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KNOT PROJECTIONS AND KNOT COVERINGS 

Prof. Dr. Mehmet Emin Bozhiiyiik 
Ataturk Universitesi 
Fen-Edebiyat FaktLltesi 
Matematik Biilumu 
Erzurum- Turkey 

ABSTRACT. In this paper, computer programs are given which draw knot diagrams, knot pro

jections and representations of knot groups into the symmetric group of degree n. 

1. Introduction 

The act of drawing knot diagrams such as that of the shepherds knot in figure 1 
and drawing knot projections such as figure 2 can be tedious and time consuming. 
The idea of using the computer programs in this paper is to speed up this process. 

Figure 1: A Shepherd's knot 

M.E. BozhiiyUk (ed.), Topics in Knot Theory, 1-14. 
© 1993 Kluwer Academic Publishers. 



2 

2. The drawing programs. 

2.1 Program G 
This computer program draws random polygonal knot projections such as that 
shown in figure 2. 

PROGRAM G 
100 REM THIS PROGRAM DRAWS RANDOM GRAPHS. 
110 REM IT IS WRITTEN BY MEHMET EMIN BOZHUYUK. 
120 DIM A(l00), DIM B(l00) 
130 LIBRARY "PLOTLIB***:TEK10" 
140 DIN C(150) 
150 PRINT "INPUT V, NO OF VERTICES" 
160 INPUT V 
170 CALL "LIMITS":CO,O,10,O,10 
180 RANDOMIZE 
190 FOR 1=1 TO V 
200 LET X=RND 
210 LET Y =RND 
220 LET A(I)=10*X 
230 LET B(I)=10*Y 
240 CALL "LINE":CO,A(I),B(I) 
250 NEXT I 

'260 CALL ILINE":CO,A(l),B(l) 
270 CALL "FINISH":CO 
280 REM STOP FOR COPYING THE PICTURE. 
290 LINPUT S$ 
300 GOTO 150 
310 END 

Figure 2: A random closed curve drawn by program G 

2.2 Special cases 
By specialising, the above method can be used to draw knots whose projection lies 
in a grid (see figure 3), is the closure of a braid (see figure 4), or is a plat, (see figure 
5). 
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=------.. R---: -· . cuBJ! · . · . · . · . · . L_____ : 

Figure 3: The trefoil drawn on a grid 

Figure 4: A closed braid 
The closure of a braid is a knot or link and all knots and links can be obtained this 
way. See figure 4. Alternatively the braid can be closed as plat. See figure 5. 

Figure 5: A plat 

2.3 The plotting methods 
The following computer program KNOT is a user interactive program. It takes the 
coordinates of the vertices of a graph and joins them successively. The programs 
named K, K2, K9 in [1] give the normal projections of the (3,4)-Turk's head knot, 
the closed braid form of the Figure Eight knot (also known as the (3,2) Turk's head 
knot) and (2,9) alternating torus knot respectively. The (2,n) alternating torus 
knots are also called the (2,n)-Turk's head knots. See Figures 6,7,8. 
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KNOT 
100 REM THIS PROGRAM DRAWS KNOT PROJECTIONS. 
110 REM IT IS WRITTEN BY MEHMET EMIN BOZHUYUK. 
120 LIBRARY "PLOTLIB···:TEK10" 
130 DIM C(150) 
140 READ A,P,B,Q 
150 DATA 0,6,0,12 
160 CALL "LIMITS":CO, A,P,B,Q 
170 REM THE INDEX 1=10 LIFT. 1=1 LINE 
180 LET N=l00 
190 FOR J=l TO N 
200 INPUT X,Y,I 
210 IF 1=0 THEN 240 
220 CALL "LINE":CO.X,Y 
230 GOTO 200 
240 CALL" LINE" :CO 
250 NEXT J 
260 CALL "FINISH" :CO 
270 END 

,--

'---

-

1-

Figure 6: The (3,4)-Turk's head knot 



Figure 7: The (3,2)-Turk's head knot 

Figure 8: The (2,9)-Turk's head knot 

2.4 Program star 

5 

This program draws regular projections of (2,2n+ 1)-Thrk's head knots such as figure 
9. Tom Kurtz taught me this program, [9]. 

STAR 
100 REM THIS PROGRAM DRAWS REGULAR PROJECTIONS OF 
110 REM (2,2N+1) TORUS KNOT WHEN YOU ENTER K=2. 
120 LIBRARY "PLOTLIB***:TEK10" 
130 DIM C(2000) 
140 READ T,U,X,Y 
150 DATA -1.3,1,3,-1,1 
160 CALL "LIMITS":CO,T,U,X,Y 
170 REM HERE IS THE PROGRAM. 
180 PRINT "ENTER (N,K)" 
190 INPUT N ,K 
200 CALL "STAR":CO,N,K 
210 REM STOP FOR COPYING THE PICTURE. 
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220 LINPUT A 
230 GOTO 180 
240 CALL "FINISH":CO 
250 END 
260 SUN "STAR":CO,N,K 
270 LET PI = 3.14159265 
280 FOR P=o TO N 
290 LET R=2*Pl*P*K* /N 
300 CALL "LINE":CO,COS(R),SIN(R) 
310 NEXT P 
320 CALL "LIFT" :CO 
330 SUBEND 

Figure 9: A projection of the (2,5)-torus knot 

2.5 Program IZD 
This program draws regular projections of (A,B)-Turk's head knots [1]. Where A,B 
are two relatively prime natural numbers. See Figure 10. 

IZD 

100 REM THIS PROGRAM DRAWS REGULAR PROJECTIONS 
110 REM OF (A,B)-TURKS HEAD KNOTS. 
120 REM IT IS WRITTEN BY MEHMET EMIN BOZHUYUK. 
130 LmRARY "PLOTLm***:TEK10" 
140 DIM C(170) 
150 CALL "LIMITS":CO,-I,I,-I,1 
160 CALL "SQUARE":CO,1 
170 PRINT "ENTER A,B TWO RELATIVELY PRIME NUMBERS" 
180 INPUT A,B 
190 LET R=A/B 
200 CALL" CLEAR" :CO 
210 FOR 1=0 TO 2*3.1415*(A+.Ol) STEP .05 
220 CALL "LINE":CO,COS(1)*(COS(R*I)+2)/3,SIN(I)*(COS(R*I)+2)/3 
230 NEXT I 
240 CALL "FINISH":CO 
250 END 



Figure 10: A projection of the {3,S)-Turk's head knot 

2.6 Program Turk 
This program draws (A, B)-'l\uk's head knots. Turk's head knots [8] can be pre
sented by smooth functions. The positive integers A and B are called lead and 
bight respectively [7]. The (A, B)-Turk's head knot has (A-1)B crossings. For in
stance, the (3,4)-Turk's head knot is known as 818 in knot tables. In the projection 
there are (A - 1) concentric circles which carry the crossing points. The pattern 
of distribution of crossings can be determined. The angle between two consecutive 
crossings is 7f/B [1,3,4,5,6]. 

TURK 
100 REM THIS PROGRAM DRAWS (A,B) TURK'S HEAD KNOT. 
110 REM A AND B ARE TWO RELATIVELY PRIME NUMBERS. 
120 DIM C(150) 
130 LIBRARY "PLOTLIB"*:TEK10" 
150 CALL "LIMITS":CO,-l,l,-l,l 
160 CALL "SQUARE":CO,l 
180 PRINT "ENTER TWO RELATIVELY PRIME NUMBERS" 
190 INPUT A,B 
210 CALL "LIFT":CO 
220 LET R=B/A 
230 LET S=3.1415926/B 
240 LET K=A-2 
250 LET Q=l 
260 FOR T==l TO (A-1)*B 
270 CALL "LIFT" :CO 
280 FOR I=Q*S +.04 TO (Q+FNS)*S -.04 STEP .08 
290 LET X=COS(I)*(COS(R*I)H)/3 
300 LET Y=SIN(I)*(COS(R*I)+2)/3 
310 CALL "LINE":CO,X,Y 
320 NEXT I 
330 FOR 1=1+.008 TO (Q+P2)*S-.04 STEP .008 
340 CALL "LINE":CO,X,Y 

7 
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350 NEXT I 
360 LET Q=Q+P2 
400 NEXT T 
410 CALL "FINISH":CO 
420 PRINT "(";STR$(A);" ,";STR$(B);") TURKS KNOT" 
440 LINPUT Z$ 
450 GO TO 180 
460 DEF FNS 
410 IF K<>O THEN 510 
480 LET FNS=2 
490 LET K=A-2 
500 GO TO 530 
510 LET FNS=l 
520 LET K=K-1 
530 IF K<>O THEN 510 
540 LET FNS=FNS+2 
550 LET K=A-2 
560 GO TO 590 
510 LET FNS=FNS+l 
580 LET K=K-1 
590 LET P2=FNS 
600FNEND 
620 END 

Figure 11: A (4,5)-Turk's head knot. 

3. Representations of knot groups into the symmetric group 

The computer program HOMO finds the representations of groups (especially knot 
or link groups) in the symmetric group of a given degree. We compare all these 
representations and if we find any differences we can conclude that the groups and 
hence the knots or links are distinct. For instance the Figure Eight knot does not 
have a representation onto Sa but the trefoil does. Another way of saying this is 
that the Figure Eight knot is not 3-colourable whilst the trefoil is. Hence these two 
knots are distinct. 



HOMO 

90 REM THIS BASIC PROGRAM DETERMINES ALL 
95 REM REPRESENTATIONS OF A GROUP GIVEN 
100 REM BY ITS GENERATORS AND DEFINING 
101 REM RELATIONS IN A SYMMETRIC GROUP 
102 REM OF A GIVEN DEGREE, PROVIDED THAT 
103 REM THE LENGTH OF THE RELATIONS ARE THE SAME. 

9 

104 REM IT PROVIDES ALSO DATA TO THE USER TO CALCULATE 
105 REM PRESENTATIONS OF THE SUBGROUP (STABILIZER) 
106 REM CORRESPONDING TO THESE REPRESENTATIONS. THIS 
107 REM PROGRAM IS WRITTEN BY MEHMET EMIN BOZHUYUK, 
108 REM AT DARTMOUTH COLLEGE OF USA IN FEBRUARY 1975. 
109 DIM R(10,10) 'RELATION MATRIX 
110 DIM H(10,10) 'HOMEOMORPHISM MATRIX 
120 LET G=2 'NUMBER OF GENERATORS 
130 LET R=l 'NUMBER OF RELATIONS 
140 LET L=6 'THE LENGTH OF THE RELATIONS 
150 MAT READ R(R,L) 
160 DATA 1,2,1,4,3,4 'RELATIONS OF THE GROUP 
170 REM GATHER INFORMATION ON V 
175 REM FROM THE USER. 
180 PRINT "ENTER V, THE DEGREE" 
185 PRINT "OF THE SYMMETRIC GROUP" 
190 INPUT V 
200 IF V <=10 THEN 240 
210 PRINT "V <= 10, PLEASE ENTER SMALLER V" 
220 REM FOR V>10, USER MAY CHANGE LINE 110. 
230 GOTO 180 
240 RESET # 0 
250 CALL "PERM" :H(,),R(,),l,G,V,R,L 
260 REM GOTO BEGINNING TO ENTER OTHER V'S. 
270 GOTO 180 
280 END 
290 REM THIS RECURSIVE SUBPROGRAM 
295 REM CREATES HOMEOMORPHISMS. 
300 SUB "PERM" :H(,),R(,),N,G,V,R,L 
310 IF N> G THEN 520 
320 GOSUB 340 
330 GOTO 860 
340 LET Q=Q+1 
350 IF Q > V THEN 460 
360 LET H(Q,N)=O 
370 LET A=H(Q,N)=H(Q,N)+l 
380 FOR F=l TO Q-1 
390 IF H(F ,N)=A THEN 420 
400 NEXT F 
410 GOSUB 340 
420 IF H(Q,N)<V THEN 370 
430 LET Q=Q-1 
440 RETURN 
450 REM THIS LOOP FINDS IMAGES 
455 REM OF GENERATORS' INVERSE. 
460 FOR F=l TO V 
470 LET H(H(F ,N» 
480 NEXT F 
490 CALL "PERM" :H(,),R(,),N+1,G,V,R,L 
500 LET Q=Q-1 
510 RETURN 
520 REM THIS LOOP CHECKS IF 
525 REM EACH RELATOR IS MAPPED ONTO 
530 REM IDENTITY. IF SO THEN IT 
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535 REM PRINTS THE MATRIX H(,). 
540 FOR Q=1 TO V 
550 LET X=Q 
560 FOR T=1 TO R 
570 FOR U=1 TO L 
580 LET X=H(X,R(T,U» 
590 NEXT U 
600 IF X<>Q THEN 860 
610 NEXT T 
620 NEXT Q 
630 PRINT 
640 FOR Q=l TO V 
650 FOR F=1 TO 2*G 
660 PRINT TAB(15)j 
670 PRINT USING "- +", H(Q,F)j 
680 NEXT F 
690 PRINT 
700 NEXT Q 
710 REM AFTER H(,) IS PRINTED, 
715 REM THIS LOOP CREATES INDI-
720 REM CES OF DEFINING RELATIONS OF STABILIZER. 
730 PRINT 
740 FOR Q=l TO V 
750 LET X=Q 
760 FOR F=l TO R 
770 PRINT TAB(15) 
780 PRINT USING "- +", Q: 
'790 FOR U=l TO L 
800 LET x= H(X,R(F,U» 
810 PRINT USING "- +" ,Xi 
820 NEXT U 
830 PRINT 
840 NEXT F 
850 NEXT Q 
860 SUBEND 

3.1 Example 
The group of the Trefoil is Iz, y : zyz = yzyl and its representations in the sym
metric group of order six are given here. 

HOMO 25 Apr 75 21:31 

INPUT V=NO OF SYMBOLS, G=NO OF GENERATORS 
? 3,2 
********** 
1 1 1 1 
2 2 2 2 
3 3 3 3 
1 1 1 1 1 1 1 
2 2 2 2 2 2 2 
3 3 3 3 3 3 3 
********** 
1 1 1 1 
3 3 3 3 
2 2 2 2 



11 

1 1 1 1 1 1 1 
2 3 2 3 2 3 2 
3 2 3 2 3 2 3 
********** 
1 2 1 2 
3 1 3 1 
2 3 2 3 
1 1 2 3 3 2 1 
2 3 3 2 1 1 2 
3 2 1 1 2 3 3 
********** 
1 3 1 3 
3 2 3 2 
2 1 2 1 
1 1 3 2 2 3 1 
2 3 1 1 3 2 2 
3 2 2 3 1 1 3 
********** 
2 1 2 1 
1 3 1 3 
3 2 3 2 
1 2 3 3 2 1 1 
2 1 1 2 3 3 2 
3 3 2 1 1 2 3 
********** 
2 2 2 2 
1 1 1 1 
3 3 3 3 
1 2 1 2 1 2 1 
2 1 2 1 2 1 2 
3 3 3 3 3 3 3 
********** 
2 3 2 3 
1 2 1 2 
3 1 3 1 
1 2 2 1 3 3 1 
2 1 3 3 1 2 3 
3 3 1 2 2 1 3 
********** 
2 2 3 3 
3 3 1 1 
1 1 2 2 
1 2 3 1 3 2 1 
2 3 1 2 1 3 2 
3 1 2 3 2 1 3 
********** 
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3 3 2 2 
1 1 3 3 
2 2 1 1 
1 3 2 1 2 3 1 
2 1 3 2 3 1 3 
3 2 1 3 1 2 3 
********** 
3 1 3 1 
2 3 2 3 
1 2 1 2 
1 3 2 2 3 1 1 
2 2 3 1 1 3 2 
3 1 1 3 2 2 3 
********** 
3 2 3 2 
2 1 2 1 
1 3 1 3 
1 3 3 1 2 2 1 
2 2 1 3 3 1 2 
3 1 2 2 1 3 3 
********** 
3 3 3 3 
2 2 2 2 
1 1 1 1 
1 3 1 3 1 3 1 
2 2 2 2 2 2 2 
3 1 3 1 3 1 3 

3.2 Example 
For the Figure Eight knot we have the following data. 
HOMO 23 Apr 75 17:22 

INPUT THE KNOT PARAMETERS (A,B)? 3,2 
INPUT THE NUMBER OF GENERATORS? 4 
DIMENSION OF SYMMETRIC GROUP? 3 
********** 
2 2 2 2 3 3 3 3 
3 3 3 3 1 1 1 1 
1 1 1 1 2 2 2 2 
1 2 3 2 1 
1 2 1 3 1 
1 2 3 2 1 
1 2 1 3 1 
2 3 1 3 2 
2 3 2 1 2 
2 3 1 3 2 
2 3 2 1 2 
3 1 2 1 3 
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3 1 3 2 3 
3 1 2 1 3 
3 1 2 2 3 
********** 
3 3 3 3 2 2 2 2 
1 1 1 1 3 3 3 3 
2 2 2 2 1 1 1 1 
1 3 2 3 1 
1 3 1 2 1 
1 3 2 3 1 
1 3 1 2 1 
2 1 3 1 2 
2 1 2 3 2 
2 1 3 1 2 
2 1 2 3 2 
3 2 1 2 3 
3 2 3 1 3 
3 2 1 2 3 
3 2 3 1 2 

3.3 Coverings 
A presentation of the fundamental group of covering spaces, from the computer 
data above, is obtained as follows. We consider, for instance, G = Iz, y: zyzfi z fil 
and the matrix 

z Y z fi 
1 2 1 2 1 
2 1 3 1 3· 
3 323 2 

This means h(z) = h(z) = (12) and h(y) = h(y) = (23). Namely, h: G -+ Sa 
is an onto homomorphism. 

The matrix 

1233211 
2 1 1 233 2 
332 1 123 

means h( r) = I, where r = zyzfi z fi. From this matrix by Fox's algorithm one 
obtains 

?r1(E - L) = IZ1, Za, Yl, Ya : ZlZaZl Y1, ZlZaYa Za, Y1 Z1Y1 Ya, ZaYaY1 Yal 

where E is the three sheeted irregular branched covering space of Sa branched 
over the Trefoil knot and L is the link obtained from the closed braid, ui. In this 
case E is a 3-sphere. For more details see [2]. 
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ABSTRACT. In this survey on knot spaces the central theorems are presented such as the 
Gordon-Luecke complement result, Waldhausen's theorem, hyperbolic and Seifert fibred 
knots spaces and the Johannson-Jaco-Shalen torus decomposition. 

1. Introduction. 

Classic knot theory is concerned with equivalence classes by ambient isotopy of p.l. or ,. 
smooth embeddings 51 '---' 53 (knots) or II 5l '---' 53 (links). Usually 53 and the com

i=1 

ponents 5l of the link carry an orientation. The image of a representative of a class of 

embeddings will also be called a knot J( or a link L = {J(d, 1 $ i $ J-l. 

The homeomorphism type of the complement C = 53 - L is the most natural invariant 

of a link; we prefer in most cases a compact version of the complement, C = 53 - U(L), 

where U( L) is an open tubular neighbourhood of L in 53 it serves as well as the genuine 

complement in our case of tame embeddings. The complements are called knot or link 
spaces. 

The purpose of this lecture is to give a survey on results and methods concerning the 
classification of knots and links and their spaces, to study the relations between them and 
to investigate geometric properties of the knot spaces. The most powerful algebraic tool 
to accomplish these feats is the fundamental group of the knot space C. Since C is a 
bounded manifold, there is not only a "knot (link) group" G = 1r} C assigned to C but a 

family {Gi} of conjugate subgroups of G to every component J(i of L, G; ~ 1r} (&U (Ki)). A 
homeomorphism of complements induces an isomorphism of the link groups respecting the 
whole "group system (G, {Gi})". Moreover a special element of the "peripheral subgroup" 
1r} (&( U)) of a knot K is distinguished (up to conjugation) by the complement C: the simple 

closed curve l (called the "longitude" of K) which satisfies l "" K in U(K) and l"" 0 in 

C. The knot K itself determines a "meridian" m, a simple closed curve on &U(K) with 

intersection number int(m,l) = +1 which bounds a disk in U(K). Choosing the point of 

M.E. Bozhiiyiik (ed.J, Topics in Knot Theory, 15-23. 
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intersection of m and i as a base point for 7r1 C the pair (m, i) represents a pair of distin
guished elements of 7r1C determined up to a common conjugation factor. Evidently such a 
pair (mi, Ii) can also be assigned to every component /(i of a link. 

Let us complete this introduction by some geometric conventions. By - II: we denote 
the knot obtained from I( by reserving its orientation. I( is called "invertible" if I( and 
- K are equivalent, K :::::: - K. K* means the image of K by a reflection. A knot is called 
"amphicheiral", if K :::::: K*; else it is "cheiral". The same notions apply to links. Special 
attention has to be payed, of course, as to which components of the link are supposed to be 
inverted. 

A projection of a link onto a plane is called "regular" or a "link diagram", if the singu
larities consist of a finite set of double points of a transversal type. A link is "alternating", 
if there exists an alternating diagram, meaning that overcrossings and undercrossings alter
nate when running along any component. 

The product L1 #L2 of two links L1 and L2 is a link which allows an embedded 2-sphere 

S2 C S3 meeting L1 # L2 in two points P and Q, such that the two components L~ and L~ 

of L1 #L2 - {P, Q} define L1 :::::: L~ U a and L2 :::::: L~ U a with Q a simple arc on S2 connecting 
P and Q. L1 #L2 depends on the choice of the two components chosen in L1 resp. L2 to 
be joined, but only on this; the product of two knots is well-defined. It is easy to see that 
K#K':::::: K'#K and K#Ko:::::: K for the trivial knot Ko. A knot K is called "prime", if 
/( = K1#K2 implies K1 :::::: Ko or 1(2:::::: 1(0. 

2. Complement and group. 

The first relation of a fundamental character between group and complement of a knot is 
an outcome of Dehn 's Lemma. Every knot II is homotopic to the trivial knot A'o in 53; it is 
even isotopic to Ko. By definition there exists an ambient isotopy between K and Ko only 
if K itself is trivial. If one looks at C instead of S3, choosing for K its longitude, we know 
K rv 0 in C, but K ~ 1 holds if and only if K :::::: 1(0. The latter assertion is a consequence 
of Dehn's Lemma. Thus knotted ness is at the same time a sharp characterization of the 
difference between ambient isotopy and homotopy and between homotopy and homology. 

Dehn's Lemma can be put into equivalent forms: a knot space is homeomorphic to a 
solid torus, if and only if the knot is trivial. Or, the knot group is cyclic (abelian), if and 
only if K is trivial. 

The general case is taken care of by an application of a famous theorem of Waldhausen 
[WA68]. 



Theorem: The complements C and C' of two non split links L = {K;} and 
L' = {Ki} are homeomorphic, if and only if there is an isomorphism 

of the group systems (peripheral isomorphism). 
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In this case there is a homeomorphism h : C -+ C' which induces hI' Clearly the links L 
and L' will be equivalent if and only if h maps the meridians mj of L onto the meridians 
m: of L'. 

One might ask the question: are there non-peripheral isomorphisms between link groups? 
The answer is "yes", even in the case of knots. The following example was provided by Fox 
[Fox 52]: the groups of K #K and I( #1(" are isomorphic, but the complements C and C' 
are in the cheiral cases (i.e. for II.' a trefoil) not homeomorphic. To prove this one may use 
a suitable class of representations of the knot group G of the square of a trefoil. There is a 
well characterized class [lP] of homomorphisms of G mapping meridians onto glide reflections 

of a Euclidean plane £2. lP(f) is a non-trivial translation, <pW) = -<p(l), e,r longitudes 

of the trefoil K and its mirror image 1(*. If there was a homeomorphism h : C -+ C' , there 
would be a peripheral isomorphism h# and a commutative diagram: 

,/ <p' 

id :j:: lP(e2 ) = <p~h#(e2) = <p'(U*) = id. leads to a contradiction. 

The fact that this counterexample is based on composite knots is significant: Whitten 
[WHI 86] proved: Prime knots have homeomorphic complements if their groups are isomor
phic. 

3. Complements and knots. 

Whether knots determine their complements was a question for over eighty years. The ques
tion was answered affirmatively by Gordon and Luecke [GL 89]. We will give a description 
of the problem and an idea of the ingenious proof. 

It was early observed that the complement of a proper link can not determine the link: 
let one component of the link be trivial, then its complement is a solid torus V. A second 
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component - inside V - suffers drastic changes as a knot under homeomorphisms of V. 

The margin between a knot space and a knot is best described by a procedure called 

"Dehn surgery", a device used by Dehn to construct 3-manifolds from knots ill S3. Let 
meridian m and longitude i of a knot K generate H1«JC) :::: Z EI1 Z. Every simple closed 
curve f 0 on BC is of the form o:m + {3l, (0:, (3) :j; (0,0) a pair of coprime integers; they can 
be parametrized by the rationals including 00, {~} = IQ u{ oo}. A Dehn-~-surgery along 

K C S3 yields a 3-manifold K( ~) = C U V* where V* is a solid torus with meridian 
Olm+l3l=m· 

m*j it is called non-trivial, if (3 :j; o. The question whether a knot space determines its 
knot may now be restated in the following way: Can a non-trivial Dehn surgery along 

K C S3 yield a 3-sphere? A stronger (algebraic) version of this question is: can it yield 

a homotopy 3-sphere S3? Put algebraically: can one trivialize a knot group by adding a 

relator mOlI 13 = 1, ;3 :j; O? As we pointed out before the first question has the answer "no" 
by the work of Gordon and Luecke. In the second case the conjecture is also "no"; some 
classes of knots are known to allow no such surgery - which asserts that they "have property 
P". The first trivial observation is that one may assume 0: = 1, since H 1 (/« ~)) is cyclic of 

order 10:1. 

Fig. 1 Fig.2. 

The possibility of a counterexample for the property P conjecture is further restricted by 

a result called the "cyclic surgery theorem" [CGLS 87J: 7r1K(b) is cyclic (including trivial) 

implies ;3 = ±1, if K is not a "torus knot" (a simple closed curve on the boundary of an 

unknotted solid torus in S3). Surgery on torus knots are well known, [MOJ. Nevertheless, 

the property P problem K( 1) ~ S3 is still open. As an example of Dehn surgery one obtains 
Ko( l}) ~ L( 0,;3) ~ V U V * the lens spaces for the trivial knot Ko. For further use we 

/J Olm+l3l=m. 
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observe that this yields a description of a so-called "punctured" lens space, that is, a lens 

space minus an open 3-ceU e3 . We choose e3 = V* - aV* - D*, with a D* = m*, D* a 
meridional disk of V*. The punctured lens space then is V U D* . 

OIm+{3l=8D' 

Now for the idea of the Gordon-Luecke proof: Let K, K* be the two knots with homeo
morphic complements E, E* in 53 = E u V* ,K* the core of V*. We think of K and 

m+l=m' 

K* as "2m-plats" consisting of 2m-braids with arcs joining neighbouring upper and lower 
ends, Fig. 1. A certain technical condition is imposed on the plats which we omit. A braid 
has a natural height function and its level surfaces in E resp. E* are planar surfaces S resp. 
S* whose boundaries are meridional curves for K resp. K*. Two such planar surfaces in a 
certain position are chosen. The homeomorphi3m 1 : E* -+ E takes 5* to 1(5*) = 5' and 
5 n 5' can be completed as well in 5 as in 5' to a graph f resp. f' (with some additional 
structure) whose vertices correspond to the meridional boundary curves of 5 resp. 5'. Bya 

very tricky and subtle analysis of f and fl a so-called "Scharlemann-circle" is found which 

then yields a punctured lens space in the form V U D* ,Ial > I, in 53. This is impossible 
OIm+{3l=8D' 

4. Geometry of knot spaces. 

Let V be a tubular neighbourhood of the trivial knot Ko C 53, and V' its complement. 
V - Ko can be fibred by parallels of the simple closed curve am + (3f, and the same holds 
for V' - K~, Kb the core of V'. Putting back Ko and Kb into 53 gives us the "Seifert fibra

tions" [SEI 33) of 53 with Ko and Kb "exceptional" fibres of order 1{31 and lal. 3-manifolds 
(compact) which can be fibred in this way (Seifert fibre spaces) with a (finite) number of 
exceptional fibres of arbitrary order were studied by Seifert and others [OVZ 67). 

The links whose complements are Seifert fibre spaces are well known: Apart from a 
special case, the key-ring link, consisting of a trivial component and a number of meridional 
curves to it, such a link has as components any set of fibres of some a - (3-fibring of 53, 
[BM). Algebraically this class of links is characterized by the fact that the link group has a 
non-trivial centre. 

Another type of fibring - transversal in a way to this - was discovered by Stallings: 
If and only If the commutator subgroup in the case of a knot is finitely generated, C is 
fibred over the circle 51 - the fibres being Seifert surfaces of minimal genus spanning the 
knot. (In case of a link G' must be replaced by a larger subgroup, the kernel of a canonical 
homomorphism of the link group G onto Z.) One has C = 5 X 1/ "', 5 = Seifert surfaces, 
and an identification 

h( x, 0) = (x, 1) 
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by the holonomy h : 5 X 0 ~ 5 X 1. 

Of course, 5 X I carries two fibration, one with fibre 5 and one with fibre I. In C = 
5 x 1/ '" the second one leads to a codimension two foliation of C by lines or circles. 

Evidently it is a fibration by circles, if the holonomy h is of finite order hk = id, in fact, 
then C is a Seifert fibre space and 7rl C = G has a non trivial centre. The last property 
suffices for the fact: If Z(G) :f 1, then G' is finitely generated and there is a Stallings 

fibration. Moreover a power of h# is an inner automorphisms of G' and by a theorem of 

Nielsen h can be isotoped to be periodic. 
It may be remarked at this juncture that knot complements always admit a codimen

sion one foliation - generalizing the Stallings fibration. This was proved by Gabei [J. Diff. 

Geom. 18 (1983)]. Cantwell and Colon were able to give a geometric description of such 
"taut" foliations for special cases sHch as twist knots. 

A completely different kind of geometry on a knot space was discovered by Riley [RIL 

75]. He explicitly described a hyperbolic structure on certain (open) knot complements 

53 - K. W.Thurston then found a general theorem: 

Theorem: The complement of a "simple" knot which is not a torus knot is a 
hyperbolic manifold of finite volume. 

A knot is "simple", if it is not a satellite, and a satellite is a knot K' contained in the 
tubular neighbourhood U(K) of a non-trivial knot K such that 1(' is :f K and not already 

contained in a 3-cell e3 C U (K). A special case of a satellite is a composite knot K 1 #K2 
as we shall presently see. Torus knots, for instance, are simple, likewise the four knot 41' 

The hyperbolic structure of 53 - 41 can be seen directly [THU 82]: Let an open unit 

3-ball represent a Kleinian model of the hyperbolic space H3. We place a double pyramid 

(two 3-simplices with a common 2-face) inside H3 with the five vertices on the boundary of 

the 3-ball (the sphere of infinity of H 3 ). Now, 

Fig.3 
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identify the 2-faces of the pyramid by non-Euclidean motions in such a way that equally 
arrowed edges coincide. It can be shown directly that the result is a 3-manifold homeomor

phic to the complement S3 - 41. It inherits a hyperbolic structure from H3 which is the 

universal covering of S3 - 41 , The group of the four knot thus turns out to be a discrete 

subgroup of PSL(2, <11, the group of isometries of H3, with a fundamental domain of finite 
volume. 

By the so-called rigidity theorem of Mostow the hyperbolic structure is - up to isome
tries - uniquely determined by the link type. Several powerful invariants can be derived 
from the hyperbolic structure. Each component of the link determines a "cusp" of C, a 
neighbourhood of an ideal point of the form T X [0,1), T a torus surface. It is most easily 

described in the Poincare model of H3 in the upper 3-space JR3, H3 = {(x,y,z)lz > o}. 
Taking 00 as the ideal point, the points z 2: a > 0 form a "horoball" at 00, z = a its 
"horosphere" . 

The horoball projects under the covering H3 -+ C onto the cusp; the horosphere minus 
00 onto the torus T. Of course, the preimage of the cusp may consist of several horoballs. 
The pattern of horoballs - normalized in a certain fashion - gives rise to a set a very ef
fective invariants. For instance, hyperbolic mutant knots are known to have complements 
of the same hyperbolic volume [RU 87], but can be told apart by their horoball patterns 

[ARW 91]. Another tool is a unique decomposition of a hyperbolic complement C into ideal 

simplices (or convex cells) such as in the case of the four knot. This makes it possible to 
determine the symmetries of the link completely. 

These two geometric structures, Seifert fibring and hyperbolic metric, in a way govern 
link spaces. Johannson [JOR 79] Jaco and Shalen [JS79] proved a remarkable theorem: 

There is a family of tori in the complement C of any 1(, disjoint and non-parallel which 
are incompressible in C and not boundary parallel (essential). These tori decompose C into 
pieces which are either Seifert fibre spaces or contain no essential tori (are atoroidal) and 

therefore, by Thurston's theorem, cany a hyperbolic structure. (A knot space is atoroidal 
if and only if the knot is not simple.) The important point is that a minimal system of tori 
satisfying these conditions is unique up to isotopy. As an example of the situation look at 

a composite knot I( = !{1#1(2. Let S2 be a separating 2-sphere meeting I( in two points. 
S2 - U(I() = A is an "essential" annulus, and aU(I() - S2 consists of two annuli Al and 
A2 belonging to 1(1 and 
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K2 respectively. There are two essential tori T) = A U A) and T2 = Au A2 in C = 
S3 - U(K), 

Fig.4 

The geometrization of knot spaces has been effectively used to be obtain results in knot the
ory which had escaped prior attemps. An important tool fo hyperbolic pieces is Mortow's 
rigidity theorem which allows homeomorphisms to be replaced by hyperbolic isometries. 
This was employed for instance to determine symmetries of knots. 
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ABSTRACT. This lecture on classical knot and link groups concentrates - after some re
marks on general properties - on representations of these groups and invariants derived 
from them. Metabelian and higher-step-metabelian representations are considered and ho
momorphisms into hyperbolic isometries. 

Introduction. 

The group of a knot ]( or link L is defined as the fundamental group of the complement 

C of ]( or L in ,';3. What is generally known of these groups? The following properties are 
valid for any knot group G: 

(1) G is finitely presentable 

(2) G/G':::: Z, G' = commutator subgroup 

(3) G = (m) = normal closure of one element 

(4) H2(G) = 0 

The last condition can be verified, if one knows that G has "defect one", this means that 
there is a presentation with n generators and n - 1 relators. Thus these properties are eas
ily established by looking at a Wirtinger presentation of G. Kervaire [KE 65) proved that 

(1)-(4) characterize knot groups in higher dimensions, G = 1[1(5n - /(n-2), ](n-2 ~ 5n- 2, 

for n 2: 5. For n = 4 some questions are still open - even after the affirmation of the 
topological Poincare conjecture: There are groups satisfying Kervaire's conditions that are 
not knot groups and have defect > 1. On the other hand a 2-twist spin of a trefoil has a 
group with defect> 1, so that defect = 1 can not be substituted for H 2 = o. In the classical 
case n = 3 a group satsifying the Kervaire conditions need not be a knot group. Examples 
were given of such groups which possess a non-symmetric Alexander polynome. 

Recently S. Rosebrock [RO 91) constructed the following example: 

G = (51,52, ... ,8818215;1 SI S3, S;1 S4S2S;;I, S;;1 Ssl S3S5, 

SSI S6S4S61 , S6 1 S:;1 S557, S:;1 58S6581 S81 S11 S7S1). 
25 
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It satisfies (1 )-( 4), and it has the Alexander polynomial of a knot: x6 - 7 x 5 + 20x4 - 29x3 + 
20x2 - 7x + 1. This group is shown to be hyperbolic, hence, it is not a knot group. So, the 
symmetry of the Alexander polynomial as a fifth condition does not suffice to characterize 
classical knot groups. 

A characterization in terms of presentations was given by Artin for link groups: let ( 
be an n-string braid automorphism, then a group G is the group of a classical link, if and 
only if it admits a presentation 

Waldhausen proved [WA 68J the solvability ofthe word problem in link groups. Recently 
Sela [SEL 91) showed that knot groups even have a solvable conjugacy problem. The argu
ments appear to carryover to link groups. Some classes of link groups are quite well known 
- i.e. link groups with a non-trivial centre [BM 70). But generally the groups are rather 
inaccessible - in the plain meaning of the word. The strength of the group as an invariant 
is great, so it is natural to look at homomorphic images of the group (representations) in 
the hope to find those more tractable and to extract from them calculable invariants. 

§ 1 Metabelian representations. 

Abelian images of a knot group are cyclic (property (2)) and carry no information on the 
individual knot. Metabelian ones are plentiful and have been studied since the beginning 
of knot theory. 

Every metabelian image of a knot group G is a semi direct product Z I>< A, Z cyclic, 
A Abelian; the homomorphism G -+ Z I>< A factors through G -+ G/G" ~ Z I>< H1(Coo ), 

or, in the case of a finite cyclic group, through G -+ Zn I>< HI (Cn). Here Coo denotes the 

infinite cyclic covering and en the n-fold branched cyclic covering of C. As a module over 
7L Z the group HI (Coo) is known as the "Alexander module" M of G. 

Though a single representation p : G -+ H may yield interesting information on G and 
the knot K, it is often desirable to obtain knowledge on the whole set of homomorphisms 
into a fixed group H. We call a representation trivial, if its image group is Abelian, and 
two representations p and p' equivalent, if they differ by an inner automorphism of H. The 
set R(G, H) of equivalence classes of non-trivial homomorphisms p : G -+ H, endowed with 
a suitable topology, is called a "representation space". As an example consider the group of 
orientation preserving similarities A of the complex plane <r. The elements of A are complex 
linear substitutions, 

z ...... Z' = az + b, a::J. 0, bE <r. 

A representation p : G -+ A is determined by its values on a set {Si} of generators of G. 
We may assume Si E {m}, the conjugacy class in G of the meridian m. Put p(Si) : Z ...... 
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a(z - bi) + bi, a 1: 1. One may identify p with the set {a, b}, b2, .. . , bn } of complex numbers. 

The representation space R( G, A) consists of a O-dimensional component for each root a of 

the Alexander polynomial ~l(t) which is not a root of the second Alexa.nder polynomial 

~2(t), and, in the genereal case, a component W-1, if ~k(a) = 0, ~k+l(a) 1: O.Thus there 
is a (partial) interpretation of Alexander polynomials via representation spa.ces. 

The set {b1, .•• , bn }, determined by p : G -+ A, depends, of course, on the choice of the 
generators Si. If J( is periodic, one may select generators such that {b1, ... ,bn } shows the 
symmetry. Criteria for periodicity can derived from this [BU 78J. If, for instance, a knot 
allows a cyclic periodicity of order p, then, under certain assumptions concerning the ~k( t), 
one finds a set {b1, ... , bn } with bf = (b j for some bt , bj where ( is a p-th root of unity. 

Since the bi are in the splitting field of ~l (t) over (Q, so ( must be. 
Metabelian representations have been studied by Fox [FOX 70] and Hartley [HA 79]; 

they yield interesting invariants but cannot go beyond the Alexander module. 

§ 2 Lifts of metabelian representations. 

The met abelian representations of a knot group can be interpreted as lifts of the trivial 
(Abelian) ones. 

One looks at the cyclic covering en determined by ker( G -+ Z,,), and constructs a homomor

phic image of G as an extension of H1(Cn ) (or H1(Cn) by Zn using the operation induced 
by the covering transformations. This procedure can be iterated. The advantage gained 
over the metabelian representations by considering 3-step met abelian representations is the 
fact that the longitudes no longer are necessarily trivialized. They yield valuable "linkage 
invariants" which are very effective in detecting cheirality in knots, [REI 29], [BU 70], [HM 
77J. They are also applicable in the much harder question of invertibility [HA 83]. We 
again illustrate the lifting process if' a geometric example: If there is a prime p dividing 

IH1(C2 )1, then there is a dihedral (metacyclic) representation (3p : G -+ Z2 I>< Zp = D2p ' 

Under certain conditions R( G; D2p ) consists of just one point. The elements of {m} are 
mapped onto elements of order two in D2p ' We may represent them as reflections in lines of 

a Euclidian plane E2 and regard (3p as a point of R(G, B), B the group of motions of E2. 
Then there exists a unique lift Pp E R( G, B) of (3p mapping the elements of {m} on proper 
glide reflections. pp(£) will be a translation. Pp can be used to show that the complements of 
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K #K and K #K* are not homeomorphic for a certain class of cheiral knots K, as pointed 
out in [Bu 92]. 

The knot invariants obtained from such representations by looking at the images of the 
longitudes can be interpreted as "linkage invariants": linking numbers of links covering the 
knot in certain coverings. In this contexts also Milnor's iI-invariants can be explained. They 
are linkage invariants of appropriate nilpotent covering spaces, [Mu 84]. 

§ 3 Hyperbolic isometries. 

Metabelian representations - and consequently their lifts - do not always exist. Indeed, 
the necessary and sufficient condition for the occurrence of representations of this kind is the 
non-triviality of the Alexander polynomial, or equivalently, the fact that the commutator 
subgroup G' is not perfect G' t G". Seifert [SE 34] found the first knot of this type, a 

(non-alternating) pretzel knot, and he used a representation of its group into the group of 
isometries of the hyperbolic plane to show that the knot itself was not trivial. 

L 

T 

-2 

-1 

Fig. 1 Fig. 2 

Representations into this group had been used before by Reidemeister [REI 32] to classify 
alternating pretzel knots. Later Trotter used these representations to prove the existence of 
non-invertible knots [TR 64]. The group of the eleven-crossing Kinoshit5l-Terasaka-knot can 
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be mapped onto groups of type PSL(2,p), p a prime, as was shown in [MP 67]. This leads 

us to the group P S L(2, 01, the isometries of hyperbolic 3-space H3, a group of fundamental 
significance in knot theory. R.Riley was the first to discover a hyperbolic structure on the 
complement of certain knots and hence faithful representation of the corresponding knot 
groups into P S L(2, 01. The general hyperbolization theorem for simple non-torus knots is 
due to W.Thurston. So representation spaces R(G, PSL(2,01) and R(G,SL(2,01) have 
been studied. (Every homomorphism p : G -+ P S L(2, 01 of a knot group is known to 
lift to a homomorphism p : G -+ S L(2, 01). Important papers on these topics are [CS 
83], [CGLS 87] and [CCGLS 91]. R(G, SU(2)) was investigated explicitly for G the group 
of a torus knot or 2-bridge knot, [BV 90], [REV 92]. The representation spaces could 
be completely described as plane real algebraic curves in special cases. As an example 
Fig. 1 shows R(G,SU(2)) for the four knot. Its group is generated by two meridional 
generators Sand T. p E R(G,SU(2)) is determined by two rotations peS) and peT) of 
3-space through <p with an angle 'ljJ f; 0 between the axes. Fig. 1 shows the representation 
space in a (T,"Y)-coordinate plane, "I = ctg1' T = cos'ljJ. The points (Ti'O), i = 1,2, denote 

two dihedral representations, the two extreme points (- ~, ±,fi) correspond to tetrahedral 

representations. On the four arcs between dihedral and tetrahedral representations there is 
one representation satisfying the additional relator ml (resp. ml- l ), that is, a (non-trivial) 

representation of 7r1(K(I)) (resp. 7r1(](( -1))). 
This is closely connected with the fact that Casson's invariant of the four knot is -1. 

There are other possibilities to extract information on knots and knot spaces from repre
sentation spaces R( G, S L(2, 01). In [CS 83] incompressible surfaces (non-boundary-parallel) 
are constructed in a knot space using representation spaces, or rather spaces of characters of 
representations. One defines a map Xg : R( G, S L(2, 01) -+ 0:, Xg(p) = trp(g), 9 E G, p E 

R(G,SL(2,01) and tr the trace. For the pair (m,f) there is a well-defined map 

~: R(G,SL(2,<J:))-+<Cl 

p ...... (trp(m), trp(l)). 

The "curve-components" of im~ C <Cl constitute the "character curve" which can be re
garded as the zeroes of an invariant polynomial A(M, L), M = trp(m), L = trp(f). This 
polynomial is known to be non-trivial for any hyperbolic knot [CGLS 87] and also for every 
torus knot [REV 92J. Its computation, though, is rather difficult [CCGLS 91]. One may 
restrict oneself to R( G, S U(2)) and consider a plane real algebraic character curve 

~: R(G,SL(2,01) -+ JR2 . 

As an example Fig. 2 shows this curve for the four knot. The polynomial is A( M, L) = 
L - 2 - M2(M2 - 5). The intersections of this curve with diagonal lines correspond to the 
±1-Dehn surgeries on the four knot. 
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The study of the geometry of the space R( G( 0:, (3), SU(2)) for two bridge knots (0:, (3) 
implies in its first step the question of the reducibility of these spaces. Contributions to this 
question have been made in [BU 90], [RI 91],[REU 92] and by Ohtsuki. In some cases the 
curves are known to be irreducible and in others they are known to split. Also some results 
have been obtained concerning the genus of the curves. 

I have concentrated in this survey on representations of knot and link groups which 
allow in some way a systematic approach - at least for a class of knots or links. In these 
days of powerful computers information on a specific group can, of course, be obtained by 
searching for homomorphisms of the group into, say, permutation groups Sn for such n the 
computer can manage. This has, with good reason, been done to establish knot tables and 
to provide material for examples. 
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AN INTRODUCTION TO SPECIES AND THE RACK SPACE 

Roger Fenn 
Math Dept Sussex University Brighton BNl 9QH UK 
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Brian Sanderson 
Math Dept Warwick University Coventry CV4 TAL UK 

ABSTRACT. Racks were introduced in [FR]. In this paper we define a natural category 
like object, called a species. * A part.icularly important species is associated with a rack. 
A species has a nerve, analogous to the nerve of a category, and the nerve of the rack 
species yields a space associated to the rack which classifies link diagrams labelled by the 
rack. We compute the second homotopy group of this space in the case of a classical 
rack. This is a free abelian group of rank the number of non-trivial maximal irreducible 
sublinks of the link. 

Introd uction 
In this paper we continue the investigation into racks which was started in 
[FRJ. Here we shall introduce a natural classifying space associated to a rack, 
which we call the rack space. Further results on this space will be found 
in [FRSJ. 

This space is the realisation of a semi-cubical complex, a.nd indeed the 
natural structure is cubical, rather than simplicial as is usually the case 
for classifying spaces. Investigating the formal structure of this space and 
its relationship with other classifying spaces has led us to formulate the 
concept of a species. A species is analogous to a category; it has vertices 
and edges (analogous to objects and morphisms in a category), but instead 
of composition (which can be regarded as given by preferred triangles of 
morphisms) it has preferred squares of edges. There is a concept of mutation 
between species, analogous to functors between categories, and a natural 
semi-cubical nerve of a species, analogous to the usual semi-simplicial nerve 

* We use the term species here in a topological sense. It. should not be confused with 
the same term used in combinatorics. 

M.E. BozhuyUk (ed.), Topics in Knot Theory, 33-55. 
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of a category. A rack X defines a species SeX) with a single vertex and 
with X the set of edges. The preferred squares are of the following type. 

o 

lb 

o 

o 
a 
~ 

o 

lb 

o 

The rack space BX of X is the realisation of the nerve N SeX) of S(X). 
The I-cells of BX are elements of X and 2-cells are the preferred squares. 

The preferred square given above can be pictured as part of a link diagram 
with arcs labelled by a, band ab • 

ab 

bEEb 
a 

Diagram of a typical 2-cell of the rack space 
Thus, given a map of a surface M in BX, we can use transversality 

[BRS chapter 7] to construct a link diagram in M labelled by elements 
of X. Similar considerations apply to higher dimensional manifolds, and 
it follows that EX is the classifying space for (cobordism classes of) link 
diagrams labelled by X. 

If T is the trivial rack with one element then BT can be identified with 
Q(S2). There is a map QCS2) ~ EO where 0 is the infinite orthogonal 
group and it follows that for any rack X there is a map EX ~ EO. This 
leads to the concept of an X -oriented manifold, namely a manifold with 
a lifting of the stable normal bundle over BX ---+ BO, and a consequent 
generalised (co )-homology theory. There is a geometric interpretation of this 
theory which is close to the geometric interpretation of Mahowald oriented 
manifolds given in [S]. 

There are also connections with cla.ssifying spaces for groups and crossed 
modules: BX naturally maps to BAs(X) (the classifying space of the a.sso
ciated group of X) and there is an extension to give a classifying space for 
a G-rack, which has a natural map to the loop space of the Brown-Higgins 
classifying space of the associated crossed module [FR section 2 and BH]. 

The rack space can be used to define invariants of knots and links. There 
are two useful ways in which this can be done: Firstly, we can consider 
the rack space of the fundamental rack of the link. Any invariant of this 
space (for example a bordism group) is then an invariant of the original 
link. There is usually a geometric interpretation of such invariants: for 
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example the bordism group f2n(BX) can be interpreted, by transversality, 
as cobordism classes of codimension one diagrams in n-manifolds labelled by 
X (or equivalently having a homomorphism of the fundamental rack to X). 
Secondly we can fix a particular rack X (for example the trivial rack on n 
elements) and then consider, for a particular link L in say S3 , obstructions 
to the existence of a homomorphism of the fundamental rack in X (Le. 
obstructions to representing L by a particular map S2 -+ BX). Having 
obtained a particular representation, we can then consider its cobordism 
class Le. the element of 1l"2(BX) determined. In the case of the trivial rack 
on n elements, the representation divides the link into n disjoint sublinks 
and the cobordism class yield the linking numbers of these sublinks with 
each other. 

The bulk of the results outlined above will be given in a future paper 
by the authors [FRS]. In this paper we shall give the basic definitions and 
calculate 1l"2(BX) when X is the rack of a classical link. 

1. Definitions and Examples of Racks 

In this section we give a brief introduction to the theory of racks. More 
details may be found in [FR]. 

We consider sets X with a binary operation which we shall write expo
nentially 

There are several reasons for writing the operation exponentially. 

(1) The operation is unbalanced and should be thought of as an action, 
i.e. think of ab as meaning the result of b acting or operating on a. 

(2) In group contexts exponent ion signifies conjugation. A group with 
conjugation is one of the principal examples of a rack - indeed this 
was the source for one strand of the earlier work on racks [CW]. A rack 
is an algebraic object which has just some of the properties of a group 
with conjugacy as the operation. 

(3) Finally, and most conveniently, exponential notation allows brackets 
to be dispensed with, because there are standard conventions for asso
ciation with exponents. In particular 

abc means (abt and abC means aW ). 

1.1 Definition Racks 
A rack is a non-empty set X with a binary operation satisfying the following 
two axioms: 

Axiom 1 Given a, b E X there is a unique c E X such that a = cb • 
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Axiom 2 Given a, b, c E X the formula 

abc = acbe 

holds. We call this formula the rack identity (first form). 

Several consequences flow from these axioms. 
The first axiom implies that, for each b E X the function fb given by 

fb( x) = xb is a bijection of X to itself, and this fits with the idea that the 
operation is a (right) action of X on itself. 

We shall write ab = fb- 1(a) for the element e given by the axiom, but 

notice that ab is a single symbol for an element of X it is not suggested 
that b is itself an element of X; however the notation is suggestive (and 

intended to be) because now abb = abb = a for all a, b EX. Thus if we 
identify b with b-1 then we can give a meaning to any expression of the 
form XW where w = 11)( a, b, . .. ) is a word in F(X) the free group on X, 
namely the result of repeatedly acting on x by fa' f;;l, fb' f b- 1 etc. The 
word w is again not to be regarded as an element of X , but as an operator 
on X. Shortly, we shall formalise this by introducing the operator group. 

The rack identity is a right self-distributive law as can be seen if we 
temporarily use the notation a . b for ab : 

(a·b).e= (a.e).(b·e). 

Thus both axioms are equivalent to the statf'ment that right multiplication 
is an automorphism. The rack identity can be restated in more elegant and 
mnemonic form if we use the notation introduced above. Substituting d = aC 

in the rack identity and then changing d back to a gives the alternative form: 

Axiom 2' Given a, b, C E X the formula 

abe = acbe 

holds. This is the rack identity (second form). 

In other words be operates like cbe, which makes clear the connection 
between the rack operation and conjugacy in a group. 

The Operator and Associated Groups 

In expressions such as abc we refer to a as being at primary level and b, c 
as at operator level. The second form of the rack identity makes clear that 
we do not need any "higher" level operators. Expressions involving repeated 
operations can always be resolved into one of the form aW where a E X is 
at the primary level and w, lying in the free group F(X) on X, is at the 
operator level. 

In this way we have an action by the group F(X) on X. In general if 
G acts on X, written (a, g) 1-+ a . 9 and if {} : X -+ G is a map satisfying 
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8(a·g) = g-18( a)g then X has the structure of a rack given by ab := a· a(b). 
In many situations this is the most convenient method of describing the rack 
operation. The similarity with crossed modules should be clear. 

There is a useful concept of a rack with an explicit group action: We 
define a G-rack to be a set X with a G-action (which we write (x,g) f-t 

X· 9 EX, 9 E G) and a function 8 : X ~ G satisfying the G -rack identity 

8(a.g)=g-18ag for all aEX,gEG. 

IT we interpret the operation of a rack as conjugation (i.e. read aW as 
w-1aw then we obtain a group As(X) called the associated group. More 
precisely let As(X) = F(X)j J( where J( is the normal subgroup of F(X) 
generated by the words abb-1a-1b where a, bE X. So As(X) is the biggest 
quotient of F(X) with the property that, when considered as a rack via 
conjugation, the natural map from F(X) to As(X) is a rack homomorphism. 

Given a rack homomorphism f : X ~ Y, then there is an induced group 
homomorphism h : As(X) ~ As(Y); thus we have an associated group 
functor As from the category of racks to the category of groups. 

Note that a G -rack is a plain rack if we ignore or forget about the explicit 
G -action. Conversely, there is a natural way to regard a plain rack as a G
rack by taking G = As(X) (the associated group) with 8 the natural map. 
Thus we can regard the category of racks as a subcategory of the category of 
G -racks and then the forgetful functor is a retraction of the larger category 
onto the smaller. 

To make operators more precise we define operator equivalence by: 

w == z {::=? aW = aZ for all a E X 

where w, z E F(X). 
The equivalence classes form the Operator Group Op(X) which could 

also be defined as F(X)jN where N is the normal subgroup 

N = {w E F(X) I w == I}. 

In general the operator group is a quotient of the associated group, d. 
example 5 below. 

Examples of operator equivalence 
Since bat> = baaa (by the rack identity) = ba for all a, b EX. We have 

aa == a for all a E X. 

More generally if aa" means aaa ... a (n repeats) then a == aa" . 
In terms of operator equivalence, the rack identity can again be restated: 

Axiom 2" Given a, bE X we have 

ab == bab. 

This is the rack identity (third form). 
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Examples of Racks 

Example 1 The Conjugation Rack 
Let G be a group, then conjugation in G i.e. gh:= h-Igh defines a rack 
operation on G. This makes G into the conjugation rack. 

The operator group in this rack is the group of inner automorphisms of 
G and the orbits are the conjugacy classes. Given g, h E G then 9 == h if 
and only if gh- I is in the centre of G. 

Example 2 The Dihedral Rack 
Any union of conjugacy classes in a group forms a rack with conjugation as 
operation. In particular let Rn be the set of reflections in the dihedral group 
D2n of order 2n (which we regard as the symmetry group of the regular n
gon). Then Rn forms a rack of order n, with operator group D2n , called 
the dihedral rack of order n. 

Example 3 The Reflection Rack 
Let P, Q be points of the plane and define pQ to be P reflected in Q (i.e. 
2Q - P in vector notation). 

It is elementary to show that this is a rack operation. This example can be 
generalised by replacing the plane by any geometry with point symmetries 
satisfying certain general conditions (see Joyce [J] for details). Examples 
include the natural geometries of sn and ]RF. Interesting sllbracks of 
these latter racks are given by the action of Coxeter groups on root systems, 
cf. example 7 below. 

Example 4 The Alexander Rack 
Let A be the ring of Laurent polynomials Z[t, t- I ] in the variable t. Any 
A - module M has the structure of a rack with the rule ab := ta + (1 - t)b. 

For example, letting M be the plane and the action of t multiplication 
by -1, yields the reflection rack of example 4. 

The Quandle Condition 

All the above examples have satisfied the identity 

a a = a for all a EX, 

which we call the quandle condition We shall call a rack satisfying the 
quandle condition a quandle rack or quandle. The term quandle is due 
to Joyce [J]. 

Example 5 The Cyclic Rack 
Here is a finite rack which is not a quandle: 

The cyclic rack of order n, consists of the residues modulo n, Cn = 
{a, 1,2, ... n - 1} with operation ii := i + 1 mod n for all i, j E Cn. 

This is an example of a rack for which the operator group (Zn in this 
case) is a definite quotient of the associated group (Z in this case). 
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Example 6 The Free Rack 
The free rack FR( S) on a given set S is defined, as a set, to be S x F( S) . 
We write the pair (a, w) as a w. Thus 

FR(S) = {aW I a E S, wE F(S)} 

and the rack operation is defined by 

(aw)(b') = awzbz . 

Axiom 1 of definition 1.1 is easy to check whilst for the rack identity notice 

(aw)b' = awzbz == wzbz a wzbz = zbz waw zbz == bZaWbZ 

which is the third form of the identity (axiom 2"). 
The operator group is F( S) whilst the set of orbits is in bijective corre

spondence with the elements of S and all sta.bilizers are trivial. 

Example 7. Coxeter racks. 
Let ( , ) be a symmetric bilinear form on Ron. Then, if S is the subset 
of R n consisting of vectors v satisfying v. v :I 0, there is a rack structure 
defined on S by the formula 

v 2(u, v) 
u = u - ( ) v. V,v 

Geometrically, this is the result ofreflecting u in the hyperplane {w I (w, v) = 
OJ. 

If we multiply the right-hand side of the above formula by -1, then the 
result geometrically is reflection in the line containing v. In this case the 
formula 

v 2(u,v) 
u = ( ) v - u. V,v 

defines a quandle structure on S. 
Now a root system is precisely a finite subra.ck of S which is closed 

under multiplication by -1 (Le. closed under both rack operations), and 
then the operator group is the corresponding Coxeter group. 

Example 8. The Funda.mental Rack of a Link. 
This is the most important rack of all and is the raison d'etre of the whole 
theory. A complete description with proofs can be found in [FR]. A (codi
mension two) link is defined to be a codimension two embedding L : M C Q 
of one manifold in another. We shall assume that the embedding is proper 
at the boundary if necessary, that M is non-empty, that Q is connected and 
that M is transversely oriented in Q. I.e. we assume that each normal 
disc to M in Q has an orientation which is locally and globally coherent. 

The link is said to be framed if there is a cross section (called a. framing) 
A : M -t 8N(!l1) of the normal disk bundle. Denote by M+ the image of 
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M under ;\. We call M+ the parallel manifold to M. For simplicity we 
shall always assume that the link is framed. 

We consider homotopy classes r of paths in Qo = closure(Q - N(M)) 
from a point in M+ to a base point. During the homotopy the final point 
of the path at the base point is kept fixed and the initial point is allowed to 
wander at will on M+. 

The set r has an action of the fundamental group of Qo defined as 
follows: let, be a loop in Qo representing an element 9 of the fundamental 
group. If a E X is represented by the path 0' define a· 9 to be the class of 
the composite path 0'. ,. 

We can use this action to define a rack structure on r. Let p E M+ be a 
point on the framing image. Then p lies on a unique meridian circle of the 
normal circle bundle. Let mp be the loop based at p which follows round 
the meridian in a positive direction. Let a, b E X be represented by the 
paths 0',f3 respectively. Let a(b) be the element of the fundamental group 
determined by the loop 73 . m{3 . f3. (Here 73 represents the inverse path to 
f3 and m{3 is an abbreviation for m{3(O) the meridian at the initial point of 
f3 .) The fundamental rack of the framed link L is defined to be the set 
r = r( L) of homotopy classes of paths as above with operation 

b -a :=a.a(b)=[O'·f3·m{3·f31. 

(If L were an unframed link then we could define its fundamental quandle. 
The definition is very similar. Let r Q = r Q ( L) be the set of homotopy 
classes of paths from the boundary of the regular neighbourhood to the base 
point where the initial point is allowed to wander during the course of the 
homotopy over the whole boundary. The rack structure on r Q is similar to 
that defined on r.) 

1.2 Proposition 
a rack. 

The fundamental rack of a link satisfies the a.. .. doms of 
o 

Note that if G denotes the fundamental group 11"1 (Qo) then the set r is 
in fact a G -rack. 

1.3 Proposition The associated group of the fundamental rack r( L) of 
a link L can be naturally identified with the fundamental group 11"1 (Q - L) 
provided Q is simply connected. 0 

Orbits and stabilizers 

Since a rack is a set X with an action of F( X) (or its quotients Op( X), 
As(X)) we can use all the language of group actions in the context of racks. 
In particular X splits into disjoint orbits and each element has a stabilizer 
(in F(X) or Op(X) or As(X)) associated with it. The orbits in the funda
mental G -rack of a link are in bijective correspondence with the components 
of the link and the next lemma identifies the corresponding stabilizers. 
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An element of the fundamental group represented by a loop of the form 
a· 'Y • Q where 'Y lies in 8N(M) and Q represents the element a E r 
is called a-peripheral. The set of a-peripheral elements forms the a
peripheral subgroup. If 'Y lies in the subset M+ then the cla.ss of a· 'Y' Q 

is called a-longitudinal and the set of a-longitudinal elements forms the 
a-longitudinal subgroup. 

1.4 Lemma With the notation above, the stabilizer of a in the funda
mental group is the a -longitudinal subgroup. 0 

2. Species 

In this section we consider the notion of a species. This is a mathematical 
object loosely analogous to a category. A species is a directed graph, in 
other words it has vertices and directed edges in analogy to the objects and 
morphisms of a category, but instead of composition (which can be regarded 
as given by preferred triangles of morphisms) it has preferred squares of 
edges. However a species in its most primitive form is a much more basic 
notion than a category and so species are more numerous. 

Definition An oriented square in a directed graph is a diagram of edges 
a, b, c, d which can be represented in two ways: 

C 
c D B 

d D 4 4 

ib 0 id or ia () ic 

A a 
B A b C 4 4 

The orientation being represented by the symbol () or O. 
We shall sometimes refer to the edge a in either of the above repesenta

tions as the base of the square. 

Definition: A species in its most primitive form consists of: 

S1. A directed graph r, 
S2. A collection of oriented squares in r called preferred squares. 

In addition a species may satisfy any or all of the following extra axioms: 

S3. Identity Squares: Any loop (Le. edge with the same start and end
point) in r may be designated as an identity loop. However we will never 
allow two identity loops based at the same vertex. We shall usually use the 
notation eA for the identity loop a.t the vertex A. If identity loops exist 
then squa.res such as those illustrated below are preferred. 
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A ~ B B ~ B 

fa 0 fa 

A ~ B A ~ A 
Definition A species with identities is a species equipped with identity 
loops at each vertex. 
S4. Composition laws: 

Suppose that r is in fact a category, so that edges (morphisms) can be 
composed, then there are two composition laws which may be satisfied by a 
species: 
Horizontal Composition: Preferred squares a, b, e, d and a', b', e', d' with d = 
b' may be composed horizontally to form the preferred square aa', b, ee', d' 
with base aa' . 
Vertical Composition: Preferred squares a, b, c, d and a', b', c', (1' with c = a' 
may be composed vertically to form the preferred square a, bb', c', dd' with 
base a. 

c' 

c c' 
b' 0 d' b8 d' 
b 0 d a a' 

a 
Composing Squares 

S5. The Vertebrate Laws: 
VI Given edges a: A --t Band b: A --t C then there a.re unique c, d, D so 

that 
C 

fb 

A 

C 
--t 

o 
a 

--t 

D 

jd 

B 
is preferred. Notice that the other edges a.re determined by two binary 
operations c = ab and d = ba • 

b~ 
a 
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V2 In the following diagram, if the three squares centre, south and west 
are given and preferred then the diagram can be completed as shown 
so that the squares; outside, east and north are preferred. The outside 
square has the anticlockwise orientation. 

o b o o 

c 

Given VI, an equivalent statement is that the edges (I, b, c determine 
the entire diagram of preferred squares. 

Definition A species is said to be vertebrate if it satisfies both vertebrate 
laws. 

In a vertebrate species the skeleton of a square or cube (i.e. the edges 
a, b or a, b, c) has a unique completion to form the final square or cube, and 
this is why we have chosen this terminology. 

Remark The two vertebrate axioms are loosely analogous to the compo
sition and associativity laws of a category. The analogy can be sharpened 
by replacing our chosen skeleta, which are co-original edges (morphisms), by 
consecutive edges, as in the category axioms. This leads to au alternative 
theory of vertebrate species which, in the key example of racks (see example 
4 below), coincides with theory given here. With some misgivings we have 
decided not to pursue this alternative approach. This is because the for
mulae for the boundary maps in the nerve (see section 3) are considerably 
simpler in the co-original approach. 

2.1 Lemma The binary opera tions of a vertehrate species satisfy the 
axioms: 

(a) a bcb = a cbo 

(b) abCb = acb< 

(c) abCb = aCbo. 

Proof We check these equalities by looking at the coincidental labelling 
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on the following diagram. 

o b o 

a 

c () 

o 
Remark If one of the operations is trivial (for example if ab = a for all 
a), then these laws reduce to the rack law for the other operation. Thus 
the three laws define a natural algebraic object which might be called a 
birack. This object, like the rack itself, has an application to links. A link 
diagram has a fundamental birack obtained by labelling arcs, and using both 
operations at crossovers. One operation determines the change of label on 
the understring and the other on the overstring. We shall explore these ideas 
further in a later paper. 

Examples 
1. Any category C determines a directed graph r( C) with vertices the 
objects of C and edges the morphisms of C. Let Spec( C) be the species 
with underlying gra.ph r( C) , whose preferred squares are the commutative 
squares in C. This species satisfies both the identity and composition laws 
above. 

2. Let C be a skeletal category with pushouts. Then C determines a 
vertebrate species with un~erlying graph r( C) and preferred squares the 
pushout squares in C. This species satisfies all the extra axioms given 
above. 

3. Let C be a category with one object (a monoid). Then C determines a 
vertebrate species with both operations trivial i.e. ab = a and ba = b for 
all a, b. This species a.gain satisfies all the extra axioms above. But note 
that in this example the preferred squares are not necessarily commuting 
squa.res. 
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4. The Rack Species 
This is the key example. A rack X defines a species S(X) with a single 
vertex and with X the set of edges. The preferred squares are of the following 
type. 

o 

jb 

o a 
--+ 

o 

o 
5. A rack X determines a second species Sx(X) by taking as vertices the 

set X, and edges a ~ ab , and preferred squares of the following type. 

jc 0 jc 

The species S x(X) covers the species S(X). Both are vertebrate with 
the binary operation ab being the ra.ck opera.tion and tIl(> other operation 
ba being trivial. 

6. A G-rack a : X --+ G determines a species Sa(X), by ta.king as vertices 
the set G, and edges g ~ ga, for a EX, where ga is defined to be (aa) -1 g . 
The preferred squares are of the following type. 

jb 0 jb 

a g --+ ga 

7. There are two similar species associated to a G -rack defined by redefining 
ga to be g8a and (aa )-1 g8a respectively. 

8. The Cube Species 
The n-cube r is the subset [o,l]n of R.n. The 2n vertices of In are 
{( f}, f2, ... ,fn)} where fj = 0, 1. It is often convenient to regard a vertex 
as a subset of {1,2, ... ,n} as follows: A C {1,2, ... ,n} corresponds to the 
vertex with fj = I if and only if i EA. 

A face of In is a sub cube defined by setting some of the coordinates 
equal to either 0 or 1. In particular the 2n (n - I) -faces air, where 
i E {l,2, ... ,n} and f E {O,l}, are defined by setting Xj = f. The l-faces 
are edges and have two vertices given in subset notation hy A and A U {i} 
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where i ¢ A. Faces have standard orientation given by their coordinate 
structure. In particular edges are oriented A -+ A U {i} and 2-faces are 
oriented 

AU{j} -+ AU{i}U{j} 

i 0 i 

A -+ AU {i} 

where i < j. 
Thus In becomes a species by taking its vertices and edges as the vertices 

and edges of the species and 2-faces as preferred squares, oriented as above. 
We shall use the notation ISpec for this species, abbreviating it to In when 
no possibility of confusion can arise. 

Mutations 

Definition A mutation between species is a ma.p which ta.kes vertices to 
vertices, directed edges to directed edges and preferred squares to preferred 
squares. Mutations between species are analogous to functors between cat
egories. There is thus a (large) category of species and mutations. 

A species S determines an associated category Cat(S). The objects of 
C at( S) are just the vertices of S The morphisms of C at( S) are generated by 
the edges of S with the relations which follow from insisting that preferred 
squares commute. Mutations become functors. 

We have already seen in example 1 above that a category C determines 
a species S pee( C). The functions S pee and Cat can be seen to be adjoint 
in the sense of the following lemma: 

0.1 Lemma Given a species S and a category C tllen the set of muta

tions Mut( S, Spec( C)) is in bijective correspondence with the set offunctors 
Fun(Cat(S),C). 0 

The category 0 

The category 0 is the model category for semi-cubical sets. Recall that a 
face of the N -cube In is a subcube defined by setting some of the coordi
nates equal to either 0 or l. 

Let p ~ n and let J be a p-face of In. Then there is a canonical 
isometric identification ,: IP -+ J defined by preserving the order of the 
coordinates and orientation of edges. We call the composition 

.x = inc 0 T IP -+ In 

a face map. 

Definition The category 0 is the category whose objects are the n-cubes 
In for n = 0,1, ... , n and whose morphisms are the face maps. 
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The face map defined by the (n - 1) -face 81 In is denoted 8i: rn -1 -+ In , 
and is given by: 

if j < i, 
if j = i, 
if j > i. 

(1) 

Note that the effect of 8i on the vertex A (in subset notation) is to add one 
to numbers ;::: i, and to insert i if f = 1. 

The following relations hold. 

8:8j_1 = 8j8i 1 ~ i < j ~ nand f,W E {O,l} 

Any face map A can be uniquely written h~: .. . h~; where each fj E {O,l} 
and we can assume either i1 < ... < ik , or ik ~ ••• ~ i1 • 

There is an isomorphic copy of 0 given by replacing In by Irp~c. The 
same formulae, above, define the face maps (mutations) in this copy. This 
copy has a particularly simple definition: 

2.3 Lemma 0 is isomorpl1ic to tIle category wlIicllllas for objects Irpec' 
n = 1,2, ... and morpllisms all mutations IP -+ In for p ~ n. 0 

We shall normally not distinguish betwem the two isomorphic copies of D. 

3. The Nerve of a Species and the Rack Space 

In this section we describe the natural space built out of cubes which is 
associated to a species. The key example is the rack space. 'We also give the 
basic classifying properties of these spaces. 

Semi-cubical sets and their realisations 

A semi-cubical set or D-set is a functor X: DOP -+ Sets. We write xn 
for X (rn), A * for X (A) and in particular 8i for X (8n. 

(This use of 8i is consistent with the previous use - as a particular face 
of In - because rn can be regarded as a D-set with XP the set of p-faces 
of In and A * given by repeated application of ai's.) 

A D-map between D-sets is a natural transformation. 

The realisation IXl.of a D-set X is given by making the identifica
tions (A*X,t) "" (X,At) in the disjoint union Ilxn X In, where In has its 
topological meaning. 

The nerve of a species 

Now let S be a species. The nerve of S, denoted N( S), is the semi-cubical 
set defined by 

N(s)(n) = Mut(In,S), the set of mutations from the cube species to S. 

A*(f) = f 0 A where A: IP -+ In is a face map (mutation). 
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Key Example The Rack Space 
Let X be a rack and let SeX) be the vertebrate species associated to X 
and described by example 4 in the previous section. We shall write BX for 
the realisation IN S(X)I. This is the rack space. 

As a cubical set the rack space has a particularly simple description analo
gous to the bar construction for groups. Indeed this is true for any vertebrate 
species. Let X be a vertebrate species then IN S(X)I has one cube for each 
sequence of length n, (Xl, X2, ... , X n) E xn and the face maps are given by: 

a1(x}, ... ,xn) = ((XI)Xi, ... ,(Xi_I)Xi,(Xi+t}xp· ··,(xn)x;) for 1 ~ i ~ n. 

For details here see [FRS]. 

3.1 Lemma TllC funda.mental group 1I"1(BX) is isomorphic to A.s(X) , 
the associated group of X . 

Proof Since SeX) has only one vertex the fundamental group of the 1-
skeleton is the free group F(X). Adding the 2-cells is equivalent to adding 
the relations ab = b-Iab which gives the required result. 0 

We now investigate the homotopy group 11"2 (EX). To do this we first find 
a combinatorial representation of 11"21 N (S) I for a general species S. Many of 
the concepts such as labelled diagrams can be generalised to give descriptions 
of the higher homotopy groups 1I"nIN(S)1 where n > 2 and of the bordism 
groups nnIN(S)I. We shall investigate these ideas in [FRS]. 

Labelled Diagrams 

A diagram on a surface is a collection of oriented circles in general position 
such that at each crossing one of the arcs is regarded as the overcrossing arc 
and the other a.rc as the l1ndercrossing arc. 

+=--or 
We say that a diagram is labelled by a species if ea.ch arc of the diagra.m is 
transversely oriented by an edge of the species, 

+-
and at each crossing the resulting square of edges is preferred. In these 
diagrams the arcs will be indicated by heavier print than the transverse 
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labelling. b83d 

a 

Labelling by a Preferred Square at a Crossing 
Note that in the diagram the base a of the preferred square is parallel 

to the overcrossing arc, and this determines the orientation of the preferred 
square. 

For an oriented diagram in 52 we adopt the convention illustrated below 
for the transverse orientations of arcs. 

+ 
There is a strong connection between labelled diagrams and maps into 

the nerve. 
Given a diagram D in a surface ~ labelled by the species 5 there is a 

map fD: r. ---+ IN(5)1 defined as follows. Thicken the diagram so that the 
surface is divided into three types of regions: 
square regions about each crossing, 
ribbon regions about the parts of arcs which don't lie in the square regions 
and 
outer regions consisting of everything else. 

For example the trefoil diagram gives rise to the following division with 
three square regions, six ribbon regions and five outer regions. 

The Trefoil Knot 

Now define fD by sending each square to the corresponding square, pro
jecting each ribbon to its transversely labelling edge and sending the outer 
regions to the corresponding vertex. 

Conversely, given a map f: ~ ---+ IN(5)1, then by making f transverse to 
the 1 and 2-cells of the cubical complex IN(5)1 (see [BRS; chapter 7], [F]) 
we get a corresponding labelled diagram in r.. 

We now investigate the changes to the diagram which correspond to ho
motopy of the map in the nerve. 
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The first set of changes are familiar from knot theory. They are the 
Reidemeister O2 and 0 3 moves. 

We say that a,n O2 move is legal provided the diagram is labelled before 
and after the move, so that the labelling matches away from the move and 
both squares involved are preferred. The legal labels on the following picture 
show that the two preferred squares will necessarily be the same and have 
opposite orientation. 

b 

the 02-move 
Similarly, an 0 3 move is legal if the diagra.m is la.belled before and af

ter the move, so that the labelling matches away from the move and all 
appropriate squares are preferred. 

The following is an example of a legal 0 3 move in which the labelling is 
by elements of a rack. The resulting homotopy is over a 3-cell in the rack 
space. 

A Reidemeister 0 3 move, as a Homotopy over a 3-cell in the Rack Space 
When the labels, are from a general species, then it may not be possible 

to perform legal O2 or 0 3 moves, even when such moves are possible on the 
unlabelled diagram. However, when the species is a rack species, then this is 
always possible, indeed this is precisely what the rack laws imply, see [FR; 
section 4] and the remarks above corollary 3.4 below. 

The other moves that we need are introduced in the next definition: 
Definition A cobordism by moves between two labelled diagrams is a 
sequence of the following moves: 
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(1) Legal Reidemeister O2 and 0 3 moves. 
(2) Introduction and deletion of un knotted and unlinked circle components 

in the diagram D ¢} DUO. 
(3) A bridge move a ~ a ¢} a ~ L-t a between adjacent arcs 

with the same label and opposite orientations. 

3.2 Proposition Homotopy classes of maps [E,IN(S)I] are in bijective 
corrrespondence with equivalence classes of diagrams in E labelled by S 
under cobordism by moves. 

Proof As remarked earlier, by using transversality ([BRSj,[F]) we can ho
mot ope a map f: E -+ IN(S)I to be transverse to the 1 and 2-skeleta of 
IN(S)I and produce a labelled diagram D in E such that f = fD. Now 
suppose that fD and fD' are homotopic. Then by relative transversality 
the corresponding diagrams are cobordant in the sense that there is a la
belled diagram in E x I with boundary D x {O} U D' x {I}. By a labelled 
diagram in a 3-manifold we mean a self-transverse immersed surface which 
is transversely labelled by edges of S away from the double curves, and such 
that at double curves the transverse labellings form preferred squares which 
fit consistently together at triple points (thus forming cubes of IN(S)I). By 
looking at level sections of this cobordism in general position it is not hard 
to see that D and D' are cobordant by moves. (Bridge moves are saddles, 
maxima and minima correspond to introduction or removal of unknotted 
unlinked components, triple points correspond to 0 3 moves, maxima or 
minima of double curves to O2 moves.) 

Conversely a cobordism by moves gives an ordinary cobordism which 
corresponds to a map of E x I in IN ( S) I by a construction similar to that 
for fD given above. D 

Remark The regions of a labelled diagram are mapped by the correspond
ing map to vertices of IN(S)I and so can be regarded as labelled by vertices 
of S. 

3.3 Corollary 7r2IN(S)1 is in bijective corrrespondence witlI equivalence 
classes of diagrams in S2 labelled by S, suell tllat tIle basepoint is labelled 
by the base vertex of S , under eobordism by moves away from the basepoint. 

We now turn to the case of the rack space. In this case the concept of a 
labelled diagram has an interpretation in terms of the fundamental rack of 
the link represented by the diagram. For simplicity consider a framed link L 
in S3 , and let X be a rack. A labelling of L by X means a homomorphism 
of the fundamental rack r( L) to X. Such a homomorphism gives rise to 
a labelling of any diagram D corresponding to L by X i.e. the arcs are 
labelled by elements of X so that at crossings the labellings are consistent 
with the rack operation in X. But this is precisely the same as a labelling 
of D by the species S(X). Conversely, any such labelling corresponds to a 
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homomorphism. Thus, in this case, labelling is a property of the link not 
of the diagram and hence is invariant under isotopy i.e. under O2 and 0 3 

moves, thus all such moves are automatically legal. 
We say that labelled links L, L' are labelled cobordant if there is an 

embedded surface F in 53 X I with boundary L x {OJ U L' X {l} and a 
homomorphism of the fundamental rack of F in 53 X I to X extending the 
given homomorphisms of the fundamental racks of Land L'. By looking at 
the level sections of such a cobordism in general position we see that Land 
L' differ by isotopy, labelled bridge moves and the introduction or deletion 
of unknotted, unlinked components. I.e. diagrams for Land L' differ by 
cobordism by moves and the different concepts of cobordism all coincide. 

Now by general position we can assume that the cobordism F misses * X I 
where * is the basepoint of 53, and hence the corresponding cobordism by 
moves can be assumed to miss the basepoint in 52. ,\Ve have proved: 

3.4 Corollary Let X be a rack. TlIen 7r'2(BX) is in bijective correspon-
dence with cobordism classes of links in 53 labelled by X . 

4. The Second Homotopy Group of the Space of a Classical Rack 

Let L be a tame classical link in 53. We say that L is non-split or 
irreducible if no embedded 2-sphere in 53 - L divides the components of 
L into two non-empty subsets. In general a link can be written as a union 
L = LI U ... U Lk where each Li is a maximal irreducible sublink. We 
call the sublinks Li the blocks of L. A block is said to be trivial if it is 
equivalent to the unknot with zero framing. The purpose of this section is 
to prove the following result. 

4.1 Theorem Suppose X is the fundamental rack of a tame classical 
link in S3 and BX is the space of X. Then 7r'2(BX) ~ ZP where p is the 
number of non-trivial blocks of L. 

Furthermore a basis of 7r'2(BX) is given by diagrams representing these 
blocks. 

Before proving the theorem we shall prove: 

4.2 Lemma Let X be al!Y rack then the action of tIle fundamental group 
7r'1(BX) on 7r'2(BX) is trivial. 

Proof We shall use the result from the last section that elements of 7r'2( BX) 
can be represented as cobordism classes of diagrams in 52 labelled by ele
ments of the rack X. 

We shall exhibit a cobordism between the diagram D and Da where Da 

is the diagram D in which every label has been acted upon by the rack 
element a. In words the cobordism proceeds as follows: introduce into D 
an unlinked unknotted circle labelled a. Now pass an arc of this circle over 
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D so that D is replaced by Da • Now pass the arc under Da to its original 
position and delete the circle. 0 

Remark A similar proof shows that BX is a simple space (11'1 acts triv
ially on 11'" for each n > 1). For details see [FRS]. 

Proof of the theorem We shall deal first with the irreducible case. 

Case 1: L is irreducible and non-trivial 
We shall show that in this case 1I'2(BX) is isomorphic to homotopy classes 
of maps from 53 to itself. These classes are classified by degree which means 
that the group is, as claimed, the integers, Z. 

Given a map f: 53 -+ 53, we can deform f to be transverse to a tubular 
neighbourhood N of L. Then the preimage is a link L' in 53 and f 
determines a homomorphism of fundamental racks f( L') -+ f( L). In other 
words L' is labelled by X. Similarly a homotopy gives a labelled cobordism 
between labelled links. 

There is thus a homomorphism from [53, 53] to cobordism classes of 
labelled links (labelled by X) which is 1I'2(BX) by corollary 3.4. We shall 
now construct an inverse to this homomorphism. Let L' be any link labelled 
by X. Let N' be a tubular neighbourhood of L'. We shall construct the 
required map f : 53 -+ 53 by first defining f on the tori N' -+ N. Let 
D' be a diagram for L'. Pick an arbitary arc of D' and let a E X be its 
label. Let ](' be the component of L' containing this arc. The label a E X 
will be the conjugate of a label of some component ]( of L. If we now 
carryon round the component ](' until we return to our starting point the 
underpasses will spell out a word w E A(X). This word satisfies aW = a 
and so by lemma 1.4 is some power [" of the framing longitude [ of ](. 
Note that n is well-defined since I has infinite order in 11'1(53 - L). 

We can now define f on this component of aN' to the corresponding 
component of aN by sending the standard meridian of the original arc to 
the meridian corresponding to a and by sending the longitude to I". Note 
that the degree of this ma.p of surfaces is the integer n with appropriate 
choice of orientations. 

Now extend the partially defined map over the interior of solid torus and 
in a likewise manner over the rest of the components of N'. 

Consider now a cell complex subdividing the closure of the complementary 
space 53 - N'. Since the fundamental group is generated by meridians and 
since the map respects their relations there is no obstruction to extending the 
map f over the 2-skeleton. Up to this point we have not used the fact that L 
is irreducible. Since this is the case the second homotopy group 11'2(53 - N) 
is trivial and there is no obstruction to defining f on closute( 53 - N') -+ 

closure( 53 - N). 
We can calculate the degree of f as follows. Pick any component T of 

aN and let T{, ... , T~ be the components of aN' which get mapped to T. 
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Suppose that f has degree nl, ... , nk on these components. Then deg f is 
the sum nl + ... + nk . 

We now observe that the degree is invariant under homotopy which is the 
same as invariance under (labelled) cobordism: a cobordism is equivalent to 
a cobordism by moves (see the last section) and it can be readily checked 
that the degree is invariant under each of the moves 

Thus we have a well-defined inverse function 1f'2(BX) --+ [S3, S3] which 
completes the proof of case 1. 

Case 2: L is irreducible and trivial 
In this case the homomorphism [S3,S3] --+ 1f'2(BX) defined in case 1 is 
surjective by exactly the same argument (the map f can be constructed but 
its degree is not well-defined since I is zero in this case). But a generator 
of [S3, S3] is represented by a single unknotted circle of framing zero which 
can be removed by a cobordism, hence 1f'2(BX) is zero. 

Tllis completes case 2 and we now turn to the general case L = Ll U .. . UL k 

where each Li is maximal irreducible. We need the following lemmas. 

4.3 Lemma Let M be an irreducible 3-manifold. Let Mo be M with 
the interior of a k balls B}, ... , Bk removed. If k = 1 assume tllat 1f'1 (M) is 
non-trivial. Then 1f'2 (Mo) is generated as a 1f'1 (Mo) module by the spheres 
aBi. 
Proof_Let M and Mo be the universal covers of M and Mo respectively. 
Then M can be obtained from Mo by filling in holes with copies gBi of 
Bj one for each element 9 in 1f'1 (Mo), i = 1 ... n. Since M is irreducible 
1f'2 (M) ~ H 2 (M) ~ O. Then usin.f. a Mayer-Vietoris sequence we see that as 
an abelian group 1f'2(Mo) ~ H2(Mo) has one generator for each pair (g, B j) 
wheregE1f'l(Mo). 0 

4.4 Lemma Let M be the connected sum M = MIU", UAh of k ir
reducible 3-manifolds ea,ch with non trivial fundamental group. Then as a 
1f'1(M) module 1f'2(M) is generated by the seperating splleres S}, ... , Sk-l' 
Proof Let an element of 1f'2(M) be represented by a map f: S2 --+ M of 
the 2-sphere into M which we may assume is transverse to the seperating 
spheres. Consider an innermost disc D in S2 which has boundary in the 
intersection of f( S2) and $j say. Let D' be a (singular) disc in Sj which 
bounds aD. Then by the previous lemma the homotopy class of the sphere 
DUD' is in the subgroup generated as a 1f'1 (M) module by the seperating 
spheres S}, ... , Sk-l. By subtracting this element, we may perform a ho
motopy to remove this intersection curve. We can now argue by induction 
on the number of intersections. 0 

Returning now to the proof of the main theorem we attempt to construct 
as before a map f of the 3-sphere to itself. This time the obstructions to 
mapping in the 3-cells may be non zero. By the above lemma these can be 
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made zero by introducing into the diagram D a number of disjoint copies of 
diagrams for the links Li (possibly conjugated by an element of X). This 
means that the map f can be defined on the extended diagram. Indeed we 
may further extend the diagram so that f has degree zero. If we now make 
the resulting homotopy transverse to L we construct a cobordism between 
the original diagram D and and a number of disjoint copies of conjugated 
diagrams for the links Li • By lemma 4.1, we can assume that these diagrams 
are labelled in a standard way (not by conjugates). Thus the diagrams for 
Li form a generating set for 11'2. Note that the diagrams for any trivial 
sublinks can be coborded away as in case 2. 

Now no non-trivial linear combination of the remaining diagrams can be 
cobordant to zero because each component is labelled by elements of the 
rack which are distinct, so that no two arcs from different components can 
ever amalgamate by a bridge move. In particular no two distinct Li can 
interact in their own annihilation. Moreover no non-trivial Li can dissapear 
by the proof of case 1. Thus they form a basis for 11'2 and the theorem is 
proved. D 
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SOME REMARKS ON THE BRAID-PERMUTATION GROUP 
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ABSTRACT: A subgroup ofthe automorphism group of the free group is considered. This 
is the automorphism group of the free quandle. Various properties are demonstrated. A 
set of generators is given and also set of relations which show the close connection with 
both the classical braid and permutation groups. The elements of this group are pictured 
as braids generalised to allow some crossings to be "welded". 

1. Introduction 

In this paper we consider the subgroup of the automorphism group of the 
free group generated by the braid group and the permutation group. If 
{XI.' .. , x,tl are the generators of the free group Fn then the braid sub
group Bn is the subgroup of Aut (Fn) generated by the elements O'i, l = 
1,2" ",n -1 given by 

{ 
X· ~ xi+l 

Xj~l ~ Xj+l-l XjXj+l 

Xi ~ Xi jl-i, i+l. 
and the permutation subgroup consists of all permutations of the generators 
{Xl, ..• , X ,tl with generators the transpositions Tj, i = 1,2" .. , n - 1 , 

{ X;~l : X~:l 
Xi ~ Xi j i= i, i + l. 

We will call this subgroup the braid-permutation group or BPn for 
short. This group is clearly finitely generated and we shall list a finite set 
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ofrelations. There are pictures for elements of BPn analogous to the usual 
ones for braids but generalised to allow some' crossings to be "welded". 

2. Racks, quandles, free racks, free quandles 

It is known that B P" is isomorphic to Aut (FQ n), the group of automor· 
phisms of the free quandle of rank n, see [FR]. A quandle is an algebraic 
gadget intimately associated with a knot or link. Racks and quandles have 
been defined by many authors but we take our definitions from [FR] in 1991 . 
. -\ rack R is a set with a binary operation on it. This operation - which 
we will write exponentially - is subject to the following a.xioms: 

(i) for all band c in R there exists a unique a E R such that 

ab = c 

(the element a will be denoted a = cb ) 

(ii) for all a, b, c E R 

where we· have adopted the usual conventions for an operation written ex
ponentially: xY: := (xY)= and xY= := x{Y=) . 

If Q is a rack and it satisfies the additional axiom 

(iii) aa = a for all a E Q 

then it is called a qual1dle. 

As usual in universal algebra the concept of free rack and free quandle can 
be defined. 

Definition Let 5 be a set. We call FQ( S) (F R( S») a free quandle 
(free rack) on the set S, if it satisfies the following two conditions: 

(1) SCFQ(S) (SCFR(S») 
(2) whenever X is a quandle (rack) and f : S -t X a function then 

there is a unique quandle (rack) homomorphism 7 : FQ(S) -t X (F R(S) -t 

X) w-hich is an extension of f. 
Let F(S) denote tile free group on the set S. 

2.1 Theorem 

(1 ) Up to relative isomorphism there exists a unique free quandle and 
a unique free rack on S. 

(2) FQ(S) and FR(S) can be constructed as follows_ FR(S) is the 
set S X F(S) = {(a, w) = aWla E 5, wE F(S)} with the operation defined 
by: 
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FQ( 5) is F R( 5) modulo the equiralence generated by aO = a for all a E S. 

Notation If 5 is the finite set {Xl" .. ,x,J then we will use the notation 

for the free quandle on {Xl,"', X,,} and 

Fn = F( {Xl, ... , Xn}) 

for the free group on {Xl,"" X,,} . 

Let a : FQ" -+ Fn be defined by a(aW ) = w-Iaw. Then any automor
phism 4> : FQn -+ FQ" induces an automorphism 4>d : Fn -+ Fn such that 
the diagram below commutes. 

a a 
91 

Fn • Fn 

The correspondence 4> -+ 1>~ embeds Aut(FQn) as a subgroup of Aut(F,,). 

3. The map Bn -+ Aut(FQn) 

Let I be a axed embedding of n points into D2. Consider an embedding f3 
of n disjoint line segments into D2 X I so that the embedding of each line 
segment is monotone in the second coordinate (1) and the endpoints of the 
line segments are the image of the composition Ii : {n points} -+ D2 = 
D2 X {i} C D2 X I for i = 1,2. 

Figure 1 

')'0 D2 X {O} 

')'1 

A braid (3 
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We call n-braids the equivalence classes of the embeddings under relative 
isotopies of D2 x I which preserve levels. Unde·r the multiplication pictured 
in figure 2 the n-braids form the braid group on n strings called Bn· 

Fig. 2 

/h 0/32 

/h 

The braid /3 as tlJe product /31/32 

By abuse of language we will sometimes fail to distinguish between a 
braid and a representative /3 of that braid. This will cause no confusion 
because nothing we consider depends on which representatiYe we take. 

Recall that a fundamental quandle r( t) can be defined for all embeddings 
t of codimension two. 

3.1 Lemma 
(1) rCl) ~ FQn 
(2) r(3) ~ FQn 

Instead of proving these results we will just give the isomorphisms that we 
will use through the paper without proving that they are isomorphisms. The 
formal proof is an easy exercise. 

(1) It would be helpful at this stage for the reader to refer to figure 
3. Assume the points {PI, ... , Pn } are positioned along the x-axis in D2. 
Take a base point (0, -1) = B E aD2 = 51, and let X be the antipodal 
point (0,1). 

Connect X with the n line segments: Ii = pi X. An element of r( I) is 
represented by an arc a connecting some Pk with B in n2 \ {PI, ... , Pn }. 

Going along a from Pk to B we can spell out a word w as follows: if we 
meet Ii from left to right then write down Xi, if we meet it from right to 
left write down X;I. In this way we obtain a word w in the Xi'S. Now the 
map p: rCl) -+ FQn is a f-+ xi:. 
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For example in figure 3 we get Q I-t X~IX3 == Xf3 E FQ3. 

Figure 3 

X 
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(2) Take a base point Bi = B X {i} for i = 1,2. \Ve are going to show 
two maps qi : fUJ) ~ f( I), i = 0,1, which are isomorphisms. If a is in 
f(j3) then it is represented by an arc from one of the line segments of the 
n-braid to Bi avoiding the image of (3. Let this arc a "drop" down (or up) 
to D2 X {i} by a homotopy of a which avoids the image of f3. Of course 
the tail of the arc can wander on the braid during the homotopy - see the 
definition of the fundamental quandle in [FRJ. This gives rise to an element 
in fb). 

Let us now take an n-braid f3. Its embedding space is D2 X I. Let 
the embedding of its n top (bottom) endpoints into D2 be called 10 = 
{P1 ,···,Pn } X 0 (-1'1 = {Pb···,Pn } X 1). 

Then from the isomorphisms described above we can construct an auto
morphism of FQ n : 

The two f((3) 's in the above formula are taken with the different base points 
Bo and Bl respectively. The isomorphism between them is induced by the 
arc {B} X I (because we can clearly assume that {B} X I is disjoint from 
f3 ). 

The composition in (*) (reading from left to right) is called cf>(f3) : 
FQn ~ FQn. So cf> : Bn ~ Aut(FQn). 

The map cf> is obviously a homomorphism and it is in fact injective. The 
injectiveness can be shown in a similar way as it is shown for free groups 
(instead of free quandles) in [BZ]. 

As an example one can see that the braid in figure 1 determines the 
automorphism: Xl I-t X3, X2 I-t Xf3 , X3 I-t X~3 
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4. A presentation of the map q> 

Now we present an easy way to calculate the automorphism of FQn assigned 
to an n-braid. Let f3 be an n-braid and let us take a diagram of it. Let us 
orient all strings "downwards" (i.e. from the 0 level to the 1 level). Let us 
label the bottom ends of the strings by Xl,"" X n . Now we will label all of 
the arc components of the diagram with elements of FQ". Let us do it so 
that at a crossing like this below (figure 4) the relation c = ba is true. 

Figure 4 

b a 

x 
c 

Labelling near a crossing 

Consequently if the top ends of the strings are labelled with 'Wl, ••. ,'W" E 
FQn respectively then q>(f3) is the automorphism determined by Xi 1-+ 'Wi. 

For example the braid represented by the diagram in figure 5 determines 
the automorphism given by 

Figure .5 

The map q> is not surjective, so studying q> itself is not enough to state 
anything about the whole of Aut (FQ,,). SO the goal is extending the map q> 
from a braid to a generalized braid diagram called a welded braid diagram. 
This is done in the next section. 

5. The welded braid diagrams 

A generalized - or welded - braid diagram is just like an ordinary braid 
diagram except that at a crossing of two strings we can weld the two strings 
together. An example of a welded braid diagram is given in figure 6. 
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Figure 6 

For reasons which will be dear later we do not regard a welded braid as 
a 2-dimensional projection of some 3-dimensional object. 

No''''' we would like to assign an automorphism of FQ" to an n-string 
welded braid diagralll. Section 4 motivates the following definition. 

First orient all strings downwards. Assign Xl, .•. , x" to the bottom of 
the strings. Now change the welded braid diagram for a moment so that at 
a welded crossing the strings avoid each other without break (,vhich can not 
be pictured in the plane.) Then let us take components of this and label 
them with the elements of FQ" in the usual way (see figure 4). Now we 
can read off the automorphism of FQ" as before: if Wi is assigned to the 
i th bottom endpoint then the automorphism is determined by Xi I---? Wi. For 
example the welded braid diagram in figure 6 determines the automorphism 

{ 

XI2XIX2 

:: : ~2 
x. 

X3 I---? Xl. 

_ill welded braids can be built up from two types of atomic welded braids. 
The first type familiar from braid theory is O"i which interchanges the i-th 
and i + 1-th strands so that the left hand string croses over the right hand 
string as we go downwards. The second type Tj replaces the crossing in O"i 

by a weld. These two types define the automorphisms 

{" I---? Xi+! 

Xi~l I---? XX;+1 
I 

Xj I---? Xj j =J i, i + l. 
and 

{" I---? Xi+l 

Xi~l I---? X· I 
X· I---? X· j =J i, i + l. J J 

respectively. (Compare with the formulce in the introduction). 
The most important result - which is the main reason for using welded 

braid diagrams - is the following. 

5.1 Theorem Every automorphisms of the free quandle can be obtained 
from a welded braid diagram. 
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The proof depends on the Nielsen theory of free groups and can be found in 
[FR). 

The question now arises: which welded braid diagrams determine the 
same element of Aut (FQ n). One can make local changes to the welded 
braid diagram as pictured in figure 7. These changes do not change the 
assigned automorphism. 

Figure 7 

The first two types are the Reidemeister moves and one can easily check 
that the other two do not alter the assigned automorphism either. Actually, 
if we identify ,velded braid diagrams that differ only in the Reidemeister 
moves then we can embed the group of braids into the semi group of welded 
braid diagrams. If we also identify those braids that differ in the second two 
moves then ,ve can give the welded braid diagrams the structure of a group. 

One can, however, see that there are some more local changes that do 
not change the assigned automorphism. In figure 8 we present two of them. 

Figure 8 

\j 

!\ y 
/\ 

I. 

All of the moves seen up to now are similar to the Reideil1eister moves, and 
therefore one could be forgiven for thinking the following: Welded braids can 
be defined as the 2-dimensional projection of 3-dimensional ,velded braids 
and two welded braid diagrams give the same automorphism of FQn if they 
are projections of equivalent welded braids - where the equivalence among 
3 -dimensional welded braids is some kind of natural equivalence, e.g. isotopy 
in 3-space. 

This is not so and can be readily seen by realizing that the local change 
pictured in figure 9 changes the assigned automorphism. 
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Figure 9 

Two welded braids II'hidl do /lot iIlduce the same elemeIlt of Aut FQn . 

It is as if there were a semi-infinite rod starting at each weld and pointing 
into the plane of the diagram preventing the arc behind from passing. 

5.2 Theorem Two welded braid diagrams determine the same automor
phism of FQn iff they can be obtained from each other by a finite sequence 
of the local moves in figure 7 and 8. 

We can illustrate this by looking at the welded braid in figure 10. 

Figure 10 

This induces the identity map of the free quandle on four generators and can 
be reduced to the identity braid by a series of moves illustrated in figure 11 
below. 
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Figure 11 
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The proof of theorem 5.2 will be given in a later paper. Part of the proof 
depends on work by Kruger [K]. The following result is the algebraic for
mulation of the theorem and gives the promised presentation of the braid
permutation group. The presentation makes the connection with both the 
braid and permutation groups clear. 
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5.3 Theorem The group BPI! ~ Aut(FQn) has a presentation with 
generators (Tj, Tj, i = 1,·· ., n - 1, and relations 
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ABSTRACT. This article is an introduction to the topological imitation theory 
for (3,1 )-manifold pairs, which propose a method how to construct a topologically 
close, new (3,1 )-manifold pair from a given (3,1 )-manifold pair. Some elementary 
new applications to knot theory are given. 

O. Knot theory from a 4-dimensional aspect 

We consider the equatorial 3-sphere 53 in the 4-sphere 54. Then it is well-known 
that every knot K in 53 bounds a smoothly imbedded disk D in 54, although in 
general intD meets 53. A knot K in 53 is called a slice if K bounds a smoothly 
imbedded disk D in 54 with intD n 53 = 0. The disk D is then called a slice disk. 
Note that the union D U rD forms a 2-knot in 5\ where r denotes the standard 
involution on 54 with Fix( r, 54) = 53. The concept of a slice knot was introduced 
by R. H. Fox and J. W. Milnor (cf. R. H. Fox[1]). In this article, we shall concern 
a special kind of slice knot( d. R. Kirby-P. Melvin[12], W. Brakes[O]). 

DEFINITION: A knot K in 53 is a superslice if K bounds a slice disk D such that 
the 2-knot D U r D is trivial in 54. 

Fig. 1 

The Kinoshita-Terasaka knot K KT (See [13]), illustrated in Fig. 1 is the first 
example of a superslice (d. S. Suzuki[19,10.22]), which has been known at latest 
in 1970 by R. H. Fox, F. Hosokawa, T. Yanagawa and others. See Section 2 for 
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more recent historical notes. We shall replace in Lemma 2.1 the concept of a 
superslice knot with the existence of a certain map, called an almost identical 
imitation, so that a knot K in S3 is a superslice if and only if for a trivial knot 0 
in S3 there is an almost identical imitation q : (S3, K) -t (S3, 0). The topological 
imitation theory, which we shall develop in this article treats a generalization of 
the concept of a superslice knot in terms of such a map. In Section 1, we describe 
basic concepts of topological imitation theory for manifold pairs (M, L) such that 
M is a smooth connected oriented 3-manifold and L is 0 or a proper (possibly 
disconnected) oriented smooth 1-submanifold. In Section 2, we describe historical 
notes and main theorems. In Section 3, some elementary applications to knot theory 
are given. 

1. The topological imitation theory 

By a manifold pair, we mean a pair (M, L) such that M is a smooth connected 
oriented 3-manifold and L is 0 or a proper (possibly disconnected) oriented smooth 
1-submanifold. In particular, the manifold pair (M, L) is identified with the 3-
manifold M when L = 0 and called a (3,1)-manifold pair when L i= 0. A (3,1)
manifold pair (M, L) is called an r-component link if L consists of just r loop 
components, and an r-string tangle if L consists of just r arc components. A 1-
component link is also called a knot. Let I = [-1, 1]. 

DEFINITION: For a manifold pair (M,L), a smooth involution a on (M,L) x I is 
a reflection in (M, L) x I if: 

(1) a((M, L) x 1) = (M, L) x (-1), 
(2) The fixed point set, Fix(a, (M, L) x I) of a in (M, L) x I is a manifold pair. 

The following definition contains an improvement of the definitions in [5], [7] and 
can be found in [8]. 

DEFINITION: For a manifold pair (M,L), let a be a reflection in (M,L) x I. 
(1) a is standard if a(x, t) = (x, -t) for all (x, t) E M x I, 
(2) a is normal if a(x,t) = (x,-t) for all (x,t) E 8(M x I) U N(L) x I for a 

tubular neighborhood N(L) of Lin M, 
(3) a is isotopically standard if f-Iaf is standard for a diffeomorphism f of MxI 

which is isotopic to the identity by an isotopy keeping 8(M x I) U N(L) x I 
fixed for a tubular neighborhood N(L) of L in M, 

(4) a is isotopically almost standard if L i= 0 and a defines an isotopically 
standard reflection in (M, L - a) X I for each component a of L. 

In the above definition and from now on, we understand that N(L) = 0 when 
L = 0. 

DEFINITION: For a manifold pair (M, L), a smooth imbedding ¢ from a manifold 
pair (M*, L*) to (M, L)xI is a reflector of a reflection a in (M, L)xI if ¢(M*, L*) = 
Fix(a, (M,L) x I). 
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DEFINITION: The composite 

q: (M*,L*) ~ (M,L) X Ipro~ion (M,L) 

for a reflector <p of a reflection 0: in (M,L) x I is an imitation. Further, if 0: is 
normal, then q is a normal imitation, and if 0: is isotopically almost standard, then 
q is an almost identical imitation. 

When q : (M*, L *) -+ (M, L) is an imitation (or a normal imitation or an almost 
identical imitation, resp.), we also call (M*, L *) an imitation (or a normal imitation 
or an almost identical imitation, resp.) of (M, L) with imitation map q. Clearly, 
an almost identical imitation implies a normal imitation. The following theorem is 
a reformation of several results in [6]. 

THEOREM 1.1. For manifold pairs (M,L), (M*,L*), (M**,L**), we have the 
following: 

(1) If q : (M*, L*) -+ (M, L) and q* : (M**, L**) -+ (M*, L*) are normal (or 
almost identical, resp.) imitations, then there is a normal (or an almost 
identical, resp.) imitation q** : (M**, L **) -+ (M, L), 

(2) Ifq: (M*,L*) -+ (M,L) is a normal imitation and p: (M,L) -+ (M,L) 
is a finite covering, unbranched or branched along some components of L, 
then p*: (M*,L*) -+ (M*,L*) is a covering and ij: (M*,L*) -+ (M,L) is a 
normal imitation in the following pullback diagram: 

(M*,L*) 
ij 

(M,L) --t 

pol lp 
(M*,L*) 

q 
(M,L), --t 

(3) If q : (M*, L*) -+ (M, L) is a normal imitation, then there are tubular 
neighborhoods N(L*),N(L) of L*,L in M*,M, respectively such that q 
defines a diffeomorphism from N(L*) onto N(L), denoted by qN, and a 
degree one map from the exterior E(L*,M*) = cl(M* - N(L*)) onto the 
exterior E(L, M) = cl(M - N(L)), denoted by qE, inducing an epimorphism 
(qE)# : 7rl(E(L *, M*), x*) -+ 7rl (E(L, M), x) whose kernel group is perfect, 
i.e., H1(Ker(qE)#; Z) = O. 

A sphere component S of aM is called an n-pointed sphere for a manifold pair 
(M, L) if IS n LI = n. Let q : (M*, L *) -+ (M, L) be an almost identical imitation. 
Then L :I 0 and the map (M*, L* - a*) -+ (M, L - a) defined by q is homotopic to 
a diffeomorphism by a homotopy relative to aM* UN(L* -a*) for any components 
a*, a of L*, L with q(a*) = a and a tubular neighborhood N(L* - a*) of L* - a* in 
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M*. Hence by a choice of the reflector <P used for the definition of q, we can identify 
M* with M so that ql8M =identity. From this reason, we write the almost identical 
imitation q : (M*,L*) ~ (M,L) as q : (M,L*) ~ (M,L). If S is a I-pointed 
sphere for (M,L), then the almost identical imitation map q : (M,L*) ~ (M,L) 
is homotopic to a diffeomorphism by a homotopy relative to 8M U N(L* - a*) for 
a component a* of L* with IS n a*1 = 1 and a tubular neighborhood N(L* - a*) 
of L* - a* in M. If S is a 2-pointed sphere for (M,L), then we construct a (3,1)
manifold pair (M+,L+) from (M,L) by a spherical completion, i.e., adding a cone 
over (S,SnL). Then the almost identical imitation q: (M,L*) ~ (M,L) extends 
to an almost identical imitation q+ : (M+, L *+) ~ (M+, L +) with E( L *+ , M+) ~ 
E( L *, M). Thus, to obtain an almost identical imitation q : (M, L *) ~ (M, L) with 
E(L*,M),E(L,M) non-diffeomorphic, we may assume without loss of generality 
that there are no n-pointed spheres for (M, L) with 0 :S n :S 2. Such a manifold pair 
(M, L) is said to be good. Links in the 3-sphere S3 and r(2 2)-string tangles in the 
3-ball B3 are typical exam pIes of good (3,1)-manifold pairs. From any manifold pair 
(M, L), we can obtain a unique good manifold pair by spherical completions, which 
we denote by (M,L)". Then any normal imitation q: (M*,L*) ~ (M,L) extends 
to a unique normal imitation q" : (M*,L*)" ~ (M,L)". Our main purpose is 
to construct many kinds of almost identical imitations q: (M,L*) ~ (M,L) with 
E(L*,M) non-diffeomorphic to E(L,M) for any good (3,1)-manifold pair (M,L). 

2. Historical notes and main theorems 

Early examples of imitations come from superslice knots. To state them, we observe 
the following lemma: 

LEMMA 2.1. A knot K in S3 is a superslice if and only if there is an almost identical 
imitation q : (S3, K) ~ (S3, 0) for a trivial knot ° in S3. 

PROOF: Since the 'if 'part is clear, it suffices to show the 'only if 'part. Let D 
be a slice disk for K such that F = D U r D is a trivial 2-knot in S4. Then 
Fix(r, (S4, F)) = (S3, K). Let V be a 3-ball in S3 with V n K = av a trivial arc in 
V. Remove from (S4,F) an r-invariant bicollar of (intV,intav) in (S4,F), so that 
the resulting (4,2)-ball pair is diffeomorphic to (B 3 X I,E) with E invariant under 
the standard reflection QB in B3 X I. Note that E is isotopic to ao X I with ao 
a trivial arc in B3 by an ambient isotopy of B3 x I keeping the boundary fixed. 
Then by uniqueness of a tubular neighborhood of ao x I in B3 x I, we obtain from 
QB an isotopically almost standard reflection in (B 3 ,ao) x I, which extends to an 
isotopically almost standard reflection Q in (S3,0) x I with Fix(Q,(S3,0) x I) ~ 
(S3,K). Thus, there is an almost identical imitation q : (S3,K) ~ (S3,0). This 
completes the proof. 

Since the Alexander polynomial of a superslice knot can be seen to be trivial by 
Theorem 1.1(3) and the Alexander polynomials of non-trivial knots with up to 10 
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crossings are non-trivial, we see that the Kinoshita-Terasaka knot K KT in Fig. 1 
which has 11 crossings is a non-trivial superslice with the smallest crossing number. 
In 1975 C. Gordon and D. W. Sumners [2] construct I-stably trivial (4,2)-ball pairs, 
that is, (4,2)-ball pairs (B4, D) with diffeomorphism (B\ D) x I ~ (B4, B2) X I for 
a trivial (4,2)-ball pair (B4, B2). In particular, they showed: 

THEOREM 2.2 ([2]). A knot (S3, K) with K the untwisted double of any slice knot 
bounds an I -stably trivial (4,2 )-ball pair and hence is a superslice. 

In 1980 W. Brakes [0] considered some other superslices. In 1981 Y. Nakanishi [15] 
considered the K-T (=Kinoshita-Terasaka) tangle (B3,TKT ), illustrated in Fig. 2 
and showed the following: 

LEMMA 2.3. There is a normal imitation q : (B3,TKT ) -+ (B3,To ) of a trivial 
2-string tangle (B 3 , To). 

Fig. 2 

Actually, we can take an almost identical imitation as q in this lemma, but we need a 
delicate argument like [8,§2]. This enables us to construct many normal imitations 
of any given link (See [15]) and, more generally, of any good (3,1)-manifold pair. 
To proceed this argument further, we use the concept of hyperbolic 3-manifolds. 

DEFINITION: A (compact connected oriented) 3-manifold M is hyperbolic if we have 
the following (1) or (2): 

(1) aM is 0 or a union of tori and intM has a complete hyperbolic structure 
(that is, a complete Riemannian structure of constant curvature -1), 

(2) The double DlM of M pasting along the non-torus components of aM has 
the property (1) when we regard DIM as Min (1). 

A hyperbolic 3-manifold is a good 3-manifold. For a hyperbolic 3-manifold M, 
the volume VolM and the isometry group IsomM of M are defined to be the hy
perbolic volume Vol(intM) and the hyperbolic isometry group Isom(intM), respec
tively, if M is in (1), or Vol(int(DIM))/2 and the quotient group of the group 
{f E Isom(intDIM)lfT = T f} by the unique involutive isometry T induced from 
the involution exchanging the two copies of M in DlM, respectively, if M is in 
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(2). VolM and IsomM (up to conjugations in DiffM) are known to be topologi
cal invariants of M( cf. [20]). By an argument in the tangle theory, T. Soma in 
[18] showed that the exterior E(TKT, B3) has no incompressible torus. Using this 
fact and Lemma 2.3 and Myers gluing lemma in [14] and an observation by T. 
Kanenobu in [4], we have the following: 

THEOREM 2.4. For any link L in 53, there is a normal imitation q : (53, L *) --+ 

(53, L) such that E( L * , 53) is hyperbolic. 

Even if the imitation in Lemma 2.3 is taken to be almost identical, it is difficult to 
establish the almost identical imitation version of Theorem 2.4 by using Lemma 2.3. 
To construct an almost identical imitation, we use the 2-string tangle (B 3 , TIlT) 
illustrated in Fig. 3. Let TJ be a I-string tangle in a 3-ball BH obtained from the 
trivia12-string tangle (B 3 ,To ) by adding a standard (3,I)-disk pair (D3,Dl) as it 
is illustrated in Fig. 4. 

Fig. 3 

LEMMA 2.5. The tangle (B3, TKT) has the following properties: 

(1) TKT consists of an arc representing the Kinoshita- Terasaka knot K KT and 
a trivial arc, and E(Tja, B 3 ) ~ E(TKT, B 3 ), 

(2) There is a normal reflection Q in (B 3 , To) x I such that 

and the normal reflection Q + in (BH, TJ) x I defined by Q and the standard 
reflection in (D3, Dl) x I is isotopically standard. 
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Fig. 4 

The proof of Lemma 2.5 was given in [7) except an observation in [8,§2) which 
we need for an alternation of the definition of isotopically standard reflection. By 
combining Lemma 2.5 with an argument of Heegaard splitting, Myers gluing lemma 
[14) and an argument of T. Kanenobu [4), we have the following: 

THEOREM 2.6. For any good (3,1)-manifold pair (M,L) and any positive number 
C > 0, tbere is an almost identical imitation q : (M,L*) ~ (M,L) sucb tbat 
E(L*,M) is byperbolic witb VolE(L*,M) > C. 

For a good 3-manifold M and a trivial knot 0 in M, we apply Theorem 2.6 to 
obtain an almost identical imitation q : (M,O*) ~ (M,O) such that E(O*,M) 
is hyperbolic with VolE( 0*, M) > C. By Thurston's argument [20] on hyperbolic 
Dehn surgery, there is a normal imitation qm : M:;' ~ M such that M:;' is hyperbolic 
and VolM~ > C, obtained from q by the l/m-Dehn surgery along 0*,0 for all 
integers m with Iml 2: a constant. Hence we have the following: 

COROLLARY 2.6'. For any good 3-manifold M and a positive number C, tbere is 
a normal imitation q : M* ~ M sucb tbat M* is byperbolic and VolM* > C. 

The proof of Theorem 2.6 given in [7] has a weak point that the constructing pair 
(M, L*) admits essential Conway spheres (i.e., spheres S meeting L with 4 points 
such that S - L is incompressible and non-a-parallel in M - L ), so that any 
double covering space of M branched along L * is never hyperbolic if it exists. Our 
next result is related to the hyperbolicity of a finite regular (branched) covering 
over (M, L *). For this purpose, we introduce the concept of hyperbolic covering 
property. Let (M,L) be a good manifold pair. Let p : (M,L) ~ (M,L) be any 
finite regular covering, unbranched or branched along a component union FL of L 
such that M is connected, which is referred to as any normal covering. Let Lo be 
a component union (possibly, 0) of L such that Lo :J L - FL. Let Lo = p-l Lo. 
By spherical completions, we obtain from (M, Lo) a unique good manifold pair, 
denoted by (M, L), and from the covering pl(M, Lo) : (M, Lo) ~ (M, Lo) a unique 
(branched) covering, denoted by p: (M, L) ~ (M+, Lt). This pair (M, L) is called 
a branch-missing good manifold pair of the normal covering p : (M,L) ~ (M,L). 
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Let G( M -+ M) denote the covering transformation group of the covering plM : 
M -+ M, which extends uniquely to an action on (M,L). 

DEFINITION: A good manifold pair (M, L) has the hyperbolic covering property if 
E( L, M) is hyperbolic for all branch-missing good manifold pairs (M, L) of any 
normal covering p : (M, L) -+ (M, L). 

Note that a good 3-manifold M has the hyperbolic covering property if and only if 
M is hyperbolic. 

DEFINITION: A normal imitation q : (M*, L*) -+ (M, L) of a good manifold pair 
(M,L) with E(L*,M*) hyperbolic is rigid if 

IsomE(L*,M*) ~ G(M -+ M) 

for the lift p*: (M*,L*) -+ (M*,L*) of any normal covering p: (M,L) -+ (M,L) 
by q. 

DEFINITION: A normal imitation q : (M*,L*) -+ (M,L) of a good manifold pair 
(M,L) such that (M*,L*) has the hyperbolic covering property is J-rigid for a 
positive integer J if we have all of the following (1)-(3): 

(1) q is rigid, 
(2) For any branch-missing good manifold pair (M*, L *) of the lift p* : (M * , L *) 

-+ (M*,L*) of any normal covering p: (M,L) -+ (M,L) of degree s: J by 
q, 

IsomE(L*, M*) ~ G(M -+ M), 

(3) Every normal covering p* : (M*,L*) -+ (M*,L*) of degree s: J is the lift of 
a normal covering p : (M, L) -+ (M, L) by q. 

Note that (2) is contained in (1) when L = 0. We have the following: 

THEOREM 2.7. For any good (3,1)-manifold pair (M, L) and any positive integer 
J and any positive number C, there is a J -rigid almost identical imitation q : 
(M,L*) -+ (M,L) such that (M,L*) has the hyperbolic covering property and 
VolE(L*,M) > C. 

This result is a combination result of the main result of [8J and [lO,Lemma 1.3J. 
Combining it with Thurston's hyperbolic Dehn surgery argument [20], we obtain 
the following: 

COROLLARY 2.7'. For any good 3-manifold M and any positive integer J and 
positive number C, there is a J -rigid normal imitation q : M* -+ M such that M* 
is a hyperbolic 3-manifold and VolM* > C. 
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Our next purpose is to combine this topological imitation theory with a concept 
of mutation due to Ruberman [17] generalizing a certain kind of Conway mutation 
on a link, which is done in [10]. An involution p on a closed surface F is called a 
symmetry of F if the orbit space FI p is a 2-sphere. A good manifold pair (M', L') is 
an e-mutation of a good manifold pair (M, L) if there is a closed separating surface 
F of genus 2 in intE( L, M) such that (M', L') is obtained from (M, L) by cutting 
along F and regluing by a symmetry p of F. Then (M, L) is also an e-mutation of 
(M', L') and we can say without ambiguity that (M, L), (M', L') are e-mutative. 

DEFINITION: Two good manifold pairs (M, L), (M', L') are mutative if there is a fi
nite sequence of good manifold pairs (M(m), L(m)), m = 1,2, ... , s, with (M(I), L(l)) 
= (M, L) and (M(s), L(s») = (M', L') such that (M(m), L(m») and (M(m+l), L(m+1» 
are e-mutative for all m. 

Noting that a hyperbolic 3-manifold is unchanged under e-mutation associated with 
any symmetry of any compressible surface of genus 2 (See [10D, we see from a result 
of D. Ruberman in [17] the following: 

LEMMA 2.8. If(M,L),(M',L') are mutative good manifold pairs and E(L,M) is 
hyperbolic, then E( L', M') is hyperbolic and VolE ( L, M) = VolE( L', M'). 

For two normal imitations q : (M*,L*) ----t (M,L),q' : (M'*,L'*) ----t (M,L) of a 
good manifold pair (M, L), we put the following two definitions: 

DEFINITION: q,q' are properly mutative if (M*,L*),(M'*,i'*) are mutative and 
E(L*,M*),E(L'*,M'*) arenon-diffeomorphicfortheliftsp*: (M*,L*) ----t (M*,L*), 
p'*: (M'*,L'*) ----t (M'*,L'*) of any normal covering p: (M,L) ----t (M,L) by q,q'. 

DEFINITION: q, q' are J-properly mutative for a positive integer J if q, q' are prop
erly mutative and E(L*,M*),E(L'*,M'*) are non-diffeomorphic for any branch
missing good manifold pairs (M*,t*),(M'*,l/*) of the lifts p* : (lVI*,L*) ----t 

(M*, L*),p'* : (lVI'*, L'*) ----t (M'*, L'*) of any normal covering p : (lVI, L) ----t (M, L) 
of degree:::; J by q, q'. 

We have the following: 

THEOREM 2.9. For any good (3,1)-manifold pair (M,L) and any positive integers 
J, N and any positive number C, there are J -rigid almost identical imitations 

q(n): (M,L*(n») ----t (M,L),n = 1,2, ... ,2N , 

such that (M, L *(n») has the hyperbolic covering property with VolE(L *(n), M) > C 
and q(n),q(n') are J-properly mutative for all n,n' with n i' n'. 
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COROLLARY 2.9'. For any good 3-manifold M and any positive integers J, N and 
positive number C, there are J-rigid normal imitations q(n) : M*(n) ~ M, n = 
1,2, ... , 2N, with M*(n) hyperbolic 3-manifolds with VoIM*(n) > C such that q(n), q(n') 
are properly mutative for all n, n' with n f. n'. 

These results are proved in [10]' where, further, certain equivariant versions to
gether with a mutative reduction property on isometry groups are established. 

3. Some elementary applications to knot theory 

The following application suggests a topological imitation theory for a Seifert sur
face of a link: 

ApPLICATION 1. If F is a compressible connected Seifert surface for any link L in 
S3 with a non-a-parallel compressible loop, then there are a new Seifert surface F* 
for the same link L and a map q : (S3,F*) ~ (S3,F) such that ql(N(F*),F*) : 
(N(F*), F*) ~ (N(F), F) is a diffeomorphism and qIE(F*) : E(F*) ~ E(F) is 
a normal imitation with non-diffeomorphic E( F*), E(F) for some regular neigh
borhoods N(F*), N(F) of F*, F in S3 and E(F*) = cl(S3 - N(F*)), E(F) = 
cl(S3 - N(F)). 

In Application 1, F, F* have the same Seifert matrix with respect to any corre
sponding bases of Hl(F*; Z), H 1(F; Z) by q. 

PROOF: Let D be a compression disk for F with 8D a non-8-parallelloop. A line 
bundle D x I of D in S3 is regarded as a 2-handle attaching to F with F n D x I = 
(aD) x I. Let F' be the surface obtained from F by the surgery along D x I, and 
E', the 3-manifold obtained from S3 by splitting along F'. Consider a proper arc 
a = px I,p E intD, in E'. Except when F' is a disk, (E', a) is a good (3,1)-manifold 
pair and there is a normal imitation q' : (E', a*) ~ (E', a) such that E(a*, E') is a 
hyperbolic 3-manifold with a large volume, so that E( a*, E') is non-diffeomorphic 
to E(a, E'). Let F* be the surface obtained from F' by a 1-handle surgery along 
a*. Then the normal imitation map q' defines a desired map q : (S3, F*) ~ (53, F). 
When F' is a disk, E' is a 3-ball and we have the same conclusion by considering a 
normal imitation (53, k;) ~ (53, ka ) of the knot (53, ka ) obtained from (E', a) by 
spherical completion with E( k~, 53) a hyperbolic 3-manifold with a large volume. 
This completes the proof. 

ApPLICATION 2. For any r(:2: 2)-string tangle in a 3-ball B3 and any 2-handle 
h2 on B3 attaching along an incompressible, non-8-parallel loop in the sphere 
with 2r open disks removed, 8B3 n E(t, B 3), there is an almost identical imita
tion q: (B 3,t*) ~ (B 3,t) such that E(t*,B3),E(t,B3) are non-diffeomorphic and 
the extension q+ : (B3 U h2 , to) ~ (B 3 U h2 , t) of q by the identity on h2 is homotopic 
to a diffeomorphism by a homotopy relative to 8(B3 U h2 ) U N(t*). 
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PROOF: Let M = B3 U h2 and A = h2 n 8B3. Let a be a trivial arc in h2, 

joining the two components 8h 2 - A so that E( a, M) ~ B3. Then (M, t U a) 
is a good (3,1 )-manifold pair and we obtain an almost identical imitation qM : 
(M, t* U a) ---+ (M, t U a) such that E(t* U a, M), E(t U a, M) are non-diffeomorphic. 
Identifying E( a, M) with B 3 , we see that q M defines a desired almost identical 
imitation q: (B3,t*) ---+ (B3,t). 

Let or denote the r-component trivial link. We consider a knot K and a spanning 
band bin 53. Let K(b) be the link obtained from K by surgery along b. Note that 
the component number of K (b) is 2 or 1 according to whether the band b spans 
K with coherent or non-coherent orientation. Two such bands b, b' are said to be 
equivalent if there is a diffeomorphism f of 53 with f(K U b) = K U b'. When 
K(b) = 0 2 , we can construct a unique ribbon 2-knot in 54 from ( K, b), denoted by 
5(K, b). Y. Nakanishi and Y. Nakagawa [16] showed that there is a ribbon knot K 
which admits two inequivalent spanning bands b, b' with K(b) = K(b') = 0 2 . In 
fact, they showed that 5(K, b), 5(K, b') are inequivalent. We have the following: 

ApPLICATION 3. For any positive integer N > 1, there is a non-trivial superslice 
K* which admits N inequivalent spanning bands bt, ... , bN with K*(b j ) = 0 2 and 
5(K*,b j ), a trivia12-knot,i = 1, ... ,N. 

It is unknown whether or not the associated ribbon disks D(K*, bi ) C B\ i = 
1, ... ,N, are equivalent, although 7rl(B4 -D(K*,b j )) ~ Z for all i. This question 
leads to a question asking whether or not the 2-knot 5jj C 5\ i i= j, pasting 
D(K*, bi ) C B4 and (K*, bj ) C B4 along K* C 53 is (smoothly) trivial, although 
7rl(54 - 5ij ) ~ Z. 

tiD (tit) ( iv) 

Fig. 5 
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PROOF: Let f be a graph in S3, illustrated in Fig. 5(i). Let (M,L) be a good 
(3,1)-manifold pair obtained from (S3, f) by removing an open 3-ball neighborhood 
of each degree 3 vertex of f. Let qM : (M, L*) -t (M, L) be a 2-rigid almost 
identical imitation such that (M, L *) has the hyperbolic covering property. Let 
qr : (S3, f*) -t (S3, f) be the almost identical graph imitation obtained from qM by 
spherical completions. Let Vi be a 3-ball neighborhood around the arc aj, illustrated 
in Fig. 5(ii). We may consider that qr I(Vj , Vi n f*) : (Vi, Vi n f*) -t (Vj , Vi n f) is 
the identity. In particular, ai = q-l(aj). Let q: (S3,K*) -t (S3,K) be the almost 
identical imitation obtained from q by replacing the H-graph Vi n f* = Vi n f, 
illustrated in Fig. 5(ii) with a 2-string braid with mj full twists, illustrated in Fig. 
5(iii). Then K is a trivial knot and hence K* is a superslice for all mi. Let bi be a 
band in Vi spanning Vi n K* = Vi n K, illustrated in Fig. 5(iv). By the property 
of almost identical imitation, we have K*(b j ) = K(b j ) = 0 2 for all i and all mi. 
For the centerline at (or a;,resp.) of the band bi, regarded as a band spanning 
K*(bi) = 0 2 (or K(bi) = 0 2 , resp.), we see from the property of almost identical 
imitation that a;* is homotopic to a; by a homotopy relative to 0 2 . This implies 
that S(K*, bi), S(K, bi) are equivalent (cf. [3,Lemma 2.7]). Since S(K, bi) is trivial, 
S(K*, bi) is trivial. Let E = cl(S3 -U~1 Vi). Note that the double covering space S~ 
of S3 branched along K* is a union of the double covering space E2 of E branched 
along along En K* and the solid tori, Tj lifting Vi,i = 1, ... ,N. Since (M,L*) 
has the hyperbolic covering property, E2 is hyperbolic. By Thurston's hyperbolic 
Dehn surgery [20], there is a positive integer mo such that S~, E~ = cl(S~ - Ti) are 
hyperbolic 3-manifolds and any isometry E~ -t E~ preserves the unions of the cores 
of the attaching solid tori for all mj's with Imi I ~ mo and all i, j. For any such 
m;'s, suppose that bi, bj , i # j are equivalent spanning bands for K*. Then there 
is a diffeomorphism E~ -t E~. By Mostow rigidity [20]' there is an isometry of E2 
sending the end aTi to the end aTj . But, since qM is 2-rigid, we see from Mostow 
rigidity that IsomE2(~ G(E2 -+ E)) preserves each end of E2, a contradiction. 
Hence any two bands of the b;'s are inequivalent spanning bands for K*. This 
completes the proof. 

For non-coherently spanning bands, we have a similar result as follows: 

ApPLICATION 4. For any positive integer N > 1, there is a non-trivial superslice 
K* which admits N inequivalent spanning bands b1 , ... , bN with K*(bi) = O\i = 
1, ... ,N. 

The Klein bottle DM(K*, bj) C S4 which is the double of the associated Mobius 
band M (K* , bi ) C B4 is seen to be trivial for all i by a non-orient able version of 
[3, Lemma 2.7]. Hence 7rl(B4 - M(K*,bi)) ~ Z2 for all i. However, it is unknown 
whether or not the Mobius bands M(K*,b j ) C B4,i = 1, ... ,N are equivalent and 
whether or not the Klein bottle Kjj C S4,i # j, pasting M(K*,bi) C B4 and 
M(K*,bj ) C B4 along K* C S3 is trivial, although 7rl(S4 - Kij) ~ Z2. 
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Fig. 6 

PROOF: The proof is obtained from an argument parallel to the proof of Applica
tion 3 if we consider the graph r in S3 illustrated in Fig. 6 in place of Fig. 5(i) 
and we take ~~1 mj = 0 to assure that K is trivial. 

Finally, we consider an unknotting operation on a knot K in S3. We call a 3-ball 
B in S3 a place of unknotting operation on a knot K if K n B is a trivial 2-string 
tangle in B and one crossing change of the two strings of B n K makes K a trivial 
knot. Two places B, B' of unknotting operations on K are said to be equivalent if 
there is a diffeomorphism f of S3 such that f(K) = K and f(B) = B'. We have 
the following result, answering a question of Y. Nakanishi and Y. Uchida asking 
whether there is an unknotting number one knot with two or more inequivalent 
places of unknotting operations: 

ApPLICATION 5. For any positive integer N > 1, there is an unknotting number 
one superslice K* with N inequivalent places of unknotting operations. 

(i) 

® (@ ® CD \. . 

('Ii) (iH) (jV) (V) 

Fig. 7 

PROOF: Let r be a graph in S3 illustrated in Fig. 7(i). Let (M,L) be a good 
(3,1 )-manifold pair obtained from (S3, r) by removing an open 3-ball neighborhood 
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of each degree 3 vertex of f. Let qM : (M,L*) -+ (M,L) be a 2-rigid almost 
identical imitation such that (M,L*) has the hyperbolic covering property. Let 
qr : (S3, f*) -+ (S3, f) be the almost identical graph imitation obtained from qM by 
spherical completions. Let B j (or B:,resp.) be a 3-ball neighborhood around the arc 
aj (or ai, resp.), illustrated in Fig. 7(ii) (or 7(iii), resp.). Let V = U~l(BiUBD and 
E = cl(S3 - V). We may consider that qrlV n (S3, f*) : V n (S3, f*) -+ V n (S3, f) 
is the identity. In particular, aj = q-l(aj),ai = q-l(ai). Let q : (S3,K*) -+ 

(S3, K) be the almost identical imitation obtained from q by replacing the H-graph 
B j n f* = B j n f, illustrated in Fig. 7(ii) with a 2-string tangle with mj full twists, 
illustrated in Fig. 7(iv) and the H-graph B: n f* = B: n f, illustrated in Fig. 7(iii) 
with a 2-string braid of -mj full twists, illustrated in Fig. 7( v). Then K is a 
trivial knot and hence K* is a superslice for all m;'s. By the property of almost 
identical imitation, we can consider each Bi as a place of unknotting operation 
on K*. Note that the double covering space S~ of S3 branched along K* is a 
union of the double covering space E2 of E branched along En K* and the solid 
tori, Ti,T: lifting Bj,B:,i = 1, ... ,N. Since (M,L*) has the hyperbolic covering 
property, E2 is hyperbolic. By Thurston's hyperbolic Dehn surgery [20], there is a 
positive integer mo such that s1, E~ = d( S~ - Tj) are hyperbolic 3-manifolds and 
any isometry E~ -+ E~ preserves the unions of the cores of the attaching solid tori 
for all mi's with Im;1 2:: mo and all i,j. For any such mi's, suppose Bi , B j , i 1= j are 
equivalent places of unknotting operations on K*. Then there is a diffeomorphism 
E~ ~ E~. By Mostow rigidity [20]' there is an isometry of E2 sending the end 
aT; to the end aTj . But, since qM is 2-rigid, we see from Mostow rigidity that 
IsomE2(~ G(E2 -+ E)) preserves each end of E2, a contradiction. Hence K* is 
an unknotting number one superslice with N inequivalent places of unknotting 
operations. This completes the proof. 

There are three other recent applications of topological imitations. One is done for 
constructing links with the same skein polynomial close to the skein polynomial of 
any previously given link(see[9]). The second is done for constructing 3-manifolds 
with the same quantum invariant close to the quantum invariant of any previouly 
given 3-manifold(see[11]). The third is done for constructing knots along which the 
Dehn surgeries with a fixed slope produce the same manifold. 
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A WILD VARIATION OF ARTIN'S BRAIDS 
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ABSTRACT. We show how to derive a theory of (infinite) braids which includes the well 
known classical theory of braids due to Emil Artin. We use this theory to give a theory of 
(infinite) knots which includes the classical theory of knots. A vital role in the new theory is 
played by the topological free group which was first defined and studied by Graham Higman. 
This is only a preliminary attempt to extend the classical theory. As we make use of a somewhat 
intuitive approach to the subject, we leave a number of basic problems still outstanding. We 
assume that the reader is familiar with the theory of braids and knots as given in E. Artin [1], 1.S. 
Birman [2] and S. Moran [5]. We also make use of the fact that the fundamental group of a 
certain region in R2 is a topological free group as given in G. Higman [4], H.B. Griffiths [3], 
J.W. Morgan and I.A. Morrison [6]. 

O. Let n be a fixed integer ;:: 1. Let -nBn denote the group of braids with top ends 
P-n,···, P-I, Po, PI,···, Pn and bottom ends Q-n,···, Q_I' Qo, QI,"" Qn. The latter 
will also be denoted by the integers -n, ... , -1, 0, 1, ... , n. Then we have the usual set of 
generators 

for -nBn. Now there is a natural embedding of 

So one has the group 

which we denote by _B ~ . Further _B ~ is a topological group with 

Uo :::> U I :::> '" :::> Um :::> ... 

being the fundamental system of neighbourhoods of the unit element, where 

U m = < (Ji; - m -2 ;:: i or i ~ m + I > 

for all m ;:: 0. Clearly U m consists of those braids whose 0, ± 1, ... , ± m strings are of the trivial 
form given in Figure 1 and no other strings overpass or underpass these strings. 

M.E. BozhiiyUk (ed.), Topics in Knot Theory, 85-106. 
© 1993 Kluwer Academic Publishers. 
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-m -m+1 -2 -1 0 2 m-1 m 

Figure 1. An element of Um . 

The following properties of this fundamental system of neighbourhoods are easily seen to hold: 
(i) II Um=<e>; 

m~O 

(ii) if cr belongs to ~B ~ and U m is given. then there exists a positive integer n so that 

Note that the strings of an arbitrary element of _~B ~ differ from the strings of the trivial braid e 
only for a finite number of strings. ~ 

We can now define the completion _~B~ of _~B~ with respect to this fundamental system of 
neighbourhoods. A Cauchy sequence (cr(V)}v~o in _~B~ is a sequence of elements of -ooBoo 
with the property that given a positive integer m there exists a positive integer N = N(m) such 
that 

for all 1.1. v ? N . 
Two Cauchy sequences (cr(V)} and ('t(V)} are said to be equivalent when given a positive 

integer m there exists a positive integer N = N(m) so that 

for all positive integers v? N. ~ 

The collection of all equivalence classes of Cauchy sequences is denoted by _ooB ~ with the 
product operation not always being defined by 

since this operation is not always invariant under equivalence. This produ~ct will subsequently be 
referred to as the convergent product. The topological space _ooB ~ has the following 
fundamental system of neighbourhoods of the unit element 

~ ~ ~ 

Uo :::> U 1 :::> ... :::> Um :::> ...• 
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A A 

where Um denotes the closure of Um in _~B~ for every m. A 

It is clear from the above construction that every element of _ ~B ~ can be expressed as an 
ordered product of braids of the form 

Il (/j = lim [ Il crEj ) 
-oo<j<oo 'i n---+oo -n<j<n 'i ' 

where every Ej is an integer and I ij I ~ m (> 0) for all j such that 

Ij I ~ some positive integer N =N(m). 

An element of _~B ~ will be called a convergent braid. We shall now concern ourselves mainly 
with another class of braids - sane braids - which will be introduced in the following geometric 
way. 

1. We consider infinite braids which consist of strings starting at 
P _, ... , P -I, Po, PI, ... , P ~ (with P _ or P ~ or both may be possibly omitted) and each 
string terminating at some Qj for a uniquely defined integer j. Each string is taken to be of 
bounded length and is made up of a finite number of straight line segments (including strings at 
± 00). Further we assume that each Pi has the same z-coordinate and the same y-coordinate for all 
i, while 

x-coordinate of Pi < x-coordinate of Pj 

for i < j. We also insist that 

d(Pi , Pi+l ) --7 0 and d(P-i, P-i- I ) --7 0 

as i --7 00 with 

lim P, "* P ~ and lim Pi "* P-<>o 

We assume that a similar situation holds for the lower ends 

Qi (i = 0, ± 1, ± 2, ... ). 

The removal of all but a finite number of the strings of the braid is always assumed to result in 
an ordinary finite braid (one may of course have to renumber the ends of the braid). For each 
integer n, the n-th string is taken to be such that it overpasses and underpasses only a finite 
number of strings. In the case of the string at either -00 or 00, it is assumed that as one traverses 
from one end of the string to the other end, there are only a finite number of variations from over 
(under) passing to under (over) passing. Further, except possibly at the initial stages, no string 
goes off to -00 or 00 at any later stage. If one takes any horizontal section of the strings of a fixed 
braid, then the distance between neighbouring strings tends to zero as one goes either to the left 
or to the right along this section. Every braid we consider lies of course inside a finite right 
circular cylinder of R 3. A braid of the above described form is called a sane braid. In fact more 
concisely one could say that each of its strings is made up of a finite number of finite line 
segments. The collection of all sane braids is denoted by _~B~ . Every sane braid has a 
corresponding (1: 1) mapping 

<1>: S --7 S/{±oo}, 
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where S is one of the following four sets 

{O,±I,±2, 

{O,±I,±2, 

± 00 } or { 0, ± I, ± 2, ... , oo} or 

- 00 } or { 0, ± I, ± 2, ... } . 

This is detennined by the fact that the i-th string tenninates at Qj for i in S. 
Two sane braids are saidt to be equal (or string isotopic) if there exists a continuous 

defonnation of one braid onto the other so that at each stage of the defonnation one has a sane 
braid. Further the removal of all but a finite number of strings of the first braid leaves one always 
with an ordinary braid which is string isotopic (under the above given defonnation) to an 
ordinary braid which is obtained from the second braid given above by the removal of all but a 
finite number of its strings. 

The above defined sane braids fonn a topological partial group _~B;" under the usual product 
operation of braids (called the braid product). 

Note the following properties: 
(a) the trivial braid is the unit element; 
(b) the braid product of two sane braids both of which have a string at either -00 or 00 is not 

defined; 
(c) a sane braid which has a string at either -00 or 00 does not have an inverse; 
(d) if 't is a sane braid without strings at either -00 or 00 and a is any sane braid, then 

't-I , (J't, 'ta 

are sane braids. 
So the collection of all sane braids without strings at either -00 or 00 fonn a group under the 

operation of braid product. We denote this group by _Bcj. This is a topological group under a 
similar topology as that described in Section 0 above. 

One can define as above the partial groups 

in tenns of the groups 

where n is an integer. 

2. We have the usual generating braids aj and ail, which are given in Figure 2 respectively, 
where i = 0, ± 1, ± 2, ... and the height of aj and ail (that is d(P j, Qj» tends to zero as i ~ 00 

or i ~ -00. 

t It is not yet clear whether this is the appropriate definition. 
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and 

Figure 2. The braids OJ and oi1 • 

The following are examples of infinite braids which are constructed in terms of convergent 
braids - they mayor may not belong to the above defined 

(i) °1°2 ... On is a convergent braid. has a picture of the form given in Figure 3 and 
hence is not considered here as 1 ~ 00 . 

n 

(( 
2 n-l 

Figure 3. The braid °1°2 ... On .... 

(ii) ... On ... 0201 is a convergent braid. belongs to 1 B':., and has a picture of the form 
given in Figure 4. The corresponding mapping is the "permutation" (l 23 ... 00). 

2 3 00 

-
2 3 4 

Figure 4. The braid ... On ... °2°1 . 
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(iv) ... (Ln . .. 0-2°-1 is a convergent braid, belongs to __ B8 and has a picture of the fonn 
given in Figure 5. The corresponding mapping is the "pennutation" (-1 -2 -3 ... - 00). 

-1 0 

)) 
-2 -1 o 

Figure 5. The braid ... (L •... (L2Ci_1 . 

(v) ... Ci~ ... Ci~ Cii CiT is a convergent braid but it does not belong to IB;, . The string at 00 

does not consist of a finite number of straight line segments. It has a picture of the fonn 
given in Figure 6. 

2 3 

2 3 4 

Figure 6. The braid ... Ci~ ... Ci~ CiiCiT . 
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(vi) ... (Ln'" 0'-20'-10'00'10'2·· . O'n ... is a convergent braid which does not belong to 
__ B';. , since the corresponding mapping maps -00 to 00. 

(vii) 0'1 O'jO'~ ... O'~:::l . .. is a convergent braid which belongs to 1 B';.. It has a picture of the 
form given in Figure 7 and (l 2) (3 4) ... (2n-l 2n) . .. is the corresponding mapping. 

2 3 4 5 6 

Figure 7. The braid 0'1 O'~O'~ ... O'~::l ... 

(viii) O'TO'~O'~ ... O'~ ... is a convergent braid which belongs to 1B';. . It has a picture of the 
form given in Figure 8. The corresponding mapping is the identity mapping. 

Figure 8. The braid O'tO'~O'~ ... O'~ ... 

2 3 4 

N 
~ 
2 3 

(ix) ... 0'2n0'~-1 ... 0'3'10'20')'1 is a convergent braid which has a picture of the form given in 
Figure 9. It is not considered here as the string at 00 has an infinite number of changes from 
underpassing to overpassing. 
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2 4 00 

\ 
rl 

234 5 

3. Let _P ~ denote the subgroup of all pure braids on the strings ... , -2, -1, 0, 1,2, ... in 
the braid group _B ~ . Let 

Ai n = On-I 0n-2 ... Oi+IOrO;-!1 ... O~~20~~1 

for all i < n, where n is a fixed integer. Then the subgroup <Ai,n; i < n> = V n is a free group 
freely generated by the elements Ai,n with i < n for every n. Also the product 

V(n) = Vn,Vn+I,Vn+2 ... = <Ai,j; i < j ~ n> 

(only a finite number of elements in an infinite product being ::t.e) is a normal subgroup of -ooP 00' 

These two results follow from standard properties of the elements Ai,j' 
Now, as is well known, we can consider Ai,j to be an automorphism Ai,j of the free group 

F( { ... , X-2' LI, Xo. X I. X2 • ... }) for every i and j. Define the automorphism r of this free 
group by 

Xir = x=! for all i . 

Then r2 = id. Also 
_ _-I --I 

r.oiT = O-i-I and r.Ai,jT = A-j,-i 

for all i and j. Now define 

n V = <An,j; j > n> and (n)y = ... n-2 V. n_1 Y." V 

for all n. Then 

r.nYT=Y-n and r. (n)YT= y(-n) 

for all n. So similar results hold for n V and (n)V as those proved for V n and y(n). In particular 
we have (n)y is a normal subgroup of _Po.. Also the factor group _P 00 I «-n)V.y(n» is 
naturally isomorphic to the pure braid group 

-n+IPn-I=<Ai,j; i > -n and j <n> , 

where here n is a fixed positive integer. 
The group -ooP ~ is a topological group with {(-n)v.v(n)}n~1 being a set of fundamental 

neighbourhoods of the unit element. So every element of -<>oP ~ can be represented as an element 
of 
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where only a finite number of elements in an infinite product are not equal to e. Hence every 
element in the normal subgroup __ p;., of pure braids (lying inside the group _B~) can be 
represented as an element of the doubly infinite product 

n "V. n V". 
,,<0 ,,~ 

(3.1) 

As we shall now see not every element lying inside the double infinite product (3.1) belongs 
to _p;., . 

(i) 

c 

. . . A-,,-I,O . A_n,o ... A_2,o . A_I,o does not belong to __ P;", since the O-th string has an 
infinite number of variations from underpasses to overpasses. It has a picture of the form 
given in Figure 10. 

1-
c 

-2 -I o 

Figure 10. The braid ... A_n- I .O . A-n.o ... A_2.0 . A_ I •o . 

(ii) A -1,1 . A -2,2 . A -3,3 ... A -n,n . . does not belong to __ P;", since the O-th string 
overpasses an infinite number of strings. It has a picture of the form given in Figure 11. 
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-3 -2 -1 0 2 3 

J j ---...- --- -- -
~ ~<---:-- --- 11 -

-3 -2 -1 0 2 3 

Figure 11. The braid A_J,1 . A-2,2 . A-3,3 ... A-n,n ., . 

Suppose that the element n nV' n Vn of (3.1) belongs to -oopc.., Then we have that 
n<O n~O 

V n E (Ai,n; in :s; i < n) for n ~ 0 while 

V"f/; (Ai,,,; n>i with i~in+l) and 

m V E (Am,j; jm ~ j > m) for m < 0 while 

m v f/; (Am,j; m < j :s; jm - 1 ) for nontrivial elements. 

Hence we must have that 

in ~ 00 as n ~ 00 and jm ~ -00 as m ~-oo 

in order for the above element to belong to -00 Pc.. . 

4. There exists a natural group homomorphism of the free group F( {Ln-I, ... , Xo, ... , xn+l n 
onto the free group F( {x-n' ... , Xo, ... , Xn n, which is defined by mapping X-n-l and X,,+l onto 
the unit element e and leaving the remaining free generators fixed. The corresponding inverse 
limit is denoted by 

It was first introduced and studied by G. Higman [4]. It has the following series of closed normal 
subgroups which are generated by 

H <Xi> *H <Xi> with n ~ 1 
i~-n i~n 

as a fundamental basis of neighbourhoods of the unit element. The following subgroup 

T <Xi> = n (H <Xi> * <X-n> * ... * <Xo> * ... * <XII> * H <Xj» 
-00<1<00 n~l l<-n i>n 
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was first considered by G. Higman [4) and was also studied by H.B. Griffiths [3), J.W. Morgan 
and l.A. Morrison [6). 

This latter group has the subgroups r <Xi> and r <Xi>' which are naturally either 
.so .~ 

isomorphic or anti-isomorphic (depending on the topological conventions used). This is also true 
for the subgroups H <Xi> and H <Xi> of H <Xi>. We have that 

i:50 i~ _<i<oo 

T <Xi> = T <Xi> * T <Xi> . 
-oo<i<oo i<O i~O 

Let D be a closed disc in R 2 with an infinite number of points PI, P 2, ... , Pi, . .. removed 
so that d(Pi , Pi+l ) ~ 0 as i ~ 00. Since D is pathwise connected, the fundamental group of D is 
independent (upto isomorphism) of the choice of the base point P. We assume that D is of the 
form given in Figure 12, where Pi = (-f (fi- I , 0) for i 2: I and P = (0,0) 

Figure 12. The disc D with an infinite number of points removed. 

The space D is the union of spaces Di of the form given in Figure 13, where the outer circle has 
diameter (f )i-I , while the inner circle has diameter (f)i and Pi lies halfway in between the two 

circles. 

Figure 13. the space D i . 

So 

D = uDi and Di n Dj = (P) for i"# j . 
i;:>1 

It follows from H.B. Griffiths [3), l.W. Morgan and l.A. Morrison [6) that 

7t (D, P) == T <Xi> , 
i;:>1 
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where Xi denotes a loop in D at P which encircles the missing point Pi only, that is, of the form 
given in Figure 14, where the radius of the small circle is + d(Pi , Pi+1) for all i 

Figure 14. The loop Xi in D. 

A similar argument to that given above together with the Theorem of Seifert and van Kampen 
shows that the fundamental group of a closed circular disc Y with missing points 

po. P±I. P±2.··· 

and two further points of the form 

P__ P-3 P-2 P-1 Po PI P 2 P 3 p .. 

• 

i~ 00, has fundamental group 

which we also denote by 

• 

<X __ > * T <Xi> * <X .. > 
-00< ;<00 

... ' .. 

5. Let W m denote the subgroup of all automorphisms of the free group 

__ F .. == FC{ ,,'. X-II'" '. X_I. Xo. xI> ,. '. XII.'·'}) 

which leave all but a finite number of Xi fixed. including all those Xi with I i I ~ m • and which 
induce an automorphism of the free group n* < xi> for every m ~ 1. The subgroups 

lil>m 

WI :::JW2 :::J .. ,:::JWm :::J .. , 

form a basis of the neighbourhoods of id in the group A = AutfC-ooF .. ) of all those 
automorphisms of the free group __ F .. which leave all but a finite number of the Xi fixed. The 
corresponding completion A of A consists of all Cauchy sequences {a{)!)} of automorphisms so 
that given m there exists a positive integer N = N(m) with 

Wmo a{)!) 0 Wm = Wm ° a(v) oWm 

for alII!. v ~ N . 
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(o.(lL)} is said to be equivalent to (~OL») if and only if given a positive integer m there exists a 
positive integer N = N (m) so that 

W 0 o.OL) ,W = W ,ROL) , W 
m m m t-' m 

for aIlll ~ N . 
The convergent product, when it is unambiguously defined, is taken to be 

( o.(Il)} (~OL») = (o.(ll) 0 ~OL») . 

There is always the composition of th~ mappings (o.OL)} and (~OL»), provided it is defined. 
It is clear that every element 0. of A can be expressed as an ordered composition of mappings 

of the form 

0. = n° o.i 
-00<)<00 J 

lim (n° o.i), 
n.......y.JO -n<j<n J 

where o.i) belongs to W I i) I for all j and I ij I > m for all j such that 

I j I;:: some positive integer N = N(m) . 

Further it is clear that every element 0. of A gives a homomorphism of the free group _ooF 00 into 
H <Xi>' If we know that 0. is continuous on the free group ~F 00' then this homomorphism 

extends in a natural way to an endomorphism on H <Xi>' If 
--<:>o<i<oo 

0.-1 = n° 0.-:-1 
oo>j>-oo l) 

is also continuous, then 0. can be considered to be a topological automorphism of H <Xi>' 
-oo<i<oo 

We have the well known group isomorphism of the braid group 

/ : ~B 00 ~ ~B 00 c A , 

where (U m) / c W m for all m, and so / is continuous. Hence we have 
~ ~ ~ A 

/ : ~Boo ~ ~Boo c A 

is a continuous partial isomorphism into. If 

n belongs to 
-OO<J<OO 

, 

then its image under / can be taken to be 

Further if n o~) represents an element of ~B"o." then we have that n o~) can 
-oo<j<oo J -oo<j<oo j 

sometimes be taken to be a continuous isomorphism of T <Xi> into T <Xi>' This can 
-00$;$00 --oo<i <00 

be seen by means of the following,process. Let 0' be an element of _008"0.,. Then sometimes we 
have another way of looking at 0'/ = O. Take a loop in the upper punctured plane of the tops of 
the strings of 0' and push the loop down to the lower punctured plane via a cylinder with 0' 

removed. As we shall see, it is not always possible to reach the lower punctured plane. If it turns 
out to be possible, then this pushing down process gives the required continuous isomorphism in 
the case when 0' has strings at -00 and 00. There are of course a number of other cases to consider 
- depending on how many strings occur in 0'. 
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We now investigate as to when the pushing down process is possible for a fixed braid 0' of 
-ooB~. Clearly it is always true that 

XjO' belongs to T <Xi> 
-00<; <00 

for every j. However it is not always true that cr maps an arbitrary infinite product in 
T <Xi> into T <Xi>. A finite product is no problem. For example 

~<i<oo -00<;<00 
_-2 _-2 _-2 -I -I-I 

Xi(.·.On ... 02 0'1) = (Xi+I·· .).Xj . (Xj+1 ... ) 

for every i and so 
_-2 _-2 _-2 

(TI Xi) ( ... 0' n ... 0'2 a I ):;t: (TI X;) . 
i?1 i?1 

This shows that the pushing down process is not possible for this braid. For if the pushing down 
process is possible for a, then 

- -I 
XjO = Aj . XjQ . A j , 

where every Aj is an element of T <Xj> and 
---OO<l<OO 

( n Xi) cr = n Xj. 
-~iSoo -oo<i <!XI 

(5.1) 

Finally we suppose that a is a sane braid which is the braid product of a finite number of sane 
convergent braids, that is, 

a = 0(1) 0(2) ... O(k) 

and such that the pushing down process is possible in each O'(i). Then in the semigroup of all 
continuous endomorphisms of T <Xj> we can take 

--00$,$00 

0(1) . 0(2) ..... O'(k) 

to be the endomorphism cr corresponding to 0' and also the pushing down process is possible in 
0'. 

6. We now give some miscellaneous results concerning braids. First of all we have the 
following four fundamental sane braids which have strings at ± 00 

O'-oo,i = (J~.i = 
-I 

a~,i 

IT - 0 1 = Voo.i - oo,i 

... Ok 0k+1 ... OJ , 

... Ok l Ok!1 ... Oil 

O:'~j = ... Ok l O'k~1 ... O'i l 

Every element of _ooB';.. can be expressed in one of the following forms 

0'(1) .0L, . 0(2) .O'~OO,J . 0(3), 0'(1) . O'~oo,j . 0'(2), 0(1) . O!,j . 0'(2), 0'(1) 

where 0'(1), 0'(2), 0'(3) are sane braids without strings at -00 or at 00 and £, Jl = ± 1 . A sane braid 
has a string at ± 00 if and only if the corresponding "permutation" is an element of the completion 
-ooS';.. of the usual permutation group -coS 00 of all finite permutations of the integers but does not 
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belong to __ s2. The topology is similar to the one used in __ B co' By __ S'!, we denote the 
group of those "permutations" which are in fact permutations of the integers, that is, are onto 
mappings. Every element of _Se.! can be expressed uniquely (upto order) as a product of 
disjoint cycles. Some of these cycles can be infinite, in which case they will be doubly infinite of 
the form 

( ... ajib ... ) . 

Now let· 

( ... ajib ... ) 

be any cycle - finite or infinite of the above form. 

(i) If there exists a smallest integer i in this cycle, then we write 

( ... a jib ... ) = (i j) ( ... a j b ... ) 

Repeated application of this procedure will give a representation of this cycle as a product 
(possibly infinite to the right) of transpositions. 

(ii) If there exists a largest integer j in the above given cycle, then we write 

( ... a jib ... ) = ( ... a i b ... ) (i j) . 

Repeated application of this procedure will give a representation of this cycle as a product 
(possibly infinite to the left) of transpositions. 

(iii) If neither of the above conditions hold, then one proceeds via integers of smallest modulus 
and thus gets a situation similar to that described in case (i). 

One obtains a corresponding sane convergent braid on replacing 

(i j) by OJ,j when i < j , 

where OJ,j = 0j-l OJ,j-l 0j-l and OJ,j+l = OJ . 

There exists a group homomorphism of _coBe.! onto _S'!, which has the pure braid group 
__ P';,. as kernel. Hence one has the following fact: 

Every sane braid is the braid product of at most eight sane convergent braids . 
We end this section by giving a large class of sane braids in which the pushing down 

procedure is possible. If 0 is a sane braid, then the graph of 0 is obtained from the picture of 0 

by joining up the gaps left by the underpassing line segments whenever they occur as given in 
Figure 15 

both x and x go over to x 
Figure 15. Going from picture of 0 to the graph of 0. 

The initial descendant of the j-th string of a sane braid 0 without strings at ±oo is defined as 
follows. 
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(a) Suppose j is a nonnegative integer. Then the initial descendant of the j-th string of cr is the 
smallest integer k obtained by starting at Pj and transversing down the graph of cr till Qk is 
obtained. 

(b) Suppose that j is a negative integer. Then the initial descendant of the j-th string of cr is 
the largest integer k obtained by starting at Pj and transversing down the graph of cr till Qk 
is reached. 

The graphs of the sane braids 

... 0~2 ... 022 0)2 and ... o~ ... o~ or 

are both equal to the graph given in Figure 16. 

2 3 

Figure 16. The graph of two di fferent sane braids. 

The initial descendant of the j-th string of both these braids is 1 for every positive integer j. The 
pushing down procedure is not possible in both these cases. The first case was dealt with in the 
previous section. The second example follows since 

_ 2 _2 _2 
(XI X3 ... X2n-1 ... ) ( ... 0i ... 02 0\ ) 

contains an infinite number of distinct occurences of xII. 
The pushing down procedure is possible in the following sane braids: 

I -I I -I 
(J~,i ,(J_~.i ,O';;:',i ,CJoo~i' 

any sane braid without strings at ± 00 which has the property that the initial descendant of the j-th 
string tends to - 00(+ 00) as j tends to - 00(+00 respectively) whenever there are an infinite number 
of strings to the left (right respectively) 
and any meaningful finite product of the above braids. 

7. We form the link L(o) associated with the sane braid 0, which is obtained from a by 
identifying Pi with Qi for every integer i. Further we join P ~ to lim Pi by a line of the form 

1 ->00 

lim Pi P oo 
1->00 

which lies in the upper plane of 0. We do the same for P -00 and lim P -i' namely, we have the 
i ....... 00 

line 
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lim P-i 
'-+00 

The group of the link L(a) is G(L(a)). which is the fundamental group 1t(CR3(L(a))). If the 
pushing down procedure is possible in a. then the group of the link L(a) is isomorphic to the 
factor group of T <Xi> modulo the closed normal subgroup generated by the relations 

-00<,<00 

for all integers i . 

Note that the relations 
- -xoo=xooa and x_oo=x-ooa 

can both be omitted. since both X-oo cr and x .. cr belong to T <Xi>' 
-oo<i<oo 

We outline a proof based on that given in S. Moran (5) Chapter 6 for ordinary braids. A proof 
based on that given in 1. Birman (2) Theorem 2.2 would seem to require stronger assumptions. 

Let cyl denote a solid cylinder in R3 which encloses the braid a. By I we denote the straight 
line path joining the base point Q (in the lower plane) to the base point P (in the upper plane). 
Now let C~/(o) denote the space obtained from Ccy/(o) by removing the following lines from the 
upper plane 

lim P- i lim Pi ---- P .. 

and lines corresponding to these in the lower plane. Now in C~/(a) we have that 
-

is homotopic to Xi 0 

for all i. by the pushing down procedure. Now let T be the torus obtained from cyl by adopting 
the obvious identification. Then there exists the natural continuous mapping 

/: C;y/(o) ~ CT(L(o)) 

This gives the group homomorphism 

/11: 1t(C;y/(a). Q) ~ 1t(CT(L(a)).P) 

which is into. Here the former group is isomorphic to T <Xi>. Note that infinite products 
-oo<i<oo 

of elements of T <xi> arc not always given explicitly on a picture. since the lines such as 
-oo<i<oo 

the one joining p .. to lim P j gets in the way. Thus we have that the group 
, -+00 

1t(CT (L(o)). P) 

is generated by I and T <Xi> and has the relations 
-00<1 <00 

for every lim x(n) in T <Xi>' Now define the group G to be the group that is generated by I 
n -+ 00 --00<1 <00 

and T <Xi> and has the defining relations 
--oo<i <00 

n-+oo n-+oo 

for every lim x(n) in T <Xi>. Now it is not difficult to see that every element of G is 
n~oo -oo<i<oo 
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conjugate to an element of the form 

w( ...• X-i • ...• X-I. XO. XJ. ...• Xi •... ) .[-m. 

where m is an integer. or its inverse. Next we map the group G homorphically onto the group 

1t (Cr(L(o» • P) . 

This preserves the above given facts. We have that some element of the form w . [-m is equal to 
the unit element if and only if 

w = e and m = 0 
as can be seen in Cr(L(o». Hence 

1t (Cr(L(o» . P) == G 

The proof can now be completed by using the Theorem of Seifert and van Kampen. 

8. We now work out the groups of links associat~ with some sane braids. 

!

Xi Xk+1 xi for i ~ k < 00 

(i) Xk ... On ... 0;+1 0; = Xk for i > k . 

Hence the group G(L ( ... on ... Oi+1 0;» is isomorphic to T <Xi> modulo the closed 
k~i 

normal subgroup generated by Xk l Xi Xk+1 XiI for all k ~ i. where we consider the braid to 
be an element of ;B';,.,. This factor group is isomorphic to the multiplicative group 
U (2)/ R (2). Here U (2) is the unrestricted direct product 

nux < ti > 
l~i<oo 

of copies of the infinite cyclic group and R (2) is the restricted direct product of the same 
groups. Note that the loop 

is represented by the coset 

n Xi 
1::;;;<00 

[ n d]R(2). 
1:5;,<00 

_-I _-I _ -I _ {Xk+1 for i ~ k < 00 

(ii) Xk···on ... 0;+1 0 ; - Xk fori>k. 

Consider this sane braid to be an element of iB';,.,. Then the group of the corresponding 
knot is isomorphic to T <x;> modulo the closed normal subgroup determined by 

k?; 

X; = X;+I. Xi+1 = Xi+2 • . .. . 

This is the multiplicative group U (2)/ R (2) which is given in (i) above. 
(iii) The groups of the knots corresponding to the sane braids O-oo,i and 01.i (considered as 

elements of _ooBf+l) also have groups isomorphic to the multiplicative group U (2)/ R(Z) 
which is given in (i) above. 

(iv) Consider ot o~ ... o~ . . . as an element of I P~ . Now 

_2_2 _2 _ !Xk-I Uk Xk~1 for k ~ 2 
Xk 0 I 02 ... 0 n . . . - U I for k = 1 • 



103 

where XkcrZcrZ+1 ... = Uk = (XkUk+d . Xk . (XkUk+lrl for k ~ 1 . The group of the link is 
isomorphic to T <Xi> modulo the closed normal subgroup generated by the relations 

i<!1 

Xk = Xk-I . Uk . Xk~1 for all k ~ 2 and Xl = U 1 . 

This gives that Uk = Xk~IXkXk-1 and so we have that 

(Xb Xk+l) = Xk~1 . (Xk-I> Xk) . xk+1 

for all k ~ 2. Repeated application of this relation gives that 

(Xb Xk+l) = (xkll Xk1 ... x3"l) . (x I> X2) . ( .. .rl 
for all k ~ 2. We also have that 

UI = (XI U2)' XI . (XI U2r l , 

This gives that 

(XI, X2) = 1 . 

(8.1) 

So the relation (8.1) gives that the group of this link is isomorphic to the group T <Xi> 
i<!O 

modulo the closed normal subgroup generated by 

for all k ~ 1. 

(v) Consider ... On ... 0201 . oro~ ... o~ ... 
as an element of IB~. Now by (i) and (iv) above we have that the group of the 
corresponding knot has "defining relations" 

Xi = (u IX;) . Ui+1 . (u IX;)-I for all i ~ 1 (8.2) 

where 

Uk = (XkUk+I). Xk . (XkUk+1 rl for all k ~ 1 . (8.3) 

These relations for i = k = 1 give that U I = U 2 and a proof by induction on i shows that 
Ui = U I for all i. So the group of this knot has topological generators 

X I, X 2, ... , Xn , ... 

and topological defining relations 

Ui = U I for all i (8.4) 

where Uk is defined by equation (8.3). This group is the Topologist's free product of a 
countably infinite number of copies of B 3 with one subgroup being amalgamated. The 
resulting "amalgamated" subgroup is isomorphic to the group U (Z)/ R (Z) which is given 
in (i) above. 

(vi) The group of the knot corresponding to the sane braid 

... O~I ... 021 0,1 . or o~ ... o~ ... 

in I B~ is isomorphic to the multiplicative group U (Z)/ R (Z) which is given in (i) above. 
(vii) The sane braid 
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has a picture of the form given in Figure 17 as an element of __ B~. 

-00 -2 -1 0 1 2 00 

) ) ) 
1(( 

J 

-3 -2 -1 o 2 3 

The group of the corresponding knot has topological generators 

... , X-b· .. , X-I, XO, X I, ... , Xk, ... 

and topological defining relations 

Lk = Lk-I for all k 2! 0 and XOI XkXO = Xk+1 for all k 2! 1 . 

Hence this group is isomorphic to the free product <XI> * (U(Z)I R(Z)). 

9. We conclude this paper by enumerating some properties of the groups of these links and 
pointing out some open problems. 

(i) If "C is a sane braid without strings at ±oo and the pushing down process is possible both in 
"C and "C- I , then 

G(L("C)) == G(L("C-1)) • 

(ii) If a and "C are sane braids so that m is defined, "C has no strings at ±oo and the pushing 
down process is possible both in a and in -rt I , then 

G(L(m)) == G(L("Ca) . 

(iii) The knots and links constructed in this paper are not closed subsets of R 3 - they are 
relatively compact. 

(iv) If a is a sane braid in which the pushing down process is possible, then the group of the 
link L(a) modulo the closure of its commutator subgroup is either isomorphic to the 
unrestricted direct product of countably infinite number of infinite cyclic groups or contains 
U (Z)I R(Z) as a subgroup. In the first case L(a) is a link with a countably infinite number 
of finite components and a does not have strings at ±oo. In the second case L(a) has a 
component of infinite length- this is so for instance if a has strings at ± 00. 

(v) If a is a sane braid with strings both at -00 and 00 such that L(a) is a knot, then L(a) is not 
path wise connected. 

(vi) There is a dual theory to that of sane braids. One can go over to such braids by replacing 
every sane braid by its formal inverse. Example (i) of Section 2 is an example of such a 
braid. 



(vii) We have left open the questions as to the relationships between the varying 
equalities, products, topologies 

defined throughout the paper. However we note the following: 

(a) the convergent braids 

and 

are equivalent (as defined in Section 0) although one is sane while the other is not; 
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(b) the convergent product (as defined in Section 0) of the convergent braid 
... on ... Oz 01 with itself (if it exists) would have a string at 00 and also at 00 + 1 
(or more appropriately at (J) and at (J) + 1) - this is different from the braid product (if 
one were to define it even for more general braids as is implicitly done in the proof 
of the main result in Scction 7 and (e) below by introducing extra lines at the points 
of infinity); 

(c) in some ways it would be natural to explore the theory of braids with strings at (J) + 1 
and so on, but we shall not do so here; 

(d) if 

Ov ... 0201 oTo~ ... o~ = o(v) and oloi ... o~ = "tty) 

then L(o(v) and L("t(V) are string isotopic knots for every positive integer v, but 
lim o(v) gives a sane braid while lim "tty) does not give a sane braid (see (v) of 
V~OO V~oo 

Section 8 and (v) of Section 2); 
(e) suppose that the sane braid 
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ABSTRACT. Starting with Kauffman's bracket polynomial the techniques of linear skein theory 
are used to present and package a family of polynomial invariants for a framed link. An equivalent 
family of invariants is derived from representations of the quantum group SU(2)q. Speciaiisation 
of the variable q leads to invariants of a 3-manifold defined by surgery on a framed link, in terms 
of the invariants of the link. A similar programme is outlined relating the invariants constructed 
from the Homfly polynomial to those derived from the quantum groups SU(k)q. 

Introd uction. 

In this series of talks I shall start by discussing the knot invariants and algebra related to 
Kauffman's bracket polynomial, and the construction of 3-manifold invariants from them. 
The whole area can alternatively be viewed in terms of representations of the quantum 
group SU(2)q; I shall exhibit descriptions which have a convenient interpretation in either 
light, and also give the means for translating between them. My presentation here is based 
on the bracket polynomial, and has much in common with the work of Lickorish, [16], and 
Blanchet, Habegger, Masbaum and Vogel, [2]. 

A direct approach on the quantum group route is given in my paper with Strickland, [23]' 
which draws directly on the early work of Kirillov and Reshetikhin, [13]. A more general 
basis for the use of quantum group representations in constructing knot invariants is given 
in the work of Reshetikhin and Turaev, [31]. Detailed descriptions of representations for 
SU(2)q can be found in Kirby and Melvin, [12]; while these are based on speciaiisations 
of SU(2)q in which the parameter q is a root of unity they do present careful and explicit 
details which enable the less complicated case of generic q to be handled as well. 

The reason for their treatment is to give an account of the invariants of a 3-manifold M 
which depend on the choice of a root of unity, and a quantum group (in this case SU(2)q 1, 
in terms of the invariants of any framed link which determines the 3-manifold M by the 
process of surgery on the link. These 3-manifold invariants were first constructed in this 
way by Reshetikhin and Turaev, [32]; their existence and general properties were proposed 
originally by Witten, [43], based on interpretations of constructions from theoretical physics. 
Other accounts are given in [24], [16] and [2]. Those in [16] and [2] are based entirely on 
the bracket polynomial, while the account in [24] uses the quantum group representations 
at generic q as a means of establishing properties of the knot invariants, and then makes 
constructions based on the evaluations of these at a given root of unity, without having to 
consider the more complicated representation theory which arises at the root of unity. 

My presentation of the 3-manifold invariants uses the techniques appropriate to the 
bracket polynomial. I shall restate the point that, however the knot invariants are con-

M.E. Bozhiiyuk (ed.), Topics in Knot Theory, 107-155. 
© 1993 Kluwer Academic Publishers. 

107 



108 

structed, whether by quantum group representations or by bracket polynomials, there is a 
common halfway stage reached to which each of the constructions brings its own insights. 
The final attack on the question of manifold invariants can then be made from this point, 
no matter how it has been reached, although the representation theory provides invalu
able guidance at this stage in, for example, setting up and choosing a suitable basis for a 
naturally occurring finite dimensional vector space. 

I believe that a similar two-stage process is appropriate in constructing 3-manifold invari
ants frOl1. other quantum groups. Such a construction is done by slightly different means, 
for example, by Turaev and Wenzl, (37], and a general framework is given by Walker, (38], 
in the spirit of Segal's modular functors. It is possible to make a nice comparison of the 
knot invariants defined from the quantum groups SU(k)q, for different k, with knot invari
ants based on the Homfly polynomial, [29), [41), [19). This permits an analogous two-stage 
process, allowing the definition of 3-manifold invariants in terms of the knot invariants for 
generic q, with a root of unity substituted for q; the representation theory to be used in 
the first stage only requires the study of generic q, when the representations mirror directly 
those of the corresponding classical group. In the final section I shall give a description 
of the SU(k)q knot invariants from the point of view of Homfly polynomials, in a similar 
framework to the earlier talks, which can be thought of as dealing with the case k = 2. 
More details will be found in (19]; this gives a preparation of the common ground which 
could be used for the production of manifold invariants by specialising q to be a root of 
unity. 

Readers of earlier versions of this paper should note some minor amendments in section 
6, where the substitutions v = S-k,X = s-ljk replace those used previously. 

1. Knot invariants derived from Kauffman's bracket. 

1.1 THE BRACKET INVARIANT. 

In 1986, Kauffman showed how to construct an element < D> E Z[A±l) for every 
plane diagram D of a knot or link in R 3 , which is determined (up to a constant) by two 
properties. These are 

(1) 

or more pictorially 

where D+, Do and Doo are three link diagrams which only differ as shown. 

(2) < DuO> = fJ< D >, 

where fJ = _A2 - A- 2 , and DuO is a diagram containing one component 0 which has 
no self-crossings, or crossings with the rest of the diagram D. 



Example. Properties (1) and (2) allow the simplification of < (0 > as 

<(0) =A <0f»+A-1 <(9) > 

=A2<OO>+<O> 

+<O>+A-2<@» 
= (A2 + A-2 ) 0 < 0 > + 2 < 0 > 
= _(A4 + A-4) < 0 >. 
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In a similar way, < D > can be written in terms of < 0 > for any D; in Kauffman's 
original work the Laurent polynomial < D > was normalised by taking < 0 > = 1, but 
now it is more often chosen to include use of the empty diagram 4>, with the condition that 
< 4> > = 1, and consequently < 0 > = 0< 4> > = o. 

The reason for using properties (1) and (2) is given by Kauffman's theorem, which can 
be readily established. 

THEOREM 1.1 (Kauffman). When a diagram D is altered by one of the Reidemeister 
moves Rll or RIll the value of < D > is unchanged. 0 

\y 
/~ --

)( 

X :\ 
Reidemeister's moves 

Reidemeister's moves RI, RII and RIll alter one diagram to another which represents 
a different view of the same knotted curve in space, up to a natural equivalence of closed 
curves in space corresponding to physical manipulations of pieces of rope. The classical 
theorem of Reidemeister states that any two diagrams Dl and D2 of two curves which are 
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equivalent in space can be transformed from one to the other by a sequence of Reidemeister's 
moves, (allowing diagrams to be distorted between moves as shown). 

~->c->< 
Thus Kauffman's bracket almost defines an invariant of a curve C in space, by calculating 

< D > for a diagram D of the curve. The element < D > E A would indeed depend only 
on the curve C if it were to be unaltered by all of the three Reidemeister moves. Now RII 
and RIll have no effect on < D >. However the bracket, < D >, is altered when D is 
changed by a move of type Rl. All the same, this change is quite limited, and consists of 
multiplication by a fixed scalar A±I, depending on whether a left-handed or right-handed 
curl is removed. 

This can be summarised as 

(3) < (J > = A < (>, < flo> = A-I < ( >, 
where properties (1) and (2) show readily that A = _A3. 

Kauffman's theorem is proved in [8]. It leads immediately, using property (3), to an 
invariant of oriented curves in space, which can be seen as follows. 

In an oriented diagram each crossing c can be given a sign E( c) = ± 1, defined as shown, 

X E = +1 '" E =-l. , '/"-. 
Now define the writhe w(D) of the oriented diagram D to be w(D) = 2:E(C), the sum 

of the signs of the crossings in D. Since w( D) is unaltered by Reidemeister moves RII 
and RIll, and changes by ±1 under move Rl , the function 

A-w(D)< D > 

is unaltered by all Reidemeister moves, and hence gives an invariant of an oriented curve 
C in space in terms of any choice of diagram D representing C. Kauffman showed that 
this invariant could be identified with Jones' invariant, introduced in 1984, which has been 
the foundation for much recent work in relating knot theory with other topics. 

1.2 LINEAR SKEIN THEORY FOR THE KAUFFMAN BRACKET. 

In this section I shall develop the notation and ideas of linear skein theory in using 
diagrams of various sorts to define certain linear spaces, or more accurately A -modules, 
with the properties (1) and (2) of the bracket polynomial closely in mind. The general 
methods were first used by Conway in dealing with versions of the Alexander polynomial. 

Notation. Let F be a planar surface, for example R2 itself, or an annulus SI X I C R2, 
or a rectangular disc. When F has a boundary we also specify a finite, possibly empty, 
set of points on its boundary. A diagram in F consists of any number of closed curves, 
together with arcs joining the specified boundary points of F. As in the standard case 
of knot diagrams, the curves and arcs have a finite number of crossing points where two 
strands cross. At a crossing the strands are distinguished in the conventional way as an 
over-crossing and an under-crossing, so that the diagram can be interpreted as a view of 
some curves lying within F x I. 
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Write A for the ring Z[A±l), and V(F) for the set of A-linear combinations of diagrams 
in F. 

For example, when F = R2, V(F) consists of linear combinations of knot (and link) 
diagrams, such as AJ( 1 - (A + 2A -1 )J( 2 for the diagrams J( 1 and J( 2 shown. 

Notation. When F is a rectangular disc with m points specifed on the top edge, and n 
points on the bottom edge, denote F by Rr;( , and call a diagram in F an (m, n) -tangle. 

An example of a (4, 2)-tangle is shown below. 

The linear combination of (2,2)-tangles a - AI - A -1 H is an element of V(Rn for the 

tangles a = [ZJ, I = [II] and H = ~ . 

Definition. The linear skein S(F) of a planar surface F, with a distinguished finite, 
(possibly empty), subset of boundary points, is the quotient of 1>( F) by the linear relations 

(1) D+ = ADo + A-I Doo 

(2) 

where D+, Do and Doo are any three diagrams in F which differ only as in the bracket 
relation (1), and D 11 0 consists of a diagram D together with a disjoint simple closed 
curve 0 which is null-homotopic in F. 

Thus condition (2) allows us to replace 

~ but not 

in the linear skein of the annulus, S( SI X I). 
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THEOREM 1.2. As a A-module, S(F) is spanned by diagrams with no crossings and 
no null-homotopic closed curves. 

Proof: By induction on the number of crossings and null-homotopic curves. Relation 
(1) in the definition of S(F) allows us to replace a diagram by a linear combination of 
two diagrams with fewer crossings, while relation (2) allows the removal of null-homotopic 
closed curves. 0 

COROLLARY 1.3. The linear skein S(R2) is spanned as a A-module by the empty 
diagram </>, (or, if the empty diagram is excluded, by the simple unknot diagram 0). 0 

Remark. For any diagram D in R2 we can write D = < D ></> in S(R2); this provides 
an isomorphism S(R2) ~ A, induced by mapping D to < D >. 

THEOREM 1.4. Two diagrams in F which differ by a Reidemeister move within F of 
type RII or RIll represent the same element of S(F). 

Proof: Relations (1) and (2) in S(F) are exactly what is used in the proof of Kauffman's 
theorem. 0 

1.3 SKEIN MAPS. 

Conway's framework, as described by Lickorish [15], for relating skeins of different sur
faces can be helpfully used here to provide a range of linear and multilinear maps between 
skeins. 

The central idea is to place one planar surface F inside another F ' , and include some 
fixed 'wiring', W, in the region between F and F ' , consisting of one or more closed 
curves and arcs, arranged so that the boundary points of the arcs consist exactly of the 
distinguished boundary points of F and F'. 

Definition. A wiring W of F into F' means a choice of inclusion of F in F', and a fixed 
diagram of curves and arcs in F' - F whose endpoints consist of all the distinguished points 
on the boundaries of F and F'. 

Any diagram D inserted in the surface F is then extended by W to give a diagram 
WeD) in F'. 

Examples. (1) The rectangle R~ can be wired into the annulus 8 1 x I as shown. For a 
tangle T the extended diagram WeT) in the annulus, or more usually in R2, is called the 
closure of T, and will be denoted by T. 
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(2) The annulus itself can be wired into R2 by simple inclusion, without any extra 
curves. 

(3) The plat closure of a (2m, 2m) -tangle is the diagram in R2 induced by the 
wiring shown. 

(4) A partial closure ofan (n, n) -tangle T is the (n -1, n -1 )-tangle W(T) induced 
by the wiring of R~ into R~=~ shown below. 

Any wiring W of F into F' determines a linear map 

V(W) : V(F) --+ V(F') 

by D f-* W( D). It is clear that this induces a linear map between the skeins S( F) and 
S(F'). 

THEOREM 1.5. A wiring W of F into F' induces a linear map 

SeW) : S(F) --+ S(F'), 

defined on a diagram D in F by D f-* W(D). 

Proof: It is enough to observe that if diagrams in F satisfy skein relations (1) or (2) then 
they continue to do so when extended by W to diagrams in F', so the relations in S(F) 
are respected by the map. 0 

It is clear from theorem 1.4 that the wiring W can be altered by Reidemeister moves 
RII or RIll in F' - F without changing the map S(W). 

1.4 MULTILINEAR EXTENSIONS. 

The wiring construction can be used to wire several surfaces at once, F1 , • •• ,Fk say, into 
F'. Any such wiring will induce a map 

S(W) : S(FI) x ... X S(Fk) --+ S(F') 

which is multilinear. 
For example, we can very simply wire the rectangles R"; and R; into R';, one above 

the other, inducing a bilinear product 

S(Rr;:) x S(R;) --+ S(R';). 

In the case m = n = p this diagram-based product determines a multiplication which 
turns S(R~) into an algebra over A. 
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Notation. Write T Ln = S(R~) for this algebra, which is isomorphic to the n-th Temperley
Lieb algebra. 

Theorem 1.2 shows that T Ln is spanned by diagrams in R~ with no closed curves, and 
no crossings. 

When n = 3 there are just five such diagrams, 

Id hi h2 

Not, that hl ~ ~ ~ oh, and h,h,h, ~ ~ = h, . 

For general n, T Ln is spanned bye:) /( n + 1) such diagrams; the number of diagrams 
is the n-th Catalan number. 

Kauffman proved in [8J that T Ln can be presented as an algebra with generators 
hI, ... ,hn - I , similar to hI and h2 above, and only the obvious relations, namely 

hihj = hjhi' I i - j I > 1, 

h; = bhi , 

hihi±lhi = hi. 

He was thus able to identify this algebra with the Temperley-Lieb algebra, which appears 
from a totally different viewpoint in Jones' original work. 

1.5 THE BRAID GROUPS. 

An n -string braid is a diagram in R~ consisting only of n arcs, which all run mono
tonically from bottom to top. Two n -braids are composed by placing one below the other. 
Braids, up to Reidemeister moves RIl and RIll, form Artin's n-string braid group, En, 
described by him in [1]. 

PROPOSITION 1.6. There is a multiplicative homomorphism En ....... T Ln determined 
by representing f3 E En by a diagram in R~ and reading the diagram as an element of the 
skein TLn. 

Proof: Diagrams which differ only by moves RJI and RIll represent the same element in 
the skein, so the map is well-defined. It is clearly a homomorphism, since composition is 
defined in the same way in each case. 0 

The image of En under this homomorphism spans T Ln , since each of the generators hi 
of T Ln satisfies the relation (1 i = A Id + A -1 hi , where (1 i is the elementary braid 

(1i = 

and thus hi = A (1i - A 2 Id. The presentation of T Ln can be rewritten in terms of the 
generators (1i. The relations then include the relations in En together with the additional 



relations 
(aj - A)(aj + A-3 ) = 0, 

or in other words (aj + A-3 )h j = o. 

1.6 CALCULATIONAL METHODS. 
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It is possible to make use of the algebra T Ln in calculating the bracket invariant of a 
link L which has been presented as a closed braid lJ on n strings, simply by combining 
the map En -+ T Ln with the linear map T Ln -+ A = S(R2) induced by the closure 
wiring on R~. We must thus write the braid {3 as a linear combination (3 = L >.gTg of 
the C:) / (n + 1) spanning elements {Tg} of T Ln , with >. 9 EA. It is then enough to know 
the bracket invariant < T 9 > of the closure of each Tg , to get 

< L > = < lJ > = L >'g< T 9 >. 

The expression of {3 in terms of {Tg} can be built up from knowledge of {3 as a word in 
the elementary braids a;, by knowing simply how to write each product Tga;, as defined 
in section 1.4, in terms of the basis {Tg} of T Ln. 

The amount of calculation required does not grow rapidly with the number of crossings, 
for braids on a fixed number of strings. Such calculations still give one of the quickest ways 
of handling invariants of quite complicated links; see Morton and Short, [21, 22], for further 
analysis and comments. In principle the bracket invariant of any knot can be found in this 
way, as every knot can be presented as a closed n -braid for some n, although calculations 
become rapidly more impracticable with increasing n. 

For a simple related illustration, note first that T L2 is spanned by just two elements, 
1 (= Id) and h (= hd, with the 2-braid a given by a = A+ A-1 h. The diagram 
illustrated, with rand k half-twists respectively in the two boxes, arises by wiring two 
copies of R~ into the plane with the wiring W shown, and then inserting aT and ak into 
the copies of R~. 

W= gives 

The induced bilinear map 
S(W): TL2 x TL2 -+ A 

then evaluates the bracket invariant of the complete diagram, when applied to (aT, ak ) • 

We can write aT = (A + A-I h Y = PT + QTh E T L2 in terms ofthe basis elements 1 and h, 
and similarly a k • Combine this information with the calculation of S(W) on pairs of basis 
elements, to complete the calculation. It is easy to see that S(W)(l,l) = S(W)(h,h) = 6 
while S(W)(l, h) = S(W)( h, 1) = 62 , so that the required invariant can be written 

(PT QT) (:2 6;) (~:) . 
In calculating aT E T L2 it can be more efficient to use a different basis of T L2 which 

reflects better its algebraic structure. In each T Ln there is one element which will be of 
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further algebraic use. This is related to one of the two non-zero homomorphisms from T Ln 
to A. It is clear from the presentation of T Ln that there is a A-linear homomorphism 
cp: TLn -+ A, defined by cp(1) = 1, cp(hi) = O. In terms of braids this corresponds to 
cp(l1i) = A, cp(1) = 1. (The other homomorphism, ¢, is defined by ¢(l1i) = _A-3.) 

In the next section I shall exhibit an element in E T Ln with the property that Tin = 
inT = cp(T)in for every T E T Ln. Before doing this, I shall look in further detail at the 
skein of the annulus. 

1. 7 THE SKEIN OF THE ANNUL US. 

Notation. Write B = S(Sl X 1) for the skein of the annulus. 

The linear map B --> S(R2) ~ A induced by the inclusion as in example (2) above will 
sometimes be denoted simply by v f-> < V > as it is induced on a diagram in the annulus 
by taking its bracket invariant when regarded as a diagram in the plane. 

We can wire two copies of the annulus into the annulus itself by running one copy parallel 
to the other without adding extra wiring. This defines a bilinear product B x B -+ B, under 
which B becomes an algebra over A. 

For example, the element of B represented by 

~ j, the product of 

Write. ~ @ '" an element of 8. Then k p",allel "'''' "p''''ent .'. 

while the empty diagram is the unit element, 1, of the algebra B. 
By theorem 1.2, B is spanned by diagrams with no crossings and no null-homotopic 

curves. Any such diagram is either empty, or consists of k parallel curves around the 
annulus, for some k, so that B ~ A[a], the ring of polynomials in a. 

For example, use of the skein relations shows that the diagram 

PRO POSITIO N 1. 7. 
phism. 

The evaluation map <. >: B --> A ~ S(R2) is a ring homomor-
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Proof: This follows at once from the structure of 8 since < a k > = bk by skein relation 
(2). Even without this knowledge it is enough to observe that the two parallel copies of the 
annulus containing diagrams to be multiplied in 8 can be moved apart without change, 
using RII and RIll, before evaluating each separately. 0 

2. Satellite knots. 

Suppose that we want to use the bracket invariant to compare two knots C1 and C2 • 

Let us draw diagrams of each knot and calculate its bracket invariant. If the knots are 
equivalent, and the diagrams used have the same writhe, then we will get the same answer 
in each case. Hence different answers, from diagrams with the same writhe, guarantee that 
the given knots are different. 

We might, however, get the same answer from two knots which we suspect to be different. 
It is still possible that we may be able to show that the knots are different by a less direct 
use of the bracket invariant. First, 'decorate' the two knots in the same way, to give two 
more complicated knots /(1 and /(2. Make sure that if the decoration is done in the same 
way, and the two knots C1 and C2 are equivalent, then the decorated knots are equivalent. 
Then use the bracket invariant again to compare K1 and K 2 ; if these give different answers 
then C1 and C2 must be different. 

Such a project might be doomed to failure. If, for example, the bracket invariant of /(i 

could be calculated in terms of the bracket invariant of Ci and the decoration, as is the 
case for the classical Alexander polynomial, then two knots with the same bracket invariant 
would, after being decorated in the same way, still give two knots with the same invariant. 

Happily, there is a chance of using the bracket invariant in this way. One of the early 
discoveries [21] about the recent knot invariants was the existence of pairs of knots with 
the same invariant which can be distinguished by calculating the invariant of the knots 
resulting from suitable decoration. 

2.1 CONSTRUCTION OF SATELLITES. 

I shall now describe how to decorate a knot. Starting with a given knot C we draw 
a diagram of it. This selects a 'parallel' curve to C, determined by keeping just to one 
side of C in the diagram. Altering the diagram by RII or RIll does not change this 
'diagrammatic' parallel curve when thought of as a curve in space relative to C, while RI 
introduces a full twist of the parallel around C. 

Definition. A framed knot is a curve C in R 3 , with a choice of a neighbouring parallel 
curve; a framed link has a choice of parallel for each component of the link. 

In much of what follows we shall be dealing with framed knots and links. I shall normally 
assume that any diagram of a framed link is drawn so that the chosen parallels agree with the 
diagrammatic parallels. Suitable insertion of curls in the diagram allows the diagrammatic 
parallels to be adjusted so that this is the case. 

The study of framed knots and links is almost equivalent to the study of diagrams of 
the knots and links up to the moves RII and RIll. As noted, the diagrammatic parallels 
are unaltered by RII and RIll; conversely we can pass between diagrams with the same 
parallel curves by using RII and RIll if we are also allowed to move curls from one side 
of the string to the other, as shown. 
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See Kauffman [10) for further COfJlments. In the applications given here this last move will 
be permissible, so I shall assume that any statements about framed links can be interpreted 
in terms of diagrams up to moves RIl and RIll, and vice versa. 

To continue then with the construction, we shall assume that we have a diagram of C, or 
equivalently a framing of C. Now select a diagram P in the annulus. We decorate C with 
P as follows. Place the annulus with one edge following C and one following its parallel, 
and copy P into this annulus. The image of P forms a new diagram, which is the knot 
C decorated by P. Changing the exact positioning of the copy of P as it is placed to lie 
around C will alter this new diagram, but only by moves RII and RIll. Write C * P for 
this new diagram, defined up to RII and RIll. For example, when C is the trefoil with 
framing as shown, 

C= 

and P= then C * P = 

Alteration of the diagram of C itself by RII or RIll will alter C * P only by a sequence 
of moves RII or RIll respectively, and so C * P , as a framed knot, depends only on C as a 
framed knot and on P. Altering the framing of C, i.e. altering its diagram by a move RI, 
will in general alter C * P substantially; for this reason a framing of C must be specified 
in some way. 

From a more 3-dimensional viewpoint, the decoration P can be viewed as lying in a solid 
torus, which is then embedded in R3 as a neighbourhood of the curve C. The resulting 
image of P is called a satellite of C, while C is known as its companion. Again, some 
specification, amounting to a decision on framing, is needed to describe exactly how the 
solid torus is to be embedded. 

2.2 THE TOTAL BRACKET INVARIANT. 

Our immediate study can be seen as the study of C by means of the bracket invariant 
of its various satellites, as we change the decoration pattern P. As with the wiring con-
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struction, we can show that the process of decorating a fixed diagram C by a pattern P 
in the annulus induces a linear map B -+ A ~ S(R2). 

THEOREM 2.1. Let C be a knot diagram. Then there is a linear map Jc : B -+ A ~ 
S(R2) induced by mapping a diagram P in the annulus to the diagram C * P. 

Proof: When diagrams in the annulus satisfy skein relations (1) or (2) then the diagrams 
which result from decorating C will also satisfy the same skein relation. The map Jc is 
thus well-defined on the skein B. 0 

As in the case of wiring diagrams, there is an extension of this result where C is replaced 
by a link diagram L with k components. Each component can be decorated independently, 
giving a multilinear map 

h : B x ... x B -+ A, 

from k copies of B. It is clear that if L is changed by RIl or RIll then the map h is 
unaltered; indeed J L is an invariant of the framed link L, its total bracket invariant. 

We can make a further generalisation on this construction to the case where D is a 
diagram with k closed components in a surface F. By decorating each component of D, 
following its diagrammatic parallel, with a linear combination of diagrams in the annulus, 
we induce a multilinear map 

J D : B X ... x B -+ S (F). 

When a diagram, L say, arises by decoration of another diagram we can use such a 
map, taking F itself as an annulus, to write the total invariant of the diagram L as the 
composite of simpler maps. 

For example, suppose that L is a link of k + 1 components which can be drawn with one 
of the components, Lk+1 say, as a simple closed curve. Then, after suitable adjustment 
by moves RlI and RIll, the remaining components can be arranged to form a diagram 
D = T in an annulus, as shown, so that the link L itself is arranged as the Hopf diagram 
H , with one component dec Jrated by D. 

L = 

THEOREM 2.2. The invariant h is the composite 

B x ... x B J~ B X B :!.!!... A. 
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Proof: Decorate each component of L by diagrams PI, ... ' Pk+1 . The decorations 
PI, ... ,Pk determine a diagram in the annulus which is just the decoration of D. 
The final diagram is the Hopf diagram H with this complicated diagram, representing 
J D( PI, ... , Pk) in B, decorating one component, while the other component is decorated 
by PHI. Then h(Pl, ... , PHI) = JH(JD(PI, ... , Pk), PHI). The result follows by lin
~~ 0 

2.3 THE SATELLITE FORMULA. 

We may also use this framework to calculate the total invariant J K of a knot K = C * P 
which is a satellite of C constructed by decorating the framed knot C by a diagram P in 
the annulus. Assuming that P has one component we may decorate P by any diagram Q 
in the annulus, to get a diagram P * Q also in the annulus. It is easy to see that, up to 
RII and RIll, the diagrams C * (P * Q) and K * Q = (C * P) * Q are the same. It is then 
immediate that the invariant JJ( : B -+ A is the composite 

B.!!.. B!.s. A. 

This equation, and its counterpart for links and patterns with more than one component, 
will be termed the satellite formula. In this simple case we may also write it as 

Jc.P = Jc 0 Jp. 

The satellite formula shows that, unlike the bracket polynomial alone, we know the total 
invariant J of a satellite once we know J for the companion and for the annulus diagram 
P used in constructing the satellite. (Where C or P have more than one component, the 
corresponding multilinear maps should be used, and composed appropriately, depending on 
the component of the companion which is decorated.) 

The total bracket invariant Jc contains all the information about bracket invariants 
of satellites of the knot C. It is known once its values Jc( ak) on the basis {ak} of B 
are known. To determine the bracket invariant of the satellite when C is decorated by a 
pattern P it is enough to write out P = ao + ala + ... + arar in B and calculate the 
bracket invariant of C decorated by ak , for 0 ~ k ~ r. Then 

r 

Je(P) = L akJc(ak). 
k=O 

Now Jc(l) = 1 and Jc(a) = < C >, since decoration of C by a just gives C again. 
However, as remarked earlier, there is in general no way to determine Jc(ak) from Jc(a), 
when k 2 2. 

For the unknot and the Hopf link, and also for other torus knots and links, the map h 
is known, but not for any other knots. There are examples known, though, of inequivalent 
knots CI and C2 for which Jc, = Jc2 ; these examples include all mutant pairs of knots, 
such as the famous pair of Conway and Kinoshita-Teresaka, [25]. 

The relation given above for the invariant J of a satellite knot is equivalent to the 
'satellite formula' of [23] which relates the total invariant of a given satellite to those of the 
companion, the Hopf link H and the 'pattern link', namely the satellite of H :onstructed 
from the same annulus.diagram P as the given satellite. The pattern link consists of P 
and one extra component, which can be compared to the axis of a closed braid, and which 
gives the means for recovering P as a diagram in the annulus from the pattern link in 53. 
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To get the appropriate reinterpretation of [23] it is simply necessary to identify 8 with the 
representation ring 'R of the quantum group SU(2)q. 

In section 4 I shall give a brief account of the translation between the two viewpoints, 
but the important features of either approach are the existence of the multilinear invariant 
J L for a framed link L, and its natural behaviour on satellites. 

2.4 FRAMING CHANGE AND THE TOTAL INVARIANT. 

To complete this stage in the understanding of the invariant h for a framed link L we 
must discuss the behaviour of J when the framing of L is altered. 

To see more clearly what happens I shall look at the case when L has one component. 
Suppose that L' has the same diagram as L, except for the addition of a single right-handed 
curl, so that the underlying knots are equivalent, but the framing has been altered by a single 
twist. If we use the simple decoration by 0: then J L' (0:) = < L' > = >'< L > = >'h( 0:), 
where>' = _A3. However, JL'(f3) is not in general a simple multiple of h(f3). For 
example, we can calculate h. (Q 2) in terms of h by using the diagram shown 

to decorate L. This diagram represents A8 Q 2 - (AS - 1) in 8. 
In general the change of framing can be expressed in terms of the map F : 8 --- 8 

induced by decorating the diagram T in the annulus. 

T 

THEOREM 2.3. Let L' be a knot given from L by adding one right-hand twist to the 
framing. Then J L' = J L 0 F, where F = JT, induced by the diagram shown above in the 
annulus. 

Proof: The diagram L' is just L * T , and so the result follows from the satellite formula. 0 

The map F has an inverse, induced similarly by the left-hand curl. 
When the framing on a link of several components is altered, the total invariant J, as a 

multilinear map on 8, is changed by applying a suitable power of the automorphism F to 
each copy of 8, depending on the change of framing to be made on the corresponding link 
component. 

To describe the effect of framing change it is enough to determine the map F, or equiva
lently to find F( Qk) for each k. As noted above, it is not true that F( o:k) is a multiple of 
o:k when k > 1, although it is easy to see that, as a polynomial in 0:, it must have degree 
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at most k, and indeed that its degree is exactly k. In the 3-dimensional view, F arises 
when the solid torus formed by thickening the annulus is mapped to itself by cutting along 
a meridian disc and regluing after a full twist. 

To handle the invariant J most readily, including its behaviour under framing change, 
it is natural to try to change the basis of B from {a k } to one consisting of eigenvectors 
Wi of F, if this is possible. Then J L' (Wi) = Aih( Wi), where Ai is the eigenvalue of Wi, 

and the value of JL'(f3) can be found readily in terms of h by writing f3 in terms of the 
basis Wi. 

2.5 THE TEMPERLEy-LIEB ALGEBRA. 

I shall now use the Temperley-Lieb algebra to help construct enough eigenvectors of 
F to form a basis of B. Some of the properties of these eigenvectors are most readily 
appreciated in the alternative view of B as the representation ring of SU(2)q in which 
the eigenvectors appear naturally as the irreducible representations. For this reason I shall 
index the eigenvectors as WI, ... , Wi, .. . , where Wi, which is a monic polynomial in a of 
degree i-I, will correspond to the irreducible representation of dimension i, in conflict 
with the notation used by Lickorish [16], who indexes by the degree of the polynomial. 
In the corresponding construction in [2], Blanchet et al focus heavily on the eigenvector 
property, without using the Temperley-Lieb algebra at all. 

Using the closure wiring referred to earlier to map (n,n)-tangles into annulus diagrams 
I shall construct elements of B from the closure of elements in T Ln; in particular, the 
closure of the element In mentioned at the end of section 1.6 is a multiple of the desired 
eigenvector Wn+I. 

It is easy to see the effect of F on any element of B which is in the closure of T Ln , 
in terms of the multiplication in T Ln. For suppose that X is an (n, n) -tangle. Then the 
closure of the tangle QnX, where Qn is the right-handed curl on n parallel strings, as 
shown, 

will represent F(X) as an element of B. Write 'PA : T Ln ...... A for the linear homomorphism 
defined by 'P A (0";) = A for each i. In what follows I shall define the elements in E T Ln 
with the property that TIn = 'PA(T)In for all T E TLn. It is then immediate that the 
closure of In is an eigenvector of F since we can write QnIn = 'PA(Qn)In. Take X = In; 
its closure In is then an eigenvector with eigenvalue 'PA(Qn). 

Now by removing n right-hand curls, one from each component, we can write Qn as 
a multiple of the right-hand full-twisted braid ~~, as an element of T L n , so we have 
Qn = (-ltA3n~~. Since ~~ is a braid it is easy to calculate 'PA(~~) in terms of the 
crossings in the braid, as 'PA(O";) = A for each i. Now after removal of the n curls from 
Qn there remain n2 - n crossings in the braid ~;, all in the same sense, so we have 
'PA(~;) = An2 - n and thus the eigenvalue for In is (_ltAn2+2n . 
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Define elements Wi E B ~ A[a] by the relations 

WI = 1, W2 = a, 

Wi+1 = aWi - Wi-I, i> 1. 

Each Wk is clearly a monic polynomial of degree k -1, and can be recognised as the Cheby
shev polynomial of the second kind, resulting from writing sin kf} / sin f} as a polynomial in 
a = 2 cos f}, (d. Lickorish [16]). 

The final result in this section IS to establish that <f' A(fn )Wn+1 = I n ~o that each Wi is 
an eigenvector of :F with eigenvalue Ai = (_l)i-1 Ai2_1, provided that <f'A(fn) 1- o. 

While it appears more appealing to divide In by it'A(fn) in order to map exactly to 
wn+l this can only be done by extending the ring A to allow suitable denominators. 
At the present stage this need cause no problems, but later developments which require 
substitution of the variable A in A then become more difficult as there is a chance that 
it' A (fn) may become zero. Lickorish in fact uses carefully controlled denominators to define 
an element denoted by I(n) whose closure is exactly Wn+l. However, the definition of In 
without the factor, as given here, is also quite natural. 

2.6 POSITIVE PERMUTATION BRAIDS. 

I shall construct the element In E T Ln by means of positive permutation braids. These 
have been used in [22] as a convenient basis for the Heeke algebra, and are discussed more 
fully in [4]. In the algebraic context the construction of In given here is a special case of 
a construction of Jones in the Hecke algebra [7]; this method has also been noted more 
recently by Kauffman [10]. 

Definition. For each permutation 7r E Sn there is an n-braid W?r(O'I, ... ,O'n-I), called a 
positive permutation braid. It is uniquely determined by the following properties. 

(1) String i joins the point numbered i at the bottom of the braid to the point 
numbered 7r( i) at the top, i = 1, ... , n . 

(2) At any crossing, string i always crosses over string j if i < j. 

We may view the strings in the braid as lying in layers, with string 1 above string 2, 
and so on, so that each string can be moved independently of the others. This ensures the 
uniqueness of W?r, which can be drawn, if required, so that pairs of strings cross at most 
once. In this form, condition (2) is equivalent to asking that each crossing be positive, when 
all strings are oriented from bottom to top. 

Let us now consider an algebra A in which the n -string braid group En is represented. 
In what follows, we shall be primarily interested in the Temperley- Lieb algebra, T Ln , but 
the arguments will work as well in a more general setting. I shall continue to write Uj 
for the element of A which represents the elementary braid O'j. We may then define an 
element En (0'1 , ... ,Un-I) in the algebra A as the sum 

En(O't, ... ,un-t} = L W?r(O't, ... ,O'n-l). 
?rES" 

Thus E3 = 1 + 0'1 + 0'2 + 0'10'2 + 1720'1 + 0'10'20'1 , noting that the last braid in the sum, 
corresponding to the permutation (13), could equally well be written as 0'20'1172. It is a 
convenient property of the permutation braids that it is only necessary to remember them 
by their permutation of the strings, without having to specify each braid as a word in {U;}. 
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THEOREM 2.4. For each i we can factorise En in the given algebra A as En = 
( i) 

En (O"i + 1). 

Proof: Given i, we can pair the permutations as follows. For each permutation 1T consider 
its composite 1T' = 1T 0 (i H1) with the transposition (i H1). Exactly one of the pair 
preserves the order of i and i + 1. Suppose that it is 1T, so that 1T( i) < 1T( i + 1). Then 
the braid W",O"i satisfies property (2) above, and so is itself a positive permutation braid. 
Since its permutation is 1T' we have W",O"i = W",' . Then 

En = L W" + L W'" 
,,(i)<,,(i+1) "'(i»,,,'(i+1) 

L W1f + L W1I:0"i 
".(i)<".(;+1) ".(;)<".(;+1) 

= E~i)(O"i + 1), 

where E~;) = LW",. o 
"'(;)<1I:(i+1) 

If A is a scalar, then we may substitute AO"i for O"i and rewrite the element 
W".(AO"t, ... ,AO"n_t} as A'(1I:)W1I:(0"1, ... ,O"n_t} in A, where 1(1T) is the writhe of the braid 
W",. This is the same as the length of w". when written as a monomial in positive powers 
of the elementary braids Ui. It is equal to the number of reversals of the permutation 1T, 
i.e. the number of pairs i < j for which 1T( i) > 1T(j). 

Suppose now that all the elementary braids satisfy the quadratic equation 

(u; - a)(uj - b) = 0 

in the algebra A. Substitute AUi for 0"; in En, with A = -a-lor A = _b-1 , to define 

an = En(-a-IuI, ... ,-a-IO"n_t}, bn = En(-b- IO"l, ... ,-b-IO"n_t). 

THEOREM 2.5. Suppose that the algebra A is spanned by braids, that (u;-a)(O";-b) = 0 
in A and that 'Pa and 'Pb are linear homomorphisms from A to the scalars defined by 
'Pa(O"i) = a, 'Pb(O"i) = b. Then every TEA sati:Jjies 

anT = 'Pb(T)an = Tan, bnT = 'Pa(T)bn = Tbn. 

Proof: To establish the left-hand equality in each case it is enough to show that anu; = 
'Pb(O"i)an = ban for each i, and similarly that bnO"i = abn . We can factorise an using the 
theorem above, as 

an = E~i)( -a-10"t, ... , -a-IO"n_1) X (-a- 10"i + 1) = Qn(O"i - a), say, 

giving an(O"i - b) = Qn(O"i - a)(O"; - b) = 0, so that anO"i = ban. Similarly bn(O"; - a) = o. 
The factorisation of En as (0"; + 1 )E~(i) is also possible, proving the right-hand equalities 

Tan = 'Pb(T)an and Tbn = 'Pa(T)an . 0 

Remark. When A is the group algebra of the symmetric group, Z[SnJ, and each 0"; is 
represented as a transposition, the quadratic equation is u; - 1 = (0"; - 1)( U; + 1) = o. 
The elements an and bn are then the classical symmetriser and skew-symmetriser, 

bn = L 1T, an = L e(1T)1T. 
"'ESn 1I:E S n 
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The Temperley-Lieb algebra TLn is generated by the n-braids O'I, ..• ,O'n-1 which sat
isfy the relation O'i = A+A-1hi with h; = Chi (= _(A2+a-2)h;). Then O'ihi = -A-3hi, 
so that (O'i + A-3 )(O'i - A) = o. 

Definition. In T Ln we define an element in by 

in = En(A30'1, ... ,A30'n_t) (= L A31("')w".(0'1, ... ,O'n_I)). 
".ESn 

COROLLARY TO THEOREM 2.5. Every T E TLn satisfies the multiplicative property 

inT = Tin = 'PA(T)in, 

where 'P A : T Ln -+ A is the linear homomorphism defined by 'P A (0' i) = A for each i. 

Proof: We can apply the theorem to TLn with a = _A-3 and b = A. Then fn = an 
and the result follows. 0 

Remarks. The element bn E T Ln is identically zero for n 2: 3. 
The general algebra to which the theorem applies is some quotient of the Hecke algebra. 

Jones [7] notes the elements an and bn for the Hecke algebra when a = q, b = -1; any 
other case can be rewritten in this way if 0'; is replaced throughout by a suitable multiple. 

2.7 THE ALTERNATIVE BASIS FOR THE SKEIN OF THE ANNULUS. 

Having established the definition and multiplicative property of fn in T Ln I now want 
to relate the closure of in in B to the element Wn+1, defined inductively above by Wn+l = 
aWn - Wn-l, with WI = 1 and W2 = a. 

THEOREM 2.6. 
n2:1. 

In B, the skein of the annulus, we have In = 'PA(fn)Wn+l for all 

Proof: We have II = 1 in T Ll as a braid on one string, so ]1 = a = W2. Indeed, we 
could consider io = 4> in T Lo, which gives 10 = 4> = WI, noting that the empty diagram 
in the annulus represents the identity element WI = 1 in the algebra B. The rest of the 
proof is by induction on n, and depends on establishing the appropriate relation between 
1 n' 1 n-l and 1 n-2. This in turn depends on rewriting some of the permutation braids w". 
which appear in the sum En. 

Corresponding to the inclusion i : Sn-l C Sn in which 1r' E Sn-l is extended to 1r' E Sn 
by 1r'(n) = n there is an inclusion of the braid group Bn- l in Bn by adjoining an n-th 
straight string. The same procedure defines an inclusion i : T Ln- l C T Ln ; this can even 
be seen to come from a simple wiring of R~=t into R: which adjoins the extra string. The 

element i( En-I) is then L w".. Because of the extra string the closure of i(T), for any 
".(n)=n 

T E T Ln - l , can be written as aT in B. 
Define braids 'Yr E En, r = 0, ... , n - 1, by 'Yo = 1, Ir = O'n-IO'n-2 ... O'n-r. In Ir 

the string ending at position n crosses exactly r others, while no other strings cross each 
other. The braids W""r with 1r( n) = n are then positive permutation braids for all such 
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7r and for all r = 0, ... ,n - 1. All permutations of strings arise exactly once on this list, 
so all positive permutation braids are counted exactly once as 

Replace U; by A3u; to get 

in = i(Jn-d (~A3rl'r) . 
We can calculate !.pA(Jn) inductively, using (*)n, since !.pA(l'r) = Ar. For we have 

!.pA(Jn) = !.pA(Jn-l) (~A4r) = [n]q!.pA(Jn-d, 

where [n]q = 1 + q + ... + qn-l (= n when q = 1) and q = A4. Consequently, 

!.pA(Jn) = [n]q[n - I]q ... [I]q = [n]q!. 

To complete the proof of the theorem it will be enough to establish the relation 

In = [n]qaln_l - [n]q[n - I]qln_2' 

as the right hand side is then, by the induction hypothesis, !.pA(Jn)(awn - wn-d = 
!.pA(Jn)Wn+1. 

We now use (*)n to find the closure In. For any elements Tl and T2 in T Ln the 
products T1T2 and T2T1 have the same closure in B. We can then replace in by the 

product Pn = (~A3rl'r) i(Jn-t). Now uji(Jn-t} = Ai(Jn-t} , for j < n -1, by the 

multiplicative property of in-1, so I'ri(Jn-d = Ar-1un_1i(Jn_t} , for r > o. Then 

Pn = i(Jn-t} + (~A4r-1) un-1i(jn-t} 

= (~A4r) i(fn-d + (~A4r-2) hn-1i(jn_1) 

= [n]qi(!n-d + A2[n - I]qhn_1i(!n_1), 
. -1· ~ ~ ~ 2 ~ 

slllce Un-1 = A + A hn- 1 III TLn. Hence in = Pn = [n]qain_1 + A [n -I]qQn, where 
Qn = hn- 1 i(!n-d E T Ln. 

We complete the proof by showing that Qn = -A-Z[n]qln_z. 
By (*)n-1 we have 

where I'~ = Un-2· .. Un-r-1· 
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Then Qn has the same closure as (~A3r'Y~) hn- 1i(fn-2) = Rn , say. Now O'j com

mutes with hn- 1 and 0' Afn-2) = A i(fn-2) , for j < n - 2, so as above we get 

Rn = hn- 1 i(fn-2) + (~A4r-1) O'n_2hn_1 i(fn-2) 
r=l 

= (~A4r) hn- 1i(fn-2) + (~A4r-2) hn- 2hn- 1i(fn-2) 

= [n - 1]qhn- 1i(fn-2) + A2[n - 2]qhn- 2hn- 1i(fn-2). 

Now for T E T Ln- 2 the closures of the elements hn- 1 i(T) and hn- 2hn- 1 i(T) in T Ln 
are respectively oT and T, as seen below. 

=() 

Thus 
~ ~ 2 ~ 

Qn = Rn = ([n - l]qO + A [n - 2]q)f n-2 
-2 (4 4) ~ = -A (1 + A )[n - l]q - A [n - 2]q f n-2 
-2 4 ~ -2 ~ = -A (A [n - l]q + l)f n-2 = -A [n]qf n-2· 

This completes the last step in the proof. o 
As remarked earlier, this result establishes that the elements Wi are eigenvectors of the 

twist-induced map F, with eigenvalue Ai = (_1)i-1 Ai'-l. 
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3. Invariants of 3-manifolds. 

3.1 SURGERY ON FRAMED LINKS. 

A description of closed orientable 3-manifolds has been known for some time in terms 
of surgery on framed links in S3. 

Given a framed link L in S3, the technique of surgery produces a manifold M(L) by 
removing a solid torus neighbourhood V; of each link component Li from S3, leaving 
the 'exterior' of L, a compact 3-manifold whose boundary consists of k tori. The closed 
manifold M(L) is built up from this piece and k solid tori, by gluing each solid torus to one 
of the boundary components. On the boundary of each solid torus there is a distinguished 
family of closed curves, the meridians, which bound discs in the solid torus. To specify 
M(L) we must say which curves on the boundary of the exterior of L are to be matched 
with the meridians by the gluing. 

We use the framing of L to determine this match. The framing of the component Li 
specifies a choice of curves parallel to Li which determines a distinguished family of curves 
on the corresponding boundary component of the exterior of L; the surgery is defined by 
matching these curves with the meridians. 

We may think of the link L as giving us a view in S3 of a large part of the manifold 
M(L), namely the exterior of L. All that remains unseen are the added solid tori, and the 
picture provides a good indirect knowledge of these as well. Of course there can be other 
views of the same 3-manifold, based on a different link L' say, in other words we may find 
links L and L' for which M(L) ~ M(L'). 

The study of 3 -manifolds by means of framed links is greatly simplified by the results 
of Kirby [11] and Fenn and Rourke [5]. 

THEOREM 3.1 (Kirby, Fenn-Rourke). 
(1) Every closed oriented 3-manifold arises as M(L) for some fmmed link L. 
(2) There is an orientation preserving homeomorphism M(L) ~ M(L') if and 

only if Land L' are related by a finite sequence of Kirby moves. 

Kirby moves are of two types, shown below. 

L ~ <p(L) 
+ 

-0 
L <p (L) 

As in the earlier sections we assume that each diagram specifies a framed link using the 
diagrammatic framing. 
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These moves have been used by Reshetikhin and Turaev [32], and subsequently several 
other authors, as a means of approaching the family of 3-manifold invariants described by 
Witten (W]. The central idea is to look for an element S1 E B with the property that the 
value h(S1, ... ,S1) E A, possibly normalised in some way, is unaltered when L is changed 
by Kirby moves. If such an S1 were to exist, then h(S1, ... , S1) would depend only on 
the manifold M(L), and so would give an element of A which is an invariant of M(L). 
Unfortunately this does not prove to be possible without some modification, even allowing 
S1 to be a formal power series in 0: rather than a polynomial. 

The modification which works is to decide initially on a 'level' I, or equivalently to select 
a 4r-th root of unity, with r = 1+ 2, which is to be substituted for the variable A in 
A. Having decided on I, it is then possible to choose S1 E B, (depending on I), so that 
the complex number given by substituting a 4r-th root of unity in h(S1, ... , S1) is, after 
suitable normalisation, unaltered by the Kirby moves, and is thus an invariant of M(L). 

In keeping with Segal's view of Witten's invariants it is worth noting that if a link 
invariant h is eventually to be evaluated at a 4r-th root of unity then elements of B 
whose difference lies in an ideal Ir independent of L will always determine the same 
value. The element S1 can then be considered as an element of BlIr , which is a finite
dimensional algebra over A. In section 3.2 I shall write Br for this algebra after substituting 
a chosen 4r-th root of unity for A in the coefficient ring A. In this context it is possible to 
describe further modifications to deal in a similar way with the more general constructions 
of manifolds by 'rational' surgery on a link, in which a different family of curves is used to 
match with the meridians when the solid tori are glued to the link exterior, [24]. 

3.2 EVALUATIONS OF THE TOTAL INVARIANT AT ROOTS OF UNITY. 

I shall start by discussing the evaluation of h on the ideal in B generated by one of the 
elements W r . For any given component of the diagram of L it is possible, using moves Rn 
and RIll, to draw it in an annulus as the closure of some (1,1 )-tangle T so that the chosen 
component, L1 say, is the single arc in T while the remaining components L2 , ••• , Lk lie 
entirely in T. This diagram Y in the annulus induces a multilinear map Jy : Bx ... xB -+ B 
and h is the composite of this with the evaluation map < . >: B -+ A. 

THEOREM 3.2. For any n, and any /32, ... ,/3k E B we have 

JY(Wn+1,/32, ... ,/3k) = AWn+1, for some A E A. 

Proof: From the tangle T construct an (n,n)-tangle T(n) with n parallel arcs in place 
of the single arc. Decorate the k - 1 closed curves by /32,'" ,/3k to give an element, C 
say, in TLn. The closure of fnC will then be Jycln,/32,'" ,/3k) E B. Now the multi
plicative property of fn allows us to write fnC = Afn, where A = 'PA(C) E A. Thus 
JY (!n,/32, ... ,(3k) = Aln' and the result follows since In is a multiple of Wn+1. 0 

THEOREM 3.3. Let L be a link diagram. Then 
(aJ h(wr x B x ... x B) c A< Wr >, the ideal generated by < Wr > in A, and 
(bJ h(Ir X B x ... x B) c A< Wr >, where Ir C B is the ideal of B generated 

by wr • 
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Proof: Part (a) is an immediate corollary of the previous theorem, with r = n + 1, on 
drawing L to lie appropriately in the annulus. The result holds when any of the components 
is decorated by W r • 

To prove part (b) it is enough to deal with the element wr{3 E Ir for any {3 E B. We 
can use the multiplication in B to write 

h(Wr {3,{32, ... ,13k) = JV(W r ,{3,{32, ... ,13k), 

where L' is the link with two parallel components in place of the first component of L but 
otherwise identical to L. The result now follows from (a) applied to L'. 0 

The evaluation map < . > : B -+ A is a ring homomorphism, and hence 

< Wn+l > = < ll' >< Wn > - < Wn_l >. 

Starting from < WI > = 1 and < Wz > = < ll' > = {j = _(A2 + A-Z) it follows readily 
A 2r _ A-2r 

that < Wr > = (_1y-I A2 _ A-2 EA. Then < Wr > = 0 when A4r = 1, A4 t= o. 

Notation. Write Ar C C for the image of A when A is mapped to a primitive 4r-th root 
of unity, e.g. A = e7rij2r . 

Equivalently, take Ar to be the quotient of A by the ideal generated by Euler's polyno
mial ip4r(A). 

Write also Br for the finite-dimensional Ar -module (B IIr) ® Ar , where, as noted above, 
the coefficient ring has been changed from A to Ar by substitution for A. Theorem 3.3 
can then be reformulated. 

THEOREM 3.4. For any link diagram L the invariant h : B x ... x B -+ A induces 
a multilinear map Jt l : Br x ... x Br -+ Ar . 

Proof: The value of Jtl can be calculated by choosing decorations ({31, ... , 13k) in B x 
... x B, and substituting the chosen 4r -th root of unity for A in h({31, ... , 13k). The 
previous theorem shows that this number in Ar is unchanged when an element of the ideal 
Ir is added to any {3i, by multilinearity of h, and so the result depends only on the 
elements represented by {3i in Br . 0 

3.3 STRUCTURE OF Tltt: ALGEBRAS BAND B r . 

The product WjWk of two basis elements in B can be written as a sum E nijkWi, with 
i 

structure constants nijk EA. It can be established inductively that nijk EN, and that 
nljk = {jjk; in fact 

ni 'k = {I, if i + j + k = 1 mod 2 and Ii - kl < i < j + k, 
) 0, otherwise, 

This is more obvious once we are able to identify B with the representation ring of SU(2) 
and Wi with the irreducible representations. 

Then nijk is the coefficient of WI in the product WiWjWk. Since B is commutative, 
nijk is unchanged by permutation of i,j and k. 

The algebra Br has a basis WI, ... , Wr-I , or properly speaking the images of these 
elements. Each Wi E B represents some integer linear combination of WI, .. . ,Wr-I in Br , 
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r-l 

and we can write WjWk = L mijkWi in Br , for some integers mijk. It can be shown [24] 
i=1 

that mijk is also symmetric in i,j and k when j, k < r and only takes the values 0 or 1. 

3.4 THE 3-MANIFOLD INVARIANTS. 

Let us now compare the invariants of two links related by a positive Kirby move. Suppose 
that the two links are as shown in the Kirby move diagram, and that the second link <p+(L) 
has k components, corresponding to the first k components of the lh.l< L. Regard the 
closure l' as a diagram in the annulus, determining JT : B X ... X B -> B. Choose any 

decoration 131, ... , 13k of l' and write X = J 1'(131, ... ,13k) E B. The satellite formula shows 

that h(f31, ... ,13k, n) = JM(X,n), where M is the link shown below. 

M K 

Since M itself is two parallel copies of the diagram K, which in turn is the unknot with 
a positive curl, we can write JM(X,n) = JK(Xn) = < F(Xfl) >. We want to compare 
this with the invariant after the Kirby move, namely Jcp+(L) (131 , ... , 13k) = < X >. 

THEOREM 3.5. Given r there exists nEB and c±:f. 0 E Ar depending only on r 
stich that, for any choice of L and decorations 131, ... , 13k, 

h(f31, ... ,13k, fl) = c±J cp± (L) (131 , ... ,13k) 
when evaluated in Ar . 

r-l 

Proof: Choose fl = L akwk with ak = < Wk >. By the calculations above, it is enough 
k=1 

to find c+ so that J M(X, n) = c+ < X > in Ar for all X E B. Since we are evaluating in 
Ar it is enough to check for X in a spanning set of Br , e.g. X = wi> j = 1, ... , r - 1. 

Now JM(wj,fl) = JKCWjn). Again it is enough to work with Wjn as an element of Br , 

since we are only concerned with the evaluation in Ar , so that in Ar we have 
r-l 

hdwi!) = JJ(cE akWjW,,) 
k=1 
r-l r-l 

= h«L L mijkakwi) 
k=li=1 

r-lr-l 

= < L L mijkakAiWi > 
k=li=1 

r-l r-l 

= LAi< Wi > Lmijkak. 
i=1 k=1 
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r-l r-l 

On the other hand, < Wi >< Wj > = < WiWj > = L mkij< Wk > = L mijkak by sym-
k=1 k=1 

metry of the coefficients mijk. Thus 

r-l 

r-l 

JM(Wj,!1) = L Ai< Wi >< Wi >< Wj > 
;=1 

where c+ = L Ai< Wi >2. 
i=1 

r-l 

The assignment L = L A;I< Wi >2 will handle the negative Kirby move similarly, as 
;=1 

the only difference is in the use of F-1 in place of F to deal with the left-handed curl. 
Noting that c± are complex conjugates in Ar since IAI = 1 we can write c± = pc±1 in 
polar form, with p> 0 and Icl = 1. It is possible to calculate c,p in terms of the root of 
unity A, and check also that PI o. 0 

Assignment of !1 to each component then gives an element of Ar which is invariant 
under the Kirby moves, except for the appearances of c± . It is not difficult to introduce a 
normalising factor to correct for this, as follows. 

To a framed oriented link L = Ll U L2 u ... U Lk we can associate a quadratic form with 
k X k matrix (lij) where 

lij = Ik(Lj,L j ), i Ij, Iii = framing on Li. 

Write sig(L) for the signature of this form. 
Then sig (L) is independent of the choice of orientation of L, and 

sig'P±(L) = sigL =t= 1. 

COROLLARY 3.6. When M(L) is given by surgery on the Jmmed link L with k 
components the complex number 

-k - sigLJ (r\ r\) P c L lL, ••. , lL , 

evaluated at the given root of unity, is an invariant of the 3 -manifold M( L). 

Proof: It is enough to show that the number is unaltered by a Kirby move on L. Consider 
the case of the positive Kirby move, giving 'P+(L) with k - 1 components. Then 

p-kc-sigLh(!1, ... ,!1) = c+p-kc-sigLJ<p+(L)(!1, ... ,!1) 

= p-(k-l)C-(sigL-l)J (r\ r\) <p+(L) lL, ••• , lL 

= p-(k-l)C-sig<p+(L)J (!1 !1) <p+(L) , ... , , 

which is the corresponding number for 'P+(L). The negative Kirby move works similarly, 
with L in place of c+ covered by the alteration in signature. 0 
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Remarks. There has only been a limited amount of calculation of these invariants. A recent 
tabulation of known evaluations is given in [27J. Kirby and Melvin have been able to give 
a closed formula for the invariants for Lens spaces as r varies, and also show how the value 
for r = 2,3,4 or 6 can be related in general to known topological invariants. Strickland 
has also developed programs to compute for Lens spaces, using knowledge of J for torus 
knots. The difficulty in general comes in calculating h(n) for larger values of r, as this 
requires knowledge of h( Wk), at least in Ar , for all k < r. This in turn is equivalent to 
knowing h( a i ) for j < r - 1, in other words, the bracket invariant of the j -fold parallels 
of L. As a computational exercise this rapidly becomes impractical with increasing j, even 
when L has a braid presentation on as few as 3 strings. 

4. The quantum group approach. 

In this section I shall discuss the alternative view of the invariants J L of a framed link 
which was pioneered by Reshetikhin [29J and Turaev [34]. 

The starting point here is a quantum group 9g , most conveniently one which is associated 
to a classical Lie group G; in the present context it is enough to consider G = SU(2). 
The quantum group is an algebra over a ring A which includes a parameter q. Many of 
the constructions involve polynomials in q±1 at the worst, and with care the ring can be 
regarded as Z[q±t]. 

Finite-dimensional representations of the quantum group 9 (i.e. 9-modules) playa 
central role in the definition of link invariants. The most impOltant property of 9 is that 
it is a Hopf algebra, in other words it admits a comultiplication ~ : 9 ...... 9 X 9 which has 
a sufficiently natural interaction with the algebra multiplication to allow tensor products 
of 9 -modules to be themselves regarded as 9 -modules. 

The map ~ is not symmetric, in the sense that 7 0 ~ :f. ~ where 7 : 90 9 --+ 90 9 
is induced by 7(g 0 h) = h 0 g. Consequently, when V and W are two 9 -modules, the 
simple interchange map 7: V 0 W ...... W 0 V need not be an isomorphism of 9 -modules, 
since ~ is used in the definition of V 0 W as a 9 -module. There is, however, as part of the 
definition of a quantum group, an element R in a suitable extension of 909 which relates 
7 0 ~ and ~. From this 'universal R-matrix' R there arises a 9 -module isomorphism 
Rvw : V 0 W --t W 0 V for all modules V and W, which is not the simple interchange 
map; thus in general Rv~ :f. Rwv . 

4.1 CONSTRUCTION OF LINK INVARIANTS. 

The aim is to start with any (m,n)-tangle T and choose a 'colouring' of its components 
by finite-dimensional 9 -modules, in other words, select a 9 -module for each component. 
Then try to represent coloured tangles by 9 -module homomorphisms in such a way that 
when the strings at the bottom of the tangle T have been coloured by modules VI"'" Vn 
and the strings at the top by WI"'" W m then the coloured tangle is represented by a 
module homomorphism VI 0 ... 0 Vn --+ WI 0 ... 0 Wm , while the composite of two 
consistently coloured tangles placed one above the other is represented by the composite of 
the two homomorphisms. 

Every tangle can be built up as the composite of a number of elementary tangles which 

are either a simple crossing [ZJ or [XJ or a local maximum [OJ or minimum 
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[QJ ,alongside a number of parallel straight strings. Once it is decided how to assign 

a homomorphism to each of these elementary tangles, with colouring, the homomorphism 
for the whole tangle will be determined as a composite. To show that the homomorphism 
defined in this way for a coloured tangle is independent of how the tangle is drawn, up to say 
moves RII and RIll, it is sufficient to show that certain combinations of the elementary 
tangles determine the same homomorphism. 

To make the assignments for the elementary coloured tangles we require homomorphisms 

V@W -> W@V for each of the (2,2)-tangles [ZJ and [Xl ,for which we use Rvw and 

Rviv respectively. The identity (1, I)-tangle, m, is represented by Iv; when placed 

alongside other elementary tangles a number of parallel straight strings are represented by 
taking the tensor product with the appropriate identity homomorphism. 

When a tangle has no points at the top or bottom, the appropriate g -module to use 
as domain or target is the trivial module, in other words the coefficient ring A. Thus the 

local minimum (2,O)-tangle, U = [QJ ,requires a homomorphism A -> V @ V, while 

the local maximum tangle, V = [OJ , requires a homomorphism V @ V -> A. Turaev 

observed that only a small number of checks on these are needed to ensure invariance of the 
homomorphism when the strings of the tangle are moved. These are shown pictorially below, 
and should be read as the equality of the composites of the homomorphisms determined 
when the tangle is coloured arbitrarily, and regarded as the product of elementary tangles. 

Ro = = 
I 

= 

RIll = 
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A little care is needed in defining the homomorphisms to represent the local maximum 
and minimum coloured by the general module V. Reshetikhin and Turaev [31] give details 
in a wider contextj for irreducible V and the quantum group SU(2)q there is an almost 
canonical choice, and having made this choice to satisfy Ro the other relations are guar
anteed by the nature of the universal R-matrix. The consequence of the definition is that 
a link diagram L, regarded as a (O,O)-tangle, determines a homomorphism A -+ A for 
each assignment of modules VI, ... , Vk to its components. This homomorphism is simply 
multiplication by some scalar J(Lj V!, ... , Vk ) which depends only on L up to moves RJI 
and RIll and so gives an invariant of the framed link L. 

Whatever definition of the homomorphisms representing ~ and [DJ is used, a 

little care can be taken to ensure that 
(1) J(L) is multilinear on sums of modules, 
(2) when one component of L, say the first, is coloured with the tensor product 

V ® W then 
J(Lj V ® W, V2, ... , Vk) = J(L'j V, W, V2, ... , Vk), 

where the link L' has two parallel components in place of the first component of L, coloured 
with V and W separately. 

A fuller account is given in [23], in which condition (1) is forced by working primarily 
with irreducible representations, and then (2) has to be proved. In [31] the definitions 
guarantee property (2) immediately, while (1) then needs a little proof. Rosso [33] has 
shown that in the general case, where {I is regarded as an algebra over the field of rational 
functions in an indeterminate q±i ,finite dimensional {I-modules are completely reducible, 
(i.e. isomorphic to a direct sum of irreducible modules). In this generic case write n for 
the representation ring of {I, as an algebra over A. An element of R is then a finite A
linear combination of finite dimensional irreducible {I -modules, and every 9 -module can 
be written in R as a positive-integer combination of irreducible modules. Tensor product 
of modules makes n into a ring. 

4.2 THE TOTAL QUANTUM INVARIANT. 

The multilinear property (1) of J(L) means that it can be extended to give a multilinear 
map J( L) : R x ... x R -+ A. By definition, R has a basis consisting of irreducible 
representations of 9 j in this case with 9 = SU(2)q we know that R is isomorphic to the 
representation ring of SU(2) having one irreducible module Wi in each dimension i 2:: 1. 
Details of these modules and the corresponding R-matrices are given in [13]; an account 
following the universal R-matrix prescription of Drinfeld is given in [12]. 

The generic case, where the parameter q is treated as an indeterminate, has the advan
tage that the representation ring is isomorphic to the representation of the corresponding 
classical Lie group, and so its structure is understood. Construction of link invariants can 
also be done when {I is replaced by a finite dimensional algebra, and the coefficient ring is 
altered by specialising q to a root of unity. In this case the representation theory becomes 
more complicated, as modules are not always completely reducible, so that a direct inter
pretation of the link invariant as a function on the representation ring is no longer possible, 
and more detailed work is needed to handle the invariant comfortably, as in [32] and [12]. 

Returning to the generic case, it is straightforward to use properties (1) and (2) for 
J(L), and knowledge of the ring n, to identify R with the ring Band J(L) with the 
total bracket invariant J L • 
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THEOREM 4.1. The A-linear map h : R --+ B defined by h(Wd = Wi is a ring 
isomorphism, where A = Z[A±I], A4 = q. For a fmmed link L the invariants J(L) and 
h can be identified by 

Proof: It is a classical result that the representation ring of SU(2) is a polynomial ring 
generated by the fundamental 2-dimensional irreducible representation, so that R is the 
polynomial ring generated by W2 • Hence there is an isomorphism from R to B carrying 
W2 to Q = W2 E B. To establish that this is the map h it is enough to show that 
the elements Wi satisfy the recurrence relation Wn+1 = W2 Wn - Wn- 1 in R. Now it 
is readily established from the representation theory of SU(2) that the tensor product 
W2 ® Wn decomposes as the direct sum of irreducibles Wn- 1 EB Wn +1 so that in R we 
have W2Wn = Wn - 1 + Wn+1' 

Using the fact that R is spanned by the powers of W2 we may evaluate the invariant 
J(L) by evaluating it simply on modules Vj = wf, for varying j. When the invariant 
J(L) is evaluated at wf on one component of L we may use property (2) to replace this 
by the link L' with j components in place of the one component, each coloured by W2 • 

In this way comparison of J(L) and h reduces to showing that for each link L 

J(Lj W2, ... , W2) = h(W2, ... , W2). 

Now h(W2,"" W2) = < L > so it remains to identify J(Lj W2, ... , W2) with the bracket 
polynomial of L. It is enough to show that the three linear maps from W2 ® W2 to itself 
representing the diagrams 

(J = lZl, Id = [I] and H = ~ 

satisfy the relation (J = A Id + A-I H , and that the invariant of the simple unknot, as a 
(O,O)-tangle, is fJ = _A2 - A-2 • 

When all strings are coloured by W2 the (2, 2)-tangles (J, Id and H are each represented 
by an endomorphism of the module W2 ® W2 • These endomorphisms are RW2W2' lW20W2 
and the composite of the local minimum and local maximum maps for W 2 respectively. It 
is possible, given the detailed information from the quantum group, to calculate these maps 
explicitly and confirm that they satisfy the linear relation corresponding to the equation 
(J = AId + A-I H. We can also confirm from the explicit maps that the composite of the 
local maximum and local minimum maps when coloured with W2 represents the simple 
un knotted circle by the map from A to A which is multiplication by fJ = -A -2 - A2. 
Consequently the linear map V(R2) --+ A defined on the diagram L by J(LjW2,,,,,W2) 
respects the defining relations for S(R2) and hence factors through S(R2). Thus, applied 
to the diagram L, we have 

J(LjW2, ... ,W2) = < L >J(4)j) = < L >, 

since L = < L >4> in S(R2). o 

Remark. It is in fact more accurate to take the isomorphism determined by W 2 f--> -W2, and 
the identification of A with _e- h / 4 , where q = eh • The quantum group homomorphism 
RW2W2 is then given directly by Drinfeld's universal R-matrix for SU(2)q. 
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We may thus use either the bracket invariant approach or the quantum group approach 
to determine the same multilinear invariant J(L) in terms of B, the skein of the annulus, or 
equally of 'R, the representation ring of SU(2). In this second guise some of the properties 
of the invariant which we have already discussed appear quite naturally, in particular that 
Wi is an eigenvector of the map F : B --> B. The framing change in the quantum view 
requires the insertion of a curl on the component of a link, to which some element of 'R 
has been attached. Suppose that this element is one of the irreducibles, Wi. We may draw 
the diagram after the framing change so that the extra curl is viewed as a (1, I)-tangle 
coloured with Wi, inserted at some point in the original diagram. This (1, I)-tangle is 
represented by a module homomorphism from Wi to Wi. Since Wi is irreducible, such a 
map must, by Schur's lemma, be a scalar multiple, Ai say, of the identity. Hence the curl 
can be removed at the expense of multiplying J(L) by Ai without any other change. 

Having made the identification of the two descriptions for the generic link invariant it is 
possible to move on to discuss the 3-manifold invariant, as in the previous section, via the 
quotient ring Br (or 'Rr) without having to consider the actual representations of SU(2)q 
at the root of unity. 

4.3 THE TEMPERLEy-LIEB ALGEBRA AGAIN. 

One further link between the two viewpoints arises when we apply the quantum group 
viewpoint to tangles in which every component is coloured with the fundamental represen
tation W2 = V, say. Each (m.n) -tangle then determines a linear map from V0n to V0m , 

which is a 9 -module homomorphism, while composition of tangles induces composition of 
maps. Because the skein relations are satisfied when W2 is used on all strings there is an 
induced map from the skein S( R~) = T Ln to the linear endomorphisms of V0 n • This 
gives a representation, which is in fact faithful, of the Temperley-Lieb algebra T Ln as an 
algebra of 2n X 2n matrices, with coefficients in A. Since V0 n is a 9 -module, and the 
tangles are all represented by module endomorphisms, we can see further that T Ln is rep
resented as a subalgebra of all 9 -module endomorphisms of V0n . Indeed, if the coefficient 
ring A is extended to include sufficient denominators then the image of T Ln can be shown 
to be the algebra of all 9 -module endomorphisms of V0n . 

There is just one submodule of V0n which is isomorphic to the irreducible Wn+I . 

Projection to this submodule determines a 9 -module endomorphism of V0n , and hence 
an element of T Ln. This element of T Ln is in fact the element in discussed earlier, divided 
by i.pA(Jn). The multiplicative property of in is seen in this context from the fact that 
V0k with k < n has no summands isomorphic to Wn +1, so that the composition of the 
projection with the map representing any (n,k)-tangle, k < n, must be zero. Now each 
generator hi of TLn is the composite of an (n,n - 2)-tangle with an (n - 2,n)-tangle, 
so that the projection when composed with any of these must be zero. This leads to the 
equation inhi = 0, and thus to the multiplicative property, given that i.pA can also be 
recognised by the property that i.pA(hi ) = O. 

The representation of T Ln on V0 n can be quickly recovered from the two maps repre
senting the local maximum and minimum. These can be chosen to have matrices 

(0 A _A- I 0) and (0 -A A-I O)T, 

representing the linear maps Max : V (9 V --> A and Min : A --> V (9 V respectively, 
where V has a basis VI, v2 and the basis elements of V (9 V are written in the order 
VI (9 VI, VI (9 V2, V2 (9 VI, V2 (9 V2 • These maps satisfy the condition Ro and can be combined 
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as Max.Min to represent H. The matrix representing (J' is then given by (J' = A + A-I H, 
while the value of 6 can be checked by calculating the product Min. Max . 

This representation of T Ln can be used as a means of calculating explici tly the bracket 
polynomial of the closure of any (n, n) -tangle. It also provides a representation of the braid 
group En on v®n in which the generators (J'i satisfy a quadratic relation, and so have only 
two eigenvalues. This representation preserves each 9 -submodule of v®n which consists 
of the sum of all submodules isomorphic to a given irreducible Wi, and hence it breaks up 
into a number of lower dimensional representations of Bn and indeed of T Ln. Details of 
this are discussed in Reshetikhin's papers [29]. Other representations of the braid group 
arise in a similar way, with higher degree minimal polynomial for (J'i, using (n,n)-tangles 
coloured by one of the other irreducible modules Wj in place of W2 • 

5. A geometric view of the invariants. 

In defining the 'generic' type of link invariant J L, taking values in a ring A containing an 
indeterminate A = qt , I have described two different approaches which arrive at essentially 
the same end result. The interpretations of the parameter space B = 'R in terms of 
'decorations' or 'colourings' which can be applied to the link components highlight different 
properties, depending on whether the view as quantum group representations or as bracket 
invariants of satellites is uppermost in the mind. 

Either of these views constitutes a first stage for the invariants. The second stage arises 
when they are used to build invariants of general 3-manifolds, typically in terms of evalu
ations of the generic invariants, where the indeterminate is replaced by a specified root of 
unity. The account given so far has made use of some features which are special to SU(2)g, 
or equally to the bracket invariant, but there is much which will work readily in a wider 
context. In the final section I shall give a brief account of the generic stage in constructing 
invariants, using the quantum groups SU(k)q on one hand, and linear skein theory based 
on the Homfly polynomial on the other. Similar work relates Kauffman's Dubrovnik poly
nomial with the quantum groups of the B, C and D series, coming from the orthogonal 
and symplectic groups, [42]. The corresponding second stage can be pursued, with a little 
care, following the general lines of section 3. 

In the remainder of this section I look first at the generic invariant from the 3-dimensional 
point of view, and then note how this and the second stage invariants fit in to the framework 
of Witten. 

5.1 THE GENERIC INVARIANT AND MODULAR FUNCTORS. 

Both approaches, from linear skein theory and from the representation theory of SU(2)q, 
lead to a framed link invariant JL : Bk ..... A, and a satellite formula relating J[( for a 
satellite K to Jc for its companion C and Jp : Bk ..... B for the pattern P, viewed as a 
diagram in the annulus. 

There are two alternative views of the pattern 
(1) as a k-component diagram in the annulus, and 
(2) as a k + i-component link pI consisting of P together with one distinguished 

unknotted component which determines the annulus. 
View (1) determines a multilinear map Jp : Bk ..... B, while view (2) gives a map 

J pI : Bk+l ..... A. These can be related by regarding pI as a satellite of the Hopf link H 
using the pattern P, so that J pI = J H 0 (Jp xl) as maps from Bk X B to A. The Hopf 
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link invariant J H : 8 2 -> A thus provides a bilinear form which plays a central role in 
comparing the two views. 

The remaining feature of the generic invariant is the linear automorphism F : 8 -> 8 
describing the framing change, and the basis of 8 consisting of its eigenvectors. 

When we move to a more 3-dimensional view one characteristic feature is the behaviour 
of the invariants when pieces of 3-manifold with boundary are glued together. In Witten's 
framework, once the choice of a quantum group g and a level k have been made there 
should then be determined a 'mo('ular functor' from the category of col- 'lrdisms of surfaces 
to the category of complex vector spaces and linear maps. 

Definition. We say that the boundary of a 3 -manifold has been marked if for each boundary 
component of genus 9 there is an explicit choice of homeomorphism from a standard copy 
of the surface of genus 9 to that boundary component. We refer to the homeomorphism 
as a marking. 

A full description of the required ingredients is given for example in [38]. The central idea 
is that every oriented 3-manifold M with boundary oM can be regarded as a cobordism 
when its boundary is marked and is partitioned into two parts, each consisting of a union 
of closed surfaces. In categorical terms, the objects of the category are unions of oriented 
surfaces, and the morphisms are oriented 3-manifolds with marked partitioned boundary, 
so that M with boundary oM- U oM+ is regarded as a morphism from the incoming 
boundary oM- to the outgoing boundary oM+. Morphisms (cobordisms) are composed 
by gluing the outgoing boundary of one manifold to the incoming boundary of the other, 
using the marking of each component to determine the gluing. 

A modular functor is a functor from this category to the category of vector spaces and 
linear maps. It associates a vector space to each surface of genus g, and the tensor product 
of such spaces to a disjoint union of surfaces. The marked cobordism M provides a linear 
map from the space for oM- to the space for oM+ . This map is assumed to be unchanged 
when the marking of a component is altered by isotopy. The functorial property ensures 
that composition of cobordisms translates into composition of linear maps. The marking of 
a boundary component may be altered by composing the original cobordism with another of 
the form surface x I, in which different choices of marking are made at the two ends. Such 
cobordisms determine a.n automorphism of the vector space for each self-homeomorphism 
of the standard surface of genus g, and thus an action of the ma.pping class group of the 
surface on the vector space corresponding to the surface. In this way it is easy to take 
account of the effect of gluing two manifolds together in different ways, when the gluing is 
altered by a homeomorphism of one boundary component. The vector space corresponding 
to the empty surface <I> is the trivial, l-dimensional, vector space, and so a closed manifold 
M, which is a cobordism from <I> to <1>, yields a linear map from C to C. Such a map is 
just multiplication by some scalar ,\( M), which is the invariant of the manifold, given the 
choices of quantum group and level required to set up the functor. 

The generic invariants J L which we have discussed earlier can be thought of as a similar 
more substantial cobordism invariant, but on a limited class of cobordisms. In this context, 
the framed link L determines its exterior, the manifold defined by removing a neighbour
hood of each component from S3. This leaves a 3-manifold with k boundary components, 
with the marking of each by SI x SI determined by taking one factor to the curves chosen 
as parallels and the other factor to the meridian curves which bound discs in the deleted 
neighbourhood of the link component. If we think of the exterior as a cobordism from the 
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union of k tori to the empty surface we can regard h as giving a partial cobordism functor 
in which a torus corresponds to the linear space 8. The multilinear map JL : 8 k -- A can 
be seen as a linear map on the tensor product 8®k so that the cobordism from the union 
of k tori to the empty surface determines the linear map h : 8 0 ... 0 8 = 8®k -- A 
between the linear spaces corresponding to the boundary. 

The linear map JP : 8®k -+ 8 determined by a pattern P fits into this setting when 
the exterior of the pattern P in the solid torus given by thickening the annulus is viewed 
as a cob"rdism from the boundary of the neighbourhood of P to the boundary of the solid 
torus. In this setting the satellite formula shows that the composition of cobordisms making 
up the exterior of the satellite by gluing the exterior of the companion to the exterior of P 
translates exactly to the appropriate composition of linear maps, provided that the marking 
of the boundary of the solid torus is suitably chosen. Further comments on this point of 
view are made in [23]. 

We could try to base a limited cobordism functor on these definitions, with the restriction 
that the only boundary components allowed should be unions of tori. We do not however 
have enough freedom to do this; the most serious problem is that we are in general un
able to change the linear map appropriately when we change the assignment of boundary 
components on a link exterior from incoming to outgoing. The case of the pattern link 
pI is a special case in which the component to be switched is unknotted in S3; in this 
case the marking to be used on the outgoing component differs from that of the incoming 
components by switching the factors in SI X SI. The two maps Jp ' : B®k+l -+ A and 
Jp : B®k -+ 8 exhibit the sort of change that we would like to use generally when switching 
components from incoming to outgoing. They are related by the invariant J H : B 0 B -> A 
of the Hopf link. This represents the exterior of H , in which both components are incom
ing. The same 3 -manifold is homeomorphic to the product (SI x SI) x I, represented 
by the identity 8 -> B when viewed as a cobordism with one incoming and one outgoing 
component. The expected procedure for altering the map when a component is switched 
from incoming to outgoing would be to change a copy of 8 in the domain of the map to a 
copy of its dual B* in the target, and then use the bilinear form J H to identify B* with B. 
This would at least agree with the case of a pattern link pI and its unknotted component. 

The problem with doing this in general is that 8 is infinite dimensional, so that J H does 
not provide a good identification. The other missing ingredient is the ability to alter the 
marking of a boundary component, so as to allow freedom to glue boundaries together in 
different ways. The change of framing, which corresponds to certain changes of marking, 
can indeed be represented by use of the automorphism :F on the vector space B, but 
there is no immediate analogue available to account for the other homeomorphisms in the 
mapping class group of the torus. 

5.2 THE FINITE-DIMENSIONAL INVARIANTS. 

Both of these problems disappear when we fix the level I, and thus r = I - 2, and 
pass to the corresponding quotient ring 8 r in place of B as the linear space to use for 
each boundary torus. The exterior of a link L can now be represented by the map Jt) , 
regarded either as a multilinear map from (Br)k to Ar C C or equivalently as a linear map 
on the tensor product CBr )®k. This map is determined by the full polynomial invariant 
h after replacement of the variable A by a 4r-th root of unity. 

The complex vector space 8 r is finite dimensional, and can be readily identified with 
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its· dual, using the non-degenerate bilinear form J};l. This permits link exteriors to be 
used in defining cobordism invariants, where any selection of boundary components may 
be taken as the incoming part of the boundary. With these as basic ingredients, a coherent 
assignment of linear maps can be made to cover the Case of compact 3-manifolds with 
torus boundary components, up to a power of the number c (depending on r) mentioned 
in section 3. For example, the trivial knot, whose exterior is a solid torus, determines the 
invariant < . > : Br -+ A when regarded as a cobordism from the torus to the empty set. 
As a cobordism from the empty set to the torus, it gives the element WI E Br , regarded as 
a map from A to Br . In this setting, the torus is marked in such a way that composing 
this cobordism with a link exterior has the effect of gluing the solid torus to the boundary 
of the neighbourhood of one component of the link L so as to replace the neighbourhood 
exactly. The new cobordism is just the exterior of the link given by deleting the chosen 
component of L, and its invariant is given by decorating that component of L by WI, i.e. 
by the empty decoration, as expected. 

To perform surgery on the link exterior we must reglue the solid torus in a different way, 
or equivalently we must choose a different marking of its boundary torus, switching the 
two factors 8 1 x 8 1 . When working with Br it is possible to represent the full mapping 
class group of the torus on Br , (up to a power of c), and in particular to represent the 
switching homeomorphism. The image of WI under the switch is p- l n, and so the solid 
torus glued in to one boundary component of a link exterior by surgery is a cobordism which 
is represented by the map Ar -+ Br which takes 1 to p-l n. The cobordism invariant of 
the new manifold is then given from that of the manifold before gluing by evaluation at 
p- l n on the appropriate component. So we anticipate in this view that we might get an 
invariant of the manifold given by surgery on a framed link L by regarding the manifold as 
a composite of cobordisms, starting with k solid tori, and attaching them to the exterior of 
L. The resulting invariant would then be Jtl(p- l n, ... ,p-1n) up to a power of c, which 
is indeed the form of the invariant discussed in section 3. 

The invariant of a manifold constructed by general Dehn surgery from a framed link L, 
where solid tori are glued in to the link exterior using other markings of the boundaries, 
can similarly be found by evaluation of Jt) on suitably chosen elements of Br , depending 
on the nature of the marking for each individual boundary component. The determination 
of these elements is a matter of finding the image of WI under the automorphism of Br 
corresponding to the self-homeomorphism of the torus which alters the chosen marking to 
the marking determined by the framing of L. They can be found once the action of the 
mapping class group of the torus on Br has been established. The powers of c mentioned as 
an indeterminacy can be handled as in [24], or they can be incorporated into the cobordism 
invariant by regarding the marked 3-manifolds as also carrying a framing, adjustments to 
which account for multiplication by powers of c. 

It is possible to extend the invariant from a similar point of view to handle general 
cobordisms in which the boundary components need not be tori. An account of the linear 
space related to the surface of genus 9 can be given in terms of the skein of a planar 
surface with 9 holes, just as Br is described in terms of the skein of the annulus. See for 
example the recent account by Lickorish [IS], following work of Vogel, or an earlier account 
by Kohno from the quantum group viewpoint [14]. 
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6. Unitary invariants and the Heeke algebras. 

In this final section I shall give a brief indication of the similarities and modifications to 
the previous work which are needed in considering the invariants related to the Homfly poly
nomial [6) by satellite constructions, or equivalently to the unitary quantum groups SU( k)q, 
for different values of k. Thprp is a similar relation between the orthogonal/symplectic 
quantum groups and Kauffman's 2-variable invariant. Wenzl [41) gives an account of this 
in which the quantum group approach, and the appropriate algebra, is much to the fore. 
He continues, with Turaev [37], to develop this to the second stage when a root of unity 
is involved, so as to discuss 3-manifold invariants based on modifications to the quantum 
group. This in turn entails a separate study of the representation theory for the modified 
quantum group, rather than using the classical representation theory based on the generic 
case. Although I will not attempt to move to this stage for the general quantum group, it 
is possible to reach the 3-manifold invariants in a similar way to the discussions above by 
dealing with invariants defined on what is in effect a natural quotient ring of the represen
tation ring of the quantum group being used, or equivalently of the corresponding classical 
group. 

6.1 THE HOMFLY POLYNOMIAL. 

The Homily polynomial PL(v,z) E Z[v±1,z±1) was developed independently by several 
groups shortly after the discovery of the Jones polynomial [6, 28]. It is an invariant of an 
oriented link, characterised by the Homily skein relation 

between oriented link diagrams differing only where shown. It is invariant under all three 
Reidemeister moves, and so PL U 0 = b PL , where b = (v- 1 - v) / z , and L II 0 consists of 
the diagram L together with a disjoint simple closed curve. 

It provides a simultaneous generalisation of the Alexander polynomial and Jones' poly
nomial by 

{ 
~K(t), the Alexander polynomial, when v = 1,z = s - s-l,t = s2 

PL(V,Z) = V'K(Z), Conway's version a.f the Alexander polynomial, when v = 1, 
VK ( t), the Jones polynomtal, when v = 8 2 = t, Z = s - 8-1 . 

In this original form P is normalised so that the unknot 0 has invariant 1; it is more 
convenient in work which relates to quantum groups to normalise so that the empty knot 
¢> has invariant 1 and the unknot has invariant b. I shall adopt this convention in the 
present work. 

We may construct close relatives of the Homily polynomial which are invariants of an 
oriented diagram D only up to Rll and RIll for any scalar A by setting 

XD = Aw(D) PD(V,Z), 

where weD) is the writhe of the diagram D. Then X can be recognised by the properties 

and the skein relation 
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up to normalisation. In this way we can identify any invariant of oriented diagrams which 

satisfies a skein relation between 1(, X and ) ( with such a variant of the 

Homily polynomial, provided that it multiplies by a fixed scalar A under RI. The bracket 
polynomial, for example, arises with :, = -A3 ,z = A-2 - A2 and v = A-4 • 

In general, when we write the relation as 

x-I X(I() - x X(A) = z XC) (), 

we have X = Aw(D)PD(XA-l,Z) = (xv-l)w(D)PD(V,Z). 

6.2 SKEIN THEORY. 

We can use the Homily skein relation to define skeins based on the Homily polynomial, 
following the methods used in the first section for the bracket invariant. We shall consider 
diagrams, up to moves Rll and RIll in a planar surface F whose boundary contains a 
finite set of distinguished points. We insist that each boundary point is given an orientation 
either as an input or an output, and we consider oriented diagrams in F whose string 
orientation matches the orientation of the boundary points. 

Definition. For a planar surface F the Homfty skein Sp(F) is the set of linear combinations 
of oriented diagrams in F subject to the relations 

(1) V-I X v A = z ) ( 

(2) (J (, 
for diagrams which differ as shown. 

The existence and uniqueness theorem for the Homily polynomial shows that Sp(R2) is 
isomorphic to the scalars, and the diagram L represents the multiple PL ( v, z) x </> of the 
empty diagram </>, given our convention that PI/> = 1. 

As an example, if we take F to be the rectangle R~ with n inputs at the bottom and 
n outputs at the top then the skein Sp(R~), constructed from oriented (n,n)-tangles, 
forms an algebra with composition induced by putting rectangles one below the other, as 
for the Temperley-Lieb algebra. This algebra is spanned by n! elements, represented by 
the positive permutation braids W".,7r E Sn discussed above. It is generated as an algebra 
by the elementary braids 0';, oriented with all strings upwards, and it is known to be 
isomorphic to the n-th Hecke algebra Hn , as shown in [26]. 

A presentation for this algebra is given by generators 0'; satisfying the braid relations 

O';O'j = O'jO';, Ii - jl > 1, 

and the skein relation v-IO'; - VO';1 = z. 

Variants on the skein definitions can be adopted, by use of a scalar A as in the invariant 
X above, with x = AV, from which we can define a variant skein S~(F) by the relations 

( I') 
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(2) 

There is a linear isomorphism Sp(F) --+ SHF) defined on each diagram D in F by 
D I-> A -wID) D, where w( D) is the writhe of the diagram. In the case when F = R 2 the 
link diagram L, which represents h(v,z) x ¢ in Sp(F) , will represent Aw(L)pL(v,z) x ¢ 
in S~(F). 

One frequent choice for this variant is x = 1, and so A = V-I. When F = R~ and x = 1 
the isomorphism gives another presentation of the algebra Hn in terms of the elements Ci 

which are represented in S'(F) by the elementary braids. The isomorphism carries O'i to 
vCi and so the presentation is given by generators Ci satisfying the braid relations 

CiCj = CjCi, Ii - il > 1, 

and the skein relation Ci - C;-1 = z in S'(F). This presentation of Hn is used in [22] for 
calculating the Homfly polynomial; it has the advantage of involving only the variable z 
when representing braids in H n as elements of S' (F) . 

In what follows, I shall write H n for the algebra S p( R~) with generators O'i and identify 
it with any of the variants S~( R~) by means of the isomorphism. 

Extend the ring of scalars to include rational functions of v and 8, and set z = 8 - 8-1 . 

The skein relation in Hn can then be written in the form 

(O'i - a)(O'i - b) = 0, 

with a = -V8- 1 and b = V8, or in the other generators, as (Ci + 8-1 )( Ci - 8) = O. We can 
then construct elements an and bn in H n by SUbstituting either 8V-10'i or -V-18-10'i for 
O'i in the sum En of the positive permutation braids. As in our earlier work these elements 
have the property that 

for any T E Hn where 'Pa. and 'Pb are homomorphisms from Hn to the scalars defined by 
'Pa(O'i) = a, 'Pb(O'i) = b. A similar calculation to that of section 2 shows that 

'Pb(an ) = [nl c! (= g(1 + C+ ... + Cr - 1)) where c = -bfa, 

and similarly 'Pa.(bn ) = [n]d!, where d = -alb = c-1 . 

6.3 THE ANNULUS. 

As before we shall use the skein of the annulus, Sp(SI x I) = C say, which again forms 
an algebra in which composition is induced by placing two copies of the annulus one inside 
the other. A spanning set for this infinite dimensional skein is discussed by Turaev [35] 
under the name of the 'Conway module of the solid torus'. It is shown there that C is 
freely generated as an algebra by commuting elements 1,01,02, ... , or, oi, ... where 1 is 
represented by the empty diagram, as in the skein B, and 01 is represented by the closure 
of the identity 1-string braid, like 0 in B. The element oi has the same diagr; ill but with 
the orientation reversed. The element 0i is represented by the closure of the i -string braid 
O'i-lO'i-2 .. . 0'1; reversing the string orientation gives oi. A diagram representing 0302 is 
shown below. 
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Oriented wiring diagrams can be used as before to induce linear maps between skeins. We 
may also decorate oriented link diagrams by elements of C and thus determine a multilinear 
map PD : Ck -. Sp(F) for any diagram D in F with k closed components. This map will 
be independent of D up to moves RIl and RIll, while changes of framing on a component 
of D, in other words alteration by moves Rl, can be accounted for by use of a framing 
change map :F: C -. C defined as before by decorating the simple curl 

regarded as a diagram in the annulus. 
In this way we can extend the Homily polynomial to define invariants PL of a framed 

oriented link L by decorating its components with elements of C, so as to give a multilinear 
map PL : C x .. , C -. S peR 2 ), the 'total Homily invariant' of L. The Homily polynomial 
itself is recovered by evaluating the map PL at (a1, ... ,a1), when Sp(R2) is identified 
with the ring of scalars. Other decorations give rise to further invariants of L, which 
I shall term 'satellite Homily invariants' of L, as they are constructed from the Homily 
polynomials of satellites of L. . 

6.4 REPRESENTING THE HEeKE ALGEBRA. 

The closure wiring of a rectangle into the annulus induces a linear map H n -. C for each 
n, with image Cn say. Every diagram in the annulus can be viewed as the closure of some 
tangle, but we cannot assume that the string orientations at the top of the tangle are all 
inputs, so the skein C is not necessarily the union of the subspaces Cn . We can certainly 
recover the whole of C by considering tangles in which the boundary points at the bottom 
are divided into n inputs and p outputs, with the matching points at the top forming n 
outputs and p inputs, for varying nand p. 

The algebra C is the product C+ x C_ of the subalgebras generated respectively by {ai} 
alone and by {an alone. The image Cn of H n lies in C+ for each n; it has a basis 
consisting of monomials in {ai} of total weight n, where aj has weight i. Its dimension 
is thus .x( n), the number of parti tions of n. 

An alternative basis for Cn is suggested by the representation theory of Hn, which is a 
deformation of the group algebra C[SnJ of the symmetric group. For generic values of the 
parameter z = 8 - 8-1 (in fact for 82r t 1, r :::; n) the algebra Hn is known to decompose 
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as the direct sum of A(n) subalgebras, EBM)., each isomorphic to the algebra of d). x d). 
matrices for some d).. This decomposition is similar to the classical case of C[SnJ; the 
sub algebras M). are traditionally indexed by the Young diagrams A with n cells. Any 
such Young diagram is determined by a sequence of non-negative integers 

Al ~ A2 ~ ... ~ An ~ 0 

with Al + ... + An = n, and is commonly drawn diagramatically as an array of n cells 
with Ai cells in row i. For example, the diagram 

corresponds to the partition 3 ~ 2 ~ 1 ~ 1 ~ 0 ~ 0 ~ 0 with n = 7. 
Given the structure of H n as a direct sum there will be a central idempotent e). E H n for 

each A, corresponding to the identity element of the sub algebra M).. These are orthogonal, 
in the sense that e).el' = 0 if A =f /1, while e~ = e).. The algebra Hn decomposes in 
this way, provided that the coefficient ring allows denominators sr - s-r for r ::; n. The 
idempotents can be found explicitly, for example in [41]. The simplest of these are multiples 
of the elements an and bn given above. They correspond to the two Young diagrams, each 
with d). = 1, which have n cells and just one row or just one column. 

The closure e). of the idempotents provide between them an alternative basis for en 
consisting of A( n) elements. They have the merit of all being eigenvectors of the framing 
change map F : e ---.. e. This follows since any central element of Hn can be written as 
a linear combination of the idempotents I: cl'el" The n-string curl Qn, with appropriate 
orientation, which commutes up to RII and RIll with all (n,n)-tangles, can then be 
written as Qn = I: cl'el" Orthogonality of the idempotents shows that Qne). = c)..e).. and 
hence F(e)..) = c)..e)... The elements e).. thus behave rather like the elements Wi E B. 

Example. When n = 2 there are just two Young diagrams OJ and B ,with correspond

ing idempotents 

e OJ = (SV- 10'1 + 1)/(1 + S2), e B = (-S,.-I V-10'1 + 1)/(1 + S-2) . 

When s = v = 1 these are the symmetriser and skew-symmetriser respectively for the 
symmetric group 52. It IS easy to express each e). in terms of the basis of monomials for 
e, noting that for (2, 2)-tangles the closure of the identity braid 1 is oi and the closure 
of 0'1 is 02. 

Thus when K is the figure-eight knot with framing as shown 

we have its satellite Homfly invariant 

P[«(e ) = 1/(1 + s2) (v-1SP[«(02) + p[«(oi)) 
OJ 
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given by calculating the Homfiy polynomials of two 2-string satellites of K. The invariant 
can be wri tten as 

V-I V 
where 0 = - 1 is the Homfly invariant of the unknot. For compallson the standard 

8 - 8-

Homfly invariant of the figure-eight knot is PK( at) = o( v-2 - 8-2 + 1 - 8 2 + v2 ). 

Similarly when n = 3 we can write down the two idempotents e III] and e§ as above, 

using an and bn . The remaining idempotent e EP can be found from the equation 1 = 

L e,\ in Hn. The closures of all three can be calculated in terms of the monomial basis, 
giving for instance 

~ 2 ( 3 + -1( -1) -2) e EP = 8-2 + 1 + 8 2 0'1 V 8 - 8 0'10'2 - V 0'3 . 

2 ~ -1 
This can also be written as 2 2 d where d = 1 - 0'1 0'2· 

r +1+8 
Transition between the monomial basis and the basis {eA} is not so convenient as in the 

case of B, where the two bases of interest, {O'j} and {w;}, are integrally related. In Cn 

we need a limited set of denominators of the form 8 r - 8- r and V8 r - v-I 8- r with Irl ~ n 

to perform a complete transition. In principle, though, the information available from a 
link by taking its Homfly polynomial after decoration by elements of C+ is equivalent to 
knowing, on the one hand, its satellite Homfiy polynomials when decorated by all possible 
monomials in the O'i and, on the other hand, the invariants when decorated by all possible 
eA for Young diagrams A. The connection with the quantum group SU(k)q invariants of 
the framed link L comes about through an identification of the quantum group invariants 
with the invariants above which use eA, as A varies through Young diagrams restricted 
according to the value of k. 

6.5 UNITARY QUANTUM GROUPS. 

The methods of Reshetikhin and Turaev [31] allow the quantum groups V = SU(k)q 
to be used to represent oriented tangles whose components are coloured by V -modules 
as v-module homomorphisms. The scheme and necessary ingredients are similar to those 
outlined in section 4, with one additional feature, namely the use of the dual module V· 
defined by means of the antipode in v, (an anti automorphism of V which is part of its 
structure as a Hopf algebra). When the components of the tangle are coloured by modules 
the tangle itself is represented by a homomorphism from the tensor product of the modules 
which colour the strings at the bottom to the tensor product of the modules which colour 
the strings at the top, provided that the string orientations are inwards at the bottom and 
outwards at the top. The dual module V· comes into play in place of V when an arc of 
the tangle coloured by V has an output at the bottom or an input at the top. 

For example, the (4,2) -tangle below, when coloured as shown, is represented by a ho
momorphism U ® W· -. U ® X· ® X ® W· . 
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X* x W* 

x 

u w* 

As in the earlier case it is possible [31] to build up the definition so that consistently 
coloured tangles are represented by the appropriate composite homomorphisms, starting 
from a definition of the homomorphisms for the elementary oriented tangles. Two cases, 
depending on the orientation, must be considered for both the local maximum and the 
local minimum, and a little care is needed here to ensure consistency. The final result is 
a definition of a homomorphism which is invariant when the coloured tangle is altered by 
RII and RIll. When applied to an oriented k-component link diagram L regarded as an 
oriented (O,O)-tangle it gives an element J(L;Vl"'" Vk ) E A = Q[[hll for each colouring 
of the components of L by 9 -modules, which is an invariant of the framed oriented link L. 
This element, apart from a simple factor, is an integer polynomial in q = eh . A categorical 
account of the appropriate features needed to define an invariant in this way is given in 
[44]. 

As in section 4, this invariant J(L) (for a fixed quantum group g) is 
(1) multilinear under direct sums of modules, and 
(2) multiplicative on parallels. 

We can use (1) to extend the definition of J (L) to allow colouring by linear combinations 
of modules, and thus determine a multilinear map J( L) : R x ... x R -+ A, where R is 
the representation ring of g. 

Definition. Refer to the map J (L) as the coloured invariants of L, where the choice of 
quantum group 9 is clear. A colouring of L wiil mean a choice of an element of R, (in 
other words, a linear combination of modules,) for each component of the link, and will 
determine an element of A by evaluation of J( L). 

Notation. Write n(k) for the representation ring in the case when 9 = SU(k)q. 

For generic q this ring is shown in [33] to be isomorphic to the classical representation 
ring of SU(k). The irreducible modules of SU(k) and hence of SU(k)q are also indexed 
by Young diagrams. There is an irreducible SU(k)q-module V), for every Young diagram A 
provided that A is either the diagram with k rows and 1 column or otherwise has at most 
k - 1 rows. Such Young diagrams are referred to later as 'admissible' for k. Among these 
modules there is a 'fundamental' irreducible module of dimension k, which is indexed by 
the Young diagram o. Write Vo for this module. Each module V), whose Young diagram 
has n cells occurs as a summand of V8n . 

An early relation between the Homfl.y polynomial and the quantum invariants of a link 
was discovered by Jones and Turaev [34], when considering the invariant given by colouring 
all components with the fundamental module Vo . 
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THEOREM 6.1 (Turaev, Jones). For the quantum group SU(k)q the invariant 
J(L; VO,"" V 0) of the framed oriented link L is, up to normalisation, the Homfly poly
nomial PL( v, z) with z = s - s-l, V = s-k and s = ..;q = eh / 2 • Assuming that P~ = 1 
we have 

J(L; Vo, ... ,v 0) = (xv- l )w(L) PL(v,z), 

where w( L) is the writhe of a correctly framed diagram of L, evaluated at z = s - S-I, V = 
S-k and x = s-l/k = e-h / 2k . 

Proof: It is enough to show that J(L; VO, ... , VO) satisfies a quadratic skein relation, 
and multiplies by a scalar under RJ, to identify it with some specialisation of PL as at the 
beginning of this section. Turaev represents the (2,2)-tangle (1 when coloured with the 
fundamental representation Vo by a map R : Vo 0 Vo -+ Vo 0 Vo which satisfies the 
quadratic relation 

It is possible to deduce the existence of some quadratic relation for R from the fact that 
Vo 0 Vo is the sum of just two irreducible modules. 

The (1, I)-tangle \J when coloured with any irreducible must be represented by a 
I 

multiple of the identity, by Schur's lemma. Turaev shows that this multiple is s-k when 
the k-dimensional fundamental module Vo of SU(k)q is used. This would lead to the 
result of theorem 6.1, without the factor x. It appears, however, that a scalar multiple of 
Turaev's endomorphism is more appropriate, to permit a more consistent behaviour of the 
family of invariants J(L) when evaluated on different modules. In the general construction 
of J(L) this behaviour is ensured by the use of the universal R-matrix to determine the 
representation of the elementary tangle (J' under each colouring. Since the universal R
matrix satisfies a non-homogeneous equation it is not possible to replace it by a scalar 
multiple of itself without losing the multiplicative behaviour of J(L) on parallels. The 
endomorphism R used by Turaev is a non-trivial multiple of the one which arises from 
Drinfeld's universal R-matrix. The appropriate end.omorphism R as given in [3] satisfies 
instead the relation 

(*) 

with x = S-I/k . 
Assuming that we use this endomorphism R to represent (J', equation (*) enables us to 

define a function S'(R2 ) -+ A from the variant skein S'(R2 ) with z = s-s-l, V = s-k and 
x = S-I/k by taking the diagram L to J(L;VO, ... ,VO). Since L = (xv- l )w(D)h(v,z)x 
4> in S'(R2 ) and the value of J on the empty diagram 4> is 1 we have the equation 

J(L; VO, ... , Vo) = s(k-l/k)w(L) PL(s-k,s _ S-I) , 

where the Homfiy polynomial PL is normalised to have value 1 on the empty diagram, 
and w(L) is the writhe of any diagram of L which realises the chosen framing. 0 

Given a Young diagram A there is a corresponding SU(k)q-module V\ for each k, which 
should properly be distinguished from each other as k varies. It is, however, possible to 
organise things systematically so as to handle all the unitary quantum group invariants 
with colouring V" at once, by finding a 2-variable function of v and s depending on C 
and A, from which the substitution v = s-k allows us to recover the invariant J( C; V,,) for 
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the quantum group SU(k)q, as shown in [41]. In the case when A = 0 the theorem above 
shows that the Homily polynomial of C itself provides a suitable function. For general 
A we use a satellite Homily polynomial of C; in fact we can use the closure fA derived 
from the Heeke algebra idemnotent for the same Young diagram A as the element of C to 
provide the satellite decoration. 

We shall see that it is possible to realise all possible colourings of C as linear combinations 
of invariants which arise by varying the decoration P while restricting the colouring of P 
to the fundamental module Vo . Thus all coloured invariants of C for the unitary quantum 
groups will arise, by the theorem of Jones and Turaev, as linear combinations of the Homfly 
polynomials of satellites of C, in which the variable v has been specialised to v = s-k for 
SU(k)q. 

There is a satellite theorem for the quantum invariants J(L) of a satellite link L. This 
allows us to express the invariants of the link given when a companion knot C is decorated 
by some pattern P in the annulus in terms of the invariants of C and of the pattern 
P. From the point of view of constructing invariants of C we may choose the decorating 
pattern, and then choose a colouring of P = T to determine a coloured invariant of the 
satellite; this is an invariant of the original C, and the satellite theorem shows how to 
realise this as a coloured invariant of C itself, in other words as the value of J(C) for some 
colouring of C . 

Suppose that the pattern P, and hence the satellite, has r components, which we colour 
by modules UI , ... , Ur . The tangle T, forming a subdiagram of P will then itself be 
coloured by these modules so that the top and bottom endpoints are represented by the same 
tensor product of modules, W say, drawn from {Ui , Un. The tangle T is represented by 
an endomorphism T(U) of the module W. Write W as a direct sum E9 VA, of irreducible 
modules, and choose Vi i- 0 in Vi, for each i. The endomorphism T(U) then determines 
aij E A with T(U)( Vj) = L: aijVi. Define a weighted trace Tr(T(U)) E RYl by setting 

Tr(T(U)) = L b>. V>. , where bA = L aii· 
V>., :::IVA 

SATELLITE THEOREM 6.2. Let L be the fmmel oriented satellite of C with pattern 
P = T and let U = (U1 , •.• , U r) denote a colouring of its components. Then 

J(L; U) = J(G; Tr(T(U))). 

The proof can be constructed with care from [31J. Notice that Tr(T(U)) depends only 
on P and the colouring, and not on the companion G. It provides a multilinear map 
J( P) : n(k) x ... x n(k) -+ n(k) whose value on (UI,"" Ur ) is Tr(T(U)). 

THEOREM 6.3. Let G be an oriented fmmed knot, let A be any Young diagmm and 
let VA be the corresponding irreducible SUe k)q -module. Then, with the convention that 
J(G; VA) = 0 if A is not an admissible shape for SU(k)q, we have 

dAJ(G; VA) = (xv- I )lA12w(D) Pc(fA), 

as functions of s = ,;q, when the variable v on the right-hand side is replaced by s-k and 
x by S-I/k. Here d>., independent of k, is the degree of the matrix algebm MA in the 
appropriate Hecke algebm, JAJ is the number of cells in the Young diagmm A and weD) 
is the writhe of a diagmm for G with the chosen fmming. 
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A corresponding result holds for oriented framed links, dealing with each component in
dependently. 

Proof: An outline of the proof follows. Apart from the normalising factor this result is 
given in (41); some further discussion will be found in (19). Suppose that the given Young 
diagram A has n cells, so that I AI = n. We shall make use of a representation of H n 

on W = v~n which carries the idempotent eA to the projection of W to the 'isotypic' 
sub module for Vl" namely the submodule isomorphic to E9 VA; for which VA; ~ VA. 

Any oriented (n,n)-tangle T determines an endomorphism f(T) of W by colouring 
each of its components with the module VO. Because of the relation (*) among the 
endomorphisms f(T) as T varies, the map f induces a representation of the variant skein 
Sp(R~), with v = S-k, X = s-l/k, on W. Using the isomorphism of Hn = Sp(R~) with 
this variant skein gives an explicit homomorphism 

'Pk : Hn = Sp(R~) -> End(W) 

induced by 'Pk(T) = (x-1v)w(T) f(T), where again v and x are replaced appropriately 
when dealing with SU(k)q. 

Now decorate the diagram of C with the pattern T to form a link diagram L, and colour 
all components of L with Vo . By the satellite theorem we can calculate 

J(L; VO, ... , VO) = J(C; Tr f(T)) = (xv-1)w(T)J(C; Tr 'Pk(T)) . 

On the other hand, theorem 6.1 shows that 

J(L; VO, ... , VO) = (xv-1)w(L) PL = (xv-1)w(L) Pc(T) , 

where v = s-k. Now the writhe of the decorated diagram L can readily be given as 
w(L) = w(T) + n 2 w(C), since each crossing in C will give n2 crossings of the same sign 
in L where the groups of n parallel strings cross. We can then write 

J(C; Tr 'Pk(T)) = (xv- 1t 2w(C) Pc(T) , with v = s-k. 

We may now replace T by any linear combination of (n,n)-tangles to get a similar result. 
In particular the idempotent e>. in Hn can be written in this way, and then we have 

(xv-1)1,\I'w(C) Pc(f>.) = J(C; Tr 'Pk(e,\)); with v = s-k, X = S-l/k. 

The proof of theorem 6.3 can then be completed by showing that 'i'k( e>.) is the projection 
of W to the isotypic submodule for V,\ which is isomorphic to d,\ copies of V>.. The 
trace of this projection is d>. V>. so that the right-hand side in the equation above becomes 
d,\J(C; V,\) as claimed. 0 

In the proof above the identification of 'Pk(e>.) with the projection to one of the isotypic 
submodules of W remains to be established. A deeper understanding of the structure 
both of Hn and of the modules W = Vo for different k can be achieved by use of the 
representation 'Pk. This representation gives a direct analogue of the setting for classical 
invariant theory of the symmetric group, where the Hecke algebra corresponds to the group 
algebra of the symmetric group Sn and the quantum groups to the special linear groups. 
By drawing on work of Wassermann (39) and Wenzl (41) it can be shown that the following 
generalisations of the classical results hold in this context. 

THEOREM 6.4. The homomorphism 'Pk: Hn -> Endsu(k)q v~n is 
(1) surjective for all k, 
(2) injective when k?: n. 
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The first part shows that every module endomorphism of W can be represented as the 
linear combination of some tangles coloured with Vo . In particular the projection to any 
submodule of W must be representable in this way; the choice of the element e>. is then 
simply one explicit way to realise J(C; V>.) by means of a satellite Homfly polynomial. 
Indeed the element e>. is generally rather complicated and it is usually possible to find a 
simpler combination with the same closure in C. 

The isomorphism of Hn with the endomorphism ring for large enough k permits us to 
extend the classical correspondence between the idempotent e>. and the projection to the 
corresponding isotypic submodule in this case as well. It is also possible to describe readily 
the kernel of 'Pk when k < n as the ideal generated by those idempotents e>. whose Young 
diagram has too many rows to be admissible for k, again exactly as in the classical case. 

The most striking consequence of the approach using the skein of the annulus is the 
existence of the 2-variable invariant of G indexed by A whose specialisations at v = 8- k 

provide the quantum invariants J(G; V>.) for all SU(k)q at once. Links L can be treated 
in essentially the same way, taking the satellite Homfly polynomial when each component 
is decorated independently by some e>., multiplied by a suitable power of v, to specialise 
to the corresponding quantum invariant J(L). It is interesting to note that when the 
orientation of one component is reversed the quantum invariant of the new link can be 
recovered from that of the old link by replacing the module on that component with its 
dual. The dual of the irreducible module V>. is again irreducible, but its Young diagram 
A * depends on k as well as A so it is not possible to give a similar universal treatment to 
handle string reversals for satellite Homfly invariants. 

By way of example, the dual of the fundamental module Vo has Young diagram A* 
with a single column and k - 1 cells. In the case of SU(2)q the fundamental module is 
then self-dual, as are all the other irreducibles, which accounts for the insensitivity of the 
bracket invariant to string orientation. For SU(3)q the calculation J(G; V s) will then 

give J(G; YO) = (xv- 1 )w(C) Pc with v = 8-3 , where Cis G with the opposite orientation. 
The Homfly polynomial of a knot is unchanged by string reversal, so we see that 

and so Pc(e S ) = (X- 1V)3w(C)pC, the standard Homfly polynomial, with v = S-3 and 

x = 8-1 / 3 . This gives Pc(e B) = 8-8w(C)pc, when v = 8-3 . 

It is also possible to identify the module V S for SU(4)q with the fundamental module 

for SO(6)q and so relate Pc(e B) with v = 8-4 to an evaluation of Kauffman's Dubrovnik 

polynomial, [20]. 

6.6 REMARKS. 

The satellite theorem provides a multiplicative homomorphism from C to 'R(k) for each 
k, which is most readily defined on the variant skein of the annulus by taking each pattern 
P = if' to the trace of T when coloured entirely with VO. On C+ this description is 
independent of k and can be given on the basis {e>.} bye>. t-> d>. V>., so that after suitable 
writhe adjustment the functions h and PL agree. The map carries the element 01 to 
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Vo and 02 to vsV CD - vs-1 VB' while on the other hand oi is mapped to VO' which 

will depend on k as noted above. 
The skein map PL on the algebra C, or even its restriction to the subalgebra C+ , carries 

the information for all the total invariants J L as k varies. Unlike the case earlier where we 
compared the algebra B for the bracket invariant and the representation ring of SU(2), 
we have here a single algebra C arising from the Homfiy polynomials and a whole series of 
non-trivial quotients R(k) of C which organise the quantum invariants. 

In fact the ring R(k) is the quotient of C+ by the ideal generated by Xn = e>.. for n > k, 
where A is the Young diagram with one column and n cells. The corresponding module 
V>.. is the n-th exterior power of the fundamental module VO. It is possible to draw on 
classical knowledge of the representation rings R(k) as polynomial rings in the exterior 
powers of the fundamental module to give alternative constructions for the general basis 
element e>.. in C+ as a polynomial in the elements {Xn}. The element Xn is noted above 
to be Xn = (rpb(an)r1lin. Equally the elements Yn = (rpa(bn))-lbn, corresponding to the 
symmetric powers of Vo , can be used to generate C+ as a polynomial ring. 

An attempt to deal with 3-manifold invariants by means of C+ , on the lines of the 
treatment in section 3, has the corresponding feature that when calculating with v = s-k 
and S2(k+l) = 1, the invariant Pc(Yn ) = 0 for n = I, 1+ 1, ... , 1+ k - 1. When the ideal 
generated by the k elements corresponding to Yn , n = I, ... , 1+ k - 1 is factored out 
from R(k) , the quotient is a finite-dimensional algebra (a Verlinde algebra), which gives an 
analogue to Rr in the case of the SU(2) invariant, with r = k + t. It corresponds closely 
with the ingredients used by Turaev and Wenzl [37] in their construction of a 3-manifold 
invariant oflevel t based on SU(k)q. It would be interesting to consider this approach via 
C in more detail, with enough care about the denominators in the ring of scalars to ensure 
that the substitutions of variables cause no problems. 
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Abstract 

The recent progress made toward solving the determination problems of the minimal 
crossing number and braid index of a knot is discussed. Some relationships among these 
invariants and the bridge number are also discussed. 

Key Words knot, link, alternating link, minimal crossing number, braid index, bridge 
number, Jones polynomial, skein polynomial, Seifert circle, graph. 

1. Introduction 
In knot theory there are a number of easily defined geometrical invariants that are 

extremely hard to compute. The minimal crossing number, braid index and bridge num
ber are a few examples of this type of invariants. These numerical invariants have been 
estimated by using familiar algebraic invariants like the Alexander polynomials, signatures 
or the homology groups of branched (on unbranched) covering spaces of knots or links. 
However, in the past several years, the .Jones polynomials, or more generally, the skein 
polynomials (or Homfly polynomials), have been used very successfully and effectively to 
compute these numerical invariants. 

In this talk, we will outline some recent solutions to these problems which have been 
proposed. 

2. The polynomial of a graph 
In the early years of knot theory, the graph was one of the main tools used to study 

knots in 3-space R3 (or 3-sphere 53). The progress of algebraic topology since the early 
1920's, however, helped to establish knot theory as one of the major branches of low 
dimensional manifold topology. As a result, the topic of research changed from the knot 
K itself to the knot complement 53 - K (or knot manifold). The knot complement in 
fact determines the knot, as proven very recently [12J. 

In 1984, V.F.R. Jones defined a new polynomial invariant for knots or links. This 
discovery opened a new era in knot theory. The invariant was unexpectedly defined through 
operator algebras, but its combinatorial description indicated that through graph theory 
knot theory could most benefit from this new invariant. 

M.E. Bozhiiyiik (ed.), Topics in Knot Theory, 157-194. 
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In this talk we will consider two types of graphs associated with each link diagram 
and define a few of their invariants. 

2.1. Signed graphs 
Let G be a graph. Let V( G) and E( G) be the sets of vertices and edges, respectively. 
We restrict ourselves to finite graphs, that is, graphs for which V( G) and E( G) are 

both finite. In this talk, however. slightly more general graphs shall be considered. 
A graph G is said to be signed if either +1 or -1, called a sign, is assigned to 

each edge. More precisely, G (or (G, f G) ) is a signed graph if G is a graph equipped 
with a sign function fG : E(G) -t {I, -l}. For convenience, we call an edge e positive 
if fG( e) = +1 and negative otherwise. Since a positive graph may be considered as 
an unsigned (or an ordinary undirected) graph, our results can be applied to ordinary 
undirected graphs. 

A subgraph H of G has induced sign function fH = fGIE(H). A subgraph H is 
a spanning subgraph if V( H) = V( G). In particular, a spanning subgraph consisting of 
only vertices is called the spanning vertex graph and is denoted by VG . 

Throughout this talk, what is meant by a graph is frequently the geometric realization 
of a graph as a finite I-dimensional CW-complex in 53 = R3 U 00 . 

For a set X,IXI denotes the cardinality of X. f3i(G) denotes the ith Betti number 
of a graph G as a I-complex. 

In graph theory, po(G) and Pl(G) have been used instead of f3o(G) and f31(G). 
po(G) denotes the number of connected components of G, and Pl(G) is called the cyclo-
matic number of G . . 

Let Hand K be two graphs, both of which have at least one edge. Then the 
one-point union of H and K will be denoted by H * K . 

For V C V( G) and E C E( G), G - (V, E) denotes the maximal subgraph of G 
which does not contain vertices in V and edges in E. In particular, G - e is the subgraph 
of G consisting of all vertices of G and all edges but e. Therefore G - e is the subgraph 
obtained from G by deleting e. For a vertex v, G - v is the subgraph consisting of all 
vertices but v and edges of G except those which are incident to v. 

A graph G is said to be sel'arable if there are two subgraphs H and K such that 
G = H U K and H n K = {vo} , where H and K both have at least one edge and Vo is 
a vertex. Otherwise, G is non-separable. The vertex Vo is called a cut vertex. If G has 
no loops, then G is separable when f30 (G) < 130 (G - v) for some vertex v. 

A block is a maximal non-separable connected subgraph of G. A connected graph is 
decomposed into finitely many blocks. Therefore, if G1 , G2 , ... , G" are blocks of G, we 
can write G = G1 * G2 * ... * G" and G is called the block sum of Gt, G2 , .•. , G". 

G is called reduced if G has neither loops nor isthmuses. An isthmus is an edge e 
such that f30( G) < f30( G - e) . 

If two or more edges have the same ends, these edges are called multiple-edges. On 
the other hand, if two distinct vertices are joined by exactly one edge e, then e is called 
a singular edge of G. A loop is not a singular edge. 

A two-vertex graph G is called a multiple-edge graph (or a single-edge graph) if all 
edges have the common (distinct) ends and IE(G)I ;::: 2 (or IE(G)I = 1). 
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Let G be a graph and v a vertex of G. star v is the smallest subgraph containing 
l' and all edges of G which are incident to v. If X is a connected subset of G, then 
G / X is defined as the subgraph obtained from G by identifying all points in X to one 
point. 

For convenience, for subgraphs Hand ]{ of a graph G, we define H /]{ as H / (H n 
K). Therefore, if H n J{ = <p ,then H / J{ is H itself. For an edge e, G / (e) constructed 
from G - e by identifying the ends of e is said to be obtained by contracting e. If e is 
a loop, then G - e = G/(e). 

An alternate sequence of vertices Vi and edges ei: Vo, eI, VI, ... ,Un-I, en, Vn is called 
a chain (connecting Vo and vn ) of G if Vi and Vi+! are ends of the edge ei+I, for 
i = 0,1, ... ,n - 1. The length of the chain is n. 

A chain C is called a cycle if Vn = Vo. The length of C, denoted by ICI, is n. A 
chain or a cycle is called simple if ei i- ej and Vi i- Vj for any i and j, i i- j , except 
possibly Vn = Vo. For simplicity, a cycle of length n will be called an n -cycle. A chain 
(or a cycle) in which all the edges are distinct is called a trail (or a closed trail). 

A graph G is said to be bipartite if any cycle of G has an even length. A bipartite 
graph cannot have a loop. A graph is called an even graph if every vertex has an even 
valency. A vertex of valency 1 is called a stump. A twig is a vertex of valency 2. 

A graph G is called planar if G can be embedded into S2 = R2 U 00 as a I-complex. 
G is called a plane graph if G is a graph embedded in S2. 

If G is a connected plane graph, we can define the dual graph G*. V (G*) and the 
set F( G) of domains in S2 - G are in one-to-one correspondence, and, E( G*) and E( G) 
are in one-to-one correspondence in such a way that e* E E( G*) and its partner have 
exactly one point, not a vertex, in common. We define the sign of e* as the opposite of its 
partner. If G is a plane disconnected graph, then G* is a disjoint union of graphs dual 
to connected components of G . 

Example 2.1 

G 

Fig. 2.1 + 

2.2. Polynomial of a graph 
Now, we fix some notations, before we define an integer polynomial Fa(x, y, z) for 

any finite signed graph G. 
Let H be a subgraph of G. Denote p(H) and n(H) , respectively, the number 

of positive and negative edges in H. The maximal positive spanning subgraph P is the 
spanning subgraph that contains all positive edges but no negative edges. Analogously, 
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the maximal negative spanning subgraph N is defined. Therefore, PUN 
P n N = Va. We reserve P and N for these subgraphs. 

Example 2.2 

p N 

• 

Fig. 2.2 

G and 

Let Sa( r', s) be the set of all spanning subgraphs H of G such that /30 (H) = r' + 1 
and /31(H) = s. Therefore Sa(O,O) is, in particular, the set of all spanning trees in G. 

Definition 2.3. We define 

(2.1) Fa(x,y,z) = L:{ L: xp(H)-n(H)}yrz' 
r,. HESG(r,.) 

where the second summation runs over all spanning subgraphs H in Sa(r, s). Fa(x, y, z) 
will be called the polynomial of a graph G. 

From the definition, we have immediately 

Proposition 2.4. 
(1) If G has n connected components GJ,"', Gn , then 

n 

FG(x,y,z) = yn-l II FG.(x,y,z) 
i=l 

(2) If G is connected and is the block sum of m blocks G1,"', Gm , then 

m 

FG(x,y,z) = II FG;(x,y,z) . 
i=l 

Since positive graphs are important in both graph theory and its application to knot 
theory, it is worth writing FG(x, y, z) more precisely for a positive graph. 

Proposition 2.5. If G is a positive (connected) graph, i.e. n(G) = 0, then 

(2.2) 
r,. 

where v = IV(G)I . 
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Proof. For H E SG(r,5), p(H) = v-I - l' + 5 and n(H) = O. Therefore, (2.1) is 
reduced to 

FG(x,y,z) = 2.:{ 2.: (~r(:rz)'}xV-I = :r v - l 2.:ISG(r, 5)1 (;f(xz)' . 0 
r,s HESG(r,6) r,6 

Remark 2.6. It is possible to define a similar polynomial FM(X,y,Z) for a (circuit) 
matroid M. 

FG(x, y, z) is invariant under 2-isomorphism. Two graphs G1 and G2 are said to 
be 2-isomorphic if one is obtained from the other by applying the following two operations 
Q1 and Q2 finitely many times. Let G be the one-point union of two subgraphs H and 
J( which meet at a vertex v. Then Q1 (G) is another one-point union of Hand J( 

which meet at a different vertex v'. To define Q2( G) , suppose that G is obtained from 
two disjoint graphs Hand J{ by identifying vertices UI and U2 of H with VI and V2 

of K, respectively. Q2 (C) is a new graph obtained from Hand J( by modifying the 
identification so that UI = 1'2 and U2 = VI . (Cf. [28].) See Fig. 2.3. 

H K G=H*K .o.2(G) 

Vz 

U2=V2 

Fig. 2.3 

Example 2.7. (1) If G consists of only one vertex, then FG( x, y, z) = 1 . 

(2) IfC= +l:$. ,then FG(x,y,z)=x 3 z+3x2 +3xy+y2. 
The dual graph depends on an imbedding of a planar graph G in 52, but the 

polynomial of the dual graph is uniquely determined no matter how G imbeds in S2 and 
we have 

Proposition 2.8. If C· is a dual graph of a plane graph C, then 

(2.3) xp(G)-n(G)FGo(x,z,y) = FG(x,y,z) 

Warning: Variables y and z are interchanged in the left-hand side. 
Proof. We need the following lemma. 

Lemma 2.9. Let C be a connected plane graph. Then for any rand 5, SG( r, 5) and 
SGo (5, r) are in one-to-one correspondence. 

Proof. Take H E 5G ( r, s) and consider the spanning complement II of H in C, i.e. 
II is a spanning subgraph of G such that E(II) = E(G) - E(H). Let f:!. be the dual 
of II. II· is a spanning subgraph of C·. Now by the duality theorem, II· E 5Go(S, 1') , 
i.e. !3o(II·) = s + 1 and (31 (II·) = r. Therefore H +--+ II- is what we want. 0 
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Now we return to a proof of (2.3). By Lemma 2.9, Sa(r,s) and Sa*(s,r) 
are in one-to-one correspondence by H f-+ iJ*. The term associated with H in 
Fa(x,y,z) is xp(H)-n(H)yr z', while the term associated with iJ* in Fa*(x,y,z) is 

.r-(p(k*)-n(frlly·zr. Since n(iJ*) + p(H) = p(G) and p(iJ*) + n(H) = n(G), we have 
xp(a)-n(a)xp(k*)-n(k*) = xp(H)-n(H). This proves (2.3). 0 

2.3. Recursion formulas 
In practice, Fa( x, y, z) can be calculated recursively using the following formulas. 

(2.4) (I) If E(G) = rP and W(G)I = v, then Fa(x, y, z) = yv-1 . 
(II) Let e E E(G) and fa(e) = E. 

(i) If e is not a loop, then Fa(x,y,z)=Fa_e(x,y,z)+x·Fa/(e)(x,y,z). 
(ii) If e is a loop, then Fa(x,y,z) = (1 + x'z)Fa/(e)' 

Proof. (I) is obvious, since Sa( 7', s) = rP except for Sa( v-I, 0) = Va . 
(II) Let Sl(r,s) = {H E 5a(r,s) I H 'f e} and 52(r,s) = {H E Sa(r,s) I H 3 e}. 

5a(r,s) is the disjoint union of 51(r,s) and 52(r,s). 
(i) Suppose that e is not a loop. Then 51 (1', s) and 52 (1', s) , respectively, cor

respond to Sa_e(7',s) and Sa/(e)(r,s) , in one-to-one fashion. Therefore, we 
have 

Fa-e(x, y, z) + :r' Fa/(e)(x, y, z) 

r,a SG_.(r,.)3H 

= L L xp(H,)-n(H')yr z· L L 
r,. S,(r")3H, r,' S2(r,.)3H2 

L L 
r,. SG(r,.)3H 

= Fa(x,y,z). 

(ii) A proof is completely analogous. 

Example 2.10. Let E; = fa(ei). 
k 

(1) If G consists of k loops el, ... ,ek then Fa(x,y,z) = II(I+x·;z). 
;=1 

l 
(2) If G is a tree with e edges el,"" el, then Fa(x, y, z) = II (y + x';). 

;=1 

o 

Fa(x, y, z) is closely relafed to other polynomials which appear in graph theory. In 
fact, we have 

Proposition 2.11. Let G be a connected positive graph without multiple edges. Let 
Ga(y) denote the chromatic polynomial of G. Then 

Fa( -1, y, 1) = Ga(y)y-1 . 
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Proposition 2.12. Let G be a connected positive graph. Let x( Gi y, z) denote Tutte's 
dichromate of G. TheIl 

Fa(l,y - Lz -1) X(GiY,Z) . 

Proofs of these propositions follow immediately if we compare the recursion formulas 
needed to evaluate Ga(y) or X(G;y,z) and (2.4) (I)-(II). 

2.4. Degree of Fa(x,y,z) 
For a Laurent polynomial f = 2:it ..• i" ai1 ... i"X;1 ... x~" E Z[xt 1 , ... , x;l], we define 

maxdegzJ = max{ijlait···i" f. O} and maxdegf = max{i1 + ... + inlait···i" f. O}. 
min deg z. f and min deg f are defined analogously. Furthermore, we denote x j - span , 
f = max deg z.f - min deg z.f and span f = max deg f - min deg f· , , 

Now we will evaluate max deg Fa(x, y, z) and min deg Fa(x, y-1, z-l) , using a sim
ple combinatorial argument on spanning subgraphs. 

Theorem 2.13. For any signed graph G, 

maxdegFa(x,y,z) =p(G)+f3o(P)+f31(P)-I, and 

mindeg Fa(x,y-t,Z-l) = - {n(G) + f3o(N) + f31(N) -I}, 

where P and N denote, respectively, the maximal positive and negative spanning sub
graphs. 

Proof. A spanning subgraph H belongs to some 5a(r, s). For convenience, we say 
HE 5a(rH,sH) , i.e. rH = /3o(H) -1 and SH = f31(H). 

First we note that it suffices to prove the theorem for a connected graph. 
Now, to each spanning subgraph H of G, there is associated a term 

xp(H)-n(H)yrH z' H in Fa(x,y,z) and xp(H)-n(H)y-rH z-'H in Fa(x,y-I,;;;-l). For 

convenience, the degrees of these terms are called the degrees of H, and are denoted 
by degH = p(H) - n(H) + 1"H + SH and deg* H = p(H) - n(H) - 1"H - SH. Since 
degP = p(G) + rp + Sp and deg* N = -n(G) - 1"N - SN and since Fa(x,y,z) and 
Fa(x, y-1, ;;;-1) are positive polynomials, i.e. all non-zero coefficients are positive, we only 
need to show that for any spanning subgraph H , 

(2.5) deg H S; deg P and deg* H S; deg* N . 

We use the following lemma. 

Lemma 2.14. For any spanning subgraph H of G, 

(2.6) (1) 1"H - {p(G) - p(H)} :S 1"p and SH - n(H) S; Sp . 

(2) 1'H - {n(G) - n(H)} :S 1'N and SH - p(H) S; SN . 
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Proof. Since P contains all positive edges in G, any positive edge in H is contained 
in P. Therefore, H is obtained from P by removing p( G) - p( H) positive edges and 
then by adding n(H) negative edges. Let B be a spanning subgraph of G and B' be 
the subgraph obtained from B either by removing one edge or by adding one edge. Then 
we see easily that 

and 

and hence 
rH :S rp + p(G) - p(H) and SH :S 8p + n(H) . 

This proves (2.6) (1). A proof of (2) is analogous by taking P instead of N, and hence, 
is omitted. 0 

Now, by using Lemma 2.14, we have 

deg P = p( G) + rp + Sp 2 p(H) + l'H + SH - n(H) = deg H , and 

deg* N = -n(G) - rN - 8N:S -n(H) -1'H + p(H) - $H = deg* H . 

This proves (2.5) and hence Theorem 2.13. o 
When G is reduced. we can slightly strengthen Theorem 2.13 to Theorem 2.15 below. 

These theorems are of a fundamental importance for applications to link theory. 

Theorem 2.15. If G is a reduced connected positive grapb, tben for any spanning 
subgraph H . not P or N . 

(2.7) degH ;;; de,!!; P and deg* H ~ deg* N . 

Proof. Since G is positive, P = G and N = VG, and hence n( G) = 0, r p = 0, 
l'N=IV(G)I-l and SN=O. Therefore, we have from (2.6) 8H:S.sP and .sH-p(H):SO. 
Using these inequalities, we have deg H = p(H) + 1'H + 8H :S p(H) + rH + Sp, and 
deg P = p( G) + s p , and moreover, cleg* H = p( H) - rH - .s H 2 -l'H and deg* N = 
p(H) - rN - SN = -{IV(G)I-1}. Therefore, it suffices to show that 

(2.8) (1) p(H) + l'H ;;; p(G) , and 

(2) l'H;;; IV(G)I - 1 . 

Let p( G) - p( H) = q 2 1. Then H is obtained from G by removing q edges, 
eI,e2, ... ,eq say. Let Gj=G-{eI,e2, ... ,ej}, O:Sj:Sq. Note that Go=P and 
Gq = H. Since G has no isthmuses, G1 is still connected, i.e. rG 1 = O. Inductively, we 
can prove that r G :S j - 1 for 1 :S j :S q , and hence r H = l'G q :S q - 1 = p( G) - p( H) - 1 . 
This implies that p(H) + 1'H < p(G), which proves (2.8) (1). 

To prove (2.8) (2), we note that N is the spanning vertex graph VG and H is 
obtained from N by adding p( H) positive edges e~, ... , e~(H)' say. Let Nj = N U 

{e;, ... ,ej}, O:S j:S p(H). Note that No = Nand Np(H) = H, and p(H) 2 l. 
Since N does not have a loop, e; is not a loop and hence, l'Nl = IV( G)I - 2 and 
inductively, we can prove that l'N; :S IV (G) I - j - 1 for 1 :S j :S p( H). Therefore, 
rH = l'Np (H) :S IV(G)I- p(H) - 1 ;;; IV(G)I- I, 0 
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Theorem 2.16. Let G be a connected graph Let H be a spanning subgraph of G 
and H' be the spanning complement of H. Then 

(2.9) TH + SH + TH' + SH' ::; IE(G)I . 

Furthermore, equality holds in (2.9) iff H is a union of some (not necessarily all) blocks 
of G (and hence H' is a union of the remaining blocks). 

Proof. Use Mayer-Vietoris homology sequence: 

--> H1(H n H') --> H1(H) ffi H1(H') ~ H1(H U H') 
--> Ho(HnH') --> Ho(H)ffiH1(H') --> 

Since H n H' = Va, it follows that H1(G n H') = 0 and i. is a monomorphism. 
Since very homology group is free abelian, we see that (31 (H) + (31 (H') = S H + S H' ::; 

(31(H U H') = IE(G)I - {JV(G)I - I}. Since TH + 1 - SH = JV(H)I -\E(H)\ for any 
spanning sub graph H, it follows that TH + SH + TH' + SH' = SH -\E(H)\ + JV(G)I-
1 + SH + SH' - \E(H')\ + JV(G)\ - 1 + 5H' = 2(SH + SH') - \E(G)\ + 2JV(G)\ - 2 ::; 
2(\E(G)\- JV(G)\ + 1) -\E(G)\ + 2JV(G)\- 2 = \E(G)\. 

Furthermore, equality holds in (2.9) iff i. is an isomorphism, and hence, H must be 
a union of blocks of G . 0 

2.5. Signature of a graph 
In this section, we introduce another invariant of a signed graph, and estimate it in 

terms of P and N. 

Definition 2.17. Let G be a (signed) graph. The adjacency matrix of G is a JV(G)I x 
JV(G)\ integer matrix Aa = lIaiill defined as follows. 

(2.10) (1) For any if:. j, aii is the number of those positive edges 

minus negative edges which have two ends Vi and Vj. 

(2) aii = 0 for i = 1. 2, ... , JV( G)\ . 

W(G)I 
Let Qa = 11%11 be a diagonal matrix of order JV(G)\, where qii = L aii, 

i=l 
i = 1,2, ... , JV( G)\. Then the matrix Ba = Qa - Aa is called the matrix of G. We 
should note that if G is positive then Ba is the known matrix of an (unsigned) graph. 
Ea is not affected by the presence of loops in G. 

Now since Ba is symmetric, we can define the signature of Ea which is called the 
signature of G and is denoted by a-( G). From the definition we have 

Proposition 2.18. 
(1) a-( G) is an invariant of a graph. 
(2) If G is a connected positive grapb, tben a-(G) = JV(G)\- 1. 
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Other elementary properties of the signature are: 
(2.11) (1) Let G1 , ... , Gm be connected components of G. Then 

m 

(i) u(G) = Lu(G;) , and 
;=1 

(ii) lu(G)I::; IV(G)I - m. 
Equality holds in (ii) if all Gi are positive or all negative. 

(2) Let G be a connected graph and G1 , •.• , Gk be the blocks of G. Then 
k 

u(G) = L u(Gi ). 

;=1 
(3) If G is a tree with p( G) positive and n( G) negative edges, then u( G) = 

p(G)-n(G). 
We note that the signature is an invariant for 2-isomorphic graphs. Now we prove the 

following 

Theorem 2.19. For a connected graph G, 

(2.12) rN + SN - n(G) ::; O"(G) ::; p(G) - (l'P + 8p) . 

Equalities hold in (2.12) simultaneously iff each block of G is either a positive or negative 
graph. 

Proof. The second statement follows from 2.16. 
We will prove (2.12). Since 1'N - SN = f3o(N) -1- (31(N) = IV(N)I-IE(N)I-1 = 

IV(G)I - n(G) - 1, we have SN = rN - IV(G)I + n(G) + 1, and hence, l'N + SN -

n(G) = 2rN -- (IV(G)I - 1). Similarly, since 8p = rp - IV(G)I + p(G) + 1, we have 
p(G) - (rp + sp) = (IV(G)I-1) - 2l·p. Therefore, (2,12) is equivalent to 

(2.13) 2rN -IV(G)I + 1::; u(G) ::; IV(G)I-1 - 2l'P . 

To prove (2.13), we use the following lemma 

Lemma 2.20. Let G be a connected graph. Let G+ (or G_) be the grapb obtained 
from G by adding finitely many, h say, positive (or negative) edges, each of which has 
the same ends, a and b, say. Then 

and 

This lemma follows easily by comparing three symmetric matrices BG, BG+ and 
BG_ needed to evaluate the signatures. 

Now we return to a proof of Theorem 2.19. Suppose that P has k connected com
ponents PI, P2 , ... , Pk. Since G is connected, there are (k - 1) negative isthmuses 
el, ... ,ek-l , each of which connects two components of P and Go = P U {el' ... ,ek-l} 
is connected. Let N; be the graph consisting of e; and its ends. Then (2.11) (2) shows 
that 

k k-l 

u( Go) L U(Pi) + L O"(Ni ) . 

i=1 i=1 
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Since O'(Pi ) = !V(Pi)l- 1 and O'(Ni) = -1, it follows that 

k k 

O'(Go) = L{!V(Pi )I-1}-(k-1) = L!V(Pi)I-2k+1 = !V(G)I-2k+1. 
i=l i=l 

Now in order to obtain G from Go, we have to add the remaining negative edges to 
Go. However, by Lemma 2.20, O'(G) ~ O'(Go) = !V(G)I- 2k + 1. Since rp = k -1, we 
have 0'( G) ~ 0'( Go) = !V( G)I - 1 - 2rp. This proves the right-side inequality in (2.12). 

A proof of the other inequality is completely analogous. 0 

There is a "mixed" graph G for which one of the equalities holds but not both. See 
Fig. 2.4. 

Example 2.21. 

Fig. 2.4 

Thema',",o! G i, BG~ [-i ~~ -:]. No'e,ha' d(G)~2, v~3, 'P~ 
SN = 0, sp = rN = 1, peG) = 3 and neG) = 1. Therefore, rN+sN -neG) = 0 =I 
O'(G) = 2 = peG) - r·p - Sp . 

3. Jones polynomials of links 
3.1. Graph of link 

To utilize the theorems proved in the previous Chapter, it is necessary to construct an 
appropriate graph from a link. In fact, there are several ways to associate a graph with a 
link. In this talk, we will use two different types of graph. The first graph, defined below, 
was used by C. Bankwitz [2] in 1930 to study alternating knots. We call it the graph of a 
link L (or more precisely the graph of a diagram D of L ). 

Let D be a link diagram of a link L. D divides S2 into a finite number of domains 
R1 , R2 , ••• ,R.. which will be classified as shaded or unshaded. There are no common edges 
between two shaded or unshaded domains. There are exactly two such classifications (or 
shadings) of S2 - D. For convenience, one is called the opposite of the other. Now 
we construct a signed plane graph G from D and shading p. Take a point Vi from 
each unshaded domain Ri. These points form a set of vertices of G. Suppose that two 
unshaded domains Ri and Rj meet at a crossing Ck. If Ri is different from Rj , then we 
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Jom Vi and Vj by an edge ek passing through Ck. If Ri and R; are the same domain, 
then we form a loop ek passing through Ck. See Fig. 3.1. 

Each edge of G, therefore, corresponds to a crossing of D. Furthermore, each edge 
ei is signed with + 1 or -1 according to whether the twist at the crossing is positive or 
negative. (See Fig. 3.2) 

signee) = +1 signee) = -1 
Fig 3.2 

The resulting signed plane graph is called the graph of a link w.r.t. D and shading p, 
and is denoted by G( D, p) (or G( D), G D or simply G). G( D, p) depends not only on 
D, but also on shading. If we use the opposite shading p' , the resulting graph G(D, p') 
is the dual of G(D, p'). 

Conversely, given a signed plane graph G , one can construct uniquely the link diagram 
D of a link and can choose shading p so that G( D, p) is exactly G. 

Now each vertex and each edge of G(D, p) correspond, respectively, to an unshaded 
domain and a crossing of D. If G( D, p) is a reduced graph, a diagram D is said to be 
reduced. The diagram in Fig. 3.1 is not reduced. For an alternating diagram D, G(D,p) 
is either a positive or negative graph. 

3.2. Jones polynomial 

Now, given a link L, we can define the polynomial FG(D,p) (x, y, z), or simply 
denoted by FD(X,y,Z) , of the graph G(D,p). Since a link L can have many different 
link diagrams, we may have many different polynomials. In other words, the polynomial 
obtained from G(D,p) is not necessarily unique to each L. However, we can define a 
unique polynomial to each L no matter which diagram we use. This polynomial depends 
on the orientation of a link L. 

Suppose that we are given an oriented link L. The orientation of L induces the 
orientation of a diagram D. We then defined the second index w( c) , called the twist or 



writhe, at each crossing c as follows 

'~"'~ 
/"'~ 

w(c)=1 
Fig. 3.3 
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x 
w(c)=-I 

A crossing c with w( c) = 1 (or w( c) = 1 ) is called a positive (or negative) crossing. 
The sum of all writhes on D, w( c) = L w( c) is called the writhe or the Tait number of 

cED 
D. We should note that the writhe is independent of shading. 

Let FG(D,p)(X, y, z) be the polynomial of the graph G(D, p) associated with an (ori
ented) diagram D . 

Theorem 3.1. Let p = p(G(D,p)) and n = n(G(D,p)) . Then 

is independent of a diagram D and p, and depends only on the ambient isotopy type of 
L. In other words, VL(x) is an invariant of L. 

For a proof, we refer to [14]. We should note that V L{x) does note depend on shading. 
Now since p - n - 3w(D) == p + n - w(D) == 0 (mod 2), V L(X) is a polynomial on 

X±l , and the polynomial VL ( x) : 

(3.1) 

is in fact the Jones polynomial of a link L. This (due to Kauffman) is an important 
second definition of the Jones polynomial [13]. 

For example, the following theorem due to M.B. Thistlethwaite [26] is an immediate 
consequence of this definition of Vd x) . 

Theorem 3.2. The Jones polynomial of a non-split alternating link L is alternating. 
In other words, if Vdx) = L Ckxk, then CkCHl SO for any k, -00 < k < 00. 

-oo<k<oo 

3.3. Estimate of the degree of VL(X) 
We have already had two indices sign (c) and w( c) at each crossing c. We now need 

the third index 'T/ p( c) at c. 
Let D be an oriented diagram of a link Land p a shading of 53 - D. Let 'T/ p( c) = 

w(c)8sign (c),w(c), where 8 denotes Kronecker's data. We define 1]p(D) = E1]p(C), where 
the summation runs over all crossings in D. 1]p(D) depends not only on shading p, 
but also on orientation of D. Therefore, 'T/p(D) is not determined by the graph G(D, p) 
alone. To be more precise, let c+(D) and c(D) be, respectively, the number of positive 
and negative crossings in D. Note that w(D) = c+(D) - c(D) and c+(D) + c(D) is 
the total number of crossings in D which will be denoted by c(D). 
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Lemma 3.3. p(G(D,p)) = e(D) + rlp(D) and n(G(D,p)) = qeD) -1)p(D). 

Proof. There are four cases to be considered. A broken line in Fig. 3.4 indicates an edge 
in the graph of D. 

w = 1 
sIgn = 1 

7]= 

w = 1 
sign = -1 

11 = 0 

w =-1 
sIgn = 1 

71 = 0 

Fig. 3.4 

w =-1 
sign = -1 

1) = -1 

From Fig. 3.4, we see easily that p( G) = I {c E D I w( c) = -1 and 1)p( c) = 
O}I + I{c ED I w(c) = 1 and rlp(c) = 1}1 and hence peG) = c(D) + 7Ip(D). Similarly, 
neG) = I{c E Dlw(c) = 1 and 1Ip(c) = O} I +I{c ED I w(c) = -1 and 1)p(c) = -1}1 and 
hence neG) = c+(D) -1)p(D) . 0 

The following lemma is proved in [11]. See also [4]. 

Lemma 3.4. u(L) = !7(G(D,p)) -rlp(D). 

Using these lemmas and Theorem 2.9, we can now prove the following 

Theorem 3.5. For any link diagram D of a link L, 

(3.2) { max deg Vdx) ::; qeD) - t!7(L) 
min deg Vdx) :::: -c(D) - z!7(L). 

Both inequalities hold in (3.2) simultaneously iff D is a reduced alternating diagram or 
the connected sum of these. 

Proof. Let P and N be, as usual, the maximal positive and negative subgraphs of G . 
Then by Theorems 2.13 and 3.1, we have 

(3.3) {
max deg V dx) ::::: peG) + rp + Sp _ p(G)-n(~)-3w(D) 

mindegVdx) :::: -(neG) + rN + SN) _ p(G)-n(~)-3w(D) 

Therefore, to prove (3.3), it suffices to show 

(3.4) 
peG) - neG) - 3w(D) 

(1) peG) + rp + Sp - 2 ::::: 2c+(D) - !7(L) 

peG) - neG) - 3w(D) 
(2) - (n(G) + l'N + SN) - 2 :::: -2c_(D) - !7(L). 

Since w(D) = c+(D) - c(D) and peG) + neG) = c+(D) + c(D) , a straightforward 
computation shows that (3.4) is equivalent to (3.5): 

(3.5) (1) !7(L)::;c(D)-(rp+sp) 

(2) rN + SN - c+(D) ::; !7(L) . 
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However, since O'(L) = O'(G) - T/p(D) by Lemma 3.4, (3.5) becomes 

(3.6) 1'N + SN - c+(D) + T/p(D) ~ O'(G) ~ c(D) + 1]p(D) - (T'P + sp) 

or, by Lemma 3.3, 

(3.7) 

(3.7) is exactly what we have proved in Theorem 2.19, and equalities hold in (3.2) 
simultaneously iff D is a reduced alternating diagram or the connected sum of these. 0 

3.4. Other estimates of the degree of VL(x) 
The formula (3.2) is a good estimate for maxdegVL(x) and mindegVL(x) for an 

oriented link L, but V. Jones also gives another estimate for these degrees. In fact, he 
proves the following proposition [13]. 

Proposition 3.6. Let d be an n -braid and (3 the closure of (3. Let e+ and e_ denote, 
respectively, the sum of positive and negative exponents in (3. Write e = e+ - e_. Then 

(3.8) (a) 
e+n-l 

maxdegV~(x) ~ e+ + 2 

(b) 
e-n+1 

mindegV~(x) 2 -c + 2 

T. Fiedler [7] recently obtained a much better estimate for a closed braid ~ as follows 

Proposition 3.7. Let 8+(f-J) (and 8+((3)) denote the number of distinct (Artin) braid 
generators appearing in 8 with positive (and negative) exponent. Then 

(3.9) (1) 

(2) 

e + n -1 _+ 
max de?; V~(x) ~ e+ + 2 - b ((3) 

e-n+1 . 
mindeg V~(x) 2 -e_ + 2 + 0-((3) 

Since at least one of 8+(8) or 8-((3) is positive, (3.9) is a considerable improvement 
of (3.8). In this section, we will show that (3.9) is a consequence of (3.3). 

Let L be the closure of an n -braid (3 and D the link diagram obtained naturally 
from a braid representation of L. Let G be a plane graph in S2 associated with D. 
We classify the domains of S2 - G into shaded or un shaded domains in such a way that 
the unbounded domain i.e. the domain containing 00, is shaded. We only prove (3.9)(1), 
since a proof of (3.9)(2) is analogous. 

Now in order to prove (3.9)(1), it suffices to show the following inequality 

1{ p(G)-n(G)-3w(D)} 1 
(3.10) 2' p(G) + 1'p + Sp - 2 ~ e+ + 2'(e + n -1) -8+((3) . 
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First we express p( G). n( G) and w( D) in terms of e+, c and e. Let 
O'}, 0'2, ... ,O'n-1 be Artin's generators ofthe n -braid group Bn. Define p( O'i) and n( O'i) , 
respectively, as the sum of positive and negative exponents of O'i appearing in !3. Then 

n-1 n-1 
e+ = 2: p( 0' i) and c = 2: p( 0';). It is then easy to see 

i=1 i=1 

and 
i=odd i=even i=odd j=even 

Furthermore, noting that w(D) = e = e+ - e_ and p(G) + n(G) = e+ + e_ , (3.10) is 
now equivalent to 

(3.12) 

Note that rp + 1 - Sp = IV(G)I - p(G) and IV(G)I = 2: {P(O'i) + n(O'i)} + c:, where 
i=odd 

c = 0 or 1 depending on whether n is even or odd. See Figure 3.5. Therefore, (3.12) is 
reduced to 

(3.13) 8p + c5+(f3) ~ L p(O'j) + [~] 
j=even 

n even n odd 

Fig. 3.5 

Now, by definition, Sp + 1 is the number of domains in which S2 is divided by the 
maximal positive subgraph P of G. Note that G consists of [~l concentric circles 
Ci, i = 1,2, ... , [~l ' and edges joining vertices on adjacent two circles Ci and CHI, 
i = 1,2, ... , [~l - 1. Obviously, 2: p( 0' j) gives the number of those positive edges 

j=even 

which do not belong to any circle Ci . 

Now we evaluate Sp + 1. First consider the special case where all the circles Ci 

consist of positive edges alone. In this case, no generator 0"2;+1 appears in !3 with a 
positive exponent. Since 6+ (f3) is, in our case, the number of p( 0"21) such that p( 0"21) ~ 1 
and since each positive edge corresponding to 0"2; in !3 divides the annulus bounded by 
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Ci and Ci+I , we see easily that sp + 8+(13) = I: p( aj) + [~l . This proves (3.13) for 
j=even 

the special case. 
Next, we consider the general case. A graph G is obtained from the special graph by 

replacing some positive edges in C; by negative edges. If we replace one positive edge of 
Ci by a negative edge, then 8+ increases by at most one, but Sp decreases by at least 
one, and therefore 

.~p + 8+((3) ~ L p(aj) + [~l 
j=even 

This completes our proof. 0 

Remark 3.8. We compare two estimates (3.2) and (3.9) for a non-alternating torus 
knot of type (1",q) , where 3 ~ q < 1" and g.c.d (r,q) = 1. If we represent L as the 
closureofa q-braid (3 = (aIa2 ... aq-It, then c+(D) = 1'(q-1) and c(D) = O. 
Furthermore, e+ = 1'( q - 1), e_ = 0, e = e+, 8+(13) = q - 1 and 8- (13) = O. Since 
-a( L) ~ (1" - 1)( q - 1) , a simple computation shows that 

(3.14) (1) 
a( L ) e + n - 1 _+ 

c+(D) - -2- ~ e+ + 2 -b (13) 

(2) (D) a(L) e - n + 1 C-(13) - c - -- < -e + + u - 2 - - 2 

Therefore, (3.2) is a better estimate than (3.9)(1) for max deg VL(X) , while (3.9)(2) is 
better than (3.2) for mindeg VL(X), 

4. Minimal crossing number 
4.1. History 

A link diagram D has a finite number of double points which is denoted by e(D). 
The minimal crossing number of a link L is defined as min c(D) , where the minimum 
is taken over all link diagrams of L. eeL) is obviously a link invariant. For example, 
c( L) = 0 if L is trivial, and conversely_ There are no knots L with e( L) = 1 or 2, but 
there is one knot (up to mirror image) with c( L) = 3 that is called a trefoil knot and one 
link with eeL) = 2 called the Hopf link. (See Fig. 4.1.) 

Fig. 4.1 
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One of the classical problems is: 

Problem 4.1. Given a link L, determine c(L). 

This problem is extremely hard. Before 1984, there are only a few results involving 
c(K) in the literature. One of the earliest results is the following theorem due to Bankwitz 
[2]. 

Theorem 4.2. Let LlK( t) be the Alexander polynomial of a knot K. If K is an 
alternating knot, then c( K) :::; I LlK( -1 ) I . 

Later, this theorem was improved considerably by R.H. Crowell [5]. 

Theorem 4.3. If K is an alternating knot that is not a torus knot of type (n, 2) , then 

If K is a torus knot of type (n,2), then c(K) = ILlK(-1)1. In general these 
theorems cannot be used to determine c(1{). 

N ow the J ones polynomial or, more generally, the skein polynomial has played a crucial 
role to solve Problem 4.1 for many links including alternating links. 

4.2. Minimal crossing number for alternating links 
The first general solution to Problem 4.1 is obtained as an immediate consequence of 

Theorem 3.5. 

(4.1 ) 

A link diagram that has exactly c(L) crossings is called a minimal diagram of L. 
For any diagram D of L, we have from (3.2) that 

max deg Vdx) - min deg VL(x) :::; c+(D) + c(D) = c(D) . 

Therefore, span VL (x) gives us a lower bound for the number of crossings any diagram 
of L can have. This proves the following 

Theorem 4.4. If L is not a split link, then span VL(X) :::; c(L). 

In particular, if L is alternating and D is a reduced alternating diagram, then 
equalities in (3.2) give us the following theorem that solves Problem 4.1 for alternating 
link. 

Theorem 4.5. If L if a (non-split) alternating link, then 

span Vdx) = c(L) . 

Furthermore, for any reduced alternating diagram D, span VL(x) = c(D). Therefore, 
any reduced alternating diagram is a minimal diagram. 

The second statement of Theorem 3.5 implies 



175 

Theorem 4.6. span VL (x) = c( L) iff L is a connected sum of alternating links. 

Moreover, if L is alternating and D is a reducted alternating diagram, then (3.2) 
yields 

(4.2) maxdegVL(x)+mindegVL(x) = c+(D)-c(D)-I7(L) = w(D)-I7(L). 

Since max deg VL (x), min deg VL (x) and 17( L) are al11ink invariants, so is w( D) . 
It verifies a conjecture by P.G. Tait. Namely, we have 

Theorem 4.7. If D} and D2 are reduced alternating diagrams of the same alternating 
link, then w( Dd = w( D2)' In other words, the writhe is independent of the diagram 
insofar as we consider reduced alternating diagrams. 

Remark 4.8. Theorems 4.4-4.7 are also proved by M.B. Thistlethwaite with a slightly 
different method. L. Kauffman also proved Theorems 4.4-4.6. 

From Theorem 4.5, we can show that for large n, the number A( n) of prime knots 
K (up to mirror image) with c(K) = n is at least n2 [6]. 

4.3. Adequate links 
Although every reduced alternating diagram is a minimal diagram, there are many 

other non-alternating reduced diagrams which are also minimal. One of the notable ex
amples has been introduced in [15]. 

Let D be an unoriented diagram of a link L. If we split D at each crossing c in 
either way as is shown in Fig. 4.2 (a) or (b) 

X~)( 
(a) Fig. 4.2 (b) 

D is decomposed into finitely many circles on S2 . For convenience, we call the first split 
a positive split and the other negative split. By applying these splits, the original crossing 
Ci "splits" into two points cL c~' lying on each branch (cf. Fig. 4.3) 

)( 
Fig. 4.3 
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A link diagram D is called a + adequate (or - adequate) if in the diagram D + (or 
D_) obtained from D by applying positive splits (or negative splits) on all crossings, new 
points created in D+ (or D_) always occur in the different components. D is called 
adequate if D is both + adequate and - adequate. A link is adequate if it admits an 
adequate diagram. Non-reduced diagrams are never adequate. 

Example 4.9. 
(1) A reduced alternating diagram is adequate, and hence an alternating link is adequate. 
(2) A pretzel link of type (nl,n2, ... ,nA:) is adequate if k 2: 2 and Inil 2: 2 for i = 
1,2, ... , k. Fig. 4.4 depicts an unoriented pretzel link of type (2,3, - 2,4). 

Fig. 4.4 
(3) The standard torus knot diagram is not adequate. 

Now Problem 4.1 is completely solved for adequate links. In fact, the following theorem 
is proven in [15J. 

Theorem 4.10. An adequate diagram is a minimal diagram. 

Although the standard diagram of a torus knot J{ of type (p, q) is not adequate if 
Ipl, Iql > 2, its minimal crossing nl1mber has been determined. See 5.7. 

4.4. Semi-alternating links 
Another type of links for which Problem 4.1 may be solvable is a link type introduced 

by H. Terasaka in terms of the graph of a link diagram. 
Let G be a signed plane graph. For a vertex v of G, let el, e2, ... , en be a 

sequence of all edges emerging from v in the counter-clockwise order. Set ((v) = 
n 

2: sign (ei) sign (ei+d) en+l = el. Then ,),(v) = t{n + ((v)} ~ 0 is called the 
i=l 
alternation-index at v. The alternation-index of G is defined as ')'( G) =mm ')'( v) , 
where the minimum is taken over all vertices of G. 

Example 4.11. 

Fig. 4.5 

,),(vt) = 1 

')'( V2) = 0 

')'(V3) = 1 

')'( V4) = 2 

v 

')'( v) is the number of pairs of consecutive edges {ei, ei+l} such that sign( ei) sign ( ei+d = 
1. Next, we will construct two graphs ro(G) and rl(G) from G. 
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First we subdivide G by adding one vertex Wj to each edge ej of G so that ej 

is divided into two edges ej, e'j. The resulting graph is denoted by G'. By defining 
sign (ej) = sign (e'j) = si!!;n (ej), G' becomes a signed plane graph. Therefore, V(G') = 
V(G) U {WI, ... , wm } and D(G') = {e~,e~, ... , e~,e~}, where m = IE(G)I. 

Secondly, two subgraphs r o( v) and r u( v) are associated with a vertex v of G as fol
lows. If all the edges of G' E'merging from v have the same sign, r o( v) = r u( v) = siarv . 
Consider the general case. Suppose ell, ... , el n1 ,e21, ... , e2n21 ... , e2kl, ... , e2kn .. 

be the edges of G' emerging from v, where sign eij ( -1 )i+1, z 
1,2, ... ,2k. Let Wij he one end (:f v) of eij. Then ro(v) is the plane 

2k 

(unsigned) graph consisting of En; - kedges, en, ... ,el,nl-l,e},e22, ... ,e2n2' 
.=1 

e31, ... , E3n.-l, e3, E42, .. ., e4,n., .. ., e2k-l, E2k,2, .... E2k,n.. and their ends. On 
the other hand, ru(v) consists of edges of e12,'''' el,nlle21, ... , e2n2-l,e2, 

En, ... , e3,n.,e4l, ... , e4n.-lC4, .... C2k,l, ... , e2k,n,.-1,e2k, and their ends. Here, 
el(€ = 1,2, ... , 2k) is the edge joining two vertices Wl,nl and Wl+l,l, where W2kH,l = 
Wl,l' Finally, ro(G) and ru(G) are obtained from G by replacing every siar' v, 
vEV(G),by ro(v) and ru(v),respectively. ro(G) and ru(G) are called the over-graph 
and under-graph of G, respectively. 

Example 4.12 

w*~Wt w t \ 

V 

T - w, 
"'4 

W'S 

ro (v) I: (v) 

w2, 

\~ F e4 

w ... w, 
Vi, 

Fig. 4.6 

Example 4.13 

<1> <D-+ -+ -

t -
- -

Fig. 4.7 
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Although this conjecture was recently disproved in [18], we will show that equality in 
(5.3) holds for many links, including 2-bridge links, alternating fibred links and alternating 
pretzel links [22J. However, there is an alternating link for which the equality is false [22J. 
The simplest example is the alternating link depicted in Fig. 5.2. 

~ 

e3 Fig. 5.2 

A calculation by a computer shows that v - span PL( v, z) = 8 , but b( L) is indeed 6. 

5.2. Seifert graphs 

Now to prove equality in (5.3) or to establish some relationship between 
v-span PL ( v, z) and b( L), we use the second type of graph called the Seifert graph of 
a link diagram. 

Let L be a link and D a diagram of L. If we split D at each crossing along the 
orientation of D (Fig. 5.3), D is decomposed into finitely many circles on S2, called 
Seifert circles. 

x ) 

Fig. 5.3 

V 
1\ 

Let s(D) denote the number of Seifert circles in D and c(D) the number of cross
ings in D. The Seifert graph r D (associated with D) is a graph with s(D) vertices 
VI,' .. ,v.(D) and c(D) edges elo···, ee(D). Each vertex corresponds to a Seifert circle 
and each edge corresponds to a crossing. Two distinct vertices Vi and Vi are connected 
by ek iff two Seifert circles Si and Si (corresponding to Vi and vi) are joined by a 
crossing Ck (corresponding to ek ). Furthermore, each edge is given the same sign as that 
of the corresponding crossing in D. (See Fig. 3.3) Therefore, the Seifert graph is a signed 
(plane) graph. A Seifert graph has no loops. In contrast to the graphs discussed in §2.1, 
a Seifert graph does not represent a link type. In other words, the exact same graph may 
represent different links. In fact, the figure eight knot (Fig. 5.4 (a)) and a 3-component 
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Let L+, L_ and Lo be links which are identical except in the neighborhood of a 
crossing, where they look like 

x X )( 
L+ L_ Lo 

Fig. 5.1 
Then PL(V,Z) satisfies the following formula 

(5.1 ) 

If L is a trivial knot, then 

(5.2) Pt{v,z) = 1. 

The integer polynomial uniquely defined by (5.1) and (5.2) will be called the skein polyno. 
mial of a link L. The skein polynomial is a generalization of the Jones polynomial, since 
Vt{x) = h(x,xt - x-t).' 

Example 5.2. 

Since Pt{ v, z) involves two variables v and z, we can define the v -span Pt{ v, z) 
and the z -span PL ( v, z). As is suggested by Theorem 5.3 below, however, v -span 
PL( v, z) is more interesting and important. 

Theorem 5.3. [9, i7l For any link L, 

(5.3) v-span PL(V,Z):::; 2(b(L) -1). 

Surprisingly, equality holds in (5.3) for many links, although inequality is sharp for 
some knots. One of the earliest conjecture on b( L) was the following 

Conjecture 5.4. [9] If L is the closure of a positive braid, then 

(5.4) v-span PL(V,Z) = 2(b(L) -1), 

where a positive braid is a braid in which every Artin's generator O"i appears with a 
non-negative exponent. 
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Obviously, if G is a positive or negative graph, then ro(G) = r u(G) and moreover, 
r o( G) is homeomorphic to G as topological spaces, and conversely. 

Definition 4.14. A signed graph G is said to be semi-alternating if (1) {(G) 2: 2 
and (2) both ro( G) and r u( G) are connected and non-separable. A link diagram D is 
said to be semi-alternating if the signed graph G D associated with D or its dual GD is 
semi-alternating. A link L is semi-alternating if L admits a semi-alternating diagram. 

Example 4.15. 
(1) A reduced alternating diagram is semi-alternating. 
(2) Non reduced diagrams are never semi-alternating. 
(3) A standard torus knot diagram need not be semi-alternating. 
(4) A standard pretzel link diagram need not be semi-alternating. 

Terasaka proved that a semi-alternating link is not trivial. It is not known whether a 
semi-alternating diagram is adequate, but the following conjecture seems plausible. 

Conjecture 4.15. A semi-alternating diagram D is a minimal diagram of the link 
represented by D. 

Finally we mention one interesting question that remains unsolved 

5. The Braid index 
The theory of braids has played a fundamental role in the discovery of the new poly

nomials [13]. The original Jones' theory depends on the fact that every oriented link is 
represented as a closure of an n -hraid for some n [1]. The minimum number of strings 
n needed to represent L as a closed n -braid, is called the braid index of L, denoted by 
b( L). Obviously, the braid index is a knot invariant. 

Problem 5.1. Given a link, determine b(L). 

This problem is also very difficult, and before the new polynomial was discovered, it 
was almost impossible to evaluate b( L) for L, except for a few limited types of links. For 
example, it is shown in [24] that if K(p, q) is a torus link of type (p, q), p, q 2: 1 , then 
b(K(p,q)) = min{p,q}. 

However the recent development of the new polynomials revealed a strong connection 
between these polynomials and the braid index of a link. And now the evaluation of the 
braid index is possible at least for certain type of links. In this chapter, we will discuss 
the recent progress on this problem. 

5.1 Skein polynomials 
We begin with a definition of a new integer polynomial PL( v, z) in variables v and 

z [10j. 



link (Fig. 5.4 (b)) have the same Seifert graph r (Fig. 5.4 (c)). 

( a) (b) 
Fig. 5.4 

181 

(c) 

If rv is not separable, D is called a special diagram, and rv uniquely represents 
a link. In this case, r v is in fact the graph G( D, p) associated with D defined in §2.1 
for some shading. Therefore there is no ambiguity in recovering the original link diagram 
from a non-spearable Seifert graph. A Seifert graph is a spine of some orient able spanning 
surface of L, and hence it is bipartite. Particularly interesting examples of Seifert graphs 
arise from braids. 

A Seifert graph of a closed braid is the block sum of multiple-edge graphs (see Fig. 
5.5). 

Fig. 5.5 

Also, each block of the Seifert graph of an alternating link diagram is either a positive or 
negative graph. 

As we have seen above, a Seifert graph of a closed n -braid is the block sum of n - 1 
multiple edge graphs and hence the natural diagram of a closed n -braid has exactly n 
Seifert circles. (See Fig. 5.5.) Therefore, any link has at least one diagram Do for which 
s(Do) = b(L), and we have min seD) ::; b(L), where the minimum is taken over all 
diagrams of L. In 1987, Yamada proved the reverse inequality. In fact, he proved 

Theorem 5.5. [29} For any diagram D of L, seD) ~ b(L). 

This theorem suggests that for any link diagram D of L, the study of the surplus 
seD) - bel) would eventually lead to the determination of b(L). We may ask, for 
example, for what diagram D, is seD) - bel) equal to O? If D is a reduced alternating 
diagram, seD) -1 equals the degree of the reduced Alexander polynomial of L and hence 
seD) - bel) is a link type invariant. Our study of the surplus seD) - bel) leads to a 
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new invariant of a graph G, called the index of G, which is a topic of the next section. 

5.3. Index of a graph 
Let G be a graph. A family :F = {el, ... , ek} of edges of G is said to be independent 

if (i) all ej (j = 1,2, .... k) are singular and (ii) there is an edge ei in :F and a 
vertex v, one of the ends of ei, such that {1>( ed, ... ,1>( ei-d, 1>( ei+d, ... , 1>( ek)} is an 
independent set of k - 1 edges in the graph G / star v , where 1> : G ~ G / star v is the 
collapsing map. (In the rest of this talk, we do not distinguish between ei and 1>( ed 
unless confusion arises.) We define that the empty set of edges is independent. ind (G) 
is defined to be the maximal number of independent edges in G. If G is a signed graph, 
then ind+( G) (respectively ind_( G)) is defined to be the maximal number of independent 
edges {el, ... ,ed in G, where all ej(j = 1, ... ,k) are positive (respectively negative) 
and singular in G. 

It is obvious that ind (G):::; ind+(G) + inL(G). 

Example 5.6. For the graph G depicted in Fig. 5.6, ind (G) = 1, ind+( G) = 1 and 
ind_(G) = 1. 

+ 

+td-
+ Fig. 5.6 

From the definition, we have immediately the following 

Proposition 5.7. If two graphs G1 and Gz are disjoint, then 

ind+(G1 U Gz) = ind+ (Gd + ind+ (Gz), and 

ind_(G1 U G2 ) = ind_ (Gd + ind_ (Gz). 

One of the important properties of the index is the following theorem. 

Theorem 5.8. Let G be a connected bipartite grapb. If G consists of blocks 
GI, Gz, ... , Gk then 
(1) ind G = ind (Gd + ... + ind (Gk). 
Furtbermore, if G is a signed graph, tben 

k k 

(2) ind+(G) = 2: ind+(G i ) and ind_(G) = 2: ind_(Gi ). 
~l ~l 

The original proof of this theorem has been simplified considerably after P. Traczyk 
proved our conjecture on bipartite graphs. Therefore, we will postpone the proof to the 
next section. 
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5.4. Cycle index 
Since the determination of the index of a graph is by no means straightforward, we 

define a cycle index of a graph G, as the first approximation of ind G. Usually, the 
determination of the cycle index is much easier than that of the index and therefore, it 
provides a quite effective method to determine the index of a graph. 

Definition 5.9. Let S = {el,' ... en} be a set of n distinct edges in a graph G. 

(1) S is said to be cyclically independent if no k edges in 5(1 ~ k ~ n) occur on a 
simple cycle of length at most 2k. Otherwise 5 is called cyclically dependent. 

(2) The cycle index of G, denoted by a( G) , is defined as the maximal number of cycli
cally independent edges of G . 
In the Definition 5.11 (1), a simple cycle can be replaced by a closed trail. 

Example 5.10. For a graph G depicted in Fig. 5.7, a(G) = 3, but indG = 2. 

Fig. 5.7 

Theorem 5.11. For a graph G, ind(G) ~ a(G) . 

Proof. We proceed by induction on a( G). If a( G) = 0 , then G has no singular edges 
and hence, ind G = 0 . 

Let a(G) = n 2 1 and assume that Theorem 5.11 holds for a graph H with 
a(H) < n. Let v(e) be an end of a singular edge e in G. First we will show 
that a (G / star v( e)) ~ n - 1. Take a family 5 = {elo ... , en} of n distinct edges in 
G / star v( e). 5 gives rise to a family S' of n + 1 edges in G by adding e to 5. Since 
a( G) = n, 5' is cyclically dependent in G. Therefore, there are, say k, edges ei" ... , eik 

in 5' such that these edges occur on a simple cycle C in G of length at most 2k. Let 
U = {ei1 ,' •. , ei.}. We consirler two cases. 

Case (1) e rf. U. Then U is also a family of k edges, all of which occur on the closed 
trail C/star'v(e) in G/starv(e) , where IC/starv(e)1 ~ ICI ~ 2k. 

Case (2) e E U. Then U - {e} is a family of k - 1 edges, all of which occur on the 
closed trail C/starv(e) in G/starv(e),where IC/starv(e)I~ICI-2~2k-2. 

In either case 5 is cyclically dependent in G / star v( e) , and therefore, 
a(G/starv(e)) ~ n - 1. But the inductive assumption yields ind (G/starv(e») ~ 
a(G/star v(e)) ~ n - 1 and hence, ind (G) ~ n. 0 

The proof of the following corollary is elementary. 

Corollary 5.12. 
(1) If ind (G) ~ 1, then ind (G) = a(G). In particular, ind G = 1 iff G has singular 

edges and each pair of singular edges in G occurs on a simple 3 - or 4 - cycle in G. 
(2) Suppose that there are no simple 3-cycles in G. Then ind G = 2 iff a( G) = 2. 
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Corollary 5.12 (2) is false if G has a 3-cycle. See the graph G in Fig. 5.7. 
Very recently Traczyk proved the reverse inequality in Theorem 5.11 for bipartite 

graphs. He proves [27]. 

Theorem 5.13. If G is a bipartite graph, then ind( G) 2: a( G) , and hence indG = 
a(G) . 

This theorem is false if G is not bipartite. See Example 5.10. 
Since a( G) is additive w.r.t the block sum, Theorem 5.8 is an immediate consequence 

of Theorem 5.13. Furthermore, the index of a bipartite graph is a 2-isomorphic invariant, 
but it is not for non-bipartite graphs. 

Example 5.14. G is 2-isomorphic to G' , but ind G = 4 and ind G' = 3. 

G G1 

Fig. 5.8 

5.5 Improvement of Morton-Fl'ank-Williams inequalities 
Now we return to link theory. Let D be a link diagram of Land r D (or simply 

r) the Seifert graph associated with D. Then the index of D, ind D , is defined as the 
index of f D . Recall that rv is a block sum of bipartite graphs and hence ind D is the 
sum of indices of these blocks. 

As was mentioned in 5.1 the maximal and minimal v -degree of PL( v, z) have been 
studied in [9, 17] and the following theorem was proven which estimated their upper and 
lower bounds in terms of the numbers the following theorem was proven which implies 
(5.3). 

Theorem 5.15. For any link diagram D of a link L, 

(5.5) w(D)-s(D)+l~ mindegvPL(v,Z)~ maxdegvPL(v,Z)~w(D)+s(D)-l. 

However, these inequalities have been improved considerably by the following theorem. 
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Theorem 5.16. For any link diagram D and the associated Seifert graph f(D) , we 
have 

(5.6) 

and hence 

(5.7) 

maxdegv PL(V,Z):S w(D) + .s(D) -1- 2 ind+r(D), 
mindegv Pdt'. z) 2: w(D) - .s(D) + 1 + 2 ind_f(D) 

and 

Now, to prove Theorem 5.16, the following lemma is crucial. 

Lemma 5.17. Given an oriented link diagram D of a link L, there are new link 
diagrams D', D" and D'" of L such that 

(5.8) 

and hence 

(5.9) 

(1) 
(2) 
(3) 

weD') = w(D) - ind+(D) 
w(D") = w(D) + ind_(D) 
.s(D"') = .s(D) - ind(D) 

and 
and 

b(L) :S seD) - ind(D) . 

seD') = seD) - ind+(D), 
s(D") = s(D) - ind_(D) 

Remark 5.18. (1) It may not exist a diagram D' such that seD') = .s(D)-(ind+(D)+ 
ind_(D». (2) If D is an alternating diagram, then ind D = ind+D + ind_D and we 
can choose D'" so that w(D"') = weD) - ind+r(D) + ind_f(D) . 

Proof of Lemma 5.17. A proof is to find a new diagram D' associated with the graph 
f( G)/ star v. Suppose that there exists a singular positive edge e and a vertex v, one of 
two ends of e, such that ind+(f(D)/star v) = k -1. e corresponds to a crossing c of 
D. 

Fig. 5.9 
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Let u be a small part of D that crosses under the other part of D at c. Let PI 
and P2 be the end points of u. See Fig. 5.9. We will deform isotopically the short path 
u to a long under-crossing path e. 

i x .~ 
: i 

e 

r(Dl 

Fig. 5.10 
e is depicted by a dotted line in Fig. 5.10. e crosses under those "bands" which are 

not connected to v. In this new diagram D' , two Seifert circles represented by v and Vo 
are amalgamated to one circle and hence seD') = seD) - 1. 

Now we see that r(D') is the one-point union of r(D)/star v and some multiple
edge graph K, and ind+r(D') = ind+r(D) - 1. We repeat the same argument so that 
finally reD) is reduced to the block sum of r(D(k») and multiple-edge graphs where 
ind+r(D(k») = 0 . 

The final link diagram D corresponding to this graph has seD) = seD) - ind+(D) 
and w(D) = weD) - ind+(D). D is what we sought. D 

We are now in position to prove Theorem 5.16. Using the diagrams D' and D" in 
Lemma 5.17, we have from Theorem 5.15 

maxdegv PL(V, z) :::; weD') + seD') - 1 = weD) + seD) -1- 2 ind+r(D), and 

min degv PL(v, z) ~ w(D") - s(D") + 1 = weD) - seD) + 1 + 2 ind_r(D) . 

This proves Theorem 5.16. D 

As a consequence of Theorem 5.16, we have 

Corollary 5.19. Suppose that the equalities hold in (5.6). Then if ind D = ind+D + 
ind_D, we have 

beL) = seD) - ind D. 
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Proof. It follows from Theorem 5.13 that v-span PL( v, z) S. 2{b(L) - 1} , and hence 
seD) - 1 - ind D S. b(L) - 1, i.e. .s(D) - ind D S. b(L). However, Lemma 5.17 
shows that there is a diagram D'" of L such that s(D"') = seD) - ind D, and hence, 
.s(DIII) S. b(L). Since b(L) S. .s(D) for any diagram D of L, it follows that b(L) = 
s(D"') = seD) - ind D. 0 

Theorem 5.20. Let L be an alternating link. If the equalities hold in (5.6), then we 
have 

b(L) = .s(D) - ind D. 

Proof. Because ind D = ind+D + ind_D . 

5.6. Determination of the braid index 
Using Corollary 5.19, we can determine the braid index of many links, particularly, 

alternating links. 

Theorem 5.21. For the links listed in (5.10), the braid index is determined by the 
formula: b(L) = .s(D) - indD, 

(5.10)(1) L is an alternating link that has a reduced alternating diagram D of index O. 
In particular, L is an alternating fibred link. 

(2) L is a (not necessarily alternating) link that has a special diagram D with at 
most one singular edge. 

(3) L is a 2-bridge link. (For the precise definition, see the next section.) 
(4) L is an alternating pretzel links. 
(5) L is an alternating link such that the leading coefficient of the Alexander 

polynomial is ±1, ±2 , or ±3. 

We should note that the assumption L being alternating in (1), (3)-(5) cannot be 
dropped. (A part of Theorem 5.23 is also proved by Y. Yokota [30] using one variable 
skein polynomial Pd qm, q - q-1) obtained by substitutions v = qm and z = q _ q-1 .) 

For a 2-bridge link, it is possible to give a precise formula that evaluates its braid 
index. 

Theorem 5.22. Let L be a 2-bridge link of type (0, (3), where 0 < (3 < 0 and (3 is 
odd. Let [2n1,1, 2n1,2, ... ,2n1,k, - 2n2,}' ... , -2n2,k2' ... ,( -1 )t-12nt,1, ... , ( -1 )t-12nt,k.] 
be a continued fraction form of ",c:..j3 where ni,j > 0 for all i, j. Then 

t k; 

b( L ) L L (nij - 1) + t + 1 . 
i=l j=l 

Example 5.23. J{ is a 2-bridge knot of type (241, 183). (See Fig. 5.11.) The continued 
fraction form of 25~1 is [4, -6, 2, -4] and hence b(K) = 1 + 2 + 1 + 5 = 9. On the other 
hand, seD) = 13 and ind D = 4 and seD) - ind D = 9. 
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Fig. 5.11 
At present, if equality in (5.6) does not hold for a link L, the determination of b(L) 

is still a hard problem. However, a recent result announced in [16] shows that both seD) 
and ind D are invariants for a reduced alternating diagram D, and so is seD) - ind D. 
We conjecture that this number gives the braid index for an alternating link. 

Conjecture 5.24. If L is an alternating link and D is a reduced alternating diagram 
of L,then b(L)=s(D)-indD. 

This conjecture is true for for the link depicted in Fig. 5.2. Finally, we note that the 
additivity of beL) w.r.t # is proved in [3J. 

5.7. Minimal crossing number (II) 
Rather surprisingly, some results obtained in the previous sections will be used to 

determine the minimal crossing number c( L) of some non-alternating links L. 

Proposition 5.25. Let L be an oriented link. Suppose tbat L has a diagram D such 
that 

(5.11) (1) s(D) = beL) 
(2) max deg zP(v, z) = c(D) - seD) + 1 . 

Then c(L) - c(D). 

Proof. Let D' be a link diagram of L. Since max deg zP( v, z) is bounded above by 
neD') - seD') + 1, we see from (5.11) (2) that 

c(D') - s(D') + 1 ~ c(D) - seD) + 1 . 

Since beL) ~ s(D'), it follows from (5.11) (1) that seD) ~ seD') and hence c(D')
c(D) ~ seD') - seD) ~ 0, i.e. c(D') ~ c(D). Therefore c(L) = c(D). 0 
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Let L be a torus link of type (p, q), p > q > O. Represent L as a closed q -braid 
{3 = (0'10'2 ... O'q-t}P and let D be the standard diagram of L. Then D satisfies (5.11) 
and hence we have 

Theorem 5.26. Let L be a torus link of type (p, q). Then 

6. Bridge number 
6.1. Problem 

c(L) = min {lpl(lql-l), Iql(lpl-l)} . 

The concept of bridges of a link L was introduced by H. Schubert in 1954. An 
(unoriented) link L is said to have an n -bridge representation if L n 52 consists of exactly 
2n simple points PI, P2, ... , P2n that divide L into 2n simple arcs AI, A 2 , .•. , A2nin 
such a way that (i) Ai n Ai+I = Pi, i = 1,2, ... , 2n, where A2n+ I = AI, (ii) narcs 
AI ,A3 , .'" A2n- 1 are in the upper half space 5! = {(x,y,z) I x 2 o} U {oo} while 
A2, A 4 , ... , A2n are in the lower half space 5~ = {(x, y, z) I x ~ o} U { oo} , and (iii) each 
arc Ai is unknotted, i.e. Ai and an arc Bi in 52 span a disk Di in 5! or 5~, and 
(iv) Di n Dj = 0 whenever i == j (mod 2). (See Fig. 6.1.) 

Fig. 6.1 

Since each arc A2k-l , k = 1,2, ... , n , has at least one local maximal point, an n -bridge 
representation of L has at least n local maxima. A link L has the bridge number (or 
index) n, bg(L) = n, if L has an n -bridge representation, but cannot have a fewer 
bridge representation. An unknotted knot has the bridge index 1 and conversely. The 
bridge index of a /l- -component link is at least /l-. For /l- 2 2, there are many non-trivial 
/l- -component links L with bg( L) = /l- • 

The bridge number, bg(D) , of a link diagram D is the number of local maximal 
points on D. From the definition we have 

Proposition 6.1. bg(K) =min bg(D) , wbere the minimum is taken over all diagrams. 
D 

It is well-known that 2-bridge links are alternating. 

Problem 6.2. Given a knot L, determine bg(L). 



190 

There are no algorithms with which one can compute bg(L) , but the following propo
sition is one of the earliest results due to Schubert [24]. 

Proposition 6.3. The bridge number of a torus link of type (p, q) is min {Ipl, Iql}. 

It is easily seen that bg( L) has some connections with the number of Wirtinger 
generators of the link group of L. 

Let G(L) = 7rI(S3 - L) be the group of a link L, and let (XI,X2,"" Xm : 

rI, r2, ... , rm) be a Wirtinger presentation of G(L) associated with a link diagram D. 
Each generator Xi, called a Wirtinger generator, represented by a meridian of L. For 
example, since a 2-bridge link L has a diagram with two local maxima, two Wirtinger 
generators Xl and X2 suffice to generate G( L). In general, if L has an n -bridge rep
resentation, the group G( L) is generated by n Wirtinger generators and therefore, we 
have 

Proposition 6.4. Let G( L) be the group of a link L. Let m be the minimum number 
of Wirtinger generators that generates G( L). Then we have 

(6.1) m :S bg(K). 

It is not known whether equality holds in (6.1) for any link L. Obviously m = bg(L) 
if bg( L) = 1 or 2. If a link L is represented as a closed n -braid, then its diagram has 
n bridges and hence we have immediately 

Proposition 6.5. bg(K):S b(K). 

The following additivity of bg(K) is proved in [24]. 

Theorem 6.6. 
2 

L { bg( Ki) - 1} . 
i=I 

6.2. The rank of a graph 
In this section, we will introduce a new concept called the rank of a graph which leads 

another definition of bg( L) . 
Let G be a (finite) ullsigned graph. Let Wo be a collection of edges of G, i.e. 

Wo ~ E(G). An edge e is called a consequence of Wo if (1) there is an end of e, say 
Ve , such that all edges but e in star Ve belong to Wo , or (2) there is a simple cycle C 
including e such that all edges but e in C belong to Wo. 

Let r(Wo) be the set of all consequences of Wo. r(Wo) is a subset of E(G). 
Define WI = Wo U r(Wo) C E(G), and then inductively, define WHI = Wk U r(Wk) , 
k = 0,1,2, .... Thus we obtain an ascending sequence: 

Wo C WI C W2 C ... C Wk C ... C E( G) . 

If, for some £, Wi = E( G) , then Wo is said to generate G and Wo is called a set of 
generators ofG. Since E( G) itself generates G, every (finite) graph has at least one set 
of generators. 
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Definition 6.7. The rank of G. r(G), is defined as mlU {IWI} , where the minimum w 
is taken over all sets of generators W of G. 

Example 6.8. 
(1) If E(G) = 1> then r(G) = O. 
(2) If G is a tree, then 1'( G) is at most the number of stumps minus one. 
(3) For the graph G in Fig. 6.2, 1'( G) = 3, since {eJ, e2, e3} generates G, but no 
two-edge set generates G. 

Fig. 6.2 

From the definition we have immediately 

Proposition 6.9. 
(1) If G1 n G2 = 1>, then r(G1 n G2 ) = r(GJ) + 1'(G2 ) 

(2) r(G1 * G2 ) :::; r(GJ) + r(G2 ) + 1 
(3) If G* is the dual of a plane graph G, then 1'( G*) = r( G) . 

If the graph G is associated with an n -bridge representation of a connected L, then 
1'( G D) + 1 :::; bg( L) and we propose the following 

Conjecture 6.10. 

(6.2) bg(L) - 1 = min r(GD) , 
GD 

where the millimum is taken over all diagrams. 

6.3. The Fox Conjecture 
As is seen from many examples, two numerical invariants bg( L) and b( L) are much 

smaller than c(L). How small are they? In 1950, R.H. Fox suggested the following 
inequality [8]. For a knot K, 

(6.3) 3(bg(K) -1) :::; c(K) . 

Difficulties of proving the statement like (6.3) are an involvement of the minimal cross
ing number c(K). However, these difficulties are now eliminated at least for alternating 
knots or links. Since (6.3) is false for a link, we modify (6.3) as follows. 

Conjecture 6.11. If L is a /1-component link with A split components, then 

(6.4) 3(bg(L) - A) :::; c(L) + /1- A . 
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Equality holds in (6.4) if L is a connected sum of trefoil knots and Hopf links. 
This conjecture still remains unsolved, but we can prove (6.4) for the following type 

of links. 
A link L is called algebraic if L has a minimal diagram D such that the graph 

associated with D or its dual is reducible. (A graph G is said to be reducible if G has a 
vertex Vo such that G - Vo is a tree.) Note that there is a plane graph that is reducible, 
but its dual is not. A 2-bridge link is algebraic. 

Theorem 6.12. If L is algebraic, then conjecture 6.11 holds. 

Proof. It suffices to prove (6.4) for ,\ = 1. Let G be a reducible (unsigned) graph of a 
minimal diagram D. For a reducible graph G, it is shown [19] that bg(L) - 1 S r(G) , 
and hence it is enough to prove 

(6.5) 3r(G)Sc(L)+f.l-l, 

where f.l is the number of components of L. Since c(L) = c(D) = IE(G)I and f.l = 
2-null (G) , the mod 2 nullity of the matrix of G, it follows that (6.5) is equivalent to 

(6.6) 3r(G)::; IE(G)I+2-null(G)-I. 

To prove (6.6), first consider the simplest case Go where T and Go are of the form 
depicted in Fig. 6.3, i.e. T = stal' Vk+l . 

Fig. 6.3 

Then r(Go) ::; k - 1 and IE(G)I = 2k, while 2-11ull (Go) = k, and hence (6.6) holds. 
Now G is obtained from Go first by expanding T by inserting edges at (non-stump) 
vertices, (see Fig. 6.4) 

Fig. 6.4 
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and then by adding edges connecting Vo and vertices on T. During these extensions, r( G) 
remains unchanged. However, if we add the edge to a graph, 2-null (G) may increase or 
decrease by at most one, and hence, 12-null(G) - 2-null(Go)1 ~ IE(G)I-IE(Go)l. Now 
3r(G) = 3r(Go) ~ IE(Go)1 + 2-null (Go) - 1 ~ IE(G)I + 2-null (G) - 1 . 0 

In conjecture 6.11, br(K) cannot be replaced by b(K), because the figure eight knot 
K has the braid index 3 but c(K) = 4. Recently, however, the following theorem is 
proven. 

Theorem 6.13. [23} For any knot K, 

2(b(K) - 1) < c(K). 
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THE QUEST FOR A KNOT WITH TRIVIAL JONES POLYNOMIAL: 

DIAGRAM SURGERY AND THE TEMPERLEy-LIEB ALGEBRA 
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ABSTRACT. This article reviews several methods of altering knot and link diagrams without chang
ing the Jones polynomial of the underlying link. The technique, which may be called diagram surgery 
or generalized mutation, involves removing a part of the diagram and replacing it in an altered form. 
In general, the resulting knot or link is different from the original. An important possible application 
of this technique would be to find a nontrivial knot with trivial Jones polynomial. Our point of view 
involves skein theory and the Temperley-Lieb algebra, and underlines the utility of these ideas. 

1 Introduction 

Since V. Jones introduced his new polynomial invariant of knots, about eight years ago, 
nobody has answered the following very basic question: Is there a nontrivial knot with 
trivial Jones polynomial? 

I'll take this as the main motivation for discussing various methods of producing pairs 
of knots (or links) which have the same Jones polynomial. They are all generalizations of 
Conway's concept of "mutation." By analogy with gene splicing, you take part of a picture 
(= diagram) of a link, remove it and replace that part in a different way. Under certain 
circumstances, which we'll study, the new diagram represents a link which has the same 
Jones polynomial. 

My hope is that, with patience or cleverness, one of you will find an example which 
gives an answer of "yes" to that question, by finding a knot whose appropriate generalized 
mutant is unknotted. 

Some of the ideas I'll discuss also apply to the Alexander polynomial, the so-called 
HOMFLY polynomial, the Kauffman polynomial, etc. For simplicity, I'll concentrate on 
the Jones polynomial. You can check the literature, or figure out for yourself, which methods 
also apply to the other polynomials. Of course, it has been known for a long time that 
there are plenty of knots with Alexander polynomial equal to 1; J. H. C. Whitehead gave 
a general method (doubling) to produce such examples. Another pair of examples will be 
mentioned shortly. 

M.E. BozhiiyU/c (ed.), Topics in Knot Theory, 195-2\0. 
© 1993 Kluwer Academic Publishers. 
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Another thing I'd like to emphasize is the beauty of the ideas of skein theory. When I first 
learned this idea, also due to Conway, of turning the set of tangles (parts of knot diagrams) 
into a vector space, I thought it was a pretty wierd bit of abstract nonsense. However, the 
idea has proven to be extremely useful. The very well-developed ideas of linear algebra can 
be used to great advantage, and this algebraization of the geometry actually enables us 
to make explicit calculations, which in turn have concrete geometric consequences. Since 
vector spaces have bases, and linear transformations and pairings correspond to matrices, 
one can use skein theory to reduce certain questions to a simple check of a finite number of 
things. This is the heart of several of our arguments. The 3-manifold invariants discussed 
by H. Morton in this meeting give an even more convincing illustration of the power of 
skein theory. 

2 The Jones polynomial and the Kauffmann bracket 

By now, you must be familiar with this, so a quick review should suffice. Kauffman's 
beautiful and elementary construction of the Jones polynomial is through the bracket (D) 
of a planar diagram of a link. I refer you to Kauffman's book [K] for further details. 
Consider the ring Z[A±l] of (Laurent) polynomials in a variable A. Let D be a diagram of 
a link, which as usual is a curve or set of curves in the plane with only double-point self
crossings, and an indication at each such crossing of which strand is to be the underpass in 
the third dimension. As usual, we indicate this by a little gap. The bracket (D) is defined 
by the axioms: 

Axiom 1: ( /'< > 
Axiom 2: < D lL 0> = ~ (D) where Ii = _A2 - A-2 

together with the stipulation that the bracket of the empty diagram equals 1. These 
axioms insure that (D) is invariant, not only under ambient isotopy of the plane, but also 
the Reidemeister moves of type II and III, which (by definition) generate the relation of 
regular isotopy of diagrams. 

The Reidemeister moves: 

I ~ ~ .../'"'- ~ ,52 
,,\:::::;.( ~ '--" ~ /0( II ~ 

III /Xr ~ X ...// "-
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An easy calculation shows that 
-3 

- A (,,), 

so we get an invariant of all three Reidemeister moves (and hence an ambient isotopy 
invariant of the link L that D represents) by orienting the curves and calculating the writhe 
w(D) as the algebraic sum of the crossings, counting signs f according to the convention 

x x 
E = +1 E =-1 

and then defining h(A) = (_A-3)-1V(D)(D), the normalized bracket invariant. (From 
now on we will drop the distinction between a link L and a diagram D representing it.) 
Kauffmann showed that this is the same as the .Jones polynomial VL(t), up to a change of 
variable t = A-4 and a factor of 6. That is, 

A key observation is that if a knot or (oriented) link diagram is modified in such a way 
that its bracket and its writhe are unchanged, then its Jones polynomial is also unchanged. 

3 Skein theory, lTIutants and the TelTIperley-Lieb algebra 

There are various skein theories for classical knots and links, corresponding to the Conway 
polynomial (the original verSion), the HOMFLY plynomial and other invariants which can 
be defined by "skein relations" such as the axioms defining the bracket. Moreover, the 
idea can be generalized to skein theory of 3-manifolds (maybe also higher dimensions) and 
bears a strong similarity with the topological quantum field theories which are currently 
being developed. Again for simplicity, I'll only discuss the skein theory corresponding to 
the Kauffman bracket, and planar diagrams of classical links. 

A room R is a region of the plane (the boundary, assumed polygonal, may be empty 
or disconnected), together with an even nmnber of marked points on the boundary. An 
inhabitant is a diagram in R (part of a link diagram) whose boundary is precisely the set 
of marked points. Two inhabitants of the room R are called equivalent if they are related 
by an isotopy of R fixed on the bOlmdary and a finite number of Reidemeister moves of 
type II or III, i. e., regular isotopy within R. Let M(R) denote the free Z[A±lJ-module 
generated by all equivalence classes of inhabitants of R. Define the skein module S(R) to 
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be the quotient of M(R) modulo all equations among inhabitants, of the type stated in 
Axioms 1 and 2 of the previous section. Only now we imagine the brackets to be erased, 
and the equations asserting a relation among the inhabitants themselves, as "vectors" in 
M(R). That is, S(R) = M(R)/I(R), where I(R) is the 2-sided ideal generated by all 
elements which are differences between the left-hand and right-hand side of an equation 
given in Axiom 1 or 2. Axiom 1, as usual, involves inhabitants which are identical except 
in a neighbourhood of the crossing depicted. We interpret Axiom 2 as applying only if the 
unknotted curve 0 bounds a disk in R. 

Examples: 1. If R is the entire plane, then S(R) is one-dimensional, with basis the 
empty link 0. Any link L can be expressed L = {L)0. 

2. Similarly, if R2 is a disk with 2 marked points, S(R2) has a basis consisting of an arc 
in R connecting the two points. 

3. If ~ = the disk, with 4 marked points, then S(R4 ) is the free module with basis 
consisting of the inhabitants: 

and 

4. For RiJ = disk with 6 marked points, S(R6) is 5-dimensional with basis 

1 

5. The skein theory of the disk R2n with 2n marked points has basis consisting of all 
(equivalence classes of) inhabitants with no crossings, and its dimension is the Catalan 
number Cn = 2n(2n -1)··· (n + 2)/n! 

6. If R is an annulus with no marked points, then S(R) has a count ably infinite basis, 
the k-th basis element consisting of k parallel copies of diSjoint curves which go around the 
hole, k = 0, 1,2, ... 

Problem: Prove the formula for Cn = dimension of S(R2n) as follows. Consider Co = 1 
and observe that Cn = COCn- 1 + CICn- 2 + ... + Cn-ICO. Define a (formal) power series 
I(x) = L:~OCixi, and argue that I(x) -1 = xI(x)2, solve for I and deduce the form of 
its coefficients. 

Sometimes it will be convenient to consider A to be a fixed nonzero complex number. 
If we do that, then S(R) may be defined as the complex vector space formed by taking 
all formal complex linear combinations of equivalence classes of inhabitants, modulo the 
relations given in Axioms 1 and 2. For "generic" A the dimensions of the above examples, 
as complex vector spaces, are as stated. However, there are exceptions: for example if A 
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is a fourth root of -1, then 8 = 0 and so the skein vector space of the plane becomes zero 
dimensional. 

Consider a room R and its complementary room R', so that R U R' is the whole plane 
and R n R' = () R = () R' and the marked points on the boundary of the rooms are the 
same. Then if D and D' are inhabitants of Rand R', respectively, Du D' is a link diagram. 
By extending linearly to the skein modules (or vector spaces), this construction defines a 
bilinear pairing: 

S(R) X S(R') --+ S(plane) = scalars 

Again consider a room R and a function F taking inhabitants of R to inhabitants of 
R. Suppose the function has the property that whenever inhabitants of R satisfy a skein 
relation, then also their images under F satisfy the same relation. Then this induces a 
linear transformation F : S(R) --+ S(R). 

An example of the above is Conway's mutation. Let R4 be a disk symmetric under 180 
degree rotations in either the x-axis, y-axis, or z-axis (which we visualize in the usual way 
as pointing respectively to the right, upwards, or pointi)1g out of the page towards us); 
moreover, suppose the four marked points are also chosen to be setwise invariant under 
these rotations. If F denotes the operation of rotating an inhabitant in anyone of these 
three senses (with crossings changed under the x- or v-rotation, as if the diagram were 
three-dimensional) we get a linear transformation F : S(R) --+ S(R). 

Rotating a tangle: about x-axis y-axis z-axis. 

Since the two basis elements are invariant under each of these three rotations, we conclude 
that: 

Proposition 1 If F : S(R4 ) --+ S(R4 ) is induced by one of the three rotations described 
above, then F is the identity transfo1ination. 

Mutation of a knot or link L consists of locating a room ~ in a diagram for L, so that 
T = L n R4 is an inhabitant of R4 (also called a tangle), and replacing T in the diagram 
by the tangle F(T), to form £'. Land L' are called mutants. 

Example: A well-known pair of mutants are the Kinoshita-Terasaka knot and Conway's 
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11 crossing knot, both of which have Alexander polynomial equal to one: 

The Conway knot The Kinoshita-Terasaka knot 

Their common Jones polynomial is V(t) = t-6-2C5+2C4_2C3+C2+2t-2t2+2t3_t4. 
Because of proposition 1, and the fact that (when orientations are unchanged outside 

the room) the writhe does not change under mutation, we conclude the following. 

Proposition 2 Mutant links have the same Jones polynomial. 

As Conway observed, mutants also have the same Conway, or Alexander, polynomial 
as well. They also have equal HOMFLY and Kauffman polynomials, and the proof is 
essentially the same. 

Alas, this result is useless for our strategy of altering an unknot to get a knot with trivial 
Jones polynomial, because of the following "folk" theorem. 

Proposition 3 Any mutant of an unA,"rwt is itself unknotted. 

One way to see this involves considering the knot K to be in S3, and letting Ml be the 
two-fold branched covering of S3 branched over K. The preimage of a thickened room R4 
enclosing a tangle of K is a solid torus upstairs in MK. Mutation from K to K' can be lifted 
to a surgery on MK, but one can check that the surgery is really a trivial surgery. Therefore, 
MK and Mk are homeomorphic if K and K' are mutants. Proposition 3 follows from this 
observation, together with the fact (the Z/2 Smith conjecture proved by Waldhausen) that 
K is unknotted if and only if MK is S3. 

Questions: What happens to S(R4 ) tmder a reflection in an appropriate plane, instead 
of a rotation? If we performed such an operation ~ a "reflective" mutation ~ would the 
Jones polynomial be invariant? 

One can define a multiplicative structure on S(R2n) by the following operation: 

vw v 
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Clearly the element 1 ~ § is an identity for this prodllCt. 

Then, for any fixed nonzero complex value of A, we have that the complex vector space 
S(R2n) is an algebra, which is called the nth Temperley-Lieb algebra, TCn. It's actually a 
family of algebras depending on the parameter A as well as the positive integer n. This 
version of the Temperley-Lieb algebras is due to Kauffmann (see [K]) and many of their 
fascinating properties are being discussed by H. Morton at this workshop. The multipli
cation in TC I corresponds to connected sum of knots (and multiplication of their bracket 
invariants) and is commutative. You can also easily verify the following. 

Proposition 4 Multiplication in TC2 is also commutative. 

Problem: Show that TCn , n :::: 3 is a non-commutative algebra. 

There are inclusions TCn C TCn +!, by adjoining an extra horizontal strand at (say) the 
top. 

As an algebra, TCn is generated by 1 and the n - 1 elements: 

~p.q 
el =Lge2 = ~ 

They satisfy the relations: 

ei 

Ii - jl > 1 

e =0 
n-l bd 

It can be shown that these relations in fact define TCn abstractly as an algebra (with 
parameter 8 = _A2 - A-2). 

Problem: Verify the following equations in TC2 : 

--9= 
Calculate: 

and 

as sums of products of the generators in TC2 and TC3. 
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Proposition 5 A dense set of elements of TC2 have multiplicative inverses. 

Here, dense refers to the topology as a complex vector space. In fact, a typical element 
W of TC2 can be expressed W = wol + Wlel· If X = xol + Xlel, then we calculate 

We can solve WX = 1 by setting Xo = l/wo and Xl = -wt/wo(wo + 8wt}. To do this, of 
course, one must avoid having Wo = 0 or Wo + 8Wl = 0, but those are just lines in complex 
2-space. 

This proposition really needs the use of coefficients in a field, rather than the ring Z[A±l], 
which has very few invertible elements. We can also see that, assuming Wo I- 0, the 
invertibility of W is assured for all but a finite number of values of the parameter A. Note 
also that if W is represented by an actual tangle, its inverse will probably not be a tangle, 
but rather will be a formal linear combination of tangles. Nevertheless, this algebraic device 
will have strictly geometric consequences, as we shall see later. 

Question: Is Proposition 5 true for Ten, n > 2? 

4 Rotants 

I will now describe another method, a generalized mutation, discovered by R. Anstee, 
J. Przytycki and myself [APR], for constructing pairs of knots with the same Jones polyno
mial. Anstee is a combinatorist who showed us a trick of W. T. Tutte to produce different 
graphs with equal polynomial invariants - the chromatic and Tutte polynomials. We 
adapted Tutte's method as follows. Forgetting the Temperley-Lieb algebra for the mo
ment, picture the room R 2n , n 2: 3 as a regular n-gon with a pair of marked points on each 
edge, so that the figure is symmetric under rotation by 27r/n, as well as the dihedral flip. 
Consider an inhabitant D of this room which is also symmetric under the rotation, but not 
necessarily under the flip. Let E be any inhabitant of the room R~n which is complemen
tary to R2n so that L = DUE is (a diagram of) a link in the plane. Borrowing Tutte's 
terminology, we call D a rotor and E a stator. Let E' denote the result of flipping over the 
stator, by turning it over 180 degrees (in 3-space) about a line of symmetry of R2n. Let 
L' = (L - E) U E' denote the resulting link; we call L' a rotant of L of order n. (Maybe 
"flippant" would be a better term, but that sounds too ... well, flippant.) It is crucial to 
note that the choice of axis for flipping is immaterial, up to ambient isotopy, due to the 
symmetry of the rotor. Also note that we could flip over the rotor instead and the result 
would be ambient isotopic to L'. 
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Example 4.1: 

Rotants of order four 

Proposition 6 If the links Land L' are rot ants of order n, 3 ::; n ::; 5, then they have 
the same bracket invariant. If Land L' are oriented and have the same writhe, then their 
Jones polynomials agree. 

If an orientation of L orients the rotor in a rotationally invariant manner, then writhe 
is preserved automatically under the flip. The proof of the proposition, using skein theory, 
goes as follows. Fix a rotor D, and let G : S(R~n) -> S(plane) denote the linear map defined 
by taking an inhabitant E of R' and forming the inhabitant G(E) = DUE. Similarly define 
H : S(R~n) -> S(plane) by defining H(E) = DUE', where E' is E after a dihedral flip 
as above. We argue that G and H are equal as linear maps, by checking on a basis of 
S(~n)' Indeed, if you examine a basis for S(R~n)' you will see that every basis element 
has a dihedral symmetry, provided n ::; 5. For example, the fourteen basis elements of 
S(~) are of the following six types, together with their rotated versions (the stator ~ is 
turned inside out for easier visualization): 
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Example 4.1, continued The rotants Land L' pictured above, which are each 2-
component links, have Jones polynomial VL(t) = VLI(t) = 

- ,-41/2 + 7,-39/2 _ 26,-37/2 + 68,-35/2 _ 139,-33/2 

+ 237,-31/2 - 348,-29/2 +450,-27/2 _ 518,-25/2 

+ 533,-23/2 - 494,-21/2 + 410,-19/2 _ 302,-17/2 

+ 195,-15/2 - 109,-13/2 + 50,-11/2 _ 19,-9/2 + 5,-7/2 _ ,-5/2. 

However, their Kauffmann polynomials are different, showing that one can not go from L 
to L' by a sequence of mutations in the sense of Conway (section 2). 

Problem: Verify that all 42 basis elements of S(R~o) have an axis of symmetry. Find, 
on the other hand, a generator of S(R~2) which cannot be represented by a tangle with a 
symmetry axis, and so the above argument breaks down. 

It is shown in [APR] that Proposition 6 holds for the HOMFLY polynomial if n :5 4 
and the Kauffmann polynomial for n = 3. The links of Example 4.1, and other examples 
presented in a paper [JR] by G. T. Jin and myself show these bounds on n are the best 
possible. 

Problem: I don't know the answer to this one or the next - they're good questions for 
you graduate students to have a crack at. If Land L' are rot ants of arbitrary order n, then 
do their Alexander polynomials agree? 

Problem: Is a rotant of an unknot necessarily unknotted (at least for n :::; 5)? If so, using 
rotants as a strategy for producing a knot with V(t) = 1 is thwarted. 

Here are examples of 6-rotants, from [JRJ, which have different Jones polynomials, al
though they are tantalizingly close, being: 

I-I - 8 + 421- 168r + 552f - 15551 + 3846~ - 84811' 

+ 1686317 - 30459t8 + 50275t9 - 76164t10 + 106279,11 

-136966112+ 163352t13 - 180517,14+ 184917,15 

- 1 75495tl6 + 1 54062t17 - 124748,18 + 92778t19 

- 63004rO + 38756rl - 21367r2 + 10408r3 - 4392r4 

+ 1561r5 - 448r6 + 97r7 - 14r' + r29 
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,-1 _ 8 + 42, - 168r + 552r - 15551" + 3845,s - 8478f 

+ 16856,' - 30445,8 + 50253,9 - 76134,10 + 106247,11 

-136939,12 + 163337,13 - 180519,14 + 184934,1' 

- 175524,16 + 154095,1' - 124778,18 + 92800,19 

- 63016ro + 38761rl - 21368r2 + 10408r3 - 4392r4 

+ 1561r' - 448r6 + 97r7 - 14r8 + r29 

In a very recent paper [J], Jones described yet another generalization of mutation, and 
showed that this can be used to explain duplications in the Jones polynomial of several 
examples with quite low crossing number. 

Proposition 7 Let V and W be tangles, i.e., inhabitants of the room R4 . Then there 
exists an element X of S(R4), such that the following diagmms are equal, as elements of 
S(Rt;): 

You might want to prove it yourself, at this point, although I'll show shortly that it is a 
special case of a more general result. Now here's the great idea. If we have tangles V and 
W stacked as shown below, and we want to interchange them, we introduce the solution X 
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to the above, together with its inverse X in 7£2, and notice the equalities in S(~): 

--

Now suppose the rest of the diagram is arranged so that X can slide around by an ambient 
isotopy arOlmd to the other side. Then it ends up next to X again and they annihilate, 
again not affecting the skein class. Also note that in its journey, X can pass through other 
V over W configurations, interchanging them as well, and that X can also pass through 
any tangle in its path, as multiplication in 7C2 is commutative. This argument establishes 
the following. 

Proposition 8 (Jones) Consider a link of the form: 

. , , 

where the V, Wand the Ui are arbitrary tangles. Suppose the shaded region is connected to 
itself, as indicate by large arrows, to form a band (which may itself be knotted) and that the 
other loose ends of the picture are connected in 3-space in any manner, provided that they 
do not pass through the band. Then one can interchange all the V tangles with all the W 
tangles, and the resulting link will have the same Jones polynomial as the original link. 

Examples: The following pairs of knots have identical Jones polynomials: 
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The above examples are in Jones' paper [J], along with five pairs of ten crossing knots 
whose duplicate Jones polynomials can be explained by this phenomenon. Notice that 
this type of generalized mutation can change the (minimum) crossing number and turn a 
composite knot into a prime one. 

6 Wheel balancing and symmetries in 7£3 

The ideas in this section are due to Hoste and Przytycki [PI, although I am adopting a 
somewhat different approach than they use. 

We will call an element Z of the skein of the room R algebraically symmetric with respect 
to a geometric motion f of the room, if Z = f(Z) in S(R). 

Proposition 9 (Wheel balancing) Let Y be any inhabitant of the room 14;, then there 
exists T in S(R4) such that the following diagram is algebraically symmetric with respect 
to 180 degree rotation (about the z-axis) of R6 in the plane. 

Corollary 1 For any Y, there exists T such that: 

= 

Proof: Athough the T gets turned over in the rotation, it can right itself by mutation. 

You can see that Proposition 7 follows from 9 in the same way. 
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Let's prove proposition 9 using the Temperley-Lieb algebra. Although one could deal 
entirely in pictures, the algebra assists in calculation. Express an element Z of TC3 in 
terms of the standard basis: 

Since three of the basis elements, 1, el e2, e2el, are each symmetric under rotation, while 
el and e2 get interchanged, we see that Z is algebraically symmetric if and only if ZI = Z2· 

Now write Y = yo1 + Yiel + Y2el + Yl2ele2 + Y2le2el and T = to1 + tIel. If you then 
work out the multiplication table of Z = YT, you see that 

and 

Therefore Z is symmetric iff (Y2 - Ydto = (Yo +OYI +YI2)tI. Clearly, given Y, we always 
have the solution 

and all solutions (to, tl) are scalar multiples of this one. 

Problem: Verify that Proposition 9 also is true for rotation in the y-axis, and that the 
solution T is, in general different than for z-rotation. Show, on the other hand, solutions 
may not exist for x-rotation. Notice that the product of a y-flip and a z-flip is an x-flip. 

The 7r rotation of an inhabitant V about the x- y- or z-coordinate axes induces three 
involutions in the Temperley-Lieb algebras, which we might call the x- y- and z-transpose 
VX, VY, V Z • Each is a linear isomorphism and x-transposition is an algebra automorphism 
as well, whereas y- or z-transposition (as with transpose of matrices) is antimultiplicative. 
In this terminology, we see that any element of TC3 can be y- or z-symmetrized by mul
tiplication (on either side) by a suitable element of TC2 C TC3. Similar results hold more 
generally, which is work still in progress. Notice that all the algebra generators of TCn 

are v-symmetric; in general, the v-transpose of a sum of products of the ei is formed by 
reversing the order of the products. 

Proposition 10 Consider link diagrams as follows, where Y, VI, V2, ... are arbitrary and 
the shading denotes a closed (possibly knotted and twisted) band. The other free ends are 
connected in any manner by curves which are disjoint from the band: 

Type 1: 
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Type 2: 

Then the Jones polynomial of the resulting link is the same as the original if one replaces 
all pictured occurences of Y as follows 

for type 2. 

The proof is to use the Jones trick, introducing cancelling tangles T and T in the band 
and sending the T once around, flipping the Y's as it passes them, and finally annihilating 
with T. The more skeptical among you might have noticed that this doesn't work if T 
happens to be noninvertible: to might be O. But it does work for a dense subset of Y in 
S(Rr,) , and that's enough, by the following reasoning. We are really trying to establish 
that two linear mappings: 

F : S(R6) -t S(plane) 

and 
G : S(R6) -t S(pJane) 

are equal, where G(Y) = F(Yfiipped). But this follows since we have demonstrated they 
agree on a dense set in the domain. Another tritunph of abstract nonsense! 

There are further tricks to be done, such as replacing some of the Y tangles in the original 
link by another y' such that y'T and YT are simultaneously symmetric, illustrating the 
principle: generalized mutants are bountiful! 

I'll close this lecture with a challenge. Get a nice long piece of string, fasten the ends 
together to make an unknot, and then try to lay it down on a table to make a complicated 
diagram of the unknot, of a type described in, say, Proposition 10, and with the further 
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property that when you perform the appropriate generalized mutation, the resulting curve 
is really tied in a knot. It will be the desired knot with V(t) = 1 and will make you famous, 
at least among topologists! 
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ABSTRACT. The purpose of this note is to set up a framework for twisting the classical 
topological invariants via a matrix representation of the fundamental group, and to show 
how it works for two well known invariants - the Alexander polynomial and the Lefschetz 
number. As examples of knots with the same Alexander polynomial but different twisted 
Alexander polynomial have already been given by Lin, we supply some maps with zero 
Lefschetz number but non-zero twisted Lefschetz number. 

O. Introduction. 

The purpose of this note is to set up a framework for twisting the classical topological 
invariants via a matrix representation of the fundamental group, and to show how it works 
for two well known invariants - the Alexander polynomial and the Lefschetz number. 

The Alexander polynomial A(I() for a knot I( in S3 was introduced by Alexander (1928). 
Reidemeister (1934) introduced the Reidemeister torsion invariant for manifolds. Milnor 
[MIl noticed a relation between the Alexander polynomial and a certain Reidemeister tor
sion. A systematic study of this relation is carried out by Turaev [T]. 

The Lefschetz number L(f) for a self-map / of a manifold M was introduced by Lefschetz 
(1923). Weil (1949) (d. [B]) introduced the zeta function ((1) = exp ~n L{J"'W/n and 
proved that ((f) = I1qPq(t)(-I)<+l, where each Pq(s) is a polynomial closely related to the 
characteristic polynomial of the linear transformation f.q : Hq(M, Q) -. Hq(M, Q). Milnor 
[M2] noticed a relation between ((f) and the Reidemeister torsion of the mapping torus Tf 
of f. Generalizing)n this direction, Fried [F] introduced a twisted Lefschetz zeta function. 

Turaev and Fried define their invariants via abelian coverings, because the determinant 
is not well defined for square matrices in a non-abelian group ring. 

Some attempts have been made to obtain stronger invariants by considering non-abelian 
coverings. In an unpublished note [J3] of 1987, for a selfmap / : "vI -. M the first au
thor defined the twisted Lefschetz zeta function (p(f) associated with a representation 
p : 7rl{Tf) - GL,( R) where Tf is the mapping torus of / and R is a commutative ring. In 
a preprint [L] of 1990, for a knot l\" in S3 Lin defined the twisted Alexander polynomial 
A( 1(, p) associated with a representation p : 7rt (S3 \ K) -. GL,( R). Two examples of knots 
in S3 were given with the same classical Alexander polynomial but different twisted Alexan
der polynomials. Lin's definition of A(I(,p) was based on the special fact that there is a 
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Seifert surface cutting the knot complement into a handlebody, so Lin asked the question 
of how to generalize his definition to links in S3 or to knots in homology spheres. We shall 
see his invariant fits into our framework. 

The content of the paper is as below. In Section 1 we define the elementary factors 
associated with a representation. In Section 2 we define the Alexander invariant. In Section 
3, we define the twisted Alexander polynomial for aspherical 3-manifolds which are closed 
or with boundary a union of tori. We show that in the case of knot complement in S3, 
Lin's twisted Alexander polynomial coincides with that of ours. In Section 4, which is 
developed from a part of [J3], we study the twisted Lefschetz number L Af) and Lefschetz 
zeta function (Af). In Section 5, we give examples of maps with L(f) = 0 but Lp(f) f- 0 
for some simple representation p. 

The early version of this paper was prepared in the spring of 1991 in Beijing. It is revised 
and improved under the push of The Conference "Topic in knot theory", 1-12, Sep. 1992, 
in Erzrum and its Proceedings. We would like to thank the organizers of the Conference. 

Both authors are partially supported by NSFC of China. The second author is also 
partially supported by Alexander von Humboldt Foundation. He would like to thank Prof. 
G. Burde and Prof. H. Zieschang for hospitality. 

Section 1. Algebra. 

In this section we discuss modules over a ring (associative but not necessarily commu
tative) with unity. The facts will be stated without proof. A good reference is §III.3 of 
[Z]. 

Let A be an associative ring with unity. Let 

(1.1) 

be a finite presentation of a left A-module ,4, where rj = 2:7=1 bjj9j, bjj E A. Two types 
of elementary transformations of presentations are defined: 

(Td Add a relation rm+1 which is a consequence of TI,'" , rm. 
(T2 ) Add a generator 9n+l together with a relation 9n+l - W(91, ... ,9n) = 0 which defines 

9n+ 1 as a A-linear combination of the old generators. 

The following is the analogue of the Tietze Theorem in group theory. 

Proposition 1.1. Any two finite presentations of a given A-module A are convertible into 
each other via a fillite sequence ofTI , T2 and their inverses. 

Let A1mxn(A) denote the set of m by n matrices in A. We define the matrix B = 
(b;j)mxn E }v1mxn(A) to be the presentation matrix for A corresponding to the above 
presentation. 

We define three elementary operations on a matrix B: 
(1) Add a new row which is a A-linear combination of rows of B. 
(2) Replace B with the matrix 

(3) Interchange two rows or two columns. 
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The operations (1) and (2) correspond to the transformations Tl and T2 respectively. The 
operation (3) is introduced for changing the ordering of the generators and relations. 

We say that two matrices Band B' in A are equivalent, written B '" B', if B can be 
transformed to B' via a finite number of operations (1), (2), (3) and their inverses. By 
Theorem 15 on p.119 of [Z] we know 

Proposition 1.2. Two matrices in A present isomorphic A-modules if and only if they are 
equivalent. 

Let R be a commutative ring with unity. Suppose p : A -+ M/xl(R) is a representation 
(i.e. a ring homomorphism). Then it gives a natural map 

(1.2) 

In words, p converts matrices in A into block matrices in R. This map preserves matrix 
multiplication. 

For a square matrix B in A, we define its p-determinant to be det BP. It is evident that 
det( BC)P = (det BP)( det CPl. 

Suppose B E Mmxn(A) and k is an integer. We define the k-th elementary ideal EnB) 
of B associated with p as follows. 

If 0 < n - k :::; m, then Ef(B) is the ideal in R generated by the p-determinants of all 
n - k by n - k submatrices of B. 

If n - k > m then E:( B) = o. 
If n - k :::; 0 then E:(B) = R. 

Proposition 1.3. Two equivalent matrices have the same sequence of elementary ideals. 
Hence the elementary ideals Ef( B) associated to the representation p are invariants of the 
A-module A, independent of its presentation matrix B. 

The proof is similar to that of Theorem 16 on p.120 of [Z]. 
When R is a unique factorization domain, we define the elementary factor A:(B) to be 

the greatest common divisor of the elements of Ef(B). It is well defined up to multiplication 
by a unit in R. Therefore, any equality involving AZ<B) should be understood up to 
multiplication by a unit in R. 

2. Alexander in.variant. 

Let X be a connected finite CW-complex and v be the base point of X. For any regular 
covering p: i, ii -+ X, v, let 'D = 11'1 (X, v)/p.1I'1(i, ii) be the deck transformation group of 
the covering, acting on i from the left. 

For a subcomplex Y of X, we shall call the left Z'D-module H.(i,p-l(y» to be the 
Alexander invariant of the pair (X, Y) associated with the covering p. We are only con
cerned with the simplest cases when Y is either empty or consists of the single base point 
v. H;(i) (respectively H;(i,p-l(V»)) will be called the i-th Alexander module (resp. the 
i-th reduced Alexander module) of X associated with the covering p. 
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Proposition 2.1. For any regular covering p : X -+ X we have 

(1) Hi(X) = Hi(X,p-l(V)) for i > 1. If X is aspherical and p is the universal covering, 
then H.(X) = Ho(X) = Z, and H.(X,p-l(v)) = H1(X,p-l(V)). 

(2) There is an exact sequence of Z'D·modules 

where Z is regarded as a trivial Z'D-module. If p is the universal covering, then 
HI(X,p-l(V)) is the kernel of the projection Z'D ....... Z which is determined by the 
group'D = 1!'1(X), 

Proof. Use the homology exact sequence of the pair (X,p-l(v)). 0 

Example 2.2. Suppose X is the complement of a knot II.' in S3. 
(1) If p: X ....... X is the trivial covering, then Hi(X~) is Z for i = 0,1, and is 0 for i > 1. 
(2) If p:.~ -+ X is the infinite cyclic covering, then H1(}:) is the Alexander invariant in 

the sense of [RoJ and [TJ. It is one of the most important invariants of classical knot theory. 

(3) If p : .IX' ....... X is the universal covering, then X is contractible, so Hi(X) = 0 for 
i > O. 

Suppose X is a connected finite CW-complex with base point v, and we have a presen
tation 

(2.1) 

where each ri is a word in gt',· .. ,g;l. Let p : .It -+ X be a regular covering, J( be 

the normal subgroup P.1!'I(-~) in G. Let 1> : G ....... 1) = GIK be the projection onto the 
deck transformation group. We shall calculate a presentation matrix for the Z'D-module 
H1(X,p-l(v)). 

Construct a finite CW -complex X I with a single O-cell v', the I-cells labelled g},' .. ,gn, 
the 2-cells el,'" ,em such that ae. = ri, and no other cells. It is clear that 1!'1 (X', v') = 
G, and there is a map h : X', v' ....... X, v such that h. : 1!',(X /, v') ....... 1!'1(X, v) is the 
identity automorphism of G. Let p' : .yl ....... X' be the corresponding regular covering with 
P~1!'l(.~/) = K. Then X' has the same deck transformation group 'D. The map h lifts 
to a'D-equivariant map it : .Y/,pl-l(V') ....... X,p-l(v). We get a commutative diagram of 
Z'D-module homomorphisms. 

II 
Z'D ----+ Z 

Since it induces an isomorphism 1!'l(X') -+ 1!'1('\\ it also induces an isomorphism Hl(X') ....... 
HI(X), It then follows from the .5-Lemma that H,(_Y/,pl-l(vl)) and H1(X,p-l(V)) are 
isomorphic. 
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To find a presentation matrix for the Z'D-module H1(X',p'-1(V», we examine the cel

lular structure of X'. 
Pick a base point ii' E p,-l(v'). Then for every path W in X' starting from v' there is 

a unique lift w in X' starting from i/o For each ri, there is a unique lift fj of ej such that 
aej = rj. As free Z'D-modules, we have 

CI (X',p'-l(V'» = (gl,··· ,Yn), 

C2(X',p,-I(V'» = (fl,··· , em). 

Since every element of CI(X',p,-I(V'» i& a (relative) cycle, we have 

(2.2) 

where the right hand side is the Z'D-module with generators {YI,··· , gn} and relators 
{fl,··· ,fm }. 

Suppose WI, W2 are loops in X' at v'. Then the lift of the product loop WI W2, regarded 
as a I-chain in X', is ~ = WI + wtw2, where wt is the element of'D represented by 
the loop WI. This leads to the observation that we can express rj in terms of the Fox free 
calculus 

(2.3) i = 1,··· ,m. 

For details, see Chapter 9 of [BZJ. For simplicity, the ¢> in (2.3) will often be omitted in the 
notation. 

Thus, from (2.3) we see 

Theorem 2.3. The Z'D-module HI(.X,p-I(V» is completely determined by the group 
11"1 (X) and the projection ¢> : 1I"d X) -> 'D. The Fox calculus Jacobian 

(2.4) J = (aT.) 
fJg j mXn 

(or more preciseJy ]'1» is a presentation matrix for it. 0 

The notion of mapping torus will play an important role in this paper. Let f : X -> X 
be a map. The mapping torus Tj of f is the quotient space of X X [0, lJ with (x,l) identified 
to (f(x),O) for every x EX. If f:::: g: X -+ X are homotopic, their mapping tori T j and 
Tg have the same homotopy type. 

Now suppose X is a connected finite CW-complex with a single O-cell v. Suppose f : 
X -> X is a cellular map inducing a homomorphism 1. : G -> G. Suppose G:= 1I"1(X, v) is 
presented as (2.1). Regard X as X x {OJ imbedded in Tj , and take v E X also as the base 
point in T j . The loop formed by v x I represents an element z in r:= 1I"1(T"v). By the 
van Kampen Theorem, r is obtained from G by adding the new generator z and adding 
the relations z-I gz = 1.(g) for all 9 E G. Thus 
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Let p : T, -+ T, be a regular covering. Apply Theorem 2.3 and note that 

we get a presentation matrix for the module H1(T"p-I(V»: 

(2.6) ( (I - zD)nxn (g; - l)nxI) 

Jmxn OmxI (m+n)x(n+1) 

where J is the matrix of (2.4), I is the identity matrix, and D is the Fox Jacobian of the 
homomorphism f* 

(2.7) D = (Of*(g;») 
ogj nXn 

Example 2.4. Suppose X is a bouquet of n circles. Then 

Hence a presentation matrix for HI(T"p-l(v» is 

(2.8) ((1 - zD)nxn, (a; - l)nxI). 

Example 2.5. Suppose X is an orientable closed surface of genus g. Then 

(2.9) (
(1 - ZDhgX2g (a; - IhxI) 
(k.) OIXI' oa J Ix2g 

3. Alexander polynomial twisted. 

3.1. Twisted Alexander Polynomial of 3-manifolds. 
Let X be a connected finite CW-complex and v be its base point. Let G := 1r1(X, v). 

Suppose F is a field and PI : G -+ GL1lF) is a matrix representation. Suppose H is a free 
commutative group with a given basis {II,'" ,i,a} and P2 : G -+ H is a homomorphism. 
Then the homomorphism P := (Pl>P2) : G -+ GL1(F) x H induces a representation P : 
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ZG -. Z[GL/(F) x H] = M/x/(FJI). It is well known that the group algebra FH, i.e. the 
algebra of Laurent polynomials F[ttl, ... , tf], is a unique factorization domain. 

Suppose given a presentation 

(3.1) 

According to Theorem 2.3, the Jacobian 

(3.2) B= -' (or) 
agj mXn 

is a presentation matrix of the ZG-module H1(.,Y,p-l(v)), where p: "t,ii -> X,v is the 

universal covering. We can study the elementary factors A~(HI(X,p-l(v))). 
Now we assume that X is a compact 3'-manifold M. The fundamental group of a closed 

3-manifold M always admits a presentation of deficiency 0, i.e., with n generators and n 
relators (pick a Heegaard splitting, then the n generators of one handlebody will serve as 
the n generators and the n meridian disc of another handlebody will serve as n relators). 
For a compact 3-manifold M with oM a non-empty ullion of tori, the fundamental group 
admits a presentation of deficiency 1, i.e., with n generators and n - 1 relators (collapse M 
onto a CW 2-complex with one O-cell, since X(M) = 0, if this 2-complex has n 1-cells, it 
must have n - 1 2-cells). Actually it turns out that when the 3-manifold X is aspherical, 
the deficiencies of the above presentations are the deficiencies of the groups; for details, see 
Chapter V of [Ja]. Many well-known presentations, say, the Wirtinger presentations for the 
fundamental group of the complement of a link in 53, the HNN extension presentation of 
the fundamental group of a surface (closed or not) bundle over the circle, satisfy the above 
requirement on deficiency. 

We now define the twisted Alexander polynomial AP(An for these 3-manifolds M. 
(1) Suppose 8M is a non-empty union of tori. For any presentation of G with deficiency 

1, let B = (bI,'" , bn ), bJ being the j-th column of B. Let B j be the square submatrix 
obtained by deleting b j from B. Define 

(3.3) :F(.H) = A~(B) = gcd{detBj 11::; j::; n}. 

By tradition, when M is the complement of a knot 1\ in 53, AP( M) is also denoted by 
AP(K). 

There is a relation between the determinants det BJ in (3.3). 
By the fundamental formula of Fox calculus, we have 

n ar-
(3.4) L -' (1- IJJ) = 1- ri = 0 for every i. 

j=1 ogj 

Let IJ(a) be the matrix obtained from the identity matrix by changing the j-th diagonal 
entry to a. Let 1 ::; j < k ::; n. Then we have 

k-l ~ 
BjI (I-IJd=(···,bj,···,b k(I-IJd,···) 

= ( ... ,hj , .•. '-l)i(l- gi)"") 

--v ( ••• ,b j ,· -. ,-b)(1- gj),"') 

'"V (- •• ,bJ (1 - gj), ... ,bk , ..• ) 

= Bkli(1- gj), 
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where", is the equivalence relation of §1. Note that the operation of adding a right A
multiple of a column to another column is the composition of a sequence of elementary 

operations. 
We arrive at a formula very useful in computing Ai(B). 

Proposition 3.1. For 1 ~ j < k ~ n, we ha~'e 

det Bj det(l - gk)P = ± det B~ det(l - gj)p. 0 

(2) Suppose M is closed. For any presentation of G with deficiency 0, B is a square 
matrix. 

We define 

(3.5) 

if det(l - gi)P = 0 for all i = 1"" , n; and define 

(3.5') 

otherwise. 
For example, if P trivial, then BP is a presentation matrix of Z-module HI (lvf, v) by 

Theorem 2.3. By Proposition 2.2 (2), we have HI(M) = HI(M,v). Then we know that 
det BP ::f 0 if and only if HI(M) is finite, and det BP is the order of HI(M). That is the 
reason for the definition (3.5). 

The reason for (3.5') is the following fact 

Proposition 3.2. Suppose G:= (gl,'" ,gn I TI,'" ,Tn), with deficiency 0, and B is the 
Fox Jacobian matrix of the presentation. Then det BP = 0 unless all det(l - 9i)P = O. 

Proof. Let G:= G * Z = (91,'" ,gn,g'l TI,'" ,Tn), with deficiency 1. Now any represen
tation p : G ~ G Lt( F) can be extended to p : G - G Ld F) by an arbitrary assignment of 
p(g'). 

Then the Fox Jacobian of (; is 
fl=(B 0) 

where B is the square Jacobian matrix =..La or . Now apply Proposition 3.1 to fl. We get g, 

det fl~+l = det BP and det flf = 0 for all 1 ~ i ::; n. So Proposition 3.1 tells us that 
det BP. det(l - gf) = 0 for all 1 ::; i ::; n. Thus, det BP = 0 unless all det(1 - an = O. 0 

Definition (3 .. 5') generalizes the Alexander polynomial c.( M) of a compact 3-manifold 
1'vf defined by Turaev in [TJ, pp.126-127. c.p1) is defined there to he the order of the 
Z'D-module HI(.~i), where p : ij - Al is the maximum free abelian cover and 'D is the 
free part of HI (lvJ). Turaev pointed out on p.127 that his c.(M) is the first Alexander 
polynomial of lrlP1) in the sense of Fox. In our language, this means c.(JI) = Ai(B), 
where B is the Fox Jacobian matrix of a presentation of lrl(i'.1), PI is trivial, j3 =31(JI) 
and P2 is the projection 1l'1( ;\-1) - HI (JI)/torsion. Thus ~(M) = AP(}!) according to 
(3.5'). 
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3.2. On the Twisted Alexander Polynomial of Lin. 
Let us roughly describe Lin's presentation of the knot group and the definition of his 

twisted Alexander polynomial A( J(, pl. 
Suppose ]( is a knot in S3. Then there is a so-called regular Seifert surface S of ]( such 

that the resulting 3-manifold by cutting X := S3 \ K along S is a 2g-handlebody V, here 
9 is the genus of S. Pick a certain wedge at the base point v of 2g circles al,' .. , a29 such 
that 1I"1(S) = (al,'" ,a29)' Let z be the meridian of K. Let 1I"1(V) = (Xl,'" ,X29)' Let 
01, ... , 029 and /31, ... , /329 be copies of aI, ... , a29 in V on the positive side and negative 
side of S respectively. Then a presentation of the knot group G = 11"1 (X) is 

(3.6) G = (Xl, .•. ,X2g,Z I ZOiZ-1 = /3i, for i = 1"" ,2g). 

For each representation PI : G --> GL/(C), Lin defines the qt, t- 1 J-module presented by 
the matrix 

(3.7) 

to be the twisted Alexander module and det B' to be the twisted Alexander polynomial of 
Ii." associated to Pl. 

Now we are going to verify that our AP(K) and Lin's A(K,p) are essentially the same. 
Take F = C. Take H = Hl(X), the infinite cyclic group (t) where t is represented by the 

meridian z. The Xi'S are all null homologous in X because they do not intersect the Seifert 
surface S. Take P2 : G --> H to be the abelianization, then P2(Z) = t and P2(Xi) = 1 for 
all 1 ~ i ~ 2g. Hence det(1 - z)P = det(1 - tz P') is a polynomial in t of degree I, whereas 
det(1 - xd P = det(1 - xf') is in C. It is easy to verify from the presentation (3.6) that 

(3.8) B p - ( aO i _ a/3i) I' - BI 
29+ 1 - Za a -. 

Xj Xj 

The formula of Proposition 3.1 gives det Bf9+1 det(1 - Xi)p = det B; det(1 - z)P, or 
A(K,p) det(l - xf') = det Bf det(1 - tz p ,) for every 1 ~ i ~ n. Thus. 

Proposition 3.3. Suppose K is a knot in S3. Then A( K, p) is divisible by det(1 - tz p ,) 

and 

(3.9) Ap(K) = Ap(B) = A(K,p) 
1 det(1 - tzP, ) , 

except in the degenerate case where alJ det(1- xf') = 0 and Ap( K) = Ai( B) = A( K, p). 0 

In any case, the invariant 041'(/\') is as powerful as A(K,p). 
Lin [L] has displayed a knot I\' which has the same classical Alexander polynomial as the 

trefoil knot, but can be distinguished from the latter by the twisted Alexander polynomial 
associated with met abelian representations of 7rt{ S3 \ K) into SU (2). 

Remark. If PI is trivial, then all det( 1 - xf') = 0, and both invariants coincide with the 
classical Alexander polynomial. 
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.'1.3. AJore Examples. 

Example 3.4. Let /( be the trefoil knot. A presentation of G:= 11'1(53 \ K) is 

(3.10) 

Then 

G = (x, z I zxz- I = xz- I x-I z). 

(3.11) (~;, ~:) = (z - 1 + XZ-Ix- I , 1- zxz- I + xz- I - xz-Ix- I ). 

Take F = C. Take H = HI(5 3 \ /(), the infinite cyclic group (t) where t is represented 
by the meridian z. Let P2(Z) = t and P2(X) = 1. 

Let PI : G -> SL2(C) be a representation that sends the meridian z to a hyperbolic 
element of SL2(C). Then up to conjugacy we may assume 

(3.12) PI(X) = (~ ~) wheread-bc= 1. 

Substituting (3.12) into the relation in (3.10) to solve a, b, c, d in terms of A, we find 

Hence 

(3.13) 
if A 2 + A - 2 f. 1, 

if A2 +A-2 = 1. 

Thus AP(K) is a family of polynomials parametrized by A E C \ {O}. 

Example 3.5. Suppose 5 is a compact surface with boundary and M is a surface 5 bundle 
over the circle with gluing map f. Then M is the mapping torus of the map f : 5 --> 5. 

(3.14) 

Now 

(3.15) B - (b. - zof.(a,) a· - 1) 
- 1) oaj' 1 . 

Pick P = (PI,P2) : G -> GLI(F) x (t) such that P2(Z) = t and all P2(ai) = 1. 
So all det(1 - ai)P E F and Bn+l = 1 - zD, where 

D = (Ofo(ad ) 
oaj nXn 

and B~+l = 1- t(::D)Pl. 
If some det( 1 - a~' ) f. 0, then 

(3.16) AP(M) = AP(B) = det (1- t(::D)Pl). 
1 det(l - tzP1) 

If all det( 1 - a~') = 0, then 

(3.17) .,F(M) = Ai(B) = det(l- t(ZD)P'). 
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Example 3.6. Suppose S is an orient able closed surface as in Example 2.5, M is an 
S-bundle over the circle with gluing map f. Then similarly we have 

(3.18) ( 1- zD aj - 1) 
B = .2!:.... 0 . 

8aj 

Pick P = (PbP2) : Jrl(M) -+ GL,(F) x (t) such that P2(Z) = t and all P2(ai) = 1. Since 
det(I - zD)P is a non-zero polynomial of t, so AP(M) = A~(B) 1 O. If further Pt is the 
trivial representation, the last row of BP becomes 0, and DP' becomes the integer matrix 
Ft of the homomorphism f.: Hl(M) -+ Ht(lv.f). Hence 

(3.19) AP(M) = Ai(B) = det"(1- t(zD)P') = det(l - tFd)· 

Example 3.7. Suppose M is the real projective 3-space. Then 

and 
D=(l+a). 

Let P be the trivial represen tation. Then det D P = 2 which is the order of HI (M). 

4. Lefschetz number and Lefschetz zeta function twisted. 

4.1. Nielsen Fixed Point Theory via the Mapping TOT'US Approach. 
Let X be a compact connected polyhedron, f : X -+ X be a map. The fixed point set 

Fix f := {x E X I x = f( x)} splits into a disjoint union of fixed point classes. Two fixed 
points are in the same class if and only if they can be joined by a path which is homotopic 
(relative to end-points) to its own I-image. Each fixed point class ~ is an isolated subset 
of Fix f hence its index ind():, f) E Z is defined. The number of fixed point classes with 
non-zero index is called the Nielsen number N (J) of f. It is a homotopy invariant of f, so 
that every map homotopic to I must have at least N(J) fixed points. (Cf. p.19 of [Jl].) 

Equivalently, we can work on the mapping torus. 
Here we describe the mapping torus T j of I : X ~ .x as the space obtained from X x R+ 

by identifying (x, S + 1) with (J( x), s) for all x EX, s E R+. where R+ stands for the real 
interval [0, (Xl). On T j there is a natural semi-flow ("sliding along the rays") 

IPt{x,s) = (x,s + t) for all t ~ O. 

A point x E X and a positive number T > 0 determine an orbit curve IP(x, T) := {IPt( x) }o~t~ T 

in Tj. We may identify X with the cross-section X x 0 C Tf, then the map I : X -+ X is 
just the return map of the semi-flow '.p. 

A point x E X is a fixed point of f if and only if the time-one orbit curve 'P(x,I) is a 
closed curve. It turns out that x, y E Fix f are in the same fixed point class if and only if 
the closed curves IP(x,l) and IP(y,!) are homotopic in T j (see [J2]). 
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Now from this point of view the notion of fixed point class naturally generalizes to the 
notion of periodic orbit class. 

Let PP 1:= {(x, n) E X x N I x = r(x)} be the periodic point set of I, where N denotes 
the set of natural numbers. Suppose x E X and n E N. Then (x, n) E PP I, or equivalently 
x E Fix r, if and only if 'P(x,n) is a closed curve in Tf . We define x, y E Fix r to be in 
the same periodic orbit class 01 order n if and only if 'P(x,n) and 'P(y,n) are in the same free 
homotopy class of closed curves in Tf . (The term "free homotopy" means homotopy with 
no concern about base point). Thus a periodic orbit class of order 1 is nothing but a fixed 
point class. 

Let o(n) be a periodic orbit class of order n. It is easily seen that o(n) is an isolated 
subset of Fix r. So the fixed point index ind( o(n), r) is well defined. 

Remark. If x E o(n), then the whole f-orbit {x, I( x), ... ,r-t (x)} C o( n). Thus o(n) is a 
union of I-orbits, hence the name "periodic orbit class". 

Since for all x E o(n) the closed curves 'P(x,n) are freely homotopic in Tf , they represent a 
well defined conjugacy class ['P(x,n)] in the fundamental group r := 1f} (Tf ). This conjugacy 
class will be called the coordinate of o(n) in r, written 

where f c denotes the set of conjugacy classes in f. 
Let Zf c denote the free abelian group with basis f c' For each natural number n, we 

define the Lelschetz number 01 order n as 

(4.1 ) L~n)(f) := L ind(o(n), r)· cdr(o(n») E Zfc 
0(" ) 

the summation being over all n-th order periodic orbit classes o(n) of f. When every fixed 
point of r is isolated, we also have 

(4.1 ') L~n)(f) = L ind(x, r)· ['P(x,n)] E Zfc. 
(x,n)EPP f 

We shall write Lr(f) for LV)(f). 
SO far L~n)(f) is defined as a formal sum organizing the index and coordinate information 

of the periodic orbit classes. Its importance lies with its computability. 

4-2. The Trace Formula for the Lefschet: .Vumbers. 
Pick a base point v E X and a path w from v to f( v). Let G 

Ia : G -+ G be the composition 
1ft(X, v) and let 

Let p : X, v -+ X, v be the universal covering. The deck transformation group is identified 
with G. Let j : l -+ ~y be the lift of I such that the reference path w lifts to a path from 
v to j(v). Then for every 9 E G we have jog = Ia(g) 0 j (cf. pp.24-25 of [JI]). 
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Pick a cellular decomposition {en of x, the base point v being a O-cell. It lifts to a 

G-invariant cellular structure on the universal covering .¥. Choose an arbitrary lift i1 for 

each e1. They constitute a free ZG-basis for the cellular chain complex of X. Without loss 

we assume I to be a cellular map. In every dimension d, the cellular chain map j gives 
rise to a ZG-matrix Fd with respect to the above basis, i.e. Fd = (aij) if j( it) = Li aiji1, 
aij E ZG. 

For the mapping torus, take the base point v of X as the base point of T, (recall that 
X is regarded as imbedded in TI ). Let f = 1rl(TI, v). By the van Kampen Theorem, r 
is obtained from G by adding a new generator z represented by the loop 'P(v,1)W- 1 , and 
adding the relations z-lgz = I:;(g) for aI) 9 E G: 

( 4.2) r = (G,z I z-lgz = IG(g) for all 9 E G}. 

Note that the homomorphism G ----. r induced by the inclusion X C TI is not necessarily 
injective. 

In this notation, we can adapt the Reidemeister trace formula ([RJ, [We], see §l of [I1J] 
for an exposition) to our mapping torus setting, and get a simple trace formula 

( 4.3) Lr(J) = 2)-1)d [tr(zFd)] E zrc, 

d 

where ZFd is regarded as a matrix in zr. Similarly, for higher order Lefschetz numbers we 
have 

( 4.4) L~n)(J) = 2:(-l)d [tr(zFdt] E zrc. 
d 

4.3. Twisted Lefschetz numbers and Lefschetz zeta function. 
Suppose a group representation p : r - GL/(F) is given, where F is a field of charac

teristic O. Then p extends to an algebra representation p: Qf ---+ A1/x/(F). 
Define the twisted Lefschetz numbers 

(4.5) L~n)(J):=tr(L~n)(f)f = 2:ind(o(n),r)·tr(cdr(o(n))f EF 
0(" ) 

for all n E N, the summation being over all periodic orbit classes o(n) of order n. When 
every fixed point of In is isolated, we have 

( 4.5') L~n)(f)= L ind(x.r)·tr('PrX,n)) EF. 
(x,n)EPP I 

It has the trace formula 

L~n)(J) = 2:(-ljdtr ((zFd )nr 
j 

( 4.6) =2:(-l)dtr ((.ddvf EF. 
d 
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We now define the formal power series 

( 4.7) 

It has constant term 1, so it is in the multiplicative subgroup 1 + tF[[t]) of the formal power 
series ring F[[t)). 

It follows from (4.6) that 

Theorem 4.1. (p(f) is a rational function in F. 

• n tn 
(p(f) = exp L)-l)dL: tr((zFdY) -; 

d n 

( 4.8) 
( _!)d+l 

= n det (1 - t(zFdY) E F(t), 
d 

where 1 stands for suitable identity matrices. 0 

The following invariance can be proved in a similar way as the basic homotopy invariance 
(d. Theorem 1.4.5 of [Jl)) of Nielsen fixed point theory. 

Theorem 4.2 (Homotopy invariance). Suppose f ~ l' : X - X via a homotopy 
UdO$t:5;I' The homotopy gives rise to a homotopy equivalence T j , v ~ Tj', v in a standard 
way. If we identify f' = 11"1 (Tj', v) with f = 11"1 (Tj, v) via this homotopy equivalence, then 
L}n)(f') = L~n)(f), L~n)(f') = L~n)(f) and (p(f') = (p(f). 0 

By (4.5') and the homotopy invariance, we have 

Theorem 4.3 (Twisted version of the Lefschetz fixed point theorem). If a map 
f : X ---> X is homotopic to a fixed point free map 9 : X ---+ X, then for any representation 
p : 1rl(Tj) ---> GL,(F) we have Lp(f) = O. 

If f : X ---> X is homotopic to a periodic point free map 9 : X ---> X, then for any 
representation p : 71"1 (Tf ) ---+ G L ,( F) we have (p(f) = l. 0 

Corollary 4.4. For a map f : X ~ X, if Lp(f) -{ 0 for some representation p : 7I"1(Tj ) ---> 

GL,(F), then the Nielsen number N(t) > O. 0 

Remark. When F = Q and p : r - GLt(Q) = Q is trivial (sending everything to 1), 
then Lp( t) E Z is .the ordinary Lefschetz number, and (p(f) is the classical Lefschetz zeta 
function defined by Weil. 

Example 4.5. Let 5 be a surface with boundary, and f : 5 -; 5 be a map. Suppose 
{al,' .. ,an} is a free basis for G = 11"1 (5). Then f has the homotopy type of a self-map of 
a bouquet of n circles which can be decomposed into one O-cell and n I-cells corresponding 
to the ai's. As pointed out in [FH] , 

Fo = (1), 

FI := D = (ofG(ad ) . 
aaj 
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Then 

( 4.9) Lr(f) = [z]- t [ZOfG(a i )] E Zre , 

i=1 oa, 

(4.10) Lp(f) = tr(zP) - t tr (z Of&~~i)) P 

(4.11) ( (f) = det(l - t(zD)P) E F[[t]]. 
P det(l - tzp) 

When f is a homeomorphism, its mapping torus Tf is the S-bundle over SI with gluing 
map f. If some det(l- ai)P ::f 0, then by (3.16), 

( 4.12) 

That is, the twisted Lefschetz zeta function of f coincides with the twisted Alexander 
polynomial of T f. 

Section 5. Examples with L(f) = 0 but Lp(f) ::f O. 

Example 5.1. Let X be a bouquet of two oriented circles a and b, and 1 : X ~ X be a 
map such that 

1.(a) = a-I, 

Then L(f) = 1 - (-1 + 2) = O. Now we have 

and the Fox Jacobian matrix 

D = 0 
( 

-a-I 

I + a + ... + a- m - J 

Let p : 7f'J (Tf ) --' U( 1) be the I-dimensional unitary representation determined by 

aP = -1, 

By (4.10) we have' 

Lp(f) = zP - (_.:a- l + za2m (1 + blY = 1 - (1 + 2) = -2. 

It follows that N(f) > O. When m = 0, this is the example discussed in §II.B and §VII.E 
of [Br], where N(f) > 0 is proved by combinatorial arguments. 

Finally, for the classical and the p-twisted Lefschetz zeta functions. we have 

'(1) = (1 + 1)(1 - 2t) 
~ 1 - t ' 
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Example 5.2. Let X be the closed orientable surface of genus two. Then 

Let f : X -> X be an orientation preserving homeomorphism such that 

It is easy to see that L(I) = O. McCord first showed N(I) > 0 by proving that the mod 
H Nielsen number N(I, H) > 0 for a certain normal subgroup H C 1I"1(X) [Me]. It was 
reproved in [FH] using a different approach. They first calculated the Reidemeister trace, 
then claimed that there are different Reidemeister classes in the trace. Usually it is very 
difficult to distinguish Reidemeister classes. The fact N (f) > 0 can be shown easily by our 
approach. 

As calculated in p.66 of [FHJ, we have 

and 
Fo = F2 = (1). 

Now 

Let the representation p : 11"1 (Tf ) ~ U( 1) be chosen so that 

ai = -1, a~ = a~ = a~ = zP = 1. 

Then 
Lp(f) = zP - (-za11 + 3zY + zP = 1 - 4 + 1 = -2. 

So Lp(f) f: 0, and it follows that N(f) > o. 
For the zeta fUDctions, it is ea.sy to see 

Added to the paper. Just before the deadline for submitting the paper, we received M. 
Wada's paper "Twisted Alexander polynomial for finitely presentable groups" which con
tains an example of two knots with respect to same HOMFLY polynomial but different 
twisted Alexander polynomails with representations into S L2(Z7). 
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On the Alexander and Jones Polynomial 

Heiner Zieschang (Ruhr. Universitat Bochum) 

The most used knot invariant is the Alexander polynomial because it is easily calculated 
and has a straight forward theory. However it is by far not strong enough to classify knots. 

Recently a new strong polynomial invariant has been introduced by Jones which has been 
in the centre of interest since 1985. We will introduce the Alexander polynomial in a form 
which shows directly that it is an invariant of the knot while the definition of the Jones 
polynomial seems to depend on the special presentation of the knot and we have to show 

its invariance. 

1. The Infinite Cyclic Covering and the Alexander Module of a Knot 

Let f C sn be a knot, let C = S3 - N(f) denote the knot complement of f, and 0 = 11"} C 
the knot group. The abelianization. of 0 is an infinite cyclic group 3 and the kernel of the 
projection is the commutator subgroup 0'. Let poo : Coo -+ C be the covering adjoint to 
0', that is p#( 11"} Coo) = 0' <l0 and the quotient group 3 = 0/0' ~ Z operates on Coo 
as the group of covering transformations. Therefore the covering Poo : Coo -+ C is called 
the infinite cyclic covering of the complement of f. We will now determine the homology 
of Coo which is obviously an invariant of the knot. The infinite cyclic covering can be 
obtained as follows: we "cut C along some Seifert surface S" and obtain a space C· with 
two copies of S (an upper and lower side) in its boundary. Take for every integer n a copy 

C~ of this space and glue the upper side of C~ along the lower side of C~+l' We describe 
first the homology of C·. 

Since a Seifert surface S of genus h has one boundary curve it can isotopically be deformed 

to the regular neighbourhood of canonical system of curves (at, a2, .. . , a2h-l, a2h) that is 
into a disk with 2h bands, compare Fig. 1.1 (a). These bands may have drills, but one 

M.E. Bozhiiyiik (ed.), Topics in Knot Theory, 229-257. 
© 1993 Kluwer Academic Publishers. 
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can get rid of them as is shown in Fig. 1.2 and one obtains a form as in Fig. 1.1 (b). 

Fig. 1.1 (a) Fig. 1.1 (b) 

~ ( II I 
Fig. 1.2 

1.1 Proposition (band projection of a knot). Every knot f can be repre"ented as the 
boundary of an orientable "urface S embedded in 3·"pace with the following propertie,,: 

(a) S = D2 UBI U ... U B2k where D2 and each Bj i" a disk. 

(b) B j n Bj = 00 for i #- j, aBj = ajvj{3n;,-l, D2 n Bj = aj U {3j, aD2 = 

a161{3;162f31163a264 ... a2l~_164h-3{3v.164h-2{34L2{3;L164h-l a2h64h. 

( c) There ~ a projection which is locally homeomorphic on S (there are no twists in the 
band" Bj') 

A projection of th~ kind i" called a band projection of S or off (see Fig. 1.1 (b)). 0 

Next we "thicken" this disk with bands a bit and obtain a handlebody W of genus 2h with 
the following properties: 

(a) SeW, 

(b) aw = S+ u S-, S+ n S- = as+ = as- = s n aw = K, S+::::: S- ::::: S, 
( c) S is a deformation retract of W. 
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We call S+ the upside and S- the downside of W. The curves aI, ... , a2h are projected 
to curves at, . .. , ath on S+ and ai,···, a2h on S-, respectively. After connecting the 
basepoints of S+ and S- by an arc (and a small deformation) they form a canonical system 
of curves of the closed surface oW of genus 2h and, thus, define a basis of HI (oW) ~ Z4h. 
Clearly, 

Moreover we choose a curve S; on the boundary of the neighbourhood of the i-th band 
such that S; bounds a disk in W; the orientation of the disk and of S; are chosen such that 
the intersection number is +1 (right-hand-rule), see Fig. 1.3. 

Fig. 1.3 

1.2 Lemma. (a) {ai, ... ,ath,ai, ... ,a;-h} and {SI, ... ,s2h,ai, ... ,a~d, (10 = +or-) 
are bases of HI (oW) ~ Z4h. 

(b) {ai, ... ,aih}' 10 E {+, -}, is a basis of H1(W), and {Sl,'" ,S2h} is a basis of 
H1(S3 - W) ~ Z2h. 

Proof. We will give details only for the second statement of (b). The Mayer-Viet oris 
sequence to (W, S3 - W) gives 

0= H 2(S3) -+ Hl(OW)~Hl(W) ffi H1(S3 - W) -+ H1(S3) = 0, 

where <p(s;) = (O,s;). From H1(oW) ~ Z4h andH1(S3 - W) ~ Z2h weobtainH1(S3 - W) 
~ Z2h. Now it follows from (a) that {Sl"",S2h} is a basis of H1 (S3 - W). 0 

Let Vile be the linking number of the curves aj and ale: Vile = Ik(aj, ale) E Z. The matrix 
V = (Vile) is called a Seifert matrix of f. Moreover define lile = lk(aj - aT ,ale) and 
F = (file). 
A Seifert matrix (Vile) can be read off a band projection in the following way: Consider 
the j-th band Bi directed as its core ai' Denote by lile (resp. rile) the number of times Bi 
overcrosses Ble from left to right (resp. from right to left). Then Vile = Ijle - rjle. 

1.3 Lemma. 

(a) Let ie: se -+ S3 - W denote the inclusion. Then 

2h 2h 
i~(aJ) = 2: vlei s" and i;(aj) = 2: vilesIe· 

Ie=l Ie=1 
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0 1 
-1 0 

0 1 

(b) F= -1 0 

0 1 
-1 0 

Proof. (a) Let Zj- be a projecting cylinder of the curve aj, and close Z; by a point 

at infinity. Now Z; n (S3 - W) represents a 2-chain realizing aj '" E!:l VjkSI", Figure 
1.4. The same construction applied to aj, using a projecting cylinder Z; directed upward, 
yields aj '" L:k VkjSk. We write these equations frequently in matrix form, a- = V s, a+ = 
VT s, where a+, a-, s denote the 2h-columns of the elements aj, aj, Sj, and VT is the 
transposed matrix of V. 

Fig. 1.4 

(b) There is an annulus bounded by ai - at. It follows from the definition of the canonical 
system {aj} that 

hn-l,2n = Ik(a2n _1 - atn_lla2n) = int(a2n-ll a2n) = +1, 
hn,2n-l = lk(a2n - atn,a2n-l) = int(a2n,a2n-J) = -1, 

Jik = 0 otherwise (Fig. 1.5). (A compatible convention concerning the sign of the intersec
tion number is supposed to have been agreed on.) The matrix F = (fjk) is the intersection 
matrix of the canonical curves {a j} (Fig. 1.5). 0 

Fig. 1.5 
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1.3 implies certain properties of Seifert matrizes. The following proposition uses these 
properties to characterize Seifert matrices: 

1.4 Proposition (characterization of Seifert matrices). A Seifert matrix V of a knot 
f 3ati3fie3 the equation V - VT = F. (VT is the transp03ed matrix of V and F i3 the 
inter3ection3 matrix defines in 1.3 (b)). 

Every square matrix V of even order satisfying V - VT = F is a Seifert matrix of a knot. 

r F" 
,... 

...... -
.~ 
~ 

tF-
~~ 

... ~'-:1 

I VI I 
l 1 I .,. I 

Fig. 1.6 

Proof. Figure 1.5 shows a realization of the matrix 

o 1 
o 0 

o 1 

Vo = 0 0 

V2 I 
I I I I 

o 1 
o 0 

Any 2h x 2h matrix V satisfying V - V T = F is of the form V = Vo + Q, Q = QT . . A 
realization of V is easily obtained by an inductive argument on h as shown in Figure 1.6. 
(Here a (2h - 2) x (2h - 2) matrix VI and a 2 X 2 matrix V2 are assumed to be already 
realized; the band are represented just by lines.) The last two bands can be given arbitrary 
linking numbers with the first 2h - 2 bands. 0 

The total space Coo of the infini_e cyclic covering is the union of the "pieces" C~ and 
a generator r of the group 3 maps C~ to C~+l' Now we identify Co and C* and put 
C: = rnc*. For the homology we denote the generators of Hl(C*) ~ H1(S3 - W) by the 
same symbols as the curves, that is by at, Sj etc. The generators for the other piece rnc* 
will be denoted in a convenient way by tna;, t n S j etc. Moreover we introduce formal sums 
of the powers of t and calculate with them as with polynomials. Then we obtain the group 
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ring Z3 = n:::i niti I ni E Z} where ni i= 0 only for a finite number of coefficients. The 
addition and multiplication are given by 

(~n;';) + (~mi,i) ~ Dn; + m;)'\ 
(~n;'} (~mi'i) ~ ~ (~> .. m;_.) ,;; 

the multiplication is well defined since the sums are finite. With these operations Z3 
becomes a commutative ring. By 1.2, {tis iii E Z, 1 S j S 2h} forms a generating system 
for H1(Coo ) and the relations are due to the identification of the upside of riC· and 
the downside of r i+ 1 C· (a consequence of the Mayer-Vietoris sequence or the Seifert-van 
Kampen theorem): 

2h 2h 

tiat = L tiVkjSk = L ti+lVjkSk = ti+l aj. 
k=1 k=1 

Now H1(Coo ) becomes a module over Z3 = Z(t), the Alexander module M(t) of the knot 
group CIS = 71"1 C where t denotes either a generator of 3 = CIS/CIS' or a representative of its 
coset in CIS. One says that M(t) is a Z3-module or, shorter, a 3-Module. Hence: 

1.5 Theorem. Let V be a Seifert matrix of a knot. Then A(t) = VT -tV is a presentation 
matrix of the Alexander module H1(Coo ) = M(t). (We call a presentation matrix olthe 
Alexander module an Alexander matrix.) More explicitly: H1(Coo ) is generated by the 
elements 

tiSj,i E Z, 1:;:; j :;:; 2h, and 
2h 2h 

tiat = L tiVkjSk = L ti+1VjkSk = t i+1aj, 1 S j S 2h, 
k=1 "=1 

are defining relations. o 

Writing the first homology group of Coo like a vector space using a basis and coefficients 
from Z3 gives a finite description of the group which in general has an infinite number of 
generators and relators. The group is interpreted as a module over the ring Z3. Since Z3 
is not a field it is much more difficult to classify the modules than vector spaces (which 
are classified by their dimension). We will deal with this problem in the next section. 

As a good exercise in homology theory one can determine the other homology groups of 
Coo. The result is as follows. 



1.6 Proposition. 
Hm(Coo ) = 0 for m > 1, 

H1(Coo ,aCoo ) ~ HI (Coo), 
H2(Coo ,aCoo ) ~ Z, 

Hm(Coo,aCoo ) = 0 for m > 2. 0 
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2. Alexander Polynomials 

The Alexander module M(t) of a knot is a finitely presented 3-module. In the preceding 
section we have described a method of obtaining a presentation matrix A(t) (an Alexander 
matrix) of M(t) from a knot projection. An algebraic classification of Alexander modules 
is not known, since the group ring :let) is not a principal ideal domain. But the theory 
of finitely generated modules over principal ideal domains can nevertheless be applied to 
obtain algebraic invariants of M(t). 
We call Alexander matrixe~ A( t), A'(t) equivalent, A(t) '" A'(t), if they present isomorphic 
modules. 

Let R be a commutative ring with a unity element 1, and A an m x n-matrix over R. We 
define elementary ideal3 Ek(A) c R, for k E :l 

{
O, if n - k > m or k < 0 

E A _ R, if n - k ~ 0 
k( ) - ideal, generated by the (n - k) x (n - k) minors of A, 

if 0 < n - k ~ m. 

It follows from the Laplace expansion theorem that the elementary ideals form an ascending 
chain 

0= E-l(A) C Eo(A) c E1(A) c ... C En(A) = En+1(A) = ... = R. 

Given a knot f, its Alexander module M(t) and an Alexander matrix A(t), we call Ek(t) = 
Ek_l(A(t)) the k-th elementary ideal of f. The proper ideals Ek(t) are invariants of M(t), 
and hence, off. Compare [BZ, A6] or [CF, VII]. 

2.1 Definition (Alexander polynomials). The greatest common divisor ~k(t) of the el
ements of Ek(t) is called the k-th Alexander polynomial of M(t), resp. of the knot. The 
first Alexander polynomial ~l(t) is usually called simply the Alexander polynomial and is 
denoted by ~(t) (without an index). If there are no proper elementary ideals, we say that 
the Alexander polynomials are trivial, ~k(t) = 1. 

Remark: :let) is a unique factorization ring. So ~k(t) exists, and it is determined up to a 
factor ±t", a unit of :l( t). It will be convenient to introduce the following notation: 

f(t):d:g(t) for f(t),g(t) E :let), f(t) = ±t"g(t),v E:l. 

2.2 Proposition. The (fir~t) Alexander polynomial ~(t) M obtained from the Seifert 
matrix V of a knot by 

IVT - tVl = det(VT .:... tV) = ~(t). 
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The jirJt elementary ideal El (t) is a principal ideal. 

Proof. vT - tV = A(t) is a 2h x 2h-matrix. The determinante 

IA(t)1 generates the elementary ideal Eo(A(t)) = E1(t). Since det (A(l)) = 1, the ideal 
does not vanish, E1(t) :I o. 0 

2.3 Proposition. The Alexander matrix A(t) of a knot f JatiJjieJ 

(a) A(t) '" AT(rl) (du.ality). 

The Alexander polynomialJ ~k( t) are polynomialJ of even degree with integral coefficienu 
Ju.bject to the following conditionJ: 

(b) ~k(t)l~k-l(t), 

(c) ~k(t) == ~k(t-l) (Jymmetry), 

(d) ~k(l) = ±1. 

Remark: The symmetry (c) implies, together with deg ~J:(t) == 0 mod 2, that ~k(t) is a 
symmetric polynomial: 

2r 

~J:(t) = I: ai, a2r-i = ai· 

i=O 

Proof. Duality follows from the fact that A(t) = VT - tV is an Alexander matrix, by 1.5, 
(VT -r1vf = -rl(VT - tV). This implies Ek(t) = Ek(t-l) and (c). For t = 1 we get: 
A(l) = FT, and since det F = 1, we have Ek(l) = Z(l) = Z, which proves (d). The fact 
that ~J:(t) is of even degree is a consequence of (c) and (d). Property (b) follows from the 
definition. 0 

By simple geometric constructions one can show that every polynom ~(t) with the above 
properties is the Alexander polynom of a knot, see [BZ, 8.131. Even more, any system of 
polynomials ~k(t) as above is the system of Alexander polynomials of some knot, see [LI. 

2.4 Examples. The Alexander polynomials of the trivial knot are trivial: ~k(t) = 1. 
Figure 2.1 show band projection of the trefoil knot 31 and the four-knot 41 . The Seifert 
matrices are 

and the Alexander polynomials are 

det(Vl- tVa.) == t2 - t + 1, det(V4~ - tv. 1 ) == t2 - 3t + 1. 
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Next we describe the homology of a covering space considered as module over the group 
ring of the group of covering transformations. As a result we obtain an algebraic calculation 
of the Alexander matrices. 

Fig. 2.1 

2.5 On the homologie of a covering space. Let p: X _ X be a regular covering of a 
connected 2-complex. We assume X to be a finite CW-complex with one O-cell P. Then 
a presentation 

0= 71"1 (X, P) = (SI,'" ,SnIRl,"" Rm) 

of the fundamental group of X is obtained by assigning a generator Sj to each (oriented) 
I-cell (also denoted by Sj), and a defining relation to (the boundary of) each 2-cell ei 
of X. Choose a base point P c i over P, p#( 71"1 (X, P)) = tt <l 0, and let I) ~ 0/tt 
denote the group of covering transformations. Let <p: 0 - I), w 1-+ w'P be the canonical 
homomorphism. The linear extension to the group ring is also denoted by <p: Z0 _ ZI). 
Observe: (WlW2)'P = wiwf. Our aim is to present Hl(X,XO) as a Z J)..module (XO 
denotes the O-skeleton of X). 
The (oriented) edges Sj lift to edges Sj with initial point P. By w we denote a closed path 
in the I-skeleton Xl of X, and, at the same time, the element it represents in the free 
group.s = 71"1 (Xl, P) = (Sl,' .. , Sn I-). There is a unique lift tV of w starting at P. Clearly 
tV is a special element of the relative cycles ZI (X, XO) which are called homotopy I-chain". 
Every I-chain can be written in the form E~=l ~iSj, ~j E ZI). 

There is a rule 

(1) 

To understand it, first lift WI to WI. Its endpoint is wi . P. The covering transformation 
wi maps W2 onto a chain wiw2 over W2 which starts at wi P. If WA: = Ej=l ~A:jSj with 
~A:j E ZI), k = 1,2, then W;W; = Ej=l ~jSj with 

(2) ~j = ~lj + wi . 6i for 1 :5 j :5 n. 

(The coefficient ~A:j is the algebraic intersection number of the path tVA: with the cover of 
S j .) This defines mappings 

n 

(3) 0= 7I"1(X,P) - ZI), w 1-+ ~j, with W = L~iSj, 
j=l 
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satisfying the rule 

(4) 

There is a linear extension to the group ring Z0: 

(5) 

From the definition it follows immediately that 

(6) 

We may now use this terminology to present HI (X, XO) as a J)...module: The I-chains 
si,I ::; i ::; n, are generators, and Rj , the lifts of the boundaries Rj = 8ej are defining 
relations. (The boundary of an arbitrary 2-cell of X is of the form o(Rj), 0 E b. Hence, 
for a presentation of HI (X, XO) as a J)...module it suffices to include the Rj, 1 ::; j ::; m, 
as defining relations.) 

2.6 Proposition. HI(X,XO) = (sl, ... ,snIRI, ... ,Rm ), 0 = Rj = L (~r Si, 1::; i::; 
m, is a presentation of HI (X, XO) as a 'f)-module. 0 

These geometric arguments lead to the so-called Fox or /ree differential calculus, a purely 
algebraic approach to the above construction. 

2.7 Definition. (a) There is a homomorphism c:: zg -+ Z, r = L nigi 1-+ L ni = r e , 

called the augmentation homomorphism. Its kernel is denoted by 10 = c:- l (a) and is 
called the augmentation ideal. 

(b) A mapping~: Z0 -+ Z0 is called a derivation (of Z0) if 

~(~ + "I) = ~(O + ~(7J) (linearity), 

and 
~(~. "I) = ~(O. 7Je + ~. ~(7J) (product rule), 

for~, 7J E Z0. 

From the definition it follows by simple calculations: 

2.8 Lemma. (a) The derivations of Z0 form a (right) 0-mod'Ule 'Under the operations 
defined by: 

(~l + ~2)(T) = 6 t (r) + 6 2(r), 
(6,)(T) = 6(T) .,. 
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(b) Let ~ be a derivation. Then: 

~(m) = 0 for m E Z, 

~(g-l) = _g-1 . ~(g), 

~(gn) = (1 + 9 + ... + gn-l). ~(g), 

~(g-n) = _(g-1 + g-2 + ... + g-n). ~(g) for n ~ 1. 

2.9 Examples (a) ~e: Z0 -+ Z0, T t-+ T - T e , is a derivation. 

(b) If a, b E 0 commute, ab = ba, then (a - l)~b = (b - l)~a. (We write ~a instead 
of ~(a) when no confusion can arise.) It follows that a derivation~: zan -+ zan of the 
group ring of a free abelian group 3n = (St) x .. , x (Sn), n ~ 2, with ~Si =F 0, 1 ~ i ~ n, 
is a multiple of ~e, in the module of derivations. 

Contrary to the situation in group rings of abelian groups the group ring of a free group 
admits many derivations. 

2.10 Proposition. Let j = ({Sili E J}I) be a free group. There iJ a uniquely determined 
derivation~: Zj -+ Zj, with ~Si = Wi, for arbitrary elementJ Wi E Zj. 

Proof. ~(S;-I) = -S;-IWi follows from ~(1) = 0 and the product rule. Linearity and 
product rule imply uniqueness. Define ~(S~l ... S~·) using the product rule: 

The product rule then follows for combined words W = uv: ~w = ~u+u~v. The equation 

~(uS?Si"v) = ~u + u~S? + uS?~Si" + u~v = ~u + u~v = ~(uv), 

for.,., = ±1 shows that A is well defined on j. 

2.11 Definition The derivations 

a {I for i = j as,, : loj -+ loj, Sj t-+ 0 ~ . ...J... 
lOrtr}, 

of the group ring of a free group j = (Sil) are called partial derivations. 

The partial derivations form a basis of the module of derivations: 

o 

(a) ~ = LiE] a~; . ~(Si) for every derivation~: Zj -+ loj. (The sum in (a) may be 
infinite, however, for any T E loT there are only finitely many ;;; =F 0.) 

(b) LiE] a~; . Ti = 0 <==> Ti = 0, i E J. 

(c) ~e(T) = T - T e = LiE] ;;; (Si -1) (fundamental formula). 
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(d) T - T e = l:iEJ Vi(Si - 1) ¢:::::> Vi = :;i' i E J. 

We return now to the cyclic covering p: i -+ X of a knot space. Let 

denote the canonical homomorphism of the groups and, at the same time, its extension to 
the group rings: 

1j!: ZS -+ Z0, (r.n;f;)'P = r.n;fr, for Ii E S, ni E Z. 

Combining 1j! with the map <.p: Z0 -+ ZI) of 2.5 (we use the notation (O'PtP = (etP)'P, e E 
ZS), we may state Proposition 2.6 in terms of the differential calculus. 

2.12 Proposition. (( ~ ) 'P"'), 1 ~ k ~ m, 1 ~ j ~ n, is a presentation matrix of 

HI(.X,iO) as a I)-module. (k = row index, j = column index.) 

Proof. Comparing the linearity and the product rule of the Fox derivations 2.7 with (4) 

and (5) of 2.5, we deduce from 2.10 that the mappings (a~i) 'P in 2.5 (6) coincide with 

those defined by (a~i r'" in 2.11. 0 

Remark. The fact that the partial derivation of 2.5 (6) and 2.11 are the same lends a 
geometric interpretation also to the fundamental formular: For w E 0, and tV its lift, 

To obtain information about HI(i() we consider the exact homology sequence 

(7) 

Ho(XO) is generated by {w'P'" . I' I w E S} as an abelian group. The kernel of i. is the 
image (I F)'PtP of the augmentation ideal IS C ZS (see 2.7). The fundamental formula 
shows that ker i. is generated by {(sy'" -1)1' 11 ~ j ~ n} as a I>-module. 

Thus we obtain from (7) a short exact sequence: 

(8) 

In the case of a knot group 0, and its infinite cyclic covering Coo now (Xl = 0') the group 
of coverin~ transformations is cyclic: I) = 3 = (t), and ker i. is a free 3-module generated 
by (t - I)P. The sequence (8) splits, and 

(9) 
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where (1 is a homomorphism (1: ker i. -+ HI ex, XO), 0(1 = id. This yields the following 

2.13 Theorem. Let 0 = (S1.' .. ,SnIRI, ... ,Rn) and ( (~ f"'), its Jacobian, <p: 0-+ 

0/0' = 3 = (t). A presentation matrix (Alexander matrix) of HICX) ~ HI(Coo ) as a 
3-module is obtained from the Jacobian by omitting its i-th column, if Sr'" = t±I. (In the 
case of a Jacobian derived from a Wirtinger presentation any column may be omitted.) 

Proof. It remains to show that the homomorphism (1: ker i. -+ HI (X, XO) can be chosen 
in such a way that (1(ker i.) = USi. Put (1( t - 1)P = ±t" Si, sr'" = tV, 0(1 = id. Then 

(t - l)P = 0(1(1- t)p = O(±t"Si) = ±t"(Sr'" -l)P = ±t"(tV -l)P 

that is, (t - 1) = ±t"(tV - 1). It follows v = ±1, and in these cases (1 can be chosen as 
desired. 0 

If" is not free cyclic, the sequence (8) does not necessarily split, and HI (X) cannot be 
identified as a direct summand of HI (X, XO). This is interesting for the cases " ~ Zn 
(finite cyclic coverings) and ,,~ Z" (for coverings related to links), see [BZ, 9D]. 

There is a useful corollary to Theorem 2.13: 

2.14 Corollary. Every (n - 1) x (n - 1) minor 6.ij of the n x n Jacobian of a Wirtinger 
presentation (SiIRj) = <IS of a knot group <IS is a presentation matrix of HI (Coo). Further
more, det 6.ij"~6.(t). The elementary ideals of the Jacobian are the elementary ideals of 
the knot. 

Proof. Every Wirtinger relator Rk is a consequence of remaining ones. Thus, by 2.13, a 
presentation matrix of HI (Coo) = M(t) is obtained from the Jacobian by leaving out an 
arbitrary row and arbitrary column. 0 

Corollary 2.14 shows that a Jacobian of a Wirtinger presentation has nullity one. The 
following lemma explicitely describes the linear dependence of the rows and columns of 
the Jacobian of a Wirtinger presentation: 

n (8R- )"'''' 2.15 Lemma. (a) Li=I tjt = O. 

(b) Lj=I T/j (* ) "'''' = 0, T/j = tVj for .!J'Uitable Vj E Z for a Wirtinger presentation 
(Sl,' .. ,SnIR1 , • •• , Rn) of a knot group. 

Proof. Equation (a) follows from the fundamental formula 2.12 (c) applied to Rj: 
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Since Z3 has no divisors of zero equation (a) is proved. To prove (b) we use the dependence 
of Wirtinger relators by the equation nj=1 LjRjLjl = 1 in the free group {SI,'" ,Snl-} 
(see, e.g., [BZ, 3.6]). Now 

By the product rule 

which proves (b) with Lj'" = t"i = T}j. 

2.16 Example. A Wirtinger presentation of the group of the trefoil is: 

{SI, S2, S31S1 S2S; 1 S:;1 ,S2S3S;-1 S;1 ,S3S1 S:;1 S;-I}. 

If R = SIS2S;IS:;1 then 

aR _ 1 aR _ S _ S S S-1 S-1 aR S s S-1 d 
aSI - , aS2 - 1 1 2 3 2' aS3 = - 1 2 3 an 

(:~) ~'" = 1, (:~) ~¢ = t - 1, (:~) ~¢ = -t. 

By similar calculations we obtain the matrix of derivatives and apply cp1jJ to get 

( 
1 
-t 
t-l 

t -1 -t) 
1 t -1 . 
-t 1 

o 

It is easy to verify 2.15 (a) and (b). The 2 x 2 minor ~11 = (~t t ~ 1 ), for instance, is 

a presentation matrix. 16.11 1 = 1 - t + t2 = ~(t), El (t) = (1- t + t2 ). For k > 1: Ek(t) = 
(1) = Z(t), ~k(t) = 1. 

2.17 Proposition. Let {SI,' .. ,SnIRl,'" , Rm} = <IS = {S~, ... , S~, IRL .. . , R~,} be two 
finite preJentationJ of a knot grou.p. The elementary ideaz" of the reJpective Jacobian 

(( 8R' )~"') ((8R~ )"'''') ji and ~ coincide, and are thoJe of the knot. 
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Proof. This follows from 2.14, and from the fact [BZ, Appendix A 6], that the elementary 
ideals are invariant under Tietze processes. 0 

The theory of Alexander modules and polynomials can be extended to the case of links 
with more than one leaf; unfortunately, the algebra becomes more difficult, see [BZj, [Hj. 
The methods may also be used for the study of finite branched coverings of a knot or link 
complement. 
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3. On link polynomials 

Next we will desribe other polynomials to classify knots which are much stronger then the 
Alexander polynomial. The definitions and studies of these polynomials were initiated by 
V.F.R. Jones. One can define them by adjoining a polynom to a projection using a "skein 
relation" like for the Conway polynomial and to verifiy that the obtained quantity is an 
invariant of the knot (or better link). We will construct a polynomial in two variables 
which generalizes the Jones polynomial and the Conway polynomial (an absolute variant 
of the Alexander polynomial). 

It can be shown that the Alexander polynomial Ll(t) of a knot may be written as a 
polynomial with integral coefficients in u = t+t-1 -2, Ll(t) = f(u), see [BZ, 8.13). Hence, 
Ll(t2) is a polynomial in z = (t - t-1). (It is even a polynomial in z2.) J.H. Conway 
(1970) defined a polynomial V'e(z) with integral coefficients for (oriented) links which can 
be inductively computed from a regular projection of a link Ie in the following way: 

3.1 Definition. To each link r is adjoined a so-called Conway potential function which 
has the following properties: 

(1) V'e(z) = 1, iff is trivial. 

(2) V'e(z) = 0, if r is a split link. 

(3) V'e+ - V',- = z· V'eo (skein relation), iff+,L, and eo differ by a local operation of the 
kind depicted in Figure 3.1 

XX)( 
tt_ 

Fig. 3.1 

Changing overcrossings into undercrossings eventually transforms any regular projection 
into that of a trivial knot or splittable link. Equation (3) may therefore be used as an 
algorithm (Conway algorithm) to compute V'k(Z) with initial conditions (1) and (2). Thus, 
if there is a function V'e(z) satisfying conditions (1), (2), (3) which is an invariant of the 
link, it must be unique. 

3.2 Proposition. (a) There is a unique integral polynomial V'e(z) satisfying (1), (2), (3); 
it is called the Conway potential function and is an invariant of the link. 

(b) V'e(t - r1) = Ll(t2) for p. = 1, 
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Ve{t - t- 1 ) = (t 2 - 1),,-1 VW) 

for /J > 1. 

(Here ~(t) denote~ the Alexander polynomial, and V(t) the so-called Hosokawa polynomial 
of f.) 

We will not give a construction of a Conway potential function; we will do this later for a 
some more complicated polonomial invariant. Here we show with an example, namely the 
trefoil, how one can calculate the polynomial for a given knot projection. 

Fig. 3.2 

3.3 Example. The following notation is from Fig. 3.2. We want to calculate the Conway 
potential function of the trefoil f+ and apply the rule 3.1 (3) at the encircled crossing. The 
result is the equation 

(i) Ve+ - Vt- = z· Veo' 
'-v-" 

1 

The value of List obtained from 3.1 (1). Next we put ~+ = fe, apply 3.1 (3) to the 
encircled crossing in ~+ in Fig. 3.2, and obtain 

( ii) V~+ - V~_ = z . V~. 
'-v-" '-v-" 

o 1 

Hence, with z = t - t-1 we "verify" 3.2 (b): 

The famous Jones polynomial admits a similar "skein relation" as the Conway function. 

We start with a more general polynomial. 

3.4 Theorem. There i" a uniquely determined function, the Homfiy polynomial 

with the following properties: 
(1) P is well defined on the equivalence clas~eJ of oriented links; 
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(2) Po = 1, that is P of the trivial knot 0 is 1; 

(3) for links f+, L, fo which projections differ only at one double point in the form as 
described in Fig. 3.1, the following skein relation is valid: 

£Pr+ +r1pL + mP .. = O. 

Clearly, the skein relation allows to calculate the HomBy polynomial for a link given by 
a projection (of course, it is a question how many steps (= time) are needed and straight 
forword approaches have exponential time complexity). 

~6D~ 
(J)j ® cfrj 

-t. 
i, 

o 
1 

Fig. 3.3 Fig. 3.4 

3.5 Example. We calculate the polynomial for the trefoil and its mirror image. The used 
links are defined in Fig. 3.3; at trivial places the polynomial is written there. By (3), from 
the first line 

from the second 

£. Peo + r 1 . Pel + m' 1 = 0 :::::} Pel = (f + f3)m- 1 - £m, 

and finally from the third 

f·1 + rl. P31 + m· Pel = 0 :::::} P3• = _2£2 -l' +f2m 2 • 

Similarly, for the mirror image 31 one has, according to the lines in Fig 3.4: 

f·1\. + rl . Peo + m· 1 = 0 :::::} 1\1 = -(rl + r 3). m-I - rIm 

£. PlI + rl ·1 + m ,1\. = 0 :::::} 1\1 = _2£-2 - r4 + r 2m2. 
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These calculations give the impression that only the conditions (2) and (3) have been 
used; however we have used several times the invariance condition (1) in the form that the 
trivial knot given by a projection whatsoever has the polynomial 1. One can obtain the 
invariance checking that the polynomial is invariant under Reidemeister moves. We will 
present another proof in section 4. 

In particular, this example shows the result of Dehn that the trefoil and its mirror image 
are not ambient isotopic, that is they are different knots. The relationship between the 
polynomials of the two knots is of general nature: 

3.6 Theorem. Let','I,'2 be oriented link" in 53. Let'l +'2 denote a connected "um 
of the two linL (if the linL have several componentJ it i& not uniquely determined) and 
'1 U f2 the di&joint union of'l,'2 which are repre"ented within two di&joint balz., C 53. Let 
pf denote the link obtained from , by inver"ing the direction" of all componentJ and! the 
mirror image. Then: 

(a) 
(b) 
(c) 
(d) 

Prl +r2 = Prl . Pr2 , 

Prl LA2 = - ( e + e-1 )m -1 . Prl . Pr2' 

Ppr = Pr, 

1\ = P, defined by l = e-1 ,m = m. 

Proof. (b) is true for the union of two trivial circles, as we have seen for fo in 3.5. If we 
handle a double point like in 3.4 (3) the formula has to be applied for the union as well 
as for one component; hence, the product rule remains true. Similar arguments prove (c) 
and (d)j (a) is a direct consequence of (b). 0 

3.7 Theorem The H omfly polynomial P, j" related to the Alexander polynomial ~, and 
the Jones polynomial Ve by 

Pr(i,i{t l / 2 - r1/2)) = ~e(t), 
P,(it- I , -i(t I/2 - t-1/2 )) = Ve(t). 

Check the following skein relations for the Alexander and Jones polynomial: 

~,+(t) - ~'- (t) + (tl /2 - rI/2)~ .. (t) = 0, 

t-1Ve+(t) - tVe_(t) + (t-1 /2 - t I/2 )V .. (t) = O. 

o 
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4. On the HornBy polynomial 

To construct the Homfly polynomial we follow the original route of Jones using the pre
sentation of knots and links by closed braids. 

4.1 On the symmetric group. The symmetric group Sn has a presentation 

where Ti is the transposition (i, i + 1). To every permutation 11" we construct below a 
special word b,. == ni=l Tij such that 11" = b,.( Ti) in Sn and the word b,. has minimal 
length. Moreover the set W = {b,. 17r E Sn} fulfills the Schreier condition, that is every 
subword n~=1 Tij' 1 ~ k ~ r of b,. belongs also to W. 
For the construction we consider (projections of) n-braids. A presentation of a permuta
tion 7r as word in the generators Ti corresponds to a regular projection of a braid with the 
permutation 11" of the strings. Let the word b,.( Ti) begin with the subword TkTk+l .•. Tn -l 

where k = 7r- 1(n); it corresponds to the braid of Fig. 4.1 which brings the k-th string to 
n. By induction one handles the remaining n - 1 strings, see Fig 4.2 for 11" = (1325). This 
construction gives us a uniquely determined word of minimal length, which is equal to the 
number of fail positions in 11". The Schreier condition is valid. Remark that the generator 
Tn-l appears at most once in b,.( Ti) for 7r E Sn. 

Fig. 4.1 Fig. 4.2 

We write W(Ti) == W'(Ti) if one word is changed to the other by the "braid relations", that 
is by replacing TiTi+l T; by T;+l TiTi+l or TiTj by TjT; if Ii - j I ~ 2. These procedures do not 
change the length. 
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4.2 Lemma. 

b . {bp 
,.Tj = b 2 

P • Tj 

if p = 1I"Tj E W, 
if pTj = 11". 

Proof The method described above to construct the normal form gives the same result for 

11" and p = 1I"Tj for the strings which end in a number bigger than i + 1. Needed changes to 

bring b,.Tj to normal form only effect the first i + 1 strings and one obtains, by using braid 

relations, a situation like on the left side in Fig. 4.3 (as in Fig. 4.2). The construction 
gives the right side and all necessary steps only use braid relations, that is they deal with 
words of minimal length. This proves the first statement. The second is illustrated in Fig. 

li 0 

t'. , 

Fig. 4.3 

4.3 Construction of a Heeke algebra. Next we consider the free Z[z]-module Hn(z) 
of rank n! and denote the elements of a basis by the words of W j however, we replace the 
Tj by symbols Cj. Now every element of Hn(z) admits a presentation of the form 

L O',.b,.(cj) where 0',. E Z[z]. 
,.ESn 



r. , 

Fig. 4.4 
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r.' .. 

Next we make H n( z) to an associative algebra by defining an associative multiplication for 
the elements of the basis. Clearly, the Cj and the empty word ~d = 1 are basic elements. 
We postulate: 

(1) 
(2) 

(3) 

C~ = ZCj + 1, 
CjCj = CjCj for Ii - il ~ 2, 

CjCj+l Cj = Cj+lCjCjH· 

These equations give rise to a multiplication. Using Lemma 4.2 we put 

b,,(Ci) . c" = bp(Ci) if p = 7rT" E Wn , 

b,,(Ci) • c" = bP(Ci) . (ZCA: + 1) = Z . b,,(Ci) + bP(Ci) if pT" = 7r, P E Wn . 

This defines a multiplication for the basic elements by successive multiplication from the 
right and extends by linearity to the Z-module Hn[z]. 
We claim that this multiplication is a,.,.tociative. For products of three elements of the form 
Ci it is a direct consequence of the definition; for example: 

(CIC2)C2 = Cl(ZC2 + 1),by the induction definition 

Cl(C2C2) = Cl(ZC2 + 1).by (1) 
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The proof of associativity for the general case is done by induction on the sum of the 
lengths of the basic words. We show 

We assume that bl i- 1 and prove the following equations: 

together they give the associative law. The equation (a) is valid by the definition of the 
multiplication for basic words since b3 cj is a basic word. By induction hypothesis, (b) and 
( d) are true. 

To prove (c), assume first that b2b3 is not a basic word. A consequence of Lemma 4.2 is 
that 

where the length of b,. if 0:,. i- 0 is smaller than the length of ~b3. Now the equation 
follows from the distributive law and the induction hypothesis. 

If b4 = ~b3 is basic and also b4cj then we have (bl b4 )cj = bl (b4 cj) by the iterative definition 
of the multiplication. If b4 cj ¢ W then b4 cj = zb4 + b~, b~cj = b4 and 

here (e) follows from the induction hypothesis and (f) from the iterative definition of the 
multiplication. 

For the generating elements Cj we have by (I): 

(Ci - Z )Cj = c; - ZCi = 1. 

4.4 Proposition and Definition. 

(a) The cOfh'truction above give" an a""ociative algebra Hn(z) of rank n! over Z(z). It 
i" called a Hecke algebra with generators {CI, ... ,cn} and defining relations (1)-(3). The 
generator" Cj have inver"e" in Hn{z), namely ci l = Cj - z. 
(b) Therefore the braid group Bn admit3 a repre"entation in Hn(z): 

p : Bn -+ Hn(z), Uj 1-+ Cj. 

(c) By extending the ring of coefficient" Z[z] C Z[z±l,V±l], one obtain" a Hecke algebra 
H n (z, v) = H n. The repre"entation p can be extended to a repre"entation 
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The extenison in (c) is possible since the braid relations 0';0';+10'; = 0';+10';0';+t and O';O'j = 
O'jO'; are homogeneous in the O'k. 0 

4.5 Definition. (a) We use the obvious embedding Hn- 1 C Hn and define H = U~=IHn 
where HI = Z[v±t,z±I]. Moreover we denote by W the set of the basic elements of the 
different Hn; clearly, the basic elements of Hn- 1 belong to the basis of Hn. We add a new 
variable T to the coefficient domain and get Z[v±l, z±l, T]. 
(b) A function Tr : H -+ Z[V±l, z±l , T] is called trace if it fulfills the following conditions: 

(4) Tr(La".b".) = La".Tr(b".) where a". E Z[Z±l,v±l] (linearity), 

(5) Tr(xy) = Tr(yx) ifx,y E Hn, 
(6) Tr(1) = 1, 

(7) Tr(xcn_l) = T· Tr(x) for x E Hn- 1. 

4.6 Lemma. There iJ a uniquely determined trace on H. 

Proof. It suffices to show that a trace defined on Hn has a unique extension to Hn+t. By 
(5) and (7), 

Tr(XCn-lY) = Tr(yxcn-t} = T· Tr(yx) = T· Tr(xy). 

The basic elements of Hn+1 which do not belong to Hn have the form xcny where x, y E Wn. 
For the only possible extension we have to define 

Tr(xcny) = T· Tr(xy) for xCnY E Wn 

and to extend it to Hn+l linearly. Condition (7) is a consequence of the linearity, also 
Tr(xcny) = T· Tr(xy) for arbitrary x, y E Hn. Now, for a, x, y E Hn, 

Tr(a· xcny) = T· Tr(axy) = T· Tr(xya) = Tr(xcny· a) 

and, for to get (5), it suffices to prove 

Tr(cn . xcny) = Tr(xcny· cn). 

a) If x, y E Hn- 1 then XCn = cnx, CnY = YCn. 
b) Let x = acn-1b, a,b,y E Hn- 1. Then 

Tr(cn . acn-1bcny) = Tr(acnCn_lcnby) = Tr(acn-l CnCn-lby) 

= T· Tr(ac!_1 by) = T· Tr(a(zcn_l + l)by) 

= z· T· Tr(acn_1by) + T· Tr(aby) = (ZT2 + T)Tr(aby); 

Tr(acn-l bcnY' Cn) = Tr(acn_1bc!y) = Tr(acn-1b(zcn + l)y) 
= zTr(acn_1bcny) + Tr(acn-lby) 

= z· T· Tr(acn_1by) + T· Tr(aby) = (zT2 + T)Tr(aby). 
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c) The case y = acn_Ib, a,b,x E Hn - I is analogous to b). 

d) Let x = acn_Ib, Y = dCn_Ie with a,b,d,e E Hn- I. Then 

Tr( Cn . aCn-l b· Cn . dCn-l e) = T· Tr( aC!_l b . dCn_1 e) 

= T· z· Tr(aCn_lbdcn_1 e) + T2 . Tr(abde)j 

Tr(acn-1b. Cn . dCn_Ie· cn) = T· Tr(acn-1bdc!_le) 

= T· z· Tr(acn_1bdcn_Ie) + T2 . Tr(abde). 0 

Next we can introduce a new link invariant trying, for 3 E Bn , a formula 

P,,, = kn . TrplI(3n) with kn E Z[z±l, v±l, T]. 

Replacing 3n by a conjugate braid does not change P", since (5) implies 

Tr(ab· a-I) = Tr(a- I . ab) = Tr(b). 

For to get P", as an invariant of the link represented by the closed braid 3.. we need 
P __ = P ±1, i.e. the invariance under the second Markov procedure: . 

... ",17" 

kn . Tr(PII(3n)) = P", = P"'17~1 = kn+t . Tr(PII(3nO'n)) = 

kn+t . V· Tr(PII(3n)' cn) = kn+1v· T· Tr(PII(3n)) ===} 

(0:) kn = kn+1 . vT. 

Similarly, 

kn+tTr(PII(3nO'-l)) = kn+1v- ITr(PII(3n)' c;;-l) = kn+1v-I(T - z)· Tr(pv(3)) ===} 

«(3) kn = kn+l . v-I(T - z). 

Go to the quotient field of Z[z±l, v±l, T] and put 

zv- l 

T= , 
V-I - V 

1 V-I - V 
kn+l = kn . -T = kn . ---

V· Z 

Then P", = kn . Tr(p,,(3n)) E Z[z±l, v±l] is a link invariant. Namely, for 3n E Hn by (7): 

P",17" = kn+l . Tr(p,,(3nO'n)) 
= (kn . Z-1(v-1 - v))· Tr(p,,(zn)' VCn) 

= (kn · z-l(V- 1 - V))· vT· Tr(p,,(zn)) 

=P",. 

( -I r-I IT we put kl = 1 then we obtain kn =" z-;:~ . Now we obtain the following theorem; 
the second statement is a consequence of 4.5 (6). 



4.7 Theorem. Let 3n E Bn be a braid. Then the polynom 

(v- I - v)n-I 
P",(z, v) = zn-I . Tr(pv{3n)) 

is an invariant of the link f = 3n. In the following we also denote the polynom by Fe. 
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The trivial braid with n strings represents the trivial link with n strings; its polynomial is 
(,,-I_ v ),,-1 

% .. -1 0 
A simple consequence is a lower bound for the braid index of a link: 

4.8 Corollary. The braid index 19(f) of a link f is the smallest number n such that f 
is represented by a closed braid with n strings. For a polynomial P = am(z)vm + ... + 
a{z)v, ai(z) E Z[z, Z-I] with am(z) -:f:. 0 -:f:. a(z) define Sp,,(P) = n - m, the difference of 
the highest and smallest degree in v. Then, if the braid 3n represents the link f, 

SPv(P",) s:; 2· (n - 1), hence 
1 

19(f) ~ 1 + 2Spv(P",). 

Proof. From the definition 4.5 it follows by induction that trace of an element of Hn is 
polynomial in T of degree at most n - 1. Hence, for 3n = n 0':; we obtain 

J 

n-I 

p,,(3n) = vk . L c:: with k = L Cj => 
i=O 

n-I (-I )n-I 
Tr(pv(3n)) = v k . L ai(z)T i where Ti = v z:-~ => 

i=O 

(-I )n-I n-I 
P",(z,v)= v z:-~ .Tr(pv(3n))=vk·Lai(z).z-n+i-l(v-l_vt-2i-l.0 

i=O 

Using the method which will be developed next one can see that the knot f = 61 is not 
representable by a 3-braid since Sp,,(Fe) = 6; prove the same for the knots 72 ,74 . 

x 
-'tl_ 

Fig. 4.5 
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4.9 Theorem. Let f+, L, and fo be link projections related as in Fig. 4.5. Then there is 
the skein relation 

V-I Pr+ - VPL = zPro. 

It gives an algorithm to calculate Pr( z, v) for an arbitrary link f given by a projection. 

Proof. In the change of a given projection of a link to another of the form of a closed braid 
one can preserve a fixed neighbourhood of one double point. Therefore we may assume that 
the links f+, L, fo are changed to braid form in the exterior of the neighbourhood, that is 
the braids there are the same, and we can take an appropriate braid within its conjugacy 
class such that the expressions P(z, v) are calculated using the braids 3nO"j, 3nO";-I and 30. 
Now, 

V-I Pr+ - vPr_ = V-I knTr(p" (3nO"j) - vknTr(p,,(3nO";-I) 
= knzTr(p,,(3n)) = zPro since 

V-I p,,(3nO"d - vp,,(3nO";-I) = p,,(3n)(v-1 p,,(O"j) - Vp,,(O";-I)) and 

p,,{3n){c-ci· l ) = p,,{3n). z. 0 

Using the polynomial from above we can recover the "simpler" ones which have been 
considered above, the Jones and the Conway polynomials. We cannot give a proof here. 

4.10 Theorem. The polynomial Ve(x) = Pr{x - X-I, x2 ) is the Jones polynomial and 
Vr{t) = Pr{x - X-I, 1) with t = x2 the Conway polynomial of the link f. 

The variable t is also often used for the Jones polynomial; however for links one obtains 
polynomials in Vi. 
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Germany 

ABSTRACT. For the Hopf link with a tunnel in S3 and certain branching indices it is shown 
that they are hyperbolic orbifolds and for this purpose that their fundamental group is discrete in 
PSL2(d::). 

Geometric methods turned out to be important to knot theory, since for example the complement 
of a knot which is neither a satellite nor a torus knot has a hyperbolic structure or more exactly 
is a hyperbolic three dimensional orbifold. Our concern now is to consider certain graphs in S3 
with branching indices which are connected to tunnel number one knots and show that they are 
hyperbolic orbifolds as well. 

1. Foundations 

The concept of manifolds may be generalized in a certain way by the concept of orbifolds. If a group 

r acts discontinuously on a manifold M, then the quotient space M / r is again a manifold if r 
acts fixed point free. If on the other hand r acts with fixed points, then the quotient space is no 
longer a manifold but what we an orbifold. 
Since the orbifolds considered in this paper are only so called good orbifolds, we will introduce a 
definition of an orbifold here which is weaker than the one introduced by Thurston [13) but com
pletely sufficient for our purposes: 

Definition: Let M be a manifold and r a group acting discontinuously on M possibly having fixed 

points, then r = M / r is called an orbifold and the former fixed points in the orbifold form the 

set of singularities and the order of the stabilizer of the fixed point in r is called the branching index 
of the singularity. 

In this case M is called a covering of the orbifold M / r . If M is furthermore simply connected 

then M is called a universal covering and we have that r = 11'1 ( M / r ). 

This concept really is a generalization, since any manifold is an orbifold and coverings in the usual 
sense are also orbifold coverings. 

Examples: Considering IR2 / Z x Z we get the torus and so the torus is an orbifold which has IR2 
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as its universal cover. 
Considering now rn? / < r > where r is a rotation of 2: we get an orbifold which has the shape of 

a cone with the vertex as a point of singularity with the branching index n. This orbifold has again 
the universal covering IR. 2 . 

Definition: We sayan orbifold 0 admits a geometry modelled on a space X, if there exists a 

discrete subgroup r of , the group of Isometries of X, such that 0 = X / r . 
We also say 0 has the geometric structure of X. 

We remark that a group acting discontinuously on X is also a discrete subgroup of all continuous 
functions of X in itself. If X is a complete Riemannian manifold and r a subgroup of Iso(X) then 
the converse is also true. 

Consequently the two examples already considered have a Euclidian structure. By he uniformization 
theorem we know that any two-dimensionsal manifold carries either a Euclidian, spherical or hyper
bolic structure and so this also holds for two-dimensional orbifolds (with our restricted definition), 
see for example Scott (12). 

Thurston [14) conjectured that any compact three-manifold has a canonical decomposition into 
pieces which have a geometric structure. In fact he shows, that if one of these pieces allows a geom
etry essentially only the following eight geometries can occur: E3, rn3, S3, S2 X IR., rn2 x IR., SL2(IR.), 
Nil and Sol. For more details about this topic see for example Apanasov [1) or Scott (12). 

For later use we note that in view of Haeflieger and Quach (6) for an orbifold 0 with underlying 
space S3 and the singular set given by a graph G with branching indices we have 

11'1(0) = 1I'1(S3 \ G)/< X~I,X~2, ... ,x~t > 

where Xi is the path around the line of the graph G with the branching index ki. 

2. The Hyperbolic Space 

For our purposes the most convenient model of the hyperbolic three dimensional space is the Poincare 
model. It consists of the upper half space 

rn3 ([; x )0,00) 

equipped with the hyperbolic metric 

{( z, r) I z E ([;, r E IR., r > O} 
{(x,y,r) I x,y,r E IR.,r > O} 

ds2 = dx 2 + dy2 + dr2 
r2 

The geodesics with respect to this metric, i.e. the hyperbolic lines, are the half circles or half lines 
orthogonal to the boundary ([; of rn3 in the Euclidian sense. Consequently the hyperbolic planes are 
the Euclidian half spheres or Euclidian half planes orthogonal to the boundary. 

On this model of hyperbolic geometry the group PSL2 (([;) acts as the group of orientation preserving 
isometries by 
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According to the remark in the last section any discrete subgroup of PSL2(CC) acts also discontinu
ously on 1113. Later in section 3.3 we will prove the discreteness of a subgroup by the construction 
of its fundamental domain. 

Thurston [14) proved that the complement of any knot which is neither a satellite knot nor a torus 
knot has a hyperbolic structure. Even an explicit construction for the figure eight knot is given in 
[13). 

Furthermore it was proved in [11) that the Fibonacci manifold (for a definition see [9)) is an n
sheeted covering of the figure eight knot in the 3-sphere. Therefore the figure eight knot with the 
branching index n in S3 is also an hyperbolic orbifold. 

3. The Hyperbolic Structure of the Hopf Link with a Tuunel 

Helling, ~Iennicke and Vinberg showed in [8) that the graph corresponding to the cloverleaf with a 
tunnel is a hyperbolic orbifold using essentially the following method. 
First r is mapped in PSL 2 «([;) by a homomorphism. Then looking at a certain extension of this 
group the fixed points of some finite subgroups become the vertices of a fundamental polyhedron. 
Poincare's theorem then yields the faithfulness of the constructed homomorphism. 
In this section using essentially the same method we will prove the following: 

The Hopf link with a tunnel and branching indices k, I and m is a hyperbolic orbifold 
exactly in the cases (3,3, :l), (3.4.2) and (4,4,2) stich that there exists a fundamental 
domain which IS a tetrahedron. 

As A.D. Mednikh pointed out to me this result is essentially contained in a preprint of Zhuk [15), 
where he classified the fundamental tetrahedrons. 

As the graph G we will consider the Hopf link where a tunnel joining the two circles is added. Let 
the branching indices be k at one of the circles, say the one at A, and I at the one at B and finally 
m at the tunnel AB (see figure 1). Here and throughout the rest of the work we assume of course 
the branching indices k. I and m to be greater t.han one. 

Ie 

m 

Figure 1: The Hopf link with a tunnel 
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3.1 THE FUNDAMENTAL GROUP 

In this section it will turn out that the fundamental group of this object as an orbifold is a gener
alized triangle group (for a definition see Baumslag, Morgan and Shalen [2]). Calculating first the 
fundamental group of S3 , G by the standard Wirtinger algorithm, which is exhibited e.g. in Burde
Zieschang [3] and then factorizing this group by a certain normal subgroup we get the fundamental 
group of the orbifold, according to the remark in section 1. 

We remark that the fundamental group of many orbifolds obtained in a similar way, i.e. we take 
a tunnel number one knot and the tunnel and add the branching indices, is a generalized triangle 
group [7]. 

We will show that the fundamental group r of this graph as an orbifold with underlying topological 
space S3 is 

r =< X,y I xk = yl = (xyx-Iy-I)m = 1 >. 

First using the Wirtinger algorithm we get a representation of the fundamental group 1I"1(S3, G) of 
the complement of this graph in S3, namely 

1I"1(S3, G) = < XI, X2, X3, X4, xsl 

A: 
B: 
1 : 
2: 

XI- I XSX2 

X4 XS- IX3- 1 

X3XI X3- 1 X2- 1 

X2- 1 X4- 1 X2 X3 

= 1, 
= 1, 
= 1, 
= 1>. 

This is a free group of rank 2 as it becomes clear from the following. 

XI = X, 

X2 = yx y-I 

X3 y, 
X4 X2X3X2-1 = (yxy-I)y(yxy-I)-I 
Xs xyx- I y-I 

Adding now the branching relations 

Xl k = X2 k = 1, X3' = X4' = 1, xsm = 1, 

by (1), 

by (2), 
by (A). 

we obtain the following presentation of the fundamental group r l of the Hopf link graph with the 
branching indices 

r =< x,y I xk = yl = (xyx-Iy-I)m = 1 >. 
For simplicity we denote by w := [x, y] = xyx-Iy-I. 

3.2 THE HOMOMORPHISM r ----> PSL2(~) 

First we construct a homomorphism <p : r ----> PSL2(~) such that the elements x, y and w = 
xyx-Iy-I are mapped to rotations of rn3 through 2:, 2," and ;:: respectively, since PSL2(~) can be 

regarded as the group of orientation preserving motions of rn3 (see section 2). 
For A E SL2(~) we denote by If the pair {A, -A}. Moreover set 

Now, we postulate 

X:= <p(x), Y:= <p(y) and W := <pew). 

11" 
trX = ±2 cos k 



11' 
trY = ±2 cos T 

trW = ±2 cos~ 
m 

in order to let 'P fulfil the conditions formulated above. 

Without loss of generality we may fix X and Y such that the trace is nonnegative, i.e. 

11' 11' 
tr X = 2 cos k' tr Y = 2 cos T' 

Since det X = 1 and det Y = 1, the following equation holds 

tr W = tr (XY X-1y- I ) = -2 - tr Xtr Ytr XY + (tr X)2 + (tr y)2 + (tr Xy)2. 

If we set ~ := tr X,.,., := tr Y, ( := tr Wand a := tr XY this means 
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If we had that tr XY = a E! IR, this would guarantee that 'P(r) is infinite (for later use note that 
this guarantees at the same time that the axes of the corresponding rotations of X and Yare skew), 
see for example Appendix 3 of (8). Therefore we want a to be a complex root of the following 
polynomial 

p(a) = a 2 - I'~ a + e + 1,2 - 2 - (. 

a is a complex root of p, if and only if 

where now ~ = 2 cos f, .,., = 2 cos T and ( = ± 2 cos ~. 
Since ( ~ 0 does not yield more cases for D < 0 we may restrict in the following to ( $ O. 
We now consider the following cases separately, where without loss of generality we may assume 
k $/. 

(i) If k = 2 then e = 0 and hence D = _1,2 + ( + 2 and so we have D < 0 in the cases where either 
I = 3, m > 3 or I = 4, m > 2 or I ~ 5. 

(ii) If k = 3 then e = 1 and hence D = -h2 + < + 1 and so we have D < 0 in the cases where 
either / = 3, m > 2 or I ~ 4. 

(iii) If k ~ 4 then 2 $ e < 4 and hence D < ( $ 0 in all other cases. 

So the required homomorphism exists except for (2,2, m), (2, 3,3), (2, 3, 2), (2, 4, 2) and (3,3,2). 
These remaining cases are partially considered in a paper by Dunbar [5], i.e. (2,3,2) and (3,3,2). 
Especially the case (2,3,3) can be found in Coxeter (4). Turning now to (2,2,m) and (2,3,2) we 
find: a) In the case (2,2, m) we have that 

r =< x,ylx2 = y2 = (xyx-1y-I)m = 1 > 
=< x,ylx2 = y2 = (xy)2m = 1 >. 

this is a dihedral group D4m of order 4m and hence finite. b) In the case (2,4,2) we have that 

r =<x,ylx2=y4=(xyx-1y-I)2=1> 
=< x,ylx2 = y4 = (xyxll)2 = 1 >. 
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The kernel N of the homomorphism 
f: r -.r 

x t--+ 1 
y t--+ Y 

is a normal divisor of r of index 4 with the following structure 

N = (Z2 * Z2) X (Z2 * Z2)· 

3.3 THE CONSTRUCTION OF THE FUNDAMENTAL POLYHEDRON 

For the construction of the fundamental polyhedron we first consider some subgroups of cp(r) which 
are triangle groups and their fixed points. Namely 

r", 
cp(y-l)r",cp(y) 

ry 
cp(x-1)rycp(x) 

._ < cp(x),cp(yx-1y-l) > 
< cp(y-1xy), cp(x- 1) > 

._ < cp(y),cp(xy-1x- 1) > 
< cp(x- 1 yx), cp(y-l) > 

with the fixed point 
with the fixed point 
with the fixed point 
with the fixed point 

0", 
cp(y-l )0", 

Oy 
cp(x-l)Oy. 

While the first two are triangle groups of type T(k, k, m), the latter two are of type T(l, I, m). Since 
they are finite, whenever t + t + ~ > 1 or t + t + ~ > 1, respectively, their corresponding fixed 
points exist as a usual point. In the case of equality this an infinite point. 

We draw here attention to the fact that for a usual triangle group T(k, I, m) the following holds. 

1 1 1 
IT(k,l,m)l<oo¢=} k+l+~>l. 

Now we verify some elementary facts concerning these fixed points using the following result which 
is proved for example in the Appendix 3 of [8): 

Let X, Y E SL2«(;) and tr X, tr Y E [-2,2) then the following holds 

The axes of the rotations X and Yare coplanar ¢=} tr XY E lR. 

Since we have ensured that the tr XY E! IR we know that the axes of cp(x) and cp(y) are skew. On 
the other hand O""cp(y-l)O", and Oy,cp(x-1)Oy are on these axes respectively and so 

as well as 
cp(y-l)Ox i= Oy, 

It still remains to be proved that 

For this purpose suppose that 0", = cp(y-l)Ox, then we have 

which means that cp(y-l )Ox is on the rotation axis of cp(y). This is a contradiction, since the axes 
of cp(x) and cp(y) are skew. 
Oy f:: cp(X-l)Oy can be verified analogously. 

Therefore these four points are all different and we have the following tetrahedron T 
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Figure 2: The tetrahedron T 

Where we have the face identifications as follows 

and 
Oy 'P(x-1)Oy 'P(y-l)O", ~ Oy 'P(x-1)Oy 0",. 

To prove that this is really a fundamental polyhedron for 'P(r) we have to check on the Poincare 
relations of this polyhedron. For this we have to check, that the sum of the angles of the edge cycles 
are equal to 2:, furthermore that if the identifications at this edge are given by hI, h2' ... , h. n is 
the order of h.h._ 1 ... hI. For the theorem of Poincare see Maskit [10]. 

a) 0", 'P(y-I )0", ~ 0", 'P(y-I )0", 
The edge 0", 'P(y-I )0", is equivalent only to itself. It is the axis of a rotation 'P(x) of order 
k. Hence precisely k copies of the tetrahedron meet in this edge, and hence the Poincare 
condition holds true. 

b) Oy 'P(x- I lOy ~ Oy 'P(x- I lOy 
The edge Oy 'P(x- I lOy is equivalent only to itself. It is the axis of a rotation 'P(y) of order I. 
Hence precisely 1 copies of the tetrahedron meet in this edge, and hence the Poincare condition 
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holds true. 

-1 -I) '1'("') (-1)0 0 'I'(y) 0 '1'(",-') c) cp(y )0", cp(x Oy ---> cp y '" y ---> 0", y ---> 

O",cp(X-I)Oy 'I'~) cp(y-I)O.,cp(X-I)Oy 
The remaining four edges are all equivalent under the identification of faces. Join four copies 
of T as shown in figure 3, obtaining a polyhedron. Observe that cp(xyx-1y-l) is a rotation 
of order m with the axis O",Oy which maps cp(yx)Oy to cp(x)Oy. Hence there are precisely 
m copies of the tetrahedron which meet in the edge 0", Oy, and hence the Poincare condition 
holds true for this edge. 

cp(yx)Oy cp(x)Oy 

Figure 3: copies of the tetrahedron T 

Now we know that our tetrahedron T is fundamental for the group cp(r). Moreover cp(r) has exactly 
the relations implied in a)-c) and hence cp is faithful. 

The following pictures illustrate that performing first the identification by cp(x) and then by cp(y) 
at the tetrahedron T we really get the required Hopf link graph. 

cp(x) identifies the edges 0", cp(x- I JOy and O",Oy and gives figure 4. 
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'P(y) 

Figure 4: The identification by 'P(X) 

'P(y) now identifies the edges Oy 'P(y-l lOx and Oy Ox yielding the Hopf link graph, see figure 5. 

Figure 5: The identification by 'P(Y) 

Now we have shown, that the tetrahedron T in figure I, which was constructed by a method essen
tially used by Helling, Mennicke and Vinberg in [8], is really a fundamental domain for the Hopf 
link graph in figure 2, whose fundamental group is a generalized triangle group. 

So we proved that the Hopf link with a tUllnel and the branching indices k and I at the circles and 
m at the tunnel really is a hyperbolic orbifold if (k, I, m) is one of (3,3,3), (3,4,2) or (4,4,2). At the 
same time we obtained a faithful presentation of a generalized triangle group as a discrete subgroup 
of PSL2(CC). 
The same result holds for similar orbifolds [8],[7]. 
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ABSTRACT. We present a formula to give the number of equivalence classes of representations 
of a knot group onto a dihedral group and characterize the associated irregular dihedral branched 
coverings of knots, especially Montesinos knots. 

1. Introduction 

Throughout this paper we work in the piecewise linear category. A branched covering of a knot 
means a covering space of a 3-sphere S3, branched along the knot. Hilden [5] and Montesinos [7] 
independently showed that every orientable closed 3-manifold is a 3-fold irregular branched covering 
of a knot. We have the problem which 3-manifold is obtained as a 3-fold irregular branched covering 
of a given knot. It is known that each 3-fold irregular branched covering of a 2-bridge knot, if it 
exists, is homeomorphic to S3. Murasugi [8] showed that a simple 3-fold irregular branched covering 
of a closed 3-braid, if it exists, is homeomorphic to a lens space £(n, 1) of type (n,l) for some integer 
n :2: 0, where £(0,1) is homeomorphic to S2 x SI and £(1,1) is homeomorphic to S3. Further, 
Hosokawa and Nakanishi [6] showed that each 3-fold irregular branched covering of a pretzel knot, 
if it exists, is homeomorphic to £(n, 1) or a connected sum of those spaces for some integer n. 

In this paper we consider p-fold irregular dihedral branched coverings of knots. When p = 3, 
the coverings are 3-fold irregular branched coverings. Note that there exists a 3-manifold which is 
not a p-fold irregular dihedral branched covering of a knot for any prime p > 3. See Chumillas
Montesinos [3]. In Section 2 we present a formula that gives the number of equivalence classes of 
epimorphisms of a knot group onto a dihedral group. In Section 3 we investigate 5-fold irregular 
dihedral branched coverings of knots. The second named author gets a technique to investigate 3-
fold irregular branched coverings of Montesinos knots. The first named author applies the technique 
to 5-fold irregular dihedral branched coverings of those knots and characterizes the coverings in 
Theorem 3.1. The relation between the homology group of a 3-fold irregular branched covering of a 
knot and that of the 2-fold branched covering of the knot has already been known (Theorem 3.5). 
We conjecture that the similar relation between the homology group of a 5-fold irregular dihegral 
branched covering of a knot and that of the 2-fold branched covering of the knot exists, but show 
that the conjecture is false for several Montesinos knots. 

M.E. BozhiiyUk (ed.), Topics in Knot Theory, 269-276. 
© 1993 Kluwer Academic Publishers. 
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2. Dp-representatiolls of Knots 

Let Dp be the dihedral group of symmetries of a regular, p-sided polygon for an odd integer p ~ 3. 
Note that Dp is expressed as 

Dp = < a,b I a2 , bP, abab> 

and is a subgroup of I;p, the symmetric group of degree p. Let J( be a knot in 53 and G = 7rl (S3_J(). 
We call an epimorphism p of G onto Dp a Dp-representation of G (or of 1<). 

Definition 2.1. Let p and p' be Dp-representations of J(. Then, p is called equivalent to p', if there 
exists an inner automorphism 0 of I;p such that p' = Op. Note that 0 is also an automorphism of 
Dp. 

Let p be a prime integer. We denote by M2(J() the 2-fold branched covering of I< and by " the rank 
of H1(M2(I<); Zp). Using the argument of Section 10 of Fox [4], we have 

Theorelll 2.2. The /lumber of equivalence classes of Dp-representations of K is equal to (pV -
I)/(p - 1). 

Let AJ((t) be the Alexander polynomial of K. Then, AId-I) is equal to the product of torsion 
numbers of H1(M2(K)). Therefore we have the following. 

Corollary 2.3. There exists a Dp-representation of I< if and only if AJ((-1) == 0 mod p. 

Relllark. Corollary 2.3 holds even if p is nonprime. 

3. Main Results 

Suppose that K admits a Dp-representation p. Then, we denote by MIJ(K) the p-fold irregular 
dihedral branched covering of I< associated with p. We also call MIJ(I<) the Dp-branched covering 
of I< associated with p. 

Relllark. Let I< be the 2-bridge knot S(o,{3). If 0== 0 mod p, then there exists a Dp-representation 
p of I( and MIJ(I<) is homeomorphic to 53. 

We need to investigate the covering of a knot whose bridge index is greater than two. From now on, 
we restrict knots to Montesinos knots and set p = 5. A Montesinos knot I( has a diagram which is 
given as in Figure 1 and I< is denoted by M(e;(ol,{31),(02,{32), ... ,o,,{3r)), where (oi,{3d is the 
Schubert's notation for a rational tangle Ti for each i and e the number of half twists. See [1) or [2) 
for Montesinos knots. Let ,,' be the number of j's such that 0i == 0 mod 5. 
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Figure 1 

Theorem 3.1. Let I< be a Montesinos k7l0t. 
(1) If v' = 0 and there exists a Ds-representation of I<, then the number of equivalence classes of 
Ds-representations is one and the associated Ds-branched covering is homeomorphic to Sa. 
(2) If v' = 1, then there does not exist a Ds-representation of [(. 
(3) If v' ~ 2, then there exists a Ds-representation of [( and the number of equivalence classes is equal 
to (5 V '-l_I)/4. Each of the associated Ds-branched coverings is homeomorphic to L(pi, qi)#L(Pi, qi) 
or a connected sum of those spaces, where (Pi,qi) = (aj,!}j), 1::; j ::; r, (0,1) or (1, 1). 

Let v = v([() be the rank of H l (M2([();Zs). For a Montesinos knot [(, we have 

H1(M2([()) =< Sl,"" Sr, II I Sf'h f3" 1 ::; i::; r,Sl S2" ,Srile > . 

Therefore we obtain the following lemma. 

Lemma 3.2. (1) If v' = 0, then v = 0 or 1. 
(2) If v' ~ 1, then v = v' - 1. 

To prove Theorem 3.1, we introduce some operations for a diagram of a knot, where each op
eration does not change the associated Ds-branched covering. Suppose that a knot [( admits a 
Ds-representation J.I and the group G of [( is presented by a Wirtinger presentation of [(. For a 
generator Xi corresponding to an overpass of a diagram of [(, J.I(Xi) is one of (25)(34), (12)(35), 
(13)(45), (14)(23) and (15)(24). For convenience, we shall introduce symbols I, 2, 3, 4 and 5" for 
(25)(34), (12)(35), (13)(45), (14)(23) and (15)(24). A trivial tangle is a pair of a 3-ball and two 
proper arcs which are trivial and separated in the 3-ball. Since a simple Ds-branched covering of a 
3-ball branched along a trivial tangle is a 3-ball, we have 

Lemma 3.3. Let [( admit aDs-representation J.I. If we apply the followi1!fL operations I and II to a 
diagram of [( and obtain a link [(' and aDs-representation J.I' of [(I, then MI',(J{I) is homeomorphic 
to MI'([()' where u and Ii are disjoint elements of {I, 2, 3, 4, 5"} in Figure 2 and Figure 3. 

I. 

1.£ V 1.£ V 

~ g H 

K 
Figure 2 
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II. 

U V U v 

X X H ~\ 
Figure 3 

Remark. (1) A operation I is derivable from II. 
(2) When u = ii in Lemma 3.3, M",,(I(') is not homeomorphic to M",(J(). We have ,,(J() = ,,(J('), 
even if u = ii. 
Proof of Theorem 3.1. By Lemma 3.2, we have the number of equivalence classes of Ds
representations of a Montesinos knot [(. 

Let T be a rational tangle of type (ex, /3) in J( which admits aDs-representation J.I. By Lemma 3.3, 
we only need to know J.I(xt}, J.I(X2), J.I(X3) and J.I(X4) where Xi corresponds to one overpass of four 
ends ofT. When ex == 0 mod 5, there are two cases which J.I(x;) admits, up to equivalence (see Figure 
4). When ex ;j; 0 mod 5, there are also two cases which J.I(x;} admits, up to equivalence (see Figure 5). 
Hence, if ,,' = 0 and J( admits aDs-representation J.I, then J.I(Xi) satisfies a representation as in Figure 
5 (ii) for each tangle in J(. We may transform J( so that any tangle in J( admits a representation 
with u = r in Figure 5 (ii), where such a tangle is changed to a trivial tangle of horizontal arcs by 
applying a sequence of operations I and II of Lenuna 3.3. Therefore, the associated Ds-branched 
covering is homeomorphic to 53, which is the Ds-branched covering of trivial 2-component link. 

I I 

b 
T T 

(i) 

Figure 4 

I u 

T u 
(ii) 

Suppose that ,,' ~ 2. If a ;j; 0 mod 5 for a tangle Tin J(, then T admits a representation as in 
Figure 5 (i). If a == 0 mod 5 for T, then T admits a representation as in Figure 4 (i) or (ii). Note 
that a tangle in Figure 4 (ii) is changed to a trivial tangle of vertical arcs by applying a sequence 
of operations I and II of Lemma 3.3. Let L = L1 U L2 U ... U Ln be the resulting link, where 
2 S n S ,,'. Suppose that n = 2. Then, each of L1 and L2 is a connected sum of 2-bridge knots 
5(aj, /3j), respectively. Note that disjoint element u and ii of Ds are given to diagrams of L1 and L2, 
repectively. Hence, M",(L) is homeomorphic to a connected sum of two M2(Ld's and two M2(L2)'s, 
which is #(L(aj,/3j)#L(aj,/3j)). If n = 3 and U, ii and iii are given to diagrams of L1 , L2 and L3 , 
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I I I u 

D D 
I I 2 u+f 

(i) (ji) 

Figure 5 

then not all of u, 'ii and W are same. Assume that u f:. 'ii. Let /-II (resp. /-12) denote the resulting 
representation of LI U L2 (resp. L3) induced by u and 'ii (resp. W). Choose 3-balls BI and B2 such 
that LI U L2 C BI, L3 C B2 , BI U B2 = S3 and aBI = aB2. The lift of B2 in M",. (LI U L2) consists 
of five distinct 3-balls B21, B22,"" B2S. Similarly the lift of BI in M",,(L3) consists of five distinct 

5 5 

3-balls B11 , BI2 , ... , Bis . Then, M",(L) is given by (M",. (LI U L2) - UB2i) U (M",,(L3) - UBli), 
i=1 i=1 

where aBH and aB2i are identified for i = 1,2, ... ,5. Since M",,(L3) consists of three disjoint spaces, 
i.e. two M2(L3)'s and one S3, we have M",(L) ~ #(L(aj,!3j)#L(aj,!3j))#(S2 x SI)#(S2 x Sl). 
Similarly when n ~ 4, M",(L) is homeomorphic to a connected sum of #(L(aj ,!3j)#L(aj, !3j)) and 
S2 x Sl's, where there are 2(n - 2) (S2 x SI)-type terms. 

Let p", be the rank of HI (M",(K); Zs). 

Collorary 3.4. If a Montesinos knot K admits a Ds-representatioll /-I, then we have 

p", = 2(v - 1). 

Proof. If Vi = 0 and K admits aDs-representation Il, then v = 1 and p", = 0 by Theorem 3.1 (1). 
If Vi ~ 2, then v = Vi - 1 and p", = 2(v' - 2) by the proof of Theorem 3.1 (3). 

Suppose that K admits a D3-representation /-I. Then, the following theorem, mentioned by Sakuma, 
expresses the relation between M",(K) and M2(K). The theorem is easily proved by comparing a 
presentation matrix of H I(M",(K);Z3) with that of H I(M2(K);Z3). . 

Theorem 3.5. ([9]) If a knot K admits a D3-representation /-I, then we have 

On the analogy of Theorem 3.5, we expect the following conjecture. 

Conjecture 3.6. If a knot K admits a Ds-representation /-I, then we have 
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Corollary 3.4 gives a counter-example for Conjecture 3.6 when v ;::: 2, i.e. v' ;::: 3. 

Remark. Corollary 3.4 is false for several knots, for example 940,949,10103 and 10155, each of which 
is not a Montesinos knot. 

For any odd prime p, let vp(K) be the rank of Hi (M2(K)j Zp) and p",p(K) the rank of H1(M,,(K)j Zp) 
for a Dp-representation fl of K. Sakuma also mentions the following conjecture. 

Conjecture 3.7. If K admits a Dp-representation fl, then we have 

Appendix. The following table shows the knots of less than eleven crossings and more than 2 
bridges that admit Ds-representations. The homology group of 2-fold branched covering, and the 
associated Ds-branched covering are also given. The following table also points out several errors in 
the table compiled in [3j. For example, the Ds-branched covering of 10122 is a prism manifold M 1,_4 

and that of 10129 is 53. Furthermore, there exist six equivalence classes of D5-representations of 940 

and the associated Ds-branched coverings are mutually homeomorphic. Similar results happen for 
949 ,10103 and 1015S ' 
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K H1(M2(I()) M/J(K) 
816 Z35 S3 
8 18 Z15 ED Z3 Rp3#Rp3 
8 21 Z15 S3 
924 Z45 S3 
937 Z15 ED Z3 S3 
939 Z55 S3 
940 Z15 ED Zs L(5,4) 
949 Zs ED Z5 L(5,2) 
1056 Z65 S3 
lOss Z65 Rp3#Rp3 
1059 Z75 Rp3#Rp3 
1060 Z85 Rp3#Rp3 
1062 Z45 S3 
1066 Z75 S3 
1081 Z85 S3 
1083 Z85 S3 
10100 Z65 L(11,7) 
10101 Z85 L(11,3) 
10103 Z15 ED Z5 L(5,2) 
10106 Z75 S3 
10109 Z85 Rp3#Rp3 
1011 6 Z95 L(11,3) 
10120 Z105 L(11,7) 
10l2l Z1l5 L(19,8) 
10122 Z105 M1.-4 
10129 Z25 S3 
10132 Z5 S3 
10136 Z15 Rp3#Rp3 
10137 Z25 Rp3#Rp3 
10138 Z35 Rp3#Rp3 
10142 Z15 S3 
10155 Z5 ED Z5 L(5,2) 
10156 Z35 S3 
10158 Z45 L(11,7) 
10161 Z5 L(11,7) 
10162 Z5 L(11,3) 
10163 Z35 L(11,7) 
10165 Z45 L(11,3) 

Table 



276 

References 

[1] Boileau, M. and Zinunermann, B. (1987) "Symmetries of nonelliptic Montesinos links," Math. 
Ann. 277, 563-584. 

[2] Burde, G. and Zieschang, H. (1985) Knots, Walter de Gruyter & Co., Berlin-New York. 

[3] Chumillas, V. and Montesinos, J. M. (1988) "The homology of cyclic and irregular dihedral 
coverings branched over homology spheres," Math. Ann. 280, 483-500. 

[4] Fox, R. H. (1962) "A quick trip through knot theory," in M. K. Fort Jr.(ed.), Topology of 3-
manifolds and related topics, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 120-167. 

[5] Hilden, H. M. (1974) "Every closed orientable 3-manifold is a 3-fold branched covering space of 
S3," Bull. Amer. Math. Soc. 80, 1243-1244. 

[6] Hosokawa, F and Nakanishi, Y. (1986) "On 3-fold irregular branched covering spaces of pretzel 
knots," Osaka J. Math. 23, 249-254. 

[7] Montesinos, J. M. (1974) "A representation of closed, orientable 3-manifolds as 3-fold branched 
coverings of S3," Bull. Amer. Math. Soc. 80, 845-846. 

[8] Murasugi, K. (1980) "On dihedral coverings of S3," C. R. Math. Rep. Acad. Sci. Canada 2, 
99-102. 

[9] Sakuma, M. (1989) Personal communication. 



2-DIMENSIONAL BRAIDS AND CHART DESCRIPTIONS 

Dedicated to Professor Yoko Tao on her sixtieth birthday 

SEIICHI KAMADA * 
Department of Mathematics 
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Osaka, 558, Japan 

ABSTRACT. A simple 2-dimensional m-braid is a compact oriented surface F 
embedded in a bidisk B2 x D2 satisfying a certain condition. It is described by an 
immersed graph on D2, which is called a chart. Using chart descriptions, we define 
numerical invariants of a simple 2-dimensional m-braid and of a closed oriented 
surface embedded in R4. 

1. Introduction 

Let B2 and D2 be oriented 2-disks and let Xm be a fixed set of distinct m 
points on the interior of B2. An m-fold branched covering map between surfaces is 
said to be simple if the inverse image of each branch point consists of m - 1 points. 
DEFINITION: A 2-dimensional m-braid is a compact oriented surface F properly 
embedded in a bidisk B2 x D2 such that (1) the composition Fe B2 X D2 _ D2 
of the inclusion and the projection is an m-fold branched covering and (2) the 
restriction of F to B2 X 8D2 is the product Xm x 8D2. If the branched covering 
is simple, then we call it a simple 2-dimensional m-braid. 

Throughout this paper all2-dimensional m-braids are simple unless otherwise 
stated. 

Let F be a 2-dimensional m-braid in B2 X D2 and 52 an oriented 2-sphere 
obtained from D2 by identifying 8D2 with a point. Since the boundary of F is 
8F = Xm x 8D2, F naturally induces a closed oriented surface F embedded in 
B2 x 52. Identify B2 x 52 with a tubular neighborhood of a standard 2-sphere 
in R4, and we have a closed oriented surface F embedded in R4. We call it the 
closure of F or a closed 2-dimensional m-braid. 

THEOREM 1.1 (VIRojKAMADA[4]). For a closed oriented surface 5 embedded in 
~, there is a 2-dimensional m-braid for some m such that the closure is ambient 
isotopic to 5 in R4. 

A 2-dimensional m-braid is described by an immersed graph on D2, which 
is called a chart (cf.[5]). We devote Sect.2 to explaining how to describe a 2-
dimensional m-braid by a chart. Each vertex of a chart is colored white or black. 

*Partially supported by Grant-in-Aid for Scientific Reserch, Ministry of Education, Science and 
Culture: A Fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists. 

M.E. Bozhiiyiik (ed.), Topics in Knot Theory. 277-287. 
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A black vertex corresponds to a branch point of the branched covering F -t D2 
associated with 2-dimensional m-braid F, and hence the number of black vertices 
is m - x, where X is the Euler characteristic of F. 
DEFINITION: 

(1) Let F be a 2-dimensional m-braid. The w-index of F, denoted by 
w( F), is the minimum number of white vertices of charts which 
describe F. 

(2) Let 5 be a closed oriented surface embedded in R4. The w-index 
of 5, denoted by w(5), is the minimum number of w-indices of 
2-dimensional braids whose closures are ambient isotopic to 5. 

By the above theorem, the w-index of S is defined. 
Let 5 be a compact oriented surface properly embedded in a 4-manifold W4 • 

A 3-ball B3 embedded in W 4 is said to be a 1-handle attaching to 5 if the inter
section of BJ and 5 is a pair of 2-disks on the boundary of BJ and the closure of 
5 u BBJ - 5 n B3 in W4 is an orient able surface. We assign the resultant surface in 
W4 an orientation induced from 5 - 5 n B J and call it a surface obtained from 5 by 
surgery along B3 or simply the surgery result. A closed oriented surface embedded 
in R4 is said to be ribbon if it is obtained from a trivial 2-link in R4 by surgery 
along some I-handles. 

THEOREM 1.2 (cf. [5]). Let 5 be a closed oriented surface embedded in R4. The 
w-index is zero if and only if S is ribbon. 

For a closed oriented surface embedded in R4, there are mutually disjoint 
I-handles attaching to it such that the surgery result is ribbon. (In fact there are 
mutually disjoint I-handles such that the surgery result is unknotted i.e. bounds 
mutually disjoint handlebodies in R4 , [3].) Denote by r(5) the minimum number 
of such I-handles. We denote by t(5) the minimum number of triple points of 
projections of S (d. Sect.3). 

THEOREM 1.3. For any non-negative integer N, there is a 2-knot such that 

w(S) ~ t(S) ~ reS) > N. 

2. Chart description of a 2-dimensional m-braid 

In [5] it is introduced a method to describe a 2-dimensional m-braid by an 
immersed graph in D2. Here we explain it through a slightly different way from 
that in [5]. In this paper we use the term "graph" for the underlying space of 
a finite I-complex such that each O-simplex has degree 1,2 or 6. A "vertex" is 
a O-simplex of degree 1 or 6. A connected component of the "graph" removed 
"vertices" is called an "edge" or a "loop" according as it is homeomorphic to an 
open interval or a I-sphere. 
DEFINITION: An m-chart r is an immersed graph (possibly, the empty) in the 
interior of D2 satisfying the following: 

(1) Each edge or loop is oriented and labeled an integer in {I, ... , m -
I}. 



279 

(2) For each degree 6 vertex, the edges attaching to it are labeled 
alternately i and i + 1 (i E {1, .. · ,m - 2}), consecutive three 
edges are oriented toward the outside of the vertex and the other 
consecutive three edges toward the inside. 

(3) The singularity is empty or consists of double points where two 
edges or loops whose difference in labels is more than one intersect 
transversally. 

We call a vertex of degree 1 a black vertex and a vertex of degree 6 a white 
vertex. An m-chart may be called a chart if we need not specify m. 

For a given m-chart r, we define a 2-dimensional m-braid associated with r. 
Identify D2 with II x 12 , where Ii (i = 1,2) is the interval [0,1]. Deform r by an 
isotopy of D2 such that the map r c II X 12 ~ 12 is a "Morse function", namely 
the restriction to r - {vertices} is a Morse function in the ordinal sense and the 
restriction to a neighborhood of each vertex is as in Figure 1. 

.----- ------e 

r. 

, , , , 

--~- --~--
" , 

" 
, , 

r. 

Fig. 1 

A point of r is called an exceptional point if it is a critical (maximal or 
minimal) point of the Morse function, a double point or a vertex of r. A number 
t E 12 is called an exceptional value if there is an exceptional point of r in II x it}. 
We assume that for each exceptional value t, there is just one exceptional point of 
r in II x it}. A number t E 12 is called an ordinary value if it is not an exceptional 
value. 

Let It; [0, 1] ~ II xI2 (t E I2)be a path defined bYlt(s) = (s,t) fors E [0,1]. 
If t is an ordinary value, then the path meets r transversally (or does not meet) on 
some edges and loops. Using orientations and labels of those edges and loops, we 
can assign each intersection a sign in {± I} and a label in {1,· .. ,m - 1}. For an 
ordinary value t, let Wt be a word (possibly, the empty) in {atl, ... ,a;:'I} such 
that the i-th letter is aj' if the i-th intersection of It with r has a sign Ci and a 
label j. 

Let t1,··· ,ts (tl < ... < t s) be exceptional values and put to = ° and 
t .. +l = 1. For each i (i = 0,1,··· ,s), take a value tin (ti,ti+d and define a word 
Wi by Wt • Wi does not depend on t. W O and WS are empty words. Since we 
assume that there is one exceptional point of r in II X {ti} for each i (i = 1, ... ,s), 
according to the kind of the exceptional point, the word Wi (i = 1,··· ,s) is 
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obtained from W i - I by one of the following: 

( a ) Insertion of O'j 0' t. 
(b) Deletion of O'} O';~ . 
(c) Replacement of O'? 0':2 by 0':20'? (Ik - j I > 1). 
(d) Replacement of 0';0':0'; by 0':0';0': (Ik - jl = 1). 
( e ) Insertion of O'} . 
( f) Delation of O'}. 

Here j,k E {I,··· ,m - I} and C,CI,C2 E {±1}. [(a) and (b) correspond to a 
minimal point and a maximal point. (c) or (d) occurs when the exceptional point 
is a double point or a white vertex respectively. (e) and (f) correspond to a black 
vertex.] 

Let bi (i = 0,1, ... ,s) be a geometric m-braid in B2 X I corresponding to the 
word Wi. Since WO and W" are empty words, we may assume that bO and b" are 
the trivial m-braid Xm x I C B2 X I. 

Let fl be a sufficiently small positive number. For a value t in [t; + fl, ti+I - flJ 
(i = 0, 1, ... ,s), let bt be a geometric m-braid in B2 x II X {t} C B2 X II X 12 = 
B2 X D2 that is a copy of bi. If Wi is obtained from W i- I by one of (a)-(d), then 
bi and bi- I are equivalent and hence there is a continuous sequence of geometric 
m-braid from bi- 1 to bi. Using this sqeuence we define bt in B2 x II X it} for 
t E (t; - 6, t; + fl). In cases (e) and (f), we use an intercommutation (cf. [5]) to 
define bt in B2 x II X {t} for t E (t; - 6, ti + 6) which is indicated locally as one of 
Figure 2. For t in [0,6] U [1 - 6, 1], let bt be the trivial m-braid Xm x II x it} in 
B2 x II X {t} C B2 X II X h. 

In this way we have a I-parameter family of geometric m-braids {bt C B2 x 
II x {t} 10 ~ t ~ I} with a finite number of exceptions. The trace of this family 
forms a 2-dimensional m-braid in B2 x II X h, [5J. 

DEFINITION: Let Fl and F2 be 2-dimensional m-braids in B2 x D2. Fl is equiva
lent to F2 if there is a fiber-preserving isotopy of B2 x D2, when we regard B2 x D2 
as a B2-bundle over D2, carrying Fl to F2 and keeping B2 x aD2 fixed. 

The construction stated above has ambiguity and of course the obtained 2-
dimensional m-braid is not unique. But we note that the equivalence class of 
the 2-dimensional m-braid constructed above is unique and depends only on the 
ambient isotopy class of r in D2. A 2-dimensional m-braid is said to be described 
by r if it is equivalent to a 2-dimensional m-braid obtained from r by the above 
construction. 

LEMMA 2.1 ([5, Theorem 14]). For any 2-rumensional m-braid F, there is an 
m-chart which describes F. 

DEFINITION ([5]): Let rand r' be m-charts. r' is obtained from r by a C-move 
of type 1, type 2 or type 9 if they satisfy the following (1),(2) or (3) respectively: 

(1) 

(2) 

There is a 2-disk Eon D2 such that r and r' intersect BE transver
sally or do not intersect BE, they have no black vertices on E and 
they coincide on D - E. 
r and r' differ locally as in Figure 3, where Ii - jl > 1. 
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(3) There are a white vertex W and a black vertex B in r connected 
by an edge, say a, such that a is not the middle of a set of consec
utive three edges attaching to W which are oriented in the same 
direction. r' is obtained from r as follows: Delete W U a, attach 
B to the edge opposite to a and join the other four edges in the 
obvious way. (cf. Figure 4, where Ii - j I = 1.) 

If an m-chart f2 is obtained from an m-chart fl by a finite number of appli
cations of C-moves and their inverses (up to ambient isotopy of D2), we say that 
f2 is C-move equivalent to rl' 

LEMMA 2.2 ([5, Lemma 16]). Ifan m-chart r2 is C-move equivalent to an m-chart 
fl. then the 2-dimensional m-braids described by them are equivalent. 

3. Remark on the w-index 
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-
Fig. 3 

,. j i. .j , , " ' j .~ -i • J-r-i 
, , 

i j i 

Fig. 4 

DEFINITION: A 2-dimensional m-braid F is ribbon if it is equivalent to a 2-
dimensional m-braid FI such that for an identification of D2 with I X [0,1]' FI is 
symmetric with respect to the hyperplane B2 X (I X {1/2}). 

Theorem 1.2 is a direct consequence of the following two lemmas. 

LEMMA 3.1 ([5, Proposition 20]). Let F be a 2-dimensional m-braid. F is ribbon 
if and only if there is an m-chart without white vertices which describes F. 

LEMMA 3.2 ([5, Lemma 22]). (1) Let F be a ribbon 2-dimensional m-braid. Then 
the closure is a ribbon surface in R4. 

(2) Let 5 be a ribbon surface in R4. There is a ribbon 2-dimensional m-braid 
for some m whose closure is ambient isotopic to 5 in R4. 

Let f : 5 -+ R3 be a (piecewise-linear) map from a closed orient able surface 
5 into R3. The set I: = {P E R3If-1(P) consists at least two points} is called the 
3ingularity 3et of f(5). A point in f(5) is called a regular point, a double point or 
a triple point if it has a neighborhood N(P) in R3 satisfying the following (1),(2) 
or (3) respectively: 

(1) N(P) n I: is empty, see Fig. 5 (A). 
(2) N(p)nI: is a proper arc in N(P) which contains P, and f-l(N(p)n 

f(5») is a pair of disks on 5 whose images under f meet transver
sally each ot~er, see Fig. 5 (B). 

(3) N(P) n ~ is three proper arcs in N(P) which meet on P and 
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f-l(N(P) n f(5)) consists of three disks on 5 whose images under 
f meet transversally each other, see Fig. 5 (C). 

A map f : 5 - R3 is said to be normal if each point of the singularity set 
~ is a double point or a triple point. In this case a point in cl(!:) - ~ is called a 
branch point, see Fig . .) (D). A projection of a closed oriented surface 8 embedded 
in R4 is the image under the projection p : R4 - R3 of a surface 8' in R4 such 
that 5' is ambient isotopic to 8 and the restriction pis, : 8' _ R3 is nonnal. 

CAl (Bl (el (D) 

Fig. 5 

LEMMA 3.3. Let F be a 2-dimensional m-braid described by a chart r. The closure 
F of F has a projection such that the closure of the singularity set is homeomorphic 
to r. 
PROOF: Let {bt C B2 x II x {t}lt E 12 = [0, I]} be a family of geometric m-braid 
with a finite number of exceptions btl' ... ,btn where intercommutations occur. Let 
b; be a closed m-braid in B2 x 8 1 X {t} obtained from bt by identifying 51 = 11/011' 
Let C be the unit circle on the xy-plane and N( C) a tubular neighborhood of C 
in the xyz-space R;yz' By the definition of {bt}, we assume that for each ordinary 
value t E 12 , bt has a projection in the xy-plane such that it is an immersed 
m circles with double point singularities corresponding to letters in the word Wt 
defined in Sect.2. By an argument of [2] we see that the compact surface which 
is the trace b; x it} (0 ~ t ~ 1) in N(C) x [0,1] C R;yz x [0,1] has a projection 
in R;y x [0, 1] C R;y x R:, by degenerating the z-axis direction, whose singularity 

set has the closure homeomorphic to r. The closure F of F is obtained from the 
above surface in R;yz x [0,1] C R4 by capping the upside in R;yz x [1,(0) and the 
downside in R;yz x (-00,0] by two families of m 2-disks in the obvious way, cf. 

[4,§ 3j[5,§ 2]. Degenerating the z-axis, we have a projection of Fin R;y x ~ = R!yt 
such that the closure of the singularity set is homeomorphic to r. This completes 
the proof of Lemma 3.3. 

We note that in Lemma 3.3 each triple point of the singularity set corre
sponds to a white vertex of r and each branch point corresponds to a black vertex. 
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Therefore, for a closed oriented surface S in R4 , w( S) 2 t( S). Cater and Saito 
[1] showed that if S has a projection with t triple points, then there are mutually 
disjoint t I-handles attaching to S such that the surgery result is a ribbon surface 
in R4. Hence we have the following: 

COROLLARY. Let S be a closed oriented surface in R4. Then w(S) 2 t(S) 2 r(S). 

The following lemma is a refinement of the above result of Cater and Saito 
to respect the 2-dimensional braid condition. 

LEMMA 3.4. Let F be a 2-rumensional m-braid described by a chart r with t 
white vertices. (Hence F has a projection with t triple points.) Then there are 
mutually disjoint I-handles attaching to F such that the surgery result is a ribbon 
2-rumensional m-braid. (Hence it has a projection without triple points). 

We need an observation before proving this lemma. A free edge is an edge in 
a chart both endpoints of which are black vertices. 

LEMMA 3.5. Let F be a 2-rumensional m-braid described by a chart r. Let r' 
be a chart such that r is obtained from r' by removing a free edge. Then a 2-
dimensional m-braid F' described by r' is obtained from F by surgery along a 
I-handle attaching to F. 

:I :1+1 

CA) -

(B) 

(e) 

-

H x-~ x-H 
H H H H-H 

Fig. 6 

PROOF: Let 0: be the free edge such that r is obtained from r' by removing it. If 
necessary applying some C-moves of type 2 we may assume that 0: does not intersect 
r. By an ambient isotopy of D2, we may furthermore assume that it is parallel to 
I2-axis and its orientation coincides with that of h. Let N = J1 X J2 C II X 12 be 
a neighborhood of 0: in D2 which is disjoint from r, where Ji (i = 1, 2) is a small 
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interval in 1;. Let {bt C B2 x 11 X {t}lt E I2} and {b~ C B2 x 11 x {t}lt E I2} be 
families of geometric m-braids associated with F and F' as in Sect.2 respectively. 
By the definition, their restrictions over N are different locally as (A) and (B) 
in Figure 6 respectively, where j is the label of Q. F' is obtained from F by 
surgery along a I-handle illustrated in (C) in the figure. This completes the proof 
of Lemma 3.5. 
PROOF OF LEMMA 3.4: For each white vertex of r, insert a free edge with label 
j as in Figure 7, where i and j (Ii - jl = 1) are labels of edges attaching to the 
vertex. Let r' be a chart obtained from r by insrting t free edges in this way and 
let F' be a 2-dimensional m-braid described by r'. By Lemma 3.5, F' is obtained 
from F by surgery along mutually disjoint t I-handles attaching to F. We show 
that F' is a ribbon 2-dimensional m-braid. For each pair of a white vertex and 
a free edge of r', apply a C-move of type 1 as in Figure 8 and then a C-move of 
type 3 (Fig. 4). The result has no white vertices, which is C-move equivalent to 
r'. By Lemmas 2.2 and 3.1, F' is ribbon. This completes the proof of Lemma 3.4 . 

i i. . j , , , 

j - i • j - i 

i.' 
, .j . , 

l.. 

Fig. 7 

i. i. . j , , 

j - i • j- - i 

i.' 
.j 

."'. J 

Fig. 8 

PROOF OF THEOREM 1.3: Let m be an integer with m > 2N and p( > 0) an odd 
prime integer. Let K be a 2-twist spun 2-knot (cf.[12]) in Jtl of a 2-bridge knot 
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of type (p, q), where q is an integer with gcd(p, q) = 1. Consider the connected 
sum, say S, of m copies of K. By Corollary of Lemma 3.3, it is sufficient to show 
that r(S) > N. Let E(K) and E(K) be the exterior of Kin Jl4 and its universal 
abelian covering space. The covering transformation group < t >, infinite cyclic 
group generated by a generator t, of E(K) induces a A-module structure on the 
first integral homology HI(E(K)) of E(K), where A is the group ring Z < t >. 
Since the fundamental group of E( K) has a presentation 

< x alxax-1 - a-I aP - 1 > , -, - , 

the A-module HI(E(K)) has a A-module presentation [IO} 

< alta = -a,pa = 0 >A~ A/I(t+I,p), 

where I(t+I,p) is the ideal generated by t + 1 and p. Since S is the connected sum 

of m copies of K, the A-module HI(E(S) is A-isomorphic to the direct sum of 
m copies of A/I(t+I,p). (It is isomorphic to the direct sum of m copies of Zp as 

an abelian group.) Therefore we have e(HI(E(S») = m. (For a A-module H, we 
denote by e(H) the minimum number of generators (as a A-module) of H.) 

Suppose that there are mutually disjoint n I-handles attaching to S such that 
the surgery result R is a ribbon surface in R4 , where n is an integer. Since R is a 
surface obtained from S by surgery along n I-handles, by [9], we have 

On the other hand, R is a connected ribbon surface in Jl4 of genus n. By 
Kawauchi's second duality theorem [6], Kawauchi [7] and Sekine [11] showed that 

where Ext2(, A) stands for the second extension. 
Since Hl(E(R» is a quotient ofHl(E(S», it is isomorphic to the direct sum 

of s copies of Zp as an abelian group for some integer s with s ~ m. By [8, Cor. 
4.3}, Hl(.E(R» is A-isomorphic to Ext2(H1(E(R», A). Therefore 

m - n ~ e(Hl(E(R))) = e(Ext2(Hl(E(R»,A» ~ n, 

and hence 2n ~ m > 2N. Hence we have r( S) > N. This completes the proof. 
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ABSTRACT. This paper is concel'lled with coils, i.e. with t.he isotopy classes of embeddings 
(Fg , k) -+ 5'3, where Fg is a closed oriented surface of genus g, k is a system of non-intersecting 
simple closed curves on Fg , and the embedding k maps Fg onto the slIl'face of some Heegaard 
splitting of 8 3 . Each coil represents a link in 8 3 , namely, the link onto which the syst.em k is 
mapped by the embedding /". The notion of equivalence of coils is introduced and it. is proved that 
two coils represent the same link if and only if they are equivalent. 

O.Introd uction 

In this paper we will concern ourselves with objects which, as far as we know, haven't 

been systematically studied up to this day, though, in fact, they often have been regarded 
in connection with various problems of knot theory. We are talking about embeddings of 
pairs (Fg, k) into 8 3 , where Fg is a closed oriented surface of genus g, k is a system of 
non-intersect.ing simple closed curves OIl Fg, and Fg is embedded into 8 3 as the surface 
of some Heegaard splitting of 8 3 . Such an embedding, or rather an isotopy class of such 
embeddings, will be called a coil of genus g. Of course, a coil can also be thought of as a 
link embedded into the surface of some Heegaard splitting of 8 3 , thus making the link a 
primary object and the coil a secondary. Our motivation of doing the opposite is based OIl 

ideas which are yet uncertain; still we will mention some of them. 

First of all, however hopeless this may seem, we were tempted by the idea of replacing 
links by objects which look more convenient for explicit description. Links in 8 3 are defined 
up to ambient isotopy, so that a link can be moved freely in 8 3 . Since Heegaard splittings 
of ,5'3 of given genus are defined uniquely up to isotopy, we can, while studying coils, almost 
ignore the isotopies of the surfaces and regard coils as links pinned (0 fixed surfaces in 5'3. 

This strongly reduces the degree of freedom of the movements of links and, maybe, makes 
them easier to describe. 

M.E. BozhuyUk;(ed.), Topics in Knot Theory. 289-303. 
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Of course, this alone wouldn't be enough to motivate our research, since there are ob

viously too many coils corresponding to each link. Therefore, at first glance, the study of 
coils doesn't provide us with any real support in link theory; but it seems promising to 
pick a special kind of coils to represent links in S3, namely, coilings of the minimal genus 
possible for a given link. Such minimal coilings cannot vary very widely. Moreover, we are 
almost ready to run the risk of conjecturing that, given a link in S3, its minimal coiling is 
uniquely determined. For torus knots, at least, this is known to be true (example 1.7.b.), 
and it leads to a full classification of torus knots. (Frankly speaking, we rather think that 
our conjecture is only "almost" true, and that the minimal coilings of a given link still do 
vary, but in a range narrow enough to make them interesting to study.) 

What we can do at any rate, is to introduce a new numeric link invariant, which we will 
call the coiling genus of a link. The latter is defined as the genus of the minimal coiling( s) 
of a given link. We will see (example 1. 7 .c.) that the coiling genus is upper-bounded by 
the bridge-number. 

The next step to take would be to find a simple geometric criterion for a coil to be 
minimal; this, as it seems, is a solvable problem, and would help us to restrict the area of 
our research and (why not?) try to approach the problem of classification of the minimal 
coils of given genus. 

One more advantage, which we hope to gain from studying coils, is connected with the 
Neuwirth conjecture on the decomposition of knot groups to free products with amalgama
tion. As proved by Culler and Shalen [2J, every knot group can be presented as a product of 
free groups amalgamated along some subgroup. Nothing is known, though, about the rank 
of these groups. We suggest that, if k is a minimal coiling of a knot .It of coiling genus 9 on 
the Heegaard s'urface Fg in S3, the surface Fg will automatica.lly prove to be incompressible 
in the complement of .It, and thus, by the theorem of Seifert - Van Kampen, (see, e.g.,[l]) 
will give a presentation of the group of the knot Jt as a product with amalgamation of free 
groups of rank g. (This would also be a simple proof of the Neuwirth conjecture itself.) 

The first problem, however, which must be considered when studying coils, is to find a 
criterion which would allow to decide whether two given coils represent the same link. In 
this paper we stick to this question, and give to it a full answer in theorem 3.1. 

l.Basic Definitions 

We will start by introducing the main notions we will deal with in this paper. 



1.1.Dejinition: A handle body H of genus 9 is ob

tained from a 3-ball D3 by attaching 9 handles 

Hi ~ Dr x I,I = [0, IJ, i = 1, ... , g, such that the 

boundary F = f)H is a closed orient able surface of 

genus 9 (see fig.l): H = D3 U HI U ... U Hg; Hi n 
Hj = 0,i f:. j;Hi nD3 = DiOUDil,DiOnDil = 
O D '" D2 {'} rv D2 , ij = i X J = . 

1.2.Dejinition: The decomposition (H, H') of a clo

sed orient able 3-manifold AI into two handlebodies 

H,H'ofgennsg,M = HUH',HnH' = f)H = ()H', 
is called a Heegaard splitting of M of genus g. The 

surface F = ()H = ()H' is called a Heegaard surface 

in M. 
We will be interested ill embed dings of links into 
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fig.] 

Heegaard surfaces in 83 . First of aU, to avoid possible abuse of terminology, let's recall the 

following facts: 

L3.Prvposition: For any 9 2: 1 there exists, up to isotopy, a unique Heegaard splitting of 
83 of genus g. In other words, any two Heegaard surfaces of the same genus are ambient 
isotopic in ,,3. 
1.4.PI'01J08ition: Let /" and /,., be two embeddings of the union ofm disjoint copies of the 
I-sphere ,,1 into a Heegaard surface F C ,,3. If I.; and 1.;' are isotopic in F, then they are 

ambient isotopic in ,,3 (i.e. they are representations of the same link .It of multiplicity m 

in ,,3). 

Keeping 1.:3-1.4. in mind, we will now introduce the notion of a coil. Let I.; be an 

embedding of the union of m disjoint copies of the I-sphere 8 1 into a Heegaard surface 
Fe 8 3 of genus g. The embedding k represents a link JOt of multiplicity 111 in ,,3. We will 
say that I.; is a coiling of .l{ on the snrface F. If 1.;, 1.;' are two coils on the surface F and I.; is 
isotopic to k' in F, then I.; and 1.;' are coilings of the same link .l{ on F. We will often ignore 
the difference between I.; and k' aml use the term" coiling of .It on F" meaning "isotopy 
class of coilings of .It on F". 

Also, if I.; and 1.;' are coils on the Heegaard surfaces F and F' of the same genus g, and k' 
results from I.; by an isotopy connecting F and F', we will not distinguish between k and 
1.;'. Since all Heegaard surfaces of genus 9 in ,,3 are isotopic, we will often use the term 

"coil of genus g" or "g-coil", meaning a coil on "some" Heegaard surface of genus 9 in S3. 
The link represented by such a "g-coil" will be well defined. 

L5.Example: Two embeddings of the union of m disjoint copies of the I-sphere SI into a 

Heegaard surface F of genus 9 may be not isotopic in F, but still represent the same g-coil. 
For example, the two realisations i( 2,3) and t(3, 2) of the trefoil knot on the surface of a 
standardly embedded torlls T2 C ,,3 (see fig.2) give the same coiling of the trefoil knot, 
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though they aren't isotopic in 1'2. In

deed, if Hand H' are the "inner" and the 

"outer" solid tori into which T2 splits ,5'3, 

then t(2,:3) results from t(3, 2) by an iso
topy connecting the Heegaard splittings 
(H,H') and (H',H). 

Let's now give the precise definition: 

1.6.Deftnition: A coil k of genus g and 
multiplicity 111 is an isotopy class of pairs 
(( H, HI), k), where (H. H') is a Heegaard 
splitting of 8 3 of genus g and X: is a sys

t(2.3) t(3.2) 

fig.2 

tem of m non-intersecting simple closed curves on the surface F = 8H = 8H'. If .It is the 
link represented by a g-roil I" we will say that k is a g-coiling of .It. 

1.7. Example8: 

a. The only links which have O-coilings are unlinks. 

b. Any torus knot has a uniquely determined I-coiling; this directly follows from the 

classification theorem for torus knots (see, e.g., [1], pA.5). 

c. Any n-bridge knot .It has a coiling k of genus 7/; J, can be easily constructed from the 

fig.3 

7/- bridge presentation of .It by pla
cing the n lower bridges of the pre
sentation on the surface of a 3-ball in 
,5'3 and adding a handle to carry each 

of the n upper bridges (see fig.3). 
Example 1.7.c. shows us how to 

const.ruct. a coiling for a given knot. 
Of course, the same can be done for 
links as well. So, to complete this 
section, we can state the following 

1.8.Proposition: For every link .li in 8 3 there exists a coil/;; representing .li . 

2. Elementary Operations on Coils 

The first problem that naturally arises when we start to study coils as tools of link theory, is 
to describe the relations between different coilings of a link. In this section we will introduce 
some elementary operations. which, given a coil, will allow us to obtain from it new coils of 
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the same link type. Later on we will see that, in fact, all coilings of a fixed link are related 
under these elementary operations. 

2. 1. Definition: Let (H, H') be a Heegaard splitting of 
53 of genus 9 and D C H,D n aH = aD a non
separating, non-self-intersecting disc in H. Denote by 
N(D) the regular neighborhood of D in H, N(D) ~ 
DxI,N(D)naH ~ aDxI. The splitting (I'DH,I'DH') 
= (H\intN(D), H'u N(D)) will be said to be obtained 
from (H,H') by cutting along D (see fig.4). 

While TDH is a handlebody of genus g-l, TDH' isn't 
nessecarily a handlebody at all, so that (1' DH, T DH') 
needn't be a Heegaard splitting of 8 3 (see fig .. S). 

2.2.Definition: Let (H. H') be a Heegaard splitting of 
53. A non-separating, non-self-intersecting disc D C 
H, D n aH = aD, will be called elementary, if the split

fig.4 

ting (TDH, l'DH'), obtained from (H, H') by cutting along D, is again a Heegaard splitting 
of 53. 

Now let I.: be a coil on the surface oH of a Heegaard splitting (H, H') of 53, and let D C 
H be an elementary disc such that D n k = 0. 

2.3.Definition: The coil I'Dk on the Heegaard sur
face o( TDH) obtained from k by cutting the split
ting (H, H') along the disc D will be called the 
reduction of I.. along D. 

Obviously k and TDk represent the same link. 

2.4.Definition: Let (H, H') be a Heegaard splitting 
of 8 3 , and let 0: be a simple arc in H', o:noH = 00:. 
Denote by N (0:) ~ 0: X D2 the regular neighbor
hood of 0: in H', N(o:) n oH ~ 00: x D2. The 
splitting (soH, saH') = (H U N(o:),H'\intN(o:)) 
will be said to result from (H, H') by attaching a 
handle along 0: (see fig.6). 

(s"H,SaH,) isn't always a Heegaard splitting 
of 8 3 ; it will be one if and only if the arc 0: is 

fig.!) boundary-parallel in H', i.e. if there exists an am-
bient isotopy ht : (H',oH) x 1-> (H',oH) X I 

such that ho = ide H', oH) and hI (0:) = const. Let k be a coil on the surface oH of the 
Heegaard splitting (H,H') of 8 3 , and let 0: C H, be a boundary-parallel arc such that 
0: n k = 0. 
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2.5.Definition: The coil sak obtained from /..~ by attaching to (H, H') a handle along the 

arc n, will be called the stabilisation of k along n. 

Clearly, sak represents the same 

link as k. 
Obviously, each of the operations 

of reduction or stabilisation has an 
inverse, which, accordingly, will be 
the stabilisation along some arc or 
the reduction along SOllle disc. In
deed, let k be a coil on the sur
face 8H of the Heegaard splitting 
(H,H')ofS3, and Il't Dc H,n C 

H' be an ell'ml'ntary disc in Hand 
a boundary-paralll'l arc in H' RUch that D n ,. = Ct n I.: = 0. 

fig.6 

Let x bl' an illnl'r point of D; denotl' by Ct;; the arc (tJ ==' ;1" X [C D x I ==' N(D) 
ill 1'DH'. Tlwll (If. H') = (8 0 I I"[)H, Sa, /'DIf') awl Self T Dk == I.: (see fig.7). Let y be an 
inner point of (t; dl'notl' by Dy t 1](' disc Dv ==' '!J x 1]2 C (I x D2 ==' }\'( (l) in saH. Then 

(H. H') = (rD,soH, I'D.\. H') and l'D y 8"k = k (see fig.).)). 

fig.7 fig.8 

2.n.Dfjillition: Let I.: hI' a coil on till' surfacl' f)H of the Heegaard splitting (H, H') of S3, 
aJl(1 Il't D C H be an I'll'mentary disc intl'rsecting k in exactly one point xo.Denote by K 

thl' componl'nt of" which intersl'cts D, and fix an orientation on Ii. Choose an orientation 
on D and denotl' by t. tlw closed path with initial point .TO, running once around aD in 
the positive direction. If the curve lit. on 8H is simple, then the coil tDk obtained from k 
by changing the component Ii to I{t. will be called the translation of k along D (see fig.9). 
Again, tD/..· will represent the same link as k. 

The coil obtainl'd from k by changing the component Ii to lit.- l will be denoted by 
tD-,k. At least one of the translations tDk,tD-,k is defined for any elementary disc DC 
H, D n k = {xo}. Both of them will be defined if the intersection of I.: and t. is transversal. 

If a translation t D' k, E = lorE = -1, is defined for the disc D, then, as it is easy to 
check, the translation t D- d D' k is also defined and t D-' t D' k = k. 
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2.7.Definition: The operations of reduction, stahilisation and translation will be called the 

elementary operations on coils. 

fig.9 

As we have seen, each elementary operation has an inverse which is again an elementary 
operation. This justifies t he following 

2.8.Definition: Two coils /", k' will he called equivalent, if there exists a finite sequence of 
elementary operations (1, ... , en such that k' = en . .. el k. 

3. Coil Diagrams 

Our aim is now to prove the following main theorem: 

3.1. Theorem: Two coils are coilings of the same link if and only if they are equivalent. 
We have already seen that equiva.lent coils do represent the same link; now we're going 

to show that any two coilings of a link are equivalent. 
The proof will consist of two parts. First, we shall introduce coil diagrams, which are 

black-and white colourings, due to certain conditions, of link diagrams. We shall prove 
that any two coils, whose diagrams are colourings of the same link diagram, are equivalent. 
After that, we will show that the Reidellleister moves by which different diagrams of a link 
can be transformed into one another, can be "translated" to elementary operations on the 
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corresponding coils. 
Consider the 2-sphere S2 standardly embedded into S3 as the equator. Let Dg be a disc 

with 9 holes embedded in S3, Dg = S2\(UO U Ul U ... U Ug), where Uj C S2, i = 0,1, ... ,9 
are open discs, Uj n Uj = 0 for i f: j. De-
note by N(S2) S'! S2 X I,I = [-1, IJ, the regular 
neighborhood of S2 in S3, and consider the han
dlebody Hg S'! Dg x Ie S2 X I ~ N(S2) (see 
fig.l0). The surface Fg = aHg is a Heegaard sur
face of genus 9 in S3, and the standard projection 
p: N(S2) --> S2 maps Fg onto Dg. 

Let k be a coiling of the link .It on the surface 
Fg , and let p( k) be the projection of k on S2. 

3.2.Definition: The diagram of the coil k is a 
black-and-white colouring of the areas of the link 
diagram p( k) obtained by painting black all areas 
a2 ofp(k) such that a2 C D g , and painting white 
aU the remaining areas (see fig. 11 ). 

fig.1 0 

:3.3.Definitioll: Let /\' be a link diagram. A shading k of the diagram J( is a black-and
white colouring of the areas of /{ such that, for any alternating edge a l of J(, at least one 
of the two areas adjacent to a l is white-coloured. 

It's easy to see that any coil diagram is a shaded link diagram in the sense of definition 3.3. 

fig. 11 

3.4.Examples: 

a. For any link diagram J( the chess
board colouring of its areas is a shad
ing of J(. 

b. For any link diagram ]( its trivial 
shading can be introduced by paint
ing all areas of ]( white. 

3 .. 5.Lemma: Any two coils which have 
the same diagram are equivalent. 

Proof: Let E' be a shaded link diagram and suppose it is the diagram of a coil k on the 
Heegaard surface Fg • Let af, ... , a~ be the areas of the diagram k. By V, we will denote 
the intersection of the area aT with the holed disc Dg = S2\(UO U ... U Ug). 

Consider a white-coloured area ar of Ii. For j = 0,1, ... , 9 we have either Uj naT = 0 
or Uj C aT- Suppose UJ C aT for j = 0,1, ... ,j(i) and Uj n a} = 0 for j ~ j(i) + 1. 
Obviously, Vi = a;\( Uo U ... U UJ(i). 
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Suppose jU) 2: 1. Let 1 C illfl/i be a simple arc connecting the boundaries of Uo and 

U1. The disc p-1('y) =:! ; x I will be an elementary disc ill H Y' p-1 (I) n k = 0. By reducing 

the coil k along p-1 (;) we obtain a coil on the Heegaard surface F~-1 which has the same 

diagram Ii ... The number of the holes Uj C a; will be reduced by aIle (see fig.12). 

Repeating this operation jCi) - 1 times, we will obtain a coil on the Heegaard surface 

Fg-(j(i)-l), whose diagram again will be [( and for which the number of holes Uj C a; 
will be equal to one. 

The same procedure can be repeated for all white-coloured areas of the diagram [( 

without changing the equivalence class and the diagram of the coil k. Therefore, we can, 

without loss of generality, assume that , .. is a coil on the Heegaard surface Fw, where w + 1 

is the number of the white-colomed areas of the diagram [(. and that for all white-coloured 

areas aT of K- we have l'i = aT \ Ui . 

fig. 11 

Now, let a be an edge of I he diagram [(. and let a( 0), a( 1) be the endpoint.s of a. For 

i = 0,1 denote by a(i) the point (a(i).l) E F/J):::< f}(D u: x I), if ali) is an overcrossing, and 

Ih<' point (a( i), -1) E Fw:::< D( D IJ.' x I), if a( i) is an undercrossing. Obviously, the part of 

the coil k projecting onto a must be a simple arc a on FlU connecting a(O) and a(1). 

Let ai, 0'5 be the areas of the diagram II: adjacent to a. By our assumption, for i = 1,2 

we have lli = a;\U i . (Of course, the area a;,i = 1 or i = 2, may be black- coloured, 

but we will still use the notation 1', = a;\Ui, putting U, = 0 if this is so). Consider 
the intersection a n au,. It is a (possibly empty) collection of su bsegments of the edge 

a. Denote these subsegments by 01,' .. , nn for U1 and by ;31,"" 13m for [12. The inter

section an illtD tL• = a\(01 U ... U On U fh U ... U (3",) will he a collection of open intervals 

10 .... ,'n+m in a. The arc a mllst he a composition of arcs O:k, /3" 1i on Fun each of them 
projecting onto the corresponding part of the edge a. Since Ij C illt Dw for all j, there are 
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only two ways of lifting Ij to F,"" namely, I} ~ Ij x {t} C 8(Dw x I) ~ Fw,E = +,-, 
Hence, the arc a will be a composition of arcs lik C p-l(O:k),ffil C p-l((3t)'lj,E = +,
(see fig.13). 

..r---blt---"'u( 1) 

fig.13 

We will now proceed to deform the Heegaard surface F wand the arc a in order to obtain 
a standard form of lifting the edge (1 to the surface Fw' 

Step 1. (see fig.14): Contract the seg-
ments Ok. (31 towards their middle-points 
ak,bl . The rectangles p-l(Ok),p-l((3d will 
contract to the vertical segments ilk = 
]1-1 ((tk), bl = p-1 (btl. respectively. Deform 
the arcs, obtained, ill this way, from lib/h, 
to straight-Iiue segments along ilk- bl , leav
ing their endpoints fixed. The arcs lik,/3, 
will either contract to points, or deform 
to the vertical segments Uk, bl, respectively. 
Hence, the arc a will now become a com

position of the arcs ilk,bl,Afj,[ = +,-. 
Step 2. (see fig.15): If s~me part of the 

arc (r has the form Ukl}" '1}+/ik+1, de
form it along Fw to the path I't; ... "Y j-':s; 
as a result, the arc (r will now have the form 

e - -E b- F: - -F: b- F: 
.. • Cj ak cj+l ,cj+2 ak+l cj+3 /+1 Cj+4'" 

where cj = I: .. '/~+s fig.14 
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Step 3. (see fig.16): If some part of the arc ij has the form 1'.11'.1+1' push the boundary 

of the hole [1j slightly away from (J', so that it doesn't touch (J' in the point deviding l' j and 

1'Hl. Finally, the arc ij will have the standard form. " 1'.liik1'T':1 bn}+2ii k+1 1'T':3bl+1 1'}+4 . " 
(see fig.17). 

If at least one of the areas (J'f, (J'i adjacent to (J' is black-coloured, the lift ij of (J' to Fw 

fig.l'l 

The proof of lemma 3.5. is completed. 

will be uniquely determined. In

deed, let, for instance, (J'i be 
black-coloured. Then [12 = 0, 
{bllt = 1, ...• m = 0, and ij = 1'0 
or ij = ~io ii11'l o is uniquely de

termined by its endpoints ij(O), 
ij( 1). 

If both (J'i, er§ are white-co
loured, then er has many lifts of 

the standard form, but, as it is 

easy to see, they differ only by 

translations along the elemen

tary discs P-1 (1'j) c H w, and 
by applying step 3. of the de

formation described above (see 

fig.1S ). 

3.6. Proposition: Every shaded link diagram 1\ is the diagram of a coil k on the surface 

Fw = a( Dw x f), where 'W + 1 is the number of the white-coloured areas of j(, such that 

1/i = erT n Dw = erT \ [Ii for all white-coloured areas erg, ... ,er~, of 1\. 
Indeed, if til(' edge er of fl.' is nonalter-

nating, it can be lifted to an arc (r ~ 10 
collnecting the points a-( 0), a( 1) on Fw' If 
the edge er is alternating, then at least one 
of the areas erT, (J'] adjacent to (J' is white
coloured. Let it be til(' area a'f. Then we 
have 1/i = er;\Ui • where Ui is a non-empty 
open disc in er[. Deform Ui so that its boun
dary aUi touches er in exactly one point al. 
Then (J' can be lifted to the arc a- = ~16ii111£ 

connecting the points ij( 0). 0-( 1) on F w' 

3.7.Lemma: Any two coils k,k', whose dia
grams 1\, Ie are shadings of the same link 
diagram I{, are equivalent. 

fig.lG 

~ 
~ 

Proof: Let er 2 be a black-coloured area of the diagram J?, and let .r E inter2 be an inner 
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iT(O)~"""'''''' 

iT( 1) 

fig.li 

fig.lS 



point of (12. Denote by x the arc p-l(x), 
and cosider the coil sxk obtained from k by 
stabilisation along x. If k is a coil on the 
surface Fg = 8(Dg x I), then sxk will be a 
coil on the surface Fg+1 = 8((Dg\U(x)) x I), 
where U (x) is a small disc in (12 containing x. 
the diagram of the coil sxk will be a shading 
of the link diagram J( which differs from K 
only by the colour of the area (12 - the latter 
will be white instead of black (see fig.19). By 
repeating the same operation for aU black
coloured areas of k, we will obtain a coil 
which is equivalent to k and whose diagram 
is the trivial shading of the link diagram J(. 

The same can be done for the coil k'. Thus, 
we obtain two coils which are equivalent to k 
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fig.19 

and to k', respectively; on the other hand, these two coils have the same diagram - the triv
ial shading of the link diagram J(. Therefore, by lemma 3.5., they are equivalent, and so 
will be k and k'. 

The first part of the proof of theorem 3.1. is now completed. We have shown that: 
a) Every coiling k of a link .It defines a coil diagram. The latter is a shading of some 

diagram It- of the link .It. b) Every shaded diagram K of a link .It is the diagram of some 
coiling k of .It. c) For any diagram I\ of a link .It, all coils whose diagrams are shadings of 
J( are equivalent. 

Now we must see what happens if we consider coils whose diagrams are shadings of 
different diagrams of a given link .It. 

The following classical theorem gives us the relation between different diagrams of a link: 

fig.20 

3.8. Theo1-em: Two link diagrams represent the same link if and only if one can pass from 
one to the other by a finite sequence of Reidemeister moves R1, R2 , R3 , described in fig.20, 
or their inverses. 
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According to theorem :3.8. and to what we have already shown, it suffices for our purpose 

to prove the following: if ]{o, A'I are two link diagrams which differ only by one of the Rei

demeister moves R i , i = 1,2,3, then there exist shadings h'o, [(I of Ko, A'I' and coils ko, kl 
such that the coils ko and kl are equivalent and their diagrams are [(0, [(I, respectively. 

tv 

R3 
~ 

fig.21 

Fig 21, a, b, c, presents pieces of the projections of the coils /';0, /';1 and the corresponding 
pieces of the coil diagrams h'o, fl:1 , having the required properties for the Reidemeister 
moves R1 , R2 , R3 , respectively. (We illlply that all the areas of the coil diagrams not shown 
on the pictures are white-coloured). 

The proof of theorem 3.1. is completed. 
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A Search for Kernels of Burau Representations 

DJUN M. KIM 
Mathematics Department, 
The University of British Columbia, 
Vancouver, B.C., V6T 1Z2 
Canada 

ABSTRACT. John Moody [8], proved in 1991 that the Burau representation (3n of the n-strand 
braid group Bn is not faithful if n 2: 9. This result was improved to n 2: 6 by Darren Long and 
Michael Paton [5). A description of this work is given. Using these results, a (so far unsuccessful!) 
computer search for non-trivial elements in the kernel of (34 and (35 was made. 

1 The Braid Group Bn 

Braids are defined geometrically as disjoint, possibly tangled strands. To make this precise, 
we need a few definitions. 

Let E = E2 C E3 be the standard cartesian plane in euclidean 3-space; let E' be E 
translated down one unit in the z direction. Let Qn C E be marked points on the x-axis 
at 0,1, ... , n - 1 and let Q~ be the corresponding set in E'. Consider n disjoint embedded 
arcs lli:[O,I] -+ E3 (i = 1, ... ,n) with Ili meeting some point of Qn (respectively Q~) 
transversely at t = 0 (respectively t = 1) and so that every horizontal plane between E and 
E' meets the Ili transversely in exactly n points. An n-braid is an isotopy class (rei E and 
E') of such embedded arcs. 

The set of n-strand braids forms a group which will be denoted Bn; the operation in 
the group is composition, defined by taking representatitives, performing the following 
operation, and taking the isotopy class of the result: 

U 0 T:= 4>(u) U (4)(7) - (O,O,~)) 
where 4> is the homeomorphism of E3 given by (x, y, z) f-+ (x, y, z/2). 

There are several steps required to verify that this is well defined and gives a group 
structure on Bn; these are left as an exercise for the reader. 

1.1 ARTIN'S PRESENTATION 

Every braid U E Bn can be written as the composite of so-called elementary braids 
U1, .•. , Un-I, where Ui is the braid in which the i-th and i + I-st strands are interchanged 

M.E. BozhuyUk (ed.), Topics in Knot Theory, 305-317. 
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i i+1 

Figure 1: The i-th elementary braid 

by a right-hand twist (other authors use the other convention!) and all other strands pass 
straight through. Hence in a planar projection, the i + 1-st strand passes over the i-th 
strand. See figure 1. 

Hence the set of elementary braids is a set of generators for En. Contemplating braids 
diagrams, we see that several relations hold in the braid group. First, "distant braids 
commute". That is, 

(Ii - jl ~ 2) (1) 

Adjacent braids satisfy the following commutation relation: 

(2) 

Figure 2 makes this perfectly clear. The proof that the two relations (1) and (2) generate 
all relations among elements of En may be found, for example, in Birman's book [2). 

Note that adding the n - 1 relations a[ = 1 gives a presentation for the symmetric group 
Sym(n) as a quotient group of En. 

1.2 AUTOMORPHISMS OF FREE GROUPS 

Let Tn be a free group of rank n, with generators Xl, ... , Xn. An object of great interest in 
combinatorial group theory is Aut(Fn), the automorphism group of the free group. Many 
interesting groups appear naturally as subgroups of Aut(Fn ), and among these is En, the 
n-strand braid group. 

\ 

\ 

Figure 2: Commutation relations for braids 
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Figure 3: The punctured disk On and generators for Fn 

Let On := D2 - Qn denote the disk with n punctures Qn = PI, ... ,Pn. Fn can be 
identified with 11"1 (On). To be precise, let Xl, •.. , Xn be loops in On representing generators 
of 11"1 (On), oriented in the clockwise sense, as shown in figure 3. For future reference, we 
also assume that On has been marked by n line segments ~i joining Xi to aOn. 

Interchanging Pi and Pi+1 by a right-hand twist diffeomorphism (Ji on a disk containing 
these two punctures but no others and fixed outside a neighbourhood of this disk defines an 
automorphism of On. These n-l automorphisms ofthe disk induce maps 11"1 (On) ~ 1I"1(On) 
defined on generators Xi by 

(j :f i, i + 1.) 

This action is illustrated in figure 4, with the arcs to be interpreted as in section 2.1. Any 
diffeomorphism which differs from (Ji by an isotopy fixed on aOn induces the same map 
on 1l"l(On). In fact, E. ArtiT • showed [1] that there is an isomorphism between the group 
of orientation preserving diffeomorphisms of On modulo diffeomorphisms isotopic to the 
identity and the braid group Bn. 

2 The Burau representation 

The representation of Bn which we will be discussing in this section was first defined in 1936 
by W. Burau [3]; it and the related Gassner representation are examples of so-called 
Magnus representations, which can be defined by the use of Fox's "Free differential 
Calculus" - a kind of formal partial differentiation defined in group rings of free groups. 
The geometric approach to this representation which we will be describing avoids this 
construction. 

To each element 9 E B( n) the Burau representation f3n associates an invertible matrix 
whose entries are Laurent polynomials (with integer coefficients) in a single indeterminate: 

-- ±1 f3n:Bn ~ GL(n-l,Z[t ]) 
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Figure 4: The action of (1i on 11'1 (On) 

As we saw in section 1.2, Bn acts on 1I'1(On)' This action can be extended to an action 
on the infinite cyclic homology of On as follows. Let a: 1I'1(On) ~ Z be the augmentation 
homomorphism, which takes a word in 1I'1(On) to its exponent sum. The kernel of this map 
is a normal subgroup of 11'1 (On)j corresponding to this normal subgroup is a covering space 
fin of On with deck group infinite cyclic, generated by a covering translation t. This covering 
space can be thought of as countably many copies of On glued together along the slits €i, to 
give an "infinite parking garage", with n ramps between levels, each corresponding to a €i. 
Note that there is a deformation retraction of On onto its one-skeleton, which is a wedge 
of n circles. Then the covering spaces of On are detertnined by coverings of the I-skelton. 
Thus we secretly think of fin as the complex on the right in figure 5. 

It is clear that this space has homology which is infinitely generated over Z. But any 
homology generator may be written as a translate of a generator from a suitably chosen set 
of n - 1 generators at "level 0" in fin, so H1(fin ) may be expressed as a freely generated 
rank n - 1 module over the ring of Laurent polynOlnials in one variable, A = Z[t±I]. This 
construction is similar to the "geometrical" definition of the Alexander module of a link. 
(See [4], for example.) 

Now, each element (1 E Bn acts on 1I'1(On), and this action extends to a module auto
morphism 

Figure 5: The infinite cyclic covering of On 
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which defines the reduced Burau representation of Bn. 
Suppose that we attempt to lift the given basis for Hl(Dn) to On. The lifts of these 

loops are now non-closed arcs in On, connecting the points in {*}, the pre-image of the 
basepoint; hence they do not form cycles in H1(On). They are, however, cycles in the relative 
homology module HI (On, {*}), and in fact give a basis for H1(On, {*}) as an n-dimensional 
A-module. As before, Bn acts on this module, and this action defines a representation 
called the unreduced Burau representation of Bn: 

As the name suggests, this representation is reducible; consider the long exact sequence 
for relative homology: 

... --. H1({*} ) --. HI (fin) --. H1(fin; {*}) --. Ho( {*}) --. 0 

1~ 1~ 1~ 1~ 
... --. 0 --. HI (fin) --. HI (fin; {*}) --. A --. 0 

Since A is a free module over a ring with identity, it is projective, hence the short exact 
sequence above splits. That is, 

Thus (3n is reducible. 
The representation (3 will now be made explicit. Let x}, ... , Xn be the generators for 

HI (fin, F}) obtained by lifting the generators Xl, . .. , Xn for 11"1 (Dn) defined in section 1.2 
to some level, hereafter fixed as level o. 

A given arc O! in Dn lifts to a path in On representing a homology class a. For each 
i = 1, ... ,n, we can define the weight of the arc O! with respect to the puncture Pi by 

w(O!,i):= El(a,lei) 
lEZ 

where (a, rei) indicates the algebraic (signed) intersection number of the class a with the 
translate to the £-th level of (i. 

With this notation, the action of (3( u) on Xi is given by 

(3) 

2.1 THE BURAU REPRESENTATION IS NOT FAITHFUL IF n ~ 6 

The faithfulness of the Burau representation has long been investigated. It is clear that 
(32 is a faithful representation of B2 ~ Z. Magnus and Peluso [7] showed in 1969, while 
investigating work of V. I. Arnol'd, that the Burau representation of B3 is faithful. The 
faithfulness of (3n for n ~ 4 stood open for 21 years, despite the efforts of a number of people, 
until John Moody [8] showed in 1990 that (3n is not faithful for n ~ 9. His techniques were 
subsequently refined by Darren Long and Michael Paton [5], who showed that (3n is not 
faithful for n ~ 6. The question of whether the Burau representation for the four and five 
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""" 

a 

... 
'-'" 

Po ~+! PD+! 

Figure 6: The twist curve Cj 

strand braid groups is faithful remains open. This section discusses the results of Moody, 
Long and Paton. 

Intrinsic to the discussion are various operations on simple arcs in the disk On, by which 
we mean simple loops constructed as regular neighbourhoods of simple arcs beginning at 
the basepoint, avoiding punctures but finally ending at one of the punctures. Hence as 
loops, these arcs contain exactly one puncture. 

The first result is an observation of Moody's: 

Theorem 1 (J. Moody [8}) 
(a) Let n be such that w(a,j) = 0 for a simple arc a in On implies that a can be isotoped 

off ~j. Then the Burau representation of Bn is faithful. 
(b) If for some n there exists in On a simple arc a such that for some j, w(a,j) = 0 but 

a cannot be isotoped off ~j, then the Burau representation of Bn+2 is not faithful. 

Proof. 
(a) Suppose that f3n(a) = In, then (3) tells us that 

w(a(xi),k) = 6i,k. 

By hypothesis, a(xi) can be isotoped off ~k for all k :I i. Hence a is isotopic to the identity. 
So f3n is faithful. 

(b) Consider the curve a as lying in On+2, which is thought of as being obtained from 
On by removing two further points Po and Pn+1. Let Cj be a curve which encloses Pj and 
Pn+1 but which encloses no other punctures, and which has minimal intersection number 
with a. We may assume that Cj and a are as indicated in figure 6. 

Let Tj be the Dehn twist about Cj. We may write 

This is an element of Bn+2 which lies in the subgroup generated by a1, . .. ,an. We now 
claim: for all k, 

w(a,k) = w(Tj(a),k). 
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This implies that f3n( Tj)1i = Ii, so the arc a gives rise to an eigenvector Ii with eigenvalue 
equal to 1 for the matrix f3n( Tj). 

Observe that the action of Tj on the word a is to replace each occurence of X{ 

(4) 

which has exponent sum 1, and each occurence of x:t by the inverse of this word, which 
has exponent sum -1. 

To prove the claim, consider the intersection of a with a small neighbourhood of ~j. Since 
w(a,j) = 0, for every segment of the arc crossing ~j, there is another segment crossing ~j 
in the opposite direction, at the same "level". More precisely, for each occurence of Xj 

in the word a, there is an occurence of xjl, and the exponent sum of the prefixes to the 
two occurences are equal. This observation implies that any contribution to w( Tj( a), k) 
could arise purely from the terms substituted in for some Xj by the action of Tj. But 
each such term is cancelled by the corresponding term coming from a substitution for the 
corresponding xjl. This verifies the claim. 

Observe that a and Tj(a) are different in 1l'l(Dn) since, by hypothesis, a cannot be 
isotoped off ~j, and we can assume that a is in reduced form, so there is no cancellation at 
the ends of the word in (4). 

The proof is completed by producing a non-trivial braid which lies in the kernel of f3n. Let 
'IjJ E Bn+2 be a diffeomorphism class (lying in the subgroup generated by 0'1, ... ,O'n) which 
takes Xl t-> a. (The braid 'IjJ exists since a is a simple loop enclosing just one puncture, say 
Xk. Hence it is a conjugate PXkp-l, and if P is not the identity, then the word a can be 
shortend by applying O'tl. Then supposing a = Xk, a sequence of elementary braids takes 
Xk to xd 

Then the image under f3n+2 of 'IjJ-ITj'IjJ acts as the identity on the submodule generated by 
Xl, X2 in HI (Dn+2' {*}), because 0'0 is not involved and by construction, 'IjJ-lTj'IjJ stabilizes 
Xl. So 

1 0 * * * * 
o 1 * * * * 
00* * * * 

(5) 

Since f3n+2( 0'0) only acts on Xo, Xl> the commutator braid [0'0, 'IjJ-lTj'IjJ] is represented as 
an upper triangular matrix: 

1 0 * * * * 
o 1 * * * * 
001000 

o 0 0 0 1 0 
00000 1 

(6) 
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• • • • ~ • 
1 2 3 4 S 6 7 8 

'-- '--

'----

.. 

Figure 7: An arc giving a counter-example to the fidelity of 1310 

We may check the action of the braid [0"0, 'ljI-lrj'ljl) on the loop Xl to verify that it is not 
the identity: 

('ljI-lrTl'ljl )0"01 ( 'ljI-lrj'ljl ) 0"0 ( Xl) = ('ljI-lrTl'ljl )0"0\ 'ljI-lrj'ljl )(XO) 

= (.1.-1 -1.1.) -l( ) 'I' rj 'I' 0"0 Xo 

= ('ljI-lrt'ljl)(Xl) 

=f Xl 

Finally, the subgroup of upper triangular matrices in the image f3n+2(Bn+2 ) of the Burau 
representation is a unipotent group. (Recall that a linear group G is unipotent if every 
for every element A there is an r > 0 such that (A - InY = O. This is equivalent to saying 
that the lower central series for G is finite: defining G(O) := G, and G(n) := [G, G(n-l)j, 
there is some r > 0 so that G(r) = {I d}.) So setting "'1 := [0"0, 'ljI-lrj'ljlJ,"'k := [0"0, "'k-l), we 
eventually obtain a non-trivial braid whose image is the identity. I 

Moody gives an example of an arc which satisfies the hypotheses of part (b) of his 
theorem, for n = 7, showing that the Burau representation f3n is not faithful for n ~ 9. His 
example is a braid of 88 crossings. In fact, a somewhat shorter example can be found as a 
subarc a of Moody's example; one may check that w( a, 6) = O. See figure 7. 

The main improvement of Long and Paton is to elitninate the need for extra points in 
On in the construction of their criterion: hence they have a geometric criterion on arcs in 
On which has consequences for the Burau representation of Bn, rather than Bn+2 as in 
Moody's argument. 

The first step in the proof of Long and Paton is the following observation, which simplifies 
the argument of the preceding theorem and is essential in what follows. 

Theorem 2 If M is a matrix in the image of the Bumu representation which has ones on 
the diagonal and zeros below the diagonal, then M is the identity matrix. 

The proof of this theorem, which relies on linear algebra and an earlier result of D. Long 
[6], is otnitted. For details see [5]. 
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Corollary 2.1 A matrix M in the image of the Burnu representation which has first column 
identical with that of the identity matrix is a direct sum (1) EB M'. 

Proof. Suppose that M has first row {I, at, a2, .. . , an-d. Let JL E Bn be the braid 
which M represents. Embed Bn into Bn+1 by adding "(10", which is not involved with any 
of the braids in the subgroup Bn < Bn+I' Then the image of JL under this embedding is 
represented by f3n+l as M', an (n + 1) x (n + 1) matrix of shape 

1 0 0 0 0 
o 1 al a2 ... an-l 

o 0 * * * 

o 0 * * * 
o 0 * * * 

The commutator [(10, M'] has the form of (6), hence by the theorem, it is the identity. A 
computation shows [(10, M']- In has columns ak(l - (101e2) for k 2: 1, which implies that 
ak = 0 for k 2: 1. I 

Theorem 3 (D. Long and M. Paton [5]) The Burnu representation is not faithful on 
Bn if and only if n is such that there exists a simple arc a in Dn , which for some i passes 
geometrically between Pi and Pi+l and for which w( a, i) = w( a, i + 1). 

Several lemmas are necessary for the proof. 

Lemma 3.1 For any, E Bn, 

(1, t, t2, ••• , tn- 1 )f3n(r) = (1, t, t2, • •• , tn-I) 

Proof. It suffices to check on the generators. In general, f3n «(1k) has the form 

Lemma 3.2 For any, E En, the column vector (1, 1, ... , If is an eigenvector for ,Bn(')' 

Proof. Again, it is enough to check on generators. Then 

[ 
h-l 0 0 0 

0 1-t t 0 
0 1 0 0 
0 0 0 In-k-l 

] .(~) =(~,I-t+t,I,~ 
1 k-l n-k-l 

The same proof shows that if a vector contains the same entry in position k as in k + 1, 
then the vector will be an eigenvector for f3n( (1k). I 
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Lemma 3.3 Suppose M is any matrix in GL(n,A) which has the properties enjoyed by 
f3n(,) in lemmas 3.1, 3.2. Then M commutes with f3n(.1.~J, where .1.~ = (UlU2 .• • un)n. 

Proof. Check that f3n(.1.~) = tn In + (1 - t)Rn where In is the identity and 

1 t t2 . .. tn- l 

1 t t2 ... tn- l 

Rn:= ................... . 
1 t2 tn - l 

1 t t2 •.. tn- l 

Then M f3n(.1.~J = MW In + (1 - t)Rn) = tn M + (1 - t)M Rn = tn M + (1 - t)Rn' and 
f3n( .1.~)M = (tn In + (1 - t)Rn)M = tn M + (1 - t)RnM = tn M + (1 - t)Rn. I 

Proof. (Main Theorem) 
( ==» Suppose that f3n is not faithful. Any element U in the kernel of the Burau repre

sentation satisfies w( u( Xi), k) = bi,k' But a nontrivial element of the kernel will take some 
arc Xi into a more complicated are, passing geometrically between some adjacent pair of 
points k, k + 1. 

( ¢=) Let Q be an arc as in the hypotheses of the theorem. By the remark following 
lemma 3.2, the weights coming from the arc Q form an eigenvector for f3n(Ui), although 
Ui acts non-trivially on Q. Let tP be an element of Bn which carries Xl into the isotopy 
class of Q. The braid i(;uitP is non-trivial, but its image under f3n has the first column the 
same as that of the identity matrix; by corollary 2.1, the matrix f3n( i(;uitP) is a block sum 
(1) EB M. By lemmas 3.1 and 3.2, f3n(i(;uitP), and hence M satisfy the properties of the 
lemmas. Applying lemma 3.3, [M,f3n(.1.~)) = In, so the braid [if;uitP,.1.~l is in the kernel of 
f3n. I 

Long and Paton have used this criterion to show that f36 is not faithful. Their example 
has 

and hence [i(;u5tP, .1.~1, where .1.~ = (U2U3U4U5)5 is a non-trivial element of B6 in the kernel 
of f36. 

3 The search for elements of the kernels of f34 and f35' 

It is tempting to believe that the criteria established by Long and Paton may be applied to 
produce counterexamples to the fidelity of the Burau representation of Bn in the remaining 
open cases, B4 and B5 • A computer search for such counterexamples has been attempted 
by the author, and is described in this portion of the paper. 

3.1 THE ALGORITHMS 

In order to produce a counterexample to the faithfulness of the Burau representation from 
the criteria described in the previous section, one must find a simple arc Q in the n-times 
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punctured disk Dn, running from a basepoint on the boundary of Dn to one of the punctures, 
avoiding all other punctures and satisfying the geometric criteria of theorem 3. 

Such an arc a is described, up to homotopy, by the sequence of generators Xi (and 
inverses) corresponding to the intersections of a with the line segments €i (i = 1, ... , n) as, 
for example, in figure 8. 

The first step in the search for a non-trivial element in the kernel of (3n (n = 4,5), 
therefore, is to generate reduced words in Fn representing simple arcs. Each such arc is 
then tested to see whether it has equal weights with respect to two adjacent punctures; if 
so, it is checked to see if it passes geometrically between these adjacent punctures. 

Figure 8: The punctured disk 0 5 and the realization of XIX31X2X3X4 (aChed) 

3.2 IMPLEMENTATION DETAILS 

For the sake of easy string manipulation and formatting, we represent the generators 
Xl, X2, X3, ••• by lower case letters a, b, c, • .. , and inverses by the corresponding upper case 
letters. There are no spaces between letters. For example, the word Xlx3lX2X3X4 is repre
sented by the string aChed. 

The first step is carried out by a routine which reads a line representing a reduced word 
from Fn and checks whether it can be realized as an arc in the marked disk On. The test is 
by a recursive depth-first search as follows. A simple arc of the type described separates the 
disk into a number of components. These components we call chambers. Each chamber 
is identified by the edges which bound it, and can hence be described by a (cyclic) list of 
generators and their inverses. Viewing the construction of the arc as a dynamic process, 
we see that there is always a current chamber, one that contains the "free end" of the 
arc. Extending an arc by piercing an edge splits the current chamber into two chambers, 
one of which becomes the current chamber. 

For example, the initial state for 0 5 is denoted by [*aAbBcCdDeEj. This notation indi
cates that there is one chamber, with walls labelled (from left to right, in circular order) 
a, A, b, .. . , E. (These may be read off from the disk in Fig. 8 by scanning around the disk, 
with the edges deleted and edges of the slits labelled by a, A, b, etc.) This chamber is 
the current chamber, as indicated by the' *'. The list of chambers corresponding to the 
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realization of the word aCbcd is [[a]aA[Ab[bB[Bc]c]cC]C[CdJdD * DeE]. See figure 9 for a 
diagrammatic representation of these chambers. 

Thus, for our search space, we take the collection of all chambers which may be obtained 
from the initial state by piercing edges. 

a b c d 

Figure 9: Six chambers arising from aCbcd 

Computation of the weights can easily be done directly from the definition. Finally, 
testing whether an arc passes between two punctures is an easy exercise in string searching. 

One can compute the weights associated to an arbitrary word, whether or not it comes 
from a simple arc. Since it is much easier to test the weight criterion than to test whether 
a word is realizable as a simple arc, this test is carried out first. For the examples which 
we have computed, this speeds up the computation by a factor of approximately 4. 

3.3 RESULTS 

To date, no arcs satisfying the criteria of Long and Paton have been found, in either 
D4 or D5 • It is unlikely that an exhaustive search by the method described above will 
succeed in producing a counter-example, since the number of words to be examined grows 
exponentially in the length of the word. At the same time, the number of words coming 
from simple arcs and satisfying the weight criterion seems to grow very slowly (see for 
example table 1). So a randomly chosen word is quite unlikely to yield a counterexample 
either! 

length: 3 4 5 6 7 
# words: 1,000 10,000 100,000 1,000,000 10,000,000 
# reduced words: 810 7,290 65,610 590,490 5,314,410 
# simple arcs: 190 570 1,512 3,558 7,654 
# adj. weights equal: 154 371 832 1,595 2,932 

Table 1: Growth of Words in F5 
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ABSTRACT. An array of invariants (one for all integer r > 1) for closed oriented 3-manifolds 
has been revealed by E. Witten using the inspiration of quantum field theory. In this paper two 
approaches of this topic is studied: one is via quantum groups revealed by Reshetikhin and Thraev, 
the other - due to Lickorish - uses the Jones polynomial and the Temperley-Lieb algebra. 

This paper does not state any new results. It rather gives a synopsis of the two approaches to 
the Witten-Reshetikhin-Thraev invariant mentioned above outlining some of the basic techniques 
and ideas. 

We will not proof all the lemmas and theorems in this paper partly because they would lead 
too far from the topic partly because that whould make the paper very extensive. In these cases 
usually we just refer to the proof. 

This work has been completed while I visited The University of Sussex with the support of 
TEMPUS grant. My thanks are due to this university for their kind hospitality. My sincere gratitude 
goes to my Hungarian and English supervisors, Dr Gabor Moussong and Dr Roger A. Fenn. 

1. BASIC NOTIONS IN KNOT THEORY 

1.1. Knots, links and tangles 

Definition 1.1.1. A link is an equivalence class of smooth embeddings of a finite collection 
of circles to J1t3. Two such embeddings L\, L2 are equivalent if there is an orientation preserving 
homeomorphism h ofJlt3, which makes the following diagram commute: 

The equivalence class is called link type or simply link. 
One could define the equivalence by isotopy of the embeddings ("movement of the strings in 

3-space") but this would give the same concept in our case. 
An oriented link is a link with a chosen orientation on the circles. 

M.E. BozhuyUk (ed.), Topics in Knot Theory, 319-347. 
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By abuse of language sometimes we call link a representative from the link type, or simply 
its image in IR3. Sometimes it is more useful to regard the link in IR3 U 00 = S3, which does not 
essentially alter things. 

A generalisation of the concept allows any 3-manifold instead of IR3 but in this paper we are 
only concerned by the above definition. 

If a link contains only one component then we call it a knot. 
In our c~ (we are only concerned with smooth embed dings ) a link L : Sl U ... U Sl -+ IR3 

can always be extended to an embedding of solid tori L : Sl x D2 U ... U Sl X D2 -+ IR3 so that 
LlslXOu ... us1xo = L and the image of L is a regular neighbourhood of the image of the link. Note 
that this extension is far from unique, even if we allow isotopies on them. 

If K is a knot, K x D2 a solid torus (regular neighbourhood) of K, then a simple curve on the 
boundary of the torus is called a longitude if it is isotopic with K and has linking number 0 with 
it. We call a a simple closed curve on the boundary of the solid torus a meridian if it bounds a 
disk in the torus. 

The linking number of two di8joint knots k1' k2 : Sl -+ 1It3 can be defined as folloW8 e.g. by the Brouwer degree of 

the map: Sl X Sl -+ S2 given by 

A framed link L is a link with each component L; being provided with an integer fr(i), the 
framing. Let L; be a component of the link, i.e. L. : Sl -+ 1It3 is a knot. Fix an orientation 
on L •. We call a circle on the boundary of the regular neighbourhood of Li a framing curve if 
homotopic ally it is the sum of one longitude - which is oriented as Li is - and fr(i) meridians. 
By the orientation of the meridian we mean the one which has linking number +1 with L •. 

In this special case a figure is enough to show which orientation of the meridian we mean: 

C.YJ 
Observe that the definition of the framing curve formally depends on the orientation. But one 

can check that this dependence is only formal: the reverse orientation would give the same framing 
curve (actually a homotopic one, because the definition is only up to homotopy). 

Definition 1.1.2. A tangle T is a I-manifold smoothly, properly embedded in the unit cube 13 

in 1It3 = S3- 00 with oTe ~ x I x 01. Defineo_T= Tn(I2 x 0) and o+T = Tn(I2 x 1) and call 
Tan (m,n)-tangle ifm = lo_TI and n = lo+TI. 
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If we fix an orientation on the 1-manifold then we call the tangle oriented. Note that a (0,0)
tangle is a link. Framing and framing curves can be defined for tangles as they were defined for 
links, we leave the explicit definition to the reader. 

An (m, n )-tangle is called special if m = n. Special tangles will play an important role in 
chapter 5. 

1.2. Planar diagrams 

We will often consider planar diagrams of knots, links and tangles, that are images of orthogonal 
projections to a plane. This plane should be the (y, z)-plane in the case of tangles. 

Having assumed earlier that all the maps concerned were smooth, we are now ready to state 
the following theorem (for a proof we refer to any introductory knot theory book e.g. [R]): 

Theorem 1.2.1. Every link- (knot-, tangle-) type has a representative whose projection on an 
appropriate plane ( in case of tangles let it be the (y, z )-plane) has only finitely many multiple points 
(whose preimage contains more than one points), and all multiple points being double points. 

In a neighbourhood of the double points the diagrams are drawn as: 

which shows the under- and overcrossing components. 

Let L be a framed link. Consider a diagram of the ith component Li. Given an arbitrary 
orientation to Li we can count the palitive and negative crossings in the diagram of Li as follows 

x x 
positive crossing negative crossing 

Let the writhe be the sum of the signs w( i) of the diagram of L i . It is independent of the 
given orientation. If w(i) = fr(i) for all i then we call the diagram a good diagram of the framed 
link. From now on if we are talking about diagrams of the framed link, then we will always mean a 
good one. They exist, because we can always add positive and negative kinks to a "bad" diagram 
to change its writhe. 

positive kink negative kink 
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By the writhe w(D) of a diagram D we mean the sum of the signs of crossings in D, or the 
linking number of the link (which is represented by D) and the link of the framing curves of its 
components. These two can be proved to be the same. 

1.3. Reidemeister-type theorems 

The following theorems are typical examples of a translation of a topological problem - the 
classification of some embeddings (knots, links, tangles) - to a combinatorial one. 

We call these theorems Reidemeister-type theorems in honour of K. Reidemeister whose work 
is the basis for all of them. 

Theorem 1.3.1. Any two planar diagrams which represent the same link (i.e. are projections 
of equivalent links) are related by a finite sequence of the following moves: 

): -- ) ( 
/' \ -j" +--'> \ / /\ y< 

The moves take place within a disc and do not alter the rest of the plane. (Of course between 
the moves we allow appropriate plane homeomorphisms.) We call the moves Reidemeister moves. 

Unfortunately this is only an existence theorem. It does not give an algorithm to decide whether 
two diagrams represent the same link or not. This also refers to all the theorems of this section. 

Theorem 1.3.2. Any two (good !) planar diagrams of the same framed link are related by a 
finite sequence of the following moves: 

O' 1 

O2 Jf~)( 

rX +-+ * 
We note that we may have defined 0i to be 

.. 

This would give the same equivalence. 

G 
( 

We can define w( ) for any component of a framed tangle the same way as we did for framed 
links, and we can define the tangle diagram good if w = fro The existence of good diagrams is 
again just a question of adding kinks to the diagram. 
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Theorem 1.3.3. Every tangle diagram can be factored into the elementary diagrams I, r, I, U, 
n as shown: 

I r U n 

(with all pOBSible orientations in case of oriented tangles) using the compalition (when defined) 
and the tensor product of diagrams : 

s 

T 

The Reidemeister-type theorem for tangles is the following. 

Theorem 1.3.4. Any two factored good diagrams of a framed tangle are related by a finite 
sequence of the following moves: 

(a) 
\~. 

) 4---+ 

I 

(b) 

( c) 

XJ 
((\ 

(d) 

(e) 

together with the implicit associativity and identity relations and (S 0 T) @ (S' 0 T') = (S @ 

S') 0 (T@T'). 

Of course the theorems above concerning links, framed links, framed tangles could be stated 
for oriented links, framed links, framed tangles with the only change that the moves must be meant 
with all pOBSible orientations. 
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2. THE JONES POLYNOMIAL 

Let us consider unoriented planar diagrams. The Kauffman bracket polynomial which we will 
now define is an invariant of them: 

< >: {unoriented planar diagrams} -+ ~[A±11 

The main idea in defining it is to consider the following skein relation : 

where X, Y E ~[A±ll and the parts of diagrams represent any kind of, but identical diagrams 
except where it is shown. Observe that the idea is to unknot the diagram at the crossings by 
eliminating the double points in the two different ways. 

The following easy calculation shows that if X and Y fulfill some simple requirements, then the 
bracket becomes invariant under the second Reidemeister move. 

Therefore the conditions for < > being invariant under 02-move are: 
( 1) 

XY= 1 

( 2) 

XY(.~ ) + (X2 + Y 2)( ~ ) = 0 

According to (1) let us identify X = A, Y = A- 1 • Using (1) we see that (2) is equivalent to 
( 2") 

that is adding a disjoint unknot to any diagram multiplies the bracket by 6 = (_A2 - A-2). 
Surprisingly enough the bracket is invariant under the 03-move using only the invariance under 

()x~ = A(/X') + A- 1(){') = 

= A( ~/ ) +A- 1 ( ,).(/) = (,X/) 
Under 0 1 the bracket is not invariant but behaves nicely: 



and similarly 

(~ ) = A( I ) + A-1
( I 0 ) = 

=[A+A- 1(-A 2 -A-2 )1\! )=_A-3 \ I ) 
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In order to obtain an invariant under all three Reidemeister moves the only thing to do is to 
balance this change: 

Theorem 2.0.1. 
diagrams satisfying 

( i) 

( ii) 

There is an invariant - the bracket polynomial - for unoriented planar 

\ ¢ ) = 1 

where 0 is a component with no crossing at all and fJ = _A2 - A-2 
( iii) 

where this refers to the three diagrams identical except where shown. 
Then 

VD(A):= (_A)-3W(D) < D > 

is invariant under all three types of Reidemeister moves, and so is an invariant of the oriented link, 
whose projection is D. 

We obtained an oriented link invariant because the definition of the writhe of the diagram 
(see section 1.1) depends on the orientation. (In case of a knot it does not depend on it.) 

Definition 2.0.2. The Jones polynomial of a link, VL(t), is the invariant VL above expressed 
with variable t = A - 4 . 

An easy exercise is to prove that < Dl U D2 >=< Dl >< D2 > if Dl and D2 are disjoint 
diagrams (i.e. they can be separated by a circle). 

Definition 2.0.3. Let us call three oriented links (L+. L_. Lo) a skein triple if they have diagrams 
identical except locally they show: 
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x x )( 
L+ L_ Lo 

We call a linear connection between some fixed invariant of (L+, L_, Lo) a skein relation. 

Due to Conway we know that the most classical invariant, the Alexander polynomial, can also 
be defined by a skein relation this way : 

Vo(z) = 1 

V+(z) - V_(z) = zVo(z) 

and then the Alexander polynomial ~(t) = V(z = d - t-!) ,of course, up to a multiple of a power 
ofd. 

Observe that the skein relation - together with a normalisation is enough to define the poly
nomial (see e.g. the Conway polynomial above). So the following theorem, together with a normal
isation of V could be an alternative definition of the Jones polynomial. 

Theorem 2.0.4. The Jones polynomial satisfies the following skein relation : 

for any skein triple (L+, L_, Lo). 

Proof By definition 

(X )=A()( )+A- 1(X) 
\ X )=A\ I~ )+A-1

\)() 

Where we did not show orientation, there is no meaningful one. Let us eliminate those terms. 
Then we obtain: 

Now the total writhe for the three links are w + 1 , w - 1 , w for some integer w. Multiplying 
by (_A)-3w gives the result: 

A-4 VL+(A) - A4 VL(A) = (A2 - A-2)VLo(A) 
from which the theorem follows. 

The proofs of the following properties of the Jones polynomial are left to the reader: 
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1. VL,UL. = VL, VL. where L1 U L2 means that the two links can be separated by a sphere. 
2. 6VL,#L. = VL, VL. where Ll #L2 means the connected oriented sum of the two links. 
3. V-K = VK where K is a knot. By -K we denote the same knot with the opposite orientation. 
4. VK.(t) = VK(t- 1) where K is a knot. By K* we denote the "mirror image" of the knot in the 

3-space. 
5. (Jones' reversing theorem) VL-KU(-K) = t 3A VL where K is a component of L, 2A is the sum 

of the crossings of K with the other components of L - K. 

3. SURGERY 

Surgery is an operation that assigns an oriented closed 3-manifold to a framed link in S3. 
Lickorish [L1] and Wallace [Wa] showed that every closed oriented connected 3-manifold can be 
obtained by surgery. So through this operation we can pass from the study of 3-manifolds to the 
study of framed links in S3. 

We hereby give two equivalent definitions of surgery on the framed link L. 

Definition 3.0.1. Remove a small open solid torus neighbourhood of each Lj. On each resulting 
toral boundary component consider a framing curve; attach new solid tori so that each of these 
curves now bounds a disk. 

Definition 3.0.2. The framed Jink gives rise to a 4-manifold WL the folJowing way. Attach 
2-handles (B2 x B2) to the 4-ball B4 along L C S3 = 8B4, that is, identify 8B2 x B2 C B2 X B2 
(the two handle) to a small tubular neighbourhood of each link component so that a longitude of 
8B2 x B2 is attached to a relevant framing curve (which is unique up to homotopy). Then take ML 
to be the boundary of WL . 

The process given in the second definition is a special case of handlebody decomposition studied 
thoroughly by Kirby [K2]. 

The two definitions are easy to show to be equivalent, observing that if k is a longitude of 
8B2 x B2 then k is a meridia·. - so bounds a disk - in B2 x 8B2. 

If some 2-sphere separates the components of a link then surgery on the link yields a 3-manifold 
which is a connected sum of the manifolds resulting from surgery on the two sublinks. 

Without proofs we give some examples of surgery: 

Example 3.0.3. Surgery on the unknot with framing n gives the lens space L(n, 1) (with the 
convention that L(O, 1) is S2 X SI and L(I, 1) is S3). 

Example 3.0.4. Surgery on a simple link 

where p and q are the framings gives L(pq - 1,p). 
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Example 3.0.5. Surgery on 

gives the 3-torus. 

Example 3.0.6. The five links pictured here all give the Poincare dodecahedral space 

-1 t 

c!D tij, o 

~o 

As we can see from the examples the "link representation" of a 3-manifold is far from unique. 

Now, let us describe certain moves on framed links that do not change ML. 

The band move or /3-move takes the band connected sum of Li with a framing curve of Lj. Of 
course the band is disjoint from the link except that one end of it is an arc of Li and the other is the 
framing curve of Lj . Replace fr( i) by fr( i) + fr(j) + 2Ik(Li' Lj ). Regarding Definition 3.0.2 this 
move corresponds to sliding the ith 2-handle over the jth one. (For more details see Kirby [K2].) 

Note that if a move above is done on a diagram, then after the move one must add or delete 
kinks to adjust the diagram to be "good" again. 

Lemma 3.0.7. An unknotted circle Li with framing ±l can always be moved away from the rest 
of the link with effect of giving all arcs going through Li a full Ofl twist and changing the framings 
by adding Oflk(Li' Lj )2 to each other component Lj. 
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Proof First we do the case for one arc, by sliding the arc once over the circle (,a-move) and one 
can check that now Li can be moved away from the rest of the link. 

~ 
I 

In general slide all arcs over the circle once. It is not difficult to calculate the relevant change 
of the framings (See Rolfsen [RJ). 21< 0 0 

Using this kind of moves it can be shown that e.g. G=> and @:::f give the same manifold, 
and @.::Jo and @.:6 also. 

2k., 

Now we present an other move that does not alter ML. 

Special K-move: Consider an unknotted component Li with framing ±l. If this is disjoint from 
the rest of the link (i.e. can be separated by a sphere) then Li can be deleted from the link without 
altering ML. 

An explicit homeomorphism can be found in the paper of Fenn and Rourke [FR). 
From the lemma above one can easily see that the following move does not alter ML either. 

K-move If Li is an unknotted component with framing ±l, we can delete it and add a full =Fl twist 
(see fig.) to the arcs crossing Li; and add =Flk(Li' Lj}2 to all framings. 

~ 
I 
Clearly the K-move is equivalent to the following. 
Locally the following are interchangeable: 
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~ 
\ \ 

The changes of the relevant framings are signed by the "goodness" of the diagrams. 
From now on if we refer to a K-move we can mean either of the above. 

We can now formulate the theorem that is the major tool constructing 3-manifold invariants. 

Theorem 3.0.8. ML is homeomorphic to Mu if and only if L' can be (up to isotopy) obtained 
from L by a finite number of the moves given in one of (i), (ii) or (iii): 
(i) (Kirby [KI]) fl, special K and their inverses 
(ii) ·(Fenn, Rourke [FR]) K and its inverse 

(iii) (Thraev [L3]) K+, special K_ and their inverses 

Here K, is a K-move with [-framed unknotted component involved ([ = ±1). 
Unfortunately we do not know an algorithm that decides whether two framed links are equiva

lent under the above equivalence. If one can, however, assign a complex number (or anything else) 
to a link so that it is invariant under 
(I) link isotopy 
(2) K+ and special K_-moves 

then it is in fact a 3-manifold invariant. 

4. THE 3-MANIFOLD INVARlANT 

In this chapter we will use the following notations (for r > 1 fixed) 

and for any integer k 
k -k . "k 

[k]= ~= 81n;=-- ... 
8 - 88m;=-
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and in Theorem 4.1.1. [~l = [kl!I~~kl' where [n]! = [n][n - 1] ... [1] (= 1 if n = 0). By ~ we 
mean (P](P - 1] ... [q + 1]. 

4.1. The quantum group 

In this section a specific algebra Ar will be defined for all integer r > 1. First recall that a 
Hopf algebra over IC is an additive Abelian group A with homomorphisms : 

m:AI&>A--+A 

i:IC<-+A 

satisfying the following relations: 
(i) Multiplication is associative 

(ii) A ~ IC I&> A~A I&> A~A is the identity 
(iii) Co-multiplication is co-associative 
(iv) A~A I&> A~A I&>IC ~ A is the identity 
(v) a, care IC-algebra homomorphisms 
(vi) ic = m(l I&> S)a = m(S I&> l)a 

where we call m the multiplication a the co-multiplication and S the antipode map. In fact 
(i) and (ii) say A is an algebra, (iii) and (iv) say A is a co-algebra, (i)-(v) say A is a bialgebra. 

. The great advantage of using a Hopf algebra instead of an ordinary algebra is that this allows one 
to define A-module structure on the duals V' = H omc(V, IC) and tensor products V I&> W = V I&>c W 
of A-modules V and W. In particular (af)(v) = f(S(a)v) and a(v I&> w) = aa· (v I&> w) where· is 
the diagonal action, for a E A, f E V', v E V, wE W. 

The algebra we will need is generated by X, Y, K, R (as algebra generators over IC) with the 
relations 

K=K- 1 

KX =sXK 

KY =sYK 
2 -2 

XY_YX=K -l! 
s-s 

xr = yr = 0 

K 4r = 1 

The Hopf algebra structure is given by 

a(x) = X I&> K + K I&> X 

aCYl = Y I&> K + K I&> Y 

a(K) = KI&>K 

SeX) = -sx 
S(Y) = -sy 

S(K) = R 

c(X) = 0 

c(Y) = 0 

c(K) = I 



332 

Without any background information this definition may seem to be mysterious 80 let us make 
it clear how we can obtain it from the Lie algebra SI2(e). Recall that 

sI2(e) =< H,X, Y I [H,X] = 2X, [H, Y] = -2Y, [X, Y] = H > 

The property for which we use this algebra to start with is that it has a unique (up to iso
morphism) k-dimensional representation V k for all k > O. Explicitly Sl2(e) acts on V k (with basis 
e_m, e-m+!, ... ,em where k = 2m + 1) by : 

Xej = (m + j + 1)ej+! 

Yej=(m-j+1)ej_l 

Hej = 2jej 

We used the convention that em+! = e-m-l = O. Note that if k is even then the indices are 
half integers. 

We would like to modify this 80 that the resulting algebra also has k-dimensional representations 
V k for all k > 0 in which we replace (m±j+ 1) by [m±j + 1]. This is sometimes called the quantized 
action. 

This can be done in the following way: 
Take the universal enveloping algebra of Sl2(e) which has presentation 

U[Sl2(e)]=<H,X,Y I HX-XH=2X, HY-YH=-2Y, XY-YX=H> 

as an associative algebra presentation. The representations of Sl2(e) evidently extend to represen
tations of U[Sl2(1C)] so there are unique irreducible representations of U[Sl2(1C)] in each dimension. 

Having an associative algebra at hand the question arises as to whether one can define a Hopf 
algebra structure on it. The answer turns out to be positive if we let 

11(0') = 0'01 + 10 a Sea) = -a c(a) = 0 

for all a E Sl2(1C). This can easily be checked to be a Hopf algebra structure. 
Following Kulish and Reshetikhin we can define the algebra offormal power series over U[Sl2(1C)] 

modified by replacing the relation XY - Y X = H with 

sinh(hH) sH _ sH H3 - H 
XY - Y X = ~ = = H + --- + ... 

sinh"2 s-s 24 

(using h for the indeterminate is refering to Planck's constant, showing that the theory has 
echoes of some quantum statistical physics theories). Introducing the element 

H H H2 2 
f{ = t = 1 + 4"h + 2!42 h + ... 

we obtain the associated quantized relations: 

f{X = sXK 

KY=sYK 

[X, Y] = f{2 - ~(2 
s-s 
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In associative algebras the Lie bracket is always interpreted as the difference of the two ordered 
products i.e. [X, Y) = XY - YX 

Although we have modified the relations Sklyanin discovered a Hopf algebra structure on this 
modification as a module over the ring lC[[h)J. the algebra of formal power series in hover C, given 
by 

/l(X) = X 0K + i< 0X 

/l(Y) = Y 0 K + i< 0 Y 

/l(K) = K 0 K 

S(X) = -sX 

S(Y) = -sY 

S(K) = i< 

e(X) = 0 

e(Y) = 0 

e(K) = 1 

The last step to get the algebra Ar that we proposed is to specialize the series at particular 
values of h, namely h = 2;;. For this purpose, of course, we have to get rid of the divergent series, 
so we take the subalgebra of convergent power series (entire functions) first, and now we can have 
the factor algebra quotionted by h = 2;;, xr = 0, yr = 0, K4r = o. The proposed Ar algebra is 
therefore defined. 

It is easy to check that our goal about the representations of this algebra is satisfied, namely 
that there is a k-dimensional Ar-module Vk in each dimension, on which Ar acts by 

Xej = [m+ j + l)ej+I 

Yej = [m - j + l)ej_l 

Kej = t 2j ej 

The only difficulty in checking the relations might be to check [X, Y) = K::f ' but it is 
implied by the identity [a)[b)- [a + l)[b - 1) = [a - b + 1). 

From this action it can be seen that the module Vk is reducible for k > r. Indeed, in this case 
the submodule generated by er-m-l does not contain er- m (If k > r then m - 1 ~ r - m - 1 ~ -m 
sO both er-m-l and er- m are in the module), since one can easily check that X er-m-l = [m + r
m - 1 + l)er_m = [r)er - m = o. 

Interestingly enough in the opposite case V k is irreducible. 

Theorem 4.1.1. If k ::; r then V k are irreducible and self dual. In particular, the map 

D: (Vk)* -+ Vk given by D(ej) = [~~j r\-s)iLj is an Ar-linear isomorphism. 

An easy proof is given in [KM). We will need one more theorem describing the structure of the 
Vks. 

Theorem 4.1.2. 
(i) If k + k' ::; r + 1 then 

(ii) 

Vk 0 Vk' = EBVP 

where the sum goes for p = k + k' - 1, k + k' - 3, ... , Ik - k'i + 1. 

Vn+I = t'(-I)j (n -: j)(V2)®n-2j 

j=O J 

holds in the representation ring (i.e. sum means direct sum and e.g. 2V - U = W means 
VEBV= UEBW). 

One can find the proof of (i) in [KM) and (ii) can be proved from (i) by an easy inductive 
argument. 
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4.2. The universal element 

Theorem 4.2.1. There is an invertible element R in Ar I8>Ar satisfying the following properties 

Rto(a)R-I = ..:l(a) 

(to 18> l)(R) = Rl3R23 

(118) to)(R) = Rl3Rl2 

where ..:l(a) = P(to(a», P is the permutation endomorphism of Ar 18> Ar given by P(a 18> f3) = 
f318> a, and Rl2 = R 18> 1, R23 = 118> R, Rl3 = (P 18> 1)(R23). 

An element with this property will be called a universal R-matrix of Ar • Universal R-matrices 
have been found in several Hopf algebras. Without proof - which is just a question of calculation 
- we give an R in Ar 18> Ar : 

R = ~E (8 - S) jiH(j-i)n+n Xn Ki 18> yn Kj 
4r [nJ! 

The sum is over all 0 ~ n ~ rand 0 ~ i,j < 4r. 

To get familiar with the universal R-matrix we make some useful calculations. 
The universal element R satisfies the Yang-Baxter equation: 

Indeed it follows from the defining properties: 

If we define R as an operator from V 18> W -+ W 181 V where V and Ware Ar-modules by 
R = Po R ( P is the permutation (flip-) matrix) then R is Ar-linear and satisfies the Yang-Baxter 
equation: 

Indeed Ar-linearity follows from 

R(aX) = P(Rt.(a) . x) = P(P(toa)R· x) = toaP(R· x) = a(R)(x) 

where x E V 181 W. 

This second Yang-Baxter equation is implied by the first one if we multiply on the left by the 
operator P23P12P23 = Pl2P23P12 . Let us note the following important equalities 

(c 181 l)(R) = (1181 c)(R) = 1 

(S 18I1)(R) = (1181 S-I)(R) = R-1 

(SI8I S)(R) = R 

From the counit axiom we have (c 181 l)to = 1 = (1181 c)to, therefore 

R = (c 181 11811)(to 18I1)(R) = (c 181 1181 1)(RI3R23) = (c 181 l)(R) . R 

R = (1181 c 18I1)(to 18I1)(R) = (1181 c 18> 1)(R13RI2 ) = (118) c)(R) . R 
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Since R is invertible these equalities imply our first statement and we leave the others as 
exercises to the reader. 

Those who like formal calculations can be happy checking that the action of R on the module 
V k ® V k' is: 

R( .,0, .) _ " (8 - s)n [m + i + n]! [m' - j + n)!t4ii-2n(i-il-n(nH). ,0,. 

e, 101 eJ - L..J []' [+ ;1' [' _ ']' f,+n 101 f J - n n. m IJ' m}. 

The special case when R acts on V 2 ® V2 is important, and turns out to be 

with respect to the basis 

and thus the corresponding R-matrix is : 

Theorem 4.2.2. There is an element I' in the Hopf algebra Ar satisfying the following conditions 
I' is invertible: 3p that I'P = 1 
I'O:P = S2( 0:) for all 0: E Ar 

I: O:ip{Ji = I: {Jil'O:i where I: O:i ® (Ji = R 
S(I') = p 

In [KM] one can find the proof that I' = K2 is satisfying the conditions. Actually the second 
and fourth properties are trivial, the rest is not easy and can be found as an appendix in [KM]. 

4.3. Coloured tangle invariants 

We can now define the invariant for 3-manifolds. As we mentioned before we will define a 
function on unoriented framed links in S3 and prove that it is independent on the chosen orientation. 
First we will define coloured tangle invariants. 

Now recall the definition of an oriented tangle (chapter 1.) and our quasi triangular Hope algebra 
Ar (chapter 4.1). Define a colouring of a tangle T (or one of its diagrams) to be an assignment of 
an Ar-module to each component of T. This induces a colouring on oT as follows: if S is an arc of 
colour V then assign V to each endpoints of S where S is oriented down, and the dual module V· to 
each endpoint where it is oriented up. T~nsoring from left to right this gives boundary Ar-modules 
T± assigned to o±T. As usual the empty tensor product is C, so for a link T± = C. 

In the next result we present an oriented coloured framed tangle invariant.(Theorem (3.6) in 
[KM].) 

Theorem 4.3.1. 
There exist unique Ar-linear operators 

Jr = J: .. R,/I : T_ -+ T+ 

assigned to each coloured framed tangle T which satisfy 
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and for the elementary diagrams defined in chapter 1: 

h = id 

J. = k 

In, = E 

Jv =N Jv =Np 

where E(J@x)=f(x), E,,(x@f) = f(JJx) , N(I) = Eei@ei, Np(l) = Eei@(jiei) (for 
any basis ei). Note that for a link h : C ..... C is just a scalar. 

To prove this theorem one has to check that the given operators are really A.-linear. Then one 
can associate the above operators to the elementary tangle diagrams, then extend it to all tangle 
diagrams by the first two equations of the theorem (see theorem 1.3.3). Then one has to verify that 
the Reidemeister-type moves from theorem 1.3.4 do not alter the associated operation. For example 
the invariance of the associated operator under the move (b) from theorem 1.3.4 follows from the 
Yang-Baxter equation proved for k. The detailed proof can be found in [KM). 

Let us present now some basic properties of the JT operators as a series of lemmas. 

Lemma 4.3.2. If V = X $ Yare A.-modules and S is a closed component of the tangle T then 

where TX (TY) stands for the tangle obtained by changing the colour on S to X (Y). 

Lemma 4.3.3. If V = X @ Yare A.-modules and S is an arbitrary component of the tangle T 
then 

JT = JTXY 

where TXY stands for the tangle obtained by replacing S by two parallel pushoffs of itself (using 
the framing) and coloured X and Y respectively. 

Lemma 4.3.4. Let S, a preferred component of the tangle T, be coloured by V .If we replace S 
by -S with colour V' (the dual module) to get T' then 

where T± and T± may be identified by the isomorphism E" : V ..... V" given by E,,(x)(J) = f(JJx). 
It is indeed A.-linear: E,,(ax) = (J.lax)" = (S2(a)J.lx)** = a(J.lx)** = aE,,(x). 

Lemma 4.3.5. Let T be a link with a preferred component S. Let the colouring be restricted 
to VI, y2, ... , V' mentioned in section 4.1. If T' is the link obtained from T by replacing S by -S 
without changing its colour, then 

This lemma strongly depends on the self-duality of the A.-modules VI, v2 , •.• , y' (Theorem 
4.1.1) and the previous lemma. 
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Lemma 4.3.6. Let S be a preferred component ofT with colour s (i.e. V' with s ~ r). Let T' 
be T with a k-coloured unknotted meridian acUoined to S. Then 

Lemma 4.3.7. Let S be a preferred component ofT with colour s. Let T' be T with the framing 
on S increased by 1. Then 

Lemma 4.3.8. One can remove any 1-coloured component without changing J. 
Indeed, recall that K2 acts by the identity on VI, as does R on VI ® Vk and Vk ® VI. 

Let us consider coloured tangles which have all colour V2 • It turns out that our invariant is 
essentially the same as Kauffman's bracket polynomial or the Jones polynomial (see chapter 2). 

Theorem 4.3.9. (1) (oriented skein relations) SuppaJe that all colours are V 2 . For a skein 
triple (L+, L, Lo) (see Definition 2.0.3) we have: 

t1£+ - t1£_ = (s - s)1£o 

(2) (unoriented skein relations) For tangles R, H, V identical except 

x V 
/\ )( 

R H V 

JR = tJv +tJH 
Proof Recall that the action of R on V2 ® V 2 is given (in the relevant basis) by 

We find (e.g. by computing the characteristic polynomial of R) that 

tR-tR- 1 =(8-S)I 

and (1) follows. 
For (2) orient R so that the crossing looks like L+ and then (1) yields 

tJR - th = (s - s)Jv 

where we get L from R by locally changing the under- and over crossings. Now reverse the orientation 
on one strand so that the same crossing looks like L_ when rotated by a right angle, and so 

-tJR + t1£ = (8 - S)JH 

by (1) again. Multiplying the above equalities by t and t respectively. and adding gives (2). 
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Theorem 4.3.10. 

h = (-it(L) < L > (A = it) 

For the proof of this theorem one just has to check that the two sides behave the same way under 
the relevant skein relations - and they agree on the trivial link. The essence of this behaviour is 
the preceeding theorem. As the bracket polynomual is essentially the same as the Jones polynomial 
the above theorem states the connection between the V2-coloured tangle invariant J and the Jones 
polynomial. 

Now we present two more properties of J. One is that h can be calculated by calculating only 
Js of 2-coloured tangles (i.e. where all colours are V2) - of course not only J of T. The other 
states an interesting duality. 

Theorem 4.3.11. (The cabling theorem) Let the framed link L be coloured by the modules 
Vi, ... , Vr • Denote this colouring k, and the constant 2-colouring 2. Then 

t (.) . D-J 
h,k = 2)-1}' . h'-'J 

j=o J 

where the multi-index notation means: f( c) = nf( c;) and the sum is over all j with 1 ::; ii ::; 
T' The link Leis the one obtained by replacing each Li with Ci parallel pushoffs of itself using the 
framing. 

This theorem, in fact, is the consequence of the decomposition theorem (4.1.2) and lemmas 
4.3.2,4.3.3. 

Theorem 4.3.12. Let L U K be a framed link where K has framing a, and I = (11, ... , In) be a 
colouring of L = L1 U ... U Lnby the modules VI, ... , vr. If 0 < k < r, then: 

J '(r-2k)a+2),J 
LUK,lU(r-k) = , LuK,luk 

where A = L Ik(K, L;) for all L j that has Ii even. 

4.4. The 3-manifold invariant 

The main theorem asserts that if we use VI, . .. , vr-1 in the colouring of the link (as a tangle), 
and take an appropriate linear combination of the coloured tangle invariants, then we obtain an 
invariant for the 3-manifold that comes by doing surgery along the link. 

Theorem 4.4.1. 
then 

(Theorem 1.6 in [KM)) If M is obtained by surgery along the framed link L, 

r-l 

rr(M) = lkL E[It]h,k 
k=l 

is an invariant ofthe 3-manifold M .Where by the constants we mean lkL = bnLc"L, b = ~sin~, 
c = eC3~r-2»), nL is the number of components ofB L, UL is the signature of its linking matrix, by 
[It] we mean nki , and for the sum we use the multi-index notation (see above). 
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Proof According to chapter 3 the only thing to check is the invariance under It-move, i.e. checking 
the invariance under the following local change of the link: 

L 

Let I be a colouring of L (by that from now on we mean colouring with the modules VI, . .. , V r - 1 ). 

Let I U k denote the induced colouring of L£ with new component K coloured k < r. Then 
[IUk) = [I)[k). Since nu = nL + 1, UL, = UL +e- and so QL' = be£QL we have 

r-l 

TL = QL L:[I]h,1 
1=1 

r-l r-l r-l r-l 

Tu = QU L:(L:[I U k]JU ,lUk) = QL L:[I]be£ L:[k]h.,luk 
1=1 k=1 1=1 k=1 

Thus to prove TL' = TL it suffices to establish the identity 

r-l 

be' L:[k]h"IUk = 1£,1 (*) 
k=1 

for any fixed colouring 1 on L. We prove (*) by induction on the number of strands m. 

(1) m=O,1 
The proof for m = 0 is a special case of m = 1 when the colour i on the strand of L passing 

through K is 1, by lemma 4.3.8. So assume m = 1. Then 

by lemma 4.3.6 and 4.3.7 and so (*) reduces to 

This is purely analytical equation, whose proof depends on some "Gauss-sums"; the exact proof 
can be found in [KM]. 

Actually the constants b, e in T were set (see Theorem 4.4.1) so that this identity hold •. 

(2) If (*) holds for n-strand It-moves for all n < m, then it holds for m-strand It-moves also. 
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(2a) Let us consider the following special case 

C)/J 
\ \ 

Using the Symmetry Principle (theorem 4.3.12), we may assume that all colours j of components 
J of L satisfy j ::; ~. Indeed, if j > ~, then change j to r - j ::; ~ on J (and on the corresponding 
component JE of LE). This changes the left side of (*) by 

iE(r-2il+2(lk(J' ,S)H-I) 

where S is the even-coloured sublink of LE - (J E UK), and leaves the right side unchanged. Next 
change k to r - k on K. Then using [k] = [r - kJ, the left side changes by 

jE(r- 2k )+2(lk(K,S)+(r-il-I) 

while the right side remains unchanged. Noting that Ik(JE, S) = Ik(K, S) = lSI, we see that the net 
change on the left side is 

j2E(r-i -k)H(lk(K,S)-I)+2(r-iH) = 1 

as it is on the right side. 
Now by lemma 4.3.3, we may replace two components LI and L2 of L, coloured by II and 12 , with 

a single component coloured by Vi, 119 Vi, which is Vi, +,,-1 EEl ... EEl Vl"-',I+I by the decomposition 
theorem 4.1.2. (This is why we needed /t,/2 ::; ~). Thus by lemma 4.3.2 and distributivity it is 
enough to prove (*) when LI and L2 are replaced by a single j-coloured component for j < r. This 
is, however, covered by the induction hypothesis. 

(2b) The general case is shown 

where T is an arbitrary tangle. We will reduce to the special case (2a) using cabling and skein 
theory. 

First suppose that I = 2, the constant 2-colouring. Then we prove (*) by induction on the 
number of crossings in T. The induction begins with zero crossings, which is covered by (2a). In 
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general, we may smooth a crossing of T in two ways in both L and L', and (*) follows by induction 
for each smoothing, using theorem 4.3.9. 

Finally, for general I, h,1 and h',IUI< can be computed using the cabling formula of theorem 
4.3.11 applied to Land L' - K, respectively. This reduces the proof of (*) to the case 1= 2 proved 
above. 

The proof of the theorem is now complete. 

There are not too many results describing the properties of the invariant Tr , but for small values 
of T or "simple" manifolds one can work out some formulas. Without proof we present some results 
here: 

(i) Tr(M#N) = Tr(M)Tr(N) 
(ii) Tr(-M) = Tr(M) 

(iii) Tr(S3) = 1 

(iv) T2(M) = 1 for all M 

(v) Tr(S2 X SI) = v1csc(~) 
(vi) Tr(l~p3) = ~sec( fr:) if T is even 

(vii) T3 is a homotopy invariant, t3(ML) = ~7f L: ill«S,S) where the sum is over all the 2-coloured 
sublinks S of L. 

(viii) T4 is not a homotopy invariant 

The hope is that Tr for greater T really is a new invariant. This can be a step towards finding 
a "complete" invariant for 3-manifolds. 

5. AN ALTERNATIVE DEFINITION BASED ON THE JONES POLYNOMIAL 

The bracket polynomial (see chapter 2) can be manipulated via linear skein theory and inter
preted via the Temperley-Lieb algebra. These techniques give a short, direct proof of the existence 
of the 3-manifold invariants. 

In the previous chapter we saw that the 3-manifold invariant is a linear combination of some 
coloured, framed link invariants. But a coloured framed link invariant itself is a linear combination 
of some terms that are essentially Kauffmann's bracket polynomial (see theorem 4.3.10). Formal 
calculation gives 

'-1 
Tr(M) = bnC"L ~ t[k]( -1)j (k - ~ - j)( _i)-3w(L) < k - 1- 2j * L > (it) 

1<=lj=O ) 

(See the definition of the < * > below.) The complication of this formula can be avoided if we 
consider the approach given by Lickorish [L2], [L3], [L4] for the same purpose: giving Tr(M) as 
a linear combination of bracket polynomials of some appropriate modification of the link. This is 
given in this chapter. 
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5.1. The Temperley-Lieb algebra 

Consider special framed tangles as they were defined in chapter 1. For convenience now regard 
them horizontically, so e.g. a (3, 3)-tangle looks like this : 

Fix an integer r > 1. Let A2 be a primitive 2rth root of unity, and consider the bracket 
polynomial evaluated at A. Thus the bracket polynomial takes values in IC from now on. 

Let Vm be a vector space over IC generated by all framed (m, m)-tangle diagrams (up to isotopy) 
quotiened by relations of the form: 
(i) D U U = 6 D where U is a disjoint unknot with framing 0, and 6 = -A - 2 - A 2 . 

(ii) 

where these refers to diagrams identical except where it is shown. 
Of course, equalities in this vector space mean partial calculations of bracket polynomials, since 

one can easily see the similarity of (i) and (ii) above with the definition of the bracket polynomial 
in chapter 2. 

One can also easily check that Vm has a basis consisting of all (elements represented by) diagrams 
in the square with no crossing and no closed components. Let us call this basis the standard basis 
for Vm. Thus the dimension of Vm is the their number, the mth Catalan number m~l (:). Let 1m 
be the element of the standard basis with representative consisting m straight horizontal lines. 

We can define a bilinear map Vm x Vm -+ Vm by placing one diagram beside another: 

\;l.Iol=~ 
uLJ~ 

With this structure we have an algebra, that we call the mth Temperley-Lieb algebra. If D 
represents an element in Vmthen let the Markov trace (tr) be the bracket polynomial (recall that 
now it takes complex numbers as values) of the link diagram formed from D by joining the points 
on the left edge of the square to those on the right by arcs outside the square with no crossing: 

This is clearly a well defined linear map on Vm, because the relations used to define Vm are 
essentially the same as the defining relations of the bracket polynomial. 

The following technical theorem can be proved for the linear form 

< , >: Vm x Vm -+ IC 

defined by < z, Y >= tr[zy]. 
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Theorem 5.1.1. ({L3 J Propa;ition 5 ) If m ~ r - 1 then the < , > bilinear form is degenerate, 
and there exists an element q(m) E Vm such that 

< ,q(m) >=< ,1m> 

and the coefficient of q(m) in the standard basis corresponding to 1m is 0. 

5.2. Definition of the invariant 

To formulate the theorem stating the existence of the 3-manifold invariant it is firstly, convenient 
to explain some notations. 

Let 1';+; be the bracket polynomial of either of the following diagrams: 

where i, j, i + j besides a curve signifies the presence of i, j, i + j copies of that curve parallel 
in the plane. 

If D is a link diagram with D1 , ... ,Dn corresponding to the link components, and c is a function, 
c : {1, 2, ... , n} -+ Z+, let c * D be the diagram in which each D. has been replaced by c( s) copies 
all parallel in the plane to D •. Note that if D and D' are related by nj, n 2, n3 R.eidemeister moves 
then c * D and c * D' are also related by them. Usually c will be restricted to C(n, r), the set of 
all functions c : {1, 2, ... , n} -+ {O, 1, ... , r - 2}. If the framed link L is given an orientation, the 
linking numbers of pairs of its components form a symmetric matrix in which fr(s) is taken to be 
the linking number of L. with itself. The signature and nullity of this matrix are independent of the 
choice of orientations. The nullity of the matrix is, in fact, the first Betti number of the 3-manifold 
obtained by surgery along L. 

Theorem 5.2.1. (Lickorish [L3]) Let r be a fixed integer, r ~ 3, then 
(i) There is a unique solution Ao, ... Ar - 2 in the complex numbers to the set of linear equations 

r-2 

LA/f;+i =6i ,j=0,1, ... r-2 
i=O 

(ii) Suppose that ML is the manifold that we get by surgery from S3 along L (see chapter 3). Let 
D be a good diagram of L. Let u and JJ be the signature and nullity of the linking matrix of 
L. Then the expression 

rr(Md = II:~ L Ac(1) Ac(2) ... Ac(n) < c * D > 
cEC(n,r) 

where II: = L;~; Aii'; , is an invariant of the 3-manifold, a complex number independent of the 
choice of L or of D. 

Observe that the power of II: in the expression above is equal to the number of negative eigen
values of the linking matrix of L. 
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Although the proof of the first part of the theorem is not trivial and not only technical either, 
we will not prove it (a proof can be found in [L3]). The ideas of that proof will come up in the proof 
of the second - more interesting - part of the theorem. 

Let us call tj the following element of Vj: 

We will need the following 

Lemma 5.2.2. For every j ~ 0 we have the following identity of linear functions from Vj to C. 

r-2 

LAi< ,tj>=< ,Ij>:Vj-+C 
i=O 

Proof As T;+j =< Ij, tj > by definition 

r-2 

LA; < lj,tj >=6i =< lj,lj > 
;=0 

for j = 1 ... r - 2. 

Suppose that j :S r - 2 and b is a basis element of V; and that inserting b into the square here 

produces ll' curves encircling the annulus and j3 nullhomotopic ones, with ll' ::; j. Then the 
isotopy in this prototype annulus induces an isotopy in an immersed annulus - a neighbourhood 
of the j strands and b in this figure 
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the immersed annulus 

At the end of this isotopy there are a strands going around the immersed annulus and f3 small 
circles with no crossing at all. This shows that 

r-2 r-2 

LA; < b,tj >= LA; < 1a,ta > rl = 6a+p =< b, 1j > 
;=0 ;=0 

Thus L:;,:-g A; < , tj >=< , 1j > if j :5 r - 2. 

For j > r - 2 we use induction. Suppose that the lemma is proved for all j' < j. Let b is a 
standard base element of Vm other than 1m. Once again inserting b into the annulus above produces 
a curves encircling the annulus and f3 null homotopic ones. One can see that from b 'I 1j follows 
a < j. Then using the trick above again and the inductive hypothesis: 

r-2 r-2 

LA; < b,tj >= LA; < 1a,ta > 6P =< 1a,la > 6P = 6a+p =< b,lj > 
;=0 ;=0 

Now as r - 1 S j the element q(j) of lemma 5.1.1 exists. It is a linear combination of elements 
other than 1m. Thus by taking this linear combination q(j) can be substituted for b above. Hence 

r-2 

LA; < lj,tj >=< lj,lj > 
;=0 

and so the theorem is proved for all j. 
We can now turn to the proof of the main theorem. 

Proof From the definition of the J ones polynomial (chapter 2) we know that the expression in 
the theorem is indeed unchanged by Oi, O2 ,03 moves (chapter 1), so to get the theorem we just 
have to prove the invariance under K+- and special K_-moves (see chapter 3). 

Let us start with K+-moves. Suppose now that L and L' are framed links with (good) diagrams 
D and D' related as shown: 
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x 

D D' 
Let L have n components. If c E C( n, r), let c: E C( n + 1, r) be defined by ci l{l .. n} = c, can + 1) = i. Then Lemma 5.2.1 part (i) really states 

r-2 

I: Ai < ci * D' >=< c * D > 
i=O 

Multiplying this by AC(l) ... Ac(n) and adding gives 

I: Ac l (!) .. , Acl(n+J) < C' * D' >= I: Ac(l)'" Ac(n) < c * D > 
cIEC(n+l,r) cEC(n,r) 

The number of negative eigenvalues of the linking matrix does not change with a ~+-move, so 
from this the theorem follows for ~+-moves. 

Now if Land L' are framed links with (good) diagrams D and D' related as shown 

D D' 
Then they are related by a special ~_-move. However if Dl and D2 are disjoint diagrams 

(separated by a circle) then < Dl U D2 >=< Dl >< D2 >. Hence 

r-2 

I: Acl(l) ... Acl(n+l) < C' * D' >= (I: A/fi) I: AC(l) ... Ac(n) < c * D > 
C'EC(n+J,r) i=O <EC(n,r) 

(Because one can easily check that the bracket of i parallel copies of the unknot with framing 
-1 is 'i;.) From this the theorem easily follows noting that the number of negative eigenvalues of the 
linking matrix increases by one in passing from D to D'. The proof of the theorem is now complete. 
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