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Cost  is driving  consideration  in  decisions  that  determine how systems are 
developed,  produced,  and  sustained.  Critical to these  decisions is 
understanding how unce~ainty affects system’s  cost. The process of 
identifying,  measuring,  and  interpreting  these  effects  is  known cost 
unce r t f f i n~  analysis. Used  early,  cost  uncertainty  analysis  can expose 
potentially  crippling  areas  of  risk  in  systems.  This  provides  managers  time to 
define and  implement  corrective  strategies.  Moreover,  the  analysis brings 
realism to technical  and  managerial  decisions  that  define system’s  overall 
engineering strategy.  In Juan De ~ a i r e n a  (1943), Antonio 
“All u n ~ e r t f f i n ~  is f r u i ~ u l  so long it is f f c c o ~ p a n i ~ d  by the wish  to 
underst f fn~. In  the  same way are insights  gleaned from cost uncertainty 
analysis  fruitful provided  they,  too, are accompanied by the  wish to 
understand  and  the  will  to  take  action. 

Since  the 1950s substantial  body  of  scholarship  on  this  subject  has 
evolved.  Published  material  appears  in  numerous  industry  and government 
technical  reports,  symposia  proceedings,  and  professional journals. Despite 
this,  there  is need  in  the  systems  engineering  community to synthesize prior 
scholarship  and  relate  it to advances  in  technique  and  problem sophistication. 
This book  addresses  that  need.  It is reference for systems  engineers,  cost 
engineers,  management  scientists,  and  operations  research  analysts.  It  is  also a 
text for students  of  these  disciplines. 

As text,  this  book  is appropriate for  an  upper-level undergraduate (or 
graduate-level)  course  on  the  application of probability  methods to cost 
engineering and  analysis  problems.  It  is  assumed  readers  have solid 
foundation  in  differential  and  integral  calculus. An introductory background 
in  probability  theory, well systems  and  cost  engineering,  is helpful; 
however,  the  important  concepts  are  developed needed. A rich  set of 
theoretical  and  applied  exercises  accompanies  each  chapter. 

Throughout the  book,  detailed  discussions  on  issues  associated  with cost 
uncertainty  analysis  are  given.  This  includes  the  treatment  of correlation 
between  the  cost  of  various  system  elements, how to present  the  analysis to 
decision-makers,  and  the  use  of  bivariate  probability  distributions to  capture 
the joint interactions  between  cost  and  schedule.  Analytical  techniques from 
probability  theory  are  stressed,  along  with  the  Monte Carlo simulation 
method.  Numerous  examples  and  case  discussions  are  provided to illustrate 



the  practical  application of theoretical  concepts.  The  numerical  precision 
shown  in  some  of  the  book’s  examples  and  case  discussions  is  intended only 
for pedagogical  purposes.  In  practice,  analysts  and  engineers  must  always 
choose  the  level  of  precision  appropriate to the  nature  of  the  problem being 
addressed. 

Chapter presents a general  discussion  of unce~ainty and  the  role of 
probability  in  cost  engineering  and  qnalysis  problems. A perspective  on the 
rich  history  of  cost  uncertainty  analysis  is  provided.  Readers  are introduced 
to the  importance  of  presenting  the  cost  of a future system  as a probability 
distribution. 

Chapter 2 is  an  introduction to probability  theory.  Topics  include the 
fundamental  axioms  and  properties  of  probability.  These  topics  are  essential 
to understanding  the  terminology,  technical  development,  and  application of 
cost unce~ainty analysis  methods. 

Chapter 3 presents  the  theory  of  expectation,  moments  of  random  variables, 
and  probability  inequalities.  Examples  derived from systems engineering 
projects  illustrate key concepts. 

Chapter 4 discusses  modeling  cost  uncertainty by the  probability  formalism. 
A family  of  continuous  univariate  probability  distributions,  used  frequently  in 
cost  uncertainty  analysis,  is  fully  described. A context  for  applying each 
distribution  is  also  presented. 

Chapter 5 introduces joint probability  distributions,  functions of random 
variables,  and  the  central  limit  theorem.  The  application  of  these  concepts to 
cost unce~ainty analysis  problems  is  emphasized. In addition, distributions 
are  developed  for a general form of the  software  cost-schedule  model. The 
chapter  concludes  with a discussion  of  the  Mellin  transform, a useful  (but  little 
applied)  method for working  with  cost functions that  are  products, or 
quotients,  of two or more  random  variables. 

Chapter presents  specific  techniques for quantifying  uncertainty  in the 
cost  of a future  system. The reader  is  shown how methods from the 
preceding  chapters  combine to produce a probability ~istribution of a 
system’s  total  cost.  This  is done from a work  breakdown structure 
perspective.  Case  studies  derived from systems  engineering  projects provide 
the ap~lication context. 

Chapter 7 extends  the  discussion  in  chapter 6 by presenting a family of 
joint probability  distributions for cost  and  schedule.  This  family  consists of 
the  classical  bivariate  normal,  the  bivariate  normal-lognormal’  and the 
bivariate  lognormal  distributions;  the  latter  two  distributions  are  rarely 



discussed  in  the  traditional  literature.  Examples are given to show  the  use of 
these  distributions  in  a  cost  analysis  context. 

The book  concludes  with  a  summary  of  recommended  practices and 
modeling  techniques.  They  come from the author’s experience  and many 
years of collaboration  with  colleagues  in  industry,  government,  and  academe. 

The  author  gratefully  acknowledges  a  number of distinguished  engineers, 
scientists,  and  professors  who  contributed to this  book.  Their encouragement, 
enthusiasm,  and  insights  have  been  instrumental in bringing  about  this  work. 

Stephen A. Book Distinguished Engineer, The  Aerospace Corporation, Los 
Angeles, California.  A long-time professional colleague, Dr. Book 
reviewed  the author’s major  technical papers, some of  which  became chapters in 
this book. In addition, he inde~ndently reviewed  and  commented on many of 
the book’s chapters as they evolved over the writing period. 

Philip H. Young Director  of Research, Lori Associates, Los Angeles, 
California, and formerly of The Aerospace Corporation, conducted a detailed 
review of selected areas in this book. Also  a  long-time professional colleague, 
Mr.  Young shared  with the author his formulas for the  moments of  the 
trapezoidal distribution (presented in chapters 4 and as  well as  a derivation of 
the correlation function of the bivariate normal-logno~al distribution.  This 
derivation is  provided  as  theorem  B- in appendix  B. 

Nancy Rallis Associate Professor of Mathematics,  Boston  College, led 
the  book’s  academic review. For two years, Professor Rallis studied the entire 
text  from a theoretical and computational perspective. Her years of experience as 
a  statistical  consultant and cost analyst at the NASA Spaceflight 
Center, TRW  Inc., and the Jet Propulsion Laboratory (California Institute of 
Technology) brought a wealth of insights that greatly enhanced this  book. 
Sarah Quebec, a graduate mathematics student at Boston  College, assisted 
Professor Rallis’ review. I am grateful for her diligence in checking the many 
examples and case discussions. 

~ e n ~ e l l  P. Simpson (Major, USW-Ret) and Stephen A. ~iu l iano 
(Lieutenant Colonel,  USAF-Ret) Assistant Professors, United States Air 
Force  Institute of Technology.  Professors  Simpson and Giuliano developed 
taught  the school’s first graduate course on  cost  risk  analysis.  The course used 
early  drafts  of the manuscript as required reading. Their comments  on the 
manuscript, as well as  those  from their students, contributed significantly to the 
book’s content and presentation style. 



Colleagues at The MITRE Corporation ... 
Chien-Ching Cho - Principal Staff, Economic and Decision Analysis 
Center. A long-time professional colleague, I am grateful to Dr. Cho for 
many years of technical discussions on theoretical aspects of this subject. I 
particularly appreciate his independent review of case discussion 6-2 and his 
commentary on Monte Carlo simulation, presented in chapter 6. 

~ a ~ r a  E. ~ o l ~ n g e r  - While a Group kader in the Economic and 
Decision Analysis Center, Ms. Wolfinger reviewed original drafts of chapter 
1 and chapter 2. A creative practitioner of cost uncertainty analysis, her 
experiences and analytical insights were highly valued, particularly in the 
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Neal D. ~ u l ~ o ~ e r  - While a Department Head in the Economic and 
Decision Analysis Center, Dr. Hulkower reviewed a number of the author’s 
technical papers when they were early drafts. A veteran cost analyst, his 
leadership on the necessity of presenting a system’s future cost as a 
probability distribution fostered the award-winning research contained in this 
book. 

~ i l l i a rn  P. Hutzler - While Director of the Economic and Decision 
Analysis Center, Dr. Hutzler provided the senior manage ria^ review aml 
leadership needed to bring the manuscript into the public domain. His 
enthusiasm and encouragement for this work will always be gratefully 
appreciated. 

Francis M .  Dello Russo and John A. Vi tkev ic~,  Jr. - Mr. Dello Russo 
(Department Head, Economic and Decision Analysis Center) and Mr. 
Vitkevich (Lead Staff, Economic and Decision Analysis Center) reviewed 
the book’s first case discussion (chapter 3). From an engineering economics 
perspective, they provided valuable commentary on issues associated with 
cost-volume-profit analyses. 

Hank A.  Neirneier - Principal Staff, Economic and Decision Analysis 
Center. Mr. Neimeier provided a careful review of the Mellin transform 
method (chapter 5) and independent~y checked the associated examples. His 
expertise in mathematical modeling provided a valuable context for the 
application of this method to cost engineering and analysis problems. 

Albert R. Paradis -Lead Staff, Airspace Management and Navigation. Dr. 
Paradis reviewed an early version of the manuscript. His comments were 
highly valued. They helped fine-tune the explanation of a number of 
important and subtle concepts in probability theory. 
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A list of reserved  notation  used in this book is provided  below. 

Fiscal year 

Dollars thousand 

Dollars million 

Staff-months 

Point estimate of Cost 

Point estimate of Xi 

Labor rate in dollars per SM 

Effort for an activity (SM) 

Systems engineering effort (SM) 

System test effort (SM) 

Software development effort (SM) 

The number of delivered source instructions (DSI) 

Software development productivity rate in 

DSI per staff-month 

Software development schedule (months) 
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~ncertainty and the 

Pliny the Elder (Gaius Plinius 
Secundus) 
Natural  History 

are 

Prejudices,  First  Series ch. 

This  book  presents  methods  for  quantifying  the  cost  impacts  of  uncertainty  in 

the  engineering  of  systems.  The  term  ‘‘~systems’~  is  used  in  this  book to mean 

physical  systems.  Physical  systems  manifest  themselves  in  physical  terms and 

occupy  physical  space Radar  systems, air traffic  control  systems, 

automobiles,  and  communication  systems are examples  of  physical  systems. 

is  a  process  that  produces  physical  systems. It 

encompasses  the  scientific  and  engineering  efforts  needed to develop, 

produce,  and  sustain  systems.  Systems  engineering  is  a  highly complex 

technical  and  management  undertaking.  Integrating custom equipment with 

commercial  products,  designing  external  system  interfaces,  achieving  user 

requirements,  and  meeting  aggressive  schedules  while  keeping  within  cost are 

among  the  many  challenges  faced  in  managing  a  systems  engineering  project. 

When  the  cost  of  a  future  system*  is  considered,  decision-makers  often  ask: 

Cost  uncertainty  analysis  provides  decision-makers  insight  into  these 

and  related  questions. In general, is  a  process of 



quantifying the cost impacts of uncertainties associated with a system’s 

technical definition and cost estimation methodologies. 

Throughout a system’s life-cycle, cost uncertainty analysis provides 

motivation and structure for the vigorous management of risk. When 

appropriately communicated to decision-makers, the insights produced by the 

analysis directs management’s attention to critical program risk-drivers. This 

enables risk mitigation strategies to be defined and implemented in a timely 

and cost-effective manner. 

Cost uncertainty analysis has its genesis in a field known as military systems 

analysis [2], founded in the 1950s at the RAND Corporation. Shortly after 

World War 11, military systems analysis evolved as a way to aid defense 

planners with long-range decisions on force structure, force composition, and 

future theaters of operation. Cost became a critical consideration in military 

systems analysis models and decision criteria. However, cost estimates of 

future military systems, particularly in the early planning phases, were often 

significantly lower than the actual cost or an estimate developed at a later 

phase. In the book “Cost Conside~ations in Systems Analysis,” G. H. Fisher 

13) attributes this difference to the presence of uncertainty; specifically, cost 

estimation uncertainty and requirements uncertainty. 

Cost estimation uncertainty can originate from inaccuracies in cost-schedule 

estimation models, from the misuse (or misinterpretation) of cost-schedule 

data, or from misapplied cost-schedule estimation methodologies. Economic 

uncertainties that influence the cost of technology, the labor force, or geo- 

political policies further contribute to cost estimation uncertainty [4]. 

~ e q u i r e ~ e n t s  uncertainty can originate from changes in the system’s 

mission objectives, from changes in performance requirements necessary to 

meet mission objectives, or from changes in the business or political 

landscapes that affect the need for the system. Requirements uncertainty most 



often results  in  changes to the  system’s specified hardware-software 

configuration, which is also known as the system’s architecture. 

Uncertainty is also present  in  elements that define a system’s configuration 

(or architecture). This is referred to as ~ e ~ n i t i o n   ~ ~ c e r t ~ i n ~ .  

Examples include uncertainties in the amount of software to develop, the 

extent code  from another system  can be reused, the  number  workstations to 

procure, or  the delivered weight of  an end-item (e.g., a satellite) 

The  early literature on cost uncertainty analysis concentrated on defining 

the sources, scope, and  types  of uncertainties that  impacted the cost of future 

systems. Technical papers  published  in the period between  1955  and 1962 

were  not explicitly focused on establishing and  applying  formal  methods to 

quantify cost uncertainty However, by the mid-  1960s a body of techniques 

began to emerge. An objective of  this  book  is  to discuss these techniques, 

present  advances  in  methodology,  and illustrate how these methods  apply 

from a systems engineering perspective. 

In  systems engineering three types of uncertainties must  be considered. 

Described in the preceding section they are cost estimation uncertainty, 

requirements uncertainty, and  system definition uncertainty. Figure 1- l E4 

illustrates how these uncertainties are related. 

The  n-system configurations shown are in response to requirements 

uncertainty. For a given  system configuration, cost-schedule probability 

models (as described in  this  book) capture only  system definition and cost 

estimation uncertainties. They  provide probability-based assessments of a 

system’s cost and schedule for that system configuration. When  requirements 

uncertainty necessitates defining an entirely new con~guration, a new cost- 

schedule probability model is likely to be  needed.  The new  model  must be 



ter 

tuned to capture the system definition and cost estimation uncertainties 

specific to the new configuration. 

System System 
Configuration 1 Configuration n 

System ~ e ~ n i t i o n  
~ n c e ~ a i n t y  

Cost Estimation 

System ~ e ~ ~ t i o n  

Cost Estimatio~ 

Figure 1-1. Types of Uncertainty Captured by 

Cost-Schedule Probability Models 

Cost is an uncertain quantity. It is highly sensitive to many conditions and 

assumptions that change frequently across a system’s life-cycle. Examining 

the change in cost subject to varying certain conditions (while holding others 

constant) is known as s e n s ~ t ~ v ~ ~  analysis. In a series of lectures to the United 

States Air Force (1962), Fisher [ S ]  emphasized the importance of sensitivity 

analysis as a way to isolate cost drivers. He considered sensitivity analysis to 

be a prime characteristic or objective in the cost analysis of advanced 

systems and/or force structure proposals.” Although sensitivity analysis can 

isolate elements of a system that drive its cost, it is a deterministic procedure 

defined by a postulated set of “what-if’ scenarios. Sensitivity analysis alone 

does not offer decision-makers insight into the question  hat is the chance 



A probability 

distribution  is  a way to address  this  question.  Simply  stated,  a 

is  a  mathematical  rule  associating a probability to each  possible 

outcome, or event of interest. 

There are two ways to present  a  probability  distribution.  It  can  be  shown  as 

a  probability  density or as  a  cumulative  probability  distribution.  Figure 1-2 

presents  one way to illustrate  this  concept from a  cost  perspective. 

(x) F(x) 
si 

8 
S 
h 

C b C b 

cost 

Figure 

cost 

Figure -2b 

Figure  1-2.  Illustrative  Probability  Distributions 

In  figure  1-2,  the  range of possible  values for is  given by the  interval 

The probability will  not  exceed  a  value x C is  given by 

In  figure  1-2a,  this  probability  is  the  area  under between and 

C .  In  figure  1-2b,  this  probability  is  given by 

develop  a  cost  probability  distribution,  methods from probability theory 

were  needed.  Some the  earliest  applications of probability  theory to model 

cost  uncertainty  took  place  in  the  mid-1960s  at  the 

Corporations. In Steven  Sobel [ ~ I T ~ E ]  published 

It 

was  among  the  earliest  works  on  modeling  cost  uncertainty by the probability 



formalism. Sobel  pioneered  using  the  method of moments technique to 

develop probability distribution of system’s total cost. 

Complementary to Sobel’s analytical approach, in  1966  Paul F. Dienemann 

[RAND]  published 

[7] The  methodology applied Monte  Carlo simulation, 

developed by operations analysts in  World  War 11, to quantify the impacts of 

uncertainty on total system cost. With the advent of high-speed  computers, 

Monte  Carlo simulation grew  in popularity and  remains primary approach 

for generating cost probability distributions. A. discussion of Monte  Carlo 

simulation is presented in chapter 6. 

An  overview  of the cost uncertainty analysis process is shown  in figure 1-3. 

The  variables  XI,  X2,  X3,. e . ,  X n  are the costs of the work  breakdown 

structure cost elements  that  comprise  the system. For  instance, X1 

might represent the cost of the system’s prime  mission  hardware  and software; 

X2 might represent the cost of the system’s systems engineering and  program 

management; X3 might represent the cost of the system’s  test  and evaluation. 

When  specific values for these variables are uncertain, we can treat them 

Probability distributions are developed for 

X2, Xn which associate probabilities to their possible values. Such 

distributions are illustrated on the left-side of figure 1-3.  The random 

variables XI, X2, e . ,  are summed to produce overall probability 

distribution of the system’s total cost, shown on the right-side of figure 1-3. 

The “input” part of this process has  many subjective aspects. Probability 

distributions for XI,  X2,  X3,’ Xn are either specified directly or  they are 

generated. Direct specification relies expert judgment to characterize 

distribution’s shape. The probability density is the usual way to make this 

characterization. 

full  discussion of the  work  breakdown  structure presented  in  chapter 6. 



nputs 

1 

Xn 

Figure 1-3. Cost  Uncertainty  Analysis  Process 

enerated  distributions  have  shapes  that  are  produced from math~matical 

process.  This illustrated  in  the  following  discussion. 

Suppose represents  the  cost  of a system’s  systems  engineering  and  program 

management  (SEPM).  Furthermore,  suppose  the  cost  of  SEPM is derived a 

function of three  random  variables* and LaborRate as  follows: 

Staff. LaborRate 

Staff (Persons), PrgmSched (Months), ($/Person-Month) 



Suppose  the  engineering  team  assessed  ranges  of  possible  (feasible)  values  for 

these  variables  and  directly  specified  the  shapes  of  their  probability  distributions, 

as  shown  in  figure Combining  their  distributions  according  to  the  rules  of 

probability  theory  generates  an  overall  distribution  for X,, which  is  the  cost  of 

SEPM.  In  this  case,  we  say  the  probability  distribution  of X, has  been  generated 

by a  mathematical  process.  Figure 1-4 illustrates  this  discussion. 

12 

Person-Month 

Figure 1-4. The Specification of  roba ability 

Shown  in  figure 1-4, it  is  good  practice to reserve  the  direct  specification of 

distributions to their  lowest  level  variables  in cost  e  uation  (e.g., equation 

dgment  about  the  shapes  and ra 

themore, this “specificatio~”  a~proach structures the 

overall  analysis  in way that  specific “cost-risk-driving9’ variables  can be 

revealed. ~dentifying these  variables,  and quantifying how they  affect 

system’s  cost, are critical  findings to c o ~ u n i c a t e  to decision-makers. 

A t e m  conventional to cost  engineering  and  analysis  is  point  estimate. 

of variable  whose  value uncertain  is single  value for the 

in  its  range possible  values. 

oint  estimate  is  simply  one  value  among  those  that 

oint es t i~a te  is  esta  lished by an  analyst  (using 



methods)  prior to an  assessment  of  other  possible  values.  It  provides an 

“anchor” (i.e., a reference  point)  around  which  other  possible  values are 

assessed  or  generated.  This illustrated  in  figure 1-5. 

The  point  estimates  above 
combine to generate  the 
point  estimate 1.26 

Figure 1-5. Point  Estimates An Illustration 

In cost u~ce~a in ty  analysis  it common to see  more  probability  density to 

the  right  of a point  estimate  than to its  left;  this  is  seen  in  the generated 

~istribution in  figure 1-5. Although  this  is a common  occurrence,  the point 

estimate can fall  anywhere  along  the  variable’s  probability  distribution;  it  is 

just one  value  among  those  that are feasible. 

Suppose system’s  total  cost is given by 

Cost=X1 +...+xn 
om variables Xn are the  costs  of  the  system’s n 

S cost  elements. Suppose point  estimates  are  developed for each Xi 

i 1,. n). Their  sum  is  the point estimate the cost the system. Let this 

by where 



and i 1,. is  the  point  estimate of Computing 

accord in^ to equation 1-2, is  known  among  practitioners  as  the 

procedure. 

In  cost  engineering  and  analysis, it  is traditional to consider a  value 

for that  contains a  point  estimate, x p ~ ~ ~ ~ ~  provides 

the "anchor" from which to choose  a  value for that 

~ecision-makers tradeoff  between and  the  amount of reserve 

dollars to add to such  that  the  value  of determined by the 

expression (reserve  dollars)]  has  an  acceptable  probability  of not 

Figure illustrates  this  discussion. 

 roba ability that 
co.s t=x,+x,+xg+ x, 

XPECO.Tt 

Point 
Estimate 

i ~ u r e  1-6. A Cumulative  istribution of System  Cost 

From  a  probability  perspective  there  are  important  subtleties  associated  with  the  roll-up 
procedure.  These  subtleties  are  illustrated  in  case  discussion 5-1 (chapter 5). 



In figure 1-6, suppose the point estimate of a system’s cost is 100 

is, 100. This value of has just over a 30 percent probability of 

not  being exceeded. reserve of 20 ($M) added to xpEcOst is associated with 

a value  of that has a 67 percent probability of not being  exceeded. 

added to is  associated  with a value  of that has 

just over a 90 percent probability of  not  being  exceeded. 

It  is possible for to fall at a high  confidence  level  on  its associated 

distribution function. Such a circumstance may warrant the additio~ of no 

reserve dollars; it suggests there is a good  chance for to actually  be  lower 

than  perhaps anticipated. However,  it  may also flag a situation where cost 

reserve was built, a priori, into the point estimate of each 

cost. These reserve dollars would  be included in the 66roll-up” of the 

individual point estimates. This result can  make hard to interpret, 

particularly if tradeoff studies are needed.  In practice, it  is recommended 

keeping xpEcOst “clean” from reserve dollars. This provides analysts and 

decision-makers  an  anchor point that is “cost reserve-neutral” one  where 

the tradeoff between cost reserve and a desired level  of  confidence  can be 

readily understood for various alternatives (or options) under consideration. 

Cost unce~ainty analysis provides decision-makers  many benefits and 

important insights. These include: 

Baseline probability 
distributions of a  system’s cost and schedule can be  developed for a given 
system configuration, acquisition strategy, and cost-schedule estimation 
approach. This baseline provides  decision-makers visibility  into 
potentially high-payoff  areas for risk reduction initiatives. Baseline 
distributions assist in determining a system’s cost and  schedule  that 
simultaneously have  a specified probability of not being exceeded  (chapter 
7). They can provide  decision-makers an assessment of the 



likelihood of achieving a budgeted (or proposed) cost and schedule, or cost 
for a given feasible schedule [4]. 

~ e t e ~ ~ i n i n g  Cost Reserve - Cost uncertainty analysis provides a basis 
for determining cost reserve as a function of the uncertainties specific to a 
system. The analysis provides the direct link between the amount of cost 
reserve to recommend and the probability that a system’s cost will not 
exceed a prescribed (or desired) magnitude. An analysis should be 
conducted to verify the recommended cost reserve covers fortuitous events 
(e.g., unplanned code growth, unplanned schedule delays) deemed possible 
by the system’s engineering team [4]. 

Conducting Risk Reduction Tradeofl Analyses - Cost uncertainty 
analyses can be conducted to study the payoff of implementing risk 
reduction initiatives (e.g., rapid prototyping) on lessening a system’s cost 
and schedule risks. Furthermore, families of probability distribution 
functions can be generated to compare the cost and cost risk impacts of 
alternative system requirements, schedule uncertainties, and competing 
system configurations or acquisition strategies [4]. 

The validity and meaningfulness of a cost uncertainty analysis relies on the 

engineering team’s experience, judgment, and knowledge of the system’s 

unce~ainties. Formulating and documenting a supporting rationale, that 

s u ~ a r i ~ e s  the team’s collective insights into these uncertainties, is the 

critical part of the process. Without a ~e i l -docu~ented  rationale, the 

credibility of the analysis can be easily questioned. 

The details of the analysis methodology are important and should also be 

documented. The methodology must be tech~ic~ZZy sound and offer value- 

added problem structure, analyses, and insights otherwise not visible. 

Decisions that successfully eliminate uncertainty, or reduce it to acceptable 

levels, are ultimately driven by human judgment. This at best is aided by, not 

directed by, the methods presented in this book. 



ly 

1. State and define the three types of uncertainties that affect the cost of a 

systems engineering project. Give specific examples of each type. 

2. Define, from cost perspective, the term point estimate. 

point estimate of variable used to establish range of other possible 

values? Explain  what is meant  by the “roll-up” procedure. 

3. In the figure below,  suppose the point  estimate of system’s cost is 23.5 

dollars million ($M). Assume the three values shown  along  the  vertical 

axis are paired  with  the three values  shown  along the horizontal axis. 

ow  many reserve dollars are needed  such that the value of Cost 

associated with  that reserve has 70 percent chance of not being 

exceeded? Similarly, what  is  the reserve needed  such that the value of 

Cost has  only 5 percent  chance of being exceeded? 

Cumulative Probability Distribution for Exercise 3 
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chance the  antithesis of law, The  theory of probabilities 
then  we  need  to  discover  the  laws of chance. at  bottom  nothing  but  common 

R. Rao sense  reduced  to  calculus. 
Indian Pierre Simon de  Laplace 

VZI, 

Whether it’s a storm’s intensity, an arrival time, or the success of a financial 

decision, the  words “probable” or “likely” have  long  been part of our 

language. Most  people  have a practical appreciation for the impact of chance 

the occurrence of  an event. In the last 300 years, the theory  of probability 

has evolved to explain the nature of chance  and  how  it  may  be studied. 

theory is the formal  study of random events and random 

processes. Its origins trace to 17th century gambling  problems.  Games that 

involved playing cards, roulette wheels,  and dice provided mat~ematicians a 

host  of interesting problems.  The solutions to many  of these problems 

yielded the first principles of  modern probability theory. Today, probability 

theory is of fundamental  importance in science, engineering, and business. 

If a six-sided die* is  tossed there are six possible outcomes for the number 

that appears on the upturned face. These  outcomes  can  be listed as elements 

in the set  {1,2,3,4,5,6}.  The set of  all possible outcomes of an  experiment is 

called the which we  will denote by The individual 

outcomes of L2 are called which  we  will  denote  by 

Unless  otherwise  noted,  dice  are  assumed  in  this book to  be  six-sided. 



A sample  space  can be finite, countably infinite, or uncountable. A 

is a set  that consists of a finite number of outcomes. The 

sample  space for the toss of a  die is finite. A 

is a set whose  outcomes  can  be  arranged in a one-to-one  correspondence with 

the set of positive integers. An is one that is 

infi~ite but  not countable. For instance, sup ose the sample  space for  the 

duration (in hours) of  an electronic device is 2500); then 

an uncountable  sample space; there are an infinite but  not countable number 

sible outcomes for Finite and  countably infinite sample spaces are 

own as ~ncountable sample spaces are known 

as 

n is any subset of the  sample space. An event is if  it consists 

of exactly one outcome.* Simple events are also eferred to as 

or An event is if  it consists of more 

an. one  outcome.  For instance, let  be the event  an  odd  number appears 

ent an  even  number  appears  in a single toss of a die. These 

vents,  which  may  be  expressed b the sets 

if and  only  if  one  of 

ents can  be represe 

s we  shall  see,  probabilities  associated  with  simple  events  are  sensitive to the  nature  of the 
sample  space. If is the  probability  of  an  e 
dete~ined by  the probabilities of the  simple  events  in however, if 

the  probability  associated  with  each  simple  event  in Q is  zero.  This will be 
discussed  further  in  chapter 3. 



any two events and B of a sample  space the  new  event 

U B (which  reads A consists  of  all  outcomes  either in A or in 

B in  both and B. The event U occurs if A or 

To illustrate  the  union  of  two  events, consider the  following:  if is the 

n u ~ b e r  appears  in  the  toss  of a die and 

even n u ~ b e r  appears,  then  the  event U 

which  is  the  sample  space for this  experiment. 

For  any two events and 

(which  reads A 

are in A and  in 

illustrate  the 

following: if is  the  event a six  appears 

number ap~ears, and C is  the  event  an  even 

appears  then  the  event A n  C is  the 

intersection  of two events 



ter 

Figure 2-1. Venn  Diagrams  for  Various  Event  Relationships 

Operations  involving  the  union  and  intersection of events  follow  the  rules of 

set  algebra.  These  rules  are  summarized  below. 

Identity  Laws 

Associative  Laws 

D is t~~ut ive  Laws 

~ o ~ ~ t a t i v e  Laws 

~ o m ~ l e m e n t a ~  Laws 

the  sample  space for the  toss  of a die was given 

e the die is  fair  (whic unless  otherwise 



noted,  is  assumed throughout this book) then  any outcome in  the sample 

space  is  as  likely to appear  as  any  other.  Given  this  assumption, it is 

reasonable to conclude the proportion of  time  each outcome is  expected to 

occur  is i .  Thus, the  probability  of  each  simple  event  in  the  sample  space  is 

Similarly,  suppose B is  the  event  an  odd  number  appears  in  a  single  toss  of  the 

die.  This compound event  is  given by the  set B 3, Since  there are 

three  ways  event B can  occur  out  of  six  possible, we conclude the probability 

of  event B is 

The following  presents  a view  of probability  known as the  equally  likely 

interpretation. 

In  this  view, if a  sample  space L2 consists  of  a 

finite  number  of  outcomes n, which are all  equally  likely to occur,  then the 

probability  of  each  simple  event If  an  event consists  of m of  these n 

outcomes,  then  the  probability  of event is 

P(A) 

In  the  above,  it  is  assumed  the  sample  space  consists  of finite number of 

outcomes  and  all  outcomes are equally  likely to occur.  What if the sample 

space  is  uncountable?  What  if  the  sample  space  is  finite  but the outcomes are 

not equally  likely?*  In  these  situations,  probability  might  be  measured in 

terns of  how frequently particular outcome occurs  when  the  experiment  is 

repeatedly  performed  under  identical  conditions.  This  leads to a view of 

probability  known as the  frequency  interpretation. 



In this view, the probability of  an event is the 

limiting proportion of  time the event occurs in a set of repetitions of the 

expe~ment. In particular, we write this as 

lim 
n - w  

where is the  number of times in repetitions of the experiment the event 

occurs. In this sense P(A) is the limiting frequency of event 

 roba abilities measured by the frequency inte~retation are referred to as 

There are many circumstances  where  it  is appropriate 

to work  with objective probabilities. However, there are l i~itations with this 

in te~r~tat ion of probabi~ity. It restricts events to those that can  be subjected 

to repeated trials conducted  under Fu~hermore, it is not 

clear how  many trials of  an experiment are needed to obtain an event’s 

limiting frequency. 

In 1933, the Russian  mathematician Kolmogorov* 

presented a definition of probability in terms of three axioms.  These axioms 

define probability in a way that encompasses  the 

of probability. It  is  known as the  axiomatic definition of 

probability. It the view  of probability adopted in this book.  Under this 

definition it assumed for each event in the sample  space G?, there exists a 

real n u ~ b e r  that  denotes  the probability of In accordance with 

olmogorov’s  axioms, a probability is  simply a numerical value (measure) 

that satisfies the following: 

Axiom l I.: I.: l for any event in 

Axiom l 

Grundbegr~fe Wuhrscheinlichkeitsr@chnung, Ergeb. uncl ihrer 
Grenq..  vol. ~oundu~ ions  the 
Theory Probubiliry, York 



Axiom 3 For any sequence of mutually exclusive events* AI, A2,. 

defined on 

For any finite sequence of mutually exclusive events 

Al, A2,. .,A, defined on 

The first axiom states the  probability of  any event is a nonnegative number in 

the interval zero to unity. In axiom 2, the sample space is sometimes 

referred to as  the sure or certain event; therefore, we have P(52) equal to 

unity. Axiom 3 states for any sequence of mutually exclusive events, the 

probability of at  least one of these events occurring is the  sum of the 

probabilities associated with each event In axiom 3, this sequence may 

also be finite. From these axioms come basic theorems of probability. 

The probability event A occurs is one minus  the probability it 

will  not occur; that  is, P(A) 1 P(AC)  

Proof From the complementa~ law A U From axiom 3 it follows 

that U P(A) P ( A C )  since A and are mutually exclusive 

events. From  axiom 2, we know  that P(52) 1; therefore, 1 P(A) P(AC)  

and the result P(A) 1 P(A') follows. 

The probabi~ity associated with the null event 0 zero 

Q 

Proof From theorem 2-1 and axiom 2 

P(0)= l -P(Oc)~l -P(Q)=l - l=Q 

That is, i 



apter 

e ~ r e ~  If events A l  and A, are mutually exclusive, then 

P(AI A2) P(A1A2) 0 

Proof Since A and A, are mutually exclusive, A1 A2 This  implies 

P(A1 A2) From  theorem 2-2, 0; therefore, P(A1 n A 2 )  

For  any  two events A and A, 

P(Al U A2) P(Al)+  P(A2) P(A1 A2) 

The event AI U A,, shown in figure 2-2, is  written  in  terms  of three 

mutually exclusive events, that is, AI U A2 (A1 A5)u(AIA2)u(A[A2) .  From 

axiom P(AI u A 2 ) =  P ( A l A ~ ) + P ( A l A 2 ) + P ( A [ A 2 ) .  

Figure 2-2. The Partition of A l  Union A, 

From figure AI can  be  written in terns of mutually exclusive events; that 

is, AI (A1 A$)u(AlA2); s i ~ i l a r ~ y  (AfA2)u(A1A2). From  axiom it 

follows that !‘(AI) P(Al A i )  P(AlA2) and P(A2) P(A[A2) P(AlA2). 

Therefore, P(A1 U A2) can  be  written as 

is reserved in  this to signal,  where  it  might  not clear,  the  completion 
of proof, an  example, case  discussion. 



If A and A2 were  mutually  exclusive  events, theorem 2-4 simplifies to axiom 

that is, P(A1 A2) P(A1) P(A2) since P(A1A2) P(A1 A2) 

e ~ ~ e ~  If  event A I  a  subset  of  event A z  then 

f V 1 )  m;! 1 
Since A l  is subset  of A2, the  event A, may  be  expressed as the union 

of two mutually  exclusive  events A1 and AfA2. Refer to figure 2-3. 

Figure Event A, as  a  Subset of Event A2 

Since 

from axiom 3 
A2 AI AfA2 

PG42 1 

Because P(AfA2) it  follows  that 

The sample  space L2 for an experiment that  consists  of  tossing 

two dice is  given by the 36 possible  outcomes  listed  in  table 2-1. The 

outcomes  in  table 2-1 are  given by the  pairs (dl, which we assume are 

equally  likely.  Let A, B, and D represent  the  following  events: 



The sum of the toss is odd 

The  sum of  the toss is even 

G: The  sum of the toss is a number less than  ten 

The toss yielded the same  number on each die’s upturned face 

Find P(A), I>@), P(C), P(AnB), P ( A v  P(BnC),  and P ( ~ n C n ~ )  

Table 2-1. Sample Space for the Tossing of Two 



(C):  From equation 2-1, we  can 

compute 

18 l 18 1 30  15 P(A)=.-=--- 
36 2 

P(B)=-=- 
36 2 36  18 

Observe  event and  event B are mutually 

exclusive,  that  is,  they  share no elements  in  common.  Therefore, from 

theorem 2-3 
P(AnB)=P(AB)=O 

From theorem 2-4 

Since P(A B) 0 and P(A) )=x it  follows  that P(A U B) 1. Notice 

the  event A U B yields  the  sample  space for this  experiment; by axiom 2 we 

know 1. 

The  event  the sum of  the  toss  is  even  and  it  is a 

number  less  than  ten is given by C. This  event  contains  the  outcomes 

from which P(BnC)=14/36=7/18. 

The event  the  sum  of  the  toss  is  even  and  it 

is number  less  than  ten  and  the  toss  yielded  the  same number on  each 

upturned face is  given by B C This  event  contains  the  outcomes 

from which P(BnCnD)=4/36=1/9 .  Notice  event is a subset 

of  event B From theorem 2-5 we expect C 



r ~ t ~ t ~ o ~ :  From the axiomatic view, probability need 

only be a number satisfying the three axioms stated by ~olomogorov. Given 

this,  it is possible for probability to reflect a “measure of belief’ in an 

event’s occurrence. For instance, a software engineer  might assign a 

probability of 0.70 to the event “the radar sof iare for the A d v ~ n c e ~  Air 

T r a ~ c  Control System (AATCS) will  not exceed delivered scmrce 

instr~ctions.” We consider this event to be nonrepeatable. It is not practical, 

or possible, to build the AATCS n-times (and  under identical conditions) to 

determine  whether this probabi~ity  is indeed 0.70. When  an event such as this 

arises, its probability may be assigned. Probabilities assigned  on the basis of 

personal judgment, or measure  of belief, are known as s~b~ect ive 

probabilities. 

Subjective probabilities are the most  common in systems engineer in^ 

projects and cost analysis problems.  Such probabilities are typically assigned 

by expert technical opinion. The software engineer’s probability assessment 

of 0.70 is a subjective probability. Ideally, subjective probabilities should be 

based  on available evidence  and previous experience  with similar events. 

Subjective probabilities risk becoming suspect if  they are premised  on limited 

insights or  no prior experiences. Care  is also needed in soliciting subjective 

probabilities. They  must certainly be plausible; but  even  more,  they  must be 

consistent with  Kolomogorov’s  axioms  and the theorems of probability which 

stem  from these axioms.  Consider the follo~ing: 

The XYZ Co~oration has  offers  on  two  contracts A and B. Suppose the proposal 
team  made  the  following  subjective  probability  assignments the  chance  of winning 
contract A is 40 percent,  the  chance of winning contract B is 20 percent,  the  chance 
of winning contract A or  contract B is 60 percent,  and  the  chance  of winning both 
contract A and  contract B is percent.  It  turns  out  this  set probability 
assignments  is not consistent with the  axioms  and  theorems  of  probability! Why is 



this?* If the chance winning contract B was  changed  to 30 percent,  then  this 
p a ~ i ~ ~ l a r  set u ~ ~ r u b a b i l i ~   a s s i ~ ~ ~ e ~ ~ s  would be consistent. 

Kolmogorov’s  axioms,  and the resulting theorems  of probability, 

how to assign probabilities to events; rather, they provide a way to 

verify the probability assignments (be they objective or subjective) are 

consistent. 

cert~inty: There is an important distinction between the terms 

and Risk  is the chance of loss or injury. In a situation that 

includes favorable and  unfavorable  events, risk is the 

Uncertainty is the 

We analyze uncertainty In 

systems engineering the analysis might focus on  measuring the risk failing 

to achieve p e ~ o ~ a n c e  objectives, overrunning the budgeted cost, or 

delivering the system too late to meet user needs. Conducting the analysis 

involves varying degrees of subjectivity. This includes defining the events of 

concern, as well as specifying their subjective probabilities. Given this, it is 

fair  to ask  whether it’s meaningful to apply rigorous mathematical  procedures 

to such analyses. In a speech before the 1955 Operations  Research Society of 

America meeting, Charles Hitch  addressed this question. He stated 

of 



In  many  circumstances  the  probability  of  an  event  must  be  conditioned on 

knowing another event  has  taken  place. Such a  probability  is  known  as  a 

con~itional probability. Conditionul p r~b~b i l i t ies  incorporate information 

about  the  occurrence of another  event. The conditional probability  of  event 

given  an event B has  occurred  is  denoted by P(AI In  example it  was 

shown if a  pair  of dice is  tossed  the  probability  the sum of the  toss  is  even  is 

this  probability  is  known as a ~ u r ~ i n u l  or ~n~ondit ionul probubility. 

ow would  this  unconditional  probability change (i.e., be conditioned) if it 

was the sum of  the  toss  was  a  number  less  than  ten?  This  is  discussed 

in  the  following  example. 

2-2 If  a  pair of dice is  tossed  and  the sum of the  toss  is  a number 

less  than  ten,  compute  the  probability  this  sum  is  an even number. 

~ o l ~ t i o n  Returning to example recall  events B and C were  given by 

The  sum of the  toss  is  even 

C: The  sum  of  the  toss  is  a  number  less  than  ten 

The  sample  space LC2 is  given by the outcomes  in  table In  this  case, we 

want  the  subset of containing only those  outcomes  whose  toss  yielded  a sum 

less  than This subset is shown  in  table 

Table Outcomes  Associated  With  Event C 



Within  table  2-2,  14  possible  outcomes  are  associated  with  the  event 

of 

Therefore,  the  probability  of  this  event  is P( BIC) e 

In  example  2-2,  observe was obtained  directly from a subset  of the 

sample  space fu~hermore, P( 14 P( B) 1 I 2  in example 2-2. 

If A and B are  events  in  the  same  sample  space then P(A1B) is the 

probability  of  event A within  the  subset  of  the  sample  space  defined by event 

Formally,  the of A B 

is  defined  as 

where P(B) Likewise,  the of B 

A is  defined as 

where P(A) In  particular,  relating  equation  2-3 to 

referring to the  computations  in example 2-1)  we  have 

proposal  team from XYZ Corporation 

contracts A and B. The team made  subjective  probability 

example 2-2 (and 

has offers on  two 

assignments on the 

chances of winning  these  contracts.  They  assessed a 40 percent  chance  on the 

event  winning  contract A, a 50 percent chance on  the  event  winning contract 

B, and a 30 percent chance on  the  event  winning  both  contracts.  Given  this, 

what  is  the  probability  of 



a)  inning at  least  one  of  these  contracts? 

b)  inning contract A and  not  winning  contract B? 

c)   inning contract A if the  proposal  team  has won at  least one contract? 

~o lu t i on  

  inning at  least  one  contract  means  winning  either  contract A or 

contract B or both  contracts. This event  is  represented by the set AU B. 

From theorem 2-4 

P(A U B)  P(A) P(A B) 

therefore P(A U B) 0.40 0.50 -0.30 0.60 

b) The event  winning  contract A and  not  winning  contract B is represented 

by the  set A n  BC. From the  Venn  diagram  below,  observe  that 

P(A) P((A BC) U ( A  B)) 

Since  the  events A n  BC and A B are  disjoint,  from  theorem  2-4  we  have 

P ( A ) = P ( A n B ' ) + P ( A n B )  

This  is  equivalent to P(A n BC) P(A) P(A B); therefore, 

P(A BC) P(A) P(A B) 0.40 0.30 0.10 

c) If  the  proposal  team  has  won one of  the  contracts,  the  probability of 

winning  contract A must be revised  (or conditioned) on this information. 

This means  we  must  compute P(A]A U B). From equation  2-2 



P(A ( A  U B))  
?(A U B) 

A(A U B) 

Since P(A)  P ( A  ( A  U B)) we  have 

P(A U B)) P(A)  0.40 
P ( A u  B)  P ( A u  B) 3 

P ( A I A  U B) 

A consequence  of  conditional  probability is obtained if  we multiply equations 

2-2 and  2-3  by P(B) and P(A) ,  respectively. This multiplication  yields* 

P(AnB)=P(B)P(AIB)=P(A)P(BIA) (2-4) 

Equation 2-4 is  known  as  the The  multiplication rule 

provides  a way to express  the  probability  of  the  intersection  of  two  events in 

terms of their conditional probabilities. An illustration of this  rule  is 

presented  in example 2-4. 

A box  contains  memory  chips  of  which  3 are defective  and 97 

are nondefective. Two chips  are  drawn  at  random, one after  the  other, witho~t 

replacement.  Determine  the  probability 

a) Both  chips  drawn are defective. 

b)  The  first chip is  defective  and  the  second chip is  nondefective. 

a) Let A and B denote the  event  the  first  and  second  chips  drawn from the 

box  are respectively.  From  the  multiplication rule,  we  have 

P( A B )  P( AB)  P( A)P(  BIA) 

P( 1 st chip defective)P(2 nd chip  defective 1 st  chip  defective) 

P(A B) P(AB) P(BA).  



b) To determine  the  probability  the  first chip drawn  is  defective  and the 

second chip is let denote the event  the  second chip drawn  is 

nondefective.  Thus, 

P(A n C) P(AC) P(A)P(qA) 

P( 1  st  chip  defective)P(2  nd chip nondefective 1  st  chip  defective) 

In  this example the  sampling was performed Suppose 

the  chips  sampled  were that  is,  the  first chip selected was replaced 

before  the  second chip was selected.  In  that  case,  the  probability  of  a 

defective chip being  selected  on  the  second  drawing  is  independent  of the 

outcome  of  the  first  chip  drawn.  Specifically, 

P(2nd chip defective) 

So P(AnB)=- 9 
100  100 loo00 

P(1st chip defective) 31100 

and 

Two events A and are  said to be if and  only  if 

P(A n P(A)P(R) 

and otherwise. The events  AI, A.2,. ..,An  are (mutually) 

if and  only if for every  set  of  indices between and 

inclusive, 

P(Ai, n Ai2 n.. n Aik P(Ail  )P(Ai2 P(Aik (k 

For instance,  events AI ,  A2, and A3, are independent (or mutually 

inde~endent) if  the  following  equations are satisfied 

A2 A3 p(A, (2-5a) 



(2-5  b) 

(2 -5~)  

(2-5d) 

It  is possible to have three events A A2, and A3 for which equations 2-5b 

through 2-5d  hold  but equation 2-Sa does  not hold. Mutual independence 

implies pairwise independence, in the  sense that equations 2-5b through 2-5d 

hold,  but  the converse is not  true. 

There is a close relationship between independent events and conditional 

probability. To see this, suppose events A and B are  independent. 

implies P(AB) P(A)P(B) .  From this, equations 2-2 and 2-3 become, 

respectively, P(AIB) P(A)  and P ( 4 A )   = P ( B ) .  Thus, when  two  events are 

independent  the occurrence of one event has no impact on the probability the 

other event occurs. 

illustrate the concept of independence, suppose a  fair  die  is tossed. Let 

A be  the  event  an  odd number appears. Let B be the event one of these 

numbers {2,3,5,6} appears, then P(A) 1 2 and P(B) 2 3. Since A 

is the event represented by the set we can readily state P ( A  

Therefore, A B )  P(A)P(  B)  and we conclude events A an 

ependence can be illustrated by tossing two fair dice,  as 

described in example 2-1. In that example, A was the event the sum of the 

toss is odd  and B was  the event the  sum of the toss is even. In the solution to 

example 2-1, it was shown P ( A  B) 0 and ?(A) and P ( B )  were each 112, 

Since P ( A  B )  P (A)P(   B )  we  would  conclude events A and B are depen 

in  this  case. 

It is impo~ant not to confuse the meaning of independent events with 

mutually exclusive events. If events A and B are mutually exclusive, the event 

A and B is empty; that is, A n  B This implies P(A B) P(Q?) I f  
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events A and B are with P(A) 0 and P(B) 0, then A and B 

cannot be mutually  exclusive  since P(A B) P(A)P( B) 0. 

For any two independent events A I  and A2 

P(A1 U A2) 1 P(Af)P(A$) 

Proof From theorem 2-1 we  can  write 

P(A1 U A2) 1 P((A1 U A2)‘) 

From De Morgan’s  law  (section 2.2) (A, U A ~ ) ~  Af A$; therefore, 

P(A1 U A2) 1 P(Af A i )  l P(AfA$) 

Since events A I  and A2 are  independent,  the  above  expression  becomes 

P(A1 U A2) l P(Af)P(A$) (2-6) 

prove  this  theorem,  we  used  a  result  that if A I  and A2 are independent then 

Af and A$ are also independent.  Showing  this  is  left as an  exercise for the 

reader. Extending theorem 2-6, it  can  be  shown  that  if A,, A2,.  .,An are 

independent then 

P ( A I w A z u A ~  W... U A , ) = ~ - P ( A ~ A $ A :  A i )  

1 P(A~)P(A$)P(A~). P(A;) (2-7) 

Suppose we have  a  collection  of  events A, representing  possible conjectures 

about  a  topic.  Furthermore,  suppose we have  some  initial  probabilities 

associated  with  the  “truth”  of  these  conjectures.  Bayes’  rule*  provides  a way 

to update  (revise)  initial  probabilities  when new information  about  these 

conjectures  is  evidenced. 

Bayes’  rule  is  a  consequence  of conditional probability.  Suppose 

partition  a  sample  space L2 into  a  finite  collection three  mutually  exclusive 



U U B 

B 

B), B) 

P ( B ) = P ( A , n B ) + P ( A , n ~ ) + P ( A , n ~ )  

P(B)= P(A, )P(BIA, )+P(A, )P(BIA, )+P(A, )P(~A, )  

p r ~ b u b i l i ~  
n 

i-1 
n 
U i 

B 

(2- 1) 



hen  the  total  probability  law  is  applied to equation  2-1  1  we  have 

Equation  2-12 is known as Bayes 

(2-  12) 

The ChipyTech  Corporation  has three divisions and 

that  each  manufacture  a  specific  type  of  microprocessor  chip. From the  total 

annual  output  of chips produced by the corporation, manufactures 35%, 

manufactures  20%,  and manufactures 45%. Data  collected from the 

quality control group indicate  1%  of  the chips from D l  are  defective,  2% of 

the  chips from are defective,  and 3% of  the chips from D3 are defective. 

Suppose  a chip was  randomly  selected  from  the  total annual output produced 

and  it  was  found to be  defective.  What  is  the  probability  it was manufactured 

by By ByD3? 

Let denote  the the  selected chip was produced by division 

1,2,3). Let denote the  event  the  selected chip is  defective. TO 

d e t e ~ i n e  the probability  the  defective chip was  manufactured by we must 

compute  the conditional probability for l, 2,3. From the 

in fo~at ion  provided,  we  have 

P(A1) 0.35, P(A2) 0.20, and P(A3) 0.45 

0.01, 0.02, 0.03 

The total  probability law and  Bayes' rule will  be  used to determine 

for each 2,  and 3. Recall from equation  2-9 can  be  written as 

P(Al)P(BIA,)+ 

P( B) 0.35(0.01) 0.20( 0.02) 0.03) 0.02 1 

and  from  Bayes' rule we  can  write 



i=l 
from which 

Table 2-3 provides a comparison of with P(AilB) for each i l ,  2,  3. 

Table  2-3.  Comparison  of Ai) and Ai B) 

1  0.35 0.167 
2  0.20 0.190 
3 0.45 0.643 

The probabilities given by P(Ai), are the probabilities the selected chip will 

have  been  produced  by division before it is  randomly selected and before 

it  is  known  whether or not the chip is defective. Therefore, P(A,) are the 

prior, or priori (before the fact) probabilities. The probabilities given by 

P(A,IB) are the probabilities the selected chip was produced by division Di 

after it is known the selected chip is defective. Therefore, P(A,IB) are the 

posterior, or posteriori (after the fact) probabilities. Bayes’ rule provides a 

means for the computation of posterior probabilities from the known prior 

probabilities .?‘(Ai) and the conditional probabilities P(B(Ai) for  a particular 

situation or experiment. 



Bayes’ rule established a philosophy in probability  theory that became  known 

as and These areas play an 

important role in the application of probability theory to cost and systems 

engineering problems. In equation 2-10, we  may think of as representing 

possible states of nature to which an analyst systems engineer assigns 

subjective probabilities. These subjective prob~bilities are the prior 

probabilities, which are often premised on personal judgments based  on  past 

experience. In general, Bayesian  methods offer a powerful way to revise, or 

update, probability assessments  as new (or refined) information becomes 

available. 

l .  State  the inte~retation of probability implied by the following: 

a) The probability a tail appears on the toss of a fair coin is 112. 

b) After  recording the outcomes of 50 tosses of a fair coin, the 

probability a tail appears is 0.54. 

c) It is with certainty  the  coin is fair! 

d) The  probability is 60 percent that the stock  market  will close 500 

points above yesterday’s closing count. 

e) The  design  team believes there is less  than a S percent chance the 

new  microchip  will require more  than  12,000 gates. 

2.  A sack contains 20 marbles exactly alike in size but different in color. 

Suppose the  sack contains 5 blue marbles, 3 green marbles, red 

marbles, 2 yellow  marbles,  and 3 black  marbles. Picking a  single 

marble from the sack and  then replacing it,  what is  the probability of 

choosing the following: 



a) Blue  marble? b) Green  marble? c) Red  marble? 

d) Yellow  marble? e) Black  marble? f) Non-blue  marble 

g) Red or non-red  marble? 

3. If  a fair coin  is  tossed,  what is the  probability  of  not  obtaining  a head? 

What  is  the  probability  of  the  event:  (a  head or not  a  head)? 

4. Show  the  probability  of  the  event: (A or complement) is unity. 

5. Suppose  two  tetrahedrons  (4-sided  polygons) are randomly  tossed. 

Assuming  the  tetrahedrons are weighted  fair,  determine the set of all 

possible  outcomes Assume  each  face  is  numbered 1, 2, 3, and 4. 

Two Tetrahedron’s for Exercise 5 

Let  the  sets A,  B, C, and D represent  the  following  events 

The sum of  the  toss  is  even 

B: The  sum  of  the  toss  is  odd 

C: The sum of the  toss  is  a  number  less  than 6 

D: The toss  yielded  the  same  number  on  each  upturned  face 

a)  Find P ( A n  B), P ( A  U B) ,  C), a d  

b)  Verify P(A U B)‘ P(AC BC) (De Morgan’s  Law). 

6. The  XYZ  Corporation  has  offers  on two contracts A and B. Suppose  the 

proposal  team  made  the  following  subjective  probability  assessments: 

the  chance  of  winning  contract A is 40 percent,  the  chance  of   inning 



contract B is 20 percent, the chance  of  winning  contract or contract 

60 percent,  the  chance  of  winning  both  contracts  is percent. 

a) Explain why the  above  set  of  probability  assignments  is i ~ c o ~ s i s t e ~ t  

with  the  axioms  of  probability. 

at  must equal  such  that  it  and  the  set  of  other assigned 

probabilities  specified  above  are  consistent  with  the  axioms of 

robability? 

pose a coin  is  balanced  such  that  tails  appears 3 times more 

frequently  than  heads.  Show  the  probability of obtaining a tail wit 

such a coin 3/4. at  would  you expect this probabi~ity to 

coin  was  fair;  that  is,  equally  balance 

uppose  the  sample  space  of  an ex ent is  given by 

if ~ ( A )  0.25 an 



12. 

13. 

15. 

a) The  events AC and BC are independent. 

b)  The  events A and BC are independent. 

c) The  events AC and are independent. 

Suppose and B are independent events  with P(A) 0.25 and 

B) 0.55.  Determine the probability 

a) At  least  one  event  occurs. 

b)  Event occurs  but event does  not  occur. 

Suppose and  are  independent  events  with P(A) r and the 

probability  that ““at least or occurs” is S. Show the  only  value for 

In  exercise 5, suppose  event C has  occurred. Enumerate the  set of 

From this  set compute ~ o ~ p a r e  

is  determined from the de~nition  of 

At  a  local  sweet  shop, 10 percent  of  all  customers  buy  ice c r e a ~ ,  2 

ercent  buy fudge, and  1  percent buy both  ice cream 

er selected  at random bought fudge, what  is  t 

If a  customer se 

ability ‘.the custome 



Both  chips  are  defective. 

c) The  first chip is defective  and  the  second chip is  nondefective. 

d) The first chip is nondefective  and the second chip  is defective. 

18. Suppose  the  sampling  scheme  in  exercise 17 was  with  replacement, that 

is,  the  first chip is  returned to the  lot  before  the  second chip is  drawn. 

Show  how the probabilities  computed  in  exercise 17 are changed. 

19. Spare power  supply  units for a  communications  terminal are provided 

to the  government from three  different  suppliers AI, A2, and A3. Thirty 

percent come from AI, twenty  percent come from A2, and  fifty percent 

come from A3. Suppose these  units  occasionally  fail to  perform 

ac~ording  to their  specifications  and  the  following  has  been  observed: 

2 percent  of  those  supplied by A I  fail, 5 percent  of  those  supplied by A2 

fail,  and 3 percent  of  those  supplied by A 3  fail.  What  is  the probability 

any  one  of  these  units  provided to the  government  will  perform 

failure? 

20. In a single  day, ChipyTec~ Corporation’s manufacturin~ facility 

produces 10,000 microchips.  Suppose  machines 

individually produce 3000, 2500, and 4500 chips  daily. The quality 

control group has d e t e ~ i n e d  the  output fr machine has yielded 

defective  chips,  the  output from machine  has  yielded 26 defective 

chips,  and  the  output from machine C has  yielded 47 defective  chips. 

was selected  at  random from the  daily  output,  what  is the 

rob~~i l i ty  it  is  defective? 

is  the  probability  a rando~ ly  selected chip was produced 

se a chip randomly  selected  from  the  day’s production of 



10,000  microchips  and  it was found to be  defective. is the 

probability  it was produced by machine A? By machine 

machine C? 

1. Feller, 1968. An  Introduction to Probabil i~ Theory  and  Its 
Applications, vol.  1,  3rd ed (revised). New  York:  John  Wiley Sons, 
Inc. 

2. Hitch, An Appreciation o~Sys~ems  ~na lys is ,  P-699.  Santa 
Monica,  California: The RAND  Corporation. 



There  is  only  one  thing  about  which We  dance  round  in  a  ring  and  suppose 
certain,  and  this  is  that  there  is  very little But  the  Secret  sits  in  the  middle  and  knows. 

The Summing Up 938) 

Consider  the experiment of  tossing  two fair dice described  in  example 1 

(chapter  2).  Suppose x represents  the  sum  of the toss.  Define as a variable 

that  takes  on  only  values  given by x. If  the sum of  the  toss  is 2 then 2 if 

the  sum of the  toss  is 3 then 3; if the sum of  the  toss  is then 7. 

Numerical  values  of are  associated  with defined from the  sample 

space for  this  experiment,  which was given  in  table 2-1 (chapter  2). In 

particular, 

2 is  associated  with  only  this  simple  event (l,l)}* 

3  is  associated  with  only  these  two  simple  events {(1,2)},{(2,1)} 

7 is associated  with  only  these simple  events {(1,6)},{(2,5)},{ (3,4)},  {(4,3)}, 

{(572)19{(6,1)1 

In  the  above, we say is a random  variable.  This  is  illustrated  in  figure 3-1. 

Formally, a is a real-valued function defined  over a sample 

space.  The  sample  space  is  the of a random variable. Tradition~lly, 

random  variables are denoted by capital  letters  such  as W, and 

The  outcomes  from  tossing  two  dice  are  recorded where dl and are the 
numbers  appearing  on  the  upturned  faces  of  the  first  and  second  die,  respectively.  Therefore, in 
this  discussion, 
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Some  Possible 
Values for 

The  random  variable 
where is the sum of the  toss 
of two dice. In particular, 

X(((lJ)}) = 2  

Figure 3-1 Some  Possible  Values  of a Random  Variable 

The  event is  equivalent to 

This  represents a subset  of SZ consisting  of  all  sample  points U such  that 

In  figure 3-1, the  event is  equivalent to 

{X 
The  probability  of  the  event is  equivalent  to 

E 

In figure 3-1, the  probability  of  the  event is  equivalent  to 

P({ (1,2),(2,1)}) 

For  convenience,  the  notation P( {X P(X is  adopted  in  this  book. 

Random  variables  can  be  characterized  as  discrete or continuous. A 

random  variable is if its  set  of  possible  values  is  finite or countably 

infinite. A random variable  is if its  set of possible  values is 

uncountable. 



Consider again the  simple  experiment of tossing a pair of fair dice. Let the 

random variable represent the sum of the toss. The  sample  space for this 

experiment consists of thirty-six outcomes  given in table 2-1 (chapter 2). The 

random  variable is discrete since the possible values are 

2,3,4,5,6,. ,12. The function that describes probabilities associated with 

the event for all of is  shown  in figure This 

function known as the probability function of 

Figure 3-2. Probability Function for 
the Sum of Two Dice  Tossed 

The of a is defined as 

x)  (3-1) 

The probability function is also referred to as the or 

the of The probability function associates probabilities 

to events described by distinct (single) points of interest. Over  all 

(possible) values  of probability functions satisfy, by the axioms of 

probability, the following conditions: 

a) 



If is not a ~ e a s i b l ~  value  of X then 

P(X P ( 0 )  0 

It  is  often  of  interest to determine probabilities  associated  with  events  of the 

form For  instance,  suppose we wanted  the  probability  that  the sum 

of the numbers  resulting from the  toss  of  two fair dice will not  exceed  seven. 

This is  equivalent to computing 7) ;  in  this  instance, we have 

P ( X 5 7 ) = P ( { X = 2 } u { X = 3 } u  u { X = 7 } ) .  Thus, X can  take a value not 

exceeding  seven if and  only if X takes  on one of  the  values 2,3,. .,7. Since 

the  events 2},  { X  3} ,  . ,{X 7)  are  mutually  exclusive, from axiom 3 

(chapter and  figure 3-2 we  have 

The function  that  produces  probabilities for events of the form S is 

known-  as  the  cumulative  distribution function. Formally, if X is a discrete 

random  variable  then  its cu~ulat ive distribution ~ n c t i o n  (CDF)  is  defined by 

P(X px( t )  (3-2) 

In  terms of the  above de~nition, we  would  write P(X 7 )  as 



3/36 

1/36 

0 2  3 11  12 

Figure 3-3. Cumulative  Distribution  Function  for 
the Sum of Two Dice  Tossed 

If is  a  discrete  random  variable  and a is  any  real  number  that  is  a  feasible 

(or  possible)  value  of then P(X a)  is  equal to the  height  of the 

step  (jump)  of at a. 

The  following  presents  theorems for determining  probabilities  from the 

CDF of  a  discrete  random  variable In  the  theorems  below, a and b are real 

numbers  with a c b. 

The probability  of {X a} is 1 &(a). 

Proof Let A denote the  event a} then AC a} from  theorem 2- 

and  the de~nition given by equation 3-2, it i ~ e d i a t e l y  follows  that 

The  probability  of a} is a) .  

e can  write  the  event a} as  the  union of two  mutually  exclusive 

events a} and a} that  is, 

> a }  a} U{X> 

{X = a }  



From  theorems  2-4  and 3-1 we  have 

~ ~ e o r e ~  3-3 The  probability  of is 

This  is a direct  consequence  of  theorems  3-2  and 3-1. The proof is 

left  as  an  exercise for the  reader. 

The  probability  of is 

We  can  write  the  event as  the  union  of  two  mutually  exclusive 

events and that  is, 

From theorem 2-4 

Thus, 

Therefore 
Fx(a) 

~ ~ e o r e ~  3-5 The  probability  of is 

We can  write  the  event as the  union of two  mutually  exclusive 

events and that  is, 

From theorem 2-4 



It follows that P(X<b)-P(X<a)=P(a<X<b) 

From  theorem P(X Fx(b) P(X b);  since P(X we 

have X Fx(b) P(X b), which  was  to  be  shown. 

The  probability S X b} is 

can  write  the  event X b} as the union  of  two  mutually 

exclusive events {X and X that is, 

From theorem 2-4 
{a<X<b}=oI(=.)u(a<X<b} 

From  theorem 3-5 Fx(b) P(X therefore, 

3-7 The  probability X is Fx(b)- Fx(a)+ P(X 

Proof We  can  write  the  event X f as the  union of three  mutually 

exclusive events {X X and {X That  is, 

{ a < X < b } = { X = a ) u { a < X < b } u ( X = b }  

axiom (chapter 2) and  theorem 3-5 

=P(X=a)+P(a<X<b)+P(X=b)  

Fx(b) Fx(a) P(X 

The following presents the  first  of  many case discussions in  this  book. The 

disc~ssion addresses how corporation might  assess the chance of ~ a ~ i n ~  a 

profit  on a new electronics product. 



Case ~ i s c ~ s s i u n *  ChipyTech  Corporation  is  a  major  producer and 

supplier of electronics  products to industry  world-wide.  They are plan~ing  to 

bring  a  new  product to the  market. ~anagement needs to know  the pr~duct’s 

potential  for  profit  and  loss  during  its  first  year  on  the  market. In a~dition, 

they  want to know  the  chance  of nut ~ a ~ i n g  a  profit  the  first  year. 

profit [l] is  given by equation 3-3 

where Uprice is  a  discrete random variable  that  represents  the  product’s  unit 

price, U,,, is  a  discrete random variable  that  represents  the  unit  cost to 

manufacture  the  product,  and is  a  discrete random variable  that  represents 

the  product’s sales volume for year  one,  which  is  assumed to be  nonzero. A 
profit  exists  when a  loss  exists  when UPrlre and p r u ~ t  

exists when U,,,, For  purposes of this  case  discussion, we  will a s s u ~ ~  

UPnce, U,, and V are independent random  variables. 

Suppose  the corporation’s sales,  price,  and  cost  histories for similar 

products  have  been  analyzed.  Further,  suppose  interviews  were carefully 

conducted  with  subject  matter  experts from the engineering and m a r k e t i ~ ~  

departments of ChipyTech. From the  interviews  and  the  historical  data, 

possible  values for the product’s unit  price,  unit  cost,  and  sales  volume were 

established  along  with  their  respective  probabilities of occurrence.  Figure 3-4 

presents  these  values  for and 

Adapted  and  expanded  from  an  example  in  Park, W. R., and D. E. Jackson. 
2nd  ed. New 

York:  John Wiley Sons,  Inc. 
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Figure 3-4. Possible Values for UPrr fe ,  U,, and V 

find the dollar range  on the product's profit or loss potential, we first list 

all possible Combinations of UPrlre, Ucost, and V. This  list is shown  in table 

3-1.  Since Uprice, Ucos,, and V are given to be  independent  random  variables,* 

the probability that any  combination  of and and V will  occur is 

where  values for uprice), P(UCosf and P(V are given in 

figure 3-4. For  example,  the probability the new  product  will  have a unit 

price of 20 dollars and a unit cost of 10 dollars and sales  volume of 10 

million (the first year) is 

When  random  variables  are  independent  their  associated  events  are  independent,  This is 
discussed  further  in  chapter 5. 



Table 3-1 summarizes the possible values for Profit. Table 3-1 also shows the 

probability Profit takes a value according to a specific combination  of Uprice, 

U,,, and V. From table 3-1,  observe there is a potential loss of as much as 

300 ($M) and a potential gain of  as  much as 900 How  probable are 

these extremes?  What  is the chance the corporation will not make a profit the 

first year? The following discussion addresses these questions. 

From table 3-1 it  can  be  seen there is less than a 1 percent chance  (i.e., 0.6 

percent) the new  product  will realize a loss of 300 during its first year 

on the market. Similarly, the maximum profit of 900 has just under a 2 

percent chance (i.e.9 1.8 percent) of occurring. 

Table 3-1. Fossible Profits and Their  roba abilities 

20 
20 
20 

0.008 
0.012 



Table 3-1. Possible Profits and Their Probabilities 
(Concluded) 

40 
40 
40 
40 
40 
40 
40 
40 
40 

10 
10 
10 
20 
20 
20 
30 
30 
30 

10 
20 
30 
10 
20 
30 
10 
20 
30 

300 
600 
900 
200 
400 
600 
l00 
200 
300 

0.030 
0.0 12 
0.018 
0.105 
0.042 
0.063 
0.015 
0.006 
0.009 

Total Probability 1 

The corporation will not make a profit (i.e., Profit 0) when UPnce Uco&Tt. 

There are nine events in table 3-1 (shown by the bold-faced figures) that 

produce Profit 0. Let  these events be represented by A I ,   A z ,  A9 where 

These events are mutually exclusive. Therefore, from axiom 3 (chapter 2) the 

proba~i l i t~ that Profit 0 is 

9 
P(Profit 0) P( W Ai)  

i= l  i= l  

where each P(Ai)  is given  in table 3-1. 



Table 3-1 can also be  used to develop the P r o ~ ~ ~ i l i ~  ~ n c t i o n  for the random 

variable ? r o ~ t .  Since ? r ~ ~ i t  is  given (in this discussion) to be a discrete 

random variable, its probability function is 

where feasible values of are given in table 3-1. Figure 3-5 is the graph of 

pprofi,(x). Among the many useful aspects of the probability function is 

identifying the value  of x associated with the highest probability of 

occurrence. In figure 3-5, a profit of  200 ($M) has the highest probability of 

occurrence. A  number of other computations  can  be  determined from 

pProfir ( x ) .  For  example,  from figure 3-5  we  have 

r o ~ t  0) is really the value  of the c ~ ~ ~ l ~ t i v e  ~ i s t r i  

t at x 0. From e ~ u a t i o ~  3-2, the 



Equation 3-8 presents Fpro f i r (~ )  for this case discussion. 

S 

ChipyTech will not ~~~e a profit  can now  be read 

(equation 3-8), specifically 

Fprofit ~ ( ~ r o ~ t  0) 0.210 

of is presented with example 3-3 (figure  3-12).  From 

rofit will fall within other intervals of i~terest 

orems 3-2  through  3-7, with reference figure 

quation 3-8, we have the following: 

P(Pr~fi it FproJt P ( ~ r ~ f i ~  

P(Pr~fiit Fprofit P( ProJiit 

Profit S FProfir Fprofit 

Fprofit Fprofit P(Profit P( 4 

Fprofit ~ ( P r ~ ~ i t  

case discussion 3- illustrates how fundamental 



entioned  in  the  beginning  of  this  chapter, a random  variable  is  continuous  if 

its set of possible  values is uncountable. For instance, suppose 1' is a random 

variable  representing  the  duration  (in  hours)  of  an  electronic  device.  If the 

possible  values  of T are  given by 0 52500}, then T is a 

In  general, we say is a if  there  exists a 

defined  on  the  real  line,  such  that for  any 

interval A 

A 

The  function fx(x) is  called  the 

Unlike  the  probability function for a discrete  random  variable, t 

directly  produce a robability fx(a) does  not produce define 

by equation 3-1. In  the  above,  the  probability  that X is  contained  in any 

subset  of  the  real  line  is d e t e ~ i n e d  by integratin~ over  that  subset. 

Since assume  some  value on the  real  line,  it  will  always  be  true  that 

In  this  case,  the  cumulative  distribution  function (C F) of  the r a n ~ o m  

variable X is  defined  as 

~ x ( x )  E 

A useful way to view e uation 3-9 is shown figure 3-6; if  we assume 

then from calculus we can  interpret  the  probabilities  of  the  events 

as the  areas  of  the  indicated  regions  in  figure 

the  probability a is  zero;  this 

is  because 



a) 

-00 a b 

X a b 

~x(b)-  ~x(a) 



3-1 Let be  a continuous random  variable*  that  represents  the  size 

of  a  software  application  being  developed for a  data  reduction  task.  Let be 

expressed as the  number  of  delivered  source  instructions Suppose the 

state  of  the  technical i n fo~a t ion  about  the application’s functional and 

performance  requirements  is very sparse.  Given  this, suppose subject  matter 

experts  have  assessed  the  “true”  size of the  application  will  fall  somewhere  in 

the  interval [lOO0,5000]. Furthermore,  because  of  the  sparseness available 

information,  suppose  their  size  assessment  is  such  that could  take  any  value 

in [lOOO, with  constant  (uniform)  probability  density. 

a) Compute  the PDF and  the CDF of 

b)  Determine  a  value such  that 0.80. 

a) Figure 3-7 presents  a function with  the  property  that  its  value  is c (a 

constant)  at  any  point  in  the  interval [1000,5000]. For this  function to be  a 

probability  density, it is  necessary to find c such  that fI(X)& 1. It will 

then  be  true  that  all  subintervals  of [1000,5000] that  are  the  same  in length 

will  occur  with equal, or constant,  probability  (an exercise for the  reader). 

In  this  example,  and  in  many  that  follow,  software  size is treated continuous  random 
variable.  In  reality,  the  number  of  delivered  source  instructions  for software  application  is 
positive  integer  -e.g., “it takes source instructions to pre-process the  data stream 
passing  into  the radar’s primary  processor.” If,  for  example,  we  treat  software  size as discrete 
random  variable,  then  each  distinct  value  (assessed  by  subject  matter  experts “possible”) 

requires  an  assessment of its probability of  occurrence.  Although  this  is valid  way to 
describe  such random  variable,  it  is  not  clear  how  many  distinct  values  (and  their  associated 
probabilities)  are  needed  to  adequately  capture  the  overall  distribution  of  possible  values.  In 
practice, continuous  distribution  is  often used to describe  the  range  of  possible  values  for 
random  variable  such software  size.  This  enables  subject  matter  experts  to  focus  on the 
“shape”  that  best  describes  the  distribution of probability,  rather  than  assessing  individual 
probabilities  associated  to  each  distinct  possible  value. If  needed,  the  resulting  continuous 
distribution  could  later  be  translated  into discrete  form. 



Figure  3-7.  Probability  Density  Function for Example 3-1 

From figure  3-7, f z ( x )  can  be  written  as 

c if 

0 otherwise 

For f z ( x )  to  be  a F, we  need to find c such  that 

00 

l000 

therefore c Thus,  the PDF of  the  random  variable is 

if 100O<x<5000 

0 otherwise 

To  ete ermine the we  must  evaluate  the  integral 

fz ( t )d t  for 

(3-12) 

(3-13) 

as moves  across  the  interval From equation  3-9,  and  the 

in  equation 3-13, we  can  write  the CDF as 



1000 

1000)/4000 S 5000 (3-14) 

Notice is a straight  line,  as  illustrated  in  figure  3-8. 

Figure  3-8. The Cumulative  Distribution  Function for Example  3-1 

b)  The  value such  that P(Z 0.80 is obtained  from  equation  3-14 by 

solving 

0.80 
4000 

for The  solution is 4200. Therefore, thereis an 80 percent  chance the 

“true”  software size will  be  less  than or equal to. 4200  DSI. 

3-2 Suppose the  probability  density  function for in  example 3-1 is 

now defined by the two regions  shown in figure  3-9. 

Find c such  that in  figure  3-9  is PDF. 

b)  Determine 

c) Compute P(Z 2000), P(2000 c c 4000), P(2000 



~(5000 

is 

f z  (x )  



istri 

b) To determine the cumulative distribution function we  must evaluate 

for 

as moves across the interval the given  in equation 

is 

0 if 

-'dt if 

dt if 5000 

if 

which  is equal to 

' 0  if 

if 1000 

if 5000 

if 

c) Probabilities can  be  determined  from  equation The probability is 

less than equal is 

The probability will fall between and 4000 is 

~(4000)-  

The probability I will fall between and 5000 is 

~ (5000)  

A graph of  the for this example  is  given in figure When 



examining such a CDF, it is often useful to d e t e h n e  the value of x associated 

with F x ( x ) = 0 . 5 0 .  In figure 3-10, this value is 2500 (an exercise for the 

reader). A value of 2500 DSI for I has an equal probability of being larger 

or smaller. 

DSI 
lh 

X 

Figure 3- 10. Cumulative Distribution Function for Example 3-2 

This leads to the definition of an important measure about a distribution 

function known as the median. If X is a random variable with distribution 

function F'(x), a number x satisfying both 

P(X I x) 2 1 I 2 and P(X 2 x) 2 1 / 2 

is called the median of X .  This will be denoted by ~ e d ( X ) .  Using theorem 

3-2, the above inequalities combine to yield the expression [23 

(3-19) 
1 1 
2 2 
- I Fx(x)  I - + P( X = x) 

If X is a continuous random variable, we know P ( X = x ) = O  for all x; 

therefore, from expression 3-19, the median of X is the number x satisfying 

1 

2 
Fx(x)  = - (3-19a) 



When is a continuous random variable  its  distribution  function is 

monotonically  increasing, as seen  in figure therefore,  there  exists 

unique  value  of such  that  equation is satisfied.  When is a discrete 

random variable, Med(X) may not  be  unique. For instance,  in figure 

every  point  in  the  interval 3 4 is a median  of From figures and 

we  see  that every distribution finction has at least one  median. 

r;, 

Figure of a Random  Variable  With  Uncountably  Many 

The median one  measure  among a class  of  measures  about a distribution 

known  as fractiles. In  general,  the  value is  called  the a-fractile of X if 

The  median the  0.50-fractile  of its  value  is  given by 

In  figure we have Other a-fractiles of common 

interest  are and Fractiles  are one way to express percentiles of a 

distribution.  In  general,  the a-fractile of is  the a(100)th percentile  of 

For instance,  the  median  is  the  50th  percentile  of 

When  looking  at  the  possible  values  of a random variable a useful  value to 

determine  is  its  expectation. The expectation  of a random  variable  is also 

known  as  its  mean.  The expectation (or mean) of a discrete random  variable 

is  defined  as 



(3-20) 

The  expectation* of a random variable  is the s u ~ ~ a t i o n  of  all its possible 

values  weighted by the probabilities associated with these  values.  The terms 

~xpectation and  mean (usually denoted by the Greek s y ~ b o l  are 

synonymous. 

3-3 Return to case discussion 3-1 and determine the following: 

a) P( Proft E( Profit)) 

b) P(Proft ~ e ~ ( P r o ~ t ) )  

~olut ion 

a) First determine E(Profit). From case discussion 3-1 the probability 

function for Profit is given in figure 3-5. Since Profit defined by a 

discrete random variable, from equation 3-20 we have 

- 3 ~ ( 0 . ~ 6 )  (-200)(0.004) (-100)(0.010) 

+400(0.062) 600(0.105) 900(0.018) 

216 

Therefore, the expected profit is 216 ($M). From theorem 3-2, the 

probability Profit will be greater than equal to its  expected  value  is 

P( ~ r o ~ t  Profit)) 1 FPr0Bt P r o ~ t ) )  P( Profit E( Profit)) 

or P(Proft 216) 1 FprOjt(216)+ ~ ( P r o f t  216) 

The  expectation E(X) for  a  discrete  random  variable exists  if  and  only  if  the  summation  in 
equation 3-20 absolutely  convergent;  that  is,  if  and  only  if c 



From equation 3-8 Fprofit(216) 0.659; however P(Profit 216) 0 since the 

point 216 is not a feasible (possible) value of Profit; 

P(Profit 216) 1 0.659 0 0.341 

b) First determine ~ e ~ ( P r o f i t ) .  The  median  of Profit can be found by 

expression 3-19. Referring to equation 3-8  and figure 3-5, it  can be seen that 

200 satisfies both 

l 1 
P(  Profit and P( Profit 

2 2 

From equation 3-8 

P(Profit S 200) F~rofit(200) 0.659 l 

therefore, the first inequality P( Profit 1 2 is true when 200. It  now 

remains to verify that P(Profit l /  2 when 200. From theorem 3-2 

P( Profit 200) 1 Fprofit (200) P( Profit 200) 

1 0.659 0.239 0.580 2 I 2  

therefore, the second inequality is also true. It is left as an exercise for the 

reader to show  that 200 is the only median of Prof;t, in  this case. 

complete part b) we need to determine P(Profit ~ e ~ ( P r ~ f i t ) ) .  Since  it was 

established that ~ e ~ ( P r o f i t )  200, it  can be readily seen from  figure 3-5 

P~Profit ~ e ~ ( P r o f i t ) )  Profit 200) pp1~B~(200) 0.239 

This result could also be obtained from the cumulative dist~bution  functio~ 

of Profit. Recall P(X px(a) is  the  height  of  the jump of at 

where is feasible value  of X .  From  equation  3-8, the height of the jump of 

FplOBf(x) at 200 is  0.659 0.420 0.239. Figure 12 illustrates this 

probability and presents the cumulative distribution function  for Profit, as 

described in case discussion 3-1. e 



ter 

P(Prufit 

Figure  3-12.  Cumulative  Distribution  Function  for Profit 

Defined  in  Case  Discussion 3-1 and  Example  3-3 

Suppose  the  probability function of  the  cost to develop an 

inspection  system for radomes is given  below. 

a) What  is  the  expected  cost? 

hat  is  the  0.95-fractile  of 

($M) 

a) From the  information  in  the  above  table  and  equation  3-20 

40(0.30) 65(0.20)  +80(0.25) 95(0.20)  +105(0.05) 69.25 

Therefore,  the  expected  cost  of  the  inspection  system  is  69.25 ($M). 

b) We  will use  the  cumulative  distribution  function to determine the 0.95- 

fractile  of The  table  below  expresses  the  probability function and the 

distribution  function  of 



Cost Probability Cumulative 
( $ W  Function Probability 

105 

From  the above table, 95 ($M) is  the 0.95-fractile of Cost; that is, 

€'(Cost 95) 0.95 

The above discussion focused on determining the expected value of a 

random variable for  the discrete case. If X is a continuous random  variable, 

the expectation* (or the mean) of is defined as 

Example 3-5 Using equation 3-21, compute E( in example 3- l. 

Solution In example 3-1 the PDF of was 

if  lOOO<x<5OOO 

0 otherwise 

from equation 3-21 
5000 

&dx 3000  DSI 
1000 

Therefore, the expected (mean) size of the software application 

described in example 3- is 3000  DSI.  In figure 3-13, notice E(Z) falls 

exactly  between the interval [1000,5000].  In chapter 4, we  will see when 

fx(x) is described by a rectangular region, within an interval [a ,b ] ,  then 

The  expectation for a continuous  random  variable exists if  and  only  if  the  integral  in 

equation  3-21  is  absolutely  convergent;  that  is, if  and if 00. 



Figure  3-13. The Expectation  of for  Example  3-5 

3-6 Compute E(Z) for the PDF in  example  3-2. 

In  example 3-2 the PDF of was 

1/3000 if 1000 3000 

(5000 if 
f&> 

Using  equation  3-21 

Therefore,  the  expected (or mean)  size E(Z) of  the  software application 

described  in  example  3-2  is approximate~y 2556  DSI. A graph illustrating 

the  location  of E(I), in  this  example,  is  shown  in  figure  3-14. 

3-7 Let denote the  unit  production cost a trans~itter 

synt~esizer unit (TSU) for a  communications  terminal. Suppose there is 

u~cer~ainty in  the  fabrication,  assembly,  inspection,  and  test  hours  per TSU. 

ecause this,  suppose  production  engineering  assessed  that Cost is  best 

desc~bed by the PDF in  figure  3-15.  Deterrnine 

a) E(Cost) 6) P(Cost 



of 

Solution 

l o o 0 0  
(3-22) 

x 

Cust 



For  this  example 

Thus,  the  expected  (mean)  cost  of  the TSU is  approximately dollars. 

b) To compute P(Cost E(Cost)), recall from theorem (chapter 

P( cost E( Cost)) P( cost I E( Cost)) 

l Fcost(E(Cost)) I= l 
From equation 

((t S(106))dt 1((18000 t ) /  

therefore 
P(Cost E(C0st)) 

c) From  equation the  median  of Cost is 

~ e d ( C o s t )  P(Cost 

We need to find such  that 

P(C0st t  )dt 0.50 

In figure the  area  under  the  curve  between accounts 

for only percent  of  the  total  area  (which  must  equal  unity)  between 

that  is, 



12000) ((t 10000)/$(106))dt 0.25 

Therefore,  the  value  of that  satisfies 0.50 must  be to the right 

of 12000. To find  this  value we need to solve  the  equation  below; 

specifically,  we  must  find such  that 

((t-10000)/$(106))dt+ 1((l$000-t)/24(lO6))dt 0.50 

This  expression  simplifies to solving 

for It  turns  out 

for the  reader. 

synthesizer  unit  is 

((l8000 24(106))dt 0.25 

the  only  feasible  value  for is 13101; showing  this  is  left 

Therefore, we say  the  median  cost  of  the  transmitter 

13101;  that is, Med(Cost)=13,101  dollars.*+ 

Thus  far,  we  have  discussed  the  expectation  (or  mean)  and  the  median  of  a 

random  variable.  Another  value  of  interest  is  the  mode.  The  mode of a 

random  variable denoted by is  the  value of that  occurs  most 

frequently.  It is often  referred to as the  most  likely or most  probable  value 

Formally,  we  say  that is  the mode if 

maxp,(t)  when is  a discrete random  variable 

max when is  a continuous random  variable 
t 

The mode  of  a random variable  is  not  necessarily  unique.  The random 

variable  described by the  rectangular  PDF  in figure 3-7 does not  have  a 

unique mode.  However,  in  example 3-7, 12000  is  the unique mode  of the 



ter 

random  variable  Cost. The mean,  median,  and  mode  of  a  random  variable are 

collectively  known as measures central tendency.  Figure 3-16 illustrates 

these  measures  for  the PDF in  example 

10000  13333.3  18000 10000 13101 

looa, 12000  18000 

Figure 3-16. Central  Tendency  Measures for the PDF in  Example 3-7 

The term  average  is  often  used  in  the  same  context  as  the  expected  value (or 

mean) of a  random  variable. The following  theorem  explains  this  context. 

3-8 Let be  a  random  variable  with  mean E(X). If an experiment 

is  repeated  n-times  under  identical  conditions  and is  the random variable 

associated  with  the  ith  round  of  the  experiment,  then 

n 

Theorem 3-8 is  known as the Strong Law Large ~ ~ m ~ e r s .  It  states  that for 

suf~ciently large  n, it  is virtually  certain  the  average  of  the  observed  values of 

will be approximately  the  same as the  expected  value  of For 



E f l ~ w  

f 

E ~ S w  

 hut is the  expected so*ure development effirt?” 

f 

00 

E ( ~ ~ S W )  I 
To E ~ s ~ .  As 

Is 

E(EflSW)? E f l ~ w  

~ ( ~ ~ ~ w )  
E(g(I)), E(g( I)) 

Software 



ter 

r ~ ~ ~ s ~ ~ ~ ~ ~  If X is  a  random  variable  and is  a  real-valued function 

defined  for  all that are feasible  (possible)  values  of X, then 

if is  discrete 

(3-27) 

if is  continuous 

In  the  above,  the s u ~ a t i o n  and  integral  must  be  absolutely convergent. 

Applying  proposition 3-1 to the discussion  on E ~ s ~ ,  we  have 

00 

E ( E ~ S ~ )  E(g(0) (3-28) 

Thus, the  only  information  needed to determine E ( E ~ s ~ )  is the  function g(I) 

and fr(x), the PDF of I. For now, further discussion  of  this  problem  is 

deferred chapter 5. In  particular, case discussion 5-2 presents the 

determination of E ( E ~ s ~ )  in  detail. 

If a and b are  real  numbers,  then E(aX b) aE(X) b 

Proof Let g(X) b;  if X is  a  discrete random variable,  then from 

equation 3-27 

px(x)=aE(X)+b.l=aE(X)+b 

If X is  a  continuous  random  variable,  then from equation 3-27 



Directly from this  proof it can  be  shown the expected  value  of a constant  is 

the  constant  itself;  that  is, b .  From  theorem  3-9, it can also be  seen  that 

where is a real  number.  Showing  these  two  results  is an 

exercise for the  reader. 

Thus far, we have  addressed  the  expectation (or mean) of a random 

variable. A quantity  known as the  variance  measures  its  spread or dispersion 

(deviation)  around  the  mean. The of a random  variable is 

The positive  square  root  of is  known as the s t a n ~ a r ~  of 

which  is  denoted  by ox. 
ox (3-29a) 

3-8 Let represent  the  sum the  toss  of a pair  of  fair  dice. 

a) Determine  the  expected  sum. 

b)  Determine  the  variance  of  the  sum. 

In  this  example, is a discrete  random  variable. 

a) From  equation  3-20  and  figure  3-2,  the  expected sum is 

5 4 3  2 1 252 
36 36  36  36  36 36 

b)  From  part a) we can  write E[( 7)2]. If  we let 7)2 

then from equation  3-27 

E['( E[( 7)2] x=2,..,,12  (3-30) 

From figure  3-2, px(2)=&,p,(3)=-&, 12)=&. 

computation,  equation  3-30 is equal to 5.833;  therefore 



E[g(X)1 

The variance computed in example could be interpreted  as  follows: the 

average  value  of  the  square  of  the  deviations from the  expected sum 

of many  repeated  tosses  of  two dice is In  this  case,  what  is 

the  standard  deviation  of 

From the  definition  of in  equation we can deduce the 

following  theorems. 

The  proof  follows from the  definition  of and  the  properties of 

expectation, as presented  in  theorem 

( P x  

l2 
Theorem is  a  convenient  alternative for computing  the  variance  of  a 

random  variable.  It  is  left as an  exercise for the  reader to use  this  theorem to 

verify where is  the  random  variable  in  example 

If and are real  numbers,  then 

b) 

The  proof  follows  directly from the  definition  of 

that  is 

and theorem 



This  theorem  demonstrates  the  variance  of  a  random  variable  described by the 

function is  unaffected by the  constant tern 

3-9 For  the c o ~ u n i c a t i o n  terminal’s transmitter  synthesizer unit 

(TSU)  described  in  example compute 

and crcUst using  theorem 

b)  Determine P( S 

a) From example the PDF for was 

S 
fcust 

From theorem we  have 

a) in  example therefore, 

t remains to ~ompute From  equation we  can  write 

12000 

l0000  12000 

herefore 



from which 

oCost 1699.67 1700 

The  variance  squares  the  units  that  define  the  random  variable,  Since $2 is  not 

a  useful way to look  at the  standard  deviation acost, which  is  in dollar 

units,  is  usually  a  better way to  interpret  this  deviation. 

b) ~ro~abil i t ies associated  with  intervals*  expressed  in terns of  the  mean and 

standard  deviation  can be computed. For some  positive  real  number k 

From  equation 3-1 1, we can  express  this  probability  in  terms  of Fcost as 

For  part  b)  we  need k 1; from part a) pcost 13333.3, and ocost 17 

P( pcostl acost) P(11633.3 15033.3) 

FcOst(15033.3) Fcost(l  1633.3) 
where 

15033.3 

( ( t  t ) /  24(106))dt 0.817 

and 

-10000)/~(106))~t 0.1 

(/Cost pcostI oCost)  0.817 0.167 0.65 

~robabi~ity intervals  are  often  given  in  the  form I or where a 
any red numbers.  In general, a 

furthermore, 



The  TSU cost falls within plus or minus  one k 1) standard deviation 

around its expected (or mean) cost with  probability 65 percent. The  range 

values for associated  with this probability  is  shown  in the figure below.  This 

range  is  sometimes referred to  as the l-sigma interval. 

Figure 3-17. l-Sigma Interval for the TSU  Cost 

eferring to example 3-9, we  have 



omen,ts  provide  important i n fo~a t ion  about the  distribution function of a 

random  variable. Such in fo~at ion  includes  the  random  variable’s  mean and 

variance, well  as  the  shape  of  its  distribution  function.  Suppose X is a 

ran do.^ variable  and k is  any  positive  integer.  The  expectation E(Xk) 

called  the kth of X, which  is  given  by  equation 3-3 1. In  general, we 

the  kth  mQment of X is 

e s u ~ a t i o n  and  integral  must  be 

sidered  that  value of 

the “center of gravity” of 

a1 to 1.12 (refer to ~ g u r e  3-16). 

ble ( X - P ~ )  is E[(X-PX)~]. 

the  variance  of X, which  provides a measure of t 

higher  moments  of a random 

hape of its distribution  function? 



Let Y be the standardized random variable of that  is, Y p ~ )  e 

The third and fourth moments of Y are known  as the coefficients of 

and kurtosis. These coefficients are given by equations 3-32 and 3-33, 

respectively. 

(3-32) 

(3-33) 

Skewness,  given by y1, is a measure of the symmetry of the 

function of about the mean  of If this function has a long tail to the left, 

then is usually  negative  and we  say the distribution function is ne 

skewed. If this function has a long tail to the right, then is  usually  positive 

and we  say the distribution function is positively  skewed. 

In cost analysis it is common to see distributions with yi 0. S u ~ h  

distributions have  the property that the probability of exceeding the mode 

(often associated with the point estimate) is greater than  the probability of 

falling below  the  mode. Experience suggests this is due to  a variety of 

reasons. These include changing requirements, understating a  project's  true 

technical complexity, or planning the project against unrealistic cost and/or 

schedule objectives. Positively  skewed distributions are often used to 

represent uncertainty in system definition variables, such as weight  or software 

size. Point estimates for these  variables, particularly in the early phases of a 

system's design, typically have a high probability of being exceeded. 

If the distribution function of is symmetric about the mean of then 

y1 0. The distribution function of is symmetric about if 

for allx 



From theorem  3-2,  equation  3-34  can  be  written as 

(3-35) 

If equation 3-35  is  true for all x, we say  the  distribution  function &(x) is 

symmetric  with as  the center of s y ~ ~ e t ~ .  If  the  center  of  symmetry is  the 

origin,  then a and 

Fx(-x) 1 &(x) x )  (3-36) 

If is a continuous  random  variable,  equation  3-36  simplifies to 

Fx(-x) l &(x) (3-317) 

The dist~bution function of a continuous random variable is symmetric 

with  center a, if and  only if 

f x ( a  x )  f x ( a  x )  for all x (3-3 8 )  

If Fx(x) is a symmetric  distribution,  the center of  symmetry  is always the 

~ e d i a n .  In  certain  symmetric  distributions  the  mean  and/or  the  mode may 

also  equal  the  median. If the  distribution  function  of a c o n t i n ~ o ~ s  random 

variable X is  symmetric and  the  mean X exists, then  the  median  and mean 

of are equal and  they  both  locate  the center of  symmetry.  The Cauchy 

distribution* is a symmetric  distribution  whose  mean  does  not  exist  (i.e., it is 

not  well-defined).  It  has a unique  median  and a unique  mode,  that  equal each 

other.  In  the  Cauchy  distribution,  both  the  median  and  the  mode  locate the 

center  of  symmetry.  Figure 3-18 illustrates  these  and  other  cases of 

symmetric  and  skewed  distributions. 

The  Cauchy  distribution  is  given  by The  moments of do 
not  exist;  however, X has unique  median  and unique  mode,  which  both at In the 
Cauchy  distribution  the  median  and  the  mode  are  equal;  they locate  the  center of symmetry. 





er 

Thus  far, we have  shown  how  probabilities can be computed from the 

distribution function of  a  random  variable.  owever,  circumstances 

frequently  exist  when  the  underlying distribution is  unknown.  This  section 

presents ine~ualities that  provide bounds on the probability  of  an  event 

independent  of the form of  the  underlying distribution function. 

Inequal i~ ,  due A, A. Markov (1856- 1922), can  be  used to 

compute  an  upper  bound on the  probability  of  an  event when is 

nonne~ative and  only  its  mean  is  known. The Zneq~aZi~ ,  derived 

L. Chebyshev (1821- 1894),  bounds  the  roba ability that  a random 

variable  takes  a  value  within k standard  deviations  around  its mean. 

Chebyshev’s  inequality  will  be  shown to be  a consequence of 

efore discussing  the  details  of  these  inequalities, we  will first 

discuss  the  expected  value  of  an indicator function. 



1  if  event occurs 

0 if event 2: cp} does  not  occur 
I A ( X )  

where A is  the  event From this  it  follows  that 

CIU 
I A ( X )  

The expected  value of ZA( X) is 

Since E( X) and E( IA( X)) P(A) it  follows  immediately  that 

P(A) l/c 

arkov’s inequality  states the probability X takes  a  value  greater  than 

equal to c times  its  mean  cannot  exceed 1/c. For instance,  if c 2 then 

2p) can never  exceed 112.  If c 1 then P(X is boun~ed by unity, 

which  is  consistent  with e first  axiom  of  roba ability (chapter 2). 

f e is  less  than  one. arkov’s inequality  may also 

be  written as 

1 
a 

a )  

where is  nonnegative  an a this  result  follows i ~ e d i a t e l y  fro 

ove  proof  (showing  this is left as an  exercise  for  the  reader). 

From a cost ~nalys 

obability  that is  g 

sup~ose the  mean  cost  of  a  syste 

conservative. To illustrate  this,  suppose  the  random  v 



er 

0.0172153 

arkov's 

P(Cost 200) 0.00165 

150 

(3-39) 

The lognor~al distribution is often  used in cost  and  economic  analysis  studies.  It  will be 
fully  discussed  in  chapter with  addition^ applications  in  chapter  7. 



ecall,  in  general,  that 

uppose  we  let p and b ka. 

b) p1 1 ko) 

arkov’ S i ~ e ~ u a l i t y  

reduces to 

ich  is e~uivalent to 

therefore 

ns of  its m ~ a n  is  at  least 

always  fall  within 

bilities  produced C 



again  the  random  variable with  mean 100 ($M), standard  deviation 25 

($M), and  PDF  given by figure  3-19.  It  can  be computed that  the  interval 

accounts  for  nearly 96 percent (refer to chapter 4, example 4-8) of  the  total 

probability (area) under f~o,t(x). This computed  probability  is  in  contrast to 

Chebyshev’s  inequality  (equation 3-39), which  indicates  the  interval [50,150] 

accounts  for at least 75 percent  of  the  total  probability. 

Various  forms  of  Chebyshev’s  inequality  are  given  below;  in  each form 

a>O. 
A. ka) 1 

C. P(IX-,Ulla)<a2 

Suppose 100, d a 100. From form D of  Chebyshev’s 

l 

16 
0.0625 

twice  its  mean  will  not be more  t 

rkov’s  inequality  revealed  this 

se results are consiste~t,  form 

provides  a signi~cant refinement  on the 

ent.  This  is  not sur 

eci~cally its  variance,  is ta 

~uali ty will  always 



tighter probability bound  than that produced by Markov’s inequality. Figure 

3-20 summarizes  this discussion and contrasts these probability boun 

the PDF given in figure 3-19. 

P(Cost 

P(Cost 

150) 0.75 (Chebyshev’s Inequality,  equation 3-39) 

S Cosr 0.958 (Refer chapter 4, example 4-8) 

Figure 3-20. Some Probability Bounds  on Cost 

The probability i~equalities presented here share the common characteristic 

that their bounds are valid for any type of distribution function. Althou 

these bounds are conservative, they do 

are independent of the ~ n d e r l y i n ~  dist 

Ghebyshev’s are used  in conjunctio~ wit 



in figure 3-21. Shown is a special d istr i~~t ion known as normal 

pruba~ility  ~istributiun (chapter 4). 



Comparing just the  difference  in  the  mean  costs  between  system design 

alternatives and B, it  may  appear to a  decision-maker  alternative 

better  choice. 

Mean 

Figure  3-22.  Comparing  the  Mean  Costs  of  Alternatives 

However,  when  the  dispersion cr in  cost  is  considered  and  the l-sigma interval 

is  determined for each  alternative,  the decision-maker may very well  select 

alternative instead.  Specifically,  the l-sigma interval  for  alternative A (from 

figure  3-22) is 

($M) 

The l-sigma interval for alternative B is 

153, ($M) 

Thus, for the  same  level  of  confidence  implied the l-sigma interval (68 

percent)  choosing alt~rnative B implies  accepting  three  times  the  variability in 

than  that  associated  with  alternative A (18 ($M)).  Clearly,  this 

result  would  not  have  been  seen  if comparing the  mean  costs was the sole 

criterion for s~lecting an  alternative. 



This  discussion  illustrates  the  usefulness  of another statistic  known  as the 

c o e ~ c i e ~ t  of ~ i s ~ e r s i o ~ .  Defined by equation  3-43,  the  coefficient of 

ersion D is  the  ratio  of  the  standard  deviation to the  mean. 

(3-43) 

Consider  again figure 3-22. The coefficient  of  dispersion for alternative A is 

0.10. This  implies  the  value  of at  one  standard  deviation  above the 

mean,  will  be 10 percent  higher  than  the  mean  of Cost, which  is 

alternative A. Similarly,  the  coefficient  of  dispersion for alternative is 

0.3375.  This  implies  the  value  of Cost at one standard  deviation  above  its 

mean will be  nearly 34 percent  higher  than  the  mean  of Cost, which  is 

for alternative Clearly,  a  significantly  higher  cost  penalty  exists at 

1-sigma  above  the  mean  under  alternative than for alternative A. A 

decision-maker  might consider this  cost  risk to be  unacceptable. Although 

the  cost  mean for alternative A is 10 ($M) higher  than  the  cost  mean for 

alternative its  significantly  lower  cost  variance  (i.e.,  less  cost  risk) may be 

the acceptable  tradeoff. 

Let X denote the sum of  the  toss  of  two  fair  dice.  Determine the 

following  using  the  probability  function  in figure 3-2 and the 

appropriate  theorems  in  section 3.1. 

a) P(X b) P(X c) P(X2.7) 

d) P(10 12) e) P(105X<12) P(lO<X<12) 

2. Suppose the  probability function for the  development  and production 

cost  of  a  microchip  is  given  below.  Determine  the  following: 



3. 

4. 

a) The cumulative  distribution  function of 

b) 235)  c) 25) d) 

e) P(20 35) 35) 

20 25 30 35 40 

Probability  Function for Exercise 2 

For any  random  variable X, show  that F'(a) P(X 

Refer to Case  Discussion 3-1 and  answer  the  following: 

a) Find and if 5)=0.1, 15)=0.8, and 

P( 20) 0.1, where is  the  sales  volume  (in  millions). 

With  what  probability  does 

Suppose the  profit  function to sell  10000  electronic  widgets,  with unit 

price  of $10 per  widget,  is  given  by Profit UCosf), where 

is discrete  random  variable  that  represents  the  unit  cost (in 

dollars) each widget.  If Ucosf can  take one of  the  values  in  the  set 

{4,7, lo}, where represents  one  of  these  values,  find  the  constant 

such  that is  a 



6.  Suppose is a continuous  random  variable  whose  possible  values are 

given by the  interval 20 I 70, where is  in  dollars  million ($M). 
a)  Find c such  that  the  function  below  is a probability density function. 

b)  Compute I 

20 30 70 

Function  for  Exercise 6 

7. Show  that fcUst(x) in  exercise 6 is  the  derivative  of  the  cumulative 

istribution  function Fcust(x), where 

-&(~-20)~ if 2 0 I x < 3 0  

8. For  the  probability  density  function  in example 3-1 (figure 3-7),  show 

that  all  subintervals  of 1000, that are the  same  in  length will 

occur  with  equal  probability. 

iven  the  probability  function  in  exercise detemine 

From the probability  function  in  Case  Discussion  3-1,  show 

that 200  is  the only value  of that  satisfies  the  relationship 



c) In example 3-2, show  that 2500  DSI. 

10. Suppose the uncertainty in the size of a software  ap 

expressed by the in the figure below. 

a) Determine the cumulative istribution function 

b) Compute P(2 I 5 0 ~ 0 ) ,  ~ ( 5 ~ 0 0  65000). 

Function for  Exercise  10 

1  1. In exercise 10,  show  that 53,750 DSI. 

12. Find the expected number of workstations purchased  per  month  and the 

standard deviation if the probability function for the  monthly  deman 

given in the following table. 

0.15 

Probabi~ity Function for Exercise 12 

13 From  Case  Discussion  3-1,  the profit a new electronics product 

manufactured and  sold ~hipyTech  Co~oration was  given by 

~~~t (uprice 1 



14. 

15. 

Suppose  the  product’s  sales  volume V for its  first  year  on  the  market  is 

set  at 30 million. Suppose the  probability  functions of Uprice and 

UCost are given  in  the figure below.  Assume UPrice and Ucost are 

independent. 

Probability 
l 

20 20 
Uprice k o s t  

 roba ability Functions for Exercise 13 
Compute: 

a) PPro&) and FPro&) b) ~ ~ P ~ f i t )  

Var~P~fit) d) P ~ P ~ f i t  E(~~fit)) 

e) ~ ~ P ~ f i t  ~ ( P ~ ~ t ) )  The probability  of m a k i ~ ~  

profit. 

A random  variable X takes the value with  probability p and  the  value 0 

with  probability -p .  Show  that E(X) p and p(1- p). 

Let be a random  variable  with  probability  function  given  in  the table 

below.  Compute 

a) E(3Y 1) b) Var(3Y 



l 2 3 4 

p(y=  Y )  114  118  114  114  118 

p x )  

b b 

X) Var( X). 

is 

(b x b .  

S 

is 



24. Let NW be  a random variable  representing the number of  widgets 

produced  in a month. Suppose the  expected  number  of  widgets 

produced by a  manufacturer  during  a  month  is  2000. 

a) Find  an  upper  bound on the probability this month’s pro~uction will 

exceed 3200 widgets. 

b) Suppose  the  standard  deviation  of  a  month’s  production  is  known to 

be 35 widgets.  Find and such  that  the number of  widgets produced 

this  month falls in  the  interval NW with  roba ability at  least  0.75. 

25. Sup~ose is  a random variable  with 3 and 1. 

Use  Ghebyshev’s  inequality to compute  a  lower  bound  on 

a) c 4) 

b) 31 5) 

1. Park,  W. R., and E. Jackson.  1984. - A  
of 2nd  ed. New 

hatgi, IC. 1976. An 
New  York:  John  Wiley Sons, Inc. 
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All  business  proceeds  on  beliefs,  Obviously,  a  man’s  judgment  cannot 
or  judgments  of  probabilities,  be  better  than  the  information 
and  not  on  certainties.  on  which  he  has  based 
Charles ~ i l l i a ~  Eliot, 1834-1926 
President  of  Harvard  University Address to the  New  York  State  Publishers 
The  New ~ i c t i o n f f ~  Thoughts,  1957  Association  [August 30, 

In  probability  theory there is a class of dist~bution functions known as special 

dist~butions. Special distributions are those that occur frequently in the 

theory  and application probability. A well-known special distribution is 

the Bernoulli distribution, a discrete distribution whose probability function is 

given by equation 4-1. The Bernoulli distribution can  be  used to study a 

random variable representing the outcome of an experiment that  succeeds, 

{X l}, with  probability p or fails, {X with  probability (1 p). 

p i f x = 1  

l-p i f x=O 
px(x) 

Another  well-known  special distribution is the normal dist~bution, a 

continuous dist~bution discussed later in  this chapter. Special distributions 

have  been well-studied over the years  and are fully described in a two volume 

text by Johnson  and  Kotz [l]. To avoid  an extended exposition on the entire 

class special distributions, this chapter focuses on a subset of these 

distributions which frequently arise in cost uncertainty analysis. 

The trapezoidal dist~bution is illustrated in figure 4-1. It  is  rarely presented 

in traditional, or  classical,  texts  on probability theory. Despite this, the 

trapezoidal distribution is highly  useful  and flexible  for many situations in 



cost unce~ainty analysis. Seen  in figure 4-1, it  can  model a random variable 

whose probability density function increases in the interval ml, 

remains constant across the interval m1 m2 then decreases to zero in the 

interval m2 b .  

f X W  

a b 

Figure 4-1. Trapezoidal Probability Density Function 

athematically9 a trapezoidal distribution can arise from the sum of two 

indepen~ent continuous random variables whose probability density functions 

are constants over  closed intervals of the real line.* In  cost uncertainty 

analysis, the trapezoidal distribution is primarily used to directly specify a 

range of possible values for  a random variable. For instance, suppose an 

experienced software engineer was  asked to assess the number of needed 

to build a particular software application. The engineer may have solid 

t ~ ~ h n i c a l  reasons why this number would  not exceed x b DSI  or  be  less 

than DSI.  However,  the engineer may strongly  believe  it is more likely 

SI will fall in  an interval of constant density between m1 and 

m2. Such a situation can  be represented by a trapezoidal distribution. 

A random variable is  said to have a trape~oidal  distributi~n if  its 

robability density function is given by equation 4-2 [2] 



2 l 

if 

if 

where A trapezoidal probability density function 

illustrated in figure 4-1. The numbers and b represent the minimum and 

maximum possible values of respectively. Note that 0 if or 

The  mode of is not unique. It is any value of in the interval 

5 For the remainder  of this book, a random variable with 

given by equation 4-2 will be implied by the expression 

The cumulative distribution function of given by equation 4-3 

1 1 

l 
Fx if 

1 1 
1- if 

l 

A graph of is shown in figure 4-2. 

The  symbol means distributed  as.” In this  case, we  say is dist~buted as 
trapezoidal  random  variable  with  parameters ml, m2, and b. We  might say 
trapezoidal  random  variable  with PDF given  by  equation 



Figure The Trapezoidal  Cumulative  Distribution  Function 

The CDF is  linear  in  the  interval I where  the  density function is 

constant,  and  quadratic  in  the  intervals I and I c 

eure [2] If is a  trapezoidal  random  variable  then 

((m2 

(m: ml) 
Var( 

Let represent  the unce~ainty in  the  number delivered 

source  instructions  (DSI)  of  a  new  software  application. Suppose this 

unce~ainty is expressed as the trapezoidal  density  function  in figure 

Determine  the  following: 

a) 

b) 

ox) 



25000 28000 35000 37500 

Figure  4-3.  Trapezoidal  Probability  Density  Function for Example 4-1 

Solution 

a) It  is  given  that X ~~a~(25000,28000, 35000,37500) therefore, we have 

a 25000, ml 28000, m2 35000, 37500. Substituting  these  values  into 

the  expectation formula in  theorem 4-1 yields 

Since  we  need ox in  part c) of  this  example,  we  will compute V ~ ~ ( ~ )  at  this 

point;  from  theorem 4-1 we  have 

2925.26 2925  DSI 

b) To compute ~ e ~ ( X ) ,  the  median  size  of  the  software  application, we need 

to find such  that l /  2. It  can  be  shown  (left  for  the  reader)  that 

2 1  
P(25000 X 28000) 

13 2 
2 28 34 l 
13  39 39'y 

P(250005X535000)=-+-=- 



Thus, the  median of will fall in the region of constant probability density; 

this is equivalent to finding along the CDF of such that 

l l 

Solving the above  yields x 3 1375 therefore ~ e ~ ( X )  3 1375 DSI. 

c)  To determine CT') we  have from part a) the result 

E(X) 31363 2925 34288  DSI 

The value 34288 falls in the linear region of Fx(x) ;  from equation 4-3 

34288) F'(34288) I= 0.798 

Thus, there is nearly an 80 percent probability the amount of code to build 

the new software application will  not  exceed  34,288  DSI. 

The uniform distribution can  be considered a special case of the trapezoidal 

distribution.* In figure 4-1, as (m1 and approach zero (in the 

limit), the trapezoidal distribution approaches a distribution with uniform (or 

constant) probability density, shown in figure 4-4. 

Figure 4-4. The Uniform Probability Density Function 

It is also  a  special  case of the  beta dist~bution, which is discussed  later  in  this  chapter. 



A random  variable is  said to have  a (or 

if its probability  density  function is constant  and  given by 

1 
(4-4) 

where The numbers and are the minimum  and maximum 

possible  values  of respectively.  Note  that if or 

random  variable  described by a  uniform  probability  density  function has 

the  following  interesting  property.  If  the  unit  interval 0 I I is  the  range of 

values for then f ” ( x )  1 and  the  probability falls in  any  subinterval 

of I simply  the  length  of  that  subinterval;  specifically, 

b’ 

For  the  remainder  of  this a random variable with PDF given by 

equation  4-4  will  be  implied by the  expression 

The cumulative  distribution  function  of is  given by equation  4-5. 

if 

l 
if 

if 

(4-5) 

graph  of is shown  in  figure  4-5.  Because  the  density  function  of X 

is  constant  in  the  interval the  cumulative  distribution  is  strictly 

of in  the  interval 



a b 

Figure 4-5. The Uniform Cumulative Dist~bution Function 

The uniform dist~bution has no skew and no unique mode. From a cost 

analysis perspective, such random variables might be the number of DSI 

required for a new software application (refer to chapter 3, example 3-1)’ the 

weight of a new electronic device, or an unknown contractor’s software 

productivity rate. In practice, the uniform distribution is used when a random 

variable is best described only by its extreme possible values. In cost analysis, 

this occurs most often in the very early stages of a system’s design. 

-2 If X is a uniform random variable then 

1 
E ( X )  = -(a + b) 

2 

1 2 
12 

Var(X) = -(b - a) 

~ x a ~ ~ l e  4-2 If X has a uniform distribution, show that ~ e ~ ( X )  = E ( X ) .  

~ o l ~ t ~ o n  Since X - ~ n ~ ( a ,  b) we know from the above discussion that 

1 
b - a  

Fx(x) = -(x - a)  if a 5 x < b 

Since X is a continuous random variable we know X has a unique median. 

The median of X will be the value x such that 



a) 
b - a  2 

b) /  is 

Unif(a, b). 



Note  that fx(x) 0 if x or x In cost analysis, the mode is often 

regarded as the point estimate.* 

For the remainder of this book, a random variable with 

equation 4-6 will  be implied by the expression 

ling(a, m, 

The cumulative distribution function of given by equation 4-7. 

10 i f x < a  

(x 
i f a < x < m  

x)2 
m) 

A graph is shown in figure 4-7. 

(4-7) 

m b 

Figure 4-7. The Triangular ~umulative  ~istribution Function 

F is a quadratic function of x in the intervals and x 

Associating  the  point  estimate  (defined  in  chapter 1) of dis~~i~ut ion i 
 tradition^ in  cost  analysis;  however,  there axe no 
might  judge  the  point  estimate is best  represented by 
distribution. 



The location of m relative to and b detemines how  much probability there 

is on either side of m. This is illustrated by the three triangular 

in figure 4-8. 

f x  

ml=a+(b-a)14  P(X<ml)=1/4 
Q = a + ( b - a ) / 2   P ( X < ~ ) = 1 1 2  
q = ~ + 3 ( b - ~ ) 1 4  P(X<m3)=314 

a m1 m2 m3 b 

Figure 4-8. A Family of Triangular Probability Density Functions* 

Seen  in figure 4-8 the closer the mode to the variable’s maximum possible 

value b, the less likely it  is the variable will  exceed its mode.  The closer the 

mode is to the variable’s mini mu^ possible value the more likely it  is the 

variable will  exceed its mode.  For this reason the triangular distribution is 

as  a subjective probability distribution. nly three values (a, m, 

eeded to specify the distribution. From these values, subject 

matter experts focus the distribution in a way that appropriatel~ reflects the 

ective distribution of probability for the variable under 

co~sideration. 

is trian~ular random variable then 

18 
V a r ( ~ )  -{(m a)(m b) (b 

N. Hastings  (ed), and B. Peacock. 1993. Statistical ~ is t r i bu t i o~s ,  2nd ed. 
New  York:  John  Wiley Sons, 
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In  example  3-7,  the unce~ainty in  the  unit production cost  of  a 

transmitter  synthesizer  unit (TSU), for a communications terminal, was given 

by  the  probability  density  function  in  figure  3- 15. Use  theorem 4-3 to show 

that 13333.3 and 2.89(10 

eferring to example  3-7,  we  see  th for can be written in 

the form given by equation  4-6  with 1 

ubstituting  these  values  into  the  expected  value  and  variance formulas given 

b ) /  3 (10 12 18)lO' 13 13333.3 

(12 10)(12 18) (18 10)2}(106) 2.89(106) l 
18 

istributions  discussed  in  section  4.1,  can be 

variable  whose  range  of  possible  values 

by  an  interval of the  real  line. 

if  its  probability  density  function is given by 

e density  function 

gamma  function  of  the argu~ent  

ons  are  in fo 

om variable Y is  said  a if  its 

robability  density  function  is 

r(a) r(a) (a 



otherwise 

For the  remainder  of  this  book,  the  random  variables and Y with  density 

functions  given by equations 4-8 and  4-9 will be  implied by the  expressions 

Beta(a9 p9a,b) and Y Beta(a, respectively. The transformation* of 

eta(a,  &a, to its  standard form Y ~ e ~ a ( a ,  is done by letting 

y a)/(b a). Graphs  of  the  standard  beta  probability  density function 

for various and are illustrated  in  figure 4-9 and figure 4-10. 

Y 
1 

Figure  4-9. A Family  of ~tandard 

-9  illustrates  several  possible  shapes  associated  with  the  standard  beta 

ensity  function.  hen it  is  symmetric  about y which  is the 

the  median9  mean,  and mode of Y are equal. If 

e mode  of Y is unique  and  occurs at 

l-a 
Y -  (4-  10) 

Transformations of random are  formally  discussed in chapter 5. 



Figure 4-10 illustrates some other shapes associated with the standard beta 

density. For instance, the beta density is shaped  if a < l  and p < l .  If 

1  and l the beta density becomes the Unif(0,l) (uniform) density 

~u~c t ion .  A Beta(l,2) density is a right-skewed triangular PDF,  while a 

eta(2,l) is a left-skewed triangular PDF. 





(4-14) 

(4-  15) 

Lastly,  if Y Betf f (a,p) then 1 Betff(p, Discuss how this  property is 

seen  in figure 4-9 and  in  figure 4-1 1. 

E x ~ ~ ~ Z e    up pose the  activity  time X (in minutes) to complete the 

assembly  of  a  microcircuit  is  beta  distributed  in  the  interval 4 9, with 

shape  parameters 5 and 10. Determine M ~ ~ e ( X ) ) .  

~ u Z ~ t i u ~  equation 4-10 

Mode( Y )  
l-a 1-5 

0.308 
2-15  13 

where is  the  standard  beta  density of Thi 

that  is,  if Y Beta(5,10) t 



I Y 

I 0.44 

0.44 

5.54 

4- 

4.1 4.2 

Fs 

of 

This illustrated  in  the  discussion  associated  with  figure (chapter 1). 



p~ icu la r ly  one generated from a s u ~ a t i o n  of “input”  dis~ibutions, like 

those discussed in sections and For instance, suppose the random 

variable Cost is derived from the sum of the  cost of each work breakdown 

s ~ c t u r e  cost element Xj  ( i  n) in a system. S~cifically, if 

C o s t = X * + X 2 + X 3 + . * * + X n  

then  under  certain conditions (discussed  in chapters and the normal 

ion  will characterize the underlyin~  dis~ibutio~ function of Cust. 

random v ~ a b ~ e  X is said to be ~ i s t r i ~ ~ t e ~  if its probabilit~ 

ensity function is given by 

where and cr ~ u a t i o n  is also known as the ~ ~ ~ ~ s i u ~  

dis~bution) named after the  erm man mathematician  Karl 

For the remainder of this book, a random v ~ a b l e  with  PDF 

given by equation will be implied by the expression X The 

normal PDF is ~niq~eZy ~ e ~ ~ e ~  by two  parameters and Theorem 

will  show  these parameters are the mean  and  variance of X, respectively. 

graph the  normal PDF  is presented in figure 

The n o ~ a l  dis~bution is symmetric about its mean It has the property 

that its mode and  median equal its mean.  The  numbers  in figure are the 

areas under  the curve within  the indicated intervals. In p ~ i ~ u ~ a r ,  we have 

where is given by equation ~ i ~ l a r l y ,  



~ i s t r i ~ ~ t ~ ~  

k2a 

(X) x p .  

x ct 

p. 

Z 



er 

~ o r n ~ a ~ s o ~  

Z 



-L 

The ~ t a ~ ~ a r ~  

ecause the  stan ~ormal is s y ~ e t r i c  about 

n of the cumulative distri 



~ x a ~ ~ l e  4-6 In figure  1-6 (chapter l), the dist~bution function of a system’s 

cost was  normal with mean 110.42 ($M) and standard deviation 21.65 ($M). 

Given this, determine P(100 140). 

We are given N(l 10.42,(21.65)2). In terms equation 4-24 

P(100 140) 140 110.42) (100 110.42) 
21.65 21.65 

Fz(1.37)- Fz(”0.48) 

Since 1 Fz(k) we have 1 Fz(0.48); therefore, 

P(1OOIX<14O)~F~(1.37)-[1-F~(O.48)] 

From table A-l Fz(1.37) 0.91465  and F’(o.48) 0.68439; so, 

P(100 X 140) 0.599 0.60 

Thus, there is  nearly a 60 percent chance the system’s cost will fall between 

100 and 140 million dollars. 

E ~ a ~ ~ Z e  Suppose the unce~ainty in a system’s cost is described by the 

normal PDF shown in figure 4-15. Suppose there is a 5 percent chance the 

system9s cost will not exceed 30.34 and  an 85 percent chance its cost 

will not  exceed 70.55 From this information determine the  mean and 

deviation of the system’s cost. 

are given P(Cost 30.34) 0.05 and 570.55) 0.85. 

Ex~ress in~  the ran  om variable in standard form we have 

CF are the mean  and  standard deviation of respectively. We 

will first work  with the probability 

0.05 
CT 



4-15. 4-7 

A A-l) 1.645) 

P( Z 1.645) 0.05 

1.645) 

P(Z 1.445) P(Z -1.645) 

30*34 -1 -645 

l )  

1.04 (4-26) 

4-25 4-26 



N( p ,  

dx; 

N(p,  V~r(X) 

Proof ~ ( p ,  



y the change  of  variable p ) /  CF we  have 

00 

which  simplifies to 

00 00 

dz (4-29) 

The first  integral  in equation 4-29 is This  integral  is  equal to  zero 

since the  integral exists and  its  integrand  is  an  odd  function;  that  is, 

The second  integral  in equation 4-29  is  unity  since it is the integral  of the 

standard n o ~ a l  density  function.  Therefore,  equation 4-29 simplifies to 

To show  that Var( recall  that Var( X) know 

that 

From the f a ~ l y  Of integrals  of  exponential  functions,  presented  in appendix 

A, note  that 

therefore, Var(X) ( p )  CF 



er 

The lognormal probability distribution is the last  of  the infinite distributions 

we  will discuss in this book. It has broad applicability in engineering, 

economics, and cost analysis. In engineering, the failure rates of mechanical 

or electrical components often follow a lognormal distribution. In economics, 

the random variation  between the production cost of goods to capital and 

labor costs is frequently modeled after the lognormal distribution; the 

classical example is the Cobb-Douglas production function, given by equation 

4-30. 
Q = a ~ ~ ~ ~  (4-30) 

In the above, the production  cost of goods Q is a function of capital cost W1 

and labor cost W2; the terns a, al, and a2 are real numbers.  Under certain 

conditions Q can  be  shown to have a lognormal probability distribution. In 

cost analysis, Young [4] observed  that the lognormal can approximate the 

probability distribution of a system’s total cost particularly when the cost 

distribution is positively skewed. Empirical studies by Garvey  and Taub 61 

identify circumstances where the lognormal can approximate the combined 

(joint) distribution a program’s total cost and schedule.* 

The lognormal distribution has a close relationship with the normal 

distribution. If X is a nonne~at ive  ran~om variable where the natural 

logarithm of X, denoted by  In X ,  follows the normal distribution, then X is 

said to have a lognormal distribution. This is illustrated in figure 4-16. On 

the left-side of figure 4-16  the random variable X has a lognormal PDF,  with 

E(X) 100  and Var(X) 625. On the right-side is the representation of X in 

logarit~mic space. In logarithmic space X has a normal PDF,  with 



E(ln 4.57486 and Var(1n 0.0606246. How these latter two  values 

were determined is discussed in theorem 4-8. 

q x )  l o o  X) 

Figure 4-16. Probability Density Functions of X and  1nX 
X Z q N (  In 

Under certain conditions (discussed in chapter the normal dist~bution can 

arise from a s ~ ~ a t i o n  of  many random variables (as illustrated by equation 

4-16); the lognormal distribution can arise from a multiplicative comb~nation 

of  many random variables, as illustrated by equation 4-30. 

A random variable is said to be Z ~ g ~ o r ~ ~ ~ Z y  ~ ~ ~ ~ r ~ ~ ~ ~ e ~  if its probability 

density function is given by 

(4-3 l )  

where 0 x c 0, E(1n X), and Var(1n For the 

remainder this book, a random variable with PDF given by equation 4-31 

will  be  implied by the expression The parameters and 

are  the  mean  and  variance of the normally distributed random variable 

In which  is the logarithmic representation of (refer  to  figure  4-  16). 

Graphs a family lognormal are presented in figure 4-17. Notice 



fX 

H X \  

X E(X) 
2 2  

Proof X X 



X') erPY 1 2 2  

2 2  
e2py+0y (cay 

r =  

e2lcyccry (eoY e 
2 2  

p y  X) 

E( epy +io; e4.57486+S(0.0606246) 100 

2 2  
Vffr(x~ e2Py (coy 1) e 2(4.57486)+0.0606246 0.0606246 1) 

(e 



Thus,  when  X  is  a lognormal random variable  its  mean  and  variance are 

defined  in  terms  of  the  normally  distributed random variable Y In X. The 

same  is  true  about  the  mode  and  median  of in  particular, if X  is  a 

lognormal  random variable then 

 ode( ep (4-3 8) 

~ e d i a n ( ~ )  epy 

In figure 4-16, 
M~de(X) e4.57486-0.0606246 1.307 

Median(X) e4*57486 97.014 

The lo~normal PDF peaks  at  the  value 

fx (Mode( 1 (e+4-PY) 

Showing  this  is  left as an  exercise for the  reader. 

In cost  analysis  applications the lognormal distribution we typically do  

not  have  values for E(1n and Var(1n (where  X  might  represent  the cost 

a  system or a  particular  work  breakdown  structure  cost  element).  How do 

we  specify  the  distribution  function  of  a  lognormal random variable X, when 

only  E(X)  and  Var(X)  are  known? The next  theorem  addresses  this 

question. Theorem 4-8 presents  translation  formulas for determinin~ E(ln  X) 

and Var(1n  X) when  only and Var( X) are known. 

and 

(4-42) 



Proof From  theorem 4-7 we have 

PX = e  
PY 

Inlux = P y  + p y  
1 2  (4-43) 

21npx = 2 p y + o y  2 (4-44) 

We  will first establish equation 4-42 in theorem  4-8  and  then  use  that  result to 

establish equation 4-41. From theorem 4-7 
2 2  

var(x> e2P~+ay (eGY 1) 

This is equivalent to In(e'Y 1) In ox 2 (2py oy)  2 

Using equation 4-44 ln(eGg 1) ln ox 2 2 In px 

Therefore 

To establish equation 4-41, we can  write p y  (in equation 4-43) as 

From equation 4-42 we have 



Therefore 

Using theorem 4-8 the parameters p y  and which uniquely specify the 

lognormal probability density function, can  be determined from and 

Var(X) In figure 4-17, the left-most PDF has and Var(X) 225; 

from theorem 4-8 this is equivalent to  a lognormal PDF with parameters 

p y  3.06513  and 0.307485. The middle PDF (in figure  4-17) has 

and Var(X)= 400; from theorem 4-8 this is equivalent to  a 

F with parameters 3.83781 and o; 0.14842. The right- 

figure 4- 17) has 100  and Var(X) 625 from theorem 

4-8 this is equivalent to  a lognormal PDF with parameters p y  4.57486 and 

0.0606~46. Thus, the equations for the three P Fs in figure 4-17, from 

left right, are as follows: 

1  1 
fx(x) F ( 0 . 5 5 4 5  13) x 

l 1 
F (0 .385253)  x 

1 l -4.57486)2 10.0606246) 

fx(x)' F(0 .246221)  ne 
where  the general form for fx(x) was  given by equation 4-3 1. 

The cumulative distribution function of a lognormal random variable is 

given by equation 4-45. 

Figure 4-18 presents a family of lognormal CDFs associated with the PDFs in 

figure  4-17. 



Figure 4-1 A Family of LogNorrnal GDFs 

The cumulative distribution function given by equation 4-45 does not exist in 

closed form. It  can  be evaluated by a numerical integration procedure. An 

alternative to such a procedure involves  using a table of values from  the 

standard noma1 distribution. The following discusses this approach. 

If X ~ ~ N ( , u y , ~ ; )  then Y In X N(,uy,~;); therefore, 

P(X<x)=P(lnX<lnx)=  lnX--,uy  lnx-py  (4-46) 
C Y  

Since Y In X N(py, from theorem 4-5  it follows that 

This implies the random variable In x is equivalent to the standard 
C Y  

normal  random variable From this result equation 4-46 is equivalent to 

(4-47) 



f X has a lognormal dist~bution~ then probabilities associated with various 

intervals around X can  be determined from a table of values of 2, the standard 

normal distribution. 

E ~ ~ ~ ~ Z e  Suppose the unce~ainty in a system’s cost is described by a 

l o g ~ o r ~ a l  PDF with E(Cost) 100 ($M) and Var(Cost) 625 this is 

the right-most PDF in figure 4-17. Determine 

a) P~Cost 2E(Cost)) 

b) P(50 cost 150) 

~olut ion 

determine P(Cost 2E(Cost)) recall that 

P( cost 2E( Cost)) l P( cost 1.2€?( Cost)) 

t is given that E(Cost) 100;  therefore 

P(C0st 200) P(C0st 200) 

In this example, the random variable Cost is  given to have a lognormal 

distribution with E(Cost) 100 and Var(Cost) 625. Thus, the  random 

variable Y In Cost is normally distributed with parameters (determined from 

theo~em 4-8) 

E(ln Cost) 4.57486 

c$ Vur(1n Cost) 0.0606246 

From table A-l (appendix A) 2.938) 0.998348, after  some 

olation. Therefore, 

P(C0st 200) l 2.938) 0.00165 



This result is consistent with the Markov bound discussion in chapter 3 

(section 3.4), as illustrated in figure 3-19. 

b) determine P(50 Cost 150) note that 

P(50 Cost 150) P(ln ln(Cost) In 150) 

P(-2.69 1.77) 

where 
In Cost p y  

QY 

py E(ln Cost) 4.57486 (from theorem 4-8) 

Var(ln Cost) 0.0606246 (from theorem 4-8) 

From theorem 4-5 we  know l), thus 

P(50 150) P(-2.69 1.77) 

Fz(1.77) Fz("2.69) 

I= Fz(1.77) [l Fz(2.69)] 

where Fz(-2.69) l Fz(2.69). From table A-l (appendix A) 

P(50 Cost 5150)  0.961636 [l 0.99641 0.958  0.96 

Thus, the system's cost will fall between 50 and 150 million dollars with 

probability 0.96. This result is also consistent with the discussion presented in 

chapter 3 (section 3.4), as illustrated in figure 3-20. 



E x a ~ ~ l e  In figure 1-5 (chapter l )  the random variable X2 represented 

the  cost of a system’s systems engineering and program management. 

Fu~hermore, the point estimate of Xi ,  denoted by  was equal to l .26 

If X2 can be approximated by a lognormal dis~ribution, with 

E(X2) 1.6875 ($M) and  Var(X2) 0.255677 ($M)2, determine 

a) PG2 X2PEx2 

b) P(X2 

a) Since the dist~bution function of X2 is approximated by a  lognormal, 

from equation 4-47 we can write 

P(X2 5x2pEx2)= z< r( lnxZPEx2 

P(X2 1.26) 
0.293224 

1n 1.26 0.480258 

From table A- l (appendix A) 

P(Z P(2 0.85) l P(Z 1 0.802 0.198 

thus,  P(X2 1.26) P(2 -0.85) 0.198 

Therefore, there nearly a 20  percent chance the cost of the system’s systems 

engineering and program management will  be less than or equal to  1.26 

are given E(X2) 1.6875 therefore P(X2 E(X2)) P(X2 1.6875). 



4-47 

1.6875) 
l .6875 0.480258 

0.293224 

A-l A) 0.1466) 0.558; 

<1.6875)=P(Z<0,1466)=0.558 

1.6875 

($M). 

4-19. X2 4-9 

7 



apter 

ing ~ o n t i n u o ~ s   ~ r o ~ a ~ i l i t y  

In systems engineering, probability distributions of variables whose  values are 

uncertain must often be specified by expert technical opinion. This is 

particularly true in the absence of historical data. In such circumstances, 

expert opinion can be the only way to quantify a variable’s uncertainty. Even 

when data exists its quality may  be so suspect as to nullify its  use aitogether. 

This section discusses strategies for specifying probability distributions when 

expert subjective assessments are required. This is illustrated in the context of 

continuous probability distributions.* Before delving into the details of these 

strategies, we discuss further the concept of subjective probabilities and 

distribution functions (introduced in chapter 2). 

istribution Fun~tions 

In systems engineering, probabilities are often used to quantify uncertainties 

associated with a system’s design parameters (e.g.,  weight),  as  well  as 

uncertainties in cost and schedule. For reasons mentioned above, quantifying 

this unce~ainty is often done in terns of subjective probabilities. Discussed 

in chapter 2, subjective probabilities are those assigned to events the basis 

personal judgment. They measure of a  person’s degree-of-belief that an- 

event will occur. Subjective probabilities are most often associated  with one- 

time, nonrepeatable, events those whose probabilities cannot be objectively 

determined from  a population of outcomes developed by repeated trials, 

obse~ations, or experimentation. Subjective probabilities cannot be arbitrary; 

they must adhere to the axioms of probability [refer  to chapter For 

instance, if  an electronics engineer assigns a probability of 0.70 to the event 



will 

only 



The beta distribution has  long  been the distribution of “choice” for 

subjective assessments.  It  can take a wide-variety of forms, as seen in figure 

4-9 and figure 4-10. The following illustrates how the beta distribution can 

be specified from subjective assessments  on  the  shape parameters and 

and two fractiles. 

Case Specify a nonstandard beta distribution for the random variable X 

given the shape parameters and and  any  two fractiles and x j ,  where 

S i An illustration of this case is presented in figure 4-20. 

~ u r ~ o s e ~ s ~  determine the minimum  and  maximum possible values for X, 

eta(a, b) compute E(X) and from the specified 

distribution. 

~ e q u i r e ~   l n f o ~ a t i o n  

Assessments and and  any  two fractiles xi and 

~ i s ~ u ~ s i o n  

An assessment of the shape parameters and can be facilitated by having 

a subject expert look at  a family of beta distributions, as shown  in figure 

and figure 4-10. From such a family, an and pair can be chosen that 

reasonably depicts the distribution of probability (e.g.,  skewed, symmetric) 

for  the variable under consideration. With and and  any  two fractiles xi 

and x j ,  the  minimum  and  maximum possible values of are given by 

equations 4-48 and 4-49 (refer to exercise 25), respectively. 

(4-4 8) 



In the above, the terns xi and x j  are the assessed  values of X such that 

P(X I x i )  i and P(X I The terns yi  and y j  are fractiles computed 

from the s t a ~ ~ a r ~  beta ~ i ~ t r i b ~ t i o ~  associated with the given (as chosen 

the subject expert) and 

fX 

eta ~istribution Case 1 

nce and b have  been deternined, theorem 4-4 can be use 

E ( X )  and Var(X) associated with the specified ~istribution. 

E x a ~ ~ Z e  Find the mini mu^ and m a x i ~ u ~  possible values of X if 

X Beta(5,10, a,   b) ,  4.76359, and "0.95 6.70003. Find E ( X )  and 

Var( X ) .  

Sul~tion 

Since X Beta(5,1O,a9b), the distribution function of X has shape parameters 

5 and 10. From equations 4-48 and 4-49 we can  write 

(4-50) 



Since the random variable Y must  have the standard beta distribution 

Y Beta(5, lo), it  can be determined* that ~ 0 . 0 5  0.152718 and 

y0,95 0.540005. Substituting these values into equation 4-50 and 4-5 1 we 

have 4 and b 9, which are the minimum  and maximum possible values 

of respectively. The reader should notice this example is directly related to 

example 4-4 (section 4.2). Now that  values for a and b are determined, the 

mean  and  variance  of X can  be determined directly from theorem It is 

left to the reader to show that 5.67 and Var(X) 0.347, in  this 

example. 

~ x ~ ~ ~ Z e  Suppose represents the unce~ainty in the number of 

delivered source instructions (DSI) for new software application. Suppose 

team of software engineers judged 100,000 DSI a reasonable assessment of 

the 50th percentile of and a size of 150,000 as a reasonable assessment 

of the 95th percentile. Furthermore, suppose the distribution fmction in 

figure 4-21 was considered a good characterization of the uncertainty in the 

number of DSI.  Given this, 

Find  the extreme possible values for 

b) Compute the mode of 

c) Compute and 

Salutian 

a) In figure 4-21, is given to be a beta distribution with shape parameters 

2 and 3.5. We are also given  two probability assessments for 

MuthematicuB Quantile[B~taDistribution[5,10],~~, k 
0.95. 



specifically, P(Z I 100,OOO) 0.50 and P(I 150 ,~O)  0.95; this  is 

equivalent to the fractiles 1 0 0 , ~ O  and 150,000 (refer  to  figure 

4-21). Since 2 and 3.5, the standard beta d is t r i~~t ion is 

Y Beta(2,3.5). From this we can determine the fractiles and 

Using ~ a t ~ e ~ a t i c a ~ ,  0.346086  and 0.70189  when 2  and 

3.5. Substituting 0.346086, 0.70189, 100,OOO and 

150,000 into equations 4-48 and 4-49 provides the minimum and 

maximum possible values for I. These values are denoted  below by a and b. 

( 1 ~ 0 ) 0 . 7 0 1 8 9  (150~0)0.346086 51366 
a =  

0.70 189 0.346086 

150000(1-  0.346086) 1~000(1 -  0.70189) 191892 
b =  

0.70 189 0.346086 

Figure 4-21. Beta ~istribution for Example 4- 1 1 

b) Since l and 1, from equation 4-10,  the  mode ~eta(2,3.5) is 

l-a 1-2 
Y"" 0.2857 

2-2-3.5 



y the linear transfo~ation y (x a) ,  where and were 

~ e t e ~ i n e d  from part a) we have Q.2857(b 91,5 14 

ecause the  beta distribution in this example has a positive skew, the mode of 

falls to the left of the 50th percentile of I. 

c) From theorem 4-4 with 2, 3.5, 51366 SI, and 191892 

SI we have 

E(I)=a+(b-a)E(Y)=a+(b-a)-  

=51366+(19189:!-51366)----"= 102, 
L 

3.5 

nce again, because the beta dist~bution in  this exa as a positive skew, 

the mean of I falls to the right of the 50th percentile of I. Lastly, from 

13 it  can  be  shown  t  at U) Q.~356. From e~uation 4- 13 

is translates to 7,Q3(1Q)* 

~ V ~ r ( I )  265  14 



The following presents strategies for specifying a uniform distribution, when a 

subject expert assigns a probability to a subinterval of the distribution’s 

range. In the cases below,  assume the random variable X is u n ~ o r ~ Z y  

~isEribute~ over the range a b .  

Case Specify a uniform distribution for the random variable given the 

subinterval a b‘ and where a is the minimum possible value  of X, 

b’ b ,  and P(a X b’). An illustration of this case is presented in 

figure 4-22. 

~ u r ~ o s e ~ s ~  To determine the maximum possible value  of To  compute 

~ ( X )  and ~ a r ( X )  from the specified distribution. 

Assessments of and the endpoints of the subinterval a b’. 

iscussi~n 

n this case a subject expert defines the subinterval a b’ of the range of 

ossible values for X, given  by a b .  En addition, an  assessment is made 

e probability will fall in this subinterval. 

b‘ b 

e maximum possi 



For exam~le, if and b’ then, from equation the 

m ~ i m u m  value of X must  be b 60. This is illustrated in figure 

0.25 l 
Figure An Illustration of Case 

or  an application context, the random variable might represent the 

~ n c e ~ a i n t y  in the  number of source i n s t ~ ~ t i o n s  to develop for  a new software 

plication, in the  weight  of a new electronic device, or in the number of 

labor hours to assemble a new  widget. 

pecify a uniform distribution  for the random variable given the 

subinterval and where c and 

An illustrat~on of this case is presented in figure 

determine the minimum and  maximum  possible  values of X. 

Ute and from the specified distri~ution. 

~ssessments of and  the endpoints the s u ~ i n t e ~ a l  



of 
X, af 

X 

b 

X 

b' 60 

X 

b 



cx 

Figure 4-25. An Illustration of Case 3 

It  is possible, in this case, for a to become negative even  when is positive. 

In applications where it is sensible that (e.g.,  if is the 

uncertainty in the weight  of  a  new  widget),  such  an  occurrence signals a 

reassessment of and is needed. 

The following illustrates one strategy for specifying a triangular distribution, 

when  a subject expert assigns a probability to a subinterval of the 

 distribution,^ range. In the case below,  assume the random variable has  a 

over the range a S 

Specify a triangular distribution the random variable X given m, 

the subinterval x S and where m and 

P(a’ S b’). An illustration of this case  is presented in figure 4-26. 

To d e t e ~ i n e  the minimum  and  maximum possible values of X. 

To compute and Var(X) from the specified distribution. 

This  case developed Dr.  Chien-Ghing  Cho,  ‘“he Corporation,  Bedford, 
Massachusetts. 



I n ~ o ~ a t i ~ n  

Assessments  of and  the  endpoints of the subinterval I I where 

m F u ~ h e ~ o r e ,  assume for this case 

m) 

m) 

In this case subject expert defines the subinterval I of the range of 

possible values for given  by I In addition, an  assessment  of the 

probability will fall in the subinterval I I is made. 

iscussion 

rn b' b 

Figure 4-26. Illustrative ~riangular  ~istribution Case 4 

If P(a' I b') 1, the minimum  and  maximum possible values of 

b=m+ 
1"dF-Z  

(4-5 5) 

(4-56) 

Equations  4-55  and  4-56 originate from the assumption (for this case) that 

m) 

P(X m) 

For  example, if 0.75, 25 m 35, and 60 then, from equations 



4-55 and 4-56, the minimum and maximum possible values of are a l5 

and b 85. This is illustrated in figure 4-27. 

Figure 4-27. An Illustration of Case 4 

An application context for this case is similar to the previous cases. It is also 

possible in this case for a to become negative, even  when is positive. In 

a~plications where  it is sensible that be ~onnega~ ive  (e.g., if is the 

unce~ainty in the  weight of a new widget), such an occurrence signals a 

reassessment of a’ and is needed. 

Y 
Sir Josiah Stamp* once said 

very m 

never 

hures  

Several techniques have  been  presented for  quantifying unce~ainty in terms 

of subjective probabilities and distributions. discussed, the need to do so is 

unavoida~le on systems engineering projects. An extensive body  of social 



science research exists on techniques for  eliciting subjective probabilities and 

~istributions. The book ~ n c e r t a i n ~ :  A Guide  to  Dealing ~ i t h  ~ncertuinty in 

~uantitative ~ i s k  and Policy  Analysis, by Morgan and Henrion [?l, provides 

an excellent summary of this research. Despite  these  studies, there remains a 

lack of consensus the superiority of  any particular elicitation technique. 

~l though the use  of expert opinion is sometimes criticized, the basis of the 

criticism is often traceable to  a) the subject expert was really the “village 

watchman” or b) the full scope of the problem being addressed by the expert 

was poorly described. To lessen the chance of a)  or b) occurring, it is the 

prime responsibility of the project’s cost and engineering team to collectively 

do the technical diligence needed to establish credible and defensible 

assessments. 

For our purposes,  it  must be stressed that a key product from subjective 

assessment efforts must be a well documented set  of assumptions, arguments9 

and supportive materials. ocumentation enables similarly qual i~ed persons 

(or teams) to conduct independent and objective reviews  of the assessments. 

This alone is an i~portant step towards objectivity and one that woul 

the presence of “village watchmen.’, Credible analyses stem from 

and defensible assessments; credible and defensible assessments stem from 

credible expertise. Properly conducted and documented assessments9 on areas 

of a project that drive cost, schedule, and technical uncertainties, are am on^ 

the most important products cost uncertainty analysis drives  to pro 

1. Given  the trapezoidal distribution in example show that 

a) P(25000 b) P(25000 



2. 

3. 

4. 

7 .  

Suppose X Trap(a, ml, m2, b) with PDF given  in  figure 1. 

a) Show  that P(X ml) P(X m2) m1) 

hat  region  in  figure  4-1 does the probability  in  exercise  2a) 

represent? 

Cost Un~(3,8), then  answer  the  following: 

c) Find such  that P(Cust 0.80. 

X that 

erive equations  4-52  (in case 4-53 (in case and 4-54 (in case 3). 



10. 

11. 

12. 

13. 

~ ~ g ( O , l , l )  

E(5X+l) 1) 

Y 4- 14 4- 15 Y )  V ~ r ( Y )  

fy(y) 12y2(1-  y), y 1 

U) or. 

P(0.3 Y 

is 

ally ~ i s t r i ~ ~ t e ~  



16. If has a lognormal distribution, what does P(ln X E(ln X)) always 

equal? 

17. Compute the mean  and variance of In X for the three lognormal 

distributions in figure 4-17. 

18. Suppose the uncertainty in a system’s cost is described by a l ~ g n ~ r ~ a l  

PDF with &Cost) 25 and Var(Cost) 225 this is  the  left- 

most PDF in figure 4-17. Determine 

a) P(Cost E(Cost)) b) P(Cost 50) 

19. In figure 1-5 (chapter the  random variable X2 represented the cost 

of a system’s systems engineering and program management. The 

point estimate of denoted by was equal to 1.26 ($M). If 

Xi can be approxi~ated by a lognormal distribution, with 

1.6875 ($M) and Var(X2) 0.255677 ($M)’, determine 

15 2.5) C) 2.5) 

is a log nor ma^ random variable,  show  the  maximum value of its 

e ~ s i ~   ~ ~ c t i o n  is given by equation 4-40. 

is a log nor ma^ random  variable,  show that the r-th moment  of is 

sents the unce~ainty in the number of delivere 

I) for a new software application. Su~pose a team of 

software engineers judged 35, SI as a reasonable assessment of the 

ercentile of and a siz I as a reasonable assessment 



f 

t r i a~guZ~r  

25,000 

and b 
y = ( x - a ) / ( b - a ) .  P(Y<y i )= i=P(X5 ;x i )  and P ( Y 5 y j ) = j = P ( X < x j ) ,  
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The M i ~ l e  

This chapter presents  methods for studying the  behavior of 

Topics include joint probability distributions, linear combinations of 

random variables, the central limit theorem,  and  the development of distribut~on 

functions specific to a general class software  cost-schedule  models. 

Functions of random  variables occur frequently in cost engineering and  analysis 

problems.  For example, the first unit-cost UC of an  unmanned spacecraft might 

be derived  according to 

BQL?)0*30 

where is the  spacecraft’s  dry  weight (pounds) and BOLP is  the  beginning- 

of-life power (watts). If it’s early in a new spacecraft’s design the precise values 

for and might  be  unknown. The engineering team might better 

assess ranges of possible values for and BOLP instead of single point 

values. These ranges might be described by probability distributions, such as 

those presented in chapter 4. If the first unit-cost is a function of the random 

variables SC,,  and BQLP, a common question is 

UC for BOLP This 



ter 

chapter  presents methods to  answer  this and related questions.  First, some 

mathe~atical p r e l i ~ n ~ e s .  

When a function is defined by two  or more random variables its probability 

distribution  is  called  a joint p r o b a b i l i ~  distribution. Joint  probability 

distributions  generalize the concept of univariate distributions to functions of 

several random  variables.  Analogous to the univariate case, the join;  c~mulative 

dist~but ion~nct ion of two  random  variables and Y is 

F x , y ( x , y ) = P ( X < x , Y I y )   - < x , y < =  (5-1) 

Illustrated in figure 5-1, P ~ , ~ ( X ,  y )  is the  probability a possible  pair of values 

(x i , yk )  will  occur. 

Figure 5-1. A Joint  Probability  Mass  Function of and Y 

If R is any region in the xy -plane  and X and Y are discrete random  variables then 



(5-3) 
( x , y ) ~ R  

Quation 5-3 implies the probability of a random point falling in a region is the 

sum of the heights of the vertical lines that correspond to the  points contained in 

R. The  heights of the  lines are given by P ~ , ~ ( X ,  y ) .  Joint probabilities  are 

defined in terns of and  the joint probability  mass function. For example, the 

probability is less than Y is represented by the set of all points in the region 

where y .  This  can be written  as 

If and Y have a  finite number of possible values, it is sometimes  convenient to 

arrange the probabilities associated with these values in a contingency table. 

Table 5-1 illustrates a contingency  table for two  random  variables  that each have 

four  values  possible. 

Table l .  A, ~ontingency Table for and 

The sum of all ~ ~ , ~ ( x ~ , y ~ )  in a contingency table must  equal  unity. If X and 

are discrete random  variables  their marginal probabil i~  mass~nctions are given 

by 



P(Y 

Equation 5-5 is  the  marginal  probability  mass  function of X ;  equation is the 

marginal  roba ability mass  function of Y. 

Suppose the effort (in staff-months) to modernize a management 

information system  is given by E ~ ~ y ~ ~ ~ *  XY, where is the  number of 

systems  engineering  staff  needed for months. Suppose a contingency table for 

X and Y is given  below. 

Table 5-2. Contingency  Table for Example 5-1 

y1 y2 

XI 

x2 Staff 

Compute 

Solution 

a) From  equation 5-2 

P(X Y 36) 

b) is a marginal  probability; from equation 

2 

k= l  

C) p(y 36) is a marginal  probability;  from  equation 5-6 

2 

36) 0.65 
t = l  



lic 

d) From  table 5-2 the region where the  event (Eflsys~ng 600) occurs 

contains only  two  points; specifically, 

les 
If X and  Yare continuous random  variables,  the joint probability  density ~nc t i on  

of X and Y9 denoted by y), satisfies  for any set in the  two-dimensional 

plane 

where y) 0 and 

The probability  associated  with a univariate continuous random  variable reflects 

an area under  the variable's density function. The  probability  represented by the 

double integral in equation 5-7, is the over  the  region R between  the 

plane  and  the  surface  determined by y) In  particular, 

b d  
P(a<X<bandc<Y<d)=  

U C  

With continuous  random  variables, XI, Xz, X3,. Xn, we have 



brl 

P(al< X1 < h  .*-a, <bn)= f( xn )dxn dxl 

The ~arginal  probabili~ d e n s i ~ ~ n ~ t i o n s  of and Y are given by 

y)dy for (5-10) 

(5-1 1) 

~ x ~ ~ p l e  Suppose the effort (in staff-months) to develop and  implement a 

system’s test plans and procedures is given by ~ ~ ~ y ~ * e ~ ~  X Y ,  where Ir: is the 

number of test engineering staff needed over Y months.  Suppose X and Y are 

cont in~o~s random  variables with joint PDF 

5 5 x i 1 5 ,   1 2 5 y S 3 6  
f(x, y) {:otherwise 240 

This joint PDF has  marginal  probability  density functions in figure 

Figure 5-2. Marginal  Distributions for and Y 
Determine 

a) P ( ~ ~ ~ ~ ~ ~ e ~ ~  120) b) 360) 

c) 120) given the  test  engineering  staff  will  not  exceed 10 persons. 

d) The probability ~ ~ ~ y ~ ~ e ~ ~  120 staff-months and the test engineering staff 

and duration  will  not  exceed 10 persons  and months,  respectively. 



~oZ~t ion E+,sysTes. 

- x  

E’sysTesf 

5-8, 

I 
TO EjSsysTest 

EJfirSysTesl 



From  theorem 

15 IS 

c) The  probability staff-months the  test  engineering  staff- 

level  will  not  exceed persons is a  conditional  probability;  specifically,  the 

conditional  probability is P(Eflsys~~s~ From chapter equation 

we  can  write 

P({XY 
Eflsysrest 

In  this  case, 
lo? 

P({XY 

The  conditional  probability,  in  this  example,  is  twice  its  unconditional  probability 

computed  in  part  a).  Why  is this? The  unconditional  probability is associated 

with  the joint distribution  function 

If it  is  given  that the joint distribution  function  essentially  becomes 



With f(x, y) ( l /  120), and I I 10, 12 y 36, more  probability exists in 

the  region  where XY 120 than  in  the  same  region  with f(x, y) (l/ 240), and 

5 1 x 1 1 5 ,   1 2 5 ~ 5 3 6 .  

B =  {x lo} 

C={Y<24} 

Thus,  the  probability  we  want to d e t e ~ i n e  is  given by 

~(AnBnC)=~({XY>l2O}n{X~lO}n{Y124})  

From  equation 5-8 

yp 
The probability is  just over 0.15 that  the  effort for system  test  will  exceed 120 

staff-months,  and  the  test  engineering  staff-level  and  duration  will  not  exceed 10 

persons  and 24 months.  This  probability  is  shown by the  region R in  figure 5-5. 



l5 

Figure 5-5. Region R Associated  With  Part C of Example 5-2 

5-3 Suppose  the  effort (staff-~onths) to  ‘develop  a new software 

~ p ~ ~ i c ~ t i o ~  is  given by where is the size of a software application 

( n u ~ ~ e ~  of DSI)  and is the development  productivity rate (number of DSI  per 

~~ff-month). Suppose and  Yare random  variables with joint PDF 

50,000 x 100,000, 100 

otherwise 

This joint PDF has  marginal pro~abi~ity density functions in figure 5-6. 

l o 0 0 0 0  

Figure 5-6. Marginal  Distributions for and Y 



Determine  the  probability will  not  exceed 300 s~ff-months. 

determine the probability will  not  exceed 300 staf f -~onth~, 

we first sketch the event space. This is shown  in figure 5-7. 

Y 

I 

Figure  5-7.  Event Space for ~~~w 

From  equation  5-8, we have 

o 

So far, we have  introduced the concept of joint probability distributions two 

random  variables. Often, it is necessary to know the distribution of one rando 

variable  when  the other takes a specific value.  Such a distribution is as 

conditional probability distribution, which is discussed next  in  terms  of 

and  continuous  random  variables. 



discrete X Y 

p x V y ( x ,   y ) ,  conditional probabi l i~  mass~nct ion X Y y 

pY(y> 0. ~onditional probabi l i~  mass~nct ion Y 

p x ( x )  0. 

given p x l  

Y ,  

P(X 
be 

continuous X Y y )  

conditional p robab i l i~   dens i~~nc t ion  X, Y y ,  

conditional p robab i l i ~   dens i~~nc t ion  Y, X 



In  example 5-2, X and Y had joint probability  density  function 

5 5 x 5 1 5 ,   1 2 5 ~ 5 3 6  
y )  {?otherwise 240 

Find  the  conditional  probability  density functions of X and Y. 

From  equation 5-14, the  conditional  probability  density  function  of X is 

From  equation 15, the conditional  probability  density  function of V is 

~onditional probability  density  functions  provide  a way to  determine  the 

conditional cumulative dist~bution function. Specifically, 

F,ly(x sly) a p  Y) (5-16) 

Fylx(y P(Y blX (5-17) 
b 

Two  random  variables X and  Yare if for any two  events E A} and 

{Y E B} where A and B are sets of real  numbers, we have 

P ( { X € A } n { Y € B } ) = ~ ( { X € A } ) ~ ( { Y € B } )  (5-18) 

 quat ti on 5-18 follows if  and  only  if, for any x and y 

~ ( { X ~ ~ } ~ { Y ~ ~ } ) ~ ~ ( X ~ ~ ? Y ~ Y ) = P ( X ~ ~ ) ~ ( Y ~ Y )  



ter 

From  equation  5-19,  it follows that 

~ x , y ( x , y ) ~ ~ ( X ~ ~ , Y ~ y ) = ~ x ( x ) ~ y ( y )  -OO<X,Y<= (5-20) 

If X and Y are independent random  variables,  equation 5-18 becomes 

PX,Y Y )  PX(")PY ( Y )  (5-2  1) 

(5 -22) 

Moreover, if equation 5-21 holds for two discrete random variables, then the 

random  variables  are  independent.  Similarly, and Y are  independent 

random variables if and  only if equation 5-24 holds for all feasible 

values  of X and Y. 

(5-25) 

fy,x(YlX) f J Y )  (5-26) 

From  this,  what do you conclude about  the  random  variables X and Y in examples 

5-2 and discussion of this is left as an exercise for the reader. 

random  variables are those  that are 

tion and ~orr~lat ion 

In chapter 3, the  expectation of a  random  variable was discussed.  The 

expectation of two  random  variables is stated in the  following  proposition. 

5-1 If X and Y are random variables and y )  is a real-valued 

function  defined for all x and y that are possible  values of X and Y, then 



P ~ , ~ ( X ,  if and Y are discrete 

if and Y are continuous 

In the above, the  double summation and double  integral must  be absolutely 

convergent. 

Example Determine  the  expectation of in  example 

We need to  compute E(E~sysTes f ) .  From example the joint 

dis~bution of and Y is given as 

otherwise 

In  example E ~ s y s ~ e s f  is a function of two random variables and Y, that  is, 

E ~ s ~ ~ ~ e s f  g ( X ,  Y ) .  Therefore, in this case, xy. Since and- Y 

are continuous  random  variables, from equation 

~ ( E ~ s y s T e s f )  E(g(X,  s~ff-months 

It is often of interest to determine  where the expected value of a random  variable 

falls along  the  variable’s  cumulative  distribution  function.  Mentioned in chapters 

and the  expected  value of a random variable is  not, in general, equal to  the 

median  of the random  variable.  This is again illustrated with example It is 

left  as  an exercise for the  reader to show 

It is often  necessary to know  the degree to which two random  variables associate 

vary  with each other. In  cost analysis, questions such as “How m ~ c ~  is the 



variation in a new satellite’s predicted  weight attributable to the variation in its 

cost?’ are common. Covariance is a measure of  how  two  random variables vary 

together.  Let X and Y be  random  variables  with  expected  values (means) p x  and 

py, respectively. The covariance of X and Y, denoted by Cov(X, Y ) ,  is defined 

as 

COV(X, Y )  o x y  px)(Y py)} (5-28) 

Covariance  can  be  positive,  negative,  or  zero. If X and Y take  values 

simultaneously  larger  than  their  respective  means,  the  covariance will be 

positive. If X and Y take values simultaneously smaller than their respective 

means,  the covariance will also be  positive. If one random  variable takes a value 

larger than its mean and the  other takes a value smaller than its mean, the 

covariance will be negative. So, when  two  random  variables  simultaneously take 

values on the same sides  as  their  respective means, the  covariance will be 

positive.  hen two random variables simultaneo~sly take values on opposite 

sides of their means, the covariance will  be negative. The following theorems 

present  useful properties of covariance.  Theorem 5-1 presents a way to compute 

covariance  that is easier than  using  the definition given by e ~ u a t i o ~  5-28. 

If X and  Yare  random  variables  with  means p x  and py then 

Cov( x, U) E( X Y )  pxpy  

If X and Y are random  variables,  then 

a) Cov(X, Y) Cov(Y, 

b) Cov(aX b,cY d )  acCov(X, Y) for any real  numbers a,   b ,  c, and d 

If X and Y are independent  random  variables  then Cov(X, Y )  

The  proofs these  theorems  are  left as exercises for the  reader. 

Covariance as a measure of the degree two random variables covary can  be 

hard to interpret. Suppose X1 and are random variables such that X 2  2x1 

and U2 2yl. From  theorem (part b), Cov(X2, Y2) 4Cov(X1,yi). Although 



XI and and X2 and Y2 behave in precisely  the  same way with  respect to each 

other, the random variables X2 and Y2 have a covariance four times greater than 

covariance of XI and more convenient ~ e a s u r e  is  one where the 

relationship between pairs of random variables could be inte~reted along a 

c o ~ o n  scale. The  fo~lowing discussion  presents  such a measure. 

Suppose we have  two  standard  random  variables Z x  and Z y  where 

Using  theorem 5-2, the covariance of Zx  and Z y  reduces to 

o x  U Y  

cov(x f l x ,  Y f l y )  

l Cov(X,Y)  
o x  OY 

PX,Y 

The term p x , y  is earson correlation coefficient It is the 

traditional  statistic  to  measure  the  degree  to which two ran do^ variables 

correlate (or covary). Formally, the Pearson correlation ~ o e ~ c i e n t  between  two 

random  variables X and Y is 

Cov(X,  Y )  

QXOY 
Corr( X ,  U) p x ,  y 

OX and OY From  theorem 5-1, equation 5-29 simplifies to 

The correlation coefficient is dimensionless. Pearson’s correlation coefficient 

measures the strength ofthe linear relations hi^ between two random  variables. 



It  is bounded by the  interval If Y b where and b are real 

n ~ ~ r s  and then if then When 

we  say X and Y are There  is a complete absence of linearity 

between them. Figure 5-8 illustrates  the  types of correlation  that can exist 

between  random  variables. 

Y Y Y 

X X 

Figure 5-8. Correlation  Between  Random  Variables and Y 

If Y and X show  that 

From  equation 

corr(X, Y )  

Since we have on (chapter 4); therefore, 

l 

Therefore 



In this  example,  we  conclude  there  is  a complete absence  of  linearity  between X 

and Y. 

Figure 5-9. An Illus~ation of Y X L  and 

If and Y are  independent  random  variables,  then 0. 

This follows from theorem 5-3 and  equation 5-29. Since and Y are 

independent  random  variables, from theorem 5-3 we  have Y )  0. From 

equation 5-29, if 0 it i ~ e d i a t e l y  follows  that px,y 

The converse  of  theorem 5-4 is  not  true.  If 0 then and Y are said to 

be owever,  it not follow that and Y are independent. 

Again,  if is uni for~ly distributed  in 1 and Y X then 0; 

however, Y is d e ~ e n ~ e n t  on in this case. Theorem gives rise to  the 

following: 

If and Y are  independent  random  variables, then 

XU) E( 



Proof 

0. 0; 

E( Y )  

K 

W 

y )  
UZUW 



This  theorem  states  that  the correlation between two  random  variables  is 

unaffected by a linear  change in either X or Y. 

E x ~ ~ p Z e  Suppose X denotes the number of engineering  staff  required to test 

a new rocket propulsion system.  Suppose is uniformly distributed in the 

interval 5 I I 15. If the  number  of  months Y required to design, conduct, and 

analyze  the test is given by Y 2X 3, compute  the  expected  test  effort, 

measured  in  staff-months. 

e are given X U ~ ~ ( 5 , 1 5 )  and V 2X 3. The test effort, in staff- 

months, is  the  product XY,  To d e t e ~ i n e  the expected  test eflort, we  need to 

compute E(XY) From  equation  5-30,  notice E( X U )  can  be  written  as 

E(XY) px,YOxOY luXluY 

Since is a linear  function of we have px, y 1 thus, 

E(XY) oxoy +lux& 

15), the  mean  and  variance  of X (theorem 

px E(X) 3 ( 5  15) l0 

2 10 
12 

E V a ~ X ) = ~ ( 1 5 - 5 ) 2  and ox 

2X 3, the  mean  and va~ance of Y (theorems  3-9  and  3-1 1) is 

(2X+3)=~E(X)+3=2*10+3=23 

23 246.7 staff-months 



expected effort to test  the  new  rocket's  propulsion  system is nearly  247 

' s ~ ~ f ~ - ~ ~ ~ t h S .  

5-8 Suppose the effort (in staff-months) to develop software  is 

given by 2.$1"', where is thousands of delivered source inst~ctions 

developed. If determine 

E ( E ~ ~ W ~ )  E(2.$Z1*2Z) E(2.812*2) 

60 

ince the   rob ability density  function of is 



p1 60) 

C. 4 

(U1,h),(U2,v2),(U3,v3),...,(Un,vn) 

3)9(U29 V,) 

.,Un h, V2, Vn 

Ul, Uz, 4 , .  U, 

h, V3,. Vn 



smallest  value receiving a rank of one. The difference between  these  rankings is 

the  basis  behind  Spearman’s  coefficient.  Specifically, S p e a ~ a n ’ s  rank 

correlation coefficient, denoted by is given  by* 

n 
6 rs =I-- 

n3 -n 

where di the difference in the  ranks  between Ui and Q. 

Where Pearson’s  correlation  coefficient  determines  the  degree of linearity 

between  two  random variables, Spearman’s rank correlation coefficient measures 

their monotonicity. Like Pearson’s correlation  coefficient, Spearman’s rank 

correlation coefficient is bounded by the interval -1 rs S 1. If rs close to 1, 

then larger values of U tend to be  paired (or associated) with  larger  values of 

If is close to then  larger  values of U tend to  be paired (or associated) with 

smaller  values of rs near zero is expected  when the ranks  reflect a random 

~angement.  

In  example 5-8, recall ~ ~ S W  and have a Pearson correlation of 0.9996 in the 

interval  20 S S 60. ~ent ioned in that example, this suggests the  two  random 

variables  have a strong linear relationship in the interval indicated. 

since (given in example 5-8) is  a  strictly  monotonically  increasing 

function of the rank correlation between and would  be  unity rs 1). 

owever, Pearson’s  correlation  coefficient and Spearman’s rank correlation 

coefficient can  be  very different. This is seen in figure 5-10. In figure 5-10 we 

have Y and UnijC(0,l). Pearson’s correlation coefficient between 

and Y is 0.24 (showing this is left as an exercise for  the reader), while  their  rank 

correlation  is unity. Looking  at  figure  5-10, why (in this  case)  are  these 

correlation coefficients so different? 



Y 

Y X 
Pearson  Correlation 

Correlation 1 

Figure 5-10. Iilustrative Correlation  Coefficients 

Correlation is not causation. A strong positive correlation between  two  ran 

variables  does  not  necessarily  imply  large  values for one large  values for 

the other. Correlation  close  to unity only means two random variables are 

strongly associated and the hypothesis of linear association (for Pearson’s 

correlation  coefficient)  or  a monotoni~ association  (for  Spearman’s  rank 

correlation coefficient) cannot be rejected. 

It is often  necessary to work  with  sums  of  random variables. Sums of ran 

variables arise frequently in cost analysis. For  instance, in figure 1-3 (cha~ter 1) 

system’s  total  cost  can  be  expressed  as 

(5-35) 

where X3,. are r ~ n ~ o m  variables  that  represent  the cost of the 

system’s  work  breakdown st~cture cost  elements.  From this, we can  often  think 

of Cost as linear combination of the random variables In 

general,  given col~ection of n-random  variables an 

the  random  variable 

(5-36) 

is  called  linea^ co~bination of 



5-7 If Y alXl+ a2X2 a3X3 anXn then 

Theorem 5-7 is an extension of theorem 3-9. It states the expected value of a 

sum of random variables is the sum of the expected values of the individual 

random variables. Theorem 5-7 is valid whether or not the random variables 

XI ,  X2,  X 3 , .  X n  are independent. 

If Y alX1-1- a2X2 a3X3 anXn then 

n n- l  n 

aiajPxi,xj (5-38) 
i=l   i=l  j = i+ l  

Theorem 5-8 is an extension of theorem 3-1 1. It states the variance of a sum of 

random variables is the  sum of the variances of the individual random variables, 

plus  the  sum of the  covariances  between them. If the random variables 

X I ,  X 2 ,  X 3 ,  X n  are indepe~ent then 

E ~ a ~ p Z e  5-9 Suppose the  total  cost of a system is given by Cost X1 X 2  X3.  

Let X1 denote the cost of the  system’s  prime  mission  product -PI”. Let X 2  

denote the cost of the system’s systems engineering, program  management,  and 

system  test.  Suppose X1 and X 2  are ~ependent random variables and 

X 2  X I .  Let X 3  denote  the  cost of the system’s data, spare  parts,  and support 

equipment.  Suppose X1 and X3 are indepe~dent random  variables with 

distribution functions given in figure 1. Compute E(Cost) and Var(Cost). 

In  systems  cost  analysis, PMP cost  typically  refers  to  the  total  cost of the  system’s  hardware, 
software,  and  hardware-software  integration.  Chapter provides  a  detailed  discussion. 
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and are l i ~ e f f r l y  in  this  example,  we  know 1. 

and were  given to be  independent  random  variables, from theorem 

ow 0. From this,  and  theorem 5-6, it  follows  that 

stituting  these  values  into we  have 

100 25 0.75 

+2[1(10)(5) + O ( l O ) ( ~ ~ )  0(5)(-&75)] 225.75 

The  units of variance have  little  meaning;  it  is  better to thin 

of dollars  in  terms of the  stand^^ deviation;  that  is, 

n  example and were random  variables. 

at 1. Sup 

were random varia~les with ~(30,100) and N(15,25). 

impact an as ~omputed in  example 

w o u l ~  remai  owever,  if and 

0; the value of 

itude; speci~cally, 

r( 



it  is critically im ortant for cost analysts to capture de~endencies among 

icularly  those  with  nonnegative  correlations. 

can si~nificantly misstate  the true variability  (uncertainty)  in a 

cost. The follow in^ theorem ill~strates how nonne  ative  correlat 

the variance of a of n-rando own is how the variance 

the  number random  variables  being s ~ ~ e  

nonnegative  correlation p therefore 
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Vur( Cost) 

10 15 20  25  30  35 

Number of W B S  Cost  Elements n 

Figure 5-12. Theorem with o2 

This  section  describes one of  the  most  important  theorems  in probability 

theory,  the The central  limit theorem states  that, under 

certain  conditions9  the  distribution  function a  sum independent random 

variables  approaches  the  normal  distribution.  From  a  cost  analysis  perspective 

this  theorem  has  great  practical  importance. ~ent ioned previously,  a 

system's  total  cost  is  a  summation  of  work  breakdown  structure  cost element 

costs X,,X2,X3,'",Xn. ecause this,  the  distribution  function  of  a 

system's  total  cost  will  often  be  approximately  normal. We  will see many 

examples of this  in the discussions  and  chapters  that  follow. 

.) X3,  is  a  sequence  of random variables 

and (each  finite).  If 



then, under certain conditions,* as n 

approaches the standard normal, where 

00 the random variable (V p)/ cr 

n 

Theorem 5-10 places no restriction on the types of distribution functions  that 

characterize the random variables However, for  a given n, 

the “rate” that the distribution function of Y approaches the normal 

distribution is affected by the shapes of the distribution functions for 

these distributions  are approximately “bell-shaped,” 

then the distribution function of Y may approach the normal for small n. If 

they are asymmetric, then n may need to be large for Y to  approach  the 

normal distribution. 

The central limit theorem is often cited to explain why the distribution 

function of a system’s total cost is often approximately normal. This is 

illustrated in the following case discussion. 

~ i s c ~ s s i o n  The electronic components of a 20 watt solid state 

amplifier (SSA) for  a satellite communication workstation are listed  in table 

5-3. Let the total component-level cost of the SSA be  given by 

Suppose are independent 

costs of the SSA’s components. Suppose 

random variables representing the 

the distribution function of each 

X1,X2,X3,+.-,Xn Y 
Y .  variablesXI,X2,X3,*+.,Xn 

A n  
~ ~ o ~ u ~ ~ Z i t y  A ~ p ~ ~ c u t i o n ~ ,  tk 



component is  triangular,  with  parameters  given  in table 5-3. Furthermore, 

pose  the  mode  of represents  its  point  estimate,  that  is, 

i 1,2, 12 

From this,  determine  the  mean  and  variance  of CostssA, as well  as an 

approximation to its underlying distribution function. 

Table  5-3. 20 Watt Component  Cost 

($K) 

($K) 

8.88 

SHF 

Cost,,,. 

Since  distribution  function  of  each is  given to be  triangular,  theorem 4-3 

can be applied to determine  the  mean  and  variance  of each c o ~ ~ o n e n t ' s  cost. 

For instance, 

-$(uI m1 i(12.8 16.9 22.4) 17.37 

Var(X1) &[(m1 al)(ml- 3.87 

where is  the ~ i n i m u m  value  of m1 is  the  mode  of and the 

ma~imum value  of Similar  notation  assumptions  and ~alculations apply 



to the other components in  table 5-3. From theorem and  theorem 5-8 the 

mean  and  variance  of the total  component-level  cost  of  the SSA is 

Since are independent  random  variables  (with  finite means 

and  variances), from the central limit  theorem  (theorem 5-10) 

This is  equivalent to saying 

will  next  assess the applicability  of  this theorem that  suggests the 

distribution  function for is  approximately  normal  with parameters 

given by (5-44). Monte Carlo simulation  is one way to make this  assessment. 

In  the  context  of case discussion 5-1, the Monte Carlo approach involves 

taking a random  sample from each X;, and s u ~ i n g  these 

sampled  values according to equation 5-40. This produces one random 

sample for When  this  sampling  process  is  repeated  many thousands 

of  times,  an  empirical frequency distribution  of is produced. From 

the  frequency  distribution  an  empirical  cumulative dist~bution function 

can  be  established.  In  figure 5-13, the curve implied by the 

“points” is  the  empirical  cumulative  distribution function of The 

curve  given by the solid line is  an  assumed normal distribution,  with 

parameters  given by (5-44). Observe  how  closely  the  “points”  fall  along the 



solid line. On the basis of this evidence, it appears the central limit theorem is 

applicable in this case. 

The analysis s u ~ a r i z e d  in figure 5- 13 provides empirical evidence only 

that the  normal ~istribution is a reasonable form for the distribution function 

of “CostssA. It  might next be asked ““Could  the underlyin~  distribution 

~ n c t i o n  fur “CostSsA be  normal?’ To answer  this, a procedure known as the 

Ko lmogorov-S~~ov (K-S) test can be used. The K-S test applies only to 

continuous distribution functions.  It is a formal statistical procedure for 

testing whether a sample of obse~ations (such as samples generated by a 

Monte Carlo simulation) could come from a hypothesized theoretical 

distribution.  The following illustrates the K-S test  in the context of case 

discussion 5- 

Figure 5-13. Cumulative Distribution Function of CostSSA 

The ~olmogorov-Smirnov Test: 

k t  represent  the  observed of CostssA (equation 

generated  from  a  Monte sample of n observations.  This is 
shown  in  table 



Fcustm ( x )  ( x )  

CostSSA 

not 

D 

D 

a 
a 

J;; 

a 
n 

D 

In a strict sense, accepting the claim that the distribution function for 

is normal only means  it is a plausible mathematical  model  of the underlying 

distribution. Acceptance  does not mean the normal  is the “best” 

“unique”  model form. Other  hypothesized distributions might be accepted 

by the K-S test. It  can  be  shown,  in this case, the test also accepts the 

lognormal distribution as a plausible model  of the underlying distribution of 

CostSSA. Showing this left as an exercise for the reader. 

In cost analysis the “precise” mathematical  form of distribution functions, 

such as those for are rarely known.  A credible analysis must  provide 

decision-makers defensible analytical evidence that the form of a distribution 



+x3 +...+x;, 
XI, X3,. X;, n 



case discussion,  we  saw  a  circumstance  where could  be approximated 

by a  normal  distribution.  This  is  sometimes  viewed as a paradox. 

system’s  cost  historically  exceeds  the  value  anticipated, or planned, why is  its 

distribution  function  not  positively  skewe The normal distribution is 

s y ~ e t r ~ c  about  its  mean; it has no skew. 

There are  many  reasons  why  the  cost  of  a  system exceeds the  value 

anticipated, or planned. prime  reason  is  a  system’s  cost  is  often  base 

on its point  estimate.  From  chapter l (equation  1-2)  the  point  estimate  of the 

cost  of  a  system  is  given by 

where are  the  point  estimates  of  each i l,. .,n). is 

a  value  for Cost that  traditionally  contains nu for uncertainties 

in  a  system’s  technical  definition or cost  estimation  approaches. 

this’ often falls below  the 50th percentile  of Cost; that is, can 

have  a  high  probability  of  being  exceeded.  This  is  illustrated by considering 

further case discussion  5- In  this  case  discussion, are 

i ~ ~ e ~ e ~ ~ e n t  random  variables  representing  the  costs  of  the SSA’s twelve 

co~ponents. Suppose the  point estimates of these components are the 

of ( i  .,12), given  in  table  5-3. The point  estimate  of  the  cost  of the 

SSA, denoted by is 

From table  5-3, Since the  distribution function of 

CostSSA is  approximately n o ~ a l ,  in  this  case,  we  have 



CmtSSA 14. 

SSA 

67 

CoStssA 

5-14. 

i l,. 

XPE 5-46) 

not 

can 



($K). 

l, U), ($K). 

x ~ E ~ ~ ~ ~  X3) 

x ~ E ~ ~ ~ ~  Xi 

x p ~ ~ ~ ~ ~  

E( 

Hours 

Hours 

E ~ s ~  

by 



variable  then a function of  the random variable question that 

might  be  asked is ~~s~ if 

30KDSI I 80 SI To answer  this question 

we  need  the dist~bution function  of given  the  distribution  function for 

In  the  preceding  section we discussed  a  possible  distribution  function for 

the  random  variable where 

(5-49) 

and  the .,R) were random variables  representing  the  costs  of 

work ~ r e a ~ d o w n  structure  cost  elements  that  constitute  a  system.  In equation 

a function of random variables. From the  central  limit 

theorem, we  saw the  distribution  function  of can, under certain 

conditions,  be  approximately  normal.  What  if  the  central  limit theorem does 

ow is the  distribution  function  determined for a  random  variable 

that is a  function of other  random  variables? The following  presents methods 

to address  this  question. 

This section  presents how to determine the  distribution function of  a random 

variable  that  is  a  function  of  another  random  variable. This is  presented  in the 

context of  continuous  random  variables.*  Consider  the  following  example. 

Suppose the  direct engineering hours to design  a new 

c o ~ u n i c a t i o n  satellite  is  given by 

4 2 4 7  

Refer  to case  discussion (chapter for  a  view of this  discussion  from the perspective  of 
discrete  random  variables. 



where is the satellite’s weight,  in pounds. Suppose the uncertainty in the 

satellite’s weight is captured by a uniform distribution whose range of 

possible  values is given by 1000 W 2000. Suppose the satellite design team 

assessed 1500 pounds to be the point estimate for weight; that is, 

wpE 

a) Determine the cumulative distribution function of 

b) compute hpE), where hpE 4 

c) Determine the probability density function of 

SoZution a)  ~e are given ~n~(1000,2000). From equation 4-4 

The cumulative distribution function of is ~Hours(h)  h ) ,  

where h denotes the possible values of Since 4 the 

interval 1000 W 2000  is  mapped onto the interval  67.2456 h 593.4427. 

Thus, for h in the interval  67.2456 S h 93.4427 

~Hours(h) P( h)  P(4 h) P( h;4)2) 

l o 0 0  

Thus, the CDF of presented in figure 5-15, is 

h 

(h)  P(Hours h) h 

h 

Instead of using to  denote  the  point  estimate of the  random  variable W, we  simplify 
the  notation let represent  this  value. 



b) From equation we have hpE 4 thus, hpE 81.46 when 

wPE 1500. Therefore, hpE) P(Hours 8 1.46). From equation 

5-51 this probability is 

- l=0.50 
81.46-4 

HOUrS hpE) HOUrS 8 1.46) 

c) compute the probability density function of Hours, we can differentiate 

~ H o ~ r s ( h )  with  respect to h. From chapter 3, recall  that 

fHours (h) (FHours (h)) 

It follows that fHOurs(h) &(h 4) 67.2456 h I 93.442'7 e 

(h) 

h h(w) 

Figure 5-15. The Cumulative Distribution Function of Hours 

In example 5-10, the procedures to develop F'o~r~(h) and f ~ o u ~ s ( h )  are 

generalized by the following theorem. 

Suppose is a continuous random variable with probability 

density function 0 for I x I Consider the random variable 

Y g ( X )  where y is a strictly increasing or decreasing differentiable 



function of Let the inverse of y be  given by v(y), then Y g ( X )  

has probability density function 

If y is strictly increasing 

P(Y F X ( 4  (5-53) 

P(Y S S (5-54) 

If y is strictly decreasing 

Applying  theorem 5-11 to example 5-10 yields the following: 

fHoUrs(h) fw(v(h))* g(1000) h g(2000) 

where h =g(w)=4+2& and w =v(h)= (h  4r Since 

we have fw(v(h))= 'r) and Substituting 

into equation 5-55 yields 

1 h-4 
f'ours (h) 6'7.2456 h 593.4427  (5-56) 

1000 2 

which is the same as the PDF in part c) of example 5-10. 

Theorem 5-1 l also provides insight into the fractiles of a d is t r ib~t io~ 

function. In  example 5-10, h g(w) 4 is a strictly i ~ c r e f f s ~ ~ g  

differentiable function of W .  From theorem 11, this implies 



FHours (h)  fjiy 

Thus,  the  value of h associated with the a-fractile of will also be the a- 
fractile of For example, in figure 5-15 observe that 

F;w(1500) 0.50 FHou,(81.46) 

Here, the value of h associated with  the 0.50-fractile of is the 0.50-fractile 

of Specifically, 

1500  and 0.50 

b.50 81.46 4 and S b . 5 0 )  0.50 

Similarly, it  can be shown (left an exercise for the reader) that 

F~(1750) 0.75 ~Hours(87.6~) 

The practical value of this aspect of theorem 5-1 1  is  high, because cost-related 

equations (e.g., equation 5-50) are often simple increasing or  decreasing 

differentiable  functions of one variable. When Y and theorem 5- 1  1 

applies, the cu~ulative distribution function of Y is not needed to  determine 

its fractiles. The a-fractiles of Y are, in fact, completely determined from the 

a-fractiles of X. In practice, not  having to  determine the cumulative 

distribution function of Y, either analytically or  through Monte Carlo 

simulation, can  save a great deal of mathematical effort. When  possible, cost 

analysts should  readily take advantage of this aspect of theorem 5-1 1. 

From the information in example 5-10 compute 

Solution a) Two approaches are shown. 

From equation 3-21,  we  can  write 

h fHours (h)dh h  &(h 4)dh 8 1.09 hours 



Since Hours W )  4 2.J" it follows from proposition  3- 

E( E( W)) 2 6 ) .  dw 1.09  hours 
l o 0 0  

b) To determine from theorem 3-10  we  have 

[E( 
Since 

4 2 6 ) ] z  dw 6632.75 (hours)2 

we have 

~ ~ r ( H o u r s )  E(~ours2)-[E(Hours)~2 6632.75 -(81.09)2 57.1619 (hours)" 

therefore 
7.56 hours 

The reader should also verify that E ( ~ ~ u r s 2 )  can  be  computed by 

h2 ~ H ~ ~ ~ ~ ( h ) d h  h2 &(h 4)dh 

This section presents a  further discussion on functions of a single random 

variable as they  apply to software cost-schedule models. These models are 

often used  in  cost analysis to determine the effort (staff-months)9 cost 

(dollars), and schedule (months) of a software development project. The 

general forms ..of these  models are given below. 

E~~~ 



In equation is a random variable representing the software 

project’s development effort (staff-months), and are positive constants, 

and is a random variable representing the number of of 

(KDSI) to be developed.* In equation is  a 

random variable representing the software project’s development cost 

(dollars) and is a constant** representing a labor rate (dollars per staff- 

month).  Notice can also be expressed as  a function of I, that  is, 

In equation 5-59, is a random variable representing the software 

project’s development schedule (months) and kl and k2 are positive 

constants. Notice can also be expressed as a function of I, that 

(5-6 

Equations 5-57 through 5-61 represent one approach for determining a 

software development project’s effort, cost, and schedule; there are others. 

For instance, might  be  determined as the ratio of  two random variables 

and Pr as shown by equation 5-62. Here, is the software project’s 

development productivity rate (e.g., the number  of  DSI  per staff-month). 

(5-62) 

Equation 5-62 is an example of a function of two random variables. Working 

with  such functions is discussed in section 

P, 
P, 



5-2 If the development effort for  a software project is 

defined by and determine F E B ~ ~  

and 

~ e t e r ~ i n a t i o n  

We  want the ~istribution function of given the distribution function for 

is in  the interval b.  From equation 4-4 (chapter 4) we  know 

fz 

where and represent the  minimum  and  maximum possible values of By 

definition 

P(Ef$w 

L 

therefore, 

< b  

~etermination fEgSw 

Given we can  write which is a strictly 

increasing differentiable function of Let the inverse of be given by 

Therefore 



which is also the derivative of with respect to S. It is left to  the 

reader to verify equation 5-64 is a density function. 

Alternatively, equation 5-65 could have  been derived as follows: 

of 

theorem we h o w  

b 
dx A 



Therefore 

where 

This concludes case discussion 5-2.  The following illustrates how these results 

can be applied to a software development project. 

E ~ a ~ ~ Z e  Suppose the effort (staff-months) to develop software for a 

new  system  is determined by 2.81lS2. Suppose the uncertainty in  1, 

the number of t ~ o u s a ~ ~ s  of delivered source instructions 

represented by the distribution ~ ~ ~ ( 3 0 , 8 0 ) .  Determine 

 solutio^ 

a) Given 2.81”’ from equation 5-57 that c1 2.8, 1.2. 

Since ~ ~ ~ ( 3 0 , 8 0 ) ,  from equation 5-63 

0.383 

ows this region of probability for as well as the p 

F comes from equation 5-64 (in case discussion 5-12). 



S 

P(E'sw 

Figure 5-16. The Density Function of Ef~w in Example 5-12 

b) From equation 5-65 

E(E~sw) l [ S O ~ . ~ + ~  346.12 staff-months 
1.21-1 50 

From equation 5-63 

P(E~sw E(Efsw)) P(Efsw 346.12) (346.12) 0.508 

From equation 5-66 

11608.65 (staff-months)2 

Therefore 107.7 staff-months. 

d) Given 15,000 dollars per staff-month, we  have 

P(Efsw 300) 0.383 



Once again, suppose the effort  (staff-months)  to  develop 

software for  a new system is determined by where 

If the software development schedule (months)  is given by 

determine the schedule that has a 95 percent chance of 

not being exceeded. 

Solution 

Three solution approaches are presented. 

This approach operates from the cumulative distribution function of From 

the information given in  this example, we have 

Since g(1) and we can write 

where and are the  values possible for and respectively. Since is a 

strictly increasing differentiable function of in  this example, from  theorem 

5-1 1 

( 0  (5-68) 

The value of t associated  with the 0.95-fractile of will equal the 0.95-fractile 

of From equation (chapter we  know 

305xS80 

The 0.95-fractile of is such that P(Z 0.95, that is, 

is the solution to 

-69) 

Solving equation 5-69 for yields '77.5 



~0.95 and P(Z ~0.95) 0.95 

t0.95 18.5 3.48~0.95O.~'~ and to.95) 0.95 

This  is e~~ iva len t  to 

F'(77.5) (18.5) 0.95 

Therefore, 18.5 months  is  the  software development schedule  that  has 95 

percent chance of  not  being  exceeded. 

This approach operates from the  cumulative  distribution  function  of 

Since g ( E ~ s W )  2.5(E~s~)0.32, we  can  write t 

are  the  values  possible for and ~ ~ s ~ ,  respective1 

strictly  increasing  differentiable  function  of from the ore^ 5-1 1 

( 0  

Thus,  the  value  of t associated  with  the 0.95-fractile of ~~s~ will equal the 

~.95-fractile of From case iscussion 5-2, the  general f o ~ u l a  for 

is g~ven by equation  5-43.  It is  le^ an  exercise for the reader to 
W 

is  example (5 18) 

involves  explicitly  ining  the  functional 

ng  the  expression 0.95 for 

exercise for the  rea 

llows,  after  rounding,  that (18. 

from 12.8467 18.7226. 
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Suppose the  effort and schedule of a software project are 

given  by and 

Develop the correlation formula between and if 

b) Compute this correlation if 2.8, 1.2, 2.5, 0.32 and 

~ ~ ~ ( 3 0 , 8 0 ) .  

C) Discuss what the correlation implies about and 

From equation 5-30, the correlation between and is 

(5-86) 

The first term  in the numerator  can be written as 

we have 

From equation 5-65, we have 

From equation 5-66, we  have 

(5-87) 

(5-88) 

It is left as an exercise for the reader to show that 



Thus, if then  the general formula for the correlation between 

E ~ s W  and is 

b) Substituting and 

into the above expressions yields 

c) Although the true relationship between E ~ s ~  and is nonlinear, a 

correlation coefficient this close to unity indicates the relationship is not 

statistically significantly different from linear in the region 

I This is illustrated in figure 



t 

Figure 5-17. A Plot of Versus rorn Exarn~le 5-1 

ar system  requires 

table Let  the unce~ainties in the arnount of code to 

nted by the ran do^ variables 11, 12.13, 114, where  each 

delivered  source  instructiQns 
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istri~ution  f~nction each is t ~ a n ~ u l a r ,  that  is, 

T~g(5.4,6.~,7.~), 



pter 

Var(ZTotal) Var(Z1) Var(Z2) Var(Z3) Var(Zl4) 

From theorem 4-3 

Var(Z1) h((4.0 3.6)(4.0 4.8) (4.8 3.6)2} 0.0622 

Following a similar  set of calculations for 12.13,. 114, it  can  be  shown  that 

Var(  ZTotal) 12.77 

b) Since  11,12,13,. ,114 are  given to be independent random variables, the 

total  size  of  the  radar  software ITotal is  the  sum of 14 independent random 

variables. the  central  limit theorem (theorem 5-10), it  is reasonable to 

assume the dist~bution function of ]Total will be approximately normal. 

From part a) this  means ITotal ~ ( ~ ( z T o t a ~ ) ,  Var(ZTotal)) ~(177.73,12.7~). 

c) In  this  example we are given ~~~w 2.8(lTota1)1*2.  If and are the 

values  possible  for [Total and ~ ~ ~ w ,  respectively,  then 2 . 8 ~ ' . ~  is a strictly 

increasing differentiable function of From theorem 5-1 l ,  this implies 

(5-93) 

From  part  b)  we  know  that FITOtfll 0.50 when 177.73 

177.73, which  is  the 0.50-fractile of ITotal. From equation 5-93 

F'TotflI (177.73) 0.50 

Since 2.8xlS2, when x 177.73  we  have 1402.4 thus 

(177.73) 0.50 (1402.4) 

In s u ~ a ~ ,  the 0.50-fractile of E ~ ~ w  is  1402.4 staff-months. Note this is 

the  same as saying  staff-months. It is left as  an exercise 

for the reader to d e t e ~ i n e  the 0.25 and 0.75 fractiles of 
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The reader is directed to for  a proof  of  this theorem. Theorem 12 

provides a number of interesting results. For instance, suppose U19 and 

U3 are random variables with U1 l), l), and 

U3 1). U1 U2 then the density function for U can be shown 

to triangular Furthermore, if U U1 then the density 

function for U "bell-shaped" but  not  yet normally distributed (i.e., 

~aussian). ~ igure  5- 18 illustrates these results. 

U 

Figure 5-18. Sums of Independent (0,l) 

Continuing the above, suppose the random variable U is defined by 

where Un are independent random variables and Ui l) 

y the central limit theorem as increases the distribution 

function of U will rapidly approach a normal distribution. This remarkable 

result is f u ~ h e r  discussed and illustrated in appendix A (section 



The following presents an application of theorem 5-12. A probability density 

function for software development effort, defined by equation 5-94, 

derived. 

~ x u ~ ~ l e  5-17 In example 5-3, the effort to develop a new software 

application was  given by 

where X is the amount of eode to develop (in DSI) and is the 

development productivity (in DSI  per staff-month). Suppose and Y are 

continuous random variables with joint P 

otherwise 

a) Use theorem 5-12 to find the PDF of ~ ~ s ~ .  
b)  From  part a), verify S 300) 0.0333 and 610) 0.75. 

c) From  part a), determine ~ ( ~ ~ s ~ ) .  

a) Since is a ratio of two random variables, from theorem 5-12 

has probability density function &U), where 
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Figure 5-21. Boundary Curves for and ~ssociated  roba abilities 

c) Lastly, from equation 5-95 the expected effort can be computed; 

specifically, 

Theorem 5-12 provides a way to determine the probability density function 

of sums, diff~rences, products, and quotients of two random variables. The 

integrals in theorem 5-12 are classically known  as convoZ~tion integraZs. In 

many applied problems these integrals are hard to determine. In cost 

unce~ainty analysis, conditions often prevail that enable analysts to 

approximate the form of a probability density function. If  an approximation 

can be found (or theoretically claimed), then  it is unnecessary to compute a 

convolution integral. For instance, we know (from the central limit theorem) 

the sum of a sufficiently large number of independent random variables 

approach the normal distribution. Similarly, from  the central limit theorem, 

we know the product of a sufficiently large number of independent random 



variables  will  approach  the  lognormal  distribution. 

The last  topic  discussed  in  this  chapter  is  the  ellin  transform. The 

transform is a  useful  technique for computing the  moments 

quotients  of  many  random  variables. The application  of  the 

to cost functions  comprised of two or more  random  variables  is  emphasized. 

This  section  presents  a  little  known  technique for determining  moments of 

products  and  quotients  of  random  variables.  Known  as  the  Mellin transform 

[9, it  works  on  random  variables  that are continuous,  independent, and 

nonnegative*. The Mellin  transform  is  well  suited to cost  functions  since 

is  essentially  a  nonnegative random variable. The following  defines the 

ellin  transform.  Examples  are  provided to illustrate  its  use from a cost 

perspective. 

is  a  nonnegative random variable, 0 the 

transform of its probability  density function fx(x) is 

(5  

for all s for which  the  integral  exists. From equation 5-96 it  can  be  seen  that 

(5  

An extension of the Mellin transform  technique  to  random  variables  that  are  not  everywhere 
positive discussed in  reference 9. 



00 

Mx(3) 

From the above, it follows from equation 3-31 that 

M ~ ( s )  

It also i ~ e d i a t e l y  follows that 

(5-100) 

M' [MX (2>12 (5-101) 

The  Mellin transform is very  useful  when dealing with random variables 

raised to  a power. For example, if for any real we have Y Xu then 

M~(s )  E(Ys-') 

Mx(aS 1) (5-102) 

an illustration, consider the Mellin transform of 2.8ZlV2. This 

yields 

E((2.8Z'*2)'-') E((2.8s-'1'.2s-"*2)) 

2.8s"M1(1.2s -1.2 1) (5-103) 

therefore 
2.8s-1M1(1.2~ 1.2 1) (5-104) 

Equation 5-104 provides a way to generate moments of the random variable 

For instance, the expected effort can be written in terns of 

equation 5-104 as follows: 

For example, if ~ ~ ~ ( 3 0 , 8 0 )  then from equation 5-96 



1 802.2 302.2 
(2.8)"/ 2.2 l= 346.12 staff-months (5-105) 

50 
L 

This value agrees with the value  of computed by equation 5-65 in 

example 5-12. ~urthermore, notice equation 5-105 is a specific application 

of the general f o ~ u l a  for ~ ( E ~ ~ w )  given by equation 5-65. The following 

presents an important convolution property of the Mellin transform. 

e ~ r e ~  5-13 Let and W be independent random variables with 

probability density functions fy(y), and If PI P3 are 

constants and 

From theorem  5-13, if then 

Mx ($1 

Similarly, from theorem 5-13.,  if then 

(5-106) 

Table 5-8 provides Mellin transforms for three distribution functions  defined 

in chapter In table 5-8,  it is assumed that S 0. Exercise 19b, at  the end of 

this chapter, examines how equation 5-108 (in table 5-8) is modified for  the 

case when S 0. 



ellin Transforms for Selected istribution Functions 0) 

Mellin Transform of 

(hs   -as )  (5-108) 
s(b a )  

b(bs ms)   a (ms   -aS)  (5-109) 
m - a  

[m$(sm2 1)b) bs+ ' ]  

s(s 1) 
L 1 4  (5-1  10) 

E ~ ~ ~ ~ Z e  5-18* Let the unit cost UC of an un~anned spacecraft be  given by 

uc 
where UC is a function of (the  spacecraft's weight  in pounds) and 

(the  spacecraft's  beginning-of-life power  in  watts). Suppose point 

estimates for weight  and  power are 6500 pounds  and 2000 watts;  that  is, 

6500 and 2000 

where possible values for and are given by and respectively. 

If the unce~ainties around these point estimates are described by the 

probability density functions in figure 5-22, use the ellin transform to 

compute the expected unit cost 

M., M. A 
Cost Risk Anulysis Methods, 



I 

5-22. 

Solution X SC,,, Y UC. 

E(Z), 5.48~0.94Y0*30. 5-13, 

M z ( s )  5.48~-'M~(0.94~ 0.94 1)My(0.30s 0.30 1) 

5-100 

E(UC) 5.48~~(1.94)My(1.30)  

5-8 5-109) 

2  7000(70001,94 500q65001.94 3652.486 
(1.94) 

1.94(2.94)(2000) 7000 6500 6500 

1 2  2500(25001.30 -20001~30) 18~(20001.30 18001.30) My (l .30) 9.918 
1.30(2.30)(700)  2500 2000 2000 1800 

E(2) 198.5 

UC, 

205.7 

5-22 

SC,, 
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~ i s c ~ s s i o n  In example 5-2 the  effort  for system test  was  given by 

the E~sysTest  X Y ,  where X is staff-level  and Y is the number of months. 

Suppose X and Y are independent random variables with distribution 

functions shown  in figure 5-24.* 

a) Use a convolution integral in theorem 5-12  to develop a general formula 

for the probability density function of E,nCsysTest. Plot the density function. 

b) Using the probability density function of EflsysTest compute the  mean of 

E~SysTes* 9 ~ ( E ~ S y s T e s t  E ( E ~ S ~ s T e s t  and ~(E,nCSysTest 173) 

Use the ~ e Z Z i n   ? r a n s f ~ r ~  to compute the mean  and  variance of A EffsysTest 

Figure 5-24. Marginal ~istribution for X (S ta f~  and Y (Months) 

  is cuss ion 

Since X and Y are independent, their joint distribution function is 

l 1  1 
f(x,y)="--=- 

10  12  120 
5 5 x 1 1 5 ,   1 2 1 ~ 5 2 4  (5-1  12) 

Let E~sysTes t  U X Y .  Let represent the probability density function 

of E ~ s y s T e s t .  Since E~sysTes t  is a product of two random variables, from 

theorem 5 l2  

Y 

Y of 



Given 

EflSysTest x y  

X Unif(5,lS) 
Y Unif(12,24) 

- U  

EflSysTest 

E~sysTest 

U 

12 
24 

" L d y  y 120 
12 

U 

.l5 

U 

U 

~ ~ s ~ ~ T e s t .  



E ~ ~ y ~ ~ ~ ~ ~  

b) 



Shown  in figure 5-27 are curves of constant effort  for various pairs of x 

(staff) and y (months). A probability associated with each effort is also 

shown. 

Y Mo~ths  

x 
I 

I 

I 

X Staff 

Figure 5-27. Boundary Curves for EfsysTest 

Seen in the above discussion, developing a general formula for the probability 

density function of EfSys~es~ involved some tricky mathematics. A slight 

alteration in the problem statement can further complicate the mathematics. 

If, for instance, the distribution function of X was triahgular instead of 

uniform, it  would  be quite difficult to develop an analytical form of 

c)  The following illustrates how the Mellin transform applies to this case 

discussion. The first two  moments,  which lead to the mean  and variance of 

the test effort, are developed. It is given that 



X 

5-108 

C F ~ ~ ~ ~ ~ ~ ~ ~ ~  ~ V ~ ~ E ~ s y s ~ e s ~ )  

E ~ s y s T e ~ ~ .  E ~ s y ~ ~ e s ~  e 

for 



(5-1 18) 

Substituting into yields 

a)  ~e are interested in using  these equations to develop general formulas for 

the mean  and  variance of when and Pr are uniformly 

ran do^ variab~es. It has just been s ~ o ~ n  

Since we  know h); therefore 

To produce a general formula for it  remains to d e t e ~ i ~ e  



(Pr)-'. Z 

l l 

Y Z 

Z = g ( P , ) * z = g ( y ) = - * y = v ( z ) = -  

g ( y )  y ,  

1 

fz fp, 

k2 b2 

f Z W  

l 
Z 

Pr 



ari 

(5-120) 

It remains, then, to determine E ( E ~ ~ w ) ;  this will  be done by the Mellin 

transform technique. Let 

From theorem 13 

M Q ( S )  l)Mp, (3 2s) (5-121) 

MQ(2) MI (3)Mpr  (-1) (5-122) 

Since I and Pr are uniformly distributed random variables, from table 5-8 

Follo~ing some algebraic manipulation  we  have 

E@) 
1 b2a2 1 i b 1 2 + ~ a l + a ~ )  

Therefore 

Equations 120 and 123 are general formulas for the mean  and variance 

of ~ ~ s ~ ,  if I and Pr are independent uniformly distributed random variables. 

Suppose we apply these f o ~ u l a s  to example 5-17; this implies a1 50, 



b;!=2 Substituting these values into  equations 

~ ( ~ f s W )  519.86 staff-months 

2141 1.8 (staff-months)2 

~ V a r ( ~ f ~ ~ )  146.328 staff-months 

this part, formulas are developed for the mean  and variance of Efsw if 

Pr are each beta ~ i ~ t r i b ~ t e ~ .  From chapter 4 (equation 4-8) a random 

iable X is beta distributed with  shape aramet~rs and 0 and 0) 

roba~ility density function is 



Given Pr Be?a(a2,P2,~2,~) ,  from equation 5-125 

(5-127) 

~ubstituting equations 5-126 and  5-127 into equation 5- 124, we have 

(5-128) 

an illustration, consider the case where Beta(5,10,  50(10)3,  100(10)3) and 

The expected effort E( is 

50(10)3 +(100(10)3 -50(10) 

where 

1 
) 4 ( ~ ~  dy 0.0067358 

(1 

herefore 

(66,666.67)(0.006735$) 449.053 staff-months 

e t e ~ i n e d  by numerical integration. 

completes this discussion. 

v a r ( E ~ s ~ ) =  
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&%~SysTest 

A, B, 

A {&%flSysTest 

~ ~ S y s * e s ~  

~ ~ S y s T e ~ ~  {X S 

From 



o m ~ u t e  

a) using equation 5-10 

b) f ~ ( y )  using e~uation 5-11 

10jY 24) 

d) ~ ( Y  10) 

e) Are and Y de~endent or  inde~endent random  variables?  Justify 

your answer. 

and Y are random  variables  with  means and 

Y )  Y ,  

and show  that 

and Y are i ~ d e ~ e n d e n t  r 



enote the total cost of system’s prime missio 

Let CostpMp costp&fE cost,&, where CostpME X; 

cost,&, &X, Let and denote the  total costs 

system’s hardware an software. If an 

va~ables with and 

are the cost eleme 



10. 

11. 

84 
256 

Show  that Var(Costsys) Var(X1) Var( W) from the expression 

Var(Costsys) Var(X1) Var(X2)+ Var(X~) 

+2[cov(x,,X~)+cov(x,,x~)+cov(x~,x~)l 

c) Compute Var( 

In case discussion 5-1, the test  revealed the normal distribution as a 

p~ausible model of the underlying distri~ution function  for 

Use the K-§ test  on the data in table 5-4 to show the lognormal 

distribution is also  a plausible model. 

In example 5-?, denoted the number of engineering staff required to 

test a new rocket propulsion system. The number of months Y required 

to design, conduct, and analyze the  test  was  given  by Y 2X If X is 

u n i f o ~ l y  distributed in the interval 5 x 15, determine 

b) . fY(Y) 

le 5-10, verify that ~~(1750) ~~~*~s(8?.67). 

irect engineering  ours to design a new CO 

is the satellite’s wei~ht, 

ppose the unce~ainty in  the satellite’s weight is 

ine the cumulative distribution functi~n of 

re 4 2~~~~ 

bability density f ~ n ~ t i o n  of 



14. Suppose the development effort EJf”w for a software project is  define 

15. Suppose the development schedule for a software project is defined by 

where Answer the following: 

16. In example 13, the effort (staff-months) to develop software for a new 

system was given by The development s~hedule 

(months) was given by If I ~ ~ ~ ( 3 0 , 8 0 ) ,  use 

theorem 5-1 1 to show the following: 

b) ( t )  3.1 12.8 I 18.7 

17. The unce~ainties in the amount of code  to develop for the radar system 

in example 5-16,  was represented by the independent random variables 

Let 12 where each Z is in 

thousands of delivered source inst~ctions SI). From the 

information in table 5-7, use the central limit theorem to determine the 

0.25-fractile and the 0.75-fractile of 

18. Refer to example 5-2 and use theorem 5-12  to  find the general formula 

for the probability density function of 



19. a) Let and Y be independent random variables  with 2 Y)2. 

Show  that E(2) 

b)  Suppose U ~ ~ ( u ,  b). Use  theorem  5-1 and  the  definition  of the 

ellin transform  (equation  5-96) to show  that 

In  example  5-19,  a new software  application was being  developed that 

consisted  of  a  mixture  of  new code and  reused code I_Reused. 

Suppose and IReused are independent random variables  with 

probability  density  functions  given  in example 5-19 (shown  below 

convenience).  If  the effort E~~~ associated  with  developing the 

application is a  function  of  the  equivalent  size  where 

IReused 

and 

ellin t r a n s f o ~  technique to approximate E( E ~ ~ ~ ) .  
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reasonable  probability  is 
the  only  certainty. 

 count^ Town Sayings [l91 l] 

Our  wisdom  and  deliberation  for  the 
most  part  follow  the  lead  of  chance. 

Essays ISSO] 
ichel de 

This chapter illus~ates how  key concepts developed thus far combine to 

produce the probability distribution of a system’s total cost. Chapter 7 will 

extend this discussion to the joint and conditional distributions of a system’s 

total cost  and schedule. Chapter 6 begins with  an introduction to the work 

breakdown structure, a primary  method for determining a system’s total cost. 

S) is a framework for  identifying all 

elements of cost that relate to the tasks and activities of developing, producing, 

deploying, sustaining, and disposing a system. Work  breakdown structures 

are unique to the system under consideration. They are developed according 

to the specific requirements and functions the system  has to perform. Work 

breakdown structures are defined for classes of systems. These classes include 

electronic systems, aircraft systems, surface vehicles, ship systems, and 

spacecraft systems 

ork  breakdown structures are tiered by a hierarchy of cost elements. A 

typical electronic system W S  is illustrated in figure S h o ~ n  are four 

hierarchies, or indenture levels.  The first level represents the entire system 

(e.g.,  the air traffic control radar system). The second  level reflects the major 

cost elements of the system. In figure 6- these elements include prime 



mission  product (PMP), system enginee~ng, program management, and 

system  test  and  evaluation. 

Figure An ~llustrativ~ Electronic  System 

The following  defines each level 2 cost element. 

Prime ~ i s s i o n  Product (PIMP) This element refers to  the hardware  and  software 
used to accomplish the primary mission of the  system.  It includes the engineering 
effort and management  activities associated  with the  system’s individual hardware 
components and software functions,  as well as the effort to  integrate,  assemble,  test, 
and checkout the system’s hardware and software. 

Systems  Engineering This  element  encompasses the overall engineering effort to 
define  and  deploy the  system. It includes integrating  the technical efforts of  design 
engineering, specialty engineering (e.g.,  reliability  engineering, security 
engineering), production engineering, and  integrated test  planning  to produce 
operational system. 

Program ~anagement  This element includes all effort associated  with  the 
business and administrative management of the system. This includes cost,  schedule, 
and  performance  measurement, as well as contract adminis~ation, data management, 
and customerfuser liaison activities. 

System  Test Eva~uation This  element includes all  test engineering, test 
planning, and  related technical efforts (test  mockups,  prototypes)  to  insure the 
deployed system has  been tested against its requirements. 



In figure 6-1, the  cost element is divided into its  level cost elements. 

t this level, the radar’s hardware,  software,  and integration cost elements are 

defined, A. further division of PMP into its level 4 cost elements is  also shown 

in figure 6-1. Here, the individual cost elements of the system’s hardware and 

software are defined. In practice, the number of levels specified in a  system’s 

S reflects the extent the system itself is defined. In  most  instances’ cost 

elements are seldom specified below level 6 in a system’s work ~ r e a ~ d o w n  

structure. 

Certain cost elements in a qualify as con~guration items. A 
con~guration item is an aggregation of hardware  or software that satisfies a 

particular end-use function of the system. A custom made microchip or 

developed software applications are typically designated as config~ration 

items. This designation means the item is subject to c o n ~ g ~ r ~ t i o n  

managemen?. Configuration management is the process of documenting, 

monitoring, and controlling change to the configuration item’s technical 

baseline. Cost elements placed under configuration management typically 

begin to appear at  level 4 of a WBS. 

S is the definitive cost  element structure of a system.  It is the basis 

upon  which  the  system’s cost is determine modeled). From a 

perspective a system’s total cost  (which we  will denote by Costsys) is a 

s u ~ a t i o n  of cost  element  costs,  summed across the  levels of the 

figure  6-1, 

C o s t ~ y s = X 1 + X ~ + X 3 + X ~ + * . . + ~ ~  (6- 

where the  first term in equation 6-1, XI, is 

X1 =X11 +X12 +X13+...+Xlk (6-2) 

and k is the number of level cost elements associated with XI. ~ i m i l ~ l y ,  

where j is the number of level 4 cost elements associated with X1 The other 
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levels.  Levels  can reflect subsystems, such  as the spacecraft bus (~latform) in 

figure For context, the spacecraft bus elements are defined below. 

Spacecra~ Bus ~ntegration?  Assem&ly? Test This  element refers to all efforts 
associated with the  cost of integra~ing,  as~embling, and testing  the individual 
subsystems that constitute  the  spacecraft bus. 

Str~ctures and ~ e c ~ u n i c a l  Assem&ly  Subsystem This  element  (subsystem) refers 
to  the central frame of the  spacecraft that provides support arid mounting surfaces for 
all equipment. It includes deployment mechanisms, the  solar array boom, 
experimental booms, antenna  supports, and mechanical design  equipment. 

Attitude ~ e t e ~ i n a t i o n  Control  Subsystem This  element (subsystem) 
measures and maintains  the  orientation of the space vehicle relative  to  an  inertial or 
external reference. Attitude determination components include inertial meas~ement 
devices (e.g., gyroscopes, accelerometers), earth sensors,  sun  sensors, horizon 
sensors, and magnetometers.  Attitude control adjusts and maintains  the space 
vehicle’s attitude and stabilization.  Attitude  control  components include fuel  lines, 
fuel tanks, thrusters,  inertia  wheels, and any associated  electronics. 

T~ermal Control  Subsystem This  element  (subsystem)  maintains  the t e m ~ r a t u r ~  
of the spacecraft  and mission payload through heat transfer between space vehicle 
elements. Thermal control  techniques may be passive  or  active.  Passive techniques 
include special paint,  mirrors, and insulation.  Active techniques include heat pipes, 
louvers, and heaters. 

~1ectric~Z  Power Su&system (EPS) This  element  (subsystem) generates, converts, 
regulates,  stores, and distributes electrical power between major space vehicle 
subsystems.  Two  common  types of EPS’s are solar and electrochemical. Typical 
components of the  EPS  include  solar array for power generation,  batteries for power 
storage,  as well as wiring harnesses,  regulators,  switching  electronics,  converters, and 
components  for power conditioning  and  distribution. 

~ e l e m e t ~  Com~unication Subsystem This  element  (subsystem) measures 
the  space vehicle’s conditions (health and  status), processes health and status data 
mission data, stores and transmits data to ground receivers, as well as receives, 
processes, and initiates comands from ground controllers.  This  subsystem  also 
maintains  the  track of the  space  vehicle;  typical  components include processors, 
~ansmitter~, receivers, antennas, decoders, amplifiers, and  tape recorders. 



~ro~uZsion Subsystem This  element (Subsystem), also referred to as  Apogee  Kick 
Motor (AKM),  provides reaction force  for the final maneuver into orbit and for orbit 
changes.  Typical  components include solid rocket motor and explosive  squibs, 
nozzle control mechanisms, thrust sensing and shut-down  controls, as  well  as any 
required cabling, wiring, and plumbing. 
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ork breakdown structures can be quite complex. They may involve many 

segments and  levels, as well as numerous cost elements. Because the 

the  basis for deriving a system’s cost, may also contain a variety of 

mathematica~ relationships. These relationships are traditionally ?mown as 

cost estimating relationships (CERs).* Their primary purpose  is  to  generate 

point estimate costs of various WBS cost elements. Table 6-1 illustrates some 

spacecraft-related CERs. 

Table Illustrative CERs for Spacecraft Cost Elements 
($K)) 

Attitude  Control-Attitude Dry  Weight XArlDetem 

Determination 
Telemetry,  Tracking, Weight 1955 1992, 
Command 
S t ~ c t u r e ~ h e ~ a l  Weight T 

Electrical  Power  Supply EPS  Weight 
Beginning  of  Life  Power 

(kgvwatts) 
Payload ~ommunication Weight XComm 9 ZF70 

Electronics 

In s u ~ a ~ ,  a work  breakdown structure provides the framework for 

developing a system’s cost. It further serves as the framework for an analysis 

of the system’s cost uncertainty. The complexity of these analyses is dictated 

by the  complexity of the and its associated  CERs. 

The following illustrates how probability methods are applied to the 

problem of quantifying a system’s cost unce~ainty within  the  €ramework of 

BS. Case discussions are presented to link theory to practice. 

Most CERs  are  statistically  derived  from  data  on  cost  and  technical  characteristics.  This 
book  uses  the  term  CER  to  include  those  that  are  logically  based, well those  developed  by 
statistical  methods. 



This section focuses on the application of probability methods for 

quantifying the uncertainty in a system’s cost. The will provide the 

analytical framework for quantifying this uncertainty, which is expressed as  a 

probability distribution. Analytical methods from probability theory are 

stressed. Analytical methods provide insight into problem structure  and 

subtleties not  always apparent from empirically based  methods,  such as Monte 

Carlo simulation.* 

From equation 6-1, we see  that  system cost, denoted by Costsys, is a 

s u ~ a t i o n  of  work  breakdown structure cost element costs. Illustrated in 

figure we define Costsys as 

Costsys X1 X 2  X3 X n  (6-4) 

If X I ,  X 2 ,  X 3 , .  are independent, then from theorem 5-7 and theorem 5-8 

E(Costsys) E(X1) E ( X 2 )  E(X3) E(Xn)  

V a r ( C 0 s t ~ ~ ~ ~ = V a r ( X l ) + V a ~ X 2 ) + V a r ( X 3 ) +  V a r ( X ~ )  (6-6) 

If XI ,  Xz,  X 3 , .  Xn are not independent, then 

n-l 

ox, o x j  (6-7) 
i=l i=l j = i+ l  

Equations 6-5 through 6-7 are the formal expressions for  the mean and 

variance of Costsys. The following case discussions illustrate how these 

expressions are used. 



Probabi~~  ~ls~but ions for 
each  Cost  Element  Cost in a 
System’s Breakdown 
Smcmre 

Cumulative  Probability 
Distribution of the  System’ 

Cost 

b 

x, 

Figure 6-4. Cumulative   rob ability ~istribution of Custsys 

j s c ~ s s i u ~  Suppose the  cost element costs of 

an electronic system are given by the in table 6-2. Let 

cust~ys x1 x2 x10 

ose  the rand~m  va~ables W, X5, X7, X8 X9 (de~ned in table 6-2) are 

a) Compute E( Var( Custsys). 

hat distribution function approximates the dist~bution of 



c) Find the value of Costsys that has a 5 percent chance of being excee 

Table for Case Discussion 6-1 

or 
xi 

($M) 

Mission X1 N(12.5,6.6) 

x2 

@m) 
=*X1 

W Un~(0.6,l.O) 

x4 x4 =&x1 
x5 Trng(5.1,6.6,12.1) 

a) It is given  that 

X6 X6 &XI 

XI Un~(O.9,1.3) 

Trng(1 .O, 1 S ,  2.4) 

X9 Trng(O.9,1.2, l 

X10 x10 

costsys x1 xz, x3 XI* 

Using the relationships given  in table 6-2, equation 6-8 is equivalent to 

Combining the above terms yields 

costsys =+#x1 +x7 +x* +x9 
From theorem 5-7 (and equation 6-5) 

E ( c o s t s y s ) = ~ E ( X ~ ) + E ( W ) + E ( x 5 ) + E ( X 7 ) + E ( x 8 ) + E ( x ~ )  



From theorem (and equation 6-6) 

W) 

(6-1  1) 

since W, and are independent random variables. 

compute the  mean  and variance of we need  the means and variances 

and Table 6-3 presents  these statistics. 

Table  6-3.  Cost Statistics for and 

xi ($M) 

x1 12.500 6.6 

W 0.800 0.16/12 

x5 7.933 18 

1.100 

l h33 

1.233 

0.16112 

1.51118 

0.3V  18 

statistics  in table 6-3 were determined by distribution-speci~c  formulas 

given in chapter 4. For instance, since N(12.5,6.6) we  know from 

theorem 4-6 that 12.5  and =6.6. Since W is a uniform 

istribution, from theorem 4-2 

Since is a triangular distribution, from theorem 4-3 



Substituting the data in table 6-3 into equations 6-10 and 6-1 l we  obtain 

(6-12) 

(6- 13) 

b) To approximate the distribution function of Costsys, observe the 

following. First, the random  variables W, Xs, X?, X*, and are 

independent. Hence, the central limit theorem will affect the shape of the 

distribution of Costsys. Second, the random variables X29 X3, X4, X6 an 

are highly correlated to XI,  which  is  N(12.5,6.6).  It  can be shown  that 

(v 2,4,6,10) and 0.9898 

Thus, it is reasonable to conclude (for this case) the distribution function for 

is approximately normal with  mean  and variance given by 

e~uations 6- 12  and 6-13, respectively. The cumulative distribution function 

for Costsys, assumed to be  approximately  normal, is shown  in figure 6-5. 

Figure 6-5.  Assumed  Norma1 CDF for Costsys 

c) In figure 6-5, note that 50.87) 0.95. This means a value of 

for C Q S ? ~ ~ ~  has  only a 5 percent chance of being exceeded. To 



~ ( C o ~ t s y s  

X 

X 

Costsys 

being exceeded. ($M) 

Costsys. 

not exceeding 

~ ~ s ~ s ~ ~  

Costsys 

Costsys7 

Costsys. 

Costsys 



Costsys 

Costsys 

vis~aZZy suggests 

Costsys approximated 

A 

statistic~ZZy ~Zausi~Ze model 

Costsys, 

X2,X3,X4,  X6, X10 X1 

PMP .X2,X4,X6, X10 

X1 



Xv avX1 

where v=2,4,6,10, a2 =1/2, a4=a6=1/10,  and a10 =1/4.  In table 6-2, 

cost element cost X3 was a linear combination of X1 X2, and specifically, 

x3 = 4 x 1  +$x2 (6-16) 

where X1 and were  given to be independent random variables and 

X2 4 XI. The functional relationships given by equations 6-15 and 6-  16 

imply the following correlations: 

1 for v 2,4,6,10 

from theorem 

from theorems 5-6 and 5-3 

0.9898 from theorem 6-1 (see below) 

from theorem 5-6 

0.1424 from theorem 

If ax where a is a real number and X and are 

i nde~ende~ t  random variables then 

proof  of this theorem can be developed from equation 5-29 (chapter 5). 

The correlations listed  above reveal the degree correlation exists between 

pairs of cost element costs in this 

correlations is hard to notice when is expressed in the 

C o s t ~ y s = ~ x ~ + W + x ~ + x ~ + x ~ + x ~  

In the above, is now written  as the sum of six i ~de~enden t  random 

variables instead of the sum of  ten random variables (equation 6-8). 



Capturing the combined effect of these correlations on the  distribution 

function of Costsys is accounted for by the  coefficient g. This case 

discussion illustrates how correlation can exist in a S, by virtue of the 

functional relationships defined among the cost element costs. Functional 

relationships such as those in  this S (table 6-2) are common in cost 

analysis. Although these relationships are primarily defined for  developin 

the point estimate of Costsys, such relationships come along with implie 

correlations. Cost analysts must be aware of  this implication so as not to 

inadvertently induce correlation (or consider it absent) when  it is already 

present. This concludes case discussion 6-1. 

any cost elements in case discussion 6-1 were a function of a  single 

ran do^ variable. Thus, computing and Var(Costsys) was 

“relatively” straightfo~ard. More complex relationships are given in case 

discussion Case discussion 6-2 illustrates the computation of E(Costsys) 

and Var(Cos?sy~) when cost elements are functions of two  or  more random 

variables.  In addition, it  will  be seen  how a  program’s schedule can be 

inco~orated into cost estimating relationships. Case discussion 6-2 is the last 

in this chapter. It lays the groundwork for studying cost-schedule probability 

tradeoffs and  will  be revisited in chapter 7. 

  is cuss ion Suppose the government is acquiring  a new digital 

i n fo~a t ion  system. The system consists of three large screen displays for 

“situation  rooms,” forty-seven display  workstations,  two support processors, 

and a suite of electronic communications equipment. Suppose the  system 

requires new software to be  developed for  the large screen display, as well  as 

for the display workstation. The  work breakdown structure  for this  system is 

given in figure 6-6. Cost  element  data for this are provided in table 6-4. 

Additional information out these data follows. 



Figure 6-6 presents the system's Table 6-4 presents the  cost element 

data associated  with  this WBS. 

Figure 6-6. Case Discussion 6-2 Work  Breakdown S t~c tu re  

Table 6-4. Cost Element Data Case Discussion 6-2 

($K) 

x1 

Unif(l0,lS) 



Table 6-4. Cost Element Data for Case Discussion 6-2 
(Concluded) 

x3 

(if applicable) 
(if applicable) (if applicable) 

In figure 6-6, the total cost of the digital in fo~at ion system is 

Costsys x1 x 2  x3 x 4  x, 
~ u ~ h e ~ o r e ,  assume in table that X1 X1 12, X113, X114, 

S ~ s ~ ~ ~ ,  ~ r g ~ S c h e d  and SLsrE are independent ran do^ varia~les. 

we  have the following random variable definitions. 

and are labor rates for software ( S ~ )  development, 

e~gineering and pro~ram  mana~ement (SE 

luation (STE), respective~y; the  units are in 

elivered source instructions 

The units are in thousan that is, is expressed in 

iscussed in chapter 5). 

represents staf~-levels (i.e.,  the  num 

activities, respectively. 

~ g ~ ~ c h e ~  denotes the total months to complete the development 

digital i n fo~a t ion  system. 



From the in fo~at ion  given  in  this case discussion, 

t e ~ i n e  E( Costsys) and Var( Costsys). 

cuss  correlations  implied by the  relationships  in table 

at  distribution  function( S )  approxi~ate (x )  
SYS 

art a), a simpli~ed ex ressio~ for Costsys 

call from equation 6-17, the  system’s  total  cost  is  given 

Costsys x2 

x, 
rom figure 6-6 an 



 quat ti on 6-21 will be used later in this case discussion. Returning to equation 

6-18 we  had 

costsys c o s t p ~ p  (6-22) 

and can be written as 

0 . 0 2 c 0 s ~ p ~ p  

This s i ~ ~ l i ~ e s  Costsys (equation 6-22) to 

costsys 1.07CostpMp 

costsys 1.07cOstp~p Q (6-23) 

e will  now  work  with equation 6-23 to determine the 

ariance Costsys. 

~ o s t s y s )  1.07E( C O S t P ~ ~ )  E( 

at Cov( C o s t p ~ p ,  

r(Costsys) VQr(Costp~p) VQ~(  ( 6 - 2 ~ )  





In this method,  transformation  formulas  developed  in  chapter 5, specifically  those s u ~ a r i z e d  
in  table 5-5, are  used.  From  table  6-4,  software cost,  denoted by is 

(2.8Z1.2) (6-30) 

It  was  given  the  random  variables and are inde~ndent. From  theorem 5-5 

E(lrsw)E(2.8Z1'2) 

Since Unif(10,15),  from  theorem  4-2 12.5.  Therefore, 

12.5 2.8Z1.2 )l 
Recall if and then  from  equation  5-76 (table 

(6-3 1) 

2 
+2 +l I 

1 1 
(6-32) 

c2 +2 +l  

Relating  equation  6-32  to  this  case, 2.8, 1.2, m 100, and 150. 

Substituting  these  values  into  equation  6-32  yields  E(2.8Z'.2) Therefore, 

We  next  compute From  theorem  3-10  and  the  above  results 

TO determine it  remains  to  determine in  equation  6-34. Now, 

( l tW (7.84Z2'4)) 

Since  the  random  variables lrsW and are  independent 

E(~tw)~(7.84Z2.4) 

We will take  the  following  approach  to  compute Since 

(6-33) 

(6-34) 

(6-35) 

(6-36) 



(6-37) 

Unif(l0,lS) 4-2 

(15 25 
12.5 Var(l,w) 

12  12 

6-37 1584. 6-36 

E(X:21) 1583  E(7.84Z2-4) (6-38) 

E(7.84Z2.4) 6-32 7.84, c2 2.4, 80, 

100, b 150. 6-32 
E(7.84Z2.4) 640626.866. 

158*(640626.866) 101432587.1  (6-39) 

6-34 

(6-40) 

axl21 ~ V a ~ X l ~ ~ )  1964.732 

~ e t h o ~  2 ~ ~ l l i n  Approach 

is 
V U ~ ( X ~ ~ ~ ) .  

(2.8Z1-2)  (6-41) 

5-13, XlZl 

Me,, (~)(2.8)”~ M i  (1.2s 1.2 1) (6-42) 

5-98 
(2) (2)(2.8)2”  M1(1.2(2) 1.2 1) 

E(X12,) 2.8Me~sw (2”  (2.2)  (6-43) 



Since Unif(l0,15), from  table (equation 5-108) 

1 1  M, (2) ----"(152 lo2) 12.5 
BW 2 (15-10) 

Since ~r~g(80,1~,150), from  table 5-8 (equation 5-109) with 2.2, 80, m 100, and 
b 150 we have 

Mz(2.2) 282.225 

Therefore 

(6-44) 

To compute Var(X12,) we have 

Var(X121) E(Xt21)  -[E(X12,)]2 E(X?21)-[9877.875'j2  (6-45) 

From  equation 5-99 

E(X?21) (3) 

=~~Bw(3)(2.8)3-1Mz(l.2(3)-l.2+l) 

(2.8)2 M , B ~  (3)M1(3.4)  (6-46) 

where 
M, (3) --(kj3 1 1  lo3) 158g 

SW 3 (15 10) 

and Mz(3.4)=81712.61045 

Substituting  these  values  into  equation 6-46 yields E(X?21) 101432587.1. Therefore 

(6-47) 



~ubstituting the expected value computations in the above 

dis~ussions into equation 6-48 yiel 

( C o s t p ~ p )  l [725 3600 225 365 ~ $ ~ ~ . $ 7  

( 6 - 4 ~ )  

Var( l .02j2 Var(  cost^^^) 

~ubstituting the variance comput~tions develope 

into equation 6-50 yields 

208.333 53333.333 

+208.333 75 3860172.585 
V u ~ ( C o s t p ~ p )  1 ]=4115182.336 (6-5 l) 

and oCostpMp ~ V a r ( C ~ ~ t p ~ p )  2077.3 

ented the mean  and  variance  of the system’s prime 

mission product cost. To complete the computation of E ( C o s t ~ y s )  and 

V a r ( C o s t ~ y ~ ) ,  defined by equations 6-24 and 6-25, the  values  of E(Q) and 

where Q X 2  X 3 ,  must be determined. 

From table 6-4, observe that X 2  and X 3  are no t  i n ~ e ~ e n ~ e n t  random 

variables. They are both a function of the random variable ~ r g ~ ~ c ~ e ~ .  

From theorem 5-7, E(Q) is the sum of the means of X 2  and X 3  regardless 

whether or not  the  two  random variables are independent. 

(6-52) 

owever,  because and X 3  are not independent, Var(Q) is no t  just the sum 

of their respective variances. Applying  theorem 5-8 to this pa~icular case, 



X3, px2,x,, 

From  the in  figure  6-6,  recall  that  the  cost of systems  engineering  and  program 

management is  denoted by X,. From  table 6-4, is  a  function of  three  random 

variables;  specifically, 

xprgmsched) (6-54) 

Given t5EpM and ~rgmSched are  independent  random  variables 

From  the  distribution  functions  for and PrgmSched in  table  6- 

shown  that 

(6-56) 

(x; E( 2 rgmSche~2). To compute it rem~ns to determine 

E(!!iEpM ~ r g m S c h e ~ ' ) .  Again,  since trSEpM, and P r g m S ~ h e ~  inde 

S ~ ~ E p M   P r g m S c ~ e ~ 2 )  PrgmSche~2) 

to  the  previous calc~lations involving it  is  left  to  the  reader  to  show  that 



From  table 6-4,  the  distribution  function  for SEPM staff-level  is  triangular,  specifically 

Tmg(l2,15,25).  To  determine the  relationship 

(6-60) 

used.  From  theorem  4-3, it  can  be  shown  that 

Var(SLsEpM) 7.7222  and 173 

Therefore, 
E 7.7222 [l731 308.166 0 

2 
(6-61) 

The  last  term  in  equation  6-58 is PrgmSched2).  To  compute  this  expected  value,  note  that 

PrgmSched2) E(PrgmSched)] 2 (6-62) 

PrgmSched N(33.36, l .94). Therefore 

PrgmSc~ed2) .94 [33.3612 1  l 1 (6-63) 

The e x ~ c t e d  value  of  each  term  in  equation  6-58  has  now  been  determined.  Thus, 

PrgmSc~ed2) (5083)(308 

174639133. 

comb in in^ the  above  results  Vur(X2) 

(6-64) 

(6-65) 

and ax2 2317.03 

the  cost of system  test  and  evaluation (STE) denoted  by 

ion  of  three  independent r ~ n d o ~  variables; spec i~c~ ly ,  

ine  the  mean v ~ a n c e  of  the  cost of 

r  this  reason,  it  is  left  to  the  reader to 



in= lr. Unif Since Unif 

~ubstituting the  results equations and into  equation yields 

and OX, 

y definition  (equation the  correlation  between X 2  and X 3  



It  can  be  determined  that 

41847893.59  (6-76) 

In  equations  6-75 and 6-76,  the  term E(PrgmSched2) 14.829  comes  from  equation 6-63. 

Substituting  the  result  from  equation  6-76  into  equation  6-71  yields 

o.0534 
(2317.03)(588.242) 

(6-77) 

the terms  necessary to complete the computation of 

V ~ ~ ( C O S ~ S ~ ~ )  have now been determined. 



Part b) Some I ~ p l i e d  Correlations 
This section discusses the correlations implied by some of the cost 

relationships in this S. The correlation between cost element costs Xi, for 

i 5, is  best explored  from the relationships given  in table 6-4. From 

equation 1, we have 

C o s t p ~ p  1.05 COstp~E 

Since C o s t p ~ p  is a linear function of Cos tp~E (with  positive slope) t 

co~elation between C o s t p ~ p  and Costp~E is unity.  In table 6- 

given that 

XIIS) 0 .05COstp~~  

Thus,  the correlation between X13 (the integration and assembly cost)  an 

Costp~E is unity. There also exists perfect correlation between C o s t p ~ p  an 

other cost element costs in  this S. From table and the 

section of this case discussion, we can  write 

X4 0.05Costp~p and 0,02Costp~p 

Thus, there are implied co~elations between and C o s t p ~ p  an 

C o s t ~ ~ p  because of these functional (mathematicalj relationships. 

co~elation between the cost of Data, denoted by X4, and C o s t p ~ p  is  unity. 

S i~ la r ly ,  the  correlation between  the  cost of Training, denoted by and 

C o s t p ~ p  is unity. These relationships illustrate “logical”  or  “factor-based” 

cost relationships7 which are common  in electronic systems cost analyses. 

Lastly, there is another impo~ant  co~elation in this  case discussion. Notice 

the costs of S and S E ,  denoted by and X37 are functions  of 

~ ~ g ~ ~ c ~ e d  the system’s develo~ment schedule. a result, 

correlation exists between Costsys and ~ r g m S c ~ e ~ .  The following 

de~vation of this  lation ti on. 



etw@@n and 

From  equation  6-23,  recall  that 

1.07C~~tpMp 1.07C~ostpMp (6-8  1) 

To  simplify  notation,  let C and P I PrgrnSched. The  correlation  between 

the  system's  total  cost C and its  development  schedule P will  be  determined.  By 

definition,  this  correlation  is 

82) 

where 
32841.1  (from  equation  6-78) 

33.36  (seen  in  table  6-4) 

3286.44  (from  equation  6-80) 

of 1.39283  (seen  from  table  6-4) 

determine we  need ~ultiplying equation  6-81  by we  can  write 

E[(l.O7Costp,p 

1.07 CostpMp QP) 

It can  be  shown,  in  this case, that Cov(CostpMp,P) 0. Therefore,  from  theorem  5-1 

E(CostpMpP)- E(CostpMp)E(P) E(CostpMpP) E(CostpMp)E(P) 

Thus, 
1.07E(CostpMp)E(P) E(QP) 

1.07(15532.52)(33.36) (6-83) 

complete  the  computation  of it  remains  to  determine Given  the 

specifics  of  this  case  discussion,  the  random  variables Q and P are not independent so 

The  computation  of proceeds follows: 

X,P] 

(6-84) 

Since  the  random  variables l?cTEpM, IrmE, and P were given  to  be 

independent,  equation  6-84 be  written 



and 

istribution  Function ~ p p r o x i ~ ~ t i o n  to F&,Stsys ( x )  

Figure 6-7 presents dist~butions that approximate the cumulative distrib~tion 

function of the system's total cost. The curves defined by the  two solid lines 

reflect two assumed theoretical distributions. They are a normal distribution 

(the left picture in figure 6-7) and a lognormal distribution (the right icture 

in figure 6-7), each with  mean 32.8 ($M) and  standard deviation 

Figure Assumed Theoretical vs the Simulated C 



dist~bution is  shown  in  figure 6-7 by a  series  of “points”. These 

points  reflect random statistical  samples  (values)  of sampled by 

lo simulation  (explained  in  section 6.3). In figure 6-7, the curve 

these  point^'^ is  the  simulate  distribution function for 

bserve  in figure 6-7 how closely  this  simulated  distribution  matches the 

normal  distribution, as well as the  assumed  lognormal 

for The closeness  with  which  these “points” fall  along  the two 

efined by the  solid  lines  in figure 6-7) the 

reasonableness  of  the  assumption  that  the  distribution function for 

roximated by a  normal or by a  lognormal. ~ l t h o u ~ h  this  is  a 

practical  conclusion, it is  an  informal  one.  more formal conclusion could 

m i ~ o v  (K-S) test,  illustrated  in case 

discussion This  would  reveal  whether  the  normal  and  the lognormal 

tions are for the  underlying distribution 

function  of in  this  case. 

This section  provides for approximating  the  distribution  function of 

a system9s total  cost. Some of this guidance reflects  mathematical theory; 

some  of it reflects  observations from numerous  project  applications. 

In  the  examples  and  case  discussions  presented  in  this  book,  the normal 

distribution  often  approximates  the  distribution function of  a  system’s  total 

cost.  There  are  many  reasons for this.  Primary among them is (a 

system’s  total cost) is  a s u ~ a t i o n  of S cost  element  costs.  Within the 

S, it  is  typical to have  a  mixture  of  independent  and  correlated cost 

element  costs. The greater  the  number  of  independent  cost  element  costs, the 

more  it  is  that  the  distribution  function  of is  approximately normal. 

y this?  It  is  essentially  the phenomenon described by the  central  limit 



theorem (theorem 5-10). Seen in this book, the central limit theorem is very 

powerful. It does not take many independent cost element costs  for  the 

distribution of to move towards n o ~ a l i t y .  Such a move is  evidenced 

when a sufficient number of independent cost element costs are summe 

and 2) no cost element’s cost distribution has a much larger stan 

deviation than the standard deviations of the other cost element cost 

hen conditions in the S result in being 

skewed (i.e.,  a non-normal distribution function), then  the lo~normal often 

[6,7]* approximates the distribution function of 

hat drives the distribution of to be n o ~ a l  or to be skewed? To 

address this, cost relationships that frequently occur in a system’s are 

examined.  The electronic system is used to provide a context for  the 

ork  breakdown structures associated with other system classes 

(e.g., spacecraft systems) can also exhibit properties similar to those 

below. 

rom the electronic system S in figure 6-8, is define 

Costsys =X1 +X3 +X4 +...+X, 

where XI, XS,X4,. X, denote the p2 costs the system’s  level 

el~ments (refer to equation 6-1). These elements include (but are not limited 

to) the system’s  prime  mission  product as well as the system’ S s~stems 

engineer in^, program management,  and system test. eferring to  figure 

equation 6-87 can also be written as 

~ractitioners have shown  the  beta  distribution  also  well 
approximates  the  distribution of Cost,,,, 



In the cost analysis of electronic systems, the distribution function Costsys 

is often obsewed to be approximately  normal. Situations specific to cost 

analysis contribute to this observation. The following cases describe the most 

common  of these situations. In each case, the distribution functions for 

C o s t p M p , X ~ , X ~ , X ~ , . . . 9 X n  are assumed be  “well-behaved”’  (e.g., 

unimodal, continuous). 

Figure An Electr~nic System 

(in  e~uation 6-88) the  distribution  function of is  normal  and X,, X4,. are 

linear  functions of such as Xi  where 0 ( i  2,. .,n), then  the 

distribu~ion ~ffnction of  norma^ with  mean 

and 
CostpMp) 

Case A is a direct consequence  of the follow in^ proposition. 

If X is a  normal  random variable and a x ,  where a is a 

constant9 then the dist~bution function for is no a1 with  mean aE(X) and 



I f f in  equation CostpMp are  independent  random  variables each 

are  normally  distributed,  then  the  distribution  function of is  normal with 

mean E( E( and  variance Var( CostpMp) 

X I ,  X2,  X3,.  xk n ~ r ~ a l l y  

Y X1 X2 X3 xk, 

k, Y E ~ X i )  

~ a r (  X i ) .  

Suppose (in  equat~on CostpMp, are indepen~ent random variables. 

Furthermore, suppose CostpMp, are not necessarily each normal~y 

distributed. the  number cost  element  costs in the sequence CostpMp, 

su~iciently large with none dominating  in standard deviation,  then (by the  central limit 

theorem) the distribution  function of is a~proximately normal with 

and variance Var(CostpMp) 

Suppose (in equation 6-88) is  normal CostpMp, are indepen~ent 

random  variables.  Furthermore, suppose are not  necessarily each normally 

distributed. I f  the number cost  etement  costs  in  the sequence is 



suf~ciently large with  no Xi ( i  2, dominating  in standard deviation,  then the 

distribution  function is approximately normal with 

n 

mean  E(CostpMp) xi) and variance Var( costpMp) 
i=2 1=2 

Costsys 

C o s t p ~ p  

sum X i  f lpp~oxi~fl teZy 

Costsys f lpp~oxi~fl teZy 

C o s t p ~ p  .Xi 

Costsys f lp~rox i~f l teZy 

i=2 

i=2 

Suppose (in equation 6-88) CosteMe is normal. Suppose  the sequence X2, X,,  X,,.. X ,  

contains some cost  element  costs correlated to COstpMp (with correlation  COe~iCient 

p c O s ~ ~ M ~ , x i  and some  that are uncorrelated to  CostpMp. Suppose X,, X,, X4,. X, are mutually 

independent  random variables. the number of Xi ( i2 uncorrelated to CostpMp is 

suf~ciently large,  with  none of the Xi (correlated or uncorrelated to COstpMp) dominating in  

standard deviation,  then  the  distribution  function Costsys is approximately normal  with 

n 

i=2 

i=2  i=2 



In  all  but case C, the distribution function for C o s t p ~ p  was given to be 

normal. This is c o ~ o n  in electronic systems. The normality 

riven by the central limit theorem, where Cos 

reflects the sum of  many in e ~ e n ~ e n t  hardware and software costs. 

S in figure 4-8) is 

the  sum of three cost element costs; speci~cally, 

~ o s t p ~ p  

 ati ion can also be written as 

C O S t p ~ p  ~ Q S t p ~ ~  

where C Q s t p ~ ~  is the system’s prime mission equipment cost. It represents 

the total cost of the  system’s  hardware  and software; that  is, 

C O S t P ~ ~  

ality of C Q s t ~ ~ p  will discussed by exam in in^ 
functions that f re~~ent ly  characterize and 

t is the  sum of the in~ iv i  

are in~ependent random variables represen 

costs of the individ~al h~dware  items. Under appropriate con 

istribution function of can be approximately normal by the central limit 

theorem (theorem 5-10); that is, V ~ ~ ( X ~  with 



v u r ( X ~ ~ ) = v u r ( X ~ ~ ~ ) + v u r ( X ~ ~ ~ ) + v u r ( x ~ ~ ~ ) + * . . + v u r ( X ~ ~ ~ )  

If the distribution functions  for l, 2,. j are well behaved,  then the 

approximation (in most cases) is good for small j (e.g.,  not  less  than or  equal 

to hardware items). The more a s y ~ e t r i c  (skewed) the distribution 

fun~tions are for 1,2,. j the larger must be for to become 

approximately normal. 

In practice,  it is common to see the normal distribution ap~roximate 

p~icular ly in systems designed around the use of 

The unce~ainty in the cost of such  items tends to vary independently 

and  cost analysts often describe these unce~ainties by distribution functions 

that are well  behaved. 

The  cost distribution functions of hardware items that require 

may be In practice, this a s y ~ e t ~  typically 

reflects a positive  skew. The presence of a s y ~ e t r y  in the distribution 

functions for affect how  well (or how quickly)  the 

istribution approxi~ates If (in equation 6-92) is suf~ciently 

large and  the asymmet~ is isolated to just  a few hardware items whose cost 

standard deviations contribute only a small amount to the standard deviation 

then the distribution may  still  be a~proximately normal. If 

is the  sum of just  a few  asymmetric distributions (Le., j is small), then the 

distribution of may indeed be non-normal. In  such circumstances, the 

lognormal (or beta distribution) might well approximate the distribution 

function of It is a good exercise for the reader to study this further. 

After  reading section 6.3, use  the  Monte Carlo simulation technique to  study 

the reasonableness of certain distribution function approximations of 

this using various symmetric and a s y ~ e t r i c  distributions for the costs of 

the  hardware  items 1i l, 2,. j 



ost 

Can the distribution function of software cost also be approximated by t 

n o ~ a l  distribution? The answer depends on how software cost is determined. 

Cost analysts sometimes determine software cost according to the equation 

where Zx12i ( i = 1,2,. . ., k ) is the number of thousands of delivered source 

SI) to be developed for the ith software function in the 

system and cl, q ,  and lrsw are constants (discussed in section 5.4.2). 

Equation 6-93 is traditionally applied in cases where the individual software 

functions are independently developed. Such functions would have minimal- 

to-no interdependencies. They would integrate and execute in the system in a 

highly modular fashion. Under this formulation, if lrsw is a constant, k is 

sufficiently large, and IX,,, , IX,,, , .. .? Ix,2k are independent random variables, 

then, by the central limit theorem, the distribution function of X12 will be 

approximately normal. This result is dependent on the way X12 is 

mathematically d e ~ ~ e d .  Other definitions for XI2  may yield distribution 

functions for X12 that are skewed. Two such definitions are given by 

eq~ations 6-94 and 6-95. 

(6-94) 

Software functions that have 
independent development efforts 

Cl( "X12, jC2 + Cl UX,, r2 + * * * + Cl( IX12rn Y2 ' 

(6-95) 

.+~1(Ix,2(m+1) + '~12(rn+2) + * * * + '~12(rn+k)  lc2 J 
Software functions that have 
dependent development efforts 



~ i ~ ~ t  

X12 

X13 

I&A) Xl, 

Cost analysts  often  define a  scalar  multiple  of CostpME, that  is, 

UCostpME 

where 0. For  electronic  systems,  a  typical  value  for U 0.05. normally 

~~stributed, then  from  proposition 6-1 

N 

Under approach,  the  correlation  between and CostpME unity. 



eve1 

X13 is is, 

x13 *Xl3 

n 

s ~ ~ , ~ ,  

Tx,3 XI3 is Are 

of X,, 

s u ~ ~ z e 9  conditions can occur in the that drive the 

functions for to be n o ~ a l  (or approximately n o m  

is de~ned  by 

XI 
where 

If and are  independent normal random va~ables, 

~ is t r ibu t io~   ~u~ct ion  for is normal  with  mean 

and variance 

1) 

Fu~hermore9 if is n o ~ a l l y  distributed and is de 

a~proach 1; that is, then is 

~istributed (by pro~osition 6-1) with  mean 

(1 
and  variance 



Var(X11) Var(X1, 

Even if X13 is not normal, which is certainly possible in approach 2, the 

distribution function of may still be approximately normal. 

However, this depends on the extent the dist~bution of in~uences 

the  overall dist~bution of If is normal with standard 

deviation larger than the standar~ deviation of X13 and 1x13 is 

independent of it  is possible that the normal distribution 

approximates the distribution of Again,  it is a wo~hwhile exercise 

for the  reader to explore cases when this is (and is not) true. 

From  these discussions, it is seen how frequently the distribution function 

for can  become approximately normal. This is to argue that 

is always n o ~ a l l y  dist~buted. Rather, it  is to encourage cost analysts 

to they define in a work breakdown 

structure to see whether analytical approximations to the distribution function 

of can be argued.  Where possible, analytical forms of the distribution 

function (e.g.,  the normal, the lognormal, the beta) of are desirable. 

Such forms reveal much information about the “cost-behavior” in a system’s 

work  breakdown structure. They offer analysts and decision-makers insight 

about this behavior, so potential areas for cost-reductions and tradeoffs might 

be  easily seen. 

Throughout the many examples and case discussions 

analytical techniques have  been  used to develop 

presented in this book, 

(or approximate) the 

probabi~ity distribution of a system’s cost. previously  stressed, analytical 

solutions to these types of problems are recommended. However,  at  times 

there are limitations when  using analytical techniques. system’s  work 

breakdown structure cost model  can contain cost estimating relationships too 



complex for strict analytical study. In  such circumstances, a technique known 

as the  Monte Carlo method is frequently used.  This  section provides an 

introduction to  this method. 

onte Carlo method falls into  a class of techniques known  as 

simulation. Simulation has  varying definitions among practitioners. For 

instance,  Winston [l21 defines s i ~ ~ l a t i o n  as a technique that i~ i ta tes the 

operation of a real-world  system as it evolves  over  time.  Rubinstein 

offers a definition close to the context of this book: 

“Simulation is a  numerical  technique conducting  experiments  on  a  digital  computer, 

which  involves  certain  types mathematical  and  logical  models  that  describe the 

behavior business economic  system some  component  thereof)  over  extended 

periods real  time.” 

ith  easy access to powerful  microcomputers  and applications software (such 

as electronic spreadsheets), simulation is a widely  used proble~-solving 

technique in  management science and operations research. 

onte Carlo method  involves the generation of random variables from 

known, or assumed, probability distributions. The  process of generating 

random variables from such distributions is known as r a n ~ o ~  variate 

generation or ~ o n t e  Carlo sa~p l i ng .  Simulations driven by 

sampling are known as ~ o n t e  Carlo si~ulations. Mentioned in the first 

chapter, one of the earliest applications of Monte Carlo simulation to cost 

analysis problems was  at the  RANI) ~ o ~ o r a t i o n  Since then, 

Carlo simulation became  (and  remains) a popular approach for studying cost 

unce~ainty, as well as in  evaluating the cost-effectiveness of a system’s design 

alternatives. 

For cost unce~ainty analysis, onte  Carlo simulation can be use 

develop the empi~cal  dist~bution of a system’s cost.  In concert with 

ubinstein’s de~nition, the WBS serves as the mathematica~logical cost model 



l) 

P,. 



P, 

staff-months 
staff-months 

(see  example 5- 17) 

onte Carlo  Sampling 10 
the ~istribution Function 

onte Carlo  method,  samples for and Pr are,  randomly  drawn from 

their ~istribution functions. These  samples are 

each  sample (value) of and Pr a value for is computed  according to 

equation 6- 101. This process of sampling and Pr and  computing the 

associated is repeated thousands  of  times.  From the many  sampled 

values  of a sim~lated (empirical) probability dist~bution of is 

deter~ined, In addition, various statistical measures  such as the mean of 

can  be  computed  from these sampled values. In figure 6-9, ten 

random  samples of and Pr are shown  along  with the associated values of 

From these samples  an  average  value of is computed. After 



onte Carlo samples, this average is close to the computed expected 

value of (refer  to example 5-17). 

A way to randomly sample values from a given distribution function is 

essential to the  Monte Carlo method. There are a number of well-established 

techniques for randomly sampling values. One method  is  the  inverse 

transform method,  which is presented in the following section. For a  full 

discussion of random variate generation techniques, as well 

topic of modeling and simulation, the reader is directed to 

and  Law  and  Kelton 151. 

The  inverse transform method (ITM) is a popular technique for  generating 

random variates from continuous distributions. It is a relatively 

straightforw~d method for distribution functions that exist in closed form, 

such as the uniform or triangular distributions (see chapter 4). Alternative 

random variate generation techniques, such  as those described in  Law and 

Kelton [15], are recommended for working with distribution functions that 

are not  in closed form. The following illustrates the ITM. 

t"50000 

L: L: 

t 



t 

t 

1 

q 

t 

random  variate  generator 1. 

t=50,000, 

t 

q 

Essential to random  variate  generators  is  the  generation  of random numbers 

identified  in  the  above  discussion by In  general, are 

independent  random  variables u n i f o ~ l y  distributed  over the unit  interval. 

onte Carlo  sampling,  independent  random  samples are drawn from the 

defined by equation  6-104. 

1 

otherwise 
104) 

The statistical  literature  offers  a  number  of  algorithms for genera ti^^ random 

numbers.  One  such  generator,  commonly  available  in  many present-da~ 

software  applications, is given by the  recursive  relationship 

=(mi +c)(modm) 

where (the c (the and m (the are 

nonnegative  integers.  Generators  that produce random numbers by equation 

6- 105  are ~ n o w n  as 13, 151. They produce a 

sequence  of  integers  between 0 and Equation  6-105  is equival~nt to 



=mi (6- 106) 

where lrci [(..i is the largest integer less  than or equal to 

c ) /  m. For each i l), the associated random number between 0 

l is generated by qi+l m. For example, suppose 75, c 50 

5000, and x0 20. The term x0 is known as the initial value  or  seed. It 

is assigned arbitrarily to the random number generator. Using equation 6-  

106, the first two  random  numbers, and associated with the sequence of 

integers x2 9 . .  are 

75(20) 50 50 KO 1550 1550 

75(1550) 50 5O~lrcl I16300 5000(23) 1300 
where 

KO [(75(20) 50)/ 50001 L= 0 

[(75(1550) 50)/ [23.26] 23 

Thus, 
1550 

v1 =G- 0.310 and l3Oo 0.260 5000 
In a strict sense, random  numbers generated by recursive relationships are not 

“purely random.” Because they are produced by a deterministic procedure, 

with results that  can be replicated, such numbers are considered 

66pseudorandom.’9 In practice, the values of c, m, and x0 are selected in a 

way to create a sequence of such that their co~esponding appear to 

be statistically independent uniformly distributed random variates in the unit 

interval. 

Ite 

uestion frequently asked is triaZs 

(the s ~ m p ~ e  size) are necessary to have G ~ ~ ~ d e n c e  the of the 

organ  and Henrion 161 provide a guideline for deter~ining 

sample size as a function of the precision desired in the outputs of a 

Carlo simulation. Specifically, formulas are presented to address the question: 



@om 

efine m as the  sample  size  and  let xp be 

the p-fractile of (the  underlying  distribution);  that  is, P(X xp)  p. Let 

satisfy  the  probability Z where Z Then, the pair of 

fractiles (ii,ik) estimated from a  onte Carlo sample  with 

contains x p  with  probability For different  sample  sizes m, figure 6- 10 



m 1  k 

0.4 m 

igure  6-10.  Sample Size onte Carlo Simulations 

xercises  1  throug 

1. iscussion  6-1  an 

and Var( 

theorem  6-1. 

(3l.Ql,Q.Q5),  (33.22 
(37.785,Q.3Q), (38.6 



us in^ the  values  above for F&st apply the -S test (chapter 5) 
SYS 

to show Costsys N(40.98,36.18) is a statistically plausible model  for 

the dist~bution function of Costsys. 

E~ercises 5 through 9 refer to  case discussion 

view case  isc cuss ion 6-2 and  verify  the computations that  led to 

and V~r(Costsys). 

efe~ing to table 6-4 and equation 6-19a, show  that 

ellin t ransfo~  techni~ue to verify, in case 

ariance of the cost STE,  which  was denoted by X3. 

iscussion 6-2 and  verify  the computations that  led to  the 

ween Costsys and 

9. The coordinates liste elow are the  twenty points shown in figure 6-’7. 

with a sample size 



number generator that produces triangularly distributed random 

variables. 

1. United States Depa~ment of Defense. 
1B. 

lanchard, B. S., and W. F a b ~ c ~ y .  
2nd ed. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 



12. 

13. 

14. 

15. 

1 

L. 1994.  pera at ions Research Applications and 
Algor i th~s. 

tion and the ~ o n t e  Carlo 

~ n c e r t a i n ~    sing ~ o n t e  

1991. Si~ulat ion  odel ling and A ~ a ~ y s i ~ ,  

1990. ~ n c e r t a i n ~ :  A ~ u i d e  to 
antitative Risk and Policy Analysis. 



uncertainty fruitful so long as it is Life  is  the  art of  drawing  sufficient 
accompanied  by  the  wish  to  understand.  conclusions  from  insufficient  premises. 

Juan  De  Mairena What Man? 
Note-Books (1912) 

When cost uncertainty analyses are presented to decision-makers, questions 

often asked are  hat is the chance the system can be delivered within cost 

and ~chedule?’~ “How likely might the point estimate cost be exceeded 

given  schedule?” “How are cost reserve recomm~ndations aflected by 

schedule risk?” During  the  past thirty years, techniques from univariate 

probability theory  have  been  widely applied to provide insight into 

P(Cost S and P(Schedu1e x2). Although  it has long  been recognized 

that a system’s cost and schedule are correlated, little has been applied from 

multivariate probability theory to study joint cost-schedule distributions* A 

multiv~iate probability model  would provide analysts and decision-ma~ers 

visibility into joint and conditional cost-schedule probabilities, such as 

and 
P(Cost and Schedule S x2) 

P( Cost x1 Schedule x2) 

This chapter introduces modeling cost and schedule uncertainties by joint 

probability distributions. A family of joint distributions has been 

developed for this purpose. This family consists of the classical bivariate 

normal  and  two lesser known joint dist~butions, the bivariate normal- 

lognormal  and  the  bivariate  lognormal.  Experiences  with 



simulations suggest these distributions are plausible models for  computing 

joint and conditional cost-schedule probabilities. Appendixes B and  C 

summarize  key statistical formulas associated with the bivariate normal- 

lognormal  and bivariate lognormal distributions. Formulas for the bivariate 

normal distribution are well  known  and are summarized  in this chapter. 

odds for Cost-~che 

Mentioned above, decision-makers often require understanding how 

uncertainties between a system’s cost and schedule interact. A decision- 

maker  might bet on a “high-risk” schedule in hopes of keeping the system’s 

cost within requirements. On the other hand, the decision-maker may be 

willing to assume “more  cost”  for a schedule with a small  chance of being 

exceeded.  This is a common tradeoff faced by decision-makers  on  systems 

engineering projects. This is illustrated in figure 7-1. 

Figure 7-1. Illustrative Distributions for a System’s  Cost  and  Schedule 

Suppose the cumulative distribution functions for a system’s cost and 

schedule are shown in figure 7-1. The  cumulative distribution function for 

schedule (the left-side of figure 7-1) indicates a percent chance  of 

delivering the system  within 43 months.  However,  there  is slightly better than 



an 80 percent chance of doing in 53 months.  Given  this information, a 

decision-maker  might  ask,  hat the cost t r a d e o ~  given these possible 

sched~le o ~ t c o ~ e s ?  To answer this question, we need the distribution 

function of the system’s cost co~ditioned on schedule. Three cumul~tive 

distribution functions for the system’s cost are shown  on the right.&& of 

figure The left CDF is the cost distribution conditioned on a schedule of 

43 months.  The right CDF  is the cost distribution c o ~ d i t i o n e ~  on a schedule 

of 53 months.  The  middle  CDF  is the overall cost distribution conditioned 

across the entire schedule distribution (i.e., not  conditioned  on a specific 

schedule outcome).  The difference between the conditional median cost 

given a schedule of 53 months  and  the conditional median cost 

given a “high-risk” schedule of 43 months is 20.4 

context of figure this difference in cost is certainly significant for  any 

cost-schedule tradeoffs under consideration. This discussion highlights how 

joint probability models  can  be  used  to analyze cost-schedule interactions and 

reveal impo~ant tradeoffs between  them. 

The following presents a family of bivariate probability distributions for 

modeling cost-schedule uncertainty. This family of distributions are 

candidate theoretical models that may  be  assumed  by  an analyst, when joint or 

conditional cost-schedule probabilities are needed.  These dist~butions have 

key features desirable for cost analysis. First,  they  can directly incorporate 

correlation between cost and schedule on a given system. Second, we  will see 

that their marginal distributions are either both normal, normal and 

lo~normal, or  both  lognormal.  Shown  throughout  this  book,  marginal 

distributions such as these are frequently observed in Monte  Carlo simulations 

[2,3] of system cost and schedule. 

Example 7-4 will  discuss  figure 7-1 further  and  show  how  these  conditional  median  costs 
determined. 



This section presents the classical bivariate normal distribution an 

sum~arizes its major characteristics. An important feature of  this distribution 

is its marginal distributions, which are both univariate normal. 

In cost analysis, normal distributions can arise when a system9s cost is t 

sum of  many independent S cost element costs. Normal distributions can 

also occur in schedule analyses. For instance, a  system's sche~ule is 

a~~roximately normal if it  is the sum of  many inde~endent activities  in a 

schedule network. If normal distributions characterize a system's cost and 

schedule, then the bivariate normal  could serve as an ~ s s ~ ~ ~ ~ *  model of their 

joint distribution. 

om  variables defined on x1 and 

Px, P1 

as a bivariate n o r ~ a l  distribution if 

In  general,  the  true joint distribution  of  (X1,X2)  cannot  be uniqueZy determined  from the 
marginal  distributions  of XI and  X,.  Only  when  random  variables  are ~ n ~ e ~ e n ~ e n ~  can  their 
joint  distribution  be  obtained  from  their  marginal  distributions.  From  chapter 5 (section 
5.1.2) recall  that  two  random  variables XI and are  independent only if 

fx, x, "2 fx, >fx, ("2 



where 

2 - 2 p 1 , 2 ( ~ ) ( ~ ) + ( ~ )  "2 "P2 x2 -P2 2 

p1,2 

for x1 and The  terms pi and (i=1,2) in the 

above expression are given by equations 7-1 through The correlation 

term p1,2 in equation 7-6 is 

p1,2 px,, x, 

The  admissible  values for p1,2 are given by the  interval 

P1,2 

If  two continuous random  variables XI and X2 have a bivariate normal 

distribution, then 

where fx1,x2(x1,x2) is  given by equation 7-6. 

A characteristic of the  bivariate  normal distribution is  the distribution of X1 

and  the distribution of X2 are each  univariate  normal. These are the  marginal 

distributions. They are given by 



Important  tradeoffs in cost  analysis  often  involve  assessing  the  impact a given 

set of schedules has  on  the likelihood that  system  cost will  not exceed a 

required threshold. To make  these  assessments,  the conditional probability 

distribution is needed. Conditional distributions provide probabilities of the 

type P(X15 ul X2 If two continuous random  variables X1 and X2 have a 

bivariate normal distribution, then  the conditional probability  density function 

of X1 given X2 "2, denoted by f (XI), normally distributed. That  is, x, 

Similarly 

From equations 7-1 and 7-12, the conditional means  and  variances of the 

bivariate normal distribution are 

(7-  13) 

(7-15) 

(7-16) 

Figures 7-2 and 7-3 provide views  of a bivariate  normal  density function. 

These figures are plots of 

(X;, N((100,48),  (625,36, OS) )  

Figure 7-2 is a surface view  of this function, which has a "hill-like" 



appearance. The  marginal distributions of X1 and viewed from the sides 

of the surface, are both univariate normal. 
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7-1 Prove that the function given  by equation 7-6 is  indeed a  joint 

  rob ability density function. 

prove this, it is necessary  to  show 

(7-17) 

With  some algebra, the density function fx,,x2(~1,x2) (equation '7-6) can be 

factored as 

where 



The right-most integrand in  the expression above  is the probability density 

function of a  N(b,a;(l- random  variable,  which  by definition has 

integral equal to unity. Similarly, the left-most integrand in the expression 

above  is the probability  density  of a random variable. Therefore, 

7-2 Suppose the joint probability density function of a  system's 

cost and schedule is a bivariate normal  given  by 

where is the  random  variable that denotes the system's cost ($M) and 

is  the  random  variable  that  denotes the system's schedule (months). 

Determine the median cost of the system  conditioned  on a schedule of 53 

months. 

Solution Following the notation specific to expression (7-5) 

implies p1 100, 625, 36, and 0.5. The  median 

system cost conditioned on a schedule of 53  months  is  found  by computing 

53). From expression 7-1 1, the conditional distribution of 

is 



X11 x2 N(100 2.0833(~2 48),625(1- 

and X11 53 N(110.42,468.75) 

Since the conditional distribution of system cost X11 x2 is  normal, 

Med(X1153) E(X1153) 110.42 ($M) 

Figure 7-4 depicts the cumulative conditional cost distribution of X11 53.  The 

“point” shown  along  the distribution is  aligned to Med(X1153). 

Figure 7-4. Cumulative Conditional Cost ~istribution 

~ivur ia te~( (1~,48) , (625,36 ,0 .5 ) )  

The ~ivariate ~ o r ~ a l - ~ o ~ N o r ~ a l  

This section  presents  the  bivariate normal-lognormal distribution and 

summarizes its major characteristics. An important feature of this distribution 

is its marginal distributions. One is normal  and  the  other is lognormal. 

In cost  analysis,  it  is  common for the distribution functions of a system’s 

cost  and  schedule to be  normal  and lognormal, respectively,  In particular, a 



system's schedule is often observed  (from onte Carlo simulations) to be 

lognormal if it  is the sum of  many  positively correlated schedule activities in 

edule networ~. Thus, if ~Qrmal  arid lognorm~l  distri~uti~ns 

c~aracterize a system's cost and schedule vice  versa),  then the bivariate 

normal-lo~normal could serve as an a s s ~ ~ e ~  model of their joint distribution. 

 pose and Y2 In are two ra~dom variables where and X 2  

are defined on and x2 If and Y2 each  have a  normal 

distribution, then  the  mean  and variance of ( i  1,2) are 

Var(y1) ox, 2 2 2  (7-19) 

(7-20) 

(7-21) 

has a bivariate normal-lognormal distribution if 

(7-23) 

where 



for and The  terms and ( i  42)  in the above 

expression are specifically given by equations 7-18  through 7-21. 

correlation term in equation 7-23 (derived in appendix 

(7-24) 

The admissible values for are given  by the interval -1 p 1. 

Therefore, admissible values for (in equation 7-24) are ~ e ~ ~ ~ ~ c ~ e d  to 

the interval 

(7-25) 

d7& 
If  two  continuous  random  variables and have a bivariate normal- 

lognormal distribution, then 

S and S S 

where fx,)x2 is given by equation 7-23. 

For the bivariate normal-lo~normal distribution given  by equation 7-23, t 

distribution of X1 is  normal  and the distribution of is  lognormal.  These 

are the marginal distributions. They are given by 

(7-27) 



(7-28) 

The conditional distributions of the bivariate normal-lognormal distribution 

are normal  and lognormal. In particular, 

and 

(7-3  1) 

(7-32) 

where (1 p1,2). 2 2  

Figures 7-5 and 7-6 provide views of a bivariate normal-lognormal density 

function. These figures are  plots of 

(X1,Xz) ~ i v a r i a ~ e  

Figure 7-5 is a surface view  of the function, which  has a “hill-like” 

appearance. The marginal distributions of X1 and  X2,  when  viewed from the 

sides of the  surface, are univariate normal  and univariate lognormal, 



nd  Schedule ~nce~aint ies 

respectively. A topographic view  of a bivariate normal-lognormal density 

function in figure 7-5 is shown  in figure 7-6. 

Figure 7-5. A Bivariate  Normal-LogNorma1  Density 

In figure 7-6, the  innermost contour corresponds to h 0.001, the middle 

contour corresponds to h 0.0005, and the outer contour corresponds to 

h O.OOO1. The  point (px,, (100,48), shown  in figure 7-6, stems  from 

Bivariate 

is seen  in  the following example. 

Example 7-3 Assume  the joint probability  density  function of a system’s cost 

and  schedule is bivariate normal-lognormal with density function 

given by equation 7-23. Suppose has  mean 100 ($M) and  variance 625 

Suppose has  mean  48  (months)  and  variance  36 (months)2. If the 

correlation between the system’s cost and  schedule is 

,x, 
determine the median  system cost conditioned on a schedule of 53 months. 

0.5 
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($M) 

Figure 7-6. Contours of a ivariate Normal-~ogNorma1 Density 

(X,, X,) 

First,  determine  the  five  parameters  that  specify  the  bivariate 

normal-lognormal defined by expression 7-22. Since px, 100, 625, 2 

36, equations  7-18 t h r o ~ ~ h  7-21  give 

(7-35) E(6) py, px, p1 l00 

Var(6) oq ax, 625 2 2  (7-36) 

(7-37) 

(7-38) 



From 7-25, the  interval for the correlation between and in this 

example,  is  restricted to 

-0.996126 x: 0.996126 

Thus,  the correlation given  between  the system9s cost  and schedule is 

admissi~le since ~ . 9 9 6 1 ~ 6  C 0.5 0.996126. From the above computations, 

the parameters the bivariate normal-lognormal distri~ution are 

~ivariate ~~~g~((100,3.$6345),(625,0.0155042,0.501944)) (7-40) 

The  median  system cost conditioned on a schedule of 53 months  is found by 

53). From expression 7-29, the conditional 

distribution X1 is 

From equation 7-35 through 7-39 

N(100 10O.$(ln 3.86345), 625(1- (0.501944)2) 

and 53 N(110.8,467.5) 

Since the conditional distribution of system cost is normal 

Med(~1153) 53) 110.8 ($M) 

Figure 7-7 depicts the cumulative con~itional cost distribution of 53. T 

“point” shown  along  the ~ is t~but ion  is aligned to 



110.8 160 

hapter 

Figure 7-7. Cumulative Conditional Cost Distribution 

ivariate LogNorma1 

This  section  presents  the  bivariate lognormal and  summarizes  its major 

characteristics. From a practical  perspective, if the distribution functions of 

system’s cost and schedule are lognormal, then  the  bivariate lognormal could 

serve  as an model of their joint distribution. However,  it  again  must 

be  emphasized that this is indeed an assumption. In general, the true joint 

distribution of a pair of random variables (Xl,X2) cannot be 

determined from the  marginal distributions of X1 and X2.  Only  when 

random  variables are can their joint distribution be obtained 

from their marginal distributions. 

at~ematieal ~ e ~ n i t i o n  

Suppose lj In Xl and Y2 In X2 are  two  random  variables  where X1 and X2 

are defined on x1 03 and x2 m. If lj and Y2 each  have a  normal 

distribution, then the mean  and  variance of are 



(7-41) 

(7-42) 

The pair of random variables 

where 

x1 and x2 The terms pi and ( i  1,2) in the above 

expression are given by equation 7-41 and equation 7-42. The correlation 

term p1,2 in equation  7-44  (derived in appendix C) 

(7-45) 

The admissible values for p1,2 are given by the  interval -1 p 1. From 
192 

this, it  can  be  shown  that  admissible  values for P ~ , , ~ ,  (in equation 7-45) are 

restricted to the  interval 



If  two  continuous  random  variables and have a bivariate lognormal 

distribution, then 

where fx, ,x2 is given by equation 7-44. 

For  the bivariate lognormal d i s t~bu t io~  (given by e~uation 7-44), the 

istribution of is l o g n o ~ a l  and the distribution of is ~ognormal.  The 

marginal distributions are given by 

e conditional distributions of the bivariate lognormal distribution are both 

lo~normal. In particular, 



Figures 7-8 and 7-9 provide views  of a bivariate lognormal density f~nction. 

These figures are plots of 

L;ogN((4.57486,3.86345),(0.0606246,0.0155042,0.505708)) 

Figure 7-8 is a surface view  of  the function, which  has ‘ ‘ h i l l - l i ~ ~ ”  

appearance. The  marginal ~istributions of and viewed  from the sides 

of the surface, are both univariate lognormal. 

Figure A Bivariate LogNorma1  Density 

Bivariate 

A topogra~hic view  of a bivariate lognormal density function in figure 7-8 is 

shown  in figure 7-9. In figure 7-9, the innermost  contour  corresponds to 

h 0.001, the middle  contour  corresponds  to h 0 . ~ 0 5 ,  and the outer 



Chapter 7 

contour corresponds to h 0.0001. The  point shown  in 

figure 7-9, stems  from 

LAlgN((4.57486,3.86345),(0.0606246,0.0155042,0.505708)) 

This is seen in the following example. 

Schedule 

25 50 75 125 150 175 

Cost ($M) 

Figure 7-9. Contours a Bivariate LogNorma1  Density 

7-4 Assume  the joint probability  density function of a system’s cost 

X] and schedule X2 is bivariate lognormal with density function given by 

e ~ ~ ~ ~ i o n  7-44. Suppose has  mean ($M) and  variance  625 

Suppose has  mean  48  (months)  and  variance 36 (months)2. Let  cost and 

sch~dule have a correlation of 0.5. Show  that  the difference between the 

r n ~ d i a ~  system  cost conditioned on a schedule with a 20 percent chance 

achieved  and  the  median  system cost conditioned on a schedule with an 

rcent chance of being  achieved is 20.4 ($M). 



~chedule ~ ~ c e ~ i n t i e s  

Solution It is given  that px, 100, 625, px, 48, 36,  and 

0.5. From equations 7-41, 7-42, and 7-45 the parameters of the 

bivariate lognormal, given  in expression 7-43, are 

2 

-ln px, ,x, ~-lYlr":-; j=0.50578 

From  expression 7-50, the  cost distribution conditioned on a schedule of 

months is 

Figure 7-1 illustrates the cumulative distribution functions associated with  this 

example. The schedule distribution is shown  on  the left-side of figure 7-1. 

Since X2 is lognormal with  mean 48 (months) and  variance  36 (months)2, 

X2 bgN(3.86345,0.0155042).  It is left to the reader to show (chapter 4, 

section 4.4) the  value of  x2 such  that x 2 )  0.20 is 43 months 

(rounded). Similarly, the value of  x2 such  that P(X2 x2) is 53 

months (rounded). From expression 7-56, the conditional cost distribution 

given x2 43 months is 

X11 43 LOgN(4.4~,0.045) 

Likewise,  the  conditional  cost distribution given x2 53 months is 



Xi1 53 - ~og~(4.68,0.045) 

Since X I ]  x2 is lognormal, we know from equation 4-39 (chapter 4) that 

Med(X1/ 43) = e4.47 = 87.4 ($M) 

Med(X1153) = e4.68 = 107.8 ($M) 

Therefore, the difference between the median system cost conditioned on a 

schedule with a 20 percent chance of being achieved and the median system 

cost conditioned on a schedule with an 80 percent chance of being achieved is 

In case discussion 7-1, we determine the cost of the digital information system 

(discussed in case discussion 6-2) that has a 5 percent chance of being 

exceeded but is conditioned on a development schedule that has a 5 percent 

chance of being exceeded. 

Case ~ i s c ~ s s i u ~  7-1 In case discussion 6-2 (chapter 6),  the random variable 

Costsys denoted the total cost ($K) of a digital information system and the 

random variable ~ r g ~ S c ~ e d  represented its development duration (in 

months). Suppose the joint probability density function of Costsys and 

P r g ~ S c ~ e ~  is bivariate normal. Let b be the number of months such that 

~ ( P r g ~ S c ~ e ~  5 b) = 0.95, where P r g ~ S c ~ e d  is normally distributed with 

~ ( P r g ~ S c ~ e d )  = 33.36 (months) and V a r ( ~ ~ g ~ S c ~ e d )  = 1.94 (months)*. 

~ ~ t e r m i n e  a such that P(Cost,,, 5 a1 ~ r g ~ S c ~ e ~  = b) = 0.95. 

To determine a, we first find b such that P ( P r g ~ S c ~ e ~  I b)  = 0.95. This 

probability can be written as P ( P r g ~ ~ c ~ e d  S b) = P(Z 5 u)  , where 



b E(PrgmSched) b 33.36 

1.39283 

b 33.36 
From  table A-l we have P(Z 0.95 if V =1.645*b=35.65. 

1.39283 

Now,  it  remains to determine a such  that 

P(Costsys I a1 ~ r g ~ S c h e d  35.65) 0.95 

Since the joint  roba ability density function of Costsys and PrgmSched is 

given to be bivariate norma1, from  expression 1, the  distribution of Custsys 

conditioned on PrgmSched is 

Costsys PrgmSched x2 N(&+ p1,2(q iu2) 0120 pt2) 0 1  

0 2  

From case discussion 6-2 (cha~ter 6) 

pl E( Costsys) 32841.1 c$ Var(Co~tsys) 10800698.3 

p2 E ( ~ r g ~ S c ~ e d )  33.36 Var(PrgmSched) 1.94 

and p1,2 o*206 

Therefore, 

Costsys PrgmSched x2 N(32841.1+  486.06(x2 ~2),10342359.87) 

At  x2 35.65 we have 

~ r g m S c ~ e d  35.65 ~(33954.18,10342359.87) 

The density function of Costsys conditioned on a system schedule of 35.65 

months is normal, with  mean 33954.18 ($K) and  variance 10342359.87 

To  find a such that P(Costsys P r g m ~ c h ~ ~  35.65) 0.95, let 

P(Costsys a ~rgmSched 35.65) P(Z q) 

33954.18 
~10342359.8~ 

where p From  table A-l, P(Z p) 0.95 if 



33954.18 .645 
410342359.87 

This implies  that 39244.4. Thus,  the cost of the digital information  system 

that  has  only a 5 percent chance of being exceeded, when conditioned on a 

schedule having the same chance of being exceeded, is 39244.4 

S ~ m ~ a r y  

The  family of distributions described in  this chapter provides an analytical 

basis for computing joint and conditional cost-schedule probabilities. They 

are mathematical  models  that  might  be hypothesized for capturing the joint 

interactions between a system's cost and schedule. 

Seen throughout this chapter, a parameter required by these  models is the 

correlation between  cost  and schedule,* This  can be a difficult value to 

determine. One approach is the direct computation of the correlation as 

illustrated in case discussion 6-2 (refer to equation 6-86). However,  in some 

instances this  might  not  be analytically possible or practical. Another 

approach is to obtain an estimate of the correlation, from sample  values 

generated by Monte Carlo simulation. This is a reasonable  method that can  be 

done regardless of .the complexity of the cost-schedule estimation 

relationships. Subjective assessments  might be used.  However, care must be 

taken  to  specify  an a ~ ~ i s s i ~ Z e  correlation for the particular pair of random 

variables, Furthermore, there may already exist an implied correlation by 

virtue of  how the cost-schedule estimation relationships are mathematically 

defined (refer to case discussion 6-2). Subjectively specifying a  correlation 

when one is already  present  (only  its magnitude is unknown yet to be 

Because  these  models  treat  cost  and  schedule correlated  random  variables,  it important 
to  recognize  that they not  capture  causal impacts that  schedule  compression  or extension 
has  on  cost. 



determined)  is  double  counting correlation. Such a situation invalidates the 

mathematical integrity of the cost uncertainty analysis. 

In  summary,  systems engineering typically takes place  in  environments  of 

limited funds  and challenging schedules. It is incumbent  upon engineers and 

analysts to continually assess affordability relative to the chance of jointly 

meeting cost and schedule, or meeting cost for a given feasible schedule, 

against specific tradeoffs in  system lequirements, acquisition strategies, and 

post-development support. The distrib~t~ons described in this chapter are one 

way  such assessments may  be  made. 

xercises 

Suppose the mean cost and  mean schedule of a program  is 100 ($M) 
and 48 months, respectively. Furthermore,  suppose the program’s cost 

and schedule variances  are  625 (months)2 and  36 (months)2, 

respectively. If  the correlation between the program’s cost and 

schedule is 0.5, find such that 

a) 53  months) 0.95 if program cost and  schedule 

have a bivariate normal distribution. 

b) 53  months) 0.95 if program cost and  schedule 

have a bivariate normal-lognormal distribution. 

c) 53months) 0.95 if program cost and  schedule 

have a bivariate lognormal distribution. 

2. Suppose N b g N (  where PI, 
and pl,2 are defined in  section 7.2.2. If and 



4. Assume the joint probability density function of program cost XI and 

schedule X 2  is bivariate normal-lognormal with density function given 

by equation 7-23. Suppose XI has mean 100 ($ ) and variance 625 

)*. Suppose X 2  has mean 48 (months) and variance 36 (months)2, 

Let program cost and schedule have a correlation of 0.5. Compute the 

difference between the median program cost conditioned on a sched~le 

with a 50 percent chance of being achieved, and the median program 

cost conditioned on a schedule with a 95 percent chance of being 

achieved . 

5. Show that the functions given by equations 7-23 and 7-44 are each joint 

probability density functions. 

2 2  2 If ( X I ,  X 2 )  - ~ivariate  log^( @I, p 2  (01 0 2 , p1,2 1) m h ~ e  1L1 P2,  0 1  

0 2 2 ,  and p1,2 are defined in section 7.2.2, show that 

6. 



and A. E. Taub. 1997 (S~ring). A Joint Probability 
Schedule ~ncertainties. 
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t on side rations and R e c o ~ e n d e d  Practices 

One  thorn  of  experience worth a whole And long experience  made  him  sage. 
wilderness of  warning. John Gay (168~-1732)  
James  Russell  Lowell  (1819-1891) Fables.  Part The  Shepherd  and  the 
Shakespeare  Once  More Philosopher 

The following  provides  a  set  of  considerations  and  recommended  practices 

when  performing  cost  uncertainty  analyses.  They  reflect  the  author's  insights 

and  experiences  in  developing,  refining,  and  applying  many  of  the techniques 

presented  in  this book. 

The  cost of a  future  system  can be 

significantly affected by uncertainty. The  existence of uncertainty implies  the existence 

of range of possible  costs. How can a  decision-maker  be shown the chance a particular 

cost in the range of possible  costs will be realized? The  probability  distribution is a 

recommended  approach for providing this  insight.  Probability  distributions  result when 

independent variables (e.g., weight,  power-output, staff-level) to derive a  system's 

cost randomly assume values across  ranges of possible values. For  instance,  the  cost of a 

satellite  might  be derived on  the  basis of a range of possible weight values, with each 

value randomly occurring.  This approach treats  cost  as  a random variable. It  is  a 

recognition that values for these variables (such as weight) are not typically known with 

sufficient precision to perfectly  predict cost, nee&. 

This point is  further  articulated by the  author's  long-time  colleague A. Book" 

A. 1997. Cost  Risk  Analysis A Tutorial. Risk ~ a n a g e ~ e n t   S y ~ p o s i u ~  
Proceedings. Angeles,  California:  The  Aerospace  Corporation. 



“The  mathematical  vehicle  for  working  with  a  range  of  possible  costs  is  the probability 

distribution,  with  cost  itself  viewed a  “random  variable”.  Such  terminology  does not 

imply, of course,  that  costs  are  “random”  (though  well  they  may  be!)  but  rather  that  they 

composed  of  a  large  number  of  very  small  pieces,  whose individu~ contr~butions to 

the  whole we do  not  have  the  ability  to  investigate  in  a  degree  of  detail  sufficient 

calculate  the  total  cost  precisely. It is much  more efficient  for  us to recognize  that 

virtuaily  all  components  of  cost  are  simply  “uncertain” and to find  some  way to assign 

~~obabilities to various  possible  ranges  of  costs. An  analogue is the  situation  in coin 

tossing  where,  in  theory,  if we  knew  all  the physics  involved and solved  all the 

differe~tial equations, we  could  predict  with  certainty  whether  a  coin  would  fall  “heads” or 

owever,  the  combination  of  influences  acting  on  the  coin  are  too  complicated 

to  understand  in  sufficient  detail  to  calculate  the  physical  parameters  of  the  coin’s motion. 

owe do the  next  best  thing: we bet  that  the  uncertainties  will  probably  average  out in 

such way  that  the  coin  will  fall  “heads”  half  the  time  and  “tails”  the  other  half.  It is much 

more ef~cient to  consider  the  deterministic  physical  process  of  coin  tossing  to  be  a 

“random”  statistical  process  and  to  assign  roba abilities 0.50 to  each  of  the two 

ssible  outcomes,  heads  or  tails.” 

bability theory  ell- establish^ 

its to real- 

the use sub j~ t i ve  



Subjective probabilities are those assigned to events on the basis of personal judgment. 

They are measures  of a person’s degree-of-belief that an event will occur. Subjective 

probabilities are associated with one-time, n o ~ e p e a ~ b l e  events those whose 

probabilities cannot be objectively determined from a sample space of outcomes develo 

by repeated trials, experimentation. Subjective probabilities must  be consiste~t with 

the  axioms of probability (refer to chapter 2). For instance, if an engineer assigns  a 

probability of to  the event of 

then it  must  follow  the  chip 

probability 0.30. Subjective  probabilities are on  the  state of the 

nowledge, which changes with  time. 

be credible, subjective  probabilities should be  assigned to  even 

matter experts persons with signi~cant experience with events  similar  to the on 

consideration. Instead  of assigning a single  subjective probability to an 

experts often find it easier to describe a function that depicts a  distribut~on 

probabilities,  Such  a  distribution sometimes called a 

Subjective probability distributions  are governed by the  sam 

properties of probability distribut~ons associated  with  discrete or  cont 

variables (described in chapter Subjective probability dis~ibutions are m ~ $ ~  

in cost unce~ in ty  analysis, particularly on  the input-side of the process 

and  the case discussions in chapter 6). Because of their nature, subjec 

~ is~ ibu t ions  can thought of as “belief functions.” They de 

belief in  the  distribution of probabilities for an event under consid~rati 

theory provides the mathematical formalism with  which  we 

multiply, and divide) on  these belief functions. 

Correlation  is  a necessary consideration in cost unce~ainty 

can exist between the  costs of  work  breakdown structure 



Correlation can also exist between the  cost of a  cost  element and the variables (e.g., 

weight, schedule) that define  its  cost. 

S~tist ical theory ofTers a number of ways to measure correlation. Two popular 

measures Pearson’s product-moment correlation and Spearman’s rank correlation. 

Subtleties concerning these measures must be understood to avoid errors in a  cost 

uncertainty analysis. Pearson’s product-moment correlation measures linearity between 

two random variables. Spearman’s rank correlation measures their ~ u ~ u t o n i c i t y .  Thus, 

these two measures of correlation can be diflerent. This  is illustrated in figure 5-10 

(chapter 5). Furthermore,  the variance  of a of  random variables is  a  function of 

Pearson’s product-moment correlation, nut Spearman’s rank correlation. Thus,  from  a 

perspective, Pearson’s product-moment correlation is the only correct measure of 

correlation to use  when computing  the  variance of a sum  of cost  element  costs. 

In cost  uncertainty analysis, care must be taken if  it is necessary to subjectively specify 

Pearson correlations. Pearson correlations can be restricted to a subinte~al  of to 1 

for random  variables  characterized  by  certain types of distribution functions. This  is 

illustrated in chapter 7. Thus, the Pearson correlation between  any two random  variables 

cannot be assigned value in  a completely arbitrary yay. If it is necessary to 

subjectively specify Pearson  correlations,  the should review the recently  published 

work  of  Lurie-Golberg.* 

In practice, it recommended that analysts  express  associations  within  the 

through  functional relationships (cost equations), as illustrated in case  discussions 6- 1 

6-2. This  allows  the  Pearson  correlations i ~ p Z i e ~  by these rezatiunship~ to be  captured  in 

the overall analysis. Pearson  correlations that originate from logically ~nct ional  

relationships are more easily defended in  cost reviews than those ma& on  the  basis of 

subjective  assessments. 

Lurie, M., and M. S. Goldberg. An Approximate  Method  for  Sampling  Correlated 
Random  Variables  from  Partially-Specified  Distributions. ~ ~ ~ ~ g e ~ e ~ ~  Science, Vol. No. 
2, pp. 



ties Recision-makers require ~ d e r s ~ n d i n g  

how uncertainties between a system’s cost  and  schedule interact. A decision-maker might 

bet  on a “high-risk”  schedule in hopes of keeping  the  system’s  cost  within r ~ u i r e m e n ~ .  

On  the  other hand, the decision-maker may be willing  to  assume “more cost”  for a 

schedule with a small chance of being exceeded. This a common tradeoff 

decision-makers  on  systems  engineering  projects. The family of distributions in chapter 7 

provides an analytical  basis  for  computing  this tradeoff, using  joint and conditional cost- 

schedule probabilities.  This family is a set  of  mathematical models that  might 

hypothesized for  capturing  the  joint  interactions between cost and schedule. 

parameter  required  by these models is  the  correlation between cost and sch 

Direct  computation one approach for de te~ in ing  this parameter, as illustrated in case 

discussion 6-2. However, in  some  instances  this  might  not be analytically p o s s i ~ ~ e  or 

practical.  Another  approach is to  obtain  an  estimate  of  the  correlation from sample values 

generated  by Monte  Carlo  simulation.  This a reasonable method that  can  be done 

regardless  of the  complexity of the cost-schedule estimation  relationships.  Subjective 

assessments  might  be used. However, care  must  again  be taken to specify an a d ~ i s s i b ~ e  

correlation. Fur the~ore ,  there may already exist  an implied correlation by virtue of  how 

the cost-schedule estimation  relationships are mathematically defined  (refer to case 

discussion 6-2). Subjectively  specifying a correlation when one  is already present (only 

its magnitude is unknown) is double counting correlation. Such a situation invalidates 

the  mathematical  integrity of the  cost  uncertainty  analysis. 

Cost  analysts are  encouraged to study the   the ma tical relationships they define in a 

system’s work b re~down structure, to see whether analytical approximations  to  the 

distribution  function of Cost,,, (a  system’s  total  cost) can be argued. Analytical 

they not  capture  causal impacts 



approximations can reveal  much information  about  the “cost-behavior”  in a  system’s 

WBS. Chapter  6 (section 6.2.2) presented five  cases when the normal distribution 

approximates  the distribution function of a  system’s total cost. There are  many  reasons 

for this  approximation.  Primary among them is that Cost,,, a  summation of 

cost  element  costs.  Seen in the  chapter case  discussions, it typical to have a  mixture 

of inde~ndent and correlated cost element costs within a  system’s  WBS. Because  of  the 

central limit theorem (theorem 5-10, chapter the greater the number of  independent 

cost  element  costs  the more it  is $at the distribution function of Cost,,, is 

approximately  normal.  The central limit theorem is very powerful.  It does  not  take 

many inde~ndent cost  element  costs for the distribution function of Cost,,, to move 

towards normality.  Such  a move is evidenced  when a sufficient number of 

independent cost  element  costs are  summed and (2) when  no cost  element’s cost 

dis~ibution has a much  larger  standard  deviation than  the standard deviations of the other 

cost element  cost  distributions. When conditions in the WBS result in Cost,,, being 

positively skewed (i.e.,  a non-normal distribution function), then the lognormal often 

approximates  the distribution function of Cost,,, 

onte  Carlo  simulation is another approach for developing an empirical approximation 

to the distribution function of Cost,. The  Monte  Carlo  method, discussed  in section 

6.3, often when a  system’s contains  cost  estimating relationships too 

complex for strict analytical study. In Monte  Carlo  simulations,  a  question ~ ~ u e n ~ y  

asked is “How many  triQls are necessary to have confidence in the ou t~ut  the 

sim~zation?’ a guideline, 10,000 trials (Monte  Carlo  samples)  should be sufficient to 

meet  the precision  requirements  for most Monte  Carlo  simulations; particularly those for 

cost uncertainty analyses. 

Cost uncertainty analysis provides 

decision-makers many benefits and important insights. These include: 



~stablishing Cost Schedule Risk Baseline Baseline  probability  distributions 

of a system’s  cost schedule can be developed for a given  system config~ation, 

acquisition  strategy, and cost-schedule estimation approach. This  baseline provides 

decision-makers visibility  into  potentially high-payoff areas for  risk reduction 

initiatives.  Baseline  distributions  assist in d e t e ~ i n i n g  system’s  cost and  schedule 

that  simultaneously  have a specified probability of not  being exceeded (chapter 7). 

They  can  also provide decision-makers  an assessment of the  likelihood of achieving a 

budgeted (or proposed) cost and schedule, or cost for a given feasible schedule. 

~ e t e ~ ~ i n ~ n g  Cost  Reserve Cost uncertainty analysis provides a basis for 

de te~ in ing  cost  reserve as a function of the uncertainties specific  to a system. The 

analysis provides the direct link between the  amount of cost reserve to recommend 

and the  probability  that a system’s  cost will not exceed a prescribed (or desired) 

magnitude  (refer  to  figure 1-6, chapter 1). An analysis should be conducted to verify 

the r ~ o ~ e n d e d  cost reserve covers  fortuitous  events (e.g., unplanned code growth, 

unplanned schedule delays) deemed possible by the  system’s  engineering team. 

Finally,  it sometimes necessary to allocate cost reserve dollars  into  the  cost 

elements of a system’s work breakdown structure. The reader is directed to the 

Young algorithm* as  an  approach  for  making this allocation. 

 ducting Risk Reduction ~ r a d e o ~ ~ n a ~ y s e s  Cost uncertainty analyses can be 

conducted to study the payoff  of im~lementing risk reduction initiatives  (e.g., rapid 

prototyping)  on  lessening a system’s  cost and schedule risks.  Furthermore,  families 

of probability  distribution  functions  can  be generated to compare the  cost and cost 

risk  impacts of alternative  system requirements, schedule uncertainties, 

competing  system  configurations  or  acquisition  strategies. 

Risk ~ a n a g e ~ e ~ t  S y ~ p o s i u ~  
Proceedings. 



~alys i§  The validity and 

meaningfulness of a cost uncertainty analysis  relies  on  the  engineering  team’s experience, 

judgment, and knowledge of the  system’s unce~ainties. Formulating and documenting a 

supporting  rationale  that  summarizes  the  team’s  collective  insights  into these 

uncertainties  is the critical  part of the  process. ~ i t h o u t  a well d ~ ~ e n t e d  rationale the 

credibility of the  analysis  can be easily questioned. The  details  of  the  analysis 

meth~o logy  are important and should  also  be documented. The methodology must be 

tech~ ica l l~  and offer value-added problem structure, analyses, and insights  otherwise 

not  visible.  Decisions  that  successfully  eliminate unce~ainty, or reduce it  to acceptable 

levels,  are  ultimately driven by human judgment.  This  at  best is 

by,  the  methods  presented in this  book. 

C h a ~ m a ~ .  ts 



Table A-l presents  values of the cumulative ~ s ~ b u ~ o n  funetion of 

a1 distribution. These values are denoted by which  is 

given by 

(A- 1) 

hat is S 

Fz(0.33) 0.33) Fz(0.33) 

b) S S 
F'("0.33) S 0.33) 0.3707 

ereentiles the Standard Normal 
Fz(z))  



A". 

.W 

l 



only when the parameters the 

hypothesi~ed distribution are  known, 

D 

D 

(Appiicable  when  the  parameters  ofthe  hypothesized distr~bfft~on 
are known and  not  estimated from the  sample  data) 

Let n denote the  number of  samples. If 

reject  the  claim  that  the  observed  values come from  the 
hypothesized  distribution;  otherwise  accept it. 

Cl 

Law, M., and D. Kelton.  1991. Si~ulation  odel ling and Analysis, 2nd  ed.  New  York: 
McGraw-Hill,  Inc. 

Statist. 69, pp. 730-737. 
Stephens,  M. A. 1974. EDF Statistics  for  Goodness of Fit  and Some Comparisons. 



The following integrals are often useful in proofs and computations involving 

the n o ~ a l  probability density  unction. In each integral, is a real n u m ~ e r  

and is a positive real  number. The first integral is the integral of the normal 

pro~a~i l i ty  density function. The second integral is the mean  of a normally 

distribut~d random variable. The third integral 

lly distributed random variable, with  mean 

-00 

is the second moment of a 

and varianc~ 

-00 



U 

U = U ;  +...+Un 

Ui fu(u) 

U. 

fu(u) 

U 

U, (U (U 

U 

4 6. A-1. 

n=3  

+ n = 4  

H. 1966. ~ a t h e ~ a t i c a ~    et hods of Statistics. pp. 



Figure shows pairs of PDFs  plotted for and The left-most 

pair  show plots of and fu(u), respectively, for specifically, 

and f u  (U) 

The second pair of PDFs (from the left) show plots of fNomuz( and fu(u), 

respectively, for specifically, 

and f u  

similar convention holds for the two remaining pairs of PDFs plotted in 

figure The values  shown along the vertical  axis, in figure 

correspond to values for f N o ~ ~ l ( u ) .  
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Table A-3 compares the cumulative probabilities derived, from each PDF pair 

in figure A-1. In table A-3, the columns labeled Fu(u) and FN~-~(U) are 

defined as follows: 

~ u ( u )  = I,ufu(t)dt 
and 

U 

FNormal(U) = ~fNormal(t)dt 
-00 

where 
( t - p  

1 1 -+[-.-I 
fNormal ( t )  = 

for n = 3,4 ,7 ,  and 10. 

Table A-3. Sums of Independent Uniform Random Variables - 
Cumulative Probability 
u=u,+u2+u3+ ...+ u, 

Ui .-. Unif(0.1) i = 1,2,3 ,... , n 

n=3 F i  (4 FNonnnl (u) n = 4  FfJ (4 FNormal 

O < u <  1 0.16666667 0.158655 0 < u < 1 0.04 1666667 0.04 16323 
O<u<2 0.83333334 0.841345 O<u<2 0.499999997 0.5 
O<u<3 1 0.99865 O<u<3 0.958333327 0.958368 

O<u<4 1 0.999734 
I I 

n = 7  

O<u<l 
O<U<2 
O<u<3 
O<u<4 
o<u<5 
O < u < 6  
O<u<7 

Fu(u) 
0.0001984127 
0.0240079367 
0.2603174567 
0.7396825367 
0.9759920567 
0.9998015807 
1 

FNonnnl 

0.000531557 
0.0247673 
0.256345 
0.743655 
0.975233 
0.999468 
0.999998 

n=10 

O<u<l 
O<U<2 
O<u<3 
O<u<4 
o<u<5 
O<u<6 
O < u < 7  
O < U < 8  
O<u<9 
O<u<lO 

F i  (u) 

0.000000275 5 7 
0.00027943121 
0.0134628532 1 
0.138901 5632 1 
0.4999999932 1 
0.861 0984232 1 
0.986537 1332 1 
0.99972055521 
0.99999971085 
1 

FNormal (') 

0.00000588567 
0.0005075 
0.0142299 
0.136661 
0.5 
0.863339 
0.98577 
0.999492 
0.999994 
0.999999978398 
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Let X1 and U2 In X2 where X1 and X2 are random variables defined on 

and 0 x2 If and V2 each have a normal d is t~b~t ion  

The pair of random variables 

(XI, 1x2 givariate p2 2 p1,2 1) 2 2  

has a bivariate normal-lognormal distribution if 





Letting 

and  noting  that 

we  can  write 

To determine note  the  integrand  can be written  as 

Letting and  noting  that we have 

Thus, 

and 
-2 





Proof: 

By  definition 

The  density  function can  be  factored as 

where 

since the  integrand is the  density  function of a random 

variable. To  compute the  density  function is  factored 

as 

where 





where o~(1- p l ,~ ) .  2 2  



Proofi 



Proof.. 
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Let In X1 and Y2 In X2 where X1 and X2 are random variables defined 

on 0 x1 and 0 x2 If and Y2 each  have a normal distribution 

then 

The pair of random  variables 

(xl, ~ 2 )  givariate ~ g ~ ( ~ 1 7 p 2  (a1 0 2  ~1 ,211  2 2  

has bivariate  lognormal dist~bution if 



Y2 X 2 ,  

E ( x ~ x ~ )  E(eq eY2 E(eq 

l$  pi,^^) i=  E(eqfY2) 

tY+t  Y 
(1I,t2)= E(e 

$1 t2. 

~ ( ~ 1 x 2 )  E(eq eY2 ~ ( e q  e 
(P1 +2Pq,y2a1a2) 

(C-l), r 

X1 X 2  

E(X[)  e rpi +$r2a; 

E(Xl)  ep1f2a1 

1 2  ~ ( x ~  e 

First  Course in ProbubiZity, 



or 

and 

~ubstituting into equation C- 1, 

This can  be factored as: 

Thus, 

and 



b 

g&)) 



since  the  integrand  is  the  probability  density function of  a 

LogN(b*, 4 2 ) )  random  variable. 

roo8 

y de~nition, 



1 1 



Proof: 



From theorem C-3, it follows that 



1x1 
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Kolmogorov’s  axioms,  20-2  1,26-27 
Kolmogorov-S~~ov test,  190-192,267,286,347 
K ~ o s i s ,  coefficient  of,  83 
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conditional,  313,320,326,  359,  368 
defmition 65-66,69 
related  to  symmetry,  84 

average 
see QZSO expectation 

Measure  of  belief,  26 
see interpretations probability 

Measures  of  central  tendency,  74 
Median 

as  a  measure  of  central  tendency,  74 
computation,  illustration 66-67 
conditional,  3  16-3  17,323-324,328-330, 

definition  of,  64 
related  to  area,  82 
related  to  symmetry,  84-85 
see fiactiles 

360-361,370 

Mellin  transform,  definition  of,  225 
applications  of,  228-242,276-277 
convolution  property  (theorem),  227 
for  selected  distributions,  228 

MITW Corporation,  viii,  5-6 
Mode 

measure central  tendency,  74 
conditional,  360-361,370 
definition 73 
related  to  symmetry,  84-85 
relationship  to  point  estimate,  110,  188 

Modeling  system  cost  uncertainty,  254-304 
Modeling  system  cost-schedule  uncertainties, 

Moments  of  random  variables,  82-85 
308-333 

center  of  gravity  of  a  distribution,  82 
see kurtosis 

skewness 
Monte  Carlo  simulation, 6,26 1,296-304 

applications 
inverse  transform  method, 300 



random number generation, 300-302 
sample  size  for,  302-304 

Multiplication rule, 3 1 35 
Mutually exclusive (disjoint) event(s), 17 

relations~p to  dependent events, 33-3 
also event(s) 

see also independent events 
Mutual independence, 32-33 

Normal distribution, 1 17- 
applications  of, 121-123, 186, 187-195, 

2 16-2 18,220,262-296,3 1 1423,324-330, 
349-35 1 

approximation to system cost, 265-267, 

cumulative distribution of, 345-346 
density of, 18-1 19 
expectation of, 18, 124 
for cost-schedule analyses, 3 1 1-330 
integrals related to, 348 
percentiles of the standard normal, 345-346 
relationship to central limit theorem, 186-187, 

standard form, 119-121, 124, 133,  345-346 
sum of normals, 244,289 
theorems and  properties of, 124- 125,244, 

variance of, 124 
also bivariate normal  distribution 
also bivariate normal-lognormal distribution 

285-296 

244 

288-289 

Null event, 17 
Number  of samples for Monte Carlo, 302-304 

Objective probabilities, 20, 27 
Outcomes, elementary, 16 

Painvise independence, 33 
Peakedness, measure of, 85 



of a  standard  normal dis~ibution, 345-346 
see fractiles 

Point  estimate(§),  8-1  1, 110, 188,  193,  197,  228, 
230,260,269,308 

relatio~ship to  mode, 1 10 

har~~are-sof~are,  6 
2,255-256,263,270, 
-284,291,295-296 

see cost 

posteriori probability,  37 
priori prQbability,  37 

applications,  23-25,28-32,  36-37,  51-5 

~rQbability 

66-67,  160-167,  196-198,205-20 
207~209 

axiom of,  18,20-2  1,26-27 
Bayes’  rule,  34-38 
chance,  study  of, 
conditional,  28-32 

axiomatic,  20-2 l 
equally  likely,  19 
frequency,  20 
measure  of  belief,  26 

intervals,  general  form  (footnote),  80 
joint  cost-schedule,  308 
~ rg ina l ,  28 
multiplication 3 1 35 
objective probabili~es, 20,  27 
personal  probabilities,  26 

see measure of belief 
see subjective  probabiIities 
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related  to  area,  57 
related  to  volume,  161 
subjective  probabilities,  26-27,29,38,  11  1 

theorems  on,  21-23,34,48-50 
theory,  study  of,  15 
total  probability  law,  35 
unconditional,  28 

Probability  density, 
also density  function 

Probability  density  function,  57 
of  a  function  of  a  random  variable,  198-199 

also density  function 
Probability  distribution(s),  4-12,44,337 

specification  of,  6-9, l 1  1 138-  15  l 
also cumulative  distribution  function 

see also density  function 
also distribution  function(s) 

for  software  effort,  2  10-2  1  1 
for  software  schedule,  2  12-2  13 
various  types  of,  243-246 

Probability  function,  46, 57 
Probability function,  46,  1 160 
Probability  model(s),  3-4 

for  cost-schedule,  269,308-334 
for  software  effort-schedule,  2  10-2  13 

138-151,338-339 

Probability formulas 

Profit,  as  related  to  cost-volume  analysis, 1-56 
Pseudo-random  number(s),  302 

RAND Corporation, 2,5-6,297 
Random  number( 

generation  of,  30  1-302 
pseudo-random,  302 

Random  point,  159 
Random  sample, Monte  Carlo  simulation 
Random  variable( definition  of,  44 

Bernoulli,  10  1 
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beta,  1  12 
continuous,  45,57-58,  161-162, l68 
correlation,  170-  18  1 
dependent,  170,182 
difference  of 2  19 
discrete,  45-46,  158,  168 
domain of, 44 
expectation,  65-8  1,  170-  17  1,  182 
hctions genera1  discussion,  157-246, 

independent,  169-  170,  175-  176,  1  8  1 182, 

linear  Combination  (or of,  18  1-195, 

196-2 18,2 19-242 

2  19-220,349-35  1 

219-220,224,243-244,261,289, 
349-35 1 

lognorrnal,  126 
moments  of,  82-85 
norrnal, 1  17 
products  of,  220,232-236,245 
ratios  of, 
standardized  (standard  form),  8  1 
theorems  and  properties  of,  48-50,74,76, 

t r ~ s f o ~ t i o ~  of,  195-225,243-246 
trapezoidal,  10  1 
triangular,  109 
uniform,  106 

78-79,  175-176,  182,  185,  198-199 

Rank  correlation,  179-  18 1,340 
Rectangular  distribution, see uniform 
Requirements  uncertainty,  2-4 
Risk,  27 

co~unication of,  144 
cost-schedule  risk  baseline,  1 1,343 
cost-schedule  risk  tradeoffs,  309-3  10 
management  of,  2 
of  not  making  a  profit,  case  discussion, 1-56 

drivers,  2 
risk  mitigation  strategies,  2 



risk  reduction  tradeoff  analyses,  12 
vs. ~certainty, 27,338 

uncertainty 

Sample  points, 15,45 
Sample  size 

continuous,  16 
countably  infinite,  16 
definition  of,  15 
discrete,  16 
finite,  16 
uncountable,  16 

Set  theory,  16-  18 
rules  (laws)  of  set  algebra,  18 

Simple  event(s), see event 
Simulation, see Monte  Carlo 
Skewness,  coefficient  of,  83 

Sof~are  cost  analysis,  195,201-2  18 
n  in  cost  certainty analysis,  83-85 

st-schedule  model,  20  1-202 
evelopment  cost,  202 

development  effort,  20  1 
development  productivity  rate,  202 
development  schedule,  202 
distribution hctions for,  general  forxns, 

probability  related  applications, 

size, def~t ion of,  202 

210-213,293-294 

calculations,  20  1-2  1 8 

S p e a ~ n  correlation  coefficient,  179-  18  1 
Speci~ng density hctions, 6-9,  1  1  1,  138-1 5 1 
Standard  deviation,  definition  of, 77 

S ~ n d a r ~  form,  81 
variance 

beta,  112-113,  141,  143 
l,  119-121,  124,  133,345-346 



Standardi~ed random  variable, 8 1 
tatistical tables, 345-346, 347, 35 1 
trong law of large n ~ b e r s ,  74 

Subjective  probabilities,  26-27,29, 38, 1  1 1, 

s ~ e c i ~ c a t i ~ n  6-9, l 1  1 138- 15 1 
Sums of random  variables, 181-195,219-220,224, 

243-244,261,289,349-351 
ure  event, event(s) 

measure of, 83-85 

a~proximating probability dis~ibution(s 
em  cost, 117-1 18, 126, 186-1 

34 1-342 
a r c h i t e c ~ r e   ( c o ~ ~ g ~ a t i o n ) ,  3- 
com~uting  a system’s cost 

e x a ~ ~ l e s  of, 182-1 85, 

ical s y s t e ~ ,  de~nition of, 1 
m  nition ion ~ c e ~ a i n t y ,  3-4 

system test  and evaluation, 177, 182,255, 

s y s t e ~  engineering and program ~ n a g ~ m e n t ,  
1-12, 182,255,263,270 

I cost 9, 182-185,262,271 

contingency,  1 59- 160 
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175-176, 185,268,353,364 
172 

48-50, 
198- 199,2 19-220 

21-23,34,48-50 
74,  76,78-79,  170-171,  175, 

32-34,  169-  170,  175-  176, l 82, 
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Transfo~tion formulas 
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theorems  on,  198-199 
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expectation 104 
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theorems  and  properties  of, 104,228,243 
variance  of,  104 
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expectation 1  1  1 
Mellin  transform,  228 
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variance  of,  1  11 

Transfo~tions of  random  variables,  195-225 

Triangular  distribution,  109-  1  12 

Uncertainty,  27 
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system de~nition, 3-4 
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