the circle are
numbered clockwise from 1 to n. Now, for every class of Π of size k, connect
the corresponding points on the circle with straight lines to form a convex k-
gon. The partition Π is non-crossing if and only if no of these k-gons intersect.
Figure 5.6 shows such pictures for the partitions from example 5.2.2. �

We now use non-crossing partitions to characterize well-nestedness.

Lemma 5.2.1. A dependency structure D is well-nested if and only if for
every node u of D, the set C(u) of constituents of u (see Definition 3.2.2) is
non-crossing with respect to the chain C := (u� ;
|�u�). �

Proof. We prove the contrapositive of the claim: a dependency structure D
is ill-nested if and only if there exists a node u ∈ dom(D) such that the
partition C(u) forms a crossing partition with respect to C. The proof falls
into two parts.
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Fig. 5.6. Two non-crossing and one crossing partition

⇒ Assume that D is ill-nested. In this case there exist overlapping edges
v1 → v2 and w1 → w2 such that v1 ⊥ w1. Let u be the greatest (farthest
from the root node) common ancestor of v1 and w1. The node sets {v1, v2}
and {w1, w2} belong to the yields of distinct children of u, and hence, to
distinct constituents of u. Furthermore, the intervals [v1, v2] and [w1, w2]
overlap with respect to C. Thus we deduce that C(u) is crossing with
respect to C.

⇐ Let u ∈ dom(D) be a node, and assume that the partition C(u) is crossing
with respect to C. In this case, there exist two distinct constituents Cv

and Cw in C(u) and elements v1, v2 ∈ Cv, w1, w2 ∈ Cw such that [v1, v2] �
[w1, w2]. By the definition of �, both Cv and Cw have a cardinality of
at least 2; therefore, they correspond to the yields of distinct and hence
disjoint children of the node u, say Cv = v� and Cw = w�. For every
arrangement of the nodes v1, v2 and w1, w2, we can choose edges v′1 → v′2
in v� and w′

1 → w′
2 in w� such that these edges overlap. Furthermore,

by construction we have v1 ⊥ w2, and hence, v′1 ⊥ w′
1. Thus we deduce

that D is ill-nested. �

Example 5.2.4 (continued). Consider the constituents of the root nodes in
Figure 5.5:
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D4 : C(1) = {{1}, {2, 5}, {3, 4}} D5 : C(1) = {{1}, {2, 4}, {3, 5}}
The first of these partitions is crossing, the second non-crossing. �

Lemma 5.2.1 shows that by restricting ourselves to composition operations
that arrange their arguments into non-crossing partitions, we produce exactly
the well-nested dependency structures. In this sense, well-nestedness is a trans-
parent property.

5.2.3 Algebraic Characterization

We now give an explicit characterization of the composition operations that
generate the well-nested dependency structures. More specifically, we state a
syntactic restriction on order annotations that identifies a sub-signature Ωwn
of Ω such that the dependency structures that are obtained as the values of
the terms over Ωwn are exactly the well-nested dependency structures. The
syntactic restriction ensures that all constituents form non-crossing partitions.

Let �x ∈ A∗ be a string. We say that �x contains the string �y as a scattered
substring, if, for some k ∈ N, �x can be written as

�x = �z0 · �y1 · �z1 · · · �zk−1 · �yk · �zk ,

where �z0 · · ·�zk ∈ A∗, and �y1 · · · �yk = �y.

Definition 5.2.3. An order annotation ω ∈ Ω is called well-nested , if it does
not contain a string of the form ij ij as a scattered substring, for i �= j ∈ N.�

We write Ωwn for the set of all well-nested order annotations.

Example 5.2.5. The order annotation 〈0121〉 is well-nested, the annotation
〈01212〉 is not: it contains the string 1212 as a scattered substring. Figure 5.7
shows terms that make use of the two order annotations; these terms evaluate
to the dependency structures shown in Figure 5.5. �

We now present the main result of this section:

Theorem 5.2.1. A dependency structure D is well-nested if and only if
term(D) ∈ TΩwn. �

〈0121〉

〈0, 1〉

〈0〉

〈01〉

〈0〉
(a) D4

〈01212〉

〈0, 1〉

〈0〉

〈0, 1〉

〈0〉
(b) D5

Fig. 5.7. Terms for the dependency structures in Figure 5.5
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Proof. This is a corollary of Lemma 5.2.1. The presence of the scattered sub-
string ij ij implies that for some node u, there exist distinct constituents
C1, C2 ∈ C(u) and nodes v1, v2 ∈ C1, w1, w2 ∈ C2 such that v1 ≺ w1 ≺
v2 ≺ w2; then, C(u) would be crossing. Conversely, the encoding algorithm
translates every constituent set that is crossing into an order annotation that
contains the forbidden pattern. �

5.2.4 Testing whether a Dependency Structure Is Well-Nested

Given that the class of well-nested dependency structures forms a subclass of
the class of all dependency structures, the algorithmic problems of encoding
and decoding can be solved using the algorithms that we have presented in
Section 4.3. Here we address the problem of testing whether a given depen-
dency structure D is well-nested.

Lemma 5.2.2. Let D be a dependency structure with n nodes and g gaps.
The question whether D is well-nested can be decided in time O(n+ g). �

Proof. To check whether D is well-nested, we first encode D into a term using
the algorithm presented in Section 4.3; this takes time O(n+g). In a traversal
over this term, we then check whether any of the order annotations contains
the forbidden scattered substring (see Theorem 5.2.1); using a stack data
structure, this can be done in time linear in the accumulated size of the order
annotations, which is again O(n + g). By Theorem 5.2.1, the structure D is
well-nested if and only if we do not find the forbidden substring. �

Similar to the situation in Lemma 4.3.2, we can also bound the complexity of
the algorithm as O(k · n), where k is the block-degree of D.

5.2.5 Related Work

Nasr [82] proposes a restriction on non-projective dependency structures that
he calls the pseudo-projectivity principle.2 Formally, ‘a dependency [edge] is
pseudo-projective, if its dependent D is not situated, in the linear sequence,
between two dependents of a node that is not an ancestor of D.’ Pseudo-pro-
jectivity is incomparable with both weak non-projectivity and well-nestedness.
To see this, consider the dependency structure in Figure 5.8. The edge 3 → 4
in this structure is not pseudo-projective, as the node 4 is situated between
two dependents (1 and 5) of a node that is not an ancestor of 4 (the node
2). On the other hand, the structure is weakly non-projective, and therefore
well-nested. The structure D5 (Figure 5.5b) is not well-nested, but pseudo-
projective.

2 This principle should not be confused with the notion of pseudo-projectivity in-
troduced by Kahane et al. [56], and subsequently used by Gerdes and Kahane
[29].
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1 2 3 4 5

Fig. 5.8. Pseudo-projectivity in the sense of Nasr [82]

The first algorithms for a well-nestedness test were presented by Möhl [80].
His first algorithm is based on a characterization of well-nestedness in terms
of interleaving yields. The algorithm performs a tree traversal of the input
structure, in which it first computes the yield of each node, and then checks
for each pair of sibling nodes whether their yields interleave. In doing so, it uses
O(m2 · n) operations on bit vectors, where m is the out-degree of D. Möhl’s
second algorithm is built on the notion of the gap graph. The gap graph for a
dependency structure is an extension of the governance relation by information
about interleaving yields. Möhl shows that a dependency structure D is well-
nested if and only if the gap graph for D contains a cycle. The size of the
gap graph for a dependency structure D is tightly bounded by the square of
the size of D, and the existence of a cycle in a graph can be checked in time
linear in the size of that graph. Consequently, the run-time of Möhl’s second
algorithm is O(n2).

Havelka [45] studies the relationship between well-nestedness and the level
types of non-projective edges [43] and presents an algorithm that tests for
well-nestedness in time O(n2).

5.3 Empirical Evaluation

To conclude this chapter, we now evaluate and compare the empirical ade-
quacy of weak non-projectivity and well-nestedness on the treebank data. The
corresponding counts and percentages are given in Table 5.1.

The experimental results for weak non-projectivity mirror its formal res-
trictiveness: enforcing weak non-projectivity excludes more than 75% of the
non-projective data in both versions of the PDT, and 90% of the data in the
DDT. Given these figures, weak non-projectivity appears to be of little use
as a generalization of projectivity. The relatively large difference in coverage
between the two treebanks may at least partially be explained with their
different annotation schemes for sentence-final punctuation: In the DDT, sen-
tence-final punctuation marks are annotated as dependents of the main verb
of a dependency subtree. This places severe restrictions on permitted forms
of non-projectivity in the remaining sentence, as every discontinuity that in-
cludes the main verb must also include the dependent punctuation marks (see
the discussion in Section 5.1). On the other hand, in the PDT, a sentence-final
punctuation mark is annotated as a separate root node with no dependents.



62 5 Dependency Structures without Crossings

Table 5.1. The number of weakly non-projective and well-nested dependency
structures in three treebanks

All dependency structures

DDT PDT 1.0 PDT 2.0

projective 3 730 84.95% 56 168 76.85% 52 805 77.02%
weakly non-proj. 3 794 86.40% 60 048 82.16% 56 367 82.21%
well-nested 4 386 99.89% 73 010 99.89% 68 481 99.88%

total 4 391 100.00% 73 088 100.00% 68 562 100.00%

Non-projective dependency structures only

DDT PDT 1.0 PDT 2.0

weakly non-proj. 64 9.68% 3 880 22.93% 3 562 22.61%
well-nested 597 90.32% 16 842 99.54% 15 676 99.49%

total 661 100.00% 16 920 100.00% 15 757 100.00%

(Analyses in the PDT may be forests.) This scheme does not restrict the re-
maining discontinuities at all.

In contrast to weak non-projectivity, the well-nestedness constraint ap-
pears to constitute a very attractive extension of projectivity. For one thing,
the almost perfect coverage of well-nestedness on both DDT and PDT (around
99.89%) could by no means be expected on purely combinatorial grounds: only
7% of all possible dependency structures for sentences of length 17 (the average
sentence length in the PDT), and only slightly more than 5% of all possible
dependency structures for sentences of length 18 (the average sentence length
in the DDT) are well-nested.3 Similar results have been reported on other data
sets [44]. Moreover, a cursory inspection of the few problematic cases at least
in the DDT indicates that violations of the well-nestedness constraint may,
at least in part, be due to properties of the annotation scheme, such as the
analysis of punctuation in quotations. However, a more detailed analysis of
the data from both treebanks is needed before any stronger conclusions can
be drawn concerning well-nestedness.

3 The number of unrestricted dependency structures on n nodes is given by se-
quence A000169, the number of well-nested dependency structures is given by
sequence A113882 in [112]. The latter sequence was discovered by the author and
Manuel Bodirsky. It can be calculated using a recursive formula derivable from
the correspondence indicated in Example 5.2.3.
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Structures and Grammars

In the last three chapters, we have developed an algebraic framework for
dependency structures. We now put this framework to use and classify several
lexicalized grammar formalisms with respect to the classes of dependency
structures that are induced by derivations in these formalisms. Each section
of this chapter associates a grammar formalism with a class of dependency
structures:
Section Formalism Class
6.1 Context-Free Grammar (CFG) D1

6.2 Linear Context-Free Rewriting Systems (LCFRS(k)) Dk

6.3 Coupled Context-Free Grammar (CCFG(k)) Dk ∩ Dwn

6.4 Tree Adjoining Grammar (TAG) D2 ∩ Dwn

6.1 Context-Free Grammars

Let us go back to the notion of induction that we sketched in Chapter 1.
Consider a derivation d of a terminal string by means of a context-free gram-
mar. A derivation tree for d is a tree in which the nodes are labelled with
(occurrences of) the productions used in the derivation, and the edges in-
dicate how these productions were combined. If the underlying grammar is
lexicalized, then there is a one-to-one correspondence between the nodes in
the derivation tree and the positions in the derived string: every production
that participates in the derivation contributes exactly one terminal symbol
to this string. If we now order the nodes of the derivation tree according to
the string positions of their corresponding anchors, then we get a dependency
structure. We say that this dependency structure is induced by the deriva-
tion d. Induction identifies the governance relation of the induced dependency
structure with the derivation relation, and the precedence relation with the
left-to-right order in the derived string: the dependency structure contains an
edge u→ v if and only if the production that corresponds to the node v was

M. Kuhlmann: Dependency Structures and Lexicalized Grammars, LNAI 6270, pp. 63–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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used to rewrite some non-terminal in the production that corresponds to the
node u; the node u precedes the node v if and only if the anchor contributed
by the production that corresponds to u precedes the anchor contributed by
the production that corresponds to v. In this section, we formalize the corres-
pondence between derivations and induced dependency structures and show
that the class of dependency structures that can be induced by context-free
grammars is exactly the class of projective dependency structures.

6.1.1 Definition

We start with the familiar definition of a context-free grammar.

Definition 6.1.1. A context-free grammar is a construct G = (N,T, S, P ),
where N and T are alphabets of non-terminal and terminal symbols, respec-
tively, S ∈ N is a distinguished start symbol, and P ⊆ N × (N ∪T )∗ is a finite
set of productions. �

We use indexed symbols (NG, TG, SG, PG) to refer to the components of a
specific context-free grammar G.

Example 6.1.1. To illustrate the ideas and constructions of this section, we
use the following grammar G = (N,T, S, P ) as a running example:

N = {S,B} , T = {a, b} , P = {S → aSB, S → aB, B → b} .

This grammar generates the string language { anbn | n ∈ N }. �

Following the approach of Goguen et al. [31], we treat context-free grammars
as many-sorted algebras, in the following way. Let G = (N,T, S, P ) be a
context-free grammar. For every string �x ∈ (N ∪T )∗, we define resN (�x) to be
the restriction of �x to letters in N . Specifically, resN is the homomorphism
from (N ∪ T )∗ to N∗ that is defined by resN (A) := A for A ∈ N , and
resN (a) := ε for a ∈ T . We now turn the set P of productions of G into an
N -sorted set Σ(G) by defining

typeΣ(G)(A→ �x) := resN (�x) ·A ,

for every production A → �x in P . The set TΣ(G) of terms over the sorted
set Σ(G) forms an N -sorted algebra. This algebra represents the set of all
derivations of G: the sortedness enforces the ith child of a node labelled with
a production p to be labelled with a production that can be used to rewrite
the ith non-terminal in p. More formally, there is a one-to-one correspondence
between TΣ(G) and the set of all leftmost derivations in G. The set TΣ(G),S

of all terms of sort S (the start symbol of the grammar) then corresponds to
the set of all complete derivations in G. We call TΣ(G) the derivation algebra
for G, and the terms TΣ(G) the derivation trees of G.
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S → aSB

S → aSB

S → aB

B → b

B → b

B → b

a a a b b b

Fig. 6.1. A derivation in a lexicalized context-free grammar

Example 6.1.2 (continued). For our example grammar, we get the following
sorted set:

[S → aSB]: S ×B → S , [S → aB]: B → S , [B → b]: B .

(We enclose productions in square brackets to avoid ambiguities.) A derivation
tree of the grammar is shown in the left half of Figure 6.1. �

Definition 6.1.2. A context-free grammar is called lexicalized , if each of its
productions contains exactly one terminal symbol, called the anchor of that
production. �

We only consider lexicalized grammars. Each production in such a grammar
has the form A→ A1 · · ·Ak−1 ·a ·Ak · · ·Am, for some m ∈ N and k ∈ [m+1].
Note that our example grammar is lexicalized.

6.1.2 String Semantics

An immediate benefit of our algebraic take on context-free grammars is that
we can use every Σ(G)-algebra A as a semantic domain for the derivations
of G: since TΣ(G) is a term algebra, it gives us the unique homomorphism
�·�A: TΣ(G) → A that evaluates the derivation trees of G in A. In this way it
is straightforward to derive the usual notion of the string language generated
by a grammar G:

Definition 6.1.3. Let G be a context-free grammar. The string algebra for G
is the Σ(G)-algebra A in which dom(A)A = T+

G , for all A ∈ NG, and

fp(�a1, . . . ,�am) = �a1 · · ·�ak−1 · a · �ak · · ·�am ,

for each production p = A → A1 · · ·Ak−1 · a · Ak · · ·Am in Σ(G). The string
language generated by G is the set L(G) := �TΣ(G),SG

�A. �

Each composition operation fp of the string algebra for a grammar G conca-
tenates the anchor of p and the strings obtained from the subderivations in
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the order specified by the production p. This implements the usual rewriting
semantics for context-free grammars. In the following, given a derivation tree
t ∈ TΣ(G) of some CFG G, we write �t�S for the evaluation of that tree in the
string algebra for G. We also extend this notation to sets of derivation trees
in the obvious way.

Example 6.1.3 (continued). The right half of Figure 6.1 shows the string cor-
responding to the evaluation of the derivation that is shown in the left half in
the string algebra for our example grammar. �

6.1.3 Linearization Semantics

In a lexicalized context-free grammar, there is a one-to-one correspondence
between the nodes in a derivation t and the positions of the string �t�S: every
production participating in a derivation contributes exactly one terminal to
the derived string.

Example 6.1.4 (continued). In Figure 6.1, the one-to-one correspondence be-
tween the nodes of the derivation tree and the positions of the string is indi-
cated by dashed lines. �

We now show how to compute the mapping between nodes in the derivation
and positions in the derived string that forms the basis of our notion of in-
duction. To do so, we evaluate derivations t not in the string algebra, but in
an algebra of term linearizations. A term linearization is a list of the nodes
of a term in which each node occurs exactly once. In the following, we write
V := N

∗ for the set of all nodes in terms; V ∗ then stands for the set of all
strings over nodes. To avoid ambiguity, we use the symbol ◦ for the conca-
tenation operation on N (which builds nodes), and · for the concatenation
operation on V (which builds strings of nodes). For every i ∈ N, let pfxi be
the function that prefixes every node u in a given string by the number i.
More formally, pfxi is the string homomorphism from V to V that is defined
by pfxi(u) = i ◦ u.

Definition 6.1.4. Let G be a context-free grammar. The linearization alge-
bra for G is the Σ(G)-algebra A in which dom(A)A = V +, for all A ∈ NG,
and

fp(�u1, . . . , �um) = pfx1(�u1) · · ·pfxk−1(�uk−1) · ε · pfxk(�uk) · · · pfxm(�um) ,

for each production p = A → A1 · · ·Ak−1 · a · Ak · · ·Am in Σ(G). The linea-
rization language generated by G is the set Λ(G) := �TΣ(G),SG

�A. �

Each composition operation fp of a linearization algebra concatenates a root
node (representing the anchor of p) and the appropriately prefixed lineariza-
tions for the subderivations in the same order as they would be concatenated
in the string algebra. Since the grammar G is lexicalized, the result of the eva-
luation in the linearization algebra defines a bijection between the set nod(t)
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of nodes in the derivation tree t, and the set pos(�t�S) of positions in the
derived string. Similar to the case of string algebras, for a derivation tree
t ∈ TΣ(G) of some CFG G, we write �t�L for the evaluation of the tree t in the
linearization algebra for G.

Example 6.1.5 (continued). For the derivation tree t shown in Figure 6.1,

�t�L = ε · 1 · 11 · 111 · 12 · 2 .
This linearization defines a mapping from the set nod(t) of nodes in t to the
set pos(�t�S) of positions in the derived string and back in the obvious way.
Notice that, if we read the anchors of the productions in the derivation tree
in the order specified by this linearization, then we obtain the string �t�S. �

6.1.4 Dependency Semantics

With the mapping between nodes in the derivation tree and positions in the
derived string at hand, we can now formalize the notion of induction:

Definition 6.1.5. Let G be a context-free grammar, and let t ∈ TΣ(G) be
a derivation tree. The dependency structure induced by t is the structure
D := (nod(t) ; �,
) where

u � v if and only if u dominates v in t, and
u 
 v if and only if u precedes v in �t�L. �

Example 6.1.6. Figure 6.2a shows the dependency structure induced by the
derivation given in Figure 6.1. To illustrate the correspondence with the li-
nearization, we have labelled the nodes with their addresses in the derivation
tree. �

It is straightforward that the linearization semantics of derivations in CFGs
directly mirrors our procedure for the traversal of treelet-ordered trees from
Section 3.2.2. More specifically, we can understand the productions of a CFG
as order annotations, and each derivation tree as a treelet-ordered tree. The

ε 1 11 111 12 2

(a) induced dependency structure

〈012〉

〈012〉

〈01〉

〈0〉

〈0〉

〈0〉

(b) relabelled term

Fig. 6.2. The dependency structure induced by the derivation in Figure 6.1
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behaviour of Treelet-Order-Collect is reflected in the evaluation of deri-
vation trees in their corresponding linearization algebras. Taken together, this
allows us to show that the class of dependency structures that is induced by
lexicalized context-free grammars is exactly the class of projective dependency
structures. In the following, we write D(CFG) for the class of all dependency
structures that can be induced by a context-free grammar.

Theorem 6.1.1. D(CFG) = D1 �

Proof. The proof of this statement is essentially identical to the proofs of
Lemma 3.2.1 and Lemma 3.2.2. �

On a formal level, the translation between derivation trees of a CFG and
projective dependency structures (represented by their corresponding terms)
can be understood as a simple form of relabelling. Specifically, we can replace
each production by an order annotation as follows, while maintaining the
typing information:

A→ A1 · · ·Ak−1 · a · Ak · · ·Am ↔ 〈1 · · · (k − 1) · 0 · k · · ·m〉 .

The two terms are equivalent with respect to their linearization semantics. The
only information that we loose is the label of the anchor, but that information
is irrelevant with respect to induction anyway. (In Chapter 8, we will consider
labelled dependency structures, where this information can be preserved.)
As the essence of our discussion, we can define a dependency semantics for
context-free grammars as follows. For each production p of a given context-free
grammar G, let us write relab(p) for the relabelling defined above.

Definition 6.1.6. Let G be a context-free grammar. The dependency algebra
for G is the Σ(G)-algebra D in which dom(D)A = D1, for all A ∈ NG, and

fp(D1, . . . , Dm) = dep((relab(p))(term(D1), . . . , term(Dm))) ,

for each production p = A → A1 · · ·Ak−1 · a · Ak · · ·Am. The dependency
language generated by G is the set D(G) := �TΣ(G),SG

�D. �

6.2 Linear Context-Free Rewriting Systems

We now extend our results from context-free grammars to the class of Linear
Context-Free Rewriting Systems, LCFRS [118, 119]. This class was proposed
as a generalization of a broad range of mildly context-sensitive formalisms. In
this section, we show that the dependency structures induced by LCFRS are
exactly the dependency structures of bounded degree. More specifically, we
see that the block-degree measure for dependency structures is the structural
correspondent of the fan-out measure that is used to identify sub-classes of
LCFRS.
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6.2.1 Definition

Linear Context-Free Rewriting Systems can be understood as generalizations
of context-free grammars in which derivations evaluate to tuples of strings.
Our formal definition of LCFRS is essentially the same as the definitions pro-
posed by Vijay-Shanker et al. [118] and Satta [102]. In contrast to these, we
make use of an explicit typing regime; this will simplify both the presentation
and our formal arguments.

Definition 6.2.1. Let A be an alphabet, and let m ∈ N, and 〈 ki | i ∈
[m] 〉 ∈ N

m, and k ∈ N. A generalized concatenation function over A of type
k1 × · · · × km → k is a function

f : (A∗)k1 × · · · × (A∗)km → (A∗)k

that can be defined by an equation of the form

f(〈x1,1, . . . , x1,k1〉, . . . , 〈xm,1, . . . , xm,km〉) = 〈�y1, . . . , �yk〉 ,
where �y1 · · · �yk is a string over the variables on the left-hand side of the equa-
tion and the alphabet A in which each variable xi,j , i ∈ [m], j ∈ [ki], appears
exactly once. �

The semantics of a generalized concatenation function of type k1×· · ·×km → k
is that it takesm tuples of strings and arranges the components of these tuples
and a constant number of symbols from the alphabet A into a new k-tuple.
The arity of the ith argument tuple is specified by the sort ki. We regard ge-
neralized concatenation functions as syntactic objects and identify them with
their defining equations. We call the right-hand sides of these equations the
bodies of the (defining equations of) the corresponding generalized concate-
nation functions.

Definition 6.2.2. A linear context-free rewriting system is a construct G =
(N,T, S, P ), where N is an alphabet of non-terminal symbols, each of which is
associated with a number ϕ(A) ∈ N called the fan-out of A; T is an alphabet
of terminal symbols ; S ∈ N is a distinguished start symbol with ϕ(S) = 1;
and P is a finite set of productions of the form A → f(A1, . . . , Am), m ∈ N,
where A,Ai ∈ N , i ∈ [m], and f is a generalized concatenation function over T
of type ϕ(A1) × · · · × ϕ(Am) → ϕ(A). �

Example 6.2.1. The following productions define an LCFRS. We use this
LCFRS as our running example in this section.

S → f1(A) f1(〈x1,1〉) := 〈x1,1b〉
S → f2(A,B) f2(〈x1,1〉, 〈x2,1, x2,2〉) := 〈x1,1x2,1bx2,2〉
A → f3 f3 := 〈a〉
B → f4(A,B) f4(〈x1,1〉, 〈x2,1, x2,2〉) := 〈x1,1x2,1, bx2,2〉
B → f5(A) f5(〈x1,1〉) := 〈x1,1, b〉

This LCFRS generates the string language { anbn | n ∈ N }. �
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Our algebraic view on grammars generalizes to LCFRS without greater pro-
blems. Let G = (N,T, S, P ) be an LCFRS. We turn the set P of productions
of G into a sorted set Σ(G) by defining typeΣ(G)(A → f(A1, . . . , Am)) :=
A1 · · ·Am · A, for every production A → f(A1, . . . , Am) in P . Just as in the
case of context-free grammars, the set of all terms over Σ(G) forms an N -sor-
ted algebra that represents the set of all derivation trees of G.

Example 6.2.2 (continued). For our example grammar, we get the following
set Σ(G):

[S → f1(A)]: A→ S , [S → f2(A,B)]: A×B → S , [A→ f3]: A ,
[B → f4(A,B)]: A×B → B , [B → f5(A)]: A→ B .

A corresponding derivation tree is shown in Figure 6.3a. �

S → f2(A, B)

A→ f3 B → f4(A,B)

A→ f3 B → f5(A)

A→ f3

(a) derivation tree

1 21 221 ε 2 22

(b) dependency structure

Fig. 6.3. A derivation tree of an LCFRS, and the induced dependency structure

The concept of lexicalization is as for context-free grammars:

Definition 6.2.3. An LCFRS is called lexicalized , if each of its productions
contains exactly one terminal symbol. �

6.2.2 String Semantics

We now give LCFRS their usual string semantics. The string language gene-
rated by an LCFRS can be defined in terms of the evaluation of its derivation
trees in an algebra over tuples of strings over the terminal alphabet. The arity
of these tuples is specified by the fan-out of the non-terminal symbols that
derive them. In the following, we use the Greek letters α and γ for tuple
components.

Definition 6.2.4. Let G = (N,T, S, P ) be an LCFRS. The string algebra
for G is the Σ(G)-algebra A in which dom(A)A = (T ∗)k, for all A ∈ N and
k = ϕ(A), and

fp(�α1, . . . , �αm) = �γ[xi,j ← αi,j | i ∈ [m] ∧ j ∈ [ki] ] ,
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for each production p = A → f(A1, . . . , Am) with f : k1 × · · · × km → k and
body �γ. The string language generated by G is the set

L(G) := {�a | ∃t ∈ TΣ(G),S. 〈�a〉 ∈ �t�A } . �

Each composition operation fp of the string algebra uses the body of the pro-
duction p to construct a new tuple of strings. This tuple is obtained by repla-
cing, for every i ∈ [m] and j ∈ [ki], the variable xi,j with the jth component
of the ith argument tuple. The string language generated by the LCFRS is
obtained by extracting the strings from the (necessarily unitary) tuples deri-
ved from the start symbol of the grammar. We use the notation �t�S as for
context-free grammars.

6.2.3 Non-essential Concatenation Functions

Unfortunately, the construction of the linearization semantics of LCFRS does
not go through as smoothly as in the case of CFG. The fundamental problem
is the fact that the mapping from derivation trees to strings is not injective
in the case of LCFRS—to phrase it as a slogan, in LCFRS there are ‘more
derivations than denotations’. At the root of this problem we find two types
of ambiguity in LCFRS:

The first type of ambiguity concerns concatenation functions like

f = 〈a, ε〉 and f(〈x, y〉) = 〈axy〉 .
Such function definitions cannot be translated into order annotations. In fact,
we specifically excluded them in our definition of block-ordered trees (page 39)
because they are essentially superfluous from the perspective of the lineariza-
tion semantics: in the first function, the second component of the result does
not contain any string material and could have been omitted to begin with;
in the second definition, the two argument components are concatenated and
would not have needed to be distributed over two components from the start.

The second ambiguity is inherent in the syntactic definition of LCFRS. In
each derivation tree of a CFG, the left-to-right order on the subterms cor-
responds the left-to-right order on the material derived in these subterms. In
LCFRS, this is not necessarily the case. Consider the following productions:

A→ f1(B,C) f1(〈x1,1〉, 〈x2,1〉) := 〈ax1,1x2,1〉
A→ f2(C,B) f2(〈x1,1〉, 〈x2,1〉) := 〈ax2,1x1,2〉

For each pair of strings �a1,�a2, both of the following two derivations evaluate
to the same string �a1 · �a2:

[A→ f1(B,C)](〈�a1〉, 〈�a2〉) , [A→ f2(C,B)](〈�a2〉, 〈�a1〉) .
Let us call the body of a concatenation function f : k1 × · · · × km → k mono-
tone1, if 1. the variables of the form xi,1, i ∈ [m], are numbered in increasing
1 A slightly weaker condition of the same name is discussed by 62, p. 408.
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sequence from left-to-right, such that the ith occurrence of such a variable has
the name xi,1; 2. for each i ∈ [m], the variables of the form xi,j , j ∈ [ki], are
numbered in increasing sequence from left-to-right, such that the jth occur-
rence of such a variable has the name xi,j . By requiring every definition of a
concatenation function to be monotone, we can avoid the order ambiguity of
our example: we simply disallow the definition of the function f2.

Let us call concatenation functions that fall into one of the two classes
described above non-essential . We will now state a lemma (and give a rather
technical and arduous proof) that will allow us to assume without loss of
generality that an LCFRS is free of non-essential functions. For those functions
that remain, the definitions of a linearization semantics go through without
further problems.

To prove the lemma, we make use of more complicated versions of the
relabelling function that we used for context-free grammars. Such a general
relabelling is a function from terms over some input alphabetΣ into terms over
an output alphabet Δ; it works by replacing, at each node u of the term, the
label from the input alphabet by some label from the output alphabet. Both
labels must have the same type. The choice of the output label is conditioned
on the input label, and on some finite-state information coming from the
children (bottom-up) or the parent (top-down) of u. Our formal definition in
addition allows the relabelling to perform a permutation of subterms.

Definition 6.2.5. A bottom-up relabelling is a construct M = (Q,Σ,Δ,R),
where Q is a finite set of states, Σ and Δ are sorted alphabets of input and
output symbols, respectively, and R is a finite set of rules such that for every
symbol σ:Σ s1×· · ·×sm → s and all states q1, . . . , qm ∈ Q, R contains exactly
one rule of the form

σ(〈q1, x1〉, . . . , 〈qm, xm〉) → 〈q, δ(xπ(1), . . . , xπ(m))〉 ,
where q ∈ Q, δ:Δ s1 × · · · × sm → s, and π is some permutation [m] → [m].
Dually, a top-down relabelling has rules of the form

〈q, σ(x1, . . . , xm)〉 → δ(〈qπ(1), xπ(1)〉, . . . , 〈qπ(m), xπ(m)〉) . �

The derivation relation induced by a bottom-up relabelling is the binary re-
lation on the set T〈Q,TΔ〉∪Σ that is obtained by interpreting the rules of the
relabelling as rewriting rules in the obvious way.2 Similarly, a top-down rela-
belling gives rise to a relation on the set T〈Q,TΣ〉∪Δ. In the proof of the next
lemma, we will give (informal) descriptions of relabellings by specifying their
state sets and explaining the behaviour of their translation rules.

Lemma 6.2.1. Let k ∈ N. For each lexicalized LCFRS G ∈ LCFRS(k), there
exists a lexicalized LCFRS G′ ∈ LCFRS(k) such that the derivation trees of G
and G′ are isomorphic modulo relabelling, �G�S = �G′�S, and G′ only contains
essential concatenation functions. �

2 For details, see [22, 23].
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Proof. Let k ∈ N, and let G ∈ LCFRS(k) be a lexicalized LCFRS. Furthermore,
assume that the rank of G is bounded by m, for some m ∈ N. We define three
relabellings on the set of derivation trees of G that transform each derivation
tree t into a term over an alphabet Δ that does not contain the non-essential
functions.

The first transformation is a top-down relabelling. As the set of states,
use the set of all permutations π: [k′] → [k′], for k′ ∈ [k], and start with the
identity permutation on the set [1]. Given a state q and a production p with
body �α, replace �α by the tuple �α′ that is obtained from �α by permuting the
components of �α according to the permutation q, and re-index the variables
in p from left to right. Let π: [m] → [m] be the permutation that maps each
i ∈ [m] to the position of the variable xi,1 from �α in the total order on all
variables of the form xj,1 in �α′, j ∈ [m]. For each i ∈ [m], let qi: [ki] → [ki] be
the permutation that maps each j ∈ [ki] to the position of the variable xi,j

from �α in the total order on all variables of the form xi,j′ in �α′, j′ ∈ [ki].
The second transformation is a top-down relabelling. As the set of states,

use the set of all subsets of [k]. Start with the empty set. Given a state q and
a production p with body �α, replace �α by the tuple �a′ that is obtained from �α
by (i) merging, for every i ∈ q, the ith component of �α with the (i + 1)st
component, and (ii) deleting, for every i ∈ [m] and j ∈ [ki], each maximal
substring of variables of the form xi,j′ , j < j′ ≤ ki, that is adjacent to xi,j ;
then re-index the variables of p from left to right. For each i ∈ [m] let qi be the
set of all indices j ∈ [ki] such that the variable xi,j was removed in step (ii),
and let π be the identity permutation.

The third transformation is a bottom-up relabelling. As the set of states,
use the set of all subsets of [m′] × [k′], for m′ ∈ [m], k′ ∈ [k]. Start with the
empty set. Given a production p with body �α and states 〈 qi | i ∈ [m] 〉 for the
subterms, replace �α by the tuple �α′ that is obtained from �α by (i) deleting all
variables xi,j , where i ∈ [m] and j ∈ qi, and (ii) deleting all empty components;
then, re-index the variables of p from left-to-right. Let π: [m] → [m] be the
permutation that maps each i ∈ [m] to the position of the variable xi,1 from �α
in the total order on all variables of the form xj,1 in �α′, j ∈ [m]. Let q be the
set of indices of all components deleted in step (ii).

None of these transformations alters the term structure of the original
derivation tree (apart from the permutation of subterms, which is inessential
with respect to tree-isomorphism), or the string derived from the tree: by
induction on the derivation tree t, we can verify that its string semantics
remain invariant under the relabelling. �

6.2.4 Linearization Semantics

With all non-essential concatenation functions out of our way, we are now
ready to define the linearization semantics for LCFRS.
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Definition 6.2.6. Let G be an LCFRS. The linearization algebra for G is the
Σ(G)-algebra A in which dom(A)A = (V +)k, for all A ∈ NG and k = ϕ(A),
and

fp(�α1, . . . , �αm) = �γ[a← ε][xi,j ← pfxi(αi,j) | i ∈ [m] ∧ j ∈ [ki] ] ,

for each production p = A→ f(A1, . . . , Am) with f : k1×· · ·×km → k, anchor
a ∈ T and body �γ. The linearization language generated by G is the set

Λ(G) := { �u | t ∈ TΣ(G),SG
∧ 〈�u〉 ∈ �t�A } . �

Each composition operation fp of a linearization algebra uses the body of the
defining equation of p to concatenate a root node (representing the anchor
of p) and the appropriately prefixed linearizations for the subderivations in
the same order as they would be concatenated in the string algebra.

Example 6.2.3 (continued). For the derivation tree t shown in Figure 6.3a, we
get the linearization �t�L = 1 · 21 · 221 · ε · 2 · 22. �

6.2.5 Dependency Semantics

We now define a dependency semantics for LCFRS.

Definition 6.2.7. Let G be an LCFRS, and let t ∈ TΣ(G) be a derivation
tree. The dependency structure induced by t is the segmented structure D :=
(nod(t) ; �,
,≡) where

u � v if and only if u dominates v in t,
u 
 v if and only if u precedes v in �t�L, and
u ≡ v if and only if u and v appear in the same component of �t�L.�

Example 6.2.4 (continued). The derivation tree t shown in Figure 6.3a induces
the dependency structure shown in Figure 6.3b. Note that, while the string
language generated by the LCFRS is the same as the string language generated
by the CFG in the previous section, the dependency structure is fundamentally
different. Just as in the case of context-free grammar, however, the generated
string �t�S can be recovered from the linearization by reading the anchors of t
in the order specified by �t�L. �

Inspecting the linearization semantics, we see that there is a obvious similarity
between the bodies of the generalized concatenation functions used in an
LCFRS and the order annotations that we used for block-ordered trees: the jth
occurrence of the symbol i in our order annotations has the same semantics as
the variable xi,j in the body of a generalized concatenation function. Under
this view, the linearization semantics of LCFRS mirrors the behaviour of the
procedure Block-Order-Collect that we gave in Section 4.2.1. Just as in
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the case of projective dependency structures, the following theorem can be
shown by replicating the proofs of Lemma 4.2.1. In the following, we write
LCFRS(k) for the class of all LCFRS in which the fan-out of the non-terminal
symbols is bounded by k.

Theorem 6.2.1. ∀k ∈ N. D(LCFRS(k)) = Dk �

We can also define a relabelling function that translates between productions
of an LCFRS and order annotations:

relab(p) := �α[a← 0][xi,j ← i | i ∈ [m] ∧ j ∈ [ϕ(Ai)] ] ,

for every production p = A → f(A1, . . . , Am) with anchor a and body �α.
Based on this function, the concept of a dependency algebra for an LCFRS
can be defined analogously to the corresponding definition for context-free
grammars (Definition 6.1.6).

6.2.6 Related Work

The string languages generated by LCFRS have many characterizations;
among other things, they are generated by Multiple Context-Free Grammars
[105], and they are the images of regular tree languages under deterministic
tree-walking transducers [120] and under finite-copying top-down tree trans-
ducers [116]. They can also be characterized as the yield languages of rational
tree relations [99].

6.3 Coupled Context-Free Grammars

In this section, we look at the dependency structures that are induced by deri-
vations in Coupled Context-Free Grammars (CCFGs) [38, 49]. This formalism
can be understood as a variant of LCFRS where rewriting rules are restricted
to words over a Dyck language, that is, a language that consists of balanced
strings of parentheses.3 We show that this syntactic restriction enforces the
dependency structures induced by CCFG derivations to be well-nested.

6.3.1 Definition

We start with a formal definition of CCFGs. Our definition deviates from the
one given by Hotz and Pitsch [49] in that we treat ‘parentheses’ as symbols
from a ranked set.

Definition 6.3.1. Let Π be a ranked alphabet. The alphabet of components
of Π is the set comp(Π) := { 〈π, i〉 ∈ Π × N | 1 ≤ i ≤ rankΠ(π) }. �

3 Dyck languages are named after the German mathematician Walther von Dyck
(1856–1934), whose surname rhymes with ‘week’ rather than ‘dike’.
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Table 6.1. Inference rules for the extended semi-Dyck set

ε ∈ ED(Π,A)

a ∈ A

a ∈ ED(Π,A)

�x ∈ ED(Π,A) �y ∈ ED(Π,A)

�x · �y ∈ ED(Π,A)

π ∈ Π1

〈π, 1〉 ∈ ED(Π,A)

�x1 ∈ ED(Π,A) · · · �xk ∈ ED(Π,A) π ∈ Πk+1

〈π, 1〉 · �x1 · 〈π, 2〉 · · · 〈π, k〉 · �xk · 〈π, k + 1〉 ∈ ED(Π,A)

In the following, if no confusion can arise, we write πi instead of 〈π, i〉.
Definition 6.3.2. Let Π be a ranked alphabet, and let A be an alphabet.
The extended semi-Dyck set over Π and A is the smallest set ED(Π,A) ⊆
(comp(Π) ∪A)∗ that is closed under the inference rules given in Table 6.1. �

Example 6.3.1. Consider the ranked alphabet Π := {◦} where rankΠ(◦) = 2.
The components of Π can be understood as opening and closing brackets,
respectively. Specifically, let us write [ instead of 〈◦, 1〉, and ] instead of 〈◦, 2〉.
Then the set ED(Π, {a, b}) consists of the set of all well-bracketed words over
{a, b}∗. For example, the strings [a][b] and a[a[ba]][a] belong to this set, while
the strings [[a] and [b]a] do not. �

One important property of an extended semi-Dyck set ED(Π,A) that we will
make use of is that, modulo the associativity of the concatenation rule and
the introduction of superfluous empty strings, every string �x ∈ ED(Π,A) has
a unique decomposition in terms of the rules given in Table 6.1.

Definition 6.3.3. A coupled context-free grammar is a construct

G = (Π,T, S, P ) ,

where Π is a ranked alphabet of non-terminal symbols, T is an alphabet of
terminal symbols, S ∈ Π1 is a distinguished start symbol, and P is a finite,
non-empty set of productions of the form A → 〈�x1, . . . , �xk〉, where k ∈ N,
A ∈ Πk, and �x1 · · · �xk ∈ ED(Π,T ). �

Example 6.3.2. We use the following CCFG G as our running example. The
alphabet of non-terminal symbols is ΠG := {S/1, R/2, B/1, C/1, D/1}; the
alphabet of terminal symbols is TG := {a, b, c, d}. The start symbol of G
is SG := S. Finally, the set of productions is defined as follows. (We omit
subscripts for non-terminals with rank 1.)

S → 〈aR1BCR2D〉 | 〈aBCD〉
R → 〈aR1B,CR2D〉 | 〈aB,CD〉
B → 〈b〉 , and similarly for C and D. �

We now show how to construct the derivation algebra for a coupled context-
free grammar G = (Π,T, S, P ). For every string �x ∈ (comp(Π) ∪ T )∗, we
define resΠ(�x) to be the restriction of �x to the first components of Π . More



6.3 Coupled Context-Free Grammars 77

S → 〈aR1BCR2D〉

R→ 〈aR1B, CR2D〉

R→ 〈aB,CD〉

B → 〈b〉 C → 〈c〉D → 〈d〉

B → 〈b〉 C → 〈c〉D → 〈d〉

B → 〈b〉 C → 〈c〉D → 〈d〉

Fig. 6.4. A derivation tree for a CCFG

specifically, resΠ is the homomorphism from (comp(Π) ∪ T )∗ to Π∗ that is
defined by resΠ(〈π, 1〉) = π for π ∈ Π , and resΠ(x) = ε for all other symbols.
We turn the set P of productions of G into a Π-sorted set Σ(G) by defining

typeΣ(G)(A→ 〈�x1, . . . , �xk〉) := resΠ(�x1 · · · �xk) · A ,

for every production A → 〈�x1, . . . , �xk〉, where A ∈ Πk. The set of derivation
trees of G is defined as for CFG and LCFRS.

Example 6.3.3. Figure 6.4 shows a derivation tree for our example grammar.�

The notion of lexicalization is defined as usual:

Definition 6.3.4. A CCFG is called lexicalized , if each of its productions
contains exactly one terminal symbol. �

Notice that the example grammar is lexicalized.

6.3.2 String Semantics

The basic reading of a production p in a CCFG is, that like a production in
an LCFRS it describes a generalized concatenation function that arranges ma-
terial derived in subderivations into a new tuple. However, in order to define
the semantics of CCFGs precisely, we need to make explicit which components
on the right-hand side �α of p ‘belong together’ in the sense that they should
be replaced with material derived in the same subderivation. In LCFRS, this
correspondence is encoded by means of appropriately named variables: the
variable xi,j in �α is a placeholder for the jth component of the ith argument
of the generalized concatenation function used in p (see Definition 6.2.4). In
CCFG, due to the Dyck-ness restriction on the productions, the correspon-
dence can be left more implicit.

Let us say that two occurrences of components in the right-hand side �α
of a production p in a CCFG are synchronized, if they were introduced in
the same inference step in the derivation of �α according to the rules given in
Table 6.1. Given that every right-hand side �α has a unique such derivation
(modulo inessential ambiguities), the synchronization relation is well-defined;
it defines an equivalence relation on the set of all occurrences of components
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in �α. We can then index the synchronized sets of components according to the
position of their leftmost member (a component of the form 〈π, 1〉), and use
the components from the ith group in this sequence as placeholders for the
material from the ith subderivation. More formally, we can rewrite �α into an
explicit version exp(�α) by replacing the jth element of the ith synchronized
group of component occurrences by the variable symbol xi,j . Based on this
explicit version, we can define the string semantics of CCFGs as in the case of
LCFRS:

Definition 6.3.5. Let G = (Π,T, S, P ) be a CCFG. The string algebra for G
is the Σ(G)-algebra A in which dom(A)A = (T ∗)k, for all A ∈ Πk, and

fp(�α1, . . . , �αm) = exp(�γ)[xi,j ← αi,j | i ∈ [m] ∧ j ∈ [ki] ] ,

for each production p = A → �γ. The string language generated by G is the
set

L(G) := {�a | ∃t ∈ TΣ(G),S. 〈�a〉 ∈ �t�A } . �

Example 6.3.4 (continued). Our example grammar generates the context-sen-
sitive string language { anbncndn | n ∈ N }. �

It is straightforward that every CCFG can be translated into an LCFRS that
generates the same string language. In this translation, both the alphabet of
non-terminal symbols, the alphabet of terminal symbols, and the start symbol
remain unchanged; the only thing that we need to adapt is the form of the
production rules, which can be done in the way that we just explained. In this
sense, we can view CCFGs as a syntactically restricted form of LCFRS. We
can then define the linearization semantics of CCFGs as for LCFRS.

6.3.3 Dependency Semantics

Given that every CCFG can be seen as a special LCFRS, it is clear that CCFGs
cannot induce more dependency structures than LCFRS. In particular, we have
the following lemma, which relates the block-degree of the induced dependency
structures to the maximal rank of the inducing CCFG. Let us write CCFG(k)
for the class of all CCFGs in which the maximal rank of a non-terminal is k.

Lemma 6.3.1. ∀k ∈ N. D(CCFG(k)) ⊆ Dk �

We now show that CCFGs in fact induce a proper subclass of the depen-
dency structures inducible by LCFRS: every dependency structure induced by
a CCFG is well-nested.

Lemma 6.3.2. D(CCFG) ⊆ Dwn �

Proof. Let G = (Π,T, S, P ) be a CCFG, and let t = p(t1, . . . , tm) be a deriva-
tion tree of G, where p: k1 × · · · × km → k and ti ∈ TΣ(G),ki

, for all i ∈ [m].
The proof proceeds by induction on the depth of t. Consider the linearization
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�t�L of t; this linearization has the form �t�L = 〈�u1, . . . , �uk〉. Now assume
that there exist four nodes v1 = ui�x1, v2 = ui�x2 and w1 = uj�y1, w2 = uj�y2
in t such that v1 → v2, w1 → w2, and [v1, v2] � [w1, w2]. Furthermore, and
without loss of generality, assume that min(v1, v2) ≺ min(w1, w2). Then the
string �u1 · · ·�uk contains a substring of the form

ui�x1 · · ·uj�y1 · · ·ui�x2 · · ·uj�y2 ,
for some u ∈ nod(t), i, j ∈ N, and �x1, �x2, �y1, �y2 ∈ V ∗. Distinguish two cases:
If u �= ε, then both v1, v2 and w1, w2 belong to a proper subterm of t, and by
the induction hypothesis, we may assume that v1 � w1 or w1 � v1. So assume
that u = ε. The right-hand side of the production p has the form 〈γ1, . . . , γk〉,
and the string γ := γ1 · · · γk is formed according to the inference rules given in
Table 6.1. Given the specific form of the string �u1 · · · �uk, the string γ contains
a substring of the form

〈πi, i1〉 · · · 〈πj , j1〉 · · · 〈πi, i2〉 · · · 〈πj , j2〉 ,
for some πi, πj ∈ Π and 1 ≤ i1 < i2 ≤ rankΠ(πi), 1 ≤ j1 < j2 ≤ rankΠ(πj),
where i is the left-to-right index of the synchronized group of (occurrences of)
components to which 〈πi, i1〉 and 〈πi, i2〉 belong, and j is the corresponding
index for 〈πj , j1〉 and 〈πj , j2〉. By the inferences rules in Table 6.1, it is then
clear that all four occurrences are synchronized; consequently, i = j, and
either v1 � w1 or w1 � v1 holds. This shows that the dependency structure
induced by t is well-nested. �

As in the case of CFGs and LCFRS, the converses of the preceding lemmata
are easy to show. We thus obtain a characterization of CCFG in terms of the
dependency structures that it can induce as follows:

Theorem 6.3.1. ∀k ∈ N. D(CCFG(k)) = Dk ∩Dwn �

6.3.4 Related Work

Coupled context-free grammars are closely related to several other formalisms
considered in the literature, such as macro grammars [25] and the yield lan-
guages of linear, non-deleting context-free tree grammars [59]. The class of
languages generated by these formalisms enjoys several properties that makes
it more attractive than LCFRS from a formal point of view, such as a universal
pumping lemma [58] and the existence of binary normal forms and efficient
parsing algorithms [34].

6.4 Tree Adjoining Grammar

To conclude this chapter, we now look at the dependency structures that
are induced by derivations in Tree Adjoining Grammars (TAG) [54, 55]. In
contrast to LCFRS and CCFGs, TAGs manipulate trees rather than strings.
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6.4.1 Definition

The building blocks of a TAG are called elementary trees. These are children-
ordered trees in which each node has one of three types: it can be an anchor
(or terminal node), a non-terminal node, or a foot node. Anchors and foot
nodes are required to be leaves; non-terminal nodes may be either leaves or
inner nodes. Each elementary tree can have at most one foot node. Elementary
trees without a foot node are called initial trees; the remaining trees are called
auxiliary trees. A TAG grammar is lexicalized, if each of its elementary trees
contains exactly one anchor [104]. Trees in TAG can be combined using two
operations (see Figure 6.5): substitution combines a tree τ with an initial
tree τ ′ by identifying a non-terminal leaf node u of τ with the root node of τ ′
(Figure 6.5a); adjunction identifies an inner node u of a tree τ with the root
node of an auxiliary tree τ ′; the subtree of τ that is rooted at u is excised
from τ and inserted below the foot node v of τ ′ (Figure 6.5b). Combination
operations are disallowed at root and foot nodes.

u u

(a) substitution

u

v

u

v

(b) adjunction

Fig. 6.5. Combination operations in TAG

Example 6.4.1. Figure 6.6 shows an example for how TAGs are specified. The
grammar contains 5 elementary trees, named τ1 to τ5. The elementary trees τ1–
τ4 are initial trees. The tree τ5 is an auxiliary tree; the foot node of this tree
is marked with a star. Note that this grammar is lexicalized. By adjoining the
tree τ5 into the tree τ1, and then repeatedly into the tree resulting from this
first adjunction, we can produce the string language { anbncndn | n ∈ N }. This
language is beyond the string-generative capacity of context-free grammars.�

Just as in the case of the other grammar formalisms that we have looked at in
this section, TAG derivation trees record information about how elementary
structures are combined. Formally, derivation trees can be seen as terms over
the signature of elementary trees; this set is finite for any given TAG. The
root of each derivation tree is an initial tree. By repeated applications of the
substitution and adjunction operations, larger and larger trees are built from
this tree. TAG derived trees represent the results of complete derivations: they
are standard children-ordered trees made up from the accumulated material
of the elementary trees participating in the derivation. Just as in the case of
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S

a S

B C

D

τ1

B

b

τ2

C

c

τ3

D

d

τ4

S

a S

B � C

D

τ5

Fig. 6.6. A TAG grammar

lexicalized CFG there was a one-to-one correspondence between the nodes of
the derivation tree and the positions of the derived string, in lexicalized TAGs
there is a one-to-one correspondence between the nodes of the derivation tree
and the leaves of the derived tree. Thus, in just the same way as derivations in
CFG and LCFRS, derivations in TAG induce dependency structures. The major
question that we have to answer in the context of TAGs is how to define the
linearization semantics of the derivation trees. Essentially the same question
needs to be addressed when trying to relate TAG to other mildly context-
sensitive grammar formalisms. (See 5 for a formal version of the construction
that we discuss here.)

Example 6.4.2 (continued). Figure 6.7 shows a derivation tree for our example
grammar and the dependency structure that is induced by this derivation. �

τ1

τ5

τ5

τ2 τ3 τ4

τ2 τ3 τ4

τ2 τ3 τ4

(a) derivation tree

a a a b b b c c c d d d

(b) dependency structure

Fig. 6.7. A TAG derivation, and the induced dependency structure

6.4.2 Linearization Semantics

To understand the linearization semantics of a TAG elementary tree τ , we
must read it with the derived tree in mind that would result from a derivation
starting at τ . Let us do so for the elementary tree τ1 that is shown in Figure 6.6.
Since combination operations are disallowed at the root nodes of elementary
trees, we see that the leftmost leaf in the derived tree that we produce as the
result of the derivation is the anchor of τ1, which is labelled with the symbol a.
Now assume that an auxiliary tree adjoins at the central node of τ1, the node
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that is labelled with S. Then in the derived tree, all the material in the
left half of the adjoined tree precedes the material that is dominated by the
adjunction site in τ1, while all the material in the right half succeeds it (see
again Figure 6.5b). Specifically, let us write S1 for the material derived from
the left half of the auxiliary tree, and S2 for the material in the right half.
Then S1 precedes the material that gets substituted into the nodes labelled
with B and C in τ1, and this material in turn precedes S2. Finally, at the right
edge of the derived tree that we build from τ1, we find the material substituted
into the node labelled with D. To summarize, we have the following linear
sequence of tree material:

a S1 B C S2 D .

Using reasoning similar to this, we see that every elementary tree specifies
a generalized concatenation function over tuples of arity at most 2: for sub-
derivations that correspond to adjunctions, there is not one single slot per
subderivation, but two; the first of these slots is filled by the material in
the left half of the adjoined tree, the second slot by the right half of the
corresponding tree. A crucial observation now is that the linearization of the
elementary trees always produces strings from an extended semi-Dyck set.
More specifically, there can never be two distinct adjunction sites A and B
such that the linearization of the corresponding elementary tree yields the
sequence A1 · · ·B1 · · ·A2 · · ·B2. This is so because all material that is situated
between the two slots of a given adjunction corresponds to material that in the
elementary tree is dominated by that adjunction site. The forbidden sequence
then would mean that both A dominates B, and B dominates A, which is
only possible if A = B. Hence, from the linearization point of view, TAG
corresponds to the class CCFG(2) of Coupled Context-Free Grammars with
rank at most 2.

Theorem 6.4.1. D(TAG) = D2 ∩ Dwn �

6.4.3 Related Work

The result that the dependency structures induced by derivations of Tree Ad-
joining Grammar are exactly the well-nested dependency trees with block-
degree at most 2 was first shown by Bodirsky, Kuhlmann, and Möhl [3].
Kuhlmann and Möhl [65] present an extension of this result to multi-com-
ponent TAG. The ramifications of this extension were later discussed by Chen-
Main and Joshi [9, 10].

The same reasoning that we have used for the linearization semantics is
needed when designing left-to-right parsing algorithms for TAGs [5, 54]. It was
also used by Guan [38] to link TAGs to CCFGs of rank 2.

Tree Adjoining Grammars are special forms of Ranked Node Rewriting
Grammars [1] and context-free tree grammars [26, 59, 81]. Our results carry
over to these extended formalisms.
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Summary

In this chapter, we have presented a classification of lexicalized grammar for-
malisms in terms of the dependency structures that these formalisms can
induce. Our classification provides a new measure for the generative capacity
of a grammar formalism that is attractive as an alternative to both string-
generative capacity and tree-generative capacity: dependency structures are
more informative than strings, but less formalism-specific than parse trees.4

Together with the treebank studies that we presented in the previous three
chapters, our classification also provides new insights into the practical rele-
vance of grammar formalisms: If we accept our conclusion that the class of
projective dependency structures is insufficient to cover all the data in the
three treebanks that we looked at, then by Theorem 6.1.1, the same holds
for lexicalized context-free grammars. At the same time, our treebank studies
revealed that only a small step beyond projectivity is necessary to cover vir-
tually all of the practically relevant data. Together with Theorem 6.2.1, we
can interpret this result as saying that we only need LCFRS with a very small
fan-out, say the class LCFRS(2). Perhaps most interestingly, we find that close
to 99.5% of all the dependency analyses in the treebanks are well-nested and
have a block-degree of at most 2. Given Theorem 6.4.1, this means that it
is possible, at least in theory, to write a TAG that induces (almost) all the
structures in the three treebanks.

4 Kallmeyer [57] makes a similar argument.
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Regular Dependency Languages

In the first part of this book, we have looked at formal properties of individual
dependency structures. In this chapter, we turn our attention to sets of such
structures, or dependency languages. Specifically, we investigate the languages
that arise when we equip dependency structures with a ‘regular’ means of
syntactic composition.

We start by defining regular dependency languages as the recognizable
subsets in dependency algebras and provide natural notions of automata and
grammars for this class of languages (Section 7.1). We then develop a powerful
pumping lemma for regular dependency languages (Section 7.2) and apply it
to show that the languages in this class are of constant growth, a property
characteristic for mildly context-sensitive languages (Section 7.3).

7.1 Regular Sets of Dependency Structures

The primary goal of this book is to illuminate the connections between lan-
guage-theoretic properties such as generative capacity and parsing complexity
on the one hand, and graph-theoretic properties such as block-degree and well-
nestedness on the other. Specifically, we started with the question,

Which grammars induce which sets of dependency structures?

At this point, we have already come quite close to an answer to this question.
Consider the class of lexicalized context-free grammars (LCFG) for example.
In the previous chapter, we have seen that LCFG is linked to projectivity in
the sense that every LCFG can induce only projective structures, and every
such structure can be induced by some LCFG. However, this result does not
yet provide a full answer to our question, which asks about classes of lan-
guages, not classes of structures. The step from structures to languages is
non-trivial: it is not true that every set of projective dependency structures

M. Kuhlmann: Dependency Structures and Lexicalized Grammars, LNAI 6270, pp. 85–102, 2010.
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can be induced by an LCFG; in particular, the set of LCFGs is denumerable,
the set of all subsets of D1 is not. In this chapter, we identify a class of de-
pendency languages that can be induced by the grammar formalisms that we
have discussed. We call this class the regular dependency languages. As we
will see, the condition of regularity provides the missing link between grammar
formalisms and dependency structures.

7.1.1 Algebraic Recognizability

We define regularity by referring to the concept of algebraic recognizability.
This notion was introduced by Mezei and Wright [78], following previous work
by Richard Büchi, John Doner, Calvin Elgot, and James Thatcher. It genera-
lizes the definitions of regular string languages to arbitrary abstract algebras
and provides a canonical way to characterize regular sets of objects. Reco-
gnizability was originally defined for single-sorted algebras. Here we use a
many-sorted version, due to Courcelle [12].

Definition 7.1.1. Let A be a Σ-algebra, and let s ∈ SΣ be a sort. A set
L ⊆ dom(A)s is called recognizable, if there exists a finite Σ-algebra B, a
homomorphism h: A → B, and a set F ⊆ dom(B)s such that L = h−1(F ).�

We want to call a set of dependency structures ‘regular’, if it is recognizable
in some dependency algebra D. In this case, since D is initial, we do not have
a choice about the homomorphism h in the above definition: it is the uni-
quely determined evaluation homomorphism �·�B. This leads to the following
definition of regularity:

Definition 7.1.2. Let D be a dependency algebra with signature Σ, and let
i ∈ SΣ be a sort. A set L ⊆ dom(D)i is called regular , if there exists a finite
Σ-algebra B and a set F ⊆ dom(B)i such that L = �F �−1

B . �

The pair M = (B, F ) is called a (deterministic, complete) automaton for L.
We can understand the signature of B as an input alphabet, the domains
dom(B) as sets of states, the (finitely many) possible combinations of input
and output values for the composition operations of B as a transition function,
and the set F as a set of final states ofM . The behaviour ofM can be described
as follows: A run of M is a bottom-up traversal of a dependency structure D
during which each node u gets labelled with a state q ∈ dom(B). The label
for u is chosen conditional on both the local order at u (represented by an
order annotation σ ∈ Σ), and the state labels at the children of u. More
specifically, when M visits a node u that is annotated with a symbol σ, and
the children of the node u have previously been labelled with states q1, . . . , qm,
then the automaton labels u with the state fσ(q1, . . . , qm). The automaton M
recognizes D if, at the end of the run, the root node of D is labelled with a
state q ∈ F .
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Example 7.1.1. To illustrate the definition of regularity, we show that, for
every dependency algebra D with signature Σ, every k ∈ SΣ , and every set
G ⊆ { fσ | σ ∈ Σ }, the set L of those structures of sort k that are composed
using only operations from the set G is regular. We do so by constructing an
automaton M = (B, F ) for L as follows. For each sort i ∈ SΣ , the state set
dom(B)i is the set {1, 0}. For each order annotation σ: s1×· · ·×sm → s in Σ
and each tuple 〈b1, . . . , bm〉 of values, we put fσ(b1, . . . , bm) := (

∧m
i=1 bi) ∧ b,

where b = 1 if and only if fσ ∈ G. As the set of final states F , we choose
{1} ⊆ dom(B)k. For each dependency structure D ∈ dom(D), the evaluation
of D in B returns 1 if and only if it was composed using only composition ope-
rations from the set G. Thus, the set �F �−1

D contains exactly those dependency
structures with this property that have sort k. �

We write REGD for the class of all regular dependency languages. For a given
class D of dependency structures, we write REGD(D) for the class of all regular
dependency languages that are subsets of D.

7.1.2 Elementary Properties

We now review some of the elementary formal properties of regular depen-
dency languages. All of these properties are immediate consequences of our
definitions and general results about recognizable subsets.

Lemma 7.1.1. The empty set is a regular dependency language. Further-
more, REGD is closed under union, intersection, difference, and inverse ho-
momorphisms. �

Proof. See e.g. Courcelle [12], Proposition 4.6. �

Lemma 7.1.2. The following relations hold for all k ∈ N:

• REGD(Dk) � REGD(Dk+1)
• REGD(Dk ∩ Dwn) � REGD(Dk+1 ∩Dwn)
• REGD(D1) = REGD(D1 ∩ Dwn)
• k �= 1 =⇒ REGD(Dk ∩ Dwn) � REGD(Dk) �

Proof. Each of the classes of dependency structures mentioned in this lemma
coincides with a specific sub-signature of the set Ω of all order annotations.
All relations therefore can be reduced to the corresponding relations on the
signatures. �

This lemma is visualized in Figure 7.1. It shows that the structural restrictions
imposed by the block-degree measure and the well-nestedness condition induce
two infinite, related hierarchies of ever more expressive regular dependency
languages. The only point where these two hierarchies coincide is the case
k = 1.
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REGD(D1) = REGD(D1 ∩ Dwn)

REGD(D2)

REGD(D3)

REGD(D4)

REGD(D2 ∩ Dwn)

REGD(D3 ∩ Dwn)

REGD(D4 ∩ Dwn)

Fig. 7.1. The hierarchy of regular dependency languages

Finite Degree

Since each regular dependency language is built using a finite set of composi-
tion operations (a finite signature), and since there is a direct correspondence
between the type of a composition operation and the measures of out-degree
and block-degree, no regular dependency language can be unbounded in either
measure.

Definition 7.1.3. Let L ⊆ D be a dependency language. We say that L is
of finite degree, if there are a numbers m ∈ N, k ∈ N such that no structure
in L has an out-degree of more than m or a block-degree of more than k. �

Lemma 7.1.3. Every regular dependency language is of finite degree. �

The property that regular dependency languages are of finite out-degree se-
parates them from dependency frameworks that allow an arbitrary number of
children per node (see e.g. [19]). The restriction to finite block-degree forma-
lizes the rather informal notion of ‘limited cross-serial dependencies’ that is
characteristic for mildly context-sensitive language [53]. At the same time, this
restriction implies that regular dependency languages are not able to account
for linguistic phenomena that require arbitrary degrees of non-projectivity,
such as the phenomenon of scrambling in German subordinate clauses [2].

Connection with Regular Term Languages

Recall from Theorem 4.2.1 that every dependency algebra is isomorphic to its
corresponding term algebra. Therefore the following lemma applies:

Lemma 7.1.4. Let D be a dependency algebra with signature Σ, and let i ∈
SΣ be a sort. Then a set L ⊆ dom(D)i is regular if and only if term(L) is
TΣ-recognizable. �
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The major benefit of this connection is that it allows us to study dependency
languages using the tools and results of the well-developed formal theory of re-
cognizable term languages, which is more widely known as the class of regular
term languages. This is a very natural and robust class with many different
characterizations: it is recognized by finite tree automata, generated by regu-
lar term grammars, and definable in monadic second-order logic [28]. For our
purposes, the characterization in terms of grammars is the most convenient.
It allows us to characterize regular dependency languages as the images of the
term languages generated by regular term grammars over the signature Ω of
order annotations.

7.1.3 Regular Term Grammars

A term grammar specifies a rewriting system for terms over an alphabet of
terminal and non-terminal symbols. In each step of the rewriting process, a
non-terminal symbol is replaced by a term; this yields a new term. Regular
term grammars are the generative correspondents of the algebraic automata
from Definition 7.1.2: Essentially, they are obtained by reading the composi-
tion functions of an automaton as a directed rewrite system—whenever an au-
tomaton defines fσ(q1, . . . , qm) = q, the corresponding term grammar contains
a rule q → fσ(q1, . . . , qm); the states of the automaton become the non-termi-
nal symbols of the grammar. Regular term grammars are distinguished from
other term grammars by the restriction that non-terminal symbols may occur
only at the leaves of a term, which implies that derivations correspond to se-
quences of simple substitution operations, just as in context-free grammars.1
To formalize this restriction, we introduce the following notation:

Definition 7.1.4. Let S be a set of sorts. Let Σ be an S-sorted set, and
let A be an S-indexed family of sets. The set of terms over Σ indexed by A,
denoted by TΣ(A), is the S-indexed set of all terms over Σ ∪A. �

Regular term grammars are usually defined for single-sorted algebras [16, 28];
here we adapt their definition to the many-sorted case. This extension is
straightforward: instead of one non-terminal alphabet and set of productions,
we need one such alphabet and set of productions per sort. The set of produc-
tions is set up such that a given non-terminal symbol can only be rewritten
by a term of the same sort.

Definition 7.1.5. Let S be a finite set of sorts. A regular term grammar
(over S) is a construct G = (N,Σ, S, P ), where N is an S-indexed family
of non-terminal alphabets, Σ is an S-sorted terminal alphabet, S ∈ N is a
distinguished start symbol, and P ⊆ N × TΣ(N) is a finite, S-indexed family
of sets of productions. �

1 In fact, one can show that a language is context-free if and only if it is the frontier
of a set of terms generated by a regular term grammar [28, p. 33].
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We use indexed symbols (NG, ΣG, SG, PG) to refer to the components of
specific regular term grammars G. For a production p = (A, t), we call A
the left-hand side and t the right-hand side of p. Just as in conventional
string grammars, we usually write A → t instead of (A, t). The derivation
relation associated to a regular term grammar G = (N,Σ, S, P ) is the binary
relation ⇒G on TΣ(N) that is defined by the following inference rule:

t ∈ TΣ(N) t/u = A (A→ t′) ∈ P

t⇒G t[u← t′]

Using this relation, the definition of the term language generated by G is
completely analogous to the definition of the language generated by a string
grammar—it is the set of all terms without non-terminals that can eventually
be derived from the trivial term formed by the start symbol of the grammar:
L(G) = { t ∈ TΣ | S ⇒∗

G t }. Two grammars are equivalent, if they generate
the same language. Notice that all terms in the language generated by a
regular term grammar are of one and the same sort; this is the sort of the
start symbol S.

Definition 7.1.6. A regular term grammar G = (N,Σ, S, P ) over S is called
normalized , if every production has the form A → σ(A1, . . . , Am), where
A ∈ Ns, σ: s1 × · · · × sm → s, and Ai ∈ Nsi , for every i ∈ [m] and some sort
s ∈ S. �

Lemma 7.1.5. For every regular term grammar, there exists an equivalent
regular term grammar that is normalized. �

Proof. A proof of this result can be found in Gécseg and Steinby [28]. The
proof is a standard grammar transformation, as is it also known from context-
free grammars: we delete rules of the form A→ B and rules where the right-
hand side is a term with a depth greater than 1, and replace them by new
rules and non-terminal symbols that jointly simulate the old rules. �

7.1.4 Regular Dependency Grammars

We now define regular dependency grammars as regular term grammars that
generate term languages over the signature Ω of order annotations. This res-
triction ensures that terms manipulated by regular dependency grammars can
be interpreted as (segmented) dependency structures.

Definition 7.1.7. Let k ∈ N. A regular dependency grammar of degree k is
a construct G = (N,S, P ), where N is a [k]-indexed family of non-terminal
alphabets, S ∈ N is a distinguished start symbol, and P ⊆ N × TΩ(k)(N) is a
finite, [k]-indexed family of sets of productions. �

For a given regular dependency grammar G, let Σ be the finite subset of
order annotations that occurs in the productions of G; then the construct
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(N,Σ, S, P ) forms a regular term grammar. Based on this observation, we
make free use of all terminology for regular term grammars when talking
about regular dependency grammars. We will only work with regular depen-
dency grammars in which S ∈ N1. This restriction ensures that the languages
generated by regular dependency grammars can be interpreted as sets of pro-
per dependency structures.

Definition 7.1.8. Let G be a regular dependency grammar. The dependency
language generated by G is the set D(G) := dep(L(G)). �

Example 7.1.2. To illustrate the definitions, we give two examples of regular
dependency grammars. The dependency languages generated by these gram-
mars mimic the verb-argument relations found in German and Dutch subordi-
nate clauses, respectively [52, 95, 107]: grammar G1 generates structures with
nested dependencies, grammar G2 generates structures with crossing depen-
dencies.

Grammar G1 := (N1, S, P1) (degree 1)

N1 := {1 �→ {S,N, V }}
P1 := {S → 〈120〉(N,V ), V → 〈120〉(N,V ), V → 〈10〉(N), N → 〈0〉}

Grammar G2 := (N2, S, P2) (degree 2)

N2 := {1 �→ {S,N}, 2 �→ {V }}
P2 := {S → 〈1202〉(N,V ), V → 〈12, 02〉(N,V ), V → 〈1, 0〉(N), N → 〈0〉}

Figure 7.2 shows terms generated by these grammars, and the corresponding
structures. �

We now state the main result of this section:

Theorem 7.1.1. A dependency language is regular if and only if it is gene-
rated by a regular dependency grammar. �

Proof. This is a direct consequence of the isomorphism between regular depen-
dency languages and regular term languages (Lemma 7.1.4) and the standard
result that a term language is regular if and only if it is generated by a regular
term grammar. A proof of this result can be found in Denecke and Wismath
[16]; it proceeds by translating every regular term grammar into an equivalent
algebraic automaton and vice versa. The major difference between grammars
and automata is that automata are complete and deterministic (exactly one
value per function-argument pairing), while grammars may be incomplete and
indeterministic (more than one rule per non-terminal). These differences can
be removed by grammar normalizations on the one hand, and a standard
subset construction for automata on the other. �
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〈120〉

〈0〉 〈120〉

〈0〉 〈10〉

〈0〉 . . . dass Jan Marie Wim lesen helfen sah

(a) Grammar G1

〈1202〉

〈0〉 〈12, 02〉

〈0〉 〈1, 0〉

〈0〉 . . . omdat Jan Marie Wim zag helpen lezen

(b) Grammar G2

Fig. 7.2. Terms and structures generated by two regular dependency grammars

7.1.5 Dependency Languages and Lexicalized Grammars

With the concept of regularity at hand, we can now lift our results from the
previous chapter to the level of languages. Given a class G of grammars, let
us write D(G) for the class of all dependency languages induced by grammars
in G. The following theorem was first mentioned by Kuhlmann and Möhl [66]:

Theorem 7.1.2. The following statements hold for all k ∈ N:

1. REGD(Dk) = D(LCFRS(k))
2. REGD(Dk ∩ Dwn) = D(CCFG(k)) �

To put it into words: The dependency languages induced by the class of LCFRS
with fan-out at most k are exactly the regular dependency languages over
dependency structures with block-degree at most k. Similarly, the dependency
languages induced by the class of CCFGs with rank at most k are exactly the
regular dependency languages over well-nested dependency structures with
block-degree at most k.

Proof. The proof falls into two parts:

⊇ Let G be a lexicalized LCFRS. The set of derivation trees of G forms a
regular term language over some finite signature of concatenation func-
tions. By Lemma 6.2.1, we can transform this language into an equivalent
(modulo relabelling) term language L that only uses essential concatena-
tion functions. Crucially, the elimination of non-essential functions uses
bottom-up and top-down relabellings, which preserve regularity [22]; the-
refore, the transformed language L still is a regular term language, say
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L ⊆ TΣ . We have furthermore seen (on page 75) how to define a bijective
function relab: Σ → Ω from the set of essential concatenation functions
to the set of order annotations such that a derivation t ∈ TΣ induces the
dependency structure dep(relab(t)), for all t ∈ L. Since the mapping relab
is injective, we can translate L into a regular term language L′ over some
finite signature Δ ⊆ Ω, and hence, modulo decoding, into a regular depen-
dency language.

⊆ Let G be a regular dependency grammar. We can construct an LCFRS G′

such that the derivations of G′ induce the dependency language generated
by G by reversing the above relabelling on a per-rule basis.

In both directions, the relabelling maintains the signature restrictions: essen-
tial concatenation functions of fan-out k are translated into order annotations
of degree k, and vice versa. The relabelling also maintains the well-nestedness
restriction. �

7.2 Pumping Lemmata

Since even infinite regular term languages (and hence: regular dependency
languages) can be represented by finite grammars, these languages, very much
like regular or context-free string languages, must have a periodic structure.
In this section, we prove a number of novel pumping lemmata for regular term
languages that make this observation precise. These lemmata provide the keys
to our results about the growth of regular dependency languages (Section 7.3)
and their string-generative capacity (Section 8.2).

7.2.1 The Pumping Lemma for Regular Term Languages

Recall the standard pumping lemma for context-free string languages:

For every context-free language L ⊆ A∗, there is a number p ∈ N such
that any string z ∈ L of length at least p can be written as z = uvwxy
such that 1 ≤ |vx|, |vwx| ≤ p, and uvnwxny ∈ L, for every n ∈ N.

This result is usually proved using a combinatorial argument about the de-
rivations of a grammar that generates the language L. Essentially the same
argument can be used to show a pumping lemma for regular term grammars
(see e.g. Proposition 5.2 in [28]):2

Lemma 7.2.1. For every regular term language L ⊆ TΣ, there is a number
p ∈ N such that any term t ∈ L of size at least p can be written as t = c′ · c · t′
such that 1 ≤ |c| ≤ p, |c · t′| ≤ p, and c′ · cn · t′ ∈ L, for every n ∈ N. �

2 The lemma given here is in fact slightly stronger than the one given by Gécseg
and Steinby [28] (Proposition 5.2), and makes pumpability dependent on the size
of a tree, rather than on its height.



94 7 Regular Dependency Languages

The number p in this lemma is called pumping number. The phrase ‘the term t
can be written as t = c′ · c · t′’ is an abbreviation for the formal assertion that
‘there exist contexts c′ ∈ CΣ and c ∈ CΣ and a term t′ ∈ TΣ such that
t = c′ · c · t′’.

Just as the pumping lemma for context-free string languages, Lemma 7.2.1
is most often used in its contrapositive formulation, which specifies a strategy
for proofs that a language L ⊆ TΣ is not regular: show that, for all p ≥ 1,
there exists a term t ∈ L of size at least p such that for any decomposition
c′ · c · t′ of t in which |c| ≥ 1 and |c · t′| ≤ p, there is a number n ∈ N such
that c′ · cn · t′ /∈ L. It is helpful to think of a proof according to this strategy
as a game against an imagined Adversary, where our objective is to prove
that L is non-regular, and Adversary’s objective is to foil this proof. The
game consists of four alternating turns: In the first turn, Adversary must
choose a number p ≥ 1. In the second turn, we must respond to this choice
by providing a term t ∈ L of size at least p. In the third turn, Adversary

must choose a decomposition of t into fragments c′ · c · t′ such that |c| ≥ 1
and |c · t′| ≤ p. In the fourth and final turn, we must provide a number n ∈ N

such that c′ · cn · t′ /∈ L. If we are able to do so, we win the game; otherwise,
Adversary wins. We can prove that L is non-regular, if we have a winning
strategy for the game.

Example 7.2.1. Consider the following term language (see Figure 7.3a for a
schema):

L1 := { f(gn · a, gn · a) | n ∈ N }
We show that L1 is non-regular by stating a winning strategy for the game
associated with L1. Assume that Adversary has chosen the number p ∈ N.
Then we can always win the game by responding with the term t = f(gp ·
a, gp · a). It is clear that t is a valid term in L1, and that |t| ≥ p. In whatever
way Adversary decomposes t into segments c′ · c · t′, the term s := c′ · c2 · t′
does not belong to L1. In particular, if c is rooted at a node that is labelled
with g, then the pumped term violates the constraint that the two branches
have the same length. Thus we deduce that L1 is non-regular. �

Unfortunately, Lemma 7.2.1 sometimes is too blunt a tool to show the non-
regularity of a term language, as the following example demonstrates.

Example 7.2.2. Consider the following term language (see Figure 7.3b for a
schema):

L2 = { f(gn · hm1 · a, gn · hm2 · a) | n,m1,m2 ≥ 1 }

It is not unreasonable to believe that L2, like L1, is non-regular, but it is im-
possible to prove this using Lemma 7.2.1. To see this, notice that Adversary

has a winning strategy for p ≥ 2: for every term t ∈ L2 that we can provide
in the second turn of the game, Adversary can choose any decomposition
c′ · c · t′ in which c = h(◦) and t′ = a. In this case, |c| ≥ 1, |c · t′| ≤ p, and
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Fig. 7.3. Two term languages that are not regular

both deleting and pumping c yield only valid trees in L2. Intuitively, we would
like to force Adversary to choose a decomposition that contains a g-labelled
node, thus transferring our winning strategy for L1—but this is not warran-
ted by Lemma 7.2.1, which merely asserts that a pumpable context does exist
somewhere in the tree, but does not allow us to delimit the exact region. �

7.2.2 Ogden’s Lemma for Regular Term Languages

The pumping lemma that we prove in this section is more powerful than
Lemma 7.2.1:

Lemma 7.2.2. For every regular term language L ⊆ TΣ, there is a number
p ≥ 1 such that every term t ∈ L in which at least p nodes are marked as
distinguished can be written as t = c′ · c · t′ such that at least one node in c is
marked, at most p nodes in c · t′ are marked, and c′ · cn · t′ ∈ L, for all n ∈ N.�

Note that, in the special case where all nodes are marked, this lemma reduces
to Lemma 7.2.1.

Lemma 7.2.2 can be seen as the natural correspondent of Ogden’s Lemma
for context-free string languages [90]. Its contrapositive corresponds to the
following modified game for term languages L: In the first turn, Adversary

has to choose a number p ≥ 1. In the second turn, we have to choose a term
t ∈ L and mark at least p nodes in t. In the third turn, Adversary has to
choose a decomposition c′ · c · t′ of t in such a way that at least one node in c
and at most p nodes in c · t′ are marked. In the fourth and final turn, we have
to choose a number n ∈ N such that c′ · cn · t′ /∈ L.

Example 7.2.3 (continued). In the modified game, we can implement our idea
from above to prove that the language L2 from Example 7.2.2 is non-regular:
we can always win the game by presenting Adversary with the term
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t = f(gp · h(a), gp · h(a))

and marking all nodes that are labelled with g as distinguished. Then, in
whatever way Adversary decomposes t into segments c′ · c · t′, the context c
contains at least one node labelled with g, and the term c′ · c2 · t′ does not
belong to L2. �

Our proof of Lemma 7.2.2 builds on the following technical lemma:

Lemma 7.2.3. Let Σ be a ranked alphabet. For every tree language L ⊆ TΣ

and every k ≥ 1, there exists a number p ≥ 1 such that every term t ∈ L in
which at least p nodes have been marked as distinguished can be written as

t = c′ · c1 · · · ck · t′

in such a way that for each i ∈ [k], the context ci contains at least one marked
node, and the tree c1 · · · ck · t′ contains at most p marked nodes. �

Proof. Let m be the maximal rank of any symbol in Σ. Note that if m is zero,
then each term over Σ has size one, and the lemma trivially holds with p = 2.
For the remainder of the proof, assume that m ≥ 1. Put gΣ(n) =

∑n
i=0m

i,
and note that gΣ(n) < gΣ(n + 1), for all n ∈ N. We will show that we can
choose p = gΣ(k).

Let t ∈ L be a term in which at least one node has been marked as
distinguished. We call a node u of t interesting, if it either is marked, or has
at least two children from which there is a path to an interesting node. It
is easy to see from this definition that from every interesting node, there is
a path to a marked node. Let d(u) denote the number of interesting nodes
on the path from the root node of t to u, excluding u itself. We make two
observations about the function d(u):

First, there is exactly one interesting node u with d(u) = 0. To see that
there is at most one such node, let u1 and u2 be distinct interesting nodes
with d(u1) = d(u2) = n; then the least common ancestor u of u1 and u2 is
an interesting node with d(u) = n− 1. To see that there is at least one such
node, recall that every marked node is interesting.

For the second observation, let u be an interesting node with d(u) = n. The
number of interesting descendants v of u with d(v) = n+ 1 is at most m. To
see this, notice that each path from u to v starts with u, continues with some
child u′ of u, and then visits only non-interesting nodes w until reaching v.
From each of these non-interesting nodes w, there is at most one path that
leads to v. Therefore, the path from u to v is uniquely determined except for
the choice of the child u′, which is a choice among at most m alternatives.

Taken together, these observations imply that the number of interesting
nodes u with d(u) ≤ k − 1 is bounded by the value gΣ(k − 1).

Now, let t be a term in which at least gΣ(k) nodes have been marked as
distinguished. Then there is at least one interesting node u with d(u) = k, and
hence, at least one path that visits at least k + 1 interesting nodes. Choose
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any path that visits the maximal number of interesting nodes, and let �u be
a suffix of that path that visits exactly k + 1 interesting nodes, call them
v1, . . . , vk+1. We use �u to identify a decomposition c1 · · · ck · t′ of t as follows:
for each i ∈ [k], choose vi as the root node of ci, choose vi+1 as the hole
of ci, and choose vk+1 as the root node of t′. This decomposition satisfies
the required properties: To see that the term c1 · · · ck · t′ contains at most p
marked nodes, notice that, by the choice of �u, no path in t that starts at v1
contains more than k + 1 interesting nodes, and hence the total number of
interesting nodes in the subtree rooted at v1 is bounded by gΣ(k) = p. To
see that every context ci, i ∈ [k], contains at least one marked node, let v
be one of the interesting nodes in ci, and assume that v is not itself marked.
Then v has at least two children from which there is a path to an interesting,
and, ultimately, to a marked node. At most one of these paths visits vi+1; the
marked node at the end of the other path is a node of ci. �

With Lemma 7.2.3 at hand, the proof of Lemma 7.2.2 is straightforward, and
essentially identical to the proof given for the standard pumping lemma [28]:

Proof (of Lemma 7.2.2). Let L ⊆ TΣ be a regular term language, and let
G = (N,Σ, S, P ) be a regular tree grammar in normal form that generates L.
We will apply Lemma 7.2.3 with k = |N |. Let t ∈ L be a term in which
at least p nodes are marked as distinguished, where p is the number from
Lemma 7.2.3. Then t can be written as c′ · c1 · · · ck · t′ such that for each
index i ∈ [k], the context ci contains at least one marked node, and the term
c1 · · · ck ·t′ contains at most p marked nodes. Note that each context ci, i ∈ [k],
is necessarily non-empty. Since G has only k nonterminals, there must be a
nonterminal A and an index i ∈ [k] such that S ⇒∗

G c′ ·c1 · · · ci−1 ·A and either
A⇒∗

G ci · ci+1 · · · cj−1 ·A and A⇒∗
G cj · cj+1 · · · ck · t′, for some i < j ≤ [k], or

A⇒∗
G ci · · · ck · A and A ⇒∗

G t′. Iterating the middle sub-derivations n times
(where n may be zero), we obtain a new valid derivation. �

Note that by choosing k = m · |N | in this proof, where m ≥ 1, it is easy to
generalize Lemma 7.2.2 as follows:

Lemma 7.2.4. For every regular term language L ⊆ TΣ and every m ≥ 1,
there is a number p ≥ 1 such that every term t ∈ L in which at least p nodes
are marked as distinguished can be written as t = c′ · c1 · · · cm · t′ such that for
each i ∈ [m], at least one node in ci is marked, at most p nodes in c1 · · · cm · t′
are marked, and c′ · cn1 · · · cnm · t′ ∈ L, for all n ∈ N. �

7.3 Constant Growth

We have claimed (in our discussion of Lemma 7.1.3) that the block-degree
restriction inherent to regular dependency languages formalizes the notion of
‘limited cross-serial dependencies’ that is characteristic for the class of mildly
context-sensitive languages. In this section, we show that regular dependency
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languages also have another characteristic property of this class, constant
growth. This property is usually attributed to string languages [53]; here, we
define it for term languages.

7.3.1 Constant Growth and Semilinearity

Informally, a language has the constant growth property, if there are no ar-
bitrarily long leaps in its size progression. More formally, let L be a term
language, and let �n be the sequence of distinct sizes of terms in L, sorted in
ascending order. If L is of constant growth, then adjacent elements of �n differ
by at most a constant (see [62], Definition 5.1).

Definition 7.3.1. A term language L ⊆ TΣ is of constant growth, if either L
is finite, or there is a number c ∈ N such that for each term t ∈ L, there exists
a term t′ ∈ L such that |t| < |t′| ≤ |t| + c. �

Example 7.3.1. We look at an example for a term language that does not have
the constant growth property. Let Σ be a signature, and let L be the set of
all complete binary terms over Σ. Given a term ti ∈ L with size |ti|, a ‘next
larger’ term ti+1 ∈ L is obtained by adding two children to every leaf in ti. This
procedure results in a linear size progression: we see that |ti+1| = 2 · |ti|+1. In
particular, there is no number c such that |ti+1| ≤ |ti|+ c holds for all indices
i ∈ N. �

Constant growth is closely related to a property known as semilinearity [91].
This property is concerned with the interpretation of the elements of a lan-
guage as multisets of labels. For the following definition, given a term t ∈ TΣ

and a symbol σ ∈ Σ, we write #σ(t) for the number of occurrences of σ in t.

Definition 7.3.2. Let Σ be a signature, and put n := |Σ|. We fix an (arbi-
trary) order on Σ and write σi for the ith symbol with respect to this order,
for i ∈ [n]. The Parikh mapping for terms over Σ (with respect to this order)
is the function ψΣ: TΣ → N

n defined as

ψΣ(t) := 〈#σ1(t), . . . ,#σn(t)〉 .

We extend ψΣ to languages L ⊆ TΣ by putting ψΣ(L) := {ψΣ(t) | t ∈ L }. �

The order on Σ with respect to which a Parikh mapping is defined is conve-
nient for our formal treatment of semilinearity, but irrelevant for our results.
Therefore, we refer to the Parikh mapping for terms over Σ.

The Parikh mapping reduces a term to the multiset of its labels. A measure
that is preserved under this reduction is the size of a term. More specifically,
define the following norm on N

n: ‖�x‖ :=
∑n

i=1 xi. Then for all terms t ∈ TΣ ,
it holds that ‖ψΣ(t)‖ = |t|. The relevance of this observation is that it allows
us to recast constant growth as a property of the image of a term language
under its Parikh mapping.
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Lemma 7.3.1. A term language L ⊆ TΣ is of constant growth if and only
if either ψΣ(L) is finite, or there is a number c ∈ N such that for each term
t ∈ L, there exists a term t′ ∈ L such that ‖ψΣ(t)‖ < ‖ψΣ(t′)‖ ≤ ‖ψΣ(t)‖+c.�
We now give a formal definition of semilinearity. To do so, we equip each
set N

n with two operations: component-wise addition of two vectors (�x + �y),
and multiplication of a vector by a scalar a ∈ N (a · �x).

Definition 7.3.3. Let n ∈ N. A set S ⊆ N
n is called linear , if there exists a

vector �x0 ∈ N
n, a number k ∈ N, and an indexed set 〈 �xi ∈ N

n | i ∈ [k] 〉 of
vectors such that

S = { �x0 +
∑k

i=1 ci · �xi | ci ∈ N } .
A set is called semilinear , if it is a finite union of linear sets. A language
L ⊆ TΣ is called linear (semilinear), if ψΣ(L) is a linear (semilinear) set of
vectors. �

Each element of a semilinear language is the outcome of one of a finite number
of generative processes. Such a process is specified by a single ‘base structure’
and a finite set of ‘additives’. Its outcome is the set of all structures that
can be obtained by combining the base structure with any number (including
zero) of one or more additives. In this way, semilinearity is closely related to
pumpability.

Lemma 7.3.2. Each semilinear term language has the constant growth
property. �

Proof. Let L ⊆ TΣ be a term language. Put n := |Σ|, and P := ψΣ(L).
We show that, if P is linear or semilinear, then it satisfies the conditions of
Lemma 7.3.1.

Assume that P is linear. In this case, there exists a vector �x0 ∈ N
n, a

number k ∈ N, and an indexed set 〈 �xi ∈ N
n | i ∈ [k] 〉 of base vectors such

that
P = { �x0 +

∑k
i=1 ai · �xi | ai ∈ N } .

A vector �x ∈ N
n is called null, if ‖�x‖ = 0. Distinguish two cases: If all base

vectors are null, then P is finite. Otherwise, let �x be a base vector that is
not null and for which ‖�x‖ is minimal among all non-null base vectors. Put
c := ‖�x‖, and let �y ∈ P . Since P is linear, the vector �z := �y+ �x is an element
of P . Since �x is not null, we have ‖�y‖ < ‖�z‖ ≤ ‖�y‖ + c.

Now, assume that P is semilinear. In this case, there exists a numberm ∈ N

and an indexed family 〈Pi | i ∈ [m] 〉 of linear sets such that P =
⋃

i∈[m] Pi.
Assume that P is non-finite. For every i ∈ [m] for which the set Pi is non-finite,
let ci be the number constructed in the previous item. Put c := maxi∈[m] ci,
and let �y ∈ P . Then there exists an index i ∈ [m] such that �y ∈ Pi, and by
the previous item, there exists a vector �z ∈ Pi ⊆ P such that ‖�y‖ < ‖�z‖ ≤
‖�y‖ + ci ≤ ‖�y‖ + c.

Using Lemma 7.3.1, we conclude that L has the constant-growth
property. �
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7.3.2 Regular Term Languages Are Semilinear

We now show that regular term languages are semilinear. Semilinearity of a
language is routinely proven by providing an encoding of that language into a
context-free language with the same Parikh image, and referring to Parikh’s
theorem [91]:

Proposition 1. Every context-free language is semilinear. �

Unfortunately, the standard proof of this theorem is rather opaque. In par-
ticular, it does not elucidate the close connection between semilinearity and
pumpability. Therefore, we give a direct proof of the semilinearity of regular
term languages, following a similar proof for context-free languages [32].

Theorem 7.3.1. Every regular term language is semilinear. �

Proof. Let L be a regular term language, and let G be a normalized regular
term grammar with L(G) = L. For each set M ⊆ NG of non-terminals that
contains SG, let LM ⊆ L(G) be the subset of L(G) that consists of all terms
t ∈ L(G) for which there is at least one derivation SG ⇒∗

G t that uses exactly
the non-terminals in M . Since there are only finitely many such sets LM , and
since their union is L(G), it suffices to show that every set LM is semilinear.
Therefore, let us fix a set M ⊆ NG, and put m := |M | and p := p(m),
where the latter value is the constant from Lemma 7.2.4. We write � for the
restriction of the derivation relation ⇒G to derivations that use only rules of
the form A → t, where A ∈ M and t ∈ TΣ(M). By the definition of LM , it
then holds that t ∈ LM if and only if S �∗ t. Put

T := { t ∈ LM | |t| < p } ,
C := { c ∈ CΣ | 1 ≤ |c| ≤ p ∧ ∃A ∈M. A �∗ c · A } , and
X := {ψΣ(t) +

∑
c∈C ac · ψΣ(c) | t ∈ T ∧ ac ∈ N } .

We start by noticing that the set X is semilinear: it is a finite union of linear
sets, one for each term t ∈ T . To prove that the set LM is semilinear, we show
that ψΣ(LM ) = X .

⊆ Let t ∈ LM be a term. We show that ψΣ(t) ∈ X by induction on the
size |t| of t. First assume that |t| < p. In this case, we see that t ∈ T ,
and ψΣ(t) ∈ X by the definition of X . Now assume that |t| ≥ p. In this
case, if we mark all nodes in t as distinguished, then by Lemma 7.2.4, each
derivation S �∗ t can be written as

S �∗ c0 ·A �∗ c0 · c1 ·A �∗ · · · �∗ c0 · c1 · · · cm · A �∗ c0 · c1 · · · cm · t′ ,
where A ∈ M , c0 ∈ CΣ , ci ∈ C for all i ∈ [m], and t′ ∈ TΣ . (See the left
half of Figure 7.4.) Let us write di for the sub-derivation A �∗ ci ·A, and
let M ′ ⊆ M be the set of those non-terminals in M − {A} that are used
in some sub-derivation di, i ∈ [m]. For each B ∈ M ′, choose some i ∈ [m]
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Fig. 7.4. Semilinearity

such that B is used in di. Then, since |M ′| < m, some j ∈ [m] is not chosen
at all. Therefore, if the corresponding sub-derivation dj is deleted, every
non-terminal in M (including A) is still present in the resulting derivation.
In this way, we obtain a new valid derivation for a term s ∈ LM with
|s| < |t|. (See the right half of Figure 7.4.) By the induction hypothesis, we
may assume that ψΣ(s) ∈ X . We see that ψΣ(t) = ψΣ(s) + ψΣ(cj), and
so, ψΣ(t) ∈ LM . Thus, in all cases, we have shown that ψΣ(LM ) ⊆ X .

⊇ Let �x ∈ X be a vector. By the definition of X , there exists a term t ∈ T and
an indexed set 〈 ac ∈ N | c ∈ C 〉 such that �x = ψΣ(t) +

∑
c∈C ac · ψΣ(c).

We show that there exists a term s ∈ LM with ψΣ(s) = �x by induction on
n :=

∑
c∈C ac. First, assume that n = 0. In this case, we have �x = ψΣ(t),

and since t ∈ LM , we deduce that ψΣ(t) ∈ X . Now, assume that n > 0.
In this case, there exists a context c ∈ C and a vector �x′ ∈ X such that
�x = �x′+ψΣ(c), and by the induction hypothesis, we may assume that there
exists a term t′ ∈ LM with �x′ = ψΣ(t′). From the definition of C, we see
that there is a non-terminal A ∈M and a derivation A �∗ c ·A. Since the
derivation S �∗ t′ uses every non-terminal B ∈ M (including A), it can
be written as S �∗ c′ · A �∗ c′ · t′′ = t′, for some context c′ ∈ CΣ and
term t′′ ∈ TΣ(M). In particular, we have A �∗ t′′. Plugging everything
together, we can construct a valid derivation for a new term s ∈ LM :

S �∗ c′ · A �∗ c′ · c ·A �∗ c′ · c · t′′ = s .

We see that �x = �x′ + ψΣ(c) = ψΣ(t′) + ψΣ(c) = ψΣ(s). Thus, in all cases,
we have shown that X ⊆ ψΣ(LM ). �

Corollary 1. Every regular term language is of constant growth. �
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As an immediate consequence of this corollary and the isomorphism between
regular dependency languages and regular term languages (Lemma 7.1.4), we
obtain the main result of this section:

Theorem 7.3.2. Every regular dependency language is of constant growth.�

7.3.3 Related Work

To claim that every formal language that adequately models natural language
should have the constant growth property is not claiming very much: Kracht
[62] remarks that ‘it seems that for every natural language [L] there is a
number dL such that for every n ≥ dL there is a string of length n in L’.
Semilinearity, on the other hand, may be too strong a restriction to impose on
mathematical models of natural language: Michaelis and Kracht [79] show that
an infinite progression of ‘case stacking’ in Old Georgian3 would mean that
this language is not semilinear. However, since there are no speakers of Old
Georgian, there is no possibility to test whether this theoretical progression
is actually possible.

The class of semilinear subsets of N
n is interesting in its own right. Among

other things, it is closed under union, intersection, and complement. More ge-
nerally, Ginsburg and Spanier [30] show that a subset of N

n is semilinear if
and only if it is definable in Presburger arithmetic4. The class of languages
with semilinear Parikh images forms an abstract family of languages, except
that it is not closed under intersection with regular string languages [62, Theo-
rem 2.93].

3 Old Georgian is an extinct Caucasian language that was spoken roughly between
the 4th and 11th century AD. It has a rich literary tradition.

4 Presburger arithmetic is the first-order theory of the natural numbers with addi-
tion. It was named in honour of Mojżesz Presburger (1904–1943), who proved its
decidability in 1929.
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Generative Capacity and Parsing Complexity

In this chapter, we complete our study of regular dependency languages by
investigating their string-generative capacity and parsing complexity. Specifi-
cally, we study the connection between these two measures and the structural
constraints discussed in the first part of this book.

We start by explaining how regular dependency grammars can be extended
to generators of sets of strings (Section 8.1). We then show that, for the string
languages generated by these extended grammars, the block-degree measure
induces an infinite hierarchy of expressiveness, and that the well-nestedness
restriction properly decreases expressiveness on nearly all levels of this hierar-
chy (Section 8.2). Finally, we discuss the complexity of the parsing problem of
the string languages generated by regular dependency grammars. In particu-
lar, we show that the well-nestedness condition can make the change between
tractable and intractable parsing (Section 8.3).

8.1 Projection of String Languages

Up to this point, dependency structures were defined solely in terms of their
governance and precedence relations. However, for many practical applications
we are interested in labelled structures, where apart from the nodes and the
edges, we also have ways to encode non-structural information such as word
forms, grammatical functions, or edge probabilities. In this section, we extend
our notion of dependency structures and dependency languages to accommo-
date such information. In particular, we show how dependency grammars can
be understood as generators of string languages.

8.1.1 Labelled Dependency Structures

The extension to labelled structures is straightforward:

M. Kuhlmann: DependencyStructures and Lexicalized Grammars, LNAI 6270, pp. 103–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Definition 8.1.1. Let A be some alphabet. An A-labelled dependency struc-
ture is a pair (D, lab), whereD is a dependency structure, and lab: dom(D) →
A is a total function on the nodes of D, called the labelling function. �

Just as unlabelled dependency structures can be represented as terms over the
alphabet Ω of order-annotations, A-labelled dependency structures can be re-
presented as terms over the product alphabet 〈Ω,A〉 in which each constructor
〈ω, a〉 inherits the type of ω. For terms over this alphabet, we can extend the
function dep in the natural way: the first component of a term constructor
〈ω, a〉 carries the information about the dependency structure as such, the
second component determines the label for the root node of the structure.
In this way, each term over the signature 〈Ω,A〉 denotes an A-labelled de-
pendency structure. It is straightforward to extend our notion of dependency
algebra accordingly. We can also define a string semantics for labelled depen-
dency structures as follows. Recall that we use the notation i#j to refer to
the jth occurrence of a symbol i in an order annotation.

Definition 8.1.2. Let Σ ⊆ Ω be a finite set of order annotations, and let A
be an alphabet. The string algebra over Σ and A is the 〈Σ,A〉-algebra in
which dom(A)i = (A+)i, for every 1 ≤ i ≤ deg(Σ), and

f〈ω,a〉(�α1, . . . , �αm) = ω[0 ← a][ i#j ← αi,j | i ∈ [m] ∧ j ∈ [ki] ] ,

for each constructor 〈ω, a〉: k1 × · · · × km → k in 〈Ω,A〉. �

Let 〈Σ,A〉 be some finite signature, where Σ ⊆ Ω. Given a term d over this
signature, we write �d�S for the evaluation of d in the string algebra over Σ
and A and say that the labelled dependency structure that is denoted by d
projects �d�S. Notice that, if d denotes a dependency structure of sort k, then
the projection of d is a k-tuple of (non-empty) strings over the alphabet A.
For the case k = 1, we identify the set of one-component tuples of strings with
the set of strings.

Example 8.1.1. Figure 8.1 shows two examples for labelled (segmented) de-
pendency structures and their corresponding terms. Note that, in pictures of
labelled structures, we annotate labels at the end of the corresponding pro-
jection lines. �

a b c

〈〈101〉, b〉

〈〈0, 1〉, a〉

〈〈0〉, c〉

(a) D1

a b c

〈〈1, 01〉, b〉

〈〈0, 1〉, a〉

〈〈0〉, c〉

(b) D2

Fig. 8.1. Two labelled dependency structures and their terms
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8.1.2 String-Generating Regular Dependency Grammars

With our algebraic framework in mind, it is straightforward to extend regular
dependency grammars into generators of string languages (via projection).
The only thing that we need to add to the existing signature is the alphabet
of labels, now called (surface) terminal symbols.

Definition 8.1.3. Let k ∈ N. A string-generating regular dependency gram-
mar of degree k is a construct G = (N,T, S, P ), where N is a [k]-indexed
family of non-terminal alphabets, T is an alphabet of terminal symbols, S ∈ N
is a distinguished start symbol, and P ⊆ N × T〈Ω(k),A〉(N) is a k-indexed
family of finite sets of productions. �

The derivation relation and the notion of the dependency language generated
by a grammar are defined as usual, except that we are now dealing with label-
led structures. The string algebra corresponding to a string-generating regular
dependency grammar G is the string algebra overΣG and TG, where ΣG is the
collection of those order annotations ω ∈ Ω(k) that occur in the productions
of G.

Definition 8.1.4. Let G be a string-generating regular dependency gram-
mar. The string language projected by G is defined as �G�S := { �d�S | d ∈
L(G) }. �

Example 8.1.2. We give examples for two regular dependency grammars that
generate the string language { anbn | n ∈ N }. The dependency structures
generated by the first grammar are projective (‘nested dependencies’), the
structures generated by the second grammar may have block-degree 2 (‘cross-
serial dependencies’). Both grammars use the same terminal-alphabet {a, b}.
We only state the productions of the grammars; sample terms and generated
dependency structures are shown in Figure 8.2.

G1 (projective dependency structures):

S → 〈〈012〉, a〉(S, 〈〈0〉, b〉) S → 〈〈01〉, a〉(〈〈0〉, b〉)

G2 (dependency structures with block-degree 2):

S → 〈〈0121〉, a〉(R, 〈〈0〉, b〉) S → 〈〈01〉, a〉(〈〈0〉, b〉)
R → 〈〈01, 21〉, a〉(R, 〈〈0〉, b〉) R → 〈〈0, 1〉, a〉(〈〈0〉, b〉)

8.1.3 String-Generative Capacity

It is apparent that our results on the equivalences between the dependency
languages induced by various lexicalized grammar formalisms on the one hand
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〈〈012〉, a〉

〈〈012〉, a〉

〈〈01〉, a〉

〈〈0〉, b〉

〈〈0〉, b〉

〈〈0〉, b〉

a a a b b b

(a) G1 (nested dependencies)

〈〈0121〉, a〉

〈〈01, 21〉, a〉

〈〈0, 1〉, a〉

〈〈0〉, b〉

〈〈0〉, b〉

〈〈0〉, b〉

a a a b b b

(b) G2 (cross-serial dependencies)

Fig. 8.2. Derivations in two string-generating grammars

and classes of regular dependency languages over mildly non-projective de-
pendency structures on the other hand can be transferred to string languages
without any problems: the linearization semantics that we used for the un-
labelled structures is fully compatible with the string semantics that we now
use for labelled structures. However, one thing to note is, that all our results
crucially depend on the grammars being lexicalized, meaning that each pro-
duction in these grammars contributes an overt lexical item to the derived
string—without this restriction, the notion of ‘induced dependency structure’
as we have used it here is ill-defined. Nevertheless, for some of the formalisms
that we have studied, lexicalization is not really a restriction after all:

Lemma 8.1.1. The string languages projected by REGD(D1) are exactly the
context-free languages.1 �

Proof. This follows from our previous results in combination with the result
that every context-free grammar can be put into a lexicalized normal form,
such as Greibach normal form [36] or Rosenkrantz normal form [101]. One
caveat is that this transformation changes the structure of the derivation trees,
and thus the dependency structures that we get out from these lexicalized
grammars do not necessarily encode the same syntactic dependencies as the
original grammar. �

Lemma 8.1.2. The string languages projected by REGD(D2∩Dwn) are exactly
the string languages generated by TAGs. �

1 There is one minor difference: The context-free language that contains only the
empty word cannot be projected by any regular dependency language.
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Proof. This follows from our previous results in combination with the results
that every TAG can be put into a lexicalized normal form [103]. �

For LCFRS and CCFG, the problems whether every grammar can be put into
some lexicalized normal form are open. These problems make an interesting
topic for research for themselves, but are beyond the scope of this book.

8.2 String Languages and Structural Properties

In this section, we study the impact of structural constraints on the string-
generative capacity of regular dependency languages. We present two results:
first, that the string-language hierarchy known for LCFRS can be recovered
in our framework by controlling the block-degree parameter; second, that
additionally requiring well-nestedness leads to a proper decrease in generative
capacity on nearly all levels of this hierarchy.

String-language hierarchies are usually proven using formalism-specific
pumping lemmata. For more powerful formalisms, pumping arguments tend
to become rather difficult and technical [see 105 or 38] because they need
to reason about the combinatorial structure of the derivation and the order
of the derived material at the same time. Our hierarchy proofs are novel in
that they clearly separate these two issues: for the combinatorial aspect of
the argument, we use only one powerful pumping lemma (Lemma 7.2.2); to
reason about the order of the derived material, we use our knowledge about
structural properties. With this proof technique, we can show that certain
string languages ‘enforce’ certain structural properties in regular dependency
languages that project them. The usefulness of this approach is witnessed
by our result about the language hierarchy for well-nested languages, which
solves an open problem concerning the relation between LCFRS and CCFG.

8.2.1 Masked Strings

To prepare our proofs, we first show two elementary results about congruence
relations on strings. Recall (from Definition 4.1.1) that a congruence relation
on a chain C is an equivalence relation in which all blocks are convex with
respect to C. Congruences on strings can be represented as lists of pairwise
disjoint intervals of positions.

Definition 8.2.1. Let s ∈ A∗ be a string, and let n ∈ N. A mask for s
of length n is a list M = [i1, j1] · · · [in, jn] of pairwise disjoint intervals of
positions in s such that jk < ik+1, for all k ∈ [n − 1]. It is understood that
ik ≤ jk, for all k ∈ [n]. �

We call the intervals [i, j] the blocks of the mask M , and write |M | to denote
their number. In slight abuse of notation, we write B ∈M , if B is a block of
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M . Given a string s and a mask M for s, the set of positions corresponding
to M is defined as

pos([i1, j1] · · · [in, jn]) := { i ∈ pos(s) | ∃k ∈ [n]. i ∈ [ik, jk] } .
For a set P of positions in a given string s, we put P̄ := pos(s) − P , and
write [P ] for the smallest mask for s such that pos(M) = P . We say that P
contributes to a block B of some mask, if P ∩ B �= ∅. Finally, for masks M
with an even number of blocks, we define the fusion of M as

F ([i1, j1][i′1, j
′
1] · · · [in, jn][i′n, j

′
n]) := [i1, j′1] · · · [in, j′n] .

Lemma 8.2.1. Let s ∈ A∗ be a string, let M be a mask for s with an even
number of blocks, and let P be a set of positions in s such that both P and P̄
contribute to every block of M . Then |[P ]| ≥ |M |/2. Furthermore, if |[P ]| ≤
|M |/2, then P ⊆ pos(F (M)). �

Proof. For every block B ∈ [P ], let n(B) be the number of blocks in M that B
contributes to. We make two observations: First, since P contributes to each
block of M , |M | ≤ ∑

B∈[P ] n(B). Second, since P̄ contributes to each block
of M , no block B ∈ [P ] can fully contain a block of M ; therefore, n(B) ≤ 2
holds for all blocks B ∈ [P ]. Putting these two observations together, we
deduce that

|M | ≤ ∑
B∈[P ] n(B) ≤ ∑

B∈[P ] 2 = 2 · |[P ]| .
For the second part of the lemma, let

M = [i1, j1][i′1, j
′
1] · · · [in, jn][i′n, j

′
n] and [P ] = [k1, l1] · · · [kn, ln] .

Then, each block of [P ] contributes to exactly two blocks ofM . More precisely,
for each h ∈ [n], the block [kh, lh] of [P ] contributes to the blocks [ih, jh]
and [i′h, j

′
h] of M . (This situation is depicted in Figure 8.3.) Because P̄ also

contributes to [ih, jh] and [i′h, j
′
h], the interval [kh, lh] is a proper subset of

[ih, j′h], which is a block of the fusion F (M). Hence, P ⊆ pos(F (M)). �

8.2.2 Enforcing a Given Block-Degree

We now show our first result: for every natural number k ∈ N, there exists
a string language L(k) that forces every regular dependency language that
projects L(k) to contain structures of block-degree k. For our proof, we use
the string languages from the infinite family

COUNT(k) := { an
1 b

n
1 · · ·an

k b
n
k | n ∈ N } .

We note that the language COUNT(1) is homomorphic to the context-free lan-
guage { anbn | n ∈ N } for which we have seen regular dependency grammars
in Example 8.1.2, and that for every k > 1, the language COUNT(k) is not
context-free; this can be easily proved using the standard pumping lemma for
context-free languages.
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k1 l1 kn ln

[P̄ ] [P ] [P̄ ] [P̄ ] [P ] [P̄ ]

M M M M

i1 j1 i′1 j′1 in jn i′n j′n

Fig. 8.3. The situation in the proof of Lemma 8.2.1

Example 8.2.1. The following grammar generates a dependency language that
projects the string language COUNT(2); it is not hard to see how to modify the
grammar so that it generates languages COUNT(k), for k > 2. The grammar
is essentially identical to the TAG grammar that we gave in Figure 6.6. We
only list the productions.

S → 〈〈012314〉, a1〉(R, 〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉)
S → 〈〈0123〉, a1〉(〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉)
R→ 〈〈012, 314〉, a1〉(R, 〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉)
R→ 〈〈01, 23〉, a1〉(〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉)

Figure 8.4 shows a dependency structure generated by this grammar. We note
that the structure is well-nested. �

a1 a1 a1 b1 b1 b1 a2 a2 a2 b2 b2 b2

Fig. 8.4. A dependency structure for the language COUNT(2)

In the following proofs, we freely identify (segmented) labelled dependency
structures with their corresponding terms. Given a term d ∈ T〈Ω,A〉, we use
the notation alph(d) to refer to the set of all labels from the alphabet A in d.

Lemma 8.2.2. Let k ∈ N. Every regular dependency language that projects
COUNT(k) contains structures with a block-degree of at least k. �

Proof. Let L ∈ REGD be a regular dependency language that projects
COUNT(k). For notational convenience, put X := { xi | x ∈ {a, b} ∧ i ∈ [k] }.

We start with a simple auxiliary observation: Let s1 and s2 be two strings
in �L�S. If |s1| < |s2|, then every symbol from X occurs more often in s2 than
in s1.
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P̄ P P̄ · · · P̄ P P̄

Ba1 Bb1 · · · Bak Bbk

a1 · · · a1 b1 · · · b1 · · · ak · · · ak bk · · · bk

d2 u

t′

c

c

c′

Fig. 8.5. The situation in the proof of Lemma 8.2.2

Let p be the pumping number from Lemma 7.2.1, and let d1 ∈ L be a
dependency structure with �d1�S = an

1 b
n
1 · · ·an

kb
n
k , where n = �p/2k�. Due to

the isomorphism between �d1�S and the precedence relation of d1, we have
|d1| = 2k · n ≥ p. In this case, Lemma 7.2.1 asserts that d1 can be written as
d1 = c′ · c · t′ such that c contains at least one node, and d2 := c′ · c · c · t′
belongs to L (see the upper part of Figure 8.5). Now, let u be the uniquely
determined node in d2 for which d2/u = c · t′ holds. As a consequence of the
first item and the construction of d2, we deduce that every symbol from X
occurs in c. Hence, X ⊆ alph(c) ⊆ alph(d2/u).

We now show that u has block-degree k. Let M = Ba1Bb1 · · ·Bak
Bbk

be
the uniquely determined mask for �d2�S in which each block Bxi contains
exactly those positions that correspond to occurrences of the symbol xi (see
the lower part of Figure 8.5), and let P be the set of those positions that
correspond to the yield u�. Since every symbol from X occurs in both P
and its complement, both sets contribute to every block of M . With the first
part of Lemma 8.2.1, we deduce that |[P ]| ≥ k. Due to the isomorphism
between �d2�S and the precedence relation of d2, this means that the yield
u� is distributed over at least k blocks in d2. �

8.2.3 Enforcing Ill-Nestedness

We now show that even the well-nestedness constraint has an impact on the
string-generative capacity of regular dependency languages. More specifically,
for every natural number k ∈ N, there exists a string language L(k) that forces
every regular dependency language over structures with a block-degree of at
most k that projects L(k) to contain ill-nested structures. For our proof, we
use the languages from the family
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a1 a1 a1 b1 b1 b1 c1 c1 d1 d1 a2 a2 a2 b2 b2 b2 c2 c2 d2 d2

Fig. 8.6. A dependency structure for the language RESP(2)

RESP(k) := { am
1 b

m
1 c

n
1d

n
1 · · · am

k b
m
k c

n
kd

n
k | m,n ∈ N } .

Similar to COUNT(k), the language RESP(k) is projected by a regular depen-
dency language over the class Dk of dependency structures with block-degree
at most k.

Example 8.2.2. The following grammar generates a dependency language that
projects the string language RESP(2).

S → 〈〈01234153〉, a1〉(R1, 〈〈0〉, b1〉, R2, 〈〈0〉, a2〉, 〈〈0〉, b2〉)
S → 〈〈012342〉, a1〉(〈〈0〉, b1〉, R2, 〈〈0〉, a2〉, 〈〈0〉, b2〉)
R1 → 〈〈012, 314〉, a1〉(R1, 〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉)
R1 → 〈〈01, 23〉, a1〉(〈〈0〉, b1〉, 〈〈0〉, a2〉, 〈〈0〉, b2〉)
R2 → 〈〈012, 314〉, c1〉(R2, 〈〈0〉, d1〉, 〈〈0〉, c2〉, 〈〈0〉, d2〉)
R2 → 〈〈01, 23〉, c1〉(〈〈0〉, d1〉, 〈〈0〉, c2〉, 〈〈0〉, d2〉)

Figure 8.6 shows a dependency structure generated by this grammar. Note
that this structure is ill-nested. This is mirrored in the grammar by the fact
that the first order annotation contains the forbidden substring 1313. �

Lemma 8.2.3. Let k > 1. Every regular dependency language L ∈ REGD(Dk)
that projects RESP(k) contains ill-nested structures. �

Proof. Let L ∈ REGD(Dk) be a regular dependency language that projects
RESP(k). Define the following two sets of symbols:

X := { xi | x ∈ {a, b} ∧ i ∈ [k] } , and Y := { yi | y ∈ {c, d} ∧ i ∈ [k] } .

We start with a simple observation: Let d1 and d2 be dependency structures
contained in L. If at least one symbol from X occurs more often in d2 than
in d1, then every symbol from X does. A symmetric argument holds for Y .
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Let p be the pumping number from Lemma 7.2.2, and let d ∈ L be a
dependency structure with �d�S = am

1 b
m
1 c

n
1d

n
1 · · · am

k b
m
k c

n
kd

n
k , where m = n =

�p/2k�. By this choice, the structure d contains 2k · m ≥ p occurrences of
symbols from X , and equally many occurrences of symbols from Y .

Lemma 7.2.2 asserts that the structure d can be written as d = c′ · c · t′
such that the context c contains at least one occurrence of a symbol from X ,
and the ‘pumped’ structure dX := c′ · c · c · t′ is contained in L. Let uX be the
uniquely determined node in d for which d/uX = c · t′. We want to show that
alph(d/uX) = X .

⊇ Since c contains at least one occurrence of a symbol from X , at least one
symbol fromX occurs more often in dX than in d. Then, by our observation
above, every symbol from X occurs more often in dX than in d. By the
construction of dX , this implies that X ⊆ alph(c) ⊆ alph(d/uX).

⊆ Let MX = Ba1Bb1 · · ·Bak
Bbk

be the uniquely determined mask for �dX�S
in which each block Bxi contains exactly those positions that are labelled
with the symbol xi. Furthermore, let u be the uniquely determined node
in dX for which dX/u = c · t′, and let P be the set of those positions
in �dX�S that correspond to the yield u�. We now apply Lemma 8.2.1:
given that X ⊆ alph(dX/u), both the set P and its complement contri-
bute to every block of M ; given that d2 ∈ Dk, we have |[P ]| ≤ k. From
this, we deduce that P ⊆ pos(F (MX)). Since every position in the set
pos(F (MX)) is labelled with a symbol fromX (see Figure 8.7), we conclude
that alph(dX/u) = alph(d/uX) ⊆ X .

Put Y := { xi | x ∈ {c, d} ∧ i ∈ [k] }. In symmetry to the argument above,
we can show the existence of a node uY in d1 for which alph(d1/uY ) = Y .

Due to the isomorphism between �d1�S and the precedence relation of d1,
the yields uX� and uY � interleave. Since the sets X and Y are disjoint,
neither uX � uY nor uY � uX holds. We conclude that d1 is ill-nested. �

8.2.4 Hierarchies of String Languages

We are now ready to present the main result of this section: the hierarchy
on regular dependency languages from Lemma 7.1.2 carries over to string
languages.

F (MX) F (MX) · · ·

Ba1 Bb1 Ba2 Bb2 · · ·

a1 · · · a1 b1 · · · b1 c1 · · · c1 d1 · · · d1 a2 · · · a2 b2 · · · b2 · · ·

Fig. 8.7. Enforcing ill-nestedness
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Theorem 8.2.1. The following relations hold for all k ∈ N:

• �REGD(Dk)�S � �REGD(Dk+1)�S
• �REGD(Dk ∩ Dwn)�S � �REGD(Dk+1 ∩ Dwn)�S
• �REGD(D1)�S = �REGD(D1 ∩Dwn)�S
• k �= 1 =⇒ �REGD(Dk ∩ Dwn)�S � �REGD(Dk)�S

Proof. The inclusions in the first two items as well as the third item are
immediate consequences of Lemma 7.1.2. The properness of the inclusions
and the last item follow from Lemmata 8.2.2 and 8.2.3 and the facts that
COUNT(k) ∈ �REGD(Dk ∩ Dwn)�S and RESP(k) ∈ �REGD(Dk)�S, as witnes-
sed by the grammars we gave above. �

The hierarchy established by the first item corresponds to the string-language
hierarchy known for LCFRS [37, 119] and other formalisms that generate the
same string languages (see e.g. 24, 97, 105, 116).

8.2.5 Related Work

The language RESP(2) was first considered by Weir [119], who speculated that
it separates the string-languages generated by LCFRS with fan-out 2 from the
languages generated by TAG. This was subsequently proved by Seki et al.
[105].

Gramatovici and Plátek [35] study a string-language hierarchy on a de-
pendency formalism in which derivations can be controlled by the node-gaps
complexity parameter that we discussed in Section 4.1.3.

8.3 Parsing Complexity

The parsing problem of regular dependency languages is the problem to find,
given a grammar and a string of terminal symbols, (a compact description of)
the set of all dependency structures generated by the grammar that project
the string. In this section, we show that regular dependency languages can
be parsed in time polynomial in the length of the input string, but that the
parsing problem in which the grammar is part of the input is NP-complete
even for a fixed block-degree. However, we also show that the same problem
becomes polynomial when grammars are restricted to well-nested order anno-
tations, and hence, to well-nested dependency languages. Together with the
treebank evaluation that we presented in Chapter 5, this result provides strong
evidence that our interest in the well-nestedness condition is justified.

8.3.1 Membership Problems

Instead of looking at the parsing problem of regular dependency languages
directly, we restrict ourselves to a slightly simpler problem: the problem to
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decide, given a grammar and a string, whether the grammar generates any
dependency structure at all that projects the string. This problem is the mem-
bership problem of the projected string language. For the vast majority of the
algorithms that solve membership problems for generative grammars, inclu-
ding the ones that we discuss here, there are standard ways to extend them
into full parsers, so the restriction to the membership problem is minor. The
membership problem comes in two variants, depending on whether we consi-
der the grammar to be part of the input to the problem or not:

Definition 8.3.1. The (standard) membership problem for a regular depen-
dency grammar G is the following decision problem: given a string �a, is
�a ∈ �L(G)�S? The uniform membership problem for a class G of regular depen-
dency grammars is the following decision problem: given a grammar G ∈ G
and a string �a, is �a ∈ �L(G)�S? �

The uniform membership problem is at least as difficult as the standard mem-
bership problem, but it may be more difficult. In particular, every polynomial-
time algorithm that solves the uniform membership problem also solves the
standard membership problem in polynomial time. On the other hand, an algo-
rithm for the standard membership problem may take an amount of time that
is exponential in size factors that depend on the grammar. In this case, it does
not yield a polynomial-time algorithm for the universal membership problem.

In the computer science literature, the run-time of parsing algorithms is
usually given as a function of the length of the input string, which is infor-
mative only for the standard membership problem. One of the reasons for
the disinterest in the size of the grammar may be that, in many applications,
grammars are small, and the candidate string is long—consider the grammar
of a programming language for example, which usually only fills a few pages,
but may be used in compilers that process ten thousands lines of code. This si-
tuation does not apply to computational linguistics, where rather the opposite
is true: sentences are short, not more than a hundred words, while grammars
are huge, with several hundreds of thousands of entries. Thus, for the parsing
of natural language, the important measure in the analysis of parsing algo-
rithms is not the length of the input string, but the size of the grammar (cf.
[70]). This holds true in particular when we consider lexicalized grammars,
where all productions are specialized for individual words. At the same time,
these grammars have the advantage that parsing needs to consider only those
productions that are associated with the words in the input string [104]. While

A := { [a, [i, i]] ∈ T ×B | ai = a }
I := { [A, M ] ∈ N ×B∗ | |M | = deg(A) }
G := {[S, [1, n]]}

Fig. 8.8. Axioms, items and goals for the grammatical deduction system
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this strategy reduces the parsing time in all practical cases, it also introduces
an additional factor into the complexity analysis of parsing algorithms that
depends on the length of the input string (cf. [21]).

8.3.2 The Standard Membership Problem

As our first technical result of this section, we now show that the standard
membership problem for regular dependency grammars is polynomial. To
prove this, we construct a generic recognition algorithm for a regular depen-
dency grammar G in the framework of deductive parsing [108]. Let us write kG

for the degree of G (which corresponds to the maximal block-degree among
the structures in the language generated by G), and mG for the maximal rank
of G (which corresponds to the maximal out-degree of the language generated
by G).

Lemma 8.3.1. The membership problem of string languages that are pro-
jected by regular dependency languages is in time O(|P | · ne), where e =
kG · (mG + 1). �

Proof. Let L be a regular dependency language, and let �a a string over some
alphabet. Furthermore, let G = (N,T, S, P ) be a normalized regular depen-
dency grammar that generates L. To decide whether �a ∈ �L�S, we construct
a grammatical deduction system for G, and use a generic implementation of
this system in the framework of deductive parsing [108].

Put n := |�a|, and let B ⊆ [n] × [n] be the set of all intervals of positions
in the string �a. A grammatical deduction system consists of four components:
a set A of axioms, a set I of items, a set G ⊆ I of goal items, and a finite
collection of inference rules over A and I. The sets of axioms, items and goal
items of our deduction system are defined in Figure 8.8.

The axioms represent the information about which position in �a is labelled
by which terminal symbol. An item [A, [i1, j1] · · · [ik, jk]] asserts that there is
a dependency structure d ∈ L(G) such that �d�S = 〈ai1 · · · aj1 , . . . , aik

· · ·ajk
〉;

in particular, the goal item asserts that �a ∈ �L�S. The set of inference rules
is constructed as follows. For each production A → 〈ω, a〉(A1, . . . , Am) with
ω: k1 × · · · × km → k, we use an inference rule of the form

[a, b0,1] [A1, b1,1 · · · b1,k1 ] · · · [Am, bm,1 · · · bm,km ]
[A, b1 · · · bk]

This rule is subject to the following side conditions, which reflect the semantics
of the order annotation ω. Assume that ω = 〈�ı1, . . . ,�ık〉. We write �x for the
left endpoint of the interval bx, and rx for the corresponding right endpoint.

r0,1 = �0,1 ⇐= (8.1)
�i2,j2 = ri1,j1 + 1 ⇐= ∃h ∈ [k]. �ıh = �x · i1#j1 · i2#j2 · �y (8.2)
�h = �i,j ⇐= �ıh = i#j · �x (8.3)
rh = ri,j ⇐= �ıh = �x · i#j (8.4)
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The first condition reflects the semantics of the axioms. The second condition
ensures that blocks that are adjacent in ω correspond to intervals of positions
that are adjacent in �a. The third and fourth condition ensure that blocks
that are extremal in ω correspond to extremal intervals in �a. Taken together,
the conditions ensure that each inference rule is sound with respect to the
intended semantics. Their completeness is obvious. Thus, we have �a ∈ �L�S if
and only if starting from the axioms, we can deduce the goal item.

The asymptotic runtime of the generic, chart-based implementation of the
grammatical deduction system for G is O(|P | · ne), where e is the maximal
number of free variables per inference rule that range over the domain [n] (see
[73]). To determine e, we inspect the schema for the inference rules above. The
total number of variables over [n] in this schema is 2+2k+

∑m
i=1 2ki. Each non-

free variable is determined by exactly one of the side conditions. Therefore, to
determine the number of free variables in the rule schema, it suffices to count
the instantiations of the schemata for the side conditions, and to subtract this
number from the total number of variables. Schema 8.1 has 1 instantiation.
Schemata 8.3 and 8.4 each have k instantiations; this is the number of leftmost
and rightmost positions in the blocks of ω, respectively. Finally, schema 8.2
has 1− k+

∑m
i=1 ki instantiations: the string �ı has 1 +

∑m
i=1 ki positions; k of

these mark the end of a block and thus do not have a neighbouring symbol.
Then the number of free variables is

(

2 + 2k +
m∑

i=1

2ki

)

−
(

1 + 2k + 1 − k +
m∑

i=1

ki

)

= k +
m∑

i=1

ki .

Thus, e ≤ kG · (mG + 1). �

Theorem 8.3.1. The membership problem of �REGD�S is in PTIME. �

This result, together with our previous result about the constant growth of
the languages in REGD (Theorem 7.3.2), allows us to call regular dependency
languages mildly context-sensitive, according to Joshi’s [1985] characteriza-
tion.

8.3.3 The Uniform Membership Problem

The complexity of the generic parsing algorithm for regular dependency lan-
guages that we gave in the previous section is exponential both in the degree
and in the rank of the grammar that is being processed. This means that we
are punished both for languages with a high degree of non-projectivity, and
for languages with a high number of dependents per node. A natural question
to ask is, whether we can get substantially better than this. Unfortunately,
at least in the general case, the answer to this question is probably negative:
in this section, we show that the uniform membership problem for the class
of regular dependency grammars is NP-complete. Given the close connection
between regular dependency grammars and LCFRS, this result does not come
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entirely unexpected: Satta [102] showed that the uniform membership pro-
blem of both LCFRS with restricted fan-out (our block-degree) and restricted
rank is NP-hard. Unfortunately, we cannot directly apply his reduction (of the
3sat problem) to the membership problem of regular dependency languages,
as this reduction makes essential use of concatenation functions with empty
components, which we have excluded (see Section 6.2.3).

Instead, we provide a polynomial reduction of the exact cover pro-
blem to the uniform membership problem of regular dependency grammars,
uniform-regd. An instance of exact cover is given by a finite set U and
a finite collection F of subsets of U . The decision to make is, whether there
is a subset C ⊆ F such that the sets in C are disjoint, and their union is U .

Lemma 8.3.2. exact cover ≤p uniform-regd �

Proof. Let I = (U,F) be any instance of the exact cover problem. Put
n := |U |, and m := |F|, and assume that the elements of U and F are
numbered from 1 to n and 1 to m, respectively. We write ui to refer to the
ith element of U , and Si to refer to the ith element of F with respect to these
numberings. The main idea behind the following reduction is to construct
a regular dependency grammar G = (N,T, S, P ) and a string �a such that
each dependency structure that is generated by G and projects �a represents
a partition C ⊆ F of U . The string �a has the form $ · �x1 · · · �xm · �x, where the
substring �x is a representation of the set U , and each substring �xi, i ∈ [m],
controls whether the set Si is included in C. The grammar G is designed such
that each substring �xi can be derived in only two possible ways and only as the
projection of the first block of a dependency structure with block-degree 2;
the second block of this structure projects material in the string �x. In this
way, each derivation corresponds to a guess which sets of F to include into C.
The string �x is set up to ensure that this guess is consistent.

We first describe the construction of the string �a. Each string �xi, i ∈ [m],
has the form $y1# · · ·#yn$, where for all j ∈ [n], yj = uj if uj ∈ Si, and yj =
ūj otherwise. The string �a then has the form $·�x1 · · · �xm ·ūm

1 u1ū
m
1 · · · ūm

n unū
m
n .

Next, we describe the construction of the grammar. The non-terminal and
terminal alphabets are defined as follows:

N := {1 �→ {S}, 2 �→ { [Si, uj ] | i ∈ [m] ∧ j ∈ [n] }}
T := {$,#} ∪ { ui | i ∈ [n] } ∪ { ūi | i ∈ [n] }

The start symbol is S. Before we give the set of production, we introduce the
following abbreviating notation: for every terminal symbol a ∈ T , put

〈a�a,�a′〉 := 〈〈01, 1〉, a〉(〈�a,�a′〉) 〈a,�a〉 := 〈〈0, 1〉, a〉(〈�a〉)
〈a�a〉 := 〈〈01〉, a〉(〈�a〉) 〈a〉 := 〈〈0〉, a〉

Now for each set S ∈ F , each element u ∈ U , and all i, j ∈ [m], we introduce
the following productions:
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[S, u] → 〈$u, ūiuūj〉 [S, u] → 〈$ū, ū〉 (first selected/not selected)

[S, u] → 〈#u, ūiuūj〉 [S, u] → 〈#ū, ū〉 (selected/not selected)

[S, u] → 〈#u$, ūiuūj〉 [S, u] → 〈#ū$, ū〉 (last selected/not selected)

We also need the production S → 〈〈0�x�y〉, $〉([S1, u1], . . . , [Sm, un]), where �x
is the row-wise reading of the n ×m-matrix in which each cell (i, j), i ∈ [n],
j ∈ [m], contains the value i+ n · (j − 1), and �y is the column-wise reading of
this matrix.

We now claim that each substring �xi, i ∈ [m], can be derived in only
two possible ways: either by rules from the group ‘selected’, or by rules from
the group ‘not selected’. Within such a group, each terminal can only be
generated by exactly one rule, depending on the position of the terminal in
the sub-string (first, inner, last) and the form of the terminal (u, ū). In this
way, each derivation of �xi corresponds to a choice whether Sk should be part
of C or not. If it is chosen, the second components of the rules consume the
single terminal �u in the right half of the string, along with all ‘garbage’ (in
the form of superfluous symbols ū) adjacent to it. No terminal u in the right
half of the string can be consumed twice; this reflects the fact that the Sk

must be disjoint. If the derivation is complete, all terminals on the right side
have been consumed; this reflects the fact that the union of the Sk makes the
complete set. �

Note that the grammar constructed in the proof of this lemma has degree 2,
but that its maximal rank grows with the input.

Example 8.3.1. Figure 8.9 shows an example for the encoding in the proof of
Lemma 8.3.2 for the instance U = {u1, u2}, F = {{u1}, {u2}}. �

Theorem 8.3.2. The uniform string membership problem for the class of
normalized regular dependency grammars is NP-complete. �

Proof. Lemma 8.3.2 establishes the NP-hardness of the problem; the grammar
that we used for the reduction is normalized. To see that the problem is in NP,
we notice that the length of a derivation in a normalized regular dependency
grammar directly corresponds to the length of the input sentence. Therefore,
we can check whether a given candidate derivation is valid in polynomial
time: if the derivation is longer then the sentence, we reject it; otherwise, we

$ $ u1 # ū2 $ $ ū1 # u2 $ ū1 u1 ū1 ū2 u2 ū2

Fig. 8.9. The encoding in the proof of Lemma 8.3.2
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compute the string value of the derivation using a variant of the tree traversal
algorithm that we presented in Table 4.1. �

8.3.4 Recognition of Well-Nested Languages

The NP-completeness of the uniform membership problem of regular depen-
dency grammars makes it unlikely that we can find parsing algorithms that
are considerably more efficient than the generic algorithm that we gave in the
proof of Lemma 8.3.1, not even for grammars of some fixed degree. In this
respect, regular dependency grammars are fundamentally different from CFG
or even TAG, where the maximal rank of the productions of the grammar does
not enter into the runtime as an exponential factor. Satta [102], who made
the same observation about LCFRS, argued that the fundamental reason for
the leap between polynomial parsing for CFG and TAG and the NP-hardness
result for LCFRS(2) could be due to the presence of what he called ‘crossing
configurations’ in the derivations of LCFRS(2). He concluded that to bridge
the gap in parsing complexity, ‘the addition of restrictions on crossing confi-
gurations should be seriously considered for the class LCFRS’. We now show
that the well-nestedness condition could well be such a restriction: the uni-
form membership problem for well-nested regular dependency grammars is in
PTIME.

Theorem 8.3.3. Let k ∈ N. The uniform string membership problem for the
class of well-nested regular dependency grammars of degree k can be solved in
time O(|G|2 · n2k+2). �

Proof. Every string-generating regular dependency grammar G of degree k
that makes use of well-nested order annotations only can be transformed into
a CCFG G′ of rank k that is equivalent to G with respect to the generated de-
pendency language, and hence, with respect to the generated string language.
This transformation can be done in time linear in the size of the grammar,
and without an increase in size: essentially, we replace all productions of the
dependency grammar by their equivalents under the relabelling that we pre-
sented in Section 6.3. The membership problem of G′ can be decided in time
O(|G′|2 ·n2k+2) [49], where |G′| is the size of the grammar. Consequently, the
membership problem of G can be decided in time O(|G|2 · n2k+2). �

Together with the treebank evaluation that we presented in Chapter 5, this
result is strong evidence that the well-nestedness condition is a very relevant
condition on dependency structures indeed. A promising objective of future
research is to understand the fundamental differences between well-nested and
ill-nested grammars in more detail. In particular, it would be interesting to
see how the generic algorithm for the parsing of regular dependency grammars
can be modified to make use of the well-nestedness condition, and to give a
more fine-grained complexity analysis that reverences the lexicalized nature
of dependency grammars.



120 8 Generative Capacity and Parsing Complexity

8.3.5 Related Work

Besides the result that we present here, there are several other results that
show that grammar-driven dependency parsing can be intractable. Neuhaus
and Bröker [83] use a reduction of the vertex cover problem to prove that
the uniform membership problem for a class of linguistically adequate, mi-
nimal dependency grammars is NP-complete. Koller and Striegnitz [61] show
a corresponding result for the formalism Topological Dependency Grammar
[19] using a reduction of hamilton cycle.

Gómez-Rodríguez et al. [33] present parsing algorithms for well-nested
dependency trees under various restrictions, obtaining a parsing complexity
of O(n2k+5). Their algorithms are based (implicitly) on a different algebraic
structure for well-nested dependency trees, in which the dependents of a given
node are not attached all at once, but one one-by-one, very similar to the
parser for projective dependency trees presented by Eisner [20]. This allows
them to uncouple parsing complexity from the rank parameter mG, which in
the proof of Theorem 8.3.3 disappears during the normal form-transformation
described by Hotz and Pitsch [49]. Gómez-Rodríguez et al. [34] provide a
different such normal form for well-nested LCFRS.
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Conclusion

In this book, we have shown that the generative capacity and the parsing
complexity of lexicalized grammar formalisms can be systematically related
to structural properties of the dependency graphs that these formalisms can
induce. In this way, we have generalized Gaifman’s [1965] equivalence result
from context-free generative capacity and projective dependency structures
on the one hand to mildly context-sensitive generative capacity and ‘mildly’
non-projective dependency structures on the other.

In this final chapter of the book, we summarize our main contributions,
and identify some avenues for future research.

9.1 Main Contributions

In the first part of the book, we studied three classes of dependency structures:
projective, block-restricted, and well-nested structures. Each of these classes
were originally defined in terms of a structural constraint on dependency
graphs. Bridging the gap between dependency representations and grammar
formalisms, we complemented this graph-based perspective with an algebraic
framework that encapsulates the structural constraints in the operations by
which dependency graphs can be composed. An important technical result
in this context was the encoding of dependency structures into terms over
a signature of order annotations in such a way that the three classes that
we considered could be characterized through certain subsets of this signa-
ture. With the one-to-one correspondence between dependency structures and
terms, we were able to define the concept of a dependency algebra and show
that these algebras are isomorphic to their corresponding term algebras. The
relevance of this result is that composition operations on dependency struc-
tures can be simulated by corresponding operations on terms, which provide
us with a well-studied and convenient data structure.

At the end of the first part of the book, we put our algebraic framework
to use and classified several lexicalized grammar formalisms with respect to
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the dependency structures that are induced by their derivations. Taking the
algebraic approach, we formalized our particular notion of induction as the
evaluation of a formalism’s derivations trees in a dependency algebra. We sho-
wed the following results: The class of dependency structures that is induced
by Context-Free Grammar is the class of projective dependency structures.
Linear Context-Free Rewriting Systems (LCFRS) induce the class of block-
restricted dependency structures; more specifically, the maximal block-degree
of a dependency structure induced by an LCFRS is directly correlated to
the measure of ‘fan-out’ that is used to sub-classify these systems. Adding
well-nestedness to the block-degree restriction corresponds to the step from
LCFRS to Coupled Context-Free Grammar (CCFG). As a special case, the
class of well-nested dependency structures with a block-degree of at most 2
is exactly the class of dependency structures that is induced by Tree Adjoi-
ning Grammar (TAG). With these connections, we have effectively quantified
the generative capacity of lexicalized grammar formalisms along an infinite
hierarchy of ever more non-projective dependency structures. This measure
is attractive as an alternative to string-generative capacity and tree-genera-
tive capacity because dependency representations are more informative than
strings, but less formalism-specific than parse trees. In recent work, we have
applied this measure also to other grammar formalisms, such as Combinatory
Categorial Grammar [60] and Minimalist Grammar [4].

The algebraic perspective on dependency structures also led to efficient
algorithms for deciding whether a given structure is projective or well-nes-
ted, or has a certain block-degree. We used these algorithms to evaluate the
empirical relevance of the three structural constraints on data from three wi-
dely-used dependency treebanks. The outcome of these experiments was, that
while the class of projective dependency structures is clearly insufficient for
many practical applications, one only needs to go a small step beyond pro-
jectivity in order to cover virtually all of the data. In particular, the class of
TAG-inducible dependency structures covers close to 99.5% of all the analyses
in both the Danish Dependency Treebank [63] and two versions of the Prague
Dependency Treebank [40, 41], the largest dependency corpus.

In the second part of the book, we developed the theory of regular sets
of dependency structures, or regular dependency languages. Our approach to
define the notion of ‘regularity’ for dependency structures was completely
canonical: the regular dependency languages are the recognizable subsets of
dependency algebras in the sense of Mezei and Wright [78]. By this defini-
tion, we obtained natural notions of automata and grammars for dependency
structures on the basis of which we were able to study language-theoretic pro-
perties1 We also proved a powerful pumping lemma for regular dependency
languages, and used it to show that they are semilinear, a property also cha-
racteristic for mildly context-sensitive languages. As another application of

1 In recent work, we have also characterized regular sets of dependency structures
in terms of monadic second-order logic [67].
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our pumping lemma, we showed that, under the constraint of regularity, there
is a direct correspondence between block-degree and well-nestedness on the
one hand, and string-generative capacity on the other. More specifically, the
block-degree parameter induces an infinite hierarchy of string languages, and
on almost every level of this hierarchy, the string languages that correspond
to well-nested dependency structures form a strict subclass.

Finally, we investigated the parsing complexity of regular dependency lan-
guages. While the restriction to a fixed block-degree is sufficient to render
the parsing problem polynomial in the length of the input sentence, we found
that it does not suffice for practical applications: the parsing problem where
the size of the grammar is taken into account is NP-complete for unrestric-
ted regular dependency grammars. Interestingly, the corresponding problem
for well-nested grammars is polynomial. Together with our treebank studies,
this results provides further evidence that the well-nestedness constraint has
relevance for practical applications.

9.2 Future Directions

There are several aspects of the work reported in this book, both theoretical
and practical, that can be elaborated in future research.

9.2.1 Development of the Formalism

A major limitation in the practical applicability of regular dependency
grammars is the fact that every set of dependency trees generated by such
a grammar has bounded out-degree (Lemma 7.1.3). This implies that regular
dependency languages cannot account for phenomena in which a given word
accepts an arbitrary number of modifiers, such as nouns accept chains of ad-
jectives. It would therefore be interesting to extend our concept of regularity
to sets of dependency trees with an unbounded number of dependents. This
would require us to find a different algebraic structure for dependency trees.
One such structure is implicit in the parsing algorithms presented by Eisner
[20] (for projective dependency trees) and Gómez-Rodríguez et al. [33] (for
well-nested dependency trees). In these algorithms, the dependents of a node
are not added all at once, but one-by-one in a piecemeal fashion.

9.2.2 Linguistic Relevance

The treebank evaluation that we reported in Chapters 3–5 was a purely quan-
titative one: we simply counted the structures that satisfied or did not satisfy
a given structural constraint. While this was helpful in getting an estimate of
the practical relevance of the structural constraints that we discussed in this
book, it would be highly desirable to complement our results with a qualita-
tive analysis of the treebank data. In particular, it would be very interesting to
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see whether there is any systematic connection between structural constraints
and specific linguistic phenomena or typological properties.

An important question related to this concerns the practical relevance
of the notion of induction that we have used in this book. The dependency
tree induced by a derivation of Tree Adjoining Grammar (TAG), for example,
may not be the ‘right’ dependency tree from a practical perspective: Several
authors [7, 96, 98] have pointed out that for most TAG grammars, the direc-
tionality of some of the edges in a derivation tree need to be reversed in order
to reflect the intended syntactic dependencies. Modelling this in our formal
framework would require a more complex notion of induction as the one that
we have used in this book.

9.2.3 Applications to Parsing

It appears promising to investigate the usefulness of our results for parsing.
Recent work on data-driven dependency parsing has shown that parsing with
unrestricted non-projective dependency graphs is intractable under all but
the simplest probability models [74, 75]. On the other hand, projective depen-
dency parsers combine favourably with more complicated models. It would be
interesting to see whether the structural constraints that we have discussed in
this book can be exploited to obtain efficient yet well-informed parsers even
for certain classes of non-projective dependency graphs.

An attractive such class to look at is the class of well-nested dependency
structures with a block-degree of at most 2. As we mentioned above, this
class has close to perfect coverage on the data in the three treebanks that we
evaluated it on. At the same time, we showed that this class corresponds to
the dependency structures induced by TAG (Section 6.4). Gómez-Rodríguez
et al. [33] show how to tap the literature on efficient parsing algorithms for
lexicalized TAG to develop exhaustive parsing algorithms for the class of well-
nested dependency structures—but the question whether the use of these more
expressive representations can also lead to improvements in parsing accuracy
is still unresolved. It would also be interesting to see how block-degree and
well-nestedness can be captured not only by exhaustive parsers, but also in
the framework of deterministic dependency parsing [87].

9.2.4 An Algebraic Perspective on Grammar Formalisms

The main question that we asked in this book,

Which grammars induce which sets of dependency structures?

is only one instantiation of a more general approach to the comparative study
of grammar formalisms. Formally, our notion of induction can be understood
as the interpretation of grammatical derivations (represented as terms) in an
algebra whose domain is a set of dependency structures. Choosing different
algebras, we can give different interpretations to derivations; for example, the
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standard perspectives on CFG and TAG can be recovered by choosing sui-
table algebras on strings and trees, respectively. This suggests a dissection of
a grammar into two parts: a ‘generative’ component that produces abstract
descriptions of grammatical derivations, and an ‘interpretative’ component
that assigns linguistic meaning to derivations. Such an analysis is the un-
derlying idea of Pollard’s [1984] ‘generalized context-free grammars’ and the
original conception of Linear Context-Free Rewriting Systems [118]. It gives
us a way to compare grammar formalisms based the question whether they
differ with respect to their generative components, their interpretative com-
ponents, or both, which can lead to a better understanding of the generative
capacity of a grammar formalism. It is interesting also because it may sim-
plify the reuse of both formal results, algorithmic techniques, and linguistic
resources, if these can be factorized in the same way. This was the case for our
results about the string-generative capacity of regular dependency grammars
(Lemmata 8.2.2 and 8.2.3), which we derived by combining a pumping lemma
for regular tree languages (Lemma 7.2.1) with an observation about the com-
binatorics of strings (Lemma 8.2.1). Similarly, the parsing algorithm that we
outlined in Section 8.3 can be reconstructed as the combination of a parsing
algorithm for regular tree grammars and a bookkeeping mechanism for the
string segments projected by subderivations. A thorough analysis of gram-
mar formalisms along these lines makes an interesting enterprise for future
research.
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