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Preface

The General Theory of Relativity is an extremely successful theory, with a
well-established experimental footing, at least for weak gravitational fields. Its
predictions range from the existence of black holes, gravitational radiation (now
confirmed) to the cosmological models, predicting a primordial beginning, namely
the big-bang. All these solutions have been obtained by first considering a plausible
distribution of matter, and through the Einstein field equation, the spacetime metric
of the geometry is determined. However, one may solve the Einstein field equation
in the reverse direction, namely one first considers an interesting and exotic
spacetime metric and then finds the matter source responsible for the respective
geometry. In this manner, it was found that some of these solutions possess a
peculiar property, namely “exotic matter,” involving a stress-energy tensor that
violates the null energy condition. These geometries also allow closed timelike
curves, with the respective causality violations. It is thus perhaps important to
emphasize that these solutions are primarily useful as “gedanken-experiments” and
as a theoretician’s probe of the foundations of general relativity, and include tra-
versable wormholes and superluminal “warp drive” spacetimes. This book, in
addition to extensively exploring interesting features, in particular, the physical
properties and characteristics of these “exotic spacetimes,” is meant to present a
state of the art of wormhole physics, warp drive spacetimes and recent research on
the energy conditions. The ideal audience is intended for undergraduate and
postgraduate students, with a knowledge of general relativity, and researchers in the
field, who are interested in exploring new avenues of research in these topics.
More specifically, in this book, general relativistic rotating wormhole solutions,
supported by a phantom scalar field, are presented. The properites of these rotating
wormbhole solutions including their mass, angular momentum, quadrupole moment,
and ergosphere are discussed, and the stability issues are explored. Concerning the
astrophysical signatures, physical properties and characteristics of matter forming
thin accretion disks in wormhole geometries are analyzed. It is shown that specific
signatures appear in the electromagnetic spectrum of thin disks around wormhole
spacetimes, thus leading to the possibility of distinguishing these geometries by
using astrophysical observations of the emission spectra from accretion disks.
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Explicit examples of globally regular static, spherically symmetric solutions in
general relativity are also constructed with scalar and electromagnetic fields,
describing traversable wormholes with flat and AdS asymptotics and regular black
holes, in particular, black universes. (A black universe is a regular black hole with
an expanding, asymptotically isotropic spacetime beyond the horizon.) Such objects
exist in the presence of scalar fields with negative kinetic energy (‘“phantoms,” or
“ghosts”), which are not observed under usual physical conditions. To account for
that, “trapped ghosts” (scalars whose kinetic energy is only negative in a
strong-field region of spacetime) are considered, as well as “invisible ghosts,” i.e.,
phantom scalar fields sufficiently rapidly decaying in the weak-field region.
Self-sustained traversable wormholes, which are configurations sustained by their
own gravitational quantum fluctuations, are also considered. The investigation is
evaluated by means of a variational approach with Gaussian trial wave functionals
to one loop, and the graviton quantum fluctuations are interpreted as a kind of exotic
energy. It is shown that for every framework, the self-sustained equation will
produce a Wheeler wormhole of Planckian size. Some consequences on topology
change are discussed together with the possibility of obtaining an enlarged
wormhole radius.

In the context of modified theories of gravity, it is shown that the higher-order
curvature terms, interpreted as a gravitational fluid, can effectively sustain worm-
hole geometries, while the matter threading the wormhole can be imposed to satisfy
the energy conditions. In this context, a systematic analysis of static spherically
symmetric solutions describing a wormhole geometry in a Horndeski model with
Galileon shift symmetry is presented. In addition to this, working in a metric-affine
framework, explicit models are explored in four and higher dimensions. It is shown
that these solutions represent explicit realizations of the concept of geon introduced
by Wheeler, interpreted as topologically nontrivial self-consistent bodies generated
by an electromagnetic field without sources. Several of their properties are dis-
cussed. Furthermore, using exactly solvable models, it is shown that black hole
singularities in different electrically charged configurations can be cured. These
solutions describe black hole spacetimes with a wormhole giving structure to the
otherwise point-like singularity. It is shown that geodesic completeness is satisfied
despite the existence of curvature divergences at the wormhole throat. In some
cases, physical observers can go through the wormhole, and in other cases, the
throat lies at an infinite affine distance. The removal of singularities occurs in a
nonperturbative way.

Quantum field theory violates all the classical energy conditions of general
relativity. Nonetheless, it turns out that quantum field theories satisfy remnants
of the classical energy conditions, known as quantum energy inequalities (QEISs),
that have been developed by various authors since the original pioneering work of
Ford in 1978. Here, an introduction to QEIs is introduced, as well as to some of the
techniques of quantum field theory in curved spacetime (particularly, the use of
microlocal analysis together with the algebraic formulation of QFT) that enable
rigorous and general QEIs to be derived. Specific examples are computed for the
free scalar field, and their consequences are discussed. QEIs are also derived for the
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class of unitary, positive energy conformal field theories in two spacetime
dimensions. In that setting, it is also possible to determine the probability distri-
bution for individual measurements of certain smearings of the stress-energy tensor
in the vacuum state. Semiclassical quantum effects also typically violate the energy
conditions. The characteristics of a nonlinear energy condition and the flux energy
condition (FEC) are also studied, and a quantum version of this energy condition
(QFEC) is presented, which is satisfied even in more situations of physical interest.
Other possible nonlinear energy conditions are introduced, namely the
“trace-of-square” (TOSEC) and “determinant” (DETEC) energy conditions.

While General Relativity (GR) ranks undoubtedly among the best physical
theories ever developed, it is also among those with the most striking implications.
In particular, GR admits solutions that allow faster-than-light motion and conse-
quently allow closed timelike curves, with the respective causality violations, such
as warp drive spacetimes. The basic definition and interesting aspects of these
spacetimes are extensively discussed, such as the violation of the energy conditions
associated with these spacetimes, the appearance of horizons for the superluminal
case, and the possibility of using a warp drive to create closed timelike curves.
Applying linearized gravity to the weak-field warp drive, it is found that the energy
condition violations in this class of spacetimes are generic to these geometries and
are not simply a side effect of the superluminal properties. Furthermore, a “pre-
emptive” chronology protection mechanism is considered that destabilizes super-
luminal warp drives via quantum matter back-reaction and hence forbids even the
conceptual possibility to use these solutions for building a time machine. This result
will be considered both in standard quantum field theory in curved spacetime and in
the case of a quantum field theory with Lorentz invariance breakdown at high
energies. Some lessons and future perspectives will be finally discussed.

Lisbon, Portugal Francisco S.N. Lobo
December 2016
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Chapter 1
Introduction

Francisco S.N. Lobo

1.1 Historical Background

Traversable wormholes and “warp drive” spacetimes are solutions to the Einstein
field equation that violate the classical energy conditions and are primarily useful as
“gedanken-experiments” and as a theoretician’s probe of the foundations of general
relativity. They are obtained by solving the Einstein field equation in the reverse
direction, namely, one first considers an interesting and exotic spacetime metric,
then finds the matter source responsible for the respective geometry. It is interesting
to note that they allow “effective” superluminal travel, although the speed of light
is not surpassed locally, and generate closed timelike curves, with the associated
causality violations.

Wormhole physics can originally be tentatively traced back to Flamm in 1916
[1, 2], where his aim was to render the conclusions of the Schwarzschild solution
in a clearer manner. Recall that Schwarzschild published two remarkable papers
in 1916, where the first is related to the exterior static and spherically symmetric
vacuum solution [3], and the second to the interior solution of a general relativistic
incompressible fluid [4]. Flamm in his paper showed through sketches of an equa-
torial plane that the spatial sections of Schwarzschild’s interior solution possess the
geometry of a portion of a round sphere. Furthermore, he showed that the surface
of revolution is isometric to a planar section of the Schwarzschild exterior solution.
Now, he considered that the meridional curve is a parabola, where the surface of
revolution joins two asymptotically flat sheets, which in a modern terminology can
be considered as a tunnel. However, we emphasize that he was not contemplating
the possibility of bridge-like, or wormhole-like, solutions [2].

It was only in 1935, that specific wormhole-type solutions were considered by
Einstein and Rosen [5]. Their motivation was to construct an elementary particle

F.S.N. Lobo ()

Faculdade de Ciéncias, Instituto de Astrofisica e Ciéncias do Espaco,
Universidade de Lisboa, 1749-016 Campo Grande, Lisboa, Portugal
e-mail: fslobo@fc.ul.pt

© Springer International Publishing AG 2017 1
ES.N. Lobo (ed.), Wormholes, Warp Drives and Energy Conditions,
Fundamental Theories of Physics 189, DOI 10.1007/978-3-319-55182-1_1



2 E.S.N. Lobo

model represented by a “bridge” connecting two identical sheets. This mathematical
representation of physical space being connected by a wormhole-type solution was
subsequently denoted as an “Einstein—Rosen bridge”. In fact, the neutral version
of the Einstein—Rosen bridge is an observation that a suitable coordinate change
seems to make the Schwarzschild (coordinate) singularity disappear, at ¥ = 2M. In
particular, Einstein and Rosen discovered that certain coordinate systems naturally
cover only two asymptotically flat regions of the maximally extended Schwarzschild
spacetime. Thus, the key ingredient of the bridge construction is the existence of an
event horizon, and the Einstein—Rosen bridge is a coordinate artefact arising from
choosing a coordinate patch, which is defined to double-cover the asymptotically flat
region exterior to the black hole event horizon.

The field lay dormant for approximately two decades after the work by
Einstein and Rosen, and it was only in 1955 that John Wheeler began to be
interested in topological issues in General Relativity [6]. More specifically, in a
multiply-connected spacetime, where two widely separated regions were connected
by a tunnel, and taking into account the coupled Einstein—-Maxwell field equations,
Wheeler constructed hypothesized “geon” solutions. These denote a “gravitational-
electromagnetic entity” and in modern language, the geon may be considered as
a hypothetical “unstable gravitational-electromagnetic quasisoliton” [7]. Building
on this work, in 1957, Misner and Wheeler presented an extensive analysis, where
Riemannian geometry of manifolds of nontrivial topology was investigated with an
ambitious view to explain all of physics [8]. Their objective was essentially to use the
source-free Maxwell equations, coupled to Einstein gravity, in the context of nontriv-
ial topology, to build models for classical electrical charges and all other particle-like
entities in classical physics. Indeed, this work was one of the first uses of abstract
topology, homology, cohomology, and differential geometry in physics [7] and their
point of view is best summarized by the phrase: “Physics is geometry”. It is interest-
ing to note that this is also the first paper [8] that introduces the term “wormhole”.
In fact, Misner and Wheeler considered that the existing well-established “already
unified classical theory” allows one to describe in terms of empty curved space [8]
the following concepts: gravitation without gravitation; electromagnetism without
electromagnetism; charge without charge; and mass without mass (where around the
mouth of the “wormhole” lies a concentration of electromagnetic energy that gives
mass to this region of space).

Despite of the fact that considerable effort was invested in attempting to understand
the “geon” concept, the geonlike-wormhole structures seem to have been considered
a mere curiosity and after the solutions devised by Wheeler and Misner, there is a
30-year gap between their original work and the 1988 Morris—Thorne renaissance
of wormhole physics [9]. However, isolated pieces of work appeared in the 1970s,
such as the Homer Ellis’ drainhole [10, 11] concept and Bronnikov’s tunnel-like
solutions [12]. It is only in 1988 that a renaissance of wormhole physics took place,
through the seminal paper by Morris and Thorne [9]. In 1995, Matt Visser wrote a
full-fledged treatise on wormhole physics and we refer the reader to [13] for a more
recent review on wormhole physics and warp drive spacetimes.
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1.2 State of the Art: Wormhole Geometries and Warp
Drive Spacetimes

The purpose of the present book is to provide an update on the state of the art on
several topics of research in wormhole physics and warp drive spacetimes. Although
rather incomplete in all the existing topics, we present the relevant fields of modern
research in this interesting topic throughout the book.

In Chap.2, the basics of wormhole physics are briefly reviewed, where the
interesting properties and characteristics of static spherically symmetric traversable
wormholes are considered, such as, the mathematics of embedding, equations of
structure for the wormhole, the traversability conditions, the necessity of exotic mat-
ter to support these geometries and wormhole solutions in modified gravity. Further-
more, recent advances are presented on dynamic spherically symmetric thin-shell
traversable wormholes. More specifically, a novel approach is considered in the sta-
bility analysis of thin-shell wormholes, by reversing the logic flow and the surface
mass is determined as a function of the potential. This procedure implicitly makes
demands on the equation of state of the matter residing on the transition layer, and
demonstrates in full generality that the stability of thin-shell wormholes is equivalent
to choosing suitable properties for the material residing on the thin shell.

In Chap. 3, rotating wormholes in General Relativity are presented in four and
five dimensions. Their nontrivial topology is supported by a phantom field, and it is
shown that the wormhole solutions depend on three parameters, which are associated
with the size of the throat, the magnitude of the rotation, and the symmetry of the
two asymptotic regions. The physical properties of these wormholes are discussed
in detail. Their global charges are derived, including the mass formulae for the
symmetric and nonsymmetric cases, and their geometry is discussed, a definition
of their throat is presented in the nonsymmetric case, and their ergoregions are
investigated. Furthermore, the existence of limiting configurations are demonstrated,
which correspond to extremal rotating vacuum black holes. Since a stability analysis
of rotating wormholes in four dimensions is very involved, a stability analysis of five-
dimensional rotating wormbholes is performed, with equal magnitude of the angular
momenta only, where the investigation is restricted to the unstable radial modes. It
is interesting to note that when the rotation is sufficiently fast, the radial instability
disappears for these five dimensional wormholes.

In Chap.4, the observational and astrophysical features are considered and the
physical properties of matter forming thin accretion disks in static spherically
symmetric and stationary axially symmetric wormhole spacetimes are discussed.
The time averaged energy flux, the disk temperature and the emission spectra of the
accretion disks are obtained for these exotic geometries, and are compared with the
Schwarzschild and Kerr solutions, respectively. For static and spherically symmetric
wormboles it is shown that more energy is emitted from the disk than in the case
of the Schwarzschild potential and the conversion efficiency of the accreted mass
into radiation is more than a factor of two higher for wormholes than for static black
holes. For axially symmetric wormhole spacetimes, by comparing the mass accretion
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with the one of a Kerr black hole, it is verified that the intensity of the flux emerging
from the disk surface is greater for wormholes than for rotating black holes with the
same geometrical mass and accretion rate. Furthermore, it is shown that the rotating
wormbholes provide a much more efficient engine for the transformation of the accre-
tion mass into radiation than the Kerr black holes. It is then concluded that specific
signatures appear in the electromagnetic spectrum, thus leading to the possibility
of distinguishing wormhole geometries by using astrophysical observations of the
emission spectra from accretion disks.

In Chap. 5, wormhole geometries in modified gravity are considered, in particular,
asystematic analysis of static spherically symmetric solutions describing a wormhole
geometry in a specific Horndeski model with Galileon shift symmetry is presented.
The Lagrangian of the theory contains the term (¢g"” + nG*")¢ ¢, and represents
a particular case of the general Horndeski lagrangian, which leads to second-order
equations of motion. The Rinaldi approach is used to construct analytical solutions
describing wormholes with nonminimal kinetic coupling. It is shown that worm-
holes exist only if ¢ = —1 (phantom case) and > 0. The wormbhole throat connects
two anti-de Sitter spacetimes. The wormhole metric has a coordinate singularity at
the throat. However, since all curvature invariants are regular, there is no curvature
singularity there.

In Chap. 6, self sustained traversable wormholes are considered, which are con-
figurations sustained by their own gravitational quantum fluctuations. The analysis
is evaluated by means of a variational approach with Gaussian trial wave functionals
to one loop, and the graviton quantum fluctuations are interpreted as a kind of exotic
energy. Since these fluctuations usually produce ultra-violet divergences, two proce-
dures to keep them under control are introduced. The first consists of a zeta function
regularization and a renormalization process that is introduced to obtain a finite one
loop energy. The second approach considers the case of distorted gravity, namely,
when either Gravity’s Rainbow or a noncommutative geometry is used as a tool to
keep under control the ultra-violet divergences. In this context, it is shown that for
every framework, the self-sustained equation will produce a Wheeler wormhole of
Planckian size. Some consequences on topology change are discussed together with
the possibility of obtaining an enlarged wormbhole radius.

Chapter 7 reviews the properties of static and spherically symmetric configura-
tions of general relativity with a minimally coupled scalar field ¢, whose kinetic
energy is negative in a restricted (strong-field) region of space and positive outside
it. This “trapped ghost” concept may, in principle, explain why no ghosts are observed
under usual weak-field conditions. The configurations considered are wormholes and
regular black holes without a center in particular, black universes (black holes with
an expanding cosmology beyond the event horizon). Spherically symmetric pertur-
bations of these objects are considered, and it is stressed that, due to the universal
shape of the effective potential near a transition surface from canonical to phantom
behavior of the scalar field, such surfaces restrict the possible perturbations and play
a stabilizing role.

In Chap.8, an explicit implementation of geons in the context of gravitational
theories extending General Relativity is discussed in detail. Such extensions are
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formulated in the Palatini approach, where the metric and affine connection are
regarded as independent entities. This formulation is inspired on the macroscopic
description of the physics of crystalline structures with defects in the context of solid
state physics. Several theories for the gravitational field are discussed, including
additional contributions of the Ricci tensor in four and higher dimensions. As opposed
to the standard metric approach, which generically develops higher order derivative
field equations and ghost-like instabilities, the Palatini formulation generates ghost-
free and second-order equations that reduce to the general relativistic equations in
vacuum. In this context, static and spherically symmetric solutions with electric fields
generate a plethora of wormhole solutions satisfying the classical energy conditions,
and whose properties allow to identify them with the concept of the geon, originally
introduced by Wheeler. These solutions provide new insights on the avoidance of
spacetime singularities in classical effective geometries.

The standard energy conditions of classical general relativity are (mostly) linear in
the stress—energy tensor, and have clear physical interpretations in terms of geodesic
focussing, but suffer the significant drawback that they are often violated by semi-
classical quantum effects. In contrast, it is possible to develop non-standard energy
conditions that are intrinsically non-linear in the stress—energy tensor, and which
exhibit much better well-controlled behavior when semi-classical quantum effects
are introduced, at the cost of a less direct applicability to geodesic focussing. In
Chap.9, a review of the standard energy conditions and their various limitations
is presented. (Including the connection to the Hawking—Ellis type I, II, III, and IV
classification of stress-energy tensors). One then turns to the averaged, nonlinear, and
semi-classical energy conditions, and see how much can be done once semi-classical
quantum effects are included.

Chapter 10 surveys the violation of classical energy conditions in quantum field
theory (QFT) and the theory of Quantum Energy Inequalities (QEIs). The latter
QEIs are lower bounds on local averages of energy densities and related quantities
in QFT. They replace the classical energy conditions of classical general relativity.
In particular, (a) the main properties of QEIs are indicated using the example of
a free scalar field in Minkowski spacetime; (b) a rigorous derivation of a QEI for
scalar fields in general curved spacetimes is given; (c) the resulting QEI is evaluated
explicitly in some specific cases; (d) further recent developments, including QEIs
for conformal field theories and an integrable QFT are presented, along with work
on the probability distribution for measurements of averaged energy densities; (e)
the status of QEISs in interacting models is discussed; (f) various applications of the
QEIs are presented.

Moving on to “warp drive” spacetimes, the basic definition is considered and
interesting aspects of these spacetimes are explored, in Chap. 11. In particular, the
violation of the energy conditions associated with these spacetimes is discussed, as
well as some other interesting properties such as the appearance of horizons for the
superluminal case, and the possibility of using a warp drive to create closed timelike
curves. Applying linearized gravity to the weak-field warp drive, it is found that the
energy condition violations in this class of spacetimes is generic to the form of the
geometry under consideration and is not simply a side-effect of the “superluminal”
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properties. Fundamental limitations of “warp drive” spacetimes are also found, by
proving extremely stringent conditions placed on these geometries.

An interesting aspect of the warp drive resides in the fact that points on the outside
front edge of a superluminal bubble are always spacelike separated from the centre
of the bubble. This implies that an observer in a spaceship cannot create nor control
on demand an Alcubierre bubble. However, causality considerations do not prevent
the crew of a spaceship from arranging, by their own actions, to complete a round
trip from the Earth to a distant star and back in an arbitrarily short time, as measured
by clocks on the Earth, by altering the metric along the path of their outbound trip.
Thus, Krasnikov introduced a metric with an interesting property that although the
time for a one-way trip to a distant destination cannot be shortened, the time for a
round trip, as measured by clocks at the starting point (e.g., Earth), can be made
arbitrarily short. Interesting properties of this solution, denoted as the Krasnikov
tube are presented such as its four-dimensional generalization, the violations of the
energy condition, among other features. Finally, the generation of closed timelike
curves are considered in the warp spacetime and the Krasnikov tube.

Faster than light travel and time machines are among the most tantalizing possi-
bilities allowed for by Einstein’s General Relativity. In Chap. 12, the main features of
these phenomena are reviewed, namely, in which spacetimes they appear to be real-
ized, and it is explained why they are interconnected with the Einsteinian framework.
The paradoxes related to the possibility of time travel of the proposed solutions are
then briefly discussed. Finally, an explicit example is provided where a purely semi-
classical gravity framework seems sufficient to prevent the stability of a spacetime
allowing faster than light propagation. It is argued that this supports a sort of “pre-
emptive” chronology protection that forbids the generation of the very spacetime
structures which could lead to the construction of time machines.
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Part I
Traversable Wormbholes



Chapter 2
Wormhole Basics

Francisco S.N. Lobo

2.1 Static and Spherically Symmetric Traversable
Wormbholes

2.1.1 Spacetime Metric

Throughout this book, unless stated otherwise, we will consider the following spher-
ically symmetric and static wormhole solution [1]

2

ds? = —?*V g + a4
1—b(r)/r

+ 72 (dO* +sin* 0 dp?) . 2.1)

The metric functions @ (r) and b(r) are arbitrary functions of the radial coordinate
r. As @(r) is related to the gravitational redshift, it has been denoted the redshift
function, and b(r) is called the shape function, as it determines the shape of the
wormhole [1-3], which will be shown below using embedding diagrams. The radial
coordinate r is non-monotonic in that it decreases from +o00 to a minimum value rg,
representing the location of the throat of the wormhole, where b(ry) = ry, and then
increases from ry to +00. Although the metric coefficient g, becomes divergent at
the throat, which is signalled by the coordinate singularity, the proper radial distance
(r) ==+ frz [1 —b(@r)/r17"?dr is required to be finite everywhere. The proper
distance decreases from / = +o0, in the upper universe, to / = 0 at the throat, and
then from zero to —oo in the lower universe. One must verify the absence of horizons,
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in order for the wormhole to be traversable. This condition must imply that g;; =
—e?®) £ (), so that @ (r) must be finite everywhere.!

Another interesting feature of the redshift function is that its derivative with respect
to the radial coordinate also determines the “attractive” or “repulsive” nature of
the geometry. In order to verify this, consider the four-velocity of a static observer
givenby U* = dx*/dt = (e~®", 0, 0, 0). The observer’s four-acceleration is a* =
U*"., U", which has the following components:

t r / b

a"=0, a =o' (1--), 2.2)
r

where the prime denotes a derivative with respect to the radial coordinate r. Now,

note that from the geodesic equation, a radially moving test particle which starts

from rest initially has the equation of motion

d?r L (drt\® .
P = —I—;[ (d_‘l,') = —a . (23)

Here, a” is the radial component of proper acceleration that an observer must maintain
in order to remain at rest at constant r, 6, ¢, so that from Eq. (2.2), a static observer
at the throat for generic @ (r) is a geodesic observer. In particular, for a constant
redshift function, @’(r) = 0, static observers are also geodesic. Thus, a wormhole
is “attractive” if a” > 0, i.e. observers must maintain an outward-directed radial
acceleration to keep from being pulled into the wormhole. If a” < 0, the geometry
is “repulsive”, i.e. observers must maintain an inward-directed radial acceleration to
avoid being pushed away from the wormhole. Indeed, this distinction depends on the
sign of @', as is transparent from Eq. (2.2).

2.1.2 The Mathematics of Embedding

We can use embedding diagrams to represent a wormhole and extract some useful
information for the choice of the shape function, b(r). Due to the spherically sym-
metric nature of the problem, one may consider an equatorial slice, 8 = /2, without
loss of generality. The respective line element, considering a fixed moment of time,
t = const, is given by

dr?

2 __
B =T,

+r2dg?. (2.4)

I'This follows from a result originally due to C.V. Vishveshwara stated as follows: In any asymptoti-
cally flat spacetime with a Killing vector & (§ = eg for the metric (2.1)) which (¢) is the ordinary time-
translation Killing vector at spatial infinity and (i7) is orthogonal to a family of three-dimensional
surfaces, the 3-surface & - £ = 0, i.e. ey - g = g;+ = 0, is a null surface that cannot be crossed by
any outgoing, future-directed timelike curves, i.e. a horizon.
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Fig. 2.1 The embedding
diagram of a
two-dimensional section
along the equatorial plane
(t =const,0 =m/2)of a
traversable wormhole. For a
full visualization of the
surface sweep through a 27
rotation around the z—axis,
as can be seen from the
graphic on the right

To visualize this slice, one embeds this metric into three-dimensional Euclidean
space, in which the metric can be written in cylindrical coordinates, (r, ¢, z), as

ds* =dz® +dr’ +r*d¢*. (2.5)

In the three-dimensional Euclidean space the embedded surface has equation
z = z(r), so that the metric of the surface can be written as

2
ds? = [1 + (Z—Z) } dr* +r*dg*. (2.6)
r

Comparing Eq. (2.4) with (2.6), one deduces the equation for the embedding surface,
which is given by
dz r 172
—=x—-1 . 2.7
=5 ) e

To be a solution of a wormhole, the geometry has a minimum radius, » = b(r) = ry,
denoted as the throat, at which the embedded surface is vertical, i.e. dz/dr — oo.
Far from the throat, one may consider that space is asymptotically flat, dz/dr — 0
asr — oo.

To be a solution of a wormhole, one also needs to impose that the throat flares
out (see Fig. 2.1 for details). This flaring-out condition entails that the inverse of the
embedding function r(z) must satisfy d’r/dz> > 0 at or near the throat ry. Differ-
entiating dr/dz = +(r/b(r) — 1)'/? with respect to z, we have
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d’r  b-—Vbr 0 2.8)
— = —>0. .
dz? 2b?

This “flaring-out” condition is a fundamental ingredient of wormhole physics, and
plays a fundamental role in the analysis of the violation of the energy conditions. At
the throat we verify that the form function satisfies the condition #’(r¢) < 1. Note,
however, that this treatment has the drawback of being coordinate dependent, and
we refer the reader to Refs. [4, 5] for a covariant treatment.

2.1.3 Equations of Structure for the Wormhole

From the metric expressed in the form ds* = g,,, dx" dx", one may determine the
Christoffel symbols (connection coefficients), I'*,g, defined as

1
IMep = 58" (8vap + Gupow — Gupiv) + (2.9)
which for the metric (2.1) have the following nonzero components:

B br—>b
- 2r(r —b)’
IMpg=—r+b, TI"ss=—(—Db)sin’0,

b
r, =o', F’n=(1—;) et I,

6 ¢ 1 0 : ¢
Iy =1I%4=-, I' 44 = —sinf cos@, I'’gy =tan6. (2.10)
r
The Riemann tensor is defined as
Rgys =5, — Ty 5+ Ty T s — s, . (2.11)

However, the mathematical analysis and the physical interpretation is simplified
using a set of orthonormal basis vectors. These may be interpreted as the proper
reference frame of a set of observers who remain at rest in the coordinate system
(t,r,0,9), with (r, 0, ¢) fixed. Denote the basis vectors in the coordinate system as
(e;, e, €y, €g). Thus, the orthonormal basis vectors are given by

e, =c%e

R ENY
e = (L =b/r) e 2.12)
€ =r €y

e; = (rsin 0)"! e,

The nontrivial Riemann tensor components, given in the orthonormal reference
frame, take the following form:
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~ ~ A A / —
Ry = —Rlpp =Ry = —R o = (1 - é) [—fl’” _ @4 2= qs’] . (2.13)
r 2r(r — b)
Risig = =R gor = Réfz‘é = _Réz‘éf =- (1 - é) £ (2.14)
r r
~ ~ ~ ~ b @/
R g5 = —R’$$;:R¢ﬁ¢;:—R¢%f:_(l—;) - (2.15)
; ; 5 5 br—b
Rigrg = —R jop = R s = —R' 5 = ;r3 ; (2.16)
P 5 b'r—>b
e RF. _Rb . _ _Rb . _
Rigig = R oo = R4 = —RPpg = — 3 (2.17)
5 5 ; ; b
b . _ _pb o _pb. __pb. _ L
R6p = ~R546 = Rlog6 = ~R79gp = 13- (2.18)

where, as before, a prime denotes a derivative with respect to the radial coordinate
r.

The Ricci tensor, Ry, is given by the contraction R;; = R* 34, and the nonzero
components are the following:

Ro=(1-2)] o4 @y tr=3b+44 (2.19)
" r 2r(r — b) ’ ’
b b—>br b—Dbr
Riy=—(1—=)|®"+ (@) @’ . (220
( r)[ O e h '*ﬂa—bJ 220
b b'r+b @’
Ri;=R;: =(l—=-)|——"—"-——|. 2.21
00 o9 ( r) |:2r2(r—b) r :| ( )
The curvature scalar or Ricci scalar, defined by R = g Ry, 1s given by
b y " b’ b'r+3b—4r _,
R=-=2(1—-) Q"+ (@) — — o' . (222
r r(r —b) 2r(r — b)
Thus, the Einstein tensor, given in the orthonormal reference frame by G;; =
Rpp — %R 8i» yields for the metric (2.1), the following nonzero components:
b/
Gy = = (2.23)
b b\ @’
G;;.=——3+2(1——)—, (2.24)
r r)] r

T b O 1 (0) b'r—»b Y b'r—»b +<IJ/ (2.25)
v r 2r(r — b) 2r2(r=by  r ] T

Gys =Gy (2.26)

2

respectively.
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2.1.4 Stress—Energy Tensor

Through the Einstein field equation, G ;5 = 87 T3, one verifies that the stress—energy
tensor Ty has the same algebraic structure as G5, Eqs. (2.23)—(2.26), and the only
nonzero components are precisely the diagonal terms T, T;;, Tz, and Ty,. Using
the orthonormal basis, these components carry a simple physical interpretation, i.e.

Ti=pr), Ti=-t0r), Tz=T=pr), (2.27)

where p(r) is the energy density, 7 (r) is the radial tension, with 7 (r) = —p, (r), i.e.
it is the negative of the radial pressure, p(r) is the pressure measured in the tangential
directions, orthogonal to the radial direction.

Thus, the Einstein field equation provides the following stress—energy scenario:

)——1 b—, (2.28)
pr T 87 2’ '
1 b b\ @'
) =— |=-2(1-=) =], (2.29)
8 |:r3 ( r) r:|

r = - (1 - l—’) [cp” Y L L Y
P = er r 2r2(1 —b/r)

br—b ol 230

2r3(1—b/r)+ r:| (2.30)

Note that one now has three equations with five unknown functions of the radial

coordinate. Several strategies to solve these equations are available, for instance, one

can impose an equation of state [6—10] and consider a specific choice of the shape

function or of the redshift function.

Note that the sign of the energy density depends on the sign of b'(r). One often
comes across the misleading statement, in the literature, that wormholes should
necessarily be threaded by negative energy densities, or negative matter; however,
this is not necessarily the case. Note, however, that due to the flaring-out condition,
observers traversing the wormhole with sufficiently high velocities, v — 1, will mea-
sure a negative energy density. This will be shown below. Furthermore, one should
perhaps correctly state that it is the radial pressure that is necessarily negative at the
throat, which is transparent for the radial tension at the throat, which is given by
pr(r) = —t(ro) = —8mrg) "

By taking the derivative with respect to the radial coordinate r, of Eq. (2.29), and
eliminating " and @”, given in Egs. (2.28) and (2.30), respectively, we obtain the
following equation:

t/=(,0—r)<15/—§(p+r). 2.31)
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Equation (2.31) is the relativistic Euler equation, or the hydrostatic equation for
equilibrium for the material threading the wormhole, and can also be obtained using
the conservation of the stress—energy tensor, T27.; = 0, inserting i = r.

The effective mass, m(r) = b(r)/2 contained in the interior of a sphere of radius
r, can be obtained by integrating Eq. (2.28), which yields

ro ' N2 g
m(r):E-i—/ 4 p(r'yr'=dr’. (2.32)

ro

Therefore, the form function has an interpretation which depends on the mass dis-
tribution of the wormhole.

2.1.5 Exotic Matter and Modified Gravity

2.1.5.1 Exoticity Function

To gain some insight into the matter threading the wormhole, Morris and Thorne
defined the dimensionless function & = (t — p)/|p| [1], which taking into account
Egs. (2.28) and (2.29) yields

T—p b/r=b —=2r(1-b/r)®’

£ =
ol 1b'|

(2.33)

Combining the flaring-out condition, given by Eq. (2.8), with Eq. (2.33), the exoticity
function takes the form

262 d*r b\ @’
== 2L o (1-2) =, 234
S= ] a2 r( r)lb/l (239

Now, taking into account the finite character of p, and consequently of »’, and the
fact that (1 — b/r)®’ — 0 at the throat, we have the following relationship:

To — Po

[ ool

The restriction 7y > pg is a somewhat troublesome condition, depending on one’s
point of view, as it states that the radial tension at the throat should exceed the energy
density. Thus, Morris and Thorne coined matter constrained by this condition “exotic
matter” [1]. We shall verify below that this is defined as matter that violates the null
energy condition (in fact, it violates all the energy conditions) [1, 2].

Exotic matter is particularly troublesome for measurements made by observers
traversing through the throat with a radial velocity close to the speed of light. Consider
a Lorentz transformation, x* = A% x?, with A’l&r AY S = 8’2]; and A, defined as

E(rg) = >0. (2.35)
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y 00 pv
0100
0010
yv00 y

(Al'y) = (2.36)

The energy density measured by these observers is given by Ty, = Aﬂﬁ, A%, Tho,
ie.

Too =¥ (po— V'10) (2.37)

with y = (1 — v2)~1/2_ For sufficiently high velocities, v — 1, the observer will
measure a negative energy density, Ty < 0.

This feature also holds for any traversable, nonspherical and nonstatic wormhole.
To see this, one verifies that a bundle of null geodesics that enters the wormhole at
one mouth and emerges from the other must have a cross-sectional area that initially
increases, and then decreases. This conversion of decreasing to increasing is due
to the gravitational repulsion of matter through which the bundle of null geodesics
traverses.

2.1.5.2 The Violation of the Energy Conditions

The exoticity function (2.33) is closely related to the null energy condition (NEC),
which asserts that for any null vector k*, we have T,,k*k" > 0. For a diagonal
stress—energy tensor, this implies p — 7 > O and p + p > 0. Using the Einstein field
equations (2.28) and (2.29), evaluated at the throat r(, and taking into account the
finite character of the redshift function so that (1 — b/r)®’|,, — 0, we verify the
condition (p — 1)|,, < 0. This violates the NEC. In fact, it implies the violation of
all the pointwise energy condition. Although classical forms of matter are believed
to obey the energy conditions, it is a well-known fact that they are violated by certain
quantum fields, amongst which we may refer to the Casimir effect. Thus, the flaring-
out condition (2.8) entails the violation of the NEC, at the throat. Note that negative
energy densities are not essential, but negative pressures are necessary to sustain the
wormhole throat.

It is interesting to note that the violations of the pointwise energy conditions led
to the averaging of the energy conditions over timelike or null geodesics [11]. The
averaged energy conditions permit localized violations of the energy conditions, as
long on average the energy conditions hold when integrated along timelike or null
geodesics. Now, as the averaged energy conditions involve averaging over a line
integral, with dimensions (mass)/(area), not a volume integral, they do not provide
useful information regarding the “total amount” of energy condition violating matter.
In order to overcome this shortcoming, the “volume integral quantifier” was proposed
[12]. Thus, the amount of energy condition violations is then the extent that these
integrals become negative.
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2.1.5.3 Wormbholes in Modified Theories of Gravity

Generally, the NEC arises when one refers back to the Raychaudhuri equation,
which is a purely geometric statement, without the need to refer to any gravitational
field equations. Now, in order for gravity to be attractive, the positivity condition
R, k*k” > 0 is imposed in the Raychaudhuri equation. In general relativity, con-
tracting both sides of the Einstein field equation G, = «T},,, (where k> = 87) with
any null vector k£, one can write the above condition in terms of the stress—energy
tensor given by 7),,k*k” > 0, which is the statement of the NEC.

In modified theories of gravity the gravitational field equations can be rewritten
as an effective Einstein equation, given by G, = «*T¢ll, where Tl is an effective
stress—energy tensor containing the matter stress—energy tensor 7),, and the curvature
quantities, arising from the specific modified theory of gravity considered [13]. Now,
the positivity condition R,,k*k” > 0 in the Raychaudhuri equation provides the
generalized NEC, Tlfffk“k" > 0, through the modified gravitational field equation.

Therefore, the necessary condition to have a wormhole geometry is the violation
of the generalized NEC, i.e. Tlfffk“k” < 0. In classical general relativity this simply
reduces to the violation of the usual NEC, i.e. T,,k*k” < 0. However, in modified
theories of gravity, one may in principle impose that the matter stress—energy tensor
satisfies the standard NEC, T,,,k*k” > 0, while the respective generalized NEC is
necessarily violated, Tﬁfk“k” < 0, in order to ensure the flaring-out condition.

More specifically, consider the generalized gravitational field equations for a large
class of modified theories of gravity, given by the following field equation: [13]

WG+ Hy) — &2(W) Ty = > T (2.38)

where H,, is an additional geometric term that includes the geometrical modifi-
cations inherent in the modified gravitational theory under consideration; g; (¥/)
(i =1, 2) are multiplicative factors that modify the geometrical sector of the field
equations, and ¥/ denote generically curvature invariants or gravitational fields such
as scalar fields; the term g, (¥") covers the coupling of the curvature invariants or
the scalar fields with the matter stress—energy tensor, 7).

It is useful to rewrite this field equation as an effective Einstein field equation, as
mentioned above, with the effective stress—energy tensor, T/flff, given by

o, (Wi
ar _LE0WD g (2.39)
1Y)
where g, (W/) = g,(¥/)/k? and H,, = H,,/k* are defined for notational conve-
nience.
In modified gravity, the violation of the generalized NEC, T;’ffk“k” < 0, implies
the following restriction:
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o, (W)
TH &) f g < kk (2.40)
g1 (&)
For general relativity, with g1 =1, g(W/) =0, and H,, =0, we recover
the standard violation of the NEC for the matter threading the wormhole, i.e.
T,wkt'k” < 0.
If the additional condition [1 + g,(¥/)]/g(¥") > 0 is met, then one obtains
a general bound for the normal matter threading the wormhole, in the context of
modified theories of gravity, given by

vy
LIRS

0 < Ty k'k" < ——————H,,
B T A (72 R

(2.41)

2.1.6 Traversability Conditions

In constructing traversable wormhole geometries, we will be interested in specific
solutions by imposing specific traversability conditions. Assume that a traveller of an
absurdly advanced civilization begins the trip in a space station in the lower universe,
at proper distance [ = —I[;, and ends up in the upper universe, at/ = [,. Furthermore,
consider that the traveller has a radial velocity v(r), as measured by a static observer
positioned at . One may relate the proper distance travelled d/, radius travelled dr,
coordinate time lapse d¢, and proper time lapse as measured by the observer dt, by
the following relations:

e dl o b\ dr
v=e EZZFE 1—; E, (242)
dl b “12 gy (243)
Vv = —_—= — = _ R
¥ dt + r dt

It is also important to impose certain conditions at the space stations [1]. First,
consider that space is asymptotically flat at the stations, i.e. b/r < 1. Second, the
gravitational redshift of signals sent from the stations to infinity should be small, i.e.
Ar/A=e"® — 1~ —@,sothat |®| « 1. The condition |@| « 1 imposes that the
proper time at the station equals the coordinate time. Third, the gravitational accel-
eration measured at the stations, given by g = —(1 — b/r)"'/2 @' ~ —@’, should
be less than or equal to the Earth’s gravitational acceleration, g < gg, so that the
condition |@’| < gg is met.

For a convenient trip through the wormhole, certain conditions should also be
imposed [1]. First, the entire journey should be done in a relatively short time as
measured both by the traveller and by observers who remain at rest at the sta-
tions. Second, the acceleration felt by the traveller should not exceed the Earth’s



2 Wormhole Basics 21
gravitational acceleration, gg. Finally, the tidal accelerations between different parts
of the traveller’s body should not exceed, once again, Earth’s gravity.

2.1.6.1 Total Time in a Traversal

The trip should take a relatively short time, for instance, Morris and Thorne con-

sidered 1 year, as measured by the traveller and for observers that stay at rest at the
space stations, / = —[; and [ = I, i.e.

+h g1

ATyaveller = — =<1 year, (244)
-1 vy
oo g]

Atspaceslalion = vy <1 year, (2.45)
-1 ve

respectively.

2.1.6.2 Acceleration Felt by a Traveller

An important traversability condition required is that the acceleration felt by the
traveller should not exceed Earth’s gravity [1]. Consider an orthonormal basis of the
traveller’s proper reference frame, (e, €5, €5, €3), given in terms of the orthonormal
basis vectors of Eq.(2.12) of the static observers, by a Lorentz transformation, i.e.

e =veFyve, e, =Fyetyve, e =e, e =¢e;, (240
where y = (1 —v?)~!/2, and v(r) being the velocity of the traveller as he passes r, as

measured by a static observer positioned there. Thus, the traveller’s four-acceleration
expressed in his proper reference frame, a® = U U" ./» yields the following restric-

tion:
b\'"? ,
(1 - —) e ? ()/ e‘p)
r

2.1.6.3 Tidal Acceleration Felt by a Traveller

lal = =8o- (2.47)

It is also convenient that an observer traversing through the wormhole should not be
ripped apart by enormous tidal forces. Thus, another of the traversability conditions
required is that the tidal accelerations felt by the traveller should not exceed, for
instance, the Earth’s gravitational acceleration [1]. The tidal acceleration felt by the
traveller is given by
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Aa? = —RY UTpYUP, (2.48)

vap
where U = §" 0 is the traveller’s four-velocity and n% is the separation between
two arbitrary parts of his body. Note that n% is purely spatial in the traveller’s refer-
ence frame, as U ’l/nﬁr =0, so that 776, = 0. For simplicity, assume that |nf/| ~2m
along any spatial direction in the traveller’s reference frame. Taking into account the
antisymmetric nature of R* Wﬂ in its first two indices, we verify that Aa” is purely
spatial with the components

%

i IA"AAA VA > N |
Aa' = —R opo = Ri,o/j,o, n’ . (2.49)
Using a Lorentz transformation of the Riemann tensor components in the sta-
tic observer’s frame, (e;, €;, €, e¢;), to the traveller’s frame, (e;, €5, €5, €3), the

nonzero components of R; »4 are given by

Riwie = Rpisi

b br—b
=—(1=2)|-0"— @)+ 2" o], (2.50)
r 2r(r — b)
Rygan = Ryoso = v7 Rowgr + 77V Ry
y? b
= |V b ==)+20r—b)D']|. (2.51)
2r2 r
Thus, Eq. (2.49) takes the form
Aai, = —Rigip ni/, Aai/ = —Rs45¢ nj/, Aaé/ = —Ry430 173,. (2.52)

The constraint |Aa”' | < gg provides the tidal acceleration restrictions as measured
by a traveller moving radially through the wormhole, given by the following inequal-

ities:
1 b @ + (¢/)2 b'r —b @'
r 2r(r — b)

v , b ,
ﬁ[vz(b —;)—{-Z(r—b)cb]

The radial tidal constraint, Eq. (2.53), constrains the redshift function, and the lateral
tidal constraint, Eq. (2.54), constrains the velocity with which observers traverse the
wormbhole. These inequalities are particularly simple at the throat, ry,

'] < go. (2.53)

%] < 2o (2.54)
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2
0/ (r)| < —220 (2.55)
(I=0)In"|
2 2
yh? < 80l (2.56)
(1= n?|

For the particular case of a constant redshift function, @" = 0, the radial tidal
acceleration is zero, and Eq. (2.54) reduces to

b .
@u;NMﬂs%. (2.57)

For this specific case one verifies that stationary observers with v = 0 measure null
tidal forces.
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2.2 Dynamic Spherically Symmetric Thin-Shell
Traversable Wormholes

An interesting and efficient manner to minimize the violation of the null energy
condition is to construct thin-shell wormholes using the thin-shell formalism [2, 14]
and the cut-and-paste procedure as described in [2, 15—-18]. Motivated in minimizing
the usage of exotic matter, the thin-shell construction was generalized to nonspher-
ically symmetric cases [2, 15], and in particular, it was found that a traveller may
traverse through such a wormhole without encountering regions of exotic matter.
In the context of a linearized stability analysis [16], two Schwarzschild spacetimes
were surgically grafted together in such a way that no event horizon is permitted
to form. This surgery concentrates a nonzero stress energy on the boundary layer
between the two asymptotically flat regions and a dynamical stability analysis (with
respect to spherically symmetric perturbations) was explored. In the latter stability
analysis, constraints were found on the equation of state of the exotic matter that
comprises the throat of the wormhole. Indeed, the stability of the latter thin-shell
wormbholes was considered for certain specially chosen equations of state [2, 16],
where the analysis addressed the issue of stability in the sense of proving bounded
motion for the wormhole throat.

This dynamical analysis was generalized to the stability of spherically symmet-
ric thin-shell wormholes by considering linearized radial perturbations around some
assumed static solution of the Einstein field equations, without the need to specify
an equation of state [18]. This linearized stability analysis around a static solu-
tion was soon generalized to the presence of charge [19], and of a cosmological
constant [20], and was subsequently extended to a plethora of individual scenarios
(see [21] and references therein). The key point of the present section is to develop
an extremely general, flexible, and robust framework that can quickly be adapted to
general spherically symmetric traversable wormholes in 3 + 1 dimensions see [21].
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We shall consider standard general relativity, with traversable wormholes that are
spherically symmetric, with all of the exotic material confined to a thin shell.

2.2.1 Generic Static Spherically Symmetric Spacetimes

To set the stage, consider two distinct spacetime manifolds, .#, and .#_, with
metrics given by g;rv (x) and 8uv (x"), in terms of independently defined coordinate
systems x/ and x”. A single manifold .# is obtained by gluing together the two
distinct manifolds, ., and .Z_, i.e. 4 = #+ U #_, at their boundaries. The
latter are given by X', and X_, respectively, with the natural identification of the
boundaries ¥ = ¥, = X¥_.

Consider two generic static spherically symmetric spacetimes given by the
following line elements:

b b -
ds? = —2P+(r) [1 — #} drl + [1 - #} dri +rid2%, (2.58)
+ +

on .#+, respectively. Using the Einstein field equation, G, = 87 T}, (with ¢ =
G = 1), the (orthonormal) stress—energy tensor components are given by

1

pr) = 30, (2.59)
= 1 / /
T = g [22'b—r) + 1], (2.60)
1 / /
pi(r) = =13 [(—=b+3rd —2r)®
+2r(b — 1) (@) +2r(b —r)®" +b'r], (2.61)

where we have denoted the quantity 7(r) here as the radial tension (the variable ©
in this section denotes the proper time, as measured by a comoving observer on the
thin shell). The % subscripts were (temporarily) dropped so as not to overload the
notation.

2.2.2 Extrinsic Curvature

The manifolds are bounded by hypersurfaces X', and X'_, respectively, with induced
metrics g;]f and 8ij- The hypersurfaces are isometric, i.e. gf] &) =g; &) =g &),
in terms of the intrinsic coordinates, invariant under the isometry. As mentioned
above, a single manifold .# is obtained by gluing together .#, and .Z_ at their
boundaries, i.e. .# = .4, U .#_, with the natural identification of the boundaries
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¥ = ¥, = X¥_. The three holonomic basis vectors e;, = d/d&' tangent to X have
the following components e(; | = dx! /&, which provide the induced metric on
the junction surface by the following scalar product g;; = € - €(j) = guvefﬁ)e(”j) |+
The intrinsic metric to X is thus provided by

dsy = —dt* + a*(z) (d6° + sin 0 dg?), (2.62)

where t is the proper time of an observer comoving with the junction surface, as
mentioned above.

Thus, for the static and spherically symmetric spacetime considered in this section,
the single manifold, .#, is obtained by gluing .#, and .#_ at X, i.e. at f(r,7) =
r —a(t) = 0. The position of the junction surface is given by

xH(z,0,¢) = (t(1),a(r), 0, ¢), (2.63)

and the respective 4-velocities (as measured in the static coordinate systems on the
two sides of the junction) are

e—d?i(a) /] _ bi;a) +a2

P ,a,0,0], (2.64)

Ut =

where the overdot denotes a derivative with respect to 7.

We shall consider a timelike junction surface X, defined by the parametric equa-
tion of the form f(x*(£%)) = 0. The unit normal 4—vector, n*, to X is defined
as
wp O O

dx® oxF

—1/2 of

) 2.65
h (2.65)

n, ==+

withn, n* = 41andn,e(;) = 0. The Israel formalism requires that the normals point
from .Z_ to .#. [14]. Thus, the unit normals to the junction surface, determined by
Eq. (2.65), are given by

—&P(a) b
= :l:(le— a 1= 2D o, 0) . (2.66)

_bi@ a
a

Note that the above expressions can also be deduced from the contractions U#n, = 0
and n*n,, = +1. The extrinsic curvature, or the second fundamental form, is defined
as K;j = nu;veg)ez’j). Taking into account the differentiation of nﬂeg) =0 with
respect to £/, the extrinsic curvature is given by
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32 xH J7ES 0x“ 3)(’3) (2.67)

i ”“(as’ o1 T @ B ggs

Note that for the case of a thin shell K;; is not continuous across X, so that for
notational convenience, the discontinuity in the second fundamental form is defined
as Kij = KJ — Kl;

Thus, using Eq. (2.67), the nontrivial components of the extrinsic curvature can
easily be computed to be

KOE — ﬂ:l | — bi(a)
0 a

. bi(a)—b (a)a
a+ —>— b

K=+t —2% 19\ (a)y/l— +(@) +a%;,  (2.69)
/1 — by (a) 442 a

where the prime now denotes a derivative with respect to the coordinate a.

+a?%, (2.68)

2.2.3 Lanczos Equations: Surface Stress—Energy

The Lanczos equations follow from the Einstein equations applied to the hypersurface
joining the four-dimensional spacetimes, and are given by

Slj — _g (Klj _ (Sle{];() , (270)

where S ; 1s the surface stress—energy tensor on X'. In particular, because of spherical
symmetry considerable simplifications occur, namely «'; = diag (%, €%, k% ). The
surface stress—energy tensor may be written in terms of the surface energy density,

o, and the surface pressure, &, as Sij = diag(—o, &, &?). The Lanczos equations
then reduce to

1 0
o = _EK07 (271)
1 T 0
= 8—71:(/(7_, +K9). (272)

Taking into account the computed extrinsic curvatures, Egs. (2.68) and (2.69), we see
that Eqs. (2.71) and (2.72) provide us with the following expressions for the surface
stresses:
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1 b b_
o= —— [\/1 bi@ +\/1 b-@ +c’12i| : (2.73)
dma a a
. . bi(@)+abl (a)
:@:L I+a +aa—+T++\/W)da )
8ma W “
. .. b_(a)+ab_(a)
L +d® +aii — 55— b
N a”+aa 2a + \/ja@L(a) . 274

Note that the surface energy density o is always negative, consequently violating
the energy conditions. The surface mass of the thin shell is given by m, = 4wa’o,
which will be used below.

2.2.4 Conservation Identity
The first contracted Gauss—Codazzi equation is given by
Gy n*n' = % (K* — K;jK7 —3R), (2.75)
which combined with the Einstein equations provides the evolution identity
SU Ky = —[Tun*n"]" . (2.76)

The convention [X]© = X*t|y — X |y and X = % XT|x + X7 |5) is used.
The second contracted Gauss—Codazzi equation is

Gwe(l)n =K/ -

b= K 2.77)

which together with the Lanczos equations provides the conservation identity
So= [T e n]" 2.78
jli = [t ept | - (2.78)

When interpreting the conservation identity Eq. (2.78), consider the momentum flux

defined by
a1 — 24 4 42

1 — b@ ’

a

+
[Tuv elin U] = [T U"n"]" = | = (T; + Tr)

(2.79)
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where Tj; and T;; are the four-dimensional stress—energy tensor components given
in an orthonormal basis. This flux term corresponds to the net discontinuity in the
momentum flux F,, = 7, U’ which impinges on the shell. Applying the Einstein
equations, we have

W1 a / b, (a) . / b_(a) .
[Tuv eiyn ]7 =1 |:d>+(a),/1 — +T +a2+ @' (a),/1 - — +a2:| )
(2.80)

It is useful to define the quantity

g [q>’+(a),/1 0 s o @1 - 2@ +a2} .8
4a a a

and to let A = 4 a® be the surface area of the thin shell. Then in the general case,
the conservation identity provides the following relationship:

d(cA A
(@A), ,dA _
drt drt

6]

Ad. (2.82)

The first term represents the variation of the internal energy of the shell, the second
term is the work done by the shell’s internal force, and the third term represents the
work done by the external forces.

If we assume that the equations of motion can be integrated to determine the
surface energy density as a function of radius a, that is, assuming the existence of a
suitable function o (a), then the conservation equation can be written as

2
o'=—=(0+P)+ &, (2.83)
a

—~

where 6’ = do/da. Note that the flux term Z is zero whenever @, = 0, which
is actually a quite common occurrence, for instance in either Schwarzschild or
Reissner—Nordstrom geometries, or more generally whenever p + p, = 0. In partic-
ular, for a vanishing flux Z = 0 one obtains the so-called “transparency condition”,
[G w U n"]ir = 0 [22]. The conservation identity, Eq. (2.78), then reduces to the
simple relationship 6 = —2 (o + &?)a/a, which is extensively used in the literature.

2.2.5 Equation of Motion

To qualitatively analyse the stability of the wormbhole, it is useful to rearrange
Eq. (2.73) into the thin-shell equation of motion given by

1
Eaz + V() =0, (2.84)
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where the potential V (a) is given by

1 ba) [m@] [A@7
V(a)_E{l— p, —[ 7 ] _[ms(a)] } (2.85)

Here m(a) = 4wa® o (a) is the mass of the thin shell. The quantities b(a) and A(a)
are defined, for simplicity, as

l;(a) - M, Aa) = M, (2.86)
2 2
respectively. This gives the potential V (@) as a function of the surface mass m;(a).
By differentiating with respect to a, we see that the equation of motion implies
a=-V'(a).
It is useful to reverse the logic flow and determine the surface mass as a function
of the potential. Following the techniques used in [23], suitably modified for the
present wormhole context, we have

m2(a) = 24 [1 - ? —2V(a)+\/ b+(a) —2V(a )\/

} (2.87)

and in fact
m(a) = —a [\/1 — b*;“) —2V(a) +\/ - # - 2V(a)i| (2.88)

with the negative root now being necessary for compatibility with the Lanczos equa-
tions. Note the novel approach used here, namely, by specifying V (a) dictates the
amount of surface mass that needs to be inserted on the wormhole throat. This
implicitly makes demands on the equation of state of the exotic matter residing on
the wormbhole throat.

In a completely analogous manner, after imposing the equation of motion for the
shell one has

0@ = [\/1 5@ oy +\/ -9 v )} (2.89)
Ta a

b (a)+ab’, (a)
1 | 1-2V(@) —aV'(a) - ——F "+ b
Pla) = — @ @ 2a + 1= 9 vy ao) )
8ma _ bi(@ a
a

1 —2V(a)

/
1-2V(a) — aV/(a) — 2038 L@

1—
b_(a)
a

—2V(a) a61>/_(a)i| . (2.90)

1— —2V(a)
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and the flux term is given by
g @' \/
(a) = Tma |: +(@)

The three quantities {o (a), ¥ (a), & (a)} are related by the differential conservation
law, so at most two of them are independent.

*(“) —2V(a)] .

(2.91)

2.2.6 Linearized Equation of Motion

Consider a linearization around an assumed static solution ag to the equation of
motion %ézz + V(a) = 0, and so also a solution of @ = —V'(a). A Taylor expansion
of V (a) around ay to second order yields

1
V(a) = V(ap) + V'(ao)(a — ag) + EV”(ao)(a —ap)* + Ol(a — ap)’l, (2.92)

and since we are expanding around a static solution, @y = dyp = 0, we automatically
have V (ag) = V’'(ap) = 0, which reduces Eq. (2.92) to

1
V(a) = zv”(ao)(a —ap)’ + O[(a — ap)’]. (2.93)

The assumed static solution at a is stable if and only if V (a) has a local minimum at
ap, which requires V" (ap) > 0, which is the primary criterion for wormhole stability.

For instance, it is extremely useful to express n(a) and m (a) by the following
expressions:

m' (@) = L@ a [ (by(a)/a) +2V'(a) (b_(a)/a) +2V'(a) ]
s\Wad) = 2 (J/1T—=bi(@)/a—2V(a) +/1—b_(a)/a—2V(a)
(2.94)

and

(@) = [ (b @/ay +2V'(@)  _(b-(@)/a) +2V'(@) ]
S\ VT =bi(a)/a—2V(a) 1—=b_(a)/a—2V(a)
a [ [(bs(@)/a) +2V'(a)]? [(b-(@)/a) +2V'(@)] ]
4|1 =br@/a=2V@P?  [1—b_(a)/a—2V(@)P?
a [ (br(@)/a)" +2V"(@) | (b-(a)/a)" +2V"(a)

J1=0bi(a)/a—2V(a) /1—b_(a)/a—2V(a)

] . (2.95)

Doing so allows us to easily study linearized stability, and to develop a simple
inequality on m (ayp) using the constraint V" (ap) > 0. Similar formulae hold for
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o'(a), 0" (a), for '(a), P"(a), and for £'(a), E”(a). In view of the redundancies
coming from the relations m;(a) = 4w o (a)a® and the differential conservation law,
the only interesting quantities are ='(a), £”(a).

For practical calculations, it is extremely useful to consider the dimensionless
quantity mg(a)/a and then to express [m(a)/a] and [m (a)/a]’. It is similarly
useful to consider 47 & (a)a, and then evaluate [47w = (a)a] and [47 E(a)a]”
(see Ref. [21] for more details). We shall evaluate these quantities at the assumed
stable solution ay.

2.2.7 The Master Equations

For practical calculations it is more useful to work with m(a)/a, so that in view of
the above, in order to have a stable static solution at a; we must have

<>/Nw¢w] .96

ap ap
while
4L L[ Gi@/ay (b_(a)/a)
imy(@)/al|, = +35 [\/1 ey _b_(a)/a} R (2.97)
and the stability condition V" (ag) > 0 is translated into
" 1 [ [(bi(a)/a)]? [(b_(a)/a)']?
[ms(a)/a] ‘au = +Z [[1 — b+(a)/a]3/2 [1— b(a)/a]3/2] @
L[ (bi(a)/a)” (b_(a)/a)" ]
= + 2.98
2 [«/1 —bi(@/a  J1-b_(a)/a)]l, 299

In the absence of external forces this inequality (or the equivalent one for m! (ao)
above) is the only stability constraint one requires. However, once one has external
forces (@4 # 0), there is additional information:

[47 E(@)al|, =+ [@1(@\/1 —bi(a)/a+ " (@)1 - b_(a)/a”

ap
1 (by(a)/a) , (b—(a)/a)
o () —— @) (@) —— (299
2{ +(a)‘/1—b+(a)/a+ _(a)‘/l—b_(a)/a’ao 299

and (provided @/ (ap) > 0)
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47 E(@)al’|, < {di_’(_’(a)\/l “bi(@)a+ " (@)1 — b,(a)/a}

ag

~ < o (@) BEDID | g, -@/a) }
3 |t e ot on S e,
- |<p;mw% +¢/@)%LO. (2.100)
If @/ (ap) <0, we simply have
r E@al'|,, = {9} @VT=br@]a+ " @/ T=b-@/a}|
- |ose R oo e,
o o
_% |4>/+(a) 7(%’1(2/( ‘;))/a + @L(a)i(%(z)f( ‘;))/QHO (2.101)

Note that these last three equations are entirely vacuous in the absence of external
forces, which is why they have not appeared in the literature until now.

In discussing specific examples one now merely needs to apply the general formal-
ism described above. Several examples are particularly important, some to empha-
size the features specific to possible asymmetry between the two universes used in
traversable wormhole construction, some to emphasize the importance of NEC non-
violation in the bulk, and some to assess the simplifications due to symmetry between
the two asymptotic regions [21, 24].

2.2.8 Discussion

These linearized stability conditions reflect an extremely general, flexible and robust
framework, which is well-adapted to general spherically symmetric thin-shell tra-
versable wormholes and, in this context, the construction confines the exotic material
to the thin shell. The latter, while constrained by spherical symmetry, is allowed to
move freely within the four-dimensional spacetimes, which permits a fully dynamic
analysis. Note that to this effect, the presence of a flux term has been, although widely
ignored in the literature, considered in great detail. This flux term corresponds to the
net discontinuity in the conservation law of the surface stresses of the bulk momen-
tum flux, and is physically interpreted as the work done by external forces on the
thin shell.
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Relative to the linearized stability analysis, we have reversed the logic flow typ-
ically considered in the literature, and introduced a novel approach to the analysis.
We recall that the standard procedure extensively used in the literature is to define a
parametrization of the stability of equilibrium, so as not to specify an equation of state
on the boundary surface [18-20]. More specifically, the parameter n(c) = d ¥ /do
is usually defined, and the standard physical interpretation of 1 is that of the speed
of sound. In this section, rather than adopting the latter approach, we considered that
the stability of the wormhole is fundamentally linked to the behaviour of the surface
mass m,(a) of the thin shell of exotic matter, residing on the wormhole throat, via a
pair of stability inequalities.

More specifically, we have considered the surface mass as a function of the poten-
tial. This novel procedure implicitly makes demands on the equation of state of the
matter residing on the transition layer, and demonstrates in full generality that the
stability of thin-shell wormholes is equivalent to choosing suitable properties for the
material residing on the thin shell. Furthermore, specific applications were explored
and we refer the reader to Ref. [21] for more details.
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Chapter 3
Rotating Wormholes

Burkhard Kleihaus and Jutta Kunz

3.1 Introduction

As discussed in the previous section, General Relativity (GR) allows for traversable
Lorentzian wormholes, which were first obtained by Ellis [1, 2] and Bronnikov [3]
(see also [4]). These wormholes need the presence of an exotic matter field, a phantom
field, coupled to gravity. Carrying the reverse sign in front of its kinetic term, a
phantom field has an energy-momentum tensor that violates the null energy condition
[5, 6]. In recent years phantom fields have also been considered in cosmology, since
they give rise to an accelerated expansion of the Universe [7]. On the other hand, e.g.
when gravity theories with higher curvature terms are considered [8—14], wormholes
can be constructed without the need for a phantom field.

From an astrophysical point of view wormholes have been searched for observa-
tionally [15-17]. They have been considered as gravitational lenses [18, 19], includ-
ing their Einstein rings [20], their shadows have been studied [21, 22] and also the
iron line profiles of thin accretion disks surrounding them [23]. So far most investi-
gations have been performed for static wormholes. However, astrophysical objects
typically rotate. Therefore one would like to know and understand the properties of
rotating wormholes. Moreover, the static Ellis wormholes of GR are known to be
unstable [24-27], and the presence of rotation might possibly stabilize them [28, 29].

In this chapter we consider rotating wormholes in GR supported by a phantom
field. These Ellis wormholes represent solutions of the coupled Einstein-phantom
field equations, which read in D dimensions

Ruy = =20, 0, ¢, (3.1)
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. (V—gg"o,¥) =0. (3.2)
They are obtained from the D-dimensional action

1

S = —/de\/—_g(R + 28" 0, Y0, %) . (3.3)
16nG D

Our main interest concerns rotating wormholes in four dimensions. Here slowly
rotating perturbative wormhole solutions have been obtained analytically some time
ago [30, 31], while their rapidly rotating counterparts have been constructed numer-
ically only recently [32, 33]. While many of their features have been studied already,
a central property yet to be analyzed is their stability. Clearly, their traversability
but also their viability as astrophysical objects would require a certain degree of
stability. (We remark, that the well-known rotating Teo wormhole [34] only repre-
sents a metric, which was not obtained as the solution of a given set of Einstein-matter
equations.)

As a first attempt to tackle the question whether rotation could stabilize worm-
holes, we here consider wormholes in five dimensions, since when both angular
momenta are equal the problem simplifies, and one only has to deal with ordinary
differential equations. Rapidly rotating wormholes in five dimensions have been con-
structed numerically in [29], where also many of their properties have been analyzed.
In particular, a stability analysis of the unstable radial modes has been performed.
Interestingly, this analysis has revealed the disappearance of the unstable radial modes
beyond a critical rotational velocity. Since crucial properties of rotating black holes
in four and five dimensions show qualitative agreement, this result indicates, that
rotation may also stabilize rotating wormholes in four dimensions.

In Sects.3.2 and 3.3 we discuss the currently known properties of rotating Ellis
wormboles in four and five dimensions, respectively. We always begin with the theo-
retical setting, including the Ansatz, the boundary conditions, the global charges, and
mass formulae. Subsequently, we present the results of the numerical calculations,
showing a number of interesting wormhole properties such as the global charges,
and the wormhole geometry. We also demonstrate that these wormhole solutions
approach an extremal rotating black hole, as their angular momentum tends toward
its maximal value. Moreover, we address the geodesics in wormhole spacetimes, and
we discuss the properties of nonsymmetric wormholes, i.e., wormholes whose mass
differs in the two asymptotic regions. Finally, in the case of the five-dimensional
wormholes we present a stability analysis of the radial modes. We end with our
conclusions in Sect. 3.4.



3 Rotating Wormholes 37

3.2 Rotating Wormholes in Four Dimensions

3.2.1 Theoretical Setting

Here our aim is to construct four-dimensional stationary rotating wormhole space-
times and to study their properties. To take the symmetries into account, we choose an
appropriate coordinate system, where the fields do not depend on the time coordinate
and the azimuthal coordinate. We therefore consider the following line element

ds* = —eldi* + p*e™/ [¢" (dn* + hd6®) + hsin® 0 (do — wdt)*] . (34)

Here the functions f, p, v and w depend only on the coordinates 1 and 6, and
h = n? + nj is an auxiliary function. In wormhole spacetimes, the radial coordinate
n takes positive and negative values, i.e., —00 < 1 < 0o, where the limits n — +o0
correspond to two distinct asymptotically flat regions. The phantom field is described
by the function v, which depends only on the coordinates 1 and 6, as well.
Substitution of the above line element into the equations of motion leads to a set of
nonlinear partial differential equation. The equation for the function p decouples [32]

My 2080 L0 3.5)
n P T sing WP T R P :

2
a,,p+ A

and is solved by p = 1, respecting the boundary conditions p(n — o0) = p(n —
—o00) =1land dyp(@ =0) = dp® =m) =0.
On the other hand, under the assumption dyyy = 0 the phantom field equation

3y (hsin09,¥) + 0y (sinOpy) =0, (3.6)
yields a first integral
by = G37)
n - h ’ .

where the phantom scalar charge is denoted by D. The phantom field can thus be
obtained in closed form

Y = D (arctan(n/no) — 7/2) , (3.8)

where the integration constant has been chosen such that ¥ (co) = 0.

The Einstein equations Ry, =0, Rss =0, Ry =0, R;; =0 and R,y =0 are
independent of the scalar field, yielding three second order partial differential equa-
tions for the functions f, @ and v, together with a constraint,
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0=, (hsin0d, f) + 3 (sin0d f) — hsin® e (h(3,w)* + (dpw)?) , (3.9)

0 = 3, (h*sin’ 0e >/ 8,0) + 3 (hsin’ Oe >/ o) | (3.10)
0 =9, (hsin#d,v) + sinHdpgv — cos HIyv
—hsin® e (h(3,0)* — 2(3pw)?) . (3.11)

0= —hsindd, fdyf +hcosHd,v + nsinOdsv + h? sin® Ge 2/ §,wdpw . (3.12)

They are solved numerically, subject to suitable boundary conditions. For n — 400
the metric should approach Minkowski spacetime,

flise =0,  @low=0, v,.00=0. (3.13)

In contrast, for n — —oo we allow for finite values of the functions f and w,

f|n~>7c>o =V, a)lnefoo = W—_ , V|n~>7c>o =0. (314)

Here a suitable coordinate transformation is necessary to obtain Minkowski space-
time asymptotically. To ensure regularity on the symmetry axis we require

9 flo—o =0, dpwlg—g =0, Vlg—g =0, (3.15)

together with the analogous conditions at 6 = 7.
Choosing the parameter w_, = 0, we obtain static wormholes, which are known
in closed form,

14 2 n
f==|1— —arctan | — , w=0, v=0. (3.16)
2 7 1o

The choice of the parameter y = 0 leads to symmetric wormholes, whereas worm-
holes with y # 0 are nonsymmetric with respect to their mass in the two asymptot-
ically flat regions.

Substituting the solutions of the metric functions f, @ and v into the expression
for R,, shows that

(3.17)

and yields for the scalar charge

h h i
D= 2 [h@, 1 = @] -5 ("a"v - Z?r?& 891))

h2
-7 sin®0e 2 [h(3,0)* — (3p0)*] + 13 - (3.18)
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Now we can immediately demonstrate the violation of the Null Energy Condition
(NEC). For that purpose we consider the quantity

E = R, k"k", (3.19)
with null vector [31]
k= (e 112,772 0, we 117 . (3.20)

Making use of the field equations shows that = is non-positive

el

[ 2
== 2D h2 N

(3.21)

and the NEC is violated everywhere. To obtain a measure for the amount of the NEC
violation one can introduce a global scale invariant quantity Y by integrating over
an asymptotically flat hypersurface bounded by the throat.

Letus now consider the mass, the angular momentum, and the quadrupole moment
of the wormholes. The global charges are engraved in the asymptotic form of the
metric tensor, where

2M 2J, sin?6
gy —> — (1 — +) , 8¢ — i et . (3.22)
n—+00 n 1n—>+00 n

Since in the limit  — 400 the wormhole metric becomes Minkowskian, we can
read off the mass M and the angular momentum J directly from the asymptotic
behavior of the metric functions

2M 2J
— -t w0 — = (3.23)
n—+o0 n n—+o00 n
Since for n — —oo the expansions read
2M_ 2J_
n——00 n n——00 n
a coordinate transformation
i=et, q=e¢"n, g=¢—w o, (3.25)

is needed to obtain an asymptotically flat spacetime. The mass M_ and the angular
J_ then enter the asymptotic expansion of the metric in the new coordinates

2M_ 2J, sin’@
gi — —(l+—). g — = (3.26)

n——0o0 )” n——0o0
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and we obtain the mass M_ and the angular J_ in terms of the parameters M_ and
J_ as follows

J=J.e?, M_=Mre""?. (3.27)
To see that the angular momentum is the same in both asymptotically flat regions,
Jo=eJ_=1J_, (3.28)

we first note that Eq. (3.10) is in the form of a conservation law, then integrate it over

the full range of 1 and 6, and finally insert the asymptotic expansions for w and f.
To obtain a mass formula for the wormholes, we multiply Eq.(3.10) by @ and

subtract it from Eq. (3.9) to obtain another equation in the form of a conservation law

oy (h sin 6 [an — ¢ 2/ gin? Gwa,,w]) + dp (sin@ [39f — ¢ 2/ gin? Hwaew]) =0.
(3.29)

After integration and insertion of the asymptotic expansions of the metric functions,
we find the mass formula

My +M_=2w_ge ] =2w_sJ4 . (3.30)
For symmetric wormholes we find [32]
M+ = W_oJ4+ = 2(,()(]J+, (331)

i.e., a mass formula akin to the Smarr formula [35, 36] for extremal black holes. The
Smarr formula is recovered when wy is identified with the horizon angular velocity.

The quadrupole moment Q of rotating wormholes can be obtained from the
asymptotic expansion by going to higher order [33].

We now turn to the geometric properties of the wormholes and, in particular, the
wormbhole throat. For symmetric wormholes it is obvious, that the wormhole throat
represents an extremal surface that is located at n = 0, if it is a minimal surface. If it
were a maximal surface, it would correspond to an equator, and there would be two
throats located symmetrically with respect to the equator. However, we do not find
Ellis wormholes with multiple throats, unless further matter fields are included (see,
e.g., [37]).

For nonsymmetric wormholes it is less obvious how their throat should be defined
and where it will reside. Thus to define the wormhole throat in the general case, we
start by considering the equatorial (or circumferential) radius R, () as a function of

the radial coordinate
R =\n*+n5(e?),_, - (3.32)
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Clearly, the rotation should deform the wormhole throat from spherical symmetry.
Because of the centrifugal force, its circumference should be largest in the equatorial
plane. By studying R, (1) therefore the location of the throat in the equatorial plane
should be revealed. We now define the wormhole throat as the surface of minimal
area, which intersects the equatorial plane at the circle of minimal circumferential
radius R,,

R,= min {«/Ee*f/ﬂ@:ﬂ/z} . (3.33)

—00=1<00

To incorporate the above extremality condition we consider the line element of the
surface of the throat

do* = e I (y? + h) d6* + e hsin® 0dp* (3.34)

where 7, = 1,(0), n; = dn,/d6, and f, v and h are regarded as functions of 1, and
6. The area of the surface of the throat is then given by

Ay = / L,d0dg (3.35)

with the integrand
n? + hv/hsinfe /2 (3.36)

Variation of the area functional leads to the Euler—Lagrange equation for the function

1:(6)
d 3L, L, _

; =0 (3.37)
do on; an,

or explicitly

cos 6 3 cosf |1
n§’+h8ns—2m—[aes—sm ]n§+[8ns—ﬂ]n§2—[a‘as— : ]*'1?3:07

h sinf | h
(3.38)

where s = f — v/2. The appropriate solution of this equation, which represents
the throat, should satisfy the following physical conditions: Regularity at the pole
requires 777 (0) = 0, and in the equatorial plane the throat should reside at 1, (7/2) =
ne, where the coordinate value 1, is determined by the minimum condition (3.32)
for the circumferential radius.

From the above considerations it follows immediately, that in the symmetric case
the throat is indeed found at n, = 0, since 7, = 0 and 9,s = 0 at n = 0 for all 6. In
contrast, in the nonsymmetric case the throat could be described by a function 7, (0),
which is not a constant. Here the function 7,(6) has to be determined numerically.
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Further geometric quantities of interest are the polar radius R,

_ Mo [T w-pre
R, = - /0 e =) dao , (3.39)
and the areal radius R4
2 ’7(% i /2—f
R, = > /0 e’ ‘n=m(9) sin 0d6 . (3.40)

We further introduce the rotational velocity v, of the throat in the equatorial plane
Ve = Rewt . (341)

where the angular velocity of the throat is denoted by w; = w(n;, 0 = 7/2). In the
symmetric case w; = wy.

To visualize the wormhole geometry we employ embedding diagrams. The first
kind of embedding diagrams is obtained by considering the wormhole metric in the
equatorial plane, & = 7 /2, for a fixed time coordinate ¢ and embedding it isometri-
cally in the three-dimensional Euclidean space, i.e.,

ds®> = e I dn? + e hdg* = dp* + p*de* + dz* (3.42)

with p = p(n) and z = z(n). Thus p?> = e~/ h, and

do\> (dz\’ .
@@y e

which leads to z(#). These diagrams show the presence of the throat, connecting two
asymptotically flat regions.

The second kind of embedding diagrams visualizes the shape of the throat itself.
Restricting to symmetric wormholes, we embed the metric of the hypersurface form-
ing the throat, n = 0, t = 0, in the (pseudo-)Euclidean space

ds®> = e Tt hde? + e hsin®? 0dg® = dp® + p*de* + d7* (3.44)

with p = p(0) and z = z(0). Thus p> = e~ h sin” 6, and

do\?>  [(dz\?
(ﬁ) i(ﬁ) —e vy (3.45)

which determines z(6). Here we have allowed for an embedding in pseudo-Euclidean
space as well, since rapidly rotating black holes are known to possess a negative
curvature of their horizon near the poles.
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Let us finally briefly address the motion of particles and light in rotating wormhole
spacetimes, which is governed by the Lagrangian .#

2L =gunxti’ =c¢. (3.46)

Here the dot denotes the derivative with respect to an affine parameter, and ¢ = —1
for massive particles, while ¢ = 0 for massless particles and light. The presence of
two cyclic coordinates, ¢ and ¢, implies the existence of two associated constants of
motion for the orbits, the energy E and the angular momentum L.
It is then straightforward to analyze the motion in the equatorial plane, 8 = /2,
where
24 = el el (i 4+ h (o - 0i)) =¢. (3.47)

Making use of the conservation equations
E=i(e/ —e'ho?) +e ' hogp, L=—e'hoi+e hg, (3.48)

the Lagrangian becomes
L2
2 =e et —e/ ((E —wL)? — efj) =¢. (3.49)

For the analysis of the possible orbits it is instructive to solve this equation for 72
and to introduce effective potentials V.

’=e " (E— VL, ) (E—-VyL, ). (3.50)

L2
Vi =owL+ ‘/erT —cel . (3.51)

Equation (3.51) implies V. (L, n) > V.(L, n), and the condition 7 > 0 restricts
the allowed energies and angular momenta of the orbits, i.e., E > V;f’f(L, 1) or
E < Vg(L,n).

where

3.2.2 Symmetric Wormholes

Let us now inspect the properties of the rotating symmetric Ellis wormholes in four
dimensions. By varying the two parameters 7y and w_, in principle the full set of
solutions can be obtained. In particular, by fixing 79 and increasing w_., a family of
rotating wormholes emerges from the respective static symmetric Ellis wormhole.
Then the mass and the angular momentum increase monotonically from zero, which is
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Fig. 3.1 Globel properties of symmetric rotating wormholes at fixed equatorial throat radius R,:
The scaled mass M /R, (a) and the scaled angular momentum J / Re2 (b) versus the rotational
velocity v, of the throat in the equatorial plane. The respective curves for the Kerr black holes are
shown for comparison. The black dots mark the extremal Kerr values

their value in the static case. As the rotational velocity v, of the throat in the equatorial
plane tends to its limiting value of v, = 1, the mass and the angular momentum
diverge. Interestingly, at the same time the scalar charge decreases monotonically
from its maximal static value and vanishes in the limit v, = 1.

To avoid the divergence of the global charges and get a good physical picture
of what happens, as the rotational velocity v, increases, we now consider instead a
family of wormholes, where we keep the equatorial radius R, fixed. We exhibit in
Fig.3.1 the mass M (a) and the angular momentum J; (b), scaled by appropriate
powers of the equatorial radius R,, as functions of the rotational velocity v,. For
comparison we also show the mass and the angular momentum of the respective
family of Kerr black holes in the figure, where the equatorial radius of the horizon
is kept fixed. Note, that the scaled mass of the Kerr solutions takes a fixed value.
Moreover, for v, = 1 the Kerr solutions reach their extremal limit, marked by a black
dot in the figure.

Most interestingly, however, we note that for v, = 1 the wormhole solutions reach
the same limiting values as the black holes, i.e., those of the respective extremal Kerr
solution. Moreover, the mass formula (3.31) for the wormholes looks like the mass
formula for extremal black holes. In addition, the scalar charge vanishes in the limit
and so does the violation of the NEC, as seen in Fig. 3.2a. All of this indicates, that in
the limit v, — 1 the family of wormholes approaches an extremal Kerr black hole.

To check this hypothesis, the limiting behavior of the metric must be inspected.
To that end, we consider a set of solutions at fixed angular velocity wy = 1/2 and
increasing rotational velocity, v, — 1. A comparison of the metric functions with the
corresponding functions of the extremal Kerr solution reveals, that the wormholes
indeed tend towards an extremal Kerr black hole in the limit v, = 1. This convergence
is demonstrated for the function v in Fig. 3.2b. Note, that the convergence of f and w
is even faster. However, the hypersurface n = 0 forming the throat of the wormholes
must change its character in the limit, since a degenerate horizon must arise.

Kerr black holes are very simple objects, since all their properties are given in
terms of just two numbers, the mass and the angular momentum. For instance their
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Fig. 3.2 Limiting behavior of symmetric rotating wormholes: a The scaled scalar charge D/R,
and the NEC measure Y versus the rotational velocity v, of the throat in the equatorial plane at fixed
equatorial throat radius R,. b The metric function v versus the radial coordinate z = arctan(2wgn)
in the equatorial plane 6 = /2 for several values of v, at fixed wy = 1/2. The respective function
of the extremal Kerr solution with horizon angular velocity wy = 1/2 is also shown

Fig. 3.3 Geometric properties of symmetric rotating wormholes with equatorial throat radius
R, = 2: Isometric embeddings of the equatorial plane for rotational velocities v, = 0.1 (a) and
0.9 (b) of the throat in the equatorial plane

quadrupole moment is given by Q = J?/M. The quadrupole moment of rotating
wormholes is always smaller than the corresponding Kerr value, approaching it only
in the static and in the extremal limit. The moment of inertia I = J/£2y of Kerr black
holes satisfies 7/M?> = 2(1 4+ /1 — j2) with j = J/M?. Also the scaled moment
of inertia I = J; /wy of rotating wormholes is smaller than the corresponding value
of the Kerr black holes, except in the extremal limit.

Let us now turn to the discussion of the geometry of rotating wormholes. In
Fig.3.3 we present a first illustration of the effect of the rotation on the wormhole
geometry by considering the embeddings of a slowly rotating wormhole (a) and a fast
rotating wormhole (b) with the same equatorial throat radius R,. The embeddings are
obtained according to Eq.(3.42), yielding the curve z(p), where the figures exploit
the axial symmetry.
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Fig. 3.4 Isometric embeddings of the wormhole throat (a) and the Kerr black hole hori-
zon (b) according to Eq.(3.44) at fixed equatorial radius R, = 2 for rotational velocities v, =
0.966, 0.902, 0.702, 0.495, and 0.1. Pseudo-Euclidean embeddings are indicated by the dashed
lines

As the throat starts to rotate its geometry deforms from spherical to oblate, as
dictated by the centrifugal force. To demonstrate the geometry of the throat itself,
we employ the embedding Eq. (3.44). The deformation of the throat is exhibited in
Fig.3.4a. As the throat velocity v, increases, the throat flattens at the poles, until a
critical velocity v§' is reached. This marks the onset of a negative Gaussian curvature
at the poles. Thus beyond v{' it is no longer possible to use a fully Euclidean embed-
ding, but for a part of the throat surface adjacent to the poles a pseudo-Euclidean
embedding must be employed. For rotating Ellis wormholes we find a critical value
vt =10.9.

This finding should not surprise us, since Kerr black holes exhibit the analo-
gous feature when their horizon is embedded. Here also a critical value vgr*H arises,
where the Gaussian curvature changes sign, and thus a pseudo-Euclidean embed-
ding becomes necessary. The critical value for Kerr black holes is, however, much
smaller, v¢"H = 0.577. For comparison, the embedding diagrams for the same set of
rotational velocities of the horizon of Kerr black holes is exhibited in Fig. 3.4b.

To quantify how the throat deforms with increasing rotational velocity, we con-
sider the polar throat radius R, and the areal throat radius R4 at fixed equatorial
throat radius R,, and illustrate both quantities in Fig. 3.5a, b, respectively. Decreas-
ing monotonically, both tend to the respective values of the horizon radius of the
extremal Kerr black hole in the limit v, — 1. We have indicated the critical value v¢'
by a cross in the figures.

For comparison, we also exhibit in Fig. 3.5 the respective curves for the Kerr black
holes, marking the critical velocity v¢"H as well. Whereas v<"H is much smaller than
v¢', the polar radius R, assumes the same value at the respective critical velocities
of the rotating wormhole and the Kerr black hole. The analogous finding holds true
for the areal radius R,4. This remarkable fact is indicated in the figures by the thin
horizontal line.
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Fig. 3.5 Geometric properties of symmetric rotating wormholes at fixed equatorial throat radius
R.: The scaled polar radius R, /R, (a) and the scaled areal radius R4 /R, (b) versus v,. The crosses
mark vS". The respective curves for the Kerr black holes are also shown
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Fig. 3.6 Location of the ergosurface of symmetric rotating wormholes at fixed throat parameter
no = 1: a The function arctan(nergo/70) in the equatorial plane versus the rotational velocity v,.
Also shown is the function arccos(2wpng). b One quadrant of the ergosurface and the throat in
quasi cartesian coordinates (r sin @, r cos 6) where r = (n2 + 17(2)) 1/2 at fixed angle ¢ for rotational
velocities v, = 0.894, 0.949, 0.988, 0.995 and 0.999

Kerr black holes are known to possess ergoregions. Let us therefore inspect,
whether rotating wormholes can also possess them. Ergoregions are defined by the
condition g,, > 0 and are bounded by an ergosurface. Interestingly, we find that the
location 7erg, Of the ergosurface in the equatorial plane satisfies the following relation
with high accuracy: arctan(nere0/10) = arccos(2wono), as seen in Fig. 3.6a. Thus the
ergosurface touches the throat, ne, = 0, in the equatorial plane, when wo = 1/2.
This implies for the rotational velocity v, = R.wy = 1 /\/5, when ny = 1.

When the wormhole throat rotates faster than with v, = 1/2, there is an ergoregion
in the asymptotically flat spacetime n > 0 which increases in size with increasing
rotational velocity v,. We exhibit embeddings of the ergosurface for a set of rapidly
rotating wormholes in the region n > 0 in Fig. 3.6b. Starting with aring forv, = 1/2,
the ergoregion increases in size until it reaches the ergoregion of the extremal Kerr
black hole.
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(a) E=0.9, L=3 (b) E=0.25, L=-1

Fig. 3.7 Embedding diagrams of bound orbits for massive test particles in the equatorial plane
of a symmetric wormhole with rotational velocity v, = 0.78 and equatorial radius R, = 2 for two
values of the particle energy E and angular momentum L

Finally we address the question whether symmetric wormholes can possess stable
bound orbits of particles and light. Static Ellis wormholes are known not to possess
stable bound orbits, but the inclusion of rotation may change this. We therefore have
to analyze the motion of particles and light in these rotating wormhole spacetimes.
A full analysis of the general set of geodesic equations might prove difficult, since
it is currently unknown, whether in some coordinate system an analog of the Carter
constant can be found, necessary to achieve separability.

However, the question can be answered already by restricting the motion to the
equatorial plane, as described by Egs. (3.47)—(3.50). Inspection of the effective poten-
tials then reveals, that massive particles possess even three kinds of bound orbits: (i)
orbits within a single universe, (ii) orbits oscillating between the two universes, and
(iii) orbits remaining at the throat (for L = 0 only). Figure 3.7 shows examples of a
single universe bound orbit (a) and a two universe bound orbit (b).

Addressing the innermost stable circular orbits (ISCOs), we find that the ISCO of
corotating orbits resides at the throat, whereas the ISCO of the counterrotating orbits
changes with the rotation velocity of the wormhole. Moreover, we find that there are
unstable bound states for light, which indicates the presence of a photon region to
be mapped out by a full analysis.

3.2.3 Nonsymmetric Wormholes

Nonsymmetric wormholes are obtained, when the asymmetry parameter y assumes
a finite value. Only in the static case the nonsymmetric Ellis wormholes are known in
closed form, see Eq. (3.16). While the nonsymmetric rotating wormholes have many
properties in common with their symmetric counterparts, also new features appear
in the nonsymmetric case.
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Fig. 3.8 Global properties of nonsymmetric rotating wormholes at fixed equatorial throat radius
R, = 2: The scaled mass M, /R, (a) and the scaled angular momentum J+/Re2 (b) versus the
rotational velocity v, of the throat in the equatorial plane. The asymmetry parameter y is varied
in the range —4 < y < 4. Negative values of y are indicated by dots. Extrapolations towards the
limiting extremal Kerr black hole are indicated by thin dotted lines
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Fig. 3.9 Properties of nonsymmetric rotating wormholes at fixed equatorial throat radius R, = 2:
a The scaled scalar charge D/R, versus the rotational velocity v, of the throat in the equatorial
plane. The asymmetry parameter y is varied in the range —4 < y < 4. Negative values of y are
indicated by dots. Extrapolations towards the limiting extremal Kerr black hole are indicated by thin
dotted lines. b The equatorial radius function R,(n) versus the radial coordinate 1 for spacetimes
with v, =0.82 (y = —1), v, =0.97 (y =0), v. = 1.06 (y = 1), and v, = 1.10 (y = 2). The
minimal value of the function R, (n) determines the location of the throat

To illustrate the effect of the asymmetry parameter  on the wormhole properties,
we first consider families of rotating wormholes with fixed equatorial throat radius
R., as before in the symmetric case. Figure 3.8 shows the scaled mass (a) and the
scaled angular momentum (b) versus the rotational velocity v, of the throat in the
equatorial plane. Similarly, Fig.3.9a shows the scaled scalar charge versus v,.

As in the symmetric case, also the families of rotating nonsymmetric wormholes
with fixed equatorial throat radius tend to an extremal Kerr black hole, as the rotational
velocity v, of the throat in the equatorial plane tends to the velocity of light. However,
inthe case of y > 0, they approach this limiting value from above, i.e., from rotational
velocities greater than the speed of light as seen in the figures. While this may come



50 B. Kleihaus and J. Kunz

E=144 —— E=130 ——

Fig. 3.10 Geodesics in nonsymmetric rotating wormhole spacetimes: Embedding diagrams of
escape orbits of massive (a) and massless (b) particles with vanishing angular momentum for a
wormhole solution with v, = 8.24 (w_o = 1000, y = 10.008)

as a surprise, there is no objection against it, since it concerns the motion of spacetime
itself as viewed by an asymptotic observer.

To see how the asymmetry parameter y influences the location of the throat of
the rotating wormholes, we consider the equatorial radius as a function of the radial
coordinate, R, (n). For symmetric wormholes R, (1) has its minimum at n = 0, which
we previously simply denoted by R,. The asymmetry parameter y now shifts this
minimum. For positive y the throat then resides at a negative value of 1, whereas for
negative y the throat shifts to a positive value of 5. This shifting of the location of
the throat is demonstrated in Fig.3.9b.

We finally inspect the geodesics in such nonsymmetric wormhole spacetimes.
We retain the three kinds of stable bound orbits of massive particles also for non-
symmetric wormholes in addition to escape orbits. Embedding diagrams of escape
orbits of massive particles, which briefly enter the second universe, are illustrated in
Fig.3.10a. But highly rotating asymmetric spacetimes also exhibit rather curiously
looking orbits, as exhibited in Fig.3.10b. Here we see unbound orbits of light mov-
ing with vanishing angular momentum from the negative » universe to the positive 7
universe. While the orbits are strongly dragged along with the rotating spacetime in
the negative 1 universe the orbits continue on almost straight lines after they emerge
from the throat in the positive 1 universe.

3.3 Rotating Wormholes in Five Dimensions

While the study of wormholes in higher dimensions is interesting in its own right,
our motivation for their study here is the fact, that by going to higher odd dimensions
one can obtain a technically simpler setting and study questions, which would be
highly challenging in four dimensions. This concerns, in particular, the question of
the stability of rotating wormholes. Here we would like to see how the rotation affects
the notoriously unstable radial mode of the static Ellis wormholes. If rotation would
make this instability disappear in five-dimensional wormholes, while the global and
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geometric properties of rotating wormholes would be completely analogous in four
and five dimensions, one would have good reason to believe that rotation would act
in an analogously stabilizing way also in four-dimensional wormholes.

3.3.1 Theoretical Setting

In D spacetime dimensions an angular momentum can be associated with each spatial
plane, leading to | (D — 1)/2] independent angular momenta, in general. Choosing
all these angular momenta to be of equal magnitude, the symmetry of odd dimensional
spacetimes is strongly enhanced, and the angular dependence factorizes. This leads
to a set of coupled ordinary differential equations to be solved for the rotating odd
dimensional spacetimes. In contrast, in even dimensions, rotation always results in
partial differential equations with dependence on at least two coordinates.

Let us now consider the simplest case, namely, wormholes in five spacetime
dimensions, rotating in both spatial planes with equal magnitude angular momenta,
J1 = J, = J. The line element can then be written as follows [29]

ds* = —e*dt* + pe  {e! 7 [dn* + hd6?]
+ ¢4/ 1 [sin® 0(dg) — wdt)? + cos” O(dg, — wdt)?]
+ (/79— e*~ /) hsin® 0 cos® 0(dpy — de1)*} . (3.52)
where as before h = n* + n%, and f, p, q and w are functions of the coordinate 7,
—00 < 1 < 00. The limits 7 — 00 correspond to two disjoint asymptotically flat
regions. The scalar phantom field v is also a function of n only.

With this Ansatz, the equation R = 0 yields a remarkably simple ordinary dif-
ferential equation for the function p,

” 577 / 1o >
p +772+77(2)p_2('72+'7(2) p=0, (3.53)

where the prime denotes differentiation with respect to . It has the general solution

2 2

n n-+ny/2
p(n) = —c +o—5—2%5
772+77(2) n-+ng

, (3.54)

with the constants ¢; and ¢;. We set c; = 0 and ¢, = 1 to obtain asymptotically flat
solutions, thus
ot +ng/2

= 3.55
PO = (3.55)
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The phantom field equation leads immediately to

D
pVi3

with the scalar charge D. Employing Eq. (3.55) for p, we obtain for the scalar field
the expression

v (3.56)

2D
vn) =— arctan———— — = | | (3.57)

Un /n2+né 4

Here we have chosen the integration constant such that the scalar field vanishes for
n — o0.
. — o ()
The equation / gR(ﬂ] =0, 1.e.,

(\/ﬁ pzeq—“fa/) —0, (3.58)

yields
(= o 3.59
= iprerir (359

with integration constant c,,.
The equations R! = 0 and RY' + R?? lead to the set of ordinary differential equa-
tions

(por + 2)%1’/)/ " (3.60)
p(n° +n = =0, :
P +nl)2 0 2p3 (% + nd)*
5 ;4 (eZ(qff) — 1)
2 NE
—— P +1)2q) ——————=0. (3.61)
P +n)2 ( 0 ) M2 +nd)

Having not been able to find a closed form expression for f and g except in the slowly
rotating case, we solve these equations numerically. With the boundary conditions

f|n»oo ZOv w|n~>oo =0’ q|r]~>oo =0’ (362)

we ensure asymptotic flatness for n — oo. Since we again allow for finite values of
the functions f, w and ¢ for n — —oo,

flive =7+ Ol w=0-n. =7, (363

a coordinate transformation is again necessary to achieve asymptotic flatness for
n — —oo. Note, that the value of w_, is obtained by integrating Eq. (3.59) with a
given integration constant c,,.
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As in four dimensions the constants y and w_., represent the asymmetry and
the rotation parameter of the wormhole solutions. When w_., = 0, static wormhole
solutions are obtained. These can be given in closed form [27, 29]

£ M . 1 —sinz (3.64)
= —arctan{ ———— ) , .
1 n 1+sinz

where z = arctan(7n/ng), M is an integration constant, and g = f.
After eliminating the second derivatives in the equation

D2
Ry, = _2h3_p2 , (3.65)
with the help of Egs. (3.60) and (3.61), we employ the resulting equation
2 €4f7qcy2v h3 2 ’ 2y 2 ’ ’ ’ 2
0=D*+——>"— —[@4f* =2f'q" +q*)p* = 2(f' —q)pp' - 3p"]
4ph 4
—Pp[(4 =D+ (¢ = fymp = 3p'n] + 30707, (3.66)

as a constraint equation to monitor the quality of the solutions.
We show the violation of the NEC analogously to the four-dimensional case.
Choosing the null vector field

G ( ¢ 6 et —f) (3.67)
= e , —/—, U, we , we 3 .
NG
we find
- , e
E =-D PR <0. (3.68)

After obtaining the solutions, we read off the global charges from their asymptotics
analogously to Eq. (3.22) for M and J

| 8M_. 4], sin’6 (3.69)
—_— — — _ - .
81t - 37”72 , 8tg 1 00 7”72 s

and to Eq. (3.26) for M_ and J_. Analogously to Eq.(3.70) we find in general

2 2 .
§M+ + §M_ = Za)_ooe v = 26()_00.]4,_ . (370)

For symmetric wormholes w_., = 2wg. Thus, we recover the mass formula,

2
§M+ = (,()700.,4, = 2(,()()J+, (371)
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i.e., arelation akin to the Smarr formula for extremal Myers—Perry black holes in five
dimensions. The latter is recovered when the throat angular velocity w, is replaced
by the horizon angular velocity.

Addressing briefly the geometry of these wormholes, we define the equatorial
radius R,(n) in the planes 8 = 0 and 0 = 7/2

R.(n) =/ p(* + ng)ed =2/, (3.72)

and the areal radius R4 ()

. 1
Ry = [* +ng)’ple” /0] (3.73)

To obtain a measure for the deformation of the throat we embed a plane which inter-
sects the planes 6 = 0 and 6 = /2. To this end, we fix the azimuthal coordinates,
i = @io, ¢i = @io+ 7 (mod 2m) for some ¢;, i = 1, 2. This yields the polar
radius R,(n). By taking the ratio R, /R, at the throat, we obtain a measure for the
deformation of the throat that is induced by the rotation.

3.3.2 Wormholes

We are now ready to investigate the global and geometric properties of these rotat-
ing wormholes in five dimensions and compare them with their four-dimensional
counterparts to see whether both possess essentially the same features. We start with
considering the mass M and the angular momentum J (recall J; = J, = J) of three
families of wormholes with fixed equatorial radius R, of the throat. These quanti-
ties are illustrated in Fig.3.11 for symmetric (y = 0) and nonsymmetric (y = 1)

15 0.4
(a) Myers-Perry (b)
1 0.35 M
lyers-Perry
0.3 v=00
Nn:w 05 ®o 0.25
= 0 g o2 v=10
= 0.15
-0.5 =10
0.1 v=-t
- 0.05
15 0
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
Ve Ve

Fig.3.11 Properties of rotating symmetric and nonsymmetric wormholes in five dimensions at fixed
equatorial throat radius R,: The scaled mass M. /R, (a) and the scaled angular momentum J/ Rf
(b) versus the rotational velocity v, of the throat in the equatorial plane. The respective curves
for the Myers—Perry black holes are shown for comparison. The black dots mark the respective
extremal Myers—Perry values
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Fig. 3.12 Limiting behavior: a The scaled scalar charge D/ R, versus the rotational velocity v, of
the throat in the equatorial plane at fixed equatorial throat radius R, for symmetric (y = 0) and
nonsymmetric (y = =£1) rotating wormholes. The black dot marks the extremal Myers—Perry value.
b The metric function ¢2/ versus the radial coordinate 7 = /866 (Where 7y denotes the coordinate
at the throat) in the equatorial plane 6 = 7/2 for several values of v, at fixed wgp = 1/2. The
respective function of the extremal Myers—Perry solution with horizon angular velocity wy = 1/2
is also shown

wormbholes. Also shown are the respective curves for the Myers—Perry black holes
with equal angular momenta, where the black dots mark the respective extremal
Myers—Perry black hole.

Comparing Fig.3.11 with Fig.3.1 for the symmetric four-dimensional case and
with Fig. 3.8 for the nonsymmetric one, we indeed observe the completely analogous
features. In particular, all families of rotating wormholes end in an extremal rotating
vacuum black hole, and for values of the asymmetry parameter y < 0 the rotational
velocity of the throat v, exceeds the velocity of light, when approaching the limiting
configuration.

As shown in Fig.3.12a, the scalar charge D decreases from the respective sta-
tic value monotonically to zero along these families of solutions, analogously to
Fig.3.9a, and likewise the violation of the NEC decreases and disappears in the
limit, when the extremal Myers—Perry black hole is reached. Figure 3.12b illustrates
for the metric function f that the metric of the rotating wormbholes itself approaches
the metric of the respective extremal Myers—Perry black hole.

The geometric properties of these five-dimensional rotating wormholes are also
very much akin to those of the four-dimensional ones. As an example, we illustrate
in Fig. 3.13a the deformation of the throat with increasing rotational velocity v, for
the same families of solutions. The location of the ergosurface is shown in Fig. 3.13b.
As in four dimensions the rotational velocity of the throat has to be sufficiently large
in order that the ergosurface extends into the asymptotically flat region with positive
radial coordinate 7.
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Fig. 3.13 Geometric properties of wormholes at fixed equatorial throat radius R,: The measure of
the deformation of the throat R,/ R, (a) and the location of the ergosurface nergo/ R, (b) versus ve
for symmetric (y = 0) and nonsymmetric (y = =1) rotating wormholes. The black dots mark the
respective extremal Myers—Perry values

3.3.3 Stability

Having established that the global charges and geometric properties of rotating worm-
holes in four and five dimensions are very similar, we now turn to the interesting
question of stability. For static Ellis wormholes in four dimensions it has been shown
that they are unstable [24-26]. A linear stability analysis, in particular, has revealed
the presence of an unstable radial mode. For higher dimensional static Ellis worm-
holes a linear stability analysis has shown that the radial instability is retained [27].
In the following we investigate the effect of rotation on the radial instability of five
dimensional Ellis wormholes.
We introduce the metric Ansatz

dS2 — —€2F0d[2 + pe—Fo {eFO—FZ [€Fld772 + hd@z]
+ "3 on [sin® 0(dg — F,dt)* + cos® 0(dgy — Fudi)?]
+ (efo= P — e710) hsin® 0 cos® 0 (dgr — dg1)*} . (3.74)

where the functions Fy, Fi, F», F3, and F,, depend on the coordinates 7 and ¢. Like-
wise we assume the Ansatz
U=y, (3.75)

for the scalar field. Next, we substitute these Ansitze into the Einstein and scalar
field equations, imposing perturbations with a harmonic time dependence,

Fo=f+AHoe'® |, Fy=iH %, F=q+AHye?",

Fy=q+iHe® ., F,=o0+iH,e . W=y +rH,e?  (376)
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where the functions Hy, H, H,, H3, H,, and Hy, depend on the radial coordinate 7
only. Expanding the field equations in the perturbation parameter A, we obtain the
perturbation equations by selecting the terms of first order in X.

Analyzing the resulting system of equations, we realize that the perturbation
function H,, can be integrated, once the functions Hy — H3 are known. This follows
from the equation Rﬁ' = 0, since

cpetf 1

H = Ty [8Ho + Hy + H> — 3Hs] . (3.77)

‘We next consider the equation for the perturbation function Hy, of the scalar field,
and impose the gauge
H =H;—H,. (3.78)

‘We multiply the ordinary differential equation for Hy, by Hy and obtain after taking
into account the gauge choice (3.78)

Hy (ph*PH)) + Q2 p* e 1H] = 0. (3.79)

Now we integrate this equation and employ integration by parts. This yields
[P = [ [P - @R . 380
—0o0

Since the expression on the left hand side vanishes, the right hand side must vanish as
well. For unstable modes the eigenvalue £2? is negative. Consequently, the integrand
is nonnegative for unstable modes, and the integral vanishes only if Hy, is zero
everywhere. Thus the scalar perturbation function Hy, vanishes for unstable modes.

We now reformulate the remaining three equations for the perturbation functions
H,, H5, and Hy in terms of the functions Gy, G, and G,, where

Hy =Gy + Gy, Hy,=-G,, H3;=2Gy+G.

This results in a system of homogeneous ordinary differential equations for the
perturbation functions G;

1
—(£GY) = VooGo + Vo1 G1 4+ Vu Gy — 22 (Go + G e > ~1p,  (3.81)

§

1 I'\/ — —

E@Gl) = V10Go + Vi1G1 + Vi2Gy — 2°Gre™ > 7 p (3.82)
1 N/ 2 —2f—

—(EG,) = VooGo+ Vo1 G + Vo Gy — £2°Gae “p, (3.83)

§
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where we have introduced the abbreviation & = p h%/2, and the quantities V;; are
functions of the unperturbed solutions (see [29] for the explicit expressions).

Now, we are ready to solve the set of Eqs. (3.81)—(3.83). Starting with the static
case, we note that there is a zero mode

Go=—-2G,, G, =3G,, G, = const. , (3.84)

which is clearly not normalizable. This mode is indicated in Fig. 3.14a by the straight
lines. To obtain normalizable modes we need to impose an appropriate set of boundary
conditions, which we choose to be

Go(—00) = G1(—00) = G2(—00) =0, Gp(00) = G1(00) = G2(00) =0, Go(0) =1,
(3.85)

where we impose the last condition to obtain nontrivial solutions. Since we now have
seven boundary conditions instead of the six needed for the system (3.81)—(3.83),
we add as an auxilliary first order equation 2% = 0. The numerical procedure then
results in the correct eigenvalues £27.

In the static case the equations yield the known normalizable unstable mode [27]
besides the non-normalizable zero mode (3.84). Interestingly, as rotation is turned
on, the non-normalizable static zero mode becomes a normalizable unstable mode.
Thus after the onset of rotation the wormhole carries two unstable modes. The two
modes are illustrated in Fig. 3.14a for a symmetric wormhole with rotational velocity
v, = 0.216 of the throat in the equatorial plane.

When the rotational velocity of the throat increases, the eigenvalue of the lower
unstable mode increases as well, while the eigenvalue of the higher unstable mode
decreases. This is illustrated in Fig.3.14b, both for symmetric and nonsymmetric
wormholes. Here we observe the crucial result, that at a particular value of the

(a) ; 0?=-0.51 ((;ashed)

,G;{;\\
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Fig.3.14 Unstable modes of rotating wormholes: a The perturbation functions G, G, and G ver-
sus the compactified coordinate x = (2/7) arctan(n/no) for symmetric wormholes with throat para-
meter 9 = 0.5 for the two unstable modes at v, = 0.216. For comparison the non-normalizable zero
mode of the static wormhole is indicated by the straight lines. b The scaled eigenvalue .QzRfe_V
versus v, for symmetric (y = 0) and nonsymmetric (y = %1) rotating wormholes
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rotational velocity, which depends on the asymmetry parameter y, both unstable
modes merge and disappear. Thus beyond a certain magnitude of the rotation, the
notoriously unstable mode of the Ellis wormhole is no longer present.

3.4 Conclusions and Outlook

In this chapter we have addressed rotating wormholes in four and five dimensions
in General Relativity, where the violation of the null energy condition is provided
by a phantom field. Whereas the slowly rotating wormhole solutions are known in
closed form, in the general case of arbitrary rotation numerical integration appears
to be necessary to obtain the wormhole solutions.

In four dimensions, the inclusion of rotation leads to a set of coupled partial dif-
ferential equations. In five dimensions, however, we obtain a set of coupled ordinary
differential equations, when we choose both angular momenta to be of equal mag-
nitude. This provides a much simpler setting for the study of the wormhole features,
and allows for a first step towards determining their stability, a feat, that will be much
more difficult for wormholes in four dimensions [38].

Rotating wormholes in four and five dimensions have many important properties
in common. These include, in particular, that rotating wormholes:

e satisfy a Smarr-like mass formula akin to the Smarr formula of extremal vacuum
black holes;

e approach limiting configurations, which correspond to extremal vacuum black
holes;

e possess a rotational velocity of the throat, which tends to the speed of light when
the limiting configuration is approached;

e can possess a rotational velocity of the throat which in the nonsymmetric case
(y > 0) seems to exceed the speed of light for asymptotic observers;

e possess ergoregions in the asymptotically flat (positive ) universe, when their
rotational velocity exceeds a certain value.

The similarity of the properties of rotating wormholes in four and five dimensions
suggests that they might also have similar properties with respect to stability. For
five-dimensional wormholes a stability analysis of the notoriously unstable radial
modes has revealed the following intriguing scenario: As rotation is turned on, the
eigenvalue of the unstable radial mode of the static black holes increases, while
the zero mode of the static black holes becomes normalizable and its eigenvalue
decreases. Both unstable eigenmodes then merge and disappear at a critical value of
the rotation.

While this analysis indicates, that rotation can stabilize the wormholes, a more
complete study will have to be done in five dimensions to investigate, whether this
conclusion really holds. Subsequently a stability analysis will also have to be done
in the four-dimensional case, since this will be the case of interest for astrophysical
applications. Alternatively, rotating wormholes in generalized models of gravity can



60 B. Kleihaus and J. Kunz

be studied, where no exotic matter is necessary to achieve the nontrivial topology,
and which may already be stable in the static case.

For such stable or at least long-lived rotating wormholes a general analysis of their
geodesics should also be interesting. The restricted analysis of orbits in the equatorial
plane has already shown, that there are stable bound orbits for massive particles and
unstable bound orbits for light. A general analysis will tell us on the theoretical
side, whether the orbits in rotating wormhole spacetimes display chaos, while on the
observational side it will, in particular, let us understand how the shadows of these
rotating wormholes compare to the shadows of rotating black holes.
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Chapter 4
Astrophysical Signatures of Thin Accretion
Disks in Wormhole Spacetimes

Tiberiu Harko, Zoltan Kovacs and Francisco S.N. Lobo

4.1 Introduction

One of the most important evidence for the existence of the black holes comes from
the electromagnetic radiation emitted by the gaseous matter in orbital motion around
them. The radiation is emitted mostly in the X-ray band, but other frequency ranges
can also be observed. The radiation originates due to the presence of inward-falling
matter, which forms an accretion disk around the central compact general relativistic
object. Thus, the astrophysical objects increase their mass through the mechanism
of mass accretion. In this context, a large number of astrophysical observations have
shown that gas clouds surrounding the central compact object exist around almost all
of the known active galactic nuclei (AGN’s), or black hole candidates. These clouds,
existing in either a molecular or atomic phase, form an associated accretion disk,
extending on a variety of scales ranging from a tenth of a parsec to a few hundred
parsecs [1] (for an in-depth discussion of accretion disks and their observational
properties, we refer the reader to [2-4]). In many astrophysical situations the gas
around the black hole forms a geometrically and optically thick torus (or a warped
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disk), which absorbs most of the radiation emitted in the ultraviolet and soft X-rays
bands.

From an observational point of view, the most important early evidence for the
existence of supermassive black holes outside our galaxy came from the VLBI (Very-
Long-Baseline Interferometry) imaging of molecular H,O masers, which were first
studied in the active galaxy NGC 4258 [5]. The VLBI imaging, based on the Doppler
shift measurements of the masering source, assumed to be in Keplerian motion around
the central object, led to a quite precise estimation of the mass of the black hole, which
has been found to be of the order of 3.6 x 107M@, i.e., a supermassive dark object,
located within 0.13 parsecs. Hence, the observation of the motion of gaseous flows
in the gravitational field of black holes or other compact objects can provide relevant
astrophysical information on the nature of the astrophysical source.

As seen by an observer located at infinity, the dominant features in the X-ray
spectrum of an accretion disk are the iron lines, with broad skewed proles [6]. The
energy of the Fe Ko line is of the order of 6.4 keV, with the natural bandwidth of
the order of a few eV. Relativistic effects, as well as the extremely high velocity
of the matter in the disk cause the deformation of the line [6], and determine the
typical observed bandwidth, which is of about 200 eV. On the other hand, the Fe Ko
line is not significantly affected by absorption phenomena, and hence the broad red
wing of the line can be used as an extremely powerful tool to obtain and analyze the
main astrophysical characteristics of the central massive object [7]. Theoretical and
numerical models of the relativistic Fe Ko line for a maximally rotating Kerr black
hole were developed in [8—10]. These theoretical studies opened the possibility of
obtaining some unique information on the dynamics, geometry, and structure of the
accretion flows near the central general relativistic object [6, 9].

The study of the mass accretion around rotating black holes was initiated within
the framework of a general relativistic approach in [11]. By extending the theory of
non-relativistic accretion, as developed in [12], steady-state thin disk models were
constructed [11], by using the equatorial approximation to describe the stationary
and axisymmetric spacetime of rotating black holes. In these types of models the
accreting matter has a Keplerian motion, while the hydrodynamical equilibrium is
maintained by the efficient cooling due to radiation transport. The radiation emitted
by the disk surface, assumed to be in thermodynamical equilibrium, was consid-
ered as being that of a black body. The radiation properties of thin accretion disks
were further investigated and analyzed in [13, 14], and the effects of the photon
capture by the black hole on the spin evolution were also considered. An important
physical quantity, the efficiency with which black holes convert rest mass into outgo-
ing radiation in the accretion process was also introduced, and explicitly computed.
The emissivity properties of the accretion disks opened the possibility of providing
definite signatures that could distinguish between different classes of exotic central
objects, such as non-rotating or rotating quark, boson or fermion stars [15-18]. The
radiation power per unit area, the temperature of the disk and the spectrum of the
emitted radiation provides the possibility, once they are compared with the radiation
properties of a Schwarzschild or Kerr black hole of an equal mass, to make some
explicit predictions on the nature of the central object.
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In this context, the nature of the supermassive black hole candidates in galactic
nuclei can be tested by analyzing the profile of the K iron line observed in their X-ray
spectrum. The possibility that the spacetime in the immediate vicinity of compact
objects may be described by some non-vacuum exact solutions of Einstein’s equations
resulting as the end-state of gravitational collapse was investigated in [19]. The iron
line generated around this class of objects has specific features, which can be used
to distinguish such objects from Kerr black holes. One particular signature is that
their iron line cannot have the characteristic low-energy tail of the line generated
from accretion disks around fast-rotating Kerr black holes. The effect of a massive
accretion disk in the measurement of the black hole spin was estimated with a simple
analytical model in [20]. For typical accretion disks, the mass of the disk is completely
negligible, even for future more accurate measurements. However, for systems with
very massive disks the effect may not be ignored. The Polish doughnut model was
used in [21] to describe an optically thin and constant angular momentum ion torus
in hydrodynamical equilibrium and model the accretion structure around SgrA*.
The spectrum as seen by a distant observer in Kerr and non-Kerr spacetimes was
computed, and it was studied how an accurate measurement can constrain possible
deviations form the Kerr solution. There is a substantial degeneracy between the
determination of the spin and of the possible deviations from the Kerr geometry,
even when the parameters of the ion torus are fixed.

Hypothetical astrophysical objects with naked singularities, which are charac-
terized by a gravitational singularity without an event horizon, were also analyzed.
Note, however, that Penrose has proposed a conjecture according to which there exists
a cosmic censor who forbids the occurrence of naked singularities. Distinguishing
between astrophysical black holes and naked singularities is a major challenge for
present day observational astronomy. A possibility of differentiating naked singu-
larities from black holes is through the comparative study of thin accretion disks
properties around rotating naked singularities and Kerr-type black holes, respec-
tively [22]. A first major difference between rotating naked singularities and Kerr
black holes is in the frame dragging effect, the angular velocity of a rotating naked
singularity being inversely proportional to its spin parameter. Due to the differences
in the exterior geometry, the thermodynamic and electromagnetic properties of the
disks are different for these two classes of compact objects, consequently giving clear
observational signatures that could discriminate between black holes and naked sin-
gularities [22]. For specific values of the spin parameter and of the scalar charge, the
energy flux from the disk around a rotating naked singularity can exceed by several
orders of magnitude the flux from the disk of a Kerr black hole. The conversion effi-
ciency of the accreting mass into radiation by rotating naked singularities is always
higher than the conversion efficiency for black holes.

Due to their superfluid properties some compact astrophysical objects, like neu-
tron or quark stars, may contain a significant part of their matter in the form of a
Bose-Einstein Condensate. Observationally distinguishing between neutron/quark
stars and Bose—Einstein Condensate stars is a major challenge for this latter theoret-
ical model. An observational possibility of indirectly distinguishing Bose—Einstein
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Condensate stars from neutron/quark stars is through the study of the thin accretion
disks around compact general relativistic objects [23]. A detailed comparative study
of the electromagnetic and thermodynamic properties of the thin accretion disks
around rapidly rotating Bose—Einstein Condensate stars, neutron stars and quark
stars, respectively, was performed in [23]. Due to the differences in the exterior geom-
etry, the thermodynamic and electromagnetic properties of the disks (energy flux,
temperature distribution, equilibrium radiation spectrum and efficiency of energy
conversion) are different for these classes of compact objects.

The possibility of observationally discriminating between various types of neutron
stars, described by different equations of state of the nuclear matter, as well as
differentiating neutron stars from other types of exotic objects, like, for example,
quark stars, from the study of the emission properties of the accretion disks around
them, was investigated in [24]. The energy flux, the temperature distribution and
the emission spectrum from the accretion disks around several classes of rapidly
rotating neutron stars, described by different equations of state of the neutron matter,
and for quark stars, described by the MIT bag model equation of state and in the
CFL (Color-Flavor-Locked) phase, respectively, was obtained. Particular signatures
appear in the electromagnetic spectrum, thus leading to the possibility of directly
testing the equation of state of the dense matter by using astrophysical observations of
the emission spectra from accretion disks. The accretion process in an arbitrary static,
spherically symmetric spacetime was considered in [25], where a general formalism
for the study of accretion was developed, and the temperature, and density profiles
were obtained for the case of the polytropic equation of state.

Several astrophysical compact objects have been proposed, in the literature, as
alternatives to the standard black hole picture of general relativity, such as gravastars
[26]. These consist of a dark energy condensate surrounded by a strongly correlated
thin shell of anisotropic matter. In the context of stationary and axially symmetrical
geometries, a possibility of distinguishing gravastars from black holes is through the
comparative study of thin accretion disks around rotating gravastars and Kerr-type
black holes, respectively [27]. Due to the differences in the exterior geometry, the
thermodynamic and electromagnetic properties of the disks (energy flux, temperature
distribution, and equilibrium radiation spectrum) are different for these two classes
of compact objects, consequently giving clear observational signatures that may
distinguish them observationally. In fact, it was shown that gravastars provide a less
efficient mechanism for converting mass to radiation than black holes [27].

In modified theories of gravity, the physical properties of matter forming a thin
accretion disk in the static and spherically symmetric spacetime metric of vacuum
f(R) gravity were also analyzed [28], and it was shown that particular signatures can
appear in the electromagnetic spectrum, thus leading to the possibility of directly
testing modified gravity models by using astrophysical observations of the emission
spectra from accretion disks. The energy flux, the emission spectrum and accretion
efficiency from the accretion disks around several classes of static and rotating brane
world black holes were obtained in [29], and they were compared with the general
relativistic case. The general formalism was applied to the study of the accretion
properties of several classes of brane-world black holes, and the distribution of the
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main physical parameters of the gas was obtained. The astrophysical determination
of these physical quantities could discriminate, at least in principle, between the
different brane-world models, and place some constraints on the existence of the extra
dimensions. The thin accretion disk signatures in dynamical Chern—Simons modified
gravity and in Horava-Lifshitz gravity were obtained in [30, 31], respectively.

In this chapter, we will apply the analysis of the thin accretion disk models in
wormbholes geometries. This study was initiated in [32, 33], respectively, where the
analysis of the properties of the radiation emerging from the surface of the disk
around static and rotating axially symmetric wormhole geometries was performed.
As a result of these investigations it was shown that specific signatures appear in
the electromagnetic spectrum of accretion disks around wormholes made of exotic
matter. Hence the observational study of the radiation emitted by accretion disks
could lead to the possibility of clearly distinguishing wormhole geometries from
the static Schwarzschild or rotating Kerr spacetimes. The expected Ko iron line in
some wormhole spacetimes was studied in [34], and it was compared with the line
produced around Kerr black holes. The line generated by non-rotating or very slow-
rotating wormbholes is relatively similar to the one expected around Kerr black holes
with mild or high values of the spin parameter. On the other hand for wormholes
with spin parameter a, > 0.02, the associated Ko iron line is quite different from
the one produced around Kerr black holes.

In [35], it was suggested that the nature of supermassive objects at the centers of
galaxies—traversable wormholes or black holes—could be tested by using mm/sub-
mm VLBI facilities. As shown in [36], in a few years, the VLTI instrument GRAVITY
will have the capability to image blobs of plasma orbiting near the innermost stable
circular orbit of SgrA*, the supermassive black hole candidate in the Milky Way.
Since the secondary image of a hot spot orbiting around a wormhole is substantially
different from that of a hot spot around a black hole, astrophysical observations may
allow to test if at the center of our Galaxy a black hole or a wormhole is located.
High energy collision of two particles in wormhole spacetimes [37] or the study of
collisional Penrose process in rotating wormhole spacetimes [38] could also provide
important information on the nature of compact astrophysical objects. The iron line
profile in the X-ray reflection spectrum of a thin accretion disk around rotating Ellis
wormholes also have some specific observational signatures that can be used to
distinguish these objects from Kerr black holes [39].

The present chapter is organized as follows. In Sect. 4.2, we review the formalism
of the thin disk accretion onto compact objects for static and spherically symmetric
spacetimes. In Sect.4.3, we analyze the basic properties of matter forming a thin
accretion disk in static and spherically symmetric wormhole spacetimes, and for
rotating wormhole geometries in Sect.4.4. We discuss and conclude our results in
Sect.4.5. Throughout this work, we use a system of units so that c =G = h =
kg = 1, where kg is Boltzmann’s constant.
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4.2 Electromagnetic Radiation Properties of Thin
Accretion Disks in General Relativistic Spacetimes

Accretion disks are flattened astronomical structures made of rapidly rotating parti-
cles (gas) in orbital motion around a massive central gravitating body. The gas slowly
spirals inwards towards the central body, while its gravitational energy is transformed
into heat. The gravitational and the frictional forces raise the temperature of the disk,
such that radiation emission occurs, leading to the eventual cooling down of the disk.
The radiation emitted by the disk provides invaluable information on the physics of
the accretion disks. The emission of the disk is in the radio, optical, and X-ray energy
bands, and from the analysis of the observed electromagnetic spectrum, and of its time
variability, important information on the disk and its environment can be obtained.
In the following we will restrict our analysis to thin accretion disks, in which most
of the matter is located close to the radial plane.

4.2.1 Marginally Stable Orbits

The physical properties of the disk, as well as the characteristics of the electro-
magnetic radiation emitted by particles moving in circular orbits around general
relativistic compact objects are fully determined by the geometry of the spacetime
in which the disk is embedded. For a stationary and axially symmetric geometry we
adopt for the metric the general form given by

ds* = gy dt* + 28,4 dtd + g, dr* + goo dO” + g4y do* . 4.1)

Moreover, we also adopt the equatorial approximation, in which the metric functions
8ut> 81> &rr> 800 and gy only depend on the radial coordinate 7, that is, we assume
that the condition |0 — /2| < 1 is satisfied for all particles in the disk.

From a physical point of view the physical quantities characterizing the particles
in the disk moving in circular orbits in a stationary and axially symmetric geometry
are the angular velocity £2, the specific energy E, and the specific angular momentum
L, respectively. These quantities can be obtained from the geodesic equations, which
take the following form

di_ Eggy+Lgy  dp _ Egy+Lgu

> ; =", 4.2)
dt 81p — 81t8¢¢ dt 819 — 8u8oo
dr\* E? 2EL 12
& (—r) — g SET se T e 4.3)
dt 81p — 8u8o¢

With the use of Eq. (4.3) we can introduce an effective potential term V4 (r) defined
as
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E2g¢¢ + 2Eth¢ + Zzgzz

Vo (r) = —1 +
g;2¢ — 81t8¢¢

4.4)

The conditions for the existence of stable circular orbits in the equatorial plane
are given by Ve (r) =0 and Vg ,(r) = 0O, respectively, where the comma in the
subscript denotes the ordinary derivative with respect to the radial coordinate r.
These conditions imposed on the effective potential allow us to obtain £2, E , and L
for the particles moving in circular orbits around general relativistic compact spheres
as

~ 2 ~ 2
F—_ 8n + 8ip ’ 7 — 8o T 8p0 . (45)
\/_gtt — 281982 — g¢¢92 \/_gzz — 281982 — g¢¢92
_ d_¢ _ _gtd),r + \/(gt¢,r)2 - gtr,rg¢¢,r (4 6)
dt 8oo.r

The radii of the marginally stable orbits around the central compact object are deter-
mined by the condition Vg, ,-(r) = 0. By formally representing the effective poten-
tial as Vo (r) = —1 + f/g, where

f=E’g4s +2ELgis + L7849, 8 =81y — Su8spr 8 # O,

from V,z(r) = 0 it follows first that f = g. Then from the condition Vg ,.(r) =0
we find f,g — fg.» = 0. Thus, with the use of these conditions we can write down
explicitly the condition V,y ,-(r) = 0, which reduces to

0= (gzqu - gttgqﬁ(b)veﬁ”,rr = E"2g¢d>,rr + ZEzgmﬁ,rr + Zzgn‘,rr - (gt2¢ - gtthM)),rr .
4.7

By substituting Egs. (4.5) and (4.6) into Eq. (4.7) we obtain an equation that can be
solved for r. Thus the radii of the marginally stable orbits can be easily obtained,
once the metric coefficients g4, g:» and gy are given explicitly.

4.2.2 Physical Properties of Thin Accretion Disks

In the following we will restrict our analysis to thin accretion disks, for which the
vertical size (defined along the z-axis), given by the disk height H, is always much
smaller than the characteristic radius R of the disk, H << R. R characterizes the
horizontal extension of the disk, (defined along the radial direction r), while H can
be taken as equal to the maximum half thickness of the disk.

From a physical point of view we assume that the thin disk is in hydrodynamical
equilibrium. Moreover, the pressure gradient, as well as the vertical entropy gradient,
are both negligibly small in the disk. On the other hand, due to the efficient cooling
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mechanisms via the radiation over the entire disk surface, the heat generated by local
stresses and dynamical friction cannot be deposited in the disk. Consequently, the
hydrodynamic equilibrium forces the disk to mechanically stabilize its thin vertical
size. At the marginally stable orbit of the central compact object potential the thin
disk has an inner edge, while the accreting matter in higher orbits has a Keplerian
motion.

In the most common steady-state accretion disk models, it is assumed that the mass
accretion rate My is a time-independent constant. Hence all the quantities describing
the physical properties of the orbiting matter particles are averaged over a charac-
teristic time scale Az, over the azimuthal angle A¢ = 27, and over the height H,
respectively [11-13].

As we have already seen in the previous Section, the particles moving in Keplerian
orbits around general relativistic compact objects with an angular velocity 2 =
d¢ /dt have a specific energy E,and a specific angular momentum L, respectively.
In the steady-state thin disk model these quantities depend only on the radii » of
their orbits. The disk particles, rotating with the four-velocity u*, form a matter disk
having a surface density X', representing the average of the rest mass density pg of the
disk matter, vertically integrated. We model the matter in the disk by an anisotropic
fluid source, characterized from the thermodynamic point of view by the density py,
the energy flow vector ¢g* and the stress tensor t*” (we neglect the specific heat of
the disk fluid). All these quantities are measured in the averaged rest-frame. Then,
the first quantity describing the disk structure is the surface density X' (), defined as
[11,13]

H
) = / (Po)dz, 4.8)
-H

where (pp) is the averaged rest mass density (o) over a time Az and the angle 2.
Second, we can introduce the torque

H
Wy = / {15z, (4.9)
-H

where (z;) is the average of the component 7; of the stress tensor over Ar and 2. The
radiation flux .% (), an important physical quantity describing the disk, is obtained
as the time and orbital average of the energy flux vector g° over the disk surface, so
that

F(r) = (q°). (4.10)

For the stress—energy tensor of the matter in the disk we adopt the form
™ = poutu’ + 2utq” + 1", 4.11)
where u,g" = 0, and u,t"” = 0, respectively. In a local basis the four-vectors of

the energy flux and angular momentum flux are defined as —E* = T*(9/0t)” and
JH =TH(0/0¢)", respectively.
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In order to derive the structure equations of the thin disk we integrate the conser-
vation laws of the rest mass, of the energy, and of the angular momentum of the disk
matter, respectively [11, 13]. First, from the equation of the rest mass conservation,
V. (pou') = 0, we obtain the important result that the time averaged rate of the rest
mass accretion is independent of the disk radius,

My = —2nrXu’ = constant, (4.12)

where a dot represents the derivative with respect to the coordinate time ¢. The law
of energy conservation V, E* = 0 can be reformulated in an integral form as the
integral form

[MoE — 2nr2W,'], = 4nr.FE. (4.13)

From a physical point of view Eq. (4.13) states that the sum of the energies transported
by the rest mass flow, MOE , and by the dynamical stresses in the disk, 2w r2Wy",
respectively, equal the energy emitted in the form of electromagnetic radiation from
the surface of the disk, 4w r.F# E. Similarly, from the law of the angular momentum
conservation, V,J# = 0, we obtain the balance equation of the angular momentum
transport,

[MoL — 2rWy'], = 4nrFL. (4.14)

To obtain an expression for the energy flux .# we eliminate first W, from
Egs. (4.13) and (4.14), respectively. Then, we use the universal energy-angular
momentum relation dE = §2dJ, which for circular geodesic orbits takes the form

= .QL Therefore it follows that the flux % of the radiant energy over the
entlre surface of the disk can be expressed as a function of the specific energy,
angular momentum and of the angular velocity of the disk matter in the form
[11, 13],

My
C4n =g (E - 9L)2

The efficiency e with which the central compact general relativistic object converts
the rest mass energy into outgoing electromagnetic radiation is another important
characteristic of the mass accretion process in thin accretion disks. The efficiency ¢
of the disk is defined as the ratio of the rate of the energy of the photons traveling
from the disk surface to infinity, and the rate at which mass energy is accreted by the
central massive general relativistic object [11, 13]. Both energy rates are measured
at infinity If all the photons emitted from the disk surface can escape to infinity, the
efficiency of the disk is given as a function of the specific energy measured at the
marginally stable orbit 7,,

F(r) = /(E .QL)L dr. (4.15)

e =1—E,. (4.16)
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The efficiency ¢ for Schwarzschild black holes is of the order of 6%, no matter if
the photon capture by the black hole is considered, or not. For rapidly rotating black
holes, by ignoring the capture of radiation by the hole, ¢ has a value of around 42%,
whereas by assuming photon capture in the Kerr potential the efficiency is about
40% [14].

A fundamental assumption on the accreting matter in the steady-state thin disk
model is that it is in thermodynamical equilibrium. Therefore, in this approximation,
the radiation emitted by the entire disk surface can be described as a perfect black
body radiation, with the energy flux given by .7 (r) = o T*(r), where T is the disk
temperature, and o is the Stefan—Boltzmann constant. Then the observed luminosity
L (v) of the disk can be represented by a redshifted black body spectrum, which in
natural units 4 = ¢ = 1 is given by [16],

v3rdgdr

2
L (v) = 4nd?*I(v) = 167> cos y/ / o (2;‘) -1 4.17)

in

In Eq. (4.17) d is the distance to the radiation source (the disk), I (v) is the Planck
distribution function, y is the disk inclination angle, and r; and r; give the positions
of the inner and outer edges of the disk, respectively. In the integral over the radial
coordinate we assume r; = r,,; and ry — 00, respectively, since we expect that for
any kind of general relativistic compact object geometry the electromagnetic flux
from the disk surface vanishes at infinity, r — oo. The electromagnetic radiation
frequency emitted from the disk is given by v, = v(1 + z), with the redshift factor z
given by [40, 41] as

1+ Orsi .
47— + 2rsin¢g siny . 4.18)
V=8 — 22815 — 22844

In Eq. (4.18) we have neglected the bending of light.

With respect to the simple scaling transformation of the radial coordinate, given
by r — ¥ = r/M, where M is the mass of the central compact general relativistic
object, the electromagnetic flux and the emission spectrum of the accretion disks
satisfy some simple, but important and very useful scaling relations. Generally, the
components of the metric tensor g, are invariant with respect of this scaling trans-
formation. On the other hand the specific energy, the angular momentum and the
angular velocity transform as E—E,L—>MLand 2 — 2 /M, respectively. The
electromagnetic flux scales as F(r) — F(7)/M*, which gives the transformation law
of the temperature as T'(r) — T (¥) /M. A rescaling of the frequency of the radiation
emitted by the disk of the form v — vV = v/M, rescales the luminosity of the disk
as L (v) — L (v) /M. On the other hand, since the energy flux of the disk is propor-
tional to the accretion rate Mo, an increase in the accretion rate MO results in a linear
increase of the radiation flux from the disk.
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4.3 Electromagnetic Signatures of Accretion Disks
in Static Wormhole Geometries

In the present Section, we will review the thin disk accretion properties in static
and spherically symmetric wormhole geometries [32]. After introducing the worm-
hole geometry, and discuss some of their general properties, we will compare in
detail the dynamic and electromagnetic properties of particle forming a thin disk in
Schwarzschild and wormhole geometries, respectively.

4.3.1 Static Spherically Symmetric Wormhole Geometries

As a first example of a wormhole geometry that can be tested by using the emission
properties of thin accretion disks we consider the Morris—Thorne wormhole [42],
which is described by the static and spherically symmetric metric and is given by

2

ds* = —**0 g + @
1—b(r)/r

+ 2 (d6? + sin® 0 d¢?) . (4.19)

This metric describes a wormhole geometry consisting of two identical, asymptot-
ically flat regions, which are joined together at the throat located at ry > 0. As for
the radial coordinate r, it has a range that increases from a minimum value at 7y,
representing the wormhole throat, and extends to oo (we refer the reader to Chap. 2
for more details).

An important requirement for a wormhole geometry is the avoidance of event
horizons, which requires that the redshift function @ (r) be finite for the adopted
radial coordinate range. On the other hand at the throat ry, the shape function is
given by b(ry) = ryp. A fundamental property of the wormhole geometries is the
flaring-out condition, given by [b'(r)r — b(r)] /b*(r) < 0, which follows from the
mathematical properties of the embedding [42].

An interesting possibility that follows from wormhole geometries is that they
have a repulsive/attractive character [43]. In order to show this property, consider a
static observer, located at constant r, 0, ¢, whose four-acceleration of the observer
isgivena’ = 0, and a” = @, (1 — b/r) respectively (we refer the reader to Chap. 2
and [43] for more details). Note that a” represents the radial component of the proper
acceleration required for an observer to remain at rest at a constant location r, 6, ¢.
Ifa” > 0, the geometry is attractive, that is, the observers must permanently have an
outward-directed radial acceleration, in order to keep them from being pulled into
the wormhole. On the other hand, if " < 0, the gravitational field (and the geometry)
is repulsive, so that the observers must have an inward-directed radial acceleration
in order to avoid being pushed away from the wormhole. Obviously this difference
is dictated by the sign of @ ,. Thus, the convention we will use is that @ ,.(r) is


http://dx.doi.org/10.1007/978-3-319-55182-1_2
http://dx.doi.org/10.1007/978-3-319-55182-1_2

74 T. Harko et al.

positive for an inwardly oriented (attractive) gravitational force, and negative for an
outwardly oriented gravitational force (repulsion).

The above results are of particular interest for the observationally important case
of particles moving in circular orbits around wormholes. For the specific case of
@ ,(r) <0, due to the outward gravitational repulsion, the particles in the disk are
unstable. Therefore, in the following, we restrict our analysis to the case @ ,.(r) > 0.
In particular, as a specific example, we will adopt for @ (r) the functional form

o

D) =—-". (4.20)

which we will consider in detail in the following analysis.

4.3.2 Electromagnetic Signatures of Static Spherically
Symmetric Wormhole Geometries

In a static spherically symmetric geometry with metric represented by Eq. (4.19),
the effective potential that determines the geodesic motion of the test particles in the
equatorial plane, given in its general form by Eq. (4.4), reduces to

22
Vo (r) = & (1 + = ) . 4.21)
r

The physical parameters of the particle motion in the disk (effective potential Vg,
the angular velocity £2, the specific energy E and the specific angular momentum
L, respectively) are presented, for the specific case of @ (r) = —ry/r,inFig.4.1, fora
wormhole with a total mass of the order of M = 0.06776M,, with the throat located
at ry = GM /c*> = 10*cm. The orbiting particles have a specific angular momentum
of L = 4M. The corresponding physical parameters in the Schwarzschild geometry,
plotted as solid lines, are also presented for comparison.

Since the angular velocity §2, the specific energy E and the specific angular
momentum L, given generally by Egs. (4.5) and (4.6), depend only on the metric
function @ (r), they are identical for all wormhole geometries, and are independent of
the choice of the shape function b(r). Itis interesting to note here that the only quantity
in the flux integral (4.15) that has a dependence on the metric tensor coefficient b(r)
is the determinant of the metric tensor —g. The invariant volume element of the
different types of static wormholes can be obtained as

r2e¢

Vg = JI—bOJr

(4.22)
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Fig.4.1 The effective potential Vg (r) (top left hand), the angular velocity 2 (top right hand), the
specific energy E (bottom left hand) and the specific angular momentum L (bottom right hand) of the
orbiting particles in a thin accretion disk around a wormhole of a total mass M = 0.06776M, and
for the specific angular momentum L = 4M. We have considered the specific case of ® = —ry/r,
and we have compared it with the Schwarzschild solution, which is depicted as the solid line

Therefore different flux values can be obtained when computing Eq. (4.15) for dif-
ferent choices of b(r). As one can see from Fig.4.1, for the wormhole geometry
under study the orbiting particles in the thin accretion disk have a somewhat smaller
angular velocity, specific energy, and specific angular momentum, respectively, as
compared to the case of the Schwarzschild geometry.

The energy flux, the disk temperature and the emission spectra wL(w) of the
electromagnetic radiation emitted by a thin accretion disk are plotted in Figs. 4.2, 4.3
and 4.4, for a mass accretion rate of My = 10~'2M, /yr, and for various wormhole
geometries.

In order to investigate the effects of the geometry on the accretion disk properties,
in the left plots of all Figs.4.2, 4.3 and 4.4 we have chosen the following shape
functions,

2

br) =2,
r

b(r) =ry, b(r) = \/%. 4.23)
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Fig. 4.3 Temperature distribution of the accretion disk around a wormhole with effective mass
M = 0.06776M and for a mass accretion rate Mo = 10~'2M, /yr. Different shape functions were
used to obtain the fluxes. Thus, in the left plot the following cases were considered: b(r) = rg
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of y

In the right plots of Figs.4.2, 4.3 and 4.4 we consider the shape function

b(r) = ro + yro (1 — %") , (4.24)

where 0 <y < 1. _ _
Note that not only £2, E and L have smaller values for the wormhole geometries

under consideration, as compared to the case of the static Schwarzschild black holes,
but the invariant volume element (4.22) also has relatively small values for any choice
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Fig. 4.4 The emission spectra wL(w) of the accretion disks around a wormhole with effective
mass M = 0.06776M, and for a mass accretion rate Mo = 10~ '2M /yr. Different shape functions
were used to obtain the fluxes. Thus, in the left plot the following cases were considered: b(r) = rg
(the long dashed line), b(r) = r(z) /r (the short dashed line) and b(r) = (ror) /2 (the dotted line),
respectively. The flux emitted by a thin accretion disk around a Schwarzschild black hole is presented
as a solid curve. The right plot shows the case of b(r) = ro + yro(1 — ro/r), for different values
of y

of the function b(r). Consequently, it turns out that more energy is radiated away by
the wormhole disk than in the case of the Schwarzschild potential, a result which is
clearly shown in Fig.4.2.

Important observational information can be extracted from the position of the
marginally stable orbits, which are located at the radius 2r, for wormholes, while for
the Schwarzschild black hole we have r,,; = 6r(. Consequently, the inner edge of the
accretion disk is closer to the throat of the wormhole than to the event horizon of the
black hole, a result valid for any wormhole and black hole with the same geometrical
mass rg. Therefore it follows that the wormhole efficiency ¢ of the conversion of the
accreted mass into radiation is of the order of 0.1422, a value which is much higher
than the corresponding value for black holes, ¢ = 0.0572. Even though an efficiency
of 14% is still much lower than the 40% efficiency obtained for Kerr black holes,
it still shows that static wormholes may provide a much more efficient accretion
mechanism for the conversion of the gravitational energy of the compact object into
electromagnetic luminosity, as compared with the mass accretion taking place in a
static black hole geometry.

These qualitative features of the disk energy radiation can also be found in the
radial profiles of the temperature on the disk surface, which closely follow the flux
distributions, and which are shown in Fig.4.3. The emission spectra wL(w) of the
accretion disks in both static wormhole and Schwarzschild geometry are depicted in
Fig.4.4.

Thus, as a general conclusion of this Section, for the static and spherically sym-
metric wormhole solutions of general relativity it follows that specific signatures
appear in the electromagnetic spectrum of the accretion disks. These particular sig-
natures may lead to the possibility of distinguishing wormhole geometries from the
Schwarzschild geometry by using astrophysical observations of the electromagnetic
radiation coming from accretion disks built around compact objects.
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4.4 Accretion Disk Properties in Rotating Wormbhole
Geometries

In the present Section, we study the physical properties and the equilibrium thermal
radiation emission characteristics of matter forming thin accretion disks in stationary
axially symmetric wormhole spacetimes. Several thin disk models are constructed
by adopting different numerical values of the wormhole’s angular velocity. In each
case we obtain the time averaged energy flux, the disk temperature and the emission
spectra of the accretion disks. We also compare the mass accretion properties in a
rotating wormhole geometry with the same properties of a rotating Kerr black hole.

4.4.1 Stationary Axially Symmetric Wormhole Spacetimes

The standard metric for a stationary, axisymmetric traversable wormhole can be
represented as [44]

ds?> = —N?di* + " dr* + r’K*[d6* + sin® 0(d¢ — w dr)?] , (4.25)

where N, u, K and o are functions of r and 6 only. To ensure that the metric
is nonsingular on the rotation axis (f = 0, 7), we need to impose the regularity
conditions on N, u and K [44], which require that the 6 derivatives of the metric
tensor coefficients must vanish on the rotation axis.

In the following, for simplicity, we will adopt the following representations for
the functions N and e* [44],

_ b(r.0)

r

N(r, 0) = ®"0  e7nnd) — | (4.26)

which are very useful in describing a traversable wormhole. As usual, @ (r, 6) is the
redshift function, satisfying the important requirement of finiteness, which ensures
that there are no event horizons or curvature singularities in the wormhole geometry.
The shape function b(r, 0) satisfies the condition b < r, as well as the flaring-out con-
dition. From a geometric point of view K (r, 6) determines the proper radial distance,
while the function w determines the angular velocity of the rotating wormhole.

In order to avoid curvature singularities one needs to further impose the conditions
by = 0 and byy = 0 at the throat. These two conditions show that the location of the
throat is at a constant value of r. (We refer the reader to [44] for more details).
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4.4.2 Effective Potential for Rotating Wormhole Geometries

The radial geodesic equation (4.3) for the metric (4.25) follows immediately from

Eq. (4.4), and is given by
1 ANNEAY =V 4.27)
r dt) ~ ’

By using the important relationship gt2¢ — 8u8pp = r’K?e*?, the effective potential

can be represented as

72 (ez<p _ rszwz) ]
(2 K2e2?)

Ve (r) = =1+ [Ezrsz —2ELPK’w — (4.28)

Using this relationship, Eq. (4.27) can be reformulated in an alternative form as

4 dr 2
r =) = V(r), (4.29)
where V (r) given by
V) =rt (1 - ?) Ve (r) (4.30)

In the following for the function w we consider the specific case in which w is
given by

w=—, 4.31)

with J = M?a, representing the total angular momentum of the wormhole. Since in
the present investigation we are only interested in the equatorial approximation, with
|60 — /2| <« 1, we also fix K as K = 1 throughout our computations.

Moreover, in this section of the disk properties, we consider the case of the redshift
function given by Eq. (4.20), while for the shape functions we adopt the choices given
by Egs. (4.23) and (4.24), provided in the previous section.

4.4.3 Electromagnetic Signatures of Thin Accretion Disks
in Rotating Wormhole Geometries

In the following, for simplicity, we will adopt the following values for the mass M
and the spin parameter a, of the rotating wormhole,
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M =0.06776 Mg (= 1000 cm), (4.32)

and
a, =0.2, 0.4, 0.6, 0.8, 1.0, (4.33)

respectively. Moreover, we fix the mass accretion rate as My = 10~ '2M, /yr.

In Figs.4.5, 4.6, 4.7, 4.8, 4.9 and 4.10 we present the energy flux F(r), the disk
temperature 7'(r) and the electromagnetic emission spectra vL(v) from an accretion
disk for different wormhole geometries. For the shape functions we have adopted the
expressions given by Eqgs. (4.23) and (4.24), respectively. For the sake of comparison
we also present, for each case, the electromagnetic emission properties of the thin
disks in the Kerr black hole geometry.

A comparison of the energy fluxes emitted from the thin disk in a stationary
rotating wormhole geometry, as shown in Figs.4.5 and 4.6, with the energy flux
emitted by a Kerr black hole for a, < 0.8, immediately leads to the conclusion that
the intensity of the energy flux emitted from the disk surface is at least two orders of
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Fig. 4.5 The energy flux .# (r) radiated by an accretion disk in a Kerr black hole geometry (upper
left-hand plot), and in the stationary axially symmetric wormhole spacetimes for @ = —rg/r and
b = ro (upper right-hand plot), b = rg/r (lower left hand plot) and b = (ror)V/? (lower right-
hand plot), respectively. In all plots rp = 1000cm, and the values of the spin parameter are a,, =
0.2,0.4,0.6, 0.8 and 1, respectively
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Fig. 4.6 The energy flux .% (r) from an accretion disks in stationary axially symmetric wormhole
spacetimes for @ = —rg/r,andb = ro + yro(1 — ro/r), where y = 0.2 (upper left-hand plot), 0.4
(upper right-hand plot), 0.6 (lower left-hand plot) and 0.8 (lower right-hand plot), respectively.
In all plots rp = 1000cm, and the values of the spin parameter are a, = 0.2,0.4,0.6,0.8 and 1,
respectively

magnitude greater for rotating wormholes than for the rotating Kerr black hole, with
both compact objects having the same geometrical mass ry and accretion rate Mj.
However, the flux amplitudes indicate a similar dependence on the spin parameter a,
for both types of the rotating central compact objects. As we can see from the plots,
with the increase in the values of a,, the maximal admissible values of .% (r) are also
increasing. Once the angular velocity of the central object increases, the maximal flux
values are located closer to the black hole. On the other hand, in wormhole spacetimes
they are located at somewhat lower disk radii. In the case of wormhole geometries,
the left edge of the electromagnetic energy flux profile is always located at ry, the
throat of the wormhole. On the other hand, the inner edge of the electromagnetic
energy flux profile is located at different positions of the disk around the rotating
Kerr black hole. These results follow from the fact that each value of a, in the plots
is greater than the critical spin parameter.

On the other hand the different shape functions (4.23) and (4.24) adopted to
describe the wormhole metric affect only the amplitudes of the flux profiles. It turns
out that the wormhole accretion disk with the shape function b = r§/r produces the
electromagnetic radiation flux with the highest intensity, while the lowest values
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Fig.4.7 Temperature distribution of the accretion disk in the Kerr spacetime (upper left-hand plot),
and of the stationary axially symmetric wormhole spacetimes for @ = —ry/r, and b = ry (upper
right-hand plot), b = rg /r (lower left-hand plot), and b = (ror)'/? (lower right-hand plot), respec-
tively. In all plots 7o = 1000cm, and the values of the spin parameter are a, = 0.2, 0.4, 0.6, 0.8
and 1, respectively

are obtained for the case .7 (r) for b(r) = (ror)'/?. Interestingly, by increasing the
numerical value of the parameter y in the shape function b(r) = ry + yro(1 — ry/7),
it turns out that the intensity of the electromagnetic flux is decreasing, since the 1/r
term in b(r) is becoming more and more dominant.

All these physical characteristics also appear in the disk temperature profiles,
which are presented in Figs.4.7 and 4.8, respectively. Note that the temperature
distribution of the wormhole disks and Kerr black hole disks have the same orders
of magnitude only for a, ~ 1. For lower values of the spin parameter a, the disks in
rotating wormhole geometries are much hotter than those located in the geometric
frame of the Kerr black holes.

The disk spectra for the rotating wormholes and black holes are displayed in
Figs.4.9 and 4.10, respectively. It turns out that even that there are no significant
differences between the spectral amplitudes of the electromagnetic radiation from the
disk for the different types of rotating central compact objects, the cut-off frequencies
of the spectra significantly depend on the nature and geometry of the central objects,
as well as on their rotational velocities. The cut-off frequencies for the radiation from
rotating Kerr black holes are lower than those for the radiation coming from disks in
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Fig. 4.8 Temperature distribution of the accretion disk in the stationary axially symmetric worm-
hole spacetime for @ = —ry/r,andb = ro + yro(1 — ro/r), where y = 0.2 (upper left-hand plot),
0.4 (upper right-hand plot), 0.6 (lower left-hand plot) and 0.8 (lower right-hand plot), respectively.
In all plots ro = 1000 cm, and the values of the spin parameter are a, = 0.2,0.4,0.6,0.8 and 1,
respectively

wormhole geometries. On the other hand, for the wormhole spacetimes, the spectral
profiles of the radiation emitted by the accretion disks are relatively similar, no matter
which of the shape functions b(r) we use in our analysis. The cut-off frequencies
of the spectra have the lowest values for b(r) = (ror)'/?, while the highest values
are obtained for the case b(r) = ro + yro(1 — ry/r). However, these differences are
negligible.

On the other hand, the plots in Fig.4.10 indicate that the spectral features of the
disk radiation are also largely insensitive to the changes in the numerical values of
the parameter y in the shape function b(r) = ro + yro(1 — ro/7).

In Table4.1 we present the conversion efficiency & of the accreting mass into
radiation. These values are obtained by ignoring the photon capture by the massive
central object. From a physical point of view the numerical value of ¢ indicates the
efficiency of energy conversion and generation mechanism by mass accretion in the
corresponding spacetime geometry. The amount of energy emitted by the matter
departing from the accretion disk, and falling down into the black hole through its
event horizon, or through the throat of the wormhole, is nothing but the binding
energy E(r)|,—,, of the compact object effective potential.
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Fig. 4.9 The emission spectra of the accretion disk in the Kerr spacetime (upper left-hand plot) and
in the stationary axially symmetric wormhole spacetime for @ = —ro/r, and b = ro (upper right-
hand plot), b = r(z)/r (lower left hand plot), and b = (ror)'/? (lower right-hand plot), respectively.
In all plots rp = 1000cm, and the values of the spin parameter are a, = 0.2,0.4,0.6,0.8 and 1,
respectively

An important result that can be read from Table4.1 is that ¢ is always higher for
axially symmetric rotating wormholes as compared to the case of Kerr black holes.
Even for a relatively small value of the spin parameter of a, = 0.2, the efficiency
of the energy conversion process of the matter in the wormhole geometry is greater
than ¢ obtained for the extreme Kerr black hole geometry with a, = 1. In the case
of rapidly rotating wormholes, the efficiency ¢ is even higher. However, in this case
there is an upper limit of ¢ for high values of the spin parameter: for a, ~ 0.6 we
obtain ¢ = 0.508. For this value of a, the accretion process is reaching its saturation
point, and higher efficiencies cannot be obtained, even if we further increase the spin
parameter a,. However, it is important to note this high efficiency indicate that the
rotating wormholes geometries represent a much more efficient astrophysical system
for the transformation of the energy of the accreting matter into electromagnetic
radiation, as compared to the case of the Kerr black holes.
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Fig. 4.10 The emission spectra of the accretion disk in the stationary axially symmetric wormhole
spacetime for @ = —rp/r,and b = roy + yro(l — ro/r), where y = 0.2 (upper left-hand plot), 0.4
(upper right-hand plot), 0.6 (lower left hand plot) and 0.8 (lower right-hand plot), respectively.
In all plots ryp = 1000cm, and the values of the spin parameter are a, = 0.2,0.4,0.6,0.8 and 1,

respectively

Table 4.1 The position of
the inner edge of the accretion
disk, and the efficiency ¢ for
rotating black hole and
wormhole geometries

Kerr black hole Wormhole
ay rm/ro & rm/ro &
0.2 5.33 0.065 1.00 0.498
0.4 4.62 0.075 1.00 0.506
0.6 3.83 0.091 1.00 0.507
0.8 291 0.122 1.00 0.508
1.0 1.00 0.421 1.00 0.508

4.5 Discussions and Final Remarks

In the present paper, we have studied thin accretion disk models applied to the
study of static and spherically symmetric wormhole geometries, and have carried
out an analysis of the properties of the radiation emerging from the surface of the
disk. In classical general relativity, wormholes are supported by exotic matter, which
involves a stress—energy tensor that violates the null energy condition. Thus, it has
proved interesting to analyze the properties, namely, the time averaged energy flux,
the disk temperature, and the emission spectra of the accretion disks around these
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wormholes comprising of exotic matter. For the static and spherically symmetric
wormhole geometries under study, we have verified that the potential well is higher
than the Schwarzschild potential, and consequently more energy is radiated away.
These effects in the disk radiation were also observed in the radial profiles of temper-
ature corresponding to the flux distributions, and in the emission spectrum wL(w) of
the accretion disks. Thus, for these solutions, we conclude that the specific signatures,
that appear in the electromagnetic spectrum, lead to the possibility of distinguish-
ing wormhole geometries from the Schwarzschild solution by using astrophysical
observations of the emission spectra from accretion disks.

In this context, observations in the near-infrared (NIR) or X-ray bands have pro-
vided important information about the spin of the black holes, or the absence of
a surface in stellar type black hole candidates. In the case of the source Sgr A*,
where the putative thermal emission due to the small accretion rate peaks in the near
infrared, the results are particularly robust. However, up to now, these results have
confirmed the predictions of general relativity mainly in a qualitative way, and the
observational precision achieved cannot distinguish between the different classes of
compact/exotic objects that appear in the theoretical framework of general relativ-
ity [17]. However, important technological developments may allow to image black
holes and other compact objects directly. A background illuminated black hole will
appear in a silhouette with radius ~/27GM /c?, with an angular size of roughly twice
that of the horizon, and may be directly observed. With an expected resolution of
20 as, submillimeter very-long baseline interferometry (VLBI) would be able to
image the silhouette cast upon the accretion flow of Sgr A*, with an angular size
of ~50pas, or M87, with an angular size of ~25 pas. For a black hole embedded
in an accretion flow, the silhouette will generally be asymmetric regardless of the
spin of the black hole. Even in an optically thin accretion flow an asymmetry will
result from special relativistic effects (aberration and Doppler shifting). In principle,
detailed measurements of the size and shape of the silhouette could yield information
about the mass and spin of the central black hole, and provide invaluable information
on the nature of the accretion flows in low luminosity galactic nuclei.

We suggest that by using the same imaging technique, which gives the phys-
ical/geometrical properties of the silhouette of the compact object cast upon the
accretion flows on the compact objects, would be able to provide clear observational
evidence for the existence of wormholes, and differentiate them from other types
of compact general relativistic objects. We conclude by pointing out that specific
signatures appear in the electromagnetic spectrum of the thin accretion disks around
wormbholes, thus leading to the possibility of detecting and distinguishing worm-
hole geometries by using astrophysical observations of the emission spectra from
accretion disks.
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Chapter 5
Horndeski Wormbholes

Sergey V. Sushkov

5.1 Introduction

The discovery of the current Universe acceleration [29, 30] requires a theoretical
explanation. From the phenomenological viewpoint, a small cosmological term is
a very good explanation [33], but it is problematic from the quantum field theory
viewpoint, since it is difficult to explain the origin and value of this term [43]. There-
fore, alternative dark energy models have been proposed, most of which introduce a
scalar field, as in the Brans—Dicke theory, quintessense, k-essence, etc. (see [8, 25]
for reviews), while the others, as for example the F(R) gravity [9, 37], although
apparently different, are equivalent to a specific scalar—tensor theory.

In view of this interest towards theories with a gravitating scalar field one may
ask, what is the most general theory of this type? The answer was obtained already in
1974 by Horndeski [24 ]—this theory should have at most second order field equations
to avoid the Ostrogradsky ghost [44], and it is determined by the following action
density (in the parameterization of Ref. [9])

Lu=v—-8(+ 5+ 4+ %), 5.1
where, with X = —1V,®V*®, one has

L =G6G(X, D),
2 =G:(X, 9)0,
Ly = Go(X, @) R+ 9xGa(X, ) 84y Vi OV D,

1
%5 = G5(X, @) Gy V' ® — = 0xGs(X, D) Sy VAdVEOVI D, (5.2)
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and Gy (X, ®) are arbitrary functions, while 832 = 2!8},85, and 8,77 = 316},825,.
This theory contains all previously studied models with a gravity-coupled scalar
field. Note also that Horndeski developed his theory on the base of mathematical
facts but later the same results were obtained on the basis of more intuitive approach
from research in Galileons [10, 11, 28].

The simplest Lagrangian in the Horndeski theory contains a term G*"¢ ¢ , pro-
viding a nonminimal kinetic coupling of a scalar field to the curvature. Cosmological
applications of such this have been intensively investigated in [3, 14, 17-23, 32, 34,
36, 38-40]. In particular, as was shown in our works [34, 36, 39], nonminimal
kinetic coupling provides essentially a new inflationary mechanism. Less studied is
a problem of the black hole and wormhole existence in the theory of gravity with a
nonminimal kinetic coupling. Recently, Rinaldi [31] found a class of exact solutions
with characteristic features of black holes, particularly, with an event horizon. Soon
afterwards, the Rinaldi method was applied in [1, 2, 7, 27] to find new particular
solutions with event horizons.

Wormbhole solutions in the theory of gravity with nonminimal kinetic coupling
was studied in [26, 41]. General solutions describing asymptotically flat traversable
wormholes have been obtained by means of numerical methods [26]. Particular exact
wormbhole solutions in an analytical form have been found by using the Rinaldi
method [41]. The throat of such wormholes connects two anti-de Sitter spacetimes.

5.2 Action and Field Equations

Let us consider a gravitational theory with a nonminimal derivative coupling given
by the action

1
S = E/dx‘&/—g {MZR — [egun + 1G] VFV ¢ — 2V ($)}, (5.3)

where Mp; = /1/87 G is the reduced Planck mass, g,,, is a metric, g = det(g,,,), R
is the scalar curvature, G, is the Einstein tensor, ¢ is a real massless scalar field,
is a parameter of nonminimal kinetic coupling with the dimension of length-squared.
The ¢ parameter equals £1. In the case ¢ = 1 we have a canonical scalar field with
a positive kinetic term; and the case ¢ = —1 describes a phantom scalar field with
negative kinetic term.

Variation of the action (5.3) with respect to the metric g,, and scalar field ¢
provides the following field equations:

MEG oy = €Ty, + 16y, (5.4)
V, JE ==V, (5.5)
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respectively, where

JH = (g™’ + nG"")V, ¢, (5.6)
Ty = Vup Vi — 32,0 (V9)?, (5.7)
O = =3V, Vo R+ 2V4¢ V@ RY + V¢ VP Ryarp

+V, ViV, Ve — V, Vi Op — $(V)’G (5.8)

+gu|[ — 3V VPP Vo Vi + 2([O¢)* — Vug Vo R*].

Due to the Bianchi identity V# G, = 0, Eq. (5.4) leads to a differential consequence
given by
V*[eTu + 1G] = 0. (5.9)

One can check straightforwardly that the substitution of expressions (5.7) and (5.8)
into (5.9) yields Eq. (5.5). In other words, the equation of motion of the scalar field
(5.5) is the differential consequence of the system (5.4).

5.3 Static Spherically Symmetric Asymptotically
Flat Wormholes

Consider a static spherically symmetric configuration in the theory (5.3). In this case
the spacetime metric can be taken as follows:

ds®> = —A(r)dt* + A7 (r)du® + p*(r)d 22, (5.10)

where d 22 = d#? + sin? Od¢? is the linear element of the unit sphere, and A () and
p(r) are functions of the radial coordinate . Consider also that the scalar field ¢

depends only on r, so that ¢ = ¢ (r).
Now the field equations (5.4) and (5.5) yield

7 NG 2 !
2 | 0" AP o 1 Lon -1 14 AP
M 2 A L L A lyig) anele A
P1|: 0 Ap pz Ap2:| 2 4
3A/p/ A,O/z 1 A,O”
+ 2 + +—+—1), 5.11
" ( 20 202 202 p G-

A/p/ p/2 1 1 B
M%I[ + = | = 57 = ATV )

Ap  p2 Ap?
3Ap% 3A'p 1
” P 4
+77¢ ( 2p2 + 2/) —2)02), (512)
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A// p// A/p/ ]

1 1 _ Ap/ 1
M2 _ r — __ /2_A 1 OV 7A,
p]|:2 1 ’ Ap 234) V($) +n¢'¢ o +

2
Ao 1 Ao 1A/2 1
+n¢’2(pp+2 ’ ++A"), (5.13)

4 A 4
” A / ., A/ / /2 1
e¢” +e¢/ +2 +n¢ - =
P 1Y
+

Ao A Al 2 A/2/ Ao’ o
+¢( P +3 14 )0/)

A//p/
+ +2
A2 p? Ap p? p

) =Aa"lvs, (519

respectively, where the prime denotes d /dr, and Egs. (5.11)~(5.13) are the (), (}). (3)
components of Eq. (5.4), respectively. Equations (5.11)—(5.14) represent a system
of four ordinary differential equations of second order for three functions p(r),
A(r), ¢(r). As was mentioned above, Eq. (5.14) is a differential consequence of
Egs. (5.11)—(5.13). It is also worth noticing that Egs. (5.11), (5.13) and (5.14) are of
second order, while Eq.(5.12) is a first-order differential constraint for p(r), A(r),
and ¢ (r).

Combining the above equations one can easily rewrite them into the more
compact form

" AN 1

2M1§lp_ = —e¢” +nA (45/2'0—) + '7¢>/2—2, (5.15)
Iy P P
/ ! 1 I /. ! /. ! / /.

Mg (A'p?) = =20V + Sn(AA'p?¢") + 0@ (A pp’ + A%p" = 4),  (5.16)

/) 1 /
My (A(p")" — A"p? = 2) = Znl@"(2A%pp" — AN p")] + 1497, (5.17)
e(Ap¢") +nlg'(AA'pp' + A%p” — A)]' = p*Vy. (5.18)

5.3.1 Wormhole Configuration

In this section, we will focus our attention on wormhole solutions of the field
equations (5.11)—(5.14), or equivalently (5.15)—(5.18), obtained in the previous
section. Note that Egs. (5.11)—(5.14) are a rather complicated system of nonlin-
ear ordinary differential equations, and we do not know if it is possible to find any
exact analytical solutions to this system. Instead, we will construct wormhole solu-
tions numerically studying previously their asymptotic properties near and far from
the wormhole throat.

To describe a traversable wormhole the metric (5.10) should possess a number of
specific properties. In particular, (i) the radial coordinate » runs through the domain
(—00, +00); (ii) there exist two asymptotically flat regions Z : r — £00 con-
nected by the throat; (iii) p () has a global positive minimum at the wormhole throat
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r = rg; without a loss of generality one can set ry, = 0, so that pg = min{p(r)} =
p(0) is the throat radius; (iv) A(r) is everywhere positive and regular, i.e., there are no
event horizons and singularities in the spacetime. Taking into account the necessary
conditions for the minimum of function, we obtain also

Py =0, pl >0, (5.19)

where the subscript ‘0’ means that values are calculated at the throat r = 0.
Concerning wormholes, the above relations are known as the flare-out conditions.

5.3.2 Initial Condition Analysis

Let us consider the field equations at the throat r = 0. By assuming py =0,
Egs.(5.11) and (5.12) after a little algebra yield

1 <"~,‘A()(}§/2 — 2V()

S =, (5.20)
Lo 2Mp — nAodyg
P _ S0 eMy — V) (5.21)

P MHEQME —nAopR)?

To provide the flare-out conditions (5.19) the right-hand sides of Eq.(5.20), then
Eq. (5.21) should be positive. This is possible if ¢ # 0and the following inequalities
take place:

8A0¢62 — 2V0

— <0, (5.22)
2Ml§1 - ’7140‘15(/12

eMp —nVy < 0. (5.23)

For given ¢ and n these inequalities provide restrictions for the initial values of Aoqb(’)2
and V) = V (¢) at the throat. Let us consider separately various cases.

1. n = 0. This is the case of a minimally coupled scalar field. Now (5.23) yields
e <0, ie. & =—1, for any Vp. In turn, if ¢ = —1 Eq. (5.22) is fulfilled provided
Vo > —%Ao%z. Thus, we have obtained a well-known result that a solution with the
throat in general relativity with a minimally coupled scalar field is permitted only
for phantom fields with negative kinetic energy (see, for example, [5]).

Further we will consider cases with nonminimal derivative coupling.

2. & =1,n > 0. The constraints (5.22) and (5.23) give

2 2
(A) At <2y, > Ha,
2n
2

M2 M 1
B) Ag? P Py o S AR,
(B) Aogy > o n <Vo<3 0P
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Thus, in the case > 0, & = 1 there are domains of initial values A0¢(’)2 and V which
provide the flare-out conditions (5.19). We also stress that the initial value V; should
be necessarily positive at the throat.

3. e =1,1n < 0. Itis easy to check that Egs. (5.22) and (5.23) are inconsistent in
this case, and hence the flare-out conditions (5.19) are not fulfilled.

4. e =—1,1n > 0. Egs. (5.22) and (5.23) give

2 Mlgl 1 2
Ay < E Vo > _EAO% . (5.24)

5.6 =—1,n < 0.Eqgs. (5.22) and (5.23) give

1 M3
Aogf > 0, —EAO%Z <Vp < |—‘|’1 (5.25)
n
Thus, in case ¢ = —1 there are domains of initial values A0¢>62 and V, which provide

the flare-out conditions (5.19). Itis worth noticing that the value V) = 0is admissible,
and so one may expect to get a wormhole solution without a potential.

In the model with nonminimal derivative coupling there is a nontrivial case ¢ = 0,
when the free kinetic term is absent. Let us consider also this case.

6. ¢ =0,n > 0. Egs. (5.22) and (5.23) give

M2
A0¢62 < 2—71;1, V() > 0.

Thus, in this case there are domains of initial values A0¢(’)2 and Vj which provide the
flare-out conditions. As well as for ¢ = 1 and n > 0, the initial value V, should be
necessarily positive at the throat.

7. =0,n < 0. Egs. (5.22) and (5.23) are inconsistent.

Summarizing, we can conclude that the flare-out conditions (5.19) in the model
with nonminimal derivative coupling can be fulfilled for various values of ¢ and
n. Respectively, the flare-out conditions provide an existence of solutions with the
throat. It is worth a special notice that the throat in the model with nonminimal
derivative coupling can exist not only if ¢ = —1 (phantom case), but also if ¢ = 1
(normal case) and ¢ = 0 (no free kinetic term).

To finish the analysis of the field equations (5.15)—(5.18) at the throat, let us
consider the metric function A(r) and its first and second derivatives at » = 0. The
value Ay is a free parameter. Though Aj is also free, we assume, just for simplicity,
Aj = 0. Note that in this case A(r) has an extremum at the throat » = 0. Using
Eq.(5.17), we can find
2 nAopy + 205 Vo

Al = 1770 7TV
° Po 2Mp — nAody

(5.26)
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The sign of Af determines a kind of the extremum of A(r); it is a maximum if
A < 0, and a minimum if Ag > 0. It is worth noticing that, with the physical point
of view, the maximum (minimum) of A(r) corresponds to maximum (minimum) of
gravitational potential. In turn, the gravitational force equals to zero at extrema of
the gravitational potential; moreover, in the vicinity of a maximum (minimum) the
gravitational force is repulsive (attractive). As a consequence, the throat is repulsive
or attractive depending on the sign of Af.

As an example, let us consider the model with ¢ = —1. By using the relations
(5.24) and (5.25), we can see that Aj < 0if n > 0, and Aj > 0if < 0. Hence, the
throat is repulsive in the first case, and attractive in the second one.

5.3.3 Asymptotic Analysis

While the throat is an essential feature of the wormhole geometry, its asymptotic
properties could be varied for different models. Traversable wormholes are usually
assumed possessing two asymptotically flat regions connected by the throat, and
in this paper we will look for wormhole solutions with an appropriate asymptotic
behavior.

The spacetime with the metric (5.10) has two asymptotically flat regions
PR+ . r — tooprovidedlim, ,1oo{o(r)/|r|} = 8+ andlim, , 1o, A(r) = AL.Since
a flat spacetime is necessarily empty, we have also to suppose that lim, _, 1o ¢ (r) =
¢+ and lim, 1o V(¢ (r)) = V(¢p+) = 0. Assume the following asymptotics at
[r| = oo:

p(r) = d+|r| [1 + Tﬁ + 0(r2)} , (5.27)
A(r) = Ay [1 - % + O(rz)} , (5.28)
d(r) = ps [1 - T’r—i' + O(r‘z)} , (5.29)
V@) = 00™). (5.30)

Substituting the above expressions into Eq. (5.12) and collecting leading terms gives
AL =872 (5.31)
Thus, the asymptotic form of the metric (5.10) is

—1 2
ds® = —83° (1 —~ %) dr* + 631 (1 —~ %) dr* +683r° (1 + %) ds2.
r r r
(5.32)
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Introducing in the asymptotically flat regions % new radial coordinates

ri=8i|r| (1 +(|¥r_j|:)

and neglecting terms O (r;>), we obtain

2 2me\ "
ds® = — (1 - ﬁ) drt + (1 - ﬂ) dr2 +r2d2?, (5.33)

r4 r4+

where 2my = 8. B+ and t+ = 83 'r. This is nothing but two Schwarzschild asymp-
totics at r — 00 with masses m . Taking into account that 6 || = lim,_ 1o p(¥)
and 61 = +1im,_, 1 p'(r) we can find the following asymptotic formula

my = lim [p(r)(1 = p(r)A@))]. (5.34)

+o0

5.3.4 Exact Wormhole Solution with n = 0

Let us discuss the particular case n = 0 (no nonminimal derivative coupling). In this
case, the system of field equations (5.15)—(5.18) reduces to the well-known equations
for a minimally coupled scalar field

oMy = o7, (5.35)
0

M} (A'p?) = —2p%V, (5.36)

A(pY) — A'p? =2, (5.37)

e(Ap*®)) = p*Vy. (5.38)

Supposing additionally ¢ = —1 (phantom scalar) and V = 0 (no potential term),
one can find an exact wormhole solution to the system (5.35)—(5.38) (see [4, 13]).
Adopting the result of [42] we can write down the solution as follows

ds* = —e?0dt* + e 20 [dr? + (r* + r5)d27], (5.39)
IM2 (m? 23\ 1/2
o(r) = (M) (), (5.40)
m

where A(r) = (m/rg) arctan(r/rg), and m, ry are two free parameters. Taking into
account the following asymptotic behavior:
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2
20 = exp (i—”m) [1 - —m] + 00,
r

ro

in the limit r — 00, we may see that the spacetime with the metric (5.39) possesses
by two asymptotically flat regions. These regions are connected by the throat whose
radius corresponds to the minimum of the radius of the two-dimensional sphere,
p%(r) = e 2" (r? + r2). The minimum of p(r) is achieved at r = m and equal to

m m
Lo = €Xp (—— arctan —) (r2 + r§)1/2.
ro ro

The asymptotic masses, corresponding to r — =00, are given by
my = £mexp(L£mm/2ry).

It is worth noticing that the masses m . have both different values and different signs,
and so wormholes supported by the minimally coupled scalar field inevitably have a
negative mass in one of the asymptotic regions.

Note also that there is a particularly simple case m = 0 when the static solution
(5.39) and (5.40) reduces to

ds* = —dt* +dr* + (r* + r})d 2, (5.41)
& (r) = v/2Mpy arctan(r/r). (5.42)

In this case both asymptotic masses are equal to zero, m 1 = 0, and thus the wormhole
is massless.

5.3.5 Numerical Analysis

In this section, we present the results of a numerical analysis of the field equations
(5.11)—(5.14). Note that in order to realize a numerical analysis in practice one
needs first to specify a form of the potential V (¢). The requirement of asymptotic
flatness dictates lim,_, 1o, V(¢ (r)) = V(¢p+) = 0. The simplest choice obeying this
asymptotic behavior corresponds to zero potential, and hereafter we will assume
V(¢) = 0. As the initial condition analysis has shown, the flare-out conditions with
Vo = 0 are only fulfilled in case ¢ = —1.

Aninitial conditions for the system of second-order ordinary differential equations
(5.11)=(5.14) read r = 0, p(0) = po, p'(0) = py, A0) = Ao, A'(0) = A, $(0) =
@0, ¢'(0) = ¢,. Without loss of generality one can set Ag = 1 and ¢p = 0. Since
r = 0 is assumed to be a wormhole throat, one gets p, = 0. Now the throat’s radius
po given by Eq. (5.20) can be found as
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Fig. 5.1 Graphs for S*Ip(r), 82A(r), and ¢ (r) are constructed for the initial values A6 =0,
¢6 =0.1 and n = —40, —20, —10, =5, —1,0, 1, 2, 3 (up-bottom for p(r), bottom-up for A(r),
bottom-up for the right branch of ¢(r)); § =64 =lim, .o p(r)/r (§+ = 6_). The bold lines
correspond to n = 0 (no nonminimal derivative coupling)

2M2 _ 77¢/2
00 = /%. (5.43)
0

Then the only two free parameters determining the initial conditions remain:
A and ¢y).

First let us consider the case A, = 0. In Fig. 5.1 we represent numerical solutions
for p(r), A(r), and ¢ (r) for various values of 5. Note that both p(r) and A(r) are
even functions possessing an extremum at the throat » = 0; o (r) has a minimum due
to the flare-out conditions, and, as was mentioned above, A(r) has a maximum if
n > 0, and a minimum if n < 0. In case n = 0 one get A(r) = 1; this coincides with
the analytical result (5.41). The function ¢ (r) is odd; it smoothly varies between two
asymptotic values —¢, and ¢, where ¢ = lim,_, o, ¢ (7). The functions p(r) and
A(r) given in Fig.5.1 also possess a proper asymptotic behavior: lim,_, 1o, p(r) =
d+|rland lim,_, 4o A(r) = 8;2. In case A = 0 we have §_ = 8, = § and the value
of § depends generally on 7, i.e., § = §(n). The asymptotic Schwarzschild masses
m4 corresponding to the numerical solutions p(r) and A(r) are shown in Fig.5.3.
Because of the symmetry r <> —r we have m_ = m = m. Moreover, m is positive
if n < 0, negative if n > 0, and m = 0 for n = 0. Note also that wormhole solutions
exist only for n < Ny, and m — —o0 if n — Ny

The numerical solutions for p () and A (r) in the case A;, # 0 are showninFig.5.2.
It is worth noticing that in this case both p(7) and A(r) have different asymptotics at
r — £00: lim,_ 100 p(r) = 8+ |r| and lim,_, 1o A(r) = 832, where 5_ # 8,. As a
consequence, we get a wormhole configuration with two different asymptotic masses
m . The value of m. depends on n; this dependence is shown in Fig. 5.3. Note that for
n < n; both m, and m_ are positive, for n > n, both m, and m_ are negative, and
for n; < n < ny (in particular, for n = 0) the asymptotic masses m have opposite
signs. Note also that n < 14y, and my — —00 if 1 = Nyax.
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(i)',

Fig. 5.2 Graphs for § -1 p(r), 82A(r), and ¢ (r) are constructed for the initial values AE) =0.05,
qﬁ(/) = 0.1 and n = —40, —20, —10, =5, —1,0, 1, 2, 3 (up-bottom for p(r), bottom-up for A(r),
bottom-up for the right branch of ¢(r)); § =64 =lim, 0 p(r)/r (64 # ). The bold lines
correspond to = 0 (no nonminimal derivative coupling)
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Fig. 5.3 Asymptotic masses m+ vs 1 for Aj = 0 and Ay = 0, 05. Note that m_ = m if Aj = 0.
In case Aj = 0.05 the masses m . and m _ are represented by upper and lower graphs, respectively;
m_(ky) =my(k2) =0

Note that a qualitative behavior of numerical solutions for p(r), A(r), and ¢ (r)
does not depend on the initial value ¢, and above results were obtained for the
specific choice ¢ = 0.1.

5.4 Exact Black Hole and Wormbhole Solutions
in Horndeski Theory

Generally, a static spherically symmetric spacetime metric can be taken as follows

ds? = — f(r)dt* + g(r)dr* + p*(r)d 22, (5.44)
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where f(r), g(r), p(r) are three arbitrary metric functions of the radial coordinate
r. Note that a freedom in choosing the radial coordinate allows us to fix the form of
one of the metric functions f(r), g(r) or p(r), but at this stage we will not do it for
the sake of generality. Now, using the above-mentioned metric and assuming that
¢ = ¢(r), we can represent the field equations (5.4) and (5.5) in the following form:

@W |:<‘3,02 +1 (M + '0—,2 - 1)i| = Cy, (5.45)
g VK g
S 2Mpg(g — p?) — (g — 3p7) + epY?g (5.46)
f 2M3 g — 3ny? ’ .
o' (i’ B g_’) _ 2Mig(g — % — pp”) + b (2p" + pp”) 4 npp’ (Y2
2 \f g) 2Mg g — 3ny? ’
(5.47)

where Cy is an integration constant, and {» = ¢'. It is worth noting that the Eq. (5.45)
is a first integral of the equation of motion (5.5).

Then, following Rinaldi [31], we will search for analytical solutions of the system
(5.45)—(5.47) in the particular case supposing that

Cy=0. (5.48)
In this case the Eq. (5.45) yields
/ 2
pp’i —g—p?- L8 (5.49)
f n
This gives the following expression for the function f (r):
C 2
) = “Lexp (— / Mdr) , (5.50)
o nop

where C; is an integration constant. From Eq. (5.46), using the relation (5.49), one
can derive ¥

2
ep”g
V()= ——————. (5.51)
8 n(ep? —n)
The scalar curvature for the metric (5.44) takes the following form:
2 2// 2// 2/2 4// 2 7" !
I A7 TGO VN AN L ¥ A,

2 p’g pg o 28f* gf 28

By using the relation (5.49), one can eliminate the function f (r) from the expression
for R. As a result we find

p?  pgf 08
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RZ%@iiQ_Ei(E_E)_M”__i_
np? 206 \p g pg  2p%p”
cole 2__2 (e 2 _ (g 2 _
_g(,o2 ,277) g (ep /n)_p(p/zn). (5.53)
2n°p 2npp'g npp

Formulas (5.50), (5.51) and (5.53) states the functions f(r), ¥ (r) and R(r) in
terms of g(r). The equation for g(r) can be obtained by eliminating f(r) and ¥ (r)
from Eq. (5.47) by using the relations (5.49) and (5.51)

, g
pp'(ep” — m - (%p“ —3ep® + Zn) g

4p4pQ

ep* — 1

+ 0" (3ep* +21) — 2pp" (ep* — 2) — =0. (5.54)

It is worth noting that a general solution of Eq. (5.54) could be obtained analytically
for an arbitrary function p(r). Depending on the sign of en the solution takes the
following forms:

A.en > 0.
¢ .2 2\2
p=(p~ —2L)
s T 5.55
$0) = e -3
8 2
Firy=3-"_2 1 "arctann 2, (5.56)
P 315 o Iy
B.en < 0.
12042 2\2
p"(p” +21)
e L 5.57
8 2
F(r)y=3— om + L + 1 arctan B (5.58)
o 3172, p Ly

172 is a characteristic scale of non-

Here m is an integration constant and /,, = |en|
minimal kinetic coupling.

For the specified function p(r) formulas (5.55)—(5.58) together with (5.50) and
(5.51) give a solution to the problem of g(r), f(r), and ¥ (r) construction. Below

we consider two special examples of the function p(r).

5.4.1 Schwarzschild Coordinates: p(r) =r

As was mentioned above, a freedom in choosing the radial coordinate » allows to
specify additionally the form of one of the metric functions. Let us make a choice:
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p(r)y=r. (5.59)

This case corresponds to Schwarzschild coordinates, so that r is the curvature radius
of coordinate sphere » = const > 0.

Substituting p(r) = r into the formulas (5.50), (5.51), (5.55)—(5.58) and calcu-
lating the integral in (5.50), we derive the solutions for g(r), f (r) ¥ (r). For the first
time the solutions in the case p(r) = r were obtained by Rinaldi [31]. Below we
briefly discuss these solutions separately depending on a sign of the product 7.

A. en > 0. In this case the solution reads

fr)=CiF(r), (5.60)
RGeS

eMpy r’(r? —21)?

g(r) (5.61)

2
= , 5.62
VO = e TG (5.62)
where C| is an integration constant and
r? 8qm I, r
F(r)y=3—- — — — + —arctanh—. (5.63)
32 r L

In the limit » — O the solution (5.60) for the function f (r) takes the asymptotic form

2m
f(@r)y~4C, (1 — —)

r

To compare the derived asymptotic with the Schwarzschild solution it is convenient
toset Cy = 1/4.

Note that the expressions (5.60)—(5.62) contain the function (I, /r)arctanhr/[,,
which is defined in the domain r € (0, /,)). To continue the solution into the interval
r € (I,, 00), one should make use of the identity

l [ l
—"arctanhi =-11In ,,_-i—r
Iy 2r I, —r

k]

Ly+r
I—r
f(r) with the domain extended to the interval (/,, o) has a form of the de Sitter
solution:

and then turn to the function é—; In ‘ ‘ At r — oo the asymptotic of the function

r2

fr) = o

Blw
=
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Ly+r
Ly—r

Also note that at r = [, the function é—'; In ‘

has a logarithmic singularity and

that is why its domain consists of two disconnected parts %) : 0 <r <[, and
%, : 1, <r < oo. This implies that we have two different classes of solutions of
the form (5.60)—(5.62) which are defined independently within separate domains %,
and %,.

Further let us take into account the fact that we consider the real scalar field, so
the value 1/}2 should be nonnegative, i.e., 1/f2 > 0. In view of this requirement the
formula (5.62) imposes additional restrictions on the domain of r. In particular, it
should be noted that in each of the intervals % and %, at fixed ¢ a sign of the function
Y2(r) is defined by a sign of F(r) and reverses where the function F(r) reverses
its sign. Hence we can resume that the solution (5.60)—(5.62) cannot be considered
as a solution which describes a black hole in the theory of gravity with nonminimal
kinetic coupling.

B. en < 0. In this case the solution reads as follows:

1
fx) = ZF(r), (5.64)
742 5.65
8§ =y reEey 20
M2 r2(r? +21%)?
YA = -0 o (5.66)
I r*+ 1,2,)3F(V)
where
2 8m |, r
F(r)=3+ — — — + L arctan —. (5.67)
3172] r r n

Now the solution contains a function II—” arctan ﬁ and has a domain r € (0, 00). In the
limitr — Othe function f (r) yields the Schwarzschild asymptotics: f(r) &~ 1 — 27’“,
and in the limit » — oo — the anti-de Sitter one: f(r) & % + % However, the
obtained solution cannot be considered as an analogue of the Schwarzschild-anti-de
Sitter solution, as in the case of m > 0 the function F(r) reverses sign at a point 7y,
inside the interval » € (0, co) and hence the value of > becomes negative in one of
the intervals (0, ry,) or (1, 00) according to the sign of €.

From a physical point of view a case m = 0 may be of some interest. In this case
the function F (r) is everywhere positive and regular. About a zero point the metric
functions have asymptotics f(r) =14 O(r?) and g(r) = 1+ O(r?), as well as
Y2(r) = #2'%1 ?—22 (1 + O(r?)). Thus, ate = +1 we obtain static spherically symmetric
conﬁgurati(;n with regular center and the anti-de Sitter structure at infinity.
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5.4.2 Wormhole Configuration: p(r) = v'r* + a2

In this section we consider static spherically symmetric configurations with the metric
function p(r) of the following form:

p(r) =+r*+a?, (5.68)

where a > 0 is a parameter. Then the metric (5.44) reads
ds* = — f(r)ydt* + g(r)dr? + (r* + a*)d 2. (5.69)

If f(r) and g(r) are everywhere positive and regular functions with a domain
r € (—oo, 00), then the metric (5.69) describes a wormhole configuration with a
throat at » = 0; the parameter a is a throat radius.

Substituting p () = +/r2 + a? into the formulas (5.51), (5.55)—(5.58), we derive
the solutions for g(r), f(r) and ¥2(r) in an explicit form. Below we consider these
solutions for each sign of the product ¢7.

A. en > 0. Inthis case the solution for g () is given by the formulas (5.55)—(5.56).
The solution contains the function (I,,/+/r? + a?) arctanh (v/r? + a2/1,) with the
domain that could be found from condition vr? + a2/, < 1,ie., |r| <r = (l% —
a*)'/2. At the points || = ry the function (/,/+/r* + a2) arctanh (v/r2 + a2/1,) log-
arithmically diverges. Consequently, the metric function g(r) guides the singular
behavior near |r| = ry, that makes this solution unphysical.

B. ¢n < 0. In this case, by substituting o (r) = +/r? + a? into the formulas (5.57),
(5.58) and (5.50), we obtain the following solutions for the metric functions g(r)
and f(r) and the function W2(r):

fr)y=CF(r), (5.70)
r2(r2 +a%+ 21,2])2 571
O = i et 2)2F(r)’ G7h
20,2 2 242
piry = Ma_ T A A2 (5.72)
2 (P24+a>)r?+a®+12)3F@r) '
where
8 2 2 l, /-2 2

F(r)y=3-— " + ! +2a + ! arctan r——i—a , (5.73)

V2 +a? 30 V2 +a? L
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and the integration constant C; = 1/F (0) in the expression for f () is chosen so that
f(0) = 1. The function F(r) has a minimum at » = 0, thus to make it everywhere
positive one should demand F'(0) > 0. Hence one can derive the limitation on the
upper value of the parameter m

2 3+“2+ L aret (5.74)
< - _— — arctan .
TENGT 2T 4 “)

where o = a/I, is the dimensionless parameter which defines the ratio of two char-
acteristic sizes: the wormhole throat radius a and the scale of the nonminimal kinetic
coupling /,,. In the particular case a < I,, we get 2m < a. Further, we assume that the
value of m satisfies the condition (5.74), and therefore the function F (r) is positively
definite, i.e. F(r) > 0.

Let us consider the asymptotic properties of the obtained solution. Far from the
throat in the limit |r| — oo the metric functions g(r) and f(r) have the following
asymptotics:

L ! r’ 0
gr) = 3r_2 + 0 (r_4) , fr)= Al—2 +0(), (5.75)
n

where the constant A depends on the parameters a, [, and m and can be calculated
only numerically. Let us note that the derived asymptotics correspond to the geometry

of anti-de Sitter space with a constant negative curvature.
In the neighborhood of the throat r = 0 we obtain

2
e(r) = B;—z +O0Y, f(n=1+002, (5.76)
n

where
_ (012 + 2)2
C a2(e?+ 1)2(3 + %0[2 - 87’" + éarctana)'

It is worth noticing that at the throat » = 0 the metric function g(r) vanishes, i.e.,
£(0) = 0. This implies that there is a coordinate singularity at » = 0. To answer the
question whether there is a geometric singularity at this point, one should compute the
curvature invariants for the metric (5.44). In this paper we confine ourselves to discus-
sion of the scalar curvature (5.53). By substituting the solution (5.71) into (5.53) one
can check that the curvature near the throat is regular: R(r) = Ry + O(r*), where
the value Ry = R(0) is cumbersomely expressed in terms of the parameters a, [, m.
Far from the throat in the limit |r| — oo the scalar curvature tends asymptotically
to a constant negative value, i.e. R — R, where

5+3102
R = — :
212

(5.77)
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Wl
Y
) Id

Fig. 5.4 Graphs for the metric functions g(r), f(r) and the scalar curvature R(r) with [, =1,
m = 0.1. Curves, from thin to thick, are given for a = 0.3; 0.5; 1.5

It is worthwhile to note that the asymptotic value R, is determined only by the
characteristic scale of nonminimal kinetic coupling /,, and does not depend on a and
m. We also note that R, — —o0 in the limit /, — 0.

Finally, we discuss briefly the solution (5.72) for ¥2(r). Since F(r) > 0, hence
the condition 1/2(r) > 0 holds only for ¢ = —1. Now taking into account that the
solutions (5.71), (5.70), and (5.72) was obtained in the case en < 0, we can conclude
that n > 0.

To illustrate the performed analysis, we show the numerical solutions for g(r),
f(r) and the scalar curvature R(r) in Fig.5.4.

5.5 Summary and Discussion

We have explored static spherically symmetric wormhole solutions in the Horn-
deski theory of gravity with the simplest lagrangian containing the terms (g’ +
nG*")¢ .., and V (¢) and representing a particular case of the general Horndeski
lagrangian [24], which leads to second-order equations of motion.

Carrying out a local analysis of the flare-out conditions, we have shown that
solutions with a throat in the theory (5.3) with a nonzero kinetic coupling parameter
n # 0 could exist for all possible values of ¢ = —1, 0, 41; in the case ¢ = —1 the
value Vi = 0 is admissible, while in the case ¢ = +1 and & = 0 the initial value Vj
should be necessarily positive at the throat. For comparison, it is worth noticing that
solutions with a throat in the minimally coupling model with n = 0 are forbidden
for an ordinary scalar field with ¢ = +1 [5].

Note that the flare-out condition does not guaranty by itself the existence of
asymptotic regions and so it is a necessary but not sufficient condition for a worm-
hole solution to exist. Assuming additionally an asymptotic flatness, we have found
numerical solutions describing traversable (Lorentzian) wormholes in the particular
case V(¢) = 0 (no potential) and ¢ = —1.
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The wormhole solutions constructed numerically could be classified by their
asymptotic behavior which, in turn, is determined by asymptotics of the metric func-
tions p(r) and A(r) at r — =£oo. If Aj =0, then both p(r) and A(r) are even,
and so a wormhole configuration is symmetrical relative to the throat » = 0. In this
case both asymptotic masses m are equal, i.e., m_ = m = m, and one has the
following cases: (i) m > 0 if k < 0; (i) m =0if x =0; (ii) m <0 if k > 0. In
case A # 0 a wormhole configuration has no symmetry relative to the throat, hence
the asymptotic masses m 4 are different, i.e., m_ # m,, and one gets (i) m_ > O,
my>0ifn<n <0;@)m_<0,my >0ifn; <n<nyGiym_ <0,m, <0
if n > 1, > 0. Thus, depending on n, a wormhole could possess positive and/or neg-
ative asymptotic Schwarzschild masses. It is worth emphasizing that both masses
are positive only provided n < n; (for a symmetrical wormhole configuration one
has n; = n, = 0), otherwise one or both wormhole masses are negative. For exam-
ple, let us consider the case n = 0, when the scalar field is minimally coupled to
the curvature. In this case well-known wormhole solutions have been analytically
obtained by Ellis [13] and Bronnikov [4]. Such wormholes inevitably possess a
negative Schwarzschild mass in one of the asymptotic regions, or, in the particular
case of a symmetric wormhole configuration, both asymptotic masses are equal to
zero. (Note that our numerical calculations given in Figs. 5.1, 5.2 and 5.3 completely
reproduce this particular analytical result.)

The stability of wormhole configurations is an important test of their possible
viability. The stability of wormholes supported by phantom scalar fields was inten-
sively investigated in the literature [6, 16, 35, 42], and the final resolution states
that both static and non-static (see Ref. [42]) scalar wormholes are unstable. Though
this result is technically complicated, there is a simple qualitative explanation of
this instability. Actually, as was mentioned above, a scalar wormhole inevitably pos-
sesses a negative Schwarzschild mass in one of the asymptotic regions; for example,
letitbe Z_ : r — —oo. This means that the gravitational potential is decreasing and
the gravitational force is repulsive far from the throat. Consider now a small scalar
perturbation of the wormhole geometry localized near the throat. Such a perturbation
shall play a role of a small bunch of energy density and, because of the repulsive
character of the gravitational field, it shall be pushed to the infinity Z_. Similarly,
any scalar perturbations will propagate from the throat vicinity to infinity, and this
indicates an instability of the throat.

In comparison with wormholes supported by a phantom scalar field minimally
coupled to the curvature, the scalar wormholes with nonminimal derivative cou-
pling described in this chapter have a more general asymptotic behavior. Namely,
depending on a value of the nonminimal derivative coupling parameter n one of the
following qualitatively different cases is realized: (i) one of the asymptotic wormhole
masses or both of them are negative; (ii) both asymptotic masses are positive. Taking
into account the previous qualitative consideration, one can expect that a wormhole
configuration will be unstable in the first case and stable in the second one. Actually,
if both asymptotic masses are positive, then the gravitational potential is increasing
and the gravitational field is attractive on both sides of the wormhole throat. In this
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case all scalar perturbations should be localized in the vicinity of the throat, and this
would provide a stability.!

Previously, Rinaldi [31] found a class of exact solutions with nonminimal kinetic
coupling with characteristic features of black holes, particularly, with event horizon.
In this work, using the Rinaldi approach, we have found and examined analytical
solutions describing wormholes. A detailed analysis revealed a number of character-
istic features of the obtained solutions. In particular, it turned out that the wormhole
solution exists only if ¢ = —1 (phantom case) and > 0. The wormhole metric has
a specific coordinate singularity at the wormhole throat, namely, the metric compo-
nent g,, is vanished at r = 0. However, there is no curvature singularity at the throat,
since all the curvature invariants stay regular. Also it was shown that the wormhole
throat connects two asymptotic regions with anti-de Sitter geometry of spacetime.
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Chapter 6
Self-Sustained Traversable Wormholes

Remo Garattini and Francisco S.N. Lobo

6.1 Introduction

A wormhole can be represented by two asymptotically flat regions joined by a bridge,
and are solutions to the Einstein field equations, and is given by the following line
element [1-3]

2

ds® = —exp (—2@ (r)di> + —
1—b)/r

+ 7% (a6 +sin*0dg?) ,  (6.1)

where @ (r) is called the redshift function, while b (r) is called the shape func-
tion. A proper radial distance can be related to the shape function by I (r) =
+ [ 0 dr//T—b+(r)/r, where the plus (minus) sign is related to the upper (lower)
part of the wormhole or universe. Two coordinate patches are required, each one
covering the range [ry, +00). Each patch covers one universe, and the two patches
join at ry, the throat of the wormhole defined by ro = min {r (/)}. One of the pre-
rogatives of a wormhole is its ability to connect two distant points in space—time.
In this amazing perspective, it is immediate to recognize the possibility of traveling
crossing wormholes as a shortcut in space and time.
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The Einstein field equation provides the following relationships

/ 2 /
pr=: (pr —pr) — (o + pr) P, (6.2)

b =8nGp (r)r?, (6.3)
;L b+ 8r Gp,r3
220 —=b(r)/r)’

(6.4)

where the prime denotes a derivative with respective to the radial coordinate. The
quantity p (r) is the energy density, p, (r) is the radial pressure, and p; (r) is the
lateral pressure. However, these solutions are accompanied by unavoidable violations
of null energy conditions, namely, the matter threading the wormhole’s throat has to
be exotic. Classical matter satisfies the usual energy conditions, therefore, it is likely
that wormholes must belong to the realm of semiclassical or perhaps a possible
quantum theory of the gravitational field.

Since a complete theory of quantum gravity has yet to be devised, it is important
to approach this problem with another strategy. On this ground, in a series of papers
[4, 5], the idea of self-sustained traversable wormhole was introduced. A traversable
wormbole is said to be self-sustained if it is totally supported by its own quantum fluc-
tuations. This is quite similar to compute the Casimir energy on a fixed background,
where it is known that for different physical systems, the Casimir energy is negative.
This is exactly the feature that exotic matter should possess. Usually, the Casimir
energy is related to the Zero Point Energy (ZPE) and usually is Ultraviolet (UV)
divergent.! To this purpose, in this contribution, two methods to keep under control
the UV divergences will be discussed: (1) a standard regularization/renormalization
process; (2) the distortion of gravity at the Planck scale.

We will discuss specific wormhole models such as: (i) the Ellis wormhole [8, 9];
(ii) a wormhole geometry supported by an equation of state (EoS)? givenby p, = wp;
(iii) and a geometry supported by an EoS given by p, = w(r) p, where the parameter
is now dependent on the radial coordinate; (iv) and finally, a traversable wormhole
induced by a noncommutative geometry. Of course, this selection does not exhaust
the list of interesting profiles, but it is large enough to show the whole procedure
of a self-sustained traversable wormhole. Although the semiclassical approach can
be judged suspicious because of the suspected validity of semiclassical methods?
at the Planck scale [16], one can consider that the whole calculational approach is
sufficiently robust to be adopted.

The rest of the paper is structured as follows: In Sect. 6.2 we define the effective
Einstein equations, and we provide some of the basic rules to perform the functional

I'See for example Refs. [6, 7] to see how the Casimir procedure comes into play for ZPE calculations.
2See also Refs. [10-13], where the authors search for classical traversable wormholes supported by
phantom energy.

3To this purpose, see also paper of Hochberg, Popov, and Sushkov [14], and the paper of Khusnut-
dinov and Sushkov [15].
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integration. In Sect. 6.3, we define the Hamiltonian approximated up to second order,
while in Sect. 6.4, we study the spectrum of the spin-two operator acting on transverse
traceless tensors. In Sect.6.5, we regularize and renormalize the one loop energy
contribution and we speculate about the self-consistency of the result. In Sect. 6.6,

we distort gravity to regularize and renormalize the one loop energy contribution.
We summarize and conclude in Sect. 6.7.

6.2 Effective Einstein Equations and the Hamiltonian
6.2.1 Einstein Equations and the Hamiltonian
Let us consider the Einstein equations
1
Gu =R, — ngR =«T,. (6.5)

where G, is the Einstein tensor, R,,, is the Ricci tensor and R is the scalar curvature,
T, is the stress—energy tensor and k¥ = 87 G. If u* is a time-like unit vector such
that g, , u*u’ = —1, then the contraction G, u*u" yields

[T n,,v 1 wo,v JTY 1
Guu’ = R, utu’ — Eg,wu u'R =R, u"u’+ ER. (6.6)
By means of the Gauss—Codazzi equations [17],
R=R® +2R,u"u’ F K* + K, K", (6.7)

where K, is the extrinsic curvature and R® is the three-dimensional scalar curva-
ture. For a time-like vector, we take the lower sign and Eq. (6.6) becomes

Guu'u’ =~ (R + K> — K,,K"). (6.8)

N —

If the conjugate momentum is defined by

/(3)g

2K

T = (Kg"" — K"), (6.9)

then

2
2 2
K2~ K k" =( = T v, (6.10)
/(3)g 2
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and finally

0) ©) 2 2
VO iy VI8 gy 2 (”_ _ nanw) — #9611
2% NGr:

2

6.2.2 The Effective Einstein Equations

Consider, a separation of the metric into a background part, g,,,, and a perturbation,
hulh
8 Zg,uv"l‘hp.v- (6.12)

The Einstein tensor G ,, can also be divided into a part describing the curvature due
to the background geometry and that due to the perturbation,

Gp,v (gaﬁ) = G/w (gotﬂ) + AG/J,V (gotﬂv hotﬂ) s (613)

where, in principle AG,, (gaﬁ, haﬁ) is a perturbation series in terms of 1.
In the context of semiclassical gravity, Eq. (6.5) becomes

G;/.v =K (T,uv)ren s (614)

where (Tw)ren is the renormalized expectation value of the stress—energy tensor

operator of the quantized field. If the matter field source is absent, nothing prevents
us from defining an effective stress—energy tensor for the fluctuations as*

ren 1 - ren
)7 = = {AGu (Zep ap)) (6.15)

(T
From this point of view, the equation governing quantum fluctuations behaves as
a backreaction equation. If we fix our attention to the energy component of the
Einstein field equations, we need to introduce a time-like unit vector u#* such that
gwi"u” = —1. Then the semiclassical Einstein’s equations (6.14) projected on the
constant time hypersurface X' become

ren ren

G (gaﬂ) u'u" =k (T/Lvu“”v>

= —(AGy (8ap, hap) u"u”) (6.16)

“Note that our approach is very close to the gravitational geon considered by Anderson and Brill
[18]. The relevant difference is in the averaging procedure.
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To proceed further, it is convenient to consider the associated tensor density and
integrate over X. This leads to’

1
2—/ d3x\/§G,w (gaﬂ) utu’ = —/ Px 0
K Jx

X

=‘zi &3 /g (AG 1y (Zups hap) w"u")" ©6.17)
K Jx

where /g is the spatial part of the determinant of the metric tensor on the traversable

wormhole fixed background and

. 1
A0 = Q21) Gijum 7 — eV ‘2R, (6.18)
K

is the background field super-hamiltonian. R is the three-dimensional scalar curva-

ture and G, j;; is the DeWitt super metric defined as

1
Giiw = —— (gingin + gugix — 8i18ul) - 6.19
o 2\/§(gkg,1+gzg,k 8ij&kl) (6.19)

Thus, the fluctuations in the Einstein tensor are, in this context, the fluctuations of
the hamiltonian. To compute the expectation value of the perturbed Einstein tensor,
we will use a variational procedure. In practice, the right-hand side of Eq. (6.17) will
be obtained by expanding

0 1 2
W |Hy | ) <w(H;>+Hg>+Hg>+...]w)
Ewormhole = = P (620)
(F|¥) (F|¥)

and retaining only quantum fluctuations contributing to the effective stress energy

tensor. H g) represents the hamiltonian approximated to the i" order in /; j and ¥ is
a trial wave functional of the gaussian form. Then Eq. (6.17) becomes

<W‘H§)+H(£2)+...‘lll>
(V1¥)

HYO :/ Lt ® — _ 6.21)
P

3Details on sign conventions and decomposition of the Einstein tensor can be found in Sect.6.2.1.
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6.3 Energy Density Calculation in Schrodinger
Representation

In order to compute the quantity
- / d*x /g (AG 1y (Zap, hap) u'u”)"" (6.22)
x

we consider the right hand side of Eq. (6.21). Since H (21 ) is linear in h; ; and h, the
corresponding gaussian integral disappears and since

gGW (8up) u'u" = =, (6.23)

it is clear that the hamiltonian expansion in Eq. (6.21) does not coincide with the
averaged expanded Einstein tensor of Eq. (6.22) because Eq. (6.23) involves a tensor
density. Therefore, the correct setting is

(|2 — g0 )
/ d*x /8 (AG 1y (8ap, hap) u"u”)" = / d’x\/g ,
by P (P|¥)

(6.24)

where /g@ is the second-order expanded tensor density weight. Following the
same procedure of Refs. [4, 5], the potential part of the right-hand side of Eq. (6.24)
becomes

1 1 . 1 .
/ d*x\/3 [—ZhAh + G h" Dhui = SV 4 ShV ViRt
X

4
1 ij 1 ij 1 1 ij a
+5hRih" + 2 R hij = ZhRh — S hY Righ | . (6.25)
The term
NS 1
d*x\/g | ~Rhh;; — ~hRh |, (6.26)
5 4 4

makes the difference between the hamiltonian expansion and the Einstein tensor
expansion. To explicitly make calculations, we need an orthogonal decomposition
for both 7;; and h;; to disentangle gauge modes from physical deformations. We
define the inner product

(h, k) = /2 VEG M hy; (x) kyy (x) d’x, (6.27)
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by means of the inverse WDW metric Gy, to have a metric on the space of defor-
mations, i.e., a quadratic form on the tangent space at &, with

Gl'jkl — gikgjl 4 gilgjk _ 2gijgkl. (628)
The inverse metric is defined on co-tangent space and it assumes the form
p.a)i= [ VEGup” (g ) d (6.29)
b
so that

1

inm
GY Gumil = )

(si8/ +8150) (6.30)

Note that in this scheme the “inverse metric” is actually the WDW metric defined
on phase space. The desired decomposition on the tangent space of 3-metric defor-
mations [19-21] is:

hij =%(0 +2V &) gij + (LE);; + hij (6.31)
where the operator L maps &; into symmetric tracefree tensors
(LE)i; = Vi&; + V& — %gij (V-§), (6.32)
ht is the traceless-transverse component of the perturbation (TT), namely
g'hi; =0,  V'hj;=0, (6.33)

and /4 is the trace of h;;.
It is immediate to recognize that the trace element 0 = h — 2 (V - £) is gauge
invariant. Thus the inner product between three-geometries becomes

(h,h): =/ VEG M hij (x) hyy (x) dx
X
=/ \/§[—§}ﬂ+(LE)U (Lg)ij+h'ﬂhﬂ. (6.34)
X

With the orthogonal decomposition in hand we can define the trial wave
functional®

6See also Refs. [22, 23] for further details on the decomposition of the perturbation at the quantum
level.
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v {hjj (7))} N exp {_7 [<hK 1h> N <(L§) K- (L§)>Lv +<hK7]h>Trace } ’

X,y
(6.35)

where .4 is a normalization factor. We are interested in perturbations of the physical
degrees of freedom. Thus we fix our attention only to the TT tensor sector reducing
therefore the previous form into

Wy ()} = A exp {—%(hK‘lh);y] | (6.36)

Therefore to calculate the energy density, we need to know the action of some
basic operators on ¥ [h;;]. The action of the operator h;; on |¥) = ¥ [h;;] is realized
by

hi; () |&) = hi; (X)W {hij}, (6.37)

and the action of the operator m;; on |¥), in general, is
() [¥) = —i ° w {hij} (6.38)
T (X = —l—= iif - .
! Shij (%) !
The inner product is defined by the functional integration:

W | w) / [0, w7 [y} ¥ () 639)

and by applying previous functional integration rules, we obtain the expression of
the one loop-like Hamiltonian form for TT (traceless and transverse) deformations

L1 [ s ijki “1L 3 1 A\ L :
Hi = 4/Ed */EGH | (1676) K (e 0)iju + s (AL)j K 0 |-
(6.40)

The propagator K+ (x, x);,, comes from a functional integration and it can be

represented as
Wt (R) ™ (T)
1l (= — o
K (x > Y )iakl = Z 24 (7) ’ (6.41)

T

where h(r)l ( ) are the eigenfunctions of A 1> whose eigenvalues will be denoted
with @? (7). T denotes a complete set of indices and A (7) are a set of variational
parameters to be determined by the minimization of Eq. (6.40). The expectation value
of H* is easily obtained by inserting the form of the propagator into Eq. (6.40)
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e w? (1)
E(/\,-)_ZZZ 167 G) A; (r)+m . (6.42)

T i=l1

By minimizing with respect to the variational function A; (t), we obtain the total
one loop energy for TT tensors

ETT %Z[ Ja? (1) + \Jw? (r)i| . (6.43)

The above expression makes sense only for wiz (r) > 0,i =1, 2 (The meaning of
‘012 will be clarified in the next section) and

EO = _fgTT (6.44)

where E(© is the classical energy and E”7 is the total regularized graviton one loop
energy.

6.4 The Transverse Traceless (TT) Spin 2 Operator
for the Traversable Wormhole and the W.K.B.
Approximation

In this section, we evaluate the one loop energy expressed by Eq. (6.43). To this pur-
pose, we begin with the operator describing gravitons propagating on the background
(6.1). The Lichnerowicz operator in this particular metric is defined by

(An*) = (Bh*), — 4R, (6.45)
ij ’

acting on traceless-transverse tensors of the perturbation and where A is the standard
Lichnerowicz operator defined by

(Aph);; = Dhij — 2R B + Rig b + Ry b, (6.46)
where A = —V“V, is the scalar curved Laplacian, whose form is
b(r)\ d? 4r —=b' (r)r —=3b(r)\ d L?
Ag=1(1-— — —_———, 6.47
s ( r ) dr? + 2r2 dr r? ( )

and ij is the mixed Ricci tensor whose components are (we have considered that
the redshift function is zero, @ (r) = 0, for simplicity):
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b'(ry b(@r) b'(r) b(r) b'(r) br)
R = — , , 6.48
! [ r? r3 7 2r2 + 2r3 7 2r2 2r3 (648)
The scalar curvature is
o 1%
R=R/8 = 2# : (6.49)
r
We are therefore led to study the following eigenvalue equation
(2ah™TY! = E2n] (6.50)

where E is the eigenvalue of the corresponding equation. In order to use the WKB
approximation, one can define two r-dependent radial wave numbers

[(+1
ki (r,1, Ey) = Ey; — (rf L), (=12, (6.51)

where’
mi(r) =5 (1 - M) — b () = 55b ()
(6.53)
m3 ) =& (1= 22) = b () + 55b ()

7

are two r-dependent effective masses m? (r) and m3 (r). The number of modes with
frequency less than E, is given approximately by

g (E):/vi (,E)Q2l+1Ddl, i=12 (6.54)

where v; (I, E) (i = 1, 2) is the number of nodes in the mode with (I, E;), such that

+00
vi (L, E) = %/ dx \/k? (x,1, E). (6.55)

Here, it is understood that the integration with respect to x and [ is taken over
those values which satisfy kl-2 (x,1, E;) = 0,i =1, 2. Thus, the total one loop energy
for TT tensors is given by

7Note that sometimes the effective masses are related to the three-dimensional Lichnerowicz oper-
ator defined in [24], whose form is

r

mi )= & (1= 52) + 20 () = b )
(6.52)

r

mi ) =5 (1= 22) 4+ b ) + 250 ().
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2 +00
ETT = Z / Edg; (E). (6.56)
i=1 /0

The related energy density is composed by the following integrals

P = 1 %Ez E2 — U, (x)dE

P2 = 1 % E2/E? — U, (x)dE

Usually p; and p; are ultraviolet divergent, so that it is therefore necessary to intro-
duce some regularization procedure.

In this contribution, as mentioned in the Introduction, we will discuss two different
methods to keep under control the UV divergence: (i) a standard regularization and
renormalization procedure; (ii) the distortion of the gravitational field at Planckian
scale. We begin to consider a standard regularization and renormalization procedure
to evaluate Eq. (6.56).

(6.57)

6.5 One Loop Energy Regularization and Renormalization

In this section, we proceed to evaluate the one loop energy described by (6.56). The
method is equivalent to the scattering phase shift method and to the same method
used to compute the entropy in the brick wall model. We use the zeta function regu-
larization method to compute the energy densities p; and p,. Note that this procedure
is also equivalent to the subtraction procedure of the Casimir energy computation,
where ZPE in different backgrounds with the same asymptotic properties is involved.
To this purpose, we introduce the additional mass parameter p in order to restore
the correct dimension for the regularized quantities. Such an arbitrary mass scale
emerges unavoidably in any regularization scheme. Then, we have

Y E*dE
pi(€) = 51 — 7 (6.58)
d VU@ (E? = U; (x))

If one of the functions U; (x) is negative, then the integration has to be meant in
the range where E? + U; (x) > 0. In both cases the result of the integration is

U1 4p?

Therefore the self-sustained Eq. (6.44) becomes

b'(r)

G2 = 2o )+ pa(e )] (6.60)
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where we have considered the energy density instead of the energy. Separating the
divergent contribution from the finite one, we can write

b'(r) 1
s = g3 [P0+ 030

e o ()
222 | 1Y\ vieve

It is essential to renormalize the divergent energy by absorbing the singularity in
the classical quantity. For example, by redefining the bare classical constant G as

4 2
+U2(r)In (‘—“
r

)] . (6.61)
e

1 1 U? U?
N _+ [ l(r)+ 2(’”)]’”27 (662)
G Gy 16720 (r)e

the UV divergence is removed. Using this, Eq. (6.61) takes the form

by 1 [, an
2Gor2"327r2[U'(r‘)1“(‘Ul<)\/")'w2 (lbo»¢ZD}'

Note that this quantity depends on an arbitrary mass scale. Thus, using the renormal-
ization group equation to eliminate this dependence, we impose that
(6.64

(6.63)

d [b(r) uw d ) 4p* ) 4p?
LN gy (=R + vz (|2
Han [Gorz} ton2 ap |V oo ve]) T 2

which reduces to

b'(r) 9Gy'(w)
_M—

5 i [UF )+ U] . (6.65)

r

The renormalized constant Gy is treated as a running constant, in the sense that it
varies provided that the scale u is varying, so that one may consider the following
definition

1 _ 1 n r2
Go(n)  Go(uo) — 8w2b'(r)

[U20) + U3(m)] In (i) . (6.66)
Ho

Thus, Eq. (6.61) finally provides us with

b'ry 1 ) 4yl ) ) ( 4u2 ):|
Go(poyr? ~ 1672 |:U1 i (’Ul(r)\/z OO Ur(r)vel) ] (6.67)

Note that this result is independent on the choice of the shape function b (). One
possibility is to integrate over the whole space, namely in the range [ry, +00).
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6.5.1 Specific Case: Ellis Wormhole

The final result has been shown in Ref. [5], for the special case in which

G
b(r)= Pt (6.68)

representing the Ellis wormhole. For this special case, the line element (6.1) simply

becomes
dr?

ds® = —d* + ——
s l—rg/r2

+ 1 (d6* + sin” 0d?) , (6.69)
while the proper radial distance simplifies into
r d_
:t/ L i/ = PA=P+2 (670)
o [1— rg/f2

To obtain a wormhole radius, a further minimization procedure has been used. One
obtains:

[(r) =

(a) 7o = 1.161, == o = 0.39m,, where we have identified G (i) with
the squared Planck length;

(b) 7o = 451, == +/Go (o) = 0.391,, where we have identified 119 with
the Planck scale.

6.5.2 Specific Case: p, = wp

On this ground one can also impose an equation of state (EoS) of the form p, = wp,
and with the help of Egs. (6.3) and (6.4), we obtain

ro i
b(r)=ry (—) . 6.71)
r
In this case, the line element (6.1) becomes
dr?

ds’ = —Adt> + ——
1— (ro/r)' o

+ 1% (d6* + sin” 0dg?) (6.72)

where A is a constant which can be absorbed in a redefinition of the time coordinate.
The constant result is obtained by imposing @’ = 0, so that Eq. (6.4) implies

b(r)+wb (rr=0. (6.73)
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The parameter w is restricted by the following conditions b’ (rg) < 1, which follows
from the flaring-out condition at the throat; b (r) /r — 0 as r — +o00, which is
necessary to have asymptotic flatness, and w > 0 or w < —1.

The proper radial distance is related to the shape function by

V()2(,z) 1 1 l—w 3 1
1r) =+ /p0+0) — 1 ,F (=, 21— p(ta) ), 6.74
(r) e 21<2 Y2 e (6.74)

where the plus (minus) sign is related to the upper (lower) part of the wormhole or
universe and where , F| (a, b; c; x) is a hypergeometric function. When w = 1, we
recover the shape function (6.68). We refer to Ref. [4] for the details.

Here, we report only the case in which G (ug) is identified with the squared
Planck length. Then, the wormhole radius can be approximated by

[L20+L(Em-2m@) +0@)]l, ©—+o

ro =~ . (6.75)
[ VEN —i—O(a)l/z)]lp w—0

ENEN

As we can see, from the expression (6.75), the radius is divergent when v — 0. At
this stage, we cannot establish if this is a physical result or a failure of the scheme.
When w — 00, r; approaches the value 1.16/,,, while for w = 1, we obtained r, =
1.16l,. It is interesting to note that when w — +00, the shape function b (r) in Eq.
(6.71) approaches the Schwarzschild value, when we identify 7y with 2M G. It is
interesting to note that outside the phantom range we have wormhole solutions. This
is not unexpected since the graviton quantum fluctuations play the role of the exotic
matter. The positive w sector seems to corroborate the Casimir process of the quantum
fluctuations supporting the opening of the wormhole. Even in this region, we do not
know what happens approaching directly the point w = 0, because it seems that this
approach is ill defined.

6.5.3 Specific Case: p, = o(r)p

If we generalize the EoS p, = wp to include a dependence on the radius r, namely
pr = o (r) p, the shape function becomes

b(r) = ro exp [— /r dr :| , (6.76)

w(r)r

and solutions for the self-sustained wormhole can be found as shown in Ref. [25],
without fixing a specific form for w (r). The analysis around the wormhole throat
shows in a rather speculative scenario, that the accretion of phantom energy by the
wormbhole gradually increases the wormhole throat to macroscopic size, much in the
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spirit of Refs. [26-30]. It is of course immediate to generalize the inhomogeneous
EoS to a polytropic EoS of the form p, = wp”.

One gets from Eq. (6.4) that it is always possible to impose that @ (r) = C. This
means that

bir) = [ro 1y &9 (r3—r8):| , (6.77)

w7

where the throat condition b (ry) = ry has been imposed. However, it is straightfor-
ward to see that the solution is not asymptotically flat. Indeed b (r) =~ r3, forr — oo,
Vy, and therefore this case will be discarded.?

6.5.4 Specific Case: Wormhole Geometry Induced
by Noncommutative Geometry

Finally, to conclude the application of the regularization/renormalization procedure
to determine the existence of self-sustained traversable wormholes, one can note that
this method has been applied also to wormhole geometries induced by noncommu-
tative geometry. With noncommutative wormholes we mean that the energy density
is represented by a Gaussian distribution of minimal length /. In particular, in
Ref. [32], the energy density of a static and spherically symmetric, smeared, and
particle-like gravitational source has been considered in the following form

_ M r? 7
Pe(r) = Gna) exp (—E) ; (6.78)

where the mass M is diffused throughout a region of linear dimension /a. Thus,
Eq. (6.3) can be immediately integrated, and provides the following solution

8g7GM [T _, 2\
b(r) =C+ W i r-exp (—4—0[) dr , (679)

where C is a constant of integration. To be a wormhole solution we need b(ry) = rg
at the throat which imposes the condition C = ry.

However, in the context of noncommutative geometry, without a significant loss
of generality, the above solution may be expressed mathematically in terms of the
incomplete lower gamma functions in the following form

b(r) = C 2rg 3 rO2 +2rs 3 2 6.80)
r)=C——y|=,— —yl=—). .
V7 \2 ) T 7N\ e

8]t is interesting to note that the inhomogeneous case, namely p, =  (r) p? potentially can produce
results [31].
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In order to create a correspondence between the spacetime metric (6.1) and the
spacetime metric of Ref. [32], we impose that

2rg 3 72
b(r) = «/_ (2 4a) (6.81)
where
2
c=2—Ji (; ;2{) (6.82)

The shape function expressed in this form is particularly simplified, as one may
now use the properties of the lower incomplete gamma function, and compare the
results directly with the solution in Ref. [32]. However, in this form we have to see
if a solution of the condition b(rg) = r( exists. If we define

Xo=— and a=Y*", (6.83)
2/ rs
then the throat condition becomes
1 3
L (E,xé) — . (6.84)

In order to have one and only one solution we search for extrema of

=y (; xg) —a, (6.85)

which provides
1 3 .,
Xo=15112 = ZJ_ and i—oy (z,xo) = 0.4654. (6.86)

From these relationships we deduce that

N =0.4654 =a, (6.87)

rs
or

381 Ja=ry, =rs, (6.88)

which finally provides a relationship between ry and rg given by

125997, (6.89)

Xod

rS=f02
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Only the case in which r, < rg produces solutions: we have two roots denoting an
inner throat r_ and an outer throat r with r, > r_. Note that we necessarily have
ri > g > 3./a. Since the throat location depends on the value of a, we can set
without a loss of generality r; = k./a with k > 3. Therefore

2rg 3 k?
To avoid the region r— < r < r, in which (1 — b(r)/r) < 0, we define the range of

rtober, <r < oo.
In the analysis below, we require the form of 4'(r,) and b”(r.). Thus, we define

r=_* (6.91)
2/

The application of the regularization/renormalization procedure, reduces Eq. (6.67)

to
3 8 3
In (%) = —‘z"ln( fz) : (6.92)
8ugry ry 8ugry
which in turn may be reorganized to yield the following useful relationship
1= 2 m () =] (6.93)
—_—— n = —’ .
k2 Sudak? 2

where we have set, as defined in Eq. (6.90), ry = k\/o, with k > 4. Isolating the
k-dependent term provides the expression

Suda 5 4
=k —_— . 6.94
3/e FP\ T =3 (6.94)

It is interesting to note that the right-hand side has two extrema for positive k: k; = 2
and k, = 4. In terms of the wormhole throat the first value becomes r; = 2./a, which
will be discarded because its location is below the extreme radius, as emphasized in
Sect. 3 of Ref. [33]. Relative to the second extrema ks, i.e., r, = 4./a, despite the
fact that &, is larger than the extreme value (k = 3), it does not fall into the range of
the approximation of &" (r;.) <« 1. Thus, it may also be discarded.

Following Ref. [33], we fix k > 6. To this purpose, we build the following table

Values of k| po+/c
6 0.12202
7 0.10698
8 0.09484

(6.95)
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Plugging the expression of po./a, i.e., Eq. (6.94), into Eq. (6.67), we get

9 3 k2 k? o
(2.5 )= , 6.96
w5 (2 —8) (2 4 ) P ( 4 ) ) (©20)

The following table illustrates the behavior of /Go(up)/c, and therefore of
r+/+/'Go(o)

Values of k |v/a/Go (1o) |74 /+/Go (o)
6 0.12260 0.74
7 0.35006 2.5
X =7.77770 1 777770 . (6.97)
8 1.39883 11
9 7.64175 69.
10 56.23620 5.6 x 102

Note that in table (6.95), as k increases then o~/ decreases. This means that we
are approaching the classical value where the noncommutative parameter o« — 0. It
appears also that there exists a critical value of k where « = G (o). To fix ideas,
suppose we fix G (i4o) at the Planck scale, then below k, the noncommutative para-
meter becomes more fundamental than G (u). This could be a signal of another
scale appearing, maybe connected with string theory. On the other hand above k, we
have the reverse. However, the increasing values in the table is far to be encouraging
because the non-commutative approach breaks down when k is very large. Never-
theless, note the existence of interesting solutions in the neighborhood of the value
k = 7.7. In this section, we have considered a self-sustained wormhole and we have
evaluated the one loop contribution with the help of a regularization/renormalization
procedure.

In the next section, we will consider the same traversable wormholes solutions,
but the UV divergences will be kept under control distorting the gravitational field.

6.6 Distorting Gravity

Distorting gravity means that one adopts a procedure to modify the gravitational field
at very high energies, actually at the Planckian scale, in such a way to keep under
control the UV divergences. This method is completely different to the one discussed
in Sect.6.5. To this purpose, we have considered two possibilities: (a) Gravity’s
Rainbow, and (b) Noncommutative geometries.
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6.6.1 Gravity’s Rainbow

Gravity’s Rainbow is a distortion of the spacetime metric at energies comparable to
the Planck scale. A general formalism for a curved spacetime was introduced in [34],
where two unknown functions g;(E/Ep) and g,(E/Ep), denoted as the Rainbow’s
Sfunctions modify the basic line element (6.1). They have the following property

E/ggl_)ogl (E/Ep)=1 and E/lgnqogz (E/Ep) =1, (6.98)
and the line element (6.1) becomes’
N2 (r) 2 dr? 2

ds? =

(d92 4 sin? 0d¢2) .
(6.100)

T2 ! — 2 +
81 (E/Ep) (I—=b(r)/r)gy (E/Ep) g5 (E/Ep)

(Note that here N2(r) = exp[2@ (r)]). The distorted wormhole background (6.100)
comes into play at the classical level and for the graviton one loop. For the classical
energy of the wormhole, one gets [35]

1
HY =/ dx A0 = — / d’x Jg R
= x * 167G > X\/g

1 o drr? b'(r)

= —— , (6.101)
2G J,, 1—=b@r)/r r’g(E/Ep)
while the one loop energy is given by
2 ~
1 +oo E/Ep)dg; (E
ETTZ__Z/ Eg;( /Ep) d&i(E) (6.102)
T ='Jo 8 (E/Ep) dE

90f course, one could also consider a generalized uncertainty principle (GUP) to obtain finite
results. However, it is easy to see that if one postulates the validity of Gravity’s Rainbow, to obtain
modified dispersion relations one necessarily has to impose

dx" p, = dx°po + dx' p;
" y (6.99)
=g dxopo +g“dxip; ,

namely plane wave solutions which remain plane, even if the metric is described by Eq. (6.100);
only in this way can one argue that the modified dispersion relations are a consequence of gravity’s
rainbow. However, if we relax the condition of imposing plane wave solutions even at the Planck
scale, the distorted metric, Eq. (6.100), leads to a GUP which differs from the Heisenberg uncertainty
principle, by terms linear and quadratic in particle momenta. The GUP-induced terms become
relevant near the Planck scale and lead to the existence of a minimum measurable length. This
could be interpreted as the breakdown of the validity of continuum space—time at very small scales.
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where

Imax
G (E) = / v (0, E) Q2+ 1ydl, 6.103)
0

is the number of modes with frequency less than E and

1 [t
vi (I, E) = ;/ dx\[k? (r,1,E), (6.104)
—00

is the number of nodes with (/, E;), such that (r = r (x)) k? (r, 1, E) > 0.k? (r, 1, E)
are the distorted version of the two r-dependent radial wave numbers defined in
Eq. (6.51). They are obtained by the distorted Lichnerowicz eigenvalue equation

Am E?
(AlnY) = ———ht, (6.105)
i & (E/Ep) "

and assume the following expression

En a+n o
EEy 2 M0, (=12, (6100

kzz (r7 la Enl) =

Finally, the self-sustained equation, in terms of energy density becomes

1 b (r) 2

— 2 Z (L +D). 6.107
3G rig (EJEp) ~ 3m2 M T 1) (6.107)

The integrals /; and I, are defined as

o0 2 %
11=/ %! (E/E”)i( E mz(r)) dE (6.108)

. @ (E/Ep)dE \g}(E/Ep) '
and
% o (E/Ep) d( E? , )
L = E —_— — dE , 6.109
2 / F e E/En aE\GZEEn " (0109

respectively. E* is the value which annihilates the argument of the root. In /; and
I, we have included an additional 4 factor coming from the angular integration
and we have assumed that the effective mass does not depend on the energy E. It
is important to observe that /; and I, are finite only for some appropriate choices
of g1 (E/Ep) and g, (E/Ep). Indeed, a pure polynomial cannot be used without
the reintroduction of a regularization and a renormalization process. It is immediate
to see that integrals /; and I, can be easily solved when g,(E/Ep) = g1(E/Ep).
However, the classical term keeps a dependence on the function g,(E/Ep) that
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cannot be eliminated except for the simple case of g(E/Ep) = 1. For instance, if
we assume that the shape function is represented by Eq. (6.68) and

81 (E/Ep) = exp (—wE’/E}) . g2 (E/Ep) =1, (6.110)

with o € R, the classical term is not distorted. Then Eq.(6.107) has the following
solution at
roEp =297« (6.111)

witha 2~ 0.242. Thismeans thatrg Ep = 1. 46, to be compared with the roots given in
Sect. 6.5.1. One can also adopt a relaxed form for the Rainbow’s functions described
by

1 when E < Ep

gi(E/Ep)=1, g (E/Ep)= . (6.112)
E/Ep when E > Ep

to obtain the following result 7o E p = 4.12. On the other hand, if we take into account
an EoS, the shape function (6.71) can give interesting results only in the range

—1>w>—-45, 2.038 > roEp > 1.083. (6.113)

Itis interesting to note that Eq. (6.73) works also for an inhomogeneous EoS. Indeed,
the presence of the rainbow’s function does not affect the form of (6.73) except for
an explicit dependence on r of the w parameter, so that b(r) + w(r)b'(r)r = 0 leads
to the following general form of the shape function

"odr
b(r) =ry exp [—/ :| . (6.114)

w(r)r

The situation appears completely different when a polytropic with an inho-
mogeneous parameter o is considered. Indeed, when the polytropic EoS, i.e.,
pr = w (r) p?, is plugged into Eq. (6.4), one arrives

o _ b H87Gpr g (E/Ep) _ b+38G (@ () p") /g3 (E/Ep)
N 2r2(1 —=b(r)/r) B 2r2(1 —b(r)/r)
b+ BTG w0 () (b)) gV (E/Ep)

6.115
2r2(1—b(r)/r) ( )

We can always impose that @ () = C, but this means that
b+@rG) " w(r) (b)) gV (EJEp) =0 (6.116)

and a dependence on g, (E/E p) appears. For this reason this case will be discarded.
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6.6.2 Noncommutative Geometries

In Sect. 6.5, we have introduced an example of a noncommutative spacetime. Actu-
ally, we have considered a smeared energy density of a static and spherically symmet-
ric particle-like gravitational source described by (6.78) acting on the configuration
space. However, if we adopt a noncommutative scheme acting in phase space, the
distorted Liouville measure [36]

d*xd’*k

dni = ———
(2m)

exp [_% (@ —me)]. =12, (6.117)

allows the computation of the graviton to one loop. This is possible because the
distortion induced by the noncommutative space—time allows the counting of states
to be finite. This deformation corresponds to an effective cutoff on the background
geometry (6.1). The UV cutoff is triggered only by higher momenta modes > 1/+/6
which propagate over the background geometry. In this framework, the wormhole
radius can be found to be

ro = 0.281p, (6.118)
with 6 fixed at the value
2.20/2 _
6 = 37T2” =7.43 x 107213, (6.119)

It is immediate to recognize that this procedure seems to produce results close to the
results obtained in Sect. 6.5.

6.7 Summary and Conclusions

In this contribution, we have presented the possible existence of a self-consistent
solution of the semiclassical Einstein’s equations in a traversable wormhole back-
ground. In particular, we have fixed our attention to the graviton quantum fluctuations
around such a background. The fluctuations, contained in the perturbed Einstein ten-
sor, play the role of the exotic matter considered in Ref. [15]. A variational approach
with the help of gaussian trial wave functionals has been used to compute the one
loop term. To handle the divergences appearing in such a calculation we have used
two different procedures: (a) a standard regularization/renormalization process, and
(b) the distortion of gravity at the Planck scale.

For the standard regularization/renormalization process, a zeta function calcula-
tion has been used. This procedure is formally equivalent to a Casimir energy subtrac-
tion procedure. The renormalization is performed promoting Newton’s constant G as
a bare coupling constant to absorb the UV divergences. To avoid dependences on the
renormalization scale a renormalization group equation has been introduced. While
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the renormalization process is not new in the context of the semiclassical Einstein
field equations, to our knowledge it is the use of the renormalization group equation
that seems to be unknown, especially concerning self-consistent solutions. The pro-
cedure has been tested on the prototype of traversable wormholes, namely, the Ellis
wormhole with b (r) = rg /r. The result shows that the obtained “traversability” has
to be regarded as in “principle” rather than in “practice” because the size of the
wormbole radius is of the Planckian order.

On the other hand if we adopt to distort gravity, the result is slightly improved. The
introduction of an EoS with @ € R shows that the phantom energy range is forbidden.
Indeed phantom energy works in the range w < —1. However, the classical term is
well defined in the range —1 < w < 400 and the interval —1 < @ < 0 is connected
to a “dark” energy sector. Nevertheless, the “dark” energy domain lies outside the
asymptotically flatness property. So, unless one is interested in wormholes that are
not asymptotically flat, i.e., asymptotically de Sitter or asymptotically anti-de Sitter,
we also have to reject this possibility. Therefore, the final stage of computation has
been restricted only to positive values of the parameter w. On the other hand, the pos-
itive  sector seems to corroborate the Casimir process of the quantum fluctuations
supporting the opening of the wormhole. Even in this region, we do not know what
happens approaching directly the point w = 0, because it seems that this approach
is ill defined, even if the wormhole radius becomes much larger than the Planckian
size. Note that the situation is always slightly better when we use Distorted Gravity
as a regulator procedure.

Regarding Gravity’s Rainbow the good news is that every shape function analyzed
is traversable. The bad news is that the traversability is always in principle but not
in practice as the wormhole radius in of the Planckian size, even if the radii are
greater that the radius discovered in Ref. [5]. One way to obtain a larger radius is to
reinterpret the self-sustained equation as an ignition equation. Indeed, one possibility
is to use the self-sustained equation in the following manner

1 e 2
E—( (rrz)) = 5[ (") + L") (6.120)

where n is the order of the approximation. In this way, if we discover that fixing the
radius to some value of a fixed background of the right-hand side, and we discover on
the left-hand side a different radius, we could conclude that if the radius is larger that
the original, the wormhole is growing, otherwise it is collapsing. Note that in Ref.
[37], Eq. (6.120) has been used to show that a traversable wormhole can be generated
with a topology change starting from a Minkowski spacetime. This is because we
are probing a region, where the gravitational field develops quantum fluctuations so
violent to be able to suggest a topology change [37].

To conclude, in this contribution we have shown that a self-sustained wormhole
exists in principle. The next step will be about the possibility to have a traversable
wormhole also in practice. A serious analysis of Eq.(6.120) could be a beginning,
but also the addition of rotations could be an interesting improvement.
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Chapter 7
Trapped Ghosts as Sources for Wormbholes

and Regular Black Holes. The Stability
Problem

Kirill A. Bronnikov

7.1 Introduction

Very soon after Einstein presented his general relativity (GR) theory that identified
gravity with spacetime curvature, researchers realized that if spacetime is curved, it
can be very strongly curved. The best-known examples of strong distinctions from flat
Minkowskian geometry are what we now call black holes and wormholes. However,
as early as in 1916, Schwarzschild found his famous solution [1] describing, in
modern terms, the simplest black hole. Somewhat less well known is the paper by
Ludwig Flamm [2], also dated 1916, where he noticed that the spatial part of the
Schwarzschild metric describes something like a bridge or shortcut between two
worlds or two parts of the same world, i.e., in modern terminology, a wormhole.

It is now clear that the Schwarzschild spacetime as a whole, though it really
has spatial sections with a wormhole geometry, represents a black hole while its
wormbhole sections are not traversable since their different static regions are connected
only by spacelike paths.

The Schwarzschild spacetime is vacuum, whereas it has been shown that the
existence of traversable Lorentzian wormholes as solutions to the Einstein equations
requires some kind of so-called “exotic matter”, i.e., matter that violates the null
energy condition (NEC) [3, 4], which is in turn a part of the weak energy condition
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(WEC) whose physical meaning is that the energy density is nonnegative in any
reference frame.

In particular, for static, spherically symmetric configurations in which the source
of gravity is a minimally coupled scalar field, wormhole solutions are only possible,
and are really obtained, if the scalar field is phantom (or ghost), i.e., has a wrong sign
of the kinetic energy [5-8]. It is also known that in alternative theories of gravity,
such as scalar-tensor, multidimensional and curvature-nonlinear theories, wormhole
solutions can also be obtained only if some of the degrees of freedom are of phantom
nature [5, 9-11] (see also the reviews [12, 13] and references therein). This concerns
both continuous sources of gravity and thin shells [9]. In some cases, it is 4D gravity
itself that becomes phantom in a certain region of space [5, 9, 14], in others this
role is played by different geometric quantities such as torsion [15, 16] or higher
dimensional or higher derivative metric variables [17-19] or unusual matter field
couplings [20].

There is nevertheless a good reason to adhere to GR and macroscopic matter and
fields if our interest is in obtaining (potentially) realistic and manageable wormholes
since it is this theory that is quite well verified by experiment at the macroscopic
level and even serves as a tool in a number of engineering applications such as, for
instance, GPS navigation.

Meanwhile, macroscopic phantom matter has never been observed, and this casts
doubt on whether it can exist in principle and whether it is possible to obtain realistic
wormbholes, suitable, for example, for interstellar travel, even in a remote future and
even by a highly advanced civilization.

An interesting opportunity to circumvent these problems and to obtain wormhole
configurations in GR is to find such a kind of matter that possesses phantom properties
only in a restricted region of space, somewhere close to the throat, whereas far away
from it all standard energy conditions are observed [21]. As an example of such
matter, we can consider a minimally coupled scalar field with the Lagrangian

Ly = h(¢)g"" 9,909 — V(9), (7.1)

as a source of gravity in static, spherically symmetric configurations, with arbitrary
functions A (¢) and V(¢). If h(¢) has a variable sign, it cannot be absorbed by a
redefinition of ¢ in its whole range. A case of interest is that 2 > 0 (that is, the scalar
field is canonical, with positive kinetic energy) in a weak field region and 7 < 0
(the scalar field is of phantom, or ghost nature) in some restricted region where a
wormbhole throat can be expected. In this sense it can be said that the ghost is trapped.
A possible transition between 2 > 0 and 4 < 0 in cosmology was considered in [22].

Phantom fields are known to produce not only wormhole configurations but also
different kinds of regular black holes, see, e.g., [23-25]. Of particular interest among
such models are those which combine black hole physics with nonsingular cos-
mology, they have been termed black universes [23, 24]. These objects look like
“conventional” black holes (spherically symmetric ones in the known examples) on
one side, where they can be asymptotically flat, but a possible explorer, after crossing
the event horizon, gets, instead of a singularity, to an expanding universe. Thus, such
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hypothetic configurations combine the properties of a wormhole (absence of a cen-
ter, a regular minimum of the area function r2(x)), a black hole (a Killing horizon
separating static (R-) and nonstatic (T-) regions), and a nonsingular cosmological
model. Moreover, the Kantowski-Sachs cosmology that emerges in the T-region, is
asymptotically isotropic and approaches a de Sitter mode of expansion, which makes
such models potentially viable as a description of a pre-inflationary epoch.

The trapped ghost concept can certainly be applied to such models as well [26, 27]:
in such cases, as in wormhole models, the scalar field is phantom in a neighborhood
of the minimum of r2(x) (which in general does not coincide with the horizon) and
is canonical in the weak field region, both on the static and cosmological sides.

In this paper, we will briefly review both wormhole and black-universe solutions
with a trapped-ghost scalar field and discuss the stability problem. The stability
properties are of importance for any static model since unstable configurations can-
not survive in the real Universe (at least for a long time). It has been shown that
many of wormhole and black-universe models are unstable under radial perturbations
[28-35]. It will be shown here that the same problem for trapped-ghost configura-
tion has its distinctive features leading to a somewhat unexpected conclusion that
transition surfaces between phantom and canonical scalar fields play a stabilizing
role.

The paper is organized as follows. Section7.2 presents the basic equations and
shows why the “trapped-ghost” strategy cannot be realized for a massless scalar field
(V(¢) = 0). Section 7.3 describes some general properties of the system and presents
some explicit examples of “trapped-ghost” wormhole and black-universe solutions
obtained using the inverse-problem method. Section 7.4 discusses the stability prob-
lem for spherically symmetric scalar field configurations in GR and its particular
features which emerge when we consider “trapped-ghost” scalars. Section7.5 is a
conclusion.

7.2 Basic Equations. NEC Violation and the Necessity
of a Nonzero Potential

7.2.1 General Relations

Let us begin with the general static, spherically symmetric metric which can be
written in the form!

ds®> = e?’Wgp? — W gy? — P02 (7.2)

1Our conventions are: the metric signature (+ — — —), the curvature tensor R? 5, = 9, ng —
..., Ry = R 5y, so that the Ricci scalar R > 0 for de Sitter spacetime and the matter-dominated
cosmological epoch; the sign of 7] such that T(? is the energy density, and the system of units
871G =c=1.
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where u is an arbitrary radial coordinate and d$2% = d6” + sin? 6d¢? is the linear
element on a unit sphere.”
Then the Ricci tensor has the following nonzero components:

Ri=—e ™y +y'(y —d +28)], (7.3)
RZ — _e—2a[y//+2ﬁ//+y/2+2,3/2_a/(y/+2ﬂ/)]’ (74)
R = e — e[ +p(y —o' +28)] = R, (7.5)

where the prime stands for d/du. The Einstein equations can be written in two
equivalent forms

G,=R,—38,R=—-T,, or R,=—(T)—38T). (16

where T} is the stress-energy tensor (SET) of matter. The most general SET com-
patible with the geometry (7.2) has the form

T, = diag(p, —p,, —pi, —p1), (7.7)

where p is the energy density, p, is the radial pressure, and p, is the tangential
pressure.

Let us illustrate the necessity of exotic matter for wormhole existence using
static, spherically symmetric spacetimes as an example [3, 13]. Choosing the so-
called quasiglobal coordinate # = x under the condition « 4+ y = 0 and denoting
e = e 2 = A, ef = r, we rewrite the metric as

ds* = A(x)dt* — dxr r?(x)d $2* (7.8)
A . )

A (traversable) wormhole geometry implies, by definition, that the function r(x)
has a regular minimum (say, at x = xp), called a throat, and reaches values much
larger than r(xy) on both sides of the throat, while A(x) > 0 in the whole range of
x. The latter requirement excludes horizons, which characterize black holes rather
than wormhole geometries.

Then the difference of the (7) and () components of the Einstein equations reads

X
X

2A7" fr = —(T} = T) = —(p + py). (7.9)

2In what follows we will use different radial coordinates, to be denoted by different letters:
u — a general notation,
x — quasiglobal, such that = —y,
y — harmonic, such that o = 28 + y,
z — “tortoise,” such that @ = y.
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On the other hand, at a throat as a minimum of »(x) one should have
r=ro>0, =0 r">0. (7.10)

(In special cases where r” = 0 at the minimum, it inevitably happens that r” > 0
in its neighborhood.) Then from (7.9) it immediately follows p + p, < 0. This
inequality really looks exotic, but to see an exact result, let us recall that the
NEC requires 7)) k"k, > 0, where k" is any null vector, k*k, = 0. Choosing k" =
(1/«/1 VA, 0, 0), we see that Tlfk“kv = p + p,. Thus the inequality p + p, <0
does indeed violate the NEC.

Considering a black-universe spacetime, this also means that r (x) reaches large
values at the ends of the x range, hence it again has a minimum at some x = x, but
now A(x) changes its sign at some (in general) other x = x;, (a horizon), say, A > 0
at larger x and A < 0 at smaller x. It can happen that the minimum of » occurs in a
T-region (A < 0), where x is a temporal coordinate, and it is appropriate to rewrite
the metric (7.8) as

d 2
S2 = x
[A(x)]

— |A(X)|dt? = r*(x)d 2>, (7.11)

A minimum of r(x) is then not a throat but a bounce in the time evolution of one
of the scale factors in a Kantowski—Sachs homogeneous anisotropic cosmology (the
other scale factor is |A(x)|'/?, and the proper time element is dt = |A(x)|~/?dx).
The coordinate ¢ is spatial in (7.11), the quantity —7; = p, is the pressure along the
t direction, while the density is p = T'; however, the condition r” > 0 in Eq.(7.9)
(which is the same for any sign of A) leads to p + p; < 0, again violating the NEC.
In the intermediate case of A = 0 (a horizon) at a minimum of r(x), the condition
r” > 0 should hold in its vicinity, with all its consequences. Thus a minimum of r
always implies a NEC (and hence WEC) violation.

7.2.2 Solutions with a Massless Scalar

Consider now a scalar field ¢ (1) with the Lagrangian (7.1) in a spacetime with the
metric (7.2). Its SET has the form

T) = h(¢)e ¢ (u)* diag(l, =1, 1, 1) + 8"V (u). (7.12)

The kinetic energy density is positive if #(¢) > 0 and negative if #(¢) < 0, and we
also have p + p, = 2h(¢®) e 2?¢/(u)?. Thus wormhole or black-universe solutions
require 4 < 0 close to the minimum of r(u) = e, but we can have & > 0 at larger
values of r(u). One can show, however, that this goal cannot be achieved with a
massless field (V (¢) = 0).
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Indeed, in the massless case, the SET (7.12) has the same structure as for a usual
massless scalar field with 2 = +1. Therefore, the metric has the same form as in
this simple case and should reduce to the Fisher metric [36] if # > 0 and to the
corresponding solution for a phantom scalar, first found by Bergmann and Leipnik
[37] (and sometimes called “anti-Fisher”) if 2(¢) < 0. Let us reproduce this solution
for our scalar (7.1) in the simplest joint form, following [5].

Two combinations of the Einstein equations for the metric (7.2) and the SET (7.12)
with V =0 read R =0 and R! + Rj = 0. We can easily solve these equations,
choosing the harmonic radial coordinate u = y, such that a(y) = 28(y) + y (»).
Indeed, the first of them reads simply y” = 0, while the second one has the Liouville
form B’ + y” = e2#+7) (the prime here stands for d/dy). Their solution is

y = —my,
k" sinhky, k > 0,

e P = stk,y) =1y, k=0, (7.13)
k1 sinky, k <0,

where k and m are integration constants; two more integration constants have been
suppressed by choosing the zero point of y and the scale along the ¢ axis. As a result,
the metric has the form [5]

2my d 2
ds? = e"2mgg2 _ _© Y a? |, 7.14
e Sy L2ty T 719

(note that spatial infinity here corresponds to y = 0 and m has the meaning of the
Schwarzschild mass). Moreover, with these metric functions, the (}) component of
the Einstein equations (7.6) leads to

k> signk = m* + h(¢)p”. (7.15)

It means that i (¢)¢> = const, hence h(¢) cannot change its sign within a particular
solution which is characterized by certain fixed values of the constants m and k.3

The situation remains the same if, instead of a single scalar field, there is a non-
linear sigma model with multiple scalar fields ¢ and the Lagrangian

Lo = —hug"'9,0°0,¢", (7.16)

3For a detailed description of the properties of Fisher and anti-Fisher solutions see [8, 13, 38, 39]
and references therein. Let us here only mention that the metric (7.14) describes wormholes [5, 6]
if k < 0, which is only possible with negative /; one flat spatial infinity then corresponds to y = 0,
the other one to y = m/|k|.
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where &, are functions of ¢“: the metric then has the same form (7.14), and a relation
similar to (7.15) reads [39]

K signk = m? + hay (0 (@")'.

Therefore, the quantity that determines the canonical or phantom nature of the scalars,
hap (@) (@Y, is constant. If the matrix Ay, is positive-definite, we are dealing with
a set of canonical fields, then £ > 0, and (7.14) is the Fisher metric with a naked
singularity. If A, is negative-definite, there is a set of phantom fields, hence there is
a family of solutions with k < 0 describing wormholes, and there is also a subset of
k > 0 solutions with horizons of infinite area which have received the name of “cold
black holes” [38] since they have zero Hawking temperature. If /1, is neither positive-
nor negative-definite, then some special solutions can be of wormhole nature while
others correspond to a canonical scalar and have a Fisher central singularity [39],
but there are no solutions of trapped-ghost character. More complicated examples
appear only with nonzero potentials, such as the one with an “invisible ghost” [40]:
this expression means that one of the two scalar fields is phantom, and it rapidly
decays at large r, while the other is canonical and decays comparatively slowly.

7.2.3 Equations with an Arbitrary Potential

Returning to our system with the Lagrangian (7.1), we can assert that trapped-ghost
configurations can only exist with a nonzero potential V (¢). To find such solutions,
it is helpful to use again the quasiglobal gauge o + y = 0 and the metric (7.8). Then
the Einstein-scalar equations can be written as follows:

2(Ar*he’) — ArPH ¢’ = r?dV/de, (7.17)

(A'r?) = =2r%V, (7.18)

r/r=—h(®)e”, (7.19)

A —r?A" =2, (7.20)

—14 A'rr' + Ar”? = r*(hA¢” — V), (7.21)

where the prime again denotes d/dx. Equation (7.17) is the scalar field
equation, (7.18) is the component R = ..., (7.19) and (7.20) are the combinations
R' — R* =...and R — R = ... respectively, and (7.21) is the constraint equation
G} = ..., free from second-order derivatives. It is easy to verify that Eqs. (7.17) and

(7.21) follow from (7.18)—(7.20), which, given the potential V (¢) and the kinetic
function h(¢), form a determined set of equations for the unknowns r(x), A(x),
¢ (x). Moreover, Eq.(7.20) can be integrated giving

B'(x) = (A/r?) =23@m —x)/r*, (7.22)
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where B(x) = A/r? and m is an integration constant equal to the Schwarzschild mass
if the metric (7.2) is asymptotically flatasx — co(r ®* x,A =1 —2m/x + o(1/x)).
If there is a flat asymptotic as x — —oo, the Schwarzschild mass there is equal to
—m (r = |x|, A=1+2m/|x| + o(1/x)).

Thus, we have a general result for any solution with two flat asymptotic regions
in the presence of any potential V (¢)) compatible with such behavior (such solutions
can represent wormholes or regular black holes): we inevitably have masses of oppo-
site signs, just as is the case in the well-known special solution — the anti-Fisher
wormbhole [6, 8, 38] whose metric in the gauge (7.8) reads

ds? = —e 2 dr? + ¥ [dx? + (k2 + x)d 22,

with k < 0 and y = |k|~! cot='(x/|k[). (The constants m and k have here the same
meaning as in (7.13)—(7.15), and y is the harmonic coordinate used in Sect.7.2.2.)

It is also clear that m = 0 in all symmetric solutions to Egs. (7.17)—(7.21), such
that 7 (x) and A(x) are even functions. Indeed, in this case B’(x) is odd, hence m = 0
in (7.22).

7.3 Models with a Trapped Ghost

If one specifies the functions V (¢) and h(¢) in the Lagrangian (7.1), it is, in gen-
eral, hard to solve the above equations. Alternatively, to find examples of solutions
possessing some particular properties, one may employ the inverse-problem method,
choosing some of the functions r (x), A(x) or ¢ (x) and then reconstructing the form
of V(¢) and/or h(¢). We will do so, choosing a function r(x) suitable for both
wormhole and black-universe models. Then A(x) is found from (7.22) and V (x)
from (7.18). The function ¢ (x) is found from (7.19) provided % (¢) is known; alter-
natively, using the scalar field parametrization freedom, we can, vice versa, choose
a monotonic function ¢ (x) (which will yield an unambiguous function V (¢)) and
find A (x) from Eq. (7.19).
Let us discuss which kind of function r(x) should be chosen for our purposes.

1. In both wormhole and black universe solutions there must be a minimum of r (x)
(x = 0 without loss of generality), so that

r(0=a, r©0)=0 r"0)>0, a=const>0. (7.23)

2. Inatrapped-ghost configuration, by definition, the kinetic coupling function % (¢)
is negative near the minimum of r and positive far from it. According to (7.19),
this means that r” is positive at small |x| and negative at sufficiently large |x]|.

3. If our model is asymptotically flat or asymptotically (anti-) de Sitter at large |x|,
we should have

r(x)~|x| as x — Zoo.
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2 P'(x), n=3

-4 2 2 4 -0.1F

Fig. 7.1 Plots of r(x) and r2r” forn =3

A simple example of the function r(x) satisfying the requirements 1-3 is [27]
(see Fig.7.1)
(x/a)®> +1

V(x/a)? +n

where a is an arbitrary constant that has the meaning of the throat radius and can be
used as the length scale. It differs from the function r (x) used in [21, 26] and leads
to slightly simpler resulting expressions.

In what follows, we put @ = 1, which actually means that the length scale is
arbitrary but the quantities r and m (the Schwarzschild mass in our geometrized
units) etc., with the dimension of length, are expressed in units of a, the quantities
B, V and others with the dimension (length)_2 in units of a2, etc.; the quantities
A, ¢, h are dimensionless. Since

rix)=a n = const > 2, (7.24)

_ lx2(2 —n)+n2n—1)

r(x) G2t

: (7.25)

we have r” > 0 at x> < n(2n — 1)/(n — 2) and r” < 0 at larger |x|, as required; it
is also clear that r ~ |x| at large |x|. It guarantees & < O at small |x| and 2 > O at
large |x| (see Fig.7.1, right panel).

Further integration can be performed analytically but leads to rather cumbersome
expressions for B(x) and other quantities, therefore, we will restrict ourselves to the
choice n = 3. An inspection shows that a particular choice of the parameter n > 2
does not change the qualitative features of the solutions though certainly affects their
numerical characteristics.

Integrating (7.26) for n = 3, we obtain

L 26+ 24x2 4 6x* 4 3mx(69 + 100x2 + 39x*) 4 3om

B =B
0 6(1 +x2)3

arctan x,

(7.26)
where By is an integration constant.
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Fig. 7.2 Plots of B(x) for
different values of m. With
m < 0 we obtain an
asymmetric M-AdS
wormhole, withm =0 a
symmetric M-M wormhole,
and with m > 0 a black
universe with a dS behavior
asx —> —00

B(x), n=3

Now suppose that our system is asymptotically flat at large positive x. Since
B = A/r?>and A — 1 at infinity, we require B — 0 as x — oo and thus fix By as

39
By = — Zm. (7.27)

The form of B(x) (and consequently A(x) = Br?) now depends on the mass m,
see Fig.7.2. We see that with a negative mass we obtain B(x) tending to a positive
constant as x — —o0, hence A ~ r2, and we obtain a wormhole with an anti-de
Sitter (AdS) asymptotic behavior at the “far end” (an M-AdS wormhole for short,
where M stands for Minkowski). With zero mass there is a twice asymptotically flat
(M-M) wormhole, and lastly in the case m > 0, B(x) changes its sign and tends to
a negative constant: we thus obtain a black universe with a de Sitter asymptotic at
large negative x.

Now we know the metric completely, and the remaining quantities ¢ (x) and
V(¢ (x)) can be easily found from Egs. (7.18) and (7.19), respectively. To construct
V as an unambiguous function of ¢ and to find h(¢), it makes sense to choose a
monotonic function ¢ (). It is convenient to assume

b (x) = % arctan % (7.28)

so that ¢ has a finite range: ¢ € (—¢o, o), ¢o = n/(2\/§), which is common to
kink configurations. Thus we have x = \/§ tan(ﬁd)), whose substitution into the
expression for V (x), found from (7.18), gives V (¢) defined in this finite range.

The expression for the kinetic coupling function /(¢) is then found from (7.19)
as follows:

h@) = x?—15  3tan’(v/3¢) — 15
Sl 3an’(V3e) + 1

(7.29)
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The function 4 (¢) given by Eq.(7.29) is also defined in the interval (—¢y, ¢o) and
can be extended to R by supposing h(¢) = 1 at |¢| > ¢o. Evidently, the NEC is
violated where and only where /(¢) < O.

For V (x) we obtain [27]

1
1201 + x2)2(3 + x2)3
+ 6mx (2655 + 6930x> + 5420x* + 1326x° + 117x%)

Vix) =

{32(—6 + 2% +3xY

+ 117m(1 + x2)>(15 + 89x2 4+ 29x* + 3x%) (—7 +2 arctanx)]. (7.30)

The function V (¢) can also be extended to the whole real axis, ¢ € R, by sup-
posing V(¢) =0 at ¢ > ¢y (since V(x = 4+00) =0) and V(¢) = V(—¢p) > 0 at
¢ < —do.

It is easy to verify that the asymptotic values of the function B(x) as x — —o0
are directly related to those of the potential V' which in this case plays the role of an
effective cosmological constant:

V(—00) = 117mn/2 = —3B(—00), (7.31)

and thus, as already mentioned, a negative B(—o0), corresponding to m > 0, leads
to a dS asymptotic, with m = 0 and B(—o00) = 0 it is flat, and with B(—o0) > 0
(m < 0) it is AdS (Fig.7.3).

More complicated models with various global structures emerge if, in addition to
a scalar field, there is an electromagnetic field. Examples of such solutions, which
include M-M and M-AdS wormholes and regular black holes with up to three hori-
zons, are presented in [27]; the structures obtained are similar to those found earlier
with a scalar field which is everywhere phantom [25].

O.OJ\\/‘ 5

Fig. 7.3 Plots of the potential V (x) for different values of m; the right panel shows the behavior
of V at larger x, where the curves almost merge



148 K.A. Bronnikov

7.4 Spherically Symmetric Perturbations

7.4.1 Perturbation Equations

The stability problem is of great importance while considering any equilibrium con-
figurations since only those ones can exist for a sufficiently long time which are either
stable or decay very slowly. On the other hand, the evolution of unstable systems
can lead to many phenomena of interest, from structure formation in the Universe to
Supernova explosions.

Let us discuss the stability problem for the scalar-vacuum configurations like
those described in the previous section. The problem is whether or not an initially
arbitrarily small time-dependent perturbation will grow in the future thus destroying
the system. So we will study the perturbations in a linear approximation, neglecting
their quadratic and higher order combinations. Moreover, we will only consider per-
turbations preserving spherical symmetry (they are also called radial, or monopole
perturbations) which are, on one hand, the simplest, and, on the other, the most
“dangerous” ones, which lead to instabilities in many configurations with self-
gravitating scalar fields [28-35]. Other kinds of perturbations usually do not develop
instabilities, see, e.g., [35, 41]. We do not restrict ourselves to the particular solu-
tions presented above but suppose that a certain static solution is known and study
its time-dependent perturbations.

Let us follow the lines of [13, 34, 40] and consider the same field system as
previously, so the total action is

= 1oz [ VR R+ 200 - 2v@)]. 032

which leads to the scalar field equation

2hVENV b + (dh/dd)p ., +dV /dp =0, (7.33)
and the Einstein equations (7.6) with the scalar field SET:

T![¢] = h()[2¢.8" — 85¢%Pu] + 8.V (@), (7.34)
The general spherically symmetric metric is chosen in the form (7.2), that is,

ds* = e dt* — e*du® — *Pd2?, (7.35)

where y, o, and B are now functions of both the radial coordinate # and time 7. We
also use the notation r () = ef. There remains a coordinate freedom of choosing u.

Consider linear spherically symmetric perturbations of static solutions to the field
equations due to (7.32). Thus for the scalar field and the metric functions we write now
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S, 1) =)+ 8¢, 1),  y,1)=yw)+38yu,r) (7.36)

and similarly for other quantities, with small “deltas” (perturbations).
Preserving only linear terms with respect to time derivatives, we can write all
nonzero components of the Ricci tensor as

Rl = e (@+2B) — eIy +7v'(¢v — ' + 28], (7.37)
RZ — e72y& _ ef2a[y//+2‘3//+y/2 +2‘B/2 _(X/()//—Fzﬂ/)], (7.38)
Rj=R{=eP+eB—c™B +B —a +28)] (7.39)
Ry =2+ BB —ap — Byl, (7.40)

where dots and primes denote d/d¢ and d/du, respectively.
Accordingly, the zero-order (static) scalar equation and the (;), (), and (g) com-
ponents of the Einstein equations (7.6) read

2h[¢" + ¢’ (v + 28" — )]+ h'¢ = e**dV/de, (7.41)
Y'Y 428 —a) = —e*V, (7.42)
7/// + 2[3// + y/2 + 2/8/2 _ Ol/()// + 2‘3/) — —2/’1(]‘)’2 _ eZaV’ (743)
_ 62a72/3 +,3”+,3/(V/+2,6/ —O[/) — _VGZa. (744)
The first-order perturbed equations (scalar, R,;, = ..., and Rz = ...) have the form

282 ns — 2h[8¢" + 8¢’ (y' + 2B — ) + ¢ (8y' + 288 — 8a')]
—28h[¢" + ¢’ B +y —a)] — WP — ¢'Sh +8(e*Vy) =0,  (7.45)

8B + B8 — B'Sa —y'8B = —hd'8, (7.46)
8(e2a—2ﬂ) + eZa—2y8/‘3' _ 5ﬁ” _ 8,3/()// + 2’3/ o Ol/)
— B8y + 288" —8a’) = 8(e*V), (7.47)

Equation (7.46) may be integrated in #; we are interested in time-dependent pertur-
bations and thus omit the appearing arbitrary function of u since it describes static
perturbations, obtaining

88" +8B(B — v — B'da = —h¢'8¢. (7.48)

In this problem, we have two independent forms of arbitrariness: one consists in
the freedom of choosing a radial coordinate u in the static configuration, the other is
a perturbation gauge, connected with the freedom to choose a reference frame in the
perturbed spacetime. This can be expressed in imposing a certain relation for S, §8,
etc. In what follows we will employ both kinds of freedom. All the above equations
have been written in the most universal form, without fixing the u coordinate or the
perturbation gauge.
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Let us now choose the so-called “tortoise” coordinate u = z, corresponding to
the condition ¢ = y (which is the best for considering wave equations), and the

perturbation gauge 68 = 0 that substantially simplifies the equations. Then Eq. (7.48)
expresses da in terms of §¢ (the prime now means d/dz):

B'8a = h(p)d'8¢p. (7.49)
Equation (7.47) expresses 8y’ — Sa’ in terms of S« and 8¢:
B8y’ —8a) =2e* Psa —5(e*V). (7.50)

Substituting all this into (7.45), we obtain the following wave equation:

8¢ —8¢" — 8¢’ 2B +h'/h) + Us¢p =0, (7.51)
_ 2h¢/2 Y 2¢ V¢¢] B /’l//—‘rhq;(ﬁ” B 2/3//’1/
U_e|:ﬂ/2(v e )+5V¢+2h 5 o
(7.52)

where the index ¢ denotes d/d¢. This expression for U directly generalizes the one
obtained in [34] for scalar-vacuum configurations for the case h = ¢ = +£1.
Next, we can get rid of the first-order derivative of §¢ in (7.51) by substituting

h/
o =y(z,t)e ", n=p+— (7.53)
2n°
and reduce the wave equation to its canonical form
V=¥ + Ve (DY =0, (7.54)
with the effective potential
Ve 2) = U + 1" + 1"
2h¢'? 2¢’ hg Voo
— p2a -28 " 2
= V- Ty, -2ty . 7.55

A further substitution, possible since the background is static,
Yix, 1) =Y (x)e, = const, (7.56)
leads to the Schrodinger-like equation

Y + [@0? = Ve (x)]Y = 0. (7.57)
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Now, if there is a nontrivial solution to (7.57) with Im w < 0 satisfying some phys-
ically reasonable conditions at the ends of the range of z (in particular, the absence
of ingoing waves), then the static system is unstable since §¢ can exponentially grow
with 7. Otherwise our static system is stable in the linear approximation. Thus, as
usual in such studies, the stability problem is reduced to a boundary-value problem
for Eq.(7.57) — see, e.g., [13, 28-30, 32, 34, 35, 41, 42].

The gauge 68 = 0 is technically the simplest one, but apparently causes some
problems when applied to wormholes and other configurations with throats. The
reason is that the assumption §8 = 0 leaves invariable the throat radius, while per-
turbations must in general admit its time dependence [13, 32, 42]. It may even seem
that the emergence of a pole in Vi due to 68 in the denominator in (7.52) is an
artifact of the gauge. It can be shown, however, by analogy with [13, 32, 34], that
Eq.(7.57) is in fact gauge-invariant, while ¢ is a representation of a gauge-invariant
quantity in the gauge §8 = 0. In the next subsection we will discuss this issue in
some detail.

7.4.2 Gauge-Invariant Perturbations

As in all numerous problems with perturbation dynamics in gravitation theory, it is
necessary to make sure that we are dealing with real perturbations rather than pure
coordinate effects, therefore it is necessary to construct gauge-invariant quantities
from perturbations.

Consider the general metric (7.35) and small coordinate transformations x¢ >
x4+ &% in the (¢, u) subspace:

t =1+ At(t,u), u=u-+ Au(t,u), (7.58)

where At and Au are supposed to be small. This transformation adds an increment
to any scalar with respect to transitions to new coordinates in the (¢, u) subspace
(2-scalar, for short), such as, e.g., ¢ (¢, u) and r (¢, u):

Ap = AL + ¢’ Au ~ ¢/ Au, (7.59)
in the linear approximation since both ¢ and Ar are small and similarly for r (¢, u)

and other 2-scalars, if any. If there are perturbations §¢ and 6r, the transformation
(7.58) changes them as follows:

8¢ > 8¢ =8¢+ Ap =8¢ + ¢ Au,
8r — 8r=8r+ Ar = 8r +r'Au, (7.60)
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since in our static background solution ¢ = 7 = 0. It then follows that the combination
v =r'8¢ — ¢'sr, (7.61)

does not change under the transformation (7.58), or — in other words — is gauge-
invariant. Note that the prime here denotes d /du in the background static configura-
tion, and u is an arbitrary admissible radial coordinate, in particular, it may be thought
of as our “tortoise” coordinate z used to formulate the boundary-value problem for
perturbation modes.

One can notice that combinations constructed like (7.61) from any 2-scalars (for
example, such as e? and B = Inr, or two different linear combinations of ¢ and r)
are also gauge-invariant. Moreover, gauge-invariant is ¥ multiplied by any 2-scalar
or any combination of background quantities which are known and fixed functions
of u and are certainly also gauge-independent.

The physical properties of perturbations must not depend on which gauge-
invariant quantity ¥ is chosen to describe them. Meanwhile, with different ¥, the
effective potentials can, in general, also be different. However, given a specific back-
ground configuration, in order that the theory be consistent, these different potentials
should lead to the same perturbation spectrum.

Due to gauge invariance of ¥, equations that govern it may be written in any
admissible gauge, in particular, §8 = 0, and Eq. (7.54) for ¥ then may be considered
as a result of substituting ¢ = (r/r')¥ = rd¢ in a manifestly correct equation for
v =r'8¢.

We conclude that Egs. (7.54) and (7.57) are themselves gauge-invariant since their
unknown functions are gauge invariants (though written down in a particular gauge)
while other functions involved are taken from the background solution.

A similar problem for cosmological perturbations is discussed, e.g., in the
review [43].

7.5 Throats, Trapped Ghosts and Stability

7.5.1 Perturbations Near a Throat

We have verified that Eq. (7.57) is gauge-invariant, and it really makes sense to pose
boundary-value problems to find out whether or not there are unstable perturbation
modes. However, the stability problem is complicated by the singular nature of the
effective potential V.. There are two kinds of singularities: one is related to throats,
if any, since there are terms proportional to 1/ and 1/’ in V. (and g’ = 0 on
a throat); the other exists at transitions from canonical to phantom scalar since Vg
contains terms with 7=2 and A~ while 4 = 0 at such a transition. In this subsection
we discuss singularities on a throat, partly following [32, 34].
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Suppose that a throat occurs at z = 0 (without loss of generality) and that the
spherical radius r(z) = e” has a generic minimum at z = 0, so that we have a Taylor
expansion of the form, r (z) = ro + %rzzz + o(z?) withry > 0, r» > 0. Also, without
loss of generality, in a certain neighborhood of the throat we can put h(¢) = —1
since Eq.(7.19) definitely requires 7 < 0, and h(¢) = —1 can be achieved by a
regular redefinition of ¢. Then, using the zero-order (background) equations, it is
not difficult to show that near the throat

Vet (@) = 2/22 + 0(1), (7.62)

and there is no O(z!) contribution. We see that there is an infinitely high potential
wall separating perturbations on the left of the throat (z < 0) from those on the right
(z > 0) because a natural boundary condition at z = 0 is ¥ (0) = 0. It immediately
implies that perturbations of all other quantities vanish at z = 0. We are thus unable to
consider a mode of obvious physical significance, the one corresponding to dynamic
changes of the throat radius.

This difficulty can be overcome using the so-called S-deformation method applied
to the potential V. It has been used in [44, 45] for transforming a partly negative
potential to a positive-definite one for perturbations of higher-dimensional black
holes. Later, with its aid, Gonzalez et al. [32] transformed a singular potential to
a nonsingular one for perturbations of the anti-Fisher wormholes and found that
an exponentially growing mode, making such wormholes unstable, is just the one
connected with an evolving throat radius. The same scheme in a more general formu-
lation was used in [34, 35] for revealing instabilities in other solutions with throats,
including some black universe models. Let us briefly describe the method.

Consider a wave equation of the type (7.54)

U=y + W)y =0, (7.63)

with an arbitrary potential W (z) (whose specific example is the above potential Veg).
Let us present W (z) in the form

W) = $*@z) + S, (7.64)

which is actually a Riccati equation with respect to S(z), so such a function can in
general be found. Then Eq. (7.63) can be rewritten as

W+ (0. + S)(—0. + S)y = 0. (7.65)
Now, if we introduce the new function

X = (=0, + v, (7.66)
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then, applying the operator —d, + S to the left-hand side of Eq. (7.65), we obtain the
following wave equation for x:

X—=x"+ Wieg(2)x =0, (7.67)
with the new effective potential
Wieg(x) = =S + 8 = —W(z) + 25> (7.68)

If a static solution v (z) of Eq.(7.63) is known, so that /! = W (z),, then we

can choose
S(z) = Y5 /¥y, (7.69)

to carry out the above transformation. Furthermore, if we assume that W (x) ~ az™"
at small z, then, requiring that W, should be finite at z = 0 and using (7.68), we
easily find that necessary conditions for such a singularity in W(z) to be removable
by the above transformation is n = 1, a = 2, that is, W = 2/z2. Fortunately, by
Eq.(7.62), the potential Vs behaves precisely in this way. A point of interest is that
such a removal is only possible for W — 4-00 as z — 0, so that a potential wall in
W (z) can be removed but a potential well cannot.

From (7.68) with finite Wi, it also follows that at small z

S~-1/z = ¥, xl1/z (7.70)

To summarize, we have seen that singularities of the effective potential Vg exist-
ing at a throat can be regularized in the generic case [32, 34]. What is of equal
importance, it has also been shown that regular solutions to the regularized wave
equation describe regular perturbations of both the scalar field and the metric. It was
this procedure that made it possible to prove the instability of anti-Fisher (Ellis type
[5, 6]) wormholes [32] and other scalar field configurations in GR [34, 35].

7.5.2 Perturbations Near the Surface h = 0

The effective potential Vg also possesses singularities at the values of the radial coor-
dinate where & = 0, which exist in cases where the function /(¢) in (7.32) changes
its sign. This happens in the framework of the trapped ghost concept. Such singu-
larities are quite different in nature than those occurring on a throat: they are rather
similar to those found at transition surfaces in systems with conformal continuations
[14, 29, 30]. The latter phenomenon is observed, for instance, in scalar-tensor theo-
ries of gravity where it sometimes happens that the whole manifold in the Einstein
frame maps to only a part of the Jordan frame manifold (or vice versa). It was found
that if such configurations are static and spherically symmetric, then their monopole
perturbations are described by wave equations like (7.54) with effective potentials
that have a singularity of the form
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Vetr & —1/(4z%) as z — 0, (7.71)

if z = 0 is the transition surface where the Einstein frame metric has a singularity
while the Jordan frame metric is regular [29].

Indeed, let us assume that near the value of z where 2 = 0 (let it be z = 0) the
metric functions &« = y (our gauge) and S as well as the ¢ field are regular, so that
the following Taylor expansions are valid:

a=aytaiz+.... B=Po+Piz+...., d=¢o+diz+idr+...,
ho) =hz+ i +..., ¢ #0, h #0. (7.72)

It can be shown that in this generic situation the effective potential (7.55) is repre-
sented near z = 0 by the Laurent series expansion

1 1[h
Verr (2) = iz + Z[h_? + 2(/31 — o+ %)} +0(). (7.73)

Thus, the surface where & = 0 creates an infinitely deep potential well for pertur-
bations. In quantum mechanics such a potential in the stationary Schrédinger equation
would mean that there are negative energy levels of unlimited depth. Returning to
a stability study, it is tempting to conclude that there are perturbation modes with
@’ < 0 and an arbitrarily large |w|, and the corresponding growth (§¢ ~ ¢/“I") of the
perturbations then immediately leads them out of the linear regime and necessitates
a nonlinear or nonperturbative analysis.

However, the stability study implies other physical requirements on v in Eq. (7.54)
or Y in (7.57): §¢ should be finite in the whole space and should vanish at infinities
or horizons, whereas quantum mechanics only requires quadratic integrability of .

With the potential (7.73), the general solution of (7.57) at small z has, indepen-
dently of w, the leading terms

Y(2) = V]zI(C1 + CyIn|z]) + 0z %), €y, C; = const. (7.74)
On the other hand, according to (7.53), ¢ ~ Y/ Jh~Y /+/1z|, therefore,
8¢ ~Ci+Colnz| + O(2), (7.75)

and for physically meaningful perturbations we must require C, = 0. Thus, the neg-
ative pole of the potential (7.73) leads to a constraint which should be added to
the ordinary boundary conditions which, combined with the equation itself, in more
conventional cases completely determine the solution to a boundary-value problem.
Due to this constraint it may happen that the boundary-value problem with Eq. (7.57)
has no discrete spectrum. Indeed, suppose we have a background configuration with
asurface z = 0 where & = 0, and there is a solution to (7.57) satisfying the boundary
conditions at infinities and/or a horizon; then there is in general zero probability that
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this solution will be finite at z = 0. There could be an exception if the background
were Z-symmetric relative to the surface z = 0, but here it is manifestly not the
case because i > 0 on one side of z = 0 and & < 0 on the other. A similar situation
was discussed in [46] concerning the stability of black holes with a conformal scalar
field [47, 48], and after all, with some more reasoning, it was stated that such black
holes are stable under monopole perturbations.

(Let us note that, contrary to this situation, the quantum-mechanical requirement
of quadratic integrability of ¥ (z) does hold since the integral f 7" In? 7 dz converges
at z = 0 for any n > 0. The quantum particle in a field with such a potential well,
as is sometimes said, “falls onto the center” [49] because the wave function, as one
descends to deeper and deeper negative energy levels, more and more concentrates
near z = 0.)

We conclude that a transition from a canonical scalar to a phantom one plays a
strong stabilizing role in all configurations with such self-gravitating scalar fields.
One cannot, however, say whether or not a particular trapped-ghost solution is stable
or not without its investigation because this evidently depends on the details of each
model.

7.6 Conclusion

It has been shown [21, 22, 26, 27] that scalar fields may change their nature from
canonical to ghost in a smooth way without creating any spacetime singularities.
This feature significantly widens the opportunities of scalar field dynamics and the
possible choice of scalar-tensor theories of gravity, although here we have only
considered minimally coupled scalars.

More specifically, trapped ghosts make possible spherically symmetric wormhole
and regular black hole models where the ghost is present in some restricted strong-
field region whereas in the weak-field region, where observers can live, the scalar has
usual canonical properties. It can be speculated that if such ghosts do exist in Nature,
they are all confined to strong-field regions (“‘all genies are sitting in their bottles”),
but just one of them, having been released, has occupied the whole Universe and
plays the part of dark energy (if dark energy is really phantom, which is more or less
likely but not certain).

For static, spherically symmetric models in the Einstein-scalar field system under
consideration, in addition to examples of exact solutions, some general properties
have been found:

(i) Trapped-ghost solutions to the field equations are only possible with nonzero
potentials V (¢).

(ii) If a solution to the Einstein-scalar equations (be it of trapped-ghost nature or
not) is twice asymptotically flat, and the Schwarzschild mass is equal to m at
one of the infinities, it is equal to —m at the other. Hence, mirror (Z,) symmetry
with respect to a certain value of the radial coordinate is only possible if m = 0.
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(iii) The transition surfaces from canonical to phantom behavior of the scalar field

create a potential well for spherically symmetric perturbations, and the generic
shape of this well (see Eq.(7.73)) does not depend on details of the model.
Moreover, the natural requirement that perturbations must be finite, leads to a
constraint which, being added to the boundary conditions, substantially restricts
the set of possible solutions and thus plays a stabilizing role.

The latter result is somewhat unexpected and, in my view, can raise an inter-

est in trapped-ghost models. This opportunity can probably be used in attempts to
solve various problems of gravitational physics and cosmology. Stability studies for
specific trapped-ghost configurations like those described here make one of evident
tasks for the near future.
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Chapter 8
Geons in Palatini Theories of Gravity

Gonzalo J. Olmo and Diego Rubiera-Garcia

8.1 Introduction

Einstein’s deep insight on the nature of gravitation had a crucial impact on our
understanding of the universe. In order to make gravitation compatible with his new
principle of relativity, the rigid Minkowskian spacetime had to be extended to a
locally deformable dynamical structure using the language of differential geometry.
The description of spacetime as a field theory of a metric tensor in interaction with
the matter led to a number of important predictions, some of which were observation-
ally verified shortly after the publication of the theory. Among those, of particular
relevance are the orbital properties of point-like particles around a central object
(see [1, 2] for some recent reviews on the current experimental status of General
Relativity).

Though the notion of point particles was very successful for the development and
observational verification of the theory, their presence in a field theory of the metric
leads to severe conceptual problems and technical inconsistencies. In particular, mas-
sive point particles should be seen as black holes or naked singularities, implying an
ill definition of the metric at their location and an inherent difficulty in the use of per-
turbative methods for their description. In order to overcome this situation, Wheeler
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[3] addressed the notion of point particle from a field theory perspective introduc-
ing the concept of geon, abbreviation for “gravitational-electromagnetic entity,” in
an attempt to describe extended bodies as long-lived excitations of self-gravitating
fields.

The first examples of geons that Wheeler considered were toroidal distributions
of electromagnetic waves and spherical balls of light [3]. The combination of these
ideas with the fact that Einstein’s gravity only determines the local aspects of the
gravitational field (the geometry) but does not restrict in any way its global properties
(topology) soon led to the consideration of wormholes as mathematically admissible
entities which could play a relevant role in combining gravitation with other branches
of Physics (for a detailed account on the nature and properties of wormholes see [4]).
In fact, Misner and Wheeler found [5] that free (sourceless) electric fields flowing
through holes in the spacetime topology could engender pairs of massive particles
with opposite charges. Those charges would be similar in all respects to elementary
point particles, satisfying their own conservation laws, but without being associated
to any mass or charge density. This is known as the mass-without mass and charge-
without charge mechanisms.

Though within the framework of general relativity (GR) the electrically charged
geons with wormhole structure envisioned by Misner and Wheeler are not possible
[6, 7], they turn out to be rather common solutions in certain extensions of the theory.
The main purpose of this chapter is thus to provide an overview of the results obtained
in this context over the last 5 years or so.

Our starting point will be the consideration of gravitation as a geometric phenom-
enon, and geometry as something else than a mere theory of metrics. By working
in a metric-affine geometric scenario, i.e., recognizing that metric and connection
are logically and mathematically independent entities (see [8, 9] for some intro-
ductory material regarding metric-affine geometries), we will see that free electric
fields (as well as other sources with similar algebraic properties) naturally engender
wormbholes. Given that these solutions represent self-gravitating fields, they can be
naturally seen as geons in Wheeler’s sense. In order to understand why and how
metric-affine geometry is related with the emergence of wormholes, it will be very
useful to have a brief look at the modern description of defects in ordered structures
in condensed matter physics. This will also allow us to motivate the use of these
geometries in gravitational scenarios.

The emergence of wormholes in self-gravitating electrovacuum configurations
has a deep impact on the properties of the resulting spacetimes. In the models to be
studied here, the central region of black holes and naked singularities is typically
replaced by a wormhole. An immediate consequence of this is that geodesics become
complete, thus implying that the resulting spacetime is nonsingular. As we will see,
the completeness of geodesics is not necessarily tied to the absence of curvature
divergences. Though this aspect is well known in applications such as those involving
thin-shell wormbholes [10, 11], it seems to have been overlooked in discussions about
the problem of singularities in black hole scenarios. Part of our discussion will thus
be aimed at clarifying the implications of this important point.
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The content of this chapter is organized as follows: In Sect.8.2 we introduce a
treatment of metric-affine spaces in the context of ordered structures with defects in
solid state physics, where it is shown that spaces with nonmetricity (associated to
point defects) and torsion (associated to dislocations) are needed in order to describe
properly such structures. This provides an empirical rather than purely theoretical
motivation for the consideration of metric-affine geometries. Section 8.3 contains the
bulk of our results, where we discuss the cases of f(R) models, quadratic gravity,
Born-Infeld gravity and higher dimensional generalizations. When such extensions
of GR are considered in combination with electric fields, one finds a number of
wormbhole solutions, whose properties are discussed in detail. The main lesson of this
section is that wormhole solutions are a generic feature of metric-affine geometries,
that no violation of the energy conditions is needed, and that metric-affine geometries
may provide valuable insights to go beyond GR. A summary of our results and some
conclusions are presented in Sect. 8.4.

8.2 Microstructures, Holes, Metric-Affine Geometry,
and Wormbholes

An important result of Misner and Wheeler is the fact that charge and mass need
not be idealized as properties of point particles, but rather can be seen as aspects
of the interplay between the geometrical and topological structure of spacetime.
This idea has strongly influenced current views on how the microcosmos could
behave. Indeed, at the shortest scales, quantum effects could make spacetime fluctuate
wildly in all manners of nontrivial topologies, yielding a dynamical microstructure
able to engender pairs of virtual particles and other complex entities connected by
wormholes. This microstructure is known as spacetime foam.

Though a system of the type suggested by the spacetime foam idea raises many
questions, it is a useful exercise to focus attention on how a smooth, continuum
spacetime may arise out of an underlying microstructure. In this respect, ordered
structures such as Bravais crystals or graphene may provide useful information [12].
These systems possess a microscopic (discrete) structure which admits a continuum
limit when the interatomic spacing is much smaller than the scale of the probe. The
discreteness of the lattice and the existence of certain preferred (crystallographic)
directions allow to introduce notions of distance and parallel transport in a straight-
forward manner. In the simplest scenarios (monatomic lattices with equal spacings
between nearby atoms), distances can be measured by step counting, while parallel
transport is defined by moving along the crystallographic directions. This provides
intuitive notions of metric and connection at the level of the microstructure. It turns
out that when the lattice contains defects, the resulting continuum description requires
the use of independent metric and affine structures [13, 14]. This is so because dis-
locations (a type of one-dimensional defect) represent the discrete version of torsion
[15-17], while interstitials and vacancies (types of point defects) break the
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step-counting prescription for determining distances, thus involving some kind
of nonmetricity [18]. The bottom line of this analysis is that the existence of a
microstructure may require going beyond Riemannian geometry, where torsion and
nonmetricity are frozen a priori by convention.

The existence of point defects in crystals generates local stresses due to the defor-
mations of the lattice induced by missing atoms (vacancies) and/or interstitials. This
type of defects may arise by thermal excitation or by the collision of neutrons with
atoms in the lattice, see for instance [19]. The geometric description of the crystal
in the continuum limit is carried out by considering a reference undefected configu-
ration, g,,,, that is mapped into the physical one, g, via mappings that specify the
type and distribution of defects, D,", or, in other words, g,, = D,*q,. The refer-
ence configuration is typically Euclidean or Riemannian with a well-defined parallel
transport, VOI; quv = 0, whereas the defected one involves independent metric and
connection with a nonmetricity tensor, Qyv = V2 g, # 0.

It has been shown recently that extensions of general relativity in metric-affine
spaces have an intimate correspondence with the kinematic description of crystals
with point defects [20, 21]. It turns out that the role played by the density of point
defects in crystals is analogous to that played by the energy—momentum tensor of
the matter fields in the gravitational context. Both generate the nonmetricity ten-
sor and define the deformation that relates the physical and reference (or auxil-
iary/undefected) metric.

This analogy or correspondence allows to interpret the emergence of wormholes in
gravitational scenarios in a very natural way. On the one hand, the energy—momentum
tensor of the matter fields generates gravitational attraction. On the other, the pres-
ence of a vacancy in a lattice induces a local deformation that brings nearby atoms
around the hole closer to one another, which can be seen as an attraction effect.
Now, in regions of very high stress-energy density, our analogy suggests that it
should correspond to a high density of vacancies. Obviously, the maximum density
of vacancies is achieved when many holes get together to form a large hole. But a
large hole represents a region where the effective geometry is not defined, where no
collective motion of the lattice atoms can occur. As we will see, this is analogous
to what happens in the central regions of black holes and naked objects. Where the
stress-energy density reaches its maximum values, a spherical portion of spacetime is
missing. A wormbhole has effectively been formed. Note that this kind of procedures
has also been considered to construct wormholes in graphene layers described by
gauge fields [22].

8.3 Analytical Models with Nonmetricity

In our presentation, we will focus on the effects of nonmetricity only, leaving aside
the role of torsion. Nevertheless, our derivation of the field equations will be carried
out allowing torsion to exist in the theory, even if we end up setting it to zero. This
can be justified on simplicity grounds but also from a physical perspective. Following



8 Geons in Palatini Theories of Gravity 165

our condensed matter analogy, we find that defects in crystals have dynamics and
interactions. In fact, many point defects (associated to nonmetricity) may generate
dislocations (torsion), and dislocations can disappear by the addition of interstitial
atoms or the removal of more atoms. This means that a complete theory should
consider the combined existence of both torsion and nonmetricity. If we focus on
low-energy phenomena, one expects dislocations to arise as a result of the existence
of many point defects (we do not consider the possibility of generating dislocations
by other means such as traction or the application of external forces). Therefore,
in a first approximation one can neglect the presence of torsion and just focus on
nonmetricity as the simplest departure from a Riemannian structure.

8.3.1 f(R) Theories with Nonlinear Electromagnetic Fields
and Anisotropic Fluids

For pedagogical convenience, we shall begin our discussion with perhaps the simplest
extension of GR via modifications in the Lagrangian of the theory. This is described
by an action of the form

1
S = 53 d*x/=gf (R) + Sp1(guv» Ym), (8.1)

where f(R) is a given function (unspecified at this stage) of the curvature scalar,
R = g, R*" (thus, GR would correspond simply to the choice f(R) = R). For the
rest of the paper, the following definitions apply: x2 is Newton’s gravitational con-
stant in suitable units (in GR, x> = 87 G /c?), g is the determinant of the spacetime
metric g,,,, which is a priori independent of the affine connection I" = I'7, (Palatini
approach), while R, = R}, is the Ricci tensor, which is constructed entirely out
of the independent connection I, since it is defined from the Riemann tensor

R gy = 8Dy — iy + T Ty — T Ty (82)

without any need of lowering indexes with a metric. Finally, the matter sector, Sy,
is assumed to depend on the metric [but not on the connection, for simplicity] and
the matter fields are collective labeled by ¥,,.

The theory described by the action (8.1) has been extensively studied in the metric
approach [23-26]. However, in order to implement the analogy between point defects
and metric-affine geometries, here we perform independent variations of the action
(8.1) with respect to metric and connection. This yields two systems of equations,
namely

JrRyw(I7) — fg;w =K T;w , (8.3)
v, [«/_—ngg’w] —0, (8.4)



166 G.J. Olmo and D. Rubiera-Garcia

with the notation fz = df /dR, while T, = \/ng 5534 is the energy—momentum
tensor of the matter. Let us point out that in this derivation one may assume vanish-
ing torsion, F[ﬁv] = 0, and a symmetric Ricci tensor, Ry, = 0, though the result is
independent of those assumptions due to the projective invariance of the theory [9].
To solve these equations the first point to be noted is that tracing with the metric g"”

over the Eq. (8.3) one obtains

Rfx —2f = k°T . (8.5)

where T = gh"T,,, is the trace of the energy—momentum tensor. This is not a differ-
ential equation, but just an algebraic one whose solution, R = R(T'), generalizes the
linear relation R = —« 2T of GR to f (R) models. This relation implies that the curva-
ture scalar can always be eliminated in favor of the matter sources and, consequently,
that the connection Eq. (8.4) can be seen as algebraic and linear in the connection I".
This means that one can rewrite (8.4) as

v, [«/—_hh‘] —0, (8.6)

where the rank-two tensor #,,, is defined as

1
h;w Eng;w s " = ffglw . (8.7)
R

Equation (8.4) can be easily shown to be equivalent to V., = 0, whose well-known
solution is given by

Ao

3 h
F;w = 7 (auhav + avhau - aahuv) . (8.8)

which is nothing but the Christoffel symbols of the auxiliary metric £,,,. This is in
agreement with the fact that nonmetricity, Qg = Vo guv = guv Vo Infr(T) # 0, is
present in metric-affine spaces, which in turn is consistent with the discussion on
defected ordered structures presented in Sect. 8.2 above. Moreover, this puts forward
that the stress-energy density of the matter fields is the cause for nonvanishing non-
metricity, in analogy with the relation between nonmetricity and density of defects
in crystals.

The introduction of the auxiliary metric /,,, provides a natural strategy to solve the
metric field equations. Contracting Eq. (8.3) with #*“ and using the transformations
(8.7), one can write the field equations as

R, (h) =]% (g(w + KZTMU) , (8.9)
R

where R* |, (h) = h"*R,,(I"). Note that all the R-dependences on the right-hand side
of the field equations (8.9) can be traded by 7-dependences, i.e., the right-hand side
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is entirely determined by the matter sources. These equations are manifestly second-
order and, since the physical metric g, is obtained through the set of algebraic trans-
formations (8.7), which depend only on the matter [again because f(R) = f(R(T))],
the field equations for g, are second-order as well. This way, once an f'(R) gravity
is given, and a matter source Sy, is specified, one can solve the field equations (8.9)
for hy,,, and then transform it back to the metric g, using (8.7).

This strategy proves itself adequate provided that one can find closed expressions
for f(R) = f(R(T)), which might not be straightforward. Otherwise, it is better to
write the field equations directly for g,,, which replaces (8.9) by

2 Rfr — 3 1
Gun(®) = T = %gw - 5p [aﬂfRava - ng(aﬁef]
R
1
+ — [VuVife — g Tfx] - (8.10)
Je

The advantage of this formulation of the field equations lies on the fact that they can
be read off as GR-like field equations with a modified energy-matter source on the
right-hand side [27]. In this formulation, it is also immediately seen that in vacuum,
corresponding to 7%, = 0, the field equations become

G;w(g) = _Aeffgu,v s (811)

which is nothing but GR with Ay = (Rofg, — f0)/2fz, (With Ry = R(T = 0)) play-
ing the role of an effective cosmological constant [this same result could have
been obtained from the field equations (8.9) as well]. This result highlights that
only when a matter-energy source with a non-traceless energy—momentum tensor
is considered, do modifications with respect to GR occur. This makes it point-
less obtaining solutions sourced by standard electromagnetic (Maxwell) fields
(“Reissner—Nordstrom-like”), as they would take exactly the same form as in the
GR case. Nonetheless, we point out that nonlinear models of the electromagnetic
field have been used for decades, in particular as a way to remove the divergence of
the electron self-energy within classical electrodynamics through the Born-Infeld
model [28], or as resulting from computing effective corrections from quantum elec-
trodynamics upon Coulomb’s field when the field intensity grows beyond a critical
threshold [29]. In the context of GR, such nonlinear electrodynamics models have
been widely used, both in order to modify the innermost and horizon structure of
the Reissner—Nordstrom black hole [30-35], and to obtain singularity-free solutions
[36-42].
The matter action of the nonlinear electrodynamics (NED) sector is written as

Sy = é/d“x«/—g(p(x, Y), (8.12)

where (X, Y) is a given function of X = —(1/2)F,,F*" and Y = —(1/2)F,,F*"",
which are the two field invariants that can be constructed out of the field strength
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tensor, F,, = 0,A, — 0,A,, and its dual, F**" = %8“”“/’&5. The electromagnetic
field equations follow from variation of the action (8.12) with respect to the vector
potential A, and are written as

V. (oxF" + @y F*™) = 0. (8.13)

Restricting ourselves to electrostatic configurations, and assuming spherical symme-
try, the only nonvanishing component of the field strength tensor is F”" = E(r), and
the field invariants satisfy

2 qz
<pXX=ﬁ, Y=0, (8.14)

where ¢ is an integration constant that can be identified as an electric charge. This
expression is particularly useful, because the NED energy—momentum tensor, which
is obtained as

1 @
T4y = = [oxF " Fuy = 26 8.15
i 19X 2 (8.15)
becomes simply
™, = — (‘2 =« ~ ), 8.16
4w ( 0 g1 (8.16)

where 1 and 0 represent the 2 x 2 identity matrix and zero matrix, respectively.
Two aspects follow immediately from this expression. First, the trace of the energy—
momentum reads

1
T'=—1[p—Xoxl], (8.17)
2

which vanishes for Maxwell electrodynamics, ¢ (X) = X. Second, the weak energy
condition is fulfilled if the inequality

ot 1 2 _
p=T:=3 (2¢xE* — (X, Y = 0)) > 0, (8.18)

big
is satisfied.

The above discussion completes the formalism of metric-affine f (R) gravity cou-
pled to nonlinear electrodynamics. To proceed further and obtain solutions we have
to choose a particular ¢ (X, Y) function. In this sense, Born—Infeld electrodynamics is
a natural and well-motivated candidate due to the fact that (i) it yields a finite energy
for a point-like charge in flat spacetime, (ii) it is free of birefringence phenomena
[43, 44] [indeed, together with Maxwell, it is the only electrodynamics with such a
property] and (iii) arises in the low-energy limit of string/D-brane physics [45-49].
Born-Infeld electrodynamics is given by the action
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s X oy
opr(X) =287 [1— 1_§_W , (8.19)

where B is the so-called Born—Infeld parameter, which controls the deviation with
respect to Maxwell electrodynamics namely, limg_, o, ¢pr 22 X. For this theory, the

field invariant X reads as X = p
recovered for far distances, r > 0

Let us consider a simple f(R) model given by f(R) = R — yR?, where y is a
constant. For this model, the trace equation (8.5) yields R = —k2T, which is the
same result as in GR. Now, inserting (8.16) with the definition (8.19) into the field
equations (8.9), a straightforward but lengthly calculation, which involves using the
conformal transformations (8.7), yields the static, spherically symmetric spacetime
(full details of this calculation can be found in Ref. [50]):

ﬂ4 77 and thus Maxwell electrodynamics is also

2 2 2
ds® = —A(x)dt +A( o Sdx® + 2 (x0)d$2? (8.20)

where the function A (x) satisfies

1 14+ 81G(Z)
A l————, 8.21
= fR ( 52Zf1/2 ) ( )

and we have introduced the dimensionless radial function z = r/r., with r, =
@m)'/4 74lg, while ré = k2¢*/(4m) is the charge radius and lé = 1/(k*B?) the
Born-Infeld length. The constants §; and §, characterizing the solutions are given

by
8 =204ml [T s L (822)
rs lﬁ rs
while the function G(z) in (8.21) satisfies
G 2 .
dz 4f3/2 (f + ) (fR + EfR,z) , (8.23)

with the following definitions and expressions
n(z) o

= Bf = (1 -310) . (8.24)
fr=1- an(z) , (8.25)

~ 1
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X

=2 -1 1 2
Fig. 8.1 Behavior of the radial function z(x) for @ = 1072 (dashed red), « = 107! (green dot-
ted) and a = 1 (solid blue), with the two asymptotically flat regions, z =~ |x|, and the wormhole

throat, z = z. (x = 0). When o = 0 the wormhole throat closes and the GR point-like singularity
is recovered

(2-viTa)

214+ 4 827

n@) =

with ¢ = y/ (2711?,). The spacetime described by the line element (8.20) with the
definitions above corresponds to a modification of the Reissner—Nordstrom solution
of the Einstein—-Maxwell field equations, to which the metric reduces for far dis-
tances, r > r.. However, as the region r = r. is approached a number of relevant
modifications occur. The most important one comes from the behavior of the radial
function, which is implicitly defined as x*> = z2f¢. This expression can be numeri-
cally inverted and the result is plotted in Fig. 8.1, where we see the distinctive features
of a wormhole geometry, namely, the existence of two asymptotically flat regions
(where 7> ~ x? approaches the GR behavior) and the attainment of a minimum for
the radial function given by

1420 — 1+ 4«
21+ 4a '
at which z(x) bounces off to a different region of spacetime.

The spherical surface of area S(z.) = 47'[23 (ov) represents the throat of the worm-
hole, where the Kretchsman curvature invariant behaves as

Ze(a) = (8.28)

1
K~ T (8.29)

Despite the divergence of this scalar at the wormhole throat [we point out that such
divergences are much milder than in the RN case, ~ 1/ 3, and that in Born—Infeld
electrodynamics in the context of GR, ~ 1/z*] we want to investigate the implications



8 Geons in Palatini Theories of Gravity 171

of such divergences on the regularity of the geometry. In this sense, we note that in
the formulation of the singularity theorems no reference to curvature divergences
is made but, instead, use is made of the concept of geodesic completeness, namely,
whether any geodesic curve can be extended to arbitrary large values of the affine
parameter or not [51-53]. This is physically relevant because time-like geodesics are
associated to idealized observers, while null geodesics are associated to light rays
and the transmission of information [we leave aside from this discussion space-like
geodesics, because no object in Nature is known to move on such geodesics]. Since it
seems reasonable to impose the principle that in Nature nothing can suddenly cease
to exist and that nothing can emerge from nowhere, thus a consistent description of
spacetime should meet the completeness of all null and time-like geodesics.

A geodesic curve y* = x" (1), where A is the affine parameter, satisfies the equa-
tion (see, e.g., [54] for a detailed account on this topic)

2 0 a
" + Ik diﬁ = (8.30)
a2 P an da
For the analysis of the geodesic equation we recall that in the action (8.1) the matter
does not couple to the connection, which implies the conservation of the energy—
momentum tensor with respect to the covariant derivative defined with the Christoffel
symbols of the metric (the Levi-Civita connection), namely Vj; T# = 0. The physical
interpretation of this statement is that, following Einstein’s equivalence principle, test
particles should move on geodesics of the metric g,, and, for that reason, we shall
consider the connection compatible with it (i.e., the Levi-Civita connection of g,).
For our purposes, it is better to rewrite the geodesic equation (8.30) in terms of
the unit vector u* = dx* /d\ [which satisfies u,u"* = —k, where k =0, 1, —1 for
null, time-like, and space-like geodesics, respectively], which reads

nw
% +Itu'u’ =0. (8.31)
Taking advantage of the spherical symmetry of our problem, without loss of general-
ity we can rotate the coordinate system to make it coincide with the plane 8 = /2,
which greatly simplifies the problem. In addition, we can identify two conserved
quantities, namely, E = A~'dt/d)\ and L = r’de/dr (see [55] for a Hamiltonian
derivation of this result). For time-like geodesics these quantities carry the meaning
of the total energy per unit mass and angular momentum per unit mass around an
axis normal to the plane 6 = 7 /2, respectively. This interpretation is not possible for
null geodesics but, following [54], we can see E/L as an apparent impact parameter
as seen from an observer at asymptotic infinity.
Under these conditions, the geodesic equation (8.31) for the line element (8.20)
becomes [we point out that this formula is valid for any f(R) gravity model under
the assumptions of spherical symmetry and source symmetry 77, = 7", ]
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= £ (1 4 L=
‘jil 4 (%) , (8.32)
Z

\/E2f,§ —AQfk (k n %—;)

where we have redefined A = A/r., by convenience. Using the explicit expressions
for the metric functions defined in (8.20) one can numerically integrate the geodesic
equation on each case. Far from the center, » >> r., one obtains the same behavior as in
GR, X~ z, which is consistent with the recovery of the Reissner—Nordstrom solution
at far distances. Deviations will arise around the wormhole throat, 7z = z.(c«¢), where
expansions of the metric for radial null geodesics (k = L = 0) allow to integrate the
geodesic equation as

27¢

E\(z) >~ :Fm-

(8.33)

It is immediately seen that the affine parameter can be indefinitely extended in the
wormhole throat region, which means that these geodesics are complete [see Fig. 8.2].
This is in sharp contrast with the GR result, where radial null geodesics get to
r = 0 in finite affine time, hence they are incomplete. A similar analysis for radial
geodesics with angular momentum (k = 0, L # 0), for time-like geodesics, k = 1,
and space-like geodesics, k = —1, would show that these geodesics are complete
as well. This implies that these wormhole geometries are null, time-like and space-
like geodesically complete, no matter the behavior of the curvature scalars at the
wormbhole throat. It is worth pointing out that null geodesics would take an infinite
affine time to reach the wormhole, which means that the latter lies in the future (or
past) boundary of the spacetime.

‘We point out that the completeness of geodesics in this model is an effect entirely
due to the gravitational sector, and not stick to the particularly nice properties of
Born-Infeld electrodynamics. To check this, let us consider the case of an anisotropic
fluid of the form

TMU = dlag[_pv Prv P@y Pgo] = d]ag[_pv —p,p, C(p] s (834)

where « is a constant, constrained as 0 < « < 1 in order for the energy conditions
to be satisfied [note that for « = 1, then Eq. (8.34) has the same structure as that of a
Maxwell field], and the conservation equation of the fluid in a spherically symmetric
spacetime implies that p(x) = C/r(x)**2%, where C is a constant with dimensions.
Using the same model f(R) = R — ¥ R? one can solve the combined system of grav-
itational field and anisotropic fluid, and after some algebra obtain the solution [56]

ds? = ]% (—B(x)dt2 + ﬁdxz) +rr(x)d$2* , (8.35)

1+6G()

B =1-——5—,
brafy”?

(8.36)
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Az)
4 -
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Fig. 8.2 The affine parameter A(x) as a function of the radial coordinate x for ingoing and outgo-
ing radial null geodesics (solid blue lines) of the model f(R) = R — sz coupled to Born-Infeld
electrodynamics. Note the completeness of these geodesics, as opposed to the GR case (dashed red
lines)

G, =

z
Z

(8.37)

(1+zz%)[1 I ]

3/2 T 9242
Zz"‘fR/ 1l —a 272t2

with the definitions » = r.z and rf”"‘ = (4)/)/(2( 1 — a)C. Atfar distances one recov-
ers the GR solution, namely, GgR () = #ia—h) Like in the case of nonlinear
electrodynamics above, the presence of a wormhole structure follows from the rela-
tion x> = r(x)>fx, which implies the existence of a bounce for any value of o, which
is similar to that found in Fig. 8.1. In addition, an analysis of geodesics in these space-
times yields a very similar representation of radial null geodesics as that depicted in
Fig.8.2, as well as the completeness of all null and time-like geodesics.

In this section, we have considered the case of f(R) theories for their conceptual
and mathematical simplicity, and have verified with two different matter sources that
wormholes may arise and yield geodesically complete spacetimes. Nonetheless, a
more detailed analysis is needed to extend the framework to more general cases and
to get further into the properties of these wormholes.

8.3.2 Quadratic Gravity with Maxwell
and Born-Infeld Electrodynamics

The quantization of fields in curved spacetimes states that a high-energy completion
of GR would involve higher order powers in the curvature scalars, where each con-
tribution would be suppressed by some fundamental length scale [57, 58]. This is in
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agreement with the description made by some fundamental approaches to quantum
gravity in their low-energy regime [59] and with the effective lagrangians picture
in gravitational physics [60]. In this section, we shall stick ourselves to quadratic
Lagrangians and, in particular, to those constructed as general functions f (R, Q) of
the curvature scalars R = g,,,R*” and Q = g,48,sR* R*". Note that there is no need
to include the Kretchsmann scalar, K = R“ 5)/5Ra’3 8 since it can be always rewritten
in terms of the other two invariants using the Gauss—Bonnet term, which becomes a
topological invariant in four spacetime dimensions and thus it does not contribute to
the field equations [61]. These quadratic models represent a natural generalization
of the f(R) theories considered in previous section.
The action is thus given by

Slg. I', Y] = d*x/=gf (R, Q) + Sulg, ¥l , (8.38)

22
with the same definitions and notation as in the previous section. Performing inde-
pendent variations of the action (8.38) with respect to metric and connection yields
the result!

TR, — g guv + 2foR,a R, = k7T, , (8.39)
Vs [V=8 (frg"" + 2foR")] =0, (8.40)

where fy = df /dX. Now, defining a matrix P,” = R,,,g*" we can express (8.39) as
a2 e fa oaa
2foP* + frP — 51 =«°T, (8.41)

where a hat denotes a matnx Like in the f (R) case, Eq. (8 41) represents an algebraic
equation whose solution, P = P(T) allows us to express P as a function of the matter.
From the fact that R and Q are given by the trace of Pand P2, respectively, this means
that the function f (R, Q) can be explicitly eliminated in favor of the matter sources
as well. Proceeding further, we introduce a new rank-two tensor %, satisfying the
equation Vg [\/—_hh’“’] = 0 [note that this strategy is exactly the same as in f(R)
theories above], so identifying it with Eq. (8.40) and using a bit of algebra we obtain

the result
ey e
h ==, h=(vVdetXY) X g, (8.42)
)

"'We point out that, like in the f(R) case above, these equations are derived assuming a symmetric
connection and Ricci tensor. For full details on the derivation of the field equations when such
constraints are removed, see [62].
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where we have introduced the matrix ¥ = (fRi + 2fo’). Finally, we write (8.39) in

termsof Pas PX = gi + k2T, and considering the object P, * X, = R,,h®" v det
[where we have used relations (8.42)], one finds that the metric field equations (8.39)
can be written as

Ruv(h) =

! (’ia“v +/<2T“V) , (8.43)
VaerE \2
where TH, = T,,,8*". Several considerations are in order. First, such as in the f(R)
case, (8.43) represents a set of second-order equations for the metric 4, where all
the objects on the right-hand side are purely functions of the matter sources. As
the metric g,,, follows from the algebraic relations (8.42), which only depend on
the matter fields, the field equations for g, will be second-order as well. Second,
in vacuum, T, = 0, one has h,, = g,, [modulo a constant reescaling factor] and
the field equations (8.43) boil down to those of GR with possibly a cosmological
constant term, depending on the Lagrangian f(R, Q) chosen. Finally, we point out
that, as opposed to the f(R) case, where only the trace of the energy—momentum
tensor played a role, now the consideration of traceless energy-matter sources do
excite the modified gravitational dynamics present in the theory.

The last statement allows us to use in this case a standard (Maxwell) electro-
magnetic field. This will provide a natural generalization of the Reissner—Nordstrom
spacetime of GR. Thus, the energy—momentum tensor follows from Eq. (8.16) as

) . A
q -I10
THy=——=\ A -] 8.44

84 ( 0 1) (844)

Next, we need to specify a f(R, Q) Lagrangian. For simplicity we consider a
quadratic Lagrangian of the form

f(R, Q) =R+ @R +Q), (8.45)

where [, is some length scale encoding the deviations from GR and a is a dimen-
sionless constant. This choice has the advantage that the traces of P and P? in
Eq.(8.41) yield R = —«>T [which is the same result as in GR] and Q = k*g*/r8,
where k2 = k?/(4m). For the theory (8.45), a bit of algebra allows to cast the field
equations (8.43) for this matter source as

2q2 (—17 0
RE(h) = 4 ( 5 L?)’ (8.46)

2r4 0

where we have introduced the important objects
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Ezqzlf

O'i=1:|: r4

(8.47)

To solve the field equations (8.43) we proceed as follows. Two line elements are
introduced with the assumptions of staticity and spherical symmetry, one for £,

1
ds* = —Cx)e?VWVdr* + ——dx* +x*d2° . (8.48)
C(x)

and another for g,

1

2, 2 2
A(x)dx 4+ re(x)ds$2” . (8.49)

ds*> = —A(x)e*YWdr? +

Because of the structure of the energy—momentum tensor, 7,* = T;’, which follows
from the energy—momentum tensor (8.44), one can set ¥ (x) = 0 without loss of
generality. The remaining function, C(x), in (8.48), follows from the resolution of
Eq. (8.46), and transforming the result back to the metric g,,, using the set of relations
(8.42) (we refer the reader to Refs. [63-65] for full details of this derivation), we
obtain the geometry [in Eddington—Filkenstein coordinates]

2 _ 2, 2 2 2
ds® = —A(x)dv" + —dvdx + r*(x)d$2° , (8.50)
0+

where the metric functions are given by the expressions

1 1+6G
Alx) = — |:1 _ rﬁ#} ’ (8.51)
0+ r o_
5o L[ (8.52)
YoV '
A
=14+ - 8.53
o+ s (8.53)
ar\> o
) == 8.54
(%) =% (539

with the following definitions: r, = \/lgirq is a constant determining the size of the
corrections, which are controlled both by the charge radius rg =2Gyq? and the
length scale [, appearing in the Lagrangian (8.45), and M, = rg/2 is Schwarzschild
mass. The function G(z), which comes from integration of the field equations as

G, = Zz‘;—t/z, can be integrated and expressed as an infinite power series expansion of
the form | |
Gi) = 5 + 7V 2= 1[fa@ +Ha@] . (8.55)
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Fig. 8.3 Behavior of the radial function r(x) in Eq.(8.57) (solid line) in units of r., as compared
to the GR result, r(x) >~ |x| (dashed), with the bounce at r = r. = 1, where the wormhole throat is
located

where f; (z) = 2F) [%, A, %, 1—z%isa hypergeometric function, and 6. ~ 0.572069
is a constant. Expanding the metric A(z(x)) in series of z > 1, where G(z) &~ —1/z

[and oy ~ 1, r?(x) & x?], yields the result

rs r 2
Ay ~1——+—, (8.56)
ro 2r?
which is nothing but the standard Reissner—Nordstrom solution of GR. This way, we
obtain a spacetime that far from the center looks like the GR counterpart [similarly
as in the /' (R) with nonlinear electrodynamics above], but as we approach the region
z = 1, large deviations occur. This follows from the fact that the radial function r(x)
in Eq. (8.54) can be explicitly written as

x2+\/m

r()c)2 = >

(8.57)
and it is plotted in Fig. 8.3. As can be seen there, the behavior of the radial function
is distinctive of a wormhole geometry, with a bounce occurring at r = r., where the
radial function reaches a minimum and re-expands.

The geometry behaves around the wormhole throat r = r, as

N, 31 —8) 7 N.—N,
lim A ~ e QL0 [ T ‘

0(Jr=r) . 8.58
rom. aN, 66, Vr—r T Tan T (Vr=r) (8.58)
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where N, = g/e is the number of charges and N. = /2/a,, = 16.55 (Where o, is
the fine structure constant) is the critical number of charges (see below for its role).
It is clear that the behavior in this region is governed by the charge-to-mass ratio, §;,
as compared to the critical value, §.. Indeed, this ratio governs the horizon structure
as well, according to the following characterization [63]:

e If §; > §, the solutions may have two, one (degenerate) or no horizons, depend-
ing on the number of charges N,. This resembles the standard structure of the
Reissner—Nordstrom solution of GR.

e If §; < 4. asingle horizon exist on each side of the wormhole for any value of N,
which makes this case similar to the Schwarzschild solution of GR.

e If §; = &, we find a single horizon for N, > N, which disappears when N, < N..

It should be noted that the above description takes place on one of the sides of the
wormbhole throat. Nonetheless, a similar description takes place on the other side of
the wormhole, due to the symmetry of our scenario.

Itis instructive to investigate what is the behavior of the curvature at the wormhole
throat itself. Focusing only on the Kretchsman scalar, K = R%g,,, R, Py one gets the
result

8882 6445,
4 1
K~|16 4+ —W— — — 0O(iz—-1 8.59
. ( + 5 352)+ 1)+ (8.59)

(- ()]

81) [385(z — 1)3/2 V=1

(-5) o ()
81 483(z — 1)3 z—D%)]"

which is divergent if §; # §. and finite otherwise [similar results are obtained from
computation of other curvature scalars]. One thus would be tempted to regard the
former case as singular, and the latter as regular. As we already know from the
discussion of the f(R) case above, this is not necessarily true.

Before going that way we note that the wormhole picture can be made very
robust by investigating other of its properties. First, one can wonder what is the
nature of the sources that generate the charge g and the mass M in the geometry.
In the case of GR, the assumption that a point-like particle located at the center
of the solution is generating the charge and mass of the whole geometry proves
mathematically impossible. Indeed, there is no well-defined source able to generate
the Reissner—Nordstrom solution while satisfying the Einstein equations everywhere,
a well-known problem in the context of GR [66] due to the fact that such sources
would be concentrated in a point of zero volume (the singularity). Nonetheless,
following Misner and Wheeler’s reasoning, the existence of a finite-size wormhole
offers other possibilities. Indeed, a computation of the electric flux flowing through
an S? surface enclosing one of the wormhole mouths yields the result
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1
D =— *F =q, (8.60)
4

where *F is the two-form dual to Faraday’s tensor. Note that a similar computation
on the other side of the wormhole throat would yield the result —g due to the opposite
orientation of the normal on that side. This implies that the wormhole is able to gener-
ate an electric charge from a sourceless electromagnetic field despite the fact that no
point-like charges are present in the system (which is consistent with the fact that they
are not explicitly included in the matter sector of the action defining our model). This
result, which is a particular realization of Wheeler’s charge-without-charge mech-
anism, is a very primitive concept arising from purely topological considerations
and, as such, is not affected by the existence of large metric fluctuations or curvature
divergences. Moreover, this flux satisfies the striking property that the density of
lines of force crossing the spherical wormhole throat, which is given by

¢ _a_ |, ¢ (8.61)
42 12\ T(hG)? '

turns out to be a universal constant, not depending on the amounts of mass and charge
present in the system, but just on fundamental constants. This implies that local
disturbances in the metric will not affect this density, which is a purely topological
effect.

To investigate the origin of mass in these solutions we make use of the fact that
the coordinate x covers the entire geometry on both sides of the wormhole throat, so
we compute the total gravitational + electromagnetic mass of the solutions as

t
I

_22 d*xJ/=gR — 8R2+12Q)+ /d4x«/_(p
— / d*x/—gTloy , (8.62)

and performing the integration in terms of the coordinate dx*> = dz?/o_, a little bit
of algebra yields the result

b
S = 2M028—1 / dt (8.63)

which is nothing but the action of a point-like particle at rest with mass M8;/6.! As
we see, the charge-to-mass ratio influences the total mass of the spacetime, but not
its origin, in a explicit realization of Wheeler’s mass-without-mass mechanism. This
way, a sourceless electromagnetic field is able, via a nontrivial topological structure,
to give both charge and mass to the spacetime.

Having implemented the charge-without-charge and mass-without-mass mecha-
nisms, we turn now to the question of what is the meaning of curvature divergences
in our models, since neither the wormhole structure nor its associated properties
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feel any qualitative difference between those cases showing curvature divergences
(81 # 4.) and those where such divergences are removed (§; = §.). As discussed
in the previous section, the most generally accepted criterion to determine when a
spacetime is singular or not is given by geodesic completeness. Proceeding like in the
f(R) case, we consider the geodesic equation (8.30) written in terms of the geodesic
vector as in Eq. (8.30), and replace there the line element (8.50), which yields the

result ) 5
1 [dx L

— (=) =E?>—-A —) . 8.64

= () =54l ) @9

with the same notations, but with the new radial function r(x) defined as in Eq. (8.54).
Rescaling the radial coordinate as dy = dx /o, Eq.(8.64) can be seen as a single
differential equation akin to that of a particle moving in a potential of the form

L2
Vix)y=A (I( + —) . (8.65)

r?(x)

For null k£ = 0, radial, L = 0, geodesics, Eq. (8.64) admits an analytic integration of
the form

1 %; =<1r ifx>0

T+ E-Ax) = , (8.66)

4
11 3.7
2x0 —2F[—7, 3, 73 5lrifx <0

where »F[a, b, c; y] is a hypergeometric function, and we have introduced the con-
stantxo = »F[—1, 3, 3; 1] 2 0.59907. The behavior of these geodesics is plotted in
Fig. 8.4. There we see that null geodesics extend through the wormhole throat, where
the geometry is significantly modified as compared to GR, and can be extended to
arbitrary large values of the affine parameter. In GR, these geodesics reach the point
r = 0, and cannot be further extended because r > 0, hence, they are incomplete.
In our case, radial geodesics with nonvanishing angular momentum, k = 0, L # 0
and time-like geodesics for Reissner—Nordstrom-like configurations (§; > §.) are
prevented from reaching the wormhole due to fact that they find an infinite potential
wall, similarly as what happens in the standard Reissner—Nordstrom solution of GR.
But in those solutions with §; < 8. (which always have a single horizon), both null
and time-like geodesics may reach the wormhole and cross it, similarly as in the case
of §; = 4., where geodesics with enough energy can go through the wormhole.
Therefore, we have arrived to the conclusion that these spacetimes are null and
time-like geodesically complete, no matter the behavior of curvature scalars at the
wormbhole throat. Nonetheless, the fact that such divergences may imply the existence
of infinitely large tidal forces acting upon physical (extended) objects crossing the
wormhole throat, requires a separate analysis. In this sense, one can make use of
the methods developed by Tipler [67, 68], Krolak [69, 70] and Nolan [71], among
others, which are based on the modelization of physical observers in terms of a
congruence of geodesics. At a given point, an invariant volume can be attributed
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WH case: A=A(x)

GR case: A=x
n 1 n n n 1 n n X
2 4

L L

Fig. 8.4 Behavior of the affine parameter A(x) (solid red curve) for radial null (k =L = 0)
geodesics as compared to GR (dashed green). Note that in our case A(x) can be arbitrarily extended
due to the presence of the wormhole, while in GR these geodesics finish at » = 0 due to the fact
that r > 0. In this plot E =1

to the congruence, and following its evolution as the divergent region is crossed
one can determine the existence of a physical singularity if this volume vanishes,
that would be interpreted as the extended observer being crushed to zero volume,
hence, the singularity would be “strong”, otherwise “weak.” In our case, a similar
analysis reveals [72] that despite the fact that physical observers may experience a
“spaghettization” process in which the volume diverges as the wormhole throat is
crossed (though this process is reversed as soon as the wormhole throat is crossed),
no loss of causal contact occurs upon the constituents making up the observer. The
latter statement implies that the internal forces among the constituents making up
the body could be able to sustain it at all times. This is consistent with the fact
that scattering of scalar waves off the wormhole is well posed [73]. Therefore, the
presence of curvature divergences seem to have absolutely no destructive effect upon
physical observers.

We conclude that the spacetimes described by the line element (8.50)
represent sourceless, regular, self-consistent gravitating solutions where Wheeler’s
charge-without-charge and mass-without-mass mechanism is naturally implemented
through the emergence of wormhole structures. Thus, they represent truly genuine
geons.

The metric described by (8.50), which arises from a quadratic gravity model
in combination with an electromagnetic field, can be further refined. This is due
to the fact that in the innermost region of these solutions, the electromagnetic
field is expected to get additional corrections due to quantum effects. Taking into
account such effects proves a difficult task, due to the inherent complexity of the
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perturbative series of quantum electrodynamics. Nonetheless, as was shown in a
number of works, these effects can be incorporated, under certain circumstances, in
terms of nonlinear electrodynamics [74-76]. Indeed, finding a solution to the cou-
pled system of quadratic gravity (8.45), with Born—Infeld electrodynamics (8.12) is
possible, and yields the metric [77]

A(z) o_(2) 0 2
ds* = — & — ( + —= ) dz? + 22 (x)d2*, (8.67)
04(2) 04+ (2)A(2) 20_(2)
where
1 | ]
S=—— 0 s =Y (8.68)
27‘3 lﬂ rs
1
or=1%—, (8.69)
Z
1468,G(2)
ARy =1— A7 8.70
@ 820_(2)!/? (870
2ol 70
G,="—"|1 =V (Bf+ @), 8.71
2= (+20_)(5f+¢) (8.71)

with the definitions of the charge radius, r; = «*q*/47, Born-Infeld scale [; =

(k*B?/47)~" and the radial function z* = r*/(r213) satisfies dx = +dz/ o!/?, whose
integration yields the typical behavior of a wormhole structure [i.e., two asymptoti-
cally flat regions and a bounce in between], with z = 1 (x = 0) setting the location
of the wormhole throat. Moreover, the implementation of the charge-without-charge
and mass-without-mass mechanisms of the previous section works exactly in the
same way in the present case. The most relevant difference is the change in the
density of lines of force flowing through the wormhole throat, which now becomes

o) 40 \'? c’
= . 8.72
4 r2z2 ( 1+ 40) 2(hG)? 8.72)

Here o = 2/ lé contains contributions of the modifications of both the gravitational
and electromagnetic fields. The second difference lies in the computation of the total
mass contained in the spacetime, which takes the same form as in Eq. (8.63), but in
the present case the mass, M BI of those solutions takes the form

BI 4o v M
MBl = MM | (8.73)
1+40

where MM is the mass in Maxwell’s case. This way, as one departs from the Maxwell
case (corresponding to 0 — 00), the mass of the Born—Infeld objects is decreased. In
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particular, for 8 ~ 10'® the mass can be lowered down to the order 10*> GeV, which
would put these geonic objects within the reach of current particle accelerators.

8.3.3 Born-Infeld Gravity with Electromagnetic Fields

In this section, we are going to consider a different type of gravitational action,
dubbed Born-Infeld gravity [78, 79], which is formally similar in some aspects to
Eddington’s purely affine theory [80]. This theory is described by the action

1
S = E/d“x I:\/_|g;w + SR,LLU(F)l — Ay _g] + S . (8.74)

Oddly enough, this is nothing but the gravitational counterpart of Born—Infeld elec-
trodynamics (written in determinantal form), where the field strength tensor F,, is
replaced by the Ricci tensor R,,,,. Alternatively, (8.74) can be seen as the comparison
of volume elements between the metrics g, = g,» + €R,,, and g,,,. The meaning
of the parameter A in the action (8.74) is obtained from the expansion in series of the
new scale ¢ < 1, which yields the result

. 1 4
lim$ = [d xv/—g [R—2A4]

2
b d4x¢?g§ (TR n Q) ¥s, . (8.75)

2k2
The zeroth-order term of this expansion represents GR plus an effective cosmological
term A = )\5;1, supplemented with higher order terms in the curvature scalars R
and Q, and suppressed by inverse powers of the parameter ¢ which, consistently, has
dimensions of length squared [we shall denote, by convenience, & = —2/2].

When formulated in the Palatini approach, the field equations from (8.74) follow
as

.
Vgl
Vo (V2g™) =0, (8.77)

Ag = —kZeTH (8.76)

and the usual manipulations of Palatini theories of gravity used in the previous
sections apply here as well. In particular, the relation between the metric g,,, and g,,,
[for which V, (@g’”) = 0] becomes

g=\I12127"%, ¢ = , (8.78)
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where ¥ = Al — k2T, and the field equations for g, read now

2
K

RY,(9) = —— 73 [Les™, +T",] . (8.79)
|21

where Lg = (151" = 1)/(c%¢). Tt is worth mentioning that, like in the f(R) and
f(R, Q) cases above, all the contributions on the right-hand side of the field equations
(8.79) only depend on the matter sources (and possibly the metric g,,). Besides,
the recovery of the GR equations plus a cosmological constant in vacuum, and the
second-order and ghost-free character of the field equations, hold as well.

One could go forward and proceed to obtain the electrostatic, spherically symmet-
ric solutions for this theory. At this point, one finds the surprising result that for either
linear or nonlinear electromagnetic fields, which always satisfy 7', = T",, the field
equations for Born-Infeld gravity (8.74) with ¢ = —2/2 and a = 1 exactly coincide
with those of quadratic gravity (8.45), and not only at the perturbative level given
by Eq. (8.75). This is due to the fact that all higher order corrections beyond linear
order in ¢ exactly cancel out due to the above-mentioned symmetry of the energy—
momentum tensor associated to electromagnetic fields. Consequently, the discussion
of the previous section for both Maxwell and Born—Infeld electrodynamics, and all
the found geonic properties also appear in the case of Born—Infeld gravity exactly
under the same form.

8.3.4 Higher Dimensional Generalizations

Many generalizations can now be found. In particular, one could explore the dynam-
ics of these theories in the context of higher dimensions. This could be particularly
important within the context of the AdS/CFT correspondence [81-84], where exact
solutions in the gravitational side may provide interesting tools on the condensed
matter side. This is due to the fact that the field equations for higher dimensional
f(R) [85], f(R, Q) and Born—Infeld gravity [86] formulated in the Palatini approach
are always second-order, as opposed to the fourth-order equations found in the stan-
dard metric formulation of these theories (the exception to this rule being the Love-
lock family of Lagrangians [61]). In the case of Born—Infeld gravity, Eq. (8.78) gets
modified as

AL 1
G =171 80, ¢ = — "7, (8.80)
|7 |
where we have defined T = [£2|'/22~! = Al — ex2T and d is the number of space-

time dimensions, while Eq. (8.79) becomes

2
K
R*,(q) = — [Lss™, + TH,]. (8.81)
7|7
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where the gravitational Lagrangian density is written now as

7|72 — A

Lp =
K2e

(8.82)
We point out that the second-order, ghost-free character of the field equations is
preserved, while Minkowski spacetime is still recovered in vacuum, 7*,, = 0. Like in
the previous cases we couple Born—Infeld gravity in d dimensions to an electrostatic
spherically symmetric Maxwell field, and proceeding in the same way, we arrive at

the result [with X = Sﬂf&)gu ol
ds* = __d; + dx + 22 (x)d$2? (8.83)
Q. A 2, ' '
where
(. —X)
— (AL X)) Q=" (8.84)
A+ s
14+6G(z
AR) =1- '3 @) (8.85)
2. -1
G. =~ ( T )( s 2)) , (8.86)
d—3)rd-! d—3)rd3
sz I (8.87)
2M, 2 2M,

Again, the presence of a wormhole structure can be inferred from the behavior
of the radial function, now determined by the equation x*> = r?>£2_, which can be
analytically inverted as (see Fig. 8.5 for its graphic representation)

L, I 4 4,20
P2 = . . (8.88)

InFig. 8.5 we see the same features as in the previous models, namely, the recovery of
the GR behavior, > ~ x? at large distances, and the bounce atz = 1 (x = 0). It should
be noted that the transition from the GR-like behavior to the wormhole structure
occurs suddenly as the number of dimensions is increased. Properties associated to
the wormholes, like the generation of the charge via topological considerations, and
the computation of the total mass of the spacetime yielding the action of a point-like
particle, also hold in this case. On the other hand, an analysis of the metric and
the curvature invariants reveals that only in the case d = 4 may curvature scalars
become finite around the wormhole throat for some special choice of §; (similarly as
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Fig. 8.5 The radial function (8.88) for d = 4 (solid), d = 6 (dashed) and d = 10 (dotted)

in the four-dimensional case). Nonetheless, the corresponding study of the geodesic
behavior in these spacetimes reveals the completeness of all null, time-like, and space-
like geodesics, for all values of mass and charge, and in any dimension. Therefore,
they represent genuine geonic solutions, on equal footing to their four-dimensional
counterparts.

8.4 Conclusions

In this chapter we have shown that, contrary to general wisdom, gravity theories
with nonlinear curvature terms may yield second-order field equations if formulated
a la Palatini. Relaxing the compatibility condition on the connection allows the field
equations to modify the dynamics in a way that avoids higher order derivatives (which
complicate the analytical treatment), and ghost-like instabilities (which spoil the good
perspectives originally posited on such theories as quantum improvements of GR).
The second-order character of the equations allows to find analytical solutions using
strategies borrowed from GR and adapted to a situation in which two geometries are
related by a matter deformation. The examples presented in this work illustrate this
procedure with several models which admit exact analytical solutions.

Our analysis of spherically symmetric solutions puts forward that self-gravitating
free electric fields are possible and naturally lead to the notion of the geon originally
introduced by Wheeler. These geons arise thanks to the nontrivial topology of the
solutions, which turn out to be wormholes. Interestingly, these wormholes arise
naturally out of the matter plus gravity field equations, i.e., they are not designed
a priori as in the usual approach to wormholes, where one hopes that some exotic
matter source may be able to thread the previously designed geometry.
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We have seen that the resulting wormhole structure has a dramatic impact as
far as singularities are concerned. Given that the spacetime is now geodesically
complete, one can conclude that such geometries are nonsingular. This is so even
though curvature divergences typically arise at the wormhole throat. In the case
of f(R) theories, this divergence lies at the asymptotic boundary of the spacetime,
requiring an infinite affine time to reach it. As a result, physical observers cannot
interact with it and one can readily conclude that they are not observable. In the
case of quadratic gravity and the Born—Infeld gravity model, there are situations in
which physical observers can go through the wormhole and, therefore, interact with
the divergent region. In such cases, it has been found that extended objects do not
undergo any pathological effects as the throat is approached or crossed [73]. In the
case of naked configurations, the scattering of scalar waves off the divergence has also
been investigated finding that the propagation is smooth. In fact, transmission and
reflection coefficients can be computed numerically which are in excellent agreement
with analytical approximations.

The bottom line is that Palatini theories of gravity seem very well suited to address
different aspects of the expected phenomenology of quantum gravity, making black
holes, geons, and wormholes to arise all together in the same simple and clean
scenarios. Indeed, such objects arise directly from well-motivated actions and by
integration of the field equations in analytic form, which is in sharp contrast with
the reversed method frequently employed in the context of wormhole physics where
a suitable metric is defined first and then the Einstein equations are driven back to
find the matter source threading the geometry. Because of this strategy, we have been
able to define a well-behaved matter, and let the virtues of the Palatini approach to
flow. The fact that the resulting geometries obtained in this approach are nonsingular,
and that matter waves can propagate smoothly on those backgrounds may lead to
interesting results in the quantum regime. Such aspects will be explored elsewhere.
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Chapter 9
Classical and Semi-classical Energy
Conditions

Prado Martin-Moruno and Matt Visser

9.1 Introduction

The energy conditions, be they classical, semi-classical, or “fully quantum” are at
heart purely phenomenological approaches to deciding what form of stress—energy
is to be considered “physically reasonable”. As Einstein put it, the LHS of his field
equations G, = 8t Gy Ty, represents the “purity and nobility” of geometry, while
the RHS represents “dross and uncouth” matter. If one then makes no assumptions
regarding the stress—energy tensor, then the Einstein field equations are simply an
empty tautology. It is only once one makes some assumptions regarding the stress—
energy tensor, (zero for vacuum, “positive” in the presence of matter), that solving
the Einstein equations becomes closely correlated with empirical reality. The energy
conditions are simply various ways in which one can try to implement the idea that
the stress—energy tensor be “positive” in the presence of matter, and that gravity
always attracts. In this chapter, we shall first discuss the standard point-wise energy
conditions, and then move on to their generalizations obtained by averaging along
causal curves, and some nonlinear variants thereof, and finally discuss semi-classical
variants.

9.2 Standard Energy Conditions

General relativity, as well as other metric theories of gravity, proposes a way in which
the matter content affects the curvature of the spacetime. The theory of gravity itself,
however, does not per se tell us anything specific about the kind of matter content
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that we should consider. If we are interested in extracting general features about the
spacetime, independently of the form of the stress—energy tensor of matter fields, we
have to consider purely geometric expressions such as the Raychaudhuri equation.
This equation describes the focussing of a congruence of timelike curves in a given
geometry. Particularized to geodesic motion it can be expressed as [1]

4 _ Wap®? — 04p0P — 192 — Ry VOV, 9.1)
ds 3

where w,), is the vorticity, o, is the shear, 6 is the expansion, and V¢ is the time-
like unit vector tangent to the congruence. Note that for a congruence of time-like
geodesics with zero vorticity, for which V, o« V,® (x) with @ (x) a scalar field [2],
the only term on the RHS of Eq.(9.1) that can be positive is the last term. Hence,
if R, VAV?P > 0, then the expansion decreases and, as free-falling observers follow
geodesics, observers that only feel the gravitational interaction get closer to each
other. This fact allows one to formulate the following geometric condition:

Time-like convergence condition (TCC): Gravity is always attractive provided

R, VeV? >0  for any timelike vector V. 9.2)

Note that although the TCC ensures focussing of timelike geodesics the contrary
statement is not necessarily true, that is R,, V¢V? < 0 does not automatically imply
geodesics defocusing [3]. As R, depends on the stress—energy tensor through the
equations of the dynamics, the TCC imposes restrictions on the material content that
depends on the specific theory of gravity.

Analogously, one can take the equation for the focussing of a congruence of null
geodesics with vanishing vorticity, and formulate the null convergence condition’
(NCC). This is a particular limit of the TCC and requires that R,,k“k” > 0 for
any null-vector k“. It should be noted that hypothetical astronomical objects like
wormholes would necessarily violate the NCC [8-10]. Furthermore, this condition
might also be violated during the early universe if one wishes to avoid the big bang
singularity [3, 11, 12].

Following a different spirit, one could consider imposing an assumption on the
form of the stress—energy tensor based on our daily experience through some energy
condition. This can be done restricting attention to a given theory of gravity. Such is
the case for the strong energy condition which is formulated as:

I There have been interesting attempts to derive the NCC from an underlying fundamental framework
[4-7].
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Strong energy condition (SEC): Gravity is always attractive in GR.

1
(Tab — ETgab) VeVl >0 for any timelike vector V. (9.3)

This SEC takes into account both the TCC and the Einstein equations in its math-
ematical formulation. Hence, properly speaking, it only makes sense to refer to the
SEC in a general relativistic framework.

More generally, by looking at the world around us we can also assert certain
properties that any “reasonable” material content should satisfy independently of the
theory of gravity describing the curvature of spacetime. These energy conditions can
be used later to study the geometry once the theory of gravity is fixed. The energy
conditions commonly considered in the literature are [1, 13]:

Dominant energy condition (DEC): The energy density measured by any
observer is non-negative and propagates in a causal way.

T4V, V>0, F'F,<0. (9.4)

Here, we have defined the flux 4-vector as F* = —T%,V?, and it is understood that
the inequalities contained in expression (9.4) have to be satisfied for any timelike
vector.

Weak energy condition (WEC): The energy density measured by any observer
has to be non-negative.
TV, V> >0. 9.5)

Therefore, if the WEC is not satisfied, then the DEC has to be violated. However,
the WEC and the SEC are, in principle, completely independent.

Null energy condition (NEC): The SEC and the WEC are satisfied in the limit
of null observers.

T%k,k? > 0 for any null vector k“. (9.6)
It should be noted that the NCC is completely equivalent to the NEC within the

framework of GR. By its very definition if the NEC is violated, then the SEC, on one
hand, and the WEC and DEC, on the other hand, cannot be satisfied.
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Historically, there was also a trace energy condition (TEC), the assertion that the
trace of the stress-energy tensor should (in — + ++- signature) be non-positive. While
for several decades in the 50s and 60s this was believed to be a physically reasonable
condition, opinion has now shifted, (specifically with the discovery of stiff equations
of state for neutron star matter), and the TEC has now largely been abandoned [13].
(See also Ref. [ 14] for uses of the less known subdominant trace energy condition, and
Ref.[15] for the practically unnoticed quasilocal energy conditions.) This cautionary
tale indicates that one should perhaps take the energy conditions as provisional, they
are good ways of qualitatively and quantitatively characterizing the level of weirdness
one is dealing with, but they may not actually be fundamental physics.

9.2.1 The Hawking-Ellis Type I — Type 1V Classification

The Hawking—Ellis classification, (more properly called the Segre classification), of
stress—energy tensors is based on the extent to which the orthonormal components
of the stress-energy can be diagonalized by local Lorentz transformations:

T = (canonical type)"d LA L. 9.7)
Equivalently, one is looking at the Lorentz invariant eigenvalue problem

det (T = an®) =0, thatis,  det (T, —18) = 0. (9.8)
Here as usual n"b = diag(—1, 1, 1, 1).InLorentzian signature 7'“; is not symmetric,
so diagonalization is trickier than one might naively expect. Even the usual Jordan
decomposition is not particularly useful, (since for physical reasons one is interested
in partial diagonalization using Lorentz transformations, rather than the more general
similarity transformations which could lead to non-diagonal unphysical 7%?), and so
it is more traditional to classify stress-energy tensors in terms of the space-like/light-
like/time-like nature of the eigenvectors.

Based on (a minor variant of) the discussion of Hawking and Ellis the four types
(when expressed in an orthonormal basis) are:

e Type I:

(9.9)

This is the generic case, there is one timelike, and three space-like eigenvectors.

T = p uu® + py n§n’ + py nsns + p3 n§ns, (9.10)
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where u® = (—1; 0; 0; 0), n{ = (0; 1; 0; 0), nf =(0; O; 1; 0), and nf§ =
©; 0; 0; 1).

The Lorentz invariant eigenvalues of 7¢, are {—p, pi, p2, p3}. Many classical
stress—energy tensors, (for instance, perfect fluids, massive scalar fields, non-null
electromagnetic fields), are of this type I form. Similarly many semi-classical
stress—energy tensors are of this type I form.

For a type I stress tensor the classical energy conditions can be summarized (in
terms of necessary and sufficient constraints) as:

NEC| p+pi >0 —
WEC|[p+pi =0 p=0
SEC|lp+pi=0|p+2pi=0

DEC|| |pil<p p=0
e TypeIl:

w+f f ‘ 00

ab S —wu+f100
T 0 0 270 9.11)

0 0 0 p3

This corresponds to one double-null eigenvector k* = (1; 1; 0; 0), so that:

T = +f k%" — ngh + p2 ngng + p3 ngng’, (9.12)

with ngb = diag(—1, 1, 0, 0).2 The Lorentz invariant eigenvalues of 7%, are now
{—w, —u, p2, p3}. Classically, the chief physically significant observed occur-
rence of type II stress—energy is when u = p; = 0, in which case one has

T = f kK>, (9.13)
This corresponds to classical radiation or null dust.
One could also set p; = —u in which case

T = —un® + f kK>, (9.14)

This corresponds to a superposition of cosmological constant and classical radia-
tion or null dust. Finally, if one sets p; = +u then one has

2For type II Hawking and Ellis choose to set f — =1, which we find unhelpful.
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+ f kUKD, (9.15)

This corresponds to a classical electric (or magnetic) field of energy density u
aligned with classical radiation or null dust.

For a type II stress tensor the classical energy conditions can be summarized as:

NEC|| f >O0lu+p; =0 —
WEC|| f>0{u+p; =0 n=0
SEC|| f>0{pu+pi=0|2pi >0
DEC|| f>0| Ipil=pu | n=0

e Type III:

(9.16)

This corresponds to one triple-null eigenvector k* = (1; 1; 0; 0).
T = —p 0’ + f (n$k" + kn3) + p ninl, (9.17)

with nglb = diag(—1, 1, 1, 0).> The Lorentz invariant eigenvalues of 7%, are now
{—p, —p, —p, p}. Classically, type III does not seem to occur in nature — the
reason for which becomes “obvious” once we look at the standard energy condi-
tions. Even semi-classically this type III form is forbidden (for instance) by either
spherical symmetry or planar symmetry — we know of no physical situation where
type III stress—energy tensors arise.

For a type III stress tensor the NEC cannot be satisfied for f # 0, and so the
only way that any of the standard energy conditions can be satisfied for a type III
stress—energy tensor is if f = 0, in which case it reduces to type 1. So if one ever
encounters a nontrivial type III stress—energy tensor, one immediately knows that
all of the standard energy conditions are violated.

(This of course implies that any classical type III stress tensor, since it would have
to violate all the energy conditions, would likely be grossly unphysical — so it is

3For type III Hawking and Ellis choose to set f — 1, which we find unhelpful.
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not too surprising that no classical examples of type III stress—energy have been

encountered.)
e TypeIV:

(9.18)

This corresponds to no timelike or null eigenvectors. The Lorentz invariant eigen-
values of 7%, are now {—p +if, —p — if, p1, p2}.*

Classically, type IV does not seem to occur in nature. Again, a necessary condition
for the NEC to be satisfied for a type IV stress tensor is f = 0. The only way that
any of the standard energy conditions can be satisfied for a type IV stress—energy
tensor is if f = 0, in which case it reduces to type I. So whenever one encounters
a nontrivial type IV stress-energy tensor, one immediately knows that all of the
standard energy conditions are violated. (Again, this of course implies that any
classical type IV stress tensor, since it would have to violate all the energy con-
ditions, would likely be grossly unphysical — so it is not too surprising that no
classical examples of type IV stress—energy have been encountered.)

Semi-classically, however, vacuum polarization effects do often generate type IV
stress energy [16]. The renormalized stress—energy tensor surrounding an evapo-
rating (Unruh vacuum) black hole will be type IV in the asymptotic region [17],
(with spherical symmetry enforcing p; = p»). As it will be type I close to the
horizon, there will be a finite radius at which it will be type II.

e Euclidean signature:

Since we have seen this point causes some confusion, it is worth pointing out that
when working in Euclidean signature (in an orthonormal basis) the eigenvalue
problem simplifies to the standard case

det (T — 18") = 0. (9.20)
Since T is symmetric it can be diagonalized by ordinary orthogonal 4-matrices.

The symmetry group is now O(4), not O(3, 1). So in Euclidean signature all
stress-energy tensors are of type I.

“For type IV Hawking and Ellis choose

f
—u

o o
oo o

Tah ~

0
{; (u* < 4r?). 9.19)
0

o O
S
<
[\S]

We have found the version presented in the text to be more useful.
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The other thing that happens in Euclidean signature is that, because one no longer
has the time-like/light-like/space-like distinction, both the NEC and DEC simply
cannot be formulated. In fact it is best to abandon even the WEC, and concentrate
attention on a Euclidean variant of the SEC:

— Euclidean Ricci convergence condition: R, V¢ Vb > 0 for all vectors.
— Euclidean SEC: (T, — T 9**)VV? > 0 for all vectors.

e Classifying the Ricci and Einstein tensors:

Instead of applying the Hawking—Ellis type | —type IV classification to the stress—
energy tensor, one could choose to apply these ideas directly to the Ricci tensor
(or Einstein tensor). The type I — type IV classification would now become state-
ments regarding the number of space-like/null/eigenvectors of the Ricci/Einstein
tensor, and the associated eigenvalues would have a direct interpretation in terms
of curvature, (rather than densities, fluxes, and stresses). Formulated in this way,
this directly geometrical approach would then lead to constraints on spacetime
curvature that would be independent of the specific gravity theory one works with.

9.2.2 Alternative Canonical Form

Sometimes it is useful to side-step the Hawking—FEllis classification and, using only
rotations, reduce an arbitrary stress—energy tensor to the alternative canonical form

9.21)

The advantage of this alternative canonical form is that it covers all of the Hawking—
Ellis types simultaneously. The disadvantage is that it easily provides us with neces-
sary conditions, but does not easily provide us with sufficient conditions for generic
stress tensors. For example, enforcing the NEC requires

pE2D Bifi+ Dy Bl =0, with > pr=1. 9.22)
By summing over +f one obtains

p+ > Bipi =0, with > gr=1, (9.23)
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which in turn implies

NEC: D B 5%(p+2ﬂ?m)20, with > g7 =1.

(9.24)

These are necessary and sufficient conditions for the NEC to hold — the quadratic
occurrence of the B; makes it difficult to simplify these further. Similarly for the
WEC one finds

WEC:

> Bifi

For the SEC one obtains

1 2 : 2
SE(P+IZIgiPi)207 with Zﬁisl.

(9.25)

SEC:

> Bifi

1
<3 (p+zi:p,-)+2ﬁ? p+pi—>. pi|| =0

J#i
(9.26)
again with >, ﬂiz < 1. Finally, the DEC is somewhat messier. The DEC amounts to
the WEC plus the relatively complicated constraint

2
(p + Zﬁiﬁ) = > (fi+Bip)* =0, with > pE<1. 9.27)

This can be slightly massaged to yield

2
1
=3 p2+(zﬂfﬁ) =D (P4 BpH | 20, (928

> Bifilo — pi)

again with >_, 87 < 1. Unfortunately this seems to be the best that can generically
be done for the DEC in this alternative canonical form.

9.2.3 Limitations of the Standard Energy Conditions

For practical computations the energy conditions are most often rephrased in terms
of the parameters appearing in the type I — type IV classification, as presented in
Sect.9.2.1, with type I stress—energy being the most prominent. (The other types are
often quietly neglected.) When expressed in this form, the standard energy condi-
tions can easily be compared with both classical and with published semi-classical
estimates of the renormalized expectation value of the quantum stress—energy tensor.
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Beyond the strong physical intuition in which the energy conditions are based,
there are deep theoretical reasons why one should wish the energy conditions to be
satisfied. It is known that violations of the NEC, which is the weakest energy condi-
tion we have presented for the moment, may signal the presence of instabilities and
superluminal propagation® [21-24]. Moreover, stress—energy tensors violating the
NEC can support hypothetical configurations as wormholes [9] and warp drives [25]
in the framework of general relativity,® which may lead to pathological situations.
In addition, the energy conditions are central to proving the positivity of mass [49]
and the singularity theorems [1, 3]. In this context, although one might think that
violations of the NEC might always allow us to get rid of uncomfortable singulari-
ties, this is not the case [50, 51], and they can instead introduce new kinds of cosmic
singularities instead [52-56]. Nevertheless, it is already well-known that the energy
conditions are violated in realistic situations, where violations of these energy con-
ditions in the presence of semi-classical effects being very common. Among many
situations where one or more of the energy conditions are violated we mention:

e SEC has to be violated in cosmological scenarios during the early phase of infla-
tionary expansion and at the present time [57-61].

e It is easy to find violations of the SEC associated even with quite normal matter
[62, 63].

e Non-minimally coupled scalar fields can easily violate all the energy conditions
even classically [64].
(However, those fields may be more naturally interpreted as modifications of gen-
eral relativity in some cases.)

e The Casimir vacuum violates all the mentioned energy conditions [16].

e Numerically estimated renormalized vacuum expectation values of test-field quan-
tum stress tensors surrounding Schwarzschild and other black holes [65].
(EC violations occur, to one extent or another, for all of the standard quantum
vacuum states: Boulware [66], Hartle-Hawking [67], and Unruh [68].)

e Explicitly calculable renormalized vacuum expectation values of test-field quan-
tum stress tensors in 141 dimensional QFTs [69].
(Again, energy condition violations occur to one extent or another, for all of the
standard quantum vacuum states: Boulware, Hartle-Hawking, and Unruh.)

Finally, it should be emphasized that the DEC, WEC, and NEC impose restrictions
on the form of the stress—energy tensor of the matter fields independently of the theory
of gravity. However, when these conditions are used to extract general features of
the spacetime, (such as, for example the occurrence of singularities), one considers
a particular theory of gravitation. Therefore, although the existence of wormholes
and bouncing cosmologies required violations of the NEC in general relativity, in
modified gravity theories the NCC could be violated by material content satisfying
the NEC. In that case, it is possible to define an effective stress—energy tensor putting

5Note that stable violations of the NEC are now known to be possible when the field has a non-
canonical kinetic term [18-20].

6See Refs. [26-48] for interesting research along those lines.
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together the modifications with respect to general relativity that violates the NEC
[64, 70-74]. As this effective tensor is not associated with matter, there is no reason
to require that it had some a priori characteristics. Hence, one may obtain wormhole
solutions supported by matter with “positive” energy [75-77], as in some of the
examples reviewed in the first part of this book.

9.3 Averaged Energy Conditions

The key to the averaged energy conditions is simply to integrate the Raychaudhuri
equation along a timelike geodesic

f 1
O — 6, = / [a)aba)“b — o0 — 592 — R,y VeV lds. (9.29)
Assuming zero vorticity, and noting that both 0,50 > 0and 62 > 0 we have
f
0 <6; — / R, VeVhds. (9.30)

Thatis, a constraint on the infegrated timelike convergence condition, f R, VVPlds,
is sufficient to control the convergence of timelike geodesics. In applications, the
integral generally runs from some base point along a timelike geodesic into the
infinite future. We formulate the ATCC (averaged timelike convergence condition):

Averaged time-like convergence condition (ATCC): Gravity attracts provided

o
/ R, V¢ VPds >0 along any timelike geodesic. (9.31)
0

In standard general relativity the Einstein equations allow one to reformulate this as

Averaged strong condition (ASEC): Gravity in GR attracts on average.

& 1
/ (Tab — ET&;;,) Vavbds >0 along any timelike geodesic. (9.32)
0

Similar logic can be applied to null geodesic congruences and the Raychaudhuri
equation along null geodesics to deduce
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Averaged null convergence condition (ANCC): Gravity attracts provided

oo
/ Rapk“kPd) > 0 along any null geodesic. (9.33)
0

In standard general relativity the Einstein equations allow one to reformulate this as

Averaged null energy condition (ANEC): A necessary requirement for gravity
to attract in GR on average is

[e¢]
/ T, k%" dx > 0 along any null geodesic. (9.34)
0

Note that the integral must be performed using an affine parameter — with arbitrary
parameterization these conditions would be vacuous. This ANEC has attracted con-
siderable attention over the years’ to prove singularity theorems [85, 86] and is for
instance the basis of the fopological censorship theorem [87, 88] forbidding a large
class of traversable wormholes. However, note that even the ANEC can be violated
by conformal anomalies [89], so to have any hope of a truly general derivation of the
ANEC from more fundamental principles, one would need to enforce some form of
conformal anomaly cancellation.

9.4 Nonlinear Energy Conditions

The idea behind nonlinear energy conditions is inspired to some extent by the qual-
itative difference between the NEC/WEC/SEC and the DEC. The NEC/WEC/SEC
are strictly linear — any sum of stress—energy tensors satisfying these conditions
will also satisfy the same condition. This linearity fails however for the DEC, which
can be rephrased as the two conditions

T VOVP > 0: (=TuenTy)VOVP >0; V timelike V. (9.35)

The second quadratic condition is imply the statement that the flux F be non space-
like. We can further combine these into one quadratic condition

(—[Tue — eNacIn U Tap — enap)VEVE > €%, Ve >0; V timelike V. (9.36)

7Interesting studies include (but are not limited to) Refs. [78-84].
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That is, the DEC (suitably rephrased) is a nonlinear quadratic constraint on the
stress—energy, and it is this version of the DEC that can naturally be integrated along
timelike geodesics to develop an ADEC. Furthermore this observation opens up the
possibility that other nonlinear constraints on the stress—energy might be physically
interesting. Among such possibilities, we mention the flux energy condition [90, 91],
determinant energy condition, and trace-of-square energy condition [17].

Flux energy condition (FEC): The energy density measured by any observer
propagates in a causal way.
F‘F, <0. (9.37)

It has to be emphasized that the FEC does not assume anything about the sign of the
energy density. Moreover, by its very definition the DEC is just the combination of
the WEC and the FEC. For the different types of stress-energy tensor we have

2 2
> p;

Type I

Type II||u* > p?|{if =0

The FEC cannot be satisfied for genuine (that is f # 0) types III and IV. The FEC
is a weakening of the DEC, and is equivalent to the single quadratic constraint

(Tyen®Ty) VeVl <0;  V timelike V. (9.38)

Once phrased in this way, it becomes clear how to formulate an averaged version of
the FEC.

Averaged flux energy condition (AFEC):

(o¢]
/ (Tuen®Typ)VeVPds < 0; along all timelike geodesics. (9.39)
0

On the other hand, among other nonlinear combinations of the stress—energy
tensor, we might consider the following energy conditions:

Determinant energy condition (DETEC): The determinant of the stress—energy
tensor is nonnegative.
det (T*%) = 0. (9.40)
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In terms of the type decomposition we have

Type I ppip2p3 =0
Type II —u*pip2 =0
Type 111 p’p >0
Type IV —(P*+ ) pip2=0
Alternative || pp1p2ps — flpaps — fipspi — fipap2 =0

Trace-of-square energy condition (TOSEC): The trace of the squared stress—
energy tensor is nonnegative.

T T, > 0. (9.41)

In terms of the type decomposition we have

Type I PP+ p; =0
Type 1I 2+ pi =0
Type 111 3p7+p* >0

TypeIV || 2(p* = f2)+ > p; =0
Alternative || > 2 < 10>+ >, p})

Since the TOSEC is basically a sum of squares, it is only in Lorentzian signature
that it can possibly be nontrivial — and even in Lorentzian signature only a type IV
stress—energy tensor can violate the TOSEC.

Some comments about the fulfilment of these conditions are in order [17]:

e DETEC is violated in cosmological scenarios during the early inflationary phase
and at the present time in the framework of GR.

e FEC is violated by the Casimir vacuum, but it can be satisfied by the renormalized
stress—energy tensor of the Boulware vacuum of a Schwarzschild spacetime.

e TOSEC can be violated by the Unruh vacuum of a Schwarzschild spacetime.

9.5 Semi-classical Energy Conditions

‘We now note that when considering semi-classical effects the ECs may be violated,
although the relevant inequalities are typically not satisfied only by a small amount.
This fact led us to formulate the semi-classical energy conditions in a preliminary
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and somewhat vague way, to allow them to quantify the violation of the classical

ECs, before considering a particular more specific formulation [17, 91].

Quantum WEC (QWEC): The energy density measured by any observer should
not be excessively negative.

The QWEC, therefore, allows the energy density to be negative in semi-classical
situations but its value has to be bounded from below. Now, assuming that this bound
depends on characteristics of the system, such as the number of fields N, the system
4-velocity U“, and a characteristic distance L, we can formulate the QWEC as

a b hN ay2
T V,V° > —¢ T4 U, V= (9.42)

Here ¢ is a parameter of order unity. For the QWEC we have:

Typel || p = —¢hN/L*| p + p; = —ChN/L* —

Type Il |[ 0 > —~¢hN/L*|  pi = —¢hN/L* | f > —¢hN/L?
Type lll{| p = —¢AN/L*| p = —¢hN/L* ||f| < ¢hN/L*
TypeIV| p = —¢hN/L*| p; = —¢hN/L* | |f| < ¢hN/L*

In a similar way, other quantum (semi-classical) energy conditions have been
formulated.

Quantum FEC (QFEC): The energy density measured by any observer either
propagates in a causal way, or does not propagate foo badly in an acausal way.

So, the QFEC allows the flux 4-vector to be (somewhat) space-like in semi-classical
situations but its norm has to be bounded from above. It can be written as

2
FF, <t (72—]:’) (U, V2. (9.43)

Here ¢ is again a parameter of order unity. For the QFEC we have:
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wf = —¢ (N/LY —
lof| < ¢ (AN/L*)? |1 f] < ¢AN/L?
lof| < ¢ (hN/L*)?| | fI < ChN/L?

Typel || p? — p? = —¢ (hN/L*)
Type 11 u? — pi2 > —C (ﬁN/L4)
)

Type IlI|| p* — p? > —¢ (hN/L4
Type IV|| p? — p} = —¢ (AN/L*)

Analogously with the classical energy conditions, the quantum DEC (QDEC)
would be satisfied in situations where both the QWEC and QFEC are fulfilled. That
is, the QDEC states the following

Quantum DEC (QDEC): The energy density measured by any observer should
not be excessively negative, and it either propagates in a causal way or does
not propagate foo badly in an acausal way. Specifically,

AN
T V,VP > —ty —r (U, V2, (9.44)

a h N ’ ay2
FF, <tp N3 W, v . (9.45)

In order to get the relevant inequalities for the QDEC to be satisfied for types I —
IV stress—energy tensors, one needs just to combine the inequalities of the QWEC
and QFEC tables, taking into account that the two ¢’s should be kept distinct.

(For a recent rediscovery of a quantum energy condition along the lines investi-
gated in Refs.[17, 91, 92] and presented here see Ref.[93]. For non-local quantum
energy inequalities see Refs.[94, 95].)

Regarding the semi-classical quantum energy conditions it should be noted that:

e QECs are, of course, satisfied in classical situations where their classical counter-
parts are satisfied.

e The Casimir vacuum satisfies the QECs presented here [17].

e QFEC can be satisfied by the Boulware and Unruh vacuum even in situations
where the QWEC is violated [91].

e The QECs can be used as a way of quantifying/minimizing the violation of the
ECs.

Concerning the last point it should be clarified we are referring to quantifying the
degree of violation of an energy condition for a given amount of matter [92, 96-98],
and not to minimizing the quantity of matter violating the energy condition [99-101].
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9.6 Discussion

As we have seen, the energy conditions (both classical and semi-classical) are numer-
ous and varied, and depending on the context can give one rather distinct flavours of
both qualitative and quantitative information — either concerning the matter content,
or concerning the (attractive) nature of gravity. Variations on the original classical
point-wise energy conditions are still under development and investigation, and the
status of the energy conditions as fundamental physics should still be considered
provisional.

There is no strict ordering on the set of energy conditions, at best a partial ordering,
so there is no strictly “weakest” energy condition. Nonetheless, perhaps the weakest
of the usual energy conditions (in terms of the constraint imposed on the stress
energy) is the ANEC, which makes it the strongest energy condition in terms of
proving theorems. Attempts at developing a general proof of the ANEC are ongoing
— part of the question is exactly what one might mean by “proving an energy
condition” from more fundamental principles. It should be noted, however, that even
the ANEC can be violated by conformal anomalies, so to have any hope of a truly
general derivation of the ANEC from more fundamental principles, one would need
to enforce some form of conformal anomaly cancellation.

On the other hand, it should be emphasized that the FEC is completely indepen-
dent of the NEC. Hence, there could be in principle realistic situations where the
stress—energy tensor violates the ANEC but satisfies the FEC. Although, as we have
reviewed, the FEC can be violated by semi-classical effects, its quantum counterpart
is satisfied by the renormalized stress—energy tensor of quantum vacuum states.

An alternative approach is to formulate curvature conditions directly on the
Ricci or Einstein tensors, and then use global analysis, (based, for instance, on the
Raychaudhuri equation or its generalized variants) to extract information regarding
curvature singularities and/or the Weyl tensor.
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Chapter 10
Quantum Energy Inequalities

Christopher J. Fewster

10.1 Introduction

Energy conditions are restrictions on the stress—energy tensor, intended to express
generic properties such as the tendency of matter to contract under its own gravity.
A stress—energy tensor T, is said to obey

the Weak Energy Condition (WEC) if Tpuu” > 0 for all timelike u;

the Null Energy Condition (NEC) if T.puu’ > 0 for all null u?;

the Dominant Energy Condition (DEC) if 7,,,u®v? > 0 for all future-pointing time-
like u“ and v?;

e and the Strong Energy Condition (SEC) if Tu‘u® — -5 ¢%T,, > 0 for all time-
like unit u* where n is the spacetime dimension.

These definitions were presented in the previous chapter, but are included here for
self-completeness and self-consistency. Some of these conditions have direct physical
interpretations: the WEC asserts that every observer perceives a non-negative energy
density, while the DEC states that each observer encounters a causal, future-directed
energy—momentum flux. For others the interpretation is less direct. The Raychaud-
huri equation implies that the expansion of any irrotational null geodesic congruence
is non-increasing (and typically decreasing) in any solution to the Einstein equations
with stress—energy tensor obeying the NEC [65, Sect. 4.3]; the same holds for irrota-
tional timelike geodesic congruences if the SEC holds (for vanishing cosmological
constant). These facts underpin the proofs of the singularity theorems [65, 92] and
many other important results in mathematical relativity. See [71] for a review of the
Raychaudhuri equations and variants thereof.

It is therefore a surprise that quantum field theory (QFT), our most successful
fundamental description of matter, is incompatible with the energy conditions. For
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instance, in any QFT on Minkowski spacetime obeying standard assumptions, each
local average of the energy density takes negative expectation values in some phys-
ically acceptable states. Worse still, the energy density at a given point can be made
unboundedly negative by varying the state. Similarly, vacuum energy densities in
many curved spacetime situations are negative, and the Casimir effect provides an
experimentally tested phenomenon in which negative energy densities arise. These
facts have often been used to argue that QFT might support spacetime geometries,
such as wormholes [98] or warp drives [2], that would be impossible for matter that
obeys the classical energy conditions. However, the violation of the classical energy
conditions is only one among a number of situations in which sharp classical bounds
become blurred in quantum theory (tunnelling and diffraction are other examples).
A common theme is that the uncertainty principle accounts for both the disease and
its remedy: on one hand, classical limitations cannot be maintained, but on the other,
transgressions are controlled in their scope. In our case, we may seek bounds on the
extent to which a given local average of the energy density can be negative. These
constraints, known as Quantum Energy Inequalities (QEIs) are the subject of this
chapter.

QEIs (also called Quantum Inequalities) have been studied for nearly 40 years,
following the realisation by Ford [52] that unfettered violation of the energy con-
ditions could lead to macroscopic violations of the second law of thermodynamics.
They have been derived, in many cases with full mathematical rigour, for a variety of
free QFT models in both flat and curved spacetimes.! They are less well developed
for interacting QFTs (and there are some problems in straightforwardly generalising
the type of result that holds in the free case) but QEIs are known for conformal field
theories in two dimensions [33] and for the massive Ising model [4]; it is also known
that related bounds can be found in a general class of Minkowski QFT models in
dimensions of at least 3 [5].

The structure of the chapter is as follows. Section 10.2 shows in detail how negative
energy density states can arise in QFT, giving both general results and specific exam-
ples. Section 10.3 presents a QEI obeyed by the real scalar field in four-dimensional
Minkowski spacetime, namely

1 o
/ (Tapuul) (y (1) (Ot = =5 — / " (1) Pdr, (10.1)

where y is an inertial curve with 4-velocity u (a more stringent bound holds for
fields of non-zero mass). Here g is any smooth function vanishing outside a bounded
set. By a scaling argument it can be shown that an energy density below p < 0 can
be maintained for a proper time t only if |p|t* < 3.17 in units where h = ¢ = 1.
This displays the uncertainty principle at work: negative energy densities of large
magnitude can only persist over short timescales. This and other consequences of
the QEI are discussed in Sect. 10.3.2. In particular, the phenomenon of ‘quantum
interest’ is described and it is also shown how QEIs can provide constraints on

I'See Sect. 10.3.3 for references.
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the Casimir energy density in cavities of arbitrary shape. Section 10.4 explains the
derivation of a QEI valid in a general class of curved spacetimes for averaging along
any smooth timelike curve for any Hadamard state of the free real scalar field. The
argument follows [22] and is fully mathematically rigorous; for ease of reading,
the more technical parts (which use some methods from microlocal analysis) are
explained in an appendix, while Sect. 10.4 focusses on the structure of the proof.
Following that, the resulting QEI bounds are discussed in situations (e.g., stationary
trajectories in stationary spacetimes) where there is a time translation symmetry. Two
specific examples are studied (both in Minkowski spacetime) for averaging along an
inertial curve and a uniformly accelerated curve. The former case yields the bound
studied in Sect. 10.3 while in the latter case, the integrand in (10.1) is modified by
additional terms proportional to |g’|> and |g|> depending on the proper acceleration.
The ‘uncertainty principle’ analogue of the QEI becomes the statement that energy
densities below that of the Rindler vacuum state are constrained: |p — PRrindier| T* <
3.17/7* (for T < 1).

In Sect. 10.5 we survey some more recent developments in QEIs, focussing on
QEIs for non-free QFTs and also recent work on the probability distribution of
individual measurements of averaged energy densities. Finally, some applications of
the QEIs are described in Sect. 10.6.

Summary of main conventions: We take h = ¢ = G = 1 and adopt (— — —) geomet-
ric conventions: the metric has signature + — — - - -, (V,V;, — Vqu)vAd = RupeHe,
R, = R% 4. Fourier transforms will be defined non-standardly by f(k) = f d"x
¢**f(x); and that will sometimes be displaced, e.g. f"(k), for typographical
reasons.

10.2 Violation of the Energy Conditions in QFT

Itis helpful to begin with the classical situation. In many cases, classical matter mod-
els obey the energy conditions because the left-hand side of the relevant inequality
can be written as a sum of squares of basic fields. For example, the minimally coupled
scalar field obeying (] 4 m?)¢ = 0 has stress—energy tensor

1 cd 1 242
Tap = (Va®) (V6) = 58008 (Ve)(Va) + 2 8apm "

Given any timelike unit vector u“, choose a frame e4 (0 <A <n — 1) with ¢y = u.
Then

n—1

1
Tapu'u’ = 3 D (ea- Vo) + zmzqzsz >0 (10.2)
A=0

so this theory obeys WEC due to the ‘sum of squares’ form; similarly it also obeys
the NEC and DEC for the same reason. However, we also see that
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T buauh _ ;Ta — (uav ¢)2 _ ;m2¢2
“ n—2 ¢ “ n—2

so the SEC can fail even for this model if m > 0. The non-minimally coupled scalar
field, obeying ((J + m? + £R)¢ = 0, has stress energy tensor

TS = 7870 4 £ (340, — VuVs — Gup) 67,

where G, = Ry, — %Rgub, the Einstein tensor. As the additional terms are not of the
sum of squares form, even NEC can be violated: at points where V¢ = 0, for example,
this happens when the second derivative terms outweigh contributions proportional
to ¢°.

In QFT, however, squares of fields require regularisation, replacing the square
by a Wick square in free theories, for example. The formal square is positive, but
infinite; regularisation restores finiteness at the cost of positivity. Let us see how this
occurs in the theory of a real scalar field in four-dimensional Minkowski space with
mass m > 0,

d’k A )
1)) — —ik-x k ik-x *(k ,
(x) /—(271)3«/% (e7**a(k) + ¢**a* (k))

where the 4-covector k is k, = (w, k), with w = /||k||> + m?, the annihilation and
creation operators obey the commutation relations

lak), ak)] =0, [a(k),a**)] = 27)*8® (k — k)1

and the vacuum vector is denoted £2. We will show that if f € C§°(R*) is any smooth
function of compact support (i.e., vanishing outside a bounded set) with ' 0 then,
no matter how large is the support of f, there are states in which the smeared Wick
square

®D2:(f) =/d4x:<1§2:(x)f(x),

(with :@2:(x) defined by normal ordering) has negative expectation value. In partic-
ular this holds if f is non-negative, when the corresponding smeared classical field
squared is always non-negative. Noting that

A S R
f(k + K)a* (k)a™ (K')S2,

D22 =
) 2m)3 27)3 2/ wa’

it is obvious that (£2 | :®@2:(f)$2) = 0, and a short calculation gives

&k Bk [fk+ )|
2m)3 2n) 2w’

I:@2:()R1* =

)
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which is non-zero unless f vanishes identically.> Accordingly, the observable :®2:(f)
has vanishing expectation value but non-zero fluctuation in the state £2; it must
therefore have some negative spectrum and take on negative expectation values in
suitable states. Indeed, if

Yy = cosa 2 + sina:@zz(f).Q
(assuming f is chosen so l:®@%:(f)$2|| = 1) then
Wo | : @2 Vo) = sinQa) + sin® (2 | :@2:(f)>2) = 2a + O(a?)

giving negative expectation values for sufficiently small « < 0. By a scaling argu-
ment [24] it may be shown that the expectation value of :®?: at a point is unbounded
from below as the state varies among physically reasonable (Hadamard) states.

The same conclusion may be reached in general QFTs. An argument due to
Epstein, Glaser and Jaffe [18] proves that loss of positivity is unavoidable for Wight-
man fields with vanishing vacuum expectation values. The main thrust of their argu-
ment is the following. Suppose a local observable A, such as a local average of
the energy density, has vanishing vacuum expectation value, (£2 | A2) = 0. If A is
positive, it has a square root, and we have

IA'22]? = (2 | AR) =0

and therefore A'/262 = 0. Hence A2 =0 and thus A = 0, because the Reeh—
Schlieder theorem [64] entails that no non-zero local observable can annihilate the
vacuum. (The Reeh—Schlieder theorem only applies to local observables, which is
why the Hamiltonian can be positive and have vanishing vacuum expectation value.)
Alternatively, one can argue as follows: individual measurements of A in state §2
constitute a random variable with vanishing expectation value; this implies either
that zero is measured with probability 1, in which case A2 = 0 (impossible for non-
zero local observables by the Reeh—Schlieder theorem) or that there is a non-zero
probability for both positive and negative measurement values, so the spectrum of A
extends into the negative half-line.

There are many physical situations in which negative energy densities arise in
QFT. One of the main examples is provided by the Casimir effect, in which plane
parallel conducting plates in vacuo experience an attractive force. This force can
be predicted from QFT and agrees well with experiment; the same calculations
also predict a violation of the weak energy condition between the plates. Actually,
this conclusion may be reached simply from the existence of the attractive force
and some physical reasoning. In the case of infinite plane plates, separated through
distance L along the z-axis in standard (¢, x, y, z) coordinates, one may deduce on

2As f is compactly supported, f (k) is analytic in each component of k. A necessary condition for
the integral to vanish is that f (k + k) is identically zero for all k', k on the mass-shell; as the set of

4-momenta of 2-particle states has non-empty interior, f and hence f vanish identically.
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symmetry grounds and dimensional considerations that the stress—energy tensor of
the electromagnetic field takes the form [7]

C
T, = %?diag (-1,1,1, =3),

where C(z) is dimensionless; here we have also used tracelessness of the stress—
energy tensor. Conservation of the stress—energy tensor entails that C(z) is constant
except at the plates, so C may take different values Cy and C; inside and outside
the plates (by reflection symmetry the values on the two outer components should
be equal). As there is no other length scale in the problem, C; and Cy must be
independent of the plate separation L. Now the two limits L — 0 and L — oo can
both be regarded as describing a single plate alone in the world (as far as the outer
regions are concerned). In the limit L — oo one finds that the energy density must
vanish to either side of the plate; for this also to happen in the limit L — 0, it must be
that C; = 0. Returning to the case of finite separation, the inward pressure on each
plate is then 3Cy/L*, so we may deduce Cy > 0 from an attractive Casimir force.
Therefore, the energy density between the plates, —Co/L*, is negative, violating
WEC. The full computation of the stress—energy tensor in QFT leads to the values
Ci = 0and Cy = 72/720.

A noteworthy feature of the Casimir effect is the small magnitude of the leading
coefficient 72 /720 = 0.0137... in the stress—energy tensor. This is a typical feature—
violations of the energy conditions are typically either small in magnitude, or short-
lived, or when they are not, require disparate scales, highly non-inertial motion, or
large positive energies somewhere in the system. Indeed, it has been argued that the
classical energy conditions might be regarded as holding in an operational sense,
once one takes account of the positive energies present in apparatus used to produce
and detect negative energy densities [66].

Other well-known instances in which negative energy densities occur include
moving mirror models in 1 + 1 dimensions [62], and (portions of) the exterior of
a Schwarzschild black hole in the Hartle-Hawking, Boulware or Unruh states (see
[99-101], and [80] for recent numerical calculations).

It is clear that the pointwise energy conditions are not respected by QFT. To gain
some insight into what conditions might hold instead, it is helpful to consider again
the expectation values of the Wick square in a state

U= [9 + A / &k d’k bk, k/)a*(k)a*(k/)9i| ,

where we assume for simplicity that b is real-valued and .4 is a normalisation
constant. An easy calculation shows that
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(W | :%:(x)¥) o</d3kd3 (Mb(k, k') cos((k + k') - x)
+ 22k, k') cos((k — k&) - ),

where c is given as an integral expression in b. If b(k, k) = 0 unless both k and k’
belong to a small neighbourhood of some kg, then the same is true of c(k, k'). For
small enough A, the expectation value is approximately proportional to A cos(2k - x)
and one has an oscillating pattern of positive and negative values. (See [40] for
worked-out examples and plots in the case of energy density.) No worldline can
remain in a negative ‘trough’, because ko - u > 0 for all timelike u, as kg is on-shell,
so observers meet alternating positive and negative values. This suggests seeking
constraints on local averages along timelike curves, and that is precisely what we
will do.

10.3 An Example of a QEI and Its Consequences

10.3.1 QEIs Obeyed by a Free Scalar Field in Minkowski
Spacetime

We consider weighted averages of the energy density expectation values for a free
real scalar field in four-dimensional Minkowski spacetime with mass m > 0.

Let (T,5) be the expectation value of the stress—energy tensor in an arbitrary
Hadamard state. We will describe Hadamard states in detail later (Sect. 10.4 and the
appendix)—for now it is enough to say that these are states whose two-point function
has the same singularities as that of the Minkowski vacuum; this includes a dense
subset of the Fock space .% of the theory but also states that are not given by vectors
in 7 (e.g., thermal equilibrium states at non-zero temperature). Choose any inertial
curve y in proper time parametrisation, with four-velocity u* = y“. It will be shown
in Sect. 10.4.3 that the expected energy density along y obeys the QEI

/ (Tapuu”) (y (1)) 1g(O)Pdt > — / I8 *u*Q (u/m)du,  (10.3)

1673

where the averaging weight (or ‘sampling function’) |g(¢)|? is the modulus-squared
of an arbitrary smooth compactly supported test function g and the function Q :
[1,00) = Rt is

172
o) = (1—%) (1 ] ) — In(+ V12— 1), (10.4)

212

which obeys 0 < Q(v) < 1 with Q(v) — 1 asv — oo.
For massless fields, the bound simplifies to
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Fig. 10.1 The function Q o)
l ,,,,,,,,,,,,,,,,,
v
0 1
1 o0
/ (Tauu”) (y (1)) |g(0) Pt > ——— / " (1) dt, (10.5)
167 J_o

which is also valid (but weaker than (10.3)) for m > 0 as well because Q < 1
(Fig.10.1).

Note that the quantum energy inequalities (10.3) and (10.5) are valid for arbitrary
(Hadamard) quantum states, and that their right-hand sides are state-independent
in each case. They are not expected to be optimal bounds—in two-dimensions, the
same method applied to the massless field gives a bound that is weaker by a factor
than 3/2 than a bound that is optimal (see Sect. 10.5.1.1), while in four dimensions,
numerical evidence suggests that the bound above could be improved by a factor of
approximately 3 at m = 0, and somewhat more if mt >> 1 [13]. The bounds remain
true provided g, ¢’ and g” exist (in the distributional sense) and are square-integrable;
in other words, if g belongs to the Sobolev space W22(R). However, the bound does
not apply to g with lower regularity, in particular, to discontinuous g. By ‘sharp
switching’, one could in principle trap arbitrarily large negative energy densities—
of course, no physical device is capable of instantaneous switching, as a consequence
of the uncertainty principle. We proceed to study the properties of (10.3).

10.3.2 Properties and Consequences of the QEI

10.3.2.1 Scaling

Putting g, (¢) = t~/2g(¢/7) in place of g in (10.5), the QEI becomes
RN const
lg" O dt = ———,
oo T

where the constant depends on g. In the short sampling time limit ¢ — 0, this bound
is consistent with the fact that the expectation value of energy density at a point is
unbounded below, while in the limit T — oo it gives

1 a. b 2
. / (Tt (v (1)) 19t/ 7) Pelt > —

16724
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T—>00

lim inf / (Tapuu®) (y (1)) g(t/7)*dt = 0

for any Hadamard state w, so the WEC holds in this averaged sense (known as
AWEC). In Sect. 10.4.3 we will see how these results are modified for non-inertial
trajectories.

10.3.2.2 Bounds on the Duration of Negative Energy Density

Suppose that (Tapuul Y(y (1)) < p for some interval ¢ € [ty, ty + 7] of proper time.
Then, for any g € C5°((fo, fo + 7)), one has

1 o0
p / lg(@))* dt > / (Tapuu?) (y (1) (Ot = =7 — / g (1) dr.

o0

Rearranging and integrating by parts twice, this says that

////)

(¢lg

= _167[2/)’
(glg

where (g | h) denotes the standard L? inner product. As this inequality holds for all
nontrivial g € C3°((t, to + 7)), we canreplace the left-hand side by its infimum over
all such g. This yields the minimum eigenvalue of the operator d*/dt* on [ty, to + 71,
with boundary conditions at each end corresponding to vanishing of the function and
its first derivative [45]. The upshot is that

E, (10.6)

pz-
4

where the numerical constant C ~ 3.17. Turning this around, in any time interval of
duration 7, the energy density must at some instant exceed —C/t*. Tighter results
may be obtained for massive fields [20]. Inequality (10.6) resembles an uncertainty
principle; note, however, that it is a rigorous consequence of the QEI rather than
being injected as an additional assumption.

10.3.2.3 Quantum Interest

Developing the theme of the previous paragraph, let p(t) = (Tpuu?) (y (£)). Then
the QEI can be regarded as asserting the positivity of the differential operator

4

d 2
P = s + 167°p(1),
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on any open interval of R, with vanishing of the function and first derivative at
any boundaries.? Here, positivity means that the operator has no negative spectrum,
equivalently that (v | Py¥) > O for all ¢ in the domain of P (in particular, i obeys
the boundary conditions). This leads to quite substantial restrictions on the possible
form of p.

For example, suppose that p has an isolated pulse between proper times ¢#; and ;.
As the pulse is isolated, we must have p(#) = Oon [¢; — 11, #;] and 12, 1, + 7] with
t1 < tyand 71, T > 0. Choose a test function g € Cg°((t; — 11, &, + 12)) that equals
1 on [t1, ,]. Then the quantum inequality gives

fh h h+10
w#/pmmz—/mmwm=—/ mmwm—/ Ig"(t)|* dt.
I3 nh—r 5]

Only the ‘switch on’ and ‘switch off” intervals contribute and we can independently
optimise over g in these intervals to give

I A A
Ndt > — - = ’
/zl POAZ s Tonre ©  8amin(mr. of

where ]
A :inf/ lg" (0)|* dt
g Jo

with the infimum taken over smooth functions g that are equal to 1 near t =0
and vanish near r = 1. This amounts to an Euler-Lagrange equation g”” = 0 with
g(0) =1,g(0) = g(1) = g/(1) = 0. The solution is g(¢) = 1 — 3¢> + 21> and gives
A =12, so we find

1) 3
min(r. o [ pd = ~375.
f 2w

which gives a nontrivial constraint on the extent to which a pulse (of any shape) can
be isolated if the integral is negative, namely

1/3
3
| | Y ' 10.7
min{z;, 1o} < (27r2|f,:2/0(t) df|) o

In particular, if p is compactly supported, then we may take the t; arbitrarily large and
conclude that p can only be compatible with the QEI restrictions if it has nonnegative
integral (another version of AWEC). Abreu and Visser [1] have also shown that if
p is the energy density compatible with the quantum inequalities and [ p = 0, then
p =0.

3More precisely, the Friedrichs extension of P defined on the dense domain C{°(I) C LX) is
positive for any interval /—the boundary conditions may be deduced from this [45].
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Fig. 10.2 Spacetime
diagram of the Casimir
plates and inertial trajectory

20
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Ford and Roman [59] first described this type of behaviour and gave a financial
analogy: nature allows you to ‘borrow’ negative energy density, but you must ‘repay’
it within a maximum loan term set by constraints such as (10.7). Moreover, excluding
the case p = 0, the amount repaid must always exceed the amount borrowed. This is
the so-called quantum interest effect—one may also show in various ways that the
interest rate diverges if one delays payment towards the maximum loan term. The
argument above (which is new) is based on [45], further developments of which can
be found in [1, 96]. A slightly earlier proof of some aspects of Ford and Roman’s
Quantum Interest Conjecture can be found in [88], but this is not as quantitative in
nature as the bounds given here.

10.3.2.4 A Priori Bounds on Casimir Energy Densities

Experiments conducted in a causally convex* spacetime region ought not to yield
any information regarding the geometry outside the region. This insight has been
used to analyse the Casimir effect for a long time [72] and has also been at the root of
much recent progress in QFT in CST following the work of Brunetti, Fredenhagen
and Verch [9]. Here, we combine it with the quantum inequalities; what follows is
based on [39] (see also [25]).

Consider a region between Casimir plates at z = £L/2 in otherwise flat spacetime
and an inertial trajectory parallel to the plates, as illustrated in Fig. 10.2. Let £ be
the distance from this trajectory to the nearest plate in the = 0 surface. Then no
experiment conducted along the trajectory in a time interval of less than 2¢ can
possibly know about the existence of the plates (and, a fortiori, what boundary
conditions apply there); it should be as if the experiment was conducted in Minkowski
space. In particular the quantum energy inequalities apply, and [as the energy density
is supposed constant along the trajectory] (10.6) gives an a priori bound

4A set S is causally convex if every causal curve with endpoints in S lies completely within it.



226 C.J. Fewster

C 317 020
(20)4 Q0% 4

Too > (10.8)

By comparison, the known value of the Casimir energy density for the massless
minimally coupled scalar field between parallel plates with Dirichlet conditions is
[17, Sect.2]

72 7% 3 —2cos?(wz/L)

Too = — -
7 7114004 4814 costmz/L

3

which ranges between 3 and 7% of the bound (10.8) as z varies in [—-L/2, L/2].

Inequality (10.8) is valid for the Casimir effect in a cavity of any (time-
independent) geometry, with ¢ as the minimum distance from the trajectory to
any boundary. Clearly this includes situations where the exact calculation of the
Casimir energy density would be difficult or impossible; it also applies to all station-
ary (Hadamard) states of the system and to all possible boundary conditions at the
plates.

10.3.3 Some History and References

The study of QEIs began with a 1978 paper of Ford [52], in which he argued that
a beam of negative energy (described by a pure quantum state) could be used to
cool a hot body and decrease its entropy. Ford argued from the macroscopic valid-
ity of the second law of thermodynamics that violations of the energy conditions
must be governed by bounds of uncertainty principle type. That was borne out in
subsequent derivations of quantum inequalities by Ford in a series of papers writ-
ten in conjunction with Roman and Pfenning [53, 55, 56, 58, 85, 87], concerning
Minkowski space and some static spacetimes. These papers established lower bounds
on weighted averages of the energy density’ of the scalar and electromagnetic quan-
tum fields along a static trajectory, where the weight is given by the Lorentzian
function f(t) = t/(w(t* 4+ t?)). Here T sets the timescale for the averaging. For
example, the massless scalar field in 4-dimensions obeys a bound

/T(Too(f,x))d - 3

T +12)  — 32nct

for all sufficiently nice states and any t > 0.

The first QEI for general weighted averages was derived by Flanagan [48] for the
special case of massless quantum fields in two-dimensional Minkowski space. His
argument forms the basis of a general argument for two-dimensional conformal field
theories [33] that will be discussed in Sect. 10.5.1.1.

SIn fact, the earliest papers consider negative energy-momentum fluxes, but the energy density soon
became the main object of interest.
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The QEI (10.3) was derived in [27] for the scalar field of mass m > 0 in Minkowski
space for averaging along inertial curves with general weight functions of sufficiently
rapid decay. Analogous results were derived in arbitrary spacetime dimension. This
was generalised to some static spacetimes [44] for averaging along static trajecto-
ries. With some modification, the method also applies to the electromagnetic [84],
Dirac [14, 34] and Rarita—Schwinger fields [105]. The general approach of [27]
(somewhat rephrased) formed the basis for the first fully rigorous QEI [22] for the
scalar field, which was also much more general than the previously known results.
We will discuss that argument in Sect. 10.4.2. Generalisations to the Dirac and elec-
tromagnetic fields are also known [15, 38, 46].

Some applications of the QEIs will be discussed in Sect. 10.6. To round off the
present historical discussion, it is worth noting that the link between QEIs and ther-
modynamics, which originally motivated Ford [52], can be pursued abstractly (in a
setting that includes the scalar field) [47]. It turns out that QEIs are part of a chain of
links between stability conditions at three scales: the microscopic (conditions on the
field in the ultraviolet such as the restriction to Hadamard states), mesocopic (QEIs)
and macroscopic (thermodynamic stability expressed via the second law).

10.4 Derivation of a QEI

This section will give, in outline, the proof of a general QEI for the free real scalar
field in a general globally hyperbolic spacetime (M, g) of dimension n > 2. The
resulting bound will be computed in various situations. The derivation presented in
this section contains most of the core ideas but is incomplete in important respects,
which will be resolved in the appendix to this chapter.

10.4.1 Background and Preliminaries on QFT in Curved
Spacetimes

Recall that a time-oriented Lorentzian spacetime is globally hyperbolic if it con-
tains no closed-timelike curves and every intersection J*(p) NJ ™ (g) is compact,
where J*/~ (p) is the causal future/past of p. Equivalently the spacetime is globally
hyperbolic if and only if it has a (global) Cauchy surface.

We consider the real scalar field on (M, g), with field equation (O + m?)¢ = 0.
The quantum field theory can be described elegantly using algebraic quantum field
theory (see [8, 68] for recent surveys). Here, however, we only need some basic facts
concerning the two-point function W (x, x’) = (@ (x)®(y)) of a quantum state:

e W, is a distribution on M x M, and the distributional action W, (f, h) on a pair of
test functions f, h € C3°(M), written formally as
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Wa(f, h) = Wa(x, y)f (x)h(y)dvol(x) dvol(y),

MxM

is the expectation value of the product of smeared fields (@ (f)® (h)).
e W, is a (distributional) solution to the field equation in each of its variables

O+ m)Wa(x,y) = 0 = (O, + m) Wa(x, ).

e W, obeys the hermiticity condition W (f, h) = W, (h, f) for all test functions f, h.
e The antisymmetric part of the two-point function is

Wa(x,y) = Wa(y, x) = iE(x, ),

where E(x, y) = E™ (x,y) — ET(x, y) is the difference of the advanced and retarded
Green functions. Here,

600 = /M E*(x, y)f 0)dvol(y)

is the unique solution to ((J 4+ m*)¢* = f that vanishes outside the causal future
(+) or past (—) of the support of f — the closure of the set of points on which f is
non-zero.

e W, has positive type, which means that W, (f, f) > 0 for every test function f.

The positive type and hermiticity conditions can be understood easily by reference to
a Hilbert space representation (or, more abstractly, to the algebra of smeared fields)
in which the state of interest has state vector §2 and one has

Wa(f, h) =(@(H@(h) = (2| (NP (h)$2).
For a real scalar field one has @ (f)* = @ (f) and correspondingly
W2(f 1) = (@(HP (W2 | 2) = (2 | (WP (F)R) = Wa(h. ).

Similarly,

Waf.f) = (@)D () = (@(F)2 | D(f)$2) > 0.

We emphasise that these properties hold for all states and not just states that are
vacua in some sense. In order to construct a stress—energy tensor or other Wick
powers it is necessary to restrict further to the class of Hadamard states, whose
2-point functions take a specific form for near-coincident points.

The Hadamard class was precisely described in [73] in the four-dimensional case.
Briefly, near the diagonal {(x, x) : x € M} in M x M one may define a sequence of
distributions H" taking the form
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Ux,y)

H®D y) =
)= ey

+ VO (x, y) log(oy (x, y)/€%) + W (x, y),

where £ is a fixed length scale and o (x, y) is the signed squared geodesic separation
of x and y, with a positive sign for spacelike separation.® The functions U, V" and
W are smooth; V® and W take the form

VO, y) =D wle ooy, WOy =D wlx, yox, »)*
k=0 k=0

where the coefficients v; and wy are recursively determined by the requirement that
P.H" = (P,w,)o" + (Pyv,)o" logo, together with U(x,x) = 1 and the conven-
tion that wy = 0.7 Here, the subscript 4 indicates a distributional regularisation,
flop(x,y)) = limg_ o4 f(o (x,y) + 2ie(T(x) — T(y)) + %), where T increases to
the future. With these definitions in place, we describe W, as being Hadamard if and
only if W, — H") is r-times continuously differentiable in the neighbourhood of the
diagonal where it is defined, for all » > 0. It is an important result that the difference
of two Hadamard 2-point functions is smooth on M x M, even though the Hadamard
condition is stated only for nearby points. This was proved by Radzikowski [89, 90]
using a much cleaner definition of the Hadamard condition based on microlocal
analysis. This formulation is described briefly in the Appendix to this chapter, as it
will be required in the rigorous proof of the QEI.

Quantities like the Wick square and stress—energy tensor can be defined using
point-splitting (see, e.g. [104]). In general, let P be a r’th order partial differential
operator on M with smooth real coefficients and consider a Hadamard state with
two-point function W,. By the Hadamard condition, the difference W, — H?" is
2r-times continuously differentiable near the diagonal in M x M, so (P ® P)(W, —
H®")(x,y) (i.e., the result of acting with P in each variable) is continuous and we
may take the points together to define

(PP (x)) = (P ® P)(Wy — H®)(x, x).

There are residual finite renormalisation freedoms but we will neglect them for now.

As the Hadamard series is cumbersome to work with directly, it is useful to
consider quantities that are normal ordered with respect to a reference state, with
2-point function W g, say. Here, we define

(:(PD)*:r(x)) = (P ® P) (W5 — Wa g)(x, X).

5The function o is well-defined and smooth in a neighbourhood of the diagonal in M x M.

"Thus the H'") satisfy the field equation in x to ever-increasing order in o ; however, the limit r — 00
does not necessarily exist, except in analytic spacetimes.
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As (PP)*(x)) = (:(PD)*:r(x)) + ((PP)*(x))r, where the last term is the expecta-
tion value in the reference state, a lower bound on the normal ordered quantity will
imply the existence of a lower bound on ((P®)?).

10.4.2 The QEI Derivation

Let (M, g) be any globally hyperbolic spacetime of dimension n > 2 and let y :
R — M be a smooth timelike curve, with proper time parametrisation. Let P be any
partial differential operator with smooth real coefficients. We consider the quantity
:(P®)?:x, and seek a lower bound on

/ A7 1g(0) P ((PP) ) (y (1)

for g € C3°(R) where the expectation value is taken in an arbitrary Hadamard state
and normal ordering is performed relative to a reference Hadamard state with two-
point function W; g.

To start, we introduce a point-split quantity

G(r,7) = (PO (y ()PP (y(T))) = (P ®P)W2)(y (1), ¥ (")
and write Gy for the same quantity computed using W, g. There are immediate
questions to address about whether these quantities are well-defined,® but we defer

these for the moment. Both G and Gy are distributions, but their difference F =
G — Gg is a smooth function,

F(r,7) = (P ®P)(W, — W) (¥ (1), y("))

because W, — W, is the difference of Hadamard 2-point functions and therefore
smooth. Furthermore, F is symmetric in its arguments, because W, — W, g is (recall
that all two-point functions have the same antisymmetric part) and one has

F(t,7) = (:(P®)*) (y (7).
For any real-valued g € Cg°(R) we now compute
/ dt1g(D) [ (:(PD)*:R) (v (v) = / dt |g(0)|*F (1, 1)

* da , N —ia(t—1') l
= T drdt' g(t)g(t)e ™"V F(t, 1))
oo 2T

8For example, one cannot make sense of an expression like u(f (¢)) if u(x, y) = §(x)§(y) and f(¢) =
(0, 1), because u(f(¢)) = 5(0)5(z).
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(inserting the Fourier representation of a §-function to ‘unsplit’ the points)

*® do
= T F(g-o® 8a)
o0 2T

(regarding F as a distribution and writing g, (1) = g(7)e%)
* da
= —F(g-—a ® &) (10.9)
0 b

using the symmetry of F, and hence F(g_, ® g+) = F(gy ® g—,) to make the final
step. As g is real-valued, g_, () = g,(7) and so one may compute

*d
/ dt 1g(D)P (PO ox) (7 (1)) = /O “Cr @ ® g

®da *® da o
= _G(ga ® ga) - _GR(gOt ® got)
0o T 0o T

v

> da o
- —GRr(8e ® 8a);
0 T

where we have used F = G — Gy and the positive type property G (i, h) > 0 of G,
which it inherits from W,. Similarly, G is of positive type, so the integrand in the
final expression is pointwise positive in «.

We summarise with a theorem (although there are some important points left to
resolve—see below).

Theorem 10.1 Let (M, g) be any globally hyperbolic spacetime of dimensionn > 2,
P be any partial differential operator with smooth real coefficients, y be any smooth
timelike curve in a proper-time parameterisation. For normal ordering performed
relative to a Hadamard reference state with two-point function Wy g, the inequality

> d
/ dt gD (:(PP)* k) (v (1)) > — /O F“G;”(g—mga), (10.10)

holds for any Hadamard state of the real scalar field and all real-valued g € C5°(R),
where

G (r, ) = (P P)War)(y (1), y(1))).

The lower bound bound in (10.10) depends only on the reference two-point function
together with P, y and g.

This derivation provides a quantum inequality on :(P®)?: and hence on any other
quantity that can be expressed as a finite sum of such quantities, recalling that P is
any partial differential operator with smooth real coefficients. For example:
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e Taking P to be a multiplication operator (i.e., a zeroth order partial differential
operator) we obtain bounds on averages of the Wick square :®? :z.

e Taking P = v*V, where v is any smooth vector field gives bounds on : (v*V,®)?:z.

e Combining these ideas and using the decomposition in (10.2) we have a QEI on the
energy density :7,:gu"u’ by summing the bounds for P = ¢4V, (0 <A <n—1)
and P = m:

*d
/dr|g<r)|2<:u“ubTab:R>(y(r))z—/ ;"‘TR(g—mga), (10.11)
0

where

n—1
1 1
Tr(z,7') = 5655’”(1, )+ > GV T)
A=0

is the point-split energy density in the reference state [22]. This QEI can be called
a Quantum Weak Energy Inequality (QWEI).

e Taking P = k“V, where k is any smooth null vector field, we note that :
Top:rk®k? = :(P®)?: and thereby obtain a Quantum Null Energy Inequality
(QNEI) [40]

> d
/ dt |g(0) P kK Tapig) (v (7)) = — / 7"‘02‘“@@&). (10.12)
0

e Similarly, one could obtain a Quantum Dominated Energy Inequality (QDEI); the
classical field obeys the DEC precisely because u*v"T,;, is a sum of squares, in the
case that ¥ and v are future-pointing causal vectors.

Two important questions must be resolved to complete the proof of Theorem 10.1.
First, is it legitimate to restrict the differentiated two-point function to the worldline,
as we did in defining Gand Gg? Second, is the final integral in (10.10) finite? If not,
the bound would be true, but useless! The (affirmative) answers to these questions are
briefly explained in the Appendix (see also [22]), making use of microlocal analysis to
provide the necessary deeper understanding of Hadamard states.’ However, the reader
who does not wish to delve into the details should at least note that neither is simply a
matter of fine precision. For instance, the first question would be answered negatively
for a null trajectory (and indeed there is no QEI bound in this case [40]). Regarding
the second, had we restricted to the negative half-line in (10.9), the argument would
have yielded a bound in which the final integral diverges—this does not contradict
our theorem above, but simply provides no useful information.

Further remarks and extensions

1. Variants of Theorem 10.1 exist for averages over suitable Lorentzian submani-
folds, instead of timelike curves (see, e.g. [43]). However, no such bounds can

91ndeed, it is far from obvious in the derivation above where the Hadamard condition enters at all.
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exist for averages over spacelike surfaces (certainly above 2-dimensions) [54] or,
as already mentioned, along null curves [40].

2. The argument above relies on ‘classical positivity” of the quantity in question. This
permits a number of related bounds to be proven by similar methods, e.g. see [38]
for spin-1 fields. Nonetheless, there are also QEIs for the free Dirac field [15, 46,
94] despite the fact that the ‘classical’ Dirac energy density is symmetrical about
zero and unbounded from below. It turns out that the analogue of the Hadamard
condition also functions as a local version of the Dirac sea, and restores positivity
[modulo a finite QEI lower bound] as well as renormalising the energy density.
See Sect. 10.5.1 for discussion of nonminimally coupled scalar fields and the case
of interacting QFT.

3. The expectation value in (10.10) may be written as ((PD)?) — ((PP)*)g and
for this reason a bound of this type is sometimes called a ‘difference quantum
inequality’. It can be rewritten as

‘/dfmﬁﬂf«P¢fﬂyﬁDzé/dfmﬁﬁV«Péfm04rD
* da -
—/ —GRr(8a ® &a)-
0 g

Schematically, ((P®@)?)z(y (1)) is the diagonal of a function Fye (1, 7') = Gg —
Ghen, Where G e, is formed from the distribution H® (for sufficiently large k) and
the operator P. So the dependence on the reference state actually cancels, and we
obtain the ‘absolute quantum inequality’

©d
/WB@WW@ﬁWﬁDZ—A-§Ga5®&)

on the Hadamard-renormalised square (P®)?. Making this precise and quanti-
tative takes a bit of work [43] and leads to a QEI expressed in terms of H®
for averaging along timelike curves. (See [94] for similar analysis of the Dirac
case.) Recently, Kontou and Olum have evaluated the resulting bounds to first
order in the Ricci tensor and its derivatives [up to third order] in spacetimes with
small curvature [79] for massless fields, averaging along timelike geodesics. In
so doing, they showed that the QEI bounds of [43] could be simplified to require
fewer terms of the Hadamard series (only H'" is needed although the advanced-
minus-retarded bi-distribution £ must be computed separately). The resulting QEI
takes the form (10.5) at leading order and involves other terms which are given
as integral expressions bilinear in g and its derivatives (up to the second order),
and involving the Ricci tensor and derivatives. Under rescaling, these additional
terms are at worst of order =2 as T — 0.
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10.4.3 Specific Examples

We illustrate the quantum inequality bound (10.11) in some specific situations.

10.4.3.1 Stationary Trajectories in Stationary Spacetimes

Suppose that y is an orbit of a timelike Killing vector field, defined at least in an
open neighbourhood of y. In particular this holds if (M, g) is stationary, and y is
a stationary trajectory. Choose a frame near y with ¢y = y and e4 invariant under
the Killing flow. We also suppose that (M, g) admits Hadamard reference state with
two-point function Wy that is also invariant under the flow near y (for example,
a stationary state). In this case, the point-split energy density Tk is translationally
invariant
Tr(z,7") = Tr(z — 7))

and, writing % in terms of its Fourier transform, (10.11) becomes

d
/dt 18O (U Topir) (¥ (1) = — / a/ —%(v)lg(a+v)|2
> / —|g(u>|29(u> (10.13)
where
D(u) = / 2—%@)
(—o0,u)

Via the Bochner—Schwartz theorem, the positive type property of Wy implies that ?}
is a polynomially bounded positive measure (cf. the appendix of [22]) so 2 grows
at most polynomially. Further, if W is the two-point function of a stationary ground
state, then the ﬂR(v) = 0 for v < 0 [22]. We note that (10.13) extends to complex-
valued g € C3°(R) simply by applying the above argument to the real and imaginary
parts separately. It is clear that a number of the general properties discussed in
Sect. 10.3.2 will transfer mutatis mutandis to the present case. In particular, replacing
gby g, (1) = g(t/1)/~/x, one may show that

lim inf / dv |g(x/MP ((4u" Tupie) ( (1)) + 2004) + 2(0-)) = 0 (10.14)

which gives a ‘difference AWEC’ relative to the reference state (a ‘difference
AWEC’) if QQ+) = lim, o+ 2(u) = 0 (which implies that 2(0—) = 0 given the
properties of J), which would be expected if Wy is a ground-state two-point func-
tion with respect to the Killing flow. Section 10.4.3.3 gives an example in which these
additional terms are nonzero.
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Various examples have been worked out in detail; we give some instances here
and refer to [44] for others.

10.4.3.2 Inertial Trajectory in Minkowski Space

Let y be an inertial trajectory in n-dimensional Minkowski spacetime, choosing
coordinates so that y (t) = (7, x) for fixed x. Let P be a partial differential operator
with constant real coefficients, so that Pe’** = p(k)e™** for some polynomial p (which
necessarily obeys p(—k) = p(k)) and adopt the Minkowski vacuum as the reference
state, with corresponding two-point function

dnflk efilo(xfx’)

Wo r(x,x') = 2y e

where k, = (w, k), = \/|k|*> + m?. With this choice, the normal ordering is pre-
cisely the conventional normal ordering of Minkowski space QFT (and indeed, one
would normally adjust the full renormalised quantity to coincide with this as well).
Then

&k pUOP i)

(P) n o
Gr (1. 7) = Qm)y=! 2w

from which the quantum inequality on :(P®)?: can be computed. In particular, for
the point-split energy density one has

S 2 2
Tr(z, r/)=/ AL AN S e

Q2m)n-1 4w
n—2
_ vol(S"%) oodw W2 (@ — )= 2gmio(r—r)
2027y

leading ultimately to the QWEI

vol(S"2) [

-~ 2. n
| B efm)

/ dr 1g(0) s Toyig) (v (1)) = —

where

o0
O, 1(x) = nxfn/ dyyz(yz _ 1)(n—3)/2.
1

Normalisation has been chosen so that Q,,_;(x) — 1 as x — +o00; in the massless
case, one may thus replace Q,_;(u/m) by 1. The above bounds were originally
derived in a purely momentum-space framework in [27]—the case n = 4 corresponds
to the bound stated as (10.3), with Q = Q5.
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10.4.3.3 Uniformly Accelerated Trajectory in n = 4 Minkowski
form =10

Again we use the vacuum state as the reference, W z(x, x') = 1/(4m%0, (x, X')).
We consider the trajectory with uniform proper acceleration oy > 0, given in inertial
coordinates by y (t) = (&j sinh(t /&), & cosh(t /&), 0, 0) in proper time parametri-
sation, where &) = o ! In this case one may show [39] that

3 — 1 —~ 1 3 -2
Tr(r)= lim Eoyyy cosech? T —iggo , with Tu) =— %
e—0+ 327 2&] 28 27 \ 1 — e 2rbou

and similar calculations to those above give

/dr gV Y Tap) (v (7)) = — / du|gw)*Y (o, u)  (10.15)

1673

for any Hadamard state, where 1" (£y, u) = (47)>.2(u) in our previous notation. As
|g(u)|? is even, we may replace 1" (£, u) by % (Y (&o, u) + T (&, —u)) in (10.15).
Using the identity

u? 11
f— — 4
Y (&, u)+ 7T (&, —u)=u" +2 Eo +3050 (10.16)

the following QEI holds for all Hadamard states and all g € C3°(R):

/ dr 18077 (Tu) (r (1)

= /w ar (1" + 2231 P + S8 g0R) . 0.7)
— 1672 ) o 0 30 ' ’
Comparing with (10.5), we see that the acceleration leads to modifications to the
QEI bound that are lower order in the number of derivatives applied to g.

In particular, the scaling behaviour discussed in Sect. 10.3 is modified; we have

1 2 lg"I*> lg'lPeg  11lglPeg
" t t dt > — — — ,
/ 7T ) (r ()8 2/ i~ i T a0
where the norm | - || is that of L?>(R). For apr < 1 the previous result is recovered

to good approximation; however, for agt > 1 it is the last term that dominates and,
indeed, the AWEC fails—multiplied by 7, the right-hand side diverges to —oo as
T — 00. By subtracting this troublesome term we can deduce that

4

1l
lifrgg}f/<y YT (v () +

g 2)|g<r/r>| di =0



10 Quantum Energy Inequalities 237

holds for any Hadamard state. This is precisely an example of (10.14), noting that
2(0+) = 2(0—) = 11/(960&;72) by (10.16). At first sight it is remarkable that the
integrand vanishes identically in the Rindler vacuum state, which has energy density
p = —1lag/(480m?) along y [67, Sect.3]. From another viewpoint, however, it is
just the difference AWEC that one would have obtained using the Rindler vacuum
as the reference state on the right wedge x > |¢]; even though our calculation was
conducted entirely in Minkowski space. This is local covariance [9] in action—
physics along the accelerated curve can know of nothing outside the wedge!

This example might suggest that a good way to experience long-lasting negative
energy densities is to follow a uniformly accelerated trajectory. It is worth noting that
the work required to maintain this motion grows exponentially with the proper time,
and therefore the ‘cost’ in work done is growing much more rapidly than the ‘benefit’
of negative energy ‘seen’. An alternative, studied by Ford and Roman [61] is for the
observer to follow an oscillatory trajectory with the field in a suitably prepared state.
They were able to find examples in which the integrated negative energy density
‘seen’ grows linearly with the sampling time just as we have at leading order in
the accelerated case. This is not in contradiction with the QElIs; it simply shows
that the bounds can become quite weak for long sampling times along non-inertial
trajectories. The examples given in [61] avoid unphysically large velocities, but of
course it remains the case that work must be done to maintain non-inertial motion.

10.5 Further Developments

10.5.1 Quantum Energy Inequalities Beyond Free QF T

10.5.1.1 Conformal Fields in 1 + 1 Dimensions

QEIs have been derived for a general class of conformal field theories (CFTs) in
1 + 1 dimensions.!? The basic idea was given by Flanagan [48] for massless scalar
fields and was generalised to massless Dirac fields [102] before being turned into a
general and rigorous argument in [33].

Recall that the stress tensor 7% in CFT is traceless, and that

TP, x) = Te(t —x) + Tp(t +x), TN (t,x) = Tr(t —x) — Tp.(t + x),

where the left- and right-moving chiral components 7;, and T commute and obey
the spectrum condition

PL,R = / TL,R(V) dv > 0.

10See [63] for a general reference on CFT in 1 4+ 1 Minkowski space.
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An important feature of CFTs is that suitable reparametrisations of null coordi-
nates v =t — x, u = t + x are unitarily implemented in the vacuum Hilbert space.
Under the correspondence v +— z(v) := (i — v)/(i + v), the real-line is mapped to
T\ {—1}, where T = S is the unit circle in C. If a reparametrisation v > V (v) lifts
to an orientation preserving diffeomorphism of S, then there is a unitary Ug(V)
such that

Ur(V)TrWUr(V) ™' = V' (0)* Tr(V (v)) — %{v, Vi,

where cg is the central charge (for right-movers) and

d? 1

dv: JV'(v)

is the Schwarzian derivative. The same is true for 7 and the Uy, Ur commute.

Consider one of the stress-tensor components, say, 7(v) and let f be a smooth
compactly supported positive real-valued function. We define

{(V,v} = =2/V'(v)

() = / TO)f () dv

and aim to show that there is a lower bound on the expectation values (T'(f)) .
The idea is to define v — V(v) by V'(v) = 1/f(v) and set ' = U(V)yr. Then

FOUTO))y = FOUUVTMUV) )y
= V' O)(TV))y — ﬁ{v, V()

SO
/ (T)) of () dv = / W)y dv - 5o / (Vo) dv
= (P)y — ﬁ/{v, VI (v) dv.

Using the spectrum condition, and rearranging, we find

d 2
/(T(v)),/,f(v) dv > ——— (E\/f(v)) dv

127

for all ‘reasonable’ ¥r. The only problem is that the map v — V (v) does not lift to a
diffeomorphism of S, but this can be resolved by an approximation argument [33],
in which all the above manipulations are justified and the class of ‘reasonable’ i
is specified. The necessary assumptions on the theory are shown to hold for CFTs
constructed from unitary, positive energy Virasoro representations. It was also proved
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that the bound is sharp if the theory has a conformally invariant vacuum. Any non-
negative f € .’(R) can be used for smearing. Combining the results from left- and
right- movers, one has

d 2
/(Too(t, 0)) yf (1) dt > —é/ (E\/f(t)) di (10.18)

for an average along a timelike inertial curve (assuming the central charges of left- and
right movers take a common value ¢). The QEIs derived by Flanagan and Vollick for
massless scalars and Dirac fields respectively [48, 102] correspond to ¢ = 1, while
the massless Majorana field, for example, has ¢ = 1/2 and a tighter bound.

This argument is notable, partly as the first examples of QEIs for non-free fields,
but also because it does not depend on a ‘sum of squares’ form of the energy density.
It is also model-independent, applying to all unitary positive energy CFTs in one go.
Further developments of these and related ideas can be found in [12]. These bounds
have also been derived by holographic arguments [81] (based on a holographic proof
of ANEC [74]).

10.5.1.2 The Ising Model and Other Integrable Theories

The massive Ising model is a very simple integrable QFT in 1 + 1-dimensional
Minkowski space.'! Itis a theory of massive bosons, but differs in essential ways from
the free massive free field. In particular, it has nontrivial scattering (albeit simple: the
two-particle S-matrix is minus the identity) and there are single particle states with
negative energy density.'> Moreover, the energy density of a multi-particle combina-
tion of such states is not the sum of their individual energy densities. A simplifying
feature is that the Fock space of the theory also supports an auxiliary free Majorana
field, whose stress—energy tensor generates the energy momentum operators (which
are determined by the translation symmetry). Therefore the Majorana stress—energy
tensor can be identified as the stress—energy tensor of the Ising model.'*> However, as
the latter obeys a state-independent QEI, it follows that the Ising model does too, as
was shown in [4]. One has, for any inertial curve y with proper time parametrisation
and 2-velocity u?,

1 o
/ (Tapuu®) (y (1)) 1g(0)*dt > e / |8 (u) [*u* Orsing (u/m) du,

where the expectation value is taken in any sufficiently regular state of the theory
and g € Cj°(R) as usual. Here, m is the boson mass and

"By Wick rotation it is related to a continuum limit of the statistical mechanical Ising model above
the critical temperature.

12This cannot happen in the free scalar field, because the classical field obeys WEC.
13Note however that the Ising model is not equivalent to the Majorana theory.
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Orsing) = V1 —v2 —v2log(v + V12 — 1).

This is the first example of a truly interacting theory in which QEIs have been
established. One might wonder whether the same is true of other integrable QFTs
and an investigation has been begun in [3] for a class of theories including the sinh-
Gordon model. Generically, these models admit single-particle states with locally
negative energy densities (an effect that become more pronounced as the interaction
strength increases). In fact, there is some freedom in determining the stress—energy
tensor of these models, which is constrained if QEIs are required to hold, in some
cases leading to a unique stress—energy tensor. To date, the analysis of [3] is restricted
to single-particle states, but it provides a basis for a full investigation of QEIs in
integrable QFT.

10.5.1.3 Nonminimal Coupling

As already emphasised, the classical minimally coupled scalar field obeys the WEC
by virtue of a decomposition of the energy density as a sum of squares. This is not
true for the nonminimally coupled field, and indeed the energy density can be made
arbitrarily negative at any given point (see, e.g. [60] for a discussion). It turns out
that this behaviour is, nonetheless, constrained by locally averaged energy conditions
reminiscent of the QEIs [36]. In spacetime dimensions n > 2, for example, let ¢ be
any solution to the nonminimally coupled field equation ((J + m? + £R)¢ = 0 with
& € [0, 1/4]. Then, if y is any complete causal geodesic with affine parameter A, the
corresponding stress—energy tensor obeys

g 1 g 1 .
/ di Ty ?yPb1e? = —25/ i {Iaxglz + ERab)’a)’b|g|2 - (Z - s) Ryzlglz} ¢*
Y Y

forany g € C3°(R). In particular this result includes the case of conformal coupling.
Note that the left-hand side involves both the field and its derivatives (up to second
order), while the right-hand side only involves the field: the bound exhibits a ‘gain
in derivatives’.

The corresponding quantum theory was discussed in [37], where it was shown
that (in Minkowski space) the nonminimally coupled field can violate WEC very
badly indeed. The argument is the following: the failure of classical WEC allows
the existence of one-particle states with negative energy density near the origin, say.
By a scaling argument these can be taken to have any desired spacetime extent; as
tensoring N such states together multiplies the energy density by N, we see that
states of arbitrarily negative energy density can be sustained over arbitrarily large
spacetime volumes. However, there is a cost. The overall energy of these states is
positive, and grows more rapidly than the scales characterising the negative energy
density: the production of negative energy density is highly inefficient.

By modifying the argument in Sect. 10.4.2, one can establish QEI bounds for
the nonminimally coupled field in general globally hyperbolic spacetimes that are
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state-dependent [37]. In these bounds the averaged energy density is bounded below
by state-independent terms together with terms that involve averages of the expecta-
tion value of the Wick square of the field in the state of interest—again demonstrating
a ‘gain in derivatives’ phenomenon. One way of understanding this bound is to regard
the Wick square as a thermal observable, specifically as a square of the local tempera-
ture. Similarly, the energy density could be regarded as a measure of the fourth power
of the local temperature. This again shows how the lower bound is more stringent
than any upper bound could be. The thermal interpretation makes best sense in the
context of states of ‘local thermal equilibrium’ (LTE); Schlemmer and Verch have
shown that one may also prove QEI-like results directly for such states, valid for any
coupling constant and mass—see [91] for this and references to the LTE literature.

10.5.1.4 Interacting Fields

There is now a fairly complete theory of quantum energy inequalities for free fields
in globally hyperbolic spacetimes of any dimension (although optimal bounds are
lacking in general). As we have seen, similar results hold in a large class of conformal
field theories in two dimensions. The situation for more general interacting QFTs is
more complicated, of course, and less is known. The following remarks summarise
the state of knowledge:

e One cannot expect state-independent QEIs to hold for worldline averaging; as
mentioned, these can even fail in the nonminimally coupled theory. They also
fail for theories with infinitely many minimally coupled fields, if the number of
fields with mass below m grows exponentially in m [26]. Moreover, on physical
grounds, we can expect that long-lasting negative energy densities can be sustained
by quantum fields as shown by the example of the Casimir effect, modelling the
plates as certain states of a full interacting theory. A computation along these lines
was undertaken by Olum and Graham [83]; although there is a net positive energy
density near the ‘plates’, their set-up maintains a negative energy density near the
mid-point between them.

However, it is possible that modified QEIs hold; for example, that suitable space-
time averages of the energy density can be bounded below when the scale of spatial
averaging is comparable with that of temporal averaging (thus removing the objec-
tion posed by the Casimir example). This suggestion appears in [19, p. 176] and
has been proposed as a spacetime averaged weak energy condition (SAWEC) in
[21].

The example of the nonminimally coupled scalar field shows that SAWEC cannot
hold unconditionally. However, if there are interactions, the trick of tensoring
together large numbers of single particle states to multiply up the energy density
no longer works. Similarly, in the case of infinitely many fields, the mass spectra
for which QEISs fail are essentially those for which other properties (nuclearity and
the split property) also fail [26]. It is thus conceivable that well-behaved interacting
models obey SAWEC or a similar condition.
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e In terms of positive results, the averaged null energy condition is known to hold
in general two-dimensional quantum field theories [97]. In spacetime dimension
of 3 or more, it has been proved that for a wide class of theories obeying the
‘microscopic phase space condition’ there are (generally state-dependent) lower
bounds on results on quantities that are ‘classically positive’, i.e. arise as composite
fields in the operator product expansion of (sums of) squares [5]. For instance, one
can obtain a bound on averages of the Wick square :®2: because it is a composite
field in the OPE of @ (x)® (y).'* As yet, itis not known whether there are interacting
theories in which the energy density can be

e A completely different and new direction is provided by the Quantum Null Energy
Condition (QNEC) which asserts a state-dependent bound on the expectation
value of the null-projected stress—energy tensor T,,k°k” at a point. The lower
bound is provided by a second derivative of an entropy (non-uniquely) associated
with the state and the null vector k. Such results have been established for super-
renormalizable interacting theories [6] and also by holographic means for large-N
(deformed) CFTs in Minkowski spacetime of general dimension [77].

10.5.2 Higher Moments and Probability Distributions

The discussion so far concerns the expectation value of the smeared stress—energy
tensor or other similar quantities in arbitrary (physically reasonable) states. Here, we
discuss what information can be gleaned concerning the underlying probability dis-
tribution of individual measurements of such quantities when the system is prepared
in some specific state.

This has been worked out in detail for CFT in 1 + 1 dimensions [30]. The idea is
to study the probability distribution through its moment generating function

— W2 | T()"2
M[Mf]zzw

n!

)

n=0

where §2 is the vacuum state and 7' (f) is one of the chiral components of the stress—

energy tensor averaged against test function f. In the special case where f(u) =
2/.2 .

e /7" /(1./m) it was shown that

1 —p/(me?)

e~/ () c/24
Mlpfl=

Inverting a Laplace transform, the probability density for measurement values of
T (f) taken in the vacuum state is

14The fact that there is a state-independent lower bound in this case can be attributed to the fact that
the only singular term in the OPE is a multiple of the identity.
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Fig. 10.3 The probability P(w)
density P(w) plotted for
c=1

o a—1
P() =9+ wo)’g(‘”:—‘““) exp(—B(@ + @),
@

(a shifted Gamma distribution) with parameters

c c 5
o=— B=m1",

D= rer 24

which has an integrable singularity atlower limit for ¢ < 24—see Fig. 10.3. Using the
Hamburger uniqueness theorem [93] it may be shown that this is the only probability
distribution corresponding to the moments (§2 | T(f)"$2).

The probability distribution is clearly highly skewed. We see that the lower bound
of the support coincides precisely with the sharp lower bound on the expectation val-
ues of 7'(f) for the Gaussianf,i.e. —c/(24n 72)—as it should for general reasons [30].
Thus the QEI bound, originally conceived as a constraint on the expectation value
of the smeared energy density, is also a constraint on the minimum value that can be
achieved in an individual measurement of this quantity.

The probability of obtaining a negative value is given in terms of incomplete
I"-functions:

0
Prob(ew < 0) = / P(w)dw = 1 — %.

For ¢ = 1, this results in a value 0.89—an overwhelming likelihood of obtaining a
negative value from a measurement in the vacuum state. This computation refers to
just one of the chiral components of 7, and for averaging along the corresponding
light-ray. For Gaussian averages of the energy density along an inertial curve and
¢ = 1, as for the massless scalar field, the probability of obtaining a negative value
is 0.84.

It is striking that negative energy densities occur with such high probability in
individual measurements made in the vacuum state. It is not known with what prob-
ability negative energy densities occur in any other state, or for test functions other
than a Gaussian, but it would be of interest to extend the CFT analysis further.
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In four dimensions, similar questions have been studied in massless free field
theory for averaging against Lorentzian sampling functions [31] (many of the results
immediately transfer with slight modification to the electromagnetic field). Here,
closed form results could not be obtained but strong numerical evidence was pre-
sented that the probability distribution for Lorentzian-smeared Wick square is again a
shifted Gamma distribution): suitably normalised, all the moments turn out to be inte-
gers, and coincide with those of the fitted distribution exactly up to the 65th moment
(calculations up to this level required some novel combinatorics [42]). The situation
for the energy density is more complicated. The moments grow very rapidly ~(3n)!
putting them beyond the scope of theorems on unique solution to the moment prob-
lem [93]. Nonetheless, every probability distribution consistent with the moments
has a long tail

173

A(U/c)—7/ée—(v/c)1/3 > Prob(w > v) > B(v/c) 43I0

for constants A, B and c. Interestingly, this means that large positive QFT energy
density fluctuations are more likely than comparable fluctuations from thermal noise,
which may have implications for spontaneous nucleation of black holes [31].

What happens if the Lorentzian is replaced by a compactly supported function?
The answer turns out to depends sensitively on the details of the sampling function
as it switches on and off [29]. Averaging along the worldline results in even faster
growth of the moments for the energy density on the order of (3n/«)!, where the
parameter « is associated with the fall-off in of the transform f (@) ~ e Pl (the
previous result for Lorentzian sampling is consistent with the limiting case o = 1).
In the time domain, the switch-onis f(f) ~ At~ exp(—Bt~") for constants A, B > 0
where v = /(1 —a), u = (2 — o) /(2(1 — «)) and we have supposed that the sam-
pling function switches on at t = 0 for simplicity. The corresponding probability
distribution must have an even more slowly decaying tail than before. On the other
hand, averaging over spacetime volumes, rather than worldlines, results in moments
that grow much more slowly, and might come within the scope of the Stieltjes unique-
ness theorem in some cases [28] (see [70, Sect. II.D] for a summary). Even in these
cases, the vacuum fluctuations dominate thermal fluctuations at high enough energy
scale.

10.6 Applications of the QEIs

We have concentrated to a large extent on the QEI bounds themselves and their
properties. By way of outlook, we briefly describe some of their applications.
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10.6.1 Exotic Spacetimes

Any sufficiently smooth Lorentzian metric is a solution to the Einstein equations for
some stress—energy tensor. Many exotic spacetime models (wormholes, warp drives,
etc.) require stress—energy tensors that violate the classical energy conditions, and
thus cannot be supported by for example a perfect fluid with positive energy density
and pressure. Given that the energy conditions no longer hold in all circumstances
in QFT, it is natural to consider whether exotic spacetimes can be supported by the
expected stress—energy tensor in some quantum state. >

The QEIs can be used to provide strong constraints on the spacetime geometry
in these scenarios (see, e.g. [41, 57, 86]): if the stress—energy tensor is supposed
to be provided by a QFT, then it must obey the constraints that this entails. Of
course this assumes that the QFTs involved obey QElIs at all. As described above,
this is true for many free models, even in general curved spacetimes, and there is
encouraging evidence that general interacting theories should obey related bounds
with some caveats—almost certainly they do not obey state-independent worldline
bounds, but a reasonable expectation is that they satisfy state-dependent QEIs (or
possibly spacetime averaged conditions such as SAWEC), which make the long-
term presence of large-magnitudes of negative energy density disproportionately
expensive (in terms of the positive energy required overall).

A second problem is to determine the QEI bound. In principle the calculations can
be done exactly, even in curved spacetimes [43] but tractable closed form expressions
are not easily come by in general (except in weakly curved spacetimes [79] in a
leading approximation). However, as one is typically interested only in order-of-
magnitude estimates for the feasible parameters of the exotic spacetime (for example,
the wormhole throat radius) one can be satisfied with approximations to the QEISs.
The typical assumption made is that on sufficiently small scales, the spacetime can
be assumed approximately Minkowskian and therefore the Minkowski QEIs apply
for averages over sufficiently small scales. Therefore one can expect a results such
as those of Sect. 10.3.2.2 to apply to the energy density along a timelike geodesic y
in a proper time parametrisation: that is, one has

max P Ty = ——.
T

where the maximum is taken over a proper time interval of duration t and the constant
C ~ 3.17. Alternatively, one can apply similar considerations to a QNEI (see (10.12))
to obtain

C'(yka)?

max kKT, > —
=

’

15 This sets important questions relating to fluctuations and back-reaction to the side but is at least
a first step to understanding whether such spacetimes might be permitted in quantum gravity.
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where y is a timelike geodesic as before and k is a smooth null vector field so that
y - k is approximately constant over the proper time interval in question. In this case,
C’' ~ 4.23—see [41, Sect.IV].

Via the Einstein equations, these bounds become geometric constraints and pro-
duce significant restrictions on wormhole geometry [41, 57] and on the Alcubierre
warp drive spacetime [2, 86]. The reader is referred to these references for the
specifics. An important aspect is to clarify what values of t should be considered
‘sufficiently small’ for Minkowski bounds to apply. This can be worked out in detail
for massless fields in two-dimensions [23] (based on the QEI derived in [49]) and it
was shown that along an arbitrary timelike trajectory in proper time parametrisation
with 2-velocity u“ one has

/ (Tapu“u”)|g(v)* dT > —6i / |g(0)1*dt — L / lg(T)*(R — d‘a.) dr,
7T 24w

where R is the Ricci scalar and a“ = u?V,u¢ is the acceleration of the trajectory.
This bound holds provided that the region of y where g is non-zero is contained in
a single coordinate patch that can be conformally mapped to Minkowski space. The
first term on the right-hand side is what would be expected for an inertial trajectory in
Minkowski space, by the ¢ = 1 case of (10.18). One sees that acceleration and posi-
tive Ricci scalar tend to weaken the bound (recall that a®a. < 0 in our conventions),
but the Minkowski bound will be approximately valid provided that the sampling
time is small in relation to both max{R, 0}~'/? and max |a.a‘|~'/? over the sampling
region (and so that the sampling fits inside a coordinate patch as described above).

In four dimensions, the rule of thumb used is that the sampling duration should be
small in relation to the length scales set by suitable frame components of the Riemann
tensor (and acceleration scales), but a rigorous proof that this suffices has not been
given. At least in some cases, however, the rule of thumb is overconservative: for
static wormholes one can consider QEIs relative to a static Hadamard ground state
(assuming one exists) which are valid for sampling on arbitrarily large time scales.
See [41, Sect. VIII], where the resulting bounds on Morris—Thorne wormholes were
found to be more stringent by 5 orders of magnitude than those obtained by referring
to Minkowski bounds in the small.

10.6.2 States of Low Energy

The QEIs show that local averages energy density of the free scalar field are bounded
below on Hadamard states. Olbermann has turned this statement around in an inter-
esting way [82]. In a Robertson—Walker spacetime, fix a local time average of the
energy density along an isotropic worldline and minimise it over all homogeneous
isotropic pure quasifree states. The minimising state is then called a state of low
energy (SLE) and, crucially, is shown to be Hadamard. Of course, this state depends
on the choice of the averaging function used. By contrast, adiabatic states, which
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minimise instantaneous particle production, are not Hadamard in general. SLEs are
of interest, because they provide a direct construction of Hadamard states, equipped
with a good physical interpretation, in nonstationary backgrounds. They have been
used as reference states to study particle production in cosmological models [16].

10.6.3 Averaged Null Energy Condition

We have already mentioned that the QEIs can be used to establish the ‘difference’
averaged weak energy condition (AWEC) in stationary situations—see (10.14). The
situation for the averaged null energy condition (ANEC) is different, because of the
lack of QEIs for averaging along null lines [40]. Direct proofs of (difference) ANEC
exist in Minkowski space [50, 76, 97] and for suitable null geodesics in certain
curved spacetimes [103, 106, 107]. Alternatively, one may consider QNEIs on a
sequence of timelike curves that approach the given null.'® This provides a proof of
ANEC in spacetimes where the null geodesic is complete, achronal and surrounded
by a tubular neighbourhood in which the metric is flat [35]. In fact, what is shown
is that ANEC cannot be violated on a continuous family of timelike separated null
geodesics in the tube. Finally, Kontou and Olum have combined their work on QEIs
in spacetimes of small curvature [79] with the methodology of [35] to prove the
ANEC on achronal geodesics in such spacetimes, under the additional assumption
that the background satisfies the null convergence condition (i.e., the NEC holds for
the background stress—energy tensor) [78]. Being based on the absolute QEI [43],
this result is an absolute (rather than ‘difference’) form of ANEC.

10.6.4 Singularity Theorems

The energy conditions were originally introduced in GR to guarantee the focussing
behaviour needed in the proofs of the singularity theorems. An important question is
whether or not the QEI results provide sufficient control to guarantee that quantised
matter also obeys singularity theorems.

Although this question is far from resolved, the hypotheses of the singularity
theorems can be weakened to accommodate bounds motivated by the QEIs [32].
Unfortunately there is still a bit of a gap, because Hawking-style singularity theorems,
concerning congruences of timelike geodesics, require the SEC (for which there is not
a state-independent QEI) and Penrose-type results involve null geodesic congruences
(which are not suitable for QEI bounds). Nonetheless, this is encouraging, and one
can hope for more progress. For previous results along these lines see references
in [32].

160One could also regard ANEC as a limiting case of AWEC [56], but only if the states and spacetime
satisfy quite strong conditions at infinity.
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10.6.5 Applications of the Probability Distribution

It has already been mentioned that the probability distribution of energy-density
fluctuations appears to have a very slowly decaying tail for very large positive fluc-
tuations. Therefore there is a possibility for vacuum fluctuation effects to stand out
against a background of thermal or other relatively suppressed fluctuations. Recently,
Ford and Huang have applied this idea to consider enhancements to quantum tun-
nelling [70]—the idea is that a rare vacuum pressure fluctuation might push a charged
particle over a potential barrier thereby increasing the likelihood that it reaches the
other side. In certain regimes these effects may be observable and might have inter-
esting implications: simple calculations of nuclear fusion rates yield underestimates,
and it is argued in [70] that the vacuum fluctuations are of a sufficient magnitude
to account for the observed enhanced rate. It is also worth mentioning that, while
negative energy densities themselves are difficult to observe directly, the related phe-
nomenon of vacuum fluctuation suppression affects decay rates of excited atomic
states [51].

In a different direction, Carlip, Mosna and Pitelli [11] argued that if the energy
density fluctuations in two-dimensional dilaton quantum gravity are similar to those
in CFT then the positive energy tail causes strong focussing of light cones near the
Planck scale (outweighing the defocussing effects of negative energy densities) and
resulting in ‘asymptotic silence’ — the inability of nearby regions to communicate.
This may cast light on the physical mechanism for the dimensional reduction of
quantum gravity at short distance scales; see also [10] for further discussion and
references.
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Appendix: Microlocal Analysis and the Proof
of Theorem 10.1

As mentioned earlier, the rigorous proof of Theorem 10.1 requires techniques drawn
from microlocal analysis [69], which provides detailed information on the singular-
ities of distributions in a phase space perspective. We briefly summarise the main
points as they apply to QEIs (see also [22], and the recent review of the Hadamard
condition [75]).

Let u € 2'(X) be a distribution on a smooth n-dimensional manifold X. The
wavefront set WF (u) of u is a subset of the cotangent bundle 7*X defined as follows.
An element (x, k) € T*X is called a regular direction for u if there exists a test
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function ¢ € C3°(X) with ¢ (x) # 0 and a conic neighbourhood!” V of k in 77X so
that for each N > 1, the quantity

(1 + [1€1™) pu(e))|

is bounded on V. Here, | - || is an auxiliary norm on 77X and the Fourier transform
is taken with respect to a choice of coordinates x*, so that

du(l) = / &t d (x)u(x)d"x.

(one requires that the support of ¢ is contained in the coordinate patch). It is a
fundamental observation of the theory that this definition is independent of the choice
of norm and coordinates. The wavefront set is then defined as

WF (1) = {(x, k) € T*X : k # 0 and (x, k) is not a regular direction}.

Now suppose that (M, g) is a globally hyperbolic spacetime. The two-point func-
tion W, of a quantum state is a distribution on M x M and so WF (W) C T*M x M.
The remarkable fact is

Theorem 10.2 ([90, 95]) The two-point function Wy is Hadamard if and only if
WF(Wy) C Nt x N~

where N/~ is the bundle of future/past directed null covectors on (M, g).

This neatly coincides with the idea that the two-point function W, (x, y) should be
positive frequency in x and negative frequency in y. In fact, the wavefront set of a
Hadamard two-point function can be given exactly [90], but this will not be needed
here.

We can now resolve the remaining loose ends in the proof of Theorem 10.1.
Suppose that W, is Hadamard, and let P be a partial differential operator on M with
smooth coefficients. Then the wavefront set of (P ® P)W, obeys

WEF(PQP)Wy) C N+ x N~

because, in general, one has WF (Qu) C WF («) whenever Q is a partial differen-
tial operator with smooth coefficients (see [69, Chap. 8] for this and other general
properties of wavefront sets stated below).

Next, we want to form the restriction G (z, t") = (P @ P)Wa(y (1), y (t'))
where y is a smooth timelike curve. This amounts to taking a pull-back (y x y)*(P ®
P)W,. Microlocal analysis provides a sufficient criterion under which a pull-back
@*u can be defined, where ¢ : X — Y is smooth and u € 2'(Y). Namely, ¢*u exists

"That is, V contains an open set around k and is a cone, i.e. if £ € V then AL € V forall » > 0.
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if there is no (y, k) € WF (u) with the property that y = ¢(x) for some x € X and
¢*k = 0 (equivalently, that k annihilates the tangent space to ¢(X) at x). If this con-
dition is met then ¢*u can be defined (by extending the definition for pullbacks of
smooth functions) so that

WE (¢*u) C ¢*WF (u) := {(x, ¢*k) € T*X : (p(x), k) € WF (u)}.

In our case of interest, ¢ : R x R —> M x M by ¢(t, ') = (y(t), y(t’)) and the
tangent space to ¢(R?) at (z, t’) consists of all tangent vectors of the form

(wy (0), vy () € Ty o). penM x M,

where 1, v € R. The crucial point is that no (y(t), k; y(t), k') € #+ x A~ can
simultaneously annihilate all such vectors, because this would entail

pk -y () +vk' -y (@) =0

forall u,v € Rand hence k - y(t) = k' - y(r') = 0. But as k, k" are null (and non-
zero) and y is timelike this is impossible. Therefore the required pull-back G
exists, and one can compute further that

WF (p*(P®P)Ws) C {(1,¢; 7, ) e T"RxR:¢ >0, ¢ <0}  (10.19)

simply because k and y are future-pointing, while &’ is past-pointing. All this holds
both for our state of interest and for the reference state.

The second unresolved issue is to establish the finiteness of the bound in (10.10).
For real-valued g € C§°(R), note that

GY (%ar 8a) = / dr dv'G\ (1, 1) g(1)g(t))e @ e (10.20)
= ((g ® g)Gﬁf)) MN—a, @) (10.21)

according to our convention for the Fourier transform. A general result states that if u
is a compactly supported distribution on R”, then the set X' (1) = {k € R" : (x,k) €
WF (u) for some x € R"} has the property that every non-zero k in its complement has
a conic neighbourhood on which (1 4 ||£]|¥)|i(£)| is bounded for every N. Applying
this result to (¢ ® g)GYy and using (10.19) we find

b ((g ® g)G;”) CR* x R™

Inparticular, (—1,1) ¢ X((g ® g)G;eP)), and ((g ® g)GI(QP))A(—a, «) decays rapidly
as @ — +o0. By virtue of (10.21), the bound in (10.10) is therefore finite and the
proof of Theorem 10.1 is complete.
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Chapter 11
Warp Drive Basics

Miguel Alcubierre and Francisco S.N. Lobo

11.1 Introduction

Recently much interest has been revived in superluminal travel, due to the research in
wormhole geometries [1, 2] and superluminal warp drive spacetimes [3]. However,
despite the use of the term superluminal, it is not possible to locally achieve faster
than light travel. In fact, the point to note is that one can make a round trip, between
two points separated by a distance D, in an arbitrarily short time as measured by
an observer that remained at rest at the starting point, by varying one’s speed or
by changing the distance one is to cover. It is a highly nontrivial issue to provide a
general global definition of superluminal travel [4, 5], but it has been shown that the
spacetimes that permit “effective” superluminal travel generically suffer from several
severe drawbacks. In particular, superluminal effects are associated with the presence
of exotic matter, that is, matter that violates the null energy condition (NEC).

In fact, it has been shown that superluminal spacetimes violate all the known
energy conditions and, in particular, it was shown that negative energy densities
and superluminal travel are intimately related [6]. Although it is thought that most
classical forms of matter obey the energy conditions, they are violated by certain
quantum fields [7]. Additionally, specific classical systems (such as non-minimally
coupled scalar fields) have been found that violate the null and the weak energy
conditions [8, 9]. It is also interesting to note that recent observations in cosmology,
such as the late-time cosmic speed-up [10], strongly suggest that the cosmological
fluid violates the strong energy condition (SEC), and provides tantalizing hints that
the NEC is violated in a classical regime [10-12].

In addition to wormhole geometries [1, 2], other spacetimes that allow super-
luminal travel are the Alcubierre warp drive [3] and the Krasnikov tube [13, 14],
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which will be presented in detail below. Indeed, it was shown theoretically that the
Alcubierre warp drive entails the possibility to attain arbitrarily large velocities [3],
within the framework of general relativity. As will be demonstrated below, a warp
bubble is driven by a local expansion of space behind the bubble, and an opposite
contraction ahead of it. However, by introducing a slightly more complicated metric,
Natério [15] dispensed with the need for expansion of the volume elements. In the
Natdrio warp drive, the expansion (contraction) of the distances along the direction
of motion is compensated by a contraction (expansion) of area elements in the per-
pendicular direction, so that the volume elements are preserved. Thus, the essential
property of the warp drive is revealed to be the change in distances along the direction
of motion, and not the expansion/contraction of space. Thus, the Natdrio version of
the warp drive can be thought of as a bubble sliding through space.

However, an interesting aspect of the Alcubierre warp drive is that an observer
on a spaceship, within the warp bubble, cannot create nor control on demand a
superluminal Alcubierre bubble surrounding the ship [13]. This is due to the fact
that points on the outside front edge of the bubble are always spacelike separated
from the centre of the bubble. Note that, in principle, causality considerations do
not prevent the crew of a spaceship from altering the metric along the path of their
outbound trip, by their own actions, in order to complete a round trip from the Earth
to a distant star and back in an arbitrarily short time, as measured by clocks on
the Earth. To this effect, an interesting solution was introduced by Krasnikov, that
consists of a two-dimensional metric with the property that although the time for a
one-way trip to a distant destination cannot be shortened, the time for a round trip, as
measured by clocks at the starting point (e.g. Earth), can be made arbitrarily short.
Soon after, Everett and Roman generalized the Krasnikov two-dimensional analysis
to four dimensions, denoting the solution as the Krasnikov tube [14]. Interesting
features were analysed, such as the effective superluminal nature of the solution,
the energy condition violations, the appearance of closed timelike curves and the
application of the Quantum Inequality (QI) deduced by Ford and Roman [16].

Using the QI in the context of warp drive spacetimes, it was soon verified that
enormous amounts of energy are needed to sustain superluminal warp drive space-
times [17, 18]. However, one should note the fact that the quantum inequalities might
not necessarily be fundamental, and anyway they are violated in the Casimir effect.
To reduce the enormous amounts of exotic matter needed in the superluminal warp
drive, van den Broeck proposed a slight modification of the Alcubierre metric that
considerably improves the conditions of the solution [19]. It was also shown that
using the QI, enormous quantities of negative energy densities are needed to support
the superluminal Krasnikov tube [14]. This problem was surpassed by Gravel and
Plante [20, 21], who in similar manner to the van den Broeck analysis, showed that
it is theoretically possible to lower significantly the mass of the Krasnikov tube.

However, applying the linearized approach to the warp drive spacetime [22], where
no a priori assumptions as to the ultimate source of the energy condition violations are
required, the QI are not used nor needed. This means that the linearized restrictions
derived on warp drive spacetimes are more generic than those derived using the
quantum inequalities, where the restrictions derived in [22] hold regardless of whether
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the warp drive is assumed to be classical or quantum in its operation. It was not meant
to suggest that such a reactionless drive is achievable with current technology, as
indeed extremely stringent conditions on the warp bubble were obtained, in the weak-
field limit. These conditions are so stringent that it appears unlikely that the warp
drive will ever prove technologically useful.

This chapter is organized in the following manner: In Sect. 11.2, we present the
basics of the warp drive spacetime, showing the explicit violations of the energy
conditions, and a brief application of the QI. In Sect. 11.3, using linearized theory,
we show that significant constraints in the weak-field regime arise, so that the analysis
implies additional difficulties for developing a “strong field”” warp drive. In Sect. 11.4,
we consider further interesting aspects of the warp drive spacetime, such as the
“horizon problem”, in which an observer on a spaceship cannot create nor control
on demand a superluminal Alcubierre bubble. In Sect. 11.5, we consider the physical
properties of the Krasnikov tube, that consists of a metric in which the time for a
round trip, as measured by clocks at the starting point, can be made arbitrarily short.
In Sect. 11.6, we consider the possibility of closed timelike curves in the superluminal
warp drive and the Krasnikov tube, and in Sect. 11.7, we conclude.

11.2 Warp Drive Spacetime

Alcubierre proved that it is, in principle, possible to warp spacetime in a small bubble-
like region, within the framework of general relativity, in a manner that the bubble
may attain arbitrarily large velocities. The enormous speed arises from the expansion
of spacetime itself, analogously to the inflationary phase of the early universe. More
specifically, the hyper-fast travel is induced by creating a local distortion of spacetime,
producing a contraction ahead of the bubble, and an opposite expansion behind it.

11.2.1 Alcubierre Warp Drive

In Cartesian coordinates, the Alcubierre warp drive spacetime metric is given by
withG =c=1)

ds? = —dt* +dx* +dy* + [dz —v(t) f(x,y,2— 20(0)) dt]*, (11.1)

where v(t) = dzo(t)/dt is the velocity of the warp bubble, moving along the pos-
itive z-axis. The form function f(x, y, z) possesses the general features of hav-
ing the value f = 0 in the exterior and f = 1 in the interior of the bubble. The
general class of form functions, f(x, y, z), chosen by Alcubierre was spherically
symmetric: f(r) with r = /x2 + y2 + z2. Then f(x, v,z — z0(t)) = f(r(r)) with
r(0) = {Iz = 200)P + x> +y*}'".
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We consider the specific case given by

h + R)] — tanh —R
Fr) = tanh [o (r thl]nh(;a;) [o(r )] ’ (11.2)

where R > 0 and o > 0 are two arbitrary parameters. R is the radius of the warp
bubble, and o can be interpreted as being inversely proportional to the bubble wall
thickness. If o is sufficiently large, the form function rapidly approaches a fop hat
function, i.e. f(r) =1ifr € [0, R],and f(r) =0ifr € (R, 00), for o — 0.

It can be shown that observers with the four velocity

U*=(@1,0,0,vf), (11.3)

and U, = (—1,0,0, 0) move along geodesics, as their 4-acceleration is zero, i.e.
at* = U" U*., = 0. These observers are usually called “Eulerian observers” in the
3+1 formalism, as they move along the normal directions to the spatial slices [3].
The spaceship, which in the original formulation is treated as a test particle which
moves along the curve z = z( (), can easily be seen to always move along a timelike
curve, regardless of the value of v(¢). One can also verify that the proper time along
this curve equals the coordinate time, by simply substituting z = zo(¢) in Eq. (11.1).
This reduces to dt = dt, taking into account dx = dy = 0 and f(0) = 1.

Consider a spaceship placed within the Alcubierre warp bubble. The expansion
of the volume elements, & = U*,,, is givenby 6 = v (9f/9z). Taking into account
Eq. (11.2), we have

z2—20 df(r)

0=v
r dr

(11.4)
The centre of the perturbation corresponds to the spaceship’s position zo(z). The
volume elements are expanding behind the spaceship, and contracting in front of it,
as shown in Fig. 11.1.

11.2.2 Superluminal Travel in the Warp Drive

To demonstrate that it is possible to travel to a distant point and back in an arbitrary
short time interval, consider two distant stars, A and B, separated by a distance D in
flat spacetime. Suppose that, at the instant 7y, a spaceship moves away from A, using
its engines, with a velocity v < 1, and finally comes to rest at a distance d from A. We
shall, for simplicity, assume that R << d < D. Now, at this instant the perturbation
of spacetime appears, centred around the spaceship’s position, and pushing it away
from A, and rapidly attains a constant acceleration, a. Consider that now at half-
way between A and B, the perturbation is modified, so that the acceleration rapidly
varies from a to —a. The spaceship finally comes to rest at a distance, d, from B, at
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Fig. 11.1 The plot depicts the expansion of the volume elements of an Alcubierre warp bubble
moving along the positive z-axis, with an arbitrary velocity v(z). Note that the volume elements are
expanding behind the spaceship, and contracting in front of it. See the text for more details

which point the perturbation disappears. The spaceship then moves to B at a constant
velocity in flat spacetime. The return trip to A is analogous.

Consider that the variations of the acceleration are extremely rapid, so that the
total coordinate time, 7', in a one-way trip will be

T=2(6—1+,/D;2d). (11.5)
1% a

The proper time of an observer, in the exterior of the warp bubble, is equal to the
coordinate time, as both are immersed in flat spacetime. The proper time measured
by observers within the spaceship is given by:

r=2(i+‘/D;2d). (11.6)
yv a

with y = (1 — v?)~!/2, The time dilation only appears in the absence of the pertur-
bation, in which the spaceship is moving with a velocity v, using only its engines in
flat spacetime.

Using R < d < D, we can then obtain the following approximation t ~ 7' ~
2./D/a, which can be made arbitrarily short, by increasing the value of a. This
implies that the spaceship may travel faster than the speed of light, however, it
moves along a spacetime temporal trajectory, contained within its light cone, as light
suffers the same distortion of spacetime [3].
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11.2.3 The Violation of the Energy Conditions

11.2.3.1 The Violation of the WEC

As mentioned in the previous chapters, the weak energy condition (WEC) states
T, U* U" > 0,1in which U* is a timelike vector and 7},, is the stress—energy tensor.
As mentioned in Chaps.9 and 10, its physical interpretation is that the local energy
density is positive, and by continuity it implies the NEC. Now, one verifies that the
WEC is violated for the warp drive metric, i.e.

V2 ar\>  (af\’
T, U U =—— | |2 - 0, 11.7
" 32r (8x) +(8y) = (117

and by taking into account the Alcubierre form function (11.2), we have

1 20,2 2 d 2
Ty UMDY = — VO EYD (ATNT (11.8)
32 r2 dr

By considering an orthonormal basis, we verify that the energy density of the warp
drive spacetime is given by T;; = Tjp U RU?, which is precisely given by Eq. (11.8).
It is easy to verify that the energy density is distributed in a toroidal region around
the z-axis, in the direction of travel of the warp bubble [18], as may be verified from
Fig. 11.2. It is perhaps instructive to point out that the energy density for this class
of spacetimes is nowhere positive. '

In analogy with the definitions in [25, 26], one may quantify the “total amount”
of energy condition violating matter in the warp bubble, by defining the “volume
integral quantifier”?

3 v 3 v? af\? 2
Myap = | Pwap d’x = | T, UM U d’x = I y redr. (11.10)
r

Nt is also interesting to note that the inclusion of a generic lapse function @ (x, y, z, t), in the metric,
decreases the negative energy density, which is now given by

0 A EAY
i S [(ax) (&) ] e

One may impose that @ may be taken as unity in the exterior and interior of the warp bubble, so that
proper time equals coordinate time. In order to significantly decrease the negative energy density
in the bubble walls, one may impose an extremely large value for the lapse function. However,
the inclusion of the lapse function suffers from an extremely severe drawback, as proper time as
measured in the bubble walls becomes absurdly large, dt = « dt, for o > 1.

2We refer the reader to [25, 26] for details.
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Fig. 11.2 The energy density is distributed in a toroidal region perpendicular to the direction of
travel of the spaceship, which is situated at zo(#). We have considered the following values, v = 2
and R = 6, with 0 = | and o = 4 in the left and right plots, respectively. See the text for more
details

This is not the total mass of the spacetime, but it characterizes how much (negative)
energy one needs to localize in the walls of the warp bubble. For the specific shape
function (11.2) we can estimate

Myap ~ —V* R? 0, (11.11)
so that one can readily verify that the energy requirements for the warp bubble scale
quadratically with bubble velocity and with bubble size, and inversely as the thickness
of the bubble wall [22].
11.2.3.2 The Violation of the NEC
As mentioned before in the previous chapters, the NEC states that 7),, k* k" > 0,

where k* is any arbitrary null vector and 7,, is the stress—energy tensor. The NEC
for a null vector oriented along the £Z directions takes the following form

RN ASNZIAY v (3Ef  9Ef
Ty KK = = [(5) +(5) ig(ﬁjua—yz). (11.12)

Note that if we average over the +Z directions we have the following relation

, ) AT TAY
[Thuw KL K+ T K2 2] = = [(5) +(—) . (1113)

N =

dy

which is manifestly negative, and implies that the NEC is violated for all v. Fur-
thermore, note that even if we do not average, the coefficient of the term linear in v
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must be nonzero somewhere in the spacetime. Then at low velocities, this term will
dominate and at low velocities the un-averaged NEC will be violated in either the
+Z or —z directions.

11.2.4 The Quantum Inequality Applied to the Warp Drive

It is of interest to apply the QI to the warp drive spacetimes [18], rather than deduce
the QI in this section, we refer the reader to the chapter on the quantum energy
inequalities. By inserting the energy density, Eq. (11.8), into the QI, one arrives at
the following inequality

+oo 2 2
l‘o/ ﬂ (ﬁ) dt < i (11.14)

o 12 \dr) 2+ 7 prty’

where the quantity p = (x2 + yz) "2 i5 defined for notational convenience.

One may consider that the warp bubble’s velocity is roughly constant, i.e.
vs(t) ~ vp, by assuming that the time scale of the sampling is sufficiently small
compared to the time scale over which the bubble’s velocity is varying. Now, tak-
ing into account the small sampling time, the (¢> + tg)_l term becomes strongly
peaked, so that only a small portion of the geodesic is sampled by the QI integral.
Consider also that the observer is situated at the equator of the warp bubble at r = 0
[18], so that the geodesic is approximated by x(¢) = f(p)vpt, and consequently
r(t) = [ (f(p) = D+ p?]"%,

For simplicity, without a significant loss of generality, and instead of taking into
account the Alcubierre form function (11.2), one may consider a piece-wise contin-
uous form of the shape function given by

1 r<R %
fre@)=1-420—R—-%) R—2<r<R+%, (11.15)
0 r>R %

where R is the radius of the bubble, and A the bubble wall thickness [18]. Note
that A is related to the Alcubierre parameter o by setting the slopes of the functions
f(@r) and f,. (r) to be equal at r = R, which provides the following relationship
A =[1+tanh’(eR)]’ /[2 o tanh(o R)].

Note that in the limit of large o R one obtains the approximation A ~ 2 /o, so
that the QI-bound simplifies to

1 /+oo di < 347 (11.16)
0 = = =, .
oo (P2 B2 +13) T vty B?
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where ﬁ = p/[vs(1 — f(p))]. Now, evaluating the integral in the left-hand side
yields the following inequality

T A? Vplo
3= 2 [7(1—f(,0))+1:| . (11.17)

It is perhaps important to note that the above inequality is only valid for sampling
times on which the spacetime may be considered approximately flat. Considering the
Riemann tensor components in an orthonormal frame [18], the largest component is
given by

(11.18)

| Rigis| =

302y [df ()]
4p2 | do |~

which yields rmin = 1//|Ri5i5] ~ 24/ (ﬁ v;,), considering y = p and the piece-
wise continuous form of the shape function. The sampling time must be smaller than
this length scale, so that one may define #) = 20 A/ («/5 vb). Assuming A/p ~

vpto/p <K 1, the term involving 1 — f(p) in Eq. (11.17) may be neglected, which
provides
3 3 Vp
A< ———. 11.19
T4V 7 o? ¢ )

Taking a specific value for «, for instance, considering o = 1/10, one obtains
A < 10%vp Lpjanck (11.20)

where Lpianck 1S the Planck length. Thus, unless v;, is extremely large, the wall thick-
ness cannot be much above the Planck scale.

It is also interesting to find an estimate of the total amount of negative energy that
is necessary to maintain a warp metric. It was found that the energy required for a
warp bubble is on the order of

E <=3 x 10 Mgyaxy vp » (11.21)

which is an absurdly enormous amount of negative energy,® roughly ten orders of
magnitude greater than the total mass of the entire visible universe [18].

3Due to these results, one may tentatively conclude that the existence of these spacetimes is improb-
able. But, there are a series of considerations that can be applied to the QI. First, the QI is only of
interest if one is relying on quantum field theory to provide the exotic matter to support the Alcu-
bierre warp bubble. However, there are classical systems (non-minimally coupled scalar fields) that
violate the null and the weak energy conditions, whilst presenting plausible results when applying
the QI (See Chap. 10). Second, even if one relies on quantum field theory to provide exotic matter,
the QI does not rule out the existence of warp drive spacetimes, although they do place serious
constraints on the geometry.


http://dx.doi.org/10.1007/978-3-319-55182-1_10

266 M. Alcubierre and E.S.N. Lobo

11.3 Linearized Warp Drive

In this section, we show that there are significant problems that arise in the warp drive
spacetime, even in the weak-field regime, and long before strong field effects come
into play. Indeed, to ever bring a warp drive into a strong field regime, any highly
advanced civilization would first have to take it through the weak-field regime [22].
We now construct a more realistic model of a warp drive spacetime where the warp
bubble interacts with a finite mass spaceship. To this effect, consider the linearized
theory applied to warp drive spacetimes, for non-relativistic velocities, v < 1.

Consider now a spaceship in the interior of an Alcubierre warp bubble, which is
moving along the positive z axis with a non-relativistic constant velocity [22], i.e.
v K 1. The metric is given by

ds®> = —dt*> +dx* +dy* +[dz —v f(x,y,z —vt)dt]*

—2®(x,y,z —vt) [dt2 +dx* + a’y2 +dz—v f(x,y,z—vt) dt)z] ,
(11.22)

where @ is the gravitational field of the spaceship. If @ = 0, the metric (11.22)
reduces to the warp drive spacetime of Eq. (11.1). If v = 0, we have the metric
representing the gravitational field of a static source.

We consider now the approximation by linearizing in the gravitational field of the
spaceship @, but keeping the exact v dependence. For this case, the WEC is given

by
2 2 2
To UMU® = p — 3V2—n [(%) 1 (%) } +0(9?), (11.23)

and assuming the Alcubierre form function, we have

1 V(242 (df )
T, U'U =p— ————|— 0(®?). 11.24
o P~ 30g r2 (dr) + 0@ ( )
Using the “volume integral quantifier”, as before, we find the following estimate
/Tw UrU" dx = Mgip —V* R* @ +/ 0(@?) d°x, (11.25)

which can be recast in the following form

Mapm = Mip + Myar, + / 0(@%) d’x . (11.26)

Now, demanding that the volume integral of the WEC be positive, then we have
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V2 R* 0 < Mgyp (11.27)

which reflects the quite reasonable condition that the net total energy stored in the
warp field be less than the total mass—energy of the spaceship itself. Note that this
inequality places a powerful constraint on the velocity of the warp bubble. Rewriting
this constraint in terms of the size of the spaceship Rg;p and the thickness of the
warp bubble walls A = 1/o, we arrive at the following condition

2 - Mship Rship A

< R TR (11.28)
ship

14

For any reasonable spaceship this gives extremely low bounds on the warp bubble
velocity.

One may analyse the NEC in a similar manner. Thus, the quantity 7, k*k" is
given by

. v 82f 82f V2 Bf 2 Bf 2 )
Ty Kk —Pig<ﬁ+a—yz)—g|:(a) +(@) + 0(@9).
(11.29)

Considering the “volume integral quantifier”’, we may estimate that
/T,w kK'k” d*x = Mgy — V' R* 0 +/ 0(®*) d’x . (11.30)

which is [to order O (®?)] the same integral we encountered when dealing with the
WEC. In order to avoid that the total NEC violations in the warp field exceed the
mass of the spaceship itself, we again demand that

V2 R* 0 < Mgp - (11.31)

More specifically, it reflects that for all conceivably interesting situations the
bubble velocity should be absurdly low, and it therefore appears unlikely that, by
using this analysis, the warp drive will ever prove to be technologically useful.

Finally, we emphasize that any attempt at building up a “strong-field” warp drive
starting from an approximately Minkowski spacetime will inevitably have to pass
through a weak-field regime. Taking into account the analysis presented above, we
verify that the weak-field warp drives are already very tightly constrained, which
implies additional difficulties for developing a “strong field” warp drive.*

4See Ref. [22] for more details.
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11.4 The Horizon Problem

Shortly after the discovery of the Alcubierre warp drive solution [3], an interesting
feature of the spacetime was found. Namely, an observer on a spaceship cannot create
nor control on demand an Alcubierre bubble, with v > ¢, around the ship [13]. It is
easy to understand this, by noting that an observer at the origin (with t = 0), cannot
alter events outside of his future light cone, |r| < t, with r = (x*> + y*> +z*)'/2. In
fact, applied to the warp drive, it is a trivial matter to show points on the outside front
edge of the bubble are always spacelike separated from the centre of the bubble.
The analysis is simplified in the proper reference frame of an observer at the centre
of the bubble, so that using the transformation 7/ = z — zo(¢), the metric is given by

ds> = —di® +dx*> + dy* +[dZ + (1 - fyvdi]’ . (11.32)

Now, consider a photon emitted along the +z axis (with ds?=dx=d y =0), so
that the above metric provides dz’/dt = 1 — (1 — f)v. If the spaceship is at rest at
the centre of the bubble, then initially the photon has dz/dt = v + 1 ordz'/dt = 1
(recall that f = 1 in the interior of the bubble). However, at a specific point z’ = z/,
with f =1 —1/v, we have dz'/dt = 0 [14]. Once photons reach z/.,, they remain
at rest relative to the bubble and are simply carried along with it. This implies that
photons emitted in the forward direction by the spaceship never reach the outside
edge of the bubble wall, which therefore lies outside the forward light cone of the
spaceship. This behaviour is reminiscent of an event horizon. Thus, the bubble cannot
be created, or controlled, by any action of the spaceship crew, which does not mean
that Alcubierre bubbles, if it were possible to create them, could not be used as a
means of superluminal travel. It only implies that the actions required to change the
metric and create the bubble must be taken beforehand by some observer whose
forward light cone contains the entire trajectory of the bubble.

The appearance of an event horizon becomes evident in the two-dimensional
model of the Alcubierre spacetime [27-29]. Consider that the axis of symmetry
coincides with the line element of the spaceship, so that the metric (11.1), reduces to

ds®> = —(1 =V fdt*> — 2vfdzdt + dz*. (11.33)

For simplicity, we consider a constant bubble velocity, v(¢) = v, and r = [(z —
vpt)*]'/2. Note that the metric components of Eq. (11.33) only depend on r, which
may be adopted as a coordinate, so if z > v,t, we consider the transformation r =
(z — vpt). Using this transformation, dz = dr + v; dt, the metric (11.33) takes the
following form:

_ 2 2
w = f() dr] L (11.34)

ds* = —A(r) [d; — ,
A(r) A(r)
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where A(r), denoted by the Hiscock function, is defined by A(r) =1 — v%
[1—f)].
Now, it is possible to represent the metric (11.34) in a diagonal form, using a new
time coordinate
vp [1— f(r)]

A(r)

dt =dt — dr, (11.35)

so that the metric (11.34) reduces to a manifestly static form, given by
dr?

2 _ 2
ds® = —A(r)drt +A(r)'

(11.36)

The 7 coordinate has an immediate interpretation in terms of an observer on board
of a spaceship, namely, t is the proper time of the observer, taking into account that
A(r) — 1 in the limit » — 0. We verify that the coordinate system is valid for any
value of r,if v, < 1.If v, > 1, we have a coordinate singularity and an event horizon
at the point ry in which f(r9) = 1 — 1/v, and A(rp) = 0.

11.5 Superluminal Subway: The Krasnikov Tube

It was pointed out above, that an interesting aspect of the warp drive resides in
the fact that points on the outside front edge of a superluminal bubble are always
spacelike separated from the centre of the bubble. This implies that an observer in
a spaceship cannot create nor control on demand an Alcubierre bubble. However,
causality considerations do not prevent the crew of a spaceship from arranging, by
their own actions, to complete a round trip from the Earth to a distant star and back in
an arbitrarily short time, as measured by clocks on the Earth, by altering the metric
along the path of their outbound trip. Thus, Krasnikov introduced a metric with an
interesting property that although the time for a one-way trip to a distant destination
cannot be shortened [13], the time for a round trip, as measured by clocks at the
starting point (e.g. Earth), can be made arbitrarily short, as will be demonstrated
below.

11.5.1 The Two-Dimensional Krasnikov Solution

The two-dimensional Krasnikov metric is given by

ds* = —(dt — dx)(dt + k(t, x)dx)
= —dt® + [1 — k(x, )] dxdt + k(x, ) dx?, (11.37)

where the form function k(x, ¢) is defined by
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k(t,x) =1—(2—8)0.(t —x) [0:(x) — O.(x + & — D)], (11.38)

with § and ¢ are arbitrarily small positive parameters. 6, denotes a smooth monotone

function
| LifE>e,
0-(§) = 0,if £ <0.

One may identify essentially three distinct regions in the Krasnikov two-
dimensional spacetime, which is summarized in the following manner:

The outer region: The outer region is given by the following set:
{x <0lU{x > D}U{x > t}. (11.39)

The two time-independent 6, -functions between the square brackets in Eq. (11.38)
vanish for x < 0 and cancel for x > D, ensuring k = 1 for all  except between
x =0 and x = D. When this behaviour is combined with the effect of the fac-
tor 6,(t — x), one sees that the metric (11.37) is flat, i.e. k = 1, and reduces
to Minkowski spacetime everywhere for + < 0 and at all times outside the
range 0 < x < D. Future light cones are generated by the following vectors:
ro=20;,+0,andlp = 9; — 0,.

The inner region: The inner region is given by the following set:
{x <t—e}N{e<x<D—¢}, (11.40)

so that the first two 6.-functions in Eq. (11.38) both equal 1, while 6. (x + ¢ —
D) =0, giving k = § — 1 everywhere within this region. This region is also flat,
but the light cones are more open, being generated by the following vectors:
rp =09 +0dyandl; = —(1 — )9, — 9.

The transition region: The transition region is a narrow curved strip in spacetime,
with width ~¢. Two spatial boundaries exist between the inner and outer regions.
The first lies between x = 0 and x = ¢, for t > 0. The second lies between x =
D —¢e¢andx = D, fort > D. Itis possible to view this metric as being produced
by the crew of a spaceship, departing from point A (x = 0), at ¢ = 0, travelling
along the x-axis to point B (x = D) ata speed, for simplicity, infinitesimally close
to the speed of light, therefore arriving at B with ¢t & D.

Thus, the metric is modified by changing k from 1 to 6 — 1 along the x-axis, in
between x = 0 and x = D, leaving a transition region of width ~¢ at each end for
continuity. However, as the boundary of the forward light cone of the spaceship at
t = 0is |x| = ¢, itis not possible for the crew to modify the metric at an arbitrary point
x before t = x. This fact accounts for the factor 6,(# — x) in the metric, ensuring a
transition region in time between the inner and outer region, with a duration of ~ ¢,
lying along the wordline of the spaceship, x & ¢. The geometry is shown in the (x, )
plane in Fig. 11.3.
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Fig. 11.3 The plot depicts
the Krasnikov spacetime in
the (x, ¢) plane, where the
vertical lines A and B are the
world lines of the stars A and
B, respectively. The world
line of the spaceship is
approximately represented
by the line segment AB. See
the text for more details

11.5.2 Superluminal Travel Within the Krasnikov Tube

The factored form of the metric (11.37), for ds* = 0, provides some interesting
properties of the spacetime with § — 1 < k < 1. Note that the two branches of the
forward light cone in the (¢, x) plane are given by dx/dt = 1 and dx/dt = —k. As
k becomes smaller and then negative, the slope of the left-hand branch of the light
cone becomes less negative and then changes sign. This implies that the light cone
along the negative x-axis opens out, as depicted in Fig. 11.4.

The inner region, with k = § — 1, is flat because the metric (11.37) may be cast
into the Minkowski form, applying the following coordinate transformations

1) 1)
dt’ =dt + (5 — 1) dx, dx' = (§> dx, (11.41)

and one verifies that the transformation is singular at § = 0, i.e. k = —1. Note that
the left branch of the region is given by dx’/dt’ = —1.
From the above analysis, one may easily deduce the following expression:

() (11.42)
dr 8 ) dr’ '
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Fig. 11.4 Forward light cones in the two-dimensional Krasnikov spacetime for k = 1, k = 0 and
k=6§-1

For an observer moving along the positive x’ and x directions, with dx’/dt’ < 1,
we have dt’ > 0 and consequently dr > 0, if 0 < § < 2. However, if the observer is
moving sufficiently close to the left branch of the light cone, given by dx’/dt’ = —1,
Eq. (11.42) provides us with dt /dt’ < 0,for§ < 1. Therefore we have dt < 0, which
means that the observer traverses backward in time, as measured by observers in the
outer region, with k = 1.

The superluminal travel analysis is as follows. Consider a spaceship departing
from star A and arriving at star B, at the instant t & D. Along this journey, the
crew of the spaceship modify the metric, so that k & —1, for simplicity, along the
trajectory. Now imagine that the spaceship returns to star A, travelling with a velocity
arbitrarily close to the speed of light, i.e. dx’/dt’ ~ —1. Therefore, from Eq. (11.41),
one obtains the following relation

dx 1 1
Vreturn = E ~ _% = m ~ 1 (11.43)

and dt < 0, for dx < 0. The return trip from star B to A is done in an interval of
Atreturn = — D /Viewarn = D/(8 — 1). Note that the total interval of time, measured at
A,is givenby Ty = D + Atwen = D3. For simplicity, consider ¢ negligible, so that
superluminal travel is implicit, as | Atyen| < D, 1f0 < § < 1, i.e. we have a spatial
spacetime interval between A and B. Now, T, is always positive, but may attain a
value arbitrarily close to zero, for an appropriate choice of 4.
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Note that for the case § < 1, it is always possible to choose an allowed value of
dx’/dt’ for which dt /dt' = 0, meaning that the return trip is instantaneous as seen by
observers in the external region. This follows easily from Eq. (11.42), which implies
that dr/dr’ = 0 when dx’/dt’ satisfies dx’/dt’ = —8/(2 — §), which lies between 0
and —1for0 <§ < 1.

11.5.3 The Four-Dimensional Generalization

Shortly after the Krasnikov two-dimensional solution, the analysis was generalized
to four dimensions by Everett and Roman [14], who denoted the solution as the
Krasnikov tube. The latter four-dimensional modification of the metric begins along
the path of the spaceship, which is moving along the x-axis, and occurs at the position
X, at time ¢t ~ x, which is the time of passage of the spaceship. Everett and Roman
also assumed that the disturbance in the metric propagated radially outward from
the x-axis, so that causality guarantees that at time ¢ the region in which the metric
has been modified cannot extend beyond p =t — x, where p = (y*> + zz)l/ *. The
modification in the metric was also assumed to not extend beyond some maximum
radial distance 0,,, < D from the x-axis.

Thus, the metric in the four-dimensional spacetime, written in cylindrical coordi-
nates, is given by [14]

ds? = —dt®> +[1 — k(t, x, p)ldx dt + k(t, x, p)dx*> + dp*> + p>d¢?*, (11.44)

where the four-dimensional generalization of the Krasnikov form function is given
by

k(t,x,0) =1— (2 —8)0:(pmax — )0t —x — p)[0:(x) — O:(x + & — D)].
(11.45)

Fort > D + p,4. one has a tube of radius p,,,, centred on the x-axis, within which
the metric has been modified. It is this structure that is denoted by the Krasnikov
tube, and contrary to the Alcubierre spacetime metric, the metric of the Krasnikov
tube is static, once it has been created.

The stress—energy tensor element 7;, given by

Ty

1 4(1 4 k) ok ok 9%k
- — +3
ap 0?

2
~ 3r(l+ k)2 o p —> —4(1+k>a—] (11.46)

can be shown to be the energy density measured by a static observer [14], and violates
the WEC in acertainrange of p,i.e. T,,,U*U" < 0.To this effect, consider the energy
density in the middle of the tube and at a time long after its formation, i.e. x = D/2
and? > x + p + &, respectively. In this region we have 0, (x) = 1,0, (x + ¢ — D) =
Oandf.(t — x — p) = 1. With this simplification the form function (11.45) reduces to
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Fig. 11.5 Graph of the i
. 0.1+
energy density, 7, as a 1
function of p at the middle of 1
the Krasnikov tube, 0.05
x = D/2, and long after its 1 r

formation, r > x + p + ¢. 1 97 9? 9‘9 \O 191 192
We consider the following 0]
values for the parameters: ]
8§=0.1,e=1and —0.057
Pmax = 100e = 100. See the ]
text for details —0.14
-0.151

k(t,x,p) =1—= (2= 80:(pmax — P) - (11.47)

A useful form for 6, (&) [14] is given by

o2 (5 1)) ]
0.(6) = {tanh [2{ = —1) [+ 1}, (11.48)
2 £

so that the form function (11.47) yields

(b E ] e

Choosing the following values for the parameters: § = 0.1, ¢ = 1 and ppqx =
100e = 100, the negative character of the energy density is manifest in the immediate
inner vicinity of the tube wall, as shown in Fig. 11.5.

11.6 Closed Timelike Curves

11.6.1 The Warp Drive

Consider a hypothetical spaceship immersed within a warp bubble, moving along a
timelike curve, with an arbitrary value of v(r). Due to the latter, the metric of the
warp drive permits superluminal travel, which raises the possibility of the existence
of CTCs. Although the solution deduced by Alcubierre by itself does not possess
CTCs, Everett demonstrated that these are created by a simple modification of the
Alcubierre metric [14], by applying a similar analysis as is carried out using tachyons.
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The modified metric takes the form
ds®> = —dt* + dx* + dy* + (dz — v fdt)?, (11.50)

with v(t) =dzo(t)/dt and r(t) = [(z — 20(t))* + (y — yo)> +2%]Y/2. As in
Sect. 11.2.1 spacetime is flat in the exterior of a warp bubble with radius R, which
now is centred in (0, yo, zo(¢)). The bubble moves with a velocity v, on a trajec-
tory parallel to the z-axis. Consider, for simplicity, the form function given by Eq.
(11.2). We shall also impose that yy > R, so that the form function is negligible, i.e.
(o) = 0.

Now, consider two stars, S; and S,, at rest in the coordinate system of the metric
(11.50), and located on the z-axis att = 0 and t = D, respectively. The metric along
the z-axis is Minkowskian as yg > R. Therefore, a light beam emitted at S, att = 0,
moving along the z-axis with dz/dt = 1, arrives at S, at t = D. Suppose that the
spaceship initially starts off from S;, with v = 0, moving off to a distance yy along
the y—axis and neglecting the time it needs to cover y = 0 to y = yy. At yy, it is then
subject to a uniform acceleration, a, along the z—axis for 0 < z < D/2, and —a for
D/2 < z < D. The spaceship will arrive at the spacetime event S, with coordinates
z=Dandt = 2./D/a = T. Once again, the time required to travel from y = y to
y = 01is negligible.

The separation between the two events, departure and arrival, is D?—T?=
D?*(1 — 4/(aD)) and will be spatial if a > 4/D is verified. In this case, the spaceship
will arrive at S, before the light beam, if the latter’s trajectory is a straight line, and
both departures are simultaneous from S;. Inertial observers situated in the exterior
of the spaceship, at S; and S, will consider the spaceship’s movement as superlumi-
nal, since the distance D is covered in an interval T < D. However, the spaceship’s
wordline is contained within its light cone. The worldline of the spaceship is given
by z = vt, while its future light cone is given by z = (v & 1)z. The latter relation can
easily be inferred from the null condition, ds* = 0.

Since the quadri-vector with components (7', 0, 0, D) is spatial, the temporal order
of the events, departure and arrival, is not well defined. Introducing new coordinates,
(t',x',y', '), obtained by a Lorentz transformation, with a boost 8 along the z-axis,
the arrival at S, in the (¢/, x’, y’, ) coordinates correspond to

T'=yQ2yDJa—BD), Z =y(D-2JDJa), (11.51)

with y = (1 — g2)~!/2. The events, departure and arrival, will be simultaneous if
a = 4/(B>D). The arrival will occur before the departure if 7’ < 0, i.e.

4
a> ﬁz_D (11.52)
The fact that the spaceship arrives at S, with ¢ < 0, does not by itself generate
CTCs. Consider the metric (11.50), substituting z and r by Az’ = z/ — Z" and At' =
t' — T', respectively; v(t) by —v(t); a by —a; and yg by —yy. This new metric
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describes a spacetime in which an Alcubierre bubble is created at ¢ = T’, which
moves along y = —yp and x = 0, from S, to S, with a velocity v'(¢'), and subject
to an acceleration a’. For observers at rest relatively to the coordinates (¢', x’, y', 7'),
situated in the exterior of the second bubble, it is identical to the bubble defined by
the metric (11.50), as it is seen by inertial observers at rest at S; and S,. The only
differences reside in a change of the origin, direction of movement and possibly of
the value of acceleration. The stars, S; and S, are at rest in the coordinate system of
the metric (11.50), and in movement along the negative direction of the z-axis with
velocity B, relatively to the coordinates (¢, x’, ¥', z’). The two coordinate systems are
equivalent due to the Lorentz invariance, so if the first is physically realizable, then
so is the second. In the new metric, by analogy with Eq. (11.50), we have dt = dt’,
i.e. the proper time of the observer, on board of the spaceship, travelling in the centre
of the second bubble, is equal to the time coordinate, t’. The spaceship will arrive at
S in the temporal and spatial intervals given by At' > 0 and Az’ < 0, respectively.
As in the analysis of the first bubble, the separation between the departure, at S,, and
the arrival Sy, will be spatial if the analogous relationship of Eq. (11.52) is verified.
Therefore, the temporal order between arrival and departure is also not well defined.
As will be verified below, when z and 7z’ decrease and ¢’ increases, ¢ will decrease
and a spaceship will arrive at S| at ¢ < T'. In fact, one may prove that it may arrive
atr <O.

Since the objective is to verify the appearance of CTCs, in principle, one may
proceed with some approximations. For simplicity, consider that @ and a’, and con-
sequently v and V' are enormous, so that 7 << D and At’ <« —AZ’. In this limit,
we obtain the approximation 7 & 0, i.e. the journey of the first bubble from S; to
S, is approximately instantaneous. Consequently, taking into account the Lorentz
transformation, we have Z’ ~ y D and T’ ~ —yBD. To determine T}, which cor-
responds to the second bubble at S, consider the following considerations: since
the acceleration is enormous, we have At’ ~ 0 and At = T; — T ~ T, therefore
Az =—D ~ yAz7 and At = yBAZ, from which one concludes that

T~ —-BD < 0. (11.53)

11.6.2 The Krasnikov Tube

As mentioned above, for superluminal speeds the warp drive metric has a horizon so
that an observer in the centre of the bubble is causally separated from the front edge
of the bubble. Therefore he/she cannot control the Alcubierre bubble on demand. In
order to address this problem, Krasnikov proposed a two-dimensional metric [13],
which was later extended to a four-dimensional model [14], as outlined in Sect. 11.5.
A two-dimensional Krasnikov tube does not generate CTCs. But the situation is quite
different in the four-dimensional generalization. Using two such tubes it is a simple
matter, in principle, to generate CTCs [30]. The analysis is similar to that of the warp
drive, so that it will be treated in summary.



11 Warp Drive Basics 277

Imagine a spaceship travelling along the x-axis, departing from a star, S;, att = 0,
and arriving at a distant star, S, at t = D. An observer on board of the spaceship
constructs a Krasnikov tube along the trajectory. It is possible for the observer to
return to S, travelling along a parallel line to the x-axis, situated at a distance
L0, so that D 3> pg > 2pmax, in the exterior of the first tube. On the return trip, the
observer constructs a second tube, analogous to the first, but in the opposite direction,
i.e. the metric of the second tube is obtained substituting x and 7, for X = D — x
and T =t — D, respectively in Eq. (11.44). The fundamental point to note is that in
three spatial dimensions, it is possible to construct a system of two non-overlapping
tubes separated by a distance pg.

After the construction of the system, an observer may initiate a journey, departing
from Sj, at x = 0 and r = 2D. One is only interested in the appearance of CTCs in
principle, therefore the following simplifications are imposed: § and ¢ are infinitesi-
mal, and the time to travel between the tubes is negligible. For simplicity, consider the
velocity of propagation close to that of light speed. Using the second tube, arriving at
S> at x = D and t = D, then travelling through the first tube, the observer arrives at
S att = 0. The spaceship has completed a CTC, arriving at S before its departure.

11.7 Summary and Conclusion

In this chapter, we have seen how warp drive spacetimes can be used as gedanken-
experiments to probe the foundations of general relativity. Though they are useful
toy models for theoretical investigations, we emphasize that as potential technology
they are greatly lacking. We have verified that exact solutions of the warp drive
spacetimes necessarily violate the classical energy conditions, and continue to do so
for an arbitrarily low warp bubble velocity. Thus, the energy condition violations in
this class of spacetimes are generic to the form of the geometry under consideration
and are not simply a side effect of the superluminal properties. Furthermore, by taking
into account the notion of the “volume integral quantifier”’, we have also verified that
the “total amount” of energy condition violating matter in the warp bubble is negative.

Using linearized theory, a more realistic model of the warp drive spacetime was
constructed where the warp bubble interacts with a finite mass spaceship. The energy
conditions were determined to first and second order of the warp bubble velocity,
which safely ignores the causality problems associated with “superluminal” motion.
A fascinating feature of these solutions resides in the fact that such a spacetime
appear to be examples of a “reactionless” drives, where the warp bubble moves
by interacting with the geometry of spacetime instead of expending reaction mass,
and the spaceship is simply carried along with it. Note that in linearized theory, the
spaceship can be treated as a finite mass object placed within the warp bubble. It was
verified that in this case, the “total amount” of energy condition violating matter, the
“net” negative energy of the warp field, must be an appreciable fraction of the positive
mass of the spaceship carried along by the warp bubble. This places an extremely
stringent condition on the warp drive spacetime, in that the bubble velocity should



278 M. Alcubierre and E.S.N. Lobo

be absurdly low. Finally, we point out that any attempt at building up a “strong-field”
warp drive starting from an approximately Minkowski spacetime will inevitably have
to pass through a weak-field regime. Since the weak-field warp drives are already
so tightly constrained, the analysis of the linearized warp drive implies additional
difficulties for developing a “strong field” warp drive.

Furthermore, we have shown that shortly after the discovery of the Alcubierre warp
drive solution it was found that an observer on a spaceship cannot create nor control
on demand a superluminal Alcubierre bubble, due to a feature that is reminiscent of
an event horizon. Thus, the bubble cannot be created, nor controlled, by any action
of the spaceship crew. We emphasize that this does not mean that Alcubierre bubbles
could not be theoretically used as a means of superluminal travel, but that the actions
required to change the metric and create the bubble must be taken beforehand by an
observer whose forward light cone contains the entire trajectory of the bubble. To
counter this difficulty, Krasnikov introduced a two-dimensional metric in which the
time for a round trip, as measured by clocks at the starting point (e.g. Earth), can
be made arbitrarily short. This metric was generalized to four dimensions, denoting
the solution as the Krasnikov tube. It was also shown that this solution violates the
energy conditions is specific regions of spacetime. Finally, it was shown that these
spacetimes induce closed timelike curves.
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Chapter 12

Probing Faster than Light Travel
and Chronology Protection

with Superluminal Warp Drives

Carlos Barcel6 and Stefano Liberati

12.1 Introduction

The possibility of “faster than light” (FTL) travel and time machines (TM) have been
a fascinating theme for human beings since the dawn of storytelling and they are at
the centre of many science fiction novels and movies. What is less known to the
broad pubic is that these tantalising phenomena are definitely an open possibility in
Einstein’s general relativity (GR) theory. The very same “plasticity” of spacetime
that is at the core of the Einstein’s grand construction allows at the same time for
extremely warped spacetimes where the causal structure can be subverted and realise
these extreme features. In this chapter, we are going to see how FTL and TM are
related and why they are so relevant in assessing the viability of GR as a fundamental
theory of reality. We shall consider explicit examples allowing for these features,
explain why the latter are so problematic for our understanding of reality, and focus
on those spacetimes that seems so far not forbidden or evidently unphysical. In
particular, we shall discuss a class of spacetimes called “warp drives”, presented in
the previous chapter—which allow for FTL travel and can be used to built a TM—
and show that they will generically present a semiclassical instability just for the fact
of allowing faster than light propagation.

The structure of this contribution will be the following. We shall first provide some
technical definitions about what we mean by time travel. We shall then review some
spacetimes which allow for TM and FTL travel. We shall then discuss in the next
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section why FTL travel can be easily manipulated for building TMs. In Sect. 12.5,
we shall consider why TM are paradoxical and which solutions have been devised
to come out of these paradoxes and explain why so far it seems that for reaching
a definitive conclusion one should go beyond the realm of semiclassical gravity.
Finally, in Sect. 12.6 we shall consider the specific case of warp drives and show that
a generic prediction about their instability can be reached by a quantum field theory
calculation in curved spacetime. We shall argue that this result seems to strongly
hint that structures allowing for FTL travel and hence TM building are intrinsically
unstable even within the well-known framework of semiclassical gravity.

12.2 Time Machines: Basic Technical Definitions

Worldlines of observers/particles in spacetime are typically timelike curves if they
have mass, and null curves if the particles are massless (respectively inside and on
the border of light cones). A causal curve is defined to be a curve which is nowhere
spacelike (i.e. lying outside of a light cone). A chronological curve is a curve which
is everywhere timelike. So in layman language, the first kind of curves characterises
the propagation of signals via massive or massless mediators while the second class
pertains to massive objects/observers.

Time travelling notoriously requires a time machine (exactly like in the H.G.
Well novel). A time machine is defined as some device able to provide closed
causal or chronological curves, loops in propagation of signals or massive objects.
Albeit closed timelike/chronological curves (CTC) imply automatically closed causal
curves (CCC) the reverse is of course not true, i.e. one might have a spacetime where
only massless particles can form loops but massive objects cannot. Of course this last
case is also not seriously dangerous as it does not lead to the aforementioned para-
doxes. So, the culprit of our search, the smoking gun of time travel, is the presence
of a CTC in a given spacetime.

However we can imagine, and indeed we have many examples of spacetime which
are almost everywhere “sane” except for regions where time travel is allowed, or
alternatively spacetimes which in the past look globally hyperbolic but later develop
aregion with CTC and hence do not admit a well-posed Cauchy evolution. In order
to describe precisely these situations, a first step is to characterise points within a
chronology-violating region (a region with CTC). There are events p belonging to a
chronology-violating region 12 if

n=1r"(p) (I (p) #9.

in words, if the intersection of the chronological past and future for this set of events
(i.e. the interiors of the past and future light cone stemming from these events) is not
an empty set. As usual, we shall then define the total chronology-violating region in
a given manifold .# as the union of all these I[(,), i.e.
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1’y = J 1.

peM

Of course in the same way we can define causality violating regions by just replacing
in the above formulas chronological future and past I * with causal future and past J .

We can now define the onset of a time machine region, its border, as the future
chronological horizon which is technically characterised as

HY D =1t (1I°))].

Of course we can also straightforwardly define a past chronological horizon (the bor-
der in the past of a time machine region) by the same definition replacing the chrono-
logical future with the chronological past. Similarly, the definition for a past/future
causal horizon can be obtained replacing the chronological past/future with their
causal counterparts.

It is worth stressing that chronological horizons are always generated by null
geodesics [33] and that while they do not need to coincide mathematically with causal
horizons, they do so in many cases. Finally, itis easy to see that chronological horizons
are just a special case of Cauchy horizons as they also characterise a breakdown of
the Cauchy evolution of data and a lack of global hyperbolicity of the spacetime (the
other typical case of Cauchy horizons being those associated to missing points in
spacetime e.g. due to timelike singularities).

12.3 Causality Challenging Spacetimes

The list of spacetimes in GR which are problematic from the point of view of the
causal structure is quite long and basically splits in two big families. The first family is
made by what we might call “time machine rotating solutions”. For all these solutions
rotation is the key ingredient as the swirling of spacetime and frame dragging tilts the
light cones till they eventually include closed orbits around the rotation axis. These
are spacetimes which self-evidently include regions with CTC and hence TMs. The
second family of spacetimes is in a sense milder. These spacetimes do not per se
entail CTCs but, as we shall see in the following sections, can be easily manipulated
so to form them.

12.3.1 Time Machine Rotating Solutions

A succinct (incomplete) list of this kind of solutions includes (see [33] for a more
complete treatment)
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e van Stockum spacetimes: Infinitely long cylinders of spinning dust with density
increasing with radii. Tipler cylinders are included in this family (with a massive
cylinder replacing the cylindrical distribution of dust).

e Gott’s spacetimes: these are spacetimes, e.g. with two infinitely long, parallel,
cosmic strings longitudinally spinning around each other.

e Godel universe: this is the famous solution found by Kurt Godel in 1949 which
describes a globally rotating spacetime filled with (homogeneously distributed)
dust and a (positive) cosmological constant fine-tuned to match the energy density
of the dust. The solution is not isotropic due to the rotation, however the homo-
geneity implied by the matter distribution requires that the direction but not the
position of the rotation “axis” is determined. Indeed, any event in the spacetime
can be considered at the origin of the rotating frame and lies on some CTCs.

e Kerr-Newman black holes: Rotating (neutral or charged) black holes are endowed
with a region, inside the Cauchy horizon, where the Killing vector associated to
invariance under rotations about the spin axis becomes timelike. Given that the
orbits of this vector are necessarily closed curves this implies the presence of
CTCs.

The first three items of this list are often (somewhat irreverently) characterised
as GIGO, i.e. as solutions “garbage in-garbage out”, which means that these are
solutions characterised by somewhat unphysical matter/energy distributions (e.g.
infinitely long cylinders or strings) and/or global rotation (e.g. Godel universe). In
the case of the rotating black hole solutions, the common objection is instead that
the chronology-violating region is located well within the inner/Cauchy horizon. The
well-known instability associated to this global structure (infinite blueshift) is per se
a warning bell that this (classical) instability might lead to an internal geometry very
different from the one predicted by the Kerr family of solutions. There is however a
second class of dangerous spacetimes that are not as easily dismissed because they
“per se”” do not posses CTC and can be grouped under the name of “superluminal
travel allowing” spacetimes.

12.3.2 Faster than Light Travel Spacetimes

There are two well-known kinds of spacetimes in general relativity which allow
for faster than light travel, these are warp drives and traversable wormholes. Let us
summarise their main features here.

Warp drives: Warp drives (where the most known declination is the Alcubierre
warp drive (see the previous chapter) discovered in 1994 [1]) are a different sort of
spacetimes where a spherical region with flat (or almost flat) geometry, a bubble,
can move at arbitrary speed thanks to the simultaneous contraction and expansion
of spacetime respectively at its front and rear. Of course such a geometry does
not violate local Lorentz invariance as this still holds locally around each point of
spacetime. However, geometrically speaking general relativity does not pose any
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bound on the relative motion of different regions of spacetime. Noticeably, these
geometries need exotic matter for being realised, i.e. matter which violates some
energy condition (typically the null one).

Traversable wormholes: The concept of a “spacetime shortcut”, a sort of tun-
nel connecting points of spacetime which might be otherwise separated by long
distances arose several times in the literature. The first to be discovered was the
so-called Schwarzschild wormhole often called Einstein—Rosen bridge (after the
name of the authors of the 1935 paper [12] that brought it to the general attention
albeit it was already discovered in 1916 by Flamm [14]). The latter connects two
asymptotically flat regions in an eternal black hole spacetime. Unfortunately this
class of wormholes is not traversable. Indeed if they connect two parts of the same
universe, it was shown [16] that they will pinch off too quickly for light (or any
massive particle) to travel from one exterior region to the other. However, tra-
versable wormhole solutions were found in 1988 by Morris and Thorne [26, 27]
(and later developed by several authors, see e.g. [33, 34] and references therein).
These are wormhole structures whose throat is held open by variably large amounts
of exotic matter.

Let us consider more in detail one solution for each of these classes.

12.3.2.1 The Alcubierre Warp Drive in a Nutshell

The Alcubierre warp drive geometry was introduced by Miguel Alcubierre in 1994
(see Ref. [1]) and represents a bubble containing an almost flat region, moving at
arbitrary speed within an asymptotically flat spacetime. Mathematically its metric
can be written as

ds* = —2dt® + [dx — v(r)dt)> + dy*> + dz* , (12.1)

where r = \/ [x — x.(t)]* + y? + 72 is the distance from the centre of the bubble,
{x.(¢), 0, 0}, which is moving in the x direction with arbitrary speed v, = dx./dt.
Here v(r) = v.f(r) and f is a suitable smooth function satisfying f(0) = 1 and
f(r) = Oforr — oo. To make the warp drive travel at the speed v, (¢), the spacetime
has to contract in front of the warp drive bubble and expand behind it. It is easy to see
that the worldline {x.(¢), 0, 0} is a geodesic for the above metric. Roughly speaking,
if one places a spaceship at {x.(¢), 0, 0}, it is not subject to any acceleration, while
moving faster than light with respect to someone living outside of the bubble (here
the spaceship is basically treated as a test particle, see Ref. [23] for a more general
treatment). The spaceship inside the warp drive bubble is, as a matter of fact, isolated
from the spacetime surroundings and cannot interact with them, however one could
in principle conceive to build a sort of “interstellar railway” running from Earth to
a distant planet which by a coordinated generation of energy violating matter could
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locally produce and move a warp drive, with a spaceship inside, at superluminal
speeds.

A curious characteristic of the Alcubierre warp drive geometry, which is seldom
mentioned, is that in a superluminal travel between two events in spacetime A and
B, the proper time as measured by the traveller inside the bubble is not subject to
the standard relativistic time slowdown. This is due to the fact that the observer
inside the warp drive finds itself at rest in a basically flat portion of spacetime and
(classically) does not perceive the bubble motion. Indeed, observers at rest outside,
as well as internal travellers, will measure essentially the same amount of travel
duration in terms of their proper times (see Eq. (12.1)). This contrasts with what
normally happens in standard special relativity. From the traveller’s point of view
if one approaches the speed of light, the proper time duration to go from A to B
becomes arbitrarily short. Instead, using a warp drive to shorten this time duration
one would need to increase the warp drive velocity to larger and larger speeds which
will not affect the relation between the proper time of the warp drive traveller and
that of some observer outside at rest.

12.3.2.2 Traversable Morris—Thorne Wormholes in a Nutshell

Traversable Morris—Thorne wormholes [26, 27] are time independent, non-rotating
and spherically symmetric solutions of general relativity describing a bridge/passage
between two asymptotically flat regions (not necessarily in the same universe albeit
this is the case we are interested in here). They are described by a simple metric

ds* = —**Vdr* + de* + r*(0) [dO* + sin® 0d¢?] , (12.2)

where one requires £ € (—00, +00), absence of event horizons and metric compo-
nents at least C? in £. Furthermore asymptotic flatness for £ — oo is imposed by
requiring

lim [%]:1 ie. r() =]+ 0() for £ — +oo (12.3)

for space asymptotic flatness and

lim @ (¢) = @1 = constant and finite (12.4)
{—+o00

for spacetime asymptotic flatness. The radius at the wormhole throat is ry =
min {r(£)} which can always be chosen to be at £ = 0.

This metric is a solution of the Einstein equations but requires a stress—energy
tensor (SET) T#, = diag(—p(r), T(r), pe(r), py(r)) with radial tension 7(r) =
—p,(r) which violates the null energy condition (NEC) which states the positiv-
ity of the product T}, k*k” for any null-like vector k*. More precisely there is always
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some r, such that for any r € (rg, r,) one has p(r) — t(r) < 0 which is tantamount
to NEC violation (which also implies the violation of the weak, strong and dominant
energy conditions, see e.g. [33]). Of course this implies that also at the throat the
NEC is violated and specifically one finds

(12.5)

T(rog) =

2
%5_1036(10111) N

87 Grg o cm?’
so that as anticipated a huge tension is required for keeping a macroscopic wormhole

open.

12.3.2.3 Objections and Answers

The common objections against these spacetimes are twofold. One consists in notic-
ing that this “superluminal travel allowing” spacetimes generically require large
amounts of exotic (energy violating) matter (e.g. for a traversable wormhole with a
throat of about one metre one would need about one Jupiter of matter with negative
energy density), at least within GR (in alternative theories of gravity this does not
need to be the case). The other objection has to do with the way such structures could
be formed in the first place. For example, forming from nowhere a wormhole would
imply a change in topology which is forbidden in classical GR and anyway is known
to lead to unacceptable large particle production from the vacuum [2, 25]. However,
such objections could be seen as engineering challenges, in the sense that no no-go
theorem tells us that we cannot generate exotic matter in a given region (indeed we
can do so, in small quantities, e.g. with the Casimir effect) or that in principle one
cannot “grow” macroscopic wormholes from those expected to be spontaneously
produced at the Planck scale in the so-called Wheeler spacetime foam.

So in conclusion, within GR nothing seems to prevent, at least in principle, the
possibility of superluminal travel at the moderate cost to solve few (daunting) engi-
neering problems and to produce and control sufficiently large amounts of exotic
matter. Of course this sounds pretty exciting but on second thoughts also very worri-
some. Indeed, it is quite easy to transform any superluminal travel capable structure
into a time machine. This is what we shall analyse in the following section.

12.4 Time Machines from Faster than Light Travel

Wormholes and warp drives are two ways in which one could travel faster than light
(FTL). As we shall see, within the GR framework the existence of CTCs is strongly
linked with the seemingly milder concept of FTL travel.

Probably the question that lay public asked more frequently to specialists in rel-
ativity is “why is it not possible to travel faster than light”. We do not know why
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but, leaving aside for the moment the cosmological realm, we have not observed any
counterexample. Moreover, the theory of special relativity was born out of requir-
ing this as a postulate and after one hundred years of development we can say with
confidence that the number of predictions and verifications of this theory are quite
robust (at least at currently explored energies, see e.g. [21] for a recent review).

In special relativity, the proper time of an observer freezes out when the observer
approaches the speed of light. Beyond that, travelling in a spacelike trajectory
amounts to having your proper time running backwards in time, the seed of time
travel. But these trajectories are precisely the ones not allowed for real massive parti-
cles. By allowing the deformation of the light-cone structure, general relativity opens
new venues into the connection between CTC and FTL travel.

As we already mentioned general relativity is constructed so that locally nothing
can travel outside the light cone, so locally nothing can travel faster than light. How-
ever, somewhat surprisingly general relativity can indeed accommodate FTL travel.
The cleanest situation one can think of is the following. Consider an asymptotically
flat spacetime. In the asymptotic limit a light ray will traverse this spacetime in a
straight line and at the speed of light. However, geometrically the light-cone structure
deep in the spacetime can be such that a light ray could traverse this region faster
than it would be done by his homologous at infinity.

This is possible because there is a tight connection between this sort of formulation
of FTL travel and the existence of violations of the energy conditions. While the
presence of positive distributions of energy results in Shapiro time delays, when
light rays traverse negative energy distributions they are advanced. For instance,
K. Olum [28] proved that to produce a FTL configuration one needs to violate the
Weak Energy Condition. Related investigations were carried over in [35] dealing
with weak fields. This association between ray advancement and negative energy
has also been used to produce a slightly different formulation and proof of a positive
mass theorem [29].

From this perspective, the problem of FTL travel is transmuted in general relativity
into the problem of understanding the nature of the possible sources of gravity. In fact,
without restricting the possible matter content general relativity allows in principle
all imaginable Lorentzian geometries.

Leaving aside the energy-condition-violations issue, how can one manipulate FTL
configurations such as warp drives or wormholes to build a time machine?

12.4.1 The Warp Drive Case

Before any warp drive is operating, consider an inertial reference frame in which two
locations A and B are at rest. At some point, we arrange a warp drive so that someone
in the bubble travels from A and B in a time interval 0 < 13 — 14 < |xp — xa| as
measured from this inertial frame. From the perspective external to the warp drive the
trajectory of the bubble seems to be spacelike (although itis not). Now, make a change
of inertial frame to describe the same configuration, one travelling with a velocity
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close to the speed of light in the same direction of the warp drive. In this inertial
frame the trajectory of the warp drive will be such that t;, — ¢}, < 0, itis as if the warp
drive was running backwards in time. Then, in this frame one just needs to arrange
another warp drive to travel back from B to A sothat 0 < t},, — 1}, < |t —,]. In
this way the time 7/, , can be made smaller than t',, that is, one can come back to
the initial position before the very forth and back journey has started: CTCs and a
chronological horizon have been formed. Of course, the discussed warp drive is just
a special case, as the above reasoning would apply to any device allowing faster than
light propagation at arbitrary speeds while special relativity holds (see e.g. [22] for
an extensive discussion).

12.4.2 The Wormhole Case

The same type of time machine configuration can be produced using a wormhole.
Consider one mouth of the wormhole to be always at rest in one inertial frame.
Then, in principle one can make time to run slower in the other mouth, for instance
by making this mouth to travel towards the other at a certain velocity (a special
relativistic effect) or by placing it close to a very compact object (a general relativistic
effect). In the first case, if we wait long enough since the second mouth starts moving,
a light ray produced in the first mouth and sent through the throat will come up again
in the inertial frame in the past. This travel back in time can be strong enough so
that the ray now travelling from the second mouth to the first through the standard
path in spacetime arrives earlier than it was sent in the first place. Again, CTCs and
a chronological horizon have been formed.

12.4.3 Some Analogue Gravity Lessons

One can build warp drive geometries in analogue gravity systems, such as a flowing
fluid [5]. Is it then possible to build a time machine using a fluid? No, definitely it is
not. From the perspective of the lab one of the two warp drives needs to be running
backwards in time. From the same perspective one can perfectly tilt the sound cones
(by producing background flows) so that the sound travels quicker or slower than in
a fluid at rest. However, to tilt a sound cone so that it runs backwards in time needs
to pass through a configuration in which the sound velocity becomes infinite (and
beyond). This is clearly not possible as the background fluid flow cannot be arranged
to reach an infinite velocity. So although an internal observer could follow the same
line of reasoning leading from warp drives to time machines the existence of an
external and more fundamental causality forbids to perform this step. Any proper
manipulation of the system in terms of initial data developments will show that no
causal paradoxes can occur. The fundamental causality of the Minkowskian lab is
the one that controls the evolution of the system and that is always running forward
in time.
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If the general relativity causality were not the only one in reality, a similar argu-
ment could be in place. The fact that there is a hand waving argument to build a time
machine does not imply that this can be realised as a well-defined initial data problem.
There might be deeper layers of reality, with a perfectly well-defined causality but
possessing FTL characteristics, fooling us (a nice discussion of these possibilities can
be found in [18]). Nature shows that indeed there are many different causalities oper-
ating for different degrees of freedom. To this day it is a well-supported hypothesis
that the general relativity causality encompassed all of the rest. It is this fundamen-
tality that allows to think about FTL travel and time machines. However, it is clear
that whether the general relativity causality is the ultimate causality and whether
one could build this type of configurations can only be ultimately distinguished by
experiments.

An example of the previous discussion is provided by dispersive modifications
of the general relativity behaviour. A superluminal dispersion can produce FTL
travel without the need per se of allowing the construction of time machines. It will
all depend on the specific causal characteristics of the final system of differential
equations. Superluminal modifications of the dispersion relations could be obtained
as a semiclassical result of an underlying theory of quantum gravity (see e.g [17]).
Also, it was shown by Scharnhorst [31] that in a Casimir vacuum photons travelling
perpendicular to the plate boundaries could achieve FTL (although the suppossed
effect is too small to be measured in current experimental setups). In this case, it
has been shown that even if this effect existed it will not break the tenets of special
relativity [22] maintaining the existence of a constant ¢ which is invariant under
Lorentz transformations. On the other hand, they also show that the Scharnhorst
effects cannot be used to build a time machine in the form described above. In this
sense, the Scharnhorst effect would exhibit a mild violation of the speed of light
limit.

But even before reflecting onto more or less speculative possibilities based on
beyond general relativity effects, the very construction of a time machine has to
be examined at the light of a well-defined initial value problem within the very
framework of general relativity. As is conjectured to happen with Cauchy horizons, it
might be that the formation of a chronological horizon is non-generic and unstable to
perturbations. The analysis of possible classical instabilities has to be complemented
by one of semiclassical instabilities in a hierarchy of possibilities. One of these
semiclassical instabilities will be discussed later on in this chapter.

12.5 Time Travel Paradoxes and Possible Solutions

We have seen in the previous sections that GR seems to entail the possibility of time
travel and that at the classical level nothing seems to forbid a priori the production
of CTCs in otherwise healthy spacetimes, especially by making a careful use of the
superluminal travel allowed by some solution with exotic matter.
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The reason why the possibility of time travel is per se considered a deeply worrying
weakness of the theory is that time travel to the past is per se logically paradoxical
(apart from being a limit to the predictive power of the theory as e.g. singularities are
as well). Indeed, the possibility to travel back in time (there is no logical paradox with
travelling into the future, which is anyway already allowed by special relativity, think
about the apparent twin paradox often quoted in text books) is logically paradoxical
in two ways:

Grandfather paradox: The first way is related to the fact that when travelling back
into the past our actions can affect what was supposed to stem from that past. So,
for example, we could end up killing our grandfather and in this way prevent our
own birth. Then how can we exist and change the past in the first place?

Bootstrap paradox: If we could travel back in time we could generate information
from nothing. For example, someone could copy a mathematical theorem proof
from a textbook, then travel back in time to find the mathematician who first
published the proof before he published it, and simply pass the proof to the math-
ematician. In this case, the information in the proof has no origin.

So it is easy to see that time travel is a quite dangerous feature to have built in within
your theory of spacetime dynamics. In what comes next we shall analyse why GR
allows for this feature. But before doing this, we need to have the mathematical tools
for being precise about what we mean by time travel.

In order to avoid such paradoxes, several approaches have been proposed in the
past. We shall here summarise them briefly.

e Bifurcating reality: The most radical approach consists in accepting the possi-
bility of modifying the past so creating a bifurcation in the future. This obviously
requires also a radical rewriting in physics and possibly stepping from pseudo-
Riemannian manifolds to non-Hausdorff ones.

e Multiverse/many-worlds reality: This alternative is much in line with the one
above but is based on quantum rather than classical reasoning. Reality would be
made of several (possibly infinite) copies of our universe corresponding to all the
possible outcomes of the many choices/measurements continuously performed.
In this sense, changing the past does not produce any paradox as it would just
correspond to take a pre-existing parallel reality while all the realities in which we
never changed the past continue to exist.

e Novikov’s consistency conjecture: In this case, one postulates CTCs never lead
to paradoxes because only periodic solutions are really allowed. More rigorously,
one conjectures a principle of self-consistency, which states that the only solutions
to the laws of physics that can occur locally in the real Universe are those which
are globally self-consistent [15]. That means that if you go back in time and
attempt any action to change the past you will not only be unable to succeed but
any of these actions will have to be there in first place for things to unfold the

! A Hausdorff manifold is a manifold for which for any two different points x| and x, belonging to
the manifold admit open sets O and O3, with x| € O} and x € O, such that 01 N Oy = ¥.
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way they did in your past. You had to travel back in time and do what you had
to do. A strict consistency without escape. The conjecture has been subject of
debate with attempts to prove it in simple systems such as billiard balls moving
in spacetimes with traversable wormholes [11]. The upshot from this and other
studies is that there seems to exist self-consistent solutions for every possible
billiard ball initial trajectory. However, this only applies to initial conditions outside
of the chronology-violating region of spacetime, which is, as said, bounded by a
Chronological/Cauchy horizon and moreover it is very difficult to extend to more
complex, realistic, systems.

e Hawking Chronology protection conjecture: Finally a more orthodox solution
to the paradoxes entailed by time machines is that the latter are always unstable due
to quantum effects. More precisely, the chronology protection conjecture says that
the laws of physics will always prevent the formation of CTCs [19]. Much work was
put in the last 25 years for proving this conjecture on the base of calculations using
QFT in curved spacetime (see e.g. [32, 34] and references therein). Generically,
all these calculations confirm that the renormalized stress—energy tensor (SET)
tends to blow up in the proximity of a chronological horizon. Nonetheless, no
conclusive proof up to date can be provided due to the fact that generically the
Green functions fail to be Hadamard on a Chronological/Cauchy horizon [20].
Given that the Hadamard behaviour of two points Green functions is a crucial
requirement for deriving a renormalised SET and hence the semiclassical Einstein
equations that would predict the evolution of spacetime, we are hence obliged
to accept that no definitive proof is derivable from this framework. Actually, the
behaviour of the Green functions close to a chronological horizon seems to indicate
that contributions for Planck scale physics will always be non-negligible in its
proximity and that consequently a full quantum gravity framework will be the
only hope to prove the conjecture.

So it looks like no conclusive answer is available for how to cope with the wide-
spread possibility of spacetimes with CTCs in GR missing a deeper understanding
of spacetime as it should be provided by full-fledged quantum gravity. Nonetheless,
a more humble approach can sometimes be taken. As we have seen most of the
“rotation-based” time machines can be discarded on physical grounds (including the
interior of a Kerr black hole). So, much more dangerous is the appearance of space-
times such as wormholes and warp drives that would “only” require sufficiently large
amounts of exotic matter. In particular, we have also seen that it is very debatable
if a macroscopic wormhole can be created (problems with topology change) from
nothing or growth from a hypothetic spacetime foam. No such objection though are
present for a superluminal warp drive (the type that could be used to build a time
machine). So is there anything forbidding the formation of such structures? Can
semiclassical gravity provide at least in this case a definitive prediction? In what
follows, we shall show that the answer to this question is in fact affirmative.
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12.6 Superluminal Warp Drive Instabilities: A Pre-emptive
Chronology Protection at Work?

We are going to discuss now the instability associated with a superluminal warp drive.
In the actual computation, we shall restrict our attention to the 1 4+ 1 dimensions
case (since in this case one can carry out a complete analytic treatment). Changing
coordinates to those associated with an observer at the centre of the bubble, the warp
drive metric (12.1) becomes

ds®> = —=c*di> + [dr —v(r)dt]>, v=v—v., (12.6)

where r = x — x.(¢) is now the signed distance from the centre. Let us consider a
dynamical situation in which the warp drive geometry interpolates between an initial
Minkowski spacetime [v(¢, r) — 0,forr — —oo] and a final stationary superluminal
(ve > ¢) bubble [v(t, ) — V(r), for t = +00]. To an observer living inside the
bubble this geometry has two horizons, a black horizon 7+ located at some r = 7/
and a white horizon 7~ located at r = r;. Here, let us just add that from the point of
view of the Cauchy development of .# ~ these spacetimes possess Cauchy horizons.

12.6.1 Light Ray Propagation

Let us now consider light ray propagation in the above-described geometry. Only the
behaviour of right-going rays determines the universal features of the renormalised
stress—energy tensor (RSET), just like outgoing modes do in the case of a black hole
collapse (see Refs. [3, 4, 13]). Therefore, we need essentially the relation between
the past and future null coordinates U and u, labelling right-going light rays. There
are two special right-going rays defining, respectively, the asymptotic location of
the black and white horizons. In terms of the right-going past null coordinate U,
let us denote these two rays by Ugy and Uwy, respectively. The finite interval U €
(Uwn, Ugn) is mapped to the infinite interval u € (—oo, +00) covering all the rays
travelling inside the bubble. For rays which are close to the black horizon, the relation
between U and u can be approximated as a series of the form [13]

A
Uu — 4+00) ~ Upy + Aje ™ " + 72(2“" +.. . (12.7)

Here A, are constants (with A; < 0) and k; > O represents the surface gravity of
the black horizon. This relation is the standard result for the formation of a black
hole through gravitational collapse. As a consequence, the quantum state which is
vacuum on .~ will show, for an observer inside the warp drive bubble, Hawking
radiation with temperature Ty = «1 /2.
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Equivalently, we find that the corresponding expansion in the proximity of the
white horizon is [13]

D
U — —00) =~ Uwy + D" + TZeZW T, (12.8)

where D; > 0 and «; is the white hole surface gravity and is also defined to be
positive. The interpretation of this relation in terms of particle production is not as
clear as in the black horizon case and a full study of the RSET is required.

12.6.2 Renormalized Stress—Energy Tensor

In past null coordinates U and W the metric can be written as
ds* = —C(U, W)dUdW . (12.9)

In the stationary region at late times, we can use the previous future null coordinate
u and a new coordinate w, defined as

- " dr
Wt r) =1 +/ (12.10)
0

c—v(r)
In these coordinates the metric is expressed as

Cu, w)

ds* = —=C(u, w)dudw, CU,W)=—-"
pw)g(w)

(12.11)

where U = p(u) and W = ¢ (). In this way, C depends only on r through u, .

For concreteness, we refer to the RSET associated with a quantum massless scalar
field living on the spacetime. The RSET components for this case acquire the well-
known expressions [6, 10]

1
Tyy = _Eclﬂagc”/2 , (12.12)
1
Tww = _mc‘/zaevc:*”2 , (12.13)
1
TUW == TWU == %—nC R . (1214)

Using the relationships U = p(u), W = g(w) and the time independence of u and
w, one can calculate the RSET components in the stationary (late times) region
(see [13]).
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Let us here focus on the energy density inside the bubble, in particular at the
energy density p as measured by a set of free-falling observers, whose four velocity
isul’ = (1, v)in (¢, r) components. For these observers neglecting transient terms one
obtains [13] p = T,wué‘ u; = ps + Payn, where we define a static term oy, depending
only on the r coordinate through v(r),

1| (=9 +2) 2v
Pst = — |:( )V2 i

2an +

Tk v ] : (12.15)

and a, time-dependent, dynamic term

1 F

_ 3p2(u) — 2p(u) Pu)
T A8 (142 '

h F(u) =
where (u) 5200)

Pasn (12.16)

12.6.3 Physical Interpretation

Let us start by looking at the behaviour of the RSET in the centre of the bubble at late
times. Here py = 0, because v(r = 0) = V'(r = 0) = 0. One can evaluate pgy, from
Eq. (12.16) by using a late-time expansion for .7 (u), which gives .7 (u) ~ k2, so
that p(r = 0) = Klz/(487'[) = nT§/12, where Ty = k1 /(2m) is the usual Hawking
temperature. This result confirms that an observer inside the bubble measures a
thermal flux of radiation at temperature 7. Thus, apart from the energy-condition-
violating mass distribution engineered to create the warp drive, the semiclassical
calculation shows that one would need to add to the configuration an energy supply
to maintain the unavoidable Hawking flux.

Let us now study p on the horizons " and . Here, both py and pgyn are
divergent because of the (1 4 v) factors in the denominators. Using the late time
expansion of % (1) in the proximity of the black horizon (see Ref. [13]) one gets

A\ A
lim .7 (u) = Klz [1 + |:3(A—2) — 2A—3:| e (Gr—r)+0 ((r — r1)3) ,
r—r 1 1

(12.17)

and expanding both the static and the dynamic terms up to order &'(r — ry), one
obtains that the diverging terms (o< (r — r1)"2 and o (r —r)”") in py and Pdyn
exactly cancel each other [13]. It is now clear that the total p is &'(1) on the horizon
and does not diverge at any finite time. By looking at the subleading terms,

6_2'(][ Az 2 A3
= 3{—) —2— A+ 0 (r— , 12.18
T [ (A1> A, +A+ O —r) ( )
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where A is a constant, we see that on the black horizon the contribution of the transient
radiation (different from Hawking radiation) dies off exponentially with time, on a
time scale ~1/k;.

Close to the white horizon, the divergences in the static and dynamical contribu-
tions cancel each other, as in the black horizon case. However, something distinctive
occurs with the subleading contributions. In fact, they now become

e | 5( D ’ 22 pror—n (12.19)
= - — L r—ry) . .
P 487 D] Dl :

This expression shows an exponential increase of the energy density with time.
This means that p grows exponentially and eventually diverges along J#~. In a
completely analogous way, one can study p close to the Cauchy horizon. Performing
an expansion at late times (r — +00) one finds that the RSET diverges also there [13].

Note that the above-mentioned divergences are very different in nature. The diver-
gence at late times on .27~ stems from the untamed growth of the transient distur-
bances produced by the white horizon formation. The Hawking radiation produced in
the black hole will be accumulating at the white horizon. The RSET divergence on the
Cauchy horizon is due instead to the well-known infinite blueshift suffered by light
rays while approaching this kind of horizon. While the second can be deemed incon-
clusive because of the Kay—Radikowski—Wald theorem, the first one is inescapable.
Apart from the energy supply necessary to maintain the Hawking fluxes, one would
have to compensate an ever-increasing accumulation of energy at the white horizon.

The appearance of event horizons can of course be avoided if the superluminal
travel does not last forever. However, these two exponentially fast accumulations of
energy will still occur. The exponential increase will be controlled by 1/k = A/c,
where A represents the thickness of the warp drive walls. Note that, in order to get
a time scale of even 1s, one would need A ~ 3 x 108 m.

Another way of taming the exponential accumulations of energy could be to
travel in non-straight trajectories.” But also this solution seems impractical. First of
all, to reach B starting from A in a superluminal manner with a wiggling trajectory
would require faster velocities than in the straight trajectory case. Furthermore, one
might avoid the problem of energy accumulation at the cost of introducing additional
devices to produce the wiggling. At the semiclassical level, it is to be expected that
the fast wiggling would also produce additional energy fluxes that one would also
have to sustain (a sort of analogue of superradiant particle production).

Summarising, although not logically impossible, finite duration superluminal
warp drive configurations will be very costly to produce and probably technically
extremely hard to realise in practice.

2 A possibility brought to us by E. Martin-Martinez and L.J. Garay in a personal communication.
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12.7 Warp Drive Instabilities Under Dispersion

The semiclassical instability described above stems from standard, relativistic, QFT
in curved spacetimes. One might wonder if the story could be different in scenarios,
where a UV completion of the theory is provided by some quantum gravity (QG)
scenario. This is the case of analogue gravity inspired Lorentz breaking scenarios
(see e.g. Ref. [5]), where generically one expects the standard relativistic dispersion
relation for the matter field to be replaced by E* = ¢2(p? + p" /MW7), where My 1y
is normally assumed to be of the order of the Planck mass and n is some integer
greater than two.

Indeed, this is a modification that could potentially stabilise the warp drive, as it is
by now understood that modified LIV dispersion relations are able to remove Cauchy
horizons instabilities and tame the divergence of fluxes at white hole horizons. The
reason for this is simple, UV rays in the above dispersion relations are faster or
slower than light, in both cases light rays will not accumulate at the horizons (past
or forward in time depending on the black or white nature of the horizon) as they
normally do. Hence no built-up of divergences can take place.

Can this be a scenario where a quantum gravity inspired UV completion/ regu-
larisation could appear? This problem was dealt with in Ref. [9] and surprisingly it
leads to a negative answer, i.e. not even the breakdown of Lorentz invariance can
stabilise superluminal warp drives. Let us see how this works.

For the sake of simplicity, we work in 1 4 1 dimensions and consider a stationary
situation. We can define a new spatial coordinate X = x — vt (we use a different
notation to avoid confusion between the two calculations) so the warp drive metric
becomes

ds* = —c*dt* + [dX — V(X)dt]*, (12.20)

where V(X) = v.(f(X) — 1) is negative. In this spacetime, 9, is a globally defined
Killing vector field whose norm is given by ¢> — V?: it is timelike within the bubble,
its norm vanishes on the two horizons, and it is spacelike outside. In a fluid flow
analogy, this would correspond to two superluminal asymptotic regions separated by
a black and a white horizon from a compact internal subluminal region [9].

We can now consider a massless scalar field with a quartic dispersion relation. In
covariant terms, its action reads

(12.21)

v 2
Sy = %/dzx /_g I:gwaﬂ(ﬁavqg + m} ,

2
M LIV

where h*” = gV 4 u*u" is the spatial metric in the direction orthogonal to the unit
timelike vector field u* which specifies the preferred frame used to implement the
dispersion relation. The sign & in Eq. (12.21) holds for superluminal and subluminal
dispersion, respectively.

Using Eq. (12.20) and taking u* = (1, V) in the #, X frame, the wave equation is
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1
[(a, +axV) (3, + Voy) — 07 + —23;‘(} ¢ = 0. (12.22)
MLIV

and V (x) can be shaped so to mimic the warp drive geometry. Because of stationarity,
the field can be decomposed in stationary modes ¢ = [ dwe™'“'¢,,, where w is the
conserved (Killing) frequency. Correspondingly, at fixed w the dispersion relation

reads y
(0 —Vk,)* =k, + —2- =Q7, (12.23)
MLIV

where k,(X) is the spatial wave vector, and 2 the comoving frequency, i.e. the
frequency in the aether frame. The quartic nature of the dispersion relations allows
up to four solutions/modes and the problem in the end reduces to solve a Bogoliubov
matrix of coefficients relating the mode in the asymptotic regions (assuming My
to be larger than any other scale in the problem) [9].

The upshot is that in the case of subluminal dispersion relation there is an instabil-
ity related to the well-known “laser effect” [8]. In the case of superluminal dispersion
relations there is an infrared divergence that leads to a linear growth in time of the
energy density proportional to My and the square of the warp drive wall surface
gravity k (we are assuming k; = k» = «) [9]. Using quantum inequalities, Ref. [30],
one can argue that k must be of the order of the Planck scale, which implies that the
growth rate is also of that order (unless My y is very different from that scale). So,
even in the presence of superluminal dispersion, warp drives would be unstable on
short time scales. This instability, although not logically impossible to compensate
for, would be extremely costly making it technologically implausible.

In conclusion with or without local Lorentz invariance FTL travel via warp drives
seems inherently extremely problematic. This might seem a very depressing piece
of news to science fiction fans, however let us stress that still any subluminal prop-
agation (even just at 99.999% of the speed of light) seems to be free of most of the
superluminal problems, of course, if the daunting engineering problems related to
the very formation of the warp drive will be solved in a (possibly distant) future. Not
too bad for novels and movies...

12.8 Conclusions

In summary, the above-discussed warp drive case shows that the very formation
of the spacetime structure, allowing for a TM built up via FTL travel, can be
very problematic—to say the least—well within the realm of semiclassical grav-
ity. Remarkably, this conclusion still holds even when one allows for high energy
deviations from local Lorentz invariance as inspired by analogue models of gravity.
So, this “pre-emptive” chronology protection seems to strongly suggest that FTL
travel will be always forbidden by the underlying structure of spacetime and gravity.
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Interestingly enough, there are hints how this might work in some QG models. For
examples in Causal Set Theory [7], the discrete structure replacing spacetime is made
of sets of points which must be acyclic, meaning that no element in a causal set can
causally precede itself. This in turn implies that CTCs are ruled out a priori. Actually,
there is concrete evidence that generically Planck scale approaches based only on
the causal structure of a spacetime cannot permit CTCs in the continuous classical
limit (neither a corresponding phenomenon in their quantum counterparts) [24].

Looking forward it would be interesting to see if the warp drive analysis presented
here could be extended to the formation of a traversable wormhole. As we have said
in this chapter there are already hints that the very formation, e.g. with an otherwise
flat spacetime, might be forbidden due to a divergent particle production generated
by the topology change [2, 25] but it is not so clear if quantum gravity (via Wheeler
spacetime foam “harvesting” or by allowing relic wormholes from the big bang era)
could not get around this apparent obstruction.

In any case, whatever the final answer on the viability of FTL travels and TM
might be, let us stress that it will be very relevant to our understanding of the fabric
of reality as it might very well tell us crucial features that will have to be embedded
in our models of the spacetime at the Planck scale and beyond. So this research is
not just a fun field for sci-fi fans, but should be considered a very crucial aspect of
general relativity which might teach us the way forward. We hence hope that this
humble contribution would stimulate further research in this field.
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