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PREFACE

Relativistic Quantum Mechanics and Field Theory are among the most challenging
and beautiful subjects in Physics. From their study we explain how states decay,
can predict the existence of antimatter, learn about the origin of forces, and make
the connection between spin and statistics. All of these are great developments
which all physicists should know but it is a real challenge to learn them for the
first time.

This book grew out of my struggle to understand these topics and to teach
them to second year graduate students. It began with notes I prepared for my
personal use and later shared with my students. About two years ago I decided to
have these notes typed in TgX, little realizing that by so doing I had committed
myself to eventually producing this book. My objectives in preparing this text
» :flect the original reasons I prepared my own notes: to write a book which (i)
can be understood by students learning the subject for the first time, (ii) carries the
development far enough so that a student is prepared to begin research, and (iii)
gives meaning to the study through examples drawn from the fields of atomic,
nuclear, and particle physics. In short, the goal was to produce a book which
begins at the beginning, goes to the end, and is easy to read along the way.

The first two parts of this book (Part I: Quantum Theory of Radiation, and Part
II: Relativistic Equations) assume no previous experience with advanced quantum
mechanics. The subjects included here are quantization of the electromagnetic
field, relativistic one-body wave equations, and the theoretical explanation for
atomic decay, all fundamental subjects which can be regarded as necessary to a
well rounded education in physics (even for classical physicists). The presentation
is modeled after the first third of a year-long course which I have taught at various
times over the past 15 years and these topics are given in the beginning so that
those students who must leave the course at the end of the first semester will have
some knowledge of these important areas.

To prepare a student for advanced work, the last two parts of this book in-
clude an introduction to many of the unique insights which relativistic field theory
has contributed to modern physics, including gauge symmetry, functional meth-
ods (path integrals), spontaneous symmetry breaking, and an introduction to QCD,

xiii



xiv PREFACE

chiral symmetry, and the Standard Model. Part III also contains a chapter (Chap-
ter 12) on relativistic bound state wave equations, an important topic frequently
overlooked in studies at this level. I have tried to present even these more ad-
vanced topics from an elementary point of view and to discuss the subjects in
sufficient detail so that the questions asked by beginning students are addressed.
The entire book includes a little more material than can comfortably fit into a year
long course, so that some selection must be made when used as a text.

To make the book easier to read, most proofs and demonstrations are worked
out completely, with no important steps missing. Some topics, such as the quan-
tization of fields, symmetries, and the study of the Lorentz group, are introduced
briefly first, and returned to later as the reader gains more experience, and when
a greater understanding is needed. This “spiral” structure (as it is sometimes re-
ferred to by the educators) is good for beginning students but may be frustrating
for more advanced students who might prefer to find all the discussion of one
topic in one place. I hope such readers will be satisfied by the table of contents
and the index (which I have tried to make fairly complete). Considerable empha-
sis is placed on applications and some effort is made to show the reader how to
carry out practical calculations. Problems can be found at the end of each chapter
and four appendices include important material in a convenient place for ready
reference.

There are many good texts on this subject and some are listed in the Reference
section. Most of these books are either classics, written before the advent of
modern gauge theories, or new books which treat gauge theories but omit some
of the detail and elementary material found in older books. I believe that most of
this elementary material is still very helpful (maybe even necessary) for students,
and have tried to cover both modern gauge theories and these elementary topics
in a single book. As a result the book is somewhat longer than many, and omits
some advanced topics I would very much like to have included. Among these
omissions is a discussion of anomalies in field theories.

Many people have helped me in this effort. I am grateful to Michael Frank,
Joe Milana, and Michael Musolf for important suggestions and help with indi-
vidual chapters. I also thank my colleagues Carl Carlson, Nathan Isgur, Anatoly
Radyushkin, and Marc Sher. S. Bethke and C. Wohl kindly gave permission to
use figures 17.4 and 10.9 (respectively). Many students suffered through earlier
drafts, found numerous mistakes, and made many helpful suggestions. Among
these are: S. Ananyan, A. Colman, K. Doty, D. Gaetano, C. Hoff, R. Kahler, Z.
Li, R. Martin, D. Meekins, C. Nichols, J. Oh, X. Ou, , M. Sasinowski, P. Spickler,
Y. Surya, X. Tang, A. B. Wakley, and C. Wang. Roger Gilson did an excellent
job transforming my original notes into TEX. And no effort like this would be
possible or meaningful without the support of my family. I am especially grateful
to my wife, Chris, who assumed many of my responsibilities so I could complete
the work on this book in a timely fashion. I could not have done it without her.

FRANZ GROSS
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CHAPTER 1

QUANTIZATION
OF THE NONRELATIVISTIC STRING

This book will discuss how nonrelativistic quantum mechanics can be extended
to describe:

o relativistic systems and
e systems in which particles can be created and annihilated.

The key to both of these extensions is field theory, and we therefore begin with an
introduction to this topic. In this chapter we will discuss the quantization of the
nonrelativistic, one-dimensional string. This is a many-body system which is also
simple and familiar. Quantization of this many-body system leads directly to the
(new) concept of a quantum field, and many of the properties of quantum fields
can be introduced and illustrated using the nonrelativistic one-dimensional string
as an example. The goal of this chapter is to use this simple system to develop
an intuition and understanding of the meaning and properties of quantized fields.
In subsequent chapters some of these ideas will be developed again in a more
general, abstract way, and it is hoped that the intuition gained in this chapter will
remove much of the mystery which might otherwise surround those more abstract
discussions.

The discussion of relativistic systems begins in the next chapter, where the
ideas developed here are immediately extended to the electromagnetic field.

1.1 THE ONE-DIMENSIONAL CLASSICAL STRING

We will approach the treatment of a continuous string by first considering a system
of point masses connected together by “springs” and then letting the number of
point masses go to infinity, and the distance between them go to zero, in such a
way that a continuous system with a uniform density and tension emerges.

Start, then, with a “lumpy” string of overall length L made up of N points,
each with mass m, coupled together by springs with a spring constant k. Assume
that the oscillators move about their equilibrium positions in a periodic pattern,
which is best realized by thinking of the string as closed on itself in a circle, as

3



4 QUANTIZATION OF THE NONRELATIVISTIC STRING

shown in Fig. 1.1. The oscillators are constrained to vibrate along the circum-
ference of the ring (which has a radius very much greater than the equilibrium
separation ¢ so that the system will be treated as a linear system with periodic
boundary conditions). The Oth and Nth oscillators are identical, so that if é; is
the displacement of the ith oscillator from equilibrium, then

$o = PN
d_¢_>£ _ ddn periodic boundary conditions.
dt dt

The kinetic energy (KE) and potential energy (PE) are
N-1
1 de;
s (%)

N-1
==k Z ¢1+1 - ¢1
1=0

DN —

Now, take the continuum limit by letting £ — 0, N — oo, such that the
length L = N{, mass per unit length 4 = m/¢, and string tension T = k¢ are
fixed. Then the displacement and energy of the string can be defined in terms of
a continuous field ¢(z,t), where

The Lagrangian and Hamiltonian are
p=xe-pe= [ () Lo (%YN L [Mari
- 2#\ar) "3t it
1 (8¢ 1, (9¢ L
H=KE+PE= —T{= =
+ / dz{ <6t> +2T(az) } /0 dzH(z,t) ,

where £ and ‘H are the Lagrangian and Hamiltonian densities. In this example,
the field function @(2,t) is the displacement of an infinitesimal mass from its
equilibrium position at z. In three dimensions, ¢ would be a vector field.



1.1 THE ONE-DIMENSIONAL CLASSICAL STRING 5

Fig. 1.1 Drawing of the circular string with the location of the oscillators in the interval [i, i + 1]
enlarged. The equilibrium position of the oscillators are the solid lines separated a distance €.

Anticipating later applications, we redefine ¢ by absorbing /T
$-VTé=4¢ .

Then introducing the wave velocity

gives

11 fa\® [0s\*| . (8¢ 8¢
ﬁ‘i[ﬁ(&) ‘(E)]“('a??ﬂ)
RSN AN A%
””5[?(%)*(52)]

The equations of motion for the string can be derived from the Lagrangian
using the principle of least action [for a review, see Goldstein (1977)]. This
principle states that the “path” followed by a classical system is the one along

which its action A is an extremum. For the “lumpy” string, made up of discrete
coupled oscillators, this condition is

(1.2)

6.A=6/dtL (<f3¢,$,~,t) =0,



6 QUANTIZATION OF THE NONRELATIVISTIC STRING

where <zi = d;/dt. Working out the variation gives the Euler-Lagrange equations
for the motion of each oscillator:

49L 0L 4 (i=0wN-1)
dt ¢, O
However, in the continuum limit as the number of oscillators N — oo,
oL - - - -
5% =~k [~ (Giv1 — &) + (¢ — di-1)]
(biv1 — i) (B — di-1)
i) o
1 [8g(2t,t)  Od(27,¢) a acC
—_ — — — — T
small £ ¢ TZ |: 0z 0z absorb VT f\/-— a¢ ’
0z
(1.3)
where z¥ = 2z + %6 is the midpoint of the interval z;,1 —z;, and 27 = 2 — —E the

midpoint of the interval 2; — 2;_;. These are appropriate arguments for the two
derivatives which arise in the next to the last step of Eq. (1.3). Also:

d oL = 8%(z1)
d gg, T e
1 3*¢(z,t) oLC
absgﬁ U2 8t2 E\/— at 8(6¢>
ot

Hence the Euler-Lagrange equations can be expressed directly in terms of £, the
Lagrangian density

d (0L oL 6 oL 8 oL
_ -_ - — — T
(3@) D, smalle vT <8¢> (6(7))

where the £v/T factor can be discarded.

More generally, £ can also be a function of ¢ as well as 3¢/t and 8¢/0z,
and for a scalar field in three dimensions, where r; = (z,y, z) are the three spatial
components, we obtain directly

5/dtd3rﬁ(r,t) =/dtd3r (——5¢+ agfd))a(v ) + g; ¢>) ,

where summation over repeated indices is implied. Assuming that 6 (V;¢) =
V:(6¢) and integrating by parts (assuming boundary terms are zero because the
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boundary conditions are periodic and that the variations §¢ at the initial and final
times are zero) give

_ 3 [0 0L o (0L \ oL
0‘/‘“‘”{ 3 3(3) Vi(a(vm)*agb}w'

Using the notation
zt = (t,z,y,2) ©n=01,23 ,

which can be readily generalized to relativistic systems (it will later be the con-
travariant four-vector), gives the famous Euler—Lagrange equations for a continu-
ous field

a oL oL
Ban ( ¢ ) "B (14)
6 —_
Ok

where summation over repeated indices is assumed. For the one-dimensional
string treated in this chapter, the Euler-Lagrange equations give the familiar wave
equation

10 96 (15)

~here the wave velocity was defined in Eq. (1.1).

In summary, we have shown in this section how a quantity referred to as a
continuous field emerges as the natural way to describe a system with infinitely
many particles. In this example, the field is ¢(z,t), and it gives the displacement
of each particle from its equilibrium position at z. Since we absorbed VT into the
field, its units (for a one-dimensional system) are Ly/mL/t2. In the natural system
of units, where h = ¢ = 1, it is dimensionless (for a discussion of the natural
system of units, see Sec. 1.3 and Prob. 1.1). In three dimensions, the dimensions
of such a field are L~!, which can be deduced directly from the observation
that [d3r £ has units of energy. Regardless of its dimensions, it is useful to
remember that a field is always the “displacement” (in a generalized sense) of
some dynamical system, and that therefore 9¢/0t is a generalized velocity.

1.2 NORMAL MODES OF THE STRING

As a preparation to quantizing the string, we find its normal modes. The solutions
of the wave equation which satisfy the periodic boundary conditions are

¢ ~ e:ti(knz—w,.t)

)



8 QUANTIZATION OF THE NONRELATIVISTIC STRING
where periodicity requires

2
kn = % n=0, £1, £2, ... (1.6)

and the wave equation gives
W2 = v2K2 .
Note that there are both positive and negative frequency solutions. We will adopt

the convention that w, is always positive, and use —w, for negative frequency
solutions. The states with positive frequency are written

1
Pn(z,t) = ﬁe“knz—w"t) . (1.7)

The negative frequency states have a time factor e'“~!, and since k, is both
positive and negative, it is convenient to denote the negative frequency states by
¢7.(2,t). The normalization condition which these states satisfy is

L
/ dz 81(2, )bm(2,t) = bnm - (1.8)
0

However, by direct evaluation it is also true that

L
/ dz ¢n(2,t)Pm(2,t) = 6p, _me 2t | (1.9)
0

<o the states are not orthogonal in the usual sense. The most general real field
can be expanded in normal modes as follows:

[e¢]

B(z,t) = Z cn {@n(0)pn(2,t) + ay(0)¢p (2, 1)}

-y %{an(t)eiknz+a;(t)e-*w} , (1.10)

n=—oo

where a,,(0) are the coefficients of each normal mode in the expansion (1.10) and
the real normalization factor ¢,, will be chosen later. It will sometimes be conve-
nient to incorporate the time dependence of each normal mode into a generalized
an(t)v .

an(t) = a,(0) e *nt | (1.11)
as was done in the second line of (1.10). The condition that ¢(z,t) is real means
that the coefficient of ¢; must be the complex conjugate of the coefficient of ¢.,.

Equation (1.11) shows that each normal mode behaves as an independent
simple harmonic oscillator (SHO) satisfying the equation

dn(t) +wian(t) =0 .
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To quantize the field, it is only necessary to quantize these oscillators.
Before doing this, however, we evaluate the energy in terms of the dynamical

variables an(t). Using the “orthogonality” relations (1.8) and (1.9), which can be
written

/L dz a;(0)<f>;(z, t)am(o)d)m(zy t) = 6n,m ‘an((])‘z = an,m ‘a'n(t)‘z
0

/L dz an(0)¢n (2, 1)am (0)dm (2,t) = 6 _p man(0)a—n(0) e 20t
0

= 5—n‘man(t)a—n(t) )

we obtain
11 (8¢ 8¢
KE=3n / D Bt
11 & ) N PR
= -2- ;E —Z [2C,21 ' an(t) |2 +Cnc_nan(t)a——n(t) +Cnc—nan(t)a—n(t)]
1 [t 8¢ 8¢
V = -2-/; dZE E
1 o0
= ‘2‘ _Z kf;, [ch | an(t) 12 +Cnc—nan(t)a—n(t) + CpC—na (t)a-n(t)]
Using a,(t) = —iwpan(t) gives

— v2
w2
+%cﬂc_n —U—'z' + kf,) [a,,(t)a-n(t) + a;(t)a‘_n(t)]}
0o 2 )
= z cflz——zﬂa (t)an Z n(O an( ) .

n=—o0 -

In natural units where £ = 1, £ = hw = w, and the frequency w has units of
energy. It is convenient to choose ¢, to make a, dimensionless. If we choose

_ (2
Cn = Yo 1

the Hamiltonian assumes a simple form

i wn ay(t)an(t) .

n=—oo
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An alternative choice of coordinates will enable us to quantize these oscilla-
tors. For this we need generalized positions and momenta, which must be real.
Choose

1 .
n
dgy twp *
t) = =% = ——==[ap(t) — ay(t

Pa(t) dt \/2—%1- [an( ) an( )]
The a’s can then be expressed in terms of the real p’s and ¢’s
o = iPn + Wnldn o = —1Pn + Wnfn

" 2, " 2n,

and the Hamiltonian becomes

oo

1
H=Y lR+uled] | (112)

n=—0oQ

which is a sum of independent oscillator Hamiltonians. This is confirmed by
substituting (1.12) into Hamilton’s equations of motion

_oH _
- apn =Dn
OH

DPn = —a—qn = _wzqn )

Gn

which gives back the familiar equations of motion for uncoupled oscillators.

1.3 QUANTIZATION OF THE STRING

We now quantize the string by the canonical procedure: the canonical variables
are made into operators which are defined by transforming the Poisson bracket
relations into commutation relations [for a review of this procedure see, for ex-
ample, Schiff (1968), Sec. 24]. For the generalized coordinates and momenta this
leads to the following commutation relations:

[Qm Pm] =ihéum

(1.13)
[9n.gm] = [pn,pm] =0 .

In what follows we will always set A = ¢ = 1. This defines the so-called natural
system of units, which is very convenient. It is important to realize that the correct
factors of A and c¢ can always be uniquely restored at the end of any calculation,
if desired. These units are discussed in Prob. 1.1 at the end of this chapter.
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From the commutation relations (1.13) we obtain

[am aIn] = On,m

[@n,am) = [a},al,] =0, (1.14)

where the complex conjugate of a complex number (sometimes called a c-number)
must be generalized to the Hermitian conjugate of an operator (sometimes called
a g-number), and the operators a,, are independent of time. The time dependence
is in the fields, which are also operators™:

— 1
#(z,t) = v Z m

{an gilknz—wnt) +a1, e—i(knz—w"t)}

= ¢(+)(Z,t) +¢(_)(Z, t) ’ (115)

where the positive frequency part, ¢(+), contains the sum over a, (later to be
identified as annihilation operators) and the negative frequency part, ¢{~), is the
sum over a}, (the creation operators). In this case ¢ is Hermitian because it is
associated with a physical observable (the displacement), but in general a field
need not be a Hermitian operator. We will study such fields in Part III of this
book.

The Hamiltonian is also an operator, and its precise form depends on the
order of a! and a, which was unimportant when these were c-numbers. Perhaps
the most “natural” form for H is

> 1
H = Z w,,E [aLan +anaL]
n=—o0
o0

: [T 1]
= Z W anan+§

n=—oco

However, the sum over %wn gives an infinite contribution to the energy (the
zero-point energy), which can be removed simply by redefining the energy. This
redefinition will lead to the idea of a normal ordered product, which will be defined
and discussed in Sec. 1.6 below. For now we will simply adopt the following form
for H:

o
H= Z wnala, . (1.16)

n=-00

Note that H is the sum of the dimensionless operators a} a,,, each multiplied by
the energy wy, of the normal mode which it describes.

*To avoid singularities, we will exclude the state n = 0 from this sum. Later, when we take the limit
L — oo (the continuum limit), the sum will include states of arbitrarily small energy.
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1.4 CANONICAL COMMUTATION RELATIONS

The commutation relations between a and a' also imply relations between the
fields ¢. Suppose we regard ¢ as a canonical coordinate. Then, the canonical
momentum is [using £ defined in Eq. (1.2)]

oL 1 0¢
Mot = =N T Bt
ot

Then, generalizing the commutation relations (1.13) to a continuous field, we
expect to find relations of the form

[@(2,t),m(',t)] = i6(z - 2)
[m(z,t),7(2,8)] =0 (1.17)
[p(z,8), ¢(', 1)} =0 ,

where the 6(z — z’) function is the generalization of the Kronecker ,,,, which ap-
pears in (1.13). These important commutation relations are known as the canonical
commutation relations, sometimes referred to as the CCR’s.

To prove the relations (1.17), we use the explicit form for 7

1 & 1 : .
m(z,t) = — {—iw an etnz=wnt) 44y al e"’(k"z"“’"t)}
R M A .
Then
) NN
[n(z,t), d’(zI’ Ol =-o7 Z
2L g VW
e R A B

+ [an, al,] et(knz=kmz)milon—um)t _ 1ot g 1 e“(knz"‘mZ')“(wn-%)‘}
! ko (z—2' .
= =iy Ze‘ n(2=2) = i [(z,7)) .
n

However, the functions —=e*n? are complete (i.e., any periodic function can be
expanded in terms of them) and orthonormal, and hence

L
) f .
/ dZ’ I(Z,ZI) elknz — etk,.z ,
0
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which is the property of the §-function, and hence
1 ; '
I ’I_____ thn(z—2") _ -2} . .
(z,2)) 7 Zn:e 6(z~ 2') (1.18)
This proves the first of the relations (1.17). To prove the others, note that

2
(82,090, 0] =37 3 —oe

[ei(knz—k,,.z’)—i(w..—wm)t [am aIn]
+ e~ i(knz=kmz')+i(wn-wm)t [a}, am]

v? 1 ikn(z-2")
=EZ";—6 hid [1—'1]=0 .
n n

A field theory may be quantized with either the CCR’s (1.17) or the com-
mutation relations (1.14) between the operators a and a!. As we have seen, these
two methods are equivalent. Should either be regarded as more fundamental than
the other? Many prefer to start from the CCR’s because of their close connection
with the fundamental relations (1.13), but in this book the relations (1.14) between
the a’s will be chosen as the starting point for quantizing new field theories. The
reason for this choice is that the relations (1.14) are directly related to the oscil-
lators which describe the independent dynamical degrees of freedom associated
with the field, and therefore always have the same form, while the fields them-
selves sometimes include degrees of freedom which are not independent (such as
the vector degrees of freedom of the electromagnetic field) and in these cases the
‘orm of the CCR’s must be modified so that these dependent degrees of freedom
are removed from the commutation relations. This will be apparent in the next
chapter where the quantization of the electromagnetic field is discussed.

1.5 THE NUMBER OPERATOR AND PHONON STATES

Next, we find the eigenstates of the Hamiltonian (1.16). The first step is to find
the eigenstates of the operator
N, =ala,

known as the number operator. These are easy to find from the commutation
relation for the a’s.
Since N = a'a is Hermitian (from now on we suppress n), it has a complete
set of orthonormal eigenstates. Denote these by |m). Then
N|m) = m|m)

(m'|m) = bm'\m

1= |m)(m| .
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At this point we know only that m is real.
Now consider the state af|m). From the commutation relations (1.14) we

have
N alim) = {[N,a!] +alN} |m)
= (a! +a'm) [m) = (m + 1)a’|m) .

Hence
alim) =Cylm +1) ,

where C; is a number to be determined. A similar argument gives
alm) =C_jm -1} .
The numbers C,, and C_ can be determined from the norms
(mlaa'im) = |C4|* = (m|(1 +ala)|m)=m+1 .

Similarly,
|IC_]* = (m|ata|m)=m .

The axiomatic development of quantum mechanics requires that all quantum
mechanical states lie in a Hilbert space with a positive definite norm. Hence we
require that m > 0, or if m = 0,

al0) =0 .

Furthermore, since m can be lowered by integers, all positive m must be inte-
gers; otherwise, we could generate negative values for m from positive values by
lowering m repeatedly by one unit.

Hence, it is possible to choose phases (signs) so that (m > 0)

allm) = vVm +1|m +1)
alm) = vVm|m - 1) (1.19)

atalm) = mim) .

This means that all the states can be generated from a “ground state” |0) (some-
times called the “vacuum”) by successive operations of a':

o)™
im) = (7_3—1!40) .

For a mechanical system like the string, these states |m) are referred to as phonon
states, and if a = a,,, we will show that m can be interpreted as the number of
phonons of energy wy,, where the quantum of energy carried by the phonon is
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associated with the entire system. This justifies calling A the number operator
and suggests that the operators a and a! have the following interpretation:

t

a), creates a phonon with frequency wy,

ay, destroys a phonon with frequency wy,

This description is further supported by the Hamiltonian (1.16) which now has a
simple physical interpretation. If a}a, is an operator which gives the number of
phonons of frequency (energy) wy,, then (1.16) expresses the total energy (H) as
a sum of the energy of each phonon (wy,) times the number of phonons with that
energy (alan). The most general eigenstate of the Hamiltonian can therefore be
written*:

t Mn, t Mng
|mn1 yMngy Mpg,y - ) = (anl) (anZ) lO) . (120)

M,y ! v/ Mny!

Since all creation operators commute, these states are completely symmetric and
satisfy Bose—Einstein statistics. Such states, with a definite number of phonons of
various frequencies, are referred to as Fock states.

It is sometimes tempting to try to relate the particles associated with the
field (the phonons) to the original mass points from which the string was con-
structed. However, there is no connection between these two kinds of particles.
The phonons are associated with frequencies, or normal modes of the string, and
hence are related to the motion of the string as a whole, its collective motion.
".hey are localized in “frequency,” or momentum space, while the particles in the
string are localized in position space. Later we will see that there are also parti-
cles associated with abstract fields which have no connection with any mechanical
system.

1.6 THE QUANTA AS PARTICLES

The quanta associated with a quantum field (the phonons in this example) really
are physical particles which carry both momentum and energy. In the previous
section we saw how the phonons carry energy. The Hamiltonian tells us that the
total energy of a state with a definite number of phonons (a Fock state) is simply
the sum of the energy carried by each of the phonons in the state. To complete the
description of phonons as particles, we must show that they also carry momentum.
This will be done in this section by first finding the momentum operator of the
field and then showing that the total momentum of a Fock state is simply the
vector sum of the momentum of each of the phonons in the state.

*Of course, if more than one state has the same energy (there is a degeneracy), the most general state
will be a linear combination of all the states with that energy.
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Using Noether’s theorem, the momentum (and energy) operators can be de-
termined in an elegant and completely general way for any abstract field theory.
This will be discussed later in Chapter 8. In this chapter we exploit the physical
properties of the one-dimensional string and determine the momentum operator
from the continuity equation.

The energy density carries with it a momentum density which describes how
the energy flows. This momentum density is related to the energy density by the
continuity equation, which in three dimensions is

1 9

2 Bt +V,P'=0. (1.21)

Digression: To recall the origin and physical content of this equation, consider
a compressional wave traveling with velocity v in the positive z-direction. This
wave has a local mass density p(z — vt) different from the average density of the
string. Then, the kinetic energy associated with this excess density is

Exe = 1p(z — vt) v* .

By the virial theorem applied to a collection of SHO’s, an equal energy also comes
from the potential energy, so that

Erotal = p(z — vt) v? .
3ut the momentum density associated with the mass flow is
P?=plz—vt)v

so that one obtains Eq. (1.21):

= -—'up' = ———B—'PZ . |

19
v2 Ot 0z

Now we will use the continuity equation to find the momentum operator. For
the string, £ equals the Hamiltonian density of Eq. (1.2), and hence

iﬁg_i[ia_d’@ o¢ a%b]

v? Ot v? (V2 Ot Ot2 0z Otoz
1 (8¢ 829 ¢ 8%

z [a 32 1o aa-]
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Hence the classical momentum density must be

s _1 (0 09
(5% (1.22)

We can turn (1.22) into a quantum mechanical operator by replacing the
classical fields by their quantum mechanical operator equivalents. Since the field
operators do not in general commute, the order of the terms in any product is
important, and it is convenient to choose this order so that (in this example) the
expectation value of the momentum of the ground state |0) is zero. To this end
we define the normal ordered product of two field operators as follows:

: $169: =P1002 — (0]6162(0) = B\ BT + B BT + p{ P
+ 67657 + [407, 48] - 0lo1a10)
=91705" + 917057 + 4770617 + o707 (1.23)

where ¢,(.+) and ¢§ ) are the positive and negative frequency parts of the field ¢;,
as defined in Eq. (1.15), and to obtain the last line use the facts that ¢(+)|0) = 0,

(0|¢) = 0, and the commutator [¢{"), ¢{7)] is a c-number, so that it is equal to
its ground state expectation value. Hence the normal ordered product of operators
which satisfy commutation relations like (1.17) can be obtained simply by reorder-
ing any terms in which creation operators are on the right and the annihilation
operators are on the left, so that all the terms have either two annihilation opera-
tors, two creation operators, or a creation operator on the left and an annihilation
operator on the right.

Using this definition, the total momentum operator of the one-dimensional
string is

Ldz 8¢ 8¢
= =2 I 1.24
P o V2 Ot Oz (1.24)

The total momentum assumes a simple, clearly interpretable form when ex-
pressed in terms of the a’s. To obtain it, substitute (1.15) into (1.24), honoring
the normal ordered definition (1.23):

pro- Y ke / " i
e 2L\/wnm Jo
x {a"amei(kn+km)z—i(un+wm)t + aI;aIn e—i(k..+k,,,)z+i(wﬂ+wm)g
— alay, e~itkn—km)z+iwn—wn)t _ gt 5 ei(lc,.—k,,.)z—i(wn—wm):}

1 . .
=-3 {k_,,a,.a_,, et 4 k_.atal  e?wnt ana:"a,,}
n
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However, the first two terms sum to zero, because they are odd when n is changed
to —n (recall k,, = —k_, but w, = w_,). Hence

P? = ana,tan ) (1.25)

which expresses the total momentum as a vector sum of the momentum of each
phonon (k,,) times the number of phonons with that momentum (a},a,). [The
full vector character of the momentum operator is only partially illustrated by this
one-dimensional example, where P, has only a z component and all k, must be
in the %-direction so that k,, can be only positive or negative.] We see that the
momentum operator is precisely what we would expect from the interpretation of
phonons as particles with energy w, and momentum k.

1.7 THE CLASSICAL LIMIT: FIELD-PARTICLE DUALITY

The Fock states are the quantum mechanical eigenstates of the Hamiltonian. What
do these have to do with the classical vibrational states of a string? What is the
classical 1imit? Before giving a full answer to these questions, we make two
preliminary observations.

First, note that a state with a definite number of quanta corresponds to a case
where the average field is zero, but otherwise the field is completely unknown. To
show this, consider a state with ny quanta of type 1: |n;). Then, for quanta of
any type m (including m = 1)

(nilamlni) = 0 = (nylal,|ny)

so that the average field is zero,

(nilg(z,t)ln1) =0 .
However, the average of the square of the field is not zero. In fact,
1
(ml6?(z,t)lm) = (mfv? Y o
— 2L, foiw;

% {a,-a} gilks=ky)z—iwi—w)t 4 glg e-i(k,-k,)z+i(w.—w,)z} In1) |
where (ni|a;a;|n) =0= (nllaza;lnl) has been used. Next, note that

(nalasalim) = 6;; + (nilalailni) = 65 + n16:16;1

(mla!ajlrn) =n16;1651
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and hence

2
(n1]@?(2,t)ny) = ;—L [2—:;1- + Z L = 00

Wi
i 1

because |i| ™! diverges. Hence the uncertainty in ¢, A, is

Ap = V(#?) —(¢)? = o0

and ¢ is completely uncertain, beyond knowing that (¢) = 0. [To define the field so
that A¢ # oo, we may “smear” it, introducing

o(f) = / dz f(2)(zt) .

where f(z) is strongly peaked in the neighborhood of a point z = z, and very small
elsewhere; see Prob. 1.5 at the end of the chapter.]

For our second observation we note that no state behaves like a classical wave
for all z and t.* This would require that the field ¢ and its “velocity” m commute,
and the CCR’s (1.17) show that this is not the case. Another way to see this is to
rewrite ¢ as a sum of traveling waves,

oz t) =v Z —2\/1_—1: {Ancos(knz — wnt) + Bpsin (knz — wpt)}
Wn
where

an = 5 (An —iBy) al, = (A +iBn)

or, dropping the n
A=a+al B=i(a-a') .

The operators A and B must be simultaneously diagonalized in order that ¢(z,t)
have a definite value for all z aud t. But this is impossible, because A and B are
non-commuting operators:

[A,B]=i[(a+a'),(a—a)] =2

and hence cannot be simultaneously diagonalized (i.e., cannot both have definite
values). Furthermore, the above commutator implies an uncertainty relation

AAAB>1 . (1.26)
These two results give limitations on our ability to define the field and show

that it cannot be defined exactly. However, states do exist in which A and B have a
very small fractional uncertainty. Such states correspond to a classical field as much

*Thanks to Charles Sommerfield and Alan Chodos for clarification of this point.
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as is possible in quantum mechanics. Since an optimization of (1.26) requires that
AA ~ AB =~ 1, small fractional uncertainty in the values of {A) and (B) is possible
only if (A) and (B) are both very large. However, these quantities are related to the
average number of quanta through the relation

A2+ B2 =4ala+2=4N +2

and hence such states must have a large average number of quanta {N). If we
parameterize (A) and (B) by

(AY = 2/(N)cosé
(B) = —24/(N)siné

and if () — oo, then the fractional uncertainty in (A) and (B) goes like

IIZ

a4 1
¥ & e
(A; 2 (J\_ficosé 2s () — o0

B) ~ 2/(N)siné —0

and the fractional uncertainty in A and B is small and the average field (¢) is well-
defined in both amplitude and phase (except for exceptional cases where sin § or
cosd = 0).

An example of a class of states with this property is the coherent states, which
are the eigenfunctions of the annihilation operator a. These states can be written

00 "
cz ny=c>" U{—n",)—|o> , (1.27)
n=0 '

11,—0

where C is a normalization constant, and K is the complex eigenvalue corresponding
to the eigenvector | K)

a|K) = z aln Z \/_|n

=KC n) = K|K) .
5 Lo = iro
We will parameterize the eigenvalue K by
K =VN¢®

and normalize the state

(K\K)=C Z(lKl) =X =1

n=0
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which implies that
C = |KI?/2 _ o~N/2

It is worth noting that the operation of the creation operator on the coherent state
is equivalent to differentiating the state with respect to the complex number K,

al|K) = CZ aT;n Z \/r_f+—_|n+1)

n—O n—O
oo n—1
= cz n If/__ n) = |K) : (1.28)

Using these remarkable results, we can quickly calculate (A), (B), AA, and
AB. First, using (K|a' = (K|K*,

(KlalK) = K (Klal|K) = K*
(Kla®|K) = K? (Klat|k) = K*2
(Klaa'|K) =1+ |K|? (Kla'a|K) = |K|* =N

and hence
= (a+a') = 2ReK = 2N%cos
B)=i{a—a') = —2ImK = —2N"%sina
(A?) = <¢12 +a'’ +aal + a"a> = 2Re(K?) + 1+ 2|K|?
=2N(cos2a+1)+1=4Ncos?a +1
(Bz) = - <a2 +at? —aal - a1a> = —2ReK? + 1 + 2(K)?
=2N(1~cos2e)+1=4Nsin’a+1 .

Therefore
1/2
A= (<A2> - (A)z) = (4N cos® a+ 1 — 4N cos? a)l/z _,
B= ((Bz> _ (3)2)1/2 _ (4Nsino+1—4dNsin?a)? =1

and the fractional uncertainty in A and B does indeed approach 0 if N — oc.
Furthermore,
N =N

(N?) = <(afa > (la'aatal)

= (la'a + a'alaal) = N2+ N
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so that NV is indeed the average number of phonons, but the uncertainty in the
number of phonons also approaches zero as N — oo:

1/2

AN=(<N2>—(N)2) _(N2+N~N2)1/2=L_)0

(N) N N

So far our considerations have been limited to a specific frequency. To obtain
a well-defined field, we must construct a coherent state for each frequency. Hence
the general state is of the form

|Ki...Kn..)=C1...Cp... {2 (Kl)m"'(K")""'“|n1...nn...>

np... (n1!)...(nn!)...

np...=0

and there is a field—particle uncertainty relation, or complementarity principle. If
AN =0, then Ag = oo, while if A¢ is small, AN must be large.

1.8 TIME TRANSLATION

One of the most fundamental problems in physics is the determination of the time
evolution of physical observables. In the language of quantum mechanics, this
problem is solved by finding an operator from which it is possible to calculate
how matrix elements of quantum mechanical operators evolve in time. We close
‘his chapter with an introductory discussion of how this is done in field theory.
We will return to this issue several times in later chapters, but our development
will always be very similar to the one presented here.

The time translation operator can be found from the Hamiltonian, which
describes how states evolve over an infinitesimal period of time. In field theory,
this property of the Hamiltonian is described mathematically by the following
relations:

[H,¢(z,t)] = _iéﬂa‘zﬁ
on(z,t) (1.29)
[Hym(z,1)] = i

These fundamental relations are sufficient to establish H as the generator of time
translations and to permit the construction of the operator for finite time translations
(for more discussion, see Chapter 8).

To prove the above relations for the one-dimensional string, we ignore the
fact that H is normal ordered, since the only difference between a regular product
and a normal ordered product is a c-number, which commutes with ¢ and 7. Then



1.8 TIME TRANSLATION 23

we use the CCR’s to obtain

L ) 2
[H,¢(Z,t)] == [‘/0. dz'% (Uzﬂ-z(z’,t) + <"a'jiéz—l’t—)) ) ,(,‘b(Z,t):I

= A dZ"Uzé [Wz(z,‘t)y(ﬁ(z’t)]

If [A, B] = ¢, where c is a complex number, then
[A%,B] = 2cA . (1.30)

Hence, from the CCR,

[H,6(2,1)] = —i v* /OL d2'n(2 , )6(2 — 2) = ~ia¢(ai‘ t)

For the second relation, use (1.30),

_ [t 08(2, 1) [08(2,1)
[H,ﬂ'(z,t)]—/o dz 57 [ P ,w(z,t)} ,

and find the commutator by differentiating the CCR,

[r(2,t), ¢(2',t)] = —ib(2' — 2) = [w(z,t), %} = ——i%é(z' -2z) .

Hence, integrating by parts and using the wave equation,

[H,7(z,t)] = i/L dz’ié(z’ - z)6¢(z’,t) _ _iasz(Z, t)

0 dz’' 0z 022
__j 19t om
v2 8tz ot

This completes the derivation of the relations (1.29).

The next task is to use these relations to construct the time translation op-
erator, but first we must decide how we are going to describe this operator. In
general, in quantum mechanics, there are two choices which can be made. One
may choose to have the states change with time and the operators remain fixed (the
Schradinger picture) or the states remain fixed and the operators change with time
(the Heisenberg picture). In the Schrédinger picture, there is a time translation
operator which evolves the states from time ¢g to ¢:

[t) = U(t, to)|to) Schrédinger picture. (1.31)
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In this picture, the operators are fixed at the reference time ¢y, and matrix elements
at arbitrary time ¢ are written (¢|@{to)|t). [For simplicity, in the remainder of this
section, we will ignore the dependence of ¢ on 2, and write ¢(z,t) — ¢(t).] The
time translation operator is a unitary matrix which operates on the vector space
of possible states. It must be unitary because the norm of the state vector, which
is the total probability, must be conserved. (If there are several channels, the
probability that any particular channel will be occupied may change with time,
but the sum of all the probabilities must always add up to unity.)

In the Heisenberg picture, the operators depend on time, and the states are
fixed at the reference time t3. Since all matrix elements must be independent of
which picture we use, the relation between the two pictures follows from

(tlo(to)lt) = (tolo(t)lto)
e, e’ N —
Schrodinger Heisenberg

These are equivalent if the operators in the Heisenberg picture evolve with time
according to the following relation:

B(t) = U™ (¢, to)d(to)U(t, to) Heisenberg picture. (1.32)

We will use the Heisenberg picture (which has been employed so far) and the
commutation relations Eq. (1.29) to find the form of U(t,tp). Begin by writing
O¢/0t in two equivalent ways:

9¢(t)

ot

- [Hv ¢(t)] = le [H: d’(tO)] U
=4{%U*mmmmw+u*mm%Ummﬁ , (1.33)

where, in the first line, we used U-YHU = H, which follows from the fact that
H is independent of time, and the second line is simply the time derivative of
Eq. (1.32). Using UU ! = 1, which implies

d -1 d oy _
(MU>U +UZUT =0, (1.34)

Eq. (1.33) can be rearranged as follows:

17, 6tt0) = =4 { U e, 10)0(t0)U + U 0l10) 501, 10) b U

—+i{ (Gt t) ot - o) (2Ut.t0)) U1}
= i K%U(t,to)) U-t, ¢(to)]
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(1-+(2)0) ] -0

Now this must hold for any operator ¢, and assuming that these operators are a
mathematically complete set, so that any operator on the space of Fock states can
be expanded in terms of them, the combination H — i (%) U~! can commute
with all ¢ only if it is a multiple of the identity (this is an application of Schur’s
Lemma), giving

. [dU
sz(-——) U '+ Ey (1.35)
dt
where Ey is an arbitrary constant. Hence
du )
E{ = —Z(H - Eo)U .

For H independent of time, this gives
U(t,to) = exp [~i(H — Ep)(t — to)] , (1.36)
where the normalization of the exponential is fixed by the initial condition
Ulto,to) =1 . (1.37)

This result assumes H is independent of time but can be generalized to cases
where H depends on the time, which is normally the case when interactions are
included. This will be discussed in Chapter 3.

If we choose Ej to be the ground state expectation value of H, then H — E
has a zero ground state expectation value, and that is equivalent to using the
normal ordered form for H and taking Ey = 0. With this choice (which we made
in the previous sections),

B(z,t) = et g (5 1) emtH U0 (1.38)

The form (1.15) for ¢ satisfies this condition (see Prob. 1.4).
In the next chapter we apply these ideas to the quantization of the electro-
magnetic field.

PROBLEMS

1.1 In this book we are using natural units in which / = ¢ = 1. This means that
length (L) and time (t) have the same dimensions and that mass (m) has the
dimensions of an inverse length.

(a) Using the Fermi (f) as the fundamental unit of length, where 1 f = 10~1°
meters, find:
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1.2

1.3
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e The mass of the electron.

e The mass of a 7 meson.

o The radius of the first Bohr orbit of hydrogen.
e The energy of the ground state of hydrogen.

(b) Repeat part (a) using the MeV as the fundamental unit of energy. Find a
conversion factor between f and MeV.

(c) An expression in natural units can always be converted uniguely into an
expression in ordinary units (L,?,m) by inserting h and c in the correct
places. Give an argument describing precisely how to do this for any expres-
sion and give some examples showing the correctness of your argument.

The momentum operator of the siring is
pro (2000
0 'U2 ) ot 82 )
Prove that this is the generator of translation in the 2-direction. In particular,
prove that

(P02, 1)) = 12520
[P?,7(z,t)] = iawé? )

Consider the Lagrangian density

_L[(89) _ (0 _
E*é[(‘a?)‘(éz) R

where ¢ = ¢(z,t) is a generalized coordinate.

(a) Find the momentum conjugate to ¢.

(b) Find the equations of motion for the fields and the solutions. Use periodic
boundary conditions.

(c) Suppose the field is expanded in normal modes
Bz, t) = Z cn {andn(z,t) +aloh(2,t)}
where a,, satisfy the comr;;utation relations
[an,an] = [a:'l,al,} =0

[an, a;‘l,] = bpn

Find the coefficients ¢, which will insure that the CCR’s assume the standard
form

[(z,t),7(2' b)) = i6(z = 2') .
(d) Find the Hamiltonian density, and express the Hamiltonian in terms of
the number operators al a,,.
(e) What is the physical significance of this field?
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1.5

PROBLEMS 27
The Hamiltonian is the generator of time translation. This means that
eH -0 g(2,10) e H 1) = g(2,1) .

Prove that this relation holds for the one-dimensional string.

[Taken from Sakurai (1967).] Consider a three-dimensional scalar field like
that introduced in Prob. 3 above:

—iknx +a1’ eik,.-::}
n

1
@(r,t) = Z oD {ane
ey

where k,, - £ = wyt — k,, - r and [an,a:“,] = Opn, Wn = /M

(a) These fields are singular operators. Show that

(Olg(r,t)l0) =0
(0]¢*(r,1)|0) = 00 .

(b) To make the fields more regular, we smear the fields by averaging them
over a small region of space. Suppose we define the average field in the
neighborhood of the origin by

n 1 3/2 3 2/2b2
= —— —r
#(0,t) = (27rb2> /d ro(r,t) e .
Show that if b << L, then
(0]¢*(0,t)|0) = (numerical factor) blz

Find the precise result if m =0.
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CHAPTER 2

QUANTIZATION
OF THE ELECTROMAGNETIC FIELD

We now use the techniques developed in Chapter 1 to quantize the electromagnetic
(EM) field. This system is one of the most important in physics but is also one
of the most complicated. The EM field appears to be two coupled three-vector
fields, but through Maxwell’s equations and gauge invariance, it can be reduced to
a single four-vector field with only two independent components. The elimination
of these redundant components, which are connected with the gauge invariance
of the system, poses a new problem unlike any discussed in the previous chapter.
The relativistic nature of the EM field is also a new feature which needs to be
discussed.

This chapter begins with a description of the properties of Lorentz transfor-
mations and a discussion of gauge invariance, topics which must be addressed
I efore we can quantize the field. The particles which emerge from this quantiza-
tion are photons, familiar from elementary studies. The vector nature of the EM
field means that the photons have spin one as well as energy and momentum. The
appearance of this spin, and its connection to the vector property of the field, will
be the last topic covered in the chapter.

The goal of this chapter is to lay the foundation for the treatment of the
interaction of the EM radiation field with matter, which will be discussed in
Chapter 3.

2.1 LORENTZ TRANSFORMATIONS

We begin with a brief discussion of Lorentz four-vectors and transformations.
The emphasis here will be on notation; the properties of the Lorentz group will
be discussed in more detail in Chapter 5. In the natural system of units, the speed
of light, ¢, is equal to unity, so that the space/time four-vector is denoted

o = (t,r) = (t,z,y,2) = (t,7%)

Ty = (tv —l') = (tv —I, Y, _Z) = (t’ _Ti) ’ (21)

28
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where z* is the contravariant and z,, the covariant form. Note that Greek indices
on four-vectors (such as p) vary from 0 to 3, while Roman indices on three-vectors
(such as ?) vary from 1 to 3. The invariant length of this four-vector is written

2? =gtz =zt =t -t =2 -2t - P - 2P (2.2)

4

where g, = g#¥ is the metric tensor and a sum over repeated indices is always
assumed. Note that (2.2) implies that the relation between the contravariant form
of z (z*) and the covariant form (z,) is

Ty = guz’ . (2.3)
A Lorentz transformation (LT) is any transformation which leaves the length

of four-vectors, defined in (2.2), invariant. In general, a transformation A which
operates on the space of four-vectors can be written'

't = A*, 1Y

ot = (A7) v (2.4)

In this notation the requirement that the four-vector length remain invariant be-
comes

x/2

g,z = A“azagwA"gmﬂ
= goprz? | 2.5)
B

which leads to the following condition on A:

9o =Nogu Ap . (2.6)

Any transformation which satisfies this relation is an LT. In Sec. 5.8 we will show
that all of the transformations which satisfy (2.6) form a group in the mathematical
sense.

*We will adopt the convention that the Roman indices on three-vectors will always be written as
superscripts. Be careful to always include the minus sign when converting the spatial components of
a covariant four-vector to a three-vector!

tEree indices on both sides of a relativistic equation must always be in the same position (either up
or down), and indices on one side of an equation which are summed (or contracted) must always
be paired, with one up and one down. This will insure that both sides of the equation transform in
the same way. In three-vector equations, the position of the indices is arbitrary, and placement is by
convention.
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Matrix Notation

It is convenient to introduce a matrix notation for LT’s. The following correspon-
dence will be made:

1
1
-1
G - {guu} = _1 =
-1
-1 (2.7)
AOO | AOj
A={A} = i i
(A%} At A

where the matrices have been written in block form, with the upper left element
the (0,0) component and the lower right element representing the 3 x 3 submatrix
of spatial components. The Greek indices, p and v, always run from 0-3, while
the Roman indices, 2 and j, run over the spatial components 1-3, and the corre-
spondence is {u} = (0, ) and {v} = (0, j). As we have written it, 4 labels the
rows and v labels the columns. Note that therefore A¥ ), gy = ATG.

In this notation, the defining equation (2.6) for the LT’s becomes

G=ATGA (2.8)

and, representing the contravariant four-vector by z, and the covariant one by Gz,
so that ' = Az, Egs. (2.2) and (2.4) become

¢’ = Az
Gz' = GAGGz = (A7) ™' Gz
*=2"Gz . (2.9)

Note that the four-gradient

0 7] 0 o o0 0
a = e— = — = —_— — —— —
7 Oxm <8t’ V) (8t’ oz’ oy’ az)

transforms as a covariant four-vector. To prove this easily, use (2.4):

7] oz* 8 _ha
On = om = 5o Ggn = A7) wa
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which is the same as the transformation law for a general covariant four-vector
{z,} = Gz, as given in Eq. (2.9). If V# is a contravariant four-vector, the
divergence is

o
b Zyo .
% 8tv +V-V.

Note that a plus sign appears in this equation, instead of the minus sign which
might be naively expected.

The LT’s are not necessarily orthogonal matrices. The rotations, which leave
the time component of any four-vector unchanged (and also one direction in space,
the rotation axis, unchanged), can be written

1 0

0 R

and are orthogonal. The boosts, which leave two directions in space invariant, are
not orthogonal. A simple example is the boost in the 2-direction

cosha 0 0 sinha
0 1 0 0
0 0 1 0

>
@
I

sinha 0 0 cosha

which leaves the z- and y-directions invariant. Note that AL, = A g, not Agl.

2.2 RELATIVISTIC FORM OF MAXWELL'S THEORY

The Maxwell equations (with ¢ = 1) are

OB
V-E=p VxE——E?

. OE
V-B=0 VXB—J+E'

These are in rationalized Gaussian units where Coulomb’s law for a point charge
is V = e?/4mr and the fine structure constant is o = e2/4r. We replace two of
these equations with potentials

E=—V¢—%A B=V xA . (2.10)
These solve the two homogeneous equations identically, leaving
E
V-E=p VxB—6—=j. (2.11)

ot



32 QUANTIZATION OF THE ELECTROMAGNETIC FIELD

To cast these equations into a relativistic form, identify two four-vectors

A* = (¢, A) i* =0 J) - (2.12)

Note that the so called “scalar” potential ¢ is now the time component of a four-
vector, and it is sometimes convenient to denote it by A° instead of ¢. This
potential is still a scalar under rotations, but is no longer a scalar under boosts
(and hence is no longer a scalar). Since E and B are coupled, there are six field
components which transform into each other. This is just the correct number for
an antisymmetric 4 x 4 tensor, which is denoted F*¥. Since three-vectors are
always written with their Roman indices as superscripts, we identify

F# = {E,B} FH = —Fv#
Fio _ i F¥ = —¢;; B
0 —-E* —-EY -—E*
E*f 0 -B? By
Ev B* 0 -BF
E* -BY B* 0
Here €,y is the familiar three-dimensional antisymmetric symbol with €323 = 1. In

this notation, the homogeneous equations (2.10) and the inhomogeneous equations
2.11) become

FW = 0k A" — 9 A*

2.13
BuFH = . (213)

The form of these equations shows immediately that the theory is invariant under
Lorentz transformations if A* and j# are four-vectors and F*¥ is a second rank
tensor. In this case
P AL A= A AR
F'™ = Ao\ FOP

Check Eq. (2.13): Noting that V_I—> Viand A — A‘i and using the identity
€ijk€iki! = 26,‘-,;/, so that Eijkfjk,IBz = —Eiij]k = 2Bl, giVC
E—>E =F%=_-V,A° 384" - —V¢ - %’%

B— B =16, [-V;AF + Vi AT] 5V xA .
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Next,
0i ji 9 ijk pk
80F +(9ij =—5't'E +Bje’ B
OE
- B=ij
| — 5 +V x J
O,F°=V.E=p ,

and Eq. (2.13) is confirmed. 1

Relativistic Lagrangian

In order to maintain Lorentz invariance, the Lagrangian density for the EM the-
ory must be a scalar invariant constructed from the field tensor, the four-vector
potential (from now on the four-vector potential will be referred to simply as the
“vector” potential), and the currents. This means that all scalar products must
be constructed from two quantities, one of which transforms like a contravariant
four-vector (or tensor) and one which transforms like a covariant four-vector (or
tensor), as in Eq. (2.2). We will show that the Lagrangian density

L=-1F, F* —j, A" (2.14)

gives the desired equations of motion, and hence is a suitable choice. Discussion
of how this Lagrangian density might be uniquely determined from fundamental
principles will be deferred to Chapter 13.
To find the equations of motion from (2.14), simplify the expression as fol-
lows:
—iFLF" = —1 (8,4, - 8,A,) (8" A” — 0¥ A*)
= —1g" g (0, 4,0, Ay — 8, A0 Ay

In these expressions, the J in a term like JAB operates only on A, while in
9(AB) it operates on both A and B. Hence

oL

:__aB ﬂa=_FaB
B(6aAz) %A + 0P A

and the Euler-Lagrange equations reduce to

oc OL . oep .
Oa (awaAﬂ))‘aAa =0 FT 45 =0,

which are the correct equations (2.13). Note that current must be conserved (i.e.,
its four-divergence is zero), because

BpjP = 830, F*F =0 .



34 QUANTIZATION OF THE ELECTROMAGNETIC FIELD

Gauge Invariance
The electromagnetic Lagrangian has two special features not encountered before:

(i) The generalized momentum conjugate to the time component of the four-vector
potential (which will be denoted by A°, instead of ¢, in this subsection) is zero.
This follows from the fact that the Lagrangian density (2.14) does not depend on
O0A°/6t, and hence

0 oc

m=——mc=0 .
5 HAY
ot
Because of this, the Poisson bracket of A® with 70 (or, after we quantize the
field, the commutator [A°, 7°]) must also be zero. If we attempt to quantize the
field component A° by turning it into an operator, it would therefore commute

with all operators, and by Schur’s Lemma would reduce to a c-number. The field
component A is special.

(i) If the current is conserved (and we have seen that consistency requires it),
then the Lagrangian is invariant under the gauge transformation

A=A, -8, | (2.15)

where A, is a scalar. Note that the Lagrangian density is not locally gauge invariant
[i.e., is not invariant under the transformation (2.15) at every space-time point ],
because
JuA* — AP — jL %A, . (2.16)
N o

not zero

However, the action [ dt L (and hence the theory) is gauge invariant. To show
this, use the fact that the fields are assumed to satisfy periodic boundary conditions,
so that when integrating over all space any surface terms which might arise from
any integrations by parts can be assumed to vanish or cancel. To justify dropping
the surface terms from the time integration, assume that A, = 0 at ¢t = +oo.
Therefore, integrating the non-zero term in (2.16) by parts gives

/d“xj“ A, = —/d“w(a"ju)Ac =0 .

In order to obtain a definite solution for the EM fields, the arbitrariness
associated with the gauge freedom (2.15) must be removed so that the fields can
be uniquely specified everywhere. This process is referred to as “gauge fixing™ and
involves imposing some constraints on the fields which will fix the gauge function
A, and remove the gauge freedom. Two popular choices for the constraint, or
choice of gauge, are the Lorentz and Coulomb gauges, defined by the constraints

0,A* =0 Lorentz gauge

. 2.17
V-A=3gA =0 Coulomb gauge . (217)
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There are advantages and disadvantages which accompany the use of each of these
gauges, and the choice of gauge is closely related to how the time component of
the four-vector potential, A°, is to be treated. Since the time derivative of A°
does not occur naturally in the Lagrangian, and since the gauge transformations
give us some freedom to redefine the field in a convenient way, the solution of
the electromagnetic problem may be approached in one of two ways:

e The quantity A° may be eliminated from the Lagrangian by expressing it
in terms of the remaining components of A#. This approach is simplified by
using the Coulomb gauge.

e A new term may be added to the Lagrangian which contains the time
derivative of A®. In this case, the Lorentz gauge is the preferred constraint.

Each of these approaches will now be discussed briefly.
To see what is involved in eliminating A® from the Lagrangian, look at Eq.
(2.13) when v = 0:
Oy [6“A° - 6°A“] =-V2A° -9, V.-A=p . (2.18)

This equation is greatly simplified by imposing the Coulomb gauge, which reduces
the equation to Poisson’s equation

V2A0 ==p ,

and this equation has the unique solution

1 't
Ar,t) = o /dar' (;(/r_, r) Coulomb’s law . (2.19)

This solution is zero if p = 0. Had we chosen to use the Lorentz gauge, the
equation for A° which would result from (2.18) is

DA’ =p ,
where
O-g04= 2 _v2
= 9,0% = 75 =V (2.20)

is the familiar wave operator. This equation is manifestly covariant, but the
solutions of the wave equation may depend on time and are not zero even when
p = 0. For these reasons the Coulomb gauge, which gives Coulomb’s law, is
used in the study of atomic and other low energy systems, and it will be used in
Part I of this book. The disadvantage of this choice is that the Coulomb gauge
condition is not manifestly covariant; to maintain this gauge condition in different
frames requires that a new gauge function A, be chosen for each frame, so all of
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the results obtained from this gauge will look non-covariant. The final results of
any calculation will always turn out to be covariant, but often this is only apparent
after the final answer is obtained.

Now consider the second approach to the study of the EM field, in which a
term containing the time derivative of A° is added to the Lagrangian. This must
be done in such a way that the theory is not altered, and a convenient way to do
this is to add the following gauge fixing term to the Lagrangian density:

1
cgauge = _%’ (3”_14“) (614‘4") . (221)

This extra term can be regarded as a constraint, with the redundant field com-
ponents related to Lagrange multipliers [see Itzykson and Zuber (1980)]. The
parameter « is the gauge parameter and may assume any finite value. Two well-
known choices are a = 1, the Feynman gauge, and o — 0, the Landau gauge.
Note that the overall theory is not affected by the addition of the gauge fixing
term because it is zero after the gauge condition 9,A* = 0 is imposed. These
gauges are very convenient for the study of high energy scattering processes where
it is desirable to maintain manifest Lorentz invariance, and using the method of
Gupta {Gu 50} and Bleuler [Bi 50] [see also Bogoliubov and Shirkov (1959)],
it is possible to quantize all four components of A* as independent degrees of
freedom. A modern approach, in which these gauges are used in conjunction with
the method of path integrals, will be discussed in Chapter 15.

It is important to realize that the physics is unaffected by the choice of gauge.
Any gauge may be used, as long as it is used consistently in all parts of the
calculation. The intermediate steps may be very different, but the final result for
any physical observable must be independent of the gauge used to calculate it.

For example, note that a scalar gauge function A, can always be found so that
either the Coulomb or Lorentz condition is satisfied. Suppose first that V-A # 0
and we wish to impose the Coulomb condition. Then change A to A’ so that

VA=V (A-VA)=0 .

This implies that
VA, =V A

and we know that this equation (Poisson’s equation again) can be solved. Similarly,

suppose that 8, A* # 0, and we wish to impose the Lorentz gauge. Then change
Ao A’ so that

O A" =0, (A* —*A) =0 .
This implies that
OAc = 9,4* .

This is the inhomogeneous wave equation, which also can be solved. Since the

physics does not depend on the scalar A, the physics also cannot depend on the
gauge.
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The Lagrangian in the Coulomb Gauge

The next task is to rewrite the Lagrangian density using Coulomb’s law to define
A®. The resulting Lagrangian will then depend only on the three components of
the vector potential A? (and the charge and current densities, considered sources
of the fields and not dependent on them). The three components of A will be
treated as independent fields, and the Lagrangian will be constructed so that the
correct equations of motion for these fields will emerge naturally.

To see more clearly what this means, look at the equation for the vector
potential. From the field equations (2.13), this equation is

4 b A
OA'+V;V.-A=j - EViAO =, (2.22)
where ;% is referred to as the transverse current. Taking the divergence of both
sides of this equation and assuming that Ag is given by Poisson’s equation give
62 0

—_— . = o =l .‘—--—-—-20
55V A=V =V.j- V4

=V.j+—-p=0 (by current conservation) .  (2.23)

Hence, if we did not know that the Coulomb gauge condition V -A = 0 had been
used to relate Aq to p, this equation would enable us to recover it in the following
sense: if V-A = 0 and (V-A) /It = 0 holds at one time, it will hold at all
times. In this sense the Coulomb gauge condition can be regarded as a dynamical
consequence of Eq. (2.22) for A. Our task is to construct a Lagrangian density
which will give this equation.

To find the correct Lagrangian density, we will first separate out the A°
terms from the Lagrangian density (2.14). All three-vectors will be expressed in
a “standard” form, which is taken to be A* — A and V; — V. Hence we use
A, — (A% —AY), 9 — (8° —V;), and obtain:

L=~ 1F, Fw —j,A*
=—19,A° (0 A° — 0°A¥) + 10, AT (0" A + V,A*) — pA® +j - A
=—1V;4%(-V;4° - 3°4%) + 18,A° (8°A* + ;A7)
+1V,AN (-V;A + VA7) — pA° +j-A
= 1V,;A°V;A° + 1804780 A7 — JB* + V; A% A7 — pA° +j-A .
(2.24)
The third term in the last line was obtained using the identity €;jk€iem = 8;20km —
Oimbre:
B? = ¢;;x VARV A™ = VARV AF — V4KV, A
=V,;AF [V;AF — v, A7
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The first term in the last line of (2.24) can be reduced by integrating by parts
and dropping the boundary terms, which are guaranteed to vanish because of the
periodic boundary conditions imposed on the fields and sources. This procedure
has been used several times before and will be used many times again in the
following chapters. Stated in general terms, this freedom to integrate by parts
means that two Lagrangian densities which differ by a three-divergence give the

same Lagrangian and hence are equivalent. Using V2A® = —p in the last step
gives
VAV, A° = V; (A°V,A%) — AV A,
total 2
- divel:'g::nce — AoV Ao
= A% .

Similarly, the fourth term is the last line of (2.24) can be replaced by
VA9 A7 = — A7 §yV;A° .

This replacement is perhaps best justified by noting that both terms are proportional
to V-A (plus a total divergence) and hence will give zero after the Coulomb gauge
condition is applied.

With these substitutions, the Lagrangian density (2.24) can be written as the
sum of two terms:

L= EO + Eint
where Lo )
Ling =j-A— AT 3V;A=j, -A .

Here E | is defined to be
0
E,=—-—A .
LT ot
To see that this Lagrangian density gives the correct equations of motion for
the A*, compute

d ( oLo |\ _ 8%A
ot \ 9 (0pAY) ) ~ Ot?
aLy

0 ) O (VLAY - VAT = U240 X7 .
Vf(a(vin)) V; (VA - VA7) = -V?A' + V.,V -4 .

Hence the Euler-Lagrange equations implied by £ are

8 (L > Lo
ot (8(60Ai)) Vs (a(vjAf)) ~ o4 =0
= 0A'"+V,;V-A=3 . (2.25)

These are the desired equations (2.22).
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A vector field V which has a zero three-divergence, V - V = 0, is said to
be transverse. Physically, this condition means that the field is perpendicular to
its momentum, as will be discussed below. After the equations of motion have
been obtained, and the gauge condition applied, V - E; = 0, and only transverse
radiation fields remain in £. The longitudinal component of E, sometimes denoted
by Ey,

E” = —VAO y
is no longer a dynamical variable and is expressed in terms of p.
Finally, the Lagrangian derived from £ assumes a nice symmetrical form:

L= /d3r£ =/d3r{%|El(r,t)|2 LB )P+, (r0)-A(r )}

/d3 d3 ,p("' t p(T‘ t) . (226)

CEE

Note the presence of the instantaneous Coulomb interaction, which makes this
approach ideal for application to relativistic atoms. As advertised, L is no longer
manifestly covariant.

2.3 INTERACTIONS BETWEEN PARTICLES AND FIELDS

To complete the picture, and to introduce interactions, add two spherically charged
particles to the Lagrangian. The location of these particles will be described by
generalized coordinates

q,(t) a=1 and 2 ,

and their charge density will be denoted p, (|g, — r|), where |g, — r| is the length
of the vector which connects the location g, of the ath particle to the field point r.
To simplify the notation, the particle coordinates will usvally be denoted simply
by g,, and the charges by p,(r), although both depend on time. The four-current
of each particle is

gE(r) = pa(r) (1, 4q) (2.27)
where ¢, = dg,(t)/dt and the total charge and current is the sum of the single
particle charges and currents:

p(r) = pi(r) + pa(r)

j#(r) =3t () + 32 (r) -

Note that the current of each particle is conserved:

0pa(r)
B

+V jo(r) =

k)

(qa )'qa_(qa—r)'qa —
‘”{ P R Py ] 0
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where p/,(r) denotes the derivative of p,(r) with respect to its argument, |g, — r|.
The Lagrangian of this field—particle system is composed of three terms:

L= Lparticles + LeM + Lint

where
1 [ drd3
Lparticles =5 Zmalqalz /m p(r) p(r')

Lem =+ /d3 {E% (r,t) — B*(r,t)}
(2.28)

Lim = / &[4y pa(r) + 3 p2(r)] - A1)

TR

Note that the second term in Liy, which we will refer to as Ll(m) , is zero once

the Coulomb gauge is taken into account, and therefore this term will make no
contribution to the particle equations or to the total energy.

Equations of Motion

Adding the particle coordinates to the Lagrangian does not change the derivation
of the equations for A* given in Sec. 2.2. We have, as before,

OA* +V;V-A=j ,

where A® is shorthand for the solution of the Poisson equation and the gauge
condition V - A = 0 is imposed. The only new feature is that the current is now
specified in terms of the particle coordinates.

The equations for the motion of the two particles become

d (0L oL
(o) " ad ==
madfl + / d3r—- [pa(r) A7 (r,1)] + / &1 (V+);{da pa(r)} - A(r,1)

3 3/
—1/‘1 rd7 =7 {205 0a(r) o) 4 (92, ) o)} =0, (229)

dx|r —r

where use was made of

a—q‘{pa (lga =) = =(Vr)jpa (196 — )
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and the fact that the second interaction term, Ll(nz , integrates to zero.

Now simplify the equation (2.29) and extract the Lorentz force law. First,
the second and third terms in (2.29) are reduced by integrating by parts and using
current conservation:

/dsr {~a—(pa(r)Aj (r,t)) +V; (q,'l pa(r))A‘(r, t)}
= [@r {3”“‘ 005() 43r, 1) — pa(r) . (r,1) — &, pa(r)V;4%Cr t)}

= [ @r {-nBLG + & palr) (Vi - 9,49}
However, the second of these terms is recognized as related to v x B (where v = §):
v XxB=vx(VxA) > €jimV emuV, A*
= v (V;A' - V;4%)
The fourth term in (2.29) can be simplified by integrating by parts and using

1 1
— = -V
=l v

3 3,./
3] S ((V"’|r—r'|)
x (pa(r) 1) + 22l )]~ 2 1) + ()]

Note that regardless of the value of a, the only terms in the square brackets which
survive are those for particle b # a, giving

/dal— "31J (( r)j[r_—_ _11-/|)pa(")Pb(r')
= [ d°r pa(r) (V) a3 pb("")

dr |r—r/|

v,

to get

A%(r,t) from b

Combining all terms gives the Lorentz force law:

mada = [ @7 (pa(r) Ealr,0) + palr) 4 x B 1)
where no summation over the repeated index a is implied and
0A r,t d3r' r
Ea(r, t) = — ( ) - V / pl:'#:(r'l

Note that the E, field which enters the force law only includes the longitudinal
Coulomb part due to the other charges, so there is no self-force.
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Hamiltonian

In preparation for calculation of the Hamiltonian, first find the canonical mo-
menta:
oL

o= g = med+ [ drpu( ()

i . oc _?ii__i
W(T,t)—m— ot = E_L(T,t) .

(2.30)

Hence the Hamiltonian, dropping the second interaction term L? s

int*
0A
= q 3 V — —
H= E pa~qa+/d ra(r,t) B L

a

1 2 d3r d3r' p p(r 3 2
=§Z;maqa+2/ o /dr{E (r,t) + B*(r, 1)}

Expressing this in terms of the canonical momenta and the canonical coordinates
gives

H= Z (pa / d®r pa(r) ))

+%/d32<:‘r’ p(r)p(r') /dsr{ﬂ- r,t) +BX(r,t)} . (2.31)

| — 7’|

The energy can be redefined so that the Coulomb self-energies (the terms propor-
tional to the square of the charge density of a single particle) are ignored [choose
Ey from Eq. (1.36) correctly]. The second term is then more familiar:

Second term = / d3rd®’ pi(r) pa(r')
4 |r =7/

Note that the first term has the familiar (p — eA)? structure.

2.4 PLANE WAVE EXPANSIONS

If there are no charges and currents, the vector potential A in the Coulomb gauge
is the solution of the equations

Oa=o0

V.oA=0 . (2.32)



2.4 PLANE WAVE EXPANSIONS 43

Note that the first of these tells us that each component of A satisfies the wave
equation, and the second places a restriction on the three components. Therefore
the solutions we found in Chapter | can be immediately applied to the EM field
if they are generalized to:

e three-dimensional space and

e two independent vector degrees of freedom (only two because V-A = 0
constrains the third).

In addition, the wave velocity is now that of light, so that v = c = 1.
Referring back to Eq. (1.15), the vector field must therefore have the form

1 ) _
A(r,t) = —— {e%a ’ e~ tknT 4 caxgt ikn'T ’
g V2wn L3 {eana n Tma } (2.33)

where the sum is over three integers n = (n.,ny,n;), corresponding to the
requirement that the solutions of the wave equation satisfy periodic boundary
conditions in each of the three space dimensions (referred to as box normalization),
and the integer & = 1 or 2, corresponding to the two independent vector degrees
of freedom of the vector potential which are not constrained by the Coulomb
gauge. Specifically, the momenta of the plane wave solutions are given by the
three-dimensional generalization of Eq. (1.6),

__27rn,-
L

and the argument in the exponential of the plane waves is the generalization of
(1.7) to three space dimensions

kn, n; =0,+1,42,... i=1x,Y,2 (2.34)

kn -z =wnt —kn,x—kn y—kn,z=wnt —ky-r .

The plane wave solutions must satisfy the wave equation, which fixes the fre-
quency
k2 =k =c? =02 Te=1. (2.35)

As in Chapter 1, the frequency will always be chosen to be positive, so that

2m
wnzf,/n§+n§+n§ , (2.36)

and the negative frequency solutions are the complex conjugates of the positive
frequency ones, with the phase ik - z.

The vectors € are referred to as polarization vectors. They carry the vector
direction of A and are dependent on n. The Coulomb gauge condition requires
that they must be orthogonal to k:

V-A=0 =  kn-€2=0,
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Fig. 2.1 The relative orienta-
tion of the two polarization vectors
of the photon and its momentum k.

and hence there can only be two independent vectors for each k.. To maintain
the normalization for the a, ,’s introduced in Chapter 1, we require that these
vectors be normalized to unity. Since they are in general complex, they will be
defined so that

L S (2.37)

There are many ways to choose independent € which satisfy (2.37). We will
define a linearly polarized basis by choosing, for k,, in the 2-direction, €! = %
and €? = ¢, so that

el x €2 =k,
€2 x k, =€} (2.38)
kn, x €} =€,

where the relative orientation of the two independent polarization vectors is shown
in Fig. 2.1. There are only two independent €’s, and they are both perpendicular
to k. It is this property which leads to the description of the vector potential as
transverse. There is no simple relation between €., and €}...

Before we turn to the quantization of the EM field, we will briefly discuss
massive vector fields and the differences between massless and massive fields.

2.5 MASSIVE VECTOR FIELDS *

In order to highlight the unique properties of the EM theory, we consider the
effect of adding a “mass” term to the Maxwell theory. Massive vector fields
play a fundamental role in physics; the W* and Z bosons which mediate the
electroweak interactions are examples of such fields, and these will be discussed
in Sec. 9.10 and in Chapter 15 [see also Appendix D]. For now we are primarily
interested in how the massive theory differs from the massless one.

*This section may be omitted on a first reading.



2.5 MASSIVE VECTOR FIELDS 45
Start by adding a new term to the Lagrangian (2.14):
Ly =—3F F* + IM2AL A% - j A (2.39)

where, for now, M is simply regarded as a real parameter. Later we will see
that it can be interpreted as the mass of the particles which emerge from the
quantization of the field. As before, the four-current j, is the source of the field,
and it is assumed to be conserved. The equations of motion obtained from this
Lagrangian are known as the Proca equations:

O F* + M?AY = j¥ . (2.40)
Taking the four-divergence of both sides and remembering that F#¥ is antisym-
metric give

M2?8,A" =98,j" =0 . (2.41)

Because the mass is not zero, the Lorentz condition emerges as a necessary con-
straint.* We no longer have the freedom to choose another constraint (such as the
Coulomb gauge condition) because the mass term is not gauge invariant. Under
a gauge transformation

M2A, A — M2ALA™ = M? (A A" — B,A A" — A,0"As + B,A. B#A,)
M m B M © (1
# M2A A" .

Using the Lorentz condition, the equations for the field simplify,
(O + M?) A =35~ . (2.42)
If the source is zero, this equation has plane wave solutions
AV ~ el etk
provided the four-vector k satisfies the following equation:
K2 =M? = 2k =E,=+/MZ+p? . (2.43)

This shows that the parameter M is indeed a mass. The Lorentz condition means
that the polarization vectors accompanying these plane wave solutions must satisfy

kyeh =0, (2.44)

which is satisfied by three independent polarization states (instead of only two as
in the massless case). Two of these are the transverse states previously introduced
for the EM field, and the third is a longitudinal state with a three-vector part

*Note that this constraint must hold for free fields, even if the current is not conserved.
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in the direction of the particle momentum (for more detail see the discussion in
Sec. 9.10).

The most general solution for a free massive vector field can therefore be
written

3
1 ik " "
Ab(r,t) = Z Z m {eﬁ“an,a e"tkT 4 et aIm etk I} s (2.45)

n a=l

where E,, and € satisfy the constraints (2.43) and (2.44), respectively. While this
equation appears to be almost identical to the EM field expansion (2.33), it differs
in two essential ways. First, the energy and four-momentum are those appropriate
to a massive particle and, second, there are three independent polarization states
instead of only two.

In conclusion, we restate some of the main points of the previous discussion.
The Lagrangian for a massive vector theory, Eq. (2.39), still does not depend on
8A°/dt, so that the time component of the field, A%, must in some sense depend
on the sources and other components, as was the case in the massless theory.
However, because the massive theory is no longer gauge invariant, the Lorentz
condition emerges automatically as the only appropriate constraint on the field, and
the Lorentz condition is the constraint which fixes the component A° in terms of
the other components. Once this condition is taken into account, the free massive
field can be expanded in plane waves with three independent polarization degrees
of freedom. In the massless case, it is gauge invariance which allows (in fact,
requires) us to remove two degrees of freedom from the field, which (in Coulomb
gauge) amounts to removing the components A® and A® (if the momentum is in
.he Z-direction), leaving only two independent polarization states.

We now return to a discussion of the quantization of the EM field. Much
of the following discussion will be extended to the massive case in Sec. 9.10.

2.6 FIELD QUANTIZATION

We now quantize the theory, described by the Hamiltonian (2.31), for the inter-
action of the electromagnetic field with nonrelativistic particles, by turning all

canonically conjugate variables into operators. The nonrelativistic particles are
quantized by the replacements:

r—r

p——iv,

where the operator r is simply multiplication by r. Similarly, the EM field is
quantized by turning A into an operator. The development used in Chapter 1 for the
string will be followed again here. This involves two steps. The simple harmonic
oscillators which describe the classical field must be found and described, and
then they must be quantized.
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The plane wave expansion (2.33) for the EM potential A is the solution to
the first of these steps; it expresses the field A in terms of independent oscillators
described by the quantities a,, . The second step, the quantization of the field, is
done in precisely the same way it was done in Chapter 1; the quantities a,, o are
turned into operators by imposing the commutation relations

[an’a, al”)a,] - 6”:’6(1&; (2-46)
[an,man',a’] = [an,a,an,,a,} =0 .

The only difference between Eq. (2.46) and the corresponding relations for the one-
dimensional string is the fact that now there are three space dimensions and two
polarizations. This means that Eq. (2.46) must describe many times the number
of normal modes, and hence many times the number of independent operators,
than were described before. However, this does not really change the result,
since operators corresponding to independent normal modes still commute, and
the commutation relation for a and a' for a single normal mode is the same.
Thus Egs. (2.33) and (2.46) give the complete description of the EM field and its
quantization, and we will now use them to work out several details.

Canonical Commutation Relations

Because of the gauge condition, the forms of the canonical commutation relations
for A and = differ from those found for the string. The CCR can be worked out
‘rom

ot a’ju-

. . . w.
[A(r', 1), 7 (r,t)] =1 Z —\/2—“)————-2—:-;———[1—3 {fn €’ [Bnas aL,’a,]e
n,a n n

i(k'-z’ ~k-x)

- t . 7 !
aix O i(k-x—k'-z
~ €n CnlJ [aI"a y an',a/] e { )}

. 1 i ajw ik (r—r' ix_aj —ikn-(r—r'
=zzm{eﬁ’eﬁ“e n 1) 4 g0t 2l g ikn )}
n,oa

where z = (t,r) and ' = (t,r'). This can be further reduced using the fact that

the polarization vectors, together with l::,. (the unit vector in the direction of k),
form a complete orthonormal set. Hence, for each n,

ai*_aj RN R
Zen 6nJ'Jf'k'n kn—éu

23

or
C ai ki K2
E Gg' 6:‘7 =045 — f;czn =6;'_; ’ (247)
n

«
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where 67 is the transverse é-function. This gives

j i . ki k] eik,.-(r-—-r’)
[AJ(r',t),-;r'(r,t)] =¢Z(5’j _ ,;cg") =
n

. 0:0; gikn-r=1)
n

Recalling that the sum over the plane wave states gives a delta function for each
direction in space leads to the following expression for the CCR’s for EM theory:

[49(r t), 7 (r,t)] =1 (6,~j - %%) Br-r)=6T(r—1") . | (248)

The extra 8;8; term is necessary in order that the CCR’s be consistent with the
gauge condition:

(Vo) [A2(r 1), m* (r, 8)] =i [Vi = V4] 83(r —7') =0
= [V-A,w‘(r,t)] =0 .

Note also that ‘ ‘
>[4, 0,7 (1)) = 2i8%(r = ')

1

where the factor of 2 appears because there are two independent polarization states.

All of these commutation relations hold at equal times, and the commutators
are zero if the two points are separated in space. Under Lorentz transformations,
the interval (¢—t')2—(r—r')? = (z—2')? is invariant, and thus one consequence of
a relativistic generalization of the CCR’s is that the field operators commute when
their arguments are separated by a space-like interval [i.e., one for which the
four-vector distance (z — z')? < 0]. This has a beautiful physical interpretation:
it is impossible to exchange information between two points separated by a space-
like interval, and hence any physical observables (fields in this case) at two such
points must be truly independent of each other. The mathematical expression
of this independence is the statement that the operators corresponding to these
quantities must commute. This is an important principle, referred to as local
commutativity or microscopic causality, which can be used as a starting point for
an axiomatic development of field theory [see Streater and Wightman (1964)].

Perhaps the appearance of the transverse §-function in the CCR’s (2.48) could
have been anticipated from the start, but in any case, it follows in a straightforward
way from the commutation relations (2.46). These commutation relations between
the creation and annihilation operators involve only the independent degrees of
freedom, and hence are the same for all types of fields. It is for this reason that
we have chosen to use them to begin the quantization of any field theory.
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Hamiltonian and Momentum Operators

The form of the Hamiltonian and momentum operators can be inferred from the
discussion of the string in Chapter 1. Here we will demonstrate that the Hamilto-
nian does indeed have the expected form. The proof that the momentum operator
also has this form is deferred to Prob. 2.1.

For simplicity, assume that the polarization vectors are real. Then, recalling
Eq. (2.31), the Hamiltonian for the free EM field is

L R ..2._L/3 !
H—2/dr{.El(r,t).+.B (r,t).}——4L3 dr;\/‘m

! !
x { [wnwn:e‘,f-eﬁl + (knx€5)- (kn: xaz,)]
X (all,aan:'a, ei(k"”k"’)'x+ail,,a,an'a e‘i(k"‘k"’)"‘)
’ !
+ [—wnwnzeﬁ €5 —(knx€5)- (kn/ X eﬁ)]
x (an‘aan’,a’ e—z(k"/+kn)-x+al,aai’,al ez(kn:+kn)-z)} ,

where the normal ordering prescription has required all cross terms to be written
as afa. Using the fact that

3
d reii(k,,»k,,,)-z = 6
L3 "
3
d’r ti(kntka )T g +2iwnt
L3 e = On,—n’'€ y

and k,, = —k_,, give
1 1 2 a .o a o’ t t
H= 1 Z - [wn €€ + (knxen)-(knxen )] (an,aan,af + an,a,an,a)
"y n
+ [—w,zl €€, + (ky xeg)-(kn xe'ﬁln)]
X (an,aa_n,a: e A L eZi“’"t)} .

Next, use
!

a o _
n ' &n = baar

I ’ 7
(ky x €2) - (kn x ef'_,,) = k2 €2 €%, —kn €, ky-€®
’

2 Lo a
-n

= Wy, €, ' €

(kn X €2) - (k,. x eg’) = k2 Soor = w2 boar



50 QUANTIZATION OF THE ELECTROMAGNETIC FIELD

to obtain finally

H = anaz,aan,a . (2'49)
n,o

This is a straightforward generalization of the result for the string. Now there
are number operators for photons with momenta in all three spatial directions and
with two polarization states.

We leave it as an exercise, Prob. 2.1, to show that the momentum operator
is

P= /dsr:EL(r, t) x B(r,t):= Zk,,a)\man,a . (2.50)
n,x

This expression shows that the total momentum of the field is a vector sum of the
momenta of each photon, as expected from our study of the string.

2.7 SPIN OF THE PHOTON

In the final section of this chapter we show that the particles which emerge from
the quantization of the EM field (the photons) have spin one. Spin can be regarded
as an internal degree of freedom of the quanta which is closely connected to the
structure of the field from which they emerge. In particular, the quantization of
vector fields always gives rise to quanta with spin one, while the quantization of
scalar fields gives quanta with spin zero.

To obtain these results, it is necessary to discuss the behavior of the field under
rotations. Just as the energy of the quanta is displayed by the Hamiltonian (the
generator of time translation) and the momenta are displayed by the momentum
operator (the generator of space translations), so it is that the spin will emerge
from a discussion of the angular momentum operator, the generator of rotations.
This section therefore begins with a brief discussion of the rotations of vector
fields. A deeper discussion of these topics is postponed until Chapter 8.

Rotations

When transforming vector fields, which are continuous functions of space and
time, both the components of the vector and the arguments of the function must
be transformed. For example, a scalar function under rotation transforms in a
non-trivial way, as illustrated in Fig. 2.2. In this book, all transformations will
be interpreted as active transformations, i.e., they transform the state functions,
leaving the coordinate system fixed. From examination of the figure, we see
that, under an active rotation R, the transformed function ¢g(r,t), where r is
a shorthand notation for the three spatial coordinates (z,y, 2), is related to the
untransformed function ¢(r,t) by

¢R(Tv t) = ¢(R_1T, t) . (251)
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="V

¢ (r) ¢ r) o R

|
| -1
|

Fig. 2.2 A scalar function ¢ (with contours originally pointing in the r-direction) is rotated actively
to a new direction. The third figure is identical to the second; only the paper has been turned.

This result can be used to find the transformation law for a vector function.
Consider the function ¢(r,t) = a - A(r,t), where a is some reference vector.
Under the rotation R this function becomes

ar-Ar(rt)=a-A(R7'nt) |
and hence the vector function A satisfies the following transformation law:

Ab(rt) = RYAV(R™r,t) . (2.52)

Note that we rotate both the components and the arguments.
A rotation about the z-axis will be written

cosf —sinf 0O
R.(0) = | sin6 cosf 0| =e b (2.53)
0 0 1

where [, is the generator of rotations about the z-axis. The specific form for /,,
and its generalizations to rotations about the axis i, is

0 —i 0
L=|i 0 0| —@L)Y*=—-ieyn . (2.54)
0 0 0

Hence, the change in a vector r under an infinitesimal rotation about the i-axis
through angle 66 is

89 = —68e;;0rt = —i68 (I;)C r*
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Similarly, the change in a vector field A under the same infinitesimal transforma-
tion, using (2.52), is

A%R,-(T:t) =(1- i591i)j£ Al ([1 +i601;) 7, t)

= AV (r,t) + 66, [-fg“Af(r, t) + Itmrm 9, A (r, t)]

Introducing the familiar orbital angular momentum operator, L' = —i €;mer™ 5y,
this can be written

_iéiAj(r, t)

T = i€ Al(r, t) — LA (1) . (2.55)

Now we are ready to apply these ideas to the EM field.

Angular Momentum Operator
The angular momentum operator for the EM field is

Q= /dar [rx: (EL x B):|' . (2.56)

This can be reduced to a more tractable form by expanding out the double cross
product,

O = /d37‘ EijgrjftkmE_kamabaaAb
= /dar €ije™ (8eabkb — Okabep) EX 0, A°
B /dsr eizer! {ES0,A* —E, - VA*} |

and simplifying the last term by integrating by parts and recalling that E, is
transverse,

- / drer’Ey - VA = / Prege (r’'V -Ey AY + §°E" 4Y)
=/d3rfing_']_Ae .

Substituting for £, and using the orbital angular momentum operator L = —i(r x
V) give a more compact form for

0 = —i/d3r : % (L'A® —iemeAY) 0 . (2.57)
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To interpret each of the two terms in (2.57) it is instructive to compute the
commutator of {2 with A. This is easily done using the CCR’s:

[, A (r,1)] = - / dr’ [(5]-,, dv‘zb) 83(r — )] (L' A® — iepp A°)

(2.58)
The 0;0, term is zero:

/d3 e b63(r ') [LiAb(r',t) —ieibgAe(r',t)]
5.
= —/d3$'v—]263(7‘ — r’)Bb [—-i Eigm’l‘eamAb hae ’L'EibgAe]
9.
=— / d3x’v—]263(r ~ 1) [~i €ibmOmA® — i €igmr OmOA® + i €nBpAY] = 0
so that (2.58) simplifies to

51AJ

i (2.59)

[, A (r,t)] = ~L'AI(r,t) + i €50 A, t) =

Note that the right-hand side of this equation describes the infinitesimal rotation of
the field around the ith axis [compare with Eq. (2.55)], showing that the angular
momentum operator ) is indeed the generator of rotations for the field theory.

apin
The spin of a particle, or a field quanta, is an intrinsic property. This suggests
separating the total angular momentum operator into two parts:

Q=0 + O

spin

with the spin part associated with transformation of field indices and the orbital
part associated with transformation of the field arguments, and

(2.60)

Note, however, that

AX(r,t)

Y ; e 9,0
[Q;pinvAJ (T,t)] = 1 €0k [6}[ L3 l]

{ z'L,Aj(r,t)] = —LiAj(r,t) +ieigk%{z£Ak(r,t) .
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The extra term in both commutators is required to make each expression consistent
with the Coulomb gauge.

From the vector nature of the field we expect it to have spin one, but our
task is to see how this comes about naturally in the particle picture. To do this
we will express Q;'pin in terms of the a’s and a''s, using real polarization vectors
for simplicity,

Q= [ g3roik _ i eseolk
spin 203 &~ \fopwn "

n',a’

* {an.aan’,a’e_l(k"-Hc"l).:E - al,aa:ﬂ a’ez(k"+knl)'z

__ a;,aan’,a’ ei(kn—kn/)~:c + al/!alan,a e—t(kn—kn,)w}

. €15k o —2i ;
=t E ; {Egjf(zrllc [an,aa—n,a’ e 2wnt aiz,aat_n,oz’ ezw"t]
n

D»Lx’

o'k -
+ [eﬁJe‘,’; — Xl } al,a,an,a

The first term in the { } bracket is symmetric in j and k. This can be seen by
changing n to —n and a « «'. Hence it is zero when contracted with ;5. The
second term is clearly antisymmetric in j and & and requires « # o’. Hence

7
— a a i
Qspin =1 E (6n X €n ) a4y o ln,a
n

atal

Recall that ! x €2 = k. Hence, carrying out the sum over a, o gives
Qspin = ZZ kn [ail,zan,l - avrl.laﬂ@:‘
n

This is not a convenient form because it is not given in terms of number operators.

We can express {),in in terms of number operators by introducing a new
polarization basis referred to as the circular, or helicity, basis. If €' — £, €2 — 7§,
and k — 2, then the circular polarization basis, in which the states have a definite
spin projection along 2, is defined by

+

€ spin in +k-direction = —

(€' +1 €?)
) (2.61)
€~ = spin in —k-direction

S-Sl

(€' —i €?)

Note the appearance of the minus sign in the definition of €*; this is a standard
phase convention used in the construction of the spherical harmonics )¢, for
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£=1and m = %1 from £ and §. Then we define a, the annihilation operators

corresponding to these circularly polarized states, by the relation (suppress n for
now)

€la; +€*a; =€ta, +ea_

This gives
a1 = ~—=(as )
= ——— —a.
! \/§ * [a+’all = [a—’aT—] =1
1 i t
ay = ~—=(ay +a_ [a+,al] =la_,al]=0 .
2 \/'2-( + )
Hence
ala, —ala; = —ifala, —ala_]
and, restoring n,
Qspin = Z kn[ajl,+an,+ - a;,—a'ﬂ,—] . (262)
n

The spin operator has now been expressed in terms of number operators for pho-
tons with a definite helicity. Note that it is a vector sum of terms which point in
the +k-direction for positive helicity and in the —k-direction for negative helicity.

In general, the helicity of a particle is the projection of its spin along the
direction of its motion, and if a massive particle has spin s, its helicity can take
on any integer value between s and —s (i.e., s,s—1,5s—2,...,—s). The direction
of motion is simply one special direction in space, and a massive particle of spin
s has 2s + 1 states which can always be expanded in terms of states having a
definite spin projection along any chosen axis. However, Eq. (2.62) shows that
photons do not have this property. It shows that the photon has spin 1, but that
out of three possible states (+1 or 0), only helicity states +1 and —1 can occur.
The absence of helicity zero is due to the transverse nature of the field (Coulomb
gauge) which is due in turn to the absence of a photon rest mass.

The restriction of the photon helicity to its maximum and minimum possible
values, *1, illustrates a property of any massless particle. In general, if a massless
particle has spin s, it may have only two helicity states: +s. The other possi-
ble states are prohibited. This remarkable result is one of the consequences of
Wigner’s famous analysis of the representations of the Poincaré group (which is
the group which results from combining the Lorentz transformations with space—
time translations). It turns out that the representations of the Poincaré group are
characterized by both mass and spin and that the familiar 2s 4+ 1 degeneracy as-
sociated with the spin s representations of the SU(2) rotation group occur only
when the mass M of the particles described by the representation is non-zero. If
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M =0, the spin representations are only two dimensional, explaining why there
are only two states with spin projections +s . For more information see Ryder
(1985) or Wigner’s original paper {Wi 39].

PROBLEMS

2.1 Prove that

P= /dsr cE (r,t) x B(r,t): = analwan‘a .

n,o

What is the significance of this result?

2.2 (a) Compute the following matrix element:
<1n,av ln o' :A2(T7 t): I0> !
where 1
Iln,m 1n',a’> = ﬁan,aal’,a’l())

is a two-photon state.

(b) In what physical process might this matrix element play a role?

2.3 (a) Compute the following matrix element:

<nk1 |A(T’ t)!mkm) s

1 TMka
o

Imi,) = ——==—[0)

Vi, !

is the state of my, photons with momentum k and polarization as.
(b) Discuss the physical significance of your result.

where

2.4 The orbital part of the angular momentum operator Q) was defined in
Eq. (2.60). Prove that it contains no terms of the form af al or

n,a“n’ a’
Qn a0’ o, and also show that

K1) =0,

where |1;) is the state of one photon with momentum & and polarization c.
What is the significance of this result?
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CHAPTER 3

INTERACTION OF
RADIATION WITH MATTER

In this chapter, the Lagrangian obtained in the last chapter is used to show how
atomic decay is explained by field theory. Then the famous Lamb shift is calculated
and discussed. The Lamb shift is the splitting between atomic levels with the same
total angular momentum but different orbital angular momentum and cannot be
explained without the use of field theory. The largest such splitting is between
the 25;,2 and 2P/, levels and is a noticeable feature of the hydrogen atom
spectrum. Finally, we calculate the photodisintegration of the deuteron, one of
the first examples of the conversion of energy to mass. To set the stage for these
calculations, the chapter begins with a discussion of how to determine the time
evolution operator in a case when the Hamiltonian depends on time.

3.1 TIME EVOLUTION AND THE S-MATRIX

Since the interaction Hamiltonian is, in general, time-dependent, we will calculate
the interaction between nonrelativistic systems and the quantized EM radiation
field using time-dependent perturbation theory.* For definiteness, the nonrelativis-
tic system will be taken to be a heavy atomic nucleus with charge Z at rest at the
origin and a single electron of mass m with a negative point charge located at r,
(other systems will be discussed in Sec. 3.5). The charge distribution for these
two particles, in the language of Eq. (2.27), is therefore

pellre —rl) = —653(7‘5 -r)
pu(lr) = Ze&(r)

and the only particle coordinates we need to consider are those of the electron.
The Hamiltonian given in Eq. (2.31) can therefore be broken up into three parts:

H’=HA+HEM+H; , (8.1)

*The particles in this chapter are treated nonrelativistically, but the derivation of the time evolution
operator is completely general, and the results we obtain here will be applied, in Chapter 9, to relativistic
systems.
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58 INTERACTION OF RADIATION WITH MATTER

where
2
Hy=Pe _ Zo
2m Te
1
Hgy = §/d3r{:7r2(r,t): + :B2(r,t):} (3.2)

2
e €
Hj= s {p. Alre,t) +A(re,t) -} + 5—A%(rest)

where o = €2 /4 is the fine structure constant. The first two terms, Ha + Hgu,
will be considered the unperturbed Hamiltonian, with H; the perturbation. Note
that we have included the Coulomb interaction term [the third term in Eq. (2.31)] in
H 4 because we intend to develop the perturbation theory in terms of atomic wave
functions, which include the (nonrelativistic) Coulomb interaction to all orders
{exactly). We have omitted the Coulomb self-energies of the atomic nucleus and
the electron; for point particles these are infinite constants which may be subtracted
by a convenient definition of the energy [as discussed following Eq. (2.31)]. The
interaction term H} is the expansion of the familiar (p — ed)? factor and includes
a term which is first order in the electron charge e and linear in A and a second
order term proportional to A%

First, consider the case when the interaction term is zero. Then the EM
field coordinates, which are the vector potential operators A, are contained only
in Hg . and the electron coordinates, r, are contained only in H 4, which is the
usual Schrodinger Hamiltonian. We found the quantum mechanical eigenstates for
the free EM field in Chapter 2; the solutions are a Fock space of photon states
vhich are time-independent. The eigenstates of H 4 are also known from previous
studies of nonrelativistic quantum mechanics; the bound states of hydrogen-like
atoms can be described by wave functions

Yalr)

where a labels the quantum numbers of the bound state. These states evolve in
time by a phase factor only, in the sense that

e—lHA t wa(r)

Ua(t) ¥a(r)

This expression is similar to Eq. (1.31) with the choice t; = 0. [Any time tg
could be chosen, but this choice corresponds to the usual phase convention in
which atomic states are real when t = 0.]

In Chapters 1 and 2 we used the Heisenberg representation for the fields, while
the atomic wave functions are usually given in the Schrédinger representation. It
is more convenient to choose a common representation for all fields and operators,
and in the remainder of this book we will use the interaction representation. In
this representation the time dependence of the free, non-interacting Hamiltonian
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3.1 TIME EVOLUTION AND THE S-MATRIX 59

is in the operators, and under the influence of the free Hamiltonian, the states
will not evolve in time. However, under the full Hamiltonian, which includes
an interaction term, the states will evolve in time, and the principal goal of this
section is to calculate this evolution. But before we proceed with this calculation,
we must give the electron operators the time dependence associated with the free
Hamiltonian. This means that, instead of using H' given above, we will use

H(t) = U (&) H' (t)Ua(t) - (3.4)

Since Ha commutes with itself and the EAM field operators A, H 4 and Hgys are
unaffected by this transformation, but H} becomes H;, where

H=Ha+Hgpy+ H/(t) = H0+H1(t)
1 f e e?
Hi(t) = UAl {5; P, A(re,t) +A(re,t) - p,) + %Az(re,t)} Ua

(3.5)
with U4 (t) defined in Eq. (3.3).
The solutions to the free Hamiltonian Hy = H4 + Hgpy are just direct
products of atomic wave functions and photon states, which we will write

la,n) = Pa(re}n) , (3.6)

where a labels the atomic states and |n) the photon Fock states as described (for
the string) in Eq. (1.20). The scalar product of the atomic states requires an
ntegration over the coordinate 7,

(a'la) = /ds'f'e w;f(re)wa(re) .

The states |a,n) are a complete set and are stationary under the unperturbed
Hamiltonian Hg, which is independent of time. When the interaction H; is turned
on, the states are no longer stationary. The question we ask is: “How do these
states evolve in time?” In practice, this may mean “How do excited states |a, 0)
decay into other states |b,n) where n photons are emitted?”

To answer this question, we must find the time translation operator for the
full Hamiltonian (3.5), which will be written

H(t) = Ho + Hi(t) . (3.7)

This Hamiltonian depends on time. We assume that Hy(t) is switched on at time
t = tg so that
H(t) =Hy if t<tg . (38)

We found the time translation operator for a Hamiltonian which is independent of
time in Sec. 1.8, and we therefore know Up(t,tg) corresponding to Hy (it is just
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the product of U4 and a similar expression for the field). The total time translation
operator will be defined to be

Utotal(t, to) = Up(t, to)Ur(t, to) . (3.9)

It is therefore sufficient to find an equation for U;. Since H; need not commute
with Hy, and since it depends on t, the form of U; depends on the definition
(3.9). Note that our definition differs in important ways from that given in, for
example, Fetter and Walecka (1971). From the definition (3.9) the interaction time
translation operator is unitary, but note that Uy(t1,t2)Ur(t2,ta) # Ur(t1, t3) [see
Prob. 3.5].

Now consider any physical observable represented by the operator O(t).
Under the full time translation operator it evolves according to

O(t) = Uggtar(t, t0)O(to)Usotal (t, o) - (3.10)

Under the free, noninteracting Hamiltonian the same observable evolves according
to

Oo(t) = Uy 1 (t,t0)O(to)Us(t, to) - (3.11)

Note that the free observable Og(t) is not equal to the interacting observable
O(t) because the free time translation operator Up is not equal to the full time
translation operator Upotai. This is because when ¢t > tg, the time at which the
mteraction is turned on, U; # 1. However, because of our definition (3.9), there
is a simple connection between these two quantities:

O(t) = U 100(to)Utotal = Uy Us ' O (to)UoUs
=UrtOo(t)Ur .

Hence the connection between the free observable and the interacting observable
is

Ur(t, to)O()UT (¢, t0) = Op(t) (3.12)

and the operator Uy converts free observables into interacting observables, and
vice versa.

We can find the operator U; from the relations

(H(,00)] = ~i5,0)
t (3.13)

)

[Ho, Oo(t)] = =iz O0(t)
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which are the infinitesimal equivalents of Egs. (3.10) and (3.11). Hence

.0 .0 _
[Ho, Oo(t)] = —taoo(t) =i [Uro@) U; 1]
dUy a0(t du;!
= [ = Ul o Urt +Up 5 )U, +UrO(t) U Uy d{‘ }
=1 =1

—i | ZLui0) + v [, 001U7 - 0ut) L0

d
(3.14)
where the last term was simplified using Eq. (1.34). However, H is a function of
the fields ¢ (a particular subset of the physical observables O),

= H[g(t)] , (3.15)

where the square brackets [ ] will be used whenever we wish to express H as
a function of field quantities and round brackets ( ) are used to express H as a
function of ¢. Since H can be expanded in powers of ¢,

UrHU' = H [Ur ¢(t) U] = H [¢o(t)]

= Ho + Hp [¢o(2)] (3.16)

Hence, Eq. (3.14) becomes
(o, 00 = [ (49510 + Ho+ Hr o)) 0ut)] (1)

or dU1
[( T Ly 1H]{¢0]> ,Oo(t)] =0 . (3.18)

This is a remarkable equation. Because the H; in this equation is a function
of the free ficlds ¢g, the equation allows us to determine the interaction time
translation operator entirely in terms of the free fields. Since Op is any operator
in a complete set, and since any operator which commutes with all operators in a
complete set must be a multiple of the identity (Schur’s Lemma), this means that,
just as in Eq. (1.35),

.dU;

Hi[po] = i—— 3t

—Ur! + Eo(t) , (3.19)

where Ey is a complex number which can depend on time. Hence we obtain an
equation for Uy,

g%=—iﬂjU] H1=H1—Eo .
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This can be written as an integral equation

t
Ur(t,to)=1—1 | dt’ H(t"\Ur(t'to) (3.20)

to

which builds in the initial condition UI(tO, to) = 1. This is a very beautiful result.
It gives U; in terms of H; only, and H, is a function of the free fields ¢o(t),
which are known.

Now we use perturbation theory to solve Eq. (3.20). If Hy is small, we may
solve the equation by iteration:

t - . t t1 - -
UI(t,t0)=1—i/ dt’H,(t’)+(—i)2/ dtl/ dto Hy(t)H (t2) +
to to to

(3.21)
Note that H;(t,) does not necessarily commute with H;(t); the order of terms
in the double integral is important, and the later time stands to the left. If we
define the time-ordered product

T (Hr(t)Hit) = Hi(t) Hi(t2)8(t —t2) + Hi(t2) Hi (1)0(t2—11) | (3.22)

where 8(z) = 1 if £ > 0 and is zero if z is negative, then the double integral may
be “symmetrized,”

/tt dt, /tt1 dty Hy(t1)Hi(t2) = /; dty /tt2 dt; Hy(t2)H ()
- %/{ /t dndty T (Ay(0)Hr(1))  (323)

as shown in Fig. 3.1. Hence,

U,(t,to)zl—i/ dt' Hy () ("’)2/ / dtldtzT(HI(tl)HI(tz))

to

(3.24)
Since there are n! time orderings for a time-ordered product of n terms, the
expansion looks like an exponential and may be formally written

t

Ur(t,to) = Texp [—i dt, fI] [d)o(tl)]] . (3.25)

to

However, because each of the terms in the power series expansion (3.24) of the
exponential is time ordered, the terms cannot actually be summed up into a closed

form, and (3.25) should be regarded only as a shorthand for the original infinite
sum (3.24).



3.1 TIME EVOLUTION AND THE S-MATRIX 63

+ =
. il il _
t,< ' !, 1, <t, t, all 1,1, t

Fig. 3.1 The shaded areas in the two left-hand figures are the regions t2 < ¢; and ¢; < to, and
the integrals over each of these areas are equal, as shown in Eq. (3.22). Adding the two together gives
the integral over the total area (shown in the right-hand figure).

The S-Matrix

The time evolution operator gives us the tool necessary to describe scattering and
atomic decay. If there are no interactions, the states |a) are eigenstates of the
Hamiltonian, and only their phase will change with time. Under the interaction,
2n initial state |) will evolve, over time, into a mixture of final states {3). In the
interaction picture, where the free states do not depend on time, this is expressed
in terms of the time translation operator:

Urotat(T/2,=T/2) la) = N(T) Y _ Spa(T/2,~T/2) Uo(T/2,~T/2) |B) .
B

(3.26)

In words, this equation says that the state which begins as |a) at an ini-
tial time —7T'/2 evolves into the state |3) at the time T/2 with probability
IN(T) Sga(T/2,—T/2)|%. The operator Uy has been added to the RHS of the
equation in order to insure that the “trivial” time-dependent phase factors arising
from the time evolution of the unperturbed states will not be included in the ex-
pansion coefficients S(7/2,~T/2), and N(T) is a normalization constant to be
specified shortly. If the time interval is infinite, described by letting T" — oo, the
expansion coefficients S(T'/2, —T/2) — S are referred to as the S-matrix, and
calculation of these matrix elements is a central problem in quantum mechanics.
Using Eq. (3.9) and the orthogonality of the states, the S-matrix elements

become

Spa = mloaww,(oo, ~co)la) (3.27)
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The S-matrix will be defined by choosing N (00} = (0|Ur(c0, —20)|0), so that

(B|U (00, —00)| )
{0]U} (00, —0)]0)

Spa = (3.28)

where o and 3 are non-interacting states of Hy and |0) is the ground state. In
nonrelativistic atomic theory, this state is a direct product of the ground state wave
function of the atom and the photon vacuum (Fock state with no photons).
There are important reasons why we choose to normalize S by dividing by
(0)U; (00, —00)|0). First, we show that this number must have unit modulus:

(0|Ur|0) = e, (3.29)

where ¢ is a c-number. To prove this use the facts that U is unitary (which is a
consequence of the conservation of probability) and that the ground state is stable
(otherwise it would not be the ground state). Stability of the ground state implies
that

(BlUrI0)y =0 ifA#£0 (3.30)

where we assume that there is only one vacuum state. Hence, from U,TU =11
follows that

o0

1= (0/0) = (0|U}U;[0) = S (0|U}18)(BIUL[0
(0l0) = (0|U; Ur|0) 2:: U} 18)(B|U:0) (3.51)

= (0|U} |0){(0|U1]0) = |(0|Ur[0)?

This proves the result.

Normalizing the S-matrix elements by this phase factor ensures that they are
independent of any overall c-number phases. For example, if a c-number is added
to Hy, then the time translation operator is changed to

Ui (t,tg) = Texp [—i /t dt, [ﬁ;(tl) + c]]

to

= e~y (8, t) (3.32)

and this phase becomes infinite as t — t; — oc. But this multiplicative factor can-
cels in Sgq, since it occurs both in the numerator and in the denominator. Thus
this cancellation is very useful, since it works even for c's which are infinite. An
infinite c-number, which might occur order-by-order in U and which would other-
wise disturb our concentration, is seen to be irrelevant since it exponentiates and
cancels from S, and we may therefore ignore c-number infinities when calculating
S. In the context of the time evolution of states, this provides the justification for
dropping the electron and nucleus Coulomb self-energies, as discussed in Sec. 2.3.
In addition, we now can justify dropping the additional Ey(t) which arose in the
derivation of Eq. (3.20) and use H; instead of H 7.
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3.2 DECAY RATES AND CROSS SECTIONS

Experimentally, the dynamics of physical systems are studied by preparing an
initial state and then following its.time evolution in the laboratory. In the broadest
terms, it is practical to prepare only two types of initial states: those consisting of
a single particle (or a bound state which behaves like a single particle) and those
consisting of a beam of two particles (or two bound states) directed toward each
other so that a collision is possible. The other logical possibilities, which include
the direction of three or more beams at each other so as to produce a three or more
body collision, are impractical, except in the most exceptional cases. Hence, our
experimental studies are more or less limited to the following types of reactions:

one particle = == many particles

two particles = many particles .

In the first instance, if the single particle remains a single particle, then we may
measure its mass (or, in some cases, the frequency with which it oscillates into
another single particle), while if it decays into two or more particles, we can study
the decay rate or, when decay into two or more channels occurs, the branching
fraction. In the second case, we measure the cross section. Hence, decay rates and
cross sections are very important; they are among the very few physical quantities
which can be measured. We now turn to a discussion of how decay rates and
cross sections are calculated from the S-matrix.

Decay Rates

fhe differential decay rate AWy, (T) will be defined to be the probability that
a state a will decay into state 3 in the time interval [T/2, —T/2] divided by the
total time T (hence a rate). Formally

_ 185a(T/2, =T/

AWpgo(T) T

(3.33)

Under most experimental circumstances, when a decaying system is isolated from
the apparatus, the measurement is made over a time interval long compared to the
internal time scale of the system, and we may therefore take the limit as T — oo.
This limiting rate is denoted AWpg,,

im ISBa (T/za —’1-‘/2)‘2

3.34
im T (3.34)

AWgo =

Later, we will see that our calculations of the Sgo(T/2,—T/2) can always be
expressed in the form

1 \*!
SpalT/2,-T/2) = —2mts(D) (=) foa o (339)
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where the reduced matrix element fg,, is independent of T' and L3 is the volume
of the box in which the states are normalized, p is the number of particles in the
final state (counting the heavy final atomic state as one “particle”), and

1 [T/2 T sin(AET/2)
di(T) = — dte M (Fa=Bolt = — 17 3
(T) =57 /_m € x  (AET) (3.36)
where AE = |E, — Ea|. Note that
Jim dy(T) =6 (Ea ~ Ep) - (3.37)

[ Proof: As T — oo, di(T') oscillates rapidly around zero unless AE = 0, and
the integral of di(T') over AE is unity. | Hence the S-matrix (for decays) can be
written

p—1
Sge = —1216 (Eq — Ep) (7%5) f8a Decays (3.38)

which shows that energy is conserved for all decay processes which are allowed
to take place over a long time interval.

We now use these results to reduce (3.34) to a convenient form. Returning
to (3.35), squaring and dividing by T give

&(T) [ 1\
— i 2 1 —— 2
dWg, = Th_{n (2m) T (L3> |faal™ - (3.39)

Now introduce da{(T):

om)? d3(T) _ 4Tsin2(AET/2)

h(T) = T (AET)?

(3.40)

and observe that
Tlirr;o dy(T) =2n 6 (Eo — Eg) . (3.41)

[ Proof: When T — oo, d2(T) is zero unless AE = 0, and the integral of d,(T)

over AF is 2m. ] Hence the differential decay rate can be written in the following
convenient form:

1\*!
AWp, = 2106 (Eq — Eg) <ﬁ) 1fsal® . (3.42)
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The formula for the total decay rate, sometimes referred to as the Fermi
golden rule, is found by summing (integrating) AWp,, over all final states which
are detected experimentally. In this formalism where the particles are treated
nonrelativistically, the final atomic state is fixed in space, and we sum over all
momenta of the light particles produced in the decay (photons in this example),
so the total decay rate is

1\*! 2
Woa=D D > <§) 276 (Eo ~ Eg) | fpal

ny n2 np-1
dBkd3ky - Ak, _
// / : 2772(3;: R 2 216 (Eo — Ep) | fsal® ,  (3.43)

where, in the last step, we took the limit L — oo, referred to as the continuum limit
because the spacing between levels Ak = 27/L — 0, and for each momentum

variable,
SH()-SAe( )[R ). e

n; t

The §-function insures that energy is conserved in the decay, and the final result
is proportional to a density of final states times | fﬂal We will develop these
details in applications (below).

If we had worked directly with the S-matrix (3.38), we would encounter the
square of a é-function in the computation of the decay rate. A review of our
c :rivation, which was carried out first for a finite time interval and then followed
oy taking the limit T — oo, shows that the final result (3.42) could be obtained
directly from the S-matrix by using the substitution

lim

T—o0

[2”6(E‘,}_ By)l" = 216 (Eq — Eg) . (3.45)

This formula, which is a shorthand for the steps we followed, is very convenient
and will be used frequently in the subsequent sections.

Cross Section

To treat photon scattering from atoms we will need to calculate the differential
cross section. This is defined experimentally as

# particles scattered into solid angle A{}/sec

do = ,
? (# particles incident/sec) (# scattering centers/area)

(3.46)
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target

beam

scattering\ 0
angle ~
AQ particles scattered into

solid angle AQ

Fig. 3.2 Drawing of an idealized scattering process showing the differential solid angle AQ and
the scattering angle 6.

where the quantities are defined with the help of Fig. 3.2. Note that the cross
section has the units of an area. In most experiments, the target is larger than the
beam, as illustrated in Fig. 3.2, so that the number of scattering centers in the path
of the beam per unit area is

N, = pt _ target density{p) x target length(¢) . (3.47)
Me mass of each scatterer

If the particles in the beam have charge eg, then the number of beam particles
incident per second can be determined from the beam current

no =2 | (3.48)
€9
where j is the beam current. For photon beams, the quantity ng is determined
indirectly from an analysis of how the beam is produced.
Theoretically, we evaluate the cross section assuming one scattering cen-
ter, and a number of particles incident per second determined by the velocity v
and a density derivable from one particle in volume L3 (consistent with the box
normalization introduced in Chapter 2). Hence

= (3.49)

where A is the area of the beam and Avt is therefore the volume swept out by
the beam in time ¢ (see Fig. 3.3). Scattering differs from a decay in that there
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Fig. 3.3 Drawing illustrating the calcu- A

lation of ng. - -
atio ng Vi

is always an additional incoming plane wave in the initial state, and hence for
scattering the reduced matrix element fg, is defined

P
Sga = —i218 (E, — Ep) (\/—1L=3> fa Scattering, (3.50)

where p is again the number of particles in the final state. The extra factor of
L3/ in this equation [compared to Eq. (3.38)] is the normalization factor for the
incoming plane wave. The rate at which the scattering takes place is the transition
probability divided by the time interval (T°) and is equal to

Spal? 1YY"
L552l — 256 - £) (35) Vinal®

where the convenient substitution (3.45) has been used. Combining all of these
factors gives the following result for the differential cross section:

|Sﬂa|2

Aoga =Y W _1 Y 216 (Ea - Ep) (z%)p—lifﬂalz :

v
BeEAQ BeEAQ

A
(3.51)
where the sum is over all final states 3 which scatter into AQ2 and v is sometimes
called the flux factor. In the continuum limit (L — oo) defined above, the cross
section is

1 Bk d3k; - - Bky_y
AUBQ = ;}- (271—)(31?—3)

216 (Ea — Ep) |fgal® - | (3.52)
{k:}eaq

3.3 ATOMIC DECAY

We are now ready to calculate the electromagnetic decay of an atom! The calcu-
lation is so simple, it’s almost an anticlimax.
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If the initial state o and the final state 3 are not identical, which is always
the case for a decay, (3|1|a) = 0, and to first order in perturbation theory the
S-matrix element is

s = / ot (BIH(t)e) | (3.53)

where the superscript (1) reminds us that this is the first order expression only
and we have assumed that (0|U(co, —00)|0) = 1, which is usually true to first
order. The interaction Hamiltonian H; was given in Eq. (3.5), and the states were
defined in Eq. (3.6). For one-photon decay of an initial atomic state a into a final
atomic state b and a photon with energy w, and polarization A, the states are

@) = la,0) = va(re){0)
Iﬁ) = lb, 1nA) = "pb('f'e)'ln,\) ) (354)

where |1n5) = af, |0) is the one-photon state with frequency wy, and polarization
A. Hence

o .
Sba = ‘2/ dt<b: 1n/\IU;1 (_EA(TC,t) ' Vc) UAIa’ O) ) (355)
—00

where p, = —iV, and V, - A(re, t) = 0 were used to obtain the simplified form
3.55). Since the states are direct products, the matrix element (3.55) reduces
immediately to the product of two terms, an atomic matrix element expressed as
an integral over v, and an EM matrix element:

Spa = /_ dt eHEeEelt = / d’re {5 (re)Veva(re)} - (LnalA(re, £)[0)

(3.56)
where E, and E), are the energies of the two atomic states. Now, taking the matrix
element of the field operator between the vacuum and a one-photon state gives a
non-zero result! This is the origin of electromagnetic decay. We get

1 ’ ik,
(Laal(re,910) = 3~z €3 (Ol afy[0) €% . (357)
nl

n'\

Only the term with n/ = n and X' = X survives, and

1 . itk
(LnalA(e, 2)[0) = Voo I3 ) etwntknre) (3.58)
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Inserting this expression into (3.56) gives

o , . 1 .
S = dt 1(Ept+wn—Ey)t _5 / 3 . — ik P, * Ax
ba /_oo e m oo TP dre e Yp(re) €3° -V Ya(re)

1
,/LS

where the decay amplitude f, is

= —i27r6(Eb+wn—Ea) fba. )

1

. €
foa = _Zm /—-2wn

/ Proe e yr(r) 0T, Yalre) . (3.59)

The next step is to reduce fp, and compute the decay rate. In most atomic
decays, the energy of the emitted photon, which is equal to w, = E4 — Ej, is
much less than 1/R, where R is the size of the atomic system, and hence the
maximum range of the integral over r.. In this case, the dipole approximation

e knTe o q (3.60)
is extremely good. Introducing matrix elements of the momentum operator,

Py, = —i / Bro 65 (re) Ve dalre) (3.61)

we can write the dipole approximation to the decay amplitude in the following
reduced form:

e 1 .
fba = E m 6;\1 ‘Pra (362)
n
and the differential decay rate becomes
2r e? As 2
AWpe = -L-3- (5(Eb +wy — Ea) m ]En 'pbai . (3.63)
n

Summing over all final photon states to get the total a — b decay rate gives

1 N 2
Wha =2y 758 (Ep +wn — Ea) o ler™ - Pha]
n,A

N, Z/ d’k §(Ey+w—Ea)|€” pya’ (3.64)
m? o~ ) (2m)%w b a)(én"Pea| '

where, in the second step, we took the continuum limit (3.44). Eliminating the
8-function by integrating over the magnitude of k and using k = w gives

2
Wia = - (gom) [anle pul - (3.65)
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Fig. 3.4 Orientation of the mo-
mentum vector with respect to the

axes defined by the photon momen-
tum and polarization states.

This integral can be evaluated by integrating over all directions k of the
outgoing photon. However, since the integrand is rotationally invariant, it is more
convenient to fix k along the direction of the z-axis and integrate over all directions
of the vector p,,. This procedure allows us to avoid the problem of defining the
directions of the polarization vectors €' and €2, which depend on k but can be
fixed along £ and § if k=3 The geometry is shown in Fig. 3.4. The integral
over the direction of p,, becomes (the polarization vectors are now real)

Z/dﬂlef‘l Poal? = |Pbal? /d¢sin0d0 (sir12t9cos2 & + sin?  sin? ¢)
x

1

= |ppal? /d¢sin39d0 = 27 |ppa | / dz (1 - 2%)
-1
8
=7 |Pbal2 : (3.66)
Then the total rate for the decay of the state a into b is
W, — 62 4w 2

Finally, the total decay rate for the state a into any atomic state b is the sum of
the individual decay rates into all states b with E), < E,:

a —
Wtotal - § : Wha
b

Ep<Eq

(3.68)
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We leave the calculation here, assuming that applications of this result are familiar
from previous studies.

Note that quantization of the EM field has given a natural explanation for
decay [ (1na]A(re,t)|0) # 0] and the normalization of the decay rate is uniquely
predicted by the theory. Also, note how energy conservation (w = F, — E},) arises
naturally.

3.4 THE LAMB SHIFT

We search for additional effect due to the quantization of the electromagnetic field.
Imagine ourselves back in the late 1940’s. The Lamb shift has been discovered.*
Everyone believes it is due to field quantization. Can we calculate it? H. A.
Bethe did {Be 47], and it is said that he did it on a train, while returning from a
conference.

The Lamb shift was measured by W. E. Lamb and W. E. Retherford in 1947
using microwave techniques [LR 47]. It is the splitting between the 25; 5, and
2P, states, which are degenerate to order (v/ ¢)? (and even exactly to all orders
when the Dirac equation is used). The S-state is higher than the P-state by about
1060 MHz. A diagram of the energy levels of hydrogen-like atoms is shown in
Fig. 3.5.

To calculate the shift in energy of a bound state, we use second order pertur-
bation theory. The derivation of the energy shift starts from the equation

(Ho + AHj) |a) = (EQ + AEQ) + N EQ + .. Nle) (3.69)

AEL

where ) is a parameter which keeps track of the orders of perturbation theory but
is eventually set to A = 1. The derivation of the formula for the energy shift in
the general case is identical to that from ordinary nonrelativistic, non-degenerate,
bound state perturbation theory, so we will not repeat the steps here. We obtain
the usual result, valid to second order:

H H
AE, = (a|Hila) + Y {of {(‘fm'(o)"a) (3.70)
Ey' - F
B#a o ¢

The task is to evaluate AFE, to second order, i.e., to order e2.

First, note that {«|H|a) = 0, because the only such term which might be

non-zero, the A2 term in H;, is normal ordered. Hence its vacuum expectation
value is zero, and

{a,0]:A%(r.,t):]a,0) =0 . (3.71)

Thus the entire contribution comes from the sum in (3.70).

*For a review of the early experiments see [La 51].
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3D

5
3P; 2
——— Y N
—h— —_—
------ T, 1 oy
5 2
3 S% t 2 Lamb shift (very small)
amb shift
2P3
2
* ¢ fine structure ~ 10 x Lamb shift
* —2§1_ o = 2P!
2 ? 2
Lamb shift ~ 1060 MHz
* All corrections go like
1St -3
2 n
* hyperfine splitting ~ 1420 MHz

Fig. 3.5 Enecrgy level diagram for a hydrogen-like atom. The splittings are not to scale. The Lamb
>hift is of the same order as the hyperfine splitting and cannot be understood without field theory.

However, if {a) = |a,0) is a pure atomic state (with no photons present), the
only states which can contribute to the sum [ are atomic states with one photon
present. [In this section we will represent these one-photon states by |1x), where
k is the momentum and the polarization A will be suppressed for now.] These are
the only states which contribute to the sum because only for these states is

(1x]4J0) #0 .
Furthermore, we have aiready evaluated these matrix elements. They are just the

first order matrix elements of H; evaluated in Sec. 3.3. In terms of f introduced
in Eqgs. (3.35) and (3.38),

1 g
<ﬂlH1|a> = \/Eg eI(Eg Ea)t fba ) (372)
where |3) = |b, 1) is a direct product of an atomic state b and a one-photon

state with momentum k. In this section we denote f by f,, to emphasize that it
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depends on atomic states a and b and is (nearly) independent of the photon states.
Hence AFE, reduces to

Ifbal
AE, = E E . 3.73
L3 EQ _EO _., (3.73)

Note that @ = b is included in the sum over b. Even when a = b, |3) # |a),
because |3) has one photon and |a) does not.

The low energy contributions to the sum (3.73) can be estimated using the
dipole approximation for fy,, Eq. (3.60). We obtain

_ 1 82 |€£* 'pba|2
A _zb: kz (2ka3> m? E, — Ep — wg
Z/ ¢ |€£* 'pba!2
Lo 2w ( 271' m? E, — Ey — wg
1 dw e w A 2
_5;;/0 E,-FE, —w EZﬂmz;/koiek .pb“|j|

The term in brackets looks like the transition rate, except that it is not on the
“energy shell” defined by w = E, — E}. Introducing a *virtual” transition rate,

— e w . 2
Wia(w) = Tr ommE E /ko Ifi Poal (3.74)
/\

where W, (E, — Ep) = Wi, permits us to write the energy shift in the following
convenient form:

1 ° dw —
AE, = . Zb:/o mwba(w) . (3.75)

The integral has a singularity at w = E, — Ej, which is defined using the
“ie prescription.” With this prescription, the energy denominator £, — Ep — w is
replaced by E, — E;, —w + ¢, where the limit ¢ — 0 is understood. The sign of i€
is determined by causality. To see this, note that the denominator can be written
1 1
=P —inmd(E, — Ey — , 3.76
E,—FEp—w+ie E,—Ey—w 7,7r( “ b u.)) ( )

where P is the principal value integral. Hence the energy shift is now complex,
with
1 % dw —
E,=— E w
A a o - ‘/0‘ Ea—Eb—w+i6 ba(w)

1 o dw _ 1
—_ P _— Wi -1 = Wia
ﬂ'Zb: /0 F,—Ey—w ba(w) 122 b

= ReAE, +iImAE, . (3.77)
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Hence, choosing +ie gives AE, a negative imaginary part, which equals % of the
total decay rate of the state a,

ImAE, = —1W2a,, . (3.78)

However, this is just what we should expect from the energy—time evolution factor

Ya(t) = e Fetypg (0)

= e i(EQHREAE,)t (— 4 Wiy t #a(0) (3.79)

which gives \ i \
Wa(t)|* = e™Wiotat ¢ 3q(0)| (3.80)

corresponding to exponential decay of the state a with a half-life equal to the
reciprocal of the total decay rate
Total = :, . (3.81)
total
The +ie prescription therefore gives a decay in the probability [1a(t)|?. If we
had chosen a —ie prescription, we would have obtained an exponentially growing
probability, contrary to causality.

The imaginary part of the energy shift makes the Hamiltonian appear to be
non-Hermitian and the norm of 1, not conserved. However, when the entire Fock
space is considered, it can be shown that the norm of the fotal system is conserved.
A decrease in norm of 1), is accompanied by an increase in the norm of states
with Ey < E, and with one photon. In detail, the total state is

18) = ao®a|0) + a1¥s|1n) + a1 e |Lur) + - -+ (3.82)

and the total norm
laol® + la1)® + |aif? + - =1 (3.83)
is conserved.
Now, the real part of AE, gives the shift in energy of the bound state, but

it diverges. To see this, insert the expression for the decay rate, Eq. (3.67), into
(3.77). Since |p,,| is independent of w, we obtain

ReAE, = (—) (377) Z l”"‘*' ]P/ oA Eb_ ) (3.84)

The integral diverges linearly, and we must introduce a high energy cutoff (upper
limit) in order to define it. There are physical processes which we have ignored —
one is the breakdown of the dipole approximation which is certainly unreliable for
w =~ m — which naturally damp out the integral at high energies and help to define
such a cutoff. But the sensitivity of the integral (3.84) to the precise choice of the
cutoff makes the final result too sensitive to be useful for any reliable estimates.
An even greater problem is that the result (3.84) is not physically observable. This
leads us to the issue of mass renormalization.
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Mass Renormalization

We make the integral more convergent following Bethe’s method (first suggested
by Kramers) for renormalizing the mass of the bound electron. The idea is to
calculate the observed energy shift, which must be the difference between the shift
of a bound electron and the shift of a free electron, each of which is separately
not observable. In the process we observe that the Lamb shift is interpretable as
the additional shift in the mass of an electron which occurs in the vicinity of a
strong electric field.

Repeating the steps which lead to Eq. (3.75), the energy shift of a free
electron with momentum p, is

_ wdw lpfree|2
AEfree - (E) I m2 Z / iy y (385)

where b and a refer to states of a free electron with momenta p, and p,. A free
electron is described by a plane wave, which in box normalization is

piree(re) = ePa’e (3.86)

1
VI3
For such a state, the dipole approximation is not reliable, but the relevant matrix
element can be calculated exactly:

free dsre —i(pptk)re ; iPa'Te
Po” = | T5°€ (=iVr) e (3.87)

53
=Pabpy pyik -

Hence the denominator becomes

P Ph_,_Fa e RE_ Pk
2m  2m 2m 2m m

1+ )

2m
As we did in calculating (3.84), assume w << m, and consider free electron
momenta |p,| which are identical to the average momenta of electrons bound
in the atomic state a, which means that |p,| < m. Then the denominator is

approximately —w, and

N limﬁ/mdw (3.88)
free =7 \4r ) 3r m2 7% J, ’ '

where the sum over b has been fixed by the 6p otk
Note that A E¢..e has the form

AFgee = —Cp? (3.89)
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where p? = |p,|?. Hence
2 1
Efree = 2%7'; + AEfree = <% - C) pz

and we see that C has the effect of shifting the mass of the electron by

1 1 c — — m
2Mmobs  2mM °s = 1 _omC

(3.90)

With the cutoff given in Eq. (3.88), C = 2a/(37m) and the size of the correction
is small,

1:1o!
2 = — ~0.005 . 3.91
mC 3 (3.91)
Of course, without the cutoff the correction diverges linearly.
Now, the observed energy shift for the atom is the difference between the

energy shift of a bound electron and that of a free electron with the same average
momentum p, and is therefore given by

AEobs = Re (AEa) - AEfree

- (e )37rm2 / { wwb'}:'iwﬂawzla)} , (3.92)

where |p_|* has been replaced by (a|p2|a). We can cast the last term in a more
convenient form using the completeness of atomic states

(alp®la) = D (alplb) - (blp|a) lebai : (3.93)

b

Then the two terms can be combined to yield

62 2 ' E Eb Ipba
AEG, = (;1;)5;’”‘5 / dwz E. ", - : (3.94)

This expression now diverges logarithmically, which makes the result far less
sensitive to the cutoff (which we still need). If = > 0, the principal value is

/Em,x dw Tr—e dw /Emax dUJ
]P = +
0 Tr—w 0 r —Ww Ite r—w
= —log(z —w) [§7* ~ log(w — z) |77¢"

—log (i—) — log <_E_'_“%__£) = _log (Ex;ax)
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If z < 0 we have directly
/Emnx dw Em&x
~ —log
0 r—w |z]

AES -—(fz- iiE(E — Ep) [pp, )} _Emex__ 3.95
obs — ar ) 3% m?2 - a b 1pba 0g lEa_Ebl . ( . )

Hence,

The log varies slowly with E, — E, so it can be factored out of the sum, replacing
E, — Ep by a mean value

e2\ 2 1 E
AEa = — J— —_— — max _ 2 . )
obs (4w) 3 m2 %8 {<|E; —_Ebn} 2 (Be = Bu)lpal” - (3:96)
The rapidly varying sum can be done quickly using a favorite trick from atomic

physics:

> (Es = Ey)lpsal* = > _(alHap' — p'Halb){b]p'[a)
b

b
== (alp'6)(b|Hap' — p*Hala) (3.97)
b

(@l [[Ha,p'],P'] la) .

(SR

Sut, if V = ~Ze/r,, then
([Ha,PY] . p'] = iViV, =iV,] = =V?V = —Z*6%(r) . (3.98)

Hence the “final” result is

a a _ 2 _4_ 2 Emax
A obs — A‘E‘Lamb - Za <3m2> hﬂﬂ(o)l In [(lEa _ Eb})] s (3‘99)

where o = e2/4m 2 1/137 is the fine structure constant.

Discussion
We draw the following conclusions from Eq. (3.99):

e Only for S-states is 1,(0) # 0. Hence the shift is largest for S-states.
There is a much smaller shift for other states with L # 0 arising from small
terms which we have not calculated.

o The shift is positive because Epmax > [Eq — Ep).
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<E >~ 223 eV - - —4—

continuum

Fig. 3.6 An energy level diagram for
hydrogen showing how far into the contin-
uum the mean value (3.100) lies. 285~—34eéV =~~~

18

To evaluate Eq. (3.99) it is reasonable to take Ey.x = m. However, a good
estimate of (|E, — Ej|) is hard to obtain, and the reader is referred to Bethe and
Salpeter (1957) for a good discussion. This quantity can be estimated by carrying
out the sum over many atomic states, and for the 2.5 state one obtains

a’m
(1Ea — Bsl)y, = 16.640Ry = 16,6405 = 226.3 ¢V . (3.100)

"his result, illustrated in Fig. 3.6, shows that states far into the continuum region
are important. The typical excited state contributing to the sum has an excitation

energy of o~ 200 eV. With these numbers,
m
Ine— " =772
(lEa - Eb’)

and for hydrogen (Z = 1), assuming the 2P/, shift is negligible,

4 of 11 r\?
AEle/,—ZPl/2 = 3 —(7.72) |:— e (2 — E;) e—r/ao:|
4

r=0
(3.101)

where ap = 1/am is the Bohr radius. Hence the transition frequency between
the 25y, and 2P/, states is

AE me? [ of
VE o T TR (—127{27-72)

0.911 x 1027 (3 x 101%)* / _ 7.72
= (4]
1.054 x 10-27 1272

)2‘11051MHZ . (3.102)
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This, of course, is only a rough estimate. There are numerous other terms, and
the result can be calculated without a cutoff once the theory is fully renormalized.

The comparison of precise calculations of the Lamb shift (and many other
energy shifts) with precise measurements continues to be an active area of research
and is a good way to test the validity of the quantum theory of radiation (which
becomes Quantum Electrodynamics when we also treat the particles as relativistic
quantum fields; see Chapter 10). Recent theoretical and experimental results for
the Lamb shift in hydrogen are*:

Theory: 1057857(14) kHz [KS 84]
Experiment:  1057845(9) kHz [LP 86]
1057851(2) kHz (PS 83]

where the numbers in parentheses are an estimate of the errors. So far none of
these tests have led to any clear failures; QED is a remarkably successful theory.

3.5 DEUTERON PHOTODISINTEGRATION

As a final application of the quantum theory of radiation, consider the photodisin-
tegration of the deuteron. The deuteron is the only two-body bound system of two
nucleons (the neutron and proton) and is therefore the simplest nuclear system.
Its binding energy is 2.23 MeV, a very large number when compared with atomic
binding energies but quite small on the nuclear scale; it is only about 2% of the
mass of a nucleon. Deuteron photodisintegration can occur when a photon (7)
“vith an energy greater than 2.23 MeV strikes a deuteron (d) and breaks it into its
constituent nucleons:
y+d—-p+n,

where p is the proton with momentum p,, and n the neutron with momentum
D, The observation of this reaction in 1935 was an early confirmation of the
conversion of “energy” to “mass” as predicted by relativity [CG 35].

To calculate this reaction, we use the Hamiltonian (3.5), with the proton
replacing the electron as the charged particle which interacts with the electro-
magnetic field (the neutron has a magnetic moment which can also interact with
the EM field, but this is a small contribution which can be ignored in a first
calculation). Then the interaction Hamiltonian is

H =U3*< (A-p)Un , (3.103)
Mp

where m, is the proton mass and

Uy = e tHnt (3.104)

*For a recent summary see [BG 87).
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with Hy the Hamiltonian of the neutron—proton system. The scattering matrix S
and reduced amplitude f, in lowest order perturbation theory, are

S = ~i2n8 (E; — E) %fﬁ
- (3.105)
=4[ dt (F | Hi(0)4)

where Eq. (3.50) has been used to relate the reduced amplitude f to S, {3) is the
initial state consisting of a deuteron and a photon, and |f) is the final free neutron
and proton.

The nuclear system consists of two particles, the proton at r, and the neutron
at r,. The center of mass (C M) and relative coordinates for these two particles
are R = (r, +r,)/2 and r = r, — ry. If the initial deuteron is at rest, its wave

function is .
Yalr R) = 7575 9(r) (3.106)

where ¢(r) is the internal wave function of the deuteron and the factor L=3/2 is
the wave function for the center of mass of the deuteron (obtained from a plane
wave with box normalization and zero total momentum). We will discuss the
internal wave function shortly. The wave function for the final neutron-proton
pair will be approximated by a plane wave

Ynp(r, R) = -Ll—3 g@r+PR) (3.107)

‘vhere P = p,, + p,, is the total momentum and p = (p, — p,,)/2 is the relative
momentum of the outgoing pair. In this notation, the incoming and outgoing states

are therefore .

li) = 1372 #(r) a;rc,,\|0>
A
one incoming (3.108)

photon

1 prep.
1fy =z €70 10)

where k is the momentum of the incoming photon. Hence

—i/oo dt {f|H;(t)|i) = — L e[~ dt ei{(Tn+Tp+e—w)t
) V2w m J_ o
d’rd*R .
X/ T e O PRk AN (0., ) ¢(r)
1 e N
:——2\/2_w E27r6(Tn+Tp+5—w) fk‘(Pp—k)
d3 3 ) )
X./‘ Zijze”“’+"m+*‘”+¥>¢u),

(3.100)
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where T}, and T}, are the kinetic energies of the outgoing proton and neutron,
€ = My + My — My is the binding energy of the deuteron, and w is the energy
of the incoming photon. Note that the field is evaluated at the proton point
r, =R+ %r. Integrating over R gives P = k, and the reduced amplitude f can
be extracted,

o € A 1 / 3. —ip-1k)r
i = —— . — 2k d 3
fr o g e (p — 3k) Te @(r)
€ A 7 1
= ——€L" - zk) , 3.110
oo, kP 42— 2k) (3.110)

where the term € -k is zero because the photon polarization vectors are transverse,
and ¢ is the momentum space wave function. Now, the energy conservation
relation will give

b3, (-3’

L+Th=w—€e=

2m, 2my,
upz J: _pz w? sz
HE— — = — =
m 4m m 4m m
= p?=mw—¢) , (3.111)

where we neglect the differences in the proton and neutron masses, so that m, =
mn = m. The neglect of k% compared to p? is justified by the last step which
rives p? = mw, while k2 = w? is much smaller. Hence p = |p| >> |k|, and we
can safely replace p + %k by p in the argument of the momentum space wave
function of the deuteron (this is just the dipole approximation). The f amplitude
therefore reduces to

fri= ——\/%—m- ex-p o(p) (3.112)

and the cross section is

do 1 [ pidp p? e? N 1213 2
to = [ BB s (L o) (g5 ) bl 0P, (3113

where the flux factor is unity because v = ¢ = 1. Next, assuming the momentum
of the photon is in the 2-direction, we average over initial polarization states using
Fig. 3.4, which gives

1 2 1 .
§Z|eﬁp| = §pzsm26 (3.114)
)
and hence the unpolarized cross section reduces to

do _ 62 mw 3/2 . 2 bt 2
= (5) %2 G-yt el . G
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where we have expressed the answer in terms of the dimensionless quantity v =
w/e.

To complete the calculation, we must find the wave function of the deuteron.
One of the important features of photodisintegration near threshold (the threshold
energy is the energy at which the process just becomes physical, which in this
case is w = €) is that it is insensitive to the details of the deuteron wave function,
and hence a reliable prediction is possible without knowing much about the short
range structure of the nuclear force.

To see why this is so, we estimate the wave function using the Hulthén
model for the nuclear potential. This is a crude model which nevertheless is very
useful for such estimates. The model assumes that the nuclear force at long range
(i.e., for large internucleon separation ) is dominated by the exchange of a single
pion (a good approximation) and that spin dependence of the interaction can be
neglected (which is not too bad an approximation for interactions which depend
only on the charge but overlooks many features of the deuteron, such as the D
state).* Under these assumptions the potential is a Yukawa potential with a range
of the pion mass (denoted by p). The Hulthén model approximates this potential

as follows:

g’ e —ur g2 e HT
P S p——
This approximation captures the correct behavior of the potential at both long and
short range and permits us to solve the Schrodinger equation for S states exactly.

The equation for the relative coordinate is

(3.116)

1 d® 2d

2z Or) =~ (1) + V(1)o(r) = €g(r) . (3.117)

Substituting a wave function of the form

)= (e-—ar B e—ﬁr)

r T

into this equation gives a solution, provided

a=6=+me=

B=pu+6 .

B

(&q;m_“) (3.118)

The momentum space wave function is the Fourier transform [worked out in
Eq. (4.52)], and hence

d(p) = /d3re‘ip"¢(7-) = 41N (p2 152 ~ET (;+6)2> . (3.119)

*The one-pion exchange force will be derived from field theory in Sec. 9.9.
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Note that the second term is very small. For example, if p = 0, the two terms are
in the ratio of

& 2.2 x 936
(b +6)2 (139 + 2.2 x 936)2

Therefore a very good estimate is obtained by using the asymptotic wave function
only (in which case the answer does not depend on the use of the Hulthén model).
The normalization constant for the asymptotic wave function is N = 1/6/2x, and
the square of the asymptotic wave function, evaluated at p2 = m(w — ¢€), is then

aylp) = (L) = B

p? + me m2w?

= 0.061 = 6% .

Substituting this into (3.115) gives finally

do (62) 1 (')/—1)3/2

me 3

= (£ ‘2
yp sin“§ . (3.120)

ol
We emphasize that this result only includes the contributions from the proton
charge (the electric dipole interaction) and that only the contributions from the
asymptotic deuteron wave function were retained. It might appear that corrections
from the interior part of the deuteron wave function would be uncertain and
hard to estimate, but Bethe and Longmire [BL 50] showed that these additional
contributions can be expressed in terms of the effective range for the scattering of
two nucleons in the 3S) channel, a quantity which is readily measured. There are
also additional contributions from the magnetic interactions of the nucleons which
contribute an angular independent background term which dominates at energies
within 0.1-0.2 MeV of the threshold but contribute only a few percent to the cross
section at higher energies.

Because of the simplicity of this process and its insensitivity to the details of
the nuclear force, deuteron photodisintegration has been of considerable interest
for many years. Recent precise measurements of the angular distribution at low
energies (see, for example, [De 85]) show the large sin? @ dependence expected
and are in good agreement with theory.

PROBLEMS

3.1 The ground state wave function of the hydrogen atom is
wo = Noe ™"/

where ag is the Bohr radius, ap = 1/ma, and Nj is a normalization constant.
The first excited state is four-fold degenerate. Four linearly independent wave
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functions which span the space of excited states are

Y10 =N <2 - I—) e 7/20

ao

xr —
e r/2a0

z:N
P 1a0\/§

Yy —r/2a
= Ny —L /20
Y1y 1(10\/§

Z
w , = N e—-r/2ao ’
1 1(10\/5

where N; is another normalization constant, and z, y, and z are the three
spatial coordinates of the election and r = \/z2 + y2 + 22,

(a) Derive a formula for the lifetime of the state 1);,. Reduce your answer to
an integral over the spatial coordinates x, y, z or 7, 6, ¢ and constants (/Vg,
N1, ag and other constants). It is not necessary to fully evaluate the integral,
but you should reduce the triple integral to a single integral.

(b) Is the photon which is emitied by the decay polarized? If so, what is its
polarization (i.e., in which direction does €* point)?

(c) What is the lifetime of the states 1), and 1;,? Are the photons emitted
by these decays polarized? If so, in which direction?

A nonrelativistic particle of mass m and charge e is trapped in an infinite
one-dimensional square well described by the potential

V(z)=0 0<z2<?
Viz)= o0 2<0 or £<2 .

Calculate the lifetime of the first two excited states. (Suggestion: treat the
E M field as one-dimensional.)

[Taken from Sakurai (1967).] Suppose a photon of energy w is incident on
a hydrogen atom in its ground state. The photon may be absorbed, ionizing
the atom. This is a simple model for the photoelectric effect.

(a) Using the formalism developed in this chapter, write the matrix element
for the lowest order contribution to this process. (Note that the final state is
a scattering state of an electron and a proton.)

(b) If the energy of the incident photon is so large that the final electron—
proton scattering state can be approximated by plane waves, show that the
differential cross section, defined in Eq. (3.52), is

_@_32<e_2 (L 1 sin®fcos’ ¢
dQ dr ) \mw / (Ips]ao)® [1 — vcos6}*
where the spherical coordinate variables 6 and ¢ are defined so that the

incident photon momentum is along the z-axis, its polarization is along the
z-axis, and ag is the Bohr radius.
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3.4 [Taken from Sakurai (1967).] The phenomenological interaction Hamiltonian

3.5

responsible for the decay of the spin % 20 hyperon (X% — A + 7) located at
r = 0 can be taken to be

Ke

1, 0 (VXA) =

(mA+mE) AL ( ) |r 0

where 7, is an operator that converts a £0-state into a A-state, leaving the
spin unchanged, o are the Pauli matrices, which in this case connect the spin

% spaces of the two hyperons, and & is a dimensionless constant.

(a) Show that the angular distribution of the decay is isotropic even when
the parent ¥ is polarized.

(b) Find the mean lifetime (in seconds) for k = 1 (mp = 1115 MeV and
myg = 1192 MeV).

The interaction time translation operator was defined in Eq. (3.9); rewriting
this gives
Ur(t,to) = Uy ' (t, to)Usoral (t: to) -

In the following, assume that Upota)(t, to) and U (t, to) are unitary and that
they satisfy the multiplicative property U(t1,t2)U (ta,t3) = U(t1,t3).

(a) Prove that Uy is unitary.

(b) Show that U; does not satisfy the multiplicative property. How would
U; have to be redefined in order to satisfy the multiplicative property?



PART i

RELATIVISTIC EQUATIONS




Relativistic Quantum Mechanics and Field Theory
FRANZ GROSS
Copyright © 2004 WILEY-VCH Verlag GmbH

CHAPTER 4

THE KLEIN-GORDON EQUATION

In the last chapter we brought the subject to the point where the electromag-
netic field was quantized, and the production and annihilation of the field quanta
(photons in that case) could be treated. The treatment of the EM field was
fully relativistic, even if it was not manifestly covariant (because of the Coulomb
gauge). However, the treatment of the particles (electrons and protons) remained
nonrelativistic, and we had no way to describe the production and annihilation
of these particles (which must always occur in particle—antiparticle pairs because
both electron and baryon numbers are conserved). With this chapter we begin
to develop the tools necessary to describe “classical” particles, such as electrons,
covariantly. The development will eventually lead to the construction of field
theories for electrons and other classical particles (Chapter 7), with the capability
tn describe the production of particle-antiparticle pairs. Only then will the dis-
Jnction between classical particles and fields disappear, with the recognition that
the quantum field is the single entity suitable for the description of all matter and
energy.

However, before we can introduce these new quantum fields we must first
understand how to describe single particles in a covariant fashion. This is the
subject of the next three chapters. In this chapter we begin with the simplest
relativistic equation, the Klein~-Gordon (K G) equation. Then we discuss the
Dirac equation (Chapter 5) and applications of the Dirac equation (Chapter 6).

4.1 THE EQUATION
We begin our systematic study of relativistic equations by briefly considering the

following equation:
(@) = VmE -V (a) | (41)

where, as in the previous chapters, = represents both the time and space depen-
dence of the wave function, so that ¢(z) = 1(r,t) is understood. This equation
follows the traditional “rules” of quantum mechanics in that it can be obtained
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from the relativistic energy relation E = y/m? + p? by the substitution

X
E=i5 (4.2)
p— ~—iV

There is no problem in principle with the operator Fy = vm? — V?2; this operator
is defined by either (i) expanding any function in terms of the eigenfunctions of
V (the momentum eigenfunctions), on which the operation Evy is easily carried
out, or (ii) defining Fy by its power series expansion

2 4
Evgm{l—z——'v }

2m2 g’rl—z e (4.3)
While this series may not always converge, we may consider its analytic contin-
uation to be the definition of the operation of Ev on any function.

The disadvantage of Eq. (4.1) is that it is not manifestly covariant. To
be manifestly covariant, we must know how to transform the equation not only
in time and space, described by the infinitesimal generators H and P, but also
under the homogeneous Lorentz group, which includes rotations, generated by
the angular momentum operators J, and the boosts, generated by the operators K
(the Lorentz group and its generators will be discussed in Sec. 5.8). While these
transformations can sometimes be worked out for equations of the type (4.1),
many problems are encountered, and therefore this route was not the one taken
in the original developments which led to the quantum field theory of elementary
sarticles [except that the Dirac equation can be regarded as arising from the
linearization of the square root in (4.1); see Chapter 5]. Now we know that many
particles originally supposed to be “elementary” (such as the proton) are in fact
complicated composite structures of valence quarks and a sea of quark—antiquark
pairs and hence cannot be described by a single local quantum field. In the search
for approximate methods of describing such particles, interest in equations of the
type (4.1) has been rekindled and is an active area of current research. Such an
approach sometimes is identified as relativistic Hamiltonian dynamics and will not
be discussed further here.*

The alternative route is to introduce equations which are manifestly covariant,
and this method is soraetimes referred to as manifestly covariant dynamics. Tt is the
route which is traditionally taken to relativistic field theory. A simple, manifestly
covariant wave equation is obtained if the substitutions (4.2) are made into the
mass energy relation E2 = m? + p2. This gives the Klein-Gordon (KG) equation
for a free particle

(O+m?)y(x)=0 , (4.4)

*For a review see [Co 89] and {KP 90].
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where the wave operator, [, was previously introduced in Chapter 2, Eq. (2.20),
and m is the mass of the particle (to be confirmed below). This equation is
manifestly covariant because the wave operator is a scalar, and if the mass m and
the wave function % are also scalars, the equation and the wave function have the
same form in all reference frames. Note that Eq. (2.42) for a free massive vector
field (i.e., with j# = 0), which we obtained in Sec. 2.5, is just a K'G equation for
each component of the field.

This equation is not first order in the time derivative. This means that it is
not sufficient to know the wave function at a particular time in order to determine
it at later times; one must also know the time derivative of the wave function at
that time. In this sense, Eq. (4.4) appears to depart from one of the basic tenets of
quantum mechanics: that knowledge of the wave function at one time is sufficient
to determine it at all later times. However, as we shall soon see, this is only an
apparent problem and will lead to a reinterpretation of the wave function. Instead,
this equation, in common with all manifestly covariant equations, has another
problem which is more serious and will be discussed shortly.

To introduce electromagnetic interactions into the KG equation, recall that, in
the four-vector notation introduced in Chapter 2, the energy-momentum operator
is

pH = 11 = (z%, —iV> =i9* . (4.5)

Using minimal substitution [as encountered in Eq. (2.30)] we are led to the re-
placement

pt — pt —eA¥ minimal substitution, (4.6)

where A* is the four-vector potential previously introduced in Chapter 2. This

gives
.8 .0
- (0 o) (172, o)+ i) =0

or, expanding out the product,

[D +m?+ U(z)] ¥(x) =0, (4.7)

where the generalized “potential” U(z) consists of a scalar and a vector part

0 7]
=4 o A — g2 AL
Uz) = e A* +ieA 5o5 "€ AFA,
.0 . 0 (4.8)
=K T ) .
zﬁqu +1iV 61“1+S

required by
hermicity
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In these equations, the 8/0z* operator operates all the way to the right, so that
in the first term it operates on both A (or V) and . While all the terms in (4.8)
are scalars, the first two terms consist of a vector potential which is contracted
with the d,, operator to make an overall scalar, while the last term is a scalar by
itself. Note that the symmetrized form of the vector term is required in order to
maintain the hermiticity of the interaction. In the most general case, the scalar, S,
and vector, V¥, parts of the potential could be independent interactions, but for
electromagnetism they are related by

S =-e?4*4, VH = eAt . (4.9)
In some of the following discussion, the vector and scalar parts will be treated as

independent interactions, and at other times we will specialize the discussion to
electromagnetism, Eq. (4.9).

4.2 CONSERVED NORM

Because of the second time derivative, the conserved norm is no longer f d3r .
To find the correct norm, consider the following two expressions:

Y (O+m?+U Yy =0
Yo (O+m2+U") 9 =0 ,

vhere a and b are the quantum numbers of any two solutions. Subtracting these
two expressions gives

— — — —
w;awa—-d}"a‘d) +y; iiV“%—iV”-—a—%—i—-a—V“-i-iV“i e =0
bV | G Or+ OzH Oz | 7° k

where the arrow over the operators tells in which direction they operate. In
particular, an arrow pointing to the right (—) means that the operator operates
all the way to the right, including operating on any wave functions which may
eventually stand on the right. Similarly, the arrow | pointing to ttE left (<) operates

all the way to the left. [The expressions vy, and waﬂv,b; are therefore
identical.] The above expression can therefore be written as the four-divergence
of a four-current j#,

0
.
Fa J 0, (4.10)
where o
. .. 0 .
= Yo — 2VH Py, (411)
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and the double arrow is an obvious generalization of the single arrow notation:

N AT S )
wbwwa=¢béz_“¢a—¢b%¢a . (4.12)

If we integrate (4.10) over all space (i.e., over a volume L3 with periodic boundary
conditions), the spatial divergence integrates to zero, and the volume integral of
the time component is a constant. In general, for any vector field j# which is
conserved, so that ,j# = 8j°/0t + V -j = 0, and which satisfies periodic
boundary conditions, we have

0
= d3rj°+/ &Prv.j=0=
3t 1 L3

d
= d3rj°+/ dSh-j=0=
ot Jp surface (4.13)
| o

=0

d®r 5° = constant .
L3

For the case given in Eq. (4.10), this becomes

/ d’r [¢E i%d;a - 2V°1/;{;1/)a} = constant . (4.14)
L3

If a = b, this is the conserved norm for the state a, and it explicitly involves
the potential (the time compenent of the vector part). This result, unusual from
the point of view of conventional quantum mechanics, is a general feature of
many manifestly covariant relativistic equations (especially two-body equations).
Before discussing this norm further, we will obtain the solutions of the free particie
equations.

4.3 SOLUTIONS FOR FREE PARTICLES

The solutions of the free particle KG equation (i.e., with U = 0) can be obtained
by separation of variables. Using box normalization with periodic boundary con-
ditions, the solutions are

E) (r,t) = N elkn T FEnt) (4.15)

where E,, = y/m?2 + k2 is always positive and the superscript (&) refers to the
sign of the energy in the exponential. As in the cases discussed in the previous
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chapters, solutions with both signs occur; solutions with the superscript (+) will
be referred to as “positive” energy solutions (because the factor of —iE,t in the
exponential corresponds to positive energy in nonrelativistic Schrodinger theory),
and those with superscript (—) will be referred to as “negative” energy solutions.
The periodic boundary conditions, imposed inside of a cube of length L on each
side, require

k, = %(nx,ny,nz) ng=0,%1,42,... . (4.16)

The norms of the positive and negative energy solutions have different sign,

i d3r¢;i>*§£¢5,%> = +2E, L3N, , (4.17)
L3

where 6nm = 6n,m,0n,m,0n,m,. Using the zeroth component of the conserved
current to define invariant scalar products, the different solutions are orthogonal,

>
z/ d3r¢;+>*2¢5;’ =0 . (4.18)
L3 ot

If we choose N = (2EnL3)—1/2. then the two types of solutions, ¢(*) and ¢(~),
will each be normalized and orthogonal:

1 .
d)sli)(r,t) = —_..2E L e"(kn'r:FEnt) . (4.19)

The positive energy solutions ¢(*+) have norm +1, and the negative energy solu-
tions ¢{~) have norm —1.

Because negative norm solutions exist, ||1||? cannot be a probability density,
and historically this was regarded as a reason for rejecting the K'G equation. This
point of view is too narrow, but the existence of negative norm solutions is an
indication that the quantum mechanics described by such an equation departs from
the classical rules of quantum theory. One of these rules is that the states span
a vector space with a norm which is positive definite, and this is certainly not
the case for the KG equation. Later we will see that if the KG equation is used
as the basis for a field theory (recall Prob. 1.3), then the states defined by the
field theory will all have positive definite norm, and the negative energy states
can be reinterpreted as positive energy states of antiparticles. Before developing
the field theory, however, it is useful, and maybe even necessary, to study the
properties of a quantum mechanics which is based on the use of the KG equation
as the equation for single particle states (referred to as the first quantized form
of the theory). This is the purpose of this chapter, and it is well to realize that
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even though the first quantized theory can be only partially successful, it is just as
important in its own right as the study of the first quantized theory for the Dirac
equation (which is taken up in the next chapter). The first quantized theories for
both of these equations suffer from the same fundamental disease; they both have
negative energy solutions which cannot be treated fully until they are reinterpreted
as antiparticles, and this is only fully successful in the second quantized (field
theoretic) form.

Keeping these comments in mind, we proceed with our study. If the KG
equation is applied to the description of a charged particle, the norm will be
interpreted as a charge density, with positive norm states describing + charges
and negative norm states describing — charges. The conservation of charge then
appears as a consequence of the invariance of the norm. If the particle has no
electric charge but has some other quantum number (a generalized charge) which
satisfies an additive conservation law, the norm can be interpreted as the density
of this generalized charge. In either case, the existence of two states, one carrying
positive charge and one carrying negative charge, is assumed.

Before we develop these ideas further, it is useful to look at a simple example
which illustrates how the K'G norm can be consistently interpreted as a charge
density and how both particles and antiparticles are described by the equation.

4.4 PAIR CREATION FROM A HIGH COULOMB BARRIER *

Since the norm is conserved, we might suppose that if we start out at some initial
time to with a superposition of states with only positive norm, these will evolve
-t a later time t into a superposition of states with only positive norm, and that
therefore in this case we could still interpret the wave function as a probability
density. We shall show here that when interactions are present, states with negative
norm can still appear, and hence they cannot be eliminated from consideration.
Our discussion will also enable us to interpret the norm physically.

Consider the reflection of positively charged mesons (7+ mesons for exam-
ple) from a high Coulomb barrier. The K G equation (4.7) for this case is

(r_'l +m? + 2ieV—§—t - e2V2) Y(x)=0 , (4.20)
where V is zero to the left of the barrier and a constant to the right, as shown in
Fig. 4.1A. We seck a solution of the form e~*Zt, corresponding, in region I, to a

free particle with positive energy. We guess the solutions in regions I and II to
be of the form

Ui(z,t) = AetPz=Et) | B o—ilpz+E1)

.21
wII(Z,t) = Cei(Pz_Et) + De—i(PZ+Et) (4 2 )

*Much of the material in this section is discussed in an interesting paper by Winter [Wi 59].



98 THE KLEIN-GORDON EQUATION

eV
region region eV-E region reinIon
I * I
___E___.L________ ——gpm oo
0 z 0 z
-E ﬁ

(A) (B)

Fig. 4.1 (A) Regions I and II and the high Coulomb barrier as described in the text. (B) The
appearance of the “barrier” to a negatively charged particle with total energy —E in region II.

These trial functions will solve the K'G equation in the two regions if

p=VE?-m? P=1/(eV ~E)*-m? | (4.22)

~nd the complete solution will later be obtained by requiring that the wave function
and its derivative be continuous at the boundary between the two regions. We see
that the solution in region I consists of waves moving toward the right (with the
coefficient A) and toward the left (with coefficient B). Later we will construct
wave packets from these functions and observe that they describe a particle (with
positive charge) which approaches the barrier from the left, reflects, and travels
back to the right. If eV < E + m, the wave number P in region II is complex,
and the solutions correspond to damped and growing exponentials, as expected.
The particle cannot penetrate into that region, and the correct solution is the one
with a purely damped exponential. However, if eV > E + m (a high barrier),
then P is real and we have oscillating solutions in region II! Before we find all
the coefficients, let us investigate the nature of these solutions.

First, we compute the norm of these solutions in region II. If D = 0, for
example, we have (for box normalization when —L/2 < z < L/2)

L/2
lnll? = / dz|C|?(2E - 2eV) < 0 (4.23)
0

if eV > E'+m (the high barrier). Hence these oscillating solutions have negative
norm and we see that the interaction has forced us to consider such states, even
though the solution in region I is the sum of two terms, both with positive norm.
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To see how these solutions develop in time, we smear in E to make wave
packets. Smearing around E = E, we have, for ordinary solutions like those in
region I,

Eo+AE +AE
/ " 4B (VBT - B) o ei(poz—Eot)/ dE & B(82a-1)

Eo—-AE —-AE

= ¢Poz—Eot) ¢ (:v_ot_) , (4.24)
Vo
where vo = po/Ey, and the envelope function is
AE .

- AFE

fn) = / dEiFn = 200122 (4.25)
-AE n

Note that these packets travel in the direction of p with the classical relativistic
velocity v = p/E.
The packets in region II behave differently, however. We have

Eo+AE AE
/ o+ dEes(,/(eV—E)z_mﬂ z—Et) ~ ei(Poz_.Eog)/ dEe—iE(ﬂp—o_EnzH)
Ey—-AE —-AE

- ei(Poz—Eot)f (fﬂf) , (4.26)
Uo

where
Py Py

TeV-E Jm B

Note that this packet propagates to the left; its group velocity is negative even
though its phase velocity is positive. It travels with the classical relativistic ve-
locity of a free particle with kinetic energy corresponding to eV — Ey. Since a ™+
cannot have a positive kinetic energy in this region, the packet must be describing
something else. If it were negatively charged, then it would see the potential
barrier as a deep hole, and it could have positive kinetic energy. In that case it
would have total energy

uo (4.27)

Etotal = (eV - E) —eV=-F y

as shown in Fig. 4.1B. A consistent picture of a particle of mass m and charge
—e emerges,; it is a #~ meson!

To complete the description, we compute the coefficients for a state which is
initially a pure n* traveling to the right toward the barrier. This means that any
7~ meson must be produced by the interaction and will travel toward the right
into region II. Hence the boundary condition is that C = 0, and it is convenient
to choose D = 1. Then the continuity of the wave function and its derivative at
z = 0 require

A+B=1

p(A-B)=—P , (4.28)
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which gives

A=%—%
1 P (4.29)
B = 3 + G
and the solution becomes (renormalizing so A = 1)
Pi{z,t) = eilpz~Et) _ _gj___ge—i(pz+Et)
_ 20 _iPe+EY) (4.30)
Yu(z,t) = e ,

To interpret this solution, smear in E and assume that the coefficients are slowly
varying functions of E which can be approximated by their value at the central energy
Ey. We then get

Yi(z,t) = eilpoz=Boll g (z — vOt) _Dtm e~ HpoztEot) £ (———z a v0t>

Vo Po—po Ug

- 2po —iP z — upt
z,t) = —=——— ¢~ HPoz+Eot) (—————) . 4.31
Yu(z, ) Po— 7o f ” (4.31)

Using the fact that the envelope functions are non-zero only when their arguments
are small, a moving picture of this state can be constructed as shown in Fig. 4.2.

Note that the norm of the state is a constant of the motion. Att — —oo0, only
the incoming packet on the left-hand side exists, and if we take its norm to be one,
then the norm of the reflected packet (traveling to the left in region I) is

Py -H’o)2
R={|—— 4.32
<P0—Po (432)

and, recalling Eq. (4.23), the norm of the “transmitted” packet traveling to the right
in region Il is

2 2 - P,
T = _( Po ) (eV Eo) Yo _ __ 4poRo -, (4.33)
P - po Ey ) (P ~ po)

where the ratio (eV — Ey)/Eq comes from the energy factor in (4.23) divided by
a similar factor which appears in the norm of the states in region I (which must be
divided out because the incoming state is normalized to unity), and the ratio up/vo
is the effect of the fact that the z dependence of the envelope functions is scaled by
the velocities in the two regions (see Fig. 4.2). Note that T' < 0, corresponding to
the negative charge of the particle in region I, so that even though R > 1,

1=R+T (4.34)
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region 1 region Il

t=—

—

i

—

i
—>>
2.02
=+ ‘L —
-

~-1.02

2.02

=42
—_—

-1.02

Fig. 4.2 A moving picture of the solution (4.31) for four times around #=0. For this picture we
took E = am and eV—E = bm, where a=13 and b= 32. The location and size of the wave packets are
to scale for these parameters, and the packets include the energy factor which enters the normalization,
as in Eq. (4.23). The normalization of the packets is written above each packet. Note that for ¢t > 0,
there are 2.02 units of positive charge moving to the left in region I and —1.02 units of negative charge
moving to the right in region II, which add up to the original 1 unit of charge incident on the barrier.
The incident packet has reflected and produced + and — charged pairs.
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as required by the conservation of the norm (the charge).

We interpret this result by saying that the incident pion not only scatters
from the barrier but also stimulates the barrier to produce 7+~ pairs, and the
7~ particles travel into the barrier, which is negative to them, while the 7%t
particles produced by the scattering join the scattered 7* particles. If the norm
is interpreted as a charge density, the interpretation is consistent and makes good
physical sense. Energy and charge are conserved.

4.5 TWO-COMPONENT FORM *

In order to display these two states explicitly, and to further develop our under-
standing of the KG equation, we will now discuss how the equation can be cast
into a “two-component” form. This will help to understand the equation and to
study its nonrelativistic limit.

Any second order differential equation can be transformed into two coupled
first order differential equations. If this transformation is applied to the time
dependence of the K'G equation, we emerge with a set of coupled equations of
the form

.0¢

iy = Ho¢ |, (4.35)

where ¢ is a vector in a complex two-dimensional space and H is a 2x2 matrix.
We gain several advantages from this reduction. First, the equation is now first
order in the time, so that the time dependence of the two-component wave function
is uniquely determined by its initial value, in agreement with the rules of quantum
~aechanics. This means that the perturbation theory we developed in the preceding
chapters, which implicitly assumed an equation which is first order in time, can be
used with the two-component K G equation. Finally, study of the matrix structure
of the two-component equation is good preparation for the study of the Dirac
equation, which has a similar matrix structure. However, the two-component KG
equation is no longer manifestly covariant, and for this reason it will be discarded
after this chapter is concluded. When we encounter the KG theory again in
Chapter 7, we will use the original version presented in the preceding sections.

The transformation to two-component form can be carried out by introducing
1 and 0y/0t as independent functions. However, instead of ¢ and 61/8t, it is
helpful to take a more symmetric linear combination. Introduce two functions ¢
and ¢_ determined from v and Jv//Ot by

=L (8 _yo
¢+”\/27§(26t V+m)1p

L (.9 o
¢_—m<zat+v +m)1/),

*Much of the material in this section is drawn from the interesting review by Feshbach and Villars
[FV 58].

(4.36)
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where the + subscripts should not be confused with the (+) superscripts; they
have a completely different meaning. We point out that the choice (4.36) is
not unique; it was chosen because it is simple and gives equations with some
features suggestive of the Dirac equation. Another choice, interesting because
it diagonalizes the Hamiltonian in the absence of interactions, is presented in
Prob. 4.4.

The functions (4.36) will be defined to be the upper and lower components
of a new wave function, ¢, and will be organized into a two-component column

vector
¢ = (¢+> : (4.37)
-

This vector satisfies the first order differential equation (4.35) with

m+VO+(p_V)2 (p_v)2
2m 2m
H=
R 74V _yy\2
-V Cmayo @ V)*
2m 2m
- 2 — V)2
S Pl S POl
2m 2m

where 7, are the Pauli matrices (given explicitly in Appendix A).

Proof: From the definition (4.36) it follows that

Y=— (¢++¢ )

31[1 yo
\/—' )+ Tom (¢+ +¢-)

Differentiating (4.36) and using the KG equation and (4.39) give

1 5? ave 9
—d& \/—(Fat2¢2(at>+(m¢V0)la>w

=\/—;_;<:F[ @ —-V)? —1(86‘;0)—21'V°5%+(V0)2—m2]¢

#1220+ (mx V) [\/?(m g+ v%])

- [-;- (VO£ m) = (";—7:)2] (6 +0-)+ 5 (mFVO)bs — ) .

(4.39)
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Writing this in matrix form gives (4.35) and (4.38). 1

Substituting (4.39) into (4.14) shows that the two-component form of the
conserved norm is

/ d®r¢lr,¢ = / d®r (|¢>+|2 - |¢_‘2) = constant . (4.40)
L3 L8

It is instructive to prove that this is conserved directly from the matrix form of
the equation, (4.35). To do this, note first that / is not Hermitian but that

,Hir,=H . (4.41)

The matrix 73 thus plays the role of a “metric tensor,” and

i(%/d:ird)*n(p=i/d3r{gz¢TT3¢+¢Trs%?}
- _/dsr{qsf [Hir,-r,H] ¢} =0 .  (4.42)

We may simplify the notation somewhat by introducing the KG adjoint, defined
as follows:

d=¢'T, . (4.43)

The conserved norm is then written
/ d*r ¢ ¢ = constant . (4.44)
L3

The solutions of the free KG equation can be found directly from the two-
component form of the equation,

P P
5 mt om om
iz¢=Hop= é . (4.45)
r’ p?
£ -(5)
@ _ [ X i(k-r¥ Et)
If¢,” = e , then
n
k® k?
tE-m-o2 T X
=0 . (4.46)
2 2
k— tE+m+ — 7
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It is casy to see that a solution requires E2 = m? + k? and that

1
¢§c+) = N+ T ei(k"'—Et)
(E+m)?
. (4.47)
—k
¢£-—k) =N_ Etm) e—i(k-r-—Et)
1
Note that ¢{~) has negative norm. If we require
—(+ —(=) (-
/Ls Pr gl et =1 /L Pra’le) =1, (4.48)
then ) 4
m
Niy=N_=N-= 4.49
* VREL® V2m (4.49)

We will see later that these solutions bear a striking resemblance to those of the
free Dirac equation.

Charge Conjugation

The KG and other manifestly covariant equations (such as the Dirac equation)
have a symmetry related to the existence of both positive and negative energy
.olutions. These solutions can be transformed into each other by an operation
referred to as charge conjugation. Under this transformation, the interaction term
changes sign, but the equation otherwise remains unchanged (in particular, the
mass remains the same). This transformation provides a good way to interpret the
meaning of the negative energy solutions, ¢(~).
In the two-component theory, the operation of charge conjugation is defined
by
o= ¢ =1,0" . (4.50)

Now note that ¢¢ satisfies the same equation as ¢, except with V# — —V# To
see this, remember that p — —{V, so that p* = —p. Then

2 2
—ig—tqs' = {[m LV ;mv) } T+ Vot PV ;T:) z"rg} ¢ . (4.51)

Hence, multiplying both sides of this equation by —7, and using the fact that 7,
anticommutes with 7, and 7, give

iﬁ cz{[m+(—”;—n:/)—2]~ra—vo+wir}¢c , (4.52)

2m 2
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which completes the proof. Hence, for electromagnetism, ¢ describes a particle
of opposite charge. Furthermore, note that ¢{~) ¢ has positive norm

0< “/d3r {5(—)(#(—)} - _ /dsr{¢(_)CTT1T3TI¢(_)C~}

=/d3r {5“’0 ¢<—>C} . (4.53)
Also, for the free particle states,
=k 1
¢ —r N Erm® itker-Et) _ N 2 cilkr—Et)
—k
1 E+m)®
=t (4.54)

The charge conjugation operation turns a negative energy state of momentum —k
into a positive energy state of the opposite charge and momentum k. This is
the origin of the idea that a negative energy state traveling backward in time is
equivalent to an antiparticle state traveling forward in time. This idea will be
developed in considerable detail later in this chapter (see Sec. 4.8).

4.6 NONRELATIVISTIC LIMIT

T2 gain further insight into the structure of the K'G equation, we study its nonrel-
ativistic limit. This is the limit when the mass of the particle is much larger than
all momenta or energies and the positive energy solutions have an energy near
m. Since the rest mass is not normally included in the nonrelativistic energy, we
introduce a difference energy T = E — m. Assuming a solution of the form

X .
¢(T‘,t) = e-—lEt

Ui

and using H given in Eq. (4.38), the coupled equations reduce to

Tx = (M+VO)X+MU

2m 2m (4.55)
—v) — V)2 :

where the term m7, in H has been moved to the LHS of the equation, where
it cancels a similar term in the first equation but doubles the similar term in
the second equation. As m — oo, the dimensionless quantities |p|/m, |V°|/m,
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[Vl/m, and |T|/m are all << 1, and therefore n << x. Expanding the second
equation in inverse powers of m and discarding terms of order m~3 or higher
give

— V)2
n:—%m)—x+0(%3—) . (4.56)

Substituting this result into the first equation gives an equation for y accurate to
order 1/m3,

1 1
Tx ={ —(p — V)2 O _—(p-V) . .
o= {omtr -V v - -yt (@57)
If V =0, the relativistic corrections to the energy up to order m~3 are
V4
AHRel = —W . (458)

This is the only term which can give fine structure contributions for a spin zero
particle. (See Prob. 4.2 at the end of the chapter.)

Zeeman Effect

The Zeeman effect is the splitting of energy levels which occurs when a bound
state (atom) is placed in a weak, magnetic field. In this case the field, B, can be
assumed to be uniform over the size of the atom, in which case the corresponding
vector potential is simply

A=—-1(rxB) . (4.59)

Note that the definition of A is consistent with the Coulomb gauge, and with the
identification of B as a constant magnetic field

(V XA)i = —%eijijszmT‘le

= —%eijkfk]mBm =B

For a positive charge e, the magnetic interaction term then becomes

1 ie ie
e {(p. .p) = — ‘A . — ZA.

2m(p V+V.p) Y (Vv +A-V) mA v

ie

2m

e e
(rXB)VIQTn'B(I'XV)————%BL s

(4.60)
where L is the familiar angular momentum operator. This interaction gives the
“normal” Zeeman effect only (see Prob. 4.3).
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Discussion

The K'G equation describes the behavior of a spin zero particle and hence would
be the correct equation to use for an approximate description of pionic atoms
(atomic states with a m~ substituted for an electron). Unfortunately, the pion is
very short lived, and these “atomic” states have a very short lifetime. In addition,
because the pion is so much more massive than the electron, it is bound in a very
small orbit. The orbit is so small that there is a significant probability that the pion
will overlap with the nucleus, where it will interact strongly, further broadening
the states. These effects make it difficult to study pionic atoms, and direct tests of
the applicability of the K'G equation to such states is a topic of current research.

In any case, the study of the structure of (perhaps hypothetical) atomic states
with spin zero constituents is an interesting intellectual question. Comparing
results obtained from the KG equation with those we will obtain later from the
Dirac equation will tell us how much of the observed fine structure is due to
relativity alone and how much is due to the spin of the electron. Similarly,
comparison of the Zeeman effect predicted by each equation helps us separate
effects due to the orbital motion of the bound particle (all that we have in the KG
theory) from additional effects present in the Dirac theory.

4.7 COULOMB SCATTERING

As an illustration of the usefulness of the two-component theory, we calculate the
scattering of a charged spin zero particle from a fixed Coulomb potential

VO = zg (4.61)

which comes from a point charge Ze fixed at the origin.

Because of the fact that the two-component K'G theory satisfies a first order
differential equation, we may use the formalism for time-dependent perturbation
theory developed in Sec. 3.1. The first order S-matrix element is {compare with
Eq. (3.53)]

Spi=—i / dt (FIH 0)]) (4.62)

where |7} and | f) are initial and final K G free particle states with momenta k; and
k. The interaction Hamiltonian in this equation, H;, must be expressed in the
interaction representation, just as we did in Sec. 3.1 in our study of electromag-
netism [recall Eqgs. (3.4) and (3.5)]. For a pure Coulomb interaction, V = e4 =0,
and the Schrodinger representation of H; can be deduced from Eq. (4.38). In the
interaction picture, it becomes

. Za

1
H =Ug' = < 1>Uo (4.63)
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with
Uy = e ot (4.64)
The unperturbed or free particle Hamiltonian, Hy, was introduced in Eq. (4.45).

As in Chapter 3, the sole effect of the operators Uy is to give time-dependent
phases when they operate on the initial and final state wave functions:

Uo gl (r) = e 10l (r) -

The matrix elements must be put together using the correct scalar product.
The matrix element of an operator O, (f|O|i), is constructed by inserting the
“metric tensor” 7, between the final state and Oz or, alternatively, forming
the scalar product by multiplying from the left by the adjoint state defined in
Eq. (4.43). For the scattering of positive energy states, this gives

Spo= i [ atdr 30 Hitr0 6 (0)

. 1 Za (1 —
= —z/dt d3r [qﬁf;r)(r)} raetHot 22 ( ) e H°t¢§:)(r)
N ot 1

r

3
. (Bp-Bt [ BT iki-kpyr 221
=—1 [ dte I3 e

T \/4EfEi
EemEam) (1w [ ( 1 >

2m —k?

-1/ \ETm®
:EITQ'E,
. &Br Za E;+E;
=—i | dt l(Ej—E.-)t/__ itki—ky)r 24 Df 7 Di ) 4.65
1/ ‘ 3° r JAEE, (4.65)
(e

relativistic
factors

The time integral gives an energy conserving delta function, and hence E; = E;
and the new relativistic factors reduce to unity, showing that the S-matrix is
identical to the nonrelativistic result. However, the cross section will include
relativistic effects which arise from the flux factor.

The cross section becomes [recall Eq. (3.52)]

E; —-—dSkf 2mé

dog, = =%
77 k] reaq (2m)3

(Ef — E) | fril® (4.66)
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where fy; is the reduced matrix element, which for this example becomes (¢ =
ki —ky, and |g| = q)

fri =/d3rei"" %e‘"

2
— Zazﬂ-/oo ridr L {eiqr—-cr _e—iqr—cr}
(]

T igr

=ZaZ7r,—1—[—.l + .1
ig| ig—e —ig—e

1 1
=Za 47TqT+—€2 =Za 47(';]3 (6 hamd 0) . (467)

[Note the use of the screening factor e ™", inserted to insure convergence of the
integrals and removed after they have been done by letting € — 0.] Now substitute
(4.67) into (4.66), and assume A is small enough so that all dependence of the
integrand on the directions of ky can be ignored. This gives

E; [ Kkjdks (Zadr)?
dO’ﬁ = ko—, / WQﬂé(Ef - El)q—4
do  4(Zo)*E?

aQ g4

(4.68)

This is the Coulomb differential scattering cross section for a spin zero particle
scattering from a fixed scattering center. Because there is no recoil, the behavior
of the cross section is dominated by the familiar ¢-¢ factor, where

¢ = (k; - ki)? = 2k% (1 — cos @) = 4k?sin? g . (4.69)

The scattering is sharply peaked in the forward (6 = 0) direction.

4.8 NEGATIVE ENERGY STATES

The simple example we considered in Sec. 4.4 was sufficient to show that
e negative energy states cannot be ignored and

e they describe the production of particle-antiparticle pairs, which can occur
virtually in higher order processes.

The (one-particle) KG equation can only do a limited job of describing pair
production; a complete description of antiparticles must await the development
of field theory (Chapter 7). In this section we lay the background for this study
by developing the mathematical description of both positive and negative energy
states, to the extent possible without the use of field theory.
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To illustrate the techniques, we will calculate the matrix element for Coulomb
scattering to second order in the electric charge e. From Eq. (3.24) for the time
translation operator, the second order S-matrix element is

Y oo o0
sP =5 [ atan (e e

= _/—oo /.00 dbydta 0(ty — t1) (f |Hi(t2)Hi(t1)[3) . (4.70)

The superscript (2) is to remind us that this is the contribution to the infinite sum
(3.24) which is second order in the small electric charge e. While this formula
was originally obtained for a field theory, it applies equally well, as noted in the
previous section, to any quantum mechanical system described by an equation
first order in time and which has been separated into an unperturbed Hamiltonian
Hj and an interaction Hamiltonian H; (written in the interaction picture). We
may apply it to the two-component form of the K'G theory, which casts the KG
equation into a differential equation first order in the time.

The way to evaluate S is to insert a complete set of states between H 1(t2)
and H;(t,). Before we can do this, we must discuss the completeness relation
for the K G states.

Completeness Relation

We are working in the interaction representation where the free states have been
fixed in time (at t = 0 for convenience). The completeness relation for the KG
states can be written

Keolr) =3 {67030 - 600800} =180 )

k

(4.71
where 1 is a unit 2 x 2 matrix in the two-component space.

Proof: = We can use the orthogonality relations to show that this has the correct
properties. For any KG state ¢(r')

[ Kaorroe) = 6(0) (4.72)

where the minus sign in the second term compensates for the minus sign which
comes from the norm of a negative energy state. However, it is instructive to
prove (4.71) directly by construction. Substituting the solutions (4.47) directly
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into K., and remembering that ¢ is a column vector and ¢ is a row vector give
(letting Ex = E)

Ky o(rr') =Zei"'("") (E+m)®
KG )

k 4mFEL3
k2 _k3
) [ 1 11 el [ﬁiﬂ[m -1]
_k? -
(E+m)* 1

= ks (E+m)
k

4mFEL3
1 k2 k* k?
(E+m)? (E+m)? (E+m)?
X _k2 _k4 - _k2
(EFm)?  (E+m)? (E+m)? -1
1 der—ry | b 3 '
=) e =1860r-7) . |

Returning to the second order S-matrix and inserting a complete set of states
using (4.71) give the following expression for scattering from an initial positive
energy state with momentum k; to a final positive energy state with momentum

kfi
5(3’=—////damd%dtldtze(tz_tl)

X 5/57)(7"2)1{1(7"2, ta) Ky (r2,m1) Hi(ry,t1) 8l (1), (4.73)

where the integrals over the spatial coordinates have been written explicitly. In-
troducing the KG Coulomb matrix elements

i) k%) = [ @3 e (—f“) B2 (1) X FER
1
1 .
= s3ligeeFrFEn (4.79)
the S-matrix can be reduced to

1
s = _EZ//dtl dts 0(ts — t1)
k

x { é:lzflgjk)' ei(Er—Ex)ta+r(Ex—Eity _ flg!—lzflg:khei(E,+Ek)¢2—i(E,‘+E.-)z.

(4.75)
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Next, introduce T = $(t; + t3) and t = (2 — t1) to get

s = —% / dT e*(Br=EIT / dt 6(t)
k

-

(=)=
kpkJk kfkf

[ﬂ;ﬂwk]t} |

The integral over T gives an energy conserving é-function, and the S-matrix reduces
to the standard form

2 , 1
S}i) = ~i2n 6§ (Ey — E;) I3 f(i) ,

with the reduced amplitude f given by

(2) /dt() t)ZL3{ 15;2 (+)' e UEBk—Eit _ flgf_lzflg,—k)* ei[Ek+E,-]t} '

(4 76a)
Note that the negative energy states make a contribution to this sum, unless f{7) kik OF
fk ¢ = 0, which is not generally the case.”

This confirms our conclusions from Sec. 4.4; the negative energy states cannot
be ignored. Even if the initial and final states are restricted to positive energy, the
full solution to any problem will usually include virtual contributions from negative
energy intermediate states.

The next task is to give a physical interpretation to such contributions. At this
point the single particle K'G equation does not give a unique answer. First, observe

§ ( )“ Ek+E t

because the integral over t gives §( E + E;), which is always zero. Adding this term
to Eq. (4.76a) and noting that 8(t) + 8(—t) = 1 give an alternative equation for the
reduced amplitude

== f a5 {2 oy v

+ FA 6= t)ei{E”E"]‘} . (4.76b)

This equation gives the same mathematical result for the reduced amplitude f
but suggests a very different physical interpretation. Later, we will see that field

*Note that these (—) matrix elements are zero if energy is conserved but are not zero in second order
perturbation theory because the energy of the intermediate state is not the same as the energy of the initial
(or final) state.
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1
1 N\, 2
| 2nd term
| Ist term |
| (+) states I (—) states
B ty<t

2 i

Fig. 4.3 The left diagram illustrates the forward propagation of a positive energy intermediate
state, while the right is the backward propagation of a negative energy intermediate state. The right-
hand diagram is reinterpreted as the creation of a pair at time to, forward propagation of the antiparticle
to time t;, followed by annihilation of the antiparticle at time t;.

theory naturally gives us the interpretation suggested by (4.76b), and this is the
only picture which makes sense physically.

In the first of these two descriptions, Eq. (4.76a), both the negative energy and
positive energy states propagate forward in time. In the second, Eq. (4.76b), the
negative energy states propagate backward in time [because of the §(—t) function
which implies t; < t;]. The meaning of this strange statement is illustrated in
" ig. 4.3. The second figure shows that the requirement ¢3 < ¢; means that the line
joining t; and t; travels backward in time unless we turn the direction of motion
around and think of a particle—antiparticle pair being created at time {5 and then
annihilated at a later time t;. Thus the idea that negative energy states propagate
backward in time, while at first very strange, actually enables us to reinterpret
them as antiparticle states propagating forward in time. If the antiparticle states
are the charge conjugates of the negative energy states, so that they carry opposite
charge, opposite momentum, and have positive energy, then charge is conserved
in both descriptions. Reinterpreting the virtual negative energy contributions as
virtual antiparticle contributions shows how these contributions describe virtual
pair production. This is consistent with the results we obtained in Sec. 4.4.

In order to reduce the amplitude further, we prove an important identity which
will be used several times throughout this book:

o(t) Ene—tEt = /°° do (4.77)
T2mi ) o E—w-—ie’ '

In this identity the limit ¢ — 0 is implied.
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Proof: Look at the complex w plane. The integrand has only one pole at w =
E — ie in the lower half plane. If ¢ > 0, the contour must be closed in the lower
half plane, while if ¢ < 0, it must be closed in the upper half plane, in order that,
in either case, the exponential has a negative real part and the contribution from
the arc at co converges (to zero). Therefore, the integral is e Bt if t > 0 and 0
if £ < 0. This agrees with the LHS of the identity. |

Using this identity (with n = 0) for the first term in (4.76b), and using it

with t —» —t and w — —w in the second term, gives the following reduction of
(4.76b):

(+) p(+)=* (—)=*
(2) _ —/dtdw —uutZ fkfkf + fk/kf
I3 \Ey,-E;—w—ie Ei+FE, +w-—ie

(+) o(+)= (=)=
S I R LY

I3\ E.—F,—ie Ey+E;—ic (4.78)

Discussion
The main results of this last section are:

e We will define the matrix elements so that positive energy states propa-
gate forward in time, associated with 0(t; — t1), and negative energy states
propagate backward in time, associated with 8(t, —t2). This is the Feynman
prescription. There are two time-ordered diagrams, as shown in Fig. 4.3.

e By turning the negative energy line around and reinterpreting it as an
antiparticle propagating forward in time, we see how pair production, a muiti-
particle process, is described by the one-particle KG equation.

For this interpretation to be consistent with the conventional rules of quantum
mechanics, all incoming states with energy E must have the usual phase factor
e~*F* and outgoing states the complex conjugate phase e**Ft. Using E; = E;, it
is easy to demonstrate that this is indeed true for both of the terms in Eq. (4.76b):

Ist term e {Ex—E(tz=t1) _ oi(By—Ex)t2 g +i(Ex—Ei)ty

2nd term e Ext+Ei)(ti—ta) _ ,—i(E+Ei)ts gi(Ef+Ek)ts

Furthermore, the energy denominators given in Eq. (4.78) are consistent with the
rules of second order perturbation theory for positive energy intermediate states

(with one intermediate particle for the first term and three for the second, as
required by Fig. 4.3, and with a small negative imaginary part assigned to the
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energy of the intermediate state in cases when the denominator might be zero, as
discussed in Sec. 3.4):

1
Ek—Ei-—iC
1 _ 1
Ei+Ej+Ek—E¢—i€—Ei+Ek—-ic )

Ist term

2nd term

These same features will also arise in our study of the Dirac equation, which is the
subject of the next chapter.

PROBLEMS

4.1 Solve the manifestly covariant form of the Klein-Gordon equation for the
ground state of the hydrogen atom. Specifically, assume
ve=-2  v=o
T

and show that the ground state wave function can be written
W(r,t) =rce Pre bt

Find ¢, 8, and E. Then examine the nonrelativistic limit by projecting out
the ¢, and ¢_ components defined in Eq. (4.36). Interpret your results and
compare with the Schrodinger theory.

4.2 Calculate the fine structure splitting of the energy levels for a pion bound in an
atom with charge Ze. Draw an energy level diagram showing all the levels up to
n = 3. (You may use the nonrelativistic form of the Klein—-Gordon equation and
calculate the splitting in perturbation theory using suitably modified hydrogen
atom wave functions.) What are the Bohr radii of these orbits and what is v/c?
Estimate the probability that a pion in the S-state will be inside the nucleus.

4.3 Calculate the Zeeman splitting of the levels up to n = 3 for a pionic atom.

4.4 Suppose a pion is bound by a scalar potential of the form
Ulz) = V(r) = -V, 63(r) .

Solve the KG equation for the special case when the solution is static (i.e.,
independent of time). Discuss the significance of your result.
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A pion of mass p is bound by a scalar one-dimensional square well potential
V(z) defined to be:

region I R<zx V(z)=0

region II O<z <R V()= -1V

region III z<0 V(z) =00

(This could be a very rough model for a pion inside of a nucleus of radius R.)

(a) Solve the K GG equation (4.7) in one space dimension for the positive energy
ground state. (Take U(z) = V(z).)

(b) Find the value of R such that the positive energy ground state has energy
E() =y 1- ‘/0 / 2.

Estimate the size of the pion cloud.

(c) Find the positive and negative energy parts, as defined in Eq. (4.36), of the
solution found in part (a). Discuss your result and explain how the negative
energy part should be interpreted.

New two-component form for the KG equation. One of the features of the
two-component form introduced in Eq. (4.36) is that it does not completely
decouple positive and negative energy solutions, even if the potentials are zero.
In particular, for the free particle solutions

¢(+);£ (X> ¢(~)¢(O>
0 n

For conceptual purposes, it might be convenient to further diagonalize H so
that the non-diagonal terms come from interactions only. This can be done by
defining new components:

¢ _ ;1/2 Z_a- —V0+EV ’w
T2 ot

ESY? F)
b =%{—ia+V°+Ev}w ,

where Ey is defined by the power series given in Eq. (4.3). Show that:
(a) The conserved norm is identical to (4.40) with 7, the “metric tensor.”
(b) The equations assume the form (4.35) with the free Hamiltonian being

H0=T3EV .
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This completely diagonalizes the (%) states for free particles.
(c) The charge conjugation operation and nonrelativistic limits are as before.

(d) The “old” form can be transformed into the “new” form using the fol-
lowing transformation:

U 1 Eg+m —(m - Ev)
~ VimEy (-(m—Ev) Eg +m )

In particular, show that this transformation preserves the norm by proving

that
UTTgU =T3 .

Also, using the explicit forms (4.47), show that

1
(+) _ 1 —ik-z
YT TG (o) e

0
(=) _ 1 +ik-x
Vo = VI3 (1) ‘ .

Hence U transforms ¢(*) into states with only an upper (or lower) component.
Finally, show by direct computation that

U iZ2-Voi+m . i2 -VO+ Ey
vam h vam v

~ig + Vo4 m -2 +V+ Ey

which shows explicitly that U transforms the “old” two-component form into
the “new” two-component form.
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CHAPTER 5

THE DIRAC EQUATION

In this chapter we continue the discussion of relativistic equations for the first
quantization of particles. The Klein—Gordon equation introduced in the last chapter
describes spin zero particles. In this chapter we discuss the Dirac equation [Di 28],
which describes particles with the two internal degrees of freedom characteristic
of a spin % particle. Since both electrons and quarks have spin % the Dirac
equation has many interesting applications, and some of these will be developed

in the next chapter.

5.1 THE EQUATION

1s discussed in Sec. 4.5, the two-component form of the K'G equation could be
written

8
iz =Hy . (5.1)

While this equation is first order in the time derivative, the KG Hamiltonian
(4.38) is second order in the space derivatives and hence does not treat space and
time in an equivalent fashion. Furthermore, because the conserved norm for the
KG theory was not positive definite, the two-component KG “Hamiltonian™ is
not Hermitian. Finally, the covariance of the K'G equation is only manifest in its
original, one-component form. It is natural to ask: “Is there a relativistic equation
which is first order in time, treats space and time in a manifestly symmetric
fashion, has a positive definite conserved norm (implying that H is Hermitian),
and is manifestly covariant?” The investigation of this question leads directly to
the Dirac equation.

To answer this question, we look for an equation which is first order in both
space and time and which is Hermitian. The equation must have the form

ig—tw=H¢=(a'p+ﬂm)w , (5.2)

119
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where o and (3 are Hermitian matrices and p = —iV. The relativistic energy
momentum relation should emerge naturally, so we require

2
E*y = &

.0
atzw——-z—a—z(a-p—i-ﬁm)w

= (ap+Bm)iG = (@-p+ fm) v

Demanding that this relation hold for all i gives

(cup® + Bm)2 = 6°m? + (a;)? (pi)2 +{B,a;} mp’
1
+3 {ai, 05}, 0P
= Z (p’)2 +m? (5.4)

where {A, B} = AB + BA is the anticommutator of two operators A and B.
This equation can hold only if

A= ()’ =1
{8,a:} = {ai,e;} =0 .

To construct such an equation therefore requires a vector space large enough to
contain four anticommuting, Hermitian matrices.

It is easy to prove that such a space must have a minimum of four dimensions
and that therefore the matrices «; and  must be at least 4 x 4. The proof follows
in four steps:

(5.5)

Lemma 1: The matrices 8 and «; are traceless.
To prove this for the matrices «;, note that the anticommutation relations imply

Ba;,f=—a; .

Making use of the fact that the trace of a product of matrices is unchanged by
cyclic permutation of the matrices gives

tr {Ba;B} = —trey
tr {a;88} = tra, .

Hence tra; = 0. A similar argument shows that tr 3 = 0.

Lemma 2: The eigenvalues of o; and 3 must be £1.
Since «; and @ are Hermitian, they can be diagonalized, and because (ai)2 =
(3% = 1, their diagonal elements (eigenvalues) can only be +1.

Lemma 3: The dimension of the matrices must be even.
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In diagonal form the diagonal elements of o; and 8 can be only +1, and because
tr (a;) = tr 8 = 0, all of these matrices must have the same number of +1°s as
—1’s. Hence the dimension can only be even.

Lemma 4:  The number of dimensions must be greater than 2.

In general, in n dimensions there are n? independent Hermitian matrices; sub-
tracting the identity there are n2 — 1 Hermitian traceless matrices. Hence there
are only three for n = 2 (which can be taken to be the Pauli matrices, o;), but for
n = 4 there are fifteen, more than enough.

We will choose the following representation for the four Dirac matrices:

1 0 0 ag;
B = ( ) a; = < ) , (5.6)
0 -1 ag; 0

where the matrices are written in 2 X 2 block form and o; are the Pauli matrices.
Hence the free particle Dirac equation becomes

1%% = (~ia; Vi + fm)y . (5.7)

Alternatively, the equation may be written in terms of the ~# matrices, defined
by
’Y# = (67 ﬂai)

o (1 0 . (0 o (5.8)
L T e, 0 )

V.xpressed in terms of the v matrices, the anticommutatinn relations (5.5) become

{v*7"} = 2¢" (5.9)

and multiplying the Dirac equation by § permits us to write it in the following
form (recall V; = 8/8z%):

o covariant
(Z’Y Ox# m) ¥=0 Dirac equation. (5.10)

Electromagnetic interactions may be added to the Dirac equation by using
the minimal substitution p* — p* — e A*. This gives

15% = Hy = [ (—iVi — eA®) + eA® + fm] v (5.11)

or, in covariant form,

[7# (ia—i; - eAu> - m] Y=0 . (5.12)
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We will use the non-covariant form of the Dirac equation in the next few sections
and will return to the covariant form in Sec. 5.9 when we discuss the covariance
of the equation.

5.2 CONSERVED NORM

The conserved norm is easily obtained from the equations. Note that, for any two
solutions of the Dirac equation,

¥} i%wb = YL H,
5 (5.13)
(45;1;);) ¥y = (Ha) 9

Hence, if the electromagnetic interaction (or any other potential) is independent of
energy, it will cancel when we subtract the above two equations, and subtracting
the first from the second gives

o — —
z'-(,% (wiwe) = =i} [Vz‘ + Vz} Uy

where the arrow over the derivative tells us in which direction in acts, just as in
Sec. 4.2. Hence the two terms on the right-hand side become a perfect divergence
and

4]
ie (wive) +iV; (¥] catr) =0 .

As in the K G case, we have a four-current which is conserved. The conservation
law can be written

)
v (i) =0 . (5.14)

If we integrate this equation over all space and use the periodic boundary condi-
tions to eliminate the spatial part, just as we did in our discussion of Eq. (4.13),
we find that the following quantity is a constant of the motion:

/dsr Yl = constant . (5.15)

Note that this expression is positive definite if a = b, and hence the states can be
normalized as follows:

/ EBrply, =1 . (5.16)

This norm is a constant of the motion, and the Dirac equation has no states with
negative norm. This was first believed to be a great advantage of the Dirac
equation, but as we will soon see, the Dirac equation suffers from the same
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problem as the K'G equation; it has negative energy solutions which are difficult
to interpret physically.

5.3 SOLUTIONS FOR FREE PARTICLES

As in the KG theory, we will show that the solutions of the free particle Dirac
equation have the general form

. X
w,‘,*)(r,t)=N,,e"Pn"*Ev”( ) , (5.17)
n

where the (%) superscript designates the positive {+) or negative (—) energy
solutions. We use periodic boundary conditions as before, so that

2
Pn= fﬂ(nxany’nz) ng =0,x1,£2,... (5.18)

and E, > 0 always. For simplicity, the subscript n will be frequently ignored, so
that p,, — p, and the magnitude of p will be denoted by p.*

Consider the positive energy solutions first. Substituting the ansatz (5.17)
into the free particle Dirac equation gives

X . m —io -V X .
E, e P = e T |
n —io -V —-m n

Exx=mx+o-pn
En=c-px—-mn .

Hence

(5.19)

In order for these equations to have a non-zero solution, the determinant of the
matrix of coefficients must be zero. Using (o - p)% = p? the requirement that the
determinant be zero gives the correct energy—-momentum relation

El=p"+m® .

Then, using the second equation to express 7 in terms of x gives

n= (EZ!m) X . (5.20)

*The symbol p will be used to denote either the four-vector or the magnitude of the three-vector. They

can be distinguished from each other by the context in which they are used.
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This gives the positive energy solution in terms of an arbitrary two-component

spinor x. Choosing x'x = 1 and normalizing the states to unity determines the
normalization constant N,:

/ d*rytyp =1=N2L% ’f{1+
L3

T }
=N2L%|1 N2L 3 ” . 5.21
N2L [ t e Tml =Nl (5.21)
The normalization constant is therefore
E,+m
e 211’2,,L3 (5.22)

It is customary to write the positive energy solution (5.17) in terms of the
positive energy Dirac spinor, u(p, s), which is defined to be

u(p,s) =Ep+m o-p x® (5.23)

where x(*) is a two-component spinor describing the states of a spin 1 particle.
If we choose to quantize the spin in the 3-direction, the spinors x{*) will be

eigenvectors of o3
4= (1 S
X (O) x' 72 (1) . (5.24)

Finally, the normalized positive energy solutions of the free particle Dirac equation
are

i (z) = (5.25)

u(p,s) e P* .
\/2E V2E, L3 p,s) €
Now find the negative energy solutions. In this case the ansatz (5.17) reduces
the coupled Dirac equations to
-E,x=mx+o-
pX X PN (5.26)
pll=0 PX—mn .

As in the positive energy case, the condition E? = p? + m? insures that the
determinant of the matrix coefficients of (5.26) is zero, so that a non-zero solution
exists. Solving for x in terms of 7 gives

[ P
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We choose nfn = 1, and normalize the state to unity, as before. This gives the
same result (5.22) for the normalization constant N,,. For reasons which will be
apparent in the next section, we choose phases (signs) such that

7™ = —igax(®

-3 = <+i)=< 0)
n 102X +1

-1
,,(+§)=_wzx(—§)=( o) ,

(5.28)

where g3 is the Pauli matrix. Note that this phase convention differs from Bjorken
and Drell (1964), who choose 7(}) = (3)- If we introduce the negative energy
Dirac spinor, v(p, 8),

o-p
E,+

vp,s)=vE,+m| P [—iagx(")] , (5.29)

1

the normalized negative energy solutions become

(5.30)

1/)—p, () mv(p ) ki

Note that the negative energy solution for momentum —p and spin —s is expressed
in terms of the v spinor with momentum p and spin s. This is in accordance with
the hole theory interpretation to be discussed soon. Note that the (+) and {-)
solutions are orthogonal because of the orthogonality of the positive and negative
energy spinors:

vl (—p, s )u(p,s) = ul(p, s)v(—p,s’) =0 . (5.31)

Comparison with the Two-Component KG Solutions

It is instructive to compare these solutions with the two-component K'G solutions
given in Eq. (4.47). The comparison is presented in Table 5.1.

The principal difference is that the Dirac theory has an extra two-component
structure (located in the two-spinors x()), which is identified with the internal
degrees of freedom possessed by a spin % particle. Otherwise, the structure of the
positive and negative energy solutions in the two cases is similar. In both cases the
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Table 5.1 Comparison of Dirac and KG solutions.
Dirac  fy(z)= %ﬁ;e—sp.: KG gk(z)zﬁ-ﬁe-u.z
i 1 1
positive N * )y
energy Ypra (T)=fp(x) o X ¢, (z)=gk(x) e
—LE,,+m Ertmy?
norm = 1 norm = 1
. op —k2
MEBAVE | ) (o)=tp@| T 10 | 6D (@)=goe(@) | T
energy —p, s\ E)F] T ] n & \T)=9k )
norm = 1} norm = —1

lower component(s) of the positive energy solutions is (are) smaller than the larger
Jpper component(s), and conversely for the negative energy solutions. In the
Dirac theory this suppression of the small components depends on spin (through
the appearance of the Pauli spin matrices) and is proportional to the magnitude
of p/(Ep + m), while in the KG theory the suppression goes as the square of a
similar factor and is therefore greater. This leads us to expect (correctly) that the
relativistic corrections are spin dependent and larger in the Dirac theory than they
were found to be in the K G theory. This will be studied in detail in Sec. 5.7.

5.4 CHARGE CONJUGATION

As in the K G theory there exists a charge conjugation operation which maps the
negative energy states into positive energy states.
Consider the following operation on the states:

Y=Y =CHyY"

0 —iUz
C= —iaz =
—iO’g 0

(5.32)
where

(5.33)
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Note that C? = —1 and that, because «; is the only imaginary Dirac matrix,
cdC! = —d* (5.34)

where d represents any of the Dirac matrices 3 or «;. The operation of C on the
covariant v* matrices is

CAHC7 = —4#T | (5.35)

Taking the complex conjugate of the Dirac equation (5.11), multiplying from the
left by Cf3, and using the relation (5.34) give the equation for 1)<

ozt
= la; |i=— —eA' ) + eA” — Bm| Y°
ort

_i%z/zc =CB [a: (i_a_ _ eAi) +eA® + ﬂm] v

Hence

ozt

and the charge conjugate amplitude satisfies a Dirac equation with opposite charge
from the equation satisfied by 4. Furthermore, the state 1){~) ¢ has positive energy.
To see this, note that

z% < = [ai (—z-a— + eAi> —eA® + ﬁm] PC (5.36)

0 —i0'2 EU_.T*-%
CBv*(p,s) = E,+m ? (—iaz)x(s)
—’i0'2 0 -1
1
=E,+m . x® = u(p,s) (5.37)
A
because o20*0; = —o. This simple relation is possible only because of the

phase convention introduced in Eq. (5.28) for the two-component spinor 1 which
enters into the definition of v. A similar relation holds for the u spinors; the two
relations are

Cpv*(p,s) = u(p, s)

CBu*(p,s) =v(p,s) . (5.38)

Using this result we find
CBYS)  (z) = wgi (@) (5.39)

which shows that ()¢ describes a positive energy particle with identical mass
and spin but opposite charge. We identify (=) ¢ with the physical positive energy
state corresponding to ¥(7). It is an antiparticle. To summarize,
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,f,?;)(:c): is the wave function for a particle with positive energy, mo-
mentum p, and spin projection s.

w(_;?_s(z): is the wave function for a negative energy state with momen-
tum —p and spin projection —s, which is interpreted as an
antiparticle state with positive energy, momentumn p, and spin
projection s.

In our study of the K'G equation in Chapter 4, we also interpreted negative
energy states as antiparticles. However, the way in which this interpretation is
developed is significantly different for the two equations. First, KG particles (spin
zero) obey Bose-Einstein statistics, and there is no limit to the number of negative
energy particles which can occupy any negative energy state. Any positive energy
KG state is therefore intrinsically unstable; there is no way to prevent it from
decaying eventually to a negative energy state. On the other hand, Dirac particles
(spin %) obey Fermi-Dirac statistics (which will be shown in Chapter 7). This
means that no more than one particle can occupy any one state (the Pauli exclusion
principle). If the physical vacuum is assumed to be the state in which all negative
energy states are filled, a single positive energy state will be stable, since decay
to negative energy states will be Pauli blocked by the filled negative energy sea,
and we are able to “explain” why the lowest energy of a single particle is m
(and not —oo as might be expected if the negative energy states were not already
occupied). Furthermore, since the energy of the ground state can always be chosen
to be zero [by choosing the appropriate constant Eq in Eq. (3.19)], this picture of
the vacuum is physically sensible. In this picture, referred to as hole theory, an
antiparticle is interpreted as a “hole” in the vacuum, i.e., as the absence of one of
the particles from the otherwise filled negative energy sea. Being the absence of
a negative energy state, the antiparticle has positive energy.

These ideas are illustrated in Fig. 5.1. In Fig. 5.1A the vacuum has no
particles, so a single particle with energy —E < —m, momentum —p, and spin
projection —s can exist. In Fig. 5.1B the vacuum is assumed to be filled with
negative energy states. The absence of a single negative energy state with quantum
numbers —F < —m, —p, and —s then appears as a hole in this vacuum. Since
the vacuum values for these quantum numbers must be zero (by definition), the
hole therefore behaves just like a particle with energy 0 — (— F) = E, momentum
0 — (—p) = p. and spin projection 0 — (—s) = s, or a positive energy antiparticle
with energy £ > m, momentum p, and spin projection s. Thus hole theory
provides a physical picture of how negative energy and antiparticle states are
related. Mathematically, this relation is expressed through the charge conjugation
transformation.

Hole theory played an important role in the development of relativistic quan-
tum mechanics but is superseded by modern field theory. We no longer think of
the vacuum as filled with negative energy particles. In Chapter 7 we will see
that a quantum field is equally well suited to the description of either spin zero
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[}
m m
2 hole in a filled negative
____________ 0 E 0 = - — — — . cnergy sea
negative energy stat ? iy 5
Tgy stalc O0-(-E)=E>m
/ =
[ ] -E<-m
(A) (B)

Fig. 5.1 In the model shown in (A), the vacuum is empty and a single negative energy state
has energy —E. In (B), the vacuum is the state in which the negative energy sea is filled, and an
antiparticle is interpreted as a hole in this sea.

particles (which do not satisfy an exclusion principle) or spin % particles. In

either case both particle and antiparticle degrees of freedom have positive energy.
However, hole theory still gives us a useful physical picture of the connection
between physical antiparticles and the negative energy states which emerge from
a one-body relativistic wave equation.

5.5 COULOMB SCATTERING

To illustrate the use of Dirac wave functions and the Dirac formalism, we calculate
the lowest order scattering of a Dirac particle by a Coulomb potential. The method
is identical to our treatment of Coulomb scattering by a spinless particle, given in
Sec. 4.7. The EM potential is assumed to be

A=0 eA’ = — |
and the S-matrix is given by (4.62);
Spe==i [ at (F1EO1)

except that now |i) and |f) are initial and final Dirac free particle states at ¢t =0
and Hy and Hj are '
Hy = aip' + fm

Za (1 (5.40)
H’=U°17a< 1)U0
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with Uy = e~*Hot as in Eq. (4.64). Hence
Sp = —i/dtdar YN HippH ()
. d3r 1 . Za
=—1 [ dt z(Ef—E.)t/____ ip,—p)r [ 22
1/ e I3 \JiB, B, « r

x u! (pf,sf) u(p;, s:) - {5.41)

The reduced matrix element fy; now becomes

_4nZa

fri p

[% ul (pf,sf) u(pi,si)] , (5.42)

where ¢> = (p, — p f)2 as before. Note that the only difference between (5.42)
and the KG result (4.68) is the factorin [ ].

The reduced amplitude fr; now depends on the polarization of the initial and
final particles. We will calculate the unpolarized cross section, which will require
us to average over initial spins (incoming particles are equally likely to have spin
up as spin down) and sum over final spins.

Part of the calculation of the unpolarized cross section requires the calculation
of the following double sum. In evaluating this sum, we use the fact that Ey =
E; = E, and hence p} = p? = p?, to yield '

3 3wt pys) upasi)

8f,8;

- % Z ut (psisp) ulpysi) ot @i s:)u(pyysy)

87,81

1 (v #%)
15 @
81,84
op.
y (1 E+m) ( )X(s’)
opy
E+m

1 2 o-pfo-p; o pio-p
==(E+m t(sys) [1 + f 1 1 i f (s¢)
g (E+m) ;X E+me| | T Ermz X

=%(E+m)2tr{(1+%§af%;—;> (Hﬁ%)}

Now use

(8i) 1(s0)
ap, ) XX
E+m

tr (UiO']') = 251']'

(@2 =1* (549
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to get

1 2p ‘P 4
53 1o prsp) ulpss)| = (B+m) [1 + (Eim)2 * (Efm)“}

8§84

This is further reduced by using p P = p? cos 6, where 4 is the scattering angle

Il

2P, 4
(E +m)? [l+ PP _ P J 2 [2m® + p* + p® cosb]

(E+m)?2  (E+m)#

=4 [E2 — p?sin? g} . (5.44)
Hence, finally
lZ[uT(p s5) u(p; s-)|2=4E2 l—p—zsinzg (5.45)
2 fes po E? 2] '

fris:

The 4E? factor in front is canceled by the (1/2E)? factor in |fy;|2. The final
steps are the same as for the K G case, Sec. 4.7, giving

do 2ZaE\? L8
d_Q=(—--q2 > [1-—vzsm2 -2—] R (5-46)

vhere v? = p?/E?, This famous result is the Mot cross section for the scattering
of a spin % particle. Comparing it with the K G result, Eq. (4.68), we see that it
differs by the factor

[1 — v?sin? g] . (5.47)

For large energy, v ~ 1, and the cross section goes to zero in the backward direc-
tion. (See Fig. 5.2.) This difference in the backward direction is due to magnetic
scattering: the interaction of the magnetic moment of the electron (associated with
its spin) with the magnetic field it sees when moving toward the fixed Coulomb
field.

5.6 NEGATIVE ENERGY STATES

In this section, the role of negative energy states in the Dirac theory is examined.
We will treat second order Coulomb scattering as an example, so the discussion
will parallel the development given in Sec. 4.7, where the contribution of nega-
tive energy states to second order Coulomb scattering of spinless (K G) particles
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0.5 T

04

03
do
aQ 02 +

spin 172
0.1
0 J
0 45 90 135 180

scattering angle 6

Fig. 5.2 The Coulomb scattering cross section in arbitrary units. The solid line is the cross
section for a spin zero particle, and the dashed line is Eq. (5.46) for a spin 4 particle. Note that both
cross sections peak strongly in the forward direction but that there is an additional suppression in the
backward direction for the spin } particle.

vas studied. As the results for the Dirac theory are very similar, the discussion
here will emphasize the similarities and differences.

Completeness Relation

Recall that the evaluation of the second order matrix element for the S-matrix
required the completeness relation. For the two-component K'G theory, the needed

relation was given in Eq. (4.71). The corresponding relation for the Dirac equation
is

Kp(r,ry =3 {w,‘,,t’ Py + wi,,;’(r)w;,;”(r’)} =18%(r—r') .
P8
(5.48)
Note that a plus sign stands in front of the negative energy sum; the KG complete-
ness relation, Eq. (4.71), had a minus sign. This difference is due to the different
normalization condition satisfied by the positive and negative energy states in the
Dirac and KG theories.

Proof:  The general proof of (5.48) is identical to the general proof of Eq.
{4.71). Even the proof by construction is similar, except that now the matrix is
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4 x 4 instead of 2 x 2. We have
Kp(r,r')
= 55 X a5 O {1l p,9) + o(p—' (-p. o)}
.o

g (i) )1 #[ )

Ey+m 1
1 Ze_ _p__ _—op
_ Z elp (r—r') (E +m> Eptm n (Ep+m) E,+m
2E, L3 op p? —op
Ep+m  (Ep+m) E,+m 1

0

1 ip-(r-r’) 1 3 ’
= —_ =168(r—r . .
S5 N R

Now, the Dirac matrix elements of the Coulomb interaction term can be
written

Za
eeing) = [ @il o) (22) uieh, o eereeo

— _f,(‘f) e ErFEn )t

(5.49)

where 7 is a shorthand notation for the quantum numbers {p,,, s, } and the reduced
‘natrix elements f}:) were given in the preceding section [see Eq. (5.42)]. We

have not calculated the reduced matrix element f};), but it could be evaluated
from (5.49). All we need to know now is that it is in general not zero. In terms of
these reduced matrix elements, the second order S-matrix element for Coulomb
scattering can be written

Sf7 = —i2n (B; - E:) 75 L
where

(2) _ (+) (+)= —i(Ep—Ei)t
fi /dt L3 P!P P-P 0(t) nee

— SR 8=t BRI
(+) (+)*

(—)=

1 pspJpip fpfpfp‘p
— — . .50
ZLC*{E——E-—ze E,+ E; —ie (5.50)

The derivation of these results for the Dirac theory is identical to that for the KG
theory [review the arguments which led from Eq. (4.73) to Eq. (4.78)]. Each of
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these two expressions for f () differs from its KG counterpart [which is (4.76b)
for the first and (4.78) for the second] only in the sign of the negative energy
term. And here, as in the KG theory, the propagation of the negative energy
states backward in time is interpreted as the propagation of the corresponding
antiparticle states forward in time (recall Fig. 4.3).

The difference in sign of the negative energy contributions to the KG and
Dirac expressions for f(2) will appear again in field theory. In that discussion the
sign difference will come from the fact that Dirac particles satisfy Fermi-Dirac
statistics (i.e., their field operators anticommute) and that when the time ordering
of the interactions is changed, as it is for the negative energy states, there is an
extra minus sign for fermions.

5.7 NONRELATIVISTIC LIMIT

We now investigate the non-relativistic limit of the Dirac equation. As we did for
the Klein—-Gordon equation, we will work out the expansion to order (v/c)? ~
(p/m)?x leading terms. In making our estimates, we assume all potentials V°
and V to be of the same order as the kinetic energy term (justified by the virial
theorem). Since all of these leading terms are of order p?/m, we want all terms
up to order p*/m3.

Assume a positive energy solution of the form

Y(rt) = (X(TD e Bt (5.51)

n(r

where E = m + T. Then, using the Dirac equation, the coupled equations for
x(r) and n(r) become

Tx=Vx+o-p-V)y

o (5.52)
2m+Tp=Vn+o-p—-V)x .
In the non-relativistic limit, T, |p|, and all components of |V#| = |eA*| are
assumed to be very much smaller than m. Hence, the second of the two equations
(5.52) shows that the lower components of the Dirac spinor are very much smaller
than the upper components, and therefore the equations are solved approximately
by eliminating the lower components, as we did for the KG equation. However,
if we proceed directly by solving the lower equation for n and substituting the
solution into the equation for y, we obtain

Tx={V°+a'-(p~V) (W) cr-(p—V)}x : (5.53)

Since T is of the same order as V', which is ~ p?/m, it is necessary to expand
the denominator of the second term if we want to collect all terms of order p*/m3.
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This expansion gives
1
Tx :{VO + %a-(p -V)io-(p-V)
1
- WU'(F—V)(T—VO)U'@—V)}X . (554)

Note the presence of the energy T in the last term on the right-hand side. This
means that the effective Hamiltonian defined by Eq. (5.54) is dependent on the
energy, and an energy-dependent Hamiltonian leads to many complications which
should be avoided, if possible. The explicit dependence on the energy should
be eliminated. Since the T" dependence occurs only in the highest order term, it
might seem that it could be removed by replacing it by an estimate obtained from
the solution of the lower order equation, i.e.,

1
T:V°+%a~(p—V)a-(p—V) .

However, this method will not give a unique answer because T is a number and
commutes with o - (p — V), while V', part of the above estimate for T, does not.
It is better to attack the problem from a different direction.

A better method, known as the Foldy-Wouthuysen (FW) transformation
[FW 50], is to transform the equations to a new form in which the off-diagonal
elements of the Hamiltonian are so small that the leading order estimate of the
lower components (which does not depend on the energy T') is sufficient to get
the effective Hamiltonian to the desired order of accuracy. For example, in this
problem where we want the Hamiltonian to order p*/m3, it would be sufficient
to reduce the off-diagonal elements to order p?/m. If they were that small, the
leading contribution from the lower components would be of order p?/m?, and
their contribution to the equation for x would therefore be of order p*/m?3, suffi-
cient for our purposes. In the K'G case treated in the last chapter, the off-diagonal
elements were initially that small, so we were able to get the desired result im-
mediately. Here, the off-diagonal elements of the Dirac equation are of (larger)
order p, so the simplest approach did not work.

To prepare for the application of the FW transformation, return to the matrix
equations (5.52), and write them in terms of Dirac matrices

T(X>=(—m+V°+a.(p-V)+mﬁ)<X)=H<X> . (5.55)
n n n

The off-diagonal terms are those involving the Dirac matrices o, and they are
large (of order m®). We want to transform the equation so that they are of order
m~1. Then, when the equation is solved, T will not enter into the m~3 term.
The equation will be transformed using a general unitary transformation con-
structed from the Dirac matrices. Since the large off-diagonal terms we wish to
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reduce depend on « - p, it is sufficient to use a transformation of the form

2,2
U=U*=Aﬂ+%a.p PR O

— (5.56)

where A is a parameter which will be chosen later. Using the anticommutation
relations satisfied by the Dirac matrices, it is easy to see that

vut=Uv =1 (5.57)

for any A. The fact that U is unitary means that the transformed wave function

(*)-o(*) -
7 7

has the same norm. Transforming Eq. (5.55) gives

/ / 1]
X X
T<X1>=UHU_1( I):H’( /) , (5.59)
Ui Ui Ui
where the individual contributions to the Hamiltonian (5.55) become
U(-m)U™! = —m
0yr—1 0 A 0 0 2\’ 0
UveU-! = AV A+ﬁE(AV a-p—a-pVPA)+ — a.pVla-p
Ua-p-VU l'=-Aa-(p-V)A
A
+ﬁﬁ [Aa-p-V)a-pt+a-pa-(p- V)A]

A 2
+ (E) a-pa-(p-Via-p (5.60)
2
UmpBU™! =mﬂA2+2/\Aa-p——ﬁ)\2% :

The off-diagonal terms are those proportional to an odd power of «, and they
need only be calculated to order m~'. Noting that A can be expanded,

N )‘2p2
A=1-— (5.61)
we see that the only off-diagonal terms which survive come from the first term
on the RHS of the third of Egs. (5.60) and the second term on the RHS of the

fourth of Eqs. (5.60) and that A ~ 1 is sufficient to get all of the O (m™!) terms,
giving

1
éff—diag = _a'(P - V) + 2/\01’ + O (m) . (562)
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Hence, choosing A = 1 gives

off—diag TV, (5.63)
which is O (m~!) by assumption.
With these approximations, the coupled equations (5.52) become

T I= HI I+av !

VAT (5.64)

Ty = VY -2mn ,

where only the largest (leading) terms have been retained in every element but

Hj,, which is yet to be reduced. We may now neglect 7'’ in the second equation,
giving

Ty = (H{l + ————”'V”'V) /

AW (5.65)
om )X TA\PuT g )X :

Note that the V2/2m term is O (m~3).

The remaining task is to reduce H{, using A = % Noting that the large
terms proportional to m occur in the combination (-1 + 8), which makes no
contribution to the H{, matrix element, we have, to O (m™3),

2 2 . VOO..p
1o y0 p yo _yo P ap
1 8m?2 v 8m? + 4m?

+§%(a-(p—V)a-p+cr-pa'-(p—V))—-———— o (5.66)

where the first three terms on the RHS are the expansion of A VO A, the first two
in the second line are the expansion of the contributions from Ua-(p — V)U !,
and the last is the combined contribution from UmBU ~!. To further reduce these
terms we will use the identity

005 = ;5 + t€;jk0k . (5.67)
Using this identity gives

(o-(p—V)op+topo-(p-V))
=2’ -opoV-oVeop
=202 —p-V-V.p—ioc-(pxV)—ic (Vxp)
=p-V)2+p*-Vi-0.[VxV|
=p-V)Y?+p*-V?-eoc-B , (5.68)

where the use of square brackets will mean that p or V operates only within the
brackets. Note the new term describing a magnetic moment interaction, which
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was obtained by replacing V by the vector potential eA and using B = V x A.
Next, reduce the second through fourth terms in (5.66):
pzvo + VO 2 _ [p2 VO] 42 [pvo:| p+ 2V0p2
opVlop=c-[pV°]op+Vop? (5.69)
=[pV° -p+ioc-([pV°] xp) +V°p® .

Thus, in the combination which occurs in Hj, the Vop® and [pV?] - p terms
cancel:

opVoop _ P2 VO . io- ([pV°] xp)

1 21,0 0,2
(p Vit Ve ) + 4m? 8m? 4m?

 8m? ’
(5.70)
Finally, replacing p = —iV, V = eA, V0 = e¢ = ed(r) gives
V2 (p—eA) e pt  e[Vi] e
4 — T —— — — . — . .
ntan 2m ted om° B 8m3 | 8m2 +4m2 o-([Vel xp)
(5.71)
Assuming that the potential is spherically symmetric, so that ¢ = ¢(r) where 7

is the radial coordinate, leads to V¢ = (r/r)d¢/dr, giving finally the effective
Hamiltonian

(p—eA)? Pt e e[V3¢] e do
Hert = 2m ted- 8m3 —_2—7—56'8+ 8m? 4m2r$a‘L’

(5.72)

where L is the orbital angular momentum operator.

We assume that the reader is familiar with the effective Hamiltonian (5.72)
from previous studies, and we will only give a very brief review of these results.”
Historically, this effective Hamiltonian was obtained well before Dirac discovered
his equation, so that the derivation of the result from the Dirac equation can be
regarded as a great success and a grand confirmation that the Dirac equation does
indeed give the correct description of the interactions of a spin % particle with an
EM field. Each of the terms in (5.72) was originally derived independently, but
using the Dirac equation all of them emerge automatically.

In addition to the —p*/8m> term found for the KG equation, there are
three new corrections connected with the spin of the electron. These give new
contributions to the fine structure and Zeeman effect.

Fine Structure (Dirac)
The fine structure now comes from three terms in Eq. (5.72). These are
4

. _—Sl)n? relativistic mass increase (also from K'G theory)

*For an introductory discussion of these topics see, for example, Gottfried (1966) or Sakurai (1985).
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e
8m?
Because of the §3(r), this term is non-zero for S-states only. Physically, it comes
from quantum fluctuations in the position of the electron, referred to as Zitterbewe-
gung (jittering motion), which make the electron sensitive to the average potential
in the vicinity of its average position. The average of the potential is proportional
to V2¢ ~ 63(r), and this accounts for the general structure of the Darwin term.
1d
1—7‘;—2-;d—fa-L=ﬁ(% Z—f)S-L spin orbit term

where § = o /2 is the electron spin operator. This term is due to the interaction of
the electron’s magnetic moment with the magnetic field it sees due to its motion
and automatically includes the Thomas precession, which reduces the result naively
expected by a factor of 2. It is zero in S-states, because L = 0.

The Darwin term contributes only to L = 0 states, and the spin orbit term
only to states where L # 0, but when both corrections are taken into account,
the spin orbit splitting is given by a single formula which depends only on the
principal quantum number and the total angular momentum j of the state,

V2= _Zé* 4 .
[ ¢ = —WV -E = Wé (7‘) Darwin term

_ (Za)? (Za)*[ n 3
T=-m oz~ Mo 7+l 7d) (5.73)

The first term is the familiar nonrelativistic result, and the second is the fine
structure, which splits states with the same n but different j. In the next chapter
we will show that the exact solutions of the Dirac equation also predict levels
which depend on n and j only. This gives a good account of the main features of
the hydrogen atom spectrum, but the additional L-dependent Lamb shift can only
be explained by field theory, as we discussed in Chapter 3.

Zeeman Effect (Dirac)

The full Zeeman effect comes from two terms. The orbital part is the same as
the result obtained from the K'G equation and was calculated in Eq. (4.60). The
result is e e
—~—{(p-A+A.-p)=——B-L .
2m p-A+A-p) 2m

Combining this with the spin part, —eB - &/2m, gives

€ [
HZeeman=_%B'(L+U)=—%—B'(L+2S) . (574)

Note the factor of 2 for the electron’s intrinsic gyromagnetic ratio. This factor has
no classical explanation but was discovered empirically before the Dirac equation
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was discovered. Its automatic appearance in the Dirac theory is one of its major
successes and provides the only “explanation” for this effect that we have.

5.8 THE LORENTZ GROUP

The Dirac space is four-dimensional but is otherwise an abstract space unrelated
to physical space—time. To discuss the Lorentz transformation (LT) of a Dirac
wave function, the Dirac equation, or a Dirac matrix element requires that we first
construct a representation of each Lorentz transformation on the Dirac space and
then show that the wave functions and matrix elements transform in such a way
that the Dirac equation is invariant in form and the matrix elements transform as
scalars, four-vectors, or tensors, depending on their structure. In this section the
properties of the Lorentz group will be reviewed, and in the next two sections the
representation of the Lorentz group on the Dirac space will be worked out and
the construction and transformation of Dirac matrix elements will be discussed.

In Sec. 2.1 we discussed how Lorentz transformations change the space—time
coordinates. Any transformation which leaves the metric tensor invariant is, by
definition, a LT. In the matrix notation, Eq. (2.8), this was written

ATGA =G .
The set of all transformations which satisfy this constraint form a group, which

is called the homogeneous Lorentz group. The four group properties are easily
demonstrated:

e If A, and A, are members of the group, then A;As is also, because
AJAJGA A2 = AJGA, =G
o The muitiplication law (matrix multiplication in this case) is associative:
(A1A2) Az = Ay (AgA3)

o There exists an identity A = 1 which is a Lorentz transformation.
e For each A, there exists an inverse A~! because

ATGA =G = (detA)? =1 (5.75)

and hence det A = +1, and since it is not zero, A~! exists. Multiplying
Eq. (2.8) by (AT) ™" from the left and A~ from the right gives

G= (A1) GA™?

showing that A~! is a Lorentz transformation.
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The physical Lorentz transformations are real (because they map a real space
onto a real space) but complex LT’s are very important to the proof of the PCT
theorem (see Chapter 8).

The real transformations can be separated into four classes. First, from Eq.
(5.75), they may be separated according to whether or not their determinant is
+1 (proper transformations) or —1 (improper transformations). Next, writing the
defining relation (2.8) in block matrix form,

Ao | Ap 1| Ao | Ao
ATGA = Aoi AT -1 Ao A, =G,
(5.76)
shows that the 00 component of the LT satisfies the following relation:
(ATGA)go = Ao — Z (Ajo)’ =1 . (5.77)

j
Therefore, for real transformations, the values of Agp must satisfy one of the two

conditions

Ago >1 orthochronous
(5.78)
Age < -1 non-orthochronous .

Together with the condition on the determinant, there are therefore four
classes of real transformations. Since Agg cannot be changed continuously from a
value greater than 1 to a value less than 1, and the determinant cannot be contin-
uously changed from +1 to —1, these four classes are disconnected, as illustrated
in Fig. 5.3. LT’s in each class can be continuously deformed into any other LT in
that class, and the different classes can therefore be characterized by one of the
four basic transformations: 1, T, P, or TP, where T is time inversion and P is
space inversion (parity). Explicitly,

-1 | 1

T= . P= i . (5.79)

The properties of the four classes of Lorentz transformations are summarized
in Table 5.2. The restricted group is a subgroup, but none of the others are groups
because they have no identity. It can be shown that every A € L can be written
as a product TA’, where A’ € LL, and hence T can be viewed as a mapping from
LL to L!:

TLL =L . (5.80)
Similarly, P maps LL toL! and TP maps LT+ to Ll+:
PLL =L

; (5.81)
TPL! =L, .
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Fig. 5.3 Diagrammatic representation of the four classes of the homogeneous Lorentz group
connected by the discrete transformations T, P, and TP.

Figure 5.3 illustrates this continuity by showing the four classes as disconnected re-
gions, with a continuous distribution of transformations within each region (class).
The figure and the above equations show that to study the homogeneous Lorentz

group, it is sufficient to study the group of continuous transformations L:_ and the
two discrete transformations T and P.

The complex LT’s must also have det A = x1, but the restriction (5.78) on
Ago no longer holds [because (Ajo)? need no longer be positive]. Therefore

Table 5.2  Properties of the four classes of homogeneous
Lorentz transformations.

Label | Properties Class Coﬁ:?}? ity
Il Agg 21 orthochronous, proper 1
+ det A = +1 restricted group
Lt Aoo < -1 non-orthochronous, proper TP
* | detA=+1 » Prop
1 Ao > 1 .
L. det A — —1 orthochronous, improper P
Il Ago € ~1 non-orthochronous T
- detA = —1 improper
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the complex LT's separate into only two classes, depending on the sign of the
determinant, and the transformations in L} and Li can now be connected by a
continuous path. As an example of such a “path,” consider the transformations

cosf | isin @
_ cosf —siné
Ao = sinf  cosf (5-82)

isiné cosf

which depend on the continuous parameter §. These transformations satisfy (2.8)
for all values of 8 and hence map out a continuous path of transformations in the
space of complex LT’s. By varying 6 continuously from 0 to 7, we are able to
connect the transformations 1 and —1. This fact will be of crucial importance to
our discussion of the PCT theorem in Sec. 8.7.*

Infinitesimal Transformations in LI_

Consider the real LT's in the subgroup LL. Because they can be continuously
connected to the identity, they can be written

A=e | (5.83)

where 6 is a number and X is said to be the generator of the transformation A.
[This is assumed without proof. It is a general property of a continuous group.}
The structure of the group can be inferred from the structure of the generators A,

To study this structure, it is sufficient to consider those transformations for
vhich @ = ¢ is infinitesimally small. In this case, the transformations can be
expanded and only the first order terms retained, so that

A=1+ex . (5.84)
Since A is a LT,
(1+eXAT)G(1+eN) =G (5.85)
or, to first order in ¢,
MNG+Gr=0
- - {5.86)
A =-G\G .

It is easy to determine the structure of A from this equation, which looks like

A Az Aar Aa A1 Az Az A
Az A2 A2 ..o | A2 =Xz —Aaz ... (5.87)
Az Az ... A3l —Asz2

*For more discussion of these issues see Streater and Wightman (1964).
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From this equation we draw the following conclusions:

o All diagonal elements of A are zero.

o There are three independent A’s which are symmetric. These have space~time
components and are the generators of boosts.

e There are three independent A’s which are antisymmetric. These have space-
space components and are the generators of rotations.

The generators therefore span a six-dimensional vector space. The six independent
generators which will be taken to be basis vectors for this space are denoted w,,,,,
where ¢ # v and w,, = 1 in the pth column and vth row, is symmetric or
antisymmetric depending on the indices, and has zeros for all other elements.
Explicitly,

0 1 00 0 0
= ey = 1 o 0 -1 0
0 0 0 0
0 010 0 0
W = Wog = 0 Wo3 = —Wag = 0.0 0
I I 0 w="w2=1 919 g -1
0 01 o0
0 0 0 1 0 0
W3 = wo3z = 0 w3l = —Wiz = 0 01
30 = Wo3 0 0 3= W= 0 0 0
1 -1 00
(5.88)
These generators can be written in the foliowing compact form:
(wiw)a 8= _%fuvkaekmﬁ ) (5.89)
where €, is the four-dimensional antisymmetric symbol normalized to
€0123 — 1. (590)

The w’s are the basis for a six-dimensional space of 4 x 4 traceless matrices,
so that any generator is now described by six continuous parameters. The most
general infinitesimal LT is then

A=1+ & wio + %9,‘ €ijkWik (5.91)

The continuous parameters are §; and ;. By considering a succession of infinites-
imal transformations, we can exponentiate this expression and write the finite
transformations as in Eq. (5.83),

A= e(fi wio+ 16, €|]kw1k) ) (5.92)

Equation (5.92) is the explicit characterization of the LT’s in LL which we have
been seeking. To better understand this equation, we look at a few examples.
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Examples

First, consider a rotation through angle 6 about the z-axis. In this case 6 = #3,
and [compare with Eq. (2.92)]

1 1
R.(8) =ef“12 = 1 + 0wy + aﬁzwfz + 503@0?2 +...

1 0 0 0 1 0 0 0

0 1- %02 —0+ %03 0 0 cosf -—-sinfd O

“lo 6-16° 1-18 0| |0 sin6 cosh O

0 0 0 1 0 0 0 1
(5.93)

This corresponds to an active vector transformation, because a unit vector in the
Z-direction is rotated into the first quadrant,

0
cos @
sin 6

0

= R,(0)i= (5.94)

Next, consider a boost in the z-direction. The generator for this boost is wyg,
so that

1 1
rII(é) = ee“’“’ =14+&wig+ '2-§2wa + §§3w?0 +...

1+3€% ¢+ 0 0 coshé sinhé 0 0
E+38 14382 0 0 sinhfé coshé 0 O
1 o 0 1 o] | o 0 1 0
0 0 0 1 0 0 0 1
(5.95)
Hence in coordinate or momentum space
t' = tcosh& + xsinh & E = mcoshé
x: = tsinh€ + xcosh & pz = msinh§ (5.96)
v =y py =0
2=z p.=0 .

These transformations permit us to identify the velocity of the boosted particle
with the parameter £, which is referred to as the rapidity

v=v/c=tanh§ . (5.97)
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Then, using the familiar relations between the hyperbolic functions leads to the
correspondence
1 v

and the familiar form for the active boost

cosh& =

t' = ;(t+vx) E=—CL
V1-—wv? V1 -2
) mo (5.99)
’r_ .=

The active boost in the Z-direction propels a particle of mass m from rest into
motion along the z-axis with momentum p,.

5.9 COVARIANCE OF THE DIRAC EQUATION

Now we are ready to study the covariance of the Dirac theory. To establish
covariance we must construct a representation of the Lorentz group on the four-
dimensional Dirac space. In general, a representation of a group is a mapping
of each element of the group A into a matrix S(A) which preserves the group
multiplication law. This means that if A A; = Ag, then S(A1) S(A2) = S(A3).
Since each group element has an inverse, the matrices which represent the group
must also be non-singular, and the identity of the group is represented by the
identity matrix.

The representation S{A) we seek should operate on the four-dimensional
Dirac space in such a way that the Dirac equation is invariant in form. For this
purpose we use the covariant form, Eq. (5.12), with the v# matrices defined in
Eq. (5.8),

(v [pu — eAu(@)] — m) %(z) =0 .

Then, for any LT A which transforms the coordinates and four-vector potential
from an unprimed frame to a primed frame,

' = Ax A(x)) = AA(z) (5.100)

we seek a representation, S(A), which transforms the Dirac wave function from
the unprimed to the primed coordinate system

Y'(z') = S(A)y(z) . (5.101)

Covariance is the requirement that this transformation leave the Dirac equation
(5.12) invariant in form, so that in the primed frame,

(+* [p:‘ - eAL(:n')] -m)y'(z')=0 .
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This requirement determines S{A). To find the equation which defines S(A),
substitute (5.101) into the above equation and multiply by S~!(A). Recall that
p'* = A*,p” implies that p), = (A_l)u u Pv, and obtain

$7HA) {7 (A7) 4 (b — eAu(@)) = m} S(Ab(z) =0 .
This equation is invariant in form if
(A7) WSTHAHS(A) =

which implies

S HAWS(A) = A* v . (5.102)

This equation will tell us how to construct the S(A).

Each A € LT+ has the form given in Eq. (5.92) and is defined by six numbers
{&:,0;}. The existence of a representation of the Lorentz group on the Dirac space

implies that, for every choice of the six parameters, there exists a corresponding
S(A) of the form

S(A) — e(fth‘!’%e;(ukR_,k) ) (5103)
with the same six parameters but with new generators which describe how the
transformations act on the Dirac space. To find all of the representations, we need
only construct the six generators.

To find the generators, it is sufficient to apply (5.102) to all infinitesimal
transformations. If the parameters are infinitesimal, then

S(A) =14&B; + 36ici;kRjx
A=1+Ewio+ 36 eppwpr
and Eq. (5.102) becomes

STHAWHS(A) = (1 — &B; — 30:e,6Ryk) 1 (1 + & By + 30i€ijk Rjx)

= ok — & (B, = 30:icijk [Rjk, "]

= [1 4 &uio + $0i€ijhwsn]” v 77 (5.104)
Since the parameters £; and ; are independent, we must equate their coefficients,
giving

= [Bi,v*] = (wio)* ¥
- [Rjk Y = (wjk)“ WYY

Substituting the specific forms for the w’s given in Eq. (5.88) gives the following
results for the boosts, B;:

[’709 Bl] = ’yi

. = B; =140y =1q; . (5.105)
v, Bi] = 6,~° } : ?
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(Remember that only for four-vectors is the placement of the index important;

vyt = —+;, but the a’s are always written a,.) To describe the generators of

rotations, Rk, we introduce two new Dirac matrices which will be used frequently
in the following sections:

% 0 s (01 (5.106)
g; = T= : )
T\ 0 o 1 0

In terms of these matrices, the generators of rotations become

1. 1
0 = Rjk = 577 = =5 ejrece
Y, Rl =0 Jk J
[ J ] } 2 ' 2

| (5.107)
[v%, Rj] = —60,7" + éexy’

! 5
= "Efjké"Y Qg .

Remembering that j # k, this last equation follows from

1, . 1 0 o5 0 o 1 (o0 O
— k= — =
2 2 -o; O —or 0 2 0 00k
1 1 1 oy
= —1—¢€; 0y = -—i——e-k[ . 5.108)

Digression: The generators can be written in a covariant form. Introduce the
matrix

oM = %[7“,7"] . (5.109)
then )
o0 — % [7071' _ 7170] = i%' = 2iB,
ot = % [y =¥ =iy =2iRy  i#j
and )
£.B; + %aiew}zjk = —%0‘“’0#1, , (5.110)
where
Py = _pgrr
60 = ¢, 0% = Biein (5.111)
This notation is beautiful but is also cumbersome, and we will not use it. |

In the notation we have introduced, the general Lorentz transformation on the
Dirac space is

S(A) = etéa-3r’0a (5.112)

We now find the explicit forms of the boosts and rotations.
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Boosts in the Dirac Space

The matrices given in Eq. (5.112) for S{A) can be found in closed form by
explicitly summing their power series. For the boosts, the first few terms in this
series are

B fa 1/¢a 2 o 3
S(Lg)—1+—2—'+§<——2—) +§<T) +oee (5.113)

Since ({-a)2 = £2, the power series (5.113) is a “repeating” series, with all even
powers a multiple of the unit matrix and odd powers a multiple of c. Hence

S(Le) = (1+-§-(§>2+--.>+5.a (g%(g)ﬂ)

§ §

=cosh—2- +é-a sinh—z— ,

(5.114)

where £ = |£] is the magnitude of the vector € and £ = &/€ is a unit vector in
the direction of €. This transformation can be expressed in terms of the energy of
the particle if we recall from Eq. (5.96) the relation between the rapidity £ and
the energy E imparted by the boost to a particle of mass m,

E =cosh€ ,
m

.nd use relations satisfied by the hyperbolic functions

coshéz\/r()s,h£+1:\/E+m

2 2 2m

Sinhéz\/coshﬁ—l2\/E—m:\/E+m( D >
2 2 2m 2m E+m

Hence, if the boost (5.114) acts on the Dirac wave function of a particle of mass
m at rest,

e—imt X(S) e—imt
o) = o ) = Ve O

we obtain

' ' —imt E+ 1 s
S(L¢)o,s(x) = 95 4(z') = eT/—L_—; 2mm (_ﬂ,_> X

Ex
E o—iEt'—pr)

m v
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Recalling the definition of v, 5, we see that

S(Lz)¥o,s(x) = \/——gwp,s(m’) (5.115)

and, except for an overall factor \/E/m, ¥, can be obtained from o, by
a Lorentz boost. The non-covariant factor y/FE/m is present because we have
chosen to normalize the Dirac states in a non-covariant manner; this will be
discussed further in the next section.

Rotations in Dirac Space

The explicit form for rotations in Dirac space can be found in the same way that
the boosts were found. The general rotation about the 8-axis is

i ' 1/ i 2
S(Rp) = e 370 =1 — %75611 +3 <——%758-a) + - . (5.116)
Since ¥® commutes with « and (v°)2 = 1, it follows that (2”759-04)2 = —62,

where 6 = |8)] is the length of the vector 8, and therefore

() ) erea 55 (8) )

0 - 0
cos 3~ iv°0-a sin 3

I

S(Ry)

As an example, consider a rotation through angle 8 about the z-axis. Recali-
ing that v°ax = o, where ¢ is the diagonal spin matrix (5.106), the action of the
rotation about the 2-axis on the Dirac spinor u(p, s} can be written

1 .
S(Ro)up,s) = VE +m ( s(8) o psi(8) > X
E+m

where s(f) is the representation of the rotation on the 2 x 2 spinor space, and

' g . .8 1
x©) = s(0) x'® = (cos 5 ~ 10zsin §> X = x® d(sg,’(e) (5.117)
is the new two-component spinor which results from the rotation Ry, familiar

1
from previous studies. The matrix di;,’(@) is the Wigner spin 1 rotation matrix.*

*For a discussion of the d functions, see Rose (1957).
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The lower components can be further reduced using the properties of the Pauli spin
matrices

cos—oi ] sino o s0+' in?
5 10, 5 p|co 5 wzsm2

= 0,p; + 0z [pzcosf — pysinb| + o, [pycosf + pysinf]l =o - p’ .

Hence,
S(R)p,s(z) = ¥pr,o (') = ¢y, 5(2") (5.118)

and we see that S(R,) does indeed rotate the state through angle 8 about the 2-axis,
provided x(*) are spin 1 spinors.

Parity
Next, we find the representation of the parity transformation on the Dirac space. Us-

ing the defining Eq. (5.102) and the explicit expression for the parity transformation
(5.79), we require

S~HP)°S(P) =+°
S~ Y PY'S(P) = —~' .

—

This is satisfied by '
S(P) = €e'y° | (5.119)

where the phase e'? = +1 if we require S(P)% = 1. This phase is related to the
intrinsic parity of the particle or state and will be denoted 7.

Now suppose
= F(r,t)
YO =

Then, under parity

Youp(r,t) = na' (-, t) , (5.120)
and therefore
gy = F(~r,t)
Y(rt) =n, Gt )

If the state has a definite parity, it is unchanged by the transformation, i.e., ¥’ = .
In that case,
F(r,t) = npF(-r, t)

G(Tt t) = _nPG(—Ta t) )

and we find that the upper component of a Dirac wave function has the same
spatial parity as that of the overall state, while the lower component has the op-
posite spatial parity. This result is due to the action of the +° matrix, which
gives an extra phase to the parity transformation on the lower components. We

(5.121)
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will use this result in the next chapter when we construct the most general solution
to the Dirac wave equation.

To complete the discussion of the homogeneous Lorentz group, we need only
to find the representation of the time reversal transformation S(7'). This will be
postponed until Chapter 8, where time reversal will be discussed in some detail.

5.10 BILINEAR COVARIANTS

In this section we discuss the construction matrix elements in Dirac space and the
matrix operators from which these matrix elements are constructed. It is conve-
nient to express the most general matrix operator in terms of elementary operators
which have definite transformation properties under the homogeneous Lorentz
group. These elementary operators are referred to as the bilinear covariants.
The study of the covariance of Dirac matrix elements begins with the ob-
servation that S(A) is not unitary in every case. This follows from the fact that
a; and v5q; are Hermitian operators, but only the generators of rotations have a
factor of 7 in the exponent. Hence S(R) are unitary, while S(B) are not. In fact

S(RY' = S(R)™! S(B)' = S(B) . (5.122)

Hence the density Yl is not Lorentz invariant.
To find a Lorentz invariant density, consider a density of the form

plz) = v!(z)0y(x) , (5.123)
~here @ plays the role of a “metric” tensor. Invariance gives
P(a’) = plz) = ¢ ()69 (')
= ¢l(x)S19Sy(x) . (5.124)
Since this must hold for any 1, we have the requirement
Sstes =6 . (5.125)

Expanding S in a power series quickly shows that (5.125) is equivalent to the
requirement that the “metric” § commute with the generators of the rotations but
anticommute with the generators of the boosts,

[’ysai,e] =0
{ai,O} =0 .

These conditions are satisfied if 8 = +°, and then, for all A

Sty08 =40 y05Ty0 =81 . (5.126)
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The requirement of covariance has thus led to the introduction of an indefinite
metric, similar to the one we encountered in the two-component KG theory (the
operator ¥ plays a role analogous to 7,). Because this metric must occur in
all matrix elements with well-defined covariance properties, it is convenient to
introduce the Dirac adjoint as follows:

b(z) =y (z)y° . (5.127)

This is always a row vector, and a Dirac matrix element will be formed by
multiplying from the left by the adjoint spinor ¥(z) and from the right by the
normal spinor ¥(x). Then

P'(z') = S(A)y(z)
P'(z') = P(x)S71(A)
and
p(x) = Y(x)(z) = ¥ (2" )¢ (z)) = p'(z') (5.128)

is a Lorentz invariant scalar density.
All Dirac matrix elements will now be written in the form

P(z)Ty(z) |

where I' is a 4 x 4 complex matrix. The most general such matrix can always
be expanded in terms of 16 independent 4 x 4 matrices multiplied by complex
coefficients. In short, the matrices I" can be regarded as a 16-dimensional complex
vector space spanned by 16 matrices.

It is convenient to choose the 16 basis matrices, 1;, so that they have well-
defined transformation properties under LT’s. Since the v*’s have such properties,
we are led to choose the following 16 matrices for this basis:

# matrices
1 scalar 1
v vector 4
L[y*,¥*] = o  antisymmetric tensor 6 (5.129)
Sy axial vector 4
iv%y1y%y3 =45  pseudoscalar 1
16

It can be seen by inspection that all of these matrices are linearly independent.
Furthermore, their properties under Lorentz transformations are suggested by their
labeling. For example

p'H(a') = P (&Y' ()) = P()STHAYH S(A)Y(x)
= A, ¥ (z) | (5.130)
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the correct transformation law for a vector field. Note that the v° defined above
is identical to the one previously introduced in Eq. (5.106) and that an alternative
form is

5 _

V= st (5.131)

1

4
This way of writing +° is useful for proving that v° transforms as a pseudoscalar
(see Prob. 5.4). In particular, one can show that

S=HA)Y*S(A) = (det A) ~° (5.132)
so that
ps(a’) = ¥ (z')¥°¥' (z')
= (2)S™H (A’ S(A)y(z) = (det A) ps() (5.133)
which is the correct transformation law for a pseudoscalar if A € LT.

Applications

(1) Normalization of Dirac wave functions. Note that the normalization inte-
gral, which involves 111, can be expressed in terms of the following density:

¥(x) y(z)
"his makes it clear that it is the fourth component of a four-current, which is

conserved. We already wrote this conservation law in covariant form in Eq. (5.14);
in terms of the Dirac adjoint it is

2 Bl p(a) =0 (5.134)

The appearance of the factor /E/m in the boost of a Dirac free particle
state, Eq. (5.115), can now be understood. The free particle state ¢, .(z) has
been normalized to unity using the normalization condition

[ paar®nate) =1 . (5.135)

Since this condition is the fourth component of a four-vector, the requirement that
it be the same in all frames (i.e., behave like a scalar) is inconsistent with its
Lorentz nature and must break covariance. We therefore expect a non-covariant
factor in the transformation law which carries this state to the rest frame,

SHB)ps(z) = N s(z) -



5.10 BILINEAR COVARIANTS 155

The normalization condition (5.135) requires that N = \/m/E, as already given
in Eq. (5.115). To see this, observe that

/ B s (2)7 s (& / 41 1y 5(2)S(L)S ML)V S(L)S ™ (L)hpis(2)
= N[ drddo,s(')[1° cosh € + 5 - Esinh €] o,e(2)

But, % ,(z’ )7%%0,s(z') = 1/L3, and because 1) ¢ has no lower components and
~ - € is off-diagonal, Yo,s(z')y - &/zo s(z} = 0. Hence

/darl/;p,s(l)’yowp,s(r) = N?%cosh¢ = N2§ =1,

which gives the desired result. Thus the extra non-covariant factor 1/N = \/E/m
already incorporated in the definition of 1y, s is just what is needed to insure the
state is normalized to 1 in any frame. Because the normalization condition is
non-covariant, the states 1, ; must include a non-covariant factor.

(2) Normalization and orthogonality relations for Dirac spinors.  Because
of the negative sign in 4%, the covariant normalization and orthogonality relations
satisfied by the u and v spinors are:

u(p, s)u(p,s’) = 2mbsy
(p, s)v(p,s’) = —2m b5y (5.136a)

a(p,s)v(p,s')= 0 .
Note that the negative energy v spinors now have negative norm. For convenience,
the non-covariant versions of (5.136a) are
ul(p, s)u(p,s') = 2E6,¢
v (p, s)v(p, s') = 2E6,4 (5.136b)
ul(p, s)v(—p,s) =0 .

(3) Energy projection operators. It is useful to find projection operators which
project out the positive and negative energy subspace. The matrices

M) = 5 up,s)alp,s)

. (5.137)

A_(p) = v(P s)o(p,s)

“om
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are projection operators with the properties

A2 =A, AA_=0

5.138
A2 =A_ Ar+A_=1. ( )

If any state 1 is expanded in terms of » and v spinors
Y=Y aups)+ Y bup,s)
s 8
then the operators A, will project out the separate plus and minus parts

ALy = Zasu(p,s) Ay = stv(p,s) .

All of these results follow directly from the orthonormality relations (5.136a).

An alternative form for these projection operators is very useful and is con-
veniently expressed in terms of the Feynman notation for the scalar product of
any four-vector p with the v matrices,

p=pur* . (5.139)

Then, if p* = (Ey,p), the equations satisfied by the u and v spinors, Eqgs. (5.19)
and (5.26), can be written in the following compact form:

P-mu=0

G +m)s =0 | (5.140)

Using these equations, it is easy to see that the projection operators can also be
written

m* p
2m

Ay = (5.141)

These relations can also be obtained by direct construction from Egs. (5.137).
Using p p= p® = m?2, it is a simple matter to prove directly that A2 = Ay and
A+A__ = 0

(4) Spin projection operators. The spin projection operator for a non-relativistic
two-component spinor is

1A +o-8)xD =X (5.142)

where § is the unit three-vector in the direction of the spin. For spins in the
2-direction, for example, § = (0, 0, £1) for spin up (+) or spin down (-),
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Since we use u and v spinors in applications, we define the spin operator
so that, for a Dirac particle at rest, § = (0,0, 1) projects out u(0, 1) and v(0, ).
Since

— O O O

1
0

wo ) =[] v =
0

1
=5 (1+~°7#3,) (5.143)
0 l-0-5

where, in the rest system of the particle, § is generalized to the four-vector §# =
(0,8). Note that this polarization four-vector has the same properties as that
encountered in Sec. 2.5:

5, = -1 §-pp =384 =0, (5.144)

where p, is the four-momentum of the particle at rest. These conditions define
the polarization four-vector in any frame, as discussed in Sec. 9.10.
To find the spin projection operator in any frame, use the invariance of the
equation
Y(8)u(0,8) = u(0,3) .

If p= Ap,, where p¥ = (m,0), then s = A3, and
S(AYE(3)S7H(A)S(A)u(0,5) = S(A)u(0, 8)
=1 {1 +7° (A_l)“ v 3#} u(p, 8)
3 [1+7°7"s.] ulp, ) = ulp,s) .

Hence, in general,

T(xs) =3 [1x£4° 4] (5.145)

where s* is any four-polarization vector satisfying the conditions (5.144). (Check
that these are projection operators by direct calculation.)

5.11 CHIRALITY AND MASSLESS FERMIONS

In this last section we discuss some of the special properties possessed by Dirac
particles with zero mass. These particles are particularly fascinating and may
very well exist in nature. If the masses of the neutrinos (see Appendix D) are not
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exactly zero, they are certainly very small, and the up (u) and down (d) quarks,

which make up the first generation (Appendix D), are believed to have a free

mass (the mass before interactions are turned on) of only a few MeV, so that for

many considerations it is an excellent approximation to regard them as massless.
The spinor for a free massless fermion is (p = p/|p|)

u(p,/\)z\/E( : >><A=\/E(1>xx : (5.146)
o-p 2

where x, is the two-component spinor of the fermion quantized in the direction
of its motion (the helicity spinor), so that A = i% and

o-PX,=2\x, - (5.147)

For antiparticles,

—-2A
p) (—iO’zX:) = \/—E < 1 ) (—iO’zX:) y (5148)

g -

v(p,/\)=\/E<

where the second step follows immediately if we use 0; 02 = —0; 0}

Note that the helicity states of the massless spinors have upper and lower
components which are equal in magnitude. This means that they are eigenfunctions
of the operator 3

Yup,A) = 2\u(p,))
Yup,\) = -2 v(p,A) .

The eigenvalue of the operator v° is referred to as the chirality of the state.
Introducing the projection operators

(5.149)

P, =1(1£4°) (5.150)
and letting z(\) = u(p, A) or v(p, — ), then

Poz( 3)=2( 1) ==z, P z(
Pa(h=slh-n P

) =
)

Particles with helicity +% are referred to as right-handed, and those with —% are
left-handed (see Fig. 5.4). In this language, the projection operator P, projects
out right-handed particles and left-handed antiparticles, denoted collectively by
zq, while the operator P_ projects out left-handed particles and right-handed
antiparticles, denoted by z,. Note that free right-handed and left-handed states
retain their identity under the proper Lorentz transformations only if they are

0 (5.151)
0 . '

il

R f—
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spin spin
[ i
— e — D

positive helicity:

clockwise (right-handed) spin negative helicity:

counter-clockwise (left-handed) spin

Fig. 5.4 Illustration of the relative orientation of spin and momentum for right-handed and left-
handed particles.

massless, because only in this case is it impossible to change a particle’s helicity
by bringing it to rest and reversing its direction of motion.

Right- and left-handed states are not invariant under parity, however. Spin
is unchanged by parity (for more discussion see Chapter 8), while momentum
changes sign, and hence helicity also changes sign. For massless Dirac particles
this result follows from the fact that the parity operator changes the right-handed
projection operator into a left-handed one:

YOP, =P, A . (5.152)

For this reason, right- and left-handed states were merely a curiosity until it was
discovered in the 1960’s that parity in not conserved in the weak interactions.
We now know that only left-handed neutrinos interact weakly, and in the Stan-
dard Model of the electroweak interactions only lefi-handed neutrinos exist! We
postpone further discussion of these points until Chapters 9 and 15.

This completes our introductory discussion of the Dirac equation. In the next
chapter we will use this equation to study some interesting problems.

PROBLEMS

5.1 At t = O the wave function for an electron (normalized in a volume L3) is
known to be

a
1 bl
—_ p-r
1}1(0,7‘) - L3/2 c € 9
d

where p = (0,0, N) (N is an integer) and a, b, ¢, d are independent of r and
t and satisfy
laf + p)® +|c* +|d* =1 .

Find the probabilities that the electron is in the following states:
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5.2

53

5.4

5.5

THE DIRAC EQUATION

(a) E > 0, spin along z-axis.
(b) E > 0, spin along —z-axis.
(c) E < 0, spin along z-axis.
(d) £ < 0, spin along —z-axis.

An electron scatters from a repulsive spherical Coulomb potential of the form

0 r>R
A%(r) = {
U=constant r < R .

(a) Calculate the unpolarized cross section in first Born approximation (lowest
order in A%). Use the Dirac formalism.

(b) Compare your relativistic result [from (a) above] with the result you
would obtain from the Schrédinger equation in first Born approximation.

Suppose the Coulomb potential transformed relativistically like a scalar field
(rather than like the fourth component of a vector field) so that the interaction
of the electron with the Coulomb potential wouid read

e(x)Y(x)Ag(z)  (scalar case)
instead of _
ey (z)7° ¥ (x) Ao () (vector case),

where in both cases e Ag(x) = —Ze?/4n|F| = —Za/r. Calculate the differ-
ential cross section in the Born approximation for the scalar case and show
that, at high energies, both the angular and energy dependence are completely
different from the vector case, even though the two differential cross sections
are identical at nonrelativistic energies.

Prove that 1/v%9 transforms like a pseudoscalar. If S(A)y = v, prove that

V' (2')y°¥' (') = (det A) Plz)v*v(z) -

Consider the following Dirac matrix element:
M¥(2) = b(a) o™ =2 w(a)
oz !

where o#¥ was defined in Eq. (5.129).

(a) From the structure of M, guess how it transforms under LT’s. Write
down the transformation law explicitly, using the notation =’ = A z.

(b) Using the Lorentz transformation properties of the Dirac wave functions,
Eq. (5.101), and the property Eq. (5.102), prove that your transformation law
is correct or find the correct one.
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[Taken from Bjorken and Drell (1964).] The Dirac equation describing the
interaction of a proton or neutron with an applied electromagnetic field will
have an additional magnetic moment interaction representing their observed
anomalous magnetic moments:

€ Ky

(m“au —e Ayt — o

o F* — m,-) w(x) =0

i
where F#*¥is the electromagnetic field tensor.

(a) For the proton, i = p, e, = |e|; for the neutron i = n, e, = 0. Verify
that the choice of xk, = 1.79 and kK, = —1.91 corresponds to the observed
magnetic moments and check that the additional interaction does not disturb
the Lorentz covariance of the equation. Check also that the Dirac Hamiltonian
is Hermitian and that probability is conserved in the presence of the additional
interaction.

(b) Make a Foldy—Wouthuysen transformation for the neutron, keeping terms
up to order (v/c)?. Give a physical interpretation of the individual terms.

(c) Suppose a negatively charged particle of mass m, charge —e, and anoma-
lous moment s is captured by a nucleus of charge Ze. Suppose that
m 3> me, SO that screening by the other electrons can be ignored. Cal-
culate the fine structure splitting of the energy levels, and comment on how
the splitting depends on x.

New diagonal form for the Dirac equation. Paralleling the discussion
following Eq. (5.55), we can introduce a FW transformation which will com-
pletely eliminate the lower components from the free positive energy solutions
and the upper components from the free negative energy solutions. The ad-
vantage of such a representation is that it allows us to regard the mixing of
upper and lower components as a dynamical consequence of the interaction;
the free Dirac equation is fully diagonalized. A unitary transformation which
accomplishes this is

U= [E+m 1 Eiwteﬁ
- 2E zap 1

E+m

(a) Show that U is unitary by direct computation. Show that
x(®)
Uu(p,s) = V2F 0

Uuv(-p,—s) = V2E ( 0 )

—iU2X(_s)
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(b) Show that

E
E
- —
UHoU' = BE = B :
-E

which is a diagonal form comparable to the one found for the KG equation
in Prob. 4.6.

(c) Show that, in this representation, the Dirac equation with electromagnetic
interactions can be written

igzlpz,gE?/)"f‘(H]+,8H2+0'H3+ﬁU'H4
+a'H5+iﬁa-H6+'ysH7)1/) .

Introducing
p=_P __ i\
F+m Eg+m
E+m
b= 2E

show that the H’s are

H, =6 (V°+D;v°D;) 6
Hy=-6(V-D+D-V)6

HY =0 (ie;5%D;V°D;) 6
Hy=-0(G(VxD)+i(DxV))8
Hs=6(-V+ (D-V)D+D(V-D)-D;VD;)8
Hg =0 (iV°D - iDV°) 6

Hy =0 (i€,jxD;V;Di) 6 .
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CHAPTER 6

APPLICATION
OF THE DIRAC EQUATION

This chapter begins with a discussion of the general form of the solutions to the
Dirac equation for a potential which is spherically symmetric. Using these results,
it is an easy matter to find the solutions for a particle confined by a spherically
symmetric square well, a simple model for the treatment of the confinement of
quarks in hadrons. The chapter concludes with a discussion of the exact solutions
for hydrogen-like atoms.

6.1 SPHERICALLY SYMMETRIC POTENTIALS

In many problems of interest, the potential in the Dirac equation is spherically

ymmetric, i.e., a function of r = |r| only. For example, if the four-vector potential
has the form V#(r) = (V(r), 0), which is the case for the Coulomb potential, the
equation reduces to

By _

5 = —iai——a—-f-ﬂmﬁ-V(r) Y. (6.1)

ozt

This is an array of four coupled partial differential equations and looks like it would
be formidable to solve. However, because of the spherical symmetry, it turns
out that these equations can be reduced to only two coupled first order ordinary
differential equations, which are comparatively easy to solve. This reduction is a
good starting point for the study of many interesting problems, two of which will
be treated in the subsequent sections.

The equations are reduced by first finding the symmetries of the system and
then using these symmetries to express the solutions in terms of the minimum
number of unknown functions which are not determined by symmetry and there-
fore must be determined from the dynamics. We will see that all solutions can be
expressed in terms of only two scalar functions and that these can be determined
from two coupled first order differential equations.

163



164 APPLICATION OF THE DIRAC EQUATION

Symmetries of the Motion
Begin with the introduction of the orbital angular momentum operator

L=rxp=—-i(rxV) (6.2)

and the spin operator
S= %'y‘r’a . (6.3)

Remark: Note that this spin operator is not the same as the covariant spin operator
%751 introduced in the last chapter. The difference arises from the fact that, as
introduced in Eq. (5.29), the spin up negative energy state, for a free particle at rest,

is proportional to v(0, —3), so that

0

- 1 0
1/)((),1)/2(1;) = melmt 3
0

and using the S, defined in Eq. (6.3) gives
S, 0l (@) = 49
=¥0,1/2 z) 0,1/2($) )

asexpected. The operator (6.3) therefore identifies the states 1) ,(:1) /o(x)and 1,[1;,'1)/2 ()
as “spin up” states, which is the correct definition for use in the first quantized
treatment of spin % particles. In the last chapter we designed the spin operator so
that the “spin up” states were proportional to u(p, 1) and v(p, ), which is the correct
one for use in the second-quantized (field theoretic) treatment. 1

Neither L nor § are constants of the motion

(L', H]| = [—ieinr? O, —iede] = €i5xbe50ke = €ign0eDy

[Sl’ H] = 5 {’7501', ""‘Laja_]] = ""%')’5 [ai) aj] 6] (64)

= —€itk0uOk
However, note that ) ) )
J’l — Lt + Sl (65)

are constants of the motion. Furthermore,

§$?=8S=ta-a=3 (6.6)

is also a constant of the motion but will be suppressed since it always has eigen-
value S? = & = (3)(2) which supports the interpretation that we are describing
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a spin % particle. We leave it as an exercise to show that [Lz, H ] # 0. Hence
L is not in general a good symmetry, but in this case the states will still have a
definite value of £ because it turns out that £ is fixed uniquely by the parity, which
is a good symmetry.
The parity operator is
P=4P , (6.7)

where 70 operates on the Dirac space and P operates on the coordinate space.
Note that P2 =1 and that
[P’H] = [’YOP’_iaiai]
= —i {y*P0,8; - 2:0:y° P}
= —i{-7%2:8; — "’} P=0 . (6.8)

Hence, the solutions of the Dirac equation in a spherically symmetric potential
are characterized by the following conserved quantities:

E, J?, 7, 32=%, P =41 . (6.9)

We ignore S? from now on.

Structure of the Solutions
“onsider a solution of the general form

Y(r) = (F(r>> , (6.10)
G(r)

where F' and G are two-component spinors which can depend on the quantum
numbers which characterize the states. Since parity is a good quantum number, F'
and G have opposite spatial parity, as shown in Eq. (5.121), and the parity of the
overall state is the spatial parity of its upper component. Hence we may define
F* and G* with the following properties:

Fi(r) = +F*(-r)

G*(r) = =FGi(—r) . (6.11)

The structure of these functions may be further specified by exploiting the
rotational symmetry. The total angular momentum operator has the form

L+io 0
J= 2 . (6.12)
0 L+ %d
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Hence it is clear that both the upper and lower components can be expanded in
terms of the generalized spherical harmonics yjim(f'), which are constructed by

vector addition* from the spatial spherical harmonics Y, () and the spin % states

() () s

The £ superscript on the )’s denotes the parity. With this notation, the states

have the overall structure
FEMYE(F)
Y (r) = ( o )
ig> (M) V] (F)

where f and g are now functions of the radial coordinate only and the phase
factor 1 multiplying the lower components is introduced for convenience. Note
that (6.14) incorporates the results of (6.11) by explicitly using Y’s with opposite
parity to describe the upper and lower components. With the construction (6.14),
the states are now eigenstates of angular momentum and parity, with the usual
properties

(6.14)

TP P5on(r) = 50 + V(1)
T (1) = mpi, (r) (6.15)
Pion(r) = 2950 (~1)

The total angular momentum quantum number j is half an odd integer, and the

commutation relations between the components of J permit us to introduce raising
and lowering operators in the usual way:

Ji =J. £1J,
Jeim = Vi(G+1) —mm £ 1) Pjmer .

Hence the Y states can be explicitly constructed using Clebsch-Gordon (CG)
coefficients

(6.16)

Vim(#) = (¢ m—4; 4 313 m) @Y, 1 (7)
+(Emtyis —3im) BY,y(F) . (617)
where the CG coefficients come from Table 6.1.
As Eq. (6.17) and Table 6.1 show, there are precisely two )’s for each j (and
m, which we ignore in the following discussion). These have values of the orbital
angular momentum £ equal to j + 3 or j — 3. The parity of the }’s depends
on whether this value of £ is even or odd. Once j and the parity are specified,
¢ is uniquely determined. However, instead of designating these states by parity,
which is &, we introduce a new guantum number k defined in the following way:

+ ifl=j+1 = k=¢
-Gy {0

(6.18)
- ifl=j-3 = k=-(t+1)

* A general discussion of angular momentum eigenfunctions and the addition of angular momentum
can be found, for example, in Rose (1957).
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Table 6.1 Clebsch-Gordon (CG) coefficients.

{£ m—my; % maljm)

mq =
. 1 +i+m \/£+%—m
j=t+3 \/ 7031 T3 1

o1 \/e+Jl—m L+4+m
J= 2 1 TV 2tn 2071

B
3
I
|
(ML

The quantum numbers j and k& now determine the parity quantum number (and
therefore also the correct £ corresponding to any particular j) as shown in Table
6.2. It is very convenient to re-express the Y= in terms of this quantum number
k. This will simplify all subsequent formulae.

To see how this works, first note that the use of k simplifies the CG Table 6.1.
When expressed in terms of k, both coefficients in each column (i.e., both parity
states) can be expressed by one algebraic expression:
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where sgnk is +1 if k > 0 and —1 if k < 0. Instead of Y* we will use Yk,
where
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Note that Y* and V* are identical, provided the identification of k and % is
made consistent with Table 6.2, and hence the solution can be written in this new
notation:
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Table 6.2 Relationship between j, k, £, and parity.

