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PREFACE 

"The history of modem science has shown repeatedly that a 
quantitative description of nature can often be achieved most 
s u c c e s ~ y  by first idealizing natural plhenomena, i.e., by setting 
up a simplified model, either physical or mathematical, ~ c h  
crudely describes the essential behavior while neglecting details. - 
The behavior of nature is then related to the idealized model by 
various correction terms which can be interpreted physically and 
which sometimes can be related quantitatively to those details in 
nature vAaich were neglected in the process of iden~zation." 

J. M. Praumitz 

~ s  book contains essentially the somewhat expanded material of  a one-term course 
which I presented at the California Institute of  Technology over several years. In that 
course I attempted to summarize the salient features of both equilibrium and steady-state 
thermodynamic theory under a uniform postulatory viewpoint. I wished to emphasize the 
logical structure of thermodynamic theory, its formal aspects, to allow it to emerge as a 
coherent whole, unfettered by much of  those details which--albeit indispensable in practical 
applications---tend to obscure this coherent structure. Largely because of this, I also 
avoided any statistical mechanics or reference to molecular structure--barring an occasional 
allusion. The treatment is, therefore, 'classical', or--using a perhaps more approoriate 
wordu'phenomenological '. Thus the concept of  entropy (as is that of  chemical potential) is 
introduced simply as required by the formalism--to complete the pattern, as it were. 

I almost exclusively dealt with 'ideal' systems. I made an exception (the van der 
Waals equation of state) only when discussing phase transitions because ideal gases do not 
show such transitions. Generally, I took the view that the treatment of  'real' systems 
properly belongs into the realm of applied, rather then theoretical thermodynamics. For 
these reasons, only selected ideal systems are covered. 1deal gases are discussed 
extensively. The ideal solution is treated as an e x a ~ l e  of a liquid system~ The amorphcms 
ideal rubber serves as an example of a solid. I chose this partly because much of  my 
research has been concerned with the properties of rubberlike materials, but--perhaps more 
importantly--because the formalism developed is a model for the treatment of  other, non- 
simple systems. To avoid getting into lengthy discussions thatmin my opinionmcontribute 
nothing essential to an exposition of the fundamental structure of thermodynamic theory, I 
did not talk about c r y s t a ~ e  solids. I also omitted dealing with critical phenomena in terms 
of scaling laws. I do not consider these omissions to be shortcomings of the text as I 
concentrated on conveying a sense of the structure of the theory. 

J. M. Prausnitz's (1978) words in the motto refer to ideal systems. They apply 
equally well, however, to the whole approach I took in the course. The theory I presented is 
an idealized model theory designed to help us understand thermodynamics. Any such model, 
if correctly developed, stands on its own as a creation of the human ~ d  whether it applies 
or not to anything in nature. In fact, the s i m p ~ g  assul~tions that must be made when 
constructing such a model ~ a l l y  guarantee that it cannot truly describe reality. Its 
usefulness lies in the fact that it is relatively easy to grasp, that it orients our thinking, and 
that we can 'get away' with trying to apply it to reality because its domain of validi~ can 
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come arbitrarily close to reality. One can 'get away' with it only within this domain which 
must be defined and appreciated. The ideal gas furnishes a perfect illustration of this point. 
It is the essence of a model that it can never truly be in a one-to-one correspondence with 
reality, not even within its domain of validity. To construct a perfect model one would have 
to be the Creator Himself. 

The course was not meant to be a first course in thermodynamics. It was presented 
to classes consisting mainly of chemical engineering, materials science, and chemistry 
graduate students with a smattering of undergraduates. All students had had undergraduate 
thermodynamics and many had some other graduate thermodynamics courses. Nevertheless, 
in unsigned but obligatory course evaluations the students asserted that they found the 
course helpful and that they liked it because it presented the material in a novel way. 

I was struck by my students' almost uniform clamor for more steady-state thermo- 
dynamics. None of them had been exposed to steady-state theory before. They were clearly 
intrigued by it and felt (as do I) that a knowledge of at least the rudiments of steady-state 
theory deepens the understanding of thermodynamics as a whole, and that it guides one's 
thinking in this field. It does seem useful to me to discover that such well-know~ empirical 
relations as Fourier's Law of Heat Conduction and Fick's First Law of Diffusion can be 
firmly founded in steady-state theory. In particular, I deem it most gratifying to learn that 
the steady state is a state of minimum entropy production. My own, perhaps novel, 
contribution consists in paralleling the notions---central to the exposition of equill"orium 
thermodynamics in this text--of entropy and energy representations by the notions of 
entropy production and energy retention representations in my treatment of the theory of 
coupled linear steady states. In ~iew of my students' interest in the thermodynamics of the 
steady state, I was tempted to enlarge this part of the book. I eventually decided against it 
because I felt that whetting the readers appetite is all I really am qualified to do. 

The exposition is postulator),, i.e., it is based on a small number ofposmlates which 
are simply assumed to be valid without further justification. Their ultimate justification must 
be sought in their usefulness. The arguments in favor of a postulatory exposition have been 
well presented by H. Callen (1963, 1985). In my lectures I pointed out that--stretching an 
analogy~postulates somewhat resemble base vectors. One simply defines an appropriate 
set of base vectors to suit one's purpose. It is the same with postulates. I emphasized that 
currently there does not appear to be any way to decide how many postulates are required 
to completely underpin the theory, and that there are at this time no rigorous methods to 
decide whether a given set of postulates is complete. 

These and other difficulties with thermodynamics as a physical science arise from its 
non-metric character. Weinhold (1975, 1976) has introduced a 'metric' into thermo- 
dynamics. This work has attracted less attention than it probably deserves, partly perhaps 
because the mathematics are couched in the 'language' of Dirac's ket and bra notation which 
is familiar to quantum physicists but not to the majority of thermodynamicists. To me 
Weinhold's mettle thermodynamics---although intriguing--did not appear to make the 
presentation of thermodynamic theory any easier and so I did not include it in my lectures. 

Callen (1974, 1985) pointed out that the non-metric nature of thermodynamics 
implies that it is rooted in symmetry relations rather than quantitative laws. He then 
proceeded to outline the role of symmetry considerations in thermodynamics, effectively 
basing thermodynamics on symmetry laws. This is certainly promising work. However, it 
has apparently not yet led to predictions concerning the nature, number, and role of 
postulates in the theory. 
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The book is subdivided into three parts. These are: 

I. Equilibrium Thermodynamics 
II. Steady-state Thermodynamics 
III. Appendices. 

The text is followed by a fist of references, a list of symbols, and a quite detailed 
author and subject index. The first Part contains twenty-one chapters, the second nine. 
There are seven appendices. The chapters are broken down into sections, each vdth its ow~a 
number and title. The former serve for indexing and cross-referencing. I tried to keep these 
sections quite short and concise. Thus, some contain just a paragraph or two. Others that 
could not be subdivided profitably are somewhat longer. A section entitled "Chapter 
Contents" lists them at the be~nning of each chapter. 

A word needs to be said about the figures in the text which depict the fundamental 
surface in thermod~aamic confi~at ion space (Figs. 3-2, 4'3, 4-4, 5-1, and 5-4). I followed 
Callen (1963, 1985) in their representation, adapting them slightly for my own purposes. 
These figures are essentially streamlined versions of J. C. Maxwell's plaster model of the 
thermodynamic surface ofwater, which he presented to Gibbs in 1875 (Weinhold, 1978). 

Finally, the mottoes on the title pages of the three parts of the book and at its end 
are from Arthur Whaley's (1938) translation of the Analects of  Confucius. The first is from 
Book II-17, the second from Book IX-16, the thh'd from Book I-1, and the fourth from 
Book VII-1, 2, 3. 

Naturally, I did not invent any new thermodynamics. Rather, this book is an 
amalgam, or distillate, of ideas culled from a number of excellent textbooks, notably Callen 
(1963, 1985), but also Abbott and van Ness (1972), Blinder (1969), Kestin (1966), Modell 
and Reid (1983), Denbigh (1965, 1966), ter Haar and Wergeland (1966), Zemansky (1968), 
de Groot and Mazur (1984), Haase (1966), Prigogine (1967), Wisniewsld et al. (1976), and 
others more. I hope that this short 'structural overvie~ will find favor with students, 
teachers, and engineers. I wotdd greatly welcome any feedback, including references to 
typographical or other errors. 

In conclusion, it is a pleasure to acknowledge the h e l p ~  suggestions I received 
t~om two of my colleagues, Zhen-Gang Wang and Constantinos Giapis. The latter, in 
particular, read the entire manuscript. I deeply appreciate their efforts. I am also indebted to 
Igor Emri of the University of Ljubljana for his most welcome comments and suggestions. 
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1. D E F ~ I O N S  

This text presents the fimdamentals of the structure of the phenomenologicM theory of 
equilibrium and steady-state thermodynamics on a postulatory basis. A postulatory basis is 
a set of independent statements, serving as the necessary and sufficient foundation of a 
deductive system of thought. 

This chapter contains a glossary of certain essential conceptual tools of equilibrium 
and steady-state thermodynamics that simply require some comment (e.g., energy, matter, 
work, etc.) or, at best, a dictionary definition to establish their meaning with some precision 
(e.g., system, state, process, etc.). Others ~ need some understanding of the theory and 
will be defined in the text. 

All of these concepts are required in the development of the theory but are not part 
of the postulatory basis. Many, ff not aK may not have real physical existence. However, 
the), can always be i m a g e d  to result from an extension of some quality or property to an 
appropriate limit. 

1.0 Chapter Contents 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

Energy and Matter 
Thermodynamics 
Theoretical and Applied Thermodynamics 
Work, Heat, and Energy 
Factorability of the Energy 
Ideal and Real Thermodynamic Systems 
Thermodynamic Systems and their Surroundings 
Reactive and Non-Reactive Thermod)~aamic Systems 
S ~ l e  Thermodynamic Systems 

I. 10 Thermodynamic Properties 
1.11 Thermodynamic Equilibrium 
1.12 Thermodynamic States 
1.13 Thermodynamic Processes 
1.14 Thermodynamic Functions 
1.15 Postulates, Theorems, Laws, Rules, and ~ c i p l e s  

1.1 Energy and Matter 
Energy and matter are the two fundamental manifestations of physical reality. They 

are interconvertible; however, this interconvertibility will not play any role in this text. We 
p ~ f i l y  be concerned with energy inter~anges. Matter ~ enter our considerations 

largely because changes in the amount of matter or in its co~osit ion are generally 
accomp~ed by exchanges of energy. 

1.2 Thermodynamics 
Thermodynamics is the science of heat as a special form of energy exchange. It is 

thus a branch of energetics, the general science of the forms and interchanges of energy. 
From a thermodynamic standpoint energy can be exchanged in two ~damenta l  ways: in 
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the form of work or in the form of heat. Work or heat represent energy transfers. They are 
energy in transit. 

Thermodynamics may conveniently be subdivided into two main disciplines: 
equilibrium and non-equilibrium thermodynamics. Equilibrium thermodynamics deals with 
the thermodynamics of systems in mechanical, chemical, and thermal equilibrium and is 
treated in Part I of this text. Non-equilibrium thermodynamics is the thermodynamics of 
irreversible processes. It can be further subdivided into steady-state thermodytnTmics, 
treated in Part II of this text, and non-steady-state or general, irreversible thermodynamics 
that is outride the scope of this text. 

1.3 Theoretical and Applied Thermodynamics 
There are two rides to every body of knowledge: a theoretical and a practical ride. 

The theoretical side is concerned with the codification, in a self-contained and self- 
consistent manner, of the principles and rules that govern that particular field of knowledge. 
The practical side is concerned with the application of those principles and rules to reality. 
As in any science, in any thermodynamic discipline we also distinguish these two sides, 
namely, theoretical and applied thermodynamics. This text deals with the former. 

1.4 Work, Heat, and Energy 
Work is transfer of energy to the macroscopically observable coordinates of motion 

of the constituents of matter. In the performance of physical work the material composition 
remains unchanged. Examples of physical work are mechanical, electrical and magnetic 
work. 

In contradistinction to physical work chemical work is associated with changes in 
(internal) energy resulting from changes in the amount or the chemical composition of 
matter. Since its nature is quite different from that of physical work (it cannot be measured 
in any direct way), the term mass action is preferable and will be used throughout this text 
where the distinction appears indicated. Occasionally both physical attd chemical work 
be subsumed under the common term of work. 

Heat is transfer of energy to the macroscopically unobservable (or hidden) 
coordinates of motion. 

Energy manifests itself as work or heat when crossing the boundaries of a system It 
is diminished, when work is done, by an amount equal to the work and is therefore defined 
in terms of work and expressed in the same units. Potential energy is the capacity for 
mechanical work that a body possesses by virtue of its position. Kinetic energy is the 
capacity for mechanical work that a body possesses by virtue of its motion. The concepts of 
potential and kinetic energy are useful also in considering forms of energy other than 
mechanical. Potential and kinetic energy are referred to as external energies. Internal 
energy will be introduced later in the text. 

1.5 Factorability of the Energy 
Any form of energy exchange can always be expressed as the product of two factors 

or parameters: an intensity factor or intensive parameter, and a capacity factor or extensive 
parameter. The capacity factor depends on the extent or the amount of the system under 
consideration. The intensity factor does not. It is the same in any part of the system 
regardless of its size. As two examples, if the energy exchange is in the form of pressure- 
volume work, then the intensity factor is the pressure, and the capacity factor is the volume; 
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if it is in the form of electrical work, then the former is the voltage, and the latter is the 
charge. 

1.6 Ideal and Real Thermodynamic Systems 
A thermodynamic system is that part of the physical universe which has been singled 

out for observation or manipulation. An ideal thermodynamic system is a model system 
whose behavior underlies the behavior of a corresponding real system. As a model system, 
the ideal system is a simplification which allows it to be subjected to a rigorous treatment 
within the compass of theoretical thermodynamics. The behavior of i dea t ed  model 
systems simulates the behavior of real systems under certain limiting conditions. The 
thermodynamic treatment of real systems--though important--does not, however, contain 
anything new in a fundamental theoretical sense and, therefore, belongs in the realm of 
applied thermodynamics. 

1.7 Thermodynamic Systems and their Surroun~ngs 
That part of the physical universe with which a given thermodynamic ~stem m y  

interact is called the environment, or the surroumlings, of the system. The means by which 
the system is separated from ks surroundings are called ks boundaries. The boundaries of a 
system are also referred to as barriers, constraints, restraints, or walls. 

With respect to their interaction with their surroundings we distinguish several 
thermodynamic systems. A system which exchanges neither ~ t t e r  nor energy with its 
surroundings is an isolated system. A system that does not exchange matter with its 
surroundings but may exchange energy with it is called a closed system. The boundary of a 
closed system is impermeable, i.e., it is restrictive with respect to matter. 

A system which exchanges both matter and energy with ks surroundings is an open 
system. The boundary of an open system is non-restrictive with respect to matter. It is 
pernmable -when it is non-restrictive to all forms of matter, and semi-permeable when it is 
non-restrictive to some form of matter but restrictive to all other forms. With r e s p ~  to 
energy interchanges, the walls of an open s y s t ~  are movable or rigid according to whether 
they permit exchange of energy in the form of physical work or do not; and they are called 
diathermal or adiabaac according to whether they permit exchange of energy in the form 
of heat or do not. 

1.8 Reactive and Non-Reactive Systems 
A system in which chemical or nuclear reactions are allowed to occur ~ a reactive 

system. In the absence of chemical or nuclear reactions the system is nort-reactive. This text 
deals with isolated reactive chemical systems only. 

1.9 Simple Thermodynamic Systems 
The thermodynamic system with which this text ~ mainly be concerned is referred 

to as a simple system. A simple thermodynamic system is, by definition, macroscopica~ 
homogeneous, isotropic, uncharged, chemically inert (non-reactive), and is sufficiently large 
so that surface effects can be neglected. It is not acted upon by electric, ~gnet ic ,  or 
gravitational fields. Pressure is the only mechanical force allowed to affect the simple 
system. A simple system thus only undergoes dilation or contraction. 
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A single-component simple system contains only one kind of  matter. A 
multicomponent simple system contains two or more kinds of  matter. A simple system with 
constant composition will be called a physical simple system. 

A composite (simple) system comprises at least two simple systems, divided by a 
controllable internal barrier which is restrictive to at least one form of  energy or matter. It is 
often convenient to consider the system of  interest and the surroundings with which it 
interacts as two subsystems combined into an isolated composite system 

A non-simple system is a system which is not bound by the criteria applicable to a 
simple systenl 

1.10 Thermodynamic Properties 
The macroscopic observables which survive statistical averaging over the 

microscopic coordinates of  motion are called thermodynamic properties, coordinates, 
variables, or parameters. A thermodynamic property is a variable whose change during any 
change of  state depends only on the initial and final state of  the system. It is, therefore, also 
called a variable of state or function of state. An infinitesimal change in a state variable is 
an exact differential (see Appendix 1 ). 

Properties are measurable either directly (primitive properties, e.g., volume, 
pressure, or temperature) or indirectly (derived properties, e.g., internal energy, entropy, or 
chemical potential). Properties are neutral properties if they play no role in the energy 
exchange considered (e.g., color). 

A property is extensive if it depends on extent (length, area, vohnne) or on amount 
(mass, charge). A property is intensive if it does not depend on extent or amount. A 
property may be neither extensive nor intensive. An extensive property becomes intensive 
when scaled with respect to either extent or amount. An extensive property becomes a 
molar property when expressed per mole of  matter, a specific property when expressed per 
unit of  mass, and a density when expressed per unit volume. Molar and specific properties 
are intensive and so are densities. 

1.11 Thermodynamic Equilibrium 
The concept of  equilibrium is taken from mechanics but is basic in thermodynamics 

as well. We distinguish between stable, metastable, unstable, and neutral equilibriunl When 
a thermodynamic system is in stable equilibrium, a perturbation will result only in small 
(virtual) departures from its original conditions and these will be restored upon removal of  
the cause of  the perturbation. A thermodynamic system is in unstable equilibrium if even a 
small perturbation will result in large, irreversible changes in its conditions. A system in 
metastable equilibrium will act as one in stable equilibrium if perturbed by a small 
perturbation but will not return to its initial conditions upon a large perturbation. Finally, a 
system in neutral equilibrium will not suffer any change in its conditions under any 
perturbation. 

1.12 Thermodynamic States 
The state of  a thermodynamic system is its condition as specified by ks properties. 

For any system there is a minimum number of  properties which completely characterize its 
state. 

A system is in a state of  (stable) thermodynamic equilibrium if its state can be 
described by properties which do not depend on time and are the same at any point of  the 
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interior of  the system A system in a state of  equilibrium does not interact with its 
environment. A simple system is in a state o f  eqt~bfium when it is in mechanical, chemical, 
and thermal equilibriunl 

A system ~ c h  exchanges energy and/or matter ~ its environment at a constant 
rate is said to be in a stationary or steady state. The properties of  a system in a steady state 
are also time-invariant but are generally different at different points of  its interior. 

1.13 Thermodynamic  Processes 
A change from one equih%rium state to another is called a change of  state or a 

process. An infinitesimal change that may or may not take place but is e o ~ a t i b l e  with the 
constraints of  the system is called a virtual change. 

A process that is carried out at an infinitely slow rate so that it is at all times infini- 
tesimally close to a state of  thermodynamic equilibrium is called a quasistatic ('almost 
static') process. A quasistatic process is thus an ordered suecesfion of  equilibrium states. 

A reversible process is conducted in such a manner that, at its conclusion, "both the 
system and its surroundings are restored to their initial state without producing a change in 
the rest of  the universe. A reversible process is necessarily quafistatic. 

A real physical process (a spontaneous natural process or actual process) is a 
temporal evolution ofequilibrimn and non-equi l ib~m states. Such a process is irreversible. 

A cyclic process is a process in which the system is returned to its initial state after 
completion of  the cycle. 

1.14 Thermodynamic Functions 
Thermodynamic functions are either state fimctions or process functions. A state 

function (or function of  state) is independent of  the process by which the final state is 
reached from the initial state and thus depends solely on the initial and final state o f  the 
system By contrast, a process function depends on the way by which the final state is 
reached from the initial one. The differential of  a state fimction is an exact, that of  a process 
function an inexact differential. Appendix 1 contrasts exact and inexact differentials. 

1.15 Postulates, Laws, Principles, Rules, and Theorems 
In this text there are frequent references to postdates, laws, p ~ c ~ l e s ,  rules, and 

theorems. These terms are largely ~aditional and the distinction between their meanings is 
often somewhat tenuous. In general: 

Postulates are propositions to be accepted without proof. They f o ~  the first 
premises in trains of  thought and are commonly (as in this text) referred to under a 
descriptive name or phrase (e.g., the Postulate of  the Existence of  Entropy). By contrast, 
laws, principles, rules, and theorems are usually associated with a personal name (e,g., 
Henry's Law, Le CMteliefs Principle, Maxwelrs Rule, the C~bbs Theorems) but there are 
exceptions (e.g., the Second Law of  Thermodynamics, the Principle of  the Conservation of  
Energy, etc.). 

Laws are formal statements of  the manner or order in which a set of  natural 
phenomena occur under certain conditions. These phenomena are, as far as is ~ o w n ,  
invariable under the stated conditions. 

Principles enunciate an established mode of  action: or operation in natural 
phenomena. Principles emphasize the idea offimdamental truth or general applicability. 
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Rules are prescribed forms, methods, or sets of instruction for solving a given class 
of problems. Rules emphasize the idea of more specific direction or regulation. 

Theorems are general statements that have been proved or whose truth has been 
conjectured. They embody that which has been considered and established as a principle or 
law; hence, sometimes, a rule. 



2. T H E  P O S T U L A T E S  O F  E Q U I L I B R I U M  T H E R M O D Y N A M I C S  

A thermodynamic system is characterized in terms of its extensive properties. In addition to 
the directly measurable extensive parameters such as the volume, V, or the mole number, 
N, complete characterization requires two additional extensive thermodynamic parameters, 
the internal energy, U, and the entropy, S. These are not measurable ~ect ly and are 
introduced through postulates. Three additional postulates complete the postulato~ basis 
upon which the discussion of equilibrium thermod)~namics in this text is based. 

2.0 Chapter Contents 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 

Existence of an Internal Energy- P O S T ~ T E  I 
Additivity of the Internal Energy 
Path Independence of the Internal Energy 
Conservation of the Internal Energy- POSTULATE H 
Transfer of Internal Energy: Work, Mass Action, and Heat 
Heat as a Form of Energy Exchange---The First Law of Thermodynamics 

2.7 Heat Exchanged with the S ~ o ~ d i n g s  and Internally Generated Heat 
2.8 Measu rab~  of Changes in Internal Energy 
2.9 Measurability of the Heat Flux 
2.10 Measurability of the Mass Action 
2.11 ~ e s i m a l  Change in Work 
2.12 Infinitesimal Change in Mass Action 
2.13 Insufficiency o f t  h e  Primitive Extensive Parameters 
2.14 Existence of Entropy- POSTULATE W 
2.15 Additivity of the Entropy 
2.16 Path Independence of the Entropy 
2.17 Non-Conservation of Entropy - P O S T ~ T E  
2.18 Dissipative Phenomena 
2.19 lnfin~esimal Change in Heat 
2.20 Special Nature of Heat as a Form of Energy Exchange 
2.21 Limit of Entropy- POSTULATE V - -  The Third Law of Thermod)~amics 
2.22 Monotonic Property of the Entropy 
2.23 Significance of the Concept of Entropy 

2.1 Existence of an Internal Energy-  POSTULATE I 
Postdate I asserts that: 

"For any thermodynamic system there exists a continuous, differentiable, 
single-valued, first-order homogeneous fimetion of  the extensive parameters 
of the system, called the internal energy, U, which is defined for all equili- 
brium states". 

2.2 Ad~tivity of the Internal Energy 
Being a function of the extensive parameters of the system, the internal energy is 

itself extensive and is therefore additive over the subsystems ofa co~osa'te s y s t ~  
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2.3 Path Independence of the Internal Energy 
Being defined for all equilibrium states, the internal energy is a function of state or 

state t ime#on (w 1.14). A change in internal energy therefore depends solely on the 
difference between the values of U in the final and initial states and is independent of the 
path along which the system has been led between these states. A finite change, AU, is thus 
given by 

f 

A U  = dU = Uf - U~ (2.3) 

where the subscripts f and i refer to the final and initial states, respectively. It further 
follows that dU, an infinitesimal change in U, is an exact differential (see Appendix 1). 

2.4 Conservation of the Internal Ene rgy-  POSTULATE H 
Postulate II claims that: 

"In an isolated composite system the total change m internal energy over all 
subsystems involved in the change is zero." 

Mathematically this is expressed by the relation 

AUTot~I = 0. (2.4) 

Postulate H asserts the conservation of energy. According to this postulate, in an 
isolated system energy can neither be destroyed nor created. Clausius (1850) stated this in 
the words: 'Die Energie der Welt ist konstant' ( ~ e  energy o f  the universe is constanO. 

2.5 Internal Energy Transfer: Work, Mass Action, and Heat 
Equilibrium thermodynamics is concerned with the transfer, or exchange, of energy 

in quasistatic processes. In this text energy transferred to the system is positive, and energy 
transferred from the system is negative 

Work is the change in the internal energy of a non-reactive thermodynamic s y s t ~  
resulting from the performance of physical work either on or by the system while it is 
isolated from its surroundings by adiabatic impermeable walls. 

Mass action manifests itself in two distinct ways in a thermodynamic system. In an 
open system it is the change in internal energy resulting from a transfer of matter into or out 
of the system while it is enclosed by adiabatic rigid walls. In a closed system it is the change 
in internal energy resulting from a change in the composition of matter while the system is 
confined between adiabatic, rigid, and impermeable walls. 

Heat is the change in the internal energy of a non-reactive thermodynamic system re- 
sulting from the transfer of energy to or from the system in a quasistatic process while the 
system is isolated from its surroundings by rigid impermeable walls. 

Work, mass action, and heat are not functions of state. Because they are process 
functions (cf. w 1.14), elemental changes in these quantities are inexact differentials We 
denote an inexact differential by 6 instead ofd  (see Appendix 1). 
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2.6 Heat as a Form of Energy Exchange--The First Law' of Thermodynamics 
An increase in the internal energy, AU, of a system, not in motion, is equal to the 

energy transferred to it in the form of (physical) work, W, mass action, M, or heat, Q. A 
finite change in U is therefore given by 

AU = W + M + Q ,  (2.6)1 

while an elemental change becomes 

dU = 6W + 6M + 6Q . (2.6)2 

Equations (2.6) represent the principle of the conservation of energy in thermo- 
dynamics. They extend the scope of the principle as formulated in mechanics to include heat 
as a form of energy transfer and are commonly considered to constitute mathematical 
expressions of the First Law of  ~erm~xtynamies (cf. w 7.16). 

The equations c l a @  the meaning of path in w 2.3 and, hence, the meaning of the 
term process function andfimetion of  state (w I. 14) The same change in internal energy -r 
result if the change in any of the quantities W, M, Q, or 6W, 6M, 6Q, is exactly c o ~ e n -  
sated by an equivalent change in either or both of the other two. Since the way in which this 
can be achieved is arbitrary, a final state can be reached from a given initial state along a 
variety of paths. 

2.7 Heat Exchanged with the Surroundings and ~terna l ly  Generated Heat 
Apart from heat, Q, that is imparted to, or is abstracted from, the system, i.e., the 

heat exchanged between the system and its surroundings, there is another form of heat, QI  
that is not transferred into or out of the system but is generated in its interior as a result of 
the unavoidable energy dissipation in real physical i.e., irreversible, processes, 

Clausius (1850) who introduced the concept, called Qr the 'unco~ensated heat' 
because it is not 'compensated' for in the su~otmdings of the system by a commensurate 
change in heat. It would more fittingly be called 'heat generated irreversibly in the interior 
of the system'. Since this expression is too unwieldy, we shall call it s i l l y  the internally 
generated heat. This heat is always produced at a ~ e  rate and, hence, is not quasistatic. It 
is always positive and vanishes only in reversible processes (cf. Chapter 5). In the thermo- 
dynamics of irreversible processes an attempt is made to determine it quantitatively (cf. Part 
II). In equilibrium thermodynamics it plays only a subordinate quafitative role. 

2.8 Measurability of Changes in Internal Energy 
The internal energy, U, cannot be measured directly. However, only changes in 

internal energy are of concern in thermodynamics and these changes can be measured by 
physical means. The measurability of changes in internal energy follows from Eq. (2.6h 
and, hence, ultimately from Postulate H upon which the equation rests. For a non-reactive 
thermodynamic system of constant composition, enclosed by an adiabatic, ~ e r m e a b l e  
wall, Eq. (Z6)l reduces to AU = W. Now, the physical work, W, can be measured by 
physical means and, given two equilibrium states, A and B, it is always possible to carry the 
system either from state A to state B, or from state B to state A, by some physical process 
while the system is enclosed by adiabatic impermeable walls (Joule 1847, 1849). Hence, 
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A U can be determined by measuring the work, W, done in the process under the stated 
conditions. 

2.9 Measurability of the Heat Flux 
By Eq.(2.6)l, in any process, the heat flux 1 to or from a system enclosed by 

impermeable walls is equal to the change in internal energy diminished by any work done in 
the process. Since both A U and W can be measured, so then can Q. A device which 
measures heat fluxes is called a calorimeter. The heat evobced or absorbed in a s y s t ~  
undergoing chemical reactions can also be determined calorimetrically (cf. w 21.6). 

2.10 Measurability of the Mass Action 
In a closed system mass action results from a change in composition within an 

isolated system. Since the system is isolated, AU = 0, and, by Eq.(2.6h the mass action 
term becomes 

M - -  - W - Q .  (2.10) 

If volume change is the only work, this can be determined, and the heat can be 
measured in a calorimeter. If volume change is not the only work, the mass action can still 
be measured in principle although it may be difficult to devise a suitable experimental 
arrangement. 

The mass action representing the change in internal energy resulting from a flow of 
matter either to or from an open system is quite another matter. The flow of matter is an 
inherently irreversible process. Matter always transports with it a certain amount of energy. 
In isothermal diffusion in the steady state the energy transported per mole of matter, the so- 
called energy of  transport, may be obtained, at least in principle, from measurements of the 
heat of  transport if the molar enthalpy of the fluid is known. A fuller discussion of this topic 
must, however, be deferred until the concepts of the energy of transport and the heat of 
transport have been properly introduced in Part II. It will be taken up again in w 29.5. 

2.11 Infinitesimal Change in Work 
When only rigid barriers are lifted in a composite system, the infinitesimal change in 

internal energy equals the infinitesimal change in work and is given by 

OU 
dXk (k = 1 ,2 , . . . ,  r )  (2.11) 

x(#x~) 

where the X~ are the extensive primitive (i.e., observable or measurable) parameters of the 
system excluding the mole mtmbers, and X denotes the totality of all extensive parameters. 

1 The terms "heat' and "heat flux' may generally be used interchangeably. 
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2.12 Infinitesimal Change in Mass Action 
When only impermeable barriers are N e d  in a non.reactive composite system, the 

infinitesimal change in internal energy equals the infinitesimal change in mass action and is 
~enby 

OU 
dNk (k = r + l ,  2 , . . . )  (2.12) 

X(#Nk) 

where the Nk are the kth mole numbers and X is again the totality of all extensive 
parameters. 

2.13 Insufficiency of the Primitive Extensive Parameters 
The p ~ i v e ,  i.e., the directly mea~able,  extensive parameters, Xk, of a thermo- 

dynamic system are insufficient to determine the infinkesimal change in internal energy 
when an adiabatic constraint is lifted, because none of them is an extensive parameter of 
heat. 

Temperature is the intensive parameter of heat. The recognition that energy can 
always be factored into the product of an extensive and an intensive parameter (cf. w 1.5) 
allows us to introduce the required extensive parameter of heat simply through a postulate. 

2.14 Existence of E n t r o p y -  POSTULATE m 
Postaalate ~ states that: 

"For any thermodynamic system there exists a con~\nuous, d~ferentiable, 
single-valued, first-order homogeneous function of  the extensive parameters 
o f  the system, called the entropy, S, which is deft-ned for all equilibrmm 
states and which is the extensive parameter of  heat." 

2.15 Additivity of the Entropy 
Being a fimction of the extensive parameters of the system, the entropy is itself 

extensive and is therefore additive over the subsystems of a co~os i t e  system, 

2.16 Path Independence of the Entropy 
Being defined for aH equilibrium states, the entropy is a state function. A change in 

entropy therefore depends solely on the difference between the values of S in the final and 
initial states and is independent of the path along which the system has been led between 
these states. A finite change, AS, is therefore ~ e n  by 

A S  -- dS = Sf - Si (2.16) 

where the subsc@ts f and i again refer to the final and initial states. It follows further that 
dS, an infinitesimal change in S, is an exact differential (see Appendix 1). 
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2.17 Non-Conservation of E n t r o p y -  POSTULATE IV 
In contrast to the internal energy, entropy is not conserved. Postulate IV asserts 

that: 

"In a closed adiabatically isolated system the change in entropy over aH 
subsystems involved in the change is positive semi-definite ". 

Mathematically this may be expressed by the relation 

ASTotal 2 0 .  (2.17) 

The change is zero only in a reversible process. In any real physical process (or 
spontaneous natural process) the change is positive. Equation (2.17) shows that while 
entropy, like internal energy, cannot be destroyed, unlike internal energy, it can be created 
and, in fact, always is created in any spontaneously occurring process. Clausius (1850) 
stated this in the words: 'Die Entropie der Welt strebt einem Maximum zu' (The entropy o f  
the universe tends towards a maximum). 

2.18 Dissipative Phenomena 
Postulate IV is in accordance with the common experience that a real physical 

process is invariably accompanied by dissipative phenomena such as mechanical friction, 
turbulence, electrical resistance, viscosity, and others more. These dissipative phenomena 
(cf. w 7.3) manifest themselves as internally generated heat (cf. w 2.7), thus increasing the 
entropy of the system and decreasing the amount of energy available for work (cf. w167 8.11, 
8.14, and 8.17). 

Production o f  entropy is the central problem of Part ILl of this text. 

2.19 Infinitesimal Change in Heat 
When only an adiabatic barrier is lifted in an isolated composite system, the infini- 

tesimal change in internal energy in the subsystem under consideration equals the 
infinitesimal change in heat and is given by 

OU ! dS . (2.19) 
dU = 5Q = ~ x(,~s) 

2.20 Special Nature of Heat as a Form of Energy Exchange 
Just like internal energy, entropy, the extensive parameter of heat, cannot be 

measured directly in the way in which the other extensive parameters, such as the volume 
and mole numbers, can be measured. This, together with the fact that entropy is not a 
conserved quantity in an isolated system, imparts a special status to heat as a form of energy 
exchange. This, indeed, is the reason for the existence of thermodynamics as a special 
branch of mechanics. 
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2.21 Limit of Entropy - POSTULATE V m The ~ d  Law of Thermodynamics 
According to Postulate V: 

"'The entropy of  any finite system is positive semi-definite m the state for 
which the partial derivative of  the internal energy with respect to the 
entropy vanishes". 

The state just referred to is characterized by the relation 

ou ] o. (2.21:) 
OS x(#s) 

Postulate V embodies one form of the Third Law of  Therraodynamics (see w 7.19 
for other formulations of the Third Law). 

2.22 Monotonic Property of the Entropy 
It follows from Postulate V that 

OS[! _> 0,  (2,22) 
OU | x(#v) 

i.e., the entropy is a monotone non-decreasing ~ c t i o n  of the internal energy. 

2.23 Significance of the Concept of EnWopy 
The recognition that energy can always be factored into the product of an extensive 

and an intensive parameter lead to our introduction of the entropy as the extensive 
parameter of heat. The identification of the entropy as an extensive parameter of any 
thermodynamic system makes it possible to extend the theow of mechanical equilibrium to 
thermodynamic equih'brium involving thermal effects. 
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3. T H E  F U N D A M E N T A L  E Q U A T I O N  

A functional relation between all extensive parameters of a thermodynamic system is called 
its fundamental equation (Gibbs, 1948). The fundamental equation contains all of the 
thermodynamic information on the system. Thermodynamic theory does not depend on the 
knowledge or even the existence of an explicit form of the fundamental equation. If one 
can, indeed, be formulated, it is bound to be rather complicated in general, because the 
constitution of the matter of which the thermodynamic system is composed ~ necessarily 
be complex. Thus, precious few explicit fundamental equations have been proposed and 
these all describe particularly simple systems (cf. w167 12.1, 15.1, and 17.13). It is, never- 
theless, crucial to an understanding of thermodynamic theory to examine the formal aspects 
and properties which characterize at~ fundamental equation, whether its explicit form is 
known or not. This is the task of the present chapter. 

3.0 Chapter Contents 

3.1 The Entropy and Internal Energy Representations of the Fundamental Equation 
3.2 The Fundamental Surface in Thermodynamic Configuration Space 
3.3 The Intensive Parameters in the Energy Representation 
3.4 The Intensive Parameters in the Entropy Representation 
3.5 The Intensity Factor of Hea t -  The Thermodynamic T e m p e r a t e  
3.6 Conjugate Parameters 
3.7 The Chemical Potential 
3.8 SiL_mificance of the Chemical Potential 
3.9 The Gibbs Equation 
3.10 The Euler Equation 
3.11 Equations of State 
3.12 Relation between the Fundamental Equation and the Equations of State 

3.1 The Entropy and Internal Energy Representations of the Fundamental Equation 
The functional relation 

f(U, S, . . . ,  Xk, . . .  ) = 0  (3.1)1 

is a first-order homogeneous equation of the extensive parameters of the system. Since U 
and S are the only two extensive parameters that cannot be measured directly (cs w167 2.8 
and 2.20), we cast Eq.(3.1)l in either of two equivalent forms, explicit either for the internal 
energy, U, or the entropy, S. In the latter case we have 

s = s ( u ,  . . . ,  x k  . . . .  ) ,  (3.1)2 

and speak of the entropy function, or the fundamental equation in the entropy 
representation. The extensive variables of state U, . . . ,  Xk, . . .  , are called the 'natural' or 
'canonical' variables in the entropy representation. 
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Since, by Postulates III and V, the entropy, S, is a continuous, differentiable, 
monotone non-decreasing function of U, Eq.(3.1)2 can be inverted to give 

u = u ( s , . . . ,  x k , . . .  ) .  (3.1~ 

Equation (3.1)3 is called the energy function, or the fundamental equation in the internal 
energy representation, or ~ l y  the energr' representation. The extensive variables of state 
S . . . .  , Xk, ... , are called the 'natural' or 'canonical' variables in the energy representation. 

The entropy and the energy representations are two dkfferent but equivalent ways of 
representing the same fundamental equation. Other representations ~ be introduced in 
Chapter 8. However, the entropy and the energy representations are the only" ones whose 
canonical variables consist exclusively of extensive parameters. The energy function, U, and 
the entropy fimction, S, may be called the cardinal fimctions of equih'brium thermo- 
dynamics. 

3.2 The Fundamental Surface in Thermodynamic Configuration Space 
The ~damenta l  equation defines a surface, the fundamental surface, in thermo- 

dynamic configuration space (Gibbs space). The coordinates o f ~ s  space are the extensive 
parameters S, U, and X~. For the physical simple system these parameters become s'nnply 
S, U, and V. Hence, the fundamental equation of this ~stem can be represented by a 
surface in three-dimensional Euclidean space as shown schematically in Fig. 3.2. 

Fig. 3.2 The surface S = S(U, V) in S, ~ V-  space 

3.3 The Intensive Parameters in the Energy Repr~entafion 
The differential form of the fundamental equation in the energy representation 

becomes 
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OU 
dU= 

OU 
dS + E k  - ~  

x(r 
dZk (3.3)1 

x(~x,o 

where k = 1, 2, . . . ,  r, . . . .  We recognize the first term on the fight as the fight hand side of  
Eq.(2.19), and the second term as containing the fight hand sides of  both Eqs.(2.11) and 
(2.12). 

In accordance with the factorability of  the energy, the first-order partial d ~ a t i v e s  
in Eq.(3.3h are recognized as the intensive parameters of the system in the energy 
representation. We denote the general intensity parameter in this representation by Y, and 
write 

where 

and 

dU = Yo dS + E k  Yk dXk, (3.3)2 

OU [ (3.3)3 
go = -g~  x(~s)  

Yk -- ~ X(-~X-~)" (3.3)4 

The nature of  the Yk depends on the system considered. When k = 1, 2, . . . ,  r, we shall let 
the YkdXk represent physical work terms. When k -- r + 1, . . .  , the YkdX~ will represent 
chemical work, i.e., mass action terms. 

3.4 The Intensive Parameters in the Entropy Representation 
In the entropy representation the differential form of the fimdamentfl equation 

becomes 

OS 
dS = ~ x(,~c-) dXk . (3.4)1 

x(~.x~) 

where the first-order partial derivatives are the mtenswe parameters of the system in the 
entropy representation. We denote them by I, and write 

dS = -To dU -+- E k Ik dXk (3.4)9. 

where 



3. THE FUNDAMENTAL EQUATION 19 

and 

OS 

x(#u) 

OS 

x(c.xk) 

(3.4)3 

(3.4)4 

Again, when k = 1,2, . . . ,  r, the I~dXk represent physical work terms', and when 
k = r + 1, .. .  , they represent chemical work, i.e., mass action terms. 

3.5 The Intensity Factor of H e a t -  The Thermodynamic Temperat~e 
Postulate III established entropy as the capacity factor of heat. ~ accord~ce with 

the factorability of the eenergy we identify Y0 in Eq.(3.3~ with the thermatynamic 
temperature, T, the intensity factor of heat. The differential form of the ~damen ta l  
equation in the energy representation thus becomes 

dU = TdS  + ~ k  Yk dXk (3.5h 

where TdS  is the heat term and the remainder are the work terms. The partial derivatives in 
Eqs.(2.19) and (2.21) are now also r e c o r d  to represent the temperature, T. 

We note that by Postulate V, i.e. by the monotonic property of the entropy (w 2.22), 
the thermodynamic temperature is positive semi-definite. 

In an analogous manner the partial derivatives in Eqs.(2.22) and (3.4)3 are seen to 
be the reciprocal thermodynamic temperature, 1/T. Thus, 

Yk (3.5)~ I0 = ~ and Ik = T '  

and the differential form of the fundamental equation in the entropy representation thus 
becomes 

1 (3.5)3 

where d U / T  is the heat term while the remaining terms are the work terms. 
In both representations of the fundamental equation we distinguisla the heat terms 

from the work terms because of the special nature of heat a s a  form of energy exchange 
(w 2.20). 
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3.6 Conjugate Parameters 
The pairs of intensive and extensive parameters T and S, and Yk and Xk in the 

energy representation, as well as lIT and U, and Ik and Xk in the entropy representation, 
are conjugate parameters. The product of conjugate parameters in the energy 
representation have the dimensions of energy while that of conjugate parameters in the 
entropy representation have the dimensions of entropy. 

The lowest value of subscript k will always be 1. We shall use subscript j instead of 
k when the lowest value is 0, and rn when the lowest value is 2. 

3.7 The Chemical Potential 
We call the intensive parameters furnished by the first-order partial derivatives of the 

internal energy, when taken with respect to the mole numbers, 

0u I = #k,  (It = r + 1 , . . .  ) (3.7) 

the chemical potentials. The concept of the chemical potential is again due to Gibbs (1948). 
The name reflects the fact that the internal energy, U, may be considered a potential for 
chemical work (of. w 8.4). Thus, we recognize the #kdNk (k = r + 1, . . .  )terms in 
Eq.(3.3)a as the mass action terms or chemical work terms. Just as in the case of the 
entropy (cf. w 2.13) the chemical potential, #, is required by the factorability of the energy 
as the intensity factor in the product #N,  the mole number, N, supplying the extensive 
factor (of. w 1.5). 

Unlike the other intensive parameters, the chemical potential cannot be measured 
directly. Its relation to measurable physical quantities is in the form of a differential equation 
[see Eq.(8.22)~)]. Since the solution of such an equation requires a constant of integration, 
absolute values of the chemical potential must be defined relative to a judiciously chosen 
reference state (of. w 12.12). Generally, however, only the change in chemical potential is of 
interest. 

3.8 Significance of the Chemical Potential 
The chemical potential is required by the factorability of the energy (cf. w 1.5) as the 

intensity parameter of mass action. It is the driving force for any change in the chemical 
composition of matter as specified by the mole numbers. The introduction of the concept of 
the chemical potential thus extends the scope of thermodynamics to the treatment of open 
~stems, i.e., to systems which exchange matter with their surroundings, of phase trans- 
itions, i,e., transitions between homogeneous subsystems bounded by a surface across 
which the physical properties change discontinuously (see Chapter 19), and of reactive 
systems, i.e., to systems in which changes in composition occur as a result of chemical 
reactions (see Chapter 20). 

3.9 The Gibbs Equation 
The differential forms of the fundamental equation, Eqs.(3.5h and (3.5)3, are 

commonly called the Gibbs equations. For the (multicomponent) simple system these 
equations become 
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dU = T d S -  P d V  + S ~ # , ~ d N ~  (3.9)1 

in the energy representation, and 

1 P #m~dN ' a s =  -~ dU +-~ e v -  E ~  T ~ (3.9)2 

in the entropy representation. In writing these equations we have taken into account that m 
for the simple system--pressure-volume work is the only physical work admitted. Thus, X1 
is the volume, V, and - Y1 is the pressure, P, of the simple system 

For a single component simple system the above equations become simply 

dU = T d S -  PdV  + #dN  (3.9)3 

and 

1 P # 
dS = -~ dU +-~  d V -  ~ d N .  (3.9)4 

in the energy and entropy representations, respectively. 

3.10 The Euler Equation 
Since the internal energy is a first-order homogeneous equation of the extensive 

variables of the system (Postulate I), we may write 

u ( A s ,  . . . ,  ~ , x k ,  . . .  ) = ) ~ u ( s ,  . . . ,  x k ,  . . .  ) (3.10)1 

where A is a scaling parameter. Differentiating with respect to A and then letting A = 1 we 
obtain the energy function in the form 

U = E j  gJ Xj (3.1.0)2 

where the ~ are given by Eqs.(3.3)3 and (3.3)4. Equation (3.10)2 ~ called the Euler 
equation m the energy representation. It equates the energy function to the (algebraic)sum 
of the products formed from the conjugate parameters of the system 

The entropy fimction takes the form 

s = E s  6 xj .  (3.1o)~ 
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where the Ij are defined by Eqs.(3.4)3 and (3.4)4. Efluation (3.10)3 is called the Euler 
equation in the entropy representation. It equates the entropy function to the (algebraic) 
sum of the products formed from the conjugate parameters of the system. 

For the (multicomponenO simple system the cardinal functions become 

U = T S -  P V  + E . ~ # m N m  (3.10)4 

in the energy_ representation, and 

1 P #m s=~v+~v-~Ti~ (3.1o)5 

in the entropy representation. 
The cardinal functions are connected through the relation 

U = - T S .  (3.10)6 

Indeed, multiplication ofEq.(3.10)s by - T and rearranging leads at once to Eq.(3.10)4. 

3.11 Equations of State 
A functional relation expressing an intensive parameter in terms of the extensive 

parameters of the system is called an equation of  state. An equation of state is a zeroth- 
order homogeneous equation of the extensive parameters of the systenl 

The equations of state are obtained as the partial derivatives of the Euler equation. 
In the energy, representation they are, therefore, 

OU 
= ~ ( s  . . . .  , x ~  . . . .  ) = 

UAj 
(3 .11 )~  

and the entropy representation they become 

OS 
I~ = x j ( v ,  . . . ,  x ~ ,  . . .  ) = 

o.~j 
(3.11)2 

For the (multicomponenO simple ~stem we have 

OU ! -- T (3.11)3.1 
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and 

OU] = p 

OU [i 
Y2 = ON~ xj#2 

(3.11 )3.2 

(3.11 )3.3 

in the energy representation, and 

and 

OS I 1 
I ~  ~ \~o=T 

osp P 
/ 1 =  O--V A~I-- T 

OS 

(3.11)4.1 

(3.11 )4.2 

_ _  ~ , n ,  (3.11)4. 3 
T 

in the entropy representation. 

3.12 Relation between the Fundamental Equation and the Equations of S ~ t e  
Equations of state are generally much easier to estabfish than fundamental equations. 

However, in contrast to a fundamental equation, an equation of state does not contain com- 
plete information on the thermodynamic system. This follows t~om the fact that the 
in tense  variables are (partial)derivatives of the exten~ve ones. The differentiation results 
in a loss of information. N~ertheless, the tota/iV (i.e., the complete set) of the equations of 
state is equivalent to the ~damenta l  equation. To recover the latter it is only necessary to 
insert all the state equations into the Euler equation from which were derived (of. w167 12.3 
and 13.8). Since we thus regain the complete information on the ~sten~ this is tantamount 
to an integration. The Euler equation in either representation is therefore a form of the 
fundamental equation. 
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4. T H E R M O D Y N A M I C  E Q U I L I B R I U M  

Chapters 2 and 3 developed the basic armamentarium of the theory of equilibrium thermo- 
dynamics. We are now ready to address its central problem: the conditions of  thermo- 
dynamic equilibrium (w 1.11). In particular, we consider the conditions under which an 
isolated composite system returns to a state of equilibrium after the lifting of an internal 
constraint (the removal of a barrier). 

4.0 Chapter Contents 

4.1 Representation of Equilibrium in Gibbs Space 
4.2 Extremum Principles 
4.3 The Extremum Principle for the Entropy 
4.4 The Extremum Principle for the Internal Energy 
4.5 Equivalence of the Extremum Principles for the Energy and the Entropy 
4.6 Equilibrium Conditions in Terms of the Intensive Parameters: 

The Diathermal Case-  Energy Representation 
4.7 Equilibrium Conditions in Terms of the Intensive Parameters: 

The Diathermal Case-  Entropy Representation 
4.8 Equilibrium Conditions in Terms ofthe Intensive Parameters: 

The Diathermal Case-  Partial Barrier Removal 
4.9 Equilibrium Conditions in Terms of the Intensive Parameters: 

The Adiabatic Case 
4.10 Direction of Change in the Attainment of Equilibrium 
4.11 Mulfibody Thermal Equilibrium m The Zeroth Law of Thermodynamics 

4.1 Representation of Equilibrium in Gibbs Space 
An equilibrium state (w 1.12) is represented by a point in thermodynamic 

configuration space. The equilibrium states accessible to a given system lie on the 
fimdamental surface. 

4.2 Extremum Principles 
An extremum principle minimizes or maximizes the fundamental equation subject to 

certain constraints. The principle of maximum entropy and its equivalent, the principle of 
minimum internal energy, are the fundamental principles of equilibrium thermodynamics. 
Alternative extremum principles will be introduced in Chapter 8. 

4.3 The Maximum Principle for the Entropy 
In accordance with Postulate IV, upon the removal of an internal barrier in an 

isolated composite system the extensive parameters of the system assume those values 
which maximize the entropy over the manifold of equilibrium states consistent with the 
remaining constraints. The extremum principle for the entropy states: 

"At equifibrium the value of  any unconstrained parameter of  an isolated 
thermodynamic system is such that the entropy is maximized at constant 
internal energy". 
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The entropy maximum principle thus characterizes the eq~bf ium state as one of 
maximum entropy for a given total internal energy. Figure4.3 flhstrates this for the 
physical simple system 

Fig. 4.3 The equilibrium state A as a point of maximum S for constant U 

i.e.~ by 
Mathematically the principle is expressed by the usual conditions for a maximum, 

(dS)v = 0 and (d2S)v < 0. (4.3) 

The first of these is the condition (or criterion) of thermodynamic equilibrium. The second 
is the condition (or criterion) of  thermodynamic stabifity which ~ form the subject of  
Chapter 18. 

4.4 The Extremum Principle for the Internal Energy 
An equivalent extremum principle can also be establi~ed for the internal energy as 

illustrated below in: Figure 4.4, again for the physical simple system. 
The energy minimum principle characterizes the equ~brium state as one of 

minimum energy for a ~ e n  total entropy. It reads: 

"At equilibrium the value of any unconstrained parameter of  an isolated 
thermodynamic system is such that the internal energy ~ minimized at 
constant entropy". 
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Fig. 4.4 The equilibrium state A as a point of minimum U for constant S 

Mathematically this is expressed by the conditions for a minimmn, i.e., by 

(dU)s = 0 and (d 2 U)s > 0 (4.4) 

where the first is again the cotdition (or criterion) of thermodynamic equilibrium, and the 
second is the cotMition (or criterion) of thermodyt~amic stability (see Chapter 18). 

4.5 Equivalence of the Extremum Principles for the Energy and the Entropy 
The extremum principles for the internal energy and for the entropy express the con- 

dition of equilibrium of the isolated thermodynamic system in the entropy representation 
and in the energy representation, respectively. They are thus equivalent and may be used 
interchangeably. 

To prove this assertion, assume that, upon the establishment of a new equilibrium, 
the internal energy is not minimum while the entropy is maximum It would then be possible 
to withdraw work from the system at constant entropy, and reinject it in the form of heat. 
This would restore the system to its original energy. However, the resultant increase in 
entropy would be inconsistent with the requirement that the equilibrium state be one of 
maximum entropy. Consequently, the two extremum principles imply each other. 
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4.6 E q ~ b r i u m  Con~tions in Terms of the Intensive Parameters: 
The Diathermal C a s e -  Energy Representation 

The conditions of thermodynamic equil~rium were stated in w167 4.3 and 4.4 in terms 
of the extensive parameters, U and S. Equilibrium conditions can, however, also be 
estabfished in terms of the intensive parameters. Here, and in w167 4.7 to 4.9 we discuss these 
conditions as they apply to a smgle-component simple system. Genera~ation to 
multicomponent simple systems and to non-single systems is straight-forward. 

We distinguish two cases: the diathermal and the adiabatic case. We first investigate 
the conditions of equilibrium in the diathermal case in the energy representation. 

Removal of a barrier, inside an isolated composite system, each a single-component 
smlple system, both composed of the same kind of matter, lifts the constraints of 
adiabaticity, rigidity, and impermeability between the two subsystems. 

Fig. 4.6 Isolated composite system consisting of two subsystems, A and El 

Since the composite system as a whole is isolated, the following conservation 
(isolatiotO constraints apply: 

SA + SB = constant dSA = - dSB (4.6)i.~ 

VA + VB = constant dVA = -dVB (4.6)1.2 

NA + NB = constant dNA = - d N B  (4.6)1.3 

Equations (4.6)1 gate that the total entropy, volume, and number of moles of the 
composite system remain constant in a virtual change of the internal energy at equilibrium. 
The internal energy being additive, it follows by Eq.(3.10)l and the condition of 
equilibrium, dU = 0, that 

d U  = ( T A  - TB) d S A  - ( P A  - PB) d Y A  + ( ~ A  - ~ B )  d N A  = 0 (4.6)2 

Because dSA, dVA,  and d N A  represent infinkesimal changes in independent 
variables, we must have 
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and 

TA = TB (4.6)3.1 

PA-- PB (4.6)3.2 

/-ZA = ,tZB (4.6)3.3 

when equilibrium is reestablished after removal of the barrier. Equations (4.6)3 are the equi- 
librium conditions in terms of the intensive variables in the energy representation. They 
express, respectively, the criteria of thermal, mechanical, and diffusional equilibrium. The 
corresponding stability criteria will be discussed in w 18.8 to 18.11. 

4.7 Equilibrium Conditions in Terms of the Intensive Parameters: 
The Diathermal C a s e -  Entropy Representation 

We now examine the conditions of equilibrium in the diathermal case in the entropy 
representation. The first of the conservation constraints becomes 

UA + UB = constant dUA = - dUB (4.7)1 

and the other two remain unchanged. Thus now the total energy, volume, and number of 
moles of the composite system are constant in a virtual change of the entropy at 
equilibrium. It follows by the condition of equilibrium, dS = O, that 

d S =  TA TB TA TB TA TB 
(4.7).2 

and this furnishes the equilibrium conditions 

1 1 
m 

TA TB 

PA PB 
TA TB 

~A #B 

TA TB 

(4.7)3.1 

(4.7)3.2 

(4.7)3.3 

in the entropy representation. Equations (4.6)3 and (4.7)3 are clearly equivalent. 
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4.8 Equffibrium Conditions in Terms of the Intensive Parameters: 
The Diathermal C a s e -  Partial Barrier Removal 

If the barrier remains rigid and only the constraints of adiabaticity and 
impermeability are lifted, dVA --dVB --O, and only the first and third of the equilibri~ 
conditions are obtained in either the energy or the entropy representation. Similarly, when 
the barrier remains impermeable so that only the constraints of adiabaticity and rigidity are 
lifted, dNA = dNB = O, and only the first and second of the eqtfilibrium conditions ensue. 
Finally, when the barrier remains rigid and impermeable and only the constraint of 
adiabaticity is lifted, only the first of the equih'brium conditions results. 

In all four cases in which the barrier becomes diathermal, the equilibrium conditions 
are sufficient to characterize the equilibrium state. Although we may have no equil~rium 
condition in terms of the pressures or chemical potentials, the system remains fully 
determined because the corresponding extensive parameters, the volumes or mole numbers, 
are known since they can be measured before the barrier is lifted and they remain constant 
thereafter. 

4.9 Equilibrium Conditions in Terms of the Intensive Parameters: 
The Adiabatic Case 

The special nature of heat as a form of energy exchange (w 2.20) renders the 
adiabatic case indeterminate. Let us again remove a barrier between two subsystems of an 
isolated composite system, each a single-component simple system, and both c o ~ o s e d  of 
the same kind of matter. If the barrier remains adiabatic but becomes movable and 
permeable, there is no heat flux and the energy transfer between the two subsystems 
consists only of work and/or mass action. Hence, by the energy minimum principle, 

d U  = - (PA - PB) dVA + (,A - ,B) d N A  = o . (4.9) 

Thus we recover the second and third of the equilibrium conditions we had found 
for the diathermal case, but no condition can be found for the temperatures. Clearly, if the 
barrier is adiabatic and impermeable, we obtain only PA = PB, while, if it is adiabatic and 
rigid, we can find only #A =/~B. 

Application of the entropy maximum principle furnishes the same indeterminate 
result. Therefore, if the barrier remains adiabatic, nothing can be said about the 
ten~eratures in the two subsystems and their entropies are not known because they cannot 
be measured directly. Indeed, it would be possible to withdraw a certain amount of heat 
from one subsystem and inject another amount into the other so that dSA - - dSB. The 
system could again be brought to equilibrium but the entropies of the subsystems would 
have changed. Thus, in the adiabatic case, the system is not completely determined. 

4.10 Direction of Change in the Attainment of Equilibrium 
Lifting only the adiabatic constraint, Eq.(4.7)2 may be rex~a~en as 

1 1 / \ 

TA TB \ / 
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where we have assumed, for the sake of simplicity, that TA --~ TB, and that the changes are 
finite. If TA > TB, then, since AS is necessarily positive, A UA < 0, i.e., the internal energy 
in subsystem A decreased, hence heat flowed from subsystem A to subsystem 13. Thus: 

"Heat flows from the hotter to the colder body", 

in accordance with common experience. 
Removing only the constraint of rigidity and letting TA = TB = T, Eq.(4.7}2 

becomes 

P A - - ~  
d S  = d V A  . (4.10h 

T 

If PA < PB, then dVA is necessarily negative, i.e., the volume of subsystem A has 
decreased, i.e., 

"All increase m pressure decreases the volume ". 

This again is in accordance with normal expectation. 
Finally, let us assume that the impermeable wall has been made permeable but stays 

rigid while the temperatures are the same. We then have 

dS  = #A -- #B dNA (4.10)3 
T 

If #A ~> /-ZB, then dNA must be negative. This leads to the conclusion that: 

"Matter flows front regions o f  high to regions of  low chemical potential." 

The statement may be interpreted as saying that matter flows from regions of high 
concentrations to those of lower ones, once again in accordance with normal experience. 

4.11 Multibody Thermal E q u i l i b r i u m -  The Zeroth Law of Thermodynamics 
Repeated application of the procedure outlined in w 4.6, removing adiabatic barriers 

only, leads to the following realization: 

"Two bodies that are in thermal equifibrium with a third body will be in thermal 
equifibrium with each other". 

This statement, known as the Zeroth Law of Thermodynamics, is the basis of thermometry. 
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5. T H E R M O D Y N A M I C  P R O C E S S E S  

The lifting of a constraint in a con~osite system in an equilibrium state that is compatible 
with the constraint leads to a new state of equilibrium (w 1.11). The transition from state A 
to state B is called a process (w 1.13). This chapter looks at these thermodynamic 
processes. 

5.0 Chapter Contents 

5.1 Quasistatic Processes 
5.2 Reversible Processes 
5.3 The Clausius Equality 
5.4 Measurability of Entropy Changes 
5.5 The Clausius Inequa l i ty -  The Second Law of Thermodynamics 
5.6 Entropy Production 
5.7 Irreversible Processes 
5.8 I~ection of an Irreversible Process 
5.9 Irreversible Processes in Equilibrium Thermodynamics 

5.1 Quasistatic Processes 
Any real physical process is a temporal evolution of both equilibrium and non- 

equilibrium states and, as such, proceeds at a finite rate. In the limit that the process evolves 
infinitely slowly, it becomes an infinitely dense succession of eqtfilibrklm states, i.e., it 
becomes quasistatic (cf. w 1.13). A quasistatic process is represented by a 'locus' (i.e., a 
succession of points) on the surface in thermodynamic configuration space defined by the 
fundamental equation. Figure 5.1 below shows such a succession of points. 

Fig. 5.1 Representation of a quasistatic process in thermodynamic configuration space 
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For simplicity the surface S = S(U,  . . . ,  Xk ,  . . .  ) is displayed as a function, in 
addition to the internal energy, of only one out of the totality of the extensive parameters, 
X~, of  a composite system. 

5.2 Reversible Processes 
1s in a thermodynamic process, the system atu/i ts  surroundings are at equilibrium 

with each other at all times, a reversal of the direction of the process does not require any 
external agency. Such a process is called reversible. There is no internally generated heat. 
At the conclusion of a reversible process the state of  the system is the same as it was before 
the process began (cf. w 1.13) and the change in total entropy is zero, i.e., 

dSTo~,~ = 0 .  (5.2) 

The process thus proceeds at constant total entropy as illustrated in Fig. 5.3. Such a 

Fig. 5.3 A reversible process proceeding along a quasistatic isentropic locus 

'isentropic' reversible process would proceed from state A to state B along the intersection 
of the S = conz t  plane with the fundamental surface (w 3.2). The coordinates of the surface 
in the thermodynamic configuration space span the composite system consisting of the 
system of interest as one, and its surroundings as another, subsystem A reversible process 
is necessarily quasistatic although the converse is not true. Figure 5.1 illustrates a quasi- 
static process which is not isentropic and, hence, not reversible. 

A reversible, i.e., isentropic quasistatic process is essentially a useful artifice 
representing an ideal limiting case. Many real physical processes do, however, approach 
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reversibility surprisingly closely. This is especially tree of mech~cal  processes in which 
friction effects can often be kept to a bare minimum. 

5.3 The Clausius Equali W 
Comparison of Eqs.(2.6)2 and (3.5)1 reveals the quasistatic heat flux, 6Q, to be 

equal to the heat term, TdS,  and it follows that the infinitesimal change in entropy thus 
becomes 

dS = 6Q/T. (5.3) 

Equation (5.3) is called the Clausius equali~. 

5.4 Measurability of Entropy Changes 
The Clausius equality enables us to measure changes in entropy in a quasi~atic 

(reversible) process. The reciprocal temperature, I/T, is recognized as an integrating factor 
which permits integration of the inexact differential, 5Q. The integration yields the finite 
change in entropy as 

A S  = f S Q  _ Q (5.4) 
J T T '  

and, since Q can be measured (cf. w 2.9), the change in entropy can be o b t ~ e d  by dividing 
the quasistatic heat flux, Q, by the temperature, T. 

5.5 The Clausius I n e q u a l i t y -  The Second Law of Thermodynamics 
By Postulate IV a real physical process (a spontaneous natural process) is always 

accompanied by an increase in entropy (cf. w 2.17). Therefore, the change in entropy taking 
place in a real physical process is always greater than the change which would occur as the 
result of a quasistatic heat flux. This is expressed by the Clausiz~ Inequality 

dS > 5QIT (5.5)1 

in ~ c h  the equal sign applies only to the limiting case of a quasi~atic process. The 
inequality is commonly referred to as a mathematical expression of the Second Law of  
Thermodynamics ( cf w 7.17). 

Making use of the internally generated heat (cf w 2.7), we can rewrite Eq.(5.5)1 as 

dS -- 5Q/T -+- 5Q'/T.  (5.5)2 

The two Eqs. (5.5) become the Chusius equality when the internally generated heat 
vanishes. 
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5.6 Entropy Production 
According to the foregoing, the elemental change in entropy can be divided into two 

parts. The first, doS, is the change in entropy arising from interactions with the exterior of 
the system The second, d~S, represents the entropy change produced in its interior due to 
internally generated heat. We therefore have 

dS -- tSQ/T + 6Q'/T = d~S + d iS .  (5.6)1 

Postulate IV, formulated another way, states that 

dis  = 6Q'/T >_ 0 (5.6)2 

i.e., the entropy created in the interior of a system is never negative. It vanishes only in a 
process in which there is no internally generated heat and, hence, no production of entropy 
in the interior of the system Clearly, in that case dS  = doS. 

Equih'brium thermodynamics cannot say anything about the production of entropy in 
a real physical process. This, indeed, is the central problem of the thermodynamics of non- 
equilibrium processes. The quantitative determination of the entropy produced in a steady- 
state process will be the central problem of Part II. 

5.7 Irreversible Processes 
Any real physical process is irreversible. The very fact that the process is assumed 

to proceed implies that the entropy in the final state is greater than that in the initial state. It 
is impossible to reverse the process by manipulating constraints within the same isolated 
system because a manipulation resulting in a decrease in entropy in the isolated system 
would be a violation of the entropy maximum principle. The terms: real physical (or 
spontaneous natural) process and irreversible process, may be used interchangeably 
(cK ~ 1.13). 

5.8 Direction of  an Irreversible Process 
The direction of a real physical process is determined by the Clausius inequality. 

Such a process will proceed spontaneously only in the direction in which the total entropy 
of the isolated system in which the process occurs, increases (cf. w 4.10). A change in the 
opposing direction requires an external agency (cf. w 7.4). 

For a real physical process to proceed spontaneously, the change in entropy at 
constant internal energy must increase and, concomitantly, the change in internal energy at 
constant entropy must decrease. In mathematical language this is expressed by 

(dS)5. > 0 and (dU)s < O. (5.8) 

These relations therefore determine the direction of an irreversible process and should be 
compared with the equilibrium conditions given in w167 4.3 and 4.4. 
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5.9 Irreversible Processes in Equilibrium Thermodynamics 
The reason that at least some aspects of  irreversible processes can be treated in 

equilibrium thermodynamics is the following: For every irreversible (i.e., real physical) 
process proceeding from an equilibrium state A to a new equilibrium state B, a reversible 
process may be devised which has the same initial equilibrium state A and ~ a l  equilibrium 
state B. Thus, an ordered succession o f  equilibrium states may be substituted for the real 
physical process which is a temporal evolution of  both equilibrium and non-equilibrium 
states. The state functions which characterize the equilibrium states are independent of  the 
path through which the system has been taken and the end result is the same whether the 
path had been a highly idealized reversible path or an irreversible one. 
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6. R E V E R S I B L E  S O U R C E S  A N D  R E S E R V O ~ S  

We now introduce a set of  idealized auxiliary thermodynamic systems with special 
properties that they possess by definition. These systems are the reversible work, heat, and 
mat te r  sources 2 and reservoirs. We call them auxiliary systems because they serve as 
components in composite systems whose main component we wish to investigate. Their 
primary purpose is to assure constancy of one or the other intensive parameter (the 
temperature, pressure, or chemical potential) in the main component. Much use is made of  
these auxiliary systems in the next chapter but their use occurs frequently also elsewhere 
throughout this text. 

6.0 Chapter Contents 

6.1 Reversible Work Source 
6.2 Work Reservoir 
6.3 Reversible Heat Source 
6.4 Heat Reservoir 
6.5 Reversible Matter Source 
6.6 Matter Reservoir 
6.7 Total Change in Entropy in Interaction with a Reversible Source 

6.1 Reversible Work Source 0RWS) 
A system enclosed by adiabatic impermeable walls in which all processes of interest 

are quasistatic is a revers ible  work  source.  W h e n  coupled to another system through a 
movable wall, a reversible work source acts as a quasistatic source or sink of  work. 

Since there is neither heat nor matter flux into or out of the reversible work source, 
it is at constant entropy, i.e. dS aws = 0. There is an appropriate reversible work source for 
each kind of  work: If the latter is pressure-volume work, the reversible work source is a 
reversible source of  volume. In that case the change in internal energy becomes 

duRWS = ~wRWS = _ pRWS dvRWS. (6.1) 

6.2 Work  Reservoir (WR) 
A very large reversible work source is called a work  reservoir.  In a work reservoir 

the intensive parameter of  the work term is constant. If the work is pressure-volume work, 
the pressure of a volume reservoir (VR) is constant. Such a work reservoir acts as a 
manosta t .  It keeps the pressure of  a coupled system constant at the value of its own 
pressure. The atmosphere can frequently be considered to be a good approximation to a 
volume reservoir. 

2 The idealized system will be called a source regardless of whether it functions as a source or as a sink: 
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6.3 Reversible Heat Source 0RHS) 
A system enclosed by rigid in~ermeable walls in which all processes of  interest are 

quasistatic is a reversible heat source. When coupled to another system through a 
diathermal wall, a reversible heat source acts as a quasistatic source or sink of  heat. 

Since the only energy exchange of  the reversible heat source with any coupled 
system is a flax of heat, the change in internal energy witbhn the reversible heat source is 
given by 

d u R H S =  6Q Ro-s = T Rrrs dsRF~S. (6.3) 

6.4 Heat Reservoir (HR) 
A very large reversible heat source is called a heat reservoir. The temperature of a 

heat reservoir is constant. A heat reservoir coupled to another system through a diathermal 
wall acts as a thermostat. It keeps the temperature of  the coupled system constant at the 
value of its own temperature. The atmosphere can frequently be considered to be a good 
approximation to a heat reservoir. 

6.5 Reversible Matter Source ~ S )  
A system enclosed by rigid diathermal walls in which all processes of  interest are 

quasistatic is called a reversible matter source. When coupled to another system through a 
permeable wall, a reversible matter source acts as a quasistatic source or ~ of  matter. 

No work is exchanged with a reversible matter source. However, if the walls of  the 
reversible matter source were adiabatic to exclude any flow of heat, its entropy would not 
be constant because of the flow of matter which carries its own entropy (cf. w 2.10). Hence, 
the walls of  a reversible matter source must be diathermal as well as permeable and the 
reversible matter source is simultaneously a reversible heat as well as a reversible matter 
source. 

There is an appropriate reversible matter source for each kind of  matter, ff  several 
kinds are considered, the walls of the reversible matter source must be semi-permeable, i.e. 
permeable to one kind of matter omhy. 

6.6 Matter Reservow (MR) 
A very large reversible matter source is called a matter reservoir. In a matter 

reservoir the chemical potential of  the species of  which it consists is constant. ~ e n  
coupled to another system through a semi-permeable wall, a matter reservoir keeps the 
chemical potential of  the coupled system constant at the value of  its o ~  potential It thus 
acts as a chemostat. The ocean can be considered to be a good approximation to a matter 
reservoir for sodium chloride. 

6.7 Total Change in Entropy in Interaction ~ t h  a Reversible Source 
In the interaction of a given thermodynamic system with a reversible heat, work, or 

matter source the total change in entropy is zero because the processes are reversible. 
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7. W O R K  AND HEAT 

This chapter inquires into the circumstances under which heat can be converted into work. 
The reverse, i.e., the conversion of work into heat, can always be accomplished completely, 
i.e., with 100% efficiency. Moreover, if the process is carried out isothermally---removing 
the heat generated or supplying the heat needed--the system that accomplishes the 
conversion remains itself unchanged at the end of the process. The process can therefore be 
continued indefinitely. The situation is quite different when heat is converted into work. 
This is another manifestation of the special nature of heat as a form of energy exchange 
(cf. w 2.20). 

7.0 Chapter Contents 

7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7.8 
7.9 

Conversion of Heat into Work 
Maximum Work and Maximum Mass Action Processes 
Useful Work and Lost Work 
Decrease in Entropy in a Real Physical Process- Thermodynamic Engines 
Principle of Operation of a Heat Engine 
Efficiency of a Heat Engine 
Principle of Operation of Heat Pumps and Refrigerators 
Performance of a Heat Pump 
Performance of a Refrigerator 

7.10 Cyclic Operation 
7.11 The Carnot Cycle and the Carnot Engine 
7.12 Analysis of the Carnot Cycle 
7.13 The Complete Carnot Cycle 
7.14 Thermodynamic Temperature Scale 
7.15 The Dimensions of Entropy and of Temperature 
7.16 Poincard Statement of the First Law 
7.17 Kelvin-Planck and Clausius Statements of the Second Law 
7.18 Alternative Formulations of the First and Second Laws 
7.19 Statements of the Third Law 
7.20 Unsuitability of the Historic Laws of Thermodynamics as Postulates 

7.1 Conversion of Heat into Work 
Akhough it is possible to convert heat into work completely, at the end of such a 

process the state of the system is changed. To illustrate: consider the isothermal expansion 
of an ideal gas. The system is attached to a heat reservoir (effectively a thermostat, 
cs w 6.4) to ensure isothermal conditions. The internal energy of an ideal gas depends solely 
on the temperature (cf. w 12.2). Since this is constant, there is no change in internal energy. 
Hence, A U = W + Q = 0, and the heat, Q, drawn from the heat reservoir is completely 
converted into the work of expansion, W. However, at the end of the process the volume 
as well as the pressure of the system are not what they were before the expansion. The state 
of the system thus has changed. To continue ad libitum a process of converting heat into 
work it is necessary to arrange a cyclic process in which the system is restored to its 
original state at the con~letion of each cycle. It turns out that this requires the sacrifice of a 
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portion of the heat (cf. w 7.5 below). As a result, such a conversion never proceeds with 
100% efficiency even if the conversion were carried out reversibly. It thus becomes 
necessary to establish the conditions trader which the maximum amount of work can be 
extracted from a given process, and to consider how heat can be converted into work in a 
continuous cyclic operation. 

7.2 Maximum Work and ~ x i m u m  Mass Action Processes 
Of all processes occmn'hg between a ~ e n  initial and a given ~ a l  state of a system, 

the flux of heat is minimum, and the flux of work or matter is ~ximum,  in the absence of 
internally generated heat, i.e., in a revers~le process (cf. w 5.2). Thus, when a system is 
coupled to another system to which it delivers heat, work, or ~ s s  action, the heat delivered 
is minimum, and the work and the mass action are maximum, ffthe transfer is to a reversible 
heat, work, or matter source. We then speak of a maximum work process, or a maximum 
mass action process. 

7.3 Useful Work and Lost Work 
The maximum work that the system can dCfiver in a reversible process is useful 

work. In an irreversible, i.e., real physical process, this work is reduced by the poaion lost 
to dissipative phenomena (cf. w 2.18) in the form of internally generated heat. This work is 
called dissipative or lost work although it is properly speaking a lost oppommity to extract 
work. Equih'brium thermodynamics does not inquire into the origin or the nature of the 
various dissipative effects (mechanical friction, viscosity, electrical resistance, etc.). It 
simply acknowledges their existence and provides a framework for dealing with them 
thermodynamically in an appropriate manner. It does that through the concept of entropy 
and, in particular, through that of the Clausius inequality (cf. w 5.5). 

7.4 Decrease in Entropy in a Real Physical Process-  Thermodynamic En~nes 
In an isolated thermodynamic system a real physical process is necessarily 

accompanied by an increase in entropy because an isolated system in equilibrium cannot 
spontaneously proceed to another equilibrium state with lower entropy (cf. w 5.8). 
However, in a cyclic process the system must be brought into a state of lower entropy as 
part of the cycle. ~ s  can be accomplished if the system is coupled with_ another, and ff 
thereby the total entropy of the composite system increases. ~ s  p~ciple  can be illustrated 
with the help of idealized devices known as thermodynamic engines. They are either heat 
engines, or heat pumps and refrigerators. Coupled thermodynamic engines operate 
cyclically. 

7.5 Principle of Operation of a Heat Engine 
A heat engine is a device that converts heat into work. In the schematic below the 

heat engine withdraws an amount of heat, ~Qh, from a reversible heat source (the hot 
source) at the temperature T h, rejects the amount of heat 6Q ~ to another reversible heat 
source (the cold source) at the temperature T ~, and delivers the difference, ~W Rws, to a 
reversible work source. The heat e n ~ e ,  the two revers~le heat sources, and the reversible 
work source, form an isolated con~osite system in which the total change in internal energy 
is zero. 
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Fig. 7.5 Schematic of the operation of a heat engine 

Hence, by the principle of the conservation of energy (w 2.6), 

d U  = 5W Rws + 6Q h + S Q  r - o . ( 7 . 5 ) ~  

Since the coupled processes considered are deemed to be reversible, the total change in 
entropy is also zero, i.e., 

d(S  h + S c) - -  0 .  (7.5)2 

The entropy in the h o t  source  decreases. However, this decrease is exactly compensated by 
an equivalent increase of the entropy in the c o l d  source. Since 2r '~ < T h, 5Q ~ = T ~ d S  ~ is 
less than 5 Q h =  T h d S  h, the  changes in entropy, d S  c and d S  h, being of the same 
magnitude. The difference in energy is available as work. From Eq.(7.5)1 we obtain the 
work delivered to the revers~le work source as 

, Q  ~ 
~wRWS __ _ ~Qh 1 + Tc 

= - 6 Q  h 1 - (7.5)3 

the second of these equations following from Eq.(7.5)2. The signs in Eq.(7.5)3 are chosen 
from the viewpoint of the heat engine. The work, 5W Rws, is delivered by the heat engine, 
the heat, 6Q h, is delivered to it. The work is maximum because we have considered rever- 
sible processes. In an irreversible, i.e., real physical process, the work would not be 
maximum because of the occurrence of dissipative phenomena, but the principle of 
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operation of  the heat engine remains the same. Oead) ;  the tmal amount o f  the heat 
withdrawn, 6Q h, could be converted into work only ~ the heat cotdd be rejected to a 
reservoir at T ~ = 0. 

It is also clear that at the conclusion of the process the system is now at the 
t e ~ e r a t u r e  T ~ whereas it originally was at T h. Its thermodynamic state has therefore been 
changed. To operate cyclically it is necessary to reverse, as it were, the process ~ s t  
described so that at the end of  the new process the system is retrained to its original state 
(cf. w 7.10). 

7.6 Efficiency of a Heat Engine 
The fraction of  the heat withdrawn that can be transformed into work is the 

theoretical (thermodynamic) efficiency, %, of  a heat e n ~ e .  By Eq.(7.5)3 it is given by 

_ 6wRWS T h _ T o 
= (7.6) 

% -- 6Q h T h 

and is thus the ratio of  - 6 W  Rws, the work delivered to the reversible work source, to 
6Q h, the heat extracted from the reversible heat source. If the process is irreversible, the 
efficiency of  the heat engine is clearly less than the theoretical (thermodynamic)efficiency. 

We note that E~ is a universal ~ c t i o n  of  two temperatures. It does not depend on 
the definition of  the temperature scale on which the temperatures are measured. 

7.7 Principle of Operation of Heat Pumps and Refrigerators 
The thermodynamic heat engine just considered delivers work. In two other ~ e s  of  

thermodynamic engine work is absorbed. A thermodynamic e n ~ e  that converts work into 
heat is called either a heat p u m p  or a refrigerator according to the way k is operated. A 
schematic of  the operation of  a heat pump is sho~n in Fig. 7.7 b row.  

Hot RHS 
\ Th 7 

I ~Oh 

T soc 

/_to \ 
Cotd RHS" 

Fig. 7.7 Schematic of  the operation of  a heat p ~  
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The engine absorbs the amount of work, 5W Rws, from a reversible work source, and the 
amount of heat, 6Q ~, from a reversible heat source (the coM source) at the temperature T ~. 
It then delivers the amount of heat, 6Q h, to a revers~le heat source (the hot source) at the 
temperature T h. Since the hot source becomes hotter, the engine is a heat pump. 

If the process is conducted in such a manner that the cold source becomes colder, 
the engine is called a refrigerator. In both cases the state of the system is altered from the 
original state at the end of the process. 

7.8 Performance of a Heat Pump 
The ratio o f -  5Q h, the heat delivered by the pump, to 5W Rws, the work absorbed 

by k is called the coefficient of  performance of the heat pump. It is given by 

- -  6 Q  h T h 
= ( 7 . 8 )  

% = 5WRW s Th _ T~ �9 

The work taken from the work source is minimized (i.e., the negative work is maximized) in 
a reversible process. 

7.9 Performance of a Refrigerator 
The coefficient of  performance of a refrigerator is the ratio of 5Q ~, the heat taken 

from the cold source, to 6W Rws, the work taken from the work source. It is given by 

6Q ~ T c 
-- (7.9) 

Er = 5WRW s Th _ Tc . 

Again, the work required is minimized in a reversible process. 

7.10 Cyclic Operation 
To achieve the conversion of heat into work in a continuous cyclic process, ~ e  

operation of a heat engine must be combined with that of a heat pump. Since the state of 
two thermodynamic engines operating in this manner is unchanged on completion of a full 
cycle, they effectively are not part of the process of converting heat into work. Such a 
combination is therefore often called an auxiliary heat engine when attention is focused on 
the conversion process as such. 

7.11 The Carnot Cycle and the Carnot Engine 
Many cyclic operations can be devised and many are of great practical importance. 

Historically the first to be described is the cycle named after its original investigator, Sadi 
Camot (1878). We shall consider here only this, rather idealized, cycle because it is 
distinguished by its simplicity and by its fundamental importance. An engine operating under 
a Carnot cycle, i.e., a Carnot engine, is conceived to operate reversibly. This assures it of  
maximum efficiency. It is useful to know that any cyclic process can always be broken into 
an assembly of Camot cycles 3 

3 see, e.g, ter Haar and Wergeland (1966). 
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To consider the operation of a Carnot engine in detail we image an idealized system 
consisting of a cylinder filled with a suitable working fluid and provided with a frictionless 
movable piston. This atrxiliary engine forms an isolated system with a reversible work 
source to which it is permanently attached, and with two heat reservoirs to either of which 
it can be attached or not, as needed. We consider heat reservoks instead of reversible heat 
sources merely as a matter of convenience since it allows us to deal with finite instead of 
infinitesimal changes. 

A full cycle of operation of the system ~ comprise four distinct steps. Since we 
are concerned with heat, we follow the changes in temperature (the intensive parameter of 
heat) and in entropy (the extensive parameter ofheat)and plot them against one anoth~ ~ on 
a T, S-diagram as 

A 

I 
1 
I 

sA 

..... < ............ C 

S 

Fig. 7.11 T, S - diagram of a Carnot cycle 

shown in Fig. 7.11. Other diagrams (e.g., a P,  V-diagram) may, of course, be constructed 
and may be useful in various contexts. 

Step 1. During the first two steps the system operates as a heat e n ~ e .  At the 
beginning of the cycle we imagine it to be in contact with the hot, but not with the cold, 
heat reservoir. The working fluid is under pressure (the piston is latched) and is at the 
temperature, T h, of the reservoir. Its state is represented by point A in the diagram. In the 
first step of the cycle we now allow the working fluid to undergo an isothermal expansion 
by f r e ~ g  the latch..In this process the engine takes an amount of heat, Qh = ThAS, from 
the heat reservoir and transfers a certain amount of work to the reversible work source. The 
process is isothermal (we move from point A to point B in the diagram along the upper 
isotherm AB). 

Step 2. In the next step the engine is switched from the hot to the cold heat 
reservoir. The working fluid now expands adiabatically until its temperature reaches that of 
the cold reservoir, T ~ In this process a further amount of work is transferred to the 
reversible work source from the engine at the expense of the internal energy of the working 
fluid. There is no transfer of heat. Since the process is adiabatic and quasistatic, the change 
in entropy is zero, i.e., AS = 0, and we move from point 13 in the diagram to point C along 
the fight adiabat 13C. 

Step 3. At the end of the first two steps the thermodyna~c state of the e n ~ e  is 
altered. Its entropy and volume have increased, and its internal energy has decreased. To 
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restore it to its original state, the first two steps are now reversed, in effect operating the 
engine as a heat pump. In the third step the working fluid is first attached to the cold heat 
reservoir and is then compressed isothermally. The reversible work so~ce now performs 
work on the working fluid until its entropy attains its original value. We move from point C 
in the diagram to point D along the lower isotherm, CD. The engine transfers the amount of 
heat, Qo = T ~ AS, to the cold heat reservoir. 

Step 4. In the final step, the system is detached from the cold heat reservoir and the 
working fluid is further compressed adiabatically until its temperature reaches that of the 
hot heat reservoir, T h, again. During this process the reversible work source performs more 
work There is no transfer of heat, and the change in entropy is zero, i.e., AS = 0 as in 
Step 2. In the diagram we move fxom point D to point A along the left adiabat DA, thus 
completing the cycle. The internal energy and volume of the working fluid have now also 
been restored to their original values. 

7.12 Analysis of the Carnot Cycle 
The analysis of the complete cycle is simple. Because the engine has returned to its 

initial state at the end of the cycle, the total change in its internal energy is zero. Hence, 

A U -  - W + Q h - Q c - O ,  (7.12)1 

where W is the net work delivered to the reversible work source. W and Q~ are taken with 
the negative sign because they represent work and heat delivered by the engine. We have 

W : Q h  _ Qc  __ ( T  h _ T r A S .  (7.12)2 

There is a net transfer of work even though the engine works in reverse during part 
of the cycle. The net work delivered per cycle, W, is represented by the rectangular area 
ABCD in Fig. 7.11 while the areas ABSBSA and DCSBSA represent Qh and Qr 
respectively. 

Elimination of AS between Qh = T hAS and Q~ = T~AS yields 

Qh Qr 

T h T c (7.12)3 

The thermodynamic efficiency of the Carnot engine [cf. Eq.(7.6)] is given by 

W T c 
E c -  Qh -- 1 Th .  (7.12)4 

The last two equations govern the cycle and are known as the Carnot equations. 
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7.13 The Comlgete Carnot Cycle 
To recapitulate: In a con~lete Carnot cycle a quant~ of heat is taken from a 

reversible heat source, part of it is rejected to another reversible heat source at a lower 
te~erature,  and the rest is delivered as work to a r~ersa'ble work source, ~ s  is precisely 
the process we have outlined qualitatively in w 7.1. We have now carefully specified the 
steps in a cyclic operation which leaves the engine in its originalstate at the co~le t ion of 
the cycle. 

Since the efficiency of  the Camot engine is maximal, any e n ~ e  operating cyclicaL~ 
and reversibly between two temperatures follows the Camot cycle and is a Camot engine. 

7.14 Thermodynamic Temperature Scale 
Since W and Q are measurable (cs w 2.9), the Carnot equations, Eqs.(7.12)3 and 

(Z 12)4, allow us to obtain temperature ratios. ~ e n  a suitable reference temperature has 
been selected, the te~era ture  of any other body can, in pmciple, be d e t e ~ e d  
independently of'any material property of the ~ermometric substance or of the definition of 
the scale on which the temperatures are measured (cs w167 4.11 and 7.6). That real physical 
processes are never revers~Ie, is a practical rather than a theoretical difficulty. Choosing the 
triple point of water (cs w 19.14) as the reference temperature defines the absolute 
thermodywamic temperature scale or Kelvin scale. 

7.15 The Dimensions of Entropy and of Temperature 
By Eq.(3.10)4 the product of entropy and ten~erature has the dimensions of energy. 

Within this restriction the dimensions of either factor can be selected arbitrarily. At least in 
thermodynamics, the entropy is best considered to be a dimensionless quantity. ~ s  is in 
accordance with the statistical mechanical view of entropy as a measure ofrando~ess .  The 
dimensions of temperature then become the dimen~ons of energy. Selection of suitable 
units of  measurement for the entropy and/or the temperature is a matter of applied 
thermodynamics. 

7.16 Poincar~ Statement of the First Law 
The [first Law of thermodynamics (w 2.6) can be recast as a general statement on the 

conversion of heat into mechanical work in a cyclic process. The statement, due to 
Poincar6, reads: 

"/n any cyclic process the work done by a system equals the heat received 
by it". 

Mathematicalby this can be expressed bythe equation 

6 W =  f i 6 Q  (7.16) 

in which the integraIs are c/rcuhr integrals taken over a cycle, and ~ and Q are both 
expressed in the same units of measurement. 

A device which would violate the First Law by allowing the extraction of more 
work from a system than the heat delivered to it, is called a perpetuum mobile (a pe~etual 
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motion device) of  the first kind. The Poincar6 statement asserts the irnpossibility of  the 
existence of  such a device. 

7.17 Kelvin-Planck and Clausius Statements of the Second Law 
The Second Law of  thermodynamics (w 5.5) can also be restated to apply 

specifically to cyclic processes. The Clausius statement has reference to heat pumps. It 
states: 

"It is impossible to construct a device that, operating in a cycle, wiH produce 
no effect other than the transfer o f  heat from a cooler to a hotter body". 

A device that wouM transfer heat from a cooler to a hotter body (in v ol aon of the 
principle enunciated in w 4.10) would be a perpetuum mobile of  the second kind. The 
Clausius statement thus asserts the impossibility of  the existence of  such a device. 

The Kelvin-Planck statement has reference to heat engines. It states: 

"It is impossible to construct a device that, operating in a cycle, will produce 
no effect other than the extraction o f  heat from a reservoir and the performance 
of  an equivalent amount of  work". 

The Kelvin-Planck and the Clausius statements are, of  course, equivalent. Demon- 
strations of  this have been given frequently 4. Mathematically, the statements may be 
expressed as 

f 6q - ~  = 0 (7.17) 

obtained by integrating Eq.((5.2), over the cycle. This equation is commonly referred to as 
representing the Clausius theorem. 

7.18 Alternative Formulations of the First and Second Laws 
There are many alternative formulations of  both laws The ones that probably most 

beguile by their simplicity and immediate application to everyday life, are: 

"You can't get anything for nothing" or "There is no free lunch" 

for the First Law, and 

"What you get is less than what you expect" or "Life is tough" 

for the Second Law. 

4 see, e.g, Blinder (1969), p.303; Zemansky (1958), p. 185. 
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7.1.9 Statements of the Third Law 
Although statements of the ~ d  Law do not require the notion of a cyclic process, 

we include some of them here for completeness. Nernst originally formulated the Tl~d Law 
in the words: 

"The entropy of  any system vanishes at zero temperature". 

This is also known as the Nernst Heat Theorem (w 2.21). The statement, however, is 
not true in generaI. There are systems (e.g. certain macromolecular compounds) for "which 
the entropy would not vanish at zero temperature even ~ the system were cooled infinkely 
slowly. 

A wider definkion of the Third Law states that 

"The entropy of  anyfinite system is positive semi-definite m the state for which 
T - O " .  

This statement is equivalent to Postulate V (cs w 2.21)since, by w167 3.3 and 3.5, the 
derivative (OU/OS)lx(#z) defmes the thermodynamic temperature. 

Another formulation states: 

"It is impossible to reduce the ten~erature o f  any system to zero by any 
process in a finite number of  steps". 

This is akin in form to the statements of the Second Law in w 7.17 in that k asserts 
the impossibility of a device or process. It expresses the unattainabili~ of  absolute zero. 
That tins statement follows from the Nernst Heat Theorem has been ~ov~,  e.g., by Blinder 
(1969). 

There are other statements of  the ~ d  Law, each emphasizing particular a~e~s,  
Among them are the formulations associated with the names of Planck, Simon, Fowler and 
Guggenheim, and others more. 

7.20 Unsuitability of the Historic Laws of Thermodynamics as Postulates 
A brief comment is in order here concerning the suitability of  the so-called laws of  

thermodynamics as postulates for a systematic exposition of thermodynamic theory. The 
laws evolved historicalby, and not in the order in which they are numbered. The essentials 
leading to the Second Law were known before the First was generally appreciated. The 
Zeroth Law was added after the Third. 

Formulation of these laws in preci~ mathematical l~guage requires other thermo- 
dynamic concepts as already known. The statement of the Zeroth Law (w 4.11) requires an 
understanCmg of the notion o f  thermal equih'briunl Similar ~ c u t t i e s  arise in connection 
with the other laws. 

The statement of the First Lave contained w 7.116 presupposes the notions of heat, 
work, and a thermodynamic cyclic operation. Poincar6's statement for a cyclic process can 
be recast as 

(SQ - 5W) : o.  (7,20) 
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In a general, non-cyclic process the (algebraic) sum of 5Q and 5 W  is, of course, not zero. 
We have [cs Eq.(2.6)2] 

6 w  + 6Q = d U  (7.20) 

where 6W is now the work done on the systenl A generalization of the First Law of 
Thermodynamics thus leads to a definition of the internal energy. However, we would 
rather start with such a definition. 

The Clausius Inequality, Eq.(5.5h, as well as the Clausius Theorem, Eq.(7.17)may 
be taken as mathematical expressions of the Second Law but they cannot be reconciled with 
the statements in w 7.17 without first introducing the concepts of entropy, temperature, and 
cyclic processes. 

The formulations of the Third Law given in w 7.19 require the notion of entropy and 
temperature. With respect to that law it is now generally accepted that a true understanding 
of it can be achieved only in the ~amework of quantum mechanics which exceeds the scope 
of the present work. 

We conclude that the historical laws do not form a postulatory basis for an 
exposition of the structure of the theory of equilibrium thermodynamics. 
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8. T H E R M O D Y N A M I C  P O T E N T ~ S  

To understand the behavior of a thermodyna~c system when one or more of its intensive 
parameters are held constant requires forms of the ~damenta l  equation in which one or 
more of the extensive parameters are replaced by the conjugate in tense  paramet~ without 
loss of information. 

ff these forms of the fundamental equation are derived in the energy representation, 
we refer to them as alternative thermodynamic potentials for reasons that will become clear 
in the first few sections to foUow. These thermodynamic potentials, their derbeation through 
the use of the Legendre transformation, the~ properties, and some closely related topics~in 
particular the G~bs-Duhem equation and the degrees of freedom of a ~ermodynamic 
system--are the subject of this chapter. 

In the entropy representation an analogous development defines the so-called 
Massieufunetions that form the subject of the next chapter. 
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8.1 The Internal Energy as a Thermodynamic  Potential 
The internal energy, U, may be regarded as a thermodynamic potential for work, 

heat, or mass action. We reco~ize this when we examine the partial derivative of U with 
respect to the volume, V, or the entropy S, or the mole numbers, N,~, keeping all others 
constant. By w167 3.3 and 3.6, in the energy representation the jth intensity parameter is 

cgU ] (8.1) 

Let us now substitute for X in Eq.(8.1) the parameters V, S, Arm in turn. 

8.2 The Internal Energy as a Potential for Work 
Consider first a mutticomponent simple system in which volume change is the only 

work. Taking the derivative with respect to the volume, we have, at constant entropy and 
mole numbers, 

Ou [ (8.2)~ 
- P = b - K  s . . . .  x . . .  

Thus, by an analogy from mechanics, at constant entropy and constant mole numbers, the 
internal energy, U, may be considered a 'potential for work'. To see this more clearly, 
consider an isolated system in contact with a reversible work source (RWS). By the 
principle of the conservation of energy (Postulate II, w 2.4), since there is no change in 
either heat or mass action, 

- dU = 6W aws (8.2)2 

The decrease in internal energy therefore indeed represents the amount of work the simple 
system can deliver to a reversible work source in a reversible process at constant entropy 
and constant mole numbers. 

8.3 The Internal Energy as a Potential for Heat 
At constant volume and mole numbers, Eq.(8.1) becomes 

OU T=--~ 
V ,  . . .  A "  . . .  

( 8 . 3 h  

and, by Eq.(8.3h, U may equally be regarded as a 'potential for heat'. This time let the 
system be in contact with a reversible heat source (RHS). Since there is no change in either 
work or mass action, 
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-- dU  = 6Q RHs , (8.3)2 

and this is the decrease in internal energy representing the amount of heat the system can 
deliver to a reversible heat source in a reversible process at constant volume and constant 
composition. 

8.4 The ~ t e r n a l  Energy as a Potential for Mass Action 
Finally, at constant volume, entropy, and aU mole numbers except the ruth, 

~ I (8.4h 
# "  - -  O N . ~  s ,  v ,  iv(#:~,~) ' 

and this shows U to be a 'potential for mass action' at constant entropy, volume, and mole 
numbers other than N,~. We now find 

-- d U  = 5 M  RMs (8.4)2 

for the decrease in internal energy representing the amount of ross  action the system can 
deliver to a reversible matter source (RMS) in a reversible process at constant entropy, 
volume, and the chosen constant mole number. 

8.5 Alternative Thermodynamic Potentials 
An alternative thermodynamic potential is a fundamental equation comaining one or 

more intensive parameters as canonical variables. Such a fiandamental equation cannot be 
obtained simply by replacing an extensive parameter by its conjugate intensive parameter. A 
simple replacement does not turn a ~damenta l  equation into another one. Instead, k 
produces an equation of state, with an attendant loss of information. 

Consider an example. Replacement of the entropy, S, m the fimdamental equation 
for the physical simple system, U = U ( S ,  V ) ,  by its conjugate parameter, the te~era ture ,  
T, gives U = U (T, V), the differential form o f ~ c h  is 

OU dU= OU I d V  . (8.5) dr+-d-ff 

This implies that T = T ( U ,  V), i.e., a functional dependence o f T  on U and V which, by 
w 3.11, is an equation of state. The replacement has thus resulted in a loss of information 
because T is a partial derivative of U (cf. w 3.12). Integration of Eq.(8.5) can therefore 
recover the fundamental equation only within an arbitraxy constant of integration. 
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8.6 The Legendre Transformation 
The appropriate device for generating alternative thermodynamic potentials without 

loss of information is the Legendre transformation (see Appendix 3). Each alternative 
thermodynamic potential leads to an alternative form of the fundamental equation with its 
own extremum principle, equilibrium and stability conditions, Gibbs equation, and Elder 
equation. Not all possible alternative potentials are in common use. 

8.7 Number of Alternative Thermodynamic Potentials 
We consider the number of alternative thermodynamic potentials that are possible 

for a given thermodynamic systen~ A system with r~ parameters (all of which are extensive) 
has as many alternative thermodynamic potentials as there are partial 5 Legendre transforms 
of the internal energy. By w A3.7 this number is 2 ~ -  2. The total number of thermo- 
dynamic potentials includes the internal energy and is therefore 2 n - -  1 ,  i.e., 1 more than the 
number of alternative potentials. 

8.8 Degrees of Freedom 
While the extensive parameters of a thermodynamic system are independent of each 

other, the conjugate intensive parameters are not (cf. w 8.22). The number of intensive 
parameters that are capable of independent variation is called the number of degrees of 
freedom, s of the system This number is 1 less than the number of extensive variables, i.e., 
f = n -  1. If the system is of constant composition, the number of degrees of freedom 
reduces by one and the number of alternative thermodynamic potentials is halved. If the 
system is composed of more than 1 component, the number of extensive variables is 
increased by 1 for each added component. 

To illustrate: the single-component simple system with U = U(S, V, N) has 3 
extensive parameters, 2 degrees of t~eedom, 6 alternative, and a total number of 7 thermo- 
dynamic potentials. At constant composition the number of alternative potentials is halved 
because only the Legendre transformations that exclude the chemical potential, #, are of 
interest. The total number of thermodynamic potentials then becomes 4. 

8.9 The Primary Alternative Thermodynamic Potentials 
We now proceed to introduce what we may call the primary alternative thermo- 

dynamic potentials, namely, the potentials of the single-component simple system at 
constant composition. The three new primary potentials (i,e., those in addition to U), are 
the free energy, F, the enthalpy, H, and the free enthalpy, G. These potentials are 
obtained as Legendre transforms involving the temperature and/or the pressure. For each of 
the new potentials we consider the work available when the respective intensive canonical 
variable or variables are held constant. We then state the extremum principle, the 
equill~orium and stability conditions, and the Gibbs and the Euler equations for each 
potential. 

Brief reference will be made in w167 8.19 and 8.21 to the potentials obtained through 
Legendre transformations including the chemical potential, #. 

5 The complete Legendre transform vanishes (see w167 8.22 and A3.5) 
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8.10 The Free Energy 
In a single-component simple system U[T]  is that Legendre transform of 

U ( S ,  V ,  N ) in which the entropy, S, has been replaced by the temperature, T. The 
thermodynamic potential 

F = U[T]  = U -  T S  (8.Jo)~ 

is called the (Helmholtz) f r ee  energy or Helmhol t z  potent ia l  6. The  canonical variables of  the 
free energy of a simple system are T,  V ,  and. . .  N . . . .  Thus, we have the alternat~e 
fundamental equation of a multicomponent simple system in the,free energy representat ion 

F = F ( T , V , . . . N ~  ..... ) (8.1o)2 

and the Gibbs equation becomes 

d F  = - S d T -  P d V  + E m # , , d N , ~  (8.10)3 

in the same representation. The relations 

and 

OF I (8.10)4 
- P - - - O - V  r . . . .  N... 

OF ! 
#'~ --  O N ~  T, V, N(#N,,~) 

(8.~o)5 

show that the free energy is a potential for work at constant temperature and composition, 
and one for mass action at constant temperature, volume, and mole numbers other than Nm. 

Taking the total differential of  F = U - T S  we see that at constant temperature the 
change in free energy is 

d F  -- d U  - T d S .  (8.10)6 

Substituting for U in F = U - T S  from Eq.(3.10)4 yields 

F = - P V  + ~'~.mtzmNm (8.10)7 

as the alternative form of the Euler equation in the free energy representation. 

6 The free energy is sometimes, particularly in the older literature, refered to as the work content and is then 
usually assigned the symbol A. 
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8.11 Work Available at Constant Temperature 
The free energy represents the amount of work available from a closed simple 

system in contact with a reversible work source and with a heat reservoir. By Postulate II 
(w 2.4), since in a closed system there is no change in mass action, 

dU = -- 6W Rws - 6Q rm (8.11)~ 

where the work term has been given the negative sign because it is work delivered by the 
system to the reversible work source. Now, by w 6.3, 6Q rm = T r m d S  HR and, since the 
temperature is constant and the reversible work source is at constant entropy, we have 
6Qrm = 0, and, hence, 

- d F  = - d(U - T S )  = 6 W  Rws. (8.11)2 

This shows that, as asserted, the decrease in free energy equals the amount of  work a closed 
system can deliver in a reversible process at constant temperature. 

We may express this in another way by saying that F represents that part of  the 
internal energy that can be transformed into work at constant temperature. It is thus the free 
energy while T S  may be called the bound energy or the isothermally unavailable energy. 

8.12 Extremum Principle, Equilibrium and Stability Conditions for the Free Energy 
The extremum principle for the free energy states: 

"'At equilibrium the value o f  any unconstrained parameter o f  a system m 

diatherntal contact with a heat reservoir is such that the free energy is 

mmintized at constant temperature "'. 

By w 4.4) the conditions of  equilibrium and stability for the free energy are 

(dF)w = 0 and (d~-F)T > 0 .  (8.12) 

For a process to proceed spontaneously at constant temperature we must therefore have 
(dF)T < 0, i.e., the free energy of a system must decrease. 

8.13 The Enthalpy 
The alternative thermodynamic potential 

H =  U[P] = U + P V  (8.13h 

7 The enthalpy is sometimes referred to as the heat content. 
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is called the enthalpy 7. Its canonical variables in a simple s y s t ~  are S, P ,  and .. .  N ~ . . .  
We now have the fundamental equation of  a multicomponent simple system in the entha(py 
representation 

H = H ( S ,  P ,  . . . ~ . . .  ) (8.13) 2 

and the Gibbs equation 

d H  = T d S  + V d P  + E m # , ~ d N ~ .  (8.13~ 

in the same representation. The relations 

and 

OH I (8.13)4 
T = - - ~ p  .... N... 

OH I: (8.13)5 
I .Zm- ON~ s,P,N(#~v~) 

show that the enthalpy is a potential for heat at constant pressure and composition, and a 
potential for mass action at constant entropy, pressure, and mole numbers other than Nm. 

At constant pressure the change in enthalpy is 

d H  = d U  + P d V  . (8.13)6 

Substituting for U in H = U + P V  from Eq.(3.10)4 f idds  

(8.1.3)7 

as the alternative form of  the Euler equation in the enthalpy representation. 

8.14 Work Available at Constant  Pressure 
The enthalpy represents the amount of  work available from a closed simple system 

in contact with a reversible work source and a volume reservo~. Since there is neither heat 
flux nor mass action, we have 

d U  = - 6 W  Rws - 6 W  "VT" . (8.14)~ 

7 The enthalpy is sometimes referred to as the heat content. 
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But 

6 W  vR = pVRdVVR 

and therefore 

(8.14)2 

- d H  = - d(U + P V )  = S W  Rws. (8.14)3 

Thus, the decrease in enthalpy equals the amount of work a closed system can deliver in a 
reversible process at constant pressure. 

In an arbitrary process both heat and work may be transferred to the systenl If the 
latter is closed and is maintained at constant pressure, all but the first term on the right-hand 
side of Eq.(8.13)3 vanish and we have 

(dH)p  .... N... = T d S  = 6Q (8.1.4)4 

by Eq.(5.3). Thus, heat added to a dosed system at constant pressure appears as an increase 
in enthalpy. 

8.15 Extremum Principle, Equilibrium and Stability Conditions for the Enthalpy 
The extremum principle for the enthalpy states: 

"At equilibrium the value o f  any unconstrained parameter o f  a simple 
system coupled with a volume reservoir through a movable wall is such that 
the enthalpy is minimized at constmlt pressure". 

The conditions of equilibrium and stability for the enthalpy become: 

( d H ) e  = 0 and (d2H)p > 0.  (8.15) 

For a process to proceed spontaneously at constant pressure we must therefore have 
( d H ) p  < 0, i.e., the enthalpy of the system must decrease. 

8.16 The Free Enthalpy 
The alternative thermodynamic potential 

G = U[T, P] = U -  T S  + P V  = H -  T S  (8.16)1 

is called the free enthalpy or Gibbs free energy or Gibbs potential. Its canonical variables in 
a simple system are T, P ,  and . . .  Nm .... 

We obtain the fundamental equation in the free enthalpy representation as 
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G = a (T ,  P , . . .  ~ '~. . . )  

and the Gibbs equation as 

d G  = - S d T  + V d P  + Z , ~ # , ~ d 2 , / - ~  

(8.16)2 

(8.16)3 

in the same representation. The relation 

O G  
~ m ~  

O N m  T, P, ~r{.-/- 7~r .Lv \7- - .~  v r n  / 

(8.16)4 

shows that the free enthalpy is a potential for mass action at constant temperature, pressure, 
and mole numbers other than Nm. 

At constant temperature and pressure the change in free enthalpy is 

d G  - -  d U  - T d S  + P d V  . (8.16)5 

as 
Substituting for U in G = U - T S  + P V  from Eq.(3.10)4 yieldsthe Euler equation 

G = S m # m N m  . (8.16)6 

The Euler equation of a multicomponent simple system in the flee enthalpy representation 
thus consists of the mass action terms only. 

Equations (8.16)4 and (8.16)6 are valid only for simple thermodynamic systems. In 
non-simple systems other alternative potentials assume the role of the free enthalpy [see 
w 8.25 and the Introduction to Chapter 17; specifically, compare the two equations 
Eqs.(8.16)4 and (8.16)6 with Eqs.(17.10)3 and (17.5)4.7]. 

8.17 Work Available at Constant Temperature and Pressure 
The free enthalpy represents the amount of work available from a closed simple 

system in contact with a reversible work source and a heat reserr as well as a volume 
reservoir. By arguments analogous to those used in w167 8.11 and 8.14, we have 

- d G  = - d ( U  - T S  + P V )  = - d ( H -  T S )  = 6W gws . (8.17) 

Thus, the decrease in free entha~y equals the amount of work a dosed simple system can 
deliver in a reversible process at constant ten~erature and pressure. 

Expressing this again in another way we may say that G represents that part of the 
internal energy that can be transformed into work at constant temperature and pressure. 
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Alternatively, it is that part of the enthalpy that can be transformed into work at constant 
temperature. It is thus the free enthalpy while T S  may be called the bound enthalpy or the 
isothermally unavailable enthalpy. The term 'free enthalpy' thus appears preferable to the 
alternate terms Gibbs free energy or Gibbs potential. 

8.18 Extremum Principle, Equilibrium and Stability Conditions, for the Free 
Enthalpy 

The extremum principle for the flee enthalpy states: 

"At equilibrium the value o f  any unconstrained parameter o f  a system 
coupled with a heat reservoir through a diathermal wall and with a volume 
reservoir through a movable wall is such that the free enthalpy is minimized 
at constant temperature atM pressure ". 

The conditions of equilibrium and stability for the free enthalpy become: 

(dG)T,p = 0 and (d2G)T,p > 0. (8.18) 

For a process to proceed spontaneously at constant temperature and pressure we must 
therefore have (dG)T,p < O, i.e., the free enthalpy of the system must decrease. 

8.19 The Grand Canonical Potential 
The potential 

J = U[T, Izm] = U - T S  - #mNm = - P V  , (8.19)1 

called the grand canonical potential for  the ruth component, is a potential for open 
systems. Its canonical variables are T, V, and #~. 

The Gibbs equation of the grand canonical potential of a single-component simple 
system becomes 

d J  = - S d T  + P d V  - # d N  . (8.19)2 

The grand canonical potential has found use in statistical mechanics. 

8.20 The Extremum Principle, Equilibrium and Stability Conditions for the Grand 
Canonical Potential 

The extremum principle for the grand canonical potential states: 

"At equilibrium the value o f  any unconstrained parameter o f  a single 
component simple system coupled with a heat reservoir through a 
diathermal wall atgt with a matter reservoir through a semi-permeable 
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barrier is such that the grand canonical potential is minimized at constant 
temperature and the chemical potential 

The conditions of equih'brium and s t a b l y  for the grand canonical potential become: 

(dJ)T,~ = 0 and (d2j)r,~ > 0. (8.20) 

For a process to proceed spontaneously at constant ten~erature and pressure we must 
therefore have (dJ)T,a < 0, i.e., the grand canonical potential of the system must decrease. 

8.21 Other Thermodynamic Potentials of the Simple Systems 
Of the six partial Legendre transforms of the internal energy of a single-co~onent 

simple system the first-order transform, 

U[#] = T S -  PV, (8.21)1 

and the remaining second-order transform, 

U[P, #] = TS, (8.21)2 

have not received separate symbols or names. In a multicomponent simple system we also 
have the additional transforms U[#m], U[T, t.z,~], and U[P, t.zm] 

8.22 The Gibbs-Duhem Equation 
The complete Legendre transformation of the internal energy replaces all canonical 

variables (i.e., extensive parameters) of the system by their conjugate intensive parameters 
in the energy representation. But the complete Legendre transform of any system vanishes 
(cf. w A3.5). The restdting differential equation ~ g  the intensive variables of the system, 

Z j  Y'J dXj = O, (8.22 h 

is called the Gibbs-Duhem equation. 
As an example, the complete Legendre transform of a single-con~onent simple 

system is 

U[T ,  P ,  #] = U - T S  + P V  - ~ N  (8.22)2 

But, substituting for U from the Euler equation, Eq.(3.10h, we find that 

U[T, P, #] = O, (8.22)3 

and thus Eq.(8.22)1 yields 
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S d T -  V d P  + Ndl.z = 0 (8.22)4 

as the Gibbs-Duhem equation of the single-component simple system. For a multi- 
component simple system the equation takes the form 

S d T  - V d P  + E ~  N.~ dl.zm = O . (8.22)5 

We infer that the Gibbs-Duhem equation of any system, including any non-simple system, 
establishes a similar relation between the system's intensive parameters. 

8.23 Significance of the Gibbs-Duhem Equation 
The Gibbs-Duhem equation represents an important relation between the intensive 

parameters, Yk, of a system. Since the Yk are all connected through this equation, they are 
not independent of each other (cf. w 8.8). The integrated form of the equation can therefore 
be used to find explicit expressions for the chemical potential. 

8.24 The Chemical Potential Revisited 
Taking the partial derivative with respect to N in the appropriate forms of the Gibbs 

equation of a single component simple system, i.e., Eqs.(3.10)3, (8.10)3, (8.13)3, and 
(8.16)3, we find 

OU 

O N  

OF 
m 

O N  S , V  T , V  

OH 

O N  

OG 

O N  S , P  T , P  

= #. (18.24) 

In other words, the derivative of any of the thermodynamic potentials with respect to the 
mole number (the amount of material) equals the chemical potential. Thus the chemical 
potential occupies a special position among the other intensive parameters of the system: it 
allows us to calculate the change in any of the thermodynamic potentials with a change in 
the amount of material. 

Equation (8.24) is easily extended to multicomponent simple systems. The partial 
derivatives then take the forms exemplified by Eqs.(8.4)l, (8.10)5, (8.13)5, and(8.16)4. 

8.25 Thermodynamic Potentials in Non-Simple Systems 
Hitherto we have considered only the so-called simple systems in which the P V  

term is the only work term allowed. If work terms other than P V  are to be accommodated, 
then the Gibbs equation for a single component non-simple system in the energy 
representation takes the form 

dU - T d S  - P d V  + S Y'P dXp + # d N  
P 

(8.25) 
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where the YpXp are the added work terms in which the Yp are the intensive, and the X v are 
the extensive parameters. We must then define new thermodynamic potentials with the help 
of the appropriate Legendre transformations. An example o f ~ s  is discussed in Chapter 17. 
The formalism can be extended to systems in which surface effects cannot be neglected or 
which are acted on, e.g., by electrical, magnetic, or gravitational fields. Unfortunately the 
number of definable thermodynamic potentials increases rapidly with the number of-work 
terms considered. 
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9. M A S S I E U  F U N C T I O N S  

A Legendre transformation resulting in the replacement of one ore more extensive variables 
by the conjugate intensive variable in the entropy representation defines a Massieufunction.  
We consider here only the Massieu functions for a single-component simple system. The 
intensive parameters of this system in the entropy representation are 1 /T ,  P / T ,  and # / T .  
Extension to multicomponent simple systems is straightforward. There is no general 
agreement on the symbols and names for the Massieu functions. We assign non-italic 
uppercase Greek letters to them in this text. 

Massieu functions are useful in manipulations based on the entropy representation. 
Thus, they find application in irreversible thermodynamics and in statistical mechanics. In 
this text, two of the Massieu fimctions serve in deriving the stability criteria in the entropy 
representation (w 18.14). 

9.0 Chapter Contents 

9.1 Massieu Functions from First-order Legendre Transformations 
9.2 Massieu Functions from Second-order Legendre Transformations 
9.3 The Gibbs-Duhem Equation in the Entropy Representation. 
9.4 Relation of the Massieu Functions to the Thermodynamic Potentials 
9.5 The Extremum Principles for the Massieu Functions 

9.1 Massieu Functions from First-Order Legendre Transformations 
By w 8.7 there are 6 Legendre transforms, hence 6 Massieu functions, for the single- 

component simple system We start by listing the Massieu functions obtained from the first- 
order Legendre transforms of the base function, S = S ( U ,  V ,  N )  for that system in the 
entropy representation. We recall the Euler equation in the entropy representation 

1 P # S=~U+~V-~N. (9.1)1 

Let the first of the Massieu functions be 

' 
, r = s  ~ =s- y u  (9.1)2 

which is often called THE Massieufimction.  Its differential form is 

1] 1 P /.t 
d ~ - d S -~ - - U d -~ A- -~ d V - -~ d N . (9.1)z 

The next two Massieu functions of the single-component simple system are 
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with 

and 

with 

P 

' 
d Z  = d S  = -~ d U  - V d - ~  - -~ d N  , 

o=s[s =S+~-N 
T T ' 

d O  = d S  = -~ d U  + - f  d V  + W T 

(9.1)4 

(9.1)5 

(9.1)6 

(9.1)7 

The last two functions are unnamed. 

9.2 Massieu Functions from Second-order Legendre Transformations 
Of the three Massieu functions for the single-co~onent simple system resulting 

from second-order Legendre transformations, the ~ c t i o n  

with 

,~ = s - ~ y - ~ - u  

[~ P] di P 
- -  # d N  d,~=dS T'T = - Y  T - V d ~ - T  

(9.2)~ 

(9.2)2 

is often called the Planek func t ion .  The ~ t i o n  

with 

I #] 1 # a=s~,~ = S - ~ U + ~  N 

[1 ~] dL P 
d a = d S ~ , ~  = - U  T + ~ d V + N d ~  

(9.2)3 

(9.2)4 

is sometimes called the K r a m e r f u n c t i o n .  Vmally, we have the ~ a m e d  function 

with 

[P T] P r=s~,  =S-~V+~N (9.2)5 
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,-~ = -~ d U -  V d-~ + W d T (9.2)6 

9.3 T h e  G i b b s - D u h e m  Equation in the Entropy Representation. 
For the single-component simple system the third order Legendre transformation is a 

complete transformation. There is thus only one such Massieu function and this is the 
Gibbs-Duhem equation in the entropy representation. We obtain it as 

1 P # 
U d-~ + V d-~ - N d-~ = O (9.3) 

and this may be compared with its form in the energy representation, Eq.(8.22 h.  
Equation (9.3) is a relation between the Ik, the intensive parameters of the single 

component simple system in the entropy representation, 1/T, P / T ,  and l.z/T, just as 
Eq.(8.22)4 is a relation between the intensive parameters, T, P,  and #, of the single 
component simple system in the energy representation. 

Extending this to the multieomponent simple system and to non-simple systems 
alike, avers that the intensive parameters in the entropy representation are not independent 
of each other (cf. w 8.23). 

9.4  R e l a t i o n  o f  the  M a s s i e u  F u n c t i o n s  to the  T h e r m o d y n a m i c  Potentials 
The Massieu functions bear simple relations to the thermodynamic potentials 

although the relations are not immediately obvious for all. They are, however, readily 
obtained. For convenience, we recall the Euler equation in the energy representation, 

U = T S -  P V  + # N .  (9.4)1 

Then 

U -  TS F 
-- -- _ (9.4~,  

T T \ - - - - i r  

by Eq.(8.10h, 

, . . ,  w 

T S -  P V  U - # N  

T 

u[~] 
T 

(9.4)3 

by Eq.(8.21 h, 

T S  + # N  

T 
U + P V  

T 

H 

T '  
0.4)4 
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by Eq.(8.13)z, 

- - - .  m 

U - T S  + P V  

T 

G 
T '  

(9.4)5 

by Eq.(8.16h, 

Yt = _ U -  T S -  # N  __ P V  _ J (9.4)6 
T T T '  

by Eq.(8.19h, and finally 

T S -  P V  + # N  U 
F = -- (9.4)7 

T T "  

by Eq.(3.10)4. 
We complete the pattern by noting that 

S = U [ P ,  #] (9.4)s 
T 

by Eq.(8.21)2. 

9.5 The Extremum Principles for the Massieu Functions 
While a thermodynamic potential is minimized at equilibrium for constant values of 

its intensive canonical variable(s), a Massieu fimction is maximized under the same 
conditions. This is easy to see in case of the �9 and <I, fimctions. Equations (9.4)2 and (9.4)3 
indeed show that �9 is maximized when F is m i n ~ e d  at constant temperature, and that 
is maximized when G is minimized at constant temperature and pressure. However, 
maximization of E requires that P / T  be maximized while I / T  is varied. Thus, although the 
principle is valid in theory, its experimental realization may be quite difficult, if not 
impossible. 
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I0 .  S E C O N D - O R D E R  P A R T I A L  D E R I V A T I V E S  

In w 3.3 we introduced the intensive parameters as the first-order partial derivatives of  the 
internal energy. The secotM-order partial derivatives are no less important. A system having 
n extensive variables and, hence, f = n -  1 degrees of  freedom (cf. w 8.8), has a total of  
f +  1 = n first order, and a total of  ~ ( f +  1 X f +  2 ) =  n(n + 1)/2 distinct second-order 
partial derivatives of  the internal energy. Since the order in which the differentiation is 
carried out does not affect the value of  a 'mixed' partial derivative, such derivatives are 
equal and are not counted separately in the stated total number. The equivalence of  the 
mixed partial derivatives gives rise to a set of  important relations known as the Maxwell 
relations. 

Second-order partial derivatives may be derived from thermodynamic potentials 
other than the internal energy. Accordingly, we distinguish several sets of  such derivatives. 

10.0 Chapter Contents 

10.1 The Fundamental Set 
10.2 The Primary Set 
10.3 Relations between the Fundamental and the Primary Sets 
10.4 'Hybrid' Sets 
10.5 Reduction of  Partial Derivatives to the Primary Set 
10.6 The Maxwell Relations 
10.7 Corresponding Members of  a Maxwell Relation 

10.1 The Fundamental  Set 
We consider the second-order partial derivatives of  the simplest thermodynamic 

system 8, the physical simple system (cf. w 1.9), for which U = U(S, V). It has thus a single 
degree of  freedom and, hence, two first-order, and three second-order partial derivatives. 
The first-order derivatives are 

OU 

OS 
OU 

= T and 
l" OV 

= - P  
s 

and the three second-order ones take the forms 

02U 
OS 2 

O2U 

v" OVOS 
02U 

m 

s OSOV v' 

02U 
OV 2 

~ 

s 

Making use of  the first partial derivatives, the second ones become 

8 For an example of a nmre complex system see Chapter 17. 
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OT 

OS 

OT ! = OP 

v OV s OS , I v OV s 

These delwatives are normally used in the form of their reciprocals 

OS 

OT 
= C v / T  (]0. ])I 

OV 

OT 

OS 

s OP 
= a s V  (10.1.)2 

~ I = ~ s V  (10.1)3 
OP s 

where Cv is the heat capacity at constant volume (the isochoric heat capacity), a s  is the 
adiabatic expansivity, and Ks is the adiabatic compressibi#ty. We call this set of second- 
order partial derivatives thefututamenml set. 

The useful relation 

OU[ (i0.1)4 

follows from Eq.(10.1 h because in the physical shnple system dU = T d S -  P d V  
[cf. Eq.(3.10h]. 

10.2 The Primary Set 
In the derivatives just introduced the variables held constant were the extensive 

parameters. A corresponding set of derivatives in which the intensive parameters are kept 
constant, is obtained by using the free enthalpy, G, instead of the internal energy, U, as the 
basis of the derivation. For the physical simple system we have G = G(T,  P)and  obtain 

for the first, and 

OG ] = - S and OG [ - V 
OT p O P T  

02G 

OT 2 P 

02G 

OPOT 

o2G [ 
OTOP p' 

a2G] 
OP2 T 
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for the second-order derivatives. Making use of the first derivatives again, we find 

OS 

OT 

OS 

p' OP 

OV 

~ I p O P T  

Again we use their reciprocals in the form 

OS l] = C p / T  (10.2)1 
OT Ip 

OV I = OS 
p o P  

OV 

OP 

= c~pV (10.2)2 

= x T V  (10.2)3 
T 

where Cp is the heat capacity at constant pressure (the isobaric heat capacity), ap is the 
isobaric expansivity, and •T is the isothermal compressibility. 

The new second-order partial derivatives can all be expressed in terms of the 
fundamental set. They are, however, of primary importance experimentally. We therefore 
call this set the primary set. 

Since d H  = T d S  + V d P  by Eq.(8.13)3, we have 

OH I (10.2)4 CP = -b-~ p 

in analogy to Eq.(10.1)4. 

10.3 Relations between the Fundamental and the Primary Sets 
Some useful relations can be established between the members of the fundamental 

and the primary sets of  the second-order partial derivatives. First we define the heat 
capacity ratio as 

7 = C p / g v  = Cp/Ov (10.3), 

where ce = C p / N  and cy = C v / N  are the molar heat capacities. We then have 

c p / c v  = , ~ r / , ~ s  = 1 - ~P/~s (10.3)2 
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i.e., the ratio is equal to the ratio of the compressibilities and is also simply related to the 
ratio of the expansivities. 

The heat capacity difference is usually given in the form 

C V  - -  C p  - -  T V o z  2 / tr T . (10.3)3 

These relations are derived in Appendix 2 

10.4 'Hybrid' Sets 
The fundamental and primary s~s of second-order partial derivatives of the physical 

simple system were derived from U = U(S, V), and G = G(T, P), respectively. In the 
first, the canonical variables were the extensive parameters. In the second, they were the 
intensive ones. Second-order partial derivatives may be obtained also from the alternative 
thermodynamic potentials, the free energy, F - F(T, V), and the entha~y, H -- H(S,  P). 
These derivations form 'hybrid' sets whose canonical variables comprise both extensive and 
intensive parameters. A new coefficient is obtained only from the ~ e d  second-order 
partial derivatives of these potentials. We have : 

02F [ = OP 

OTOV v OT 

02F 

= 7V -- OVOT 
_ 0S ] (10.4)1 

T ~ T 

and 

_ _ _  _ _ .  ~ - - -  . 

OSOP e - ~  p OPOS s ~ s 
(10.4)2 

where 9'v is the isochoric (constant volume) pressure-temperature coefficient. Its 
experimental determination from (OP/OT)v gives access to the other three derivatives 
above that are difficult to obtain experimentally because they require manipulation of the 
entropy, S. 

10.5 Reduction of Partial Derivatives to the Primary Set 
It is often desirable to express a given partial derivative in terms of the members of 

the experimentally more convenient primary set or, in other words, in terms of the 
parameters Cp, ap,  and x~. Reduction of a derivative in this way is equivalent to a 
coordinate transformation in thermodynamic configuration space to the canonical variables 
of the free enthalpy, T, P, .... (of. Eqs.10.2). 

Several methods have been proposed for the reduction of partial derivatives to the 
primary set. Callen (1963) describes a method of elimination based on the Maxwell relations 
that form the topic of w 10.6. 

Another method is due to Bridgman. Bridgman (1914, 1961) constructed a table 
containing the numerators and the denominators of the partial de~atives occurring in the 
thermodynamics of the physical simple system in the form (0x~y. A ~ i c a l  e x a ~ l e  
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illustrating the use of Bridgman's table follows. Suppose we wish to reduce the so-called 
Joule-Thompson coefficient, (OT/OP)H [of. Eq.(A2.3)16]. Then 

O T  [ ( O T ) H  Y -  T r a p  _ V ( T a p  - l) 
O P  H - -  ( O F ) H  --  --  C p  - C p  (lO'5)l 

where (OT)H and (OP)H are taken from the table. This is certainly the simplest method. 
Unfommately, for any thermodynamic system with more than one degree of freedom the 
table would have to be quite large and apparently no extended table has ever been published. 

A convenient transformation of derivatives is based on the use of Jacobians. The 
method consists in rewriting the derivative as a Jacobian, multiplying both the numerator 
and the denominator by O(T, P , . . .  N . . .  ), and rearranging. As an example, consider the 
constant volume pressure-temperature coefficient introduced in the preceding paragraph. 
We have 

OP [ O(P, V) O(T, P) 
7~ ..... ~ v = O(T, P ) ' O ( T ,  V) 

OV 

OT 

�9 O P  

-0-r - -  a p / X T .  (10.5)2 
T 

1 0 . 6  T h e  M a x w e l l  Relations 
The relations equating the mixed second-order partial derivatives are known as the 

Maxwell relations. These important relations often allow the substitution of a derivative 
which is measured with relative ease in one experiment, for a derivative which is difficult, if 
not impossible, to determine in another. A system with f degrees of freedom has �89 + 1) 
mixed second-order partial derivatives--and, therefore, Maxwell relations--for every one 
of the thermodynamic potentials. Since the total number of thermodynamic potentials is 
2 f+l - 1 (cf. w 8.7), the total number of Maxwell relations for f degrees of freedom is 
.~f(f+ 1)(2 f + l -  1). 

The single-component simple system has 2 degrees of freedon~ Of its 21 Maxwell 
relations we list those that are derived from the thermodynamic potentials U, H, F, and G 
since only these are in common use. The four potentials are displayed in bold font in the left 
margin. 

U: 

F: 

OV s, x OS v, =v 

m 

~ T , N  O T  v , x  

OT 

ON s,v  

ON T,V 

- -  ' O N  - ~Tr 10 .6 )1  
O S  IV, N iS, V ~, v IS, N 

O# 

OT v, iv' 

OP 

ON T,V 
O# [10.6)2 
OV ~T,X 
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H: 

G:  

O T  

O P  S ,N  - O S  " - ' P,N O N  S,P OS P,N 

O V  

O N  s , e  
O#[ (10.6)3 
O P  S,W 

O P  N O T  " - N O N  T,P OTIp,  N O N  T,P OPIT,  N 

Of these, the first of Eqs.(10.6 h and (10.6)4 were introduced before as the 
reciprocals of Eqs.(10.1}2 and (10.2)2, while the first of Eqs.(10.6h and (10.6)3 are non 
others than Eqs.(10.4h and (10.4)2, respectively. These 'first' equations are particularly 
important because they allow us to determine hard-to-measure variations invoicing the 
entropy, in terms of the expansivities and the isochoric pressure-temperature coefficient. 

10.7 Corresponding Members of a Maxwell Relation 
Let us consider the number of possible Maxwell relations in general. For the single- 

con~onent simple system (f = 2) there are altogether 21 M a ~ e l l  relations. For a binary 
simple system (f = 3) the number of possible Maxwell relations rises to 90. 

Clearly, we need a method for enabling us to fred--given a mixed second-order 
derivative--the corresponding member of the Maxwell relation whenever it is required. A 
method to do this may be found in Appendix A2 on Jacobians. The necessa~ relations are 
tabulated in w A2.2, part (5). An exan~le is given in w A2.3, part (1). 
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11. I D E A L  S Y S T E M S  

The first ten chapters of this text established the armamentarium necessary to describe the 
fundamental features of the phenomenological theory of equilibrium thermodynamics. This 
chapter introduces concepts underlying idealized (or simply ideal) thermodynamic systems. 
The next six chapters then discuss several such systems: 

�9 the ideal gas, 
�9 the monatomic ideal gas, 
�9 the ideal mixture, 
�9 the multicomponent ideal gas, 
�9 the ideal solution, 
�9 the ideal rubber. 

Focusing particular attention on the single-component ideal gas, the first of the next 
chapters describes more generally the features shared by all ideal gases. The chapter on the 
ideal mixture discusses features common to the multicomponent ideal gas and to the ideal 
solution. The behavior of the three ideal gas systems underlie the behavior of real gases. 
Similarly, the ideal solution and the ideal rubber model the behavior of real solutions and 
real rubbers. The ideal solution and the ideal rubber are examples of a liquid and a solid 
system, respectively. 

11.0 Chapter Contents 

11.1 Idealized Systems 
11.2 Ideal Behavior 
11.3 Criteria for Ideal Behavior 
11.4 Domain of Validity 

11.1 Idealized Systems 
The idealized systems to be discussed in the following six chapters are model 

systems in the sense of the motto heading the Preface. Thus, they are not, in general, 
directly applicable to any real physical system They do, however, model the basic features 
of such systems. Real physical systems generally show deviations from the behavior 
predicted by the idealized models. Much ingenuity has been devoted to the development of 
improvements to account for the behavior of real systems. While extremely important in 
practice, these improvements do not, however, present anything new from the viewpoint of 
the basic structure of the theory of thermodynamic behavior and, therefore, are outside the 
scope of this text. 

11.2 Ideal Behavior 
For the purposes of this text a necessary (but not necessarily sufficient) condition for 

ideal behavior is that the contributions of the extensive parameters in the fundamental 
equation be separable at constant composition. Putting this another way: 
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"The fundamental equation o f  an ideal system consists o f  additive terms, 
every one o f  which depends only on a single extensive variable aside from 
compositional variables such as the mole numbers". 

This feature characterizes all six of the systems mentioned above. 
It further follows that, at constant composition, each equation of state of an ideal 

system--excepting the one involving the chemical potential--depends on only one of the 
extensive variables of the system.. 

11.3 Criteria for Ideal Behavior 
Sufficient conditions for ideal behavior are conveniently formulated in terms of the 

intensive parameters since these do not depend on the size oft  he system They are ~ e d  by 
the Gibbs-Duhem equation [cfEq.(8.22)i]. We may thus express the sufficient condition for 
the ideal behavior of a system by specifying the functional dependence of the chemical 
potential on the other intensive parameters. For the single-component general ideal gas and 
for the monatomic ideal gas the intensive parameters are T, P and. Hence, for these systems 
the implicit form of the sufficient condition becomes 

# = # ( T , P ) .  ( l l . 3 h  

For the ideal mixture, the multicomponent ideal gas, and the ideal solution, this relation 
becomes 

I.Zi = # i ( T , P ,  ~i) (11.3)2 

because the chemical potential of the ith component depends on the composition. The latter 
is taken into account by including the intensive compositional variable, ~i, i.e., the ith mole 
fraction (cf. w 14.5). The criteria for ideal behavior are then obtained by making the two 
implicit relations above explicit for each of the systems considered (cf. w167 12.12, 13.10, 
14.7, 15.12, 16.4 and 17.16). 

11.4 Domain of V a l i ~  
The systems listed at the beginning of this chapter are model system. It is in the 

nature of a model that it bears no one-to-one correspondence to that which it models. The 
set of properties assigned to every model define its domain o f  validity within which k 
comes arbitrarily close to the reality that underlies it. The domain of validity does not need 
to be stated explicitly. However, When using a model the user must a~ays  be aware of its 
domain of validity and of its limitations outside of this domain. The monatomic ideal gas 
furnishes a perfect exan~le (see w 13.9). 
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12. T H E  I D E A L  G A S  

The two extreme idealized thermodynamic systems are the ideal gas and the perfect crystal. 
In the first the arrangement of molecules (or atoms) is completely random, in the second it 
is perfectly ordered. The thermodynamic properties of an ideal  gas  are particularly 
instructive because of their relative simplicity. The simplest ideal gas is the monatomic  ideal  

gas which will be discussed in the next chapter. Any real gas, monatomic or not, appro- 
ximates the behavior of an ideal gas in the limit that T ~ oo and P ---+ O. 

12.0 Chapter Contents 

12.1 The Fundamental Equation of the Ideal Gas in the Entropy Representation 
12.2 The Equations of State of the Ideal Gas in the Entropy Representation 
12.3 Equivalence of the Complete Set of the Equations of State 

with the Fundamental Equation 
12.4 Empirical Ideal Gas Laws 
12.5 The Primary Set of Partial Derivatives for an Ideal Gas 
12.6 The Fundamental Equations of the Ideal Gas in Parametric Form 
12.7 The Fundamental Equations of the Ideal Gas in Parametric Form 

in Terms ofcv (T) 
12.8 The Fundamental Equations of the Ideal Gas in Parametric Form 

in Terms ofcp(T) 
12.9 The Fundamental Equation of the Ideal Gas in the Free Energy 

Representation 
12.10 The Fundamental Equation of the Ideal Gas in the Free Enthalpy 

Representation 
12.11 The Cfibbs-Duhem Equation ofthe Ideal Gas 

12.1 The Fundamental Equation of the Ideal Gas in the Entropy Representation 
Although thermodynamic theory does not depend on the existence of an explicit 

form of the fundamental equation (cf. w 3), it is, nevertheless, useful to learn how the theory 
applies when such a fundamental equation is available. The ideal gas presents us with the 
opportunity of studying the properties of a rather simple fundamental equation. The ideal 
rubber offers another such opportunity (cf. w 17.15). 

The fundamental equation of an ideal gas cannot be derived within phenomeno- 
logical thermodynamic theory. It can be obtained, however, in the entropy representation 
from a complete set of the equations of state (cf. w 12.3), and can also be derived with the 
help of classical statistical mechanics and quantum mechanics. Appendix 4 gives a short 
account of the derivation of the (molar) fundamental equation of the single-component ideal 
gas in the entropy representation. It leads to 

s = s(u,  v)  = So + t lu )  + R In V/Vo (12.1)1 

where R is the universal  gas  constant,  s = S / N ,  u = U / n ,  v = V / N ,  and the subscript 
'o' denotes a suitably chosen re fe rence  state. Equation (12. l h  contains no t ~  which 
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depends simultaneously on both u and v and thus satisfies the requiremen~ for ideal beha~4or 
as formulated in w 11.2. The function f(u) is a function of u only. Its explicit form differs 
from gas to gas but it will always be such that t~uo)= 0.Because ~u)  is not known 
explicitly in general, Eq.(12.1)1 cannot be solved for the molar fimdamental equation in the 
energy representation, u = u(s, v). 

In terms of the mole number, N, Eq.(12.1)l becomes 

& 
s = u ~  + m ( U / N )  + N R  n, 

.zvo 

V N .  

YoN 
(12.1)2 

as the general form of the fimdamental equation of a single-co~onent Meal gas in the 
entropy representation. In the remainder of this chapter 'ideal gas' ~ refer to a single- 
component ideal gas unless otherwise stated. 

12.2 The Equations of State of the Ideal Gas in the EnWopy Representation 
Because we have no expficit fimdamental equation of the idea} gas m the energy 

representation, we derive the three equations of state of the ideM gas in the entropy 
representation. For the first equation we find 

1 OS ] -- N di~U/N) d~u) 
T -- OU V,N d U  -- du  (IZ2)i  

from Eq.(3.11)4.1.Although, in the absence of an expficit differentiable fimction of U, the 
differentiation could only be indicated, Eq.(12.2 h shows that the internal energy depends--- 
apart from the mole number, N-- -on ly  on the temperat~e, T. This exclusive dependence of 
the internal energy on the temperature is an important characteristic of the ideal gas and 
allows us to express the first equation of state of the ideal gas in the form 

i c N R  c R  
m 

T U u 
(12.2)2 

where c is a dimensionless constant (see the introduction to ~ a p t e r  13). 
The second equation of state follows from Eq.(3.11)4.1 as 

P OS 

T - o V  U,N 

N R  R 
w 

~ 

V v 
(12.2)a 

This is commonly written as 

P V  = NR_T or P v  = RT (12.2h 
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and has the same form for aH ideal gases including the multicomponent ideal gas 
(cf. w 15.3). The second equation of state is sometimes referred to simply as THE equation 
of state of the ideal gas or THE ideal gas equation o f  state. 

Introducing the equations U = c N R T  and P V = N R T  into H = U + P V it is 
seen at once that the enthalpy of an ideal gas also depends only on the temperature a p ~  
from the mole number, N. 

To derive the third equation of state we turn to Eq.(3.I1)4.2. We find 

i.e., 

so that 

o r  

os I ] T ON u, v ON -~o + N f ( U / N )  + N R  h~ VNo -- - ~ = Iron (12 .2) ,  

_ Of(U/N____)) VNo o z~ N 
# So f l U ~ N ) -  N ON - R In VoN + N R  O---N' (12.2)6 
T No 

So u O f ( U / N )  _ R / n  V g o  
T -- No f (U/N)-~  N cO(U/N) V--~ + R ,  (12.2)7 

T 
- - - ~o  - f ( ~ )  + ~ / r  - a I n  ~ / ~ o  + a .  (12.2)8 

Equation ( 12.2)8 follows from ( 12.2)7 because 

Of(U/N)  df(u) 

O ( U / N )  a~ ' 
(12.2)9 

and this equals 1 /T  by Eq.(12.2h. Equations (12.2)7 and (12.2)8 represent the third 
equation of state of a single-component ideal gas. 

12.3 Equiva lence  of  the Comple te  Set of  the Equat ions  of  State  with  the F u n d a m e n t a l  
Equation 

In w 3.12 we asserted that the complete set of the equations of state is equivalent to 
the fundamental equation. Indeed, inserting Eqs.(12.2)2, (12.2)3, and (12.2)8 into the molar 
form of the Euler equation, Eq.(3.10)5, in the entropy representation, 

1 P # 
s = --u + - - v -  -- (12.3)t 

T T T '  

immediately reproduces the fundamental equation, Eq.( 12.1)1. 
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The expectation that substitution of the equations 

T = u / c R  (12.3)2 

and 
P = R T / v  (12.3)3 

# = - soT - T  f(u) + u - R T  Inv /vo  + R ~  

into the molar form of the Euler equation in the energy representation, 

(12.3)4 

u = T s  - P v  + #,  (12.3)5 

might lead to the fundamental equation in the energy representation, is not borne out. 
In fact, doing so leads to 

T f(u) = u s / c R  - s o T -  R T  lnv / vo  (12.3)6 

and resubstitution ofEq.(12.3)2, multipfication by T ,  and r ea r r an~g  leads to 

f (u)  = 8 - s o T -  R T  lnv /vo  (12.3)7 

which we could have obtained s i l l y  by solving Eq.(12.2)l for f(u). 

12.4 Empirical Ideal Gas Laws 
There are several historical empirical gas qawg that are commonly referred to under 

the name of their originators. Thus the dependence of the internal energy per mole, u, on 
the temperature only, expressed by the first equation of state in the form u =clLT is 
sometimes referred to as Joule's Law. Several other such laws are seen to follow from the 
second equation of state. Boyle's Law claims that, for a given volume of  an ideal gas at the 
same temperature, P V  = cons t ,  implying that the volume changes inversely as the 
pressure. The law first enunciated by Charles and later independently by Gay-Lussac  states 
that at constant pressure a given volume of an ideal gas is directly proportional to the 
(absolute) ten~erature. This is expressed by V = N R T / P .  Finally, Avogadro~  Law states 
that at the same temperature and pressure the molar volume of all ideal gases is the same. 
This follows from v = V / N = 1LT/P. 

12.5 The Primary Set of Partial Derivatives for an Ideal Gas 
The second equation of state of an ideal gas leads to particularly simple expressions 

for the primary set of the second-order partial d ~ a t w e s .  Introducing V = N R T / P  into 
Eqs.(10.2)2 and (10.2)3 yields the isobaric expansivity as 

O~pm 
1 0 V  

V OT 

1 
- ( 1 2 . 5 h  

p T 
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and the isothermal compressibility as 

K T = 
1 OV 
V OP 

1 
- ~ (12.5)2 

These two relations apply to any ideal gas, thus also to the monatomic and 
multicomponent ideal gases to be discussed in detail in Chapters 13 and 15. 

The same cannot be said about the isochoric and the isobaric heat capacities of an 
ideal gas. Differentiation of the entropy, Eq.(12.1)2, with respect to the temperature shows 
that the heat capacities of an ideal gas are functions of f(u) and, therefore, generally, of the 
temperature. The monatomic ideal gas is an exception (see w 13). Since flu) differs from gas 
to gas for all other ideal gases, so also do Cv(T) and Cp(T). However, combining 
Eq.(10.3)3, i.e., ce = cr + Tva2/tr with the equation of state, Pv = RT, gives the 
molar heat capacity difference of any ideal gas as 

c p ( T )  - cv(T) : R ,  (12-.5)3 

which, for the monatomic ideal gas becomes simply c p -  cv = R, and for any component 
ofa multicomponent ideal gas takes the form cpi(T) - cvi(T) = R (cf. w 15.4). 

12.6 The Fundamental Equations of the Ideal Gas in Parametric Form 
Since in an ideal gas u depends on the temperature only, it is possible to express 

flu), and thus also the internal energy and the entropy of an ideal gas, in terms of the 
experimentally accessible molar heat capacities, cv(T) and cp(T). In either case the 
resulting expressions: s = s(u, v) for the entropy, and u = u(s, v) for the internal energy, 
then constitute two parametric equations for the fundamental equation. The latter could, in 
principle, be obtained in either the entropy or the energy representation from the parametric 
equations by elimination of T between them Because, however, the temperature 
dependence of the heat capacities is not known explicitly in general, this is poss~le only in 
special cases. The monatomic ideal gas (cf. w 13.1) represents such a special case 

While the parametric equations cannot be combined through the elimination of the 
temperature into fundamental equations in the energy or the entropy representations, it is 
possible to obtain fundamental equations from the parametric equations in the free energy 
and in the free enthalpy representations (cf. w167 12.9 and 12.10). In these cases there is no 
need for the elimination of the temperature since it is a canonical variable in both these 
alternative representations. 

12.7 The Parametric Fundamental Equations of the Ideal Gas in Terms of cv (T)  
We proceed to express the parametric equations of the single-component ideal gas 

in terms of the temperature dependence of the molar heat capacity at constant volume, 
cv(T). This can be determined experimentally and, in some cases, explicit expressions may 
be obtained from statistical mechanical considerations. 

Because u is a function of temperature only, Eq.(10.1)4 becomes 
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du = cv (T)  d T .  (12.7)1 

and integration yields 

u = Uo + cy(T ' )  dT ~ , (12.7)2 

the molar form of the first of the sought-for parametric equations. 
Substituting Eq.(12.7h into the first equation of state, d f f u ) = d u / T ,  and 

integrating using f(uo) = 0, yields 

, ) 

f (u )=  T' dT ' .  (12.7)3 

Inserting this into Eq.(12.1)~renders the second parametric equation as 

f T cv(T') s = 3o + dT" + R In V/Vo (12.7)4 
To T" 

Equations (12.7)2 and (12.7)4 are the molar parametric equations for a single-component 
ideal gas in terms of cy (T), the molar heat capacity at constant volume. 

12.8 The Parametric Fundamental Equations of the Ideal Gas in Terms of c p ( T )  
~ e  last three equations can be re,mitten replacing cv(T)  by the experimenta~ 

more convenient cp(T). Using Eq.(12.5)3,i.e., cv(T)  - - c p ( T ) -  R, Eq.(12.6)2 becomes 

f7 T u = Uo + c p ( T ' ) d T ' -  R ( T -  To), (12.8)i 
To 

Eq.(12.7)3 yields 

~T] cP(T') dT" - R In T / T o ,  
f (~ )  = T" 

(12.8)2 

and Eq.(12.7)4 turns into 
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o r  

s = ~o + ~; d T ' -  R In T/To + R/t l  V/Vo 

s = So + -~; d T ' -  R In P/Po 

(12.8)3 

(12.8)4 

where Po = RTo / Vo. Equations ( 12.8)t with ( 12.8)3 o r  with (12.8)4 form alternative pairs 
of the molar parametric equations of the single-component ideal gas in terms of cp(T), the 
molar heat capacity at constant pressure. 

12.9 The Fundamental Equation of the Ideal Gas in the Free Energy Representation 
To derive the expression for the fundamental equation of the ideal gas in the free 

energy representation, we first multiply the expressions for the molar parametric equations 
written in terms of the heat capacity at constant volume, cv(T), by the number of moles, 
N. This leads to 

U = N--~o + N cv (T ' )  dT" (12.9)1 

from Eq.(12.7)2, and to 

S = NS~ + N  fT~ cv(T')T, dT" + N R  In V/Vo (12.9)2 

from Eq.(12.7)4. Combining these according to F = U - T S  gives 

N f z l r T ' - T  
F =  -~oF~ + N  T cv(T ' )  dT" - N R T  In V/Vo (12.9)3 

with Fo = U o -  TSo, as the fundamental equation of the ideal gas in the free energy 
representation 

12.10 The Fundamental Equation of the Ideal Gas in the Free Enthalpy Representation 
To obtain the fundamental equation of the ideal gas in the free enthalpy 

representation we use the parametric equations written in terms of the heat capacity at 
constant pressure, cp(T), since we need the pressure as another canonical variable m this 
case. By multiplying with the number of moles, N, we obtain 
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U = N-~o + N cp(T ' )  dT" - N R _ ( T -  To) (12.10)1 

from Eq.(12.8)l, and 

S = N S~ fl T cp(T') 
No + N j7 d T ' -  N R  In P /Po  

~o T" 
(12.10)2 

from Eq.(12.8)4. Using both G = U - T S  + P V  and P V  = NRT yields 

G = N G~ fTi r T ' - T  
No + N  T" 

ce (T ' )  dT" + N ~  In P /Po  (12.10)3 

with Go = U o -  TSo + PoVo, as the fundamental equation of the ideal gas in the free 
enthalpy representation. 

12.1.1 The Gibbs-Duhem Equation of the Meal Gas in Terms of cp(T) 
Multiplication of the third equation of state, Eq.(12.2)s, by T yields 

# = - Tso - T f fu)  + u - R T  In V/Vo + R T .  (12.11)1 

With the help of Eqs. (12.8)1 and (12.8)2 and the use o f P v  = ~ this becomes 

= v o ( T ) +  P,T tn P /Po  (12.11h 

where 

~~ T" T 
r e ( T )  = ~o - T~o + R-To + ~r= cp(T') dT' .  (12.11)3 

or, alternatively, 

J~~ Tr #o(T) = Uo - Tso + R _ T -  R T l n  T/To)  + T" 
T 

c v ( T ' )  dT' .  (12.11)4 

The function #o(T) is the standard chemical potential at the temperature T and the 
standard (reference) pressure Po. The zero s-ubscript in #o(T) refers to this pressure. Thus 
#o(T) is standard with respect to a standard pressure but it is a ~ c t i o n  of temperature. 

Equation (12.11)2 with either (12.11)3 or (I 2.11)4 provides a functional relation 
between the intensive parameters T, P,  and #. They thus together represent the integrated 
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form of the Gibbs-Duhem equation of the ideal gas in terms of  the molar heat capackies at 
constant pressure or constant volume. Behavior in accordance with Eq.(12.11)2 constitutes 
a sufficient cotutition for the ideal behavior of a gas. 
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13. T H E  M O N A T O M I C  I D E A L  G A S  

Among all ideal gases, the monatomic ideal gas shows by far the simplest behavior. R is 
known from statistical mechanics 9 that the constant 'c' in Eq.(12.2)2 has the value 3/2. Thus 
cv = 3R/2 by Eqs.(10.1)4 and it follows that cp = 5R/2. The heat capacities of a 
monatomic ideal gas thus do not depend on the temperature and this resxdts in considerable 
simplification of the thermodynamic properties of this gas. in particular, it becomes possible 
to write an explicit fundamental equation for the monatomic ideal gas, ~ d  to obtain this not 
only in the entropy and energy representation but in the alternative representations as well. 
in addition, the monatomic ideal gas allows us to demonstrate that, if the equations of state 
are at hand, the fundamental equation can be obtained through the introduction of the state 
equations into the Euler equation. 

13.0 Chapter Contents 

13.1 The Fundamental Equation of the Monatomic Ideal Gas in b e  Entropy 
Representation 

13.2 The Fundamental Equation of the Monatomic Ideal Gas in the Energy 
Representation 

13.3 The Fundamental Equation of the Monatomic Ideal Gas in the Enthalpy 
Representation 

13.4 The Fundamental Equation of the Monatomic Ideal Gas in the Free Energy 
Representation 

13.5 The Fundamental Equation of the Monato~c Ideal Gas ~ the Free Enthalpy 
Representation 

13.6 The Equations of State of the Monatomic Ideal Gas in the Entropy 
Representation 

13.7 The Equations of State of the Monatomic Ideal Gas in the Energy" 
Representation 

13.8 Equivalence of the Complete Set of the Equations of State and the 
Fundamental Equation- Revisited 

13.9 The Domain of Validity of the Fundamental Equation of the Monatomic 
Ideal Gas 

13.10 The G~bs-Duhem Equation of the Monatomic Ideal Gas 

13.1 The Fundamental Equation of the Monatomic Ideal Gas in the Entropy 
Representation 

in the case of a monatomic ideal gas the genera~ un~ecified ~ c t i o n  flu)becomes 
explicit through the substitution of3R/2 for cv(T) in Eq (12 7)3. integration ~elds 

3 
flu) = ~RInT/To (13.1 h 

9 see, e.g, Blinder (1969), p. 274. 
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and introducing this into Eq.(12.1)1 leads to 

3 
s = So + -~ R ba T / T o  + R In V/Vo. (13.1)2 

With c = 3/2, Eq.(12.2~ yields T = 2 u / 3 R  and we find 

3 
= ~o + ~ R1. ~,/Uo + Rh,  V/Vo (13.1)3 

as the molar fundamental equation of the monatomic ideal gas in the entropy representation. 
Through multiplication by the mole number, N, we obtain 

S=N S~ [ U 3/2V N -s/2] 
No (<) (13.1)4 

as the fundamental equation in terms of the canonical variables U, V, and N. 
We note that this derivation is tantamount to an elimination of T between the 

parametric equations that play a prominent role in Chapters 12 and 15. 

13.2 The Fundamental Equation of the Monatomic Ideal Gas in the Energy 
Representation 

Equation (13.1)3 can be solved for u = u(s ,  v ) t o  yield the molar fundamental 
equation of the monatomic ideal gas in the internal energy representation as 

u = Uo(Vo/V) ~ - so)]. (13.2h 

We recall that we were not able to obtain u : u(s, v) for the general Meal gas (cf w 12.3). 
Multiplication by the mole number, N, gives the fundamental equation of the 

monatomic ideal gas in the internal energy representation as 

Uo (VoN~2~ 
U=N-- 

No ~v-~.J 
2 s so 

exp 3R(  )]  (13.2)2 N ~% j 

in terms of the canonical variables S, V, and N. 

13.3 The Fundamental Equation of the Monatomic Ideal Gas in the Enthalpy 
Representation 

By Eq (8 13h the enthalpy, H, is given by 

H = U + PV (13.3h 
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To obtain H for the monatomic ideal gas in term of the canonical variables, S, P,  and N, 
we first need to solve Eq.(13.1)4 for V. ~ s  # e s  

= =~N No " (13.3)2 

Combining ~s.(13.2)2 and (13.3)2 according to Eq. (13.3)1 leads to 

N P 9 " / 5 1 2 S  S o ]  
H =  H o ( ~ o )  (~o)  exp 5-R(N No) (13.3)3 

where Ho = ~ PoVo. 
Equation (13.3)3 is the fundamental equation of the monatomic ideal gas in the 

enthalpy representation in terms of the canonical variables S, P, and N. The molar form 
follows as 

h = ho(P/Po)2/Sexp[(2/3R)(s  - So)]. (13.3)4 

where ho = 5Povo/2. 

13.4 The Fundamental Equation of the Monatomic Ideal Gas in the Free Energy 
Representation 

The free energy, F, is given by Eq.(8.10)1as 

F = U - T S .  (13.4)1 

Combining Eqs.( 13.2)2 and ( 13.1 )4 according to Eq.( 13.4)1 we obtain 

" I 
F = FONo--~o - N ~  h, ~ ~ N  ' 

where Fo = Uo - ToSo. 
Equation (13.4)2 is the fundamental equation of the monatomic ideal gas in the free 

energy representation in terms of the canonical variables T,  V,  and N. Its molar form is 

f = AT~To - Rcr tn T /To  V/Vo (13.4)3 

where fo = Uo - T So. 
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13.5 The Fundamental Equation of the Monatomic Ideal Gas in the Free Enthalpy 
Representation 

Equation (8.16)i gives the free enthalpy as 

a = H -  T S .  (13.5)1 

Combining Eqs.(13.3)3 and (13.1)4 according to Eq.(13.5)i leads to 

G = Go No To N R T  In -~o (13.5)2 

where Go = Uo - ToSo + Po Vo. 
Equation (13.5)2_ is the fundamental equation of the monatomic ideal gas in the free 

enthalpy representation in terms of the canonical variables T, P,  and N. The molar form 
becomes 

[( g =  goT/To - R T  ln T / T o  " P / P o  (13.5)3 

where 9o = Uo - Tso + Povo. 

13.6 The Equations of State of the Monatomic Ideal Gas in the Entropy 
Representation 

The equations of state of the monatomic ideal gas in the entropy representation 
follow at once from Eq.(13.1 )4 as 

1 OS 

T OU V, N 

3NR 3R 

2U 2tt ' 
(1.3.6)1 

and 

P OS 

T OV U, N 

# OS 
m 

T ON 

N R  R 

V v '  

U,V 

5 So 3 UNo VNo  
= - R  R h t  - R l n  

No 2 ~ o N  VoN 2 

= 2.5 R - So - 1.5 R In U/Uo - R In V/Vo 

(13.6)2 

(13.6)3 

where we have given the molar forms also. 
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13.7 The Equations of State of the Monatomic Ideal Gas in the Energy 
Representation 

Since we now have an explicit fimdamental equation in the energy representation, 
we may obtain the equations of state in that representation also. Applying Eq.(3.11)1we get 

2 oc oN2J3 [2 s Soil ,,3.,,1 

p OU 

OV S,N 

VoN '~ 2/3 S So 

and 

OU 

S,V 

=(~ 2 s Uo vo.~ 

We make use of these equations of state in the next section. 

13.8 Equivalence of the Complete Set of the Equations of State with the Fundamental 
Equation - Revisited 

In w 12.3 we demonstrated that the complete set of equations of state of the general 
ideal gas is equivalent to the fundamental equation in the entropy representation. ~ i s  is, of 
corpse, also true of the monatomic gas. Substituting Eqs.(13.6)l to (13.6)3 into the Euler 
equation, 

1 P # Y  s = ~ u + ~  v -  ~ ,  (13.8), 

we promptly recover Eq.(13.1 )4. 
In the case of the general ideal gas we were not able to obtain the ~damen ta l  

equation in the energy representation from the equations of state (cf w 12.3). Now, 
however, substitution ofEqs.(13.7 h to (13.7)3 into the Euler equation, 

U = T S -  P V  + # N ,  (13.8)1 

in the energy representation leads, after some algebra, to the ~damenta l  equation, 
Eq.(13.2)2, as expected. 
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13.9 The Domain of Validity of the Fundamental Equation of the Monatomic Ideal 
Gas 

By Postulate V, Eq.(2.21), the partial derivative of the internal energy with respect 
to the entropy, Eq.(13.7)1, when equated to zero, should yield the entropy, S, as a positive 
semi-definite quantity. However, OU/OS = 0 requires that S - -  - c ~ .  The fundamental 
equation for the monatomic ideal gas thus violates Postulate V. 

The reason, of course, is that the equations of state derived in w 13.7 are appro- 
ximations to the tn~e equations of state and these approximations are valid only under the 
assumptions of high temperatures (T --~ oo) and low pressures (P --~ 0). The assumptions 
are implicit also in the quantum mechanical derivation of the fundamental equation (see 
Appendix 4). Even in the case of the monatomic ideal gas, the true fundamental equation 
thus remains unknown. Equation (13.1)4 is therefore valid only at sensibly high 
temperatures and low pressures, and these conditions define its domain of validity The fact 
that the fundamental equation (and the equations of state) are valid only over a range of the 
intensive parameters does not impair their utility as long as they are applied within their 
domain of validity 

13.10 The Gibbs-l)uhem Equation for the Monatomic Ideal Gas 
The Gibbs-Duhem equation for the monatomic ideal gas is identical with 

Eqs.(12.11) 2or (12.12)1 for the general ideal gas, 

# = #o(T)+ RT In P/Po,  (13.10)1 

except that the standard chemical potential, #o(T), now simplifies to 

~o(T) = ~o - T~o -3R-7: SRT(~ - l , ~  r /To)  - 2  o + ~  

either through substitution ofcp(T) into Eq.(12.11)3, o r  ofcw(T) into Eq.(12.12)2. 
Equations (13.10h and (13.10)2 together represent the integrated form of the 

Gibbs-Duhem equation of a monatomic ideal gas. Conformance with Eq.(13.10)l 
constitutes a sufficient comtition for the ideal behavior of a monatomic gas just as it does 
for the ideal behavior of a general gas. 
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14. T H E  I D E A L  M I X T U R E  

Most thermodynamic systems consist of more than one component. Macroscopically 
homogeneous multicomponent systems form mixtures. By contrast, blemts are 
multicomponent systems that are not homogeneous. Mixtures may be gases or condensed 
systems (liquids or solids). We will be concerned primarily with the ideal gas mixture (the 
multicomponent ideal gas, Chapter 15) and with the ideal solution (Chapter 16). 

A discussion of the thermodynamics of ~ u r e s  requires the concepts of molar and 
partial molar quantities, and of mole fractions. These concepts, together with a discussion 
of those characteristics of the ideal mixture that are common to the multicomponent ideal 
gas and the ideal solution, form the topic of the present chapter. We will use the terms 
mixture and multicomponent system interchangeably. 

The simplest mixture is the two-component mixture or binary system. It will receive 
special attention wherever called for. 

14.0 Chapter Contents 

14.1 Molar Quamities 
14.2 The Molar Fundamental Equation 
14.3 The Molar Gibbs and EuJer Equations 
14.4 Partial Molar Quantities 
14.5 Mole Fractions 
14.6 Partial Molar Quantities and the Chemical Potential 
14.7 Dependence of the Chemical Potential on Composition 
14.8 Change in the Chemical Potential upon Mixing 
14.9 Changes in Volume upon Mixing 
14.10 Changes in Enthalpy upon Mixing 
14.11 Changes in Internal Energy upon Mixing 
14.12 The Free Enthalpy, Free Energy, and Entropy of Mixing of an I d e a l / ~ ~ r e  
14.13 General Comments on Changes in the Thermodynamic Potentials upon 

Mixing 
14.14 The Gibbs-Duhem Equation of a Mixture - The Binary Mixture 

1.4.1 Molar Quantifies 
In a single-component system with constant composition, division of. any of the 

extensive parameters by the mole number, N, yields the corresponding molar quantity. We 
shall denote this by the corresponding lower case letter. Thus, 

�9 U / N  = u is the internal energy per mole or molar internal energy, 
�9 S / N  = s is the entropy per mole or molar entropy, 
�9 V / N  = v is the volume per mole or molar volume, etc. 

The molar quantities are intens'we parameters. Some molar quantities had already been used 
earlier. 
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14.2 The Molar Fundamental Equation 
As an example of the use of molar quantities we express the fundamental equation, 

of a single-component simple system, in terms of the molar quantities. Since the 
fundamental equation is homogeneous of the first order in its canonical variables (cf. w 3.1), 
we have 

o r  

S(U,  V,  N )  = N S ( U / N ,  V / N ,  1) 

S(U,  V,  N ) / N  = S(u,  v, 1). 

(14.2)1 

(14.2)2 

Thus we have 

s = s(u, v) and u = u(s, v) (14.2)3 

for the molar fundamental equation of the single-component simple system in the entropy 
and in the energy representations. 

Molar forms of the fundamental equations have, of course, been used already in the 
preceding chapters. 

14.3 The Molar Gibbs and Elder Equations 
Both the Gibbs and the Euler equations also have molar forms. In the energy 

representation the molar Gibbs equation for the single-component simple system becomes 

du = T d z -  P d v ,  (14.3)1 

and the Euler equation takes the form 

u = Ts  - P v  + # .  (14.3)2 

In the entropy representation we have 

and 

1 P 
dz = -~du + -~dv (14.3)3 

1 P 
s = ~ u  + ~-v (14.3)4 

for both equations. 



14. THE IDEAL MIXTURE 91 

14.4 Partial Molar Quantifies 
In a multicomponent simple system we require a set of thermodynamic quantities 

which represent the contributions of the ith component to each extensive variable of the 
systen~ These quantities are thepartial molar quantities. Just like the molar ones, the partial 
molar quantities are intensive parameters They are defined as follows. 

Let X be an extensive property of the ith component, Then 

O X  ! = -Xi (14.4)1 
O N i  I T , P  . . . .  Nj( #,O. . . 

where the overbar indicates the partial molar value of the p r o p e ~  X for the ith 
con~onent. As an example, in a binary solution, V1 wo~d be the partial molar volume of 
the solvent, and V2 would be the partial molar volume of the solute. We note that the 
partial molar values of those extensive properties that are not measurable ~ect ly  (U, S) 
must, of course, be calculated with respect to the same reference state as the extensive 
property itself. 

Since X is extensive, hence additive, we have 

X - -  E i N ( - X i  . (14.4)2 

For a pure substance 

Xi -- xi, (14.4)3 

i.e., the partial molar quantities of a pure substance are identical with the molar quantities. 

14.5 Mole Fractions 
The quantity 

ni = N i / N  (14.5)i 

where N = EiNi, is called the mo/efraction o f  component i. By defimtion, 

~ i ~ i  = 1, (14.5)2 

i.e., the ~ m  of the mole fractions is unity. 

14.6 Partial Molar Quantifies and the Chemical Potential 
Rewriting Eq.(8.16)4 for a single component we see that at constant te~era ture  

and pressure the chemical potential of a single component simple system is 
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OG [ (14.6)1 
]'Z = - ~  T, p 

It is thus equal to the molar free enthalpy, g, since, be Eq.(8.16)6, 

OG i 
I = C / N  = g (1.4.6)2 

ON I T,P  

for a single-component simple system 
In a multicomponent simple system (i.e., a mixture) the partial derivatives with 

respect to the mole number, N, are replaced by the partial molar quantities. The chemical 
potential of the ith component thus becomes 

OG 
# i - -  ~ i  

T, P, ;~; 
(14.6)3 

where, for convenience, we have written N for . . .  Ny( # Ni) . . . .  We now have 

OG 

ON~ 
T ,  P . . . .  N . ~ : . )  . . .  

= Gi -- t.zi. (14.6)4 

i.e., the chemical potential of the ith component of a multicomponent simple system is the 
partial molar free enthalpy of that component. 

14.7 Dependence of the Chemical Potential on Composition 
In accordance with Eq.(11.3)2 at constant temperature and pressure the chemical 

potential of the/th component of an ideal mixture depends only on the mole fractions, ~i. 
This dependence is given by the notably simple relation 

#i = #i(T,  P,  ~i) = #*(T, P)  + R T  ht ~i (14.7) 

* T  = where #~ ( , P )  is the value of #i when ~i 1. It is thus the chemical potential of the ith 
pure substance at the temperature and pressure of the mixture. Behavior in accordance with 
Eq.(14.7) constitutes a sufficient condition for the ideal behavior of a multicomponent 
simple system or mixture. 

14.8 Change in the Chemical Potential upon Mixing 
By Eqs.(14.6)l and (14.6h, the change in the chemical potential of the ith 

component upon mixing at constant temperature and pressure is 
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A I.z i -- O A G  

ON~ T ,  P . . . .  N j  (#]V~) .... 

(14.8) 

For an ideal gas mixture Eqs. (14.6)4 and (14.8) apply without reservation. Provided the 
molecular structure of the components is closely similar they also apply to condensed 
systems (liquids and solids). A mixture of isotopes constitutes a case in point. 

14.9 Changes in Volume upon Mixing 
The mixing of ideal components into an ideal mixture does not produce any changes 

in either volume, enthalpy, or internal energy. To show this, we proceed as follows. 
Partial different'ration ofEq.(14.7) with respect to P yields 

Ol.z~ [ _ _ O#~(T, P)[ . (14.9)1 
OP T .... n,... OP T 

The fight-hand-side is independent of con~osition and thus so is the left. But, by the third 
of the Maxwell relations, Eqs.(10.6)4, 

O/.z~ t __ OV 
O P T  .... ~'%(,~)... ONi T ,  P . . . .  ~ :  ~,~) . . .  

= Vi = vi. (14.9)2 

The last relation follows from Eq.(14.4)3. An ideal mixture thus exhibits no volume change 
upon mixing and thus 

AVm~ = O. (14.9~ 

because V = ~"~ Ni Vi = ~ Niv~. 

14.10 Changes in Enthalpy upon Mixing 
Dividing Eq.(14.7) by T and then differentiating with respect to T yields 

i O#~(T, P)/T] 
= Y : f  (14.10)1 

Since the fight-hand-side of this equation is independent of co~osit ion,  so is the left. By 
the second of the Maxwell relations, Eqs.(10.6)4, 
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O T  

O S  

P . . . . .  \ ~ ( , ~ ) . . .  T ,  P . . . . .  'V~(,~) . . .  0N~ 
- -  S i .  (14.10)2 

But, by Eq.(14.6)4, 

#i  = Gi  = H i  - T S i  . (14.10)3 

where Hi and Si are the partial molar enthalpy, and entropy, respectively. Combining these 
two equations, and rearranging, gives 

O # i / T  

O T  P . . . .  X ~ ( ~ i ) . . .  

H i  

T ~ - 

hi (14.10)4 
T2- 

Again, the last relation follows since H = ~-~i N i H i  = ~"~i N~h i .  Hence, the total enthalpy 
of the mixture is equal to the sum of the enthalpies of the components before mixing and 
thus 

AHm~ = 0. (14.10)5 

i.e., the heat of mixing is zero. 

14.11 Changes in Internal Energy upon Mixing 
Because A Um, x - -  A H , ~ x  - P A  V ~ x  it follows immediately that 

AUmix -- 0, (14.11) 

i.e., that the internal energy of mixing is also zero. 

14.12 The Free Enthalpy, Free Energy, and Entropy of Mixing of an Ideal Mixture 
Similar relations do not hold for the free enthalpy of mixing, A G ~ ,  the free energy 

of mixing, AFmix, and the entropy of mixing, AS~ax. For mixing to occur, the change in the 
free enthalpy of the mixture, i.e., the difference between the free enthalpy before and after 
mixing, must be negative. Since mixing is an irreversible process (you cannot unscramble 
eggs, as Bertrand Russell put it), the change in entropy, i.e., the entropy of ~ g ,  ASmi,,, 
is necessarily positive. Hence, the free enthalpy ofmixSng becomes 

A G , m x  = A H m i ~  - T A S ,  mx = - T A S ~ i ~  (14.12)1 
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since AHmix = 0 by Eq.(14.10)5. 
In an analogous way the free energy of mLxmg, AFm~, in an ideal mixpare is given 

by 

A F,~,, = A Urn,, - T A S~ , ,  = - T A Smix. (14.12)2 

Because of the absence of heat effects upon mixing, in an ideal ~ u r e  A G ~ ,  AFmix, ~ d  
A Smix, are called the athermal free enthalpy, the athermal free energy, and the athermal 
entropy of mixing. 

14.13 General  C o m m e n t s  on Changes  in the T h e r m o d y n a m i c  Potent ials  upon  Mixing 
To be valid, the relations A Vn~ = 0, AHm= = 0, and ~Wmix = 0require that all 

components be at the same temperature. With this proviso they apply equa~ to the multi- 
component ideal gas (Chapter 15), and to the ideal solution (Chapter 16). 

Explicit expressions for A Gmix and ASm~ " ~  be given for the m ultico~onent 
ideal gas in w 15.13. For the ideal solution the expression for ASmix ~ be fo~d  in w 16.7, 
and that for the free enthalpy of dilution, A G I ,  in w 

14.14 T h e  G i b b s - D u h e m  Equat ion  of  a M i x t u r e -  The  Binary  M i x t ~ e  
By Eq.(8.22)5, at constant temperature and pressure, the G i b b s - ~ e m  equation of 

a multicomponent simple system or mixture becomes 

Z =  N,~ dp,= = O . (T, P = const) (14.1.4)1 

Clearly, the chemical potentials are not independent of each other and one can always be 
expressed in terms of the others. 

The simplestmand most frequently encountered--multicomponent simple s3,st~ is 
the two-component simple system, or binary system or mixture. Let 1 and 2 denote the two 
components of a binary mixture. Its Ga 'bbs-~em equation at constant tenveratt~e and 
pressure becomes 

N1 d/.q + Nzd#2 = 0 (T, P = const) (14.14)2 

and can be brought into a form that relates the two chemical potentials to each other. 
The bina~ ~stem is characterized by a single mole fraction since nl + n2--  1. 

Letting Z stand for either I or 2, the infinhesimal v~ation of#z  in terms of T, P,  and ~I 
becomes 

0#z ~ 0#1 dnl d#z = - ~ d T  + d P  + ~nl " (14.14)3 

Equating the second-order mixed partial derivat~es of 
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dG = - S d T  + V d P  + #~dN~ + t.z2dN2 (14.14)4 

with respect to T and N1, and to P and Nl,  respectively, we recognize that 

and 

O#z OS 
m 

OT ONz 

B 

Sz (14.14)5 

O#z OV 
-- -- V z .  (14.1.4)6 

OP ONz 

Hence, Eq.( 14.14)3 becomes 

- 0#z 
d#z  = - S z d T  + V z d P  + ~ d ~  

on l  
(14.14)7 

Inserting d#land d#2 from d#z into Eq.(14.14)2, canceling terms, and dividing by 
N = N1 + N2 yields 

_ 0#l 

T, P 

0#2 +(l-~,)~ 
T , P  

= 0 (1.4.14)8 

or, using ~ = 1 - ~2, 

_ OI.Z~ 

T , P  

_ 0 # 2 [  ( i 4 . i 4 ) 9  
--" ~2  -~n2 T, P 

as two forms of  the Gibbs-Duhem equation for a binary system that relate the two chemical 
potentials, #l and #2, to one another at constant temperature and pressure. 
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15. T H E  M U L T I C O M P O N E N T  I D E A L  G A S  

A multicomponent gas is a mixture of gases. Tlfis chapter discusses the properties of a 
simple multicomponent gas whose extensive variables are U, S, V, and N1, ... N/ ..... The 
relations derived in Chapter 12 for a single-component ideal gas with the extensive variables 
U, S, V, and N, remain substantially the same for a multicon~onent ideal gas. However, 
the internal energy and the entropy of the multicon~onent gas are the sums of the internal 
energies and the entropies of the component gases, and the total number of moles is the sum 
of the number of moles of the components. We have U =  Ei Ui, S = EiSi, and N = EiNi. 
Thus, the expressions for the multicomponent ideal gas are obtained simply by summing 
over the expressions for all components. These, in turn, are obtained by considering the 
expressions for the single-component gas to be those for the ith co~onent ,  and labeling 
them accordingly. 

15.0 Chapter Contents 

15.1 The Fundamental Equation of the Multicomponent Ideal Gas in the 
Entropy Representation 

15.2 The Molar Internal Energy and Molar Entropy of a Multicomponent 
Ideal Gas 

15.3 The Equations of State of the Multicon~onent Ideal Gas 
15.4 The Primary Set of Partial Derivatives for a Mtdtico~onent Ideal Gas 
15.5 The Fundamental Equations of the Multicomponent Ideal Gas 

in Parametric Form in Termsof cv (T) 
15.6 The Fundamental Equations of the Multico~onent Ideal Gas 

in Parametric Form in Terms of cp (T) 
15.7 The Extended Gibbs Theorems 
15.8 Dalton's Law 
15.9 Amagat's Law 
15.10 The Fundamental Equation of the Multicomponent Ideal Gas in the 

Free Energy Representation 
15.11 The Fundamental Equation of the Multicomponent Ideal Gas in the 

Free Enthalpy Representation 
15.12 The Gibbs-Dt~em Equations of the Multicomponent Ideal Gas 
15.13 The Entropy and Free Enthalpy of Mixing of a Multico~onent Ideal Gas 

15.1 The Fundamental Equation of the Multicomponent Ideal Gas in the Entropy 
Representation 

We obtain the molar ~damenta l  equation of the ith component of the 
mtdticomponent ideal gas in the entropy representation by rewriting the equation of the 
general ideal gas, Eq.(12.1)l, for the/th component twalticomponent ideal gas. Thus, we 
write 

si = S o i +  f (u i )  + R In  v / v o  . (15.1) 

the molar fundamental equation of the rth component multicomponent ideal gas 
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15.2 The Molar Internal Energy and Molar Entropy of a Multicomponent Ideal Gas 
It follows from U = EiUi, S = EiSi, and N = EiNi that the molar internal energy 

and molar entropy of a multicomponent ideal gas become 

and 

U Ni Ui _ Ei_~iui  (15.2h 
u -  N - E i N  Ni 

S _  N _ E i _ N  Ni Si _ E i ~ i s i  (15.2)2 

where ni is the mole fraction, ui = Ui/Ni is the molar internal energy, and si = S i /Ni  is 
the molar entropy of the ith component. The last two equations allow us to obtain the 
fundamental equation of the multicomponent ideal gas in parametric forn~ 

15.3 The Equations of State of the Multicomponent Ideal Gas 
The equations of state of the multicomponent ideal gas are obtained from the 

fundamental equation in the usual way by taking the appropriate derivatives. For the first 
equation this simply confirms that the internal energy of each component, ui, is still a 
function of T only, and so, therefore, is the total internal energy, U. For the second 
equation we recover Eq.(12.2)4, i.e., P V  = R T ,  where now N is the total number of 
moles of all components. 

The third equation of state of the single-component ideal gas, Eq.(12.2)8, is valid for 
each component of the multicomponent gas. We thus have i = 1, 2 , . . .  equations of the 
form 

~i  u i  
- ~  = - so~ - f O , ~ )  + - ~  - R / , ,  V / ~ o  + R . 
. 1  . 1  

(15.3) 

Equations (15.3) may be made explicit through introduction of the molar heat capacities at 
constant volume or at constant pressure by using either Eqs.(12. 7)2 and (12.7)3, or 
Eqs.(12.8)l and (12.8)2, writing them for f(ui) andui. 

15.4 The Primary Set of Partial Derivatives for a Multicomponent Ideal Gas 
Since the ideal gas equation of state, P V  - NRT ,  applies to the multicon~onent as 

well as to the single-component ideal gas, Eqs.(12.5)l for the isobaric expansivity and 
(12.5)2 for the isothermal compressibility are equally valid for a multicomponent ideal gas. 
Equation (12.5)3 for the molar heat capacity difference is then simply rewritten as 

cei(T) - cvi(T) = R (15.4) 

for each of the components. 
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15.5 The Parametric Equations of the Multicomponent Ideal Gas in Terms of cv (T) 
As we have done in the case of the general ideal gas, we express the fundamental 

equation of the mulficon~onent ideal gas in parametric form making use of the heat 
capacities at constant volume, and at constant pressure, respect~ely, 

In terms of the molar heat capacity at constant volume we obtain the parametric 
equations of the ith components from Eqs.(12.7)2 and (12.7)4 as 

ui = Uoi + cv i (T ' )  dT" (15.5)i 

and 

f T f  cVi(T')  dT" + R In V/Vo - R In-hi si =Soi + T" (15.5)2 

The reference molar internal energy, uoi, and molar entropy, Soi, differ from gas to gas. The 
other reference quantities, Vo, No, To, and Vo = Vo/No, are the same for all con~onents. 

Summing overall components according to Eqs.(15.5 h and (15.2)2 yields 

u = E i ~ i U o i  q- E i ~ i  cv i (T ' )  dT" (15.5)3 

and 

f V cvi(T') 
l;, T" 

(15.5)4 

as the parametric equations of the fundamental equation of the multicomponent ideal gas in 
terms of the molar heat capacities at constant volume. 

15.6 The Parametric Equations of the Multicomponent Ideal Gas in Terms ofcp(T) 
In terms of the molar heat capacity at constant p r e s ~ e  an analogous derivation 

yields 

ui = Uoi + ce i (T ' )  d T " -  R(T - To) (15.6)1 

and 

f~~ cpi(T') si =Soi + T" dT" - R l n  P / P o  - R In ~i . (15.6h 

Summing over all components then yields 
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and 

u = S i ~ i u o i  + Z i - f f i  cpi(T')  dT" - N R ( T -  To). 

fT~ cPi(T') dT" - R l n  P /Po  - R Z ~ i  In h i .  

(15.6)3 

(15.6)4 

In Eqs.(15.6)2 and (15.6)4 the reference pressure, Po = RTovo, is the same for all 
components. 

15.7 The Extended Gibbs Theorems 
The contents of Eqs.(15.5)3 and (15.6)3, and of Eq.(15.5)4 can be expressed in two 

statements known as the Gibbs theorems. These are: 

and 

"The internal energy o f  a multicomponent ideal gas is equal to the sum o f  
the energies that each gas wouM have at the same temperature." 

"The entropy o f  a multicomponent ideal gas is equal to the sum o f  the 
entropies that each gas wouM have i f  it alone occupied the same volume at 
the same temperature." 

These statements may be extended by adding another embodying the content ofEq.(15.6)4: 

"The entropy o f  a multicomponent ideal gas is equal to the sum o f  the 
entropies that each gas wouM have i f  it alone were at the same pressure 
attd the same temperature.'" 

15.8 Dalton's Law 
Dalton's law expresses a fundamental property of a mixture of ideal gases. It says: 

"The pressure o f  a mixture o f  gases is equal to the sum o f  the pressures 
that each o f  its components wtmM exert i f  it alone were to occupy the 
volume at the same temperature ". 

In symbols Dalton's law becomes 

P = y ' ~  (~5.8)~ 

where 

P~ = Pn~ (15.8h 

is the partial pressure of the ith component. The partial pressure is defined as the pressure 
the ith component would exert if it alone were present in the volume of the mixture at the 
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same temperature. The sum of all partial pressure is equal to the total pressure, P.  A 
mixture of gases obeying Dalton's Law is an ideal mixture o f  gases even if its eon~onents 
are not. 

15.9 Amagat's Law 
Amagat's law mirrors, as it were, Dalton's. It has reference to volumes in~ead of 

pressures, and claims that 

"The volume of  a mixture o f  gases is the sum of  the volumes o f  its 
components, each at the pressure and temperature o f  the mixture ". 

In terms of the partial molar volumes Amagat's Law becomes simply 

V = E i N i V i  (15.9) 

[cf Eq.(14.4)2]. 

15.10 The Fundamental Equations of the Multicomponent Ideal Gas in the 
Free Energy Representation 
In w167 12.9 and 12.10 we introduced the fundamental equations of the single- 

component ideal gas in the free energy and the free enthalpy representation. We now do the 
same for the/th components of the mulficomponent ideal gas. Combining Eqs.(15.5 h and 
(15.5)2. according to fi = u~ - Tsi furnishes 

f Tf T ' - T  fi = f~ + T cvi(T') d T ' -  RT  lnv/vo (15.1o)~ 

with foi = Uoi - Tsoi as the ith component of the free energy of the multicomponent ideal 
gas. 

Summing over all convonents we obtain 

fT~ T ' - T  f = E ~ n i f ~  + E i n ~  T" cvi(T') dT" - N R T  lnv/vo. (lYlO)2 

as the molar free energy of the multiconvonent ideal gas. 

15.11 The Fundamental Equations of the Multicomponent Ideal Gas in the 
Free Enthalpy Representation 
Analogously, combination ofEqs.(15.6 h and (15.6)2 using 9 -- u~ - Ts~ + ~ and 

P~v = RT yields 
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f T f  T ' - T  gi = 9oi + T" cpi(T')  dT" + R T  In Pi/Po (15.11h 

with goi = Uoi - Tsoi + P/vo as the /th component of the free enthalpy of the 
multicomponent ideal gas. 

Summing over all components yields 

f~.T " T 
g =  E i ~ i g o i  + E i ~ i  ~ ,  cpi(T')  dT" + N R T  ht P /Po  (15.11)~ 

as the molar free enthalpy of the ideal multicomponent gas. 

15.12 The Gibbs-Duhem Equations of a Multicomponent Ideal Gas 
To obtain the integrated form of the C~bbs-D~em equation for the ith component 

of a multicomponent ideal gas we rewrite Eq.(12.11 )1 as 

/.zi = #oi(T) + RT ht P//Po (15.12)1 

where P/ is the partial pressure (cf w 15.8}2. of the ith component. Using P / =  P~i, #i 
becomes 

i.zi = I.Zoi(T) + R T  hi P /Po  + R T  In -~i . (15.12)2 

Thus, at constant temperature and pressure, the chemical potential, #i, of  component i 
depends only on its own mole fraction, ~i, and not on the mole fraction of any other 
component. We remark that letting 

#oi(T) + R T  In P/Po = Pi(* T, P)  , (15.12)3 

Eq.(15.12)t becomes Eq.(14.7). 
Equation (15.12)1 shows that the chemical potential of a single component in a 

multicomponent ideal gas is equal to the chemical potential that that component would have 
if it were at the same temperature and the reduced pressure (i.e., the partialpressure), Pi. 

For the standard chemical potential of the ith component we have either 

fT~ T ' - T  #i = Uoi - Tsoi + RTo + T" cpi(T')  dT" (15.12)4 
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from Eq.(12.11)3, or 

fT 
T T'- T 

~o{(T) = Uo~ - Tso~ + R T  - ~ m T / T o )  + 
T 

cw(T') dT" (15.12)5 

from Eq.(12.11 )4. 
The standard chemical potential of component i clearly does not depend on: the 

composition and, in fact, remains the same when ~{--, 1. Compliance with the sets of 
equations introduced above constitutes the sufficient cotn~ition for the ideal behavior of a 
multicomp onent gas. 

15.13 The Entropy and Free Enthalpy of Mixing of a M~ticomponent Ideal Gas 
Chapter 14 introduced the entropy of ~ g  of an ideal mixture but did not ~ecify 

it explicitly. We are now ready to do this for the multicomponent ideal gas. 
Equations (15.5)4 and (15.6)4 reduce to Eqs.(12. 7)4 and (12.8)4 as ni --+ 1. The 

terms - g/x-~i~ i In ~i in these equations thus represent the difference b~ween the entropies 
of a mixture of ideal gases and of a simple collection of individual ideal gases before they 
form a mixture. This difference therefore constitutes the entropy of mixing. Multiplying by 
N, we obtain 

(I5.I3)~ 

as the entropy of mixing of a multicomponent ideal gas. Desphe the minus sign in 
Eq.(15.12)1, the entropy of mixing, AS~ax, is positive because any one of the ~i's is less 
than unity. 

The athermal free enthalpy of mixing, 

A G~x = R T ~  N~ 1. ~ .  

follows directly from Eq.(14.12)1. 
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16. THE IDEAL SOLUTION 

The concepts developed in the preceding two chapters can be extended from gaseous to 
condensed systems, i.e., to liquid and solid mixtures. Solutions are homogeneous mixtures 
formed by dissolving one or more substances, whether solid, liquid, or gaseous, in another 
substance. In a solution the mole fraction of one component, called the solvent, is generally 
much larger then the individual mole fractions of the other components, called the solutes. 
Although the solvent is usually a liquid, it equally can be a gas or a solid. In this case we 
speak of gaseous, or solid solutions. This chapter deals with liquid solutions only. More 
particularly, it considers #~nitely dilute solutions, i.e., solutions in which the mole fraction 
of the solvent approaches unity. In contrast to the solvent, a pure phase, the solution 
constitutes a mixed phase. 

16.0 Chapter Contents 

16.1 
16.2 
16.3 
16.4 
16.5 
16.6 
16.7 
16.8 
16.9 

The Ideal Solution 
The Fundamental Equation of the Ideal Solution 
The Equations of State of the Ideal Solution 
The Chemical Potential of the Ideal Solution 
The Fundamental Equation of the Ideal Solution in Parametric Form 
The Gibbs-Duhem Equation of the Ideal Solution 
The Entropy of Mixing of the Ideal Solution 
The Free Enthalpy of Dilution 
Solution Equifibrium and Free Enthalpy of Dilution 

16.10 Solution Equilibrium and Vapor Pressure 
16.11 Henry's Law 
16.12 Raoult's Law 
16.13 Colligative Properties 
16.14 The Osmotic Pressure 
16.15 Osmotic Pressure and Solvent Concentration 
16.16 Osmotic Pressure and Solute Concentration - van't Hoffs Relation 
16.17 The Entropy and Free Enthalpy of Mixing of Macromolecular Solutions 

16.1 The Ideal Solution 
A solution becomes an ideal solution in the limit of infinite dilution. Designating the 

mole fraction of the solvent by ~1, the condition of infinite dilution can be expressed as 
nl --~ 1 and is the analog of the conditions T --~ oo, P --~ 0 for an ideal gas (cf w 12). 
Being an ideal mixture, an ideal solution exhibits no volume change and no heat effects 
upon dilution in accordance with w167 14.9 and 14.10. 

16.2 The Fundamental Equation of the Ideal Solution 
In the energy representation the fundamental equation of the ideal solution takes the 

form 

U = (S, V, N1 . . . .  N . . . .  ) (16.2)1 
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and in the entropy representation it becomes 

S =  (U, V, N~, ...N~ . . . .  ) (16.2)2 

The subscript '1' on the mole numbers, N, traditionally refers to the solvent while the 
solutes take subscripts m > 1. The most frequently encountered ideal solution contains a 
single solute. The fundamental equations of the binary ideal solution therefore are 

U -- (S, V, N1, N2) (16.2)3 

and 

S - -  (U, V, N1, N2). (16.2)4 

in the energy, and the entropy representation, respectively. 
In the absence of an explicit form for the fi~damental equation of the ideal solution, 

we make use of the assumptions that the extensive variables are independent of each other 
(cf w 11.2). The molar form of the/th component of the fundamental equation of the ideal 
solution in the entropy representation then becomes 

si = soi+ f (u i )  + R lnv / v i  + Rln~i (16.2)5 

in analogy to the equation for the multicomponent ideal gas, Eq.(15.1). 

16.3 The Equations of State of the Ideal Solution 
The equationz of state of the ideal solution are to all intents and purposes identicM 

with those of the multicon~onent ideal gas. The first again merely confirms that the internal 
energy of the ideal solution is a function of the temperature only. The second equation of 
state is still P v  = RT.Equation (15.3) models the third equation of state of the ith 
component of the ideal solution. 

16.4 The Chemical Potentials of the Ideal Solution 
The chemical potential of the/ th  component of the ideal solution is the chemical 

potential of the ith component of the ideal mixture given by E q ( 1 4 7 )  Thus, it is 

u~ = #?(T, P)  + RT h~ ~ ,  (16.4) 

* T  where #i ( , P )  is the chemical potential of the ith pure substance at the ten~eramre and 
pressure of the solution. Equation (16.4) may be considered to be the defining equation of 
the ideal solution and constitutes a sufficient cot~lition for its ideal behavior. 
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16.5 The Fundamental Equation of the Ideal Solution in Parametric Form 
Because the internal energy of the ideal solution is a function of the temperature 

only, and its volume is deemed to be independent of the pressure, we may write 

1 u; = uo; + cv;(T') dT" (16.5)-, 

and 

~ ~  cvi(T') dT" - R In -if; s; = %; + T" (16.5)2 

for the parametric forms of the fundamental equation of the ith component of the ideal 
solution. 

Summing over all components yields 

and 

u = E ~;Uo; + E i ~ i  cv;(T') dT" (16.5)3 

~ c~,';(T ") 
(16.5)4 

for the parametric molar forms of the fundamental equation if the ideal solution in terms of 
the heat capacities at constant volume, cv;(T). 

16.6 The Gibbs-Duhem Equation of the Ideal Solution 
The integrated form of the Gibbs-Duhem equation for the ith component of an ideal 

solution becomes simply 

s;dT + E =  Ni,~ d#im = O. (16.6) 

For the special case of the binary solution see w 14.14. 

16.7 The Entropy of Mixing of the Ideal Solution 
The ideal solution is an athermal solution whose entropy of mixing is given by 

AS=i= = - R ~ ;  N~ flz ~ i  (16.7)1 

in analogy to that of a multicomponent ideal gas. For a binary solution 
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A S ~  = - R (Nx h~ ~ + N2 h~ ~2) (16.7)2 

(cf. w 14.12). 

16.8 The Free Enthalpy of Dilution 
The partial molar entropy o f  the solvent in an ideal solution is obtained by 

differentiating Eq.(15.12)1 with respect to N1. This yields 

- OAS~m 
AS1 = = - R In n l ,  (16.8)1 

ON~ 

and the partial molar free enthalpy then follows from 

as  

A G  1 = - -  R T A S  1 ( 1 6 . 8 ) 2  

A-~I = OAGnr = R T  In ~1 �9 (16.8)3 
ON1 

AG1, called theffee enthalpy o f  dilution, is the change in the free enthalpy of the solution 
when an additional mole of solvent is added to it. Since 0 < ~1 < 1, the free enthalpy of 
dilution is negative as required. In all three equations we have omitted the subsc@t ' ~ '  as 
unnecessary because partial molar quantities exist only in ~ e s .  

16.9 Solution Equilibrium and Free Enthalpy of Dilution 
As solution takes place, the change in the chemical potential of the solvent, A#I, is 

given by 

A # I  = ~ 1  - -  /.t~ (16,9)1 

where #1 is the chemical potential of the solvent in the solution, and #o is the chemical 1 
potential of the pure solvent. We then have [cf. Eq.(14.8)], 

A # I  - -  ~ T,P,-..Ni(~I)--- 

h 

= AG1 (16.9)2 

At equilibrium the chemical potential of the solvent in the solution and the chemical 
potential of the pure solvent must be equal. Thus, #1 -- #~, and therefore the change in the 
free enthalpy ofdilmion v~shes ,  i.e., 
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AG1 = 0. (16.9)3 

Since, therefore, at equiForium the change in the free enthalpy of the solution is zero when 
an additional mole of solvent is added to it, Eq.(16.9)3 expresses the condition of  solution 
equilibrium, i.e., the condition that the free enthalpy of the system be a minimum with 
respect to changes in the composition of the solution. 

16.10 Solution Equilibrium and Vapor Pressure 
The condition for two phases to be in equilibrium with respect to their composition 

is that their chemical potentials be the same (cf. w167 19.16). At equifibrium the chemical 
potential of the ith component of the solution, #~ol, and that of the vapor above it, # ~ ,  
must therefore be equal. Through the condition ofphase equilibrium, 

/~sol ray (16.10)1 
i = ~ i  , 

the equilibrium of an ideal solution can therefore be discussed thermodynamically in terms 
of the partial pressures in the saturated vapor as long as the vapor can be regarded as a 
multicomponent ideal gas. The chemical potential of the ith component of the vapor is then, 
in accordance with Eq.(15.12)1, given by 

vap 
#i = #oi(T) + RT In Pi/Po (16.10)2 

where #o/(T) is given by Eq.(15.12)5. 

16.11 Henry's Law 
Substituting Eqs.(16.4)2 and (16.10)2 into the equilibrium condition, Eq.(16.10)l, 

we find 

o r  

where 

#*(T, P)  + R T  In ~i = #oi(T) + R T  In Pi/Po . 

#~(T, P ) -  #oi(T) = R_T ht Pi/~iPo = R T  In I~/Po 

(16.11)-1 

(16.11 h 

P/ = K/~-i (16.11)3 

P/ i s  the partial pressure of the ith component in the vapor. Equation (16.11)3 is known as 
Henry's Law and expresses the proportionality of the vapor pressure of the ith component 
with its mole fraction in the ideal solution. Ki is referred to as Henry's constant. It is con- 
sidered to be a constant because it is independent of composition although it depends on 
temperature and pressure, and should properly be denoted by Ki (T, P). 



16. THE IDEAL SOLUTION 109 

16.12 Raoult's Law 
In the limit that ~i ~ 1, Ki approaches p o, the vapor p r e s ~ e  of the pure 

component i. The relation 

Pi = pon---/ (16.12)1 

is Raoult's Law. It defines ideal behavior in a solution in terms of the partial vapor pressure 
instead of the chemical potential [of. Eq.(16.4)]. 

We note that by Raoult's Law the free enthalpy of dilution can be stated in terms of 
the vapor pressures as 

A G ~  = O A G n f ,  x = RT In p ~ / p o  . (16.12h 
ON~ 

Raoult's Law ultimately depends on the validity of Eq.(16.7)1 which expresses the 
entropy of mixing in terms of the mole fractions. ~ s  assumes that the molecules of all 
components are of comparable (theoretically equal) ~ e .  If this is not the case, Raoult's Law 
fails (cf. w 16.17). 

16.13 Colligative Properties 
We may rewrite gaoult's Law, Eq.(16.12)l, for the solvent in a binary solution as 

P1/P~' = n l = 1 - n2. Rearranging gives 

P•-P1 _ = n2. (16.13) 
P? 

Thus, the relative lowering of the vapor pressure of the p-are solvent that occurs upon the 
introduction of the solute, equals the mole fraction of the solute. 

Phenomena related to the relative lowering of the vapor pressure are the depression 
of  the freezing point, the elevation o f  the boiling point, and the osmotic pressure. These 
phenomena are collectively referred to as colligative properties. Because they aUow the 
experimental determination of the mole fraction of the solute, they form the basis of 
experimental methods for the determination of molecular masses (molecular weights). 

16.14 The Osmotic Press~e 
We single out the osmotic pressure from among the colligative properties for fimlmr 

discussion. Consider an ideal binary solution separated from the pure solvent by a 
membrane which is ~ e r m e a b l e  to the solvent and the solute a l e .  Both the pure solvent 
and the solution are in contact with a heat reservoir and are, therefore, at constant 
temperature T. They are not, however, in conta~ with a work reservom 

In accordance with the dictum that matter flows from regions of high to regions of 
low chemical potential (cs w 4.10), the chemical potentifl of the pure solvent at the pressure 

* p  P,  #*(P), is clearly higher than that of the solvent in the solution, # 1 ( ) ,  at the same 
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pressure P. If now the membrane is made permeable with respect to the solvent, this will 
flow (diffuse) into the solution until partial equilibrium (Le., thermal and diffusional 
equilibrium) is attained. At that point, however, mechanical equill'brium has not been 
reached. The pressures on both side of the membrane are different because the influx of 
solvent into the solution has created an extra hydrostatic pressure on the latter. The 
difference between the two pressures, the pressure, ps, on the solution, and the pressure, 
P,  on the solvent, 

H - P ~ - P ,  (16.14) 

is called the osmotic pressure. It is the excess pressure that would have to be exerted on the 
solution to prevent any further diffusion of solute into it, thus assuring that the solution is in 
mechanical as well as thermal and diffusional equilibriunl 

16.15 Osmotic Pressure and Solvent Concentration 
We wish to relate the osmotic pressure to the solvent concentration, i.e., to the mole 

fraction of the solvent in the solution. The Maxwell relation listed as the third of 
Eqs.(10.6)4 may be restated for the solvent as 

0#1 I _ OV 
OP r, X ON1 T,P  

(16.15)1 

The fight-hand-fide is equal to V1, the partial molar vohtme of the solvent in the solution. 
Inserting Eq.(16.4) into the left-hand-side yields 

ORT In ~1 Otz*(T, P )  + 

OP T,N OP T , N  
= V1 (16.15)2 

which we integrate between the pressures, ps  and P. This yields 

? ? R T  In ~1 = - ~ #* (T, P ) d P '  + V I d P  
s 

(16.15)3 

Neglecting the compressibility of the solvent over the pressure range of interest, the first 
integral vanishes and the molar vohtme can be taken out from under the second integral 
sign. We then obtain 

R T  In ~1 "" V I ( P -  P~), (16.15)4 

and the relation between the osmotic pressure and the mole fraction of the solvent becomes 
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RT 
H ~ - I n n 1 .  (16.15)5 

V1 

The osmotic pressure in an ideal solution is thus independent of  the natt~e of the solute. 

16.16 Osmotic Pressure and Solute Concentration- van't Hoff's Relation 
Let us take another look at Eq.(16.15)5. As ~1 --~ 1, we may write 

In n l  = ln(1 - n2 ) ~-- -- n2, (16.16)1 

so that Eq.(16.15)5 becomes 

RT ~2 
I2" -- . (16.16)2 

V1 

But ~2 = N 2 / N ,  and in a very dilute solution N = N1 + N2 --~ NI, so that V1N = V1, the 
volume of the solvent in the solution. This is indist'mguishable from V ,  the volume of the 
solution, when nl  ~ 1. We therefore arrive at van' t  H o f f s  relat ion,  

N qRT 
/7 -- - RTc2 (16.16)3 

V 

since N 2 / V  = c2, the volume concentration of the solute molecules. Thus  in the limit of 
very dilute solution the osmotic pressure is independent of the nature of the solvent. 

The relation bears a striking formal resemblance to the equation of  state of  an ideal 
gas, Eq.(12.2)4. It must be noted, however, that ideal behavior in the sense ofvan't Hoffis a 
more stringent condition than ideal behavior in the sense of Raoult's Law. For van't Hoffs 
relation to be valid, the solution needs to be more dilute than is necessary for ideal behavior 
in general. 

Because M2 -- c2 V/N2,  where M2 is the molecular mass of the solute, van't Hoffs 
relation may be used in the determination of the molecular masses: of small molecules by 
osmometry ,  the measurement of the osmotic pressure. 

16.17 The Entropy and Free Enthalpy of Mixing of Macromolecular  Solutions 
Ideal behavior in the sense of Raoult's Law (w 16.12) requires that both solvent and 

solute molecules be of closely comparable size. This assumption is reasonable when one 
considers gas molecules and remains reasonable for many solvent-solute systems. However, 
even extremely dilute solutions of macromolecu l e s  (long chain molecules) depart strongly 
from ideal behavior in the sense of Raoult's Law when their behavior is examined in terms 
of mole fractions. A better form of the entropy of ~ g  for a solution of  macromolecules 
comes from the Flory-Huggins theory 13 (of. p. 126) that takes into account the disparity 
between the size of a solvent molecule and the size of a long-chain molecule. It considers 
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the chain to consists of x solvent-sized segments. The expression for the entropy of mixing 
then takes the form 

where 

AS,,~x = - R ( N ,  In ~ + No In ~o) . (16.17)1 

NI xN2 
~ - -  . Vl N1 + x N2 and vo N1 + x N2 (16.17)2 

are the volume fractions of the solvent, and the macromolecular solute, respectively. 
Equation (16.17)1 is valid in this form in the absence of any enthalpy change on dilution 
[cf. w 17.24 for the addition of an extra term taking account essentially of changes in the 
free enthalpy of dilution].. 

Thus, when the solvent and solute molecules are of dissimilar size, the mole 
fractions must be replaced by the volume fractions. We note that Eq.(16.17)1 is the more 
general expression and comprises the equation 

AS,rex = - It  (N~ In ~ + N2 In ~_), (16.17)3 

valid for small solute molecules [cf. Eq.(16.7)2], as a special case when x = 1. 
From Eq.(16.17)3the free enthalpy of mixing follows as 

A G~ax = R T (  N t  In ~ + N2 h~ ~2 ) (16.17)4 

for of a solution of macromolecules. 
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17. T H E  I D E A L  R U B B E R  

This chapter discusses rubber as an example of a homogeneous non-crystalline solid that 
provides an example of a single-component thermodynamic system whose fundamental 
equation is characterized by four, not three, extensive variables. The formalism developed 
here thus serves as a model for systems in which surface effects cannot be neglected or 
which are acted on, for instance, by electrical magnetic, or gravitational fields. 

The first three sections contain some needed background information. They are 
followed by fourteen sections dealing with rubbers at constant composition, i.e., with 
unswollen rubbers. The last two of these sections are concerned with the ideal rubber, an 
example of an ideal solid system. The final five sections tackle the thermodynamics of 
swelling and of swollen rubbers. Rubbers generally swell in organic liquids. However, 
swelling phenomena are also of great ~ o r t a n c e  in tissues and other biological mat~als  
were water is the swelling h'quid. 

17.0 Chapter Contents 

17.1 The General Solid 
17.2 The Isotropic Solid 
17.3 Rubbers (Elastomers) 
17.4 The Fundamental Equation of an Elastomer 
17.5 Alternative Thermodynamic Potentials for Elastomers 
17.6 The Fundamental Set of Second-order Partial Derivatives of an Elastomer 
17.7 The Primary Set of Second-order Partial Derivatives of an Elastomer 
17.8 'Hybrid' Primary Sets of Second-order Partial Derivatives of an Elastomer 
17.9 The Maxwell Relations for Elastomers 
17.10 The Chemical Potential of an Elastomer 
17.11 The Gibbs-Duhem Equation for Elastomers 
17.12 The Assumption of Incompress~ility 
17.13 The Ideal Rubber 
17.14 The Equations of State of the Ideal Rubber 
17.15 The Fundamental Equation of the Ideal Rubber 
17.16 The Chemical Potential of the Ideal Rubber 
17.17 The Shear Modulus of the Ideal Rubber 
17.18 The Elastic Restoring Force 
17.19 The Relative Internal Energy Contribution to the Elastic Restoring Force 
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17.21 The Free Entha~y of Dilation of a Swollen Rubber 
17.22 The Swelling Pressure 
17.23 The Change in Free Enthalpy upon Swelling 
17.24 Swelling Equilibrium 

17.1 The General Solid 
In a fluid (a gas or a liquid) no definite relations exist between the various parts of 

the matter of which the fluid consists. Consequently, the mechanical distortion (change h 
shape) of a fluid requires no work and only its compression (change in size, i.e. volume) 
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of interest thermodynamically. In the thermodynamics of fluids, therefore, shape is a neutral 
property (w 1.10). In the thermodynamics of solids, by contrast, we must consider the total 
work required to change both shape and size, i.e. the mechanical work of deformation. In 
the energy representation the Euler equation for a single-component homogeneous general 
solid therefore becomes 

U = T S  + Z , ,  ar~(Voe,~) + # N  (17.1) 

where an and en represent the six independent components of the symmetric second-order 
stress and strain tensors, respectively. The stress tensor components have the dimensions of 
force per trait area and are intensive quantities. The strain tensor components are dimen- 
sionless and are rendered extensive through multiplication by the initial (undeformed) 
volume, Vo. 

17.2 The lsotropic Solid 
A solid whose properties are the same in all three of the principal directions is called 

isotropic. Writing fi for the forces and Li for the extensions in the three principal 
directions, the Gibbs equation of such a solid becomes 1~ 

dU = T d S -  P d V  + Z ~  f~dL~ + t.zdN. i=  1,2,3 (17.2)1 

A further simplification results from the consideration that, if the solid is isotropic, 
all the thermodynamic information on its mechanical behavior can be obtained from 
experiments in simple tension, also called umaxial tension. In this deformation a force, f ,  
(or an extension, L) is applied in only one direction and the resulting extension (or force) is 
measured. Since the forces in the other two directions are zero, Eq.(17.2)-1 becomes simply 

dU = T d S  - P d V  + f dL + # d N  (17.2)2 

and the Euler equation in the energy representation takes the form 

U = T S  - P V  + f L + # N .  (17.2)3 

Because of the presence of the f L term in this equation, a crosslinked rubber furnishes an 
example of a non-simple system [cf. Eq.(8.19)]. 

17.3 Rubbers (Elastomers) 
Rubbers, also called elastomers, form a class of rather unique sofids. They are 

organic materials consisting of long, flexible chains of macromolecules crosslinked 
somewhat loosely to form a three-dimensional network. Thus, a rubber is theoretically one 
giant molecule. Because of the presence of the crosslinks, rubbers are capable of very large 

lo see Sharda and Tschoegl (1974) 
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(up to ,-~ 1000%) reversible deformations and will not dissolve but will swell in a suitaMe 
solvent. Above the so-called glass transition temperature the chains possess sufficient 
mobility to impart to a rubber some of the characteristics of a liquid (e.g., relative 
incompressibility; see w 17.12). 

Any real elastomer is an imperfect network that c o n t ~ s  certain network defers. 
Such defects are loose ends, i.e., chains that are connect to the network at one end only, 
physical entanglements, i.e., chains looping over others, and closed loops resulting from 
linkages of two points on a single chain. There may also be present chains that are not tied 
to the network. Our concern here is with a perfect network that is deemed not to comain 
any network in~erfections. 

17.4 The Fundamental Equation of an Hastomer 
In the energy representation the ~damenta l  equation of an ehstomer is thus ~ e n  

by 

U = U(S ,  V,  L, N )  (17.4) 

where the number of moles, N, is interpreted as the number of moles of network chains 
The number of canonical variables being 4, the number of degrees of freedom becomes 3 
[cf. Eq.(8.7)]. 

In the absence of swelling an elastomer is at constant composi~on. We proceed to 
examine the alternative thermodynamic potentials of an elastomer trader this a~ect. 

17.5 Alternative Thermodynamic Potentials for Hastomers 
With 3 degrees of  freedom, an ehstomer in ~ l e  tension has 2 f + l -  2 = 14 

alternative thermodynamic potentials. At constant composition this number m halved 
(cf w 8.7) and the total number of thermod~la~c potentials of interest therefore becomes 
7 + 1 = 8. The seven alternative potentials to consider are 

F = U[T]  = U -  T S ,  

H = U[P]  = U + P V ,  
D = U[f] = U -  f L ,  
G = U [ T ,  P]  = U - T S  + P V ,  

B = U[T, f]  = U -  T S -  f L ,  
E = U[P, f] = U + P V -  f L ,  
Z = U[T,:P, f]  = U - T S  + P V  - f L , 

(17.5)1.i 
(17.5)1.2 
(17.5)1.3 
(17.5)1,4 
(17.5)~.5 
( 17.5 )1.6 
(17.5)1.7 

and the alternative fundamental equations follow as 

F = F ( T ,  V,  L , N ) ,  
H - - H ( S , P , L , N ) ,  
D = D(S ,  V , f , N ) ,  
G - G(T, P,  L, Y ) ,  
B -- B ( T ,  V,  f ,  N ) ,  
E = E(S ,  P,  f ,  N ) ,  
Z = Z ( T , P , f , N ) .  

(17.5)2.~ 
(17.5)2.2 
(17,5)2.3 
(17.5)2.4 
(17.5)2.5 
(1.7.5)2.6 
(17.5)2.7 
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In addition to Eqs.(17.2)24nd (17.2)3 for the internal energy the seven alternative Gibbs 
equations in the energy representation then become 

d F  = - S d T  - P d V  + f d L  + # d N  , 

d H  = T d S  + V d P  + f d L  + i . tdN , 

d D  = T d S  - P d V  - L d  f + # d N  , 

d G  = - S d T  + V d P  + f d L  + # d N  , 

d B  = - S d T -  P d V -  L d  f + # d N  , 

d E  = T d S  + V d P  - L d  f + I.zdN , 

d Z  = - S d T  + V d P  + L d  f + # d N  , 

(17.5)3.1 
(17.5)3.2 
(17.5)3.3 
(17.5)3.4 
(17.5)3.5 
(17.5)3.6 
(17.5)3.7 

while the seven Euler equations in the same representation take the forms 

F = - P V  + f L  + # N ,  (17.5)4.1 
H = T S  + f L - # N ,  (17.5)4.2 
G = f L  + # N ,  (17.5)4.3 
D = T S -  P V  + # N ,  (17.5)4.4 
B = - P V  + # N ,  (17.5)4.5 
E = T S  + # N ,  (17.5)4.6 
Z = # N .  (17.5)4.7 

The potential functions U, F,  H,  and G differ from those in use in the 
thermodynamics of fluids in the additional f L terms. F,  H,  and G measure the work 
available in a reversa'ble process from an elastomer at constant temperature, at constant 
pressure, and at constant temperature and pressure, respectively. 

D and E measure the work available in a reversible process from an elastomer at 
constant force, and at constant pressure and force, respectively. B and Z measure the work 
available in a reversible process from an elastomer at constant temperature and force, and at 
constant temperature, pressure and force, respectively. B and Z are the free energies 
associated with D and E. Of the four, E and Z may respectively be called elasthalpy and 
f r e e  elasthalpy, but no special terms have come into use for D and B which are seldom 
used. 

17.6 The Fundamental Set of Second-order Partial Derivatives of an Elastomer 
In simple tension the internal energy of an elastomer at constant composition is 

1 (f + 1)(f + 2) = 6 second-order U = U(S,  V, L). It thus has f + 1 = 3 first-order, and 
partial derivatives. 

The first order derivatives are 

OU 

OS t;L 

or] = f, OU = - P ,  and ~ s,v 
= T, 3-V s,L 

and the fundamental set becomes 
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and 

OS 

OT 

OL 

Of 

: C v , L / T ,  
OV 

OT V,L V,L 

OV 
= VaS,L, OP 

OL [ = L~s  v,  OL 
= Lps,v ,  OT: " OP S,V S, V S, V 

S,L 
= V~;S,L (17.6)1 

-- LXs,v  �9 (l 7.6)2 

The first three coefficients are familiar except that they are now taken at constant 
length in addition to constant volume or constant entropy. Thus C.V,L is the heat capacity at 
constant volume and length, and c~s,L and ~S,L are the adiabatic expansivity and adiabatic 
compressibility at constant length. 

The next three coefficients are new. They represent the adiabatic change in length at 
constant volume as a function of the force, the temperature, and the pressure, respectively. 
In particular, ps,v is the adiabatic-isochoric length-forcecoefficient per unit length,/3s,v is 
the adiabatic-isochoric length-temperature coefficient per unit length and, finally, Xs,v is the 
adiabatic-isochoric linear compressibility. The reqt~ement of adiabaticity and that of 
constant volume (which demands the application of a hydrostatic pressure), place severe 
experimental restrictions on the experimental determination of these coefficients. 

17.7 The Primary Set of Second-order Partial Derivatives of an Elastomer 
For an elastomer the appropriate potential from which to derive the primary set of 

second-order partial derivatives is the free elasthalpy, Z, since it is this potential that has all 
the intensive parameters as canonical variables. At constant composition we consider 
Z = Z (T, P,  f )  and the three first-order partial derivatives become 

I l ~ OZ = - S ,  OZ = V ,  = - L .  

OT IP, f OPIT, f Of T,P 

The primary set then follows as: 

and 

OS 

OT p,y 
OV[ = - V~T,I (17.7)1 = Ce, f / T ,  OV = Vap ,  f ,  OP T, S 

OT p , f  

I OLIP, OL I --LXT, f .  (17.7)2 OL = LpT, p, -- L~p,f ,  O p T ,  f 
Of T,e OT f 

Again, the first three coefficients are the familiar isobaric heat capacity, isobaric 
expansivity, and isothermal compressibility, all now at constant force. The three new 
coefficients represent changes in length with respect to force, temperature, or p re s~e ,  
while the other two intensive parameters are held constant. In particular, PT, e is the 
isothermal-isobaric length-force c o ~ i e n t  per trait length, t3e, f is the isobaric length- 
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temperature coefficient per unit length at constant force, and XT,f  is the linear isothermal 
compressibility, also at constant force. 

17.8 'Hybrid' Primary Sets of Second-order Partial Derivatives for an Elastomer 
Experimentally, changes at constant length are also important. The second-order 

partial derivatives of  the free enthalpy at constant length, G = G(T, P,  L), fitmish a 
�9 hybrid' primary set of  derivatives in which the length, L, an extensive parameter, replaces 
the force, f ,  an intensive parameter, in the canonical variables of  the elasthalpy. We have 

and 

OS 

OT P,L 
OV] = - V n T , L  (17.8)1 --- Cp L / T ,  OV -- VOZP'L' OP IT, L 

" OT P,L 

Of]  ----- ~)P,L, O f  = I / L p T ,  p, - ~  p, r. 
OL ; , p  

o.f 
OP r ,z  

-- ~T,L . (17.8)2 

where Cp, L is the isobaric heat capacity at constant length, ae ,  L is the isobaric expansivity 
at constant length, and ~T,Z is the isothermal compressibility, also at constant length. The 
reciprocal of PT, P has been discussed in the preceding paragraph. The last two coefficients 
are the isobaric force-temperature coefficient at constant length, ~bp, L, and the isothermal 
force-pressure coefficient at constant length, (2",Z. 

The remaining thermodynamic potentials also furnish 'hybrid' sets of second-order 
partial derivatives (cf. w 10.7). An important (and experimentally useful) one is the pressure- 
temperature coefficient at constant volume and length, 

= = aP, L /gT ,  L (17.8)3 7v, L ~ v,L 

[cf. Eq.(10.5)2] because neither O~p,L, nor KT, L require measurements at constant volume. 

17.9 The Maxwell Relations for Elastomers 
By w167 8.6 and 8.7, at constant composition an elastomers with 3 degrees of freedom 

1 (2f+1 2 f possesses a total of ~ - 2) + 1 = = 8 thermodynamic potentials, and lf(f  + 1) = 3 
'mixed' second order partial derivatives for each potential. The number of  Maxwell relations 
therefore is 24. The complete set is assembled below. 

U: 

OT 

OV S,L 

OP 

0 S  

OT 

V,L' OL S,V 

of 
0 S  

OP 

L,V' OL V,S 

of 
OV 

(17.9)1 
L,S 
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F: 

OS 

OV T,L 

OP 

OT V,L 

OS 

OL T, V 

oy 
OT L,V 

OP 

OL Y-~, T 

oy 
OV 

(17.9)2 
L,T 

H . 

G . 

D: 

B: 

E . 

Z: 

OT 

OP s, rJ 

OS 

OP T,L 

OT 

OV s , f  

OS 

OV T,f  

OT 

OP s , f  

oyl  
O T I p ,  f -- 

OV 

OS P,L' 

OV 

OT P,L' 

OP 

OS v , f '  

OP 

OT v , f '  

OV 

OS p , f '  

OS 

OP T , f '  

OT 

OL s,P 

OS 

OL 

OT 

Of s v 

OS 

Of  T,V 

OT 

Of s,P 

of 
OS L,P" 

oy 
I _  

T,P OT 

OL 

OS 

OL 

OT f,t,? 

OL 

OS f , p '  

OV 

OL 

L,P 

P,S 

OP 

f ,v  Of 

OV 

oy 

OP 

of 

osl ozl OZ 

OV 

OL 

V, T 

oy 
OP L,S 

(17.9)3 

P,T 

oy 
OP 

(17.9)4 
L,T 

V,S 

OL 

OV 
(17.9)5 

f ,S 

OL 

OV f,T 
(17.9)6 

P,S 

OL 

OP 
(17.9)7 

f , s  

f ,T  P,T 

OV 

of 
(i7.9)8 

The potentials from which the relations are derived are again listed in the left m a r ~  in bold 
font. 

17.10 The Chemical Potential of an Elastomer 
The statement is often seen that the chemical potential equals the molar Gibbs 

potential, i.e., g, the molar free enthalpy[cf Eq.(14.2)6].in the thermodynamic simple 
system the canonical variables of G are the intensive parameters of the system apart from 
the mole number, N. In an elastomer, however, the chemical potential is given, in analogy 
to w 8.24, by 

I oH I ! ociT ON s, v,L ON S,P,L ON T, V,L ON P,L # (I7.10)1 
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from the first four thermodynamic potentials, and 

oo I 
ON s, v, f ON 

OE 

ON T , V , f  S , P , f  

OZ 

ON T , P , f  
=/~ (17.10)2 

from the last four. Thus, the chemical potential of an elastomer is the same as the molar free 
enthalpy when taken at constant length. If  one wishes to equate the chemical potential ofa  
rubber to that molar thermodynamic potential whose canonical variables, apart from the 
mole number, are the complete set of intensive parameters, one must turn to the free 
elasthalpy. We have 

OZ 

#=-ON T , P , f  
-- Z / N - -  z ,  (17.10)3 

where : is the molar free elasthalpy. 

17.11 The Gibbs-Duhem Equation for Eiastomers 
As the complete Legendre transform of the internal energy, U = U(S, V, L, N), 

the Gibbs-Duhem equation for an elastomer becomes 

S d T -  V d P  + Ld f + N d #  = 0 (17.11) 

in the energy representation. 

17.12 The Assumption of Incompressibility 
At constant composition, an elastomer possesses the three equations of state 

f Tf-(u, V, L) (17.12)1 1 1 (U, V, L), P P (U ,  V, L) and T 
T T T T 

in the entropy representation. This system of equations can be simplified by utilizing the 
experimentally well-established fact that rubbers are virtually incompressible. If this incom- 
pressibility assump#on is accepted, deformation causes no change in volume, and the 
equations of state become 

1 1 f f --- -- (U, L) and - (U, L).  (17.12)2 
T T T T 

Thus, the properties of an incompressible rubber in a simple tension experiment depend only 
on the internal energy and on the length, i.e., the extension to which it is subjected. 
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17.13 The Ideal Rubber 
Ideal behavior, as defined in w 11.2, requires that, at constant composition, each 

equation of state depend on only one extensive parameter. Thus, Eqs.(17.12)2 must become 

1 1 f f 
-- -- (U) and - ~ ( L )  (17.13) 
T T T ' 

and these equations represent necessary conditions for the ideal behavior of  a rubber. An 
ideal rubber is, of  course, necessarily also a perfect rubber (cs w 17.3). 

17.14 The Equations of State of the Ideal Rubber 
The second ofEqs.(17.12)2 is commonly called simply THE equation of  state of the 

ideal rubber. An explicit form for it cannot be derived within thermodynamic theory. The 
statistical mechanical theory of rubber elasticity 11 fiarnishes 

f = Aou~RT(A - ~-2) ,. (17.14)1 

where Ao is the initial (i.e. undeformed) cross-sectional area on which the force, f ,  acts, and 
A = L/Lo,  where Lo is the initial (undeformed)length, is called the stretch ratio. R is the 
universal gas constant, and vo is the crosslmk densiOp, i.e., the number of  moles of effective 
network chains per unit volume. Hence, the second equation of  state, 

f 
- AoveR 

T 
L L~o] (1.7.14)2 
L o L2J 

is more appropriately called the mechanical equation of  state of the ideal rubber. This is 
seen, as required, to depend on L only since ue, of  course, does not depend on A. 

The first of Eqs.(17.13) asserts that the internal energy must d~end  on the 
temperature only. This can be expressed as 

0U lIT, = 0 (17.1 4)3 
OL v 

or, in words, that at constant temperature and volume, U does not depend on L. 
We note that Eq.(17.1.4)3 parallels the requirement that 

OU [T OV -- 0 (17.14)4 

11 see, e.g, Treloar (1975), pp. 42-100; Mark and Erman (1988), pp.7-21. 
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for an ideal gas, since the internal energy of an ideal gas also is a function of the 
temperature only (cf. w 12.2). 

17.15 The Fundamental Equation of the Ideal Rubber 
The fundamental equation of an ideal rubber in simple tension becomes 

S = S (U, L) in the entropy representation because at constant composition U and L are its 
only canonical variables. To express the fundamental equation in parametric form we 
integrate the Gibbs equation 

1 f 
d S -  -~ d U -  -~ d L  (17.15)1 

after suitable substitutions for d U  and f / T .  Because U depends only on the temperature, 
we have d U  = Cv,  r~(T)dT. Considering the heat capacity to be constant over the 
temperature range required, this simplifies to 

d U  = Cv ,~  d T  (17.15)2 

and integration yields 

U = Cv, L ( T -  To). (17.15)3 

Inserting this as well as Eq.(17.14)2. into Eq.(17.15)1, integration produces 

1 
S = So + C v 2  ht T / T o  - -~ NR()` 2 + 2), -1) 

z 
(17.15)4 

since AoLoue = Vov, e -- N is the number of moles of network chains. Equations (17.15)3 
and (17.15)4 are the parametric equations for the fundamental equation of an ideal rubber. 
They constitute another example of an explicit form of a fundamental equation (cf. w 13.1), 
albeit in parametric form. 

17.16 The Chemical Potential of the Ideal Rubber 
Substituting Eq.(17.15~ into the first of Eqs.(17.10)l we obtain the chemical 

potential of an ideal rubber as 

OU ~ = ~  
S,L 

= cv,LT. (17.16) 

By Eq.(11.3)1 behavior in accordance with the above is a sufficient condition for the ideal 
behavior of a rubber. 
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17.17 The Shear Modulus of the Ideal Rubber 
Appendix 5 presents the derivation of the mechanical equation of state by the 

methods of continuum mechanics. This derivation does not make any a s ~ t i o n s  
concerning the structure of the material as a three-dimensional network of flexible chains. It 
yields the equation in the form 

= G ( A -  A -e) (17.17)1 

where a = f / A o  is the stress in simple tension and G is the shear modulus of the rubber. 
The latter is an important parameter in the theo~ of the rheological behavior of rubber. 
Classical elasticity flleory defines the shear modulus as a = GE, where E is the hookean 
strain, i.e., the strain in infinitesimal deformation, also called the C a u @  strain. By 
contrast, A - A -2 above, also called the neohookean strain, is a strain in large deformation. 
Experimentally, Eq.(17.17)1 commonly holds only for about 20-40% extensions, depending 
on the type of rubber, but this is significantly larger then the deformations other materials 
can be subjected to without causing rupture or irreversible plastic changes in shape (flow). 

In continuum mechanics Eq.(17.17)1 represents a constitutive equation, i.e., an 
equation linking a measure of stress and a measure of strain through a material property 
characteristic of the constitution of matter, here the shear modulus, G. Comparison of 
Eqs.(17.17)l and (17.14)1 identifies the latter as 

G = ~,oRY = p R W M ~ .  (17.17)2 

This claims that the modulus is directly proportional to the (absolute) temperature, and also 
directly proportional to the crosslink density, u~. It is also inversely proportional to Me, the 
number average molecular mass (molecular weight) of the chains, p being the density of the 
rubber. The modulus may be obtained in a number of ways. The simplest one of these is the 
measurement of {r as a function of A - A -2 and taking the slope of the initial, straight-~e 
portion of the plot. For an estimate ofu~ from swelling measurements see w 17.24. 

17.18 The Elastic Restoring Force 
The original length, Lo, of a piece of ideal rubber that has been stretched to the new 

length, L, is completely recovered once the force, f ,  is removed. The process of 
deformation is therefore a purely elastic one (the appfied force has experienced no viscous 
dissipation of the energy of deformation). Thus, the force responsible for restoring the 
original shape is identical with the force required to deform the material, and f is also called 
the elastic restoring force. 

At constant composition, i.e., at any given crosslink density, we obtain f as 

OF 

T , V  
(I_7.18)-) 

from Eq.(17.5)3./, and using F = U - TS .  Hence we may write 
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where 

OU 
f = -o-s ~ I r,~" - TO--s v,t" 

OU 
A =  OL T, V 

= L + L (17.18)2 

(17.18)3 

is the internal energy contribution to the elastic restoring force in the rubber, while 

OS 
f~= - T - ~  

T,V 

Of] (17.1.8)4 = T b-~ v,r .  

is the entropic contribu#on. The second of the latter equations follows from the second of 
the Maxwell relations referenced as Eqs.(17.9)2. 

In an ideal rubber the restoring force results purely from entropy changes since 
f~ = 0 by Eq.(17.14)3. The statistical mechanical theory of rubber elasticity shows that 
these entropy changes are changes in the configurational entropy of the chains, brought 
about by the imposed deformation11 (cf. p. 121 ). 

17.19 The Relative Internal Energy Contribution to the Elastic Restoring Force 
The relative contribution, fu/f, of  the internal energy to the elastic restoring force 

in a rubber, is of  some theoretical as well as experimental interest. From fu = f - f~, using 
Eq.(l 7.18)4, we obtain this ratio as 

A _ 1 -  __T O_ff[ (17.19), 
f f OTv, 

The experimental determination of the force-temperature coefficient at constant 
volume is difficult. It is possible, however, to make use of the thermodynamic identity 

Of 
OT 

o f  
OT V,L  P,L 

OP ! Of[ (17.19)2 
+ ~ r,z, ~ Ir, z. 

to replace the coefficient at constant volume with that at constant pressure. Using 
Eqs.(17.19)2 and (17.8)3, we find 

fu T Of --1 f f OT P,L 

Of ! (17.1.9)3 
- -  'ff V, L - ~  T, L 
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where 

tOP[ _ a p ,  L , (17.19)4 
~V,L = - ~  V,L ~T,L 

is the pressure-temperature coefficient at constant volume and length which conv~ent ly  
does not require measurements at constant volume [cf. Eq.(17.8)3]. 

17.20 Swelling 
Hitherto we have discussed the thermodynamics of rubber under the assumption of 

constant composition. This assumption is no longer tenable when a piece of rubber is 
immersed in a solvent. It then changes its composition because it sweh's, i.e., it imbibes a 
certain amount of  the solvent. It cannot dissolve (cf. w 17.3) because the network chains are 
held together by the crosslinks. 

The fimdamental equation of a swollen elastomer becomes 

U = U(S, V , L , N ~ , N 2 )  (17.20) 

where Nl and No. are respectively the number of moles of solvent molecules and of network 
chains 12. 

The process of swelling has much in common vdth the process of solution. Both 
processes are concerned with the equilibrium between a pure and a mixed phase. In the 
latter case the pure phase is (generally) solid (the solute) and the ~ e d  phase is liquid (the 
solution). In the former case the situation is reversed: the pure phase is liquid (the swelling 
agent, that is, the solvent) and the mixed phase is solid (the swonen rubber, a gel). 
Thermodynamically the difference is irrelevant. 

17.21 The Free Enthalpy of Dilution of a Swollen Rubber  
In terms of the vapor pressures the free enthalpy of  dilution upon swelling is, in 

analogy to Eq.(16.12)~ for a solution, given by 

OAG~w 
AG1 -- = ILT In p / p o  (17.21) 

ON~ 

where P is the vapor pressure of the solvent in the swollen rubber and P ~  the vapor 
pressure of the pure solvent. We have omitted the bar over G, and the subscript on the 
pressures since only the solvent has an appreciable vapor pressure. At equilibrium, P = po, 
since AG1 = 0. Thus, the equilibrium degree of swelling is the same whether the piece or 
rubber is immersed in the solvent or is exposed to the saturated vapor. 

12 .N~ is Vo ue where ue is the crosslink densiO; (cf. w 17.14). 
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17.22 The Swelling Pressure 
Equation (16.15)5 for the osmotic pressure in a solution is applicable also to a 

swollen rubber. Thus, we have 

RT 
17 ": - In-n1 (17.22)1 

/31 

where vl is the molar volume of the solvent, and /7  is called the swelling pressure. It is the 
excess pressure that must be applied to the swollen rubber to ensure that it is in mechanical 
as well as thermal and diffusional equilibrium with the pure solvent. In dealing with osmotic 
pressure we consider a solution that is separated from the solvent by a semi-permeable 
membrane (of. w 16.14). In the case of a swollen piece of rubber there is no need for a 
membrane. The swollen, crosslinked rubber acts as its own membrane, as it were. 

Since the vapors above the solvent and above the swollen piece of rubber my be 
considered to behave ideally, application of Raoult's Law (w 16.12) leads to 

RT 
H ~ - In P / P ~  (17.22}2 

u I 

At equilibrium swelling P = po and thus /7  = 0. 

17.23 The Change in Free Enthalpy upon Swelling 
Although we have defined the free enthalpy of dilution in w 17.21, we have said 

nothing yet about AGsw, the change in free enthalpy that results when an elastomer swells. 
It takes the form 

where 

AGsw = AGmix + AG~ ( 17.23)2 

AGm~ = RT[N1 hi(1 -- ~ )  + N2 h I ~ . + X N I ~ 2 ]  ( 17.23)3 

is the change in the free enthalpy of mixing resulting from the mixing of the (uncrosslinked) 
network chains and the solvent. This expression contains the free enthalpy of mixing of 
macromolecules as introduced in w 16.17 where, however, we now substituted 1 -  v2 for 
~t, and to which an extra term arising from the Flory-Huggins theory 13 has been added. 
This term contains the dimensionless interaction parameter,  X < 0.5. This parameter 
accounts essentially for the enthalpy o f  dilution. Although it does depend on temperature, 
pressure, and concentration, it may be taken in the first approximation as a constant specific 
for any given rubber-solvent combination. 

13 Flory (1942, 1953); Huggins (1942). 
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The second term in Eq.(17.23)2 is the free enthalpy change associated with the 
elastic isotropic expansion of the three-dimensional chain network upon swelling. As shown 
in continuum mechanics it is 14 

3GrA2 - 1) (17.23)4 

where A = 1/~/3 is the linear swelling ratio. Substituting for A in the equation above gives 

1) A G ~ = ~ R T  ~ -- _ (17.23)5 

where the relation G = r,~RT [cf. Eq.17.172] serves to introduce the crosslink density, v~. 

17.24 Swelling Equilibrium 
Even when a piece of rubber is in contact with an excess of solvent, swelling 

eventually attains equilibrium when a balance is reached between the entropic forces 
promoting the mixing of the network chains and the solvent, and the elastic forces resisting 
the expansion of the network. At equilibrium, therefore, there can be no further penetration 
of solvent into the network. The condition for equilibrium, as already stated, is the 
vanishing of the free enthalpy of dilution, i.e., A G1 -- 0. We thus have 

OAG~,,, OAG,~:lX OAG~I 
AG~ = = I -- 0.  (17.24)~ 

0N1 OJV1 0N1 

To take the derivative of the mixing term, we need to take into account that the volume 
fractions are given by Eqs.(16.17 h containing the number, x, of solvent-sized segments. 
Differentiation, and letting x increase without limit, i.e., letting x --+ oo, yields 

O A G l~x 

ON1 
-2 = RT[ ln(1  - ~2) + ~2 + XV2]. (17.24)2 

To differentiate the second term, consider that a unit cube of dry rubber will swell to 
a volume of 1 + N1 vt, where vl is the molar volume of the solvent and N1 Vl is thus the 
volume of solvent that entered the cube. The volume fraction of the rubber in the swollen 
volume therefore becomes 

1 (17,24)3 
v2 = l + N l  vz 

] 4 Differem theorencai considerations lead to different expressions for the front favor that is here given as 
3/2. For details see Mark and Erman (1988). 
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O A G ~  

ON1 

_1 ,'3 
- -  R ~ V e  2)12) o (17.24)4 

Combining both equations and applying the equilibrium condition, AG1 = 0, yields 

I n (1  -- v 2 ) +  v~. + X ~  + Ve2)Ivlo/3 = O . (17.24)5 

This equation contains three 'unknowns': the equilibrium volume fraction v2, the interaction 
parameter X, and the crosslink density re. Expanding the logarithm to the first two terms 
gives the equilibrium swelling volume as 

i 
] 5 3  

_ 0.5 -- X (17.24)6 2), 2 ,'--' 
2)1Vo 

Since X may be taken as a constant less than 0.5 it is clear that the equilibrium swelling 
volume will be the smaller, the greater v, is. 

Measurement of ~_~ provides one method for determining the crosslink density, re, 
and/or the (number average) molecular mass, Me, of the network chains from 

v~ = p / M ~  = _ In (1  - v2)  + v2 + XV~ (17.24)7 
--I/'3 

'/31"02 

if the interaction parameter, X, is known. 
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18. S T A B I L I T Y  

A thermodynamic system that returns to its original equilibrium state upon having been 
subjected to a perturbation is said to be in stable equilibrium. The present chapter examines 
the circumstances under which a system will act in this way. Under certain circumstances, 
however, a thermodynamic system may become unstable. The system then separates into 
distinct subsystems, called phases, thus exhibiting the phenomena of phase transitions and 
the existence of critical states and criticalpoints. These phenomena ~ be discussed more 
fully in Chapter 19. This chapter first examines the general aspects of thermodynamic 
stability. It considers stability within an isolated single system or intrinsic stability, and 
stability between the subsystems of a composite system or mutual stability. 

18.0 Chapter Contents 

18.1 The Criteria of Thermodynamic Stability 
18.2 Intrinsic Stability 
18.3 The Stability Criteria in Q~aadratic Form 
18.4 Phase Separation 
18.5 Definiteness of the Quadratic Form 
18.6 Criteria of Intrinsic Stability 
18.7 Le Ch$telier's Princ~le 
18.8 Stability Criteria in the Simple System- Energy Representation 
18.9 The Criterion of  Thermal Stability 
18.10 The Criterion of Mechanical Stability 
18.11 The Criterion of  Diffiasional Stability 
18.12 Effect of Parameter Ordering 
18.13 Sufficiency of the Highest-Order Criterion 
18.14 Stability Criteria in the Simple System - Entropy Representation 
18.15 Critical States 
18.16 Critical Points 
18.17 Mutual Stability 

18.1 The Criteria of Thermodynamic Stability 
The stability criteria, or criteria of stable equilibrium, are 

(d2U)s > 0 and (d2S)u < 0 (18.1)1 

based respectively on the energy minimum principle or the entropy maximam principle 
(cf. w167 4.4 and 4.3). These criteria are valid for perturbations from a state of stable 
equilibrium. They are sufficient criteria, co~lementing ~ e  equilibrium criteria, 

(dU)z = 0 and (dS)u = O, (18.1)2 



130 I. EQUILIBRIUM THERMODYNAMICS 

as necessary conditions. Our task now is to express the stability criteria in terms of  
quantities that are accessible experimentally. These will be the fundamental and the primary 
sets of  second-order partial derivatives (cf w167 10.1 and 10.2) of  the fundamental equation. 
We note that a valid fundamental equation must satisfy the criteria of  stability. 

18.2 Intrinsic Stability 
We examine the problem of  intrinsic stability, i.e., stability in an isolated system. Let 

y(O)  = y ( O ) ( x l  ' X 2  ' . . .  X r t )  (18.2)1 

denote either S or U with extensive parameters xl ,  x2 , . . ,  x~. and let us consider a general 
virtual displacement from equilibrium. The result of  this perturbation will be given by the 
Taylor expansion 

1 d2y(O) y(~ + dxl, ... xn + dx,,,)- y(~ ...  x ,~)= dy(~ +-2 + . . . .  (18.2)2 

The first-order effects form the series 

n 

= E (o) dY (~ Yi dxi ,  (18.2)3 
i = 1  

and the second-order effects result as 

d2y (~ = ~ ~ - ( ~  (18.2)4 
i=1 j=z 

where we have used the shorthand notation 

(O) 
ij - -  

02y(O) 
O X i O X j  x l , x2  . . . .  x.-l,x~+l . . . .  xj.-l,x?+l . . . .  

(18.2)5 

Now dy (~ is either d(U)s or (dS)c and the first-order effects therefore vanish by 
the conditions of  equilibrium, d(U)s = 0 and (dS)u = 0. By Eqs.(18.1)l, however, the 
second-order effects must be greater or less than 0, i.e., we must have 

d2y t~ > 0 and d~'y (~ < 0 (1_8.2)6 
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depending on whether U or S is the base function. Effects of order higher than the second 
can be neglected at this point but will be addressed again later in w 18.16. 

18.3 The Stability Criteria in Quadratic Form 
Mathematically, d2y (~ is a homogeneous quadratic form. Setting 

(o) = A~j, dx~ = q~, (18.3), ~j 

Eq.(18.2)4 becomes 

7"/, 72 

d2g (~ = E E  - (~ dx~ dxj : q T A q  
i=l j=~ 

(18.3)2 

where A is a symmetric matrix formed from the A/j, i.e., from the second-order partial 
derivatives of the chosen base function, and q is a column vector composed of the dx~, i.e., 
the infinitesimals of the extensive parameters of the system. The symbol x denotes the 
transpose of the vector q. Thus, (ITA q is the quadratic form in matrix notation. 

Reformulating the stability criteria in the matrix notation yields 

d2y (~ = qTA q > 0 and d2y (~ = qTA q < 0 5(18.3)3 

for the criteria in the energy representation and the entropy representation, respectively. 

18.4 Phase Separation 
We now exan~e the conditions under which the system would become unstable, 

i.e., would separate into two phases. Phases are homogeneous subsystems bounded by a 
surface across which the physical properties change discontinuously. As shown in Fig. 18.4 
below, we imagine the system to be subd'wided into two such phases which are initially 
identical, and are separated by a diathermal, movable, and permeable wall. ~ s  purely 
imaginary subdivision turns our single system effectively into a composite one. hdeed, we 
shall see later that the problem of intrinsic stability tmderlies the problem of mutual stability 
(cf. w 18.17). 

Fig. 18.4 Isohted system comprising two subsystems, a and/3 
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We shall call the two subsystems the a-phase and the/%phase, respectively. The same 
Greek letters will be used as superscripts to distinguish quantities as belonging to one or the 
other phase. The perturbation effects for the composite system then are 

d2y(~ = (qTA q)'~ + (qTA q)Z (18.4)1 

In the Taylor expansion the partial derivatives are evaluated at the initial conditions 
and, by assumption, the a- and the/3-phase are identical at the onset of the perturbation. 
Hence, introducing molar quantities, we find that 

Na _ (0)3 
y(O?_ N ~ Yij (18.4)2 

The system being isolated, the conservation constraints, Eqs.(4.6)t.t or (4.7)1, require that 

(18.4)3 

Substituting Eqs. ( 18.4)2 and (18.4)3 into Eq.( 18.4)1 yields 

N 
d 2 y(O) _. N o (qTA q)'~ (18.4)4 

where N = N ~ + N 3. 
Equation (18.4)4 contains derivatives (i.e., variations) only of the a-phase. The 

stability of the c~-phase thus implies the stability of the /3-phase. To examine the 
circumstances under which the phases would separate it is therefore sufficient to ascertain 
the criterion of stability for the c~-phase alone. 

18.5 Positive Definiteness of the Quadratic Form 
The quadratic form can be arranged in the form of a square array The dxjdxj-terms 

on the principal diagonal of the array, being squares, are necessarily positive Nothing can 
be said, however, about the signs of the off-diagonal terms To establish the conditions 
under which the form will be either positive or negative definite, it is therefore necessary to 
'diagonalize' it, that is, to express it as a sum which contains no 'mixed' terms One way of 
doing this is described in Appendix 6 The result is 

n - 1  

(J-)) dr~ qXA q = E YJJ 
j = l  

(18.5) 
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where the v (2-1) oj j  are the second-order partial derivatives of the Legendre transforms of order 

j-1 of the chosen base function. The identical subscripts mean that the stability criteria are 
based on second-order derivatives formed from conjugate pairs of parameters. No criteria 
can be based on any mixed partial derivative. 

18.6 Criteria of Intrinsic Stability 
Since dr 2 is necessarily positive, qTA q ~ be positive or negative definite 

according to whether 

y(j--1) . (j-q) jj  > 0  or ~qjj < 0 .  j = 1 , 2 , . . . n - 1  (18.6) 

Here, n = f + 1, n and fbeing the number of canonical variables and of degrees freedom. 
The two inequalities above furnish the criteria of intrinsic stability. With U as the 

base function the method described in Appendix 6 leads to the first inequality while the 
choice of S as the base function leads to the second inequality instead. 

18.7 Le Ch$telier's Principle 
The physical content of the two criteria embodied in the Inequalities (18.6) is known 

as Le Ch~telier's principle. It states: 

"Spontaneous processes induced by a displacement from equilibrium work 
to restore the system to equi#brium." 

As an example, suppose that in a portion of a system the temperature is raised above 
that of the rest of the system. The spontaneous process which will occur then is a flow of 
heat away from the hotter region (cf. w 4.10) until equilibrium is reestablished throughout 
the system. 

Le Ch$telier's principle carries the concept of equilibrium from mechanics to 
thermodynamics. It applies not only to physical processes such as phase changes but to 
chemical reactions as well (cf.. w 21.8). 

18.8 Stability Criteria in the Simple System - Energy Representation 
In this section we demonstrate the method for formulating the stability criteria in the 

internal energy representation, based on the first inequality of w 18.6. 

•(y--1) jy > 0  

In w 18.14 we give a brief illustration using the entropy representation. 
Consider a binary shnple system that has U = (S, V, ?CA, NB) for its fundamental 

equation. The system is characterized by four extensive parameters, hence there ~ be 
three criteria, to be derived from the second-order partial derivatives of the fundamental 
equation's Legendre transforms of zeroth, first, and second-order. Since the two mole 
fractions are interrelated by the appropriate form of the Gibbs-Duhem equation 
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(cf. w 14.14), the mole number of any one of the components is sufficient to characterize the 
system. We have arbitrarily chosen NA. 

In the 'standard' order, y(0)= U(S,  V, NA), the transforms and their canonical 
variables 15 are 

y(O) = U(S,  v ,  NA), 

and 
y(1) = F(T,  V, NA), 

y(2) = G(T, - P ,  NA). 

Writing A for NA for notational simplicity, the second-order partial derivatives take 
the forms: 

s 
- OS 2 - U s s ,  

0 2 
_ (~) F _ Fvv,  
Y22 - -  O V  2 

and 

0 2 (~) G 
Y33 - 0A 2 - GAA. 

We have made use here of the handy 'double subscript' notation for the second order partial 
derivatives. With this notation we obtain succinctly 

and 

Uss > 0,  (18.8)1 

Fvv > 0 ,  (18.8)2 

GAA > 0.  (18.8)3 

for the three criteria of a binary simple system 

18.9 The Criterion of Thermal Stability 
Since 

Uss = (OT/OS)v.~x,x.  = T / C v  (18.9)1 

15 The pressure is best handled as - P ,  adjusting the notation eventually as appropriate. 
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[cf Eq.(10.1h], we have T / C v  > 0. But this can be true only if 

Cv > O. (18..9)2 

The criterion is appropriately called the criterion of thermal stability because the intensive 
variable to which it relates is the tempe~ture. Since, at constant volume and mole numbers, 
TdS = 6Q, we have 6Q/dT > 0. The criterion, therefore, states the rather obvious fact 
that the addition of heat to a stable system increases its ten~erature. 

18.10 The Criterion of Mechanical Stability 
Next, 

Fvv = - (OP/OV)T,NA,.% = 1/VnT (18.10h 

[el Eq.(10.2)3 ], and the second criterion becomes 

nT > 0. (18.10)2 

It implies that OP/OV < 0 and, hence, indicates that an isothermal expansion of a stable 
system at constant temperature must decrease its pressure. R is called the criterion of 
mechanical stability. 

18.11 The Criterion of Diffusional Stability 
Finally, 

C ~ = ( O U / O N a  )~,e ,x ,  . (18.11h 

No special symbol for the derivative is in common use. Introducing the mole ~action, ~A, 
we obtain the third criterion in the form 

O~A/OO~-A ~> 0. (18.11)2 

Tlfis may be referred to as the criterion ofdiffimional stabilize because it expresses the fact 
that the introduction of an additional amount of matter into a stable system at conmant tem- 
perature and pressure will increase its chemical potential. 

18.12 Effect of Parameter Ordering 
The criteria listed in the p r e c e ~ g  section were obtained by taking the extensive 

parameters of the base function in the 'standard' ordering y(O)= U(S, V, NA, NB). A 
different ordering produces different but equivalent criteria. We illustrate this again for the 
binary simple systen~ The ordering U = U (V, S, NA, NB), for example, ~ fumi~ the 
relations 
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and 

y(O) = U ( V ,  S,  NA), 

y(1) = H ( - P ,  S,  NA), 

y ( 2 )  _ G ( - P ,  T,  NA). 

The second-order partial derivatives then follow as 

and 

O~- U Uvv  
y~O)_ OS 2 _ 

0 2 (x) U 
~22 - -  O S  2 - -  H s s  

o- v 
- 0A.O - GAA 

The second-order transform remained as it was in w 18.8 since the position of NA was not 
changed in the new ordering. The two new criteria now become 

and 

Uvv  > 0 ,  (18.12)1 

H s s  :> 0.  (18.12)2 

But 

Uvv  = - ( O P / O V ) s , ~ # v ,  = 1 / V x s  (18.12)3 

[cf. Eq.( 10.1 )3 ] and, hence, 

~s > 0.  (18.12)4 

This is another form of the criterion of mechanical stability. It implies that an isentropic 
expansion of a stable system increases its temperature as does an isothermal expansion. 

Now 

H s s  = (OT/OS)p,NA,:% = T / g p  (18.12)5 
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[cf. Eq.(10.2)1 ] which, in turll, give8 

Cp > O, (18.12)6 

Equation (10.3)3, Cp --- Cv + TV~2/mT, shows that Ce  > 0 implies Cv > 0 
because TVa~/XT > 0 if ~T > 0. Further, it is readily seen from ~T/XS = Cp/Cv that 
~s > 0 implies nT > 0becauseCp is always greater than Cv. Clearly, the two sets of  
criteria obtained from the two different orderings are equivalent although they differ in 
form. 

18.13 Sufficiency of the ~ghest -Order  Criterion 
The highest order criterion (j  = n - 1 = f) is a sufficient criterion. The lower order 

ones are necessary, but not sufficient criteria. Consider the two criteria of  the single 
component simple system, 

Usa > O, (18.13)1 

and 

F v v  = (Uss  Uvv U 2 - :~v) > O. (18.13)2 

Now let Uzz decrease. Then, Fvv ~ become negative before Uss can become zero (or 
negative), unless Uvv increases without limit. Thus, the second criterion is violated before 
the first. 

This reasoning can be extended to systems with an arbitrary number of  extensive 
parameters. In general, the necessary and sttfficient criterion for a stable equilibrium is 

(n-2} _ ( f - l )  

Y(~-.i(n-l) = Yff > 0 _ (.-2) _ if-i) or Y(.-i)(~-l) -- Yff < O, (18.13)3 

depending on whether the criterion is sought in the energy, or in the entropy representation. 
The equations above are, of  course, the Inequalities 18.6 with f = j. 

18.14 Stability Criteria in the Simple System- Entropy Representation 
The last three sections dealt with formulating the stability criteria based on the 

internal energy representation. An analogous procedure based on the second of  the 
inequalities of  w 18.6, 

--1) 
jj < 0 ,  

furnishes the stability criteria in the entropy representation. ~ s  approach makes use of  
and 4 ,  two of  the Massieu functions introduced in Chapter 9. We shall obtain here the 
criteria for the binary simple system we have used in w 8.8. For this system 
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y(O) = s ( u .  v .  N . )  . 

and 
y(1)  __ ~(1 /T ,  V, NA), 

y(2) -~(1/T, 1/P, NA),  

where ~, THE Massieu function, is given by Eq.(9.1h, while ~I,, the Planck fimction, is 
given by Eq.(9.2)1. 

Again using A for NA, the derivatives become 

and 

(o) O2S 
Yll - OU ~_ - Suc 

. _  - OV 2 - ~,.~. 

y(2)  02(1)  

33 - -  0 A  2 - -  (I)AA �9 

The three criteria require that we have 

and 

Suu < 0 (18.14)1 

~vv  < 0 (18.14)2 

(I)AA < 0. (18.14)3 

Now, 

02S 
S c c =  b - ~  

V , A  V , A  

O(I /T)  [ _ O I / T  OT 

l OU V,A OT OU ~ c v '  
(18.14)4 

since (OU/OT)v, = Cv by Eq.(10.1)4. But then the criterion Suv < 0can only be true if 
C~- > 0 and thus we recover the criterion of thermal stability. 

Similarly, 

02~ [ _-- O(P/T) 

T , A  

1 oP ! - 1/nTV (15.14)5 ~ , 

T O V  T " 
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But then the criterion '~vv < 0 can only be true if XT > 0, and this is the criterion of  
mechanical stability that we had found earlier. 

Finally, 

0 2 ~ 1  _ _ (~AA'-- - ~  T , P - -  
O(#/T) [ __ 1 0#1 -- - O#A/TOnA (18.14)6 

OA T,P T OA T,P 

which is another expression for the criterion ofdiffusional stability of  w 18.11. 

18.15 Critical States 
At the limit of  intrinsic stabili~" the Inequalities (18.6) become the equality 

yO-1) = 0 j = 1,2, n-1 (18.15) jj , . . .  

in either representation. 
A system at the limit of  stability is in a critical state since it can become unstable by 

an infinitesimal variation in conditions. Not all phase transitions have critical states. 

18.16 Critical Points 
Critical states are characterized by criticalpoints. To decide-whether a pe~qurbation 

will take the system into a stable or an unstable state, we must examine perturbations of  
order higher than the second in the Taylor expansion, Eq.(18.2)2. Given n canonical 
variables, we must therefore look at 

d (j-l) _ ( j - l ) d x j  j =  1 2, n-1 (18.16 h y j j  - -  yjjj . , . . .  

Let us assume that the a-phase is stable and that 

y(j-- 1 )~ 
jj  > O. j = 1 ,2 , . . .  n - I  (18.16)2 

Then, Eq.(18.16 h becomes 

d (j--l)~ . ()--1)~ d x y  > 0 Y j j  - - Y j j j  j =  1 ,2 , . . .  n-1 (18.16)3 

Since the system is isolated we have dx~ + dx~ = O. Hence, whatever the sign of  dx~, 
that of dx~ is its negative inverse, ff dxja > 0 it would follow that 



140 I. EQUILIBRIUM THERMODYNAMICS 

d- (-/-~)~ . Ctq)~ d x ]  < 0 Uj j  - -  U j j j  j =  1,2, . . .  n-1 (18.16)4 

Equations ( 18.16)3 and (18.16)4 a r e  in contradiction with the original assmnption that the 
c~- and/3-phase are identical before the onset of the perturbation. Therefore, we must set 

_ ( j - l )  y./././ = O. j =  1,2, . . .  n-1 (18.16)5 

This, together with the conditions 

(.~-1) ( j - l )  y~jjj > 0 or y~jjj < O, j = 1,2, . . .  n-1 (18.16)6 

is the criterion for the existence of a stable critical point. The first condition applies in the 
energy, and the second in the entropy representation. An application of these equations is 
discussed in w 19.10. 

If the fourth order derivative is found to vanish, the fifth order derivative must be 
zero for a stable critical point to exist. In general, if the internal energy is selected as the 
base function, the lowest non-vanishing derivative of even order must be positive for that 
critical point to be stable. 

18.17 Mutual  Stability 
The stability of the mutual equilibrium state of two single componem simple systems 

interacting through a non-restrictive wall is guaranteed by the intrinsic stability of the 
individual systems. Intrinsic stability thus dominates the problem of mutual stability. 
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19. P H A S E  T R A N S I T I O N S  

If the criteria of intrinsic stability are not satisfied, the system breaks up into one or more 
portions or phases. Examples are common. The phases of water have been studied 
extens~,ely from the beginning of thermodynamic investigations, largely because of the role 
of water as the working fluid in steam engines that utilize the liquid-vapor transition of 
water to produce useful work. Water is also a common solvent. 

19.0 Chapter Contents 

19.1 
19.2 
19.3 
19.4 
19.5 
19.6 
19.7 
19.8 
19.9 

Phase Transitions in an Ideal Gas 
The van der Waals Equation of State 
The Critical Point 
The Spinodal 
The Binodal- Maxwell's Rule 
The Metastable Region 
The Saturation region 
The Lever Rule 
Phase Equifibrium and Stability Criteria in Terms of the Free Energy 

19.10 The F,  v-diagram 
19.11 Latent Heat 
19.12 The Clapeyron Equation- Phase Equilibrium in Terms of the Chemical 

Potential 
19.13 The Clausius-Clapeyron Equation 
19.14 The Triple Point 
19.15 Coexistence Lines and Existence Regions 
19.16 Phase Transitions in Simple Systems- The Phase Rule 
19.17 Phase Transitions in Multicomponent Systems- The Binary Solution 
19.18 Phase Transitions in N o n - S ~ l e  Systems 
19.19 Higher-Order Phase Transitions 

19.1 Phase Transitions in an Ideal Gas 
An ideal gas is by defilfition in stable equilibrium because the stability criteria are 

intrinsically satisfied for all ideal gases. The criterion of thermal stability, Cv > 0, is 
satisfied because for all ideal gases, the heat capacities are always positb/e [cs Eq.(12.5)3]. 
Similarly, so is the criterion of mechanical stability, ~T > 0 [Cs Eq.(12.5)2]. An ideal gas, 
therefore, does not exhibit the phenomena of phase transitions and critical points. 

19.2 The van der Waais Equation of State 
To illustrate the theoretical aspects of the liquid-vapor (or liquid-gas) transition in 

water and other fluids we mm to the semi-en~iricaI van der Waals equation of  state (van 
der Waals 1873). This equation is an extension of the second equation of state of the ideal 
gas. It models the behavior of real gases at moderately low temperatures and moderately 
high pressures quite well. For the physical simnle system the equation takes the f o ~  
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(P  + a / v  2) (v - b) = R T  (19.2)1 

where a and b are material constants. 
Figure 19.1 shows a schematic plot of  the pressure, P ,  against the molar volume, v, 

at different temperatures, T, for an arbitrary set of the constants, a and b. 
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Fig. 19.2 Van der Waals isotherms 

By Eq.(10.2)3 the slope, (OP/Ov)r ,  of the isotherms must obey the relation 

OP 

Ov 
= - 1 / V ~ r .  (19.2)2 

T 

Since the physical simple system has two degrees of freedom, by Eq.(18.13)3.1 the 
highest order stability criterion becomes 

_ (1) OP{ 
= - ~ > 0 (19.2)3 Y2~. = F~  Ov r 
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But this is the criterion of mechanical stability, xT > 0 (w 18.10). The criterion is ~ e d  
everywhere along these isotherms at higher ten~eratures where the slope is everywhere 
negative. At these temperatures the system is therefore in stable equilibrium ~ d  ~ not 
separate into phases. The fluid can only exist as a vapor, i.e., a gas, and the gas cannot be 
liquefied at any pressure. At lower temperatures the slope changes sign, ~ e  system becomes 
unstable, and phase separation can occur. Liquid and vapor can t h ~  coexist. 

19.3 The Critical Point 
The lowest of the stable isotherms is called the critical isotherm. It contains a 

horizontal point of inflection at which 

OP 
Ov 

02p 

Ov 2 
= 0 .  (19.3) 1 

T 

By Eq.(18.15) the criterion for a critical state becomes 

Or2 T OV 
-- ~ i  = 0.  (19.3)2 

T 

The inflection point in the critical isotherm is therefore the criticalpoint or plait point (cf. w 
18.16). The pressure, volume, and temperature at the critical point are the critical pressure, 
Pc, the critical (molar) volume, vo, and the critical temperature, To. 

19.4 The Spinodal 
Below the critical isotherm, the constant temperature van der Waals curves develop 

minima and maxima. These denote the limits of intrinsic stability at which Eq.(18.15) 
becomes 

OP[I = 0. (1.9.4) 
Ov IT 

The parabola-like spike shown as a dashed Line in Fig. 19.2 is called the spinodal. It 
passes through the minima on the left up to the critical point and then down through the 
maxima on the right, demarcating the region of absolute instabili~. The slope of the van 
der Waals isotherm is positive within this region, thus violating the criterion of mechanical 
stability. Consequently, within it part of the fluid must exist as a vapor (i.e., gas), the other 
part must exist as a liquid. 

19.5 The B i n o d a l -  n a x w e l l ' s  Rule 
Liquid and vapor can a l~  coexist, however, outside the region d ~ r c a t e d  by the 

spinodal. The region of incipient phase separation is marked off by the binodal s h o ~  in 
Fig. 19.2 as the solid parabola-like curve. The binodal ~f~:s the endpoints of the horizontal 
portion of the true isotherm. This is the horizontal ~ e  marked P = Pu~s, where Ptr~s is 
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the pressure that remains constant during the phase transition. The line is drawn in such a 
way that the areas enclosed by it and by the isotherm below and above it have equal areas as 
shown in Fig. 19.2. This construction is due to Maxwell and is known as Maxwell 's  rule or 
Maxwe fl 's construction. 

19.6 The Metastable Region 
At the endpoint of the line, i.e., at the binodal points, (OP/Ov)T  < 0, and the 

system is in stable equilibrium Inside the binodal, however, in the region between the 
binodal and the spinodal, the system is in metastable equilibrium. With careful supercooling 
or superheating it is possible to proceed along the van der Waals isotherm towards the 
points of absolute instability represented by the spinodal. Normally, however, the system 
will follow along the horizontal part of the isotherm given by Maxwelrs construction. Thus, 
the region between the binodal and the spinodal is a region o fmetas table  equilibrium. 

19.7 The Saturation region 
When a gas is compressed isothermally below the critical temperature, To, its 

pressure first rises slowly because the gas is highly compressible. When the isotherm attains 
the binodal, saturation occurs, i.e., the vapor begins to condense. The pressure now stays 
constant until the left branch of the binodal is reached, at which point the pressure rises 
more steeply because the liquid is relatively incompressible. If the left branch is approached 
from the left, at the binodal it is now the liquid which is saturated and it begins to vaporize. 
Hence, the region within the binodal, including the region within the spinodal, is also known 
as the saturation region. 

19.8 The Lever Rule 
Within the saturation region an arbitrary fraction of the fluid is present as a liquid in 

equilibrium with the vapor. The state of the system may be characterized by the average 
molar volume, 

Vav = ne ve + ~g vg, (19.8)1 

of the total system, where ve < Vav < Vg, and ve and vg are the (molar) volumes at the left 
(i.e., the liquid) and the right (i.e., the gas) endpoints of the horizontal part of the isotherm 
(cf. Fig. 19.2). The volume ray divides this horizontal part of the isotherm in the ratio of the 
mole fractions of the fluid in the gas phase, ~g, to that in the liquid phase, ~e. But 
~e + ~g = 1 and, therefore, 

(he + rig)v,v = ne ve + gg vg . (19.8)2 

Rearranging gives 

m 

-- (19.8)3 
n g  Ug  - -  B a y  
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Now let de be the distance (Vav - re)between the liquid endpoint and the point of 
division, and dg the distance (Vg - Vav) between the dMsion point and the gas endpoint in 
Fig. 19.2. Then Eq.(19.8)3 becomes 

n--e de = gg dg. (19.8)4 

This expression is known as the lever rule because it is a formal analog of the H e  for the 
mechanical equilibrium of forces around a fulcrum at the division point with weights equal 
to the mole fractions ne and gg at the liquid and gas endpoints, respectively. 

Subtracting ve from both sides of Eq.(19.8)l and using ge + gg = 1 gives 

v, , ,  - ve = n g  ( v ,  - r e )  (19.8)5 

from which it follows that 

de ( 19, 8)6 ~,~g ~ 

de + dg 

By an analogous derivation then 

dg (19.8)7 ne -- dg+dg 

These two equations allow us to find the mole fractions of the gas and the liquid for 
any point along the fiat portion of the isotherm. 

19.9 Phase Equilibrium and StabiliW Criteria in Terms of the F r ~  Energy 
Since we are considering changes along isotherms, it is instructive to view these 

changes in the light of the e q u i l i b ~  and stability criteria expressed in terms of the free 
energy, F. The equilibrium criterion is 

(dF)T = O. (19.9)1 

In w 8.12 we introduced the stability criterion for perturbation from a state of stable 
equilibrium as (d2F)T > 0. However, at the limit of stability (d2F)T vanishes. In 
accordance with w 18.16, we must therefore examine higher order perturbations as well, and 
the criteria of stability become 

(d 2F)T >_ 0 ~ (dnF)T > 0 (19.9 h 
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where ( d ~ F ) T  is the lowest-order non-vanishing variation. We proceed to examine this 
case. 

19.10 The F,  v--Diagram 
Let us consider F as a function of  v. An F ,  v-d iagram is shown in Fig. 19.10 for the 

physical simple system The points A and B represent points on that isother~ They have a 
common 

b "  

(3 

. r  

s l o p e  = - - P - -  ii:- .......... 

Fig. 19.10 F,  v - diagram for the physical simple system 

tangent of  slope ( O F / O v ) r  = - P .  The  two  points C and D are the spinodal points, at 
which ( O P / O v ) T  = 0. They represent the minima and maxima in the van der Waals 
isothern~ By w 18.15 both points therefore indicate a critical state 16. Since 

(d2F) r  = O P  
Ov 

(dv)~ - - 0 ,  (19.10 h 
T 

we must consider the variation of  order three, i.e., 

(d3F) r  = 
0 2 P 

Ov 2 
(dv)~- , (19.10)2 

T 

in accordance with w 18.16. 

16 Observe that we have 

(a2F)r _ ] . ( j - l )  = y(1)  = F v v  = a~F 
Y j j  22 (Ov)~ - -  Ov - W  T 
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Now, the point C is a minimum in the P,v-diagram of Fig. 19.2. Consequently, 
(OP/Ov)T is positive. Hence, for variations that decrease volume, i.e., for variations for 
which (dr) 3 < 0, (d3F~ > 0 and the phase is intrinsically stable. Conversely, for 
variations that increase volume, i.e., for variations for which (dv)~ > O, (d 3 F)T < 0 and 
the phase is unstable. 

By contrast, the point D represents a maximum in Fig. 19.2. Hence, here (OP/Ov)T 
is negative, and the phase is stable for variations that increase volume, and ~stable 
otherwise. The two considerations bear out the contention that points along the s~inodal 
represent critical states. 

We note that between the points C and D the derivative (OP/Ov)T is always 
positive. Hence, by Eq.(19.10)l, (dF) 2 is then negative and the system is always unstable. 
Between the points A and C, and between D and 13 the system is stable for some changes 
and unstable for others. Hence, it is met a st able. 

As the temperature is increased to the critical temperature, Te, the two ~inodal 
points coalesce in the critical point. At this unique point, again in accordance with w 18.16, 

i.e., 

(dF)T = (d ~ F)T -- (d3F)T -- O, 

OP 

Ov 

02 p 

T Or2 

0 3 P 

~r 0 ~  

(d4F)T ~ O, (19.10)3 

04p 
= 0 ,  

T Or4 
>_ 0. (19.10)4 

T 

The latter is therefore the lowest non-vanishing variation. 
Above the critical point, (OP/Ov)T is always negative, and (he system is always 

stable. 

19.11 Latent Heat 
We have discussed liquid,vapor transitions (condensation/evaporation) in the 

physical simple system Similar considerations apply, however, to other phase transitions 
such as the solid-liquid transition (crysta~tion/fusion), the solid-vapor transition 
(crystallization/sublimation), or solid-solid transitions between different crystalline forms of 
the same substance. 

A phase transition necessarily entails a change in entropy. At constant temperature 
the change in molar entropy, As, is associated with the heat flux, TAs = Q, between the 
system and the heat reservoir which keeps the temperature constant. This heat flux is called 
the latent heat, A, which therefore represents the heat of  vaporization, fusion, 
crystallization, sublimation, etc., as the case may be. 

19.12 The Clapeyron Equation- Phase Eq~brium 
By the equilibrium condition, Eq.(4.6)3, the chemical potentials of two coexisting 

phases must be equal. For the physical simple system we must therefore have 

~"(T, P) = ~a(T, P) ,  (19,12)~ 
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where the superscripts a and /3 denote the two phases, respectively. This implies a 
functional relation between the temperature, T, and the pressure, P, of the system We 
proceed to make this relation explicit. 

By the Gibbs-Duhem equation for the physical simple system we have 

dl.t ~ = _ s,~ d T  + v'~ d P  (19.12)2 

and 

d #  ~ - - s ;~dT + z f i d P  . (1.9.1_2)3 

Thus the chemical potentials of the two phases can be represented by two surfaces above 
the P, T -  plane. 

Fig. 19.12 Chemical potential surfaces for two phases, a and/3 

The projection of the i r  intersection forms a line in the plane, the c o e x i s t e n c e  l ine.  In  the 
case of liquid-vapor equilibrium, the coexistence line is the vaporization curve which ends in 
the critical point (To, Pc) as displayed in Fig. 19.15 below. 

By Eq.( 19.12)1 we then obtain 

d P  A s  A S  

d T  = A v -  A V '  (19.12)4 

an equation first derived by Clapeyron. 

19.13 The Clausius-Clapeyron Equation 
Let us further elaborate the Clapeyron equation. To express the fight-hand side of 

Eq.(19.1.2)4 in terms of measurable quantities, we introduce the Clausius equality, Eq.(5.2), 
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in the form A S  = Q / T .  But now the heat, Q, is the latent heat, A, and at constant pressure 
this is equal to the change in the enthalpy, AH,  in accordance with Eq.(8.7)3. Hence, we 
obtain the equation 

d P  A H  

dT T A V  " 
(19.13h 

Because it was derived for a sin~e-component simple system, this equation is valid in this 
form only as long as the chemical potentials do not depend on the composition. 

When one of the phases is a condensed phase (a liquid or a solid), and the vapor 
above the phase can be considered to be ideal, the approximation AV = V yap = R T / P  
furnishes the Clausius-Clapeyron equation in the form 

d l n P  A 

d T  R T  2 " 
(19.13)2 

This is valid only as long as P is not too large. 

19.14 The Triple Point 
If we had three instead of two phases in equilibrium, the condition of equilibrium 

between the chemical potentials, i.e., the conditions of phase equilibrium, would be 

#~(T, P )  = #2(T, P)  = #'Y(T, P ) .  (19.14) 

Since we now have two equations in the two variables, T, and P,  the solution gives the 
coordinates of a point in the P ,  T-plane. This point is called the triple point. A pure 
substance may have several triple points since it may exist in several forms in the solid state. 
Nevertheless, the maximum number of coexisting phases of a pure substance is three. ~ s  
is expressed by the phase H e  that f o ~ s  the subject of w 19.16. A well-known e x a ~ l e  is 
the triple point of water at which solid, liquid, and vapor phases coexist. Taking the 
temperature of this point to be 273.16 K defines the absolute thermodynamic ten~erature 
scale (cf. w 7.14). 

19.15 Coexistence Lines and Existence Regions 
The P,  T-plane  of a typical pure substance is shown in Fig. 19.15. We ~ s t i n ~ s h  

three regions in the P,  T-p lane  below the critical temperature: the solid, liquid, and gas (or 
vapor) regions. They are separated by the coexistence lines, here the fusion or rnel#ng- 
point curve, the sublimation curve, and the vaporization or vapor-pressure curve, 
respectively. The three lines meet in the triple point. While the fusion curve extends upward 
indefmitely, the vaporization curve ends in the criticalpomt C. 

In each of the three regions the substance ~ s t  be entkely in the respective phase. 
To see this more clearly, consider that the dashed portion of the vaporization curve, the 
coexistence line for the gas and the liquid, lies above the chemical potential s~jrface for the 
solid. For the t~ee energy to be a minimum in this region, the substance must therefore be 
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entirely in the solid phase. This, then, is the only stable phase in this region. Consequently, it 
is known as the existence region of the solid phase. Similar considerations apply to the 
other two existence regions. 

The critical point marks the highest temperature and pressure at which a pure 
substance can exist in liquid-vapor equilibrium. At higher temperatures and pressures the 
material exists in the fluid (or supercritical) region. The dashed lines emanating from the 
critical point indicate the boundaries of this region. There are no phase transitions across 
these boundaries. Indeed, it is possible to proceed from the liquid to the gas phase without 
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Solid 
Region 

, ,~'- ' , , , j - . . .  T r i :.) I e ~oint 

I 
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egion 
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Tr 7" 

Fig. 19.15 P, T -  diagram of a pure substance 

any x4sible phase transition by circum-navigating the critical point as indicated by the curved 
arrow connecting points A and B in Fig. 19.15. Along such a path there is a gradual 
transition from the liquid to the gas region. This occurs without any abrupt change in 
properties. 

19.16 Phase Transitions in Simple Systems-  The Phase Rule 
The phase rule, due to Gibbs, connects the number of phases that are possible in any 

thermodynamic system with the number of components of the system and with the number 
of thermodynamic variables that characterize it. 

We consider c components distributed over ~b phases of a simple system 17. The 
conditions of phase equilibrium (cf. w 19.12) become 

#'~(T, P)  - t.za(T, P)  . . . . .  #~ P). (19.16)1 

Since thus all ~b potentials are determined if one is known, this provides ~b- 1 equations. 
Hence, the total number of equations that must be satisfied for c components is c ( r  1). 
The most convenient set of parameters with which to characterize the system consists of the 

17 The rule may, of course, be extended m non-simple systems (cf. w 19.18). 



19. PHASE TRANSITIONS 151 

intensive parameters, i.e., the temperature, the pressure, and the mole fractions. Because the 
latter compositional variables are related by E j~j = 1, we need to know c -  1mole 
fractions, i.e., ~b(c- 1) fractions for ~b phases. Adding the temperature and pressure, this 
makes ~b(c - 1) + 2 the number of intensive parameters capable of independent variation. If 
there are more equations than independent variables, no solution e~sts, i.e., no equilibrium 
is possible under those circumstances. ~ e n  the number of independent variables exactly 
matches the number of equations, there is a unique solution for one temperature, pressure, 
and composition of the phases. If there are more independent variables than phases, 
equilibrium is poss~le for certain manifolds of states. The number by which the independent 
variables exceed the number of phases is the number of degrees of freedom, f. ~ s  is the 
number of independently variable intensive parameters of the system [cf. w 8.7]. We have 

f= 2 + ~ ( c -  I ) -  c(~b- 1) (19.16)2 

o r  

f +  ~b = c + 2. (19.16)3 

Equation (19.16)3 embodies Gibbs's phase rule for the simple system~ For a pure substance, 
c - -  1. The maximum number of phases in a simple system is therefore three, and that 
number is possible only if the number of degrees of freedom is zero. Hence the point at 
which all phases coexist is a triple point. 

19.17 Phase Transitions in Multicomponent Systems- The Binary Solution 
Excepting the preceding section we have, so far, considered single-component 

systems only. As the sin~lest example of a multicomponent system we shall now consider a 
binary system, and we select the case of a binary solution as one of the most frequently en- 
countered such systems. Extension to systems with more than two components is straight- 
forward in principle. 

In the system under consideration we are primarily interested in compositional 
changes at constant (normally atmospheric) pressure and at different constant temperatures. 
It is therefore convenient to diagram these changes as constant pressure isotherms of one of 
the two chemical potentials as fimction of the mole fraction of the correspon~g 
component in the solution. Such isotherms are shown in Fig. 19.17. 

The plot shows many similarities to that displayed in Fig. 19.2. Above a critical 
point, here called the consolute point, the two components are miscible in aH proportions. 
At lower temperatures the solution separates into two phases. There is again a spinodal as 
well as a binodal curve, and analog considerations of stability apply, except that the highest 
order criterion now is the criterion of dit~sional stability that we have introduced in w 18.11 

0#1 

T,P 
_> O. (19.17 h 

As was pointed om there, at any given temperature an increase in the mole fra~ion 
of a component increases its chemical potential. 
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Fig. 19.17 Chemical potential vs. composition for a binary system 

On the spinodal 

O#! 

Onl T,P 
= 0 ,  

03# i  

T,P On3 T,P > 0 (19.17)2 

and the consolute point is a point of stable equilibrium 

19.18 Phase Transitions in Non-Simple Systems 
The phase nile is valid in the form given by Eq.(19.16)3 only for a multicomponent 

simple systen~ The constant 2 appears because the only intensive parameters considered 
apart from the mole fractions are the temperature and pressure. If, e.g., magnetic field 
intensity is also to be taken into account, the constant would be 3. 

19.19 Higher-Order Phase Transitions 
The phase transitions we discussed in the preceding sections involved discontinuous 

changes in the volume, V, and the entropy, S, respectively. Clapeyron's equation, 
Eq.(19.12)4, relates the change of pressure with temperature to these discontinuous changes 
in the entropy and the volume. The latter quantities are the first-order derivatives of the free 
enthalpy, G. Phase transitions that show discontinuities in these first-order derivatives are 
called first-order transitions. 

A secotM-order transition occurs when the second-order derivatives of G, i.e., the 
members of the primary set (cf. w 10.2) of second-order partial derivatives, ae ,  ~T, and 
Cp, are discontinuous while the first-order ones remain continuous. 
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Higher-order transitions may be defined similarly. The elassitication is due to 
Ehrenfest who also introduced the equation 

dP Aap ACp 
dT  AnT T V A a  

(19.19) 

as the analog of the Clapeyron equation for a second-order phase transition. While some 
second-order phase transitions appear to exist (superconductors in zero ma~etic field are 
reputed to show such transitions), there does not seem to be any evidence for the existence 
of transitions of order higher than the second. 

Some transitions have man), of the features of second-order transitions in the 
Ehrenfest sense but are, in fact, kinetic phenomena and not true thermodynamic second- 
order transitions. A point in case is the so-called glass transition in high polymers. 
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20. C H E M I C A L  R E A C T I O N S  

Previous chapters were concerned with non-reactive systems. We now turn to an 
examination of the equilibrium thermodynamics of systems in which chemical reactions 
occur, i.e., reactive systems. Chemical reactions produce changes in composition and, 
therefore, entail mass action. They also either evolve or absorb heat. There is therefore 
production of entropy in at least some part of the system and chemical reactions are thus 
inherently irreversible processes. Much of the theory of chemical reactions can, however, be 
discussed within the framework of classical equilibrium thermodynamics and this discussion 
forms the subject of Chapters 20 and 21, the last chapters of Part I of this text. In these 
chapters some concepts will be introduced which will recur in the theory of chemical 
reactions as irreversible processes which forms the subject of Chapter 22, the first chapter 
of Part II. The equilibrium thermodynamics of chemical reactions may thus be considered to 
form a transition to irreversible thermodynamics. 

20.0 Chapter Contents 

20.1 The Reactive Simple System 
20.2 The Stoichiometric Equation 
20.3 The Stoichiometric Equation: An Example 
20.4 The Extent of Reaction 
20.5 The Affinity: Change in Mass Action in a Reactive System 
20.6 The Basic Thermodynamic Equations for Chemical Reactions 
20.7 The Heat of Reaction at Constant Pressure 
20.8 The Heat of Reaction at Constant Volume 

20.1 The Reactive Simple System 
The reactive simple system is a dosed simple system in which chemical reactions 

take place. We may consider a chemical reaction to occur as the result of removing some 
constraint that had hitherto prevented the components, as the case may be, either from 
dissociating, or from reacting with each other. The removal of the barrier might be 
visualized as being brought about by the introduction of a catalyst. 

We consider the reactive simple system to be initially in equilibrium with respect to 
temperature and pressure. It is not, however, in chemical equilibrium, i.e., in equilibrium 
with respect to the distribution of matter among the reactants and products of the chemical 
reaction, and is thus only in partial equilibrium. Reactions are thus spontaneous, hence 
irreversible, processes, resulting in an increase in the entropy of the system. The latter 
generally evolves or absorbs heat in the course of the reaction and this is the source of the 
h-reversibility. A simple example is a mixture of ideal gases that react chemically. The 
concentration (amount per unit volume) of each species is uniform throughout the reaction 
volume but at any instant during the reaction the concentrations are not those that exist at 
chemical equilibrium. 
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20.2 The Stoiehiometric Equation 
Since the reactive simple system is closed, the change in the mole ntmlbers of the 

components occurs only by dint of the reaction and is expressed by the stoichiometric (or 
chemical) equation 

j--r j--Tt 

j=l  j=r+l  

(20.2)1 

in which the 12j are the chemical symbols of the various confounds, and the uj are the stoi- 
chiometric coefficients. The latter are the smallest possible integers which will balance the 
equation. 

By convention, the quantities on the left represent the reactants and those on the 
right the products. By affixing negative signs to the stoichiometric coefficients of the 
reactants and then transferring them to the fight hand side of Eq.(20.2 h ,  (he stoichiometric 
equation becomes 

j=72 

j=l  
(20.2)2 

The stoichiometric equation represents the relative amounts of the components of the 
reactive simple system at equilibrium [cf. Eq.(21.1)2 ]. 

20.3 The Stoiehiometric Equation: An Example 
To illustrate, let us consider the reaction having the stoichiometric equation 

31-/2 + S O  2 ~ H2S + 2H20. (2o.3)~ 

Here, f~l = I42, 122 = SO2, 123 = H2S, and I24 = 1-120. Letting ul = - 3 ,  u2 = - 1 ,  
u3 = 1, and u4 = 2, the reaction may be wxitten 

- 3 [ 2 1 - Q 2 + Q 3 + 2 f ~ 4 = 0  (20.3)2 

in accordance with Eq.(20.2)2. 

20.4 The Extent of Reaction 
We now introduce the important concept of the extent of  reaction. Because of the 

stoichiometry of the reaction, changes in the mole numbers of any two components are 
related to each other through their respective stoichiometric coefficients. Thus, 

dNj  _ ~ j  
-- (20.4)1 

dNk z,,k 
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o r  

dNl dN2 dN. 
. . . . . .  - - ~  (20.4)2 

I/1 1"2 b'n 

Since these ratios are all equal to each other 18, they may all be equated to a quantity d~. We 
may write 

aNj 
-- d~ r . (20.4)3 

vj 

Here ~ expresses the amount or extent to which the reaction as a whole has proceeded, and 
was called the degree of  the advancement of  the reaction 19 by de Donder (1936). 
Equivalent terms are the extent (or amount) of  reaction, or the reaction coordinate. For 
Eq.(20.3)2 we find 

d NH2 d Ns% d NH2 S d NH2 o 

-3 -1 1 2 
-- d~.  (20.4)4 

At any instant, ~ is an extensive variable of  state. The concept of  the reaction coordinate 
can be extended to phase transitions as well as to order-disorder phenomena such as, e.g., 
the rearrangement of  copper and zinc atoms in brass [Denbigh, 1966]. It is, therefore, also 
called the order parameter. 

20.5 The Affinity: Change in Mass Action in a Reactive System 
With the help of  Eq.(20.4)3 we see that the change in mass action in a reactive 

simple system becomes 

r 

We now introduce the affinity of  the chemical reaction, 

A - - E j / . t j  vj (20:5)2 

(de Donder, 1928). The affinity is the driving force of  the chemical reaction. It is positive if 
the reaction proceeds spontaneously from the left to the right of  the stoichiometric equation 
and negative conversely. Being a weighted sum of  chemical potentials, the affinity is an 

! 8 Obviously, these relations are valid only in a closed system. 
19 This should not be confused with the degree of reaction. See Callen (1963), p. 202, (1985), p: 169. 
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intensive parameter. It is, however, not an independent physical variable ~ e  the 
temperature or pressure because it depends on the state of the system at any particular 
instance. 

With the help of the affinity, A,  and (he extent of reaction, ~, we may now ~ e  

6 M  = - Ad~  (20.5)3 

for the change in the mass action term in a chemical reaction. The introduction of A and 
will allow us to identify the infinitesimal change in the internally generated heat, 6Q', in a 

chemical reaction with the mass action term [of. Eq.(22.1)a]. 

20.6 The Basic Thermodynamic Equations for Chemical Reactions 
In the reactive simple system the negative products of the affinity with the extent of 

reaction replace the products of the chemical potential and the mole numbers. Thus, in the 
energy representation the Euler form of the fundamental equation of the reactive simple 
system becomes 

U = T S -  P V - A ~ .  (20.6)1 

Its differential form and those of the usual Legendre transforms follow as 

d U  = T d S -  P d V -  A d ~ ,  

d H  = T d S  + V d P -  A d ~ ,  

dF = - S d T -  P d V - A d ~  , 

d G  = - S d T  + V d P - A d ~ .  

The Cfibbs-Ihahem equation for the reactive simple system is given by 

S d T -  V d P -  ~dA = O. 

(20.6)2 
(20.6)3 
(20.6)4 
(20.6)5 

(20.6)6 

In the entropy representation the Euler equation of the reactive simple system becomes 

1 P A s=~u+~v+~, (20.6~ 

and its differential form is 

1 P A 
d S  = - ~ d U  + - ~ d V  + d~ .  (20.6)8 
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The various Massieu functions, their differential forms, and the Gibbs-Duhem 
equation in the entropy representation are easily obtained but will not be needed here. 

20.7 The Heat of Reaction at Constant Pressure 
During a chemical reaction heat is either evolved or absorbed. In the first case the 

reaction is exothermic, in the second case it is endothermic. At constant pressure this heat 
o f  reaction represents the change in the enthalpy, AH,  of the reacting system. This change 
is positive in exothermic, and negative in endothermic reactions. It can be obtained from 
Cp, the heat capacity at constant pressure of the reaction mixture, by Kirchhoffs equation 

A H = C p ( T )  d T  . (20.7h 

To understand the meaning of A H  more clearly, consider that it is the change of the 
enthalpy with the extent of reaction at constant temperature and pressure. Thus, 

OH 

T , P  

OH d ~  
-- Z j  vj--Hj = A H ,  (20.7)2 

T , P  

where Hj is the partial molar enthalpy of component j at the temperature T. 
In terms of the affinity, A, Eq.(20.6)3 yields 

! oA[ OH = r ~  - A  
A H  = - ~  T , P  P,~ (20.7)3 

where we have used the Maxwell relation 

OS 

T , P  

OA 

OT P,~ 
(20.7)4 

Near equilibrium the affinity will become vanishingly small (el w 21.1)). However, its 
temperature derivative does not vanish. Close to equilibrium, therefore, 

OH I OA ] (20.7)5 

This identity is justified because the affinity is positive if the reaction proceeds from the left 
to the right of the stoichiometric equation at constant pressure ( A H  is exothermic), and is 
negative in the opposite direction (AH is endothermic). 
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20.8 The Heat of Reaction at Constant Volume 
An entirely analogous derivation starting from Eq.(20.6)z instead of (20.6)3 

produces 

OU ..., O A  

v, P V, 
= AU (20.8) 

where AU = Ej%U s is the change in internal energy when the reaction proceeds at 

constant volume, and U~ is the partial molar internal energy of co~onen t  j at constant 
temperature. 
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21. R E A C T I O N  E Q U H J B R I U M  

The concepts of the extent of reaction and of de Donder's affinity greatly simplify the 
thermodynamics of chemical reactions. We make use of both of these concepts as we 
inquire into the nature of reaction (or chemical) equilibrium. We then inquire into the 
determination of the composition at equilibrium. This requires the notion of equilibrium 
constants. We further introduce the equation of van't Hoff which relates the equilibrium 
constants to the heat of reaction, and we examine the stability of chemical reactions and 
the effects of temperature and pressure on reaction equilibrium Finally, we consider 
simultaneous reactions and their additivity. 

21.0 Chapter Contents 

21.1 The Equation of Chemical Equilibrium 
21.2 The Equilibrium Constant Kp(T) 
21.3 The Equilibrium Constants Kn-(T, P) and K~(T) 
21.4 The Equilibrium Composition 
21.5 The Equih'brium Composition: An Example 
21.6 van't Hoffs Equation 
21.7 The Stability of Chemical Reactions 
21.8 The Effect of Temperature on Reaction Equilibrium 
21.9 The Effect of Pressure on Reaction Equilibrium 
21.10 Simultaneous Reactions 
21.11 Additivity of Reactions 

21.1 The Equation of Chemical Equilibrium 
At constant temperature and pressure Eq.(20.6)5 reduces to 

dG = - A d (  . (21.1)1 

At equilibrium dG must vanish for an arbitrary value of d(, and the condition for reaction 
equilibrium is therefore expressed by A - 0. The condition demands that the affinity, the 
driving force of the reaction, vanish at equifibriunt Equation (20.5)2 then becomes 

Z j  IzJ uj = O. (21.1)2 

Tbhis equationis called the equation of  chemical equilibrium. It is analogous to the 
condition of diffiasional (matter flow) equilibrium, #l = #2 [cf. Eq.(4.6)3.3]. Comparison 
with Eq.(20.2)2 shows that the equation of chemical equilibrium may be obtained from the 
stoichiometric equation simply by substituting the jth chemical potential, #y, for the jth 
chemical symbol, Qj. 
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21.2 The Equilibrium Constant K (T) 
The question now arises: what is the equilibrium composition in a reactive system? 

To answer this question we introduce the concept of the equilibrium constant and to do 
this, we need to know the integrated form of the Gibbs-Duhem equation for a reactive 
simple system, i.e., 

#j = p j ( r ,  P,  A). (21.2)1 

In reactions between ideal gases the situation is particularly tran~arent. In that case the 
chemical potential of the jth component [cf. Eq.(15.12)3] is 

, j  = , o / T )  + a_T h, P~ (21.2)2 

considering the standard pressure, Po, to be unity. Multiplying by vj and summing yields 

(21.2)3 

or, using Eq.(20.5)2, 

where 

A = Ao(T) -  I ~  In H j  P? (21.2)4 

Ao(T) = - E j  r,,j #oj(T) (21.2)5 

is the stamtard affinity at ~ standard pressure, Po. 
At equilibrium the affinity vanishes and we have 

Ao(T) = RT In YIj  PfS" (21.2)6 

Let us introduce 

I~(T)  = YIj  P~  (21.2)7 

as the equilibrium constant of the reaction. Sff0stituting it into Eq.(21.2)4 leads to 

& ( T )  = a T  t .  K~(T) (21.2)s 
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and introducing this into Eq.(21.2)4 gives 

(21.2)9 

which relates the equilibrium constant to the affinity. 
The subscript p on Kp(T) indicates that it is expressed in terms of the partial 

pressures of a gas. In this form the equilibrium constant depends on the temperature only. 
Since #~ol = .  yap #j by the condkion of phase equilibrium, Eq.(21.2)8 is also valid for 

solutions, at least as long as the vapor can be considered to be ideal. The P / s  then stand for 
the partial vapor pressures above the solution. 

21.3 The Equilibrium Constants K~-(T, P)  and Kc(T) 
The equilibrium constant can be formulated in terms of parameters other than the 

partial pressures, ff the gases or vapors can be considered ideal the relation Pj = P ~ j  
(cs w 15.8 }2_ yields 

H __../2 i __ p--~ ~ ( r ,  P)  = ~ n /  Kp(Y) (21.3)1 

where p = Eyvj. I~-(T, P) is the equilibrium constant of  the reaction in terms of the mole 
fractions. It is independent of pressure only when P = 0 as it is, for instance, in the reaction 
H2 + 0 2  = 2HC1. Using the relation Pj = cjlLT where cj = Nj/V is the molar 
concentration 2~ , we derive 

Kc(T) = I -L eS ~' = ( ~ ) - "  ~ ( T ) ,  (21.3)2 

for the equilibrium constant in terms of the molar concentrations. 
Elimination of Kp(T) between the last two equations yields 

I~-(T, P )  = (RT/P) ~ Kc(T) (21.3)3 

as the relation linking the equilibrium constants I~-(T, P )  and Ko(T). 

21.4 The Equilibrium Composition 
To obtain now the composition at equilibrium, we integrate Eq.(20.4)3 to yield 

g j  - Noj + ~j ZX~, (21.4) 

20 The molar concentration is often assigned the symbol [~j]. 
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where Noj is the initial number of moles of the jth species, and Nj = N~j is the final 
number of the same species after the reaction has reached equilibrium Thus, prediction of 
the equilibrium composition requires knowledge of only a single number, A~. We proceed 
to relate this to the equih'brium constant, Kp(T). 

21.5 The Equilibrium Composition: An Example 
The procedure to be followed in finding the N)'s is best considered on hand of an 

example. We use the reaction whose stoichiometric equation is given by Eq.(20.3)l. For this 
reaction the equation of chemical equilibrium, Eq.(21.1)2, becomes 

- 3#H2 -- #SO_, + #mS + 2#~O = 0. (21.5)1 

Suppose the initial composition consist of the following mole numbers: 

N ~  = 2 
Nso2 = 1 
NH2S = 0.5 
NH~o = 0.75 

and the temperature and pressure are such that the gases may be considered ideal. ~ e n ,  
since by Eq.(21.4) we have Nj = Noj + ujA~, the composition at equilibrium becomes 

Nn2 = 2 - 3A~ 
NsO2 -- 1 - A~ 
Nn2s = 0.5 + A(  
N~o = 0.75 + 2A(  

and the total number of moles, Ej Nj = N, is 4.25 - A~. 
Now, by Eq.(21.3)1 the equilibrium constant, Kp(T), may be recast as 

(21.5)2 

and, since ~ = Ej uj = - 1 (cf w 20.3), we find 

Kp(T) -- p-I  (0.5 --]- A~X0.75-q- A~) 2 
( 2 -  3A~)3(1 -- A~) 

(4.25 -- A~). (21.5)3 

This can be solved for A~. Substitution of the result into the equations for the mole 
numbers then yields the composition at eqt~brium. 

21.6 van't HoWs Equation 
It is of interest to relate the ten~erature coefficient of the equilibrium constant to 

the heat of reaction, AH. 133, Eqs.(20.7)3 and (20.7)9 we have 
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and 

OA 
A H  = 

p,~ 
- A  

A = R T h t  
I l j  PYJ~ " 

(21.6)1 

(21.6~ 

Combining the two leads to 

0,4 
A H =  

Kp(T) 
- RT hz py: (21.6)3 

P,~ l ' l j  .7 

and integration with respect to T at constant P and ~ gives 

Kp(T) RT 2 d In I ~ ( T )  
A H = - A + R T  In ~ - ~ f ~  + d T  (21.6)3 

At equilibrium the first two terms on the right vanish by Eq.(21.6)2 and we obtain van't 
H o f f  s equation 

d In Kp(T) AH 
dT  = RT 2 (21.6)4 

which is the desired relation between the temperature coefficient of the equilibrium constant 
and the heat of reaction. It implies that Kp(T) increases with temperature in endothermic, 
and decreases with it in exothermic reactions. We note the formal resemblance of van't 
Hoffs equation and the Clausius-Clapeyron equation as given by Eq.( 19.13)5. 

By Eq.(21.3)2 

Kp(T) -- (RT) ~ K~(T). (21.6)5 

m 

But we also have AH = ~2jvjHj and, since we are considering ideal gases, 
Hj  = Uj + RT. Hence, 

d In K~(T) AU 
-- (21.6)6 

dT  RT 2 
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is another form of van't Hoffs equation. Determination of Kc(T) as a function of 
temperature therefore allows calculation of  AU and, hence, A H ,  from concentration 
measurements instead of the more difficult calorimetric measurements required for b e  
determination of Kp(T). 

21.7 The Stabili~ of Chemical Reactions 
The stability criterion for chemical reactions is 

y(32) 3 > 0 (21.7)1 

where y(0) = U(S, V, ~) is the base function. Therefore, the criterion takes the form 

o r  

OA 
G~ = i)~ 

OA 

O~ T,P 

T,P 
> 0 (21.7)2 

< O. (21.7)3 

Thus the affinity decreases as the extent of reaction increases. In the ~ of stab'dity A = 0 
and we obtain the criterion of reaction equilibrium in the form G e.~ = 0. 

It is possible to have 

OA 

T,P 
> O. (211.7)4 

The affinity then increases as ( increases. This is the case of  an ~stable,  i.e., ' run-awa/ 
reaction. 

21.8 Effect of Temperature on Reaction Equilibrium 
Let us now consider the stability of  chemical reactions in the light of  Le Ch~telier's 

principle. We first consider variations in ~ with temperature at constant pressure, i.e., 
(O~/OT)p,A. Using the chain rule for partial differentiation, we obtain 

OT P,A - b ~  

OA 

T , p - ~  P,~ 
(2~.8h 

Using Eq.(20.7)5 for the second derivat~e on the right ~ e s  by 
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OT 

1 O H  

T,P T,P 
(21.8)2 

But 1/T is > 0 by definition and 

OA T,P 
> o (z~i.8)z 

by the stability criterion, Eq.(21.7)3. Paying attention only to the sign of the expressions, 
we have 

o~ 
sgn -~ 

P,A 

O H  
--sgn - -~  

T,P 
(21.8)4 

The relation above shows that an increase in temperature increases the extent of reaction for 
an endothermic reaction and decreases it for an exothermic one. An increase in the 
temperature at constant pressure therefore shifts the chemical equilibrium in the direction in 
which the system absorbs heat, in accordance with Le Ch~telier's principle (of. w 18.7).. 

21.9 The Effect of Pressure on Reaction Equilibrium 
Next, we consider variations in ~ with pressure at constant temperature, i.e., 

(O~/OP)p,A.  This is given by 

OP T,A 

OA 

OP T,P 
(21.9)1 

and, using the Maxwell relation given by Eq.(A2.2)9 for the first term on the right, we 
obtain 

OP T, A 

OV  

T,P T,P 
(21.9)2 

By virtue of Eq.(21.8)3 we thus find 

sgn -b- ~ 
OV 

= - -  sgn 
T,A - ~  T,P 

(21.9)3 
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Hence, again in accordance with Le CMtelier's principle, increasing the pressure at constant 
temperature shifts the chemical equilibrium in the direction in which the total volume 
decreases. 

21.10 Simultaneous Reactions 
It is easy to extend the formalism for a single reaction to that for s~eral 

simultaneous reactions. Let there be p reactions among the r constkuents of the reactive 
simple system. There is an equation of chemical equih~brium for each rea~ion, i.e., we have 

E j / z J @  k) = 0 (21.10)1 

where the superscript (k) marks the kth reaction. We further have 

= A ~  k) (21.I0 h 

Thus, there are k equations for the k ~ o w n s  A~ (k) which, in turn, by 

Nj = Noj + ~ j  v (k) A5 (h=) / (21.Io)3 

determine all the mole numbers at equilibrium. 

21.11 Additivity of Reactions 
Let there be given two reactions, 

E j  @') f/J = 0 and E j  v'~ 2) f/J = 0. (21.11), 

Now consider a third reaction, 

(21.11h 

that is a combination of the first two, a and b being arbitraw positive integers. 
Combining Eqs.(21.2)3 and (21.2)7 gives 

E j  (k) ~'J PJ = E j  v~k)#o/(T) + RTIn Ko(T), (21.11)3 

and, since E./#/v./= 0, we find 
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and 

i.e., 

#/KI(T) -- -(1/R_T) S j  t'~ 1) # o j ( T )  

l,, K~(r) = - (1/RT) ~ j  ~,~) #o~(~r). 

(2) h, K3(T) - - (1/RT) Z j  a u} ') + b 1,,) 

In K3(T) = a In K1(T) + b In K2(T). 

(21.11)4 

(21.11)5 

#oj(T) (21.11)6 

(21.11)7 

It follows that the constants for additional reactions that are combinations of the known 
ones, can be obtained directly if the equilibrium constants are known for some reactions. 
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22. C H E M I C A L  R E A C T I O N S  AS ~ V E R S I B L E  P R O C E S S E S  

Chapters 20 and 21 dealt with the equilibrium thermodynamics of chemical reactions. A 
chemical reaction is an irreversible process and is therefore invariably accompanied by the 
production of entropy. It is the task of Chapter 22 to examine chemical reactions as 
irreversible processes. This undertaking necessarily leads to the introduction of a number of 
concepts that are required in the treatment of the thermodynamics of the steady state, such 
as, in particular, the entropy production, energy dissipation, and energy retention functions. 
A consideration of chemical reactions as ~evers~le processes thus constitutes a natural 
transition from equilibrium to steady-state thermodynamics. 

22.0 Chapter Contents 

22.1 
22.2 
22.3 
22.4 
22.5 
22.6 
22.7 
22.8 
22.9 

De Donder's inequality 
The General Criterion of lrreversibility 
Particular Criteria of Irreversibility 
The Rate of Reaction 
The Rate of Entropy Production 
The Entropy Production Function 
The Energy I~sipation and Energy Retention Functions 
The Phenomenological Equation 
Relation between the Rate of Reaction and its ~ g  Force 

22.10 Dynamic Eqt~brium - The Steady State 
22.11 The Scalar Steady-State Theow 
22.12 Simultaneous Reactions 
22.13 Coupled Reactions 

22.1 De Donder's Inequality 
Consider a chemical reaction taking place in a vessel that is dosed but not  isolated. 

It can thus exchange heat but not matter with its surroundings. By Eq.(5.6)l the 
infinitesimal change in entropy becomes 

d S  = 6 Q / T  + 6 Q ' / T  = d~S + d i S ,  (22.1.)1 

and substituting this equation into Eq,(20.6)8 leads to 

dU + P d V  A d (  
dos + dis = + ~ (22.1)2 

T T 

in the absence of any entropy produced within the reaction vessel, we would simply have 

TdoS = 5Q -- dU + P d V  . (22.1)3 
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If, however, entropy is generated within the vessel [cf. Eq.(5.6)2] we additionally have the 
heat term 

T ~ S  = 6Q' = Ad~ > O. (22.1)4 

The last relation is de Donder's inequafity. It identifies the internally generated heat, 6Q', in 
a chemical reaction with the mass action term, Ad~, and states that this is positive semi- 
definite. It is zero when the internal changes are reversible, and positive when they are 
irreversible. 

22.2 The General Criterion of Irreversibility 
Since dis represents production of  entropy, de Donder's inequality in the form 

dis > 0 (22.2) 

is a criterion ofirreversibility. It is also the only general criterion ofirreversibility. 

22.3 Particular Criteria of Irreversibility 
Criteria applicable under particular conditions are readily obtained from the Gibbs 

equation for the internal energy, U, and its first-order Legendre transforms. The changes in 
the thermodynamic potentials are given by Eqs. (20.6)2 to (20.6)3. We have, therefore, 

OU 

S, V" 

OH I OF 

O~ s,e O~ T,V T,P  

OG 
= - A  (22.3)1 

and 

dU = dH = dF = dG < 0 (22.3)2 

as the criterm o f  irreversibifity in terms of the thermodynamic potentials U, H, F, and G, 
i.e., at constant S and V, constant S and P, constant T and V, and constant T and P,  
respectively. By these criteria all four potentials necessarily decrease as a chemical reaction 
takes place. 

22.4 The Rate of Reaction 
During the course of a reaction the extent of reaction, introduced in w 20.4, evolves 

with time until equilibrium is reached. The time derivative of the evolving extent of reaction 
is called the rate o f  reaction, v. The rate of reaction depends not only on the time but also 
on the temperature, T, and on the pressure, P. These latter may be arbitrary functions of 
time, i.e., we may have T = T(t), and P = P(t). However, if these functions are specified, 
the rate of reaction is completely determined and we may write simply 



22. CHEMICAL REACTIONS AS IRREVERSIBLE PROCESSES 173 

V m 

dt 
(22.4h 

Now, by de Donder's inequality, Ad~r > 0, we have 

d~ 
A--d-[ = A v  >_ O (22.4)2 

whence, 
if then 

A > 0  v > 0  
A = 0  v = 0  
A < 0  v < 0  

Thus, the affinity has the same sign as the rate of  reaction. I f ~ e  affinity is zero, the 
rate of  reaction is also zero, i.e., the system is at equilibrium. The latter follows because, if 
v r 0 when A = 0, the reaction would proceed with a .finite rate at equifibrium, which is 
contradictory. Note, however, that we may have v = 0, A r 0. The system is then in false 
equilibrium (e.g., a mixture of gaseous hydrogen, 1-12, and oxygen, 02). 

22.5 The Rate of Entropy Production 
We now introduce three important new concepts related to the rate of  reaction. The 

rate of  entropy production, (9, i.e., the entropy produced per unit time, is 

4 s  6Q' A d~ A 
6) . . . .  v > O. (22.5) 

dt Tdt T dt T 

It is positive definite because of  the thermodynamic irreversibility of  any chemical reaction. 

22.6 The Entropy Production Function 
The entropy produced per unit time and unit volume, i.e., the rate of  entropy 

production per unit volume, is called the entropy production fimction, or the entropy source 
density, or the entropy source strength. It becomes 

O A 
-- -- v > 0 (22.6) 

V V T  

and is again positive definite in any single chemical reaction. 
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22.7 The Energy Dissipation and Energy Retention Functions 
The product of �9 with the temperature, T, is called the energy dissipationfimction, 

A 
___ T~i = f fv  > 0, (22.7)1 

because it represents energy dissipated per unit volume and unit time. In any single 
chemical reaction the energy dissipation function is positive definite. 

The negative inverse of the energy dissipation function, 

T = - ~ < 0, (22.7)2 

will be called the energy retentionfimction. Since the energy dissipated is taken as positive, 
T stands for a negative amount of energy. This is retained in that it is not dissipated and is 
negative definite in any single chemical reaction. 

22.8 The Phenomenological Equation 
Since the affinity, A, and the extent of reaction, ~, are conjugate quantities, so are A 

and v. The rate of reaction, v, is clearly a function of A/T which is appropriately called the 
driving force of the reaction. Ifv depends linearly on A/T we have 

A 
v = L T (22.8) 

where L is the kinetic or phenomenological coefficient. Equation (22.8) is termed the 
phenomenological equation of the reaction. To assign meaning to the phenomenological 
coefficient, L, we need to find a suitable linear relation between v and A/T. 

22.9 Relation between the Rate of Reaction and its Driving Force 
We seek a genera/expression linking v and A/T. The overall rate of reaction, v, is 

the difference between the forward rate, 7 ,  and the backward rate, ~ - .  It is shown in the 
theory of chemical kinetics that 

0~r j=n 
v -- c and v - cj 

j:=l a~r+l 

(22.9)1 

----4 +-- 
w h e r e  r is the number of reactants, n - r is the number of products, and k and k are called 
the kinetic constantg It is further shown in the kinetic theory that the ratio of the kinetic 
constants is equal to the equilibrium constant so that 

+-- 

k /k -- I ~ ( T ) .  (22.9)2 
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We thus have 

j--i1 

k- l-[ clff I 
----+ +-- ----+ j ~ l  3 

v = v - v = v 1 -  Z~- ~-~ , ~  

k' l i e  lift 
=7 [l_ 

L 
J--" _t~I rI cj 

~ (22.9)3 

But, since the uj's of the reactants carry the negative sign, 

j=. j ~  /ici 
/ j = l  c ' 

(22.9)4 

and we find 

v = v  1 = - Y  1 
~ ( T )  

nj ] 
Kp(T) ' (22.9)5, 

where the second equation follows because 

I~(T)/Hjc~ = 1 = K p ( T ) / ~ j  P ?  (22.9)6 

by Eqs.(21.2)7 and (21.3)2. Using Eq.(21.2)s we obtain 

v = v  1 - e x p  - ~  (22.9)7 

as the sought-for general relation between and v and A/T. 

22.10 Dynamic Equilibrium- The Steady State 
Equation(22.9)7 is not a Lea r  relation between v and A/T. However, as 

equilibrium is approached, A becomes quite small and the exponential may then be 
approximated by 1 - A/RT. At the same time, both the forward and the backward reaction 
rates approach the same value 21 the equilibrium rate, Vcq. Hence, 

21 This is required by the principle of microscopic reversibility (cf. w 23.9). 
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Voq A 
lira v -- (22.10)1 

V-V-,,~ R T 

In this limit, therefore, a dyturmic equilibrium or steady state will be reached in which the 
rate at which products are formed equals the rate at which reactants are reformed 
(microscopic reversibility, see w 23.9). We then regain Eq. (22.8) with L now given by 

L - -  voq/R. (22.10)2 

Equation (22.10)2 identifies the phenomenological coefficient, L, as the equilibrium 
rate of reaction divided by R, the universal gas constant. It is in the nature of chemical 
reactions that a linear phenomenological equation applies only quite close to equilibrium 
and that, hence, a meaningt~ interpretation of the phenomenological coefficient is poss~le 
only in that limit. 

22.11 Scalar Steady-State Theory 
We may now rewrite the phenomenological equation, Eq.(22.8), in the terminology 

of the theory of the steady state to be discussed more fully in the next Chapter. The 
equation then takes the form 

where 

d = L F  (22.1.1)1 

d~ 
J = u -  dt (22.11)2 

(i.e., the rate of reaction) is termed the thermodynamic scalar flux, and 

A 
F -  T (22.11)3 

is called the thermodynamic scalar driving force. 
Because the variables in Eq.(22.11) are all scalars, the thermodynamics of chemical 

reactions in dynamic equilibrium is called a scalar steady-state theory. 

22.12 Simultaneous Reactions 
In the preceding sections we were concerned with entropy production in a single 

reaction. I lk  reactions occur simultaneously (cs w 21.10), rewriting Eq.(20.5)2 for the case 
of multiple reactions yields 

Ak = -- Ej I.tjv# (22.12)1 
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for the affinity of the kth reaction. By de Donder's inequality and the additi-Aty of the 
entropy, the entropy production in the interior of the system is then given by 

1 
d i s  = VkAka k . (22.12)2 

Hence, the rate of  entropy production per unit volume, i.e., the entropy prod action 
function, results as 

= ~ T S k V k A k ,  (22.12)3 

and we obtain 

1 - - - ~  Y = - T~  = V kVkAk. (22.12)4 

for the energy retention function. 

22.13 Coupled Reactions 
When two reactions occur simultaneously, we have 

1 
= -~-T(Alvl + A2v2) (22.13) 

for the entropy production function. It is perfectly possible to have two reactions occurring 
simultaneously for which A1 vl < 0 and A2v2 > 0, provided that �9 > 0. Such reactions are 
called coupled reactions. They are of great i~or tance  in biological processes. 
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23. T H E  P O S T U L A T E S  O F  S T E A D Y - S T A T E  T H E R M O D Y N A M I C S  

Chapter 4 identified the problem of equilibrium as the central problem of the theory of 
equilibrium thermodynamics. The central problem of the thermodynamic theory of 
irreversible processes is the determination of the entropy produced as internally generated 
heat due to the various dissipative phenomena (cf. w167 2.7, 2.18, 7.3 and 7.5) occurring in 
any natural spontaneous process. In the preceding chapter we have examined entropy 
production in chemical reactions. To determine the production of entropy in the general 
case is a rather difficult problem No general theory of non-equilibrium thermodynamics is 
available. Much progress has been made, however, in the understanding of processes near 
equilibrium when the system is in a steady state, and when the steady state is characterized 
by linear relations between conjugate parameters. In most cases of practical interest the 
restriction to near equilibrium is not as stringent as it is in the case of chemical reactions. 
The remainder of this text is concerned primarily with the thermodynamics of the (linear) 
steady state. 

23.0 Chapter Contents 

23.1 The Postulatory Basis of Steady-State Thermodynamics 
23.2 Local Equilibrium- POSTULATE VI 
23.3 The Steady State 
23.4 Scalar Theory 
23 5 Vector Theory 
23.6 Tensor Theory 
23.7 The Curie Symmetry Principle 
23.8 Phenomenological Equations- POSTUIATE VII 
23.9 Reciprocity Relations- POSTULATE VIII 
23.10 The Linear Steady State 

23.1 The Postulatory Basis of Steady-State Thermodynamics 
Development of a comprehensive theory of steady-state thermodynamics requires 

the introduction of three new postulates in addition to those of equilibrium thermodynamics. 
The first of these is the postulate of the existence of local equifibrium. The second esta- 
blishes relations between generalized thermodynan#c driving forces and generalized 
thermodymTmic fluxes. The third postulate imposes symmetry restrictions on these 
relations. 

23.2 Local Equilibrium- POSTULATE VI 
Postulate VI states that: 

"Althtnlgh a thermodynamic system as a whole may not be in equilibrium, 
small elements o f  its volume may be considered to be m thermodynamic 
equilibrium locally. Elements m local equilibrium can be characterized by 
the same state fimctions that characterize global equilibrium in equilibrium 
thermodynamics. " 
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It is this postulate that permits us to place steady-state thermodynamics firefly onto 
the basis formed by the five postulates of  equilibrium thermodynamics. 

23.3 The Steady State 
In view of  Postulate VI we refine our earlier defimtion o f the  steady state (w 1.12) as 

follows: 

"'14 stead); or statioluTry, state of  a thermodypnTmic system is a stable, time- 
invariant state, generally of  an open system, which is characterized by local 
equilibrium of  the thermodynamic variables. "" 

The steady state is sustained by stable, time-invariant conditions at the system boundaries 
(see Appendix 7 for an example). These maintain a spontaneous, hence irreversible, process, 
resulting in the production of  entropy. 

23.4 Scalar Theory  
In Chapter 22 we had already developed most o f  the basic concepts of  the thermo- 

dynamics of  the steady state when we considered chemical reactions as irreversible 
processes. We showed (cf. w 22.10) that in dynamic reaction equilibrium, i.e., in the steady 
state, the thermodynamic driving force, F = A iT,  and the thermodynamic flux, J = v, 
could be related ~ e a d y  through the phenomenological equation, J = LF in -Mlich L is the 
phenomenological coefficient. The equation contains only scalar quantities. The t h e o ~  o f  
chemical reactions viewed as irreversible processes is, therefore, a scalar theory. That scalar 
theory is, however, easily extended to a general theory o f  coupled ~ e a r  steady-state 
processes by considering F to be a generalized thermodynamic scalar driving force (or 
generalized thermodynamic scalar affinity), and J to be a generalized thermodynamic scalar 
flux: 

23.5 Vector Theory  
In many steady-state processes of  interest, the thermodynamic fluxes and the driving 

forces that give rise to them are vector 22 quantities. The former are called generalized 
thermodynamic vectorflu~s, flows, or currents, and ~ ' l l  be r~resen ted  by the symbols J 
or Ji. These flow vectors are typically the fluxes (quantity per unit time per ~ volume) of  
the extensive parameters o f  a system, such as the internal energy or the entropy. The 
generalized thermodynamic driving forces or generalized thermodynamic affiniaes that 
elicit them will be represented by the symbols F or Fi. They are typically the gradients o f  a 
system's intensive parameters, exemplified by the ten~erature,  pressure, or chemical 
potential. The fluxes and driving forces are conjugate quantities. 

22 Scalars are set in non-bold italics (S). Vectors and tensors will be represented in the indicial as well as in 
the symbolic notation. In the indicial notation vectors and tensors are set in non-bold italics as are 
scalars. The number of indices (zero, one, or two) i~nti~ the variable as a scalar, a vector, or a 
(second-rank) tensor. In the symbolic notation, vectors are set in bold italic serif ~-q~e ( ~  while second 
rank tensor are set in bold italic sans-serif type (F). Thus, in the symbolic notation, vectors and tensors 
are in bold type "taut scalars are not. A single contraction, e. g,, that of two-vectors to a scalar, is indicated 
by a raised bold dot (-). A double contraction, e.g, that of two second-rank tensors to a scalar, is 
indicated by a bold colon ( : ). 



180 II. STEADY-STATE THERMODYNAMICS 

theory. 
This text describes steady-state thermodynamics primarily in terms of the vector 

23.6 Tensor Theory 
The generalized thermodynamic driving forces and fluxes may also be second-order 

tensors typified by, e. g., stress, strain, and rate of strain tensors. Such tensors would be 
represented by the symbols F or Fi.i, and d or Jkz. The tensor theory encompasses the 
vector theory as a special case, while the vector theory comprises the scalar theory in 
similar fashion. However, the tensor theory is beyond the scope of this text and will 
therefore receive only an occasional mention (cf. e.g., w167 23.7, 26.1, and 26.2). Extension 
to tensors of rank higher than the second does not seem to be required in the theory of 
steady-state thermodynamics. 

23.7 The Curie Symmetry Principle 
In the general case the generalized fluxes of whatever tensorial character are 

functions of all the generalized thermodynamic forces. In a system which is isotropic at 
equilibrium, symmetry considerations restrict these functional dependencies. According to 
P. Curie (1908): 

"Quantities whose tensorial characters differ by an odd number of ranks 
cannot interact m an isotropie medium." 

The principle can be understood as follows. If the thermodynamic forces and fluxes 
are tens, ors of the same rank, the elements of the matrix of phenomenological coefficients 
are scalars which depend on the local state of the medium but in an isotropic medium do not 
depend on the gradients of the intensive parameters. If they are tensors of different rank, the 
phenomenological coefficients are tensors of rank equal to the difference between the ranks 
of these tensors. A phenomenological coefficient which is a tensor of even rank can exist in 
an isotropic mediun~ One of odd rank would, however, cause the medium to be anisotropic 
and therefore cannot exist in an isotropic mediunl 

The Curie principle asserts the absence of cross-effects between scalar and vector 
phenomena in an isotropic medham. Second rank tensors can be separated into spherical and 
deviatoric tensors. The former can be treated as scalars. Cross-effects from the traceless 
deviatoric tensors appear to be weak or non-existent. 

23.8 Phenomenological Equations-POSTULATE VII 
The thermodynamic vector fluxes are linked to the driving forces through second- 

order tensors denoted by L or Lik. The latter are the generalized phenomenological 
coefficients, kinetic coefficients, or thermodynamic conductances or conductivities. The 
interrelations among these quantities are the phenomenological equations. 

Postulate VII states that: 

"The generalized thermodynamic vector fluxes depend on all the 
generalized thermodynamic driving forces through the phenomenological 
coefficients." 
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This is expressed succinctly by the equations 

J = L - F  or Ji = LikFk (23.8) 

where the J or 3"i are the vector fluxes, the F or Fk are the ~ g  forces, and the L or Li~ 
are the phenomenological coefficients linking them. We note that the fluxes and forces are 
related linearly. Invoking a mechanical analogy, Eqs.(23.8) are also called the thermo- 
dynamic equations of  motion. 

23.9 Reciprocity Relations- POSTULATE VIII 
Postulate N i l  asserts that: 

"The phenomenological coefficients are related by the Onsager reciprocity 
relations, Ljk = L~, if  there are no forces determined by a vector product, 
and by Lik(f) = L~(-f) ,  the Onsager-Casimir reciprocity relations, i f  there 
a r e .  

The Onsager-Casimir relations apply in the presence of Coriolis forces (in a rotating 
system) or of Lorentz forces (in a system subjected to centrifugal or magnetic fields). The 
field vector, f, is thus either the angular velocity, to, or the (external) magnetic field, B. 

The statistical mechanical analog of the reciprocity relations is the principle of  
microscopic reversibility. As formulated by T o ~  (1938), it states: 

"Under equifibrium conditions any molecular process and the reverse of  
thatprocess will take place on the creerage at the same rate." 

We had appealed to this principle earlier in w 22.10. 

23.10 The Linear Steady State 
The global equilibrium state is the limiting case of the steady state when the fluxes 

from the environment approach zero, i.e., when the system becomes isolated, ff 

�9 the phenomenological coefficients are time-mvariant (Postulate VI), 
�9 the phenomenological equations are linear (Postulate ~ ) ,  and 
�9 the matrix Lik is symmetrical (Postulate VIII), 

a steady state will be called a linear steady state. 



182 

24. C O U P L E D  L I N E A R  S T E A D Y  S T A T E S  

Linear steady-state thermodynamics truly comes into its own when it considers spontaneous 
vector processes that are coupled, i.e., occur simultaneously and influence each other. Thus, 
that part of non-equilibrium thermodynamics which is the subject of this text might more 
appropriately be called the thermodynamics of coupled linear steady states. This chapter 
lays the groundwork for more detailed considerations to follow in subsequent chapters. 

24.0 Chapter Contents 

24.1 Parallel Concepts in Equilibrium and Steady-State Thermodynamics 
24.2 The Pivotal Functions of Linear Steady-State Thermodynamics 
24.3 Entropy Production and Energy Retention Representation 
24.4 The Phenomenological Equations in the Two Representations 
24.5 Significance of the Phenomenological Coefficients 
24.6 Physical Interpretation of the Phenomenological Cross-Coefficients 
24.7 Simultaneous Flow of Heat and Matter- Thermal Diffusion 

24.1 Parallel Concepts in Equilibrium and Steady-State Thermodynamics 
It is useful to consider certain features in the thermodynamics of coupled linear 

steady states that parallel concepts in equilibrium thermodynamics. While they are not strict 
analogies, these correspondences do help in understanding the formal aspects of linear 
steady-state thermodynamics. Thus, as already asserted in w 23.5, the generalized thermo- 
dynamic vector fluxes, J ,  of the steady-state theory are the time rates of change of the 
extensive parameters of the equilibrium theory, while the generalized thermodynamic vector 
driving forces, F ,  are the gradients of the intensive parameters. 

These corrspondences are brought into relief by comparing the energy and the 
entropy representations of the Euler equation of the equilibrium theory with the energy 
retention and entropy production functions of the steady-state theory. In thermal diffusion, 
where pressure-volume effects are absent, the Euler equation for the energy, Eq.(3.10)4, is 

U = TS + ~~j #jNj ,  (24.1)1 

while that for the entropy, Eq.(3.10)5, takes the form 

1 #j 
(24.1)2 

These equations are seen to parallel those of the energy retention function, 

T = V T .  ds + ~ j V ~ z j - J N ~ ,  (24,1)3 

[cf Eq.(27.3)4], and the entropy production function, 
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#j 
(24.1) 4 

[cf Eq.(27.2)4] of the steady state theory. In these equations d~u is the flux of the jth 
matter species. The fluxes J~T, ds and J~E~ will be derfined in the next chapter.. 

We recognize tha t~as  asserted~the vector products of the gradients of the 
intensive parameters and the fluxes of the extensive parameters in the ~ c t i o n s  T and 
parallel the scalar products of the intensive and extensive parameters in the equations for U 
and S of the equilibrium theory. For more on the subject of parallel concepts in the two 
theories see w167 26.5, 26.6, 27.1, 27.4, and 28.8. 

24.2 The Pivotal Functions of Linear Steady-State Thermodynamics 
In view of the foregoing it should come as no surprise that in the thermodynamics of 

coupled linear systems the entropy production function, ~,, and the energy retention 
fimction, T, assume roles that are somewhat similar to those played by the cardinal 
functions, S, and U, of equilibrium thermodynamics. They assume a pivotal role in Part II 
of this text and will therefore be called the pivotalfimctions of the thermodynamics of the 
linear steady-state. They will be more fully discussed in Chapter 26 and in Sections 27.2 and 
27.3. 

24.3 Entropy Production and Energy Retention Representation 
In Part I of this text we have made extensive use of the entropy and energy 

representations of the fundamental equation. In the thermodynamics of coupled linear 
steady states we employ the parallel concepts of the entropy production and energy 
retention representations to express the generalized fluxes and forces, the pheno- 
menological equations and phenomenological coefficients, as well as the quantities of 
transport (cs Chapter 28), in terms of one or the other of the two pivotal fimctions. 
Although different in form~ the two representations are entirely equivalent (cf w 28.8) just 
as the entropy and energy representations of eqt~brium thermodynamics (cf w 3.1). 

24.4 The Phenomenological Equations in the Two Representations 
In w 23.8 Postulate VII introduced the phenomenological equations J = L - F  

where the J are the vector fuxes, the F are the vector driving forces, and the L are the 
second order tensors formed from the phenomenological coefficients in the entropy 
production representation. To distinguish between this and the energy retention represen- 
tation we write J = A - Z ,  or Ji = AikZk, for the phenomenological equations in the 
energy retention representation, using the symbols/1 and Aik for the phenomenological 
coefficients, and Z and Zk for the vector driving forces. 

24.5 Significance of the Phenomenological Coefficients 
The phenomenological coefficients Lik or Aik in the phenomenological equations 

represent material properties. By the reciprocity relations introduced through Postulate VHI 
the matrices [L~] and [Aik] are symmetrical, i.e., L~k = Lki, and Aik = Aki. 

The cross-coefficients (the off-diagonal elements, Lik~#k) or A~k(j#k)) of the matrices 
may be zero. Thus, if Li~(~#k) -- 0, the thermodynamics of the linear steady-state provides 
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the theoretical fotmdation for such well known empirical relations as Fourier's law of heat 
conduction (w Fick's first law of diffusion (w Ohm's law of electrical 
resistance, and others more. 

In coupled processes the cross-coefficients are not zero. Their numerical values are 
identical but their physical interpretations differ. 

24.6 Physical Interpretation of the Phenomenological Cross-Coefficients 
The ikth phenomenological cross-coefficient in the entropy production repre- 

sentation is the partial derivative of the ith flux with respect to the kth driving force, i.e., 

OJi ] (24.6)1 
Lilt --" - ~ k  x~(n-k) 

It follows from the reciprocity relation, Lilt = Lki, that 

I =Odk] 
OFlt F.(nwk) OFi F.(n+i) 

(24.6)2 

Thus an increase in the flux di elicited by unit increase in the driving force Fk when all other 
forces are held constant, is equal to an increase in the flux Jk elicited by unit increase in the 
driving force Fi. 

In the energy retention representation we have analogously 

I (24.6)3 

and 

OZk Z.(n-tO 
~ I (24.6)4 
OZ~ z.<.+o 

Equations (24.6)2 and (24.6)4 exhibit formal analogies with the Maxwell relations of 
equilibrium thermodynamics [cf Eq.(A2.2)62 ]. 

24.7 Simultaneous Flow of Heat and M a t t e r -  Thermal Diffusion 
In w 1.2 we defined thermodynamics as the science of heat as a special form of 

energy exchange. Non-equilibrium thermodynamics is therefore concerned with processes in 
which a heat flux is coupled with one or more other fluxes. Among these other fluxes a 
matter flux is probably didactically the most useful to discuss. The text will therefore 
concentrate on the steady-state thermodynamics of a simultaneous flow of heat and matter 
(i.e., thermal diffusion). 
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The simultaneous flow of heat and matter (see Chapters 25, 27, and 28) is 
characterized by two fluxes. In the entropy production representation the two fluxes are the 
energy flux, Ju,  and the mass-action flux, ~s.  In the energy retention representation the 
two fluxes are the entropy flux, ,Is, and again the mass-action flux, JM. The latter is defined 
in ~ 27.1. J~- and Js  appear in these formulations because, as has been pointed out in 
w 2.10, a matter flux always carries with it a certain amount of energy, and it also carries 
along entropy. 
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25. E N T R O P Y  P R O D U C T I O N  IN T H E  S T E A D Y  S T A T E  

The preceding chapter introduced the notion of the two pivotal functions of steady-state 
thermodynamics, the entropy production function, ~, and the energy retention function, T, 
without as yet having addressed the underlying issue of the production of entropy in the 
steady state. This issue, as stated in the introduction to Chapter 23, is the basic problem of 
the thermodynamics of irreversible processes, and thus also of the thermodynamics of 
coupled linear steady states. In accordance with w 24.7 the present chapter therefore 
considers the rate at which entropy is produced in a simultaneous flow of matter and heat. 
To do this, we first establish the equations of continuity for the energy, for the matter, and 
for the entropy, in a region small enough to be in local equi#brium (Postulate VI). The 
continuity equation for the entropy yields the rate of entropy production per unit volume in 
the region. Integration over all regions then furnishes the global rate of entropy production, 
O. The entropy production function is then obtained simply by dividing O by the volume, 

V, since �9 is the rate at which entropy is produced per unit time and unit volume 
(cf w 22.6). 

25.0 Chapter Contents 

25.1 The Gibbs Equation for Simultaneous Matter and Heat Flow 
25.2 The Continuity Equation for the Energy 
25.3 The Continuity Equation for the Matter 
25.4 The Continuity Equation for the Entropy 
25.5 The Rate of Entropy Production 

25.1 The Gibbs Equation for Simultaneous Matter and Heat Flow 
The starting point in our presentation of the steady-state thermodynamics of a 

simultaneous flow of matter and heat is the Gibbs equation, the differential form of the 
fundamental equation. Consider a system consisting of a fluid mixture contained in a vessel 
of fixed volume, V The walls of the vessel are diathermal and permeable to the jth matter 
species. The Gibbs equation in the entropy representation, Eq.(3.9)2, 

1 P # J d N j ,  (25.1)1 

is reduced, in view- of the fixed volume, to 

1 v--, #j 
(25.1)2 

where s = S / N ,  u = U / N ,  and cj = N j / N .  
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In the energy representation the Gibbs equation becomes 

du = T d s  + Z j l . z j d c j  . (25.1)3 

Equations (25)2 and (25.1)3 are molar forms ofthe Gibbs equation (cf w 14.3). 

25.2 The Continuity Equation for the Energ T 
We now establish the equation of continuity for the energy. Let R be a region within 

the vessel with volume, r and surface, or. We consider this volume to be small enough so 
that it is in local equilibrium (Postulate VI). If dv is an elemental volume in R, the total 
internal energy in the region is fo u du. The rate at which the internal energy changes in the 

region R equals the ra te  at which energy enters or leaves R across its surface, a. 
Introducing the energy flux, energy f l o w  vectoi; or energy current density, J u ,  as the 
amount of energy crossing unit area in unit time, we have 

- -d-~d v = J u  " d a  (25.2)1 

where da  is an elemental vector area of the surface, cr, and the flow vector is defined as 
positive for outward flow. Thus, Eq.(25.2 h expresses the fact that the energy within the 
region R decreases when the matter flows from the inside to the outside of the region. 
Now, by the divergence theorem, 

f Jc~ �9 da = fo ~7. J u d v ,  (25.2)2 

and, therefore, 

-d-~ + V . Yv )  d v =  O. (25.2)3 

But this is true for an arbitrary volume, dr. Consequently, the continuity equation for the 
energy becomes 

du 
d-t- q- ~ '  " J v  = O. (25.2)4 

The first term on the left represents the increase in the energy in the region R per trait time. 
The second term represents the rate of outflow of the energy from the region per unit area 



188 U. STEADY-STATE THERMODYNAMICS 

of surface in an exchange with the surroundings. According to Eq.(25.2)4 the sum of the 
two terms is zero. The equation thus expresses the conservation o f  energy (cf. w 2.4). 

25.3 The Continuity Equation for the Matter 
The amount of the jth species of matter in R is f0cj dv. We introduce the matter 

flux, matter f low vector, or matter current density, JN~, of the jth species as the number of 
moles of j ,  Nj, entering or leaving R across unit area of its surface, a, in unit time. Here 
also, the flow vector is defined as positive for outward flow. Hence, we have 

fo - -  - -d- (  d v  = JN.~ " da . (2S.3)1 

Again invoking the divergence theorem, the continuity equation for the jth species 
of matter results as 

dc~ 
+ gr .  J~3 = O. (25.3)2 

dt 

The first term on the left represents the increase in the matter contained in the region R per 
unit time. The second term represents the rate of outflow of matter from the region per unit 
area of surface in an exchange with the surroundings. By Eq.(25.3)2 the sum of the two 
terms is zero. The equation thus expresses the conservation o f  matter. 

25.4 The Continuity Equation for the Entropy 
We are now ready to calculate the local rate of change of the entropy, i.e., the rate 

of entropy production in the local region R. By Eq.(25.1)2 

d s _  du ~ #jdcj (25.4)1 
dt Td t  z..~j Td t  " 

Substituting from Eqs. (25.2)4 and (25.3)2 gives 

ds ~ V  #J 
dt - T . du + E j - ~  V . dx,  . (25.4)2 

But, if A is a scalar, and A is a vector, then 

~ v .  A = v .  ( ~ A ) -  A-  v ~ .  (25.4)3 

Making use of this identity in both terms on the right hand side of Eq.(25.4)2, and 
introducing the entropy flux, entropy flow vector, or entropy current densi~, 
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= 

we obtain 

(25.4)4 

ds (1  # j )  ." 
+ �9 ( , 4 ) ,  

This equation is the equation of continuity for the entropy in the region R. The first 
term on the left represents the increase of the entropy per-atilt time. The second term 
represents the rate of outflow of the entropy per unit area of surface in an exchange with 
the surroundings. The sum of these two terms is not zero. Hence, the entropy in the region 
R is not conserved. The right hand side represents the rate of production, generation, or 
creation of entropy in ~ e  region R per-trait volume in unit time, i.e., the entropy production 
function, ~. We thus have 

d3 
+ V . . I s  = ~ (25.4)6 

dt 

where 

(25.4)7 

is the entropy produced per trait time and unit volume. Since this does not vanish, 
Eq.(25.4)6 expresses the non-conservation o f  the entropy {cf. w 2.17). 

25.5 The Rate of Entropy Production 
So far we have examined the situation in a region R of the total volume m a ~ g  use 

of the postulate of local equilibrium (Postulate VI). The global relations are obtained simply 
by integrating over all regions. Integrating Eq.(25.4)5 over unit volume, V, and using the 
divergence theorem, we find 

d--t s dv + Js  �9 da = ~ dv = O.  (25.5) 

The fight hand side of this equation is the rate o f  entropy production, O. ~ the vessel is 
isolated, the second integral on the left hand side vanishes. The first integral is thus seen to 
represent the entropy generated within the vessel per unit time, diS~dr. By Eq.(25.4)5 this 
vanishes when the gradients of the temperature and of the chemical potentials vanish, i.e., at 
equilibrium. 
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26. T H E  P I V O T A L  F U N C T I O N S  

Section 24.2 referred to the entropy production function, ~, and the energy retention 
function, T, as the pivotal functions of the theory of coupled linear steady-state thermo- 
dynamics. These functions had first been introduced in w167 22.6 and 22.7 in the framework 
of the scalar theory. We now extend their definition and meaning in some generality to the 
vector and tensor theories and elaborate some of their salient features. 

26.0 Chapter Contents 

26.1 The Entropy Production Function 
26.2 The Energy Retention Function 
26.3 The Energy Dissipation Function 
26.4 Determination of the Amount of Entropy Produced, 

or Energy Retained or Dissipated 
26.5 Conjugate Fluxes and Driving Forces 
26.6 Non-Uniqueness of the Pivotal Functions 
26.7 Transformation of Vector Fluxes and Driving Forces 
26.8 Comparison between the Pivotal and Cardinal Functions 

26.1 The Entropy Production Function 
The entropy production function is the sum of the products of the thermodynamic 

fluxes and their conjugate driving forces. If tensorial cross-effects are negligible, the Curie 
symmetry principle allows us to extend our earlier definition of the entropy production 
function, ~, as one of the two pivotal functions of steady-state thermodynamics to include 
scalar, vector, and tensor quantities alike. In the most general case, then, the entropy 
production fimction becomes 

+ +Sty ,  a ,  (26.1)1 

where the subscripts s, v, and t refer to the number of scalar, vector, and tensor pairs of 
variables. We shall call F, F, and F the thermodynamic driving forces in the entropy 
production representation. The entropy production function, ~, is positive definite quantity 
(of. w 22.6).. 

Equation (26.1)1 represents the most general case. When considering vector 
processes only, the entropy production function becomes simply 

= Zv/7'v " Jv > 0 (26.1)2 

where the thermodynamic flow vectors, Jv, are the fluxes of the appropriate extensive 
parameters, while the vector driving forces,/;'v, are the gradients, V/v, of the conjugate 
intensive parameters in the entropy representation. 
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26.2 The Energy Retention Function 
In eqt~brium thermodynamics the relation I~ = - Y k / T  [cf. Eq.(3.5)~] links the 

intensive parameters of the physical work and mass action terms in the entropy 
representation to those in the energy representation. In linear steady-state theory we may 
similarly let 

F~ = - Z d T ,  Fv = - Z v / T ,  Ft = - Z t / T  . (26.2)~ 

Introducing these relations into Eq.(26.1)l, multiplying by T, and taking the negative 
inverse, we obtain the most general form of the energy r e t en t i on f imc t ion  as 

(26.2)2 

where the subscripts s, v, and t again refer to the number of scalar, vector, and tensor pairs 
of variables. The driving forces, Z, Z,  and Z, will  be called the thermodynamic ~ g  
forces in the energy retention representation. The energy retention ~ c t i o n ,  T, is negative 
definite quantity (cf. w 22.7). 

When considering vector processes only, the energy retention function becomes 

T = ~ v Z V -  Jv < 0. (26.2)3 

In this fimction the thermodynamic flow vectors, Jv, are again the fluxes of the appropriate 
extensive parameters while the vector forces, gv, are the gradients of the conjugate 
intensive parameters in the energy representation, X7Y~. 

26.3 The Energy Dissipation Function 
The negative inverse of the general form of the energy retention function 

(26.3) 

yields the general form of the energy  diss ipat ion funct ion ,  or just the diss ipat ion funct ion .  

This function has the same dimensions as the energy retention fimction and is positive 
definite (cf. w 22.7).. 

26.4 Determination of the Amount of Entropy Produced, or Energy Retained or 
Dissipated 

It is one of the noteworthy features of the linear steady state that in this state, #, the 
amount of entropy produced, as well as T or ~', the amount of energy retained or dissipated 
per unit volume in unit time, can be calculated from the equations fisted in w167 26.1 and 26.2 
if the fluxes and driving forces are measured. 
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26.5 Conjugate Generalized Fluxes and Driving Forces 
As is obvious from Eq.(26.1 )1, the scalar products of Js and Fs, the contractions of 

Jv and Fv, and the double contractions of J t  and Ft have the dimensions (entropy per unit 
time and unit volume) of ~, the entropy production function. They therefore constitute 
colyugate pairs of variables just like the parameters Ij and Xj in the entropy representation. 

Similarly, by Eq.(26.2~, the scalar products of 3"s and 2~, the contractions of ,Iv and 
Zv, and the double contractions of J t  and Zt have the dimensions (energy per unit time and 
unit volume) of T, the energy retention function. They thus also form cotyugate pairs of 
variables as do the parameters Y) and Xj in the energy representation. 

26.6 Non-Uniqueness of the Entropy Production and Energy Retention Functions 
Neither the entropy production function, nor the energy retention function are 

determined uniquely. It suffices that the products of whatever are chosen as the generalized 
fluxes and driving forces have the dimensions of entropy per unit time per unit volume [~], 
and energy per unit time per unit volume [T], respectively 

In dealing with vector fluxes and driving forces we thus must have 

= ~ v J ~  - F~ = ~-~vJ~- F~ (26.6)1 

and 

(26.6)2 

where the Jr' and F~, and the Jv t and Z~ are alternative pairs of conjugate vector fluxes and 
driving forces. 

26.7 Transformation of Vector Fluxes and Driving Forces 
It is often desirable to select an alternative pair of vector fluxes and driving forces 

Examples of this occur in w167 287 and 2 8 9  A transformation of fluxes will usually take the 
form 

d~' = dl - I  J2 and d~ = ,12 (26.7)1 

where I is an intensive variable such as, e.g., T, P,  #, or u, h, etc. The variable [ must be 
chosen so that the equations are dimensionally correct. 

Because of the constraint imposed by Eq.(26.6)1, these transformations require that 
the driving forces in the entropy production representation become 

F(  = F1 and F~ = F2 + I Fj (26.7)2 

when the fluxes and driving forces are selected as products of ~. When they are chosen as 
products of T, the driving forces in the energy retention representation must take the form 
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Z[ = Z1 and Z~ = Zz + I Zl (26.7)3 

because of the constraint imposed now by Eq.(26.6)2. 
The same equations can be used for the transformation of the driving forces. We 

then start either from Eq.(26.7)2 or from Eq.(26.7)3, and require Eq.(26.6)2. 

26.8 Comparison between the Pivotal and the Cardinal Functions 
In w 24.1 we co~ared  the pivotal fimctions of the Lear  steady-state theory with 

the cardinal functions of the equilibrium theory. We now amplify this comparison. 
Equation (26.1)2, 

= }-~jFj- J j ,  (26.8)i 

the entropy production function, ~, may be compared with Eq.(3.10)3, the entropy 
function, 

S -  E j I j X j .  (26.8)2 

In like manner, Eq.(26.2)3, 

T = E j Z j .  J j ,  (26.8)3 

for the energy retention function, T, bears comparison with Eq.(3.10)3, the energy fimction, 

U = E iYjXj. (26.8)4 

Clearly, the pivotal functions and the cardinal functions are formally analogous in that ~3 and 
S, and T and U, both consist of the algebraic sums of the products of pairs of conjugate 
variables. In equilibrium thermodynamics S is the sum of products of the intensive 
parameters I and the extensive parameters X while U is the sum of products of the 
intensive parameters Y and again the extensive parameters X. In steady-state thermo- 
dynamics �9 is the sum of products of the generalized forces F, F, and F and the generalized 
fluxes J, J ,  and J while T is the sum of products of the generalized forces Z, Z,  and Z and 
again the generalized fluxes J,  J ,  and J. We note, however, that while S and U are 
themselves extensive parameters, ~ and T are not generalized fluxes, and neither are they 
equations of state. 

Furthermore, while the pairs of conjugate extensive and intensive parameters that 
compose the cardinal functions are unique, the pairs of conjugate generalized fluxes and 
generalized driving forces are not. Herein lies another difference between the energy and 
entropy representations of equilibrium thermodynamics, and the energy retention and 
entropy production representation of steady-state thermodynamics. 
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27. M A T T E R  A N D  H E A T  F L O W  

In w 24.1 we had already presented the expressions for the pivotal functions, the entropy 
production function, #, and the energy retention function, T, in a simultaneous flow of 
matter and of heat at constant volume, i.e., in thermal diffusion (w 24.7)without formally 
deriving them. We now proceed to do just that. This requires first of all the introduction of 
two new vectors, the first expressing the heat flux, the second the mass-action flux. We then 
establish the phenomenological equations in simultaneous heat and matter flow and define 
the Dufour and the Soret effects from the phenomenological cross coefficients. Finally, we 
relate the heat flux to FourielJs Law of Heat Conduction, and the mass-action flux to Fick's 
First Law of Diffusion. 

27.0 Chapter Contents 

27.1 Heat Flux and Mass-Action Flux 
27.2 The Entropy Production Function in Simultaneous Matter and Heat Flow 
27.3 The Energy Retention Function in Simultaneous Matter and Heat Flow 
27.4 Relation between the Entropy Production and the Energy Retention Function 
27.5 The Phenomenological Equations in the Entropy Production Representation 
27.6 The Phenomenological Equations in the Energy Retention Representation 
27.7 The Phenomenological Coefficients in Simultaneous Matter and Heat F low-  

The Dufour and Soret Effects 
27.8 The Phenomenological Coefficients in Pure Heat and Pure Matter Flow 
27.9 Fourier's Law of Heat Conduction 
27.10 Fick's First Law of Diffusion 

27.1 Heat Hux and Mass-Action Hux 
We introduce the heat flux, heat flow vector, or heat current density, dO, through 

the equation 

do. = T d s  (27.1)1 

where ,Is is the entropy flux introduced in w 25.4. 
We analogously define a mass-action flux, mass-action flow vector, or mass-action 

current density, 

d,~s = S j # j d _ %  (27.1)2 

where ~v, is the matter flux introduced in w 25.3. 
The energy flux, ,Iv, then follows as 
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(27.1)3 

This equation can be viewed in the fight of Eq.(2.6)l which expresses the conservation of 
energy in equilibrium thermodynamics. At constant volume the work term in that equation 
is zero and the equation becomes 

zxu = Q + M = T ~ S  + ~ j # j  A~,~. (27.1)4 

Comparison of the last two equations shows that the fluxes Ju, JQ, and JM may be viewed 
in some sense as the steady-state equivalents of the equilibrium quantities AU, Q, and M. 

27.2 The Entropy Production Function in Simultaneous Matter and Heat Flow 
In simultaneous matter and heat flow the entropy production ~c t ion ,  ~, is 

characterized by the energy flux, Ju,  and the mass-action flux, JM (Cf w 27.1). It is 
therefore given by 

where 

~ =  F ~ .  ,.r~ + F M - J M  = F ~ -  J~ + ~ j F ~  - S~  (27.2)1 

1 

is the driving force for the energy flux, while FM is the driving force for the mass-action 
flux, both forces being formulated in the entropy production representation. For the latter 
flux we have JM = Ejt-tjJNj, and thus FM = ~'~jFN2, where JN~ is the flux of the jth 
species of matter, driven by 

#J) (27.2)3 F ~ , ~ = - V ~ -  . 

We thus have 

#j 
(27.2)4 

which should be con~ared with Eq.(25.4)7. 
The driving forces in the entropy production representation, Fu,  the thermal 

driving force, and F~3, the jth diffusional driving force, are recognized as the gradients of 
the intensive parameters in the entropy representation. We see Eq.(27.2)1 as a particular 
instance of Eq.(26.1)2. 
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27.3 The Energy Retention Function in Simultaneous Matter and Heat Flow 
In simultaneous matter and heat flow the energy retention function, T, is a function 

ofthe entropy flux, ,Is, and the mass-action flux, J u  (cf w 27.1). It is thus given by 

r = z s .  Js + Z,~. s.,~ = z s .  Ss + ~ z ~ . J ~  (27.3h 

where 

Z s  = V T (27.3)2 

is the driving force for the entropy flux, while ZM is the driving force for the mass-action 
flux, both these forces being formulated in the energy retention representation. The latter 
flux, JM, is still the same, and we now have ZM = ~-~jZ~3 where J ~ ,  the flux of the jth 

species of matter, is driven by 

Z:\-,-- V ~ j .  (27.3)3 

Thus we finally have 

T = v T .  Js + ~ j V ~ j .  Jx, .  (27.3)4 

The two driving forces in the energy retention representation, the thermal driving force, 
g s ,  and the j th diffitsiotml driving force, ZN,, are recognized as the gradients of the 
intensive parameters in the energy representation. We recognize Eq.(27.3h as a particular 
instance of Eq.(26.2)3. 

27.4 Relation between the Entropy Production and the Energy Retention Function 
The relation between the entropy production function and the energy retention 

ftmction follows from Eqs.(26.2)2 as 

T = - T,~. (27.4)1 

To formally derive this relation we apply Eq.(27.4)t to the case of the simultaneous flow of 
heat and--for simplicity and without loss of generality--the flow of a single species of 
matter. By Eqs.(27.2)l and (27.3)1 we then have 

and 

But 

�9 = F c  - Y v  + ~ v -  J v  

T =  Z s  " J s - + - Z N "  JN . 

(27.4)2 

(27.4)3 



27. MATTER AND HEAT FLOW 197 

while 

(1_) 
Fu = V T = - T- 7VT 

# )  i # 

(27.4)4 

(27.4)5 

and therefore 

i I # 
+ = - T--{V T" Ju - i=Vi~" ,IN + .t ~m-~VT" JN. (27.4)6 

Substitution ofEq.(27.1)3, tha t  is, J u  - -  T J s  + #JN, then yields 

1 1 
+ = - :VT. Js - =V~. J~v ,  

2 i 
(27.4)7 

and application of Eq.(27.4)l leads to 

T =  - T~ = V T. Js + V I~ . JN . (27.4)s 

But this is Eq.(27.4 h since V T  = Zs  and V #  = ZN. 
We remark that the relation T = - T #  between the two pivotal functions paranels 

the relation U = - T S  between the cardinal functions [cf Eq.(3.10)~]. 

27.5 The Phenomenological Equations in the Entropy Production Representation 
The simultaneous flow of matter and heat is a typical instance of the occurrence of 

two coupled processes. Accordingly, the phenomenological equations enjoined by Postulate 
VII contain cross-coefficients between the heat flux and the matt~ flax. Since in the 
entropy production representation the two fluxes are the energy flux, Ju, ~ d  the mass- 
action flux, JM, the phenomenological equations take the form 

Ju = L u u Fu + E k L U N~ F~% (27.5)1 

for the former, and 

(27.5)2 

for the latter. Equation (27.,5)i expresses the energy flux as the sum of the energy 
transported as heat (a pure heat flow) and the energy transported by the diffusing particles 
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of the fluid (a pure matter flow). Energy depends on temperature. Hence, in Eq.(27.5)2, the 
matter flux depends on the thermal as well as the di~sional driving force. 

27.6 The Phenomenological Equations in the Energy Retention Representation 
In the energy retention representation of a simultaneous matter and heat flow the 

energy flux is replaced by the entropy flux, 

�9 Is = A s s Z s  + ~-~k Asx;Zx~ ' (27.6)1 

and the mass-action flux becomes 

(27.6)2 

In analogy to Eq.(27.5)1, Eq.(27.6)1 expresses the entropy flow as the sum of the entropies 
associated with the flow of heat and with the diffusion of the particles of the fluid. Similarly, 
Eq.(27.6)2 shows that the matter flux again depends on the thermal as well as the 
diffusional driving force. 

27.7 The Phenomenological Coefficients in Simultaneous Matter and Heat F l o w -  
The Dufour and Soret Effects 

In a simultaneous flow of  matter and heat it is the cross-coefficients that are of  
interest. In the entropy production representation the cross-coefficient LUN: represents the 
tendency of the jth diffiasional driving force, /~%, to give rise to a flow of energy and is 
referred to as the Dufour effect. Its twin, Li~)u, represents the tendency of the thermal 
driving force, Fu, to give rise to a flow of the jth species of matter and is called the Soret 
effect or the thermal diffusion effect. 

Similarly, in the energy retention representation AZN, represents the tendency of the 
jth chemical potential gradient, gnu, to give rise to an entropy flux, while AN~s represents 
the tendency of the temperature gradient, Zz,  to give rise to a flow of the jth species of 
matter. 

By Postulate VIII, Lucy; = L~vx~ and AsN~ = A ~ z .  The reciprocity relations assert 
that the intensities of both tendencies are identical. 

27.8 The Phenomenological Coefficients in Pure Heat and Pure Matter Flow 
Let us now focus attention on Luu and L,~)~), the two same-index coefficients in 

the entropy production representation. In the absence of matter flow (i.e., when the 
chemical potential gradients vanish), Eq.(27.2)1 becomes 

(27.8)1 

The entropy production is then seen to be the result of a pure heat flow, Jo,  driven by F o, 
the thermal driving force. 
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On the other hand, when the temperature gradient v ~ s h e s  (i.e., at constant 
temperature), we find 

(27.8)2 

In that case the entropy production is seen to result from JM = ~ j  JN~, i.e., from a pure 
matter flow (diffusion). 

We now proceed to analyze the meaning of first Z, vu. and then LN/V~. 

27.9 Fourier's Law of Heat Conduction 
For a pure heat flow the second term in Eq.(27.5)1 vanishes and the pheno- 

menological equation for the pure heat flow in the entropy production representation may 
be written as 

I, QQ 
T2 V T  (27.9)1 

where we have let L i u - - L Q Q .  Comparing this with the e~if ical  relation known as 
Fourier's law o f  heat cot~uction 

JQ -- - ~ V T ,  (27.9)2 

we see immediately that 

LOQ -- KT 2. (27.9)3 

This relates the phenomenological coefficient LQQ to  the material property ~ known as the 
thermal cot~uctivity. 

27.10 Fick's First Law of ~ f fus ion  
Just as the phenomenological coefficient LQQ can be related to the thermal 

conductivity, the phenomenological coefficient L~,~) can be related to the material property 
known as the coefficient o f  diffusion. 

The phenomenological equation for a pure matter flow of the jth species of matter is 

LN~N~ V#j. (27.10)1 JN~ = LNj~F~) = T 

The second equation follows from Eq.(27.2)3 because T is constant. Introducing the 
concentration of the jth species, cj ,  we find 
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JNj= LNjNj i)l'ZJ ! ~ '  Cj . 

T Ocj T,P 
(27.10)~ 

Now, by Eq.(14.7) 

* T  # j = # j (  , P ) - R T / n c  + R T l n c j ,  (27.10)3 

since n--j = c j / c  where c is the total concentration. Thus, at constant c, 

Ocj T,P 

RT 
-- , (27.10)4 

ej 

and, therefore, 

LN~N~R 
Jx~ = " " V c  2 . (27.10)5 

cj 

We can now give meaning to the phenomenological coefficient L~3~v~ in terms of the 
empirical relation known as Fick's f irs t  law o f  diffitsion 

d~:, = - D j V c j  . (27.10)6 

Comparing the last two equations we  see immediately that 

LN~N:: = Djc j /R.  (27.10)7 

This expression relates the jth phenomenological coefficient to the material property known 
as the diffusion coefficient, Dj, of the jth species of matter. 
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28. T H E  Q U A N T I T I E S  O F  T R A N S P O R T  

Chapter 27 discussed simultaneous matter and heat flow. We now examine a particular case 
of such a flow, the case of themlal migration through a barrier. This ~ 1  lead us to 
recognize three specifically non-equilibrium quantities called qucmtities of transport. They 
are: the entropy of transport, the energy of transport, and the heat of transport. The latter 
is a true thermodynamic quantity which can be determined by calorimetric measurements in 
steady-state migration. 

28.0 Chapter Contents 

28.1 
28.2 
28.3 
28.4 
28.5 
28.6 
28.7 
28.8 

28.9 

Thermal Migration through a Barrier 
The Phenomenological Equations in the Entropy Production Representation 
The Phenomenological Equations in the Energy Retention Representation 
The Entropy of Transport 
The Energy of Transport 
Interrelation between the Entropy and Energy of Transport 
The Entropy of Transport by an Alternative Method 
Equivalence of the Entropy Production and Energy Retention 
Representations 
The Heat of Transport 

28.10 Meaning of the Heat of Transport 

28.1 Thermal Migration through a Barrier 
Consider the system represented schematically in the figure below. 

Fig. 28.1 Thermal migration through a barrier 
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Two vessels containing a single-component fluid are connected via a barrier that 
may be, e.g., a porous plate, a membrane, or a capillary. The two vessels are not at the same 
temperature or pressure. In each vessel the temperature and pressure is maintained constant 
by coupling the vessel with its own heat reservoir, H ~  and reversible work source, RWS. 
Thus, the temperature and pressure differences, AT and AP,  are constant in any given case 
but may vary from case to case. To simplify matters, we consider flow through the barrier 
only in the z-direction. 

The barrier is considered to be of infinitesimal thickness, dx. This allows us to 
dispense with an analysis of any processes that might occur inside the barrier itself They 
may be deemed negligible without prejudicing the main conclusions we wish to draw from 
our thought experiment. 

Two subsystems connected by an infinitesimal barrier represent a discrete composite 
system By contrast, in Chapter 27 we considered continuous systems. In a discrete system 
we may replace the gradients of the intensive parameters by their differences. The fluxes and 
the driving forces will be the x-components, dx and Fx, of the vectors, d and F .  The V- 
and z-components are deemed to vanish. We write the z-components simply as d and F, 
omitting the subscript for convenience. Thus, e.g., the x-component of the energy flux, du, 
will be written Ju,  not Ju~. 

28.2 The Phenomenological Equations in the Entropy Production Representation 
In the entropy production representation the fluxes are the energy flux, Ju, and the 

matter flux, J~. These are driven by the conjugate discontinuous driving forces 

~-'5: = /~ (T)  and .F' N = A ( -  T)  (28"2)1 

[cf. Eqs.(27.2)2 and (27.2)3]. The first is the thermal the second the diffusional, driving 
force. 

In analogy to Eq.(27.2h the entropy production function becomes 

i.e., 

q5 = Ju Fu + JN J x ,  (28.2)2 

4' = Ju A(1 IT) + J i  A( -- # / T ) ,  (28.2)3 

and, by Postulate VII, the phenomenological equations become 

and 

Ju : Luu Fu + LUN FN (28.2)4 

JN = LNuFu + L x x F v .  (28.2)5 
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Equation (28.2)4 expresses the energy flux as the sum of the energy transported as heat and 
the energy transported by the diffusing particles of the fluid. Equation (28.2)5 states that 
only particles with sufficient energy (in excess of the average energy o f ~ e  bulk fltfid), can 
pass the barrier. Energy depends on temperature. Hence, the matter flux depends on the 
thermal as well as the diffusional dri~c~g force. 

The cross coefficient LNU represents the tendency of the thermal dri~4ng force, 
A(1/T),  to give rise to a flow of matter. Similarly, LUN represents the tendency of the 
diffusional driving force, A( - # / T ) ,  to give rise to a flow of energy. By Postulate V ~ ,  
L u x  = L xu .  While the two cross coefficients are identical, their physical interpretations 
are different (of. w 27.7). 

28.3 The Phenomenological Equations in the Energy Retention Representation 
In the energy retention representation the fluxes become the entropy flux, ors, and 

the matter flu~ JN, and these will be driven by the conjugate discontinuous driving forces 

Zs  = AT and Zx = A ~ ,  (28.3)1 

[cf. Eqs.(27.3)2 and (27.3)3]. Zs and ZN are again the therntal and the diffusional driving 
forces. 

In analogy to Eq.(27.3)1 the energy retention function becomes 

i.e., 

T = J s Z s  + J N Z N ,  (28.3)2 

T = J s A T  + J N A # .  (28.3~ 

With the phenomenological coefficients, AKL, the phenomenological equations now 
become 

and 

Js  -- A s s  Zs  q - A s N Z N  

~,~ = ANS ZS + ANN Z:V . 

(28.3)4 

(28.3)5 

Again, Az:v = ANZ by Postulate VIH although the two cross coefficients have different 
physical interpretations (cf. w 27.7). 

28.4 The Entropy of Transport 
We now make use of the phenomenological equations in the energy retention 

representation to derive the first of the quantities of transport. Consider isothermal 
diffusion. Because AT = 0, the thermal driving force, Zs  = A T ,  vanishes and Eqs. (28.3)4 
and (28.3)5 yield 
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ASN 
�9 Is -- JN = S * J N .  (28.4) 

Since Js  is the entropy flow vector while Jlv is the matter flow vector, s* is the entropy 
transported per mole of matter at constant temperature and is therefore called the entropy 

o f  transport. 

28.5 The Energy of Transport 
The phenomenological equations in the entropy production representation ~ s h  

the second of the quantities of transport. Again we consider isothermal diffusion. Because 
we now have A(1/T) = 0, the thermal driving force, Fu = A ( I / T ) ,  again vanishes and 
Eqs. (28.2)4 and (28.2)5 yield 

Ju - -  LtT:,~- J N  = u * J N  (28.5) 
LNN 

where u* is the energy transported per mole of matter at constant temperature and is 
therefore called the energy o f  transport. 

28.6 Interrelation between the Entropy and Energy of Transport 
Consider the isothermal transport of a single matter species. By Eq.(27.1)3 the 

energy flux is Ju = JQ + JM where du is given by Eq.(28.5), and JM = #JN. The heat 
flux thus becomes 

JQ -- (u* - # )JN  . (28.6)1 

But dO = T J s  by Eqs. (27.1)1. Thus, using Eq.(28.5) yields 

']O -- T a * J N .  (28.6)2 

Equating the two relations then furnishes 

u* = Ts* + # ,  (28.6)3 

and this establishes the link between the energy and entropy of transport. 

28.7 The Entropy of Transport by an Alternative Method 
In w 28.4 we have derived the entropy of transport from the phenomenological 

equations in the energy retention representation. We now demonstrate the use of a 
transformation of vector fluxes and driving forces (cf. w 26.7) to derive it from the pheno- 
menological equations in the entropy production representation. We write these as 
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and 

J~ = Luu F[~ + LUN F~V 

~ -- L u N F[r + L u N FI~r 

(28.7)i 

(28.7}2 

[cf. Eqs.(27.5)l and (27.5)2]. 
To derive the entropy of tran~ort from these equations we transform them using 

Eqs.(26.7)l and (26.7}2. The first task is the selection of the transformationvariable, I. By 
Eq.(27.1)3, du = ,Is + # N  and this suggests the use of # for I. Thus, we obtain 

J~T = J u  - #JN and ~ = JN (28.7)3 

for the transformation of the fluxes, and 

F{~ = Fu and F:~ = FN + # F u ,  (28.7h 

for that of the forces. Substituting these equations into Eqs.(28.7)land (28.7)2 yields the 
transformed phenomenological equations in the entropy production representation as 

Jv --/.z~v = (Luu+#LuN)Fu + LuNFN (28.7)5 

and 

J,:v = (L~vu+#LNN)Fu + LNNFN (28.7)6 

in terms of Ju and J,.v. Now, in isothermal diffusion the thermal driving force, Fu, v~shes  
and we obtain 

LuN ) 
Ju = L NN + /'t JN. (28.7)7 

But Ju = u* ,]iv by Eq.(28.5). Hence, 

LUN 
LNN 

- - u * - - # ,  (28.7)8 

and, by the discrete composite system analog ofEq.(25.4)4, 
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1 # 
Js  = -~ Ju - -~ JN . (28.7)9 

Using Eq.(28.5) again, we find 

J s = - ~  u - - - ~ J N  = u * - -  # ,.IN. (28.7)10 
T 

But u * - #  = Ts*  by Eq.(28.6)3.Hence, we recover Eq.(28.4) for the entropy of 
transport. 

28.8 Equivalence of the Entropy Production and Energy Retention Representations 
We had first derived the expression for the entropy of transport, Jz, from the 

phenomenological equations in the energy retention representation, Eqs.(28.3)4 and (28.3)s. 
In the preceding section we derived ,Is from the phenomenological equations in the entropy 
production representation, Eqs.(28.Th and (28.7)2. Thus, as it should, the same result is 
obtained, regardless of the representation selected. This served to demonstrate the 
equivalence of the representations by the pivotal equations of linear steady-state thermo- 
dynamics and parallels the equivalence of the representations by the cardinal equations of 
the equilibrium theory (el. w 3.1 ). 

28.9 The Heat of Transport 
Let us now make another transformation based on the entropy production 

representation. Since we are seeking an expression for the transport quantity called the heat 
of transport, let the transformation variable I be h, the molar enthalpy of the fluid. The 
transformations become 

and 

J~5 = Ju - h J:v and J~ = JN (28-9h 

F[~ = Fu and F:~+ = FN + h F u .  (28.9)2 

With these substitutions for the driving forces the phenomenological equations take the 
form 

and 

Jg~ = (Luu  + h Lu:v+ ) Fu + Lu:v F:~ 

J~  = (LNu + h LNN) Fu + L:v:v FN . 

(28.9)3 

(28.9)4 

When the temperature is constant, Fu again vanishes and we obtain 
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Jg~ - L U N  J ~  
- -  . 

L N N  
(28.9)5 

But 3"{~ = J u  - h J N  by the first of  Eqs.(28.9)l and J u  = U * J N  by Eq.(28.5)so that 

and 

LUN 

L N N  
-- u * -  h (28.9)6 

J~- = (u* - h) J ~ .  (28.9)7 

The quantity 

q* = u* - h (28.9)8 

is the hea t  o f  transport.  We proceed to examine its meaning. 

28.10 Meaning of the Heat of Transport 
Consider an isothermal transfer of  d N  moles of  fluid from Vessel I to Vessel II in 

Fig. 28.1. By definition, the energy flow is u * d N  and this would be energy lost from Vessel 
I if no other process took place. However, Vessel I is maintained at constant temperature, 
T, by the absorption of  the heat 5Q HR-I from the heat reservoir I, and at constant press~are, 
P ,  by the performance of  the work 6W Rws-X on the system by the reversible work source I. 
Hence, 

d U  = - u*  d N  4- 8 Q  HR-I + 6W Rws-I (28.10)1 

is the change in the internal energy in Vessel I. But d U  --  - u  d N  and d V  = - v  d N  

since both decrease. Therefore, 6W Rws-I = P v  d N ,  and we have 

5Q HR-I -- (u*  - u -- P v ) d N  = ( u *  - h ) d N  . (28.1.0)2 

Consequently, u * - h - - q *  is the heat per mole of  matter leaving Vessel L which is 
absorbed from the reservoir to maintain constant t ~ e r a t u r e .  It is thus a pure heat flow but 
not between the two vessels. It is the heat flow from the reservok to the vessel at the lower 
temperature, i.e., the vessel from which matter diffiases across the barrier. The heat o f  
transport is thus the heat exchanged with the reservok per mole of  matter. 

The quantity q* is seen to be the amount of  energy by which u* exceeds the molar 
enthalpy of  the fluid in the state characterized by the temperature, T, and the pressure, P.  
We note that, while u* and h are defined only within an arbitrary constant, their difference, 
q* is, at least in principle, a quantity amenable to direct calorimetric measurement. 
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Finally, we may rewrite Eq.(28.9)7 in the form 

JQ' -- q* JN (28.10)3 

to emphasize that we are dealing with a pure heat flow. JQ is also a pure heat flow 
[oK Eq.(27.8)t] but the two differ in their nature. As we have seen, JQ = TJs is related to 
the entropy transported between the two vessels, while JO, is related to the entropy 
transported from the heat reservoir to the vessel at the lower temperature. 
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29. U S E S  O F  T H E  H E A T  O F  T R A N S P O R T  

The heat of transport is a true thermodynamic quantity capable of experimental deter- 
mination. It is essential in the definition of the t hermomolecu lar  pressure  e f fect  and the 
t h e r m o m e c h a n i c a l  effect. These are the subjects of the first four sections of this chapter. 
The last section reexamines the problem of the measurability of mass action in an open 
system that had been deferred from w 2.10. 

29.0 Chapter Contents 

29.1 The Thermomolecular Pressure Effect 
29.2 The Thermomechanical Effect 
29.3 Interrelation between the Thermomechanical and the Thermomolecular 

Pressure Effect 
29.4 Thermodynamic Steady-State Equations 
29.5 Measurability of Mass Action in an Open System 

29.1 The Thermomolecular Pressure Effect 
The two vessels in Fig. 28.1 are maintained at their respective temperatures and 

pressures by the heat reservoirs and reversible work sources but they are not in contact with 
a matter reservoir. Hence, some time after the restrictions on the barrier have been removed 
(i.e., after it has been made diathermal and permeable), a dynamic equilibrium will be 
established with respect to matter exchange (diffusion). Thus, the matter flow 
effectively cease. The system is then in a steady state which is maintained by the (constant) 
temperature difference, AT, between the two vessels. This temperature difference entails a 
concomitant pressure difference, AP. We seek the relation that ~ s  A P  and AT at the 
temperature T. 

To derive the relation, we will need to express the fluxes, J/~ and J~r as ~ c t i o n s  
of AT and AP. First, however, we rewrite the driving forces. Admitting that # may 
depend on T, and substituting the identities [see Eqs. (28.2)1] 

and 

F v  = A ( 1 / T )  = - / X T / T  2 

F~r -- A (  -- ~ / T )  - - A ~ / T  + ~ A T / T  2 

(29.1)i 

(29.1)2 

into Eqs. (28.9)2, we obtain 

1 
F U = T2  A T  (29.1)3 

for the thermal, and 
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1 A # - ( h - # )  1 1 
FN = T f } -  A T  = - ~ A #  - ~ A T ,  (29.1)4 

or, making use of the Gibbs-Duhem equation, Eq.(8.22)4, 

F:v = - v A P / T  , (29.1)5 

for the diffusional driving force. The phenomenological equations can therefore be written 
in the form 

and 

L u u  v L u x  A P  (29.1)6 &= T~ A T - T  

J x  = LxuT2 A T  _ ~v L N x  A P  . (29.1)7 

When a steady state has been reached, the matter flow will have ceased. Since then Y.v = 0, 
we find 

A P  1 L x u  
= (29.1)8 

A T  T v  L.v: v 

Making use of the reciprocity relation, L x u  = LUN , and using Eqs. (28.9)6 and (28.9)8, we 
obtain 

L x c  L c x  
L x x  L x x  

- u * - h  =q* .  (29.1)9 

Hence, 

A P  = q* AT .  (29.1)10 
v T  

This steady-state equation desen~oes the effect known as the thermomolecular pressure 
effect. It links changes in pressure and in temperature in the steady state when matter flow 
has ceased. It is not an equilibrium state since the heat flux does not vanish. The effect is 
determined by the heat of transport, q*. 
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29.2 The Thermomechanical Effect 
Suppose now that we keep the temperature constant throughout the s y s t ~  so that 

AT = 0, but maintain a pressure difference, AP.  This ~ result in a flow of matter from 
one vessel to the other, accon~anied by a flow of energy which can be measured by 
measuring the amount of heat required to keep the ten~erature constant. The two flows are 
proportional and the proportionality constant is again the heat of transport, q*. 

We can deduce this from the phenomenological equations, Eq.(29.1)6 and(29.1)7. 
When AT = O, we have 

Ju LUN 

JN LNN 
(29.2)1 

or, using Eq.(29.1)9, 

Ju - q* JN . (29.2)2 

This effect is known as the thermomechanical effect. It relates the matter flux to the energy 
flux at constant temperature via the heat of transport, q*. 

29.3 Interrelation between the Thermomechanical and the Thermomolecular 
Pressure Effect 

The reciprocity relation LUN = LNU establishes the link between the thermo- 
mechanical effect and the thermomolecular pressure effect. Combining Eqs.(29.1)8 and 
(29.2)1, we find 

A P  
AT ~=0 

1 Ju[  (29.3) 
vT JN ZT:O" 

Because of the relation between them, both effects ~ always be manifest in the same 
systel~ 

29.4 Thermodynamic Steady-State Equations 
In the steady state Eq.(29.1)10 is an example of a true thermodynamic equation in 

that it is a necessary relation between thermal and mechanical quantities that can aH be 
measured. The reciprocity relations (Postulate VIII) are valid whether a steady state has 
been reached or not as long as the relations between fluxes and driving forces are Lear.  
However, in the non-steady-state the phenomenological coefficients are kinetic coefficients 
and must be determined by actual measurements of the rates or from a molecular model. In 
steady-state thermal migration, by contrast, q* can be measured directly, at least in 
principle, by calorimetric measurements. 
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29.5 Measurability of Mass Action in an Open System 
In w 2.10 we deferred discussion of the measurability of mass action in an open 

system to this section. We are now ready to take it up again and concern ourselves with the 
mass action representing the change in internal energy resulting from the occurrence of a 
pure matter flow at constant temperature and pressure. Consider an isolated system com- 
posed of two subsystems which are initially divided by a diathermal and movable but 
impermeable barrier. The system is in contact with a heat reservoir and a reversible work 
source, and is thus kept at constant temperature and pressure. If now the barrier is made 
permeable to the species of interest, then the energy transported per mole of matter at 
constant temperature and pressure in the steady state from the subsystem having the higher 
chemical potential to that having the lower potential (cf w 4.10), is 

u* = q* + h (29.5)1 

by Eq.(28.9)s. Here q*, the heat of transport, is the heat exchanged with the reservoir per 
mole of matter, and h is the molar enthalpy of the diffusing species. The energy of 
transport, u*, is free from the heat (entropy) carried by the diffusing matter. Although q* 
can be measured, the molar enthalpy of the fluid is defined--as are all thermodynamic 
potentials--with respect to a reference that depends on the circumstances under which h is 
determined. It may be obtained f rom K i r c h h o f f s  equation [cf Eq.(21.8)1] 

h = ho + c e ( T ' )  d T '  (29.5)2 

where ho is the molar enthalpy at the reference temperature To and the (constant) pressure 
P. Thus u* is obtained within the same constraints. Keeping this in mind, we obtain the 
change in internal energy caused by the mass action as 

A U  = N ( u *  - uo*) = N q *  + A H  (29.5)3 

where N is the total number of moles transported, Uo* is the reference energy of transport 
and A H  = N ( h  - ho). Since W = 0, and Q = 0 also (no heat, except N q * ,  flowing in or 
out of the system), we then have 

M = N ( u *  - Uo*). (29.5)4 

as the mass action due to the diffusional flow. Thus, unless Uo* can be obtained 
independently, the mass action M can be determined only within the uncertainty of not 
knowing the reference energy of transport. 
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30. MINIMUM ENTROPY PRODUCTION 

To conclude Part H we show that the L e a r  steady state is a state of  minimum entropy 
production. This represents the most general result of the theory of steady-state 
thermodynamics. 

30.0 Chapter Contents 

30.1 The Rate of Entropy Production in the General Case 
30.2 The Rate of Entropy Production in the Linear Steady State 
30.3 The State of Minimum Entropy Production 

30.1 The Rate of Entropy Production in the General Case 
Let us consider a thermodynamic system, initially not in a stead), state, h which the 

thermodynamic forces and fluxes vary with time within the system but remain constant at its 
boundaries so that the system can eventually reach a steady state. In such a system the rate 
of entropy production, and therefore also the entropy production function, change with 
time. Thus we may write 

e(t) = Jib(t)dv = / ,  ~ ,  Jk(t) . F~(t) dv (30.1)1 

where V is the volume. 
Let us now consider dO(t)/dt, the time rate of change of the rate of entropy 

production. Differentiation o f e ( t )  with respect to time yields 

de(t) aFe(t) are(t) 
- ~ (30.1)2 

dt dt dt 

where 

aFe(t) f 
= _ 

Ot 

is that part of the rate at ,which O(t) changes with time because the driving forces change, 
while 

djO(t) 
-- f / E k  OJk(t) . Fk(t) dv (30.1)4 

dt Jv  Ot 

is that part which arises from changes of the fluxes with time. 
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In the general case we can say nothing 23 about the sign of dO( t ) / d t .  The first term 
in Eq.(30.1 h is bound to be negative if the conditions at the boundaries of the system are 
constant (see Appendix 7). Nothing, however, can be infelTed about the second term 
because it can carry any sign in the general, non-equilibrium, case. 

30.2 The Rate of Entropy Production in the Steady State 
Consider therefore now what happens when the system that we have just discussed 

approaches a linear steady state. By Postulate VII the fluxes depend linearly on the driving 
forces, i.e., 

Jk = S ;  L~;Ft,  (30.2)1 

and by Postulate VIII, the phenomenological coefficients obey the reciprocity relations, i.e., 
L~t -- L tk. Furthermore, all these quantities are independent of time by Postulate VI. 

Taking the limit as t becomes constant, and inserting Eq.(30.2h into Eqs.(30.1)3 
and (30.2)4 yields 

run d~O(t) drO f.  OF~ 
t--,~o,~t dt -- dt -- Z k l  L ~ z F k ' - - ~  dv (30.2)2 

and 

run d j O ( t )  d j O  f v  OFt 
t--,~o,~t dt - dt - Sk ;Lk ;  - -~-  " Fk dv .  (30.2)3 

But the two integrals are identical because--as just asserted--they are invariant with 
respect to an interchange of the indices k and l because the reciprocity relations hold. 
Hence, 

dFO d j O  

dt dt ' 
(30.2)4 

i.e., as the steady state is approached the contribution to the rate of entropy production due 
to the time changes of the fluxes and the contribution due to the driving forces approach 
equality. 

30.3 The State of Minimum Entropy Production 
It follows from the foregoing that in the steady state the time rate of change of the 

rate of entropy production becomes 

23 See, e. g, Wisniewski et al. (197 6), p. 44. 
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dO .. dFO djO (30.3)1 
d t  - = 2 d- -V 

It is then st~ true that dFO/dt is a negative quantity if the conditions at the boundaries of  
the system are stationary so that the system can attain a steady state (see Appendix 7).. 
However, now- djO/dt  is also negative because it is equal to dFO/dt. Thus 

dO 
< 0 (30.3)2 

dt - ' 

i.e., the time rate of  change of the entropy production decreases as the system approaches 
the (linear) steady state, until a minimum is reached in that state. The equality holds 
whenever the steady state has been attained. The linear steady state is thus a state of  
minimum entropy production. 
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A1. E X A C T  A N D  I N E X A C T  D I F F E R E N T I A L S  

This chapter presents a brief discussion of exact and inexact differentials. 

A1.0 Contents 

A1.1 The Equation of lntegrability 
A1.2 The Exact Differential 
A1.3 The Inexact Differential 

AI.1 The Equation of lntegrabflity 
Consider a thermodynamic function, U = U(S, V), where U and S are functions of  

state. The total differential, dU, is then an exact differential. To show this, we set 

where 

dU = X(S ,  V) dS + Y(S, V) dV 

OU] OU 
X(S, V ) =  ~ and Y(S, V ) =  - ~  

V 

(A1.1)~ 

(A1.1)2 

Now, if dU is an exact differential as asserted, mixed de~at ives  do not d~end  on 
the order of differentiation. Thus 

02U 02U 
OSOV OVOS' 

(A1.1)3 

and it further follows that 

ox(s ,v ) [  _ _ oY(s, v) ] 
OV s OS v 

(AI.1) 4 

The last equation is the equation of mtegrability. It must be satisfied, as it is here, 
for the differential dU to be an exact differential. It thus constitutes a test for the exactness 
of a differential. 

A1.2 The Exact Differential 
Let us test the relation 

dU = T d S -  PdV (A1.2)~ 
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for exactness. We now have X ( S ,  V ) -  T, and Y ( S ,  V ) =  - P ,  and thus Eq.(AI.1)4 
becomes 

OT 

OV 

OP 

s OS 
(A1.2)2 

But this is the first of the Maxwell relations, Eq.(10.6h, asserting that mixed deriv'atives do 
not depend on the order of differentiation. Thus the equation of integrability is satisfied. 

AI.3 The Inexact Differential 
Now consider the differential dU = dQ + d W  where d W  = - P d V  and neither 

Q nor W are functions of state. We wish to ascertain if 

dQ = dU + P d V  (A1.3)1 

is an exact differential. To subject it to the test of Eq.(A1.4), we first express dU in the 
form 

OU 
d U =  

OU 
dS + -oV ~," 

d V  (A1.3)2 
S 

and then substitute this into dQ = dU + P d V .  The substitution yields 

dQ = OU 
. 

OS v d s +  [~ V + P ] d V  (A1.3)3 

and comparison with Eq.(A1.1)1 shows that 

while 

Thus 

and 

OU ] (A1.3)a x ( s ,  v )  = - ~  v 

OU 
r ( s ,  v )  = - ~  + P. (A1.3) 5 

Ox [ 0 2U 
(A1.3 )6 I 8 V  s OVOS 



A1. EXACT AND INEXACT DIFFERENTIALS 221 

OY ! _ 02U cgP ! . (A1.3) 7 
OS v OSOV + -OS v 

Clearly, the equation o f  integrabi[r is not satisfied and dQ is therefore an inexact 
differential. To emphas~e this distinction inexact differentiaN are written in this text as 6Q, 
6W, 6M, etc., instead of  dQ, dW, and dM, etc. 
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A 2 .  J A C O B I A N S  

Jacobians are determinants whose elements are partial derivatives. They are widely used in 
thermodynamics largely because of their usefulness in manipulating derivatives. The key to 
their use is the relation 

OU 

Oz 
y , . . .  Z 

0(~,, y , . . .  :) 
= (A2.O) 

O(z, y, . . .  z) 

which expresses a partial derivative as a Jacobian. The quantities which are kept constant in 
the derivative are incorporated in the Jacobian. The following sections discuss some of their 
properties and applications. 

A2.0 Contents 

A2.1 Definition 
A2.2 Properties 
A2.3 Applications 

A2.1 Definition 
Let zz, v, . . .  w be functions of x, y, . . .  :. Then the Jacobian is defined as 

O(u, v , . . .  w) 
O(x, y , . . .  : )  

Ou Ou Ou 
Ox Oy " '"  Oz 
Ov Ov Ov 
Ox Oy " '"  Oz 

�9 . . 

Ow Ow Ow 
Ox Oy " '"  Oz 

(A2.1) 

Inside the determinant we have omitted, for simplicity, to indicate the variables being held 
constant. 

A2.2 Properties 
The five properties of Jacobians that are most useful in thermodynamics are listed 

below without proof Thorough discussions can be found in any good text on calculus. 

1. Reciprocals: 

a(u,  v, . . .  w)  / O(x, y, . . .  z)  (A2.2)1 
O(z, y, . . .  z)  = 1 O(u, v, w) 
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2. Row or colum n interchange: 

o(~ ,  ~, . . .  w )  o(~,  ~, . . .  w )  

o(~, y , . . .  ~) o(~, y, ..... ~) 
(A0-.2)2 

3. Chain rule: 

O(u, v, . . .  w)  O(u, v, . . .  w)  0(r, s , . . .  t) 
0(~, y, . . .  ~) 0(r, s , . . .  t) 0(~, y , . . .  ~) 

(A2.2)3 

4. Determinant  expansion: 

or 

0(~, ~) 
O(z, y) 

Ou aT[  
Ov 
O-z iy 

~ x  

Ov 
OY x 

--Ox Oyy z--Oy Ox (m.2)4 

o(~, ~) O(u, y) o(~, ~) o(u, ~) o(., y) 
- -  ( A 2 . 2 ) 5  

o(~, y) o(~, y) O(y, ~) O(y, ~) o(~, v) 

5. Maxwell relations: 

Let x l, Yl and x2, Y2 be pairs of conjugate extensive (x)and intensive (y) 
parameters. Then the four possible Ma~e l l  relations are 

OXl I ,~ ,0372 

I = sgn[y2x2)Oyl Oy2 v, Y2 

I -- __ Sgn(Y2X2)~-y 1 , OX2 Yl z~ 
and 

Oyl]  = s g r l ( y 2 x 2 ) ~ l : z ,  
OX2 zl _ 

(~.2)6 

Oy~ , , Ox2 ]y2 
~i = - s g n ~ y z z z ~ - z ~  , ( ~ . 2 ) 7  

where sgn(y2z2) takes the values + 1 or -1 ,  according to the sign of the y2z2-term in the 
Etder equation, Eq.(3.10)2. A demonstration of the use of these equations follows. 

A2.3 Applications 
Below we illustrate the use of Jacobians in thermodynamics on hand of several 

typical applications. 
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1. Find the corresponding member in a Maxwell relation (cs w 10.7) 

We wish to find the cor respon~g  member when (O~/OS)N is given. Since # is an 
intensive, and S is an extensive parameter, the appropriate relation to use is Eq.(A2.2)6.2. 
Inserting the values yl = #, Xl = N, :ca = S, y2 = T, and sgn(y2x2)= s g n ( T S ) =  1, 
immediately yields 

Ot~ [ OT 
OS x = ~  (az3h 

[cf. the second of Eqs.(10.6h and the second of Eqs.(10.6)3, the first at constant volume, 
and the second at constant pressure, respectively.]. 

Z Show that C'_e/C' E = ~__T/_~__s_(cs w 10.3) (AZ.3h 

Written out explicitly the relation becomes 

OS 
OT 

OT 
~b-g 

OV 
V-'--- ~ 

OP [ (A2.3)3 
T-O--V s" 

Recast in terms of Jacobians, we have 

O(S, P) O(T, V) O(V, T) O(P, S) 
O(T, P) O(S, V) O(P, T) O(V, S) 

(A2.3)4 

and this is clearly an identity since it involves an even number of interchanges. 

3. Show that ote/__~_s_ ~ Z -- Cp/Cy_(cf .  w 10.3) 

This is not a simple identity and requires a little ingenuity. We write 

(A2.3)5 

as OV 
ap OT 

OT ] O(V, S) O(T, P) O(S, V) O(T, P) O(T, P) (A2.3)6 
p = O(T, S) O(V, P) = - O(T, P) O(T, S) O(V, P) 

where, in the last term, we have both divided and multiplied by O(T, P). We now expand 
the first of the last three Jacobians. This gives 

O(S, V) O(S, P) O(V, T) a(S, T) S(V, P) 
= - (A2.3)7 

O(T, P) O(T, P) O(P, T) O(P, T) O(T, P) 
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and therefore 

as [ O(S, P) O(V, T) O(S, T) O(V, P)" 
ap - [ ~ ,  P) O(P, T) - O(P, T) O(T, P)  

O(T, P) O(T, P) 
O(T, S) O(V, P) " 

(A2.3)s 

Carrying out the indicated multiplication and canceling terms where possible, yields 

as O(S, P) O(V, T) O(T, P) Cp O(V, T) 1 
- -  + 1 - -  t - 1 .  

ap O(T, P) O(T, S) O(V, P) T O(T, S) Va.  
(~ .3b  

Now we both divide and multiply the middle term on the fight-hand-side by O(V, S). This 
leads to 

as CpO(V,T)O(V,S) 1 CpOT] OV[ 1 
ap -- T O(V, S) O(T, S) Vap + 1 -  T OS v - ~  sVaP 

+ 1. (A2.3ho 

Thus, 

~ s / ~  = (ce/cv)(c,s/,~e) + 1 (A2.3)11 

which then rearranges to the proposed identity. 

4. Derive the difference between the heat capacities (cf w 10.3) 

have 
We express Cv as a Jacobian and then manipulate it into the required form, We 

OS 
C~ = T-o- f 

= T O(S, V) 
v O(T, V) 

o(s, v )  O(T, P) 
= T  

O(T, P) O(T, V) 
T 0(S, V_~,)(A2.3h 2 

V~T O(T, _I-') 

Expanding the Jacobian on the fight as a determinant yields 

T lOS 
Cv = V~z O-T pb-~ b~i b T ~  (A2.3h3 

Using the first of Eqs.(10.6h, i.e., the Maxwell relation 
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OS I OV 
- ~  T = OT 

= - V a p ,  (A2.3)14 
P 

and rewriting the other partial derivatives in terms of  the members of  the primary set gives 
at once 

Cv = Cp - TVa2e/gr . (A2.3h5 

5. Express the Joule-Thompson coefficient, (OT/OP)_m in terms o f t  he 
members of the primary seL 

This is a case where an extensive variable is held constant. We have 

OT 
OP 

O(T, H) O(T, P) O(H, T) O(P, T) 1 OH 

n O(P, H) O(T, P) O(P, T) O(P, H) Cp OP T 

(A2.3)16 

because (OH/OT)p = Cp [cf. Eq.(10.2)4]. But dH  = TdS + VdP at constant N. Hence, 

OH 

OP 
OS 

=T-O- fi 
T 

OV 
+ v =  -rb-y + V, (_a2.3 h7 

P 

and we finally obtain 

oTj __ v 
(A2.3)18 
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A3.  T H E  L E G E N D R E  T R A N S F O R M A T I O N  

Reolacing an extensive variable in the fi~damental equation with its intensive conjugate 
turns the fundamental equation hato an equation of state with an attendant loss of 
information. The loss occurs because the intensive conjugate is a (partial) derivative. The 
Legendre transformation is a mathematical technique for interchanging dependent and inde- 
pendent variables in a functional relationship without incurring any loss of information. The 
transformation is therefore an indispensable tool of equilibrium thermodynamics (cf. w167 8.5 
and 8.6). 

This Appendix treats the mathematics of the transformation. T/nermodynamic 
applications, are used as illustrations where appropriate. We shall ~ s t  introduce the concept 
of the Legendre transformation effecting a single interchange only. Such a single inter- 
change is called a first-order Legendre transformation. Higher-order transformations, in 
which two or more conjugate parameters are interchanged, then follow. 

A3.0 Contents 

A3.1 First-order Legendre Transformations 
A3.2 Information Content of the Transformation 
A3.3 Duality of Point and Line Coordinates 
A3.4 Higher-order Legendre Transformations 
A3.5 The Complete Legendre Transform 
A3.6 The Inverse Legendre Transform 
A3.7 Number of Partial Legendre Transformations 
A3.8 First-order Partial Derivatives of a Legendre Transform 
A3.9 Second-order Partial Derivatives of a Legendre Transform 

A3.1 First-order Legendre Transformations 
The infinitesimal variation of a ~ c t i o n  

y(O) = r  (x~, • . . . ,  x~) (A3.1h 

of the independent variables xl, . . . ,  x~ is 

where 

dY (0) -- ~'ldx1 -+- ~2dx2 + . . .  + ~ndxn 

03t(~ ! 

~ i -  0X i x(r 

(A3.1)2 

(A3.1)3 

Consider now the function 
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y(1) = y(O) _ ~ l X ]  . (A3.1)4 

Its variation is 

dy (1) = dy (0) - -  d~lx I = dy (0) - -  ~idx I - - X l d ~ l  , (A3.1)~ 

and using Eq.(A3.1)2, this becomes 

dy (1) - -  - -  X l d ~ l  - t -  ~ 2 d x 2  -~- . . .  + ~ n d x n  . (A3.1)6 

Now compare Eqs.(A3.1)2 and (A3.1)6. Clearly, the roles of xi and ~i as independent and 
dependent variables has been interchanged. To effect this interchange it is merely necessary 
to subtract the product of xt with its conjugate partial derivative, ~t, from the base 
function, yt0). The resulting function, 

yO) = y(1) (~q, x~, ... x~) = y(~ (A3.1)7 

is called the first-order Legendre transform of the base function y(0) introducing the 
derivative (1. The second equation introduces the bracket notation as a succinct shortcut. 
The choice of the first extensive independent variable, xt, to be exchanged against (1, is 
arbitrary (cf. w 18.8). The superscript in Eq.(A3.1h is zero because the base fimction may 
formally be regarded as the Legendre transform of order zero. 

A3.2 Information Content of the Transformation 
It is perhaps not obvious from the foregoing that the exchange of X 1 against the 

partial derivative, ~_!, has left the information content o f ~  1) the same as that of:/~ To see 
this more clearly, we turn to the geometrical interpretation of the transformation. For 
simplicity, we consider a functional relation in a single variable, y = y(x). This relation 
represents a locus of points (a curve) in the x,y-plane. The curve is said to be defined by 
point coordinates. As illustrated by Fig. A3.2, a curve in two-dimensional space can, 
however, be represented equally well by the envelope formed by lines tangent to the curve 
at each point. 

Let the tangent lines have slopes, ~, and intercepts, ~. The equation of the envelope, 
i.e., the equation of the curve, is ~ = ~(~), and the curve is said to be defined by line 
coordinates 24. In three-dimensional space a curve would be defined by surface coordinates, 
i.e., by tangent surfaces. Extension to higher dimensions cannot be visualized bm is 
straightforward mathematically. 

The two functions, y = y(x), and ~ = , ~ ) ,  dearly describe the same curve and 
thus contain the same information. In the notation of w A3.1, y is y(0), the base function, and 
.~ is y(1), the first-order Legendre transform of y(0). Despite the introduction of the 

24 The geometry of line, surface, and higher coordinates was developed by J. Plficker (1868-69) and is 
sometimes referred to as Plficker geometry. 
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derivative, the transform preserves the information contained in the base ~ c t i o n  because it 
contains not only the slopes (i.e, the derivatives) but the intercepts as well. It therefore 
conytains the complete information on the envelope. 

y �9 

7 y = 1+ 0.25 X 2 ' 
f 

: x = 3  
6 �9 , /  ; / 

�9 / 

5 -  / , / . , . / x  = 

4 / / /  
_ j j j / i j j  

1 ~ - - " -  x=O 

1 2 3 4 5 

Fig. A3.2 Family of tangents to the curve y --- 1 +0.25x 2 

Consider an example from the text. Let the base function be the internal energy, so 
that y(0) = U(S, V, N). An exchange of the entropy, S, against the temperature, T, i.e., 
letting ~ = T, yields the first-order Legendre transform y(i) _ U[T], i.e,, F - U[T], in the 
form F -- F(T, V, N) where F is the free energy (cf. w 8.10). 

A3.3 Duality of Point and Line Coordinates 
Point and line coordinates are said to be duals of one another. ~ e  Legendre trans- 

formation exploits the duality between the two. The relation between the point coordinates, 
x, y, and the line coordinates, ~, ~, is easily derived with the aid of Fig. A3.3 below. 

Y 

Yi 

0 o 

t 

I tan o~i= ~-i 

t t I I 

xi X 

Fig. A3.3 ~ e  tangent, ~ i ,  ~) ,  at the point, P(x~, yi) 
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Consider a curve in two-dimensional space as shown above. Note the point, 
P(xi, yi), along the curve, and its dual the line, L(~Pi, ~i), that is tangent to the curve at that 
point. Clearly, 

yi-~i 
tan ai - (A3.3)1 

x i - 0 '  

and, therefore, 

and 

dyJ 
5 = tan c~i = dxx x=xi, Y=Yi 

(A3.3)2 

~i = yi. (A3.3)3 

For all points along the curve, then, the sought-for relation between the point and 
line coordinates is 

~b = y -  ~x ( A 3 . 3 ) 4  

given the functional relation y -- y(x). This equation should be con~ared with Eq.(A3.1 )4- 

A3.4  Higher-order  Legendre  Trans format ions  
The function 

y(k) = y(k)(r ' - - - r  X k + l , . . . x n )  ---~ Y(~ (A3.4h 

where the (1,..-~k are given by Eq.(A3.1)3, is called the Legendre transform of order k of 
the base function y(0). The Legendre transformation that introduces the derivatives (1,.. .  ~k 
into the base function y(O) is 

i=k 
y(k) = y(O) _ E (~xa. 

i=l 
(A3.4)2 

Let us illustrate this again with an example from the text. Exchanging both the 
entropy, S, and the volume, V, in the base function y(0) = U(S, V, N), furnishes the 
second-order Legendre transform, y(2) = U[T, P],  or G = G(T, P, N), where G is the 
free enthalpy (cf. w 8.16). 

The differential form of Eq.(A3.4)2 is 
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i=k 
dy =ayr176 E 

i=l 

or, since we have 

(A3.4)3 

i-----I1 
dY(~ = S ~idx4, 

i=l 

(A3.4)4 

[cf. Eq.(A3.1)2 ], we may" write 

i=k i=n 
dy (k) = -  ~ xid~i + _~ ~idxi (A3.4)5 

i= 1 i=k+ 1 

as an alternative expression. 

A3.5 The Complete Legendre Transform 
The complete Legendre transform, the transform of order n, vanishes identically. 

This follows directly from the definition of the transform of order k, Eq'(A3.4)2, since 

i=n 
y(~) = y(O) _ S ~xq = O. 

i=l 
(A3.5)1 

This is easily verified by looking at the Euler equation (cf w 3.10) 

i---n i---n 
y(0)_ ~ (ixi = U -  ~ Y/X-/= 0. 

i=l i=l 

(A3.51~ 

In thermodynamic theory this property of the co~le te  Legendre transform ~ e s  rise to the 
Gibbs-Duhem equation (cf w 8.22). 

A3.6 The Inverse Legendre Transform 
The inverse Legendre transform also follows from Eq.(A3.4)2. It is 

i=k 
y(O) = y(k) + S ~~x~- 

i=l 
(A3.6) 

Letting k = 1, this correctly gives U - F + T S .  
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A 3 . 7  N u m b e r  of  Part ia l  L e g e n d r e  Transformat ions  
The number of  transforms of  order 0 < k < n is given by the combination 

C(n, k) - n! (A3.7h (n-k)! k! , 

where n is the number of  variables of  the base function, y(O), and k is the number of  
conjugate pairs involved in the transformation, y(k). Thus the total number of  partial 
(k = 1, . . . ,  n - 1) Legendre transforms is 25 

k--n- 1 
E C(n, k) = 2 n - 2 (A3.7)2 
k=l 

As the total number of  Legendre transforms includes the complete transform, it is 
thus 2 n - 1, that is, 1 more than the number of  partial transforms. 

A 3 . 8  Firs t -order  Part ial  D e r i v a t i v e s  o f  a L e g e n d r e  T r a n s f o r m  

There exist two useful relations involving the first-order partial derivatives of  
Legendre transforms. They will be stated here without derivation 26. 

x~ -- 
Oy ) 

(~q~) .... x... 
(A3.8h 

and 

! = 
OXj (i . . . .  X(~Xj)... OXj xi .... x(~xj) ... 

(A3.8)2 

Employing the subscript notation for partial derivatives, these relations become 

and 

= - y}k  (A3.8)  

(k) _ (o) 
YJ I( - -yj  Ix (A3.8)4 

By the first of  these relations the partial derivative of  a Legendre transform with 
respect to the transform variable ~i is the negative of  the conjugate variable of  the latter, xi. 
To apply them, let y(0) = U(S, V, N) so that Xl = S, and further let y(1) = F(T, V,N). 
We then correctly find 

25 see, e.g, Crystal (1961), p. 191. 
26 See Modell and Reid (1983), pp. 109-114. 
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S = _ ~OF] . (A3.8)5 
OT V,N 

By the second relations, the partial derivative of a Legendre transform with respect 
to any untransformed variable xj is equal in value to the partial derivative of the base 
fimction with respect to the same variable, xj. As an exa~ le ,  using the same functions as 
before, we have simply 

OF I -- O U [ s  ' - - - P  (A3.8)6 
OV T,N OV N 

Equations (A3.8)2 and (A3.8)4 a re  almost trivial in application. 

A3.9 Second-order Partial Derivatives of a Legendre Transform 
Relations involving the second-order partial derivatives of y(1) and y(0) can also be 

established 2~ These relations are 

(1) -- 1/y~ ~ (A3.9) ,  Yll - -  

and 

y0) (0) ,_ (o) (i ~ 1) (A3.9)2 li -- Yli/Yll 

1 )  _ (0) (0) (0). (0) 
--Yij --Yli Ylj 1Yll - (i,j ~ 1) (A3.9)3 

When they are applied, the variables of the conjugate pair to be interchanged ~ould 
be moved into first position. Also, the pressure, P,  should be treated as - P ,  and the 
affinity, A, as - A, readjusting the notation in the end as needed. Thus, use G( - P ,  T, N)  
and F(V,  T, N)  to find GpT in terms of F.  Equation (A3.9)2 then provides 

G ( - p ) T  -'- F v T ] F v v ,  ( A 3 . 9 ) 4  

and this gives 

G p T  - -  - -  FvTIFvv (A3.9)5 

after readjustment. 
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A4.  T H E  F U N D A M E N T A L  E Q U A T I O N  O F  T H E  I D E A L  G A S  

This Appendix offers an abbreviated version of the derivation of the fundamental equation 
of the general ideal gas based on statistical and quantum mechanics. 

A4.0 Contents 

A4.1 Separability of the Fundamental Equation 
A4.2 Internal Energy Dependence of the Fundamental Equation 
A4.3 Volume Dependence of the Fundamental Equation 
A4.4 The Fundamental Equation of the Ideal Gas 

A4.1 Separability of the Fundamental Equation 
The (molar) fundamental equation of the ideal gas in the entropy representation may 

be written as 

= ~(~,  v)  = f (~ )  + g ( ~ ) .  (A4.1) 

The separability (cf. w 12.1) of s(u, v) into two additive functions, one of which, flu), 
depends only on u while the other, g(v), depends only on v, results from quantum 
mechanical considerations. The assumption that the potential energy of interaction of the 
molecules of an ideal gas does not depend on the distance of the molecules from each other 
leads to separability of the Schr6dinger equation and this, in turn, entails the separability of 
s(u, v) (Denbigh, 1966). 

A4.2 Internal Energy Dependence of the Fundamental Equation 
We showed in w167 12.7 and 12.8 that flu) can be expressed as 

/T) C~,(T') ~f cp(T') f l u ) =  fi; d T ' =  ~:  d T -  R In T/To (A4.2) 

where cv(T) and cp(T)are the heat capacities of the gas at constant volume, and at 
constant pressure, respectively. Both depend on the nature of the gas and flu) can, 
therefore, not be written explicitly as a function of u in general. 

A4.3 Volume Dependence of the Fundamental Equation 
The function g(v) can be obtained from classical statistical (non-quantum) 

mechanics. Consider the entropy change in an isothermal expansion of one mole of an ideal 
gas from Vo to v. This change is given by 

g(v) = k In W/Wo (A4.3)1 
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where k is Boltzmann's constant and w/~Vo is the number of ways in which the Nav 
molecules 27 in a mole of gas can be distributed over the final volume, v. For a single 
molecule we would have V/Vo. But the molecules move independently from each other by 
the basic assumption made for an ideal gas. The thermodynamic probabilities are therefore 
multiplicative and we have 

w / ~ o  = (V/Vo)  N*~ . (A4.3)2 

Inserting Eq.(A4.3)2 into Eq.(A4.3)I gives 

9(v )  = N k  In v / v o  = R In v / v o  . (A4.3)3 

for the molar entropy of the ideM gas resulting from volume change in the e~ansion. 

A4.4 The Fundamental Equation of the Meal Gas 
Hence, the fundamental equation results as 

s = so + ~ u )  + R In V/Vo (A4.4) 

l !  where f(u) is chosen so that ffUo)= 0, and, hence, So = Zo. 

27 N.v is Avogadro's number. 
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A 5 .  T H E  E Q U A T I O N  O F  S T A T E  O F  T H E  I D E A L  R U B B E R  

In w 17.17 we derived the mechanical equation of  state of  the ideal rubber from the 
statistical theory of  rubber elasticity. It can be derived also by the methods of  continuum 
mechanics. The latter seeks to establish a constitu#ve equation or material equation of  
state, i.e., a relation between the stress tensor and the deformation tensor. The former 
represents the system of  forces applied to the material and the second contains the 
description of  the resulting deformation. Both tensors are symmetric three-dimensional 
second-order tensors and can, therefore, be expressed as symmetric 3 • 3 matrices. Any 
such matrix is characterized fully by three invariants, quantities which are independent of  
any coordinate system chosen to describe the system of  forces and/or the deformation. 

A5.0 Contents 

A5.1 The Invariants of  the Deformation Tensor of  an Incompressible Rubber 
A5.2 Deformation in Uniaxial Tension of  an Incompressible Rubber 
A5.3 The Elastic Potential or Strain Energy Density of  an Incompressible Rubber 
A5.4 The Constitutive Equation of  an Incompressible Rubber 

AS.1 The lnvariants of the Deformation Tensor of an Incompressible Rubber 
Let A~ stand for the extension ratios, Li/Lo~, where the L~ are the deformed, and the 

Loi are the undeformed lengths in the three principal directions. The first two invariants of  
the deformation tensor of  an incompressible rubber then become 

(A5.1)1 

and 

2 2  2 2  2 2  12 = A1A 2 q- A2A 3 + A3A 1 -- A12 + A2 2 + A12A2 2 (A5.1)2 

since the third invariant, because it represents changes in volume, is unity. We have 

~2,~2,~2 
13 = ,,1 "'2"'3 -- 1 (A5.1)3 

for an incompressible rubber 

A5.2 Deformation in Uniaxial Tension of an Incompressible Rubber 
Since the rubber is considered to be isotropic, we derive the equation of  state by 

considering uniaxial (also called simple) tension in which a force is applied in one direction 
and the material is free to contract equally in the two perpendicular directions. We then 
have A1 = A, and A2 = A3 = A -1/2, and the two invariants become 

I1 = A 2 + 2A -1 and 12 = A -2 + 2A. (A5.2) 
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A5.3 The Elastic Potential or Strain Energy Density of an Incompressible Rubber 
Now, by Eq.(17.18)l, at constant temperature and volume the force in uniaxial 

tension is 

OF OF 
- Ao (A5.3h 

T, v VoO(L/Lo) 

where Vo = AoLo is the initial (undeformed) volume, and F/Vo is the (Helmhokz) free 
energy of  deformation per unit volume. The latter is commonly called the elastic potential 
or the strata energy density, W.  

The elastic potential is in general a fimction of  the three invariants of  the 
deformation tensor. Since I 3  - -  1 for an incompressible rubber, the elastic potential becomes 
W = W(I1, 12) and a Taylor expansion in the two invariants yields 

W = E i j  Cij (I, - 3) i ( I z -  3) j i j  = 0,1,2, . . .  (A5.3)2 

where the Cij are material constants. Coo = 0 because the strain energy density vanishes in 
the absence of  any deformation, i.e. when 11 - 12 = 3. Retaining only the first term in the 
expansion, we obtain 

W --- C 1 0  (11 - 3) = C10 (A 2 + 2A -1 - 3) (A5.3)3 

for the strain energy density fimnction of  an incompressible rubber. 

A5.4 The Constitutive Equation of an Incompressible Rubber 
By Eq.(A5.1)5, 

O W  
f = A o ~ f  = 2AoC10(A - A-2). (A5.4h 

But F/Ao = a, where a is the stress, and (A - A -2) is a measure of  the strain, in uniaxial 
tension applied to an isotropic incompressible material. The ratio of  stress to strain is a 
modulus. By identifying 2C10 with the (shear) modulus, G, of  the mate~l ,  we write the 
equation of  state as 

cr = C~A - 3, -2) (A5.4~ 

and this is the same as the Eq.(17.17)2 derived from the statistical mechanical theory of  
rubber elasticity. 
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A6. POSITIVE DEFINITENESS OF A QUADRATIC FORM 

This Appendix is concerned with the establishment of the conditions that insure the positive 
or negative definiteness of a homogeneous quadratic form. This form, and the question of 
its definiteness, play a crucial role in w167 18.3 to 18.5 in the context of the criteria of thermo- 
dynamic stability. The Appendix makes use of the relations between the second-order 
partial derivatives of a Legendre Transform that were introduced in w A3.9. The discussion 
deals with the binary simple system (cf w167 18.8 and 18.14) 

A6.0 Contents 

A6.1 Problem Statement 
A6.2 The Quadratic Form in the Energy Representation 
A6.3 The Quadratic Form in the Entropy Representation 

A6.1 Problem Statement 
Cfiven a homogeneous quadratic form 

. (o) dxi  dx j  qTA q = ~ ~j Y~./ (A6.1) 

we wish to find the conditions that will ensure that it is either positive or negative definite. 
When i = j ,  dx, idx j  is necessarily positive. Hence, we must eliminate d x i d x j  when i # j. 
The usual method of diagonalization by eigenvalues does not lead to a useful result because 
the eigenvalues are devoid of physical meaning. We use Sylvester's method of determinants. 
By Sylvester's criterion 28 the positive definiteness of a homogeneous quadratic form is 
guaranteed if all the principal subdeterminants of the matrix A are positive definite. The 
form is negative definite if the matrix - A  is positive definite. Positive definiteness is 
therefore involved whether the base function is chosen as y(0) = U, i.e., in the energy 
representation, or as y(0) = S, i.e., in the entropy representation. 

A6.2 The Quadratic Form in the Energy Representation 
Given a binary simple system the base function in the energy representation is 

y(O) = U ( S ,  V ,  NA). (A6.2)1 

Using the 'double subscript' notation for second-order partial derivatives (cf w 18.8) for 
convenience, simplifying the notation by writing A for NA, and letting dots indicate 
symmetrical elements, the (non-singular) matrix A becomes 

28 See, e.g, Korn and Kom (1968), p. 420. 
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U s s  U s v  U s a  

. U v v  U v a  

" �9 UAA 

(a6 .2h  

The three principal subdeterminants of A are 

m l  - -  U S S ~  

A 2 - -  
Uss Usv 

. Uvv 

(A6.2)3 

(A6.2h 

a 3 = 

g s  s Us v USA 

" U v v  U r n  

�9 . Uaa 

(A6.2)5 

Expansion of the second subdeterminant yields A2 as 

and, since 

g v v  - g ~ v / g s s  = s 

(A6.2)6 

(A6.2)7 

by Eq.(A3.9)3, it becomes 

A 2 = U s s F v v .  (A6.2)8 

Recasting the third subdeterminant in terms of the derivatives o f f  with the help of 
Eqs.(A3.9)l to (A3.9)3 yields 

A 3 = 

- 1 ~ E r r  - F r v / F r T  - E r A ~ E f T  

" - F ~ v / F r T  + F v v  - F r v F T A / F z T  + F u n  

- . - F . ~ / F ~ T  + F ~  

(A6.2)9 

We now multiply the first column by - FTV and add the products to column 2. Then, we 
multiply the first column by - FTA and add these products to column 3. This leads to 
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A 3 -- 

- 1 / F r r  0 0 

-- FT v / FT T F v  v FV A 

- - F T A / F T T  FVA FAA 

(A6.2ho 

and, since - 1 /FrT  = Uss by Eq.(A3.9h, we have 

A3 = USS f v v  (FAA -- F 2 " A / F v v ) .  

But 

FAA - f t 2 , A / F v v  = G A A ,  

(A6.2)11 

(A6.2)12 

again by Eq.(A3.9)3, and therefore 

A3 = Uss .F'vvG~A,. (A6.2)13 

By Sylvester's criterion, then, qTA q will be positive definite if Uss,  Fvv ,  and GAA are all 
three > O. For this to be true we must have 

and 

A 1 = Uss > 0 (A6.2)14 

A2 = U s s F v v  > 0 (A6.2)15 

A3 -- Uss FvvGAA > O. (A6.2)16 

The condition that Uss > 0 ensures that F v v  > 0 also, and it follows that GAA > 0. 
Letting A 0 = 1, the criteria of  stability are found from the relation 

Aj (j-i) 
Aj_ I  -- yjj ~> 0 .  j = 1, 2, 3 (A6.2)17 

Although we have shown the procedure here only for the binary simple system, we can 
generalize the result to 

y(j-1) jj > 0 j = 1, 2 , . . .  n-1 (A6.2)2o 

when the base function is chosen as y(0) = U. 
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A6.3 The Quadratic Form in the Entropy Representation 
Let us now examine under what circumstances (tTA q ~ be negative definite when 

the base function is chosen as 

y(O) = S ( U ,  V,  NA) .  (A6.3h 

We have 

A =  
Suu Svv @A 

�9 SVV  SVA 

�9 �9 SAA 

(A6.3)2 

The quadratic form will be negative definite, if the matrix - A  is positive defimte. We 
therefore recast Eq.(A6.3)2 as 

- A :  
ISvut ISuvl lSuAl 

�9 ISvv! ISwhl 
" - ISAAI 

(A6.3)3 

where ISvu! is the absolute vahle of Suu ,  etc. 
We now follow a development completely analogous to the one we employed in 

w A6.2, bearing in mind that when y(0) = S, then y(1) = ~ ,  and y(2) = (I,, where �9 and 
are the Massieu fimctions given by Eqs.(9.1)2 and (9.2)1. We find 

A~-:'--ISvvl > 0 (A6.3)4 

~- )  = ISuvl I ' I 'vv l  > o (A6.3)5 

and 

~-:' = iSuvl l~vvi  I~AA! > 0 ,  (A6.3)6 

where the superscript (-) denotes the subdeterminants of the - A  matrix. Since aH the 
subdeterminants are positive definite, the matrix is positive definite also, and it follows that 
the - A  matrix is negative definite. Consequently, since all subdeterminant of the latter 
matrix must be negative, we must have 

A1 = S u u  < 0 (A6.3)7 

~2 = ISvvl ~vv  < 0 (A6.3)8 
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and 

A3 = IS~ l  I~vvl ~ < o. (A6.3)9 

Then stability criteria thus result as S~,r: < 0, ~ v v  < 0, and ~AA < 0. Generalizing these 
findings as in the preceding section, we obtain 

y(j-1) 
jy < 0 .  j = 1, 2, . . .  , n-1  (A6.3)1o 

when the base function is chosen as V (~ = S. 
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A7. H E A T  C O N D U C T I O N  A T  T H E  S Y S T E M  B O ~ A R I E S  

We consider heat conduction in a one-component, isotropic body trader an invariam 
temperature distribution at its boundaries, and show that that part of the rate at which 
O(t), the rate of entropy production, changes with time because the driving forces change, 
is negative if the conditions at the boundaries of the system are constant (cf w 30.2). 

Since we are dealing with a pure heat flow, the entropy production is 

r  = j o ( t )  . F Q ( t )  = g o ( t ) .  V~(1/T) (A7h 

where Jo(t) and Vt(1/T) are the time-varying heat flux and the temperature gradient 
that drives it. We thus have 

dOF(t)dt = f~,, Jo(t).-fftO [ V t ( T ) ] d V  (A7)z 

and integration by parts yields 

dOF(t) 1 1 
(A7)3 

Because the temperature does not change with time at the system boundaries, the surface 
integral is zero. The divergence of the heat flux can be shown 29 to be g~en by 

OT 
17.3"0 = -- Per Ot (A7)4 

where p is the density, and cv > 0 is the (constant) molar heat capacity at constant 
volume. Because cv > 0, inserting Eq.(A7)4 into Eq.(A7)3 then leads to 

dOF(t) / ,  pcy (OT) 2 
dt -- --TS- - ~  dV <_ 0 (A7)5 

Thus, the rate of entropy production o ~ g  to heat conduction under a time-invariant 
temperature distribution at the boundaries decreases with time -until a ~ i m u m  is reached 
in a ~ e a r  steady state. 

29 Wisniewski et al. (1976), loc. cir. 
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Symbols that occur only in isolated instances and are not referred to elsewhere, have not 
been included in this lisL When the physical property denoted by the symbol may occur 
underr different names, only that preferred in this text is listed. A bold number 
following an entry indicates the section where the symbol is first introduced or defined. 

Roman Letters 

A (de Donder's) Affinity 20.5 
Ao(T) Standard affinity at Po and T 21.2 
Ao Inititial (unreformed) area 17.14 

B U - T S - f L  17.5 

cj Nj / V, molar concentration 
ofthe jth species 21.3 

cv Molar isochoric heat capacity 10.3 
Cv Isochoric heat capacity 10.1 
Cv, z Isochoric heat capacity at constant 

length 17.6 
ce Molar isobaric heat capacity 10.3 
Cp Isobaric heat capacity 10.2 
Cp, f Isobaric heat capacity at constant 

force 17.7 
Cp, L Isobaric heat capacity at constant 

length 1.7.8 

dos (Infinitesimal) change in entropy 
exchanged with the exterior 5.6 

dis (Infinitesimal) change in entropy 
produced in the interior 5.6 

dFO (Infinitesimal) change in rate of 
entropy production due to changes 
in F 30.1 

djO (Infinitesimal) change in rate of 
entropy production due to changes 
i n J  30.1 

D U - f L  17.5 
Dj Coefficient of diffusion of the jth 

matter species 27.10 

E Elasthalpy 17.5 

f Number of degrees of freedom 8.8 
f Force in simple tension 17.2 

f~ Entropy contribution to the 
restoring force in rubber 17.18 

fu (Internal) energy contribution to the 
restoring force in rubber 17.18 

Free energy 8.10 
Generalized scalar driving force in 

the entropy production repre- 
sentation 23.4 

F Symbolic notation for a generalized 
vector driving force in the entropy 
production representation 23.5 

F Symbolic notation for generalized 
tensor driving force in the entropy 
roduction representation 23.6 

Fi Indicial notation for a generalized 
vector ~ g  force in the entropy 
production representation 23.5 

Indicial notation for a generalized 
tensor driving force in the entropy 
production representation 23.6 

FN Dit~,sional driving force in a 
discretesvstem 28.2 

F% Diffusionai driving force for the jth 
matter species 27.2 

FQ Thermal driving force for the heat 
flux 27.8 

Fu Thermal driving force in a discrete 
system 28.2 

Fu Thermal driving force for the energy 
flux 27.2 

F 
F 

F~j 

G 
Gi 

Free enthalpy 8.16 
Partial molar free enthalpy of the ith 

co~onent ,  14.6 



250 LIST OF SYMBOLS 

H Enthalpy 8.13 
Hi Partial molar enthalpy of the ith 

component 14.10 
1~ kth intensive parameter in the 

entropy representation 3.4 
J Grand canonical potential 8.19 
d Generalized scalar flux 23.4 
J Symbolic notation for a generalized 

vector flux 23.5 
d Symbolic notation for a generalized 

tensor flux 23.6 
Indicial notation for a generalized 
vector flux 23.5 

Indicial notation for a generalized 
tensor flux 23.6 

JM Mass action flux 27.1 
~v Matter flux in a discrete system 

28.2 
J,v~ Matter flux of the jth species 25.3 
Jo Heat flux 27.1 
�9 Is Entropy flux 25.4 
Jv Energy flux in a discrete system 

28.2 
Jv Energy flux 25.2 

dkt 

Kc(T) Reaction equilibrium constant in 
terms of the molar concentrations 
21.3 

K~-(P, T) Reaction equilibrium constant in 
terms of the mole fractions 21.3 

Kp(T) Reaction equilibrium constant in 
terms of the partial pressures 21.2 

L 
Lo 
L 

L~k 

Extension in simple tension 17.2 
Initial (undeformed) length 17.14 
(Scalar) phenomenological 

coefficient 23.4 
Symbolic notation for the (tensorial) 

phenomenological coefficient in 
the entropy production repre- 
sentation 23.8 

Indicial notation for the (tensorial) 
phenomenological coefficient in 
the entropy producton repre 
sentation 23.8 

M Mass action 1.4 

~i ith Mole fraction 

N Mole number 2 
N~ kth mole number 2.12 

P Pressure 3.9 
Pj Partial pressure of the jth 

component 15.8 

q* Heat of transport 28.9 
Q Heat 2.6 
Q' Internally generated heat 2.7 

R Universal gas constant 12.1 

s Molar entropy 14.1 
s* Entropy of transport 28.4 
S Entropy 2 
Si Partial molar entropy of the ith 

component 14.10 

T (Thermodynamic) temperature 3.5 

II 

7A* 

U 
Uj 

v 

V 

Vi 

W 
W 

X 

Xk 

Molar internal energy 14.1 
Energy oftransport 28.5 
Internal energy 2 
Partial molar internal energy of the 

jth component 20.8 

Molar volume 14.1 
Volume fraction of the ith 

component 16.16 
Rate (velocity) of reaction 22.4 
Volume 2 
Initial (undeformed) volume 17.1 
Partial molar volume of the ith 

component 14.4 

Work 2 
Strain energy density A5.3 

Totality of extensive parameters 
2.11 

kth extensive parameter 2.11 
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Xi ith partial molar quantity 14.4 

Yk kth intensive parameter in the 
energy representation 3.3 

z Molar free elasthalpy 17.10 
Z Free elasthalpy 17.5 

Z Generalized scalar driving force in 
the energy retention repre- 
sentation 26.2 

Z Symbolic notation for a generalized 
vector driving force in the energy 
retention representation 24.4 

Z Symbolic notation for a generalized 
tensor driving force in the energy 
retention representation 26.2 

Zk Indicial notation for a generalized 
vector driving force in the energy 
retention representation 

Greek Letters 

ae  Isobaric expansivity 10.2 
ap, f Isobaric expansivity at constant 

force 17.7 
a p, z Isobaric expansivity at constant 

length 17.8 
as  Adiabatic expansivity 10.1 
c~s, L Adiabatic expansivity at constant 

length 17.6 

tip, f Isobaric length-temperature 
coefficient per unit length at 
constant force 1%7 

/3s, v Adiabatic-isochoric length- 
temperature coefficient per unit 
length 1_7.6 

7 Heat capacity ratio 10.3 
7v Isochoric pressure-temperature 

coefficient 10.4 
"yv, r Isochoric pressure-temperature 

coefficient at constant length 17.8 
F Massieu function S[P/T ,  #/T] 

9.2 

eo Efficiency of a heat e n ~ e  7.6 
ep Coefficient of performance of a heat 

pump 7.8 

er Coefficient of performance of a 
refrigerator 7.9 

en nth co~onen t  of the strain tensor 
17.1 

(T,L Isothermal force-pressure 
coefficient at constant length 17.8 

O Massieu fimction S[#/T] 9.1 
(9 Rate of entropy production 22.5 

Thermal conducth, ity 27.9 
gs Adiabatic compressibility 10.1 
gs,z Adiabatic co~ressibility at 

constant length 17.6 
gT Isothermal compressibility 10.2 
gT, f Isothermal co~ressibility at 

constant force 17.7 
gT, L Isothermal compressibility at 

constant length 17.8 

A Stretch ratio 17.17 

A 
A 

Ak; 

Latent heat 19.11 
Symbolic notation for the (tensorial) 

phenomenological coefficient in 
the energy retention represen- 
tation 24.4 

Indicial notation for the (tensorial) 
phenomenological coefficient in 
the energy retention represen 
tation 24.5 

# 
#k 

Chemical potential 8.24 
kth chemical potential 3.6 
Chemical potential of the ith pure 

substance 14.7 

v~ Number of moles of effective chains 
between crosslinks 17.17 

vj jth stoichiometric coefficients 20.2 
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Extent of reaction 20.4 
E Massieu function SIP/T] 9.1 

II Osmotic pressure 16.13 
Ps, v Adiabatic-isochoric length-force 

coefficient per unit length 17.6 

PT, P Isothermal-isobaric force-length 
coefficient 17.8 

a Stress in simple tension 17.17 
an nth components of the stress tensor 

17.1 

Y Energy retention function 24.2 

Planck function S[1/T, P/T] 9.2 
r Number of phases 19.16 

Entropy production function 24.2 
Xs, v Adiabatic linear compressibility at 

constant volume 17.6 
XT, f Isothermal linear compressibility at 

constant force 17.7 

~be, z Isobaric force-temperature coef- 
ficient at constant length 17.8 

g' Dissipation function 22.7 
'THE' Massieu function 9.1 

f2 
f~j 

Kramer function [ l /T ,  #/T] 9.2 
jth chemical symbols 20.2 

Operators 

d Exact differential 
6 Inexact differential 
O Partial differential 
A Difference operator 
x7 Spatial differential operator 
bt Natural logarithm 
sgn sign of an expression 
[ ] Legendre transform 

Superscripts 

HR Heat reservoir 6.4 
MR Matter reservoir 6.6 
RHS Reversible heat source 6.3 
RMS Reversible matter source 6.5 
RWS Reversible work source 6.1 
VR Volume reservoir 6.2 
WR Work reservoir 6.2 



253 

AUTHOR AND SUBJECT INDEX 

Numbers" refer to sections, not pages. When the reference is to an author's name, the name is set 
in capital letters. Search hints: look f o r  Carnot engine under Carnot, not under Engine; if you 
do not find Athermal entropy under Athermal, look under Entropy. A comma at the end o f  a 
subentry signifies that the subentry precedes the main entry. Thus, an entry like 

Entropy 
athermal, 

is to be interpreted as 
Athermal entropy 

Subentries may be nested 

A 

Additivity 
of the entropy 2.15, 21.12 
ofthe internal energy 2.2 
of reactions 21.11 

Adiabat 7.11 
Adiabatic 2.17 

barrier, constraint, or wall 1.7 
case 4.6, 4.9 
expansion and compression 7.11 
process 7.11 

Adiabaticity 4.6, 4.8, 17.6 
,MYmities, generalized thermodynamic, 

23.4, 23.5 
Affinity (de Donder's) 20.5, 20.6 

standard, 21.2 
Amagat's Law 15.9 
Athermal 14.12, 15.13, 16.2 
Avogadro's 

Law 12.4 
number A4.3 

B 

Barrier see also under Removal of a, 
internal, 1.9, 4.3 

Binodal 19.5-19.7 
BLnXTDER, S. M. 7.17, 7.19, 13 
Botmdary(-ies) 1.7 

(see also ututer System) 
Boyle's Law 12.4 
BRtD6MAN, P. B. 10.5 
Bridgman's table 10.5 

C 

CALLEN, H. 10.5 
Calorimeter 2.9,2.10 
Calorimetric measurements 2.9, 21.6, 28, 

28.10, 29.4 
Canonical variable(s) 3.1, 8, 8.5 
Cardinal function(s) 3.1, 3.10, 24.2, 26.8, 

27.4, 28.8 
CARNO% S. 7.11 
Camot 

cycle 7.11, 7.12, 7.13 
engine 7.11, 7.12, 7.13 

efficiency of a, 7.12, 7.13 
equations 7.12, 7.14 

Central problem 
of equilibrium thermodynemics 4, 23 
of irreversible thermodynamics 23 
of non-equilibrium thermodynamics 

5.6 
Charles's Law 12.4 
Chemical potential(s) 1.I0, 3.7, 3.8, 4.10 

8.8, 8.20, 8.23, 8.24 
and affinity 20.5 
and ideal behavior 11.3 
and matter flow 16.14 
and partial molar quantities 14.6 
and phase equilibrium 9.12, 9.14 
and the stoichiometric equation 21.1 
dependence ot~ on co~osition 14.7 
gradient(s) 25.5, 27.7, 27.8 
not independent of each other 14.14 
of an elastomer (rubber) 17.10 
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Chemical potential(s), contitmed 
ofthe ideal gas 12.11 
ofthe ideal mLxture 14.6--14.8, 14.14 
ofthe ideal rubber 17.16 
of the ideal solution 16.4, 16.9- 

-16.11, 16.19 
of the monatomic ideal gas 13.10 
of the multicomponent ideal gas 

15.12 
standard, 12.11, 13.10, 15.12 
surface(s) 19.12, 19.15 

Chemical reaction(s) 20, 20.6, 21,22, 23 
aflhfity ot~ 20.5 
as irreversible processes 22 

Chemical symbols 21.1 
Chemostat 6.6 
Clapeyron equation 19.12, 19.13, 19.19 
CLAUSES, 1L 2.4, 2.7, 2.17 
Clausius 

equality 5.3--5.5, 19.13 
inequality 5.5, 5.8, 7.3 
statement 7.17 
theorem 7.17 

Clausius-Clapeyron equation 19.13, 21.6 
Coefficient(s) 

adiabatic- 
isochoric length-force, 17.6 
isochoric length-temperature, 17.6 

isobaric 
force-temperature, 17.8 
length-temperature, 17.7 

isochoric 
-isobaric force-temperature, 17.19 
pressure-temperature, 10.4-10.6, 

17.8, 17.19 
isothermal force-pressure, 17.8 
Joule-Thompson, 10.5, A2.3 
kinetic, 22.8, 23.8, 29.4 
ofperformance 7.8, 7.9 
phenomenological, 22.8, 22.10, 23.8, 

23.10, 24.4, 24.5, 29.4 
stoichiometric, 20.2, 20.4 

Coexistence lines 19.12, 19.15 
Colligative properties 16.12, 16.13 
Compressibility 

adiabatic, 10.1 
at constant length 17.6 

-isochoric linear, 17.6 
isothermal, 10.2, 12.5, 15.4 

at constant force 17.7 
at constant length 17.7 
linear, at constant force, 17.7 

Configuration space 3.2, 4.1, 5.1, 5.2, 
10.5 

Condensation 9.11 
Conductances (conductivities) 23.8 
Conjugate 

fluxes and driving forces 26.5 
parameter(s) or (variable(s) 3.6 
quantity(-ies) 22.8, 23.5 

Conservation constraint(s) 4.6, 4.7, 18.3 
Constitutive equation 1%17 
Continuity equation 

of the energy 25, 25.2 
of the entropy 25, 25.4 
of the matter 25, 25.3 

Conversion 
of heat into work 7, 7.1, 7.5, 7.10, 

7.18 
of work into heat 7, 7.7 

Coriolis force 23.9 
Criterion(-ia) (look also utgter 

Equilibrium, and under Stability) 
for ideal behavior 11.3 
highest order, 18.12, 19.2, 19.17 
Sylvester's, A6.2 

Critical 
isotherm 19.3, 19.4 
point, 18, 18.15, 19.1, 19.3, 19. 4, 

19.10, 19.12, 19.15, 19.17 
criteria, 18.15, 19.3 

pressure 19.3 
state 18, 18.14, 18.15, 19.10 
temperature 19.3, 19.7, 19.10, 19.15 
volume 19.3 

Crystal, perfect, 12 
Crystallization 19.11 
CtmlE, P 23.7 
Curie symmetry principle 23.7, 26.1 
Current density, 

energy, 25.2 
entropy, 25.4 
heat, 27.1 
mass action, 27.1 
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Current density, continued 

matter, 25.3 
Cyclic see u t~er  process  

D 

Dalton's Law 15.8, 15.9 
DE DONDER, Th. 20.4, 20.5 
Deformation 17.2, 1%12, 1%18, A5, 

A5.2 
energy ot~ 17.18, A5.3 
infinitesimal, 17.17 
large, 17.17 
reversible, 17.3 
tensor AS, A5.i 

invariants of the, A5.1, A5.3 
work ot~ 17.1 

Degree(s) of freedom 8, 8.8, 10.5, 19.6 
DENBIGH, FL G. 20.4, A4.1 
Density 1.10, 17.17 

crosslink, 17.14, 17.1.7 
entropy source, 22.6, 26.1 
strain energy, A5.3 

Derivative(s) 
first order partial, 10,17.7, 

of a Legendre transform A3.8 
second order partial, 10, 10.1-10..6 

mixed, 10, 10.6, 14.4, 18.5 
of a Legendre transform 18.4, 

A3.9, A6, A6.2 
reduction of partial, 10.5 
partial, of an elastomer 17.6--17.9 

Diathermal 
barrier or wall 1.7 
contact 8.12 
case 4.6-4.8 

Diffusion 
coefficient ot~ 27.10 
Fick's first law ot~ 24.5, 27, 27.10 
isothermal, 2.10, 28.4, 28.5, 28.7 

Dissipation 
energy, 2.7, 26.4 
viscous, 17.18 

Dissipative 
effects 7.3 
phenomena 2.18, 7.3, 7.5, 23 

work 7.3 
Domain of validity 11.4, 13.10 
Dufour effect 27, 2%7 

E 

Effect(s) 
first-order, 18.2 
friction, 5.2, 7.4 
second order, 18.2 
surface, 1.9, 8.25, 17 
thermal, 2.23 

Efficiency 7,7.1 
maximum (100%), 7, 7.1, 7.11, 7.13 
thermodynamic, 7.6, 7.12 

Ehrenfest dassi!ication 19.19 
Elasthalpy 17.5, 17.8 

free, 17.5, 17.7, 17.10 
Elasticity, statistical theory of rubber, 

17.14, 17.18, A5, A5.4 
Elastomer(s) 17.4--17.19 

swollen, 17.2~17.24 
Electrical 

field 8.25,17 
resistance 2.18, 7.3, 8.25, 24.5 
work 1.4, 1.5 

Endothermic reaction 20.7, 21.6, 21.8 
Energetics 1.2 
Energy 1.1, 1.2, 1.4, 1.5, 1.12, 2 

(see also under Internal energy) 
bound (isothermally unavailable), 

8.12 
conservation os 1.5, 2.4, 2.6, 7.5, 

8.2, 25.2, 27.1 
dimensions of, 3.6, 7.15 
dissipation function 22.7, 22.12, 26.3 
external, 1.4 
factorability of, 1.5, 3.3, 3.5, 3.7, 3.8 
free, see under Free energy 
function 3.1, 3.10 
internal, see u t~er  Internal energy 
in transit 1.2 
~e t ic ,  1.4 
of transport 2.10, 28, 28.5, 28.6, 

29.5 
potential 1.4, A4.1 
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Energy, commued 
representation 3.1, 3.3, 3.6, 3.9, 3.11 
retention 

function 22.7, 22.12, 24.1, 24.2, 
26.2, 26.3, 26.6, 27.3, 27.4 

representation 24.3, 24.4 
transfer 1.2, 1.4, 2.5, 2.6 

Engine 
heat, 7.4, 7.5-7.7, 7.10, 7.11, 7.17 
thermodynamic, 7.4, 7.7, 7.10 

Enthalpy 8.9, 8.13, 8.14 
bound (isothermally unavailable) 8.17 
free, see ut~er Free enthaly 
partial molar, 14.10, 20.7 
representation 8.13, 13.3 

Entropy 1.10, 2, 2.14-2.23 
additivity of the, 2.15, 22.12 
as a measure of randornness 7.15 
as the extensive parameter of heat, 

2.13, 7.11 
configurational, 17.18 
creation of~ 2.4, 2.17, 5.6 
decrease in, 5.7, 7.4, 7.5 
dimensions of, 3.6, 7.15 
existence ot~ 2.14 
function 3.1, 3.10 
limit ot~ 2.21 
monotonic property of the, 2.22, 3.5 
non-conservation of the, 2.17, 2.20, 

25.4 
of mixing 14.12 
oftransport 28,28.4 
partial molar, 16.3 
path independence of the, 2.16 
production 2.18, 5.6, 20, 22, 23 

function 22.6, 22.12, 24.1, 24.2, 
25.4, 26.1, 26.6 

minimum, 23, 30, 30.3 
rate ot~ 22.5, 22.6, 25, 25.5, 30.1, 

30.2, 30.3 
representation 24.3, 24.4 

representation 3.1, 3.4, 3.6, 3.9, 3.11 
statistical mechanical view of~ 7.15 

Environment, thermodynamic, 1.7, 1.12, 
23.10 

Equation(s) 
of state 3.10, 3.11, 8.5, 17.14, 26.8, 

A3, A5 
complete set of the, 3.12, 13.8 
mechanical, 17.14, 17.17, A5 
of the ideal gas 12.2, 12.3, 16.15 

first, 12.2, 12.4, 12.7 
second, 12.2-12.5, 17.23 
third, 12.2, 12.11, 15.3 

of the ideal rubber 17.13, 17.14, 
17.17 

of the ideal solution 16.3 
of the monatomic ideal gas 13.6, 

13.7 
of the multicomponent ideal gas 

15.3 
THE, 12.2 
van der Waals, 16.3, 19.2 

phenomenological, 22.8, 22.10, 
22.11, 23.4, 23.8, 23.10, 24.4 

stoichiometric, 20.2, 20.3 
thermodynamic, of motion 23.8 

Equilibrium 1, 1,2, 1.12, 4, 4.10, 18 
(see also ureter Phase, Reaction, 
or Solution equilibrium) 

chemical, 1.2,1.12, 20.1, 21, 21.8, 
21.9 

equation os 21.1, 21.5, 21.10 
composition 21.2, 21.4, 21.5 
condition(s) 4, 4.6-4.9, 5.8, 16.9, 

16.10, 17.22, 18.2, 19.12, 23.9 
(see also u lcer  Enthalpy, Free 
Energy, Free Enthalpy and 
Grand Canonical Potential) 

constant 21.2, 21.3, 21.5, 21.6, 
21.11, 22.9 

criterion(-ia) 4.6, 18.1, 19.9 
of diffusional, 4.6, 16.13, 17.20 
of mechanical, 1.2, 1.12, 2.23, 

16.13,19.8 
of thermal, 1.2, 1.12, 4.11, 7.20, 

16.13, 17.20 
of thermodynamic, 1.11-1.13, 

2.23, 4, 4.3, 4.4, 5.2 
displacement (or perturbation) from, 

18.2, 18.6, 19.9 
dynamic, 22.10, 22.11, 23.4, 29.1 
false, 22.4 
global, 23.2,23.10 
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Equilibrium, continued 
liquid-vapor, 19.8, 19.12, 19.15 
local 23.1-23.3, 25, 25.2, 25.5 
matter flow, 4.6, 21.1 
met a st able, 1.11, 19.6 
near, 23 
neutral, 1.11 
partial, 16.13, 20.1 
stable, I.I1, 1.12,18,18.1,18.12 
state 1.12, 1.13, 4.1, 4.3-4.5, 4.8 
unstable, 1.11, 18 

Euler equation 3.10, 14.3, 17.5, 20.6, 
26.8 

Evaporation 9.11 
Exact differential A1.2 
Existence region 19.15 
Exothermic reaction 20.7, 21.6, 21.8 
Expansion 

isentropic, 18.1i 
isothermal, 7.1, 7.11, 18.9, 18.11, 

A4.3 
isotropic 17.21, 17.22 

Expansix~y 
adiabatic, 10.1, 17.6 
isobaric, 10.2, 12.5, 15.4, 1%7, 17.8 

Extremum principle(s) 4.2, 8.2, 8.9 
for the enthalpy 8.15 
for the entropy 4.3, 4.5 
for the free energy 8.12 
for the free enthalpy 8.18 
for the grand canonical potential 8.20 
for the (internal) energy 4.4, 4.5 
for the Massieu functions 9.5 

Factor 
capacity, 1.5, 3.5 
extensive, 1.5, 3.5, 3.7 
integrating, 5.4 
intensity/intensive, 1.5, 3.5, 3.7 

Factorability 
of the energy 1.5, 2.13, 2.23, 3.3, 

3,5, 3.7, 3.8 
of mass action 3.8 

Fick's First Law of Dit~sion 24.5, 27, 

27.10 
Flory-Huggins theory 16.16, 17.21 
Flow vector(s) 23.5 

energy, 25.2 
entropy, 25.4, 28.4 
heat, 27.1 
mass-action, 27.1 
matter, 25.3, 28.5 
of the extensive parameters, 26.1, 

26.3 
of energy 

Flux(es) (look also ureter Energy, 
Entropy, Heat, Mass action, 
Matter flux or Matter flow) 

scalar, 22.11, 23.4 
vector, 23.5, 23.8, 24.1, 24.4 
tensor, 23.6 
(generalized thermodynamic), 22.11 

23.1, 23.3-23.5, 23.8, 24.1 
Force(s) 

driving, 
~ s i o n a l ,  27.2, 27.3 
~continuous, 28.2, 28.3 
scalar, 22.11, 23.4, 
vector, 24.4, 26.1, 26.2 
tensor, 23.6 
thermal, 27.2, 27.3 
(generalized thermodynamic), 

23.1, 23.4-23.6, 24.1 
restoring; 17.18, 1%19, 17.23 

Fourier's Law of Heat Conduction 24.5, 
27, 2%9 

FOWLER 7.19 
Fraction 

mole, 11.3, 14, 14.5 
volume, 16.16, 17.22 

Freedom, degree(s) of, 8.8 
Free elasthatpy 17.5, 17.7, i 7.10 
Free energy 8.9-8.12, 10.4, 13.4, 19.9, 

19.15, A3.2 
of deformation A5.3 
representation 8.10, 12.6, 12.9,13.4 

Free enthalpy 8.16--8.18, 10.5, 13.5 
of dilution 14.13, 16.3, 16.8, 16.11, 

16.16, 1%19,17.22 
partial molar, 14.6, 16.3 
representation 8.16, 12.6, 12.10, 13.5 
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Friction 2.18, 5.2, 7.3 
Fundamental 

equation 3, 3.1-3.5, 3.12, 16.2, 17, 
17.15, 18.1, 18.7, 20.6, A3 

of an elastomer 17.4 
of a swollen elastomer 17.20 
of the ideal gas 12.1, 12.6-12.10 
of the ideal monatomic gas 13.1- 

-13.5 
of the ideal multicomponent gas 

15.1, 15.5, 15.6, 15.10, 15.11 
of the ideal rubber 17.15, 
of the ideal solution 16.2, 16.5 
explicit form of a, 3, 12.1, 13, 

13.1-13.5, 17.15, A4, A4.1- 
-A4.4 

molar form of a, 14.2 
parametric form(s) of a, 12.6- 

-12.8, 15.1-15.6, 15.3, 16.5, 
17.15 

set of partial derivatives 10.1-10.4, 
17.6 

surface 3.2, 4.1, 5.2 
Fusion 19.11, 19.15 

G 

Gay-Lussac's Law 12.4 
GraBS, J.W. 3, 3.7 
Gibbs 

equation 3.9 
free energy 8.16, 8.17 
phase rule 19.16 
potential 8.16, 8.17, 17.10 
space 3.2, 4.1 
theorems 15.7 

Gibbs-Duhem equation 8.22, 8.23, 9.3 
and ideal behavior 11.3, 12.11, 

13.10, 14.7, 15.12, 16.4 
and the complete Legendre 

transformation A3.5 
for elastomers 17.11 
of a reactive simple system 20.6, 21.2 
of the ideal gas 12.11 
of the ideal mixture 14.14 
of the iideal solution 16.6 

of the monatomic ideal gas 13.10 
of the multicon~onent ideal gas 

15.12 
Grand canonical potential 8.19, 8.20 
Gravitational field(s) 1.9, 8.25, 17 
GUC.OENI-mrM 7.19 

Heat 
as energy exchange 1.2, 2.6, 2.20, 

3.5, 4.9, 6.3, 7, 24.7 
as energy in transit 1.2 
capacity 17.14, A4.2 

at constant pressure 10.2, 12.8, 
12.10, 12.11, 13, 15.6, 20.7 

at constant volume 10.1, 12.7, 
12.9, 12.12, 13, 15.5, 
17.6, A7 

difference 10.3, 12.5, 15.4, A2.3 
isobaric, 10.2, 12.5, 17.7, 17.8 
isochoric, 10.1, 12.5 
molar, 10.3, 12.5-12.12, 15.5, 

15.6, 15.3, 15.4, A7 
ratio 10.3 

conduction 24.5, 27, 27.9, A7 
content 8.13 
flow (pure) 4.10, 27.5, 27.8, 27.9, 

28, 28.10, A7 
(see also ut~ler Simultaneous 
flow of heat and matter) 

flux 2.9, 27.1 
quasistatic, 5.3-5.5 

internally generated, 2.7 
latent, 19.11, 19.13 
of crystallization 9.11 
of fusion 9.11 
of reaction 20.7, 20.8, 21.6 
of sublimation 9.11 
of transport 2.10, 28, 28.9, 28.10, 

29, 29.1, 29.2, 29.5 
vaporization 9.11 
pump 7.4, 7.7, 7.8, 7.10, 7.11, 7.17 
reservoir 6.4 
source, reversible, 6.3, 6.4 
term, 3.5, 5.3, 22.1 
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Heat, continued 
'uncompensated', 2.7 

Henry's 
constant 16.10 
law 16.10 

Hybrid set(s) of partial derivatives 10.4, 
17.8 

Ideal 
behavior 11.2, 11.3, 17.23 

Ideal 
gas, 7.1, 11, 11.3, 11.4, 12, 12.1- 

-12.12, A4, A41, A4.3, A4.4 
equation of state of the, 15.3, 

15.4, 16.15 
mixture, 14, 14.8, 15.8, 15.13, 

20.1 
phase transition in an, 19.1 

mixture 11, 11.3, 14, 14.1-14.14 
monatomic, gas l l ,  11.3, 11.4, 12, 

12.5, 12.6, 13, 13.1-13.10 
multicomponent, gas 11, 11.3, 12.2, 

12.5, 14, 14.13, 15, 15.1-15.13, 
16.2, 16.9 

rubber i l ,  11.3, 12.1, 17, 17.23, 
17.14 

solution 11, 11.3, 14, 14.13, 16, 
16.1-16.16 

system 1.6, 11, 11.2 
Idealized 

cycle 7.11 
device(s) 7.4 
model 1.6, 11.1 
path 5.9 
system 1.6, 6, 7.11, 11, 11.1, 12 

Impermeable 
barrier, boundary, or wall 1.7 
membrane 16.13 

Impermeability 4.6, 4.8 
Incompressible 

liquid 16.2, 16.3, 19.7 
rubber 11.3,17.12, 17.17, 17.14, A5, 

A5.1-A5.4 
Inequality 

Clausius, 5.5, 5.8, 7.3 

de Donder's, 22.1, 22.2, 22.4, 22.12 
Inexact differential A1.3 
Instability, region of absolute, 19.4, 19..6 
Integrability, equation of~ A1.1 
Internal energy 1.4, 1.10, 2, 2.8 

additivity ofthe, 2.2 
as a potential 3.7, 8.1-8.4 
conservation of the, 2.4 
continuity equation of the, 25.2 
contribution to the restoring force in 

rubbers 17.18, 17.19 
existence o~ 2.1 
partial molar, 20.8 
path independence of the, 2.3 
temperature dependence of the, 7.1, 

12.2, 12.4, 12.6, 17.23 
Irreversible process(es) 1.2, 2.7, 5.7-5.9 

chemical reactions as, 20, 22, 22.5, 
23.4 

direction of an, 5.2, 5.8 
in equilibrium thermodynamics 5.9 

Irreversibility 
criterion(-ia) ot~ 22.2, 22.3, 22.5 
source of, 20.1 

Isobaric 
expansivity 10.12, 12.5, 15.4, 17.7 

17.8 
heat capacity 10.2, 12.5, 17.7, 17.8 
length4emp erature coefficient 17.7 
force-temp erature coefticient 17.8 

Isochoric 
heat capacity 10.1, 12.5 
pressure-temperature coefficient 

10.4, 10.6 
Isentropic 

expansion 18.11 
locus 5.3 
process 5.2, 5.3 

Isotherm 7.11, 19.2, 19.5-19.10, 19.17 
constant pressure, 19.17 
critical, 19.3, 19.4 
van der Waals 19.2, 19.4, 19.6, 19.10 

Isothermal 
compressibility 10.2,12.5, 15.4, 

17.7,17.8 
compression 19.7 
diffusion 2.10, 28.4, 28.5, 28.7 
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Isothermal. continued 
expansion 7.1, 7.11, 18.9, 18.11, 

A4.3 
force-pressure coefficient 17.8 
-isobaric length-force coefficient 17.7 
process 7 
transfer 28.10 
transport 28.6 

Jacobian 10.5, 10.7, A2, A2.1-A2.3 
JOULE, J P 2.8 
Joule's Law 12.4 
Joule-Thompson coefficient 10.5, A2.3 

K 

Ketvin-Planck statement 7.17 
Kelvin scale 7.14 
Kinetic 

coefficient(s) 22.8, 23.8, 29.4 
constant(s) 22.9 
energy 1.4 
phenomena 19.19 

Kinetics, chemical 22.9 
Kirchhofl's equation 20.7, 29.5 
Kramer function 9.2 

Law(s) of thermodynamics 
First, 2.6, 7.16, 7.18, 7.20 
Second, 5.5, 7.17, 7.18, 7.20 
Third, 2.21, 7.19, 7.20 
Zeroth, 4.11, 7.20 

Le Ch~telier's Principle 1.15, 18.6, 21.8, 
21.9 

Legendre transform(ation) 8.6, A3 A3.1- 
-3.4, A3.7, A3.8, A6.3 

co_replete, A3.5 
first order, A3, A3.1, A3.2 
higher order, A3.4 
inverse, A3.6 
partial, 8.21, A3.7 
partial derivati~Te of, 18.5, 18.7, 

A3.8, A3.9 
second order, 9.2, 18.7, A3.4 
zeroth order, 18.7, A3.1 

Lever rule 19.8 
Lorentz force 23.9 

M 

Macromolecules 7.19, 16.16, 17.3, 
17.21, 

Magnetic 
field(s) 1.9, 8.25, 17, 19.18, 19.19, 

23.9 
work 1.4 

Manostat 6.2 
Mass action 1.4, 2.5, 2.6, 20, 20.5 

flux 24.7, 27, 27.1-27.3, 27.5, 
27.6 

terms 3.3, 3.4 
Massieu function(s) 9, 9.1-9.5, 18.13, 

20.6, A6.3 
relation of the, to the thermodynamic 

potentials 9.4 
THE, 9.1 

Matter 1, 1.1, 1.7, 1.9, 1.10, 2.5, 2.10 
(see also ututer Simultaneous 
flow of heat and matter) 

conservation ot~ 25.3 
flow (pure) 27.6, 27.8, 27.10, 29.5 
flux 25.3, 27.1, 27.5, 27.6, 28.2 
reservoir 6.6 
source, reversible, 6, 6.5, 6.6, 6.7 

Maximum 
entropy 2.17, 4.2, 4.3, 4.5, 4.9, 5.7, 

18.1 
mass action 7.2 
work 7.1, 7.2 

Maxwell relation(s) 10, 10.6, 10.7, A1.2, 
A2.2, A2.3 

for elastomers i 7.9, 17.18 
Maxwell's 

construction 19.5, 19.6 
rule 19.5 

Measurability 
of changes in internal energy 2.8 
of entropy changes 5.4 
of mass action 2.10, 29, 29.5 
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Measurability, cont inued  

of the heat flux 2.9 
Mechanical 

friction 2.18, 5.2, 7.3 
stability 18.9, 18.11, 18.13, 19.1 
work 1.4, 7.16, 17.1 

Mechanics 
continuum, 17.17, 1%23, A5 
quantum, 17.22, 12.1, 13.9, A4 
statistical 7.15, 8.19, 9, 12.1, 12.7, 

13,17.8, 23.9, A5.4 
Metastable region 19.6 
Migration, thermal 28, 28.1, 29.4 
Mixture  see under  Ideal mixture 
Modulus 17,17, A5.4 
Molar 

property 1.10 
quantities 14, 14.1, 14.2 

partial, 14, 14.4, 14.6, 16.3 
Molecular 

mass 16.12, 16.15, 17.17, 17.24 
weight 16.12,17.17 

Mole fraction 14, 14.5 
Movable barrier or wall 1.7 

N 

Negative definiteness A6.1, A6.3 
Nernst heat theorem 7.21 
Network, imperfect and perfect, 17.3 
Non-conservation ofentropy 2.17, 25.4 

O 

Ohm's law 24.5 
Onsager reciprocity relations 23.9 
Onsager-Casimir reciproc~ relations 

23.9 
Order parameter 20.4 
Osmotic pressure 16.12--16.15, 17.20 

P 

Parameter(s) 
conjugate, 3.6,3.10 
extensive, 1.5, 2, 2.13 

flux(es) oI~ 23.5 
primitive, 2.11 

intensive, 1.5, 3.3, 3.4 
gradients oI~ 23.5, 24.1 

ordering of~ 18.11 
Parametric form: see under Fundamental 

Equation(s), Parametric f o ~ s )  oi~ 
Parallel concepts in Equilibrium and 

Steady-State Thermodynamics 24.1 
Partial molar 

quantities 14, 14.4, 14.6, 16.3 
volume 14.4, 16.14 

Permeable 
barrier, boundary, or wall 1.7 
membrane 16.13 

Perpetuum mobile %16, %17 
Phase(s) 18, 18.3 

coexisting, 19.12, 19.14 
condensed, 19.13 
equilibrium 16.10, 17.21, 19.9, 

19.12,19.14, 19.16, 21.2 
gas, 19.8, 19.15 
fiquid, 17.6, 19.8, 19.13-19.15 
maximum number of, 19.14, 19.16 
mixed, 16, 17.20 
pure, 16, 17.20 
rule 19.14, 19.16, 19.18 
separation 18.3, 19.2, 19.5 
solid, 17.18, 19.13-19.15 
stable, 19.1, 19.10 
transition(s) 3.8, 18, 118.14, 19, 19.1, 

19.5, 19.11, 19.15-19.1.9 
unstable, 19.10 
vapor, 19.13, 19.14 

Phenomena 16.12, 18 
dissipative, 2.18, 7.3, 7.5, 23 
kinetic, 19.19 
natural, 1.15 
order-disorder, 20.4 
swelling, 17.20 

Pivotal ~c t ions  24.2, 24.3, 26, 26.8, 
26.6, 27, 

Planck 7.17, 7.19 
function 9.2 

Plticker geometry A3.2 
Poincar6 statement 7.16 
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Point 
boiling, 16.12 
freezing, 16.12 
melting, 19.15 
plait, 19.3 
triple, 7.14, 19.14-19.16 

Positive definiteness 18.4, A6, A6.2, 
A6.3 

Postulate 1.15, 2, 7.20, 23, 23.1, 23.2 
I - Existence of internal energy 2.1, 

3.10 
II- Conservation of energy 2.4, 2.8, 

8.2, 8.11 
HI - Existence of entropy 2.14, 3.5 
IV- Non-conservation of entropy 

2.17, 2.18, 4.3, 5.5, 5.6 
V - Limit of entropy 2.21, 2.22, 3.5, 

7.19 
VI- Local equilibrium 23.2, 23.3, 

23.10, 25, 25.2, 25.5, 30.2 
V I I  - Phenomenological relations 

23.8, 23.10, 24.4, 27.5, 28.2, 30.2 
V I I I  - Reciprocity relations 23.9, 

23.10, 24.5, 27.7, 28.2, 28.3, 
29.4, 30.2 

Postdates 1.15 
of equilibrium thermodynamics 

2, 23.2 
of steady-state thermodynamics 23, 

23.1 
Postulatory basis 1, 2, 7.20, 23.1 
Potential(s) 

alternative thermodynamic, 8, 8.5-- 
-8.9, 8.21, 8.25, 9.4 

primary, 8.9 
elastic, A5.3 
for elastomers 17.5 
for heat 8, 8.1, 8.3, 8.13 
for mass action 8, 8.1, 8.4, 8.10, 

8.13, 8.16 
for non-simple systems 8.25 
for work 8, 8.1, 8.2, 8.10 
grand canonical, 8.19, 8.20 
number of thermodynamic, 8.7, 8.8, 

8.25, 10.6, 17.5 
thermodynamic, 8, 8.21, 29.5, A2.3 

Pressure 
criticak 19.3 
effect on reaction equilibrium 21.9 
isotherm, 19.17 
partial, 15.8, 15.12, 16.9, 16.10, 21.2 
standard, 12.11, 21.2 
swelling, 17.22 
thermomolecular, effect 29,29.1, 

29.3 
vapor, 16.9-16.12, 17.21, 21.2 
-volume 

effect 24.1 
work 1..5, 3.9, 4.10, 6.1, 6.2 

Primary set of partial derivatives 
10.2-10.5, 18.1, 19.9, A2.3 

for the multicomponent ideal gas 
15.4 

for elastomers 17.7, 17.8, 17.10 
for the ideal gas 12.5 

Principle(s) 
energy minimum, 4.4, 4.9, 18.1 
entropy maximum, 4.3, 4.9, 5.7, 

18.1 
extremum, 4.2, 4.5, 8.6, 8.9 

for the (internal) energy 4.4, 4.5, 
8.6 

for the enthaply 8.15 
for the entropy 4.3, 4.5 
for the free energy 8.12 
for the free enthalpy 8.1.8 
for the grand canonical potential 

8.20 
for the Massieu functions 9.5 

fundamental, 4.2 
Le CMtelier's, 1.15, 18.6, 21.8, 21.9 
of conservation of energy 1.15, 2.4. 

2.6, 7.5, 8.2, 25.2, 27.1 
of microscopic reversibility 22.10, 

23.9 
Process(es) 

biological, 22.13 
coupled, 7.5, 24.5, 27.5 
cyclic, 1.13, 7.1, 7.4, 7.10, 7.11, 

7.13, 7.16, 7.17, 7.19, 7.20 
function 1.14, 2.6 
natural, 1.13, 2.17, 5.5, 5.7 
non-equilibrium, 5.6 
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Process(es), continued 
quasistatic, 1.13, 2.5, 5.1-5.3, 5.5 

isentropic, 5.2 
real physical, 1.13, 2.17, 2.18, 5.1, 

5.2, 5.5-5.9, 7.4 
reversible, 1.13, 2.7, 2.17, 5.2, 5.9, 

isentropic, 5.3 
spontaneous, 1.13, 2.17, 5.7, 18.6, 

23, 23.3, 24 
steady-state, 5.6, 23.4, 23.5 
thermodynamic, 1.13, 5, 5.2 

Property(-ies) 
colligative, 16.12, 16.13 
derived, 1.10 
extensive, 1.10, 2, 14.4 
intensive, 1.10 
material, 17.17, 24.5, 27.9, 27.10 
neutral, 1.10, 17.1 
primitive, 1.10 
specific, 1.10 
thermodynamic, 1.10, 12, 13 

Q 

Quadratic form 18.2-18.4, A6, A6.I- 
-A6.3 

Quantities of transport 24.3, 28, 28.4, 
28.5 

Quantum mechanics 7.20, 12.1, 13.10, 
A4, A4.1 

R 

Raoult's law 16.11, 16.15, 16.16, 17.22 
Reaction(s) 

additivity ot~ 21, 21.11 
amount ot~ 20.4 
coordinate 20.4 
coupled, 22.13 
degree of advancement of the, 20.4 
equilibrium 21 

condition for, 21.1 
criterion ofstable, 21.7 
effect of pressure on, 21.9 
effect of temperature on, 21.8 

extent of, 20.4--20.7 

nuclear, 1.8 
rate of, 22.4, 22.5, 22.8-22.11, 23.4 
'run-away', 21.7 
simultaneous, 21, 21.10, 22.12 
unstable 21.7 

Real 
gas(es) 11, 12, 19.2 
physical 

process(es) 1.13, 2.7, 2.17, 2.18, 
5.1, 5.2, 5.5-5.9, 7.3-7.5 

system(s) 11.1 
Reciprocity relation(s) 23.9, 24.5, 27.7, 

29.1, 29.3, 29.4, 30.2 
Refrigerator 7.4, 7.7, 7.9 
Removal (lifting) of a barrier 4, 4.3, 4.6, 

4.8-4.11, 5, 20.1, 29.1 
Reservoir 

heat, 6.4 
matter, 6.6 
volume, 6.2 
work, 6.2 

Restraint 1.7 
Rigid barrier, constraint, or wall 1.7 
Rigidity, constraint of, 4.6, 4.8, 4.10 
Rubber(s) 11, 17, 17.1-17.24 

(see also under Elastomer(s)) 
crosslinked, 17.2, 17.22 
elasticity 17.14, 17.18, A5, A5.4 
ideal, 11, 12.1, 17, 17.3-17.16, 

17.18, A5 
incompressible, 17.12, 17.17, 17.14, 

AS.I-A5.3 
perfect, 17.3, 17.13 
restoring force in a, 17.18, 17.19 
swollen, 17, 17.2~17.24 
unswollen, 17 

S 

Saturation region 19.7, 19.8 
Scalar theory 22.11, 23.4, 23.6, 26 
Semi-permeable 

barrier, boundary, or wall 1.7, 6.5, 
6.6, 8.20, 

membrane 17.22 
Shear modulus 17.17 
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SIMON 7.19 
Simultaneous flow of heat and matter 

24.7, 25, 25.1, 27, 27.2-27.7 
Sink, see under Source 
Solid 14, 14.8, 17, 19.14 

general. 17.1 
isotropic, 17.2 
mixture 14, 16 
phase 17.18, 19.13, 19,14, 19.15 
system 11, 14, 14.8, 17 

Solute 14.4, 16, 16.2, 16.12, 16.13- 
-16.16, 17.18 

macromolecular, 16.16 
Solution 

binary, 14.4, 16.2, 16.12, 16.13, 
16.15, 19.17 

dilute, 16, 16.15 
equilibrium 16.9, 16.10 
gaseous, 16 
ideal 11, 11.3, 14, 14.3, 16.1-16.16 
liquid, 16 
macromolecular, 16.16 
solid, 16 

Solvent 16, 16.1-16.8, 16.12-16.16, 
Soret effect 27, 27.7 
Source (reversible) of 

heat 6.3-6.5 
matter 6.5, 6.6 
volume 6.1 
work 6.1, 6.2 

Spinodal 19.4-19.7, 19.10, 19.17 
Stability 18, 18.1-18.16, 19.9 

conditions 4.3, 4.4 
for the free energy 8.12 
for the enthalpy 8.15 
for the free enthalpy 8.18 
for the grand canonical potential 

8.20 
criterion(-ia) 4.3, 4.4, 4.6, 19.1, 

A6, A6.1-A6.3 
and phase equilibrium 19.9 
in ideal gases 19.1 
of diffusional, 18.10, 19.17 
of mechanical, 18.9, 18.11, 18.13, 

19.1-19.3 
of thermal, 18.8, 18.13 

intrinsic, 18, 18.2, 18.3, 18.5, 19, 

19.4 
limit ot~ 18.14, 19.9, 21.7 
mutual, 18, 18.3, 18.16 
of chemical reactions 21.7, 21.8 
thermodynanic, 4.3, 4.4, 18, 18.1, A6 

State (see also under Steady state) 
function of, 1.10, 1.4, 2.3, 2.6, 2.16, 

5.9, 7.3 
stationary, 1.12, 23.3 
thermodynamic, 1.12, 7.5, 7.11 

Statistical 
mechanics 8.19, 9, 12.1, 12.7, 13, 

23.9, A4, A4.3 
(mechanical) theory 17.14, 17.18, 

A5, A5.4 
Steady state 1.12, 22.10, 23, 23.3, 23.10, 

30.1-30.3 
linear, 23, 23.10, 24, 24.1, 26.4, 

29.1, 29.4, 29.5, 30, 30.2, 
30.3 

coupled, 23.4, 24, 24.1, 24.3, 25, 
26 

process(es) 5.6, 23.4, 23.5 
theory 22.11, 24.1, 26.2 
thermodynamic, equations 29.4 
thermodynamics 24, 24.1, 24.2, 24.5 

Strain 17.17, A5.4 
rate ot~ 23.6 
tensor 17.1, 23.6 

Stress 17.17 
tensor 17.1, 23.6, A5, A5.4 

Sublimation 19.11, 19.15 
Superconductor(s) 19.19 
Supercritical region 19.15 
Surroundings 1.7, 1.9, 1.13, 2.7, 3.9, 5.2 
Swelling 17, 17.4, 17.20-17.24 
System 

binary, 10.7, 14, 14.14, 10.7, 18.8, 
18.12, 18.14, 19.17, A6, A6.2 

boundary(-ies) 1.4, 1.7, 19.15, 23.3, 
30.1, 30.3, A7 

closed, 1.7, 2.5, 2.10, 2.17 
composite, 1.9, 2.2, 2.11 
discrete, 28.1, 28.7 
ideal. 1.6, 11, 11.2 
isolated, 1.7,2.5,2.10, 
metastable, 19.10 
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System, cont#med 
multicomponent, 1.9 
non-reactbce, 1.8 
non-simple, 1.9 
physical simple, 1.9, 3.2 
reactive, 1.8, 3.8, 20, 20.1 
real physical simple, 1.9, 1.12, 3, 

11.1 
thermodynamic, 1.6-1.9, 2 

T 

Temperature 
as the intensive parameter of heat 

2.13, 7.11 
critical, 19.3, 19.7, 19.10, 19.15 
dimensions oi~ 7.15 
effect on reaction equilibrimn, 21.8 
glass transition, 17.3 
gradient(s) 25.5, 27.7, 27.8, A7 
scale 7.6, 7.14 
(absolute) thermodynamic, 3.5, 

7.14, 12.5, 7.17, 19.14 
zero, unattainability ot~ 7.21 

Tension, simple (or uniaxial), 17.2 
Tensor(s) 23.6-23.8, 26.1 

-ial character 23.7 
theory 23.6, 26 

Thermodynamics 1.2, 1.11, 3.8, 5.6, 24.7 
applied, 1.3, 1.6, 7.15 
equilibrium, 1, 1.2, 2, 2.5, 4, 5.6, 11 
historic laws os 7.20 
irreversible, 1.2, 2.7, 9, 20, 24.1, 

26.8 
non-equilibrium, 1.2, 5.6, 23, 24, 

24.7 
of chemical reactions 20, 21, 22, 

22.11 
of coupled linear 

steady-state(s) 24, 24.1-24.3, 25, 
26 

systems 24.2 
of fluids 17.1, 17.5 
of mixtures 14 
of solids 17.1 
of swelling 17 

scope o~ 1.2, 2.6, 3.8 
steady-state, 1, 1.2, 22, 23, 23.2, 

23.4-23.6, 24, 24.1, 26.1 
linear, 24 
theory of, 23.1, 23.6 30 

theoretical, 1.3, 1.6 
Thermomech~cal effect 29, 29.2, 29.3 
Thermometry 4.11 
Thermomolecular pressure effect 29, 

29.1, 29.3 
Thermostat 6.4, 7.1 
TOLMAN, R.C. 23.9 
Transformation (see also under Legendre 

transformation.) 
of derivatives 10.5 
of vector fluxes and forces 26.7, 28.7 

Transition 
glass, 17.3, 19.19 
solid-liquid, solid-solid, solid-vapor, 

19.11 
Transport 

energy ot~ 2.10, 28, 28.5, 28.6, 29.5 
entropy ot~ 28, 28.4, 28.6-28.8 
heat of, 2.10, 28, 28.9, 28.10, 29, 

29.1, 29.2, 29.5-25.10, 25.12 
quantities of, 24.3, 28, 28.4, 28.5 

Turbulence 2.18 

U 

'Uncompensated heat' 2.7 
Units of measurements 7.15 

V 

Validity, domain of 11.4, 13.10 
VAN DER WAALS, J.D., 19.2 
van't Hoffs 

equation 21, 21.6 
relation 16.15 

Vaporization 19.12, 19.15 
heat of, 9.11 

Vapor pressure 16.9-16.12,17.21 
lowering of the 16.12 
partial, 21.2 
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Variable 1.10 
compositional, 11.2, 11.3, 19.16 
extensive, 3.1, 3.10 
intensive, 3.12 
natural, 3.1 

Vector theory 23.5, 23.6, 26 
Viscosity 2.18 
Viscous dissipation 17.18 
Volume 

critical 19.3 
fraction 16.16, 17.24 
partial molar, 14.4, 15.9, 16.14 
source, reversible, 6.1 
reservoir 6.2 

W 

Wall 1.5 
adiabatic, 1.7, 2.8, 4.10 
diathermal, 6.3-6.5, 8.18, 8.20, 18.3, 

25.1 
impermeable, 1.7, 2.8, 2.9, 4.10, 6.3 
movable, 6.1, 8.15, 8.18, 18.3 
non-restrictive, 18.18 
permeable, 6.5, 18.3, 25.1 

rigid, 1.7, 6.3, 6.5 
semi-permeable, 6.5, 6.6 

Weight, molecular 16.12, 17.17 
Work 1.2,1.3, 1.4, 2.5-2.8, 2.11, 7, 

7.9, 7.11, 
as energy in transit 1.2 
available, 7.5, 8.11, 8.14, 8.17, 17.5 
chemical, 1.4, 3.3, 3.4, 3.7 
content 8.10 
dissipative, 7.3 
maximum, 7.1-7.3, 7.5 
physical, 1.4, 1.7, 2.5, 2.8, 3.3, 3.4, 

3.8, 26.2 
pressure-volume, 1.5, 3.9, 6.1, 6.2 
reservoir 6, 6.2 
source, reversible, 6.1, 6.2 
term 3.3-3.5, 3.7, 6.2, 8.11, 8.25 
useful, 7.3 

Working fluid 7.11 

Zero, unattainability of absolute, 7.19 
ZEMANS~:Y, A. C. 7.21 
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