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Preface

Cost is a driving consideration in decisions that determine how systems are
developed, produced, and sustained. Critical to these decisions is
understanding how uncertainty affects a system’s cost. The process of
identifying, measuring, and interpreting these effects is known as cost
uncertainty analysis. Used early, cost uncertainty analysis can expose
potentially crippling areas of risk in systems. This provides managers time to
define and implement corrective strategies. Moreover, the analysis brings
realism to technical and managerial decisions that define a system’s overall
engineering strategy. In Juan De Mairena (1943), Antonio Machado wrote
“All uncertainty is fruitful...so long as it is accompanied by the wish to
understand.” In the same way are insights gleaned from cost uncertainty
analysis fruitful — provided they, too, are accompanied by the wish to
understand and the will to take action.

Since the 1950s a substantial body of scholarship on this subject has
evolved. Published material appears in numerous industry and government
technical reports, symposia proceedings, and professional journals. Despite
this, there is a need in the systems engineering community to synthesize prior
scholarship and relate it to advances in technique and problem sophistication.
This book addresses that need. It is a reference for systems engineers, cost
engineers, management scientists, and operations research analysts. It is also a
text for students of these disciplines.

As a text, this book is appropriate for an upper-level undergraduate (or
graduate-level) course on the application of probability methods to cost
engineering and analysis problems. It is assumed readers have a solid
foundation in differential and integral calculus. An introductory background
in probability theory, as well as systems and cost engineering, is helpful,
however, the important concepts are developed as needed. A rich set of
theoretical and applied exercises accompanies each chapter.

Throughout the book, detailed discussions on issues associated with cost
uncertainty analysis are given. This includes the treatment of correlation
between the cost of various system elements, how to present the analysis to
decision-makers, and the use of bivariate probability distributions to capture
the joint interactions between cost and schedule. Analytical techniques from
probability theory are stressed, along with the Monte Carlo simulation
method. Numerous examples and case discussions are provided to illustrate
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the practical application of theoretical concepts. The numerical precision
shown in some of the book’s examples and case discussions is intended only
for pedagogical purposes. In practice, analysts and engineers must always
choose the level of precision appropriate to the nature of the problem being
addressed.

Chapter 1 presents a general discussion of uncertainty and the role of
probability in cost engineering and analysis problems. A perspective on the
rich history of cost uncertainty analysis is provided. Readers are introduced
to the importance of presenting the cost of a future system as a probability
distribution.

Chapter 2 is an introduction to probability theory. Topics include the
fundamental axioms and properties of probability. These topics are essential
to understanding the terminology, technical development, and application of
cost uncertainty analysis methods.

Chapter 3 presents the theory of expectation, moments of random variables,
and probability inequalities. Examples derived from systems engineering
projects illustrate key concepts.

Chapter 4 discusses modeling cost uncertainty by the probability formalism.
A family of continuous univariate probability distributions, used frequently in
cost uncertainty analysis, is fully described. A context for applying each
distribution is also presented.

Chapter 5 introduces joint probability distributions, functions of random
variables, and the central limit theorem. The application of these concepts to
cost uncertainty analysis problems is emphasized. In addition, distributions
are developed for a general form of the software cost-schedule model. The
chapter concludes with a discussion of the Mellin transform, a useful (but little
applied) method for working with cost functions that are products, or
quotients, of two or more random variables.

Chapter 6 presents specific techniques for quantifying uncertainty in the
cost of a future system. The reader is shown how methods from the
preceding chapters combine to produce a probability distribution of a
system’s total cost. This is done from a work breakdown structure
perspective. Case studies derived from systems engineering projects provide
the application context.

Chapter 7 extends the discussion in chapter 6 by presenting a family of
joint probability distributions for cost and schedule. This family consists of
the classical bivariate normal, the bivariate normal-lognormal, and the
bivariate lognormal distributions; the latter two distributions are rarely
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discussed in the traditional literature. Examples are given to show the use of
these distributions in a cost analysis context.
The book concludes with a summary of recommended practices and
modeling techniques. They come from the author’s experience and many
years of collaboration with colleagues in industry, government, and academe.
The author gratefully acknowledges a number of distinguished engineers,
scientists, and professors who contributed to this book. Their encouragement,
enthusiasm, and insights have been instrumental in bringing about this work.

L]

Stephen A. Book — Distinguished Engineer, The Aerospace Corporation, Los
Angeles, California. A long-time professional colleague, Dr. Book peer
reviewed the author’s major technical papers, some of which became chapters in
this book. In addition, he independently reviewed and commented on many of
the book’s chapters as they evolved over the writing period.

Philip H. Young — Director of Research, Lori Associates, Los Angeles,
California, and formerly of The Aerospace Corporation, conducted a detailed
review of selected areas in this book. Also a long-time professional colleague,
Mr. Young shared with the author his formulas for the moments of the
trapezoidal distribution (presented in chapters 4 and 5), as well as a derivation of
the correlation function of the bivariate normal-lognormal distribution. This
derivation is provided as theorem B-1, in appendix B.

Nancy E. Rallis — Associate Professor of Mathematics, Boston College, led
the book’s academic review. For two years, Professor Rallis studied the entire
text from a theoretical and computational perspective. Her years of experience as
a statistical consultant and cost analyst at the NASA Goddard Spaceflight
Center, TRW Inc., and the Jet Propulsion Laboratory (California Institute of
Technology) brought a wealth of insights that greatly enhanced this book.
Sarah E. Quebec, a graduate mathematics student at Boston College, assisted
Professor Rallis’ review. I am grateful for her diligence in checking the many
examples and case discussions.

Wendell P. Simpson III (Major, USAF-Ret) and Stephen A. Giuliano
(Lieutenant Colonel, USAF-Ret) — Assistant Professors, United States Air
Force Institute of Technology. Professors Simpson and Giuliano developed and
taught the school’s first graduate course on cost risk analysis. The course used
early drafts of the manuscript as required reading. Their comments on the
manuscript, as well as those from their students, contributed significantly to the
book’s content and presentation style.
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e Colleagues at The MITRE Corporation...

Chien-Ching Cho — Principal Staff, Economic and Decision Analysis
Center. A long-time professional colleague, I am grateful to Dr. Cho for
many years of technical discussions on theoretical aspects of this subject. 1
particularly appreciate his independent review of case discussion 6-2 and his
commentary on Monte Carlo simulation, presented in chapter 6.

Barbara E. Wolfinger — While a Group Leader in the Economic and
Decision Analysis Center, Ms. Wolfinger reviewed original drafts of chapter
1 and chapter 2. A creative practitioner of cost uncertainty analysis, her
experiences and analytical insights were highly valued, particularly in the
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Neal D. Hulkower — While a Department Head in the Economic and
Decision Analysis Center, Dr. Hulkower reviewed a number of the author’s
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book.
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leadership needed to bring the manuscript into the public domain. His
enthusiasm and encouragement for this work will always be gratefully
appreciated.

Francis M. Dello Russo and John A. Vitkevich, Jr. — Mr. Dello Russo
(Department Head, Economic and Decision Analysis Center) and Mr.
Vitkevich (Lead Staff, Economic and Decision Analysis Center) reviewed
the book’s first case discussion (chapter 3). From an engineering economics
perspective, they provided valuable commentary on issues associated with
cost-volume-profit analyses.

Hank A. Neimeier — Principal Staff, Economic and Decision Analysis
Center. Mr. Neimeier provided a careful review of the Mellin transform
method (chapter 5) and independently checked the associated examples. His
expertise in mathematical modeling provided a valuable context for the
application of this method to cost engineering and analysis problems.

Albert R. Paradis — Lead Staff, Airspace Management and Navigation. Dr.
Paradis reviewed an early version of the manuscript. His comments were
highly valued. They helped fine-tune the explanation of a number of
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Preface ix

Raymond L. Fales — A long-time professional colleague, Dr. Fales
introduced the author to cost uncertainty analysis. He was among the early
practitioners of analytical methods at MITRE and a mentor to many
technical staff in the Economic and Decision Analysis Center.

Ralph C. Graves — A gifted and insightful systems engineer, Mr. Graves
and the author worked jointly on numerous cost studies for the United States
Air Force. During these studies, he introduced the author to Monte Carlo
simulation (chapter 6) as a practical approach for quantifying cost
uncertainty.

The author also appreciates the staff at Marcel Dekker, Inc. for their diligence,
professionalism, and enthusiasm for this work. Many thanks to Graham Garratt
(Executive Vice President), Maria Allegra (Acquisitions Editor and Manager),
Joseph Stubenrauch (Production Editor), and Regina Efimchik (Marketing and
Promotions).

Paul R. Garvey



This Page Intentionally Left Blank



Contents

Preface A4
Reserved Notation XV

1. Uncertainty and the Role of Probability

in Cost Analysis 1
1.1 Introduction and Historical Perspective 1
1.2 The Problem Space 3
1.3 Presenting Cost as a Probability Distribution 4
1.4 Benefits of Cost Uncertainty Analysis 11
Exercises 13
References 14
2. Concepts of Probability Theory 15
2.1 Introduction 15
2.2 Sample Spaces and Events 15
2.3 Interpretations and Axioms of Probability 18
2.4 Conditional Probability 28
2.5 Bayes’ Rule 34
Exercises 38
References 43
3. Distributions and the Theory of Expectation 44
3.1 Random Variables and Probability Distributions 44
3.2 The Expectation of a Random Variable 65
3.3 Moments of Random Variables 82
3.4 Probability Inequalities Useful in Cost Analysis 86
3.5 A Cost Analysis Perspective 91
Exercises 94
References 100

xi



xii

4.

Special Distributions for Cost Uncertainty Analysis
4.1 The Trapezoidal Distribution
4.1.1 The Uniform Distribution
4.1.2 The Triangular Distribution
4.2 The Beta Distribution
4.3 The Normal Distribution
4.4 The LogNormal Distribution
4.5 Specifying Continuous Probability Distributions

Exercises
References

Functions of Random Variables and
Their Application to Cost Uncertainty Analysis
5.1 Introduction
5.1.1 Joint and Conditional Distributions
5.1.2 Independent Random Variables
5.1.3 Expectation and Correlation of Random Variables
5.2 Linear Combinations of Random Variables
5.2.1 Cost Considerations on Correlation
5.3 The Central Limit Theorem and a Cost Perspective
5.4 Transformations of Random Variables
5.4.1 Functions of a Single Random Variable
5.4.2 Applications to Software Cost-Schedule Models
5.4.3 Functions of Two Random Variables
5.5 The Mellin Transform and its Application to Cost Functions

Exercises
References

Contents

101
101
106
109
112
117
126
138

151
156

157
157
158
169
170
181
184
186
195
196
201
219
225

247
253



Contents xiii

6. System Cost Uncertainty Analysis 254
6.1 Work Breakdown Structures 254
6.2 An Analytical Framework 261
6.2.1 Computing the System Cost Mean and Variance 261
6.2.2 Approximating the Distribution Function of System Cost 286
6.3 Monte Carlo Simulation 296
Exercises 304
References 306

7. Modeling Cost and Schedule Uncertainties —
An Application of Joint Probability Theory 308
7.1 Introduction 308
7.2 Joint Probability Models for Cost-Schedule 309
7.2.1 The Bivariate Normal 311
7.2.2 The Bivariate Normal-LogNormal 317
7.2.3 The Bivariate LogNormal 324
7.2.4 Case Discussion 330
7.3 Summary 332
Exercises 333
References 335
Epilogue Considerations and Recommended Practices 337
Appendix A Statistical Tables and Related Integrals 345
Appendix B The Bivariate Normal-LogNormal Distribution 353
Appendix C The Bivariate LogNormal Distribution 363
Name Index 373

Subject Index 377



This Page Intentionally Left Blank



Reserved Notation

A list of reserved notation used in this book is provided below.

FY Fiscal year

$K Dollars thousand

$M Dollars million

SM Staff-months

XPEc,,, Point estimate of Cost

XiPEy, Point estimate of X;

£, Labor rate in dollars per SM
Eff Effort for an activity (SM)
Effsyseng Systems engineering effort (SM)

Effsystest System test effort (SM)

Effow Software development effort (SM)
1 The number of delivered source instructions (DSI)
P, Software development productivity rate in

DSI per staff-month

Tsw Software development schedule (months)

Xv
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Chapter 1

Uncertainty and the
Role of Probability in Cost Analysis

The only certainty is uncertainty. The public...demands certainties...
Pliny the Elder (Gaius Plinius But there are no certainties.
Secundus) Henry Louis Mencken
Natural History Prejudices, First Series [1919], ch. 3

1.1 Introduction and Historical Perspective
This book presents methods for quantifying the cost impacts of uncertainty in
the engineering of systems. The term “systems” is used in this book to mean
physical systems. Physical systems manifest themselves in physical terms and
occupy physical space [1]. Radar systems, air traffic control systems,
automobiles, and communication systems are examples of physical systems.
Systems engineering is a process that produces physical systems. It
encompasses the scientific and engineering efforts needed to develop,
produce, and sustain systems. Systems engineering is a highly complex
technical and management undertaking. Integrating custom equipment with
commercial products, designing external system interfaces, achieving user
requirements, and meeting aggressive schedules while keeping within cost are
among the many challenges faced in managing a systems engineering project.
When the cost of a future system” is considered, decision-makers often ask:
“What is the chance its cost will exceed a particular amount?” “How much
could cost overrun?’ *“What are the uncertainties and how do they drive
cost?’ Cost uncertainty analysis provides decision-makers insight into these

and related questions. In general, cost uncertainty analysis is a process of

This includes existing systems planned for modernization, consolidation, or re-engineering.
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quantifying the cost impacts of uncertainties associated with a system’s
technical definition and cost estimation methodologies.

Throughout a system’s life-cycle, cost uncertainty analysis provides
motivation and structure for the vigorous management of risk. When
appropriately communicated to decision-makers, the insights produced by the
analysis directs management’s attention to critical program risk-drivers. This
enables risk mitigation strategies to be defined and implemented in a timely
and cost-effective manner.

Cost uncertainty analysis has its genesis in a field known as military systems
analysis [2], founded in the 1950s at the RAND Corporation. Shortly after
World War II, military systems analysis evolved as a way to aid defense
planners with long-range decisions on force structure, force composition, and
future theaters of operation. Cost became a critical consideration in military
systems analysis models and decision criteria. However, cost estimates of
future military systems, particularly in the early planning phases, were often
significantly lower than the actual cost or an estimate developed at a later
phase. In the book “Cost Considerations in Systems Analysis,” G. H. Fisher
[3] attributes this difference to the presence of uncertainty; specifically, cost
estimation uncertainty and requirements uncertainty.

Cost estimation uncertainty can originate from inaccuracies in cost-schedule
estimation models, from the misuse (or misinterpretation) of cost-schedule
data, or from misapplied cost-schedule estimation methodologies. Economic
uncertainties that influence the cost of technology, the labor force, or geo-
political policies further contribute to cost estimation uncertainty [4].

Requirements uncertainty can originate from changes in the system’s
mission objectives, from changes in performance requirements necessary to
meet mission objectives, or from changes in the business or political

landscapes that affect the need for the system. Requirements uncertainty most
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often results in changes to the system’s specified hardware-software
configuration, which is also known as the system’s architecture.

Uncertainty is also present in elements that define a system’s configuration
(or architecture). This is referred to as system definition uncertainty.
Examples include uncertainties in the amount of software to develop, the
extent code from another system can be reused, the number workstations to
procure, or the delivered weight of an end-item (e.g., a satellite) [4].

The early literature on cost uncertainty analysis concentrated on defining
the sources, scope, and types of uncertainties that impacted the cost of future
systems. Technical papers published in the period between 1955 and 1962
were not explicitly focused on establishing and applying formal methods to
quantify cost uncertainty. However, by the mid-1960s a body of techniques
began to emerge. An objective of this book is to discuss these techniques,
present advances in methodology, and illustrate how these methods apply

from a systems engineering perspective.

1.2 The Problem Space

In systems engineering three types of uncertainties must be considered.
Described in the preceding section they are cost estimation uncertainty,
requirements uncertainty, and system definition uncertainty. Figure 1-1 [4]
illustrates how these uncertainties are related.

The n-system configurations shown are in response to requirements
uncertainty. For a given system configuration, cost-schedule probability
models (as described in this book) capture only system definition and cost
estimation uncertainties. They provide probability-based assessments of a
system’s cost and schedule for that system configuration. When requirements
uncertainty necessitates defining an entirely new configuration, a new cost-

schedule probability model is likely to be needed. The new model must be
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tuned to capture the system definition and cost estimation uncertainties

specific to the new configuration.

Requirements Uncertainty

System
Configuration 1

System
Configuration n

Cost-Schedule
Probability Models

System Definition
Uncertainty

System Definition
Uncertainty

Cost Estimation
Uncertainty

Cost Estimation
Uncertainty

Figure 1-1. Types of Uncertainty Captured by
Cost-Schedule Probability Models

1.3 Presenting Cost as a Probability Distribution

Cost is an uncertain quantity. It is highly sensitive to many conditions and
assumptions that change frequently across a system’s life-cycle. Examining
the change in cost subject to varying certain conditions (while holding others
constant) is known as sensitivity analysis. In a series of lectures to the United
States Air Force (1962), Fisher [5] emphasized the importance of sensitivity
analysis as a way to isolate cost drivers. He considered sensitivity analysis to
be “...a prime characteristic or objective in the cost analysis of advanced
systems and/or force structure proposals.” Although sensitivity analysis can
isolate elements of a system that drive its cost, it is a deterministic procedure
defined by a postulated set of “what-if” scenarios. Sensitivity analysis alone

does not offer decision-makers insight into the question “What is the chance
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of exceeding a particular cost in the range of possible costs?” A probability
distribution is a way to address this question. Simply stated, a probability
distribution is a mathematical rule associating a probability & to each possible
outcome, or event of interest.

There are two ways to present a probability distribution. It can be shown as
a probability density or as a cumulative probability distribution. Figure 1-2

presents one way to illustrate this concept from a cost perspective.

fx) F(x)
Y
\Z
3 1
©
ks
=
o
g a
g
&
Dollars x 0 Dollars
a c b a c b
Cost Cost
Probability Density Cumulative Probability Distribution
Figure 1-2a Figure 1-2b

Figure 1-2. Illustrative Probability Distributions

In figure 1-2, the range of possible values for Cost is given by the interval
a<x<b. The probability Cost will not exceed a value x=c is given by «,.
In figure 1-2a, this probability is the area under f(x) between x=a and
x=c. In figure 1-2b, this probability is given by F(c).

To develop a cost probability distribution, methods from probability theory
were needed. Some of the earliest applications of probability theory to model
cost uncertainty took place in the mid-1960s at the MITRE and RAND
Corporations. In 1965, Steven Sobel [MITRE] published “A Computerized
Technique to Express Uncertainty in Advanced System Cost Estimates [6].” It

was among the earliest works on modeling cost uncertainty by the probability
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formalism. Sobel pioneered using the method of moments technique to
develop a probability distribution of a system’s total cost.

Complementary to Sobel’s analytical approach, in 1966 Paul F. Dienemann
[RAND] published “Estimating Cost Uncertainty Using Monte Carlo
Techniques [7].”  The methodology applied Monte Carlo simulation,
developed by operations analysts in World War II, to quantify the impacts of
uncertainty on total system cost. With the advent of high-speed computers,
Monte Carlo simulation grew in popularity and remains a primary approach
for generating cost probability distributions. A discussion of Monte Carlo
simulation is presented in chapter 6.

An overview of the cost uncertainty analysis process is shown in figure 1-3.
The variables X;,X,,X3,---,X, are the costs of the n work breakdown
structure (WBS)" cost elements that comprise the system. For instance, X
might represent the cost of the system’s prime mission hardware and software;
X, might represent the cost of the system’s systems engineering and program
management; X3 might represent the cost of the system’s test and evaluation.
When specific values for these variables are uncertain, we can treat them as
random variables. Probability  distributions are developed for
X1,X»,X5,---, X, which associate probabilities to their possible values. Such
distributions are illustrated on the left-side of figure 1-3. The random
variables X|,X,,X3,---,X,, are summed to produce an overall probability
distribution of the system’s total cost, shown on the right-side of figure 1-3.

The “input” part of this process has many subjective aspects. Probability
distributions for Xi,X,,X3,---,X,, are either specified directly or they are
generated. Direct specification relies on expert judgment to characterize a
distribution’s shape. The probability density is the usual way to make this

characterization.

* A full discussion of the work breakdown structure is presented in chapter 6.
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Inputs
Probability Distributions for
each Cost Element Costin a
System’s Work Breakdown

Structure
) Summation
X
i Process
Detlars Output
X1 A Cumulative Probability
b Distribution of the System’s

Total Cost
fX (XZ) FCOS! (x)
2
Dollars X 1
Fry (x3) /\
Dollars X3

by

Probability that Cost < x

0 Dollars

a c b
Fx, (xn) Cost =Xy + Xy + X3 +...+ X,
Dollars x

n

n

Figure 1-3. Cost Uncertainty Analysis Process

Generated distributions have shapes that are produced from a mathematical

process. This is illustrated in the following discussion.

Suppose X, represents the cost of a system’s systems engineering and program
management (SEPM). Furthermore, suppose the cost of SEPM is derived as a

function of three random variables” Staff, PrgmSched, and LaborRate as follows:

X, = Staff - PrgmSched - LaborRate (1-1)

* Staff (Persons), PrgmSched (Months), LaborRate ($/Person-Month)
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Suppose the engineering team assessed ranges of possible (feasible) values for
these variables and directly specified the shapes of their probability distributions,
as shown in figure 1-4. Combining their distributions according to the rules of

probability theory generates an overall distribution for X,, which is the cost of
SEPM. In this case, we say the probability distribution of X, has been generated

by a mathematical process. Figure 1-4 illustrates this discussion.

X, = . .

» = Staff - PrgmSched - LaborRate Directly
Specified
Distributions

($K)

fx, (x2)

5 10 12 24 10 15
Persons Months Dollars per
Person-Month

($M) Generated
X2 o
1.0 25 Distribution

Figure 1-4. The Specification of Probability Distributions

Shown in figure 1-4, it is good practice to reserve the direct specification of
distributions to their lowest level variables in a cost equation (e.g., equation
I-1). Often, expert judgment about the shapes and ranges of distributions are
best at this level. Furthermore, this “specification” approach structures the
overall analysis in a way that specific “cost-risk-driving” variables can be
revealed. Identifying these variables, and quantifying how they affect a
system’s cost, are critical findings to communicate to decision-makers.

A term conventional to cost engineering and analysis is point estimate. The
point estimate of a variable whose value is uncertain, is a single value for the
variable in its range of possible values. From a mathematical perspective, the
point estimate is simply one value among those that are feasible. In practice, a

point estimate is established by an analyst (using appropriate cost analysis
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methods) prior to an assessment of other possible values. It provides an
“anchor” (i.e., a reference point) around which other possible values are
assessed or generated. This is illustrated in figure 1-5.

X, = Staff - PrgmSched - LaborRate

X, = (7 Persons)(15 Months)(12 $ K per PM) Suppose these values are

point estimates established
by an analyst

B Directly
< Specified
K Distributions
5 10 12 24 0 15
Persons Months Dollars per
Person-Month (PM)
M) Generated
1.0 126 2.5 X2 Distribution

The point estimates above
combine to generate the
point estimate 1.26

Figure 1-5. Point Estimates — An Illustration

In cost uncertainty analysis it is common to see more probability density to
the right of a point estimate than to its left; this is seen in the generated
distribution in figure 1-5. Although this is a common occurrence, the point
estimate can fall anywhere along the variable’s probability distribution; it is
just one value among those that are feasible.

Suppose a system’s total cost is given by
Cost=X|+Xp+ X5 +...+ X,
where the random variables X;,X5,X3,:-+,X,, are the costs of the system’s n

WBS cost elements. Suppose point estimates are developed for each X;

(i=1...,n). Their sum is the point estimate of the cost of the system. Let this

sum be denoted by xpg, ., where
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XPEcoy = MPEy, T X2PEy, TX3PEy, .-+ XnPEy (1-2)
and XipEy, (i=L...,n) is the point estimate of X;. Computing xpg,.

according to equation 1-2, is known among practitioners as the “roll-up”

procedure.”
In cost engineering and analysis, it is traditional to consider xpg_ =~ a value
for Cost that contains no reserve dollars. As a point estimate, xpg_ ~ provides

the “anchor” from which to choose a value for Cost that contains reserve

dollars. Decision-makers tradeoff between xpgp_  and the amount of reserve
dollars to add to XPEcp such that the value of Cost determined by the

expression [ xpg o+ (reserve dollars)] has an acceptable probability of not

being exceeded. Figure 1-6 illustrates this discussion.

FCosr(X)
0914
Probability that 0.671
Cost< x Cost=X|+X, +X3+...+ X,
0.315
($M) x
60 80 100 120 140 160

xPECosl
Point
Estimate

Figure 1-6. A Cumulative Probability Distribution of System Cost

From a probability perspective there are important subtleties associated with the roll-up
procedure. These subtleties are illustrated in case discussion 5-1 (chapter 5).
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In figure 1-6, suppose the point estimate of a system’s cost is 100 ($M); that
is, xpg,.,, =100. This value of Cost has just over a 30 percent probability of

not being exceeded. A reserve of 20 ($M) added to xpg,_  is associated with

a value of Cost that has a 67 percent probability of not being exceeded. A

reserve of 40 ($M) added to xpg is associated with a value of Cost that has

just over a 90 percent probability of not being exceeded.

It is possible for xpg,  to fall at a high confidence level on its associated

distribution function. Such a circumstance may warrant the addition of no
reserve dollars; it suggests there is a good chance for Cost to actually be lower
than perhaps anticipated. However, it may also flag a situation where cost
reserve was built, a priori, into the point estimate of each WBS cost element
cost. These reserve dollars would be included in the “roll-up” of the

individual point estimates. This result can make xpg. ~hard to interpret,

particularly if tradeoff studies are needed. In practice, it is recommended

keeping xpg Cost “clean” from reserve dollars. This provides analysts and

decision-makers an anchor point that is “cost reserve-neutral” — one where
the tradeoff between cost reserve and a desired level of confidence can be

readily understood for various alternatives (or options) under consideration.

1.4 Benefits of Cost Uncertainty Analysis
Cost uncertainty analysis provides decision-makers many benefits and

important insights. These include:

Establishing a Cost and Schedule Risk Baseline — Baseline probability
distributions of a system’s cost and schedule can be developed for a given
system configuration, acquisition strategy, and cost-schedule estimation
approach.  This baseline provides decision-makers visibility into
potentially high-payoff areas for risk reduction initiatives.  Baseline
distributions assist in determining a system’s cost and schedule that
simultaneously have a specified probability of not being exceeded (chapter
7).  They can also provide decision-makers an assessment of the



12 Chapter 1

likelihood of achieving a budgeted (or proposed) cost and schedule, or cost
for a given feasible schedule [4].

Determining Cost Reserve — Cost uncertainty analysis provides a basis
for determining cost reserve as a function of the uncertainties specific to a
system. The analysis provides the direct link between the amount of cost
reserve to recommend and the probability that a system’s cost will not
exceed a prescribed (or desired) magnitude. An analysis should be
conducted to verify the recommended cost reserve covers fortuitous events
(e.g., unplanned code growth, unplanned schedule delays) deemed possible
by the system’s engineering team [4].

Conducting Risk Reduction Tradeoff Analyses — Cost uncertainty
analyses can be conducted to study the payoff of implementing risk
reduction initiatives (e.g., rapid prototyping) on lessening a system’s cost
and schedule risks. Furthermore, families of probability distribution
functions can be generated to compare the cost and cost risk impacts of
alternative system requirements, schedule uncertainties, and competing
system configurations or acquisition strategies [4].

The validity and meaningfulness of a cost uncertainty analysis relies on the
engineering team’s experience, judgment, and knowledge of the system’s
uncertainties. Formulating and documenting a supporting rationale, that
summarizes the team’s collective insights into these uncertainties, is the
critical part of the process. Without a well-documented rationale, the
credibility of the analysis can be easily questioned.

The details of the analysis methodology are important and should also be
documented. The methodology must be technically sound and offer value-
added problem structure, analyses, and insights otherwise not visible.
Decisions that successfully eliminate uncertainty, or reduce it to acceptable
levels, are ultimately driven by human judgment. This at best is aided by, not

directed by, the methods presented in this book.
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Exercises

1.  State and define the three types of uncertainties that affect the cost of a

systems engineering project. Give specific examples of each type.

2.  Define, from a cost perspective, the term point estimate. How is the
point estimate of a variable used to establish a range of other possible

values? Explain what is meant by the “roll-up” procedure.

3.  In the figure below, suppose the point estimate of a system’s cost is 23.5
dollars million ($M). Assume the three values shown along the vertical
axis are paired with the three values shown along the horizontal axis.
How many reserve dollars are needed such that the value of Cost
associated with that reserve has a 70 percent chance of not being
exceeded? Similarly, what is the reserve needed such that the value of

Cost has only a 5 percent chance of being exceeded?

F Cast(x )
0.95
0.7
Probability that
Cost < x
0.4
($M)

235 305 435
Cumulative Probability Distribution for Exercise 3
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Chapter 2

Concepts of Probability Theory

If chance is the antithesis of law, The theory of probabilities is
then we need to discover the laws of chance. at bottom nothing but common
C. R. Rao sense reduced to calculus.
Indian Statistician Pierre Simon de Laplace

Oeuvres, vol. VII, Théorie Analytique
des Probabilités
2.1 Introduction
Whether it’s a storm’s intensity, an arrival time, or the success of a financial
decision, the words “probable” or “likely” have long been part of our
language. Most people have a practical appreciation for the impact of chance
on the occurrence of an event. In the last 300 years, the theory of probability
has evolved to explain the nature of chance and how it may be studied.
Probability theory is the formal study of random events and random
processes. Its origins trace to 17th century gambling problems. Games that
involved playing cards, roulette wheels, and dice provided mathematicians a
host of interesting problems. The solutions to many of these problems
yielded the first principles of modern probability theory. Today, probability

theory is of fundamental importance in science, engineering, and business.

2.2 Sample Spaces and Events

If a six-sided die” is tossed there are six possible outcomes for the number
that appears on the upturned face. These outcomes can be listed as elements
in the set {1,2,3,4,5,6}. The set of all possible outcomes of an experiment is
called the sample space, which we will denote by £. The individual

outcomes of Q are called sample points, which we will denote by ®.

* Unless otherwise noted, dice are assumed in this book to be six-sided.

15
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A sample space can be finite, countably infinite, or uncountable. A finite
sample space is a set that consists of a finite number of outcomes. The
sample space for the toss of a die is finite. A countably infinite sample space
is a set whose outcomes can be arranged in a one-to-one correspondence with
the set of positive integers. An uncountable sample space is one that is
infinite but not countable. For instance, suppose the sample space for the
duration ¢ (in hours) of an electronic device is ={t:0<7<2500}; then & is
an uncountable sample space; there are an infinite but not countable number
of possible outcomes for ¢. Finite and countably infinite sample spaces are
also known as discrete sample spaces. Uncountable sample spaces are known
as continuous sample spaces.

An event is any subset of the sample space. An event is simple if it consists
of exactly one outcome.” Simple events are also referred to as elementary
events or elementary outcomes. An event is compound if it consists of more
than one outcome. For instance, let B be the event an odd number appears
and C be the event an even number appears in a single toss of a die. These
are compound events, which may be expressed by the sets B={1,3,5} and
C={2,4,6}. Event B occurs if and only if one of the outcomes in B occurs;
the same is true for event C.

Seen in this discussion, events can be represented by sets. New events can
be constructed from given events according to the rules of set theory. The

following presents a brief review of set theory concepts.

* As we shall see, probabilities associated with simple events are sensitive to the nature of the
sample space. If £ is a discrete sample space, the probability of an event is completely
determined by the probabilities of the simple events in £2; however, if £ is a continuous
sample space, the probability associated with each simple event in £ is zero. This will be
discussed further in chapter 3.
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Union: For any two events A and B of a sample space £2, the new event
AU B (which reads A union B) consists of all outcomes either in A or in
B or in both A and B. The event AU B occurs if either A or B occurs.
To illustrate the union of two events, consider the following: if A is the
event an odd number appears in the toss of a die and B is the event an
even number appears, then the event AUB is the set {1,2,3,4,5,6},

which is the sample space for this experiment.

Intersection: For any two events A and B of a sample space 2, the new
event AN B (which reads A intersection B) consists of all outcomes that
are both in A and in B. The event AN B occurs only if both A and B
occur. To illustrate the intersection of two events, consider the
following: if A is the event a six appears in the toss of a die, B is the
event an odd number appears, and C is the event an even number
appears then the event ANC is the simple event {6}; on the other hand,
the event AN B contains no outcomes. Such an event is called the null
event. The null event is traditionally denoted by &. In general, if
AN B =, we say events A and B are mutually exclusive (disjoint). The

intersection of two events A and B is sometimes written as AB, instead of
ANB.

Complement: The complement of event A, denoted by A€, consists of
all outcomes in the sample space 2 that are not in A. The event A€
occurs if and only if A does not occur. The following illustrates the
complement of an event. If C is the event an even number appears in

the toss of a die, then C° is the event an odd number appears.

Subset: Event A is said to be a subset of event B if all the outcomes in A

are also contained in B. This is written as A C B.

Figure 2-1 illustrates these concepts in the form of Venn diagrams.
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A I I B A B
Q Q fe)
Union Intersection Mutual
AUB ANnB=AB Exclusiveness
AC B

A INC:

Event Complement Subset
ACB

Figure 2-1. Venn Diagrams for Various Event Relationships

Operations involving the union and intersection of events follow the rules of
set algebra. These rules are summarized below.

Identity Laws AUud=A AND =0
AuQ=0 ANQ2=A
De Morgan’s Laws (AUB =A"N"B° (ANB) =A“UB*
Associative Laws AUBUC=(AUB)UC=AU(BUC(C)
ANBNC=(ANBINC=AN(BNC)
Distributive Laws AUBNCO)=(AUBIN(AU()
ANBUCO)=(ANBUANC)
Commutative Laws AUB=BUA ANB=BnNA
Idempotency Laws AUA=A ANA=A
Complementary Laws AUA =Q ANA =0

2.3 Interpretations and Axioms of Probability
In the preceding discussion, the sample space for the toss of a die was given

by Q2={1,2,3,4,5,6}. If we assume the die is fair (which, unless otherwise
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noted, is assumed throughout this book) then any outcome in the sample
space is as likely to appear as any other. Given this assumption, it is

reasonable to conclude the proportion of time each outcome is expected to

occur is —é— Thus, the probability of each simple event in the sample space is

P({1) = P({2}) = P({3}) = P({4}) = P({S})) = PU6) = ¢
Similarly, suppose B is the event an odd number appears in a single toss of the
die. This compound event is given by the set B={1,3,5}. Since there are

three ways event B can occur out of six possible, we conclude the probability

of event B is
~3_1
PB)=5=7
The following presents a view of probability known as the equally likely
interpretation.

Equally Likely Interpretation: In this view, if a sample space £ consists of a

finite number of outcomes n, which are all equally likely to occur, then the

probability of each simple event is ;1; If an event A consists of m of these n

outcomes, then the probability of event A is

P(A)="2 (2-1)
In the above, it is assumed the sample space consists of a finite number of
outcomes and all outcomes are equally likely to occur. What if the sample
space is uncountable? What if the sample space is finite but the outcomes are
not equally likely?" In these situations, probability might be measured in
terms of how frequently a particular outcome occurs when the experiment is
repeatedly performed under identical conditions. This leads to a view of
probability known as the frequency interpretation.

* If a die is weighted in a particular way, then the outcomes of the toss are no longer considered
fair, or equally likely.
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Frequency Interpretation: In this view, the probability of an event is the
limiting proportion of time the event occurs in a set of n repetitions of the
experiment. In particular, we write this as

P(A)= lim 4

n—yeo N

where n(A) is the number of times in n repetitions of the experiment the event
A occurs. In this sense P(A) is the limiting frequency of event A.
Probabilities measured by the frequency interpretation are referred to as
objective probabilities. There are many circumstances where it is appropriate
to work with objective probabilities. However, there are limitations with this
interpretation of probability. It restricts events to those that can be subjected
to repeated trials conducted under identical conditions. Furthermore, it is not
clear how many trials of an experiment are needed to obtain an event’s

limiting frequency.

Axiomatic Definition: In 1933, the Russian mathematician Kolmogorov*
presented a definition of probability in terms of three axioms. These axioms
define probability in a way that encompasses the equally likely and frequency
interpretations of probability. It is known as the axiomatic definition of
probability. It is the view of probability adopted in this book. Under this
definition it is assumed for each event A, in the sample space £2, there exists a
real number P(A) that denotes the probability of A. In accordance with
Kolmogorov’s axioms, a probability is simply a numerical value (measure)

that satisfies the following:

Axiom I O0<£P(A)<1 for any event A in Q2
Axiom 2 P(2)=1

* AN Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergeb. Mat. und ihrer
Grenzg.. vol. 2, no. 3, 1933, Translated into English by N. Morrison, Foundations of the
Theory of Probability, New York (Chelsea), 1956 [1].
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Axiom 3 For any sequence of mutually exclusive events™ A, A,,...
defined on Q2
PO A)= 3 P
- i=1
For any finite sequence of mutually exclusive events
A}, A;,..., A, defined on &

n
P(}; A)=Y P(A)

=a
The first axiom states the probability of any event is a nonnegative number in
the interval zero to unity. In axiom 2, the sample space £ is sometimes
referred to as the sure or certain event, therefore, we have P(Q) equal to
unity. Axiom 3 states for any sequence of mutually exclusive events, the
probability of at least one of these events occurring is the sum of the

probabilities associated with each event A;. In axiom 3, this sequence may

also be finite. From these axioms come basic theorems of probability.

Theorem 2-1 The probability event A occurs is one minus the probability it
will not occur; that is, P(A)=1- P(AS)

Proof From the complementary law Q=AU A°. From axiom 3 it follows
that P(£)= P(AU A) = P(A)+ P(A°) since A and A are mutually exclusive
events. From axiom 2, we know that P(£)=1; therefore, 1= P(A)+ P(A°)
and the result P(A)=1- P(A®) follows.

Theorem 2-2 The probability associated with the null event & is zero
P(2)=0

Proof From theorem 2-1 and axiom 2

P(@)=1-P(@)=1-P(2)=1-1=0

* Thatis, A;NA, =@ for i#j.
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Theorem 2-3 If events A; and A, are mutually exclusive, then

P(Aj N Ay)= P(A1Ay) =0
Proof Since A, and A, are mutually exclusive, A A, =@. This implies
P(A; M Ay) = P(). From theorem 2-2, P(&)=0; therefore, P(AjNAy)=0.

Theorem 2-4 For any two events A; and A,

P(Aj W Ay) = P(A))+ P(Ay)— P(AL N Ay)
Proof The event A;U A,, shown in figure 2-2, is written in terms of three
mutually exclusive events, that is, AjU Ay = (A A5)U(AjAy)U(AfAy). From
axiom 3, P(A; U Ay) = P(A AS)+ P(AjAy) + P(AT A,).

Al Ay

Q
Figure 2-2. The Partition of A; Union A,

From figure 2-2, A; can be written in terms of mutually exclusive events; that
is, A =(A;AS)U(AAY); similarly Aj =(AfA,)U(AjAy). From axiom 3, it
follows that P(A)) = P(A; A7)+ P(AjA;) and P(Ay)= P(A[Ay) + P(AAp).
Therefore, P(A;U Ay) can be written as

P(Aj U Ay) = P(A})— P(Aj A7) + P(A1Ay) + P(Ay) — P(AAy)

It follows that”
P(A} U Ay) = P(A)+ P(Ay) — P(AjAy) o

* The symbol ¢ is reserved in this book to signal, where it might not be clear, the completion
of a proof, an example, or a case discussion.
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If A, and A, were mutually exclusive events, theorem 2-4 simplifies to axiom

3, that is, P(A;U Ay) = P(A))+ P(Ay) since P(AjAy)= P(A| M Ay) = P(D)=0.

Theorem 2-5 If event A, is a subset of event A, then
P(A)) < P(Ay)
Proof Since A, is a subset of A,, the event A, may be expressed as the union

of two mutually exclusive events A; and AfA,. Refer to figure 2-3.

A2
Af A2

Q

Figure 2-3. Event A, as a Subset of Event A,

Since
Az = A] o AICAZ
from axiom 3
P(Ay) = P(A))+ P(Af Ay)

Because P(AfA,)20 it follows that
P(A) S P(Ay) e

Example 2-1 The sample space £ for an experiment that consists of tossing
two dice is given by the 36 possible outcomes listed in table 2-1. The
outcomes in table 2-1 are given by the pairs (d,, d,),” which we assume are

equally likely. Let A, B, C, and D represent the following events:

* The outcomes from tossing two dice are recorded as (d;,d,), where d, and d, are the numbers
appearing on the upturned faces of the first and second die, respectively.
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The sum of the toss is odd
The sum of the toss is even

The sum of the toss is a number less than ten

SO >

The toss yielded the same number on each die’s upturned face
Find P(A), P(B), P(C), P(ANB), P(AU B), P(BNC), and P(BNCND)

Table 2-1. Sample Space for the Tossing of Two Dice

(1,1 (1,2) (1,3) (1,4) (1,5) (1,6)

@,bn 2,2) (2,3) 2.4 2,5 (2,6)
3.1 3.2) (3,3) 3.4 3.5 (3,6)
4,1 4.,2) (4.3) 4,4) (4.5) (4.6)
G.D (5.2) (5.3) 5.4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Solution The outcomes from the sample space in table 2-1 that make up
event A are

{(1,2), (1.4), (1,6), (2,1), (2,3), (2.5), (3,2), (3,4), (3,6),
(4.1), (4.3), (4,5), (5,2), (5:4), (5,6), (6,1), (6,3), (6,5)}
The outcomes from the sample space in table 2-1 that make up event B are
{(LD), (1,3), (1,5), (2,2), (2,4), (2,6), (3,1), 3,3), (3,5),
(4,2), (4,4), (4.6), (5.1), (5,3), (5,5), (6,2), (6,4), (6,6)}

The outcomes from the sample space in table 2-1 that make up event C are
{(L,1), (1,2), (1,3), (1.4, (1,5), (1,6), (2,1), (2,2), (2,3),
(2:4), (2,5), (2,6), (3,1), (3,2), (3,3), 3.4), (3.5), (3,6),
4.1), 4,2), (4,3), (4.4), (4.5), (5,1), (5,2), (5,3), 5.4),
(6,1), (6,2), (6,3)}

The outcomes from the sample space in table 2-1 that make up event D are
{(LD), (2,2), 3,3), (4.4), (5.5), (6,6)}
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Determination of P(A), P(B), and P(C): From equation 2-1, we can
compute

18 1 1
P(A)=—=— P(B)=——=
(A) 362 (B) 3

|5

L opey=2_ls
2 36 18

(@)}

Determination of P(An B): Observe event A and event B are mutually
exclusive, that is, they share no elements in common. Therefore, from

theorem 2-3
P(ANnB)=P(AB)=0

Determination of P(AU B): From theorem 2-4
P(AU B)= P(A)+ P(B)— P(ANnB)

Since P(ANB)=0 and P(A)=P(B)=1Y it follows that P(Au B)=1. Notice
the event AU B yields the sample space € for this experiment; by axiom 2 we

know P(Q2)=1.

Determination of P(BNC): The event the sum of the toss is even and it is a

number less than ten is given by BN C. This event contains the outcomes

{(L1), (1,3), (1,5), (2,2), (2:4), (2,6), (3,1), (3,3), (3,5),
4.2), (4.4, (5.1), (5,3), (6,2)}

from which P(BNC)=14/36=17/18.

Determination of P(BNC N D): The event the sum of the toss is even and it
is a number less than ten and the toss yielded the same number on each die’s

upturned face is given by BN C D. This event contains the outcomes

{(LD), (2,2), 3,3), (4.4}

from which P(BNCnD)=4/36=1/9. Notice event BNCN D is a subset
of event BN C. From theorem 2-5 we expect P(BNCN D)< P(BNC).
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Measure of Belief Interpretation: From the axiomatic view, probability need
only be a number satisfying the three axioms stated by Kolomogorov. Given
this, it is possible for probability to reflect a “measure of belief” in an
event’s occurrence. For instance, a software engineer might assign a
probability of 0.70 to the event “the radar software for the Advanced Air
Traffic Control System (AATCS) will not exceed 100K delivered source
instructions.” We consider this event to be nonrepeatable. It is not practical,
or possible, to build the AATCS n-times (and under identical conditions) to
determine whether this probability is indeed 0.70. When an event such as this
arises, its probability may be assigned. Probabilities assigned on the basis of
personal judgment, or measure of belief, are known as subjective
probabilities.

Subjective probabilities are the most common in systems engineering
projects and cost analysis problems. Such probabilities are typically assigned
by expert technical opinion. The software engineer’s probability assessment
of 0.70 is a subjective probability. Ideally, subjective probabilities should be
based on available evidence and previous experience with similar events.
Subjective probabilities risk becoming suspect if they are premised on limited
insights or no prior experiences. Care is also needed in soliciting subjective
probabilities. They must certainly be plausible; but even more, they must be
consistent with Kolomogorov’s axioms and the theorems of probability which
stem from these axioms. Consider the following:

The XYZ Corporation has offers on two contracts A and B. Suppose the proposal
team made the following subjective probability assignments...the chance of winning
contract A is 40 percent, the chance of winning contract B is 20 percent, the chance
of winning contract A or contract B is 60 percent, and the chance of winning both
contract A and contract B is 10 percent. It turns out this set of probability
assignments is not consistent with the axioms and theorems of probability! Why is
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this?* If the chance of winning contract B was changed to 30 percent, then this
particular set of probability assignments would be consistent.

Kolmogorov’s axioms, and the resulting theorems of probability, do not
suggest how to assign probabilities to events; rather, they provide a way to
verify the probability assignments (be they objective or subjective) are
consistent.

Risk versus Uncertainty: There is an important distinction between the terms
risk and uncertainty. Risk is the chance of loss or injury. In a situation that
includes favorable and unfavorable events, risk is the probability an
unfavorable event occurs. Uncertainty is the indefiniteness about the outcome
of a situation. We analyze uncertainty for the purpose of measuring risk. In
systems engineering the analysis might focus on measuring the risk of: failing
to achieve performance objectives, overrunning the budgeted cost, or
delivering the system too late to meet user needs. Conducting the analysis
involves varying degrees of subjectivity. This includes defining the events of
concern, as well as specifying their subjective probabilities. Given this, it is
fair to ask whether it’s meaningful to apply rigorous mathematical procedures
to such analyses. In a speech before the 1955 Operations Research Society of
America meeting, Charles Hitch addressed this question. He stated [2]:

“Systems analyses provides a framework which permits the judgment of experts in
many fields to be combined to yield results that transcend any individual judgment.
The systems analyst [cost analyst] may have to be content with better rather than
optimal solutions; or with devising and costing sensible methods of hedging; or
merely with discovering critical sensitivities. We tend to be worse, in an absolute
sense, in applying analysis or scientific method to broad context problems; but
unaided intuition in such problems is also much worse in the absolute sense. Let’s not

deprive ourselves of any useful tools, however short of perfection they may fail.”

¥ P .
The answer can be seen from theorem 2-4; this is also exercise 6.
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2.4 Conditional Probability

In many circumstances the probability of an event must be conditioned on
knowing another event has taken place. Such a probability is known as a
conditional probability. Conditional probabilities incorporate information
about the occurrence of another event. The conditional probability of event
A given an event B has occurred is denoted by P(A[B). In example 2-1, it was
shown if a pair of dice is tossed the probability the sum of the toss is even is
1/2; this probability is known as a marginal or unconditional probability.
How would this unconditional probability change (i.e., be conditioned) if it
was known the sum of the toss was a number less than ten? This is discussed

in the following example.

Example 2-2 1f a pair of dice is tossed and the sum of the toss is a number
less than ten, compute the probability this sum is an even number.

Solution Returning to example 2-1, recall events B and C were given by

B: The sum of the toss is even

C: The sum of the toss is a number less than ten

The sample space £2 is given by the 36 outcomes in table 2-1. In this case, we
want the subset of £2 containing only those outcomes whose toss yielded a sum
less than 10. This subset is shown in table 2-2.

Table 2-2. Outcomes Associated With Event C

(1,1) (1,2) (1,3) (1.4) (1,5) (1,6)

2,0 (2,2) (2,3) 24 2,5) (2,6)
3.h 3,2) (3,3) 3.4) 3.5) 3.6)
4,1 4.,2) 4.3 4,4) 4,5)

(GRY) 5,2) (5.3) 5.4)

6.1 6,2) (6,3)
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Within table 2-2, 14 possible outcomes are associated with the event “the sum

of the toss is even, given the sum of the toss is a number less than ten.”

(L,D,(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5)
{(4,2),(4,4),(5,1),(5,3),(6,2) }
Therefore, the probability of this event is P(B|C)= %%o
In example 2-2, observe P(B]C) was obtained directly from a subset of the
sample space £2; furthermore, P(B|C)=14/ 30< P(B)=1/2 in example 2-2.
If A and B are events in the same sample space @, then P(A|B) is the
probability of event A within the subset of the sample space defined by event
B. Formally, the conditional probability of event A given event B has
occurred is defined as
P(AnB) _ P(AB)
P(B) P(B)

where P(B) > 0. Likewise, the conditional probability of event B given event

P(A|B) = (2-2)

A has occurred is defined as

P(BNA) _ P(BA)
P(A)  P(A)
where P(A) > 0. In particular, relating equation 2-3 to example 2-2 (and

P(B|A) = (2-3)

referring to the computations in example 2-1) we have

14
P(BNC) 3¢ 14
P(BIC)=———"=32 =—
PC)y 32 30

Example 2-3 A proposal team from XYZ Corporation has offers on two
contracts A and B. The team made subjective probability assignments on the
chances of winning these contracts. They assessed a 40 percent chance on the
event winning contract A, a 50 percent chance on the event winning contract
B, and a 30 percent chance on the event winning both contracts. Given this,
what is the probability of
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a) Winning at least one of these contracts?
b) Winning contract A and not winning contract B?

¢) Winning contract A if the proposal team has won at least one contract?

Solution

a) Winning at least one contract means winning either contract A or
contract B or both contracts. This event is represented by the set AU B.
From theorem 2-4

P(Au B)= P(A)+ P(B)~P(AN B)
therefore P(Au B)=0.40+0.50~-0.30 = 0.60

b) The event winning contract A and not winning contract B is represented
by the set AN B°. From the Venn diagram below, observe that

P(A)= P(AN B )U(AN B))

A B

Q

Since the events AN B and AN B are disjoint, from theorem 2-4 we have
P(A)=P(ANB°)+ P(AN B)
This is equivalent to P(AN B)= P(A)— P(AN B); therefore,
P(ANB%)= P(A)- P(AN B)=0.40-0.30=0.10

¢) If the proposal team has won one of the contracts, the probability of

winning contract A must be revised (or conditioned) on this information.

This means we must compute P(A]JA U B). From equation 2-2
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P(ANn(AU B))
P(AU B)
Since P(A)= P(AN(AuU B)) we have

P(A|AUB) =

PAAN(AUB) __ P(A) _040_2 _
P(AU B) P(AUB) 060 3

P(AJAU B) = 0.67 ¢
A consequence of conditional probability is obtained if we multiply equations

2-2 and 2-3 by P(B) and P(A), respectively. This multiplication yields”
P(AN B)= P(B)P(A|B) = P(A)P(B|A) (2-4)

Equation 2-4 is known as the multiplication rule. The multiplication rule
provides a way to express the probability of the intersection of two events in
terms of their conditional probabilities. An illustration of this rule is

presented in example 2-4.

Example 2-4 A box contains memory chips of which 3 are defective and 97
are nondefective. Two chips are drawn at random, one after the other, without
replacement. Determine the probability

a) Both chips drawn are defective.

b) The first chip is defective and the second chip is nondefective.

Solution
a) Let A and B denote the event the first and second chips drawn from the
box are defective, respectively. From the multiplication rule, we have
P(ANB) = P(AB)= P(A)P(B|A)
= P(1st chip defective)P(2 nd chip defective [ Ist chip defective)

_ ._?’__(._2_) =5
1001.99) ~ 9900

* From the commutative law P(AN B)= P(BN A), which is equivalent to P(AB) = P(BA).
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b) To determine the probability the first chip drawn is defective and the
second chip is nondefective, let C denote the event the second chip drawn is
nondefective. Thus,
P(ANC)= P(AC) = P(A)P(C]A)
= P(1st chip defective)P(2 nd chip nondefective I 1st chip defective)

- .3_(21) _»
100199/ 9900

In this example the sampling was performed without replacement. Suppose

the chips sampled were replaced; that is, the first chip selected was replaced

before the second chip was selected. In that case, the probability of a

defective chip being selected on the second drawing is independent of the

outcome of the first chip drawn. Specifically,

P(2nd chip defective) = P(1st chip defective) = 3/100

3 (3 9 3097\ 291
So P(ANB)=——|—|= d PANO)=—| —|=7—=
° KANB) 100(100) looop 4 PANO 100(100) 10000

Independent Events

Two events A and B are said to be independent if and only if
P(AN B)= P(A)P(B) (2-5)
and dependent otherwise.  The events Ay, A,,...,A, are (mutually)

independent if and only if for every set of indices i§,7,...,i; between 1 and n,

inclusive,
P(A; N A, N..NA; ) = P4 )P(A,-z)...P(A,-,< ), (k=2,...,n)
For instance, events Aj, Az, and Az, are independent (or mutually

independent) if the following equations are satisfied

P(A, N A, M Ay) = P(A)P(A)P(A;) (2-5a)
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P(A, N A,) = P(A)P(A,) (2-5b)
P(A, N Ay) = P(A)P(A,) (2-5¢)
P(A, N Ay) = P(A,)P(A,) (2-5d)

It is possible to have three events A1, Az, and A3 for which equations 2-5b
through 2-5d hold but equation 2-5a does not hold. Mutual independence
implies pairwise independence, in the sense that equations 2-5b through 2-5d
hold, but the converse is not true.

There is a close relationship between independent events and conditional
probability. To see this, suppose events A and B are independent. This
implies P(AB)= P(A)P(B). From this, equations 2-2 and 2-3 become,
respectively, P(A|B)= P(A) and P(B|A)=P(B). Thus, when two events are
independent the occurrence of one event has no impact on the probability the
other event occurs.

To illustrate the concept of independence, suppose a fair die is tossed. Let
A be the event an odd number appears. Let B be the event one of these
numbers {2,3,5,6} appears, then P(A)=1/2 and P(B)=2/3. Since ANB
is the event represented by the set {3,5}, we can readily state P(ANB)=1/3.
Therefore, P(ANB)= P(A)P(B) and we conclude events A and B are
independent. Dependence can be illustrated by tossing two fair dice, as
described in example 2-1. In that example, A was the event the sum of the
toss is odd and B was the event the sum of the toss is even. In the solution to
example 2-1, it was shown P(ANB)=0 and P(A) and P(B) were each 1/2.
Since P(AN B)# P(A)P(B) we would conclude events A and B are dependent,
in this case.

It is important not to confuse the meaning of independent events with
mutually exclusive events. If events A and B are mutually exclusive, the event

A and B is empty; that is, AnNB=&. This implies P(ANB)=P(Z)=0. If
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events A and B are independent with P(A)#0 and P(B)#0, then A and B
cannot be mutually exclusive since P(AN B)= P(A)P(B)#0.

Theorem 2-6 For any two independent events A; and A,
P(A; U Ay) =1-P(A{ )P(AS)
Proof From theorem 2-1 we can write
P(A] U Ap) =1-P((A; U A)°)
From De Morgan’s law (section 2.2) (A; U Ay)° = Af N AS; therefore,
P(A U Ay) =1—- P(Af NAS)=1- P(A{AS)
Since events A; and A, are independent, the above expression becomes
P(Aj U Ay)=1-P(A{)P(A3) e (2-6)
To prove this theorem, we used a result that if A, and A, are independent then
Af and A5 are also independent. Showing this is left as an exercise for the
reader. Extending theorem 2-6, it can be shown that if Aj,A;,...,A, are
independent then
P(AjUAy UA3U...UA,)=1-P(Af A5 AS ... AL)
=1- P(A{ )P(AS)P(AS)...P(AS) 2-7)
2.5 Bayes’ Rule
Suppose we have a collection of events A; representing possible conjectures
about a topic. Furthermore, suppose we have some initial probabilities
associated with the “truth” of these conjectures. Bayes’ rule® provides a way

to update (revise) initial probabilities when new information about these
conjectures is evidenced.

Bayes’ rule is a consequence of conditional probability. Suppose we

partition a sample space £ into a finite collection of three mutually exclusive

* Named in honor of Thomas Bayes (1702-1761), an English minister and mathematician.
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events (see figure 2-4). Define these events as Ay, Ay, and Aj, where
A UA,UA;=Q. Let B denote an arbitrary event contained in £. From

figure 2-4 we can write the event B as
B=(AiNB)L(ANBYV(A3N B) (2-8)

Since the events (A, N B),(A, N B),and (A; " B) are mutually exclusive, we

can apply axiom 3 and write

P(B)= P(A, N B)+ P(A, " B)+ P(A, " B)

Figure 2-4. Partitioning £2 Into Three Mutually Exclusive Sets

From the multiplication rule given in equation 2-4, P(B) can be expressed in
terms of conditional probability as
P(B)= P(A)P(B|A))+ P(A,)P(B|A,) + P(A,) P(B|A,) (2-9)
Equation 2-9 is known as the total probability law. Its generalization is
n
P(B)=)' P(A)P(BlA;) (2-10)
i=1

n
where Q= U A; and A;MA; =0 and i# j. The conditional probability for
i=1

each event A, given event B has occurred is
P(A,nB) _P(A)P(BA)

P(AilB)= P(B) P(B)

(2-11)
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When the total probability law is applied to equation 2-11 we have
P(A)P(BA)

Y P(a)P(BlA)
i=1

Equation 2-12 is known as Bayes’ Rule.

P(AB) = (2-12)

Example 2-5 The ChipyTech Corporation has three divisions D;, D,, and D,
that each manufacture a specific type of microprocessor chip. From the total
annual output of chips produced by the corporation, D; manufactures 35%,
D, manufactures 20%, and D; manufactures 45%. Data collected from the
quality control group indicate 1% of the chips from D, are defective, 2% of
the chips from D, are defective, and 3% of the chips from D, are defective.
Suppose a chip was randomly selected from the total annual output produced

and it was found to be defective. What is the probability it was manufactured

Solution Let A; denote the event the selected chip was produced by division
D; (i=12,3). Let B denote the event the selected chip is defective. To
determine the probability the defective chip was manufactured by D; we must
compute the conditional probability P(A|B) for i=12,3. From the
information provided, we have
P(A)=0.35, P(A;)=0.20, and P(A3)=045
P(B|A))=0.01, P(B|A,)=0.02, P(B|A;)=0.03

The total probability law and Bayes’ rule will be used to determine P(A,|B)
foreach i =1, 2, and 3. Recall from equation 2-9 P(B) can be written as

P(B)= P(A))P(B|A)+ P(A,)P(B|A,) + P(A;)P(B|A;)

P(B)=0.35(0.01)+0.20(0.02) + 0.45(0.03) = 0.021

and from Bayes’ rule we can write
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P(A)P(BA) _ P(A)P(BIA)

P(A;| B)=— PB)
Y P(A)P(BIA;)
from which =

POA|B) = P(A)P(B|A) _0350.0D) _ | s
P(B) 0.021

P(AL|B) = P(A,)P(B|A,) _0.20(0.02) _ 0.190
P(B) 0.021

P(AB) = P(A)P(BJA}) _ 0.45(0.03) _ o o

; P(B) 0.021 R

Table 2-3 provides a comparison of P(A;) with P(A;|B) foreachi=1,2,3.

Table 2-3. Comparison of P(A,)and P(A;|B)

i P(A) P(A|B)
1 0.35 0.167
2 0.20 0.190
3 0.45 0.643

The probabilities given by P(A,), are the probabilities the selected chip will
have been produced by division D, before it is randomly selected and before
it is known whether or not the chip is defective. Therefore, P(A;) are the
prior, or a priori (before the fact) probabilities. The probabilities given by
P(A;|B) are the probabilities the selected chip was produced by division D,
after it is known the selected chip is defective. Therefore, P(A,|B) are the
posterior, or a posteriori (after the fact) probabilities. Bayes’ rule provides a
means for the computation of posterior probabilities from the known prior
probabilities P(A;) and the conditional probabilities P(B‘A,.) for a particular

situation or experiment.



38 Chapter 2

Bayes’ rule established a philosophy in probability theory that became known
as Bayesian inference and Bayesian decision theory. These areas play an
important role in the application of probability theory to cost and systems
engineering problems. In equation 2-10, we may think of A; as representing
possible states of nature to which an analyst or systems engineer assigns
subjective probabilities. = These subjective probabilities are the prior
probabilities, which are often premised on personal judgments based on past
experience. In general, Bayesian methods offer a powerful way to revise, or
update, probability assessments as new (or refined) information becomes

available.

Exercises

1. State the interpretation of probability implied by the following:

a) The probability a tail appears on the toss of a fair coin is 1/2.

b) After recording the outcomes of 50 tosses of a fair coin, the
probability a tail appears is 0.54.

¢) It is with certainty the coin is fair!

d) The probability is 60 percent that the stock market will close 500
points above yesterday’s closing count.

e) The design team believes there is less than a 5 percent chance the

new microchip will require more than 12,000 gates.

2. A sack contains 20 marbles exactly alike in size but different in color.
Suppose the sack contains 5 blue marbles, 3 green marbles, 7 red
marbles, 2 yellow marbles, and 3 black marbles. Picking a single
marble from the sack and then replacing it, what is the probability of

choosing the following:
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a) Blue marble? b) Green marble? ¢) Red marble?
d) Yellow marble? e) Black marble? f) Non-blue marble

g) Red or non-red marble?

3.  If a fair coin is tossed, what is the probability of not obtaining a head?

What is the probability of the event: (a head or not a head)?
4.  Show the probability of the event: (A or A complement) is always unity.

5.  Suppose two tetrahedrons (4-sided polygons) are randomly tossed.
Assuming the tetrahedrons are weighted fair, determine the set of all

possible outcomes 2. Assume each face is numbered 1, 2, 3, and 4.

Two Tetrahedron’s for Exercise 5

Let the sets A, B, C, and D represent the following events

A: The sum of the toss is even

B: The sum of the toss is odd

C: The sum of the toss is a number less than 6

D: The toss yielded the same number on each upturned face
a) Find P(A), P(B), P(C), P(AnB), P(Au B), P(BuL (), and
P(BNCN D).
b) Verify P(AU B)" = P(A° N B) (De Morgan’s Law).

6. The XYZ Corporation has offers on two contracts A and B. Suppose the
proposal team made the following subjective probability assessments:

the chance of winning contract A is 40 percent, the chance of winning
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11.
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contract B is 20 percent, the chance of winning contract A or contract B
is 60 percent, the chance of winning both contracts is 10 percent.

a) Explain why the above set of probability assignments is inconsistent
with the axioms of probability.

b) What must P(B) equal such that it and the set of other assigned
probabilities specified above are consistent with the axioms of

probability?

Suppose a coin is balanced such that tails appears 3 times more
frequently than heads. Show the probability of obtaining a tail with
such a coin is 3/4. What would you expect this probability to be if the

coin was fair; that is, equally balanced?

Suppose the sample space of an experiment is given by £2=AUB.
Compute P(AN B) if P(A)=0.25 and P(B)=0.80.

If A and B are disjoint subsets of & show that
a) P(A°UB%)=1
b) P(A° N B)=1-[P(A)+ P(B)]

Two missiles are launched. Suppose there is a 75 percent chance missile
A hits the target and a 90 percent chance missile B hits the target. If the
probability missile A hits the target is independent of the probability
missile B hits the target, determine the probability missile A or missile B
hits the target. Find the probability needed for missile A such that if the
probability of missile B hitting the target remains at 90 percent, the
probability missile A or missile B hits the target is 0.99.

Suppose A and B are independent events, Show that
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12.

13.

14.

15.

16.

17.

a) The events A and B° are independent.
b) The events A and B are independent.

c) The events A and B are independent.

Suppose A and B are independent events with P(A)=0.25 and
P(B)=0.55. Determine the probability
a) At least one event occurs.

b) Event B occurs but event A does not occur.

Suppose A and B are independent events with P(A)=r and the
probability that “at least A or B occurs” is s. Show the only value for
P(B)is (s—=n(1-n""

In exercise 5, suppose event C has occurred. Enumerate the set of
remaining possible outcomes. From this set compute P(B). Compare
this with P(B|C) where P(B|C) is determined from the definition of

conditional probability.

At a local sweet shop, 10 percent of all customers buy ice cream, 2
percent buy fudge, and 1 percent buy both ice cream and fudge. If a
customer selected at random bought fudge, what is the probability the
customer bought an ice cream? If a customer selected at random

bought ice cream, what is the probability the customer bought fudge?

For any two events A and B, show that P(AJAN(ANB) =1.

A production lot contains 1000 microchips of which 10 percent are
defective. Two chips are successively drawn at random without
replacement. Determine the probability

a) Both chips selected are nondefective.
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b) Both chips are defective.
¢) The first chip is defective and the second chip is nondefective.

d) The first chip is nondefective and the second chip is defective.

Suppose the sampling scheme in exercise 17 was with replacement, that
is, the first chip is returned to the lot before the second chip is drawn.

Show how the probabilities computed in exercise 17 are changed.

Spare power supply units for a communications terminal are provided
to the government from three different suppliers A,, A,, and A;. Thirty
percent come from A, twenty percent come from A,, and fifty percent
come from A;. Suppose these units occasionally fail to perform
according to their specifications and the following has been observed:
2 percent of those supplied by A, fail, 5 percent of those supplied by A,
fail, and 3 percent of those supplied by A; fail. What is the probability
any one of these units provided to the government will perform without

failure?

In a single day, ChipyTech Corporation’s manufacturing facility
produces 10,000 microchips.  Suppose machines A, B, and C
individually produce 3000, 2500, and 4500 chips daily. The quality
control group has determined the output from machine A has yielded
35 defective chips, the output from machine B has yielded 26 defective
chips, and the output from machine C has yielded 47 defective chips.

a) If a chip was selected at random from the daily output, what is the
probability it is defective?

b) What is the probability a randomly selected chip was produced by
machine A? By machine B? By machine C?

c) Suppose a chip was randomly selected from the day’s production of
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10,000 microchips and it was found to be defective. What is the

probability it was produced by machine A? By machine B?

machine C?

References

1. Feller, W. 1968. An Introduction to Probability Theory and Its
Applications, vol. 1, 3rd ed (revised). New York: John Wiley & Sons,
Inc.

2. Hitch, C. J. 1955. An Appreciation of Systems Analysis, P-699. Santa
Monica, California: The RAND Corporation.

By



Chapter 3

Distributions and the Theory of Expectation

There is only one thing about which I am We dance round in a ring and suppose
certain, and this is that there is very little But the Secret sits in the middle and knows.
about which one can be certain. Robert Frost
W. Somerset Maugham The Secret Sits [1942]

The Summing Up (1938)

3.1 Random Variables and Probability Distributions

Consider the experiment of tossing two fair dice described in example 2-1
(chapter 2). Suppose x represents the sum of the toss. Define X as a variable
that takes on only values given by x. If the sum of the toss is 2 then X =2; if
the sum of the toss is 3 then X =3; if the sum of the toss is 7 then X=7.
Numerical values of X are associated with events defined from the sample
space £2 for this experiment, which was given in table 2-1 (chapter 2). In

particular,

X =2 is associated with only this simple event {(],1)}*

X =3 is associated with only these two simple events {(1,2)},{(2,)}

X =7 is associated with only these six simple events {(1,6)},{(2,.5}.{(3.9}, {(4,3)},

{521L{G.D}

In the above, we say X is a random variable. This is illustrated in figure 3-1.
Formally, a random variable is a real-valued function defined over a sample
space. The sample space is the domain of a random variable. Traditionally,
random variables are denoted by capital letters such as X, W, and Z.

* . .
The outcomes from tossing two dice are recorded as (d;,d,), where d; and d, are the

numbers appearing on the upturned faces of the first and second die, respectively. Therefore, in
this discussion, x =d; +d,.
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X=x
7| The random variable X = x
where x is the sum of the toss
Some Possible of two dice. In particular,
Values for X X{a,nh=2
3 |le——— X{12,2.nh=3
) X({(1,6),(2,5),3,4),
4,3),(5,2),6,hH}H=7

{@.D} {2}
{20}

{1L,OL{EZ5})1{(3 )}
{43} {G2)) {6 D}

Nine Events From the Sample Space of
Tossing Two Dice Corresponding to
Some Possible Values of X

Figure 3-1. Some Possible Values of a Random Variable

The event X = x is equivalent to
(X =x}={we Q| X(w)=x}
This represents a subset of £ consisting of all sample points @ such that
X(w)=x. In figure 3-1, the event {X =3} is equivalent to
{X=3}={(12),2D}
The probability of the event {X = x} is equivalent to
P({X = x}) = P({w € Q| X(®) = x})

In figure 3-1, the probability of the event {X =3} is equivalent to

PU{X =3H=P{1,2),2,D})=2/36

For convenience, the notation P({X = x})= P(X = x) is adopted in this book.

Random variables can be characterized as discrete or continuous. A
random variable is discrete if its set of possible values is finite or countably
infinite. A random variable is continuous if its set of possible values is
uncountable.
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Discrete Random Variables

Consider again the simple experiment of tossing a pair of fair dice. Let the
random variable X represent the sum of the toss. The sample space £ for this
experiment consists of thirty-six outcomes given in table 2-1 (chapter 2). The
random variable X is discrete since the only possible values are
x=2,3,4,5,6,...,12. The function that describes probabilities associated with
the event {X = x}, for all feasible values of x, is shown in figure 3-2. This

function is known as the probability function of X.

px(x)
6/36
5136

4/36
3/36
2/36
1736 :I
8 9

2 3 4 5 6 7

L.
100 11 12

Figure 3-2. Probability Function for —
the Sum of Two Dice Tossed
The probability function of a discrete random variable X is defined as
px(x)=P(X =x) (3-1
The probability function is also referred to as the probability mass function or
the frequency function of X. The probability function associates probabilities
to events described by distinct (single) points of interest. Over all feasible
(possible) values of x, probability functions satisfy, by the axioms of

probability, the following conditions:

2) ()20 b)Y py(x)=1
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If x is not a feasible value of X then
px(x)=P(X=x)=P(D)=0

It is often of interest to determine probabilities associated with events of the
form {X <x}. For instance, suppose we wanted the probability that the sum
of the numbers resulting from the toss of two fair dice will not exceed seven.
This is equivalent to computing P(X<7); in this instance, we have
PX<H=PUX=2}u{X=3}u...u{X=T7}). Thus, X can take a value not
exceeding seven if and only if X takes on one of the values 2,3,...,7. Since
the events {X =2},{X =3},...,{X =7} are mutually exclusive, from axiom 3

(chapter 2) and figure 3-2 we have
PX<T)=P(X=2)+P(X=3)+..+P(X=T)=4

The function that produces probabilities for events of the form {X<x} is
known™ as the cumulative distribution function. Formally, if X is a discrete

random variable then its cumulative distribution function (CDF) is defined by

F(x)=P(X<x)= Y py(t) (—eo<x<eo) (3-2)

t<x
In terms of the above definition, we would write P(X £7) as
F(N=PX<T)= pr(t) = py(2)+ py ) +...+ py(7) =21/36
<7
where, from equation 3-1, p,(x)=P(X=x) for x=2,3,...,7.

The CDF for the random variable with probability function in figure 3-2 is
pictured in figure 3-3. Notice the CDF is a “staircase” or “step” function.
This is a characteristic of cumulative distribution functions for discrete
random variables. The height of the “step” along the CDF is the probability
the value associated with that step occurs. For instance, in figure 3-3, the

probability that X =3 is the height of the step (jump) between X =2 and

X =3;thatis, P(X =3) =3 -4 =2.
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Fx(x)

1
— P(X=12)
35/36 ;
3/36
- P(X=3)
1/36
—P(X=2)

o 2 3 11 12

Figure 3-3. Cumulative Distribution Function for —
the Sum of Two Dice Tossed

If X is a discrete random variable and a is any real number that is a feasible
(or possible) value of X, then P(X =a)= py(a) is equal to the height of the
step (jump) of Fy(x) atx =a.

The following presents theorems for determining probabilities from the
CDF of a discrete random variable X. In the theorems below, a and b are real

numbers with a < b.

Theorem 3-1 The probability of {X >a} is 1- Fy(a).

Proof Let A denote the event {X >a}; then A ={X <a}; from theorem 2-1

and the definition given by equation 3-2, it immediately follows that
P(X>a)=1-P(X<a)=1-Fy(a)

Theorem 3-2 The probability of {X >a} is 1- Fy(a)+ P(X = a).

Proof We can write the event {X >4} as the union of two mutually exclusive

events {X =a} and {X > a}; that is,

{(Xza}=(X=adU{X>a}
| . W W R T W . LV

(X =a) (X >a)
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From theorems 2-4 and 3-1 we have
PXZza)y=P{{X=alu{X>a})=P(X=a)+P(X>a)
=P(X =a)+1-Fx(a)=1-Fx(a)+P(X =a)
Theorem 3-3 The probability of {X <a} is Fy(a)—~ P(X =a).

Proof This is a direct consequence of theorems 3-2 and 3-1. The proof is

left as an exercise for the reader.
Theorem 3-4 The probability of {a <X <b}is Fx(b)— Fx(a).

Proof We can write the event {X <b} as the union of two mutually exclusive
events {X <a} and {a < X <b}; that is,

{(X<b}={X<aula<X <bh}
1\\\\\‘%\\\\\\\‘:

a b
{(X<a} {a<X<b)

From theorem 2-4
PX£b)=P{{X<ajula<X<b)=PX<La)+Pla<X<bh)
Thus, Fx(b)=Fx(a)+ Pla< X £Db)
Therefore
Pla< X <£b)= Fx(b)- Fx(a)
Theorem 3-5 The probability of {a < X <b} is Fy(b)— Fx(a)— P(X =b).

Proof We can write the event {X <b} as the union of two mutually exclusive
events {X <a} and {a < X < b}; that is,

{(X<b}={X<daula<X<bh}

M}G&\\%&\l‘)——
a b
{X<a} {a<X<b}
From theorem 2-4

P(X<b)=P({X<alufa<X<b))=PX<La)+Pla<X<b)
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It follows that P(X<b)~-P(X<a)=Pla<X<b)

From theorem 3-3, P(X <b)=Fy(b)—P(X =b); since P(X<a)=Fx(a) we
have P(a< X <b)= Fy(b)— Fx(a)— P(X =b), which was to be shown.

Theorem 3-6 The probability of {a< X <b}is
Fy(b)- Fy(a)+ P(X = a)— P(X = b).

Proof We can write the event {a¢< X <b} as the union of two mutually
exclusive events {X =a} and {a < X <b}; that is,

fa<X<bi={X=alula<X<b}
From theorem 2-4

PlasX<b)=P({X=alula<X<b)=P(X=a)+Pla<X<b)
From theorem 3-5 P(a < X <b)= Fy(b)— Fx(a)— P(X = b); therefore,
Plas X <by=Fx(b)~ Fxy(a)+ P(X =a)~ P(X =b)

Theorem 3-7 The probability of {a< X £b}is Fy(b)- Fy(a)+ P(X = a).

Proof We can write the event {a< X <b} as the uﬁion of three mutually
exclusive events {X =a}, {a< X <b}, and {X =b}. Thatis,
{asX<hl={X=alula< X <bju{X=b}
From axiom 3 (chapter 2) and theorem 3-5
PlasX<b)y=P({X=alula<X<blu{X =b})
=P(X=a)+Pla<X<b)+P(X =b)
= P(X = a)+[Fx(b)- Fy(a)— P(X =b)]+ P(X =b)
=Fy(b)-Fy(@)+ P(X=a)e
The following presents the first of many case discussions in this book. The
discussion addresses how a corporation might assess the chance of making a
profit on a new electronics product.
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Case Discussion™ 3-1 ChipyTech Corporation is a major producer and
supplier of electronics products to industry world-wide. They are planning to
bring a new product to the market. Management needs to know the product’s
potential for profit and loss during its first year on the market. In addition,
they want to know the chance of not making a profit the first year. Suppose

profit [1] is given by equation 3-3
Profit = (Uppee = Ugou )V (3-3)

where U,,,, is a discrete random variable that represents the product’s unit
price, Ug,, is a discrete random variable that represents the unit cost to
manufacture the product, and V is a discrete random variable that represents
the product’s sales volume for year one, which is assumed to be nonzero. A

profit exists when Up, ., > U, a loss exists when U,, ., <Uc,,, and no profit

rce

exists when Up,,, <Ug,,- For purposes of this case discussion, we will assume

Price
Uppeer Ucoy» and V are independent random variables.

Suppose the corporation’s sales, price, and cost histories for similar
products have been analyzed. Further, suppose interviews were carefully
conducted with subject matter experts from the engineering and marketing
departments of ChipyTech. From the interviews and the historical data,
possible values for the product’s unit price, unit cost, and sales volume were
established along with their respective probabilities of occurrence. Figure 3-4
presents these values for U, ,, Uc,,, and V.

* Adapted and expanded from an example in Park, W. R., and D. E. Jackson. 1984. Cost

Engineering Analysis — A Guide to Economic Evaluation of Engineering Projects, 2nd ed. New
York: John Wiley & Sons, Inc.
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Probability
1

U Price Ucost 14

20 30 40 0 20 30 10 20 30
Dollars Dollars Millions
Uprce Ucost v

Figure 3-4. Possible Values for U,,,, Ug,,,and V

To find the dollar range on the product’s profit or loss potential, we first list
all possible combinations of U,,.,, U, and V. This list is shown in table
3-1. Since Up,,, Ug,,, and V are given to be independent random variables,*

the probability that any combination of U,,,, and U, and V will occur is

P({UPnce = uPrtce} N {UCas: = uCosr} N {V = V})
= P(UPm“e = Uppce )P(UC = uCast)P(V = V) (3“4)

where values for P(Up,,, = Up,,)» P(Uc,y, =uc,,), and P(V=v) are given in
figure 3-4. For example, the probability the new product will have a unit
price of 20 dollars and a unit cost of 10 dollars and a sales volume of 10
million (the first year) is
P({Uppce = 204N {Uc,y =10} {V =10})
=P(Upee =200P(Uc,,, =10)P(V =10)=0.020  (3-5)

When random variables are independent their associated events are independent. This is
discussed further in chapter 5.
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Table 3-1 summarizes the possible values for Profit. Table 3-1 also shows the
probability Profit takes a value according to a specific combination of U,,.,,
Uc,.»and V. From table 3-1, observe there is a potential loss of as much as
300 ($M) and a potential gain of as much as 900 ($M). How probable are
these extremes? What is the chance the corporation will not make a profit the
first year? The following discussion addresses these questions.

From table 3-1 it can be seen there is less than a 1 percent chance (i.e., 0.6
percent) the new product will realize a loss of 300 ($M) during its first year
on the market. Similarly, the maximum profit of 900 ($M) has just under a 2

percent chance (i.e., 1.8 percent) of occurring.

Table 3-1. Possible Profits and Their Probabilities

Uprice Ucost 1% Profit Probability

$) &) (Millions) ($M)

20 10 10 100 0.020
20 10 20 200 0.008
20 10 30 300 0.012
20 20 10 0 0.070
20 20 20 0 0.028
20 20 30 0 0.042
20 30 10 -100 0.010
20 30 20 -200 0.004
20 30 30 -300 0.006
30 10 10 200 0.050
30 10 20 400 0.020
30 10 30 600 0.030
30 20 10 100 0.175
30 20 20 200 0.070
30 20 30 300 0.105
30 30 10 0 0.025
30 30 20 0 0.010

30 30 30 0 0.015
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Table 3-1. Possible Profits and Their Probabilities

(Concluded)
Upyice Ucost 14 Profit Probability

$) ) (Millions) ($M)

40 10 10 300 0.030
40 10 20 600 0.012
40 10 30 900 0.018
40 20 10 200 0.105
40 20 20 400 0.042
40 20 30 600 0.063
40 30 10 100 0.015
40 30 20 200 0.006
40 30 30 300 0.009
Total Probability 1

The corporation will not make a profit (i.e., Profit<0) when U,, ., SUc,,-
There are nine events in table 3-1 (shown by the bold-faced figures) that
produce Profit<0. Let these events be represented by A, A,,...,Ag, where

A1 = {{UPn'ce = 20} M {UCosl = 20} M {v = 10}}
A2 = {{UPrt('e = 20} M {UCOSI = 20} M {V = 20}}

Ay = {{Uppee =30} {Ug,y =30} N{V =30}}

These events are mutually exclusive. Therefore, from axiom 3 (chapter 2) the
probability that Profit <0 is

9 9
P(Profit <0)= P(U A) = Y P(4)=0210 (3-6)

i=1

where each P(4;) is given in table 3-1.
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Table 3-1 can also be used to develop the probability function for the random
variable Profit. Since Profit is given (in this discussion) to be a discrete
random variable, its probability function is

pProﬁt('x) = P(Proﬁt = x) (3-7)
where feasible values of x are given in table 3-1. Figure 3-5 is the graph of
Pprot(x). Among the many useful aspects of the probability function is

identifying the value of x associated with the highest probability of
occurrence. In figure 3-5, a profit of 200 ($M) has the highest probability of
occurrence. A number of other computations can be determined from

Ppron(x). For example, from figure 3-5 we have

P(Profit £ 0) = pp,,; (=300) + pp,,5 (-200)
+ pProfit (_100) + pProﬁt (0) =0.210

14 Profit ( )C)
025 T 0.239

020 =+
0.15 =+

0.10 -+

005 +
0.006 0.004 0.010

($M) x

-300 200 -100 O 100 200 300 400 600 900

Figure 3-5. Probability Function for Profit — Case Discussion 3-1

Notice that P(Profit <0) is really the value of the cumulative distribution

function for Profit at x =0. From equation 3-2, the CDF of Profit is

Fopou (1) = P(Profit x) =Y Py (0)

t<x
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Equation 3-8 presents F,,, (x) for this case discussion.

0 if -300<x

0.006 if — 300 < x < —200
0.010 if —200< x <-100
0.020 if-100<x<0
0210 if0<x<100
Fpyop () =10.420 if 100 < x < 200 (3-8)
0.659 if 200 < x < 300
0.815 if 300 < x < 400
0.877 if 400 < x < 600
0.982 if 600 < x <900

1 if900>x

The probability that ChipyTech will not make a profit can now be read
directly from the CDF (equation 3-8), specifically

Fp,n(0) = P(Profit < 0)=0.210
A graph of Fp . (x) is presented with example 3-3 (figure 3-12). From
equation 3-8, the probability Profit will fall within other intervals of interest

can be determined. From theorems 3-2 through 3-7, with reference to figure
3-5 and equation 3-8, we have the following:

P(Profit 2200) =1~ Fp, 5, (200) + P(Profit =200) =1-0.659 +0.239 = 0.580

P(Profit <200) = Fp, (200) - P(Profit = 200) = 0.659-0.239 = 0.420

P(200 < Profit < 600) = Fpy,5,(600) = Fp, 5, (200) = 0.982 - 0.659 = 0.323

P(200 < Profit < 600) = Fpyp,(600) ~ Fp,p (200) = P(Profit = 600) = 0.982 - 0.659 ~0.105 = 0.218
P(200 £ Profit < 600) = Fpy,5,(600) = Fpy 5, (200) + P(Profit = 200) - P(Profit = 600) = 0.457
P(200 < Profit < 600) = Fp,5,(600) ~ Fpy 5, (200) + P(Profit =200) = 0.562

In summary, case discussion 3-1 illustrates how fundamental probability
concepts such as the axioms, independence, the probability function, and the
cumulative distribution function can provide decision-makers insights on

profits and their associated probabilities.
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Continuous Random Variables
Mentioned in the beginning of this chapter, a random variable is continuous if
its set of possible values is uncountable. For instance, suppose T is a random
variable representing the duration (in hours) of an electronic device. If the
possible values of T are given by {#:0<¢<2500}, then T is a continuous
random variable.

In general, we say X is a continuous random variable if there exists a
nonnegative function fy(x), defined on the real line, such that for any

interval A

P(X e A= fy(ndx
A
The function fy(x) is called the probability density function (PDF) of X.

Unlike the probability function for a discrete random variable, the PDF does
not directly produce a probability — fy(a) does not produce p,(a), defined

by equation 3-1. In the above, the probability that X is contained in any
subset of the real line is determined by integrating fx(x) over that subset.

Since X must assume some value on the real line, it will always be true that

[ r(odx= PO e (-eo,0o =1

In this case, the cumulative distribution function (CDF) of the random

variable X is defined as
Fx(¥)=P(X <x)= P(X & (-0, x))= [ fy(0ydr (3-9)

A useful way to view equation 3-9 is shown by figure 3-6; if we assume fx(x)
is a PDF, then from calculus we can interpret the probabilities of the events
{X<a} and {a £ X <b} as the areas of the indicated regions in figure 3-6.

When X is a continuous random variable, the probability X =a is zero; this
is because

P(X:a):P(asXSa)zj“fX(x)dx=o (3-10)
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fx(x)

P(X<a)= [ fx(o)dx b
- Pla<X <b)= fy(x)dx

a

= a b oo
Figure 3-6. A Probability Density Function
From this it is seen the inclusion or exclusion of an interval’s endpoints does
not affect the probability X falls in the interval; thus, if @ and b are any two
real numbers

Pla<X<b)y=Pla<X<b)
=Plas X <b)=Plas X <b)= Fx(b)— Fx(a) (3-11)
when X is a continuous random variable. Referring back to equation 3-9
note that Fy(x) is determined from fy(x) by integration. From calculus, it
follows that fy(x) is determined from Fy(x) by differentiation; that is,

_d(Fx ()
fx(x)= .

provided the derivative exists at all but a finite number of points.

Properties of Fy(x) for Discrete or Continuous Random Variables

For any discrete or continuous random variable, the value of Fy(x) at any x
must be a number in the interval 0 < Fy(x)<1. The function Fy(x) is always
continuous from the right. It is nondecreasing as x increases; that is, if

x1 < xy then Fy(x))< Fx(x;). Lastly,

lim Fy(x)=0and lim Fy(x)=1
X—>—o0 X—>o0
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Example 3-1 Let 1 be a continuous random variable”™ that represents the size
of a software application being developed for a data reduction task. Let I be
expressed as the number of delivered source instructions (DSI). Suppose the
state of the technical information about the application’s functional and
performance requirements is very sparse. Given this, suppose subject matter
experts have assessed the “true” size of the application will fall somewhere in
the interval [1000,5000]. Furthermore, because of the sparseness of available

information, suppose their size assessment is such that 7 could take any value
in [1000,5000] with constant (uniform) probability density.

a) Compute the PDF and the CDF of .
b) Determine a value x such that P(I < x)=0.80.

Solution

a) Figure 3-7 presents a function with the property that its value is ¢ (a
constant) at any point in the interval [1000,5000]. For this function to be a
probability density, it is necessary to find ¢ such that ro fixydx=1. Tt will

then be true that all subintervals of [1000,5000] that are the same in length

will occur with equal, or constant, probability (an exercise for the reader).

* In this example, and in many that follow, software size I is treated as a continuous random
variable. In reality, the number of delivered source instructions for a software application is a
positive integer —e.g., “it takes 4,553 source instructions to pre-process the data stream
passing into the radar’s primary processor.” If, for example, we treat software size as a discrete
random variable, then each distinct value (assessed by subject matter experts as “possible”)
also requires an assessment of its probability of occurrence. Although this is a valid way to
describe such a random variable, it is not clear how many distinct values (and their associated
probabilities) are needed to adequately capture the overall distribution of possible values. In
practice, a continuous distribution is often used to describe the range of possible values for a
random variable such as software size. This enables subject matter experts to focus on the
“shape” that best describes the distribution of probability, rather than assessing individual
probabilities associated to each distinct possible value. If needed, the resulting continuous
distribution could later be translated into a discrete form.
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Sr(x)

DSI

x
1000 5000

Figure 3-7. Probability Density Function for Example 3-1

From figure 3-7, fj(x) can be written as

¢ if 1000 < x <5000

3-12
0 otherwise ( )

fl(x)={

For f;(x) to be a PDF, we need to find ¢ such that

o0 5000
[ fizax=" [ cdx=4000c=1
—oo 1000

therefore ¢ = Zﬁ%(‘)" Thus, the PDF of the random variable I is

Zo5 i 1000 < x <5000

f;(x)={ (3-13)

0 otherwise

To determine the CDF we must evaluate the integral
X
F=PU<x)=[_fi)di for —co<x<es

as x moves across the interval —co< x<oo. From equation 3-9, and the PDF

in equation 3-13, we can write the CDF as
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0 if x <1000

X
F(x)= jz(-)l—oﬁdt = (x — 1000)/4000 if 1000 < x < 5000 (3-14)
1000
1 if x > 5000

Notice Fj(x) is a straight line, as illustrated in figure 3-8.
Fi(x)

1

0.8

DSI

1000 4200 5000

Figure 3-8. The Cumulative Distribution Function for Example 3-1

b) The value of x such that P(I < x)=0.80 is obtained from equation 3-14 by
solving
x ~1000
4000
for x. The solution is x =4200. Therefore, there-is an 80 percent chance the
“true” software size will be less than or equal to-4200 DSI.

=0.80

Example 3-2 Suppose the probability density function for I in example 3-1 is

now defined by the two regions shown in figure 3-9.

a) Find c such that f;(x) in figure 3-9 is a PDF.
b) Determine Fj(x).

c) Compute P(I £2000), P(2000 < I <4000), P(2000 < I <5000).
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S1(x)

Region A (5000 — x)/2000

Region B

DSI

x
1000 3000 5000

Figure 3-9. Probability Density Function for Example 3-2

Solution

a) From figure 3-9 it can be determined that

- c if 1000 < x <3000 (3-15)
Fi% =1 15000 = x)/2000 if 3000 < x < 5000 ”
For fj(x) to be a PDF there must exist a constant ¢ such that
[~ Aax=1

This implies ¢ is the solution to

3000 5000

[edx+ [e((5000-x)/2000)dx =1

1000 3000

from which ¢ = 1/3000. Thus, the probability density function is
£ 1/3000 if 1000 < x <3000 L6
x)= (3-16)
! (5000 — x)/6(10%) if 3000 < x < 5000
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b) To determine the cumulative distribution function F;(x), we must evaluate

FI(x)z-—P(ISx):J-x fi(Odt for —oo<x<oo (3-17)

as x moves across the interval —oo<x <ece. From the PDF given in equation
3-16, Fj(x)is

0 if x<1000

jmoo o i if 1000 < x <3000

Fi(x)=

2000 dt + 5000 — £)/6(10%) dr  if 3000 < x < 5000
-[1000 3000 J ( -N6(10%)dt i <x<

1 if x=5000

which is equal to

0 if x<1000
(x- 1000)/3 000 if 1000 <x <3000

Fi(x) = 21 g ' .
3 12(106 —L—(x=7000)(x —3000) if 3000 < x <5000

1 if x=5000

(3-18)

¢) Probabilities can be determined from equation 3-18. The probability I is
less than or equal to 2000 DSI is

P(I £2000) = F;(2000) =% =0.333
The probability 7 will fall between 2000 and 4000 DSI is
P(2000 < I <4000) = F;(4000) — F;(2000) = —1:% =0.583

The probability I will fall between 2000 and 5000 DSI is
P(2000 < I < 5000) = F;(5000) — F;(2000) = = = 0.667 «

A graph of the CDF for this example is given in figure 3-10. When
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examining such a CDF, it is often useful to determine the value of x associated
with Fy(x)=0.50. In figure 3-10, this value is 2500 (an exercise for the

reader). A value of 2500 DSI for I has an equal probability of being larger
or smaller.

Fi(x)
1

0.67}

0.5

025}

DSI
1000 1750 2500 3000 5000 *

Figure 3-10. Cumulative Distribution Function for Example 3-2

This leads to the definition of an important measure about a distribution
function known as the median. If X is a random variable with distribution
function Fy(x), a number x satisfying both

P(X<x)21/2 and P(X2x)=1/2
is called the median of X. This will be denoted by Med(X). Using theorem
3-2, the above inequalities combine to yield the expression [2]

-;—SFX(x)SéiﬂP(X:x) (3-19)

If X is a continuous random variable, we know P(X=x)=0 for all x;
therefore, from expression 3-19, the median of X is the number x satisfying

FX(x)z—;— (3-19a)
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When X is a continuous random variable its distribution function Fy(x) is
monotonically increasing, as seen in figure 3-10; therefore, there exists a
unique value of x such that equation 3-19a is satisfied. When X is a discrete
random variable, Med(X) may not be unique. For instance, in figure 3-11
every point in the interval 3<x <4 is a median of X. From figures 3-10 and
3-11 we see that every distribution function has at least one median.

Fy(x)
1

0.833

0.667

0.5

0.333

0.167 et

X
1 2 3 4 5 6

Figure 3-11. CDF of a Random Variable With Uncountably Many Medians

The median is one measure among a class of measures about a distribution
known as fractiles. In general, the value x, is called the o-fractile of X if
P(X £xy)=«a. The median is the 0.50-fractile of X; its value is given by
Xys5- In figure 3-10, we have x,, =2500. Other a-fractiles of common
interest are x,,s and x,,s. Fractiles are one way to express percentiles of a

distribution. In general, the o-fractile of X is the «(100)th percentile of X.
For instance, the median is the 50th percentile of X.

3.2 The Expectation of a Random Variable
When looking at the possible values of a random variable a useful value to
determine is its expectation. The expectation of a random variable is also

known as its mean. The expectation (or mean) of a discrete random variable
X is defined as



66 Chapter 3

E(X)=py = Y xpx(x) (3-20)

X
The expectation® of a random variable is the summation of all its possible
values weighted by the probabilities associated with these values. The terms
expeétation and mean (usually denoted by the Greek symbol u) are

synonymous.

Example 3-3 Return to case discussion 3-1 and determine the following:

a) P(Profit 2 E(Profit))
b) P(Profit = Med(Profit))

Solution

a) First determine E(Profir). From case discussion 3-1 the probability

function for Profit is given in figure 3-5. Since Profit was defined by a

discrete random variable, from equation 3-20 we have

10
E(Proﬁt) = ij meﬁl(xi)

1=1

= -300(0.006) + (-=200)(0.004) +(-100)(0.010)
+0(0.190) + 100(0.210) +200(0.239) + 300(0.156)
+400(0.062) + 600(0.105) + 900(0.018)
=216

Therefore, the expected profit is 216 ($M). From theorem 3-2, the

probability Profit will be greater than or equal to its expected value is

P(Profit 2 E(Profit)) = 1= Fp,,q,(E(Profit)) + P(Profit = E(Profit))
or P(Profit 2216) =1~ Fp,,5,(216) + P(Profit = 216)

* The expectation E(X) for a discrete random variable X exists if and only if the summation in
equation 3-20 is absolutely convergent; that is, if and only if Y |x|p,(x) <eo.
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From equation 3-8 Fpmﬁ,(216) =0.659; however P(Profit =216)=0 since the
point x =216 is not a feasible (possible) value of Profit; so

P(Profit 2 216)=1-0.659+0=0.341
b) First determine Med(Profit). The median of Profit can be found by

expression 3-19. Referring to equation 3-8 and figure 3-5, it can be seen that
x =200 satisfies both

P(Profits x)z é— and P(Profitz x)2 —%
From equation 3-8
P(Profit <200) = Fpy,5,/(200) = 0.659 21/2

therefore, the first inequality P(Profit<x)=1/2 is true when x =200. It now

remains to verify that P(Profit>x)=1/2 when x =200. From theorem 3-2

P(Profit 2 200) = 1 - Fp,,7,(200) + P(Profit = 200)
=1-0.659+0.239=0.5802=1/2
therefore, the second inequality is also true. It is left as an exercise for the
reader to show that x =200 is the only median of Profit, in this case. To
complete part b) we need to determine P(Profit = Med(Profit)). Since it was
established that Med(Profit) =200, it can be readily seen from figure 3-5

P(Profit = Med(Profit)) = P(Profit =200) = pp,,, (200) = 0.239

This result could also be obtained from the cumulative distribution function
of Profit. Recall P(X = a)= py(a) is the height of the jump of F,(x) at x = a,
where a is a feasible value of X. From equation 3-8, the height of the jump of
Fppm(x) at x=200 is 0.659-0.420=0.239. Figure 3-12 illustrates this

probability and presents the cumulative distribution function for Profit, as
described in case discussion 3-1.¢
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F, Pmﬁt(x)
] [—
0.659
—jz— P(Profit =200)= 0.239
042
— ($M) x

200 300
Figure 3-12. Cumulative Distribution Function for Profit —

Defined in Case Discussion 3-1 and Example 3-3

Example 3-4 Suppose the probability function of the cost to develop an
inspection system for radomes is given below.

a) What is the expected cost?

b) What is the 0.95-fractile of Cost?

Cost ($M) 40 65 80 95 105
Probability Function 0.30 0.20 0.25 0.20 0.05
for Cost

Solution
a) From the information in the above table and equation 3-20

E(Cost) = 40(0.30) + 65(0.20) +80(0.25) + 95(0.20) +105(0.05) = 69.25
Therefore, the expected cost of the inspection system is 69.25 ($M).

b) We will use the cumulative distribution function to determine the 0.95-
fractile of Cost. The table below expresses the probability function and the
distribution function of Cost.
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Cost Probability Cumulative
M) Function Probability
40 0.30 0.30
65 0.20 0.50
80 0.25 0.75
95 0.20 0.95
105 0.05 1.00

From the above table, 95 ($M) is the 0.95-fractile of Cosr; that is,
P(Cost<95)=0.95

The above discussion focused on determining the expected value of a
random variable for the discrete case. If X is a continuous random variable,

the expectation™ (or the mean) of X is defined as

EQO=py = | xfy(ndx (3-21)
Example 3-5 Using equation 3-21, compute E(I) in example 3-1.

Solution In example 3-1 the PDF of I was
] .
f[(x)z{m if 1000 < x <5000

0 otherwise

from equation 3-21

g 5000
E(D= fxfz(x)dx = [ x ggsgdx =3000 DSI
o0 1000

Therefore, the expected (mean) size E(I) of the software application
described in example 3-1 is 3000 DSI. In figure 3-13, notice E(I) falls
exactly between the interval [1000,5000]. In chapter 4, we will see when
Sfx(x) is described by a rectangular region, within an interval [a,b], then
E(X)=(a+b)/2.

* The expectation E(X) for a continuous random variable X exists if and only if the integral in

equation 3-21 is absolutely convergent; that is, if and only if [[x]f,(x)dx <co.
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S0

174000 —

DSI

X
1000 3000 5000
E(I)

Figure 3-13. The Expectation of / for Example 3-5
Example 3-6 Compute E(I) for the PDF in example 3-2.

Solution In example 3-2 the PDF of I was

1/3000 if 1000 < x <3000

fi)= {(5000~x)/6(106) if 3000 < x < 5000

Using equation 3-21

0

3000 5000
E() = J. xfi(x)dx = Jx wddx + Ix((smo — x)/6(10%))dx = 2555.56 = 2556 DSI
oo 1000 3000
Therefore, the expected (or mean) size E(I) of the software application
described in example 3-2 is approximately 2556 DSI. A graph illustrating
the location of E(I), in this example, is shown in figure 3-14.

Example 3-7 Let Cost denote the unit production cost of a transmitter
synthesizer unit (TSU) for a communications terminal. Suppose there is
uncertainty in the fabrication, assembly, inspection, and test hours per TSU.
Because of this, suppose production engineering assessed that Cost is best
described by the PDF in figure 3-15. Determine

a) E(Cost) b) P(Cost> E(Cost)) ¢) Med(Cost)
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fi(x)

1/3000 -

(5000 - x)/ 6(10%)

DSI

x
1000 2556 3000 5000

E(D)
Figure 3-14. The Expectation of / for Example 3-6
Solution
a) To compute E(Cost), it is necessary to determine the mathematical form of
the PDF in figure 3-15. It is left to the reader to verify equation 3-22 is
indeed a PDF.

(x —10000)/8(10%) 10000 < x <12000
Seost(X)=

(3-22)
(18000 — x)/24(10%) 12000 < x < 18000
Jcost(X)
174000 4=
Dollars
10000 12000 18000

Figure 3-15. PDF for Cost in Example 3-7

From equation 3-21
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E(Cost)= picos = | _* feosy(x)dx

For this example

12000 18000
E(Cost) = Ix((x ~10000)/8(10%))dx + J.x((ISO()O -x)/ 24(106))dx =13333.3
10000 12000

Thus, the expected (mean) cost of the TSU is approximately 13,333 dollars.

b) To compute P(Cost > E(Cost)), recall from theorem 2-1 (chapter 2)

P(Cost > E(Cost)) =1 - P(Cost < E(Cost))

=1 = Fry(E(Cost)) = 1 = Fr,5,(13333.3)
From equation 3-9

133333
Feos(133333)= [ foou (0t

—00

12000 133333
= J((t -10000)/ 8(106))dt + I((l 8000 — 1)/ 24(10° )dt =0.54629
10000 12000

therefore
P(Cost > E(Cost))=1-0.54629 = 0.45371

¢) From equation 3-19a, the median of Cost is

Med(Cost) = P(Cost < x)=0.50
We need to find x such that

X
Fieps (x) = P(Cost < x) = _[ Feos (Ddt =0.50

In figure 3-15, the area under the curve between 10000 < x <12000 accounts
for only 25 percent of the total area (which must equal unity) between
10000 < x < 18000; that is,
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12000
P(Cost £12000) = .f((t ~10000)/8(10%))dt = 0.25
10000
Therefore, the value of x that satisfies P(Cost < x)=0.50 must be to the right
of x=12000. To find this value we need to solve the equation below;
specifically, we must find x such that

12000 X
j((: —10000)/ 8(10%))dt + f((lso()o ~1)/24(10%)dt = 0.50
10000 12000

This expression simplifies to solving

X
J.((l 8000 — 1)/ 24(10%))dz = 0.25
12000
for x. It turns out the only feasible value for x is 13101; showing this is left
for the reader. Therefore, we say the median cost of the transmitter
synthesizer unit is 13101; that is, Med(Cost)=13,101 dollars." s
Thus far, we have discussed the expectation (or mean) and the median of a

random variable. Another value of interest is the mode. The mode of a
random variable X, denoted by Mode(X), is the value of X that occurs most
frequently. It is often referred to as the most likely or most probable value of

X. Formally, we say that a is the mode of X if
pxla)= m'alx px(t) when X is a discrete random variable
fx(a)= mtax fx(@® when X is a continuous random variable
The mode of a random variable is not necessarily unique. The random

variable described by the rectangular PDF in figure 3-7 does not have a

unique mode. However, in example 3-7, x = 12000 is the unique mode of the

* Mentioned in the preface, the numerical precision shown in this example, and elsewhere in
this book, is strictly for teaching purposes. Rounding results to a sensible level of precision
is always applied in practice, particularly in the practice of cost analysis.



74 Chapter 3

random variable Cost. The mean, median, and mode of a random variable are
collectively known as measures of central tendency. Figure 3-16 illustrates
these measures for the PDF in example 3-7.

Scost (%) Scost )

174000 1/4000

0.50 0.50
0.54629 | 0.45371 Dollars Dollars
10000 13333.3 18000 10000 13101 18000
Mean Median
fCosl(x)
174000
0.75
0.25 Dollars
10000 12000 18000
Mode

Figure 3-16. Central Tendency Measures for the PDF in Example 3-7

The term average is often used in the same context as the expected value (or

mean) of a random variable. The following theorem explains this context.

Theorem 3-8 Let X be a random variable with mean E(X). If an experiment

is repeated n-times under identical conditions and X; is the random variable X

associated with the ith round of the experiment, then
1 n
lim + .= =1
P(lim .2:1: X; = B(X))

Theorem 3-8 is known as the Strong Law of Large Numbers. It states that for
sufficiently large n, it is virtually certain the average of the observed values of

X, Xy, . .., X, will be approximately the same as the expected value of X. For
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example, it can be shown the expected value associated with tossing a fair six-
sided die is 3.5. This does not mean we expect to obtain 3.5 on a toss; rather,

the average value of many repeated tosses is expected to be approximately
3.5.

The Expected Value of a Function
The need to determine the expected value of a function arises frequently in
practice. For instance, in cost analysis the effort Effsy (in staff-months) to

develop software of size I might be given by"

Effow =2.81'2 (3-23)

We might ask “What is the expected software development effort?”
Assuming [ is a continuous random variable, from equation 3-21 we could
write the expected software development effort as

o0

E(Effow) = j u figze,, Wdu (3-24)

—00

To use equation 3-24 we need the PDF of Effgy. As we shall see in chapter
5, this can be difficult for certain kinds of functions. Is there another

approach to computing E(Effsy)? Note that Effsy is a function of 1.

Effsw =2.81'% = g(I) (3-25)
It follows that

E(Effsw) = E(g(1)) (3-26)

The following proposition presents a general way to determine E(Effgw)

from E(g(I)), where E(g(l)) is determined from the PDF of /.

* Boehm, B. W. 1981. Software Engineering Economics. Englewood Cliffs, New Jersey:

Prentice-Hall, Inc. In equation 3-23, [ is in thousands of DSI.
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Proposition 3-1 1f X is a random variable and g(x) is a real-valued function

defined for all x that are feasible (possible) values of X, then

2 g(x)px(x) if X is discrete
E(gX)=4 " (3-27)
_[ g(x) fx(x)dx if X is continuous

In the above, the summation and integral must be absolutely convergent.

Applying proposition 3-1 to the discussion on Effgy, we have

ECEffsw) = E@(D)= [ () fi(x)dx (3-28)

Thus, the only information needed to determine E(Effsy ) is the function g([)
and f;(x), the PDF of I. For now, further discussion of this problem is

deferred to chapter 5. In particular, case discussion 5-2 presents the
determination of E(Effgy ) in detail.

Theorem 3-9 If a and b are real numbers, then E(aX + b) = aE(X) + b

Proof Let g(X)=aX+b; if X is a discrete random variable, then from
equation 3-27

E(aX +b)=Y (ax+b)py(x) = Y, axpy(x)+ Y, bpx(x)

=aprX(x)+b2pX(x)=aE(X)+b-l= akE(X)+b

X X
If X is a continuous random variable, then from equation 3-27

oo

E@X+b)= [(ax+b)fy(dx=a [ xfy(mdx+b [ fr(ndx

e —00

=aE(X)+b-1=aE(X)+be
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Directly from this proof it can be shown the expected value of a constant is
the constant itself; that is, E(b)=>5. From theorem 3-9, it can also be seen that
E(aX)=aE(X), where a is a real number. Showing these two results is an

exercise for the reader.
Thus far, we have addressed the expectation (or mean) of a random
variable. A quantity known as the variance measures its spread or dispersion

(deviation) around the mean. The variance of a random variable X is
Var(X)= 0% = E[(X - EC0O) | = H|(X - uy)?| (3-29)

The positive square root of Var(X) is known as the standard deviation of X,

which is denoted by oy.
Oy =+ Var(X) (3-29a)
Example 3-8 Let X represent the sum of the toss of a pair of fair dice.

a) Determine the expected sum.

b) Determine the variance of the sum.

Solution In this example, X is a discrete random variable.
a) From equation 3-20 and figure 3-2, the expected sum is

Lo+ loprwr Lo+
EX) = 2@+ 5=+ =B+ =5+ 20+ 7= (D)

5 4 3 2 1 252
T (8) +  (9) + —(10) + (1 D+ —(12) = 222 =
+36( )+36( )+36( )+36( )+36( ) 36 7

b) From part a) we can write Var(X)= E[(X -7)%]. If we let g(X)=(X-7)>
then from equation 3-27

Elg(X)]=E(X-7)*]= z(x =DPpy(x) x=2,...,12 (3-30)

From figure 3-2, py(2)=+4,py(3)=+%....,px(12)=%. Working through the
computation, equation 3-30 is equal to 5.833; therefore
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Var(X)= Blg()1 = EI(X = 1= 3 (x = 7)* py(x) = 5.833

The variance computed in example 3-8 could be interpreted as follows: the
average value of the square of the deviations from the expected sum
( E(X)=17) of many repeated tosses of two dice is 5.833. In this case, what is

the standard deviation of X?
From the definition of Var(X) in equation 3-29, we can deduce the
following theorems.
Theorem 3-10 Var(X)= E(X?) - (ux)?
Proof The proof follows from the definition of Var(X) and the properties of
expectation, as presented in theorem 3-9.
Var(X) = E[(X - E(X))*]
= B(X% - 2XE(X)+(E(X))?) = E(X? = 2Xuy + (tix)?)
= E(X?) - EQXuy) + E(uy)*
= E(X*) = 2uy E(X)+(uy )’
= E(X®) =2 ) + Uy )
= E(X*)—(uy)’
Theorem 3-10 is a convenient alternative for computing the variance of a
random variable. It is left as an exercise for the reader to use this theorem to
verify Var(X)=5.833, where X is the random variable in example 3-8.
Theorem 3-11 If a and b are real numbers, then

Var(aX +b) = a*Var(X)
Proof The proof follows directly from the definition of Var(X) and theorem
3-9, that is
Var(X) = E[(aX + b - E(aX +b))*]
= E[(aX + b — aE(X) - b)*]
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= El(aX — aE(X))*]
= El(a(X - B(X))*]
= E[a*(X - E(X))*]
= a®E[(X - E(X))*]
=d? Var(X)
This theorem demonstrates the variance of a random variable described by the

linear function aX + b is unaffected by the constant term b.

Example 3-9 For the communication terminal’s transmitter synthesizer unit
(TSU) described in example 3-7, compute

a) Var(Cost) and 0 ¢, using theorem 3-10.

b) Determine P( ICost— ,ucos,lSO‘COs,).

Solution

a) From example 3-7, the PDF for Cost was

(x—10000)/8(10%) 10000 < x < 12000
fCOSt (x) = 6
(18000 — x)/24(10°) 12000 < x <18000
From theorem 3-10 we have
Var(Cost) = E(Cost*) ~ (fhcost )
From part a) in example 3-7, Uc,s = E(Cost) =13333.3; therefore,
Var(Cost) = E(Cost*) - (13333.3)?

It remains to compute E(Cost*). From equation 3-27 we can write

12000 18000
E(Cost?) = sz((x —10000)/ 8(10%))dx + sz((lsooo —x)/24(10%))dx
10000 12000

=1.80667(10%) ($)
Therefore

Var(Cost) = 0%, =1.80667(108) — (13333.3)? = 2.88889(10%) ($)?



80 Chapter 3

from which

O cost = [Var(Cost) = 1699.67 = 1700 ($)

The variance squares the units that define the random variable. Since $2 is not
a useful way to look at Cost, the standard deviation o, , which is in dollar

units, is usually a better way to interpret this deviation.

b) Probabilities associated with intervals® expressed in terms of the mean and
standard deviation can be computed. For some positive real number &
P(‘CO“ - auCostl SkOcos) = P(Ucpst — kO cost < Cost < Ueys + kO cost)

From equation 3-11, we can express this probability in terms of Fg,, as

P(|Cost = cost| S kO cost) = Feost(Ucoss + kO Cost) = Fost (Hcost = kO Cost)
For part b) we need k =1; from part a) ficy = 133333, and 0y =1700
P(|Cost — pepst| S O cos) = P(11633.3< Cost <15033.3)
= Frpst(15033.3) - F,, (11633.3)

where
15033.3

Feos(15033.3)= [ feom (o)t

—00

12000 15033.3
= _[((t —10000)/ 8(10%))dr + I((18000 —£)124(105))dr = 0.817
10000 12000
and
11633.3 11633.3
Fpps(11633.3) = j Fros(Ddt = _[((t~10000)/8(106))dt =0.167
S 10000
So

P(|Cost = ficosi| S O cos) = 0.817-0.167=0.65

* Probability intervals are often given in the form P(X —a}<b) or P(X-d|>b), where a and
b are any two real numbers. In general, P(X -a|<b)=P(-bS<X-a<sh)=Pla-b<X<a+tb);
furthermore, P(X-a|>b)=1-P(X-d<b)=1-Pla-b<X<a+b).
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The TSU cost falls within plus or minus one (k=1) standard deviation (o)
around its expected (or mean) cost with probability 65 percent. The range of
values for x associated with this probability is shown in the figure below. This

range is sometimes referred to as the 1-sigma interval.

Jcost(x)
174000 -+
P(|Cost - 13333.3| < 1700) = 0.65
0.65
Dollars
10000 116333 150333 18000

Figure 3-17. 1-Sigma Interval for the TSU Cost

A random variable can be standardized when its mean and variance are

known. A standardized random variable has zero mean and unit variance.

To see this, suppose X is a random variable with mean py and variance U%.

The standard form of X is the random variable Y =(X-puy)/oyx. From

theorems 3-9 and 3-11, it can be shown Y has zero mean and unit variance;
that is,

X-puy 1 o1 1
EY)=F —&|=— - e — - = - =
098] E( o ] oy E(X-ux) oy [E(X)—pux] oy [ux —uxl=0

— 2
Var(r)= Va{w] = Var(X - ) = Var) = ZX =

Referring to example 3-9, we have
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E(Y)= E((X -~ 13333.3)) -0

1700

Var(Y) = Va (X- 13333.3)) -1

1700

3.3 Moments of Random Variables

Moments provide important information about the distribution function of a
random variable. Such information includes the random variable’s mean and
variance, as well as the shape of its distribution function. Suppose X is a
random variable and k is any positive integer. The expectation E(X*) is
called the kth moment of X, which is given by equation 3-31. In general, we
say the kth moment of X is

Y xfpx(x) if Xis discrete
EX*y=17* (3-31)
wak fx(x)dx if X is continuous

In the above, the summation and integral must be absolutely convergent. The
mean is the first moment of X. It can be considered that value of x which is
the “balance point” or the “center of gravity” of the probability mass (or
density) function. This is in contrast to the median. If the random variable is
discrete, the median divides the entire mass of the distribution function into
two equal parts; each part contains the mass 1/2. If the random variable is
continuous, the median divides the entire area under the density function into
equal parts. Each part contains an area equal to 1/2 (refer to figure 3-16).
The second moment of the random variable (X - puy) is E[(X —MX)Z].
From equation 3-29 this is the variance of X, which provides a measure of the
dispersion of X about its mean. What do higher moments of a random

variable reveal about the shape of its distribution function?
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Let Y be the standardized random variable of X; that is, Y =(X-puyx)/oy.
The third and fourth moments of Y are known as the coefficients of skewness

and kurtosis. These coefficients are given by equations 3-32 and 3-33,

3
y1=EX)= EHM] } (3-32)
Ox

4
vy = E(YY)= E{(—X_—“’i] } (3-33)
Ox

Skewness, given by 7;, is a measure of the symmetry of the distribution

function of X about the mean of X. If this function has a long tail to the left,

respectively.

then ¥, is usually negative and we say the distribution function is negatively
skewed. If this function has a long tail to the right, then ¥, is usually positive
and we say the distribution function is positively skewed.

In cost analysis it is common to see distributions with ¥, >0. Such
distributions have the property that the probability of exceeding the mode
(often associated with the point estimate) is greater than the probability of
falling below the mode. Experience suggests this is due to a variety of
reasons. These include changing requirements, understating a project’s true
technical complexity, or planning the project against unrealistic cost and/or
schedule objectives. Positively skewed distributions are often used to
represent uncertainty in system definition variables, such as weight or software
size. Point estimates for these variables, particularly in the early phases of a
system’s design, typically have a high probability of being exceeded.

If the distribution function of X is symmetric about the mean of X, then

Y1 =0. The distribution function of X is symmetric about x =a if

P(Xza+x)=PX <a-x) forall x (3-34)
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From theorem 3-2, equation 3-34 can be written as
Fy(a—x)=1-Fx(a+x)+P(X=a+x) (3-35)

If equation 3-35 is true for all x, we say the distribution function Fy(x) is
symmetric with a as the center of symmetry. If the center of symmetry is the
origin, then a=0 and

Fx(~x)=1-Fx(x)+ P(X = x) (3-36)

If X is a continuous random variable, equation 3-36 simplifies to
Fx(=x)=1-Fx(x) (3-37)

The distribution function of a continuous random variable X is symmetric

with center a, if and only if
Sx(a—x)= fy(a+x) forall x (3-38)

If Fy(x) is a symmetric distribution, the center of symmetry is always the
median. In certain symmetric distributions the mean and/or the mode may
also equal the median. If the distribution function of a continuous random
variable X is symmetric and the mean of X exists, then the median and mean
of X are equal and they both locate the center of symmetry. The Cauchy
distribution™ is a symmetric distribution whose mean does not exist (i.e., it is
not well-defined). It has a unique median and a unique mode, that equal each
other. In the Cauchy distribution, both the median and the mode locate the
center of symmetry. Figure 3-18 illustrates these and other cases of

symmetric and skewed distributions.

* The Cauchy distribution is given by fy(x)={mb{l+((x—a)/b)*]}"". The moments of X do

not exist; however, X has a unique median and a unique mode, which both fall at x =a. In the
Cauchy distribution the median and the mode are equal; they also locate the center of symmetry.
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fx &) fx® fx(
Cauchy
Distribution
Ll x
Symmetric Symmetric Symmetric
Mean = Median = Mode Mean = Median Median = Mode
fx(x) Fx(x)
X
Positively Skewed Negatively Skewed

Mean > Median > Mode = Mean < Median < Mode

Figure 3-18. Illustrative Symmetric and Skewed Distributions

Kurtosis, given by ¥y, (equation 3-33), measures the peakedness of a random
variable’s distribution function around its mean. The kurtosis of a
distribution function is usually compared with the value y, =3, which is the
kurtosis of a standardized normal probability distribution (discussed in
chapter 4). If y, >3, the distribution function of X has greater kurtosis (less
peaked) than the normal probability distribution. If y, <3, the distribution
function of X has less kurtosis (more peaked) than the normal probability
distribution.

If we don’t know exactly how a random variable is distributed, but we have
knowledge about its mean, variance, skewness, and kurtosis, we can often
guess its overall shape. In some instances, only the mean and variance of a

random variable are needed to uniquely specify the form of its distribution.
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3.4 Probability Inequalities Useful in Cost Analysis

Thus far, we have shown how probabilities can be computed from the
distribution function of a random variable.  However, circumstances
frequently exist when the underlying distribution is unknown. This section
presents inequalities that provide bounds on the probability of an event
independent of the form of the underlying distribution function.

The Markov Inequality, due to A. A. Markov (1856-1922), can be used to
compute an upper bound on the probability of an event when X is
nonnegative and only its mean is known. The Chebyshev Inequality, derived
by P. L. Chebyshev (1821-1894), bounds the probability that a random
variable takes a value within k standard deviations around its mean.
Chebyshev’s inequality will be shown to be a consequence of Markov’s
inequality. Before discussing the details of these inequalities, we will first

discuss the expected value of an indicator function.

The Indicator Function For a random variable X, the indicator function of
the event A={X2a} is
1 if event {X = a} occurs

IA(X)=={

0 if event {X Z a} does not occur

The expected value of 1,(X) is the probability the event A occurs. This can

be seen from the following argument. From equation 3-20, we can write
E(I,(X))=1-P(XZa)+0-[1 - P(X 2 a)]=P(A)

Markov’s Inequality If X is a nonnegative random variable whose mean y is

positive, then P(X 2 cu) < ¢! for any constant ¢>0.

Proof

The random variable X is given to be nonnegative with positive mean u.

Since ¢ >0 it follows that ciu>0. Let
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1 if event {X = cu} occurs
2 (X)=1 .
0 if event {X = cu} does not occur
where A is the event {X = cu}. From this it follows that
X
I (X)s—
A(X) p”
The expected value of 14(X) is
1
E(I4(X)) s —E(X)
cH

Since E(X)=u and E(I14(X))= P(A) it follows immediately that
P(A)=P(X2cu)<l/ce

Markov’s inequality states the probability X takes a value greater than or

equal to ¢ times its mean cannot exceed 1/c. For instance, if ¢=2 then

P(X =2u) can never exceed 1/2. If ¢=1 then P(X = ) is bounded by unity,

which is consistent with the first axiom of probability (chapter 2). Markov’s

inequality is meaningless if c is less than one. Markov’s inequality may also
be written as

P(XZa)SlE(X)
a

where X is nonnegative and a > 0; this result follows immediately from the
above proof (showing this is left as an exercise for the reader).

From a cost analysis perspective, Markov’s inequality provides decision-
makers an upper bound on the probability that Cost is greater than ¢ times its
mean. For instance, suppose the mean cost of a system is determined to be
100 million dollars ($M). Regardless of the underlying distribution function
for Cost, Markov’s inequality guarantees the probability that Cost takes a
value greater than 200 ($M) can never exceed 1/2.

In general, the probability bound yielded by Markov’s inequality is quite

conservative. To illustrate this, suppose the random variable Cost is described
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by the PDF in figure 3-19. This is a lognormal probability distribution® with
mean 100 ($M) and standard deviation 25 ($M); it is slightly skewed to the

right.
Jcost (%)
0.0172153

Markov’s Bound
P(Cost 2200)<0.5

Computed Probability
P(Cost 2 200) = 0.00165

M)

X

50 100 150 200
Figure 3-19. A LogNormal PDF for Cost with Mean 100 ($M)

The Markov bound is substantially larger than the computed probability of
0.00165 (shown in chapter 4, example 4-8). Such a wide disparity is not
surprising since Markov’s inequality relies only on the mean of a random
variable. In systems engineering, decision-makers typically need more insight
into the probability that Cost is likely to be exceeded than that provided by
Markov’s inequality. If values for the mean and variance of Cost are
available, then Chebyshev’s inequality provides probability bounds that

improve on those obtained from Markov’s inequality.

Chebyshev’s Inequality If X is a random variable with finite mean g and

variance 0'2, then for k2>1

P(,u-kor<X<,u+kcr)21-—kL2 (3-39)

* The lognormal distribution is often used in cost and economic analysis studies. It will be
fully discussed in chapter 4, with additional applications in chapter 7.
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Proof
Recall, in general, that
P(X~adzb)=1-P(X-d<b)=1-Pla-b<X<a+b) (3-40)
where a and b are real numbers. Suppose we let a=u and b=ko. Then
P(X-d2b)=P(X - y=ko)
Now (X - u)? 2k if and only if |X — > ko'; from Markov’s inequality

1

P((X - )* 2207 S —— B(X ~ 1)) (3-41)
o

k2
. 20 _ 2. . 2a2.2 1
Since E((X — p)*)= 0" inequality 3-41 reduces to P((X—pu)" 2k“c )S—I;—z-,

which is equivalent to

P(X - p|2 kor)s-lg7 (3-42)

1
or -,-(—Q—ZP(|X—;1].>_kO’)
From equation 3-40

klzzP(|X——u|2ko*)=1—P(u-kcr<X<y+k0')
therefore

P(u—ka<X<,u+kcr)21—;}2—o

Chebyshev’s inequality states that for any random variable X, the probability
that X will assume a value within k standard deviations of its mean is at least

1-1/k2. From equation 3-39, the probability a random variable takes a value
within 2 standard deviations of its mean will always be at least 0.75. If X is a
continuous random variable, at least 95 percent of the area under any
probability density function will always fall within 4.5 standard deviations of
the mean.

Like Markov’s inequality probabilities produced by Chebyshev’s inequality
are also conservative, but to a lesser extent. To illustrate this, consider once
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again the random variable Cost with mean 100 ($M), standard deviation 25
($M), and PDF given by figure 3-19. It can be computed that the interval

[u-20,u+201=[50,150] M)

accounts for nearly 96 percent (refer to chapter 4, example 4-8) of the total
probability (area) under f,(x). This computed probability is in contrast to
Chebyshev’s inequality (equation 3-39), which indicates the interval [50,150]
($M) accounts for at least 75 percent of the total probability.

Various forms of Chebyshev’s inequality are given below; in each form

a>0.

P(X - Y= ko) < }17

2
P(X - <a)21-%5

P(X-pz @<

o w »

D. P(X-puza)<P(X-y>a)< %
a
Suppose u=100, 0 =25, and a=100. From form D of Chebyshev’s

inequality we have

2
P(Cost—100>100) < (25) 5
(100)

=> P(Cost >200) < % = 0.0625

Thus, the probability Cost will exceed twice its mean will not be more than 'l“l“é

(or 0.0625). From the previous discussion, Markov’s inequality revealed this
bound could not be more than —%— Although these results are consistent, form

D of Chebyshev’s inequality provides a significant refinement on the
probability bound for this event. This is not surprising since additional
information about the random variable Cost, specifically its variance, is taken

into account. Because of this, Chebyshev’s inequality will always provide a
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tighter probability bound than that produced by Markov’s inequality. Figure
3-20 summarizes this discussion and contrasts these probability bounds for
the PDF given in figure 3-19.

Scost (%)
0.0172153

Markov’s Bound
P(Cost 2200)<0.5

Chebyshev’s Bound (form D)
P(Cost 2 200) < 0.0625

Computed Probability
P(Cost 2200) = 0.00165

($M)

50 100 150 200
P(50 < Cost £150) 2 0.75 (Chebyshev’s Inequality, equation 3-39)

P(50 < Cost <150) = 0.958 = 0.96 (Refer to chapter 4, example 4-8)

Figure 3-20. Some Probability Bounds on Cost

The probability inequalities presented here share the common characteristic
that their bounds are valid for any type of distribution function. Although
these bounds are conservative, they do offer decision-makers probabilities that
are independent of the underlying distribution. When inequalities such as
Chebyshev’s are used in conjunction with an assumed or approximated
distribution, decision-makers are provided alternative ways to view the
probability associated with the same event.

3.5 A Cost Analysis Perspective
In cost uncertainty analysis two important statistical measures to determine are
the expected (mean) cost and the standard deviation of cost. A classical way

to view the relationship between a mean and a standard deviation is presented
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in figure 3-21. Shown is a special distribution known as the normal

probability distribution (chapter 4).
fx(x)

0.3413 0.3413

0.1359 0.1359

00215 00215
pu--3 u—-2c B0 H H+o u+lo K30

X

Figure 3-21. Areas Under the Normal Frobability Distribution

The normal distribution is symmetric about its mean. It has the property that
its mode and median equal its mean. In particular, the 1-sigma interval
-0, p+ol
will always account for slightly more than 68 percent of the total area under a
normal probability density function. Similarly, the 2-sigma interval
[u-20 u+20]

will always account for slightly more than 95 percent of the total area under a
normal probability density function. Although the mean is an important
statistical measure that contributes many useful insights about the underlying
distribution, it is just a single value among infinitely many that define the
curve. Alone, the mean provides no direct view into the variability implicit to
the distribution. For this reason, analysts and decision-makers must consider

the mean and the standard deviation jointly. Figure 3-22 illustrates this point.
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Comparing just the difference in the mean costs between system design
alternatives A and B, it may appear to a decision-maker alternative B is the

better choice.

Jcos:(x)
Mean Cost
Alternative A
1=90,0=9
Mean Cost
Alternative B
=380, 0=27
($M) X

80 90

Figure 3-22. Comparing the Mean Costs of Alternatives

However, when the dispersion ¢ in cost is considered and the 1-sigma interval
is determined for each alternative, the decision-maker may very well select
alternative A instead. Specifically, the 1-sigma interval for alternative A (from
figure 3-22) is

[u- 0, u+o0l=[81,99] §M)

The 1-sigma interval for alternative B is

[u- o, u+ o] =[53, 107] ($M)
Thus, for the same level of confidence implied by the 1-sigma interval (68
percent) choosing alternative B implies accepting three times the variability in
cost (54 ($M)) than that associated with alternative A (18 ($M)). Clearly, this
result would not have been seen if comparing the mean costs was the sole

criterion for selecting an alternative.
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This discussion illustrates the usefulness of another statistic known as the
coefficient of dispersion. Defined by equation 3-43, the coefficient of

dispersion D is the ratio of the standard deviation to the mean.

p=2Z (3-43)

u
Consider again figure 3-22. The coefficient of dispersion for alternative A is

0.10. This implies the value of Cost at one standard deviation above the
mean, will be 10 percent higher than the mean of Cost, which is 90 ($M) for
alternative A. Similarly, the coefficient of dispersion for alternative B is
0.3375. This implies the value of Cost at one standard deviation above its
mean will be nearly 34 percent higher than the mean of Costz, which is 80
($M) for alternative B. Clearly, a significantly higher cost penalty exists at
1-sigma above the mean under alternative B than for alternative A. A
decision-maker might consider this cost risk to be unacceptable. Although
the cost mean for alternative A is 10 ($M) higher than the cost mean for
alternative B, its significantly lower cost variance (i.e., less cost risk) may be

the acceptable tradeoff.

Exercises

1. Let X denote the sum of the toss of two fair dice. Determine the
following using the probability function in figure 3-2 and the
appropriate theorems in section 3.1.

a) P(X<7) b) P(X>7) c) P(X=27)
d) Pl0<£X<12) e) PA0<X<12) f) PU0<X<12)

2. Suppose the probability function for the development and production

cost of a microchip is given below. Determine the following:
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a) The cumulative distribution function of Cost
b) P(Cost <35) ¢) P(Cost>?25) d) P(Cost=25)
e) P(20< Cost <35) f) PQ20<Cost<35) g) P(Cost<35)

Pcost (x)
04 04
03

0.2

0.05 0.05
| RS
20 25 30 35 40

Probability Function for Exercise 2

b

3.  For any random variable X, show that P(X <a)= Fy(a)— P(X = a).

4.  Refer to Case Discussion 3-1 and answer the following:
a) Find pp,,(x) and Fp 4 (x) if P(V=5)=0.1, P(V=15)=0.8, and
P(V =20)=0.1, where V is the sales volume (in millions). '

b) With what probability does Profit=07?

Suppose the profit function to sell 10000 electronic widgets, with a unit
price of $10 per widget, is given by Profit=(10)*(10-U,,,), where
Uc,, is a discrete random variable that represents the unit cost (in
dollars) of each widget. If U, can take one of the values in the set
{4,7,10}, where u_,, represents one of these values, find the constant ¢

such that pg,.q (uc,, ) = cProfit is a probability function.
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6.  Suppose Cost is a continuous random variable whose possible values are
given by the interval 20 < x <70, where x is in dollars million ($M).
a) Find ¢ such that the function below is a probability density function.
b) Compute P(Cost <30), P(30 < Cost <70), P(Cost =30).
Seos (%)

c 4

$M)
20 30 70

X

Function for Exercise 6

7.  Show that fc,,(x) in exercise 6 is the derivative of the cumulative

distribution function Fg,,(x), where

0 ifx<20
A5 (x=20)* if20<x<30

F, (x):< _ 2
Cost 14 1]40-C=T07 1 iean< <70
5 40

8.  For the probability density function in example 3-1 (figure 3-7), show
that all subintervals of [1000, 5000] that are the same in length will

occur with equal probability.

9. a) Given the probability function in exercise 2, determine Med(Cost).
b) From the Profit probability function in Case Discussion 3-1, show

that x =200 is the only value of x that satisfies the relationship

(1/2) £ Fpppy (X) < (11 2) + P(Profit = x)
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10.

11.

12.

13.

¢) In example 3-2, show that Med(I)=2500 DSL

Suppose the uncertainty in the size [ of a software application is

expressed by the probability density function in the figure below.
a) Determine the cumulative distribution function Fj(x).

b) Compute P(I<50000), P(40000<1<60000), P(50000 < I<65000).

fi(0)

DSI

35000 50000 65000

Function for Exercise 10
In exercise 10, show that Med(I)= 53,750 DSIL

Find the expected number of workstations purchased per month and the
standard deviation if the probability function for the monthly demand is

given in the following table.

Workstations Purchased per 14 9 36 6 4
Month
Probability 0.23 0.15 0.42 0.10 0.10

Probability Function for Exercise 12

From Case Discussion 3-1, the profit on a new electronics product

manufactured and sold by ChipyTech Corporation was given by

Profit =(Upyice —~Ucost)V
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Suppose the product’s sales volume V for its first year on the market is
set at 30 million. Suppose the probability functions of Up,., and

Ucosr are given in the figure below. Assume Up,;., and Ug,, are

independent.
Probability
1
U price Ucost
0.7
05 0.
0.3
0.2 0.2
0.1
0
20 30 40 10 20 30
Upyice Dollars Ucost Dollars
Probability Functions for Exercise 13
Compute:
a)  Pprop(%) and Fp, 5 (x) b) E(Profit)
¢) Var(Pwfit) d) P(Profit = E(Profit))
e) P(Profit < E(Profit)) f) The probability of making

no profit.

14. A random variable X takes the value 1 with probability p and the value O
with probability 1—p. Show that E(X)=p and Var(X)=p(1- p).

15. From exercise 10 compute the following:
a) E(I) b) o c) P(I-EWD)|>0oy)

16. Let Y be a random variable with probability function given in the table
below. Compute
a) EGY+1) b) Var(3Y +1)
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y 1 2 3 4 5

P(Y =y) 1/4 g 14 1/4 /8

Probability Function for Exercise 16

17. Suppose E(X)=4 and Var(X)=E(X)/2. Find the expectation and

variance of the random variable (1-2X)/2.

18. a) If X has mean uy show that E(X — uy) is always zero.
b) If a and b are constants, show that E(b)=b and E(aX) = aE(X).

19. a) Let X represent the value of the toss of a fair six-sided die. Show
that E(X)=3.5. Determine Var(X).
b) If X is a random variable representing the sum of the toss of a pair

of fair six-sided dice, use theorem 3-10 to verify that Var(X)=15.833.

20. Find a general formula for the kth moment of a continuous random
variable X with density function fy(x)=(b- a)"l, where a<x<b.

21. Suppose X is a continuous random variable with fy(x)=1 in the interval

0<x<1. Show that the coefficient of skewness for fy(x) is zero.

22. If the probability density function of X is given by

L/ 62
fx(x)=m42—17[—6e 2[( w-le ]

show that X is symmetric with center equal to .

23. If a is a constant, show that Markov’s inequality can also be written in
the form P(X 2 a)<a 'E(X).
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24. Let N, be a random variable representing the number of widgets
produced in a month. Suppose the expected number of widgets
produced by a manufacturer during a month is 2000.

a) Find an upper bound on the probability this month’s production will
exceed 3200 widgets.

b) Suppose the standard deviation of a month’s production is known to
be 35 widgets. Find a and b such that the number of ‘widgets produced
this month falls in the interval a < Ny, <b with probability at least 0.75.

25. Suppose Cost is a random variable with E(Cost)=3 and Var(Cost)=1.
Use Chebyshev’s inequality to compute a lower bound on

a) P2 < Cost<4)
b) P(\Cost - 3! <5)
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Chapter 4

Special Distributions for Cost Uncertainty Analysis

All business proceeds on beliefs, Obviously, a man’s judgment cannot
or judgments of probabilities, be better than the information
and not on certainties. on which he has based it.
Charles William Eliot, 1834-1926 Arthur Hays Sulzberger
President of Harvard University Address to the New York State Publishers
The New Dictionary of Thoughts, 1957 Association [August 30, 1948]

In probability theory there is a class of distribution functions known as special
distributions. Special distributions are those that occur frequently in the
theory and application of probability. A well-known special distribution is
the Bernoulli distribution, a discrete distribution whose probability function is
given by equation 4-1. The Bernoulli distribution can be used to study a
random variable X representing the outcome of an experiment that succeeds,

{X =1}, with probability p or fails, {X =0}, with probability (1- p).

p ifx=1

4-1
1-p ifx=0 “-1)

Px(x)=P(X=x)= {

Another well-known special distribution is the normal distribution, a
continuous distribution discussed later in this chapter. Special distributions
have been well-studied over the years and are fully described in a two volume
text by Johnson and Kotz [1]. To avoid an extended exposition on the entire
class of special distributions, this chapter focuses on a subset of these

distributions which frequently arise in cost uncertainty analysis.

4.1 The Trapezoidal Distribution
The trapezoidal distribution is illustrated in figure 4-1. It is rarely presented
in traditional, or classical, texts on probability theory. Despite this, the

trapezoidal distribution is highly useful and flexible for many situations in

101
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cost uncertainty analysis. Seen in figure 4-1, it can model a random variable
whose probability density function increases in the interval a<x<my,
remains constant across the interval my < x < mjy, then decreases to zero in the
interval my <x<b.

Fx()

2
my +b—a-m

o

X

a my my b

Figure 4-1. Trapezoidal Probability Density Function

Mathematically, a trapezoidal distribution can arise from the sum of two
independent continuous random variables whose probability density functions
are constants over closed intervals of the real line." In cost uncertainty
analysis, the trapezoidal distribution is primarily used to directly specify a
range of possible values for a random variable. For instance, suppose an
experienced software engineer was asked to assess the number of DSI needed
to build a particular software application. The engineer may have solid
technical reasons why this number would not exceed x=»b DSI or be less
than x =a DSI. However, the engineer may strongly believe it is more likely
the number of DSI will fall in an interval of constant density between m; and
my. Such a situation can be represented by a trapezoidal distribution.

A random variable X is said to have a trapezoidal distribution if its
probability density function is given by equation 4-2 [2]

* Independent random variables are discussed in chapter 5. Refer to table 5-9 (chapter 5) for a
further discussion on the sum of two continuous random variables with constant density.
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2 1
(m2+b—a——m1)m1—a

2

T e .f <x< 4-2
Jx(x) Y p— if m<x<my (4-2)

2 1
(my+b—a—my) b—my

(x—a) fasx<m

(b-x) ifmy<x=<b

where —co<a<my <my <b<e. A trapezoidal probability density function is
illustrated in figure 4-1. The numbers a and b represent the minimum and
maximum possible values of X, respectively. Note that fy(x)=0 if x<a or
x>b. The mode of X is not unique. It is any value of x in the interval
my £ x<my. For the remainder of this book, a random variable X with PDF

given by equation 4-2 will be implied by the expression

X ~ Trap(a,m;,my,b)"

The cumulative distribution function of X is given by equation 4-3 [2].

0 ifx<a
1 1
(my+b—a—my) m—a
Fx(x)=<m—1:—;—:m—l)(2x—a—ml) ifm <x<my (4-3)
1 1
“(mz-l-b—a—ml)b—mz
1 ifx2b

(x-a)? ifasx<my

(b-x)? ifmy<x<b

A graph of Fx(x) is shown in figure 4-2.

”»

* The symbol “~” means “is distributed as.” In this case, we say X is distributed as a
trapezoidal random variable with parameters a, my, m,, and b. We might also say X is a
trapezoidal random variable with PDF given by equation 4-2.
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Fy(x)

a my my b

Figure 4-2. The Trapezoidal Cumulative Distribution Function

The CDF is linear in the interval m; <x <my, where the density function is

constant, and quadratic in the intervals a<x<mj and my <x<b.

Theorem 4-1 [2] If X is a trapezoidal random variable then

{(my + b)2 - myb)—((a+my )2 - amy)

E(X)=
3("12 +b—-a—-m1)

(m3 +b*)my +b)— (@ +mi Ya+m)
6(m2 +b—a-m1)

Var(X) = [ECOF
Example 4-1 Let X represent the uncertainty in the number of delivered
source instructions (DSI) of a new software application. Suppose this

uncertainty is expressed as the trapezoidal density function in figure 4-3..

Determine the following:
a) E(X)

b) Med(X)

¢) PX<EX)+oy)



Special Distributions 105

fx(x)

0.0001026

DSI
25000 28000 35000 37500

X

Figure 4-3. Trapezoidal Probability Density Function for Example 4-1

Solution
a) It is given that X ~ Trap(25000,28000,35000,37500); therefore, we have
a =25000, my; = 28000, my =35000, b=37500. Substituting these values into

the expectation formula in theorem 4-1 yields

((my +b)% —myb)—((a+my)? — amy)

E(X)=
3(my +b—a-my)

=31363.24786 = 31363 DSI

Since we need oy in part ¢) of this example, we will compute Var(X) at this

point; from theorem 4-1 we have

2 2 2 2
oy = Var(X) = \/("’2 +b7)my +b)=(@” tmiXatm) 31363 24786
6(m2 +b~a-ml)

=2925.26 = 2925 DSI

b) To compute Med(X), the median size of the software application, we need
to find x such that Fy(x)=1/2. It can be shown (left for the reader) that

P(25000 < X < 28000) = % <%

2 28 34 1
< x<35000)= >+ 25341
P(25000 )= 13%39° 3972



106 Chapter 4

Thus, the median of X will fall in the region of constant probability density;
this is equivalent to finding x along the CDF of X such that

1
(35000 + 37500 - 25000 — 28000)

(2x — 25000 —28000) =

N | —

Solving the above yields x =31375; therefore Med(X)=31375 DSL

¢) To determine P(X < E(X)+0) we have from part a) the result

E(X)+0x =31363+2925=34288 DSI
The value x =34288 falls in the linear region of Fy(x); from equation 4-3
P(X £ E(X)+0yx)=P(X £34288) = Fyx(34288) = 0.798

Thus, there is nearly an 80 percent probability the amount of code to build
the new software application will not exceed 34,288 DSL

4.1.1 The Uniform Distribution

The uniform distribution can be considered a special case of the trapezoidal
distribution.” In figure 4-1, as (m; —a) and (b—m,) approach zero (in the
limit), the trapezoidal distribution approaches a distribution with uniform (or
constant) probability density, shown in figure 4-4.

Jx(x)

b-a

x
a b

Figure 4-4. The Uniform Probability Density Function

* Itisalsoa special case of the beta distribution, which is discussed later in this chapter.
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A random variable X is said to have a uniform distribution (or rectangular

distribution) if its probability density function is constant and given by

fx(x)=;1_-; ifa<x<b (4-4)

where —eo<a < b <eo. The numbers a and b are the minimum and maximum
possible values of X, respectively. Note that fy(x)=0 if x<a or x>b.

A random variable described by a uniform probability density function has
the following interesting property. If the unit interval 0 <x <1 is the range of
values for X, then fy(x)=1 and the probability X falls in any subinterval
a’$x<b’ of 0<x<1 is simply the length of that subinterval; specifically,

b
P@ <X<b)=[1dc=b'-a
o
For the remainder of this book, a random variable X with PDF given by

equation 4-4 will be implied by the expression
X ~ Unif(a,b)

The cumulative distribution function of X is given by equation 4-5.

0 if x<a
Fx(x)= bl (x—a) if asx<b 4-5)
-a
1 if x2b

A graph of Fy(x) is shown in figure 4-5. Because the density function of X
is constant in the interval a<x<b, the cumulative distribution is strictly a

linear function of x in the interval a<x<b.
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Fx(x)

a b
Figure 4-5. The Uniform Cumulative Distribution Function

The uniform distribution has no skew and no unique mode. From a cost
analysis perspective, such random variables might be the number of DSI
required for a new software application (refer to chapter 3, example 3-1), the
weight of a new electronic device, or an unknown contractor’s software
productivity rate. In practice, the uniform distribution is used when a random
variable is best described only by its extreme possible values. In cost analysis,

this occurs most often in the very early stages of a system’s design.

Theorem 4-2 If X is a uniform random variable then
1
E(X)= E(a +b)
Var(X) = - (b - a)?
12

Example 4-2 If X has a uniform distribution, show that Med(X)= E(X).

Solution Since X ~ Unif(a,b) we know from the above discussion that

Fx(x)= (x—a) if agx<b

b—-a

Since X is a continuous random variable we know X has a unique median.
The median of X will be the value x such that
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1
b—a
Solving the expression for x yields x=(a+b)/2, which is Med(X). From
theorem 4-2 we see that Med(X) = (a+b)/2= E(X), when X ~ Unif(a,b).

Fx(x)= (x—a)zé-

4.1.2 The Triangular Distribution
The triangular distribution can also be considered a special case of the
trapezoidal distribution. In the trapezoidal distribution if m; =my =m then

the trapezoidal distribution becomes a triangular distribution, such as the one
shown in figure 4-6.

fx{x)

a m b
Figure 4-6. Triangular Probability Density Function

A random variable X is said to have a triangular distribution if its probability
density function is given by

2x ~a)
(b-a)m-a)

2(b - x)
(b-a)b-m)
where —co<ag<m<b<eo, The numbers a, m, and b represent the minimum,
the mode (most likely), and the maximum possible values of X, respectively.

ifagx<m

Sx(x)= (4-6)

ifm<sx<b
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Note that fy(x)=0 if x<a or x>b. In cost analysis, the mode m is often
regarded as the point estimate.”
For the remainder of this book, a random variable X with PDF given by
equation 4-6 will be implied by the expression
X ~ Trng(a,m,b)

The cumulative distribution function of X is given by equation 4-7.

(0 ifx<a
(x—a)?
(b-a)(m-a)
RS
(b—-a)b—m)
1 ifx=2b

ifagx<m
Fy(x)= (4-7)

ifm<x<b

A graph is shown in figure 4-7.
Fx(x)

14+

a m b *
Figure 4-7. The Triangular Cumulative Distribution Function

The CDF is a quadratic function of x in the intervals a<x<m and m<x<b.

Associating the point estimate (defined in chapter 1) to the mode of a distribution is
traditional in cost analysis; however, there are no strict reasons for doing so. An analyst
might judge the point estimate is best represented by the median, or by the mean, of a
distribution.
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The location of m relative to a and b determines how much probability there
is on either side of m. This is illustrated by the three triangular distributions

in figure 4-8.

fx(x)
2 Rl
b-a m=a+(b-a)/4 PX<m)=1/4
my=a+(b-a)l2 PX<my)=1/2
my=a+3b-a)/4 P(X<m)=3/4
x
a my my ms b

Figure 4-8. A Family of Triangular Probability Density Functions®

Seen in figure 4-8 the closer the mode is to the variable’s maximum possible
value b, the less likely it is the variable will exceed its mode. The closer the
mode is to the variable’s minimum possible value a, the more likely it is the
variable will exceed its mode. For this reason the triangular distribution is
often favored as a subjective probability distribution. Only three values (a, m,
and b) are needed to specify the distribution. From these values, subject
matter experts focus the distribution in a way that appropriately reflects the
overall subjective distribution of probability for the variable under

consideration.

Theorem 4-3 If X is a triangular random variable then
EX)=(a+m+b)/3

Var(X) = %{(m —a)m—-b)+(b-a)? }

* From Evans, M., N. Hastings (ed), and B. Peacock. 1993. Statistical Distributions, 2nd ed.
New York: John Wiley & Sons, Inc.



112 Chapter 4

Example 4-3 In example 3-7, the uncertainty in the unit production cost of a
transmitter synthesizer unit (TSU), for a communications terminal, was given
by the probability density function in figure 3-15. Use theorem 4-3 to show

that E(Cost)=13333.3$ and Var(Cost)=2.89(10°) $2.

Solution Referring to example 3-7, we see the PDF for Cost can be written in
the form given by equation 4-6 with a=10000, m=12000, and b =18000.
Substituting these values into the expected value and variance formulas given
in theorem 4-3 yields

E(Cost) = (a+m+b)/3=(10+12+18)103/3=133333$
Var(Cost) = —1-%{(12 ~10)(12 - 18) + (18 - 10)? }(106) =2.89(10%) $2

4.2 The Beta Distribution

The beta distribution, like the distributions discussed in section 4.1, can be
used to describe a random variable whose range of possible values is bounded
by an interval of the real line. A random variable X is said to have a beta

distribution if its probability density function is given by

1 r(a+ﬁ)(x-a)“*1(b-x)ﬁ'l ex<h
@) ={b-aT(@I(B)\b-a b-a

0 otherwise

(4-8)

where @ and B (a>0and S>0) determine the shape of the density function
and T'(@) is the gamma function of the argument ‘«.”

Beta distributions are in standard form when they are defined over the unit
interval. A random variable Y is said to have a standard beta distribution if its

probability density function is given by

* In general, F(a):jt“”e"dt. If a is a positive integer, then I'(c)=(ax—1)!.
o



Special Distributions 113

Na+P) , a1 B-1
o 1- 0 1
A =it@r@® 7 0<rs (4-9)

0 otherwise
For the remainder of this book, the random variables X and Y with density
functions given by equations 4-8 and 4-9 will be implied by the expressions
X ~ Beta(et, B,a,b) and Y ~ Beta(x, B), respectively. The transformation™ of
X ~ Beta(ot, B,a,b) to its standard form Y ~ Beta(a,B) is done by letting
y=(x—a)/(b—a). Graphs of the standard beta probability density function

for various a and B are illustrated in figure 4-9 and figure 4-10.

fr»
a=5B=10 «o=10,=5
328 +
a=5p8=5
246 &
y
0 0.308 0.5 0.692 1

Figure 4-9. A Family of Standard Beta Probability Density Functions
Figure 4-9 illustrates several possible shapes associated with the standard beta
density function. When a=f it is symmetric about y=0.5, which is the
median of Y. When a = f3 the median, mean, and mode of Y are equal. If
a>1 and f>1 the mode of Y is unique and occurs at

— l_a -
y~——2_amﬁ (4-10)

* Transformations of random variables are formally discussed in chapter 5.
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Figure 4-10 illustrates some other shapes associated with the standard beta
density. For instance, the beta density is U shaped if @<l and B<1. If
o=1 and B=1 the beta density becomes the Unif(0,1) (uniform) density
function. A Beta(l,2) density is a right-skewed triangular PDF, while a
Beta(2,1) is a left-skewed triangular PDF.

fr»

a=1B=1

@=02,p=1

0 0.5 1

Figure 4-10. More Standard Beta Probability Density Functions

Seen in figure 4-9 and figure 4-10 the beta density can take a wide variety of
shapes. This characteristic makes the beta density among the most diverse of
the special distributions for describing (or modeling) a random variable
whose range of possible values is bounded by an interval of the real line.

In general, from the transformation y=(x—a)/(b—a) it can be shown the
cumulative distribution function of X can be found from the cumulative
distribution function of Y according to

Fy(x)= Fy(i*zg) =F(y)

However, a closed form expression for the cumulative distribution function of
Y (given by equation 4-11) does not exist.
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y
FrG)= fy®dr if 0<y<1 (4-11)
0
Values for Fy(y) are determined through a numerical integration procedure.
A number of software applications, such as Mathematica® [3], are available
for numerically computing the integral given by equation 4-11. A family of
graphs for Fy(y) is presented in figure 4-11. These cumulative distribution

functions are the integrals of the three beta densities given in figure 4-9.

Fr(y)
1
09
038
From left to right, these curves are
the CDFs associated with the PDFs
%5? in figure 4-9.
044 LeftCDF Y ~ Beta(5,10)
Middle CDF Y ~ Beta (5,5)
Right CDF Y ~ Beta(10,5)
0.2
0.1
0.308 05 05662 Y

Figure 4-11. A Family of Standard Beta Cumulative Distribution Functions

Theorem 4-4 1f Y ~ Beta(at, ) and X ~ Beta(Q, B,a,b) then

[44
E(Y)= P (4-12)
E(X)=a+(b-a)E(Y) (4-12a)
; ap
Var(Y) = 4-13
ar®) (@+B+ 1+ Py @13
Var(X)=(b-a)*Var(Y) » (4-13a)

If the mean and variance of Y are known, it can be shown from theorem 4-4,

the shape parameters of the beta distribution are uniquely determined by
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o= B )[E(Y)(l E(Y)) 1] (4-14)
Var(Y)

_ [1-EW) ]

ﬁ-a(——-——E(Y) ) (4-15)

Lastly, if Y ~ Beta(ct, ) then 1-Y ~ Beta(f,ct). Discuss how this property is

seen in figure 4-9 and in figure 4-11.

Example 4-4 Suppose the activity time X (in minutes) to complete the
assembly of a microcircuit is beta distributed in the interval 4 <x<9, with
shape parameters ¢ =5 and f=10. Determine P(X < Mode(X)).

Solution From equation 4-10

Mode(vy=——% - 175 _4 308
2~a-B 2-15 13

where Y is the standard beta density of X. This is in terms of the unit interval,
that is, if Y ~ Beta(5,10) then Mode(Y)=0.308. From the transformation
y=(x—a)/(b~-a), the value y=0.308 in the unit interval is equivalent to the
value x=5.54 in the interval 4 <x<9 (where a=4 and b=9); therefore,
Mode(X)=5.54. To determine P(X € Mode(X)) we have

X—a Mode(X) a

P(X € Mode(X))= P( < P ) P(Y £ Mode(Y))

Since Y ~ Beta(5,10) we have

I'(15)

9
I,(5)1“(]10)0)( -y)y O<y<l

=

From numerical integration it can be shown
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0.308

P(Y < Mode(Y)) = Fy(0.308) = J' s

28 N -0 gy =
) Iﬂ(s)mo)(y) (1-y)Y dy=044

Since P(X £ Mode(X)) = P(Y € Mode(Y)) we conclude
P(X £ Mode(X))=0.44

Therefore, with probability 0.44 the assembly time of the microcircuit will be
less than or equal to 5.54 minutes. Discuss why this probability is also seen in

figure 4-11.

4.3 The Normal Distribution

The distributions presented in section 4.1 and section 4.2 can be thought of as
finite distributions. Random variables described by finite distributions have
values that are restricted to a bounded interval of the real line. The
trapezoidal, uniform, triangular, and beta distributions are examples of finite
distributions. In contrast to these, a random variable described by a normal
distribution is unbounded. Its values fall in the open interval given by the
entire real line. The normal distribution is the first of two infinite distributions
we will discuss in this chapter.

The trapezoidal, uniform, triangular, and beta PDFs are frequently used in
cost analysis to directly specify the uncertainty in the value of a variable.
Typically, such variables are inputs for deriving cost.* These variables might
include the number of new DSI for a software function, the weight of a future
hardware item (e.g., a satellite), or the time required to assemble a new
electronic device. The normal distribution could be used in the same way;
however, from a cost analysis perspective, the normal most often characterizes
the underlying distribution function of a derived cost. In this sense, the

normal distribution can reflect the shape of an “output” distribution —

* This is illustrated in the discussion associated with figure 1-4 (chapter 1).
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particularly one generated from a summation of “input” distributions, like
those discussed in sections 4.1 and 4.2. For instance, suppose the random
variable Cost is derived from the sum of the cost of each work breakdown

structure cost element X; (i=1,...,n) in a system. Specifically, if

Cost=Xi+Xp+X3+--+X, (4-16)
then under certain conditions (discussed in chapters 5 and 6) the normal
distribution will characterize the underlying distribution function of Cost.

A random variable X is said to be normally distributed if its probability
density function is given by

fx(x)=—\-/3%';';e

where —o<x<ee and 0>0. Equation 4-17 is also known as the Gaussian
distribution, named after the German mathematician Karl Friedrich Gauss
(1777-1855). For the remainder of this book, a random variable X with PDF

~He-w?ra?] @-17)

given by equation 4-17 will be implied by the expression X ~ N(u,0%). The

normal PDF is uniquely defined by two parameters y and o?%. Theorem 4-6

will show these parameters are the mean and variance of X, respectively. A
graph of the normal PDF is presented in figure 4-12.

The normal distribution is symmetric about its mean . It has the property
that its mode and median equal its mean. The numbers in figure 4-12 are the
areas under the curve within the indicated intervals. In particular, we have

uto
P(u-oc<X<u+o)= J’fx(x)dx=0.6826 (4-18)
u~c

where fx(x) is given by equation 4-17. Similarly,

P(u-20<X<u+20)=0.9544 4-19)

P(u-30<X<u+30)=0.9973 (4-20)
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fx(x)

0.3413 0.3413

0.1359 0.1359

0.0215 0.0215
u-3c u-20 u-o u u+o u+2o u+3o

Figure 4-12. The Normal Probability Density

Thus, when X is normally distributed the probability X falls within *lo from
its mean is always 0.6826; the probability X falls within 20 from its mean is
always 0.9544; the probability X falls within 30 from its mean is always
0.9973.

The peak of the normal PDF is governed only by the variance of X.
Furthermore, Mode(X) occurs at x=pu. The probability density function
evaluated at x=pg is equal to 0.399/0. Decreasing o increases the
maximum height of the normal PDF and the concentration of probability
around the mean u. This is illustrated in figure 4-13.

If X~N(u,0%) and Z=(X - u)/ o, the standard form of X, it can be shown
(theorem 4-5) that Z has a normal distribution with mean O and variance 1.
The density function of Z is known as the standard normal density, which is
given by equation 4-21.

FAD) = e P2 o<z <00 4-21
ZZ)—J—E;C Z ( )
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Sx(x)

0.04433

0.00147 =~

X

u
Figure 4-13. A Comparison of the Heights of Two Normal PDFs

For the remainder of this book, a random variable Z with PDF given by
equation 4-21 will be implied by the expression Z~ N(0,1). A graph of
fz(z) is shown in figure 4-14. The peak of the standard normal density
occurs at z=0, which is Mode(Z). Since Var(Z)=1 the standard normal
probability density function evaluated at Mode(Z) is equal to 0.399.

Closed form expressions for the cumulative distribution functions Fy(x)
and F;(z) do not exist. However, from the transformation z=(x-u)/ o it

can be shown that

Fx(x) = Fz((x—p)! 6)= Fz(2) (4-22)
where

Z
F(2)=PZ<2)= [ fr()dy
and f(y) is given by equation 4-21. Thus, values for Fy(x) can be obtained
from values for F7(z) by a numerical integration of f;(y). The results of
such an integration are summarized in table A-1 (presented in appendix A).

A graph of F;(z) is also shown in figure 4-14.
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1t Fz(z)

075}

EZ)=0 FE0)=PZ<0)=05
Var(Z)=1 0.5, f7(0) = 0.399
fz(2)
: b4
-3 -2 -1 0 1 2 3

Figure 4-14. The Standard Normal PDF and CDF
Because the standard normal is symmetric about z=0, we have
P(Z<~k)=P(Z>k). In terms of the cumulative distribution function of Z
this is equivalent to F,(—k)=1- F,(k). In particular, if X ~ N(/u,(rz) then the
probability X is within tko of the mean of X is
P(u—kosXsu+ko)y=P(-k<Z<k)

= Fz (k) Fz(=k) = Fz (k)= [L - F7 (k)] = 2F (k) -1 (4-23)
Example 4-5 Using table A-1, show that P(u-o < X< u+0)=0.6826.
Solution From equation 4-23 we see that k =1, in this case; so,

Plu—oc<Xsu+0o)y=P=1<Z<)=2F,(1)~1
From table A-1 F;(1)=0.8413; therefore,

Pu-o<Xsu+0)=P-1<Z2<1)=2(0.8413)-1=0.6826 ¢

If X~N, 0?) then probability statements about X can be written in terms of

its standard form Z. From equation 4-22, we have the general relationship

Pla<X<b)= Fz(b ;“)—FZ(“;“) (4-24)
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Example 4-6 In figure 1-6 (chapter 1), the distribution function of a system’s
cost was normal with mean 110.42 ($M) and standard deviation 21.65 ($M).
Given this, determine P(100 < Cost < 140).

Solution We are given Cost ~ N(1 10.42,(21.65)2). In terms of equation 4-24

P00 < X <140) = FZ( 140-1 10.42) B Z( 100-1 10.42)

21.65 21.65
= Fz(1.37) - Fz(-0.48)
Since Fz(—k)=1- F;(k) we have F;(—0.48)=1- F;(0.48); therefore,
P(100 < X <140) = F7(1.37) - [1- F;(0.48)]
From table A-1 F;(1.37)=0.91465 and F,(0.48) = 0.68439; so,
P(100 < X <140) = 0.599 = 0.60

Thus, there is nearly a 60 percent chance the system’s cost will fall between
100 and 140 million dollars.

Example 4-7 Suppose the uncertainty in a system’s cost is described by the
normal PDF shown in figure 4-15. Suppose there is a 5 percent chance the
system’s cost will not exceed 30.34 ($M) and an 85 percent chance its cost
will not exceed 70.55 ($M). From this information determine the mean and
standard deviation of the system’s cost.

Solution We are given P(Cost<30.34)=0.05 and P(Cost<70.55)=0.85.
Expressing the random variable Cost in standard form we have
P(Z < Mf—“) =0.05 and P(Z < Z(léé:ﬂ) =0.85
o o
where ¢ and o are the mean and standard deviation of Cost, respectively. We

will first work with the probability

P(Z < 39-'-34—_’1) =0.05
[0
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Jcost (%)
0.027

0.016

0.0069

oM |

30.34 70.55

Figure 4-15. PDF for Example 4-7

From appendix A (table A-1) P(Z <1.645)=0.95; it follows that

1- P(Z £1.645)=0.05
This is equivalent to P(Z>1.645)=0.05. Since the standard normal
distribution is symmetric about z =0, P(Z>1.645)= P(Z <-1.645); therefore,
we have

10_-3_3:_& =-1.645 (4-25)

Similar reasoning applies to the other probability. From appendix A (table
A-1)

P(ZSZQ—'-SS—_-E) =0.85
(e2

is true when

70.55-u
o
Solving equations 4-25 and 4-26 simultaneously for u and o yields

=1.04 (4-26)

pn=55 ($M)
o =15 ($M)
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Theorem 4-5 If X ~ N(,u,az), then Z ~ N(0,1) where Z=(X-u)/o.
Proof Since X ~ N(u, 0'2) we have

1 e—%[(z ~u)210'2]
2r o

Fy()=PX<x)= [ dt

By the definition of a cumulative distribution function we also have
X~
Fy(2)= P(ZSz)=P( ad

o

Sz)zP(XSzcr+,u)

~ wa 1 e—%;[(x«u)zloz]

= dx 4-27
—o0 2n o

If we let y =(x—u)/ o then ody = dx; substituting this change of variable into
equation 4-27 yields

z 1 ~1,2 z i _1y2
FZ(Z)zj_m T 2 gdy= j'_m —¢ 2 gy (4-28)

Equation 4-28 is the cumulative distribution function of the standard normal
density; thus,

1 ~172
fZ(Z)zme 2

Therefore, Z~ N(0,1). We will next show this result implies E(Z)=0 and

Var(Z) =1, as well as a more general case.
Theorem 4-6 If X ~ N(u,0%) then E(X)=u and Var(X)=o>.

Proof Since X ~ N(M,GZ) we have
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J—l“ ;Ao
2r o

By the change of variable z=(x-u)/ o we have

E(X)= f)& dx

_12
e 2" odz

EX)= [ (zo+m):

1
4/21z o

which simplifies to

EX=0 [ e gap [ e ¥ @20
X)=0 zme 7+ U \/7”—8 Z ( )

The first integral in equation 4-29 is E(Z). This integral is equal to zero
since the integral exists and its integrand is an odd function; that is,

E2)= | z-J;_n

—

1,2
e 2 dz=0
The second integral in equation 4-29 is unity since it is the integral of the
standard normal density function. Therefore, equation 4-29 simplifies to
E(X)=cE2Z)+u-l=0-0+u=u

To show that Var(X)= 02, recall that Var(X)= E(X%)~(E(X))%. We know
that

S (S
2r o

E(xX*)= [ #* dx
From the family of integrals of exponential functions, presented in appendix
A, note that

1 e—%[(x—/.t)zlo'z]

dx=u2+0'2
2 o

E(X%)= fxz-

therefore, Var(X)= u2 +0% —( y)z =02,
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4.4 The LogNormal Distribution

The lognormal probability distribution is the last of the infinite distributions
we will discuss in this book. It has broad applicability in engineering,
economics, and cost analysis. In engineering, the failure rates of mechanical
or electrical components often follow a lognormal distribution. In economics,
the random variation between the production cost of goods to capital and
labor costs is frequently modeled after the lognormal distribution; the
classical example is the Cobb-Douglas production function, given by equation
4-30.

Q0 =aW W,? (4-30)

In the above, the production cost of goods Q is a function of capital cost W
and labor cost W,; the terms a, a;, and a, are real numbers. Under certain
conditions Q can be shown to have a lognormal probability distribution. In
cost analysis, Young [4] observed that the lognormal can approximate the
probability distribution of a system’s total cost — particularly when the cost
distribution is positively skewed. Empirical studies by Garvey and Taub [5, 6]
identify circumstances where the lognormal can approximate the combined
(joint) distribution of a program’s total cost and schedule.”

The lognormal distribution has a close relationship with the normal
distribution. If X is a nonnegative random variable where the natural
logarithm of X, denoted by InX, follows the normal distribution, then X is
said to have a lognormal distribution. This is illustrated in figure 4-16. On
the left-side of figure 4-16 the random variable X has a lognormal PDF, with
E(X)=100 and Var(X)=625. On the right-side is the representation of X in

logarithmic space. In logarithmic space X has a normal PDF, with

* This is fully discussed in chapter 7.



Special Distributions 127

E(In X)=4.57486 and Var(in X)=0.0606246. How these latter two values

were determined is discussed in theorem 4-8.

0.0172153

1.62026
Sx(®) Sinx(x)
50 100 150 200 3.8 4.57486 53
E(X)=100 E(In X)=4.57486
Var(X) = 625 Var(In X) = 0.0606246

Figure 4-16. Probability Density Functions of X and In X
X ~ LogN(100,625) and In X ~ N(4.57486,0.0606246)

Under certain conditions (discussed in chapter 5), the normal distribution can
arise from a summation of many random variables (as illustrated by equation
4-16); the lognormal distribution can arise from a multiplicative combination
of many random variables, as illustrated by equation 4-30.

A random variable X is said to be lognormally distributed if its probability

density function is given by

[ W (CEERd

fX(x)= \/E‘ﬂ_‘o_y X

(4-31)

where 0<x<eo, Oy>0, fy=E(InX), and o%=Var(lnX). For the
remainder of this book, a random variable X with PDF given by equation 4-31
will be implied by the expression X ~ LogN(;uy,G%). The parameters yy and
0'17; are the mean and variance of the normally distributed random variable
Y =In X, which is the logarithmic representation of X (refer to figure 4-16).

Graphs of a family of lognormal PDFs are presented in figure 4-17. Notice
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the lognormal PDF is positively skewed and values for x are always

nonnegative.
fx(x)
0.0391379
EX)=25
Var(X) = 225
00240244 } E(X)=50
Var(X) = 400
0.0172153 ¢

E(X)=100
Var(X) =625

10 50 100 150 200

Figure 4-17. A Family of LogNormal Probability Density Functions

12
Theorem 4-7 If X is a lognormal random variable then E(X)=uy =e" r+a%¥

2 2
and Var(X)=c% = #1707 (57 ).

Proof Since X has a lognormal distribution, the PDF of X is given by

equation 4-31; therefore

T T 1 ~Hanx-up)? 10}
E(X)= de={ x- ¢ ? dx (4-32
(X) J(;xfx(x) {x Trorst (4-32)
Equation 4-32 simplifies to
o 1 N2 2
E(X):j LI tanx-pp) /Gy]dx (4-33)
0 N27 oy

Suppose we set y=Inx—fy; then —so<y<oo, x=e’e’, and dx=e’edy.

Substituting this into equation 4-33 we have
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E(X) = j L (4-34)

27r0'

o0

E(X)=eMY J' 1 e“%[(}’z‘ZU%y)/G%]

V27 oy >

E(X)=eMr ]'o

1 -Lfy-oh*-ot]
20 dy
quﬂ' O'Ye Y

~;l7[(y~cy)2 ] %G’z’dy

E(X)=etr j

«/?.n Oy
1 -2y 2
E(X) e Y+ UY J '2—0_—2}:[()’ UY) ]dy =eﬂy+‘%‘("y (4‘35)

\/_2—”-51/6

The integral in equation 4-35 is unity since it is the PDF of a N(o?,0°)
random variable. The above result can be generalized to the r-th moment of

X; it is left to the reader to show that

1 2.2
E(X")= M 207" (4-36)

2 2
To show that Var(X)=e*#7 9% (¢% —1) recall that
Var(X)= E(X?) - (E(X))* (4-37)
Substituting equations 4-35 and 4-36 (with r=2) into equation 4-37 it is

2 2
easily shown that Var(X)=e?Hr*0t (%% —1).4
This theorem can be illustrated by referring to figure 4-16. There, we have
Hy = E(In X) = 4.57486 and 0'12/ = Var(ln X) = 0.0606246. From theorem 4-7

152 1
E(X) = Pr 30T _ (457486+1(00606246) _ 1

2 2
Var(X) = ezuy +0y (eO'y -D= 82(4¢57486)+0.0606246(e0.0606246 ~1)=625
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Thus, when X is a lognormal random variable its mean and variance are
defined in terms of the normally distributed random variable Y =InX. The
same is true about the mode and median of X; in particular, if X is a
lognormal random variable then

Mode(X) = e#r 07 (4-38)
Median(X) = " (4-39)
In figure 4-16,
Mode(X) = 64.57486——0.0606246 =91.307
Median(X) = e*>7%86 = 97,014
The lognormal PDF peaks at the value

fX(Mode(X))-T...— (e foy- Hry (4-40)

Showing this is left as an exercise for the reader.

In cost analysis applications of the lognormal distribution we typically do
not have values for E(InX) and Var(In X) (where X might represent the cost
of a system or a particular work breakdown structure cost element). How do
we specify the distribution function of a lognormal random variable X, when
only E(X) and Var(X) are known? The next theorem addresses this
question. Theorem 4-8 presents translation formulas for determining E(In X)
and Var(ln X) when only E(X) and Var(X) are known.

Theorem 4-8 1If X is a lognormal random variable with mean E(X)= uy and
Var(X)=0% then

Lt ]

= E(nX)=—In| —&£X2___ 4-41

My (In X) zn—(‘ux)z‘_*-o_%— ( )

and
L,

0% =Var(InX)=In (—“—X)—iz"—& (4-42)

L (ux)
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Proof From theorem 4-7 we have

12
y = M 20y
Inpy = uy +1 o7 (4-43)
2npy =24y +0% (4-44)

We will first establish equation 4-42 in theorem 4-8 and then use that result to
establish equation 4-41. From theorem 4-7

2 2
Var(X)= 0% = o7 (77 -1

2
This is equivalent to In(e®? ~1)=Ino% —Quy +0%)
2
Using equation 4-44 In(eY —1)=1n o& -2Inuy
2
ln(e -D=1 )
#X
2
2
Y = -0;}2(— +1
Hy
2 2
Therefore 0';2» =Var(lnX) = ln[w—%gl-]
Mx

To establish equation 4-41, we can write Uy (in equation 4-43) as

py =hnpy -0}

From equation 4-42 we have

2, 2
py =Inpy -1 {(Hx) +20'X1\
(1x)

iy (2 In piy [(.Ux)2 +0%
2 (ux)*

_1 2 (ux)2+ax
My =—| In(uyx)” -
Y 2( X ()’ D
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2

4
Therefore Uy =E(nX)= 1 ln[———-(—,f—z)-(—)——-—— °
2 | (ux) +ox

Using theorem 4-8 the parameters uy and 0‘)2/, which uniquely specify the
lognormal probability density function, can be determined from E(X) and
Var(X). In figure 4-17, the left-most PDF has E(X)=25 and Var(X)=225;
from theorem 4-8 this is equivalent to a lognormal PDF with parameters
Uy =3.06513 and 0']2,=0.307485. The middle PDF (in figure 4-17) has
E(X)=50 and Var(X)=400; from theorem 4-8 this is equivalent to a
lognormal PDF with parameters uy =3.83781 and 0'%; =0.14842. The right-
most PDF (in figure 4-17) has E(X)=100 and Var(X)=625; from theorem
4-8 this is equivalent to a lognormal PDF with parameters py =4.57486 and
0')2/ =0.0606246. Thus, the equations for the three PDFs in figure 4-17, from
left to right, are as follows:

1 1 —4[anx-3.06513)%/0.307485]

= o ssas1n) < ¢

1 1 e-%[(lnx ~3.83781)2/0.14842]
+ 27 (0.385253) x

1 1 -4[anx—4.57486)? 10.0606246 ]
—
A 27 (0.246221) x

fx(x)=

fx(x)=

where the general form for fy(x) was given by equation 4-31.
The cumulative distribution function of a lognormal random variable is
given by equation 4-45.

1
2750’y

~4{anr-py)? 103 |

X
Fy(x)=P(X<x)=| —i—e dt (4-45)
0
Figure 4-18 presents a family of lognormal CDFs associated with the PDFs in

figure 4-17.
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Fx(x)
l 3
075}
From left to right, these curves are
05t the CDFs associated with the PDFs
in figure 4-17.
Left CDF X ~ LogN(3.06513,0.307485)
025} Middle CDF X ~ LogN(3.83781,0.14842)
Right CDF X ~ LogN(4.57486,0.0606246)
. . . X
10 50 100 150 200

Figure 4-18. A Family of LogNormal CDFs

The cumulative distribution function given by equation 4-45 does not exist in
closed form. It can be evaluated by a numerical integration procedure. An
alternative to such a procedure involves using a table of values from the
standard normal distribution. The following discusses this approach.

If X~ LogN(,uy,cr%) then Y=InX ~ N(/,ty,alz/); therefore,

P(Xs;c):-P(lnxsmx)=l{h‘x_“ysl“x'”Y) (4-46)
Oy Oy

Since ¥ =InX ~ N(iy,0%), from theorem 4-5 it follows that
BXZHr . N
Oy
InX- Hy
Oy
normal random variable Z. From this result equation 4-46 is equivalent to

P(X<x)= }{z < 135—_-‘1"-) (4-47)
Oy

This implies the random variable is equivalent to the standard
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If X has a lognormal distribution, then probabilities associated with various
intervals around X can be determined from a table of values of Z, the standard
normal distribution.

Example 4-8 Suppose the uncertainty in a system’s cost is described by a
lognormal PDF with E(Cost) =100 ($M) and Var(Cost) =625 ($ M)z; this is
the right-most PDF in figure 4-17. Determine
a) P(Cost>2E(Cost))
b) P(50 < Cost <150)
Solution
a) To determine P(Cost >2E(Cost)) recall that

P(Cost >2E(Cost)) =1~ P(Cost < 2E(Cost))
It is given that E(Cost) =100; therefore

P(Cost >200) =1~ P(Cost <200)

In this example, the random variable Cost is given to have a lognormal
distribution with E(Cost)=100 and Var(Cost)=625. Thus, the random
variable Y =InCost is normally distributed with parameters (determined from
theorem 4-8)

Uy = E(In Cost) = 4.57486
6% = Var(In Cost) = 0.0606246
From equation 4-47

In200 - 4.57486

P(Cost <200)=H Z < = P(Z<2.938
(Cos ) P( 0246221 ) ( )

From table A-1 (appendix A) P(Z<2.938)=0.998348, after some
interpolation. Therefore,

P(Cost >200) =1~ P(Z <2.938) = 0.00165
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This result is consistent with the Markov bound discussion in chapter 3

(section 3.4), as illustrated in figure 3-19.

b) To determine P(50 < Cost £150) note that
P(50 £ Cost £150) = P(In 50 < In(Cost) £ In150)

_p In50-uy InCost—py Inl50-uy
oy Oy - oy

_ lnS()-,uY<Z<ln150—-,uy
Oy T Oy

= P(-2.69< Z<1.77)

where

7= InCost — uy
Oy

Uy = E(In Cost) =4.57486 (from theorem 4-8)

0% = Var(In Cost) = 0.0606246 (from theorem 4-8)

From theorem 4-5 we know Z ~ N(0,1), thus
P(50 < Cost <150)= P(-2.69< Z<1.77)
= F;(1.77) — Fz(-2.69)
= F7(1.77) =1~ Fz(2.69)]
where F7(-2.69)=1- F;(2.69). From table A-1 (appendix A)
P(50 < Cost £150) =0.961636 — [1 - 0.9964] = 0.958 = 0.96

Thus, the system’s cost will fall between 50 and 150 million dollars with
probability 0.96. This result is also consistent with the discussion presented in
chapter 3 (section 3.4), as illustrated in figure 3-20.
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Example 4-9 In figure 1-5 (chapter 1) the random variable X, represented
the cost of a system’s systems engineering and program management.
Furthermore, the point estimate of X,, denoted by x, PEy,» Was equal to 1.26
($M). If X, can be approximated by a lognormal distribution, with
E(X;)=1.6875 ($M) and Var(X,)=0.255677 ($M)?, determine

a) P(Xp<xypg, )

b) P(X, <E(Xy))

Solution

a) Since the distribution function of X, is approximated by a lognormal,
from equation 4-47 we can write

Inx;pg,, =Ky
P(Xy S xpppy )= Pl ZS—— 22—

Oy

where Z ~ N(0,1), uy = E(InX,), and 0'12/ =Var(InX,). Since E(X,)=1.6875
and  Var(X,)=0.255677, from theorem 4-8  uy =0.480258 and
0% =0.0859804. Thus,

ln1.26—0.480258) — P(Z<-085)
0.293224

P(X, £1.26)= F(Z <

From table A-1 (appendix A)

P(Z<-0.85)=P(Z20.85)=1-P(Z<0.85)=1-0.802 =0.198
thus, P(X5 £1.26)= P(Z<-0.85)=0.198
Therefore, there is nearly a 20 percent chance the cost of the system’s systems

engineering and program management will be less than or equal to 1.26

($M).

b) We are given E(X,)=1.6875, therefore P(X; < E(X3))= P(X; <1.6875).
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From equation 4-47 we can write
In1.6875~0.480258
0.293224

From table A-1 (appendix A) P(Z <0.1466)=0.558; thus,

P(X, £1.6875) = P(Z £0.1466) = 0.558
Therefore, there is nearly a 56 percent chance the cost of the system’s systems
engineering and program management will be less than or equal to 1.6875
($M). For interest, the PDF and CDF of X, for this example, are shown in
the figure below.

P(X, <1.6875) = P(Z < ) = P(Z < 0.1466)

" Fy,(x2)
Jx, (x2)

0.558

0.198
/ , . ($M)

0.5 1 126 16875 25 3 s T2

Figure 4-19. The PDF and CDF of X, in Example 4-9

This concludes the discussion of special probability distributions commonly
used in cost uncertainty analysis. Chapters 5 through 7 will provide further
illustrations of their application to modeling cost uncertainty from a system
work breakdown structure perspective. In preparing for that discussion this
chapter concludes with a presentation on how to specify some of these special
distributions, when only partial information about them is available.
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4.5 Specifying Continuous Probability Distributions

In systems engineering, probability distributions of variables whose values are
uncertain must often be specified by expert technical opinion. This is
particularly true in the absence of historical data. In such circumstances,
expert opinion can be the only way to quantify a variable’s uncertainty. Even
when data exists its quality may be so suspect as to nullify its use a‘l‘/together.
This section discusses strategies for specifying probability distributions when
expert subjective assessments are required. This is illustrated in the context of
continuous probability distributions.” Before delving into the details of these
strategies, we discuss further the concept of subjective probabilities and

distribution functions (introduced in chapter 2).

Subjective Probabilities and Distribution Functions

In systems engineering, probabilities are often used to quantify uncertainties
associated with a system’s design parameters (e.g., weight), as well as
uncertainties in cost and schedule. For reasons mentioned above, quantifying
this uncertainty is often done in terms of subjective probabilities. Discussed
in chapter 2, subjective probabilities are those assigned to events on the basis
of personal judgment. They measure of a person’s degree-of-belief that an
event will occur. Subjective probabilities are most often associated with one-
time, nonrepeatable, events — those whose probabilities cannot be objectively
determined from a population of outcomes developed by repeated trials,
observations, or experimentation. Subjective probabilities cannot be arbitrary;
they must adhere to the axioms of probability [refer to chapter 2]. For

instance, if an electronics engineer assigns a probability of 0.70 to the event

* In practice, a continuous distribution is often used to describe the range of possible values
for a random variable. This enables subject matter experts to focus on the “shape” that best
describes the distribution of probability, rather than assessing individual probabilities
associated to each distinct possible value (needed for discrete distributions).
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“the number of gates for the new processor chip will not exceed 12,000,” it
must follow that the chip will exceed 12,000 gates with probability 0.30.
Subjective probabilities are conditional on the state of the person’s
knowledge, which changes with time. To be credible, subjective probabilities
should only be assigned to events by subject experts — persons with
significant experience with events similar to the one under consideration. In
addition, the rationale supporting the assigned probability must be well
documented.

Instead of assigning a single subjective probability to an event, subject
experts often find it easier to describe a function that depicts a subjective
distribution of probabilities. Such a distribution is sometimes called a
subjective probability distribution. Subjective probability distributions are
governed by the properties of probability distributions associated with discrete
or continuous random variables (refer to chapter 3). Because of their nature,
subjective probability distributions can be thought of as *“belief functions”™—
mathematical representations of a subject expert’s best pfofessional judgment
in the distribution of probabilities for a particular event.

When formulating subjective probability distributions, subject experts often
prefer specifying a range that contains most, but not all, possible values. That
is, there is a small nonzero probability that values will occur outside the
expert’s specified range. One strategy for specifying a subjective probability
distribution involves the direct assessment of the distribution’s fractiles.
Another strategy involves assigning a subjective probability to a subinterval of
the range of the distribution function. The following illustrates these
strategies. This is done in the context of the distributions presented in this
chapter. We begin with the beta distribution.
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Specifying a Beta Distribution

The beta distribution has long been the distribution of “choice” for
subjective assessments. It can take a wide-variety of forms, as seen in figure
4-9 and figure 4-10. The following illustrates how the beta distribution can
be specified from subjective assessments on the shape parameters o and f3

and any two fractiles.

Case 1 Specify a nonstandard beta distribution for the random variable X

given the shape parameters a and f and any two fractiles x; and x;, where

(0<i<j<1). An illustration of this case is presented in figure 4-20.

Purpose(s) To determine the minimum and maximum possible values for X,
where X ~ Beta(at, B,a,b). To compute E(X) and Var(X) from the specified
distribution.

Required Information

Assessments of o and f and any two fractiles x; and Xj.

Discussion

An assessment of the shape parameters ¢« and f can be facilitated by having
a subject expert look at a family of beta distributions, as shown in figure 4-9
and figure 4-10. From such a family, an o and B pair can be chosen that
reasonably depicts the distribution of probability (e.g., skewed, symmetric)
for the variable under consideration. With a and B and any two fractiles x;
and x;, the minimum and maximum possible values of X are given by

equations 4-48 and 4-49 (refer to exercise 25), respectively.

X;yi—Xiy;
a= 1] ]

(4-48)
Yi =i
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b= x;(1-y)—-x(1-y;)
Yi—Yi

(4-49)

In the above, the terms x; and x; are the assessed values of X such that
P(X<x;)=iand P(X<x;)=j. Theterms y; and y; are fractiles computed
from the standard beta distribution associated with the given (as chosen by

the subject expert) o and f.
fx(x)

X ~ Beta(a, B,a,b)

P

a x; x;j b

Figure 4-20. An Illustrative Beta Distribution — Case 1

Once a and b have been determined, theorem 4-4 can be used to compute

E(X) and Var(X) associated with the specified distribution.

Example 4-10 Find the minimum and maximum possible values of X if
X ~ Beta(5,10,a,b), xgo5 =4.76359, and xgg5 =6.70003. Find E(X) and
Var(X).

Solution

Since X ~ Beta(5,10,a,b), the distribution function of X has shape parameters
a=5 and f=10. From equations 4-48 and 4-49 we can write

a= 476359y095 - 6.70003)70_05
Y0.95 ~ Y0.05

(4-50)
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_ 6.70003(1 - yo,05) —4.7635%(1 - yo.95)
Y0.95 ~ Y0.05

b

(4-51)

Since the random variable Y must have the standard beta distribution
Y ~ Beta(5,10), it can be determined” that ygg5=0.152718 and
Y0.95 = 0.540005. Substituting these values into equation 4-50 and 4-51 we
have a=4 and b =9, which are the minimum and maximum possible values
of X, respectively. The reader should notice this example is directly related to
example 4-4 (section 4.2). Now that values for a and b are determined, the
mean and variance of X can be determined directly from theorem 4-4. It is
left to the reader to show that E(X)=5.67 and Var(X)=0.347, in this

example.

Example 4-11 Suppose I represents the uncertainty in the number of
delivered source instructions (DSI) for a new software application. Suppose a
team of software engineers judged 100,000 DSI as a reasonable assessment of
the 50th percentile of I and a size of 150,000 DSI as a reasonable assessment
of the 95th percentile. Furthermore, suppose the distribution function in
figure 4-21 was considered a good characterization of the uncertainty in the
number of DSI. Given this,

a) Find the extreme possible values for 1.

b) Compute the mode of 1.

¢) Compute E(I) and o;.

Solution

a) In figure 4-21, I is given to be a beta distribution with shape parameters
a=2 and B=35. We are also given two probability assessments for I,

* Determined by the Mathematica® routine Quantile[BetaDistribution[5,10},k], where k is
equal to 0.05 and 0.95.
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specifically, P(I<100,000)=0.50 and P(I<150,000)=0.95; this is
equivalent to the fractiles xg s =100,000 and xg 95 = 150,000 (refer to figure
4-21). Since a=2 and PB=3.5, the standard beta distribution is
Y ~ Beta(2,3.5). From this we can determine the fractiles yps50 and ygos-
Using Mathematica®, ygsq =0.346086 and ygg9s5 =0.70189 when a =2 and
B =3.5. Substituting yg 59 =0.346086, yg 95 =0.70189, xq 59 =100,000 , and
xg.95 = 150,000 into equations 4-48 and 4-49 provides the minimum and
maximum possible values for I. These values are denoted below by a and b.

a= (100000)0.70189 - (150000)0.346086
0.70189 - 0.346086

=51366

b= 150000(1 - 0.346086) - 100000(1 - 0.70189)

=191892
0.70189 - 0.346086
fi(x)
I ~ Beta(2,3.5,a,b)
\ DSI__
a X0.50 X095 b
51,366 100,000 150,000

191,892

Figure 4-21. Beta Distribution for Example 4-11

b) Since a>1 and B>1, from equation 4-10, the mode of Y - Beta(2,3.5) is

o l=a  1=2
Y a-B 2-2-35

=(.2857
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By the linear transformation y=(x-a)/(b—a), where a and b were
determined from part a) we have Mode(I)=a+0.2857(b—a)=91,514 DSL

Because the beta distribution in this example has a positive skew, the mode of
I falls to the left of the 50th percentile of 1.

¢) From theorem 4-4 with =2, f=3.5, a=51366 DSI, and b=191892
DSI we have

o

E(D=a+(b-a)EY)=a+(b—a)
a+p

=51366+(191892 - 51366)—-——-%-—— =102,466 DSI
2+3.5

Once again, because the beta distribution in this example has a positive skew,
the mean of I falls to the right of the 50th percentile of I. Lastly, from
equations 4-13 it can be shown that Var(Y)=0.0356. From equation 4-13a

this translates to Var(l)= 7.03(10)8 DSIZ; therefore,
o =+/Var(l) =26514 DSIe

A nice feature of this approach is its flexibility to fully specify, for a given
pair of shape parameters, a nonstandard beta distribution from any two
fractiles of the distribution. This feature has strong practical utility. Subject
experts often make “better” judgmental assessments of fractiles that fall near
the middle of a distribution (e.g., the xg40 and xggq fractiles) than out near
its tails. Selecting shape parameters that “best” characterize the skewness (or
symmetry) of the distribution has not been considered, in practice, too
difficult. Shape parameters can be inferred by asking the expert to visually
choose a distribution from a family of beta distributions plotted for various o

and B. Representative plots of such a family are shown in figures 4-9 and

4-10. Visual representations of a variable’s uncertainty by distribution

functions can be an excellent way to communicate risk to decision-makers.
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Specifying Uniform Distributions

The following presents strategies for specifying a uniform distribution, when a
subject expert assigns a probability « to a subinterval of the distribution’s
range. In the cases below, assume the random variable X is uniformly

distributed over the range a<x<b.

Case 2 Specify a uniform distribution for the random variable X given the
subinterval a<x<b’ and o, where a is the minimum possible value of X,

b’<b,and a=Pa<X<b’). An illustration of this case is presented in
figure 4-22.

Purpose(s) To determine the maximum possible value of X. To compute
E(X) and Var(X) from the specified distribution.

Required Information

Assessments of o and the endpoints of the subinterval a<x<b’.

Discussion
In this case a subject expert defines the subinterval a<x <b" of the range of

possible values for X, given by a<x<5. In addition, an assessment is made
on the probability X will fall in this subinterval.

fx(x)

X

a b’ b
Figure 4-22. An Illustrative Uniform Distribution — Case 2

If Pa<X<b")y=0 <] the maximum possible value of X is
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b=a+Lb'—a) (4-52)
~ .

For example, if o=0.25, a=20, and b’ =30 then, from equation 4-52, the

maximum value of X must be b=60. This is illustrated in figure 4-23.

0.025

Fx(®) | 4-02s

X
20 30 60

Figure 4-23. An Illustration of Case 2

For an application context, the random variable X might represent the
uncertainty in the number of source instructions to develop for a new software
application, or in the weight of a new electronic device, or in the number of
labor hours to assemble a new widget.

Case 3 Specify a uniform distribution for the random variable X given the
subinterval @’ <x<b’ and «, where a<a’, b’<b, and a=Pla’ £ X2b).

An illustration of this case is presented in figure 4-24.

Purpose(s) To determine the minimum and maximum possible values of X.

To compute E(X) and Var(X) from the specified distribution.

Regquired Information
Assessments of « and the endpoints of the subinterval a’<x<b’.
Furthermore, assume
a—-a=b-b
for this case.
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Discussion
In this case a subject expert defines the subinterval a’<x<b" of the range of
possible values for X, given by a<x<b. In addition, an assessment of the

probability X will fall in the subinterval a’ < x< b’ is made.

fx (%)

X
a a b b

Figure 4-24. An Illustrative Uniform Distribution — Case 3

If P(a’<X<b)=a<l, the minimum and maximum possible values of X are

a=a -0 —a) (4-53)
20

b=t + 2% —a) (4-54)
20

Notice that a’ —a =b—-b’. Furthermore, for this case we have
PasX<a)=PY <X<b)=4(1-0a)

For example, if a=0.80, a’ =40, and b" =60 then, from equations 4-53 and
4-54, the minimum and maximum possible values of X are a=37.5 and
b=62.5. This is illustrated in figure 4-25. An application context for this
case is similar to the previous case.
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0.04

Fx(® o =0.80

X
375 40 60 62.5

Figure 4-25. An Illustration of Case 3

It is possible, in this case, for a to become negative even when a’ is positive.
In applications where it is sensible that X be nonnegative (e.g., if X is the
uncertainty in the weight of a new widget), such an occurrence signals a

reassessment of ¢’ and « is needed.

Specifying a Triangular Distribution®

The following illustrates one strategy for specifying a triangular distribution,
when a subject expert assigns a probability o to a subinterval of the
distribution’s range. In the case below, assume the random variable X has a

triangular distribution over the range a<x<b.

Case 4 Specify a triangular distribution for the random variable X given m,
the subinterval o’ <x<b’, and o where a<a’, a<m<b’, b’<b, and

a=Pla’<X<b"). An illustration of this case is presented in figure 4-26.

Purpose(s) To determine the minimum and maximum possible values of X.

To compute E(X) and Var(X) from the specified distribution.

This case was developed by Dr. Chien-Ching Cho, The MITRE Corporation, Bedford,
Massachusetts.
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Required Information
Assessments of o and the endpoints of the subinterval a’<x<b’, where
a’ <m<b’. Furthermore, assume for this case

P(X<a) _ P(X<m)
P(X=b) P(X=m)

Discussion
In this case a subject expert defines the subinterval @’ <x<b’ of the range of
possible values for X, given by a<x<b. In addition, an assessment of the

probability X will fall in the subinterval a’ € x <’ is made.

fx(m) ¢

a a m b’ b

Figure 4-26. An Hllustrative Triangular Distribution — Case 4

If Pla’<X<b)=a<], the minimum and maximum possible values of X are

m—a’

= e 4"
R N @59
b’ —m
b=m+ ——— -
SRR (4-30)

Equations 4-55 and 4-56 originate from the assumption (for this case) that

P(X<a’) P(X<m)
PX2b) P(X2m)

For example, if o0=0.75, a’=25, m=35, and b’=60 then, from equations
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4-55 and 4-56, the minimum and maximum possible values of X are a=15
and b=85. This is illustrated in figure 4-27.

0.0285714

fx(x)
a=0.75

x
15 25 35 60 85

Figure 4-27. An Illustration of Case 4

An application context for this case is similar to the previous cases. It is also
possible in this case for a to become negative, even when a’ is positive. In
applications where it is sensible that X be nonnegative (e.g., if X is the
uncertainty in the weight of a new widget), such an occurrence signals a

reassessment of @’ and « is needed.

In Summary

Sir Josiah Stamp™ once said...
“The government are very Keen on amassing statistics. ‘They collect them, raise them to
the n-th power, take the cube root, and prepare wonderful diagrams. But one must never
forget that every one of these figures comes in the first instance from the village
watchman, who puts down what fe damn pleases.”

Several techniques have been presented for quantifying uncertainty in terms
of subjective probabilities and distributions. As discussed, the need to do so is

unavoidable on systems engineering projects. An extensive body of social

* President of the Bank of England during the 1920s.



$pecial Distributions 151

science research exists on techniques for eliciting subjective probabilities and
distributions. The book Uncertainty: A Guide to Dealing With Uncertainty in
Quantitative Risk and Policy Analysis, by Morgan and Henrion [7], provides
an excellent summary of this research. Despite these studies, there remains a
lack of consensus on the superiority of any particular elicitation technique.

Although the use of expert opinion is sometimes criticized, the basis of the
criticism is often traceable to a) the subject expert was really the “village
watchman” or b) the full scope of the problem being addressed by the expert
was poorly described. To lessen the chance of a) or b) occurring, it is the
prime responsibility of the project’s cost and engineering team to collectively
do the technical diligence needed to establish credible and defensible
assessments.

For our purposes, it must be stressed that a key product from subjective
assessment efforts must be a well documented set of assumptions, arguments,
and supportive materials. Documentation enables similarly qualified persons
(or teams) to conduct independent and objective reviews of the assessments.
This alone is an important step towards objectivity and one that would surface
the presence of “village watchmen.” Credible analyses stem from credible
and defensible assessments; credible and defensible assessments stem from
credible expertise. Properly conducted and documented assessments, on areas
of a project that drive cost, schedule, and technical uncertainties, are among

the most important products cost uncertainty analysis drives to produce.

Exercises

1.  Given the trapezoidal distribution in example 4-1, show that

a) P(25000 < X <28000) = % b) P(25000 < X <35000) = —33—3
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Suppose X ~ Trap(a,my,my,b) with PDF given in figure 4-1.

a) Show that 1-P(X<m))-P(X>my)=2— (my —my)

b) What region in figure 4-1 does the probability in exercise 2a)
represent?

If Cost ~ Unif(3,8), then answer the following:

a) P(Cost<5)

b) P(A<Cost<7)

¢) Find x such that P(Cost < x)=0.80.

If X ~ Unif(a,b) show that

a) EX)=%(a+b) b) Var(X)=1(b-a)?

For the uniform distributions defined in case 2 and case 3, section 4.5,
derive equations 4-52 (in case 2), 4-53 (in case 3), and 4-54 (in case 3).

If X ~Trng(a,m,b), then answer the following:
a) Verify fy(x) given by equation 4-6 is a PDF.
b) Show Fy(x) changes concavity at Mode(X).
¢) Prove that E(X)=4(a+m+b).

Verify the probabilities in figure 4-8 by computing the areas under the
appropriate regions of each triangle.

If X ~Trng(15,35,85), then answer the following:

a) Compute P(X <60).

b) Compute P(X £25).

c) Show that P(X <60)— P(X £25)=0.75 (as seen in figure 4-27).
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10.

11.

12.

13.

14.

15.

If X ~Trng(0,1,1) compute
a) E5X+)D b) Var(3X-1)

If Y ~ Beta(at, B), verify equations 4-14 and 4-15 if E(Y) and Var(Y)
are known.

Suppose Y ~ Beta(o, ) and fy(y) = 12y2(1 —y), where 0<y<l1
a) Find « and 8. b) Compute E(Y)+0y.
¢) Determine P(0.3<Y <0.7).

In example 4-4 (section 4.2)
a) Determine whether the expected time (in minutes) to assemble the
microcircuit is greater than or less than the most probable time.

b) Compute the standard deviation (in minutes) of the assembly time.

If the cost of a system is normally distributed with mean 20 ($M) and
standard deviation 4 ($M) determine

a) P(Cost<17)  b) P(5<Cost<22) ¢) P(Cost—u|2})

Suppose the uncertainty in a system’s cost is described by a normal
distribution. Suppose there is a 5 percent chance the system’s cost will
not exceed 100 ($M) and an 85 percent chance its cost will not exceed
200 ($M). From this information determine the mean and standard
deviation of the system’s cost.

If X~ N(u,oz), then show the following is true

a) fx(x) changes concavity at the points x=u+0¢ and x=pu-o.
b) P(U—-20<X<u+20)=09544

¢) P(u-3c<X<u+30)=09973
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16.

17.

18.

19.

20.

21.

22.

Chapter 4

If X has a lognormal distribution, what does P(In X < E(In X)) always
equal?

Compute the mean and variance of InX for the three lognormal
distributions in figure 4-17.

Suppose the uncertainty in a system’s cost is described by a lognormal
PDF with E(Cost)=25 ($M) and Var(Cost) =225 ($ M)?; this is the left-
most PDF in figure 4-17. Determine

a) P(Cost > E(Cost)) b) P(Cost <£50)

In figure 1-5 (chapter 1) the random variable X, represented the cost
of a system’s systems engineering and program management. The
point estimate of X,, denoted by X2PEy, » WaS equal to 1.26 ($M). If
X, can be approximated by a lognormal distribution, with
E(X5)=1.6875 ($M) and Var(X,)=0.255677 ($M)?, determine

a) P(xQPEX2 < Xy <E(X5))

b) P1<X,<25) c¢) P(X;<25)

If X is a lognormal random variable, show the maximum value of its
density function is given by equation 4-40.

If X is a lognormal random variable, show that the r-th moment of X is

1,22
given by E(X")=¢ ™Y 297"

Suppose I represents the uncertainty in the number of delivered source
instructions (DSI) for a new software application. Suppose a team of
software engineers judged 35,000 DSI as a reasonable assessment of the

50th percentile of I and a size of 60,000 DSI as a reasonable assessment
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23.

24.

25.

of the 95th percentile. Furthermore, suppose the distribution function
in figure 4-21 was considered a good characterization of the uncertainty
in the number of DSI. Given this,

a) Find the extreme possible values for /.

b) Compute the mode of /.

¢) Compute E(I) and o7.

Suppose W represents the uncertainty in the weight of a new unmanned
spacecraft. Suppose a team of space systems engineers judged 1500
pounds as a reasonable assessment of the minimum possible weight.
Furthermore, suppose this team also assessed the chance that W could
fall between the minimum possible weight and 2000 pounds to be 80
percent. If the distribution function for W is uniform, determine the

expected weight of the spacecraft.

Suppose I represents the uncertainty in the amount of new code for a
software application. Suppose this uncertainty is characterized by the
triangular PDF in figure 4-26. If the probability is 0.90 that the
amount of code is between 20,000 DSI and 30,000 DSI, with 25,000
DSI as most probable, determine E(I).

For the beta distribution defined in case 1, section 4.5, show that

0= X;yj=X;¥; and b= xj(l-y,-)—x,-(l—yj)
Yi—Ji Yi—Yi

Hint: Solve for a and b from a simultaneous equation that involves the transformation
y=(x-a)/(b-a). Note that P(Y<y;)=i=P(X<x;) and P(¥<y;)=j=P(X<x;), in
the context of case 1 (section 4.5).
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Chapter 5

Functions of Random Variables
and Their Application to Cost Uncertainty Analysis

‘When nothing is sure, everything is possible. Lest men suspect your tale untrue,
Margaret Drabble, 1939 Keep probability in view.
English Novelist John Gay, 1688-1732
The Middle Ground, 1980 English Poet, Dramatist
The Painter who pleased

Nobody and Everybody

This chapter presents methods for studying the behavior of functions of random
variables. Topics include joint probability distributions, linear combinations of
random variables, the central limit theorem, and the development of distribution

functions specific to a general class of software cost-schedule models.

5.1 Introduction
Functions of random variables occur frequently in cost engineering and analysis

problems. For example, the first unit-cost UC of an unmanned spacecraft might

be derived according to [1]
UC =5.48(SC,,)*** (BOLP)®*0

where SC,, is the spacecraft’s dry weight (pounds) and BOLP is the beginning-
of-life power (watts). If it’s early in a new spacecraft’s design the precise values
for SC,,, and BOLP might be unknown. The engineering team might better
assess ranges of possible values for SC,, and BOLP instead of single point
values. These ranges might be described by probability distributions, such as
those presented in chapter 4. If the first unit-cost is a function of the random
variables SC,,, and BOLP, a common question is “What is the probability
distribution of UC given probability distributions for SC,,; and BOLP?” This

157
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chapter presents methods to answer this and related questions. First, some

mathematical preliminaries.

5.1.1 Joint and Conditional Distributions

When a function is defined by two or more random variables its probability
distribution is called a joint probability distribution. Joint probability
distributions generalize the concept of univariate distributions to functions of
several random variables. Analogous to the univariate case, the joint cumulative

distribution function of two random variables X and Y is
Fxy(x,y))=P(X<x,Y<y) —co<xy<eo G-D

Discrete Random Variables

If X and Y are discrete random variables their joint probability mass function is

defined as
Pxy(x,)=P(X=x,Y=Yy) (5-2)

Ilustrated in figure 5-1, py ,(x,y) is the probability a possible pair of values

(x;,y;) will occur.

Pxy(x,y)

LS /
/

Y3
Y2

: a

X

X, X, X3 X,

Figure 5-1. A Joint Probability Mass Function of X and Y

If R is any region in the xy-plane and X and Y are discrete random variables then
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P((X,Y)ER)= Y pyy(xy) (5-3)

(x,y)eR
Equation 5-3 implies the probability of a random point falling in a region R is the
sum of the heights of the vertical lines that correspond to the points contained in
R. The heights of the lines are given by py,(x,y). Joint probabilities are
defined in terms of R and the joint probability mass function. For example, the

probability X is less than Y is represented by the set of all points in the region
where x < y. This can be written as

(XD e{(xy):x<yPD= Y pyy(x) (5-4)

(x.y):x<y
If X and Y have a finite number of possible values, it is sometimes convenient to
arrange the probabilities associated with these values in a contingency table.

Table 5-1 illustrates a contingency table for two random variables that each have

four values possible.

Table 5-1. A Contingency Table for X and Y

X.7) N 2 ¥3 Y4

X1 Pxy (X, yp) Pxy(X1,¥2) Px.y(x1,¥3) Px,y(X1,54)
X2 Pxy(x2, %) Pxy(x2, %) Pxy(x2,¥3) Pxy(X2,¥4)
X3 Pxy(X3:0) Pxy(x3.¥;) Px,y(x3,53) Px,y(%3,¥4)
X4 Pxy(Xe ) Pxy(X4,¥,) Pxy(X4:¥3) Pxy (X4, ¥4)

The sum of all py ,(x;,y,) in a contingency table must equal unity. If X and Y

are discrete random variables their marginal probability mass functions are given
by

Px()=P(X=x)= Y py,(xy) (5-5)
y
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py(MN=PY=y)= py,(x.) (5-6)

Equation 5-5 is the marginal probability mass function of X; equation 5-6 is the
marginal probability mass function of Y.

Example 5-1 Suppose the effort (in staff-months) to modernize a management
information system is given by Effsy,e, = XY, where X is the number of

systems engineering staff needed for ¥ months. Suppose a contingency table for
X and Y is given below.

Table 5-2. Contingency Table for Example 5-1
¥ =24 months Y, = 36 months Total

x = 15 staff 0.15 025 040
x, =25 staff 0.20 040 0.60
Total 035 0.65 1.00
Compute
a) P(X=15,Y=36) b) P(X=15)
¢) P(Y =36) d) P(Effsyseng <600)
Solution

a) From equation 5-2
P(X =15Y =36) = py ,(15,36) = 0.25
b) P(X =15) is a marginal probability; from equation 5-5

2
P(X=15)= py,(15,%,)=0.15+0.25=0.40

k=1
¢) P(Y =36) is a marginal probability; from equation 5-6

2
P(Y =36)= Y pyy(x,36)=0.25+0.40 = 0.65

t=1
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d) From table 5-2 the region R where the event {Effs,g,, <600} occurs

contains only two points; specifically,

R={(x,y):xy <600} ={(xy, y),(x1,y2)}
where (x;,y;)=(15,24) and (x;,y,) = (15,36). Referring to equation 5-3
P(Effsysgng < 600) =P(XY < 600)

=P((X,V)e{(x,y):xy<600}) = Y py,(x,)

(x,y): xy<600
= Pxy(Xp Y1) + Py y (X, ¥,)=0.15+025=0.40 ¢

Continuous Random Variables
If X and Y are continuous random variables, the joint probability density function

of X and Y, denoted by f(x,y), satisfies for any set R in the two-dimensional
plane

P,V eR) =[] fx,y)dxdy 5-T)
(x.y)ER
where f(x,y)=0 and

o0 oo

[ Jreeyasay=1

The probability associated with a univariate continuous random variable reflects
an area under the variable’s density function. The probability represented by the
double integral in equation 5-7, is the volume over the region R between the xy-
plane and the surface determined by f(x,y). In particular,

bd
P(asxsbandcsst)=”f(x,y)dydx (5-8)
ac
With n continuous random variables, X;,X,, X3,...,X,,, we have
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b b,
P(allesbl---a,,SX,,Sb,,):j---If(x],-nx,,)dxnmdxl (5-9)
ay a,

The marginal probability density functions of X and Y are given by

f(0) = j’ F(x,y)dy for —oo < x <o (5-10)

£ = [ fOoy)dx for —sa<y<eo 5-11)

Example 5-2 Suppose the effort (in staff-months) to develop and implement a
system’s test plans and procedures is given by Effsyr.ss = XY, where X is the

number of test engineering staff needed over ¥ months. Suppose X and Y are
continuous random variables with joint PDF

— 5Zx<15, 12<5y<36
fx,y)=1240

0 otherwise

This joint PDF has marginal probability density functions in figure 5-2.
0.1

0.04167
Fx(®) r»
x y
5 Staff 15 12 Months 36
Figure 5-2. Marginal Distributions for X and Y
Determine
a) P(Effsystest <120) b) P(Effsystes: < 360)

¢) P(Effsystess <120) given the test engineering staff will not exceed 10 persons.

d) The probability Effs . >120 staff-months and the test engineering staff

and duration will not exceed 10 persons and 24 months, respectively.
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Solution a) To determine the probability Effsysres, =120, we first sketch the

event space. This is shown in figure 5-3.

y
36
> 120
Months 24 e
xy <120
12 X
5 10 15
Staff

Figure 5-3. Event Space for Effgysres <120

From equation 5-8, we have

P(Effsysress <1200 = [[ fCx, y)dxdy
xy<120

1 -
[ 245 dyax =0.09657

b) To determine the probability Effsyres <360, we first sketch the event space.

This is shown in figure 5-4.

y
36
xy > 360
Months 24 xy <360
i2 X
5 10 15

Staff
Figure 5-4. Event Space for Effsyres <360
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From theorem 2-1
P(EffSysTest <360)=1- P(EffSysTesr >360)
It follows that
P(Effsysres: <360)=1=[[ f(x, )dxdy
xy>360
36 15 15 36
=1- [ [ty =1- [ [ shdvdr=02858
24 360 10 360

¢) The probability Effgysr,s <120 staff-months given the test engineering staff-
level will not exceed 10 persons is a conditional probability; specifically, the

conditional probability is P(Effsres < 120| X £10). From chapter 2, equation

2-2, we can write

P({XY <120} n{X <10})
P(E <120| X <10)=
( ffSysTest l ) P({XSIO})
In this case,
10'2
.[ .[ 340 Ddx g1
PxY <120} 0 {X<10}) |5 iy =2 j L dydx = 2(0.09657) = 0.193
Px<ioyy — "0 T 7oL ) e @EEAREROEE
L (15-5)

The conditional probability, in this example, is twice its unconditional probability
computed in part a). Why is this? The unconditional probability is associated
with the joint distribution function
f(x,y)=(1/240), 55x<15, 12£y<36
If it is given that X <10, the joint distribution function essentially becomes
Jx,y)=(1/120), 5£x<10, 125y<36
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With f(x,y)=(1/120), and 5<x<10, 12<y<36, more probability exists in
the region where XY <120 than in the same region with f(x,y)=(1/240), and
5<x%<15, 12£y<36.

d) To determine the probability Effgysres >120 staff-months and the test

engineering staff and duration will not exceed 10 persons and 24 months, define
three events A, B, and C as

A={Effsystess > 120} = {X¥ >120}
B={X <10}
C={r<24}

Thus, the probability we want to determine is given by

P(ANBNC) = P({XY >120}n{X <10} N {Y < 24})

=p({%<x}n{xs1o}n{ysz4})

= P({%Q< XﬁlO}m{Yﬁ%})

From equation 5-8

2410

120 ) _
P({T< X$10}m{Y$24}) = [ [ 3k dxdy=0.1534
12120

The probability is just over 0.15 that the effort for system test will exceed 120
staff-months, and the test engineering staff-level and duration will not exceed 10
persons and 24 months. This probability is shown by the region R in figure 5-5.
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y
36
Months 24
R
xy <120
12 X
5 10 15
Staff

Figure 5-5. Region R Associated With Part C of Example 5-2

Example 5-3 Suppose the effort (staff-months) to develop a new software

application is given by Effgy = —);-, where X is the size of a software application

(number of DSI) and Y is the development productivity rate (number of DSI per
staff-month). Suppose X and Y are continuous random variables with joint PDF
1

f(x,y)=15010%

|0 otherwise

50,000 < x 100,000, 100<y<200

This joint PDF has marginal probability density functions in figure 5-6.

fx(x) K
0.00002 0.01
x y
50000 100000 100 200
Number of Productivity Rate
Delivered Source Instructions (DSI per Staff-Month)

Figure 5-6. Marginal Distributions for X and Y
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Determine the probability Effgy will not exceed 300 staff-months.

Solution To determine the probability Effsy will not exceed 300 staff-months,

we first sketch the event space. This is shown in figure 5-7.
y

3 200
g5 7 X<300
M= y
ey aé' 166.667
s 8
2 &
38

100 x
50000 60000 100000
Number of

Delivered Source Instructions
Figure 5-7. Event Space for Effsy <300

From equation 5-8, we have

P(Effsw <300) = [[ £0x, )dxdy
-;—‘-S300

200 300y

= —1_ ixd
.[ .[ 5105) Y
166.667 50,000

60,000 200

- 1 -
= | i e = 00333

50,000 =%
So far, we have introduced the concept of joint probability distributions for two
random variables. Often, it is necessary to know the distribution of one random
variable when the other takes a specific value. Such a distribution is known as a
conditional probability distribution, which is discussed next in terms of discrete

and continuous random variables.
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Conditional Probability Mass Function
If two discrete random variables X and Y have joint probability mass function

Px.y(x,¥), the conditional probability mass function of X given Y =y is

pX Y(xv )’)
Pyjy=y(0) = ——"= (5-12)
Hr=y Py ()
where p,(y)>0. Similarly, the conditional probability mass function of Y given
X=xis
Pxy(%,Y)
Pyx= (W) =—— (5-13)
Y‘ X px (x)

where py(x)>0. To illustrate this concept return to example 5-1; suppose we
want the probability the number of systems engineering staff X will be 15

persons, given they are needed for 36 months. In this case we want Pxjy=36 15).

From equation 5-12 and table 5-2 this is

Pxy(1536) 025 5
py(36)  0.65 13

Prjr-6(15)= ~0.3846

This probability is conditioned on a fixed (or observed value) for Y. It has a

value slightly less than the unconditioned probability P(X =15), which was
shown in example 5-1 to be 0.40.

Conditional Probability Density Function
If two continuous random variables X and Y have joint density function f(x,y),
the conditional probability density function of X, given Y =y, is

f(xy)
5

Similarly, the conditional probability density function of Y, given X = x, is

Far G = (>0 (5-14)
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fY{x( I )"'ff(x( y)) fx(x)>0 (5-15)

Example 5-4 In example 5-2, X and Y had joint probability density function

L s<x<is, 12<y<36
f(xy)=1240

0 otherwise
Find the conditional probability density functions of X and Y.
Solution
From equation 5-14, the conditional probability density function of X is
fey) a1
M ‘211 10
From equation 5-15, the conditional probability density function of Y is

Sy A _ 1
Fox b= K {24

Conditional probability density functions provide a way to determine the
conditional cumulative distribution function. Specifically,

fxly(xly) =

55x<15

12<y<36e

Far(x=ay)= P(X<alt =)= [ f, (aly) dx (5-16)
b
Fyu(y=blx)= PCY <X = x)= [ £, ) dy (5-17)

5.1.2 Independent Random Variables
Two random variables X and Y are independent if for any two events {X € A} and

{Y € B}, where A and B are sets of real numbers, we have
P({X e A}n{Y e B})= P({X e A})P({Y € B}) (5-18)
Equation 5-18 follows if and only if, for any x and y
PUX SN <yD=PX<x,Y<y)=P(X<x)P(Y<y) (5-19)
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From equation 5-19, it follows that
Fyy(x,y)= P(X <x Y=< y) = Fy(X)F(y) —o<x,y<oo (5-20)

If X and Y are independent discrete random variables, equation 5-18 becomes

Px,y(x’y)z Px(X)py(y) (5-21)
It follows that

Pxyoy ()= Py (x) (5-22)

Py x=x(=py() (5-23)

Moreover, if equation 5-21 holds for two discrete random variables, then the
random variables are independent. Similarly, X and Y are independent
continuous random variables if and only if equation 5-24 holds for all feasible
values of X and Y.

Fxy) = fx(x)fr () (5-24)
It follows that

Far ) = fx (%) (5-25)

Fux OO = £, (5-26)

From this, what do you conclude about the random variables X and Y in examples
5-2 and 5-3?7 A discussion of this is left as an exercise for the reader. Dependent
random variables are those that are not independent .

5.1.3 Expectation and Correlation of Random Variables
In chapter 3, the expectation of a random variable was discussed. The

expectation of two random variables is stated in the following proposition.

Proposition 5-1 If X and Y are random variables and g(x,y) is a real-valued

function defined for all x and y that are possible values of X and Y, then
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2 Z g(x,y): px y(x,y) if X and Y are discrete
x Yy

E(g(X,Y) =4 » (5-27)
I g(x,y) f(x,y)dxdy if X and Y are continuous

In the above, the double summation and double integral must be absolutely

convergent.
Example 5-5 Determine the expectation of Effsyr, in example 5-2.

Solution We need to compute E(Effsy7es;). From example 5-2, the joint

distribution of X and Y is given as

1
— 5<x<15, 12<5y<36
fx,y)=1240 Y

0 otherwise

In example 5-2 Effsy7es is a function of two random variables X and Y, that is,
Effsystess = XY = g(X,Y). Therefore, in this case, g(x,y)=xy. Since X and Y
are continuous random variables, from equation 5-27

1536
E(Effsystest) = EQXY) = E@QUX 1) = | [ xy+5kydydx =240 staff-monthse
512
It is often of interest to determine where the expected value of a random variable
falls along the variable’s cumulative distribution function. Mentioned in chapters
3 and 4, the expected value of a random variable is not, in general, equal to the
median of the random variable. This is again illustrated with example 5-5. It is

left as an exercise for the reader to show
P (EﬁSysTest < E(Eff, SysTest ) = P(Eff, SysTest < 240)=0.56

It is often necessary to know the degree to which two random variables associate

or vary with each other. In cost analysis, questions such as “How much is the
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variation in a new satellite’s predicted weight attributable to the variation in its
cost?” are common. Covariance is a measure of how two random variables vary
together. Let X and Y be random variables with expected values (means) uy and

Hy. respectively. The covariance of X and Y, denoted by Cov(X,Y), is defined
as

Cov(X,Y)= o yxy = E{(X — ux )Y — uy)} (5-28)

Covariance can be positive, negative, or zero. If X and Y take values
simultaneously larger than their respective means, the covariance will be
positive. If X and Y take values simultaneously smaller than their respective
means, the covariance will also be positive. If one random variable takes a value
larger than its mean and the other takes a value smaller than its mean, the
covariance will be negative. So, when two random variables simultaneously take
values on the same sides as their respective means, the covariance will be
positive. When two random variables simultaneously take values on opposite
sides of their means, the covariance will be negative. The following theorems
present useful properties of covariance. Theorem 5-1 presents a way to compute
covariance that is easier than using the definition given by equation 5-28.

Theorem 5-1 If X and Y are random variables with means iy and uy then
Cov(X,Y)=E(XY)— iy

Theorem 5-2 If X and Y are random variables, then

a) Cov(X,Y)=Cow(Y,X)

b) Cov(aX +b,cY +d)=acCov(X,Y) for any real numbers a, b, ¢, and d

Theorem 5-3 If X and Y are independent random variables then Cov(X,Y)=0.

The proofs of these theorems are left as exercises for the reader.

Covariance as a measure of the degree two random variables covary can be
hard to interpret. Suppose X; and Y; are random variables such that X, =2X,
and Y, =2Y. From theorem 5-2 (part b), Cov(X,,Y,)=4Cov(X},Y;). Although



Functions and Applications of Random Variables 173

X, and Y} and X, and Y, behave in precisely the same way with respect to each
other, the random variables X, and ¥, have a covariance four times greater than
the covariance of X; and ¥ [2]. A more convenient measure is one where the
relationship between pairs of random variables could be interpreted along a
common scale. The following discussion presents such a measure.

Suppose we have two standard random variables Zy and Zy, where

ZX ?"IY:“E“X" and Zy-_- Y"#y
Ox Oy

Using theorem 5-2, the covariance of Zy and Zy reduces to
Cov(Zy,Zy)= CO‘{_)..(_:_EX_,Z_:“_Y)
Ox Oy
——I———-l—-Cov(X— Y - uy)
Gy Oy Hx, Y
11

= ———Cov(X,Y)
Ox Oy

=Pxy
The term py y is known as the Pearson correlation coefficient [2]. It is the

traditional statistic to measure the degree to which two random variables
correlate (or covary). Formally, the Pearson correlation coefficient between two

random variables X and Y is

Corr(X,Y)= py y = S2ED (5-29)
OxOy

provided oy >0 and oy >0. From theorem 5-1, equation 5-29 simplifies to
Corr(X,Y)=pyy= EXY)-pxpy (5-30)
’ OxOy
The correlation coefficient is dimensionless. Pearson’s correlation coefficient

measures the strength of the linear relationship between two random variables.
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It is bounded by the interval —1< py y <1. If Y=aX +b, where a and b are real
numbers and a>0, then pyy =1; if a<0 then pyy=-1. When pyy =0,

we say X and Y are uncorrelated. There is a complete absence of linearity
between them. Figure 5-8 illustrates the types of correlation that can exist
between random variables.

® e ®
® ® .. ..l b
'Y ®
X X
Negative Correlation  Positive Correlation No Correlation

Figure 5-8. Correlation Between Random Variables X and Y

Example 5-6 If Y= X and X ~ Unif(~1,1), show that py y =0.
Solution From equation 5-30

E(XX?) = pxttya

Corr(X,Y) = Corr(X,X%) = =
"(X,Y)=Corr(X,X*)=py 2 oxo

XZ

Since X ~ Unif(~1,1), we have fx(x) =~% on —1<x <1 (chapter 4); therefore,

1 1
EQXX*) = EC)= [ fy(ndx = [ Lax=0
-1 -1

1 1
px = B0 = [ x fy(x)ydx = jx%dx=o
-1 -1

1
o =EXD) = [5? Lax=1
-1
Therefore
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2 0-0- %
Corr(X,X“) = Py x2 = =0
’ Ox0O x2
In this example, we conclude there is a complete absence of linearity between X
and Y.

Sx(x)

<— X ~ Unif(-1,1)

-1 0 1
Figure 5-9. An Illustration of Y= X2 and X ~ Unif(~1,1)

Theorem 5-4 1f X and Y are independent random variables, then py y =0.

Proof This follows from theorem 5-3 and equation 5-29. Since X and Y are
independent random variables, from theorem 5-3 we have Cov(X,Y)=0. From

equation 5-29, if Cov(X,Y)=0 it immediately follows that py y =0.¢

The converse of theorem 5-4 is not true. If py y =0 then X and Y are said to
be uncorrelated. However, it does not follow that X and Y are independent.
Again, if X is uniformly distributed in —1<x<1 and Y=X 2 then Pxy=0;

however, Y is dependent on X in this case. Theorem 5-4 gives rise to the
following:

Theorem 5-5 If X and Y are independent random variables, then

E(XY)=E(X)E(Y) (5-31)
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Proof Since X and Y are independent random variables, from theorem 5-3 we
have Cow(X,Y)=0. From theorem 5-1, this is equivalent to E(XY)— pyuy =0;
thus, E(XY)=E(X)E(Y).

Theorem 5-6 ¥ a;and a, are either both positive or both negative, and a;, a3,

by, and b, are real numbers, then Corr(aiX + by, arY + by) = Corr(X,Y).
Proof Let Z=a;X +b; and W = a,Y +b,. We need to show

Corrz,w)y=EEWNIZHZBW _ copy(x, v) (5-32)
Oz0w
From theorem 3-9 (chapter 3)

E(ZW) = E((q1 X + b))y Y + by))

= E(ajay XY + a1by X + apbY + byby)

= aqyay E(XY) + ayby E(X) + ay by E(Y) + biby
Also from theorem 3-9

Bz = B(Z)=aE(X)+by and py = E(W) =gy E(Y) +by

Further, from theorem 3-11

0'% = a%o% and O'%V = G%O'}Z/
Combining the above

E(ZW) - puzuw = ajap E(XY) — ayay E(X)E(Y) = aqyay (E(XY) — E(X)E(Y))
and

oz =|ajox, ow =|ay|oy
Substituting into equation 5-32 yields

aap (E(XY) - E(X)E(Y)) _
a1 x Oy

Corr(Z,W)=

Corr(X,Y)e
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This theorem states that the correlation between two random variables is
unaffected by a linear change in either X or Y.

Example 5-7 Suppose X denotes the number of engineering staff required to test
a new rocket propulsion system. Suppose X is uniformly distributed in the
interval 5<x <15. If the number of months Y required to design, conduct, and

analyze the test is given by Y =2X+3, compute the expected test effort,
measured in staff-months.

Solution We are given X ~ Unif(5,15) and Y =2X +3. The test effort, in staff-
months, is the product XY. To determine the expected test effort, we need to
compute E(XY). From equation 5-30, notice E(XY) can be written as
E(XY)=px,yOxOy + lxHy
Since Y is a linear function of X, we have py y =1; thus,
E(XY)=0x0y + Uy ly
Since X ~ Unif(5,15), the mean and variance of X (theorem 4-2) is
px = EX)=1(5+15)=10

100 10
0% =Var(X)=5(15-5" == and oy ==

Since Y =2X +3, the mean and variance of Y (theorems 3-9 and 3-11) is

Uy =EY)=EQX+3)=2E(X)+3=2-10+3=23

0% = Var(Y) = VarX +3) = 22 Var(X) = 40} = 4. 190 _ 190 10

—— and Oy =——=
12 3 Y=
Substituting these values into E(XY) we have
10 10

E(XY)= OxOy + Uxly = -»\/TZ: . ﬁ +10-23 =246.7 staff-months
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Thus, the expected effort to test the new rocket’s propulsion system is nearly 247
staff-months.

Example 5-8 Suppose the effort Effy (in staff-months) to develop software is

given by Effgy =2.81 12 where I is thousands of delivered source instructions

(DSI) to be developed. If I~Unif(20,60) determine pgg, . ;-

Solution

From equation 5-30

E(EffswD) — HEg,,, k1
O Bffow O1

Corr(EjfsW,I) = pgﬁsw,l = (5-33)

Computation of E(Effgyl)

E(Effsw]) = EQ.81'21) = EQ2.81*%)
From proposition 3-1,

60
EQ.81%%) = [2.8x72 f(x)dx
20
Since 1~ Unif (20,60), the probability density function of I is

1
=— 20<x<60
=5 x

Therefore,

60
E(Effgw]) = EQ.81*%)= j2.8x2'2 Zladx =10397.385
20
Computation of /iy

60
2 21
KEg,, = EEffsw) = EQ.8'%) = j2.8x‘ 2 25 & =236.6106
20

Computation of ogg,,

O rgryy = Var(Elfsw) = | E(Effsw)®) ~ (g, )* =80.8256
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It is left for the reader to show E((Eﬂsw)z) =62517.36251.

Computation of u; and o,

Since I ~ Unif (20,60) it follows immediately from theorem 4-2 (chapter 4)
1 = E()=1(20+60)=40

01 =Var(l) = |/15(60-20)? =11.547

Computation of Pggc,. f

Substituting the above computations into equation 5-33 yields

E(EffswI) — Bgg, 1 932.961

Corr(Effsw. 1) = =
orr(Effsw.1) = PEfrg, 1 O ko O1 933.293

= 0.9996

Although the relationship between Effsyy and [ is nonlinear, a Pearson

correlation coefficient of this magnitude suggests, in this case, the relationship is
not distinguishably different from linear.

Rank Correlation

In 1904, statistician C. Spearman developed a correlation coefficient that uses the
ranks of values observed for n-pairs of random variables. The coefficient is

known as Spearman’s rank correlation coefficient. Let

U1 ), Uy, V5), (U3, V3),...,(U,, V)
be n-pairs of random samples (a set of independent random variables from the
same probability density function) from a continuous bivariate distribution. To
determine the rank correlation between the pairs of random variables

U, W), (U2, 12),(U3, V3),.., (U, V1)
the values of Uy,U,,Us,....U, and W, V,,V5,...,V, are ranked among
themselves. For instance, the values of Uj,U,,Us,...,U, would be ranked in
increasing order, with the smallest value receiving a rank of one. Likewise, the

values of V;,¥,,V3,...,V,, would also be ranked in increasing order, with the
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smallest value receiving a rank of one. The difference between these rankings is
the basis behind Spearman’s coefficient. Specifically, Spearman’s rank

correlation coefficient, denoted by r;, is given by*

n

2

r, =1-n36_ nz;,d,- (5-34)
1=

where d; is the difference in the ranks between U; and V.

Where Pearson’s correlation coefficient determines the degree of linearity
between two random variables, Spearman’s rank correlation coefficient measures
their monotonicity. Like Pearson’s correlation coefficient, Spearman’s rank
correlation coefficient is bounded by the interval —1<r, <1. If r; is close to 1,
then larger values of U tend to be paired (or associated) with larger values of V.
If r; is close to -1, then larger values of U tend to be paired (or associated) with
smaller values of V. An r; near zero is expected when the ranks reflect a random
arrangement.

In example 5-8, recall Effy and I have a Pearson correlation of 0.9996 in the
interval 20<1<60. Mentioned in that example, this suggests the two random
variables have a strong linear relationship in the interval indicated. Furthermore,
since Effqw (given in example 5-8) is a strictly monotonically increasing
function of I, the rank correlation between Effgy and I would be unity (r, =1).
However, Pearson’s correlation coefficient and Spearman’s rank correlation
coefficient can be very different. This is seen in figure 5-10. In figure 5-10 we
have Y =X'"" and X ~ Unif(0,1). Pearson’s correlation coefficient between X
and Y is 0.24 (showing this is left as an exercise for the reader), while their rank

correlation is unity. Looking at figure 5-10, why (in this case) are these
correlation coefficients so different?

* Keeping, E. S. 1962. Introduction to Statistical Inference . Princeton, New Jersey: D. Van
Nostrand Company, Inc.
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Y=X'"9 X ~ Unif(0,1)

Pearson Correlation = 0.24
Rank Correlation = 1

0.5

X

0.96 0.97 0.98 099 1

Figure 5-10. Tilustrative Correlation Coefficients

Correlation is not causation. A strong positive correlation between two random
variables does not necessarily imply large values for one causes large values for
the other. Correlation close to unity only means two random variables are
strongly associated and the hypothesis of a linear association (for Pearson’s
correlation coefficient) or a monotonic association (for Spearman’s rank
correlation coefficient) cannot be rejected.

5.2 Linear Combinations of Random Variables
It is often necessary to work with sums of random variables. Sums of random
variables arise frequently in cost analysis. For instance, in figure 1-3 (chapter 1)
a system’s total cost can be expressed as

Cost=X|+Xp+X3+...+ X, (5-35)
where X;,X,,Xs,---,X,, are random variables that represent the cost of the
system’s work breakdown structure cost elements. From this, we can often think
of Cost as a linear combination of the random variables Xj, X5, X3,---,X,,. In
general, given a collection of n-random variables X;, X,,X5,---, X,, and constants
ay,a3,as,...,a, the random variable

Y=g X +a, Xy +a3X3+...+a,X, (5-36)

is called a linear combination of X|,X5,X3,--,X,,.
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Theorem 5-7 If Y = aIXI + (12X2 + a3X3 +...+ aan then
EQY)= iE(X))+ ay E(Xy) + 3E(X3) +...+ a,E(X,) (537

Theorem 5-7 is an extension of theorem 3-9. It states the expected value of a
sum of random variables is the sum of the expected values of the individual
random variables. Theorem 5-7 is valid whether or not the random variables

X1, X5, X5,-++, X, are independent.

Theorem 5-8 If Y = a1 Xy +ap X5 +a3X3 +...+a, X, then

n n—-1 n
Var(Y)=Y afVar(X)+2), ¥ aa;px, x,0%,0x, (5-38)
i=1 i=1 j=i+1

Theorem 5-8 is an extension of theorem 3-11. It states the variance of a sum of
random variables is the sum of the variances of the individual random variables,
plus the sum of the covariances between them. If the random variables

X1, X5, X3,--+, X, are independent then

Var(Y) = afVar(X,) + a3Var(Xy) + a3 Var(X3) +...+ a*Var(X,) (5-39)

Example 5-9 Suppose the total cost of a system is given by Cost = X| + X5 + X3.
Let X; denote the cost of the system’s prime mission product —PMP.* Let X,
denote the cost of the system’s systems engineering, program management, and

system test. Suppose X; and X, are dependent random variables and
X, = —%Xl. Let X denote the cost of the system’s data, spare parts, and support

equipment. Suppose X; and Xj are independent random variables with

distribution functions given in figure 5-11. Compute E(Cost) and Var(Cost).

* I systems cost analysis, PMP cost typically refers to the total cost of the system’s hardware,
software, and hardware-software integration. Chapter 6 provides a detailed discussion.
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0.0399
X, ~ N(30,100) X3 ~ Unif(5,8)

0.3333

ZACY fx3(x3)

(M) ($M)
20 30 40 X 5 6.5 8 x;

Figure 5-11. Density Functions for Example 5-9

Solution Since X; ~ N(30,100), we have from theorem 4-6
E(X))=30, Var(X))=100, ox =.Var(X;) =10
From theorem 3-9 and theorem 3-11 we have
E(Xy)=E& X)) =1Ex)=15
Var(Xy) = Var(3 X)) = 4 Var(X)) =25, oy, =[Var(X) =5
Since X3 ~ Unif(5,8), we have from theorem 4-2
E(X3)=%(5+8)=6.5, Var(X3) = {5 8-5)* =0.75, oy, =[Var(X3) =-0.75

Computation of E(Cost)
From theorem 5-7 (for i =1,2,3)
E(Cost)= E(X})+ E(X)+ E(X3)=30+15+6.5=51.5 (M)
Computation of Var(Cost)
From theorem 5-8 (for i =1,2,3)

Var(Cost) = Var(Xy) + Var(Xp) + Var(X3)

+2|0x,,%,9%,9%, T PX,,X;0X,0X, + PX,,x,0%,0x
1 2 143 1 3 2,43 2 3
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Since X; and X, are linearly related, in this example, we know Px,.x, =1

Since X) and X5 were given to be independent random variables, from theorem

5-4 we know px, x, =0. From this, and theorem 5-6, it follows that
PXp.Xs = PLx, x, = P, X, =0
Substituting these values into Var(Cost) we have
Var(Cost) =100+25+0.75
+2[1010)(5) + 010)(0.75) + 0(5)(0.75)] = 225.75 ($M)?

The units of variance ($M)? have little meaning; it is better to think of the range
of dollars in terms of the standard deviation; that is,

Ocost =~ Var(Cost) =15.02($M)

5.2.1 Cost Considerations on Correlation

In example 5-9, X; and X, were dependent random variables. Discussed above,
the nature of their dependency was such that py y, =1. Suppose X; and X;
were independent random variables with X; ~ N(30,100) and X, ~ N(15,25).
How would this impact E(Cost) and Var(Cost), as computed in example 5-97?
The value of E(Cost) would remain the same. Why? However, if X; and X,
are independent random variables then py x, =0; the value of Var(Cost)

reduces in magnitude; specifically,

Var(Cost) = Var(X;) + Var(X5) + Var(X3) =125.75 ($ M)2
In example 5-9, the dependency between X; and X, results in a value for
Var(Cost) nearly 80 percent greater than its value would be if X; and X, were
independent. Seen in example 5-9, dependencies between random variables can
significantly affect the variance of their sum. Since a system’s total cost is

essentially a sum of n-work breakdown structure cost element costs, that is,
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Cost=X|+Xp +X3+...+ X,

it is critically important for cost analysts to capture dependencies among
X1. X5, X3,--+, X,,, particularly those with nonnegative correlations. Not doing so
can significantly misstate the true variability (uncertainty) in a system’s total
cost. The following theorem illustrates how nonnegative correlation can affect
the variance of a sum of n-random variables. Shown is how the variance
increases dramatically with the number of random variables being summed and
the extent that p approaches unity.

Theorem 5-9 [3] Let Cost= X+ Xy + X5 +...+ X, where X|,X,,X3,---,X,, are
random variables that represent a system’s work breakdown structure (WBS) cost

element costs. If each pair of X|, X5, Xs,...,X,, have common variance o2 and

common nonnegative correlation p, then Var(Cost) = 0'2[n +n(n-1p].

Proof From theorem 5-8, we have

n n-1 n
Var(Cost)=2Var(X,-)+22 ZpoX,GX,UXj
i=1 i=1 j=i+l
Each pair of X,X5,X5,...,X, is given to have common variance o and

common nonnegative correlation p; therefore
n n-l n
Var(Cost) = 2 %+ 22 2 p02
i=1 i=1j=i+1

=no? +n(n-1)po? = o [n+n(n-1)ple

Some interesting results follow from this theorem,; in particular,
Var(Cost) = no? when p=0
Var(Cost) = 0’2[n +n(n— 1)p] when O0< p<1
Var(Cost) = n?0? when p=1

The following figure illustrates this theorem with %=1
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1225
927.5
Var(Cost)

630

3325

35

10 15 20 25 30 35
Number of WBS Cost Elements n

Figure 5-12. Theorem 5-9 with o? =1

5.3 The Central Limit Theorem and a Cost Perspective

This section describes one of the most important theorems in probability
theory, the central limit theorem. The central limit theorem states that, under
certain conditions, the distribution function of a sum of independent random
variables approaches the normal distribution. From a cost analysis perspective
this theorem has great practical importance.  Mentioned previously, a
system’s total cost is a summation of work breakdown structure cost element
costs X|,X5,X3,---,X,. Because of this, the distribution function of a
system’s total cost will often be approximately normal. We will see many

examples of this in the discussions and chapters that follow.

Theorem 5-10 The Central Limit Theorem (CLT)

Suppose X;,X»,X3,---, X, is a sequence of n independent random variables

with E(X;)=u; and Var(X,-)=¢:J',-2 (each finite). If

Y=X1+X2 +X3 +"-+Xn
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then, under certain conditions,” as n - co the random variable Z=(Y -u)/ o
approaches the standard normal, where

n

ﬂ-‘-zﬂi and O
i=1

Theorem 5-10 places no restriction on the types of distribution functions that
characterize the random variables Xj, Xj,Xs,---,X,,. However, for a given n,
the “rate” that the distribution function of Y approaches ‘the normal
distribution is affected by the shapes of the distribution functions for
Xl,XZ,X3,-‘~,Xn. If these distributions are approximately “bell-shaped,”
then the distribution function of Y may approach the normal for small n. If
they are asymmetric, then n may need to be large for Y to approach the
normal distribution.

The central limit theorem is often cited to explain why the distribution
function of a system’s total cost is often approximately normal. This is

illustrated in the following case discussion.

Case Discussion 5-1 The electronic components of a 20 watt solid state
amplifier (SSA) for a satellite communication workstation are listed in table
5-3. Let the total component-level cost of the SSA be given by

COStSSA =—‘X1 +X2 +X3 +...+ X]z (5-40)

Suppose Xj,X5,X3,..., X, are independent random variables representing the

costs of the SSA’s components. Suppose the distribution function of each

* Informally, the individual random variables Xy, Xy, X3,+-, X, that constitute Y should make
only a small contribution to Y. In addition, none of the random variables X;,X;,X5,-+-, X,
should dominate in standard deviation. For a further discussion of these conditions, as well as
other forms of the central limit theorem, refer to Feller, W. 1968. An Introduction to

Probability Theory and Its Applications, vol. 2, 3rd ed (revised). New York: John Wiley &
Sons, Inc.
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component is triangular, with parameters given in table 5-3. Furthermore,

suppose the mode of X; represents its point estimate, that is,
Xipg, =Mode(X;) i=12,..,12

From this, determine the mean and variance of Costggq, as well as an

approximation to its underlying distribution function.

Table 5-3. 20 Watt SSA Component Cost

Components Cost ($K) Mean  Variance
Min Mode Max  (BK)  (8K)?
X, - Transmitter Synthesizer  12.8 16.9 22.4 17.37 3.87
X, Receiver Synthesizer 12.8 169 224 17.37 3.87
X; Reference Generator 15.5 18.3 21.1 18.30 1.31
X; Receiver Loopback 74 9.2 11.1 9.23 0.57
X5 BITE Control CCA 6.4 9.1 13.6 9.70 2.21
X¢ Power Supply 17.8 25.1 324 25.10 8.88
X; IMPATT Modules 36.4 66.5 1005  67.80 171.41
X; Combiner Plate 15.2 18.7 227 18.87 2.35
Xo SHF Upconverter 12.1 16.6 24.6 17.77 6.68
X;o Chassis 21.1 29.6 4.8 31.83 24.03
X, Backplane 33 4.8 6.1 4.73 0.33
Xj2 Wave Guide Components 4.8 6.7 8.7 6.73 0.63
Component Cost 165.6 238.4 3304 2448  226.13

Note: The sum of the modes is not the mode of the distribution function of Costgg, .

Since distribution function of each X; is given to be triangular, theorem 4-3

can be applied to determine the mean and variance of each component’s cost.

For instance,
E(X))=3(ay+m +b)=1(12.8+16.9+22.4)=17.37 ($K)
Var(Xy) = 5 [omy = a)omy = by) + (b - a)?]|=3.87 ($K)

where qa; is the minimum value of X;, my is the mode of Xj, and by is the

maximum value of X;. Similar notation assumptions and calculations apply
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to the other components in table 5-3. From theorem 5-7 and theorem 5-8 the

mean and variance of the total component-level cost of the SSA is

12 12
E(Costssa) = Heostgs, = H 3, Xi) =Y E(X;)=2448 $K)  (5-41)
i=1

i=1
12 12
Var(Costssy) = Opsts, =Var 3 X; | =, Var(X;)=226.13 ($K)* (5-42)
i=1 i=1
Since Xy,X,,X3,...,Xj, are independent random variables (with finite means
and variances), from the central limit theorem (theorem 5-10)

_ Costgsa — E(Costgga) _ Costgsa —-244.8
JVar(Costgsp) ~226.13

is approximately N(0,1) (5-43)

This is equivalent to saying

Costggp ~ N(ﬂCoslSSA’G(ZZ‘ostSSA) (5-44)
We will next assess the applicability of this theorem that suggests the
distribution function for Costggs is approximately normal with parameters
given by (5-44). Monte Carlo simulation is one way to make this assessment.
In the context of case discussion 5-1, the Monte Carlo approach involves
taking a random sample from each X;,X,,Xj3,...,X;, and summing these
sampled values according to equation 5-40. This produces one random
sample for Costggs. When this sampling process is repeated many thousands
of times, an empirical frequency distribution of Costgs, is produced. From
the frequency distribution an empirical cumulative distribution function of
Costggq can be established. In figure 5-13, the curve implied by the
“points” is the empirical cumulative distribution function of Costgg,. The
curve given by the solid line is an assumed normal distribution, with

parameters given by (5-44). Observe how closely the “points™ fall along the
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solid line. On the basis of this evidence, it appears the central limit theorem is
applicable in this case.

The analysis summarized in figure 5-13 provides empirical evidence only
that the normal distribution is a reasonable form for the distribution function
of Costggs. It might next be asked “Could the underlying distribution
Sunction for Costggy be normal?” To answer this, a procedure known as the
Kolmogorov-Smirnov (K-S) test can be used. The K-S test [4] applies only to
continuous distribution functions. It is a formal statistical procedure for
testing whether a sample of observations (such as samples generated by a
Monte Carlo simulation) could come from a hypothesized theoretical
distribution. The following illustrates the K-S test in the context of case

discussion 5-1.

FCOSISSA (x)
0977}

0.841

0.5

0.159

0.0228

21472 22976 2848 23984 27488
Figure 5-13. Cumulative Distribution Function of Costgga
The Kolmogorov-Smirnov Test:

o Let ﬁ‘cos,m(x) represent the observed CDF of Costgss (equation 5-40)

generated from a Monte Carlo sample of n=5000 observations. This CDF is
shown in table 5-4.
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o Let Fgogy, (%) represent a hypothesized CDF. Suppose Frpg, (x) is normal

with mean 244.8($K) and variance 226.13($K)>. Since the hypothesized
distribution for Costgg, is normal, values for Frog , (x) in table 5-4 reflect

x—244.8

«/226.13)

The mean and variance of the hypothesized CDF were not derived from the
observations generated by the Monte Carlo samples.

P(Zs

e  Compute the statistic D= Maxl Flostgg, (x)—IAVCOS,m (x) ] From table 5-4 it is
p s
seen that D =0.0129.
e Suppose we wish to test the claim that the observed values summarized in table

5-4 come from the hypothesized distribution. Let o be the probability of
rejecting the claim when it is actually true. Suppose we let « =0.01.

e  Referring to table A-2 (appendix A), if

(JZ+0.12+9411)D>c1_a
n

¥

reject the claim; otherwise, accept it. Since & was chosen to be 0.01 for this
test, from table A-2 we have c¢j_4 =cpgo =1.628. With n=5000 and
D =0.0129 we have (70.8322)(0.0129) = 0.9137 < cq g9 = 1.628; thus, we accept
the claim. ¢

In a strict sense, accepting the claim that the distribution function for Costggy
is normal only means it is a plausible mathematical model of the underlying
distribution.  Acceptance does not mean the normal is the “best” or
“unique” model form. Other hypothesized distributions might be accepted
by the K-S test. It can be shown, in this case, the test also accepts the
lognormal distribution as a plausible model of the underlying distribution of
Costgga . Showing this is left as an exercise for the reader.

In cost analysis the “precise” mathematical form of distribution functions,
such as those for Costggy , are rarely known. A credible analysis must provide

decision-makers defensible analytical evidence that the form of a distribution
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function is mathematically plausible. Looking into whether central limit
theorem applies, plotting hypothesized versus simulated distribution functions
(e.g., figure 5-13), and conducting statistical tests (i.e., the K-S test) are

among the ways such evidence is established.

Table 5-4. Kolmogorov-Smirnov Test for Case Discussion 5-1
(Values in the Left-Most Column are in Dollars Thousand)

X ﬁc"“sm (x) FCosl&SA x FCostSSA (x)- FCoslSSA (x)
220.19 0.05 0.0509 0.0009
225.15 0.10 0.0957 0.0043
228.64 0.15 0.1413 0.0087
231.80 020 0.1937 0.0063
23435 025 02436 0.0064
236.72 030 0.2955 0.0045
238.89 0.35 0.3472 0.0028
240.66 0.40 0.3915 0.0085
242.50 045 0.4392 0.0108
244.34 0.50 0.4878 0.0122
24621 055 0.5374 0.0126

[ 248.11 0.60 0.5871 D= 00129 |
25028 0.65 0.6422 0.0078
252.53 0.70 0.6964 0.0036
25499 075 0.7510 0.0010
257.49 0.80 0.8006 0.0006
260.49 0.85 0.8516 0.0016
263.80 0.90 0.8968 0.0032
269.22 095 0.9478 0.0022

Further Considerations

Mentioned previously, the cost of a system can be expressed as
Cost=Xy+ Xy +X3+...+ X, (5-45)
where Xi,X;,X3,...,X,, are random variables representing the costs of n work

breakdown structure elements that constitute the system. From the preceding
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case discussion, we saw a circumstance where Fg,,(x) could be approximated
by a normal distribution. This is sometimes viewed as a paradox. Since a
system’s cost historically exceeds the value anticipated, or planned, why is its
distribution function not positively skewed? The normal distribution is
symmetric about its mean; it has no skew.

There are many reasons why the cost of a system exceeds the value
anticipated, or planned. A prime reason is a system’s cost is often based only
on its point estimate. From chapter 1 (equation 1-2) the point estimate of the

cost of a system is given by
XPECO_“ = leEX] + XZPEXZ + JC3PEX3 +...+ anEX,,

where x; PEy, AT the point estimates of each X; (i=1,...,n). Recall xpg_  is
i

a value for Cost that traditionally contains no reserve dollars for uncertainties
in a system’s technical definition or cost estimation approaches. Because of

this, xpg,,  often falls below the 50th percentile of Cost; that is, xpg, ~can
have a high probability of being exceeded. This is illustrated by considering
further case discussion 5-1. In this case discussion, Xi,Xp,X3,...,Xjp are
independent random variables representing the costs of the SSA’s twelve
components. Suppose the point estimates of these components are the modes
of X; (i=1L...,12), given in table 5-3. The point estimate of the cost of the
SSA, denoted by xpg Costssh is

XPE g, = Mode(Xy)+ Mode(X,) + Mode(X3) +...+ Mode(Xiz)  (5-46)

From table 5-3, XPECosgss =238.4 ($K). Since the distribution function of

Costgs, is approximately normal, in this case, we have

238.4—-244.8
P(COSESSA > xPECos:SSA =2384)=P(Z< "-—"2‘—2-6—{3—"—) =0.665
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The normal probability density function of Costggs is shown in figure 5-14.

Notice more probability exists to the right of xpg than to its left. If the
Costssa
cost of the SSA was anticipated, or planned, as the value given by XPE(yss”

then there is a high probability (nearly 67 percent) it will be exceeded. This

is true despite the distribution function of Costgqy being approximately
normal.

T Costgsy ()

0.0242

0.665

0.335

CLI
2384
xPECnsrs_gA

Figure 5-14. Probability Density Function for Costgga

What drives this probability is the degree to which the distribution functions
of each X; (i=1,...,12) are skewed. The greater the positive skew, the greater

the probability that xpg Contssa (defined by equation 5-46) will be exceeded.
The greater the negative skew, the greater the probability that xpp Costsy will

not be exceeded. In either circumstance, the distribution function of the sum
of these X;’s will, because of the central limit theorem, frequently approach a
normal. This may seem nonintuitive; nonetheless, the sum of many random

variables characterized by skewed distributions can result in a distribution
function that has no skew at all.
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Lastly, since Costggy is considered to have a normal distribution, in this case,
the mode of Costgsy is equal to its mean — 244.8 ($K). The sum of the
modes of each X; (i=1,...,12), seen in table 5-3, is 238.4 ($K). In general,
the sum of the modes of n-random variables will not equal the mode of the
distribution function of the sum of these variables; that is, if

Cost=X;+Xp +X3+...+X, and

XPEc,y = Mode(Xy) + Mode(X,) + Mode(X3)+...+ Mode(X,,)
then xpg_  # Mode(Cost). If the distribution function of each X; is normal,
then xpg. = Mode(Cost); in general, if the distribution function of each X;

is normal then xpg_ = Mode(Cost) = E(Cost) = Med(Cost).

5.4 Transformations of Random Variables

It is often necessary to determine the distribution function of a random
variable that is a function (or transformation) of one or more random
variables.  For instance, the direct engineering hours to design a
communication satellite may be a function of the satellite’s weight W

(pounds). Such a function might be given by equation 5-47.

Hours =4 +2\JW (5-47)
If W is a random variable then Hours is a function (or transformation) of the
random variable W. In software cost analysis, the effort Effy (staff-months)

to develop software can be a function of the number of source instructions to

develop. A general form of this function is

Ejfsw = CIIC2 (5'48)
where ¢; and ¢, are positive constants and 7 is the number of thousands of

delivered source instructions (KSDI) to be developed.* If I is a random

* Section 5.4.2 presents a detailed discussion of the function given by equation 5-48.
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variable then Effgy is a function of the random variable I. A question that
might be asked is “What is the 50th percentile of Effsw if the uncertainty in
the number of source instructions to develop is characterized by a uniform
distribution in the interval 30KDSI < x <80KDSI?” To answer this question
we need the distribution function of Effgy given the distribution function for

1. In the preceding section we discussed a possible distribution function for
the random variable Cost, where

Cost=X1+Xy +X3+...+ X, (5-49)
and the X;’s (i=1,...,n) were random variables representing the costs of n
work breakdown structure cost elements that constitute a system. In equation
5-49, Cost is a function of n random variables. From the central limit
theorem, we saw the distribution function of Cost can, under certain
conditions, be approximately normal. What if the central limit theorem does
not apply? How is the distribution function determined for a random variable
that is a function of other random variables? The following presents methods

to address this question.

5.4.1 Functions of a Single Random Variable
This section presents how to determine the distribution function of a random
variable that is a function of another random variable. This is presented in the

context of continuous random variables.” Consider the following example.

Example 5-10 Suppose the direct engineering hours to design a new

communication satellite is given by

Hours =4 +2JW (5-50)

* Refer to case discussion 3-1 (chapter 3) for a view of this discussion from the perspective of
discrete random variables.
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where W is the satellite’s weight, in pounds. Suppose the uncertainty in the
satellite’s weight is captured by a uniform distribution whose range of
possible values is given by 1000 <w <2000. Suppose the satellite design team
assessed 1500 pounds to be the point estimate for weight; that is,
wpg =1500.*

a) Determine the cumulative distribution function of Hours.

b) Compute P(Hours <hpg), where hpp =4 +2\wpg .

¢) Determine the probability density function of Hours.

Solution a) We are given W ~ Unif(1000,2000). From equation 4-4

1
=L 1000<w<2000
fw™)= 1500 v

The cumulative distribution function of Hours is Fy,,..(h)= P(Hours < h),
where h denotes the possible values of Hours. Since Hours =4+2JW, the

interval 1000 <w <2000 is mapped onto the interval 67.2456 <h<93.4427.
Thus, for h in the interval 67.2456 <h<93.4427

2
Friours(h) = P(Hours < h) = P(4+24/W < h)= P(WS(%E) )

[(h-4)72)* ’
= [wonaw =222 -
1000

Thus, the CDF of Hours, presented in figure 5-15, is

0 h<67.2456

2
Fyours(h) = P(Hours < h) = T()l()a(ifi) -1 67.2456<h<93.4427 (5-51)

1 h>93.4427

Instead of using wpgy, to denote the point estimate of the random variable W, we simplify
the notation and let wpp represent this value.
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b) From equation 5-50 we have hpp =4+2\/wpg ; thus, hpg =81.46 when
wpg =1500. Therefore, P(Hours < hpp)= P(Hours <81.46). From equation
5-51 this probability is

1

P(H <hpr)= P(H <81.46)=——
(Hours < hpp) = P(Hours ) 1000(

—_a\2
.8-‘_15-5‘-) ~1=050

¢) To compute the probability density function of Hours, we can differentiate

Fyours(h) with respect to k. From chapter 3, recall that
d
fHours(h) = %’(Fﬂours(h))

It follows that fpp,,.s(h) = 5gos (h—4) 67.2456 <h<93.4427

F Hours )]
1

P(Hours < h) 0.5

0 h = h(w)
67.25 81.46 93.44
hpg
L " 1 w
1000 1500 2000
Wpg

Figure 5-15. The Cumulative Distribution Function of Hours

In example 5-10, the procedures to develop Fy,,(h) and  fyour(h) are
generalized by the following theorem.

Theorem 5-11 Suppose X is a continuous random variable with probability
density function fy(x)>0 for a<x<b. Consider the random variable

Y =g(X) where y=g(x) is a strictly increasing or decreasing differentiable



Functions and Applications of Random Variables 199

function of x. Let the inverse of y=g(x) be given by x=w(y), then Y =g(X)
has probability density function

fxO()- d[:l(yy)]
)= (5-52)

Fx((y))- d[:;(y)] g(b)<y<g(a) if g(x)decreasing
Y

gla)<y<g(b) if g(x)increasing

If y=g(x) is strictly increasing
Fy(y)=P(Y <y)= P(g(X) S y) = P(X s w(y)) = Fx(W(y)) = Fx(x) (5-53)

If y=g(x) is strictly decreasing
Fy(y)=P(Y <y)= P(g(X) S y)= P(X >v(y) =1- Fx(\()) =1-Fx(x)  (5-54)

Discussion of Theorem 5-11
Applying theorem 5-11 to example 5-10 yields the following:
d|v(h
Frtours )= fiy G())- [;(h )]1 2(1000)<h<g2000)  (5-55)
-4\ .
where h=g(w)=4+ 2w and w=v(h)= ) Since

1
=—1 1000 <w<2000
fw™)= 1500 e

2 —
we have fiy(v(h))= fw((h ; 4) ) = 10100 and id[;(hh)]%: h 5 4 . Substituting

into equation 5-55 yields
1 h-4

Frtours (W) =Joss "= 612456 <h<93.4427 (5-56)

which is the same as the PDF in part ¢) of example 5-10.
Theorem 5-11 also provides insight into the fractiles of a distribution
function. In example 5-10, h=gw)=4+ 24w is a strictly increasing

differentiable function of w. From theorem 5-11, this implies
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FHours (= FW (w)
Thus, the value of h associated with the o-fractile of W will also be the a-
fractile of Hours. For example, in figure 5-15 observe that
Fy(1500) = 0.50 = Fy,,,,(81.46)
Here, the value of & associated with the 0.50-fractile of W is the 0.50-fractile
of Hours. Specifically,

hyso =81.46=4+2./wgy 5o and P(Hours < hy 50) = 0.50

Similarly, it can be shown (left as an exercise for the reader) that
Fyw(1750) = 0.75 = Fy,,,,s(87.67)

The practical value of this aspect of theorem 5-11 is high, because cost-related
equations (e.g., equation 5-50) are often simple increasing or decreasing
differentiable functions of one variable. When Y =g(X) and theorem 5-11
applies, the cumulative distribution function of Y is not needed to determine
its fractiles. The a-fractiles of Y are, in fact, completely determined from the
o-fractiles of X. In practice, not having to determine the cumulative
distribution function of Y, either analytically or through Monte Carlo
simulation, can save a great deal of mathematical effort. When possible, cost
analysts should readily take advantage of this aspect of theorem 5-11.

Example 5-11 From the information in example 5-10 compute
a) E(Hours) b) OHours

Solution a) Two approaches are shown.

Approach 1

From equation 3-21, we can write

93.4427 93.4427
E(Hours)= [ fijoursdh =" [ h-gs(h—4)dh =81.09 hours
67.2456 67.2456
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Approach 2
Since Hours = g(W)=4+2yW , it follows from proposition 3-1

2000 2000
E(Hours)= E@W) = [ gw): fiy(wdw=" [ (4+2w)- oz dw =81.09 hours
1000 1000

b) To determine O p,,,s, from theorem 3-10 we have

Var(Hours) = E(Hoursz) - [E(Hours)]2
Since
2000

E(Hours®)= [[gn)F - fiy(w)dw
1000
2000
= “(4 +24/w )]2 To”lo’o’ dw =6632.75 (hours)?
1000
we have

Var(Hours) = E(Hours®)—[ E(Hours)|* = 6632.75 - (81.09)* = 57.1619 (hours)*

therefore

O Hours = \/Var(Hours) = 7.56 hours

The reader should also verify that E(Hoursz) can be computed by

93.4427 93.4427
E(Hours®)= [ fytours)dh =" [ W% o= 4)dh
67.2456 67.2456

5.4.2 Applications to Software Cost-Schedule Models

This section presents a further discussion on functions of a single random
variable as they apply to software cost-schedule models. These models are
often used in cost analysis to determine the effort (staff-months), cost
(dollars), and schedule (months) of a software development project. The
general forms .of these models are given below.

Effow = 1 (5-57)
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COStSW = ErEﬁ‘SW (5-58)
Tow = ky (Effsw)" (5-59)

In equation 5-57, Effgy is a random variable representing the software
project’s development effort (staff-months), ¢; and ¢, are positive constants,
and [ is a random variable representing the number of thousands of delivered
source instructions (KDSI) to be developed.” In equation 5-58, Costgy is a
random variable representing the software project’s development cost
(dollars) and ¢, is a constant™ representing a labor rate (dollars per staff-

month). Notice Costgy can also be expressed as a function of /, that is,
Costgy = £,(c;1°?) (5-60)
In equation 5-59, Tgw is a random variable representing the software

project’s development schedule (months) and k; and ky, are positive
constants. Notice Tgy can also be expressed as a function of /, that is,
Tow = ky(c 12 )2 (5-61)
Equations 5-57 through 5-61 represent one approach [5] for determining a
software development project’s effort, cost, and schedule; there are others.
For instance, Effgy might be determined as the ratio of two random variables
I and P, as shown by equation 5-62. Here, P, is the software project’s
development productivity rate (e.g., the number of DSI per staff-month).
1
Effsw =+ (5-62)
P.
Equation 5-62 is an example of a function of two random variables. Working

with such functions is discussed in section 5.4.3.

* Throughout this book, when I appears in the formula given by equation 5-57 it is assumed

that I is always in KDSL It is further assumed that / is always greater than zero.
** In this section, we treat £, as a constant to keep the discussion focused on functions of a

single random variable; however, in practice, ¢, is often treated as a random variable.
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Case Discussion 5-2 If the development effort Effgy for a software project is
defined by Effew =c;1°?, and I ~ Unif(a,b), determine Frgrew 8)s fEfg (9,

E(Effgw). and Var(Effsy).

Determination of FE”W(S)
We want the distribution function of Effgy given the distribution function for

1 is uniform, in the interval a < x <b. From equation 4-4 (chapter 4) we know

1
b-a
where a and b represent the minimum and maximum possible values of I. By

a<x<bh

fix)=

definition
FEﬁsw (s) = P(EﬁSW <s)
Fegr,,, ()= P(Effsw <5)=P(cI* <5)

LEE s
=p(zs(g;)‘2)= [ i ax= b_a[(g-‘-)”z —a} as(-g;)” <b

therefore,

Fiy, ()= P(Effsyy <) = — [(—)715 -a] a-s(—i)é <b  (5-63)

b—

Q

Determination of fEffsw(s)
Given Effsy =g(I)=cI? we can write s=g(x)=¢;x“2, which is a strictly

increasing differentiable function of x. Let the inverse of x be given by

G}
x =vy(s) = (__s__}
a
From theorem 5-11, we have
Jeffow ()= 1) I(V(-Y))'f-l%l(?s21 gla)<s<gb)

Therefore
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|
1 1 s |2 ¢ ¢
JEffow (S)=—-—'—~(——~] a2 <s<ch™? (5-64)

which is also the derivative of Fgg . (s) with respect to s. It is left to the

reader to verify equation 5-64 is a density function.

Determination of E(Effgw)

From proposition 3-1, the expected software development effort is

b
E(Effsw) = E@(D) = [ g0 fi(x)dx

b 1 1 b
=fc1xcz- dx=c;- fxczdx
b-a b-a
a a
therefore EEffw) =~ L [pert1 g2 *1] (5-65)
¢+l b—a

Alternatively, equation 5-65 could have been derived as follows:

L‘lbc2 Clbr2 1 1 ?12—--1
N
E(Effsw) = J-S'fEﬂsw(s)ds_ ISZ'T;ZE[Z) @
cja? ca?

Determination of Var(Effgw)

From theorem 3-10, we know

Var(Effsw) = ECEffdw) - [E(Effsw)]2
Now

b
ECEffgy) = B = [ g()? fy(x)ds

b 1 1§ e+ 20,41

= (%3 2 d - 1 bC2+ —a (.'2+
Jl@x) b—a b—-a2c2+l[ ]
a
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Therefore
1 012 2e,+1  2¢,+1 2
Var(E = P2 — 2T~ E(E] 5-66
Effsw)=5— 2c2+1[ |-[EEgw (5-66)

where

Cy 1 cy+1 cy+1
E(Effgw) = —[pe2tl g2
Bffsw) = —[p" a2

This concludes case discussion 5-2. The following illustrates how these results

can be applied to a software development project.

Example 5-12 Suppose the effort (staff-months) to develop software for a
new system is determined by Effsw =2.81'2. Suppose the uncertainty in I,

the number of thousands of delivered source instructions (KDSI), is
represented by the distribution I ~ Unif(30,80). Determine

b) P(Effsw < E(Effsw))

c) aEffSW
d) P(Costgy <4,500,000) given ¢, =15,000 dollars per staff-month.
Solution

a) Given Effgy = 2.81'2 we know from equation 5-57 that ¢; =2.8, ¢; =1.2.
Since I ~ Unif(30,80), from equation 5-63

__ L laeoyiz _
P(Effsw <300) = 2o [(2—8) 30| 30<49.16<80

=(.383

Figure 5-16 shows this region of probability for Effgy, as well as the PDF of
Effsw. The PDF comes from equation 5-64 (in case discussion 5-2).
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1 P -0.167

(s 165.85<5<538.1
Jefton ) 168(2.8) :
P(Effgy <300) = 0383

P(Effgy >300)=0.617

0.0027

0.0025 staff-months s
165.85 300 538.1

Figure 5-16. The Probability Density Function of Effgy in Example 5-12

b) From equation 5-65

_ 28 1 o01241 _ anl2+1]_ .
EEfsw) =157 "5 [80 30 ]—346.12 staff-months

From equation 5-63

P(Effsw < E(Effsw)) = P(Effsw <346.12) = g (346.12) = 0.508

¢) From equation 5-66

1 (28)? 2(1.2)+1 2(1.2)+1 2
Var(E = — 80\ - 30" -1346.12
arEffsw) =55 2(1.2)+1[ |-B612)

=11608.65 (staff-months)’

Therefore ogy = +/Var(Effsy) =107.7 staff-months.

d) Given ¢, =15,000 dollars per staff-month, we have
P(Costgy <4,500,000) = P(¢, - Effgw < 4,500,000)

4,500,000 4,500,000
22 Y = P(E; L et
¢, )=PEfsw <1500

= P(Effgw <300) =0.383

= P(Effgw <
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Example 5-13 Once again, suppose the effort (staff-months) to develop
software for a new system is determined by Effsw =2.81'2, where

I ~Unif(30,80). If the software development schedule (months) is given by
Tew = 2.5(Ejfsw)0‘32, determine the schedule that has a 95 percent chance of
not being exceeded.

Solution

Three solution approaches are presented.

Approach 1
This approach operates from the cumulative distribution function of I. From

the information given in this example, we have

Tow = 2.5(Effew)>?
=2.5(2.8112)032 - 3 4870384 (5-67)

Since Tgy =g(I)=3.481"%% and 1>0, we can write = g(x)=3.48x0%4
where ¢ and x are the values possible for Tgy and I, respectively. Since ¢ is a
strictly increasing differentiable function of x, in this example, from theorem
5-11

Fr,, (0= Fj(x) (5-68)
The value of ¢ associated with the 0.95-fractile of [ will equal the 0.95-fractile
of Tgy. From equation 4-5 (chapter 4), we know
x-30 _x-30
80-30 50
The 0.95-fractile of I is xg g5 such that F(xggs5)= P(I < xp95)=0.95, that is,

30<x<80

Fi(x)=

Xg.95 is the solution to

%0.95 =30 _
50
Solving equation 5-69 for xggs yields xgg95 =77.5 KDSI; thus

0.95 (5-69)
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X0.95 = 77.5 and P(I < )CO495) =0.95

to.95 = 18.5= 3.48X0.950'384 and P(TSW < t().gs) =0.95

This is equivalent to
F(71.5) = Fp,, (18.5)=0.95

Therefore, 18.5 months is the software development schedule that has a 95
percent chance of not being exceeded.
Approach 2
This approach operates from the cumulative distribution function of Effgy.
Since Tgy = g(Effsw) = 2.5(Effsw)®>2 ., we can write ¢ = g(s) = 2.55%3% where ¢

and s are the values possible for Tgy and Effgy, respectively. Since ¢ is a

strictly increasing differentiable function of s, from theorem 5-11

Frg, (0) = Fegrg,, (5)
Thus, the value of ¢ associated with the 0.95-fractile of Effgy will equal the
0.95-fractile of Tgy. From case discussion 5-2, the general formula for
Fg, (s) is given by equation 5-63. It is left as an exercise for the reader to
show, for this example FEﬁ’sw (518)= FTsw (18.5)=0.95.
Approach 3
This approach involves explicitly determining the functional form of Fr. (r)
and then solving the expression Fr. (fg95)=0.95 for f5gs. It is left as an
exercise for the reader to show, for this example,

1
t

_1 0384 .
FTSW(t)—'“ﬁ’a (3'2—8') -30] 12.8<r<18.7

From the above expression it follows, after rounding, that Fy (18.5)=0.95.

* These endpoints are rounded from the interval 12.8467 <t <18.7226.
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Example 5-14 If Tgy =25Effsw)®*? and Effgy =2.81'2 then write a
general formula for P(Tgy <1), if I~ Trng(30,50,80).

Solution Notice Tgy can be written as Tgy =2.5(2.81'2)032 = 3.4870-384
This implies #= g(x)=3.48x0'384, where ¢ and x are possible values of Ty
and I, respectively. Notice ¢ is a strictly increasing differentiable function of

x; therefore, from theorem 5-11

Frg,, @O = P(Tgy <) = P(g(D < 1) = P(I Sv(1)) = Fy((1)) = Fy(x)

¢ \o¥Em
X = V(t) =(§z§)

In the above, x is the inverse of ¢ = g(x)= 3.48x93%*  Since 1 is given to have

where

a triangular distribution function, from equation 4-7 (chapter 4)

0 ifx<a
(x-a)®
b-aym-a)
=0
b-a)b-m)
1 ifxz2b

ifagx<m
Fi(x)=

ifmsx<b

thus

1 2 1
11 r )03 t O\
L L )™ 5 if30 <[ ——
50 20((3. 8) ] ! (3.48) <30
N ¢ Yo’ ;Yo
-~ Llgo- (L )" ifso<( )"
50 30L (3.48) } if 50 (3.48) <80

1 if (-—-—-) 280
3.48

Tables 5-5 and 5-6 present a summary of some general probability formulas

for the software effort and schedule models described in this section.

P(Tyw <t = F(v(t)) =
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Example 5-15 Suppose the effort and schedule of a software project are
given by Effgy =12 and Ty = ky(Effsw ).

a) Develop the correlation formula between Effgy and Tgyw, if I~ Unif(a,b).
b) Compute this correlation if ¢; =28, ¢y =12, k=25, ky=0.32 and
I ~ Unif (30,80).

c) Discuss what the correlation implies about Effsy and Tgy .

Solution From equation 5-30, the correlation between Effgy and Tgy is

_ ECEffswTsw) — ECEffsw)E(Tsw)
O Effsw O Tow
The first term in the numerator can be written as

PEffsw Tow (5-86)

E(EffswTow) = E(clI? - ky(c 1) ) = k2 E(1e2ta D)

Since
b
1 1 1 ko +1)+1
EICz(k2+l) - tC2(k2+1) Ndt = bCz(k2+l)+ _ C2( 2 )
( ) { Hdr=g—2 cz(k2+l)+1[ ¢ ]
we have
k+ 1 1 Cylhy+1D)+1  cylky+1)+1
E(EffswTsw) = ki pertatil_ gtk
Effswlsw) =he™ =y o +1)+1[ ]

From equation 5-65, we have

c 1
E(Effgy) =—2— ——[p2*! — g2 5-87
Effsw) =7 el Ll 87
From equation 5-66, we have
W \b-a2c,+1

It is left as an exercise for the reader to show that
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E(T )= klclkz 1 [bc«lkz-ﬂ__aczkgﬂ] (5-89)
W ek, +1b-a
k12€12k2 1 200ky +1 2eoky +1 2
Op. = |—Ld | p*22T _ g"20" | E(T, 5-90
TS‘” \[2@162+1b—a[ a2 (BT (5-90)

Thus, if I ~ Unif(a,b), then the general formula for the correlation between
Eﬁsw and TSW is

K+t 1 1

M D

3 > 2%
a1 e+ 2041 2 | A 1 [0k _ 2okt g
202+1b-a[b a2 1] (BB \/262k2+1b—a[b a>2ta |- [Ty

[ peatky ++ _ jeathy +1)+1] — EGEffsw)E(Tgw)

PEffw Tsw = J

(5-91)

b) Substituting ¢; =2.8, ¢ =12, k=25, ky=032, a=30, and b=80

into the above expressions yields

E(EffswTsw) = 5736.2323
E(Tgw)=16.055, Var(Tgy ) = 2.798

Therefore, from equation 5-91, the correlation between Effgy and Tgy is
Prgsy.mw = 0-995.

c) Although the true relationship between Effgy and Tgy is nonlinear, a
correlation coefficient this close to unity indicates the relationship is not
statistically  significantly  different from linear in the region
165.85<5<538.10. This is illustrated in figure 5-17.



216 Chapter 5

18.7

Tow = 2.5(Effsw)**
Tsw 162 E(Effsw) = 346.12
months (refer to example 5-12,

part b)

12.& K

165.85 346.12 538.1
Effsw
staff-months

Figure 5-17. A Plot of Tgy Versus Effgy From Example 5-15

Example 5-16 Suppose a new radar system requires developing 14 software
functions listed in table 5-7. Let the uncertainties in the amount of code to
develop be represented by the random variables 1,1, 1s,...,1 4, where each 1
is in thousands of delivered source instructions (KDSI). Assume each [ is
characterized by a triangular distribution function. Suppose Ij,15,15,...,14
are independent random variables and Iy, =11+ + I3 +...+ I14.

a) What is the mean and variance of Ir,,,?

b) What distribution function approximates the distribution of I,,,,?
¢) Determine the 0.50-fractile of Effy = 2.8(1T0ml)1'2.

Table 5-7. Radar Software Functions and Size Uncertainty Assessments

Min Mode Max

(KDSI) (KDSI) (KDSI)
Post Processor

Radar Rpt Proc I; 3.6 4.0 48
Radar Control Proc 1, 5.4 6.0 72
Seco Proc I, 1.8 2.0 2.4

Auto Monitoring [, 4.5 5.0 6.0

Network Interfacing [ 1.8 2.0 24
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Table 5-7. Radar Software Functions and Size Uncertainty Assessments
(Concluded)

Min Mode Max
(KDSI) (KDSI) (KDSI
System Control Processor
Mode Control Ig  10.8 12.0 14.4
Display Console [, 135 15.0 18.0
Missile Impact Prediction
OS and Utilities Iy 12.6 14.0 16.8
Operational Prgm 1,  27.0 30.0 36.0
Satellite Test Pgm I, 12.6 14.0 16.8
Library 1;; 10.8 12.0 14.4
Data Reduction I;; 29.7 330 39.6
Seco Support I;; 14.4 16.0 19.2
Communications ], 6.3 7.0 8.4

Total Ito 154.8 1720 2064

Note: The sum of the modes is not the mode of the distribution function of I, .

Solution

a) We are given the distribution function for each / is triangular, that is,
I} ~Trng(3.6,4.0,4.8),1, ~ Trng(5.4,6.0,7.2),
I3 ~Trng(1.8,2.0,2.4), «+«, I14 ~ Trng(6.3,7.0,8.4)
From theorem 5-7 (equation 5-37)
Ellpom) = EQY) + E() + E(I3) +...+ E(l}4) (5-92)

Since each 7 has a triangular distribution, from theorem 4-3
E(I) = %(3.6 +4.0+4.8)=4.13, E(l;)= %(5.4 +6.0+7.2)=6.2
E(I3)=4(1.8+2.0+24)=2.067, -+, E(Lj4)=1(6.3+7.0+84)=7.23
Substituting these values into equation 5-92 yields

E(lypq) = 4.13+6.2+2.067+...+7.23=177.73 KDSI

Since Ij,15,15,...,1 4 are independent,” from theorem 5-8 (equation 5-39)

* From theorem 5-4, since L, 13,15,..., 1, are independent random variables the correlation
between each pair of I;,1,,15,...,1 4 is zero.
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Var(lpyq) = Var(l)) + Var(ly) + Var(ly) +...+ Var(ly4)
From theorem 4-3

Var(y) = {(4.0-3.6)4.0-4.8)+ (4.8 3.6)2}=00622
Following a similar set of calculations for I,1,..., 14, it can be shown that

Var(Izye) =12.77 KDSI?
b) Since I},1p,15,...,114 are given to be independent random variables, the
total size of the radar software Iy, is the sum of 14 independent random
variables. By the central limit theorem (theorem 5-10), it is reasonable to
assume the distribution function of I, Wwill be approximately normal.

From part a) this means I, ~ N(EU7a1), Var(Ipg)) = NQT77.73,12.77).

¢) In this example we are given Effgy =2.8(ITo,a,)1‘2. If x and s are the

values possible for I, and Effsw, respectively, then s =2.8x12 is a strictly

increasing differentiable function of x. From theorem 5-11, this implies
Frp ) = FEgr, () (5-93)
From part b) we know that FI'I’aml (x)=0.50 when x=177.73 KDSI; therefore,
xg.50 =177.73, which is the 0.50-fractile of Iy,,,. From equation 5-93
Frp, 177-73) =050 = Figr  (5)
Since s=2.8x"2, when x = x50 =177.73 we have s =1402.4; thus
Frpp 177-73) = 0.50 = Fggr  (1402.4)

In summary, the 0.50-fractile of Effgy is 1402.4 staff-months. Note this is
the same as saying Med(Effsy)=1402.4 staff-months. It is left as an exercise
for the reader to determine the 0.25 and 0.75 fractiles of Effgy .
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5.4.3 Functions of Two Random Variables

Thus far, we have focused on deriving the probability distribution function
for a function of a single random variable. Functions of two or more random
variables commonly occur in cost uncertainty analysis. For instance, if the

unit cost of an unmanned spacecraft is determined by
UC =5.48(5C,,,)***(BOLP)*3°
then UC is a function of two random variables — spacecraft weight SC,,, and

beginning-of-life power BOLP. Likewise, if the software development effort
for a project is determined by

1
Effsw =+ (5-94)
P,
then Effgwy is a function of two random variables — the amount of code to

develop I (in DSI) and the development productivity P, (in DSI per staff-
month). The following theorem provides a set of general integral formulas
for determining the density functions of sums, differences, products, and
quotients of two random variables. We shall see that determining this density
function, in closed form, can be computationally challenging. In many cases
a closed form is not even possible. In such circumstances, computer-based

methods (e.g., Monte Carlo simulation) are often used to approximate the
density function.

Theorem 5-12 [7] Let X and Y be continuous random variables with joint

density f(x,y). If U is a function of X and Y with density function g(u), then

U=X+Y has density gw)= [ fru-x)dr= [ fu=y.y)dy

U= X-Y has density gu)= J.f(x,x~u)dx = If(u+y,Y)dy

o0 —0
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U=XY has density 5= [ 15 2 fex, “ydr = j f( Y)dy

= X/Y has density  g(u) = _ﬂxl Flux, x)dx = j'lylf(uy,y)dy

The reader is directed to [7] for a proof of this theorem. Theorem 5-12
provides a number of interesting results. For instance, suppose Uj, U,, and
Uj are independent random variables with U ~ Unif(0,1), U, ~ Unif(0,1), and

~Unif(0,1). If U=U, +U, then the density function for U can be shown
to be triangular [8]. Furthermore, if U=U;+U,+Us then the density

function for U is “bell-shaped” -— but not yet normally distributed (i.e.,
gaussian). Figure 5-18 {8] illustrates these results.

Ju, @)
U
1 1,
(—fU,+Uz(”) -iu O<uxl
) 1
073 — furuy+u, 0 = 5(u2—3(u—1>2) l<u<2
-;—(u2~3(u-—1)2+3(u—2)2) 2<u<3
0 u
1 1.5 2 3

Figure 5-18. Sums of Independent Unif (0,1) Random Variables
Continuing the above, suppose the random variable U is defined by
U=U1 +Uy +Us +...+Un

where Uy,U,,Us,...,U, are independent random variables and U; ~ Unif(0,1)
for i=1,...,n. By the central limit theorem as n increases the distribution

function of U will rapidly approach a normal distribution. This remarkable
result is further discussed and illustrated in appendix A (section A.4).
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The following presents an application of theorem 5-12. A probability density
function for software development effort, defined by equation 5-94, is
derived.

Example 5-17 In example 5-3, the effort Effsy to develop a new software

application was given by

X
Effgw =—
fsw Y

where X =1 is the amount of -code to develop (in DSI) and Y =P, is the
development productivity (in DSI per staff-month). Suppose X and Y are

continuous random variables with joint PDF

1

f(x,y)=15(10%)
0 otherwise

50,000 < x £100,000, 100<y<200

a) Use theorem 5-12 to find the PDF of Effgy .

b) From part a), verify P(Effgy <300)=0.0333 and P(Effsy <610)=0.75.
¢) From part a), determine E(Effgy).

Solution

a) Since Effgy is a ratio of two random variables, from theorem 5-12 Effgy

has probability density function g(u), where

glu) = flylf(uy, y)dy

In the above, u represents feasible values of the random variable Effsy (in
staff-months). To use the integral given by g(u), it is necessary to define the

regions of integration specific to this example. These regions are shown in
figure 5-19.
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200
Given
50000 100000
< < Effsw =2=—
u u Y P
yop 1 ~ Unif (50000,100000)
o Py ~ Unif(100,200)
100 staff-months u
250 400 500 600 700 800 900 1000

From figure 5-19, we see that

g(u) =

(200

J

50,000

u

u

J

100

Effsw
Figure 5-19. Regions of Integration for g(u) in Example 5-17

5(10%)

100,000

5(10%)

ydy 250<u<500

ydy 500<u<1000

The probability density function of Effgy is, therefore, given by equation

5-95.
1

2 510%)

gw) =
1

2 5(10%)

1{(

100,000)2

u

2
1 {(200)2 - (M) } 250 < u < 500
u

A plot of this PDF is shown in figure 5-20.

~(100)2} 500 < u <1000

(5-95)

b) Using equation 5-95, probabilities associated with various values of Effsy
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g()
0.003
staff-months u
250 400 500 600 700 800 900 1000

Effsw
Figure 5-20. Probability Density Function for Effgy

can be computed. For instance, the probability that Effgy < 300 staff-months
is
300

2
P(Effsw <300) = %5(11)6) {(zom2 —(59%99) }du - 00333
250

This result is consistent with example 5-3. The probability Effsy < 610 staff-

months is

500 )
1 1 ) (50,000)
P(E £610)= | — 200)° —| ———| id
(Effsw ) I 25(106){( ) - u
250
610
1

2
- (100’000) ~(100) tdu = 0.50 +0.250656 = 0.75
2 5(10%) u
500
A family of boundary curves for Effsy is presented in figure 5-21. Shown
are values of Effsy for various combinations of the number of DSI to

develop X =1 and the development productivity rate Y =P, (DSI per staff-
month).



224 Chapter 5

200

X 1
E R EE
- fsw Y=
P(Effsw <313)=0.05
410 P(Effw <410)=0.25
159.74
Y=PF 610 P(Effqw <610)=0.75
P(Effsw <800)=0.95
121.95 800 T
staff-months
10Q
50000 61000 80000 100000
X=1

Figure 5-21. Boundary Curves for Effsy and Associated Probabilities

c¢) Lastly, from equation 5-95 the expected effort can be computed;
specifically,

500

1 , 2
ECEfsw) = -[ “2 5(11)6){(200)2"('5_9_302) }du
250

1000 2
+ f - (‘00’000] —(100)? b du = 519.86 staff-months o
225005 |\

Theorem 5-12 provides a way to determine the probability density function
of sums, differences, products, and quotients of two random variables. The
integrals in theorem 5-12 are classically known as convolution integrals. In
many applied problems these integrals are hard to determine. In cost
uncertainty analysis, conditions often prevail that enable analysts to
approximate the form of a probability density function. If an approximation
can be found (or theoretically claimed), then it is unnecessary to compute a
convolution integral. For instance, we know (from the central limit theorem)
the sum of a sufficiently large number of independent random variables will
approach the normal distribution. Similarly, from the central limit theorem,

we know the product of a sufficiently large number of independent random
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variables will approach the lognormal distribution.

The last topic discussed in this chapter is the Mellin transform. The Mellin
transform is a useful technique for computing the moments of products and
quotients of many random variables. The application of the Mellin transform

to cost functions comprised of two or more random variables is emphasized.

5.5 The Mellin Transform and its Application to Cost Functions

This section presents a little known technique for determining moments of
products and quotients of random variables. Known as the Mellin transform
[9, 10], it works on random variables that are continuous, independent, and
nonnegative®. The Mellin transform is well suited to cost functions since Cost
is essentially a nonnegative random variable. The following defines the

Mellin transform. Examples are provided to illustrate its use from a cost
perspective.

Definition If X is a nonnegative random variable, 0 < x <o, the Mellin
transform of its probability density function fy(x) is

Mx(s)= [ =" fy(x)dx (5-96)
0
for all s for which the integral exists. From equation 5-96 it can be seen that

My = [ fy(xdx =1 (5-97)
0

Mx(2)= [ x fy(x)dx = E(X) (5-98)
0

An extension of the Mellin transform technique to random variables that are not everywhere
positive is discussed in reference 9.
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My(3)= [ fy(x)dx = BX?) (5-99)
0
From the above, it follows from equation 3-31 that
My(s)= E(X*) (5-100)

It also immediately follows that
Var(X) = My (3)-[Mx )] (5-101)
The Mellin transform is very useful when dealing with random variables
raised to a power. For example, if for any real a we have Y = X then
My(s)= E(r* = E(X*)* ) = E(X* ™))
= E(X*~ D1y = My(as—a+1) (5-102)

As an illustration, consider the Mellin transform of Effsy =2.81'2.  This
yields

MEﬁSW (S) = E(EﬁSWS"l) = E((2.8112)S—1) - E((Z.SS"I 1123*12))
=28 g 2712401y o 85I pf, (125~ 1.2 41)  (5-103)

therefore
Mpg,,, (5)=2.8°""M;(1.25-12+1) (5-104)

Equation 5-104 provides a way to generate moments of the random variable

Effsw. For instance, the expected effort E(Effsy) can be written in terms of
equation 5-104 as follows:

E(Effsw) = Mgg,, (2)=2.8M(2.2)
For example, if I ~ Unif(30,80) then from equation 5-96

oo 80
=11 (s 11 80° —-30°
Mz(s)—J;t fl(t)dtfé[)’ 3-6(1;_.5.6[__.._;___
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where s #0. Therefore,
E(Effsw)= MEﬂSW 2)=2.8M;(2.2)

22 an22
~2.8)L| 8077 =307 | 246,12 staff-months  (5-105)
50| 22

This value agrees with the value of E(Effsy) computed by equation 5-65 in
example 5-12. Furthermore, notice equation 5-105 is a specific application
of the general formula for E(Effsy) given by equation 5-65. The following

presents an important convolution property of the Mellin transform.

Theorem 5-13 [10] Let X, Y, and W be independent random variables with

probability density functions fy(x), fy(y), and fyy(w). If o, By, By, B; are
constants and

7 = OtXﬁl yﬂz WB3
then

My(s)=a* "My (Bys — By + DMy (Bys — By + DMy (Bys — B3 +1) o
From theorem 5-13, if Z= XY then

My(s)= My(s)My(s) (5-106)

Similarly, from theorem 5-13, if Z =§ then

My(s) = My (s)My(2—s) (5-107)

Table 5-8 provides Mellin transforms for three distribution functions defined
in chapter 4. In table 5-8, it is assumed that s # 0. Exercise 19b, at the end of
this chapter, examines how equation 5-108 (in table 5-8) is modified for the

case when s=0.
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Table 5-8. Mellin Transforms for Selected Distribution Functions (s # 0)

Distribution of X Mellin Transform of X
Unif (a,b) My(9) == (b‘ —aS) (5-108)
2 b’ =m') am’-d)
T , - - s#— .
rng(a, m,b) My(s) ~s(s+1)(b—a)1_ - — } s#z-1 (5-109)
$(smy —(s+Da)+a**! s _ s
Trapamamyb)  My)=Lis [ml smy—(s+Da)+a ] (m —m})

s(s+1)
S(smy ~(s+1)b) +b°*1
+zqz,z['"2 o S(:H) ], %1 (5-110)
B 2 1 2
where Ll_(m2+b-a-m‘)’ T (b-my)’ lﬁ_(m1~a)

Example 5-18" Let the unit cost UC of an unmanned spacecraft be given by

UC =5.48(5C,,)***(BoLP)*3°
where UC is a function of SC,, (the spacecraft’s weight in pounds) and

BOLP (the spacecraft’s beginning-of-life power in watts). Suppose point
estimates for weight and power are 6500 pounds and 2000 watts; that is,

WpEy, =6500 and jpg,,, , =2000

where possible values for SC,,, and BOLP are given by w and j, respectively.
If the uncertainties around these point estimates are described by the
probability density functions in figure 5-22, use the Mellin transform to

compute the expected unit cost E(UC).

* This example is an adaptation from Lurie, P. M., and M. S. Goldberg. 1993. A Handbook of
Cost Risk Analysis Methods, P-2734. Alexandria, Virginia: The Institute for Defense
Analyses.
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fsc,, W) ,
0.001 fBOLP (J)
0.00286
pounds w ! watts ]
5000 6500 7000 1800 2000 2500

Figure 5-22. Probability Density Functions for SC,,, and BOLP

Solution To simplify notation let X =SC,,, Y=BOLP, and Z=UC. We

then need to compute E(Z), where Z=5.48X 0944030 " Erom theorem 5-13,
the Mellin transform of Z is

My (s)=5.48° Y x(0.945 - 0.94 +1)My(0.305s - 0.30 +1)
From equation 5-100
EWUC)=E(Z)=M4;(2)=5.48Mx(1.94)My(1.30)
Since the probability density functions for weight and power are triangular,
from table 5-8 (equation 5-109)

M. (194 = 2 700070001 ~65001%) _ 5000(65001% 500017 | . ) o
X 1.94(2.94)(2000) 7000 - 6500 6500 — 5000 ’
My (1.30) = 2 [ 2500(2500'%° —2000'3) _ 1800(2000'*° ~1800"%%) | 9018
Y 130(2.30)(700) | 2500 — 2000 2000 - 1800 ’
therefore

E(UC)=E(Z)=Mz(2)=198.5 ($K)e
Let’s discuss this example further. If the point estimates for SC,, and BOLP
were substituted into UC, then
UCpg = 5.48(6500)%4(2000)%30 = 205.7 ($K)
In this example, why is E(UC)<UCpg? Seen in figure 5-22 the skew of

SC,,; is negative. There is far more probability the spacecraft’s weight will
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fall to the left of 6500 pounds than to the right of 6500 pounds.
Furthermore, the variance of SC,, is significantly greater than the variance of
BOLP; showing this is left for the reader. For these reasons, we have an
expected cost that is less than the point estimate of the unit cost.

Example 5-19 A new software application is to be developed. Suppose the
application consists of a mixture of new code Iy, and reused code Ip,,c0q-
Let the effort associated with developing the application be a function of the

equivalent size Igg,;,, where (from [11])
0.857
IEquiv = INew + IReused (5-11D)
Suppose values for Iy, and Ig,,..q4 are uncertain. If Ip,, and Ip,,..4 are

independent random variables with probability density functions given in

figure 5-23, use the Mellin transform to compute E(Igg,;) and O -

fI ( x) fIReused (x)
New 0.00004
0.00004
DSI x DSI x
25000 . 50000 100000 125000 150000

Figure 5-23. Probability Density Functions for Iy, and Ip.ced

Solution We are given I, = Ingy + 125,,5;,,,. From theorems 5-7 and 5-8

.857
E(IEquiv) =E(Iy,y) + E(Igeused)

0.857
Var(I Equiv) =Var(Iyey) + Var(IReyseq)
Computing E(IEquiv)
We have E(lgg;, )= E(ly,,)+ E(lg'eﬁld) . From equation 5-98 E(ly,,)=M,; (2). Suppose

welet Z=13557 . then from theorem 5-13
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My(s)=M;,_,(0857(s—D+1)
E(lgatd) =Mz =M, __ (08572-D+)=M; (1857

From this, we have
E( gguiv) = My, D+ M, (1.857)

Since Iy, ~ Unif(25000,50000), from equation 5-108 M, (2)=37,500; similarly, since
I Reusea ~ Trng(100000,125000,150000), from equation 5-109 M,  (1.857)=2332738;
‘therefore
E(l pgys) = 37,500 +23,327.8 = 60,827.8 DSI = 61 KDSI

Computing Ol squir

To compute oy ., we begin by computing Var(lgg,,). Since Iy,, and lg,., are
independent random variables
Var(lggi) = Var(lye, )+ Var( o)
From equation 5-101
Var(ly,,) = M, ()= (M, (2))*
We can write
Var(Ried) = EURnea)®) = (ElRogea* = EUlasea) - My, (1.857))

Suppose we let W = I}{Z,};:,d, then from theorem 5-13

My (s)=M;,, (1. 714(s=1)+1)

E(lkausea) =My ()= My, (17142 -D+D =M,

sed

(2.714)

Therefore Var(Igsars)=M;  (2.714)~(M,,_ (1.857))*. From which

ed
Var(gg) =M, )~ M, Q) +M;, Q714 (M; _ (1.857)>

From equation 5-108 MINN(3)=1'45833(10)9 and lem(2)=37’500; from equation 5-109
M,Rﬂm(z.ﬂét)=~5.46856(10)8 and M,Rmd(l.857)=23,327.8. Substituting these values into

e

Var(ggu) =M, (3)-(M;, @) +M;  (2714)-(M,__ (1.857)% produces

O gy =VarUpguy) =7,399.49 DSI = 7.4 KDSIe
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Case Discussion 5-3 In example 5-2 the effort for system test was given by
the Effsysress = XY, where X is staff-level and Y is the number of months.
Suppose X and Y are independent random variables with distribution

functions shown in figure 5-24."

a) Use a convolution integral in theorem 5-12 to develop a general formula
for the probability density function of Effsys7es - Plot the density function.
b) Using the probability density function of Effsys7es; compute the mean of
EﬁSysTest . P (EffSysTest = E(EﬁcSysTest))’ and P (EﬁSysTest <173).

¢) Use the Mellin transform to compute the mean and variance of Effsyres: -

0.1 0.08333
fx(®) i
x y
5 Staff 15 12 Months 24

Figure 5-24. Marginal Distribution for X (Staff) and Y (Months)

Discussion

a) Since X and Y are independent, their joint distribution function is

1 1
=t ol soicis 12<y<m 5-112
Foe=11n "1 %% Y G112

Let Effsysress =U =XY. Let g(u) represent the probability density function

of Effsystess- Since Effsycres is a product of two random variables, from
theorem 5-12

* This is a slight variation from example 5-2, where the range of possible values for ¥ was
given as 12-36 months. It is left to the reader to study how the problem solution presented in
case discussion 5-3 changes, if Y varies from 12-36 months instead of 12-24 months.
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8= [ dy (5-113)

The regions of integration for g(u) are shown in figure 5-25.

24
Given
Y EﬂSysTest =XY
Months X ~ Unif(5,15)
u
P Y ~ Unif (12,24
[ = if(12,24)
5
12 staff-months u
60 120 180 360
EffSysTest

Figure 5-25. Region of Integration for g(u)

From figure 5-25, and equation 5-113, the probability density function of

EffsysTess is given by the three integrals over the following regions:

%
[1dsdy  60<u<i20 .
2 Tolnlds)  60=us120
24 1
g(u)=<j~;~-l-;-0-dy 120<u<180 ={-oin(2)  120<ws<I80  (5-114)
12
24 J-ln(i‘ﬂ) 180 < u <360
jl-l—»d 180<u<360 120
Y1204 Su=
o
15

Equation 5-114 is the probability density function of Effscres- It is left to

the reader to check that g(u) has unit area over the interval 60 <u <360.

Figure 5-26 shows a plot of this density function.
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g(u)
0.005776

staff-months
60 120 180 360

Eff; SysTest

Figure 5-26. Probability Density Function of Effsysres

b) From the density function we can compute the mean effort for system test,
as well as various probabilities. These computations are given below.

360 120
E(Effsysrest) = j ug(u)du = _f u—-—ln(-g- )du+ J' u—ln(2)du+ j ui-%m(“")du =180
60 60

Knowledge of the density function facilitates computing various probabilities
of interest. From equation 5-114

P(ELf, SysTest < E(Eff, SysTest ) = P(Eff, SysTest <180)

120 180
= [Homn(g)du+ [thyin(2)du=0.19315+034657 = 0.54
120
Similarly,
120 173
P(Effsysres <173)= [ thgin(d)du+ [ 1y In(2)du
60 120

=0.19315+0.30613 = 0.50

In this case, the median test effort is approximately 173 staff-months.
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Shown in figure 5-27 are curves of constant effort for various pairs of x
(staff) and y (months). A probability associated with each effort is also
shown.

96
2 Eff. SysTest = XY

293 P(EﬂSysTesl <£90)=0.05
173 P(Effsystess $130)=0.25
130 P(Effsysrest <173)=0.50
P(Effsysrest <223)=0.75
P(Effsystest <296) =095
T

Y = Months 4

staff-months

5 75 10.8 14415
X = Staff

Figure 5-27. Boundary Curves for Effgysres
Seen in the above discussion, developing a general formula for the probability
density function of Effsr.s involved some tricky mathematics. A slight

alteration in the problem statement can further complicate the mathematics.
If, for instance, the distribution function of X was triahgular instead of

uniform, it would be quite difficult to develop an analytical form of g(u).

¢) The following illustrates how the Mellin transform applies to this case
discussion. The first two moments, which lead to the mean and variance of
the test effort, are developed. It is given that

Effsystest =U=XY 0<x<eo O<y<eo
From theorem 5-13

MEﬁSysTexl (S) = MU(S) = MX(S)MY(S) (5'1 15)
From equation 5-98

B(Effsystest ) = E(U) = My(2) = Mx )My (2) (5-116)

From equation 5-101
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Va’(Eﬁ SysTest) =Var (U) =MyQ3)- [M U (2)]2

2
= My(3My(3)—-[Mx(2)My(2)] (5-117)
Since the distribution functions for X and Y are uniform with parameters
shown in figure 5-24, from equation 5-108 (table 5-8) My(2)=10,

My(2)=18, Mx(3)=108.333, and My(3)=336. Substituting these values
into equations 5-116 and 5-117 yields

E(EffSysTest) = E(U)=180 staff-months

Var(Effsysres ) = Var(U) = 4000 (staff-months)?

O Bl gsres = JVar(EﬁsysTes,) =63.25 staff-months

The Mellin transform is clearly a convenient way to compute the moments of
Effsystes:- The density function of Effsyr is not needed.o

Next, a final case discussion is presented. It will show how concepts
throughout this chapter combine to produce useful results. Specifically,
formulas for the mean and variance of a ratio of two uniformly distributed
random variables and two beta distributed random variables are developed.

Seen in previous examples, ratios of random variables can arise frequently in
cost uncertainty analysis.

Case Discussion 5-4* Suppose [ and P, are independent random variables.

Develop general formulas for E(Effsw) and Var(Effsw) if Effsw = —i)l-— and

r

a) I~Unif(ay,by) and P, ~Unif(ay,by)
b) I~ Beta(ay,By,a1,by) and P, ~ Beta(oty, By, a9,b)

* Assume only positive values for a, and b, are permitted.



Functions and Applications of Random Variables 237

Discussion Since I and P, are independent, from theorem 5-5

E(Eﬁ‘sw)=5{-£'] =E(1)E[7,‘—]=m£{7,1—] (5-118)
By definition

Var(Effsw) = E(Eﬁ Sw” ) - [E(Eff W )]2

e A ()]

By definition Var(I)=E(l 2y [E(I )]2. This is equivalent to
E(1*)y=0? + i

Substituting into Var(EﬁSW) yields

2
Var(Effsw) = (012 + M%)E(;l‘f) ~uf [E(%ﬂ (5-119)

a) We are interested in using these equations to develop general formulas for

the mean and variance of Effsy, when I and P, are uniformly distributed
random variables. It has just been shown that

E(Effsw) = E(-}{:) = E(I)E(;Tr) - E("i)l:)

Since I ~ Unif(ay,by) we know p; =~é—(al + bl); therefore

B(ew)=Ha+ 0 7

B

To produce a general formula for E(Effsy), it remains to determine

13 -1
E(Pr)»*-E((Pr) )
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Determining E((Pr)'l) will be accomplished from the probability density

function of (P,)"l. Let Z =(P,)"1; therefore,
| 1
Z=g(1’r)=>z=g(y)=;=>y=V(z):;
Since g(y) is a strictly decreasing differentiable function of y, from theorem
5-11

2= fa, (v(z))-]—"—l-[—;(z—z—)]- 8(b) <2< 8(ay)

4 Lesd

1
by —ay 7% b, a

A picture of this density function is shown in figure 5-28.

fz2(9=

Figure 5-28. Probability Density Function of Z = -i)l—-
),
From the probability density function we know that

1 1

1y ... ? __;2— 1 1, 1 (b
E{"I'):)—E(Z)‘ .[ZfZ(Z)dZ—.{-Z‘bZ-aZ ;—z—dz- bz B Iﬂ(;;]

by by

therefore
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E(Effsw) = ;,‘;‘”" "2) (5-120)

Next, we will develop a formula for the variance of Effgy. By definition

Var(Effsw) = ECEfféw) | EEffsw)]
From equation 5-120

Var(Effsw) = E(Efféy) - [; Zzl + 2 Z H

It remains, then, to determine E(Eﬁfszw); this will be done by the Mellin

transform technique. Let

2 I?
0= Eﬁsw=-l:,—==>E(Q) E(Eﬁsw) E{P]

r r
From theorem 5-13

Mg(s)=M;(2s-DMp (3-2s) (5-121)
E(Q) = Mp(2) = M;(OMp (-1) (5-122)
Since / and P, are uniformly distributed random variables, from table 5-8
M) =35y (B —ai) and Mp (-D) ==y (b2 —a3)

Following some algebraic manipulation we have

EQ) =451 (bF +biay +af)
Therefore
2
Var(Eﬁ‘sw)z%bzlaz (b12 + by +a%)—[%%:—?2—l —Z—i—)jl (5-123)

Equations 5-120 and 5-123 are general formulas for the mean and variance
of Effew,if I and P, are independent uniformly distributed random variables.

Suppose we apply these formulas to example 5-17; this implies a; = 50,000,
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b =100,000, a, =100, by, =200. Substituting these values into equations
5-120 and 5-123 yields:

E(Effsw)=519.86 staff-months
Var(Effsw) =21411.8 (staff-months)*

OFffey = Var(Effsw) = 146.328 staff-months

b) In this part, formulas are developed for the mean and variance of Effgy if
I and P, are each beta distributed. From chapter 4 (equation 4-8) a random
variable X is beta distributed with shape parameters @ and (@ >0 and > 0)
if its probability density function is
1 T(a+p)(x- a]a_l(b —-x)ﬂ'l
a<x<b
fxx|a.By=1b-aT(@T(P\b-a) \b-a
0 otherwise

Continuing with this case discussion, let

I
Z= Effsw = 7= Mz(9) = My()Mp, 2-5)
r
therefore, E(Z)= E(Effsw)=Mz(2)= M;(2)M 3 ) (5-124)
The Mellin transform of X is, in this case,
b
My(s)= ij“ fx(x |, Bydx
a
__1 T+ B 8 xs_l(x - a)a~l(b - x)ﬁ"l dx
b-a F(a)F(ﬁ)a b-a b-a

_ 1 (o +B) f
(b-a)**F-1 T(@I(B) ]

XN x=a)* W b-x)Plax  (5-125)

We are given [ ~ Beta(ay, By, a1,by). From theorem 4-4, we know that

a

a+ By

M;(2)= E()=a, +(b - ay) (5-126)
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Given P, ~ Beta(ty, B5,a,,b,), from equation 5-125

o 1 Loy +By) Uy B,-1
M (O =g 270 g
O G e ™ P T By f ) ey
(5-127)
Substituting equations 5-126 and 5-127 into equation 5-124, we have
E(Z)= E(Eﬂsw)=§(al +(by —a) +B ) (5-128)

As an illustration, consider the case where I ~ Beta(5,10,50(10)%,100(10)%) and
P, ~ Beta(5,5,100,200). The expected effort E(Effsy) is

E(Effew) = 5(50(10)3 +(100(10)> - 50(10)3)3%6) = (66,666.67)&

where

&=

200

1 Tao) "¢ A .
—100)*(200 - y)* dy = 0.0067358
(100’ TOXG) o7 (y-100)"(200-y)" dy

Therefore
E(Effsw) = (66,666.67)(0.0067358) = 449.053 staff-months
The value for & was determined by numerical integration.

A determination of Var(Effgy) completes this discussion. By definition

2
Var(Effsw) = ECEfféw) - [ECEffsw)]
From equation 5-122

E(Effgw) = M;(3)Mp, (-1)
where
1 (e +By) f ) lbl-—t)ﬂl_ldt

M;(3)=
13 by —ap AT F(ozl)l“(ﬁl)
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_ 1 F((Zz +B2) -2 oy -1 By-1
Mp (=)= - - dy
A (by - ap)™ +B2=1 () )T(By) ;[ R Oma) )

If I~ Beta(5,10,50(10)°,100(10)>) and P, ~ Beta(5,5,100,200), then a

numerical integration of the above two integrals yields

M;(3)= 4.47917(10)9 and M P, (—1)=0.000045852
therefore

E(Eff3y) = (4.47917(10)°)(0.000045852) = 205378.9028 (staff-months)*

80,
Var(Effgw)=3730.3 (staff-months)’

OFffew = Var(Effsw) = 61.07 staff-months
In summary, the effort mean and standard deviation (rounded) is

E(Effgw) =449 staff-months
Ogf,, =61 staff-monthse
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Exercises

1. In example 5-2, Effsyr. =XY and X and Y have joint probability

density function

1 S5<x<15, 12L5y<36
f(x,y)=4240

0 otherwise

a) Sketch the event spaces associated with events A, B, and C where
A ={Effsysres < 240}
B ={Effsystest < 240 | X <12}
C = {{Effsystesr < 2401N{X <12} {Y <20}}

b) From part a) compute P(A), P(B), and P(C).

2.  In example 5-3, Effsw =-}—;— and X and Y have joint probability density
function
1
flxy)=15(10%)

0 otherwise

50,000 < x <100,000, 100<y<200

Find

a) P(Effgw <313)

b) P(Effsw <410|X <70,000)

¢) P({Effsw <410} {X <70,000}~{Y =150})

L 5<x<15 125y<36
3. Suppose f(x,y)=1240

0 otherwise
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Compute

a) fx(x) using equation 5-10
b) fy(y) using equation 5-11
¢) P(X<10|Y=24)

d) P(Y>24|X=10)

e) Are X and Y dependent or independent random variables? Justify
your answer.

4. a) If X and Y are random variables with means uy and py, show that
Cov(X,Y) = E(XY)~ px iy
b) If X and Y are random variables, show that Cov(X,Y)= Cow(Y, X); for
any real numbers a, b, ¢, and d show that
Cov(aX + b,cY +d) = acCov(X,Y)
¢) Show that Cov(X,Y)=0 if X and Y are independent random variables.
d) Show that Cov(X, X) = Var(X). Given this, show that Corr(X,X)=1.
e) Show that Var(X +Y) = Var(X)+ Var(Y)+2Cov(X,Y).

5.  Suppose Y, X;, and X, are independent random variables. If Z=X;+ X,

show that Y and Z are uncorrelated.
6. If Y=X'° and X ~Unif(0,1) show that p,, =0.24.

7.  Let the total cost of a system’s prime mission equipment (PME) be
denoted by Costp,,;. Let Costpy,e = X, + X, where X, is the total cost of
the system’s hardware and X, is the total cost of the system’s software.
Assume X, and X, are independent random variables. Suppose the
cost to integrate and assemble the system’s hardware and software is

denoted by Cost,y,. If Costig, =1X,+1X,

a) Determine a general formula for Corr(Costpy, Cost g ,)-
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b) Compute Corr(Costpyy,Costg,) When oy =0y .

8.  Let Costpy,p denote the total cost of a system’s prime mission product
(PMP). Let Costpyp = Costpyp +Cost,, o, Wwhere Costpye = X, + X, and
Costig, =15 X, +1X,. Let X, and X, denote the total costs ($M) of the
system’s hardware and software. If X, and X, are independent random
variables with X, ~ Unif(5,10) and X, ~ Unif(30,45) compute
a) E(Costpyp)

b) Var(Costpyp)
©) Feopy,, (%1 +x;) (refer to table 5-9 for the distribution function of the

sum of two independent uniformly distributed random variables).

d) Using Fg,, (% +x,), determine d such that P(Costpy; <d)=0.75.

9.  Suppose Xi,X;,X3 are the cost element costs of an electronic system.

Let the system’s total cost be given by Costg,s = Xj + X, + X3, where

X1, X5, X5 are given in the table below. Let X; and W be independent

random variables.

Cost Element Name Cost Element Distribution of X; or the

Cost X; Applicable Functional
M) Relationship

Prime Mission Product X, N(12.5,6.6)

(PMP)

System Eng. & Prgm X, Xy = 'zLXI

Mgt (SEPM)

System Test & X3 XG=1X+4x+W,

Evaluation (STE)

where W ~ Unif(0.6,1.0)

a) Write a general formula for E(Costgy) and compute its value.
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10.

11.

12.

13.

Chapter 5

b) Show that Var(CostSys) = -gg—é Var(X;)+ Var(W) from the expression

Var(CostSys) = Var(Xq) + Var(X,) + Var(X3)

+2[Cov(Xy, X))+ Cov(X;, X3) + Cov(Xp, X3)]
¢) Compute Var(Costgy).

In case discussion 5-1, the K-S test revealed the normal distribution as a
plausible model of the underlying distribution function for Costgg,.

Use the K-S test on the data in table 5-4 to show the lognormal
distribution is also a plausible model.

In example 5-7, X denoted the number of engineering staff required to
test a new rocket propulsion system. The number of months Y required
to design, conduct, and analyze the test was given by Y =2X+3. If X is

uniformly distributed in the interval 5< x <15, determine
a) Fy(y) b) fr(»

In example 5-10, verify that Fy (1750) =0.75 = Fy,,,,(87.67).

Suppose the direct engineering hours to design a new communication
satellite is given by Hours = 4+2+/W, where W is the satellite’s weight,
in pounds. Suppose the uncertainty in the satellite’s weight is captured
by a triangular distribution; that is, W ~ Trng(1000,1500,2000). Suppose
the satellite design team assessed 1500 pounds to be the point estimate
for weight; that is, wpg =1500.

a) Determine the cumulative distribution function of Hours.

b) Compute P(Hours <hpg), where hpg=4+2wpg .

¢) Determine the probability density function of Hours.
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14.

15.

16.

17.

18.

Suppose the development effort Effsy for a software project is defined
by Effsw=c /2. If I~Tmg(a,mb) derive Fgg (s), frgq, (5
E(Effsw), Var(Effsw).

Suppose the development schedule for a software project is defined by

Tow = ky(Effgw)*?, where Effgy = 1. Answer the following:

a) If I~Unif(a,b) derive Fr_, (), fr,, (t), E(Tgw), Var(Tgy).
b) If I~ Trng(a,m,b) derive Fr,, (1), fry, ®), E(Tgw), Var(Tsy).

In example 5-13, the effort (staff-months) to develop software for a new
system was given by Effgy =2.81 12 The development schedule

(months) was given by Tgy =2.5(Eﬁ"SW)0'32. If I~Unif(30,80), use
theorem 5-11 to show the following:

a) Fgg,, G18)=Fr, (18.5)=0.95

1
1 ! Y0384
b) F t)=—|| —— —-30| 12.8<t<18.7
) Frey =55 (3.48)

The uncertainties in the amount of code to develop for the radar system
in example 5-16, was represented by the independent random variables
L, I I, [y Let Ipp =Ih+1)+ I3 +...+ 114, where each [ is in
thousands of delivered source instructions (KDSI). From the
information in table 5-7, use the central limit theorem to determine the
0.25-fractile and the 0.75-fractile of Effgy = 2.8(1T0m1)1'2.

Refer to example 5-2 and use theorem 5-12 to find the general formula
for the probability density function of Effsysres -
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19. a) Let X and Y be independent random variables with Z=(X+ Y)2.
Show that E(Z)=Mx(3)+ My(3)+2Mx(2)My(2).

b) Suppose X ~ Unif(a,b). Use theorem 5-13 and the definition of the
Mellin transform (equation 5-96) to show that

o{ )= on(2) o ver(4) -2

20. In example 5-19, a new software application was being developed that

consisted of a mixture of new code Ip,, and reused code Iggyeq-
Suppose Iy, and Ip..q are independent random variables with
probability density functions given in example 5-19 (shown below for
convenience). If the effort Effgy associated with developing the
application is a function of the equivalent size Igg,;, , where

1 Equiv = Inew + 1 ??fbgld
and

1 12
EﬁSW =2. 8(1000 Equtv)

use the Mellin transform technique to approximate E(Effswy).

.le (x) f]Reused (x)
e 0.00004
0.00004
DSI x DSI x
25000 50000 100000 125000 150000

Hint: Use the first three terms of the binomial series expansion of (/ Eqmv)l'z, given by

. . .2 40. ~0.8 y1.714
(IEqm'v)1 2= (INew )1 2 +1'2(1New)0 2119?245;(1 +0'12(1New) IReusea'
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Chapter 6

System Cost Uncertainty Analysis

A reasonable probability is Our wisdom and deliberation for the
the only certainty. most part follow the lead of chance.
Edgar Watson Howe Michel Eyquem de Montaigne
Country Town Sayings [1911] Essays [1580]

This chapter illustrates how key concepts developed thus far combine to
produce the probability distribution of a system’s total cost. Chapter 7 will
extend this discussion to the joint and conditional distributions of a system’s
total cost and schedule. Chapter 6 begins with an introduction to the work

breakdown structure, a primary method for determining a system’s total cost.

6.1 Work Breakdown Structures

The work breakdown structure (WBS) is a framework for identifying all
elements of cost that relate to the tasks and activities of developing, producing,
deploying, sustaining, and disposing a system. Work breakdown structures
are unique to the system under consideration. They are developed according
to the specific requirements and functions the system has to perform. Work
breakdown structures are defined for classes of systems. These classes include
electronic systems, aircraft systems, surface vehicles, ship systems, and
spacecraft systems [1,2].

Work breakdown structures are tiered by a hierarchy of cost elements. A
typical electronic system WBS is illustrated in figure 6-1. Shown are four
hierarchies, or indenture levels. The first level represents the entire system
(e.g., the air traffic control radar system). The second level reflects the major

cost elements of the system. In figure 6-1, these elements include prime

254
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mission product (PMP), system engineering, program management, and

system test and evaluation.

Electronic System
Level 1 Air Traffic Control
Radar System Cost, Sys
i
| | | - |
Prime Mission Systems Program System Test nth WBS
Level 2 |Product (PMP) || Engineering Management | | and Evaluation |~~~ 1-Cost Element
X, X5 X3 Xy X,
|
i | ]
Level 3 | Hardware (HW) Software (SW) Integration and
Xy X;5 Assembly (I&A) X13

Disk Drives X, Applications X,

Level 4 Processor Umit X, Operating Sys Xy,
Custom Microchip X3 Custom Software X3

Figure 6-1. An Ilustrative Electronic System WBS

The following defines each level 2 cost element.

e  Prime Mission Product (PMP) — This element refers to the hardware and software
used to accomplish the primary mission of the system. It includes the engineering
effort and management activities associated with the system’s individual hardware
components and software functions, as well as the effort to integrate, assemble, test,
and checkout the system’s hardware and software.

o  Systems Engineering — This element encompasses the overall engineering effort to
define and deploy the system. It includes integrating the technical efforts of design
engineering, specialty engineering (e.g., reliability engineering, security
engineering), production engineering, and integrated test planning to produce an
operational system.

e  Program Management — This element includes all effort associated with the
business and administrative management of the system. This includes cost, schedule,
and performance measurement, as well as contract administration, data management,
and customer/user liaison activities.

® System Test and Evaluation — This element includes all test engineering, test
planning, and related technical efforts (test mockups, prototypes) to insure the
deployed system has been tested against its requirements.
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In figure 6-1, the PMP cost element is divided into its level 3 cost elements.
At this level, the radar’s hardware, software, and integration cost elements are
defined. A further division of PMP into its level 4 cost elements is also shown
in figure 6-1. Here, the individual cost elements of the system’s hardware and
software are defined. In practice, the number of levels specified in a system’s
WBS reflects the extent the system itself is defined. In most instances, cost
elements are seldom specified below level 6 in a system’s work breakdown
structure.

Certain cost elements in a WBS qualify as configuration items. A
configuration item is an aggregation of hardware or software that satisfies a
particular end-use function of the system. A custom made microchip or
developed software applications are typically designated as configuration
items. This designation means the item 1is subject to configuration
management. Configuration management is the process of documenting,
monitoring, and controlling change to the configuration item’s technical
baseline. Cost elements placed under configuration management typically
begin to appear at level 4 of a WBS.

The WBS is the definitive cost element structure of a system. It is the basis
upon which the system’s cost is determine (or modeled). From a WBS
perspective a system’s total cost (which we will denote by Costgy,) is a
summation of cost element costs, summed across the levels of the WBS. In
figure 6-1,

Costgys = X1+ Xo + X3+ Xq +.0.+ X, (6-1)
where the first term in equation 6-1, Xj,is
Xi=X\1+Xp+ X3 +...+ X, (6-2)
and k is the number of level 3 cost elements associated with X;. Similarly,
X=X+ Xin +X“3+...+X1U (6-3)

where j is the number of level 4 cost elements associated with X{{. The other
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terms in equation 6-1, X5, X3,Xy,...X,,, are defined in a similar manner. This
layered sum of cost element costs is often referred to as the “roll-up” cost.

Cost elements of a work breakdown structure are specific to the system
class. Cost elements” of a satellite system are illustrated in figure 6-2.

1 Satellite System
1.1 Launch Vehicle Segment
1.2 Space Segment
1.2.1 Satellite Integration, Assembly, and Test
1.2.2 Spacecraft Bus
1.2.2.1 Spacecraft Bus Integration, Assembly, and Test
1.2.2.2 Structures and Mechanical Assembly Subsystem
1.2.2.3 Attitude Determination and Control Subsystem
1.2.2.4 Thermal Control Subsystem
1.2.2.5 Electrical Power Subsystem
1.2.2.6 Telemetry and Communication Subsystem
1.2.2.7 Propulsion Subsystem
1.2.3 Payload
1.2.3.1 Payload Hardware
1.2.3.2 Payload Software
1.3 Command, Control, and Communications Segment
1.4 Systems Engineering and Program Management
1.5 System Test and Evaluation
1.6 Peculiar Support Equipment
1.7 Common Support Equipment
1.8 Operations and Support
1.9 Flight Support Operations
1.10 Program Office

Figure 6-2. Illustrative Spacecraft WBS
Notice the difference between these cost elements and those of the electronic
system WBS, shown in figure 6-1. In the satellite system, its cost elements are
grouped into segments. Within segments, these elements are divided into

* Cost element indenture levels are identified by numbering conventions that may or may not
incorporate decimals. The convention used is a matter of presentation style.
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levels. Levels can reflect subsystems, such as the spacecraft bus (platform) in
figure 6-2. For context, the spacecraft bus elements are defined below.

®  Spacecraft Bus Integration, Assembly, and Test — This element refers to all efforts
associated with the cost of integrating, assembling, and testing the individual
subsystems that constitute the spacecraft bus.

®  Structures and Mechanical Assembly Subsystem — This element (subsystem) refers
to the central frame of the spacecraft that provides support and mounting surfaces for
all equipment. It includes deployment mechanisms, the solar array boom,
experimental booms, antenna supports, and mechanical design equipment.

e  Attitude Determination and Control Subsystem — This element (subsystem)
measures and maintains the orientation of the space vehicle relative to an inertial or
external reference. Attitude determination components include inertial measurement
devices (e.g., gyroscopes, accelerometers), earth sensors, sun sensors, horizon
sensors, and magnetometers. Attitude control adjusts and maintains the space
vehicle’s attitude and stabilization. Attitude control components include fuel lines,
fuel tanks, thrusters, inertia wheels, and any associated electronics.

®  Thermal Control Subsystem — This element (subsystem) maintains the temperature
of the spacecraft and mission payload through heat transfer between space vehicle
elements. Thermal control techniques may be passive or active. Passive techniques
include special paint, mirrors, and insulation. Active techniques include heat pipes,
louvers, and heaters.

e  Electrical Power Subsystem (EPS) — This element (subsystem) generates, converts,
regulates, stores, and distributes electrical power between major space vehicle
subsystems. Two common types of EPS’s are solar and electrochemical. Typical
components of the EPS include solar array for power generation, batteries for power
storage, as well as wiring harnesses, regulators, switching electronics, converters, and
components for power conditioning and distribution.

e Telemetry and Communication Subsystem — This element (subsystem) measures
the space vehicle’s conditions (health and status), processes health and status data and
mission data, stores and transmits data to ground receivers, as well as receives,
processes, and initiates commands from ground controllers. This subsystem also
maintains the track of the space vehicle; typical components include data processors,
transmitters, receivers, antennas, decoders, amplifiers, and tape recorders.
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®  Propulsion Subsystem — This element (subsystem), also referred to as Apogee Kick
Motor (AKM), provides reaction force for the final maneuver into orbit and for orbit
changes. Typical components include solid rocket motor and explosive squibs,
nozzle control mechanisms, thrust sensing and shut-down controls, as well as any
required cabling, wiring, and plumbing.

As mentioned earlier, a system’s work breakdown structure is tailored from
general work breakdown structures specific to the system’s class. The satellite
system WBS in figure 6-2 was tailored from the general WBS for the
Unmanned Space Vehicle Cost Model (USCM) [3]. The USCM WRBS is
presented in figure 6-3.

1 Space Vehicle
1.1 Integration, Assembly, & System Test (IA&T)
1.2 Spacecraft
1.2.1 Structure, Interstage/Adapter
1.2.2 Thermal Control
1.2.3 Attitude Determination Control System (ADCS)
1.23.1  Attitude Determination
123.2 Reaction Control System
1.2.4 Electrical Power Supply (EPS)
1.24.1 Power Generation
1242  Power Storage
1.24.3 Power Conditioning and Distribution (PCD)
1.2.5 Telemetry, Tracking, and Command
1.25.1  Transmitter
1252 Receiver/Exciter
1253  Transponder
1254 Digital Electronics (Signal/Data Processor)
1.25.5 Analog Electronics
1256 Antennas
1.2.5.7 RF Distribution
1.3 Communications Payload
1.3.1 Transmitter
132 Receiver/Exciter
133 Transponder
13.4 Digital Electronics (Signal/Data Processor)
135 Analog Electronics
1.3.6 Antennas
137 RF Distribution
1.4 Program-Level
14.1 Program Management
142 Systems Engineering
143 Data
2 Aerospace Ground Equipment
3 Launch and Orbital Operations and Support

Figure 6-3. Unmanned Spacecraft WBS [3]
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Work breakdown structures can be quite complex. They may involve many
segments and levels, as well as numerous cost elements. Because the WBS is
the basis for deriving a system’s cost, WBS’s may also contain a variety of
mathematical relationships. These relationships are traditionally known as
cost estimating relationships (CERs).” Their primary purpose is to generate
point estimate costs of various WBS cost elements. Table 6-1 illustrates some
spacecraft-related CERs.

Table 6-1. Tllustrative CERs for Spacecraft Cost Elements [4]
{Nonrecurring Development Costs, FY92 (3K))

Cost Element Input Parameters CER
Attitude Control-Attitude Z, = Dry Weight (kg) X guDeterm = 33302046
Determination
Telemetry, Tracking, & Z, = Weight (kg) Xrreec =1955+199Z,
Command
Structure/Thermal Z, = Weight (kg) Xg, 1 = 2640 + 41620
Electrical Power Supply (EPS)  Z; = EPS Weight (kg) Xgps =5303+0.108 ( Z 22)0'97
Z, = Beginning of Life Power
(kg-watts)
Payload Communication Z, = Weight (kg) X Comm =917207°
Electronics

In summary, a work breakdown structure provides the framework for
developing a system’s cost. It further serves as the framework for an analysis
of the system’s cost uncertainty. The complexity of these analyses is dictated
by the complexity of the WBS and its associated CERs.

The following illustrates how probability methods are applied to the
problem of quantifying a system’s cost uncertainty within the framework of
the WBS. Case discussions are presented to link theory to practice.

* Most CERs are statistically derived from data on cost and technical characteristics. This

book uses the term CER to include those that are logically based, as well as those developed by
statistical methods.
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6.2 An Analytical Framework

This section focuses on the application of probability methods for
quantifying the uncertainty in a system’s cost. The WBS will provide the
analytical framework for quantifying this uncertainty, which is expressed as a
probability distribution. Analytical methods from probability theory are
stressed. Analytical methods provide insight into problem structure and
subtleties not always apparent from empirically based methods, such as Monte

Carlo simulation.”

6.2.1 Computing the System Cost Mean and Variance

From equation 6-1, we see that system cost, denoted by Costgy, is a

summation of work breakdown structure cost element costs. Illustrated in

figure 6-4, we define Costsys as
Costgys = X1+ X + X3 +...+ X, (6-4)
If X;,X5,X35,...,X,, are independent, then from theorem 5-7 and theorem 5-8
E(Costgys) = E(Xp) + E(Xp) + E(X3) +...+ E(X,,) (6-5)
Var(CostSys) = Var(Xy) + Var(Xp) + Var(X3) +...+ Var(X,)) (6-6)

If X{,X,,X5.,....X, are not independent, then

n n—-1 n
Var(Costgy)= Y Var(X)+2Y, ¥ px., X,0%,0%, (6-7)
i=1 i=1 j=i+1

Equations 6-5- through 6-7 are the formal expressions for the mean and
variance of Costg,,. The following case discussions illustrate how these

expressions are used.

* Monte Carlo simulation is an empirical method often used for quantifying cost uncertainty.
The concept underlying this method is discussed in section 6.3.
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Inputs
Probability Distributions for
each Cost Element Cost in a
System’s Work Breakdown

Structure
Fo G1) Summation
(x
X Process
Dol QOutput
" B 1 A Cumulative Probability
! Distribution of the System’s
Total Cost
Frogg,, (%)
fXZ ( xZ) 03!5),‘
=
Dollars x; \‘2 1
a, b2 8
®
L=
f X3 ()Cg) g
5 %
£
Dolk
ars x3 E
a . by
: 0 Dollars .
a c b
an(xn) Costsys '—=X1+X2+X3+...+Xn
Dollars X
an b,

Figure 6-4. Cumulative Probability Distribution of Costg,,

Case Discussion 6-1 [5] Suppose the cost element costs X;, X5, X3,..., Xjq of
an electronic system are given by the WBS in table 6-2. Let

Costsys =Xi+ Xy +X3 +...+X10
Suppose the random variables X;, W, X5, X7, Xg, X9 (defined in table 6-2) are

independent.

a) Compute E(Costgy) and Var(Costgy).

b) What distribution function approximates the distribution of Costgy,?
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c) Find the value of Costgy that has a 5 percent chance of being exceeded.

Table 6-2. WBS for Case Discussion 6-1

Cost Element Name

Prime Mission Product (PMP)

System Engineering and
Program Management (SEPM)

System Test & Evaluation
(STE)

Data and Technical Orders
Site Survey and Activation
Initial Spares

System Warranty
Early Prototype Phase
Operations Support

System Training

a) Itis given that

COStSys =X1 +X2 +X3 +...+X10

Cost Element
Cost X i

M)

Distribution of X; or the

Applicable Functional
Relationship

N(12.5,6.6)

X =1X

X3 =% X +4 X, + W, where
W ~ Unif(0.6,1.0)

X4 - ‘116‘ Xl

Trng(5.1,6.6,12.1)

Xﬁ - Tl(j X]

Unif(0.9,1.3)
Trng(1.0,1.5,2.4)
Trng(0.9,1.2,1.6)

Xi0=%%

(6-8)

Using the relationships given in table 6-2, equation 6-8 is equivalent to

Costgys = Xy +1 X, +(%X1 +-§1;X2+W)+T15X1 +Xs+75 Xy + X+ Xg + Xg + 5 X

Combining the above terms yields

COStSys =-18§01X1+W+X5 +X7 +X8 +X9

From theorem 5-7 (and equation 6-5)

(6-9)

E(Costgys) = 8L E(X;) + B(W) + E(Xs) + E(X7)+ E(Xg) + E(X9) (6-10)
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From theorem 5-8 (and equation 6-6)

Var(Costgy,) = (151 ) Var(X;)+ Var(W)+ Var(Xs)

+Var(X7)+ Var(Xg) + Var(Xg) (6-11)
since X;,W,X5,X7,Xg, and Xg are independent random variables. To

compute the mean and variance of Costgy; we need the means and variances

of X|,W,Xs,X7,Xg, and Xg. Table 6-3 presents these statistics.

Table 6-3. Cost Statistics for X;,W, X5, X7, Xg, and Xo

Cost Element E(X;) Var(X;)

Cost X; ($M) M) ($M)*
X, 12.500 6.6
w 0.800 0.16/12
X5 7.933 40.75/18
X, 1.100 0.16/12
Xg 1.633 1.51/18
Xo 1.233 0.37/18

The statistics in table 6-3 were determined by distribution-specific formulas
given in chapter 4. For instance, since X; ~ N(12.5,6.6) we know from

theorem 4-6 that E(X;)=12.5 and Var(X;)=6.6. Since W is a uniform
distribution, from theorem 4-2

_ 2
EW)= 0.6+1 (1-0.6)" _ 0 16 — 00353
2 12

=0.8 and Var(W)=
an ar(W) 0

Since X5 is a triangular distribution, from theorem 4-3

E(X5)=4(5.1+6.6 +12.1)=7.933

Var(Xs) = 5[ (6.6-5.1(6.6-12.1) + (1.1 - 5.1)°|=4075/18
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Substituting the data in table 6-3 into equations 6-10 and 6-11 we obtain

E(Costgys) =40.98 ($M) (6-12)
Var(Costgy,) =36.18 ($M)’ (6-13)
b) To approximate the distribution function of Costgy, observe the

following. First, the random variables X;,W,X5,X7,Xg, and Xg are
independent. Hence, the central limit theorem will affect the shape of the

distribution of Costgys. Second, the random variables X3, X3, Xy, Xq, and Xjo
are highly correlated to X;, whichis N(12.5,6.6). It can be shown that

Py, x =1 (v=2,4,6,10) and py, y =0.9898
Thus, it is reasonable to conclude (for this case) the distribution function for

Costgys is approximately normal — with mean and variance given by

equations 6-12 and 6-13, respectively. The cumulative distribution function

for Costg,, assumed to be approximately normal, is shown in figure 6-5.

F Costgy, ()
0.95
0.5
($M) x
25 40.98 50.87 60

Figure 6-5. Assumed Normal CDF for Costgy,

c) In figure 6-5, note that P(Costsys <50.87)=0.95. This means a value of
50.87 ($M) for Costs, has only a 5 percent chance of being exceeded. To
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arrive at this value, it is necessary to find x such that P(Costsys <x)=0.95.
From equation 4-22

P(Coslsys — E(Costgy) <X E(Costgy )) 095
o o

_ p(zs_’f:_"@_-g_fi) =095 (6-14)
6.015
Since Costgy,s ~ N(40.98,36.18), from table A-1 (appendix A)

x—40.98
6.015

=1.645

and x=50.87. Thus, a value of 50.87 ($M) for Costgy, has only a 5 percent
chance of being exceeded. Equivalently, 50.87 ($M) is the 0.95-fractile (i.e.,
Xo95 =50.87) of Costgys. Furthermore, we can say the cost reserve (refer to
chapter 1) needed for a 95 percent chance of not exceeding 50.87 ($M) is
9.9 ($M) above the expected cost of the system.

Further Considerations
Distribution Function of Costs, — In case discussion 6-1, it was assumed the

distribution function for Costgy,; could be approximated by a normal
distribution. How reasonable is this assumption? A series of 20 “points” is
shown in figure 6-5a. These points reflect random statistical samples (values)
of Costgy, sampled by Monte Carlo simulation (explained in section 6.3).
The curve implied by these “points” represents the simulated distribution

function® for Costg,. The curve given by the solid line in figure 6-5a is the

assumed normal distribution for Costg,; — as shown in figure 6-5. With this

* The simulated distribution is an empirically developed distribution. In establishing this
distribution, no assumption is made that the distribution function for Costgy is normal.
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in mind, observe in figure 6-5a how closely the simulated distribution for

Costg,; matches the assumed normal distribution.

F Costgy, ()
0.95
05
M) x
25 40.98 50.87 60

Figure 6-5a. Assumed Normal CDF for Costg, (defined by the solid line) vs
the Simulated CDF (defined by the points)

The closeness with which these “points” fall along the curve given by the
solid line, in figure 6-5a, visually suggests the reasonableness of the
assumption that the distribution function for Costgys can be approximated by
a normal. Although this is a practical conclusion, it is an informal one. A
more formal conclusion could be derived from the Kolmogorov-Smirnov
(K-S) test, illustrated in case discussion 5-1. This would reveal whether the
normal distribution is a statistically plausible model for the underlying

distribution function of Costsys, in this case.

Correlation — In case discussion 6-1, a significant amount of correlation
exists between certain pairs of cost element costs. In table 6-2, the five cost
element costs X5,X3,X4,Xg, and X;p were functionally related to Xj, the
system’s PMP cost. In particular, X,, Xy, Xg, and X;g were linearly related to
X; by the expression
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X, =a,X (6-15)
where v=2,4,6,10, ay =1/2, a4 =ag=1/10, and a9 =1/4. In table 6-2,
cost element cost X3 was a linear combination of Xj, X;, and W; specifically,
Xy=2Xi+3 X + W (6-16)
where X; and W were given to be independent random variables and

X, =%X1. The functional relationships given by equations 6-15 and 6-16

imply the following correlations:

Px, x =1 for v=2,4,6,10
Py, w =0 from theorem 5-3

Pxow =Pyy o = Paw =0 from theorems 5-6 and 5-3
In,
Pxsx, =P Er. =0.9898 from theorem 6-1 (see below)

pX3,X2 - ng,,%XI

= Py, x, = 0.9898 from theorem 5-6

Pxyw = p{gx,w,w =0.1424 from theorem 6-1

Theorem 6-1 If Y=aX+Z where a is a real number and X and Z are

independent random variables then

Pyx = aZX and Pyz = Sz
Oy Y
A proof of this theorem can be developed from equation 5-29 (chapter 5).
The correlations listed above reveal the degree correlation exists between
pairs of cost element costs in this WBS (table 6-2). The existence of these

correlations is hard to notice when Costgy is expressed in the form
COStSyS =!§§(')'1'X1 +W+X5 + X4 +X8 +X9

In the above, Costg is now written as the sum of six independent random

variables instead of the sum of ten random variables (equation 6-8).
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Capturing the combined effect of these correlations on the distribution

function of Costg,, is accounted for by the coefficient %Ol. This case
discussion illustrates how correlation can exist in a WBS, by virtue of the
functional relationships defined among the cost element costs. Functional
relationships such as those in this WBS (table 6-2) are very common in cost
analysis. Although these relationships are primarily defined for developing

the point estimate of Costgy, such relationships come along with implied

correlations. Cost analysts must be aware of this implication so as not to
inadvertently induce correlation (or consider it absent) when it is already
present. This concludes case discussion 6-1.¢

Many cost elements in case discussion 6-1 were a function of a single

random variable. Thus, computing E(Costsys) and Var(CostSys) was

“relatively” straightforward. More complex relationships are given in case

discussion 6-2. Case discussion 6-2 illustrates the computation of E(Costgy)
and Var(Costgy) when cost elements are functions of two or more random

variables. In addition, it will be seen how a program’s schedule can be
incorporated into cost estimating relationships. Case discussion 6-2 is the last

in this chapter. It lays the groundwork for studying cost-schedule probability
tradeoffs and will be revisited in chapter 7.

Case Discussion 6-2 Suppose the government is acquiring a new digital
information system. The system consists of three large screen displays for
“situation rooms,” forty-seven display workstations, two support processors,
and a suite of electronic communications equipment. Suppose the system
requires new software to be developed for the large screen display, as well as
for the display workstation. The work breakdown structure for this system is
given in figure 6-6. Cost element data for this WBS are provided in table 6-4.
Additional information about these data follows.
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Additional Information

Figure 6-6 presents the system’s WBS. Table 6-4 presents the cost element
data associated with this WBS.

Electronic System
Level 1 Digital
Infoxmmim System Cost Sys
1
| | 1 | i
Prime Mission Systems Eng & System Test & Data Training
Level 2 Product (PMP) gg%r&)m Mgt Eisv?’lsu)ation
X X 3 X4 Xs
I
[ [ |
Level 3 Hardware (HW) Software (SW) I:ggnaglt;n( ;x‘;l:‘i\ )
X1 X2 X
Large Screen Displays (3 Units) X, L Display 13
Leveld E S e Xt R Yo
Support Processors (2 Units) X3
Communications Equipment Xj34
Figure 6-6. Case Discussion 6-2 Work Breakdown Structure
Table 6-4. Cost Element Data for Case Discussion 6-2
WBS Cost Element Functional Distribution Distributions of
Cost ($K) Relationship (if applicable) Random Variables
(if applicable) (if applicable)
Xlll Umf(?OO, 750)
X112 Unif (3200, 4000)
Xl 13 Umf(ZOO, 250)
X114 Unif (350,380)
Xia1 £y (281'2) £y, ~ Unif(10,15)
I ~ Trng(80,100,150)
X 4
13 O'OS(XI?.] +2321X118)
X, (ersgm)' erssm ~ Unif (20,25)

d 2,15,
(SLsgpr )(PremSched) SLsgpy ~ Trng(12,15,25)

PrgmSched ~ N(33.36,1.94)
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Table 6-4. Cost Element Data for Case Discussion 6-2

(Concluded)
WBS Cost Element Functional Distribution Distributions of
Cost ($K) Relationship (if applicable) Random Variables
(if applicable) (if applicable)
X, ( ernz)' l P Unif(15,20)
(SLSTE)(PrngChed) SLstg ~ Unif(4,7)
PrgmSched ~ N(33:36,1.94)
Xy o.os(x13 Xy xm)
Xs o.oz(x,3 Xt Y X, 15)

In figure 6-6, the total cost of the digital information system is
COStSyS = Xl + X2 + X3 + X4 + X5 (6—17)

Furthermore, assume in table 6-4 that Xlll’ XllZ’ X113, X114, b4 I,¢

sw’ sEpm’

SLgrppg. PrgmSched, ¢ and SLgrp are independent random variables.

TSTE’

In table 6-4, we have the following random variable definitions.

! i

Tsw® “TSEpM’

and ¢ are labor rates for software (SW) development,

TSTE
systems engineering and program management (SEPM), and system test

and evaluation (STE), respectively; the units are in ($K) per staff-month.

e ] denotes the number of delivered source instructions (DSI) to be
developed. The units are in thousands (X); that is, / is expressed in
terms of KDSI (as discussed in chapter 5).

o SLeppy and SLgpp represents staff-levels (i.e., the number of
persons) for the SEPM and STE activities, respectively.

o PrgmSched denotes the total months to complete the development of

the digital information system.
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From the information given in this case discussion,

a) Determine E(Costgys) and Var(Costgy).
b) Discuss correlations implied by the relationships in table 6-4.

¢) What distribution function(s) approximate Fg, - (x)?

Preliminaries — Before beginning part a), a simplified expression for Costgy

will be developed. Recall from equation 6-17, the system’s total cost is given
by

COStSyS = Xl + XZ + X3 + X4 + X5
This can be written as

COStSyS =COStPMP+X2 +X3 +X4 +X5 (6-18)
where
COStPMp = Xl = X“ + XlZ + X13 (6-19)

From figure 6-6 and equation 6-19
COStpMp = Xl = X“ + X12 + X13

=(Xpq1 + Xppp + Xp13 + X114) + (X121) + X13
From table 6-4

4
Xi3= 0-05(X121 X ls)
Combining these relationships
COSIPMP = 1.05(X1“ + X“z + X113 + Xl 14+ XlZl) (6-19a)

COStPMp = IOS(X“ + X12) (6-20)

In electronic systems, the sum (Xj|+X;;) is known as the prime mission
equipment (PME) cost, that is, PME is the total cost of just the system’s
hardware and software. Thus, equation 6-20 is equivalent to

COSIpMp = I.OSCOSIPME (6-21)
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Equation 6-21 will be used later in this case discussion. Returning to equation
6-18 we had

Costgys = Costpyp +(Xa + X3) + (X4 + X5) (6-22)
From table 6-4, X, and X5 can be written as

4
X, = 0.05(X13 X+, X ls) =0.05X, = 0.05Costppp

Xs = 0.02()(13 +Xig + D X ,s) =0.02X; = 0.02Cost pyp
This simplifies Costgy, (equation 6-22) to
Costgys =1.07Costpyp + (X, + X3)
Costgys =1.07Costpyp +Q (6-23)
where Q0 =(X, + X3). We will now work with equation 6-23 to determine the

mean and variance of Costgy.

Part a) From theorem 5-7, E(Costgy) is

E(Costgys) = 1.07E(Costpyp) + E(Q) (6-24)

It can be shown, in this case, that Cov(Costpyp,0)=0. Therefore, from

theorem 5-8, Var(Costgy) is
Var(Costgys) = (1.07)* Var(Costpyp) + Var(Q) (6-25)

To compute E(Costgys) and Var(Costsy), it is necessary to determine the

means and variances of Costpyp and Q. Because these computations are

lengthy, part a) is separated into three sections a.l1), a.2), and a.3). They are
defined as follows:

a.1) Focuses on computing the mean and variance of Costpyp.
a.2) Focuses on computing the mean and variance of Q.

a.3) Combines a.1) and a.2) to determine the mean and variance of Costgy.
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a.1) Mean and Variance of Costpyp
To compute E(Costpyp) and Var(Costpyp), recall from equation 6-21
COSIPMP = I.OSCOStpME (6-26)
where
Costpme =X +X12 = (X1 + Xi2 + X1 + Xppa) + Xpo1 - (6-27)
From equations 6-26 and 6-27
E(Costpyp) = 1.05E(Costpy) (6-28)
=LOSE((Xy11 + Xy12 + X113 + X114) + X121)
= LO5[E(X)11) + E(Xy12) + E(Xy13) + E(X114) + E(Xyy))]
Since it is assumed (refer to figure 6-6), in this case discussion, Xjj1, Xiq2-
X113. X114, and Xjp; are independent random variables, we can write
Var(CostpMp) =1.052 Var(Costpy) (6-29)
=1.05%Var(Xy11 + Xi12 + Xp13 + X114) + X121)
= I.OSZ[Var(X“l) + Var(XUz) + Var(XI 13) + Var(X114) + Var(Xlzl)]

From table 6-4, Xyy1 ~ Unif(700,750); therefore, from theorem 4-2

_ 2
700 + 750 (750 12700) —208.333

BXi11)=————=725 and Var(¥;;)) =

Similarly, for X112, X“3, and X114

- 2
E(Xy10) = 3200 + 4000 = 3600 and Var(X,jy) = (4000 ]23200)

= 53333.333
2

200 +250 250 - 200)%
E(Xyy3) = 5 ( )

=225 and Var(X“3) = —“————i-i-—-—-— = 208.333

_acm?2
E(le):}_sf)..g.}_g_?. =365 and Va"(X114)=9§-9‘-£-5-9)*=

To complete the calculation of E(Costpyp) and Var(Costpyp) it is necessary

75

to compute mean and variance of Xjp; (the cost to develop the display

software). Two methods from chapter 5 will show ways this can be done.
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Method 1 — Transformation of Variables Approach

In this method, transformation formulas developed in chapter 5, specifically those summarized
in table 5-5, are used. From table 6-4, software cost, denoted by Xj,, is

Xy = £y, (281'2) (6-30)
It was given the random variables ¢, and I are independent. From theorem 5-5

E(Xyyy) = (e, )E[281'2)

Tsw
Since ¢ o ™ Unif(10,15), from theorem 4-2 E({, )= 12.5. Therefore,

E(X;;) =12.5 [E(2.81‘-2 | (6-31)
Recall if Effsy =c;I?, and I~ Trng(a,m,b), then from equation 5-76 (table 5-5)

1 —mcz+2 _

ac2+2 aCZ+2 __amc2+l
E(E =
(Effsw) Clb—am—a_ cp +2 ¢y +1
[ 6+2 _ 42 G+l _pe+2
e, 2 1 |b m bm b 6-32)
b-am-b|  c;+2 ¢ +1

Relating equation 6-32 to this case, ¢; =28, ¢, =12, a=80, m=100, and b=150.
Substituting these values into equation 6-32 yields E(2.81'%)=790.23. Therefore,

Ils(x121 ) =12.5[790.23] = 9877.875 I :

(6-33)
We next compute Var(X;,;). From theorem 3-10 and the above results
Var(X;p) = B(XD )~ [EGa = E(XDy)-[9877.875] (6-34)
To determine Var(Xj,,), it remains to determine E(X,Zn) in equation 6-34. Now,
E(xty)= E(f%sw (28112 )2) = E(efsw (7.841“)) (6-35)
Since the random variables ¢, ~and I are independent
E(x})= E(e7,, )B(7.841%4) (6-36)

We will take the following approach to compute E(l iw ) Since
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varlt )= E(6% ) [t )|

We have
B(e2,) = Var(ty,, )+ [E(es, )]2 (6-37)
Since é’,s I Unif(10,15), from theorem 4-2
E(ty,)=12.5 and Var(t,, )= 9—5—;—2@3 = %25

Substituting these values into equation 6-37 yields E(Zfsw):"lSS%. Therefore, equation 6-36
becomes
E(Xy) = 1584 E(7.8414) (6-38)

To compute E(7.84I 2'4) equation 6-32 will be used again with ¢; =7.84, ¢, =2.4, and a=80,

m=100, and b=150. Substituting these values into equation 6-32 yields
E(7.841%%) = 640626.866. Therefore,

E(x};) =158+ (640626.866) = 101432587.1 (6-39)

Hence, equation 6-34 becomes

Var(X3;) =101432587.1-[9877.875]% = 3860172 585

and Oy, =Var(X;5;) =1964.732

Method 2 — Mellin Transform Approach

(6-40)

In this method, the Mellin transform (refer to section 5.5) is used to illustrate an alternative
approach to computing E(X,;) and Var(X;,;). Recall that
Xz =6y, (2.31’-2) (6-41)
From theorem 5-13, the Mellin transform of X;,; is
My, (=M, ()28 ' M;(1.25-12+1) (6-42)

From equation 5-98
E(Xy3) =My, @) =M, , @28 M(122)-1.2+1)

E(X12))=28M,_ ()M,2.2) (6-43)
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Since £, ~Unif(10,15), from table 5-8 (equation 5-108)

11 2 2
M, (2)=———(152-10%)=12.5
gy @) 2(15—10)( )

Since I~ Trng(80,100,150), from table 5-8 (equation 5-109) with s=2.2, a=80, m =100, and
b =150 we have

M;(2.2) =282.225

Therefore
E(Xpy) = 2.8(12.5)(282 225) = 9877.875 ] (6-44)
To compute Var(X;,;) we have
Var(Xy31) = EQXhy) - [EXp) = Exhy) - [9877.875) (6-45)
From equation 5-99
E(X{y) =My, 3)
=M, 2.8 M,(1.23)~1.2+1)
=(2‘8)2le BGYM,;(3.4) (6-46)
where
1 3 _103
M, (== 152 -10%) =158
taw @ 3(15-10)( )=1584
and M;(3.4) =81712.61045

Substituting these values into equation 6-46 yields E(X%;)=101432587.1. Therefore

Var(X 1) =101432587.1-[9877.875* = 3860172.585

and oy = 1/Var(xm) =1964.732 ¢

All the information needed to complete the computation of E(CostPMP) and

(6-47)

Var(CostpMp) is available. From equation 6-28, recall that
E(Costpyp) =1.05E(Costpyr)

= IOS[E(XHI) + E(Xl 12) + E(X] 13) + E(Xl 14) + E(XIZI)] (6-48)
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Substituting the expected value computations developed in the above
discussions into equation 6-48 yields

E(Costpyp) = 1.05[725 +3600 + 225 + 365 + 9877.875]

=15532.52 ($K) (6-49)
From equation 6-29

Var(CostpMp) = 1052 Var(CostpME)

-1 052|:Var(X111) + Var(Xl 12)

(6-50)
+Var(X1 13)+ Var(Xl 14) + Var(Xul)

Substituting the variance computations developed in the above discussions
into equation 6-50 yields

208.333 +53333.333

2
Var(C -1
ar(Costppp) =1.05 L208.333+75 +3860172.585

]: 4315182.336 ($K)*> (6-51)

and Ocogr,, . =+ Var(Costpyp) =2077.3 ($K)

a.2) Mean and Variance of 0
The above discussion presented the mean and variance of the system’s prime
mission product cost. To complete the computation of E(Costgyg) and
Var(Costgy,), defined by equations 6-24 and 6-25, the values of E(Q) and
Var(Q), where O = X, + X5, must be determined.

From table 6-4, observe that X, and X3 are not independent random
variables. They are both a function of the random variable PrgmSched .
From theorem 5-7, E(Q) is the sum of the means of X, and X3 regardless of

whether or not the two random variables are independent. Hence,
E(Q) = E(X; + X3) = E(X3) + E(X3) (6-52)

However, because X, and X3 are not independent, Var(Q) is not just the sum

of their respective variances. Applying theorem 5-8 to this particular case,
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Var(Q) = Var(Xy)+ Var(X3) +2px, x,0x,0x, (6-53)
The following presents the computations for the means and variances of X,

and Xj, as well as py, y,, their correlation coefficient.

Mean and Variance of X,
From the WBS in figure 6-6, recall that the cost of systems engineering and program
management (SEPM) is denoted by X,. From table 6-4, X, is a function of three random
variables; specifically,

X3 = £rcpons (SLsgpy  PrgmSched) (6-54)

Given ¢ SLsepy » and PrgmSched are independent random variables

sepm ’
E(X3)= E(E,SEPM )E(SLSEPM)E(Prngched) (6-55)

From the distribution functions for I?,SEPM,

SLgppy» and PrgmSched in table 6-4, it can be

shown that
E(X,) = (22.5X17%)X33.36) =13010.4 (6-56)
The variance of X, is
Var(X,) = EX3) -[EC))
which is equivalent to
Var(Xy) = E(£3 .y SLippa PrgmSched® ) =[13010.4] (6-57)

where E(Xzz) = E(

E(£2

TsePM

€3SEPM SL%EPM PrngchedZ). To compute Var(X,), it remains to determine

rszn® SLSEPM > and PrgmSched are independent

SL%EPM Prngchedz), Again, since ¢

E(X3)= E(e*Z'SEPM

SL3gpy PremSched® )= E(¢% ., VE(SUgem |E(PrgmSched®)  (6-58)

Similar to the previous calculations involving ¢, _, it is left to the reader to show that

E(z2

TsEPM

)=508% (6-59)
since ¢, ~Unif(20,25).
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From table 6-4, the distribution function for SEPM staff-level is triangular, specifically

SLggpy ~ Trng(12,15,25). To determine E(SL?;EPM) the relationship

2
E(SL%EPM) = Var(SLsgpy ) +| E(SLsgpu )] (6-60)
is used. From theorem 4-3, it can be shown that
Var(SLsgpy ) =7.7222 and E(SLggpy)=17%
Therefore,
2 112
E(SL3gpu ) =7.7222+[174] =308.166 (6-61)
The last term in equation 6-58 is E(Prngchedz). To compute this expected value, note that
E(PrgmSched®) = Var(PrgmSched) + [E(PrgmSched)|” (6-62)
From table 6-4, PrgmSched ~ N(33.36,1.94). Therefore
E(PrgmSched®)=1.94+[33.36 =1114.829 (6-63)
The expected value of each term in equation 6-58 has now been determined. Thus,

E(e"'

Tsepm

SLigpym Prngchedz) = (5084)(308.166)(1114.829)

=174639133.4 (6-64)

Combining the above results Var(X;) is

Var(X,) =174639133.4—[13010 4] = 5368625 24

(6-65)

and Oy, = Var(Xy) =2317.03

Mean and Variance of X,
From the WBS in figure 6-6, recall the cost of system test and evaluation (STE) is denoted by
X5. From table 6-4, X5 is a function of three independent random variables; specifically,

X3 = €y (SLsye )(PrgmSched) (6-66)

The same approach to determine the mean and variance of the cost of SEPM can be used to
determine the mean and variance of the cost of STE. For this reason, it is left to the reader to

verify the following:
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E(X3)= E(¢%,; )E(SLre )E PremSched®)

= (3084 X(31X1114.829) =10655907.19
Since ¢, ~Unif (15,20)_? t Since SL g7z ~ Unif (4,7)

Var(Xs) = E(X3)-[EX))

With

Substituting the results from equations 6-67 and 6-68 into equation 6-69 yields

Var(X3) = 346028.38

and Oy, =+ Var(X3) =588.242

Correlation Between X, and X,

By definition (equation 5-29), the correlation between X, and X; is

COV(Xz,X3) - E(X2X3)-' E(Xz)E(X3)
o.XZUX:; C")(2"-"X3

sz,X3 =
From table 6-4, it was given that

X5 = L spppSLsgpy PremSched

X3 =€ grp SLsrp PrgmSched

281

(6-67)
(6-68)

(6-69)

(6-70)

(6-71)

(6-72)

(6-73)

All the terms in equation 6-71, except for E(X,X3;), have been determined from the above

computations. The term E(X,X3) is
E(X,X3) = B{t 5 SLseen PramSched £, SLsqiPrgmSched)

= E(KrSEPM £’31‘E SLSEPM SLSTE Prngchedz)

Since ¢ £

Tsepm *

variables, equation 6-74 can be written as

E(X,X3) = E(t g0 VE( oV E(SLsppg )E(SLsy )E(PrgmSched®)

(6-74)

rere SLsEPM» SLste, and PrgmSched were given to be independent random

(6-75)
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It can be determined that
E(X3X3) = (22.5)(17.5)(175)(5.5)(1114.829) = 41847893.59 (6-76)
In equations 6-75 and 6-76, the term E(Prngched2)=1114‘829 comes from equation 6-63.

Substituting the result from equation 6-76 into equation 6-71 yields

py . = 184789359 - (13010.4)(32109)
%2.X3 (2317.03)(588.242)

=0.0534 (6-77)

All the terms necessary to complete the computation of E(Costgy) and

Var(Costg,s) have now been determined.

a.3) Mean and Variance of Cost gy
From equation 6-24
E(Costgys) =1.07E(Costppp) + E(Q)
=1.07E(Costpyp) + E(Xy + X3)
=1.0TE(Costppyp) + E(Xy) + E(X3)
=1.07(15532.52) +13010.4 +3210.9
=32841.1 ($K) (6-78)

From equation 6-25

Var(Costgys) = (1.07)> Var(Costpyp) + Var(Q)
=(1.07)2 Var(Costpyp) + Var(X, + X3)

= (1.07)2 Var(Costpyp) + Var(Xa) + Var(X3) +2py, x,0x,0x,
=(1 .07)2 (4315182.336) + 5368625.24 +346028.38 + 2(0.0534)(2317.03)(588.242)

=10800671.5 ($K)? (6-79)
which implies
O Costg,, = +/Var(Costsy;) =3286.44 ($K) (6-80)

In summary, the mean cost of the digital information system is 32.8 ($M) and
the standard deviation is 3.3 ($M). This concludes part a) of this case

discussion.
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Part b) Some Implied Correlations
This section discusses the correlations implied by some of the cost

relationships in this WBS. The correlation between cost element costs X;, for

i=1,...,5, is best explored from the relationships given in table 6-4. From
equation 6-21, we have

COStpMP =1.05 COStpME

Since Costpyp is a linear function of Costpyy (with positive slope) the

correlation between Costpyp and Costpyg is unity. In table 6-4, we are also

given that

4
X13 = 0.05(){121 + ZS“I XI 1s) = O.OSCOStPME
Thus, the correlation between X3 (the integration and assembly cost) and
Costpy is unity. There also exists perfect correlation between Costpyp and
other cost element costs in this WBS. From table 6-4 and the Preliminaries
section of this case discussion, we can write

X4 =0.05Costppp and X5 =0.02Costppyp

Thus, there are implied correlations between X4 and Costpyp and X5 and
Costppp because of these functional (mathematical) relationships. Here, the
correlation between the cost of Data, denoted by X4, and Costpyp is unity.
Similarly, the correlation between the cost of Training, denoted by Xs, and
Costpyp is unity. These relationships illustrate “logical” or “factor-based”
cost relationships, which are common in electronic systems cost analyses.
Lastly, there is another important correlation in this case discussion. Notice
the costs of SEPM and STE, denoted by X, and Xj, are functions of
PrgmSched — the system’s development schedule. As a result, a positive
correlation exists between Costgy; and PrgmSched. The following presents a

derivation of this correlation.
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Correlation Between Costg,, and PrgmSched
From equation 6-23, recall that

Costgys =1.07Costppyp +(X5 + X3) =1.07Cost ppyp + Q (6-81)
To simplify notation, let C= Costg,; and P=PrgmSched. The correlation between
the system’s total cost C and its development schedule P will be determined. By

definition, this correlation is

- E(CP)—~ E(C)E(P)

Pc,p
' OcOp

(6-82)

where
E(C)=32841.1 (from equation 6-78)

E(P)=33.36 (seen in table 6-4)
¢ =3286.44 (from equation 6-80)
0 p =+/1.94 =1.39283 (seen from table 6-4)
To determine P p weneed E(CP). Multiplying equation 6-81 by P, we can write
E(CP) = E[(1.07Cost pyyp + Q)P]
=1.07E(Cost pypP) + E(QP)
It can be shown, in this case, that Cov(Costpyp,P)=0. Therefore, from theorem 5-1

E(Cost ppgpP) — E(Cost ppyp) E(P) = 0= E(Cost pyypP) = E(Cost ppyp)E(P)

Thus,
E(CP)=1.07E(Cost pyp)E(P) + E(QP)

E(CP) =1.07(15532.52)(33.36) + E(QP) (6-83)
To complete the computation of E(CP) it remains to determine E(QP). Given the

specifics of this case discussion, the random variables Q and P are not independent so

E(QP)# E(Q)E(P). The computation of E(QP) proceeds as follows:

E(QP) = E[(X, + X3)P] = E[e,m SLsgpu P+, SLSTEPZ]
2 2
= E[t,,,, SLsern P? |+ E[t ., SLs7sP? (6-84)
Since the random variables £, . €. . SLsgpy, SLsrg, and P were given to be

independent, equation 6-84 can be written as
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E(QP)= (‘E{f F— ]E[SLSEPM I+ E{f e ]E[SLSTE ])E[P 2] (6-85)

- (22,5(17 b+ 17.5(5.5))1 114.829

=542085.6013
Therefore
E(CP) =1.07(15532.52)(33.36) + 542085.6013 = 1096522.009
and
per= E(CP)- E(O)EP) _ 1096522.009 —(32841.1)(33.36) _ 0.206 (6-86)

0cop " (3286.44)(1.39283)

Part ¢) Distribution Function Approximation to FCOS,SW (x)

Figure 6-7 presents distributions that approximate the cumulative distribution
function of the system’s total cost. The curves defined by the two solid lines
reflect two assumed theoretical distributions. They are a normal distribution
(the left picture in figure 6-7) and a lognormal distribution (the right picture
in figure 6-7), each with mean 32.8 ($M) and standard deviation 3.3 ($M).

Feos,, (%) Feos, (X)
0.95 0.95
0.5 0.5
M) (M)
328 382 32.7 385
Normal CDF vs the Simulated CDF LogNormal CDF vs the Simulated CDF

Figure 6-7. Assumed Theoretical CDFs vs the Simulated CDF for Costgy
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A third distribution is shown in figure 6-7 by a series of 20 “points”. These
points reflect random statistical samples (values) of Costgy, sampled by

Monte Carlo simulation (explained in section 6.3). In figure 6-7, the curve
implied by these “points” is the simulated distribution function for Costgy.
Observe in figure 6-7 how closely this simulated distribution matches the
assumed normal distribution, as well as the assumed lognormal distribution

for Costg,s. The closeness with which these “points” fall along the two

curves (each defined by the solid lines in figure 6-7) visually suggests the

reasonableness of the assumption that the distribution function for Costgy,

can be approximated by a normal or by a lognormal. Although this is a
practical conclusion, it is an informal one. A more formal conclusion could
be derived from the Kolmogorov-Smirnov (K-S) test, illustrated in case
discussion 5-1. This would reveal whether the normal and the lognormal
distributions are statistically plausible models for the underlying distribution

function of Costg,, in this case.

6.2.2 Approximating the Distribution Function of System Cost

This section provides guidance for approximating the distribution function of
a system’s total cost. Some of this guidance reflects mathematical theory;
some of it reflects observations from numerous project applications.

In the examples and case discussions presented in this book, the normal
distribution often approximates the distribution function of a system’s total
cost. There are many reasons for this. Primary among them is Costgy (a
system’s total cost) is a summation of WBS cost element costs. Within the

WBS, it is typical to have a mixture of independent and correlated cost
element costs. The greater the number of independent cost element costs, the

more it is that the distribution function of Costg,, is approximately normal.

Why is this? It is essentially the phenomenon described by the central limit
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theorem (theorem 5-10). Seen in this book, the central limit theorem is very
powerful. It does not take many independent cost element costs for the
distribution of Costgy,s to move towards normality. Such a move is evidenced
when 1) a sufficient number of independent cost element costs are summed
and 2) no cost element’s cost distribution has a much larger standard
deviation than the standard deviations of the other cost element cost

distributions. When conditions in the WBS result in Costg, being positively

skewed (i.e., a non-normal distribution function), then the lognormal often
[6,7]" approximates the distribution function of Costgy.

What drives the distribution of Costgys to be normal or to be skewed? To
address this, cost relationships that frequently occur in a system’s WBS are
examined. The electronic system is used to provide a context for the
discussion. Work breakdown structures associated with other system classes

(e.g., spacecraft systems) can also exhibit properties similar to those discussed
below.

From the electronic system WBS in figure 6-8, Costg,, is defined by
Costgys =X+ Xp + X3+ Xy +...+ X, (6-87)
where Xi,X;,X3,Xy,...,X,, denote the n costs of the system’s level 2 cost
elements (refer to equation 6-1). These elements include (but are not limited
to) the system’s prime mission product (PMP), as well as the system’s systems

engineering, program management, and system test. Referring to figure 6-8,
equation 6-87 can also be written as

Costsy = Costpyp + Y, X; (6-88)

where Costppyp = X .

* Many practitioners [8-11] have empirically shown the beta distribution also well
approximates the distribution of Costg,.
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In the cost analysis of electronic systems, the distribution function of Costgy
is often observed to be approximately normal. Situations specific to cost
analysis contribute to this observation. The following cases describe the most
common of these situations. In each case, the distribution functions for

Costpyp, X2, X3,Xy,...,X,, are assumed to be “well-behaved” (e.g.,
unimodal, continuous).

Electronic System
Level 1 Y
Costgys
1 .
1 1 | I 1
Prime Mission Systems Program System Test nth WBS
Level 2 {Product °PMP) || Engineering Management | } and Evaluation | *** |} Cost Element

X, X, X3 Xy X,

1

1 | 1
Level 3 Hardware (HW) Software (SW) Integration and
Xy XLZ Assembly (I&A) X13

Figure 6-8. An Electronic System WBS

Case A
If (in equation 6-88) the distribution function of Costpyp is normal and X,,X3,Xy,...,X, are
linear functions of Costpyp, such as X; = a;Costpyp where a; 20 (i=2,...,n), then the
distribution function of Costg, is normal with mean

(+ay+az+...+a, )E(CostpMp)

and variance
(1 +£12 +a3 +... +a,,)2Var(CastpMp)

Case A is a direct consequence of the following proposition.

Proposition 6-1 If X is a normal random variable and Y =aX, where a is a

constant, then the distribution function for Y is normal with mean aE(X) and

variance a® Var(X).
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Case B
If (in equation 6-88) Costpyp and X,,X3,X,,..., X, are independent random variables and each

are normally distributed, then the distribution function of Costg, is normal with

n n
mean E(CostpMp) + 2 E(X,) and variance Var(CostPMp) + 2 Var(X,)
i=2 i=2

Case B is a direct consequence of the following proposition.

Proposition 6-2 If Xy,X,,Xs,....,X; are independent normally distributed
random variables and Y = Xj + X, + X3 +...+ X, , then, regardless of the size

of k, the distribution function of Y is normal with mean Zf_lE(X,-) and
. k
variance Ei=1 Var(X;).

Case C

Suppose (in equation 6-88) Costpyp, X5,X3,Xy,....X,, are independent random variables.
Furthermore, suppose Costpyp, X9,X3,X4,....X, are not necessarily each normally
distributed. If the number of cost element costs in the sequence Costpyp, X5,X3,X4,.... X, is

sufficiently large with none dominating in standard deviation, then (by the central limit

theorem) the distribution function of Costgy, is approximately normal with

n n
mean E(CostpMP) + Z E(Xi) and variance Var‘(CostPMP) + 2 Var(X,»)
i=2 i=2

The above three cases stem from mathematical theory. The next two cases
originate from observations. They are not intended to be rigorous findings;

rather, they reflect results often seen in practice.

Case D
Suppose (in equation 6-88) Costpyp is normal and Costpyp,X3,X3,Xy,..., X, are independent
random variables. Furthermore, suppose X5,X3,Xy,...,X, are not necessarily each normally

distributed. If the number of cost element costs in the sequence X,,X3,X4,...X, is
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sufficiently large with- no X; (i=2,..,n) dominating in standard deviation, then the
distribution function of Costg,, is approximately normal with

n

n
mean E(CostpMp) + 2 E(X,») and variance Var(CostPMP) + Z Var(X,-)
i=2 =2

Case D stems from the influences of the central limit theorem and proposition

6-2. To see this, recall from equation 6-88 Costgy, is given by

n
COStSys = COSIPMP + 2i=2 Xi

If the distribution function for Costpyp is normal and the distribution
function of the sum 2:;2 X; is approximately normal (by the central limit
theorem), then Costgy is approximately the sum of two normally distributed
random variables. In case D, Costpyp and 2:;2 X; are independent. Thus,
from proposition 6-2, the distribution function of Costgy, is approximately

normal.

Case E
Suppose (in equation 6-88) Costpyp is normal. Suppose the sequence X;,X3,X4,....X,
contains some cost element costs correlated to Costpyp (with correlation coefficient

PCostyyp. X, ) and some that are uncorrelated to Costpyp. Suppose X,,X3,Xy,...,X, are mutually
independent random variables. If the number of X;’s (i22) uncorrelated to Costpyp is
sufficiently large, with none of the X;’s (correlated or uncorrelated to Costpyp) dominating in
standard deviation, then the distribution function of Costgy is approximately normal with

n
mean E(CostpMp) + 2 E(X,-)
i=2

n n
and variance Var(Cosl PMP) + 2 Var( X; ) + 22 PCostyypsX; O Costppgp T X
i=2 i=2
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In all but case C, the distribution function for Costpyp was given to be
normal. This is common in electronic systems. The normality of Costpyp is
primarily driven by the central limit theorem, where Costpyp typically

reflects the sum of many independent hardware and software costs.

6.2.2.1 The Normality of Costpyp
In electronic systems (refer to the WBS in figure 6-8) Costpyp is defined as
the sum of three cost element costs; specifically,
Costpyp = X1 = X11 + X2 + Xi3 (6-89)
Equation 6-89 can also be written as
Costpyp = Costpyp + Xi3 (6-90)

where Costppp is the system’s prime mission equipment cost. It represents

the total cost of the system’s hardware and software; that is,

COStPME = X“ + X12 6-91)
The normality of Costpyp will be discussed by examining distribution

functions that frequently characterize Xj;, Xj;., and Xj3.

Distribution Function of Hardware Cost

Typically, a system’s total hardware cost Xj; is the sum of the individual

hardware item costs. Referring to figure 6-8, suppose
X“=X1“+X“2+X“3+...+X“j (6-92)

where X;y; (i=12,...,j) are independent random variables representing the
costs of the individual hardware items. Under appropriate conditions, the

distribution function of Xj; can be approximately normal by the central limit

theorem (theorem 5-10); that is, X; ~ N(E(X“), Var(Xn)) with

E(X)= E(Xj11) + E(Xy12) + E(Xu?,) +...+ E(X“])
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Var(Xyy) = Var(Xy11) + Var(Xy12) + Var(Xy13) +... + Var(Xyy )

If the distribution functions for Xjy; (i=12,...,j) are well behaved, then the
approximation (in most cases) is good for small j (e.g., not less than or equal
to j=35 hardware items). The more asymmetric (skewed) the distribution
functions are for X;y; (i=L2,...,j), the larger j must be for X;; to become
approximately normal.

In practice, it is very common to see the normal distribution approximate
Xq1, particularly in systems designed around the use of commercial hardware
items. The uncertainty in the cost of such items tends to vary independently

and cost analysts often describe these uncertainties by distribution functions
that are well behaved.

The cost distribution functions of hardware items that require custom
development may be asymmetric. In practice, this asymmetry typically
reflects a positive skew. The presence of asymmetry in the distribution
functions for Xjy; (i=12,...,j) will affect how well (or how quickly) the
normal distribution approximates X;;. If j (in equation 6-92) is sufficiently
large and the asymmetry is isolated to just a few hardware items whose cost
standard deviations contribute only a small amount to the standard deviation
of X1, then the distribution of X;; may still be approximately normal. If
Xq; is the sum of just a few asymmetric distributions (i.e., j is small), then the
distribution of X;; may indeed be non-normal. In such circumstances, the
lognormal (or beta distribution) might well approximate the distribution
function of X;;. It is a good exercise for the reader to study this further.
After reading section 6.3, use the Monte Carlo simulation technique to study
the reasonableness of certain distribution function approximations of Xj;.
Do this using various symmetric and asymmetric distributions for the costs of

the hardware items Xjy; (i=12,...,j).
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Distribution Function of Software Cost
Can the distribution function of software cost also be approximated by the
normal distribution? The answer depends on how software cost is determined.

Cost analysts sometimes determine software cost according to the equation
C: (o C
Xi2 = £y, [e1lx,, )2 + €1, )2 + .+ elx,) 2] (6-93)

where Iy (i=12,...,k) is the number of thousands of delivered source

instructions (KDSI) to be developed for the ith software function in the

system and cj, ¢, and £, = are constants (discussed in section 5.4.2).

Equation 6-93 is traditionally applied in cases where the individual software
functions are independently developed. Such functions would have minimal-
to-no interdependencies. They would integrate and execute in the system in a

highly modular fashion. Under this formulation, if ¢, =~ is a constant, k is
sufficiently large, and 1 X, 21,I X1 yeeend Xy, Are independent random variables,

then, by the central limit theorem, the distribution function of Xj, will be
approximately normal.  This result is dependent on the way Xj is
mathematically defined. Other definitions for X}, may yield distribution

functions for Xj, that are skewed. Two such definitions are given by
equations 6-94 and 6-95.
X12 =/

I
'sw ?’. (6—94)

Software functions that have
independent development efforts

| eiIx,, ) +eillx,, ) +..+alx, ) J‘

Xz =erswl
+CI(IX12(m+1) + Isz(mz) *ot IXlZ(m+k)

Software functions that have
dependent development efforts (6-95)

)2
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Equation 6-94 (refer to chapter 5) might be used when software cost is based
on the total size I (in DSI) of the software to be developed and its
development productivity rate P, (i.e., DSI per staff-month). Here, / and F,
may or may not be independent random variables. Equation 6-95 is
traditionally applied when a combination of independently developed
software functions (the first part of equation 6-95) and a set of software
functions that share functionality (the last part of equation 6-95) characterize
the system.

In the definitions for Xj, (given by equations 6-93, 6-94, and 6-95) it

would be reasonable to consider £, ~a random variable instead of a constant.

This consideration also affects whether the distribution function of X, can
be approximated by a normal distribution. The reader is encouraged to
explore these questions further, using the Monte Carlo simulation technique
discussed in section 6.3.

Distribution Function of Integration and Assembly (I&A)
Similar to the above discussion, the distribution function for X;3 — the cost
to integrate, assemble, and checkout the system’s hardware and software
(known in the cost analysis community as I&A) is also driven by how X5 is
mathematically defined. The following approaches are commonly used to
define X5.
Approach 1 — Cost Factor
Cost analysts often define X;; as a scalar multiple of Costpy, that is,

Xi3 = aCostpyg (6-96)
where a>0. For electronic systems, a typical value for ais 0.05. If Costpyy is normally
distributed, then from proposition 6-1

X3 ~ N(aE(Cosz,,ME),azVar(cos;,,ME)) (6-97)

Under this approach, the correlation between X;3 and Costpyy is unity.
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Approach 2 — Level of Effort
Another way cost analysts define X;3 is by a level-of-effort formulation; that is,

Xi3 =4y, SLy, Ty, (6-98)
where Z,XB is a labor rate (e.g., dollars per staff-month), SLy,, is the staff-level (i.e., the
number of persons) needed for I&A, and TX13 is the number of months needed for I&A

activities. From chapter 5 (table 5-9), if n is sufficiently large, then the distribution function

of a product of n-independent random variables is approximately lognormal. If ¢ oy ? SLy,, »
and Ty, are independent then X;; is the product of three independent random variables. Are

three independent random variables enough for the distribution function of X;3 to be well
approximated by the lognormal? After reading section 6.3, use the Monte Carlo simulation
technique to explore this question.
To summarize, conditions can occur in the WBS that drive the distribution
functions for Xjy,Xjy,X;3 to be normal (or approximately normal). Recall
Costpyp is defined by

Costpyp = X1 + Xip + X3 = Costpyp + X13 (6-99)

where
COStpME =Xyt XIZ (6-100)

If X;; and X;, are independent normal random variables, then the
distribution function for Costpyy is normal with mean

E(Xn) + E(X12)
and variance

Var(Xyy) + Var(Xy,)
Furthermore, if Costpyy is normally distributed and X;; is defined by
approach 1; that is, X3 =aCostpyr a>0 then Costpyp is normally
distributed (by proposition 6-1) with mean

1+ a)E(Xy)) + E(Xp0)]
and variance
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(1+a)*[Var(X;;) + Var(X;p)]

Even if X;; is not normal, which is certainly possible in approach 2, the
distribution function of Costpyp may still be approximately normal.
However, this depends on the extent the distribution of Costpyr influences
the overall distribution of Costpyp. If Costpyy is normal with standard
deviation significantly larger than the standard deviation of X;3 and Xj3 is
independent of Costpyp, it is possible that the normal distribution
approximates the distribution of Costpyp. Again, it is a worthwhile exercise
for the reader to explore cases when this is (and is not) true.

From these discussions, it is seen how frequently the distribution function

for Costgy; can become approximately normal. This is not to argue that
Costgy, is always normally distributed. Rather, it is to encourage cost analysts

to study the mathematical relationships they define in a work breakdown
structure to see whether analytical approximations to the distribution function

of Costgys can be argued. Where possible, analytical forms of the distribution
function (e.g., the normal, the lognormal, the beta) of Costgy, are desirable.

Such forms reveal much information about the “cost-behavior” in a system’s
work breakdown structure. They offer analysts and decision-makers insight

about this behavior, so potential areas for cost-reductions and tradeoffs might
be easily seen.

6.3 Monte Carlo Simulation

Throughout the many examples and case discussions presented in this book,
analytical techniques have been used to deveiop (or approximate) the
probability distribution of a system’s cost. As previously stressed, analytical
solutions to these types of problems are recommended. However, at times
there are limitations when using analytical techniques. A system’s work

breakdown structure cost model can contain cost estimating relationships too
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complex for strict analytical study. In such circumstances, a technique known
as the Monte Carlo method is frequently used. This section provides an
introduction to this method.

The Monte Carlo method falls into a class of techniques known as
simulation. Simulation has varying definitions among practitioners. For
instance, Winston [12] defines simulation as a technique that imitates the
operation of a real-world system as it evolves over time. Rubinstein [13]
offers a definition close to the context of this book:

“Simulation is a numerical technique for conducting experiments on a digital computer,
which involves certain types of mathematical and logical models that describe the

behavior of a business or economic system (or some component thereof) over extended

periods of real time.”

With easy access to powerful microcomputers and applications software (such
as electronic spreadsheets), simulation is a widely used problem-solving
technique in management science and operations research.

The Monte Carlo method involves the generation of random variables from
known, or assumed, probability distributions. The process of generating
random variables from such distributions is known as random variate
generation or Monte Carlo sampling. Simulations driven by Monte Carlo
sampling are known as Monte Carlo simulations. Mentioned in the first
chapter, one of the earliest applications of Monte Carlo simulation to cost
analysis problems was at the RAND Corporation [14]. Since then, Monte
Carlo simulation became (and remains) a popular approach for studying cost
uncertainty, as well as in evaluating the cost-effectiveness of a system’s design
alternatives.

For cost uncertainty analysis, Monte Carlo simulation can be used to
develop the empirical distribution of a system’s cost. In concert with

Rubinstein’s definition, the WBS serves as the mathematical/logical cost model
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of the system within which to conduct the simulation. In this context, the
steps in a Monte Carlo simulation are as follows:

e  For each random variable defined in the system’s WBS, randomly select (sample)
a value from its distribution function, which is known (or assumed).

e Once a set of feasible values for each random variable has been established,
combine these values according to the mathematical relationships specified
across the WBS (such as the relationships given in case discussions 6-1 and 6-2).
This process produces a single value for the system’s total cost.

e  Repeat the above two steps n-times (e.g., ten-thousand times). This produces n-
values each representing a possible (i.e., feasible) value for the system’s total
cost.

e  Develop a frequency distribution from these n-values. This distribution is the

simulated (i.e., empirical) distribution of total system cost.

In cost uncertainty analysis, Monte Carlo simulations are generally static
simulations. Static simulations are those used to study the behavior of a
system (or model) at a specific point in time. In contrast, dynamic simulations
are those used to study such behavior as it changes over time.

To illustrate the concept of Monte Carlo sampling, consider the problem of
determining the mean effort (in staff-months) to develop a software
application. For discussion purposes, assume effort Effgy, (refer to chapter 5)
is given by

Effow =+ (6-101)

r

where the distribution functions for I and P, are given in figure 6-9.
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0.003
0.00002 0.01

50000 100000 100 200 250 500 1000

I B Effsw

53,423 113 47277

97,346 182 534.87

78,321 142 g, =1 55156

92,837 187 I 496.45

51,837 158 328.08

93,283 163 572.29

73,176 109 671.34

83,710 151 554.37

67,194 169 397.60

66,512 102 652.08

Arithmetic Average 523.14 staff-months

Expected Value 519.86 staff-months
(see example 5-17)

Figure 6-9. Monte Carlo Sampling — 10 Random Samples
Drawn from the Distribution Functions for I and P.
In the Monte Carlo method, samples for / and P, are randomly drawn from
their distribution functions. These samples are Monte Carlo samples. For
each sample (value) of / and F,, a value for Effsy is computed according to
equation 6-101. This process of sampling [ and P, and computing the
associated Effgy is repeated thousands of times. From the many sampled
values of Effqy, a simulated (empirical) probability distribution of Effgy is
determined. In addition, various statistical measures such as the mean of
Effsw can be computed from these sampled values. In figure 6-9, ten
random samples of / and P, are shown along with the associated values of

Effsw. From these samples an average value of Effsy is computed. After
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only ten Monte Carlo samples, this average is close to the computed expected
value of Effqy (refer to example 5-17).

A way to randomly sample values from a given distribution function is
essential to the Monte Carlo method. There are a number of well-established
techniques for randomly sampling values. One method is the inverse
transform method, which is presented in the following section. For a full
discussion of random variate generation techniques, as well as the general

topic of modeling and simulation, the reader is directed to Rubinstein [13]
and Law and Kelton [15].

The Inverse Transform Method
The inverse transform method (ITM) is a popular technique for generating
random variates from continuous distributions. It is a relatively
straightforward method for distribution functions that exist in closed form,
such as the uniform or triangular distributions (see chapter 4). Alternative
random variate generation techniques, such as those described in Law and
Kelton [15], are recommended for working with distribution functions that
are not in closed form. The following illustrates the ITM.

Suppose a set of random variates for the size of a software application must be

generated, where the distribution function for size (expressed as delivered source

instructions I) is given by

1 ~ Unif (50000,100000)
From equation 4-5 (chapter 4), the cumulative distribution function for I is

t - 50000

@)=
7 50000

50,000 < <100,000 (6-102)

To apply the ITM ‘a random number 77, where 0<7n <1, is generated. Next, a value
for ¢ that satisfies 7= F;(r) is found. Repeating this process for various 7 produces

Monte Carlo samples that stem from the given distribution function. In this case,

Monte Carlo samples of I whose underlying distribution function is equation 6-102
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are generated. For example, if a random number generator (discussed next) produces
n = 0.06846, then the value of 7 such that

t - 50000
50000

0.06846 =

is 53423, which is the first value of I shown in figure 6-9. Generalizing further, the
above expression can be solved for any 77; this yields

t =50,000(n +1) (6-103)
Equation 6-103 is known as the random variate generator for 1. In particular, notice if
n=0, n:-%—, and n=1, then equation 6-103 generates r=50,000, ¢=75,000
(which is the median of I), and 7=100,000, respectively. Thus, for any random
number 7} the random variate generator given by equation 6-103 will produce Monte

Carlo samples whose underlying distribution function is precisely that given by

equation 6-102.

Essential to random variate generators is the generation of random numbers
identified in the above discussion by 7. In general, random numbers are
independent random variables uniformly distributed over the unit interval. In
Monte Carlo sampling, independent random samples are drawn from the
standard uniform distribution, defined by equation 6-104.

6-104
0 otherwise ( )

1 0£x<1
fx(x)= {

The statistical literature offers a number of algorithms for generating random
numbers. One such generator, commonly available in many present-day
software applications, is given by the recursive relationship

Xjp1 =(ax; +c)(modm) (i=0,1,2,..) (6-105)
where a (the multiplier), ¢ (the increment), and m (the modulus) are
nonnegative integers. Generators that produce random numbers by equation
6-105 are known as linear congruential generators [13, 15]. They produce a

sequence of integers between 0 and m—1. Equation 6-105 is equivalent to
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Xj41 = ax; ¢ —mK; (6-106)
where k; = [(ax,— +c)/ m] is the largest integer less than or equal to
(ax; +¢)/m. For each x; (i=1), the associated random number between O
and 1 is generated by 1,1 =(x;41)/m. For example, suppose a=75, ¢=50,
m =5000, and xg =20. The term xg is known as the initial value or seed. It
is assigned arbitrarily to the random number generator. Using equation 6-
106, the first two random numbers, 7; and 7),, associated with the sequence of
integers xj,xp,...,X4999 are

x; =T75(20)+ 50 — 5000x = 1550 ~ 5000(0) = 1550
Xy =T75(1550) + 50 - 5000k, = 116300 —5000(23) = 1300

where
Ko =[(75(20) + 50)/ 5000] = 0
Ky =[(75(1550)+ 50)/ 5000] = [23.26] = 23
1550 1300
Thus, =150 6310 and 1, =222 0,260
us = 5000 ¢ 2 =$000

In a strict sense, random numbers generated by recursive relationships are not
“purely random.” Because they are produced by a deterministic procedure,
with results that can be replicated, such numbers are considered

“pseudorandom.” In practice, the values of a, ¢, m, and x; are selected in a

way to create a sequence of x;’s such that their corresponding 7;’s appear to

be statistically independent uniformly distributed random variates in the unit
interval.

The Question of Sample Size in Monte Carlo Simulations

In Monte Carlo simulations, a question frequently asked is “How many trials
(the sample size) are necessary to have confidence in the outputs of the
simulation?” Morgan and Henrion [16] provide a guideline for determining
sample size as a function of the precision desired in the outputs of a Monte

Carlo simulation. Specifically, formulas are presented to address the question:
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“What sample size is needed so that, with probability o, a true fractile of the
underlying distribution falls between a pair of fractiles estimated from the
Monte Carlo sample?”

Morgan-Henrion Guideline [16] Define m as the sample size and let x, be
the p-fractile of X (the underlying distribution); that is, P(X<x,)=p. Let ¢
satisfy the probability P(~c<Z<c)=o, where Z~ N(0,1). Then, the pair of

fractiles (X;,x,) estimated from a Monte Carlo sample with

j=mp=cJmpd-p) __ [p0-p) (6-107)
m m

k=mp+6m=p+c\/?’(j_zli (6-108)
m m

contains x, with probability «. For different sample sizes m, figure 6-10

illustrates with probability 0.95 (¢ =2) the values of i and k such that the true
median of the distribution falls between (X,,X,). The lower and upper curves
in figure 6-10 are generated from equations 6-107 and 6-108. As the sample
size increases, the difference between the lower and upper curves decreases
dramatically. With 100 samples you can be 95 percent confident the true
median x5, falls between the estimated fractiles X, and X,¢. Increasing
that sample size by a factor of 100 (m =10,000) brings the same degree of
confidence to within Xg49 to Xgs;. As a guideline, 10,000 trials (Monte
Carlo samples) should be sufficient to meet the precision requirements for

most Monte Carlo simulations, particularly those conducted for cost
uncertainty analyses.
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0.6
m i k
100 0.400 0.600
2000 0478 0.522
k 5000 0486 0.514
05 10000 0490 0.510
ﬁ 30000 0.494 0.506
50000 0.496 0.504
0.4 Sample Size m
100 10000 30000 506’00

Figure 6-10. Sample Size for Monte Carlo Simulations

Exercises

Exercises 1 through 4 refer to case discussion 6-1.

1. Review case discussion 6-1 and verify the computations that led to
E(Costgys) and Var(Costgy).

2. Prove theorem 6-1.

3. Referring to case discussion 6-1, use theorem 6-1 to show that
a) py,x, =09898  b) py, w=0.1424

4.  The coordinates listed below are the twenty points shown in figure 6-5a.
They are values for (x, FCOS,SW (x)) determined by Monte Carlo
simulation. The simulation was run with a sample size of n=5000.

(31.01,0.05), (33.225,0.10), (34.76,0.15), (35.885,0.20), (36.849,0.25),
(37.785,0.30), (38.67,0.35), (39.563,0.40), (40.272,0.45), (41.069,0.50),
(41.728,0.55), (42.326,0.60), (43.191,0.65), (44.183,0.70), (45.151,0.75),
(46.208,0.80), (47.368,0.85), (48.548,0.90), (51.028,0.95), (59.235,1)
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Using the values above for (x, FCOstys (x)), apply the K-S test (chapter 5)
to show Costgy,; ~ N(40.98,36.18) is a statistically plausible model for

the distribution function of Costgy.

Exercises 5 through 9 refer to case discussion 6-2.

5.

10.

Review case discussion 6-2 and verify the computations that led to
E(Costgys) and Var(Costgy).

Referring to table 6-4 and equation 6-19a, show that
a) CovW(Costpyp,0)=0, where O =X, + X3
b) Cov(Costpyp,P)=0, where P = PrgmSched

Use the Mellin transform technique to verify, in case discussion 6-2, the

mean and variance of the cost of STE, which was denoted by X;.

Review case discussion 6-2 and verify the computations that led to the

correlation between Costg,s and PrgmSched.

The coordinates listed below are the twenty points shown in figure 6-7.
They are values for (x, Fg,g Sy (x)) determined by Monte Carlo

simulation. The simulation was run with a sample size of n=5000.

(27.88,0.05), (28.72,0.10), (29.44,0.15), (29.97,0.20), (30.45,0.25),
(30.9,0.30), (31.3,0.35), (31.74,0.40), (32.2,0.45), (32.64,0.50),
(33.07,0.55), (33.43,0.60), (33.87,0.65), (34.41,0.70), (34.99,0.75),
(35.6,0.80), (36.29,0.85), (37.39,0.90), (38.72,0.95), (45.71,1)

Using the values above for (x, FCOS!S)'K (x)), apply the K-S test to show
that a normal distribution and a lognormal distribution, each with mean
32.8 ($M) and standard deviation 3.3 ($M), are statistically plausible

models for the distribution functions of Costg,y.

Use the Inverse Transform Method (section 6.3) to develop a random
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number generator that produces triangularly distributed random
variables.
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Chapter 7

Modeling Cost and Schedule Uncertainties —
An Application of Joint Probability Theory

All uncertainty is fruitful...so long as it is Life is the art of drawing sufficient
accompanied by the wish to understand. conclusions from insufficient premises.
Antonic Machado Samuel Butler
Juan De Mairena (1943) Lord, What is Man?

Note-Books (1912)

7.1 Introduction
When cost uncertainty analyses are presented to decision-makers, questions
often asked are “What is the chance the system can be delivered within cost
and schedule?’ “How likely might the point estimate cost be exceeded for a
given schedule?” ‘“How are cost reserve recommendations affected by
schedule risk?” During the past thirty years, techniques from univariate
probability theory have been widely applied to provide insight into
P(Cost < x{) and P(Schedule < x,). Although it has long been recognized
that a system’s cost and schedule are correlated, little has been applied from
multivariate probability theory to study joint cost-schedule distributions. A
multivariate probability model would provide analysts and decision-makers
visibility into joint and conditional cost-schedule probabilities, such as

P(Cost < xy and Schedule < x;)
and

P(Cost < xll Schedule = x;)

This chapter introduces modeling cost and schedule uncertainties by joint
probability distributions. A family of joint distributions [1] has been
developed for this purpose. This family consists of the classical bivariate
normal and two lesser known joint distributions, the bivariate normal-

lognormal and the bivariate lognormal. Experiences with Monte Carlo

308
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simulations suggest these distributions are plausible models for computing
joint and conditional cost-schedule probabilities. Appendixes B and C
summarize key statistical formulas associated with the bivariate normal-
lognormal and bivariate lognormal distributions. Formulas for the bivariate

normal distribution are well known and are summarized in this chapter.

7.2 Joint Probability Models for Cost-Schedule

Mentioned above, decision-makers often require understanding how
uncertainties between a system’s cost and schedule interact. A decision-
maker might bet on a “high-risk” schedule in hopes of keeping the system’s
cost within requirements. On the other hand, the decision-maker may be
willing to assume “more cost” for a schedule with a small chance of being
exceeded. This is a common tradeoff faced by decision-makers on systems
engineering projects. This is illustrated in figure 7-1.

Fgchea (%2) Feost(%1)
1 1
0.805
0.5
0.206
months ($M)
43 53 X2 50 874 1078 150 %
Fyepea(X2) = P(Sched < x5) LeftCDF  P(Cost < x)|Sched < 43)

Middle CDF P(Cost < x;)
Right CDF  P(Cost < x;| Sched < 53)

Figure 7-1. Tlustrative Distributions for a System’s Cost and Schedule

Suppose the cumulative distribution functions for a system’s cost and
schedule are shown in figure 7-1. The cumulative distribution function for
schedule (the left-side of figure 7-1) indicates a 20 percent chance of

delivering the system within 43 months. However, there is slightly better than
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an 80 percent chance of doing so in 53 months. Given this information, a
decision-maker might ask, What is the cost tradeoff given these two possible
schedule outcomes? To answer this question, we need the distribution
function of the system’s cost conditioned on schedule. Three cumulative
distribution functions for the system’s cost are shown on the right-side of
figure 7-1. The left CDF is the cost distribution conditioned on a schedule of
43 months. The right CDF is the cost distribution conditioned on a schedule
of 53 months. The middle CDF is the overall cost distribution conditioned
across the entire schedule distribution (i.e., not conditioned on a specific
schedule outcome). The difference between the conditional median cost
(107.8 ($M)) given a schedule of 53 months and the conditional median cost
(87.4 ($M)) given a “high-risk” schedule of 43 months is 20.4 ($M).* In the
context of figure 7-1, this difference in cost is certainly significant for any
cost-schedule tradeoffs under consideration. This discussion highlights how
joint probability models can be used to analyze cost-schedule interactions and
reveal important tradeoffs between them.

The following presents a family of bivariate probability distributions for
modeling cost-schedule uncertainty. This family of distributions are
candidate theoretical models that may be assumed by an analyst, when joint or
conditional cost-schedule probabilities are needed. These distributions have
key features desirable for cost analysis. First, they can directly incorporate
correlation between cost and schedule on a given system. Second, we will see
that their marginal distributions are either both normal, normal and
lognormal, or both lognormal. Shown throughout this book, marginal
distributions such as these are frequently observed in Monte Carlo simulations
[2,3] of system cost and schedule.

* Example 7-4 will discuss figure 7-1 further and show how these conditional median costs are
determined.
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7.2.1 The Bivariate Normal

This section presents the classical bivariate normal distribution and
summarizes its major characteristics. An important feature of this distribution
is its marginal distributions, which are both univariate normal.

In cost analysis, normal distributions can arise when a system’s cost is the
sum of many independent WBS cost element costs. Normal distributions can
also occur in schedule analyses. For instance, a system’s schedule is
approximately normal if it is the sum of many independent activities in a
schedule network. If normal distributions characterize a system’s cost and
schedule, then the bivariate normal could serve as an assumed” model of their

joint distribution.

Mathematical Definition
Suppose X; and X, are two random variables defined on —oo <Xy <o and

—o0 < X9 <oo. Let

E(X) = px, = (7-1)
E(Xy)=px, = Hy (7-2)
Var(X))= 0%, =0t (7-3)
Var(X,) = 0‘;2(2 = O‘% (7-4)

The pair of random variables

(X),Xp) ~ Bivariate N((i, 112), (07,63, py 5 ) (7-5)

has a bivariate normal distribution if

* In general, the true joint distribution of (X;,X,) cannot be uniguely determined from the
marginal distributions of X; and X,. Only when random variables are independent can their
joint distribution be obtained from their marginal distributions. From chapter 5 (section
5.1.2) recall that two random variables X; and X, are independent if and only if

Ix.x, (Fix2) = fx, () fx, (x2) -
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1 “ly

Ix,,x, (%1, %) = e’ (7-6)
@m)010241- P,

2 2
we 12 (xl“ﬂl] _2p12(x1*Hl)(x2~#2J+(x2-ﬂz)
1‘91,2 (7] ’ o] oy op3
for —eo< x;<oo and —eo<xy<oo. The terms f; and o7 (i=1,2) in the

above expression are given by equations 7-1 through 7-4. The correlation

term p, , in equation 7-6 is

where

Pl,z = lev X, (7-7
The admissible values for p, , are given by the interval
-1<p,, <1
If two continuous random variables X; and X, have a bivariate normal
distribution, then
by thy
Pl <X <handay <X, <by)=[ " [ fy, x,(0,%0) dudxy (7-8)
@y

where fx, x, (x1,x3) is given by equation 7-6.

Marginal and Conditional Distributions
A characteristic of the bivariate normal distribution is the distribution of X;
and the distribution of X, are each univariate normal. These are the marginal

distributions. They are given by

1 —%[(Xx “ﬂ})z/UxZ]
e (7-9)
27 O

o2 - 167

filx)=

folxg) = T/ini"'—a{e (7-10)
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Important tradeoffs in cost analysis often involve assessing the impact a given
set of schedules has on the likelihood that system cost will not exceed a
required threshold. To make these assessments, the conditional probability
distribution is needed. Conditional distributions provide probabilities of the
type P(X;<a|lX, =b). If two continuous random variables X; and X, have a
bivariate normal distribution, then the conditional probability density function

of X; given X, = x,, denoted by fX,} M (x1), is normally distributed. That is,

g
Xilxz ~ Ny +—Lpia(x2 ~11p), 02 (1= pEy)) (7-11)
2

Similarly

(o]
Xol xi ~ Ny +- 2 pray =), 030-pf2))  (7-12)
1

From equations 7-11 and 7-12, the conditional means and variances of the

bivariate normal distribution are

O
E(Xy|xp) = 1y +“(;;*P1,2(x2 - 1) (7-13)
o)
E(Xplxy) = 1y +';}"P1,2(x1 - 1) (7-14)
_ 2 2
Var(Xi|x;) = o1 (1- pi’2) (7-15)
_ 2 2
Var(X,|x)) = 05(1- piy) (7-16)

Views of the Bivariate Normal

Figures 7-2 and 7-3 provide views of a bivariate normal density function.
These figures are plots of

(X1, X3) ~ Bivariate N((100,48),(625,36,0.5))

Figure 7-2 is a surface view of this function, which has a “hill-like”
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appearance. The marginal distributions of X; and X,, viewed from the sides

of the surface, are both univariate normal.

&
& =
G 2
ST NS

RIS
(R
TR ]

2T

2
s 71
e
£
Ll
LRI
50 KLY 2
LA AR 7 A -
LR X, = Schedule (Months)
LA
150 L
X, = Cost ($M) <

Figure 7-2. A Bivariate Normal Density
(Xy,X7) ~ Bivariate N((100,48),(625,36,0.5))

The peak of the bivariate normal density function occurs at x; = and
X7 = [r. In particular,
1

Ix,,x, (M1, o) =
@m)o16241- P,

Another way to view the bivariate normal is to look at its topography, also

known as its contours. Contours of constant probability density h are
produced by finding x; and xj such that h=fy, x (x,xp). In general,
contours of the bivariate normal are ellipses concentric at (U, H,). Figure
7-3 illustrates a set of contours for the bivariate normal density specified in
figure 7-2. The innermost ellipse corresponds to h=0.001, the middle ellipse
corresponds to h=0.0005, and the outer ellipse corresponds to h=0.0001.
The contour associated with the peak of the bivariate normal is given by the

single point (t, lis).
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70
60

Schedule

(Months) 0
40
30

25 50 75 100 125 150 175
Cost ($M)
Figure 7-3. Contours of a Bivariate Normal Density

(X, X3) ~ Bivariate N((100,48),(625,36,0.5))

Example 7-1 Prove that the function given by equation 7-6 is indeed a joint
probability density function.

Solution To prove this, it is necessary to show

[ [ %, o3y gy =1 (7-17)

) OO

With some algebra, the density function fy x, (x1,x2) (equation 7-6) can be

factored as

1
fx,.x, (xpxz)—"—{r

~(xy-py)? 1207
e X1, X
570, }Q( 1,%2)

where

(=2 1262 (1— 2
Oxy,x9) = 1 —e (x,~b)" /1205 (1-pi2)
V27 (0341~ pf2)
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o - . o
and b=, + ——2—p1 5(xy = 7). Substituting this factorization of fx x, (x,x2)
oy v ’

into equation 7-17 yields

j’ 1 e—(xl—'u'l)z /20-12 J‘ 1 e——(XZ“b)Z /20‘%(1—[)12,2) dx2 dxl
~V2ro 270241~ pi2)

The right-most integrand in the expression above is the probability density
function of a N(b,03(1-p?,)) random variable, which by definition has
integral equal to unity. Similarly, the left-most integrand in the expression
above is the probability density of a N(,ul,crlz ) random variable. Therefore,

oo 00 oo

1 w2 /202
J' jfxl,XZ(xl,xz)dxzdxlz j «/2?0'1 e~ (1—H) /204 dx; =1

DO =00 —00

Example 7-2 Suppose the joint probability density function of a system’s
cost and schedule is a bivariate normal given by

(X;,X5) ~ Bivariate N ((100,48),(625,36,0.5))
where X; is the random variable that denotes the system’s cost ($M) and X,
is the random variable that denotes the system’s schedule (months).

Determine the median cost of the system conditioned on a schedule of 53
months.

Solution Following the notation specific to expression (7-5)

(X1, X5) ~ Bivariate N ((100,48),(625,36,0.5))
implies g, =100, y, =48, 67 =625, 05 =36, and p;, =0.5. The median
system cost conditioned on a schedule of 53 months is found by computing
Med(Xllxz =53). From expression 7-11, the conditional distribution of

Xlle is
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(e}
Xi| x5 ~ N(uy +-&-;—p1,2(x2 — 1), 02(1-pEy))

Given the parameters py =100, u, =48, 0'12 =625, 0% =36, and py, =0.5
X x5 ~ N(100+2.0833(x, —48), 625(1- (0.5)%))
and X1|53 ~ N(110.42,468.75)
Since the conditional distribution of system cost X1|x2 is normal,
Med(Xll 53)= E(X;|53)=110.42 ($M)
Figure 7-4 depicts the cumulative conditional cost distribution of X;|53. The

“point” shown along the distribution is aligned to Med(X{|53).

Fy (x,|x, =53)
1

0.5

($M) X
60 110.42 160 !
Figure 7-4. Cumulative Conditional Cost Distribution

(X1,X2) ~ Bivariate N((100,48),(625,36,0.5))

7.2.2 The Bivariate Normal-LogNormal
This section presents the bivariate normal-lognormal distribution and
summarizes its major characteristics. An important feature of this distribution
is its marginal distributions. One is normal and the other is lognormal.

In cost analysis, it is common for the distribution functions of a system’s

cost and schedule to be normal and lognormal, respectively, In particular, a
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system’s schedule is often observed (from Monte Carlo simulations) to be
lognormal if it is the sum of many positively correlated schedule activities in
an overall schedule network. Thus, if normal and lognormal distributions
characterize a system’s cost and schedule (or vice versa), then the bivariate

normal-lognormal could serve as an assumed model of their joint distribution.

Mathematical Definition
Suppose Y} =Xj and ¥, =InX, are two random variables where X; and X
are defined on —eo< Xy <eo and 0< xy <oo. If ¥} and Y, each have a normal

distribution, then the mean and variance of ¥; (i=1,2) are

E() =y, = pix, = iy (7-18)
Var(¥;) =% =0% =0t (7-19)
4
1 (Mx,)
E() = ly, =l =—2-1n{——————-——-~22 5 } (7-20)
(ux,)” +0%,
(ux,)? +0%
Var(ty) =0} =03 = 1n[W (7-21)
2

The pair of random variables
(X1, Xo) ~ Bivariate NLogN((i1, 112). (67,65 ,p12))  (7-22)
has a bivariate normal-lognormal distribution if

1 —tw

le’XZ ()Cl,)CZ) = e ? (7-23)
(275)0'10'2»\[1 _p12,2 X9

where
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2 2
w1 [xl“ﬂl] —2p (xl—Hll(lnxz*#z)_{lﬂxz*ﬂz]
1—p12’2 01 12 (o] (o)) o))

for —eo< x| <co and 0<x, <eo. The terms ; and o7 (i=12) in the above

expression are specifically given by equations 7-18 through 7-21. The

correlation term p, , in equation 7-23 (derived in appendix B) is

(ecr% _pl/2

PLa=Pry, =P, TPx x5 (7-24)

The admissible values for p,, are given by the interval -1<p,,<1.

Therefore, admissible values for PX,.X, (in equation 7-24) are restricted to

the interval

) 0
2= < Px X, < (7-25)
eG% . | e(’% -1

If two continuous random variables X; and X, have a bivariate normal-

lognormal distribution, then
by by
P(a; <X, <b, and ay < X, <by) = ja [ %, Ge1,02) dy g (7-26)
2 "4
where fx, x,(x1,x;) is given by equation 7-23.

Marginal and Conditional Distributions

For the bivariate normal-lognormal distribution given by equation 7-23, the
distribution of X; is normal and the distribution of X, is lognormal. These

are the marginal distributions. They are given by

21 - 2.2
ji(xl) - e 2[()61 W) 1o ] (7_'27)
2r o
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1 ~Hanx, —p )/ 67|
= 7-2
alx2) AJ27 Oy Xy ¢ (7-28)

The conditional distributions of the bivariate normal-lognormal distribution
are normal and lognormal. In particular,
o
Xy|xp ~ N(uy +0_—]P1,2(1n X2 — M), 012(1"912,2)) (7-29)
2
and
Xofxi ~ LogN(uy +2 — ), 030 -p? 7-30
21x1 ~ LogN(l, o Pr2(x1 = 1), 05(=pi2)) (7-30)

From these conditional distributions it can be readily shown (left for the
reader) that

o
E(X)|xp) =ty +—L p| ,(Inxp — 1) (7-31)
oy -
Hy +%P1,2(X1 ~m)+}o3(-piy)
EX,|x)=e (7-32)

and Var(Xy|xy) = of(1- pty) (7-33)

A1y +g”2’pl,2(xl -i))
Var(X,|x)=e %1 e*(e* -1) (7-34)

where z= 0'%(1 - pﬁz).

Views of the Bivariate Normal-LogNormal
Figures 7-5 and 7-6 provide views of a bivariate normal-lognormal density
function. These figures are plots of

(X, X,) ~ Bivariate NLogN((100,3.86345),(625,0.0155042,0.501944))

Figure 7-5 is a surface view of the function, which has a “hill-like”
appearance. The marginal distributions of X; and X,, when viewed from the

sides of the surface, are univariate normal and univariate lognormal,
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respectively. A topographic view of a bivariate normal-lognormal density
function in figure 7-5 is shown in figure 7-6.

1
X, = Cost ($M) 30

Figure 7-5. A Bivariate Normal-LogNormal Density
(X;,X3) ~ Bivariate NLogN((100,3.86345),(625,0.0155042,0.501944))

In figure 7-6, the innermost contour corresponds to A =0.001, the middle
contour corresponds to £ =0.0005, and the outer contour corresponds to

h=0.0001. The point (ux,,Hx,)=(100,48), shown in figure 7-6, stems from

(X1, X3) ~ Bivariate NLogN((100,3.86345),(625,0.0155042,0.501944))

This is seen in the following example.

Example 7-3 Assume the joint probability density function of a system’s cost
X and schedule X, is bivariate normal-lognormal with density function
given by equation 7-23. Suppose X; has mean 100 ($M) and variance 625
($M)>. Suppose X, has mean 48 (months) and variance 36 (months)®. If the
correlation between the system’s cost and schedule is

pX]’ X, =0.5

determine the median system cost conditioned on a schedule of 53 months.
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70

60

Schedule
(Months) 0

40

30

25 50 75 100 125 150 175
Cost ($M)

Figure 7-6. Contours of a Bivariate Normal-LogNormal Density

(X,,X,) ~ Bivariate NLogN((100,3.86345),(625,0.0155042,0.501944))

Solution First, determine the five parameters that specify the bivariate

normal-lognormal defined by expression 7-22. Since Hx, =100, 0')2(] =625,

Hx, =48, 0‘%2 =36, equations 7-18 through 7-21 give

' 7-35
E(H) =y, = iy, = Hy =100 739
Var(Y;) =0} =0%, =0f =625 (7-36)

4
1 (1x,)
E(Y,) = pty, = jip = —In| ——52—— | =3.86345 (7-37)
2 2| (ux,) +0%,

2 2
+0
Var(Y)=0% =03 =In -(ﬂ%l—-—z—ﬁ =0.0155042 (7-38)
(Bx,)
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(eo% _pi/2

PR =Pyy, =Pk, “Px X, o, 0.501944 (7-39)

From 7-25, the interval for the correlation between X; and X,, in this

example, is restricted to

-0.996126 < Py x., < 0.996126
142

Thus, the correlation given between the system’s cost and schedule is

admissible since —0.996126 < 0.5<0.996126. From the above computations,

the parameters of the bivariate normal-lognormal distribution are

(X1, Xy) ~ Bivariate NLogN((100,3.86345),(625,0.0155042,0.501944)) (7-40)
The median system cost conditioned on a schedule of 53 months is found by
computing Med(Xj|xy =53). From expression 7-29, the conditional

distribution of X)|x; is

Xy ~ N(py +§‘;‘P1,2(1n X —Nz),ﬁlz({-* pi2))
From equation 7-35 through 7-39
Xi| x ~ N(100 +100.8(In x, — 3.86345), 625(1 — (0.501944)%))
and X1|53 ~ N(110.8,467.5)
Since the conditional distribution of system cost Xl! X, is normal
Med(X;|53) = E(X;|53)=110.8 ($M)
Figure 7-7 depicts the cumulative conditional cost distribution of X;|53. The

“point” shown along the distribution is aligned to Med(X;|53).
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Fx1 (Jcllx2 =53)
1
0.5

. M)
60 110.8 160

X

Figure 7-7. Cumulative Conditional Cost Distribution

(Xy,X,) ~ Bivariate NLogN((100,3.86345),(625,0.0155042,0.501944))

7.2.3 The Bivariate LogNormal

This section presents the bivariate lognormal and summarizes its major
characteristics. From a practical perspective, if the distribution functions of a
system’s cost and schedule are lognormal, then the bivariate lognormal could
serve as an assumed model of their joint distribution. However, it again must
be emphasized that this is indeed an assumption. In general, the true joint
distribution of a pair of random variables (X;,X,) cannot be uniquely
determined from the marginal distributions of X; and X,. Only when
random variables are independent can their joint distribution be obtained

from their marginal distributions.

Mathematical Definition
Suppose ¥} =InX; and ¥, =InX, are two random variables where X; and X,
are defined on 0<x; <ee and O0<x; <eo. If 1] and Y, each have a normal

distribution, then the mean and variance of Y; (i=1,2) are
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S o A N
E(Y)) =y, = ;= zln[ ol } (7-41)

(7-42)

(1x,)* +0%,
Var(Y,-): G%,i = O’lz =1nl:_£_t_)&.,_._____)£!..

(1x, )

The pair of random variables
(X, Xp) ~ Bivariate LogN(1,19), (0F, 05,y 5 ) (7-43)
has a bivariate lognormal distribution if

L
1 tw

(27r)0‘162\/1 = Plz, 2 %1%2

Ix,.x, (%1, %2) = (7-44)

where
2 2
we 1 (lnxl——ul] ~2p (lnxl-ul](lnxz—u2J+(lnx2—u2)
1—[)12’2 (3] 12 o1 (00 09

for 0<x; <ee and 0<xy <oo. The terms g; and o‘,?‘ (i=12) in the above

expression are given by equation 7-41 and equation 7-42. The correlation

term p, , in equation 7-44 (derived in appendix C) is

2 2
Piy= ! 1n[1+pX},X2\/e"1 -1Ve% —1] (7-45)

0102
The admissible values for p, , are given by the interval ~1<p, , <1. From

this, it can be shown that admissible values for py x, (in equation 7-45) are
restricted to the interval

e %192 1 %192 —1

N IR N F R

(7-46)
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If two continuous random variables X; and X, have a bivariate lognormal

distribution, then

by pb
P(a) <X, <b and ay < X, <by)= j; J‘a‘ fx, x, (61.x0) duydxy (7-47)
2 1

where fy, x, (x,x3) is given by equation 7-44.

Marginal and Conditional Distributions
For the bivariate lognormal distribution (given by equation 7-44), the
distribution of Xj is lognormal and the distribution of X, is lognormal. The

marginal distributions are given by

1 ~Hanx, ) /0]

. S 7-48

Sfi(xy) \/‘2‘71.—0_1 P e ( )

N ~Hanx, -y ) 107 |
2 e ¢

The conditional distributions of the bivariate lognormal distribution are both

(7-49)

lognormal. In particular,

O
X)| x ~ LogN(1 +B_—1—pl,2(ln X~ ), 0t (1-pty))  (7-50)
2
and
92 2 2
X,| x; ~ LogN(uy +;“P1,2(1U x—p),03(=-pip))  (7-51)
1

From these conditional distributions it can be readily shown (left for the
reader) that

o o) 201_p2
P2 M ~g5PLaly 507 (1-pf )

E(Xy|xy) = x5 (7-52)
92 o 1.2 1— 2
E(Xy|xp) = x P2 Ha=G Pt 205 (1-pi ) (7-53)



Modeling Cost and Schedule Uncertainties 327

2L 2y —2L o
and Var(XI|x2)=x2 0'2p1,Ze (i osz,zMz)ez (ezo - (7-54)
292 W, —Z2
Var(Xp|a) = xj 02 H2Ta P 22y (7-55)
where 2% =0t (1-pf,y) and z=03(1-pfy).

Views of the Bivariate LogNormal
Figures 7-8 and 7-9 provide views of a bivariate lognormal density function.

These figures are plots of
(Xq, X5) ~ Bivariate LogN((4.57486,3.86345),(0.0606246,0.0155042,0.505708))
Figure 7-8 is a surface view of the function, which has a “hill-like”

appearance. The marginal distributions of Xj and X;, viewed from the sides

of the surface, are both univariate lognormal.
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Figure 7-8. A Bivariate LogNormal Density
(Xy,X3) ~ Bivariate LogN((4.57486,3.86345),(0.0606246,0.0155042,0.505708))

A topographic view of a bivariate lognormal density function in figure 7-8 is
shown in figure 7-9. In figure 7-9, the innermost contour corresponds to

h=0.001, the middle contour corresponds to A=0.0005, and the outer
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contour corresponds to A =0.0001. The point (ux, . tx,) = (100,48), shown in
figure 7-9, stems from
(X1, X3) ~ Bivariate LogN((4.57486,3.86345),(0.0606246,0.0155042,0.505708))

This is seen in the following example.

70

60

Schedule
(Months) 50

30

25 50 75 100 125 150 175
Cost (3M)

Figure 7-9. Contours of a Bivariate LogNormal Density
(X}, X) ~ Bivariate LogN((4.57486,3.86345),(0.0606246,0.0155042,0.505708))

Example 7-4 Assume the joint probability density function of a system’s cost
X; and schedule X, is bivariate lognormal with density function given by
equation 7-44. Suppose X; has mean 100 ($M) and variance 625 ($M)’.
Suppose X, has mean 48 (months) and variance 36 (months)’. Let cost and
schedule have a correlation of 0.5. Show that the difference between the
median system cost conditioned on a schedule with a 20 percent chance of
being achieved and the median system cost conditioned on a schedule with an
80 percent chance of being achieved is 20.4 ($M).
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Solution 1t is given that gy =100, 0% =625, py, =48, 0%, =36, and
Px, x, =0.5. From equations 7-41, 7-42, and 7-45 the parameters of the

bivariate lognormal, given in expression 7-43, are

4 i 2 2
+0
I =lm .___S.l%fl_)_i_ = 4.57486 0-12 =1In (ﬂ(_l_)_i_)ﬁ. =0.0606246
2| (ux)* +oy, (Ux,)

4 i 2, .2
+0
Uy =lm __f.’i’?_)_z_ =13.86345 o‘% =In M =0.0155042
2 | (ux,)" +0%, | (uxy)
2 2
PLy= 16 ln{1+pxl Xz\/eol ~1Ve2 -—1}=0.50578
y O'l 2 ?

From expression 7-50, the cost distribution X; conditioned on a schedule of

x, months is
Y
Xi|x ~ LogN(py +—Lpia(inxy = ), 0f (1= pf))
2

50 X1| x9 ~ LogN(4.57486 + (In x5 — 3.86345),0.0451204) (7-56)

Figure 7-1 illustrates the cumulative distribution functions associated with this
example. The schedule distribution is shown on the left-side of figure 7-1.
Since X, is lognormal with mean 48 (months) and variance 36 (months)?,
X, ~ LogN(3.86345,0.0155042). It is left to the reader to show (chapter 4,
section 4.4) the value of x, such that P(X, <x,)=0.20 is 43 months
(rounded). Similarly, the value of x, such that P(X, <x,)=0.80 is 53
months (rounded). From expression 7-56, the conditional cost distribution

given x; =43 months is
X|43 ~ LogN(4.47,0.045)

Likewise, the conditional cost distribution given x, =53 months is
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X153 ~ LogN(4.68,0.045)
Since le %, is lognormal, we know from equation 4-39 (chapter 4) that

Med(X,|43)=¢**T =87.4 (M)

Med(X,|53)=¢*% =107.8 ($M)

Therefore, the difference between the median system cost conditioned on a
schedule with a 20 percent chance of being achieved and the median system
cost conditioned on a schedule with an 80 percent chance of being achieved is
20.4 ($M).

7.2.4 Case Discussion

In case discussion 7-1, we determine the cost of the digital information system
(discussed in case discussion 6-2) that has a 5 percent chance of being
exceeded but is conditioned on a development schedule that has a 5 percent
chance of being exceeded.

Case Discussion 7-1 In case discussion 6-2 (chapter 6), the random variable
Costg,s denoted the total cost ($K) of a digital information system and the
random variable PrgmSched represented its development duration (in
months). Suppose the joint probability density function of Costgys and
PrgmSched is bivariate normal. Let b be the number of months such that
P(PrgmSched < b)=0.95, where PrgmSched is normally distributed with
E(PrgmSched)=33.36 (months) and Var(PrgmSched)=1.94 (months)’.
Determine a such that P(Costgy < a| PrgmSched =b)=0.95.

To determine a, we first find b such that P(PrgmSched <b)=0.95. This
probability can be written as P(PrgmSched < b) = P(Z <v), where
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b= b~ E(PrgmSched) b-33.36

GPrngched 1.39283
. b—33.36
From table A-1, we have P(Z<v)=0.95 if v=—-—=1.645=b=35.65.
1.39283

Now, it remains to determine a such that
P(Costgy; < a| PrgmSched =35.65)=0.95
Since the joint probability density function of Costs,, and PrgmSched is

given to be bivariate normal, from expression 7-11, the distribution of Costgy

conditioned on PrgmSched is
(o}
Costgy,| PrgmSched = x5 ~ N(iy + gl pra(xy — ), 07 (1= piy))
2

From case discussion 6-2 (chapter 6)

Uy = E(Costgys) =32841.1 0'17‘ = Var(Costgy;) =10800698.3

Wy = E(PrgmSched) =33.36 0'% = Var(PrgmSched) =1.94
and P12 = PCostgy,, PremSched = 0206
Therefore,

Costgyg I PrgmSched = x5 ~ N(32841.1+ 486.06(x, — U5 ),10342359.87)
At xp =35.65 we have
Costgy | PrgmSched =35.65 ~ N(33954.18,10342359.87)
The density function of Costgy, conditioned on a system schedule of 35.65
months is normal, with mean 33954.18 ($K) and variance 10342359.87
($K)*. To find a such that P(Costgys < a| PrgmSched =35.65) = 0.95, let
P(Costgy < a| PrgmSched = 35.65)= P(Z < @)

a—33954.18
where = ——or—r . F table A-1, P(Z< =0. .
?= 034235087 om tavle (Z<@)=095 if
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_ a-33954.18
¢ = Hiosazsso 87
This implies that a =39244.4. Thus, the cost of the digital information system
that has only a 5 percent chance of being exceeded, when conditioned on a

schedule having the same chance of being exceeded, is 39244.4 ($K).

=1.645

7.3 Summary

The family of distributions described in this chapter provides an analytical
basis for computing joint and conditional cost-schedule probabilities. They
are mathematical models that might be hypothesized for capturing the joint
interactions between a system’s cost and schedule.

Seen throughout this chapter, a parameter required by these models is the
correlation between cost and schedule.” This can be a difficult value to
determine. One approach is the direct computation of the correlation as
illustrated in case discussion 6-2 (refer to equation 6-86). However, in some
instances this might not be analytically possible or practical. — Another
approach is to obtain an estimate of the correlation, from sample values
generated by Monte Carlo simulation. This is a reasonable method that can be
done regardless of the complexity of the cost-schedule estimation
relationships. Subjective assessments might be used. However, care must be
taken to specify an admissible correlation for the particular pair of random
variables. Furthermore, there may already exist an implied correlation by
virtue of how the cost-schedule estimation relationships are mathematically
defined (refer to case discussion 6-2). Subjectively specifying a correlation

when one is already present (only its magnitude is unknown or yet to be

* Because these models treat cost and schedule as correlated random variables, it is important

to recognize that they do not capture causal impacts that schedule compression or extension
has on cost.
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determined) is double counting correlation. Such a situation invalidates the
mathematical integrity of the cost uncertainty analysis.

In summary, systems engineering typically takes place in environments of
limited funds and challenging schedules. It is incumbent upon engineers and
analysts to continually assess affordability relative to the chance of jointly
meeting cost and schedule, or meeting cost for a given feasible schedule,
against specific tradeoffs in system iequirements, acquisition strategies, and
post-development support. The distributions described in this chapter are one

way such assessments may be made.

Exercises

1. Suppose the mean cost and mean schedule of a program is 100 ($M)
and 48 months, respectively. Furthermore, suppose the program’s cost
and schedule variances are 625 (months)> and 36 (months)’,
respectively. If the correlation between the program’s cost and
schedule is 0.5, find x, such that
a) P(Cost < x;|x, =53months)=0.95 if program cost and schedule
have a bivariate normal distribution.

b) P(Cost < x;|x, =53months)=0.95 if program cost and schedule
have a bivariate normal-lognormal distribution.
¢) P(Cost<x|x, =53months)=0.95 if program cost and schedule

have a bivariate lognormal distribution.

2. Suppose (X,,X,)~ Bivariate NLogN((l;, 1t,),(07,0%,p,,)) Wwhere uy,
U, 012, 022, and p; are defined in section 7.2.2. If u,, =+Je and

2 1 1
0y, =e(e—1) show that ———=< P —
X2 (e ) [e 1 le,Xz ,’e‘ T 1
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Suppose (X;,X,) ~ Bivariate LogN((u,, uz),(crf,O'?‘2 ,P12)) where wy, U,
0'12, 0'22, and py; are defined in section 7.2.3. If wy =gy, =+fe and

1
0% =0%, =e(e—1) show that —=<Pxx <1

Assume the joint probability density function of program cost X; and
schedule X, is bivariate normal-lognormal with density function given
by equation 7-23. Suppose X; has mean 100 ($M) and variance 625
($M)*. Suppose X, has mean 48 (months) and variance 36 (months)®.
Let program cost and schedule have a correlation of 0.5. Compute the
difference between the median program cost conditioned on a schedule
with a 50 percent chance of being achieved, and the median program
cost conditioned on a schedule with a 95 percent chance of being

achieved.

Show that the functions given by equations 7-23 and 7-44 are each joint

probability density functions.

If (X;,X,)~ Bivariate NLogN((li1, 1), (0%, 6% , p2)), where w;, 1y, 67,
o‘%, and p; , are defined in section 7.2.2, show that

o
a) E(X|xp) =y +;;‘P1,2(1n X~ M2)

Ha +g“2“131,2(x1 ~m)+io3 (-pfy)
b) EXolx)=e

c) Var(XliJQ) = 0'12(1 - p12,2)

c
2y +=2py 2 (1~ 141))
01

d) Var(X,|x)=e ¢*(e* —1) where z=03(1- pi7)
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It (X,,X,)~ Bivariate LogN((tt;, 11,), (07,05 ,p1)), where [y, [y, of,

022, and pj, are defined in section 7.2.3, show that

2) E(Xlx )= xozplz #1-72'.012#24“701 (1-pfy)
1142

by B(Xglay)= 5 P12 ook HhoR1opL)

FPL2 20 =ZP1ok2) 20 2O
c) Var(Xy|xp)= x2°2 R A O

-1
2p L R2p1 ot
d) Var(Xp|x)=x e Heamstak) e“(e*-1)

where z° ==c>'j?(1~—pi2) and z= G%G—Pi%z)-

References

1.

Garvey, P. R. 1996 (Spring). Modeling Cost and Schedule Uncertainties
— A Work Breakdown Structure Perspective. Military Operations
Research, V2, N1, pp. 37-43.

Garvey, P. R., and A. E. Taub. 1997 (Spring). A Joint Probability Model

for Cost and Schedule Uncertainties. The Journal of Cost Analysis, pp. 3-
27.

Abramson, R. L., and P. H. Young. 1997 (Spring). FRISKEM—Formal
Risk Evaluation Methodology. The Journal of Cost Analysis, pp. 29-38.



This Page Intentionally Left Blank



Epilogue

Considerations and Recommended Practices

One thorn of experience is worth a whole And long experience made him sage.
wilderness of warning. John Gay (1688-1732)
James Russell Lowell (1819-1891) Fables. Part 1. The Shepherd and the
Shakespeare Once More Philosopher

The following provides a set of considerations and recommended practices
when performing cost uncertainty analyses. They reflect the author’s insights
and experiences in developing, refining, and applying many of the techniques

presented in this book.

Treating Cost as a Random Variable — The cost of a future system can be
significantly affected by uncertainty. The existence of uncertainty implies the existence
of a range of possible costs. How can a decision-maker be shown the chance a particular
cost in the range of possible costs will be realized? The probability distribution is a
recommended approach for providing this insight. Probability distributions result when
independent variables (e.g., weight, power-output, staff-level) used to derive a system’s
cost randomly assume values across ranges of possible values. For instance, the cost of a
satellite might be derived on the basis of a range of possible weight values, with each
value randomly occurring. This approach treats cost as a random variable. It is a
recognition that values for these variables (such as weight) are not typically known with
sufficient precision to perfectly predict cost, ar a time when such predictions are needed.

This point is further articulated by the author’s long-time colleague S. A. Book™...

Book, S. A. 1997. Cost Risk Analysis — A Tutorial. Risk Management Symposium
Proceedings. Los Angeles, California: The Aerospace Corporation.
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“The mathematical vehicle for working with a range of possible costs is the probability
distribution, with cost itself viewed as a “random variable”. Such terminology does not
imply, of course, that costs are “random” (though well they may be!) but rather that they
are composed of a large number of very small pieces, whose individual contributions to
the whole we do not have the ability to investigate in a degree of detail sufficient to
calculate the total cost precisely. It is much more efficient for us to recognize that
virtually all components of cost are simply “uncertain” and to find some way to assign
probabilities to various possible ranges of costs. An analogue is the situation in coin
tossing where, in theory, if we knew all the physics involved and solved all the
differential equations, we could predict with certainty whether a coin would fall “heads” or
“tails”. However, the combination of influences acting on the coin are too complicated
to understand in sufficient detail to calculate the physical parameters of the coin’s motion.
So we do the next best thing: we bet that the uncertainties will probably average out in
such a way that the coin will fall “heads” half the time and “tails” the other half. It is much
more efficient to consider the deterministic physical process of coin tossing to be a
“random” statistical process and to assign probabilities of 0.50 to each of the two

possible outcomes, heads or tails.”

Risk versus Uncertainty — In this book we make a distinction between the terms
risk and uncertainty. Risk is the chance of loss or injury. In a situation that includes
favorable and unfavorable events, risk is the probability an unfavorable event occurs.
Uncertainty is the indefiniteness about the outcome of a situation. We analyze
uncertainty for the purpose of measuring risk. In systems engineering, the analysis
might focus on measuring the risk of: failing to achieve performance objectives,

overrunning the budgeted cost, or delivering the system too late to meet user needs.

Subjective Probability Assessments — Probability theory is a well-established
formalism for quantifying uncertainty. Introduced in chapter 2, its application to real-

world systems engineering problems often involves the use of subjective probabilities.
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Subjective probabilities are those assigned to events on the basis of personal judgment.
They are measures of a person’s degree-of-belief that an event will occur. Subjective
probabilities are associated with one-time, nonrepeatable events — those whose
probabilities cannot be objectively determined from a sample space of outcomes developed
by repeated trials, or experimentation. Subjective probabilities must be consistent with
the axioms of probability (refer to chapter 2). For instance, if an engineer assigns a
probability of 0.70 to the event “the number of gates for the new processor chip will
not exceed 12000, then it must follow the chip will exceed 12000 gates with
probability 0.30. Subjective probabilities are conditional on the state of the person’s
knowledge, which changes with time.

To be credible, subjective probabilities should only be assigned to events by subject
matter experts — persons with significant experience with events similar to the one under
consideration. Instead of assigning a single subjective probability to an event, subject
experts often find it easier to describe a function that depicts a distribution of
probabilities. Such a distribution is sometimes called a subjective probability
distribution. Subjective probability distributions are governed by the same mathematical
properties of probability distributions associated with discrete or continuous random
variables (described in chapter 3). Subjective probability distributions are most common
in cost uncertainty analysis, particularly on the input-side of the process (refer to figure
1-3 and the case discussions in chapter 6). Because of their nature, subjective probability
distributions can be thought of as “belief functions.” They describe a subject expert’s
belief in the distribution of probabilities for an event under consideration. Probability
theory provides the mathematical formalism with which we operate (add, subtract,

multiply, and divide) on these belief functions.

Correlation — Correlation is a necessary consideration in cost uncertainty analysis. It

can exist between the costs of work breakdown structure (WBS) cost elements.
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Correlation can also exist between the cost of a cost element and the variables (e.g.,
weight, schedule) that define its cost.

Statistical theory offers a number of ways to measure correlation. Two popular
measures are Pearson’s product-moment correlation and Spearman’s rank correlation.
Subtleties concerning these measures must be understood to avoid errors in a cost
uncertainty analysis. Pearson’s product-moment correlation measures linearity between
two random variables. Spearman’s rank correlation measures their monotonicity. Thus,
these two measures of correlation can be very different. This is illustrated in figure 5-10
(chapter 5). Furthermore, the variance of a sum of random variables is a function of
Pearson’s product-moment correlation, not Spearman’s rank correlation. Thus, from a
WBS perspective, Pearson’s product-moment correlation is the only correct measure of
correlation to use when computing the variance of a sum of cost element costs.

In cost uncertainty analysis, care must be taken if it is necessary to subjectively specify
Pearson correlations. Pearson correlations can be restricted to a subinterval of -1 to +1
for random variables characterized by certain types of distribution functions. This is
illustrated in chapter 7. Thus, the Pearson correlation between any two random variables
cannot be assigned a value in a completely arbitrary way. If it is necessary to
subjectively specify Pearson correlations, the reader should review the recently published
work of Lurie-Golberg.”

In practice, it is recommended that analysts express associations within the WBS
through functional relationships (cost equations), as illustrated in case discussions 6-1 and
6-2. This allows the Pearson correlations implied by these relationships to be captured in
the overall analysis. Pearson correlations that originate from logically defined functional
relationships are more easily defended in cost reviews than those made on the basis of

subjective assessments.

* Lurie, P. M., and M. S. Goldberg. 1998. An Approximate Method for Sampling Correlated
Random Variables from Partially-Specified Distributions. Management Science, Vol. 44, No.
2, pp. 203-218.
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Capturing Cost-Schedule Uncertainties — Decision-makers require understanding
how uncertainties between a system’s cost and schedule interact. A decision-maker might
bet on a “high-risk” schedule in hopes of keeping the system’s cost within requirements.
On the other hand, the decision-maker may be willing to assume “more cost” for a
schedule with a small chance of being exceeded. This is a common tradeoff faced by
decision-makers on systems engineering projects. The family of distributions in chapter 7
provides an analytical basis for computing this tradeoff, using joint and conditional cost-
schedule probabilities. This family is a set of mathematical models that might be
hypothesized for capturing the joint interactions between cost and schedule.

A parameter required by these models is the correlation between cost and schedule.”
Direct computation is one approach for determining this parameter, as illustrated in case
discussion 6-2. However, in some instances this might not be analytically possible or
practical. Another approach is to obtain an estimate of the correlation from sample values
generated by Monte Carlo simulation. This is a reasonable method that can be done
regardiess of the complexity of the cost-schedule estimation relationships. Subjective
assessments might be used. However, care must again be taken to specify an admissible
correlation. Furthermore, there may already exist an implied correlation by virtue of how
the cost-schedule estimation relationships are mathematically defined (refer to case
discussion 6-2). Subjectively specifying a correlation when one is already present (only
its magnitude is unknown) is double counting correlation. Such a situation invalidates

the mathematical integrity of the cost uncertainty analysis.

Approximating the Distribution Function of a System’s Total Cost—
Cost analysts are encouraged to study the mathematical relationships they define in a
system’s work breakdown structure, to see whether analytical approximations to the

distribution function of Costg, (a system’s total cost) can be argued. Analytical

*® . IR
Because these models treat cost and schedule as correlated random variables, it is important

to recognize that they do not capture causal impacts that schedule compression or extension
has on cost.
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approximations can reveal much information about the “cost-behavior” in a system’s
WBS. Chapter 6 (section 6.2.2) presented five cases when the normal distribution
approximates the distribution function of a system’s total cost. There are many reasons
for this approximation. Primary among them is that Costg, is a summation of WBS
cost element costs. Seen in the chapter § case discussions, it is typical to have a mixture
of independent and correlated cost element costs within a system’s WBS. Because of the
central limit theorem (theorem 5-10, chapter 5), the greater the number of independent
cost element costs the more it is that the distribution function of Costy, is
approximately normal. The central limit theorem is very powerful. It does not take
many independent cost element costs for the distribution function of Costg, to move
towards normality. Such a move is evidenced when (1) a sufficient number of
independent cost element costs are summed and (2) when no cost element’s cost
distribution has a much larger standard deviation than the standard deviations of the other
cost element cost distributions. When conditions in the WBS result in Cost,, being
positively skewed (i.e., a non-normal distribution function), then the lognormal often
approximates the distribution function of Costy, .

Monte Carlo simulation is another approach for developing an empirical approximation
to the distribution function of Costs,. The Monte Carlo method, discussed in section
6.3, is often needed when a system’s WBS contains cost estimating relationships too
complex for strict analytical study. In Monte Carlo simulations, a question frequently
asked is “How many trials are necessary to have confidence in the output of the
simulation?” As a guideline, 10,000 trials (Monte Carlo samples) should be sufficient to
meet the precision requirements for most Monte Carlo simulations; particularly those for

cost uncertainty analyses.

Benefits of Cost Uncertainty Analysis — Cost uncertainty analysis provides

decision-makers many benefits and important insights. These include:
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Establishing a Cost and Schedule Risk Baseline — Baseline probability distributions
of a system’s cost and schedule can be developed for a given system configuration,
acquisition strategy, and cost-schedule estimation approach. This baseline provides
decision-makers visibility into potentially high-payoff areas for risk reduction
initiatives. Baseline distributions assist in determining a system’s cost and schedule
that simultaneously have a specified probability of not being exceeded (chapter 7).
They can also provide decision-makers an assessment of the likelihood of achieving a

budgeted (or proposed) cost and schedule, or cost for a given feasible schedule.

Determining Cost Reserve — Cost uncertainty analysis provides a basis for
determining cost reserve as a function of the uncertainties specific to a system. The
analysis provides the direct link between the amount of cost reserve to recommend
and the probability that a system’s cost will not exceed a prescribed (or desired)
magnitude (refer to figure 1-6, chapter 1). An analysis should be conducted to verify
the recommended cost reserve covers fortuitous events (e.g., unplanned code growth,
unplanned schedule delays) deemed possible by the system’s engineering team.
Finally, it is sometimes necessary to allocate cost reserve dollars into the cost
elements of a system’s work breakdown structure. The reader is directed to the Book-

Young algorithm™ as an approach for making this allocation.
8 PP

Conducting Risk Reduction Tradeoff Analyses — Cost uncertainty analyses can be
conducted to study the payoff of implementing risk reduction initiatives (e.g., rapid
prototyping) on lessening a system’s cost and schedule risks. Furthermore, families
of probability distribution functions can be generated to compare the cost and cost
risk impacts of alternative system requirements, schedule uncertainties, and

competing system configurations or acquisition strategies.

* Book, S. A. 1997. Cost Risk Analysis — A Tutorial. Risk Management Symposium
Proceedings. Los Angeles, California: The Aerospace Corporation.
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Documenting the Cost Uncertainty Analysis — The validity and
meaningfulness of a cost uncertainty analysis relies on the engineering team’s experience,
judgment, and knowledge of the system’s uncertainties. Formulating and documenting a
supporting rationale that summarizes the team’s collective insights into these
uncertainties is the critical part of the process. Without a well documented rationale the
credibility of the analysis can be easily questioned. The details of the analysis
methodology are important and should also be documented. The methodology must be
technically sound and offer value-added problem structure, analyses, and insights otherwise
not visible. Decisions that successfully eliminate uncertainty, or reduce it to acceptable
levels, are ultimately driven by human judgment. This at best is aided by, not directed
by, the methods presented in this book.

Some Additional Reading

1. Cooper, D. F., and C. B. Chapman. 1987. Risk Analysis for Large Projects
— Models, Methods, & Cases. Chichester, United Kingdom: John Wiley
& Sons Ltd.

2. Vose, D. 1996. Quantitative Risk Analysis: A Guide to Monte Carlo
Simulation Modelling. Chichester, United Kingdom: John Wiley & Sons
Ltd.



Appendix A

Statistical Tables and Related Integrals

A.1 Table A-1 presents values of the cumulative distribution function of the
standard normal distribution. These values are denoted by F,(z), which is

given by

1
~N2m

z
2
F()=PZ<D)= [ e "2 dy (A-1)
Example: a) Whatis P(Z<0.33)? b) What is P(Z £-0.33)?
a) From equation A-1 F,(0.33) = P(Z £0.33); from table A-1 F;(0.33)=0.6293
b) Since Z ~ N(0,1) we have P(Z<-2)= P(Z > 7)=1- P(Z < 7); therefore, in this
example, Fz(-0.33)=P(Z£-0.33)=P(Z>0.33)=1-P(Z<0.33)=1-0.6293 =0.3707

Table A-1. Percentiles of the Standard Normal Distribution
(the 3-digit columns are z, the 8-digit columns are F(z))

0.00 0.5000000 0.21 0.5831661 042 0.6627572 0.63 0.7356528
0.01 0.5039894 022 0.5870644 0.43 0.6664021 0.64 0.7389138
0.02 0.5079784 0.23 0.5909541 044 0.6700314 0.65 0.7421540
0.03 0.5119665 024 0.5948348 0.45 0.6736448 0.66 0.7453732
0.04 0.5159535 0.25 0.5987063 0.46 0.6772419 0.67 0.7485712
0.05 0.5199389 0.26 0.6025681 047 0.6808225 0.68 0.7517478
0.06 0.5239223 027 0.6064198 0.48 0.6843863 0.69 0.7549030
0.07 0.5279032 0.28 0.6102612 0.49 0.6879331 0.70 0.7580364
0.08 0.5318814 0.29 0.6140918 0.50 0.6914625 071 0.7611480
0.09 0.5358565 0.30 0.6179114 0.51 0.6949743 0.72 0.7642376
0.10 0.5398279 031 0.6217195 0.52 0.6984682 0.73 0.7673050
0.11 0.5437954 0.32 0.6255158 0.53 0.7019441 0.74 0.7703501
0.12 0.5477585 0.33 0.6293000 0.54 0.7054015 0.75 0.7733727
0.13 0.5517168 0.34 0.6330717 0.55 0.7088403 0.76 0.7763728
0.14 0.5556700 0.35 0.6368306 0.56 0.7122603 077 0.7793501
0.15 0.5596177 0.36 0.6405764 0.57 0.7156612 0.78 0.7823046
0.16 0.5635595 0.37 0.6443087 0.58 0.7190427 0.79 0.7852362
0.17 0.5674949 0.38 0.6480272 0.59 0.7224047 0.80 0.7881447
0.18 0.5714237 0.39 0.6517317 0.60 0.7257469 0.31 0.7910300
0.19 0.5753454 0.40 0.6554217 0.61 0.7290692 0.82 0.7938920
0.20 0.5792597 041 0.6590970 0.62 0.7323712 0.83 0.7967307

345
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Table A-1. Percentiles of the Standard Normal Distribution (Concluded)
(the 3-digit columns are z, the 8-digit columns are F,(z))

0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
092
0.93
094
095
0.96
097
098
0.9
1.00
101
1.02
1.03
1.04

1.68
1.69
1.70
n
172
173
174
175
1.76
177
178
179
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88

0.7995459
0.8023375
0.8051055
0.8078498
0.8105704
0.8132671
0.8159399
0.8185888
0.8212136
0.8238145
0.8263912
0.8289439
0.8314724
0.8339768
0.8364569
0.8389129
0.8413447
0.8437523
0.8461358
0.8484950
0.8508300

0.9535214
0.9544861
0.9554346
0.9563671
0.9572838
0.9581849
0.9590705
0.9599409
0.9607961
0.9616365
0.9624621
0.9632731
0.9640697
0.9648522
0.9656206
0.9663751
0.9671159
0.9678433
0.9685573
0.9692582
0.9699460

1.05
1.06
107
1.08
109
110
L1
112
113
114
115
116
117
1.18
L19
120
121
1.22
1.23
1.24
125

1.89
1.90
191
192
1.93
194
195
1.96
197
198
1.99
200
201
202
203
204
205
2.06
207
208
209

0.8531409
0.8554277
0.8576903
0.8599289
0.8621434
0.8643339
0.8665004
0.8686431
0.8707618
0.8728568
0.8749280
0.8769755
0.8789995
0.8809998
0.8829767
0.8849303
0.8868605
0.8887675
0.8906514
0.8925122
0.8943502

0.9706211
0.9712835
0.9719335
0.9725711
0.9731967
0.9738102
0.9744120
0.9750022
0.9755809
0.9761483
0.9767046
0.9772499
0.9777845
0.9783084
0.9788218
0.9793249
0.9798179
0.9803008
0.9807739
0.9812373
0.9816912

126
1.27
1.28
129
130
131
1.32
133
134
135
136
1.37
1.38
139
140
141
142
143
144
145
1.46

2.10
211
212
213
2.14
215
2.16
217
218
219
220
221
222
223
2.24
225
2.26
227
228
229
230

0.8961653
0.8979576
0.8997274
0.9014746
0.9031995
0.9049020
0.9065824
0.9082408
0.9098773
0.9114919
0.9130850
0.9146565
0.9162066
0.9177355
0.9192433
0.9207301
0.9221961
0.9236414
0.9250663
0.9264707
0.9278549

0.9821356
0.9825709
0.9829970
0.9834143
0.9838227
0.9842224
0.9846137
0.9849966
0.9853713
0.9857379
0.9860966
0.9864475
0.9867907
0.9871263
0.9874546
0.9877756
0.9880894
0.9883962
0.9886962
0.9889894
0.9892759

147
148
1.49
1.50
151
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67

231
232
233
240
2.50
2.60
270
2.80
290
3.00
3.10
320
3.30
3.40
3.50
3.60
370
3.80
3.90
4.00
5.00

0.9292191
0.9305633
0.9318879
0.9331928
0.9344783
0.9357445
0.9369916
0.9382198
0.9394292
0.9406200
0.9417924
0.9429466
0.9440826
0.9452007
0.9463011
0.9473839
0.9484493
0.9494974
0.9505285
0.9515428
0.9525403

0.9895559
0.9898296
0.9900969
0.9918025
0.9937903
0.9953388
0.9965330
0.9974448
0.9981341
0.9986500
0.9990323
0.9993128
0.9995165
0.9996630
0.9997673
0.9998409
0.9998922
0.9999276
0.9999519
0.9999683
0.9999997
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A.2 Table A-2 is used for the Kolmogorov-Smirnov goodness of fit test.
The values in table A-2 apply only when all the parameters of the
hypothesized distribution are known, that is, none of the distribution’s
parameters are estimated (or derived) from the sample data. The reader is
directed to Law and Kelton™ and Stephens™ for an expanded discussion of
table A-2. In table A-2, D is the Kolmogorov-Smirnov test statistic defined as

D = max{Fy(x)— ﬁ'X(x)

This statistic measures the largest vertical distance between the hypothesized

cumulative distribution function Fy(x) and the empirical (observed)

cumulative distribution function ﬁ“X(x), developed from the sample data.

Table A-2. Modified Critical Values for the

Kolmogorov-Smirnov Test Statistic
(Applicable when the parameters of the hypothesized distribution
Fx(x) are known and not estimated from the sample data)

Let n denote the number of samples. If

(J;+0.12+%—171)D>cl~a

reject the claim that the observed values come from the
hypothesized distribution; otherwise accept it.

o 1-a Cl-a
0.010 § 0.990 ] 1.628
0.025 ‘ 0975 | 1.480
0.050 } 0950 1.358
0.100 0.900 | 1.224
0.150 1 0.850 | 1.138

* Law, A. M., and W. D. Kelton. 1991. Simulation Modeling and Analysis, 2nd ed. New York:
McGraw-Hill, Inc.

** Stephens, M. A. 1974. EDF Statistics for Goodness of Fit and Some Comparisons. J. Am.
Statist. Assoc., 69, pp. 730-737.
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A.3 Integrals Related to the Normal Probability Density Function

The following integrals are often useful in proofs and computations involving
the normal probability density function. In each integral, a is a real number
and b is a positive real number. The first integral is the integral of the normal
probability density function. The second integral is the mean of a normally
distributed random variable. The third integral is the second moment of a

normally distributed random variable, with mean a and variance b2.

©o ‘_jx-a)z
1.]' L, 2% gy=] (A-2)
27mb
hod __(x—a)2
1 252 - -
2. J'x e dx=a (A-3)
T 2 ~tezef 2, .2
1 2b = -
3, jx e dx=a+b (A-4)
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A.4 Sums of Independent Uniform Random Variables
Suppose the random variable U is defined as the sum of n uniformly

distributed independent random variables, that is
U=U1+Uy+Uz+...+U,

where U; ~Unif(0,1) for i=1,2,3,...,n. Let fy(u) denote the probability
density function of UU. From theorem 5-12 (chapter 5) a general expression
for f;;(u) can be developed. A convenient form of this expression is given
below [Cramer, 1966].

_ 1 n-1_ n _pyn-l n T, 2%
fu(u)—(n__l)![u {J(u D) +(2)(u 2) }

In the expression above, O <u<n and the summation is continued as long as

the arguments u, (u—1), (u—2), .. are positive.* From the central limit
theorem, as n increases the distribution function of U will approach a normal

distribution with mean % and variance {%. This is illustrated in figure A-1.

2
0.798 n=13
0.691 —n=4
0522 n=17
0.437
«—n=10
0

T 2 3 4 5 6 7 8 9 10"

Figure A-1. Probability Density Functions for Sums of Uniform
Independent Random Variables

* Cramer, H. 1966. Mathematical Methods of Statistics. pp. 245. Princeton, New Jersey:
Princeton University Press.
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Figure A-1 shows pairs of PDFs plotted for n=3,4, 7, and 10. The left-most
pair show plots of fy,,,q () and fi;(u), respectively, for n = 3; specifically,

1 (“"%)2
1 B

1
fNormal(u)='_—"_e 12
3
NDY 3 ,“17
—l—u2 O<uxl
2
o2 a2
and fu(u)_<5(u 3u-1)%) l<u<?2
%(u2—3(u—-1)2+3(u—2)2) 2<u<3

The second pair of PDFs (from the left) show plots of fy,mma(u) and fy(w),
respectively, for n =4, specifically,
) | [(u—%)z }
274
12

Nj (u)= - e
Normal —\/__2—7;:/—-&—:
12

-l—u3 O<u<l
6
—é—(u3—4(u—1)3) l<u<?

-é«(u3—4(u~1)3+6(u—2)3) 2<u<3

%(u3—4(u-1)3+6(u-—2)3—4(u-—3)3) 3<u<4

and Syu) =3

A similar convention holds for the two remaining pairs of PDFs plotted in
figure A-1. The values shown along the vertical axis, in figure A-1,

correspond to values for fy,pmar ().
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Table A-3 compares the cumulative probabilities derived from each PDF pair
in figure A-1. In table A-3, the columns labeled Fy(u) and Fypppq(u) are
defined as follows:

u
Fyw)= [ fyt
and

u
Fyormal () = J-fNormal(t)dt

where
__1_[(' -3’ ]
2l n
12

No mal
271 n
fOl‘ n—3, 4, ;, and 10-

Table A-3. Sums of Independent Uniform Random Variables —

Cumulative Probability
U=U+Uy+Usz+...+ U,
U; ~ Unif(0,1) i=123,..,n

n=3 FU (u) FNormal (u) n=4 FU (u) FNom,(u)
O<u<l 0.16666667 0.158655 O<u<l 0.041666667 0.0416323
O<u<2 0.83333334 0.841345 O<u<?2 0.499999997 0.5
O<u<3 1 0.99865 O<u<3 0.958333327 0.958368
O<u<4 1 0.999734
n=7 Fy) Fyoma1(®) n=10 Fy () Fivormat ()
O<u<l 0.0001984127 0.000531557 O<u<! 0.00000027557 0.00000588567
O<u<2 0.0240079367 0.0247673 O<u<2 0.00027943121 0.0005075
O<u<3 0.2603174567 0.256345 O<u<3 0.01346285321 0.0142299
O<u<4 0.7396825367 0.743655 O<u<4 0.13890156321 0.136661
O<u<s5 0.9759920567 0.975233 O<u<5 0.49999999321 0.5
O<u<6 0.9998015807 0.999468 O<u<6 0.86109842321 0.863339
O<u<7 1 0.999998 O<u<? 0.98653713321 0.98577
O<u<8 0.99972055521 0.999492
O<u<9 0.99999971085 0.999994
O<u<i0 1 0.999999978398
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Appendix B

The Bivariate Normal-LogNormal Distribution

Let ¥; =X, and Y, =InX, where X; and X, are random variables defined on
—oo < xy<eo and 0<xy <eo. If ¥} and ¥, each have a normal distribution
then

EW)=py =px, =i Var(f)=0f =0k =of

1| (g
E(t) = iy, = g = Inf — 32—
(“XZ) +GX2

(ux, )2 +0§2 J
2

Var(ty)=0% =0 =In
J ar(1y Y, 2 [ (“X2)2

The pair of random variables

(Xy, Xp) ~ Bivariate NLogN((t41, 42, (07,6% . 01 2))

has a bivariate normal-lognormal distribution if

1 ~Lw

le,Xz(x]’x2)= e 2
27)010,41- 912,2 X

—1<p, =Py v, =Px nx, <1

2 2
we L (M“#l] ~2p (xl'ﬂl](lan"uZ}_,_(lnxz—ﬂZ)
l-—plz‘2 o 12{ g o, o,

Theorem B-1 If (X;, X,) ~ Bivariate NLogN((iy, 3 ), (0F,0% , py 2)) then

where

and

Pra= le»X2 oy

353
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Proof:

By definition
COV(X], Xz) O-XIXZ

0x,%x, 0x,9x,

Px.x, =
where

Ox,X, =j0 f_w(xl = (% = W2) fx, x, (%1, %2)dxydxy
and oy =07. Since X; is lognormal

2 2 2
O.XZ = (e2ﬂ2+0'2 (eO'Z - 1))]/2 — E(XZ)(@O-Z _1)1/2

Thus o - oxiX, = O.Xlxg
i X
X1 Xz 0x,0%, 01E(Xy)e%? - nt/?

1~ M Inx; — 4y

To compute o et vy = and t, = ; therefore,
1Y XX, 1 o) 2= o,
1 o poo "2‘6’_“*2—)(’12 ~2p1 2t +13)
L S et I B L G dnry
2n l"pLz —ee T —eo
1 oo
= —-—-—-———-——5—-‘[ (O'ltl)[ll *lez]dtl
27\ 1= pip "
where
o “‘2‘"1"“5"(’12 =2p1 211 +13)
I =j' ettoan, 21-pi2) dr,
2
(tl ‘—zpl‘zlltz +t2)
and L= j EE ”12) dty

To determine I;, note the integrand can be written as

1
T )('1 [Pn,ztl +(1‘"012,2)02]'2+t§)
h=et|" e Pl dty

—c0



Bivariate Normali-LogNormal Distribution 355

Letting
A= A1) = py ot +(1- pi2)02
and noting that
B 24ty = (ty - A)* - A2
2 2= —A)" - A
we can write

1 2 1 2 1 2
t A ——e (19 — A)

2 1 2 oo 2 2
I =2 2(-pi2) 62(1”01,2) J e 2(1-pi2)

—o0

dtz
1 2 1

! A?
— 2\ _ 2 5
Il =e“2e 2(1 pl.Z) 92(1 pl,2) /271. (1__p12’2)

To determine I, note the integrand can be written as

1
3
L=e 2(1-pi2)

1
oo —n2
, 2008

—00

2 2
4 (12 =2p1 21112)

dlz

Letting B= B(f)) = py2t; and noting that t% —2Bty =(ty — B)? - B? we have

1 2 1 2 1
L33 oo
Iy=e 2P 20-p02) .f . 20-p02)

(t,-B)?
dt2

T 2 1 2
t B
—p2 ! 2
Bp=e X7 2P o [1- )
Thus,
_~h A? B2

—p? STTES s
I = oy = 207P1) 3 1 - piy)| e Q2P _ 2001

and
-1} A? B?
20-pi2)| w2 20-pF2) _ ,, 20-pf2)

M

1 oo
Ox,x =——_./"—I (o1t)e 1
142 27[ —o0
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~(tf -A?%) -(tf -B*)
1 w©  (1-p) = 21-pty)
XXy = o ‘«’#zo'lf_wfle b2 dtl“ﬂ:zU]Lotle 2 dn
i 1 2,1 5
1 00 "_(tl —plyzo'z) +—02 oo _t2/2
XXy = o 3”201_[_&‘16 2 2 dﬁ*ﬂzmj_“tle 1 ody
1 [ =03 poo "l‘(tl_pl 202)
O.XIXZ =——\T27~ 6#20'162 -‘-_ootle 2 dt1~u20"1 -0
o =~—L—~e“2+o%/20p 0927 | = E(Xy)py 2010
XX, \/EE- 171,292 2/F1,29192
Hence,
_Oxx, E(X3)p12010, _ E(X3)p 2010,
pXI»XZ B Ox Oy B 2 +a?, o2 1/2 o2 2
17 %2 a,{e H2%0% (%2 -1)] UI[E(XZ)(e 2] }
Thus,

( ea;%_ —pl/2

p1,2 =pX1,X2 0.2 (B_l)

Theorem B-2 If (X;,X,) ~ Bivariate NLogN((1, 42 ),(6%,5% , py 2)), then

1 _ = )2/ 2
fl(xl)zmcl e %[(xx H cn]

and
_ 1 —%[(lnxz - )? /0'22]
f2(xz)” MO}XZ ¢
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Proof:
By definition
ACD= [ Fr o, (1 x2)dxy

fa(xp)= I:ofxl,xz (x1,x2)dx)

The density function fy, x,(x1,%2) can be factored as

Ay — 2 2
o, x, (i x2) = { —— T2 }Q(xl,x» (B-2)
1
where
01, 57) = 1 e-—(lnxz-b)z 1203(1-pE,)
V2051~ pP2) %2
and
o
b=w, +'&%PL2(X1 = Hy)-
Therefore,

00 1 v N2 2

- 1 ~(n-p)* 1207 | [
_{ e [ 001 x2)dx;

1 e—%[(xl ~u)*10?]
N 2 o]

since the integrand is the density function of a LogN(b, G’%(l“Pﬁ 2)) random

variable. To compute f;(x;), the density function fX,, X, (x1,x,) is factored

as

1 1 - RY 2
fxl,xz(xx,x2>=Q*<xl,x2>{ o (nx2=4) ’2"2} (B-3)
2 A2

where
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e =™V 12052 (1= 02
Q*(xl’xZ)z 1 - e (xy~b )" 1207 (1-pis)
«IZn(a]\[l—pLz)
and
o
b =y +—L Inx» —
hrs, Py (nx2 —42)
Therefore,

1 —gpx, -
Hxp)= J {ﬁ;o'z . (ln 2 Mz) 1202 }Q (x1, %) dx;

2
={ L1 ey -pa) /203 }_{ Q" (x1, %) dx;

'\JZﬂO’Z Xy

L menrted]
2n 0y Xy
since the integrand is the density function of a N(b*,alz(l-pfz)) random

variable.
Theorem B-3 If (X;,X,) ~ Bivariate NLogN((i4;, 1), (07 ,6% . py2)), then

Xyxp ~ N(P‘1+—2— pr2(nxy — 1), ot(t-pi))

o
XoJx, ~ LogN(tz + 22 pra(x = i) 031 = pi2))
1
Proof:

By definition,

1 o Piof||
fX\,x2 (x1,x7) _ {«/27: 0y Xy ¢ Q (x1,x3)
Hr(x2) o e“%[ﬂnxz S 197

V27 oy xy
Py, 0= Q0 (x1,x2)

leIxz ()=

Thus, from equation B-3



Bivariate Normal-LogNormal Distribution 359

Xy xy ~ N(b",0f(1=p))

where
(o
hrs, Py o (Inxp = )
Similarly,
L At iof]
- x
For (xy)= Jx,.x, (%1, %2) _ {1/275 oy € Q(xy,%3)
Xolx V2 fitxp) 1 '%[(xx "Hx)zlcﬂ

27 o ¢

szIJt; (x2) = Q(x1,x2)

Thus, from equation B-2

X|x; ~ LogN(b,03(1-p},))
where

(o]
b=uw, +“'—2'p1 2(JC1 - )
(o M

Theorem B-4 If (X,,X,) ~ Bivariate NLogN((i, 12), (0%, 6% . p12)). then

o
) +‘;2‘PI,2(X1 “#1)4'%0%(1“012,2)
E(X,|x) =€ 1

2(u, +g‘2‘01,2(x1 —4)
Var(lexl) =g !

e“(e* —1)

[0}
E(XI‘xZ) =Ml +'5_'Lp1 2(111 Xy — /JZ)
2 Y

Var(Xy|x;) = 01~ pi2)

where z= a%(l-—p%:z).
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Proof:

Theorem B-3 proved that

o
Xppxy ~ LogN(py +;2‘P1,2(x1 - ), G%(l"pf,z))
1

Therefore,

c
3 +;‘2'P1,2 (xy~py)+103(-pfy)
E(Xp|x)=e

2(u, +G—291.2(x1 i)
o

Var(Xs|x) =e ef(et -1

where z = 0%(1-pf,).
Theorem B-3 also proved that

o}
Xy ~ NGy +—Lpra(inxg = ), 07 (1= pi2))
2

Therefore, it follows immediately from the properties of the normal
distribution that

o}
E(X)|xp) = py +—1-p, ,(In x ~ i)
gy
Var(X|x;) = 6 (1- pfy)
Theorem B-5 If (X;,X,) ~ Bivariate NLogN((tiy, 112 ), (0F,5% , p1.2)), then

)
Myt Py, (=t
Median(X,| x)) = !

o}
Ha+ 2p O =H)=07(1=pi2)
Mode(X2| xp)=e 1

Median(Xy| x) = E(X| x)
Mode(Xy| xp) = E(X;| x3)
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Proof:
Since Xj|x; is lognormally distributed,

92
Hat— Py, 1)
Median(lexl) =e !

and

13 +%_2"PL2(X1 ~p)-03(1-pis)
Mode(le xp)=e 1

Since Xj|x, is normally distributed, it follows immediately that

Median(Xy| xy) = E(X)| x3)

Mode(Xy| xp) = E(Xy| x2)

Property B-1 If (X,,X,) ~ Bivariate NLogN((ty, 42),(0%,0% , p1 7)), then
E(X)|Median(Xa|u) = py
Proof:
From theorem B-4, it was established that
|
E(X|x)=m t Pranxg =)
2
From theorem B-5,
Median(X,|x, = py) = "2

It follows that

, (e}
E(X\|Median(X,|u) = E(Xlle“Z )=y +_C;L oy, (neks = i)
A

[0}
=+ ';;*01,2(#2 =)

=M
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Appendix C

The Bivariate LogNormal Distribution

Let ¥, =InX; and ¥, =InX, where X; and X, are random variables defined
on 0<x; <o and 0<xy <eo. If ¥j and Y, each have a normal distribution

then

4 2 2
1 (ux,) ) 2 (ux, ) +0%
E(Y) =y =y =—In| ——=t——1|  Var(})) = 0§ =0f =In| —1—=L
M) =ny, = 2 L“xl)z"'a%x} r(}y) =0y, =0j (#x,)z
1, (NX )4 2 2 (ﬂX )2+0'§(
E(Y5) = = =—-—]n--—————g"—-— Var(Y,)= 0%y, =0 =ln————2——-——-2~
() =py, =t =7 {(“X2)2+G§2 r(1y)=0}, =02 )

The pair of random variables

(Xy, X,) ~ Bivariate LogN((ty. 142).(07,6% ,p12))

has a bivariate lognormal distribution if

1 1w
le,Xz(xl’xz):: 4
(2::)0102«/ 1-p, 1%
where
-1< pl,2 = pyl,y2 =PInX;,InX, <1
and

2 2
we 1 (lnxl—ulj ~2p (lnxl—ul)(lnxz—uzJJ{lnxz—-uz]
l—~p12’2 oy 12l o o, 0,

363
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Theorem C-1 If (X, X;) ~ Bivariate LogN((iy, 1), (07,0 , py.2)) then

eP120192 _y

Pxin” Vet —1Ye% _1

Proof:

By definition,
o _ Cov(X),Xp) - E(X1X2)— E(X))E(X5)
XXe oy oy, 0x,9%,

(C-D

Since i} =InX; and ¥, =InX,,
E(X;X,) = E(eNe’2)= E(N1112)

Since l’i~N(ui,0',~2) (for i=12), the expectation E(eY‘J“YZ) is a special

evaluation of the moment generating function® of a bivariate normal, which is
Mty 12)= B0y = [~ [~ M2 £y, 3, )y dy,

2.2 2,2
_ e(ﬂlll +H2t2)+‘%(0’1 141 +2pyl’y20'10'2[1!2 +0'212)

for some real #; and t,. Therefore,
‘ +uy)+i (ot +02+2p, . 00
E(X1X2)= E(eYleYZ)= E(€Yl+Y2)=e(ﬂ1 ”2) 2( 1 2 pyl,yz 1 2)

To determine the remaining terms in equation (C-1), for r>0 the moments

of X; and X, are
2

By = €2
1
Thus,

By = e+l

E(Xz) - eﬂZ"‘%ag

* Refer to Ross, S. 1994. A First Course in Probability, 4th ed. New York: Macmillan College
Publishing Company.
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and
2 12
0%, = Var(X)) = EX]) —(E(Xp) = 27201 — (#1721

2
= o2M +20} _ o

2 1.2
03(2 = Var(XZ) = E(X%)“(E(Xz))2 = 62[12—5-20'2 __(eﬂ2+20'2 )2
=32ﬂ2+26% ~e2u2+a%

Substituting into equation C-1,

_ E(X1Xp) - E(XDE(Xy)
le»X2 B

0x,0x%,

(Ml +ﬂ2)+‘%(0"2 +Zpy Y 0'10'2+0'%) +10'2 +_1_0'2
e (R7] __(eﬂl 2 1)(eﬂz 292y

p =
XX 2
122 \/62M+201 __e2y1+0'12 Je2p2+26% _82/42+0'%

This can be factored as:

e(ﬂx +N2)+%(012 +G%)(e P, 20102 _ D

o, =
Xy.X, e(N1+ﬂ2)+%(0'12+0§)\/eO'12 _1\/6‘7% -1
Thus,

P, 20192

-1
P = (C-3)
XX \/e"'l2 ~-1\/e"22 -1

Theorem C-2 If (X, X,) ~ Bivariate LogN((11, i3, (07,063 , py2)), then

1 ~Hanx; —p)? 1ot
X1) = ———
he= e
and
1 ~%[(lnx2 ) )2 /0‘22]
Xp) = ———
A=
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Proof:

By definition,
fitx)= fofx,,x2 (x1,x2)dxa

fa(x2) =J:fx,,x2 (x1,%2)dxy

The density function fx, x,(x1,x2) can be factored as

L ~(nx-p)? 1207
p X1, X C-4
fXI,Xz(l 2= {«/7750’1 x] Ox1,X%2) (C-4)
where
- ~B)2 21 n2
Q(-xlsx2)= l 5 e (Inxz b) /20'2(1 pl.Z)
*’2"("2J1“91,2)x2
and
c
b=u, +—% Inx; —
M2 o, Py o (Inxy =)
Therefore,

fitn)= j. {ng o -’ 1207 }Q(xl x)dxy

1 —(lnx] —Ml) /20"
Xq, X2 ) dx
{'\[57_!—0'] Xi j Q( ! 2) 2

1 e-—%{(lnxlﬂu, Yot ]
:/27&' O} Xy

since the integrand is the probability density function of a
LogN(b,03(1- pf,)) random variable.

To compute f5(x,), the density function fy, x, (x1.X2) is factored as

-t 1 I _(nx,-p )2 1202
fxl,xz(prz)—Q(xl,xz){m;;e 27H2 2L (C-5)

where
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1 JaCE -b")? 120} (1~pE,)

M(Gl\/l—pﬁz)xl

Q*(xl,x2)=

and
b*—,u +-—1p (Inxy — i)
1 oy 1,2 2 2

Therefore,

1 — -
Hx)= J- { 57os x2 (lnxz uy)? 1202 }Q (%1, %) dxy

1 1 "(lﬂXz"'ﬂz) /20'2
- x . d
{‘\/—275-0'2 X9 j Q ( 1 xz} 1

1 -nxy-p)* 1203

«/ 2n02 Xy

since the integrand is the probability density function of

LogN(b*, 0'12 1- pﬁz )) random variable.

Theorem C-3 If (X;,X,) ~ Bivariate LogN((Uy, 12, (0f,0% , p1.2)), then

o

Xi| x5 ~ LogN(uy +?"—1'Pl,2(1nx2 -~ 1), 01 (1-p75))
2
o

Xo| x; ~ LogN(uy +E_lp1,2(lnx1 -4, U%(l"P]z,z))
1

Proof:

By definition,
1 —%[(lnxz ~i, )2/0'22] *
NG P Q (x1,x2)
f x)_fxl,xz(xpxz)_{JZn 0y X3 1>2
Xifo Ja(x2) 1 e—--%[(lnxz ) )2/022}

-\}271' Oy Xy
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*
fxdx2 (x) =0 (x1,x3)
Thus, from equation C-5,

Xi|x ~ LogN(b",01 (1= p},))

where

o

b =y +—L Inxy —
My P Py (nxy —pip)
Similarly,
1 --%-[(lnxl hd )2/0'12]
—pm—— @ Q(x1,x2)
T 1 & )._fxl,xz(xl»xz)_{vm | v
Xan V2 £ 1 ~anx; -p)? 102

1/27‘1’ 01 X1 ¢
Py (F2) = Q0x1.x2)

Thus, from equation C-4,

Xp|x; ~ LogN( b,65(1- p},))
where

(o}
b=y2+—6_2-p12(lnxl-—y1)
e

Theorem C-4 If (X, X,)~ Bivariate LogN((uy, 143 ), (07,6% ,p2)), then

o %2 Lo2(1-p?
P12 Mp—5=Prath +305(-pin)
E(le 1) 101 1 e 2 o1 1,241 7392 1,2

28015 2y~ pyam)
Var(Xy|x)=x % 20T 2Tz (02 1)

o9 -9 La2(1-02
P2 U P2k 507 (1-p12)
E(Xlle) = x;z ! 28 1o 12272 !

23010 2 -ghoa) *, ot
Var(dez)———xz” 1.26 M~5yP12 2ez (ez N

where
z=03(1-pf;) and z*=0f(l-pfy)
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Proof:

Theorem C-3 proved that

(o
Xg| 51 ~ LogNGip +-Z pro(Inx, - ), 05— pis))
1

Therefore,
(o}
M +;2‘Pl,2(h’x1 —u)+403(-p15)
E(Xp|x))=e !
(o} [o}
=215 py——2 Py +505(1-p72)
- . 01 Y]
=X e
and

o2
Ay +—=ppnx—1y) 2. 2 212
Var(Xy|x))=e %1 T2 1Pi2) (2 (APi2) _yy

23012 2y~ GFP1ath)
= o P12, M2 =5 P2k & (e?

-1

Theorem C-3 also proved that

g
X x, ~ LogN(1y +—(—)_-;—-p1’2(lnx2 ~ 1), 02 (1= pts))

Therefore,
o
H +Gl—p,‘2(lnx2 ~uy)+4ot (1-pfs)
E(X1|.X'2) =e
c o
Lo =Ly +1ol1-ply)
_ 02 (o)
- x2 e “
and

o
2y +—p1 2 (0 xy — 1))
o)

Var(Xy|xy) = e (OHU=Pi) ot U=pla)

2.‘.’1_9 20y —2L *
=x o) 1,26 My 0'2pl,2u2)ez (62 ”‘1)
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Theorem C-5 If (X, X,) ~ Bivariate LogN((i1, ), (0%,0% , p1 2)), then

2 /)
. P P, U
Medzan(lexl)—xlﬂl 1,2e‘”1 01 71,271

o o w212
Py, Mo o5(-p-.)
Mode(lexl)==Jclwl 12 #2770 P02 (0,

(4] (4]
. 5P, ~oa Py
Medzan(Xllxz)zx;Z 12 M1 73 Py 2t
o 9 2 2
p ~ oy P20 (-p),)
Mode(Xllxz)zxz"z 1,261“1 oy P12H2701 12
Proof:

From theorem C-3, it follows that

o
Ha +;2“Pl o (nxy —py)
1 =

o2 9
P2 M2 =GP
Median(X2lxl) =¢ xlo‘l l,2eu7 o1 1'2/"1

Ha +%g“ﬁ71.2(1“ x—p)-05(1-pf;)
Mode(Xy|x)=e 1

o 2 2
- x’ﬂ%px,zem _%%px,z‘”l —o2(-p; )
-
c
H+—Lp, (nxy—py)
gy = _

3P M=GhPy 4t
Median(Xy|x;)=e = xg2 125702 P12

o
p+—Lp, (i xy=pp)-0t (1-pfy)
Mode(X1| Xy)=e 2

9] d 2 2
= xﬁépl,z e ~ 5Py H2 =01 a-p;,)
-2

Property C-1 If (X,X,)~ Bivariate LogN((iy, ip), (62,65 ,0,2)), then the

conditional coefficients of dispersion are

172
) [Var(Xy|xy)] B A
Fi|xy E( Xll x)



Bivariate LogNormal Distribution 371

[Varopp]

A (e® —
Fab — Bl =D

where F, and F, are the cumulative distributions of an
Xllx2 X2|x1 fX[‘Iz d sz}XI

This property is stated without proof. It is a direct algebraic consequence of

theorem C-4.
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Dependence, 32-33

dependencies between random variables,
important to capture, 185

dependent random variables, 170, 182

see also event(s)

Discrete random variables, 45-46, 158, 168
applications of, 51-56, 59 (refer to footnote)
expectation, definition of, 65-66
properties of, 58
see also probability function
see also random variable(s)

Discrete sample space, 16
see also sample space

Disjoint events
see mutually exclusive events

Dispersion, coefficient of, 94, 370-371
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Bemnoulli, 101

beta, 112-117, 140-144
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fractiles of, 65

generated, 7-9

infinite, 117

lognormal distribution, 126-137
normal distribution, 117-125
skewed, 83-85

specification of, 6-9, 111, 138-151
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triangular distribution, 109-112
uniform distribution, 106-109

see also subjective probability distributions

Distribution function(s)
approximation to

hardware cost, 291-292
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210-213
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beta distribution of, 115
definition of, 65-66, 69
expected value, 74, 299-300
not, in general, the median, 171
of a function, 75
of an indicator function, 86
relationship to average, 74-75
see also average
see also mean
lognormal distribution of, 128, 130
normal distribution of, 118, 124
ofa
continuous random variable, 69
discrete random variable, 65-66
function, definition of, 75-76
function of several random variables,
170-171
linear combination (or sum), 182, 261
linear function, 76
theorems and properties of, 74, 76, 78-79
170-171, 175, 182, 361
trapezoidal distribution of. 104
triangular distribution of, 111
uniform distribution of, 108
see also bivariate lognormal distribution
see also bivariate normal distribution
see also bivariate normal-lognormal distribution
see also conditional
Expected test effort, 177

Family of distributions, for cost-schedule, 308-333
Finite distribution, 117
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Finite sample space, 16
First moment, definition of, 82

see also moments of random variables
Fractiles, 65, 199-200, 207-208, 216, 218, 266
Frequency function, see probability function
Frequency interpretation, 20
Functions of random variables, 157-246,

196-218, 219-242, 243-246
see also random variable(s)

Gaussian distribution, 118

see also normal distribution
General transformations, 243-246

of a continuous random variable, 195

see also functions of random variables
Generating random numbers, 301-302
Goodness of fit

Kolmogorov-Smirnov test, 190-192, 267,

286, 347

Human (expert) judgment, 6, 8, 12, 27, 344
see also subjective probabilities
see also subjective probability distributions

Impossible event, see null event
Independence and correlation, 175
Independent events, 32-34
mutual independence, 32-33
pairwise independence, 33
relationship to conditional probability, 33
relationship to mutually exclusive
events, 33-34
see also event(s)
Independent random variables
definition of, 169-170
sums of, 181-195, 243-244, 261,
289, 349-351
theorems and properties of, 175-176
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see also random variable(s)
Indicator function, 86
Inequalities, 86-91

Chebyshev’s, 88-91

Markov’s, 86-91
Infinite distribution, 117, 126
Institute for Defense Analyses, 228, 253
Integrals, related to normal, 348
Interpretations of probability, 18-21, 26-27
Intersection of events, 17
Inverse transform method, 300

see also Monte Carlo simulation

Joint distribution(s)

applications of, 160, 162-167, 169, 171,
221-224, 232-236, 315-317, 321-324,
328-332

conditional cumulative distribution function, 169

conditional probability density function, 168

conditional probability mass function, 168

contingency table, 159-160

continuous random variables, 161

discrete random variables, 158

for cost-schedule, 308-333

Jjoint cumulative distribution function, 158

joint probability density function, 161, 219-220

joint probability distribution, 158

joint probability mass function, 158

marginal probability density functions, 162

marginal probability mass function, 159-160

theorems and properties of, 170-171, 219-220

see also bivariate lognormal distribution

see also bivariate normal distribution

see also bivariate normal-lognormal distribution

Kolmogorov’s axioms, 20-21, 26-27
Kolmogorov-Smimov test, 190-192, 267, 286, 347
Kurtosis, coefficient of, 83



390 Subject Index

Law(s)
associative, 18
commutative, 18
complementary, 18
De Morgan’s, 18
distributive, 18
idempotency, 18
identity, 18
strong law of large numbers, 74
Linear combination (or sum) of
random variables, 181-195, 219-220, 224,
243-244, 261, 289, 349-351
see also random variable(s)
Logriormal distribution, 126-137
applications of, 88, 126, 134-137, 295, 324-330
as an approximation to system cost, 285, 287
cumulative distribution of, 132-133
density of, 127-128
expectation of, 128, 130
relationship to central limit theorem, 224-225,
245
relationship to normal, 126-127
relationship to standard normal, 133
theorems and properties of, 128-129, 130-132,
245
variance of, 128, 130
see also bivariate lognormal distribution
see also bivariate normal-lognormal distribution

Marginal
see density function
see joint distribution(s).
see probability
Markov’s inequality, 86-91
Mathematica®, 115, 142, 143
Mean
as a measure of central tendency, 74
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conditional, 313, 320, 326, 359, 368
definition of, 65-66, 69
related to symmetry, 84
see also average
see also expectation
Measure of belief, 26
see also interpretations of probability
Measures of central tendency, 74
Median
as a measure of central tendency, 74
computation, illustration of, 66-67
conditional, 316-317, 323-324, 328-330,
360-361, 370
definition of, 64
related to area, 82
related to symmetry, 84-85
see also fractiles
Mellin transform, definition of, 225
applications of, 228-242, 276-277
convolution property (theorem), 227
for selected distributions, 228
MITRE Corporation, viii, 5-6
Mode
as a measure of central tendency, 74
conditional, 360-361, 370
definition of, 73
related to symmetry, 84-85
relationship to point estimate, 110, 188
Modeling system cost uncertainty, 254-304
Modeling system cost-schedule uncertainties,
308-333
Moments of random variables, 82-85
center of gravity of a distribution, 82
see also kurtosis
see also skewness
Monte Carlo simulation, 6, 261, 296-304
applications of, 6, 189-192, 266-267, 285-286
inverse transform method, 300
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random number generation, 300-302
sample size for, 302-304

Multiplication rule, 31, 35

Mutually exclusive (disjoint) event(s), 17
relationship to independent events, 33-34
see also event(s)

Mutual independence, 32-33
see also independent events

Normal distribution, 117-125
applications of, 121-123, 186, 187-195,
216-218, 220, 262-296, 311-323, 324-330,
349-351
approximation to system cost, 265-267,
285-296
cumulative distribution of, 120, 345-346
density of, 118-119
expectation of, 118, 124
for cost-schedule analyses, 311-330
integrals related to, 348
percentiles of the standard normal, 345-346
relationship to central limit theorem, 186-187,
244
standard form, 119-121, 124, 133, 345-346
sum of normals, 244, 289
theorems and properties of, 124-125, 244,
288-289
variance of, 118, 124
see also bivariate normal distribution
see also bivariate normal-lognormal distribution
Null event, 17
Number of samples for Monte Carlo, 302-304

Objective probabilities, 20, 27
Outcomes, elementary, 16

Pairwise independence, 33
Peakedness, measure of, 85
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see also kurtosis
Pearson correlation coefficient, 173
Percentiles, 65
of a standard normal distribution, 345-346
see also fractiles
Point estimate(s), 8-11, 110, 188, 193, 197, 228,
230, 260, 269, 308
relationship to mode, 110
Prime mission,
equipment (PME), 272, 274, 283, 294-296
hardware-software, 6
product (PMP), 182, 255-256, 263, 270,
272-274, 283-284, 291, 295-296
see also, cost
Probability
a posteriori probability, 37
a priori probability, 37
applications, 23-25, 28-32, 36-37, 51-56,
66-67, 160-167, 196-198, 205-206,
207-209
axioms of, 18, 20-21, 26-27
Bayes’ rule, 34-38
chance, study of, 15
conditional, 28-32
independence, 32-34
interpretations of, 18-21, 26-27
axiomatic, 20-21
equally likely, 19
frequency, 20
measure of belief, 26
intervals, general form (footnote), 80
joint cost-schedule, 308
marginal, 28
multiplication rule, 31, 35
objective probabilities, 20, 27
personal probabilities, 26
see also measure of belief
see also subjective probabilities

393



394 Subject Index

related to area, 57
related to volume, 161
subjective probabilities, 26-27, 29, 38, 111
138-151, 338-339
theorems on, 21-23, 34, 48-50
theory, study of, 15
total probability law, 35
unconditional, 28
Probability density, 5
see also density function
Probability density function, 57
of a function of a random variable, 198-199
see also density function
Probability distribution(s), 4-12, 44, 337
specification of] 6-9, 111, 138-151
see also cumulative distribution function
see also density function
see also distribution function(s)
Probability formulas
for software effort, 210-211
for software schedule, 212-213
various types of, 243-246
Probability function, 46, 55, 57
Probability mass function, 46, 158-160
Probability model(s), 3-4
for cost-schedule, 269, 308-334
for software effort-schedule, 210-213
Profit, as related to cost-volume analysis, 51-56
Pseudo-random number(s), 302

RAND Corporation, 2, 5-6, 297
Random number(s)
generation of, 301-302
pseudo-random, 302
Random point, 159
Random sample, see Monte Carlo simulation
Random variable(s), definition of, 44
Bernoulli, 101
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beta, 112
continuous, 45, 57-58, 161-162, 168
correlation, 170-181
dependent, 170, 182
difference of two, 219
discrete, 45-46, 158, 168
domain of], 44
expectation, 65-81, 170-171, 182
functions of, general discussion, 157-246,
196-218, 219-242
independent, 169-170, 175-176, 181-182,
219-220, 349-351
linear combination (or sum) of, 181-195,
219-220, 224, 243-244, 261, 289,
349-351
lognormal, 126
moments of, 82-85
normal, 117
products of, 220, 232-236, 245
ratios of, 220, 221-225, 236-242, 244-246
standardized (standard form), 81
theorems and properties of, 48-50, 74, 76,
78-79, 175-176, 182, 185, 198-199
transformations of, 195-225, 243-246
trapezoidal, 101
triangular, 109
uniform, 106
Rank correlation, 179-181, 340
Rectangular distribution, see uniform
Requirements uncertainty, 2-4
Risk, 27
communication of, 144
cost-schedule risk baseline, 11, 343
cost-schedule risk tradeoffs, 309-310
management of, 2
of not making a profit, case discussion, 51-56
risk drivers, 2
risk mitigation strategies, 2

395



396 Subject Index

risk reduction tradeoff analyses, 12
vs. uncertainty, 27, 338
see also uncertainty

Sample points, 15, 45
Sample size
for Monte Carlo simulations, 302-304
Sample space 15-16, 44
continuous, 16
countably infinite, 16
definition of, 15
discrete, 16
finite, 16
uncountable, 16
Set theory, 16-18
rules (laws) of set algebra, 18
Simple event(s), see event
Simulation, see Monte Carlo
Skewness, coefficient of, 83
common in cost uncertainty analysis, 83-85
Software cost analysis, 195, 201-218
cost-schedule model, 201-202
development cost, 202
development effort, 201
development productivity rate, 202
development schedule, 202
distribution functions for, general forms,
210-213, 293-294
probability related applications,
calculations, 201-218
size, definition of, 202
Spearman correlation coefficient, 179-181
Specifying density functions, 6-9, 111, 138-151
Standard deviation, definition of, 77
see also variance
Standard form, 81
beta, 112-113, 141, 143
normal, 119-121, 124, 133, 345-346
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uniform, 220, 301, 349-351
Standardized random variable, 81
Statistical tables, 345-346, 347, 351
Strong law of large numbers, 74
Subjective probabilities, 26-27, 29, 38, 111,
138-151, 338-339
Subjective probability distributions,
specification of, 6-9, 111, 138-151
Sums of random variables, 181-195, 219-220, 224,
243-244, 261, 289, 349-351
Sure event, see event(s)
Symmetry, measure of, 83-85
System, 1-12
approximating probability distribution(s)
of system cost, 117-118, 126, 186-194,
254,262, 265-267, 272, 285-286, 286-296,
341-342
architecture (configuration), 3-4
computing a system’s cost mean and variance,
examples of, 182-185, 261-286, 288-290
physical systems, definition of] 1
system definition uncertainty, 3-4
system test and evaluation, 6, 177, 182, 255,
263,270
systems analysis, military, 2
systems engineering and program management,
1-12, 182, 255, 263, 270
total cost of, 9, 182-185, 262, 271
types of uncertainties in, 2-4

Tables,

contingency, 159-160

Kolmogorov-Smirnov test statistic,
critical values of, 347

Mellin transforms, 228

software effort-schedule probability
formulas, 210-213

standardized normal distribution,
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percentiles of, 345-346
sums of uniform random variables,
cumulative probability, 351
transformation formulas, 243-246
Theorems and properties on,

beta distribution, 115-116

bivariate lognormal, 363-371

bivariate normal, 311-317

bivariate normal-lognormal, 353-361

central limit theorem, 186

computing event probabilities, 21-23, 34, 48-50

convolution, 219-220, 224, 227

correlation, 175-176, 185, 268, 353, 364

covariance, 172

cumulative distribution function, 48-50, 58

density function, 198-199, 219-220

events, 21-23, 34, 48-50

expectation, 74, 76, 78-79, 170-171, 175,
182, 361

independence, 32-34, 169-170, 175-176, 182,
289, 349-351

joint distributions, 170-171, 219-220

lognormal distribution, 128-129, 130-132, 245

Mellin transform, 227

normal distribution, 124-125, 244, 288-289

probability, 21-23, 34, 48-50

random variables, 48-50, 74, 76, 78-79, 175-176,
182, 185, 198-199

strong law of large numbers, 74

sums of normal distributions, 244, 289

sums of random variables, 182, 186-187, 219-220,
224, 243-244, 261, 289, 349-351

sums of uniform distributions, 220, 243,
349-351

trapezoidal distribution, 104, 228, 243

triangular distribution, 111, 243

uniform distribution, 108, 220, 349-351

variance, 78,-182, 185
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Total probability law, 35
Transformation formulas
useful for cost uncertainty analysis, 243-246
Transformations of random variables, 195-225
applications of, 196-199, 203-209, 210-213,
221-225, 232-242, 243-246, 275-276
theorems on, 198-199
see also random variable(s)
Trapezoidal distribution, 101-106
applications of, 104-106, 243
cumulative distribution of, 103
density of, 103
expectation of, 104
Mellin transform, 228
theorems and properties of, 104, 228, 243
variance of, 104
Triangular distribution, 109-112
applications of, 70-74, 79-82, 112, 148-150,
187-195, 209, 228-231, 243, 263, 270-
cumulative distribution of, 110
density of, 109
expectation of, 111
Mellin transform, 228
theorems and properties of, 111, 243
variance of, 111

Uncertainty, 27
cost estimation, 2-4
requirements, 2-4
role of probability to model, 1-12
system definition, 3-4
types captured by cost-schedule

probability models, 4

vs. risk, 27, 338
see also cost uncertainty analysis
see also risk

Uncorrelated, 174-175

Uncountable sample space, 16
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Uniform distribution, 106-109

applications of, 8-9, 59-61, 70, 108-109,
145-148, 162-167, 177-179, 196-198,
203-208, 221-225, 232-240, 263,
270-271, 349-351

cumulative distribution of, 107

density of, 107

expectation of, 108

Mellin transform, 228

relationship to median, 108

standard form, 301

theorems and properties of, 108, 220, 349-351

variance of, 108

Uniform random variable, 107, 243-245
sums of, 349-351

Union, see events

Unmanned Space Vehicle Cost Model, 259

Variable,
random, definition of, 44
see also random variable(s)
Variance, definition of, 77
applications of, 77-78, 79-82, 182-185,

187-195, 200-201, 203-206, 216-218,

232-242,261-296

software effort-schedule models, 210-213

beta distribution of, 115
conditional, 313, 320, 327, 359, 368
lognormal distribution of, 128, 130
normal distribution of, 118, 124
of a linear combination (or sum)

of random variables, 182, 261
of a linear function, 78
related to moments, 82
theorems and properties of, 78, 182, 185
trapezoidal distribution of, 104
triangular distribution of, 111
uniform distribution of, 108
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see also bivariate lognormal distribution
see also bivariate normal distribution
see also bivariate normal-lognormal distribution
see also conditional
Venn diagrams, 18

Work breakdown structure (WBS), 6, 9, 181,
184-185, 254-260, 261-263, 270
electronic system, 255, 262-263
spacecraft system, 257-259
World War II, 2, 6



